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Abstract

In this paper we present an analytical evaluation of the perturbations to mesoscale atmo-

spheric flows induced by thermal inhomogeneities in the convective boundary layer. We study

the time evolution of these perturbations as a function of the intensity and of the horizontal

and vertical scales of the diabatic forcing. The problem is approached using Laplace transform

theory for the time behavior and Green function theory for the spatial structure. Results show

that the growth of the atmospheric perturbations closely follows the growth of the convectiv,"

boundary layer; the transient being characterized by a number of inertia-gravity oscillations of

decreasing intensity. The vertical scale is determined by the depth of the convective boundary

layer: and the horizontal scale is determined by the local Rossby deformation radius. Sinu-

soidally periodic thermal forcing induce periodic atmospheric cells of the same horizontal scale.
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The intensity of mesoscale cells increases for increasing values of the wave number, reaches its

maximum value when the wavelength of the forcing is of the order of the local Rossby radius.

and then decreases as the wavelength of the forcing decreases. However, because of the destruc-

tive interference between mesoscale cells, the intensity of the vertical velocity is only a weak

function of the wave numbers, for large wave numbers. Periodic square wave surface thermal

inhomogeneities are more effective than sinusoidal waves in generating mesoscale cells, i.e. the

intensity of the flow is generally stronger.

1 Introduction

Subgrid-scale parameterization is of considerable importance in regional and larger scale models

because these models seldom have more than few grid points within a Rossby radius. yet the

mesoscale flow driven by thermal horizontal inhomogeneities in the Convective Boundary Layer

may be significant. Therefore mesoscale effects need to be introduced in parametric form into those

large scale models.

Terrain in the real world is almost never uniform, for instance, in natural areas there may be

a variety of vegetation types and patches of vegetated or unvegetated areas which can modify the

mesoscale atmospheric flow. Horizontal thermal inhomogeneities in the planetary boundary layer

are a well known source of mesoscale circulation systems. Thermally-forced mesoscale systems such

as land and sea breezes, mountain-valley winds, and urban heat island circulations have been the

subject of many studies (e.g., see references in Pielke, 1984, and Pielke and Segal. 1986). Some

thermally-generated mesoscale circulations are due to horizontal inhomogeneities in ground wetness.

vegetation cover, snow cover, cloud cover etc (e.g. Zhang and Anthes, 1982; Garrett, 1982: Yan and

Anthes. 1988: Segal. et al., 1988). In addition there are also anthropogenic modifications of soil

and vegetation, such as irrigated or non-irrigated fields, crops at different stages of development,

inhabited areas, etc. (Hanna and Swisher, 1971: Anthes, 1984; Segal et al., 1984: Segal ct al.. 1989).

Such thermal inhomogeneities may extend from few square meters to hundreds or even thousands

of square kilometers (Wetzel and Chang, 1988). A number of studies. observational, numerical and

analytical, have been made of these physiographically forced circulations (Abbs and Pielke. 1986;

Mahfouf et al., 1987; Mahrer and Pielke, 1977: McCumber and Pielke, 1981; Zhang and Anthes,
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1982; Yan and Anthes, 1988).

Since the fine horizontal structure of the terrain thermal inhomogeneities is not usually resolved,

however, in regional and large scale non-linear numerical models, it is important to give an analyt-

ical quantitative evaluation of their impact on the atmospheric flow. In this paper, we present an

analytical theory for resolving the atmospheric perturbation and for evaluating the vertical veloc-

ities, resulting from thermal inhomogeneities in the absence of large scale flow (or in presence of

very weak large scale flow) in the limit of a linear theory.

2 Governing Equation and Evolution of the Horizontal and Ver-

tical Scales

From Rotunno (1983), and Dalu and Pielke (1989) the linearized two-dimensional primitive equa-

tions describing thermally-forced atmospheric flow, in the absence of a large-scale wind, can be

reduced to a single equation for the streamfunction:

[a-) 2 N2 a2 a A) 2 + f2] 2  
- .(1)

where f is the Coriolis parameter, N is the Brunt-Viis.il~i frequency, and A-1 is the damping time

due to friction, i.e. the persistency of the mesoscale flow when the diabatic forcing vanishes. In this

paper we use the following values for the Brunt-Viisl~i frequency, inertia frequency and friction

time scale:

10-2 S ,  f = 2.sin o = O (l -4) s 1 ,  = O ( .) da y 2

Q is the diabatic buoyancy source

Q g _Fr(x)q( He (h - z) = Qor(x)q(f)He (h - z) (3)

uniformly distributed through the depth h of the convective layer (CBL), as indicated by the

Heaviside function He in eq. (3). For(r)q(1) is the heat flux at the ground, which has a horizontal

distribution r(x) and a time behavior q(t).
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3

.s . ! /\~' 2' -. " . .

Statement A per telecon ". Dil:t
Dr. Robert Abbey ONR/Code 1122
Arlington, VA 22217-5000 /-
NWW 1/6/92



We first define the characteristic time scale of the system T, and we use it to non-dimensionalize

time:

1 + O(104)s r=tT-1 ; (4)

T decreases with increasing latitude and friction (friction keeps the time scale T finite at the

equator). We introduce the Laplace transform, defined as
c

i(s) = L {f(r)) =j f(r)exp(-sr)dr and LL - ' {f(r)} = f(r)
0

WVe recall also that:

f(r - oc) = Imr sf(s) (5)

i.e. f(r)--s](s) when s<< 1 and r= r0 >> 1 = t = to >>T (6)

to is the time when an almost stationary state is reached; to is larger than the characteristic response

time, T, of the system.

(b) Evolution of the Vertical and Horizontal Scales, and the Non-dimensional Coordinates

We recall the relation between the diabatic forcing Q and the height h of the CBL (Green and

Dalu. 1980):

r(x) h(t) = r(x) -K." dt' q(t'); ho = N dt' q(t') (7)

The Laplace transforms of the CBL height, h and the non-dimensional vertical coordinate., . are:

h =o L() -h- L; ,- =Z (8)
5 h

The Laplace transforms of the horizontal scale, R?, and the non-dimensional horizontal coordinate.

4, are:

= ( S +sii= -7+ (9)

f2 + P 2 /f f 2 + R

The horizontal scale evolves in time as:

R(t) = R I dt' h(t - t') exp(-t') J0('t'); = ho N (10)
Rft = o T ho -



Friction acts to reduce the horizontal scale R0 and exponentially damps the inertial oscillations

described by the Bessel function, which provides some damping even with no friction, eq. (10).

The evolution of the vertical scale h(t) and of the horizontal scale R(t) are shown in Fig.la

for a sinusoidal in time thermal forcing. and Fig.lb for an impulsive thermal forcing; for different

values of friction. In both cases, the growing time of the boundary layer is about half a day,

to day. The horizontal scale grows as the convective boundary develops, through inertia-gravity

oscillations. The relative amplitude of these wave is of the order of 0 [exp(-At) Jo(ft)]: i.e. the

inertia-gravity oscillations decay as a Bessel function or faster (exponentially) in the presence of

friction, and their amplitude is usually negligible when t > to Z 0.5 day.

(c) Local Rossby Radius

When two adjacent regions both experience a warming of similar intensity, the diabatic heat, in

eq.(3), is given by

Q = Qoq(t) [He(x) + (1 - v)He(-x)] He(ho - z) (11)

with -y < 0(1) indicating that the two regions have similar heating; then the Brunt-Vais~lii fre-

quency difference between the two regions is of the order of

N I N2  (12)

The Rossby radius R0 has been replaced by the local Rossby radius R0 , equal to

(A 2  1/2Ro, = ho N/, +. :zz ho N,2 ( 13)

Because of the reduction of the Brunt-Viiisilii frequency (eq. 12, the horizontal scale (eq. 13)

is correspondingly reduced, while the vertical scale remains of the order of h(t). The aspect ratio

becomes:

A f2 + \2

Atmospheric cells, generated by thermal inhornogeneities having a wavelength smaller than twice

the local Rossby radius, will interact with each other.

(d) Non-dimensional Equation for the Streamfunction
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Using the definitions stated above, the streamfunction equation (1) can be written as:

92 - 02 - _
-'k + -- = (P)Q (14)

8 2 OJ 2

1(P) (1 2)1/2 2 2) 1/ 2  1(15)

The variables with the tilde are non-dimensional; the variables with the hat are their Laplace

transforms.

(e) Boundary Conditions and Green Functions

We assume that the terrain is fiat and that the vertical velocity vanishes at the ground:

w,(x, z = 0,t0 = ,V( , = 0,r) = tb( ,, = 0, s) = 0 (16)

When the operator in eq. (14) is elliptic, the Green function is:

1 [( ')2+( + ')2] 1/2 (17)
go - In (17

The perturbation is trapped, i.e. vanishes at oc:

b( = 00, = 00, ,) = 0 (18)

When the operator in eq. (14) is hyperbolic, the Green function is:

§,=I [H,( - i f- ')-H +(9

The perturbation is a propagating wave.

Important Note:

When the operator is elliptic, the intensity of the perturbation decays as the logarithm of the

ratio between distance from the source ({',if) and from its mirror image (c', -if). eq. (17) (the

perturbation is confined in the neighborhood of the source and of its image). The presence of poles

in inverting the solution in the transformed space, gives propagating inertia-gravity waves vanishing

at oc in the physical space; the related solutions are in terms of Bessel and trigonometric functions

(Dalu and Pielke, 1989).
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The case when the operator becomes hyperbolic (non-vanishing propagating waves) under sinu-

soidal forcing has been treated by Rotunno (1983), and by Dalu and Pielke (1989). Furthermore.

Sun and Orlanski (1981) have shown that some modes can bfcome unstable for some values of the

pulsation and the wave number.

3 Atmospheric Response

The atmospheric response is given by the inverse Laplace transform of eq. (20)

v= Qo4(s) 3(p)H~, , ); ti =Qo4(s),3(p)Hu( , ): zj. Qo()=pH

N 2 i](0
=. - --; b- Q -[l ( . 20)

p p

where J(O - ', )= di'4( -' . ' -

The integration limit, h, is the Laplace transform of the depth of the CBL. In addition.

= I d~G(~ - , (

D is the horizontal region with non-zero forcing. When D is finite, k can be written also as:

Where

1 I= n [ 2+ ( + 1)2]1/2 [ 2 
+( + 1)2]

1 / }

)= - 2 tan-i 2 tan -1 + tan - '
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+1) In R, o + 1)]/2 -2In[ + 2
+r*2 - 1) In - / (21)

In physical units we have:

Qo ho 0
'(x, z, t) = { oq(t) * {exp(-At). {Jo(ft) * H,(x. z,t)}}} (22)

where { • } denotes the convolution product in time. The time-dependent transfer functions

can be written in terms of Bessel functions, trigonometric functions and exponentials (see Dalu and

Pielke, 1989). The time evolution is then reconstructed through the use of the Faltung theorem

(Fodor, 1965). The resulting behavior is similar to the one shown in Fig.1 for the Rossby radius;

i.e. the flow evolves through a series of damped inertial-gravity waves, the oscillations are not

generally in-phase at different locations. Making use of the knowledge that the flow decays almost

exponentially, i.e. with an e-folding distance equal to the Rossby radius, as shown in Fig.2, the

structure function can be approximated as:

G, ( , /) :- Gp ( = 0, /) exp (-iii) (23)

Stationary State: When t$to and r(z) = He(z), we have:

t = Vo G, ( , q) with i'o = Qohoto Nh0 (24)
N 2

The flow from eq. (24), shown in Fig.3a, is approximately contained in a region 2R 0 by 2ho. The

horizontal and the vertical momentum components are:

i/'o N/ho Ro
u=uoGu( ,ti) with uo-ho 2o 2T (25)

w =woG,( . ) with wo=uo = To T (26)

TO R 0 2
z a"

with , =- .o *=-

From eq. (25) and eq. (26) we deduce that:

-0 u 0 (2-) =-0 and u2 0 (') 0
, T ax 2T 1= h o 2



i.e. the advection terms are smaller than the linear term, but of the same order; thus the linear

theory underestimates the perturbations predicted by a nonlinear theory. For a quantitative evalu-

ation of the nonlinear contribution see the paper by Pielke et al (1991). The along-front momentum

component is:

tov -- f u (27)
2

The temperature perturbation is:

9 = He(x)He(ho - z) (ho - z)O, - [H(-x) + He(x)Hc(z - hj)] AO, (28)

Here we refer to heated land but the temperature perturbation will be positive whenever a CBL

occurs due to superadiabatic lapse rate at the surface (e.q. over warm water patches also). A, is

the vertical displacement of the air parcels:

A (X, z, to) L -U'(X. z, to)
2

When the flow results from adjacent differentially heated regions in eq. (11), the intensity of the

mesoscale flow reduces to:

50,= 7 o (29)

The flow intensity is proportional to -. If we set the threshold for the generation of significant

mesoscale flow at 20 %, the influence of the mesoscale flow need to be included (explicitely or in

parametric form) when:

. > 0.20 = -y> 0.20

We will refer to this measure as the resolution threshold suggesting that for I < 0.2. the influence

of the spatial hetereogenity can be ignored. The flow shown in Fig.3b refers to the case when

-1 = 0.5 in eq. (11), i.e. the upstream region experiences 50 % less heat than downstream of the

thermal discontinuity. The mesoscale flow shown in Fig.3b is less intense, (from , eq. (13)), and is

less extensive than the flow shown in Fig.3a.
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4 Atmospheric Response to Periodic Thermal Forcing

Throughout this section in evaluating the averages and the convolution integrals along the horizontal

coordinate we make use of the fact that the intensity of the flow decays exponentially with an e-

folding distance equal to the Rossby radius (Fig.2):

Sg(z) exp -) (30)

"2 - h2  1 z+h

g(z) = G,(z = 0.0.) In I +-L In z ho0

When the diabatic heat is sinusoidally periodic over the entire horizontal domain, with Lm as

wavelength:

Q = Qoq(t) He(h- z) [+ sin om=-" (31)

then the streamfunction is given by

L mrdx' co (mr(x - X')) Gv.(', z)
2 foo Ro Co Ro

= P irn- T C ros (32)
(mir) +lcoskXo

Here m is the number of wavelengths in a 2R 0 distance (rn need not be integer). If we set the

resolution threshold at 0.20:

,.. > 0.20 =T > 0.20 = 0.4 < m < 1.2
!(, (mr)2 + 1

Thus the mesoscale flow need to be included (explicitely or in parametric form) when 0.4 < m < 1.2.

The intensity of the atmospheric response as a function of m is shown in Fig.4a. The intensity

of the mesoscale cells monotonically decreases for m large (see also shown in Fig.5). The vertical

velocity is

_ ___, (m) 2  sin 3r3
ax = (Mg(z) 2 -
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When m > 1, the vertical velocity is a weak function of the wave number (Fig.4c). When the

forcing is a periodic square wave over the entire horizontal domain, with Lm as wavelength:

Q = Qoq(t) He(h - z) 1+ 1_...4-sin -n-rx 2R (34)

then the streamfunction is given by

4= 'og(z) mnr Cos (mnrx) (35)
n, (mnr) 2 + 1 O(3Ro)

If we set the resolution threshold at 0.20:

"0 O 4 m"?r
o.. > - > 0.20 0.05 < m <2.2V-'o n=13... n 7 1, nT) 2 + I .0 := .

Thus for square heating patches. the mesoscale flow needs to be included (explicitely or in para-

metric form) when 0.05 < m < 2.2. The intensity of flow as a function of m for a periodic square

forcing is shown in Fig.4b, and the circulation cells are shown in Fig.6. The intensity of the flow,

in general, is larger for a periodic square forcing than for a sinusoidal forcing; the difference being

larger at small wave number. At large wave number the mesoscale cells interact destructively,

reducing the intensity of the flow. The vertical velocity (Fig.4d) is

O'9 4 (mnr)2  (mn7r'w=- =  wog(z) sin (36)
n=1,3... n7r (mntr) 2 +1 R(36

and the temperature perturbation is:

[He(ho-z)i 1 + _ 4 sin mnrx' (h0-zO.o~ ~ = nh--) o/

2 - 2 =.... R0 IJ w'T(7Hc hh - z) 1+1 4 r

sin we,7{2 2 2 n ={1,..n, Ro 2

5 Conclusions

Making use of the theory developed by Dalu and Pielke (1989), we study th2 atmospheric response

to spatial gradients of diabatic heat fluxes in the convective boundary layer. Results show that,

for sudden changes, the atmospheric perturbation decays exponentially with an e-folding distance
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equal to the local Rossby radius. Square wave periodic surface thermal inhomogeneities generate
stronger atmospheric cells than sinusoidally distribu'ed inhomogeneities. The intensity of the flow

increases as the wave number increases, reaches its maximum when the wave length is of the order

of the Rossby radius, and then decreases linearly for large wave number. Thus significant atmo-

spheric cells are generated by periodic thermal inhomogeneous patches only when the wavelength

is a significant fraction of the local Rossby radius. It ., unnecessary therefore to explicitly resolve

in num :al models thermal inhomogeneities on scales much smaller than the local Rossby radius

(e.g. as assumed in Avissar and Pielke, 1989). However, since at high wave numbers, the ver-

tical velocities is significant and almost constant, mesoscale heat fluxes may be significant: these

subgrid-scale effects need to be introduced in parametric form in LAM and GCM., which have

only few grid points within a Rossby radius. Solutions for the atmospheric perturbations in the

presence of light ambient winds, can be derived from the theory presented in this pape,, and an

extension of our theory in this direction is desirable. When the ambient flow is strong, the pattern

of the perturbations is quite different (Hsu, 1987; Robichaud and Lin, 1989) however the intensty

of the mesor, -ale perturbation 's negligible, since it decays as 1/U 2.
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Figure Captions

Fig.1 The evolution of the Rossby radius for different values of friction: -a- for a sinusoidal
forcing; h(t) = hO(1 - cosJt)/2 is given in the insert; -b- for a convective boundary layer asymp-
totically growing to ho; h(t) = h0(1 - exp(-t/to) is given in the insert.

Fig.2 -a- Streamfunction. ,' [103 m2/s], at z = h0 versus the horizontal distance from the thermal
discontinuity. The function ,(x = 0.0,z = h0 ) exp(-IxI/ro) is plotted to show that the intensity
of the flow decays essentially exponentially with an e-folding distance equal to the Rossby radius
(broken line). -b- Vertical profile of V, at x = 0.0.

Fig.3 -a- Streamfunction isolines for a discontinuous change of heat flux at x = 0.0 at 40' of
latitude (A = L): hu = 1000 m, At' = 0.2 [103 m2/sJ. -b- Streamfunction isolines when one region
experiences a heat flux 50 ( less intense than the adjacent region. i.e. I = 0.5.

Fig.4 -a- Intensity of the flow, induced by a sinusoidal periodic forcing, versus horizontal wave num-
ber; -b- same as -a- but for a periodic square wave; -c- vertical velocity for a sinusoidal periodic
forcing: -d- vertical velocity for a periodic square wave; -e- average vertical mesoscale heat flux
for a sinusoidal periodic forcing: -f- average vertical mesoscale heat flux for a periodic square wave.

Fig.5. - Mesoscale atmospheric cells for four values of the horizontal wave number for a sinu-
soidal periodic forcing. At- = 0.2 [103 m2/s].

Fig.6. - Mesoscale atmospheric cells for four values of the horizontal wave number for a square
wave periodic forcing, At' = 0.2 [103 m2/s].
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