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Abstract

We evaluate the mesoscale vertical velocity induced by stress changes in the surface layer as

a function of the size of the rough patch in relation to environmental parameters. The nature

of the flow perturbation strongly depends on the relation between the width of the rough patch

and the two natural scales of the flow, i.e. the inverse inertia wave number and the inverse of the

Scorer parameter. When the width of the rough patch is comparable to the inverse inertia wave

number or larger, the atmospheric perturbation is trapped, the vertical scale equals the depth
LT -

of the stress surface layer, and the horizontal scale equals the Rossby radius. When the width of C

the rough patch is larger than the inverse of the Scorer parameter, but smaller than the inverse

inertia wave number, the atmospheric perturbation is a hydrostatic gravity wave with a vertical

wave number equal to the Scorer parameter. When the width of the rough patch is comparable ',

to the inverse of the Scorer parameter, the atmospheric perturbation is a propagating lee wave 2 . I
with a vertical wave number equal to the Scorer parameter. When the ambient flow is strong ,'-/

over a small rough patch, the flow is irrotational. The same limitations, inherent to the linear
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gravity waves excited by the forcing in the atmosphere (e.g. mountain waves, gravity waves

initiated by convection, etc.), apply to the mesoscale perturbation induced by a rough patch

1 Introduction

When an air mass approaches a region where there is a substantial increase of the shearing stress in

the surface layer, the air speed decelerates in the lower layer. The resulting horizontal convergence is

associated with rising motion. Such situations are typical, for example. in coastal urban areas when

onshore flow occurs. However, it may also be of significance in inland urban areas, because of the

contrast with surrounding agricultural rural areas or when there is a contrast between prairie and

wooded areas. The developed vertical velocities may trigger, under supportive synoptic conditions,

convective clouds. The features of the induced vertical velocity may also be of importance in

dispersing pollutant.

In this paper we approach the problem of the vertical velocity which arises because of horizontal

inhomogeneities in the surface shearing stress in the atmospheric planetary boundary layer. This

study is an extension in more general terms of a previous paper (Dalu et al. 1988), where we report

on the waves generated by a change in surface roughness (CSR).

Hunt and Simpson (1982) provide an excellent review of the studies reported by that time,

concerning flow perturbations induced by a roughness change. Furthermore Hunt (Belcher et al,

1990) and at the EUROMEC 1990 meeting presented solutions concerning the flow perturbation

induced by roughness changes within and around the stress layer. Our work generally agrees with

his results, however it is less detailed in the structure of the perturbation within the stress layer.

because we are more concerned with the flow perturbation in the free atmosphere above. Additional

studies reporting on the impact of a sudden change in the surface roughness on the horizontal flow

are given by Pendergrass and Arya (1984).

Claussen (1987) computed, using a model simulation, the vertical velocity due to a CSR. How-

ever, the computed vertical velocities were, in general, very sensitive to the horizontal grid resolu-

tion, which must often be reduced to several hundred meters in order to appropriately resolve the

related vertical velocity. Using a very coarse horizontal resolution, Vukovich and Dunn (1978) in

their numerical model simulation of the St. Louis urban area, suggested that the surface rough-
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ness has only a small effect on the circulation for the wind speeds used in their study. Alestalo

et al. (1985), using a hydrostatic two-dimensional model with a grid interval of 4 km simulated

the airflow in the Baltic shore region of Finland, and found a maximum for the vertical velocity

of order of 1 cm s - 1, due to the CSR. They attributed the reported increase of precipitation in

that area, in the absence of thermal forcing, to the vertical velocity induced by the CSR. Pielke

(1974) evaluated the magnitude of vertical velocity caused by a CSR over Florida using a 11 km

horizontal resolution model. Althcugh the magnitudes were small (- 0.1 cm s-1), it was concluded

t: at shallow warm-rain clouds over the southeast coast of Florida could result due to this mecha-

nism. Finally, Roeloffzen et al. (1986) presented a steady state model calculation of secondary flow

patterns forced by a CSR. Adopting a neutral boundary layer and using a refined grid resolution.

they suggest that frictional effects involved with a CSR at a coast line, can lead to a secondary

circulation on the mesoscale. They suggest that this forcing is a factor in the observed coastal

frontogenesis active in the early fall along the coast of the Netherlands.

2 The Governing Equation for the Linear Problem

If we assume that the process is stationary, two-dimensional and Boussinesq, then the primitive

equations in linear form can be reduced to a Scorer type equation for the vertical velocity in

non-homogeneous form:

k 2 -l + 1 0 ) 6( 1 )
\ k, pU

Because of the linearization the perturbations may be underestimated, however, since the solutions

are continuous, there are no limitations due to grid-size. For a derivation of equation (1). s',

Efiassen (1977). The hat denotes the Fourier transform of the variable, k is the horizontal wave

number, ko = f/U is the inertial wave number (f is the Coriolis parameter, U is the ambient flow

perpendicular to the change in surface roughness, and 1 is its shear), 7 is the resulting shear

stress, and 1 is the Scorer parameter:

12w N 2  1," With N 2 a b (2)
U2 U TZ
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where N is the Brunt-Viisala frequency and b is the buoyancy of the environment. Equation (1)

can rewritten as:

ti'z + vAk) 1i = G2(k)Lz (3)
pU

wit 2,(k) = k_ 1 
_

- k Ick

with and G (k) - k2 -

In the wave number region where v2 (k) < 0, the waves are trapped around the perturbing source

within an e-folding vertical distance equal to yo 1. The vertical wave number p0 for the trapped

waves is:

12 - k2

po(k)-1i v(k) = IkI k- -2  when 0<lkI<ko or when l< ]ki< oc (4)

In the wave number region where v2(k) > 0, the waves propagate away from the perturbing source

with a vertical wave number equal to jul. The vertical wave number p, for the propagating waves

is:

12 - 2
p,(k) = v(k) k - when k0 < lk<. (5)

k02

Note The theory of the mesoscale vertical velocity induced by a rough patch is formulated within

the framework of the well established gravity wave theory, therefore solutions in the presence of

variable Scorer parameter, shear in the ambient flow, regions of neutral stability. and critical levels

can be easily treated, because the related mathematical tools are already in the literature.

2.1 Green Functions and Boundary Condition

The advantage of writing the solution in terms of Green functions is that a variety of different

vertical profiles of the stress could be easily studied through a simple convolution integral. Using

Green function theory (Stakgold, 1979), we seek for the solutions, (k, z - z'), associated with the

governing equation (1) for a point source forcing 6(x', z'), which satisfies the boundary condition:

(k,z-z')=0 when z=0 (6)

Then the vertical velocity for a given forcing is:

iikz)j(k(~zz ) PU'z' w(z,z)=- I dk ti'(k. z) exp ixk: (7)
(k, z) = dz' &, z - z1) (kz)A z)4



The Green function for the upward propagating wave, which satisfies the radiation condition (Som-

merfeld, 1912 and 1948) and the boundary condition, is:
1

1(k, z - z') = [exp i(kx + pij(k) 1z - z'j) - exp i(kx + ul (k) Iz + z'I)] (8)
2ijii(k)

The second term is the mode reflected by the ground.

Remark For verification, we derive the boundary value Green function, (k, z):

B k )-, m 1 ,~,z- z0-) ] = exp i(kx + pI(k) Z) (9)
-( z '-O 149Z/ ( Z9=)

which is the Green function for a radiative wave in the mountain wave problem (Smith. 1979).

The Green function for the upward trapped wave is:
1

4o(k, z - z') = - I)[exp(ikx - yo(k) Iz - z'j) - exp(ikx - po(k) Iz + z'j)] (10)2po(k)

The second term is the mode reflected by the ground.

Remark For verification, we derive the boundary value Green function, gB,(k, z):

'z)- lm z-hp(k, z- z')] = exp(ikx - 1o(k) z)

which is the Green function for the trapped wave in the mountain problem (Smith. 1979).

3 Atmospheric Response to Stress Changes in the Surface Layer

The stress has the same direction and opposes the ambient flow; furthermore, for simplicity, we

assume that the stress decays linearly with altitude within the stress laver:

h -z
r(x, z) = "o He(h - z)---- F(x) (12)

where re is the surface shear stress, F(x) is its horizontal distribution, and He is the Heaviside

function. The mesoscale perturbation depends mainly on the intensity of the stress and on its

depth, and weakly on its vertical distribution. The relation between the surface stress ro. the wind

intensity U, the surface drag CD, and the shear velocity u" is given by (Panofsky and Dutton.

1984):

CD = u 2  r0 =0 K (13)
- 2 -U 2 n



Here u" is the shear velocity, K is the von Karman constant and Zo is the surface roughness. The

atmospheric response, to a horizontal distribution of the stress (F(x) is assumed to be an even

function), is given by:

w(x.z)= Io+] Io, + 2  dkao(k)wo(k,z)P(k)+ IkAG(k)w,(k,z P(k)

01 U.21 CD 1 2  (4
+ dk Go(k)w ,o(kz)F(k)j with tP= '7"1 "  ( h4

The variable &i, is the amplitude of the perturbation of the vertical velocity. Here

Go(k) - 1G2(= ) 1k and GI(k) = 1G2 (k) -_Ik(15)
yo(k) V(ko-k 2)(12 _k-) pi(k) V(k2-k2)12 k2

The w,)(k, z) waves are trapped around the top of the stress layer:

1uI,,0(k, z) = - {exp(-poIz - hi) - exp(-poIz + h)} cos(kx) (16)

The w, (k, z) waves propagate away from the top of the stress layer:

1
wMl(k,z) =1 {sin(ii(z- hI + kx)- sin(pl(z + hi + kz)} (17)

2

The tilde denotes the cosine Fourier transform:

F(k) dz F(z) cos(kx) =, F(x) A F(k) cos(kx)

4 Vertical Velocity Excited by a Bell Shaped Stress

We assume that the drag coefficient is CD = 3.10- 3 , that the depth of the stress layer is h = 300 m.

and that the environment parameters have the following values N = 10-2 s' and f = 10-4 s - .

We evaluate the vertical velocity induced by a rough patch with a horizontal extension a. in relation

to the ambient wave numbers k0 and I. A bell shape distribution of the stress is ideal for this kind

of analysis (as shown by Queney (1947) and by Smith (1979) for the vertical velocity induced by a

bell shape mountain):

ro6(z-h) a2  7o6(z - h) r a
Tz(Z, z) = h 2  a2 +_ 2  (kr) = h2) x(a (18)
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Here 6 is the Dirac function. From eq. (14) the vertical velocity is given by:

X(, z) = Io + I + '02 = -f' {j dkGo(k)w(k,z) a exp(-ak)

+ dkG,(k)u,1 (kz)a exp(-ak) + dkGo(k)u'm(k,z)a exp(-ak) (19)

(a) - When la >> koa >> 1, Io, >> I, + Io2; the perturbation is horizontally and

vertically trapped inertia wave.

Due to the exponential decay of the Fourier transform of the bell function for increasing values of

the wave number, when the rough patch is large and the ambient flow is very weak, the contributions

of the second and third integrals are negligible in comparison to the contribution of the first integral:

w(x, z) ;z. = r dk k [exp -k (a + + - exp-k a+ N z- h cos(kx)

a f _(a _+ _____+ _____-_x (a+ 1V z -h)2 - 2

-f T a~zh)z (20)
2k1 [(a +2V1 z + h)2 +X2 ] 2 [a + Lz -h)2 +X2 2}

This solution represents an inertia wave which is horizontally and vertically trapped, as shown in

Fig.la. When the inertial wave number is large (in Fig.la k0a = 3 and a = 100km) the air particles

are displaced upward and northward within a Rossby radius distance upstream of the rough patch.

then the restoring Coriolis force brings them back to the previous location through an inertial os-

cillation. The maximum intensity of the perturbation occurs at z = h, and monotonically decreases

above it as in the Ekman solution.

(b) - When la>> koa = 0(1), I01 >> 11 + 102; the perturbation is vertically trapped

inertia wave.

In this case, the second integral does not contribute significantly because of rapid oscillations

of the sine argument; the third integral does not contribute because of the exponential decay. thus



This solution represents a number of vertically trapped inertial oscillations (Fig.lb). Again, the

perturbation monotonical decays with altitude above the stress layer.

(c) - When la >> 1 >> koa, I, >> Io, + Io,; the perturbation is a hydrostatic grav-

ity wave.

In this case, the trapped wave contribution is negligible in comparison to the contribution of a

vertically propagating hydrostatic wave:

W(X.z);L l1 = ZP a dk [sin(liz+ hl + kz) - sin(llz - hI + kx)Jexp(-ak)

tIr a
- 2[a2+ 2{[a sin(llz + h) + xcos(Ilz + hl)] - [a sin(tlz - h!) + cos(liz - hi)]) (22)

The hydrostatic gravity wave is shown in Fig.2a. When the inverse of the Scorer parameter is

smaller than the extension of the rough patch (La = 3 and a = 1 km in Fig.2a), the perturbation

has a wave structure with a vertical wave number equal to I. The maximum intensity of the per-

turbation occurs at the center of the rough patch at z = h.

(d) - When la = 0(1) >> koa, h + '02 > Io,; the perturbation is a non-hydrostatic

lee wave.

For this situation, the contribution of the first integral Io, is negligible, the vertical velocity is:

w(X, z) ,z 11 + 102 (23)

However. most of the contribution is in the propagating non-hydrostatic wave:

1,1 a [AI [sin(V2T' -kWz + hl + kx) - sin(v'/ " - k2jz- hl + kr)] exp(-ak)21 = o V, - k- -2

r law.i'- exp(-la) f [sin(1jz + hi) Jo(l(x - Iz + hj) ) + cos(ll z + hj) Ho(l(x - 1z + hl))]
4

- [sin(Ilz - hi) Jo(/(z - Iz - hi)) + cos(/lz - hj) Ho(l(z - IZ - hi))]}

The contribution of the trapped non-hydrostatic wave is:
1'd [exp -(v l- 2z + hj) -exp -(vk2 - 2z - hj)] epk o~x

102 a d A exp(-ak) cos(kz)

2 vfk -8



7r la
; -- r exp(-a) No(lx) {exp(-l~z + hi) - exp(-lz - hI)} when lz >> 1

4

The trapped wave decays exponentially with the distance from the top of the stress layer, therefore

it interferes with the propagating wave only at z : h, while weakening the propagating wave up-

stream and strengthening the propagating wave downstream [the zero order Neumann function is

even, while the zero order Struve function is odd, with the same asymptotic behavior (Abramowitz

and Stegun, 1972)], thereby producing a wake of secondary cells downstream at the level of the top

of the stress layer. The non-hydrostatic lee wave is shown in Fig.2b, for la = 1 and a = 1 km). The

maximum intensity of the perturbation occurs at the center of the rough patch at z = h.

(e) - When koa << Ia << 1, '02 >> I0, + I,, and the flow is irrotational

When ambient flow is strong, the inertia wave number k0 and the Scorer parameter I are small.

Thus the contribution of the first and the second integrals are neghgible, only the third integral

contributes:

w(x, z) = l0 = ,a dk [exp(-(a + Iz + hI)k) - exp(-(a + z - h)k)] cos(kx)

a (a + {z[(ah - (a +1z - h) (24)
2 7 [(a + Iz + hl) 2 + X2 ] -[(a + Iz - h) 2 + x2]

The perturbation is horizontally and vertically trapped, as shown in Fig.2c for la = 0.3 and a =

1 km. The maximum intensity of the perturbation occurs at the center of the rough patch at

z = h.

5 Conclusions

We have shown that a horizontal change in surface roughness can induce substantial vertical velocity.

The vertical velocity can be in the form of propagating waves or in the form of trapped waves: in

both cases the perturbation can be physicaUy relevant, since the maximum is placed at the top of

the stress layer, i.e. in the region where it is important to have positive vertical velocities in order

to trigger cumulus convection.

The nature of this perturbation6 depends on the width of the rough patch relative to natural

scales associated with the magnitude of inertia wave number and Scorer parameter. The vertical
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scale is related to the ambient Scorer parameter, when there is vertical propagation. The horizontal

scale is related to the Rossby radius for weak ambient flow over larger rough patches. When the

rough patch is small, the horizontal scale is related to the inverse of the Scorer parameter.

The theory which we use is derived from mountain wave theory, (Queney, 1947; Eliassen, 1977;

Smith, 1979).
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List of Figures

Figure la - Contours of vertical velocity induced by a bell shaped distributed surface stress, when

the inverse of the inertial wave number is smaller than the width of the rough patch; k0a = 3,

a = 100 km, under weak flow condition (U = 3 m/s, t = 1 cm/s and A, = 0.1 cm/s). Figure lb -

When the ambient flow is U = 10 m/s, then koa = 1, i, = 10 cm/s. and Ati, = 1 cm/s.

Dashed ines represent negative contour lines.

Figure 2a - Vertical velocity isolines when the inverse of the Scorer parameter is smaller than the

width of the rough patch, la = 3. a = 1 km. under weak flow condition (U = 3 m/s, ti 1 cm/s

and At = 0.1 cm/s). Figure 2b - When the ambient flow is U = 10 m/s, then la = 1, i' = 10 cm/s

and Ai, = 1 cm/s. Figure 2c - When the ambient flow is strong (U = 30 m/s), then la = 0.3.

if' = 100 cm/s and Ai, = 10 cm/s.

Dashed ines represent negative contour fines.
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