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Preface

This thesis develops the application of kriging for the controlled minimization

of large data sets. As a result of this research, subsets of the original huge data set

can be selected such that the largest estimation variance of the reconstructed image

is within an acceptable level of error as defined by the user. The benefits of this effort

will include drastically reduced on-line storage reqtuirements, faster frame generation

for computer animation, and topographical detail at greater or lesser resolution than

that contained in the original data.

Special recognition is given to my advisor, Major David G. Robinson, who

conceived and developed the idea of adapting the estimation technique of kriging

from the field of geostatistics and applying it to the minimization of large data sets.

I offer my personal thanks for his guidance and assistance in completing this research

effort.

I would also like to thank the other members of my committee, Major Mar-

tin W. Stytz and Lt Col E. Phillip Amburn. Lt Col Amburn provided invaluable

assistance on programming and optimal object structuring in C++.

This study was sponsored by the Human Engineering Division of the Harry G.

Armstrong Laboratory.

Christopher Brodkin
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AFIT/GA/ENY/91D-14'K Abstract
Frequently, the quantity of data available is much greater than that which can

be manipulated in an efficient and timely manner. This can cause several problems.

The first, and probably most critical, problem is the excessive on-line storage needs

of these huge data sets. Secondly, in the computer animation field, huge data sets

may require excessive computational ti'me for generation of each frame of a computer

animation. Thirdly, computer screens hiave a limited resolution and need too much

computational time removing excessive 'detail from images generated with a higher

resolution than can be displayed. Lastly too much time is required to transmit huge

amounts of data from location to location. What is needed is a method of minimizing

the data set based on some acceptable level of resolution.

This thesis develops the application of kriging for the controlled minimization

of large data sets based on a maximum acceptable level of error. Specifically, the

geostatistical estimation technique of kriging is used to produce minimal data sets

and to estimate the unknown values on an arbitrarily sized grid using as input any

data set. All the procedures necessary to improve the accuracy of the estimate as well

as the kriging procedure are developed. .Using these procedures the entire process

can be automated. The techniques are demonstrated using Magnetic Resonance

Image data to support minimizing on-line storage requirements. Two concurrent

thesis efforts also use the techniques to enlarge satellite photographs and to change

the grid resolution of terrain data.
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THE APPLICATION OF KRIGING FOR CONTROLLED

MINIMIZATION OF LARGE DATA SETS

L Introduction

This research effort develops the application of kriging to the controlled mini-

mization of large d,,ta sets. Kriging is a geostatistical estimation procedure named

after D.G. Krige, a South African mining engineer. Although kriging has its origins

in geostatistics, the methods are applicable to a wide range of disciplines. This first

chapter provides the background, the research objectives, and the scope of the study.

1.1 Background

Historically, man has had more data than he can manipulate in an efficient and

timely manner. The quantity of data that can be manipulated has grown dramati-

cally, but the quantity available has grown even faster. What is needed is a method

of choosing a minimal data set based on the desired level of acceptable error in the

data needed for the application. Using a subset of the data will then allow faster

manipulation of that data while maintaining the required level of acceptable error

in the data.

The three areas that will probably benefit most from the use of kriging are

computer graphics, computer animation, and topographical estimation. These were

the main focus of this kriging development effort. All three of these areas require

the ability choose a subset of the original larger data set and estimate the unknown

points based on that minimal data set. For enlargement of the original data set the

subset is equal to the original data set.

In computer graphics, an image may be displayed on the entire screen or it

may displayed on only a very small portion of the screen. Using the entire data set
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in both cases may waste substantial computer time calculating points that can't be

displayed on the small portion of the screen. Using a subset of the entire data set

in both cases may discard substantial detail needed for the entire screen display of

the image. This problem can be alleviated by having multiple subsets of the original

data set, one for each range of resolutions displayed. A range of resolutions would

be used to minimize the number of subsets needed.

In computer animation data sets containing large numbers of graphics primi-

tives (points, lines, polygons, patches) require great amounts of time for generation

of each frame of the animation. In this case what is needed is a minimal data set

based on the desired resolution of the animated object. Tb: smaller the animated

object is relative to the overall image size the fewer graphics primitives needed in

the minimal data set. Faster moving objects also require fewer graphics primitives

in the minimal data set. Therefore, in selecting a minimal data set, smaller or faster

moving animated objects require fewer graphics primitives in the minimal data set

than larger or slower moving objects.

Part of this approach involves estimating points that arcn't known because

they were removed while producing a minimal data set or were not known in the

first place. This aspect of the method can then be used for topographical estimation.

A photograph can be enlarged by estimating points between known points of the

original image. This does not add detail but can aid a photo-interpreter in discerning

more information from the enlarged image. This aspect can also be used to generate

biofidelic head forms to assist in the design of environmental protection equipment.

This involves estimating a general head shape, using many head shape data sets,

thereby minimizing the variability between the different head shapes.

All these uses minimize the amount of data that must be readily available on

immediate access storage devices. The large original data sets can be stored on slow

access, long term storage devices.
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1.2 Research Objective

The purpose of this research effort was to develop a procedure that could select

a minimal data set in a statistically controlled fashion and estimate unknown values,

at regular grid locations, based on a desired overall maximum acceptable level of

error.

1.3 Scope

This thesis develops and demonstrates the application of kriging in the con-

trolled minimization of large data sets. Specifically, this study includes a discussion

of the theoretical development of kriging and the computer programs necessary for

the application of the technique. The following provides a summary of the extent of

this research effort.

1.3.1 Theory of Kriging The literature review provides an introduction to

the theory and the development of kriging from the field of geostatistics. Emphasis

is placed on the kriging equations and structural analysis of the data.

1.3.2 Procedural Development A complete development of the kriging proce-

dure is outlined in Chapter III.

1.3.3 Kriging Programs This document includes a complete package of the

programs required for the kriging of data. Specifically, the following programs, all

written in C++, are included:

Zonal Trend Partitioning Program. This partitions the data based on varia-

tions of the data from the row and column median values of the data. This program

isolates the zonal anisotropic behavior of the data into data subsets.

Global Trend Removal Program. This determines the least squares coefficients

for a polynomial surface through the points and outputs the residuals.
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Least Squares Semivariogram Estimation Program. This determines the least

squares parameters for three of the more commonly used semivariogram models: the

linear, the De Wijsian, and the spherical models.

Kriging Program. This program selects the minimal data set and/or estimates

the values at the grid locations and provides the kriging variances for these points.

Global Trend Addition Program. This uses the coefficients for a polynomial sur-

face through the points to add the global trend to the kriged residuals and outputs

the estimates.
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II. Literature Review

The first step is to research the current methods pertaining to the application

of kriging and the structural analysis needed for kriging. Therefore, this chapter

provides a review of the literature pertaining to the areas of kriging and structural

analysis. The emphasis of this review is on the development of kriging in the field

of geostatistics and the structural analysis essential to the application of the kriging

procedures.

2.1 Structural Analysis

The goal of structural analysis, as it pertains to using the kriging method, is

to determine the spatial distribution of the quantity of interest, the semivariogram.

Before characterizing the spatial distribution, however, the presence of global trend

must be determined and, if present, removed from the data. In kriging, the spatial

distribution of the quantity of interest is characterized by the semivariogram. The

semivariogram is a function describing the expected difference in value between pairs

of samples with a given spatial relationship (4:11).

Yakowitz and Szidarovszky note:

The kriging method is composed of two activities, (i) inferring the
semivariogram from the data and (ii) assuming that the inferred semi-
variogram is indeed exact, providing a best linear unbiased estimator and
associated error variance. (20:23-24)

Journel and Huijbregts emphasize that the first and most important step in any

geostatistical study is structural analysis (12:12). "Structural analysis is tile name

given to the procedure of characterizing the structures of the spatial distribution of

the variables considered (e.g., grades, thicknesses, accumulations)" (12:12).
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2.1.1 Trend Removal The goal of computing and using the semivariogram

is to improve the accuraey of the estimate of the desired quantity at the desired

location. To achieve this goal, it is necessary to remove any trend in the data. In

this context trend is the tendency for the local mean to increase, or decrease, as a

function of spatial location in the data. One method to remove the trend is to fit a

polynomial to the data and then subtract the value of the polynomial at each point

from the known value at that point. This method provides a continuous trend value

for any point and, for this research effort, is preferre "& over the discrete method of

median polishing as suggested by Cressie (5). The problem with discrete methods

is that the trend is only known at the original data sites. Therefore, the trend can

only be estimated at the desired location and added to the estimate of the residual

for that location.

2.1.2 Cluster Analysis Another method to improve the accuracy of the esti-

mate is to perform cluster analysis on the data before calculating the semivariogram.

Cluster analysis refers to a number of techniques which classify objects in homoge-

neous and distinct groups (1). The definition of a cluster is often determined by the

researcher. The goal, however, is to partition the original data set into subsets that

contain some degree of similarity. The mefthod chosen is to calculate the row and

column sums, find the medians of the row and column sums, and then partition the

data based on row and column sums that fall below, or above, the corresponding

row or column median.

2.1.3 The Variogram The variogram is twice the semivariogram and accord-

ing to Omre, "the variogram function is the backbone of geostatistical analysis"

(15:107). The semivariogram function is defined as the variance of the difference

of the quantity of interest between two points, [Z(xI,yI) - Z(X2,y 2)]. Using this

definition, it can be seen that tLe semivariogram is zero between a point and itself.
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-y(h)

h

Figure 2.1. Experimental Semivariogram

The variogram function is written as:

27 (hl 2) = Var{Z(xi,yi) - Z(x 2 ,Y2)1

Where h12 is the distance between the points (xi, y1) and (X2, y2). The semivariogram

is simply y(h12).

In practice, only an estimator of the theoretical semivariogram is available.

This estimator is known as the experimental semivariogram and is calculated as

follows:
1 INI h) zX,)]2

IN-, =[z(xi + h) k
i--1

where INI is the number of pairs of data values at a distance of h apart from one

another, x+ is the location of point i, xi + h is the location of a point at distance h

from i, and z(x+) and z(x, + h) are the values of the quantity of interest at i and

xi + h. An example of an experimental semivariogram is shown in Figure 2.1.

The next step in the structural anaiysis procedure is to fit a model to the

experimental senivariogram so that semivariogram values may be calculated for the

points to be estimated. The approach taken is to calculate the parameters for each
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model using a numerical least-squares fitting routine and then select the model with

the best simple correlation. Since the number of pairs of points h distance apart used

in calculating the semivariogram decreases as h increases Cressie proposes minimizing

a weighted sum of squares and indicates that work by Zimmerman and Zimmerman

shows that the weighted least squares approach never performs poorly and usually

does well (5:198). Clark suggest. limiting h to half the largest distance in the data

set (4:14).

2.1.4 Standard Alodels Three of the more common models are the spherical

model, the linear model, and the De Wijsian model (6:120- 122). A brief introduction

to each .f these models is provided.

Spherical Model (6:80) The spherical model is the most common

model and is defined by three parameters: a, C, and Co. The first parameter,

a, is called the range and is used to determine the range of influence. The third

parameter, Co, is known as the nugget effect. Finally, the second parameter, C, is

used in conjunction with Co to determine the sill, (C+ Co), defined as the covariance

of the samples at h=0.0, oa(0). The form of the spherical model is as follows:

C( -3)+Co ifh<a

(h)= C + C0  if h >a

0 if h =0

The shape of this model is shown ir' Figure 2.2.

Linear Model The equation for the linear model is of the form

7(h) = ah + b. This is one of two models used in practice which does not have a sill

(6:120). The shape of this motel is shown in Figure 2.3.
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sill=C + CO

-y(h)

range=a
h

Figure 2.2. Spherical Semivariogram

-t(h)

Figure 2.3. Linear Sernivariogram
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h

Figure 2.4. De Wijsian Semivariogram

Dc Wijsian Model The form for the De Wijsian model is y(h) =

a ln(h)+b. However, 'one usually writes a = 3a and calls it the coefficient of intrinsic

dispersion" (6:121). This model also does not have a sill. This model is named after

Prof. H.J. de Wijs and is used when the experimental data plots as a straight line

on a logarithmic scale (6:120). The shape of this model is shown in Figure 2.4.

2.1.5 Problems with Anisotropy Anisotropies are typically classified in one

of two categories: geometric and zonal (6:134). Geometric anisotropy refers to the

situation where the value or expected variation varies more quickly in one direction

than in another. This is evidenced by different semivariogram ranges in different

directions but, for the spherical model, identical sills. This type of anisotropy can

be handled by scaling the coordinates of the data sets or by using different semivari-

ograms for different directions. The method chosen is to scale the coordinates of tt -e

data sets. Zonal isotropy is characterized by qualitative variations or separations..

the data into zones. This form is very difficult to treat. In the spherical rm -- this

is evidenced by different sills in different directions.

The anisotropy ratio (or affinity modulus), k, is equal to the ratio of the ranges
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in each direction, k = a(y)/a(x). For example, if the range is 50 feet in the x direction

and 300 feet in the y direction, then k is equal to 300/50 (6:134-135). The distance

vector, h, can be decomposed into two components, h, = (XI - X2) along the x axis,

and h2 = (Y1 - Y2) along the y axis. Therefore, using the semivariogram model

calculated in the y direction, the scaled distance between the two points (xa, y1) and

(X2.y2) is h ( - a 2 )2 + (y - 2. This treatment of geometric anisotropy

can be extended to three dimensions by introducing a second anisotropy ratio for

the third direction, c = a(y)/a(z), and multiplying it by the change in distance in

that direction. Treating zonal anisotropy is beyond the scope of this study; for more

information reference David (6:134-148).

2.2 Kriging

A review of the literature showed some applications of kriging in the controlled

minimization of large data sets. In particular, Ferenc Szidarovszky explains how a

minimal data set can be constructed by testing all possible subsets of the data and

using a branch and bound technique to reduce the time required for this testing

(18). This review explains the theory of the technique as developed in the field

of geostatistics and applied to this effort. Specifically, the following kriging topics

are discussed: the origin, a definition, the fundamental equations, the universal

equations, the assumptions, and several types of kriging.

2.2.1 Origin of Kriging The method of kriging traces its origins to the field of

geostatistics as developed in the mining industry. According to Journel: "in mining

practice, one problem is to find the best possible estimator of the mean grade of a

block" (11:563). He further states that D.G. Krige proposed a regression technique

for this problem in 1951 and that "in 1963, Matheron formalized and generalized this

regression procedure and gave it the name of kriging" (11:563) after D.G. Krige, a

mining engineer in South Africa. Georges Matheron is also credited wit h introducing

the concept of regionalized variables. According to Matheron:
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Geostatistics, in their most general acceptation, are concerned with
the study of the distribution in space of useful values for mining engi-
neers and geologists, such as grade, thickness, or accumulation, includ-
ing a most important practical application of the problems arising in
ore-deposit evaluation. (13:224)

2.2.2 Definition Matheron originally defined kriging as follows: "kriging is

the probabilistic process of obtaining the best linear unbiased estimator of an un-

known variable" (11:563). In this context, "best" is defined as "having the smallest

estimation variance" (4:104). Matheron later generalized the techniques for obtain-

ing nonlinear unbiased estimates. Journel states that kriging should be redefined

as "a probabilistic theory of estimation based on the principle of minimization of

the estimation variance" (11:563). Therefore, kriging is a method of estimating an

unknown value at a point based on known values of surrounding points with the

constraint that the estimation error is minimized.

2.2.3 Kriging Equations The estimate for an unknown value at a point is the

weighted average of surrounding values with the closer points having more weight

than points further away. Specifically, the equation for the estimator is:

Xo = wIX 1 + w2X 2 + w3X 3 + ... + w.X.

where X0 is the estimate, wl, W2 , w3, ... , w,, are the weights, and X 1 , X 2 , X 3 ,

X, are the sample values (4:99).

For the estimator to be unbiased the weights must sum to one and there must be

no trend. An unbiased estimator is one in which, over a large number of estimations,

the average error is zero. Trend is the tendency for the local mean to increase, or

decrease, as a function of spatial location in the data. To determine the weights that

minimize the estimation variance, the estimation variance must be defined. The
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estiniation variance of Xo for the general unbiased linear estimator is:

n n n

Var(Xo - X) = w,.y(hp) - ,,wiwj-y(hj)
i=l i=1 j=l

where X 0 - X is the estimation error, Var(Xo - X) is the variance of this error,

wi and wj are the weights, oy(hip) is the semivariogram value between the value

being estimated and the known value at point i, and -y(hij) is the semivariogram

value between the known value at point i and the known value at point j. The

semivariogram was discussed in the structural analysis section of this review. For

any given set of observations the variance is a function only of the values of the

weights. Therefore, to minimize the estimation variance, the partial derivatives of

the estimation variance with respect to the weights must be set to zero and the

weights must be determined by solving the resulting system of equations. The result

is the following system of linear equations (referred to as the kriging system):

0 + W1  + W2 + w 3  + ... + W,, = 1

A + wi(hil) + w27 (h 12) + w37 (h13) + --- + -W (h1n) - (hip)

A + wi"y(h 21 ) + W2"1(h22) + w 3-y(h 23 ) + + w'y(h 2n) =- (h2p)

A + wy(h 31 ) + w27(h 32) + w37(h33) + --- + wn-y(h 3n) = 7(h3p)
:+ : + : + : + ! + : = :

A + wi-T(h. 1) + w2 1(. 2) + w37(h.3) + ... + w,,7(h.,) = (hnp)

As stated previously, to maintain the unbiased nature of the estimate, the weights

must sum to one. A Lagrangian Multiplier (A) is used so that the number of un-

knowns and the number of equations are equal. Using the calculated weights the

minimized estimation variance of the estimate, Xo, is:

n

Var(Xo - X) = wi-y(hip) + A
i=I

It is important to notice that the weights and the Lagrangian Multiplier depend
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only on the semivariogram and therefore the estimation variance depends only on

the semivariogram. As shown in the structural analysis section, the semivariogram is

a function of the relative distance and orientation of the known points, the pattern.

Therefore, the estimation variance depends only on the pattern of the points, partic-

ularly the distances between the known points and the distances between the point

to be estimated and the known points, and not the values at these known points.

This fact will be very useful later in the procedure development.

Following a similar development using the covariance function, which is a func-

tion of the semivariogram as follows: a(hij) = o(0) - -y(hij). an equivalent form of

the kriging equations can be derived as follows:

0 + W1  + W2  + W3  + ... + Wn = 1

A + wiu(hii) + w 2 o"(h 1 2 ) + w3 o(h 13 ) + + wo(h1 ) = o(hlp)

A + wo(h21 ) + w2a(h22) + w3a(h23) + ... + wo(h2U) = o(h 2p)

A + wlo(h 31 ) + w2 "(h32) + w3"(h33) + ... + wau(h 3.) =o (h3p)

" + : + : + ":

A + wic(h.1) + w2o,(h, 2) + w3 o(h,,3) + ... + uwo(h..) a(hp)

Both forms of the equations can be put into the matrix form [A].{X} = {B}, where

[A] is the square matrix of the semivariogram (or covariance) values between the

known points, {X} is the column vector of weights, and {B} is the column vector

of the semivariogram (or covariance) values between the point being estimated and

the known points. In matrix form, the solution is found by inverting [A] and post-

multiplying by {X}. As shown in the structural analysis section, the value of the

semivariogram between the point and itself is zero but the covariance is not. What

this means is that [A], in the semivariogram form, has a zero for all the diagonal

terms but the covariance form does not. This makes the covariance form more stable

during matrix inversion than the semivariogram form. For this reason the covariance

form of the equations is preferred. However. since the covariance does not exist for all
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theoretical semivariogram models, both forms of the equations are developed in this

thesis. The minimized estimation variance of the estimate, Xo, for the covariance

form is:
n

Var(Xo - X) = -(O) wia(hip) - A
i=1

2.2.4 Kriging Assumptions The underlying assumption of kriging is that the

values fall within some probability distribution, usually a normal or lognormal dis-

tribution. This assumption allows statistical methods to be applied to the data.

Kriging usually assumes some form of stationarity. The most stringent form is strong

stationarity in which all higher order moments exist and are constant everywhere

over the data field. The second form is weak stationarity. Weak stationarity im-

plies that all random variables have the same mean, variance and autocorrelation

function. This assumption is based on two conditions: 1) the expected value of the

regionalized variable is the same all over the field of interest; and, 2) the spatial

covariance of the regionalized variable is the same all over the field of interest (6:92).

The assumption of weak stationarity can be further relaxed by requiring only that

all random variables in a subsection of the data field, the neighborhood, have the

same first and second order moments after removal of any local drift. This is the

assumption used for universal kriging.

2.2.5 Types of Kriging The more popular types of kriging are point, block,

lognormal, disjunctive, universal kriging, and cokriging. "The kriging techniques

are all related, and are refined versions of the weighted moving average techniques

used by Krige" (10:25). Point and universal kriging are central to this effort and are

discussed below in more detail.

Point Kriging. The system of kriging equations previously devel-

oped were thoc specific to point kriging. Davis discusses this simplest form of

kriging and provides an example to illustrate the mechanics of the kriging system.
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Table 2.1. Water Table Elevation Data

Location Water Table
X Coordinate Y Coordinate Elevation

Well 1 3.0 4.0 120.0
Well 2 6.3 3.4 103.0
Well 3 2.0 1.3 142.0

Point p 3.0 3.0

The following example uses the semivariogram form of the kriging equations and is

adapted from Statistics and Data Analysis in Geology and demonstrates the use of

kriging in estimating the water elevation at an unsampled location (7:386-390).

The basic problem is to estimate the water elevation at some point p based on

the elevations at three other points in the general Acinity. The coordinates and the

water table elevations at these points are listed in Table .1. A structural analysis

determined the semivariogram for the neighborhood of 20 km to be linear with a

slope of 4.0 m 2/km.

After solving the kriging equations to determine the weights, the estimate of

the water elevation at point p can be calculated. The kriging equations used to

determine the weights are:

0.0 1.0 1.0 1.0 1.0

1.0 -'(h 1) y(hl 2) -y(hl 3) . 1 -y(hi,)

1.0 y(h 21 ) -y(h22) "y(h23) W2 -y(h2p)

1.0 "-'(h31) -y(h32) 7I(h33) .IW3 "/f(h3p)

Using the distance between the points, h, and the equation for the semivari-

ogram, 7I(hii) = 4.0 * h, the above equations are rewritten as:
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0.0 1.0 1.0 1.0 A 1.0

1.0 0.0 13.4 11.5 w1 4.0

1.0 13.4 0.0 19.1 W2 13.3

1.0 11.5 19.1 0.0 W3 7.9

Solving these equations produces the following estimates for the weights:

A -0.7267

w1 0.6039

W2 0.0868

W3 1 0.3093

The elevation at p is determined as:

Xo = 0.6039 . 120.0 + 0.0868. 103.0 + 0.3093 . 142.0 = 125.3 meters

and the estimation variance is determined as:

Var(Xo - X) = 0.6039 .4.0 + 0.0868.13.3 + 0.3093 .7.9 - 0.7267 = 5.3 m 3/km

Universal Kriging. Many data sets are not stationary. There are

two main causes of nonstationarity, global trend and local drift (6:238). As discussed

in the structural analysis section, global trend applies to the entire data set and may

be removed before using kriging. Local drift is trend in the neighborhood of the

point being estimated. Therefore, a method of compensating for the local drift is

needed. Universal kriging is used when local drift may be present. A nonstationary

regionalized variable is composed of drift and the residual (7:393). The drift is the

expected value of the variable in a neighborhood and the residual is the difference
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between the drift and the actual value. In this form of kriging, the drift is removed

from the regionalized variable by incorporating equations for the drift directly in the

kriging equations, and the stationary residuals are kriged. In short,

Universal kriging can thus be regarded as consisting of three opera-
tions: First, the drift must be estimated and removed. Then, the sta-
tionary residuals are kriged to obtain needed estimates. Finally, the
estimated residuals are combined with the drift to obtain estimates of
the actual surface. (7:393)

The drift is generally represented by a first or second-order polynomial. Davis

(7:394-395) provides the matrix form of the universal kriging system when the first-

order-polynomial drift at a point p is defined as:

Mp = a1X1i + a2X 2i

In this equation, the a's are drift coefficients which must be estimated and X1, and

X2, are the coordinates of the ith control point.

The equations, in matrix form, are as follows:

0 0 0 1 1 1 1
0 0 0 X1  X 2  ... X, al X

0 00 Yi Y2 ... Y a2 Y

1 X, Y 7 (h 1 ) 7(h12)--. y(h1.) "w = -(h)

1 X 2 Y2 "y(h2l) y(h22) -y(h2.) W2 -(h2p)

1X. . y(h. 1) y(h, 2)... y(h,.) W -y(h,,P)
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The corresponding minimized estimation variance of the estimate, Xo, is:
n

Var(Xo - X) Wi 'y(hip) + A + alXp + C12Yp
i=1

where X 1, X 2,. .. , X,, are the x coordinates of the known points, Y, Y2,...., Y are

the y coordinates of the known points, Xp is the x coordinate of the point being

estimated, and Yp is the y coordinate of the point being estimated. The covariance

form of the equations and estimation variance are:

0 0 0 1 1 ... 1 1

0 0 0 X,  X 2  ... a XP

0 0 0 Y1  Y2 Y a2 Yp

1 x, Y u(h,,) o'(hh.)... = (hp)

1 X 2 Y2 a(h2 ,)oh(h22) ... (h,,)

1 X, Y. o(h.1) a(h..).w. o(h.p)

and

Var(Xo - X) = (0) - Wcy(hi,,) + A + alX,, + a2 YP]

2.3 Data Set Minimization

Data set minimization requires the repeated use of kriging to determine the

minimal data set. The following procedure is used to determine a minimal data set

(17):

1) Choose an initial set of points,

2) Calculate the unknown surface point values and estimation error,

3) Find the location and value of the largest estimation variance,
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4) If the largest estimation error is greater than the maximum acceptable level

of estimation error set by the user, add a point at that location and go to step 2,

else stop the procedure.

In general, to produce an optimum minimal data set requires testing all possible

combinations of the data and choosing the one with the fewest points that meets the

maximum variance criteria. This would require great amounts of computational time

even with a branch and bound algorithm. This method is described by Szidarovszky

(18). The method chosen for this effort is, as explained previously, to add a point at

the location of maximum estimation variance if that variance exceeds that required

by the user. This will, in general, produce a suboptimal data set, but the difference

between this and the optimal set will not be significant and is well worth the trade-off

in computational time (17).

2.4 Summary

Kriging and structural analysis topics from the literature were presented. This

review presented the origin of kriging, defined kriging, and presented the kriging

system of equations. Several of the more commonly used models for the theoretical

semivariogram were discussed.

With the understanding of the kriging process and data set minimization pro-

vided by this literature review, the objective of this effort can be restated more pre-

cisely. Therefore, the objective of this effort is to develop a procedure that produces

a minimal data set, in a reasonable amount of time, that meets the user provided

maximum acceptable level of estimation error using the kriging process. The pro-

cedure must also perform surface kriging without minimization. The minimal data

set produced is allowed to not be the optimal data set due to computational time

limitations.

2-16



III. Methodology

This chapter presents the methodology used in completing the objective out-

lined in Chapter I. Kriging involves both the structural analysis of the data and

the determination of the estimates and error variances. These two activities were

treated as separate tasks. The first task is discussed below under Structural Analysis

and the second task is considered under the heading of Kriging. The techniques for

minimization are discussed under the heading of Minimization. The fourth section

documents the application of the kriging procedures.

Supporting Tasks. In support of the kriging procedures and the

need for a common interface that isolates the input data format from the kriging

procedures, two packages, written in C++, are provided. The first is a matrix

object that provides for creation and manipulation of matrices. The second is an

interface routine package that isolates each procedure from the data format and the

control information input. These packages are documented in Appendix E, The

Programmers Manual.

3.1 Structural Analysis

Structural analysis is key to the efficient and optimal implementation of kriging

in any field. This analysis must partition the data into homogenous groupings if

necessary, ensure the global stationarity of the data by removing any global trend,

calculate the experimental semivariogram, and estimate the parameters of the three

commonly used theoretical semivariogram models.

3.1.1 Trend Analysis A value for the trend is needed at arbitrary locations.

A method that provides exact values at those arbitrary locations is preferred over a

method that requires estimating the values at those locations (17). Therefore, the
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method of choice for removing global trend is to fit a polynomial of the form:

A + Bx+ Cy + Dx2 + Ey 2 + Fxy = z

through the data. A least squares regression technique is used to determine the

coefficients. The program uses the common interface routines to get control infor-

mation from the control file and to read in and write out the data. The trend may

be removed from the data before or after it is partitioned. This program was written

in C++ by Wayne McGee (14).

3.1.2 Cluster Analysis The following are the steps involved in partitioning

the data into homogenous groupings. As the da, a is read in the row and column

sums are calculated and the row and column sum medians are then estimated. The

next step is to identify the rows and columns whose sum is above or below the

corresponding median. The last step is to write the partitioned data to the disk

along with information about the partitions. The data set may be partitioned before

or after trend removal. This program was written in C++ by Donald Duckett (8).

3.1.3 The Semivariogram There are two activities involved with determin-

ing the semivariogram; calculating the experimental semivariogram and calculating

the parameters of the theoretical semivariogram model. These two activities are

addressed separately.

Experimental Semivariogram. The data may not benefit from par-

titioning and may not have a global trend. In that case, the only step to be performed

on the data is the determination of the experimental semivariogram and fitting a

model to that experimental semivariogram data.

The first task of this step is to determine the pairs of points that are a multiple

of Lh apart in the directions of interest to the user, usually 0' (positive y direction)

and 900 (positive x direction). The determination of the experimental semivariogram
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in each direction of interest is performed sequentially. Typically, data are known

either at regularly spaced grid points or at irregularly distributed points throughout

the region of study. Data is assumed to be available in the form Z(xi), where Z(x2 )

is the value of a random function at vector location xi.

For points that are irregularly distributed throughout the region of study, the

method of determining the pairs of points is more involved and requires more compu-

tation time. The angle and distance between each pair of points must be calculated.

Those pairs of points that are in the direction of interest, a, and at a multiple of Ah

apart are used in the determination of the experimental semivariogram. Since points

may not be in exactly the direction a, the user is allowed to specify a semi-inclusion

angle, or regularization angle, 4. If the angle between a pair of points, Z(xi) and

Z(xi), falls within the range a4 then that point is considered to be in the direction

of interest. If the pair of points are to be used in the calculation of the experimental

semivariogram then the following two actions are performed: 1) the square of the

difference of the quantity of interest of that pair is calculated, (Z(xi) - Z(xj)) 2, and

added to an array based on the distance between the points; and, 2) the location in

the array containing the number of pairs of points integer multiples of Ah apart is

incremented based on the distance between the points. These two arrays are used

later in the calculation of the experimental semivariogram.

The calculation of the experimental semivariogram is simpler when the data are

aligned in a grid structure because the coordinates of each data point are a multiple

of some incremental distance Ah apart and the 00 and 900 directions are easily

determined. The determination of the pairs of points Ah apart in the 00 and 900

directions reduces to scanning the data in the y and x directions and calculating the

square of the difference of the quantity of interest of that pair. The two summing

arrays, mentioned previously, are updated for use later in the calculation of the

experimental semivariogram.
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The next step is to calculate the experimental semivariogram, described in

Chapter II, using the two summing arrays and the formula:

1 INI
=FIN, Z[z(xi + h) - z(x,)]

i=1

where INI is the number of pairs of data values at a distance of h apart from one

another, xi is the location of point i, xi + h is the location of a point at distance h

from i, and z(xi) and z(xi + h) are the values of the quantity of interest at i and

xi + h.

The experimental semivariogram is a discrete function and can not be used

at arbitrary locations in the data field. The theoretical variogram, however, is a

continuous function. Therefore the last step is to calculate the required parameters

for the theoretical semivariogram.

Theoretical Semivariogram. Three theoretical semivariograms are

modeled using the experimental semivariogram calculated by the method outlined

in the previous section. The three models are the linear, De Wijsian, and spherical

models mentioned previously. The parameters of the theoretical semivariograms

are estimated using a weighted least squares regression technique. The program to

calculate both the experimental and theoretical semivariograms is written in C++

by Dr. David Robinson with modifications by Donald Duckett and Wayne McGee

(17).

3.1.4 Data Set Reconstruction After calculating an estimate of the surface,

based on the input data set, any removed trend must be added and any partitioned

data must be reassembled.

Trend Addition. The global trend is added using a polynomial of the form:

A + Bx + Cy + Dx 2 + EY2 + Fxy = z
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where the coefficients were previously calculated by the trend removal program. The

program uses the common interface routines to get control information, including the

polynomial coefficients, from the control file and to read in and write out the data.

The trend must be added to the data before or after reassembly of the partitions

based on when it was removed. This program is written in C++ by Wayne McGee

(14).

Partition Assembly. If the data is partitioned it must then be manually re-

assembled. A program to do this was not written due to lack of time.

3.2 Kriging

To perform the tasks required by this thesis effort and the two concurrent thesis

efforts, a kriging program originally written in C by Michael Grant (9) was rewritten

in C++ with extensive modifications. The modifications correct some programmatic

errors as well iz incorporate geometric anisotropy, minimal data set production, and

generalization to any data set as required for satisfaction of the objective outlined

in Chapter I. These routines are documented in Appendix E, The Programmers

Manual. Note that a point is "kriged" if the estimate and the estimation variance

at that point are calculated.

3.3 Minimization

Minimization is the process of selecting a subset of the original data set subject

to some constraint on the reconstruction process. For this effort that constraint is

the maximum acceptable level of error set by the user.

3.3.1 Background The resolution is the number pixels (picture elements) that

comprise the picture. More pixels means better resolution and as technology ad-

vances picture resolution increases. Mass production also allows the cost of the
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higher resolution technology to decrease. These two facts have allowed picture pro-

ducing devices to invade almost all aspects of every day life.

But these advances are not without their price. Higher resolution means in-

creased information storage and transfer requirements. For example, a picture with

a resolution of 1024 pixels by 1024 pixels with 3 bytes (24 bits) per pixel, 1 byte for

each color component (red, green, and blue), needs 3 megabytes of information saved

or transferred for each frame of that picture. Current telephone lines and equipment

do not have sufficient bandwidth to transfer this amount of information in anything

approaching real time as would be needed for teleconfereucing. The standards they

were based on did not envision or allow for video information transfer.

Storing these huge information files will cost a large amount of time and trans-

ferring then from place to place is difficult. The soluti :,n o boLh problems is some

sort of data compression or minimization. Data compres-ion techniques wreak great

violence on the data by taking advantage of redundancies in th . data and the non-

linear operation of the human eye. By exploiting correlation in space of still images

and separate frames of video data, and correlation in time between frames for video

data, large compression gains can be realized. For still images compression ratios of

10:1 to 50:1 (2) can be achieved. For video data compression ra .ios of 50:1 to 200:1

(2) can be achieved. But these methods are lossy in that the r( :onstructed images

are quantitatively and qualitatively different than the original. 'i his and other lossy

techniques discard much of the original data and rely or the hun an eye to interpret

the reconstructed image properly. This is acceptable in many a..ications but some,

such as medical imaging, must have high quality reconstructiot.

For those applications that require that there be little oi no qualitative dif-

ference between the original and reconstructed image a diffi ent technique must be

used. The compression ratio will be much lower for these data s.:ts, as low as 2:1

for very high quality image reconstruction and as high as 4:1 for low quality image

reconstruction. This research effort is aimed at satisfying the n,:ods of those applica-
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tions that require high quality image reconstruction. The following section describes

several proposed methods of statistically minimizing this type of data.

3.3.2 Szidarovszky's Methods Szidarovszky describes a number of methods

on how data set minimization can be accomplished (18:334-336) (3:193-195). Six of

the methods is presented in this section.

Method 1. This method minimizes the estimation vpriance subject to a given number

of additional measurement locations or cost (18:334). This model assumes there are

k existing known points and that n - k additional points are to be added to the data

set such that their choice of location minimizes the estimation variance. If there are

no existing known points then k = 0. All remaining points are added to the data set

and then these points are removed, one at a time, with the data set being tested after

each removal and the point that yields the lowest estimation variance upon removal

is discarded. This is repeated until n points remain in the data set. The optimal

selection method is based on assuming the following two monotonic properties of the

estimation variance: 1) After increasing n by one by adding the point x,+, then:

Var(n + 1,x,+) < Var(n,x)

and 2) After decreasing n by one by removing the point x, the estimation variance

increases based on the previous observation. By use of enumeration in a tree search

procedure the optimal data set can be selected. Therefore, this method starts by

adding all the points to the data set and then removing them one by one until there

are n points remaining.

Method 2. This method minimizes the number of additional measurement locations

or cost subject to upper bounds given to the estimation variances (18:336). This

method is substantially the same as Method 1. The three main differences are:

1) Start with no additional points added; 2) add points instead of removing them;

3) Perform the test M < c at each new node where e is the upper bound on the
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estimation variance and M is the current estimation variance of the data set.

Method S. This method determines the locations of a fixed number of measurement

points using total enumeration and -!cts the set with the smallest estimation vari-

ance (3:193). The initial data set contains k existing data points and n- k additional

points are to be added to this set from N available points. Assuming N > n - k the

total data set to be tested for minimal estimation variance is given by:

N!
(N - n + k)!(n - k)!

Using a search tree, test for one of the following conditions at each node: 1) the

number of elements of the subset of the data to be added to the data set equals

n - k; or 2) all nodes which are endpoints of arcs starting from this node have all

ready been searched. If either conditions holds then proceed backward from this

node, otherwise proceed forward to the next point which has not been searched.

Moving forward is equivalent to adding a point to the set while moving backward

is equivalent to removing a point from the set. The initial subset, or node, has no

points.

Method 4. This method determines the locations of a fixed number of measurement

points using enumeration constrained by a branch and bound procedure and selects

the set with the smallest estimation variance (3:193). This method is very similar

to Method 3, but there are two major differences. The first difference is in the

construction of the search tree. The initial node, or subset, contains all the points

available to add to the data bet and moving along each arc, from node to node,

is equivalent to removing one point from the subset. The second difference is an

additional condition that must also be checked: the current estimation variance is

not less than the smallest one found for subsets containing exactly n - k points. In

this case removing more points makes the estimation variance larger than a solution

previously determined.
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Method 5. This method starts with an initial data set and sequentially includes

additional measurements at the locations that yield the smallest estimation variance

and terminates upon reaching the desired number of points (3:194). This method is

similar to Method 3 in that the initial subset is empty but the selection of the next

point to add to the subset is the one that produces the smallest estimation variance.

This is continued until n - k points have been added to the subset.

Method 6. This method starts with an initial data set containing the desired num-

ber of points and sequentially exchanges points from this data set with points not

included this data set keeping the exchanges that yield the smallest estimation vari-

ance (3:195). For this method let Xo = (tl,. ., t,-k) and X1 = (t.-k,.. . ,tN) and

j = 1. Try to exchange the jth element of Xo systematically with the elements of

X 1. The exchange that minimizes the estimation variance is kept. If no exchange

can decrease the estimation variance then do not make any exchanges and modify j

as follows:

1 ifj=n-k

and try exchanging the jth element of Xo optimally. The procedure terminates when

no exchange decreases ,he estimation variance.

3.3.3 Brodkin's Method The method chosen for implementation for this effort

is a combination of Method 2 and Method 5 with slight modifications. This method

minimizes the number of additional points to add to an initial data set subject to

upper bounds given to the estimation variances. Additional points are sequentially

included at the locations that yield the smallest estimation variance. Therefore, to

find the minimal data set, the following steps must be performed:

Step 1. Compute the estimate and estimation variances for all points not

included in the initial data set.
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Step 2. Compare the largest estimation variance with the maximum allowed

value specified by the user. If the calculated value is larger than the required maxi-

mum add a point at that location and go to step 1, otherwise stop.

Gridded Data. If the data is gridded, that is regularly spaced with

the data grid fully populated, then the following technique is developed and presented

as a method of selecting the minimal data set. The method takes maximum advan-

tage of the gridded nature of the data to minimize the computational time. Also, if

the correct initial pattern and pattern size is chosen, the minimal data set generated

will be optimal or barely suboptimal.

As stated previously in the literature review, the estimation variance at a point

is a function only of the relative distance and orientation of the known points used

to estimate that point. This function is captured in the theoretical semivariogram

model. Therefore, if a pattern of points could be chosen such that the largest esti-

mation variance is just within the maximum allowed variance then that pattern of

points would constitute the optimal minimal data set.

The method required for minimizing one dimensional gridded data will help

illustrate the mechanics of this minimization method and is developed first. The

method will then be extended to two dimensional gridded data. If all the points are

aligned on an axis then the largest estimation variance would be at the midpoint of

the two points which, without any intervening points, are farthest apart. This then

reduces the problem to ensuring that the distance between any pair of consecutive

points is just less than that which produces the maximum allowed variance. If

the points are closer than this distance then the data set may not be minimal. If

the points are farther apart than this distance then the maximum allowed variance

criteria won't be met.

This analogy can be extended to multiple dimensions with little difficulty. For

this effort, a two dimensional pattern is desired such that the maximum allowed
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Figure 3.1. Basic Kriging Pattern

variance criteria is met. Kriging does not produce good results when a point beyond

an edge of the data field is estimated. Therefore, the corner points of the area

of interest must be included in the minimal data set. This suggests a square or

rectangular pattern but it was felt that including the center point, producing an "X"

pattern, would produce better results by needing less data set for the same maximum

allowed variance. Therefore, the "X" pattern based on the semi-inclusion distances

shown in Figure 3.1 is typical. Where "x" is a known point and "." represents points

to be estimated.

At this point the semi-inclusion distance must be defined. The distance be-

tween the center point and a corner point must be less than the semivariogram range,

a. This allows any unknown point within the square to be estimated based on no

fewer than two k:-own points, the center point and one or more corner points. The

x semi-inclusion distance, IAX, is then defined as the number of rows between the

center point and a corner point plus one. The y semi-inclusion distance, IAY, is then

defined as the number of columns between the center point and a corner point plus

one. The distance between the center point and a corner point must not be larger

than the semivariogram range, but, it may be substantially smaller.

If the inclusion distance, twice the semi-inclusion distance, is too large, then

the largest estimation variance will be larger than the maximum allowed variance.

Therefore, a point will need to be added to the data set. This first point will be

added at the midpoint of the longest edge and, due to symmetry, a point will also
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Figure 3.2. Replicated Basic Kriging Pattern

be added to the other longest edge. If the maximum variance criteria is still not met

then two more points, one at the midpoint of each remaining edge, will be added.

If the maximum variance criteria is still not met then four points, due to symmetry,

will be added, one at each of the midpoints of the lines joining the center point and

each corner point. This will result in the pattern shown in Figure 3.2. Where "+"

represents an added point and unknown points are omitted for clarity. It can be seen

that the original pattern is now replicated four times within the original data field.

If the semi-inclusion distance is divisible by two then the replicated pattern will be

identical to the original pattern except for scale. If the pattern is exactly replicated

the size of the problem can be reduced by a factor of four, that is a factor of two in

each direction. This will greatly reduce the computational time. It should also be

noticed that the weights calculated for one of the replicated patterns are identical

to the weights calculated for the other replicated patterns. These two facts are used

to great advantage in the minimization programming.

In order to ensure that the estimation variance at a point being estimated is

minimized, surrounding points must be included in the kriging pattern if possible.

Therefore, the points that are twice the semi-inclusion distances in each direction

from the center of the pattern are included as part of the kriging pattern for areas

located in the central region of the data field. This results in the pattern shown in

Figure 3.3. Where "x" is a known point within the area being estimated and "s" is

a surrounding point included to minimize the estimation variance. Only the points
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Figure 3.3. Augmented Kriging Pattern
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Figure 3.4. Kriging Areas

bounded by lines connecting the corner "x" points are being estimated. The edges

and corners must be estimated separately from the central area because there are

no points beyond the edges to include in the pattern and the point pattern on the

edges and corners will not be identical to the central area point patterns. If the point

patterns are not identical then neither are the weights. This creates nine separate

areas to krige as shown in Figure 3.4. As the figure illustrates, the nine areas are the

four corners, the four edges, and the central section. For clarity it is not shown, but

the edges of each kriging area overlaps the edges of two or more other kriging areas.

The weights only need to be calculated once for one kriging area for the edge and

central sections and can be used for each identically patterned area in that section.

This will mean a great savings in computational time.

By now it should be apparent that obtaining the optimal minimal data set is

heavily dependent on the initial vz,01ues of the semi-inclusion distances. If these values

are not an integer multiple of the ideal values then too many points will be added

to meet the maximum allowed variance criteria. Therefore, an iterative routine was
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written to determine these ideal values. All the points within a kriging area need

not be estimated to determine the largest estimation variance. Only those points

within a small area located at the maximum distances from the known points need

to be estimated to letermine the maximum estimation variance within that kriging

area. This method for determining the ideal semi-inclusion distances also produces

a large savings in computational because fewer points are added and hence fewer

points need to be estimated again based on the added points. These routines are

documented in Appendix E, The Programmers Manual.

It has not been explIcitly stated but the matrix of semivariogram values in-

cludes all the points in the kriging pattern, even those that are outside the theoretical

semivariogram range of the point being estimated. If this were not so then a new

[A] matrix would be required for every point to be estimated and the great compu-

tational time savings would be lost. Also not explicitly stated is the requirement to

add points to the entire grid such that the current kriging area pattern is replicated

throughout the grid.

Of interest (for the pattern minimization method) is the implementation of a

matrix inversion method that takes advantage of the prior matrix inversion. This is

of interest due to the fact that adding points to the pattern adds rows and columns

to the [A] matrix and points are added based on estimation variances calculated by

inverting the prior [A] matrix. This routine uses a matrix partitioning method to

reinvert the matrix (19:192). Given the two matrices, [A] and [B], partitioned into

submatrices as follows:
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where [A] [B] = [I] and P-' is known. Performing the multiplication it can be seen

that:

P.Y+Q.U = I (3.1)

P.Z+Q.V = 0 (3.2)

R.Y+S.U = 0 (3.3)

R.Z+S.V = I (3.4)

solving the second equation for Z:

Z = _p-Q.V

combining this with the fourth equation and solving for V:

V = (S- R. P -. Q)-'

solving the first equation for Y:

Y = P-.(I-Q.U)= p- -(p-1.Q).U

combining this with the third equation yields:

U = -(S-R.P-1.Q)-l.R.P-1 = -V.R.P-1

therefore, the following relationships are established:

V (S-R.P-I.Q)-l

Z = p- .Q.V

U =-V.R.P -

Y =p-(p-'.Q).U
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If the number of added rows and columns is small relative to the original matrix size,

the computational time saved by not inverting the entire matrix is substantial.

3.4 Procedure Application

The data used for proof of concept axe Magnetic Resonance Image (MRI) brain

scans. The scans are comprised of several parallel planes of data in which each plane,

or slice, is 268 measurements, (pixels) wide and 267 measurements, (pixels) long.

Each measurement is an intensity represented as a grey scale value between 0 and

255. The values can be represented by 1 byte unsigned integers. Therefore, one brain

scan, containing 60 slices, will need 4 megabytes of disk space. This type of data is

used for proof of concept due to the requirement that the quality of the reconstructed

image be as good as the original image. Since kriging is not a lossy technique, this

type of data is ideally suited for kriging minimization. For this application the pixel

location in each slice, row and column, are used as the coordinates of the point and

the grey scale value is used as the quantity of interest at each point.

Using the procedures developed in the previous sections, minimal data sets

for various maximum variances and initial data patterns are found. The following

summarizes the steps taken to produce the minimal adta sets.

Step 1. Data Partitioning. Only slice 24 is partitioned for proof of concept.

The partitioning of slice 24 is illustrated in Figure 3.5. Not all the data sets would

benefit from partitioning. The partitions that the data set may be divided into may

be too small to appreciably decrease the number of points in the minimal data set

and is, therefore, not worth the extra effort involved in partitioning and reassembling

the data set. Slice 1 is a good example of a data set that would not benefit from

partitioning. The central image would be in one partition and the background would

be in four very thin edge partitions and four very small corner partitions. This

partitioning may actually increase the number of points in the minimal data set

since the corner points of each partition must be included in the minimal data set
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Figure 3.5. Partitioning of Slice 24

so that points beyond the edge of the data set aren't estimated.

Step 2. Trend Removal. Global trend is not removed from any of the data sets

(17).

Step S. Semivariogram Determination. The data showed both geometric and

zonal anisotropy as illustrated in Figure 3.6 and Figure 3.7. The kriging program

can accommodate the different ranges due to geometric anisotropy and averages the

sills to remove the zonal anisotropy from the theoretical semivariogram model (not

from the data). The theoretical spherical semivariogram model is plotted with the

experimental semivariogram in Appendix B for the 00 and 900 directions of every

slice of MRI data used.
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Figure 3.6. Slice 12 Semivariogram in the 0' Direction
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Figure 3.7. Slice 12 Semivariogram in the 900 Direction
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Step 4. Kriging of Data Sets. Using the kriging program, :.ilnimal data sets for

three maximum allowed variance level and five initial data patterns were produced.

The three maximum allowed variances were chosen such that the same values could

be used for all slices without causing all the known points to be included in the

minimal data set. A second requirement was that the values chosen would produce

recognizable images of slice one with a minimum difference between the values of

fifteen. This was accomplished by iteratively kriging all the slices using integer values

for the maximum allowed variances until the desired results were obtained. The five

semi-inclusion distances were chosen by requiring a square pattern and counting up

from one. Therefore, the three maximum allowed variances were 100.0, 85.0, and

70.0. The five initial data patterns were for the semi-inclusion distances of 1, 2, 3,

4, and 5. The partitioned slice was minimized with maximum allowed variances of

11.0, 12.0, and 13.0. These values were chosen such that the image quality produced

was comparable to that obtained using semi-inclusion distances of 1, 2, and 3. This

was also accomplished by iteratively kriging the data set. A visual inspection was

performed to determine performance of the procedure. A display program was used

to display the slices for visual inspection. Photographs of the original and estimated

slices are in Appendix C. The reduction percentage and largest variances of the first

slice are shown in Table 3.1. Tables showing the percent reduction of data points, the

largest variance, and the photograph number of the results of all the kriged minimal

data sets are in Appendix D.

Step 5. Trend Addition. Because trend is not removed this step is not per-

formed for these data sets.

Step 6. Partition Assembly. The one partitioned slice is reassembled before

the visual inspection.

The steps summarized above are developed in the prev'ous sections and demon-

strate the process used in applying kriging in the production of minimal data sets.

These steps provide the methodology for obtaining the minimal data sets.
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Table 3.1. Slice 1 Statistics

Minimization Largest Percent
Method Variance Reduction

Maximum 100 98.98 98.70
Allowed 85 84.39 96.53
Variance 70 68.37 74.90

Initial 5,5 91.56 97.88
Semi- 4, 4 85.72 96.77
Inclusion 3, 3 79.72 94.34
Distances 2, 2 73.50 87.36
IAX, IAY 1, 1 66.92 50.00

As this chapter has shown, the procedures developed can produce a minimal

data set in a statistically controlled manner. The controlling parameter is the max-

imum allowed variance set by the user. To aid the kriging program in obtaining the

best results a trend removal program and a partitioning program were developed.

To capture the structure of the data set in continuous function, a theoretical semi-

variogram model producing program was developed. To replace the removed global

trend a rebuilding program was developed.
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IV. Results and Conclusions

This chapter includes the results of the research and several conclusions based

on these results. As previously stated, the purpose of this research effort was to

develop a procedure that could select a minimal data set in a statistically controlled

fashion and estimate unknown values, at regular grid locations, based on a user

desired overall maximum level of error. This goal was achieved. The following results

and conclusions are provided with reference to the objective outlined in Chapter I.

4.1 Results

In general, the results of this effort are the procedures developed to produce

minimal data sets. The procedures developed in Chapter III and the computer pro-

grams written for this effort provide the means for producing minimal data sets. Nine

slices of Magnetic Resonance Image data of a baby's brain were used to demonstrate

use of the procedures. The slices used are numbered 1, 3, 6, 9, 12, 15, 18, 21, and

24. These provided a representative cross section of the entire data set.

As mentioned previously, no global trend was removed. Five minimal data

sets were produced for each slice using two different methods. The first method

produced three minimal data sets based on maximum allowed variances of 100.0,

85.0, and 70.0 gray scale values squared. The second method produced five minimal

data sets based on semi-inclusion distances for (IAX,IAY) of (5,5), (4,4), (3,3), (2,2),

and (1,1). The three maximum allowed variances were chosen such that the same

values could be used for all slices without causing all the known points to be included

in the minimal data set. A second requirement was that the values chosen would

produce recognizable images of slice one with a minimum difference between the

values of fifteen gray scale values squared. This was accomplished by iteratively

kriging all the slices using integer values for the maximum allowed variances until

the desired results were obtained. The five semi-inclusion distances were chosen by
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requiring a square pattern and counting up from one. For the data sets produced

using the initial point pattern based on the semi-inclusion distances the maximum

allowed variance was set to a value large enough to ensure that no points would be

added to the data set. Slice 24 was also partitioned into a background and a center

data partition and three minimal data sets were produced using maximum allowed

variances of 1.0, 12.0, and 11.0 gray scale values squared. These values were chosen

such that the image quality produced was comparable to that obtained using semi-

inclusion distances of 1, 2, and 3. This was also accomplished by iteratively kriging

the data set.

For this effort, the background of each image, which is normally filtered out

by the display program, was considered to be known data along with the brain scan

data.

Figure 4.1 and Figure 4.1 are plots of the experimental and theoretical semi-

variograms for slice one for the 00 and 900 directions and are typical for all the slices.

The data has both geometric and zonal anisotropy. The plots of the experimental

and theoretical spherical semivariograms for the 0' and 900 directions for all slices,

including the partitioned slice, are in Appendix B.
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As evidenced by Figure 4.3 and Figure 4.4, minimizing each slice based on

the same maximum allowed variance did not produce the same quality of image

for all slices. For the same maximum allowed variance of 70.0, slice 9 looks like

a brain scan whereas slice 24 looks like an indistinct blob. However, Figure 4.5

and Figure 4.6 show that minimizing based on initial semi-inclusion distances did

produce comparable quality images for all slices. This is due to the fact that the

estimation variance is directly proportional to the sill, C + CO, minus the nugget

effect, CO, of the theoretical semivariogram model. Therefore, the slices with smaller

sill minus nugget effect values will have fewer points in the minimal data set for the

same maximum allowed variance. With fewer known points from which to estimate

the surface, the estimated surface is noticeably different than the original image.

By using the semi-inclusion distances to determine the minimal data set, the same

number of points was used to estimate the surface for each slice. Thus the difference

between the original image and the estimated surface was much less noticeable for

these minimal data sets. Therefore, by using semi-inclusion distances of (1,1), half

the data may be removed with barely noticeable differences between the original

and estimated images. By using partitioning on slice 24, as shown in Figure 4.7, a

further reduction of 16.14 percent in the number of points was achieved with out a

reduction in the quality of the image. The partitioned image is shown in Figure 4.8.

Photographs of the results of the kriging procedures for all slices are in Appendix C.

Each series of images has the original data set on the left, the kriged image in the

center, and the error between the original and kriged image on the right.
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Figure 4.3. Slice 9, Maximum Variance = 70
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Figure 4.4. Slice 24, Maximum Variance = 70
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Figure 4.5. Slice 9, Semi-Inclusion Distances = (1,1)
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Figure 4.6. Slice 24, Semi-Inclusion Distances = (1,1)
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Figure 4.7. Slice 24 Partitioning
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Figure 4.8. Slice 24 Partitioned Image
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Table 4.1 and Table 4.2 show the statistics for slice 9 and slice 24. The magni-

tudes of the numbers in the tables are typical for all slices. The typical run times, for

the minimal data sets produced using the kriging pattern, were under ten minutes.

The run times for the minimal data sets that were not able to take advantage of the

kriging pattern were as high as two hours. The statistics for all slices are tabulated

in Appendix D.
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Table 4.1. Slice 9 Statistics

Minimization Largest Percent Run Time Photograph
Method Variance Reduction hr:min:s

Maximum 100 98.69 98.33 00:45:04 10(a)
Allowed 85 82.09 93.63 00:39:55 10(b)
Variance 70 69.18 25.09 01:34:58 10(c)
Initial 5,5 95.44 97.88 00:03:33 11(a)
Semi- 4, 4 89.79 96.77 00:03:46 11(b)
Inclusion 3, 3 83.99 94.34 00:04:42 11(c),12(a)
Distances 2, 2 77.97 87.36 00:05:51 12(b)
IAX, IAY 1, 1 71.61 50.00 00:19:48 12(c)

Table 4.2. Slice 24 Statistics

Minimization Largest Percent Run Time Photograph
Method Variance Reduction hr:min:s

Maximum 100 53.15 99.96 01:42:16 25(a)
Allowed 85 53.15 99.96 02:02:15 25(b)
Variance 70 53.15 99.96 01:41:20 25(c)
Initial 5, 5 3.94 97.88 00:04:06 26(a)
Semi- 4, 4 3.15 96.77 00:04:25 26(b)

Inclusion 3, 3 2.36 94.34 00:05:18 26(c),27(a)
Distances 2, 2 1.57 87.36 00:07:36 27(b)
IAX, IAY 1, 1 0.79 50.00 00:20:29 27(c)
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Not shown in the appendices is the high degree of automation achieved. All

the figures, tables, and photographs can be recreated in under two days using one

Silicon Graphics 220 work station. This was achieved by generating all the required

control files and running the programs in batch mode using a shell script.

The initial minimal data set points produced indicated that a square or rectan-

gular pattern is better than an "X" pattern for producing the optimal minimal data

set. This fact was used to develop the CalculateIAX-JAY routine to determine the

ideal initial semi-inclusion distances. The data sets were then kriged again to pro-

duce the optimal minimal data sets presented in this effort. Inspection of the tables

in Appendix D reveals that, except for slice 24, the largest estimation variance of all

the minimal data sets produced was within 3.2 percent of the maximum allowed vari-

ance. Due to the very low sill minus nugget effect of the theoretical semivariogram

model for slice 24, which is directly related to the calculated estimation variance,

the largest distance allowed for the semi-inclusion distances was not large enough to

bring the calculated estimation variance up to the maximum allowed variance. The

limit on the semi-inclusion distances allows all points that are to be estimated to be

within range of two or more known points.

4.2 Conclusions

In conclusion, this thesis develops and demonstrates the application of kriging

in the controlled minimization of large data sets. Specifically, the following were

shown: 1) A minimal data set can be selected based on a maximum acceptable level

of error; 2) Minimal data sets based on the semi-inclusion distances produced more

uniform quality in the reconstructed images for each slice; 3) For gridded data a

rectangle pattern of known points produces a minimal data set that is closer to the

optimal minimal data set than an "X" pattern of known points; 4) For large data sets

(more than 71,000 points) containing gridded data the run times are very reasonable

(typically under ten minutes); 5) Performing trend removal and partitioning on the
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data can substantially improve the results; 6) Minimal data set selection can be fully

automated; and 7) This procedure can be applied to any type of data.

In achieving the goal of this thesis, two objectives were accomplished. First, a

viable kriging procedure was developed. This kriging procedure included the struc-

tural analysis of the data and the development of a universal kriging program for

estimating the surfaces and the variances. Secondly, the procedures were demon-

strated using Magnetic Resonance Image data and for this data a 2:1 compression

ratio produced barely noticeable differences in the reconstructed image over the orig-

inal image. Further research in this aroa needed, especially in the application of these

procedures to three dimensional data.
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V. Recommendations

This chapter provides recommendations which suggest either improvements in

this effort or areas for further research related to this study. As this thesis effL.,t may

very well be the first automated application of kriging in the controlled minimization

of large data sets, further research in this area may prove promising. Recommenda-

tions are provided Jor all areas of this study and are presented for consideration.

5.1 Structural Analysis

A study concerning the sensitivity of the kriging procedures to the theoretical

nugget effect should determine the robustness of the variogram structure.

A more sophisticated partitioning method would produce better results in im-

ages in which the anomalous feature is not aligned with the axis of the image.

5.2 Kriging

Extending kriging to three dimensions should be fairly straight forward and of

great interest and benefit to many people. By using known points in adjacent slices

then estimation variance, and thus the number of points in the minimal data set,

could be further minimized. This technique could also be applied to other types of

three dimensional data.

Since kriging involves using known points and not previously kriged points the

procedure can be highly vectorized. Therefore, running the program on a vectorizing

machine may provide real time kriging.

Allowing area specific semivariograms may produce tremendous improvements

in image quality without resorting to partitioning.
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5.3 Minimization

Coding should be added to the kriging procedure that would add adjacent

points to the minimal data set if the change in the quantity of interest is above a

threshold value set by the user. This would improve the image quality while reducing

the computational time otherwise required to add all those required points.

Coding should be added to properly minimize irregularly distributed data.

Some method of finding the point nearest to the desired location of point addition

needs to be added to the AddPts routine for non-gridded data.

The effects of calculating the true variance of the estimate instead of the theo-

retical variance may provide better results in image quality for the same maximum

variance (at the cost of computational time since the pattern may be lost). This

may produce minimal data sets with the same image quality give the same maxi-

mum allowed variance.
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Appendix A. Users Manual

This appendix is in three sections. The first section provides the program

control variable names, usage, and programs actions based on those inputs. The

second section contains two sample Krige control files. The third section contains

a sample Varfit control file. To run the programs type:

Program-Name Control-File

where Program-Name is Krige, Varfit, Rebuild, Partition, or Residuals and

Control-File is the name of the file that contains the program control variable names

and their associated value. The interface routines may be modified to procur the

program control variables from anywhere deemed more convenient by the user (8).

The programs currently reside on Poincare, a Silicon Graphics 220 work station,

under the directory !d2/cbrodkin/krige-code.
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A.1 The Inputs

The input names are case insensitive. If an input is specific to one program then

the program to which that input is specific is given. The "=" is part of the variable

input name and there can not be any embedded blanks in the input name. The
"-" is a separator between the variable input name and its description. Text in the

control file not recognized as a program control variable name is ignored. Therefore,

as shown in the sample Krige control files, comments describing the input may be

in the control file.

EndOfInput_ Values - Signals end of input. Can be used in data files contain-

ing input in a header section. The version of the interface used for this thesis effort

does not allow a data file header to contain program input.

DataFilename= - Specifies the name of the file containing the input data. Can

not be longer than seventy characters. If not provided the programs will print an

error message and terminate.

OutpuLFilename= - Specifies the name of the file in which to write the output

data. Can not be longer than seventy characters. If not provided then no output to

this file will be written.

VarianceFilename= - Specifies the name of the file in which to write the

est;mation variance data. Only applies to the Krige program. Can not be longer

than seventy characters. If not provided then no output to this file will be written.

MinimaLDatasetFilename= - Specifies the name of the file in which to write

the minimal data set. Only applies to the Krige program doing minimization. Can

not be longer than seventy characters. If not provided then no output to this file

will be written.

PlotFilename= - Specifies the base name of the files in which to write the

experimental semivariogram data in two column format suitable for plotting. A "0"

is postpended for the file containing the 00 direction experimental semivariogram
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data. A "90" is postpended for the file containing the 90' direction experimental

semivariogram data. Only applies to the Var fit program. Can not be longer than

seventy characters. If not provided then no output to these files will be written.

VariogramFilename= - Specifies the name of the file in which to write the

experimental semivariogram data and the parameters of the spherical, linear, and

dewijsian theoretical semivariogram models. Only applies to the Var fit program.

Can not be longer than seventy characters. If not provided then no output to this

file will be written.

Error..Filename= - Specifies the name of the file in which to write any program

error messages. Can not be longer than seventy characters. If not provided then

output will be directed to the screen.

A(O)= - Specifies the theoretical semivariogram range in the 00 direction.

A (90)= - Specifies the theoretical semivariogram range in the 90' direction.

C(O)= - Specifies the spherical model theoretical semivariogram sit! minus

nugget effect in the 00 direction.

C(90)= - Specifies the spherical model theoretical semivariogram sill minus

nugget effect in the 900 direction.

CO(O)= - Specifies the soherical model theoretical semivariogram nugget effect

in the 00 direction.

CO(90)=- Specifies the spherical model theoretical semivariogram nugget effect

in the 900 direction.

SphericaL Correlation (0- Specifies the spherical model theoretical semivari-

ogram simple correlation in the 0' direction.

SphericaLCorrelation(90)= - Specifies the spherical model theoretical semivar-

iogram simple correlation in the 90' direction.
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LinearBO(O)= - Specifies the linear model theoretical semivariogram B0 coef-

ficient in the 0' direction.

Linear..BO(90)= - Specifies the linear model theoretical semivariogram BO co-

efficient in the 900 direction.

Linear..Bl(O)= - Specifies the linear model theoretical semivariogram B1 coef-

ficient in the 00 direction.

LinearB1(90)= - Specifies the linear model theoretical semivariogram B1 co-

efficient in the 900 direction.

LinearCorrelation(O)= - Specifies the linear model theoretical semivariogram

simple correlation in the 00 direction.

LinearCorrelation(90)= - Specifies the linear model theoretical semivariogram

simple correlation in the 900 direction.

DewijsianBO(O)= - Specifies the dewijsian model theoretical semivariogram

BO coefficient in the 00 direction.

Dewijsian=BO(90)= - Specifies the dewijsian model theoretical semivariogram

BO coefficient in the 900 direction.

DewijsianBl(O)= - Specifies the dewilsian model theoretical semivariogran

B1 coefficient in the 00 direction.

DewijsianB1(90)= - Specifies the dewijsian model theoretical semivariogram

B1 coefficient in the 900 direction.

DewijsianCorrelation(O)= - Specifies the dewijsian model theoretical semivar-

iogram simple correlation in the 00 direction.

Dewijsian_ Correlation(90)= - Specifies the dewijsian model theoretical semi-

variogram simple correlation in the 900 direction.

Xstep= - Specifies the step size in the x direction for semivariogram calculation

of gridded data. Only applies to the Var fit program.
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Ystep= - Specifies the step size in the y direction for semivariogram calculation

of gridded data. Only applies to the Varfit program.

Xmax= - Specifies the maximum x coordinate value of the data set.

Xmin= - Specifies the minimum x coordinate value of the data set.

Ymax= - Specifies the maximum y coordinate value of the data set.

Ymin= - Specifies the minimum y coordinate value of the data set.

Tolerance= - Specifies the minimum distance between points to consider then

as distinct. If two points are closer than this value only the first point is kept and

the second point is discarded. This is done so that a singular matrix, in the kriging

system of equations, does not result. Only applies to the Krige program.

Maximum- Variance= - Specifies the maximum error variance allowed in the

selection of a minimal data set. Used only if minimizing. Based on this value the

program calculates the following value based on the following equation:

LargestDifference = Confidence-Interval. /MaximumVariance

Only applies to the Krige program.

LargestDifference= - Specifies the desired maximum difference between the

estimated value and the actual value at eacb point. To be used in the selection

of a minimal data set. Used only if minimizing. Based on this value the program

calculates the following value based on the following equation:

Maximm-Vaia _ (Largest-Difference 2
Maxim u_'ariance = k (on fidence-interval)

Only applies to the Krige program.

Confidence Interval= - Specifies the desired statistical confidence interval. To

be used in the selection of a minimal data set. Used only if minimizing. Based on this
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value the program calculates the following values based on the following equations

in the order shown:

MaximumVariance = OldVariance. ( Old-Value 2

kConfidence-Interval

Largest.Difference = Con fidence-Jnterval . vMaximumVariance

Where Old-Value is the prior value of Confidence-Interval and Old-Variance is the

prior value of Maximum-Variance. Only applies to the Krige program.

Polynomial= - Specifies the five coefficients of the polynomial used for trend

removal. The coefficients are speciffied for the following polynomial in the order

shown:

A + Bx + Cy + Dxy + Ex2 + Fy2 = z

Only applies to the Rebuild program.

VarPsi= - Specifies the semi-inclusion angle, regularization factor, for non-

gridded data in the semivariogram calculations. If the angle of one point relative to

a second point is in the desired direction for semivariogram calculation and the points

are a multiple of VarStep apart then that pair of points is used in the calculation.

The angle is allowed to vary from the desired direction by Var..Psi. Only applies to

the Var fit program.

VarStep= - Specifies the step size for non-grdded data in the semivariogram

calculations. If the angle of one point relative to a second point is in the desired

direction for semivariogram calculation and the points are a multiple of VarStep

apart then that pair of points is used in the calculation. Only applies to the Varfit

program.

NumberOfXIncremcnts= - Specifies the number of grid points in the x di-

rection at which to estimate surface values and estimation variances for the Krige

program. For the other programs or if expanding the image using ExpansionYactor,

A-6



it is the number of grid points in the x direction of the original gridded data. If ex-

panding the image only grid points between known points are added and not points

beyond the edge of the data set. The kriging program has a default value of one

for the expansion factor and calculates the number of expanded grid locations as

follows:

NumberOf..XIncrements = (NumberOfX.Increments - 1)-

ExpansionFactor + 1

Number- Of- Y.Increments= - Specifies the number of grid points in the y di-

rection at which to estimate surface values and estimation variances for the Krige

program. For the other programs or if expanding the image using Expansion-Factor,

it is the number of grid points in the y direction of the original gridded data. If ex-

panding the image only grid points between known points are added and not points

beyond the edge of the data set. The kriging program has a default value of one

for the expansion factor and calculates the number of expanded grid locations as

follows:

NumberOfY-Increments = (NumberOfY..Increments - 1)-

Expansion Factor + I

Minimizing - Instructs the program to select a minimal data set. The initial

data set is based on an "x" pattern using the semi-inclusion distances calculated

from the range or set by the user. Only aplies to the Krige program.

Integer-Data - Informs program that data set is in integer format, otherwise

data set is read in as floats.

TotaLNumber.Of-_Points= - Specifics the total number of points in the data

set. Not used in the Krigc program.
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Gridded.Data - Informs program that data set is gridded and to use that fact

to drastically reduce the computational time required.

Pattern-Output - Instructs Krige program to print minimal data set pattern

using an "x" for an included point and a "." for an excluded point.

Angles= - Specifies the angles, in degrees, at which to generate semivariograms.

Only applies to the Var fit program.

Maxlag= - Specifies the maximum distance to use as termination criteria for

semivariogram generation. Half this distance is then used in the determination of

the theoretical semivarioogram models. Only applies to the Var fit program.

IAX= - Specifies the semi-inclusion distance for initial point inclusion for min-

imal data set generation or for inclusion in estimation for normal kriging in x di-

rection. If image is to be expanded then this applies to the original grid and the

program multiplies this by the expansion factor. This allows the input to be based

on the original image and changing the amount by which to expand the image is

accomplished by changing only the expansion factor input. If not provided then this

value is calculated as follows:

IAX = NumberOfXIncrements. A(O)

(Xmax - Xmin). F

Only applies to the Krige program.

1.4 Y= - Specifies the semi-inclusion distance for initial point inclusion for min-

imal data set generation or for inclusion in estimation for normal kriging in y di-

rection. If image is to be expanded then this applies to the original grid and the

program multiplies this by the expansion factor. This allows the input to be based

on the original image and changing the amount by which to expand the image is

accomplished by changing only the expansion factor input. If not provided then this
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value is calculated as follows:

lAY = Number.OfYIncrements. A(O)

(Ymax - Ymin) - vf

Only applies to the Krige program.

MaximumPoints= - Specifies the maximum number of points to allow an

estimate to be based upon. Default is 250 due to unreliability of matrix inversion

routine for values larger than 250. Only applies to Krige program.

Var.Angle= - Specifies the angle at which to generate a semivariogram. Only

applies to the Var fit program.

Ezpansion-Factor= - Specifies the amount by which to expand the image in

the x and y directions. Increases the number of x and y increments and the semi-

inclusion distances as indicated under the sections of the same name. Only applies

to the Krige progran.

InverLOutput - Instructs program to output points by columns instead of by

rows. Only applies to Krige program.

Number.Of.tfeader-Lines= - Informs program of how many lines to skip, as

header lines, in the data file before reading data.

TrendPlus- Weights= - Instructs program on what type of local drift to remove

while kriging. Default value is three. If illegal value provided then default is used.

Legal values are:

1 - Do not remove any trend,

3 - Remove linear trend, or

6 - Remove quadratic trend.

Only applies to Krigc program.
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UseLargest.Difference - Instructs program to calculate actual, not theoretical,

estimation variance based on the difference between the estimate and the actual

value. Only applies to Krige program doing minimization.

DoShebaisg - Instructs tb, program to select minimal data set by minimizing

the entire data set and not by using pattern replication. Much slower this way. Only

applies to Krige program doing minimization.

PrintInterval= - Instructs the program on how often the "Status.Report" file

is to be updated. Can save considerable time since program may be input/output

bound doing normal kriging or minimizing not using pattern replication. The value

of the input determines how many points are estimated before the status file is

updated. Only applies to Krige program.
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A.2 Example Krige Input Files

Values different for each run

MaximumVariance= 85.0

MinimalDatasetFilename=kriged85 .min

OutputFilenamefkriged85. surf

Variance.Filename=kriged85. variance

ErrorFilenamefkriged85. out

Common values for all runs on this dataset

A(O)= 102.994, C(O)= 571.15, CO(O)= 32.231

A(90)= 95.117, C(90)= 312.925, CO(90)= 75.038

PrintInterval= 25

Common values for all runs on all datasets

Xmin= 0.0, Xmax= 266.0, Ymin= 0.0, Ymax= 267.0

NumberOfXIncrements= 267, NumberOf_YIncrements= 268

Minimizing

Pattern-Output

GriddedData

Integer-Data

DataFilename=mri.data

EndOfInputValues
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Values different for each run

Largest-.Difference= 300.0

Minimal.Dataset-.Filename=kriged3 .min

Output..Filename-kriged3 .surf

Variance-.Filenazne=kriged3 .variance

Error.Filename=kriged3 .out

IAX= 3, IAY= 3

Common values for all runs on this dataset

ACO)= 117.257, C(o)= 814.124, C0(o)= 0.0

A(90)= 96.703, C(90)= 328.165, c0(90)= 62.293

Common values for all runs on all datasets

Xmin= 0.0, Xmax= 266.0, Ymin= 0.0, Ymax= 267.0

Number-..f-.X-.Increments= 267, Number-.Of-.Y.Increments= 268

Minimizing

Gridded..Data

Integer-.Data

Data..Filename=mri .data

End-.Of-.Input.Values
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A.3 Example Varfit Input Files

Xmin= 0.0, Xmax= 266.0, Ymin= 0.0, Ymax= 267.0

Number..Of-.X-.Increments= 267, Number-f-.Y_.Increments= 268

Total-.Number-.Of-.Points= 71556

Gridded..Data

Integer-.Data

Data..ilenazue=mri . data

Output-ilenaue=. ./mri .repeat

Variogram-.Filename=mri vario

Plot-.Filename=mri .pl.ot

Xstep= 1.0, Ystep= 1.0, Var-.Step= 1.0

MaxLag- 380

Error..Filenazne=mri .out

End-0f. Input-.Values
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Appendix B. Semivariogram Plots

This appendix includes the experimental and spherical theoretical Semivari-

ogram plots for the 00 and 900 Directions for each slice of MRI data used in the

kriging procedures.
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Appendix C. Photographs

This appendix contains the photograghs showing the results of the minimiza-

tion process. Each photogragh contains a series of images. Each series of images

has the original data set on the left, the kriged image in the center, and the error

between the original and kriged image on the right.
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Figure C.1. Slice 1, Maximum Variance = 100, 85, 70
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Figure C.2. Slice 1, Semi-Inclusion Distance = 5, 4, 3
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Figure C.3. Slice 1, Semi-Inclusion Distance - 3, 2, 1

C-4



Figure C.4. Slice 3, Maximum Variance 100, 85, 70
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Figure 0.5. Slice 3, Semni-Inclusion Distance =5, 4, 3
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Figure C.6 Slice 3, Semi-Inclusion Distance =3, 2, 1
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Figure C.7. Slice 6, Maximum Variance =100, 85, 70
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Figure C.8. Slice 6, Semi-Inclusion Distance - 5, 4, 3
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Figure C.9. Slice 6, Semi-Inclusion Distance = 3, 2, 1
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Figure C.10. Slice 9, Maximum Variance - 100, 85, 70
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Figure C.11. Slice 9, Semi-Inclusion Distance = 5, 4, 3
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Figure C.12. Slice 9, Semi-Inclusion Distance = 3, 2, 1
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Figure C.13. Slice 12, Maximum Variance = 100, 85, 70
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Figure C.14. Slice 12, Semi-Inclusion Distance = 5, 4, 3
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Figure 0.15. Slice 12, Semi-Inclusion Distance =3, 2, 1
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Figure C.16. Slice 15, Maximum Variance - 100, 85, 70
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Figure C.17. Slice 15, Semi-Inclusion Distance - 5, 4, 3
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Figure C.18. Slice 15, Semi-Inclusion Distance = 3, 2, 1
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Figure C.19. Slice 18, Maximum Variance - 100, 85, 70
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Figure C.20. Slice 18, Semi-Inclusion Distance - 5, 4, 3

C-21



Figure C.21. Slice 18, Semi-Inclusion Distance - 3, 2, 1
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Figure C.22. Slice 21, Maximum Variance - 100, 85, 70
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Figure C.23. Slice 21, Semi-Inclusion Distance = 5, 4, 3
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Figure C.24. Slice 21, Semi-Inclusion Distance = 3, 2,
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Figure C.25. Slice 24, Maximum Variance 100, 85, 70
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Figure C.26. Slice 24. Semi-Inclusion Distance - 5, 4, 3
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Figure C.27. Slice 24, Semi-Inclusion Distance = 3, 2, 1
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Figure C.28. Slice 24, Partitioned, Maximum Variance = 13, 12, 11
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Appendix D. Minimized Image Tables

rhis appendix includes the kriged image statistics for each slice of MRI data

used in the kriging procedures. The run times were for all jobs running concurrently.
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Table D.1. Slice 1 Statistics

Minimization Largest Percent Run Time Photograph
Method Variance Reduction hr:min:s

Maximum 100 98.98 98.70 00:49:31 1(a)
Allowed 85 84.39 96.53 00:38:15 1(b)
Variance 70 68.37 74.90 00:54:45 1 (c)
Initial 5, 5 91.56 97.88 00:07:26 2(a)
Semi- 4, 4 85.72 96.77 00:05:20 2(b)
Inclusion 3, 3 79.72 94.34 00:04:48 2(c), 3(a)
Distances 2, 2 73.50 87.36 00:06:57 3(b)
IAX, IAY 1, 1 66.92 50.00 00:13:58 3(c)

Table D.2. Slice 3 Statistics

Minimization Largest Percent Run Time Photograph
Method Variance Reduction hr:min:s

Maximum 100 99.42 99.39 00:54:48 4(a)
Allowed 85 83.44 98.91 00:39:52 4(b)
Variance 70 69.74 97.80 00:37:23 4(c)
Initial 5, 5 70.27 97.88 00:03:40 5(a)
Semi- 4, 4 63.73 96.77 00:03:42 5(b)
Inclusion 3, 3 57.09 94.34 00:04:06 5(c), 6(a)
Distances 2, 2 50.24 87.36 00:04:36 6(b)
IAX, IAY 1, 1 42.99 50.00 00:10:40 6(c)

Table D.3. Slice 6 Statistics

Minimization Largest Percent Run Time Photograph
Method Variance Reduction hr:min:s

Maximum 100 96.82 99.38 00:54:26 7(a)
Allowed 85 84.16 98.94 00:42:16 7(b)
Variance 70 69.17 97.10 00:37:51 7(c)
Initial 5, 5 73.46 97.88 00:05:41 8(a)
Semi- 4, 4 68.12 96.77 00:06:04 8(b)
Inclusion 3, 3 62.64 94.34 00:08:27 8(c), 9(a)
Distances 2, 2 56.98 87.36 00:05:41 9(b)
IAX, IAY 1i,1 50.97 50.00 00:16:25 9(c)
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Table D.4. Slice 9 Statistics

Minimization Largest Percent T Run Time Photograph
Method Variance ReductionI hr:min:s

Maximum 100 98.69 98.33 00:45:04 10(a)
Allowed 85 82.09 93.63 00:39:55 10(b)
Variance 70 69.18 25.09 01:34:58 10(c)

Initial 5,5 95.44 97.88 00:03:33 11(a)
Semi- 4, 4 89.79 96.77 00:03:46 11(b)
Inclusion 3, 3 83.99 94.34 00:04:42 11(c),12(a)
Distances 2, 2 77.97 87.36 00:05:51 12(b)
IAX, IAY 1, 1 71.61 50.00 00:19:48 12(c)

Table D.5. Slice 12 Statistics

Minimization Largest Percent Run Time Photograph
Method Variance Reduction hr:min:s

Maximum 100 97.13 99.60 00:55:45 13(a)
Allowed 85 84.39 99.32 00:42:42 13(b)
Variance 70 69.52 98.67 00:38:55 13(c)
Initial 5,5 62.49 97.88 00:03:57 14(a)
Semi- 4, 4 57.16 96.77 00:04:18 14(b)
Inclusion 3, 3 51.72 94.34 00:04:41 14(c),15(a)
Distances 2,2 46.10 87.36 00:06:01 15(b)
LAX, LAY 1,1 40.13 50.00 00:19:41 15(c)

Table D.6. Slice 15 Statistics

Minimization Largest Percent Run Time Photograph
Method Variance Reduction hr:min:s

Maximum 100 98.92 99.84 01:17:16 16(a)
Allowed 85 83.58 99.78 00:58:32 16(b)
Variance 70 70.00 99.70 00:30:11 16(c)
Initial 5,5 26.64 97.88 00:04:07 17(a)
Semi- 4, 4 21.90 96.77 00:05:07 17(b)
Inclusion 3, 3 17.16 94.34 00:05:42 17(c),18(a)
Distances 2, 2 12.42 87.36 00:09:26 18(b)
IAX, IAY 1, 1 7.65 50.00 00:34:58 18(c)
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Table D.7. Slice 18 Statistics

Minimization Largest Percent Run Time Photograph
Method Variance Reduction hr:min:s

Maximum ,00 98.20 99.91 02:08:07 19(a)
Allowed 85 84.64 99.90 01:05:45 19(b)
Variance 70 69.81 99.84 00:34:25 19(c)
Initial 5,5 17.12 97.88 00:03:49 20(a)
Semi- 4, 4 13.69 96.77 00:04:09 20(b)
Inclusion 3, 3 10.27 94.34 00:04:38 20(c),21(a)
Distances 2, 2 6.84 87.36 00:06:04 21(b)
IAX, IAY 1, 1 .42 50.00 00:15:32 21(c)

Table D.8. Slice 21 Statistics

Minimization Largest Percent Run Time Photograph
Method Variance Reduction hr:min:s

Maximum 100 99.92 99.96 01:36:19 22(a)
Allowed 85 84.67 99.95 01:39:50 22(b)
Variance 70 69.45 99.93 01:27:51 22(c)
Initial 5, 5 9.17 97.88 00:04:07 23(a)
Semi- 4, 4 7.34 96.77 00:04:48 23(b)
Inclusion 3, 3 5.50 94.34 00:05:40 23(c),24(a)
Distances 2, 2 3.67 87.36 00:09:25 24(b)
IAX, lAY 1, 1 1.83 50.00 00:34:57 24(c)

Table D.9. Slice 24 Statistics

Minimization Largest Percent Run Time Photograph
Method Variance Reduction hr:min:s

Maximum 100 53.15 99.96 01:42:16 25(a)
Allowed 85 53.15 99.96 02:02:15 25(b)
Variance 70 53.15 99.96 01:41:20 25(c)
Initial 5, 5 3.94 97.88 00:04:06 26(a)
Semi- 4, 4 3.15 96.77 00:04:25 26(b)
Inclusion 3, 3 2.36 94.34 00:05:18 26(c),27(a)
Distances 2, 2 1.57 87.36 00:07:36 27(b)
IAX, IAY 1, 1 0.79 50.00 00:20:29 27(c)
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Table D.10. Slice 24, Partitioned, Statistics

Minimization Largest Percent Run Time Photograph
Method Variance Reduction hr:min:s

Maximum 13 12.45 96.65 00:08:00 28(a)
Allowed 12 11.83 95.73 00:08:23 28(b)
Variance 11 10.77 91.04 00:10:58 28(c)
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Appendix E. Programmers Manual

This appendix provides a description of the implementation of the routines

needed for each program with explanations of how and why the coding is structured

as presented.
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E.1 Matrix Object

To minimize a data set, the kriging program requires a matrix that can expand

and contract as points are added to and deleted from the minimal data set. Typical

matrix operations must also be supported. This can not be done using typical

programming techniques. What is needed is an object oriented language. The matrix

object is, therefore, written in C++ and supports the following requirements:

e Create any size matrix,

* Delete a matrix and free memory,

9 Set an element of the matrix to a desired value,

* Get the value of an element of the matrix,

9 Add a row at the bottom of the matrix,

9 Add a column at the right edge of the matrix,

* Delete a row from the bottom of the matrix,

* Delete a column from the right edge of the matrix,

e Transpose the matrix,

* Invert the matrix,

* Reinvert the matrix after adding rows and columns,

* Premultiply the matrix by another matrix,

* Postmultiply the matrix by another matrix,

* Multiply the matrix by a scalar value,

* Add another matrix to this matrix,

9 Copy one matrix to another,

* Return the number of rows of the matrix,

* Return the number of columns of the matrix,
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* Test if last operation was successful.

Implementation of most of these routines is straight forward and will not be

discussed. Two additional routines, LUDCMP (renamed LU.Decomposition) and

LUBKSB (renamed LUBacksubstitute), were adapted from Numerical Recipes

in C (16). LUDecomposition decomposes the matrix into the product of two

matrices, [L] and [U], where [L] is lower triangular and [U] is upper triangular.

LUBacksubstitute performs back substitution on the decomposed matrix. The

combination of these programs provided an efficient method for inverting the ma-

trix. Of primary interest is the implementation of the object such that it has the

ability to expand and contract.

The matrix object is implemented as a structure :ontaining information about

the matrix, such as number of rows and number of columns, and a pointer to an

array of arrays in which the values are stored. The structure is illustrated in Fig-

ure E.1 which was adapted from the matrix object source code file. Each individual

array, of the array of arrays, is sized as the minimum of 100 or the number of rows

requested by the user for the row size of the array, and as the minimum of 100 or

the number of columns requested by the user for the column size of the array. This

implementation represents a compromise between excessive unused, but allocated,

memory and excessive requests for memory with more overhead per value stored. By

allocating large amounts of memory per array, the number of requests for memory

and the administrative overhead keeping track of those allocations is minimized. But

the amount of unused, but allocated, memory becomes excessive and, if carried to

the extreme, can require more memory than is available. By allocating only enough

memory for each row or column, unused memory is minimized, but, the number

of requests for memory and the administrative overhead keeping track of all those

allocations becomes excessive. Using the structure previously outlined, rows and

columns can be added by allocating more arrays of memory. The number of rows

and columns can be reduced very easily by adjusting the matrix information kept in
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[Matrix I

V
+---+ +---+ +---+
I Array I-> I Array I-> IArray -> ...
+---+ +---+ +---+I I I

V V V
+---+ +---+ +---+
I Array I->I Array I-> I Array I-> ...
+---+ +---+ +---+II I

V V V
+---+ +----+ +---+
I Array J->l Array I-> Array I->...
+---+ +---+ +---+II I

V V V

Figure E.1. Matri'c Object Structure

the matrix structure. This does not return memory to the system but does appear,

to the user, as if the rows and columns are deleted. Of several structures investigated

this one appeared to be the closest to optimal. The matrix object is also used in the

partitioning, residuals removal, and semivariogram estimating programs.

Of secondary interest is the implementation of the Relnvert routine. This rou-

tine uses Szidarovszky's matrix partitioning method to reinvert the matrix (19:192).

Given the two matrices, [A] and [B], partitioned into submatrices as follows:
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where [A]. [B] = [I] and P-1 is known. Performing the multiplication 1 can be seen

that:

P.Y+Q.U = I (E.1)

P.Z+Q.V = 0 (E.2)

R.Y4.S.U = 0 (E.3)

R.Z+S.V = I (E.':

solving the second equation for Z:

Z = -P-1.Q.V

combining this with the fourth equation and solving for V:

V = (S- R-P- . Q)-

solving the first equation for Y:

Y = P-'.(I-Q.U) = P- ' - (P-i.Q).U

combining this with the third equation yields:

U = -(S-R.P-.Q)-1 .R.P-' = -V.R.P-1

therefore, the following relationships are established:

V = (S-R.P-1 .Q)-

Z = _p-1.Q.V

U =-V.R.P -

Y =p-(p-'.Q).U
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If the number of added rows and columns is small relative to the original matrix size,

the computational time saved by not inverting the entire matrix will be substantial.

E.2 Interface Routines

In support of the kriging procedure's need for a common interface that isolates

the input data format and control information format from the kriging and structural

analysis procedures, an interface routines package, 'written in C++, is provided. The

following are the routines provided for that standardized interface.

InputCheck. The number of command line arguments is tested to determine

if a control information file name is provided and print us.ge information if not.

Get.DataPoint. Reads the data from the disk and assigns each point to a

grid location. Returns row and column indices of the grid location as well as the

coordinates of the point and the quantity of interest.

Put.Data-Point. Writes the data to the output file in the desired format. Row

and column indices of the grid location as well as the coordinates of the point and

the quantity of interest are sent as parameters.

OutputPoint. Writes the data to the minimal data file in the desired format.

Row and column indices of the grid location as well as the coordinates of the point

and the quantity of interest are sent as parameters.

Put. Variance. Writes the estimation variance to the variance file in the desired

format. Row and column indices of the grid location as well as the coordinates of

the point and the variance are sent as parameters.

GetControL Input. This routine gets the program control information and

opens the data files. The following control parameters can be set by the user:

" Number of increments on the x and y axes,

" Maximum values of x and y,
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" Minimum values of x and y,

" Step size for x and y,

* Zone of influence (range), a, in 00 and 900 directions,

• Sill minus the nugget effect, C, in 00 and 900 directions,

" Nugget effect, CO, in 0 and 90 degree directions,

• Angles at which to generate semivariograms,

* Correlations generated by emivariogram program for each theoretical model,

• The semi-inclusion distance for estimation or minimizing,

* Maximum allowable variance, used for data minimization,

* Confidence interval co use calculating maximum allowable variance,

• Largest allowable difference of estimate from actual value,

• Minimum distance between points to consider them distinct,

" Minimization flag,

" Integer data flag,

* Input data file name,

* Output file name,

* Variance file name,

• Minimal data set file name,

* Plot file name,

• Semivariogram file name,

• Gridded data flag,

* Pattern output flag,

* Maximum number of points allowed in [A] matrix,

e Polynomial coefficients,
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9 Semivariogram inclusion angle width,

* Semivariogram step,

* Total numbe- of data points,

* Maximum lag for sernivariogram calculation,

9 Image exl. ansion factor,

* Output inversion flag, and

* Number of header lines in data file.

The parameter input names, usage, and the actions taken based on those pa-

rameters are covered in detail in Appendix A, The User's Manual.

E.3 Kriging Routines

To perform the tasks required by this thesis effort and the two concurrent

thesis efforts, a kriging program originally written in C by Michael Grant (9) was

rewritten in C++ with extensive modifications. The modificatior.s correct some

programmatic errors as well as incorporate geometric anisotropy, minimal data set

production, and generalization to any data set. The program is long and somewhat

complex but is composed of short and easy to understand routines. Therefore, to

enhance understandability, each routine developed will be presented separately. Only

those routin'- that directly support kriging will be described in this section. Those

routines that support minimization will be presented in the minimization section.

Those routines that have elements of both kriging and minimization will be presented

in both sections. Note that a point is "kriged" if the estimate and the estimation

variance at that point are calculated.

Executive Routine. The primary use of the kriging equations is the calculation

of the estimate and the estimation variance at a point. This involves solving for the

weights, {X}, from the kriging system of equations [A]. {X} = {B}. To build the
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matrices, the known points in the vicinity of the point being kriged must be found.

Once the weights are known the point can be kriged. Therefore, the heart of the

kriging program is the following routine calls:

* GetPts(i, j)

* Build.A 0

* BuildB(i, j)

* Build.X()

* Estimate(i, j, Minimization.Flag)

For this effort, the points to be estimated lie on a regularly spaced grid. This

allows the coordinates of a point to be specified by the indices, i and j, of a two

dimensional array. The routines that need to know the coordinates of the point being

kriged are passed the array indices from which the coordinates can then be calculated.

This sequence needs some modification, however, for this application. First, a point

without known points in the neighborhood on which to base an estimate or a point

that is all ready known can not be kriged. Therefore, Get..Pts will return zero if the

point is known or if there are no points in the neighborhood. If minimization is being

performed, the presence of a point at the grid location can be determined directly.

The variable Unknown-Point is set to true if the point is to be kriged. The other

routine calls are then placed within a block if statement testing on Unknown-Point.

A second modification involves the routine to build the [A] matrix. This routine is

called only if minimization is NOT being performed. This will be discussed in the

minimization section.

The kriging routines need to be exercised for all the grid locations. This is

accomplished with two nested for loops. The indices of the for loops are variables

so that subsections of the entire grid may be kriged. This will be very useful for

minimization as will be explained later. Minimization also requires accomplishing
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the doubly nested for loops after a known data point is added to or Lemoved from

the minimal data set. Therefore, these two loops need to be nested within a construct

that is executed at least once for ordinary, non-minimizing, kriging. The construct

used is the do while loop.

Before any kriging can be accomplished some program set-up is required. First,

program control information must be acquired using the GetControlInput routine.

Second, the data must be read in from the disk using the Data-In routine. Lastly,

data structures must be allocated and variables initialized. Initialize-Values sets

variables used for minimization.

After the data is kriged it is written to the disk with the Output routine. The

pattern of known points may also be printed. Within the nested loops is a print

section to write to a file named "Status.Report" the current location in the data

field and some other values of interest.

Data-In. The construct used to hold the data points is an array of pointers to a

structure that contains the coordinates of the point and the value of interest as well

as a pointer to the next point collocated at this grid location. This is, in essence, an

array of bins in which to place the data. This construct is used since many points

from an irregularly spaced data field may be assigned to the same grid location. For

minimization two of these constructs are used, one to contain all the data and one

to contain the minimal data set.

To get the data from disk a while loop is used. The data is read from the

disk and assigned to a grid location by the interface routine Get.Data.Point. When

all the data is read in GetData-Point returns the End Of File (EOF) value and

terminates the while loop. A small amount of memory is allocated for each datum

read in and kept. Not all data will be kept. Duplicate data points are removed

because they create an equation, in the kriging system of equations, that is not

linearly independent of the others. If a matrix contains some equations that are

linear combinations of others in the matrix, the matrix is singular and can not be
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inverted. If the matrix can't be inverted the weights can't be calculated and the

point can't be estimated.

GetLPts. This routine is in two major sections: get the points at the grid

location being kriged and get the points within a square neighborhood centered

around the point being kriged. The square must be as large as possible subject to

the following two constraints: 1) the total number of points must not exceed the

number at which the matrix inversion routine becomes unreliable; and, 2) the size

of the square must not exceed the size set by the user. To accomplish this, points

are added from a square that is only one row and column larger above, below, to the

left, and to the right than the last square. This is repeated until the point limit or

square size limit is reached. This then reduces to adding the points from the edges

of an "expanding" square, centered around the point being kriged, that starts with

three rows and three columns and ends when one of the limit conditions is reached.

The first section is a while loop that gets all the points at the current grid

location. Within the loop is a test to determine if one of the points coincides with

the grid location. If so, that point is used and kriging is not performed. The routine

returns zero in this case.

The second section is an outer for loop that increments the distance from the

central point to the edges of the expanding square. Within this loop are four loops

to get the points from each edge of the square. These four loops are very similar with

only minor differences to ensure that the same point is not sampled twice. Therefore,

only one of the loops will be described. Each loop starts by calculating the range

for the indices of the for loop. The range is tested to make sure it does not fall

outside the grid. The range is also tested to make sure that the points on that edge

have not all ready been sampled. A loop almost identical to that in the first section

is then performed on each location on that edge. The differences between this loop

and the first are: points are not tested to determine if they coincide with the point

being kriged and the distance from the point being kriged is calculated so that the
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point will be included only if it is within the theoretical semivariogram range.

The points are placed in an expanding matrix. This is done so that the number

of points to use for kriging can be set by setting the variable Kpts. The number

of points added to the matrix upon completion of the loop to add points from the

last edge of the previous square is saved in the variable Last..Kpts. If the number of

points added to the matrix from the current edge of the expanding square exceeds

the maximum set by the user then the number of points to use for kriging is set

to Last..Kpts. There is a maximum of approximately 250 points that the current

matrix inversion routine can reliably handle.

Build-A. This routine is in five sections and is relatively easy to follow. The

first section resizes [A] to the necessary dimensions. The second section uses a

doubly nested for loop to cycle through the sample points matrix and determine

the covariance between each pair of known points and then put that value into the [A]

matrix. The Sigma routine calculates the covariance based on the distance between

the points. The third section adds a row and column of ones so that the weights will

sum to one. The fourth section adds the terms to remove the local drift. The drift

is assumed linear. The terms are calculated based upon a relative origin located at

the upper left corner of the area being kriged. This is necessary for minimization

and will be explained in the minimization section. The fifth, and last, section sets

the block of zeros required by the matrix form of the kriging system of equations.

After the matrix is constructed the inverse is calculated.

BuildB. This routine is in three sections and is also easy to follow. The first

section resizes {B} to the necessary dimensions. The second section uses a for loop

to cycle through the sample points matrix and determine the covariance between

each known point and the point to be kriged and then put that value into the {B}

matrix. The Sigma routine calculates the covariance based on the distance between

the points. The third section puts the one for the sum of the weights and the values

for the local drift into the matrix. The values for the local drift are calculated based
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on the relative origin described in the previous section.

BuildX. The {B} matrix is copied into the {X} matrix and the {X} matrix

is then premultiplied by the [A]- 1 matrix. There is more coding to minimize com-

putational time if minimization is being performed and will be discussed under the

minimization section.

Estimate. The estimate and estimation variance is calculated using the equa-

tions presented in the literature review and stored into the surface and variance

matrices. If the semivariogram is used in place of the covariance in the Sigma rou-

tine the formula for the estimation variance must be changed to the semivariogram

form.

Output. The surface estimates, estimation variances, and, if produced, the

minimal data set are written to the disk using the appropriate interface routine.

Doubly nested for loops are used to cycle through the matrices. There is some

extra coding to reverse the output format of the data if the user so desires.

Sigma. The covariance for the spherical theoretical semivariogram model is

calculated using the equation presented in the literature review that corrects for

geometric anisotropy. An average sill is calculated in the executive routine ane

used in this routine. Zonal anisotropy is beyond the scope of this effort and is

not accounted for in the covariance calculation. This can be changed to return the

semivariogram without impacting any routine other than the Estimate routine.

minO. This routine returns the smaller of the two integer parameters.

The following routines are added to support minimization.

Add-Points. This routine adds points based on the semi-inclusion distances

and fills the sample matrix with the data that is within the current kriging pattern.

The surface value at each added point location is set to the value of the quantity of

interest of that point and the estimation variance at that point is set to zero. All

this is accomplished very simply with doubly nested for loops.
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Initialize- Values. This routine adds the initial points to the minimal data set

based on the semi-inclusion distances. If the user does not set the semi-inclusion

distances they will be calculated, in the executive routine, based on the theoretical

semivariogram range. The calculation is based on a square kriging area with the

distance between the center point and a corner point being just less than the theo-

retical semivariogram range. The user may input the number of times to divide the

semi-inclusion distance by two. This is useful if the semivariogram range is large

and the maximum variance is small because it reduces the size of the kriging area to

start with. This routine also determines if the entire matrix is to be minimized or if

submatrices are to be minimized and sets the minimization flag appropriately.

TestSetAndAdd. This routine is long but is in ten distinct and fairly indepen-

dent sections. The flow of control is from top to bottom and the interaction is limited

to consecutive sections. Which section is curreLly being executed is controlled by

the variable Minimization-Flag and indicates which submatrix, or kriging area, is

currently being minimized or kriged. Minimization-Flag takes on the following

values and meanings:

-1 - minimizing entire matrix due to large rant.

0 - minimizing square central submatrix

1 - kriging central submatrices

2 - kriging left edge submatrices

3 - kriging top edge submatrices

4 - kriging right edge submatrices

5 - kriging bottom edge submatrices

6 - kriging upper left corner submatrix

7 - kriging upper right corner submatrix

8 - kriging lower left corner submatrix

9 - kriging lower right corner submatrix
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Since a matrix is used to represent most of required data constructs the phraseology

is coached in terms of matrices. These ten sections fall under two major tasks: add

points to reduce the largest estimation variance and krige a subarea of the grid with

the minimal data set. Therefore, these two major tasks will be addressed instead of

the ten sections.

As each submatrix is kriged the location and value of the largest estimation

variance is recorded. If the submatrix equal to the entire matrix is being minimized

and the largest variance is greater than the maximum allowed variance a point is

added at the recorded location and the matrix is rekriged. If a submatrix not equal

to the entire matrix is being minimized and a point must be added then symetric

points about an x and y axis through the center point of the kriging pattern must

also be added as previously explained. If the kriging pattern is replicated and the

semi-inclusion distance is divisible by two then the size of the kriging area will be

reduced. If the maximum variance criteria is met then set-up for the next section

must be performed. If the entire matrix is being minimized then minimization is

complete as the whole array has all ready been kriged. If a submatrix is being

minimized then the first kriging section must be initialized.

Each kriging section, except for the corner sections, must increment the row

and column submatrix indices to the next submatrix to krige. If the first subma-

trix of the section is being kriged then the Build.X routine must be instructed to

save the weights, otherwise Build..X must be instructed to use the previously saved

weights. Every section must restock the sample array with the points from the cur-

rent submatrix being kriged. Each section must also determine if all the submatrices

in that section have been kriged and, if so, set-up the next section. The section

kriging the central submatrices must also determine when the last submatrix of the

current submatrix row is completed so that the column indices can be set to the first

submatrix of the row and the row indices can be incremented to the next submatrix

row. The coding of this routine should now be relatively easy to understand.
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When minimization is finished the minimization flag is set to false to allow the

do while loop in the executive routine to stop looping. The minimized flag is set to

true so that the Output routine will write the minimal data set to the disk.

ReBuildA. This routine adds the extra terms to the [A] matrix required by

the addition of extra points to the kriging area. It is structured very similarly to

Build-A. The difference is the starting indices for the loops. BuildA fills the entire

matrix whereas this routine adds to the matrix on the right and at the bottom. This

was done so that the Relnvert method of the matrix object could be used to save

some computational time.

Build-A. For [A]- 1 of the first kriged pattern to equal [A]- 1 of subsequently

kriged identically patterned areas all terms in the [A] matrix must be identical.

This includes the values used to account for the local drift. For these values to be

identical from pattern to pattern they must have the same relative origin. Therefore,

the upper left corner of each kriging area is used as the relative origin for that area.

This origin is also used in ReBuild.A and BuildB.

BuildX. There are two sections of code added for minimization. The first

section uses the previously saved weights if the flag to use the saved weights is set

otherwise it calculates the weights. The second section saves the weights if the flag

to save the weights is set.

Calculate-IAXJIA Y. This routine is implemented as a single do while loop that

terminates when the estimation variance for the center point of a rectangular kriging

pattern is smaller than the maximum allowed variance. There is an if structure

to determine the correct number and coordinates of the kriging pattern based on

whether the kriging pattern is to be used or if normal kriging is to be used. To

reduce the distance between the points for each succesive pass through the loop a

multiplier is used that is decremented on each pass through the loop.
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