
Form Approved

ENTATION PAGE- - OMB No. 0704-01 "W

imated to average i hou per response tIciudifl the time for m-",iwng titu o%. searching exiting data sources.
A D - 24 108 eMnqenaduae.lewrFomArod1 8 d eeviirig te collection of information Send comments regarding this burden estimate or any Other aspect of this

I II services. Directorate fo, nformatio, Operation and Reorts. 1215 jeteron
l e Office of Manag~ement and Budlget. Pa rWork Rfeduction Project (0704-0188). WaiJngton. DC 20503

. . PORT DATE 3. REPORT TYPE AND DATES COVEREDF* March 19911

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
On the Errors that Learning Machines Will Make

6. AUTHOR(S)
A.W.Biermann, K.C.Gilbert, A.Fahmy, B.Koster

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSEES) f V I I 8. PERFORMING ORGANIZATION
Computer Science Dept. REPORT NUMBERDuke University FEL EC1L
Durham, NC 27706 JAN 10 1G92, CS-1991-32

9. SPONSORING/MONITORING AGENCY NAME(S) AND AD ISS(ES) 10. SPONSORING/MONITORING
U. S. Army Research Office AGENCY REPORT NUMBER

P. 0. Box 12211
Research Triangle Park, NC 27709-2211 H o Q-/ t5--/?I)74

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Associated with each learning system there is a class of learnable behaviors. If the target behavior to be acquired is in the
learnable class, it will be learned perfectly. If it is outside that class, the machine will only be able to acquire a behavior
that approximates the target and it will always make errors. It is desirable for a learning machine to have a large learnable
class to maximize the chances of acquiring the unknown behavior and to minimize the expected error when only an
approximation is possible. However, it is also desirable to have a small learnable class so that learning can be achieved
rapidly. Thus the design of learning machines involves selecting a position on the spectrum: minimum error and slow
learning time versus larger error and faster learning time.

Machines that have fast learning times, relatively small learnable classes, and thus relatively large expected errors are called
"realization sparse" in this paper. It is shown that many common learning systems are of this type including signature
tables, linear system models, and conjunctive normal form expression based systems.

These stu .es lead to the concept of an "optimum" machine which spreads its learnable behaviors across the behavior space
in a manner to minimize the expected error. An innroximation to such optimum machines is prr a ited and its behavior is
compared to the more traditional learning machi.,,,s.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Learning machines, learnable classes 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard ;orm 298 (Rev 2-89)0

'*%(,O d by %N%- %t Z39-'8

CS-1991-32

On the Errors that Learning Machines
Will Make

A.W.Biermann, K.C.Gilbert,
A.Fahmy, B. Koster

Department of Computer Science

Duke University

Durham, North Carolina 27706

On The Errors That Learning Machines Will Make

A.W. Biermann, K.C. Gilbert, A. Fahmy, B. Koster Accesio1 Fo 147
Nl-;S CR.',

Department of Computer Science DTr_ I
Duke University U. .

Durham, NC 27706 ;.

By

Revised March 1991 Dtt ,

ABSTRACT

Associated with each learning system there is a class of learnable behaviors. If the target
behavior to be acquired is in the learnable class, it will be learned perfectly. If it is outside that class,
the machine will only be able to acquire a behavior that approximates the target and it will always
make errors. It is desirable for a learning machine to have a large learnable class to maximize the
chances of acquiring the unknown behavior and to minimize the expected error when only an approxi-
mation is possible. However, it is also desirable to have a small learnable class so that learning can be
achieved rapidly. Thus the design of learning machines involves selecting a position on the spectrum:
minimum error and slow learning time versus larger error and faster learning time.

Machines that have fast learning times, relatively small learnable classes, and thus relatively large
expected errors are called "realization sparse" in this paper. It is shown that many common learning
systems are of this type including signature tables, linear system models, and conjunctive normal form
expression based systems.

These studies lead to the concept of an "optimum" machine which spreads its learnable behaviors
across the behavior space in a manner to minimize the expected error. An approximation to such
optimum machines is presented and its behavior is compared to the more traditional learning machines.

This paper is based on work supported by the U.S. Armny Research Office under Grant DAAG-29-84-K-0072, Grant DAAL03-88-K-
0082 and the Air Force Office of Scientific Research Grant No. 81-0221.

92-00842 l ll

Table of Contents

Introduction 2

Three Example Learning Machines and Some Questions 4

Relating the Number of Learnable Behaviorz, to Error and 12
Time to Learn

Signature Tables 22

Linear Models 27

Conjunctive Normal Form Expressions 29

In Search of the Optimal Learning Machine: Truncation Machines 30

In Search of the Optimal Learning Machine: The GI-Machine 33

The Random Vectors Machine 41

Comparing Some Expected Errors 42

Conclusions 45

Appendix A: Counting Signature Tables 47

Appendix B: The Average Error for Truncation Machines 53

References 56

2

Introduction

A basic characteristic of many learning systems is that they are able to acquire only a lim-

ited class of behaviors, a class that may be far short of the set of all possible behaviors. If the

target behavior is in the learnable class, the learning machine may be able to acquire it as train-

ing information becomes available. If the target behavior is outside of the learnable class, it will

not be achieved. The best the system can do, in this case, is to try to find a learnable behavior

close enough to the target to give few errors and satisfactory if not perfect behavior.

Learnability classes may be studied in terms of basic characterizations and various dimen-

sions including their sizes, the amount of information or time required to learn, and the distri-

bution of the class across the space of all possible behaviors. It is desirable to have a large

learnable class because this increases the chances of learning an unknown function or of approxi-

mating it accurately. However, if the error problems are not too severe, it is advantageous to

have a small learnable class because then convergence to the final solution is much faster. Thus

there is a necessary tradeoff between accuracy and rate of learning which the system designer

must understand. Another issue of interest is the distribution of the learnable class in the space

of all possible behaviors. If the class is uniformly spread across the space, randomly selected

behaviors within the space will tend to all be learned equally well. However, if the class is

clustered in one or a few regions, target behaviors within those regions will be acquired well and

others will be acquired poorly or not at all.

This paper is concerned with these issues. First we examine relationships between the

number of learnable functions, the time required to learn, and the worst case and expected rates

of errors. Next we define a class 1, learning machines which are called ,'ecalization sparse

machines and show that large such machines will do only slightly better than a random coin

flipping machine on most learning problems. Then we examine several common types of

3

machines, specifically the signature table systems, linear models, and conjunctive normal form

machines and show that they are all realization sparse. In fact, we show that all learning

machines that learn within a reasonable time are realization sparse. These studies lead to the

concept of an optimal or minimum expected error learning machine and an approximation to

such machines is developed. Comparisons of known machines to optimal or near optimal

machines are made to obtain a measure of their quality.

In order to keep the complexity of the study within bounds, the assumed model is a binary

function learner as shown in Figure 1 with p binary inputs. The various learning systems to be

studied are all adapted to acquire functions of this form so that their characteristics become

comparable. This paper will ignore the details of learning algorithms presented in the literature

and concentrate on examining the learnable classes and their characteistics.

1
2

.3
4 E6rary Output

p

Learning Sy'stem

Selects f.

Figure 1. The learning system mod -

The next section will present three example learning machines and formulate more pre-

cisely the questions to be examined in this paper. Then a section will examine the nature of the

4

tradeoff between the expected error for a system and the time or amount of information

required to learn. The following sections will overview some results on three learning models.

Then the possibility of building a perfect minimal expected error learning machine will be exam-

ined. Such an ideal machine has interest in its own right and serves as a comparison for other

more easily realized machines. Finally, a few summary comments conclude the paper.

Three Example Learning Machines and Some Questions

This study begins with a cursory examination of three learning machines, a signature table

system, a linear system, and a conjunctive normal form machine. All will follow the model of

Figure 1 with p =4.

The example signature table system appears in Figure 2. The constants c,', may only have

values 0 or 1 and the output is computed by indexing through the tables starting with the

inputs at the bottom. That is, the values of the zi 's determine the output values of the lower

two tables, and these values become the inputs to the top table which yields the system output.

For example, an input of (X 1 ,X2,7 3 ,r 4) = (0,1,1,0) yields outputs of c 0 ,1=1 and c 1,=0 from

the lower two tables. These become the input 1,0 for the top table which gives an output of 1.

Similarly, all of the sixteen possible values for the vector (X ,X2,73,Z4) can be input to this sys-

tem resulting in the total system behavior shown in Figure 5. Learning is done by varying the

values of the c. 's and Samuel [14] and Biermann et al. [il have given algorithms for doing this

type of learning.

a

5

0 0 CO= 0
01 CI=1
10 c2=1
1 c 3= 0

0 0 Co.0 = 0 0 0 c.o= 0
0 1 Co.,= 1 0 1 C1.= 0
1 0 Co.2 = 0 1 0 C1 .2= 0i t Co.3 = 0 C. 3= 1

X x x
1 2 3 4

Figure 2. A signature table system.

6

An example linear system appears in Figure 3. Here the coefficients ci and 9 can take on

4
real values and the function output is 1 if ci z i >0 and 0 otherwise. Thus for the coefficient

i=1

4

values given, the input vector (. ,Xz,X 3,z 4)= (0.1,1,0) gives a value for ci z of -1 and a
u=1

function output of 0. The total function behavior for this machine is shown in Figure 5. Again,

learning is achieved by varying the coefficients ci and 0. Some algorithms for learning are given

by Minsky and Papert [8], Nilsson i10], and Samuel [131.

7

1 if z>0

0 otherwise.

c :2 C=- C=I

X X X
1 2 3 4

A linear system.

Figure 3.

A third learning system is illustrated - Figure 4, a Boolean conjunctive normal form

acquisition machine. Here the input variables and/or their complements are combined into

every possible Boolean sum of k items or fewer (where k=-2 in this example). Then the sums

with associated coefficients ci which equal 1 are combined into a Boolean product to produce

8

the output. If we assume all coefficients are zero in Figure 4 except for c2,c 3, and c4, then the
I

example system computes the function (Z1+Z3)X2 (Z1 '74). Thus the example input

(zl,-2,X3,-T4)=(O,l,lO) will yield (0+1)1' (0' ---O)=O. All other inputs can be similarly tabulated

as shown in Figure 5. Learning is done by adjusting the coefficients ci Which each may have

the value of 0 or 1 and a learning algorithm is given by Valiant [16].

9

2 2 4

Figure 4. A Boolean conjunctive normal form machine.

10

Conjunc ti Ve

x Signature Linear t-rmal

1 2 34 Table (Fig 2) System (Fig 3) Form (Fig 4)

0000 0 0 0
000' 0 0 0
0010 0 1 1
0011 1 0 1
0100 1 0 0
0101 1 0 0
0110 1 0 0
0111 0 0 0
1000 0 1 0
1001 0 0 1
1010 0 1 0
1011 1 0 1
1100 0 0 0
1101 0 0 0
1110 C0 1 0
1111 j 1 0 0

Figure 5. The learnable vectors for the above three machines.

Figure 5 thus shows, for each of three kinds of learning machines, a learnable behavior.

The 16 bit vectors which are columns in this table are called learnable vectors. Each type of

machine has a set of possible learnable vectors which can be achieved by varying its constants.

These sets of learnable vectors are called learnable classes and we will use the symbol L to

designate the size of such a set for a given machine. Usually L falls far short of the total

number of possible such vectors.

\\hen the learnable vectors do not cover the whole space, the learning machine may be

asked to acquire a behavior outside its class. In this case, it can select a vector with minimum

Hamming distance to that target vector. It may have difficulty finding a learnable vector close

to the target if its learnable vectors are clustered as shown in Figure 6(a). On the other hand,

the learnable vectors may be spread across the space uniformly as in Figure 6(b) so that every

possible target vector will be near a learnable vector. If the learnable class is spread so as to

minimize the expected Hamming distance !4j from a randomly selected target vector to the

closest learnable vector, then the learning machine will be called optimnum.

The following questions will be examined here:

1. What are the general relationships fo- all learning machines between the number of learn-

able functions, the number of examples required to learn, and the rates of errors.

2. \Vhat is the nature of the learnable class for each type of machine?

3. If a target behavior is selected randomly from the space of all possible behaviors, what is

the probability that the learning machine will be able to acquire that behavior?

4. If a target behavior is not leanable but the machine adapts to give the closest possible

behavior, what will be the expected number of errors?

5. What is the nature of an optimal learning machine which has its learnable class spread

across the behavior space to minimize expected error?

12

6. How do the known learning machines compare with this optimal machine?

Nearest learnable vector

Example target vector

X X.,0 XX
X L ! J X

x x x
x

XX X
X X X X X

a. A clustered distribution with b. A uniformly distributed class
high expected error. with minimum expected error.

Figure 6. Two possible distributions for L =10 learnable
vectors (designated by X s) in a behavior space.

Relating the Number of Learnable Behaviors to Error and Time to Learn

In general, as the number L of learnable vectors increases, the expected distance from a

randomly chosen vector to its nearest learnable vector decreases and the expected time to learn

increases. These relationships are examined in this section. Specifically, a bounding formula is

found showing the relationship between the number of examples required to learn and the worst

case error that must occur. Second, it is shown that the expected error is near the worst case

error so that these worst case results cannot. be taken lightly. Worst case behavior is not

13

obscure behavior, it is typical. Finally, an experimental simulation is described that shows how

the time required to learn is related to L.

Relating L with Worst Case Error. Let So be the set of vectors which are as near or nearer

to a given learnable vector v0 as to any other learnable vector. That is, Sr is the set of possible

target vectors that would result in the selection of v0 as the most desireable learned behavior.

We will say that So is the set of vectors covered by vo. If the worst case error in So is D (i.e.,

the vector in S o with greatest Hamming distance from v0 differs from v0 in D positions), then

D
the number of vectors in So is no more than E (-) where n is the vector length. (There are (7)

i=0

vectors at distance i from v 0 for each i =0,1,2,...,D .)

Suppose all of the L learnable vectors cover sets with worst case error D, then the set of

D
vectors covered by them all is no greater than L (n). But the total number of such vectors is

i=0

2" so

D
L E (I--) (1)

a =0

This inequality relates L and D and often provides useful information. For example, if in an

application someone has specified a maximum allowed worst case error D, then the parameters

of the learning machine must be adjusted to make L large enough. If the learnable vectors of

the learning machine are widely dispersed as in Figure 6b, then (1) will give a good estimate of

the required value of L. If the learnable vectors are clustered (Figure 6(a)), then (1) will give

only a distant lower bound for the renuired value of L. Also it is clear that at least log.L

observations must be made in order to differentiate the final learned b,ldvior from the L alter-

natives. So (from (1) above) the number of observed input-output observations in order to

D
guarantee a learned behavior with no more than D errors is no lower than n -log 2 (I).

i=0

14

Relationship (1) can be put into more understandable form using an approximation given

by Hamming [41, page 165. If we define X to be X = D /n ,then under the condition

n >

2r X (1-2X)2

the following relationship holds:

X n

E() < 2n11(X) (2)
I =0

where H(X) = -log (XX(1-X)'-x). Substituting (2) into (1) and rearranging yields a form whose

trends are clear for large n.

log 2L
71

If the allowed percentage of errors X is to be small, then H(X) will be small also. This means

that the number log 2L of observations needed to learn needs to be nearly as large as n, the

total number of values of the function.

As an example, suppose a designer is building a game playing program with 30 3-bit

features and requires learning to achieve 95 percent accuracy. Then the learning machine will

require at least

290 (1 - 0.28) = 0.72 X 290

examples to guarantee that the required accuracy will be met. In other words, the learning

machine will have to observe 72 per cent of all function values to achieve the specified accuracy.

Suppose we have a class of learning machines, such as the signature tables or perceptrons,

with the property that there is n member of the class for each integer p. Then one can define

LP to be the number of learnable functions for the member of the class with p inputs. Then (3)

can be rewritten as

15

1og.(Lp) > I - 11(X) (4)

2P

We will say a class of learning machines is realization sparse if the left side of (4) approaches

zero as p becomes large.

The minimum number og2(LP) of observations required to learn, as specified by (4), varies

as shown in Figure 7. This curve shows the tradeoff between low error with many learning

examples and high error with few. This relationship is a fundamental law for all machines that

match the model. Realization sparse classes have the property that log2(L,) is very small com-

pared to 2P if p is large and this leads to worst case errors near 50 percent. It is a basic result

of this paper, that many if not most of the commonly studied learning machines are realization

sparse.

18

The number of observations
required to learn

2P

Fraction

0.5 of allowed
errors

Figure 7. Minimum bound on the number of observations required to learn
versus the fraction X of allowed errors.

Relating L with Expected Error. The above observations relate to the worst case error that

could occur if the target function is chosen randomly from the space of all possible functions.

One can hope that the expected error will be considerably less. In fact, the expected error will

17

be greater than two thirds the worst case -rror D as can be seen from the following argument.

In order to get a lower bound on the expected error, assume the n-space is divided into L

spheres that surround learnable vectors w~here each sphere has diameter D. A less uniform dis-

tribution of learnable vectors would yield a higher expected error so this assumption is accept-

able when computing a lower bound. There will be(n) vectors at radius i from each t 0 for each

i. This number can be represented for large n by the normal distribution as shown in Figure 8.

It is clear that the expected value for a normal distribution is greater than that for, say, the

linear approximation shown which has an expected value of - D . (We assume that D is low
3

enough to be below the inflexion point on the normal curve:

1 (

This is the desired result; the expected value for error is 2,/3 as large as the worst case examined

above, so the graph of Figure 7 gives a good approximation to typical results as well as worst

case results.

18

linear approximation

to normal curve

normal

so

Figure 8. The expected error b will be greater than a 2/3D

A more accurate lower bound to expected error can be computed by accounting preciscly

for all of the 2" vectors. If D is the worst case error for v0 , the sphere of vectors at distance

D-1 and less from v0 will be completely full, and as few as possible will be at distance D from

19

v O. Remember that this means that for a given L, D is the lowest integer such that (1) holds.

With this assumption (which is not realizable for every L), one can compute the expected error.

It provides a]o\er bound for any realizable expected error.

D
E I X (number of vectors at distance i)

expected error lower bound - i=o

D-1

i X (number of vectors at diStance ')-D X (nu77,,e,'r of vectors at distance D
i -=0

D-1)
E i X LI '~J-D X (2' -(number of vectors belc'w distance D)
=iO

'-n

D -1D -1.(,in) o71)
L;-oi +D(2n-L z

2n (5)

This lower bound is used as a comparison figure for various machines later in the paper.

The relationship (1) is often mentioned in studies of coding theory ,here the goal is to

select codes (vectors) which are maximally distant from each other in order to maximize correc-

tability. (See [4,11]) Incoming vectors which are near a legal code (using Hamming distance)

are assumed to be erroneous versions of that code and are corrected to it. An interesting study

in coding theory relates to "perfect codes" in which relationship (1) holds as an equality.

DL. E(7 2n
i=0

For example, a solution for this equation is provided by the Golay code ([II], page 70) where

n =23, D =3, and L =212 and the associated code is well known. In the current domain, this

20

corresponds to having 4096 learnable vectors of length 23 w-ith every one of the 2=,-3S_,60S

possible behaviors being within 3 or less of some learnable vector. Thus learning 12 bits of

information (out of 23) is enough to reduce the probability of error to no more than 3/23

assuming all inputs are equally likely. (The reader might wish to ponder the seeming contradic-

tion that learning 12 bits apparently results in "knowing" 20 bits.)

Relating L to Time to Learn. It is difficult to compute the time required to learn in com-

parison with L because it depends on the learning algorithm used, the particular behavior that

is to be acquired, and the information available about the target behavior. Suppose the learn-

able vectors are v 1,tD ,VL and that the target vector is t'T . Suppose further that learning is

to be done by observing randomly selected input-output pairs. That is, random positions in vtT

are observed during learning and the best learnable vector at any given time is selected knowing

only these few entries in v7 . Let s denote the set of inputs for which the output has been

observed and let I v denote vector t, with all entries corresponding to inputs not in s set to

zero. For example, if p ==2, t'T is as shown,

input t,

0 0 1
0 1 0
1 0 1
1 1 1

and it has been observed during learning that. 0 0 yields 1 and 1 0 yields 1, then s ={00,10) and

I VT I , =(1,0,1,0). One could propose that the learning algorithm should find the first v, in the

learnable class such that the Hamming distance between I vT I , and I vi I, is minimized. If

we agree that vT is learned when this learning algorithn. lects a learnable vector and never

again changes its guess, then Figure 9 shows for each time t the probability that vcr is learned

as a function of L for n =4. Figure 9 assumes that an optimum set. of L vectors is to be used

21

(where "optimum" is defined in the previous section). It indicates the way the rate of learning

varies with L for such an optimum machine and other algorithms will be no faster. The

expect.ed decrease in learning speed is observed as L increases.

0.75 -

0.25 N

2 4 6 8 10 12 14 16 18 20 L

Figure 9. Probability that learning is complete versus

L for n =4.

22

Signature Tables

One of the goals of the paper is to examine properties common to all learning systems as

was done in the previous section. Another goal is to look at properties of specific ltarning sys-

tems such as signature tables, linear systems, and conjunctive normal form systems. The sec-

tion begins the latter task by examining the characteristics of signature tables. Specifically, we

would like to know

(a) what is the nature of the learnable vectors for signature table systems, and

(b) how many learnable vectors are there for given table configurations.

The answer to (b) will make it possible to find the probability that an unknown target behavior

will be learnable by such systems. It will also give a way of estimating worst case error using

(1) from the previous section.

The characterization of the learnable functions. The nature of the learnable vector will be

studied for the type of signature table system T as shown in Figure 10. This system is best

understood by constructing the matrix M(f,S) where f is th- function that is computed by T and

S is the subset of the inputs to T that feed into a single table in T (Biermann et al. [11).

M(f,S) is built by constructing one row for every possible value of the inputs S and one column

for every possible value of the inputs not in S. The value of an entry in row i and column j of

M(f,S) is the value of f when f receives input values in S associated with row i and the input

values not in S associated with column j. Thus in the case of Figure 10, the value of f

corresponding to input (X 1 ,X 2 ,X 3,X 4,X 5 ,X 6) = (0,0,1,0,1,0) is 1. Let S = {X 1,X 2 ,X 3) and

cons rict M(f,S). Then the entry in the row labelled (X 1 ,X2,X 3) = (0,0,1) and the column

labelled (X 1 ,X5,X 6)-= (0,1,0) should be 1. Similarly, all other entries in M(f,S) can be con-

structed as shown in Figure 10.

23

03 0
01 0
02 1
10 0

32 0X

00 1 1
-2 0

000 0 0 10 0

001 1 0001 0 01 0 0
010 2 Cli 11

011 1 0l 21

100 2 10 1 1 0 0

101 0 0 1 1

11 0 0 1 0 0 1 2 0

111 0 0 0 0 1 0 0 1 1

Figur 1 0A exml tal 0e T wi1 it marx0()

01 2 1 4

000 001 1 010 Ol 0 1 1 10 01

COO o 0 0 0 1 0 0 1 1

oil 1 0 0 1 0 0 1 0 0

101 0 0 0 0 1 0 0 1 1

Figure 10. An example table system T wvith its matrix .M(T).

24

The theorem is that f can be realized by T if and only if for every S that comprises the

inputs to a table in T, the size of the output alphabet in that table is at least as large as the

number of distinct rows in .(f,S). In Figure 10, this means that since f 1, can take on only

three values (0,1,2), 11(f ,{z1,T2,-3)) must have three or fewer distinct rows. Furthermore

(f ,{r 4 ,z 5 ,z 6}) can have only three or fewer ruws because f 2 can have only three values.

These limitations force a kind of repetitiveness on any realizable function f, and they precisely

specify the set of functions that such a system can realize.

If the limitations on output alphabet size are relaxed, larger classes of functions can be

realized but the tables quickly become very large. In the extreme case where there are no limi-

tations on alphabet size, the table becomes sim' , enumeration of every possible input and

its associated output and it can re.. zc any function.

The characterization hoids for 'a' 'e s.'st,-mz of any depth. For example, consider Figure

11 and let vi represent the alphabet size for fi . Then the row multiplicity of M(f ,{z,)2}) is

v 3 , of 3M(f ,{73,74}) is v 4, of .AI(f ,(xZ1 2,r 3 ,7 4)) is t 1, and so forth. A function can be

represented by a signature table sys:em if and only if the kind of repetitiveness observed h,.-

occurs in f.

25

V, '2 I v

I V PC

X 1 X 2 3 57

Figure 11. A three level signature table system.

Other properties of signature tables have been given by Biermann, C al. !1]. These

results are related to studies on switching circuit decomposition as presented, for example, by

Curtis j3j.

26

Counting the number of learn~able functions. A methodology for computing the number of

functions realizable by a given signature table system is given by Biermann el al. I1, and an

improved version appears as Appendix A in this paper. As an example, the number of functions

realizable by table systems of the form in Figure 10 if f I and f 2 are binary can be ccmrputed

for p inputs assuming PI = p / 2 of the inputs are to the lower left table and P2 = p /2

inputs are to the lower right table where p is even. If p is odd, then the two low~er tables
__ p+l

receive, respectively, p I p-1 and P2= ---- inputs. In fact, the number of functions isreeve esetieyPl 2 2

given by

LP 522 12 -122 1+2-22"228.

Returning to the definitions given above, it is easy to check that this class of machines is

realization sparse. Therefore, as p increases, we can expect LP to become small with respect to

the number of functions 22 and the worst case error to approach 50 percent. The following

table gives an evaluation for these quantities and shows how quickly the trend becomes

apparent.

Number Number of Total number Lower bound Number of Percent
of inputs realizable of functions on worst case function error
p functions L error D values

1 4 4 0 2 0
2 16 16 0 4 0
3 88 256 1 8 12
4 520 65536 2 16 12
5 9160 4294967296 6 32 19
6 161800 1.844 X 1019 15 64 23
7 41679880 3.403 X 1038 34 12F 27

10736893960 1.158X10 7 78 256 30

If deeper trees are examined as shown in Figure 11, for example, the trend is also worse.

Consider the set of binary trees of depth d where d is the number of levels of tables. (Thus

27

d=3 in Figure 11.) Assume that all tables are restricted to vocabulary sizes of two or less.

Then it is showNn in Appendix A that the ratio of the number of realizable functions to possible

functions is less than 1/'(3(22(-2')) if d is greater than 2.

In conclusion, signature table systems can realize functions that have the kind of repeti-

tiveness described here: The M(f ,S) matrices can have only as many distinct rows as there

are alphabet symbols in the associated table. The counting results indicate that such table sys-

tems can realize relatively few functions. 'Most classes of signature table systems are realization

sparse.

Linear Models

Linear models have been discussed extensively in the literature beginning with the studies

of threshold functions (.Mluroga [9] and Nilsson [10]) and perceptrons, Minsky and Papert fS'),

continuing with linear evaluation methodologies in applications such as game playing (Samuel

[13]), and including more recently studies in connectionist learning (Rumelhart et al. '12],

McClelland et al. [5] Sejnowski [15]). Characterizations of the learnable classes of functions

have been given in terms of linear separability of points in a p-dimensional space (Muroga V

Nilsson [10]) and in terms of computability of geometric properties on a two dimensional grid

(Minsky and Papert [8]). A characterization has also been given in terms of function monotoni-

city as will be described here (from Muroga [9]).

Consider two inputs to a linear function f as described in the second section while all other

inputs remain constant. Suppose these inputs take the values 00 and then 01 and that the out-

put from f simultaneously goes from 0 to 1. Theu one can conclude that the weight on the bit

that changed is positive. Given that this weight is positive, one can be sure that on inputs 10

and 11, there cannot be a transition in the output from a 1 to a 0 since this would require a

negative weight. A generalization of this idea results in the concept of a completely monotone

28

function: Consider for any function f the outputs f (X A) and f (AX;-) where the subscript A

represents a particular setting of certain input bits in vector X and subscript A represents the

opposite setting, with all other bits in vector X remaining the same. If for all input vectors X

the transition of outputs for the input transition XA to A7A- is in the same direction or makes

no change, then the function is considered monotone with respect to A . If the function is

monotone with respect to all A , then it is completely monotone.

The characterization as explained in Muroga [9] is that every linear function is completely

monotone. Furthermore, every completely monotone function with p < 8 is realizable as a

linear function. However, there exist completely monotone functions with p=9 which are not

realizable.

Concerning the number L of realizable functions using the linear model, no formula has

been discovered for doing this computation. However, it is known (Nluroga [91) that for linear

functions

LP < 2P 2

which leads to the conclusion that this class is also realization sparse.

Thus this class can also be expected to exhibit error rates approaching 50 percent as p

becomes large. The effect can be observed in the following table which was compiled from

figures given for L. by Muroga [9], page 821.

29

Number of Number of Total number Lower bound Number of Percent
inputs p realizable of functions on worst case function error

functions L error D values

1 4 4 0 2 0
2 14 16 1 4 25
3 104 256 1 8 12

4 1882 65536 2 16 12
5 94572 4,294,967,296 5 32 16

6 15,028,134 1 .8 44 X 10" 12 64 19
7 8,378,070,864 3.403 X 103 8 29 128 23

8 17,561,539,552,946 1. 15S X 10" 70 256 27

Conjunctive Normal Form Expressions

Valiant 116] has studied the problem of lcarning k-conjunctive normal form Boolean expres-

sions which have the form of a product of sums of k (or fewer) input variables. The model

assumes examples of the behavior are presented according to a probability distribution and the

major result is that if the target function is learnable, it will be identified with high probabilitv

using only a polynomial number on p of examples.

The class of functions realized by such expressions may be visualized as those functions

which yield 1 on intersection of a number of regions on a Venn diagram of p dimensions where

each region is the union of k (or fewer) input variables. If k=p tlhen every possible function on

p variables can be realized. Typically k will be less than p to reduce memory requirements and

time needed to learn.

As with signature tables and threshold functions, the conjunctive normal form expressions

form a realization sparse class. This can be seen by the following argument:

The number of conjuncts of length k on p input variables and their negations is (2p).

(Conjuncts of lengt. ess than k need not be considered becau.se each one can be represented by

a product of k length conjuncts. Thus, if k=2 one can represent z I as (z1+,2)(rI+z ").) The

number of different conjunctions is the number of subsets of (2p)k objects: 2(2 P Not all of

30

these conjunctions yield unique functions so the number of functions is less than 2/')k

LP < 2 (2p) Applying the definition given above, we see that this class is also realization

sparse.

In Search of the Optimal Learning Machine: Truncation Machines

The above three sections describe the nature and cardinality of learnable classes for three

kinds of learning machines. The question arises as to what learnable set of behaviors would be

most desirable if one could specify them precisely. The measure to be considered here is the

expected error rate assuming that the target behavior is selected from the set of all possible

behaviors with each behavior being equiprobable and with all inputs to the target behavior

being equiprobable. In other words, the following question is being asked: Find a set of L

behaviors which will be the learnable set for the proposed machine and which will have the pro-

perty that no other set of L vectors will have lower expected error (assuming uniform distribu-

tion on the target behaviors as mentioned above). Two solutions will be proposed to this prob-

lem, the truncation machine described here and the Gi machine described in the next section.

One obvious way to design the class of learnable vectors is to segment them into subvec-

tors of some fixed length, say q, and require that all outputs within a segment be the same:

I XXXZ XXXII XXXIIIZ

I *-q - I-q - -q -

As an example, suppose p=4 so that output vector length is 16. If q--4, the following sixteen

vectors would compose the learnable set:

I. 0000000000000000
2. 0000000000001111
3. 0000000011110000
4. 0000000011111111

31

5. 0000111100000000
6. 0000111100001111
7. 0000111111110000
8. 0000111111111111

9. 1111000000000000

10. 1111000000001111

11. 1111000011110000
12. 1111000011111111
13. 1111111100000000
14. 1111111100001111
15. 1111111111110000
16. 1 1 111 11 1 11 111 11 1

It would appear that this set of L = 16 vectors uniformly span the space of all possible vectors

of length 16 and that matching a target vector could be done optimally and in a straightforward

manner. Suppose, as an example, that the target behavior is

0010000011010011.

Then the learning machine could approximate this behavior with this vector:

0000000011110000

And the rate of error would be 4 out of 16 or 25 percent. That is, each segment of q values is

set to either 0 or I to match the majority of values in the target vector in that segment. If

there are an equal number of O's and l's in the target vector for a given segment as occurs in

the rightmost segment in the above example target, the learning machine can place either O's or

l's in that segment with the same expected error rate.

The next question is whether one can build a machine with this class of learnable vectors.

If q =2' for some integer r, then such a machine is straightforward to build. Examining these

learnable vectors, one can see that the output is independent of the rightmost r bits of the input

and completely dependent on the remaining p-r inputs. So the desired learning machine is as

shown in Figure 12, a system which ignores (or truncates) r inputs and keeps a table to specify

32

the output on the basis of the remaining inputs. Thus this is called the truncation machine.

0 0 0
0 0 1

........ output

...

..........

... Truncation

XX

Figure 12. The truncation machine.

Next the characteristics of the truncation machine should be examined. The first observa-

tion is that the wor! ,ase error is n/2. By filling each segmeat with q/2 O's and q/2 l's, one

can build the worst possible target vector for this machine. For the -lbove example it would be:

0011001100110011

33

A worst case error of n;'2 is a bad omen because most of the machines examined earlier had

better worst case error characteristics.

What about the expected error for randomly selected target vectors? This can be com-

puted by the formula

ezpected error - -+ J]
which is derived in Appendix B. It turns out that this is not nearly optimal. In fact, in the

case n=16, q=4, the average error is 5.0 whereas a set of L=I6 vectors has been found with an

average error of 4.27.

As will be seen below, the truncation machine is not even as good as the previously dis-

cussed machines from the point of view of minimum expected error. So an initial attempt to

build a machine with low expected error has failed. The next section shows a more sophisti-

cated approach.

In Search of the Optimal Learning Machine: The Gl-Machine

If the uniform set of learnable vectors given above for the truncation machine is not distri-

buted to achieve minimum expected error, what are the characteristics of sich an optimum set?

An example of a near optimal set was found in our studies and is given here, a set of L=16 vec-

tors of length n=16 with average expected error of 4.27. That is, a randomly selected vector

from n=16 space will be, on the average, a Hamming distance of 427 bits away from its nearest

neighbor in the learnable set.

34

1. 0000 0000 0000 0000
2. 0001 0000 1111 1111

3. 0010 0111 0000 1111
4. 0011 0111 1111 0000
5. 0100 1011 0011 0011
6. 0101 1011 1100 1100

7. 0110 1100 0011 1100

8. 0111 1100 1100 0011
9. 1000 1101 0101 0101
10. 1001 1101 1010 1010
11. 1010 1010 0101 1010
12. 1011 1010 1010 0101
13. 1100 0110 0110 0110
14. 1101 0110 1001 1001
15. 1110 0001 0110 1001

16. 1111 0001 1001 0110

It is possible that t}" .A is optimal and that no other set of 16 vectors exist with a lower

expected error. V_ have not been able to prove this but we note that the achieved expected

error is neni the lower bound, 4.18, that can be computed from (5) above.

:t would be desirable to be able to construct optimum sets for any n and L. Then the

learning machine design procedure would follow these steps:

(1) Specify n and the desired maximum allowable expected error.

(2) Find the L required to reduce the expected error to required level.

(3) Synthesize L vectors which have minimum expected error and the machine to meet the

specifications.

Unfortunately, there is no known method for finding such optimum sets except through com-

pletely enumerative methods. This section gives a method for constructing near optimal sets.

The resulting machine will be called the G1 machine (named for the second author of this

paper).

The construction method of the G1 machine will be first explained graphically and then in

terms of binary vectors. The method assumes that L =c 2 h learnable vectors are to be spread

35

across the space of all behaviors where c and h are positive integers. The total space is broken

into 2 h subspaces each with c learnable vectors. The construction method begins by placing c

vectors optimally in one subspace as shown in Figure 13(a) (where c 2). These optima] posi-

tions are found by enumerative or other means. Then the configuration is doubled as shoNvn in

(b). However, (b) can be improved by trying all possible rotations of the new space with respect

to the old space to find the rotation which yields minimum expected error. Figure 13(c) shows

such a rotation. The improvement comes from the fact that some vectors (those near B) are

nearer a learnable vector after the rotation than before. The rightmost learnable vector in the

original subspace is now nearer those points in B than any learnable vector in B's own subspace.

The construction continues as shown in Figure 13(d) and (e). The space is doubled again

and rotated again for further reduction in expected error. This process continues until the com-

plete behavior space has been accounted for. The complete synthesis procedure is near optimal

because all the 2A subspaces are locally optimal and they are rotated optimally with respect to

each other. However, they are not globally optimal.

36

(a) A *basic space* with two
optimally placed learnable
vectors.

(b) Doub;ing the basic space.

B

(c) Rotating the new space to
reduce expected error. 1B

(d) Doubling again. "

(e) Rotating again to further
reduce expected error.

Figure 13. Constructing the GI machine,

T,, GI algorithm operates in the fash - i illustrated in Figure 13 except that it creates a

set of binary vectors which are designed to cover the behavior space nearly optimally. (The

coding theorists [11] use a similar approach in their search for good codes.) Suppose, for exam-

ple, that the initial space is the set of binary vectors of length three :000,001,...,11. Let us

37

choose a single vector that will cover this space optimally. Any vector will do, so let it be 000.

000

Then this set of learnable vectors is doubled by writing down two copies, one copy with a new

zero added to the left end and one copy with a one added to the left end.

0000
1000

Next the new copy is rotated with respect to the old one as \as done in Figure 13(c). That is,

some of the columns in the new cop) are inverted to reduce the average error of vectors of

length four to their closest learnable vector in the set. There are eight possible inversions yield-

ing the following possible learnable sets:

0000 (no inversion)
1000

0000 (invert rightmost column
1001 in new space)

0000 (invert second from rightmost
1010 column in new space)

0000 (invert all columns in new space)
1111

Of the eight choices, an inversio-. is selected which achieves minimum expected error for the

space of vectors of length 4. In this case, the vectors

0000
1011

were selected. This is a GI machine for the space n-4.

For the space n=5, the next G1 machine is constructed by copying the above learnable set

and again inverting columns in the second copy. The copy operation yields

38

00000
01011
10000
11011

ard an) of the three rightmost columns of the lowNer two vectors may be inverted. All such

inversions are attempted and in each case, the average distance for a randomly selected vector

of length five from one of these learnable vectors is computed. The rotation (or inversion) that

yields the least average distance (or error) is selected. In this case, the rightmost and third from

rightmost columns were inverted in the last two rows.

00000
01011
10101
11110

These four vectors are the learnable set for a Gi machine on the space n=5.

Repeating the construction for a third time yields a Gi machine for the case n=6. Copy-

ing yields eight vectors.

000000
001011
010101
011110
100000
101011
110101
111110

The best rotation of the rightmost three columns on the lower half of the vectors involves

inverting the second and third bits from the right side.

39

000000
001011
010101
011110
100110
101101
110011
111000

Clearly the construction can be repeated to obtain GI machines for any n-space. In this

example, L is one eighth of the set of all vectors (L =2" /8) because the initial space had one

learnable vector covering eight. In general, the ratio of L to 2" can be any power of two

depending on the selection of the initial space.

Figure 14 gives a plot of the expected error for many G 1 machines in comparison with the

known lower bound (5). The figure shows that these machines are either optimum or near

optimum in all of the cases examined.

40

8

- Lower Bound

Log

Figure 64 xpce ero rusJGI macr hes ahn scmae

w

4

2

0-1
0 2 4 6 8 10 12 14 16

Log L

Figure 14. Expected error versus log L for the G1 machine as compared

to the lower bound from (2). Curves are included for the cases n=4,8,12,16.

41

The G1 machine does not have practical significance since its only definition is that it is a

set of learnable vectors. There is no known realization for such machines. However, theoreti-

cians interested in minimizing expected error are bound to wonder what a set of optimally dis-

tributed vectors look like, and the G1 construction provides a way to generate near optimal sets

if p is not too large.

The Random Vectors Machine

Another interesting way to construct a learning machine is to choose its learnable

behaviors randomly. While this may not lead to practical devices, it provides a useful com-

parison for other machines. Specifically, what will be called the ran~dor vectors machine is a

surprisingly good approximation to an optimum machine and one can easily compute its

expected error. Thus the random vectors machine provides an easy way to compute an upper

bound for the expected error of an optimum machine.

Assume then, that L vectors are selected independently and randomly from an equiprob-

able space of binary vectors of length n . These are to be the learnable vectors for the random

vectors machine and learning will occur by having the machine choose which of its learnable

vectors is closest to the target behavior.

Let p,(d) represent the probability that the nearest random vectors machine learnable

vector to a randomly selected vector will be exactly d away. It can be shown that

n -d ?I n -d -I1

pz(d) - i

n

The expected error for the random vectors machine is E i Pz(i) where Pz is evaluated as
i =0

given. As mentioned above, this formula gives an upper bound to and estimates well the

42

expected error for the optimum machine. Some of its values are plotted in the chart given in

the following section.

Comparing Some Expected Errors

Figure 15 gives the expected error for the various machines discussed in this paper for the

configuration p =4: signature table, threshold, k-CNF, truncation, GI, random vectors, and

lower bound. As mentioned above, the Gi and the random vectors machines fairly well approx-

imate the behavior of optimum machines. The Gi machines give a construction procedure for

the learnable classes and the random vectors study provides an approximate calculation for the

achievable minimum expected error. However, neither of these classes has a straightforward

realization appropriate for applications.

The more traditional machines based on signature tables and threshold functions compare

surprisingly well with optimum behavior often yielding error rates on the order of 20 to 30 per-

cent above optimum in the ranges investigated. This indicates the learnable classes for these

machines are fairly well distributed. Furthermore, no evidence came from this study to make

one prefer one of these systems over any other on the grounds of expected error. The choice of

which system to use should probably be dominated by the quality of the learning algorithms or

the specific characterizations or properties of the learnable classes.

The worst behavior observed here is for the naive truncation machine which it was origi-

nally suggested might be optimal.

The lower bound curve has a scallop shape with one lobe for each value of D. The right-

most lobe corresponds to the case D=I .%,,re every vector in the space is either learnable or

one away from learnable. The second lobe from right graphs the case D=2 and so forth. The

intersection points between the lobes are the places where (1) holds as an equality; the So set

around each vo has filled a sphere of size D and a larger S o set would move one into the case

43

D+I. These are the places where the coding theorists look for perfect codes.

44

6-

I. 5 * -LowerBounda U Random
w 4-0 X Gi

4 111 Sig. Table
o3 Truncation
A Threshold

*K-CNF

2-£

0-
0 2 4 6 8 10 12 14 16

Figure 15. Expected error v:ersus log L for the machines examined

in this paper (n =16).

45

Conclusions

The main results of this paper are to emphasize the fundamental difficulty of learning. If

the learning is to be done on the basis of a reasonable amount of information, then the learning

machine will be realization sparse and learned behaviors will typically be only small improve-

ments over a random decision maker. If the target behavior is to be learned accurately, the

learning requires the observation of a very large fraction of the set of all possible behaviors.

The machine acts more or less as if it were doing rote memorization. Relationship (4) gives a

lower bound on the number log,(L.) of needed observations required to achieve accuracy X

Many well known learning machines are realization sparse as is the case for the signature

tables, linear models, and conjunctive normal form machines examined here. These machines

are popular because of their fast and effective learning algorithms but the number of behaviors

that they can learn is relatively small. Thus, it vas possible for Minsky and Papert S' to prove

a large number of noncomputability results for the perceptron. Presumably similar results could

be proven for any of the other realization sparse classes. The only way such machines can func-

tion very effectively is if the class of target behaviors corresponds closely to the class of learn-

able behaviors.

While the realization sparse machines can learn few functions precisely, they can converge

toward many functions at least to some degree. Thus Samuel [13,14], Sejnowski [15], and others

have observed improvements in system behaviors using these models. However, the results here

make one suspect that there probably were vastly more accurate behaviors in their respective

function spaces, but they did hot have the means to converge upon them.

Human learning probably does not include the capability to acquire general functions

unless p is effectively very small, say 2 or 3. Human learning probably depends heavily on rote

memorization and the ability to recognize perturbations on the original patterns.

46

An interesting dimension for studying classes of Ic.arnable behaviors relates to their distri-

bution across the total space of behaviors. It was determined here that for small p, the specific

models studied (signature tables, linear models, conjunctive normal form systems) deviate sub-

stantially from uniform distributions. This opens the question as to whether machines with

lower expected errors might be found, and the GI machine exhibits the type of learnable

behaviors that would achieve this goal.

The implications of this work for the many studies now ongoing in machine learning (see,

for example [2,6,7]) are a matter for additional research. The emphasis here is that there is a

necessary tradeoff between rate of learning and achievable accurc) for -ny learning machine.

In some cases, it is possible to measure these parameters accurately and to understand where a

particular machine lies on the spectrum. Until these issues are more fully understood, the

design of learning systems will remain a "black art".

47

Appendix A

Counting Signature Tables

This paper and earlier papers 1,14J have shown the type of functions that can be

represented (or learned) by signature tables. It is clear that many functions cannot be

represented if the sizes of internal alphabets are restricted and the purpose of this section is to

evaluate how serious the limitations are. The methodology given here is an improved and

simplified version of that given in Biermann el al. [1). If one can compute the size L of the

learnable class, it becomes possible to estimate the probability that a randomly selected

behavior can be learned. One can also use L in formula (1) to obtain a lower bound on the

worst case error that could possibly be encountered.

One can compute the number L of functions computable by the table system of Figure 11

assuming v i K 2 for i=1,2,...,6, and in the process derive a general methodology for handling

any such table system. It turns out that one cannot simply compute the number of settings of

all of the 2S binary constants in the table, a total of 22s, because a single function may be realiz-

able by many different settings. So one must count only nonredundant settings.

Consider, as a start, the portion of the tree labelled f 3. The output alphabet size V3

could equal one in which case the output column would be either (0,0,0,0) or (1,1,1,1). But the

class of functions computable by the whole signature table system is the same regardless of

which is selected. That is, the output leaving f :3 is simply an internal code for the system and

0 and 1 are abstract symbols. Adjustments can be made to the top table of f I to obtain the

same system behavior regardless of whether the f 3 outpu: vector is (0,0,0,0) or (1,1,1,1). Thus

one can conclude that the number of nonredundant configurations of f 3 with output alphabet

of size one is I and this is written as

48

N(f 3,1) = 1.

If t,3=2 then fourteen vectors are possible, (0.,0,0,1), (0,0,1,0),...,(1,i,1,0). Again, as explained in

[I, since 0 and 1 are abstract symbols with only internal meaning, the vectors (0,0,0,1) and

(1,1,1,0) result in identical classes of behaviors so only one of them is counted. In fact, only half

of the fourteen vectors are nonredundant: (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,1,0,0) (0,1,0,1) (0,1,1,0)

(0,1,1,1). Thus "(f 3,2)=7. In general, the number N(t ,t) of configurations of t with q

binary inputs and output vocabulary of size v when t is a single bottom level table is

0 if 2q<v
d(v) * (3)

i =o otherwise

as derived in [1].

Consider next the subtree f in Figure !I. First the number C(f 1,v ,z) of nonredundant

configurations of the top table in f 1 will be computed as a function of v, the output vocabulary

size and z, a vector giving the sizes of all the input vectors to the top table of f 1. Then the

number N(t ,v) of nonredundant configurations for the whole f 1 tree will be determined. Let

b(t) stand for the branching factor below the top table in tree t. Then z will be a vector of

length b(t). b (f 1)=2 in Figure 11.

Assuming that the highest table in f 1 is not the top table or a bottom table in the com-

plete table system and that this highest table has input and output vocabularies of size two, it

is shown in [I that

C(f 1,2,z) = 0 if q=-0

.-) 1)2- otherw ise

49

where q is the number of binary inputs. In the case, q - 2 and

C (f 1,2,(2,2)) : 5.

The five nonredundant vectors are (0,0,0,1), (0,0,1,0), (0,1,0,0), (0,1,1,0), (0,1,1,1). (The vector

(0,1,0,1) is redundant because it yields the same value regardless of the output of f 3. (0,0,1,1)

is redundant because it yields the same value regardless of the value of f 4.)

The number of nonredundant subtrees f I xsitb output alphabet of size v and input alpha-

bets from subtrees f 3 and f 4 of sizes '3 and i 4 is the product of the number of nonredundant

top tables times the product of the numbers of nonredundant subtrees.

C U 1, V,(i 3,' 4))N U 3, i3)A'(U 4,' 4)

But the inputs to the top table may have alphabet sizes of 1 or 2, so N(f 1,1,) is the sum over

all such values.

N(f 1,t) = , C(f 1,v,(i. 1 N))(f 3 .i 3)N(f 4 ,i))
all (i ' 1,i2)
15"<2

1:2'2 <2

More generally a tree t may have a branching factor of b(t) below the top table and input

alphabets to the top table from 1 to vm. The counting formula is

b(()N (t ,v) = l-It, z JN(utre(t),nr h,
all h =1 (4)

1~j <-'

where subtree (h,t) returns the h-th child below the highest. table in t and entry (h,z) selects the

h-th entry in z.

Equation (4) counts the number of distinct functions computable by any subtree t in a sig-

nature table system except for (a) the case where t is a bottom subtree which includes only one

table (and (3) is used) and (b) the case where t is the whole signature table system (and a

50

special form for C(t,v,z) is used). Applying (4) to f i yields

A'(f 1,2) = C(t ,2,(2,2))AN(f 3,2).V(f 4,2)

+ C(t ,2,(1,2)).N(f 3,1).\'(f 4,2)

+ C(t ,2,(2,1))N(f 3,2)A(f 4,1)

+ C(t ,2,(1,1))N(f 3,1)A(4,1)

= 5-7-7-1-1.7+1-7-1+0-1-1 = 259

In the case of output vocabulary of size one, (4) yields

N (f J,) = C (I 1,(2,2))N(f 3 ,2)A"(U 4,2)

+ C(t ,1,(1,2))A(f 3,1)"(f 4,2)

+ C(t ,1,(2,1))A'(f 3,2):(f 4,1)

+ C (t ,1,(1,1))N(f 3,1)N(f 4,1)

= 0.7.7+0.1.7+0.7.1+1.1.1 = 1

The top table in Figure 11 may have, according to

qC(f ,Z)= -)(,):"
i =0

where q is the number of binary inputs. In this example, v=2 and q=2, yielding

C (f ,2,(2,2)) = 10.

So the total number of functions representable by f with an output vocabulary of size 2 is

N(f ,2) = C(f ,2,(2,2))N(f 1,2)N(f 2,2)

+ C(f ,2,(2,1))N(f 1,2)A(f 2,1)

+ C(f ,2,(1,2))N (f 1,1)A'(f 2,2)

+ C(f ,2,(1,1)N(f 1,1)N(f 2,1)

= 10-259259+2.1"259+2"259"1+2"1.1

51

- 671,848

For output vocabulary size of one,

,W i) = 2

This means that the total number of functions representable by the system of Figure 11

under the specified vocabulary limitations is L -N(f ,1)+N(f ,2)=671,850. Comparing L

with the total number of functions on eight variables, 228=2'5'-- 1.16 X 1077, one can se- that

only a very small fraction of the set of all functions can be learned. Furthermore, using (1) it is

possible to find a lower bound on the worst error D that could occur in trying to learn a target

behavior. It yields D > 91 which means that there exist target functions in which the best

learning algorithm may produce errors on 91 out of 256 possible inputs. Considering that a ran-

dom decision maker would be wrong only 128 out of 256 times, one can see that the system is

capable of very poor performance.

Severe as these effects may be, they are exponentially worse in deeper trees. This can be

seen by bounding the counting functions given above and deriving a general bound for number

of functions versus the depth of the tree. Define the depth d to be the number of levels of

tables in binary table systems of the form of Figure 11. (Thus d=3, for Figure 11.) Consider

such tables of any depth d >1 with all vocabulary sizes limited to two or less.

For bottom level tables f bottom , as above, V(f bottom ,2)==7. For intermediate level tables

f eve,

NT(ft,,ve 2)=5[AT (ft ,j.,2)]2 ml terms

Similarly, for the top level function

A (fh eos)a<I se er lev els2ield

Applying these at several levels yields

52

d =2 L <11(72)

d =3 L <11(6(7)2)2

d=4 L < 11(6(6(7)2)2)2

d=5 L <11(6(6(6(7)2)2)2)2

In general,

I -2

L <11(6'= 72 '-')

d -2

One can replace E 2' with 2 -2 - d-I to obtain
i=1

L <11(6-)(62'' 72") = nL (422').
36

thus

1 1 [o ('-)
L < -(42 2-l)<--2f)(d 1)

3 3

But the total number of functions for such a table system of depth d is 22' The ratio of realiz-

able functions to actual functions is thus

3)22

This reduces to

"[23(2d)2 2'

3

If d is greater than 2, the ratio is less than

1

3(2- 1-m)"

So the ratio of the number of realizable functions to actual functions decreases dramatically as d

increases.

53

Appendix B

The Average Error for Truncation Machines.

The average error for truncation machines can be computed by the formula

E (size of error)
a l U riect r8

average error al etrnumber of vectors

Consider first the problem of computing average error for a single segment of q identical bits.

Then the total average error will be obtained by multiplying by the number of segments, n 'q.

q

Z(number of segmenits with i 1' s)X (error if i 1' s)
i =0

average error per segment - i-

average error per segment =-- ['(number of segments with i 1' s) X
- i=0

+ (number of segments with - I' s) q
2 2

q

+ E (number of segments with i 1' s) X (q -i))

2
= - + 1

-)[{ q 2 - (q _i

2 2

.i-1
2_ q 121q

54

2 2
__ 1 (i

¢- =O 7

2q -1 i

(But for q even, the identity

q

E (I = q29 -2 can be used.)
i- O

2q - " - 4 7
q2~2

This is multiplied by the number of segments n/q to obtain

average error = -q]

56

References

I. Biermann, A.W., Fairfield, J. and Beres, T., Signature Table systems and learning, IEEE
Transactions on Systems, Man and Cybernetics, vol. 12, SMC-12, No. 5, Sept./Oct. 1982.

2. Biermann, A.M., Guiho, G., and Kodratoff, Y., (Eds.), Automatic Program Construction
Techniques, Macmillan, 1984.

3. Curtis, H.A., A New Approach to the Design of Switching Circuits, D. Van Nostrand,
Princeton, NJ, 1962.

4. Hamming, R.\V., Coding and Information Theory, Prentice Hall, 1980.

5. McClelland, J.L., Rumelhart, D.E., and the PDP Research Group, Parallel Distributed Pro-
cessing, Volume 2, MIT Press, Cambridge, Mass. 1986.

6. Michalski, R.S., Carbonell, J.G., Mitchell, T.M., (Eds.), Machine Learning, Springer-Verlag,
1984.

7. Michalski, R.S., Carbonell, J.G., Mitchell, T.M., (Eds.), Machine Learning, Vol. II, Morgan
Kaufmann, 1986.

8. Minsky, M. and Papert, S., Perceptrons, MIT Press, Cambridge, MAk, 1969.

9. Muroga, S. Threshold Logic and its Applications, John Wiley and Sons, Inc., 1971.

10. Nilsson, N.J., Learning Machines, McGraw-Hill, New York, 1965.

11. Peterson, W.W. Error Correcting Codes, MflT Press, 1961.

12. Rumelhart, D.E., McClelland, J.L. and the PDP Research Group, Parallel Distributed Pro-
cessing, Volume 1, MIT Press, Cambridge, Mass. 1986.

13. Samuel A., Some studies in machine learning using the game of checkers, IBM J. Res.
Develop., vol. 3, 1959, pp. 221-229, reprinted in Feigenbaum E. and Feldman, J., Eds.,
Computers and Thought, McGraw-Hill, New York 1963, pp. 71-105.

14. Samuel A., Some studies in machine learning using the game of checkers II. Recent pro-
gress, IBM J. Res. Develop , vol. 11, 1967, pp. 601-617.

15. Sejnowski, T., Language learning in Massively-Parallel Networks, Proceedings of the 114th
Annual Meeting of the Association for Computational Linguistics, 1986, pp. 184.

57

16. Valiant, L., A Theory of the Learnable, Comm~unicat ions of the ACMA, vol. 27, No. 11,
1984.

