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STATEMENT OF THE PROBLEM

-

The goal of this research program was to discover and develop real-time neural architec-
tures capable of autonomously carrving out image processing and pattern recognition tasks
in environments wherein noisy and unexpected events can occur. Such architectures are
needed to cope with the fact that. in naturally occurring scenes. edges. texture. shading.
size. stereo. and motion information are often overlaid and are viewed under variable illu-
mination conditions. Special-pnrpose vision algorithms that can process only one of these
types of information do not function well under naturally occurring conditions. The present
work has analysed a large body of data from visual psychophysics and neurobiology in or-

‘der to discover and test neural principles and mechanisms whereby such a general-purpose

competence is achieved by humans and animals. These designs are embodied in multi-level
neural networks which are defined by novel types of nonlinear dynamical systems. The net-
works are computationally characterized for use both in explaining biological data about
vision and pattern recognition. and in implementing novel image processing circuits for use
in technological applications. Predictions of the theory have also been successfully tested in
our psychophysics laboratory.



RESEARCH SUMMARY

Major progress was made on two types of problems: knowledge discovery and adaptive
pattern recognition: and biological vision and image processing.

1. ART 3: Autonomous Learning and Distributed Memory Search

A new Adaptive Resonance Theory architecture. called ART 3 (Articles 5. 6. 7. 9) was
designed by Carpenter and Grossherg. In common with ART 2. the ART 3 architecture
1s a self-organizing neural network capable of learning stable pattern recognition codes in
real-time in response to arbitrary sequences of analog or binary input patterns. It does.so
by efficiently searching. testing. and learning hypotheses about the patterned data to which
it 1s exposed. : :

In-addition. ART 3 is capable of searching hierarchies of distributed pattern code:.. This
opens the possibility of simultaneously representing a pattern’s most salient parts and wholes.
and automatically reorganizing this representation based upon reinforcement feedback until -
1t generates a maximally effective prediction. The architecture embodies new insights about
how the dynamics of chemical transmitters and modulators act as a memory system capable
of controlling a parallel search and hypothesis testing scheme.

2. Global Motion Segmentation

Grossberg and Mingolla (Articles 26. 27) have suggested a solution of the global aperture
problem: namely. of how a coherent motion signal is imparted to all parts of a moving object.
including parts that receive only locally ambiguous motion signals. This work clarifies.
for example. how we can quickly see a sun-dappled leopard leaping under jungle trees.
The sunshine and shadows upon the leopard’s coat generate local motion signals in many
directions that do not correspond to the overall direction of motion of the leopard’s body. A
similar competence is needed to rapidly detect camouflaged man-made objects moving in a
cluttered background. Grossberg and Mingolla have suggested how these locally ambiguous
signals are organized into a coherent global signal of the leopard’s motion as a whole. and how
challenging classical phenomena such as motion capture and induced motion may thereby
be explained. S : z

These analyses emphasize the fact that many. if not most. motion percepts are illusory
percepts that can actively reorganize the data that reach our senses. Such an e.mphasx.s
underscores the importance of explaining the large data base about apparent motion. We
believe that such data should serve as a standard test of models purporting to provide
computational insights about biological vision.

3. Explanation of Short-Range and Long-Range Apparent Motion Data

In this regard. Grossberg and Rudd have further developed this theory by explaining a
wealth of data about apparent motion that other models have not been able to treat. In
Articles 28 and 32. they describe further evidence for this new neural network theory of
biological motion perception that is called a Motion Boundary Contour System. This theory
clarifies why parallel streams V1 — V2 and V1 — MT exist for static form and motion
form processing among the areas V1. ¥'2. and MT of visual cortex. The Motion Boundary
Contour System consists of several parallel copies. such that each copy is activated by a
different range of receptive field sizes. Each copy is further subdivided into two hierarchically
organized subsystems: a Motion Oriented Contrast Filter. or MOC Filter. for preprocessing
moving images: and a Cooperative-Competitive Feedback Loop. or CC' Loop. for generating
emergent boundary segmentations of the filtered signals. The article uses the MOC Filter .
to explain a variety of classical and recent data about short-range and long-range apparent
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motion percepts that have not yet been explained by alternative models. These data include

split motion: reverse-contrast gamma motion: delta motion: visual inertia; group motion in

response to a reverse-contrast Ternus display at short interstimulus intervals: speed-up of
motion velocity as interflash distance increases or flash duration decreases: dependence of
the transition from element motion to group motion on stimulus duration and size: various
classical dependencies between flash duration. spatial separation. interstimulus interval. and
motion threshold known as Korte's Laws: and dependence of motion strength on stimulus
orientation and spatial frequency. These results supplement earlier explanations by the
model of apparent motion data that other models have not explained: and a summary of
how the main properties of other motion perception models can be assimilated into different
parts of the Motion Boundary Contour System design.

4. A Symmetry Principle for Visual Form and Motion Perception

In Articles 21 and 24. Grossberg has provided a computational foundation for unifying
this emerging theory of motion form perception with our previously developed theory of static
form perception. Prior to this work, these two important subjects were treated as wholly
separate in the scientific literature. Our analysis suggests that the visual cortex develops
to realize a symmetry principle. called FM Symmetry (F = form. M = motion). Both the
Static BCS and Motion BCS can be generated by FM Symmetry as two parallel halves of
a larger system which satisfies three properties: namely. it (1) computes all possible way of
svmmetrically gating sustained cells with transient cells and (2) organizes these sustained-
transient cells into opponent pairs of on-cells and off-cells such that (3) their output signals
are insensitive to direction-of-contrast. The properties of FAM Symmetry suggest how the
'l — V2 — MT cortical stream helps to compute moving-form-in-depth. and how long-
range apparent motion of illusory contours occurs.

An important consequence of FM Symmetry is its explanation of how the static form
and motion form systems generate different geometries of perceptual space that are familiar
from daily experience. In particular. cell pairs in the static form system define opponent
orientations that differ by 90°. whereas cell pairs in the motion form system define oppo-
nent directions that differ by 180°. Changes in visual inputs can cause a rapid antagonistic
rebound to occur between opponent members of each pair. with on-cell activation being
displaced by off-celi activation. These antagonistic rebounds help to prevent smearing of
percepts in response to rapidly changing scenes by resetting resonating boundary segmenta-
tions which could otherwise persist for a long time. In so doing. antagonistic rebounds can
cause negative aftereffects. such as the MacKay illusion in static form perception. and the
waterfall illusion and long-range motion aftereffects in motion form perception. o

5. Visual Psychdphysics

In Articles 41. 42. and 43. experimental tests of various aspects of the Motion Boundary
Contour System theory of human motion perception were reported. Quantitative analyses
of the dependence of stimulus contrast and scale on the probability of perceived direction of
movement as a function of spatial separation and interstimulus interval were performed. The
results verified the spatial and temporal form factors for apparent motion proposed in the
theory. The data clarified the contrast and scale dependence of these form factors. Earlier
data was insufficient for this purpose, because less sophisticated experimental techniques
were employed in early studies. and because a very large number of trials had to be collected
for individual subjects. in order to perform mathematical analyses of the data which could
e related to parameters of the theoretical model. '

Article 41 described experimental conditions in which the minimum interstimulus interval
for perceived motion either is or is not dependent on the spatial separation between the
stimuli matched by the motion detector. The fact that this minimum interstimulus in?er\'gtl
is not dependent on the spatial parameters of the stimulus when the stimulus duration is

3
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long was used to argue against a traditional spreading activation model of aﬁparent motion
threshold data. and in favor of a feed-forward motion receptive field model such as the Motion

"BCS. In Article 43. we showed that. when observer bias occurs ir our forced-choice motion

direction judgment task. it appears to act as a multiplicative gating of the signal-to-noise
ratio of the mechanisms tuned to a particular direction of motion. This previously unnoted
fact has important implications both for the construction of a correct model of the neural
mechanisms involved. in motion perception. and for understanding the interaction between
preattentive and attentive processes involved in motion perception. ‘

Further modelling studies in vision analysed aspects of visual detection that depend
upon stochastic properties of neural processes. In Article 39. a theory of threshold vision
was proposed that explains a greater amount of the visual sensitivity data base as a result of
light luctuations than has previously been thought possible. The article proposes a stat}stlcal
theory of contrast encoding by the visual system. that reduces to a standard model in the
deterministic limit. In the paper. recent mathematical theory and techniques developed in
theoretical neurobiology are applied to the explanation of visual phenomena for the first
tine.

.
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