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Particle Relaxation Distances Downstream
of Normal and Oblique Shocks

Mark S. Maurice
Flight Dynamics Directorate

Wright Laboratory
Wright-Patterson AFB, Ohio

Introduction

Laser Velocimetry (LV) is based on measuring the velocity of 'seed' particles within a

flowfield. Consequently, the particles are assumed to follow fluid streamlines and to model the

flowfield velocities. For several primary flow structures, however, such as shock waves,

vortices, expansion turns, and turbulent eddies, seed particles do not always model the fluid.

They can be centrifuged from vortices and expansion turns, and lag behind turbulent frequencies

in both phase and amplitude. In the case of shock waves, the upstream momentum of a particle

may be unaffected by the shock itself, relying on drag forces immediately downstream of the

shock to slow the particle to the fluid velocity.

An example of particle lag downstream of a shock wave is shown in Fig. 1. In this

experiment', LV measurements were made though the boundary layer at the vertex of a Mach

6 roughened plate - compression ramp model using polydispersed silicon oil as seed material.

Following the velocity histograms from the freestream towards the plate, the outer measurement

stations are above the separation shock, and show the high velocity and low turbulence intensity

of the freestream. Just below the shock, only the smallest seed within the continuum of particle

size has relaxed to the fluid velocity, smearing the lower velocity distribution of the histogram.

Continuing into the boundary layer, particles are further downstream of the shock.

Consequently, there is a gradual shift from particles remaining near the upstream velocity,

towards relaxing to the downstream fluid velocity. The mean velocity and turbulence intensity

statistics from this data both over-estimate the velocity and turbulence intensity of the fluid.

As an aid to the experimental design process and measurement analysis of LV data, a general



solution is presented for estimating the distance which LV seed travels before relaxing to the

fluid velocity behind a normal or oblique shock.

Approach

Analytical approaches for quantifying particle lag behind shock waves are plentiful, extending

back to the late 1960's and early 70's2. More recently, Nichols3 extended the domain of the

analysis by coupling a form of the particle equation of motion derived by Maxey and Riley' with
the drag law of Crowe5 , which accounts for inertia, compressibility,heat transfer, and rarefaction
effects from subsonic to hypersonic Mach numbers. The resulting equation set applied to the

uniform, steady-state flow downstream of a shock wave can be written as:

dv _ 3 Cd Pt (T-) [xT-7I + Ht d (7-u-) d
dt 4d P,+Pf/2 C d (t-)1/2(

and

Cd = f(ReR, MR, TP/Tf) (2)

where v is the particle velocity, u is the fluid velocity, d is the particle diameter, f and p denote

the fluid and particle respectively, R denotes relative conditions between the fluid and the
particle, and H, is the history integral coefficient.

The subsequent general solution to the equation of motion is found by numerical integration,

neglecting the effects of the history integral. Although Nichols shows that the integral term can

be important when the seed density is near or less than the fluid density, or when the particle
relative acceleration is large compared to the particle relative velocity, the term itself is

numerically unstable. Unlike the drag term, which dampens out numerical perturbations,

perturbations within the numerically evaluated integral term were found to grow unbounded.

Consequently, the contribution of the term was either negligible or inseparable from the

accumulation of truncation and round-off errors.

This paper extends the utility of prior works by reducing the equation set to three
independent similarity parameters, and then providing graphical results over a wide range of

independent variables.
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Results

A typical result of numerically integrated particle lag is shown in Fig. 2, which represents

the velocity lag of various sized seed particles through a normal shock at the Mach 6 test

conditions. In this case, the velocities of particles as a function of downstream distance from
the normal shock are defined by the upstream Mach number, pressure and temperature, and the

particle density and diameter. If the same coordinate system is applied to an oblique shock, the

particle equation of motion becomes a coupled set for the two dimensions, and the shock angle

also needs to be specified.

Although six parameters are required to define the problem, numerical solutions can be

expressed in terms of the upstream normal Mach number, the particle Reynolds number, and the
particle to fluid density ratio. First, note that the tangential velocity of the partic!e will remain

constant behind the shock wave since the tangential velocity of the fluid does not change across

the shock. Therefore, by orienting the axes to be normal and tangential to the oblique shock,

the velocity lag normal to the shockwave is de-coupled from the constant tangential velocity.

Numerical solutions are then one-dimensional with the shock angle and upstream Mach number

replaced by the upstream normal Mach number.

M,, = M, sin(O) (3)

The variable set is further reduced by dimensional analysis. By using Sutherland's viscosity law

for closure and restricting the analysis to air, application of the H theorem shows that the particle
lag normal to the shock can be fully described in terms of four similarity parameters. The large

number of solutions required to present results over the domain of the problem are generated

using 4th order Runge-Kutta-Fehlberg (RKF) numerical integration. The particle equation of

motion is stiff for small particle diameters; consequently, the RKF method is ideally suited to

this case since it calculates the local stiffness of the equation at each time step and adjusts the

step size accordingly.

For upstream normal Mach numbers up to 6.0, upstream particle Reynolds numbers from

3.2xl O to 3.2x10 5, and for upstream density ratios from 10' to 107 , the downstream normal

distance at which the particles relax to within three percent of the fluid velocity can be

interpolated from Figs. 3. These curves are calculated for an upstream temperature of 300 K,

however, the results do not vary greatly for other temperatures. For lower temperatures the
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presented graphs are conservative, over-estimating the relaxation distance from 0 to 28 percent

when the temperature is decreased to 50 K. For temperatures as high as 1000 K, the distance

is under-estimated by less than 5 percent.

For fixed flowfield conditions, individual curves can be interpreted as the relaxation distance

for seed of a specific density over a range of particle diameters. As the diameter is decreased

towards a nominal particle Reynolds number of 1.0, the curves show a corresponding decrease

in particle lag. As the diameter is decreased further, rarefaction effects cause the curves to level

off towards a minimum value. Consequently, decreasing the particle diameter in order to shorten

the relaxation distance will not be successful in this region. On the other hand, particle lag can

be still be reduced by using less dense seed, since this corresponds to dropping to a lower curve.

For a constant upstream Reynolds number and density ratio, increasing the upstream Mach

number increases the initial velocity ratio behind the shock, as well increasing the downstream

fluid density and viscosity. For weak shocks, The higher initial velocity ratio causes the particle

lag to increase rapidly from x/d =0.0 at Mach 1.0 towards a peak value at about Mach 1.1.

Increasiig the Mach number further shows that the higher downstream density and viscosity

become dominant, causing the particle lag to decrease nearly linearly. Therefore, for Mach

numbers between 1.0 and 1.1, the relaxation distance sho,,ld be interpolated between x/d =0.0

and the graphical value at Mach 1.1. Relaxation distances for Mach numbers between 1.1 and

6.0 can be found by interpolating between the three graphs.
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Fig. 1) Measured particle lag downstream of a shock.
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