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Behavior and Learning in Networks with Differing Amounts of Structure

This ongoing research is investigating how well large networks that are built from neuron-like
elements can be made to perform, and learn to perform, by giving them different types and
amounts of built-in structure. Systems with relatively little structure (e.g., random nets, simple
layered nets) have been compared with several different types of more highly structured archi-
tectures (chosen because of good formal characteristics, and to be realizable with plausible net-
works of neuron-like elements). Several different learning techniques - for changing weights,
and especially for generating and discovering new transforming procedures - have been investi-
gated and compared. In particular, generation of new nodes in hierarchically converging net-
works has been shown to substantially speed up learning and improve performance, when com-
pared with re-weighting (e.g., using back-propation) alone. Generation also results in much fas-
ter learning of a variety of touchstone problems (e.g., exculsive-or, parity, addition), as com-
pared with more traditional connectionist networks. In addition, a number of micro-circuits and
sub-networks have been specified that, when appropriately incorporated into the larger network,
can significantly enhance learning and performance. Especially striking examples are networks
that handle feedback-learning (which in today’s connectionist networks is handled by the larger
program that simulates the net rather than the net itself). For example, locally linked networks
with appropriately positioned back-links (essentially, wherever there are forward links to the
next layer add back-links) will not only handle feedback-learning but also a wide variety of use-
ful functions (e.g., relaxation, contextual interactions, combined top-down and bottom-up pro-
cessing).

Learning by Generation in Large Connectionist Networks

We have in the past developed and tested several pyramid computer vision systems (Uhr and
Douglass, 1979; Li and Uhr, 1987) that use large numbers of simple local processes to success-
fully recognize complex real world objects like doors, chimneys, and houses. More recently, we
have shown (Honavar and Uhr, 1989, 1990b) how these can be realized as massively parallel
networks, using conventional connectionist network nodes.
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The general pyramid approach entails using a very large network of relatively simple processors\

For example, one or several processors might be assigned to each pixel cell in the retina-like ar->.____

ray into which an impage is input. Each processor examines a local window of cells immediate-
ly surrounding it, and sends its results to one or more "parent” processors in the next array direct-
ly above it. This continues, successively extracting, abstracting, and reducing information, in a
logarithmically converging structure. This logarithmically converging pyramid structure im-
poses a constant bound - m, the windows’ upper bound on the number of local links, reducing
them from O(N?) or O(NVN) to O(mN) or O(mVN).

In practice, almost all of today’s pyramids are simple, e.g., with strict 2-by-2 convergence and
2-by-2, 3-by-3, or 4-by-4 windows. But pyramids can be architectured to many different poten-
tially appropriate configurations of resources with a variety of different tools.

Our implementations of generation in this kind of pyramid-structured net had each node process
a 3-by-3 window of information that is input to it, with nodes positioned so that 2-by-2 conver-
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gence. These systems were tested on several different pattern sets, and found to perform sub-
stantially better than traditional multi-layer nets (often giving 1 or 2 orders of magnitude speed-
ups, and handling pattern sets where back-propagation alone failed). For example, they take on
the order of 50 epochs to learn to recognize sets of images, compared to 500 or more epochs
when backprop alone is used; and they succeed on sets of patterns where traditional nets could
not (Honavar and Uhr, 1989).

The Type of Generation Algorithm Being Used and Tested
The following describes the kind of generation presently being used.

Traditional reweighting (using backprop) continues until it no longer improves learning. Gen-
eration is triggered when the fedback error indicates the network has output a wrong choice, and
the accumulated history indicates that reweighting alone is unlikely to correct that error.

This triggers the generation of new structures of nodes and links, as follows:

A. A small compact window of nodes is chosen from the sub-set of nodes with the fewest out-
put links. Originally, these will include only the nodes in the input layer (plus any interior nodes
that were built in a priori). But as generation proceeds it also includes the new nodes in the suc-
cessive interior layers. (The present system is restricted to using windows all of whose nodes are
in the same layer.)

B. A sub-set of nodes in this window are chosen for extraction.

C. A new node is generated, with a link into it from each of the extracted nodes (which will all
be in the same layer, call it L); it and its copies (see below) will be placed everywhere in layer
L+1.

D. Each of these links is assigned the value that its extracted node has just fired out. This forms
the new node’s active-mask of values that must be sufficiently well matched in order to fire the
newly generated node.

E. Each link is also assigned an initial weight (this can be a fixed value, or some function of the
active-mask values and the error signal, or a random value - these will be compared).

F. The new node is linked (with high weights assigned to these links) into those output node(s)
that should have been fired by this last input.

G. The following processes are given the new node (either as primitives or micro-circuits):

1. Match incoming values with the active-mask, and fire out: 1. (using a threshold) if it
exceeds the threshold, or b. (using a logistic function). Alternately, stored information (e.g., a
symbol, symbol-weight, or attribute-value) can be fired out when the threshold is exceeded.

2. Muitiply the value fired out over a link by the weight associated with that link.

3. During the learning phase, when the error signal is backpropagated, change the weights as-
sociated with its input links in the direction of reducing error.

H. A copy of this whole new structure is placed in each cell-group in its layer (this generalizes
the node’s function over translation). If layer L contains an M-by-M array of cell-groups, layer
L+1 contains an M/2-by-M/2 array.

I. When a weight is changed, the change can either be kept local, or it can be sent to all the oth-
er copies of this node (the latter generalizes learning over translation).

Since each layer will contain 1/4th the number of cell-groups as the piior layci, the whole net




will converge logarithmically. Upper bounds are imposed on the number of nodes that can be
generated for each cell-group (when they are reached the system can simply discard the least
useful to make room for a new generation). As shown above, the use of logarithmic conver-
gence along with small, bounded numbers of links substantially reduces complexity. It can also
increase power, at least for the large class problems for which such structures are appropriate.
As our preliminary results already indicate, generation within hierarchically converging nets
offers real promise of substantial speed-ups in learning, since far fewer links and nodes need be
processed, and it is easier to determine which to modify. And useful generations can be very
powerful (since they are, essentially, new compound variables that are sensitive to the interac-
tions of lower-level variables).

Cycling Logarithmically Converging Nets That Flow Information to Behave (Perceive) and Learn

This research (Uhr, 1991b) examines how traditional feed-forward connectionist networks (CN)
with complete connectivity from layer to layer can be modified and extended slightly, so that
they:

A. can be used to realize logarithmically converging "recognition cone" computer vision sys-
tems;

B. are capable of executing and integrating a large variety of top-down and bottom-up
processes; and

C. handle learning within the network itself (rather than, as is always done today, by the host
computer on which the net is simulated).

Standard connectionist networks behave/perform, outputting a response as a function of informa-
tion received by a set of input nodes. To make them also capable of learning (typically by re-
weighting values associated with links), a quite precisely structured - and substantially larger -
net must be added (Uhr, 1989a). The necessary additions (at least 1 node for each link, plus
several nodes for each node) rather than being implemented within the network itself, by aug-
menting it with the necessary additional sub-nets, are instead handled outside the net, using trad-
itional programs.

This research describes a new kind of continually flowing multi-layered converging network that
can handle feedback and learning using the same processes, links, and nodes that are used to
behave (e.g., recognize, remember, reason) - at virtually no extra cost, since the added proces-
sors are necessary simply to handle learning, but now can be used during the behaving cycle as
well. The added back-links between layers - in addition to handling learning - make possible a
variety of potentially very useful cycling processes, including inner-driven assessments, succes-
sively more global contextual interactions, constraint relaxation, threshold adjustment.

Digital and Analog Micro-Circuit and Sub-Net Structures for Connectionist Networks

There are three major ways to make connectionist networks more powerful (Uhr, 1989a): make
their primitive units more powerful; build in more powerful local micro-circuit and successively
more global structures over these primitive units; and/or give the network more powerful
mechanisms to learn and evolve. This research examines how to build more powerful primitive




units and micro-circuit structures.

First it defines a set of primitive building blocks and a set of primitive functions (e.g., to add,
multiply, threshold, match, store), and gives a few examples of how they can be realized using
alternate sets of digital and analog components - including traditional connectionist units. It then
uses these to define a variety of primitive units, including the multiply-add-threshold units typi-
cally used in today’s connectionist networks, and also units that convolve, serve in expert pro-
duction systems and semantic networks, and transform symbolic and numeric information. It
examines how these can be structured into larger networks, and sketches out a number of addi-
tional micro-circuits, including several suggested by the brain.

There are many potentially extremely useful structures that can be built into, or learned by, con-
nectionist networks of neuron-like elements - as this examination indicates.

The following are more extended descriptions of work to be published. (These have been ex-
tracted from papers in progress that have not yet been issued as Technical Reports.)

CN Need O(Nz) Additional Sub-Nets to Handle Learning Within the Actual Net Itself

A connectionist network (CN) behaves, outputting responses, as a function of inputs; but the
larger program that executes it - rather than the network itself - handles learning. This research
explores the substantial sub-nets that must be added to make the network complete and self-
contained, so that the network itself handles feedback-learning, as well as performing-behaving.
Several contrasting types of learning are examined: Hebbian re-weighting from nearest-neighbor
internal feedback, perceptron re-weighting, and back-propagation. If the original network - that
behaves only - has N nodes (of which O are output nodes) and L links (L is typically made as
close to N as fracticable), then the necessary additions to handle learning need at least 2L
(where L=O(N®)) new nodes and 5L new links (Hebbian nets might need fewer, back-
propagation needs substantially more). In most cases, each new "node" is actually a functional
black box-like module that needs a whole micro-circuit (its size depends upon the complexity of
the particular functions computed to handle learning) of the kind of basic multiply-sum-
threshold(or squash) units typically ixsed for behaving in today’s systems. Thus handling learn-
ing within the net itself adds O(kN“) new nodes and links. So the basic net’s links become far
more costly than its nodes, and as nets grow larger this becomes an increasingly important rea-
son why complete connectivity is not feasible. In addition to these major overlooked costs, the
resulting nets have an interesting characteristic: they are very precise and regular, with highly
iterated structures of micro-circuits.

A new type of continually firing and back-cycling information-transforming network that han-
dles learning with virtually no additional mechanisms is briefly described. This becomes possi-
ble when a more general type of structure is established, one that treats feedback as simply
another field of information that must be input, sensed, recognized and processed.

The Additional Sub-Networks Needed to Handle Learning from Feedback




In striking contrast to the way the specification of the net completely determines - and when
realized handles - its behavior, in today’s connectionist systems learning is not handled by the
net itself, but instead by procedures that are typically written in whatever programming language
is used to execute the net-simulation.

Virtually no attention has been given to what the necessary learning sub-nets would actually
look like. Yet they are quite complex; indeed they are substantially larger than the networks
needed to behave and handle problems; and they appear to benefit from - if not require - far more
precision in highly iterated structurings of exactly which nodes should be linked to which.

First, there must be enough links to form paths from feedback to all loci where learning might
modify the net.

In addition, there must be nodes whose micro-circuits temporarily remember all fired values un-
til feedback arrives, evaluate whether each value should be changed, determine what these
changes should be, and actually change each value as indicated - and also control and coordinate

all these processes.

The following examines these issues, and specifies how 3 major types of learning can be handled
by augmenting today’s traditional connectionist networks, which handle behaving only:

1. Hebbian self-organizing learning (Hebb, 1949).

2. Perceptron re-weighting (Rosenblatt, 1962).

3. Back-propagation (Rumelhart et al., 1986).
Using the Same Links from Input Nodes, and New Kinds of Re-Cycling Nets
The possibility of sending feedback via the network’s input nodes is also examined.
In addition, a new type of continually cycling "information transforming" network will be briefly
sketched out, one where the sub-nets used for learning also serve a variety of other perceptual
and cognitive functions, and where feedback is input into and processed by the same structures
of nodes that handle all other types of information (Uhr, 1989b).
That comes much closer to the real situation, since feedback is simply perceived information that
is considered relevant to other information: It must be transduced, distributed to the appropriate

nodes, and flowed through sub-nets that evaluate it and respond accordingly - as always receiv-
ing and evaluating information, and firing accordingly.

Local Nets Needed for Hebbian Re-Weighting, Using Only Immediately-Adjacent Local Feedback

What is often called Hebbian re-weighting is probably the simplest possible leaming rule:

Change the value tired by a pre-synaptic node (that is, the weight associated with the link that




represents the synapse) as a function of the strength with which the post-synaptic node fires, or
the fact that it fired.

Here learning is a function of the immediate response of the unit being fired into, rather than of
feedback from a more distant external environment. So there is no need to propagate informa-
tion, except extremely locally, from each node that receives inputs to each of the nodes that in-
put to it.

Specification of the Additional Processes and Sub-Nets Needed

To handle this, the value fired by the post-synaptic node must be sent back so that the weight as-
sociated with the synapse can be changed accordingly. Although this may sound trivial, an actu-
al digital realization entails the following:

* First, each post-synaptic node must be given a new link from that node into a new processor -
a "reweighting sub-network" - for each_of the I "synaptic" links from the I nodes that fired into
that node. This gives L (that is, up to N”) new links and L new nodes in toto.

* Second, each of these L reweighting sub-networks must compute how much the weight it is
responsible for should be modified.

This entails computing a simple function of the value that was fired into the link, the weight
presently associated with the link, and the value that feedback indicates the post-synaptic node
fired out. But even the simplest of functions (e.g., "raise the synaptic weight by a constant if the
output value exceeds a constant threshold"; or "raise the synaptic weight proportionally to the
output value") will need a micro-circuit with several nodes, to compute the function and to
modify the weight associated with the synaptic link accordingly.

Arithmetic might be accomplished by using new primitive digital units that are more powerful
than McCulloch-Pitts neurons - or analog devices (e.g., capacitors, photocells, or neuro-
transmitters). But analog devices are usually relatively special-purpose - appropriate only for
what they analogize. And the underlying structures with which analogs actually effect their
computations are inevitably extremely complex, since they must initiate, combine, measure, and
terminate the flows in several channels where large numbers of molecules or photons are as-
sessed. That is, although on the surface analog devices may appear to be simple, they are com-
puting at a qualitatively lower level that is typically extremely complex.

No matter what the lower-level implementation, this would need L new links, back to L new
nodes that compute L weight changes, plus L new links from and L new links to the L synapse
weights.

The original 1-way links might be replaced by 2-way links - but that introduces its own set of
problems: The input and output ports to and from links must be made 2-way, hence more com-
plex. And controls must be implemented - which means still more micro-circuits - to handle the
alternations between the forward flow needed to perform and the backward flow that disperses
feedback.




* Third, the value originally fired into each link must be remembered until the feedback is re-
ceived; then it must be forgotten.

That can be handled by storing this value into a new memory node associated with each pre-
synaptic node, and giving the new processor access to that memory to compute what to learn,
and to erase and overwrite it, to free it for future problems. This is the simple and straightfor-
ward black-box way that a traditional program handles temporary "read-write" memories.
(Brains may handle things similarly, although analog components - e.g., capacitor-like tem-
porary build-ups of neuro-transmitters - seem more likely.) The actual digital realization of each
memory needs a whole micro-circuit, as described below, to send information to and from the
store, modify and erase stored information, and control, coordinate, and trigger these processes.

Since memory is needed for only the shortest amount of time - only until the node fired into has
immediately fired back - it might be handled much more simply than the memories needed by
the other types of learning, which must wait until external feedback has been evaluated and the
error signal has been received from some distance. For example, it might be possible to elim-
inate memory entirely, by giving pre-synaptic nodes new links to fire directly into the nodes that
compute re-weighting - if pre-synaptic firing continues the slight extra amount of time until
post-synaptic firing begins. This is a good ¢xample of a necessary addition, but one where there
are many possible implementations. In any case, the additional units needed here may well be
simpler than those needed by the kinds of learning examined next.

The Large Amount of Precisely Structured Additional Network Needed

Hebbian re-weighting computes a function of the form:
Wi = hOp1w)

(o=post-synaptic output node, i=pre-synaptic input node, w=weight associated with the synapse
link).

The actual computations needed result in major additions: A network with L synapse-like links
will now need 2L new nodes (actually micro-circuits) and 5L new links.

These include, at the minimum, the following:
M: a temporary memory for the pre-synaptic node’s activity level (L such nodes in toto);
P: a processor that determines what change should be made to the link’s weight (L such nodes
in toto);
(C: to make that change and control processing - this will be lumped into the micro-circuit for
P);
plus the new links:

1->M (L such links in toto)
M->P (L such links in toto)
0->P (L such links in toto)
w->P (L such links in toto)
P->w (L such links in toto)




(w is this link’s weight, i the pre-synaptic node that inputs to it, M the new memory, P the new
processor, o the post-synaptic output node, and i the total number of pre-synaptic input nodes).

Thus 2L new processor and memory nodes are needed, plus SL new links. And each of the
nodes is itself a micro-circuit of primitive nodes that may be quite complex (Uhr, 1989d).

Possibly even more striking, the added micro-circuits are structured in quite precise and intricate
ways. And they must be replicated everywhere, throughout the network, giving it an extremely
regular, and highly iterated, modular structure.

What each of these nodes does might alternately be dispersed over several or many nodes, in a
distributed fashion, rather than be realized locally. There might also be random components,
and/or fault-tolerant error-correcting capabilities (e.g., partially redundant feature detectors,
majority-rule sub-nets). But although the iterated regularity may be cbscured by distributed and
random processes it must still remain underneath, since it is necessary for success.

Storing and Changing Memories Using Digital and Analog Devices

Today’s connectionist systems treat memories as black boxes, without specifying the actual net-
works needed. They can be augmented to actually handle memory with micro-circuits like the
following:

Have the node, a, that actually stores the memory continually fire a unit value into itself, so that
it continues to fire out the same weight (whatever value is associated with this link); it also fires
into a second node, b, that will fire out this weight into d only if a third node, c, also fires into it
(this third node must be triggered, whenever appropriate, by still other nodes, e, in the larger net-
work). This gives the net:

a->a
a->b
b->d
c->b
e->C

Alternately, the node into which the memory node constantly fires can be inhibited by the third
node (c-[inhibit]->b), so that only when other nodes in the larger net fire into and inhibit that
third node, c, will the second node, b, be dis-inhibited and fire out the first (memory) node’s, a’s,
value.

This kind of unit now "remembers” the weight that it fires out. (Note that the weights associated
with links are changeable - much like a memory register in a computer - which is what makes
learning possible, and now also makes temporary memory possible. To be realized physically,
the node that stores the remembered value must itself be a micro-circuit of more primitive units
like - in digital realizations - B 2-state flip-flops or transistors strung together to store B-bit en-
codings of numbers or symbols.)




Note that the weights associated with links actually must be stored in similar structures of
memory nodes when they are implemented digitally.

The node that computes what changes to make can be linked into, so that it fires into, an addi-
tional node that sums this and the present memory, to compute the slight change to be made in
the direction of reducing error, and then stores this result into the memory. To erase a memory,
still another node might be added into which the memory fires that fires, hence adds in, the same
value, but inhibiting - that is, a value whose sign has been reversed, hence is subtracted. Thus to
actually realize what is typically treated as a single memory, a whole network of properly linked
black box nodes is needed.

Alternately, analog devices can be used - e.g., a material whose resistance can be set so that the
current passing through it represents a fixed value, but where this resistance can be changed, to
represent some new desired value. This is equivalent to replacing an adder circuit in a digital
computer by a capacitor whose output (current or charge) represents the sum of its inputs. The
problems with analog devices are that they don’t always exist, they are often special-purpose,
they can’t always be fabricated into the total system economically and reliably, and although
their resolution is high their precision is low, and variable. (This last may be desirable for han-
dling imprecise, fuzzy, noisy information, but proper exploitation of this capability would need
different kinds of processes.) Possibly the biggest problem is simply that relatively little work
has been done in developing densely packed analog micro-electronic devices.

The Additional Nets Needed to Handle Re-Weighting in 1-Layer Perceptrons

Hebbian re-weighting learns from values fed back from the immediately adjacent node only.
More typically, as in perceptrons, feedback comes from the larger environment external to the
graph, in the form of a vector of values - one for each output unit - that indicates what these out-
put units’ vector of values should have been.

First an "error signal" is computed, usually by pairwise subtracting the feedback values from the
output values; this error signal is then fed back to the net’s nodes. Computing the error signal is
typically handled outside the network, by human beings. But it can also be done by a (rather
precise) sub-net (Uhr, 1989d) that has a node into which each of the O values in the output vec-
tor, along with the corresponding feedback values, are input, that computes their signed differ-
ences, and outputs via the new links in the augmented network (to be described next) that distri-
bute these values throughout the original behaving net.

Note that a node’s output value, or at least the fact that the node fired, must now be remembered
until the error signal has been computed and is finally fed back to it - that is, for a substantially
longer and more variable period of time than in the case of Hebbian re-weighting. This means
that the value fired must be stored in a memory node for a proper period of time, accessed and
used to compute the re-weighting, and then erased (or overwritten). Therefore additions are
needed to the micro-circuits that store information into memories, access these memories, erase
and change memories, and coordinate all these steps. And more complex micro-circuits are al-
most certainly needed to determine the amount of re-weighting, which is now a function of many
pieces of fed-back information.
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"Perceptron” is a very general term, but it is usually taken to refer to a 2-layer network consist-
ing of a set of input nodes linked (either completely or randomly) to a set of output nodes. Per-
ceptron learning entails changing weights as a function of the error signal, in the direction of
reducing error (e=error signal, i=value fired by the input node, w=weight associated with the
link):

Wip =PlepipWy)

To achieve this, the error for each unit in the output vector must be fed back to each of the links
that fired into it. This means that for each link there must be a new companion link dedicated to
changing the original link’s weight. Each such link must carry the error signal to a new sub-net
that, as for Hebbian re-weighting, has remembered just-fired values, computes what changes to
make, and modifies the old weight accordingly.

Thus 1-layer perceptrons need the same additional internal structures as do Hebbian systems,
plus (if the net handles this) the O nodes needed to compute the error signal for each of the O
output nodes and 30 links to input the output and feedback values, and output the computed er-
TOr.

Nodes for Perceptron learning will probably be substantially more complex micro-circuits than
those needed for Hebbian re-weighting, since they must compute more complex functions and
exercise more complex coordination and control. Although this increases complexity by only a
relatively small constant (e.g., 5, 10, 100) it can be of crucial practical importance.

Global Tree-Like Nets Needed for Multi-Layer Back-Propagation

One-layer perceptrons can handle only linearly separable problems, and they are combinatorially
explosive. Today’s standard way of attempting to cope with these weaknesses is to build multi-
layer systems. Typically, learning is handled by passing information about feedback back from
layer to layer, as done by "back-propagation.”

As before, this needs a new link for each old link, over which information is sent in the opposite
direction, plus L new memory nodes (where control and access are handled as well as storage),
to temporarily store the values fired into the L links, plus L processors to compute and effect
changes to the L links’ associated weights, plus links into and out of these memories and proces-
SOTS.

In addition, N new processor nodes (plus necessary links) must be added to execute the neces-
sary new processes of unsquashing and computing the overall error for each parent node, linking
in to N new - and far more complex - processors to determine the magnitude of the error signal
to be attributed to, and distributed to, each node.

This gives the following recursively-computed multi-layer function: (squash’ is the inverse of
the function that mapped input to output - it unsquashes the result; P=parent layer; C=child
layer; p=parent node; c=child node; (c->p)=link from child to parent; t=target value fed back;
v=value fired (activation); e=error signal, w=weight associated with the link between child and
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parent; dw=change to be made to the weight; f; computes the unsquashed error, f,, the error for
each input link, f, the change in weight for eaclll input link, f the new weight of each input link,

f 5 the error for each child.)

DO (for all O (nodes in a layer) in parallel):
P=n ({initalize the parents to the output region (n=0) }
e<-vy-t

FOR P=n (n=0), n-1, ... 2: {move down from the output region as parents, to the input region
as children}
DO (for all members of the region in parallel):
C=n-1

Pd = f1 (eP,squash .(VC(i=l..n)» {unsquash the error as a function of children’s values}

e(c->p) _ 2(eP d’aC(i=1..n)’w(c->p)(i=1..n)) {compute and distribute the error to links)

dw( c->p) = f3(e(c_> p),t’vC’w(c-> p)) {compute how much to change each weight}

Wic->p) = 4(dw,w) {change each weight}

ec= 5(°(i=1.. n)’v(c->p)(i=1..n)’dw( o> p)(i=1..n))) {compute new error for each child}
Note that this is somewhat more general than standard back-propagation. For example, the last
step computes the new error for the child as a function of its parents’ errors, all values fired, and
all weight changes on the links fired into (hence their previous weights).

Each node in the behaving net (except for the input nodes) now needs two new nodes: 1. to com-
pute the un-squashed error signal (with 2 links), and 2. to compute how to distribute this error
over the weights associated with the links from this parent node’s children (with 2¢+1 links for ¢
children).

These include, as for Hebbian and Perceptron learning, the following nodes (micre-circuits) and
links:

M: A temporary memory (with controller) to store the child node’s activity level during the
immediately-preceding behave-perform cycle (L)

R: Re-weighting processors that determine and effect the changes to be made to the links’
weights (L)

c->M (L)
M->R (L)
w->R (L)
R->w (L)

In addition, depending upon the particular back-propagation algorithm used, there will be a need
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for 2(N-I) additional nodes, each a quite complex micro-circuit, to compute the error signal
moving down through the net, and to determine how much to change each weight as a function
of the context-for-changing - that is, some larger sub-structures of information that the algorithm
considers. Typically, this fuaction considers all the child values that input to a node, so that it
can then sub-divide and distribute thc constant total change among the weights associated with
the input links. But it might consider larger contexts - e.g., all the grandchildren of the parent’s
parent, or the whole path that leads into, or/and leads out of, that node.

This adds the following nodes and links to the above:

U: Un-squasher nodes (N-I)
D: Processor nodes to partition and distribute the error signal propagated back to the parent
among its children (N-I)

p->U (L)
¢c->U (L)
w->U (L)
U->D (N-I)
¢->D (L)
w->0D (Lj
>R (L,

A network with L links . nd N nodes will now need at least L+3N-0O-2I new nodes and 9L+2N-
O-I new links.

From the point of view of ccinplexity, replacing each node by the necessary micro-circuit is
merely a (relatively small) constant increase in size. But a physical realization will easily in-
crease size 10- to 100-fold, or more, hence be of overriding importance from the point of view of
actual practical implementations.

Continually Cycling Information-Flow Nets Need Virtually No Additional Hardware for Learning

An alternative approach - and possibly the best - is to establish a new type of continually cycling
information-flow network, one that handles feedback-learning with the same mechanisms used
for all other types of processing (Uhr, 1991b).

In all of the above, during the behave-perform phase firing occurs in only one direction, initiatec
by a single field of input nodes, and ending with output nodes. This is variously called "data-
driven,” "image-driven,"” "problem-driven,” "environment-driven," or/and "bottom-up" process-

ing.

But units firing in other, more or less opposite, directions would serve many useful purposes.
The simplest, and possibly the best, way to implement this is to introduce linkings in both direc-
tions between layers, to establish cyclings. That is, for each pair of synaptically-linked nodes
add one new link in the other direction. [Mixtures of any number of different types of back-
linking might be used. For example, each node might link to all nodes 2, 3, or N back, rather
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than 1 back, and this might be varied from ply/layer to ply/layer in whatever way desired. But
although this could effect some savings in links, it would complicate processing and need more
time.]

The cycle might contain one new link only, to carry firing from the output node back into the in-
put node (plus one extra link to the weight associated with the original link, so that it can be
modified - the single input node computing and triggering that modification). Or one new node -
or several - might be fired back into.

This gives only 2L new links, so the size of the net can be increased 5-, 10-, or 100-fold or more,
and still be no larger than the original net augmented to handle back-propagation. Different
micro-circuits might be used as before to handle the different functions. But it is now possible to
use all nodes and links for all types of processing, whether behaving or learning.

Back-linkings of whatever kinds immediately make possible, when used to behave-perform, the
very useful types of processing variously called "model-directed,” "inner-driven," "need-driven,"
"top-down." They also establish cycling paths that can be used for feedback-learning as well as
for behaving - with little or no additional mechanism.

The brain appears to use 2-way links almost routinely. The 6-layered sheet of neurons that
makes up the cerebral cortex is especially rich in cycling processes (Kuffler et al., 1984). And
wherever one of the living visual system’s 20 or so areas links into another area, neuro-
anatomists have found links from that second area back to the first (Van Essen, 1985).

In back-linking nets, information from all directions is assessed and combined, When the nodes
compute appropriate processes of these sorts, there is no need to dedicate substantial additional
sub-nets to handle processing, memory, coordination, and switching for learning. For example,
processes can constantly reinforce previous computations, compute running averages, merge, re-
lax, and choose among alternatives, combine bottom-driven and top-down processes, assess
whether a relatively stable state has been achieved, and choose to output - or to modify some
part of the net itself: that is, to learn.

Generation Learns Simple Processes (E.g., Count, Add, Parity, Negate, Encode, X-OR) in
Optimal Time

This research shows how X-OR (the logical function "exclusive-or") can be learned in the
minimal necessary number of trials, producing a net with the minimal number of nodes and
links, by connectionist networks that use algorithms that embed pertinent information extracted
from inputs into new nodes and links that are generated when feedback indicates they are need-
ed. Indeed, the same generation-plus-extraction algorithms will learn ANY set of 2-valued or
N-valued functions over Boolean variables in minimal time and space.

This research examines why that is the case, and proves that generation will learn any set of
Boolean functions of N variables in minimal (linear) time, needing at most one learning trial per
function instance (that is, at most one epoch for the entire set of functions), and producing a net-
work that is minimal in terms of number of links and nodes.
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This is in striking contrast to traditional re-weighting (e.g., using back-propagation, for which
comparisons are given), which is not guaranteed to succeed at all, must be given in advance all
the necessary nodes, properly linked, is sensitive to its initial randomly chosen weights and the
order in which training is given, and needs many more learning trials (if it learns at all).

A Brief Description of Generation

Generation (Honavar and Uhr, 1988, 1989, Uhr, 1989b) consists in the adding (and deleting) of
links and nodes, in addition to (or instead of) using the traditional connectionist network learning
method - the changing of weights associated with already-present links to already-present nodes.
Essentially, when feedback indicates that the network’s output was in error, but the network
judges that changing weights is not potentially helpful (e.g., because local peaks appear to have
been reached) the network changes its own structure by adding or deleting links and nodes.
Depending upon the frequency of generation, this can lead to a small (near minimal necessary)
or a large (near an enumeration of each possibility) number of new nodes. The number of nodes
can be reduced by additional generalization and de-generation mechanisms.

Re-Weighting can continue to be used to hill-climb up gradients and to fine-tune. It can also be
used to help assess the value of new generations.

Generation introduces non-linear components where these are needed (more precisely, where the
network’s rules for generation infer they are needed). Generation thus ranges through the set of
possible non-linear interactions, establishing (this might best be thought of as hypothesising or
conjecturing) those it judges likely to be of value. To the extent that the net can be given gen-
eration algorithms that make good choices, near-optimal nets, with near-minimal numbers of
nodes and links, will be achieved, in near-minimal time.

To succeed, a network that learns by traditional re-weighting only must be given all the neces-
sary nodes, plus all the necessary links, in advance. This is in t}}s worst case impossible ﬁalisti-
cally, since it needs the combinatorially explosive number of V' interior nodes and NV"" links
for problems that need N input nodes, each ranging over V values (e.g., today’s perceptual
recognizers typically process images in 512-by-512 arrays, each pixel ranging over 256 grey-
scale values). But whenever (as in most cases) it is not known in advance what are the necessary
nodes and links, to guarantee success such impossibly large nets are needed.

In striking contrast, generation is a constructive procedure (that also serves as a constructive
proof when it converges to a successful net) for building only a sufficient (and given good
enough procedures for deciding what to generate necessary or little-more-than-necessary) net.
(See Uhr, 1989b, for an examination of generation in terms of its generality and power, and
Honavar and Uhr, 1988, 1989, for empirical comparisons where generation gives several orders
of magnitude speed-ups in learning on simple recognition tasks.)

Examples of Non-Linear Problems: Learning X-OR, and Other Boolean Functions

Consider X-OR (the logical function "exclusive-or"), along with the whole set of 2-valued and
n-valued Boolean functions.
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X-OR has been used widely to test connectionist networks, because it is just about the simplest
possible non-linear function, one on which it is inappropriate to use the only known guaranteed
successful way to find solutions in connectionist networks - to hill climb up a monotnically in-
creasing gradient by changing weights in the direction of reducing fed-back error (Rosenblatt’s,
1962, "Perceptron convergence theorem").

The back-propagation ("backprop”) learning rule (Rumelhart et al., 1986) was devised to handle
learning in nets that have more than one layer of links, hence are capable of computing non-
monotonically increasing functions (although there is no algorithm for learning such functions
that has been proved to always succeed). Backprop was shown (empirically) to succeed (but
with occasional failures) on X-OR, Even-Vs-Odd, addition of two 2-bit numbers, and several
other simple non-linear problems - although typically needing hundreds or thousands of epochs
(presentations of the entire set of possibilities).

Generation and Re-Weighting Usefully Complement One Another

Generation is designed to work hand-in-glove with re-weighting. Each generation introduces a
new dimension (this can be thought of as a new variable, degree of freedom, or feature-detector);
then re-weighting hill-climbs through this expanded space; when hill-climbing no longer makes
progress new generations are indicated. Re-Weighting also can serve to assess the goodness of a
generation, leading to the decision to modify or discard (de-generate) it.

Generation-Plus-Re-Weighting appears to be a potentially extremely powerful combination.
Empirical tests (Honavar and Uhr, 1989) suggest that it offers real promise in attacking the enor-
mously difficult search spaces for complex and difficult intelligent functions like language
understanding, everyday reasoning, and perceptual recognition. In these problems, the number
of, and interrelations among, basic variables is not known. But it is obviously very large, so that
(except for simple problems with a great deal of known a priori information) a net that is
guaranteed sufficient in advance would be far too large to handle. And although in theory it
could be used, Boolean logic appears to be far too cumbersome and rigid, and lacking the poten-
tial for flexibility, fault tolerance, and generalizability of the probabilistic threshold logic that
re-weighting approximates.

A Basic Algorithm that Generates Optimal Networks for X-OR and Other Boolean Func-
tions

For the deterministic error-free domain of X-OR and other logic functions weights are not neces-
sary - indeed they are stumbling blocks. So we will first examine learning algorithms for X-OR,
and also for general sets of 2-valued and n-valued Boolean functions, that use generation alone.

X-OR and the other Boolean functions over N variables can only be handled by taking every bit
of information (every variable) into account. Therefore determining what to extract becomes
trivial; the network must extract everything - all the details of an input to be learned.

All this information can be stored and used explicitly, to exactly match future inputs, hence al-
ways map them to the correct output. That is what the first algorithm does, by permanently set-
ting the weights associated with links to the extracted actual values of the inputs.
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Alternately, the extracted information can be used to infer a minimal threshold - which opens up
the possibility of generalizing together instances that meet or exceed that threshold. This might
best be thought of as a heuristic - something that may frequently work but for which there are
clearly counter-examples. The second algorithm below does this, setting the threshold to the
sum of the input values, and all weights to 1 (so that future input values will pass through the
links unchanged).

These simple algorithms use generation alone, with no re-weighting. Indeed, since each variable
can take on only 2 values, there are no hill-climbable gradients in-between for re-weighting to

climb.

The first algorithm matches nodes’ inputs, rather than multiplying incoming values by weights
and thresholding or squashing their sum. Matching is easily handled using weights and thres-
holds when, as here, all inputs are 2-valued. But for multi-valued inputs an exact match (or a
match within a small interval, delta) should be used instead of a threshold match. This is most
efficiently handled by nodes whose primitive operations are compare (e.g, subtract, test that the
absolute difference is within delta) and logical-AND, rather than the traditional multiply, add,
and threshold(or squash). Actually, these operations are already often used in connectionist net-
works - to compare a network’s output with the feedback, in order to compute the error signal.

The second algorithm multiplies activations by weights, sums the results, and thresholds in the
traditional manner. It generalizes in certain ways - but this also [eads to mistakes (which it im-
mediately corrects) and small inefficiencies. It is more complex and less elegant, although
slightly more efficient when threshold functions are present. It is instructive to compare the two
algorithms, since their simplicity lays bare important differences between 2-valued logic and
multi-valued arithmetic.

A Match Algorithm for Generation-Learning of X-OR, and Other 2-Valued and N-Valued
Boolean Logic Functions:

START with a net that has 2 input nodes, a and b, into which the current states - for convenience
coded -1(=False), or +1=(True) - of the two Boolean variables, x and y, are sent from the exter-
nal environment.

REPEAT until the QUIT signal is input (e.g., any symbol other than -1 or +1):
INPUT the next problem.

BEHAVE: Fire nodes through the net, until output nodes are fired. (A node fires if the value
fired into each of its input links EXACTLY MATCHES the value stored for that link.)

LEARN: COMPARE: Does the net’s output exactly match the correct (target) output?
IF they match, RETURN to input the next problem.
IF they differ, for EACH variable fedback that was not output:
WHEN (this happens the first time the instance is given) there was no output at all:
IF the node whose output would have been correct if it had fired is NOT already present, add
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a new output node (threshold = 1) - whose firing will signify (e.g., output the name of) this
Boolean function.
IN ALL CASES:

IF there is already an interior node set to fire if a=x, b=y (this can be afcog)phshed if the link
from a is weighted a, the link from b is weighted b, and the threshold is a“+b™), link this node to
fire the value 1 into the output node that should have fired,

ELSE generate a new interior node that links and fires a value of 1 into this (new or
already-present) output node, and link a and b mto it, Emh the link from a weighted a, the link
from b weighted b, and the threshold, T, set to T=a +b

This builds a straightforward 3-layer net with (to handle any sub-set of Boolean functions over 2
variables) at most 4 interior nodes, each fired into by a unique combination of inputs, and firing
out into all the output nodes that signify the functions that this combination of inputs belongs to.
{Note that this net’s nodes differ slightly from the more commonly used node, which subtracts
the threshold from its input and fires out the difference. Instead, it always fires out if its thres-
hold is achieved (this is actually closer to actual neurons, since they fire in all-or-none fashion).]

The first time an instance of a new function is input, an output node is established to represent
that function, and an interior node is established (if it is not already there) to represent that par-
ticular instance, firing into that output node. If the feedback matches an already-present output
node’s output, then a new interior node is generated - if it is not already there - to represent and
match the state of this input instance; this interior node is linked into the output node that
represents this function, to fire it. The weights and thresholds are set so that nodes fire to exact
matches only.

Consider how X-OR is learned - in 2 trials (the net is given input nodes a and b to start; then
learning generates interior nodes ¢ and e, and output node d; T=threshold; weights are shown in
parentheses):

Trial 1: Input: a=-1, b=1 {the encoding of False True};
Feedback: X-OR;
Learns: a=>(-1)c, b=>(1)c, T(c)=2; c=>(1)d, T(d)=1, d=>X-OR.

Trial 2: Input: a=1, b=-1
Feedback: X-OR
Learns: a=>(1)e, b=>(-1)e, T(e)=2, e=>(1)d.

Thus this extremely simple algorithm learns to handle X-OR by building an optimal 5-node, 6-
link net (starting with only the 2 input nodes), in an optimal 2 steps. (Note that there is no need
for an explicit interior node to handle either TT or FF.)

Trials 3 and 4 teach the net to begin to distinguish Inc-OR (inclusive-or):
Trial 3: Input: a=1, b=-

Feedback: Inc-OR, X-OR
Learns: e=>(1)f, T(f)=1, f=>Inc-OR.
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Trial 4: Input: a=1, b=1
Feedback: Inc-OR
LearnS: a=>(1)g, b=>(1)g, T(g)=2’ g=>(])f

This same simple algorithm will generate the optimal net (with at most 4 interior nodes and 1
output node for each function) in a minimum number of steps, for any set of 2-valued Boolean
functions. Trials 3 and 4 have already started to do this: 3 generates the new output node, f, that
outputs Inclusive-OR when TF is input. Then 4 generates the new interior node, g, that links
into f and fires into it when TT is input.

There is nothing surprising about any of this - the net is simply moving toward generating 4 inte-
rior nodes to handle the 4 possible combinations of x and y: FF, FT, TF, TT, and then linking
each of these in to each of the functions it belongs to - as indicated by the Ts in the following ex-
ample truth-table:

x y X-OR AND NULL yORboth Inclusive-OR

— —'Tmm
e
o~ =~ T
-~ T m T
e vles el
- T~ T
- = T

[f we continue to teach new functions, e.g., AND and Inclusive-OR, we need simply give an in-
put for each each row that contains a T, giving the name of the function being taught as feed-
back. Thus generation would build a net with 4 interior and S output nodes that handles the truth
table shown above. The desired function might be any linear or non-linear combination - e.g.,
"yORboth" (FT OR TT) - as well as those traditionally found useful. Note that the net may
correctly fire several output nodes - e.g., both X-OR and Inclusive-OR to the input TF - when
that is proper.

The above algorithm will work equally well with 3, 4, or any number of variables, so long as we
give the net an input node for each variable. It will learn functions of 3-, 4-, . . . and V-valued
well as 2-valued Boolean variables, by generating an interior node for each of the possible N
combinations that is actually input to it.

Connectionist Networks (CN) That Handle Symbols as Well as Numbers

This research (Uhr, 1991c) shows how connectionist networks (CN) can conveniently and
efficiently be made to handle symbols as well as numbers. Basically, a symbol is a name (or
pointer) that links to the (small to gigantic) network of information that it signifies. (It is this
network of information that gives the symbol meaning - whether complex or simple, ambiguous
or precise.) The CN must be able to treat the symbol in at least the following ways: identify
(recognize), transduce, encode, send, receive, decode, and interpret. And it must also be able to
interpret and make appropriate use of the body of information (which will usually contain sym-
bols) to which the symbol points.
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Traditional artificial intelligence (AI) systems chiefly use structures of lists of symbols, and pro-
cess them serially. It is sometimes suggested that Al systems are fundamentally different from
CN. But they clearly are not, since CN are based on McCulloch-Pitts neurons, and Al on Turing
machines - both of which are equivalent models for a universal computer (when allowed to grow
to whatever "potentially infinite" size is needed). Therefore anything an Al program can do
some CN can do, and vice versa - including handling symbols. This research examines how CN
can handle symbols in reasonably efficient and brain-like ways. Several different possible ways
to handle symbols are examined, and the necessary micro-circuits specified.

People and AI Systems Use Symbols; Hence CN Must Be Able To

We human beings routinely use mutually understandable public symbols to communicate - as is
the case right now, while I write this, or you read it. Al programs - along with virtually all other
kinds of programs - use symbols (they are alternately called variables, constants, names, con-
structs, features, attributes, pointers, atoms, or whatever).

People Communicate and Think Using External and Interral Symbols

In addition, we human beings almost certainly use these public (call them "external”) svmbols to
think. Most people have the impression that we routinely think at least to some extent with sym-
bols, and it is difficult to believe that if we asked people to do so anyone would say they could
not. For example, if told: "think about bicycles and their parts," almost certainly symbols like
'wheel’, ’spoke’, weld’, ’ride’, and so on would cross one’s mind. If told: "Convert 3 and 2 to
binary, then add these binary numbers and convert the result back to decimal - giving the result
at each step,” most people will speak or write: 11, 10; 101; 5.

Since we human beings have all that capability, it seems extremely likely that we also use addi-
tional "internal” symbols for many - if not most or even all - of our other thought processes.
That is almost certainly especially true of not-conscious thinking (which includes all the com-
plex processes that we carry out when we perceive scenes of objects, and try to remember,
ruminate about things, and reason).

Traditional Connectionist Networks Do Not Use Symbols - Except Sort of

Connectionist networks are often said not to use symbols, but only numbers (chiefly for weights,
activation levels, and thresholds). Everything is handled by the basic procedures that add
weights and compare numbers with thresholds, firing accordingly. But connectionist networks
must be capable of handling symbols, since they are equivalent to Turing machines and other
universal computers, which handle symbols.

Actually, there are two ways that today’s CN already at least sort-of handle symbols.

First, they routinely output what is called the "output vector” - simply a set of numbers that are
fired by their output nodes. This is then often interpreted by human beings as though a symbol.
For example, there might be 8 output units, each standing for one of 8 possible responses (e.g.,
the particular object-class the CN can judge the present input to be an instance of). The human
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observer would then notice which of these 8 units output the largest number, and from this con-
clude that the CN chose that class, e.g., "house’. If the correct choice was 'bamn’, an error signal
would be input to the CN showing a negative value for the node that output "house’ and a posi-
tive value for the node that should have output ’barn’.

Effectively, each of these output units is a symbol that stands for the particular object-class. But
this is really not having the CN handle the symbols fully; rather, it evades, by letting the external
environment (usually humans) identify and interpret them instead.

Second, any unit can itself to some extent serve as the symbol. Consider a situation where one
node should be able to fire any one of S different symbols down a link to a successor node. That
is handled routinely by almost any computer program: one instruction stores a result, the next in-
struction fetches and uses that result; or one function passes its result directly to the next func-
tion. This is one of the central problems that this research addresses: how can we get CNs to
pass symbols with similar ease?

One (awkward) way to handle this is to establish a separate node for each of the S symbols, then
have the first node fire into the single node that represents the symbol that should be passed,
which fires out into the successor. That is, for a set of S symbols the predecessor must link to all
S, and all S must link to the successor. The predecessor must also have the necessary mechan-
isms to choose which node to fire into. And the successor needs mechanisms to note over which
link it was fired into (hence which single node initiated the firing). But the additional mechan-
ism needed to identify the particular link is expensive, and it is typically ignored or handled in
black-box fashion, rather than by what would be an unwieldy sub-net of add-threshold units.
And - as we shall see - it actually contains the mechanism needed to identify a symbol no matter
how symbols are handled.

The biggest problem may simply be that handling symbols is inevitably complicated and expen-
sive. Since each symbol is qualitatively different, it must be identified separately. This is in
sharp contrast to computing with numbers, for which a few simple rules of arithmetic suffice no
matter which numbers are involved. Essentially, the system must be able to represent each sym-
bol, and compare its representation with the alternative possibilities that might be the correct in-
terpretation for that symbol, noting when one is similar enough to conclude that it is. Each sym-
bol must be encoded and searched for separately, since there is only an arbitrary relation
between symbols, and between symbol and what is symbolized.

Symbols Vs. Numbers: Qualitative Vs. Quantitative Vs. Mixed

Whereas symbols need large tables of pointers plus processes that match and identify them and
access what they point to, numbers merely need a few arithmetic processes (a.g., add, subtract,
squareroot).

Thus a million word dictionary needs a million entries, linking each word to its definition, plus
the processes that handle things. But to do arithmetic no entries are needed, but only the
processes. To add or subtract is the same no matter what the numbers are.
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-
There will sometimes be a need to convert numbers to and from external symbols like five, or 5,

or the processor’s internal representations. This - as always - needs a symbol table, with an entry
for each external symbol that is linked to a process (the processes might be digital counters, or
analog capacitors, or sinks into which tallies, fluids, snowflakes or gumdrops drop).

But even here numbers can be handled with far greater efficiency, since they can be composed or
decomposed using simple grammar-like rewrite rules. For example, one, two, three, four, five,
six, seven eight, nine, ten, tewnty, thirty, forty, fifty, sixty, seventy, eighty, ninety, and hundred
(plus a few rewrite rules that combine them appropriately) are enough to encode all the integers
from one through nine hundred ninety-nine.

Numbers can be computed by the arithmetic processes alone; their quantitative relations are
completely captured by computing them. Symbols are qualitatively different; each must be
specified separately.

It is important to note that there are many possibilities in between. For example, the primate
visual system has families of 32 or so feature detectors sensitive to bar-edges at different slopes,
centered roughly 12° apart. Each appears to be handled by a different (possibly overlapping)
sub-net of neurons - the equivalent of a different entry in a symbol table (albeit one that makes
complex less-than-exact matches). But because of the relation between them, they could be han-
dled as follows: Represent only one of those sloped bar-edges (e.g., as entries denoting spots in a
2-dimensional array, or using an equation). Input this to some appropriate process that rotates it
(e.g., a table, or an equation).

Essentially, whenever the different members of a set are related, that relation can be handled by
a process that then generates the members. When - as is the case with pure symbols - there is no
relation, each member must be specified individually.

The "Problem" of Icons Vs. Symbols Clarified

Perceptual recognition - and how it handles and uses icons and symbols - throws instructive light
on these issues from a slightly different perspective.

A recognizer must input an image array of intensity values (e.g., the amount of light at each tiny
but finite point in a 2-dimensional image, giving a grey-scale representation of the sort found in
a black-white photo). It then processes this input image. Finally, it must output a set of symbols
(e.g., the name or names of the objects in the input scene, along with pertinent descriptive infor-
mation). The conversion from what is often called the (numerical) "icon" to verbal symbol be-
comes a major problem (but see Uhr and Schmitt, 1984, which shows how this can usefully take
place in small steps).

The input is often called the "icon" ("picture” or "image" would be more appropriate, since icons
are actually schematized abstractions). In any case, an icon of this sort is a 2-dimensional array
of spots containing numbers - each number reflecting the amount of light at that spot.

The output is usually symbolic - something like ’chair’ or 'wooden chair - but bench-like (be-
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cause very wide)’.

Researchers working with the raw image (whether to enhance it, pick out features, or recognize
objects) often rely heavily, if not exclusively, on numerical operations. In sharp contrast, most
researchers attempting to use traditional Al techniques chiefly use symbolic representations, and
concentrate on the "higher levels" of processing (e.g., combining the legs and other parts of a
chair into to the chair). This has led to an often expressed feeling (e.g., Pylyshin, 1973) that the
iconic image must be processed numerically, then at some point transformed into a symbolic
representation. Where that point is, and how to make the transformation, appear to pose major
problems.

But it simply is not true that the input image is numeric, or that the output is symbolic. Each is
both.

A simple way to demonstrate this is to examine what happens when a color image, rather than a
grey-scale image, is input. Now the input image is a 3-dimensional array, where the 3d dimen-
sion has 3 values - the 3 primary colors Red, Green, and Blue (RGB).

The point is, the recognizer never really inputs a numeric value, it inputs a (possibly numeric)
value for some attribute, some variable - that is, some symbol. (Remember - attribute, variable,
symbol, name, thing, entity, feature, pointer - these are all for the present purposes synonyms.)
The attribute is often built in and assumed - hence not noticed. It is known only implicitly, and
it is easy to ignore it entirely.

Since grey-scale images are arrays of values ranging over only one single variable (total intensi-
ty of visible light integrated over all frequencies), there is no need to specify, or even think
about, the attribute. Hence the fact that the attribute "grey-scale” exists implicitly is usually
overlooked.

The dual attribute-value nature of the information becomes apparent as soon as the recognizer
begins to process the image - even a grey-scale image. It almost immediately begins to look for
such "low-level” attributes as gradients, and edges of different slopes; and then for more com-
plex features like angles, curves, and textures. All these attributes are symbols that must be not-
ed.

Often they are noted only when the recognizer decides that they are present and - since they can
either be present or absent - it is sufficient simply to list the feature-name; so it appears that there
is only a symbol, but no value. That is, rather than always list either verticaledge=1 or verti-
caledge=0, the system need only list verticaledge (or the null string).

Often a value is associated with a variable (sometimes several - numbers or/and symbols). Thus
a feature-detector might output something like: verticaledge=9; verticalcurve=2 (indicating,
where values range from 0 to 9, a very strongly implied vertical edge, and also a weakly implied
vertical curve). Or the detector might output, e.g., verticaledge=faint; or verticalcurve=(9, shal-
low).

Now these attribute-value pairs are very convenient little structures of information that can be
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handled in several important ways. The system can choose between them by examining their
values and outputting the attribute associated with the preferred (e.g., largest). Or it can sort and
collect this information, by examining the attributes and combining the values of all the in-
stances of the same attribute.

At the highest level, a recognition system must decide which among alternate possible symbols
to output. This is typically handled by examing the combined value for each of the alternate
possible variables (the possible output names), choosing the max, and outputting the associated
name.

Thus the basic primitive, at every level from lowest to highest, is neither a number nor a symbol,
but a symbol-value pair. Where there is only one possible symbol it can be ignored; when a
symbol can have only two possible values, signifying existence or absence, the symbol alone
will suffice. And a "complex" symbol like *window’ or "house’ differs from a "simple" symbol
like ’angle’, ’gradient’, or ’grey-scale’ only because the nets it points to are larger and contain
much more semantic information.

Augmenting Connectionist Networks To Handle Symbols

Connectionist networks can be made to efficiently handle symbol-value pairs as follows: Rather
than have nodes capable of computing only enough primitive functions to give general-purpose
networks (e.g., ADD, NOT, THRESHOLD), for efficiency some nodes should be able to com-
pare two values, thus computing a MATCH. MATCH entails SUBTRACT (exactly like ADD,
except one of the quantities is treated as though negative); NEGATE if the result was negative;
TEST against a THRESHOLD to assess whether this discrepancy is small enough (actually, this
entails subtracting the result from the threshold and testing for negative) - and finally firing out if
this sequence of processes succeeds.

These can all be built from any general-purpose set of primitives - including AND, NOT, and
THRESHOLD, or the traditional CN primitives. These micro-nets of nodes (consider them
black-box sub-nets) must further be strung together appropriately to handle whatever whole
string of primitive firings is needed to encode each b-bit symbol, and to pair together the attri-
bute and the value.

At a still higher level, S (S = number of logS-bit different symbols) of these black-box sub-nets
that look for MATCHes can be combined into a code book that finds the particular match. This
can be handled serially, by stringing each matcher after the next, and passing the symbol-to-be-
matched through this pipe-line serially, in O(S) time. (S output links will also be needed, along
with nodes that decide to initiate firing, so that the successful node can send notification that it
succeeded.) Or it can be handled entirely in parallel, in 1 time cycle, by adding S links, one to
each matcher, and sending the symbol to be matched to all matchers in parallel. Or it can be
handled in any desired mixture of parallel and serial, using tree-structured nets that combine
both of the above techniques.

The above techniques need O(kSlogS) nodes, and O(kS) time for the serial implementation and
O(k) time for the parallel implementation. Often more efficient is a discrimination tree (also
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called a sorting net). This makes a 20-questions-like sort, moving down a tree from the first bit
to the last, which points to the encoding. It needs only O(kS) nodes and O(klogS) time.

Plausible New onal Implementations of a Sub-Net that Matches Code Book Entries
The following sketch out several ways that these black-box functions can be achieved.

A Single Common Code Book at Each Node: Possibly the most straightforward way to imple-
ment a network that handles symbols is with a code book that contains each of the symbols that
might be encountered, plus the ability to scan that code book for matches with patterns coming
into the sub-net where the code book resides. That can be handled by a whole set of new sub-
nets, one for each code book entry. Each sub-net has built into it the pattern for one entry, and
subtracts this pattern from the incoming pattern, eliminates a negative sign, and fires out if the
absolute difference is below some (small) threshold.

Each entry’s sub-net has the capability of matching. All sub-nets fire into whatever nodes the
original node fired into (possibly an intervening sub-net chooses the single max when more than
one code book entry fires out).

This will enormously increase the size of the net. To build a net where each and every black-
box node is able to encode and decode S symbols, each sub-net representing a black-box node
needs: O(kS) nodes to decode, plus O(kS) nodes to choose the decoding; plus O(kS) nodes to en-
code, plus O(kS) nodes to choose the encoding. (Each of these steps needs O(klogS) time.) This
turns an N-node network into an O(kSN) Node network.

Thus for a network of the complexity of a human being, who uses at least hundreds of thousands
of symbols (the words in 5'1 di%tionary), this multiplies the size of the original network that does
not handle symbols by 107-10", or more.

A Single Common Code Book At Only One Location: An alternate implementation would
handle things much as do conventional computers, storing the code book only once. That would
cut down from O(kSN) to N+kS nodes. But O(2kSN) new links would be needed, to access this
single code book from any other node. In an actual physical implementation, some wires wouid
be much longer than others, raising additional problems in driving and synchronizing pulses.
And there would be enormous problems (possibly at least partially solvable by adding sti.l more
nodes, but probably necessitating substantial slow-downs) in handling the bedlam of contentions
for this single precious resource.

Since conventional computers can access any part of "main” memory in one instruction, and are
serial, hence limited to executing only one instruction at a time, they evade these problems. (But
these are major causes of the limitations of serial stored-program computers that have been
called "the Von Neumann bottleneck.” Computers large and fast enough to handle realistically
hard Al problems like visual recognition need many processors all working in parallel, and can-
not store everything in a single commonly accessible memory.)

Fortunately, more efficient implementations exist.
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Small Partial Code Books That are Shared By Adjacent Nodes: There is no need to have the
entire code book at every node. All that is needed is for each node to have entries for only those
symbols for which those nodes directly connected to it have entries. That is sufficient so that
whatever encoding the sending node produces the receiving node will be able i decode.

This reduces complexity to O(kpN) nodes, where p is the average number of entries in the partial
code books.

Parallel-Hierarchical Encoders: Encodings and decodings can be effected using serial hierar-
chies of small parallel nets. A W-symbol pattern can be processed in O(log ~W) serial moves up
a tree-hierarchy, when chopped into C-length chunks. The depth of hierarc%ical processing can
be controlled by choosing the size of C. Thus much longer "words" (e.g., sentences, and 2-
dimensional images) can be handled with efficiency and speed by decomposing them in this
way. Indeed, this basically handles symbols by using pyramid vision techniques (e.g., Tanimoto
and Klinger, 1980; Uhr, 1987) to recognize them.

Combinations of Shared, Partial, and Parallel-Hierarchical Code Books: Rather than a sin-
gle common code book, the system can have several, or many. Rather than small local code
books, it can have small, or somewhat larger, code books that are linked to by local clusters of
processors. Parallel-hierarchical structures can be used to handle relatively large and complex
encodings, and simpler parallel or serial structures for small sets of symbols. Different ones of
these structures can be used, as appropriate, in different parts of the network.

Discussion, Conclusions, Summary

Connectionist networks are general-purpose; therefore they obviously can handle symbols and
lists, and structures of any sort. Yet it is widely thought that they cannot. The problem appears
to be that handling symbols is inherently complex and expensive, and it can be extremely com-
plex to process the information symbols point to. But these are necessary aspects of the com-
plexity that networks must confront.

Each symbol is qualitatively different, hence must be identified separately. This introduces ma-
jor additional costs when using connectionist networks. Since the necessary mechanisms are
built into conventional stored-program computers - €.g., to build and access stored symbol tables
- it is easy to overlook their complexity.

Restricting connectionist networks - to only add, multiply, and/or threshold numerical values - is
equivalent to insisting that computer programs use only some very simple and restricted (yet
general-purpose) set of instructions (e.g., a minimal Turing machine set like FETCH, STORE,
SHIFT, IF x THEN y; or an even lower-level set of primitives, like NOT-OR). They are
sufficient (indeed, NOT-OR is widely used as the primitive building-block for general-purpose
computers), but quite frustrating to work with or to understand.

Adding higher-level and more powerful black-box functions is equivalent to adding more power-
ful instructions to a computer’s primitive set (e.g., MUJ TIPLY, FLOATING-POINT MULTI-
PLY, in addition to ADD and LOGICAL-AND).
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The black-box function can always be translated into and replaced by an equivalent network of
simpler functions. Ideally, this should be a natural translation, one that results in an efficient
(and - if this s one of the goals - brain-like) network. Thus connectionist networks that handle
symbols can be realized quite straightforwardly if one uses types of nodes that can match (hence
identify) symbols.

Matching can be a very simple analog operation - e.g., for an optical device that shines light
through two templates (a positive and a negative), and focuses it on a collector that integrates,
thus summing the amount of mis-match. It is also the routine operation for conventional stored-
program computers, where built-in match instructions are executed on universally accessible
tables of symbols (the code books).

But matching is expensive to realize using networks of simp’ . ..-threshold-multiply units. A
whole micro-circuit of such nodes is needed to encode or tv decode each symbol. And matching
and choosing among alternatives entail carefull, synchronized sets of operations in several sub-
nets of nodes.

The basic symbol is used simply to point to other symbols - to build and access the strings, lists,
and more complex list-structures that contain the symbol’s meaning (whether simple or com-
plex). The richness of its meaning is a function of, and lies entirely in, these accessible struc-
tures of information. (See Uhr, 1989d, for an examination of network structures and processes
_for traditional serial, and also network-oriented parallel, list-processing procedures.) When the
symbol serves as a variable there must be additional capabilities to assign and change its value.
For this, a memory that can be accessed and changed is the simplest solution; but memories are
expensive. The variable’s value will be determined by those structures of nodes in the larger net
that fire into it. Without a memory the system must work much like an applicative language
(e.g., the original Pure Lisp), by having the larger net continually re-fire the same value into it.
(See Uhr, 1989c, for an examination of how memories and variatles can be handled in net-
works.)

Code books must be available where they are needed. This necessitates combinations of the fol-
lowing:

Keep several, or many, copies spread throughout.

Add enormous numbers of often long links (on the order of SN for an N-node net that uses S
symbols).

Or - almost certainly the best - as much as possible store only very small code books with
nodes (paying the price that each node can handle only a very small number of symbols).

Numbers are simply values that certain symbols (e.g., 1, 2, ...; one, two, ...) point to that are re-
lated by the simple arithmetic procedures. A single procedure, like ADD or DIVIDE, can be ap-
plied to any set of numbers; the procedure’s output is the result. So simple sequences of numeri-
cal processes typically have no need for code books.

When there is absolutely no computable relation between the members of a set, a separate en-
coding is needed to identify each. Letters and word-stems are good examples. Each must be
looked .or and matche:d using a qualitatively different entry in a code book. This entails com-
puting the absolute difference between the symbol to be icentified and each of the entries in the
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code book, and evaluating whether it is small enough (using either a threshold, or a more com-
plex procedure that chocses the closest among all the alternatives).

It is often possible to combine procedures (as for numbers) and tabled code books (as for sym-
bols). For example, a procedure can rotate, magnify, translate, and in other ways transform a
table that contains one edge, one 45° angle, and so on. Thus the simple procedure can turn a sin-
gle symbol into a whole family.

Connectionist networks can indeed handle symbols; but at the cost of additional complexity.
Essentially, each node needs a small micro-circuit of traditional nodes that can encode and
decode each symbol it must handle (or links that access such a micro-circuit that is used in com-
mon by several, many, or all nodes).

Almost always, a symbol has an associated value (e.g., a weight or probability), and a numeric
value has an associated symbol (e.g., greyscale or some other feature). So it may often be desir-
able to build nets that link nodes in pairs - one to handle the symbol (attribute), the other to han-
dle the number (value).
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