A244 069
MM" 1|| IR

RL-TR-91-284
Final Technical Report
November 1991

PERMUTATION SETS AND ROUTABILITY
OF MULTISTAGE INTERCONNECTION
NETWORKS (MINs)

OTIC

»;, “LECTE
i, JANO 3 IQQZD
5

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

Syracuse University

- ,@"3

Sponsored by
Strategic Defense Initiative Office

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Strategic Defense Initiative Office or the U.S.
Government.

Lab
Air Foszzmseysten?;aé%?nmand 9 1-19414
Griffiss Air Force Base, NY 13441-570 “".,'I !"' ']"l " Ill” MM[{ ” "'
o3 U o . o

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-91-284 has been reviewed and is approved for publication.

APPROVED:)/an 6 V M

JON B. VALENTE
Project Engineer

RAYMOND P. URTZ, JR.
Technical Director
Command & Control Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL(C3AB) Griffiss AFB NY 13441-5700. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

PERMUTATION SETS AND ROUTABILITY OF MULTISTAGE
INTERCONNECTION NETWORKS (MINs)

C.Y. Roger Chen
Calvin J.A. Hsia

Syracuse University

F30602-88-D-0027

Effective Date of Contract: September 1988

Contract Expiration Date: September 1991

Short Title of Work: Permutation Sets and Routability
of MINs

Contractor:
Contract Number:

Period of Work Covered:

Principal Investigatpr:
Phone:

RL 2roject Zngineer:
2hone:

Jul 89 - Sep 89

Dr. C.Y. Roger Chen
(315) 443-4301

-on 3. Yalente
{315) 330-3241

Aporoved for public release; distribution unlimited.

This research was supported by the Strategic Defense
Initiative Office of the Department of Defense and was
monitored by Jon B. Valente, RL (C3AB) Griffiss AFB__

NY 13441-5700 under Contract F30602-88-D-0027. BT

REPORT DOCUMENTATION PAGE | cws Nerevosotas

Pubiic reporing burcen tor this colection of FEOTTENON & GErTEDc tO SVErEgs | NOLE DIF MEDONER, MEA NG 1S e fOF VIBMI) METUCTONS, SSICHINg SoI0NG CILa SOLITES.

GENSTIQ 870 MErtars™) 9 GIts NeSOC, N0 COMOISNG and reviewsg the colechion of NfoNMEnon. Send SIMImarts fegIrcing this DLFOSN SEFTEe OF &y oMW sspect of 0
colscton of rformaton, NCANG sUgDeEtons for reducing this turoen, to Weshngeon Headcuantsrs Servicss, Drectoras for InfonTanon Operstxns andReparnts, 1215 Jefferson
Davig Hicrwey. Sute 1204, Aringron, VA 22202-4XX2, srd to trw Office of Maregermart and Buoges. Peosrwark Aeduction Prasct (0704-0188), Washegron, DC 20502

1. AGENCY USE ONLY (Leave Blank) |2. REPORT DATE |13. REPORT TYPE AND DATES COVERED
f November 1991 __Final __ Jul 8% - Sep 8¢
4. TITLE AND SUBTITLE !5. FUNDING NUMBERS
PERMUTATION SETS AND ROUTABILITY OF MULTISTAGE i C - F30602-38-D-0027
INTERCONNECTION NETWORKS (MINs) : Task B=-9-363C
PE - 63223C
6. AUTHOR(S) PR - 2300 (Prev B413)
C.Y. Roger Chen, Calvin J.A. Hsia TA - 03
WU - PP
7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Syracuse University REPORT NUMBER
Dept of Electrical & Computer Engineering
Syracuse NY 13244-1240 N/A
9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Strategic Defense Initiative ; AGENCY REPORT NUMBER
e Py,] ‘
Sigiii;rﬁ‘iécieiiniie Rome Laboratory (C3AB) . RL-TR-91-284
3 ees -
wash DC 20301-7100 Griffiss AFB NY 13441-5700

11. SUPPLEMENTARY NOTES
Rome laboratory Project. Engineer: Jon B. Valente/C3AB/(315) 330-3241

12a. DISTRIBUTION/AVAILABILITY STATEMENT 11 2b. DISTRIBUTION CODE

approved for public release; distribution unlimited. !
|

1 %{A?SIRACT(M-H_\M 200 worcs) . . R - .
Multlstage interconnection network is of the most important components for de51gn1ng

nigh-performance parallel supercomputers and for providing a powerful reconfigurable
programming environment such that programming is independent of the actual computer
architectures. In this research, some fundamental issues in multistage intercon-
nection networks are investigated. Results, which promise great potential for the
design of a reconfigurable high-speed parallel supercomputer with an architecture
independent programming environment, are presented. First, two characteristic
functions are introduced to characterize networks in a proposed class of multistage
interconnection networks. Message routing schemes, network partitioning algorithms,
and many other useful properties are presented. Next, a more general class of multi-
stage interconnection networks and two more general characteristic functions are
introduced. The transformation rules for one network to emulate another in the class
is presented such that the programs and algorithms developed on one machine can be
reused on others. Then, the permutation capability (in terms of non-conflict parallel
communication) of each network is presented through the concept of network
partitioning. An algorithm to determine the admissibility of any permutation on a
multistage interconnection network is developed. Finally, a fault-tolerant reconfigu-
ration scheme is presented for parallel processor systems which employ multistage

interconnection networks for interprocessor communication. (See reverse)
14, SUBJECT TERMS 18 NUMBER OF PAGES
Computer Networks, Computer Architectures, Fault Tolerant 196
Computing 18 PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION [20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Stanoera Farm 298 (Rev_2-89)

Preacriosd by ANS! St 23818
20102

Block 13 (Cont'd)

Since faults in networks will destrov the communication paths between some
network input anc output ports, multinle passes through the network are requirec
for the communication between some processor palrs. A shortest-path message
routing scheme 1is developed on such & system. Moreover, fault-tolerant
partitioning algorithms are developed such that in each subsystem, the property
of Iull connectivity is maintained.

(3%

('S

i

TABLE OF CONTENTS

2.2, Basic Connection Patternccccooiiiiiiiniiniiiins cermterceee e ce e et seee s e s e
2.3. Topological Structure of the log N [0 e

2.4, Routing AIZOTIhIM ..ottt st e s eeeeeeenn

2.6, SUIMMMATY oottt ste s sree e st e se s s e et e se s ae s e e sneant s e et an s e st esnsanseennns

TRANSFORMATION RULES FOR MULTISTAGE INTERCONNECTION

N E T W O R K S e ettt e e e e e et e ae e e ae e e ae e s e e aeaeaanaaananes
3.1, INIEOAUCHION eeeiiiieeeeeeeee ettt eeeeeees sttt neaasseseaesse st seaeensnsannsaaenenssnsessasannnsnraaeees

. Bit-Permute-Complement Multistage Interconnection Networkc..ccceeee...

[99)
1J

3.3, Network Transformation RUIES ..ottt ee e e e e vt eeaaeaeeaans

3.4, SUMIMATY ottt sttt re st ee e e te e saee st e e et sase et eeease e b aeanneaasaseansneesans

3L INIPOAUCTION ittt e s s sme e s nae e
4.2 PrelIMNary o e e e e e

4.2.A0 OmMega NEtWOTKS oottt et s e e

wn

59

70

iv

4.2.B. Routing Behavior of Omega Networksccccovieveeviieeiieiirieereereeeeeesniens 78
4.3. PEITULADIE SIUCKUTEvoevvvvveeeesssssseeseeesessssssssssssesssssssessessssssesssessesessrseesesesenene 80
4.4, Permutable Capabilityccoccciiriiiiiiiiiiie ettt 91
4.5, General MOdel ...ttt st 104
4.6, SUIMIMATY oottt ettt et e et e st e es e s e e assaasaeesteestane s e eans 115

5. A FAULT-TOLERANT RECONFIGURATION SCHEME FOR MULTIPRO-

CESSORS ..ttt ettt st et et e e s be e s e e b e st a e e e esseeraaessa s seereeneenneeas 116
S.1. INrodUCHON ...ooiiiiriiciiii et eteeeeeentee e e rareenrnas 116
5.2. System and Fault Models ...ttt 120

5.2.A. System MOdel ...t e s r e e ennes 120
5.2.B. Fault MOGEL ..ttt st e et e r e 121
5.3. Fault-Tolerant RecONfIGUIALIONccccceiiiiiiiiiiiiiiieee et e 125
5.3.A. Routing Behavior of Omega Networks under Faultsccccveeurennnnnn.. 126
5.3.B. Communication Capability for the First Pass under Faults 130
5.3.C. Construction of the Surviving SYStemcc..ccoeiviriiiiinienieeeeeeeee e 134
5.3.D. Construction of Shortest-Path Routing Tablesccccccociiiiieiieveenennnnne. 143
5.3.E. Reconfiguration of The Surviving SySIEmMccccccmrierriirmrrierrrcersrienreeenens 150
5.4. Complexity of the Hierarchical Fault-Tolerant Reconfiguration Scheme 159
5.5, SUIMIMATY oottt ittt st et e et ce st se s abae e es e s asaa s e st abee st assaeseeasasseesasnsensessessas 164
REFERENCES ... ittt ettt er ettt et ese et s e b e tseaee et eaeetae s esaeseseseenen 166

2.1

tJ
[®)

(9]
n

[

2

L

LIST OF FIGURES

The connection pattern defined by a CP(4) permutadon specified by V =
(0.1.2.3) 1.e.. a bit reversal funCton P. ..o
The connection pattern defined by a CP(4) permutation V = (1,3,2,0) in which

. The baseline network and its Banvan graph representation.cccccoeeeeiieineen..

An N x N n-stage MIN, I'. consisting of n switching stages and » + 1 connec-

tion patterns defined by CP(7) PEMMMUIATIONS. ..cccceiviieiirenuniiinteecteecerseetreeseeesaresaanens

A 16 x 16 4-stage cpmin type MIN are constructed with connection patterns
specified by vectors VO = (2,1,0,3), VI = (2,3,1,0), Vz = (0,1,3,2), V3 = (2,0,3,1)

and V= (1,3,0,2). The conflicting path connections from S = (0,0,0,1) to D =

(1.1.0.0) and A = (1,0.0.0) to B = (1,1,1,1) are also shown.cceovvmveeriimmnieaeeeaannn..,

Two 3-stage non-CPmin Banvan type MINs are shown. Both of them have the

destination-oriented routing SChEMIE. .o s
. {a) The buddy property. (b) The interstage buddy property in an MIN.

The decompesidon property of a cp™n type MIN. e

The 3-stage sabnetwork JOO on the MIN shown in Fig. 2.5 is formed by forcing

all the switching elements at StAZE 0. ...oooviriiiiiiiieiiiieces et ee e e sene e ee s reee e

.10. One of the two 2-stage subnetworks on JOO shown in Fig. 2.5 is formed by

forcing all the switching elements at StABE 2.cccovviiiiieneenienrtrireeeeeseee e e

An .V x N MIN is represented by a sequence of BPC permutaton and exchange

OPETATIONS. .eeeiiieteaerieeritessnteereteetneestessaneea s aeertasssaeeate s e esae e s sssees sabeaenaesensaneasbaeesnsanassns

14

lo

17

Ng

-

46

47

3.2. A 16 x 16 bit-permute-complement MIN defined by a sequence of BPC permu-
TATION OPETAIONS. ..ieeriierreeieeiecriteeesesanerssbesseesaraesenseesabeasssaesanessasssansesrnesenasesanenenanss
3.3. Transtormation between MINS. ...ttt et e sere st e sese s
3.4, Transformation from a 16 x 16 Omega network to a bit-permute-complement
MIN shown in F1g. 3.2, ittt sr st ea s
3.5. Transformation from a 16 x 16 Baseline network to a 16 x 16 Omega network
3.6. The relative positions of switching elements of the transformed MIN, in Fig.
3.4 with respect to those of MIN, in Fig. 3 e
4.1 A 16 X 16 OmEZa NEIWOTK. eeiiiiiiieeec et ceeee st cie e e e sres s s sr e sene st sims sras s seaes
4.2, Two 3-stage subnetworks are formed by forcing all the switching elements at
s1age 1 on a 16 X 16 OmMeZa NEIWOTK. .eooiiiiirieiiieeiieie ettt ee e s
4.3. For N = 16, the three sets of subnetworks (®[i, f]10 <t < 23 1}1,0<i<2,
Of aN OMEZA NEIWOTK. ..oceioiiiiiiiiie ittt st et sa e s
14, For N = 16. the three different partitions (¥[i, 1] 10 <t <21 . 1}, 0<i<2.
14.5. Two example permutations on a 16 x 16 Omega network.ccccviviiiiiininnne.
4.6. A 16 x 16 network defined by the general model. ...
3.1 SVSIEM MOAEL oot e
3.2. A l6-processor multiprocessor interconnected by a 16 x 16 Omega network.
5.3. An example fault set F on a 16 x 16 Omega network.c.cccviviiniiiniiiinns

vi

60

64

vil

5.4(a). A 32 x 32 Omega network with a fault set.cccecereeneen.

..................................

5.4(b). An alternative drawing of the Omega network with the same fault set.

5.5. The surviving substructure of the system in Fig. 5.4 after removing all the com-

ponents in the maximal fault SEL.cccoiviiiiiiiniiiniiiciciecees

..................................

5.6. Two subsystems are formed from the surviving system in Fig. 5.5. ...

5.7. The diagram used to explain the complexity of Algorithm 3.

.................................

139

140

141

158

163

5

192
19

4.

i

h
I

.1

1.

(29

viii

LIST OF TABLES

The characteristic functions of several famous MINs and their reversal net-

...

The restriction array [CR] and the connection array [CS] for the surviving sys-

IemM 1N FIg. 5.5, et

The simplified shortest-path routing tables of the surviving system in Fig. 5.5.

...

()
Wl

114

CHAPTER 1

INTRODUCTION

The basic concept in designing parallel supercomputers is to employ an interconnection
to interconnect a large number of processors and memory modules such that memory modules
can be accessed in parallel processors can communicate with each other with serious com-
munication conflict or traffic congestion. Since the trend in designing supercomputers 1$ to
use off-the-shelf products for processors and memory modules, the bottleneck is the intercon-
nection network. Specifically, we define an interconnection network to be a connection of
switches and links that allows data communication between processors and/or memory
modules in a system consisting of multiple processors. Many factors are involved in deter-
mining the cost-effectiveness of a particular network design, including the computational tasks
it will be used for, the desired speed of interprocessor data transfers, the actual hardware
implementation of the network, the number of processors in the system. and cost constraints
on the construction [Bhu87]. Interconnection networks can be classified into two categories
based on network topologies: static networks and dynamic networks [Hwa87]. Examples of

static networks are linear array, ring, star, tree, mesh, systolic amay, chordal ring, hypercube.

and cube-connected-cycle. Examples of dynamic networks are single-stage, crossbar, and
multistage interconnection networks. The two major switching methodologies .or interconnec-
tion networks are circuir switching and packet switching. In circuit switching, a physical
path is actually established between a source and a destination. In packet switching, data
packets are routed through the interconnection network without establishing a physical con-
nection path. In general, circuit switching is much more suitable for bulk data transmission,

and packert switching is more efficient for short data messages.

In this report, we will focus on the domain of multistage interconnection networks since
they offer a flexible environment to meet real-time processing requirements for either mul-
tiprocessor or share-memory systems. The functonalities. topological relationship, and fault
tolerance of various multistage interconnection networks are discussed in this report. The rest

of this report is organized as the following five chapters.

In Chapter 2. two characteﬁétic functions O and I are introduced to uniquelv describe
any Multstage Interconnection Networks (MINs) constructed by general shuffle connections.
All the MINs constucted by general shuffle connections are shown to be in a class of
equivalent Banyan type MINs, named as the log,V-stage Column-Permute interconnection
network (log,¥ CP™™), Based on these two characteristic functions, we show that routing
algorithms, network construction rules, network equivalence properties, and network transfor-
mation rules can be directly established. As the design of reconfigurable systems is con-
sidered, we show that the equivalence among networks can easily be described by linear
transformations on characteristic functions. In other words, the equivalence can be interpreted
as a renaming scheme or the inputs and outputs of a network. We explain why the routing

scheme on each network is always destination-orientgd and source-preserved.

In Chapter 3, the CP™" networks in Chapter 2 are extented to a class of Bit-Permute-
Complement (BPC) type multistage interconnection networks. This class of BPC networks is
based on a more general interconnection model than that of CP™", Typically, they possess a
very simple routing scheme such that for any communication path the source address can be
easily preserved and the destination can be used as routing tags. General rules for transform-
ing a multistage interconnection network into another in this class by simply renumbering the
inputs and outputs of the network are presented. Both distributed and global routing schemes
after the transformation are discussed. By using the proposed network transformation rules,
algorithms developed on a machine using a multistage interconnection network can be directly

used on another machine which employs a different network.

In Chapter 4, the permutation capability of the class of BPC multistage interconnection
networks defined by a general model using bit-permute-complement connections, which
includes the Omega network, baseline network, Indirect binary cube network, etc. as special
cases, is studied. In this chapter, several questions are addressed. How can we easily charac-
terize all the admissible permutations of a network? How can we determine whether or not a
permutation is admissible on a network? We start our discussion on Omega networks due to
their regular structure, and then generalize the problem to the general model. We show that
the set of admissible permutations of a network can be characterized by very simple bit rela-
tions depending on two characteristic functions which specify this network. The time com-
plexity of our proposed algorithm to determine the admissibility of a permutation on a multis-
tage interconnection network is O (N), where N is the number of inputs/outputs of the net-

work.

In Chapter 5, the fault tolerance capability of a multistage interconnection network and
the technique to reconfigure a network under multiple faults are discussed. Both faulty
switching elements and faulty communication links are considered in our fault model. Gen-
erally speaking, in a multistage interconnection network used for interprocessor connections, if
faults occur, many input-output communication paths will no longer be available. A solution
to this is to allow data propagation through the faulty network multiple passes, such that rea-
sonable communication capability can be maintained. In this chapter, a fault-tolerant
reconfiguration scheme is developed for an N -processor system interconnected by a log,V-
stage Omega network under multiple faults. Regardless of whether the faults on the Omega
network are critical or not, a deadlock-free environment is provided for the N -processor sys-
tem by applying our reconfiguration scheme. The reconfiguration of such a multiprocessor
system is based on three principles: disable processors whose communication capabilities are
completely deswoyed. eliminate faulty components and, if necessary, sacrifice some usable
components implicitly without knowing the actual locations of these components. The
recontigured system is a surviving system such that it may be an intergrated one consisting of
a subset of the ¥ processors (including the case of all the N processors) or it may be parti-
tioned into a number of subsystems such that the dynamic full access property within each
subsystem (system) can be maintained. A deadlock-free shortest-path routing table is obtained
for each processor in the surviving system (subsystem) to avoid the danger of deadlock traps
caused bv uncautiously using unidirectional communication paths rather than bidirectional
communication paths between some processors. The time complexity of our reconfiguration

scheme is analyzed as well.

CHAPTER 2

CHARACTERIZATION OF MULTISTAGE
INTERCONNECTION NETWORKS

2.1. INTRODUCTION

The use of Multistage Interconnection Networks (MINs) is considered a very cost-
effective means to provide efficient interprocessor and/or processor-memory communication
(Fen81] [WuFe80] [Sie79]. Examples are the Omega network [Law75], baseline and reverse
baseline network [WuFe80], indirect binary cube network [Pea77)], Delta network [Pat81],
cube network [SiSm78], flip network [Bat76] and modified data manipulator [Fen74]. It is
well known that all those MINs are constructed through a particular type of connections called
general shuffle connections. It is clear that, in addition to those seven MINs, there exists a
huge set of MINs which are also constructed by general shuffle connections. It is also well
known that the capability of each MIN in terms of non-conflicting communication permuta-
tions is different. For example, it has been reported in [NaSa81] that an Omega network can
realize cvclic shifts, p -ordering, inverse p -ordering, etc. and cannot realize operations such as
bit-reversal. Since each application will require a different set of permutations in order to

optimally perform the execution, it is extremely important for a system designer to be able to

identify a MIN which is best suited for applications needs. However, due to the lack of a
general understanding of network characteristics, so far, a designer has to select a MIN out of
the seven known MINs (instead of out of millions of MINSs) in a rather ad hoc manner. This
has greatly limited the achievable performance of a parallel supercomputer. Since it is impos-
sible to investigate the millions of MINs one by one, it is essential to be able to characterize
those MINs such that a precise quantitative description of them will then be available and a
MIN can be immediately investigated as soon as the characteristic functions are available.
Since the characteristic functions of this MIN will carry information regarding the permutation
capability of this MIN, it will then be possible for a designer to select a MIN out of millions
of MINs to0 optimally meet application needs. In this chapter, we will show how to character-

ize the whole set of MINs which are constructed by general shuffle connections.

Many theoretical properties of the above seven MINs have been discussed. which are
summized as follows. Their inputs and outputs are fully connected and a simple routing
scheme can be applied from any input to any output [Fen81] [WuFe80] [Sie79] [Law75]
(Pea77] [Pat81] ([SiSm78] [Bat76] {Fen74]. They have the buddy properrv [WuFeS§0]
[Agr83] [AgSw88] and belong to bideita nerworks [KrSn86]. The topological equivalence
problem among them has been exhibited based on the fact that their graph representations are
isomorphic to the Banyan graph [GoLi78]; that is, they are all equivalent Banyan type MINs.
In [BeFo88], Bermond and Fourneau discussed some Banyan type MINs with
independent connections and showed an approach to explain their topological equivalence.
In [KrSn36], Huang and Tripathi have shown that a MIN can be represented by a finite state
machine. However, other than issues of theoretical interest, these works still tell us little

about how to help designers to investigate or understand the capabilities of the other millions

of MINs. Therefore, their contribution towards the practical application needs which we men-
tioned earlier are rather limited. This again shows that, in addition to the discussion of com-
mon topological properties, it is extremely important to be able to characterize MINs and
directly discuss the network capability, routing algorithms, and construction rules on the
characteristic functions. We believe that this is the starting point for system designers to fully

exploit the capabilities of MINs and really take maximal advantage of them.

In this chapter, our concern 1s to give a global view of the characteristics of various
MINs. First of all, the topological structure of the whole class of log;NV-stage Banvan tvpe
MINs constructed by general shuffle connections (which are called column permute connec-
tions in this chapter) is defined in detail, which includes all the seven mentioned MINs as spe-
cial cases. We denote them as log,N CP™", A path-descriptive methodology is used to
characterize topological features on the whole class and we show that two important permuta-
tion functions, O and I, can uniquely specify each MIN in the class. We call these two
characteristic functions. Based on functions O and I, many important features of MINs
including routing algorithms, network construction, permutation capability, etc. can be
immediately established or examined. As the topological equivalence is considered, we show
that the equivalent relation among MINs can be subdivided and is an intrinsically linear
transformation on functions O and I. In other words, the transfer from one MIN to another
can be viewed as a renaming scheme on the inputs and outputs of a MIN. It has a significant
impact on the design of a reconfigurable system. As communicatuon is considered, we show
that the routing scheme for each MIN in the class can be directly derived from the charac-
teristic functions O and I. We explain why the distributed routing algorithm for each MIN is

destination -oriented (i.e., its routing tags can be determined by the destinaton addresses

only) and source-preserved (i.e., the address of the source input can automatically be
preserved without extra efforts). Note that, in this chapter, since we limit our discussion to

log,V -stage MINs only, logyN CP™" and CP™" are used interchangeably.

The rest of this chapter is organized as follows. In Section 2.2, we introduce a class of
basic connection patterns defined by CP(n) permutations. Section 2.3 is devoted to the topo-
logical structure of the CP™™ and the outline of two important characteristic functions, O and
I. We show how they are related to the equivalence and transformation among MINs. In
Section 2.4, we show the relation between general routing algorithms and the characteristic
functions. In Section 2.5, the decomposition and partitioning of various networks are dis-

cussed. Finally, Section 2.6 concludes this chapter.

2.2. BASIC CONNECTION PATTERN

In order to describe a network in terms of permutations on N symbols, we may label the
links of this network at the inputs and outputs of all switching elements following their
natural order in the drawing. A label is a number between 0 and N -1 whose binary represen-
tation (i.e., address) can be denoted by (x,_;, . . . ,x;.xq), where x; is the least significant bit
(LSB). Each connection link is defined by two labels and each connection pattern between

two adjacent switching stages is specified by a permutation of N labels.

An n-stage MIN constructed with n+1 connection patterns has often been defined using
these premutations {Par80]. For éxamplc, the Omega network is defined as n consecutive
perfect shuffle permutations plus an identity permutation for connecting outputs of the net-
work. A perfect shuffle permutation is defined as a circular left shift of the binary representa-

tion of an operand.

Note that not every arbitrarily selected n+1 connection patterns can be used to design a
MIN with the desired properties. For example, any disturbance in the order of n+1 connec-
tion patterns on the Omega network may result in a new network which will no longer
preserve the full connectivity property. In other words, the topological structure of a MIN is
closely related to its functional behavior and its construction should be based on a systematic

method for selecting a sequence of valid connection patterns.

In this section, we introduce A class of basic connection patterns. Using this set of per-
mutatons, we can define construction rules and describe the functional behavior of varicus
MINs.

Consider numbers from 0 to N-1 and the binary representation of each of them. X =
(Xp_ys - o x1,x0). We define the class CP(n) of Column-Permute premutation functions by a
permutation on indices of the representation.

DEFINITION 1: A CP permutation P in CP(n) is specified by an n-tuple vector V' =
B(n=01), 6(1),6(0)), where 6 is a permutation function on (n-1...1.0) and
(B(n-=-1, ..., 6(1),8(0)) is the image of 6. The mapping of P on X = (x,_;, Y1Xg) &
[0, V-1] is obtained as follows:

Pe CP(n) (N =2")
Px,_i, ..., x1xq) = (Px,_), Px),Plxyg)
= (Xg(n-1)--X0(1)X 8(0))
= Vptr - - 2 Y 1Y) &
[t is very easy to show that the P operation is closed with respect to the domain {0, V-1]. 1e..

PX)e [0, N-1] for all X € [0, N-1]. Similarly, we can define the inverse function P! of

10

DEFINITION 2: Let 67! be the inverse permutation function of 8. The inverse CP per-
mutation P! of P defined in Deﬁnidon 1 is specified by an n-tuple vector V™! =
® Y(n-1),...,67%(1),071(0)). The mapping of Pl on X = (x,_,...,x,xq) € [0. N-1] is
obtained as follows:

Ple CP(n) (N =2

Plx, |, t1xg) = (P x,_p), . P). P xg)
=(Xg-1(n-1)-X g1 ¥ 07 (0))
=(Zp_ps - - L2120 -

For example, consider n = 4 and let V = (2,1,0,3) and X = (1,0,0,1). We have y; = x,,
vy =xy, ¥y =Xgand yo = x3. Hence, P(X) = (0,0,1,1). Similarly, we have V™! = (0.3.2,)
and P7H(X) = (1,1.0.0).

Note that the k-subshuffle o, , the perfect shuffle ¢ (i.e., the (n-1)-subshuffle) , the k-
butterfly B, and the bit reversal p are defined as follows:

Ok (X) = (Xp_pyeXier 1 Xk — 10X 0Kk)
O(X) = (Xp_2se.sX | X X p 1)
BeX) = (X _poeeKica1 X 0Tim10eo- X 15%)
P(X) = (XX v K2 Xn_1)
These functions are examples of general shuffle permutations and are used to define the basic

connection patterns to design the six MINs studied by Wu and Feng [WuFe80]. [t is particu-

larly worthwhile to discuss a special subset of permutations in CP(n) with 9(0) = 0, because

11

these permutations give remarkable restrictions on the design of useful n-stage MINs as we

shall see later.
As the connection patterns defined by N -symbol permutations are considered, the switch-

. . . N
ing elements on stages at both sides of a connection pattern can be labeled from 0 to 5 1=

27-1.1 following the same ordering as the labeling of their output (input) links. That is, let ¥

= (X,_1, . . . ,X1) be the label of a switching element, then the output (input) links connected

to this switching element are labeled

X0=(x N .XI,O)

n-1 -
Xl = (x,,_l, G ,Xl,l).

These X, and X, are named as the O-output (0-input) link and 1-output (1-input) link with
respect to Y, respectively. For a connection pattern defined by a CP permutation P connect-
ing two adjacent switching stages, say stage j and stage ; +1 (excluding the special case
specified by 6(0) = 0), the O-output link (x,_;,...,x;,0) of a switching element ¥ =
6 ST x,) at stage j is connected to the input link (P(x,_,), ... ,P(x),P(xg)) of a
switching element (P(x,_;)...., P(x)) at stage j+1 such that some P(x;) =0, I<i<n—1. Simu-
larly, the l-output link (x,_;, . . . ,xy,1) is connected to the input link (P(x,_,),....P(x{),P(xy))
of a switching element (P(x,_,),...,P(x{)) such that P(x;) = 1. These two switching elements
which connect to the O-output link and 1-output link of Y are called Y’s O-successor and 1-
successor, respectively. We denote them as succ%(Y) and succ'(Y). In a similar way, for a
switching element Z = (z,_;,z;) at stage j+1, prec®(Z) and prec(Z) at stage j which
connect the O-input link and 1-input link of Z represent Z’s O-predecessor and 1-predecessor.

respectively. As those connection patterns defined by CP permutations with 6(0) = O are

12

considered, we have succ®(Y) = succ(Y) and prec®Z) = prec}(Z). Therefcre, for a connec-

tion pattern defined by a P € CP(n) connecting stage j and stage j+1, we can always have

the following relation: let ¥ = (u,_yy....4)), ¥ € [0, = -1], be a switching element at stage ;.

2

If P is specified by 6(0) = O, then succ }(Y) - succ%Y) = 2¢ for some i € (1, n-1]; else
succ(Y) - succ®Y) = 0. Similarly, let Z = (v,_, ...,v,). Z € [0, Z—Z— -1], be a switching

element at stage j+1. If P is specified by 8(0)#0, then prec (Z) - prec®%Z) = 2% for some k

e [1, n-1]; else precl(Z) - precO(Z) = Q.

Our CP(n) connection patterns ‘satsfy the definition of independent connections
(BeFo88]. Thus, they are independent connections, too. For example, in Fig. 2.1, we show a
connection pattern defined by a CP(4) permutation on numbers from O to 15. The permuta-
tion is specified by V = (0,1,2,3) which is a bit reversal function p. In Fig. 2.2, we show

another connection pattern specified by the vector V = (1,3.2,0) in which 6(0) = 0.

2.3. TOPOLOGICAL STRUCTURE OF THE log,N Cpmin

A MIN is said to have the Banyan Properry if and only if for any input and output there
exists a unique path connecting them, i.e., its inputs and outputs are fully connected. Any
Banyan type MIN can easily be modeled by a Banyan graph in which vertices represent
switching elements and arcs represent connection links [Agr83]. The structure of a Banyan
graph is essentially an overlay of tee structures and assures full connectivity among base and
apex vertices without redundancy. In particular, those NxN n-stage Banyan tvpe MINs
(Fen81] constructed with 2x2 switching elements can be modeled by (2.2,n) rectangular SW

Banyan graphs and its comresponding Banyan graph representation. As mentioncd in some

13

[= B [) *t
(=) S ™ T v ot~ an o — e - —
1 | S 1 | N U W T N N |
[=] v.x_ [I g g
o o~ ™ o (Yo TN o 0w o - e — e —_—
[=] 4 ™ . -2 w o (= [B) +
— — e - e
| 7T 7 1771 1Fv 17T
(o) N ® . o~ e o (=T [B 4] <
—_ e o — -
—1 O OO O O O O O ot e e e - —
N
VA O OO O e et OO O T v e —
N’
Qr O O e OO et OO e OO —
—r O A O et O D O O D -
— D O e OO O O 4D - - —
QO O OO OO DD +
X O O O O — e A OO O Do —
— OO D OO DD D e vt vt et e —

2. 1.

-
e

Fig.

The connection pattern defined by a CP(4) permutauon

1%

), i.e., a bit reversal funcuon o

0,1,2,3

14

10

11

- 1

-
-

10

11

i2
13

14 ™ 14

[}

10

11

13

15

—
—

P(X)

—

4

8

10 =

11 =

13—1

14

15 =

0 00O

000

1

0090
00

0

1

0

0

—

0 000

0

)

0 00
00

1

=0 -

(1,3,2.0) in which g(0)

V=

Fig. 2.2. The connection pattern defined by a CP(4) permutaton

15

previous works (WuFe80][Agr83][HuTr86][BeFo88], all the networks with graph representa-

tions isomorphic to the same Banyan graph are topologically equivalent.

It is a direct conclusion from Section 2.2 and [BeFo88] that if there exist n-stage Banyan
type MINs which can be defined by (n+1)-level CP(n) permutations, they must be topologi-
cally equivalent to one another and their graph representations are isomorphic to that of a
baseline network. What we are concerned with in this section is how to construct a class of
Banyan type MINSs (i.e., the class of CP™" in our notation) using connection patterns defined
by CP type permutations. In order to give a more intuitive explanation of their functional
properties, a path-descriprive methodology is adopted hereafter. Our point of view is that for
easilv routing the message from a source input to a destination output in a MIN, the routing
scheme should preserve the information of source and destination addresses, and, what is

more significant. indicate the topological structure of this MIN.

Consider an N <N n-stage MIN, I' (see Fig. 2.4), consisting of n switching stages and

n+1 connection patterns defined by CP(n) permutations. I' can be defined as
r= PnE(n—l)P(n—-l) L EOPO

where P* € CP(n), E' = E (for all i) denote switching stages, and the superscript i specifies
the ith stage. The effect of a switching stage E is an exchange permutation which is obtained

as follows:
For X =(x,_;, ty,xy), X € [0, N-1]
E(X) = (Xn_], C ,X],d)

where d = x ot Xy (the complement of x;).

16

1S
YRR —C
= ":{é—vﬁ-b

\
‘

" C—

N —
T AN
SRS

Ei\mo a

e d

Fig. 2.3. The Baseline network and i*s Banvan graph representauon.

stage 0

[

PO

NN\ ¢ e

Pl

Lt NN\

VRN NN

17

NN\ S
L s NN\

® & & & ® & @

stage (n-1)

pir-i)

E(H-‘)

Pﬂ

NN\ S

Fig. 2.4. An N XN postage MIN: T ,consisung of n swuching stages and

(n+1)-level connection patterns defined by CP(n) permutauons.

18

There are two kinds of operations on I. A P* permutes binary bits of the operand according
to its corresponding vector Vi = (0'(n-1), ... ,0/(1),6°(0)) and an Ef replaces the least
significant bit (LSB) of the opemd either by the original bit or its complement. Generally
speaking, the result of an operand X performed by P* and E‘ consecutively can be expressed

as follows:
X =&y, - - - X1X0)
X' =P X)) = (XgiguypLei1yFe oy
= Oacts - s Y170)
XOO = EXYy = (i, .., y5dh).
Here, we compose functions from right to left so that for operations P* and E' over X e [0,
N-1], E'P is defined as E' (P (X)).

For [to be a Banyan type MIN, there exists a unique path from any input § =
(Sp-1, - - - »S1,Sp) 10 an arbitrary output D = (d,_;, . . .,d,,dg). Conceptually, we can ima-
gine that S is propagated through I to D performed by those 2n+1 operations consecutively.

Hence, we can get a unique valid transition sequence consisting of 2n+1 binary numbers, i.e.,
D% = PY%s)
D OX0) EO(D 0)
D!l = Pl(D 00)

D(“(I) = EI(DI)

19
pn=Din-1) - E(n—l)(D (nJI))

and eventually,
D" = pr(pn-Da-)
=D.
In their mathematical meaning, D* and D “X9) are mappings of operands D¢~1D¢-D and D!
performed by P* and E', respectively. From another point of view, according to the definition
of basic connection patterns, we can say that each D! is the address of the input link through

which the path from S to D traverses at stage i. Similarly, each DY@ is the address of the

output link traversed stage i. More precisely, the transition sequence has the following form:

S =0,y .- -, 51,50)
D=2, ... ,50s5Q)
DO = (50, .slo,do)
D'=(s,\,,....s{sd)
DD = (S,,l_l, C ,511 Aab
DD = (sntl st a7l
DDA o (gnsl o ga-l gasly
D" =(sP.y.....57.50)
=(d,_dndg)

=D.

20

Instead of being a description using a graph model, the above is a path-descriptive outline of
the structure of an n-stage Banyan type MIN defined by CP(n) permutations. The following
theorem is a necessary and sufficient condition for the class of n-stage MINs defined by

CP(n) permutations to satisfy the Banyan property.

THEOREM 1: Let I be an n-stage MIN defined by CP(n) permutations. I' is an n-

stage Banyan type MIN if and only if there exists an O € CP(n) specified by a vector V¢ =

(69 (n~1), . . .,89(1),82(0)) such that
O(SH—l' P ,SI,SO) = (SeO(n_l),...,SGO(l),SQO(0))
=37, . sdsd)

is tue for each transition sequence representing the path from any input S =
(Su_i» - - - »S,So) to any output D = (d,_y,....d.dq). Here, sk is the LSB of D’ in a transi-

tion sequence.

PROOF: (only if) Let i,j,k,l € [0, n-1]. We assume I' is a Banyan type MIN. There
exists a unique path between any input and output of I'. First, each P* in I" is a fixed permu-
tation pattern which can only permute bits of its operand. Second, in each transition sequence
all possible chances to change the value of a bit exist on those n exchange permutations
corresponding to n switching stagés where LSB’s of their operands can be changed. Thus. as
in any transition sequence euch s; must be given exactly one chance to be changed to some
desired d;. This is true, because if any s; gets more than one chance to be changed, then at
least one s;, { # i, has no chance to be changed, and each input § could reach no more than
27~ of the total 2" outputs. This contradicts our assumption. Moreover, for each input S

-

two different transition sequences cannot reach the same output D. They are different in the

21

LSB of at least one D)%) if and only if the outputs they reach are different. Therefore, each
s; 1is allowed to appear exactly once at the position of the LSB in some D*. That is, 5; = 56
for some i .k € [0, n-1] and there is a one-to-one mapping between the subscript { and super-
script k. Obviously, for I" to be a Banyan type MIN, it is the responsibility of each P* where
k € [0, n-1] to bring some unique s; in S to the positdon of the LSB exactly once. Here, s;
gets the only chance to be changed to a desired d; after the operation of a switching stage.

However, P? can be an arbitrary permutation in CP(n). Thus, the existence of such a permu-

tation funcron O € CP(n) such that

OGp_ts - - > sSo) = (87, L, 5¢.5§
is clear. Let function O be specified by a vector VO = (8% (n—1), .. .,89(1),8°(0)). Then
VO represents the order of bits of S to be permuted to the position of LSB in a transition
sequence.

(if) Since there exists 2 function O € CP(n) such that

- 1.0
O =(5,y, ..., s1se) =87 L 50.5¢)

is true for all the ransiton sequences on I, each bit of an arbitrary S gets only one chance to
appear in the position of LSB where it can be changed to a desired value after the operation
of a switching stage. That is to say, any input S has a unique transition sequence or path to
reach any one of the 2" outputs. Therefore, there exists a unique path between any input and

any output on I'. O

In Theorem 1, we outlined one characteristic on the topological structure of the CP™" as
the necessary and sufficient condition tor each MIN in the class to satisty the Banvan pro-

perty. For a complete analysis of the CP™" there is still another thing which should be noted

22

on the transition sequence. After each s; is permuted to the position of the LSB in some D*,
it must be replaced by a desired d, as the result of D®X¥), ie d; = a*. Then, in the D*1,
df is permuted to the position of bit / where [# 0 (i.e., d* = sf*!), because another s,,
(m # i) should appear in the position of LSB as required by the necessary condition that I’

needs to be a Banyan type MIN. As a result, we have the following relation in each D**!:

(at. d% c (sit), .. sith), foralli e [0, n-2)
and

(@ ...,d% = (st ...,s%)
Eventually, after the mapping of P*, all the d* where k € [0, n-1] will be arranged in the
correct position corresponding to D = (d,_;, . . . ,d.dg) such that d, = di. Clearly, there
exists another permutation function I € CP(n) which is related to the order in which bits of
D are ‘0 be replaced. Given a T’ ¢ CP™", the function I is an inherent characteristic in addi-
tion to the function O. We can use I and O to uniquely describe the topological structure of
a CP™" type MIN. We call I and O characteristic functions .

DEFINITION 3: Let [be an n-stage CP™ type MIN. T can be characterized by the
two CP permutation functions O and I, named as characteristic functions. The function O has
the same definition as described in Theorem 1. The function I € CP(n) is specified by a vec-
tor VI = (8 (n-1), . . ., 6 (1),6 (0)) such that

(dy_y, didoy) =@ .. ., d'.d%

= (@¥-0 g% gl).

()

Here. d* is the LSB of D" in a transition sequence.

23

Now, we can conclude the above discussion as follows. As long as all the n+1 selected
connection patterns used to construct a CP™? (ype MIN I" satisfy Theorem 1, the topological
structure of I” can be specified by two characteristic functions O and I as defined in Definition
3. In other words, Theorem 1 and Definition 3 imply that any transition sequence of a CP™"

type MIN has the following form:

S =01, - - ., 81,50)
D=2, ... ,s?,seo(o))
DOO = (50, . 5049
D! = (S,,l_l Sll ,Seo(l))
DIV =gl sldh
DW= (spol, S 560 amt)
p(n=Dn=1) _ (5:—_11v o ,s’l"l 4™
D™ =(sg_y..... s%.55)
- (de’(n-l) '''' de’(l),de’(()))

= (dn—b e 'dl’d())

where {d',...,d°) < {(sit},...,s{"l), for all i e [0, n-2], and 4/ e

(¥ =0 ¥ GO forall j e [0, n-1).

Thus, the values of 8 (i) and 8/(i) of a CP™" type MIN can be easily obtained from its tran-
sition sequence. That is to say, (8% (n=1), ..., 89 (1).8°(0)) is a permutation on the sub-

scripts of 5,°s and (8 (n~1), . . ., 8/ (1),87(0)) is a permutation on the superscripts of dls.

24

In Fig. 2.5, we depict a 16x16 4-stage CP type MIN T = P*E3P3 - - - EOP?, where VO =
(2,1,0.3), V! = (2,3,0,1), V2 = (0,1,3,2), V3 = (2,0,3,1) and V* = (1,3,0,2). The general form
of transition sequences on I is as follows:

S = (53,52 51, 5¢) D% =(sy 51, S0 53)

D® =(s;,5,,50dy) D!=(sy, 5, dy s0)

DY =(s\,55,dpdy) D?=(dy, dp sy, 59

D*? = (ds, dy, s1,dy) D3 =(d, dy, ds, sy)

D* =(d,, dy, d3.dy) D*=(dy, dydy, dy) =D.
We have O(53,52,51.59) = (51,5 2.50.53) and (d3,dpd,dg) = Wd3d?%d d® = (d'.d%43d?).
ie, VY9 =(1,2,03) and V! = (1,0,3,2).

As we pointed out above, the combined effect of permuting bits of the operation

sequence P* - - - PO on a CP™" type MIN T can be reflected by two permutation functions O

0

and I. The relationship between O, I, and the operation sequence P* - - - P* can be described

by the following lemma.

LEMMA 1: On a CP™n type MIN T, the characteristic function O is uniquely deter-
mined by the sequence P*~! ... P? and characteristic function I is uniquely determined by
the sequence P* - - - PL.

PROOF: Consider an arbitrary transition sequence of I'. After the operation of P, i €
(0. n-1], bit 540, of input S is permuted to the position of LSB in D‘. Clearly, P* has
nothing to do with the function O. Similarly, in D®®, each sgo;, is replaced by bit d‘.

Each d* is then permuted by P**! and preserved in D‘*!. Thus, the final order of d‘’s in D*

25

Q 0 0 0

1 1 1 1

2 : 2 2

Nty

3 3 3 3

4 4 4 4

/ s 5 5 5
6 6 6 5

7 7 b 7 -
8 8 8 8

9 9 9 9

1 10 10 1 0

12 11 11 11 11 11
17 12 ™ 17 12

S
13 1 13 i 1 13
4 14 i 1 14
NS
- -
1 15 15 1 15
po E° P’ E’ E’ p*

patterns specified by vectorsi9 =

shown.

= 02.0,3,1) and #

= (1.3,0.2).

2.L,0.3, w

Fig. 2.5. A 16 X 16 d-stage CP™" type MIN are constructed with connection

{2.3.0.1, 2
The contlicung path connecuons irom
> = (0,0.0.1) to D = (1,1,0,0) and A = (1,0,0.0) to B = (1.1.1.1) is also

= (0.1.3.2)

26

= d§r D, d§D d§D), which can be specified by the function I has nothing to do with P&

Now, we would like to investigate the topological characteristics of the reversal network
of a CP™" type MIN. The reversal network I'® of a CP™" type MIN T is the network
obtained from I' by reversing the direction of each connection pattern, and replacing each
input (output) by an output (input) without changing its label. Let P~¢) denote the inverse
function of a permutation function P € CP(n). We have the following lemma on the topo-

logical structure of a reversal network.

LEMMA 2: The reversal network of a CP™" type MIN T defined as a permutation
sequence P*E~Up=D . EOPO g 3 CP™IM type MIN:
R = pOE®p-D) ... g-Dp-(r-1)
Moreover, T® has two . -ucteristics functions O® and I® where OR is uniquely determined
by PP~ ... P) and I® is uniquely determined by P~Op~) . . . p~a~D)
PROOF. Since the reversal connection pattern of each connection pattern defined by P*
can be defined by the inverse function P~%) and the reversal switching stage of a switching
stage is sull the same switching stage, it is clear that the reversal network of T" can be

expressed as
R = pOEOp«) ... gr-hHp-r)

Besides, because of the isomorphism between graph models of I" and IR, TR satisfies the
Banyan property, i.e., I'f belongs to n-stage CP™". Thus, by a similar proof as that for
Lemma 1, we can show that there exist two characteristic functions Of and I? such that O

is uniquely determined by the sequence P~'VP~'? - .- P™" and IR is uniquely determined by

P—(O)P—(H L p—(n—l')_

27

O

In Table 2.1, the charactenistic functions of several famous MINs and their reversal net-

works are summarized.

Three conclusions can be made for this section. First, it is very easy to observe that,
except for P° and P”, no other P*'s (k e [1, n-1]) can be CP(n) permutation functions
specified by 6(0) = 0. This is because any P* specified by 8%(0) = 0 in V* will cause some
bit s° of input S to lose the chance to appear at the position of LSB in the transition
sequence, and the n-stage MIN I' will no longer preserve the Banyan property. This is a for-
bidden case described in Theorem 1. Second, as the equivalence problem is considered on the
topologically equivalént class of CP™", some subdivisions can be made. It is very easy to
verify that there exists a one-to-many mapping between functions O or I, and MINs in the
CP™" The equivalent relationship between arbitrary MINs in the CP™" can be classified as
tfollows: catalogs:

The class of O-equivalent MINs: with the same function O but different function 1.

The class of I-equivalent MINs: with the same function I but different function O.

The class of O/I-equivalent MINs: with the same function I and function O.

Therefore, the whole class of CP"“_n can be partitioned into (n ? O/I-equivalent classes. Each
class with specified functions O and I has [(n—1)!]" different drawings. For example, it can
be shown that a 4-stage CP™" type MIN with connection patterns specifiea by V® = (1,2,0,3),
vi=(2301), V?=(2013), V3 =(1,023) and V* = (1,3,0,2) is O/ equivalent to the MIN
depicted in Fig. 2.5. Third, the equivalence relation in the CP™" can easily be described by

linear transformations between two arbitrary MINs. Assume that two CP™" type MIN, T,

Table 2.1. The characterisuc funcuons of several famous MINs and their reversal networks.

28

MIN’s

vl

Delta network

reversal Delta network
Omega network
reversal Omega network

Baseline network

[ndirect Birnary Cube
nerwork

reversal Indirect Binary
Cube network

reversal Baseline network

(n-1....,1,0)
(n-1,...,1,0)
(n-1,...,1.0)
(n-1,.... 1,3)

0,....n-2,n-1)

0,....n=-2.n-1)

(0.n-1,....2,1)

0,...,n=2.n=-1
(n=1...., 1.0)
(0.....n=2,n=1)
(0.....n=2,n-1)
(n=1.....1.0)
(0,....n=2,n=1)

29

and Ty, are specified by functions Oy, I; and O,, I,, respectively. If we transform Iy to I',,

we can always have the followi g relation: there exist two functions F, R € CP(n) such that
O,F =0, and RL; =1,
or
F = 0;'0, and R =LI;.
Functions F and R represent two linear transformations or two fixed connection patterns
added before the first and after the last connection pattern of I';. They can also be interpreted
as the renaming scheme on the inputs and outputs of I'5, i.e., the inputs are renamed accord-
ing to function F~! and the outputs, function R Thg renaming scheme can easily wransform

one network to another network without any hardware cost. It has a significant impact on

designing reconfigurable systems.

2.4. ROUTING ALGORITHM

In a general MIN, routing is established by attaching to each input a path control
sequence or a path descriptor [KrSn86] to lead it to a desired output. Generally speaking.
paths from different inputs to the same output may have different control sequences. Thus. a
routing table, containing a path contol sequence for each output, is needed at each input.

From the viewpoint of simple routing, it is convenient to have all these tables idexntical.

As discussed in previous sections, any path in a CP™" type MIN leading from an input
to an output can be represented by a transition sequence. Note that each D* and D"’ in 4
ransition sequence represent the address of input and output links through which a path

. , . [y - 1 3.
traverses stage /. Moreover, the ordered set of all the LSB’s in D‘'s (s37'. - - 545

30

which equals (5go(,_1y----Sg0(1)5go(0)) 1S @ permutation on the bits of the address of an input.
Similarly, the binary representation of an output (d,_;,....d;.dy) which equals
(@® -0 q¥® 4900 5 2 mapping of a permutation on the ordered set of all the LSB’s in
D6y (g1, d'.d%. Therefore, three conclusions can be made on a CP™" type MIN.
First, any path connecting an input and an output preserves the information of input and out-
put addresses, and indicates the topological structure of this MIN reflected by functions O and
I. Second, the LSB’s in D*’s and D)5 represent labels of input and output links in a
switching element (i.e., O-input (O-output) or I-input (I-output)) through which a path
waverses stage /. Hence, at each stage, regardless of the input link through which a path
traverses, this path can always be routed -to the desired output link (i.e., 5go(;y is replaced by
d' which should be a binary bit of D). It is natural that each path control sequence can be
constructed by using only the address of a destination output. In this chapter, this is referred
to as destination-oriented. Third. since the content of a path control sequence is only related
to the destination output to which a source input desires to route and the function I, all the

routing tables are identical. This is required by a simple routing scheme.

Thus, briefly speaking, the distributed routing on an n-stage CP™" type MIN I" which is
characterized by O and I is accomplished by the source input attached with the path control
sequence T = (¢,_y, ... ,t1,tg) as routing tags along with a request for connection. As the
request progresses through the stages of I', the switching ~">ment at stage i uses the tag f;
from the path control sequence 7 to route the incoming request via the particular output link
determined by t;, i.e., via O-output link if ; = 0 and l-output link if ; = 1. Eventually. the
request reaches the correct destination. In other words, the distributed routing can be accom-

plished under local control at each switching element. Any switching element is said to be ir

31

the 1-state if a crossing connection (from O-input to 1-output or from I-input to O-output) has
been established and in the O-state if a straight connection (from O-input to O-output or from
l-input to l-outpur} nas been established. Let /; be the label of the input from which an
incoming request comes and /, be the label of the output link to which the routing tag deter-
mines to route. Obviously, the state of a switching element can be obtained by performing an
Exclusive-OR on /; and /,. Next, we study the general form of the routing algorithm for the
logo,N CP™?, Let XOR be the modulo 2 addition and S —D denote the path connection from

input S = (s,_1, . . ., S1.Sg) tooutput D =(d,_y, ... ,d,dy).
THEOREM 2: Let T = (t,_;, . .., .lg) be the path control sequence of S—D on an
n-stage CP™" type MIN I'. Then #; has the following form:
t, = I'(d,).
Moreover, g; = Ofs;) XOR I"!(d;) can determine the state of the switching element through

which §—D traverses at stage i. G =(g,-;, . . . ,81.8¢) 18 called the path state sequence.

PROOF: As we remarked above that the path S =D can always be routed via O(s;) or
the sgo(;y-input link of some switching element at stage i, the selection of a correct output
link at stage i (i.e., the replacement operation performed on to O(s;)) is clearly irrelevant to
the incoming OC(s;)-input link. Therefore, as long as T is used as the path control sequence,
it is equivalent to saying that S—D traverses some switching element at stage { from an

O(s;)-input link to an output link whose label is I"1(d;), ie., d° = de’ Thus, we have the

tay
following transition sequence:

S = (sn_l,...,51,50)

32

D% =(sa1, .57 Sgo
DOO= (50~ s0q0
D" = @¥¢ D, ... ,d¥M g% O
=@y oy Yo ayde @ o)

= (dn_l,...,d I’dO)'

Obviously, it is valid and I"!(d,) is the only possible routing tag which can be used at stage .

However, the state of the switching element at stage i is determined by O(s;) XOR I‘l(d‘-). O

For example, the path control sequences and path state sequences of the famous MINs in
Table 2.1 are summarized in Table 2.2. For the MIN in Fig. 2.5, we have I"{(D) =
(dy.dyds3.dy. The path connection from S = (0,0,0,1) to D = (1,1,0,0) is shown by a bold

line, where from Theorem 2 we can get T = (0,0,1,1) and G = (0,0,0,1).

Theorem 2 provides an efficient routing scheme on a packet-switching CP™" type MIN.
In particular, in packet-switching networks, when messages are sent from inputs to outputs,
replies are returned to the sender. Thus, the address of the sender is needed. Instead of
attaching the sender address to a message, the address can be created while passing the MIN:
whenever bit I"!(d;) in the path control sequence is discarded at stage i, it is replaced by bit
O(s;) that identifies the input link from which the message came from. Eventually, this mes-
sage preserves the address of the sender as it arrives at the receiver. We should note that not
every Banyan type MIN has this natural property. For example, in Fig. 2.6, two 3-stage non-
CP™" Banyan type MINs are shown. The MIN in Fig. 2.6(a) is topologically equivalent to

CP™", but the other one in Fig. 2.6(b) is not. Even if their routing schemes are also

Table 2.2. The path control sequences and path state sequences of those MINs in Table 2.1.

MIN’s

G = (gn-]y---vglch)

Delta network

reversal Delta network
Omega network

reversal Omega newwork
Baseline network
reversal Baseline network

Indirect Binary Cube
nerwork

reversal Indirect Binary
Cube network

covdn-2, dnop)

oo dnez,dney)

covdn-2,dn-1)

(doy....dn-2,dn-1)

ceerlnoz, dnoy)

(5319d,522d1,...,5n-1 B dn-z,50 D dnoy)
(Sn-1 @ do,Sp-2 © dn-1,..., 51 © dz, 50 B d1)
(50 B do,...,5n-2 B dn-z, Sn-1 B dany)

(Sn-1 B daey, ..., 51 D dy, S0 € dy)

(Sn-1 D dg,....51 D da-z, 50 © dn-1)

(Sn-1 @B do....,51 B dn-2,50 B dn-y)

(Sp-1 DB dn-y. ..., 5:9d.SoDdy)”

(50 B do, ..., 5n2 D dn-z.50-1 © dn-y)

34

0 0
s I] —— re——
—— 2] S
3 3
4 § ———

(- R VY
N W

(a) (®)

Two 3-sitage ngn~CP== Banyan type MINs are shown.

35

destination-oriented, there is no simple rule to preserve the sender address on them.

In a CP™" type MIN, two path connections which do not result in connection conflicts,
(i.e., they do not use the same output link at some switching element) are said to be
conflict-free. The next theorem is a necessary and sufficient condition for two conflict-free
path connections on the class of log,N CP™", It is the extension of the theorem in {(WuFe81]
which only deals with the Baseline network.

DEFINITION 4: Let S and M be two n-bit numbers. @(S,A) yields the maximum

number of consecutively identical low-order bits of § and A. y(§,4) yields the maximum

number of consecutively identical high-order bits of S and A. g

For example, if § = (0,1,1,0,1,0) and A = (0,1,0,0,1,0), we have ¢(S,A) =3 and y(5.4)

]
()

THEOREM 3: In an n-stage CP™" type MIN characterized by O and I, two path con-

necdons S —»D and A —B, where S # A and D # B, are conflict-free if and only if
Y 0(5).0(4)) + o(I''D)I'(B)) < n.

PROOF: (only if) Suppose Ww(O(5),0(4)) = k and o(I''(D).I"Y(B)) = k. According
to Theorem 4, bit O(s;) on the transition sequence is replaced by bit I"'(d,) after S—D
traversing stage i. Thus, generally speaking, at stage i, 0 <i < n-1, the output links
raversed by S—D and A—-B are II(O(s,_p), ... ,O(s;,,l),l'l(d,-), o ,I‘l(do)) and
1(O(a,_y). O(a;,.) '), ... I''by) where T e CP(rn). TIIOG, ...
O¢s;). I), .. ., I"Y(dy)) and TIO(a,_;), . ..,0(a;,.).I7'b;), I} (by)) are those
D“)X4)’s on the transition sequences of S—D and A 5B, respectively. By the definition of 0.

whenever 1<i <k, we have (I''(d,), ..., I''dy) = (I'Ub;), IT'by). Since

wO(S),0A)) = k and k+k <n, we must have k <n—-k <n-i-1 and

OG,_)» .. ., O = (O@,_)), ..., 0@,y). Similarly, if & <i<n, then

(I7Yd;), ... TNdg) = (CY(y;), . .., I} (bg)). Consequently,
OGs,_y), - . ., O DIy, ..., TTdp)) =
O@,_y), ..., 0. I ®), Ik
at each stage i, 0 < i < n—1. Therefore, S—D and A -B are conflict-free.
(if) Since S 5D and A —B are conflict-free, we have
O, _y), - .., OGN, ..., T (dg)) =
(O(a,_,), . . ., O, DL b)), ..., Tby)

at each stage i, O0<i<n-1. This implies that (O(s,_p)..... OC;.y) =
(O(@a,_y),0G;,) or (IFNd), ..., TN dg) # XDy, T(by), at each stage i. As
a result, y(0(5),0(4)) + o(I'YD), IV (B)) < n. =

For :xample, in Fig. 5, if § = (0,0,0,1), D =(1,1,00), A = (1,0,0,0) and B = (1,1,1,1),
we have O(S) = (0.0,1,0), I''(D) = (0,0,1,1), O4) = (0,0,0,1), and I"''(B) = (1.1.1,1). Thus.
y(O(5),0(A)) = 2 and ¢(I"YD),I'}(B)) = 2. As a result of Theorem 4, S —D and A -B

are two conflicting path connections.

2.5. DECOMPOSITION AND PARTITIONING

In this section, compared to the distributed routing property, we study two global func-

tional properties on the CP™", i.e., its decomposition and partitioning .

The partitionability of a network is the ability to decompose the network into indepen-

dent subnetworks of different sizes [Sie79]. It is desirable that each subnetwork with smaller

37

size can have all the functional properties of the original network. A partitionable network
allows a system to be dynamically reconfigured into independent subsystems. It has a

significant impact on the application of parallel processing.

In the next theorem, we exploit the strict buddy property [Agr83] of the class of log,V

CP™"_ [t is an important auxiliary for the discussion on decomposition and partitioning.

Let Y, and Y, be two switching elements at a switching stage as discussed in Section II.
Y, and Y, are said to be outpur buddies if succO(Yl) = succO(Yz) and succl(Yl) = Succl(Yz):
input buddies if precO(Yl) = precO(Yz) and precl(Yl) = precl(Yz‘). A MIN has the smct
buddy property if and only if at each stage for each pair of input buddies there exists ancther
pair of input buddies such that they constitute two pairs of output buddies. Fig. 2 7 illustrates

the buddy property.

(3

THEOREM 4: The class of n-stage CP™" satisfies the strict buddy property.

PROOF: Let I' be an n-stage CP™" type MIN with characteristic functions O and I as
we have defined. Even if the function O cannot uniquely determine the topological structure
of I', without loss of generality, we can construct I' by using only. say, the k-subshuffle .

[f other CP(n) type connection patterns are used, the proof is similar to the following.

Let SWN be the xth switching element at stage j of I', where x € [0, g -11, j € [0,

n-1], and its binary representation be (w,_;, . . . ,w;). Assume stage j is connected to stage
J+1 by a o, connecuon pattern. The labels of the successors at stage j+1 of SW, , are of the
form (w,_;, Wil We_1e - v - w,d), where d = 0 or 1. It is obvious that we can always
find a unique switching element SW, ; which has the same successors as SW, , if and only if

its label is (w,_y, . . ., Wy W Wiy, .. .,wy), where w, represents the binary complement

38

_ output buddies

stage j-1 stage j‘/ . stage j+!
— ll " —
stage j stage j+1 . /
_ 5 {3 | Vo 1‘2 !
f f 77—
output buddies input buddies input buddies)'

L | . ¥ . . _
— ‘\‘ . ‘3 ‘\ L

l: 14 \‘ -/

is ',
- Al
.., .
output buddies
(a) (b)

L]

Fig. 2.7 (a) The buddy property . (b) The Interstage buddy property in an MIiN.

ot o

39

of wy. Therefore, SW, ; and SW, ; are output buddies at stage ; and their common succes-
sors are input buddies at stage j+1. Thus, each input buddies and output buddies can easily

be identified at each stage of T.

Now, to show the strict buddy property of I', we must verify that for each pair of input
buddies at stage j+1 there exists another pair of input buddies such that they constitute two

pairs of output buddies.

Let SW, ;.. SWy . and SW, ., SW, ;,; be two pairs of input buddies and let
(Y PRI R PN TROW) 17 | SR S SO O % and GBn-1s - - - Brsr Di—poees
by.byby_y, ... by.d) be their labels, where d = 0 corresponds to SWejstr SWy i d =1

corresponds to SW, ., SW, ;.;. Assume stage j+1 is connected to stage j+2 through a o,

connection pattern. If we leta; =b; =¢;, i € [0, -1+, k-13Ylk+1, n-1) and g = b—!

SWyja and SW, ;. will form output buddies with common successors
(Cn-1r -+ ChatsChmls - - - Clp1sCioys - - - ,€1,0,d) at stage j+2. Similarly, SW, ,+1 and
SW, a1 will form output buddies with common SucCcessors
(Camts -+ o 1 ChutoChmtls + - -+ CraysCims - - -4 €1, 1,d) al stage y+2. Also it is clearly that this is

the only possible way to specify two pairs of input buddies which also constitute two pairs of
output buddies. Hence, at any switching stage, for each input buddies the uniqueness of
selecting another input buddies to constitute two pairs of output buddies is verified. The argu-
ment is also applicable to the boundary switching stages, stage O and stage n-1, by imagining
inputs (outputs) of I' to be output (input) links of a pseudo switching stage. Therefore, I’

satisfies the strict buddy property. C

40

Now, we discussion the decomposition property on the class of n-stage CP™",

THEOREM 5: An n-stage CP™" type MIN T can be decomposed from the view of each
stage j. j € [0, n-1], as follows (see Fig. 2.8):
(Forward) Stage j is followed by two disjoint (n—j—1)-stage subnetworks, Ny and N;, such
that each switching element on stage j is connected to an input of Ny (Ny) via its 0 (1)-output
link.
(Backward) Stage j is leaded by two disjoint j-stage subnetworks, My and M, such that each

switching element on stage j is connected to an output of My (M) via its O (1)-input link.

PROOF: As in Theorem 6, without loss of generality, we assume only subshuffle connec-
tion patterns are used on I'. Also we assume stage j is connected to stage j+1 by o; con-
nection pattern and stage j+1 is connected to stage j+2 by ©;,, connection pattern. Consider
the forward case first. It is clear that, on stage j and stage j+1, each O-output link at stage j
with label (w,_;,..,w;,0) is connected to a switching element at stage j+1 with label

(w Wy1Wk—1-----w1,0); and each l-output link at stage j with label (w,_;,...,w,1) is con-

5o
nected to a switching element at stage j+1 with label (w,_i,...Wg 1. Wi_1»....w,1). Thus, each
switching element at stage j is connected to a set of 271 switching elements, S, with gen-
eral label form (d,...,d,0) at stage j+1 via its O-output link. In a similar way, each

switching element at stage j is connected to a set of 2"~ switching elements, S, with gen-

eral label form (d. . . .,d,1) at stage j+1 via its 1-output link.
Now, we want to show that each one of S; and §; can span an (n—j—1)-stage subnet-

work and. particularly, these two spanned subnetworks are disjoint. For any switching ele-

MENE (X v esXp s oo oo X4 15X X —ae-wX 1,0) &€ S, its corresponding switching element

41

Fig. 2.8. The decomposition property of a (CPp=» type MIN.

42

which has the label (x,_1,....Xg 41Xk 15+ X1 41X1 X —15----X 1,0) to form output buddies is still an
element in S,. There are a total of 2”2 pairs of output buddies in S which can span a set of
2"~ switching elements consisting of 2"~2 pairs of input buddies at stage j+2. Each output
buddies in S, with label form (x,_;, ... X1 Xe—1s - - - - X+1.d X1, - . . »,X1,0) spans input
buddies with label form (x,_, Xg 1 Xk—y - - - s Xpe1X-1s - - - - X1,0,d) at stage j+2.
According to Theorem 3 and the definition of CP(n) type connection patterns, some bit x; In
label (x,_1, . . ., Xgs1-Xk=ls - - - Xie1Xi—1s - - - »X1,0,d,d) is permuted to the position of LSB.
(Xpeis -+ + XkalXk=lr « - > Xelo=ts - - - X 1.0:d,d) is the lapel form of output links ot the set
of switching elements at stage J+2 composed of input buddies
(Xpets - - - 1 Xga1Xketr - - -+ Xpu1Xps - - - ,X1,0,d). Thus, we can have another set of an-l
switching elements spanned by S, at stage j+3 with the label form (...,0,d,d). As we proved
in Theorem 6, this is essentiality of the strict buddy property, because the corresponding input
buddies of each input buddies at stage j+2 as required to satisfy strict buddy property has the
same label form. In general, at each stage i, i € [j+2, n-1], S spans a set of 271 switching
elements with general label form (...,0,d 4.....d) where the number of d’s is equal to i. This
is based on the fact of the strict buddy property at each stage of I'. Hence, S, spans an

(n—j—1)-stage subnetwork with 2"~! inputs and outputs. We denote it by N,

Similarly, S; spans a set of 271 switching elements at each stage i, i € [j+2, n-1],
with general label form (...,1,d d,....d) where the number of d is equal to i. The (n~j-1)-
stage subnetwork spanned by S, is denoted by N;. Obviousiy, Ny and N, are disjoint, since

their switching elements at each stage belong to two different sets.

43

For the backward case, the proof is similar. Again, based on the strict buddy property of
", two disjoint j-stage subnetworks, My and M, can be found. Each switchine ~'ement on

stage j is connected to an output of My(M)) via its O (1)-input link. —

The last theorem implies an alternative, recursive definition of CP™7. If I" is decom-
posed as viewed from stage 0 (stage n-1), Ny and N; (My and M,) will be two (n-1)-stage
subnetworks. We can prove that they belong to the (n-1)-stage CP™" and, thus, can be

decomposed in a recursive way.

LEMMA 3: An n-stage CP™" type MIN I can be decomposed as viewed from stage 0
(stage n-1) such that stage O (stage n-1) is followed by two disjoint (n-1)-stage CP™" type
MIN’s, Ny and N; (M and M;).

PROOF: Without loss of generality, we assume only subshuffle connection patterns are
used on " and a k-subshuffle g, is used at stage 0. According to Theorem 7, we have N,
and Ny, two disjoint (n-1)-stage MIN's connected to those O-output links and 1-output links at

stage 0. We want to prove that they are two CP™" type MIN’s.

As per the proof in Theorem 7, those input addresses associate with Ny have the form

N 0X0
SO =DOO (5 L seSke S00)
N N, N
=Sy, ... ,51%50%,0)

which is the label form of O-output links at stage 0. Similarly, those input addresses associate

with N, have the form

N,
ST = D(O)(O) = (Sn—l Sk1Sk—10 -+ - S(),l)

4

=My, sV s
which is the label form of 1-output links at stage 0. We know that I' is characterized by
function O such that
OGn-ts - - Ska1oSkoSk=10 - - - +50) = (Sgogpyy - - - 1S g9 (15 89 (0))
= (seo(n_l), e 56018k)-

Thus, the change of s, is irrelevant to any partial transition sequence starting from sNo (SN‘)

on Ny (N;). Consequently, there exists a restricted function OV such that

O (Spcts -+ - SkalsSkets « - - +50)
= ON(s,/y_"z, o ,s‘:,°,sg/°)
= ON(S,I:/_‘z, - ,s?",sﬁl‘)
= (Seo(n_l), cSgoqy-

That is to say, according to Theorem 3, Ny and N; belong to the (n-1)-stage CP™™.
Similarly, we can show that My and M, are two disjoint (n-1)-stage CP™" type MIN’s.(]

In general, by properly linking decomposed subnetworks, each MIN in the CP™™ can be
decomposed recursively from the view of each stage. We have given the special cases at the
first stage and the last stage in the above lemma. An efficient partition scheme can be

achieved on the CP™" based on its topological decomposition property.

THEOREM 6: An n-stage CP™" type MIN T is decomposed to Ny, Ny, Mg and M, four
subnetworks from the view of stage k according to Theorem 7. If we force all switching

elements at stage k to O-state or l-state, then M; and N j» i,/ € [0, 1], can be linked into an

bbb,

45

(n-1)-stage cpmn type MIN, denoted by J;;.

PROOF: This proof is similar to the last one. By forcing all the switching elements at
stage k to O-state (i.e. sgo, is replaced by sgo() in D*X®) on any transition sequence), we
can link My and Ny (M, and N;) to form an (n-1)-stage MIN. They are denoted as Jy, and
J11. respectively. Similarly, two (n-1)-stage MIN’s, J3; and J,o, can be formed by forcing all
the switching elements at stage k to l-state (i.e. g0, is replaced by Fgo (s, in D®®) on any
transition sequence). The change of sgo, is irrelevant to any joined partial transition

sequence on Jog, Ji1, Jo1 and Jyo. Therefore, all the J;;'s are (n-1)-stage CP™" type MIN. [

LEMMA 4: An n-stage CP™" type MIN T can be partitioned into two (n—1)-stage
CP™" type MIN’s by forcing all the switching elements at stage i to O-state or 1-stage such
that, in each (n—1)-stage MIN, all the input addresses agree in bit O(s;) and all the output

addresses agree in bit I'l(df).

PROOF: It is very easy to give the proof on a transition sequence using our path-
descriptive methodology. To force all switching elements at stage i to O-state (1-state) is
equivalent to forcing the LSB O(s;) or sgo(;y of D; to be replaced by sgo;y ($go0(;)) as the
result in DV on each transition sequence on I". First, we consider the O-stage case. As per
the nature of the routing scheme on I, at stage i, any message is routed from O(s;)-input link
to I"!(d;)-output link. That is to say, any input S with bit O(s;) can communicate with any
output D with bit I"''(d;) = O(s;). Obviously, we have divided I' to two subnetworks.
According to Theorem 7 and Theorem 8§, O(s;) = I"'(d;) = 0 is associated with the (n-1)-
stage CP™™ type MIN Joo and O(s;) = I7'(d;) = 1, with the (n-1)-stage CP™" type MIN J,,.

Similarly, for the 1-state case, any input S with bit O(s;) = 0 (1) can communicate with any

46

0 0 0 0 [V} 0 0 0
0
1 1 1 1 1 1 1
2 2 N 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4 4
5 s 5 5 S 5 5
6 6 6 6 6 6 6
7 7 7 7 7 ? 7
8 8 8 8 8 8 8
9 9 9 9 9 9 9
10 1 10 1 10 1 10
11 11 11 1 1 11 1
12 13 2 1 12 i 12
3 13 3 1 13 1 3
14 1 14 1 14 14 14
15
- 1 15 1 15 1 15 1 5

P° E° P! E!

P? E? p’ E’

P4

Fig. 2.9. The 3-stage subnetwork J, on the MIN shown in Fig. 2.5 is formed

by forcing all the switching elements at stage 0.

47

0
0 [}
0 0
0
1 1 0 0
. 1 1
2 2 l 0
) 1
2 1 |
3 3 2 2
; 3 3
4 3 | — : 2
: 3 3 3
5 5 E) 4
6 5 5
6 6 5 4
; 5 s
; s
7 7 6 6
8 7
. 7
8 7 6
. 7 7
9 8 7
9 8 8
10 9
1 9
; 9 9 ,
1
1 10 1 ’ 9
" 11 11 11 :
1 12 " ” :
‘ 1
. 12 12 1)
‘ 2 2
14 N 1
1 14 1 9 : :
1 [14 [e—— : i
. 1 1 [14
15
) | |
5 14
P! |
El 2) |
P E? |
3
E)

lg. 2~1 . g- vl rme
0 O
2‘5

by forcin
g all i
the switching elements
at stage 2.

48

output D with bit I"'(d;) = 1 (0) s‘uch that the joined (n-1)-stage CP™" type MIN Jo1 Jq0) is
formed. |

For example, by forcing all the switching elements at stage O on the MIN shown in Fig.
5 to O-state, we have one of the two 8x8 3-stage subnetworks, Jyy shown boldly in Fig. 2.9.
For subnetwork J,, all the input addresses agree in bit O(sg) = 53 = 0 and all the output
addresses agree in bit I'}(dy) = d, = 0. The general form of transition sequences on J is as

follows:

Similarly, by forcing all the switching elements at stage 2 on JOO, we have one of the two
4x4 2-stage subnetworks shown in Fig. 2.10. All the input addresses agree in bit O(sg) = 53
and O(s,) = s,; all the output addresses agree in bit I"}(dy) = d, and I"'(d,) = d;,. Note that
not every Banyan type MIN can be partitioned. For example, the MIN in Fig. 6(b) is not par-

titionable.

2.5. SUMMARY

In this chapter, we propose a class of Banyan type MINs defined by CP(n) type connec-
tion patterns, denoted as log,V CP™P", This class includes all the famous MINs presented
previously in the literature as special cases. We show that the topological structure of each
network in this class can be specified by two characteristic functions and particularly the topo-
logical equivalence among networks can be interpreted as linea: ransformations on charac-
teristic functions. Based on cﬁaractcristic functions, their topology-related functional
behavior, such as the simple bit-directed routing scheme, has been discussed. Actually. our
methodology can easily be extended to all Banyan type MINs, where, in general, their charac-

teristic functions are two-dimensional matrices rather than one-dimensional permutation

49

functions. The proposed approach also provides a good description for the closed form of all

the passable permutations on various MINs, the condition for conflict-free multiple paths and

the network partitioning.

50

CHAPTER 3

TRANSFORMATION RULES FOR
MULTISTAGE INTERCONNECTION NETWORKS

3.1. INTRODUCTION

The general concept of parallel supercomputers is to employ a communication network
to interconnect a large number of processors and a large number of memory modules in a way
that processors can communicate to others and memory modules can be simuitaneously
accessed without conflict. Although the crossbar network does provide such a capability, it is
not economically practical when the number of processors and modules becomes large. A

realistic alternative is to use multistage interconnection networks (MINs). Typically, they are
. : N o .
designed using log,NV stages of EX 2x2 switching elements and (log,N+1) fixed connection

patterns to connect N inputs to N outputs such that only the minimum number of switching
elements are required to provide full access capability from all the inputs to all the outputs
and a unique communication path from any input to any output. Examples are the Omega
network [Law75], Baseline and Reverse Baseline network [WuFe80]., Indirect Binary Cube

network [Pea77], Delta network [Pat81], Cube network [SiSm78], etc. Since the capability of

51

each network in terms of non-conflict permutation communications are different, different net-
works can be selected to efficiently support different application needs. For example, in
[Law75], the Omega network is selected for supporting matrix computations on an array pro-
cessor. An important question arises as to whether we can reuse the algorithms/software
(which have been developed on a system using a MIN) on another system which employs a
different MIN. It is well known that as long as two networks are equivalent, there exists,
theoretically, a one-to-one mapping function between them such that by relabeling the proces-
sors and memories and loading data into the memories based on the new labels. one network
can simulate the other. For example, in [WuFe80], it is shown that several networks are func-
tionally equivalent to the Baseline network. So far, many theoretical studies have been per-
formed. For example, in [Agr83], it is shown that networks with full connection and strict
buddy property are functionally equivalent; in [BeFo88], necessary condition for networks to
be equivalent are also established. In general, their studies are stll at a very abswact level
such that transformation rules between networks are still not available. In fact, it is extremely
difficult (if not impossible) to derive those transformation rules from those theoretical studies.
Therefore, all the research works in the area of network equivalence are still very far away
from the practical applications. In this chapter, we will present the mapping functions
between equivalent networks in a concise way such that, for the first time, the equivalence can

be fully utilized in the design of supercomputers.

52

3.2. BIT-PERMUTE-COMPLEMENT MULTISTAGE INTERCONNEC-
TION NETWORKS

In this section, a rather general class of equivalent networks based on bit-permute-
complement shuffles is outlined, which includes all the above mentioned networks as special
cases and requires a very simple destination address based routing scheme. The connection
patterns of this class of networks are defined by the family of Bir—Permute —Complement

(BPC) type permutations, denoted by {3,) and defined as follows.

DEFINITION 1: Let ! = (,_;,{1,lg) be a number in {0,1,...,N-1}. A permura-
tion B € {B,} is specified by an n-tuple vector B = (A,_18(n-1), . .., A;68(1),A46(0)), where
O8(n-1), ...,6(1),6(0)) is a permutation of (n—1, ...,1,00and A; € {-1,1},0<i <£n -1,
such that B(l,_y, . .., Ilg) = (m,_y, ... ,mymg), where m; = lg;y if A; =1, else m; =1 -
lociy If A; = -1. O

In other words, B(!) is obtained from / by first permuting the bits of the binary represen-
tation of / and then compiementing a subset of bits according to the vector V. For example,
the bit—reversal permutation p is one of the BPC type permutations and p(/) =
(Uoys oo ly_2dy_1), where § = (0,1, ... ,n - 1). Another example is the perfect shuffle
permutation § with {() = (y_y, . . . ,lgly_y) where & = (n -2, - O,n - 1). Any connec-
tion pattern defined by a permutation 3 has a link connecting /th output port of one switching
stage to B(/)th input port of the next switching stage, for all 0 </ < 2" - 1. Similarly, the
inverse function 37! is derined us follows.

DEFINITION 2: Let B~ be the inverse function of B € {B,}. The function B! (B,

is specified by an n-tuple vector B! = (xe-x(,,_l)e—‘(n—l), C .)\.9-1(1)9—1(1).A.9—1(0)6_1(O))

53

where 87! is the inverse function of . O

Let a and B be two permutation functions in {B,} and specified by vectors & and j,
respectively. The composition of a and f is denoted as af} such that a-B(l) = B(a(!)) (i.e.,
the composed functions are performed from left to right) and is specified by a vector &-f. In
the following, the notation -} and o8 will be used interchangeably. For example, consider n
= 4 and let B be specified by B = (-2,-1,0,3) and I = (1,0,0,1). We have my=1-1,,m,=1
-1y, my =1yand my = /3. Hence, B(!) = (1,1,1,1). Similarly, it is easy to obtain that B’l =
(0,-3,-2,1) and B1(I) = (Ig, 1 - I3, 1 - 15, Iy) = (1,0,1,0). If & is specified by & = (-1,2,3,-0).
then af(/) = Ba(/)) = B(1,0,1,0) = (1,0,0,1) and the composition af} is specified by the vec-
tor &-B = (-1,2,3,-0(-2,-1,0,3) = (-2,-3,-0,-1).

It is clear that an Nx¥ (i.e.,, N inputs and N outputs) MIN (see Fig. 3.1.) can be
represented by a sequence of BPC permutation and exchange operations

po.p0pl .. pl-1) pkh-l)pn
where n=log,N, each P’ (0<i<n) represents a BPC permutation operation, and each E°
(0<i<n-1) denotes an exchange operation. That is, the ith connection pattern corresponds to
the BPC permutation operation P* and the ith switching stage corresponds to the exchange
operation E'. Each E' represents a BPC permutation operation such that the least significant
bit (LSB) of its operand is replaced by another bit which is either the original bit or its com-
plement, i.c., E* is specified by a vector either (n—1,n-2, .. .,1,0) or (n=1,n-2, . . ., 1,-0).
In other words, E*(L,_,Iydg) = Ly, ... Aydg) ot (L_y, [y.0y). Assume that the
addresses of both network inputs and outputs are numbered from O to V-1 following a natural
order in the drawing. (Note that each address can be represented by an #n-bit binary number.)

Consider a communication connection to be established from a network input with address S

ABOEHmZ

wHcezZz—

54

0 - - _ - - - L 0

17 B - LN B 1

2— — oy _— p— ——— _— — _2

3-— o — -— — —— _ — —3

4 _| - - | __ 4

. 3 1 O R J O 1 O —

5 5

e ™ °] ° o

[4 ® L] ® ® ®

. . ° e e 00 o ® .

. . ° . e °

® ° [° ° °

[[] [} ® [J ®

— pr— ama — I1 o

— — -_— - — - — —
N-2_. - }_ +_ — }_ - - ._N-2

— p—e et - = — - ——
N-1 N-1

PP EY P E E®n-2) pn-D) E(-1) pr

Fig. 3.1. An N x n MIN is represented by a sequence of BPC permutation and exchange operations.

APOgHmZ

e el B Nale)

58

= (S,-1, - - . ,51,5g) to a network output with address D = (d,_;, . ..,d.dy). During the
propagation, the source address bits (i.e., s;’s or §;’s, the complement of s;’s) are replaced by
destinarion bits (i.e., d;’s or d;’s) one by one at each switching stage. The orders for source
address bits to be removed and for destination bits to be introduced are determined by the
BPC permutation operations (i.e., P*’s). In principle, during each BPC permutation operation,
a source address bit (or its complement) is moved to the position of LSB and, at the next
switching stage of exchange operation, is replaced by a destination bit (or its complement) at

the same bit location.

For example, the BPC permutation operations used in the Omega network are perfect
shuffle connectons (which are left rotation operations). Any path connecting a network input
S =(,-1,--.,51,50) 0 a network output D =(d,_y, . . . ,d,dg) on an Omega network, can

be uniquely expressed by the following transition sequence:

S =n1sSn=2 - - S150)
5% = (Sn—Z’Sn—3’ R 'SO’sn—l)
DY = (5,_3.5,-3, - . . +Sgsdn_1)
St = (S,,_3,S,,_4, SR 'SO'dn—l’sn—Z)
D! =(s,3,5,—4r - - . S0 dp_1-dn_2)
S' = (Sp--ivSn=3cis - - - S0lncts - - GuiSno1sy)

D* = (Sn—Z—i Sn3ois v ’SO’dn—l’ c 'dn—i ’dn—l—i)

56

S* = (dy_ydus dyS0)
D"l =(d, 1, dy_ydy.dg)
$" = (dp-1dn—2, - - - .d1.do)

=D.

In the transition sequence, each number §¢, 0 i < n - 1, is the address of the input
port through which the path traverses stage i and each number D*, 0 <i < n - 1, the output
port through which the path traverses stage i. Obviously, either [S*],_;., or [D*1,_1 (e.
the first #-1 bits of the binary representation of S* or D) is the address of the switching ele-
ment through which the path traverses stage i. Obviously, source bit 5(,_;,; is moved to the
LSB position of S* at stage i and is replaced with the destination bit d(p-1yi of D in the
LSB position of D‘. Note that in the tansition sequence we have the following relations:

PY%S)y =S80 Ei(S"y=D' forall 0 <i <n-1,and P°D 1 =S foraill 1 €£i < n. There-

fore, the order for the source bits 10 be removed i1s n—1,n-2,2-3, . . . ,2,1,0 and the order for
the destination bits to be introduced is also n~1,n-2.2-3, . . .,2,1,0. Here, two vectors O =
0,1,2 ..., n-2,n-1) and it= 0,1,2 ,..., n=2,n—1) which correspond to two permutation

functions O and /7! in {B,], are used to represent these two sequences, respectively. Note
that by using
0 =(6(n=1),35(n=2),..., 5(2),5(1),5(0))
and = =0, =2y, L D, o))
we mean that at stage j source bit 55/ will be removed and replaced by destination bit

d-,,. Moreover. the meaning of the permutation function / is as follows: if bit S5jy 18

57

replaced by bit d; at stage j, then the order of bits of /(D) represents the disturbed order of
bits of D. For the Oriega network, we have /-1(D) = I(D). Similarly, the O and /™" for the
Baseline network [WuFe80] are given as follows:

0 = (n-1,n=-2,...,1,0

it=1,...,n=2,n-1).

It is clear that there are a huge number of MINs in this class which are constructed by
the BPC permutation connections and possess the unique-path and full-access properties.
Hers we use the term bir—permute —complement MINs to represent this class. Generally
speaking, the bit-permute-complement MINs are a class of topologically equivalent networks
which have the similar routing behavior and thus, the similar expression of transition
sequences like Omega networks. This class of MINs includes the six networks mentioned in
[WuFe80] as special cases. The connection patterns used between stages of them are a
specified set from {f, }. Their transition sequence which represents any path connecting net-
work input S = (s,_y, . ..,5,50) to network output D = (d,_y, . . . ,d,d) has the following
properties.

(1) Each bit of the sources S (or its complement) will be permuted to the position of LSB in
some S* and then be replaced by a bit of the destination D (or its complement) in D 0<i
< n - 1. Therefore, there exist two permutation functions O , /™! € {B,} such that O(S)
corresponds to the order for bits of S to be permuted to the position of LSB (i.e, [0(S)]; is
the LSB in S*) and /~Y(D) corresponds to the order for bits of D to replace bits of S (i.e.,
[I-Y(D)]; replaces [O(S)]; of D'). The physical meaning of permutadon function / is as fol-
lows: if the ith bit of a number X = (x,_,,x,_5, ..., XX, instead of bit [[71(D)]; replaces

[0(S)); in D*, then I (X) rcprescnis the final destination where the source S will reach.

58

(2) The data is routed from input port [O (S)]; to output port [[~}(D)]; of the switching ele-

ment at stage / and the address of the switching element is either [S'],_y.; or [D?],_;..

(3) The routing scheme of this class of MINs can be described as follows. Let the symbol
@ represent the exclusive-or operation. Bit [[71(D)]; is used as the routing tag for the
switching element at stage i such that the data is routed from input port [O(S)]; to output
port [/7(D));. Bit [0(S)); @ [I74(D)); is used to determine the state of the switching ele-
ment at stage i if global routing is considered (ie., if [0(S)]; @ [["}(D)]; = O then the
switching element will be in a straight connection state (i.e., O state), else the switchine ele-
ment will be in a exchange connection (i.e., 1 state)). After the path traverses stage i, bit
[0 (S)]; (ie., the label of the input port from which the incoming data comes) is preserved to
recover the information of the source address. We call this kind of routing scheme as the
source —preserved and destination—oriented routing scheme. Note that not all the MINs with

full access capability and unique-path property possess this kind of simple routing scheme.

Functions O and I are referred to as characteristic functions. It can be shown that it is
sufficient to characterize the structure and routing behavior of any MIN in the class of bit-
permute-complement MINs by using these two functions. Note that given any two permuta-
tion functions O and / in {fB,}, there are many different corresponding sequences of BPC
permutation operations (P, P1, .., P*~1, P} such that the MIN constructed by any one of
them can be characterized by functions O and /. Each corresponding sequence of BPC per-
mutation operations represents a drawing of a MIN. It can be proved that there are totally
(2" Lon-D1" different drawings (i.e., MINSs) specified by the same pair of characteristic
functions. It can also be shown that the permutation capability of any MIN in this class is

uniquely characterized by these two functions. Thus, we say two MINs in the class of bit-

59

permute-complement MINs are funcrionally equivalent if their characteristic functions are the

same.

For example, in Fig. 3.2, a 16x16 bit-permute-complement MIN defined by a sequence
of BPC permutation operations is shown. Let the characteristic functions of this network, O,
[and 7!, be specified by vectors O, and [}, respectively. Let the connection pattern P*,
0 <i < n, be specified by vector P'. We have P° = (2,-1,-0,3), P! = (2,3,0,-1), P2 = (-
0,1,3,-2), P* = 2,:0,3,1), P* = (1,3,0,2), O = (-1,-2,0,3), / = (-1,0,3,-2), and ™" = (1,-0,-3,2).
For any path connecting a source S t0 a destination D , bit d, is used as the routing tag at
stage 0, bit 5!-3 is used as the routing tag at stage 1, bit d is used as the routing tag at stage 2,
and bit d is used as the routing tag at stage 3. The states of switching elements from stage 0
to stage 3 are determined by s, @ dy, 5@ d3, 5, @ dg and 5, @ d,, respectively.
Hence, for the path connecting S- =1to D = 12, the routing tags are (d{, d, 33, dy) =

(0.1,0,1) and states are (§; @ d1, 5, @ dg, 5o @ d3, 53 @ d5) = (1,0,1,1).

3.3. NETWORK TRANSFORMATION RULES

The transformation rules in order to transform a MIN (which is characterized by two
functions O, and /, and denoted as MINl) into another MIN (which is characterized by

another two functions O, and /; and denoted as MIN,) is discussed in this section.

THEOREM 1: By adding two fixed connection patterns o and B at the input and output
sides, respectively, of a MIN (which is characterized by two functions O and /; and denoted
as MIN,L) which are defined as follows:

a=0,y07]"

B=1It1,,

nwACtoZ—

RPOEHMmMZ

stage O
? 0
3 :
4 >
2 3
g 4
10 5
11
? 5
14
15 ’

PO

€0

1 2 3
o[\ __ /10 0 ?
1 1 1 2
3
2 2 2 4
6
3 3 3 2
4 4 8
\ 4 9
7 5 & %?
12
6 6 6 15
710 L7 7 g
P 1 PZ P3 P4

Fig. 3.2. A 16 x 16 bit-permute-complement MIN defined by a sequence of

BPC permutation operauons.

RHOOSHMmZ

wH4CvAHCO

61

then the resultant MIN becomes a MIN, characterized by another two functions O, and /,.

PROOF: (see Fig. 3.3) Two fixed connection patterns o and 3 are added to the input and
output sides of MIN,. Let us call it the new MINI. As discussed in previous sections, for
the transition sequence representing the path connecting a source S to a destination D in the
new MINI, O ((S) corresponds to the order for bits of S to be permuted to the position of
LSB (i.e, [0 (S)]; is the LSB in S*) and /-B(D) corresponds to the disturbed order for bits
of D, if we use bit 4; to replace [a-O(S)); in D*. Obviously, the new MIN, can be charac-
terized by two permutation functions: o-Q | and /8. Since = 0,07" and B =171, we

1S

have aOy = 0,070y = O, and 1B = [yI{' 13 = Oy That is, the new MIN,

equivalent to ‘.\/IIN2. O

A renumbering scheme instead of using connection patterns can transform a MIN to

another. Thus, another way to describe Theorem 1 is as follow:

THEOREM 2: By renumbering the addresses of network inputs and outputs of a MIN
(which is characterized by two functions O and /, and denoted as MIN,) in the following
way:

the new address of network input S = 0,-051(S)

the new address of network output D = /7' D),

then the resultant MIN becomes a MIN2 which 1s characterized by another two functions O »

and [2.
PROOF: It is clear that if we renumber the address of nerwork input 5 with the new
address o™ (S) = 0,071 (S) and the address of network output D with the new address

B(D) = I 15(D), then it is equivalent to adding two connection patterns a and B at the

62

[1]

|

MIN;

ARENEREREE

[TTTTTTTTT]

MIN,

[TTTTTTTI

Fig. 3.3. Transformation between MINs.

63

input and output sides of MINI. Thus, as mentioned in Theorem 1, the resultant MIN

becomes a MIN,, which is characterized by two functions O, and /,. 0

The new MIN 1 generated by applying Theorem 1 or Theorem 2 is functionally
equivalent to MIN2 except drawing. Both MIN1 and MIN2 follow the same routing scheme,
i.e., they use the same routing tag /5 (D) for connecting the source S to the destination D
and bit [0,(S)]; @ [[51(D)); to control the state of the switching element at stage / if global
routing 1s considered. For example, consider the case where MIN1 is a 16 x 16 Omega net-
work and MIN2 is the 16 x 16 bit-permute-complement MIN shown in Fig. 3.2. As men-
tioned above, their characteristic functions O, I, O,, and /, can be specified by the follow-
ing vectors: Oy = (0,1,2,3), O7! = (0,1.2,3), [} = (0,1,2,3), IT! = (0,1,2,3), 0, = (-1,-2,0,3),
037 = (0,231, I, = (-1,0,3,-2), and ' = (1,-0,-3,2). From Theorem 1, if we add two

A\l

connection patterns ¢ and 3 at input and output sides of MINl, such that
& = (52-0{1 =(-1,-2,0,3) - (0,1,2,3)7! = (-1,-2,0,3) - (0,1,2,3) = (3.0,-2,-1)
B=r{"1y=00123)7"" (-1,2,03) = (0,1,2.3) - (-1,-2,0,3) = (-2,3.0.-1),

then the resultant MIN1 which is functionally equivalent (except that the arrangement of posi-

tions of switching eicments is different) to MIN2 is shown in Fig. 3.4.

However, if we apply Theorem 2, then the network inputs and outputs are renumbered

according to functions a~! and B, respectively. That is,

&' =0,07" =0,123) (-1,-2.03)! = (0.12,3) - (0-2.-3.1) = (3.-1.-

64

Omega network

________________________________ —
y stage O 1 2 3 :
| 0 0 0 0 H
|
|
—\] |
N 1 1 1 1
! |
' |
2 2 2 2
' |
» I -
3 3 3 3
!
1 |
/ 4 4 4 4 i
! |
[
‘ s 3 h) 5
|
|
| |
6 6 o) 6
| |
]
\‘ 7 7 7 7 Y
| !
0 1 2 3
| P P P P il
Lare o e oy o o > A A S W AD D G TER G S G TS G P M D WD G G G D G e— S - —
Fig.3 4 Transformauon trom a 16 x 16 Omega network t0 a pit-permute~-compiement

MIN shown in Fig. 3.2.

L3 9 et (5

o 4

[Kw

65

Baseline network

. T T 7
|Lstage 0 1 2 3 [
|
: 0 0 0 >< of—1— %
|
- 1
- q 2
!
! : : : - :
3 e - - : =
9 3 3 3 3 ; 5
' 7
|
4 4 4 4 5
|
< 5 g < -, :
- > - - ; 11
N — | .
5 6 6 I i 3
" 15
!
- - . - 14
b } 12
1 2 3 4
P P P Py 3

Fig. 3.7, Transformauon from a 16 x 16 Baselhne network 10 a j§ x 1§ Omega network.

66

Thus, the new address of network input S = (53.5,,51.5¢) is @™ }(S) = (53,.5.50,5) and the

new address of network output D = (d;,d,.d . dy) is B(D) = (dd3.dg.d).

Consider another example where I\/IIN1 is a 16x16 Baseline network and MIN: is a
16x16 Omega network. Again, we can derive the characteristic functions Oy, 7, O, and /,
as follows: O, = (3,2.1,0), O;' = 3.2,1,0), I, = (0,1,2,3), i7" = (0.1,23), O, = (0.1.2.3),
05! =(0.1,2,3), [, = (0,1,2,3), and /7' =(0,1,2,3). From Theorem 1, if we add two connec-

tion patterns o and 3 at input and output sides of MINI, such that

&=0,0{" =(0,123) 321,00 =(0,1,2.3) - (3.2,1,0) = (0.1,2.3)

-

B=7i7ti,=00123"(0,1,2,3) =(0,1,2,3) - (0,1,2,3) = (3.2,1,0),

then the resuitant MIN which is functionally equivalent (except that the arrangement of posi-
tions of switching elements is different) to MIN, is shown in Fig. 3.5.
However, it we apply Theorem 2, then the network inputs and outputs are renumbered

according to functions a”! and B, respectively. That is,

(b3

a'=0,07 =(32,10) (0.1.2,3)7 = (3,2,1,0) - (0.1.2,3) = (0.1.2.3)

B =(32,1.0)

Thus, the new address of network input S = (53,52,5{.5¢) is & /(S) = (50,51,52.53) and the

new address of network output D = (d3,d».d,dg) is B(D) = (d1,d,.d |.dy).

The next theorem describes the relative positions of each switching =lement before and
arter a nerwork transtormation. Consider the case where .\/IIN1 1s transtormed o MIN,. The

method to find the relative positions is based on the criterion that two paths connecting the

same source and the same destination of both MIN1 and MIN, pass the same switching cle-

67

ment at each stage. Thus, if the address of each switching element of MIN1 is replaced by its
relative address in MIN, or if the address of each switching element of MIN, is replaced by
its relative address in MIN 1 then both MIN1 and MIN2 become the same drawing. Let
M[N1 be defined by a sequence of BPC operations (®y, &y, ..., ,_;, P,) and MIN > (‘Po.

¥, . Vg, ¥,), for all ®;, ¥, € (B,}. Thus, the transformed MIN, is defined by the

1
sequence of BPC operations (o-®y, Dy, ..., D,_;, D, B).

THEOREM 3: By applying Theorem 1 or Theorem 2, consider the case where MIN 1 1S
wanstormed to MIN2. Let SW,[i, j] represent the jth switching element at stage i of the
transformed I\/IIN1 and SW2[£*, ;"] represent the j” th switching element at stage i~ of MIN'2
where 0 < i, i® <n-land 0 <, " <N/2-1. The following relation transforms both MIN,
and MIN2 to the same drawing:

i =1,
PARER (AR SUTEE SRR T SR 71¢75) MRS
or j= M Wil ey, - D2)

PROOF: It is clear that &' ®d7) - - dglal(2j) or 717 - dyloa2j+D
represent two network inputs of MIN1 which SW (i, j] connected to. However, according to
the criterion that two paths connecting the same source and the same destination of both
MINI and MIN2 pass the same switching element at each stage, these two network inputs
should pass the same switching element at stage [of MIN:. Therefore. j° =
(DD Dyt ot W, W (2))], s the relative address of SW[i. j] at stage i
of MIN,. Similarly, j = (W'WZ o Wela®yd - @27,y is the relative

address of SW,[i, j") at stage i of the wansformed MIN;.

a
For example, to know the relative position of each switching element of the transformed

MIN1 in Fig. 3.4 (which is ransformed from an Omega network) with respect to that of

MIN2 in Fig. 3.2, we only have to check their transition sequences.
For MIN2 in Fig. 3.2, the transition sequence is:
S =(s3,52 1, 50)
50 = (59, 51» 59» 53)
D% = (s,,), To. d2)
S!'= (), 52, dg. 50)
D' = (5, 59, d2. d3)
S =(ds,d2, 51, 5
D? = (ds, dy, 1. dp)
S? = (d,, dg, d3. 51)
D3 = (d,, dg, d3, dy)
§* = (d3, dp. dy, do)
=D.
For the transformed MIN1 in Fig. 3.4, the transition sequence is:
S =(s3, 52 51, 50)

S0 = (5, 20 51 $2)

—

Wit

s fea

~4 O

69

Omega network

(7 e i e -
| stage O 1 2 3
s 2 4 3
_\ !
1
7 2 0 1

(@)
—
—
t»hn

[\
N
()
=N

Fig. 3.6. The relative positions of switching elements of the transformed MIN, In Fig. 3.4

with respect tc those of MIN, in Fig. 3.2.

tn fa GHtI e O

~1 ™

70

DO = (sq, 5, 51, dy)

S = (5 51, da, o)

D! = (5, 5|, dy, d3)

S? =(sy, da, d3, 52)

D? = (sy, dy. ds, dg)

S3 = (d,, d3, dg, 5)

D3 ={dy, da, dy, dy)

S* =(ds, dy, dy, do)

=D.

Thus, at stzge 0, the switching element SW,[0, j1 = SW [0, (j,,j1./¢)] in the transformed
MIN, is the corresponding switching element SW 5[0, J71 = SW3l0, (j1,jp.j2)] in MIN,, ie.
SW[0,0] = SW,[0,5], SW,[0,1] = SW,[0,7], SW[0,2] — SW,[0,1], SW,[0,3] — SW,[0.3],
SW,[0.4] — SW.[0.4], SW,[0.5] — SW,[0,6], SW,[0.6] — SW,[0,0], and SW,[(0,7] —
SW,{0.2]. Similarly, at other stages, we have SW (1, (jaj.jo)]l = SWall. (Gi.j2J0)],
SW L2, Gajrjo)]l = SWal2, God2)ls and SW I3, Gajijo)] = SWal3, Gajo)l The

relative positions are shown in Fig. 3.6.

3.4. SUMMARY

In this chapter, the anstormation rules for a MIN to simulate another is presented. The
relative positions of each switching clement before and after a network transformation are also
described. Both distributing and global routing schemes are shown to be the same as the on-

ginal MIN. By using the results presented in this chapter, the parallel algorithms developed

71

for a MIN can be directly be reused on another MIN such that programming effort can be

greatly reduced.

72

CHAPTER 4

PERMUTATION CAPABILITY OF
MULTISTAGE INTERCONNECTION NETWORKS

4.1. INTRODUCTION

Various properties of the shuffle-exchange type multistage interconnection networks
[WuFe81] have attracted considerable interest over the past decade. Particularly, a number of
authors [Law75] [Ste83] [NaSa81] [Len78] [Sto71] have shown that these networks can per-
form a wide variety of useful permutations for parallel processing. A permutation is called
admissible on a network iff it can be realized by one pass through the network without
conflict at any switching element(s). One of the most important tasks in designing a parallel
supercomputer is the selection of a suitable network in order to optimally support application
needs. Before that, we need to be able to understand the permutation capability of each net-
work. The set of admissible permutations of an Omega network has been characterized in
{Law75] and {Par80], and later expressed more formally in {Pea77]. In their studies. the char-
acterization of the admissible permutations is expressed by Boolean functions or bit relations

of source tags and destination tags. However, from the viewpoint of applications, their results

did not give any algorithm with low time complexity to determine the admissibility of a

73

permutation. On the other hand, in the study of Lee [Lee85], the set of admissible permuta-
tions of the inverse Omega network has been characterized by using residue classes of desti-
nation tags. However, her analysis is rather tedious and indirect due to ignoring the charac-
teristics of the smucture of inverse Omega networks. Her result also suffers the problem of
high complexity due to the use of modulo operations. Other than these studies, the characteri-

zaton of admissible permutations of networks has seldom been mentioned.

While it has been proved that there exists a class of topologically equivalent networks
with the same hardware complexity [Agr83]. very litle has been known about what kind of
models can be used to characterize them. In this chapter, we introduce a general modei. The
charactenistic of the permutation capability of a class of useful networks detfined by this gen-
eral model, which includes the six famous networks in [WuFe81] as special cases, is studied.
Our analysis is based on the natural structure of a network which can be specified by two per-
mutation functions. We start our discussion on Omega networks due to their regular structure.
and then generalize the problem to the general model using bit-permute-complement connec-
dons. Our analysis is more direct, simple and general than all the previous works . We show
that the set of admissible permutations of a network can be characterized by very simple bit
relations depending on two permutation functions which specify this network. Our result
shows that the dme complexity of our proposed algorithm to determine the admissibility of a

permutation on a network is O (V), where N is the number of inputs/outputs of the network.

The remainder of this chapter is organized as follows. In Secmon 4.2, the basic
definitions and notatons are introduced. Particular attention is devoted to the routing
behavior of Omega networks. In Section 4.3, by introducing a partition.ng scheme. a

sequence of substructures (subnetworks) are produced. These substructures are_ associated

74

with some specific partitions on network inputs which can be used to characterize admissible
permutations of an Omega network. The characteristic of admissible permutations of Omega
networks is given in Section 4.4. In Section 4.5, a general model of a class of networks is
defined. We show that our analytic methodology can be easily generalized to the generai

model. Finally, conclusions are given in Section 4.6.

4.2. PRELIMINARY
4.2.A. Omega Networks

[n this chapter, without loss of generality, we start our discussion on the permutation
capability of Omega networks [Law75] built with 2x2 switching elements. The general prob-
lem of various multistage interconnection networks is discussed in Section 4.5. An NxN
Omega network consists of n = log,N stages of 2x2 switching elements for connecting Vv
network inputs and .V network outputs. (Note that, for simplicity, log,V is also denoted as
logN in this chapter.) Each stage consists of N/2 switching elements and the interconnection
pattern between stages is the perfect shuffle permutation. An Omega network tor V = 6 is
shown in Fig. 4.1. The following conventional notations are used throughout this chapter.
The stages of the network are numbered from O through n—1 from left to right. The the
input/output ports (including network inputs/outputs) of switching elements at each stage are
numbered from O through N—1 and the switching elements, from O through N/2 — 1 from top
to bottom. The binary representation of a number / = (/,_;, ..., [y, [5) (where bit /,_; is the
the most significant bit (MSB) and bit /, the least significant bit (LSB)) is used to represent
the address ot this number. A set of numbers with a similar address representation can be

represented by a common address label. For example, (/,_y, ..., [;. ¢, ¢), where ¢ =0 or |

-

~ O W W —O

O 00

10
11

12

13

14
15

75

stage O 1 2
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

T

LD
LS

TT

|

T

Fig. 4.1. A 16 x 16 Omega network.

I

w N

10
11

12
13

14
15

76

(i.e., don’t care) and #(c) = i, (i.e., the total number of ¢’s is equal to i) represents those 2*
numbers with the same first n — i bits in their addresses. The notation [/],., is used to
represent a segment of the address / from bit [, to bit /,, i.e., (I, l,_y, ... I,). If a = b, then
[/], denotes bit [, in the binary representation of /. (Throughout this chapter, it is assumed
that all the variables are integers.) A simple routing scheme on an Omega network can be
described as follows. Let D (i) be the destination tag of a data packet from network input i =
(lyets v i1, 0g), 0 <@ <27 — 1. That is, this data packet from network input i will be routed
to the network output D (i). Then, according to the routing scheme of Omega networks

[Law75], bit [D @)} is used to determine the connection of the switching element at

n-1-j
stage /, 0 <j <n -1, on the path connecting input i to output D (i).

IfEDG@)=D(k)fori #k andall0<i,k <N -1, then,D =(D(0), D(1), .., D(N-1))
represents a permutation of (0. 1, ..., N=1). There are totally N! different permutations of
(0, 1, ..., N=1) and we denote them as the set {Zy }. Let Q denote the set of all the admissi-
ble permutations of an Omega network. Since an Omega network contains (N logN)/2 switch-
ing elements, each of which can be set in either one of the two states (i.e., either straight con-
nection or crossing connection), different settings of these switching elements pass different

v
—logV
permutations. It can be easily proved that #(Q) = 2 * = NVZ2,

[t is convenient to describe some frequently used permutations. One of them is the fam-

ily of Bit—Permute ~Complement (BPC) type permutations. denoted by (B, }.
DEFINITION 1: Let ! = (/,_y, ..., {1, {) be a number in {0, 1, .., N~1}. A permutation
B e {B,) is specitied by an n-tuple vector B = (A, 8(n=1), .., A,8(1). 1oB(0)). where

(B(n-1), ..., B(1), 6(0)) is a permutation of (n—1, ..., 1,0) and A; € {-1,1},0<i <n - 1,

]

77

such that B(ln—l’ e 11, 10) = (m,,_l, amy, mo), where m; = 19(") if X,‘ = 1, else m; = 1 -
19(‘«)=Z—e(‘-)ifli 2—1. D
In other words, B(/) is obtained from / by first permuting the bits of the binary represen-

tation of / and then complementing a subset of bit, according to the vector B Similarly, the

inverse function B! and the absolute function | B! of B are defined as follows.

DEFINITION 2: Let B! be the inverse function of B ¢ {B,}. The function B~ e (B,)
is specified by an n-tuple vector B! = (ke_l(n_l)e'l(n—l), s Mgy 87D Xgo10,071(0)) where
8! is the inverse function of 6. C

DEFINITION 3: Let | Bl be the absolute function cf 8 € {B,}. The function !Bl

{B,} is specified by an n-tuple vector | 31 = (IA,_18(n=1), .., |A;18(1), | Agl 6(0)). =

a

Let a and B be two permutation functions in {3, } and be specified bv vectors & and 3.
respectively. The composition of a and B is denoted as a-f such that o-B(/) = a(B(I) (ie..
the composed functions are performed from right to left) and is specified by a vector a-B.
For example, consider n = 4 and let B be specified by B=(=2~-1.0.3and ! =(1.0.0. 1.
We have my =1 ~/l.omy=1-1{, my=1yand my =15 Hence, B(/) =(1, 1, 1, 1). Simi-
larly, it is easy to obtain that $7' = (0, =3, =2, 1), B~XU) =g 1 =I5, 1 = o [= (1. 0. 1.
0) and IBl =(2, 1,0, 3), IBII)=1(0,0, 1, 1). If o is specified by & = (=1, 2, 3, =0), then
aBd) =aPB)) =a(l, 1,1, 1) =(0, 1, 1, 0) and the composition a-P is specified by the vec-
tor aB = (=1, 2, 3, =O(=2. -1, 0, 3) = (0. -1, =2, =3). Also note that the bir—reversal
permutation p 1s one of the BPC type permutauons such that po/) = ly, {y, ooy i)

where P = (0. L. ... n—1). Another example is the perfect shutfle permutation 7 such that

;(l, = ([’I—Z’ cies [(), [n—l)' Where : = (,fl—z, N O., fl"l)

78

4.2.B. Routing Behavior of Omega Networks

For an n-stage Omega network, due to its regular structure, any path connecting network
input s = (5,_y, ... 1, Sg) to network output D (s) = (d,_;, ..., dy, dp), can be expressed by

the following transition sequence:

S =(Sp1s Sp_s --a S1, S0)

59 = (Sy-20 Sp_3» ~os SO» Spt)

DOs) = (5y_2. Su3s s S0» dnoy)

s = (5030 St s S0 dnots Sn2)

DY(5) = (55_3, Spsts s S0, An1> dn-2)

St = (Syoa,s Spicis e Sgr vy oo i Sqoqoy)
D' () = (Sp-gi+ Sn=deis ~+S0s duts -os Gpis A1)
T = (dy_1s dpys o dyy So)

D" Ns) =(d,_y, dy_ys ... d{, dg)

s =(d,_, dyas . dy, dy)

= D(s).

IA

In the ansition sequence, each s°, 0 £ < n — 1, represents the address of the input port ot
a switching element at stage ¢ through which a path starting from s traverses stage . and each

Di(s), 0 <i <n - 1, the output port of the same switching element through which the path

PPN

79

traverses stage i. That is, a data wansfer path of this switching element is connected from
input port s* to output port D'(s). Obviously, [s‘],_;.; = [D*(5)],_1.; is the address of this
switching element through which a path traverses stage i. Similarly, the idea of the transition
sequence can be used at each stage to express paths which connect a switching element to
network inputs and outputs. Assume that a switching element £ at stage i has the address £
= (e,-1> --.. €1) and the address label of input/output ports £ is e = (e, _y, ..., €;,c). We have
the following two transition sequences to indicate which network input 5°s and output D (e)’s

are connected through £

Backward:
€ = (€,_1» €n-2r s €1, C)
€' =(c,€p 1. .n €3 €9)
D" Ne)=(c,eq_jr . €r C)
el =(c.c.e,q, ..ea)
D%e)=(C....C. €4 1 .o €.1,C)
e = (Cy . n €y qs s €12, €, 11)
Forward:
€ =(€,_1. €,_2, €,.¢C)

80

D‘+1(€) = (en_z, €,-3 . €1, C, c)

D" Ye)=1(e;,..,e,C, . C,C)
e =(e, ..., C,...,C,C)
=D (e).

The switching element £ at stage i can be viewed as the common root of two communi-
caton binary trees. One is the backward (i+1)-level tree with the address label of its leaves
(1e., switching elements at stage 0) equal to (c, .., c, €,_|, ..., €;,1), #{(c) = i, and the
address label of network inputs connected to leaves equal 0 s = (c, ..., C, €,_], .- €j41)s
#(c) =i + 1. The other one is the forward (n—i)-level wee with the address label of its
leaves (i.e., switching elements at stage n—1) equal to (e;, .., €, ¢, ...C) #(c)=n -1 = 1,
and the address label of network outputs connected to leaves equal to D(e) =
(€, ...€;,C, .. #(c) =n —i. Thus, wtally 2**! network inputs and 2"~* network out-
puts are connected through E. Particularly, when i = 0 (n — 1), these above two binary trees
are reduced to one in which the root E is rooted at stage 0 (n—1) and the root E is connected
to two network inputs s = (¢, €,_y, ..., €]) (two network outputs, D(e) = (e,_y, ..., €1. C))

and all the network outputs (inputs).

4.3. PERMUTABLE STRUCTURE

There are many Jifferent ways to partiton an Omega network into disjoint subnetworks

by forcing all the switching elements of one or more stages to straight connection (0-state) or

81

crossing connection (l-state). Any switching element forced to a fixed state can be removed
and replaced by two direct connecting links between its input and output ports. In this sec-
tion, by introducing a proper partitioning scheme, a sequence of substructures of an Omega
network, referred to as permutable substructures, are produced. Each substructure is a sub-
network which can be used to characterize admissible permutations of an Omega network.

Our work is based on the following fact.

THEOREM 1: By forcing all the switching elements at stage i to O-state or 1-state of an
n-stage Omega network, two disjoint (n—1)-stage subnetworks are formed such that the

(n—i—~1)th bits of the input or output addresses in each subnetwork are the same.

PROOF: Proof can be given by referring to the transition sequence described in Section
4.2. By observing the numbers s° and D‘(s), the following fact can be obtained. Forcing all
the switching elements at stage i to O-state (l-state) is equivalent 1o forcing the LSB. 5, _;_,.
‘

of s* to be replaced by s,_;_; (1 - 5,_,_;) in the LSB position of D*(s).

Let us consider the case where switching elements at stage i are forced to O-state. In

each switching element at stage i, a data packet is forced to be routed from the s,_,_; input
port to the d,_;_, = s5,-,-; output port. That is to say. any input s can only communicate
with an output D (s) with the bit d,_,_; = 5,_;_,. Obviously, two subnetworks are formed by

parutioning the N network inputs and outputs into two groups such that in each subnetwork

the addresses of the N/2 network inputs agree in their (n—1-i)th bits (i.e., s,_;_;'s), the
addresses of the V/2 network outputs agree in their in—Ii—:ith buts ¢i.e., d,_;_, $) and 5,_;_,
= d,_;_,. To prove that these two subnctworks are disjoint, it 1s sufficient to prove ‘hat there

are no common switching elements on these two subnetworks. Assume that [represents the

82

0 in addresses of its network inputs/outputs and I}, the

subnetwork with s, _y_; = d,_1_;
subnetwork with s,_,_; =d,_;_; = 1 in addresses of its network inputs/outputs. Recall that
either [s/],_y., or [D/(s)],_;. is the address of the the switching element through which the
path connecting s to D (s) traverses stage j, 0 < j < n — 1. By observing any transition
sequences on I’y and Iy, it is easy to see that at any stage j # i, any switching element
(s/1,-1.1 (or [D7(s)],_y.1) of Iy is different from any switching element of Iy in at least one
bit position where either bit s,_;_; or d,_;_; appears. This means no common switching ele-

ments exist on ['g and [}. Thus, Ty and ' are disjoint.

Similarly, for the 1-state case, two disjoint subnetworks can be formed by partitioning
the N network inputs and outputs into two groups such that in each subnetwork the addresses
of the N/2 network inputs agree in their (n—1-i)th bits (i.e., s5,_;_;’s), the addresses of the

N /2 network outputs agree in their (n—1-i)th bits (e, d,_;_;’s)and 5, __, =1 -4d,__,. T

For example, by forcing all the switching elements at stage 1 of the Omega network
shown in Fig. 4.1 to O-state, two disjoint 3-stage subnetworks are formed. In one of them, the
addresses of the eight network inputs agree in bit 5, = 0 (i.e.. they are {0, 1, 2, 3. 3. 9. 10.
11}) and the eight network outputs, in bit d» = 0 (i.e., they are {0, 1, 2, 3, 8, 9, 10. 11}). In
the other one. the addresses of the eight network inputs agree in bit s, = 1 and the addresses
of the eight network outputs agree in bit d, = 1. These two subnetworks are shown in Fig.

1.2,

Now, we employ a partitioning scheme on Omega networks which gives a better anaiytic
way than that in [Lee85] in order to have a global view on the permutation behavior of

Omega networks. The partitioning scheme which can produce a sequence of substructures on

stage O 1 2 3
0 = 0
1 = 1
2 - 2
3 - 3
4 = 4
5 = 5
6 6
7 - 7
8 8
9 : 9
10 10
11 11
12 = 12
13 13
14 = 14
15 15

Fig. 4.2. Two 3-stage subnetworks are formed by forcing all the switching elements at stage 1
ona 16 x 16 Omega nerwork.

84

an Omega network is described as follows. According to Theorem 1, if we remove stage n—1
of an Omega network, then two (n—1)-stage disjoint subnetworks will be produced. Here, by
removing the last stage from a (sub)network we mean that both the last stage and the conne:-
tion pattern before the stage are removed and thus the remaining output ports are left as net-
work outputs of the two disjoint subnetworks. If we remove stage n—2 of any one of these
(n—1)-stage subnetworks, then another two (n—2)-stage disjoint subnetworks will be produced.
This process can be continued by removing stage i—1 of any i-stage subnetwork to produce
another two (i—1)-stage disjoint subnetworks, for all 2 < i < n — 1. When i = 2, after
removing stage 1, subnetworks with single switching element will be produced. The above
argument implies a recursively partitionable structure of Omega networks. We specify it by

the following definition and theorems.

DEFINITION 4: Let ®[n — 1, 0] be an Omega network and ®[n - 2,¢],0<r <1, be
an (n—1)-stage subnetwork produced by removing stage n—~1 of ®[n — 1, 0]. The (i+1)-stage
subnetwork ®[i, 1],0<i <n —2and 0 St <21 — 1, is obtained by removing stage i +1
of an (i +2)-stage subnetwork ®{i + 1, t'], 0<t €272~ 1. Let min(®[i, t]) be the smal-
lest address of switching elements at stage | of subnetwork ®fi, r]. We assume that for any

two subnetworks P[i, t'] and (i, t"], et > ett e min(®(i, t* 1) > min(d[i,). C

The following theorem shows which network inputs are connected to a subnetwork (i,

THEGREM 2: Let W(i. ¢) be the set of network inputs connected to ®fi, ¢}, where 0 <
i<n-1.0<¢<2"V ~1and+t = (t,_;_3 ..., t1 ty) be the binary representation of r.

Then, W(i, 1)

((cy v Cytyia b tg) L #(c) =0 + 1} and {(8y i3 s by g, Cv e O

85

#(c) =i} is the set of switching elements at stage { of ®[i, r}. Fori =n -1, O[n - 1,0] is

an Omega network and ¥(n - 1,¢) = {0, 1, .., N-1}.

PROOF: According to the partitioning scheme, the set of subnetworks {®[i,]! 0 <t <
27~i-l _ 1} is produced by removing all the stages from stage n—1 to stage i+l. And.
according to Theorem 1, the last n — i — 1 bits (starting from LSB to the (n—i-2)th bit) of
all the network inputs in set W(i, t) corresponding to the subnetwork ®[i, 7] are the same.
Thus, Wi, 1) = ((Cs s €y Ipjg s ooos 1y, 1) ! #(c)=i +1}. To prove By i2s o ti, 1) =
(fy—i—3, - L1, 1g), let us check the following fact. Let min(*¥(i, 1)) be the smallest address in
set W(i, r). Due to the inverse perfect shuffle connections, when one backtracks from stage
n—1 of an Omega network, it is very easy to observe that ((f,_;_s, ... Iy, 10, C, ..., €) | #(c) =
i} is the set of switching elements at stage i of ®[i, r]. By backtracking i + 1 inverse per-
fect shuffle connections. we can also see that the set of switching elements {(f,_;_2, I} Iq,
c. ... c) ! #c) = i} is connected to the set of inputs {(c. ... ¢, L2 . I}

t) | #(c)=1i +1). Thus, for any t* > ¢ we always have min(®[i. t"]) = (fy_;_3. .. 17"

® *¥ x%

0. O > min(DiL) = iy fy e 1yt 0 0) That s, (G_i_y. o Iy 1y) >

* %

(17 oo 177 15" which in turn implies min(¥(i. t7)) > min(¥G, 1)), »

For example, for N = 16, the three sets of subnetworks {®[i, 7] l0<r<2¥ -1),0¢<
i €2, of an Omega network are shown in Fig. 4.3(a)(b)(c). In Fig. 4.3(a), the set of two sub-
networks {®[2, r]! 0 < ¢ < 1} is obtained by removing stage 3 from the Omega network.
The set of network inputs W(2. 0) corresponding to the subnetwork DO[2.0]is [ic.c.c. W} =
(0. 2. 4. 6.8, 10. 12, 14} and the set of uetwork inputs ‘P(Z. 1) associated with the subnet-
work ®[2, 1) is {(c. ¢, c, D} = {1, 3.5 7,9, 11, 13, 15}, Simiialy, in Fig. 4.3(b} and

4.3(c), the sets of network inputs ¥(1. 1) and W(0, 1) corresponding to the subnetworks ®[1.

stage 1 2 3
1< -
\\
2 2
3=\// \ 3
\ \ -
4 / B = 4
5 - [lad W\ - S
6 - - L 6
7 I'L-L\ rt L\ — 7
AW oy 8
§ =1 9
N \r=14s \u
10 =~ 10
- * -/ A ’*‘(- 1
_/r Ponpe - 13

T e T o B e M o €

[«p[z,z] l0s:s 1}

(@)

d[2. 1]
—\
m\
N
a)!
a 1\N
WA r=
\\ \ e
\ (Ul I

1=
\\-f-k
Rl WY g W o N
\ VN
\ \ N\
g / \
'ﬁw)‘ \I:
sap AR A
,‘\I \II
9 =\ %
- \
Ay y/“
. Ganl\Y
/
NV | \
13 -‘b //(‘:
—’

Fig. 4.3. For N = 16, the three sets of subnetworks {@(; | Os:sz"‘-—l] 0sis2,

of an Omega network.

stage O 1 2 3
; X
“ o
\\
BN - ;
/ o 4
5 = - 5
6 - - = 6
7 f'l-L\ Ma — 17
8 - 3§
10 10
1=/ * d \ ~ 11
12 _/, \ -X N : 12
13 I 13
14 llcdi - 14
IS === _———l_r is

{<I>{1,t] | 0s:s 3}

(b)

Fig. 4.3. Cont’d.

()

P(1,

1
—

1 2 3
= B
~
- 2 M E oo
I=\
3 \ |
3Iin\J/Ma. |
C ¢ 5-\")\
L D0, 3)
- 3 Y s
'Y
Eg 9-'1\
[ANAW gug I 0. 5]
oo ‘*n.-r (0.
A
- 12 3=\
Wt
14 s=—m—] E 007

@mq|Os:sﬂ o

Fig. 4.3. Cont'd.

——h m e made b a n 4

89

t] and @[O0, r]is {(c, ¢,y to)} and {(c, c, c, tp)}, respectively.

Theorem 2 outlines the structure of each subnetwork in terms of the set of network
inputs connected to it and the set of switching elements at the last stage of it. Obviously,
because of the .ecursively partitionable structure of an Omega network, each subnetwork can
also be recursively partitioned like an Omega network. This is based on the fact that the
structure of any subnetwork is identical to that of an Omega network with reduced size. The
following two theorems describe the substructure of a subnetwork after being recursively par-

titioned. Since their proof are similar to that of Theorem 2, we omit them here.

THEOREM 3: Two i-stage subnetworks {®[i — 1, 2" 1s +]l 0 <s <1} are
obtained by removing stage i of the (i +1)-stage subnetwork ®[i, ¢}, 1 <i <n -1and 0 <
< 27=-1 _ 1. Each ®[i ~ 1, 2"*~L's + ¢] is connected to the set of netwourk inputs W(i — 1,

27 ls w0 = {6y v €Sy tyiogy e y tg) | B(C) =i) O

For example, if we remove stage 2 of the 3-stage subnetwork ®[2, 1] (i.e.,i =2 and 7 =
1), then we will obtain two 2-stage subnetworks {®(1, 2:s + 111 0 <s < 1}. Each ®[1, 25
+ 1] is connected to the set of network inputs W(1, 2's + 1) = {(c, ..., ¢, s, 1) | #(c)=2}.

That is, (1, 1) ={1, 5, 9, 13} and ¥(1, 3) = {3, 7, 11, 15}.

THEOREM 4: The set of (j+1)-stage subnetworks {®[j, 2" 'm + 111 0<m <2~/ -
1}, 0 £ j < i, is obtained by removing stages from stage i to stage j+1 of the (i+1)-stage

subnetwork @i, t], 1 <i <n-1land0 <t 2" 1 — 1. Let (m, ..y My mg) be the

j]’
binary representation of m. Each ®[j, 2*™~'m + t] is connected to the set of network
y rep

inputs W(j, 2" "im + 1) = {(c, ..., C, MGty oo MY, My, Baiyy o £y E0) 1 #(C) =) = 1T

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

(Wo.0 1 05 s 7] =((08),(19),12.10). (3.1}, 4.12), (5.13), (6.14], 7.15))

EN

{lm,t) (0s:s 3} = {{0.4,8,12}, {1,5,9,13}, (2,6,10,14}, {3,7,11,15})

NN |

[‘I’(Z.z) |l 0s:s 1} = ({0,2,4.6,8.10.12,14], 11,3,5,7.9.11,13,15})

Fig. 4.4 For N = 16, the three different pantitions {¥(i,1) 1 0 s s 2=-1}, 0sss2

91

For example, for i =2, j =0 and ¢ = 1, if we remove stages from stage 2 to stage 1 of
the 3-stage subnetwork ®[2, 1], then we will obtain the set of 1-stage subnetworks {®[0, 2-m
+1]11 0<m < 3). Each ®[0, 2:'m + 1] is connected to the set of network inputs {(c, ..., c,
my, mg, 1) | #(c)=1}. Thatis, ¥, 1) = {1, 9}, ¥(0, 3) = {3, 11}, ¥(0, 5) = (5, 13}, and
Y, 7) = (7, 15}.

Note that, for each 0 < i < n — 1, the set of subnetworks (®fi, 1]/ 0 <t <271 - 1)

corresponds to the set of inputs {¥(i,)| 0 <t < 271

—~ 1} which is a partition on all the
network inputs {0, 1. ..., N—1}. For each i, the partition [*¥(i, ¢)} contains an—i-l groups of
network inputs. Each group of network inputs has 2'*! elements. In the following sections,
we will show that these partitions play a major role when we characterize Q. For example,
the three corresponding partitions {W(i, 1)1 0 <t < 23 — 1} associated with the three sets
of subnetworks {®[i, r]1 0 <t <23 - 1},0<i <2, are shown in Fig. 44. When i = 3,
{®fi, 01} and {W(, 0)} become trivial cases, i.e., an Omega network and all the network

inputs {0, 1, ..., N—1} , respectively. Fori =2, 1, and 0, we have
(W2,)1 0<t <1} =1{{0,2,4,6,8,10, 12, 14}, {1, 3,5, 7,9, 11, 13, 15}},
(W(1,)l 0<t <3} = ({0, 4, 8, 12}, {1, 5,9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}},

(WO, 0<e <7} = ({0, 8}, {1-, 9}, (2, 10}, {3, 11}, {4, 12}, {5, 13}, {6, 14}, {7, 15}}.

4.4. PERMUTATION CAPABILITY

The set of admissible permurtations €2 has been characterized by a number of authors
[Law75],[Par80],[Pea77]. The following theorem summarizes their work in network admissi-

bility.

92

Let t =D € {Zy)} be a permutation of (0, 1, ..., N-1) which is associated with routing
tags D = (D(0), D(1), ..., D(N-1)). Each routing tag D (i) is used by the network input i =
(in—1> ---» i1> ip) Of an n-stage Omega network to route data packets to the network output
D (i). According to the routing scheme of an Omega network, bit {p(D (i))] ; is used to deter-
mine the connection of the switching element at stage j, 0 < j < n — 1. (Note that, as

defined earlier; p is a bit-reversal permutation.)

THEOREM 5: A permutation t € Q iff foreach i and j,0<i,j SN - landi =/,

either one of the following two conditdons is true:
(1) ([D (l)]n—llb’ [l]b—lio) # ([D(j)]n—lzb’ U]b—llo)’ foralll€£b <n -1 (See [L3W75])

(2) There exists a Boolean function f,([D (i)],-1.5+1- [i]p-1.0) such that [D ()}, = [i], @
FoDD])pai.641 lilp-1.0), for all 0 £ b < n-2, where @ is the exclusive-or operation

(see [Par80][Pea77)). G

Theorem 5 characterizes Q by using the bit relation of source tags and destination tags.
However, according to condition (i) of Theorem 5. in order :0 know whether or not an arbi-
trary permutation belongs to €2, computation must be performed for all the possible combina-
tions of i, j, and b. An algorithm to determine the admissibility of a permutation using con-

dition (1) of Theorem 5 is described as follows:

function ADMISSIBILITY~1 (s € {0, ..., N — 1}, D: permutation)
for b = n — 1 downto 1 do
for each Q = (s | the sources share the same lower » address bits} do
if DIFFERENCE ({[D(s)),_1.5 i 5 € Q)) = false then return faise

return rrue

93

The function DIFFERENCE is an algorithm to determine whether or not a finite number of
integers are different. It can be shown that for problem size N the fastest algorithm employed
for DIFFERENCE takes a time in O (NlogN) (i.e., this is the same lowest bound as that of
sorting problem). By using function DIFFERENCE, the algorithm ADMISSIBILITY -1 com-
pares the difference of the higher address bits of those destinations (in set {[D(s)],_15 | 5 €
Q }) whose corresponding sources (in set (J) share the same lower address bits. Since for
each b, 1 < b <n — 1, there are 2° different Q sets, the algorithm ADMISSIBILITY —1 uses

function DIFFERENCE 2"~? times.

Condidon (2) of Theorem 35 is a reformuiation of Condition (1) in order to show that a
special set of permutations is admissible on the indirect binary cube network. For this special
set of permutations, the Boolean function f, is easy to identify. However, in general, it is
extremely difficult (if not impossible) to determine whether or not there exists such an f,
which satisties condiuon (2) for an arbirary permutation. And the time complexity tor using
condition (2) to determine the admissibility will be much higher than that using condition (1).
In this chapter, we will show that the set {2 can be characterized in a much casier way than
that given by Theorem 5 such that a simple and low complexity algorithm can be developed

to distinguish permutations in Q from the others. This is our main work in this section.

A key idea used throughout this section is the residue system in number theorem
[Lee85].
DEFINITION 3: A complete residue svsiem modulo m (CRS(m)) is a set of m integers

which contains exactly one element of each residue class mod m. =

94

In other words, if every element of a CRS(m) is divided by m, each of the possible
remainder value from O through m — 1 can be obtained. We have the following natural
observation on the number system composed of non-negative integers. Any consecutive 2¢
numbers form a CRS(2%) which yields each remainder from 0 through 2 — 1 when divided
by 2%. If the same numbers are divided by 2*7! instead, there will be a pair for each
remainder from O through 2¢~! — 1. Thus, a CRS(2*) contains two representatives of each
residue class mod 2%71, i.e., a CRS(2¥) can be partitioned into two CRS(2*7!)’s. Since there
are two ways to choose each representative of a residue class mod 27!, as manyv as 4!

different ways of partitioning can be made on a CRS(2%). For example,
CRS(8):{7, 6.0, 1, 3, 4,5, 2}
= CRS4):{7, 1, 4, 2} CRS(4):{6, 0, 3, 5}

= CRS(4):(3, 1, 0, 2} U CRS(4):(7, 4, 6, 5}

As pointed out in Section 4.3, foreach 0 <i <n — 1, the set (¥,)1 0<r g2n -l -
1} 1s a partidon on all the network inputs {0, I, ..., N—1} and therefore it corresponds to a
partition on {D(j)| 0 < j €N — 1}. We will show that the CRS property of all these n par-
titions on {D(j) | 0 £ j <N -li ensures that there will be no conflict in any switching
element(s) when the permutation ©t = D is realized on an Omega network.

THEOREM 6: A permutation 1t is admissible on the subnetwork ®[i, ¢], (i.e.. it can be

realized without conflicts) where 0 < i <n -2and 0 < ¢ < 2" - 1 iff (pDGNI! j e

Wk,2" " Im + 1)} isa CRS(2*™H, forall 0 <k <iand 0<m <2°% — 1.

95

PROOF: According to the routing scheme of an Omega network, bit [p(D (i))] ; 18 used
to determine the connection of the switching element at stage j, 0 < j <n — 1. For any &
and m, we can imagine the subnetwork ®[k,2**~lm + 1] of ®[i,] as an independent
(k+1)-stage network in which the routing tag used on input j € W(k, 2" lm + 1) is
(D Ua-tink=1 OF [PD UNo I (IO Ulpotpir | j € Pk, 277 Lm + 1)} or
([P GNo! j € Wk, 2" Lm + 1)} is not a CRS(2¥*1), then there exist at least two net-
work inputs of the subnetwork ®[k, 2n=i=l,y 4 t] such that data packets from which are sent
to the same ourput. That is, for at least two x, y € W(k, 2" ~lm + 1) and ¥ # v.
(PD xNg.0 = [PD Y N]g.o- Thus, it results in conflict in at least one switching element on
@[k, 2" "Lm +]. This can be easily shown by an inductive method starting from £ = 0 in
which case ®[k, 2"*"''m + t] is a single switching element. Therefore, for all 0 < & < i

and0<sm <2 -1, (pDGNIje Pk, 2" m + 1)} must be CRS2**!y's, iff 7 can
pass the subnetwork ®(i, r] without conflicts on switching elements. C

THEOREM 7: A permutation &t € Q iff {p(D ()| j € Wi, 1)} is a CRS(2**1), for all
0<i<n-land0<r<2lo,

PROOF: This proof is simply an extension from that of Theorem 6. When i = n - 1,
{(pDGYN! j e ¥n-1,0}={01,...,N=-1} is a CRS(N) which is a trivial case and is
always true. Thus, the permutation & € € iff n is admissible on both subnetworks ®{n - 2,
(" and ®[n - 2, 1]. d

According to Theorem 7, a method is given to determine whether or not a given permu-

-
tation is an admissible one of an Omega network. The work is composed of totally » 2777
=0

=N/2 +N/M4+---+2 =N ~ 2 subtasks and each subtask needs to determine the CRS

96

property of a set of integer numbers (i.e., the set {p(D(j)) | j € ¥(, 1)}). Two example
permutations are shown in Fig. 4.5 for a 16x16 Omega network. The first one is an admissi-
ble permutation (6, 4, 14, 8, 11, 15, 5, 12, 13, 10, 3, 7, 0, 1, 9, 2). The second one is a per-
fect shuffle permutation (0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15) which is not admis-
sible. For the first permutation, it has been shown that each {p(D(j))| j € W¥(i, t)}, where 0
Si<2and0 <t <2 — 1, is a CRS2*Y). To see why the second permutation is not
admissible, let us check the subnetwork ®[1, 0]. The routing tags used for this subnetwork
are {[p((D Ny ! j € P, 0)} = {[pUD (ON]1.0, [PUD (@N]1.00 [PUD (8N 1.0 [PUD (12010}
= {[Ol1.0, [111.0o [811.0- (9110} = {00, O1, 00, O1} # CRS(4). This means that data packets
from network inputs O and 8 are sent to the same network output 0 of ®(1, 0]. Similarly,
data packets from network inputs 4 and 12 are sent to the same network output 1 of ®[1, 0].

They cause conflicts on switching elements of both stage 0 and stage 1 of ®(1, 0].

From Theorem 7, the set Q is characterized by using the residue classes of destination
tags rather than the bit relations of source tags and destination tags. However, as the result is
compared to that of Theorem 5, we do not gain much in saving computational efforts since
the modulo operations and the work to determine the CRS properties will consume a lot of
time. The same problem was suffered in the work of Lee [Lee85]. Nevertheless, the result of
Theorem 7 is still useful. We show next that a more effective way to characterize Q2 than that
of Theorem 5 can be derived from Theorem 7. Before we discuss that, let us see what the

characteristics of Omega and inverse Omega networks are.
In the first tansition sequence in Section 4.2. source bit s, _,_; is moved to the LSB
position of s‘ at stage i and is replaced by the destination bit d,_1; of D(s) in the LSB

position of D‘(s). That is, by the physical meaning, a data transfer path of the switching

s
D(s) :
o(D(s)) :

— O O O

~ N wn [FN]|S) —_O

\O 00

7

97
stage O 1 2 3
< D> D>
P< D> D<_
< \
- -
.
>
bl
D> ><_
3 4 5 6 7 8 9 10 11
g8 11 15 5 12 13 10 3 7
1 14

|

13 1510 3 11 5 12
|
|

CRS(2)'s
I

CRS(4)s
| | 1 [|

CRS(8)'s

Fig. 4.5. Two example permutatons ona 16 x 15 Omega network.

D(s) :
o(D(s)) :

— O O O

~ 9 -

N

3
6
6

4 35

g
1

5

98

6 7 8 9 10
10 12 14 1 3 5

3

7 8 12 10

l|‘

11
7
14

12
9
9

13
11
13

|
L

14

11

15
15
15

not CRS(2)’s

Fig. 4.5. Cont’d.

99

element (s],_1.; (or [D*(s)],_;.;) is connected from input port s,_;_; to output port d,_;_;.

Therefore, the order for the source bits to be removed is n—1, n=2, n-3, ..., 2, 1, 0 and the
order for the destination bits to be introduced is also n—1, n=2, n-=3, ..., 2, 1, 0. We can use
two vectors O = ©,1,2,..,n=2, n—-1) and 1= 0, 1,2, .., n=2, n-1) which correspond

to two permutation functions O and /! in {B,}, to represent these two sequences, respec-
tively. They are referred to as characteristic function of an Omega network. Thus, by

denoting

-

O =(6(n=-1),0(n=2).,.. ., 0(2),6(1),0(0)
and [T'=(a-n, -2, i), N, 740y
we mean that at stage j source bit S5j) will be removed and replaced by destination bit

d‘e—l(j).

Moreover, the meaning of the permutation function I is as follows: if bit S5/ is
replaced by bit d; at stage j, then the order of bits of /(D (s)) represents the disturbed order
of bits of D (s). For an Omega network, we have O =p and/ = [t = p. From Theorems !
and 2. it is obvious that the function O = p can uniquely determine those n partitions {W(i.

1)l 0<tr <21 _1},0<i <n — 1. From Theorem 7, this in turn means that all the

admissible permutations {2 can be uniquely characterized by functdons O and /.

Let the characteristic functions of an inverse Omega network be denoted by Op and /.
Note that the (n—i)th stage of an Omega network becomes the ith stage of its inverse net-
work. It is clear that any permutation © ¢ Q iff n~! is an admissible permutation of the
inverse Omega network. We may denote the set of ail the admissible permutations of an
inverse Omega network by Q7' Thus, for any transition sequence of an Omega network. we

have a new explanation for its inverse Omega network: source bit d,_;_;, of D(s) is moved to

100

the LSB position of D’(s) at stage n—i and is replaced by the destination bit Sp_i-i of s in

the LSB position of s*. That is, at stage j source bit S5(ni) will be removed and replaced by

(n—j

destination bit d~ Therefore, we have Op and /g for an inverse Omega network as

i (n=j)
follows:
Op =pI7Y, Op =(n-1,n-2, ..., 1,0)

IV =p0, Ig'=(n-1,n-2, ., 1,0).

Similarly, the function Oy = p-p which is an identity permutation uniquely determines those
n partitions (Wi,)1 0<r <2'1~1},0<i <n —~ 1. Thus, Q! is uniquely character-
ized by functions Ogp and /. Note that it is easy to prove that no two subnetworks ®[a, b]
and @z [c, d] of an Omega network and its inverse Omega network respectively have the

same set of switching elements at any stage.

The following theorem derived from Theorem 7 gives a simple closed form of Q2 in
terms of bit relations of destination tags with respect to permutable substructures of an Omega

network and its inverse network.

THEOREM 8: A permutation t € Qiff Y [pO (N = ¥ [Py, =2, for
je Y@ .) je Wi t)
all0<i<n-1land0 <t <2"*~1 — 1. Thatis, for both of all j € W(i,) and j € Wx (i,

t), the sum of ith bits of p(D (j))’s and D~1(j)’s are both equal to 2.

PROOF: The proof is based on the following fact. Let (R; 1 0 < j <2*1 - 1} be a

2o ,
CRS(2**!). Then, 3 [R,]; =2 is always true, ie., the sum of ith bits of R, for all 0 < j
j:()

< 2°' - 1, is equal to 2°. Thus, it immediately implies that 3 [p(D ()], = 2* if
je Wit

101

{(pDGN!je P, r))isaCRSQ2*H,0<i<n—-1land0<r 201 -1,
(only if) From Theorem 7, if the permutation T € Q, then {p(D () ! j € WG, 1)} is a

CRS(2'*1), for any i and r. Thus, from the above fact, ¥ [p(D (j))); = 2, for any i and
je W@.n)

t. Sinceif te Qthenn!=D'e Q_, theequaion ¥ (D7)} =2 is also true.

jE l‘yg(i,l)
2iv~l_1))
(if) Note that actually Y [R;], =2',forall 0 <k <i,iff (R; 10,/ <2 -1} isa
Jj=0

CRS(2‘*!)). Thus. we need to prove the problem that if > [pDygy, =
;e Wi

Y [(D7Y(j)); =2, for any i and ¢, then it is sufficient to show that {p(D ()| j € W(i,
je We(iu)

t)}is a CRS(2*)), for any i and ¢, which in turn implies that the permutation T € (.

o < ‘)n—i—l — 1

According to Theorems 2 and 3, forany 0 <i <n -2and 0<¢™, ¢
there exist two sets W(i, r7) and (i, ¢~) such that ¥(i, t") " WG, ™) = 0 and WG. ")

UG,) =Y + 1.1). Fori =0, if the following conditions are true:

T (DG =2% (e (pDGN!j e ¥O, 7)}is a CRS(2),)
j€ W,

Y PO N =2% (e, (pOGN!Jj € FO,™)}is a CRS(2),)
je WLy

and ¥ [pDOUGN =2
je W(l,t)

then there are two possibilities:
(1) {(pDyYy ! j e W n)is a CRS(2%, Le.. {((PDGNho !t J € P(L. o)) = {00. 0L, 10.

11}

102

) {[p(D(j))]l.ol J € ¥,)} ={00, 00, 11, 11} or {01, 01, 10, 10}. For each case, there
must exist some D[1, ¢'] such that (PO UGN ! j € A, 1)) = {00, 00, 11, 11} or

{01, O1, 10, 10}; otherwise there will be at least one @[1, t"] such that

> [(pD UGN # 2. If this is true, then it will result in an odd number of 1’s in
je Y

routing tags which are used at stage b of at least one subnetwork ®p[b, "] where 0 < b

<n -2 Thatis, we have ¥ [D7'(j)], # 2° for at least one subnetwork ®g[b,
‘ je Wb

t”1. Thus, it will always be detected that {p(D (j))| j € ¥(1, 1)} is not a CRS(22).

By induction, we can show thatif Y [p(D ()] = > D 1Y, =2k, forall 0 < &
je Wlk.t) je Welk.t)

<iand 0 <t <2"*7 then, foreach 0k <iand0 <t <2"™* L {(pD ()] j e ¥k, 1))

is a CRS(2**Y. Thus,if ¥ [p@OUGN; = Y (D7) =2, for any i and ¢, then
Jje Wau.n J€ Welit)
(PN j e WG, r))isa CRS(Z*™, for any i and . O

Note that Theorem 8 do not imply that if T € Q then ® € Q7!, and vice versa. For
example, let us consider the admissible permutation in Fig. 4.5 and check the subnetwork
®[2, 1] where the comresponding set W¥(2, 1) = {1, 3, 5, 7, 9, 11, 13, 15}. We have
(PO UGN | j e Y2, D} = ([pD(UNlp [P BNz, [PD (5N, [PD (M) [pD (N5,

(P(D (11D, [P (13)]2, [p(D (15)]2} = {[2]5, [1]y, [15)y, (312, [5)2, [14]y, (8p, (4]} = {0,

0,1,0.1,1,0,1}. Thus, ¥ [p(D ()], =22 Moreover, ¥(2, 1) = ¥(1. 1) U ¥(l, 3)
Je W)

where W(1, 1) = (1, 5, 9, 13) and W(1, 1) = (3, 7, 11, 15}. It also can be shown that

2. Similarly, D' = (12, 13, 15, 10. 1. 6. 0.

> DGl =2and ¥ [(pDGN),
Je W) je ¥(1.3)

103

11, 3,14,9,4,7,8,2,5). Wecanobtain that ¥ [D7!(j)], = 2.
J€ Ye(l)

Theorem 8 implies that for each permutable structure ®{i,], the work to determine the
CRS property of {p(D ()| j € Y3, 1)}, #(¥, 1) = 2i*1 in Theorem 7 can be replaced by
two bit summation operations. That is, we sum the ith bits of all the destination tags
p(D (j)), where j € W(i, t), and sum the ith bits of all the destination tags (D ‘l(j)), where j
€ Wi (i, t). Then, we check whether or not both of the results are equal to 2‘. Both the
admissibility conditions (Theorem-6) of the permutable substructures of an Omega network
and its inverse network (an inverse Omega network) need to be satisfied. An algorithm to

determine the admissibility of a permutation based on Theorem 8 is described as follows:

function ADMISSIBILITY -2 (j € (O, ..., N — 1}, D: permutation)
fori =0ton —1do

fort =0to 2"~ -1 do
(
if Z p(D YN, = Z [(D‘l(j))]l- =2‘) = false
je Ya.) Jj€ Yali) J

then return false

return t(rue

Conclusions can be made for our work and previous ones in Theorem 5. Conditons in
Theorem 5 are essentially the non-conflict criteria for any switching elezient(s). That is. no
two paths of a permutation routing pass through the same input port of a switching element,
le.,

([]p=1:00 [DDporp) 2 U lp-1:00 [DUacrp)s

forany 0<i,jsN-1,1<Hh<n-1

This is a one—dimension viewpoint to understand what the admissible permutations of an

Omega network are. On the other hand, our work exploits all the structures (subnetworks)

104

which are relative to permutation routing behavior of an Omega network. Then, we develop
the non-conflict criteria for these structures with the aid of the structure of its inverse Omega
network which as mentioned above can be sufficiently represented by a very simple bit-
summaton condition. Thus, our work provides a two—dimension viewpoint to understand
what the admissible permutations of an Omega network are. It is obvious that our method is

simpler and easier than previous ones.

4.5. GENERAL MODEL

Generally speaking, there exists a class of topologically equivalent networks which are
constructed by the BPC permutation connections and possess the unique-path and full-access
properties. As we will see, even through this class of networks represents only a subset of
Banyan networks, it provides more attractive communication aspects than other networks
which are constructed by irregular connection patterns. For example. the BPC permutation
connections for Omega networks are perfect shuffle permutations. Each network of this class
has the similar routing behavior and thus the similar expression of transition sequences like
Omega networks. This class of networks includes the six networks mentioned in [WuFe81]
as special cases. The connection patterns used between stages of them are a specified set
from {B,}. Their transition sequence which represents any path connecting network input s
= (Sp~1s --» 51, 5o) to network output D (s) = (d,_;, ..., dy, dg) has the following properties.
(1) Each bit of the sources s (or its complement) will be permuted to the position of LSB in
some s* and then be replaced by a bit of the destination D (s) (or its compiement) in D' (s). 0
< i < n ~ 1. Therefore, there exist two permutation functions O, [le {B,} such that O (s)

corresponds to the order for bits of s to be permuted to the positon of LSB tie. [O(s5)], 18

105

the LSB in s') and /1D (s)) corresponds to the order for bits of D (s) to replace bits of s
(.e., [I7UD (s))); replaces [O(s)]; in the LSB position of D‘(s)). The physical meaning of
permutation function / is as follows: if the ith bit of a number X = (x,_y, x,_5, ..., X}, Xg)
instead of bit [/~Y(D (s))]); replaces [O(s)}; in D'(s), then I(X) represents the final destina-
tion where the source s will reach. These two BPC permutation functions O and / are

referred to as characteristic functions of a network.

(2) Data packets from source s are routed from input port [O(s)]; to output port
(I74D(s)); of a switching element at stage i and the address of this switching element is
either [s'],_1.; of [D'(5)}n-1.1-

(3) The routing scheme of this class of networks can be described as follows. Let the svm-
bol @ represent the exclusive-or obcration. Bit [/ '1(D (s))]; is used as the routing tag for the
switching element at stage i such that data packets are routed from input port [O (s)]; to out-
put port [[~/(D(s)));. Bit [0(s)]; @ [I"'(D(s))); is used to determine the state of the
switching element at stage i if global routing is considered and no conflict occurs. That is, if
[0(s)); @ [I~4D(5))]; = 0 then the switching element will be in a straight connection state
(i.e., O-state), else the switching element will be in an exchange connection (i.e.. 1-state).
After a data packet traverses stage i, bit [O (s)]; (i.e., the label of the input port from which
this incoming data packet comes} is attached to this data packet in order to recover the infor-
mation of the source address. We call this kind of routing scheme as the source —preserved
and destination—oriented routing scheme. It is clear that the routing behavior of any network
in this class can be uniquely characterized by functions O and /. Note that not all the net-

works with fuil access capability and unique-path property possess this kind of simple routing

106

scheme. In general, for a network with irregular connection patterns, the routing tag used at

each stage is a function of both source input and destination output.

For example, in Fig. 4.6, a 16x16 4-stage network defined by a sequence of BPC permu-
tation operations is shown. Let the characteristic functions of this network, O and /, be
specified by vectors O and/, respectively. Let the interconnection pattern P;, 0 < i < n, be
specified by vector P; and Py = (2, -1, -0, 3), P, = (2,3, 0, -1), P, = (0, 1, 3, -2), P; =
(2,0, 3, 1), 154 = (1, 3, 0, 2). The transition sequence is:

5 =(51.5 51, 50) 57 = (s 57,

Ds)=(s: 5,5 d2) s'=@), 5 dy S0

DNs) = (5, S0 dpdy) $%=(ds, dy, 51, 52)

D*(s) =(ds, dy, §1.dg) 5° =(dy dg, d3, 57)

D(sy=(d~do d3y. dy) 5P =(d3y, dandy dg) =Dis).
Thus, we have O = (=1, =2, 0, 3),] =(-1,0,3,-2), /' =(1,-0,-3,2), 101 =(1,2,0, 3
and /7" = (1, 0. 3, 2). For anv path connecting a source s to a destination D (s), bit d» is
used as the routing tag at stage 0, bit d is used as the routing tag at stage 1, bit d,, is used as
the routing tag at stage 2, and bit d, is used as the routing tag at stage 3. The states of
switching elements from stage O to stage 3 are determined by s; @ di, 50 @ ds.
5, @ dgand 5, @ d,, respectively. Hence, for the path connecting s = 1 to D (s) = 4, the
routing tags are (/"D (s)] = (dy, dg, d1, d2) = (0. 1, 1, 1) and states are (5, @ d..
T-@ dy 5o @ di 5@ dy) =(1,0,0, D).

As a network in this class is specified by its two charactenstic functions O and /. it can

be shown that function O uniquely determunes all the sets W(i, ¢),0<i <n -1land0 <t <

107

27771 _ 1, and I7}(D) is the actual permutation where computation should be performed to
determine the admissibility of a given permutation D. That is, the permutation capability of
this network is uniquely characterized by its two characteristic functions. Therefore, ali our
work done in previous sections can be easily extended to the general model by using charac-
teristic functions. We summarize the generalization as the following theorems. In the follow-

ing, let T be an n-stage network in the class specified by characteristic functions O and /.

THEOREM 9: Let 'y be the inverse network of I'. Then, the characteristic functions of

[y are
Op =p7' and Ig! = pO.

PROOF: For any transition seﬁuence of I', we have a new explanadon for ['5. Note that
the ith stage of I’ becomes the (n—i)th stage of I'. Thus, p-[‘l(D (s)) corresponds to the
order for bits of D (s) to be permuted to the position of LSB (i.e., [p-/~}(D (5))]; is the LSB
in D*(s)) and p-O (s comresponds to the order for bits of s to replace bits of D(s) (i.e,
(p-O (s)); replaces [p-/"(D (5))]; in the LSB position of s*). m|

For example, let the interconnection pattern R;, 0 < < n, be specified by vector R;‘» tor
the inverse network of the netvork in Fig. 4.6. Then, we have Ry = P71 =(2,0.3. D, R, =
Pyl =(1.3,0,-20. Ry =P5' =(1,-0,2,-3), Ry = P{' =(2,3,-0, 1), and Ry =PF;' =
(0, 3, =2, —1). The transition sequence for connecting source input D (s)= (d3, d,, d, dg) tO
destination output s = (53, 53, S, Sg) is:

D’S)’:(d}. d:,dl,d()) 3O=(d2, do, d3,d1)

DUD(s)) = (dr. dg d3 570 s =(d3, da, 51, dp)

108

0

stage

O —

clen < \O t~ o0 O

QO —
—t —t

12
13
14
15

CRS(4)’s

X X

X

Vsl

X

O e

(o8 Nog} T wn \O ™~ o0 Ch

O —
——

12
13

15

CRS(8)’s

YD) CRS(2)’s

D(s)

D(s)

1

F

1]

1

— et
O — O
— e et
OO~
O OO
OO -
—
— O —
A3
S -~ O
oo~
O O O
o O O

—

—

0110

6
13

0011

0001

1101

0101

0100
0101

0011

5
15

1001

1011

1111

0110

0111

O =N N0

0111

7

__:,

OO OO OO OO

S~ O —= O
— ot = O
O Qv — O
OO OO —
OO = —~ O
SO OO O
— O O —
0O
oy
O~ O — O
OO — — O
OO OO —
et et et
© —~ ™
OO0 ON et —t —s

0001

I
11

01
1110
1111

13
14
15

1011

—

o

—

0011

3

Fig. 4.6. A 16 x 16 network defined by the general model.

109

DYD(s)) =(d3, dp, 51,5 $2= (. 5o, dy, d3)
D3(D(s)) = (51, S da 5g) §°=(50, 51, 5o d)
D3D(s)) = (53, 51, 500 53) 84 =0(53, 5,5, 51, 50) =s.
It is clear that Op = p-(1, =0, =3, 2) = (2, =3, -0, 1) and /z! = p-(-1, -2, 0, 3) = (3, 0, -2,
~1).
THEOREM 10: A permutation &t is admissible on I" iff for each i and j,0<i,j <N -

1 and i # j, either one of the following two conditions is true:
(1) ([I—I(D (l))]b—l;()7 [O (l)]n—lb) * ([1_1(DU))]b—107 [0 (J)]n—lb)) for Ziu 1 < b <n- L

(2) [I-I(D(i))]b = [O(i)]b @ fb([l_l(D(i))]b_l;o, [O()],—1.p+1). where @ is the

exclusive-or operation and f, is a Boolean function.

PROOF: This theorem is a generalized Theorem 5. By using the same criteria as
Theorem 5, the above two conditions give the non-conflict criteria for any switching
element(s) of I'. That is, no two paths of the permutation ® pass through the same input port

of a switching element of .)

THEOREM 11: By forcing all the switching elements of I at stage i to O-state or 1-
state, two disjoint (n-1)-stage subnetworks are formed such that in each subnetwork, the
addresses of network inputs agree in bit [O | (s)]; and the addresses of network outputs agree
in bit [1771(D (s))];.

PROOF: The proof is similar to that of Theorem 1 except that we use [O (s}]; instead of

s That is, we have the following statement: forcing all switching elements at stage i 0

n—l—i-

0O-state (l-state) is equivalent to forcing the LSB, [O(s)};, of s’ to be replaced by

110

YD (s)); = [06)); (1-[0(s));) in the LSB position of D‘(s). Thus, for O-state case, the
addresses of network inputs of each (n-l)-stage subnetwork agree in bit [O(s)]; =
[I~YD(s))); and the addresses of network outputs agree in [[7Y(D (s))}; =[O (s)];. Similarly,
for 1-state case, the addresses of network inputs of each (n-1)-stage subnetwork agree in bit
[0(s)]; = 1 = [I"YD(s5))); and the addresses of network outputs agree in [["!(D (s))]; = 1 -

[0(s));- C

For example, by forcing all the switching elements at stage 1 of the 16x16 4-stage net-
work in Fig. 4.6, the addresses of network inputs of each 3-stage subnetwork agree in bit
(OG)y=s5¢g=1- YD (s)]y = (—333 = d5 and the addresses of network outputs agree in
UMD (s)H)y =d3 =1-[0(s)); =5, Thatis, each 3-stage subnetwork has network inputs
{(c, ¢, c, 5¢)} and network outputs {(sg, ¢, ¢, ¢)}. Thus, one of the two subnetworks has

network inputs {0, 2, 4, 6, 8, 10, 12, 14} and network outputs {1, 2, 3, 4,5, 6, 7}.

THEOREM 12: Let ®[i, ¢],0<i <n —-1and 0 ¢ <2"*1 ~ 1, be a subnetwork pro-
duced by performing the same partitioning scheme (as mentioned in Section 4.3) on I'. For
each i, 0<i <n —1,let (¥4, u)l 0 <u <27 - 1} be the partition on the network
inputs {0, 1, ..., N—1} corresponding to the set of subnetworks {®[i, 1] 0 <7 <2771 —1).
Then, (i, u) = {(v,_j, ..., v, Vo)) such that v, = ¢, for all I # j, where 5; = [O [(s)];. i

+1<k<n-1. Thus, #(c) =i +1in WY@, u).
PROOF: The proof is similar to that of Theorem 2 and is based on Theorem 10. O

Theorem 12 shows that function | O| uniquely determines all the n partitions {\W(i, u) |
0<u <2t '-1}],0<: <n - 1. For example, let us find the partition {W(0.)i 0 Su <

2% — 1} for the 16x16 4-stage network in Fig. 4.6. Since 1Ol (s) = (s, 55, 54, 52). we have

111

{s;} = {101 ()l I 1 <k €3} = (50, 52 51). Thus, ¥(0, u) = (c, vy, v}, vo). In a similar

way, we can find the other two partitions. Therefore, the three partitions {W(i,)1 0 <t <

{WW(0, u)}

= {{{c,0,0,0)}, {(c, 0,0, D}, {(c, 0, 1,0}, {(c, 0, 1, D},

{c, ,0,0}, {(c, 1,0, D}, {(c, 1, 1,0}, {(c, 1, 1, D}}

= ({0, 8}, {1,9}), (2. 10}, {3, 11}, {4, 12}, (5. 13}. {6, 14}, (7, 15}),
{W(1, w)}

={{(c,0,0,¢) {(c,0, 1,)}, {(c, 1,0,)}, {(c, 1, 1, &)}}

= ({0, 1, 8,9}, {2, 3, 10, 11}, {4, 5, 12, 13}, (6, 7, 14, 15}},
(W2, u))

={{(c,c,0,¢) {(c.c, 1, c)}}
={{0,1,4,5,8 9,12, 13}, {2, 3,6, 7, 10, 11, 14, 15}}.

THEOREM 13: The permutation & is admissible on I" iff (/7D ()| j € W, 1)} is
CRS2™*Y or (IITHDGN 1 j ¥, 1)} is CRSQR™*), forall 0<i <n - land 0 <1 <
ol

PROOF: This proof is similar to those of Theorems 6 and 7. Note that any permutation
function B € (B, 1s closed on domain {0, 1, .., N = 1}, ie, (B 0<i <V -11 ={0.1,
.. N = 1}. Thus, it is clear that {/"YD () ! j €W, 1)} is CRS(2**y itf (177D
=i, 1)} is CRS(2‘*Y). Therefore, (I"1(D GN 1 j e¥.)} is CRS(2**h gives the neces-

sary and sufficient condition for non-conflict at any switching element(s) of subnetwork ®[i.

112
r]. d

THEOREM 14: The permutation m is admissible on I iff ¥ [ND()) =
je Y.

Y [po@lGn; =2 o ¥ WHNOGN = ¥ [plol®UM 2 for all
je WaGit) je Ya.r) Je Weit)

0<i<n-land0<r <2t -1 -1,

PROOF: This proof is similar to that of Theorem 8. It can be proved that the condition

S U0 = Y UR'OT'GNE = Y [po®@7iG)) =24 for any i and

je W) J€ WaeliLt) Jje Weli.)
t. is sufficient to derive that (/74D (j) | j € W@, r)}is a CRS(2'*]), for any i and ¢, which

in turn implies that the permutation &t is admissible on I'. O

For example, in Fig. 4.6, we aiso show why a permutation (12, 4, 14, 6, 13, 5, 15, 7, §,

0. 10, 2,9, 1, 11, 3) is admissible on this network.

THEOREM 15: Let I'; and T', be two networks specified by characteristic functions O,
[, and O,, I,, respectively. I, and I'y are in a subclass of equivalent networks with the

same set of admissible permutadons iff |0, =10,! and I1,] =11, 1.

PROOF: This proof is based on Theorems 12, 13 and 14. According to Theorem 12,
function O uniquely determines all the n partitions (W@, 1)1 0<r <2771 -1}, 0<i <n
- 1. And according to Theorems 13 and 14, for any permutation D, the results of bit-
summation and comparison operations performed on set (/"D (j))! 0 < j < N — 1} are the
same as those on {|/"U (D)1 0<j <N — 1}. Thus, any two networks with the same

absolute characteristic functions have the same set of admissible permutations. O

113

Theorem 15 provides a direct view of equivalence between networks by the set of admis-
sible permutations. Some authors [Par80] [Agr83] denoted it as funcrional equivalence. That
is, if two networks can realize the same set of permutations, then they are functionally
equivalent. According to Theorem 15, for any pair of functions O, € {B,}, iflOl = O and
l7l = I, there exists a subclass of functionally equivalent networks with the same set of admis-
sible permutations which are characterized by O and /. Since there are n! = log,N! of such
function O’s or [I’s, it is easy to show that the whole topologically equivalent class of net-
works can be partitioned into (log,N)? disjoint subclasses. In any subclass. each network is

not only a different drawing of another network but also realizes the same set of permutations.

For example, in Table 4.1, the general form of the characteristic functions and the set of
partitions of several famous networks are shown. From Table 4.1, we obtain the following
facts. The Baseline and inverse Baseline network have the same set of admissible permuta-
tions. The Omega and inverse Indirect Binary Cube network have the same set of admissible
permutations. The Indirect Binary Cube and inverse Omega network have the same set of

admissible permutations.

In Parker’s work [Par80], the functional equivalence of three networks (i.e., the inverse
Omega, Indirect Binary Cube and R -network) are proved. Identity relations between several
specific permutation functions are used to transform a network to another one. Even though,
conceptually, the method can be generalized (which in our opinion will be very complicated)
to prove the tunctional equivalence of other networks, it restricts our view to a one-dimension
solution as that in condition (2) of Theorem 5 to outline what the permutations which a net-
work can realize really look like. It is clear that our method provides a two-dimension solu-

tion by simple bit relations and a more direct insight than that in [Par80] to describe the

114

Table 4.1. The general forms of the characteristic functions of several famous networks.

A

Networks 0 I Wi, u) = {(v,,_l.. ca VD vo)}

Delta network (1.2,..,n-1,0) ©,1,....n-2,n=1) [(C,. cer G Vnoiclyeo o, V1, c)}
inverse Delta network (n-1,n-2, .., 1,0) 0,n-1....2. 1 {(Vn-ly--n Viel, Coeeny C)}
Omega network 0,1, .0 n=2, n=1) ©. 1, .., n=2,n=1) [(c...s € Vhmicas .- VO)]
inverse Omega nerwork (n-1,n=2, ..., 1,0) (n-1,n-2 .., 1,0) [(Vn-i:- cey Vieds Coenns (:)}
Baseline network (n-1,n-2,...,1,0) ©, 1,n=2, n~1) [(V,._l,. ver Vitls Counns c)}
inverse Baseline network (n-1,n-2,...1,0) O 1,..,n-2, 0= {(Vn_l,. s Viel, Cyen o, C)}
Indirect Binary Cube (n-1,7-2,...1,0) (n~1,7-2, ..., 1.0) ((Vnetse oo Vieds Covens O}
network

inverse Indirect Binary 0,1, ..,n-2,n-1) ©,1,....n=2,n-1) {(C,. ces CoVnic2yenen vo)}

Cube network

115

meaning of functional equivalence.

4.6. SUMMARY

In this chapter, by employing a proper partitioning scheme, the properties of a number of
permutable substructures (subnetworks) on an Omega network are studied. These substruc-
tures are associated with some specific partitions on the network inputs and can be used to
characterize admissible permutations of an Omega network. Based on the understanding of
these substructures, the permutation capability of Omega networks is characterized by either
using the residue classes or bit relations of destination tags. We propose an algorithm to
determine the admissibility of a pérmutation on an Omega network which has a time com-
plexity O (NV), where N is the number of inputs/outputs of the network. Finally, we general-
ize the same methodology used on Omega networks to a class of topologically equivalent net-

works defined by BPC permutations in which each network can be specified by two charac-

teristic functions.

116

CHAPTER 5§

A FAULT-TOLERANT RECONFIGURATION SCHEME
FOR MULTIPROCESSORS

5.1. INTRODUCTION

One of the most cost-effective ways for interconnecting a very large number of proces-
sors to form a general-purpose multiprocessor system is to employ a Multistage Interconnec-
tuon Network (MIN) [WuFe81] [Par80] [Pea77]. In such a system, the MIN which is a criti-
cal component provides a full access communication between processors However, physical
failures in a MIN can cause severe degradation in the system performance, unless efficient

methods are provided to handle them.

Various issues concerning the analysis of fault tolerance capability and reliability of mul-
tiprocessor systems with MINs have been studied in {GaMa88] [DaBh85]. In one of these
methods, the failure of a switching element in the network causes the removal of a number of
processors such that the system can operate in a degraded mode in which the full access pro-
perty can be maintained among the remaining processors. However, this strategy results in an

enormous waste of computational resources. As a MIN is used for interprocessor connection.

117

an alternate strategy to minimize the loss of computational resources is to allow the communi-
caton with multiple passes through the faulty network by using the remaining fault-free paths.
A multiprocessor system with a faulty network is said to possess the dynamic full access
(DFA) property if each processor in the system can communicate with any other processor in
the system in a finite number of passes through the faulty ..etwork, by routing the data
through proper intermediate processors if necessary [ShHa84] [VaRa89]. This strategy results
in a reconfigured system which can operate in a gracefully degraded mode at the expense of
routing overhead, the increased latency and the additional blocking due to the loss of com-
munication paths. As the studies in [ShHa84] [VaRa89] [Agle85] have shown. the general
problem of determining the DFA property of a faulty network is as hard as a transitive closure
problem. No general necessary and sufficient conditions have been found yet to determine the

DFA property based on the distribution of faulty components on the network.

A successful survival of a multiprocessor system in the presence of network railures

requires solutions of the following problems.
(1) A fast and effective fault testing algorithm to detect failures of the network.
(2) A multi-fault diagnosis algorithm to locate all the faults.

(3) A real-time reconfiguration scheme to prevent the waste of additional computational

effort.

Several studies of fault testing and diagnosis algorithms can be found in [Agr82]
[ThNe83] [WuFe79] [NaSo80] [FuAb83] [Agr80] [FaPr81]. In this chapter, we address onlv
problem (3). We assume that the information of locations of all the faulty components in the

network is available. Central to the design of such a reconfiguration scheme is the utilization

118

of this given information to reconfigure the system into a single (sub)system or several sub-

systems with DFA property such that the original routing scheme can be preserved in each

subsystem. The fault-tolerant reconfiguration scheme to be presented is suitable for the on-

line and real-time applications. The scheme is simple, efficient, and applicable to all the net-

works discussed in the literature. A special network topology, the Omega network [Law75],

is used as the example network in this chapter. Several important problems which have not

been previously considered are addressed in our work and discussed in reference to an inter-

grated model. Those which distinguish this chapter from previous work [ShHa84] [VaRa89]

[AgLe85] are summarized as follows:

(1) In many faulty situations, some processors might be completely isolated from other pro-

cessors (i.e., no fault-free paths exist between them and other processors). If this infor-
mation is not known, the data communication to/from these processors will block other
fault-free communication paths and significantly degrade system performance. Therefore,
it is extremely important for the system to obtain this information in order to disable
these processors and obtain a better communication load control. In this chapter, this

information, which is missing in previous work, is obtained.

In [ShHa84] [VaRa89] [AgLe85], the authors were only interested in determining the
sufficient conditions for a faulty network to possess the DFA property. In this chapter,
we will show that even if the original system does not have the DFA property due to
faults in the network, the surviving system obtained after disabling those processors
defined in (1) may have the DFA property. Since there exist many possible multipass
communication paths between surviving processors (those processors in the surviving

system), an efficient way to achieve low latency communication is by utilizing of

119

shortest-path routes between these processors. While, in [VaRa89], Varma and
Raghavendra mentioned that this is a very important issue, they did not actually show
how to do it. In this chapter, a shortest-path fault-tolerant routing scheme is developed
such that by routing through proper intermediate processors a processor can access

another processor with a minimal number of passes through the faulty network.

(3) Since an acknowledge signal and bidirectional data communication are always required,
it is necessary that bidirectional communication paths exist between any two processors.
However. in some situations, there may exist only unidirectional communication paths
between two processors. Such situations, as we will show, are due to the non-DFA pro-
perty of the surviving system. The use of such unidirectional communication paths will
cause a a deadlock because no possible acknowledge signals will be received by the
source processor. Therefore, the utilization of shortest-path routes alone may not be
sutficient to survive a system. An algorithm to prevent deadlocks must also be
employed. In this chapter, such an algorithm is proposed which gives the solution in a
way that the surviving system is partitioned into several surviving subsystems and each

subsystem is a maximal subset of processors which possesses the DFA property.

In summary, the fault-tolerant reconfiguration scheme to be presented provides a flexible
reconfigurable environment for a multiprocessor system with a faulty network. Under such an
environment, the communication of the surviving system is operated by using the information
of shortest-path routes. The rest of this chapter is organized as follows. In Section 5.2, the
system and fault models are presented. In Section 5.3, the fault-tolerant reconfiguration
scheme is presented. This scheme contains five parts: routing behavior of Omega networks

under faults, communication capability for the first pass under faults, construction of the

120

surviving system, construction of shortest-path routing tables, and reconfiguration of the sur-
viving system. In Section 5.4, the time complexity of our scheme is analyzed. Finally, Sec-

tion 5.5 gives the summary of this chapter.

5.2. SYSTEM AND FAULT MODELS
5.2.A. System Model

In this chapter, without loss of generality, we limit our discussion to an N -processor sys-
tem interconnected by an Omega network [Law75] built with 2x2 switching elements (see
Fig. 5.1). Such a multiprocessor system is connected to and monitored by a front-end host
computer. The overall system configuration can be either SIMD or MIMD structure depend-
ing on requirements of specific applications. An NxN Omega network with N network
inputs and N network outputs consists of n = log,N stages of 2x2 switching elements. Each
stage consists of N /2 switching clements and the interconnection pattern between stages is the
perfect shuffle permutation. Each switching element allows point-to-point or broadcast com-
munication from its input ports to output ports if no conflict occurs. For example, in Fig. 5.2,
a l16-processor multprocessor system connected by a 16 x 16 Omega network is shown. The
following conventional notations are used throughout this chapter. The stages of the network
are numbered from O through n ~ 1 from left to right and the input/output ports (including
network inputs/outputs) of switching elements at each stage are numbered from O through N -
1 from top to bottom. The communication links between stages are numbered according to
the order of input ports of the stage to which these links are connected. The communication
links betore stage O and after stage n — 1 are considered as pseudo links since they are con-

nected to output ports and input ports of processors, respectively. For example, the labels of

121

links connected to the input ports of stage i are shown in Fig. 5.2. Stage 0 is sometimes
referred to as the input stage and stage n — 1 as the outpur stage. Each network input and
output are connected to the output and input ports of a processor with the same address. The
address of a label L is represented by its binary form L = (I, _;, ..., 1, (), where bit / is the
least significant bit (LSB). Thus, a switching element in the network is represented by an
ordered pair (r, ¢), where r (0 £ r < n — 1) is the stage at which the element is located and
e =(e,-y, ..., €1) (0 < e <N/2 — 1) is the element address at that stage such that the two
input/output ports of e have a common address label equal to (e,_;, ..., €1, c),c =0or 1. A
communication link is represented by an ordered pair [z, 2], where & = (h,_y, ..., hy, hg) (0 <
h <N - 1) is the address of this link and ¢+ (1 £t < n — 1) is the stage at which the input
port of a switching element (h,_;, ..., &) is connected to this link. Also the sets {[0, 7]} and
{[n, h]} are used to represent those pseudo links before stage O and after stage n — 1. A set
of labels with similar address representations can be denoted by a common address label. For
example, (I,_;, 1,5, ... ;, ¢, ..., ¢) where #(c) = i (i.e., the total number of ¢’s is i)
represents those 2' labels with the same first n — i bits in their addresses. The notation
Lla :b],a 2 b, is used to represent a segment of the address L from bit /, to bit /, ie,
Lla : b1 =g, Loy, s lpays Ip)-

5.2.B. Fault Mode!

The fault model we consider is one that both the switching elements and communication
links may fail. The faulty components (switching elements and/or communication links) are
treated as unusable and no connection can be routed through them. Thus, a faulty set F on
an Omega network is defined as a set of faulty components under consideration. Some stan-

dard definitions have been used in several previous studies [ShHa84] [VaRa89]. We quote

122

Interprocessor
Multistage Interconnection Network

Reconfiguration
Monitor

Host Computer

Fig. 5.1. System model.

123

stage 0 1 2 3
L___ P o
N\ @ 0 0 0 01,
<V
/'2\ 2 >
=4 1 1 1 1],
N

-
4
[V (N
1o
tJ
tJ
{9
n -

O ©
"’s

@

)

I8!
@}
(o}
@)
o)}
3 J

d 7 7 7 7 [e

&

Fig. 53.2. A l6-processor mulitiprocessor system interconnected by a 16 X 160mega network.

124

them here and extend their definitions for our convenience.

DEFINITION 1: A fault set F in an Omega network is critical with respect to a subsys-
tem (system) iff it destroys the property of dynamic full access of this subsystem (system). O

Here, the definition of the DFA property is no longer restricted on the original N -
processor system but on any subsystem composed of a subset of the N processors. Hence, if
F is noncritical, data packets from any processor (or network input) can be routed to any
other processor (or network output) in a finite number of passes through the faulty network.

DEFINITION 2: Let m be a permutation passable by an Omega network. The set of
faulty paths Cr , of the permutation nt under the fault set F is the set of communication paths
that pass through some components in F when the system tries to realize © on the network. [J

For example, let / be the identity permutation. The fault set F = {(1,0), (2,0), (2,1),
(1,11, [1.8]} in the network of Fig. 5.2 will affect those data packets which pass through the
paths 0 —» 0,2 = 2,4 — 4, and 6 — 6 of the identity permutation.

DEFINITION 3: Two fault sets F and F are equivalent iff Cr 5 = C 7 n for all possible
n. The notation F = F is used to denote that F and F are equivalent. a

For example, the fault set £ = ((1,0), (1,4), (2,0), (2,1), [1,0], [1,1], [1,8]} is equivalent
o F = {(1,0), (2,0), (2,1), [1,1], [1,8]} in the network of Fig. 5.2 because F and F’ affect the
same set of communication paths of each passable permutation.

DEFINITION 4: The maximal fault set F _,, corresponding to a fault set F in an Omega
network is the set of maximum size that is equivalent to F. That is to say, F ,, = F and

Fouw2F' forall F =F. a

125

5.3. FAULT-TOLERANT RECONFIGURATION

In this section, we study a fault-tolerant reconfiguration scheme for an /N -processor sys-
tem with muldple faults on its Omega network. Such a scheme provides the system a flexible
reconfigurable environment no matter whether or not the fault set under consideration is criti-
cal. A single surviving system or several surviving subsystems are formed by performing this
scheme such that deadlocks can be avoided. This single surviving system may be composed
of the onginal N processors or only a subset of them. A shortest-path routing table for each
processor is obtained from which a processor can always know the minimal number of passes
and proper intermediate processoré to access other processors in the same surviving system
(subsystem). The idea of the fault-tolerant reconfiguration is described as follows. In Fig.
5.1, imagine that there is a machinism in the host computer, named as
reconfiguration monitor, which can process the fault-tolerant reconfiguration scheme. Once
the locations of faulty components have been known, the reconfiguration monitor then

processes the following procedures.

(1) Obtain the communication capability of each processor for the first pass through the
faulty network. Some processors may be considered as unusable due to the complete
destruction of their communication capabilities. Conceptually. a single surviving svstem

will be produced if we remove these unusable processors.

(2) The communication capabilides of all the processors is sent back from the
reconfiguration monitor to each processor. A shortest-path routing algorithm is per-
formed in each processor to find all the possible shortest routes to other piocessors.
Eventually, a shortest-path routing table is produced for each processor. By using this

»!gorithm, the proper intermediate processors and the minimal number of passes through

126

the faulty network for a processor to access another processor are obtained.

(3) Under some situations, a reconfiguration algorithm must be employed to avoid the impli-
cit danger of deadlocks. These situations are due to the criticality of the fault set with
respect to the surviving system. According to this reconfiguration algorithm, the surviv-
ing system is partitioned into several subsystems. Each subsystem possesses the DFA
property. The partitioning of the surviving system is implicitly equivalent to sacrificing
some usable components which only help establishing unidirectional multi-pass commun-
icaton paths. However, we do not have to know the actual locations of these usable

components during the partitioning.

We start our discussion from basic properties of routing behavior of Omega networks

under faults.
5.3.A. Routing Behavior of Omega Networks under Faults

For an n-stage Omega network, due to its regular structure, any paths taversing a
switching element (i ,e) at stage i can be expressed by the following two transition sequences.

These transition sequences also indicate which network inputs S’s and outputs D’s are con-

nected through e.

Backward :
E =(epy, 652, ...,€1,C)
E' = (e 1r€p 2 - .., €1,C)
D'"'=(c.e,_q,...,€3 €))
E''l'=(c, e,y ... €5 C)

127

D%=(c,...,c, €n_is - -+ 1€i+1» C)
S=(,....c,ep_1,---,€i12 €41)
Forward :
E=(,_1.,_2,...,€.,C)
E*l =(e, 5, €53,,€1,C,€x_1)
D*l = (e, €03 . ..,€1,C,C)
Erl=(e e1,...,e0,C, . ..C,e€41)
D*l=(e; €y, ...,e5,C,...,C,C)
D =(; ¢e_,....€,¢c,...,6.C)

In these transition sequence, each E/, 0 < j < n — 1, represents the address of the input
port through which a path traverses stage j and each D/, 0<j <n — 1, the output port
through which the path traverses stage j. Obviously, Eiln=1:1]1=D/{n - 1:1]is the
address of the switching element through which a path traverses stage j and each one of such
paths passes through the switching element ¢ at stage i (i.e.,, when j = i). The switching ele-
ment e at stage i can be viewed as the common root of two communication binary trees.
One is the backward (i+1)-level tree with the address label of its leaves (switching elements
at input' stage) equal to (¢, ..., C, €41, €n_2, -» €ix1)s #(c) = i, and the address label of net-
work inputs connected to leaves equal to S = (¢, ... C, €,_{» €,_2, ... €;,1) , #(c) =1 + L

The other one is the forWard (n—i)-level tree with the address label of its leaves (switching

128

elements at output stage) equal to (e;, €;_1, €1, C, ..., ¢) , #{(c) = n —i — 1, and the
address label of network outputs connected to leaves equal to D =(¢;, €;_y, ..., €, C, ... C),
#(c) = n —i. Thus, totally 2°*! network inputs and 2"~ network outputs are connected
through e. If e is faulty, clearly, the communication from these 2‘*! network inputs to those
2"~ network outputs will be destroyed. Particularly, when i = 0 (i = n — 1), these above
two binary trees reduce to one in which the root e is rooted at input (output) stage and the
root e is connected to two network inputs § = (c, €,_1, €,-2, ..., €1) (two network outputs, D
= (e,_y, €,_2, €1, ¢) and all the network outputs (inputs). It is obvious that as the neces-
sary condition for a fault set F to be noncritical with respect to the original N -processor sys-
tem, F cannot contain any switching elements from the input or output stages; otherwise com-
munication trees rooted at these switching elements are completely destroyed. If that happens,
processors connected to faulty switching elements at input or output stages will no longer be

used.

It also can be observed that the pair of switching elements {(i, w), (i, w + 272} at
stage i is connected to only one pair of switching elements {(i + 1, 2w), (i + 1, 2w + 1)} at
the next stage, where 0 £ w < N/4 — 1. This is referred to as the buddy property in [Agr83].
If both elements of a buddy pair {(i, w), (i, w + 2"‘2)} are in a fault set F, then F can be
expanded to include elements {(i + 1, 2w), (i + 1, 2w + 1)} without affecting any additional
communication paths. Similarly, if both elements of {(i + 1, 2w), (i + 1, 2w + 1)} are in F,

then {(i, w), (i, w + 2"} can be included in F.

A similar argument can be made about a communication link [i, 4#]. The communica-
tion link [i, h] between stage i—1 and stage i, 1 <i < n — 1, can be viewed as the common

root of two communication binary trees. One is the backward (i+1)-level tree with the

129

address label of its leaves (i.e., processors connected to input stage) equal to S = (c, .., c,
Rp_ts Bu_zs ..oh;), #(c) = i. The other one is the forward (n—i+1)-level tree with the address
label of its leaves (i.e., processors connected to output stage) equal to (h;_y, A5, ..., hg, C, ...,
¢),#(c) =n —i. Thus, totally 2° network inputs and 2"~ network outputs are connected
through [i, h]. If [i, 4] is faulty, clearly, the communication from these 2¢ network inputs to
those 2"~ network outputs will be destroyed. One thing which differs faulty communication
links from faulty switching elements is that no failure of any single link will completely des-
troy the communication capability of any processor, even if the faulty link comes from {[1,
hl} and {[n = 1, h]}. However, since the pair of links {[i, 2¢], [i, 2¢ + 1]} is connected to
the pair of input ports of switching element e at stage i and the pair of links {[i, e div -2
+ 4(e mod 2"), [i, e div 2" + 4-(e mod 2"%) + 2]}, connected to the pair of output
ports of switching element e at stage i—1, 0 < e < N/2 — 1, the failure of such a pair of links
is equivalent to the failure of a switching element. Thus, a fault set which contains such a
pair of faulty links can include a switching element to which the pair of faulty links is con-

nected in order to form an equivalent fault set.

For example, in Fig. 5.3, a fault set F = {(1,1), (1,2), (1,5), (2,0), (2,5), [1,1], (1,3]} is
shown on a 16 x 16 Omega network. The buddy pair of faulty switching elements {(1.1),
(1,5)} at stage 1, is connected to the buddy pair {(2,2), (2,3)} at stage 2. Therefore, the fault
set F can include {(2,2), (2,3)} to form an equivalent fault set. Similarly, the pair of faulty
links {[1,1], (1.3]} is connected to the switching element {(0,4)}. Theretore, the fault set F

can include {(0,4)} as well to form a~other equivalent fault set.

130

5.3.B. Communication Capability for the First Pass under Faults

After the faulty components of a fault set have been located, an identical procedure is
performed in each processor to obtain the communication capability of the N -processor sys-
tem for the first pass through the faulty network. The following algorithm is a procedure to
find all the accessible processors of processor i, 0 <i <N — 1, for thev first pass through the
faulty network. The notations {; and {gy represent a faulty link and a faulty switching ele-
ment in a fault set F, respectively.' Finally, the set Z; contains all the accessible processors of

processor i .

Algorithm 1:
{ Find all the accessible processors of processor i for the first pass }
procedure Accessibility (i: processor; F : a fault set)
{ let the binary representation of i = (i,_;, iy_3, ... ig) }
k «0
Z; « (0,1, ., N =1} [{ initally, Z; contains all the N processors }
for each {;, Loy € F do
mark(C;] - True
mark(Csw] « True
{ scan all the faulty components stage by stage }
while k #n —1and Z; = ¢ do
{ delete those unaccessible processors due to the faulty links }
if £ # 0 then

for each CL = [k, (in—k-Za Ly=3s woos 80y Xiels Xk2s -oos X0 bpg_)] € F
do

if mark{{,] # False then
Z, & Z X ps Xpgp s Xy € s €)1 B(C) =10 ~ k)
for 2ach

CL =y Gpogo2r Enog=3s s $0p Xty Xgm2s woos X 0o Yickois Mik=2s o0
Yo ln—l—l)] € F’

Csw = Uy (lnmjo2s fnmjo3s oo 800 Xkoly Xko2s oo X00 ¥jckmls ¥jog -2
ey)'0)) e F,

10
11

12

13

14
15

131

stage O 1 2 3
0 0 -
1 1 ._\ l -
2 2 2 [
3 3 3 3
L] -
4 4 4 4
5 s [
6 6 5 6 t
. -

7 7 7 7

Fig. 5.3. An example fault set F ona 16 X 16 Omega network.

(V3R] —O

W fa

10
11

12

13

132

wheren = 12I>k,n-12j 2k do
{ when j =k, bit y_; is undefined. }
mark(C;] « False
mark[Csw] < False

{ delete those unaccessible processors due to the faulty switching elements

}
for each CSW = (k, (in—k—Z’ in—k-3’ vees io, Xig—1> Xig—2s o Xo)) e F do
if mark[Csw] # False then
Z, « Z/{(Xp_1s Xk—gs » Xy € oy C) | #(C) =1 — k)

for each

CSW = (1. (’n—I—Z' by =3s s io, X1 X=2s oo X0» Yick=1r Yick=2s s
yo) € F,

8L = U, Gnoiozs dnogoas oo $0s Xiels Xk=2s oon X00 Y1ok—1s Yimk=2+ - Yoo
in—l—l)] € F,

where n — 121 >k do
mark[Cew] < False
mark[{;] « False
k —k +1

Note that all the single-pass communication paths starting from processor { construct a
binary ~cc. Algorithm 1 identifies the faulty components in this binary tree stage by stage
and deletes all the unaccessible processors due to the destruction of communication by either
faulty links or faulty switching elements. Since the failure of a component can destroy the
communication from processor i to a subtree rooted at this component, any faulty components
in this subtree will not cause the deletion of any new processors. Thus, such faulty com-
ponents are marked with a value False to indicate that no deletion operations are needed to

be performed when they are scanned. The total number of faulty components in £ is at most

N(og,N - 1) + —[:LlogzN. To identify or mark any one of them in the binary tree a log,V-

bit comparison operation is needed. Thus, the scanning of all the faulty componernts in F

takes a time in O (N (logN)®) in the worst case. Also, Algorithm 1 needs at most N deletion

133

operations. Therefore, Algorithm 1 takes a time in O (N (logV)?) in the worst case.

Since Z; is the set of accessible processors of processor i, 0 <i £ N - 1, We can asso-
ciate each processor j € Z; with a nuuber [C']w = 1 and other processors k € {0, 1, ..., N
~ 1}/Z; (i.e., the set difference of {0, 1, .., N — 1} and Z;), a number [C"];; =—1. Thus,

we have defined an array [C'] where [C‘] i,j e {0,1,.,N-1}, denotes the entry in array

i
[C”] at the intersection of row i and column j. Obviously, the armay [C "] represents the
accessibility of each processor in the first pass through the faulty network, i.e., processor i
can communicate with processor j iff [C‘]i,, = 1. Note that each processor always can com-
municate with itself without passing through the network. Even through the diagonal entries

(c* lii'sin [C *] may not be all equal to 1, this however will give more convenience for our

presentation.

Some processors may lose all the communication paths to or from all the N processors,
say, due to faulty switching elements at input stage or output stage. Thus, no possible data
packets issued by these dead processors will arrive at other processors or no possible data
packets will be received by these dead processors. They can be found by inspecting array
[C"] such that iff they are some i or k such that [C”];; ==l or [C"],, =1, forall 0 <
< N - 1, respectively. These processors must be disabled (or conceptually be removed) to
avoid blocking other communication and further slowing down the system. Let S,, be the set
of surviving processors excluding all the dead processors, referred to as the surviving system.
Define the following two arrays, restriction array and connection arrav 1o represent the
communication capability of the surviving system S,, for the first pass through the faulty net-

work.

134

DEFINITION 5: Array [Cr], referred to as the restriction array, is defined as [Cp); ; =

[C'h,;’ for all i, j € S, . Aray [Cg], referred to as the connection array, is defined as

[Csli; =land [Cs);; =[C"];,, foralli,j € S, andi = /. O
It is clear that {Cp] represents the communication capability of the surviving system S,
without considering the self-communication capability of each surviving processor. on the

other hand, [Cs] include the self-communication capability of each surviving processor.
5.3.C. Construction of the Surviving System

The surviving system with respect to a tault set can be constructed if we knew the
corresponding maximal fault set. The principle for constructing the surviving system is that:
find the maximal fault set corresponding to a fault set and then remove All the components 1n
the maximal fault set and those isolated processors. Thus, the remaining substructure is the
surviving system interconnected by the surviving network through which the communication
between the surviving processors can be maintained. The isolated processors without any
possible incoming or outgoing paths correspond to those dead processors which cannot receive
data packets or whose data packets cannot arrive at other processors, respectively. The algo-
rithm to construct the maximal fault set F,. corresponding to a given fault set £ can be
found in [VaRa89] by Varma and Raghavendra where only faulty switching elements are con-
sidered. To fit into our more gengral fault model where both faulty links and switching ele-

ments are considered, we generalize their algorithm as follows.

Algorithm 2:
{ Construct the maximal fault set F_,)
procedure Maximal-Fault-Set (F : a fault set)

Fo— F (initially, F , =F }

e a & s mmmaa

135

Az < ¢ { initially, the set for new additional switching elements is empty }
{ include those links connected to switching elements in F_,, }
for each (i, e) € F,, do
Foax — Froae \U (i, 2€), [i, 2e + 1), [i, e div 2"7% + 4-(¢ mod 273,
[i,e div 2"7% + 4-(e mod 2"7%) +2])
{ include those switching elements if the pair of links connected to their
input ports or output ports are in F ,, }
fori =1ton —-1do
fore =0toN/2-1do
if {[i, 2e], [i,2¢ + 1]} C F,,, then
Ay — Ay U G, &)
Foax & Fan U (G, e)}

if ([i, e div 2"+ 4(e mod 2"™%)], [i, e div 2"7% + 4-(¢ mod 2"7)
+ 21}

< F hax then
Ay <A, U E-1¢e))
Frax & Foax U (G- 1,8)}
{ include buddy pairs of switching elements }
{ forward pass }
fori =1ton —1do
forw =0toN/4 -1do
if {((i,w),(i,w+2"?%} cF_, then
Ay <A QG +1L2w), (0 +1,2w + 1)}
Foax € Foax U (G +1,2w), (0 +1,2w + 1)}
{ reverse pass }
fori =n — 1 downto 1 do
forw =0toN/4-1do
if {(i,2w), (i, 2w + 1)} © F . then
Ag — Ay UG -1,w),G-1,w+2"72)
Foa & Foa \UJ (= 1Lw), (i =1, w +2"7%))
{ include links connected to switching elements in A, }
for each (i, e) € Ay, do
F max & Fmax \U ([0, 2e), [i, 2e + 1], [i, ¢ div 2"7% + 4 mod 2""7)].
[i, e div 272 + 4-(¢ mod 2"7%) + 2]}

136

The maximal fault set £ ., is constructed starting from F ., = F by
(1) adding those links connected to switching elements in F ,,;

(2) adding those switching elements if the pair of links connected to their input ports or out-
put ports is in F ,,;

(3) scanning the network first from the input side to the output side and then in the reverse
order; adding the buddy pairs of all the pairs already in F ,,, until no more additions are

possible,
(4) including those links connected to new additional switching elements in A ; o F ..

It can be proved [VaRa89] that one forward pass and one backward pass are sufficient to
include all the buddy pairs deduced from F and thus obtain the corresponding F_,,. By
removing all the components in F ., and those isolated processors, we can obtain the surviv-
ing system S,,. As the study in [VaRa89] have shown, for N < 16 cases, a fault set F is
critical with respect to the original N -processor system iff its corresponding maximal fault set
F Lax contains switching elements from input or output stages of the network. However. to
determine the criticality of a fault set F for cases where N > 16, no general necessary and
sufficient conditions based on the distribution of faulty switching elements have been found
yet. The condition that the corresponding maximal fault set F _, contains no switching ele-
ments from input or output stages of the network is only necessary for the non-criticality of a
fault set F with respect to the original N -processor system. More precisely, we can show that
for cases where N > 16, even tﬁough some processors are removed due to switching ele-
ments from input or output stages in F ., the non-criticality of a fault set F with respect to

the surviving system S, still cannot be determined. Nevertheless, we will show in the fol-

137

lowing sections that to determine the DFA property of the surviving system is not so pes-
simistic as it looks like. Actually, the information of restriction array [Cg] or connection
array [Cg] will be sufficient for determining the DFA property and developing an efficient
fault-tolerant routing scheme for the surviving system and the construction of the maximal

fault set will not be necessary.

For example, a 32 x 32 Omega network with a fault set F is shown in Fig. 5.4(a). For
easily constructing the surviving system, we show an alternative drawing of the Omega net-
work as in Fig. 5.4(b) which is a butterfly structure. The switching elements {(1,4), (1.12)}
and {(1,12), (1,13)} at stage 1 are faulty buddy pairs. As we perform Algorithm 2 and scan
the network forward and backward, two switching elements {(0,3), (4,5)} are included in
F ax due to that those links connected to them are in F_,.. And, four other pairs of switch-
ing elements are included in F,, due to faulty buddy pairs, i.e., switching elements {(0,6),
(0,19, (2.9), (2,9), (3,2), (3,3), (4,6), (4,7)} and those communication links connected to them
are included in F_,,. By removing all the components in the maximal fault set from the net-
work, processors {3, 6, 7, 10, 11, 12, 13, 14, 15, 19, 22, 30, 31} are isolated from the original
system. The surviving system (0, 1, 2, 4, 5, 8, 9, 16, 17, 18, 20, 21, 23, 24, 25, 26, 27, 28,

29} is shown in Fig. 5.5.

Based on the construction of the surviving system S,,, an interesting property of the res-
triction array [Cp] is derived as described in Theorem 1. Theorem 1 states that the data from
a number of rows of [Cg] alone will be sufficient to represent [Cp]. We will show in the
next section that this property can save a lot of computational efforts for a processor to find

ali the shortest routes to other processors.

138

THEOREM 1: Let [Cr];, i € S,., denote ith row of [Cp] which corresponds to proces-
sor i in S,,. If both j and j + N/2 are two processors in S,,, 0 < j < N/2 — 1, then [CR]j
and [Cr];.y /2 are identical, ice.. [Cpl; 4 = [Crljnap forallk € S, .

PROOF: Different situations are considered with respect to switching elements and links
in F -

Processor pairs {(k, k + N/2} or {2k, 2k +1},0 < k £ N/2 — 1, which are connected to
switching elements in F . from input or output stages respectively, are removed since they
do not belong to S,,. Thus, only switching clements from stage 1 to stage n—2 in F ,, can
affect the communication between processors in S, and need to be considered. As we have
mentioned, any switc_hing element at stage i, 1 £ < n - 2, is a common root of two com-
munication trees and 2‘*! source processors are connected to 2"~ destination processors
through this switching element (for a single pass through the network). If this switching ele-
ment is in F ,,, then the outgoing paths from these 2‘*! source processors to those 2"~ des-
tination processors will be destroyed. Since i 2> 1, at least four source processors are affected
by a swiiching element in F,, at stage i, 1 £i <n — 2. Thatis, any switching element ¢ =
(e,—-1» €n—2s --.» €1) At stage { in F . will destroy outgoing paths to the set of destination pro-
Cessors {(€;, €;_y, ... €9, €1, C, ..., €)}, #(c) = n — i, of 2'*! source processors with the com-
mon address label equal to0 (c, ..., C, €,_1» €n_p» -..r €;41), Where 271 2 d0r #(c) =i + 122,
These 2‘*! source processors can always be partitioned into four groups such that in each
group the first two bits of addresses of ail the processors are the same and cach processors has
the relative address label equal to (¢, ..., ¢, €,_1, €,_2, €;.1), #(¢) =i — 1. Note that each

relative address in each of the four groups has n — 2 bits. Each group is a subset of one of

. — A A A e e e o

oG

139

stage 0 1 2 3 4
0 0 0 0
1 1
2 2 2 2 2]
- T
3 3 3
\
\ - T
4\) 4 4
\ —_
5 5 5 5 5
oy —
6 : 6 6 6
7 7 7 7
8 8 3 8 8
9 9 9 9 9
,l
10 10 10 10
1 1 1 1
12 12 12 12
13 13 13
14 14 14 14 14
15 15 15 |

Fig. 54(a). A 32 x 32 Omega nerwork with a fault set.

w

‘1 on

oo

11
27

12
28

13
29

14
30

31

140

stage 0 1 2 3 4

0 0

e——— \ 1
"

) 2

| 5

: \K

: \\\ 6
—__h -
R | 3
— \ —
4 0

3 i

—— ‘ - D D Gy prs— 11
ana——— pa—— 13
15

— 3 16
B 17
19

R 10 10 28
) 2l

T . nl 2
2

— 12 4
25
h— i3 26
27
14 8

29
I s 30
31

Fig. 5.4(b). An aitemative drawing of the Omega network with the same fauit sct.

141

stage 0 1 2 3 4
0 0 0 0 0 0
16 — —
! 1 2 g 1
7 —
2 o— 2 2 F
18 e— pus———
3
12 9
19
4 : \// : :
:0 — \ P—
5 s 10 5 i0
21 ™ '\
6
22
7 7 14 13
23—
8 T 8 2 4 8
24 —— prn—
g —
9 9
a 6 12
10 10 5 5 10
u 1 //\ \Y 7 14 1
27 \. ——
L 12 / \ \ 9 3 6 12
28 \. / >< | E—
13 13 \ 1 F/ A 7 14 13
29 \
30 —
15 15 15
31

Fig. 5.5. The surviving substructure of the sysiem in Fig. 5.4 after
removing all the components in the maximal fault set.

142

the four subsets of processors W, = {(x'N/4 +y | 0<y <N/4-1},0<x <3. Thatis, {(0,
0,¢c, cvCrep1€i g €D} CWo=1{(0,0,y, 3, Yass . 1. Y01, {0, L, ¢, ., €, €,_4,
€nozr) CW ={0, L,y 3,V YY) (1,0, c, s €0 1, €40, o €541)) C
¥ = {(1,0, y,_3, Yoesr - Yo Yt and {(1, L, ¢, .., C, €,1, €n_2, -.n €410} C W3 = ((1, 1,
Yn—3» Yntr - ¥1» Yo)}. Note that not all the 2°*! processors {(c, ..., C, €x_1, €n3s -.r €i11)]
#(c) =i + 1 2 2} may exist in S, since some of them may be removed due to the switching
elements in F ,, from input or output stages. Therefore, we are ready to make the following
conclusions. Any switching element in F, will destroy the communication from four
source processors with the same relative address in each of the four subsets to the same set of
destination processors. Of cause, we assume here that two or more of these four source pro-
cessors exist in §,,, i.e., not all and at most two of them are removed due to the switching
elements in F,, from input or output stages, otl:zerwise it becomes a trivial case. Thus, the
combined effect of all the switching elements in F ,, on these processors in S, with the
same relative address in each of the four subsets is that the resulting communication capability
of these processors for a single pass through the network is identical. That is, if F,, con-
tains only switching elements and if U = (k +[[N/410<[<3} S, #9,0<k <N/4 -
1, then for all x € U, [Crl;’s are identical. It is also true for the statement that if F ,, con-

tains only switching elements and both processors j and j + N/2arein §,,,0<j SN/2 -1,

then [Cr]; and [Cg];.n /2 are identical.

Similarly, for any communication link in F_,,, the communication capability of at least
two processors are affected. All the affected processors can be partitioned into two groups.
Each group corresponds to the same relative addresses in one of the two subsets of processors

v, = {xN2+yl0<y <N/2-1},0<x <£1. Therefore, if F_,, contains only links and

T T T W e W e e T e T e Ty e e, Teemem—me—mem e ™

143

both processors j and j + N/2 < S,,,0<j SN/2 -1, then [Cr]; and (Cr1j+n1y are identi-

cal. O

For example, in Table 5.1, the restriction array [Cgr] and the connection array [Cg] are
shown for the surviving system in Fig. 5.5, where each entry "*" or "[J" represent 1 and else-
where, ~1. The results can be checked directly from Fig. 5.5. Moreover, we have [Cg], =

[Crlis» [CrY1 = [Cr117, [Crlz = [Crlis, and so on. The correctness of Theorem 1 is obvious.
5.3.D. Construction of Shortest-Path Routing Tables

After the restriction array [Cp] or connection array [Cg] of S, are obtained, it is
straightforward to model the multipass routing problem on S, by using a simple directed
multigraph. Obviously, to know whether there exist communication paths between any pair of
processors of S,, by going multiple passes through the faulty network is equivalent to deter-
mine the reachability between these two vertices on a simple directed multigraph. In order to
reconfigure the surviving system in a most efficient way, an appropriate fault-tolerant routing
scheme between the surviving processors need to be developed, which is our major concern in
this section. We show that a breadth—first—search algorithm [PrYe73] can be used to find
shortest multi-pass communication paths between any pair of processors in the surviving sys-
tem. Hereafter, the two terms, communication paths and paths, will be used interchangeably
to represent routing paths by one or more passes through the faulty network unless otherwise

specified.

Imagine that we have a set V with #(S,,) vertices which are indexed on the set §,,. For
each vertex v; € V, there is a corresponding processor i, i € S,,. A #(S,)-vertex directed

. . i s
multigraph, G, can be constructed as follows: there is an arc (v;,v;) from v; o v; iff [Cs];

144

= 1, where v;, v; € V. In other words, the arc (v,'_,;j) exists iff processor i can access pro-
cessor j by the first pass through the faulty network. Of course, the loop (v‘-—,if‘-) always exists
on each vertex v;. A simple directed multigraph is a graph such that for any two vertices, v,
and v;, there exists at most one arc from either v; to v; or v; to v;. Because of the unique-
path property of the Omega network, it is very easy to show that the graph G is simple.
Also, if we assume that all the siﬁgle-pass communication paths of the network between any
pair of network input and output of the network are equally important, G will be an equally

weighted graph with the same weight on all its arcs. Therefore, we have modeled the surviv-

ing system S,, by a simple directed multigraph G which is equally weighted.

Define a new array [Cs] such that for all i, j € S,,, if [Cs];; = -1 then [C5);; = O;
else [Cs];. j = 1. A vertex v; is said to be reachable from another vertex v; iff there is a path
from v; to v; or [CS'}‘-"J- # 0, for some k > 1. (here [C4]* represents the kth power of fC;])
The order of a path (the number of arcs on the path) connecting v; to v; represents the
number of passes needed through the faulty network for processor i to access processor j.
All the intermediate vertices on the path represent those intermediate processors which need to
be traversed. It can be proved [HoSa78] that if vertex v; is reachable from vertex v; on G.
then [CS'],/‘J- # 0 in at least one k where 1 <k < #(S,) — 1. The graph G 1is said to be
strongly connected if for each pair of vertices v; and v;, there exists at least one path from v;
to v; and one path from v; to v;. Thus, G is strongly connected iff the surviving system S,
has the DFA property. Generally speaking, to determine the DFA property of S,, we need to
traverse the faulty network at most #(S,,) — 1 passes and check each entry of each array

[C_g']k, i.e., determine the reachability between any pair of processors. A similar method is

used in [AgLe85] to understand the DFA property of multiprocessor interconnected by a

Sudiclt,

e

Tabie 5.1. The restriction array [Ca] 2and the connection array [C;) for the surviving system in Fig. 5.5.

145

0124589 16 17 18 20 21 23 24 25 26 27 28 29

0 x k%X

1 [] X %

2 8 * X

4 X kK x ok %k ok x %

5 ® % * % * %

8 * Kk ok]

9 * %

16 * ko ok

17 x

18 [] * X %
20 * k% * % * * k%
21 * x * * @ * %

23 * *x * .

24 * X % n

25 * %]

26 * X

27 *
28 * k% * ok ok ok ok ok
29 * X x ok * %

[Cr] = (Cs] = (*i+(m]

146

faulty network. However, the computational complexity is prohibitively high as the size of

system increases.

As long as the shortest communication paths are used for communication between pro-
cessors in the surviving system, an appropriate shortest-path routing table for a processor to
access other processors must be supplied. In order to access a destination processor, the
corresponding entry of the shortest-path routing table for a source processor must include the
following information:

(1) the proper intermediate processors through which its data packets will be routed in the

first pass through the faulty network,

(2) the minimum number of passes through the faulty network to arrive at the destination

processor.

Therefore, the shortest-path fault-tolerant routing scheme on the surviving system is described
as follows. Whenever a data packet arrives at an intermediate processor after a pass through

the network, the control portion of this data packet contains
(1) the source and destination addresses (which will not be changed during communication),
(2) the number of passes left to reach the destination processor,

(3) the address of next intermediate processor (there may exist many possible ones) for the
next pass through the network; this address is appended after the entry corresponding to
the destination processor of the shortest-path routing table of the current intermediate

processor has been referred to.

The address of next intermediate processor is used as the temporary routing tag for the next

pass through the network if it is not equal to the destination address. The number of passes

147

left to reach the destination processor will be subtracted by one after the next pass through the
network and compared with that in the shortest-path routing table of next intermediate proces-
sor for advanced fault-tolerant control. Thus, the information of the intermediate processors
for the first pass given in each entry of a shortest-path routing table will be sufficient to sup-
port this kind of fault-tolerant routing scheme. It is clear that the bit-oriented routing scheme

of the original system (i.e., the Omega network) has been preserved in the surviving system.

By Algorithm 1 and some data manipulation, the connection array [C¢] is obtained. The
data of [Cg] is then broadcast from the reconfiguration unit to each processor in S, where a
breadth-first-search algorithm is performed to find the shortest-path routing table for each pro-
cessor itself. Thus, the advantage is that an identical breadth-first-search procedure using an
identical set of input data is executed in parallel in each processor of S,,. To implement the
breadth-first-search algorithm, we need a type of Ziata strucfurc queue that allows two opera-
tions enqueue and dequeue. This type represents a list of elements that are to be handled in
a first-come-first-serve manner. The function of first(Q) denotes the element at the front of
the queue Q. According to the shortest-path routing scheme, for a processor i following the
shortest paths to access the destination processor j, the information of proper intermediate
processors of the first pass through the faulty network will be sufficient. Thus, to access pro-
cessor j, a set intermediate [j] is used to include all the possible intermediate processors of
the first pass and passes[j] is used to indicate the minimum number of passes required
through the faulty network. Initially, intermediate[j] is an empty set and passes(;] = 1. for
all j € S, . An index set / is used to contain all the intermediate processors which processor
i can reach in the first pass through the faulty network. Eventually, the shortwesi-path routing

table of processor i is given by ith row of an armay [Ag], ie. [Ag];,

148

(intermediate [j), passes[j1); = (a; ;. B; ;) gives the routing information to access processor

J. Thus, if intermediate(j] # ¢ in [Ag] then this means that processor i can access pro-

ije
cessor j by routing its data packets through any one of the intermediate processor in
intermediate [j] in the first pass and that its data packets will arrive at processor j in the
minimum passes [j] passes through the faulty network. However, if intermediate [j] = ¢ for
at least one j, then this means that processor i cannot access all the processors in S,,. Algo-
rithm 3 gives the procedure to construct the shortest-path routing table for a processor i in the

surviving svstem S, .

Algorithm 3:
{ Construct the shortest-path routing table for each processor in S, }
procedure Breadth-First-Search (i € S, : processor; [Cs]: array)
Q « ¢ { empty queue }
I « ¢ {empty set of intermediate processors }
for each j € S, such that [Cs]; ; # -1 do
1)
intermediate [j] « intermediate]) (j}
enqueue j into Q
{ loop to find shortest paths }
if / #S,, then
while Q@ # ¢ do
J & first(Q)
dequeue j from Q
for each k such that [Cg]; , # -1 do

if (passes{k] =1 or pass-s[k) — 1 = passes[j]) and k € S, /{])}
then

intermediate (k] « intermediate [j] intermediate [k
passes (k] « passes[j] + 1
enqueue k into Q
{ the shortest-path routing table }
for each y € §,, do

e — e+ i o

149

[Asl; j ¢ (intermediate (], passes[j));
The correctness of Algorithm 3 is discussed as follows.

Algorithm 3 is essentially a procedure applying a breadth-first-search on the multigraph
G as mentioned above. Hence, to obtain the minimal number of passes through the faulty
network for processor i to access other processors, we simplely traverse the multigraph G
starting from v; (processor i) using a breadth-first-search. That is to say, we start from v; and
visit all the sons of v;, then visit all the grandsons of v;, and so on. The visiting continues
until all the visitable vertices have been visited. It can be shown that for v; to be visited, the
paths from v; via its parents are shortest. Thus, the first step of shortest paths from v; to v; is
the same as the first step of shortest paths from v; to parents of v;. Therefore, the shortest
paths from v; (processors i) to all the visitable vertices (processors) are traversed. Moreover,
the breadth-first-search searches all the possible descendent vertices (processors) from vertex
i. If at a level of search no new son vertices are visited, it means that a subset of previously
visited vertices will be visited again. Since all the son vertices of these previously visited
vertices have been extensively searched, no possible paths exist from these visited vertices to
other new vertices. That is to say, the search is terminated if at a level of search no new son
vertices are visited (all the searching branches become loops). The above argument gives the
proof of the fact: there are no paths from vertex i to vertex j iff there are no shortest paths
from vertex i to vertex j by Algorithm 3. Assume that the total number of arcs traversed is
E when Algorithm 3 is implementéd starting from a vertex on G. It is easy to show that the
time complexity of Algorithm 3 (which is a breadth-first-Search algorithm) is O(E + N) =
O (max (E N)). We will prove that O (max(E N)) = O (N?) in Section 5.4 where the overall

time complexity of our fault-tole;zt reconfiguration scheme is discussed.

150

According to Theorem 1, a lot of computational efforts can be saved by using the restric-
tion array [Cgr] instead of the connection array [Cg]. It is clear that in the worst case where
the size of S,, is N, the first half of rows of [Cg], ie., {[Crl; | 0 i < N/2 - 1}, will pro-
vide enough information to find all the shortest-path routing tables. Moreover, at most N/2

processors will be sufficient for computing all the N shortest-path routing tables.

For example, in Table 5.2, the shortest-path routing tables associated with the faulty
Omega network in Fig. 5.5 are shown. For simplicity, only the parameter §; j (the minimal

number of passes) of an entry [Ag]; ; is shown in Table 5.2.
5.3.E. Reconfiguration of The Surviving System

By Algorithm 3, each processor in the surviving system obtains its shortest-path routing
table. In some situations, some processors may only be able to access a part of processors in
the surviving system. For example, in Fig. 5.5, processor 1 cannot access processors {4, 5,
20, 21, 23, 28, 29}. Obviously, such situations are due to the criticality of the fault set with
respect to the surviving system. An implicit deadlock has arisen under such circumstances

and shortest-path routing tables become traps if they are not used cautiously. Let us consider

the following case on the surviving system in Fig. 5.5. Processor 5 can dynamically fully

access all the processors in S,,. It is clear that if data packets from processor 5 are sent to
processor 1, no possible acknowledge signals will be received by processor 5. That is to say,
there will be a deadlock between processor 1 and processor 5. Such a situation must be
avoided. Therefore, from the viewpoint of a reliable reconfigurable environment, a deadlock-
free reconfiguration algorithm must be employed so that only the bidirectional communication

is maintained on the surviving system. Central to the design of such a deadlock-free

2

151

Table 5.2. The simplified shortest~path routing tables of the surviving system in Fig. §.5.

0 1 24589 16 17 18 20 21 23 24 25 26 27 28 29
0 C I + + e o @ + + + +
1 + % * *» 8 @2 0 e o o o
2 + + % + + + + + * * * *
4 ¥ k% % x + + + % * * * * * * * * -
5 + + + @ x x * * * + + x x * % %
8 * k% * + & e e + + + +
9 + + + * x B B N e e o o
16 | * * = + + x o e + + o+ o+
17 + + + * % [. e o o o
181 + + + + + + 4+ % * ok k%
20 * *x x + + + + x x x * x ok x ok % +
21 + + * % ok % * * + x x x x *
23 + + x * * X x % * + x4+ o+ 4+ 4 +
24 * ok + + ¢ o @ + + +
25 + + * * B | n L *] o
26 + + + + + + o+ * ok k%
27 + + + + + x x x + + *
28 * Kk k + + % * * * * * * * +
29 + + + ® @ x x x * + + * * * * *

* : the first pass
+ : the second pass

@ : the third pass

B : the fourth pass

152

procedure is the sacrifice of some usable links or switching elements and the partitioning of
the surviving system into a number of subsystems such that each of which possesses the DFA
property (i.e., the fault set is noncritical with respect to each subsystem). In order to utilize
the surviving system in a most efficient way, a subsystem should be a maximal disjoint set
which only includes all the possible processors with bidirectional communication capability

among them. Such a deadlock-free reconfiguration algorithm is our goal in this section.

The reconfiguration monitor is notified with the criticality of the fault set whenever a
surviving processor finds itself cannot access some processors in the surviving system, i.e., for
some i, j € S,, o;; = 0. All the shortest-path routing tables are collected by the
reconfiguration monitor where array [Ag] will be inspected. According to the following

definition, the reachability array [Hg] corresponding to S, is obtained.

DEFINITION 6: [Hg] is a #(S,) x #(S,) boolean array associated with [Ag] such that
fori,j e S, ,entry [Hg);; 1s a boolean constant which is either True or False. [Hs Ji, 18

defined as follows: [Hs]; ; = False if a; ; = ¢; otherwise [Hs); ; = True. O

Each [Hs); ; = True indicates that there exists at least one path from processor i to pro-
cessor j. To avoid the problemr of deadlock, the use of unidirectional communication paths
between two processors must be prohibited. For example, if [HS]i,j = True but [Hg] ji =
False, then paths from processor i to processor j should not be used again. A new array
[H§] is employed to monitor the status of bidirectional communication between any two pro-

cessors in S,,.. Array [Hs] is defined as follows.

DEFINITION 7: [H] is a #(S,,) x #(S,,) boolean array associated with arrav [Hs] such

that for i, j € S,,.entry (Hgl;, = [Hs];, = [Hsl;; A [Hs];;, where A is a boolean AND

153

operation. a

Thus, array [H;] 1s a symmetric array with diagonal elements equal to True. For any
i,j e S,. [H;]i' ; = True iff there exist bidirectional communication paths between proces-
sor i and processor j. It is obvious that array [HS'] consists of a number of "True" blocks in
which all the entries are equal to True. The method to construct all the possible maximal dis-
joint sets in §,, is based on the following argument: a processor i belongs to a disjoint set C i
which must be maximal iff [Hs); x = True, for all k € C;, and [Hs];, = False, for all | e
S4/C;. Thus, the subsystem C; is the maximal disjoint set which contains processor i and
possesses the DFA property, i.e., the fault set is noncritical with respect to C;. This argument

is formally described by the following theorem.

THEOREM 2: Assume that there exists an i € S, and T < S,, such that [H;]‘-_k =
True, for all k € T, and [H;L-J = False, forall / € §,,/T. They, forany x,y € T and :
e S,T, [HS"]X‘y = True and [Hg),, = False. Moreover, T is the maximal disjoint set

which contains processor i and possesses the DFA property.

PROOF: Since [H;] is a symmetric array with diagonal elements equal to True, i € T is
always wue. If [Hg);, = True, for all k € T, and [H{);, = False, for all [€ S, /T, then
[H;]k"- = True and [HS'],“- = False. Thus, for any x,y € T, there exist communication paths
both from x to y and from y to x. That is, by Algorithm 2, shortest paths either from x to y
or y to x have been found. Therefore, [H;]X‘y = True, for all x,y € T. However, if there
exists a z € S,./T such that [Hs], , = True, for some x e T/{i}, this means that there exist
communication paths from z via x to i, i.e., [H_;]i‘z = True which contradicts our assump-

tion. Therefore, [Hs |, , = False, forall z € S, /T and all x € T. Moreover. elements of T

154

are all the possible processors possessing bidirectional communication capability with proces-
sor i. This is based on the fact that array [HS'] is a modified array derived from the reacha-
bility array [Hg]. Therefore, T is the maximal disjoint set which contains processor i and

possesses the DFA property. O

By Theorem 2, the maximal disjoint set C ; to which processor i belongs is composed of
those processors k’s such that [H.;]i.k = True. Thus, the shortest-path routing table of pro-

cessor { can become a deadlock-free one by modifying [Ag]; as follows.

{ modify shortest-path routing tables to deadlock-free ones }
procedure Update (i € S,,: processor; [HS']: boolean array)
for each j € S, such that [HS']‘AJ = False do
[As];; < (0, 0);

For example, the updated routing tables [Ag] for the surviving system in Fig. 5.5 is

shown in Table 5.3. Those unidirectional communication paths from, say, processor 20 to

processors {0, 1, 2, 8, 9, 16, 17, 18, 24, 25, 26, 27} are discarded.

However, for the reconfiguration monitor to obtain the global information of utilization
of the surviving system, a better way to implement the deadlock-free reconfiguration algo-
rithm is described as follows. The work of reconfiguring the surviving system into smaller
subsystems is essentially to group processors in the surviving system into maximal disjoint
sets such that in each set the DFA property (i.e., the bidirectional communication capability)
is preserved. Initially, the #(S,,) processors are in #(S,,) different sets. A canonical object,

named ser(i], is chosen to serve as the label for the set of processori,i € § Since there

ur -

is no preference for the choice of labels as long as they are canonical, it is natural that the

address of a processor is sufficient to serve as the label, i.e., set[i] =i initially. A reference

155

processor nonzero [i] for processor i contains the address of an arbitrary processor j such that
[H;]i‘ ; = land i # j. The reconfiguration starts randomly from any processor in S,, by
searching and changing the label of another processor to its label iff there exist bidirectional
communication paths between therp. A processor k is included in a disjoint set iff the label
of its reference processor has not been changed, i.e., set [nonzero[k]] = nonzero[k]. Eventu-
ally, all the labels of processors in a maximal disjoint set will be the same and are equal to
the label of some arbitrary processor in the maximal disjoint set. The following is the

deadlock-free reconfiguration algorithm.

Algorithm4;
{ Reconfiguration of The Surviving System }

procedure Deadlock-Free Reconfiguration (S,,: the surviving system; [F]:
boolean array)

Q « 0 { empty queue }
N «0
foreachi € S, do
enqueue i into Q
{ find maximal disjoint sets C i ’s }
while N = #(5,,) or Q = ¢ do
J & first(Q)
k & nonzero(J)
if set(k] = k then
for each ! such that [H;]j', =True do
C;ieC !}
set{l] «j
N « N +#C))
dequeue ;| from Q

Algorithm 4 scans each processor in §,, (they may be selected randomly) by searching
all the possibly processors for a maximal disjoint set until all the #(S,,) processors have been

classified into different maximal disjoint sets. To distinguish maximal disjoint sets which

156

Table 5.3. The modified shortest-path routing tables {4} of the surviving system in Fig. 5.5.

01 2 4589 16 17 18 20 21 23 24 25 26 27 28 29
0 * k% + + ¢ © @ + + + +
1 * * x 0 e 6 ¢ o
2 + % + + + x % C I
4 *x + * * + -
S ® *x + + * *
8 * Xk %k x + e L + + + +
9 + + + * % R B e o o o
16 *x k% + + *x e e + + + +
17 + + + * x B * 8 e o o o
18 + + + + + + + % ¥ ok k%
20 + + * + o+
21 x o F * o
23 * x + % + o+
24 * k% + + @ o o * + + +
2 + + + * x B B B e *x o @
26 + + + + + + + + x %
27 + + + + + ok *x x + + + *
28 + *x % x +
29) + + * %

T A

x the first pass
+ : the second pass

® : the third pass
® : the fourth pass

157

have been previously found from the maximal disjoint set which is being currently con-
structed, we need only check whether or not the nonzero parameter of a processor currently
searched has been changed (based on the fact of Theorem 2). After the implement of Algo-
rithm 4, the information of a maximal disjoint set is sent back from the reconfiguration moni-
tor to each processor of the maximal disjoint set. Then, the shortest-path routing table of a
processor is updated to a deadlock-free one according to the maximal disjoint set to which the

processor belongs.

{ updates shortest-path routing tables to deadlock-free ones }
procedure Update (C,: maximal disjoint set; j € C,: processor)
for each k € S, /C; do
[As]j_k « (0, O)j

After all the shortest-path routing tables (i.e., array [Ag]) has been modified, a number of
usable links and switching elements were implicitly sacrificed. These components construct
those unidirectional communication paths which were discarded as array [Hg] was derived
from [Hg]. Also, a number of subsystems are formed from the original surviving system.

Each maximal disjoint set corresponds to such a subsystem.

For example, by Algorithm 4, the surviving system in Fig. 5.5 is partitioned into two
subsystems with DFA property. These two subsystems are {0, 1, 2, 8, 9, 16, 17, 18, 24, 25,
26, 27} and (4, §, 20, 21, 23, 28, 29}, respectively. The partitioning results are shown in Fig.
5.6. Implicitly, those usable switching elements {(1,8), (1,10), (1,15), (2,13), (3.4), (3.8),

(3,14)} und some usable links connected to them are sacrificed.

158

stage

----n -
'o —~ 2"3 * v. © -
[]

-« - - - - - o

o - ~

o o o
o o

=

o ~

o - ~
-.u— oooooooooo -
o w0 —_~ N ' o o
» — — —y -t
[L . I S) .

10

10

3o
3

15

[}

- ‘o wa o n' - 0
- o e — - € 3 n Lt U] [a_U. u ”
- - - -- - o . - - - - - - o8
o0 o (=] — o~ (28] st
=t — p - —
o h
~r — sl Y e) -
() o~ © < [} [—
— Land —
« sl ~ (=} —
— —
\l\
~] o =} — o (2]
- — — —
PRI IR - = []
-~ P o0 « o ' o v ¢ -t 0o
] c u. —y Chy u- (o] u ~ u M" “ m

1$

15
k)

Fig. 5.6. Two subsystems are formed from the surviving system in Fig. 5.5.

- - PN T T U —

159

5.4. COMPLEXITY OF THE FAULT-TOLERANT RECONFIGURATION
SCHEME

The time complexity of the proposed fault-tolerant reconfiguration scheme is analyzed as
follows. Assume that the time overhead spent on data communication between

reconfiguration monitor and processors is negligible.

(1) Algorithm 1 (the Accessibility) takes a time in O (V (logN)?).

(2) The manipulation of a variety of arrays: [C" 1, [Cg], [Cs], [Hs] and [H], takes a time
in O(N?).

(3) Algorithm 3 (the breadth-first-search) takes a time in O(N?%). (We will explain this

later.)
(4) Algorithm 4 (the Deadlock-Free Reconfiguration) takes a time in O (V).
(5) Ubpdating the shortest-path routing table for a processor takes a time in O (N).

Therefore, the time complexity is dominated by the time spent on the manipulation of a
variety of arrays and Algorithm 3 which are in O (V?). The following gives the detailed
proof of the time complexity of Algorithm 3 which is a breadth-first-search on a directed mul-
tigraph.

Algorithm 3 searches all the accessible processors for a surviving processor by a minimal
number of passes through the fdult.y network. It is obvious that the complexity is equal to the
number of accessible processors plus the total number of single-pass communication paths
traversed (i.e., the total number of arcs traversed on G) to search these accessible processors.
The number of accessible processors for a surviving processor is at most N which is straight-

forward. However, to calculate the number of required single-pass communication through

160

the faulty network needs some sophisticated efforts. The difficulty arises from that the varia-
tion of the number of single-pass communication paths traversed is closely related to the dis-
tribution of faulty components and the closed form of their relationship is hard to get. Thus,
an approximate method might be used to find an upper bound. Assume that a processor can
access all the N processors by at least k+1 passes through the faulty network, 1 <k <N - 1.
That is, by Algorithm 2, (N — x,) processors are searched by the first pass, (x; — x;) proces-
sors are searched by the second pass, - - -, (xg_; — X;) processors are searched by the kth
pass, and x, processors are searched by the (k+1)th pass, where N >x, >x; >x3> - >
X,y > x> 0 and all x;’s are integers. For the first pass, the number of single-pass paths
traversed is equal to (VW — x). For the second pass, not all the (N — x) intermediate proces-
sors which have been searched in the first pass can access all the (x, — x,) processors. In
general, part of these (x; — x,) processors are searched by routing through part of those (N —
x,) intermediate processors and another part, by some part of others. Because of the sym-
n.etric structure of an Omega network, we may think that those x, processors which cannot
be searched by the first pass are uniformly distributed over the (¥ — x,) intermediate proces-
sors. Hence, a reasonable estimate of the portion of the (N — x;) processors through which
the (x, — x,) processors can be searched by the second pass is (¥ — x;)/N. Therefore. an

estimated upper bound of the number of single-pass paths traversed by the second pass is

N - X
N

(YN = x)(x; — xp).

Similarly, an estimated upper bound of the number of single-pass paths traversed by the ith

pass, | <i <k 1s

- 'ri—
L)y = %) (i = X,)

161

and the estimated upper bound of the number of single-pass paths traversed by the (k+1)th

pass is

Xpy - X
(S) (Xeoy = X) (x).
Xg-1

Now the complexity analysis of Algorithm 3 can be modeled as the following problem.
For an arbitrary distribution of a fault set, there exists a number k, 1 <& €N - 1, such that
by Algorithm 3 a surviving processor can search all the accessible processors (either all or a
part of the N processors) by k+1 passes through the faulty network. Let the number of
accessible processors be M < ¥ and £ denote the total number of single-pass communication
paths traversed by Algorithm 3. It can be shown from the above argument that £ is bounded

by the following equations:

M "Xl
E < M - X + (T)(M - -‘1)'(-‘1 - X:) -+
x1 - .‘Cz
(——)(x; = x3) (x5 — x3)
Xy
K-y = Xk
+ o () () — X) ()
-1
=f(x1, X3y oeey Xk)
= f(x),
where
M>x; >xy>x3> - >x_1>x >0,

x;,forall 1 €i <k, are integers.

Thus, the analysis of complexity of Algorithm 3 has become the constrainted optimization

problem where we want to find the maximum of a set of nonlinear functions with inequality

162

constraints. In general, the nonlinear optimization technique [WiCh78) may be employed to
find the maximal value among all the possible functions f(x) with inequality constraints
which will be the upper bound of E. That is, we have an optimization problem whose solu-
tion gives the upper bound of E: foreach 1 <k <N -1, find

max f (x)

such that

gix)<0, i=12,... ,k,k+1

where

=N =
gi(x) =4 X, 2<i <k
—X, I =k+1

However, a simpler way to obtain the upper bound is discussed as follows.
[t 1s obvious that
A(xX) =M —x; + (M —x)x)—x) +(x; ~x)xy—x3) + -+ +
(Xpo1 = X) (x)
2 f(x).
To find the maximum among functions h(x), a geometrical method is used here. See Fig. 5.7.
It is easy to show that the total area of those shadowed rectangles is equal to 4(x). For any &

and any arrangement of the values of x;’s, this total area is always less or equal to M2/2.

That is,

b}

ra

M- > max A (x) = max f (X).
b X X

163

X1

x2

X3

X4

Xk-2]

k-1

Xk

vl

1 x¢

Xi-1 Xk-2 **°* X5 X4

X3Xx2 Xy

M N

Fig. 5.7. The diagram used to expiain the complexity of Algorithm 3.

164

And the maximal value of A is N which means that the set of accessible processors of a pro-
cessor by multiple passes through the faulty network is all the N processors. Therefore, the
upper bound of E is in O (N?). Obviously, the above argument gives the proof that Algo-

rithm 3 takes a time in O (N2).

5.5. SUMMARY

What we have presented in this chapter is a flexible and real-time reconfiguration scheme
for a muliiprocessor system with a faulty network. Even though our fault-tolerant
reconfiguration scheme is developed for an N -processor system interconnected by a log,N-
stage Omega network, it can be easily extended to a system interconnected by other networks
which are topologically equivalent to the Omega network [Agr83] and are constructed by
switching elements with different size. Moreover, our scheme can be used on a system inter-
connected by a k-stage network, & > n, as long as the routing scheme on this network is
known. The principle of the reconfiguration of a system is conceptually to eliminate faulty
components and, if necessary, sacrifice some usable components implicitly without knowing
the actual locations of these components. A deadlock-free environment is provided for the
reconfigured system such that the performance of the system is gracefully degraded.
Deadlock-free shortest-path routing tables are obtained for processors in the surviving system
to avoid possible deadlock traps which may be caused by the unidirectional communication
rather than bidirectional communication between some processors. Because of the bit-oriented
routing property of the Omega network [Law75], by generating the destination tag and refer-
ring to the routing table, a data packet from a source processor can always be routed through

a proper intermediate processor during each pass through the faulty Omega network. Since

165

the routing table provides information of multiple communication paths, a load-balancing

scheme may also be employed to reduce traffic contention.

166

REFERENCES

[AgLe85]

[AgSw8S8]

(Agr80]

(Agr82]

[Agr83]

[Bat76]

[BeFo88]

[Bhug§7]

D.P. Agrawal and J.S. Leu, "Dynamic accessibility testing and path length
optimization of multistage interconnection networks,” [EEE Trans. Comput.,

Vol. C-34, pp. 255-266, Mar. 1985.

D.P. Agrawal and N.K. Swain, "Analysis and Design of Nonequivalent Multis-
tage Interconnection Networks," IEEE Trans. Comput., Vol. C-37, pp. 232-237,

Feb. 1988.

D.P. Agrawal, "Automated testing of computer networks,” Proc. 1980 int.

Conf. Circ. Comput., pp. 717-720, Oct. 1980.

D.P. Agrawal, "Testing and fault-tolerance of multistage interconnection net-

works," [EEE Computer, Vol. 15, pp. 41-53, Apr. 1982.

D.P. Agrawal, "Grabh theoretical analysis and design of multistage interconnec-

tion networks,” /EEE Trans. Comput., Vol. C-32, pp. 637-648, Jul. 1983.

K.E. Batcher, "The Flip Network in Startan,” Proc. Int. Conf. Parallel Pro-

cessing , pp. 65-71, Aug. 1976.

J.C. Bermond and J.M. Founeau, "Independent Connections: An Easy Charac-
terization of Baseline-Equivalent Multistage Interconnection Networks," Proc.

of International conf. on Parallel Processing, 1988, pp. 187-190.

L.N. Bhuyan, "Interconnection networks for parallel and distributed process-

ing,” IEEE Computer, 20, pp. 9-12, Jun. 1987.

[DaBh85]

[FaPr81]

[Fen74]

[Fen81]

[FuAb83]

[GaMa&88]

[GoLi78]

(HoSa78]

[HuTr86]

167

C.R. Das and L.N. Bhuyan, "Reliability simulation of multiprocessor systems,"

Proc. Int. Conf. Parallel Processing, Aug. 1985, pp. 764-771.

K.M. Falavarianai and D.K. Pradhan, "Fault-diagnosis of parallel processor
interconnection networks," Proc. I11th Annu. Int. Symp. Fault-Tolerant Comput..

Jun. 1981.

T.Y. Feng, "Data Manipulating Functions in Parallel Processor and Their

Implementations,” IEEE Trans. Comput., Vol. C-23, pp. 309-318, Mar. 1974.

T.Y. Feng, "A Survey of Interconnection Networks,” [EEE Coriputer, Vol. 14,

No. 12, pp. 12-27, Dec. 1981.

W.K. Fuchs, J.A. Abraham and K.H. Huang, "Concurrent error detection in
VLSI interconnection networks,” Proc. 1983 Int. Symp. Computer Architecture.,

pp. 309-315, 1983.

[. Gazit and M. Malek, "Fault tolerance capabilities in multistage network-based
multicomputer systerrz," IEEE Trans. Comput, Vol. 37, no. 7, pp 788-798, Jul.

1988.

L.R. Goke and G.J. Lipovski, "Banyan Networks for Partitioning Multiproces-
sor Systems," 5th Annual Symposium on Computer Architecture, pp. 21-28.
Dec. 1978.

E. Horowitz and S. Sahni, "Fundamentals of computer algorithms.” Compuzer
Science Press, 1978.

S.T. Huang and S.K. Tripathi, "Finite State Model and Compatibility Theory:

New Analysis Tools for Permutation Networks,” [EEE Truns. Comput.. Vol.

[Hwag84]

[KrSn86]

[Law75]

[LeeS3]

(Len78]

[NaSag1]

[NaSo&0]

[Par80]

[Pat81]

[Pea77]

168

C-35, pp. 591-601, Jul. 1986.

K. Hwang and F.A. Briggs, "Computer Architecture and Parallel Processing,”

McGraw-Hill pub. 1984.

C.P. Kruskal and M. Snir, "A Unified Theory of Interconnection Network

Structure,” Th. Comp. Sci., Vol. 48, No. 1, pp. 75-94, 1986.

D.H. Lawrie, "Access and alignment of data in an array processor," [EEE

Trans. Comput., Vol. C-24, pp. 1145-1155, Dec. 1975.

K. Y. Lee "On the rearrangeability of 2(logoN) - 1 stage permurtation

networks,"IEEE Trans. Comput., Vol. C-34, pp. 412-425, May 1985.

J. Lenfant, "Parallel permutations of data: A Benes network control algorithm
for frequently used permutations,” /[EEE Trans. Comput., Vol. C-27, pp. 637-

647, July 1978.

D. Nassimi and S. Sahni, "A self-routing Benes netwo:k and parallel permuta-
tion algorithms,” /EEE Trans. Comput., Vol. C-30, pp. 241-249, May 1981.
J.J. Narraway and K.M. So, "Fault diagnosis in inter-processor switching net-

works," Proc. 1980 Int. Conf. Circ. Comput., pp. 750-753., Oct. 1980.

D. S. Parker, "Notes on shuffle/exchange-type switching networks,” [EEE

Trans. Comput., Vol. C-29, pp. 213-222, Mar. 1980.

J.H. Patel, "Processor-Memory Interconnections for Multiprocessors.” [EEE

Trans. Compur., Vol. C-30, pp. 771-780, Oct. 1981.

M.C. Pease, "the Indirect binary n-cube Microprocessor Array,” /EEE Trans.

Comput., Yol. C-26, pp. 458-473. May 1977.

T T T T T T T e

(PrYe73]

[ReNi177]

(ShHa84]

Sie79]

[SiSm78]

[Ste&3]

{Sto71]

[TaNe&3]

[VaRag9]

169

L.P. Preparata and R.T. Yeh, "Introduction to discrete structures for computer

science and engineering," Addison-Wesley Pub. 1973.

E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory

and Practice, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977.

J.P. Shen and J.P. Hayes, "Fault-tolerance of dynamic-full-access interconnec-
tion networks,” IEEE Trans. Comput., Vol. C-33, no. 3, pp. 241-248, Mar.

1984.

H.J. Siegel, "Interconnection Networks for SIMD Machines,” [EEE Compurer.

Vol. 12, pp. 57-65, Jun. 1979.

M.C. Pease, "thc Indirect binary n-ctbe Microprocessor Array,” [EEE Trans.

Comput., Vol. C-26, pp. 458-473, May 1977.

D. Steinberg, "Invariant properties of the shuffle-exchange and a simplified
cost-effective version of the Omega network,” IEEE Trans. Comput.. Vol. C-
32, pp. +44-450, May 1983.

H. S. Stone, "Parallel processing with perfect shuffle.” /EEE Trans. Compur..
Vol. C-20, pp. 153-161, Feb. 1971.

S. Thanawastien and V.P. Nelson, "Optimal fault detection test sequences for

shuffle/exchange networks," Proc. 13th Annu. Int. Symp. Fault-Tolerant Com-

put.. pp. 442-445, Jun. 1983.

A. Varma and C.S. Raghavendra, "Fault-tolerant routing in multistage intercon-

nection networks.” [EEE Trans. Comput., Vol. 38, pp. 385-393, Mar. 1989.

[WiCh78]

[WuFe79]

[(WuFe80]

[WuFe81]

170

D.A. Wismer and R. Chattergy, "Introduction to nonlinear optimization,”

North-Holland Pub. 1978.

C.L. Wu and T.Y. Feng, "Fault-diagnosis for a class of multistage interconnec-
tion networks," Proc. 1979 Int. Conf. Parallel Processing, pp. 269-278, Aug.

1979.

C.L. Wu and T.Y. Feng, "On a Class of Multistage Interconnection Networks,"

IEEE Trans. Comput., Vol. C-29, pp. 694-702, Aug. 1980.

C. Wu and T. Feng, "The universality of the shuffle-exchange network," [EEE

Trans. Comput.. Vol. C-30, pp. 324-332, May 1981.

DISTRIBUTION LIST

addresses

RADC/COAC
ATTN: Jon Valente
Griffiss AF3 NY 13441-5700

Syracuse University

Office of Sponsored Prograams
Skytop Office 3uilding
Skytop R0ad

Syracuse NY 13212

RADC/O0VL
Technical Library
Griffiss AF3 NY 13441-5700

Administrator

Defense Technical Info Center
DTIC=-FDAC

Cameron Station 3uilding S
Alexandria VA 223J4=5145

Strategic Defense Initiative Office
Dffice of the Secretary of Defense
dash 0C 23331-71403

RADC/COAC
Griffiss AF3 NY 1.441-5700

H3 USAF/SCTT
d4ashington DC 29330-519.

SAF/A0SC
Pantagon Rm 4D 247
4ash DC 272330

oL~-1

numoer
ot copies

33

n)

Naval Warfare Assessment Center
GIDEP Operations Center/Code 306
ATTN: € Richards

Corona CA 91720

HQ AFSC/XTH

Andrews AF3 MD 20334-5000

HQ@ SAC/SCPT
OFFUTT AF3 NE 68046

HQ TAC/DRIY
ATTN: Maj. Divine
Langley AF3 VA 23665-5575

Hd TAC/DOA
Langley AF3 VA 23665-5554

ASD/ENEMS

dright=-Patterson AF3 CH 45433-65073

SM=ALC/™MAaCZA

ATTN: DODanny McClure
3tdq 237, MASOF
meClotlan AF3 CA 25452

dRDC/2AAT =4

driqnet=P3tterson AF3 DH ©3433=255473

oL-2

ny

-

WRDC/AAAT =2
ATTN: Mr Franklin Hutson
WPAF3 OH 45433-6543

AFIT/LDEE
8uilding 542, Area S5

Wright-Patterson AF3 OH 45433-6583

WRDC/MLPO
ATTN: D.L. Denison
WPAF3 OH 45433-6533

AIDC/ T
Wright=23tterson AF3 OH 45

AAMRL/HE

Wright=Patterson AF3 OH 45433-6S73

Air Force Human Resources Lab

Technical Documents Center
AFHYRL/LRS-TDC
Wright=23tterson Af3 0OH 45

AUL/LSE
3ldg3 1425
Maxwell AF3 AL 36112=5564

43 aTz/TT:
ATT N -2 Zal <«illian
landoloh AF3 TX 73193=-35771

432

432

oL-

i

AFLMC/LGY

ATTN: Maj., Shaffer
Suilding 2G5

Gunter AF3 AL 36114-6693

US Army Strategic pef
CSSD=IM=-pPA

PO Box 1590

Huntsville AL 35307-3301

0fc of the {hief of Naval Operation

ATTN: Willtliam J.Cook

Navy Electromagnetic Spectrum Mgt
Room SA673, Pentagon (GP=941)
dash DC 20350

{oammanding “fficer

NMaval Avionics Center
Liorary D/755

Indianapolis IN 44219=-2139

Commanding Officer

Naval Ocean Systems Center
Technical Library

Code 95423

San Ddi2g90 13 92152-=-5002

Cmdre

Naval Weapons Center
Technical Library/C3431
China Lake 234 93555-=a201

Superintaendent

Code 1424

Naval Post3zraduate School
Monteraey CA 93343-5000

Space % Naval Warfare Systems Coamm
Wwashington 0C 20363-5100

222, Yese irmy “Y335iie Zommand
l24stone jcientific Info Cantor
AMIVMI=ID=C3S=R/ILL Documents
R2d4stone aArsenal AL 35393-5241

pDL-4

PRSI |

P Py .

Advisory Group on clectron Devices
201 Varick Street, Rm 1143
New York NY 10014

Los Alamos National Laboratory
Report Library

M3 SJ00

Los Alamos NM 87544

AEDC Library
Tech Files/™S=-100
Arnold AF3 TN 37339

Cnmmander, 1JSAG
ASQH=PCA=C2L/Tech LiD
3ldg 61301

Ft Huacnuca A 35613=5300

1839 EIG/EIT
Keesler AF3 MS 39534-4348

AFEWC/ESSR!
San Antonio TX 78243=5(CQ0

ESD/XRR
Hanscom AF3 MA 01731-5J20

oL-5

SEI JPC ,

ATTN: vajor Charles J. yan
Carnegie Mellon University
Pittsburgh PA 15213-3391

Director NSA/CSS
T513/70L

ATTN: D W Marjarum

Fort Meade MD 20755-6000

Director NSA/CSS

4157

93730 Savige Road

Fort Meade %D 21055-50J2

NSA

ATTN: Da. Alley

Div X911

933C Savaje Road

Fe Magde "9 297%5-=-o00C

Director

NSA/CSS

411 DEFSMAC

ATTN: we, 4ark =, Clesh

Fort Georje G. Yeade 4D 27755-6C2C0

Director

NSA/ZCS5S R12

ATTN: Mr. Dennis Heinbuch

9820 Savage Road

Fort George G. Yeade M0 20755=-4203

DoD

R 31

9330 Savige Road

Fr. “aade YD 20755-.0CC

DI3AINSA

137

9330 33vage Road
Ft “eade 4D 27775

oL=-6

PSP —

Director

NSASCSS

RJ8

Fort George G. Meade ™MD 20755-6000

DOD Comouter Center

C/TIC

9300 Savage Road

Fort George G. Meade MD 20755-600)

SDI/S~P1=-3M

ATTN: Cmdr Korajo
The Pentagon

Wwash D0C 2031L-7100

SDIJ/S~-21 =234
ATTN: Cint Johnson
The Pentagon
Wash DC 27321-7107

SDIO/S~PL-BM
ATTN: Lt Col Rindt
The Pentaqon
Wash DC 20301-7100

IDA (SDIO Library)
ATTN: “r. Albert Perrella
1331 N. Reauregard Street
Ala2xandria VA 22311

SAF/AQ3D

ATTN: M3j . x. Jones
The Pentagon

Wash DC 235330

AFSC/CV=-D
ATTN: Lt Col Flynn
Andrews AF3 ¥MD 20334-5000

43 33/%43

AT TN <2l Heirmach

P) 3ox ?295)

dorldway Postal Center
Los Anjeles CA 9CQ09~294)

pL=7?

H3 SSD/CNC

ATTN: Col 9'3rien

P3O 3o0x 92960

Worldway Postal Center
Los Angeles CA 9G0G9-~2950

HA SD/CNCI

ATTN; ¢Col Collins

PO 3ox 2940

Worldway Postal Center
Los Angeles CA 90009~2960

HQ SD/CNCIS

ATTN; Lt Caol Pennell

PO Box 92960

Worldway Postal (Center
Los Angeles CA 9Q0009=29460

£80/aT7
ATTN: Col 2yan
Manscom 4F3 MA J1731=-5J3720

ESD/ATS
ATTN: Lt Col Oldenberg
Hanscom AF3 %A 01731=-5003

ESD/ATN
ATTN: Col Leibd
Hanscom AF3 MA (01731-5300

AFSTC/XPY (Lt Col Detucci)
XKirtland AF3 NM 37117

AFSPACECOM/XPD
ATTN: Maj Roger Hunter
Patarson AF3 I3 30914

3% 321-3%7

ATTN: “re. 20n d3rking
1737 Century 2ark Jdest
3luebetll Pa 194422

oL-2

AL s mom oo~

MITRE Corp
ATTN: Dr. Donna Cuomo
3edford A (01730

SSD/CNT

ATTN: Lt Col Joe Rouge

Pe 0. 30x 92960

Los Angeles Af3 CA 90009-2940

NTB JPO
ATTN: Maj Don Ravenscroft
Falcon AF3 CO 80912

Ford Aerosoace Corp

c/o Rockwell International
ATTN: Dr. Joan Schulz
1253 Academy 2ark LoooD
Colorado Springs CO 3307190

Essex Corp

ATTN: ©Dr. 30b Mackie
Human Factors Research Div
5775 Dawson Ave

joleta A 23117

Naval Air Development tr
ATTN: Or. YMort Metersky
Code 23D

darminstar 2A 1389974

RJO Enterprises

ATTN: Mr. Dave Israel
1225 Jefferson Davis HY
Suite 372

Arlington VA 222(C2

GE SDOI ScI

ATTN: Mp, 3ill Bensch
1707 Century 23rk Jest
Sluenell 24 10422

4% AFATZC/DAHS
ATTN: Or. 33amuel Charlton
<irtiand AF2 MM 37117

DL=9

ESD/XTS
ATTN: Lt Col Joseph Toole
Hanscom AF8 MA 01731

SOIQ/cENA

ATTN: Col R. wWorrell
Pentagon

Wash DC 20301

USA=SDC C55SD=-H=SBE
ATTN: Mpr, Doyle Thomas
Huntsville AL 35807

43 AF32ACSITVM/DOX? .
ATTN, Capt Mark Terrace
Stop 7

Peterson AF3 C£0 80914

88BN Systems % Technology
ATTN: Dr. Dick Pew

70 Fawcett St

Cambridge MA 02138

€ESD/XTI
ATTN: Lt Col Paul Monico
Hanscom AF3 MA 02173C

£S3D0=H=S3

ATTN: Yr. Larry Tubbs
Commander USA S5SDC

PO 30x 15933

Huntsville AL 35307

USSPACECOM/JS53
ATTN: Lt Col Harold Stanley
Peterson AF3 CO 80914

MTa yon
aTTN: “r. N3t S30jouner
Falcon AF3 CC 30912

oL=-1C

