
AD-A244 069

RL-TR-91-284
Final Technical Report
November 1991

PERMUTATION SETS AND ROUTABILITY
OF MULTISTAGE INTERCONNECTION
NETWORKS (MINs)

Syracuse University ."T.C

'k, :  JAN 0 3 1992

Sponsored by
Strategic Defense Initiative Office

APPROVED FORPUBLIC RELEASE DSTRIB1770N NLIMi7ED.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Strategic Defense Initiative Office or the U.S.
Government.

Rome Laboratory
Air Force Systems Command 91- 19414

Griffiss Air Force Base, NY 13441-570, IIIII I ,,,,
1 11i 1



This report has been reviewed by the Rome Laboratory Public Affairs Office

(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS

it will be releasable to the general public, including foreign nations.

RL-TR-91- 284 has been reviewed and is approved for publication.

APPROVED:

JON B. VALENTE
Project Engineer

FOR THE COMMANDER:

RAYMOND P. URTZ, JR.
Technical Director
Command & Control Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory

mailing list, or if the addressee is no longer employed by your organization, please

notify RL( C3AB) Griffiss AFB NY 13441-5700. This will assist us in maintaining a

current mailing list.

Do not return copies of this report unless contractual obligations or notices on a

specific document require that it be returned.



PERMUTATION SETS AND ROUTABILITY OF MULTISTAGE
INTERCONNECTION NETWORKS (MINs)

C.Y. Roger Chen
Calvin J.A. Hsia

Contractor: Syracuse University
Contract Number: F30602-88-D-0027
Effective Date of Contract: September 1988
Contract Expiration Date: September 1991
Short Title of Work: Permutation Sets and Routability

of MINs
Period of Work Covered: Jul 89 - Sep 89

Principal Investigatpr: Dr.. C.Y. Roger Chen
Phone: (315) 443-4301

':L Projecr Zngineer: Jon 3. Vaiente
Phone: (315) 330-3241

Approved ffor nublic release; distribution unlimited.

This research was supported by the Strategic Defense
Initiative Office of the Department of Defense and was
monitored by Jon B. Valente, RL (C3AB) Griffiss AFB
NY 13441-5700 under Contract F30602-88-D-0027. .,



Form ApprovecREPORT DOCUMENTATION PAGE OM o.r7v0a0MB No. 0704-01 88
Puik r@00Wr m,te-t t= I d to r,= *am tfmmm t I hms o NW=& rCL1r, VS t a fm~m r1Wd M UI, U I SfLUMs
6-m W.~ rWsWr Moam VV m Ulm-v,gv r9w g uv~uvft d rvI-n- Seniwmwat~ ag rn wb~ut m. cr wy am mm d

Sd . I, ffcn. W x ggem tc f r~1 . ba., t. W.WI0 .e&.tw S.,,.. Dftru tr *Vu,9wu Opmaws wudRegwm 1215 Jdfwm
DWN HerW". S'*e 1204. A&Vwn VA 27-4= wr m u Ofrkm d Mwvguwm- and Bu.g P .a' Rucum P 0704-M 90. wM, n DC 20=

1. AGENCY USE ONLY (Leave Blank) I2 REPORT DATE 13. REPORT TYPE AND DATES COVERED

November 1991 Final Jul 89 - Sev 89
4. TITLE AND SUBTITLE 15. FUNDING NUMBERS

PERMUTATION SETS AND ROUTABILITY OF MULTISTAGE C - F30602-,8-D-0027
INTERCONNECTION NETWORKS (MINs) Task B-9-363'

PE - 63223C
6. AUTHOR(S) PR - 2300 (Prey B413)

C.Y. Roger Chen, Calvin J.A. Hsia TA - 03
1'JU - PP

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) . PERFORMING ORGANIZATION
Syracuse University REPORT NUMBER
Dept of Electrical & Computer Engineering
Syracuse NY 13244-1240 N/A

9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Strategic Defense Initiative AGENCY REPORT NUMBER

Office, Office of the Rome Laboratory (C3AB) I RL-TR-91-284
Secretary of Defense Griffiss AFB NY 13441-5700

Wash DC 20301-7100

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Jon B. Valente/C3AB/(315) 330-3241

12a. DISTRIBUTIONAVAILABIL.TY STATEMENT I12b. DISTRIBUTION CODE

Apnroved for public release; distribution unlimited.

1 ..AISRACT(.w!. 2-wo-v9

uistage interconnection network is of the most important components for designing
high-performance parallel supercomputers and for providing a powerful reconfigurable

programming environment such that programming is independent of the actual computer
architectures. In this research, some fundamental issues in multistage intercon-
nection networks are investigated. Results, which promise great potential for the

design of a reconfigurable high-speed parallel supercomputer with an architecture

independent programming environment, are presented. First, two characteristic
functions are introduced to characterize networks in a proposed class of multistage

interconnection networks. Message routing schemes, network partitioning algorithms,

and many other useful properties are presented. Next, a more general class of multi-
stage interconnection networks and two more general characteristic fLnctions are

introduced. The transformation rules for one network to emulate another in the class

is presented such that the programs and algorithms developed on one machine can be
reused on others. Then, the permutation capability (in terms of non-conflict parallel

communication) of each network is presented through the concept of network
partitioning. An algorithm to determine the admissibility of any permutation on a

multistage interconnection network is developed. Finally, a fault-tolerant reconfigu-
ration scheme is presented for parallel processor systems which employ multistage

interconnection networks for interprocessor communication. (See reverse)

14. SUBJECT TERMS IS NUMBER OF PAGES

Computer Networks, Computer Architectures, Fault Tolerant 196

Computing ' PP=CE CODE

17. SECURITY CLASSIFICATION 18& SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 120. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01 X0..M0 Stem a Fa i 296 (Rw 2.-pnocm~ tw ANSI Std Z39-I

2W-I Mo



Block 13 (Cont'd)

Since faults in networks will destroy the communication paths between some
network input and oatout ports, multiole passes through the network are required
for the communication between some processor pairs. A shortest-path message
routing scheme is developed on such a system. Moreover, fault-tolerant
partitioning algorithms are developed such that in each subsystem, the properrx
of full connectivity is maintained.



I

TABLE OF CONTENTS

1. INTRO DUCTIO N ..........................................................................................................

2. CHARACTERIZATION OF MULTISTAGE INTERCONNECTION NET-

W O RK .S ....................................................................................................................... 5

2.1. Introduction ........................................................................................................... . 5

2.2. Basic Connection Pattern .................................................................................... . 8

2.3. Topological Structure of the log2N CPmin .......................................................... 12

2.4. Routing Algorithm ................................................................................................. 29

2.5. Decom position and Partitioning ............................................................................ 36

2.6. Sum m ary ................................................................................................................ 48

3. TRANSFORMATION RULES FOR MULTISTAGE INTERCONNECTION

NETW RO RK S ................................................................................................................ 50

3.1. Introduction ............................................................................................................ 50

3.2. Bit-Permute-Complement Multistage Interconnection Network ......................... 51

3.3. Network Transform ation Rules ............................................................................ 59

3.4. Sum m ary ................................................................................................................ 70

4. PERMUTATION CAPABILITY OF MULTISTAGE INTERCONNECTION

NETW O RKS ................................................................................................................ 72

. Introduction ............................................................................................................ 72

4.2. Prelim nary .............................................................................................................. 74

4.2.A . O m ega Networks ......................................................................................... 74



iv

4.2.B. Routing Behavior of Omega Networks .......................................... 78

4.3. Permutable Structure...................................................................... 80

4.4. Permutable Capability .................................................................... 91

4.5. General Model............................................................................. 104

4.6. Summary ................................................................................. 115

5. A FAULT-TOLERANT RECONFIGURATION SCHEME FOR MULTIPRO-

CESSORS .................................................................................... 116

5. 1. Introduction............................................................................... 116

5.2. System and Fault Models ................................................................ 120

5.2.A. System Model ..................................................................... 120

5.2.B. Fault Model......................................................................... 121

5.3. Fault-Tolerant Reconfiguration.......................................................... 12 5

5.3.A. Routing Behavior of Omega Networks under Faults......................... 126

5.3.B. Communication Capability for the First Pass under Faults.................. 130

5.3.C. Construction of the Surviving System........................................... 134

5.3.1). Construction of Shortest-Path Routing Tables ................................ 143

5.3.E. Reconfiguration of The Surviving System ...................................... 150

5.4. Complexity of the Hierarchical Fault-Tolerant Reconfiguration Scheme......... 159

5.5. Summary ................................................................................. 164

REFER-ENCES.................................................................................... 166



V

LIST OF FIGURES

2.1. The connection pattern defined by a CP(4) permutation specified by V =

.... ) i.e.. a bit reversal function p . ..................................................................... . 13

2.2. The connection pattern defined by a CP(4) permutation V = (1,3,2,0) in which

(0 ) = 0 .. ...................................................................................................................... 14

2.3. The baseline network and its Banyan graph representation ..................................... .1

2.4. An N x N n-stage MIN, F. consisting of n switching stages and n + 1 connec-

tion patterns defined by CP(n) permutations . ........................................................... 17

2.5. A 16 x 16 4-stage CPmin type MIN are constructed with connection patterns

specified by vectors V0  (2,1,0,3), V= (2,3,1,0), V2 = (0,1,3,2), V 3 = (,0,3,1)

and V4 = (1,3,0,2). The conflicting path connections from S = (0,0,0,1) to D =

(1.1,0.0) and A = (1,0.0,0) to B = (1,1,1,1) are also shown . .................................... 25

2.6. Two 3-stage non-CP mm Banyan type MINs are shown. Both of them have the

destination-oriented routing schem e . ........................................................................ 34

2.7. (a) The buddy property. (b) The interstage buddy property in an NMIN ................ 38

2.8. The decompcsition property of a type MIN. ............... 4

2.9. The 3-stage subnetwork J00 on the MIN shown in Fig. 2.5 is formed by forcing

all the switching elem ents at stage 0 . ....................................................................... .46

2. 10. One of the two 2-stage subnetworks on J00 shown in Fig. 2.5 is formed by

forcing all the switching elements at stage 2 . ........................................................... 47

3. 1. An N x N MIN is represented by a sequence of BPC permutation and exchange

o p eratio n s . ................................................................................................................... 54



vi

3.2. A 16 x 16 bit-permute-complement MIN defined by a sequence of BPC permu-

tation operations . ....................................................................................................... 60

3.3. Transform ation between M IN s . ................................................................................ 62

3.4. Transformation from a 16 x 16 Omega network to a bit-permute-complement

M IN show n in Fig. 3.2 . ............................................................................................. 64

3.5. Transformation from a 16 x 16 Baseline network to a 16 x 16 Omega network.

.............................. ..... .. ............... ........... ....... ...... . o.. ..... ............ ..... ................... 6 5

3.6. The relative positions of switching elements of the transformed MIN 1 in Fig.

3.4 with respect to those of MIN., in Fig. 3.2 .......................................................... 69

4.1. A 16 x 16 O m ega netw ork . ....................................................................................... 75

4.2. Two 3-stage subnetworks are formed by forcing all the switching elements at

stage I on a 16 x 16 O m ega netw ork . ...................................................................... .83

4.3. For N = 16, the three sets of subnetworks ({[it 110 5 t < 231 - 1), 0 i < 2,

of an O m ega netw ork . ................................................................................................ 86-88

4.4. For N = 16, the three different partitions ({h[i, t] 10 < t < 2 3-i 1}, 0 i < 2.

............................................................................................... ....................................... 9 0

4.5. Two example permutations on a 16 x 16 Omega network ...................................... 97-98

4.6. A 16 x 16 network defined by the general model .................................................... 108

5.1. System m odel . ...................................................................................................... '22

5.2. A 16-processor multiprocessor interconnected by a 16 x 16 Omega network.

123

5.3. An example fault set F on a 16 x 16 Omega network . ................................ 131



vii

5.4(a). A 32 x 32 Omega network with a fault set . ........................................................ 139

5.4(b). An alternative drawing of the Omega network with the same fault set ............. 140

5.5. The surviving substructure of the system in Fig. 5.4 after removing all the com-

ponents in the m axim al fault set . ............................................................................... 141

5.6. Two subsystems are formed from the surviving system in Fig. 5.5 ........................ 158

5.7. The diagram used to explain the complexity of Algorithm 3 .................................. 163



Viii

LIST OF TABLES

2.1. The charactr-istic functions of several famous MINs and their reversal net-

w o rk s . .......................................................................................................................... 2 8

2.2. The path control sequences and path state sequences of those MINs in Table

2.1 ............................ ............ ..... ............................................

4.1. The general forms of the characteristic functions of several famous networks.

114
................................................... ,......................... ..................... .............. o.................... 1

5.1. The restriction array [CR] and the connection array [CS] for the surviving sys-

tem in F ig. 5 .5 . ........................................................................................................... 14 5

5.2. The simplified shortest-path routing tables of the surviving system in Fig. 5.5.

151

5.3. The modified ,hortest-path routing tables [A5] for the surviving system in Fig.

5 .5 . ............................................................................................................................... 15 6



CHAPTER 1

INTRODUCTION

The basic concept in designing parallel supercomputers is to employ an interconnection

to interconnect a large number of processors and memory modules such that memory modules

can be accessed in parallel processors can communicate with each other with serious com-

munication conflict or traffic congestion. Since the trend In designing supercomputers is to

use off-the-shelf products for processors and memory modules, the bottleneck is the intercon-

nection network. Specifically, we define an interconnection network to be a connection of

switches and links that allows data communication between processors and/or memory

modules in a system consisting of multiple processors. Many factors are involved in deter-

mining the cost-effectiveness of a particular network design, including the computational tasks

it will be used for, the desired speed of interprocessor data transfers, the actual hardware

implementation of the network, the number of processors in the system, and cost constraints

on the construction [Bhu87]. Interconnection networks can be classified into two categories

based on network topologies: static networks and dynamic networks [Hwa87]. Examples of

static networks are linear array, ring, star, tree, mesh, systolic array, chordal ring, hypercube.



2

and cube-connected-cycle. Examples of dynamic networks are single-stage, crossbar, and

multistage interconnection networks. The two major switching methodologies ior interconnec-

tion networks are circuit switching and packet switching. In circuit switching, a physical

path is actually established between a source and a destination. In packet switching, data

packets are routed through the interconnection network without establishing a physical con-

nection path. In general, circuit switching is much more suitable for bulk data transmission,

and packet switching is more efficient for short data messages.

In this report, we will focus on the domain of multistage interconnection networks since

they offer a flexible environment to meet real-time processing requirements for either mul-

tiprocessor or share-memory systems. The functionalities. topological relationship, and fault

tolerance of various multistage interconnection networks are discussed in this report. The rest

of this report is organized as the following five chapters.

In Chapter 2, two characteristic functions 0 and I are introduced to uniquely describe

any Multistage Interconnection Networks (MINs) constructed by general shuffle connections.

All the MINs constructed by general shuffle connections are shown to be in a class of

equivalent Banyan type MINs, named as the log2N-stage Column-Permute interconnection

network (log 2N CPrm1). Based on these two characteristic functions, we show that routing

algorithms, network construction rules, network equivalence properties, and network transfor-

mation rules can be directly established. As the design of reconfigurable systems is con-

sidered, we show that the equivalence among networks can easily be described by linear

transformations on characteristic functions. In other words, the equivalence can be interpreted

as a renaming scheme on the inputs and outputs of a network. We explain why the routing

scheme on each network is always destination-orientrd and source-preserved.



3

In Chapter 3, the CP rain networks in Chapter 2 are extented to a class of Bit-Permute-

Complement (BPC) type multistage interconnection networks. This class of BPC networks is

based on a more general interconnection model than that of CPrm. Typically, they possess a

very simple routing scheme such that for any communication path the source address can be

easily preserved and the destination can be used as routing tags. General rules for transform-

ing a multistage interconnection network into another in this class by simply renumbering the

inputs and outputs of the network are presented. Both distributed and global routing schemes

after the transformation are discussed. By using the proposed network transformation rules,

algorithms developed on a machine using a multistage interconnection network can be directly

used on another machine which employs a different network.

In Chapter 4, the permutation capability of the class of BPC multistage interconnection

networks defined by a general model using bit-permute-complement connections, which

includes the Omega network, baseline network, Indirect binary cube network, etc. as special

cases, is studied. In this chapter, several questions are addressed. How can we easily charac-

terize all the admissible permutations of a network? How can we determine whether or not a

permutation is admissible on a network? We start our discussion on Omega networks due to

their regular structure, and then generalize the problem to the general model. We show that

the set of admissible permutations of a network can be characterized by very simple bit rela-

tions depending on two characteristic functions which specify this network. The time com-

plexity of our proposed algorithm to determine the admissibility of a permutation on a multis-

tage interconnection network is O(N), where N is the number of inputs/outputs of the net-

work.



4

In Chapter 5, the fault tolerance capability of a multistage interconnection network and

the technique to reconfigure a network under multiple faults are discussed. Both faulty

switching elements and faulty communication links are considered in our fault model. Gen-

erally speaking, in a multistage interconnection network used for interprocessor connections, if

faults occur, many input-output communication paths will no longer be available. A solution

to this is to allow data propagation through the faulty network multiple passes, such that rea-

sonable communication capability can be maintained. In this chapter, a fault-tolerant

reconfiguration scheme is developed for an N-processor system interconnected by a log 2N-

stage Omega network under multiple faults. Regardless of whether the faults on the Omega

network are critical or not, a deadlock-free environment is provided for the N-processor sys-

tem by applying our reconfiguration scheme. The reconfiguration of such a multiprocessor

system is based on three principles: disable processors whose communication capabilities are

completely destroyed. eliminate faulty components and, if necessary, sacrifice some usable

components implicitly without knowing the actual locations of these components. The

reconfigured system is a surviving system such that it may be an intergrated one consisting of

a subset of the N processors (including the case of all the N processors) or it may be parti-

tioned into a number of subsystems such that the dynamic full access property within each

subsystem (system) can be maintained. A deadlock-free shortest-path routing table is obtained

for each processor in the surviving system (subsystem) to avoid the danger of deadlock traps

caused by uncautiouslv using unidirectional communication paths rather than bidirectional

communication paths between some processors. The time complexity of our reconfiguration

scheme is analyzed as well.



5

CHAPTER 2

CHARACTERIZATION OF MULTISTAGE

INTERCONNECTION NETWORKS

2.1. INTRODUCTION

The use of Multistage Interconnection Networks (MINs) is considered a very cost-

effective means to provide efficient interprocessor and/or processor-memory communication

[Fen8l] [WuFe8O] [Sie79]. Examples are the Omega network [Law75], baseline and reverse

baseline network [WuFeS0], indirect binary cube network [Pea77], Delta network [Pat8l],

cube network [SiSm78], flip network [Bat76] and modified data manipulator [Fen74]. It is

well known that all those MINs are constructed through a particular type of connections called

general shuffle connections. It is clear that, in addition to those seven MINs, there exists a

huge set of MINs which are also constructed by general shuffle connections. It is also well

known that the capability of each NUN in terms of non-conflicting communication permuta-

tions is different. For example, it has been reported in [NaSa8l] that an Omega network can

realize cyclic shifts, p -ordering, inverse p -ordering, etc. and cannot realize operations such as

bit-reversal. Since each application will require a different set of permutations in order to

optimally perform the execution, it is extremely important for a system designer to be able to



6

identify a MIN which is best suited for applications needs. However, due to the lack of a

general understanding of network characteristics, so far, a designer has to select a MIN out of

the seven known MINs (instead of out of millions of MINs) in a rather ad hoc manner. This

has greatly limited the achievable performance of a parallel supercomputer. Since it is impos-

sible to investigate the millions of MINs one by one, it is essential to be able to characterize

those MINs such that a precise quantitative description of them will then be available and a

MIN can be immediately investigated as soon as the characteristic functions are available.

Since the characteristic functions of this MIN will carry information regarding the permutation

capability of this MIN, it will then be possible for a designer to select a MIN out of millions

of MINs to optimally meet application needs. In this chapter, we will show how to character-

ize the whole set of MINs which are constructed by general shuffle connections.

Many theoretical properties of the above seven MINs have been discussed, which are

summized as follows. Their inputs and outputs are fully connected and a simple routing

scheme can be applied from any input to any output [Fen8l] [WuFe80] [Sie79l [Law751

[Pea771 [Pat8l] [SiSm78] [Bat76] [Fen74]. They have the buddy propery [WuFeSOl

[Agr83] [AgSw88] and belong to bidelta networks [KrSn86]. The topological equivalence

problem among them has been exhibited based on the fact that their graph representations are

isomorphic to the Banyan graph [GoLi78]; that is, they are all equivalent Banyan type MINs.

In [BeFo88], Bermond and Fourneau discussed some Banyan type MINs with

independent connections and showed an approach to explain their topological equivalence.

In (KrSn86], Huang and Tripathi have shown that a MIN can be represented by a finite state

machine. However, other than issues of theoretical interest, these works still tell us little

about how to help designers to investigate or understand the capabilities of the other millions



7

of MINs. Therefore, their contribution towards the practical application needs which we men-

tioned earlier are rather limited. This again shows that, in addition to the discussion of com-

mon topological properties, it is extremely important to be able to characterize MINs and

directly discuss the network capability, routing algorithms, and construction rules on the

characteristic functions. We believe that this is the starting point for system designers to fully

exploit the capabilities of MINs and really take maximal advantage of them.

In this chapter, our concern is to give a global view of the characteristics of various

MINs. First of all, the topological structure of the whole class of logZN-stage Banyan type

MINs constructed by general shuffle connections (which are called column permute connec-

tions in this chapter) is defined in detail, which includes all the seven mentioned MINs as spe-

cial cases. We denote them as log 2N CPmi. A path -descriptive methodology is used to

characterize topological features on the whole class and we show that two important permuta-

tion functions, 0 and I, can uniquely specify each MIN in the class. We call these two

characteristic functions. Based on functions 0 and I, many important features of MINs

including routing algorithms, network construction, permutation capability, etc. can be

immediately established or examined. As the topological equivalence is considered, we show

that the equivalent relation among MINs can be subdivided and is an intrinsically linear

transformation on functions 0 and I. In other words, the transfer from one MIN to another

can be viewed as a renaming scheme on the inputs and outputs of a MIN. It has a significant

impact on the design of a reconfigurable system. As communication is considered, we show

that the routing scheme for each MIN in the class can be directly derived from the charac-

teristic functions 0 and I. We explain why the distributed routing algorithm for each MIN is

destination -oriented (i.e., its routing tags can be determined by the destination addresses



8

only) and source -preserved (i.e., the address of the source input can automatically be

preserved without extra efforts). Note that, in this chapter, since we limit our discussion to

log2N -stage MINs only, log 2N CP ra n and CP"' are used interchangeably.

The rest of this chapter is organized as follows. In Section 2.2, we introduce a class of

basic connection patterns defined by CP(n) permutations. Section 2.3 is devoted to the topo-

logical structure of the CPmID and the outline of two important characteristic functions, 0 and

I. We show how they are related to the equivalence and transformation among MINs. In

Section 2.4, we show the relation between general routing algorithms and the characteristic

functions. In Section 2.5, the decomposition and partitioning of various networks are dis-

cussed. Finally, Section 2.6 concludes this chapter.

2.2. BASIC CONNECTION PATTERN

In order to describe a network in terms of permutations on N symbols, we may label the

links of this network at the inputs and outputs of all switching elements following their

natural order in the drawing. A label is a number between 0 and N-I whose binary represen-

tation (i.e., address) can be denoted by (x,,,1 .... x,x 0 ), where x0 is the least significant bit

(LSB). Each connection link is defined by two labels and each connection pattern between

two adjacent switching stages is specified by a permutation of N labels.

An n -stage MIN constructed with n +1 connection patterns has often been defined using

these premutations [ParS0. For example, the Omega network is defined as n consecutive

perfect shuffle permutations plus an identity permutation for connecting outputs of the net-

work. A perfect shuffle permutation is defined as a circular left shift of the binary representa-

tion of an operand.



9

Note that not every arbitrarily selected n+1 connection patterns can be used to design a

MIN with the desired properties. For example, any disturbance in the order of n+l connec-

tion patterns on the Omega network may result in a new network which will no longer

preserve the full connectivity property. In other words, the topological structure of a MIN is

closely related to its functional behavior and its construction should be based on a systematic

method for selecting a sequence of valid connection patterns.

In this section, we introduce a class of basic connection patterns. Using this set of per-

mutations, we can define construction rules and describe the functional behavior of varimc,

M INs.

Consider numbers from 0 to N-I and the binary representation of each of them. X =

(x,-i . .x 1 ,x 0). We define the class CP(n) of Column-Permute premutation functions by a

permutation on indices of the representation.

DEFINITION 1: A CP permutation P in CP(n) is specified by an n-tuple vector V =

tn-1)..... 0(),6(0)), where 0 is a permutation function on (n-I.....1.0) and

(O(n-1), 0(1),0(0)) is the image of 0. The mapping of P on X = (x,_...... .C.) 4-

[0, N-i ]is obtained as follows:

P r CP(n) (N = 2")

P(x,_ .. x 1,x 0 ) = (P(xn._ 1) ... P(x 1),P(x 0 ))

= 9x(n - ).. ,x 0O(I), 9(0))

( -1, YIYO).

It is very easy to show that the P operation is closed with respect to the domain 10, N-1]. i.e..

P(X) E [0, N-1] for all X r [0, N-l]. Similarly, we can define the inverse function p- of



10

P.

DEFINITION 2: Let 0-1 be the inverse permutation function of 0. The inverse CP per-

mutation P-1 of P defined in Definition 1 is specified by an n-tuple vector V-1

(0-(n-1).... 0-1(1),0-1(0)). The mapping of P--1 on X = (xn_ 1, .... x1 ,x 0 ) E [0, N-I1 is

obtained as follows:

P--1 c- CP(n) ( N = 2n)

(x,, X1.......1 ,XO) = (Pr(x,,)...1). P-1(X-1),P_1GO))

= nX-1n ). X0, 1 '0 -()

= (z, ..... z ,z 0). []

For example, consider n = 4 and let V = (2,1,0,3) and X = (1,0,0,1). We have Y 3 = X

Y2 = xI, Y I xo and YO = x 3. Hence, P(X) = (0,0,1,1). Similarly, we have V -1 = (0,3,2,1)

and P-I(X) = (1,1.0,0).

Note that the k-subshuffle 0 k , the perfect shuffle a (i.e., the (n-1)-subshuffle) , the k-

butterfly 3k and the bit reversal p are defined as follows:

(Ok(X) = (x,,l ... Xk+,Xk-l ...,X0Xk )

(T(X) = (xn_2.. x1,x0Xn-1)

Pk (X) = (x,_....,.Xk+1,XoXk_,....,x 1,xA)

p(X) = (xo~r1..X,-2,xn-1)

These functions are examples of general shuffle permutations and are used to define the basic

connection patterns to design the six MINs studied by Wu and Feng [WuFe8O]. It is particu-

larly worthwhile to discuss a special subset of permutations in CP(n) with 0(0) = 0, because



11

these permutations give remarkable restrictions on the design of useful n -stage MINs as we

shall see later.

As the connection patterns defined by N-symbol permutations are considered, the switch-

N
ing elements on stages at both sides of a connection pattern can be labeled from 0 to N -1 =

1--1 following the same ordering as the labeling of their output (input) links. That is, let Y

= (x,,-, .... xl) be the label of a switching element, then the output (input) links connected

to this switching element are labeled

X = (x , ... x 1,0)

X 1 = (xn_ 1 . .. xl,1).

These X 0 and X1 are named as the 0-output (0-input) link and 1-output (1-input) link with

respect to Y, respectively. For a connection pattern defined by a CP permutation P connect-

ing two adjacent switching stages, say stage J and stage j +1 (excluding the special case

specified by 0(0) = 0), the 0-output link (x,,_ . . . . . x 1,0) of a switching element Y

(x . .X) at stage j is connected to the input link (P(x 1 ) ..... P(x0),P(xO)) of a

switching element (P(x,,_ 1),..., P(xl)) at stage j+l such that some P(xi) = 0, l<i_<_n-1. Simi-

larly, the 1-output link (x,,- 1, . . xl,1) is connected to the input link (P(x_ 1),...,P(x1),P(xo))

of a switching element (P(x,._ 1),...,P(x1)) such that P(xi) = 1. These two switching elements

which connect to the O-output link and 1-output link of Y are called Y's O-successor and 1-

successor, respectively. We denote them as succ°(Y) and succl(Y). In a similar way, for a

switching element Z = (Zn, 1 0. . . . . z1) at stage j+l, prec°(Z) and prec1 (Z) at stage j which

connect the 0-input link and I-input link of Z represent Z's 0-predecessor and 1-predecessor.

respectively. As those connection patterns defined by CP permutations with 0(0) = 0 are



12

considered, we have succ°(Y) = succ 1(Y) and prec°(Z) = prec 1(Z). Therefcre, for a connec-

tion pattern defined by a P E CP(n) connecting stage j and stage j+l, we can always have

N
the following relation: let Y = (u,_j....uj), Y c [0, -- -1], be a switching element at stage j.

If P is specified by 0(0) * 0, then succl(Y) - succ°(Y) = 2i for some i E [1, n-i]; else

succl(Y) - succ°(Y) = 0. Similarly, let Z = (v,,_ 1, . v.j. v), Z e [0, -1], be a switching

2

element at stage j+1. If P is specified by 0(0)#0, then prec(Z) - prec°(Z) = 2k for some k

E [1, n-I]; else precV(Z) - prec°(Z) = 0.

Our CP(n) connection patterns satisfy the definition of independent connections

[BeFo88]. Thus, they are independent connections, too. For example, in Fig. 2.1, we show a

connection pattern defined by a CP(4) permutation on numbers from 0 to 15. The permuta-

tion is specified by V = (0,1,2,3) which is a bit reversal function p. In Fig. 2.2, we show

another connection pattern specified by the vector V = (1,3,2,0) in which 0(0) = 0.

2.3. TOPOLOGICAL STRUCTURE OF THE log 2N CPrnin

A MIN is said to have the Banyan Property if and only if for any input and output there

exists a unique path connecting them, i.e., its inputs and outputs are fully connected. Any

Banyan type MIN can easily be modeled by a Banyan graph in which vertices represent

switching elements and arcs represent connection links [Agr83]. The structure of a Banyan

graph is essentially an overlay of tree structures and assures full connectivity among base and

apex vertices without redundancy. In particular, those NxN n-stage Banyan type MINs

[Fen8l] constructed with 2x2 switching elements can be modeled by (2.2,n) rectangular SW

Banyan graphs and its corresponding Banyan graph representation. As mentionLd in some



13

X Q(X)0

0 0 00 0 00 03333
0 0 01 1 00 0
0 0 10 0 10 0444

0 0 11 1 10 0555

0 1 00 0 01 06666
0 1 01 1 01 07
0 i110 0 1 10
0 1 11 1 1 108

1 0 00 0 00 1999
100 1 1 00 1

101 010!I
12 12'

1 1 0 0 1 1 1

I I0 1 1 1 4 1

L. . L. 11 1 1 51

Fig. 2.1. The connection pattern defined by a CP(4) perMUtation
V = (0,1,2,3), i.e., a bit reversal function Lp



14

X P(X) 0Z0o

0 0 0 0 0 0 0 0 3 3

0 0 01 0 0 0 1
0 0 1 0 0 0 04

0 0 1 1 1 0 0 1 5 5

0 1 0 0 0 1 i 0 6 6 6

0 1 0 1 0 0 1 17 7 7

0 1 1 0 1 0 1 0

0 1 1 1 1 0 1 1 8 8

1 0 0 0 0 1 0 0 9 9
1 0 0 i 0 1 0 1 w-- 1

1 0 01 0 1 0 1 10 10

1010 1

1 0 0 0 1 0 2 12
1 1 0 1 0 1 1 1 13 1 3 13

1 0 0111

111 11101
.1 1 1 01 1 1 1"Is ! 1 11 I .4 ' 4 1

Fie. 2.2. The connection pattern defined by a CP(4) permutation

V = (1,3,2,0) in which 0(0) = 0



15

previous works [WuFe80][Agr83][HuTr86][BeFo88], all the networks with graph representa-

tions isomorphic to the same Banyan graph are topologically equivalent.

It is a direct conclusion from Section 2.2 and [BeFo88] that if there exist n -stage Banyan

type MINs which can be defined by (n+1)-level CP(n) permutations, they must be topologi-

cally equivalent to one another and their graph representations are isomorphic to that of a

baseline network. What we are concerned with in this section is how to construct a class of

Banyan type MINs (i.e., the class of CPn"n in our notation) using connection patterns defined

by CP type permutations. In order to give a more intuitive explanation of their functional

properties, a path-descriptive methodology is adopted hereafter. Our point of view is that for

easily routing the message from a source input to a destination output in a MIN, the routing

scheme should preserve the information of source and destination addresses, and, what is

more significant. indicate the topological structure of this MIN.

Consider an N.<N n-stage MIN, F (see Fig. 2.4), consisting of n switching stages and

n +1 connection patterns defined by CP(n ) permutations. F can be defined as

F = 1n E E0- P P0- 1) ... EDP °

where P E CP(n ), E' = E (for all i) denote switching stages, and the superscript i specifies

the i th stage. The effect of a switching stage E is an exchange permutation which is obtained

as follows:

ForX = (xn -i .... lrO), X E [0, N-l]

E(X) = (xn- . .x1 ,d)

where d = x0 or XT) (the complement of xi).



16

Fig. 2.3. The Baseline network and its Banyan graph representation.



17

stage 0 stage (n-i)

0 0

2 2

* p 0  * , p I 6 p(n-i) 0 J -') P0

I6

N- N-3

N-2 Z N-2

N-1 N-I

Fig. 2.4. An N X N~ n-stage NIIN, r .consisuing of n SWlLching stagesan
(n+1)-Ievel connection pattern~s defined by CP(n) permutations.



18

There are two kinds of operations on r. A P' permutes binary bits of the operand according

to its corresponding vector V' = (0i(n-1), . . . ,0'( 1),0L( 0 )) and an E' replaces the least

significant bit (LSB) of the operand either by the original bit or its complement. Generally

speaking, the result of an operand X performed by P' and E' consecutively can be expressed

as follows:

X = (Xn1 ..... XX 0 )

X i = P (X) =

n ..9 ... Yyi Y

()(i) = Ei(X) = (yA-,, .... y d

Here, we compose functions from right to left so that for operations P' and E' over X e [0,

N-l], E'P is defined as E'(P'(X)).

For F to be a Banyan type MIN, there exists a unique path from any input S =

(s,,1_ . . . . .s1 ,s o) to an arbitrary output D = (d,. 1, .. dj,do). Conceptually, we can ima-

gine that S is propagated through r to D performed by those 2n+l operations consecutively.

Hence, we can get a unique valid transition sequence consisting of 2n+l binary numbers, i.e.,

Do PO(S)

D (O)(0) = EO(D 0)

D I P1(D°0)

D() E'(D 1)



19

D (n-1)(n-1) =E(n-1)(D (nA1))

and eventually,

D'n =Pn(D (n-1)(n-1))

-D.

In their mathematical meaning, D' and D(i X') are mappings of operands D~i- 1 )(i - 1) and D i

performed by P0 and E', respectively. From another point of view, according to the definition

of basic connection patterns, we can say that each D' is the address of the input link through

which the path from S to D traverses at stage i. Similarly, each D (i)(i) is the address of the

output link traversed stage i. More precisely, the transition sequence has the following form:

S = (s,,_-..1 ... s 1,SO)

o = (s_ 01. . . . . s , y

D 1 -(sL 1 . . . . . $,s )

- I do)
D (1)(1) _= (Sll ... S 11 ,d 1)

D "  =(sn-1 ..... n - 1 n-1

D(n-1)(n-1) =(sn- 1 n. ' - 1 , n - 1)

" (s", .... s? ,D

= (dn 1 . . . d ,do)

=D.



20

Instead of being a description using a graph model, the above is a path-descriptive outline of

the structure of an n-stage Banyan type MIN defined by CP(n) permutations. The following

theorem is a necessary and sufficient condition for the class of n -stage MINs defined by

CP(n) permutations to satisfy the Banyan property.

THEOREM 1: Let r" be an n -stage MIN defined by CP(n) permutations. F is an n -

stage Banyan type MIN if and only if there exists an 0 r CP(n) specified by a vector V° =

(00 (n -1),. . . ,00 (1),0 0 (0)) such that

O(s ... S1 ,S0 ) = (Soo(n1) .... ,Seo(1),S o(o))

n s -1, .... ,Is°0)

is true for each transition sequence representing the path from any input S =

(s,_ . .s 1 ,s0 ) to any output D = (dn 1,...,d1 ,d0). Here, s' is the LSB of D' in a transi-

tion sequence.

PROOF: (only if) Let ij,k,l E [0, n-i]. We assume r is a Banyan type MIN. There

exists a unique path between any input and output of F. First, each Pi in F is a fixed permu-

tation pattern which can only permute bits of its operand. Second, in each transition sequence

all possible chances to change the value of a bit exist on those n exchange permutations

corresponding to n switching stages where LSB's of their operands can be changed. Thus. as

in any transition sequence each si must be given exactly one chance to be changed to some

desired dj. This is true, because if any si gets more than one chance to be changed, then at

least one s1 , I * i, has no chance to be changed, and each input S could reach no more than

2 n-L of the total 2" outputs. This contradicts our assumption. Moreover, for each input S

two different transition sequences cannot reach the same output D. They are different in the



21

LSB of at least one D (i )(i ) if and only if the outputs they reach are different. Therefore, each

s i is allowed to appear exactly once at the position of the LSB in some Dk. That is, si = s

for some ik c [0, n -11 and there is a one-to-one mapping between the subscript i and super-

script k. Obviously, for F to be a Banyan type MIN, it is the responsibility of each P where

k - [0, n-I] to bring some unique si in S to the position of the LSB exactly once. Here, si

gets the only chance to be changed to a desired dj after the operation of a switching stage.

However, P' can be an arbitrary permutation in CP(n). Thus, the existence of such a permu-

tation function 0 E CP(n) such that

(sn, s,s) = (0 -lo 1.....sJ ,so )

is clear. Let function 0 be specified by a vector V 0 = (0 (n-l) ..... O0(l),00(0)). Then

V0 represents the order of bits of S to be permuted to the position of LSB in a transition

sequence.

(it) Since there exists a function 0 E CP(n) such that

0 _ . .s,so) = (s - .... .s1 s)

is true for all the transition sequences on F, each bit of an arbitrary S gets only one chance to

appear in the position of LSB where it can be changed to a desired value after the operation

of a switching stage. That is to say, any input S has a unique transition sequence or path to

reach any one of the 2' outputs. Therefore, there exists a unique path between any input and

any output on F. E]

In Theorem I, we outlined one characteristic on the topological structure of the CPmm as

the necessary and sufficient condition for each MIN in the class to satisfy the Banyan pro-

perty. For a complete analysis of the CPm, there is still another thing which should be noted



22

on the transition sequence. After each si is permuted to the position of the LSB in some D k

it must be replaced by a desired dj as the result of D(k)(k), i.e., di = dk. Then, in the Dk" ,

do is permuted to the position of bit I where 1 * 0 (i.e., dk = s"'t I), because another s.

(m # i) should appear in the position of LSB as required by the necessary condition that F

needs to be a Banyan type MIN. As a result, we have the following relation in each D' ".-
.. . .i+I si+l 2

{d', d0) c { s,-1 . S.. s , for all i E [0, n-2]

and

n-- . . .

Eventually, after the mapping of Pn, all the dk where k E [0, n-li will be arranged in the

correct position corresponding to D = (d,-1, . . . dj,d0 ) such that dk = dk. Clearly, there

exists another permutation function I E CP(n) which is related to the order in which bits of

D are -o be replaced. Given a I e CP ra in , the function I is an inherent characteristic in addi-

tion to the function 0. We can use I and 0 to uniquely describe the topological structure of

a Cpmin type MIN. We call I and 0 characteristic functions.

DEFINITION 3: Let F be an n -stage CP"' type MIN. F can be characterized by the

two CP permutation functions 0 and I, named as characteristic functions. The function 0 has

the same definition as described in Theorem 1. The function I c CP(n) is specified by a vec-

tor V' = (/(n-l) ..... (1),W (0)) such that

(d, d.....d,,do) =R..d", d.....ld,d° )

= (d(n-) . . d°1fD i/(0ni).

Here. d' is the LSB of D~i ) i ) in a transition sequence.



23

Now, we can conclude the above discussion as follows. As long as all the n +1 selected

connection patterns used to construct a CPrn'i type MIN r satisfy Theorem 1, the topological

structure of r can be specified by two characteristic functions 0 and I as defined in Definition

3. In other words, Theorem I and Definition 3 imply that any transition sequence of a CP rin

type MIN has the following form:

S = -I" . . , s 1,s 0)

D o =(so 0. . . . . s o s 0 0)

)()= (sO, . ... s o,do)

D (sL1 ..... s I ,Soo( 1 )

D(1X1) = (sn, 1. . . . . 1,d )

D tr-1) n-I -

D(s,,-1 . ..s 1  ,so(n_1))
D(n-1)(n-l) (n-1 n-1 n1

= ( n-1  . ..S 1 , n l

D - de',1' ,d 01 0=n (sn 1  ..... s n )

=(dO'(I ). . .d (1,°  o )

= (d 1. . . . . d 1,do)

where {rd'...do c s'+ , .,s'+'), for all i e [0, n-2], and dJ  E

{d°0 n-l .... d.d01 .dKd*}, for all j c [0, n-i].

Thus, the values of 60 (i) and 01(i) of a CP mi' type MIN can be easily obtained from its tran-

sition sequence. That is to say, (00 (n-1) ..... 0(1),0(0)) is a permutation on the sub-

scripts of s,'s and (#1(n-l).....e1(I),01(0)) is a permutation on the superscripts of d()"s.



24

In Fig. 2.5, we depict a 16x16 4-stage CP type MIN F = P4E3p3  E°P ° , where V° 
-

(2,1,0,3), V1 = (2,3,0,1), V 2 = (0,1,3,2), V3 = (2,0,3,1) and V4 = (1,3,0,2). The general form

of transition sequences on r is as follows:

S = (s 3, s 2, s1 , S0 ) D o= (s 2 , s1 , SO, s 3)

D °0 = (s 2, s1, so, d 2) D 1 = (S1 , s 2, d2 , SO)

D 1 1 = (S 1, S2, d2 , d3) D 2 = (d3, d 2, s1 , S2)

D 22 = (d3 ,d 2,s 1 ,d o) D 3 (d2, do, d3, S )

D33 = (d2, do, d 3, d1) D 4 = (d3 , d 2, d1 , d o) = D.

We have O(s 3,s2,s1 ,s o) = (s1,s2,So,S3) and (d3 ,d2 ,dl,do) = I(d3,d2 d,do) = (dl,d°'d3 ,d2 ).

i.e., V0 = (1,2,0,3) and V1 = (1,0,3,2).

As we pointed out above, the combined effect of permuting bits of the operation

sequence P' PO on a CP mm type MIN F can be reflected by two permutation functions 0

and I. The relationship between 0, I, and the operation sequence P" .. PO can be described

by the following lemma.

LEMMA 1: On a CP m n type MIN r, the characteristic function 0 is uniquely deter-

mined by the sequence p,-1 ... PO and characteristic function I is uniquely determined by

the sequence P' ... P1.

PROOF: Consider an arbitrary transition sequence of F. After the operation of Pi, i E

[0. n-11, bit sqo(i ) of input S is permuted to the position of LSB in D i . Clearly, P'1 has

nothing to do with the function 0. Similarly, in D( i )(i ), each Sooi is replaced by bit d'.

Each d' is then permuted by P' and preserved in D i '. Thus, the final order of d's in D'



25

0 00 0

3 3 3 33 3

9

11

t4

45

P0  E P E' 1 P2  E P3  E 3  P4

Fig. 2.5. A 16 x 16 4 -stage Cpmtn type MIN are Constructed with connection
patterns specified bv vectors vQ (1, 0,3), Vi (2 .3 . .1), Vi = (0. 1. 3.2)

;.S 2.0,3.!) and v4 (1,3,0.-). The conflicting path connections from
S =(0,0.0.1) to D = (1, 1.0,0) anda A = (1.0.0.0) to B = (1,1,..1) is also
s ho wn.



26

= (d0(-) .. d (  ), which can be specified by the function I has nothing to do with Pt

Now, we would like to investigate the topological characteristizs of the reversal network

of a CP'n type MIN. The reversal network rR of a CP m ' type MIN F is the network

obtained from r by reversing the direction of each connection pattern, and replacing each

input (output) by an output (input) without changing its label. Let p - ) denote the inverse

function of a permutation function P' E CP(n). We have the following lemma on the topo-

logical structure of a reversal network.

LEMMA 2: The reversal network of a CPmln type MIN F defined as a permutation
sequence P'E°-" P"n- i ) ... E°P ° is a CP mn type MIN:

FR = p--(O)E(O)P-") ... En-) -(- .

Moreover, rR has two f, .cteristics functions OR and IR where OR is uniquely determined

by P-)'p( 2) •  " ' and 0R is uniquely determined by p--')p-(1) .. p-4n-1).

PROOF. Since the reversal connection pattern of each connection pattern defined by P1

can be defined by the inverse function P-(') and the reversal switching stage of a switching

stage is still the same switching stage, it is clear that the reversal network of F can be

expressed as

FR = P-4o)E(0)pM ... E(,-1)p-(n).

Besides, because of the isomorphism between graph models of F and FR, F' R satisfies the

Banyan property, i.e., IFR belongs to n-stage CP r i . Thus, by a similar proof as that for

Lemma 1, we can show that there exist two characteristic functions OR and IR such that OR

is uniquely determined by the sequence p- p-,'2) P- ,) and IR is uniquely determined by

p -i0)p-M .., p-4-1)



27

F1

In Table 2.1, the characteristic functions of several famous MINs and their reversal net-

works are summarized.

Three conclusions can be made for this section. First, it is very easy to observe that,

except for P0 and PA, no other Pk's (k E [1, n-1]) can be CP(n) permutation functions

specified by 0(0) = 0. This is because any pk specified by Ok (0) = 0 in Vk will cause some

bit s' of input S to lose the chance to appear at the position of LSB in the transition

sequence, and the n -stage MIN IF will no longer preserve the Banyan property. This is a for-

bidden case described in Theorem 1. Second, as the equivalence problem is considered on the

topologically equivalent class of CP ra n, some subdivisions can be made. It is very easy to

verify that there exists a one-to-many mapping between functions 0 or I, and MINs in the

CP amm . The equivalent relationship between arbitrary MINs in the CPm in can be classified as

follows: catalogs:

The class of O-equivalent MINs: with the same function 0 but different function I.

The class of I-equivalent MINs: with the same function I but different function 0.

The class of 0/I-equivalent MINs: with the same function I and function 0.

Therefore, the whole class of CP r imn can be partitioned into (n !)2 0/I-equivalent classes. Each

class with specified functions 0 and I has [(n-l)!]n different drawings. For example, it can

be shown that a 4-stage CP' n type MIN with connection patterns specifiea by V ° = (1,2,0,3),

V = (2,3,0,1), V2 = (2,0,1,3), V 3 = (1,0,2,3) and V 4 = (1,3,0,2) is 0/1 equivalent to the MIN

depicted in Fig. 2.5. Third, the equivalence relation in the CP r in can easily be described by

linear transformations between two arbitrary MlNs. Assume that two CPm" type MIN, F1



28

Table 2.1. The characteristic funcuons of several famous MINs and their reversal networks.

MIN's V/ V1

Delta network (1.2.n-!,0) (0...., n-2.n-1)

reversal Delta network (n-1 ..... 1,0) (0.n- .. 2.1)

Omega network (C.n-2n-!) (0,...n-2,n-1)

reversal Omega network (n-i ..... 1.0) (n-. 1.0)

Baseline network (n-1. 10) (0 .n-2.n- 1)

reversal Baseline network (n-1,. 1.0) (0 .. n-2,n-1)

[ndirect Biranr Cube (n- ......) (n-..

networK

reversal Indirect Binary 0.n-2n-1) (0(.0n-2,n-1)

Cube network



29

and F1, are specified by functions 01, I and 02, 12, respectively. If we transform F to F2,

we can always have the followi- , relation: there exist two functions F, R G CP(n ) such that

OF=0 1 and R1, I I ,

or

F=O201 and R=I1I2.

Functions F and R represent two linear transformations or two fixed connection patterns

added before the first and after the last connection pattern of F,. They can also be interpreted

as the renaming scheme on the inputs and outputs of 12, i.e., th! inputs are renamed accord-

ing to function F- 1 and the outputs, function R- 1. The renaming scheme can easily zransform

one network to another network without any hardware cost. It has a significant impact on

designing reconfigurable systems.

2.4. ROUTING ALGORITHM

In a general ,IN, routing is established by attaching to each input a path control

sequence or a path descriptor [KrSn86] to lead it to a desired output. Generally sveakin,.

paths from different inputs to the same output may have different control sequences. Thus, a

routing table, containing a path control sequence for each output, is needed at each input.

From the viewpoint of simple routing, it is convenient to have all these tables identical.

As discussed in previous sections, any path in a CP ra i type M.IN leading from an input

to an output can be represented by a transition sequence. Note that each D' and D" in a

transition sequence represent the address of input and output links througn which a path

traverses stage i. Moreover, the ordered set of all the LSB's in Di's (s- " ,.s (



30

which equals (seo(n.1) ..... seoo1),sOo(o)) is a permutation on the bits of the address of an input.

Similarly, the binary representation of an output (dn_,1 .....d,d 0 ) which equals

(d° (n - 1 ) ....d( 1),dO'(o)) is a mapping of a permutation on the ordered set of all the LSB's in

D(')(')'s (dn - 1, ... dl ,d°). Therefore, three conclusions can be made on a CP rai n type MIN.

First, any path connecting an input and an output preserves the information of input and out-

put addresses, and indicates the topological structure of this MIN reflected by functions 0 and

I. Second, the LSB's in DL's and D(i)(i)'s represent labels of input and output links in a

switching element (i.e., 0-input (0-output) or I-input (1-output)) through which a path

traverses stage i. Hence, at each stage, regardless of the input link through which a path

traverses, this path can always be routed-to the desired output link (i.e., Soo(i) is replaced by

d' which should be a binary bit of D ). It is natural that each path control sequence can be

constructed by using only the address of a destination output. In this chapter, this is referred

to as destination-oriented. Third, since the content of a path control sequence is only related

to the destination output to which a source input desires to route and the function I, all the

routing tables are identical. This is required by a simple routing scheme.

Thus, briefly speaking, the distributed routing on an n -stage CP m' type MIN F which is

characterized by 0 and I is accomplished by the source input attached with the path control

sequence T = (tn,, ... , t,t 0) as routing tags along with a request for connection. As the

request progresses through the stages of F, the switching ."-ment at stage i uses the tag t i

from the path control sequence T to route the incoming request via the particular output link

determined by t;, i.e., via 0-output link if ti = 0 and I-output link if ti = 1. Eventually, the

request reaches the correct destination. In other words, the distributed routing can be accom-

plished under local control at each switching element. Any switching element is said to be in



31

the 1-state if a crossing connection (from 0-input to 1-output or from 1-input to 0-output) has

been established and in the 0-state if a straight connection (from 0-input to 0-output or from

1-input to 1-output) has been established. Let 1i be the label of the input from which an

incoming request comes and 1, be the label of the output link to which the routing tag deter-

mines to route. Obviously, the state of a switching element can be obtained by performing an

Exclusive-OR on 1i and 10. Next, we study the general form of the routing algorithm for the

log2N CPm n. Let XOR be the modulo 2 addition and S---0 denote the path connection from

input S = (sn t . . . . . s 1,s0 ) to output D = (d,-., . ... dj,d).

THEOREM 2: Let T = (t,- 1 . . . . . t1,j o) be the path control sequence of S-D on an

n -stage CPm n type MIN F. Then ti has the following form:

ti = l-1(di).

Moreover, gi = 0(si) XOR I-1 (di) can determine the state of the switching element through

which S--D traverses at stage i. G = (gn-1, . . . g ,g0 ) is called the path state sequence.

PROOF: As we remarked above that the path S-D can always be routed via 0(s i ) or

the soo(i)-input link of some switching element at stage i, the selection of a correct output

link at stage i (i.e., the replacement operation performed on to O(si )) is clearly irrelevant to

the incoming O(s i )-input link. Therefore, as long as T is used as the path control sequence,

it is equivalent to saying that S-D traverses some switching element at stage i from an

O(si)-input link to an output link whose label is l- 1(di), i.e., d i = d-. Thus, we have the

following transition sequence:

S = (Sn I ... $ ,s0)

............. .



32

° = s°_ ... SOO(O))

D ()(O) (s l ... s

D n =(d ~t(,-l) . . .d t1 o (

= (d 0 C 9-  (n - 1 )) . .. d 0(Y( - (1)), d (01o - (0)))

= (d _l1..... dl,d d).

Obviously, it is valid and 1-1(d.) is the only possible routing tag which can be used at stage i.

However, the state of the switching element at stage i is determined by 0(s i ) XOR I-(di). Ei

For example, the path control sequences and path state sequences of the famous MINs in

Table 2.1 are summarized in Table 2.2. For the MIN in Fig. 2.5, we have 1-(D) =

(d1 ,do,d3,d2). The path connection from S = (0,0,0,1) to D = (1,1,0,0) is shown by a bold

line, where from Theorem 2 we can get T = (0,0,1,1) and G = (0,0,0,1).

Theorem 2 provides an efficient routing scheme on a packet-switching CP a"" type MIN.

In particular, in packet-switching networks, when messages are sent from inputs to outputs,

replies are returned to the sender. Thus, the address of the sender is needed. Instead of

attaching the sender address to a message, the address can be created while passing the MIN:

whenever bit I-(di) in the path control sequence is discarded at stage i, it is replaced by bit

0(s i ) that identifies the input link from which the message came from. Eventually, this mes-

sage preserves the address of the sender as it arrives at the receiver. We should note that not

every Banyan type MIN has this natural property. For example, in Fig. 2.6, two 3-stage non-

CPmra n Banyan type MINs are shown. The MIN in Fig. 2.6(a) is topologically equivalent to

CP amm, but the other one in Fig. 2.6(b) is not. Even if their routing schemes are also



33

Table 2.2. The path control sequences and path state sequences of those MINs in Table 2.1.

MIN's T = (tn_ I. ,ti, to) G = (gP- ... ,g,0go)

Delta network (do,..., d- 2 , d. 1) (sI e d(,, 12 e d, ..... s.- 1 E d,,-2 , SO E d,- 1 )

reversal Delta network (do, d,-I,..., d2, di) (s,-, e) do, sn- 2 E dn-1 .... Se E d2, So E d,)

Omega network (do,. ... d,- 2, d,- 1 ) (so E do ..... s,- 2 e ED2 s -1  d.-,)

reversal Omega network (d-1 .. , di, do) (s- i G d, ...1 .  s1 E d1 , So e do)

Baseline network (do,..., d.- 2 , d,-) (s,- 1 E do, . . . . s. E d,.-2 , so W d,- 1)

reversal Baseline network (do,.- d,,- 2, d,-,) (sR-1 E do .... si E d,-z, so S d,.-)

Indirect Binary Cube (d..-1 .. d1 ,do) (s- 1 e d-. .  s, G di, so G do)
n envork

reversal Indirect Binary (do. .... d,- 2 , d,- 1) (so G do,..., e- d,-,, s,- I d_,1)
Cube network

L~~ ~~~ .__ _ _ _ _ ...___ .__......_ . _ _._..._...



34

0 0

3 3

4 44

66

7 7

(a)()

Fig. 2.6. Two 3-stage ~nn-Cp- Banyan type NMINs are bhown.



35

destination-oriented, there is no simple rule to preserve the sender address on them.

In a CP a"n type MIN, two path connections which do not result in connection conflicts,

(i.e., they do not use the same output link at some switching element) are said to be

conflict-free. The next theorem is a necessary and sufficient condition for two conflict-free

path connections on the class of log 2N CPr in. It is the extension of the theorem in [WuFe8l]

which only deals with the Baseline network.

DEFINITION 4: Let S and M be two n-bit numbers. O(SA) yields the maximum

number of consecutively identical low-order bits of S and A. V(SA) yields the maximum

number of consecutively identical high-order bits of S and A. El

For example, if S = (0,1,1,0,1,0) and A = (0,1,0,0,1,0), we have O(S A) = 3 and xi(S A)

THEOREM 3: In an n -stage CP ra i type MIN characterized by 0 and I, two path con-

nections S --+D and A ---B, where S # A and D # B, are conflict-free if and only if

Wt( O(S),O(A) ) + 0( I-1(D),I-1 (B) ) < n.

PROOF: (only if) Suppose W( O(S),O(A) ) = k and 0( I-(D),- 1(B) ) k'. According

to Theorem 4, bit 0(s i ) on the transition sequence is replaced by bit I-1 (di) after S-4D

traversing stage i. Thus, generally speaking, at stage i, 0 _ i < n-1, the output links

traversed by S -- 0D and A -4B are n(O(s.), .. .. O(si~j),I-1(di), .... ,-1(d 0 )) and

-I(O(a,.. t) ..... O(ai~),I-1(bi) ..... 1-1(b 0 )) where n r CP(n ). I1(Os,)....

Otsij),l-1(ai), ..... l-L(d 0 )) and [I(O(an-), . . ,O(ai+!),I-(bi) ..... I-1(bo)) are those

D i4)(O's on the transition sequences of S-4D and A -4B, respectively. By the definition of 0.

whenever 1 < i < k ', we have (I-(di), . . . ,1-1(do)) = (I-(bi), . . . , I-'(bo)). Since



36

(O(S),O(A)) - k and k + k <n, we must have k <n-k < n-i-I and

(O(Sn-l) . .(Si+ ))  # (O(an1), ..... O(ai+l)). Similarly, if k < i < n, then

(I-V(di) ..... 1-(d 0 )) # (1-1 (bi) ..... 1-1(b 0 )). Consequently,

I-I(O (sn 1) ..... O (s ),I-(d ) .... , -1(d0))

1-I(O (a,_1) .. . (aj.tj)X 1-(b ), ..... 1-'l(b o))

at each stage i, 0 < i < n-1. Therefore, S--+D and A -B are conflict-free.

(if) Since S -) and A -4B are conflict-free, we have

... O(s. )  ..... O(si+1),- 1 (di), .... ,-1(do))

I(O (an_1) .. . (ai~j),I-1(bi ) .. ..-1 (b 0))

at each stage i, 0 < i < n-i. This implies that (O(s,_ ).....1), O(si~i))

(O(an 1) ..... O(ai+l)) or (-l 1(di), . . . ,-1(do)) * (-1(bi) ..... 1-(b 0), at each stage i. As

a result, W( O(S),O(A) ) + 0( l-(D ),-'(B) ) < n.

For ,:xample, in Fig. 5, if S = (0,0,0,1), D = (1,1,0,0), A = (1,0,0,0) and B = (1,1,1,1),

we have O(S) = (0,0,1,0), I-1(D) = (0,0,1,1), O(A) = (0,0,0,1), and I- 1(B) = (1,1,1,1). Thus,

W4( O(S ),O(A ) = 2 and 0( I-'(D ),I-(B) ) 2. As a result of Theorem 4, S ---)D and A ---)B

are two conflicting path connections.

2.5. DECOMPOSITION AND PARTITIONING

In this section, compared to the distributed routing property, we study two global func-

tional properties on the CP"a , i.e., its decomposition and partitioning.

The partitionability of a network is the ability to decompose the network into indepen-

dent subnetworks of different sizes [Sie79]. It is desirable that each subnetwork with smaller



37

size can have all the functional properties of the original network. A partitionable network

allows a system to be dynamically reconfigured into independent subsystems. It has a

significant impact on the application of parallel processing.

In the next theorem, we exploit the strict buddy property [Agr83] of the class of log 2N

CPmm. It is an important auxiliary fur the discussion on decomposition and partitioning.

Let Y 1 and Y2 be two switching elements at a switching stage as discussed in Section II.

Y 1 and Y, are said to be output buddies if succ°(Y1) = succ°(Y-) and succ 1(Y1) = succ1(Y.)

input buddies if prec°(Y1) = prec°(Y2) and prect (Y1 ) = precl(Y2). A MIN has the strict

buddy property if and only if at each stage for each pair of input buddies there exists another

pair of input buddies such that they constitute two pairs of output buddies. Fig. 2 7 illustrates

the buddy property.

THEOREM 4- The class of n -stage CPm1 satisfies the strict buddy property.

PROOF: Let F be an n -stage CP 1 type MIN with characteristic functions 0 and I as

we have defined. Even if the function 0 cannot uniquely determine the topological structure

of r, without loss of generality, we can construct F by using only. say, the k-subshuffle ak.

If other CP(n ) type connection patterns are used, the proof is similar to the following.

N
Let SW,,., be the xth switching element at stage j of r, where x - [0, - -1], j e [0,

n-l, and its binary representation be (w, t ..... wl). Assume stage j is connected to stage

j +1 hv a , connection pattern. The labels of the successors at stage j+I of SW .. are of the

form (w,_,_ .. w.,wkj ..... wl,d), where d = 0 or 1. It is obvious that we can always

find a unique switching element SW, 1 which has the same successors as SW,,, if and only if

its label is (w,,1 .. . ...Wk-, 7k,Wkl, . w.. ,w), where i k represents the binary complement



38

output buddies
staee~ sta ge s taae J+1

stage stage J+1

3Ii

output buddies iflpUL buddies input budies v'

M..output buddies

(a) (b)

Fig. 2.7 (a) The bucd&: property (b) The Interstage buddy property in an NUIN.



39

of wk. Therefore, SW., j and SWy.j are output buddies at stage j and their common succes-

sors are input buddies at stage j+l. Thus, each input buddies and output buddies can easily

be identified at each stage of F.

Now, to show the strict buddy property of F, we must verify that for each pair of input

buddies at stage j+l there exists another pair of input buddies such that they constitute two

pairs of output buddies.

Let SWx 1-., SWy.j+1 and SW,,,+,, SW,,.+l be two pairs of input buddies and let

(a,,-1 . -.... ak+l,ak-1, .... at +j,at,aj_j, ..... a I,d), and (bn,, ..... bk +I,bk-I--..

b1.,b1 ,bj, - . . b l,d) be their labels, where d = 0 corresponds to SW,.j+ 1, SW,, +1: d = I

corresponds to SWy,j+ 1 , SWv4+,. Assume stage j+1 is connected to stage j+2 through a C-1

connection pattern. If we let ai = bi = ci, i e [0, l-1]t,.)[l+l, k-1]JU[k+l, n-l] and a, = F1

Slv " . -, and SWU.j+l will form output buddies with common successors

(c 1, - ..... Ck+I,Ck-1 . . . . . cj+j,cjj . . . . . c,0,d) at stage j+2. Similarly, SWy.+I and

SWv .j t will form output buddies with common successors

(cn- .ck+,ckl ... , ct~,c-1 , .... c,,l,d) at stage j+2. Also it is clearly that this is

the only possible way to specify two pairs of input buddies which also constitute two pairs of

output buddies. Hence, at any switching stage, for each input buddies the uniqueness of

selecting another input buddies to constitute two pairs of output buddies is verified. The argu-

ment is also applicable to the boundary switching stages, stage 0 and stage n-1, by imagining

inputs (outputs) of r to be output (input) links of a pseudo switching stage. Therefore, r

satisfies the strict buddy property. E



40

Now, we discussion the decomposition property on the class of n -stage CP'.

THEOREM 5: An n -stage CP r inl type MIN r can be decomposed from the view of each

stage j. j c [0, n-I], as follows (see Fig. 2.8):

(Forward) Stage j is followed by two disjoint (n-j-1)-stage subnetworks, No and N I, such

that each switching element on stage j is connected to an input of No (N1) via its 0 (1)-output

link.

(Backward) Stage j is leaded by two disjoint j-stage subnetworks, Mo and M I, such that each

switching element on stage j is connected to an output of Mo (M1) via its 0 (1)-input link.

PROOF: As in Theorem 6, without loss of generality, we assume only subshuffle connec-

tion patterns are used on F. Also we assume stage j is connected to stage j+1 by (Tk con-

nection pattern and stage j+1 is connected to stage j+2 by a,+, connection pattern. Consider

the forward case first. It is clear that, on stage j and stage j+1, each 0-output link at stage j

with label (w,_ 1,...,w 1,0) is connected to a switching element at stage j+1 with label

(w, 1... wk+1,wk_1,....w 1,0); and each 1-output link at stage j with label (wn_ 1.....w 1,l) is con-

nected to a switching element at stage j+l with label (w,, 1.... wk+1,wkl..w 1,l). Thus, each

switching element at stage j is connected to a set of 2 n-1 switching elements, So, with gen-

eral label form (d, ... d,0) at stage j+1 via its 0-output link. In a similar way, each

switching element at stage j is connected to a set of 2 1 switching elements, S 1, with gen-

eral label form (d ..... d, 1) at stage j + I via its 1-output link.

Now, we want to show that each one of S o and S1 can span an (n-j-)-stage subnet-

work and. particularly, these two spanned subnetworks are disjoint. For any switching ele-

ment (xn-1 ..... kVI..,x+tx,....,x 1,0) . SO, its corresponding switching element



41

stage j

I0 0

Fig. 2.8. The decomposition property of a Cp type MIN.



42

which has the label (xn-l,.... k+lXk-1,....+,X/+,x-,-...,x,O) to form output buddies is still an

element in S0. There are a total of 2 n-2 pairs of output buddies in So which can span a set of

2 n-l switching elements consisting of 2 n-2 pairs of input buddies at stage j+2. Each output

buddies in So with label form (x-i, .-. . Xk+,xk-1 ..... xl+,dxl-.., . x,,O) spans input

buddies with label form (x,- 1 . . . . . Xk+1,Xk1 ........ Xt+ir -..... xl,O,d) at stage j+2.

According to Theorem 3 and the definition of CP(n ) type connection patterns, some bit xi in

label (xn- X. . . . . k+1Xk-1 ..... X1Xl,l .... x,,O,d,d) is permuted to the position of LSB.

(x , . Xk+xk-I ..... .x.- ... x ,O,d,d) is the label form of output links of the set

of switching elements at stage j+2 composed of input buddies

(xn- ....... k+ Xk-1 x,,O,d). Thus, we can have another set of 2' - '

switching elements spanned by So at stage j+3 with the label form (...,O,d,d). As we proved

in Theorem 6, this is essentiality of the strict buddy property, because the corresponding input

buddies of each input buddies at stage j+2 as required to satisfy strict buddy property has the

same label form. In general, at each stage i, i E U+2, n-1], So spans a set of 2n-I switching

elements with general label ,form (....O,d,d,...,d) where the number of d's is equal to i. This

is based on the fact of the strict buddy property at each stage of r. Hence, So spans an

(n-j -1)-stage subnetwork with 2 n- 1 inputs and outputs. We denote it by N0 .

Similarly, S1 spans a set of 2n -1 switching elements at each stage i, i E [+2, n-i],

with general label form (...,1,d,d,...,d) where the number of d is equal to i. The (n-j-l)-

stage subnetwork spanned by S1 is denoted by NI. Obviously, No and N1 are disjoint, since

their switching elements at each stage belong to two different sets.



43

For the backward case, the proof is similar. Again, based on the strict buddy property of

F, two disjoint j-stage subnetworks, M0 and M 1, can be found. Each sw*,'chin, ,Uzment on

stage j is connected to an output of M0 (M1 ) via its 0 (1)-input link. r

The last theorem implies an alternative, recursive definition of C"-;-- If 1- is decom-

posed as viewed from stage 0 (stage n-i), No and N, (M0 and M1 ) will be two (n-l)-stage

subnetworks. We can prove that they belong to the (n-1)-stage CPmi n and, thus, can be

decomposed in a recursive way.

LEMMA 3: An n-stage CP"" type MIN F can be decomposed as viewed from stage 0

(stage n-I) such that stage 0 (stage n-I) is followed by two disjoint (n-l)-stage CPmin type

MIN's, N o and N 1 (M 0 and M 1 ).

PROOF: Without loss of generality, we assume only subshuffle connection patterns are

used on F- and a k-subshuffle ak is used at stage 0. According to Theorem 7, we have Nn

and N1, two disjoint (n-l)-stage MIN's connected to those 0-output links and I-output links at

stage 0. We want to prove that they are two CP'a type MIN's.

As per the proof in Theorem 7, those input addresses associate with N o have the form

SN° = D (°)(°) = (s-i ..-... Sk+I,Sk-1 ..... S0 ,O)

N O  N N= S s ,, . ..S I ,s 0 11,0)

which is the label form of 0-output links at stage 0. Similarly, those input addresses associate

with N, have the form

SV D(0)(0) = (s 1. . . . . Sk-1,Sk 1..... S,)



44

N 1  N1 Nl

S , s 1 ,so',l)

which is the label form of 1-output links at stage 0. We know that r is characterized by

function 0 such that

O(s,k k ... Sk+,Skk ,s 0 ) = (S0o (,,1) .. s 0o(1 ),s 0o(0))

= (Soo(n-1). , So(1),Sk).

Thus, the change of Sk is irrelevant to any partial transition sequence starting from SNo (SN1)

on No (N1). Consequently, there exists a restricted function'O N such that

()N(sn-1, N0 NS

On(,2. S ,S0 )

oN(SNI N 1 N)
= Sn-2 . .. S I ,SO )

= (Soo(n-1) SOO(1)).

That is to say, according to Theorem 3, No and N1 belong to the (n -1)-stage CPrin.

Similarly, we can show that M0 and M1 are two disjoint (n -1)-stage CPm type MIN's.'

In general, by properly linking decomposed subnetworks, each MIN in the CP r n can be

decomposed recursively from the view of each stage. We have given the special cases at the

first stage and the last stage in the above lemma. An efficient partition scheme can be

achieved on the CPrain based on its topological decomposition property.

THEOREM 6: An n-stage CP" n type MIN r is decomposed to N0, N1, M0 and M, four

subnetworks from the view of stage k according to Theorem 7. If we force all switching

elements at stage k to 0-state or I-state, then M i and Nj, i,j E [0, 11, can be linked into an



45

(n - 1)-stage CP"" type MIN, denoted by Jij.

PROOF: This proof is similar to the last one. By forcing all the switching elements at

stage k to 0-state (i.e. Soo k) is replaced by soo(k) in D(k)(k) on any transition sequence), we

can link M0 and No (M1 and N1) to form an (n-1)-stage MIN. They are denoted as J00 and

J11, respectively. Similarly, two (n-1)-stage MIN's, J01 and J1 0, can be formed by forcing all

the switching elements at stage k to 1-state (i.e. Soo(k) is replaced by ToO(k) in D(k)(k) on any

transition sequence). The change of So0 (k) is irrelevant to any joined partial transition

sequence on J0o, J11, Jo1 and J10. Therefore, all the Ja 's are (n-1)-stage CP ra in type MIN. El

LEMMA 4: An n-stage CP"a n type MIN r can be partitioned into two (n-1)-stage

CP m1 type MIN's by forcing all the switching elements at stage i to 0-state or 1-stage such

that, in each (n-1)-stage MIN, all the input addresses agree in bit 0(s i ) and all the output

addresses agree in bit I-'(di).

PROOF: It is very easy to give the proof on a transition sequence using our path-

descriptive methodology. To force all switching elements at stage i to 0-state (1-state) is

equivalent to forcing the LSB O(si) or soo(i) of D(i ) to be replaced by soo(i) ( -oo(i)) as the

result in D(i )(i ) on each transition sequence on r. First, we consider the 0-stage case. As per

the nature of the routing scheme on r, at stage i, any message is routed from O(si )-input link

to l-1(di)-output link. That is to say, any input S with bit 0(s i ) can communicate with any

output D with bit V'-(di) = 0(si). Obviously, we have divided F to two subnetworks.

According to Theorem 7 and Theorem 8, 0(s i ) = I-f(di) = 0 is associated with the (n-l)-

stage CP' i type MIN J00 and 0(s i ) = l-1(d,) = 1, with the (n-l)-stage CP ra in type MIN J1 1.

Similarly, for the 1-state case, any input S with bit 0(s i ) = 0 (1) can communicate with any



46

o0

3 33

55

6

10 1 1 1

22 2

131131 131 i3

14 11 14 4 414

15 1 1151 A- -h 515

P0  O P I E 1  P2  E 2  P3  E3 P4

Fig. 2.9. The 3-stage subnetwork j. on the -MIN shown in Fig. 2.5 is formed

by forcing all the Switching elements at stage 0.



47

0 0

2 22

3 3333 3

4 4

6 6

8 8

99 9999 9

10 10

:1 12

12 12

131 1 13 131313

14 F -14

15 ISJ - - 51 1 5 151

P0  E0  ' I E1 P 2  E 2  P 3  E3

Fig. 2.10. One of the two 2-stage subnetworks on j00 shown in Fig. 2.5. is formed

by forcing all the switching elements at stage 2.



48

output D with bit l-l(di) = 1 (0) such that the joined (n-1)-stage CP r"'i type MIN J01 (J10) is

formed. 11

For example, by forcing all the switching elements at stage 0 on the MIN shown in Fig.

5 to 0-state, we have one of the two 8x8 3-stage subnetworks, J0o, shown boldly in Fig. 2.9.

For subnetwork J00, all the input addresses agree in bit O(s0 ) = s 3 = 0 and all the output

addresses agree in bit 1-1 (d0 ) = d2 = 0. The general form of transition sequences on J00 is as

follows:

Similarly, by forcing all the switching elements at stage 2 on J00, we have one of the two

4x4 2-stage subnetworks shown in Fig. 2.10. All the input addresses agree in bit O(so) = S3

and O(s 2) = s 2; all the output addresses agree in bit 1-L(d 0 ) = d 2 and 1-1(d 2) = d0 . Note that

not every Banyan type MIN can be partitioned. For example, the MIN in Fig. 6(b) is not par-

titionable.

2.5. SUMMARY

In this chapter, we propose a class of Banyan type MINs defined by CP(n) type connec-

tion patterns, denoted as log2N CP"ai . This class includes all the famous MINs presented

previously in the literature as special cases. We show that the topological structure of each

network in this class can be specified by two characteristic functions and particularly the topo-

logical equivalence among networks can be interpreted as linea; xransformations on charac-

teristic functions. Based on characteristic functions, their topology-related functional

behavior, such as the simple bit-directed routing scheme, has been discussed. Actually, our

methodology can easily be extended to all Banyan type MINs, where, in general, their charac-

teristic functions are two-dimensional matrices rather than one-dimensional permutation



49

functions. The proposed approach also provides a good description for the closed form of all

the passable permutations on various MINs, the condition for conflict-free multiple paths and

the network partitioning.



50

CHAPTER 3

TRANSFORMATION RULES FOR

MULTISTAGE INTERCONNECTION NETWORKS

3.1. INTRODUCTION

The general concept of parallel supercomputers is to employ a communication network

to interconnect a large number of processors and a large number of memory modules in a way

that processors can communicate to others and memory modules can be simultaneously

accessed without conflict. Although the crossbar network does provide such a capability, it is

not economically practical when the number of processors and modules becomes large. A

realistic alternative is to use multistage interconnection networks (MINs). Typically, they are

N
designed using log2N stages of - 2x2 switching elements and (log 2N+l) fixed connection

2

patterns to connect N inputs to N outputs such that only the minimum number of switching

elements are required to provide full access capability from all the inputs to all the outputs

and a unique communication path from any input to any output. Examples are the Omega

network [Law75], Baseline and Reverse Baseline network [WuFe80], Indirect Binary Cube

network [Pea77I, Delta network [Pat8l], Cube network [SiSm78], etc. Since the capability of



51

each network in terms of non-conflict permutation communications are different, different net-

works can be selected to efficiently support different application needs. For example, in

[Law75], the Omega network is selected for supporting matrix computations on an array pro-

cessor. An important question arises as to whether we can reuse the algorithms/software

(which have been developed on a system using a MIN) on another system which employs a

different MIN. It is well known that as long as two networks are equivalent, there exists,

theoretically, a one-to-one mapping function between them such that by relabeling the proces-

sors and memories and loading data into the memories based on the new labels, one network

can simulate the other. For example, in [WuFe80], it is shown that several networks are func-

tionally equivalent to the Baseline network. So far, many theoretical studies have been per-

formed. For example, in [Agr83], it is shown that networks with full connection and strict

buddy property are functionally equivalent; in [BeFo88], necessary condition for networks to

be equivalent are also established. In general, their studies are still at a very abstract level

such that transformation rules between networks are still not available. In fact, it is extremely

difficult (if not impossible) to derive those transformation rules from those theoretical studies.

Therefore, all the research works in the area of network equivalence are still very far away

from the practical applications. In this chapter, we will present the mapping functions

between equivalent networks in a concise way such that, for the first time, the equivalence can

be fully utilized in the design of supercomputers.



52

3.2. BIT-PERMUTE-COMPLEMENT MULTISTAGE INTERCONNEC-

TION NETWORKS

In this section, a rather general class of equivalent networks based on bit-permute-

complement shuffles is outlined, which includes all the above mentioned networks as special

cases and requires a very simple destination address based routing scheme. The connection

patterns of this class of networks are defined by the family of Bit -Permute -Complement

(BPC) type permutations, denoted by { } and defined as follows.

DEFINITION 1: Let I = (,, 1.....1,lo) be a number in 0,1 ..... N-i). A permuta-

tion P e {e3,t } is specified by an n-tuple vector _= (X 10(n-) ..... ,X0(1),X06(0)), where

(0(n- 1) ..... 0(l),0(0)) is a permutation of (n-1, . . . ,1,0) and X- e {-1, 1), 0 _< i _< n - 1,

such that P(l_ 1, . .. l,10) = (mn- 1, ... ,m 1,m0), where mi = l(i) if Xi = 1, else m i = 1 -

lo(i) if X i = -1. 0

In other words, P(l) is obtained from I by first permuting the bits of the binary represen-

tation of I and then complementing a subset of bits according to the vector V. For example,

the bit-reversal permutation p is one of the BPC type permutations and p(l) =

(1o,1 1 .., 'n-2,"n-1), where 0 = (0,1 ..... n - 1). Another example is the perfect shuffle

permutation I with r(1) = (1n-2 . o,n-1), where (n - 2, ,0,n - 1). Any connec-

tion pattern defined by a permutation 3 has a link connecting / th output port of one switching

stage to 1(l)th input port of the next switching stage, for all 0 < 1 5 2" - 1. Similarly, the

inverse function -' is detined as follows.

DEFINITION 2: Let f- be the inverse function of j3 e {3 , }. The function P3-1 e I1,

is specified by an n-tuple vector 0-1 = ('(,,)0'-(n l).... 0-1(1), _,(0)0-1 (0))



53

where 0-1 is the inverse function of 6. E

Let (x and P3 be two permutation functions in { } and specified by vectors 6 and 3,

respectively. The composition of a and 3 is denoted as ao. such that awP(l) = P(t(l)) (i.e.,

the composed functions are performed from left to right) and is specified by a vector 6.3. In

the following, the notation a13 and a3 will be used interchangeably. For example, consider n

= 4 and let 3 be specified by f3 = (-2,-1,0,3) and 1 = (1,0,0,1). We have m 3 = 1 - 12, m 2 = I

- 11, m 1 = 10 and m 0 = 13. Hence, 3(l) = (1,1,1,1). Similarly, it is easy to obtain that - =

(0,-3,-2,1) and 3-1(l) = (10, 1 - 13, 1 - 12, 11) = (1,0,1,0). If a is specified by 6c = (-1,2,3,-O),

then a13(l) = D3(o(l)) = 1(1,0,1,0) = (1,0,0,1) and the composition a[3 is specified by the vec-

tor &d- = (-1,2,3,-0)-(-2,-l,0,3) = (-2,-3,-0,-l).

It is clear that an NxN (i.e., N inputs and N outputs) MIN (see Fig. 3.1.) can be

represented by a sequence of BPC permutation and exchange operations

PoE oP 1 . .. p(n-1)E(n-1).pn

where n=log2N, each P' (0 i Sn) represents a BPC permutation operation, and each E'

(0!_in-1) denotes an exchange operation. That is, the ith connection pattern corresponds to

the BPC permutation operation P' and the ith switching stage corresponds to the exchange

operation E i . Each E" represents a BPC permutation operation such that the least significant

bit (LSB) of its operand is replaced by another bit which is either the original bit or its com-

plement, i.e., E' is specified by a vector either (n-l,n-2, .... 1,0) or (n-l,n-2 ..... 1,-0).

In other words, E'i(l,_I ..... 1,10) : (ln-I ..... 11,1 0) or (l,1 ..... , Assume that the

addresses of both network inputs and outputs are numbered from 0 to V-I following a natural

order in the drawing. (Note that each address can be represented by an n-bit binary number.)

Consider a communication connection to be established from a network input with address S



54

N 2 2 N
E 33 E
T T
W 4 W

0 5 0
R R

0

N U

* P

T~U
S T

N-2 N-2

N-i N-i

PO £0 P1  E E(n-2) p(n-l) E5n-1) pz

Fig. 3. 1. An v x *V MIN is represented by a sequence of BPC permutation and exchange operations.



55

= (s S.....s,s0) to a network output with address D = (dn_ .. d,d 0 ). During the

propagation, the source address bits (i.e., si 's or Ti's, the complement of si 's) are replaced by

destination bits i.e., di 's or d I's) one by one at each switching stage. The orders for source

address bits to be removed and for destination bits to be introduced are determined by the

BPC permutation operations (i.e., P 's). In principle, during each BPC permutation operation,

a source address bit (or its complement) is moved to the position of LSB and, at the next

switching stage of exchange operation, is replaced by a destination bit (or its complement) at

the same bit location.

For example, the BPC permutation operations used in the Omega network are perfect

shuffle connections (which are left rotation operations). Any path connecting a network input

S = (s,-1.., . . ,s 1 ,s0 ) to a network output D = (dn -1 , .. ,d ,do) on an Omega network, can

be uniquely expressed by the following transition sequence:

S = (s ,sn ... , s 1,s 0)

S o = (sn-2,Sn-3. SO,Sn- 1)

D0 (sn_2 ,sn_3, . S.O. s,dn-1)

S, = (Sn_ 3 ,Sn-, . .1. , n 2)

D 1 (Sn 3,Sn.. .-4, S On-l,dn_2)

S= (Sn-2-i,Sn-3-i ..... s0 ,dn- .... dn-iSn--)

D= (s n - - i ,Sn-3-i, ... so,dnl, dn-i.dn-.-i)



56

Sn-1 _ (d,, -,dn- 2 , d 1,s0)

Dn-1 (dnd . ..., dj,do)

S'= (dn-l,dn,2 d1 ,d0 )

-D.

In the transition sequence, each number Si, 0 < i < n 1, is the address of the input

port through which the path traverses stage i and each number D', 0 < i < n - 1, the output

port through which the path traverses stage i. Obviously, either [Si]n-l:l or [DL],n-:: (i.e.,

the first n -1 bits of the binary representation of S' or D') is the address of the switching ele-

ment through which the path traverses stage i. Obviously, source bit s (fl-1-i is moved to the

LSB position of S' at stage i and is replaced with the destination bit d(,,l)_,i of D in the

LSB position of D'. Note that in the transition sequence we have the following relations:

P°(S) = S 0 , Ei (S') = D' for all 0 < i < n-1, and PL(D-) = S' for all 1 < i < n. There-

fore, the order for the source bits to be removed is n -l,n -2,n -3 ..... 2,1,0 and the order for

the destination bits to be introduced is also n-l,n-2,n-3, . .. 2,1,0. Here, two vectors 0 =

(0,1,2 .... n-2,n-1) and -1 = (0,1,2 ... , n-2,n-1) which correspond to two permutation

functions 0 and 1- 1 in {I3, }, are used to represent these two sequences, respectively. Note

that by using

0 = (6(n-1), 6 (n-2) ..... 6(2), 3(1), (3(0) )

and Ji-I =U 1 (n-1), i'-i(n2) ..... .I(2), 17-1(1), C-(0)

we mean that at stage j source bit s 8 ) will be removed and replaced by destination bit

dT-:j). Moreover, the meaning of the permutation function I is as follows: if bit s((j) is



57

replaced by bit dj at stage j, then the order of bits of I (D) represents the disturbed order of

bits of D. For the Ouiega network, we have I-I(D) = I(D). Similarly, the 6 and i- 1 for the

Baseline network [WuFe80] are given as follows:

6 = (n-l,n-2, .... 1,0)

[-1 = (0,1, ... ,n-2,n-1).

It is clear that there are a huge number of MINs in this class which are constructed by

the BPC permutation connections and possess the unique-path and full-access properties.

Here we use the term bit-permute -complement MINs to represent this class. Generally

speaking, the bit-permute-complement MINs are a class of topologically equivalent networks

which have the similar routing behavior and thus, the similar expression of transition

sequences like Omega networks. This class of MINs includes the six networks mentioned in

[WuFe8O] as special cases. The connection patterns used between stages of them are a

specified set from {1. Their transition sequence which represents any path connecting net-

work input S = (s, .. . s 1,s 0) to network output D = (d,,-,, . . ,do) has the following

properties.

(1) Each bit of the sources S (or its complement) will be permuted to the position of LSB in

some S i and then be replaced by a bit of the destination D (or its complement) in D i , 0 <_ i

< n - 1. Therefore, there exist two permutation functions 0 , I-' E (3, ) such that 0 (S)

corresponds to the order for bits of S to be permuted to the position of LSB (i.e, [0 (S )]i is

the LSB in S') and 1-(D) corresponds to the order for bits of D to replace bits of S (i.e..

[J1 (D)li replaces [O(S)J] of D'). The physical meaning of permutation function I is as fol-

lows: if the ith bit of a number X = (t ,xn,T_2 ..... , ,x 0 ) instead of bit [I-1'(D)]i replaces

[O(S)Ji in D', then I(X) represents the final destination where the source S will reach.



58

(2) The data is routed from input port [O(S)]i to output port [l-'(D)]i of the switching ele-

ment at stage , and the address of the switching element is either [Si],,-I:1 or [Di, 1 :l.

(3) The routing scheme of this class of MINs can be described as follows. Let the symbol

@ represent the exclusive-or operation. Bit [l-(D )]i is used as the routing tag for the

switching element at stage i such that the data is routed from input port [0 (S)]i to output

port [-'(D)]i. Bit [O(S)]i @ [-l(D)]i is used to determine the state of the switching ele-

ment at stage i if global routing is considered (i.e., if [O(S)]i @ [-'(D)]i = 0 then the

switching element will be in a straight connection state (i.e., 0 state), else the switching ele-

ment will be in a exchange connection (i.e., 1 state)). After the path traverses stage i, bit

[0 (S)]i (i.e., the label of the input port from which the incoming data comes) is preserved to

recover the information of the source address. We call this kind of routing scheme as the

source -preserved and destination -oriented routing scheme. Note that not all the MTNs with

full access capability and unique-path property possess this kind of simple routing scheme.

Functions 0 and I are referred to as characteristic functions. It can be shown that it is

sufficient to characterize the structure and routing behavior of any MIN in the class of bit-

permute-complement MINs by using these two functions. Note that given any two permuta-

tion functions 0 and I in {I3,1, there are many different corresponding sequences of BPC

permutation operations (P0, P, ..., Pn1, P") such that the MIN constructed by any one of

them can be characterized by functions 0 and I. Each corresponding sequence of BPC per-

mutation operations represents a drawing of a MIN. It can be proved that there are totally

[2'-'-n-l)!I n different drawings (i.e., MINs) specified by the same pair of characteristic

functions. It can also be shown that the permutation capability of any MIN in this class is

uniquely characterized by these two functions. Thus, we say two MINs in the class of bit-



59

permute-complement MINs are functionally equivalent if their characteristic functions are the

same.

For example, in Fig. 3.2, a 16x16 bit-permute-complement MIN defined by a sequence

of BPC permutation operations is shown. Let the characteristic functions of this network, 0,

I and 1-1, be specified by vectors 0,!i and i-, respectively. Let the connection pattern Pi

0 < i < n, be specified by vector P. We have /Po = (2,-1,-0,3), /P1 = (2,3,0,-l), pi2 = (_

0,1,3,-2), P3 = (2,-0,3,1), P4 = (1,3,0,2), 0 = (-1,-2,0,3), i = (-1,0,3,-2), and i-1 = (1,-0,-3,2).

For any path connecting a source S to a destination D, bit d 2 is used as the routing tag at

stage 0, bit d3 is used as the routing tag at stage 1, bit d"0 is used as the routing tag at stage 2,

and bit d1 is used as the routing tag at stage 3. The states of switching elements from stage 0

to stage 3 are determined by s 3 @ d 2, so @ 3, T2 @ do, and T, @ d1 , respectively.

Hence, for the path connecting S = 1 to D = 12, the routing tags are (d 1, d 0, Y3, d1 ) =

(0,1,0,1) and states are (- I @ dj, T2 @ d0, SO @ d3, S3 @ d2) = (1,0,1,1).

3.3. NETWORK TRANSFORMATION RULES

The transformation rules in order to transform a MIN (which is characterized by two

functions 01 and 11 and denoted as MIN 1 ) into another MIN (which is characterized by

another two functions 02 and 12 and denoted as MIN 2 ) is discussed in this section.

THEOREM 1: By adding two fixed connection patterns a and 03 at the input and output

.ides, respectively, of a MIN (which is characterized by two functions 0 1 and I and denoted

as MIN,) which are defined as follows:

C= 02"01

= 11 2'2



60

stage 0 123

NN
E 2 E
T T

RR
K 6 K

7 7

NU
p 10
U I 11
T 12) 12 U
S 13 13 T

143

15 15

Fig. 3.2. A 16 x 16 bit-permute-complement MIN defined by a sequence of

BPC permutation operations.



61

then the resultant MIN becomes a MIN 2 characterized by another two functions 02 and 12.

PROOF: (see Fig. 3.3) Two fixed connection patterns ox and 13 are added to the input and

output sides of MIN 1. Let us call it the new MIN 1. As discussed in previous sections, for

the transition sequence representing the path connecting a source S to a destination D in the

new MIN 1 , c.O 1(S) corresponds to the order for bits of S to be permuted to the position of

LSB (i.e, [a0 0(S)ji is the LSB in S') and I, 13(D ) corresponds to the disturbed order for bits

of D, if we use bit di to replace [a.O(S)]i in D'. Obviously, the new MIN"1 can be charac-

terized by two permutation functions: a.0 I and 11-5. Since a = 0,. -0 and 1 = 1 , we
have oa.O 1 = O2 .0- 1 = 012 and I13 = 2 = 02. That is, the new MIN 1 is

equivalent to MIN 2.

A renumbering scheme instead of using connection patterns can transform a MIN to

another. Thus, another way to describe Theorem 1 is as follow:

THEOREM 2: By renumbering the addresses of network inputs and outputs of a MIN

(which is characterized by two functions 01 and I, and denoted as MIN 1) in the foilowing

way:

the new address of network input S = 0 1"0 21 (S)

the new address of network output D = I 1 I 2(D),

then the resultant MIN becomes a MIN 2 which is characterized by another two functions 02.

and I,.

PROOF: It is clear that if we renumber the address of network input S with the new

address -;(S) = 0,,.0 -'(S) and the address of network output D with the new address

3(D) - '1 1 (D ), then it is equivalent to adding two connection patterns ax and 13 at the



62

MINI MIN-)

Fig. 3.3. Transformation between MINs.



63

input and output sides of MIN1 . Thus, as mentioned in Theorem 1, the resultant MIN

becomes a MIN2 which is characterized by two functions 02 and 12. El

The new MIN 1 generated by applying Theorem 1 or Theorem 2 is functionally

equivalent to MIN 2 except drawing. Both MIN1 and MIN 2 follow the same routing scheme,

i.e., they use the same routing tag Ij1 (D) for connecting the source S to the destination D

and bit [0 2(S)]i @ [I1 (D )]i to controt the state of the switching element at stage i if global

routing is considered. For example, consider the case where MIN1 is a 16 x 16 Omega net-

work and MIN, is the 16 x 16 bit-permute-complement MIN shown in Fig. 3.2. As men-

tioned above, their characteristic functions 0 1, I1, O2, and 12 can be specified by the follow-

ing vectors: 0 1 = (0,1,2,3), 0 TI = (0,1,2,3), 11 = (0,1,2,3), 11 = (0,1,2,3), 02 = (-1,-2,0,3),

621 = (0,-2,-3 1), i2 = (-1,0,3,-2), and i2l = (1,-0,-3,2). From Theorem 1, if we add two

connection patterns cc and f3 at input and output sides of MIN 1 , such that

d = 02 = (-1,-2,0,3) • (0,1,2,3)- (-1,-2,0,3) - (0,1,2,3) = (3,0,-2,-1)

=,I-1 '2 = (0,1,2,3)-1 . (-1,-2,0,3) = (0,1,2,3) . (-1,-2,0,3) = (-2,3,0,-1),

then the resultant MIN 1 which is functionally equivalent (except that the arrangement of posi-

tions of switching eiements is different) to MIN 2 is shown in Fig. 3.4.

However, if we apply Theorem 2, then the network inputs and outputs are renumbered

according to functions a- and f3, respectively. That is,

(-_ = 0 .62 = (0,1,2,3) • (-1,-2,0.3)-1 = (0,1,2,3) (0,-2-3.i (3,-1.-

0,7)

--(-2,3,0,-1)



64

Omega network

F-r ------------------------------------

3

4 4,

6 2

8 4
9 9

12 1

14 14
15 7 15

Fig1 3 Transformation tram a 16 x~ 16 Omnega networK to a btpruecmlmn

MIN shown in Fig. 3.Z.



65

Baseline network

a I

o 6-- - -- - - - - -- - - - -

8 iz 3..8- i om info 6x1 aen ew r,. 6x1 m iantok



66

Thus, the new address of network input S = (S3 ,s 2 ,S1 ,S0 ) is c-(S) = (S3," 1,s, 2) and the

new address of network output D = (d3,d2,dj,do) is D(D) = (d2,d3 ,do,d1 ).

Consider another example where MLN 1 is a 16x16 Baseline network and MLN. is a
Iw

16x16 Omega network. Again, we can derive the characteristic functions 01, 11, 0, and 12

as follows: 61 (3,2,1,0), 6 -  (3,2,1,0), 1 = (0,1,2,3), 1l = (0,1,2,3), 02 = (0,1.2,3),

07 (0,1,2,3), li = (0,1,2,3), and 1 = (0,1,2,3). From Theorem 1, if we add two connec-

tion patterns cc and [3 at input and output sides of MIN1 , such that

& = 02.6 - = (0,1,2,3) (3,2,1,0) - ' = (0,1,2,3) ( (3,2,1,0) = (0,1,2,3)

= 1I = (0,1,2,3) - " (0,1,2,3) = (0,1,2,3) • (0,1,2,3) = (3.2,1,0),

then the resultant MIN which is functionally equivalent (except that the arrangement of posi-

tions of switching elements is different) to MIN,, is shown in Fig. 3.5.

However, if we apply Theorem 2, then che network inputs and outputs are renumbered

according to functions ct-1 and 3, respectively. That is,

c-' = 6106 0 '-= (3,2,1,0) • (0,1,2,3) - = (3,2,1,0) (0.1,2,3) = (0.1.2,3)

3 = (3,2,1,0)

Thus, the new address of network input S = (s3,s2 s1 ,so) is cC-I(S) = (So,SIS.,S3) and the

new address of network output D = (d3,d-,,d ,do) is 3(D) = (d3,d2,d ,do).

The next theorem describes the relative positions of each switching tlement before and

after a nerwork transformation. Consider the case where MIN 1 is transformed to MIN.,. The

method to find the relative positions is based on the criterion that two paths connecting the

same source and the same destination of both MIN 1 and MIN, pass the same switching ele-



67

ment at each stage. Thus, if the address of each switching element of MIN1 is replaced by its

relative address in MIN2 or if the address of each switching element of MIN., is replaced by

its relative address in MIN , then both MIN I and MN, become the same drawing. Let

MIN 1 be defined by a sequence of BPC operations ((D0, (DI, ..., D,,-,, (1n) and MN;2 , (T 0 ,

,.-.,,-1 , ,), for all On {,). Thus, the transformed MIN1 is defined by the

sequence of BPC operations (c. 0(, (D, .... ,-1, , "3).

THEOREM 3: By applying Theorem 1 or Theorem 2, consider the case where MIN is

transformed to MIN 2  Let SWI[i, j] represent the jth switching element at stage i of the

transformed MINI and SW,[i*, j* represent the j* th switching element at stage i of %,IN2

where 0 _ i, i* 5 n-1 and 0 j, j* < N/2-1. The following relation transforms both MIN 1

and MIN, to the same drawing:

i =1,

= [F- 1 .1 -1 ... l .-1..(. 1p • . • (2j ]

or I L 1 0 " I i(21*)In-

PROOF: It is clear that (/-'-c .- 1c-(2j) or (71-74)7-1 ... -o -1(2-j+l)

represent two network inputs of MIN1 which SWI[i, j] connected to. However, according to

the criterion that two paths connecting the same source and the same destination of both

MIN 1 and MIN2 pass the same switching element at each stage, these two network inputs

should pass the same switching element at stage i of MIN-,. Therefore. j* =

,i.-._ . -  - P: 'J(2j)]n 1  is the relative address of SW1 [i, j] at stage

of MIN1 . Similarly. j = [T7 1 -'..1  ' 'a('( 0 1 " " i(2j*)],::, is the relative

address of SW [i, j" I at stage i of the transformed MIN F



68

For example, to know the relative position of each switching element of the transformed

MIN 1 in Fig. 3.4 (which is transformed from an Omega network) with respect to that of

MIN2 in Fig. 3.2, we only have to check their transition sequences.

For MIN 2 in Fig. 3.2, the transition sequence is:

S = (s3, s2, s 1, S0)

SO - (S 2, T-, TO, s-3)

DO (S2, TI, To, d 2 )

S1 - ( TI , s,, d 2 , SO)

D (Tj, s 2, d2, d3)

D (d3, d2 , sTI, '0)

S3  (d 2, do , d 3, T- )

D 3  (d2 , do, d3, dj)

S4 =(d 3, d2 , dl, do)

-D.

For the transformed MIN 1 in Fig. 3.4, the transition sequence is:

S ( (3, S2, Si, s 0 )

So - (S , 0 ', s'I, $S



69

Omega network
-------------------------------------

2 0

4 1

6 66

9 9

10

12 0612
13 1 -

14
15 25

P0P 1  P2 3p
---------------------------------------

Fig. 3.6. The relative positions of switching elements of the transformed MI1N, in Fig. 3.4

with respect to those of MIN, in Fig. 3.2.-



70

Do (so, S 2 , $I, d 2 )

S1 = (T2, TI, d 2, SO)

D ( 2 , 3-1, d2 , j 3)

S- (s 1, d., T)

D= (s 1, d,, d 3, do)

S3 = (d 2, d 3 , do, T)

D - (d 2 , do, d1 )

4 = (d3, d2, dI, do)

=D.

Thus, at stage 0, the switching element SW 1[O, j] = SW1IO, (J2,jl,Jo)] in the transformed

MIN 1 is the corresponding switching element SW[0, j*I = SW2 [0, (j',J2)] in MIN,, i.e..

SW1[0,01 - SW 2[0,5], SW[0,1] -> SW 2[0,7], SW1 [0,2] -> SW 2[0,1], SW 1[0,3] ---) SW 2[0,3],

SWI[0,41 -- SW 2 [O,4], SW 1 [0,5] -- SW 2J0,6], SW 1I[0,61 --* SW 2[0,0], and SW[0,7] -4

SW4[O,21. Similarly, at other stages, we have SW 1ll, (J2,jl,jo)I l SV[1. (Ji',Jo)],

SWI[2, (JJlJ0)] -4 SW[2, (Jo,J1 ,J,)], and SW 1 [3, (JzJ1,Jo)] - SW[3, (iJoJ )]. The

relative positions are shown in Fig. 3.6.

3.4. SUMMARY

In this chapter, the transformation rules for a MIN to simulate another is presented. The

relative positions of each switching element before and after a network transformation are also

described. Both distributing and global routing schemes are shown to be the same as the ori-

ginal MIN. By using the results presented in this chapter, the parallel algorithms developed



71

for a MIN can be directly be reused on another MIN such that programming effort can be

greatly reduced.



72

CHAPTER 4

PERMUTATION CAPABILITY OF

MULTISTAGE INTERCONNECTION NETWORKS

4.1. INTRODUCTION

Various properties of the shuffle-exchange type multistage interconnection networks

[WuFe81] have attracted considerable interest over the past decade. Particularly, a number of

authors (Law75] [Ste83] [NaSa8l] [Len78] [Sto7l] have shown that these networks can per-

form a wide variety of useful permutations for parallel processing. A permutation is called

admissible on a network iff it can be realized by one pass through the network without

conflict at any switching element(s). One of the most important tasks in designing a parallel

supercomputer is the selection of a suitable network in order to optimally support application

needs. Before that, we need to be able to understand the permutation capability of each net-

work. The set of admissible permutations of an Omega network has been characterized in

[Law75] and (Par80], and later expressed more formally in [Pea77]. In their studies. the char-

acterization of the admissible permutations is expressed by Boolean functions or bit relations

of source tags and destination tags. However, from the viewpoint of applications, their results

did not give any algorithm with low time complexity to determine the admissibility of a



73

permutation. On the other hand, in the study of Lee [Lee85], the set of admissible permuta-

tions of the inverse Omega network has been characterized by using residue classes of desti-

nation tags. However, her analysis is rather tedious and indirect due to ignoring the charac-

teristics of the structure of inverse Omega networks. Her result also suffers the problem of

high complexity due to the use of modulo operations. Other than these studies, the characteri-

zation of admissible permutations of networks has seldom been mentioned.

While it has been proved that there exists a class of topologically equivalent networks

with the same hardware complexity [Agr83], very little has been known about what kind of

models can be used to characterize them. In this chapter, we introduce a general model. The

characteristic of the permutation capability of a class of useful networks defined by this gen-

eral model, which includes the six famous networks in [WuFe8l] as special cases, is studied.

Our analysis is based on the natural structure of a network which can be specified by two per-

mutation functions. We start our discussion on Omega networks due to their regular structure.

and then generalize the problem to the general model using bit-permute-complement connec-

:ions. Our analysis is more direct, simple and general than all the previous works . We show

that the set of admissible permutations of a network can be characterized by very simple bit

relations depending on two permutation functions which specify this network. Our result

shows that the time complexity of our proposed algorithm to determine the admissibility of a

permutation on a network is 0 (N), where N is the number of inputs/outputs of the network.

The .emainder of this chapter is organized as follows. In Section 4.2, the basic

definitions and notations are introduced. Particular attention is devoted to the routing

behavior of Omega networks. In Section 4.3, by introducing a partition.ng scheme, a

sequence of substructures (subnetworks) are produced. These substructures are associated



74

with some specific partitions on network inputs which can be used to characterize admissible

permutations of an Omega network. The characteristic of admissible permutations of Omega

networks is given in Section 4.4. In Section 4.5, a general model of a class of networks is

defined. We show that our analytic methodology can be easily generalized to the generai

model. Finally, conclusions are given in Section 4.6.

4.2. PRELIMINARY

4.2.A. Omega Networks

In this chapter, without loss of generality, we start our discussion on the permutation

capability of Omega networks [Law75] built with 2x2 switching elements. The general prob-

lem of various multistage interconnection networks is discussed in Section 4.5. An N xN

Omega network consists of n = log2N stages of 2x2 switching elements for connecting N

network inputs and N network outputs. (Note that, for simplicity, log 2N is also denoted as

logN in this chapter.) Each stage consists of N12 switching elements and the interconnection

pattern between stages is the perfect shuffle permutation. An Omega network for N = 16 is

shown in Fig. 4.1. The following conventional notations are used throughout this chapter.

The stages of the network are numbered from 0 through n-1 from left to right. The the

input/output ports (including network inputs/outputs) of switching elements at each stage are

numbered from 0 through N-1 and the switching elements, from 0 through N/2 - 1 from top

to bottom. The binary representation of a number I = (l_.. I ) (where bit 1,1 is the

the most significant bit (MSB) and bit l, the least significant bit (LSB)) is used to represent

the address of this number. A set of numbers with a similar address representation can he

represented by a common address label. For example, (1,1 ... ,.1j. c. c ), where c = 0 or 1



75

stage 0 12 3
0 0

01 1 1

2 2
3 3

4 2224
5 5

6 36
7 7

8 4444 8
9 9

10 5555 10
I1I1 11

12 6 6 6 12
13 13

14 7714
15 7 15

Fig. .1. A 16 x 16 Omega network.



76

(i.e., don't care) and #(c) = i, (i.e., the total number of c's is equal to i) represents those 2'

numbers with the same first n - i bits in their addresses. The notation [l]a:b is used to

represent a segment of the address I from bit 1a to bit lb , i.e., (1a' la-i' .. lb) . If a = b, then

[l]a denotes bit la in the binary representation of 1. (Throughout this chapter, it is assumed

that all the variables are integers.) A simple routing scheme on an Omega network can be

described as follows. Let D (i) be the destination tag of a data packet from network input i =

i 1 , io), 0 < i < 2n - 1. That is, this data packet from network input i will be routed

to the network output D (i). Then, according to the routing scheme of Omega networks

[Law75], bit [D (i ),-j is used to determine the connection of the switching element at

stage j, 0 < j < n - 1, on the path connecting input i to output D (i).

If D(i) * D(k) for i * k and all 0 < i, k < N - 1, then, D = (D (0), D(1) ... , D (N-1))

represents a permutation of (0, 1, ..., N-I). There are totally N! different permutations of

(0, 1 ... , N-1) and we denote them as the set {EN ). Let Q denote the set of all the admissi-

ble permutations of an Omega network. Since an Omega network contains (NlogN )/2 switch-

ing elements, each of which can be set in either one of the two states (i.e., either straight con-

nection or crossing connection), different settings of these switching elements pass different

V togN

permutations. It can be easily proved that #(Q) = 2 = '

It is convenient to describe some frequently used permutations. One of them is the fam-

ily of Bit-Permute -Complement (BPC) type permutations. denoted by I P ).

DEFINITION 1: Let I = (1,n1 ..., 1 1, 10 ) be a number in 10, 1. N-1). A permutation

f3 f {3, I is specified by an n-tuple vector 03 = (X-,)-iO(n-l). 0O(0)), where

(O(n-l) ... , 0(1), 0(0)) is a permutation of (n-1, ..., 1, 0) and ki r (-1, 1), 0 < i < n - 1,



77

such that I3(l. 1,, 10,) = (mn_ 1 . -M 1 , MOo), where mi = 1(i) if Xi = 1, else mi  1 -

6(i) =1() if- =X-1. 0

In other words, P3(l) is obtained from I by first permuting the bits of the binary represen-

tation of I and then complementing a subset of bit. according to the vector 0. Similarly, the

inverse function 3- 1 and the absolute function 131 of 13 are defined as follows.

DEFINITION 2: Let 13- 1 be the inverse function of 3 - {3n ). The function 13I E {13

is specified by an n-tuple vector -= (X6_,(0)0-1-) ..... X.0-((1). .0 -i(0 )0 1(0)) where

0- 1 is the inverse function of 0. z

DEFINITION 3: Let I 131 be the absolute function cf 13 E (3,, I. The function ' E

{3, } is specified by an n-tuple vector I 10 = (I .n- 1 0(n-1) ... , I kiI 0(l), I X010(0)). E

Let cc and 3 be two permutation functions in {13, } and be specified by vectors 6c and .

respectively. The composition of ac and 3 is denoted as o-3 such that a3(1) = oa3(l i' (i.e.

the composed functions are performed from right to left) and is specified by a vector 6t.3.

For example, consider n = 4 and let 13 be specified by 13 = (-2, -1, 0. 3) and I = (1, 0. 0. 1).

We have m-3 = 1 - 1,. m = 1 - , 1 l0 and m0 = 13. Hence, 13(/) = (1, 1, 1, 1). Simi-

larly, it is easy to obtain that V3- = -, -3, -2, 1), 131(1) = , I - I3, 1 - 12, 1,) = (1. 0, 1.

0) and 1131 =(2, 1,0, 3), I131(l) = (0, 0, 1, 1). If (x is specified by &= (-1, 2, 3,--0), then

ox3(l) = c(13(1)) = ox(l, 1, 1, 1) = (0, 1, 1, 0) and the composition X-13 is specified by the vec-

tor 6:.3 = (-1. 2. 3. -0).(-2. -1, 0, 3) = (-0. -1, -2, -3). Also note that the bit-reversal

permutation p is one of the BPC type permutations such that pUl) = I,). il, .... 1z ",

where ( 0. I ... , n-1). Another example is the perfect shuffle permutation C such hat

S= (l,__ ..... /, 1,1), where = (n-2, • ,0, n-1).



78

4.2.B. Routing Behavior of Omega Networks

For an n -stage Omega network, due to its regular structure, any path connecting network

input s = (s,,i .... s 1, so) to network output D(s) = (d,, 1, ..., d 1 , do), can be expressed by

the following transition sequence:

S = -n1, Sn_-2.  S 1, SO)

S O =(S n- 2, Sn-3 ... SO , Sn-1)

DO(s) = ( s_, .. So, d,-)

S = (Sn- 3 , Sn-4 . s o , dn- 1, Sn-2)

D 1(s) = (sn_3, sn-., ... SO dn-, d.- 2 )

= (S, _2,, sn__, . s , dn- . . dn i , Sn_ -I-

D (s (sn_2 -i - sn-3-i -...s 0, d,- 1, .... dn-i, dn- I-i)

s = (d,_. , d_.- .  d 1, s 0)

D"-'(s) = (dn- 1, dn-2 . . . d 1, d0)

S" = (dn- 1 , dn2, ..., d 1, d0 )

D (s).

In the transition sequence, each s, 0 5 i _- n - I, represents the address of the :nput port ot

a switching element at stage i through which a path starting from s traverses stage and each

D' s), 0 < i < n - 1, the output port of the same switching element through which the path



79

traverses stage i. That is, a data transfer path of this switching element is connected from

input port si to output port Di(s). Obviously, [s']nii:, = [D'(s)],,: is the address of this

switching element through which a path traverses stage i. Similarly, the idea of the transition

sequence can be used at each stage to express paths which connect a switching element to

network inputs and outputs. Assume that a switching element E at stage i has the address E

= (e,,_ 1 ..., e 1 ) and the address label of input/output ports E is e = (e 1, ..., e 1,c). We have

the following two transition sequences to indicate which network input s's and output D (e)'s

are connected through E.

Backward:

e = (en 1, en_ 2 ... eI, c)

e' = (c, en_ 1 ..., e-, e 1)

D'-'(e = (c, e _1.  e,, c

e =(c. c, e 1, .  e2)

D(e) = (c ..., c, e-. . e..-, c)

e = (c ... c, en_ 1. .. ei. , el.1)

=s;

Forward:

e (en_1 ,  . .e 1 , c)

e = (en. e. e 1, c, en_1)



80

D' +(e) = (en - 2, en -3, ..., e 1, c, c)

en-I ( ... , e 1, c, ... , c, ei+!)

D"-I(e ) = (e; .... e 1, c ... c, c)

e = (e i ... , e 1, c ... , c, c)

= D(e).

The switching element E at stage i can be viewed as the common root of two communi-

cation binary trees. One is the backward (i+l)-level tree with the address label of its leaves

(i.e., switching elements at stage 0) equal to (c, ..., c, en- 1, ... , ei+l), #(c) = i, and the

address label of network inputs connected to leaves equal to s = (c, ..., c, e,,-, ..., ei+l),

#(c) = i + 1. The other one is the forward (n-i)-level tree with the address label of its

leaves (i.e., switching elements at stage n-1) equal to (e; ... e1l,c ... , c), #(c) = n - i - 1,

and the address label of network outputs connected to leaves equal to D(e) =

(e,, ..., e 1, c ..... c # (c) = n - i. Thus, totally 2+' network inputs and 2
' -' network out-

puts are connected through E. Particularly, when i = 0 (n - 1), these above two binary trees

are reduced to one in which the root E is rooted at stage 0 (n-i) and the root E is connected

to two network inputs s = (c, e,_ 1, ..., e I) (two network outputs, D(e) = (en-1 ... e1 , c))

and all the network outputs (inputs).

4.3. PERMUTABLE STRUCTURE

There are many different ways to partition an Omega network into disjoint subnetworks

by forcing all the switching elements of one or more stages to straight connection (0-state) or



81

crossing connection (1-state). Any switching element forced to a fixed state can be removed

and replaced by two direct connecting links between its input and output ports. In this sec-

tion, by introducing a proper partitioning scheme, a sequence of substructures of an Omega

network, referred to as permutable substructures, are produced. Each substructure is a sub-

network which can be used to characterize admissible permutations of an Omega network.

Our work is based on the following fact.

THEOREM 1: By forcing all the switching elements at stage i to 0-state or 1-state of an

n-stage Omega network, two disjoint (n-l)-stage subnetworks are formed such that the

(n-i-)th bits of the input or output addresses in each subnetwork are the same.

PROOF: Proof can be given by referring to the transition sequence described in Section

4.2. By observing the numbers s; and Di(s), the following fact can be obtained. Forcing all

the switching elements at stage i to 0-state (1-state) is equivalent to forcing the LSB, s,,-, .

ofs' to be replaced by s,,_jj (1 - s,,_ i ) in the LSB position of D'(s).

Let us consider the case where switching elements at stage i are forced to 0-state. In

each switching element at stage i, a data packet is forced to be routed from the s,_- i input

port to the d,,-, = s,,_j_ output port. That is to say, any input s can only communicate

with an output D (s) with the bit dnl_ = s,-1-j. Obviously, two subnetworks are formed by

partitioning the N network inputs and outputs into two groups such that in each subnetwork

the addresses of the N/2 network inputs agree in their (n-!-i)th bits (i.e., s,_jj ' s), the

addresses of :he .Vi2 network outputs agree in their tn-i-i'th bits i.e.,_.._, 's) and s,-_-,

= d,_1- , . To prove that these two suonetworks are disjoint, it is sufficient to prove hat :here

are no common switching elements on these two subnetworks. Assume that F0 represents the



82

subnetwork with sn- 1-i =dn--i 0 in addresses of its network inputs/outputs and F1 , the

subnetwork with s,,_ i = d,- = 1 in addresses of its network inputs/outputs. Recall that

either [s-],- :, or [D'(s)]n-1:1 is the address of the the switching element through which the

path connecting s to D (s) traverses stage 1, 0 < j 5 n - 1. By observing any transition

sequences on F0 and F1 , it is easy to see that at any stage j # i, any switching element

IS' ],n1:1 (or [Di (s)],,_i:1) of F 0 is different from any switching element of 1i in at least one

bit position where either bit s,-1-i or dn- 1t i appears. This means no common switching ele-

ments exist on F0 and Fl. Thus, F0 and F1 are disjoint.

Similarly, for the 1-state case, two disjoint subnetworks can be formed by partitioning

the N network inputs and outputs into two groups such that in each subnetwork the addresses

of the N/2 network inputs agree in their (n-l-i)th bits (i.e., sn-i- i ' s ) , the addresses of the

N/2 network outputs agree in their (n-l-i)th bits (i.e., d,_I_ 's) and sn-_-_ = 1 - dnJj .  E

For example, by forcing all the switching elements at stage 1 of the Omega network

shown in Fig. 4.1 to 0-state, two disjoint 3-stage subnetworks are formed. In one of them, the

addresses of the eight network inputs agree in bit s, = 0 (i.e., they are (0, 1, ., 8. . 9. 10.

l}) and the eight network outputs, in bit d, -- 0 (i.e., they are (0, 1, 2, 3, 8, 9, 10. l11). In

the other one, the addresses of the eight network inputs agree in bit s2 = 1 and the addresses

of the eight network outputs agree in bit d2 -- 1. These two subnetworks are shown in Fig.

4.2.

Now, we employ a partitioning scheme on Omega networks whlich gives a better analytic

way than that in [Lee85] in order to have a global view on the permutation behavior of

Omega networks. The partitioning scheme which can produce a sequence of substructures on



83

sae 01 23

0 0

22
3 3

4 4
5 5

6 6
7 7

8 8
9 9

10 10
II 11

12 12
13 13

14 14
15 15

Fig. 4.2. Two 3--stage subnetworkcs are formed by forcing all the switching elements at stage I

on a 16 x 16 Omega network.



84

an Omega network is described as follows. According to Theorem 1, if we remove stage n-i

of an Omega network, then two (n-l)-stage disjoint subnetworks will be produced. Here, by

removing the last stage from a (sub)network we mean that both the last stage and the connet-

tion pattern before the stage are removed and thus the remaining output ports are left as net-

work outputs of the two disjoint subnetworks. If we remove stage n-2 of any one of these

(n-l)-stage subnetworks, then another two (n-2)-stage disjoint subnetworks will be produced.

This process can be continued by removing stage i-1 of any i-stage subnetwork to produce

another two (i-1)-stage disjoint subnetworks, for all 2 < i < n - 1. When i = 2, after

removing stage 1, subnetworks with single switching element will be produced. The above

argument implies a recursively partitionable structure of Omega networks. We specify it by

the following definition and theorems.

DEFINITION 4: Let tDn - 1, 0] be an Omega network and (D[n - 2, t1, 0 5 t < 1, be

an (n-1)-stage subnetvork produced by removing stage n-1 of ciDn - 1, 0]. The (i-,l)-stage

subnetwork cI[i, t], 0 <_ i < n - 2 and 0 < t <_ 2n - ' -1 - 1, is obtained by removing stage i+1

of an (i+2)-stage subnetwork (Di + 1, t'], 0 < t' <_ 2n- i- 2 - 1. Let min([i, tI) be the smal-

lest address of switching elements at stage i of subnetwork 1[i, t]. We assume that for any

two subnetworks (D[i, t and 0Ii, t , t * > t iff min(.1[i, t * ]) > min(O[i, t** 1). E

The following theorem shows which network inputs are connected to a subnetwork cI[i,

t].

THEOREM 2: Let 'P(i, t) be the set of network inputs connected to 1i, t ], where 0 _

i < n - 1. 0 !5 t <_ 2n - ' -  - I and t = (tn-i_2 ... , ti, t0 be the binary representation of t.

Then, U(i, t) = ((c. c, , _ ..., t1. to) I #(c)=i + 1) and {(t._, ..., t1. to, c, .... c)I



85

#(c)=i is the set of switching elements at stage i of Ofi, t]I. For i = n - 1, 1[n - 1,0] is

an Omega network and P(n - 1, t) = {0, 1, ..., N-1 .

PROOF: According to the partitioning scheme, the set of subnetworks {[i, t] 1 0 < t <

- 1) is produced by removing all the stages from stage n-i to stage i+1. And.

according to Theorem 1, the last n - i - I bits (starting from LSB to the (n-i-2)th bit) of

all the network inputs in set P(i, t) corresponding to the subnetwork (D[i, t] are the same.

Thus, -(i,t)= ((c .... C, tn-i-2 ..... , to) 1 #(c)=i + 1}. To prove (t,-i-2 -- .. , , t )=

(tn-i_, ... t1 , to), let us check the following fact. Let min( I(i, r)) be the smallest address in

set P(i, t). Due to the inverse perfect shuffle connections, when one backtracks from stage

n-I of an Omega network, it is very easy to observe that (ti_ .... t1 t0 , c ... C) #(c) =

i } is the set of switching elements at stage i of (D[i, t]. By backtracking i + 1 inverse per-

fect shuffle connections, we can also see that the set of switching elements .. t, t0 ,

, ..... c) I #(c) = i) is connected to the set of inputs {(c..... c .... i.

to) I #(c) = i + 1). Thus, for anyt* > t**, we always have min((t[i. t*]) =(tni 2 .... t,

t 0. 0..., ) > rnin(O[i, t**]) = (tn i_2, ... tI  tO  , 0 ..., 0). That is, .(tt

(t i_2 .... r I t* ) which in turn implies minfY(i, t *)) > min(W(i, t )

For example, for N = 16, the three sets of subnetworks ([i, t] I 0 t 52 1- , 0 -

i _ 2, of an Omega network are shown in Fig. 4.3(a)(b)(c). In Fig. 4.3(a), the set of two sub-

networks { 1[2, t] 1 0 5 t < 1) is obtained by removing stage 3 from the Omega network.

The set of network inputs TI(2. 0) corresponding to the subnetwork (D(2, 01 is Cc, ,. c. 0)) =

{.) 2. 4. 6, 8, 10. 12, 141 and the set of ,etwork inputs ('(2. 1) associated with the subnet-

work O[2, 1] is ((c, c, c, 1)) = {1, 3, 5, 7, 9, 11, 13, 15). Similalv, in Fig. J.3(b) and

4.3(c), the sets of network inputs T(1, t) and Ti(0, t) corresponding to the subnetworks Of1,



86

stage 0 1 2 3

0 0

I t 
A 

M% % % 
%

3 3

4

66 ~ ~ 9 4 3
88 9i99 9

10 ~10 -

15 15

{*D[2, t] 1 0 :S 1
(a)

Fig. 4.3. For N = 16, he three ses of subnetworks {0(st) 1 0 : t S V4-11, 0 2.

of an Omega network.



87

0 01 -%% % I %1
2 2

33 ' L.t

66
7

8 
7

10 I

13 12 1[33

14 14

L~1: ~t~ 3 (b)

Fig. 4.3. Cont'd.



88

stage 0 3

3 3

4 ' -

7 -7 7 - ,3

-- 8 KX

99 9J9--9-,';"

13 123 13

14 155[O7
15 15

10[, 1 0 71 (C)

Fig. 4.3. Cont'd.



89

t] and (I[O, t] is {(c, c, tj, t0 )) and f(c, c, c, t0 )}, respectively.

Theorem 2 outlines the structure of each subnetwork in terms of the set of network

inputs connected to it and the set of switching elements at the last stage of it. Obviously,

because of the 'ecursively partitionable structure of an Omega network, each subnetwork can

also be recursively partitioned like an Omega network. This is based on the fact that the

structure of any subnetwork is identical to that of an Omega network with reduced size. The

following two theorems describe the substructure of a subnetwork after being recursively par-

titioned. Since their proof are similar to that of Theorem 2, we omit them here.

THEOREM 3: Two i-stage subnetworks {I[i - 1, 2n-i-.s + t] I 0 < s < l} are

obtained by removing stage i of the (i+l)-stage subnetwork 1[i, t], 1 _< i < n - 1 and 0 < t

_< 2n-i-1 - 1. Each 1[i - 1, 2n-i-I's + t] is connected to the set of network inputs TP(i - 1,

2 n-i-l. + t)= {(c .c, C, S, t0)- I (c) = it .

For example, if we remove stage 2 of the 3-stage subnetwork (D[2, 11 (i.e., i = 2 and t =

1), then we will obtain two 2-stage subnetworks (1(, 2s + 111 0 < s < 1}. Each [l, 2s

+ 11 is connected to the set of network inputs '(1, 2s + 1) = {(c, ..., c, s, 1) i #(c) = 2}.

That is, 'P(l, 1) =(1, 5, 9, 13) and 'P(1, 3) = [3, 7, 11, 15).

THEOREM 4: The set of (j+l)-stage subnetworks {1[j, 2n-'-m + t] 1 0 < m < 2'-j -

1), 0 S j < i, is obtained by removing stages from stage i to stage j+l of the (i+l)-stage

subnetwork C?[i, t], 1 < i 5 n - 1 and 0 < t _ 2n- i- I - 1. Let (mi-j_1 ..., ml. i 0 ) be the

binary representation of m. Each (j, 2n'--.m + t] is connected to the set of network

inputs P(j, 2n--i'm + ) = ((c, Mi-j- 1.. MI , .MO0, tn-i_ 2 c -- t,. CO) (c) = J " ,I



90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

{W(O, t) 1 0 S t < 71 f ,8), {1,9), f2,10), f3,11), 14,12), f5,13), (6.14), f 7,1511

{W(1, ) I Q5 t :5 31 = ((0,4,8,12), f1,5,9,13), (2,6,10,14), {3,7,11,15))

{T(2,) 0 1 1} = I(0,2,4,6,8,10,12,14), f1,3,5,7,9,11,13,15))

Fig. 4.4 ForN= 16,thethreedifferentLparuitions {W(i,: I 0 s is 2---1}, 0 s 1: 2.



91

For example, for i = 2, j = 0 and t = 1, if we remove stages from stage 2 to stage 1 of

the 3-stage subnetwork <D[2, 1], then we will obtain the set of 1-stage subnetworks {O?[0, 2-m

+ 1]1 0 < m < 3). Each 4O0, 2m + 1] is connected to the set of network inputs ((c ..., c,

n1, m 0, 1) 1 #(c) = 1). That is, TP(O, 1) = (1, 9), P(O, 3) = {3, 11), P(O, 5) = (5, 13), and

'(O, 7) = (7, 15).

Note that, for each 0 < i < n - 1, the set of subnetworks {(D[i, r] 1 0 s t < 2 n-i-t - 1)

corresponds to the set of inputs (P(i, t) I 0 5 t 5 2 n-i- i - 1) which is a partition on all the

network inputs {0, 1 ..., N-i). For each i, the partition [P(i, )} contains 2n-i- groups of

network inputs. Each group of network inputs has 2"i' elements. In the following sections,

we will show that these partitions play a major role when we characterize Q. For example,

the three corresponding partitions {'T(i, t) 1 0 < t < 23-' - 1) associated with the three sets

of subnetworks {t)[i, t] 1 0 < t < 23-_ - 1), 0 < i < 2, are shown in Fig. 4.4. When i = 3,

{([i, 0]) and {W(i, 0)) become trivial cases, i.e., an Omega network and all the network

inputs (0, 1 ..., N-1) , respectively. For i = 2, 1, and 0, we have

(T(2, t) 0 5 t < 1) = ((0, 2, 4, 6, 8, 10, 12, 14), {1, 3, 5, 7, 9, 11, 13, 15),

{'(l, t)1 0 : t 53) = ((0, 4, 8, 12), {1, 5, 9, 13), (2, 6, 10, 14), f3, 7, 11, 15),

{P(0, )I 0:t <7 = ((0, 8), (1, 9), (2, 10), {3, 11), (4, 12), {5, 13), {6, 14), {7, 15}).

4.4. PERMUTATION CAPABILITY

The set of admissible permutations 2 has been characterized by a number of authors

[Law75]JPar80],[Pea77]. The following theorem summarizes their work in network admissi-

bility.



92

Let it a D e {EN ) be a permutation of (0, 1, ..., N-1) which is associated with routing

tags D = (D (0), D (1), ..., D (N-1)). Each routing tag D (i) is used by the network input i =

(in_.... i, i 0 ) of an n-stage Omega network to route data packets to the network output

D (i). According to the routing scheme of an Omega network, bit [p(D (i))Ij is used to deter-

mine the connection of the switching element at stage j, 0 5 j < n - 1. (Note that, as

defined earlier, p is a bit-reversal permutation.)

THEOREM 5: A permutation it e 0iff for each i andj, 0< i, j < N - 1 and i *j,

either one of the following two conditions is true:

(1) ([D(i)],-Il:b, lIb-1:0) ([D(J)],l.l:b, [J]b-1:0), for all 1 < b < n - 1 (see [Law75]).

(2) There exists a Boolean function fb([D(i)]nn-I:b+1, [i]b-1:0) such that [D(i)b = [ib @

fb ([D ()n,-:b+, [i]b-1:0), for all 0 < b < n-2, where @ is the exclusive-or operation

(see [ParS0][Pea77]).

Theorem 5 characterizes Q by using the bit relation of source tags and destination tags.

However, according to condition (1) of Theorem 5. in order :o know whether or not an arbi-

trary permutation belongs to Q, computation must be performed for all the possible combina-

tions of i, j, and b. An algorithm to determine the admissibility of a permutation using con-

dition (1) of Theorem 5 is described as follows:

function ADMISSIBILITY-I (s e 10, ..., N - 1), D: permutation)

for b = n - 1 downto 1 do

for each Q = (s ) the sources share the same lower b address bits} do

if DIFFERENCE({[D (s)]n.l:b ib s E Q)) = false then return false

return true



93

The function DIFFERENCE is an algorithm to determine whether or not a finite number of

integers are different. It can be shown that for problem size N the fastest algorithm employed

for DIFFERENCE takes a time in 0 (NlogN) (i.e., this is the same lowest bound as that of

sorting problem). By using function DIFFERENCE, the algorithm ADMISSIBILITY-1 com-

pares the difference of the higher address bits of those destinations (in set { [D (s)]n.-l:b I s E

Q }) whose corresponding sources (in set Q) share the same lower address bits. Since for

each b, 1 < b < n - 1, there are 2 b different Q sets, the algorithm ADMISSIBILITY-1 uses

function DIFFERENCE 2 n-b times.

Condition (2) of Theorem 5 is a reformulation of Condition (1) in order to show that a

special set of permutations is admissible on the indirect binary cube network. For this special

set of permutations, the Boolean function fb is easy to identify. However, in general, it is

extremely difficult (if not impossible) to determine whether or not there exists such an fb

which satisfies condition (2) for an arbitrary permutation. And the time complexity for using

condition (2) to determine the admissibility will be much higher than that using condition (1).

In this chapter, we will show that the set Q can be characterized in a much easier way than

that given by Theorem 5 such that a simple and low complexity algorithm can be developed

to distinguish permutations in 0 from the others. This is our main work in this section.

A key idea used throughout this section is the residue system in number theorem

[Lee85].

DEFINITION 5: A complete residue vstem modulo m (CRS(m)) is a set of m integers

which contains exactly one element of each residue class mod m.



94

In other words, if every element of a CRS(m) is divided by m, each of the possible

remainder value from 0 through m - 1 can be obtained. We have the following natural

observation on the number system composed of non-negative integers. Any consecutive 2k

numbers form a CRS(2k) which yields each remainder from 0 through 2k - 1 when divided

by 2k . If the same numbers are divided by 2k -1 instead, there will be a pair for each

remainder from 0 through 2k-1 - 1. Thus, a CRS(2k) contains two representatives of each

residue class mod 2k- ', i.e., a CRS(2k) can be partitioned into two CRS(2 k-)'s. Since there

are two ways to choose each representative of a residue class mod 2k- , as many as 4-i

different ways of partitioning can be made on a CRS(2k). For example,

CRS(8): (7, 6, 0, 1, 3, 4, 5, 2)

CRS(4):{7, 1, 4, 2) U. CRS(4):{6, 0, 3, 5)

CRS(4):(3, 1, 0, 2) U,. CRS(4):{7, 4, 6, 51

As pointed out in Section 4.3, for each 0 < i _ n - 1, the set {W(i, t) I 0 <__ t < - - -

1} is a partition on all the network inputs {0, 1, ..., N-I and therefore it corresponds to a

partition on {D (j) I 0 < j < N - 11. We will show that the CRS property of all these n par-

titions on {D(j) I 0 <5 j _< N-1} ensures that there will be no conflict in any switching

element(s) when the permutation t - D is realized on an Omega network.

THEOREM 6: A permutation 7t is admissible on the subnetwork O[i, t], (i.e.. it can be

realized without conflicts) where 0 < i 5 n - 2 and 0 < t _ 2''- 1. iff (p(Dtj)) I j -

S(k, 2'- 1 m + t} is a CRS(2kI), for all 0 <k < i and 0 :5 m < 2' -' - 1.



95

PROOF: According to the routing scheme of an Omega network, bit [p(D (i))] is used

to determine the connection of the switching element at stage j, 0 < j < n - 1. For any k

and m, we can imagine the subnetwork (D[k,2 '--m + r] of (D[i, t] as an independent

(k+l)-stage network in which the routing tag used on input j r 1P(k, 2 n-i-I.m + t) is

[(D(j)]n-1:n-k_ 1 or [p(D(j))]k:O. If {[(D(j)]n1l:nlkl I j e P(k, 2n-i-I'm + )} or

{ [p(D (j))]k:o I j e T(k, 2n-i-'m + t)) is not a CRS(2k+l), then there exist at least two net-

work inputs of the subnetwork 'Dk, 2n-i-i'm + t] such that data packets from which are sent

to the same output. That is, for at least two x, y e f(k, 2n-'-l'm + r) and x # y,

[p(D (x))]k:O = [p(D (y))]k:O. Thus, it results in conflict in at least one switching element on

01[k, 2nil m + t]. This can be easily shown by an inductive method starting from k = 0 in

which case D[k, 2n-i-i'm + t] is a single switching element. Therefore, for all 0 < k < i

and 0 5 m 5 2'-k - 1, {p(D (j)) I j e P(k, 2n-i-l'm + t)} must be CRS(2kI)'s, iff 7t can

pass the subnetwork c([i, r] without conflicts on switching elements. '-

THEOREM 7: A permutation it E Q iff {p(D(j)) I j P T(i, t)} is a CRS(2i+'), for all

0 < i < n - I and 0 _ r < )n - i-l _ 1.

PROOF: This proof is simply an extension from that of Theorem 6. When i = n - 1,

{p(D(j)) I j c P(n - 1, 0)} = (0,1, .. N-1) is a CRS(N) which is a trivial case and is

always true. Thus, the permutation it r Qi iff r is admissible on both subnetworks (DIn - 2,

(" and 0[n - 2, 1]. 11

According to Theorem 7, a method is given to determine whether or not a given permu-

tation is an admissible one of an Omega network. The work is composed of totally 7

= N/2 + N/4 + + 2 = N - 2 subtasks and each subtask needs to determine the CRS



96

property of a set of integer numbers (i.e., the set {p(D(j)) I j E qP(i, t)}). Two example

permutations are shown in Fig. 4.5 for a 16x16 Omega network. The first one is an admissi-

ble permutation (6, 4, 14, 8, 11, 15, 5, 12, 13, 10, 3, 7, 0, 1, 9, 2). The second one is a per-

fect shuffle permutation (0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15) which is not admis-

sible. For the first permutation, it has been shown that each {p(D (j)) I j e '1(i, t)}, where 0

5 i < 2 and 0 < t < 2'-' - 1, is a CRS(2L+l). To see why the second permutation is not

admissible, let us check the subnetwork cD[1, 0]. The routing tags used for this subnetwork

are {[p((D (J))]I:0 I j E T(1, 0)) = {[p((D (0))11:0, [p((D (4))11:0, [p((D (8 ))]:0, [p((D (12 ))11:0}

= {[011:0, [111:0, [8 ]1:o, [911:01 = {00, 01, 00, 011 * CRS(4). This means that data packets

from network inputs 0 and 8 are sent to the same network output 0 of (D[1, 0]. Similarly,

data packets from network inputs 4 and 12 are sent to the same network output 1 of (D[1, 0].

They cause conflicts on switching elements of both stage 0 and stage 1 of O[ 1, 0].

From Theorem 7, the set nT2 is characterized by using the residue classes of destination

tags rather than the bit relations of source tags and destination tags. However, as the result is

compared to that of Theorem 5, we do not gain much in saving computational efforts since

the modulo operations and the work to determine the CRS properties will consume a lot of

time. The same problem was suffered in the work of Lee [Lee85]. Nevertheless, the result of

Theorem 7 is still useful. We show next that a more effective way to characterize 2 than that

of Theorem 5 can be derived from Theorem 7. Before we discuss that, let us see what the

characteristics of Omega and inverse Omega networks are.

In the first transition sequence in Section 4.2. source bit s,,_l_ is moved to the LSB

position of s i at stage i and is replaced by the destination bit dn-l- i of D(s) in the LSB

position of D' (s). That is, by the physical meaning, a data transfer path of the switching



97

stage 0 1 97 2 3

0 0
11

2 -

33

4 4
5 5

6 6
7 7

8 8
9 9

10 i011 - 1i

12 12
13 13

14 14
15 15

s" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D(s) 6 4 14 8 11 15 5 1 13 103 0 1

o(D(s)) 6 2 7 1 13 15 10 3 11 5 12 14 0 8 9 4

I I

CRS(2)'s

CRS(4)'s

CRS(8)'s

Fig. 4.5. Two example permutations on a 16 x 16 Omega network.



98

s:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D (s)O 24.4 6 810 12 141 3 5 7 9 11 13 15

~(D (s)): 0 4 2 6 1 5 3 7 8 12 10 14 9 13 11 15

not CRS(2)'s

Fig. 4.5. Cont'd.



99

element [s'],.:l (or [D'(s)]n_l:l) is connected from input port snl-i to output port d,_tj

Therefore, the order for the source bits to be removed is n-i, n-2, n-3, ..., 2, 1, 0 and the

order for the destination bits to be introduced is also n-1, n-2, n-3, ..., 2, 1, 0. We can use

two vectors 0 = (0, 1, 2 , ..., n-2, n-i) and i-1 = (0, 1, 2 , ..., n-2, n-i) which correspond

to two permutation functions 0 and 1-1 in (On ), to represent these two sequences, respec-

tively. They are referred to as characteristic function of an Omega network. Thus, by

denoting

0 = (6(n-l), 6(n-2) ..... (2), 6(1), 8(0) )

and -  : =(I(n-1), i-1(n-2) ..... (2), (1),-1(0)

we mean that at stage j source bit s,(j) will be removed and replaced by destination bit

d Ic) , Moreover, the meaning of the permutation function I is as follows: if bit s6(j) is

replaced by bit d; at stage j, then the order of bits of I (D (s)) represents the disturbed order

of bits of D (s). For an Omega network, we have 0 = p and I = I - = p. From Theorems 1

and 2. it is obvious that the function 0 = p can uniquely determine those n partitions VP(i,

t) 0 t < 2n - i - 1 - 1}, 0 < i < n - 1. From Theorem 7, this in turn means that all the

admissible permutations Q can be uniquely characterized by functions 0 and I.

Let the characteristic functions of an inverse Omega network be denoted by OR and IR .

Note that the (n-i)th stage of an Omega network becomes the i th stage of its inverse net-

work. It is clear that any permutation rt e Q iff it - ' is an admissible permutation of the

inverse Omega network. We may denote the set of all the admissible permutations of an

inverse Omega network by Q2- . Thus, for any transition sequence of an Omega network, we

have a new explanation for its inverse Omega network: source bit d,-,-, of D (s) is moved to



100

the LSB position of Di(s) at stage n-i and is replaced by the destination bit sn-1-i of s in

the LSB position of si. That is, at stage j source bit s,6 n_j) will be removed and replaced by

destination bit d,i(nj)* Therefore, we have OR and I'1 for an inverse Omega network as

follows:

OR = PI1, R = (n-1, n-2, ..., 1, 0)

IW = P.0, ,R = (n-i, n-2, ..., 1, 0).

Similarly, the function OR = p'p which is an identity permutation uniquely determines those

n partitions (T{Ri, 0) 0< t <_2 - 1), 0 i _< n - I. Thus, Q-1 is uniquely character-

ized by functions OR and IR . Note that it is easy to prove that no two subnetworks O(a, b I

and R [c, d] of an Omega network and its inverse Omega network respectively have the

same set of switching elements at any stage.

The following theorem derived from Theorem 7 gives a simple closed form of Q in

terms of bit relations of destination tags with respect to permutable substructures of an Omega

network and its inverse network.

THEOREM 8: A permutation it e Q iff [p(D(j))]i = X [D-l(j)]i = 2', for
jE qT(i,t) jE PR(it)

allO i <n - 1 and0 t <2n-i- - 1. That is, for both of allj E P(i,t)andj e TR U,

t), the sum of ith bits of p(D (j))'s and D-1(j)'s are both equal to 2i.

PROOF: The proof is based on the following fact. Let {Ri I 0 < j 5 2'+' - I} be a

2 *-i
CRS(2'). Then, [R, i = 2i is always true, i.e., the sum of ith bits of R,, for all 0 S j

j =t

< 2' - 1 - 1, is equal to 2'. Thus, it immediately implies that [p(D(j))i = 2' if
)E P(ij )



101

{p(D (j)) I j F T1 (i, r)}is a CRS(2'+1 ), 0 i < n - 1 and 0 < t 2P-i-1 - 1.

(only if) From Theorem 7, if the permutation nt E Q, then (p(D (j)) I j E 'P(i, t)I is a

CRS(2i'), for any i and t. Thus, from the above fact, I [p(D (j))]i = 2i, for any i and
jE T'(i.t)

r. Since if n e Q then n-1 =- D -1E Q-1, the equation E [D-1 (j)]i = 2i is also true.
jE TJR ( i,t

(if) Note that actually Y, [Rji] = 2i, for all 0 k _< i, iff (Rj I 0 j <2 + - 1) is a
j--0

CRS(2i '). Thus, we need to prove the problem that if Y [#(D(j!)i =

[D -(j)]i = 2', for any i and t, then it is sufficient to show that fp(D(j)) I j _ '(i,
JE (i , )

t)}is a CRS(2i+1 ), for any i and t, which in turn implies that the permutation t E Q.

According to Theorems 2 and 3, for any 0 < i < n - 2 and 0 t*, t** < 2n-i-I - 1.

there exist two sets q(i, r*) and 'Y(i, t*) such that P(i, t*) n '(i, t**) = 0 and P(i. t>

u P(i, t**) = P(i + 1, t). For i = 0, if the following conditions are true:

[p(D (j))O= 20, (i.e., {p(D(j)) j e '(0, t)}is a CRS(2),)
j E T (O~t*)

Y [p(D(j))]o = 20, (i.e., {p(D(j)) I j ( 'P(0, t**)}is a CRS(2),)
j) • P(0tz)

and Y [p(D(j))]I = 2,
jE '(1.t)

then there are two possibilities:

(1) (p(D(j)) , j E Pe1. r)}is a CRS(2), i.e., {[p(D(j))j]'O j E P(1. t)} 1'00. 01. 10.

II.



102

(2) ([p(D(j))]1 .0 I j E P(1, t)) = (00, 00, 11, 111 or (01, 01, 10, 10). For each case, there

must exist some (D[I, t'] such that {[p(D(j)) 11.0 I j c T(1, ')} = (00, 00, 11, 11) or

{01, 01, 10, 10); otherwise there will be at least one (1, t" such that

2 [p(D (J))]1 I 2. If this is true, then it will result in an odd number of l's in
j (

routing tags which are used at stage b of at least one subnetwork (R [b, t'] where 0 < b

5 n - 2. That is, we have I [D-W(j)]b * 2 b for at least one subnetwork cIR[b,
jE WI(b-)

r"]. Thus, it will always be detected that Ip(D(j)) I j r T(1, t)} is not a CRS(2 2).

By induction, we can show that if [p(D (J))Ik = [D-'(j)k = 2", for all 0 5 k
j e T(kat) jE T R (kat)

<i and 0<t < 2n-k-', then, for each 0 < k < i and 0:t < 2 n-k-1, (p(D(j)) Ij E '{(k, t)

is a CRS(2k"'). Thus, if 1 [p(D (j))]i = I [D-(j)]i = 2, for any i and t, then
j C PU(i,t jE qR(it)

{p(D (j)) I j E 'P(i, t))is a CRS(2t 1 ), for any i and t. El

Note that Theorem 8 do not imply that if it E=-2 then it c 0'-1, and vice versa. For

example, let us consider the admissible permutation in Fig. 4.5 and check the subnetwork

(D[2, 11 where the corresponding set T(2, 1) = (1, 3, 5, 7, 9, 11, 13, 15). We have

([p(D (j))12 1 j '- +(2, 1)1 = {[p(D (1))12, [p(D (3))12, [p(D (5))2, [p(D (7))12, [p(D (9))12,

[p(D (11))12, [p(D (13))]2, [p(D (15))12) = ([212, [1]2, [1512, [312, [5]2 , [1412, [812, [412) = (0,

0, 1, 0. 1, 1, 0, 1). Thus, , [p(D(j))12 = 22. Moreover, T(2, 1) = '(1, 1) .j T(1, 3)

where Y(l, 1) = (1, 5, 9. 13) and TO1, 1) = (3, 7, 11, 15). It also can be shown that

S[p(D(j))] = 2 and [p(D(j))]1 = 2. Similarly, D - 1 = (12, 13, 15, 10, 1. 6, 0,
]E 11(1,1) j¢ E I(1.3)



103

11, 3, 14, 9, 4, 7, 8, 2, 5). We can obtain that [D-I(j)], = 2.
jE ' (1.)

Theorem 8 implies that for each permutable structure (I[i, t ], the work to determine the

CRS property of {p(D(j)) I j E P(i, t)), #('(i, t)) = 2' + ', in Theorem 7 can be replaced by

two bit summation operations. That is, we sum the i th bits of all the destination tags

p(D (j)), where j r +(i, t), and sum the ith bits of all the destination tags (D -(j)), where j

E TR (i, t). Then, we check whether or not both of the results are equal to 2'. Both the

admissibility conditions (Theorem 6) of the permutable substructures of an Omega network

and its inverse network (an inverse Omega network) need to be satisfied. An algorithm to

determine the admissibility of a permutation based on Theorem 8 is described as follows:

function ADMISSIBILITY-2 (j e {0 ..., N - 1), D: permutation)

for i = 0 to n - I do

for t 0 to 2n-i-1 - I do

if [p(D (j))]i = ' (D -'(j))] I 2 =false

j E JE ' (i , E ) - =j(

then return false

return true

Conclusions can be made for our work and previous ones in Theorem 5. Conditions in

Theorem 5 are essentially the non-conflict criteria for any switching elenient(s). That is. no

two paths of a permutation routing pass through the same input port of a switching element.

i.e.,

([i lb_1: 0, [D (i)],_1:b ) ;' (UJ t,-1:0, [D (j)l,-I:b),

for any 0 < i, j < N - 1, 1 5 b < n - 1.

This is a one-dimension viewpoint to understand what the admissible permutations of an

Omega network are. On the other hand, our work exploits all the structures (subnetworks)



104

wh;.,h are relative to permutation touting behavior of an Omega network. Then, we develop

the non-conflict criteria for these structures with the aid of the structure of its inverse Omega

network which as mentioned above can be sufficiently represented by a very simple bit-

summation condition. Thus, our work provides a two-dimension viewpoint to understand

what the admissible permutations of an Omega network are. It is obvious that our method is

simpler and easier than previous ones.

4.5. GENERAL MODEL

Generally speaking, there exists a class of topologically equivalent networks which are

constructed by the BPC permutation connections and possess the unique-path and full-access

properties. As we will see, even through this class of networks represents only a subset of

Banyan networks, it provides more attractive communication aspects than other networks

which are constructed by irregular connection patterns. For example, the BPC permutation

connections for Omega networks are perfect shuffle permutations. Each network of this class

has the similar routing behavior and thus the similar expression of transition sequences like

Omega networks. This class of networks includes the six networks mentioned in [WuFe81]

as special cases. The connection patterns used between stages of them are a specified set

from (P3,, . Their transition sequence which represents any path connecting network input s

= (s,- 1, ..... s 1, S0) to network output D (s) = (dn-1, ..., d 1, d0) has the following properties.

(1) Each bit of the sources s (or its complement) will be permuted to the position of LSB in

some s' and then be replaced by a bit of the destination D (s) (or its compiement) in D' is ), ()

<_ i <_. n - 1. Therefore, there exist two permutation functions 0, 1- { I } such that 0 (s )

corresponds to the order for bits of s to be permuted to the position of LSB (Li.e. 10 (s is



105

the LSB in s') and 1- 1 (D (s)) corresponds to the order for bits of D (s) to replace bits of s

(i.e., [I-(D (s))]i replaces [0 (s)]i in the LSB position of D' (s)). The physical meaning of

permutation function I is as follows: if the ith bit of a number X = (x,_, xn 2 .... x 1 , xO)

instead of bit [1I(D(s))]j replaces [O(s)]i in D'(s), then I(X) represents the final destina-

tion where the source s will reach. These two BPC permutation functions 0 and I are

referred to as characteristic functions of a network.

(2) Data packets from source s are routed from input port [O(s)]i to output port

[-t(D (s))]i of a switching element at stage i and the address of this switching element is

either [si]n-:1 or [D'(s) 1n_:l.

(3) The routing scheme of this class of networks can be described as follows. Let the sym-

bol @ represent the exclusive-or operation. Bit [- 1 (D (s ))]i is used as the routing tag for the

switching element at stage i such that data packets are routed from input port [0 (s )Jj to out-

put port [I-1(D(s))JI. Bit [O(s)]I @ [U-(D(s))IL is used to determine the state of the

switching element at stage i if global routing is considered and no conflict occurs. That is, if

[Os)]i @ [-(D (s))]I = 0 then the switching element will be in a straight connection state

(i.e., 0-state), else the switching element will be in an exchange connection (i.e.. 1-state).

After a data packet traverses stage i, bit [O (s)]i (i.e., the label of the input port from which

this incoming data packet comes) is attached to this data packet in order to recover the infor-

mation of the source address. We call this kind of routing scheme as the source -preserved

and destination -oriented routing scheme. It is clear that the routing behavior of any network

in this class can be uniquely characterized by functions 0 and I. Note that not all the net-

works with fuil access capability and unique-path property possess this kind of simple routing



106

scheme. In general, for a network with irregular connection patterns, the routing tag used at

each stage is a function of both source input and destination output.

For example, in Fig. 4.6. a 16x16 4-stage network defined by a sequence of BPC permu-

tation operations is shown. Let the characteristic functions of this network, 0 and I, be

specified by vectors 0 and 1, respectively. Let the interconnection pattern Pi, 0 < i < n, be

specified by vector PL and P0 = (2, -1, -0, 3), P 1 = (2, 3, 0, -1), 2 = (--0, 1, 3, -2), P 3 =

(2, -0, 3, 1), P4 = (1, 3, 0, 2). The transition sequence is:

; = s(sS-, S"I, So) s = (S , s1, S , S 3 )

D'°(s) = (s, st, To, d2 ) s1 = (Y1, S 2, d 2, S0 )

DI(s) = , s 2 , d 2 , d3) = (d 3 , d 2 , Sl, s'2)

D 2(s) = (d3, d2 T, "d) = (d2, do, d 3, TO

D:(s =(d,,d0, d3, d,) S4 =(d 3, d,. d1 , d0 ) =D(s).

Thus, we have 0 = (-1, -2, 0, 3),! =(-1, 0, 3,-2), -1 (1, --0. -3, 2), 101 =(1, 2, 0, 3)

and I i-' = (1, 0, 3, 2). For any path connecting a source s to a destination D s), bit d, is

used as the routing tag at stage 0, bit d 3 is used as the routing tag at stage 1, bit d0 is used as

the routing tag at stage 2, and bit d1 is used as the routing tag at stage 3. The states of

switching elements from stage 0 to stage 3 are determined by s 3 @ d2, SO@ d-3,

"2 @ doand T, @ dj, respectively. Hence, for the path connecting s = 1 to D(s) = 4, the

routing tags are [l-'(D(s))] =(d, d0 , d, d,) = (0, 1, 1, 1) and states are (T- @ d,.

. d@ ),so@ d , @ d) = 1,0,0, 1).

As a network in this class is specified by its two characteristic functions 0 and I, it can

be shown that function 0 uniquely determines all the sets 'Y(i, t), 0 i < n - 1 and 0 < t<



107

2 
n -i-l - 1, and I-'(D) is the actual permutation where computation should be performed to

determine the admissibility of a given permutation D. That is, the permutation capability of

this network is uniquely characterized by its two characteristic functions. Therefore, all our

work done in previous sections can be easily extended to the general model by using charac-

teristic functions. We summarize the generalization as the following theorems. In the follow-

ing, let F be an n -stage network in the class specified by characteristic functions 0 and !.

THEOREM 9: Let FR be the inverse network of r. Then, the characteristic functions of

FR are

0 R =p1-1 and IR 1 =pO.

PROOF: For any transition sequence of F, we have a new explanation for FR . Note that

the ith stage of rR becomes the (n-i)th stage of F. Thus, p.-l'(D (s)) corresponds to the

order for bits of D (s) to be permuted to the position of LSB (i.e., [p-r 1 (D (s))]i is the LSB

in D' s)) and pO(s) corresponds to the order for bits of s to replace bits of D (s) (i.e,

[p'0 (s)i replaces [pI-'(D (s))]i in the LSB position of s').  C

For example, let the interconnection pattern Ri, 0 -i < n, be specified by vector i for

the inverse network of the nervork in Fig. 4.6. Then, we have R0 = 4 1 = (2, 0, 3, 1),/7 1 =

/33 (1, 3, 0, -2),2 = /321 = (1,--0, 2,-3),3 = 11 = (2, 3,-0, 1), and _i4= / o l

(0, 3, -2, -1). The transition sequence for connecting source input D(s)= (d 3, d2, d1, do) to

destination output s = (s 3, S 2, S 1, S0 ) is:

Ds) = (d 3, d 2, d1 , do) so = (d, ' d o, d3, d1)

D°D (s)) = (d,, do, d 3, TO1 = (d 3, d 2, TI, do)



108

stage 0 12 3

00

3 3

4 4
5 5

6 6
7 7

8 8
9 9

10 10

12 12
13 13

14 r-I14
15 15

s s D(s) D(s) I(Ds) CRS(Z)'s CRS(4)'s CRS(8) 's

0 0 0 00 12 1 1 00 0 10 1
1 0 0 01 4 0 1 00 0 11 1
2 0 0 10 14 1 1 10 1 10 1
3 0 0 11 6 0 11 0 1 11 1
4 0 1 00 13 1 1 01 0 0 01

5 0 10 1 5 0 10 1 0 0 11
6 0 1 10 15 1 1 11 1 00 1
7 0 11 1 7 0 1 11 1l0l1l

8 1 0 00 8 1 0 00 0 10 0
9 1 0 01 0 0 0 00 0 1 10

10 1 0 10 10 1 0 10 1 1 0 0

11 1 0 11 2 0 0 10 1 1 10

12 1 10 0 9 1 0 01 0 00 0

13 1 10 1 1 0 0 01 0 01 0
14 1 1 10 11 1 0 11 1 00 0

15 1 11 11 3 0 0 11 1 0 10

Fig. 4.6. A 16 x 16 network defined by the general model.



109

D'(D(s)) = (d3, d2, T1, s'2) S2 = (TI, S2, d2, d 3)

D 2(D(s)) = (TI, s 2, d2, so) s 3 = (s2, Sl, To, d 2)

D 3(D(s)) = (S2, T , T, ss 3 ) S 4 = (s 3 , s2 , S 1, s O) = s.

It is clear that 0 R = P3(1, -0, -3, 2) = (2, -3, -0, 1) and 1R-1 = fr(-1, -2. 0, 3) = (3, 0, -2,

-1).

THEOREM 10: A permutation 7t is admissible on IF iff for each i and j, 0 5 i, j < N -

1 and i # j, either one of the following two conditions is true:

(1) ([I- 1 (D(i))]b-1:O, [0(i)]n-:b) * ([-(D (j))]b-1:O, [O (J)]n1:b ), for all I _< b _< n - 1.

(2) [I-(D (i ))]b = [U )b @ fb([l-l(D(i))]b-1:O,[0(i)]n-1:b+), where @ is the

exclusive-or operation and fb is a Boolean function.

PROOF: This theorem is a generalized Theorem 5. By using the same criteria as

Theorem 5, the above two conditions give the non-conflict criteria for any switching

element(s) of F. That is, no two paths of the permutation 7c pass through the same input port

of a switching element of F.

THEOREM 11: By forcing all the switching elements of F at stage i to 0-state or 1-

state, two disjoint (n-1)-stage subnetworks are formed such that in each subnetwork, the

addresses of network inputs agree in bit [I 0 (s)]i and the addresses of network outputs agree

in bit [II-'I (D(s))]i.

PROOF: The proof is similar to that of Theorem 1 except that we use [0 (s 1i instead of

s,_I- i . That is, we have the following statement: forcing all switching elements at stage i to

0-state (1-state) is equivalent to forcing the LSB, [0(s)]i, of s i to be replaced by



110

[1-'(D (s))]i = [0 (s)]i (1 - [0 (s)]j) in the LSB position of D'(s). Thus, for 0-state case, the

addresses of network inputs of each (n-1)-stage subnetwork agree in bit [0(s)]i =

[-'(D (s))]i and the addresses of network outputs agree in [I-'(D (s))]i = [0 (s)]j. Similarly,

for 1-state case, the addresses of network inputs of each (n-1)-stage subnetwork agree in bit

[0(s)]i = I - [t-1(D(s))]i and the addresses of network outputs agree in [I-l(D(s))]i = 1 -

[0 (s)1i. -

For example, by forcing all the switching elements at stage 1 of the 16x16 4-stage net-

work in Fig. -4.6, the addresses of network inputs of each 3-stage subnetwork agree in bit

[0 (s)] 1 = = 1 - [1(D(s))]1 = (d) 3 = d 3 and the addresses of network outputs agree in

[I-I(D(s))1 = d= 1 - [O(s)]i = To. That is, each 3-stage subnetwork has network inputs

{(c, c, c, so)) and network outputs ((so, c, c, c)). Thus, one of the two subnetworks has

network inputs (0, 2, 4, 6, 8, 10, 12, 14) and network outputs (1, 2, 3, 4, 5, 6, 7).

THEOREM 12: Let D[i, t], 0 < i < n - 1 and 0 < t < 2n"- -1 - 1, be a subnetwork pro-

duced by performing the same partitioning scheme (as mentioned in Section 4.3) on F. For

each i, 0 < i < n - 1, let ((i, u)1 6 < u < 2'-'-' - 1} be the partition on the network

inputs (0, 1 ..., N-I) corresponding to the set of subnetworks {(I[i, t] 1 0 <t 2n-i-I - 1).

Then, '-(i, u) = {(v,_ ... , v1, v0 )) such that v, = c, for all 1 j, where sj = [01 O(s)]k

+ 1 < k 5 n - 1. Thus, #(c) = i + 1 in (i, u).

PROOF: The proof is similar to that of Theorem 2 and is based on Theorem 10. [2

Theorem 12 shows that function 101 uniquely determines all the n partitions {+(i, u) I

0 u _ 2n-'- - 1, 0 _i _ n - 1. For example, let us find the partition '{(O. ); 0 _u _<

23 - 1) for the 16x 16 4-stage network in Fig. 4.6. Since 10 (s) = (s 1, s,, so, s3 ), we have



111

{sj} = {[I 01 (S)]k 1 k 3) = (s 0, s 2, sj}. Thus, '(O, u) =(c, V2, V1, V0 ). In a similar

way, we can find the other two partitions. Therefore, the three partitions {Y(i, t) 1 0 < t

23- - 1), 0 < i < 2, corresponding to the three sets of subnetworks {(D[i, t] 1 0 t t < 23-3 -

},0<i <2, are

{t(0, u)}

t {(C, 0, 0, 0)} {(C, O, O, 1)}, t (c, O, 1, 0)}, t{(c, O, 1, 1)},

(c, 1, O, 0)}, {(c, 1, O, 1)}, t{(c, 1, 1, 0)}, {( c, 1, 1, 1)}}1

= {0, 8}, ( 1, 9), (2., 10O}, (3, 11}), t{4, 12}, (5, 13} {.t6, !4}, (7, 15)}

t qu(1, ut)

={((C, 0, 0, C) {(C, O, 1, c )}, {(c, 1, 0, C)} {(C, 1, 1, C)}

= {{0, 1, 8, 9), 2, 3, 10, 11), (4, 5, 12, 13), (6, 7, 14, 15}},

{P(2. u)

= {{(c, c, 0, c), {(c, c, 1, c)}

= ((0, 1, 4, 5, 8, 9, 12, 13), {2, 3, 6, 7, 10, 11, 14, 15)).

THEOREM 13: The permutation t is admissible on F iff (I-'(D(j)) I j t )(i, t) is

CRS(2'i ) or {V'-I(D(j)) I j e P(i, t)) is CRS(2i+l), for all 0 i < n - I and 0 t <

2 n-i- - 1i.

PROOF: This proof is similar to those of Theorems 6 and 7. Note that any permutation

function E {P,, is closed on domain (0, 1 .... N - 1),i.e., {(i)1 0_ i <N - 1 -(0, 1,

... V - 1). Thus, it is clear that {I-'(D(j)) I j EIF(i, t)) is CRS(2' 1 ) iff I-11J (D (j)I j

E&Jfi. t)} is CRS(2"'i). Therefore, (I-'(D(j)) I j e'P(i, ;)) is CRS(2 " -' 1 ) gives the neces-

sary and sufficient condition for non-conflict at any switching element(s) of subnetwork (1[i.



112

THEOREM 14: The permutation n is admissible on r iff . [l-(D(j))]i =
jE M(i,t)

~ [p-0(D- 1(j))]i =-2' or [Il-l (D(j))]i = [pi 0(D-I())] 2i, forall
jE 'TR(J,) je '(i.t) jE 'YR(it)

0 : i 5 n - 1 and 0:< t < 2n-i - - 1.

PROOF: This proof is similar to that of Theorem 8. It can be proved that the condition

S[I-1 (D(j))]i = 2 [Ij'(D-(j))]i = [p'0(D-(j))]j = 2', for any i and
jE TP(ijt) jE 'PRUiJ) j C TRJR~~)

t, is sufficient to derive that {I-'(D (j)) I j e P(i, t)}is a CRS(2i+I), for any i and r, which

in turn implies that the permutation ic is admissible on r. 01

For example, in Fig. 4.6, we also show why a permutation (12, 4, 14, 6, 13, 5, 15, 7, 8,

0. 10, 2, 9, 1, 11, 3) is admissible on this network.

THEOREM 13: Let F, and Fy be two networks specified by characteristic functions 0,

l x and 0,, 4, respectively. F, and F, are in a subclass of equivalent networks with the

same set of admissible permutations iff l0l = IOyl and Ilx, = lyl.

PROOF: This proof is based on Theorems 12, 13 and 14. According to Theorem 12,

function 0 uniquely determines all the n partitions {'(i, t) 1 0 <_ t <_ 2n - i - ' - 1}, 0 < i < n

- 1. And according to Theorems 13 and 14, for any permutation D, the results of bit-

summation and comparison operations performed on set ({-(D (j)) I 0 < j < N - II are the

same as those on { 'I (D(j)) I 0 < j < N - I). Thus, any two networks with the same

absolute characteristic functions have the same set of admissible permutations. L



113

Theorem 15 provides a direct view of equivalence between networks by the set of admis-

sible permutations. Some authors [Par80] [Agr83] denoted it as functional equivalence. That

is, if two networks can realize the same set of permutations, then they are functionally

equivalent. According to Theorem 15, for any pair of functions 0, 1 {3 1, if 101 = 0 and

III = I, there exists a subclass of functionally equivalent networks with the same set of admis-

sible permutations which are characterized by 0 and 1. Since there are n! = 1og 2N! of such

function O's or I 's, it is easy to show that the whole topologically equivalent class of net-

works can be partitioned into (log2N) 2 disjoint subclasses. in any subclass, each network is

not only a different drawing of another network but also realizes the same set of permutations.

For example, in Table 4.1, the general form of the characteristic functions and the set of

partitions of several famous networks are shown. From Table 4.1, we obtain the following

facts. The Baseline and inverse Baseline network have the same set of admissible permuta-

tions. The Omega and inverse Indirect Binary Cube network have the same set of admissible

permutations. The Indirect Binary Cube and inverse Omega network have the same set of

admissible permutations.

In Parker's work [Par80], the functional equivalence of three networks (i.e., the inverse

Omega, Indirect Binary Cube and R-network) are proved. Identity relations between several

specific permutation functions are used to transform a network to another one. Even though,

conceptually, the method can be generalized (which in our opinion will be very complicated)

to prove the functional equivalence of other networks, it restricts our view to a one-dimension

solution as that in condition (2) of Theorem 5 to outline what the permutations which a net-

work can realize really look like. It is clear that our method provides a two-dimension solu-

tion by simple bit relations and a more direct insight than that in [Par80 to describe the



114

Table 4. 1. The general forms of the characteristic functions of several famous networks.

Networks 6 j -  '(i, u) = [(v-._. 1..... v, vo)

Delta network (1,2 .... n-1, 0) (0, 1, ... , n-2, n-l) [(C.... C, V, C))

inverse Delta network (n-l, n-2 ... , 1, 0) (0, n-1 ... , 2. 1) 1(v,- ..... V,1, C'.... C),

Omega network (0, 1 ... , n-2, n-1) (0, 1 ... , n-2, n--1) {(c, ... ,CVn.. -i-2..... vO)}

inverse Omega network (n-1, n-2. 1, 0) (n-I, n-2 ..., 1, 0) [(Vn-i,. • Vi+!, C,..., C)}

Baseline network (n-1, n-2 .... 1.0) (0, 1 ... ,.n-2, n-1) (V,.- Vi'l, C. ¢)}

inverse Baseline network (n-l, n-2. 1,0) (0, 1, ... , n-2, n-f) i(Vn_! vi+l, C, C)

Indirect Binary Cube (n-1, n-2. 1, 0) (n-l, n-2, .... 1.0) {(vn-1 . vs+, C .... C)l

network

inverse Indirect Binary (0, 1 .... n-2, n-1) (0, 1. ..., n-2, n-1) [(C ..... C, v-.i-2 ..... VO)

Cube network



115

meaning of functional equivalence.

4.6. SUMMARY

In this chapter, by employing a proper partitioning scheme, the properties of a number of

permutable substructures (subnetworks) on an Omega network are studied. These substruc-

tures are associated with some specific partitions on the network inputs and can be used to

characterize admissible permutations of an Omega network. Based on the understanding of

these substructures, the permutation capability of Omega networks is characterized by either

using the residue classes or bit relations of destination tags. We propose an algorithm to

determine the admissibility of a permutation on an Omega network which has a time com-

plexity 0 (N), where N is the number of inputs/outputs of the network. Finally, we general-

ize the same methodology used on Omega networks to a class of topologically equivalent net-

works defined by BPC permutations in which each network can be specified by two charac-

teristic functions.



116

CHAPTER 5

A FAULT-TOLERANT RECONFIGURATION SCHEME

FOR MULTIPROCESSORS

5.1. INTRODUCTION

One of the most cost-effective ways for interconnecting a very large number of proces-

sors to form a general-purpose multiprocessor system is to employ a Multistage Interconnec-

tion Network (MIN) [WuFe8l] [Par8O] [Pea77]. In such a system, the MIN which is a criti-

cal component provides a full access communication between processors However, physical

failures in a MIN can cause severe degradation in the system performance, unless efficient

methods are provided to handle them.

Various issues concerning the analysis of fault tolerance capability and reliability of mul-

tiprocessor systems with MINs have been studied in (GaMa88] [DaBh85]. In one of these

methods, the failure of a switching element in the network causes the removal of a number of

processors such that the system can operate in a degraded mode in which the full access pro-

perty can be maintained among the remaining processors. However, this strategy results in an

enormous waste of computational resources. As a MIN is used for interprocessor connection.



117

an alternate strategy to minimize the loss of computational resources is to allow the communi-

cation with multiple passes through the faulty network by using the remaining fault-free paths.

A multiprocessor system with a faulty network is said to possess the dynamic full access

(DFA) property if each processor in the system can communicate with any other processor in

the system in a finite number of passes through the faulty ..etwork, by routing the data

through proper intermediate processors if necessary [ShHa84] (VaRa89]. This strategy results

in a reconfigured system which can operate in a gracefully degraded mode at the expense of

routing overhead, the increased latency and the additional blocking due to the loss of com-

munication paths. As the studies in [ShHa84] [VaRa89] [AgLe85] have shown, the general

problem of determining the DFA property of a faulty network is as hard as a transitive closure

problem. No general necessary and sufficient conditions have been found yet to determine the

DFA property based on the distribution of faulty components on the network.

A successful survival of a multiprocessor system in the presence of network failures

requires solutions of the following problems.

(1) A fast and effective fault testing algorithm to detect failures of the network.

(2) A multi-fault diagnosis algorithm to locate all the faults.

(3) A real-time reconfiguration scheme to prevent the waste of additional computational

effort.

Several studies of fault testing and diagnosis algorithms can be found in [Agr82]

[ThNe83] [WuFe79] [NaSo8O] [FuAb83] [Agr80] [FaPr8l]. In this chapter, we address only

problem (3). We assume that the information of locations of all the faulty components in the

network is available. Central to the design of such a reconfiguration scheme is the utilization



118

of this given information to reconfigure the system into a single (sub)system or several sub-

systems with DFA property such that the original routing scheme can be preserved in each

subsystem. The fault-tolerant reconfiguration scheme to be presented is suitable for the on-

line and real-time applications. The scheme is simple, efficient, and applicable to all the net-

works discussed in the literature. A special network topology, the Omega network [Law75],

is used as the example network in this chapter. Several important problems which have not

been previously considered are addressed in our work and discussed in reference to an inter-

-rated model. Those which distinguish this chapter from previous work [ShHa84I [VaRa89]

[AgLe851 are summarized as follows:

(1) In many faulty situations, some processors might be completely isolated from other pro-

cessors (i.e., no fault-free paths exist between them and other processors). If this infor-

mation is not known, the data communication to/from these processors will block other

fault-free communication paths and significantly degrade system performance. Therefore,

it is extremely important for the system to obtain this information in order to disable

these processors and obtain a better communication load control. In this chapter, this

information, which is missing in previous work, is obtained.

(2) In [ShHa84] [VaRa89] [AgLe85], the authors were only interested in determining the

sufficient conditions for a faulty network to possess the DFA property. In this chapter,

we will show that even if the original system does not have the DFA property due to

faults in the network, the surviving system obtained after disabling those processors

defined in (1) may have the DFA property. Since there exist many possible multipass

communication paths between surviving processors (those processors in the surviving

system), an efficient way to achieve low latency communication is by utilizing of



119

shortest-path routes between these processors. While, in [VaRa89], Varma and

Raghavendra mentioned that this is a very important issue, they did not actually show

how to do it. In this chapter, a shortest-path fault-tolerant routing scheme is developed

such that by routing through proper intermediate processors a processor can access

another processor with a minimal number of passes through the faulty network.

(3) Since an acknowledge signal and bidirectional data communication are always required,

it is necessary that bidirectional communication paths exist between any two processors.

However. in some situations, there may exist only unidirectional communication paths

between two processors. Such situations, as we will show, are due to the non-DFA pro-

perty of the surviving system. The use of such unidirectional communication paths will

cause a a deadlock because no possible acknowledge signals will be received by the

source processor. Therefore, the utilization of shortest-path routes alone may not be

sufficient to survive a system. An algorithm to prevent deadlocks must also be

employed. In this chapter, such an algorithm is proposed which gives the solution in a

way that the surviving system is partitioned into several surviving subsystems and each

subsystem is a maximal subset of processors which possesses the DFA property.

In summary, the fault-tolerant reconfiguration scheme to be presented provides a flexible

reconfigurable environment for a multiprocessor system with a faulty network. Under such an

environment, the communication of the surviving system is operated by using the information

of shortest-path routes. The rest of this chapter is organized as follows. In Section 5.2, the

system and fault models are presented. In Section 5.3, the fault-tolerant reconfiguration

scheme is presented. This scheme contains five parts: routing behavior of Omega networks

under faults, communication capability for the first pass under faults, construction of the



120

surviving system, construction of shortest-path routing tables, and reconfiguration of the sur-

viving system. In Section 5.4, the time complexity of our scheme is analyzed. Finally, Sec-

tion 5.5 gives the summary of this chapter.

5.2. SYSTEM AND FAULT MODELS

5.2.A. System Model

In this chapter, without loss of generality, we limit our discussion to an N-processor sys-

tem interconnected by an Omega network [Law75] built with 2x2 switching elements (see

Fig. 5.1). Such a multiprocessor system is connected to and monitored by a front-end host

computer. The overall system configuration can be either SLMD or MIMD structure depend-

ing on requirements of specific applications. An N xN Omega network with N network

inputs and N network outputs consists of n = log2N stages of 2x2 switching elements. Each

stage consists of N/2 switching elements and the interconnection pattern between stages is the

perfect shuffle permutation. Each switching element allows point-to-point or broadcast com-

munication from its input ports to output ports if no conflict occurs. For example. in Fig. 5.2,

a 16-processor multiprocessor system connected by a 16 x 16 Omega network is shown. The

following conventional notations are used throughout this chapter. The stages of the network

are numbered from 0 through n - I from left to right and the input/output ports (including

network inputs/outputs) of switching elements at each stage are numbered from 0 through N -

1 from top to bottom. The communication links between stages are numbered according to

the order of input ports of the stage to which these links are connected. The communication

links before stage 0 and after stage n - I are considered as pseudo links since they are con-

nected to output ports and input ports of processors, respectively. For example, the labels of



121

links connected to the input ports of stage i are shown in Fig. 5.2. Stage 0 is sometimes

referred to as the input stage and stage n - 1 as the output stage. Each network input and

output are connected to the output and input ports of a processor with the same address. The

address of a label L is represented by its binary form L = (n-1, ..., 11, 10), where bit 10 is the

least significant bit (LSB). Thus, a switching element in the network is represented by an

ordered pair (r, e), where r (0 r _< n - 1) is the stage at which the element is located and

e = (e 1, ..., e1) (0 < e < N12 - 1) is the element address at that stage such that the two

input/output ports of e have a common address label equal to (e,-, ... , e1, c), c = 0 or 1. A

communication link is represented by an ordered pair [t, h ], where h = (h, 1, ..., h 1, h 0) (0

h _< N - 1) is the address of this link and t (1 :5 t < n - 1) is the stage at which the input

port of a switching element (h-..... h 1) is connected to this link. Also the sets {[0, h]) and

([n, h]} are used to represent those pseudo links before stage 0 and after stage n - 1. A set

of labels with similar address representations can be denoted by a common address label. For

example, (In-I, 'n- 2, ... , Ii , c, ..., c) where #(c) = i (i.e., the total number of c's is i)

represents those 2' labels with the same first n - i bits in their addresses. The notation

L [a b], a _> b, is used to represent a segment of the address L from bit 1a to bit lb i.e.,

L[a :b] = (',, la- ... , lb 1, lb).

5.2.B. Fault Model

The fault model we consider is one that both the switching elements and communication

links may fail. The faulty components (switching elements and/or communication links) are

treated as unusable and no connection can be routed through them. Thus, a faulty set F on

an Omega network is defined as a set of faulty components under consideration. Some stan-

dard definitions have been used in several previous studies [ShHa84] [VaRa89]. We quote



122

Interprocessor
M ultistage Interconnection Network

0 1 2 ** -

Reconfiguration
Monitor

Host Computer

Fig. 5. 1. System model.



123

stage 0 1 2 3

0D oo 0 0 0

7 727

3s

Fi. .. 6-roeso ulipoeso ssemineconctd ya 6x 6Oea ewok



124

them here and extend their definitions for our convenience.

DEFINITION 1: A fault set F in an Omega network is critical with respect to a subsys-

tem (system) iff it destroys the property of dynamic full access of this subsystem (system). 11

Here, the definition of the DFA property is no longer restricted on the original N-

processor system but on any subsystem composed of a subset of the N processors. Hence, if

F is noncritical, data packets from any processor (or network input) can be routed to any

other processor (or network output) in a finite number of passes through the faulty network.

DEFINITION 2: Let 7t be a permutation passable by an Omega network. The set of

faulty paths CFp, of the permutation 7t under the fault set F is the set of communication paths

that pass through some components in F when the system tries to realize 7r on the network. 0

For example, let I be the identity permutation. The fault set F = [(1,0), (2,0), (2,1),

[1,11, [1,811 in the network of Fig. 5.2 will affect those data packets which pass through the

paths 0 -. 0, 2 - 2, 4 -* 4, and 6 --) 6 of the identity permutation.

DEFINITION 3: Two fault sets F and F are equivalent iff CF.,, = CF-,, for all possible

7t. The notation F = F is used to denote that F and F are equivalent. El

For example, the fault set F = [(1,0), (1,4), (2,0), (2,1), [1,0], [1,1], [1,8]) is equivalent

to F = ((1,0), (2,0), (2,1), [1,1], [1,8)) in the network of Fig. 5.2 because F and F affect the

same set of communication paths of each passable permutation.

DEFINITION 4: The maximal fault set F max corresponding to a fault set F in an Omega

network is the set of maximum size that is equivalent to F. That is to say, Fmax = F and

Fmax 2 F', for all F a F.



125

5.3. FAULT-TOLERANT RECONFIGURATION

In this section, we study a fault-tolerant reconfiguration scheme for an N -processor svs-

tern with multiple faults on its Omega network. Such a scheme provides the system a flexible

reconfigurable environment no matter whether or not the fault set under consideration is criti-

cal. A single surviving system or several surviving subsystems are formed by performing this

scheme such that deadlocks can be avoided. This single surviving system may be composed

of the original N processors or only a subset of them. A shortest-path routing table for each

processor is obtained from which a processor can always know the minimal number of passes

and proper intermediate processors to access other processors in the same surviving system

(subsystem). The idea of the fault-tolerant reconfiguration is described as follows. In Fig.

5.1, imagine that there is a machinism in the host computer, named as

reconfiguration monitor, which can process the fault-tolerant reconfiguration scheme. Once

the locations of faulty components have been known, the reconfiguration monitor then

processes the following procedures.

(1) Obtain the communication capability of each processor for the first pass through the

faulty network. Some processors may be considered as unusable due to the complete

destruction of their communication capabilities. Conceptually. a single surviving system

will be produced if we remove these unusable processors.

(2) The communication capabilities of all the processors is sent back from the

reconfiguration monitor to each processor. A shortest-path routing algorithm is per-

formed in each processor to find all the possible shortest routes to other piocessors.

Eventually, a shortest-path routing table is produced for each processor. By using this

,gorithm, the proper intermediate processors and the minimal number of passes through



126

the faulty network for a processor to access another processor are obtained.

(3) Under some situations, a reconfiguration algorithm must be employed to avoid the impli-

cit danger of deadlocks. These situations are due to the criticality of the fault set with

respect to the surviving system. According to this reconfiguration algorithm, the surviv-

ing system is partitioned into several subsystems. Each subsystem possesses the DFA

property. The partitioning of the surviving system is implicitly equivalent to sacrificing

some usable components which only help establishing unidirectional multi-pass commun-

ication paths. However, we do not have to know the actual locations of these usable

components during the partitioning.

We start our discussion from basic properties of routing behavior of Omega networks

under faults.

5.3.A. Routing Behavior of Omega Networks under Faults

For an n -stage Omega network, due to its regular structure, any paths traversing a

switching element (i ,e) at stage i can be expressed by the following two transition sequences.

These transition sequences also indicate which network inputs S's and outputs D 's are con-

nected through e.

Backward:

E =(en. 1, e n _ ....2  .el, c)

Ei = (e-_1 , e . . . . .e 1 , c)

D'-= (c, en . . . . . e 2, e1 )

E i - I (c, en 1.... e 2, C)



127

D o = (c,. .. c, en_ 1 . .. ei+ 1, c)

S = (c .... c, en 1  . . ei+ 2, ei+ 1)

Forward:

E = (en- 1, en-2, . e.l. e 1 , c)

E i+ l = (en_2 , en_ 3, .. . e 1 , c, en-)

D' +1 = (en_2, en_3,' e.. . , C )

E n - 1 = (ei e _1, .... e1 , c, . . . ,c, ei+1)

D " I = (ei ei_ 1  . . e 1, c, . . . ,c, c)

D = (ei e -... e 1,c ..... c,c)

In these transition sequence, each Ej, 0 < j < n - 1, represents the address of the input

port through which a path traverses stage j and each D', 0 < j < n - 1, the output port

through which the path traverses stage j. Obviously, Ej[n - 1 : 1] = DJ[n - I : 11 is the

address of the switching element through which a path traverses stage j and each one of such

paths passes through the switching element e at stage i (i.e., when j = i). The switching ele-

ment e at stage i can be viewed as the common root of two communication binary trees.

One is the backward (i+l)-level tree with the address label of its leaves (switching elements

at input stage) equal to (c, ..., c, e,_- , en_ 2, ... , ei+1), # (c) = i, and the address label of net-

work inputs connected to leaves equal to S = (c, ..., c, e,-., en 2, ... ei+ 1) , #(c) = i + 1.

The other one is the forward (n-i)-level tree with the address label of its leaves (switching



128

elements at output stage) equal to (e1, el-1, ..., e 1, c, ... c) , #(c) = n - i - 1, and the

address label of network outputs connected to leaves equal to D = (ei , e_ 1, ..., e 1 , c ... , c),

#(c) = n - i. Thus, totally 2i+1 network inputs and 2" network outputs are connected

through e. If e is faulty, clearly, the communication from these 2i 1 network inputs to those

2" - ' network outputs will be destroyed. Particularly, when i = 0 (i = n - 1), these above

two binary trees reduce to one in which the root e is rooted at input (output) stage and the

root e is connected to two network inputs S = (c, en_ 1, en2, ...- el) (two network outputs, D

(e*_ 1, , ... , e 1, c) and all the network outputs (inputs). It is obvious that as the neces-

sary condition for a fault set F to be noncritical with respect to the original N-processor sys-

tem, F cannot contain any switching elements from the input or output stages; otherwise com-

munication trees rooted at these switching elements are completely destroyed. If that happens,

processors connected to faulty switching elements at input or output stages will no longer be

used.

It also can be observed that the pair of switching elements {(i, w), (i, w + 2n-2)) at

stage i is connected to only one pair of switching elements {(i + 1, 2w), (i + 1, 2w + 1)} at

the next stage, where 0 < w < N14 - 1. This is referred to as the buddy property in [Agr83].

If both elements of a buddy pair ((i, w), (i, w + 2'-2)} are in a fault set F, then F can be

expanded to include elements {(i + 1, 2w), (i + 1, 2w + 1)} without affecting any additional

communication paths. Similarly, if both elements of ((i + 1, 2w), (i + 1, 2w + 1)) are in F,

then {(i, w), (i, w + 2'-2)) can be included in F.

A similar argument can be made about a communication link [i, h1. The communica-

tion link [i, hi between stage i-I and stage i, 1 < i < n - 1, can be viewed as the common

root of two communication binary trees. One is the backward (i+l)-level tree with the



129

address label of its leaves (i.e., processors connected to input stage) equal to S = (c, ..., c,

hn_ 1, hn 2, ...-hi), #(c) = i. The other one is the forward (n-i+l)-level tree with the address

label of its leaves (i.e., processors connected to output stage) equal to (hi 1, hi_ 2, ..., hO, c, ...,

c) , # (c) = n - i. Thus, totally 2' network inputs and 2' - ' network outputs are connected

through [i, h]. If [i, h] is faulty, clearly, the communication from these 2' network inputs to

those 2n-' network outputs will be destroyed. One thing which differs faulty communication

links from faulty switching elements is that no failure of any single link will completely des-

troy the communication capability of any processor, even if the faulty link comes from {[1,

h]} and [[n - 1, h]}. However, since the pair of links {[i, 2e], [i, 2e + 1]} is connected to

the pair of input ports of switching element e at stage i and the pair of links { [i, e div 2n-2

+ 4-(e mod 2n-2)], [i, e div 2n2 + 4.(e mod 2n-2) + 2]}, connected to the pair of output

ports of switching element e at stage i-1, 0 -< e <_ N/2 - 1, the failure of such a pair of links

is equivalent to the failure of a switching element. Thus, a fault set which contains such a

pair of faulty links can include a switching element to which the pair of faulty links is con-

nected in order to form an equivalent fault set.

For example, in Fig. 5.3, a fault set F = {(1,1), (1,2), (1,5), (2,0), (2,5), [1,1], [1,311 is

shown on a 16 x 16 Omega network. The buddy pair of faulty switching elements ((1.1),

(1,5)1 at stage 1, is connected to the buddy pair ((2,2), (2,3)) at stage 2. Therefore, the fault

set F can include ((2,2), (2,3)) to form an equivalent fault set. Similarly, the pair of faulty

links ([1,11, (1,31) is connected to the switching element {(0,4)}. Therefore, the fault set F

can include { (0,4)) as well to form a'other equivalent fault set.



130

5.3.B. Communication Capability for the First Pass under Faults

After the faulty components of a fault set have been located, an identical procedure is

performed in each processor to obtain the communication capability of the N-processor sys-

tem for the first pass through the faulty network. The following algorithm is a procedure to

find all the accessible processors of processor i, 0 < i _< N - 1, for the first pass through the

faulty network. The notations L and Cw represent a faulty link and a faulty switching ele-

ment in a fault set F, respectively. Finally, the set Zi contains all the accessible processors of

processor i.

Algorithm 1:

( Find all the accessible processors of processor i for the first pass

procedure Accessibility (i: processor; F : a fault set)

let the binary representation of i = (in-, in-2, .... io) )
k <-O

Zi <.- {0, 1 ..., N - 1 (initially, Zi contains all the N processors I

for each L, SW E F do

mark[ L] (-- True

mark[swj <- True

scan all the faulty components stage by stage I
while k # n - 1 and Zi * 0 do

I delete those unaccessible processors due to the faulty links I
if k # 0 then

for each L = [k, (i,-k-2, in-k-3 -... iO, Xk-2, ... XO, in-k-01l E F
do

if mark[L] False then

Z i *-Zil/(X- 1 , Xk_2, ... , XO, C, ... c)I #(c) = n - k I
for each

L = [1, (in-I- 2, in-_ ..... io, Xk-1, Xk-2, ... , XO, YI-k-1' Yt-k-'.

YO, in-1-)] E F,

sw = (J, (in-)-2, in-j-3 .. i" 10, xk- -2 .... 1 Xo, Y,-k-. Yj-k-2.
.... y 0)) E F,



131

1tg 23

0 0

44
5 5

6 333 6
7 7

8 4444 8
9 9

10 55 10
I111

12 6666 1-
13 1

14 7777 14
15 1

Fig. 5.3. An example fault set F on a 16 x 16 Omega network.



132

where n - 1 2 I > k, n - 1 >j > k do

when j = k, bit Y-1 is undefined.

mark[ L I - False

mark[ sw ] 4- False

delete those unaccessible processors due to the faulty switching elements

for each sw = (k, (i-k-2, i,_-k-3- '. i0, Xk_1, Xk2, ..., x0)) E F do

if mark[Csw ] * False then

Zi +- Zi/((xt- 1, xk-2, ..., xo, c, ... c) I #(c) = n - k}

for each

Csw = (l, (in-1. 2, in- 3, .. io, xk-1, Xk.... XO, YI-k-1, Y!-k-2.
yo)) E F,

= [ , ( ..... i- O' -, xk2 ... xo, X(-, Y -k-l Yl-k-, .... ,
E F,

where n - 1 I > k do

mark[ swI <- False

mark[L) +- False

k -k + 1

Note that all the single-pass communication paths starting from processor i construct a

binary ,-.. Algorithm 1 identifies the faulty components in this binary tree stage by stage

and deletes all the unaccessible processors due to the destruction of communication by either

faulty links or faulty switching elements. Since the failure of a component can destroy the

communication from processor i to a subtree rooted at this component, any faulty components

in this subtree will not cause the deletion of any new processors. Thus, such faulty com-

ponents are marked with a value False to indicate that no deletion operations are needed to

be performed when they are scanned. The total number of faulty components in F is at most

N(log2N - 1) + Nlog2N. To identify or mark any one of them in the binary tree a log2N-

bit comparison operation is needed. Thus, the scanning of all the faulty componerts in F

takes a time in O (N(logN)') in the worst case. Also, Algorithm 1 needs at most N deletion



133

operations. Therefore, Algorithm 1 takes a time in 0 (N (logN)2) in the worst case.

Since Zi is the set of accessible processors of processor i, 0 _ i _< N - 1, We can asso-

ciate each processor j e Zi with a nuiiber [C* ],. = 1 and other processors k E {0, 1 ... , N

- 1)/Z i (i.e., the set difference of (0, 1. N - 1) and Zr), a number [C*]i.k = -1. Thus,

we have defined an array [C*] where [C *]ij, i, j E {0,1,...,N-l), denotes the entry in array

[C*] at the intersection of row i and column j. Obviously, the array [C represents the

accessibility of each processor in the first pass through the faulty network, i.e., processor i

can communicate with processor j iff [C* ij = 1. Note that each processor always can com-

municate with itself without passing through the network. Even through the diagonal entries

[C* ]ij 's in [C*] may not be all equal to 1, this however will give more convenience for our

presentation.

Some processors may lose all the communication paths to or from aU the N processors,

say, due to faulty switching elements at input stage or output stage. Thus, no possible data

packets issued by these dead processors will arrive at other processors or no possible data

packets will be received by these dead processors. They can be found by inspecting array

[C such that iff they are some i or k such that [C * i = -I or [C * lj.k = -1, for all 0 j

< N - 1, respectively. These processors must be disabled (or conceptually be removed) to

avoid blocking other communication and further slowing down the system. Let S, be the set

of surviving processors excluding all the dead processors, referred to as the surviving system.

Define the following two arrays, restriction array and connection array to represent the

communication capability of the surviving system S , for the first pass through the faulty net-

work.



134

DEFINITION 5: Array [CR], referred to as the restriction array, is defined as [CR ]ij

[C*I ],,, for all i, j E S,. Array [Cs], referred to as the connection array, is defined as

[Cs IL = I and [CsJj' = [C* 1ij,, for all i, j E S,. and i # j. E

It is clear that [CR I represents the communication capability of the surviving system S,

without considering the self-communication capability of each surviving processor. on the

other hand, [Cs] include the self-communication capability of each surviving processor.

5.3.C. Construction of the Surviving System

The surviving system with respect to a fault set can be constructed if we knew the

corresponding maximal fault set. The principle for constructing the surviving system is that:

find the maximal fault set corresponding to a fault set and then remove all the components in

the maximal fault set and those isolated processors. Thus, the remaining substructure is the

surviving system interconnected by the surviving network through which the communication

between the surviving processors can be maintained. The isolated processors without any

possible incoming or outgoing paths correspond to those dead processors which cannot receive

data packets or whose data packets cannot arrive at other processors, respectively. The algo-

rithm to construct the maximal fault set Fm., corresponding to a given fault set F can be

found in [VaRa89] by Varma and Raghavendra where only faulty switching elements are con-

sidered. To fit into our more general fault model where both faulty links and switching ele-

ments are considered, we generalize their algorithm as follows.

Algorithm 2:

( Construct the maximal fault set Fmax

procedure Maximal-Fault-Set (F • a fault set)

Fmax <-- F { initially, Fmax = F



135

Add initially, the set for new additional switching elements is empty

{ include those links connected to switching elements in Fmax

for each (i, e) r Fmax do
Fmax <-- Fmax U {[i, 2e], [i, 2e + 1], [i, e div 2n2 + 4.(e mod 2"-2)],

[i, e div 2n2 + 4-(e mod 2n-2) + 211

include those switching elements if the pair of links connected to their

input ports or output ports are in Fm. }

for i = 1 to n - 1 do

for e = 0 to N/2 - 1 do

if {[i, 2eI, [i, 2e + 1]) Fmax then

Add +- Add U {(i, e)}
F max +-- F,,ax k., (i, e))

if {[i, e div 2 -2 + 4.(e mod 2n-2)], [i, e div 2" -2 + 4-(e mod 2"--)
+ 21)

Fmax then

Add <- Add k_) {(i - 1, e)}

Fmax ( Fm L U {(i - 1, e))

( include buddy pairs of switching elements }

t forward pass I
for i = 1 to n - 1 do

for w = 0 to N/4 - 1 do

if {(i, w), (i, w + 2n-2)} Q Fmax then

Add <-- Ad U {(i + 1, 2w), (i + 1, 2w + 1))

Fmax <- Frx U f(i + 1, 2w), (i + 1, 2w + 1))

reverse pass I
for i = n - 1 downto 1 do

for w =0 to N/4 - 1 do

if {(i, 2w), (i, 2w + 1)} Q Fmax then

Add <-- Add U {(i - 1, w), (i - 1, w + 2n-2)}

Fmax <-- Fmx U ((i - 1, w), (i - 1, w + 2n-2)1

include links connected to switching elements in Add }

for each (i, e) r Add do

Fmax - Fma a {[i, 2e], [i, 2e + 1], [i, e div 2n2 + 4.(e mod 2")]n

[i, e div 2n - 2 + 4.(e mod 2n - 2) + 2])



136

The maximal fault set Fmax is constructed starting from Fmax = F by

(1) adding those links connected to switching elements in Fmax;

(2) adding those switching elements if the pair of links connected to their input ports or out-

put ports is in F max;

(3) scanning the network first from the input side to the output side and then in the reverse

order; adding the buddy pairs of all the pairs already in Fmax, until no more additions are

possible,

(4) including those links connected to new additional switching elements in Add to Fmax.

It can be proved [VaRa89] that one forward pass and one backward pass are sufficient to

include all the buddy pairs deduced from F and thus obtain the corresponding Fmax. By

removing all the components in Frax and those isolated processors, we can obtain the surviv-

ing system S,. As the study in [VaRa89] have shown, for N < 16 cases, a fault set F is

critical with respect to the original N-processor system iff its corresponding maximal fault set

Fmax contains switching elements from input or output stages of the network. However. to

determine the criticality of a fault set F for cases where N > 16, no general necessary and

sufficient conditions based on the distribution of faulty switching elements have been found

yet. The condition that the corresponding maximal fault set Fmax contains no switching ele-

ments from input or output stages of the network is only necessary for the non-criticality of a

fault set F with respect to the original N-processor system. More precisely, we can show that

for cases where N > 16, even through some processors are removed due to switching ele-

ments from input or output stages in Fmax, the non-criticality of a fault set F with respect to

the surviving system S, still cannot be determined. Nevertheless, we will show in the fol-



137

lowing sections that to determine the DFA property of the surviving system is not so pes-

simistic as it looks like. Actually, the information of restriction array [CRI or connection

array [Cs] will be sufficient for determining the DFA property and developing an efficient

fault-tolerant routing scheme for the surviving system and the construction of the maximal

fault set will not be necessary.

For example, a 32 x 32 Omega network with a fault set F is shown in Fig. 5.4(a). For

easily constructing the surviving system, we show an alternative drawing of the Omega net-

work as in Fig. 5.4(b) which is a butterfly structure. The switching elements [(1,4), (1.12))

and ((1,12), (1,13)) at stage 1 are faulty buddy pairs. As we perform Algorithm 2 and scan

the network forward and backward, two switching elements [(0,3), (4,5)) are included in

Fmax due to that those links connected to them are in Fma. And, four other pairs of switch-

ing elements are included in Fn,. due to faulty buddy pairs, i.e., switching elements ((0,6),

(0,14), (2,8), (2,9), (3,2), (3,3), (4,6), (4,7)1 and those communication links connected to them

are included in Fma X. By removing all the components in the maximal fault set from the net-

work, processors {3, 6, 7, 10, 11, 12, 13, 14, 15, 19, 22, 30, 31} are isolated from the original

system. The surviving system (0, 1, 2, 4, 5, 8, 9, 16, 17, 18, 20, 21, 23, 24, 25, 26, 27, 28,

29) is shown in Fig. 5.5.

Based on the construction of the surviving system Sm., an interesting property of the res-

triction array [CR] is derived as described in Theorem 1. Theorem 1 states that the data from

a number of rows of [CR] alone will be sufficient to represent [CRI. We will show in the

next section that this property can save a lot of computational efforts for a processor to find

all the shorteit routes to other processors.



138

THEOREM 1: Let [CR] i , i E Sn,, denote ith row of [CR] which corresponds to proces-

sor i in Sur. If both j and j + N12 are two processors in Sw, 0 j N12 - 1, then [CRIj

and [CR IjN/2 are identical, i.e., [CR ]jk = [CR lj+N/2,k, for all k E S,.

PROOF: Different situations are considered with respect to switching elements and links

in Fmax-

Processor pairs {k, k + N/2} or {2k, 2k +11, 0 !5 k < N/2 - 1, which are connected to

switching elements in Fmax from input or output stages respectively, are removed since they

do not belong to S,,r. Thus, only switching elements from stage 1 to stage n-2 in F,,,f can

affect the communication between processors in S , and need to be considered. As we have

mentioned, any switching element at stage i, 1 <_ i < n - 2, is a common root of two com-

munication trees and 2 '+1 source processors are connected to 2' - ' destination processors

through this switching element (for a single pass through the network). If this switching ele-

ment is in Fmax, then the outgoing paths from these 2i 1 source processors to those 2 n- des-

tination processors will be destroyed. Since i -a 1, at least four source processo-s are affected

by a switching element in Frna. at stage i, 1 :. i < n - 2. That is, any switching element e =

(en-i, e,-2, ..., e 1) at stage i in Fm,., will destroy outgoing paths to the set of destination pro-

cessors {(e i , e_ 1, ..., e,, el, c, .... c)}, #(c) = n - i, of 2 i+1 source processors with the com-

mon address label equal to (c, .... c, en_ 1, en- 2, ... , ei+l), where 2j+1 _ 4 or #(c) = i + 1 > 2.

These 2i+1 source processors can always be partitioned into four groups such that in each

group the first two bits of addresses of all the processors are the same and each processors has

the relative address label equal to (c, ... c, e,_ 1, en 2.... ei. 1), #(c) = i - 1. Note that each

relative address in each of the four groups has n - 2 bits. Each group is a subset of one of



139

stage 0 1 2 3 4

00000 
0

2

3 
4

5 2

6

7

4 4
9

10 55 10
I1I 

I i

12 
1

133

14
7 7 7 14

1s 
15

16 916

17 17

189999 
1

19 
19

X20 0101 20

22
23 23

24 
2

26 
2

27 27

28 141 41 4 28
29 

29

300
31 

3

Fig. 5.4(a). A 32 x 32 Omega network with a flault set.



140

stage 0 1 2 3 4

00 0

16

17 3

18 5

36

19

4

:0 9

13

3 15

8 148 1

24 17

9 91

:5 19

to 1001

:6 21

27 23

12 1 2 2

28 25

13136

29 -27

14 2

30 29

31 31

Fig. 5.4(b). An alternative drawing of the Omega network with the same fault set.



141

stage 0 1 2 3 4

0 00000 0
16 1

17 3

18 5

3 1296

19

4 44

20 9

555 0 10
21 11

6 12
22 13

7 7 14134
23 1S

24 17

9 29 1

25 19

10 1 o 2
26 21

U117111 2
27 23

28 25

13 2
29 27

14 1 4 2
30 29

is151 30
31 31

Figy. 5.5. The surviving substructure of the system inl Fig. 5.4 after
removing all the components in the maximal fault set.



142

the four subsets of processors y, = {x.N/4 + y I 0 y < N/4 - 1},0< x <3. That is, {(0,

0, c ,... c, e 1, en_-2, ..., ei +1)} ) C = {(0, 0, Yn -3, Ya- .... YI y0)}, (0, 1, c ..., c, en_ 1 ,

en 2 .. ei+l) } c 1= 1(0, 1, V3, - ... Y 1, Yo)), ((1, 0, c, ... c, en_ 1, en_ 2. . e )} c

2= (1, 0, Yn-3, Yn--4 .... ' Y1, Yo)}, and ((1, 1, c, ..., c, en-1 , en_ 2, ... , ei+l)} c 'V3 = {(1, 1,

Yn-3, Yn-4, .--, Yl, Yo)}. Note that not all the 2
i + 1 processors {(c, ..., c, en- 1, en 2, ... , ei 1 ) I

#(c) = i + 1 > 2) may exist in S,,. since some of them may be removed due to the switching

elements in Fmax from input or output stages. Therefore, we are ready to make the following

conclusions. Any switching element in Fn. will destroy the communication from four

source processors with the same relative address in each of the four subsets to the same set of

destination processors. Of cause, we assume here that two or more of these four source pro-

cessors exist in SU, I i.e., not all and at most two of them are removed due to the switching

elements in Fmax from input or output stages, otherwise it becomes a trivial case. Thus, the

combined effect of ail the switching elements in Fmax on these processors in Su. with the

same relative address in each of the four subsets is that the resulting communication capability

of these processors for a single pass through the network is identical. That is, if Fmax con-

tains only switching elements and if U = {k + l.N/4 I 0 1 3) n Su , 0 k < N14 -

1, then for all x E U, [CR ] 's are identical. It is also true for the statement that if Fmax con-

tains only switching elements and both processors j and j + N/2 are in S_,_ 0 < j !5 N12 - 1,

then [CR ]j and [CR Ij+N/2 are identical.

Similarly, for any communication link in Fmax , the communication capability of at !east

two processors are affected. AL the affected processors can be partitioned into two goups.

Each group corresponds to the same relative addresses in one of the two subsets of processors

= x N/2 + y I 0 < y < N/2 - 1), 0 < x < 1. Therefore, if Fmax contains only links and



143

both processors j and j + N/2 c Sr, 0 < j < N/2 - 1, then [CR ]j and [CR Ij+N/2 are identi-

cal.

For example, in Table 5.1, the restriction array [CR] and the connection array [Cs ] are

shown for the surviving system in Fig. 5.5, where each entry "*" or "C" represent 1 and else-

where, -1. The results can be checked directly from Fig. 5.5. Moreover, we have [CR ]0 =

[CR316, [CR]I = [CR117, [CR12 = [CR318, and so on. The correctness of Theorem 1 is obvious.

5.3.D. Construction of Shortest-Path Routing Tables

After the restriction array [CR] or connection array [Cs] of S, are obtained, it is

straightforward to model the multipass routing problem on Sr by using a simple directed

multigraph. Obviously, to know whether there exist communication paths between any pair of

processors of S,, by going multiple passes through the faulty network is equivalent to deter-

mine the reachability between these two vertices on a simple directed multigraph. In order to

reconfigure the surviving system in a most efficient way, an appropriate fault-tolerant routing

scheme between the surviving processors need to be developed, which is our major concern in

this section. We show that a breadth-first-search algorithm [PrYe73] can be used to find

shortest multi-pass communication paths between any pair of processors in the surviving sys-

tem. Hereafter, the two terms, communication paths and paths, will be used interchangeably

to represent routing paths by one or more passes through the faulty network unless otherwise

specified.

Imagine that we have a set V with #(S,) vertices which are indexed on the set S,,.r For

each vertex vi E V, there is a corresponding processor i, i E S,,,. A #(S,.)-vertex directed

multigraph, G, can be constructed as follows: there is an arc (vi7t j ) from vi to v iff [Cs ,J



144

= 1, where vi , vj r V. In other words, the arc (viV j ) exists iff processor i can access pro-

cessor j by the first pass through the faulty network. Of course, the loop (viVi) always exists

on each vertex vi . A simple directed multigraph is a graph such that for any two vertices, vi

and vi, there exists at most one arc from either vi to vj or vj to vi . Because of the unique-

path property of the Omega network, it is very easy to show that the graph G is simple.

Also, if we assume that all the single-pass communication paths of the network between any

pair of network input and output of the network are equally important, G will be an equally

weighted graph with the same weight on all its arcs. Therefore, we have modeled the surviv-

ing system S r by a simple directed multigraph G which is equally weighted.

Define a new array [Cs] such that for all i, j E Sm, if [Cs]i.j = -1 then [Csilj = 0;

else [C]ij = 1. A vertex vj is said to be reachable from another vertex vi iff there is a path
k k

from vi to vj or (CS)j # 0, for some k 2! 1. (here [Csk represents the kth power of [Cs])

The order of a path (the number of arcs on the path) connecting vi to vj represents the

number of passes needed through the faulty network for processor i to access processor j.

All the intermediate vertices on the path represent those intermediate processors which need to

be traversed. It can be proved [HoSa78] that if vertex vj is reachable from vertex vi on G.
*k

then [Cs]ikj # 0 in at least one k where I ! k < #(Su,) - 1. The graph G is said to be

strongly connected if for each pair of vertices vi and vj, there exists at least one path from vi

to vj and one path from vj to vi . Thus, G is strongly connected iff the surviving system S ,

has the DFA property. Generally speaking, to determine the DFA property of S , we need to

traverse the faulty network at most #(S ,) - 1 passes and check each entry of each array

[C ]k , i.e., determine the reachability between any pair of processors. A similar method is

used in [AgLe85I to understand the DFA property of multiprocessor interconnected by a



145

Thb~e 5.1. The restriction array [CRI and the connection array ICs] for the surviving wstem in Fig. 5.5.

0 1 2 4 5 8 9 16 17 18 20 21 23 24 25 26 27 28 29
0 * * *

1 3 * *

4 * * * • * * * * * * , * , *

8 * ** U
9 * *

16 * *-* •

17 * * U

18 U * . , *

20 * • * * * * • * * * * * *

21 • * * , , , U * * , * , *

23 * ** * * • * *

24 * * * U
25 * * U
26 * , * *

S27 , * *

28 * * * * * , , * , . , * *

29 * * • * * * * * , , * *

[CR=,



146

faulty network. However, the computational complexity is prohibitively high as the size of

system increases.

As long as the shortest communication paths are used for communication between pro-

cessors in the surviving system, an appropriate shortest-path routing table for a processor to

access other processors must be supplied. In order to access a destination processor, the

corresponding entry of the shortest-path routing table for a source processor must include the

following information:

(1) the proper intermediate processors through which its data packets will be routed in the

first pass through the faulty network,

(2) the minimum number of passes through the faulty network to arrive at the destination

processor.

Therefore, the shortest-path fault-tolerant routing scheme on the surviving system is described

as follows. Whenever a data packet arrives at an intermediate processor after a pass through

the network, the control portion of this data packet contains

(1) the source and destination addresses (which will not be changed during communication).

(2) the number of passes left to reach the destination processor,

(3) the address of next intermediate processor (there may exist many possible ones) for the

next pass through the network; this address is appended after the entry corresponding to

the destination processor of the shortest-path routing table of the current intermediate

processor has been referred to.

The address of next intermediate processor is used as the temporary routing tag for the next

pass through the network if it is not equal to the destination address. The number of passes



147

left to reach the destination processor will be subtracted by one after the next pass through the

network and compared with that in the shortest-path routing table of next intermediate proces-

sor for advanced fault-tolerant control. Thus, the information of the intermediate processors

for the first pass given in each entry of a shortest-path routing table will be sufficient to sup-

port this kind of fault-tolerant routing scheme. It is clear that the bit-oriented routing scheme

of the original system (i.e., the Omega network) has been preserved in the surviving system.

By Algorithm 1 and some data manipulation, the connection array [Cs] is obtained. The

data of [Cs ] is then broadcast from the reconfiguration unit to each processor in S. where a

breadth-first-search algorithm is performed to find the shortest-path routing table for each pro-

cessor itself. Thus, the advantage is that an identical breadth-first-search procedure using an

identical set of input data is executed in parallel in each processor of Sn,. To implement the

breadth-first-search algorithm, we need a type of data structure queue that allows two opera-

tions enqueue and dequeue. This type represents a list of elements that are to be handled in

a first-come-first-serve manner. The function of first(Q) denotes the element at the front of

the queue Q. According to the shortest-path routing scheme, for a processor i following the

shortest paths to access the destination processor j, the information of proper intermediate

processors of the first pass through the faulty network will be sufficient. Thus, to access pro-

cessor j, a set intermediate U] is used to include all the possible intermediate processors of

the first pass and passes U I is used to indicate the minimum number of passes required

through the faulty network. Initially, intermediate U ] is an empty set and passes [j] = 1, for

all j E S,,. An index set I is used to contain all the intermediate processors which processor

i can reach in the first pass through the faulty network. Eventually, the shonest-path routing

table of processor i is given by ith row of an array [As], i.e., [AS J =



148

(intermediate U ], passes U ])i = (ij, Pij) gives the routing information to access processor

j. Thus, if intermediate U/ I in [As ]i j , then this means that processor i can access pro-

cessor j by routing its data packets through any one of the intermediate processor in

intermediate Uj] in the first pass and that its data packets will arrive at processor j in the

minimum passes UI passes through the faulty network. However, if intermediate Li] = for

at least one j, then this means that processor i cannot access all the processors in S,. Algo-

rithm 3 gives the procedure to construct the shortest-path routing table for a processor i in the

surviving system Sur*

Algorithm 3:

[ Construct the shortest-path routing table for each processor in S,.

procedure Breadth-First-Search (i e S,: processor, [Cs]: array)

Q - { empty queue }

I - € ( empty set of intermediate processors }

for each j e Su, such that [Cs ]ij # -1 do
I +- Li. {j}

intermediate Li I <- intermediate [U ]I (j }

enqueue j into Q
loop to find shortest paths }

if I # S., then

while Q 4 do

J + first (Q)

dequeue j from Q

for each k such that [Cs ]j.k -l do

if (passes[k] = 1 or passs[k] - 1 passes[j) and k e S,./{I}
then

intermediate [k I - intermediate j ] u intermediate [k I
passes [k] - passes Li] + 1

enqueue k into Q

the shortest-path routing table }

for each j E Sur do



149

[As ]ij <- (intermediate j ], passes [ ])i

The correctness of Algorithm 3 is discussed as follows.

Algorithm 3 is essentially a procedure applying a breadth-first-search on the multigraph

G as mentioned above. Hence, to obtain the minimal number of passes through the faulty

network for processor i to access other processors, we simplely traverse the multigraph G

starting from vi (processor i) using a breadth-first-search. That is to say, we start from vi and

visit all the sons of vi , then visit all the grandsons of vi , and so on. The visiting continues

until all the visitable vertices have been visited. It can be shown that for vj to be visited, the

paths from vi via its parents are shortest. Thus, the first step of shortest paths from vi to vj is

the same as the first step of shortest paths from vi to parents of vj. Therefore, the shortest

paths from vi (processors i) to all the visitable vertices (processors) are traversed. Moreover,

the breadth-first-search searches all the possible descendent vertices (processors) from vertex

i. If at a level of search no new son vertices are visited, it means that a subset of previously

visited vertices will be visited again. Since all the son vertices of these previously visited

vertices have been extensively searched, no possible paths exist from these visited vertices to

other new vertices. That is to say, the search is terminated if at a level of search no new son

vertices are visited (all the searching branches become loops). The above argument gives the

proof of the fact: there are no paths from vertex i to vertex j iff there are no shortest paths

from vertex i to vertex j by Algorithm 3. Assume that the total number of arcs traversed is

E when Algorithm 3 is implemented starting from a vertex on G. It is easy to show that the

time complexity of Algorithm 3 (which is a breadth-first-Search algorithm) is O(E + N) =

0(max(E,N)). We will prove that 0(max(E A)) = 0(N 2) in Section 5.4 where the overall

time complexity of our fault-tole:a; it reconfiguration scheme is discussed.



150

According to Theorem 1, a lot of computational efforts can be saved by using the restric-

tion array [CR I instead of the connection array [Cs ]. It is clear that in the worst case where

the size of SU, is N, the first half of rows of [CR], i.e., {[CRi I 0 !5 i !5 N12 - 1}, will pro-

vide enough information to find all the shortest-path routing tables. Moreover, at most N/2

processors will be sufficient for computing all the N shortest-path routing tables.

For example, in Table 5.2, the shortest-path routing tables associated with the faulty

Omega network in Fig. 5.5 are shown. For simplicity, only the parameter D3i. (the minimal

number of passes) of an entry [As ]j' is shown in Table 5.2.

5.3.E. Reconfiguration of The Surviving System

By Algorithm 3, each processor in the surviving system obtains its shortest-path routing

table. In some situations, some processors may only be able to access a part of processors in

the surviving system. For example, in Fig. 5.5, processor 1 cannot access processors (4, 5.

20, 21, 23, 28, 29). Obviously, such situations are due to the criticality of the fault set with

respect to the surviving system. An implicit deadlock has arisen under such circumstances

and shortest-path routing tables become traps if they are not used cautiously. Let us consider

the following case on the surviving system in Fig. 5.5. Processor 5 can dynamically fully

access all the processors in S,. It is clear that if data packets from processor 5 are sent to

processor 1, no possible acknowledge signals will be received by processor 5. That is to say,

there will be a deadlock between processor 1 and processor 5. Such a situation must be

avoided. Therefore, from the viewpoint of a reliable reconfigurable environment, a deadlock-

free reconfiguration algorithm must be employed so that only the bidirectional communication

is maintained on the surviving system. Central to the design of such a deadlock-free



151

Table 5.2. The simplified shortest-path routing tables of the surviving system in Fig. 5.5.

0 1 2 4 5 8 9 16 17 18 20 21 23 24 25 26 27 28 29
0 * ** ++ S 0 + + + +
1 + * + * * U0 • 0 0

2 + +* + + + + + • , * ,

4 * * * * + ++ * * * * * * * , * , -

5 + + + 6 * * * * * * • -*- - , * * . * ,

8 * * * *++ S 0 0 - + +

9 + + + * * 0 0 0
16 * • •+ * , * + + + +
17 + ++ • * , S * * *
18 ± ++ + - + + * * * * ,

20 * * * +++ + * * * * , * , * + +
21 + ++ • * * , * * * + , * + * * ,
23 + + * * * • * + + * + + + + + +
24 • •* + + * * * * + + +
25 + + + ** * U 0 , 0 0

26 + + + ++ + + + , * * ,

27 + + + + + + + + *
28 * * * + + ++ * , , * * , * , , * * +
29 + + + • * * , * + + * , * , , *

* the first pass the third pass
+ •the second pass U the fourth pass



152

procedure is the sacrifice of some usable links or switching elements and the partitioning of

the surviving system into a number of subsystems such that each of which possesses the DFA

property (i.e., the fault set is noncritical with respect to each subsystem). In order to utilize

the surviving system in a most efficient way, a subsystem should be a maximal disjoint set

which only includes all the possible processors with bidirectional communication capability

among them. Such a deadlock-free reconfiguration algorithm is our goal in this section.

The reconfiguration monitor is notified with the criticality of the fault set whenever a

surviving processor finds itself cannot access some processors in the surviving system, i.e., for

some i, j E Sur, cci j = 0. All the shortest-path routing tables are collected by the

reconfiguration monitor where array [AS] will be inspected. According to the following

definition, the reachability array [Hs ] corresponding to Sur is obtained.

DEFINITION 6: [Hs] is a #(S,,) x #(S,.) boolean array associated with [AS] such that

for i, j e Sur, entry [Hs ]Ii j is a boolean constant which is either True or False. [Hs ]i.J is

defined as follows: [Hs ]i. = False if ao.j = 0; otherwise [Hs ]ij = True. C1

Each [HS ]i. = True indicates that there exists at least one path from processor i to pro-

cessor j. To avoid the problem of deadlock, the use of unidirectional communication paths

between two processors must be prohibited. For example, if [Hs ]i,j = True but [Hs]j.i =

False, then paths from processor i to processor j should not be used again. A new array

[H ] is employed to monitor the status of bidirectional communication between any two pro-

cessors in Sur. Array [HsJ is defined as follows.

DEFINITION 7: [Hs]I is a #(Sur) x #(S,) boolean array associated with array [Hs such

that for i, j E Sur entry [H15%,1 = [Hs]'.i = [HS ]i.j A [Hs ]j.i, where A is a boolean AVD



153

operation. El

Thus, array [Hs] is a symmetric array with diagonal elements equal to True. For any

i, j E Sur, [Hs1i4 = True iff there exist bidirectional communication paths between proces-

sor i and processor j. It is obvious that array [Hs] consists of a number of "True" blocks in

which all the entries are equal to True. The method to construct all the possible maximal dis-

joint sets in S,, is based on the following argument: a processor i belongs to a disjoint set Cj

which must be maximal iff [Hs]ik = True, for all k E Cj, and [H]ij = False, for all I E

Sur/CJ . Thus, the subsystem Cj is the maximal disjoint set which contains processor i and

possesses the DFA property, i.e., the fault set is noncritical with respect to C1 . This argument

is formally described by the following theorem.

THEOREM 2: Assume that there exists an i E Sur and T Sur such that [Hik =

True, for all k E T, and LHsJi l = False, for all I E S,./T. Thei, for any x, y e T and:

C uriT, [Hs]xy = True and [HS]x z = False. Moreover, T is the maximal disjoint set

which contains processor i and possesses the DFA property.

PROOF: Since [Hf] is a symmetric array with diagonal elements equal to True, i E T is

always zrue. If [Hs]i.k = True, for all k E T, and [Hs]i,l = False, for all I E S,,/T, then

[Hk, = True and [H*]I i = False. Thus, for any x,y e T, there exist communication paths

both from x to y and from y to x. That is, by Algorithm 2, shortest paths either from x to y

or y to x have been found. Therefore, [H!]X y = True, for all x,y E T. However, if there

exists a z r SriT such that [Hs]X. z = True, for some x E T/{i }, this means that there exist

communication paths from z via x to i, i.e.. [Hs]i z = True which contradicts our assump-

tion. Therefore, [HsIX ,z = False, for all z E SI,T and all x E T. Moreover, elements of T



154

are all the possible processors possessing bidirectional communication capability with proces-

sor i. This is based on the fact that array [HS] is a modified array derived from the reacha-

bility array [HS I. Therefore, T is the maximal disjoint set which contains processor i and

possesses the DFA property. 0

By Theorem 2, the maximal disjoint set Ci to which processor i belongs is composed of

those processors k's such that [Hs]ik = True. Thus, the shortest-path routing table of pro-

cessor i can become a deadlock-free one by modifying [As ]i as follows.

I modify shortest-path routing tables to deadlock-free ones I
procedure Update (i c S,: processor, [Hs]: boolean array)

for each j E Su. such that [Hsi = False do

[As ]i~j (, O)i

For example, the updated routing tables [As] for the surviving system in Fig. 5.5 is

shown in Table 5.3. Those unidirectional communication paths from, say, processor 20 to

processors {0, 1, 2, 8, 9, 16, 17, 18, 24, 25, 26, 27) are discarded.

However, for the reconfiguration monitor to obtain the global information of utilization

of the surviving system, a better way to implement the deadlock-free reconfiguration algo-

rithm is described as follows. The work of reconfiguring the surviving system into smaller

subsystems is essentially to group processors in the surviving system into maximal disjoint

sets such that in each set the DFA property (i.e., the bidirectional communication capability)

is preserved. Initially, the #(S,) processors are in #(Su,) different sets. A canonical object,

named set [i , is chosen to serve as the label for the set of processor i, i E S,. Since there

is no preference for the choice of labels as long as they are canonical, it is natural that the

address of a processor is sufficient to serve as the label, i.e., set [i] = i initially. A reference



155

processor nonzero [i for processor i contains the address of an arbitrary processor j such that

[Hlij = 1 and i j I. The reconfiguration starts randomly from any processor in Su, by

searching and changing the label of another processor to its label iff there exist bidirectional

communication paths between them. A processor k is included in a disjoint set iff the label

of its reference processor has not been changed, i.e., set [nonzero [k]] = nonzero [k 1. Eventu-

ally, all the labels of processors in a maximal disjoint set will be the same and are equal to

the label of some arbitrary processor in the maximal disjoint set. The following is the

deadlock-free reconfiguration algorithm.

Algorithm 4:

Reconfiguration of The Surviving System }

procedure Deadlock-Free Reconfiguration (S,: the surviving system; [11]:
boolean array)

Q - 0 { empty queue }

N -

for each i E Sur do

enqueue i into Q

find maximal disjoint sets Cj's }

while N # #(S,) or Q 4 do

j <-- first (Q)

k <-- nonzero[j]

if set[k] = k then
for each I such that [Hs=j, l  True do

set[l *- j

N *---N +#(Cj

dequeue j from Q

Algorithm 4 scans each processor in Su, (they may be selected randomly) by searching

all the possibly processors for a maximal disjoint set until all the #(S,) processors have been

classified into different maximal disjoint sets. To distinguish maximal disjoint sets which



156

Table 5.3. The modified shortest-path routing tables [As] of the surviving system in Fig. 5.5.

0 1 2 4 5 8 9 16 17 18 20 21 23 24 25 26 27 28 29

0* + + • •+ + + +

+ + * 0 - * *

+ + +, ., 4 + + -- :

5 0* * + + * *

8 , , ,+ S 0 0 + + + 4-

9 + + + ** U U U 0 0 0 0

16 * *• ++ * 0 0 + + + +

17 + + + * • * 0 * * * *
18 + ++ + + + + * * * * *

20 -+ * * * + +

21 00 * * + * *

23 ** + + * + +

24 * ** + * * * + + +

25 + ++ * * * • * * . .

26 + + + + + + + + * * • *

27 + + + + + * * * + + + *

28 + + * * * * +

29 * - * *

• the first pass e the third pass
+ the second pass U the fourth pass



157

have been previously found from the maximal disjoint set which is being currently con-

structed, we need only check whether or not the nonzero parameter of a processor currently

searched has been changed (based on the fact of Theorem 2). After the implement of Algo-

rithm 4, the information of a maximal disjoint set is sent back from the reconfiguration moni-

tor to each processor of the maximal disjoint set. Then, the shortest-path routing table of a

processor is updated to a deadlock-free one according to the maximal disjoint set to which the

processor belongs.

updates shortest-path routing tables to deadlock-free ones }

procedure Update (Ci: maximal disjoint set; j E Ci: processor)

for each k c S1,/Ci do
[As ]j~k <- (0, O)j

After all the shortest-path routing tables (i.e., array [As]) has been modified, a number of

usable links and switching elements were implicitly sacrificed. These components construct

those unidirectional communication paths which were discarded as array [H;] was derived

from [Hs]. Also, a number of subsystems are formed from the original surviving system.

Each maximal disjoint set corresponds to such a subsystem.

For example, by Algorithm 4, the surviving system in Fig. 5.5 is partitioned into two

subsystems with DFA property. These two subsystems are {0, 1, 2, 8, 9, 16, 17, 18, 24, 25,

26, 271 and (4, 5, 20, 21, 23, 28, 29), respectively. The partitioning results are shown in Fig.

5.6. Implicitly, those usable switching elements ((1,8), (1,10), (1,15), (2,13), (3,4), (3.8),

(3,14)) Lind some usable links connected to them are sacrificed.



158

stage 0 1 2 4

:17 : 3

3 1296
19 o

44

209

5S 1 10
21 11

6 12
22 13

7 7 14 F31

23 1

A 19

A1 05500 z

263

12

28 2

13 1 17F 3 2
29 

E

1414 2
30 29

1s 15 i 30
31 L.J31

Fig. 5.6. Two subsystems are formed from the surviving system in Fig. 5.5.



159

5.4. COMPLEXITY OF THE FAULT-TOLERANT RECONFIGURATION

SCHEME

The time complexity of the proposed fault-tolerant reconfiguration scheme is analyzed as

follows. Assume that the time overhead spent on data communication between

reconfiguration monitor and processors is negligible.

(1) Algorithm 1 (the Accessibility) takes a time in 0 (N (logN) 2).

(2) The manipulation of a variety of arrays: [C ], [CR ], [Cs ], [Hs] and [Hs], takes a time

in 0 (N 2).

(3) Algorithm 3 (the breadth-first-search) takes a time in 0 (N2). (We will explain this

later.)

(4) Algorithm 4 (the Deadlock-Free Reconfiguration) takes a time in 0 (N).

(5) Updating the shortest-path routing table for a processor takes a time in 0 (N).

Therefore, the time complexity is dominated by the time spent on the manipulation of a

variety of arrays and Algorithm 3 which are in 0 (N 2). The following gives the detailed

proof of the time complexity of Algorithm 3 which is a breadth-first-search on a directed mul-

tigraph.

Algorithm 3 searches all the accessible processors for a surviving processor by a minimal

number of passes through the faulty network. It is obvious that the complexity is equal to the

ntmber of accessible processors plus the total number of single-pass communication paths

traversed (i.e., the total number of arcs traversed on G) to search these accessible processors.

The number of accessible processors for a surviving processor is at most N which is straight-

forward. However, to calculate the number of required single-pass communication through



160

the faulty network needs some sophisticated efforts. The difficulty arises from that the varia-

tion of the number of single-pass communication paths traversed is closely related to the dis-

tribution of faulty components and the closed form of their relationship is hard to get. Thus,

an approximate method might be used to find an upper bound. Assume that a processor can

access all the N processors by at least k+1 passes through the faulty network, 1 < k < N - 1.

That is, by Algorithm 2, (N - x 1) processors are searched by the first pass, (x I - x 2) proces-

sors are searched by the second pass, • • • , (x,-, - xk) processors are searched by the kth

pass, and xk processors are searched by the (k+l)th pass, where N >X 1 >X2>X3 > ... >

xk 1 > xk > 0 and all x i 's are integers. For the first pass, the number of single-pass paths

traversed is equal to (N - x 1). For the second pass, not all the (N - x 1) intermediate proces-

sors which have been searched in the first pass can access all the (xI - x 2) processors. In

general, part of these (x1 - x 2) processors are searched by routing through part of those (N -

I) intermediate processors and another part, by some part of others. Because of the sym-

metric structure of an Omega network, we may think that those x1 processors which cannot

be, searched by the first pass are uniformly distributed over the (N - x 1) intermediate proces-

sors. Hence, a reasonable estimate of the portion of the (N - xI) processors through which

the (x1 -x,) processors can be searched by the second pass is (N - xl)/N. Therefore, an

estimated upper bound of the number of single-pass paths traversed by the second pass is

N -x 1N( )-(N - X 1)'(X1 - X2)"
N

Similarly, an estimated upper bound of the number of single-pass paths traversed by the ith

pass, I < i < k is

S )'{--2 - --. )'(x--1  - x,)

Xi -2



161

and the estimated upper bound of the number of single-pass paths traversed by the (k+l)th

pass is

Xk_ 1 - Xk( )'X_ - Xk)'(Xk ).
Xk-1

Now the complexity analysis of Algorithm 3 can be modeled as the following problem.

For an arbitrary distribution of a fault set, there exists a number k, 1 < k < N - 1, such that

by Algorithm 3 a surviving processor can search all the accessible processors (either all or a

part of the N processors) by k+1 passes through the faulty network. Let the number of

accessible processors be M !5 N and E denote the total number of single-pass communication

paths traversed by Algorithm 3. It can be shown from the above argument that E is bounded

by the following equations:

M -x 1
E < M - x, + ( M )-(M - X).(x -x, )

x 1 - 2
_ .X 1XX - X 2)'(X 2 - X 3 )

Xl

-- - Xk
+ •..+ (- )'(Xk_1 - Xk) . ( tk)

Xk-1

=f (X 1, X2 .... Xk)

=f Wx,

where

M >X 1>x2>X3 > Xk-l >Xk >0,

xi, for all 1 < i < k, are integers.

Thus, the analysis of complexity of Algorithm 3 has become the constrainted optimization

problem where we want to find the maximum of a set of nonlinear functions with inequality



162

constraints. In general, the nonlinear optimization technique rWiCh78] may be employed to

find the maximal value among all the possible functions f (x) with inequality constraints

which will be the upper bound of E. That is, we have an optimization problem whose solu-

tion gives the upper bound of E: for each 1 5 k 5 N - 1, find

max f (x)

such that

gi(x) < 0, i = 1,2 .... k, k+l

where

x, - N, i=1
gi (x) ="x i - x i - , 2 !5 i <5 k.

-Xk,'  i =k+l

However, a simpler way to obtain the upper bound is discussed as follows.

It is obvious that

h(x) =M 4 -X I+ (M - Xl)'(x I -X2) + (X1I -x'(x2-x3) + +

(xk I - Xk )(xk)

> f (x).

To find the maximum among functions h (x), a geometrical method is used here. See Fig. 5.7.

It is easy to show that the total area of those shadowed rectangles is equal to h (x). For any k

and any arrangement of the values of xi 's, this total area is always less or equal to M 2/2.

That is,

max h (x) > max f (x).
2 X x



163

N

M

X2

X44

Xk

1Xk Xk-.1 Xk-.2 X5 X4 X3 X2  XI M N

Fig. 5.7. The diagram used to explain the complexity of Algorithm 3.



164

And the maximal value of M is N which means that the set of accessible processors of a pro-

cessor by multiple passes through the faulty network is all the N processors. Therefore, the

upper bound of E is in 0 (N2). Obviously, the above argument gives the proof that Algo-

rithm 3 takes a time in 0 (N 2).

5.5. SUMMARY

What we have presented in this chapter is a flexible and real-time reconfiguration scheme

for a multiprocessor system with a faulty network. Even though our fault-tolerant

reconfiguration scheme is developed for an N-processor system interconnected by a log 2N-

stage Omega network, it can be easily extended to a system interconnected by other networks

which are topologically equivalent to the Omega network [Agr83] and are constructed by

switching elements with different size. Moreover, our scheme can be used on a system inter-

connected by a k -stage network, k > n, as long as the routing scheme on this network is

known. The principle of the reconfiguration of a system is conceptually to eliminate faulty

components and, if necessary, sacrifice some usable components implicitly without knowing

the actual locations of these components. A deadlock-free environment is provided for the

reconfigured system such that the performance of the system is gracefully degraded.

Deadlock-free shortest-path routing tables are obtained for processors in the surviving system

to avoid possible deadlock traps which may be caused by the unidirectional communication

rather than bidirectional communication between some processors. Because of the bit-oriented

routing property of the Omega network [Law75], by generating the destination tag and refer-

ring to the routing table, a data packet from a source processor can always be routed through

a proper intermediate processor during each pass through the faulty Omega network. Since



165

the routing table provides information of multiple communication paths, a load-balancing

scheme may also be employed to reduce traffic contention.



166

REFERENCES

[AgLe85] D.P. Agrawal and J.S. Leu, "Dynamic acce.;sibility testing and path length

optimization of multistage interconnection networks," IEEE Trans. Comput.,

Vol. C-34, pp. 255-266, Mar. 1985.

[AgSw88] D.P. Agrawal and N.K. Swain, "Analysis and Design of Nonequivalent Multis-

tage Interconnection Networks," IEEE Trans. Comput., Vol. C-37, pp. 232-237,

Feb. 1988.

[Agr8O] D.P. Agrawal, "Automated testing of computer networks," Proc. 1980 int.

Conf. Circ. Comput., pp. 717-720, Oct. 1980.

[Agr82] D.P. Agrawal, "Testing and fault-tolerance of multistage interconnection net-

works," IEEE Computer, Vol. 15, pp. 41-53, Apr. 1982.

[Agr83] D.P. Agrawal, "Graph theoretical analysis and design of multistage interconnec-

tion networks," IEEE Trans. Comput., Vol. C-32, pp. 637-648, Jul. 1983.

[Bat76] K.E. Batcher, "The Flip Network in Startan," Proc. Int. Conf. Parallel Pro-

cessing, pp. 65-71, Aug. 1976.

[BeFo88] J.C. Bermond and J.M. Fourneau, "Independent Connections: An Easy Charac-

terization of Baseline-Equivalent Multistage Interconnection Networks," Proc.

of International conf. on Parallel Processing, 1988, pp. 187-190.

[Bhu87] L.N. Bhuyan, "Interconnection networks for parallel and distributed process-

ing," IEEE Computer, 20, pp. 9-12, Jun. 1987.



167

[DaBh85] C.R. Das and L.N. Bhuyan, "Reliability simulation of multiprocessor systems,"

Proc. Int. Conf. Parallel Processing, Aug. 1985, pp. 764-771.

[FaPr8 11 K.M. Falavarianai and D.K. Pradhan, "Fault-diagnosis of parallel processor

interconnection networks," Proc. l1th Annu. Int. Symp. Fault-Tolerant Comput.,

Jun. 1981.

[Fen74] T.Y. Feng, "Data Manipulating Functions in Parallel Processor and Their

Implementations," IEEE Trans. Comput., Vol. C-23, pp. 309-318, Mar. 1974.

[Fen8l] T.Y. Feng, "A Survey of Interconnection Networks," IEEE Coriputer, Vol. 14,

No. 12, pp. 12-27, Dec. 1981.

[FuAb83] W.K. Fuchs, J.A. Abraham and K.H. Huang, "Concurrent error detection in

VLSI interconnection networks," Proc. 1983 Int. Symp. Computer Architecture.,

pp. 309-315, 1983.

[GaMa88] I. Gazit and M. Malek, "Fault tolerance capabilities in multistage network-based

multicomputer systerr.," IEEE Trans. Comput, Vol. 37, no. 7, pp 788-798, Jul.

1988.

[GoLi78] L.R. Goke and G.J. Lipovski, "Banyan Networks for Partitioning Multiproces-

sor Systems," 5th Annual Symposium on Computer Architecture, pp. 21-28.

Dec. 1978.

[HoSa78] E. Horowitz and S. Sahni, "Fundamentals of computer algorithms." Computer

Science Press, 1978.

[HuTr86] S.T. Huang and S.K. Tripathi, "Finite State Model and Compatibility Theory:

New Analysis Tools for Permutation Networks," IEEE Trans. Comput.. Vol.



168

C-35, pp. 591-601, Jul. 1986.

[Hwa84I K. Hwang and F.A. Briggs, "Computer Architecture and Parallel Processing,"

McGraw-Hill pub. 1984.

[KrSn86] C.P. Kruskal and M. Snir, "A Unified Theory of Interconnection Network

Structure," Th. Comp. Sci., Vol. 48, No. 1, pp. 75-94, 1986.

[Law75] D.H. Lawrie, "Access and alignment of data in an array processor," IEEE

Trans. Comput., Vol. C-24, pp. 1145-1155, Dec. 1975.

[LeeS5] K. Y. Lee "On the rearrangeability of 2(log2N) - I stage permutation

networks,"IEEE Trans. Comput., Vol. C-34, pp. 412-425, May 1985.

[Len78] J. Lenfant, "Parallel permutations of data: A Benes network control algorithm

for frequently used permutations," IEEE Trans. Comput., Vol. C-27, pp. 637-

647, July 1978.

[NaSa81] D. Nassimi and S. Sahni, "A self-routing Benes netwo:k anrd parallel permuta-

tion algorithms," IEEE Trans. Comput., Vol. C-30, pp. 241-249, May 1981.

[NaSo80] J.J. Narraway and K.M. So, "Fault diagnosis in inter-processor switching net-

works," Proc. 1980 Int. Conf. Circ. Comput., pp. 750-753, Oct. 1980.

[ParS0] D. S. Parker, "Notes on shuffle/exchange-type switching networks," IEEE

Trans. Comput., Vol. C-29, pp. 213-222, Mar. 1980.

[Pat8l] J.H. Patel, "Processor-Memory Interconnections for Multiprocessors,' IEEE

Trans. Comput., Vol. C-30, pp. 771-780, Oct. 1981.

[Pea77I M.C. Pease, "the Indirect binary n-cube Microprocessor Array," IEEE Trans.

Comput., Vol. C-26, pp. 458-473, May 1977.



169

[PrYe73] I.P. Preparata and R.T. Yeh, "Introduction to discrete structures for computer

science and engineering," Addison-Wesley Pub. 1973.

[ReNi77] E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory

and Practice, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977.

[ShHa84] J.P. Shen and J.P. Hayes, "Fault-tolerance of dynamic-full-access interconnec-

tion networks," IEEE Trans. Comput., Vol. C-33, no. 3, pp. 241-248, Mar.

1984.

!ie791 H.J. Siegel, "Interconnection Networks for SIMD Machines," IEEE Computer.

Vol. 12, pp. 57-65, Jun. 1979.

[SiSm78] M.C. Pease, "the Indirect binary n-cbe Microprocessor Array," IEEE Trans.

Comput., Vol. C-26, pp. 458-473, May 1977.

[Ste831 D. Steinberg, "Invariant properties of the shuffle-exchange and a simplified

cost-effective version of the Omega network," IEEE Trans. Comput.. Vol. C-

32, pp. 444-450, May 1983.

[Sto7l] H. S. Stone, "Parallel processing with perfect shuffle," IEEE Trans. Comput..

Vol. C-20, pp. 153-161, Feb. 1971.

[T,aNe83] S. Thanawastien and V.P. Nelson, "Optimal fault detection test sequences for

shuffle/exchange networks," Proc. 13th Annu. Int. Symp. Fault-Tolerant Corn-

put.. pp. 442-445. Jun. 1983.

[VaRa891 A. Varma and C.S. Raghavendra, "Fault-tolerant routing in multistage intercon-

nection networks," IEEE Trans. Comput., Vol. 38, pp. 385-393, Mar. 1989.



170

[WiCh78] D.A. Wismer and R, Chattergy, "Introduction to nonlinear optimization,"

North-Holland Pub. 1978.

[WuFe79] C.L. Wu and T.Y. Feng, "Fault-diagnosis for a class of multistage interconnec-

tion networks," Proc. 1979 Int. Conf. Parallel Processing, pp. 269-278, Aug.

1979.

(WuFe80] C.L. Wu and T.Y. Feng, "On a Class of Multistage Interconnection Networks,"

IEEE Trans. Comput., Vol. C-29, pp. 694-702, Aug. 1980.

[WuFe8 11 C. Wu and T. Feng, "The universality of the shuffle-exchange network," IEEE

Trans. Comput.. Vol. C-30, pp. 324-332, May 1981.



DISTRIBUTION LIST

addresses mum n er
ot copies

RADC/COAC 30
ATTN: Jon VaLente
Griffiss AF9 NY 13441-5700

Syracuse University 5
Office of Sponsored Programs
Skytop Office 3uiLding
Skytop Road
Syracuse NY 13213

RADC/DOVL
Technica Library
Griffiss AF9 NY 13441-5700

Administrator 2
Defense Technical Info Center
DTIC-FDAC
Cameron Station 3uiLding 5
ALexandria VA 223]4-145

Strategic Defense Initiative Office
Office of the Secretary of Defense
dash DC 20311-7100

RADC/COAC
Griffiss AF3 NY 1,441-5700

HQ USAF/SCTT
'ashington DC 20330-519,

S FI A3SC

Pentagon Rm 4D 26?
'ash DC 20330

DL-1



NavaL warfare Assessment Center

GIDEP Operations Center/Code 30G
ATTN: E Richards
Corona CA 91720

HQ AFSC/XTH
Andrews AFB MO 20334-5000

HQ SAC/SCPT
OFFUTT AFS NE 68046

tQ TAC/DRIY
ATTN: Maj. Divine
LangLey AF3 VA 23665-5575

44 TAC/DOA
LangLey AF3 VA 23665-5354

ASD/ENE4S
4right-P3tterson AF9 CH 45433-b503

SM-ALC/M4CEA
ATTN: Danny McClure
3Ldg 237, MASOF
4cCl tLin AFB CA 15652

'iriqnt-0 3tterson 4F H 45433-,543

)L-2



WRDC/AAAI-2
ATTN: Mr Franklin Hutson
WPAF3 OH 45433-6543

AFIT/L)Ec
3uiLdinq 642, Area 3
Wright-Patterson AF3 OH 45433-6583

WRDC/MLPO
ATTN: D.L. Denison

WPAF3 OH 45433-6533

J DC /TEL
Wright- Otterson AF3 OH 45433

AAMRL/HE
Wright-Patterson AF9 OH 45433-6573

Air Force Human Resources Lab
Technical Documents Center
AF4RL/LRS-TDC
Wright-P3tterson AF3 OH 45433

AUL/LSE
3Ldg 14.5
Maxwell AF3 AL 36112-5564

A TT 'ZoL (iLLilin
a3ndoloh AF3 TX 73150-52:1

DL-3



AFLMC/LGY
ATTN: Maj.3 Shaffer
Suitdinq 205
Gunter AFS AL 36114-6693

US Army Strategic Def
CSSD-IM-PA
PO Box 1500
Huntsville AL 35807-3301

Ofc of the Chief of Naval Operation
ATTN: William J.Cook
Navy Electromagnetic Spectrum Mgt
Room 5A673P Pentagon (OP-941)
4ash DC 20350

Commianding ",f fi cer
lavat Avionics Center
Liorary 0/765
rndianaootis 1:4 46219-2130

Commanding Officer
Naval Ocean Systems Center
Technical Library
Code 96423
S~in Di ?qo '. 2 5I0 J

Ciudr
N4avaL Weaoons Center
rechni c31 Library/C3431
China Lake :A ?3555-0oC1

Suoerintendent
Code 1424
Naval Postgraduate School
'onterey CA 93943-5000

Space 4 Naval Warfare Systems Comm
4ashington DC 20363-5100

zD~U.j. Ir-ty 'si'- omvmand

Av3M..'&D -C S-R/ILL Documents
Relstone Arsenal AL 35813-5241

DL-4



Advisory Group on Electron Devices 2
201 Varick Street, Rm 1140
New York NY 10014

Los ALamos NationaL Laboratory
Report Library
4S 5000
Los Atamos NM 87544

AEDC Library

Tech Fites/MS-100
ArnoLd AF3 TN 37389

om mander, 17 AG
ASQ -NPCA- COL/Tech Lit)
31dg 61i01
Ft Huacnuc, AZ 35613"5000

1839 EIGIEIT

KeesLer AF3 MS 39534-6348

AFEWC/ESRI
San Antonio TX 78243-5000

ESD/XRR
Hanscow AF3 MA 01731-50"0

DL-5



SEI JPO
ATTN: Major CharLes J. Pyan

Carnegie Metton University

Pittsburgh PA 15213-3890

Director NSAICSS
T513/TDL
ATTN: D W Marjarum
Fort Meade MD 20755-6000

Director IJSA/CSS
,4157
100 Sav3ge Road
Fort Meade MD 21055-60JO

NSA
ATTN: D. ALLey
Div X911

93JO Savage Road
Ft *4-ade '4 207 5-0C

Director
NSAICSS

dll DEFSYAC
ATTN: Mr. *ark E. Clesh
Fort George G. leaDe 4D 20755-60CO

Director
4SA/CSS R12
ATTN: Mr. )ennis Heinbuch

930 Savage Road
Fort George G. "e3de 4D 20755-6000

DoD
R31
9300 Savige Road
Ft. *e~de \4D "0755-)00'

9330 33vale ?oad
Ft 'e3de 'A) 2'775

DL-6



Director
4S A! CS S

Fort George G. Meade MD 20755-600o

DOD Comouter Center
cITIC

9300 Savage Road
Fort George G. Meade MD 20755-6000

SDI/S-Pl-qM
ATTN: Cmdr Korajo
The Pentagon
Wash DC 2031L-7100

SDIO/S-01-9 I7
ATTN: C3nt Johnson
The Pent3gon
Wash DC 20301-7000

SDIO/S-Pt-8M
ATTN: Lt Cot Rindt
The Pentaqon
W3sh DC 20301-7100

IDA (SDIO Library)
ATTN: Mr. ALtert PerretLa
L30L N. leauregard Street
ALexandria VA 22311

SAF/AQ'4D
ATTN: *43i M. K. Jones
The Pentagon
Wash DC 2330

AFSC/CV-o
ATTN: Lt Cot FLynn
Andrews AF3 *O 20334-50n0

-4 : 3 )/ Y--
47TT4: -:L lei-,acli

PiJ 3ox ? :0
4orldway 'ostal Center
Los AngeLes CA 9G000-2?6Q

DL-7



HI~ SSD/C'JC
ATTN: Cot 0'3rien
PO 3ox 92960
Wortdway Postal Center
Los Angetes CA 9009-2960

HQ2 SDICNCI
ATTN; COt CoL~ins
PO 30K 92960
Wortdway PostaL Center
Los Angetes CA 90009-2960

HQ SD/CNCIS
ATTN; Lt Cot Pennett
PO Sox 92960
Wortdway PostaL Center
Los Anqetes CA 90009-2960

ATTN%: CoL Pyan
4anscom AF3 4 A 01731-5010

SSOATS
ATTN: Lt Cot Otdenberg
Hfanscomu AF3 IA 01731-50CO

ESOIATJ
ATTNJ: Cot Leib
4ainscom AFa M A 01731-500

AFSTCIXPX (Lt Cot Detucci)
iKirtlind AF3 NM 37117

AFSPACECOM/XPD
ATTN* Mai Roqer Hunter
Patzrson 'Fl :0 O9L4

ATTN: Mr. Pon larking
1737 Centiry Park dest
3LuebeLL P4 114422



MITRE Corp
ATTN: Dr. Donna Cuomo
gedford MA 01730

SSD/CNI
ATTN: Lt Col Joe Rouge
P. 0. 3ox 92960
Los Angeles AF3 CA 90009-2960

NTS JPO
ATTN: M3j Don Ravenscroft
FaLcon AF3 CO 30912

Ford Aerosoace Coro
C/o OockweLl International
ATTN: Dr. Joan Schulz
1250 Academy Park Loop
Colorado Springs CO 30910

Essex Corp
ATTN: Dr. 3ob Mackie
Human Factors Research Div
5775 Dawson Ave
3oleta CA ?3117

Naval Air Development Ctr
ATTN: Dr. lort Metersky

Code 30D
4ar-minster 3A 139974

IJO Enterprises
ATTN: Mr. Dave Israel

1225 Jefferson Davis HY
Suite 300
Arlington VA 22202

GE SD! SEI
ATTN: Mr. 3ill Bensch
1707 Century 23rk west

3LueoeLLL !Q9224

4TT*I: Dr. S3muel Charlton

(irtland AF3 Njm 37117

DL-Q



ESDIXTS
ATTN: Lt Cot Joseph Toote
Hanscom AFB MA 01731

SDIOIENA
ATTN: Cot R. WorrelL
Pentagon
Wash DC 29301

USA-SDC CSSD-H-SBE
ATTN: Mr. Doyle Thomas
HuntsviLLe AL 35807

ATTN; Cit lark Terrace

3t o 7
Peterson AF3 CC 80914

8BN Systems & Technology
ATTN: Dr. Dick Pew
70 Fawcett St

Cambridge 4A 02138

ESD/xTt

ATTN: Lt Cot Paul Monico
Hanscom AFB 4 01730

CSSD-H-S3
ATTN: Mr. Larry Tubbs

Commander USA SDC
PO 3ox 1503
Huntsville AL 35807

USSPACECOM/J53
ATTN: Lt Cot Harold Stanley
Peterson AF3 CO 80914

%)Tr, j~m 1
TTN: 'Ar. 4lat 3ojouner

F3Lcon AF3 CC 30912

DL-I0


