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1. INTRODUCTION

The study of wave propagation in periodic structures began over threr: centuries
ago with Newton’s attempt to derive the speed of propagation of sound. Since that
time, work concerning waves in periodic structures has branched into such diverse
fields as linear particle accelerator design, microwave antennae and filter design, and
the quantum mechanical theories of condensed matter. While much of the recent
work in this field of study has not addressed acoustic waves, the acoustical case is
still a very active field of study. Nearly all of the work in acoustics, however, concerns
the problem of waves in elastic solids - most of that work concerning phonons, the
quantized clementary acoustic excitation. The present study concentrates on the
behavior of fluid-borne sound in a periodically varying waveguide.

The motivating interest in this study is that the waves which occur in periodic
media, known as Bloch waves (Kittel, 1986), have very unusual dispersion and atten-
uation characteristics. The author’s interest in the dispersive nature of Bloch waves
sprung from an interest in nonlinear acoustic propagation in strongly dispersive media.
While the nonlinear case will be treated in a subsequent study, the goal of this work
is to characterize the linear behavior of acoustic waves in a periodic waveguide.

The work presented here is a theoretical and experimental investigation of acoustic
Bloch wave propagation in a periodic waveguide. The waveguide under study is
rectangular and loaded periodically with rigidly terminated rectangular side branches.
The theoretical analysis is for a rigid waveguide filled with an arbitrary homogeneous,
viscous, heat conducting fluid. The experimental portion of the work is the study of
Bloch waves in an air filled aluminum waveguide.

1.1 Characteristic Properties of Bloch Wave Propagation

While nonuniformity of a wave system (the wave medinm or the wave medium
and its boundary) certainly affects the propagation of waves in that system, periodic
nonuniformity has a particularly profound effect. The wave system, even a nondis-
sipative wave system, sclectively attenuates waves on the basis of their frequency.
The frequency sclective property of periodic structures has a banded structure: the
strongly attenuated waves occupy bands of the frequency spectrum known as stop-
bands. Between neighboring stopbands are regions of the frequency spectrum known
as passbands, the waves associated with which propagate with little or no attenuation.
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The dispersion relation for a periodic structure is a functional relationship between
the temporal frequency w and the Bloch spatial frequency or Bloch wave number ¢
(Brillouin, 1946). The Bloch wave number can frequently be interpreted as being a
sort of “effective” wave number or “net” wave number, though this interpretation
should be used carefully. The same is true of the Bloch wavelength Ag = 27/q.
As might be expected. the stopband waves are exponentially attenuated and are
associated, even in the nondissipative case, with Bloch wave numbers that have an
imaginary component. Figure 1.1 shows a typical Bloch wave dispersion curve (or

Im{qh} Re{ gh} passband
2rc./hf E
& > I stopband
3 "
£ I i
3 passband
>
§ M"/h') ] stopband
o 3
e :
i E passband
0 ) 2

0 nt/h ‘ 2n/h
Bloch Wave Number: ¢ (1/m)

FIGURE 1.1
A typical dispersion curve for forward propagating Bloch waves in a
periodic structure with periodicity h. The stopbands, which occur at
intervals of w/h along the Bloch wave number axis, are frequency bands

in which Im{q} # 0 and Re{g} = constant.
AS-91-331

Brillouin diagram, as these curves are sometimes called (Elachi, 1976)) for nondis-

sipative propagation. Several noteworthy characteristics of Bloch wave dispersion are
as follows:

o At passband frequencies the Bloch wave number is real and a nonlinear function
of frequency (i.e., passband Bloch waves are dispersive).

e At stopband frequencies, the Bloch wave number has a nonzero imaginary com-
ponent, which is associated with the exponential attenuation of the wave.

» At stopband frequencies the rcal component of the Bloch wave number remains
constant throughout the band. The stopbands are thecefore bands of frequen-
cies associated with a single Bloch wavelength! Like the passband Bloch wavcs,
therefore, the stopband Bloch waves are dispersive.

9

4



o The passbands and stopbands occur at intervals of w/h along the Bloch wave
number axis, where h is the periodicity of the periodic structure.

A few words need to be said about the graphical presentation of the Bloch wave
dispersion relation. The variety of presentation schemes appearing in the literature
often leads to confusion. It turns out that if one remains consistent with respect
to several conventions, all of the information regarding the dispersion of the Bloch
waves can be contained in a graph that is confined to the first so called Brillouin
zone (—m/h < ¢ £ +n/h). Such a presentation, called the “reduced zone” scheme,
is frequently used by solid state physicists (Kittel, 1986). Figure 1.1 is an example
of the “extended zone” scheme, which is used in most of the present work. A third
scheme, the “periodic zone” scheme, is shown in Sec. 3.4 in relation to the so called
travelling wave spectral representation of Bloch wave functions.

1.2 Classes of Periodic Structures

The term “periodic structure” is used as a generic label for a wave system (the
medium or the combination of the medium and its boundary) that has some sort of
spatially repeating structure. Periodic structures can be regarded as belonging to
one of three classes: (1) the periodic medium, (2) the periodically inhomogeneous
medium, and (3) the periodically bounded medium.

The sound speed calculations made by Newton are based on a model of a contin-
uum which defines the first class of periodic structures. Brillouin (1946) points out
that Newton modeled the one-dimensional fluid continuum in the lumped element
approximation: the medium is effectively a serics of masses connected by springs.
The mass of each element is related to the fluid density and the spring constant is
related to the bulk modulus of elasticity of the fluid.! Though Newton did not know
of the atomic latlice arrangement of crystalline solids, his lumped element model of
a fluid is essentially that used currently to inodel such solids. A wave medium of this
type, in which the fabric of the medium itself is intrinsically periodic, is referred to
as a periodic medium. The majority of the works concerning waves in periodic media
is in the area of lattice dynamics in the field of solid state physics. The dispersion
in this case is referred to as phonon dispersion, which is important in the modcling
of the thermal, optical, and ohmic clectrical properties of solids (Kittel, 1986). An
extensive source of information on the periodic medium and, to a lesser extent, the
other two classes of periodic structures is the classic monograph by Brillouin (1946).

11t is of historical interest to note that Newton assumed the ratio of pressure to density to be con-
stant (Boyle’s law). Though it was not known at the time, implicit in Boyle’s law is the assumption
that the acoustic process takes place isothermally. QOver 100 years later, about 1816, Laplace realized
that the thermodynamic process is more accurately adiabalic and corrected Newton’s calculations.




The second class of periodic structures, the periodically inhomogeneous medium,
is somewhat self explanatory. Periodically inhomogeneous media are simply continua
that exhibit some sort of periodically repeating inhomogeneity. An example from
acoustics is a fluid having a periodic variation in ambient density or sound speed.
Easily the largest body of work involving periodically inhomogeneous media is that
concerning the quantum theory of electrical conductivity. In the quantum theory, the
electron is represented by De Broglie/Schrodinger matter waves which propagate in
an electrical conductor, which is a crystalline solid. The properties of the “medium”
in which such waves propagate are determined by the potential of the crystal lattice,
which varies periodically. In the quantum mechanical interpretation, :he dispersion
relation (a frequency-wave number relation) is an energy-momen.um relation? and
the band structure of the dispersion relation is the well known “band structure of
solids” The stopband frequencies or forbidden frequencies are the forbidden energy
bands or the “band gaps” that lie at the heart of the quantum theories of electrical
conductivity, resistivity, and semi-conductivity (Kittel, 1986). An interesting appli-
cation which exploits the properties of the periodically inhomogeneous medium is the
distributed feedback laser, in which the lasing medium is imposed with a periodic
spatial modulation in the refractive index (Elachi, 1976).

The subject of this study is an example of the third class of periodic structures,
the periodically bounded medium. These structures are systems composed of a homo-
geneous medium with a periodically varying boundary. Work involving such media
has been all but entirely confined to the realm of guided microwave prrpagation.
Some examples of applications of this work are the slotted waveguide antenna (Hes-
sel, 1969), the travelling wave filter (Collin, 1960), and the linear particle accelerator.
The linear particle accelerator (which is a periodic waveguide) is a particularly inter-
esting application in which the “space harmonic” property of Bloch waves is exploited
to allow efficient exchange of energy between the microwave field and the accelera-
ting particles (Slater, 1948; Slater, 1950). Another interesting application exploits
the stopband properties of Rayleigh waves propagating along a corrugated elastic
surface. Stopband frequency Rayleigh waves incident upon a corrugated section of a
surface are very nearly 100% reflected. Such efficient reflections allow very high Q
surface wave resonant tanks to be built for use as microwave frequency oscillators and
filters (Bell and Li, 1976). Some of the unusual prcblems encountered in attempting
to transmit information acoustically through a periodic waveguide (in this case the
drill string of a deep petrochemical well) are discussed by Drumheller (1989).

A body of work that treats media which could arguably be placed in either the
first or the third class of periodic structures also exists. The media in question are
transverse or flexural wave media which are loaded in some periodic manner, such
as the skin of aircraft with a rib-like support structure. Examples are the work of

2 = hw and p = hk, where ' is the energy, b is Planck’s constant, k is the wave number, p is
the momentum, and w is the frequency.




Ungar (1966), Sen Gupta (1970), Mead (1970), and Mead (1973), which all treat the
problem of a periodically supported beam or plate. A fascinating example of this
class of work is that of J. D. Maynard, who models quantum mechanical events with
waves in a classical acoustic wave system. For example, Maynard and He (1986)
used a thin wire loaded periodically with small masses to model a crystalline solid.
In such a system, transverse and longitudinal waves can be taken to be analogous
to De Broglie/Schrédinger electron waves and phonons, respectively. Measurements
of theoretically predicted quantum mechanical events, such as Anderson localization
and phonon assisted hopping, were successfully made in the periodically loaded wire
system.

1.3 Previous Work

Previous work in the area of acoustic wave propagation in a periodic, fluid filled
waveguide is, to the author’s knowledge, limited to purely theoretical investigations
in which the periodic deviations from uniformity are small. An appropriate dimen-
sionless variable representing the magnitude of the deviation from uniformity is in
each case taken as the small parameter in a perturbation analysis.

Samuels (1959) and Salant (1972) treat the case of propagation in a two dimen-
sional (parallel plate) waveguide with small sinusoidal perturbations in the bounda-
ries. Both of these investigations were intended as the first step toward treating the
case of a waveguide with statistically rough boundaries. The technique employed is a
straightforward perturbation expansion in which the boundary condition at the sinu-
soidal surface is expanded about the mean planar surface. The result of the analysis
in both cases is that a forward propagating wave is, with corrections to first order in
the perturbation parameter, coupled to two other modes: a forward propagating wave
mode and a backward propagating wave mode. Nayfeh (1974) showed that the pertur-
bation expansion employed by Samuels (1959) and Salant (1972) is not uniform near
stopband frequencics, where the mode coupling is strong, and that a multiple scales
perturbation technique yields a uniformly valid expansion. Nayfeh (1975) essentially
repeated the treatment of Nayfeh (1974), but allowed for the possibility of a net fluid
flow through the waveguide. Nusayr (1980) employed a multiple scales perturbation
technique in the analysis of a rectangular waveguide with sinusoidal boundaries. In
all of the above cascs the finding is that the periodically perturbed boundary cou-
ples a forward propagating mode with both a second forward propazating mode and a
backward propagating mode. As is made evident in the scction on the travelling wave
spectral representation of Bloch wave functions (Sec. 3.4), the secondary modes found
in the perturbation analyses arc the first higher order components of the travelling
wave spectrum.

w




Bai and Keller (1987) treated the case of a rectangular waveguide loaded with
a periodic array of rigid spheres. They based their approach on the Webster horn
equation and compared the results of a strained parameter perturbation analysis and
a numerical analysis. The perturbation analysis yields values for the low frequency
limit of the phase velocity and the bounding frequencies of the first three stopbands.
The results of the two analyses compare very well, but the validity of the Webster
horn equation at frequencies above the second stopband, for the waveguide geometry
treated, is doubtful. Because of the symmetry of their axial location, the spheres
will very effectively scatter sound into the even higher order modes of the waveguide.
Additionally, because the first even higher order mode is above cutoff for frequen-
cies above the second stopband frequency, sound will be propagating in two modes
simultaneously. The Webster horn equation is a one dimensional wave equation and
is therefore valid for the case of a singl> mode of propagation only.

While all of the works discussed above treat the general problem of interest,
acoustic wave propagation in a fluid-filled periodic waveguide, they are inapplicatle
for the waveguide of this study. The large and infinitely rapid changes in waveguide
cross sectional area which occur at the side branches simply cannot be regarded as
“small”. A perturbation expansion, as used in the above analyses, would therefore
be a poor choice of analysis technique. While the side branches do not generally
represent small perturbations in the cross sectional area of a waveguide, they do
represent spatially localized perturbations. An approach which is readily applicable
when the nonuniformity in the waveguide is spatially localized (and more generally
applicable) is that of Achenbach and Kitahara (1987). They treat the problem of
wave propagation in an elastic solid that has a three dimensional rectangular lattice
of spherical cavities. Because they concentrate on excitation along a symmetry axis
of the medium, their problem is identical to that of a waveguide which is filled with an
elastic solid which contains a periodic array of spherical cavities along the axis. The
paper also concentrates on the low frequency or plane wave mode case which, under
purely longitudinal excitation, has a purely longitudinal wave solution (i.e., there is
no shear mode excitation). The problem is therefore identical to a fluid acoustics
problem. The result of the analysis is a dispersion relation that depends upon the
scattering characteristics of the spherical cavities. The approach of Achenbach and
Kitahara is that employed here in the derivation of the dispersion relation.

1.4 The Waveguide Under Study

The variables representing the various dimensions of the waveguide are shown in
Fig. 1.2. The waveguide is aligned along the z axis with the side branches paralle! to
the y axis. The origin of the coordinate system is midway between side branches and
centered on the bottom wall. The walls of the waveguide are located at z = +a/2,



y =0, and y = b. The resultant waveguide cross sectional area is therefore A, = ab.
The side branches are placed at intervals of h along z, and are located in the bottom
wall. The side branch walls are at x = +a/2, y = —d, z = nh + (h - 1)/2, and
z = nh + (h +1)/2, where n is an integer. In other words, the side branches are
rectangular waveguides of cross sectional area A, = al and depth d.

FIGURE 1.2
The periodic waveguide is a rectangular duct loaded with rigidly

terminated rectangular side branches. Twa cycles of the waveguide are
shown.

AS-91-332

We now introduce some terminology:

e The "waveguide sections” are the sections of rectangular duct of length h — [
located between side branches. An example of a waveguide section is the seg-
ment between z = £(h -~ [} /2.

e The “port regions” are those regions above the side branch openings and in-
between adjacent waveguide sections. An example of a port region is the volume
(h=0/2<z<(h+1)/2,0<y<b, —a/2<z<a/2

e A “cell” is a section of the periodic waveguide of length h along 2 centered on
a waveguide scction with side branches at each end. An example of a cell is the
scction defined by —h/2 < 2 < h/2.

In addition to those imposed later in the text, several approximatioas and assump-
tions arc used from the onsect of the analysis. They are as follows:

e The system is under time harmonic excitation. The arbitrary excitation case
can be treated by Fourier synthesis.




e Th- system is under low frequency excitation. The frequency is below the cut-
on frequency of the first higher order mode of both the waveguide sections and
the side branches.

e The structure is, in the lossless case, effectively two dimensional. The waveguide
boundaries normal to z are symmetric with respect to = and the structure within
those boundaries is invariant with respect to . We further assume that the
excitation is independent of z, which, by symmetry arguments implies that the
acoustic field is invariant with respect to z. The waveguide and the acoustic
field can therefore be treated as being invariant and having infinite extent with
respect to z; i.e., the waveguide and the field are two dimensional. In other
words, the wave solution would be unchanged if the width a of the waveguide
were allowed to become infinite.

e The waveguide is of infinite length. The problem of a semi-infinite or a finite
periodic waveguide is considered in the section on truncation of the structure
(Sec. 3.5).

1.5 The Scope of the Investigation

The remaining chapters are divided as follows. In Chap. 2 we begin with a system
of governing equations and boundary conditions for the waveguide of interest and
show that the solution wave functions are Bloch wave functions. Several functional
representations of Bloch wave functions are shown. Chapter 3 consists of derivations
of the dispersion relation, the impedance function, and the Bloch wave function for
the waveguide. The effects of the truncation of the periodic structure are considered.
In Chap. 4 the measurement of the Bloch wave dispersion is described. The various
measurements are compared with theoretical results. Chapter 5 consists of brief
concluding remarks and suggestions for future work.




2. THE FLOQUET THEOREM AND BLOCH WAVE FUNCTIONS

In this chapter it is shown that the mathematical <ystem of governing equations
and boundary conditions describing lossy, linear acoustic waves in a periodic wave-
guide is, under the appropriate frequency restrictions, of a class which has Bloch
wave solutions. In order to show that Bloch wave functions are the solutions of the
svstem, we apply the Floquet theorem to the ::athematical system. While the Flo-
quet theorem is penned so as to apply to a class of ordinary differential equatious, an
inspecction of its proof shows that it is more generally applicable to a class of systems
of partial differential equations and bourdary conditions. In order to be eligible for
the application of the Floquet theorem, the system must (1) exhibit a translational
invarianc., and (2) have two linearly independent solutions. It will be shown that the
Floquet theorem is indeed applicable to che system of interest and that the applica-
tion results in a restriction on the solution wave functions: they must be Bloch wave
functions.

The chapter is organized as follows. We begin with a discussion of the system
of governing equations and boundary corditions and show that the system exhibits
an inveriance under translation. It is then shown that, under a frequency restriction,
the system can be considered to be one dimensional and has two linearly independent
solutions. The Floquet theorem is then applied to the system to show that the solution
of the system must obey the Bloch wave condition; i.e., the solution wave functions
are Bloch wave functions. Finally, several functional representations of Bloch wave
functions are presented.

2.1 The System Under Study and its Translational Invariance

The aim of this section is to present the mathematical system to be solved and
show that it exhibits invariance under a certain class of translation operations. While
the derivations of the cquations themselves are not shown, the assumptions implicit
therein are presented. The reader interested in the details of the derivations are
referred to the book by Pierce (1981).




2.1.1 The Governing Equations and Boundary Conditions

The set of equations that governs the dynamics of a viscous, heat conducting fluid
is composed of statements of fundamental conservation laws and thermodynamic reia-
tions. These equations relate the field variables representing r.ass density, pressure,
temperature, entropy, and fluid velocity:

p=po+p,
P =Py +p,
T=To+T,
§=80+s,
i=u, (2.1)

respectively, where the total value of a field variable (denoted by a hat) is expressed as
the sum of the ambient value \subscripted with a zero) and th= acoustic or fluctuating
value.! The equations are derived under the following assumptions:

e The fluid is Newtonian; i.e., the viscous shear stress is proportional to the rate
of shear.?

e The fluid transfers heat by conduction only and according to the Fourier law of
heat conduction; i.e., the local heat flux is proportional to the local temperature
gradient. In assuming that the heat transfer is by conduction only we neglect
convective and radiative heat transfer.

o The fluid is in thermodynamic equilibrium,; i.e., the thermodynamic state of the
fluid is dependent upon {wo independent thermodynamic variables.

e The fluid is homogeneous; i.c., the ambient values of the field variables are
constant and uniform.

e The dynamics of the fluid are well described by linearized governing equations;
i.e., the magnitude of the acoustic disturbance is very small. The small param-
cter that the equations are linearized with respect to is the acoustic Mach
number € = |ujmax/co < 1.

Under these assumptions, lincarized statements of the conservation of mass, momen-
tum, and cntropy arc

"Note that we have assumed that gy = 0; the fluid has no de or net velo:ity.
2We have also assumed that the bulk viscosity is zero {or, equivalently, the t the dilational viscosity
is equal to -2/3 the shear viscosity), which is Stokes’ assumption.
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9p

E'i‘poV'u:\), (22)
3
pogy = =Vp+ u[VPu+ (1/5)V(V )], 2.3)
and 5
poTo—a% = KV?T, (2.4)

where u is the coefficient of shear viscosity and « is the ccefficient of thermal con-
ductivity. Linearized expansions of the thermodynamic relations p = p(P,3) and
T =T(P,3) yield

1 PoloTt
= (g)e- (20) (23)

and . -
T= +{=]s, 2.6)
(P00p>p (Cp> ’ (26)

where ¢, is the small-signal lossless sound speed, f, is the coefficient of thermal
expansion, and C, is the specific heat ot constant pressure, all evaluated at the
ambient condition. Equations 2.2-2.6, the dissipative governing equations, consist of
seven scalar equations (four scalar equations and one vector equation) in seven scalar
unknowns (four scalars and one vector).

In order to arrive at a set of boundary conditions, we assume that the boundary
(the waveguide wall) is rigid, impenetrable, and has infinite heat capacity (i.e., is
isothermal). We will also assume that the boundary is at rest with respect to the
quiescent medium. Because the boundary is rigid and impenetrable, the velocity
normal to the boundary must be zero:

u-il, =0, (2.7)
where fi is the unit vector normal to the surface of evaluation S, the wall of the
waveguide. Because the fluid is viscous, it cannot slide with respect to itself or a
boundary, and the tangential velocity at the surface must also be zero:

ux i, =0 (2.8)

Because the fluid has a nonzero heat conductivity, the fluid at the boundary must
have the same temperature as the boundary. Because the boundary, by assumption,
is always at the ambient temperature Ty, the fluid at the boundary must have zero
acoustic temperature:

T|, = 0. (2.9)

Equations 2.7-2.9 are the boundary conditions on the dissipative system.
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The Nondissipative System

In order to find the nondissipative governing equations, we simply use the dissi-
pative equations in the limit as the heat conductivity and viscosity approach zero.
In such a limit the mass continuity equation (Eq. 2.2) is unchanged, the momentum
equation (Eq. 2.3) becomes a first degree equation, and the entropy equation (Eq. 2.4)
becomes trivial:

9p
5t +poV-u=0, (2.10)
Ou
Pob—t = —Vp, (2.11)

and
s=0. (2.12)

As is expected, the lossless system is isentropic.3

The thermodynamic relations likewise simplify. Because s = 0 the density and
temperature simply become directly proportional to the pressure:

p=cop (2.13)

T = (1/oCy)p- (2.14)

Equations 2.10, 2.11, and 2.13 consist of five scalar equations in five scalar field
variables. The system is therefore determined without the inclusion of the pressure-
temperature relation (Eq. 2.14). The system of governing equations is therefore
limited to Egs. 2.10, 2.11, and 2.13 and the pressure-temperature relation simply
yields temperature information once the pressure field is determined.

The boundary conditions on the nondissipative system are likewise a simplifica-
tion of the boundary conditions on the dissipative system. Wien the viscosity and
thermal conductivity of the fluid become zero the fluid is able to slip relative to the
boundary and attain a non-zero acoustic temperature at the boundary. The only
surviving boundary condition is the normal velocity restriction, which, by the use of
the nondissipative momentum equation (Eq. 2.11) may be written in terms of the
normal derivative of the acoustic pressure:

Vil = 0. (2.15)

3In the lossless limit Eq. 2.4 becomes 05/t = 0 — s =constant, but any constant component of
s is by definition incorporated into sg, the ambient value of §, and s becomes zero.
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2.1.2 The Translational Invariance of the System

In order to establish the translational invariance of the system we must show
that a translation operation exists under which the system remains unchanged. It is
shown here that the dissipative system exhibits such an invariance. The nondissipative
system is simply a special case of the dissipative system and therefore exhibits the
same invariance.

We define £; to be the i** operator in the set of operators £ which includes those
found in the dissipative system of equations (Eqgs. 2.2-2.6):

£={1 68 & } (2.16)

'8¢’ 8z, 0,0z,

where [, m, and n can each assume the values 1, 2, or 3 and z, = z, 2, = y, and
z3 = 2. We likewise define ¥; to be the i** field variable in the set ¥ which consists
of those found in the dissipative system of equations (Egs. 2.2-2.6):

v ={p,p,s,T,u1,uz,u3} . (2.17)

Each of the governing equations (Eqgs. 2.2-2.6) can be represented as a linear combi-
nation of the operators in £ acting on the field variables in ¥:

(A;L:)¥; =0, (2.18)

where the A;,’s are constant coefficients and the summing convention is in effect.
Likewise, each of the boundary conditions can be represented in the form

(2;£:)¥,]5=0, (2.19)

where the §;,’s are constant coefficients. In either case, the ficld variable ¥, is being
operated on by the operator A;;L; or §;;L;.

The operators in the set £ all belong to a class of operators that exhibit the
property of translational .nvariance. That is, the operators all remain unchanged
under the arbitrary spatial translation

(Z1,22,Z3) = (T} + ALy, Ty + 6Ty, Ty + AT3).
An example is

0? o? 0?
0z,,0%, - (T + oz,,)0(z, + oT,) - 0z, 01,

Becausc the operators that act on the ficld variables (A,,£, and Q,,L,) are just the
operators in £ multiplicd by constants, they are likewise invariant under arbitrary
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translations. The set of governing equations is therefore translationally invariant. The
set of boundary condition operators is also invariant under arbitrary translations, but
the surface of evaluation S is not. It is, however, invariant under the more restricted
set of translations z — z+nh, where n is an integer, as the surface repeats at intervals
of h along 2. Because the set of governing equations is invariant under arbitrary
translations and the set of boundary conditions is invariant under translations of ~
along 2, the system is invariant under translations of h along z. The nondissipative
system is just a simplification of the dissipative system and therefore has the same
invariance.

It should be noted that the translational invariance depends on the homogeneity
of the medium. An inhomogeneous medium has nonuniform ambient conditions such
as po = po(z,y,2) or To = To(z,y,2). In such a medium the A;;’s and ;s (and
therefore the operators A,,£, and Q,,L;) are dependent upon the spatial coordinates
and the translational invariance of the system is generally spoiled. If the medium
is periodically inhomogeneous with a spatial period which is commensurate with the
period of the surface of evaluation, an invariance is restored.

2.2 Wave Equations and the Zeroth Order Guided Wave Solutions

In this section solutions of the dissipative and nondissipative systems of equations
and boundary conditions are shown. We begin with the nondissipative case and show
the exact modal field solution in the vicinity of a side branch. We next introduce a
frequency restriction that ensures that the evanescent higher order modes generated at
a side branch are confined to the near vicinity of the port region. Under this restriction
the system behaves as though the zeroth order or plane wave mode were the only mode
present: the waveguide sections and side branches are effectively transmission lines.
The approximation that the solution is well represented by the zeroth order field alone
is referred to as the zeroth order approximation. It is then argued that under the
same frequency restriction the solution of the dissipative system is well approximated
by the zeroth order solution alone, and a method of finding such a solution is outlined.

2.2.1 The Nondissipative Case

In the nondissipative case the continuity equation (Eq. 2.10), the momentum
equation (Eq. 2.11), and the pressure-density relation (Eq. 2.13) can readily be com-
bined to form a single equation in the acoustic pressure,

1 9p

Vip— 5= =0,
! o ot®

——
(£
3™
—
=~

—
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the classical wave equation. The solutions of Eq. 2.20 with Neumann, waveguide
type boundary conditions are very well known (Morse and Ingard, 1986; Skudrzyk,
1971). The solutions are usually expressed as a sum over a discrete set of modes,
some of which are evanescent and some of which are not. The analysis presented
here is limited to frequencies for which every mode ezcept the zeroth order mode
is evanescent. In this context it is apparent what further frequency restrictions are
necessary to treat the system as a one-dimensional wave system.

The Modal Solution

FIGURE 2.1
The four regions in the vicinity of a side branch.

In order to show the frequency constraints under which the solution can be well
represented by the zeroth order field alone, we consider the solution of the nondissi-
pative system in the vicinity of a side branch. The acoustic pressure wave function
in the waveguide sections on either side of a side branch (regions I and II in Fig. 2.1)
and in the side branch itself (region III in Fig.2.1) can be expressed as a sum over
the discrete set of allowed modal solutions. It is assumed that the frequency is below
the cut-on frequency of the first higher order mode, in which case the solutions can
be expressed as the sum of the propagating zeroth order ficld and an infinite serics
representing the evanescent higher order modes. It is also assumed that the fields
incident upon the side branch are purcly zeroth order. Let £ = z — h/2 be the shifted
axial coordinate that is centered on a side branch. The waves incident from £ < 0 and
£ > 0 have amplitudes Ay and By, respectively. The time dependence, which under
the time harmonic assunption is chosen to be e™7*, is suppressed and the acoustic
pressure is treated as a function of the spatial coordinates only.

The wave solution in the presence of a scatterer is simply the sum of the incident
wavefields and the resultant scattered ficlds. The zeroth order wave of amplitude Ay
incident on the side branch from € < 0 generates reflected and transmitted zeroth
order waves of amplitudes S;, Ay and Sy Ay, respectively, where the S5 are the
zeroth order scattering matrix clements as defined by Ramo, Whinnery, and Van
Duzer (1965).* In addition to the zeroth order scattered ficlds there are generally also

481 and Sy3 are reflection coctlicients and $y2 and §y; are transmission cocflicients. In siinple

S
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FIGURE 2.2
Zeroth order waves incident upon a side branch and the resultant
scattered field. The scattered field consists of forward and back scattered
zeroth order waves, zeroth order waves in the side branch, and
evanescent modes. The evanescent modes are all confined to the near
vicinity of the port region, as shown.

AS-91-333

forward and back scattered higher order modal fields. In a similar manner, the zeroth
order wave of amplitude B, incident from £ > 0 generates reflected and transmitted
zeroth order waves of amplitudes Sy By and S, By, respectively, and higher order
modal fields as well. The acoustic pressure field in region I (the waveguide section
£ < —1/2) can therefore be expressed as

Py, €) = Aoe™ + Sy3 Age ¥ - Sy, Boe™ M + Z A cos(ky yy)eitnet,

n=1

where the various wave numbers are defined as

kny = nm /b,

g = [(w/eo)? = #2,]"”

?
and
k=wlc.
Because the analysis is restricted to frequencies below the cut-on frequency of the
n = 1 mode, the axial wave number is imaginary for all but the zeroth order mode:

kne = £jlk,¢| forn > 1.

terms, S, is the amplitude of the wave in region i due to a wave of unit amplitude incident upon
the scatterer from region j.
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The field in region I is therefore
, . o)
p(#,6) = Aoe’™ + {(SnAo+ S;QBO)G"Jke + Z A, cos(kn,yy)e"‘""c'. (2.21)

n=1

By similar reasoning, the field in region II (the waveguide section £ > 1/2) is

P, &) = Boe % 4 (Sy, Ag + Sa3Bo)e™ + 3 B, cos(ky, yy)eFnetl, (2.22)

n=1

The field in region III (the side branch) can likewise be written as the sum
P(y,8) = Su(Ao + Bo)e**2 cos(k(y + d))

- s cosh(k3), (y + d))
+ ;2; Cn2cos(k (€ — 1/2)) cosh{kEd) (2.23)

where
lc,i'fE =nr/l,

. b ro]1/2
ey = [(w/e)? = (6]
and Sy, is the coefficient of scattering into the side branch.

The Zeroth Order Approximation

The zeroth order approximation is that under which the system can be said to
behave as though the zeroth order mode were the only mode present. For frequencies
significantly below the cut-on frequencies of the higher order modes of the two guiding
structures (the waveguide and the side branch), the evanescent field is confined to
the port region. The evanescent modes will extend some distance into the waveguide
on either side of the side branch and into the side branch itself (see Fig. 2.2), but the
only eztended field is the zeroth order field. The evanescent field is simply a localized
perturbation to the zeroth order field and has no consequence with respect to the
global behavior of the system.

One of the assumptions made in writing the solution in the form of Egs. 2.21,
2.22, and 2.23 is that the fields incident upon the side branch are zeroth order. In
order for this to be true, the evanescent fields generated at each side branch must
decay to a negligibly small amplitude over the distance h. Since the first higher order
mode has the most gradual attenuation of all the evanescent modes, the requircment
is that the n = 1 mode be strongly attenuated over the distance h

-l oY ~(w/e) 2k oy
An equivalent statement is that the characteristic length associated with the decay of

the evanescent field, i.c., [(7/a)? — (w/cv)?]~/2, must be small compared to h. Such
a requirement leads to the frequency constraint

w <& (co/h)[(mh/b)? = 1)'/2, (2.24)
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Under this constraint, the system can be treated as a one dimensional system: a
transmission line loaded with a periodic array of scatterers.

Although Eq. 2.24 is all that is required to treat the system as one dimensional,
the derivation of the scattering matrix elements is much simplified if we make another
zeroth order approximation, this time applied to the propagation of waves in the side
branches. The field incident upon the port region from the side branch must be
effectively zeroth order. For the side branch, the characteristic length associated with
the decay of the lowest order evanescent field must be small as compared to 2d, the
“round trip” length of the side branch. The corresponding frequency constraint is

w < (co/2d)[(2md/1)? — 1)1/2. (2.25)

It should be noted here that another low frequency constraint will need to be
imposed when we consider the validity of the theory as it applies to a real periodic
waveguide. The analysis thus far has all been under the assumption that the wave-
guide is effectively two dimensional. While this assumption is valid for the model
waveguide (i.e., the ideal, mathematically defined waveguide), the real waveguide
that the measurement is to be performed in will certainly have minor imperfections
and not be perfectly invariant along z. These imperfections will lead to the excitation
of higher order modes in z which have a structure ~ cos(mnz/a). To ensure that
these modes decay to a negligible amplitude over the distance h, we require

w < (co/R)|(mh/a)? - 1)'/2. (2.26)

2.2,.2 The Dissipative Case

In the dissipative case the system is much more complicated than the nondissipa-
tive system and does not reduce to a simple wave equation. A full three dimen-
sional dissipative solution will not be shown. Instead we assume that the same
argument used in the nondissipative case is valid to justify the use of the zeroth
order field only. That is, we assume that when w < (co/h)[(wh/a)? — 1]'/? and
w < (co/2d)[(2md/1)* — 1}/?, the evanescent higher order modes are simply local-
ized perturbations to the zeroth order ficld and need not be accounted for.> We are
therefore left with the task of finding the zeroth order solution in each of the guiding
structures (the waveguide scctions and the side branches), each of which are simply
rectangular waveguides.

5In the nondissipative, steady state case the evanescent modes, once established, exist entirely
independently of the zeroth order ficld. There is no cnergy expenditure involved in maintaining the
evanescent modes. In the dissipative case, however, the evanescent modes do dissipate energy, and
represent an energy sink to the zeroth order ficld, which maintains their level. We assume that such
a modification to the zeroth order field losses, particularly al low frequency where the evanescent
modes have very little spatial extent, are negligible.
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An elegant way of finding the zeroth order solution of the dissipative system is
the modal field method (Pierce, 1981). The dissipative wavefield is decomposed into
three component fields or modes: an acoustic mode, a vorticity mode, and an entropy
mode. The field variables associated with a mode are subscripted with ac, vor, or
ent, for acoustic, vorticity, or entropy mode, respectively. Each mode is governed
by a partial differential equation that is derived from the the dissipative system of
equations (Egs. 2.2-2.6). The solutions of the three modal fields then sum to make
up the total field. The method is only outlined here; the interested reader is referred
to the detailed treatment in the book by Pierce (1981).

The equations governing the acoustic, vorticity, and entropy modes are

18% 1[4 u k/C,| 3p

Voo = it g 2 B4y = p|J Pac 9.97
P ¢ ot ¢ 13 poch 7=1) poc | Ot % (227)

2 Po Ouyor
-2 = 2.28
V u‘UOT at b ( )

and c 8

2 Po P Sent
ent — ~ . = U, 2.29
V5ent ot 0 ( )

respectively. The acoustic mode is governed by a wave equation that incorporates
losses which, for small losses, are proportional to w?, which is typical of free field
propagation in a thermoviscous fluid. The vorticity and entropy modes are governed
by diffusion equations. The modes are independent except at the boundaries, where
they are coupled; the acoustic mode acts as a source for the vorticity and entropy
modes. Because the vorticity and entropy modes are governed by diffusion equations,
they are confined to the vicinity of the source (the boundary), where they represent
the modifications to the acoustic mode that make up the thermoviscous acoustic
boundary layer. It should be noted that all the field variables of a particular mode
can be found in terms of the field variable appearing in the equation for that mode.
As an example, from p,. alone we can find s,¢, Uge, Tue, and pg.. This is likewise true
for the vorticity and entropy modes. The total field can then be found by summing
the component modal fields:

D = Dac + Pvor + Dent,

u = U, + Wr + Ugny,

and so on. One interpretation is that the acoustic mode drives the other two modcs,
which in turn have the appropriate structure to cnsure that the total ficld satisfies
the boundary conditions.

The modal formulation of the dissipative system of equations makes evident the
two pathways by which acoustic cnergy is lost. One way is through the so called
classical or w? free field losses which occur independently of boundaries. This loss
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pathway is described by the acoustic mode alone; the equation for p,. is lossy and
8qc # 0 (entropy is generated by the acoustic mode alone). The other loss pathway
is the “feeding” of the vorticity and entropy modes by the acoustic mode at the
boundary. For a broad frequency range of interest, the latter loss pathway dominates
the former, which can therefore be neglected.

The field is, except for the losses associated with the boundary layer, well
described by the acoustic mode alone. The other modal fields represent modifica-
tions to the acoustic modal field only in the very near vicinity of the boundary, but
are responsible for the dominant loss mechanism. It turns out that, for a wave prop-
agating in the plane wave mode of a waveguide of given hydraulic radius, the losses
associated with coupling to the boundary layer can be incorporated into the acoustic
mode. The resultant field, which is found by a variational technique, is of the same
form as that in the lossless case but the zeroth order wave number becomes

1 i 1/2 (n/Cp)l/z
k = 1 —r——— —_— —_
w/eot( +])\/2RH [(Po%) tr-1) Pocs

w'’?, (2.30)

where Ry is the hydraulic radius of the guiding structure and the free field (w?) losses
have been considered to be negligible compared to the boundary layer (w'/?) losses.
This dispersion relation, up through the first term on the right hand side, is identical
to that for the lossless case (k = w/c;). The last term, which is complex and therefore
introduces both losses and dispersion, is associated with the thermoviscous acoustic
boundary layer. The range of validity of Eq. 2.30 is given by

L3 (_u_) N
R} \ poch

1/3

, (2.31)

2
9 E cw<

R—Z}; Po‘»’%

a result from Pierce (1981).

2.2.3 Linearly Independent, One Dimensional Solutions

At this point it can be shown that both the dissipative and nondissipative systems,
under the frequency restrictions thus far compiled (Egs. 2.24, 2.25, and 2.31) have two
linearly independent solutions. Although we expect a one dimensional wave system
to have two linearly independent solutions, the introduction of scatterers makes the
system more complicated and worthy of discussion.

The most straightforward way to understand the types of solutions to expect is
to consider the physical system as being a one dimcensional wave system (i.e., a trans-
mission line) that is loaded with a periodic array of scatterers. The solutions are
composed of forward and backward travelling waves in cach cell, as shown symbol-
ically in Fig. 2.3. The amplitudes of the forward and backward travelling waves in
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neighboring cells, however, must be related as determined by the scattering matriz
associated with the intervening scatterer.

felent)  f el
n +

L] LI § LIS

J L
-jk(z-nh) -jk(z-(n+1}k)
8n€ 8,..€
nthcell n+1t cell

FIGURE 2.3
The zeroth order waves in the waveguide sections on either side of a

scatterer.
AS-91-334

Consider the case wherein the complex amplitudes of the forward and backward
travelling waves in a cell of the structure is known. The amplitudes of the forward and
backward travelling waves at the center of the n'" cell are f, and gy, respectively. The
corresponding amplitudes in the center of the neighboring cell, the (n + 1)*® cell, are
fn+1 and gny1. The wave amplitudes in the n'® cell at the scatterer are then f,e/**/?
and g,e”"**/2 and those in the (n + 1)** cell at the scatterer are f,.,e~7**/? and
gny167*/2, The scattering relations, which relate the incoming and outgoing waves
amplitudes at a scatterer, are

gne"“‘/2 _ S Siz fne"kh/2
[fn+1€_jkh/ 2] 7 | Su Sua | gnnr€*? (2:32)
Solving for f,4; and g4, we find
Jaw _ o o fa
[9n+1 TS| —Su e ig. |’ (2.33)

where |S| is the determinant of the scattering matrix. The matrix in Eq. 2.33, which
relates the travelling wave amplitudes at the cell centers on either side of a scatterer,
is referred to as a tranmission matrix (Ramo, Whinnery, and Van Duzer, 1965).
Given the amplitudes of the two travelling waves in a single cell, then, we can find
the amplitudes of the two travelling waves in the cclls neighboring that ccll. In
principle, we can continue this process until the wave amplitudes (and therefore the
wave functions) in all cells of the structure are determined. The wave function of the
entirc system can thercfore be expressed in terms of only the two constants f, and
gn. These two constants are the two arbitrary constants associated with the general
solution to a systern that has two linearly independent solutions.
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The Two Linearly Independent Solutions

The general solution function described above in terms of the two constants f,
and g, can be considered to be composed of a linear combination of two component
functions, m(*)(2) and m(®(z). The conditions under which m®(z) and m®)(z) are
linearly independent is investigated by calculation of the Wronskian. It is shown that
a very general class of pairs of functions are linearly independent.

The pair of functions m(*)(z) and m?(z) are defined in the n*® cell as
m(l)(z) = M,(ll)Cjk(z_nh) + N’(ll)e—jk(z—nh)

mi? (2) = MPeit-nh) 4 N(2)gmiklz=nh),

Outside of the n't cell, the functions are defined by successive applications of the
transmission matrix as in Eq. 2.33. The Wronskian of m()(2) and m®(2) is

W = 2jk [NV M® - MOND).

The functions are linearly independent if the Wronskian is nonzero (Arfken, 1985),

which is true if
N NG

M0 7 2
In other words, m((z) and m®(2) are linearly independent as long as they are not
the same function.

2.3 The Floquet Theorem and the Bloch Wave Condition

In this section it is shown that because the mathematical system is translation-
ally invariant and has two linearly independent solutions, it is a candidate for the
application of the Floquet theorem.® The Floquet theorem is applied to the system
to show the existence of two very unusual linearly independent solutions: the forward
and backward travelling Bloch wave functions.

We begin with the consideration of m{V(z) and m{®(z), an arbitrary pair of
linearly independent solution functions. Because m{")(z) and m®(z) are lincarly
independent, we are able to express I'(2), an arbitrary solution, as the linear super-
position

T'(2) = Bim"(2) + B,mP)(2), (2.34)

8Proofs of the Floquet theorem, as it applies to second order ordinary differential equations with
periodic cocfficients, can be found in the books by Whittaker and Watson (1952) and Ince (1956).
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where (3, and 3, are constant coefficieuts. 1t is evident that |3), a column vector
composed of B, and f3,, is a state vector. Thue state vector is simply the projection
of the solution I'(z) onto |m(z)), the linearly independent basis vector consisting of
m)(z) and m®(z). As is seen in Eq. 2.34, the arbitrary solution I'(z) is simply the
inner product of the state vector and the linearly independent basis vector:

IE) = I8 6| | = BIm(a), (2:35)

Because the mathematical system is invariant under translations of h along z,
m (2 + h) and m® (2 + h) are also solutions to the system. These solutions can also
be expressed in terms of the basis:

m (2 + k) = a;ymP(2) + ay,m?(2)
m® (2 + h) = aym(2) + azm(z), (2.36)

or equivalently,
|m(z + h)) = a@jm(z)) (2.37)

where the o;,’s are constant coefficients.

We now look for the existence of a solution which has the property
I(z + h) = sT(2), (2.38)

where s is a constant. With the introduction of 7', a translation operator, Eq. 2.38
becomes
TT(2) = s['(2), (2.39)

which is the eigenvalue problem associated with the operator 7. We next use Eq. 2.36
to expand I'(z + k) in terms of m(!)(2) and m(*(2):
T(z + k) = BmW(z + k) + Bym@ (2 + h)
= Bi[enm®(2) + am®(2)] + BofazmM(2) + cpam®(2)]

= (anBi + anfo)m(2) + (a1.0: + azfe)m® (2). (2.40)
In the state vector formulation, Eq. 2.40 is
TT(z) =T(z + h) = (BIm(z + k) = (B]a|lm(2)). (2.41)

Equations 2.37 and 2.41 both show that the operation of multiplication of a state
vector by the matrix & is a translation operation. In other words, the equivalent
of the translation operator 7 in the state vector formulation is the matrix &. The
substitution of Eqs. 2.35 and 2.41 into Eq. 2.39 results in a state vector formulation
of the eigenvalue problem:

T(Blm(2)) = (Blalm(z)) = s(Blm(z))
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or

a|B) = s|B). (2.42)
As is standard, we rewrite Eq. 2.42 in the form of a homogeneous equation,
(@- s1)18) = 10), (2.43)

where 1 is the identity matrix and |0) is the null vector. A nontrivial solution to
Eq. 2.43 is guaranteed by the condition
|& - si| =0,

which is satisfied by two values of s, the eigenvalues s!) and s(®). Each of these
eigenvalues is associated with an eigenvector, given by the equations

(@ - s"1)|gM) = o)
(& - s1)|0%) = |0).

In the spatial function representation, the eigenvectors correspond to eigen-functions,
defined by

F(z) = (8" m(2))

G(2) = (8?|m(2)).
The functions F(z) and G(2) are simply two linearly independent solution func-
tions which we have found in terms of m{"(z) and m(®(z). The interesting property

exhibited by the “new” basis composed of F(z) and G(z) becomes evident when the
functions are operated on by the translation operator. The equivalent of Eq. 2.37 for

this basis is ( ) M )
F(z+h s 0 F(z

[G(z+h)] - [ 0 3(2)] [G(z)]’ (244)
We see that with this basis, the translation operation has a canonical form.

An alternative form of the eigenvalues, appropriate in the context of wave prop-
agation, is

st = e9-h (2.45)

where the constants g4 are the (generally complex) Bloch wave numbers or Bloch
spatial frequencies. The translation relations become

F(z 4 h) = ™" F(2)
G(z + h) = e"-"G(2). (2.46)

Equations 2.46 are referred to here as the Bloch wave conditions, and the lincarly
independent wave functions which meet these conditions are called Bloch wave func-
tions.




2.4 Bloch Wave Functions

Bloch wave functions can be represented in a variety of functional forms. The
various functional representations make evident the various unusual propertics of
Bloch waves. The two common forms of the Bloch wave function, here called the
standard representation and the travelling wave spectral representation, are most
often seen in work by solid state physicists and microwave engineers, respectively. A
third functional form, here referred to as the convolution representation, is thouzht
by the author to be a valuable alternative expression of the Bloch wave function, and
is therefore included in this section.

2.4.1 The Standard Representation

A pair of wave functions which satisfy the Bloch wave conditions (Eq. 2.46) can
be written
F(z) = @, (2)e+*
G(2) = ,_(2)%-°, (2.47)

where @, (2) and ®,_(2) are periodic with the periodicity of the structure:
Dq, (2 + h) = Dq, (2)
@, (z +h) = &,_(2) (2.48)

In this representation, here called the standard representation, the Bloch waves are
seen to be one dimensional travelling waves of spatial frequency ¢, that are modulated
in amplitude and phase in a periodic manner by the functions ®,, (z). The functions
®,, (2), which are generally complex, are referred to here as the periodic modulation
functions.

The two Bloch wave functions F(z) and G(z) can be seen to be very simply rclated
to one another by considering a third solution function. Because the waveguide is
invariant under reversal of the axial coordinate z, a third function

H(z) = @, (~2)e™"9+,

which is simply F(z) under the symmetry transformation z — —2z, must also be a
solution. Under a translation operation. H(2) becomes

H(z 4 h) = ek [1(2),

which is the Bloch wave condition for G(z) with q. = ~q,. The Bloch wave function
G(2) is therefore simply a backward travelling version of F(z). Stated mathematically,
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®,_(z) = @, (~2) and G(~z) = F(2). We can therefore simplify the Bloch wave
condition to

F(z + h) = F(z)etie*
G(z + h) = G(z)e™ ", (2.49)

where ¢ = ¢, = —g_. The Bloch wave functions then become

F(z) = ®y(+z)e*
G(2) = @y (—2)e. (2.50)

In most of the analysis that follows, only the forward travelling Bloch wave F(z) is
considered. The backward travelling Bloch wave is identical to the forward travelling
Bloch wave (they just propagate in opposite directions) so two analyses would be
redundant. It is worth noting that up to this point, the axial inversion symmetry
of the structure had not been exploited. A periodic structure with asymmetric cells
would still have the two Bloch wave function solutions of Eq. 2.47, but these forward
and backward travelling wave functions would not simply be reversed copies of one
another.

The standard representation makes evident several features of Bloch waves in
general which are noteworthy:

o Because the periodic modulation function ®,(2) has the periodicity of the struc-
ture, the compler exponential (e79°) component of the Bloch wave function
alone determines the net changes in phase and amplitude from a position in
one cell to the corresponding position in a neighboring cell. The phase change
will be determined by Re{g} and the amplitude change by Im{q}. If the wave
function were sampled at intervals of h, the result would be identical to that of
sampling the travelling wave /%%,

e Whereas the exponential component of F(z) represents net wave function changes
from cell to cell, ®,(2) represents the wave function behavior within a single
cell. The exponential component represents a wave with phase that varies lin-
early with distance and amplitude that varies exponentially with distance. The
®,(z) component represents periodic deviations in phase and amplitude from
the linear and exponential changes described by the exponential component.

e While &,(z) is periodic, F(2) is generally aperiodic. It is only for the discrete
set of degenerate cases wherein the Bloch wavelength and the structure period
are commensurate that the wave function is periodic.




2.4.2 The Travelling Wave Spectral Representation

In the standard form, the Bloch wave function, which is generally aperiodic, is
expressed as the product of the two periodic functions ®,(z) and ¢/%*. Because @,(2)
is periodic, it can be expressed in terms of a Fourier sum of discrete spatial frequency
components:

+00
B,(2)= Y Coc, (251)
where L e
== —2rjnz/h . 252
Co=1 /_ , Bilo)e dz (2.52)

The Bloch wave function can therefore be expressed

+00
F(Z) =e9? Z Cne21rjnz/h

n=~0o
+00
= T Ceiterrmine (2.53)
n=-—0oc

which is called the travelling wave spectral representation of the Bloch wave funct.or.
It is readily seen that Eq. 2.53 is a sum over a discrete travelling wave spectruri,
all components of which have the same temporal frequency (w), but different spatial
frequencies (g + 27n/h). The phase velocity associated with the n'® travelling wave
spectral component is seen to be

w

= m . (2:54)

Cn

In the literature of periodic media, the travelling wave spectral components ar.:
often referred to as space harmonics (Ramo, Whinnery, and Van Duzer, 1965). :
is interesting to note that because the range of the sum index n in Eq. 2.53 includ :
negative integers, half of the travelling wave spectral components have negative phas.
velocities. For this reason periodic structures are sometimes referred to as “backwarr:
wave structures” (Ramo, Whinnery, and Van Duzer, 1965).

2.4.3 The Convolution Representation

The apparent simplicity of the Bloch wave function in the concise, elegant, stan-
dard form (Eq. 2.50) is apt to be misleading. In fact, Bloch wave functions can be
enormously complicated functions with a somewhat noisc-like appearance owing to
their general aperiodicity. A third expression of the Bloch wave function which bears
a more intuitive relationship to the form of the Bloch wave can also be derived.
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We first define the function that will be referred to as the cell wave function:

0 z< -h/2
Y(z) = { F(z) =h/2 < z< h/2
0 h/2 <z (2.55)

The cell wave function is simply the wave solution in 2 single cell of the periodic struc-
ture. We next use the Bloch wave condition (Eq. 2.49) to define the wave function
anywhere in the structure in terms of its value in the cell defined by —h/2 < 2z < h/2:

F(z) =

P(2) = 9(2) * 6(2) -h/2<z< h[2
P(z — h)ei™ = p(2) % 6(z — h)ei™  h—h/2 <z <h+h/2

: : : (2.56)
Y(z — nh)e™h = 1(2) * 6(z — nh)e’™* nh — h/2 < z < nh+ h/2.

As is conventional, the asterisk (*) denotes the convolution operation as defined by

a(z) * b(z) = [_ :o a(z ~ y)b(y)dy. (2.57)

Because each shifted cell wave function is zero outside of its associated interval, the
Bloch wave function can be expressed as the infinite sum of these functions. The
Bloch wave function can therefore be expressed in the alternative form

F(z) = ¢(2) * 3&: 6(z — nh)e™* (2.58)

N==00

which is simply the cell wave function convolved with a phase weighted Shah or
lattice function. The convolution of 1(z) with each phase weighted delta function in
the lattice simply places a phase weighted copy of 1(z) at each lattice site. The Bloch
wave function as expressed in Eq. 2.58, which will be referred to as the convolution
representation, shows explicitly that the Bloch wave function is simply a string of
repetitions of ¥(z) at intervals of & with a cell to cell shift in phase of ¢’%. That is
aside from factors of the constant ¢/**, the Bloch wave function is s:mply a string of
identical cell wave functions.




3. PROPERTIES OF THE BLOC(. . WAVES

In this chapter we derive expressions for some of the parameters which characterize
Bloch waves. We begin with a derivation of the Bloch dispersion relation and an
examination of the physical origins of some of the characteristics of the dispersion.
The Bloch impedance function and explicit expressions of the Bloch wave function are
derived. The multivalued nature of the dispersion relation is related to the travelling
wave spectral form of the Bloch wave function. Finally, the consequences of truncation

of the periodic structure are considered and Bloch wave reflection coefficients are
derived.

3.1 Bloch Wave Dispersion

In order to derive a dispersion relation we exploit what is certainly one of the most
significant attributes of the structure of Bloch waves: the analysis of wave propagation
in an infinite periodic structure can be reduced to the analysis of wave propagation
in a single cell of the structure. As is made evident by the convolution representztion
of the Bloch wave function, the infinite structure wave function can be expressed in
terms of the wave function associated with a single cell of the structure.

A variety of methods have been employed in Bloch wave dispersion analyses
(Collin, 1960; Slater, 1950; Kittell, 1986; Gasiorowicz, 1974). In each method, how-
ever, the dispersion relation is derived by imposing the same condition: the Bloch
condition and the scattering relations must be consistent. That is, both the Bloch
condition and the scattering relations place constraints on the relationship between
the fields at the centers of neighboring cells. In order for these two constraints to be
consistent with one another, a particular dispersion relation must exist. In the analy-
sis presented here, which parallels that of Achenbach and Kitahara (1987), the Bloch
condition is imposed in the form of boundary conditions. These boundary conditions,
which are derived from the Bloch conditions, are applied at the centers of ncighbor-
ing cells, as shown in Fig. 3.1. A gencral travelling wave solution in the vicinity of
the intervening scatterer is expressed in terms of the S matrix clements as shown in
Fig. 2.2. The application of the boundary conditions to this gencral travelling wave
solution specifies the Bloch wave number in terms of the S matrix clements and k, the
ordinary wave number. The S matrix clements associated with a rigidly terminated
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side branch are found and substituted into the general dispersion relation. The result
is the dispersion relation for our system. Features of the dispersion relation are then
related to the various physical dimensions of the periodic structure.

z=nh z=(n+1)h
A A A O VAYAYA =
<N\~ NN~
2y Znvl
FIGURE 3.1

The dispersion analysis cell is centered on the side branch between the
n and the (n + 1)** cells. The Bloch boundary conditions are applied at
the ends of the cell, at z =nh and z = (n + 1)A.

AS-91-335

3.1.1 The Bloch Boundary Conditions

The Bloch wave condition (Eq. 2.46) specifies the relationship that exists between
the wave function at a point in the structure a.d that at a point one structure period
distant. Such a condition is in effect a boundary condition (similar to a periodic
boundary condition) which can be used in the analysis of the intervening section of
the structure. A similar boundary condition can be derived for the gradient of the
wave function. The standard representation of the Bloch wave function (Eq. 2.50) is
a convenient functional form to use in such a derivation.

The evaluation of the Bloch wave function at z = nh and z = (n + 1)h yields
P(2)|zznn = O, (nh)e’™™", (3.1)

and
p(z)'z=(n+1)h =o,((n+ 1)h)ejq(n+1)h

= @, (nh)eltnt Dk, (3.2)
respectively. Combining Eqs. 3.1 and 3.2, we find

p(z)|2=(1l+l)h = p(z)|z=nhchh’ (33)
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which is the first Bloch boundary condition. Evaluation of the pressure gradient at
z=nh and z = (n+ 1)h and introduction of Eq. 2.48 yields

dp(Z) — -d(I)Q(z) jqz : 11
1 ==t 7q%,(2)€

[d2,(2)
dz

z=nh 2=nh

+ 599, (nh)] &k, (3.4)

z=nh
and

dp(z)
dz

- [E s ]

[d2,(2)
dz

z=(n+1)h z=(n+1)h

+ jq%(nh)] gla(rtih (3.5)

z=nh

respectively. Combining Eqs. 3.4 and 3.5 results in

dp
dz

= 9P

-2 o, (3.6)

z=nh

z=(n+1)h

which is the second Bloch boundary condition. It is interesting to note that the Bloch
boundary conditions are simply phase shifted periodic boundary conditions on both
the acoustic pressure and its gradient.

3.1.2 The Dispersion Relation for an Arbitrary Scatterer

The dispersion relation is found by imposing the condition that the field which,
by definition, exists in the vicinity of the scatterer must meet the Bloch boundary
conditions. The field in the n'" and the (n + 1)*" cells can generally be written as

(2) = fae?*m 4 gne=iken ~h/2 < 2z, <h[2
P2 = fn+16jkz""" + gn+16_1k:“+’ —h/2 <Zpp1 < h/2,

where we define the shifted axial coordinate z, = z — mh which is centered on the
m* cell. This field is illustrated in Fig. 3.1. Equation 2.32 can be used to express gy
and f4+1 (the scattered waves) in terms of f,, and g, (the incident waves), and the
field can be written

p(z) =

f,,e”"" - (S“ej""_fn -} Slzejkl'!]1,+|)(i_1k:" , —h./2 <z, < h/2
(S21€™ fr + Spae*hgpn )ttt bogupiem it —hf2 < 2,4y < RJ2.
(3.7)
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The substitution of this solution into the Bloch boundary conditions leads to the
system

Sn — e i*heith — Gy eith Gy + g7 — Sppeit | [ f ] _ [0
Sg] - e‘—’""e“" + SuCth 822 - e"“‘ + Slzeth On+1 . 0]’ (38)
Because Eq. 3.8 is a homogeneous system, it has a nontrivial solution if and only if

the coefficient matrix is singular:

Sgl - e"""e”h - Sue‘?qh S22 + C_th - Slgeth

det Sy — e~ TFheith 4 G, eith Syy — e7IFh 4 Gppeih

= 0. (3.9)

This requirement results in a dispersion relation for a general scatterer:
Slgeth + Sg]e_th + (311522 - S]gSgl)ejkh - e—jkh = 0, (310)

or
81267 4 Sye7h 4 |S|eFh — e7kh =, (3.11)

where |S| denotes the determinant of the scattering matrix.!
Symmetric Scatterer

If the scatterer is symmetric under reversal of the axial coordinate, then S;; = Sz,
and S, = Sy (the reflection and transmission is the same for waves incident from
either side), and Eq. 3.11 simplifies to

25,5 cos(gh) + (8%, ~ SF,)ef*h — et = 0,

Discrete Scatterer

If the axial extent of the scatterer is very small compared to a wavelength, the
scatterer is effectively symmetric. In addition, the pressures on either side of the
scatterer are approximately equal, resulting in the further simplification S;, = 14+ .5);.
In such a case the dispersion relation becomes

cos(gh) — e** + L sin(kh) = 0.
S12

Impedance Load Scatterer

The characteristic acoustic impedance of a uniform waveguide of cross sectional
area A, is defined as Zy, = poco/A.,, where the subscript a identifies the impedance

If the medium is reciprocal (as well as isotropic), then, by the reciprocity principle, Si2 = Sa
(Collin, 1960).
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as being acoustic. If the scattering is caused by the loading of the waveguide by the
shunt acoustic impedance Zp,, then Sy, = (14 Zp./221,)"! (Kinsler, Frey, Coppens,
and Sanders, 1982). The dispersion relation then becomes

cos(gh) — cos(kh) + j 2ZZOZ sin(kh) = 0. (3.12)

3.1.3 The Dispersion Relation and the Physical Origins of its Structure

The dispersion relation for the waveguide of this study can be found by substi-
tuting the expression for the acoustic impedance of a rigidly terminated side branch

— ] pOCO/As
tan(k,,,fi) ’

into Eq. 3.12. Note that in place of d, the physical depth of the side branch, we have
substituted the end corrected length d = d + ad. The additional length ad corrects
for the inertial load on the side branch field due to the mass of the fluid in the port
region. The end correction derived by Morse (1976) for a circular opening of radius a
is ad = 8a/3w. Using the side branch width { in place of the diameter of the circular
opening we get

La

d = d+41/3m,

which is the end correction used in this study. The resultant dispersion relation is

cos(gh) = cos(kh) — 2’:14’ tan(k,,d) sin(kh). (3.13)

In order to investigate the relationships between the physical dimensions of the
periodic structure and the resultant characteristics of the dispersion relation we begin
by casting the dispersion relation in nondimensional form. Several dimensionless para-
meters are then identified and related to dispersion characteristics by direct analytical
reasoning and graphical analysis. Dispersion curves for several combinations of values
of the parameters are shown in this section with the hope that the effect of variation
of these parameters is straightforward enough to allow the reader to generalize later
results, which will be presented for a single set of parameters only.

It should be noted here that the Bloch dispersion relation is a multivalued disper-
sion relation. In order to evaluate the Bloch wave number, an inverse cosine function
must be evaluated,

gh = cos™[cos(kh) — (A,/2A,) tan(kyd) sin(kh)], (3.14)

which is a multivalued function. The branch of the dispersion relation shown in plots
here is referred to as the primary branch. The primary branch is that which, in the
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uniform waveguide limit (d — 0 or A, — 0) degenerates to the nondispersive relation
gh = kh. As was pointed out in Chap. 1, such a presentation scheme is referred to
as the extended zone scheme. The choice of the primary branch also allows us the
graphical interpretation of the dispersion curve: the slope of the line from the origin
to a point on the dispersion curve is the phase velocity associated with that point on
the curve, and the slope of the dispersion curve at that point is the group velocity
associated with that point. It should also be noted that the branch shown is the
primary branch associated with the forward propagating Bloch wave.

Nondissipative Dispersion

In order to make evident the parameters involved, we write the dispersion relation
in a form which explicitly shows the frequency dependence. In the nondissipative case,
k = kg, = w/cy, which can be introduced into Eq. 3.13 to result in

cos[gh] = coslwh/co] — 1/2[A,/Ay) tan {[wh/ colld/ h]} sin[wh/co), (3.15)

where the dimensionless quantities appear in square brackets. In addition to the
dimensionless Bloch wave nuraber (gh) and frequency (wh/co), there appear the two
geometrical parameters d/h and A,/A,, which are normalized side branch depth and
area, respectively.

We begin the investigation of the significance of the nondimensional parameters
with the definition of the functions v and w:

w= %tan [(Wh/Co)%] sin(wh/co)

= cos(wh/co) + ;—’w.

The dispersion relation can now be written
gh = cos™{v}.

Because wh/cy is real, v is also real. The inverse cosine of a real number is real if the
argument is bounded by £1 and complex if the argument is larger than 1 or less than
~1:
nw +jcosh™'(v) (neven) 1<w
gh = { cos™!(v) -1<v<1 . (3.16)
nm + jcosh™'(Jv]) (n odd) v<~-1

Because stopbands occur when gh becomes complex, the condition |v| > 1 is the
condition for the occurrence of a stopband.

The conditions under which |u] > 1, the stopband condition, can be found by
investigating the behavior of w. Because the cos(wh/cy) component of v is bounded
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by +1, gh becomes complex only when w is able to “push” cos(wh/co) past +1. The
function w, however, is generally quite small (easily bounded by +1) except in the
region of the tangent singularity. The two situations in which |v] is likely to become
larger than 1 and cause the occurrence of a stopband are therefore:

e When the nondimensional frequency is in the vicinity of kh = nx (n an integer).
Since cos(nm) = 1, w can easily cause [v] to become greater than 1. Because
the magnitude of the function w is modulated by the parameter A,/A,, large
values of this parameter increase the overall size and strength of the stopband,
but not the location of the stopband. Such a dependence on A,/A, makes
intuitive sense as increasing the side branch area relative to the waveguide arca
increases the reactive load on the waveguide without affecting the frequency
dependence of the load.

¢ When the nondimensional frequency is in the vicinity of the tangent singularity:
wh/cy = (n +1/2)m/(d/h) with n an integer.

The first of the two stopband conditions, which results in stopbands near wh/cy =
nm, is characteristic of wave propagation in periodic media (Slater, 1950; Gasiorowicz,
1974; Kittel, 1986; Brillouin, 1946). These stopbands correspond to the fitting of an
integral number of half wavelengths into a single cell of the structure, which is simply
the one dimensional Bragg condition. The stopbands near wh/cy = nm are due to
the periodicity of the structure, and will be referred to as the structure periodicity
stopbands or the Bragg stopbands.

The second of the stopband conditions, which results in stopbands in the vicinity
of wh/co = (n+1/2)m/(d/h), is not typical of wave propagation in periodic media (sce
Fig. 1.1). The set of frequencies specificd by the condition wh/cy = (n+1/2)w/(d/h)
is simply the set of resonance frequencies of the side branch.? These stopbands will
be referred to as the side branch resonance stopbands.

We see from this analysis that A,/A4, and Ei/h are parameters which gauge the
overall strength of the stopbands and location of the side branch resonance stopbands,
respectively. Figure 3.2 shows the real and imaginary parts of the nondimensional
Bloch wave number (the dispersion and attenuation) for three values of A,/A. at
a fixed value of d/h. Recalling that stopbands occur when juj > 1, we sce that
the effect of increasing A,/A,. is as expected: the stopbands widen and increase in
strength with no shift in location. Note the unusual structure of the side branch
resonance stopband: Im{q} is cusped and Re{q} is discontinuous at the side branch

2Because a single side branch in an otherwisc uniform waveguide causes total reflection of an
incident wave if the frequency is a resonance frequency of the side branch, it is not surprising that
a stopband occurs near such a frequerncy. In fact, because there is zero transmission across a single
cell, we expect Iin{g} — oc at the side branch resonance frequency.
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-Im{qh}

e
a

Nondimensional Frequency: ® h/c,

....... A,/A,=1/4
i dh=23/64 R AA=12
—— A,/A,=3/4
0 1 A - 1 1
~T 0 T 2n

Nondimensional Bloch Wave Number: gh

FIGURE 3.2
Nondissipative Bloch wave dispersion. Shown are Re{gh} and -Im{qh} for

three values of the parameter A,/A, at a constant value of [1/h. The value
of A,/A. determines the overall degree of loading of the waveguide by the
side branches and therefore the overall magnitude of the periodic
structure effect. The sizes and strengths of tlie stopbands are affecied by
changes in A,/A,, but the locations of the stopbands are not. The 7= and
2% Bragg stopbands and the side branch resonance stopband are marked
B., B,-, and SBR, respectively.

AS-91-336
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Nondimensional Frequency: ® h/c,

2R d/h=20/64
- A, /A, =1/2 Y e dh=23/64 -
—— d/h=28/64
0 . L L A 1 I
-n 0 n M

Nondimensional Bloch Wave Number: gh

FIGURE 3.3
Nondissipative Bloch wave dispersion. Shown are Re{gh} and -Im{gh} for
_three values of the parameter a/h at a constant value of A,/A,. Varying
d/ h shifts the frequency of the side branch resonance stopband and alters
the size and strength of the Bragg stophands. The Bragg stopbands are
wider (in frequency) and stronger when the side branch resonance
stopband is near.

AS91-337
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resonance frequency. Figure 3.3 shows the dispersion and attenuation for three values
of d/h with a fixed value of A,/A,. We see that changes in d/h affect both the Bragg
and the side branch resonance stopbands. The location of the side branch resonance
stopband shifts when d/h changes, and the Bragg stopbands are strongest when the
side branch resonance stopband is nearby.

Dissipative Dispersion

When dissipation is present, the dispersion relation is, as might be expected,
much more complicated. In the nondissipative case we were able to investigate the
structure of the dispersion relation using mathematical reasoning. In the dissipative
case we are left with little more than the rather crude technique of graphing the
dispersion relation for a variety of parameter values.

We begin, as in the nondissipative case, by expressing the dispersion relation in
the frequency-explicit form. The dissipative wave number, as defined in Eq. 2.30, is
substituted into Eq. 3.13 to result in

cos|gh] = cos {[wh/co] +(1+ j)[w/wp&]llz[h/RHw]}

—1/2[As/Au) tan {[wh/co[d/) + (1 + ){w/w,s] /*(d/ Rrs] |

-sin {[wh/co] + (1 + j)w/wue] 2[R/ Ruru]} . (3.17)
The frequency w,,., defined as

(;:E)m Fly=1) (%/0%)1/2} B , (3.18)

is a frequency associated with thermoviscous losses, and Ry, and Ry, are the hydraulic
radii of the waveguide and the side branch, respectively. In addition to those found in
the nondissipative case, we have three more nondimensional quantities: the frequency
w/w,x and the two lengths h/ Ry, and Zi/ Rys.

Wyx = 2

At this point several qualitative observations about the effects of dissipation on the
dispersion relation can be made. First, the fact that the dissipation terms (terms that
did not appear in the nondissipative dispersion relation) all vary as (w/w,,,)'/? implies
that w,, is the characteristic frequency which defines the scale on which dissipative
effects are measured. The other two nondimensional parameters are h/Ryy,., which
is associated with propagation losses in the waveguide sections and fi/ Ry, which is
associated with similar losses in the side branches. The nondimensional parameters

h h h
— = e | e 3.19
/ ﬁ[ 1o b ‘ w ( )
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and X

d —

RHJ

each associated with losses in a particular guiding structure, are dependent upon
the length of the guiding structure as compared to its transverse dimensions. As is
evident in Eq. 2.30, acoustic boundary layer effects result in both dissipation and
dispersion, as they must to satisfy the Kramers-Kronig relations. We expect that the
dispersion effects associated with h/Ry, and a/ Ry, will cause slight shifts in the
locations of the stopbands, as we found that the stopband locations are associated
with resonance conditions, which will be shifted in frequency with the introduction
of dispersion. The dissipative effects associated with /Ry, and d/Ry, are more
difficult to analyze. We know that h/Ry,, represents w'/? attenuation of the waves
in the waveguide sections, and therefore expect some associated attenuation of the
Bloch waves to result, but the functional behavior of Im{gh(w)} is difficult to foresee.
Likewise, d/ Ry, represents w'/? losses in the side branches and is therefore associated
with a resistive component in the periodic load. Again, we expect that these losses
will result in attenuation of the Bloch wawes, but the frequency dependence of the
attenuation is not obvious.

d
w

~| Q.

, (3.20)

The effects of the parameters h/Ry,, and d/ Ry, are investigated graphically
using constant values of A,/A, and d/h and varying the values of /Ry, and d/Ry,.
Figure 3.4 shows the imaginary component of the dimensionless Bloch wave number
for d/RH, = 0 and h/Ry,=0, 5, and 10. The effect of h/Ry,, is to introduce a
roughly w'/? loss component in the passband Bloch wave number, which agrees nicely
with intuition. Figure 3.5 shows the imaginary component of the Bloch wave number
for h/Ry,, = 0 and d/Ry,=0, 5, and 10. The fact that the effect of d/ Ry, is most
pronounced in the vicinity of the side branch resonance stopband makes sense as the
acoustic field in the side branch has its greatest amplitude in the vicinity of resonance,
and can therefore dissipate more acoustic energy. It is interesting to note that a
nonzero value of d/ Ry, has no effect (i.c., Re{gh} = kh and Im{gh} = 0) at wh/cy =
m,2m. Evidently at these frequencies (longitudinal resonance), the acoustic ficld in
the side branch vanishes and the Bloch waves propagate at the uniform waveguide
phase speed.

Figure 3.6 shows both the dissipative and nondissipative dispersion curves for a
single set of parameters: d/h = .421, A,/A,. = 3/8, h/Ry,. = 6.562, and d/Ry, =
5.531. This set of paramecters is, for rcasons to be discussed in Chap. 4, the sct
to which the experimental portion of this work is dedicated. Note that the only
significant cffect of losses on the real component of the Bloch wave number is to
smooth out the cusped corners.

It should be noted at this point that there are two distinetly different varicties of
attenuation which occur in the periodic wavegnide. One is the attenuation that oceurs
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FIGURE 3.4
Bloch wave attenuation. Shown is Im{gh} for three values of the

parameter h/Ry, with d/Ry;, =0, which is the case of lossless (reactive)

side branches but lossy waveguide sections. Varying h/Ry, adjusts the

amount of roughly w'/? loss, the standard waveguide loss. The losses are
enhanced near both species of stopbands.
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FIGURE 3.5
Bloch wave attenuation. Shown is Im{gh} for three values of the
parameter d/Ry, with h/Ry, = 0, which is the case of lossless waveguide
propagation but lossy (resistive) side branches. The effects of side branch
losses are most pronounced in the region of the side branch resonance
stopband, and are nonexistent at wh/c, = nn.
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FIGURE 3.6
Dissipative and nondissipative Bloch wave dispersion for the values

d/h = 421, A,/A, = 3/8, h/Ry. = 6.652, and d/Ry, = 5.531, which are those
used in Chap. 4
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in the stopbands even in the nondissipative case. The other is the dissipative atten-
uation that is present at all frequencies but, owing to the magnitude of the dissipation
in this study, most evident at passband frequencies. The dissipative attenuation, as
was mentioned earlier, is due to thermal and viscous losses and is associated with
the generation of entropy and the dissipation of acoustic energy. The nondissipative
attenuation occurs in the absence of the entropy generating mechanisms and therefore
cannot be associated with any energy dissipation. The nondissipative attenuation is
very similar to the attenuation of evanescent modes in standard waveguides, which is
also a type of nondissipative attenuation. As will be seen in Sec. 3.2, the impedance
of the periodic waveguide at stopband frequencies, much like that cf the evanescent
mcdes in a standard waveguide, is reactive. For these reasons the two components of
the attenuation will be referred to as the dissipative and the reactive components.

The main thrust of the theoretical component of this work, the derivation and
discussion of the dispersion relation, is at this point complete. For this reason, further
theoretical results will be presented graphically for only the single set of parameters
listed above as the effects of adjustment of these parameters on the later theoretical
results will be quite obvious.

3.2 The Iterative Bloch Acoustic Impedance

In this section we derive the Bloch acoustic impedance, which is simply the acous-
tic impedance at a point midway between side branches. The technique employed is
similar to that used to derive the dispersion relation: we impose the condition that
the Bloch wave function be consistent with the conditions at the scatterer. In the
derivation of the dispersion relation, the Bloch wave condition was introduced in the
form of the Bloch boundary conditions, which relate the field variable (and its gradi-
ent) in ncighboring cells. Here, the Bloch wave condition is introduced through the
itcrative impedance condition, which relates the acoustic impedance in neighboring
cells.

We begin by deriving the general Bloch impedance function for a waveguide loaded
periodically with an arbitrary scatterer characterized by the scattering matrix S,,.
From that result, more specific results are found for the case of a symmetric scatterer,
an arbitrary impedance load, and loading by a rigidly terminated side branch.
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3.2.1 The Iterative Acoustic Impedance

The acoustic impedance associated with Bloch waves is what is referred to as an
iterative impedance (Brillouin, 1946). Because the structure is invariant under trans-
lations of h, there is no discernible difference between the structure at one particular
point and at a corresponding point an integer number of structure per:>ds distant.
In other words, because the structure has no preferred reference point, a quantity
such as the acoustic impedance niust repeat with the periodicity of the structure.
The Bloch impedance is therefore referred to as an iterative impedance; one period
of the structure transforms the impedance back into itself. Stated mathematically,
the iterative impedance condition is

Zo(2) = Za(z + h). (3.21)

The iterative impedance condition can be derived rigorously by generalizing the
results of Sec. 2 3. The Bloch wave condition can be written in terms of any of the
acoustic variables, including the acoustic pressure and the particle velocity

p(z + h) = p(2)e’™"
u(z + h) = u(2)e’™*.
The impedance at a poir% z is, by definition

sy _ 22
SO

and that at z + h is

plz+h) _ plz)e’™™
u(z+h)  u(z)eieh

Z(z+h) = z(2).
It is evident that the iterative impedance condition is an inherent property of Bloch
waves.

3.2.2 Impedance Analysis

The analysis begins with the definition of the travelling wave amplitudes at the
centers of the n'' and (n 4+ 1)* cells. Recall from Fig. 3.1 that f, and g, arc the
amplitudes of the forward and backward travelling acoustic pressure waves at z = nh,
while f4+1 and g,41 are those at z = (n | 1)h. The acoustic impedance at z = nh is,
by definition,

7 r ’ + I
Au(nh) B AO“ ;1: - gn’

(3.22)
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and that at z=(n+ 1)k is

Zu(nh + ) = Zo Jmt1 F It (3.29)
fn+l = gn+1

The acoustic pressure fields at z = nh and z = (n + 1)h are related by the
transmission matrix defined in Eq. 2.33:

Jar1 =_1__ ~|S|e?** S22 fa
Gnt1 S| =Su et g |’

Introducing these expressions for f,;; and g,4; into Eq. 3.23 results in

fa[=|S1e7™ = S11] + gn[S2z + e77*A]
fal=|S]e*t + Si1] + galS2e — €7 7%]

We next use Eq. 3.22 to substitute Z,(nh) into Eq. 3.24 in place of f, and ga:

Z,(nh + k) = Zy, (3.24)

Zy(nh + h) =

(Za(nh) + Zoa)[=|S1e7™" ~ Su] + (Za(nh) ~ Zos)[Sz2 + e77**]
“(Zu(nh) + Zoo)[=ISI7* + Sp1] + (Zu(nh) = Zoa)[Szz — €77
The iterative impedance condition states that the impedances at nh and (n + 1)k

must be equal. Because the Bloch impedance is defined to be the impedance at the
cell center, we have

(3.25)

ZBa = Za(nh) = Za(nh. + h)
The introduction of the iterative condition makes Eq. 3.25 quadratic in Zg,/Zo,:

(ZBa/ZOa)2“SIejkh - Sn =S+ e_’kh]
+(ZBa/Z0a)[2522 — 2511] + [~|S|e™** = 81y — Spp ~ e = 0.
Solving for Zpg, via the quadratic formula yields

Sy~ Sy + e—th[(l5|e2th - 1)2 _ 4512521621'%]1/2

ZBa = ZOu |Sle‘7kh _ Sn — 522 + e"jkh

(3.26)

Symmetric Scatterer

If the scatterer is symmetric under reversal of the axial coordinate, then Sy = Sy
and S), = Sy, and Eq. 3.26 simplifics to

p 7 ISICth + 28“ + e—jkh 1/2
B

a = 40a : : 3.27
0 11S]e/*h = 28, + =itk (3.27)
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Discrete Scatterer

If the scatterer is discrete then Sj2 = 1 4+ S;; as was described in Sec. 3.13.
Equation 3.27 then simplifies to

7o — 7 [Su(e@ — 1)+ jsin(kh) 12

Bo = S0 161 (™ + 1) + jsin(kh)|

(3.28)

Impedance Load Scatterer

If the scattering is caused by the loading of the waveguide by the shunt acoustic
impedance Zj,, then Si; = —(1+2Z1,/Z0.)"" (Kinsler, Frey, Coppens, and Sanders,
1982). The substitution of the expression for Si, into Eq. 3.28 results in the impedance
function
(Z0a/Z1a)[cos(kR) — 1) + sin(kh) ]2
(Zoa/Z10)[cos(kR) + 1] + sin(kh)

ZBa = Zoa (329)

Side Branch Load

The substitution of the acoustic impedance of a rigidly terminated side branch,

— ] p(‘CO/Aa
tan(ksd) '

into Eq. 3.29 results in the Bloch impedance

La

1(A,/A,) tan(kyd)[cos(kh) — 1] + sin(kh) 1/2
Oa 5(A4,/Ay) tan(k.sd)[cos(kh) + 1] +sin(kh) |

This is the Bloch acoustic impedance for the periodic waveguide of this study. It is
of interest to note that in the lossless case the argument of the square root is positive
or negative but real. This corresponds to an impedance that is either resistive or
reactive, but never both. Figure 3.7 shows the Bloch acoustic impedance (normalized
by the uniform waveguide impedance Z,, = pocy/A.) in both the dissipative and the
nondissipative cases. In the nondissipative case, as might be expected, the impedance
is real at passband frequencies and imaginary at stopband frequencies. When dissipa-
tion is present, the impedance is generally complex and the rapid transitions present
in the nondissipative case are smoothed o1t.

Zp, = (3.30)

The acoustic impedance at points away from the center of the waveguide section
can be found in terms of the Bloch acoustic inpedance. The definition of the acoustic
impedance at the center of the zeroth cell (ie., at z = 0)

-
Z(l = Z()u f_U____(]_U_,
fo— 90
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The Bloch acoustic impedance: the impedance of the periodic waveguide

halfway between side branches. The impedance shown is normalized by
the acoustic inpedance of a uniform waveguide Z,, = pyco/A4,. In the
nondissipative case the impedance is real for passband frequencies and
imaginary for stopband frequencies.
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can be generalized to include the range —h/2 < z < h/2 by introducing phase
corrections to the travelling wave components. The generalized impedance is

foe™** + goe~i*®
foei¥z — goe=ikz’
Solving for go/ fo in terms of Zg, and Z,, and substituting into Eq. 3.31 yields
(ZBa + Zo(,)ej"‘ + (ZBa - Zo,,)e""“

(ZBa + ZOa)ejkz - (ZBa - ZOa)e_jkz’

Za (Z) = ZOa (3.31)

Za(Z) = ZOa

or
Zpa cos(kz) + jZy, sin(kz)

Za(2) = Zoo Zyq cos(kz) + jZp, sin(kz)’

3.3 The Bloch Wave Parameter g/f and Bloch Wave Functions

In this section a Bloch wave parameter is identified that, in conjunction with
the dispersion relation, completely specifies the Bloch wave function. As was stated
in Sec. 2.4, the Bloch wave number ¢ determines the global or cell-to-cell changes
in the Bloch wave amplitude and phase. The Bloch wave parameter g/f, we will
show, accounts for the wave function behavior within a single cell. It turns out that
g/ f bears a very simple relationship to the Bloch impedance and will therefore be
expressed in terms of that quantity.

In Sec. 2.4.3 the Bloch wave function was expressed in the convolution form

+co0
p(2) =9(2)* 3 8(z - nh)e™",
n=-—0oo
where 9(z) is the wave function in a single cell of the structure. Since a cell is any
section of the structure with length equal to the periodicity of the structure, it is here
defined to be centered on the waveguide section of the structure with side branches
at each end. The wave function in this cell is simply a linear combination of the two
linearly independent solutions of the wave cquation: a forward propagating wave of
amplitude f and a backward propagating wave of amplitude g:

Y(z) = fel** + ge* - h/2 <z < h/2.

As was pointed out in Scc. 2.4, the convolution of this cell wave function with the
phase weighted lattice function simply places appropriately phased copies of ¥(z) in
each cell of the structure, as is illustrated in Fig. 3.8. An alternative expression of
¥(2) is found by normalizing the f and g wave amplitudes by f + g, the total pressure
at the cell center:

_feR pgeh ek (g femt

V) = = T WD)

~h/2 <2< h/2. (3.32)
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FIGURE 3.8
The forward travelling Bloch wave function is composed of a string of
phase weighted copies of the cell wave function. The cell wave function is
composed of a compound conventional wavefield: a wave of amplitude f
(called an f wave) propagating in the direction of the Bloch wave and a
wave of amplitude g (called a g wave) which propagates in the opposite

direction.
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In this form it is evident .hat a coefficient multiplying the Bloch wave function for
pressure (i.e., the Bloch wave pressure amplitude) is simply the pressure at the ref-
erence cell center, and that g/f is the only remaining unknown in the expression
for the Bloch wave function. The acoustic impedance at the point midway between
side branches, the Bloch acoustic impedance, is given by Eq. 3.30. In terms of the
travelling wave components of the cell wave function (Eq. 3.32), the impedance is

p f+g
ZBeAy = = = ————or 3.33
5 u f/Zo g/Zo ( )

which can be solved for g/f:

ZBa - ZO/Aw
== 9 3.34
9/f Zoe T Zo/A. (3.34)
The explicit form of g/ f is found by introducing Eq. 3.30 into Eq. 3.34:
1 . 1/2
9/f = {[5(/13//1,‘,) tan(k,d)[cos(kh) — 1] + sin(kh)]
1 . 1/2
- [E(A’ /Aw) tan(kgd)[cos(kh) + 1] -+ sin(kh)] }
1/2
{[Q\A,,,/A,v) tan(k,d){cos(kh) — 1] + sin( kh)]
[ (A,/Aw) tan(k,d)[cos(kh) - 1] 4 sin( kh] } (3.35)
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FIGURE 3.9

The amplitude and phase of the backward propagating component wave
(the g wave) relative to the forward propagating component wave (the f
wave). In the stopbands the backward propagating wave has an
amplitude equal to the forward propagating component wave, indicating

a longitudinal resonance condition.
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Figure 3.9 shows the amplitude and phase of g/f. The stopbands are clearly
recognizable as the bands of frequencies in which the forward and backward travelling
component waves of each cell have equal amplitudes, a longitudinal standing wave
condition. It should be noted that this stopband condition (|g] = |f|) is consistent
with the results of the impedance analysis: the impedance is reactive at stopband
frequencies. The passbands are seen to be bands of frequencies in which the phase
relationship between the component waves is fixed and equal to either 0 or ; the
components are either perfectly in phase or perfectly out of phase. This type of
phase relationship is consistent with the fact that the impedance is real at passband
frequencies.

Stopband Bloch Wave Functions

As was noted above, the forward and backward travelling component waves of
the stopband wave functions are equal in magnitude. The wave function is therefore
simply a train of standing waves, the amplitudes of which vary exponentially with
distance. For stopband frequencies, the periodic structure is essentially a sequence of
coupled resonant tanks. Figure 3.10 shows stopband wave functions of the m stopband,
the low frequency side of the side branch resonance stopband (in which Re{gh} = 2m),
the high frequency side of the side branch resonance stopband (in which Re{gh} = =),
and the 27 stopband. For each of the four frequencies, two plots of the wave function
are shown. The upper of each pair of plots shows the wave function at wt = 0. The
lower of each pair shows the wave function at wt = 0,7/3,2#/3,7,4w /3, and 57/3.
Notice that the advance in phase from cell to cell is consistent with the associated
values of Re{gh}. Notice also the standing wave behavior characteristic of stopband
Bloch wave functions.

Passband Bloch Wave Functions

Figure 3.11 shows some examples of passband Bloch wave functions. As might be
expected, the wave functions are most unusual near the boundaries of the stopbands,
where the dispersion is strongest. Note that particularly in the third and fourth
waveform the pressure gradient is strongly discontinuous at the side branches, an
occurrence which scems to disobey the law of conservation of mass. The side branch
resonance, however, is zeroth order and is thercfore a “breathing” mode which is
alternately injecting and withdrawing mass from the port region, allowing the pressure
wave function to become cusped. Note also that in spite of there being only a single
temporal frequency present, there is obviously a rich spectrum of spatial frequencies.
This phenomenon, which is characteristic of Bloch waves, is the basis of the travelling
wave spectrum.
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FIGURE 3.10
The Bloch wave function at four stopband frequencies. The second of

each pair of plots shows the Bloch wave function at several instants of
time, showing the longitudinal resonance condition typical of stopband
Bloch wave functions.
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FIGURE 3.11
The Bloch wave function at four passband frequencies: wh/c, = 0.777n

(below the 7 stopband), 1.0877 (above the 7 stopband), and 1.1367 and
1.1497 (both below the side branch resonance stopband).
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3.4 The Travelling Wave Spectrum and the Multivalued Dispersion
Relation

In this section we concentrate on the travelling wave spectral representation of
the Bloch wave function. We begin by finding an expression for the periodic mod-
ulation function @,(z). We then evaluate the spectral amplitude integral (Eq. 2.52)
for the spectral component amplitudes C,. Finally, the physical significance of the
multivalued nature of the dispersion relation is discussed.

3.4.1 The Travelling Wave Spectral Amplitudes

Equation 2.52, the spectral amplitude integral, can be evaluated if a closed form
expression for ®,(2) can be found. Such an expression can be found by equating the
standard expression and the convolution expression of the Bloch wave function. In
the interval —h/2 < z < h/2 the standard expression is

p(2) = &y(2)e’”,
and the convolution expression is
p(2) = ¥(2) = fe* + ge7*2, (3.36)

Equating these two forms of p(z) yields an expression for the periodic modulation
function:

D, (2) = fellk=9) 4 gemlk+a): - g <z< g (3.37)

The substitution of this expression for ®,(z) into the spectral amplitude integral
(Eq. 2.52) results in the following expression for the spectral amplitudes

2 , .
C, = / / [ feitkh=ah-2mm)(z/h) ge—_;(kh+qh+2xn)l./h)] d(z/h).
~1/2

The integration is straightforward and we find
Cn = fio(nm 4 (g ~ K)h/2) ¥ gjo(nw | (g + k)h/2), (3.38)
where jy(x) is the spherical Bessel function of order zero. The amplitudes of the

travelling wave spectral components are shown in Fig. 3.12 for the six lowest spatial
frequency components above and below the primary (n = 0) component.

An excellent example of the rich spectrum of spatial frequencies that can oceur
in a Bloch wave function is cevident in the last function of Fig. 3.11. The primary
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The amplitudes of the components of the travelling wave spectrum. The
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spatial frequency (i.e., Bloch wave number) corresponds to a wavelength of about
one structure period. It is obvious that in addition to higher spatial frequencies due
to the sharply cusped waveform, there is a strong low spatial frequency component
corresponding to a wavelength of about ten structure periods. Figure 3.12 shows that
this low spatial frequency component, the n = —1 component, is expected to have
an amplitude which is larger than the principal component amplitude near the side
branch resonance stopband.

3.4.2 The Multivalued Dispersion Curve

The physical significance of the fact that the dispersion relation is multivalued
becomes apparent when we note that the components of the travelling wave spec-
trum occur at the same interval along the spatial frequency axis as the repetitions
of the dispersion relation. In Sec. 3.1 it was noted that the dispersion function is
multivalued and repeats at intervals of 27 /h along ¢g. An interval of 27 /h is the same
interval as that between the spatial frequency components of the travelling wave spec-
trum. Figure 3.13 shows the complete dispersion function including all branches of
the inverse cosine function. The primary branches associated with both forward and
backward travelling Bloch waves are shown as unbroken lines, and all other branches
are shown as dotted lines. This representation, the “periodic zone representation”
which was referred to in Chap. 1, relates each temporal frequency to an infinite set
of spatial frequencies. The infinite set of spatial frequencies are simply the spatial
frequencies of the travelling wave spectra associated with both forward and backward
propagating Bloch waves. A forward propagating Bloch wave of Bloch wave num-
ber go is composed of travelling waves of spatial frequency go + 2nn/h, where n is a
positive or negative integer. The same Bloch wave propagating in the opposite direc-
tion is composed of travelling waves of spatial frequency —gqo + 27n/h. We see that
the full dispersion curve is composed of two families of curves, one associated with
forward propagating Bloch waves and the other with backward propagating Bloch
waves. These families of curves are shown in Fig. 3.14 as unbroken and dotted lines,
respectively. The family of curves associated with forward propagating Bloch waves
is simply an infinite set of repcats of the primary branch curve associated with for-
ward propagating Bloch waves, each occurring at intervals of 27 /h along the spatial
frequency axis. Likewise, the family of curves associated with backward propagating
Bloch waves is a set of copies of the primary branch curve associated with back-vard
propagating Bloch waves, distributed at intervals of 27 /h along the spatial frequency
axis. Each of these “copies” of the primary branch represents a spectral component;
the n*® travelling wave component is represented by the copy shifted by 2zn/h along
the spatial frequency axis. Figure 3.14 shows the travelling wave spectral components
of one forward travelling and two backward travelling Bloch waves. Each horizontal
row of circles connected by a dashed line represents the travelling wave spectral com-
ponents of a Bloch wave. In the stopbands, the two families of curves are confluent;
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FIGURE 3.13

The complete dispersion curve including branches other than the
primary branch. The primary branches associated with both forward and
backward propagating Bloch waves are shown as unbroken lines, and the
other branches are shown as dotted lines. This presentation of the Bloch

wave dispersion is referred to as the “periodic zone” scheme.
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FIGURE 3.14
The complete dispersion curve showing the travelling wave spectra of

several Bloch waves: a forward travelling (FT) Bloch wave of frequency
wh/cy = 1.0437, and backward travelling (BT) Bloch waves of frequency
wh/co = 0.574n and 1.5307. The branches of the dispersion relation
associated with forward propagating Bloch waves are shown as unbroken
lines and those associated with backward propagating Bloch waves are
shown as dotted lines. Each horizontal row of circles connected by a
dashed line represents the travelling wave spectral components of a
Bloch wave.
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the forward and backward propagating waves are strongly coupled, as is implied by
Fig. 3.9.

Notice that the complete dispersion relation contains no information about the
amplitude or phase of the components of the travelling wave spectrum. Equation 3.38
is the source of that information. The interesting thing about the periodic zone
representation of the travelling wave spectrum is that the graphical interpretation
of the dispersion curve holds for all of the spatial frequency components. That is,
the slope of the line from the origin to a point on the dispersion curve associated
with & component of the travelling wave spectrum is the phase velocity associated
with that component, and the slope of the dispersion curve at that point is the group
velocity associated with that component. This graphical interpretation makes obvious
two points of interest. First, each travelling wave component of a Bloch wave has the
same group velocity, and this group velocity is directed in the direction of propagation
of the Bloch wave. Second, each travelling wave component of a Bloch wave has a
different phase velocity, and this phase velocity can be directed opposite the group
velocity! This peculiarity is the reason periodic structures are sometimes referred to
as “backward wave structures” (Ramo, Whinnery, and Van Duzer, 1965).

3.5 Effects of Truncation of the Structure:
Bloch Wave Reflection and Transmission

Up to this point, all of the theoretical findings have been based upon the assump-
tion that the periodic waveguide is of infinite length. The whole of Chap. 2 is devoted
to showing the conditions under which we can expect to find Bloch wave solutions.
The first of these conditions is that the system exhibits a translational invariance,
which can occur only in the case of an infinite structure. This naturally raises the
question as to the validity of the analysis as it applies to a physically realizable system.

We consider several situations involving non-infinite periodic waveguides. We
begin with a semi-infinite periodic waveguide that is connected to a semi-infinite
uniform waveguide. The uniform waveguide may be considered the termination for
the periodic waveguide. The purpose of the analysis is to illustrate the way Bloch
waves are able to satisfy interface conditions. We then consider the more general
case of Bloch waves in a semi-infinite periodic waveguide incident upon an arbitrary
terminating impedance. Next we treat the reverse case, that in which conventional
waves in a uniform waveguide are incident upon a semi-infinite periodic waveguide.
Various reflection and transmission coefficients arc derived. Given the above findings,
we conclude with a discussion of a guided wave system which includes a finite scction
of periodic waveguide.
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3.5.1 A Periodic Waveguide Terminated by a Uniform Waveguide

We begin by considering a compound Bloch wavefield, a field composed of both
forward and backward travelling Bloch waves. The convolution representation of
the Bloch wave function shows the Bloch waves to be composed of a compound
conventional wavefield which repeats (with shifted phase) at intervals of h. That is,
the forward travelling Bloch wave consists of both forward and backward travelling
component waves which are both advanced in phase by the factor e’ in propagating
from one cell to the neighboring cell in the positive z direction. The amplitudes of
the forward and backward travelling component waves are f* and g*, with the ratio
g*/f* determined by Eq. 3.35. The backward travelling Bloch wave likewise consists

f"e -jgh f" f"e jqh

g*e g" greitt

frejah f fre b
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FIGURE 3.15
The component waves of (a) forward and (b) backward propagating
Bloch waves. The values of the component wave pressure at the center of
each cell are shown. The center cell is the reference cell.
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of a compound wavefield, but the phase advances in the negative z direction. The
amplitudes of the component waves associated with the backward travelling Bloch
wave are f~ and g~, where f~ is the component propagating in the direction of the
Bloch wave. Again, the ratio ¢g7/f~ is determined by Eq. 3.35. The forward and
backward travelling Bloch waves are illustrated in Fig. 3.15.

We now consider the situation shown in Fig. 3.16(a), wherein both forward and
backward travelling Bloch waves occur simnultaneously in the same guiding structure.
A reference cell is chosen to define the component wavefields such that in the center
of the reference cell p= f+ + g* + f~ 4 g~ (i.e., the z origin is at the center of the
reference cell). If the amplitude and phase of the backward travelling Bloch wave are
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FIGURE 3.16
(a) Forward and backward propagating Bloch waves occurring
simultaneously in the same structure with the amplitude/phase
relationship f~ = —g*. (b) The same situation as in (a), but with the
periodic structure to the right of the center of the reference cell replaced
by an infinite uniform waveguide.
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chosen so that f~ = —g*, then the g wave component of the forward travelling Bloch
wave and the f wave component of the backward travelling Bloch wave cancel in the
reference cell The wavefield in the reference cell is therefore purely progressive, as
shown in Fig. 3.16(b). We can therefore replace the periodic structure to the right
of the center of the reference cell with a semi-infinite, uniform waveguide with no
disruption of the wavefield to the left of (and inside of) the reference cell. Conversely,
it can be stated that the effect of replacing the periodic structure at some point with
a semi-infinite, uniform waveguide is the generation of a backward travelling Bloch
wave with amplitude and phase defined by f~ = —gt.

3.5.2 The General Impedance Termination

While the arguments of the last section demonstrate qualitatively the way com-
pound Bloch waves can satisfy the conditions at an interface, a quantitative analysis
leads to much more general results. We consider the case of a periodic waveguide ter-
minated by the acoustic impedance Z,, at the center of the reference cell (at z = 0).
As in the last section, f* and f~ are, respectively, the amplitudes of the f waves
of the forward and backward propagating Bloch waves in the periodic waveguide
which occupies the half space z < 0. We will call the pressure on the z > 0 side of
the interface f,. If no waves are incident on the interface from z > 0 (the field in
the terminating medium is progressive), f, is simply the transmitted pressure wave
amplitude.

As usual, the continuity conditions must be met at the interface. Continuity of

pressure requires
(ff+g)+(f +g")=1fo (3.39)

Since the relationship between the f and g waves is given by Eq. 3.35 for any Bloch
wave

9_9 _ 9 .
T (3.40)
we can write IEq. 3.39 as
(f*+ )1 +g/f) = f. (3.41)

Likewise, continuity of particle velocity at the interface requires

(f*+g7) (f~+g%)  f

Z()u - Z()u = —Z-t:, (342)
or Z
(fF = f)L-g/f) = £~ (3.43)

Zt(x .
The combination of Eqs. 3.41 and 3.43 results in a Bloch reflection coefficient,
= f_ + (/'_ - Zlu(l - Q/f) - Z()u(‘l 4 Q/f)

fragt Zu(l—g/f) + Zo(1+ g/f)

Ry
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_ Ztu - ZBa

B Zta + ZBa’
where we have chosen f + g, the pressure amplitude at the cell center, to represent
the amplitude of the Bloch wave. Equation 3.44 is simply the standard definition of
the reflection coefficient for a conventional wave in a medium of acoustic impedance

Zp, incident on an interface between that medium and one of acoustic impedance
Zia.

(3.44)

If the field in the terminating medium (z > 0) is progressive, then we can define
a transmission coefficient by T = f,/(f* + ¢g*). Equations 3.41 and 3.43 can be
combined to result in
T fl 2Zta

- f+ +g+ B Zta"'ZBa.
This expression is identical to the corresponding expression for conventional waves.

(3.45)

Three Interesting Cases

The range of possible values of Z;, includes three values of particular interest.
In the case Z;, = Zo,, which is the case of the periodic structure terminated by a
semi-infinite uniform waveguide, the transmission coefficient (Eq. 3.45) reduces to

T=1-9/f,
and the Bloch reflection coefficient (Eq. 3.44) becomes
Rp = -g//, (3.46)
or
=1t =gt (3.47)

which confirms the earlier result. In such a case the plot of |Rp| is identical to the
plot of |g/ f|, shown in Fig. 3.9. In the case Z,, — 00, the Bloch reflection coefficient
(Eq. 3.44) reduces to

Rg =1,
or

fm=r, (3.48)
which is what is expected for pressure wave reflection from a rigid termination. The
form of Rg in Eq. 3.44 makes evident another case of interest, that in which Z,, = Zg,,
for which

Rg=0
and

T=1.

The reflected Bloch wave amplitude is zero; the incident Bloch wave encrgy is 100%
transmitted.
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3.5.3 A Uniform Waveguide Terminated into a Periodic Waveguide

We now consider the problem of a uniform waveguide of acoustic impedance
Z., terminated by a periodic waveguide. The amplitudes of the incident and reflected
conventional waves are f* and f~, respectively, and the amplitude of the transmitted
Bloch wave is f; + g;- Continuity of acoustic pressure at the interface requires

fr+ 7= fi(l+g/f), (3.49)
and continuity of velocity requires
f© 7 f :
— e — -_— . 3."
T T (1-g/f) (3.50)
Equations 3.49 and 3.50 can be combined to yield
- ZBa - Zia
R=—=———r.
f+ ZBn + Zm

Again, the reflection coefficient is identical to that describing the reflection of conven-
tional waves. Note that when Z,, = Zg, (the impedance matched case) the reflected
wave amplitude is zero.

Equations 3.49 and 3.50 can also be combined to yield the transmission coefficient
(actually a conversion coefficient) for the transmitted Bloch wave

_ ft + Gt _ ZBa
Tg = 7o 22,,, t Zo (3.51)

Again, the result is identical to the conventional wave result. Note that when Z,, =
Zo, we get Tg = 1+ g/f and R = g/f. In other words, f, = f* and f~ = (9/f)f*;
the field in the conventional waveguide has the same f wave/ g wave makeup as a
Bloch wave.

3.5.4 The Finite Periodic Waveguide

We are now in a position to deduce what sort of wavefields occur in a finite periodic
waveguide. It has been shown that a conventional wave in a uniform waveguide
incident upon a periodic waveguide generates a reflected conventional wave and a
transmitted Bloch wave. It has also been shown that a Bloch wave incident upon a
uniform waveguide generates a reflected Bloch wave and a transmitted conventional
wave. From these findings we can arrive at the combination of Bloch and conr Jnal
wavefields that occur in a guided wave system that includes a finite section of periodic
waveguide.
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FIGURE 3.17
The Bloch and conventional wavefields in a guided wave system which

includes a section of periodic waveguide.
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An example of a guided wave system that incorporates a section of periodic wave-
guide is shown in Fig. 3.17. The system is composed of a finite section of uniform
waveguide (the entrance waveguide), a finite section of periodic waveguide, and a
semi-infinite section of uniform waveguide (the terminating waveguide). A piston
source in the entrance waveguide generates a forward travelling conventional wave
which is incident upon the section of periodic waveguide. This incident wave is both
reflected, resulting in a backward travelling conventional wave in the entrance wave-
guide, and transmitted, resulting in a forward travelling Bloch wave in tl-e periodic
waveguide. When the Bloch wave arrives at the terminating waveguide, it is like-
wise partially reflected, resulting in a backward travelling Bloch wave, and partially
transmitted, resulting in a forward travelling conventional wave in the terminating
waveguide.

Conclusion

The value of the analysis in this section is that it demonstrates that Bloch waves
are not restricted to infinite periodic media. In fact, Bloch waves are the waves which
occur in periodic media. A Bloch wa« incident upon a termination does ncf gencrate
a clutter of waves which then scatter in some < mplicated, disorganized manner from
the side branches. Instead, a very specific, orderly backscattered ficld is generated:
a backward propagating Bloch wave. Apparently the Bloch wave is not as “fragile”
as one might be inclined to believe. Truncation of the periodic medium docs not
disrupt some sort of precarious balance, but simply causcs a reflected Bloch wave to
be gencrated.




To conclude, it appears that a periodic medium is very much like a conventional
wave medium with a characteristic acoustic impedance equal to the Bloch acoustic
impedance. The finite periodic medium problem discussed above is very similar to
the classic three-medium problem. The three-medium problem is that in which a
section of a medium of one characteristic impedance is sandwiched between media of
another characteristic impedance. The solution shown above is essentially that of the
three-medium problem. The difference is that, in our case, the waves in the middle
medium are Bloch waves.
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4. BLOCH WAVE DISPERSION MEASUREMENT

In this chapter an experimental verification of the dispersion relation derived in
Sec. 3.1 is described. The measurement is made by spatially sampling the acous-
tic pressure in a compound Bloch wavefield. The reasoning behind this choice of
measurement scheme and some of the inherent limitations are discussed. The set of
design criteria that was developed to aid in the design of the waveguide is presented
and the construction of the waveguide is described. The experimental setup is shown
and the method of acquisition and processing of the data is described. Finally, the
experimental results are compared to the theoretical predictions of Chap. 3.

4.1 The Experimental Paradigm

Here we describe the fundamental framework of the dispersion measurement. We
begin by presenting the reasoning behind choosing to work with a compound as
opposed to a progressive Bloch wavefield. The effect of spatially sampling a com-
pound Bloch wavefield and the use of a linear regression to filter out some compound
wavefield effects are discussed. Finally, we present the method of extracting the values
of the Bloch wave number from field measurement data and some of the limitations
associated with the measurement scheme.

4.1.1 Progressive versus Compound Bloch Waves

In Sec. 3.5 it was found that, depending upon the impedance of the termination,
a truncated periodic waveguide can have either progressive or compound Bloch wave
solutions. If the waveguide is terminated with the Bloch impedance, the resultant
field is that of a progressive Bloch wave. Any other termination causes the incident
Bloch wave to be reflccted to some degree, resulting in a compound Bloch wavefield.
In terms of a dispersion measurement, there are advantages and disadvantages to an
experiment based on either a progressive or a compound Bloch wavefield.

In the case of a periodic waveguide terminated with the Bloch impedance, the

resulting progressive Bloch waveficld makes the measurement of the dispersion trivial.
If the pressure field is measured at two points an integral number of structure periods
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apart (at z = z; and 2 = z; = 2; + nh), then Eq. 2.46 relates the fields at the two
points:

p(z) = (21 +nh) = [e**]" p(1). (4.1)
The dispersion is then found simply by solving for g in terms of the two field mea-

surements: : ( )
_ 1P| .
q_jnhl [P(Zl)} 42

The major problem with an experiment based upon this scheme is the realization of
the termination condition. Figure 3.7 shows that the Bloch impedance is a strongly
frequency dependent function that would be enormously difficult to synthesize for
anything more than a very limited range of frequencies. Another problem is that
the precision of the measurement is strongly dependent on the degree to which the
reflection from the termination is indeed zero. Even a very small reflection can cause
sizeable perturbations in the otherwise progressive Bloch wavefield and ruin the pre-
cision of the measurement.

The termination of the periodic waveguide with a frequency independent termi-
nation essentially reverses the problems discussed above. A constant terminating
impedance is very easily realizable, but the resultant compound Bloch wavefield com-
plicates the measurement of the dispersion. The dispersion can still be derived from
the measurement of the field at just two points, but such a scheme would involve
an assumed knowledge of the relative amplitude and phase of the reflected Bloch
wave. That is, the precision of the measurement depends upon exactly how well the
termination is characterized and how well the theory describes Bloch wave reflection.
A less “fragile” method is to sample the compound Bloch wavefield at a number of
points. As will be shown in the following section, spatial sampling allows the disper-
sion information to be extracted from a compound Bloch wavefield witt.out assuming
anything about the reflected Bloch wave amplitude. This method aiso yields addi-
tional information about the field, such as the amplitude of the Bloch wave reflccted
from the termination.

A simple, frequency independent termination can be constructed by loading a
section of uniform waveguide with a gently tapered fiberglass wedge. If the wedge is
carefully tapered, it will be very nearly anechoic. The resultant input impedance of
the section of waveguide is therefore that of a semi-infinite uniform waveguide, which
is frequency independent.

4.1.2 Spatial Sampling of a Compound Bloch Wavefield

As was noted in Sec. 2.3, the result of spatially sampling a Bloch wave at intervals
of the periodicity of the structure is indistinguishable from the result of sampling the
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conventional travelling wave Ce’?* at the same intervals. The n*® sample in a spatial
series generated by sampling a forward travelling Bloch wave at the points z = nh
(where n is an integer) is

400 .
Pu= /_ 926’78z ~ mh)dz

=@, (nh)e*
=, (0)e™*. (4.3)

The same sampling performed on the conventional wave yields
too .
Pu= / Cei*§(z — nh)dz
=Cel", (4.4)

Comparison of Eqs. 4.3 and 4.4 shows that the travelling wave p(z) = ®,(0)e’s
is, when sampled, indistinguishable from the sampled Bloch wave. The compound
conventional wavefield equivalent of the compound Bloch wavefield for a terminated
periodic waveguide is

p(2) = &,(0) [¢'" + Rpe 5], (4.5)

where Rg is the Bloch wave reflection coefficient associated with the termination.

4.1.3 The Linear Regression as a Backward Travelling Wave Filter

One effect seen in compound conventional wavefields, and therefore in sampled
compound Bloch wavefields as well, is spatial beating. The presence of the backward
propagating wave causes the amplitude and phase of the field to deviate from that of
a progressive wave. Whereas the phase of a progressive field increases linearly with
distance in the direction of propagation, the backward travelling wave causes the
phase of the field to oscillate periodically about a linear increase, as shown in Fig. 4.1.
Likewise, the exponential decay associated with the amplitude of a progressive field
takes on periodic oscillations about the exponential decay in the presence of a counter-
propagating wave. The point of importance here is that although the amplitude and
phase are different from those of a progressive field, the difference is periodic. The
net amplitude decay is still exponential end the net phase advance is still linear.
Therefore, over a large enough number of cycles of the periodic perturbation the
amplitude and phase average oul to essentially exponential decay and linear increase,
respectively.

A very effective method of extracting the linear component of a series (such as the
sampled phase serics) is by using a linear regression.! A linear regression performed

VThe linear regression is simply & first degree polynomial fit to a scries. The fit is made in a
least-square sense.
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FIGURE 4.1
The phase of the travelling wave ¢’%* alone and in the presence of a

counter-propagating wave. The phase of the purely progressive field
increases linearly with distance, and develops oscillations about the linear
increase with the introduction of the reflected wave. The spatial
frequency of the oscillations in both the amplitude and the phase series
is 2q.
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on the sampled phase series results in the net slope of th: series; the oscillations due
to the backward travelling wave are effectively filtered out. The net slope is the phase
advance per unit distance of the forward travelling wave, which is the real part of the
Bloch wave number. Likewise, a linear regression performed on the natural logarithm
of the amplitude series effectively cancels the backward travelling wave’s effect, and
the resultant slope is the imaginary part of the Bloch wave number.

4.1.4 The Sampled Acoustic Pressure Series

Consider the case wherein we make /N + 1 measurements of the acoustic pressure
field at spatial intervals of integral multiples of h. The measured pressures will be
called po, p1,---pn, and the associated sample locations will be called 2o, 2;,...2x. In
polar form, these complex pressures are

pi = |pile” i=0,1,..N. (4.6)

We normalize the measurements by py. which will be referred to as the reference
pressure, to get the relative pressure




- _Pi
“—Po
_ 1Pl jioi-a0)
|pol
=|pije* i=0,1,2,..N. (4.7)

Likewise the relative distance is defined as
i=z—2 1=0,1,2,...N. (4.8)

It is evident that |f;| is the decay in amplitude and 8; the advance in phase of the
wavefield over the distance %;. With the measured pressure so defined, the measured
value of the real and imaginary parts of the Bloch wave number are

Re{g} — linear regression of ; against %;
Im{q} — linear regression of In |{;] against ;. (4.9)

It should be noted that this technique of extracting the real and imaginary com-
ponents of the Bloch wave number from the spatially sampled field will werk for any
termination. Since the amplitude of the oscillations in the amplitude and phase of
the field is dependent upon the amplitude of the counter-propagating Bloch wave, the
results will simply be more precise for smaller refiected wave amplitudes. Another dis-
tinct advantage to this technique is that if we use one microphone for all the reference
pressure measurements and another for all the downstream pressure measurements,
then no calibration of the microphones is necessary. Any mismatch in the amplitude
or phase response of the microphones will simply show up as a non-zero y-intercept
in a plot of amplitude or phase against distance, and have no effect on the linear
regression.

4.1.5 Limitations of the Measurement

The fact that we are counting on averaging out the effects of the backward travel-
ling Bloch wave to make the mcasurement leads to the limitations associated with
the measurement technique. The condition for the cffective averaging out of the
oscillations in the amplitude and phase is that we have a sufficiently large number
of oscillations over which lo average. Since the osciliations occur on the scale of
a wavelength of the Bloch waves that compose the field, the limitation appears to
be a low frequency limitation. It scems that we can - nsure the effectiveness of the
averaging technique simply by placing a restriction on the measurement frequencies:
they must be high enough that several cycles of the Bloch waves occur over the
spatial measurcment interval. Such a restriction, however, would not be sufficient
due to the fact that we arc spatially sampling the ficld and the mecasurement is
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therefore subject to the effects of spatial aliasing. Even in the case where we are
operating at a frequency that is sufficiently high to ensure a large number of cycles
of the oscillations, the number of oscillations in the sampled field may be arbitrarily
small. Figure 4.2(b) shows an example of how the apparent frequency of a sampled
field can be the low frequency alias of a nigher frequency. In the sampled case, then,
it is not simply low spatial frequencies that we must be cautious of. k- apparently
low spatial frequencies, those that have a low frequency alia~ In the case of a spatial
ssmpling interval of az,, the Nyquist spatial frequency is ky = n/az,. The set of
spatial frequencies that have k as an alias spatial frequency is 2nky + k, where n is a
positive integer. The spatial frequency of the oscillations in the amplitude and phase
series is 2q, so we expect measurement inaccuracy when

q >~ nky. (4.10)

Implicit in the measurement technique outlined above is yet another frequency
restriction which should be acknowledged. The measurements are made a distance
h/2 from the side branches, and are assumed to be a measurement of the zeroth order
field alone. The evanescent modes generated at the side branches all have pressure
maxima at y = b, where the measurements are made. The degree to which the
measurements are representative of the zeroth order field is the degree to which the
evanescent modes have decayed over the distance h/2. The requirement regarding the
decay of the evanescent modes made in the development of the theory was that they
decay significantly over a distance of h, so the validity of the measurement imposes a
more severe frequency constraint than the validity of the theory, namely

w < (200/h) [(wh/26) = 1) (4.11)

4.2 Design and Construction of the Periodic Waveguide

The design of the periodic waveguide was determined by two fundamental consid-
erations: the dispersion must be measureable and the waveguide construction must
be practical. In this section we present the set of design criteria that guided the
choice of the waveguide dimensions. Details of the waveguide construction and the
microphone positioning are shown.

4.2.1 Waveguide Design Criteria

In Sec. 3.1, several nondimensional pararncuers and their influence on the disper-
sion relation are identified. Using this information we derive a sct of design criteria
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FIGURE 4.2
Sampling of an oscillatory waveform. In (a) the spatial frequency of the
field is less than the Nyquist spatial frequency (ky), so the sampled series
is not aliased, but is greater than ky/2, which is the condition for the
beating effect seen. In (b) the spatial frequency is greater than ky and
the “folding down” in frequency characteristic of aliasing is seen.
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to aid in the specification of the dimensions of the waveguide. The criteria are as
follows:

e The two species of stopbands should not overlap. The n*h Bragg stopband
occurs in the vicinity of kh = n, and the m*" side branch resonance stopband
occurs in the vicinity of kd = (m+1/2)r. The two coincide if d/h ~ (m+1/2)/n,
a condition which we wish to avoid as we would like to independently verify the
existence of and investigate the behavior of both stopband species.

¢ Both species of stopbands should occur at frequencies for which the analysis is
valid. Again, this is to ensure a valid verification of both Bra~g and side branch
resonance stopbands.

o The dispersion should be strong enough to be easily measurable. There should
be frequencies for which the characteristic length associated with dispersion

2
Re{g(2w)} ~ 2Re{g(w)}

is less than the overall length of the structure. This requirement assures us of
easily measurable dispersion.

g =

(4.12)

e The stopband attenuation should be relatively strong. There should he fre-
quencies at which the characteristic length associated with attenuation

L, = 1/Im{g}

is less than the overall structure length. The reasoning here is the same as for
the strong dispersion criterion above.

e Thermoviscous losses should be minimized. This requirement keeps the band
structure of the dispersion relation from being swamped by the attenuation and
dispersion that results from acoustic boundary layer effects.

In Sec. 3.1 it was shown that the dimensionless parameters d/h and S/S, deter-
mine the location of the side branch resonance stopbands and the overall strength of
the stopbands, respectively. It was likewise found that h/Ry,, and d/Ry, are related
to thermoviscous losscs. The effects associated with these dimensionless parameters,
the criteria listed above, and construction practicality considerations led to the fol-
lowing choices for the structure dimensions:

structure period: A=.1 m
side branch depth: d=.0381 m (1-1/2")
side branch width: { =.0095 m (3/8")
waveguide height: b=.0254 m (1")
waveguide width: a=.0381 m (1-1/2").
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The length of the periodic waveguide is 56 cycles (5 meters), or 6 meters includ-
ing the 1 meter anechoic termination. These dimensions result in the values of the
nondimensional parameters reported in Sec. 3.1:

d/h= 421
A, [A, = 3/8

d/Ry, = 5.531.

According to Eq. 2.31, the frequency range over which Eq. 2.30 (the expression for
the dissipative wave number) is valid is 40 mHz <« f < 400 kHz. The various
frequency restrictions that were imposed to ensure the validity of the zeroth order
approximation are as follows:

Eq. 2.24: f <« 6,770 Hz
Eq. 2.25: f <« 18,100 Hz
Eq. 2.26: f « 4,490 Hz
Eq. 4.11: f« 6,700 Hz .

4.2.2 Waveguide Construction Details

The waveguide is a rectangular duct with one wall removed and replaced by a
piece of nearly square stock with slots cut periodically across the width. The duct
is a section of 38.10 mm x 69.85 mm (1-1/2"x 2-3/4", inner dimensions) rectangular
extruded aluminum tubing with one of the narrow walls milled off, essentially making
a piece of rectangular channel stock. The originally 6.4 meter (21°) length of duct
was cut in half in order to make the machining of the duct practical. Five pieces
of 44.45 mm x 50.80 mm (1-3/4"x2") aluminum stock 1.2 meters (47.24") in length
were milled to a width of 38.10 mm (1-1/2") to fit into the width of the duct. Slots
38.10 mm (1-1/2") deep and 9.52 mm (3/8") wide were milled across the narrow
width of the stock at 0.1 m intervals. The result is 12 such slots in each section of
stock. Each of four aluminum binding plates 76.20 mm x 190.50 mm x 6.35 mm
(3"x7-1/2"x1/4") was screwed to the side of the slotted sections opposite the slots
with four 1/4-20 flathead screws to bind the sections end to end. The placement of
the slots is such that the breaks between the sections of stock occur at one edge of a
slot. The screw holes in the plates were countersunk off center so that the seating of

the screws forces the ends of the slotted scctions together, heling seal the intervening
breaks.

Each of the two rectangular channel sections fits over the string of slotted sections
in such a manner that an open 25.40 mm x 38.10 mm (1"x1-1/2") rectangular tube
remains over the slotted sections. To ensure a good scal between the duct and the
slotted sections, a piece of 31.75 mm (1-1/4") square extruded aluminum tubing is
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placed on either side of the duct below the open area that forms the waveguide and
through-bolted to act as a clamp and force the duct walls ir.to the sides of the slotted
sections. Figure 4.3 illustrates the assembly. In order to further seal the joint between
the duct and the slotted stock, vacuum grease was applied to the sides of the slotted
stock prior to assembly. The through bolts are placed at two or three structure period
intervals, as was convenient, and located midway between slots. Where the two duct
sections are butted together, a rectangular U-chaped piece of aluminum stock was
force fit over the joint to ensure the alignment of the duct sections and to tend to seal
the joint. A similar U-shaped piece was fit over the source end of the waveguide and
screwed into the slotted stock to act as a mounting flange for a compression driver.

The measurement ports are 9.53 mm (3/8") diameter holes drilled along the
center of the side of the duct opposite the slotted sections (the top). The holes are
located midway between side branches at every other period of the structure (cvery
0.2 meters), for a total of 23 ports: one reference port and 22 downstream ports. The
holes are force fit with cylindrical aluminum plugs when not in use. The plugs are
designed to form a flush surface on the inside of the waveguide when in place. During
measurement the protective shrouds are removed from the microphones, which are slid
into & teflon sleeve that fits into a mounting jig. The mounting jig is a rectangular U-
shaped nylon block that straddles the waveguide and provides a stable mount for the
microphone. The teflon sleeve buts into a shelf in the mounting block to ensure that
the active face of the microphone is flush with the interior surface of the waveguide.
This detail is illustrated in Fig. 4.4.
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The anechoic waveguide termination is a roughly 1 m long fiberglass wedge which
varies from a very fine trailing of a few fibers (at the upstream end) to densely
packed (at the downstream end). As was discussed in Sec. 3.5, the termination of the
periodic structure into a finite section of homogeneous waveguide which is loaded with
an anechoic wedge (such as the fiberglass wedge) should simulate the termination of
the structure into a semi-infinite section of waveguide. The periodic waveguide was
terminated in such a manner, though the leading edge of the fiberglass termination
was allowed to extend over the final two side branches. This was done because it was
thought that such a transition between the Bloch impedance of the periodic structure
and the purely resistive impedance of the anechoic termination section may reduce
the magnitude of the reflected Bloch wave.

On the source end of the waveguide, the structure ends one period from the
downstream side of the first side branch. The waveguide entrance is a 38.10 mm x
25.40 mm (1" x 1-1/2") rectangular opening, and the throat of the compression driver
is a 50.80 mm (2") diameter circular opening. Because the driver is mounted directly
onto the waveguide, a discontinuity in cross section results. The junction is sealed
with a piece of neoprene gasket material with a circular hole that matches the driver
throat.

4.3 The Experimental Setup and the Acquisition of Data

A computer controlled data acquisition system was used in the measurement
portion of the experiment. Microphones were placed in the reference port and one of
the downstream ports, and the computer was prompted to begin a data acquisition
algorithm. The function of the algorithm is to measure |p,| and @,, the amplitude
and phase of the waveficld at the n'* measurement port relative to the amplitude
and phase at the reference port, for a specified set of frequencies (the frequency szt
is discussed in Sec. 4.4). The downstream microphone was then moved to the next
measurement point, and the process repcated for all 22 downstream ports. Following
their acquisition, the data were postprocessed to correct for phase wrap-around effects
and the limited dynamic range of the measurement system. Finally, linear regressions
were performed on the spatial series associated with each frequency to result in values
of Re{g} and Im{g} for each frequency.

4.3.1 The Experimental Setup

A block diagram of the experiment is shown in Fig. 4.5. At the heart of the sctup
is the Macintosh Mac II minicomputer, which runs Na. ional Instruments’ LabVIEW,
a data acquisition/analysis/display software package. The computer is linked via a
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National Instruments NB-DMA-8-G interface board to the GPIB (General Purpose
Instrumentation Bus), which serves as a communication and control link between the
computer and the instrumentation.
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mic bias
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FIGURE 4.5
A block diagram of the experiment.
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The system operates as follows. The signal source is a Hewlett-Packard 3325A fre-
quency synthesizer which, under computer control, sends a signal to a Crown D-150-A
audio range power amplifier, which in turn drives a JBL 2485J compression driver.
The resultant acoustic signal is picked up by two Briiel and Kjer 4136 1/4” condenser
microphones (with their associated preamplifiers and bias power supplies, the B&K
2619 and 2804, respectively) and routed to the inputs of a Tektronix RTD 710A digi-
tizer. The digitizer is armed for waveform capture by the computer, and, upon receipt
of a trigger, begins sampling as specified by the computer. Because the two-channel
sampling is simultaneous and synchronous, the trigger (here conveniently supplied by
the frequency synthesizer) is arbitrary. Upon completion of the waveform capture,
the sampled waveform data are transferred to the computer for processing, display,
and storage.

4.3.2 The Data Acquisition Algorithin

As mentioned above, the function of the data acquisition algorithm is to mea-
sure and store values of [p,] and 0, for a specificd sct of frequencies. The user is
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responsible for the specification of the frequency set and signal level, the positioning
of the microphones, and the initiation of the acquisition algorithm. The computer
then makes the measurements and stores the data for postprocessing.

The data acquisition algorithm, shown in flowchart form in Fig. 4.6, is outlined
as follows:

e Initialize instruments. In the case of the frequency synthesizer the output volt-
age and output waveform are set. In the case of the digitizer, the initialization
involves the specification of data transfer channels and several triggering and
sampling parameters.

o Set synthesizer frequency and digitizer sampling rate. The sampling rate is set
so that roughly 3 signal cycles are covered in the 1 kilosample capture (about
300 samples/signal cycle).

e Optimize digitizer input range. Because the digitizer has a limited dynamic
range (roughly 55 dB for any single range setting), the information content and
therefore the measurement accuracy can be maximized by making optimal use
of Lthe aveilable dynamic range. For a given signal level, the smallest digitizer
range setting at which the signal is not clipped results in the best use of the
dynamic range. This optimal range setting was found by arming the digitizer
and, upon completion of the waveform capture, requesting the maximum and
minimum sample values. There are three possible outcomes:

— Either the maximum or the minimum (or both) is at the limit of the range.
In this case the amplitude setting is assumed under-range (signal clipped)
and is set to the next larger available range. The process is repeated until
the peak values of the acquired waveform fall within range.

— The peak values are in range, but would be out of range at the next smaller
available range setting. In this case the amplifier setting is optimal and
the optimization routine ends.

— The peak values are in range but would not be out of range at a smaller
range setting. In this, the over-range case, the digitizer is set to the cal-
culated optimal range.

o Capture and transfer waveforms. The digitizer is armed and, upon completion
of the acquisition, the digitized waveform data are transferred to the computer.

e Resample the waveforms. The data vectors are resampled so that exactly one
cycle of the waveform occupies a 256-vin timeserics vector. This resample algo-
rithm is a lincarly interpolating resampler, as diagrammed in Fig. 4.7 for the
8-bin case. The reason for resampling .. two-fold:
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— An FFT (fast Fourier transform algorithm) is used as a homodyning
amplitude/phase detector. In such a scheme the sampling must be such
that the frequency of interest has an integral number of cycles in the
time domain window. This will ensure that the frequency of interest will
coincide eractly with a single frequency domain bin. The number in the
frequency bin is therefore the complex amplitude (i.e., magnitude and

phase) of the signal at that frequency.

— In order to use a radix-2 FFT in place of the much more computationally
intensive DFT (discrete Fourier transform algorithm), the num' er of bins

in the timeseries must be a power of 2.

It should be noted that the amplitude and phase detection could be done much
more efficiently by performing only the single fundamental homodyning inte-
gral. That is, because the timeseries is resampled so that exactly one cycle of the
signal occupies the time domain window and the signal consists of a single fre-
quency, the only integral of the Fourier transform which has a nonzero result is
the fundamental integral. The remaining harmonic integrals arc a computational
waste. The reason for using the full FFT is that the data acquisition algorithm
was developed both for use in this measurement and in later measurements in
which the signal is expected to contain harmonic distortion components. In
the latter case the algorithm will detect the amplitude and phase of all the
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components of the signal.

¢ FFT the resampled timeseries and divide the complex amplitude of the down-
stream signal by that of the reference signal. Convert complex representation
from cartesian to polar.

e Set the frequency synthesizer to the next frequency and repeat from the second
step for each frequency in the set.

e Store data in spreadsheet format.

Once the data acquisition was complete, the data were reorganized into spatial
series (one amplitude spatial series and one phase spatial series per frequency) to
which some corrections were made. The first was the correction of the “wrap-around”
effect in the phase series. Because the measured phase is restricted to the branch
-1 < 0, < m, it is a sawtooth-like function of distance. The wrap-around problem
was corrected by selectively adding 27 to the phase until a smooth, monotonically
increasing function resulted. The other correction was to throw out data that fell
below the floor of the dynamic range of the measurement system. At some stopband
frequencies the waves are so strongly attenuated (over 260 dB/meter was measured)
that the waves are rendered immeasurable beyond a certain distance from the driver.
Beyond this point the measured amplitude is roughly constant (defining the floor of
the dynamic range) and the phase is essentially random. These measurements of the
noise floor were discarded.?

4.4 Experimental Results

Data were collected as described in the previous section for a set of 455 frequencies
between 100 Hz and 4 kHz. The frequency interval was 10 Hz except in the vicinity
of the side branch resonance stopband, where, because both the real and imaginary
parts of the Bloch wave number vary rapidly with frequency, the interval was de-
creased to 4 Hz. The synthesizer level was set such that the acoustic signal was as
strong as possible (for a good signal to noise ratio) without exceeding about 100 dB3
(re 20 uPa), which is safely within the realm of linear acoustics.

2Reduction in the length of the space serics for stopband frequencies scems to imply that the resul-
tant values of the Bloch wave number are less precise for these frequencies since the measurements
at large distances from the driver contribute most strongly to the precision of the measurement.
This implication is not nccessarily true, however, as the strongly stopped waves are effectively re-
flectionless. The strong attenuation renders the reflected wave so weak there is essentially none of
the oscillation in the space series associated with a compound wavefield and the resultant mcasure-
ment is more precise. When the waves are very strongly stopped, however, we may have only two
or three measurements of the amplitude and phase before the waves are immecasurable. In this case
the experimental precision doces sufler.
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The low frequency end of the measurement frequency range was determined by the
range of validity of the measurement technique. As was pointed out in Sec. 4.1, a linear
regression can be used to filter out the effects of a counter-propagating Bloch wave
provided the oscillacions are numerous enough to make a good average possible. Since
the oscillations occur at intervals of one half of a Bloch wavelength, the requirement is
that the waveguide be several wavelengths long. Because we are measuring over about
4.5 meters, which is the wavelength associated with a frequency of about 70 Hz, we
don’t expect to get particularly good results below about 200 Hz.2 The low frequency
limit of 100 Hz was chosen with the expectation that the precision of the measurement
technique would begin to break down at a somewhat higher frequency.

The high frequency end of the measurement frequency range was chosen to
ensure the validity of the five frequency constraints associated with the zeroth order
approximation (Eqs. 2.24, 2.25, 2.26, 2.31, and 4.11). Of the five constraints, that
associated with higher order modes in z (Eq. 2.26) is the most limiting. That con-
straint, f <« 4494 Hz, led to a choice of 4 kHz as the upper frequency limit for the
measurements.

Although we are primarily interested in the measured values of the Bloch wave
number g, it is nonetheless of interest to view some of the raw data. Figure 4.8 shows
the amplitude spatial series for several frequencies in and below the 7 stopband.
Notice that the 830 Hz series shows the characteristic exponential decay associated
with lossy propagation, and no readily identifiable oscillations. The lack of oscil-
lations indicates a nearly purely progressive Bloch wavefield. The 1200 Hz series
shows both an increase in the exponential decay relative to the 830 Hz series and
the appearance of oscillations. The increase in decay with frequency is expected
of thermoviscous boundary layer losses, and the appearance of oscillations is con-
sistent with the expected increase in reflected Bloch wave amplitude as a stopband
frequency is approached. The 1350 Hz series shows the continuation of the trend of
stronger decay and increasing oscillation amplitude with frequency. The remaining
series (1380, 1400, 1420, and 1470 Hz) continue the decay trend as we move into the
stopband, but the oscillations disappear. This phenomenon, discussed in Sec. 4.3, is
due to the essentially nonexistent reflected Bloch wave due to the strong exponential
decay. The other trend that is evident in the spatial series is the decrease in the
spatial frequency of the oscillations with increasing frequency. This trend, evident in
the 1200 Hz, 1350 Iz, and 1380 Hz series, seems to be exactly opposite the behavior
expected of a compound wavefield. It is, however, exactly what is expected of a sam-
pled compound wavefield as outlined in Sec. 4.1 (compare the 1200 Hz and 1350 Iz
series to the examples of Fig. 4.2).

3Note that this is somewhat below the frequency at which we expect the termination to not be
particularly anechoic It is worth restating that the measurement technique will work regardiess of
the amplitude of the backward propagating Bloch wave component. The precision is simply better
when the refiected wave amplitude is small. The behavior of the anechoic termination is therefore
not critical to our measurcinent; it simply enhances the precision.
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The theoretical and experimental values of the Bloch wave number show excellent
agreement. Figures 4.9 and 4.10 show the real and imaginary components of ¢, respec-
tively, for both theory and experiment. The 7 and 2r Bragg stopbands (centered at
about 1.5 kHz and 3.5 kHz, respectively) and the side branch resonance stopband (at
about 2.0 kHz) are clearly evident. In the vicinity of the 27 stopband the experimen-
tal curves begin to become shifted with respect to the theoretical curve, a trend that
is evident for both Re{g} and Im{q}. This may be due to the breakdown of one of the
zeroth order assumptions. Figure 4.11 shows Im{g} on an expanded scale in g. The
measured value of Im{q} is consistently about 0.02 m™! larger than the theoretical
prediction. This could be in part due to the fact that in the development of the theory
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Theoretical and experimental values of Im{q} on an expanded scale.
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we accounted for losses in the zeroth order mode but none of the higher order modcs.
That is, we assumed that the evanescent higher order modes, once established, exist
somewhat independently of the zeroth order mode, simply representing local lossless
storage of acoustic cnergy. In fact, there are losses associated with the evancscent
modes, losses which are “fed” by the zeroth order mode and which therefore represent
additional dissipative attenuation of the zeroth order mode. It is also to be expected
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that the various seals are imperfect and will leak or otherwise absorb acoustic energy.
Note also that there are small patches of jitter in the plot near 800 Hz and 2700 Hz.
These are frequencies at which the oscillations in the amplitude and phase series have
zero frequency aliases and measurement inaccuracies are expected (see discussion of

Eq. 4.10).

It was noted in Sec. 4.1 that the amplitude of the oscillations in the amplitude
series is a measure of the reflected Bloch wave amplitude. Figure 4.12 shows the
amplitude of the oscillations (which was found by taking half of the difference between
the maximum and minimum values of the oscillations) and the theoretical value of
the reflected Bloch wave amplitude. We see that albeit rough, there is a degree of
agreement. The roughness is expected as we have simply looked for maxima and
minima in the oscillations without accounting for iossy propagation (the oscillaticn
amplitudes are larger near the termination end than near the source end) We may
also be missing the absolute maxima and minima because of the intermittent nature of
sampling. The tertinique breaks down at frequencies at which the attenuation is large
(i.e., at and near -topband frequencies) as any noise-like jitter in the data is large
compared to the * ery small amplitude of the wave incident upon the termination,
making the reflected Bloch wave appear to be greater in amplitude than the incident
wave amplitude. It can also be seen that the reflected Bloch wave amplitude is larger
than expected below about 300 dz, which is consistent with the predicted breakdown
of the anechoic nature of the fiberglass wedge termination.

4.4.1 Conclusion

To conclude, it is first worth noting that the experimental findings are supportive
of the validity of the theory (Figs 4.9, 4.10, and 4.11 provide the most conclusive
testimony). Secondly, it is worth drawing attention to the strength of the dispersion
and attenuation that we were able to achieve in a periodic waveguide. Phase speeds of
219 m/s and 465 m/s were measured at 1992 Hz and 2370 Hz, respectively. In other
words, the phase speed changed by 246 m/s (a 112% increase) over a frequency interval
of only 378 Hz (0.076 decades or 0.250 octaves). The attenuation was measured to be
over 38 dB/m in the first Bragg stopband (the 7 stopband) and over 260 dB/m in the
side branch resonance stopband. Another remarkable feature of the attenuation is the
sharpness of the band structure. The measured attenuation was less than 9 dB/m
at 1930 Hz, over 260 dB/m at 2028 Hz, and less than 4 dB/m at 2450 Hz. In othex
words, the attenuation increased by over 9200% (in dB/m) over an interval of only
98 Hz (0.022 decades or 0.072 octaves) and then decreased to 1.5% of the maximum
value in the next 422 Hz (0.082 decades or 0.273 octaves)! The maximum attenuation
slope was measured at over 20,230 dB/m/decade. For a propagation distance of 1.0 m
(10 structure periods), the slope is over 20,230 dB3/decade, which is larger than the
slope associated with a 1000 pole rollofJ!
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5. CONCLUSION

A theoretical and experimental investigation of the properties of linear acoustic
propagation in a pericdic waveguide has been carried out. The waveguide under study
is a rectangular duct loaded periodically with rigidly terminated side branches. In
this chapter the results of the investigation are summarized, conclusions are drawn,
ard some suggestions for future work are presented.

Summary

This work is divided into three sections, each of which comprises a chapter. The
first section (Chap. 2) is an investigation of the conditions under which one can expect
to have Bloch wave solutions of a periodic waveguide problem. It is shown that there
are two conditions under which the Floquet theorem may be applied to a mathemati-
cal system to show that the solution functions are Bloch wave functions. The system
must (1) exhibit a translational invariance, and (2) have two linearly indepe::dent
solutions. Condition (1) is shown to be satisfied even in the dissipative case for an
arbitrary periodic waveguide. That is, the Bloch wave formalisry retains its validity
with the introduction of dissipative losses. Condition (2) is shown to be satisfied
for our waveguide when the excitation frequency is low enough to ensure that the
solution is well represented by the zeroth order mode of propagation alone. In other
words, information must be transferred from cell to cel! by the zeroth order mcde
of propagation only. In addition to the investigation of the above conditions, a new
functional representation of the Bloch wave function, here called the convolution rep-
resentation, is introduced. This representatior bears a very straightforward relation
to the functional form of the Bloch wave itself.

The second section (Chap. 3) is comp-sed of derivations of the various quantities
that characterize Bloch wave propagation. A dispersion relation for a waveguide
loaded with a periodic array of arbitrary scatterers is derived. Various forms of the
dispersion relation are shown for varisus types of scatterer. The dispersion reiation
for the waveguide of this study is .ierived and the features of the dispersion curve
are related to the waveguide dimensions. The impedance function is derived for
an arbitrary scat rer as well as for the scattercr used in this study. It is found
that when expressed in the convolution representation, the Bloch wave function for
a waveguide loaded with scatterers is completely specified by the two parameters g
and g/f. An expression for g/f is derived. An analytic expression for the travelling
wave spectral amplitudes is found in terms of g and g/f. The efect of truncating the
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periodic waveguide is examined and a Bloch wave reflection coefficient is derived for
a periodic waveguide terminated into an arbitrary terminating impedance.

The third section (Chap. 4) is the description of a measurement of the Bloch
wave dispersion. A scheme for extracting precise dispersion information from a com-
pound Bloch wavefield is developed and its implementation described. The resulting
dispersion measurements show very good agreement with the theoretical results.

Conclusions

The goal of this study, to develop and experimentally verify a theory for acoustic
Bloch wave propagation, appears to have been completed successfully. The theoretical
results make some intuitive sense and agree well with the experimental results.

As was remarked upon in Sec. 4.4, the introduction of a periodic array of resonant
scatterers into a guided wave system can cause both very strong dispersion and very
sharply banded attenuation. The very rapid transitions in attenuation make the
periodic waveguide a promising candidate for use as a band reject travelling wave filter
(it was noted in Sec. 4.4 that the attenuation slope near the side branch resonance
stopband is that of a 1,000 pole filter). Such a travelling wave filter would be tuneable
simply by altering the resonance frequency of the scattering elements, as shown in
Fig. 3.3. Such filtering techniques may be applicable in the design of exhaust noise
mufflers or sound suppressing ventilation ducts. Low flow resistance, lightweight
scatterers may be an attractive alternative to the duct lining in common use.

Suggestions for Future Work

As was pointed out in thr introductory chapter, this work is preliminary to the
study of finite amplitude acoustic propagation in a periodic waveguide. Suggestions
for future work in the linear acoustic case are:

e Expecrimentally verify the f and g wave makeup of a Bloch wave. Such a
measurement would also be an indiiect measuremert of the periodic structure
impedance.

e Measure the (generally aharmonic) series of resonance frequencies of a rigidly
terminated periodic waveguide. Such a measurement may be of interest in the
noniinear case as the nonlinearly generated harmonic distortion components
would not coincide with resonances as they do in the uniform waveguide case.

e Investigate the propagation of transients in a periodic waveguide.

e Determine whether or not the introduction of periodic scatterers into ventilation
ducting would be an effective means of suppressing noise transmission through
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the duct.

Apply the theory developed here to the case of a waveguide with disiributed
as opposed to spatially localized scatterers. The scattering matrix elements as
defined in this work would then be non-causal functions of frequency (owing to
the fact that the associated impulse responses would be non-zero for t < 0),
but this will not be of concern as far as the dispersion relation is concerned. It
would be interesting to treat the problem of a waveguide with sinusoidal walls
by finding the S-matrix elements associated with a single sinusoidal bulge in a
waveguide, introducing them into the genera! dispersion relation, and comparing
the results to those of Nusayr (1980).

TInvesiigate the problem of wave propagation in a temporally periodic medium.

Investigate propagation of a guided electromagnetic field through a guided
acoustic field. To some degree, the aconstic field would represent an effectively
static spatially periodic inhomogeneity.
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