

OFFICE OF NAVAL RESEARCH

Contract N00014-85-K-0474

Technical Report No. 22

Reactive Ion Etching of Selected Polymers in O_2 and CF_4/O_2

by

B. Hand, T. Long, B. C. Dems, and F. Rodriguez

Prepared for presentation at the Third Topical Conference on Emerging Technologies in Materials The American Institute of Chemical Engineers November 17-22, 1991 Los Angeles, CA

> Olin Hall, Cornell University School of Chemical Engineering Ithaca, NY 14853

> > December 18, 1991

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

035

SECURITY CLASSIFICATION OF THIS PAGE						
REPOR	T DOCUMENTATIO	ON PAGE			Form Approved OMB No. 0704-0188	
18 REPORT SECURITY CLASSIFICATION 16 RESTRICTIVE MARKINGS						
28 SECON OF CLASSIFICATION AUTHORITY		ADDROVED	N/AVAILABILITY	OF REPORT	6356.	
2b. DECLASSIFICATION / DOWNGRADING SCH	EDULE	Distribu	tion is	unlimit	ad .	
4 PERFORMING ORGANIZATION REPORT NU	MBER(S)	5 MONITORING	ORGANIZATION	REPORT NUL	MBER(S)	
Technical Report No.	22					
64. NAME OF PERFORMING ORGANIZATION	6h OFFICE SYMBOL	TO NAME OF M	ONUTORING ORG			
Cornell University	(If applicable)	Office	of Naval	Resear	rch	
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)						
Olin Hall, Cornell University		800 North Quincy Street				
Ithaca, NY 14853 Arlington, VA 22217						
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER						
OFFICE OF Naval Research (If applicable) N 00014-85-K-0474						
BC ADDRESS (City, State, and ZIP Code)						
		PROGRAM	PROJECT	TASK	WORK UNIT	
		ELEMENT NO.	NO.	NO.	ALCESSION NO.	
11. TITLE (Include Security Classification)		1	<u> </u>	1	1	
Reactive Ion Etching of Selected Polymers in O_2 and in CF_4/O_2						
12. PERSONAL AUTHOR(S) B. Hand,	T. Long, B. C. Der	ns, F. Rodrigu	e7	<u></u>		
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT						
Technical Report FROM TO 91/12/18						
16. SUPPLEMENTARY NOTATION Presented in part at the Annual AIChE Meeting, Nov. 17-22, 1991, Los Angeles, CA						
17. COSATI CODES	18. SUBJECT TERMS (Continue on revers	e if necessary an	d identify b	/ block number)	
FIELD GROUP SUB-GROUP	- Resists	Reactive Ion D	tohing I			
	Polymer etching, Plasticization					
19 ABSTRACT (Continue on reverse if necessa	ny and identify by block n	umber)				
A series of 17 polymers was etched in RIE mode in oxygen alone and in a mixture of carbon tetrafluoride with oxygen (8% O ₂). Rates were monitored using a laser interferometer. The etch rates in oxygen at						
0.25 watt/cm ² fell in the range of 200-300 nm/min for the aromatics (nolystyrane and derivatives) 350						
450 nm/min for the aliphatics (m	ethacrylates and viny	l acetate), and	500-850 nm/r	nin for the	e cellulosics	
(methyl ether and nitrate). At a p	ower density of 0.50	watt/cm ² the	etch rates wer	e about 7	5 to 80%	
higher than those at the lower po	wer density. The etc	h rate in the flu	oride mixture	was abo	ut half that in	
the oxygen, all other parameters being the same. Plasticizers which lower the T_g of polymers based on						
There is a slight increase in the	ate, or styrene do not	change the etc	h rate of the p	olymers [•]	very much.	
methacrylate). All the composition	onal effects on etchin	u a slight decre	ase in the rate	tor poly	(methyl	
carbon and oxygen in the resist						
0 DISTRIBUTION / AVAILABILITY OF ABSTRAC	T	21 ABSTRACT SEC	LIPITY CLASSIFIC			
WUNCLASSIFIED/UNLIMITED SAME A	RPT DTIC USERS	Unclass	ified			
223 NAME OF RESPONSIBLE INDIVIDUAL DD Kannath T Winne Corrige Corrige Symbol						
MAT INVIALO VIL UI MYILIE		1 12021 691	0-4410	1	ł	

..

. .--

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

_

Reactive Ion Etching of Selected Polymers in O_2 and in CF_4/O_2

B. Hand, T. Long, B. C. Dems, F. Rodriguez School of Chemical Engineering, Olin Hall Cornell University, Ithaca, NY 14853

Abstract

A series of 17 polymers was etched in RIE mode. The etch rates were monitored using a laser interferometer. The gases used were oxygen alone and a mixture of carbon tetrafluoride with oxygen (8% O₂). The polymers fell into three groups, the aromatics (polystyrene and derivatives), the aliphatics (methacrylates and vinyl acetate), and the cellulosics (methyl ether and nitrate). In oxygen with a power density of 0.25 watt/cm², the etch rates for the three groups fell in the range of 200-300 nm/min, 350-450 nm/min, and 500-850 nm/min respectively. The etch rates were also measured at a power density of 0.50 watt/cm². The etch rates at the higher power density were about 75 to 80% higher than those at the lower power density. The etch rate in the fluoride mixture was about half that in the oxygen, all other parameters ng the same. Plasticizers which lower the glass transmon temperature of polymers based on vinyl chloride, methyl methacrylate, or styrene do not change the etch rate of the polymers very much. There is a slight increase in the rate for polystyrene and a slight decrease in the rate or All of the poly(methyl methacrylate). effects of composition on etching rate can be correlated to a first approximation with the molar fractions of carbon and oxygen in the resist.

Allection For Allection For Difference Diffe

Introduction

The sub-micron geometries required as integrated circuit features shrink often demand the use of highly anisotropic etching processes, that is, ion-assisted, or reactive ion etching (RIE). A successful pattern transfer in the lithographic process depends on having a polymer "stencil" which will resist aggressive plasma etching environments.

The complex nature of the plasma/surface interactions makes it difficult to achieve a complete understanding of the the degradative mechanisms for polymer resists under "typical" plasma or reactive ion etching (RIE) conditions. Much can be learned by observing the etching characteristics of a variety of chemical structures.

Some common gases used in RIE are oxygen and a mixture of carbon tetrafluoride with oxygen (8% O_2 being a usual concentration)¹. Oxygen plasmas have been used for a long time for resist stripping. In recent years, however, O_2 RIE has also become an important part of some multilayer resist systems as well as dry-developing schemes based on silyl-derivatization. The fluoride gases have been used for etching silicon and silicon oxide.

Experimental Procedure

The parallel-plate system (Fig. 1) has a cathode (negative potential) housed in a chamber with a bulk plasma maintained at a small positive potential². The top lid has a quartz window through which a 2 mW He-Ne laser beam passes and is reflected from the

-2-

surface of the wafer under test. The oscillations of the reflected light intensity are used to estimate the actual etch rate. Also included in the apparatus are a variable orifice to control the chamber pressure (in the range of 1 to 100 milliTorr), gas flow valves, nitrogen backfill for the chamber, and the usual diffusion and roughing pumps. A radio-frequency generator (HFS 2000 D, Plasma-Therm) and an impedance matching network (AMN-2000, Plasma-Therm) power the cathode.

Four conditions were employed in exploring the effects of structure on etch rate. Two gases (O₂ and CF₄/O₂ 8%) were used at two power densities, 0.25 and 0.50 W/cm². In all cases the chamber pressure was 40±5 mTorr and gas flow rate was 20 standard cm³/minute.

Polymer films were spun on 3-inch diameter silicon wafers from 5 to 10% solutions in appropriate solvents. All wafers were baked at 160°C for one hour. The polymers used were either commercially available materials (Tables 1 and 2) or made by us.

In order to convert the reflected light patterns into etching rates, the index of refraction of the films had to be known. Where they were not already known from previous work, they were measured on the wafers ellipsometrically (Table 1).

Results and Discussion

<u>RIE in oxygen at low (0.25 W/cm²) power density.</u> The polymers tested fall into three groups (Table 1). The aromatics (polystyrene

and derivatives) etch at rates of 200 to 300 nm/min. The aliphatic polymers (based on methacrylates and vinyl acetate) etch more rapidly, 350 to 450 nm/min. The cellulose-based polymers etch more rapidly still, 500 to 850 nm/min.

There have been a number of studies in which a variety of chemical structures have been classified as to etching rate³⁻¹³. Most workers agree that polymers containing aromatic rings resist etching more than aliphatic polymers. Anderson² among others found an almost linear relationship between etching rate in oxygen with aromatic content with PMMA (poly(methyl methacrylate)) and poly(alpha-methyl styrene) at the extremes.

Gokan^{10,11} et al proposed a more general criterion for estimating etch behavior. They reasoned that etch rate, regardless of the gas used, is dominated by sputtering. If carbon is the major factor in controlling the sputtering yield, the molar fraction of carbon in the polymer repeat unit might be the only parameter needed to correlate with etch rate. However, they found that a much better fit was obtained when the molar fraction of oxygen was subtracted from that of carbon. The dimensionless group that results is

$$N_{\rm T}/(N_{\rm C} - N_{\rm O}) \tag{1}$$

where N_T is the total number of atoms in the repeat unit, N_C is the number of carbon atoms, and N_0 is the number of oxygen atoms. For oxygen-ion beam etching of a group of polymers, Gokan's correlation is approximately

Etch rate (nm/min) = 50 +
$$80\{N_T/(N_C - N_O)\}$$
 (2)

-4-

It is obvious that in a polymer where equal numbers of carbon and oxygen atoms are present such as poly(oxymethylene) the predicted etch rate would be infinite. One of the polymers in the present study, cellulose nitrate, has more oxygen than carbon atoms giving a negative value for Eq. 1. A semilog plot of etch rate versus composition expressed as C_G is more satisfactory (Fig. 2) where the ratio proposed by Gokan now is

$$C_{G} = (N_{c} - N_{o})/N_{T}$$
(3)

The discontinuity where the number of carbon atoms equals or exceeds the number of oxygen atoms is avoided. All the 17 points for the rate fit within $\pm 30\%$ of the line corresponding to

$$\log [Rate (nm/min)/640] = -1.10 C_G$$
 (4)

Also shown is equation (2) adjusted slightly (with a coefficient of 70 in place of 80) in order to fit the present experimental tabetter .

One might improve the correlation by taking into account the various contributions of other atoms or groups. But the amount of data probably does not warrant much greater analysis. Eq. 4 is better than Eq. 2 for fitting cellulose nitrate, but the reverse is true for some other polymers. For example, Taylor and Wolf⁴ reported that poly(butene-1-sulfone) etched three times as fast as PMMA in an oxygen plasma. Since C_G for the sulfone is 0.13 it is apparent that Eq. 2 would be better than Eq. 4.

Another comparison to oxygen etch rates that comes to mind, is one with flammability ratings. Much work has been reported on the susceptibility of polymers to burning. One of the most popular criteria is the Limiting Oxygen Index (LOI, ASTM D 2863) which is the molar fraction of oxygen needed in the atmosphere around a plastic "candle" to sustain combustion¹⁴. While it is true that cellulose nitrate (guncotton) requires almost no oxygen (LOI is almost zero) and burns with explosive force even when confined, the LOI of PMMA and polystyrene are almost identical (0.17-0.18) and the LOI of poly(vinyl chloride) is much higher (0.47). Obviously, these do not jibe with the observed etch rates.

<u>RIE under changed conditions.</u> When most of the same polymers were etched at a higher power density (0.50 versus 0.25 W/cm²), the rates tracked those at the low power, being increased by a factor of 1.75 (Fig. 3A). In point of fact, it has shown that the dependence of oxygen etch rate is linear in power density but does not go through the origin². Likewise, when the CF_4/O_2 8% results at two power densities are compared with the low power density oxygen results, a direct proportionality again is found (Fig. 3B and 3C). This behavior is not unexpected for organic polymers.

<u>RIE of plasticized polymers.</u> Some workers have interpreted changes in etch rate with temperature as differing above and below the glass transition temperature, T_q , of a polymer. Plasticization by

-6-

a small, but non-volatile compound, is a convenient way to change the T_g of various polymers. For polystyrene, PMMA, and poly(vinyl chloride), the T_g of the unmodified polymer is well above room temperature. These three were modified by compatible plasticizers to the point of being quite rubbery at room temperature (Tables 3 and 4).

Poly(vinyl chloride) is remarkably unaffected by plasticization (Fig. 4). (The polymer used by us, VMC actually is a terpolymer with 13% vinyl acetate and 1% maleic anhydride). However, the interferometer patterns of etching (Fig. 5) are very uniform with either the aliphatic plasticizer (DOS) or the partly aromatic one (DOP). It is to be noted that the values of C_G for both plasticizers are nearly the same (Table 3) and do not differ much from that for the VMC.

The C_G of DBEP is much lower than that of polystyrene and might be expected to increase its RIE rate. There is, in fact, a slight increase in rate with plasticizer content (Fig. 6). For PMMA, the addition of DBEP lowers the average C_G and a decrease in etch rate is observed (Fig. 6). In the case of PMMA (with and without plasticizer), the etch rate is not uniform from top to bottom of the film, but accelerates somewhat. This probably is due to the heating of the substrate with a consequent contribution from thermal depolymerization¹⁵.

Conclusions

The criterion proposed by Gokan¹⁰ continues to yield a good approximation to the etching behavior of organic polymers. Thus,

there seems to be little likelihood of decreasing etch rates to much lower levels than can be obtained with polystyrene or similar aromatic polymers. Nitrogen, sulfur and halogens do not seem to alter the generalization. Of course, certain other elements, notably silicon and tin among others, can enhance etch resistance greatly².

Acknowledgements

The authors wish to acknowledge partial financial support from the Office of Naval Research and from the Moore Undergraduate Research Program of Cornell's College of Engineering. The cooperation of Cornell's National Nanofabrication Facility was also useful.

<u>References</u>

J. A. Mucha and D. W. Hess in <u>Introduction to Microlithography</u>, L.
 F. Thompson, C. G. Willson, and M. Bowden (eds), ACS Symp. Series
 219, Am. Chem. Soc., Washington, DC, 1984, Chapter 5.

2. B. C. Dems, F. Rodriguez, C. M. Solbrig, Y. M. N. Namaste, and S. K. Obendorf, <u>Int. Polym. Proc.</u>, <u>4</u>, 183 (1989).

- 3. R. H. Hansen, J. V. Pascale, T. De Benedictis, and P. M. Rentzepis, <u>J. Polym. Sci.:Part A</u>, <u>3</u>, 2205 (1965).
- 4. G. N. Taylor and T. M. Wolf, Polym. Eng. Sci., 20, 1087 (1980).
- 5. K. Harada, <u>J. Electrochem. Soc., 127.</u> 491 (1980).
- 6. K. Harada, <u>J. Appl. Polym Sci., 26</u>, 1961 (1981).

7. K. Harada, <u>J. Appl. Polym Sci., 26</u>, 3395 (1981).

 J. N. Helbert and M. A. Schmidt in <u>Polymer_Materials_for</u> <u>Electronic Applications</u>, E. D. Feit and C. Wilkins (eds), ACS Symp.
 Series 184, Am. Chem. Soc., Washington, DC, 1982, Chapter 5.
 L. A. Pederson, <u>J. Electrochem. Soc.</u>, 129, 205 (1982).
 H. Gokan, S. Esho, and Y. Ohnishi, <u>J. Electrochem. Soc.</u>, 130, 143, (1983).
 H. Gokan, K. Tanigaki, and Y. Ohnishi, <u>Solid State Tech.</u>, <u>28</u>, 163,

(May, 1985).

12. J. N. Helbert, M. A. Schmidt, C. Malkiewicz, E. Wallace, Jr., and C.
U. Pittman, Jr., in <u>Polymer Materials for Electronic Applications</u>, T.
Davidson (ed), ACS Symp. Series 242, Am. Chem. Soc., Washington,
DC, 1984, Chapter 8.

13. S. J. Moss, in <u>The Chemistry of Semiconductors</u>, S. J. Moss and A. Ledwith (eds), Blackie & Son, London, 1987, Chapter 16.

14. P. C. Warren, <u>SPE J., 27</u>, 17 (Feb., 1971).

15. B. C. Dems and F. Rodriguez, <u>J. Vac. Sci. Technol.</u>, <u>B 8</u>, 1985 (1990).

16. F. Rodriguez and T. Long, J. Appl. Polym. Sci., 44. to appear.

Figure Captions:

1. Sketch of RIE apparatus showing position of laser interferometer.

2. Etch rates in oxygen for polymers of Table 1 correlated with composition by Eq. 2 (dashed line) and Eq. 4 (solid line). Power density = 0.25 W/cm^2 .

3. Etch rates correlated with low power (0.25 W/cm²) etch rate in oxygen. A. Oxygen, 0.50 W/cm²; B. $CF_4/O_2(8\%)$, 0.50 W/cm²; C. $CF_4/O_2(8\%)$, 0.25 W/cm².

4. Reflected light intensity (on ordinate) patterns during the etching of VMC with various amounts of plasticizers. Time scale of the abscissa is the same in each case.

Oxygen etch rate of VMC at various plasticizer levels. (+), DOS;
 (o), DOP.

6. Etch rates of plasticized polymers (in oxygen at 0.25 W/cm^2).

Abbrev.	Composition	Refractive	Etch Rate,	.))	Trade name	Commercial	Spinning
		Index	nnvmin			source	solvent
PMMA	Poly(methyl methacrylate)	1.489	415	62.0			chlorobenzene
PEMA	Poly(ethyl methacrylate)	1.485	410	いてい			chlorobenzene
PBMA	Poly(n-butyl methacrylate)	1.483	390	0.15			chlorobenzene
PS	Polystyrene	1.592	175	(1, 5.)			chlorobenzene
AN	Copolymer of vinyl methyl	ether					
	and maleic anhydride	1.47	355	61.0	Gantrez AN TM	GA.F	*dMN
SM	Copolymer of styrene						
	and maleic anhydride	1.568	220	0.36	Scripset TM 520	Monsanto	cyclohexanone
PIM	Polyimide	1.620	215	0.45	Thermid FA7001 TM	National Starch	chlorobenzene
PPHS	Poly(p-hydroxy styrene)	1.64	215	0.33		Hoechst-Celanese	methanol
PVC	Poly(vinyl chloride)	1.533	310	0.33			cyclohexanone
VMC	Terpolymer of vinyl chlorid	e (86%), vinyl	acetate (13%)), maleic a	anhydride (1%)		
		1.535	320	0.30	VMCH TM	Union Carbide	chlorobenzene
CEN	Cellulose nitrate	1.50	835	-0.15		, , , , , , , , , , , , , , , , , , ,	POMA*
PVAc	Poly(vinyl acetate)	1.467	375	0.17			cyclohexanone
PAMS	Poly(alphamethyl styrene)	1.592	195	0.47			chlorobenzene
TBOC	t-butyloxycarbonyl ester of	PPHS					
		1.528	215	0.31			MIBK*
MHB	Methoxycellulose (w/ butox	y)					
		1.470	530	0.17	Methocel TM HB	Dow	water
MHG	Methoxycellulose (w/propo:	(y)					
		1.502	470	0.17	Methocel ^{1M} HG	Dow	water
PTFP	Trifluoroacetic acid ester of	SHdd					
		1.492	330	0.36	* . * * * * * * * * * * * *		chlorobenzene
*NMP = N-r	nethyl pyrrolidone; POMA =]	propyloxymeth	ylacetate; MI	BK = met	hylsiobutylketone		

Table 1 Polymers (etched in oxygen at 0.25 W/cm^2)

•

		R ₂	Comonomer
PMMA	-CH ₃	O=C-O-C	H ₃
PEMA	-CH ₃	O=C-O-C	H ₂ CH ₃
PBMA	-CH ₃	0=C-O-C	H ₂ CH ₂ CH ₂
PS	- H	-C6H5	
AN	- H	-OCH3	maleic anhydride
SM	- H	-C ₆ H ₅	maieic anhydride
PIM	Hc≡c-O	$N = CF_3$	$\mathcal{T}_{\mathcal{P}}^{\mathcal{P}} = \mathcal{O}^{\mathcal{O}} \mathcal{O}^{\mathcal{O}} \mathcal{O}^{\mathcal{O}}$
PPHS	- H	-С ₆ Н ₄ -О	н
PVC	- H	- C1	
VMC	(86% vinyl cł	nloride, 13% vi	nyl acetate, 1% maleic anhydride)
		н Н	HOO- OHHHH ONO2
PVAc	- H	-0-CO-C	H ₃
PAMS	-CH3	-C ₆ H ₅	
TBOC	- H	-C ₆ H ₄ -O	-CO-O-C(CH ₃) ₃
MHB	(typical	structure)	C 420 H
MHG	(typical	structure)	H H O O $-$ H H H H CH ₃ O O $-(CH_2 - CH - O) +_{n}H$ CH ₂ OH $-(CH_2 - CH - O) +_{n}H$ CH ₂ OH $-(CH_2 - CH - O) +_{n}H$
PTFP	- H	-C ₆ H ₄ -C	H H H H H H H H H H

Table 2 Polymer Structures (where the repeat unit is $-CH_2-CR_1R_2$ -unless otherwise noted)

Tabl	e 3	PI	as	tic	iΖ	e	rs
	-						

Abbrev.	Chemical name	Supplier	CG
DOS	Di-2-ethylhexyl sebacate	C. P. Hall	0.27
DOP	Di-2-ethylhexyl phthalate	Monsanto	0.30
DBEP	Di-butoxyethyl phthalate	C. P. Hall	0.25

Table 4	Representative	Glass	Transition	Temperatures ¹⁶
Polymer	% plasticizer	⊤ _g , ∘C		
VMCH	0	85		
	50% DOP	< 0		
	50% DOS	< 0		
PS		105		
PS	20% DBEP	45		
PMMA		108		
PMMA	20% DBEP	70		

1. Sketch of RIE apparatus showing position of laser interferometer.

2. Etch rates in oxygen for polymers of Table 1 correlated with composition by Eq. 2 (dashed line) and Eq. 4 (solid line). Power density = 0.25 W/cm^2 .

3. Etch rates correlated with low power (0.25 W/cm²) etch rate in oxygen. A. Oxygen, 0.50 W/cm²; B. $CF_4/O_2(8\%)$, 0.50 W/cm²; C. $CF_4/O_2(8\%)$, 0.25 W/cm².

Reflected light intensity (on ordinate) patterns during the etching 4. of VMC with various amounts of plasticizers. Time scale of the abscissa is the same in each case.

50% DOP

-17-

-13-

6. Etch rates of plasticized polymers (in oxygen at 0.25 W/cm^2).

TECHNICAL REPORT DISTRIBUTION LIST - GENERAL

Office of Naval Research (2)* Chemistry Division, Code 1113 800 North Quincy Street Arlington, Virginia 22217-5000

Dr. James S. Murday(1)Dr. Harold H. Singerman(1)Chemistry Division, Code 6100David Taylor Research CenterCode 283 Naval Research Laboratory Washington, D.C. 20375-5000

Dr. Robert Green, Director (1) Chemistr Division, Code 385 Naval We ons Center China Lake, CA 93555-6001

Dr. Eugene C. Fischer (1) Code 2840 David Taylor Research Center Annapolis, MD 21402-5067

Dr. Elek Lindner (1) Naval Ocean Systems Center Code 52 San Diego, CA 92152-5000

Commanding Officer (1) Naval Weapons Support Center Dr. Bernard E. Douda Crane, Indiana 47522-5050

Dr. Richard W. Drisko (1) Naval Civil Engineering Laboratory Code L52 Port Hueneme, CA 93043

Annapolis, MD 21402-5067

Chief of Naval Research (1) Special Assistant for Marine Corps Matters Code 00MC 800 North Quincy Street Arlington, VA 22217-5000

Defense Technical Information Center (2) Building 5, Cameron Station Alexandria, VA 22314

* Number of copies to forward