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ABSTRACT
This final report describes progress made by TIS Incorporated for the period 7/1/91 - 10/1/91 on
SBIR contract F49620-91-C-0055 toward the development of novel optical computer architectures
and supporting methods for exploiting free-space reconfigurable interconnects.

Major findings include: (1) Reconfigurable interconnects can reconfigure slower than the bit rate
and still improve performance as long as throughput is maintained after reconfiguration; (2) A fixed
control sequence does not preclude the use of runtime conditionals, so that the performance of
traditional general purpose computing can be improved; (3) A system that uses reconfigurable
interconnects is likely to be larger than a functionally equivalent system that does not use
reconfigurable interconnects; (4) A reconfigurable approach is most effective for a small active
portion of a computer, and is not needed for an entire computer in order to appreciate a
performance gain; (5) A reconfigurable interconnect technology can have a significant impact on
interconnection networks used in parallel processors; (6) A fixed control sequence must have some
level of repetition in order to be practical; and (7) The dataflow model of computing, which
theoretically supports maximum parallelism but suffers performance sacrifices in electronic
implementations, may be significantly improved since the architecture can be modified to suit the
dataflow graph.

1. Introduction

Nearly all digital computers are constructed with electronic technologies that use transistor-based
logic gates for switching and use wires to carry information. The arrangements of wires and logic
gates define the computer architecture, which remains fixed once a computer is created. Programs
are then constructed in such a way that they map onto the fixed computer architecture, and the
responsibility for constructing programs in this way is typically handled by a compiler that
translates a high level language such as C or Pascal into object code for the instruction set of the
target machine. Often, this mapping is not very good since the physical architecture cannot be
modified to suit particular computer programs. Although some fine-grained parallel computer
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architectures such as the Connection Machine [1] allow for programmability at very low levels of
complexity, the architecture itself remains fixed and performance is sacrificed when compared to
specialized hardware designed to carry out specific tasks. The Phase I project explores an optical
computing model that supports gate-level reconfiguration of the interconnects, which offers the
novel capability of changing the architecture during the course of computation. Problems
addressed in this report include the development of three models that cover different aspects of
reconfigurable interconnects, the identification of potential applications of the models, and a plan
for continuing to a Phase 11 effort.

1.1 Statement of work, timetable, and schedule of reports

Three reconfigurable interconnect models are explored in the Phase I effort. The first model makes
use of fixed control sequences, in which the interconnects are changed in a predetermined sequence
that remains fixed throughout a computation. For this model, there is no need to feed the results of
a computation back to the reconfiguration mechanism. Two variations of this model are
considered, one in which a fixed interconnect structure is used and a reconfigurable mask modifies
the interconnect, and one in which beam-steering elements are used instead of masks. The second
model selects a control sequence based on the results of previous computations. For this model, a
fixed number of precompiled control sequences are provided, and the results of computations
determine which sequence is applied next. For the third model, the results of computations are fed
into a mechanism that generates new control sequences based on the needs of the running program.

The fixed control sequence study focuses on applications with fixed control streams such as in the
use of Gaussian elimination in solving systems of linear equations, which is important for null
steering in phased array radai applications [2, 3]. This aspect of the Phase I effort is an extension
of a Phase I Rome Laboratory (RL) SBIR contract (F30602-90-C-0081, project engineer is Robert
Kaminski, 315-330-4092) performed by TIS which involved the design of an architecture for a
digital optical Gaussian elimination processor. A Phase II follow on effort (F30602-91-C-0101,
project engineer is Robert Kaminski) is in progress and will be coordinated with a proposed Phase
IT follow on to this Phase I effort, as described in Section 8. The existing Phase II effort develops
a fixed interconnection technology for the processor. The runtime-selected study focuses on
applications with precomputed control sequences that vary in data-dependent ways, such as in
using addition for one time interval and then using subtraction for another time interval. For this
study, the results of conditionals from running programs determine which precomputed control
sequences are used and in what order. The final study explores program-generated sequences, in
which the form of the control sequence is not known until execution time, which is when the
sequecnce is generated. An application ot this paradigm is to dataflow machines, which is
discussed in Section 5.3.

A significant aspect of the reconfigurable interconnection schemes explored here is that computer
architectures are modified on-the-fly after a system is placed in service. This allows for greater
flexibility in fault tolerance, hardware re-use, and in generating custom architectures to solve
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specific problems without actually touching the physical hardware.

For this final report, progress for the contract period 7/1/91 - 10/1/91 is detailed in accordance with
the schedule shown in Figure 1.

Task or deliverable

Define optical computing model for
reconfigurability, study other models.

Investigate gate level reconfigurability for fixed
sequences.

Investigate gate level reconfigurability for
runtime-selected sequences.

Investigate gate-level reconfigurability for
runtime-generated sequences.

Prepare final technical report.

Interim reports

Final report

Time in Months

= Scheduled work

Figure 1: Timetable for the Phase I effort.

The schedule of reports for the Phase I SBIR effort is listed below. Note that the Final report is
dated three months earlier than the scheduled report date of December 31, and that the interim
reports are also dated earlier than the scheduled dates.

Report Scheduled Actual

Interim Report #01 August 31, 1991 August 17, 1991

Interim Report #02 October 31, 1991 September 30, 1991

Final Report December 31, 1991 October 1, 1991 <--- This report

1.2 Expenditure of resources
All of the labor resources have been applied since the start of the contract. Principal investigator
(PI) Murdocca contributed 360 hours to the effort, and the results of Murdocca’s effort are detailed
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here. Professors Saul Levy and Apostolos Gerasoulis of the Computer Science Department at
Rutgers University contributed 60 hours (Levy) and 80 hours (Gerasoulis) for studies into
dataflow computing (Levy) and the more general problem of interconnects in parallel processing
(Gerasoulis). Edward Roos (an optomechanical designer under contract to TIS, formerly with
OptiComp Corporation) contributed 60 hours to the investigation of acoustooptic modulators for
reconfiguration.

Murdocca visited RL as a TIS employee during July 9-10, 1991, for a technical exchange with
members of the Photonics Center. Discussions covered anticipated milestones for the S-SEED
processor, and the involvement of microlaser expert Jack Jewell in the effort. Roos visited RL
with Murdocca and Professor Thomas Stone (Rutgers U.) on September 18, 1991 to coordinate a
potential follow on to this effort with the RL effort.

1.3 Motivation for exploring reconfigurable interconnects

A digital circuit must account for all possible input combinations that may arise during the course
of omputation even though only one input combination exists at a time, so that much of the logic
is underutilized. If some information is known about a computation regarding the complexity of
logic that is needed on each time cycle, then greater efficiency can be realized through a mechanism
that reconfigures the circuit during operation (see Section 2.4).

For conventional electronic digital circuits, the gate-level interconnection network is fixed when the
system is created. This implies that the configuration of the hardware is always present ever when
large parts of it are idle. A good numerical computer provides floating point operations as well as
integer operations. Floating point is often enhanced with hardware transcendental functions.
When the computer is performing integer operations, it will not use the floating point hardware.
When floating point inultiplication is performed, transcendental hardware sits idle. With fixed
interconnects logic is underutilized. If the wires in electronic circuits can be changed on demand,
then small circuits can be made to yield the same performance as large circuits. There are probably
no reasonable means for doing this in electronics, but if the interconnects in a free-space digital
optical computer can be changed on demand, then fewer gates can perform the functions of many,
so that an optical computer can potentially provide an architectural advantage over electronic
computers.

Reconfigurable interconnects hold promise for improving the performance of parallel processors as
well. A switching network is commonly used fo: interconnecting large numbers of processors.
The switching network increases communication delays which can have a profoundly negative
effect on performance. A reconfiguration strategy can achieve the same goal without introducing a
large latency. This application of reconfigurable interconnects is discussed in further detail in
Section 5.2.

Although these arguments suggest that a greater efficiency can be achieved with a reconfigurable
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interconnect technology, there are special cases where little or no improvement can be made. For
decisionless computation, like matrix multiplication, conventional hardware implementations can
be pipelined at the gate level if engineered properly. Little savings can thus be achieved in
reconfiguring the gate-level interconnects for these applications since the logic sequence is
essentially laid out in space and is utilized nearly 100% of the time due to the nature of the
application. However, when there is a need to modify the sequence, for example, to increase
precision or to isolate faults, then there may be an advantage. Thus, the motivations for exploring
a reconfigurable interconnect technology include performance improvements, as well as fault
tolerance and post-fabrication modifications.

1.4 Background on the optical computing model

The model of a digital optical computer that is used here is based on the all-optical S-SEED [4]
processor developed at AT&T Bell Labs [5] although different devices than the S-SEEDs may be
considered for a Phase II hardware prototype (see Section 8.2). Figure 2 illustrates a digital optical
computing model that is similar to the AT&T configuration. The model is composed of alternating
arrays of optical logic gates and free-space regular interconnects. Masks in the image planes block
light at selected locations which customize the interconnects to perform specific logic functions
such as addition or sorting. The system is fed back onto iiself and an input channel and an output
channel are provided. Feedback is imaged with a vertical shift so that data spirals through the
system, allowing a different section of each mask to be used on each pass. Optical hardware for
implementing the logic and interconnects is described below.

Interconnect Mask Logic

Input |-

OR OR
Stage 0 Stage 1

Figure 2: Arrays of optical logic gates are interconnected with optical crossovers [6]. Fixed
masks in the image planes block light at selected locations which customize the system for snerific
logic functions such as addition or sorting.
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1.4.1 Gate-level optical interconnects: Figure 3 shows a schematic diagram of the optical
crossover interconnect [6], which is one of a number of demonstrated methods of interconnection
that is suitable for this model. An array of input beams is split into two identical copies. One copy
is imaged onto a mirror and is reflected back through the system to the output plane, while the
other copy is permuted according to the period of the prism array. The combined copies are
displaced slightly with respect to each other so that each copy can be independently masked in the
output plane. The gate-level interconnection pattern that this interconnect achieves is shown for
varying periods of the prism arrays in the interconnection stages of Figure 2.

i

Prism array

Input

N\

Mask

Output

Figure 3: Optical crossover interconnect. A two-dimensional array of input beams is split into
two identical copies. One copy is imaged onto a mirror and is reflected back through the system to
the output, while the other copy is imaged onto a prism array that permutes the beams according to
its pericd. Connection paths achieved with different prism array periods are shown in the right
panel.

This particular implementation of the crossover supports a fixed set of connections that are
customized through fixed masks in the image planes. If the fixed masks are replaced with
reprogrammable masks then this approach will support reconfiguration. Another method of
interconnection that supports reconfiguration is beam-steering, provided for example with
acoustooptic modulators [7] or with photorefractives [8]. Beam-steering can be more light efficient
in principle since beams are steered to their targets instead of being selectively blocked, but
reconfiguration time is generally slower than the bit rate.
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1.4.2 Oprical logic gates: A number of optical logic gates can be used to support the
reconfiguration model, and a few promising devices are described here. The symmetric
self-electrooptic effect device (S-SEED) [4] is a more recent version of the SEED which is used in
optical processor testbeds at AT&T Bell Laboratories in Holmdel, New Jersey and at Bell Labs in
Naperville, Illinois, and in a similar testbed under development in the Photonics Center at RL,
which involves collaborations between Rome Laboratory, Rutgers University, and TIS. The
SEED is based on an electrically coupled optical modulator and detector pair. The device is made
up of approximately 1200 alternating layers of GaAs and GaAlAs in an 8um thick quantum well
structure placed inside a PIN photodiode detector as shown in Figure 4. When light is applied to
the detector, a current is generated that reduces the potential across the quantum well. When a
strong enough current is created, the positive feedback allows the device to retain its state after the
light source is removed. One of the operating modes of the device is to pass light of low intensity
and to absorb light of high intensity, implementing negating logic. The electrical properties of the
device make it easy to use in the laboratory, and since communication is handled optically, the
system speed of a computer made up of these devices is limited only by the device speed.
Expected operating rates are several hundred megahertz, although current devices operate only in
the tens of megahertz range due to the lack of sufficient optical power at 850nm from a single laser
source. A fabricated array of S-SEEDs is shown in Figure 5.

Infrared light in
R
—N\
p
V | === Multple
CB ! |: quantum well
+ n

'

Transmitted infrared
light out

Figure 4: Schematic of the self-electrooptic effect bistable device.

Another optical logic gate that is based on multiple quantum well (MQW) technology is the surfaCe
Emitting Laser Logic device (CELL) [9] which is based on Heterojunction PhotoTransistors
(HPTs) and Vertical-Cavity Surface-Emitting Lasers (VCSELs) [10] as shown in Figure 6. An
early array of VCSELSs is shown in Figure 7, and a similar VCSEL structure is used for the CELL
devices. The CELL operates by allowing a low intensity signal on the HPT to create a
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photocurrent which is electronically amplified to a level large enough to drive the microlaser above
threshold. Thus an optical-in/optical-out device is created which combines desirable attributes of
both transistors and lasers.

Figure 5: Array of S-SEEDs with a 40um spacing between mesas.

VCSELSs have been fabricated and demonstrated in two-dimensional arrays, and CELLs are in the
process of being fabricated at Sandia National Laboratories. Dr. Gregg Olbright was the principal
investigator involved in this work at Sandia before he and Dr. Jack Jewell, formerly of Bell Labs,
formed Photonics Research Incorporated (PRI) where they continue in this line of work. Olbright
and Jewell maintain frequent contact with Technical Imaging Services on the use of these devices
for the Phase I effort (see Section 8.2).

2. Fixed control sequences

A number of computer applications perform fixed sequences of operations that do not depend on
the data being processed. A simple traffic light controller repeats the fixed sequence: green-amber-
red-green (the convention used in the United States) with fixed time intervals, and since this
sequence continues regardless of traffic conditions, it is data-independent. A traffic light that alters
its behavior based on traffic volume or the presence of walk-light requests is a data dependent
application since its behavior is n-"t known until traffic volume changes and walk-light requests are
generated. This section is devoted to data-independent, fixed control sequences. The motivation
for considering this special type of computation is that it simplifies the control sequence
mechanism. The control sequence is generated external to the system and therefore does not
introduce delay in the processing loop as is the case for the models discussed in Sections 3 and 4.

2.1 The fixed control sequence model

The general form of the fixed control sequence model consists of a logic stage followed by an
externally controlled interconnect stage as shown in Figure 8. A data input stream and an
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interconnect control stream are created externally and are imaged into the system. There is no
feedback from the output to the control stream mechanism as there is for the remaining two models
since the sequence is known a priori, although there is a feedback path from the output to the data
input stream so that iterative computing is supported. For the fixed control sequence model, two
variations are considered: one in which the interconnects are controlled with reprogrammable
masks (Section 2.2) and one in which the interconnects are controlled with beam-steering elements

(Section 2.3).

Laser output
950 nm
........................................................... VCSEL anode
contact
Distributed
Bragg Retlector
p-GaAs/AlAs

e

Microlaser Active Region
u-InGaAs/GaAs

Quan*am Well (

Distributed
Bragg Reflector
n-GaAs/AlAs

Base contact

Collector n-InGaAs
HPT Base p-InGaAs
| Emitter n-AlGaAs

~ n- ubstr "L'
»r_. GaAs substrate 1 a-T,

Lght input
<980 nm

Figure 6: Structure of a CELL having an applied base contact. The emitter contact is through the
substrate at a potential common to the other CELL emitters in the array.

As an example of how this model influences computation, consider the logic circuit! shown in

1The layout was generated automatically from design tools created at Rutgers University under
joint AFOSR/ONR support.
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Figure 9, which implements the majority function (see Appendix A). The stage indices on the left
correspond to the logic and interconnect stages of the optical computing model shown in Figure 2.
There are four stages, and two passes are made through the four stages, so the circuit is eight
levels deep. Inputs are at the top and the dual-rail output is produced at the bottom. The boxes
represent optical logic gates, which is a variation of the representation normally used in digital
circuit designs. Normally the logic gate representation described in Appendix A is used, but the
box notation is used here to simplify diagrams, and because there is a need to distinguish between
the signals that an optical logic gate drives (left and right), unlike an electronic approach where the
signals are common.

tigure 7 Soaonmg CTcetom oucrograph of a small portion of an array of vertical-cavity
sutjuce-enuiting lasers ! 10].

Control

Data inputs ——ppt  Logic | ——P{ Interconnect ———p Outputs

Data

Figure 8: Block diagram of the fixed control sequence model. Data inputs and control inputs are
imaged into the system from external sources in a sequence that is fixed when computation begins.
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Figure 9: The majority function is implemented on an optical programmable logic array (PLA).
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Now consider the two systems shown schematically in Figure 10. The system on the left
represents the 16 wide by 8 deep circuit shown in Figure 9. The system on the right represents a
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circuit that performs the same function in just one level by recirculating data and modifying the
control mask. For the system on the right, less throughput? is supported because the circuit has to
perform the tasks of the original eight circuit levels. Thus, there is a direct tradeoff between the
amount of physical logic that is used and the degree of throughput that is supported. However,
when the physical logic is reduced, then a smaller system results, and small systems are preferred
to large systems since lens fields are smaller, distortions are smaller, and other aspects of the
physical implementation are simplified. These advantages are summarized in the work of Jewell
et.al. [11] as shown in Figure 11. A conclusion that may be extrapolated is that it is better to use
many copies of a small system when throughput is an issue than it is to work with a single
functionally equivalent large system, and further, a system that supports a reconfigurable
interconnect technology has a greater opportunity to exploit this property than a system that does
not.

2.2 Fixed control sequences with reprogrammable masks

A configuration for fixed control sequences is considered in which the interconnects are fixed but
mask patterns that customize the interconnects are allowed to change. As an example of this
approach, consider the truth table shown in Figure 12 which defines six Boolean functions in three
variables. The sum and carry functions descnibe the functional behavior of a full adder, which is a
basic building block used in creating an addition unit. The sub and borrow functions describe the
functional behavior of a full subtracter. The majority function (see Appendix A) is true (logical 1)
whenever more than half of its inputs are set to 1. The parity function is true whenever there is an
even number of 1’s in the input (for even parity). The majority and parity functions are used in
error correction (see Section 5.1).

Assume that these functions need to be implemented on some unspecified processor. As in most
conventional electronic computers, the functions are implemented in a fixed structure that is always
present even though only one of the functions (or a pair, such as sum-carry or sub-borrow) is used
at any one time. A potential improvement to the conventional electronic approach is to implement
just one or two functions at a time, and to reconfigure the circuit to implement the one or two
functions that are needed on demand. Although the investigation reported here considers the
development of an optical reconfiguration technology, it may be possible to use an electronic
approach rather than to resort to optical technology in order to achieve this behavior. For example,
consider the general form for a conventional electronic three variable, two function programmable
logic array (PLA) shown in Figure 13. Three Boolean variables a, b, and ¢ enter at the top, and

2Throughput refers to the amount of information that is passed through a system. A system that
has no feedback path supports a throughput rate equal to the throughput of the slowest stage. A
system with feedback supports a reduced throughput rate, which is equal to the throughput of the
slowest stage divided by the number of times the feedback path is taken.
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Figure 11: The effects of scaling a system down by a scaling factor s to microoptic sizes while
maintaining equivalent computational power are swnmarized (adapted from Jewell, et. al., [11]).
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these signals as well as their complements (produced by the three inverters) are passed through to
eight AND gates. The crosspoints occur where data inputs intersect AND gate inputs and where
AND gate outputs intersect OR gate inputs, and have one-time programmable fuses that enable or
disable connections between the intersecting lines. The AND matrix is followed by a
programmable OR matrix. Note that each AND gate has six input lines, that the single input line
shown represents six, and that a similar simplification is used for the OR matrix. The AND-OR
matrix provides all of the computational power needed to realize any two functions f and g of three
Boolean variables a, b, and c.

abec sum carry sub  borrow majority parity
000 0 0 0 0 0 1
001 1 0 1 1 0 0
010 1 0 1 1 0 0
011 0 1 0 1 1 1
100 1 0 1 0 0 0
101 0 1 0 0 1 1
110 0 1 0 0 1 1
111 1 1 1 1 1 0

Figure 12: A truth table describes six functions in three variables.

It is a relatively simple task to replace the one-time programmable fuses with reprogrammable
links, so that all six of the functions described in Figure 12 can be implemented with a one or two-
function reconfigurable PLA in an electronic technology. Thus in principle there is little motivation
for considering the use of a less developed optical technology. However, it is difficult to set the
crosspoints quickly in an electronic implementation due to bandwidth limitations of communicating
information to and from an integrated circuit [12]. The same crosspoint information can be stored
off the chip and can be brought in through the pins, but the simple PLA shown in Figure 13 would
need at least 64 crosspoint pins (6x8 = 48 pins for the AND stage and 2x8 = 16 pins for the OR
stage) plus the power pins and the control pins, for what is a very small circuit. Pin counts for
very large chips go only as high as about 256. A conventional VLSI chip might contain hundreds
of such PLAs, and even though they may not all need to communicate to and from the chip, a
nearly hopeless pinout problem is still posed for circuits of reasonable complexity. A possible
solution is to place a small memory at each crosspoint that stores the control sequence so that there
is no need to bring in the sequence from an external source. Although this approach is possible, it
forces the diameter of the circuit to increase, which consumes chip area and increases delay since
some functions will inevitably be pushed off of the chip. An optoelectronic approach may offer a
solution rather than using an all-optical approach, but then the electronic portion is fixed, although
this may not be a problem for some applications as reported in Ref. [13].
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2.2.1 Size of the stored sequence For the proposed reconfigurable interconnect model, the
potential size of the external mechanism should be considered. For the PLA example described
above, a small predetermined control sequence is repeated. 48 AND stage crosspoints and 16 OR
stage crosspoints ueed to be enabled and disabled on each clock cycle, for a total of 64 bits of
information imaged into the PLA per cycle. For the two competing systems represented in Figure
10, an eight-to-one reduction in system size is suggested as a result of using reprogrammable
masks. The PLA case considered here maps onto the eight stage structure, in which four 16-wide
stages make up one pass through the circuit shown in Figure 9, so that a total of (16x4 = 64) bits x
2 = 128 bits of information must be stored external to the system for each pass through the PLA,
possibly in a storage loop or in some recording material that has a fast read time. Although 128
bits per PLA cycle adds up to a large amount of external storage after a few hundred cycles, many
if not most applications exhibit a significant amount of repetition so that only a few unique
sequences need to be stored.

a b c
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Stage

AND
Stage

/C

Crosspoints

A %4

N
A 4
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VY

f 8
Figure 13: A three-input, two-output PLA has 48 crosspoints in the AND stage and 16
crosspoints in the OR stage.
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For the case, however, in which the control sequence is not repetitive, then an extremely large
storage mechanism is needed, or a device is needed that generates control masks at the bit rate of
the switching devices. Storage for a nonrepetitive computation appears to be a fruitless endeavor
since the space requirement approaches infinity quickly. A control mask generation mechanism
seems more appropriate as long as it keeps pace with the devices. This, however, also appears to
be a fruitless endeavor since a number of logic operations will be needed to generate a single mask
pattern in ali but the most trivial cases. The logic gates being controlled should use the fastest
available switching technology (otherwise, there may be little performance improvement in using
optical processing), so that it is unrealistic to expect a sequence generation mechanism to use even
faster logic than the devices being controlled. However, note that the case in which a control
sequence contains no repeat pattern is very rare, and that the sequence probably cannot run for very
long regardless of reconfigurability. The reason for this is that a compiled instruction sequence is
normally used to control a computation, and the length of the instruction sequence mirrors the
execution time when the sequence has no repetition. For example, if a computer that is capable of
executing 50 million instructions per second (MIPS) runs for 10 seconds, then storage must be
provided for a SOMIPS x 10s = 500 million word instruction sequence. This situation is so
abnormal that it is not considered here. No suggestion is made that such a sequence even exists
that is useful, although it is probably not impossible that such a sequence does in fact exist.
Summarizing, a control sequence must have some degree of repetition in order to exploit the fixed
control sequence model. This restriction is simply a property that already exists in conventional
computing.

Continuing with a study into the size of the mechanism that generates control sequences, notice that
although the mask patterns may be very large, that a small indexing mechanism can be used to
invoke the patterns so that a high level compiler can simply generate indices to these patierns rather
than require storage of many identical copies of the masks, similar to the way that pointers are used
for passing arrays as arguments to subroutines in computer languages such as C or FORTRAN, or
to the nanoprogramming concept used in some microcontrolled processors [14]. In order to take
advantage of this scenario, a mechanism is needed to translate an index into a mask pattern, which
again invokes the problem of needing faster control logic than the devices being controlled.
However, since the control sequence is independent of the data being processed, a mask generation
pipeline can be created and maintained without generating wait states that might otherwise render
the approach ineffective, so that it is only necessary for the controlling logic to be as fast as the
logic being controlled. Thus, it appears reasonable to generate traditional object code and to use
the object code to select mask patterns.
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2.2.2 Savings in active computing area Given that interconnection control information can be
imaged into the active computing area3 with reasonable complexity, a question that needs to be
addressed is how much active chip area is saved with a reconfigurable approach. It appears
unlikely that total area will be reduced, since external storage must be provided for the crosspoint
settings that are moved from the active chip area, and because a mechanism must be provided that
images externally stored crosspoint settings into the active computing area. However, it is
important that the active computing area be reduced, even if the total area increases, since the speed
of this region places an upper bound on the speed of the entire processor.4 Consider again the six
function truth table shown in Figure 12 and the two-function PLA shown in Figure 13. A
traditional electronic PLA implementation of the six functions can be made without using a
reconfiguration technology as shown schematically in Figure 14. Crosspoints marked with heavy
dots indicate positions of enabled connections. Notice that the number of crosspoint settings in the
OR stage has grown from 2x8 = 16 for the two-function PLA shown in Figure 13 to 6x8 = 48
crosspoints. In addition, the outputs of the AND gates must now be capable of driving up to six
loads instead of only two. Again, all six functions are unlikely to be used simultaneously in a
computer, so that the added expense of increasing the active computing area to accommodate all six
functions does not increase the performance of the individual operations. For the reconfigurable
approach, the same functionality is provided at the smaller price of implementing only two of the
functions, thus resulting in a performance improvement since the active logic is placed in a smaller
area, with smaller fan-in and fan-out requirements. A reduction of 67% is thus suggested for the
OR stage of the example PLA.

A consideration in supporting this claim is in understanding how the needs of various functions are
distributed. For example, if there is a long run of addition operations followed by a long run of
subtraction operations, then a mechanism that reconfigures slowly with respect to the bit rate may
be effective, in the same way that the slow process of loading a cache from main memory is offset
by the overall performance improvement attributed to the locality principle. If however, the

3Nearly all of the time, there is some portion of unused logic. The active computing area refers to
the set of logic gates that are involved in the current computation.

4An analogy can be drawn to cache memory, which is held local to the processor, while the bulk of
main memory is placed in an external area of a computer, typically on the system bus. The
processor still operates as if all of main memory is fast, local cache, because computation is
typically localized in nature. That is, it is unusual for memory accesses to be randomly distributed
over the memory space. Moreover, even if the expense is allowed for making all of main memory
as fast as the cache, there would be little improvement in performance because of the locality
principle, and because even with fast logic the main memory will have to operate more slowly
because of its sheer size. A cache is typically on the order of 1/256 of the size of main memory
[15].
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distribution of functions is characterized by frequent changes, then a reconfiguration mechanism
must respond at the bit rate in order to be effective. In actuality, both forms of computation occur.
A summary of the approaches and a recommendation for a potential configuration for a proposed
Phase II effort are discussed in Sections 6 and 7.
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Figure 14: A conventional layout of a three-variable, six function PLA is shown. Enabled
connections are marked with heavy dots. The functions correspond to the truth table shown in
Figure 12.
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2.3 Fixed control sequences with steerable interconnects

One problem with reconfiguring the interconnects by modifying the mask patterns is that light is
wasted since all anticipated connections are hardwired into the structure, and then unwanted signals
are selectively blocked. Thus, even though fan-in and fan-out constraints are improved for the OR
matrix when masks are reconfigured, the AND matrix is still burdened with generating enough fan-
out for all minterms. This problem can be reduced if the physical beams of light are selectively
redirected to their targets, since there is no longer a need for each input signal to power all of the
AND gates and there is no longer a need to rely on masks to enable and disable connections.
Potential advantages of this approach include not only improved fan-in and fan-out, but also that
fewer levels of logic may be necessary to implement functions since circuits do not have to be
mapped onto a fixed set of interconnects.

Two variations of this approach are considered: (1) interconnects that change at the bit rate, and (2)
interconnects that change more slowly. The computing situations that are appropriate for each
approach appear to be identical to the situations for reprogrammable masks, namely that slow
reconfiguration is effective for long runs of identical computations, and that fast reconfiguration is
needed for applications with rapidly varying needs. A significant difference is that although there
are a number of possible implementation strategies for interconnects that reconfigure slowly such
as the use of acoustooptic modulators [7] or photorefractives [8, 16], there appears to be no
potentially viable technology that supports beam-steering at the bit rate. Although this situation
creates a technology gap, beam-steering in general need not compete with the reprogrammable
mask approach, in fact, the reprogrammable mask approach may be appropriate for parts of a
computation that change computing needs quickly, while the steerable interconnect approach may
be appropriate for parts of a computation that change more slowly. The reconfigurable
interconnect technology is preferred to the reprogrammable mask technology because light is
simply steered to its target rather than discarding it through masks, thus reducing fan-in and fan-
out requirements of the switching devices, although the interconnection elements may be more
complex. An application of the photorefractive approach is explored in Ref. [17] for reducing the
number of stages in a switching network. Irregular interconnects are suggested for implementing
expander graphs optically. The result is an interconnection network with a shallower depth than
can be achieved with more conventional fixed regular interconnects.

2 4 Fixed control sequences with branching object code

The use of a fixed control sequence does not imply that there are no branches in the executing
program. This is an important point because the vast majority of computing applications make use
of conditional branches. For example, a conditional branch in a computer program may take the
form:

if (x > y) then y = y + 10;
else y =y - 10;

TIS - RELEASED FOR DISTRIBUTION




21

in which case the flow of control cannot be predetermined since the values of x and y are not
known until execution time. However, on a conventional electronic computer, the condition test
(x > y) and the assignments y = y + 10and y = y - 10 are implemented in fixed
hardware, such as in an arithmetic logic unit (ALU). The ALU remains unchanged for both the
addition and the subtraction cases, and only the data flowing through it changes. The function to
be executed is determined by a control input. An ALU consists of a number of levels of logic, and
these levels do not change throughout the execution of a computer program. It is straightforward
to design an ALU in such a manner that only one of its levels are used at any one time without
introducing any major sacrifices in performance. It may thus be possible to exploit a
reconfiguration technology that implements one level of logic of the ALU at a time, which reduces
the active computing area of the ALU. Although arguments supporting reconfiguration have been
made previously [17] the effort reported here goes further in showing the improvement in circuit
complexity and in circuit latency as discussed below.

An observation that is sometimes made is that most of a computer is idle most of the time.
Although this is true in general for von Neumann style architectures (the von Neumann style is
found in a conventional general purpose computer like an IBM PC), it is due almost entirely to the
large transistor count devoted to random access memory (RAM). RAM is very dense, and
consumes a small fraction of computer volume even though it accounts for the bulk of the active
components. It is typical that when a computer adds, it does not subtract, nor does it perform a
square root at the same time. Thus the argument might be made that most of the central processing
unit (CPU) and not just the memory is idle for most of the time. This in fact is not true in general.
Consider the truth table and logic diagram for the 16-function 74181 arithmetic logic unit (ALU)
[18] shown in Figures 15 and 16. Although only one function is selected at a time, there is a great
deal of sharing of logic among the 16 functions. Nearly every logic gate is used for the ADD
operation which is only one of the functions. Thus, most of a CPU is not wasted as an observer
might initially conclude from the frequency of usage of various instructions. However, although
most of the logic gates in an ALU may be used most of the time, most of their functionality is
wasted most of the time. That is, a four-input AND gate may need only two of its inputs at any
time, so that although the gate is still being used, it introduces a cost factor of two in circuit area
since it is underutilized. Consider the shaded portion of Figure 17, which indicates the amount of
utilized logic actually used for the ADD operation. There are 63 logic gates, of which only 15.78
are used for the ADD operation as indicated in the figure, so 15.78/63 = 25% of the 63 logic gates
are needed. The first two of the six gate levels are not needed since they are devoted to function
decoding which is eliminated here. This reduces circuit latency by 1/3 in addition to reducing gate
count.

2.5 Reconfigurable logic

One problem with reconfiguring the interconnects while leaving the logic gates unchanged is that
some efficiency may be sacrificed. For example, the expression AB + AC can be implemented
with three logic gates in an AND-OR circuit as shown in the left side of Figure 18. An OR-AND
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circuit can implement a functionally equivalent circuit with only two logic gates as shown in the
right side of Figure 18. A reconfigurable interconnect approach cannot exploit this property unless
the interconnects can selectively skip some of the stages, which is not characteristic of the methods
described in this report. However, a technology that allows the logic gates to change form, such
as from AND to OR or from OR to AND, offers a potential implementation. A candidate device
for this approach is the microlaser based CELL discussed in Section 1.4. According to Dr. Jack
Jewell of PRI, which offers the CELL as a product, AND and OR logic can be dynamically
interchanged by altering the electrically controlled biases. For conventional electronic computing,
logic is often constrained to be of only one type such as NAND or NOR with small fan-ins and fan-
outs, and these constraints do not pose a severe burden on performance, since rows of logic can be
selectively skipped simply by applying an appropriate wiring pattern. However, since every
optical signal is forced to go through every logic array for the optical computing models considered
here, it may prove valuable to allow some flexibility in the choice of logic gates.

Selection Arithmetic operations

S3 82 S1 S0 M=0, Cn = carry-in

0 0 0 O F=APLUS 1

0 0 0 1 F=(A+B)PLUS 1

0 0 1 0 F=(A+B)PLUS 1

0 0 1 1 F = ZERO

0 1 0 O F=APLUS AB' PLUS 1

0 1 0 1 F=(A +B) PLUS AB' PLUS 1

01 1 0 F=AMINUSB

o 1 1 1 F = AB'

1 0 0 0 F=APLUS AB PLUS 1

1 0 0 1 F=APLUSBPLUS1

1 0 1 0 F=(A +B)PLUS AB PLUS 1

1 0 1 1 F=AB

1 1 0 0 F=APLUS APLUS1

1 1 0 1 F=(A+B)PLUS APLUS 1

1 1 1 0 F=(A+B) PLUS APLUS 1

1 1 1 1 F=A

Figure 15: Truth table for the 74181 4-bit ALU.
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Figure 16: Logic diagram for the 74181 four-bit arithmetic logic unit (ALU) (Adapted from Ref.
[18]). There are 63 logic gates.

TIS - RELEASED FOR DISTRIBUTION




24

Figure 17: Modified version of the 74181, showing the amount of underutilized logic (indicated
by shading). Fractions indicate the percentage of gate inputs that are used for the ADD operation.
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AB + AC AE +0) - AB+ AC

Figure 18: An AND-OR implementatior of AB + AC requires three logic gates, but an OR-AND
implementation requires only two logic rates.

2.6 Discussion

The fixed control sequence model is of special interest because there is no need to speculate on
how the process of generating the control sequence affects performance. The control sequence is
generated external to the system, prior to execution of the program, so that the mechanism that
generates the sequence has little influence on the size or speed or operation of the active logic. The
models described in Sections 3 and 4 are not as simple to characterize since the control sequences
are generated within the processing loops of the running systems.

The fact that branching object code can be supported with a fixed control stream is a significant
observation. A typical claim is sometimes made that a conventional central processing unit (CPU)
can be emulated with a smaller unit that is time multiplexed to achieve the functionality of the larger
unit, at the expense of greater time. This is a common textbook style of tradeoff encountered when
trying to squeeze an entire CPU onto a single integrated circuit (IC). What is surprising here is that
this tradeoff can be made without sacrificing performance when done properly. The underlying
phenomena that makes this possible is the ability to modify the interconnects at the bit rate, such as
through reprogrammable masks. This result is significant because it means that conventional
general purpose computing can benefit from reconfigurable interconnects, as opposed to just
special purpose applications, which has traditionally been the domain of optical computing
technology. Further, the only portions of a computer that have a real need for this level of
technology are places where there is a critical time/space tradeoff, such as in the CPU.
Components that are normally partitioned into separate units rather than being squeezed onto one
chip, such as main memory or input/output (I/O) interfaces, have little to gain from this approach
since other problems such as gate speed and memory bandwidth limit performance. Thus, even
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though the reconfiguration technology may be very costly initially, only a small portion of a
conventional computer needs to use it in order to be effective.

Since only a small portion of a conventional computer has a need for this technology, the
inefficiencies involved in discarding light through a reprogrammable mask approach might be
tolerated, since the potentially more efficient beam-steering approach is too slow for this one
application. However, in practical terms, the beam-steering approach is currently more easily
demonstrated.

3. Runtime selected control sequences

For runtime selected control sequences, the order of execution is not determined until the time of
execution, since the ordering depends on data and intermediate results. For this model, a fixed
number of control sequences are stored externally and are imaged into the system on demand.

3.1 The runtime selected control sequence model

The runtime selected control sequence model is composed of a logic stage and an interconnect stage
arranged in a loop, with a sequence selection mechanism included in the path between the system
output and the interconnect control input, as shown in Figure 19. Control can be performed either
with reprogrammable masks or with beam-steering elements, for example. Results of previous
computations influence a sequence selection mechanism, which chooses the next control sequence.

———3pp Outputs
Inputs ———Jp! Logic |———7p{ Interconnect
—>
A
Data Sequence
selection

Control | mechanism

Figure 19: Block diagram of the runtime-selected control sequence model. Results of
computation influence a sequence selection mechanism, which chooses the next control sequence.

3.2 An example: the pivoting problem

A potential opportunity for the runtime selected approach is the application of Gaussian elimination
to the solution of linear equations (see Appendix C). The process i- decisionless if the problem of
pivoting is ignored. However, in the real world, zeros or very small numbers do in fact appear on
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the diagonal, so that the pivoting problem must be addressed. A major difficulty with pivoting is
that fast Gaussian elimination implementations make extensive use of pipelining, and the pipelines
must be flushed whenever a pivoting decision is made. The problem grows as the size of the
matrix increases, since larger columns must be scanned for the pivot element, and since more time
is needed to interchange larger rows. One approach that eliminates the larger row problem uses
pointer indexing. Whenever a matrix element is accessed, a lookup table maps the requested
address to the real address, so that a row interchange requires only a pointer interchange, which is
a constant cost regardless of how large the matrix grows. A problem with this approach is that
every access to the memory goes through the address mapping mechanism, which increases the
cycle time and decreases performance.

A reconfigurable interconnect technology can offer a solution without compromising performance
significantly by simply reconfiguring the decoder tree of the memory to appear as if data has been
moved. For example, consider the augmented matrix shown in Figure 20. The indices in the
upper left corner of the 12 cells indicate the addresses of the memory locations that store the
corresponding coefficients.

0 1 2 3
ago| ao1| ao2| bo

4 5 6 7
ajp}] a11] ay2§ by

8 9 0 |n
azp| a1 | azz| b2

Figure 20: An augmented matrix is shown for a system of linear equations in three unknowns.
Indices in the upper left corners of cells indicate the storage locations in a random access memory.

Figure 21 shows two decoder circuits that map four-bit addresses into spatial locations. The circuit
on the left is a generic decoder that maps addresses into locations according to the matrix layout
shown in Figure 20. The circuit on the right of Figure 21 shows the configuration of a decoder
that swaps the top and bottom rows of the matrix. Notice that the actual data has not moved, and
that there is no need for an additional address remapping lookup table that is used in a pointer
approach. Only 1/6 of the crosspoints are changed between the two forms, even though 3/4 of the
elements are interchanged. Further, for a modest word size of 32 bits, the total number of bits that
are interchanged are 3/4 - 12 - 32 bits = 288 even though only 16 bits are changed in the decoder.
An important property of this method is that the modified decoder is simply projected into the
system without regard for the actual data being interchanged. Thus, explicit datapaths do not need
to be constructed among the rows of the matrix in order to implement the interchange. This
property is more greatly pronounced for more complex interchange operations such as a transpose,
in which every element is affected. A single precomputed decoder is all that is needed to
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implement the transpose. Thus, the performance advantage of using pointer addressing can be
achieved without paying the increased delay penalty that is typically associated with an electronic
implementation.
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Figure 21: Two forms are shown for a four-variable address decoder. The configuration on the
left corresponds to the cell numbering shown in Figure 20. The configuration on the right
corresponds to a cell numbering where the top and bottom rows are interchanged. Only 1/6 of the
crosspoints are changed between the two forms, even though 3/4 of the elements are interchanged.

3.3 Hardware caching

Observations that most of the instructions that are executed on gcneral purpose computers are
simple (such as MOVEs) and involve few stack manipulations for subroutine linkage [19]
motivated the development of reduced instruction set computers (RISCs) such as the SPARC and
RISC II. Another observation is that approximately 90% of the execution time of a program is
spent in just 10% of the code, and that only a fraction of the 10% is active for a given interval of
time. This observation led to the development of cache memories, in which the small fraction of
code that is active is kept in a small fast memory that is local to the processor. The result is an
overall improvement in performance.
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Besides temporal and spatial locality which apply to memory, there is also functional locality which
applies to a processor. A hardware cache is a novel concept described here that has no apparent
counterpart in conventional digital electronics. A hardware cache keeps the most recently used
hardware in a high speed, low latency section of a processor. Some of the work reported by
Hennessey and Patterson [19] provides quantitative evidence that some applications use only a
subset of the available instruction set of a processor. For example, a numerical based simulator
such as SPICE makes heavy use of floating point operations, whereas a symbolic application such
as the TgX text formatter makes heavy use of conditional branches and does not make use of
floating point operations. Thus, for any given application, it is likely that only a portion of the
architecture will be utilized, which creates an opportunity for a hardware cache mechanism that
maintains the most frequently used portion of an architecture in a high speed, low latency section
of a processor. In order for this to be effective, a study is needed on the relative frequency of
instruction execution with respect to the number of different instructions needed for a given time
interval. The time constraints of the Phase I effort did not allow for further investigation in this
area, but an investigation into this area is proposed for a Phase II follow on effort (see Section
7.1).

3.4 Discussion

The runtime selected control sequence model appears to offer the greatest improvement in
performance when the interconnects only need to be reconfigured occasionally since there may be a
substantial latency between the time that a decision is made to reconfigure and the 1ime that
reconfiguration is completed. This holds true for special purpose applications such as the
Gaussian elimination problem discussed earlier as well as for hardware caching. The requirement
that reconfiguration must be an infrequent occurrence does not present a major problem in general.
An example of an application that favors this requirement is fault tolerance, in which the
interconnects are modified to bypass hardware failures that occur during operation. This is
discussed in greater detail in Section 5.1.

4. Runtime generated control sequences

It may be the case that the form: of a computation is not known until runtime. For example, for a
phased array radar application, Gaussian elimination may be applied to the problem of solving
systems of linear equations. It is a relatively straightforward problem for a computer designer to
trade the precision of computation for the size of the matrix to be solved. However, once the
system is designed and implemented, there is little opportunity for a subsequent change during
operation in the field. Further, it is unreasonable to design all anticipated tradeoffs into the system
and allow an operator in the field to select the needed configuration, since the amount of hardware
needed is prohibitively large. An alternative is to allow tradeoffs to be made in the field via
software, but context switching is a time consuming process when done under programmed
control rather than with dedicated hardware. Thus, there is an opportunity for a mechanism that
generates new hardware during the course of computation based on changing needs of the
computation.
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4.1 The runtime generated control sequence model

The runtime generated control sequence model is illustrated in Figure 22. The results of running
computations influence a mechanism that generates new hardware during the course of
computation, at the expense of some other expendable hardware.

———3 Outputs
Inputs ——pp| Logic |———)pi Interconnect
—>
I
|

Data Sequence
generation
Control | mechanism

Figure 22: Block diagram of the runtime generated control sequence model. Results of
computation influence a sequence generation mechanism, which creates the next control sequence.

4.2 An example: a runtime generated floating point processor

The purpose of using a floating point representation in a digital computer is to trade precision for
range, so that fewer bits are used to store numbers. This results in a space savings for storing data
and in a space savings for arithmetic logic, at the expense of precision of the data. In general, the
error introduced in using a floating point representation is not a major problem as long as the
computer programmer understands the limitations. An example floating point format is shown in
Figure 23. There is a sign bit, a four-bit exponent, an implied radix point, and an eight-bit
mantissa. If a base of two is assumed, then the bit pattern 0001011000000 represents the decimal

number .75 x 22 = 3. If the same bit pattern is used but the base is changed from 2 to 16, then the

decimal equivalent is .75 x 162 = 192. Thus a change in the base increases the range, but the
precision is reduced since the number of bits in the mantissa has not increased relative to the range.

A widely used floating point format is the IEEE 754 standard. The use of a standard simplifies
design decisions in creating computer architectures and in creating high-level compilers, but the
generality alsc compromises efficiency and may even introduce significant errors when a
programmer is unaware that the floating point format and the application being programmed are not
matched. Consider that compilers for the C programming language, which is commonly used in
the scientific community, do not generate code that reports back to the user on overflow or
underflow conditions, although they do generate code that reports back for division by zero. The
reason that C compilers do not automatically insert code for error checking is that the execution of
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the program would be hopelessly bogged down in checking. Even if checks are made, overflows
may not be recognized when special algorithms are used, or they may be recognized when they are
not intended. Although these checks can be made in hardware, the typical result of recognizing an
exceptional condition is to report back to the user, which thrusts the burden of dealing with the
details of the floating point system back on the user. A computer program can be created in such a
way that roundoff errors, overflow errors, and underflow errors are recognized and are dealt with
automatically. Conventional approaches to dealing with these errors are to either ignore them or to
inform the user of the problem. There is no attempt to modify the floating point format to match
the changing nature of the data because of the enormous complexity of doing this in software. A
hardware implementation of a self-modifying floating point unit would be faster if possible, but a
conventional hardwired approach is hopelessly complex since logic would have to be included for
a wide range of floating point variations. Although the design of a floating point unit is not trivial,
its functional behavior can be described at a high enough level that a competent designer can leave
the base, exponent, and mantissa sizes as variables in the description as discussed below. The
translation from functional description to physical layout can be automated, and the suggestion
made here is to transfer the responsibility of that mapping from the designer to the sequence
generator.

Exponent Mantissa

Sign Implied radix
point

Figure 23: An example floating point format has a sign bit, a four-bit exponent, an implied radix
point, and an eight-bit mantissa. The bit pattern shown represents the number .75 x 22 = 3.

A hardware compiler is a computer program that translates high level descriptions of computer
hardware into physical designs. Hardware compilation is normally used in the design of VLSI
circuits. A high level AHPL [20] description of an IEEE 754 floating point unit that performs
addition and subtraction of single precision numbers is described below.

In the AHPL description, which is adapted with modifications from Ref. [20], the two input
operands are A and B and the result is C. _s is the sign bit, _E is the exponent, and _S is the
significand. The DEFINE statements set the widths of the exponent, the significand, and the
radix. The DEFINE statements are the entry points for a process that generates custom floating
point units for radix 2 for this example, using a hidden ‘1’ (as in IEEE 754).
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DEFINE EXP_WIDTH 8. # The width of the exponent in bits
DEFINE MANT WIDTH 24. # The width of the mantissa in bits
DEFINE BASE 2. # The radix

# Exponent calculation: A-exponent > B-exponent
1 — (CMPR(AE;BE))/(2, 7, 8). # Compare exponents
2 CE «— ADD[1:EXP_WIDTHI|(AE;BE’; 1). # AE > BE

3 — (CMPR(CE; EXP_WIDTH T MANT_WIDTH))/(4, 4, 5). # Is exponent
# difference > significand size?

4 C—A; # Exponent difference too great, result gets larger overand
— (28).
BS « 0,BS[0:MANT_WIDTH-2]; CE « DEC(CE). # Shift smaller operand right,
6 — (+/CE)/(5). # till exponents agree. Degree of shift depends on BASE
CE « AE,; # Assign larger exponent to exponent of result
- (14).

# Exponent calculation: B-exponent > A-exponent
8 CE « ADD[1:EXP_WIDTHIAE’;BE; 1). # BE> AE

9 — (CMPR(CE; EXP_WIDTH T MANT_WIDTH))/(10, 10, 11). # Is exponent
# difference > significand size?

10 C <« B; # Exponent difference too great, result gets larger operand
— (28).

11 AS « 0 AS[0:MANT_WIDTH-2]; CE « DEC(CE). # Shift smaller operand right,

12 — (+/CE)/(11). # till exponents agree. Degree of shift depends on BASE.

13 CE < BE; # Assign larger exponent to exponent of result

# Perform addition or subtraction on significands

14 AS *as « ADD[I:MANT_WIDTH-1)(AS’; 0; 1). # If sign bit is negative, form
# 2’s complement of A
# If subtracting and B is negative, 2’s complement of B

15  BS * (bs XOR subf) « ADD|I:MANT_WIDTH-1](BS’; 0; 1).

bs * subf « bs. # Change sign of subtrahend when subtracting, so that 2’s comp of
# B addition is used for addition

16 cfp,cs,CS « ADD((as.AS).(bs.BS)). # Perform the ADD, set overflow bit cfp
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19

20

— (as XOR bs, as A bs, as’ A bs’) [/ (20,18,19). # Check signs

cs,CS «— ADD[1:MANT_WIDTH-1](¢s’,CS’; 0; 1). # Convert from 2’s comp
# negative to sign+mag

¢s,CS « ¢fp,cs,CS|O:MANT_WIDTH-2|; CE « INC(CE). # Shift right to
# compensate for overflow. This varies according to BASE.

eof * (AJCE) « 1. # Check for exponent overflow
— (28).

# Normalize result. Check for true zero. Restore signed magnitude for negative number

21

22

23
24

25
26

27

CS * ¢s « ADD(CS’; 0; 1). # If result should be negative, then restore to negative
#If result is true zero, set exponent to zero

CE * ~(+/CS[1:MANT_WIDTH-1]) « EXP_WIDTH T MANT_WIDTH.
— ~(+/CS[1:23]) / (28).
— (CS[0D / (28). # Exit if result is normalized

CS « CS[1:MANT_WIDTH-1],0; CE « INC(CE). # Shift significand left.
# Degree of shift depends on BASE.

— (+#/CE)/(27). # A zero exponent indicates underflow

CS « MANT_WIDTH T 0. # If result should be negative, then restore to negative
— (28).

— ~(CS[0]) / (24). # Normalized? If not, go back to 24.

33

The generic floating point architecture that a hardware compiler would produce takes the same
form, such as shown in Figure 24, regardless of the choice of exponent, base, or precision,
however, the widths of the channels and the supporting logic will change in accordance with the

AHPL description. The channel widths are indicated in bits by the numbers adjacent to the

diagonal slashes.

4.3 Discussion

The runtime generated control sequence model represents a major departure from conventional

computer architecture. The reconfigurable floating point processor is a simple example of this
concept, but a still greater application may be found for the dataflow paradigm, which theoretically

supports maximum parallelism, by tailoring the architecture to suit the problem. This is discussed

in greater detail in the next section.
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Figure 24: Basic block diagram of a floating point coprocessor showing an exponent processor
(left) and a significand processor (right). (Adapted from Ref. [20]).

5. Applications

Four applications are described here that are particularly well-suited for a reconfigurable

interconnection technology.

5.1 Fault tolerance

An application of the reconfiguration technology that has special significance to the Department of
Defense is fault tolerance. The general problem is for a computer to deal gracefully with a situation
of compromised reliability, caused either through systemic failures (as in device burnout) or
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through catastrophic failures (caused by fires, shock, erc.). The fault tolerance problem can be
partitioned into subproblems as shown below:

*» Detection

« Isolation

* Propagation
* Repair

* Recovery

The sequence of events that occur during a failure begins with the detection of the fault. The fault
is then isolated to a particular system, and is propagated from within the logic to a known location.
A repair mechanism is then invoked, and then finally, a recovery is made so that no corrupted data
is introduced into the system.

A simple redundancy schem * used here, which is typical for systems that need to tolerate failures

in the active switching ~!cinents.5 The triple modular redundancy [21] fault tolerant model is
shown in Figure 25.

Fault detection .s accomplished by a voting mechanism that compares the results of three identical
systems operating on identical sets of data. For triple modular redundancy, the systems compare
their states with the others, and resynchronize when there is a disparity, which addresses both the
transiert fault and the stuck-at fault problems. Note that the fault cannot be isolated to a particular
system with a voting strategy if fewer than three systems are used. The fault mechanism is
invoked only when a fault occurs, which is a statistically rare event. Thus, systemic failures
resulting from device burnout, thermal breakdown, defect migration, etc., are a more remote
possibility for the fault tolerance mechanism since it is used infrequently. Note that the fault
iolerance problem for optical computing with free-space interconnects is simplified since there is
virtually no coupling between optical logic gates, and since it can be assumed that masks, lenses,
and free space suffer no systemic failures.

The focus here is on the repair mechanism, which may involve some level of redesign. Once a
fault has been detected, the system can continue error-free operation as long as another fault is not
introduced into one of the remaining operational systems. The interval between failures can be
used to redesign the failed system o bypass the fault, which can either be done manually or
automatically depending on the time scale involved, which effectively restores the system to the
original fault-free state. The implementation of a redesign process is a potential opportunity for

5There are simpler fault recovery mechanisms that deal with transmission and data storage errors,
that use cyclic redundancy codes or Hamming codes [21], for example. These traditional methods
apply here with equal effectiveness, however, they do not offer a solution to the more difficuit
failures associated with active logic faults, which is addressed here.
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using a slow beam-steering mechanism since reconfiguration to bypass faults is an infrequent
event.

Probe and effect change
‘ Response to test vectors
Check the checker
> System A & l
L IR
. Fault
: System B xﬁjc(;?oz ———»| tolerance
¢ T mechanism
System C // Odd system is AA
veted out
1 Probe and
effect change
___Response to test vectors

Figure 25: Three systems A, B, and C send their results to a voting mechanism (the majority
function) that determines if a fault is present, which then invokes the fault tolerance mechanism.

5.2 Parallel processing

In this section, the importance of interconnection networks in parallel processing is discussed, and
the claim is made that an optical reconfiguration technology can improve performance. Section
5.2.1 shows that an ideal network, such as a completely connected graph, simplifies programming
and guarantees an improvement in performance. Unfortunately, a completely connected
architecture with a large number of processors is impractical to build using electronics technology.
As a result, most of the parallel architectures that have been constructed try to approximate a
completely connected architecture using other technologies such as adding communication co-
processors (as in the Intel, DELTA, and nCUBE-II machines), fast communication busses (as in
the Alliant machines), parallel I/O (as in the Tera computer), switching networks (as in the Masspar
and BBN butterfly) and so on. Almost all electronic solutions have limitations which are discussed
hcre. A solution that makes use of optically reconfigurable interconnects provides a potentially
significant alternative for simulating a completely connected architecture. The conclusion is made
that a hybrid architecture consisting of electronic processors with an optically reconfigurable

TIS - RELEASED FOR DISTRIBUTION




37

network may provide an excellent alternative solution to the communication problems associated
with all-electronic implementations.

The Problems: There are three fundamental problems in parallel processing that are considered
here:

» detection of parallelism, given an algorithm specified in a high level language;
+ partitioning the parallel program for a given architecture;

+ mapping the program onto the architecture and producing a scheduling of tasks to
processors.

Consider the following program that represents a matrix times a vector y = Ab algorithm:
v{l:m], A{l:m,1:m), b(l:m]

for i=1l:m
v(i) = ¥ A(i,1:m)*b[l:m]
endfor

The parallelism inherent in this program can be expressed with a dataflow graph, such as the fork
directed acyclic graph (DAG) shown in Figure 26.

B Cost for generation
of the matrix

Figure 26: A dataflow graph represents matrix-vector multiplication. c is the cost of
communication and w is the cost of computation. P;represent tasks.
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Now given an architecture, the above computation must be partitioned so that the execution time is
minimized. The partitioning problem depends on the interconnection network, the communication
speed, and the computation speed. The general pardtioning problem is extremely difficult (NP-
complete) even for a simple architecture that is completely connected. As a result of this difficulty,
many approximate solutions have been proposed for the partitioning problem, both in software and
hardware.

Now consider associating communication and computation weights with the above task graph. The
cost for the multiplications is w and the cost for communication is ¢ for reading a row of A and b.
An important quantity regarding the partitioning of a task graph is the granularity, which is the ratio
of computation to communication. For the above graph this ratio is:

=W
g="1

Depending on the granularity g a decision can be made if tasks will be executed sequentially in the
same processor or in parallel. For example, if an architecture has m processors and is completely
connected, and if w > ¢, then the optimum parallel time is:

PT,p, = ¢+ w + cost for generation of A,b

and is obtained by executing every task in a separate processor. In other words, the optimum
partitioning is achieved when each task is mapped to a separate processor.

For a counter example assume that the communication cost ¢ > mw. Then the optimum
partitioning maps all tasks and the matrix generation onto one processor since

¢ + w + cost for generation of A,b > mw + cost for generation of A,b .

The above example demonstrates that communication and computation parameters are important in
deciding how program execution should be partitioned in parallel architectures. The example also
illustrates the importance of granularity in computation. Large granularity implies better system
utilization, and as a consequence, better performance as well. In a related Rutgers effort [22,23] it
is shown that fast algorithms for scheduling and program partitioning can be created with a
guarantee of a factor of two in performance when compared with the optimum for coarse grain
parallelism. A nearly maximum system performance can be achieved whenever the granularity is
greater than one.

A problem in achieving the maximum system performance is in how to increase the granularity.
Considering the above example, one solution is to increase the communication speed with respect
to computation, so that w/c increases. This approach has led to numerous solutions for increasing
the communication speed of electronic computers, as described below:
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» the addition of cache for uniprocessors, which increases granularity by reducing
communication;

 tue creation of faster busses for shared memory parallel architectures;

+ the addition of communication co-processors or switching networks for message passing
architectures (such as the Intel, nCUBE, Masspar, and Connection Machine computers);

» the creation of custom architectures for special programs, such as systolic array architectures
for the matrix multiplication example above.

All of the hardware solutions described above have limitations:

+ Cache misses can deteriorate performance unless the mapping of data to memory is suited
for the given program.

+ Fast busses are extremely expensive to construct, but even if faster busses are created, they
still pose an obstacle since busses in general sequentialize communication.

+ Dynamic switching networks are a compromise solution to a completely connected
architecture. Switching networks reduce the traveling distance for communication but the
cost of changing the switch settings must be added into the communication cost. Thus,
performance depends on the number of times that the switching network is modified during
execution.

The use of communication co-processors reduces the transmission speed between distant
processors. For example, the Intel-II and nCUBE-II architectures use communication co-
processors, and the resulting communication between distant processors is almost the same
as communication between neighbors (within 99%) if the communication load is low.
However, as the communication load increases, communication deteriorates significantly.

« Special architectures perform extremely well for special problems. For example, systolic
architectures perform well for matrix multiplication and signal processing problems, but
performance is poor for problems that are not suited for such architectures.

The above hardware solutions have the common goal of increasing the granularity by reducing the
traveling distance of the data. The resulting architectures approximate completely connected
architectures. Unfortunately, the limitations mentioned above are inherent in the architectures and
are technologically very difficult to overcome with electronics. Evidence that a reconfigurable
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interconnection technology may improve the performance of parallel processors is summarized
below:

No MIMD shared memory machine with 1000 processors has been built as of yet and it is not clear
if it is possible to build such a machine at a reasonable cost. The DARPA supported Tera
Computer project has a goal of 256 processors at an estimated cost of 30 million dollars (source:
Burton Smith, president of Tera Computer.)

Message passing architectures have been built with thousands of processors, such as the nCUBE-
I1 with 8K processors, and the DARPA/Intel supported Touchstone project with 1024 1860
processors. Both of these new message passing architectures have a static interconnection network
that uses co-processors for communication. A major disadvantage is that programming such
architectures is extremely difficult, particularly since a heavy communication load makes an
estimation of the cost of architecture parameters difficult. No automatic scheduling tool exists for
such architectures and programming must still be done manually. As discussed above, only for an
ideal architecture such as a clique (a completely connected architecture), can programming that
guarantees performance within factor of two of optimal be possible for coarse grain parallelism.

Another disadvantage of current electronic approaches to parallel processing is that electronic
communication technology does not keep pace with processor technology. For example, in going
from the iPSC/1 to iPSC/2 the processor speed increases by a factor of seven while communication
speed between two neighbors increases only by a factor of between two and three. This lag in
technology results in a decrease in granularity, which reduces performance for systems with large
number of processors.

Switching networks are attractive for communicating among processing elements because they can
be reconfigured to map a task graph onto the architecture. A static reconfiguration implies that
once the architecture is reconfigured it does not change during execution. As discussed above, the
performance of a switching network depends on the frequency of switching and its impact on the
granularity. A disadvantage of an electronic switching network is that messages pass through the
switches. This poses a problem in the BBN Butterfly based network for example, when two
messages arrive at the same switching node and require the same output port. The messages are
then sequentialized.

To summarize, creating a network that perfectly maps a task graph onto a multiprocessor has
numerous advantages (for a perfect mapping of a task graph to an architecture graph the
cardinality6 of the graph is minimized):

6Cardinality as used here refers to how closely the graph of the computation matches the
interconnection graph of the target machine.
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* A software advantage to using a reconfigurable network is that compilers can be written that are
fast and achieve good performance. One such compiler is under development at Rutgers which is
based on the macro-dataflow model of computation using a completely connected architecture. A
prototype has already been built which runs on existing architectures such as the nCUBE-II and the
Intel hypercubes.

+ Because the mapping is optimal no data messages are sequentialized in the network. Avoiding
such delays results in better architectural parameter estimates and better compiler performance.

» The communication cost decreases and the granularity increases. This is necessary to take
advantage of the new superfast processors such as the Intel i860 rated at 60 MFLOPS for single
precision arithmetic. To build parallel architectures with large numbers of processors, for example
1000 processors using the 1860, a superfast network is needed, otherwise the throughput of such
an architecture is compromised.

5.3 Dataflow computing

In the von Neumann model of a digital computer, instructions are executed in sequence as they are
read from memory under the control of a program counter. Successive instructions reside in
successive locations in memory except when there are branch instructions, which make temporary
changes in the sequence. The traditional model fetches an instruction, executes it, and repeats this
process until completion of the program. This single fetch-execute sequence (or thread) is the well
known von Neumann bottleneck. There has been considerable interest in computer architectures
which execute more than one instruction at a time, and with the arrival of VLSI circuitry, many
different architectures have been proposed and built which execute multiple instructions in a single
fetch-execute cycle. The success of these architectures depends on the applications and on the ease
of use. As one might expect, those machines with relatively limited parallel operations, or parallel
machines built to handle specific applications, have been most readily accepted. The latter has
enjoyed acceptance because the performance improvement can easily be demonstrated; the former
has enjoyed acceptance because it has proven simpler to modify existing programming languages
and programs to take advantage of modest parallelism.

With easy access to custom VLSI, there has been a rapid growth in the variety and size of highly
parallel (i.e. lots of processors) computers which have been proposed, studied, and built.
Unfortunately, it has proven easier to create large amounts of computing power than to make use
of it. Most of the earlier approaches to parallel architectures assume that if enough computing
power is made available in a ‘reasonable’ form, users will figure out how to make use of it, and
indeed much effort has been made in that direction, but it has proven very difficult to detect much
of the potential parallelism in an existing program (although there has been a large effort, and some
reasonable success [24, 25]).
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A class of architectures and programming paradigms, dataflow, exists which automatically detects
parallelism, and can schedule the use of computing resources to take advantage of the parallelism.
The basic model is very simple, but proposed implementations have proven far more complex [25-
29].

The von Neumann model may be described as control-driven. The execution of a program is
controlled by a program counter. The dataflow model of computing may be described as data-
driven. In dataflow, an instruction executes if:

« there is a resource available to execute it, and
« all of the operands required are available.

The dataflow model of computing is unique in the sense that it theoretically supports maximum
parallelism.

“The key idea behind a dataflow system is that there are no variables in the usual
sense, that is, no addressable words that can be read from and stored into. Instead,
values are represented by packets that are transmitted between processing units. Each
processing unit has the task of computing some function of its inputs in the strict
mathematical sense: each function depends only on its inputs, and not on any global
variables or other side information. Furthermore, the only thing a function does is
produce an explicit result. It has no side effects such as modifying global variables,
because there are none.

Because there are no variables or side effects, each processor may begin its
computation as soon as its input packets have arrived. There is no program counter
and no explicit sequencing of computations, other than that implicit in one calculation
depending on the result of another one. For example, if y = f{x) and z = g(y), then f
must run before g. It is precisely this ability of dataflow systems to operate without
any artificially forced sequencing that makes them so attractive for distributed
computing.”
- [Ref. 30]

A sample program is shown below that solves an ordinary differential equation that is taken from
Ref. [14]. The program as written is sequential, however, a compiler for a dataflow machine can
produce a dataflow graph which identifies maximum parallelism based on data dependencies and
flow-of-control dependencies, as shown in Figure 27. Each of the 16 boxes represents a primitive
operation, and the lines with arrows represent dependencies. If a special purpose architecture is
being considered, then the dataflow graph can be used as a guide in creating dedicated hardware to
implement the program. For a more traditional electronic implementation of the dataflow model, a
general architecture is created that implements the dataflow graph. The generality is indispensable
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because without it, computer programmers would be forced to create a new piece of hardware to
solve every task. On the other hand, the generality sacrifices performance, sometimes
significantly. This is one major reason that the dataflow concept is not in general use today, even
though it theoretically supports maximum parallelism.

{Solve the differential equation y’’ + 2xy + 2y = 0.}
program diffeq (input, output);
var a, dx, x, u, y, xl, ul, yl: real;
begin
{read in the ordinate, a, at which we want the value of the function,
the step size, dx, and boundary condition}
read (a, dx, x, u, y);
while x <a do

begin
x1 :=x +dx;
ul :=u - 2¥*x*u*dx - 2*y*dx;
yl =y + u*dx;
x=xku:=uly:=yl

end;

writeln (y: 13:9)
end.

“To see how the system of [Figure 27] operates, imagine that the input buffers of
processors 1 through 5 are initialized with the values shown. Constant arguments are
shown encircled; they are ‘hardwired’ into their respective buffers. For simplicity’s sake,
we will assume that each operation requires one cycle. During cycle 1, processors 1
through 5 all fire, delivering results to processors 6 through 10, all of which fire during
cycle 2. Processor 9 compares its two arguments. If the first is less than the second, it
outputs a packet containing a 1 (for true); otherwise, it outputs a O (for false). Processor
10 simply duplicates its argument. The DUP function is useful to generate extra copies of a
previous result. Note that processor 5 has two outputs, but that three are needed. (Again
for simplicity, we have arbitrarily limited the number of outputs per processor to two.)

During the third cycle, something amazing happens. While processor 11 is busy
computing 2xu Ax - 2y Ax, processor 5 is already busy working on the following iteration

(i.e., x = 2 Ax), even though the previous one has not yet finished. Notice that this
parallelism is completely automatic; any part of the computation that can proceed does

proceed.”
- [Ref. 14, emphasis added.]
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This example is suitable for the static dataflow model, in which the form of the dataflow graph
does not change during the course of computation. This behavior is not possible when there are
runtime conditionals, such as for if-then constructs or for loops, which results in a more complex
implementation. A simple physical (although not practically constructable) model that includes
runtime conditionals might consist of:

« A set of computing resources (either a number of CPU’s, or a mix of specialized
resources, such as adders, multipliers, etc.)

+ Instructions of the Form OP:A:B:C, which are interpreted as: perform Op on operands A
and B and pame the result C.

+ An associative (content-addressable) memory for operands.

u Ax @ X @y u Ax x| Ax
A ' ¥ R K
1 2 ) 3 4 l | 5ll
T R W
6| * 7] * 8| + 9| < 10| Dup
| L
—_+ 52 Switch
1] - T F
v
13] - Dup |14 15|Halt
l* | ]
16{Dup

Figure 27: A dataflow graph for solving the differential equation: y’’ + 2xy’ + 2y = 0 [Adapted
from Ref. 14].
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The OP:A:B:C instruction cannot be executed until A and B are available. If there is a resource to
do OP, it will be executed as soon as the operands are available, which can be found out by asking
the content-addressable memory for C. The memory cannot deliver C until it has been created.
Similarly, any instruction that requires operand C cannot execute until the current instruction
executes, because its execution creates the C; C does not exist until OP:A:B:C completes.
Implementations face the problem of proliferation of names (as described, each name must be
unique), how to reference by name very rapidly, how to program these machines, and a host of
other smaller problems.

A dataflow graph is used for the dynamic dataflow model also, where each node represents an
instruction, and each edge specifies a data dependency between two instructions as above. The
example used here is taken from Arvind’s Dataflow work at MIT7 [29]. The MIT project uses the
language Id, designed specifically for the MIT dataflow machine. An Id program is first compiled
into a dataflow graph, and then into a language which ‘executes’ the graph on the MIT hardware.
An important point to consider for all existing dataflow computers is: The dataflow graph does not
represent a piece of hardware; it represents an algorithm.

Consider an example of a wavefront computation, in which an nxn matrix X, is constructed as
follows:

* Celis along the left and top borders contain 1, i.e. X[1,j] = X[i,1} = 1.
+ All other cells contain the sum of their neighbors to the left and to the top, i.e. X[i,j] =
X[i-1,j] + X[i,j-1].

The Id program for this computation looks like:

X=make_matrix (grid n) f * this creates the empty nxn matrix
deff(i,j) = if (i==1) then 1
else if (j==1) then 1
else (X[i-1j] + X[i,j-1])

Consider the potential parallelism in this program, in which make_matrix initiates n2
computations, one for each component of the array. Most of these computations must be
suspended because they try to read neighboring elements that are still empty. However, all
computations for the top and left border can complete immediately, since they do not depend on
anything else. When the border components at (1,2) and (2,1) are filled, the computation for (2,2)

TFrom Project MAC, funded by DARPA through ONR on contract N0O0014-84-K-0099.
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can proceed. As soon as the computation for (2,2) finishes, the computations for (2,3) and (3,2)
can proceed, and so on. Figure 28 shows a snapshot of the array during the process.
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Figure 28: Wavefront computation.

The left and top borders and some internal elements have been computed. The shaded squares
show the next components that can be computed. As shown, the computation can proceed along a
diagonal wavefront that sweeps from top left to bottom right. The make_matrix statement does not
imply any particular ordering on the computations for the array components. It is clear from the
program that some ordering may be implied by the data dependencies. In functional languages8
like Id all ordering is based on data dependencies. Dataflow graphs implement the notion of
dynamically adjusting the order of computations to accommodate the dependencies which arise in a
particular run of a program. Before looking at the dataflow graph associated with the wavefront
computation, consider how the matrix is stored in a conventional random access memory, since a
large content addressable memory cannot be practically built. This is a major implementation

8“Functional (also known as applicative) programs are built from ‘pure’ functions, i.e.
mathematical functions, which in sharp contrast to functions found in conventional programming
languages are side-effect free, meaning that their evaluation cannot alter the environment of the
computation. In other words there is no assignable program state. Because of this we can no
longer program ‘by effect’ so that the value computed by a program and the program itself are
reduced to one and the same thing. Program execution then becomes a process of altering the form
of the final value in precisely the same way that we can alter the form of ‘8 + 1’ to ‘9’ in the
knowledge that they both denote the same value.” - Anthony J. Field and Peter G. Harrison,
Functional Programming, Addison-Wesley, (1988).
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problem for dataflow machines. Assume that the matrix is stored by columns as shown in Figure
29.

x(1, 1) | x@.0 | x@3.0 | x@.1) | x6.1) | x6.1) | X7,1) | X(8.1) | X@.1) {x(10,)| x(1.2) | . ...

!

Xo

Figure 29: Layout of array in memory.

In order to access X(i,j), it is necessary to compute the address Xgp + (i-1) + 10(-1). After
algebraic manipulation, the addresses of X(i,j), X(i-1,j) and X(i,j-1) are, respectively:

Xo+i+10j- 11
Xo +i+10j- 12
Xo +i + 10j - 21

With this information, a dataflow graph for the body of the wavefront computation can be
constructed as shown in Figure 30.

Consider how the graph is interpreted. Each of the nodes, labeled 0 through 9, corresponds to an
instruction in the computer. Any of these function nodes can ‘fire’ (i.e. perform its function) as
soon as it has data at all of its inputs. The graph represents a partial sequencing of the instructions;
that is, node 5 must fire before node 7, but it could fire before, after, or simultaneously with nodes
3 and 4.

Consider tokens (or data) placed on the entry points Xy, i, and j. Nodes 0 and 1 can fire
(computing Xp + i and 10j respectively). When they complete their computations, they put tokens
(or computed values) on their output lines enabling node 2 which then computes Xg + 1 + 10j.
Now nodes 3, 4 and 5 are enabled and can fire, computing the addresses of X(,j), X(i-1,j) and
X(, j-1) respectively. Nodes 6 and 7 can fire next, fetching the values of X(i-1,j) and X(i,j-1).
Node 8 adds those values resulting in the new computed value of X(i,j), and when node 8 fires, it
enables node 9 which stores the result at the address of X(i,j).

In dataflow computers as they exist today, the firing process involves interrogating token (data)
stores to determine which tokens are available and which functions can be performed. Much of the
research is concerned with limiting the amount of memory which must be searched, and speeding
the assignment of single operations to computing resources. The dataflow graph shown above
represents several searches and assignments. There is no single piece of equipment which does
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Figure 30: Dataflow graph for body of computation.

those operations. In the example there are many similar operations which can take place
simultaneously (the wavefront diagram shows that computation can proceed at several places in the
matrix simultaneously). Dataflow computers as envisioned by any of the current dataflow projects
are not reconfigurable computers. These machines execute single instructions in a unit, and the
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dataflow paradigm governs the sequencing of those operations. Existing machines may have
sufficient resources to do the work of nodes 3, 4 and 5 simultaneously, even on several points in
the matrix, but each firing must involve the temporary storing and fetching of computed data or
tokens. For some special purpose applications, particularly in the signal processing area, it is
possible to envision building a device which is very much a dataflow computer made of special
purpose functional units wired together, but such a device does not support general purpose
dataflow computing.

Here, the architectural implications of a dataflow computer are investigated that make use of optical
reconfiguration to implement a dataflow graph in hardware. If the computation represented by the
graph is repetitive, and if the reconfiguration can be completed in a time which is very short
relative to the useful computation time of the graph structure, then a high performance machine can
be realized. The machine would have the advantages of the tagged dataflow architectures (easy
detection of parallelism) combined with the special abilities of optical computing devices (tightly
controlled timing and high speeds). These advantages have been hoped for conventional electronic
implementations, but current electronic technology limits how well these advantages can be
realized:

“Apparent disadvantages of instructional-level data flow computers are summarized
below:

1. The data driven at instruction level [sic] causes excessive pipeline overhead per
instruction, which may destroy the benefits of parallelism. The long pipeline filling
problem is attributed to queuing all enabled instructions at the input ports of every
subsystem in the data flow ring. The queue lengths absorb some of the parallelism
in a program, thus, performance becomes weak for improper buffering and traffic
congestion.

2. Dataflow programs tend to waste memory space for the increased code length
due to the single assignment rule and the excessive copying of data arrays. The
damaging effects of the memory access conflict problem are so far not well
addressed by dataflow researchers.

3. When a dataflow computer becomes large with high numbers of instruction cells
and processing elements, the packet-switched network used becomes cost-
prohibitive and a bottleneck to the entire system.

4. Some critics feel that dataflow has a good deal of potential in small-scale or very
large-scale parallel computer systems, with a raised level of control. For medium-
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scale parallel systems, data flow competes less favorably with the existing pipeline,
array, and multiprocessor computers.”
- [Ref. 30]

In summary, although the dataflow graph captures the form of the computation and inherent
parallelism, the maximum parallelism can only be realized with a direct implementation of the
dataflow eraph. Electronic approaches strive for generality so that performance is sacrificed. With
a reconfigurable approach, however, there is no need to create a general fixed architeciure since the
architecture can be modified to match the form of the dataflow graph.

5.4 Scalable Gaussian elimination processor

As discussed earlier, a potential opportunity for the runtime selected approach is the application of
Gaussian elimination to the solution of linear equations. A method is described in Section 3.2 for
dealing with pivoting by modifying the address decoder of the coefficient RAM. Here, an
alternative approach is considered. The major problem with pivoting is that fast Gaussian
elimination implementations make extensive use of pipelining, and the pipelines must be flushed
whenever a pivoting decision is made. An improvement is proposed here in which the cost of
pipeline flushing is reduced by performing a low precision operation while the main high precision
operation is taking place, so that an estimate of pivoting requirements is known prior to completion
of the main operation. This appears to be a reasonable approach for a conventional electronic
implementation also, however, a large amount of data must be shuttled between the high precision
operation and the low precision operation, which is difficult to do effectively with conventional
Manbhattan style two-dimensional wiring. An optical approach that does not us:: reconfiguration
might solve the bandwidth problem without resorting to a reconfigurable interconnection
technology, but then the low-precision logic is underutilized for a number of cycles immediately
after its results are known due to the nature of the computation (see next paragraph). The runtime
selected model allows the low precision logic to be returned to a logic pool to be reallocated to the
high precision computation. This turns out to be appropriate for Gaussian elimination since the
bulk of computation occurs immediately after pivoting, and reduces as computation proceeds,
allowing a new low precision operation to begin.

A schedule for a 16-stage Gaussian elimination pipeline [31] is shown in Figure 31. The schedule
was created by Murdocca for a variation of the OptiComp acoustooptic based processor [32] but
the principle of operation applies here as well. The dark banded areas indicate wait states where
the pipeline is flushed while it waits for certain parts of the computation to complete. The concept
proposed here is to fill the wait states with a low precision calculation of future pivoting needs.
The result of the low precision pivoting decision is then used to modify the address decoder mask
as described earlier.
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Figure 31: Schedule of operations for solution of a 10x11 augmented matrix using Gaussian
elimination in a 16-stage pipeline. The shaded section of the first 48 stages represent wait states
for the first reciprocal operation. The shaded band that begins on time steps 57-63 represent wait
states for the first set of multiplications. The wait states are considered for use in a low precision
solution.

6. Putting it all together

A general approach to identifying a suitable reconfiguration strategy for a particular application is to
find the approach that yields the greatest performance at the lowest cost. Figure 32 shows a
mapping that relates the reconfiguration speeds of various reconfiguration mechanisms with their
anticipated influence on computing. The vertical axis indicates speed of reconfiguration with
respect to the bit rate of the logic devices. The horizontal axis lists reconfiguration mechanisms
discussed earlier in this report from left to right in the order of decreasing expense, where expense
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is a qualitative measure of the difficulty in implementing the mechanism. The <'..ding pattern for
each entry indicates the relative influence of each reconfiguration mechanis. on computing, where
heavily shaded regions indicate greater influence than lightly shaded regions. Note that the
classifications are based on qualitative evidence discussed in earlier sections, so that the table is
open to interpretation. A danger in condensing the results of the Phase I effort in this way is that it
may give the impression that there is a single best approach that stands out above the others when
in fact, there is a range of approaches that should be matched with the needs of the applications.
The main purpose in summarizing the work in this way is to emphasize some distinctions, such as
that reconfiguration speeds below the bit rate can be effective in improving performance as for the
pivoting problem discussed in Section 3.2.

Reconfiguration mechanism

Beam Matrix addressable
Masks steering logic (PRI)

- //// Modest improvement

S Atbitrate / /

> w0

-% Close to the ‘

& bitrate (1/10 Great improvement

%" as fast)

S Much slower |

¥  than the bit

b Unlikely in the
foreseeable future

Expensive Inexpensive
approach approach

Figure 32: A qualitative assessment is shown for the reconfiguration speed of various
reconfiguration mechanisms. The relative influence on computing for each approach is indicated
by the shading pattern.

The bit rate reconfigurable mask approach is considered to offer the greatest improvement to
computing because it can be applied to general purpose computing, which affects nearly every facet
of computer usage. However, the slowly reconfigurable beam-steering and matrix addressable
(see Section 3 2) logic approaches may be of greater interest to SDIO and the Air Force since
matrix operations such as Gaussian elimination and signal processing are important for radar and
communication applications. The beam-steering approaches offer greater flexibility in
reconfiguration than the matrix addressable logic approach, but matrix addressable logic is more
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compact since the reconfiguration mechanism is monolithically integrated. Thus, although the
figure favors bit rate masks as having the greatest influence on computing in general, the matrix
addressable logic approach may have the greatest impact on SDIO and Air Force needs.

7. Plans for continuing to a Phase II SBIR effort

Current plans for continuing to a Phase II effort include two major thrusts: (1) the development of
software development tools, such as a hardware compiler that generates object code for a
reconfigurable processor, and (2) the demonstration of a reconfiguration technology, making use
of SEED or microlaser based devices.

7.1 Software development tools

The purpose of a conventional high-level language compiler is to translate a high level language
such as C or Pascal into the instruction set of a target computer. The purpose of a conventional
hardware compiler is to translate high level descriptions of computer architectures into a design,
typically at the module-level, the gate-level, or the transistor level. A compiler for a reconfigurable
approach combines the high-level language and hardware compilers into one compiler that
generates object code for an architecture that it also creates. Such a compiler will be instrumental in
generating a more quandtative assessment of the reconfiguration approach (see next paragraph).

Figure 32 provides a qualitative assessment of reconfiguration mechanisms. The organization of
the graph is based on subjective evidence, but a more quantitative assessment is preferred. A
quantitative analysis of how instruction usage is distributed is proposed for a Phase II effort in
order to refine Figure 32 with hard evidence. The quantitative analysis will be steered to
investigate hardware caching which was briefly mentioned in Section 3.3, since the influence that
hardware caching may have on computing is currently unknown.

7.2 A hardware prototype

A demonstration of a reconfigurable interconnection technology is considered for a Phase II follow
on effort. The demonstration would consist of a reconfiguration mechanism such as a
reprogrammable mask realized with S-SEEDs or the proposed PRI matrix addressable devices, and
input and output channels that mate with optical logic devices. The project will be coordinated with
the RL project to avoid duplication of effort and to ensure the practicality of the approach. Dr.
Nicholas Craft at AT&T Bell Labs in Holmdel, New Jersey, has offered his expertise for a Phase
11 effort as a TIS employee. Craft was one of the original optomechanical designers on the Bell
Labs all-optical S-SEED based processor reported over two years ago.

8. Collaborations and coordination of efforts
TIS is invo!ved in a number of collaborations and efforts that support the current Phase I effort.
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8.1 Interactions with Rutgers University and Rome Laboratory

An optical computing project in the Computer Science Department at Rutgers University in New
Brunswick, New Jersey is headed by Murdocca, who serves as the principal investigator on this
Phase I SBIR effort. The Rutgers project is involved with develoning computer-aided design
(CAD) software for the design of digital optical circuits that support the model shown in Figure 2.
For example, the circuit layout shown in Figure 9 was generated by the Rutgers CAD tools. The
Rutgers group is also involved in the design and construction of an all-optical digital processor in
the Photonics Center at Rome Laboratory/Griffiss AFB that is based on the AT&T Bell Labs S-
SEED processor that was reported in an AT&T press release two years ago. Dr. Richard Michalak
(RL) has offered the use of RL resources to TIS in carrying out the proposed Phase II follow on to
the current effort, as well as for other TIS projects (see Section 8.4). Murdocca's interaction with
Rome Laboratory is being utilized in this Phase I effort to ensure the practicality of the approach.

8.2 Interaction with Photonics Research Incorporated

Dr. Gregg Olbright and Dr. Jack Jewell of Photonics Research Incorporated (PRI) are working
toward the development of matrix addressable logic arrays which will be considered for use in a
Phase 'I followon to this Phase I effort. The basic configuration of the PRI device array is shown
in Figure 33. Devices that are located at the crosspoints of actlve row and column bonding pads
are enabled. The advantage of this configuration is that for an N2 increase in the size of an array,
the bonding pad complexity increases by only 2N. A disadvantage is that the computer designer
loses a degree of freedom in selecting combinations of logic gates to enable or disable. For
example, in Figure 33, there is no combination of active rows and columns that will generate a
checkerboard pattern. Despite the limited number of possible on/off combinations for a matrix
addressable array, the available complexity is probably sufficient for general purpose computing.
Evidence that this may be the case is provided by Murdocca’s previous work on using regular
interconnects for optical logic circuits [33] in which interconnection topologies are severely
restricted when compared with an electronic approach. Although design flexibility is sacrificed,
the complexity of the optics and of the electronic addressing is simplified, which are currently more
important considerations.

8.3 Interaction with AT&T Bell Labs

Murdocca continues his collaboration with Alan Huang’s group in Holmdel, New Jersey, and is
involved in organizing a set of CAD tools to support an AT&T sponsored custom SEED and
microlaser shuttle. This collaboration resulted from a recent DARPA sponsored workshop on
exploring the possibility of a joint academia/industry optical computing consortium.

Murdocca recently visited Scott Hinton’s Photonic Switching group in Naperville, Illinois in a
coordinated effort with members of the Photonics Center at Rome Laboratory. Hinton’s group
offered their binary phase grating spot array generation technology to Rutgers and RL as a result of
the visit, which will also be made available to TIS. Murdocca is entering into a contractual
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relationship with Bell Labs through TIS for organizing an optical computing course to be offered at
Bell Labs, which allows Murdocca continued access to Huang’s group and Hinton’s group.
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Figure 33: A matrix addressable array of devices requires only a linear growth in the number of
bonding pads for a power of two growth in the number of devices. The indicated pattern is
selected by enabling rows 2, 3, and 5 and enabling columns 3,4, and 7.

8.4 Coordination with existing TIS Phase Il SBIR effort

A Phase II SBIR award was made to TIS through Rome Laboratory. The goal of the Phase II
effort is to create interconnection technology for optical logic gates using diffractive elements, and
to apply the technology to the RL S-SEED processor. The results from the RL Phase II effort will
influence the interconnection technology used for the proposed Phase II follow on to this Phase I

effort.
_/) )
/\1\//» »2{“}}?0{(
MIM Miles Murdocca
(Corresponding author)
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Appendix A: Boolean Logic
A review is provided of some basics of Boolean’ logic.

An AND gate, an OR gate, and a NOT gate can be described by the truth tables shown in Figure
A.1. x and y are binary inputs, and z is the output for each case.

AND OR NOT

1 = 5 >
y | z y — z x—D&‘»—z

X y z Xy z X z
0 0]0 0 0]0 0 1
0 1 0 01 1 1 0
1 010 1 0 1
1 1 1 1 1 1

Figure A.l: Truth tables and logic symbols are shown for AND, OR, and NOT Boolean logic
gates.

Truth tables enumerate all possible input combinations and assign a corresponding output for each
input combination. The AND function is true (produces a 1) only when x and y are I, whereas the
OR function is true when either x or y is a 1, or both x and y are 1. The NOT gate (also referred to
as an inverter) produces a 1 at its output for a 0 at its input, and produces a 0 at its output for a 1 at
its input. The inverted signal z is referred to as the complement of x.

Now suppose that a more complex function than a simple logic gate is to be created, such as the
majority function shown in Figure A.2. The majority function is true whenever more than half of
its inputs are true. This is a common operation used in fault recovery (see Section 5.1).

Since neither AND, OR, nor NOT will implement the majority function directly, the truth table is
transformed into a two-level AND-OR equation, and then the majority function is implemented
with a suitable arrangement of AND and OR gates. The Boolean equation that describes the
majority function is true whenever M is true in the truth table. Thus, M is true when A=0, B=1,
and C=1, OR when A=1, B=(), and C=1, and so on for the remaining two cases. The Boolean
logic equation is written as shown below, where a bar over a variable means that the complement
of the variable is used:

M = ABC + ABC + ABC + ABC

9George Boole created Boolean algebra in 1854.
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The juxtaposition of two or more variables such as ABC denotes a logical AND operation among
the variables. The plus signs ‘+ in the equation denote logical ORs, and do not imply arithmetic
addition.

Majority
A B C M
0 00O 0
0 0 1 0
010 0
011 1
1 00 0
1 01 1
1 10 1
1 11 1

Figure A.2: A truth table is shown for the majority function. The output M is true whenever
more than half of the inputs A, B, and C are true.

Now that the equation is created, four three-input AND gates can be used to implement each of the
terms ABC> ABC. ABC», and ABC, and then the outputs of these four AND gates can be
connected to the input of a four-input OR gate as shown in Figure A.3.

In theory, any binary function can be computed in two levels of logic gates given an arbitrarily
large stage of AND gates followed by an arbitrarily large stage of OR gates, both having arbitrarily
large fan-in and fan-out. For example, an entire computer program can be compiled in just two
steps if it is presented in parallel to a Boolean circuit that has an AND stage followed by an OR
stage which are designed to implement this function. Although fan-outs of larger than about 10 are
usually too costly to implement in many logic families due to the sacrifice in performance, Boolean
algebra for two level expressions is still used to describe digital circuits, and then the two-level
Boolean expressions are transformed into multi-level expressions that agree with the fan-in and
tan-out limitations of the technology. Optimal fan-in and fan-out are argued to be e = 2.7 [Al] in
terms of transistor stepping size for bringing a signal off of an electronic chip”~ but the derivation

10The result is for driving large capacitive loads and is based on using a sequence of N stages each
of which has the same ratio of output to input capacitance, f. For minimum delay this scheme
requires f = e = 2.7. The result comes from a standard optimization of the function & - f/In(f). In
practice, any ratio between 2 and 3 does well. This strategy is used for output bonding pads
because of the large load capacitance. - Professor Donald Smith, Rutgers University.
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of that result is based on capacitance of bonding pads and cannot be applied to all aspects of
computing since it does not take overall performance into account, which may create local

variations that violate the e rule dramatically. Electronic digital circuits tyically use fan-ins and fan-
outs of between 2 and 10.
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Figure A.3: A two-level AND-OR circuit implements the majority function. Inverters at the
inputs are not included in the two-level count.

Appendix A references

[Al] Mead, C. and L. Conway, Introduction to VLSI Systems, pp. 12-14, Addison Wesley,
(1980).
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Appendix B: Equivalence of AND-OR and OR-NOR logic

Although AND and OR are traditional logic primitives that are used in representing Boolean
equations, the AND function causes difficulties in some technologies. A difficulty with AND is
that the logic gate must distinguish between the state in which N-1 of its N inputs are true and the
state in which N of its inputs are true. This places a greater burden on the technology than for OR
logic where a distinction only needs to be made between the presence or absence of a true input.
For this reason, the form of some of the Boolean equations used in this report is the
computationally equivalent OR-NOR form. For example, the AND-OR form of the majority
function described by the truth table shown in Figure A.2 can be transformed into OR-NOR form
as shown below:

M=A+B+C+A+B+C+A+B+C+A+B+C

A more subtle problem that is avoided by using OR-NOR logic instead of AND-OR logic is that
unused AND inputs do not need to be tied high. For example, if a four-input AND gate is all that
is available where a three-input AND gate is needed, then the unused fourth input should be tied to
a logical 1 in order for the AND gate to function as intended. This is trivial to accomplish in an
electronic technology but can introduce significant complexity for an optical approach since
imaging of an additional light source is needed onto the logic gate. For OR-NOR logic, unused
inputs typically assume a value of 0, which produces the desired behavior.
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Appendix C: Gaussian elimination

A number of engineering problems such as null steering for phased array radar [2.3] require the
solution of systems of dense linear equations. Gaussian elimination is one methnd of solving a
linear system that converts an augmented matrix of n rows by n+1 columns (t:  nxn matrix of
coefficients, plus a column which consists of the values for each of the equations) into an upper
diagonal matrix, and applies back substitution to solve for the unknowns. For the method used
here [C1], a solution is carried out for the system:

2x1+x2+x3=8
3x1-2x2-x3=1
4X1 -7X2+3X3= 10

The process starts by locating the leftmost column that does not consist entirely of zeros:

Leftmost nonzero column

Then, if the top left element is zero or close to zero, then interchange the top row with another row
so that the top left element becomes sufficiently large to take the reciprocal in the next step. This is
referred to as the pivoting problem, and there are a number of methods for choosing the best pivot
element.

Next, compute the reciprocal 1/a of the top left element a and multiply the first row by that value:
1 12 12 4

2 -1 1
-7 3 10

a=
1/a=.5

Then add suitable multiples of the top row to the remaining rows so that only the top row has a
leading nonzero element:
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1 12 172 4 112 172 4
0 -72 -52 -11 0 1 5/7 2277
O 9 1 -6 0 9 1 -6

Repeat on the next smaller submatrix until the matrix is in upper diagonal form:

1 12 12 4
0 1 57 2277
0 0 52/7 156/7

Thus we have: X1+ 1/2x+ 1/2x3=4
X3+ 5/Tx3 =22/7
and 52/1x3 = 156/7.

Applying back substitution, solving for x3 first yields x; =2, x2 = 1, and x3 = 3.

Appendix C references

[C1] Anton, H., Elementary Linear Algebra, 2/e, John Wiley & Sons, pp. 8-16, (1977).
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