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Abstract r-7
Imagery analysts are always looking for improved methods of Jnalyzing d!ital

f. satellite imagery. The resolution of satellite imagery can be improved by enlrging

the images since the result will be a higher degree of discernalAe detail. Ctrrently,

nearest-neighbor, bilinear interpolation, and cubic convolutijn technirus are used

for this purpose. The nearest-neighbor technique produces 'block-like' images. The

latter two methods produce sharp imagery, but the original information contained in

the pixel values is changed in the process of convolving the image. These techniques

cannot, therefore, be considered true representations of the original image.

Kriging is a statistical technique which can be aj-lied to enlarging satellite

imagery. Specifically, it is a method of best linear unbiased prediction of spatial

data. One of the benefits of kriging is that it is an exact interpolator: the original

pixel values will not be modified in the resulting kriged image.

This thesis develops the application of universal punctual kriging to the anal-

ysis of digital satellite imagery. Current convolution techniques and kriging are used

to produce enlarged images and comparisons are made. Images are also sub-sampled

and enlarged back to the original size using convolution and statistical methods. This

allows the products of cubic convolution and kriging to be subtracted from the origi-

nal image. This procedure provides an additional quantitative comparison of kriging

and cubic convolution.

Results indicate that kriging performs as well as or better than cubic convo-

lution when used to enlarge images. When sub-sampled data was enlarged back to

the original density, the kriging meth'ods were clearly superior to the convolution

methods in recreating the original image. Kriging produced a mean difference that

was 6.4 times smaller than the mean difference, produced from cubic convolution.

The standard deviation of the kriging difference 4.73 times smaller than that

produced from the cubic convolhtion technique.

X



THE APPLICATION OF STATISTICAL KRIGING

TO IMPROVE

SATELLITE IMAGERY RESOLUTION

I. Introduction

This research effort investigated the application of kriging to digital image

enhancement. Kriging was the name given to the technique of spatial optimal linear

prediction by Matheron (7:251) who chose to honor Danie G. Krige's contributions

in the field of geostatistics. While kriging originated in geostatistics, its nature as an

optimal predictor has made it attractive to other disciplines. For instance, according

to Cressie (7:249), it has been used in physics to characterize turbulence structure;

it was used in World War II to temporally predict enemy aircraft movements; it has

been used in plant and animal breeding to predict genotypes based on measured

characteristics; it has been used in geodesy to draw spatial maps; it has been used

in the analysis of anthropometric data (15); and it has been applied here to digital

image enhancement.

The imagery used in this research is the digital data reconstructed from a

TIROS-N weather satellite in either an Automatic Picture Transmission (APT)

or High-Resolution Picture Transmission (HRPT) resolution mode. Polar-orbiting

TIROS-N satellites are designed to collect meteorological, oceanographic, and space

environment data at high latitudes (1:1-1). This chapter provides the background,

research objectives, scope, and methodology of the study.

1.1 Background

Enhancing photographs which are in digital form is an ongoing area of interest,

especially to users of satellite imagery. Tactical battlefield commanders, for example,

would find it useful to obtain and enhance satellite intelligence imagery as quickly as

possible. If access to a satellite transmission was available, directly receiving and pro-

cessing the images on-site would be the most expedient method. One source of these
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images is the polar-orbiting TIROS-N (Television and Infrared Observation Satellite)

series satellites, operated by the National Oceanographic and Atmospheric Admin-
istration (NOAA) (16:11), (1:1-1). The TIROS-N imaging function is performed by

the onboard Advanced Very High Resolution Radiometer (AVHRR). The AVHRR is

a cross-track multispectral scanning radiometer which continuously transmits unen-

crypted meteorological images to earth (1:2-1). However, it scans a 3000-km swath
width and, in the highest resolution mode, still has only a relatively low resolution

of 1.1 km. Both the military and the civilian communities would benefit from an

enhancement technique which could produce images with better resolution than that
which was recorded by the TIROS-N or any other type of satellite.

"The goal of image enhancement is to improve the visual interpretability of an

image by increasing the apparent distinction between features in the scene" (21:626).

A few digital image enhancement techniques currently in use are histogram equaliza-

tion, various types of neighborhood averaging, and median filtering (14:146-151,161-
162). Histogram equalization and neighborhood averaging techniques produce a re-

sultant image that does not retain the original picture element (pixel) gray values.

The information contained in the original image is altered. Median filtering is suit-

able for removing noise since it is resistant to single outlier data points, but when
applied as a filter over the entire data set, it, too, suffers the disadvantage of altering

the original data. These techniques, therefore, alter the presentation of the existing

data and its resolution.

The current image enlargement methods are nearest-neighbor, bilinear inter-

polation, and cubic convolution (21:615). The images produced using these methods

will be compared to images produced by kriging. Kriging is a statistical technique

that is an exact method of spatial determination and was initially applied in the

field of geostatistics to determine the grade of ore deposits (22:1259). The exactness

property indicates that kriging retains all of the originally sampled pixel values: they

are exactly predicted. Kriging should, therefore, be considered a faithful represen-

tation of the data in the original scene. An understanding of the exactness property

is essential to the acceptance of kriging as a method of image enhancement, and is

developed further in Chapter II.

Kriging predicts the gray value of all pixels which are spatially distributed on
an image of gray values, whether or not the data previously existed at that point. For

example, spacing the original gray values onto a finer grid will leave unknown pixel

1-2



holes that can be predicted using kriging. The original pixels are predicted exactly-

with zero error. After kriging enhancement, an enlarged image would not exhibit the

usually characteristic "graininess" or "block-like" appearance of an image produced

by the nearest-neighbor method of replicating pixels into larger blocks. Kriging will

predict better than the other spatial determination techniques partly because it uses

a best linear unbiased predictor (BLUP). On the topic of spatial determination,

Cressie states that "In all comparisons, on real and simulated data, universal kriging

generally did as well as or better than the other methods" (6:202). Universal kriging

was the method used in this research and is developed in Chapter II.

1.2 Research Objective

It is the purpose of this research to determine how the statistical technique of

kriging can be applied as a method of digital image enhancement to improve satellite

imagery resolution. Specifically, images enlarged by kriging will be compared to those

produced by other currently accepted methods. Kriging algorithms written in the

C++ computer language are used in an attempt to enhance the resolution of TIROS-

N APT digital satellite imagery. One program analyzes the image and produces

a variogram function (22:1250) to represent the amount of gray value correlation

between pixel elements. The variogram function and the kriging program are then

used to obtain optimum values for the pixels which were not sampled.

1.3 Scope

There is one clarification to make on the scope of this research:

Kriging is applied to estimating regionalized variables which are spatially re-

lated in two dimensions. For this reason, only the two-dimensional version of

the kriging equations will be presented when defining certain aspects of kriging.

While kriging can also be applied to three dimensions, it is not done here.

1.4 Sub-Objectives

The following sub-objectives were accomplished to meet the research objective:

1. Produce enlarged satellite imagery to investigate the application of nearest-

neighbor, bilinear interpolation, and cubic convolution to image enhancement.
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2. Produce enlarged satellite imagery to investigate the application of kriging to

image enhancement. Compare the results to the current enhancement tech-

niques.

3. Analyze the resulting images and improve the kriging application, as necessary,

to produce visually interpretable results.

4. Perform a quantitative comparison of kriging and cubic convolution using krig-

ing and cubic convolution to enlarge sub-sampled imagery back to the original

size.
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11. Literature Review

2.1 Introduction

Remote sensing data, merged into a Geographical Information System (GIS),
has many applications including soil conservation, city zoning, assessment, forecast-

ing, and intelligence gathering (21:612). To get the most out of the information

contained in the image, it may be beneficial to enhance or enlarge sections of the im-

ages prior to merging. Currently, nearest-neighbor, bilinear interpolation, and cubic

convolution techniques are used to zoom or increase the resolution of digital im-

agery. Kriging is a statistical method of spatial determination and will be compared

to the methods currently in use. A current literature review revealed no previous
application of kriging to the improvement of satellite imagery resolution.

This chapter is a review of the literature pertaining to digital satellite imagery

from NOAA TIROS-N weather satellites, current image enlargement techniques, the

statistics applicable to kriging, and the theory of kriging.

2.2 Digital TIROS-N Imagery

Starting in 1972, radiometers were used on TIROS-N satellites as the pri-

mary source of data for the picture transmission service (1:1-2). In particular, the

Advanced Very High Resolution Radiometer (AVHRR) records visible and infrared

data which can be transmitted in two primary formats: Automatic Picture Trans-

mission which is a reduced-resolution mode (APT) with 4-km resolution, and High

Resolution Picture Transmission (HRPT) with 1.1-km resolution (1:2-1, 4-1). There

are advantages to using AVHRR data. One advantage is its availability. AVHRR

images are available two to four times each day from each satellite. Another ad-
vantage is that the data is easily accessible. TIROS-N satellite transmissions are

unencrypted, and the telemetry wavetrain can, therefore, be inexpensively received.

Larcomb (20) discusses the AVHRR and the exact format of the APT and

HRPT data in detail. The following paragraphs summarize this information. Visible
wavelength imagery in APT format which was recorded during daylight hours will

be used for this research.

The TIROS-N AVHRR records data in four or five spectral regions depending

on the AVHRR type-AVHRR/1 or AVHRR/2 (1:2-2). Regardless of the type of
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AVHRR in use by a particular satellite, it records visible wavelength imagery on its

Channel 1 (1:2-3). In HRPT mode, all of the channels (four or five) are transmitted at

full resolution. In APT mode, only two of the channels are transmitted to maintain

bandwidth restrictions (1:4-1). Usually, a channel containing visible wavelength

imagery and a channel containing infrared imagery will be transmitted during the

daytime portion of the satellite's orbit. During nighttime, both APT channels may

contain infrared imagery (1:4-1).

The APT data is transmitted as an analog signal. Upon reaching the ground

receiving station, the signal is reconverted to a digital format using an analog-to-

digital converter. In this format, each digital word is eight binary bits loig and

represents a gray value for a pixel in the image. This gray value is an integer[ which
can range from 0 to 255. The gray values are then displayed on a computer monitor

or are converted to a format that is compatible with other types of display software.

2.3 Current Enlargement Techniques

Once the pixel values are available in a two-dimensional image format, resolu-
tion enhancement techniques can be applied. The goal is to make features become

noticeable that were not interpretable in the original image. Resolution is defined

as the degree of discernable detail in the image, and is strongly dependent on the

image dimensions and the number of gray values which can be assigned to each pixel

(14:23). This research applies convolution and statistical techniques to imprqve the

resolution of satellite imagery by increasing the image dimensions--enlarging the im-

age. Enlargement techniques which are in common use today are nearest-neighbor,

bilinear interpolation, and cubic convolution (21:615).

2.3.1 Nearest-Neighbor is by far the easiest enlargement method. At an un-

sampled location, the gray value is assigned to be the same as the closest neighboring

pixel. It is simply a method of pixel replication. For a two times enlargement, ad-

ditional rows and columns will be inserted between the existing ones. Pixel values

in the inserted rows and columns will be determined by assigning them to the same

value as the nearest surrounding pixel (14:249). Assignments are made at unsam-

pled locations only, and the original image data is retained. However, the resulting

"block-like" appearance makes interpretation difficult.
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2.3.2 Bilinear Interpolation is a distance-weighted spatial prediction tech-

nique which determines the value at an unsampled point by considering a linear

combination of the four nearest pixels. The procedure is to use an equation of the

form:

ZP = ax+by+cxy+d (2.1)

where Z is the predicted pixel value, and x and y are the coordinates of the known

pixels (14:250). This equation produces four simultaneous equations corresponding

to the four known pixel gray values. Solving for the four coefficients, inserting them

back into the predictor, and using the coordinates of the prediction point as the x

and y value will produce the interpolated pixel value. Interpolation is performed at

all locations, altering the original pixel gray values as well as filling-in the unsampled

locations.

2.3.3 Cubic Convolution performs a distance-weighted prediction similar to

bilinear interpolation, except that the prediction is based 9n a cubic combination of

the surrounding 16 pixels. There are various forms of the cubic function that can

be used. For example, Gonzales and Wintz suggest that cubic convolution "fits a

surface of the (sin x)/x type" through the 16 nearest neighbors to produce the gray

value prediction (14:249). A cubic spline convolution is another possible method.

Also, in the field of computer graphics, various parametric cubic curves are used

(13:482-488). The derivation of cubic convolution in this case requires identifying

geometric constraints, incorporating them into a geometry vector, choosing a type

of curve (e.g. Hermitian), and producing a blending function (13:482-485). However

the cubic convolution is established, it will produce a slightly sharper image than

bilinear interpolation. However, it too, alters the original pixel gray values.

2-.4 A Statistics Review

A review of the statistics involved in kriging will be presented before proceed-

ing.

This research considers the possible outcomes for Z, the pixel gray value, to

be a random variable. The expected value of Z, the mean, and is defined as:

E[Z] =(2.2)
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The variance is the expected squared deviation of Z about its mean:

VAR[Z] = = E[(Z - I)'] = E[Z] - it' (2.3)

The covariance, represented by axy, where X and Y are random variables is:

'xy = E((X - E(X])(Y - E(Y])]

= E[XY] - 2E[X]E[Y] + E[X]E[Y]

= E[XY]- E[XE[Y] (2.4)

The following quote explains the covariance relationship between two random

variables, Y and Y2:

The larger the absolute value of the covariance of Y1 and Y2, the
greater the linear dependence between Y and Y2. Positive values indi-
cate that Y1 increases as Y2 increases; negative values indicate that Y
decreases as Y2 increases. A zero value of the covaiance would indicate
no linear dependence between Y and Y2 (23:237).

Two distinct random variables can reference the same attribute measured at different

locations (17:8), for example, a pixel value at location F and : + h. The covariance

between two such locations can then be written as:

azI z2 = a(Z[X, Z[I + hi) (2.5)

and if Z(Y) is a stationary random function:

E[Z(i)] = p - E[Z(i + h)+ (2.6)

then:
azjz2 = E[Z(X-)Z(i+ h)] - 2  (2.7)

At a distance of IIhiI = 0 between the two points, Z(£) and Z(i+h) are the same, and

the covariance simply becomes the variance. From the definition of the covariance
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(and using a capital letter C as is sometimes used to represent the covariance):

C(O) = C(Z, Z) = azz = E[(Z - E[Z])(Z - E[Z])I = E[(Z - p)']  (2.8)

which is the definition of the variance by Equation 2.3.

C(O) = VAR[Z(i)] (2.9)

2.5 Definition of Kriging

Kriging is a method of interpolation which uses a "best linear unbiased pre-
dictor" to optimally predict an attribute of a variable by minimizing the variance

associated with its prediction (8:237). The first step is to perform a structural anal-
ysis of the spatial data. This will determine the second-order correlation structure

of the data and will determine the kind of kriging which should be employed. Then,

minimizing the estimation variance will be shown to produce a series of equations

which will be solved simultaneously for the weighting factors. These equations are
referred to as the kriging equations. Their general form, in matrix notation, is:

y(h,,) -y(hl 2) .-- y(h,,) 1 w1 i(hip)

"y(h21) -y(h22) -"y(h 2.) 1 W2 "y(h2p)
(2.10)

y(h. 1) "y(h. 2).. -y(h,,) 1 w, -y(hnp)

1 1 -.. 1 0 A 1

where -y(hij) is related to the covariance between spatially-distributed, known sam-

ples. wj are the weights associated with those samples, A is a Lagrange multiplier,

and -y(hip) is related to the covariance between known samples and the unknown

point being predicted. - is actually the variogram value which is discussed below,

and the weights are calculated by matrix operations. Finally, the weights are in-

serted into the linear predictot. This is how the kriging predictor is used to calculate

the attribute value of a regionalized variable based on the amount of correlation that

exists between known samples in the area.
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2.6 Kriging Theory

The following paragraphs will present the theory of kriging as it was developed

by Matheron and others in the field of geostatistics. The reviewed topics include

regionalized variables, stationarity assumptions, variogram estimation, structural

analysis, kriging methodology, types of kriging, and exactness.

2.6.1 Regionalized Variables. A regionalized variable is a random function

which varies continuously between points, but cannot be represented exactly by a

deterministic function (9:239). Often in statistics, observations of a random variable

are assumed to be independent and identically distributed. This indicates that the

observations are uncorrelated to one another. However, the correlation between data

points is the foundation of a statistical analysis of spatial data (6:197). Therefore,

Matheron speaks of using a regionalized variable to "stress the spatial aspect of the

phenomena" (22:1248). He goes on to say that a regionalized variable is a function

that is localized, continuous, and may display anisotropies--be more correlated in

one direction than another. To model a regionalized variable at a location, i, assume

that E[Z(:i)] and VAR[Z(i)] exist. Then, the variable is usually modeled as an

expression of the mean and a residual at each location (2:263).

Z(V) = t(i) + e(y) (2.11)

where the mean function is:

E[Z(i)] = At(;) (2.12)

For example, Figure 2.1 shows an increasing mean, ,u(x), in the measured

spatial attribute Z(i) with coordinate F (18).

This is a global trend over the entire sample area and can be approximated by

fitting a linear or a polynomial function to the data. For example, a step function

could be fitted to the data to create neighborhoods where the localized trend, or

drift, is, on the average, constant. Removing the global trend from the data will

leave the residual component, which is a zero-mean stochastic process:

E[e(x)] = 0 (2.13)
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Z(X)

Figure 2.1. Increase in Z(:f) with coordinate x (Adapted from Journel (18:716))

and can be modeled by a regionalized variable. The type of kriging model employed
will depend on the structure of the mean function and the stationarity assumption
as defined below.

2.6.2 Stationarity Assumptions. Stationarity is a model decision, and is not
a property of the Z(:F) values themselves (17:8). The type of kriging model employed
will depend on the stationarity assumption.

2.6.2.1 Strict Stationarity means that the ntire cumulative distribu-
tion function for the regionalized variable must be the same at all points. This is
impractical for kriging since an infinite number of samples would be required (24).

2.6.2.2 Weak, Wide-Sense, or Second-Order Stationarity is the next
least restrictive case, where the mean and covariance, P(i) and a(i), of the region-
alized variable are known to exist, and are both constant over the area (8:92). This
is seldom found in nature, but is easily shown-for the covariance as in Figure 2.2.
The origin is arbitrarily placed at the center of the surface being considered.

The two samples under consideration, Z, and Z2, are the same attribute of
the surface at locations ii and X-, respectively. Under second-order stationarity,
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900

Z1, (East)

Figure 2.2. Second-Order (weak, wide-sense) Stationary Process

the covariance of the two attributes is independent of their location and dependent

only on their relative distance apart. Therefore, moving both points by ii to the

prime coordinates will not change the value of the covariance. Subtracting i* and
substituting (ii + h) for i* gives the following relationship:

C(Z 1,Z 2) = a(41,42) (2.14)
= - ii- i)= C(Z, = '( (2.15)

= a(0,x+h-i )= a(h) (2.16)

This shows that if second-order stationarity is assumed, the covariance between

any two points, a(h), depends only on the vector distance between them. It does

not depend on the position of the samples or of the sample values themselves. The
variance is equal to the covariance at zero: a(O) (8:93).

2.6.2.3 Intrinsic Stationarity indicate, that the relationship between

any two points depends only on the distance between them, and not on the direction

between samples, or on the position of the samples, or on the values at the locations.
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This is called the stationarity of increments and is a further relaxation of the sta-

tionarity constraint. Under intrinsic stationarity, the covariance may not even exist.

A random function is intrinsically stationary if:

1. E[Z(x)] = p. That is, the mean is known and constant in a particular region.

2. For all vectors in the area, the difference, [Z(Y+ h)- Z(Y)], has finite variance

that does not depend on i (24).

To restate the second condition, the covariance may be infinite, but the vari-
ogram must exist. The relationship between the variogram and the covariance will

be derived in Equation 2.24.

2.6.3 Structural Analysis. Structural analysis involves determining the co-

variance, or variogram, and the degree of trend, or drift, in the rer,:,.'aized variable

(11:327). Analysis must also be performed to compensate for any anisotropic behav-

ior of the sampled data (8:134).

2.6.3.1 Variograms. The kriging equations require knowledge of the

correlation between the known data samples in order to determine the optimum
weights for the predictor. The variogram is a function which fulfills this requirement

by representing the correlation of the sampled data in a particular direction at any

given distance h apart. However, the data being sampled must at least be assumed

to be intrinsically stationary. That is, it must have a constant mean, at least locally.

Therefore, the residual samples are used instead of the original data, since it has

already been shown that the residual component is a zero-mean stochastic process.

Next, the residual distribution can be represented by defining the mean and vari-

ance. The mean is known to be zero, and the variograrn is defined to represent the

variance. The variogram refers to the discrete representation of the true variogram

since a finite number of known samples are used in the calculation.

Definition. Like the covariance, the variogram is a measure of similarity be-

tween two values, and it is logical that a similarity index between values at two points

be based on a difference between them. Also, it is desirable that the magnitude of

this difference always be positive (8:74). Therefore, the variogram is defined as the

mean square of the difference between two samples, and is represented by 2-y(h).
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Kerbs calls the variogram the "variance of the differences" (19:5).

27 (h) = VAR[Z(,) - Z(, + h)] (2.17)

= E[Z(F) - Z(S+ h)]2  (2.18)

1 N(K)
---- Z [Z(,) - Z(x +h (2.19)

N(h) i=1

N(h) is the number of pairs of points being compared. The intrinsic assumption

that the increment, h, is stationary led to the computation of the variogram (8:113).

Semivariogram. -f(h) is half of the variogram, and is named the semivariogram.

However, it has been suggested (8:94) (and it will be the convention in this thesis)

that for the sake of simplicity, -y(h) be called the variogram.

Example. The following example (adapted from Kerbs (19:11-14) will show

how a variogram is calculated on a four-sample-square area. Assume the samples

are pixel gray values in an image.

91 28 43 72

55 86 32 41

72 71 59 81

38 19 51 44

Since this data is already on a regular grid, variogram calculations can be
started immediately. Let 0* be defined as the north direction, and 90' be defined

as the east direction. Choose the direction to be examined as 90*. Next, -Y(h), as

defined in Equation 2.19, can be calculated for "y(0) through y(3). Arbitrarily choose

the top left corner as the place to begin variogram calculations. Assume that the

samples are two meters apart, h = 2 meters. This is equivalent to a hypothetical

image resolution of two meters. It should be apparent from Equation 2.19, that

-y(O) = 0, since Z(i, + h) reduces to Z( i) for all i. The others are calculated as

follows:
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-y(2 m) = [(91 - 28)2 +(28-43)2 + (43 - 72)2 + (55 - 86)2 +

+(86-32)2 +(32 -41)2 + (72-71 )2+ (71 _ 59)2 +
+(59 - 81)2 + (38- 19)2 + (19 - 51)2 + (51 -44)2] [(2)(12)]

= 460.67 (gray values)2

-y(4 m) = [(91 - 43)2 + (28- 72)2 + (55- 32)2 + (86-41)2 +

+(72 - 59)2 + (71 - 81)2 + (38 - 51)2 + (19 - 44)2] + [(2)(8)]

= 491.06 (gray values) 2

-y(6 m) = [(91 - 72)2 + (55 - 41)2 + (72 - 81)2 + (38 - 44)2] - [(2)(4)]

= 84.25 (gray values)2

Since, by definition, all variogram values are positive, and all lags are positive, a

single quadrant of a cartesian coordinate system is all that is necessary to plot the

variogram. The vertical axis coordinate is the variogram, and the horizontal axis is

plotted as the lag, h. The variogram values at lags of zero through three are then

plotted and are displayed in Figure 2.3.

Covariance Relationship. The relationship between the variogram and the

covariance function can now be derived as follows (2:266), (6:298):

= VAR[Z(i) - Z(i + h)] (2.20)

and from basic statistics:

7 (h) = [ VAR(Z(X)) + VAR(Z(i + h)) - 2o(Z(i), Z(i + K))] (2.21)

Assuming at least second-order stationarity:

o(O)= VAR[Z( )j = VAR[Z(X + (2.22)

2-11



Example 90* Variogram

1000

800
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-y(h)

400

200

0<
0 1 2 3 4 5 6 7 8

h

Figure 2.3. Variogram for a 4x4 of pixel values

and substituting a(O) gives:

-, (h) = -['(O) + ou(O) - 2(h)] (2.23)

7 (h) = o(0)- a(h) (2.24)

By this relationship, the variogram will react oppositely from the covariance.

As the correlation increases, the variogram value decreases. Since closely spaced data

should be more alike than data that are spaced far apart, the variogram will indicate

a small value for short separations h, and large values at larger separations. This

relationship also shows how the variogram can exist in cases where the covariance

may not.

Sill and Range. The sill and the range are parameters of some forms of the

variogram. Their locations are shown on a spherical variogram curve in Figure 2.4

(the spherical variogram model and its parameters, C and Co, are defined later).

For small values of h, closely positioned points have a high correlation, and

the variogram value is small. At greater distances between sampled points, the

correlation is less, and the variogram value becomes large until the variogram is
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sill = C + C

Co

range = a

h

Figure 2.4. Spherical variogram model showing sill and range

equal to the variance around the mean of the data set. If the sill exists, it is the

ordinary variance of the samples (4:42) (5:408). That is, as:

1Ihil - oo, -(h) -+ a(0) = VAR[Z(i)I (2.25)

The value of h at this point represents the range at which the data remain correlated

(19:54). The range, a, defines a neighborhood of related points. At h > a, the

samples become independent of one another (4:6).

Nugget Effect. Measurement error and microscale variation comprise the nugget

effect (5:410-411). Ideally, resampling a point should give the same value as it did in

the original sample. However, this is not always the case. Variations in the sampling

technique or the sample itself may cause subsequent samples to be different. This

is known as measurement error. If the samples are pixel values on a single image,

there is only one value at each location, and measurement error is zero. The other

source of nugget effect is microscale variations. These are high frequency changes

in the data relative to the lag. If either measurement error or microscale variation

exist, the resulting variogram curve will not intersect the origin as 1lhil -+ 0. (How-
ever, -y(O) - 0 since a point is, by definition, not different from itself.) The result

is that the variogram curve is shifted upward. The sill, and therefore the variance
between the samples, will be increased. It is significant to note, however, that the
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covariance remains unaffected (8:99). The nugget effect is shown in Figure 2.4 and

is represented by C0 .

Variogram Modeling. In the kriging system of equations, the variogram values

between various locations are required. The spherical model, the De Wijsian model,

the linear model, the exponential model, the hole-effect model, and linear combi-

nations of these are typical continuous functions assumed and may be appropriate

depending on the shape of the variogram (8:102-112).

Spherical. The shape of the spherical model is shown in Figure 2.4. The three

parameters necessary to define the model are a, C, and C0 . The C parameter is

used with the nugget effect, C0 , to define the sill, C + C. The range of influence is

defined as a, and the actual model is as follows:

- 1h,) + Co for h <a

7(h) C+CO forh>a

0 for h =0

De Wijsian. The De Wijsian model can be used if there is no range of depen-

dence evident in the discrete representation of the variogram (8:106). The general

shape of this model is a natural log curve as shown in Figure 2.5. The model is as

follows:

7(h) = Aln(h) + B (2.26)

The De Wijsian model is named after Prof. H. J. de Wijs and can be used if the

variogram is linear when plotted against ln(h). The model shown was fitted to actual

variogram data and, as such, does not exactly coincide with the data and intersect

the origin. The consequence of this type of modeling behavior will be discussed in

Chapter IV.

Linear. The linear model is simple and can be desirable in cases where com-

putational efficiency is required. It is represented as:

7 (h) = Ah + B (2.27)
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7 (h)

I I I

h

Figure 2.5. De Wijsian variogram model

Within a limited neighborhood, the linear model can be a good representation of the

discrete variogram (8:108). The shape of the linear model is shown in Figure 2.6.

2.6.3.2 Drift. A regionalized variable can be considered to be composed

of a drift and a residual (9:243). If there is no trend in the data, the drift will not
exist. However, if there is a trend, the data and the variogram will exhibit a drift.

That is, the variance of the data will continue to increase as the distance between
samples, h, is increased (19:55). As a result, no sill can be determined, and kriging
will produce a biased result if it is performed in the presence of a strong global trend

(drift) (4:120). The solution to the problem is to model the drift, possibly as a linear

or quadratic function, subtract it from the original variable, and perform a structural

analysis on the residuals. However, a localized drift is allowable if considered during

kriging and is explained in detail below.

2.6.3.3 Anisotropy. To represent the sampled data, variograms are cal-
culated over the area in different directions. Regionalized variables are said to be

anisotropic if they are not the same in all the directions or vary from location to

location over the surface. In geostatistics, anisotropy explains runs of a mineral in

a certain direction (22:1249). There are two types of anisotropies: geometric and

zonal (8:134). Geometric anisotropy exists when the variation in one direction at a

distance h away is the same as the variation in another direction at a distance of
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Figure 2.6. Linear variogram model

some multiple of h. They have different ranges a, but the same sill. This is easily

corrected by scaling the second distance by a factor of k to make the ranges equal.

Then, one variogram can be used to represent the entire data set correlation in ei-

ther direction. Isotropy is simulated by substituting kh for h in the variogram model

being used. For the spherical model:

(h) = C +Co (2.28)

-t2(h) = -( h -3  + Co (2.29)

Zonal anisotropy is exhibited when variograms are different at different loca-

tions (24). Therefore, a single variogram will not be able to represent the entire

sampled data. Zonal anisotropy is not as easily corrected as geometric anisotropy.

However, the problem can be approached by partitioning the data into isotropic

regions.

2.6.-4 Kriging Categories. There are two broad categories of kriging. Block

kriging is concerned with both volume samples and point samples. It is used exten-

sively in geostatistics. Punctual kriging is concerned with predicting the values of a
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stationary regionalized variable based on point samples. This is the simplest form

of kriging (9:383). Also, there are different types of kriging that are used depending

on the assumption of stationarity. This section will develop the three main types of

kriging which are used, based on the stationarity assumption. These three types are

simple, ordinary, and universal kriging.

2.6.4.1 Simple Kriging. The following derivation is adapted from Jour-

nel (17:10-11). First, a linear predictor, Z*(i), is defined to predict the unknown

value Z(i). The prediction at an unsampled location, p, is established to be a linear

combination of the n known sample values Z:

Z; w. + WlZ 1 + w 2 Z 2 + - + wnZn (2.30)
n

= Zi + w. (2.31)
t=l

w, is a shift parameter (constant). The goal in kriging is to calculate the weights

wi by ensuring that the best linear unbiased predictor is used. To be unbiased, the

average prediction error should be zero:

E[Z, - Z] = 0 (2.32)

and from properties of the expected value:

E[Zp] - E[Z] = 0 (2.33)

since E[Z,] = ,, simple substitutions for Zp and Z; gives:

,p - E[ wiZi - E[wo] = 0 (2.34)
i=1

and E[wo] = wo. Then,
n

Wo= l- wipi (2.35)
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Substituting this result into the predictor gives:
ft

= 'Up + w,(Z - p,) (2.36)

Z; - MP = wi(Z, - ,) (2.37)

but, if Zi is a regionalized variable, then the quantity (Z - Mi) is just the residual

from Equation 2.11. n

e; = (2.38)
i=1

In other words, a predictor of the residual term is automatically unbiased if the mean

is constant. The predictor has been shown to be linear and unbiased, but to show

that ep is the "best" predictor, the predictions must be shown to produce a minimum

estimation error variance. The estimation error at the unknown point is defined to

be e:

E = ZP - Z (2.39)

and its variance is:
VAR(E=o' = VAR[Zp - Z;i (2.40)

Substituting for Zp, and Z;:

nn

VAR(ep] = E aiaia0  (2.41)
i=O j=O

whr; i and j are locations of known sample points, aij is the covariance of the

increment between them, and ai is defined in terms of the wi weights (see Appendix A

for details).

Having defined the criteria for the BLUP, the necessary values for wj are found

by minimizing the error variance in Equation 2.41. Taking the partial derivatives of

the error variance and setting them equal to zero gives:

- ( aiajo)ij = 0 (2.42)
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and, since there are only 1 to n samples, the unsampled point p is defined to be the

i = 0, j = 0 subscripts. The result of the derivative is:

E ajoij = 0

j=O
n

aoaio + E ajaij = 0 (2.43)
j=1

The weights wi from Appendix A are substituted for the aj coefficients, and the p

subscript replaces the 0 subscript to maintain consistent notation. The p subscript

indicates the unsampled point value being predicted: a0 = ap = 1, and aj = -wj for

= 1,...,n. The result is:
n

OTip -- uZt ori = 0 V
j=1

E wjaij = ap V j =1,...,n (2.44)
j=1

Equation 2.44 represents n equations which will be solved simultaneously. An addi-

tional equation must be added to ensure that the weights sum to one (as a result of

the unbiased condition). Since there are now n+ 1 equations and n unknown weights,

a Lagrange multiplier, A, will be added to the system. This procedure will be shown

in more uetail under ordinary kriging. Note since aii and aip are the covariance of

the increment between points, they can more appropriately be written as o(hij) and

o(hip), respectively. In matrix notation Equation 2.44 becomes:

O(h 1 ) a(h 12) ... r(hi.) 1 w, a(hwp)

a(h 21) u(hn2) ... a(hU) 1 W2  a(h2p)

(2.45)

oa(h,,1 ) a(h12) ... a(h..) 1 wn a(h.p)

1 1 ... 1 0 A 1

These are the kriging equations and are analogous to Equation 2.10 through

the variogram and covariance relationship of Equation 2.24. The predicted value of

2-19



the regionalized variable Z can then be calculated by substituting the weights into

the residual predictor and adding the constant mean value.

Kriging also has the advantage of calculating the estimation error variance, or

kriging variance, of its predictions. This is a measure of how well each unsampled

point was predicted. The error variance, a., is:

2= a(0) _ [w]T [b] (2.46)

where [w] is the [wj] weights matrix and

o,(hip)

a(h 2p)

b = (2.47)

a(h.p)

The error variance is different if the vaxiogram form of the kriging equations is used.

2= [w]T [b] (2.48)

where

y(hip)

-y(h2p)

b= (2.49)

-y(h.p)

1

The relationship between the two a,' calculations is in Appendix A. The error vari-

ance calculation can then be immediately performed once the weights are known.

Calculating the error variance at each predicted point will enable one to calculate

an error map of the predictions.

2.6.4-2 Ordinary Kriging. It is unlikely that the mean of a set of sam-

ples will be known, and that it will be constant as was assumed under simple kriging.
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If the mean was known, that would imply an infinite number of samples, and there

would be no predictions to be made. Ordinary kriging allows the mean to be un-

known but still requires it to be constant. In this case, it is not sufficient to define the

best predictor as that which has the minimum estimation error variance; it should

also be free of systematic error (8:238). To remain unbiased, an additional condition

should be added to the kriging equations such that the predictor is still linear, and

the mean is still constant, albeit unknown, over the area:

n

Z* = ZwZ (2.50)
i=1

E[Z*] = u (2.51)

A simple substitution for Z* gives:

[E wi~i = P

[wiE[Zi] = p

7=1

iwE ip = P
=1

Zw = 1 (2.52)
i=1

The problem, now, is to minimize the error variance subject to the constraint that

the kriging weights must sum to one. The solution utilizes the method of Lagrange

to incorporate the contraint into the objective function (17:15) as follows:

F = a2 + A wi - 1 (2.53)
Li=I

where o, is the estimation error variance, and A is the Lagrange multiplier. Another

partial derivative is then taken with respect to the Lagrange multiplier, and is set
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equal to zero. The resulting kriging equations are shown below.

0 + w1  + w 2  + w 3  + ... + w, = 1

A + wi-y(hii) + W2-7 (hl 2) + W3 -Y(hl3) + . + w.-7 (hl.) = -y(hl,)

A + wy(h 2 l) + w27 (h2 2) + w3-Y(h2 3) + + w-y(h 2n) = -y(h2 ,)

A + wl-y(h 31 ) + w2-y(h 32) + w3-(hz3) + " + w,,-y(h 3,,) = -y(h3,)
:+ : + : + : + "-. + : = :

A + wviy(h.1) + w2-y(hn2 ) + w3-(h,,3) + ... + ww-y(h..) = -y(h.p)

Again, the covariance can also be used in lieu of the variogram, -Y(h), and the

result is the following system of equations:

0 + W1 + W2 + W3 +... w, = 1

A + w1a(h1 j) + w2a(hU2 ) + wtzi(h13) + ... + wu(h.) = a(hp)

A + wicr(h 21) + w2a(h22) + W30(h 23) + .. " + wa(h2n) = a(h 2p)

A + wja(h 3l) + w 2 a(h 32 ) + w3a(h33) + ." + wa(h3n) = u(h 3p)
:± • + : +*".+ : = :

A + wla(h.i' + w2a(h,2 ) + w 3a(hn3 ) + .. + woa(h..) = a(hp)

In either case, the BLUP calculation remains the same. Furthermore, a confidence

interval can be established around the prediction. If the estimation error is assumed
to be normally distributed about the true (but unknown) value at the unsampled

point, a, can be used to establish the confidence interval.

2.6.-4.3 Ordinary Kriging Example. Davis shows an example of ordi-

nary kriging by considering water table elevations based on three well samples

(9:386-392). The water table depth at a new well, p, at a known coordinate is

to be predicted. Table 2.1 shows the well locations. The variogram for this exam-

ple is determined (given) to be linear, have no nugget effect, and have a slope of

4.0 m2/km. The distances between wells, hij, are calculated from the coordinates.

The variogram slope then maps the distances into -y(hij) by simply multiplying,

-t(hji) = 4.0h. In a similar manner, the new well coordinate is used to calculate hi,
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Location Water Table

X Coordinate Y Coordiaate Elevation

Well 1 3.0 4.0 120.0

Well 2 6.3 3.4 103.0

Well 3 2.0 1.3 142.0

Point p 3.0 3.0

Table 2.1. Water Table Elevation Data

and then -y(hip). The kriging equations are written as:

0.0 1 1 1 1 1 

1 -y(hil) -y(hl2) -t(hM3) w1 -y(hip)

1 (h22) -(h23) W2

1 -t(h 3l) -(h 3 2) -j(h33) W3 j(h3p)

and substituting the calculations for "y(hj) and -y(hip):

0.0 1 1 1 A 1

1 0.0 13.4 11.5 w1 4.0

1 13.4 0.0 19.1 W2 13.3

1 11.5 19.1 0.0 W3 7.9

Notice that the diagonal values are all zero since -y(h = 0) 0, and the matrix

is symmetric since -y(hij) = -y(hji). The zero diagonal can cause a problem during

matrix inversion and is one reason why the covariance could be used instead of the

variogram. Solving the system for the weights gives:

A -0.7267

w1 0.6039

W2 0.0868

W3 0.3093
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Solution to the prediction is calculated by substituting the weights into the predictor:

3

j=l

= 0.6039(120.0) + 0.0868(103.0) + 0.3093(142.0)

= 125.3 meters

and the error variance is:

=[w,]T [-(h,.)]

- -0.7267 + 0.6039(4.0) + 0.0868(13.3) + 0.3093(7.9)

- 5.3 m2

The confidence interval of the prediction can now be calculated.

Z± ± 1.96a, (2.54)

is the prediction with 95 percent confidence. This result implicitly assumes a Gaus-

sian model (22:1259). The confidence interval for the water table example under

ordinary kriging can be calculated as follows:

2 = 5.3 m2

a, = 2.3 m

and

Z; = 125.3 ± 4.5 m (2.55)

with 95 percent confidence.

2.6.4.4 Universal Kriging. If there is a trend, or a drift, in the sampled

data, the regionalized variable will not be stationary. As a consequence, the predictor

will no longer be unbiased (9:393). In this case, universal kriging must be used and

is described by Davis (9:393) as consisting of three operations:
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"First, the drift must be estimated and removed. Then, the station-
ary residuals are kriged to obtain the needed estimates. Finally, the
estimated residuals are combined with the drift to obtain estimates of
the actual surface." (9:393)

The trend can further be characterized as having both a local and global compo-

nent. Performing a least-squares fit to the data and removing the polynomial will

produce stationary residuals. The variogram of the residuals can then be calculated.

However, universal kriging only assumes the data is intrinsically stationary. That

is, it only requires the data in the local neighborhood, as defined by the range a, to

be stationary. Then, only the neighborhood sample points will be used in the pre-

dictor. Local stationarity is accounted for by incorporating a local, first-order drift

polynomial into the kriging equations. The first-order polynomial terms are added

to the kriging matrix, and the following system of equations is solved to determine

the weights:

0 0 0 1 1 ... 1 A 1

0 0 0 X1  X2 ... X. al XP

0 0 0 Y 2  ... Y- a2

1 X, Y1  y(h11) "y(h12) -y(h 1 ) w, = -(hip)

1 X 2 Y2 "y(h2,) -y(h22) "-y(h 2,) W2 -(h2p)

1 X. Y. -t(h.1) -y(h 2)..- -y(h..) w, -(h.p)

where Xi and Y are the coordinates of the ith sample point, Xp and Y are the

coordinates of the unsampled point, and the as are unknown local drift coefficients

which are to be found. Once again, the alternate covariance form of the kriging
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equations can be written as:

0 0 0 1 1 1 A 1

0 0 0 X, X2 -. X. al XV

0 0 0 Y Y2 "" Y C2 YP

1 X, Y 0' (hi,) a(h 12)-" a(hl,) w, = (hp)

1 X 2 Y2 a(h 2 l) a(h 22 ) ... a(h,) W2  a(h 2,)

I X,, Y a(h.1) a(h, 2) ... a(h..) j w. j a(h~p)

and the error variance is calculated as in Equation 2.48 or Equation 2.46. The

prediction and confidence interval axe subsequently calculated as in the previous

example.

2.6.5 Exactness. The exactness property of kriging has been described as its

ability to predict a known value with zero error (9:392). For instance, in the water

table prediction example, if the elevation for Well Two was to be predicted, "y(hip)

would be equal to -y(hi2) since Well Two and the prediction point coincide. Using

ordinary kriging for simplicity, the resulting equations are as follows:

0.0 1 1 1 A 1

1 0.0 13.4 11.5 w1  13.4

1 13.4 0.0 19.1 W2  0.0

1 11.5 19.1 0.0 W3  19.1

In [AI[w] = [b] notation, row three of [A] is identical to [bI. The solution, as would

be expected, is:

A 0

Wi 0

to 2  1

W3  0
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and the prediction is:

Z = = 0(120) + 1(103) +0(142)

= 103 meters

and the error variance is:

02 = [W]T [b]

= [W3IT [y(hip)]

= 0(1) + 0(13.4) + 1(0) + 0(19.1)

= 0.0 m2

Thus, the known point is exactly predicted, and kriging is often referred to as being

an "exact interpolator" (9:392).

2.7 Summary

This chapter reviewed digital TIROS-N imagery, current enlargement tech-

niques, and kriging. The images are visible wavelength weather imagery at 4.0-km

resolution and are stored in digital format. Currently, nearest-neighbor, bilinear

interpolation, and cubic convolution are commonly used to enlarge digital images.

Kriging, however, can also be applied to enlarge images since the pixel gray values

are spatially distributed in two dimensions, and can be modeled by a regionalized

variable. Punctual kriging was identified as the method to use. It uses point sam-

ples and produces point predictions. Universal kriging was shown to be applicable in

situations where there was a drift in the regionalized variable. Simple and ordinary

kriging were defined in the process and help complete the kriging types. Addition-

ally, several variogram types, and the more common models, were presented. Each

of the topics were discussed to the degree that they were used in this research.
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III. Methodology

This chapter presents the methodology used in meeting the objectives out-

lined in Chapter I. The kriging methodology will be discussed by chronologically

progressing through the data collection procedure and the application of each of the
kriging programs. The included sections discuss data collection, structural analysis,

universal kriging, and current enlargement techniques.

3.1 Data Collection

The visible wavelength imagery used in this research was collected by Dr. T. S.
Kelso of the Air Force Institute of Technology. The initial imagery collected was 4.0-

km resolution AVHRR data as received from the NOAA operated, TIROS-N weather

satellites. The data was reconstructed by ground processing into a digital format.

The resulting eight-bit data are termed to be in "raw" format. These eight digital

bits allow the pixel gray values to range between 0 and 255. The resultant images

were 800-by-1440 pixels in size.

All programs used in this research were written in the C or C + + program-
ming language by various authors who will be acknowledged when their program is

introduced. A matrix object was written by Brodkin (3) to facilitate programming

efficiency and memory conservation. This research effort also involved defining sim-
ple interface programs (such as "krigeinterface.c" written by Duckett (12), Brodkin

(3), and McGee) which allow users to customize the operation of each program to
their needs. Among other things, the specific header lines in the image data file were

accommodated. Once the raw files were available and the appropriate interface files
were established, the data was prepared for kriging using a three step process.

Step 1. The first step in preparing the data was to cut a tractable size sub-
image from the original image. Image processing software provided by Kelso was used

to cut 100-by-100 raw sub-images. This particular size was chosen to be compatible
with current program capabilities while allowing reasonable processing times, and

to allow sufficient room for enlargements. The original 100-by-100 sub-images used

in this research are shown in Appendix B. The numbering scheme on the images is

arbitrary, and is not intented to indicate that any images were discarded. The image

contents are identified below.
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& Image 0004 was chosen for its anticipated isotropic characteristics. It is a

section of plains in the north-central United States located west of the Great

Lakes. The image was recorded by the NOAA-11 satellite on Day 231 of 1991.

e Image 0007 is the western coast of Lake Michigan with significant cloud cover

over the land. This sub-image was cut from the same image as Image 0004.

o Image 0010 is Hurricane Bob. It was recorded by the NOAA-11 satellite on

Day 227 of 1991. The hurricane was then located off of the eastern coast of

Florida.

e Image 0013 is a section of Cuba. It was recorded by NOAA-11 on Day 230 of

1991.

o Image 0014 is the Mississippi Delta region opening into the Gulf of Mexico. It

was cut from the same image as Image 0013.

o Image 0019 is a section of southern Florida. It was also taken from the same

image as Image 0013.

o Image 0022 is a section of the Rocky Mountains. It was recorded by NOAA-11

on Day 227 of 1991.

Image 0004 ;" selected as a sample which would display a high degree of

correlation throughout the image. The remaining six images were chosen to contain

varying degrees of clouds, land, and water. This mixture of different features was

necessary to test kriging over a large variance in pixel values over the image areas.

The test cases were chosen to span a wide range of possible variations in the input

images.

Step 2. The second step was to convert the raw data into a form that could

be processed. The first output of the conversion program is a file of data values
which is compatible with the kriging programs. The data file lists the x-coordinate,

y-coordinate, and the pixel value, z, in three columns. The second file is created

in the Run-Length Encoded (RLE) format for display. This file was necessary to
further view the 100-by-100 sub-images. The RLE functions were compiled from
an existing RLE database by Parrott and McGee and belong to the Utah RLE 3.0
Toolkit. Some modifications were made to incorporate the image size and to write

the data output. The usage of the program is as follows:
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makedata infile outfile x-dimension y-dimension

The x-dimension and y-dimension are those of the original sub-image. In this case

they were both entered as 100.

Step S. The third step was to prepare the data file for future processing.

Three header lines listing the desired processing parameters were added to the top

of the data file. The first two header lines include parameters which are used by
the variogram program, and the third line is a place-holder for the coefficients of

the global trend polynomial calculated by the trend removal program. The header

format that must be added to the data file is as follows:

NS idir step

phi psi k

0 0 0 0 0 0

Each parameter is described in detail below.

" NS is the number of samples in the image. NS is 10000 for the 100-by-100 pixel

sub-images. No commas are allowed.

" idir is the number of variograms that will be calculated over the image. Ini-

tially, this value was set to one, and each directional variogram was calculated

by separate runs of the program. The variogram calculation program calculates

the 0° and 900 variograms regardless of this parameter setting. Subsequent

variogram calculations used in this research used this updated version of the

program. Other directional variograms can be calculated as specified below in

the Variogram Determination section.

e The step value allows the variogram to be calculated in increments set by

the user. The variogram does not necessarily need to be calculated at every

incremental lag. As long as enough points are used, the continuous variogram

model will still be representative of the discrete variogram. For example, if a

450 variograrn was desired, the step should be at least Vd, which is the diagonal

length of a pixel. If the step is allowed to remain at one for calculation of a 45
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variogram, the variogram value will be zero, indicating the correlation between
a point and itself. Since only 0* and 900 variograms were calculated for this

research, the step size was always set to one.

" phi is the direction for which the vaiogram is to be estimated. The convention

is for 0* to be in the north direction with angles increasing clockwise. Unless
a variogram angle is specified on the command line of the variogram program,
and a variogram angle specification flag is set in the interface file, only 00 and
900 variograms will be calculated, and the 4 angle setting will be ignored.

" psi is the regularization angle. When the variogram is calculated in a desired
direction, the variogram program must first determine which pairs of points
to use in the calculation. It does so by looking at the variogram angle, 4,
and including all of the sample pairs within a semi-inclusion angle, 0 on either
side of 4. To decide which pairs of points are to be included in the variograrn
calculation in a particular direction, the angle between pairs of points must
be within the regularization angle. Effectively, the angle being scanned ranges

from 4' - b to 4 + 0b, where 0b is the regularization, or semi-inclusion, angle.

The variogram program can also be configured to skip the regularization angle
and perform a quicker procedure of simply searching the rows and columns;

however, to use this method, the input data must already be assigned to a

regular grid. This search replaces the trigonometric calculations associated
with the regularization angle and non-gridded data.

" k is the anisotropic correction factor for geometric anisotropy. The struc-

tural analysis of the sub-images did not include a manual determination of
the anisotropic factor. instead, geometric anisotropy was incorporated in the

kriging program and is presented at the end of this chapter. k is only displayed
in the variogram model. Therefore, it was set to one.

Upon completion of data collection and preparation, the structural analysis
can begin.

3.2 Structural Analysis

A structural analysis includes a trend analysis, or determination of the drift,
and estimation of the variogram. Also necessary is a treatment of any anisotropic

effects. Since it is reasonable to believe that data sets obtained from nature are I
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nonstationary, it is assumed that stationarity does not initially exist in the images

processed in this study; however, all of the kriging types assume that the mean of the

regionalized variable is stationary (at least within a local neighborhood), whether or
not it is known. The first step in any structural analysis must, therefore, be a trend

analysis and subsequent removal of the global trend, followed by determination of

the variogram.

8.2.1 Trend Analysis. It is assumed that some form of a trend existed in the
mean of the regionalized variable. Therefore, stationarity was induced in a data set

by fitting a function to the global trend in the regionalized variable and subtracting

this function from the variable. Removing the global trend left the zero-mean residu-

als, as indicated by Equation 2.11, which were then used to calculate the variogram.

A sample trend as shown in Figure 2.1 can be represented by a step function, a

linear function, or a polynomial function; the choice is usually arbitrary (18:716).
The global trend in the images was represented by a second-order polynomial of the

form (18:718-719) (17:18):

Z, = #0 + P3xi + #2Y, + 3Xi1yi + 04XS + #SYS? (3.1)

where i = 1, ... , n, and n is the number of known samples. In matrix notation this

becomes:

1 1  YI 2y X1/ y1 z1

1 X2 Y2 X2Y2 X2 Y2  Z2

2 22
1 X3 Y3 2:3Y3 X3 Y5 = Z3

2  2 fIn Yn XnYn IZn Yn & zn

This is also represented as [Al[w] = [b], and the goal is to estimate the coefficients

in the [w] matrix. Matrix manipulation gives the following equations:

AT(Aw) = AT(b) (3.2)
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and

w = (AT A)-ATb (3.3)

This is the solution to the least-squares regression equations (23:505). The global

trend removal program solves for the P coefficients using this method of least-squares.

The polynomial trend, Z, was then calculated from Z = [A][w] and subtracted from

the original data set, creating an output file of residuals. To save computer memory,

only every other sample point was actually included in the A matrix. The first

two header lines in the output file are the same as the first two input header lines.

The zeros in the third header line are now replaced by the # coefficients, and the
remaining columns in the output file are the x-component, y-component and the

residual pixel value, z, at the coordinate. The usage of the program is as follows:

resid [-i infile] [-o outfile] [-hi

Residual files were created using this program for each of the images used in this

research. The [-h] option will print the usage line shown above.

An advantage of the least-squares polynomial regression technique is that it is

capable of very closely modeling the trend of the data. Another advantage is that

the trend is retained by the polynomial, and can be recombined with the kriged

residuals. Also, since the trend model is continuous, a trend value can be calculated

for positions that were not originally sampled. In kriging, for example, unsampled

points can be predicted based on residual samples, and a trend value will exist for

the unsampled location even though no trend was calculated at that point.

3.2.2 Variogram Determination. The trend analysis program outputs a resid-

ual data set where E[Z(i)] is constant and nearly zero over the entire sub-image.
The next step is to estimate the variograms of the residuals.

The variogram program identifies sample pairs lagged h apart and estimates
the variogram in the chosen directions. As previously mentioned, the program will
run faster if it is configured to take advantage of data which is already arranged on
a regular grid. When the variograms were estimated for the initial sub-images, they
were calculated by taking advantage of the grid structure. The residual pixel values
were used, and 0* and 90* variograms were calculated. The curves in Appendix C
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show the resulting variograms; both variograms are plotted in the same figure to test

for anisotropy. All subsequent variograms were also calculated by taking advantage

of the regularly spaced grid structure. This precluded the need for the program

to search through the semi-inclusion angle for the sample pairs, and it reduced

computation time. The usage of the variogram program is as follows:

varfit [-i infile] [-o outfile] [-p plotfile]

[-v variogramfile] [-a variogram-angle] [-h]

The variogram program was written by Robinson and modified by Duckett. The

variogram program creates three output files. The first file is a replication of the

input data file. The variogram file is the third output file. It contains the results

of the program. A sample output of this file is included in Appendix E. It shows

that the mean drift (shown as elevation) is nearly zero. Also displayed in columns

are the lag for each variogram calculation, the drift value at each lag, the variogram

calculation 7 (h), and the number of samples which were included in each variogram
calculation. The second output file is a subset of the variogram file. It contains the

lag, h, and variogram values, -y(h), necessary to plot the discrete variogram curve.

One observation is apparent from the variograms in Appendix C. For all of the

sub-images, the sills (based on the spherical model) for the 0° and 900 variograms

are roughly equal. Since zonal anisotropy is characterized by differing sills, the

sub-images were deemed zonally isotropic. If this were not the case, it would be

necessary to partition the sub-image into zonally isotropic regions in order for a

single variogram to be used by the kriging program. Duckett has written a C++
partitioning program which divides the data set based on row and column sum

comparisons to their respective median (12). Partitioning can occur before or after

global trend removal. New variograms would then have to be calculated for each

zone. After kriging is performed, the data set would have to be reassembled.

Further observation of the variograms reveals that geometric anisotropy is

present in some of the sub-images. The indication of geometric anisotropy is that the

range of correlation, as defined in the spherical variogram model, for each directional

variogram is different. While it is difficult to detect any geometric anisotropy in Im-

age 04, it is much more clearly defined in Image 07 and Image 13. Image 14 may
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also be geometrically anisotropic. Images 10, 19, and 22 appear to be geometrically,

as well as zonally, isotropic. While geometric anisotropy is present in the sub-images

indicated, no change in the continuous variogram model is made. However, geomet-

ric anisotropy is accounted for in the kriging program and will be discussed below.

No nugget effect is detectable in any of the discrete variograms.

If it is desired to calculate variograms at other than the standard 00 and

900, two parameters should be set in the interface file. The first parameter is

varangle-specified. This is a flag which is set to one and then compiled with

the variogram program. Then the varangle parameter can be set to the desired

direction. Alternatively, the [-a] option on the command line of the program allows

the variogram angle to be defined.

The last items shown in the variogram output file are the variogram models

calculated by the program and the simple correlation showing how well each of the

models were fitted to the discrete curve. The results are presented next.

All three variogram models were plotted, and the results axe included in Ap-

pendix D, along with the mathematical model representations. Fitting the spherical

model to the 00 variogram of Image 13 produced a negative nugget effect value.

Since the variogram is defined as the mean squared difference of the sample pairs,

a negative nugget is actually impossible. Therefore, prior to kriging Image 13, the

nugget was reset to zero. This is in agreement with the actual value displayed by

the discrete variogram calculation. The simple correlations for each of the three

models show how well the fits performed. The results are shown in Table 3.1 and

Table 3.2. Both tables indicate that the spherical variogram model is generally

Direction Image Number0' 04 1 07 1 10 1 13 1 14 1 19 1 22

-Linear 0.992 0.924 0.670 0.754 0.430 0.618 0.508
De Wijsian 0.841 0.951 0.898 0.873 0.804 0.911 0.864

Spherical 0.993 0.937 0.980 0.997 0.787 0.942 0.780

Table 3.1. Simple Correlations of 0* Variogram Models

the best correlated of the three. The spherical variogram model was incorporated

into the kriging program by Grant and Robinson because it was the most flexible
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Direction Image Number I
90°  04_ 07 110 13 14 19 1 22

Linear 0.505 0.507 0.637 0.963 0.316 0.318 0.605
De Wijsian 0.864 0.778 0.956 0.927 0.727 0.726 0.894
Spherical 0.872 0.982 0.910 0.990 0.694 0.763 0.970

Table 3.2. Simple Correlations of 900 Variogram Models

of the three models. Another reasion it was incorporated is that it offered the most

parameters of the three models. Image 14 would have benefitted from use of the De

Wijsian model. However, at the time it was kriged, the De Wijsian model was not

yet incorporated into the kriging program.

3.3 Universal Kriging

Armed with the variogram, the kriging process can continue with performing

the predictions and calculating the error variances. Universal kriging was chosen to

perform the calculations based on its ability to handle any remaining local drift. To

address the implementation of universal kriging, the topics discussed are the kriging

assumption, the kriging program, and the error variance calculation.

3.3.1 Kriging Assumption. Kriging must make an assumption as to the sta-

tionarity of the data. Global stationarity over the sub-image was required for esti-

mation of the variogram. However, universal kriging allows assumption of the least

restrictive case of stationarity-the intrinsic hypothesis (intrinsic assumption). Un-

der the intrinsic hypothesis, stationarity must be attained at least within the local

neighborhood. Therefore, it is not necessary to krige the residual data as it may

contain as much local drift as does the original sub-image data. The procedure,

then, is to determine the order of the local polynomial to include in the universal

kriging equations. The method used was to examine the overall global trend in the

data and to make an inference as to the local drift present. The coefficients of the

global trend for the seven original sub-images are listed in Table 3.3.

Table 3.3 indicates that the global trend is dominated by the first-order terms

in all of the sub-images. A local linear trend was, therefore, incorporated into the

universal kriging equations, as was demonstrated in Chapter II, and kriging was
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Image Number flo #1 X I 8 2 Y [/J 3XY 1hX2 
8 #5Y2

04 56.4247 .1263 .0973 .0007 .0006 -.0015
07 116.6112 -1.8049 .4621 -.0086 .0230 -.0054

10 40.9010 3.2095 1.4883 .0076 -.0365 -.0189
13 -9.3885 .9023 2.3841 -.0180 .0021 -.0159
14 26.3550 .8139 .8031 .0035 -.0096 -.0026
19 86.3372 .4613 .2158 .0111 -.0108 -.0085
22 83.1519 .2721 .1914 -.0061 -.0048 -.0048

Table 3.3. Global Polynomial Trend Coefficients

performed on the original data. The kriging program was written in C++. Grant,

Brodkin, and Robinson are the authors of the program (15) (3).

The capability to perform kriging on residual data has been retained. After

kriging residual data, a simple program is necessary to recombine the global trend

polynomial with the kriged residuals. Since the polynomial is a continuous func-

tion, trend values will be available at grid locations that did not contribute to the

polynomial's determination. The usage of the rebuild program which performs this

function is described here:

rebuild [-i infile] [-o outfile] [-h]

The rebuild program was written by Duckett. The usage of the program is self-

explanatory, except that the [-h] option will print the usage line shown above.

3.3.2 Kriging Program. Discussion of the kriging program involves its imple-

mentation, the treatment of anisotropy, and the resulting image size.

3.3.2.1 Implementation. The kriging program is implemented by set-

ting the necessary parameters in a control file and executing the program on the

control file. Then, the known samples within a neighborhood are used in the pre-

diction of the unsampled pixels in the enlarged image. The neighborhood can be

calculated by the kriging program or set by the user.

The kriging program will calculate a square neighborhood (or rectangle), or
kernel as it is known in image processing, with a diagonal radius equal to the range.
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This is shown in Figure 3.1 where IAX and lAY are termed the semi-inclusion dis-

IAY

IAX

Figure 3.1. Krige Program Calculated Kernel

tances (3) and are half the length of the side of the kernel. The pattern below
shows four neighboring pixels of the original sub-image displayed on the four times

expanded grid,

X . . X

X. . .X

where "X" is a known point, and "." represents a grid location to be predicted. This

structure would be included many times within the kernel defined by the kriging
program. No points will be included in the kernel if they are beyond the range. For
this research, the kernel size was set to a smaller moving square. The smaller kernel
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includes fewer known samples and will produce less than optimal predictions. How-

ever, Davis indicates that neighborhood reduction is a common practical application

in kriging and that it does not significantly affect the predictions (10:599-600).

To set the kernel, the semi-inclusion distances are set in the control file. Since

the kernel is applied to an enlarged grid, the semi-inclusion distances are multiplied

by the expansion factor. At the time that the sub-images were processed, the kernel

was slightly enlarged to include one extra row and column on each edge. The concept

of a kernel as applied in kriging is different from that which is applied in the other

convolution techniques. Since the kriging kernel is applied to an expanded grid, the

number of known pixel values within the kernel is dependent on where the kernel

is centered. Therefore, the "effective kernel size" only includes known pixels on the

expanded grid; it varies as the kernel moves over the image.

In this research, the semi-inclusion distance was set to two, and the effective

kernel size included 16, 20, or 25 pixels. This is comparable to the 16 pixels included

in the cubic convolution technique.

The initial sub-images shown in Appendix B were expanded four times by using

a minimization path in the kriging program. The impetus for using this method was

the amount of computer processing time that was saved. The minimization path
through the kriging program takes advantage of the grid structure of the data.

If a 100-pixel-square sub-image is kriged into a four times enlargement using

the expansion method, 150,000 matrices are formed containing the neighborhood

samples, and 150,000 matrix inversions are calculated. Most of these calculations

become unnecessary by designating the minimization path through the kriging pro-

gram and only calculating the weights once for the central region.

One important assumption is made when applying this technique; the local

drift in the central blocks are identical. The local drift coefficients are included in

the universal kriging equations and affect the solution for the weights. The weights

are thus not only determined by the distance between samples, but also on the local

drift. To replicate the weights between central blocks implies that the local trend
within each block is equal. While this may not be true, kriging Image 13 by using the

minimization path and by simply expanding it (with the kriging program) produced

no noticeable visual difference. However, using the same computer for two test runs,

minimization took approximately twenty-five minutes for a job which would have

taken days using the expansion method.
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One of the parameters included in the control file is the nugget effect, C0 , of

the directional variograms. Since it is possible for the nugget effect to be modeled as

a negative number, a criteria was established to offset this error. If C. was negative

and C. _ 10 percent of the sill, then the nugget was entered in the control file as

being zero. This was performed on the 00 variograrn entry for kriging Image 13.

3.3.2.2 Anisotropy. The known sample points inside the defined kernel

axe used to calculate the second-order moments used in the universal kriging equa-

tions. However, the moments are based on h-the distance between known samples,

and, unless the sub-image is isotropic, h is a vector and depends on the relative

direction between the samples. Hence, the parameters for both of the variograms

are entered into the kriging control file and, before the second-order moment can be

calculated, geometric anisotropy must be addressed and a single variogram model

produced.

The kriging program treats zonal anisotropy by simply producing an aver-

age value for the sills of the two variograms. For geometric anisotropy, the K is

decomposed into two components, hi and h2, corresponding to the image axes.

The anisotropic correction factor, k, is then used to scale the range of one vari-

ogram to match the range of the other. For example, if the k factor is the ratio

of the range of the 0° variogram to the range of the 900 variogram, then the dis-

tance between two points located at (xl,yi) and (X2,Y2) is represented as h' =
Vk2(XI - x2)2 + (y, - Y2)2, and the variogram calculated in the 0° direction is used

(8:134-135). h' is then used as the distance between two points to calculate the

second-order moment.

3.3.2.3 Kriged Image Size. The kriging program does not calculate pre-

dictions outside of the last row and column of samples on the expanded grid. The

100-by-100 pixel sub-images are placed on a four-times enlarged grid at locations 0

through 396. Since no predictions are made outside the last data points, the resul-

tant kriged image is 397-by-397. These are the resultant image sizes produced in

this thesis.

Beginning with a 51-by-51 initial sub-image size and expanding four times will

produce a 201-by-201 kriged image since the 51st pixel is placed on grid location 201.

In Chapter IV, four-times expansions were performed on two 51-by-51 sub-images.
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3.3.3 Error Map. The estimation error variance calculations are written to

an output file for each of the points which were predicted by universal kriging. These

variance values can be used to create a visual map of how well the predictions were

made. For irregularly spaced data, the error map would provide a useful indication

of the amount of error associated with the predictions.

Exactly predicted pixels will have a zero error variance. Therefore, at locations

with known pixels, a black pixel will be present on the error map. At locations which

were predicted, the variance can be used to establish an error map pixel value based

on the confidence interval of the prediction.

If a Gaussian normal distribution is assumed for the prediction errors (8:56),
then the standard error is simply the square-root of the error variance, and the pixel
value for a 95 percent confidence interval can be established as in Equation 2.54.

This pixel value can be displayed at each location over the image to produce an

error map. A typical error map from a kriged image is presented in Chapter IV.

3.4 Current Enlargement Techniques

The nearest-neighbor, bilinear interpolation, and cubic convolution image pro-

cessing techniques were also applied to each of the sub-images. Four-times enlarge-

ments were produced for each of the sub-images using each of these three currently

accepted methods of enlargement. As mentioned in Chapter I, the only method
which retains the original pixel information is the pixel replication used by the

nearest-neighbor method, but it has the disadvantage of producing "block-like" im-
ages which are difficult to interpret. Bilinear interpolation and cubic convolution

alter the original pixel values over the entire image and are not faithful represen-
tations of the original image data. The results of each technique are compared to

those produced by kriging and are presented in Chapter IV.

3.5 Summary

The data collection was performed by cutting seven 100-by-100 sub-images of

raw NOAA TIROS-N AVHRR data and converting them into data files compatible

with the kriging software. Stationary residuals were created by fitting a second-order

polynomial to the global trend and removing it from the data. The structural anal-

ysis of 00 and 90 ° variograms of residuals indicated zonal isotropy. Analysis of the
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global trend polynomial indicated a local linear drift. Models were fitted to the var-

iograms and the spherical model parameters were entered into the universal kriging

program. Geometric anisotropy was handled automatically by the kriging program

by calculating the anisotropy ratio, k, as a ratio of the range of the 0* variogram to

the range of the 900 variogram, and a scaled version the the separation vector, h, was

produced and used in the calculation of the covariance. The covariance function re-

placed the variogram for numerical stability reasons. The resulting predictions using

universal punctual kriging produced kriged images and error maps. Images were also

produced using the nearest-neighbor, bilinear interpolation, and cubic convolution

techniques.
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IV. Results

Nearest neighbor, bilinear interpolation, cubic convolution, and universal punc-
tual kriging were applied to seven TIROS-N AVHRR, 4-kn resolution satellite sub-

images. The original sub-images are presented in Appendix B. Cubic convolution

and kriging were also applied to one aerial photograph. This chapter includes the

initial results, the results obtained from an improved structural analysis, a numerical

analysis comparison of kriging and cubic convolution, and a typical estimation error

variance (error map) presentation.

4.1. Initial Results

The first kriged sub-images were produced using the spherical variogram model,

universal kriging, and a kernel size defined by a semi-inclusion distance of two. There

were 16, 20, or 25 pixels used in each predicted point. This is a maximum effective

kernel size of 25 pixels. Geometric anisotropy was corrected, and no zonal anisotropy

was present. This initial trial did not produce results of the desired quality. These
images are shown in Figure 4.1 through Figure 4.7.
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Figure 4.1 IAmage 04, Convolution Companison

4-2

71, .



!I

'ill

Figure 4.2. Image 07, Convolution Comparison I
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Figure 4.3. Image 10, Convolution Comparison
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Figure 4.4. Image 13, Convolution Comparison
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Figure 4.5. Image 14, Convolution Comparison
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Figure 4.6. Image 19, Convolution Co mparison
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Figure 4.7. image 22, Convolution Comparison
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To determine whether or not the kernel size was a significant factor in the
blurring, Image 04 was re-kriged with a semi-inclusion distance of one. Four to nine

pixels would be included in each prediction using this kernel size. The resulting
image was still blurry. An improved structural analysis was, therefore, indicated if

a sharper image was to be produced.

4.2 Improved Structural Analysis

The source of the blur in the initial images was determined to be the model rep-

resentation of the variogram. Therefore, an improved structural analysis is necessary

in order to produce sharper images.

The problem is that the second-order moment was being calculated from a

model which did not adequately represent the variogram. David mentions that it

is not very important for the C and a parameters of the spherical model to be

misinterpreted, but more care should be taken in interpreting Co (8:122). While the

spherical variogram model generally produced the best fit, it did not usually fit well

at small lags, and the small lags are exactly what are being used within the kernel

to make predictions.

The largest lag that is being used can be determined by multiplying X/2 by
the expansion factor and the semi-inclusion distance. This distance is half of the

kernel diagonal and is the largest lag that can exist between the predicted pixel and

a known pixel within the kernel. The result is that lags of 11.3 or less are being used

to make predictions.

The poor fit of the spherical model is clearly evident in the variograms of the
sub-images. For instance, the 0* spherical model fit of Image 13 displayed Co =

-111.081, but the discrete variogram is actually zero at h = 0. It can be seen from

the variograms in Appendix D that there was a significant nugget effect in each of

the spherical curve fits. The nugget effect in the models is artificial in that it is not

representative of the true variogram.

The result was that the kriging weights were calculated from an inadequate rep-

resentation of the variogram, and the known pixel values were improperly weighted

in ,he predictions. Thus, the kriged sub-images were blurry.

The solution was to use a model which fit well near the origin of the variogram.

The nugget effect of the spherical model was, therefore, set to zero within the control
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file before kriging the sub-images. This forced the spherical model to begin at the

origin. While this caused the model to fit poorly at other areas of the curve, it was
irrelevant since no large lags were being used.

The sub-images were re-kriged using zero for the nugget of both of the 0' and
90° variograms. The semi-inclusion distance was again set to two. With a better
model fit at short lags, the kriged images became comparable to those which were

produced by cubic convolution. The resulting comparisons are shown in Figure 4.8
through Figure 4.14.
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Figure 4.8. Improved Image 04, Convolution Comparison
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Figure 4.9. Improved Image 07, Convolution Comparison
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Figure 4.10. Improved Image 10, Convolution Comparison
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Figure 4. 11. Improved Image 13, Convolution Comparison
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Figure 4.12. Improved Image 14, Convolution Comparison
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Figure 4.13. Improved Image 19, Convolution Comparison
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Figure 4.14. Improved lImage 22, Convolution Comparison
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4.3 Numerical Analysis Comparison

To determine a quantitative comparison of kriging and cubic convolution, two

new sub-images were cut to a size of 201-by-201 pixels. The first sub-image is just a

larger cut of the Mississippi Delta region of the original Image 14. The second sub-

image is an aerial photograph of a residential area. This photograph was used to

test the results of kriging higher resolution imagery. The original images are shown

in Figure 4.15.

The methodology used to compare kriging and cubic convolution was to sub-

sample the images down to a size of 51-by-51 and use both techniques to enlarge the

images back to their original size. Sub-sampling simply consisted of retaining every

fourth column and row of the image. Then, the convolved images were subtracted

from the original. The difference between a kriged or cubic convolved image and the

original produced a differenced image for each of the two techniques. Next, statistics

were collected on the differenced images to determine how well each technique could

reproduce the original image.

To implement this methodology, a structural analysis had to be performed.

First, the global trend was removed from each of the images, and the variogram of

residuals was produced in the 0* and 900 directions. The variograms are shown in

Figure 4.16 and Figure 4.17.
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Figure 4.15. Original Images, 201-by-201 pixels
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Image 14, (51 x 5 1) Variograms of Residuals
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Figure 4.16. Mississippi Delta, Variograins of Residuals

Aerial Photograph, (51 x 51) Variograrns of Residuals
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0'p
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Figure 4.17. Aerial Photograph, Variogramns of Residuals
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Then, the variograrns were fitted with the linear, De Wijsian, and spherical

models. The 0* and 900 continuous variograms for Image 14 and the aerial photo-

graph are shown in Figure 4.18 through Figure 4.21.

Image 14, (51x51) 0* Variogram Models
1400 r r T

1200

1000

800
-y(h)

600

400

200

0 5 10 15 20 25 30 35 40 45 50
h

Figure 4.18. Mississippi Delta, 00 Variogram Models

Spherical model = 554.555 ( 1 161 +296.769

Linear model = 513.370 + 13.754h

DeWijsian model = 314.188 + 162.915 In h
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Image 14, (51 x 51) 900 Variogram Models
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Figure 4.19. Mississippi Delta, 900 Variogramn Models

Spherical model = 311.030 ((2)16.497 2- 6.9 + 363.913

Linear model =487.932 + 7.483h

DeWijsian model =364.519 + 95.1201In h
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Aerial Photograph, (5 1 x 51) 0* Variogramn Models
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Figure 4.20. Aerial Photograph, 00 Variogram Models

Spherical model = 1111.239 -()897 .67 + 581.048

Linear model =: 871.215 + 39.083h

DeWijsian model = 447.315 + 401.6931In h
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Aerial Photograph, (51 x51) 900 Variogram Models
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7y(h)

0 5 10 15 20 25 30 35 40 45 50
h

Figure 4.21. Aerial Photograrh, 90' Variogramn Models

Spherical model = 864.284 ( 91 1( h )3 +624.832

Linear model = 820.841 + 32.241h

DeWijsian model = 480.006 + 327.554 In h
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The spherical variogram model was chosen and added to the kriging control

file. The nugget was reset to zero in all of the models. The semi-inclusion distance

of two was used. and a four-times expansion was performed to create kriged images

of 201-by-201 pixels. The cubic convolution image and kriged images are shown in

Figure 4.22 and in Figure 4.23 for the aerial photograph and the Mississippi Delta

image, respectively. Also shown are the differenced images, which were produced by

subtracting the convolved images from the original.
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Figure 4.22. Comparison of Convolutions with Full-Sized Aerial Photograph
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The mean and standard deviation of the differences were then calculated, and

are presented in Table 4.1 and Table 4.2.

Mississippi Delta C ubic Kriging

[f4929 4.752
o 10.068 10.076

Table 4.1. Mississippi Delta Differenced Data Distribution

Aerial Photograph_ Cubic Kriging

114.780 2.309
01 27.321 5.782

Table 4.2. Aerial Photograph Differenced Data Distribution

In both of the differenced images, the mean difference using kriging was less

than the mean difference using cubic convolution. The standard deviation of the

difference was slightly greater using kriging than using cubic convolution for the

Mississippi Delta image, but the standard deviation of the difference was much less

using kriging than using cubic convolution for the aerial photograph. The results do

not show a statistically significant difference between the kriging and cubic convolu-

tion techniques when applied to the Mississippi Delta image. However, the improved

results using kriging are prominent on the high-resolution aerial photograph. These

results demonstrate that an image produced using kriging is a more faithful rep-

resentation of the true image than an image that was produced using the cubic

convolution technique.

4.4 Error Map

Kriging produces the estimation error variance which can be used to establish

a confidence interval around each of the predictions. This was demonstrated in

Chapter II. The variance can also be scaled to represent a pixel value, and then

displayed as an error map image. This was performed using the error variance of the

aerial photograph and is shown in Figure 4.24.
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Figure 4.24. Aerial Photograph, Prediction Error Map
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The aerial photograph was enlarged four times. Every fourth pixel is repro-

duced exactly-with zero error, and is represented by a black pixel (zero value) on

the error map. The remaining error values are based on the distance from known
pixels which were used in the prediction for that location.

4.5 Summary

The kriged images produced using the spherical variogram and a zero nugget

prove that kriging can perform well in image enhancement by improving the reso-

lution of satellite imagery. A quantitative comparison of the kriging and cubic con-

volution techniques indicates that image enhancement by universal punctual kriging

can produce images which are more faithful than cubic convolution to the original

image. This is indicated by a lower mean difference from the original image than

the mean difference produced by subtracting a cubic convolution image from the

original. This result was expected since kriging is a method of exact interpolation.

That is, it retains the original pixel values.
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V. Recommendations

The recommendations made in this chapter deal with further improvements of

the kriged sub-images, enhancements to the kriging program, a further examination

of kriging's applicability to image processing, and the production of a dedicated

kriging convolution program to be designed and used strictly for image processing.

5.1 Improving the Kriged Sub-Images

In Chapter IV when the kriged images needed to be improved, an improved

structural analysis was performed. The spherical variogram was the only model

incorporated into the kriging program, so it was modified to produce the desired

results. The improvement in image quality was obtained by setting the nugget effect

to zero which, in effect, forced the model to begin at the origin. However, this was

a first attempt at improved images, and it did not ensure that the model would fit

well as the lags increased. In reality, the fit was then determined by how near the

initial slope of the variogram curve was to the reduced spherical model. The optimal

solution would have been to fit a better curve to the variogram at lags within the

size of the kernel.

Since, for this thesis, the kernel size only included lags of approximately 11.3,

there is no need to fit a curve beyond this point. Also, Davis writes that there is
no significant difference between the spherical and linear models near the origin of

the variogram as long as there is a sufficient sample density (9:248). Therefore, the

kriged sub-images produced in this thesis can be improved by fitting a linear model

to the variogram up to the first 12 (approximately) lags, and forcing the nugget to be

zero. Not only will the resultant images be better, there will also be a slight savings

in processing time by not curve fitting the remaining portion of the variogram curve.

5.2 Kriging Program Enhancements

Another possible way to improve the kriged sub-images produced in this thesis

would have been to use one of the other commonly used variogram models. Therefore,

in the future, the linear and De Wijsian models should be incorporated into the

kriging program. This will allow the users to choose the best model based on their

structural analysis and their particular application.
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Lognormally distributed data should also be accommodated in the kriging
program. If the data is indicated to be lognormally distributed, the program should
transform it to normal, krige it, and transform it back to lognormal. This procedure

may produce slight improvements in the mean difference between a kriged and a true

image as calculated in Chapter IV.

5.8 Applicability of Kriging

To correctly apply kriging to image processing, an analysis of the parameters
involved and their effect on the quality of the resultant image is necessary. This
can be done by performing a controlled experiment and sensitivity analysis on the
parameters involved in kriging. For example, the vaiogram of Image 04 indicated

that it was extremely continuous and virtually isotropic. However, kriging it with

the semi-inclusion distance of two, which was chosen for this thesis, there were
some discontinuities in the resultant image. Examining the variogram for variance

and continuity may suggest what an appropriate kernel size should be for existing

conditions within a particular image. This implies that it may be significant to treat
different images with different kernel sizes based on the type of image that it is,
instead of kriging them all with a semi-inclusion distance of two.

Another application of kriging to image enhancement can be studied in the area
of noise reduction. A recommendation is to eliminate noise in satellite imagery using

kriging, apply image classification and forecasting to kriged images, and evaluate
the results. Noise elimination using kriging should produce better results than other

methods and should improve image classification and the forecasts made from the

enhanced imagery.

Finally, the kriged, differenced imagery produced in Chapter IV showed the

kriging error to be concentrated at the borders of the features in the image. This
strongly suggests that this technique should be tested as a method of edge-detection.

5.4 Dedicated Kriging Convolution Progrcrm

The application of universal punctual kriging has been successful in improving

the resolution of satellite imagery while maintaining a more faithful representation
than cubic convolution of the true image. This success was performed using kriging

programs and procedures which were designed to be generally applicable to a wide
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variety of data types and structures. The setup and execution of the various programs

associated with kriging is often intricate. To make the process more streamlined

and efficient, a dedicated kriging program can be developed to operate strictly on

regularly gridded digital imagery, and take advantage of the recommendations made

in this chapter. In particular,

" Readin the raw data. Save time by not performing any unnecessary conver-

sions.

" Calculate residuals.

" Calculate the variograms only for the lags that are within the kernel size to be

used. Calculate the variogram based on the regular grid pattern. No searches

for paired points is necessary.

" Curve fit a linear model to the truncated variograms. Ensure the curve inter-

sects the origin. The linear model is a perfectly good approximation of the

variogram at distances much less than the range, as shown by the spherical

model (9:247).

" The minimization approach used in this thesis and the accompanying kriging

program should be incorporated if it is desirable to keep kriging processing

times low (minutes instead of hours). As presented in Chapter III, this method

assumes the local drift is the same within the central region.

" The option to krige residual data sets and reincorporate the trend should be

incorporated.

5.5 Summary

The success of applying universal punctual kriging to image processing indi-

cates that the current procedures can be made available to image analysts. However,

incorporating program enhancements and developing a streamlined program strictly

for use on digital imagery will shorten processing times and produce further improved

imagery.

Universal punctual kriging can also be applied to noise removal in digital satel-

lite imagery. The results should be improvements in image interpretation and clas-

sification, as well as improved forecasting based on the kriged images. Finally, the

methodology used in Chapter IV to quantitatively compare kriging to cubic convo-

lution showed promise as a method of edge detection and should be explored.
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Appendix A. Conversions

A. 1 The Kriging Weights and the a Parameter

The kriging weights wi are defined in Chapter II in terms of ai for notational
simplicity. Their relationship is:

ap= 1

a, = -wi for i =,...,n

where n is the number of known samples, and the p subscript represents the point

being kriged. The relationship was derived as follows:

Ep = zp- z;

= ep - e; for a known constant mean
n

=- Zp- _Up- _ wi (Zi - pi)

= p _ i W Z -IO W ( p -li ) - .( p L
= z p+ W (z- ,) + [w(Z-W- Z- - p))-

i=1

n

= z(I + W )-_U(j + W )- E ,(z - u,)
i=0

n

= (Zp -u)(1 - ap) + Eai(Z, - pi)
i=0

where the coefficient switch from w to a has been made such that a = -w. And, if

ap is defined to be one, then the equation further simplifies to:

ft

,= Za(Zi - 'Ui)
,=0

Again the substitution for Chapter II is:

ap = 1

ai = -wi fori=1,...,n

A-1



A.2 Estimation Error Variance

When [b] is written in terms of the variogram, y(h), the estimation error vari-

ance is calculated as:

2 = [w] T[bJ

The covariance and the variogram are second-order moments, and their relationship

was established in Chapter II as:

-y(h) = a(O) - a(h)

Using this relationship, when [b] is written in terms of the covariance, a(h),
the estimation error variance is calculated as:

For simplicity, consider only two sample points. The transformation can be

made as follows:

4y,2= [W] T [b]

or.' [WI W 21. 1h2

a, =[w, 1. (0) -a(h)

or = wi[a(0) - a,(h)] + w2 [a(0) -a2(h))

Oe=WIOu(0) +W 2cr(0) -wi'7i(h) -W 20i2(h)
o', = (wI + w 2)u(O) - (wial(h) + w2 a2 (h))

and since the weights sum to one, the result becomes:

' = ( )- [W , W 2 . ,)(h)

2 -jW1 0 a2 [1( h)
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o, = (01- [w]t[b]

when [b] is in terms of the covariance, a(h).

A-3



Appendix B. Original Images

Figure B.1. The Original 100-by-100 Satellite Sub-Images.
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Appendix C. Variograms of Residuals

The following variograms are calculated in the 0* and 900 directions. The dia-
mond points represent values calculated in the 00 direction; the plus points represent
values calculated at 900. The variograms of the initial seven sub-images are shown

below.

Image 04, Variograms of Residuals
35 1 1 1 1

Zero-Degrees -
30 Ninety-Degrees ---

25

20y(h)

15

10

5

0 20 40 60 80 100
h (distance lag)

Figure C.1. Image 04, Variograms of Residuals
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Image 07, Variograms of Residuals
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Figure C.2. Image 07, Variograms of Residuals

Image 10, Variograins of Residuals
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Figure C.3. Image 10, Variograms of Residuals

C-2



Image 13, Variograms of Residuals
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Figure C.4. Image 13, Variograms of Residuals

Image 14, Variograms of Residuals
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Figure C.5. Image 14, Variograms of Residuals
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Image 19, Variograms of Residuals
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Figure C.6. Image 19, Variograms of Residuals

Image 22, Variograms of Residuals
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Figure C.?. Image 22, Variograms of Residuals
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Appendix D. Variogram Models

The graphs in this appendix show the 0* and 900 variograms for each of the

subject images, along with the three variogram models. The thick solid line is the

linear model; the thin solid line is the spherical model; the dotted line is the De

Wijsian model. Each model is displayed below its respective plot.

Image 04, 0* Variogram Models
25
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y(h)
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0 10 20 30 40 50 60 70 80 90 100
h

Figure D.I. Image 04, 0* Variogram Models

Spherical model = 6.81 (235 + 39.304

Linear model = 11.252 + 0.117h

DeWijsian model = 7.467 + 2.271 In h
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Image 04, 900 Variograrn Models
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Figure D.2. Image 04, 900 Variograrn Models

Spherical model = 7.379 ()2.0 329.204

Linear model = 11.941 + 0.099h

DeWijsian -nodel 7.906 + 2.209 In h
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Image 07, 0* Variogram Models
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Figure D.3. Image 07, 0* Variogramn Models

Spherical model = 466.880 ((2)5.958 5295 + 192.628

Linear model = 232.305 + 9.712h

DeWijsian model =4.124 + 159.633 In h
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Image 07, 900 Variograrn Models
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Figure D.4. Image 07, 900 Variogram Models

Spherical model =826.993 3h)~1 h ~(11)3) + 91.509

Linear model = 412.647 + 10.441h

DeWijsian model =26.390 + 219.393 In h
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Image 10, 00 Variogram Models
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Figure D.5. Image 10, 00 Variogramn Models

Spherical model = 651.108 -23.32 3.3 + 55.762

Linear model = 277.694 + 9.655h

DeWijsian model =-43.489 + 190.675 In h
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Irriage 10, 900 Variogram Models
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Figure D.6. Image 10, 900 Variogram Models

Spherical model = 473.103 ( (2)3514i 3514 ±196.214

Linear model = 333.794 + 8.014h

DeWijsian model =70.756 + 157.064 In h
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Image 13, 0* Variogram Models
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Figure D.7. Image 13, 0* Variogram Models

Spherical model = 1974.232 ((2)35459 -(35.459))+-3.1

Linear model = 423.931 + 34.035h

DeWijsian model =-495.287 + 599.964 In h
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Image 13, 900 Variograrn Models
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Figure D.8. Image 13, 900 Variogram Models

Spherical model = 1495.693 (()3 1 ( h )+7.8

Linear model = 211.426 + 31.206h

DeWijsian model = -463.640 + 493.241 In h
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Image 14, 0' Variogram Models
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Figure D.9. Image 14, 00 Variogramn Models

Spherical model = 559.396 ((2)32911 2 (32.911 ) + 276.949

Linear model = 475.026 + 7.961h

DeWijsian model = 151.181 + 177 .2 25 In h
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Image 14, 900 Variogram Models
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Figure D.10. Image 14, 90' Variogram Models

Spherical model = 470.171 -()173 3.9 + 421.863

Linear model = 606.541 + 5.834h

DeWijsian model =321.578 + 146.026 In h
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Image 19, 0' Variogram Models
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Figure D.11. Image 19, 00 Variogram Models

Spherical model = 969.047 ((2)33-4674 33.674)3 8.8

Linear model =606.714 + 14.809h

DeWijsian model =88.910 + 300.990 In h
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Image 19, 900 Variogram Models
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Figure D.12. Image 19, 90' Variogram Models

Spherical model = 730.959 (()3 1 h +9573

Linear model = 795.157 + 8.467h

DeWijsian model = 367.829 + 216.5851In h
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Image 22, 0* Variogram Models
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Figure D.13. Image 22, 0* Variogramn Models

Spherical model = 687.392 ((2)3442 -(34.452) + 538.185

Linear model = 750.364 + 11-145h

DeWijsian model =335.710 + 234.985 In h
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Image 22, 900 Variogram Models
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Figure D.14. Image 22, 900 Variogram Models

Spherical model = 1292.612 ((2)33342 33.3 32.06

Linear model = 792.268 + 19.185h

DeWijsian model =135.067 + 385.319 In h
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Appendix E. Typical Variogram Output

This is a typical output from the variogram program. The mean elevation

indicates the effectiveness of the global trend removal program. The variogram

models are included at the end of the output.

sum: -163.304535 sum2: 11252960.000000

mean: -0.016330 var: 1125.295776

Direction number: 1

Direction angle (degrees): 90

Step size: 1.00

Overall mean elevation: -0.02

variance: 1125.30

Field of 1.00 degrees in each direction (regularization factor)

Anisotropic correction factor: 1.00

Num of Average

Distance Samples Drift gamma(h) Distance(h)

0.0 - 1.0 0 0.00 0.00 0.00

1.0 - 2.0 9900 0.14 30.96 1.00

2.0 - 3.0 9800 0.29 84.05 2.00

3.0 - 4.0 9700 0.44 137.02 3.00

4.0 - 5.0 9600 0.60 193.03 4.00

5.0 - 6.0 9500 0.75 251.64 5.00

6.0 - 7.0 9400 0.90 312.83 6.00

7.0 - 8.0 9300 1.03 375.02 7.00

8.0 - 9.0 9200 1.14 436.31 8.00

9.0 - 10.0 9100 1.18 495.70 9.00

10.0 - 11.0 9000 1.19 552.05 10.00

11.0 - 12.0 8900 1.18 603.48 11.00

12.0 - 13.0 8800 1.16 650.34 12.00

13.0 - 14.0 8700 1.10 689.21 13.00
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14.0 - 15.0 8600 1.00 722.37 14.00

15.0 - 16.0 8500 0.86 754.98 15.00

16.0 - 17.0 8400 0.71 787.65 16.00

17.0 - 18.0 8300 0.52 821.05 17.00

18.0 - 19.0 8200 0.32 854.07 18.00

19.0 - 20.0 8100 0.11 888.48 19.00

20.0 - 21.0 8000 -0.09 925.78 20.00

21.0 - 22.0 7900 -0.32 964.69 21.00

22.0 - 23.0 7800 -0.56 1002.81 22.00

23.0 - 24.0 7700 -0.76 1037.39 23.00

24.0 - 25.0 7600 -0.93 1067.45 24.00

25.0 - 26.0 7500 -1.10 1095.51 25.00

26.0 - 27.0 7400 -1.24 1120.07 26.00

27.0 - 28.0 7300 -1.33 1141.77 27.00

28.0 - 29.0 7200 -1.41 1160.96 28.00

29.0 - 30.0 7100 -1.49 1180.48 29.00

30.0 - 31.0 7000 -1.54 1201.30 30.00

31.0 - 32.0 6900 -1.57 1220.47 31.00

32.0 - 33.0 6800 -1.56 1239.77 32.00

33.0 - 34.0 6700 -1.53 1256.96 33.00

34.0 - 35.0 6600 -1.47 1276.07 34.00

35.0 - 36.0 6500 -1.38 1296.92 35.00

36.0 - 37.0 6400 -1.26 1317.77 36.00

37.0 - 38.0 6300 -1.17 1338.46 37.00

38.0 - 39.0 6200 -1.06 1362.26 38.00

39.0 - 40.0 6100 -0.87 1388.69 39.00

40.0 - 41.0 6000 -0.64 1417.23 40.00

41.0 - 42.0 5900 -0.45 1446.41 41.00

42.0 - 43.0 5800 -0.28 1473.41 42.00

43.0 - 44.0 5700 -0.10 1500.55 43.00

44.0 - 45.0 5600 0.08 1526.87 44.00

45.0 - 46.0 5500 0.24 1550.55 45.00

46.0 - 47.0 5400 0.37 1574.59 46.00

47.0 - 48.0 5300 0.47 1599.08 47.00

48.0 - 49.0 5200 0.56 1625.86 48.00
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49.0 - 50.0 5100 0.61 1655.38 49.00

50.0 - 51.0 5000 0.63 1685.54 50.00

51.0 - 52.0 4900 0.63 1714.13 51.00

52.0 - 53.0 4800 0.61 1740.25 52.00

53.0 - 54.0 4700 0.54 1762.59 53.00

54.0 - 55.0 4600 0.43 1781.13 54.00

55.0 - 56.0 4500 0.30 1797.77 55.00

56.0 - 57.0 4400 0.10 1811.55 56.00

57.0 - 58.0 4300 -0.14 1824.84 57.00

58.0 - 59.0 4200 -0.39 1836.95 58.00

59.0 - 60.0 4100 -0.65 1847.94 59.00

60.0 - 61.0 4000 -0.96 1858.92 60.00

61.0 - 62.0 3900 -1.37 1863.19 61.00

62.0 - 63.0 3800 -1.74 1859.64 62.00

63.0 - 64.0 3700 -2.00 1845.82 63.00

64.0 - 65.0 3600 -2.24 1819.52 64.00

65.0 - 66.0 3500 -2.56 1790.91 65.00

66.0 - 67.0 3400 -2.86 1761.94 66.00

67.0 - 68.0 3300 -3.11 1728.89 67.00

68.0 - 69.0 3200 -3.31 1693.11 68.00

69.0 - 70.0 3100 -3.50 1661.53 69.00

70.0 - 71.0 3000 -3.60 1628.16 70.00

71.0 - 72.0 2900 -3.64 1598.05 71.00

72.0 - 73.0 2800 -3.62 1564.38 72.00

73.0 - 74.0 2700 -3.60 1530.19 73.00

74.0 - 75.0 2600 -3.53 1496.11 74.00

75.0 - 76.0 2500 -3.31 1458.96 75.00

76.0 - 77.0 2400 -2.95 1422.90 76.00

77.0 - 78.0 2300 -2.55 1389.08 77.00

78.0 - 79.0 2200 -1.98 1361.14 78.00

79.0 - 80.0 2100 -1.22 1335.96 79.00

80.0 - 81.0 2000 -0.37 1309.81 80.00

81.0 - 82.0 1900 0.49 1279.86 81.00

82.0 - 83.0 1800 1.45 1239.73 82.00

83.0 - 84.0 1700 2.56 1190.46 83.00
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84.0 - 85.0 1600 3.72 1137.66 84.00

85.0 - 86.0 1500 4.88 1083.83 85.00

86.0 - 87.0 1400 6.14 1025.55 86.00

87.0 - 88.0 1300 7.39 955.25 87.00

88.0 - 89.0 1200 8.48 893.91 88.00

89.0 - 90.0 1100 9.52 859.20 89.00

90.0 - 91.0 1000 10.72 834.34 90.00

91.0 - 92.0 900 11.95 828.79 91.00

92.0 - 93.0 800 13.10 833.69 92.00

93.0 - 94.0 700 13.75 856.19 93.00

94.0 - 95.0 600 14.11 900.57 94.00

95.0 - 96.0 50q 14.27 948.17 95.00

96.0 - 97.0 400 14.31 992.90 96.00

97.0 - 98.0 300 14.19 1016.76 97.00

98.0 - 99.0 200 14.32 1024.25 98.00

99.0 - 100.0 100 13.70 1041.81 99.00

You may have to increase the value of MaxLag

Number of points used in linear model fit: 49

Linear Model:

gamma(h) = 210.553 + 31.256 h

Simple Correlation: 0.963

Number of points used in DeWijsian model fit: 49

DeWijsian Model:

gamma(h) = -464.823 + 493.769 ln(h)

Simple Correlation: 0.927

Number of points used in spherical model fit: 49

Spherical Model:

CO = 80.457

C = 1499.873

(range) A - 52.599

(sill)CO+C - 1580.330

E-4



gamma(h) = 1499.873 [ (3*h)/(2*52.599) - (1/2)(h/52.599)-3]+80.457

Remember to incorporate k if appropriate!

Simple Correlation: 0.990

NOTE:

Simple correlation should be close to +/- I for good model fit but

please be cautious of negative slopes for linear and ln models and

spherical cases where C<CO!
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