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1 Introduction

1.1 Problem Description

The motivation for this research arises from the maneuvering and target tracking func-

~ tions currently envisioned for large space structure (LSS) optical tracking systems. Such

* systems consist of lightweight structures which are mounted on, or articulated with respect
to, heavier less flexible structures. Within the lightweight structure is an optical system,
and within that system there are subsystems having similar further divisions. For example,
a typical LSS optical system might consist of the following subsystems, listed here in order
of increasing bandwidth: (1) coarse tracking of rigid body dynamics via gimbals, CMG’s,
reaction jets, and isolation devices; (2) beam pointing via mirror actuators; (3) wavefront
and focus via secondary mirror control; and (4) fine tracking via fast mirrors and track illu-
mination. Due to the natural frequency separation between each descending subsystem, it
is possible to view each as essentially an independent tracking problem.

With this view in mind our reasearch has concentrated on a more genceric and fundamental
objective, namely, feedback control for rapid precision mancuvering of flexible structures.
This objective encompasses any or all of the typical subsystems involved in an LSS optical
tracking system. Our specific aims were as follows:

(1) Determine the performance limitations for rapid slewing.

(2) Develop methodologies to implement feedback slewing controllers which achieve speci-
fied performance goals.

1.2 Overview of Results

The limitations of tracking performance, particularly target acquisition, arise principally
from actuator saturation. Since saturation is a nonlincar function, it is not surprising that
high performance slewing controllers are nonlinear. The rapid slewing problem, which is
perhaps more well known as the time-optimal control problem, has been the subject of
research for very many years. Mathematically, a complete formulation of this problem can be
obtained using Pontryagin’s Maximum Principle, c.g., [Athl]. However, in only the simplest
cases has it been possible to obtain a solution. The general solution requires solving a two-
point boundary value problem. In addition, for practical reasons, such as robustness and
disturbance attenuation, it is necessary to implement the time-optimal control as a feedback
system. However, such an implementation requires determining very complicated multi-
dimensional switching surfaces. This is not a solved problem except for some very simple
cases, ¢.g., rigid body dynamics. As a result, the rescarch challenge undertaken here is the
design and feedback implementation of time-optimal control for systems with the complexity
of typical LSS o; :al tracking systems.

Within the s - : of linear (time-invariant finite-dimensional ) control design and analysis,

there exists a - - iderable amount of theory as well as complementary, very eflicient com-
putational tools, Many classes of performance specifications can be included in the design




methodology, ¢.g., minimum energy, worst-case gain, etc. Nonlincar control design, however,
is at its infancy, and except for very specific cases, a performance specification other than
stability is very hard to incorporate. -

The minimum-time control design problem is a nonlinear control design problem. This
is due to the fact that the solution relies on maximizing the available actuation energy over
the finite duration of actuation. As is well known from Pontryagin’s Maximum Principle, for
a given reference the actuation is bang-bang, i.e., saturating at the two extremes. Clearly
a scalar multiple of the reference will yield a similar actuation sequence over a different
duration. Observe that a closed-loop implementation is acceptable provided that it generates
the (open-loop) time-optimal solution at the plant input.

“Tor a given plant model and reference trajectory, if onc could solve the associated
minimum-time problem, one would obtain the description of the input in terms of the
costate. This costate-to-input map would in turn describe a closed-loop implementation.
Such a point of view, apart from the nontrivial issue of solving the minimum-time problem,
has two other major drawbacks:

i) A time-optimal maneuver requires an actuation sequence which does not excite the
structural modes. Since the structural modes can only be determined within some
tolerance, what is optimal for the design model may not prove to be satisfactory for
the perturbations of the design model. In other words, the complete solution lacks
information on the achieved robustness in performance.

ii) Regardless of the plant model, the solution is necessarily bang-bang. Hence, one re-
quires switching logic (sign functions) to implement the costate-to-input map. Such
an implementation is known to chatter for small errov signals.

These drawbacks imply that one should step back from the minimum-time and seck
approximate solutions which will make the closed-loop implementation feasible and achicve
performance degradation which is acceptable. Within the scope of this project, two distinct
approaches have been taken in the course of secking an approximate solution:

e Approach 1.
Start with a representative problem for which the complete analytical solution can be
obtained. Modify the solution to obtain an implementable fast tracking closed-loop
systein. Such an approach restricts the set of allowable models. However, the existence
of an analytical solution provides a variety of extcusions to be made, e.g., adaptation.
Section 2 focuses on the results obtained using this paiticuiar approach.

e Approach 2.
Instead of modifying the solution to a specific problem, pose the original minimume-
time problem as the limit of a sequence of easy to solve convex optimization preblems.
For a fixed member o1 this sequence, determine a closed-loop design scheme based
on the solution. Such an approach increases computational complexity in the design

2




stage. However, for a satisfactory approximation to the original minimum-time prob-
lem, the ciosed-loop design makes intensive use of existing linear (iime-invariant finite-
dimensional) design tools. The closed-loop design relies on a model follower scheme.
Section 3 focuses on the results obtained using this particular approach.







2 Approach 1

This phase of the project consists of the research leading to the following three publications
which are reprinted in Appendices B through D . Part of this research was motivated by the
publication in Appendix A (under an NSF grant), which is included for completeness.

1 M. L. Workman, R. L. Kosut and G. F. Franklin,
“Adaptive Proxlmate Time-Optimal Control: Discrete-Time Case,”
Proceedings of the IEEE Conference on Decision and Control, pp. 1548-1553,
Los Angeles, Ca.hforma, December 1987.

2. R. L. Kosut , A. M. Pascoal, M. L. Workman and G. I. Franklin,
- “Minimum-Time Control of Large Space Structures,”

Proceedings of the SPIE Conference,

Los Angeles, California, January 1988.

3. A. M. Pascoal, R. L. Kosut, G. F. Franklin, D. R. Meldrum and M. L. Workman,
“Adaptive Time-Optimal Control of Flexible Structures,”
Proceedings of the American Control Conference,
Pittsburgh, Pennsylvania, June 1989.

During this period Dr. Kosut collaborated with Prof. Franklin from the EE Dept. at
Stanford University and his graduate students M.L.. Workman and D.R. Meldrum. Dr. Pas-
coal was employed by ISI.







3 Approach 2

3.1 Introduction!

Within the setting of finite-dimensional linear time-invariant multi-input multi-output plant
modeling/identification and control design, increased computational power allows higher
order nominal plant models to be incorparated in the designs in order to meet stringent
performance demands. Currently used design methodologies include minimum-energy, worst-
case cnergy-gain and peak-gain designs. In the cese of actuator saturation, even if a globally
stabilizing compensator is designed, saturation of the actuators may significantly degrade
the overall performance. Typically, one forces sufficient conditions to guarantce that the
actuator signals do not saturate over the region of opcration.

The minimum-time tracking (of a fixed or moving taxgct) on the other hand becomes
an ill-posed problem if the saturation of the actuators is not incorporated in the problem
description. Subject to the specified saturation limits, minimum-time solutions are neces-
sarily bang-bang; hence, a linear control design will prove to be unsatisfactory. Closing the
loop aside, solving for the (or a, as the case might be) tiine-optimal input is a nontrivial
task. Pontryagin’s Maximum Principle (sce e.g., [Athl]) brings a complete solution to the
problem, using the calculus of variations. Solving for the equivalent nonlinear (non-convex)
non-differentiable programming problem brings up all the associated hardships. In order for
such an approach to be implementable, one requires a characterization of the switching sur-
faces in the state-space. Complete solutions for single-input single-output low order models
have been derived in the literature; these results are extremely case specific and they are
derivations for the complete solution for the case at hand. Regardless of what the solution is,
the result requires a relay in the closed-loop; hence, chattering subject to disturbances. The
way to overcome this difficulty is to approximate the infinite-gain nonlinearity (namely, the
relay) with a finite-gain nonlincarity. lence one is bound to step back from the time-optimal
result for the sake of implementation. Xven if one reformulates the open-loop minimum-time
problem as a fast finite-time tracking problem (for a given reference trajectory, determine an
input (subject to actuator saturation) so that the tracking error remains at zero after a finite
time-instant) a feasible solution method for a closed-loop design goal remains a challenge.

Fast finite-time tracking of reference signals with saturating actuators has been a bench-
mark control problem since the complete solution methiod to the open-loop problem has been
derived using Pontryagin’s Maximum Principle. Solutions for the rigid body approximations
have been used in different, control strategies in applications arcas such as the control of disk
drives and precise maneuvering of flexible systerus. The deinand for fast tracking with satu-
rating actuators has produced a variety of closed-loop implementations ranging from using
idealized relays, finite-gain relays, adaptation methods, etc. [Worl, Wor2, Wor3] . In the
mecantime, openloop solution to the problem with flexible modes has been studied in detail,
for specific cases with no damping. The resulting proposed nonlinear optimization problems
arc derived using the necessary optimality conditions posed by the Maximum Principle, for
specific plant models [Benl, Sinl] .

In this report, an approximation to the time-optimal tracking problem under actuator

An abridged version of a subset of the following results is to appear in the Proceedings of the IEEY
Conference on Decision and Conirol, Brighton, United Kingdom, December 1991 (see Appendix E) .
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saturation constraints is proposed for linear time-invariant finite-dimensional multi-input
multi-output plants, The approximation relies on a transfer function approach to formulating
constraints on the set of admissible finite-duration signals that achieve precise point-to-
point positioning of flexible structures [Bhal] . The results are used to design fast finite-
time tracking closed-loop feedback systems using only linear time-invariant design tools;
the design replicates the open-loop behaviour with the added advantages of feedback. An
example illustrates the feasibility of the approach.

3.2 Motivation

Consider a linear time-invariant finite-dimensional multi-input multi-output plant P . For
preliminary arguments, consider the continuous-time case (the solution method proposed
relies on trunsfer function descriptions; hence it naturally extends to the discrete-time case).
Consider the following optimal control problem:

e Tor a given reference r , find the minimum time 7" such that a T'-duration control input
u (Jlul|eo < 1) achieves (P *u)(t) =r(t) forallt > T .

Clearly, not all signals 7 can be tracked in such manner. Once the right class of r is described,
this problem boils down to the standard time-optimal intercept problem. As is well known,
Pontryagin’s Maximum Principle sets up the necessary conditions to solve this problem;
however, literally computing the control u turns out to be a nasty nonlinear optimization
problem. Lven if we had the the time-optimal u, that tracked r in 7, seconds, trying this
input on an open-loop plant is a futile attempt. Consider a simple double integrator plant
with r as a step input. The time-optimal u, clearly satisfies [;° u.(7)dr = 0 ; otherwise
the plant would start to tumble. If one had an actuation disturbance (say a short duration
pulse with a DC component) there would be no way to implement a tine-optimal slew in
open-loop without ezact knowledge of the input disturbance. Clearly, one requires a feedback
configuration.

For the double integrator plant, for any stabilizing compensator (in the unity-feedback
system) , the sensitivity map has a zcro at s = 0 ; hence, any additive DC disturbance at the
input is asymptotically rejected at the true plant input.Instead of choosing any stabilizing
compensator, if we designed an £;-optimal compensator, we will have a worst-case amplitude
gain from the input disturbance to the plant input. Using this headroom, we could solve the
time-optimal problein with the actuation constraint modified to j|uljes < (1 —€) , where
e € (0,1), is the discount factor keeping the worst case disturbance contribution. In other
words, the closed-loop design (how sophisticated one desires to get) can be decoupled from
the time-optimal problem by presetting € . Clearly, any stable unity-fcedback system can be
used to track r once the time-optimal (or as close as one can get) u, is determined (inject. .,
at the plant input and use Pu, as the reference and let the compensator work on the output
measurement error); see FFigure 1 . This line of reasoning works fine as long as one has the
suitable u, ; in other words, the open-loop solution.

So, a feasible closed-loop (robust, disturbance rejecting, ...) design problem boils down to
computing ¢, in a fast manner; possibly, after certain simplifications and getting sub-optimal
resuits within a reasonable headroom.
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Figure 1: Stable unity-feedback system with zero initial conditions that achieves y = Pu,

This report focuses on an approximation to the time-optimal tracking problem. The
result can be expressed in terms of a sequence of linear programs, where the number of
" variables is fixed throughout. The results are applicable to any multi-input multi-output P
with a minimal state-space description (A, B,C) . Time-suboptimal tracking is achieved for
the set of admissible reference signals associated with P . The results are incorporated in a
closed-loop design procedure. An example illustrates the feasibility of the approach.

3.3 Finite-Time Tracking of Reference Signals

Let the plant, P , be strictly proper and have a minimal state-space description (A, B,C),
with n; inputs, n, ontputs and n, states. The state-space description can be in continuous-
time or discrete-time. For the sake of illustration, the results will be exclusively stated for the
continuous-time strictly proper multi-input multi-output plant P . Since the approach relies
on a rational transfer function description, with appropriate modifications, discrete-time
setting can also be handled.

3.3.1 Definition: (Ur)

For a given T' € (0,00) , Uy denotes the set of all bounded? inputs of duration T, where
Ur == {u: Ry > R | w(t)=0 for t>T , [Jufl < o0} ..0O.°

Typically, the actuators have saturation limits. After appropriate normalization of the
input u to the plant, we assuine that the saturation constraints are expressed as [juljo, < 1.

3.3.2 Definition: (7'-track)

For a given 1" € (0,00) , y is said to T-track r iff y(t) = r(¢) forallt > 7', 0

For a given reference signal r , the minimum-time tracking problem is to determine the
minimum timc 7" and an input ¥ C Uz, such that julle, < 1 and (P+u) T-tracks r . Since
the inputs are restricted to idy , the reference should T-track a zero-input response of 12 .

“with .cspect to the norm |} - || . Foru : Ry = IR™ |, ul|e = SUP e, MaXigicn, |1i(t)]

-




3.3.3 i'act:

For a given plant P with a minimal description (4, B,C) , and a reference r , there exists
‘an input u € Ur such that (P xu) T-tracks r if and only if r € Ry, where

Rp = {r: Ry > R™ | r(t)=Cezg, 20 e R™,t 2T} .0 (1)

- Note that (1) is a complete description of reference trajectories that the plant output can

- T-track with inputs in 47 . From now on, we will refer to the set Ry as the set of admissible
- —— —reference trajectories. Using the description in (1) , any r € Ry has a unique decomposition S
as stated in the following fact.

- 334 Fact: I

For a given plant P with a minimal description (A, B,C) ,let r € Ry . Then there exists a
unique r7 € Ur and a unique z, € R™ such that

r(t) = rp(t) + Ce*'z, . 0O

3.3.5 Finite-Time Tracking Problem Pr:

For a given r € Rr , determine a v € Ur such that (P *u) T-tracksr . O
Clearly, the problem Pr has always a solution, since there is no constraint on the actuator

signal. The standard analytical solution method for Pr is outlined in order to motivate the
results.

3.3.6 Finite-time tracking with unconstrained actuation:

Let (A, B, C) be minimal; without loss of generality, sct initial time instant to zero. We now
briefly state the standard solution method.

1. Fix T' € (0,00) .
2. Fixr € Ry .

3. Dctermine the unique z(7") described by the constraint

r(t) = CeAlt" Dy, t > T

I

ie.,
C (1)
CA ()
: (1) = | .
CAM1? - 1.(7;—1)(111)

4. Solve for We(T) where Wi (t) satisfics

We = AWe + WA + BBT | We(0) = 0

10




5. Compute the finite-duration minimum energy control that steers zo to x(7) , namely
T AT(T-t)y17—-1 _ AT
u(t) = { (])3 ¢ We (T)[2(T) ~ e*" zo] i E %q,T] 0 (2)

Recall that the minimum energy solution in (2) is a solution of the linear equation
| L
where
“ar = z(T) — eTz(0)
Lr(u) := /OT cA(T—’)Bu(T)dT

If one obtains a parametrization of the null-space of Lt , together with the minimum
energy solution in (2) , one obtains a parametrization of all solutions to (3) . Note that, the
resulting parametrization is a parametrization of all inputs that achieve T-tracking of the
reference r . One could then search over the subspace of solutions for an input that satisfied
the maximum bounds.

A straightforward approach would be to introduce sampling at a fixed rate and zero-
order hold. Instead of keeping the input value at cach sampling instant as an independent
parameter (which would increase the complexity of the optimization problem considerably),
hold the input signal constant over a fixed amount of sampling instants so that the number
of free parameters is reasonable. The equation in (3) would then be a linear equation in finite
number of parameters; together with the parameter bounds imposed by the saturation limits,
one ends up with a standard linear programming problem. There is one major drawback of
this approach: setting up the approximate linear programming problem requires considerable
amount of computation (discretization, time-domain convolutions, state-transition matrix
cvaluations, etc.) .

The proposed solution method, sets up another linear programming problem using trans-
fer function description and partial fraction expansions.

Before we start describing another way of parametrizing inputs in Uy that a(ln( we -
tracking of 7 , we point outl the fact that the standard minimum energy solution to Py can
be used to determine a lower bound on the 17s the scarch is based on.

For a signal u € Uy , |lull <1 implies that the energy? ||u|l; < T'n; . We know that
the minimum energy nceded to steer 2o to (7'} is given by

ill] = "W

where ¢ = z(1') — eATzy . Clearly, if ||4]|2 is greater than T'n; |, there cannot be a bounded
signal in My that can do the job. Later, during the detailed description of an cxample, we will
use this energy bound condition in order to show the effect of the proposed approximations
to the minimum-time reachability problem.

SForu @ My — W™, Jul| = f7 «" (r)u(r)dr

11
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3.4 Transfer Function Approach

Although time-domain solutions and necessary conditions of optimality formulate the com-
plete solution to the minimum-time tracking problem, it requires considerable computational
effort to solve the resulting nonlinear problem. What we propose 1s to approximate the
problem as a sequence of finite-time tracking problems in terms of linear programming. The
finite-time tracking problems are formulated in terms of partial fraction expansmns hence
they require no time-domain simulations. We now describe the procedure.

What we mean by the poles of a function of time are the.poles of the Laplace-transform
of the function. Note that a signal in Ut is entire; hence, it does not have any poles.

Recall that for a given minimal (A, B,C) , the set of all reference signals that can be

~tracked in finite time is given by (1) . From Fact 3.3.4 , we conclude that the reference signal

can have poles at the plant poles and nowhere else.

Let » € Rr and the plant be at an initial state zo at t = 0 . Let r¢ and z, describe the
unique decomposition of r as in Fact 3.3.4 . The goal is to find a u € Ur such that

Rr(s) + C(sI — A) 'z, = C(sI — A) ™ (zo + BU(s))

Since signals in Ur do not have any poles, the set of all signals that achieve T'-tracking is
described by partial fraction expansion matching conditions. From now on, without loss of
generality, we will assume that zo (the initial condition) is zero. If z¢ is not zcro, one can
redefine z, as (z, — z0) .

3.4.1 Proposition:

Let the plant P have the expansion

k m 1\,1
S

i=1 j=1

?

where K{;; € IR™*™ . Let r ¢ Ry . Consider the unique decomposition
ro=trr + Texp
where rp € Up and 71pp = Cetz, (see Fact 3.3.4) . Under these assumptions,

1. 7¢xp € Ry ; morcover,

where Ky € R™

2. The set of all signals u € Up such that (P % u) T'-tracks r is given by

77 l de] m
{weth | Ry = G | [ s U )
A 5=5;
il kg1, mp .0 (4)




3.4.2 A Convex Approximation to the Minimum-Time Tracking Problem

In order to use the results mentioned above in a finite-dimensional optimization problem,
choose a basis of Uy (preferably, one for which the Laplace transforms can be easily calcu-
lated) . Truncate this basis down to a finite collection {h; }‘ ~,, for a specified N . Consider
the subclass of signals in Uz whose Laplace transforms are of the form

N
UP(S) = ; p,'II,'(S)

Clearly, all of the matching constraints in (4) translate into a linear cquation in terms of
p € RY , say
| o I'(Tp =~ . ' ' )

Note that v € IR" |, where
k
noi= Ny YoMy
=1

The entries of 4 are solely determined by the entries of K, ij corresponding to 7ezp (sce Propo-
sition 3.4.1) . We will refer to the space 7 is in as the residue-space (an abuse of notation;
after all, not all entries of 4 correspond to the residues in the partial fraction expansion) .
For the specified expansion Uy(s) and specified 7', (4) determines a unique I'(T") . Solv-
ing (5) for different vectors « in the residuc-space, one obtains solutions to Py for different
admissible reference signals

As we have scen before, there is no loss of generality when the reference trajectory r
is expressed in terms of 1oz only. The finite duration portion has no contribution to the
matching constraints in (4) . We now point out an observation that may further simplify
sctting up the problem. Typically, the reference r.,, does not have nonzero coefficients at
each and every single pole of P | i.c., not all entries of 4 are nonzero. The desired reference
is usually T-tracked by exciting a subsct of the plant poles. Note that if none of the plant
poles arc excited, the plant output will also be in Uy .

Suppose that one has a model of P of the form

P(s) Ko N K,

s) = — +
. 2« . z -
52 o 8T+ 2wis + w;

where the desired performance is to achieve rigid body performance with minimal residual
vibration due to the rest of the flexible modes. Note that the results mentioned so far are
quite general, not specifically derived with this simplification in mind. Carrying on with the
observation, since the flexible modes are distinct, zero residual vibration at s; 1s achieved
if U(s;) = 0, provided that the plant is initially at rest. Since the rank of K; is nonzero
(otherwise the mode would not show up in the model), /(s;) has to be in the null-space of
K; . Definitely, chosing U(s;) = 0 is a sufficient condition; however, the results considerably
simplify since the performance boils down to step and ramp constraints on U(s) . The
null-space description for the residual vibration port'on can be replaced by setting the input
to zero at those poles. Clearly, for single input systems, this sufficient condition is also
necessary. Note that, when one seeks an input thal steers any state Lo a terminal state,
/(s;) will not necessarily be zero, in order to suppress the corresponding mode.,
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Provided that (5) has a solution, one brings another way of solving the finite-time tracking
problem Pz . Introducing the actuation saturation constraints, we end up with a convex
feasibility problem:

Find p € RN such that T(T)p = v and |[p” h|le <1

?

where h(t) := [l1(t) ... hn(t)]T . As it will be explained later on, by suitably choosing
~ the finite collection of functions in Ur , the convex problem becomes a linear programming
problem. _

~ Instead of solving a sequence of convex feasibility problems and seek answers of the form
yes or no, one can form a slight variation to extract the most from each optimization run.
For a fixed T' and N , ~ denotes the desired direction and magnitude; instead of solving for
-~ solve for a scaled version: - o I . o

max AL (6)
peRV. e lR

I(T)p = M
Tkl <1

Solving the convex minimization problem (6) , one obtains the maximum performance
along the direction v for a specified T and N . Clearly, one can then solve a sequence of
convex minimization problems by varying 7" (and N) to sweep a maximum performance
curve; hence, obtaining an approximation to the minimum-time problem. In the rest of
this report, we will fix N and vary 7' . The implications of this approach will be discussed
in detail for the specific convex setting: linear program. Such a choice is made only for
making sure that the complexity of the sequence of convex optimization problems stays the
same throughout the whole sweep. If one is not interested in further simplifying this convex
program (6) to a linear program, one could apply all of the topics discussed under the linear
program setup to this general convex setting.

3.4.3 A Particular Choice for U,(s)

A time-optimal input signal is necessarily bang-bang; i.e., it is piecewise constant, (with values
41, for a detailed treatment of the solution technique using calculus of variations, seec e.g.,
[Ath1]) . While there 1s no upper-bound on the finite number of switchings in general, for a
fixed number of switchings, say N , one can choose a sequence of N pulses (with alternating
amplitudes) with varying widths as a family of functions in Uy . One can then solve for the
constraints in (4) to obtain a family of nonlincar (non-convex) algebraic equations [Schl] .
Similar algebraic cquations are obtained by applying the Pontryagin’s Maximum Principle
to specific cases of I, using state-space computations {Benl, Sinl] . Since the signals (by
construction) , do not violate the specified actuation bounds, solving for the minimum width
pulse sequence brings an approximation to the solution of the minimum-time problem. In
order to avoid local minima problems, we choose a lincar combination of functions in Uy .
For a fixed T, consider the weighted sum of a sequence of N pulses with uniform widths

(T/N) ; 1.e., choose U, (s) as

U (s) = [Z{}N:II(f~(k—l);]i) . n(t_kl)}
o k=1 ' N N
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e’TIN _ N _
= —— Y pre PN (7)
§ k=1

L denotes the Laplace-transform and 1 denotes the unit-step function.? Since the input
signal is piecewise constant, the actuation bounds can be expressed as

where p € RY is to be determined.® Recall that, the general convex approximation was
in fact a linear equation with convex constraint on the parameters., Now that the input
constraint can be equivalently represented as a parameter bound, we end up with a linear
..program setup. '

Before proceeding with the sequence of linear programs, we comment on the choice of
N.

The matching conditions in (4) yield n equations in N unknowns. In order not to have
a trivial null-space, N should be greater than n . Note that the null-space solution will be
used to find a solution in the hypercube —1 < p < 1. If the time-optimal switchings were
at integer multiples of T/N , the resulting linear program would rcturn a solution at one
of the corners of the hypercube. Ilence the specific approximation as a linear program will
consistently come up with solutions trying to reach a corner, but not necessarily get there.
Clearly, the finer the pulse width, the higher the number of pulses that attain the maximum
bounds. In the detailed treatment of an example, we will comment on the improvements of
the solutions with respect to N .

There is another way of interpreting this specific choice of input. Since the pulses are
uniform, one could view the coeflicient matchingin (4) as matching the output of the discrete-
time plant (namely, P sampled at N/T Hz) . This dictates that the choice of N should be
so that

Imag(s;))T < 27N , i1=1,...,k , (8)

(preferably, < rather than <), where s; denotes the ith pole of P,
Typically, one has energy constraints on the actuators,

el € Emae

where Fy, . denotes an upper bound on the actuation energy. Note that this brings an upper
bound on 7' since the inputs satisfy |uljeo < 1.

w2 < nI' < Epar

Denote the upper bound on 1" as Ty .
Hence, once the poles of PP arc determined, one can choose such an N and fix the order
of the lincar program throughout the solution.

M= IR Il(t):{ (1) ' :;8

*ForpeIRY | —1 <p<ldenotes —1<pe<1,for1<k<nN.




3.4.4 An Approximation by a Sequence of Linear Programs
For a given plant P and N , the maximum performance function

¥ : (0,00) x R* — R4
is defined in terms of the following linear program.

Y(T,v) = max A, (9)
peRM ) e R
I(T)p = Ay

-1<p<l1

- where T'(T) is obtained by the matching conditions (4) . Any p € RY for which the linear
program in (9) returns the value ¥(T',v) , is used to define the relation ¢ ,

® : (0,00) x R* — RN

3
where
®(T,y) = p
For a specified time-instant T , W(T',v) determines the maximum-performance one can

achieve along the specified direction v . For a fixed direction v , by sweeping over 1", one
obtains the y-maximum-performance curve

(T,¥(T,7)) , TeRy

Instead of generating the y-mmaximum-performance curve for T € IR, , introduce a time-
resolution of AT and discretize the curve; i.e., for a pre-determined k,,q,, , evaluate the curve
al integer multiples of AT :

(T, ¥(T,y)) , T=kAT , 0<k < ko,

The sub-optimal (due to the approximations) time-instant 7' for which the residuc 7 is
achieved is in the interval

T e [T}, T + AT]
where
U(T,y) < 1, -
V(T + AT,) >

3.4.5 T-Polytopes and T-isochrones
Consider the maximum-performance function ¥ defined in (9) . The T"-polytope Sr,
Sro= M | YERY, =1, € (0.9(1y)]} . (10)
is the set of all points in the residue-space that can be reached in 1" seconds. The boundary
of this set, denoted by 387 , is referred to as the T-isachrone.
Let Sy denote the set of all residues that can be reached in 7' seconds when inputs are
restricted to bounded (by one) signals in Uy ; i.e., the T-optimal-polytope. In other words,

St is “the” complete result if we were not to restrict the inputs as we did in (9) .
We have the following situple yet crucial properties:
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e St C Str.
¢ St and Sr are convex.

Hence, St is a convex approximation to St .

3.4.6 A Simple Approximation to St
~ Consider the following T-polytope St which is a subset of St in (10) .

S = { ST | st ] (1)

where {e;, ..., ¢,} is a basis in IR" .

3.4.7 A Map from the Residue-Space to the Input Space

Our goal is to construct a map, possibly using look-up tables, such that given a desired
reference signal and the states of the plant, an input signal is generated so that the plant
output T-tracks the reference signal as fast as possible.

The desired reference signal (which should be in Ry) and the initial state determines
the amount of change nccessary in the residues of the output signal. For this reason, we
will focus on the following subproblem: For a given 7 in the residuc-space determine an
input signal such that the output of the plant achieves the residues specified by v as fast as
possible.

In the rest of this report, we will use the standard orthonormal basis {e;, ..., €,} in IR".
In order to cut down on the storage space, we will identify Sr with its “positive orthant”:

S’I‘ = { ZA;W(T,G;)G; I “)\”1 Sl s A 2 0 } . (]2)

=1
Let the signum function SGN : IR™ — IR™ be defined as
‘ 1 if efy>0
¢! SGN(7) := 0 if efy=0
-1 if efy<o0

Let the operator .+ denote element-by-element product in IR™ ; i.c.,

e (n* 1) = (efn)el )
Suppose that v ¢ Sy . Let 4 be defined by
3 = SGN(y) % 4

Clearly, v € Sy if and only if 4 € Sy . Since 4 can be expressed as a convex combination

o= Y AW(Tede , AZ0, AL =1,
=1
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we conclude that the input that achieves 4 residue in T seconds is represented by

ﬁ = E St(D(Ta (_’{)

=1

The input that achieves v residue in T' seconds is represented by

p = f)is (eTSGN (7)) &(T, e:)

=)

Note that
-—1<p<l1

Since the input is assumed to be piecewise-constant over T'/N second durations, suppose
that (with respect to the underlying sampling rate) there are M points per pulse. For the
sake of illustration, assume that n; = 1 ; let & € IRM be the vector will all entries equal to
one. The input sequence that is compactly represented by p € IRV is given by the following
sequence (from 0 to T) u € RMV ;

~

u=pou ,

where the operator ® denoles the tensor product. Hence the underlying idea, is Lo express
a given residue vector 4 as a convex combination; we choosc to do this on one of the T-
isochrones.

We now outline the procedure:

1. Tix N and T,z , following the points mentioned above.

2. Determine a time resolution AT . Suppose that Ny := round(7..-/AT) points sweep
the desired range over which the actuation is considered. Note that, with respect to
this quantization, for any T € (To — AT, Ty] , T-tracking is indistinguishable from
To-tracking,. .

3. Solve (n - Nr) linear programs; i.e., for the Nr time points solve for and store
‘I’(T, e,-) 3 ‘I)(T, 6") ) 1= 1, P

Note that if steady-state to steady-state T'-tracking is to be desired, one need not span
all n directions, as it will become apparent later on in the detailed example.

4. So far, the storage space needed is (n - Ny - (N + 1)) . This data represents the Ny
isochrones, i.e., the boundaries St . This completes all preprocessing that is necessary
to construct the desired map. Note thai along each direction ¢; , we have reached
out as much as possible. Hence, for residues which are close to the directions, the
convex approximation will yield the best possible result subject to the linear program
approximation to the time-optimal problem.
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5. The domain of the desired map is s
STimas '

That is, for any v € 81,... , we will generate an input that -achieves that residue as
fast as possible. Recalling the discussion above, we will nienhfy g with 4 € St.,.., , by
keeping track of SGN(v) , to cut down on storage space,

6. For a given 4 determine the smallest T such that ¥ € ST We propose the following
procedurc Let r) € R be defined as I

NITEE i
N I

f’lc n o= 1/ (L ‘I’(Tk,c.)) s k= 17 g PJT .

-1
R A

Let the £th entry of n be the first entry which is less than or equal to one. Since ¥ was
in &i,,,, to start with, such an £ exists. Hence, we conclude that, among the family of

T-isochrones, 4 can be achieved no faster than T, seconds.

7. Once the index £ and the multiplier ef 7 is determined, assign p € RN :

p o= 3 i) (13

Note that p in (13) satisfies =1 < p < 1, moreoﬁsr, the input that is compactly
represented by p achieves the specified v residue in 1 seconds, the fastest among the
family of T-isochrones.

8. Extract the input sequence from p . Provided that there arc n; inputs, we have
N = Nn; N
for some integer N . Partition p as

= [p ... pa)t , mERN,k=1,..,n

As mentioned before, (with respect to the sampling rate specified) suppose that there
are M points per pulse width (of Tl/N seconds). Let & € IRM have entries equal to
one. The input waveform over T/ N is represented by

u = pp®u , A=1,...,n; ,

where uy € IRNM .

3.5 Example

Recall that none of the results stated so far, put any constraints on (A, B,C) . In order
to test out the proposed scheme, we focused on a specific siso plant, consisting of a double
integrator and three damped flexible modes.
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3.5.1 Plant Model

Consider the single-input single-output plant P(s) :

i 3
P(s) = 5 + Zs2+2c.w,s+w ; (14)

where

[C!l Q9 03] = [5 10 20]
[wi w2 ws) 27 (0.5 1 1.5] rad/s
[G ¢ 6] = [0.10.010.001]

The Bode-plot of P is shown in Figure 2 ; note that the specified time interval corresponds
to excitations with frequency content ranging over the band [0.1,1] Hz . The choice of the
constants had no specific purpose other than making sure that the flexible modes significantly
contribute to the position output. In order to show the efficiency of the proposed scheme,
we will focus on actuation signals in Ur , where T' € [1,10]s . Standard bang-bang actuation
relying on the rigid-body approximation of P for rest-to-rest slewing over the interval [1,10]
s resulted in unsatisfactory outputs.

3.5.2 Admissible Reference Signals and Matching Conditions

For the plant model in (14) , admissible r.p,’s are linear combination of steps, ramps and
lightly-damped sinusoids. The vast majority of tracking problems restricts the references to
to a linear combination of steps and ramps:

{rlr@)=ro+mrt,rneR, meR,t>0}

In terms of the previous notation, we have:

n; = n, 1,
ng =n = 8, )
Tiaz = 10 ,
k=17,
m; = 2,
m; = mg = ... =my = 1 ,

namely, one input, one output, eight states, eight parameters, a maximum of ten seconds of
actuation, seven poles, one of multiplicity two and the rest of multiplicity one.
Following (8) , the constraint

Imag(si)Timer < 28N , 1=1,...,k

yiclds
N > max{0, 4.9719, 9.9995, 15} = 1

<t
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Figure 2: Bode-plot of P in (14)
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We choose

N =20

All simulations were performed by sampling the plant P at 100 Hz . In order to have
one sampie instant added on for each time step AT , we choose

AT = 02,
Nr = 46

~~ In order to set up the linear programming problem, we need to construct I'(T") from the
matching conditions in (4) . For this example, we have

s = 0,
sy =383 = —0.3142 4+ 33.1258 |,
sq4 =385 = —0.0628 + 76.2829 ,
s¢ =57 = —0.0094 + 79.4248

Expand P at its poles (three multiplicity one complex-conjugate pairs and two at zero) ,

k_o ky ko ks ks ka ke ke

P =: —
Plo) = o+ Gt ooy T o) T omen) T o)) T omse) T 5=30)
(15)

where

k() = 0

k1 = 1

k, = j0.7998

ke = 50.7958

ke = 71.0610

In general, admissible reference trajectories r will have the expansion

To ™ T ) T4 ’i‘4 Tg Te .
R(s) =: —+ —

L Py R Py A O R Py R P R Py D

Let the input be chosen as in (7) . Using the fact that signals in 27 do not have any poles,
apply the matching conditions in (4 to

R(s) = P(s)Up(s) ,

where P and R are as in (15) and (16) , respectively. Equating the coefficients of the partial
fraction expansions, we obtain

klUp(O) = T (17)
koUp(0) + kUMY = 1o (i8)
kaUp(sy) = 1 (19)
kyUp(sg) = 14 (20)
koUy(ss) = 16 . (21)
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Note that equations (17 — 21) describe n = 8 linear equations with rcal coellicients in
N = 20 unknowns, namely

I(T)p = v := [ror: Real(rz) Imag(r;) Real(ry) Imag(rs) Real(rq) Imag(re)])”

For ease of notation let ones(1,/N) denote the row vector whose entries are all equal to 1,
Let {1 : N] denote the row vector whose ith entry is equal to ¢ . For s €,

¢(S)T) = U(S,T) [ c"'"T/N e—'lST/N C_"T ,

~where TN
o . 63. — 1
(s, T) = 5
For T =1+ (m — 1)AT , 1(T') € R™¥ is given by :
[ (T/N)?(0.5ones(1,N) — [1:N]) 1
(T'/N) - ones(1,N) f
Real(kov(s2, T )82, 1))
e Imag(kov(sy, 1) (52, T))
Ny = el (k{50 ol (22)
Imag(kav( 34, TYp(s4,T)
Real(ksv(s6, 1) p(s6,1")
Iinag(kev(sg, T) (56, 7")

)
)
)

For illustration purposes, we will assume that the flexible modes arc not excited and
the sequence of input signals achicve slewing and tumbling mancuvers; i.c., we will focus on
T-tracking of steps and ramps only. Such an assumption is made so that the steps taken
can be easily comprehended; by working on a two-dimensional subspace of the residue space,
we can illustrate the T'-isochrones and the T-tracking signal generation casily. However, as
emphasized throughout the study, the results are goneral.

We now solve Np linear prograins along v = ¢; and another Ny linear prograins along
v =c2. -

The e;-maximum-performance curve and eg-maximuin-perforinance curve are shown in
Figure 3 .

3.5.3 ¢;-Maximum-Performance Curve

In this section, we will evaluate the ej-maximum-performance curve obtained by lincar pro-
grams. I'or the plant model 17 in (14) , we do not have the exact “time-optimal” performance
curve. Hence the true errors introduced in the approximation cannot he accounted for. How-
ever, a very usclul comparison will be made instead, based on the rigid-body approxination
to 1.

Let.

o= —
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Figure 3: €;- and ez-maximum-performance curves




Note that, P can be considered as a perturbation of the double-integrator model P . The
e;-time-optimal-performance curve of P is given by

upo(T) = (ié—‘)2 : (23)

Recall that the optimal bang-bang input waveform (for P) is

+1 te0,T/2)
w(t) = { -1 te[T/2,T)
0 t>T

- The curve upp is an upper bound on the performnance of P . In order to rate the achicved
performance, consider 0.07 '

IT

=S (24)
If the e;-maximum-performance curve lies above lowg = we can conclude that P ac.ieves the
performance of P within a 10% relative error in time. In ¢ ther words, if P can T-track ro ,
then P can T-track o where T € [1,1.17] . The three curves: e;-maximum-performance
curve , upy and lowy are shown in IFigure 4 .

Note that after 3 s , the e;-maximum-performance curve lies in between upy and low, .
In other words, for T' € [3,10] s , the 20-paramcter lincar program approximation generates
inputs for which P achieves the performance of the rigid-body approximation /> within 10%
relative error in time.

Before proceeding with the rest of the results, we would like to draw the atiention to the
region 2' € [1,3] s in Figure 4 . This region is shown again in Figure 5 .

We sought an explanation for the deviation over this region shown in Figure 5 from the
rigid-body performance. To be specific, we focused on the rigid-body performance at 1 s,
which is achieved by the approximation after 2 s . Note that due to the time-quantization,
current result vill achieve rg = 0.25 exactly in 2.2 s. In order to sce the improvements in
the linear program approximations versus the parameter N , we derived the e;-maximum-
performance at 1" = 2 5. The resuits are listed in Table 1. Fven for 100-pulse approximation,
the performance improved by only 4% . '

low(T) = (

LN Y (2e) ]
20 T 0.2334
30 | 0.2451
40 1 0.2460

Teble 1t ep-maximum-performance at 2 s .

As another approach, we fixed N = 20 and decreased vhe time-quantization; vy was
achicved in 2.013 s . In other words, the 20-parameter approximation generates inputs so
that the plant /2 can 2.013-track the 0.25-step. This translates into a 102% relative error in
time.
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S
Figure 4: e;-maximum-performance curve (*) , upy (23) and lowg (24)
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Figure 5: Figure 4 redrawn for 7' € [1,3] s .
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In order to account for this 102% relative error in time , the intrinsic limitation of the 1 s
manecuver was revealed using the minimum energy solution as explained in Section 3.3.6 .

Consider a state-space description of the plant P in (14) , where the position is the first
state. The goal is to get from 2o = 0 € IR® to z = [(!2—)2 0 ... 0]7, which denotes the
rigid-body performance in T seconds. Let W (0, T(1 +¢€)) denote the controllability gramian
at I'(1 + €). Clearly, if there exists an input u € Ur(14.) such that ||ullec £ 1 and u steers
z¢ Lo 1 , necessarily,

W' 0,70+ < 71 +e) (25)

‘where []11 denotes the (1,1)-entry and € denotes the relative error needed to satisfy the
necessary condition. At 17" =1 s, we obtain the results in Table 2 .

L e [ W5 (0,(1+e)]u/16/(1 +¢) |

0 1.2278 * 10°
50% 78.8319
5% 3.7966
80% 2.1550
85% 1.2437
90% N 0.7323
9%5% |  0.4421

Table 2: Necessary condition (25) at 7'=1s .

From Table 2 , (which are evaluations of analytically derived necessary conditions), we
conclude that there exits a u € Ur that steers x4 to z7 only if T' > T e [1.85,1.90] s .
Recall that we are also interested in an input ||ule < 1 ; even for 7' = 7' there may not be
such a bounded input. Regardless, even if there is a bounded (by one) signal that achieves
the performance within 1.9 s , this translates into a 90% relative error in time which is an
intrinsic limitation. Compared with the 111% relative error obtained by 20-parameter linear
program approximation, we conclude that the approximation error is bounded by 12% .
Intuitively, 0.5 Hz mode implies that a 2 s slew will be a critical slew. Any slew time slower
than 2 s will affect the frequency band above 0.5 Hz , namely the modes of the plant.

3.5.4 e;-Maximum-Performance Curves

These results bring an approximate solution to the fast 1'-tracking of a moving target. Note
that in the e; case, namely the rest-to-rest slew, the goal was to get from an initial state
of the form [ro 00 ... 0} to [ro+¢éro 00 ... 0]7 . In other words, the target sct is
fixed. In the ey-case, however, the goal is to reach from [ro 0 0 ... 0]7 Lo the moving target
[ro+mTr0 ... O]T as fast as possible.

Recall that the ep-time-optimal-performance of the double-integrator P ( namely, T
tracking y(t) = r1l from zero steady-state) 1s given by

um (1) = = 7 . (26)




Note that the time-optimal bang-bang input waveform (for P) is

+1 te [O,Tl)
u(t) = -1 te[,T] )
0 t>T

where
(2+v72)
r—
2 »
The curve up; is an upper bound on the e;-performance of P . In order to rate the
achieved performance, consider

T1 =

lowy (T = (-0—'3—7—")2 . @

If the e;-maximum-performance curve lies above low, , we can conclude tbat P f}chieves the
performance of P within a 20% relative error in time. In other words, if P can T-track ryt ,
then P can T-track ryt where T € [T',1.27] . The three curves: e;-maximum-performance
curve , up; and low; are shown in Figure 6 .

Note that after 3 s , the ez-maximum-performance curve lies in between up; and low, .
In other words, for T' € [3,10] s , the 20-parameter linear program approximation generates
inputs for which P achieves the performance of the rigid-body approximation P within 20%
relative error in time.

Similar intrinsic limitations could be worked out for this performance plot in Figure 6 .
Note that for {4.5,10] s , the 20-parameter approximation has at most 10% relative error.

3.5.5 Sr

Recall the T-polytope Sz in the positive orthant of the residue-space (see (12)) . For the
purpose of illustration, consider the projection of Sy onto the first two coordinates of the
residue-space. In the rest of this section we will refer to Sz and the 7-polytope Sr (sce (10))
as the projections:

ST — S’]‘n{xéﬂ{" | 23 =1x4 =
ST — STﬂ{:EGIR,n | Ty =T4="""

T

0} , L (28)
z, =10} ‘

i
i

We now comment on the approximation Sr of Sy for the specific example.

Consider Figure 7 , showing two sets of boundaries representing the 5-isochrone and
10-isochrone, respectively.
5- and 10-Isochrones :

Using the simple Nz-linear program approximations along ¢; and e; , respectively, one
obtains Ny isochrones . For the purpose of illustration, we focus on the 5- and 10-isochrones
shown in Figure 7 . Following (28) and (12) , the polytope S; is determined by the boundary
0 A- D 0. The polytope Sy is determined by the boundary 0 £ J1 - 0. 1u order
to rate the effectiveness of the approximation (Sp approximating Sr) , we solved two sets of
lincar programs along two more directions other than ¢; and ¢, ; specifically,

S(1,1100 ... 0}
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and
&(T,(6100 ...0]7)

In other words, we obtained the maximum-peformance curves along the rays
(0—~B~—F) and (0-C-G) ,

respectively (see Figure 7) . Using the associated four-breakpoints, we obtain 0 ~ A - B —
C — D — 0 as an approximation to §s and 0 — E — F — G — H — 0 as an approximation to

- S0 (see Figure 7) . Note the amount of improvement in each case. For the 10-second case,

comparison of the enclosed areas (0 — £ — H — 0 versus 0 — E — F — G — H —0) reveals an
8.64% improvement.

Clearly, by introducing more directions, one can obtain successively better approxima-
tions to Sy . Our goal was to generate a map from the residue-space into the input space.
In the process, given a point in the residue-space, we seek a pair of succsessive T-isochrones
for which the point is outside one but inside the next. We then use the data associated
with the breakpoints of the isochrones to determine the required input. Clearly, the one-
hyperplane approximation &7 is the simplest. Introducing more hyperplanes increase the
accuracy of the T-polytope approximation, however it complicates the generation of inputs.
A multi-hyperplane approximation may eventually require another linear program solution
to determine the “cooordinates” of the point in the residue-space in terms of the “corners”
of the associated T-polytope.

3.5.6 A Fast T-Tracking Example

In this section we illustrate Steps 6-8 in Section 3.4.7 . Assume that the plant P in (14) is
initially at rest. Let the reference trajectory r be as shown in Figure 8 .

The breakpoints and slopes in Figure 8 reveal that the sequence of inputs should satisfy
the following increments in the residue-space denoted by the ordered pairs (ro,7;) :

atT=0 , (42 0)
atT=5 , (-2,-1)
at T'=12 , (+7,+1)
Using the one-hyperplane approximations to the Ny T-polytopes, the fastest fracking

times for the secquence of residue increments are 3.2 , 4.6 and 7 s , respectively. Figure 9
shows the input and the associated output of P in (14) .

3.6 Robustness Considerations

Consider a plant P of the form

P =P+ (5 —ST). ) (29)

where

i = so+red? , 0<r<1, 0<0<2n

- 9
—_— —

KelRre™ | K=I+4+A)Ky , ||All.<é
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In other words, the plant model P is “exact” up to P with an uncertainty description about
the pole at so . We assume that the location of this pole is uncertain, i.e., the multiplicity
of the pole remains the same in the region of uncertainty. As we will see later on, the
multiplicity of the pole (as long as it remains the same) and/or the region of uncertainty
about the pole can be more general (i.e., multiplicity can be greater than one; the region
can be any closed bounded simply connected region about the pole) .

As we have seen before, in order for P to T-track the reference signals of interest, P is

assumed to have all the necessary poles. Qur concern is the residual vibration due to the
" (possibly uncertain) poles which do not coincide with the poles of the reference signal. For
example, for the plant model in (14) , steps and ramps would be the set of reference signals
“and P would have at least two poles at s = 0 ; the uncertainty due to, say, one of the flexible
modes could be incorporated as in (29) ; note that for such a case, there would be another
residue term due to So .

The crucial point is, since the Laplace transforms of signals in Uy are entire, we can use
the property of harmonic functions to bring an upper bound on the residual vibration due
to the uncertainties. Clearly, for any signal v € Uy with julle <1,

T

||U(")(s)|| STl - eT) , k>0, forall ssuch that Real(s) > ¢
Such a bound is too conservative, since typically we will be dealing with a weighted sum of
a specitic sct of input signals.

Let U,(s) denote the Laplace-transform of a family of signals in 7 which is parametrized
by p € Iy |

One approach would be to introduce more constraints on p , in terms of derivatives of
Up(s) . Using the Taylor-series expansion about sq , imposing the constraints

KoUP(s0) =0, j=0,...,(N-1) ,

for some N > 1 , guarantees that the residual term Rgis

o CJ(M

-~ T
Ry = Y o ——U M (s0)

k=N

In other words, for any 5 , the norm of the residue of the output at § , cannot exceed

(I(]+ A) IxoRNH

Note that, since U,(s) is entire, it cannot vanish for all § unless it is identically zero for all
s . Such an approach would increase the number of constraints on p ; however, the resulting
problem is still a linear program, hence the previously proposed methods still apply.

Another approach gives up the linear program setting and ends up with a convex mini-
mization problem by minimizing the worst-case residue. Since Uy (s) is harmonic, for a closed
bounded simply-connected region 2 about sq , we have

sup (U] = sup [0,

s€€l




where 90 denotes the boundary of the region @ 3 so . Discretize the boundary so that
0N =~ QM = {S.‘ | i=1,...,M}

For the specified direction - in the residue-space, obtain the maximum-performance for the
nominal plant

o Ko
P -0
T =)
as explained in the previous sections. In other words, solve for
A= Y(T,)
p = o(T,7)

The linear contraints on p take into account
KoUy(s0) = 0
For this A the norm of the change in the residue over 2 is bounded above by

k= (I + A)Kol| max ||Us(s)]|
37

Provided that & is not desirable, choose A < A (i.e., give up from the performance; in
addition, one may also increase N) and solve the following convex minimization problem:

, reniur;,N max [[Up(s)]|
F(T)p = Ay
-1<p<l

Using the global minimum values (for different A’s) , one could then see how much the
original performance A has to be degraded in order to have a desired residual performance.

3.7 Closing the Loop

In the previous sections, we proposed a method of generating an input signal u € Uy ,
that achieves fast T-tracking of the desired 4 subject to the actuator saturation constraints.
By solving a sequence of linear programs, a look-up table is generated over a region in the
residue-space. This look-up table is incorporated in a “signal generator” which is used to
drive a unity-fecedback system. We now describe the procedure.

3.7.1 Signal Generator

Consider the interconnection in Figure 10 showing the proposed “signal generator” .

The desired reference signal is represented in the residue-space by 4, . Recall that for
a given plant model, the set of admissible refercnce signals that can be 7T-tracked can be
characterized by a partial-fraction expansion at the plant poles. The coeflicients of this
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_ure 10: Signal Generator

expansion are the entries of 4, . In order to represent a series of reference signals, from now
on, v in the residue space will be identified with a waveform 4 : IRy — IR" , Note that all
three versions (of ) in Figure 10 will be piecewise-constant waveforms.

Whenever there is a jump-discontinuity in 4, , the “reset” command initializes the clock
in F and trize s the “IHOLD” block to hold the value of the plant’s state z at the time
of “reset” . Once the state z is held al z , the contribution ¢f z; in the residue-space
is computed by multiplying «; with the suitable Partial-I'raction Expansion Coeflicients
(denoted by the tiock “PFE COEFFS”) . The difference between 4, and 4,, determines the
cornmand « .

The block denoted by F implements the proposed scheme in Section 3.4.7 . For a given
command « , the fastest T'-iracking input @ is generated from the condensed data in the
look-up tables. The “reset” input synchronizes the clock in F in order to generate the input
waveform @ from a data point in IRV . The look-up tables in F corresponds to the nominal
piant model Py . As explained before, specific uncertainty descriptions about the nominal
plant model P can be incorporated during the pre-computations to generate the look-up
tables.

One of the many drawbacks of an open-loop implementation is sensitivity to disturbances.
Consider the model in Figure 11 ; the SAT, ¢ block accounts for the saturation in the
actuators. .

Clearly, when the input disturbance d;, is zero, the signal generator configiration can be
used to determine the desired 4 for the desired § . For a bounded disturbance di, # 0, the
uonzere tracking error may even be unbounded when P is unstable.

3.7.2 Unity-Feedback System

Once the desired 4 and § are determined, these signals arc used in the unity-feedback con-
figuration in Fignre 12 . We now describe a conservative design procedure for determining
a compensator C' . Some of the steps are illustrated with a sample design where P is taken

' -, cz'u < —
fFor a given a > 0, SAT. () : IR™ — ™ |, el SAT(v) = efu , Jelul<a k=1, n.
o
« , U

Note that SATq(u) = aSA’I‘l(}]u) .

!
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Figure 11: Plant model

as the model in (14) .
Typically the model P in Figure 11 is not the same as Fp in the signal generator. Our
“goal is to design a C such that certain disturbance rejection and/or robustness characteristics
are achieved by the closed-loop. The tracking specifications are totally ignored during this
design procedure since the fast T'-tracking is achieved by the (&,§) pair.
In the rest of the section, we assume that the nominal plant model Fy in the signal
generator and the plant model P in the unity-feedback are the same; moreover, the ini-
tial conditions are identical. The disturbance d;;, comes in after the saturation block (see

Figure 12) .
o~ ¢ HO; SATC,XJ;C» P’

2>
&
3

2
+
+

Figure 12: Closed-loop implementation

Note that the signal generator in Figure 10 does not have a SAT, block pre-cascaded
since the output of F is always within the bounds (by construction). '

For the closed-loop system in Figure 12 , over the opceration region for which [julle < o,
the closed-loop map from (i, 7, d;,) to u is given by

v = (J+CP) % + CI+PCY 'y — CP(I+CP) Vs,
Provided that § = P4 , we obtain
u=1a — CP(1+CP)d;,
Clearly, when di, = 0, we have u = 4 ; hence the nominal closed-loop performance achieves
T-tracking. Note that this is true for any stabilizing C with ||uljo, € a . This brings up
a trade-off issue: smaller the contribution of d;, at © meais {faster T-tracking and greater

sensitivily to d;, at the plant output y .
Let the input disturbances be such that

dinlloo < 0.25 . (30)
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Suppose that a = 2 aud 50% of the actuation authority is to be used for disturbance rejec ion.
This specification requires that a stabilizing C satisfies

lCP(1+CPY Y, < 4 (31)

where || - ||; denotes the Lo,-gain. By generating the look-up taoles so that ||@t]je <1, using
~ (30) and (31) , we obtain
’ o llullo < 2

“Hence we have a conservative design since the SAT, block acts as the identity map over the
operation region. Note that the T-tracking portion (i.e., the linear program solutions and
determining the signal generator) is a totally separate procedure {from the compensator design

- once the actuation authorities are allocated for fast T-tracking and disturbance rejection,

respectively. ‘

A stabilizing compensator C is designed for which (31) holds. We now use the (4, ) pair
in Figure 9 to illustrate the obvious advantage of a closed-loop design. A disturbance signal
satisfying (30) is shown in Figure 13 ; di, has a DC component, the signal after 10 s is a sumn
of four sinusoids at 0.1 , 0.5, 1 and 1.5 Hz , the last three at the modal frequencies of P .
Figure 13 also shows the open-loop implementation; P * (4 + d;,) introduces a considerable
tracking crror.

Figure 14 shows the closed-loop signals v in y (see Figure 12 ; 4 , § and d;, are as
mentioned above) . The tracking error (g — §) is shown in Figure 15 .
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Adaptive Proximate Time-Optimal
Servomechanisms: Continuous Time Case

M. L. WorkMAN! R. L. Kosut?* 3, G. F. FRANKLIN®
Information Systems Laboratlory

Abstract— A Proximate Time-Optimal Servo (PTOS) is
developed, along with conditions for its stability., An al-
gorithm is proposed for adapting the PTOS (APTOS) to
improve performance in the face of uncertain plant pa-
rameters. Under ideal conditions APTOS is shown to
be uniformly asymptotically stable. Simulation results
demonstrate the predicted performance.

1. INTRODUCTION

In many automatic control systeins, it is desirable to effect a
minimum-time response to sct point changes. The time-optimal
control is a non-linear function of the plant states and requires
precise knowledge of the plant model [1). An excellent compilation
of related work is contained in Oldenburger {2}, When the plant is
not precisely known, the time-optimal control law can be adapted
to changes in the plant. In this paper we will desaibe an adaptive
proximate time-optimal controller which aside from being acdaptive,
is ynore practical than the ideal time-optimal controller.

In the following scction a non-lincar controller is proposed which
is more practical than the time-optimal controller, and as will be
shown in a later section, can be very close to time-optimal. In the
third section, a theorem is given which guarantees stability of the
practical time-optimal controller under rcasonable constraints, A
specific controller is then shown to meet the stability constraints,
and is also shown to be close to the time-optimal solution under
reasonable assumptions. Adaptation of this proposed controller
is the topic of the following section, including a theorem which
has been proved showing thie uniform asymptotic stability of the
adaptive non-linear controller. Finally, the last section illustrates
via simulation the improved performance afforded by the adaptive
non-linear controller over the fixed parameter non-lincar controller.

2. CONTROL DESIGN: KNOWN PARAMETERS

Consider the plant shown in Figure 2.1, a double integrator
driven by a limiter or saturation block. The equations descril>-
ing this system are

U = asal(i) (2.1)

1Stanford University, on Educational (Resideat Study) icave from
Intemational Business Machines Corp., San Jose, CA.

2Integrated Systems Ine | Palo Alto, CA. and Stanford Univer-
sity, Stanford, CA.

3Research support for both Dr. Kosut and Dr. Franklin from
NASA Grant NAG-2-359,

Stanford University, Stanford, CA 94305

y=v (2:2)
where the “sat™ function is defined as )
. A +1, z2>1
sat(z) = z, {z[<1 (2.3)

-1, z2 < -1
The system state x is defined as

T A

' =y v (2.9)
For time-optimal control, the objective is to minimize the time
required to transfer the system from an initial state [yo o] to
a final state [r 0], where r is a constant output reference or sct
point. The time-optimal control {1] for the system given by (2.1)

T ——<«Control ¥ IC vl a vil |V
Law s s

Figure 2.1: Double integrator plant with bounded control,

and (2.2) is

u = Sg(fro(ye) — v) . (2.5)
Jiolye) = sgulyed(2afye)/? - (2.6)
Ye g rT—y (2.7)

and the signum function is deflined as

+1, z2>1
sgn(z) = 0, z=0 (2.8)
-1, z<1

The sat function of the plant is imposed by some physical con-
straint such as power supply voltage. Combining the control law
givenby (2.5) and (2.7) yields the following description of the time-
optimal control system

y=uv (2.9)
v = asgn(fio(y.) — v) (2.10)
Jiolue) = sgn(ve)(2a |y N)!/? (z11)
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The control law given by (2.5)- (2.7) and shown in Figure 2.2,
although optimal, is not practical in many cases, Even the simall-
est system process or measurement noise will cause the control
to “chatter” between the maximum and minimum values [3}. Re-
moving the infinite gain operators from the time-optimal controller
gives the system a finite bandwidth, and hence is much more prac-
tical.

r Ve

o) O~ 25

K

mlﬁ

» |

~Figure 2.2: Time-optimal controller for double integrator plant.

A proximate time-optimal servomechanisin (PTOS) is shown in
Figure2.3. The function f(-) is a finite slope? approximation to the
switching function fto(-) given by (2.11). The signum function of
(2.10) has been replaced by the “sat” function which, together with
the gain factor ko, can be thought of as a finite slope approximation
to the signum function. The equations which define this “practical”
version of (2.9)-(2.11) are

y=v - (2.12)
¥ = a sat(ka[f(v.) — v]) (2.13)

where the function f(-) is as yet unspecified.
Without aflecting the stability analysis (for step responses), we
will drop r from the equations and analyze the system

v= v (2.14)

U = asau(kz[f(-v) — v]) (2.15)

mIP
M]—l

O O HE

Figure 2.8: Proximate Time-Optimal controller, Linear region of

the saturation {unction has gain k2.

3. PTOS STABILITY

In this section we establish restrictions on the function f(-) and
the gain k2 which will guarantee stability of the system (2.14) -
(2.15) depicted in Figure 2.3 for step inputs.

Theorem 1 (Step Inputs). The zero solulion of (2.14) and {2.15)
is globally asymptotically stable if the following condifions hold:

2The derivative of Sfto is infinite at y = O.

Al) akz > 0.

A2) f(0)=0.

AS) f(2)2>0,Vz#0.

A4) limeoo [ 5(8) d6 = co.

A5) £'(v) £ df(v)/dy exists, ¥ y.
A6) ~a+ k—l;f'(_y) < S~ f(-v) <a— kl—,f‘(_-v) V.

Proof. Details of the proof are contained in [4,5] and will not be
repeated here. Instead, an outline of the approach taken in the
proof will be given. The proof consists of three parts. Referring to
Figure 3.4, it is first shown that all trajectories originating outside
theregion U C R? will enter U in a finite time. Second, it is shown
that subject to Al through A6 trajectories in U remain inside U .
Third, it is shown that there exists a Lyapunov function for the
system when = € U, The regions in state space correspond to the
condition of the control, unsaturated (U), saturated positive (S4),
and saturated ncgative (S_), and arc defined as follows:

vE{@wert: s-v- L ERICNE =}

A
Sy = {(,v) € R?: k2(f(~v) — v) > 1} (3.17)
A
S_Z {(vv) €R?: kao(f(-y) ~ v) < ~1} (3.18)
v
N S_
2 \\\\
S+ \\\ [N
3 y
N \\\
S ~ o

Figurc 8.4: Regions U S , and S_ of the phase plane. The solid

curve represents the paints (y, v) such that v = f(—y).

3.1 AN INTERESTING f(-')'

In this section we propose a function f(+) which meets the condi-
tions of Theorem 1 and still produces nearly time-optimal response
to changes in the position reference input r. The following choice
for f(-) is easy: to motivate: build a function f near to fio such
that the resulting system trajectory requires less than the maxi-
mum acceleration capability of the system, a.

!(yc):{ £ (ve) for |ye|< wi

3.19
cé(yell2a0 v )2 = L] forfyel> w10

The linear portion of f(-) connects the two disjoint halves of the
non-linear portion. To connect the non-lincar regions of f(-) such
that f(-) remains continuous, we have a constraint on the gains k;
and k2,

.2
oak?

ky <
2

(3.20)
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and a constraint on the size of the linecar region

2 .0\ 2
L(L) oy (B)ee
2aa \ky - \k 2

We can choose k3 as a function of k2 so that f/(-) is continuous,
If f' is continuous, then the linear portion of f(-) is tangent to
the non-linear square root portion at the point y = y; and smooth
control results. Thus for continuous f(+) and f7(-), we have

.\ 1/2
h=(§%

aa

(3.21)

(3.22)

and the linear region is just
1

w=i
Whatever the choices for ky, k2, and y; in (3.19) (subject to (3.20)
and (3.21)), we must verify that the conditions of Theorem 1 are
met. It is clear by inspection that the first five conditions are
met by (3.19), and we will check condition A6. The derivative

df(ye)/dye is

(3.23)

LI 0< v <
S'ye) =9 ¥ ha Syesw (3:24)
(Zoay.)i/? ' Ve 2> Wi
Calculating f f! yields
50)ye 0< ye <
J(ve) S (ye) = { *‘z) ver = Vel (3.25)
g — 1‘;} (yc) ‘ Ve > Wi

Given ff, it is ecasy to show that (3.19) mcets the conditions of
Theorem1 if0 < o < 1.

The question which now ariscs is, how closc to timc-optimal is
the proposed system (f(:) is as given by (3.19))? Consider the
limiting case: lot ky — 0o and o get arbitrarily close to 1. If we
consider time to the target as approximated by time to the point
v, and an upper bound on the size of r, then the timne to the
target of our practical system will approach from above that of the
time-optimal system. This means that for unrestricted values of
k2, we can get arbitrarily close to the time-optimal system. For
the system to remain practical there are restrictions to the size of
k2, and these restrictions will be addressed in Scction 3.3.

In the following analysis, it is helpful to define the distance L
which a repositioning from ro to r covers:

L& (r—rol (3.26)

For the time-optimal system let 1,5, denote the time it takes to
move a distance [ to the new target position. For a plant initially
atrest we have,

tope (L) = ia\/z (3.27)

7a
For PTOS, extremely small moves (changes in sct point) will leave
the system state in U , and the time to a given distance (allowable
ervor tolerence) from the set point can be found from a lincar anal-
ysis. For large set point changes, values of L 3> 1/k;, the linecar
part of the response will be neglected. Althougli the PTOS accel-
erates as fast as the time-optimal one, the deceleration is slower.
The time elapsed in moving from point y = a to point y = b at a
velocity which can be written as a function of position is

b
L 1 . PN
time froma to b = / ——dy {s.28)
a V)
The velocity of the PTOS is approximated by
v(ye) & (20a |ye |)1/2 sgt{y-) (3.29)

N
during deceleration. Defining tptoa as the practical controller move
time, we obtain the following approximation for the move time for
the practical system:

1 1
tptos = ﬁ\/i-i-— \/CE\/E

We can define P as the percentage increase in move time of the
practical controller as

P é lw%(lptos - topt)

topt

(3.30)

(3.31)

Substituting (3.27) and (3.30) into (3.31) gives,

1 1
P= 100%[—(-—- - 1)]
2 \Vo
This is an exciting result, in that the move time percentage increase
is not a function of L, the move length. Although reasonable values
of or are usually such that o € [.9 .99), P is plotted for a wide range
of o in Figure 3.5.

(3.32)

Nt\\ —— e - !
P ul \\ S L

L
|

a3 a3 (-2 oss 07 013 o8 o83 Q9 Qs 1

Figure 3.5: Percentage increase P in move time versus o, The
point marked on the curve represents P = 1.3 % for o = .95.

3.2 DESIGNING THE LINEAR CONTROLLER

Using a pole placement method [6,7], we can pick the control
gains to effect a desired closed-loop transfer function. When a is
known, choosing ky and kg as

ky = w:i/a (3.33)
k2 = 24wy /fa (3.34)
will yicld the following closed-loop transfer function
Y 2
() _ d (3.35)

R(s) TS24 2(qwys + wﬁ

Of course the &y and k; must meet the constraints (3.20) and (3.21)
when using (3.19) as f(.) in the practical time-optimal controller.
Substituting (3.33) and (3.34) into (3.20) gives a lower bound on
the damping ratio {4 as a function of a:

G2 —— (3.36)
2
The choice of wy = \/l;; is hoth perfarmance related and of
practical concern: higher bandwidth gives faster decay of position
errors, but high bandwidth necessitates that the model of our plant
be accurate well above wy. Model uncertainty will be covered in
Section 3.3.
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3.3 UNMODELED DYNAMICS

The stability analysis of Section 3 provides us with a set of
design rules for the double integrator system. However, it is well
known that all systers have additional dynamics which are usually
either neglected or unknown.

Initially, we will not constrain the unmodeled part of the plant
tobe linear or time invariant. Stability of the open loop unmodeled
system will be the only constraint. The complete controller block
diagram including unmodeled dynamics and an input disturbance
d is shown in Figure 3.6. From Figure 3.6 we have:

1] = aA{say(d) + d} (3.37)
Y= (3.38)

Since we are trying to examine the effects of the unmodeled dy-
namics and disturbances on the control law designed in Section 2,
we have the same control law (taking A into account when design-
ing the control law makes A modeled , and this is considered in

[)):
@2 ki () - v] (3.39)

The block diagram of the complete system represented by (3.37)
through (3.39) is shown in Figure 3.6.

d(t)

% [=—

Figure 3.6: Complete servo systen block diagram with unmodeled
dynamics and disturbance input d.

In the following theorem, we will need to define an operator vy
which gives the maximum magnitude of a function over all possible
bounded inputs:

Yoo (A{0}) 2 sup  [A{0}] (3.40)
b<(lolleo

It is convenient to define
A
Ay =A -1 (3.41)

As will be discussed later, using this operator (voo) for determin-
ing peak amplitudes is correct, but yields extremely conscrvative
conditions for stability. The following thearem places limits on
both the unmodecled dynamics and the disturbance inputs which
are sufficient to guarantce stability of the following system (see
Figure 3.6):

Theorem 2 (Step Inputs). The zcro solution of (3.97) and (3.38)
with control (9.89) is globally stable if the following conditions
hold:

Al) -A5) of Thcorem I, and

AG) | S'(=9(=v)i< all = veo (A { sat(u) 4 d}) ~ |ldlo,] -
o Yy

Proof. The proof follows the same attack taken in proving The- -
rem 1 and is contained in [4,5].

Interpretation. Theorem 2 differs from Theorem 1 in that it
allows for bounded disturbances and unmodeled dynamics to per-
turb the double integrator model. To account for the unmodeled
deviations, condition A6 discounts the available acceleration by a
conservative amount: the absolute worst case contributivii ol the
operator Ay and the disturbance d. The factor o in (3.19) is pre-
cisely the discount factor which can be adjusted when v (Ay) and
|ldl]ec are specified. Thus we can set:

o =1—vo(A1{sat{#) + d}) - ||d[le (3.42)
Thus condition AG can be stated as:
L0 (=)< eo = =1'(=v) (3.43)

To have moves which are close to time-optimal, the unmodeled
dynamics and disturbances must be small enough such that « is
nearly one, say o € {.9,.99). In terms of the disturbances, the
condition given by Theorem 2 is very reasonable, as the distur-
bances forces should be much smaller than the available force to
the actuator.

The problem with condition A6 is that it is too conservative: it
does not even allow, for example, A to be a real-pole of any band-
width or time constant. In fact the types of unmodeled dynamics
which yteld reasonable a’s are very limiled. If we consider the sys-
tem after the receipt of a step input, and a lincar time-invariant
set of unmodeled dynamics, we can expand the range of unmod-
eled dynamics for which stability can still be proved (using present
techniques). This is best summarized in the following Corollary to
Theorem 2:

Covollary 2.1 (Step tnput at t = tq ). The system given by Equa-
tions 3.37-3.39 1s globally stable if it meets the following condi-

tions:

Al) -A5) of Theorem 1,
AG) A is a stable, lincar time invariant operator,

A7) A(s=0) =0, Ay has no dc gain, This is a formula-
tion constraint. [Deviations tn crpected gain are considered
as varfalions in the plant gain a.

A8) (1 4+ ak2A/s)™" is a stable operator

A9) 1 f'(~9) (=)< all =voo(k2[Ay/sDllic 4 d]|o0 ~ld]loc] ~
7_];'.['(—.1/), Vy, VLt > ty

Proof. The proof is along the lines of Theorem 2, and is also
given in [4,5). To apply this corollary to the real-pole case (A =
1/(75 4 1)), we need the peak gain of A, /s:
TYeo(D1/5) = Yoo (-—::—-) =1 (3.44)
7541
Note that thie peak gain drops toward zero as the time constant
approaches zero. Setting d = 0 and calculating |[i|o. condition A9
vields
a <1 —aky (3.45)
which has the qualitative characteristics we need: as the bandwidth
of the real pole grows, the limit on o diminishes. Thus for 7 = 0,
o must be less than one as in Theorem 1. Henee we can analyze
the elfects of practical uvnmodeled dynamics on the performance
of the system, modulo the impulse reponse of the unmodeied dy-

namics term. In the case ot the real pole, the perlormance will not
be adversely aflected beyond that calculable from (3.45). When
very underdamped unimodeled dynamies are included however, the

performance of the system must be evaluated via simulation.




4. APTCS

In this section we will derive an algorithm for adjusting the
non-linear control law of Section 3.1 to uncertainty about, or slow
changes in, the plant parameter a. Figure 4.7 depicts the structure
of the system with adaptation of the non-linear conirel function
usirg information identified from input/output data of the plant.

Control
Design

[Non-linear
-{Controller

{

Figure {.7: Structure of the Adaptive non-linear Controller

%

4.1 Tue IDENTIFIER

The identification scheme will b" ba.scd on the fnllowmg para-
metric model of the plant:

’ .
7 = asat{d) : {4.43)
where a i5 an unknown constant. We also assume that a is known
to be in the ntervel A = {amin. @mazl,

¢ & lamins @mar) (4.47)

The measured data is { u §, aad {y}. Denoting the estimate of =
as a, the filtered rquetion erveris defined as

ootz ad (4.48)

w2
fa s
= | et 4.49
z (I’r.) " 1/ ) v ( )

[) ? .

\~-—-‘-) sat() (1.50)
where & repoosents the Laplace transform variable. The tane con-
staut 7, affects thie bandwidth of information used by the identifier,
and should be chotan rauct sinaller than e Chime constant defined
by the maximum “learning” rate for a.

To illustrate the ideas we praposc the following simpbe identifi-
cation scheme (LMS):

& = goe (4.51)
=z i (4.52)

wheie g is a positive constant cliosen Lo give a reasoniable leaming
rate, depending on the magnitude of system noise, and intended

claced lonp syetom handwidth  The initial astimate for a is in

[amini@maz} It is possible to show (4] that under the condition
of persistant excitation this single parameler identifier is exponen-
tially convergent tu the correst value ({u} and {y} ate in the muedel
sct).

Parameter  Value

G 1.0

o 0.95

g 15

Tt . .~ 0.02
Swe 10

L " lor2

Tablc 1: Paramctcr valuts for sim‘ulatior.s'.

4.2 Tm: ADAPTIV CJON']ROLLBR

Using the structure of the control law (.18} with a t_oulznuous
JG) (B 22) (3 2'!)) an adapuvc version of &lu' PTOo conhol i

u= sat(ka(f(ve, 0}~ v)) (4 53)
~ with & generated from (4 51),(4.52) and whcu‘ .
e T ’vl = Wd/ﬁ TR L (454) B

Iy = Wawyl p ' ' (4.55)
o= L (4.56)
. ks - i !

. L {pe) ' for jre i< @

I(ver ) { <.1e;n(y,,)[(2pcx]_/C])l/2 — 1fk] forlye{\ h
(1.57)

and p is the projection of a into a known region:
b= arg . 4 min fa—pl - . 7 (4.58)
Henece, if the estimate a is in A, ther p = 4. Otherwise we tuke

the nearest. value in A, The following ﬂuo.cm :nvcﬁ sufficient con-
ditians for stability of AFPTOS.

Theoren 3 (Perameler Convergence). Suppese thet

o417
3
[/ S(8YE > B, Yo €16, 4] {4.59)
-4
‘where T and f§ are positive tonstants independent of ty. Then for
1 ‘}‘ ij.‘
(1) = ro , VL2 te = (y(t),v(t), () — (ro,0,0) {4.60)

The proof of Theorem 3 is ceniained inf4).

SIMOLATION EXAMPLES

In this section we will 2xainine the perforinance of the: {08 and
A PTOS via some simulation examples, Table 1 »vains the fixed
pasarnetess for all of the simuations. RBesponses of wie idcal time-
optimal controller and PTOS to twao set point changes, L = 1, and
L = 2 arc overlayed in Figure $.1. No noise was added to the simu-
lation of the time-optitnal controller to illustrate the behavior of the
so-called ideclsystem The unsaturated PTOS control Curing de-
celeration (o == 0.35) afliuns that o{ty) € U= (1) ¢ U, VL 2 1.
Figure 5.2 shows PP{(05 responses when the plant gain a is not
known, motivating the desire for an adaptive PTOS. Note the time
response becomes slower with any deviation {rom the true value.
Adaptation of the practical controller to a value of 2 = 1 from an
injtiad estimate of @{0) = 1.5 is shown in Figure 6.3. The initial
estimnate of & is tno Jarge, causing control saturation during decel-
eration. Although the svstem apnears stable, as the magnitude of
the set point change prows, the oscillatory behavior of the respouse
grows. As a approaches a, the control does not t.aturate during de-
celeration, und the dosed-loop Lehavior of the system approaches
that of the ideal TO3.

Coe
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Figure 5.2: Response to a set point change before and after adjust-
ment to the correct value of @ == 1 fram an mutial estimate & = 0.5

.

(undershoot) and d == 5.5 (overshoot).

8. CONCLUSIONS

This paper contains the devclopment of an adaptive proximate
¢ nz-optimal control algotithm. Because the algorithim centers on
the types of plants normally found in Servomedanisn, namely
double integrator, this contro} structure is refcred to as APTOS,
or Adaptive Preximate Time Optimal Servomechanicn.

APTOS was shown to be robust to errors in the plant gain esti-
mate, plant dynaxiics modd, and disturbance inputs. For a given
set, of bounds on plant modd vucertainty, disturbance ampiitnde,
and estimated plant gain crror, a maxinum response time degra

{3) M.L. Workinan,

¥y, 0 K

e

e . Tiome (socoads)

Figure 5.2; APTOS traosient response when initial estimate of a

"is too high, under ideal conditions. Note changing control signal

“Cas f(4a) is adjusted.C00 RIS

dation was derived. I wa: rhowu that for ideal conditions, the
APTOS yesponse Lime woald approach the ideal time-optimal re.
spense. Yar the case of limited input authority and desirability
of fast veaponse, APTOQS far out-performs standard Self-Tuning,
Control algoritluns. ’

Becaase imaplementation of the adaptive non-lincar contiol law

‘is extremely complex and cos'ty for second-order cases other than
" the double integrator, a discrets time version of APTOS has been
"-developed{4,8}], which facilitates implanentation. ‘
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Adaptive Proximate Time-Optimal
Servomechanisms: Discrete Time Case

M. L. WorkMAN! R. L. Kosut?3, G. F. FRANKLIN®

Information Systems Laboratory
Stanford Universily, Stanford, CA 94305

Alstract— After a brief review of the continuous time
proximate time-optimal servomechanism (PTOS), a dis-
crete time PTOS is developed, along with conditions for
its stability, An algorithm is proposed for adapting PTOS
when the plant parameters are not known yielding AP-
TOS (adaptive PTOS). Under ideal conditions APTOS
is shown to be uriformally asymptotically stable.
ulation results demonstrate the predicted performance,
and experimental results validate the practicality of AP-
TOS.

Sim-

1. INTRODUCTION

In this paper, we will develop a proximate time-optimal ser-
vomechanism (PTOS) for discrete time control of a continuous time
double integrator plant. After establishing stability, the PTOS
system will be extended to be adaptive (APTOS). The topic of
this paper is an extension of continuous time results presented at
the 1887 Automatic Control Conference, and hence a brief review
of the continuous time proximate time-optimal servomechanism is
presented before addressing the discrete time problem. Both the
continuous and discrete time cases are covered in Workman's dis-
sertation {1]. In the dissertation, the tinic-optimal trajectory was
calculated for a plant modeled by a rcal pole followed by an integra-
tor. The complexity of the resulting time-optimal trajectory, along
with the fact that it is a transcendental function in velocity for po-
sition, motivates the transition to a discrete time implementation
of the controller. Although the discrete time system is at icast as
complex as the continuous time svstem, the implementation with
ticroprocessor technology is muck simpler and less costly than the
analog circuits required for the continuous time zase.

2. REview: ConTINUOUS TIME PTQS

Consider the time-optimal control system shown in Figure 2.1,
The plant consists of a double integrator driven by a limiter or
saturation block. The equations describing this system are(2]

y = (2.1)

'Stanford University, on Educational (Resident Study) leave from
Intermational Business Machines Cory., San Jose, CA.

R . Seafe, C\gra ) )
Integrated Dystens lne. Pabo<ris. CA. and Stadord Univer-

sity, Stanfoed, CA.

3Research support for both Dr. Kosut aud Dr. Fianklin from

NASA Grant NAG-2-359. wnl WSF Geant EcS- 5665644

U= asgn(fio(ye) ~v) (2.2)
Jeolye) = sgn(y.)(2a ‘!Iel)llz {2.3)
where
faY
Ye=Tr—1y (2.4)

In this form, it is helpful to define the move length L as the position
error at the reciept of a new reference (step) input:

L 2 7(t0) - ¥(to) = ve(to)

The control law given by (2.2)~ (2.3) and shown in Figure 2.1,
although time-optimal, is not. practical in many cases. Even the
siallest system process or measurement noise will cause the con-
trol to “chatter” between the maximum and minimum values {3
Removing the infinite gain operators from the time-optimal con-
troller gives the system a finite bandwidth, and hence is much more
practical.

(2.5)

T Ye

fm(')

1 u
A=

bl‘D
U\"—‘

Figure £.1: Time-optimal controller for double integrator ptant.

A proximate time-optunal servomechanism (PTOS).is shown in
Figure 2.2. The function f(-) is a finite slope? approximation to the
switching function fio(:) given by (2.3). The signum functiou of
(2.2) has been replaced by the “sat™ function which, together with
the gain lactor k2, can be thought of as a finite slope approximation
to the signum function. The equations which define this “practical”
version of (2.1)-{2.3) ar=

= v

(2.0)

U= asat(ka[flye) = v]) (2.7)
where the function f(-) is as vet unspecified.

The following theoremn gives the restrictions on the function f{-)
and the gain ky which wil] guarantee stability of the systam (2.6)-
(2.7) depicted in Figure 2.2 for step inputs,

2The derivative of fi, 1. mhnite at y = 0.

[y ]
Wiy |



T Ve
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Figure 2.2: Proximate Time-Optimal controller. Linear region of
the saturation function has gain &5,

Thecrem 1 (Step Inputs). The zero solution of (2.6) and (2.7)
is globally auymptctical{yﬁ:rtablrcr if the following conditions hold:
A1) aky > 0.
A2) f(0)=o0.
A3) f(2)z> 0, Vz#O.
A4) limg oo fo’ 1(8) d§ = 0.

A5) f'(y) 2 df(y)/dy ezists, ¥ y.
A6) ~a+ ;};l’(—y) < —f'{-y}(~y) <a- ;‘;/'(—y). vy

The proof of this theorem is rather long and is contained in {1].
A function f(-) which meets the conditions of Theorem 1 is given
by (2.8).

k
I‘zL(ye)

H(ye) = { sgn(ve){(2aa Jye [)?/? - %)

The positive factor a is referred to as the acceleration discount fac-
tor, and is less than one (0 < a < 1). Equation (2.8) is composed
of a linear region {| y. |< y() and a ronlinear region which is a
fairly close approximation to the time-optimal switching function
Jto. The linear portion of the curve connects the two disjoint halves
of the non-linzar portion. To connect the nonlinear regions of f(+)
such that f(.) and f/(-} remain continuous, we have a constraint
on the gains ky, k2, and the size of the lincar region y;:

2k; \ 172
oa

and the linear region is just

for I!/cls vt
for |ye (> w

(2.8)

(2.9)

1
ky
By approximating the positioning time as the time it takes the
position error to be within the linear region, we can define a per-
centage increase Poin response time of a PTOS system over that
of a minimum time control of the same plant,

el L)

[24

w - (2.10)

(2.11)

Note that the value of P is independent of the size of the step input
(move length: L). Although rrasonable values of o are usually such
that o € [[9 .99), P is plotted for a wide range of o in Figure 2.3,
A simulation of both the minimum-time controller and the
PTOS systemn when the plant gam a is known is shown in Fig-
ure 2.4. For the case shown, the PTOS system is 1.3% slower, but
has much improved control behavior during regulation mode. In
addition to the lincar 1egubation, it has also been shown (1] thad
PTOS has far better sobustness properties o small changes in a,
unmodeled dynamics, and disturbances acting on the planc,

Figure 2.3: Percentage increase in move time P versus a. The
point marked on the curve represents P = 1.3 % for a = .95.

[

P SR

Figure 2.4: Overlay of y and u for time-optimal control and PTOS.

Although PTOS is robust to deviations in the model, perfor-
mance improvements can be achicved by adapting PTOS (APTOS)
to changes in the plant {1,4). The continuous time APTOS, applied
to the double integrator plant, performued very well. However, al-
though it is possible to extend APTOS to other plants such as a
real-pole followed Ly an integrator, the resulting velocity trajectory
S(+) becomes unwieldy to adaptively adjust. This implementation
difficulty can be overcome by unplementation of a discrete time
version of APTOS, as the microcode for the equations or look-up
table entries for f(-) can be modified very easily in a microproces.
sor or signal processor based system. All we need is the theory to
proceed.

3. DISCRETE TimME PLANT MODEL

Consider a double integrator plaut driven by a zero-order hold.
As in the continuouns time case the states are defined as position

and velocity. With an insignificant caleulation delay we have the

foliowing discrete ume state apace desenphion of the plant:

7
v )

2y (310




r(k) 0 1 | v(Y

Figure 4.5: Discrete time proximate time-optimal servo (PTOS).

0 1

=k +1) = [ 1 aly ]z(k) + [ “Z;/z ]u(k) (3.13)

3.1 KEY APPROXIMATION

The ideal time-optimal control of a discrete time system is in
general very complicated. A valuable fact however, permits us
to extend the strategy used in continuous PTOS [4] to discrete
time systems: as the sampling rate increases, the discrete control
tends to look identical to a sampled continuous time control. This
does not mean that the sampling rate must be necessarily higher
than would otherwise be selected to make the approximation valid.
By wdjusting the acceleration discount factor o, PTOS will leave
enouph unsaturated control margin while trajectory following that
differences between continuous time and discrete time optimal con-
trol strategies can be absorbed.

4, CONTROL DESIGN: KNOWN PARAMETERS

The proposed control structure is a discrete time mapping of
the same proximate time-optimal control law as used in continuous
time PTOS in Section 2 with some slightlv different conditions on
the function f(-) which will be discussed later. The mapped control
law is then;

u(k) = sat(k2{f(ve(k)) = v(k)]) (4.14)
Note that the definition of y, is the same as in the continuous time
case. Dropping the sample or time index, we have:

u = sat(ka(f{ye) — v]) (4.15)

To simplify the block diagrams, we will utilize the transfer charac-
teristic of the D/ A converter in place of the saturation function, as
it is equivalent to the two transfer characteristics in series as long,
as the smallest saturation  alue is us~d. Quantization in the D/A
and A/D converters will be assumed negligible. A block diagram
of this system is shown in Figure 4.5,

bl r = g sy .
5. PTOS Srapinimy
In tenus of the continuous time units, a map of the continuous
time controller into the disarete time system yields:

ylk 4 1) = y(k) + Tev(k) 4+ a(T7/2)ulk) (5.16)
vk 4 1) = v(k) 4+ aT,u(k) (5.17)
u(k) = sat(kz{S(r — y(k)}) ~ (k)] (5.18)

For what values of ky, and Ty is the system given by (5.16)
through (5.18) stable 7 Unfortunately the answer 1o tlus question is
more complex than it is in the continuous tie case. The increased
cotuplexity s due to the lack of continuous trajectories in the state
space, and 1o the analytical complexity of discrete time Lyapunov
functions.

[n the continuous case, if all ttajectories point into a vegion of
the phase plane from the boundries of the region, it is fairly clear
that «ny trajectory originating, inside the region must be trapped
inside the region. The argument hinges on the continuity of (he
trajetories: any trajectory originating on the inside of a region
must pass through a point on the boundry to leave the region, and
since all trajectories originating on points of the boundaries go to
the interior of the region.

Such is not the case {or discrete time systems. All we have are
points, not continuous trajectories. Thus the argument used in the
continous time case fails: we do not have to have a point on the
boundry to exit a region. Notwithstanding the difficulties, it is
still possible to prove stability of our discrete time practical time-
optimal contraller. The difficulty will come when we try to check
the conditions for stability, But we're getting ahead of ourselves,
first let us state a theorem for stability.

Theorem 2 (Step Inputs). The zero solution of the system given
3y (5.16) through (5.18) is globally asymptotically xniformly stabie
if the following conditions hold:

Al) 0 < akaTy, < 2. Note the upper limit in contrast to the
continuoys time case.

A2) -AS)of Theorem !

AG)‘;}_, <=y +A8y)) —(v+ av) < :—: ,Y{yv)€eU. U
corresponds to the region in state space where the control is
unsaturated,

) 1W< e v,

where Ay and Av are defined as follows:

aT?
Ay = Tyu+ B sat(k2{f(-y) - v]) (5.19)
ASu = aT, sat{ka[f(~y) = v]) (5.20)

Proof. The proof of this theorem is along the lines of the proof
of the continuous time proof of Theorem 1 and the details are also
contained in [4]. The approach to the proof is useful in under-
standing the origin of the constraints of Theooren 2. Referring to

Figure 5.6;

1. Show that the system state will always enter a region U in
state space where the control is unsaturated (conditions A1,

A7), and then

2. Show that onre the svstem state is in U g will remain in U
(conditions A6, A7),

3. Finally, show that there is a Lyapunov function for the svstem

m the region U (conditions A1, 42, A3, A4, A5, A7)

Remarks, Condition A1 differs from the continuous case in
that iv puts an upprer it on the value of ak,T,. This hinut ef-
fectively puts a lower Hnut on the 1ato of sampling fleguency o
dewred velodity loop bandwidth. I k. 1o chosen such that the
function f{-) s« continuous, then

[ I 1/
lk, = | —
Nodler 7

and npon subsututing this snto condition 41 we obtan

kT o
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Figure 5.6: Regions U, S, , and S_ of the phase plane. The solid
curve represents the points (y, v) such that v= f(-y).

But this is less restrictive than the constraint imposed on k3 T2 by
condition A7 as we shall see later in Section 7.

Condition A6 is the most difficult to analyze. It simply states
that at no point in U can the next control be of magnitude greater
than or equal to one. It is difficult to determine what this means
directly in terms of restrictions on the function f(:). It would help
if we knew whether condition A6 approached the similar condition
for the continuous time case as the sampling time approached zero.

6. STABILITY IN THE LIMIT

We would expect that condition A6 Theorem 2 would approach
that of Theorem 1 in the imit as T, — 0. To verify this expec-
tation, we will substitute the plant equations for Ay and Av into
condition A6 of Theorem 2 and find the limits.

To begin, we will assume that we can examine the condition A6
on the boundaries of U . For high enough sampling rates there will
be points in the neighborhood of the boundaries, and by continuity
of f(-) we know that conditions of positiveness and negativeness of
the control will apply in those neighborhoods.

Conditicn A6 of Theorem 2 is:

—-l-<f(—(y+Ay)—(v+ Av) < L (6.21)
k2 k2

with Ay and Av given by (5.19) and (5.20). On ihe positive bound-
aryof U (u=1)

Substituting Ay and Av on the positive boundary of U (u=1)
into (6.21) and taking the limit of all three terms as T, — 0 yields
the following:

oo < LS9 4 () < a (6.:22)
2
and thus
oo < —f(=)f(~y) < a- ;1:/'(—!/) (6:23)

Checking the boundary where u = ~1 yields the following inequal-
ity:

—a+ ;:7"‘””’ < J(=f (1) < oo (6.24)

These two inequalities together yield condition A6 of Theorem 1,
namely:

-et ll—f'(—y)< A~ (=) < am S (=y)  (625)
2 k2

Thus the constraint 46 of Theorem 2 approaches the simila: con-
sraint for the continuous time system as Ty —« 0. This is a pleasing
result, especiaiiy in light of the complexity of the discrete (ine
analysis. Besides providing a validation of the condition in dis-
crete time, the preceeding analysis also leads (o the conclusion

that for hugh enough sampling rates. the function f(-) chosen for

the continuous time systemn should meet the conditions necessary
for stability set forth in Theorem 2.

Thus the velocity trajectory function f(-) used in the continuous
time PTOS (2.8) will be used in the discrete time PTOS as well,
along with the conditions for a continuous magnitude and slope

(2.9)~2.10).

6.1 EVALUATION OF CONDITION A6

Choosing f(:) and f/(-) to be continuous functions, of the form
(2.8), has a benefit in that it allows us to check condition A6 on the
boundaries of U (ux = 1 and ux = —1){1} as shown in Figure 77.
This is easier than evaluating A6 for all peints in U , Evaluating
A6 on the boundary uk- = +1 yields:

-1< k:i—f(v—T-l(y)—Ta/k2+aT3)+I(y)+:l;—aT.] <1,wy

(6.26)
Checking the remaining boundary {(u = —1), yields:

—1 < ko[ f(y= T, J(9) + Tu/ k2 —aT2)+ 1 (y) - ;::4'47':] <1,Vy

(6.27)
Note that if the function f(-) i2 symmetric the conditions need only
be checked for non-negative values of y.

The conditions given by (6.26) and (6.27) are difficult to analyze
directly (substituting (2.8) in for f(-}). Instead, a numerical anal-
ysis will be used to shed some light on exactly what the tradeofls
are in choosing wy, Ty, and a given a.

Before a numerical analysis of the above conditions can be per-
formed, a design rule must be chosen for the free parameters in
the control law, namely the gain k; and the deceleration discount
factor a. ’

7. LINEAR CONTROL Law

Designing the linear controller for the discrete time system is
again more complicated than the continuous time case. Let's define
the ratio of sampling frequency to desired bandwidth as N

New s (7.28)
wd  fa

For most discrete time servomechanisms, the value of N is
greater than five. Astrom and Wittenmark {5 claim a good rule

of thumb is to have
N =20/1-¢?

whichfor( = .707 means N == 14. For values of VN as large as these,
one would expect that the discrete time system gain k; should be
close to that of the continuous tirne case for the same desired closed
loop bandwidth. Unfortunately, although the damping ratio's are
very close, the bandwidths of the two systemns ai¢ significantly
different when N is as large as 10 as seen in Figure 7.7,

Condition A7 of Theorein 2 put a restriction on the slope of the
function f{:). Let

c= Ssup /(0= ,l—k;l- (7.29)
Since condition A7 is that ¢ < 1/4, it follows that.
ky 1 ,
o< (7.20)
Subsiituting for Ay yieids:
I 2 (7.31)
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Figure 7.7: Closed loop bandwidth and damping as a function of
the gain ky, for a sampling interval of 1 second. The bandwidth
and damping of a continuous system is shown by the dashed line
for comparison.

which is larger than the result given by condition Al.

A much more difficult task is that of checking condition A6.
Since substituting the expression given by (2.8) for f(-) leaves us
with somcthing which appears to be analytically intractable, we
will resort to checking the condition numerically. A program writ-
ten in PASCAL searched for the largest sampling interval T, which
would allow condition A6 to remain true, as a function of a range
of given k;**. From k; and k3, the closed loop (-3 dB) bandwidth
of the system was calculated as follows. Given k;, calculate

(Z‘_‘) 1 (7.32)

acr

]

k2

kT2
pL = ———a ‘2 2 +ak2T. -2 (7-33)

kT2
p2 = _¢:_}2_, —akaT, +1 (7.34)

r=.\/p2 (7.35)

the closed loop bandwidth can be found from (given the system
has complex poles):

wm (o)) 4 (2] rs

A plot of the minimum N and marimum ky T? versus o is shown
in Figure 7.8. The '

In summary, the desired bandwidth of the closed loop controller
is not significantly restricted by condition A7 of Theorem 2, but
is restricted by condition A6. In other words, the Lyapunov func-
tion is not placing an active constraint on N, but the condition of
remaining in the region U once in it, or avoiding jumping over U
entirely, does place an a~tive constraint on the sampling rate versus
desired bandwidth. This is evident in Figure 7.9. The constraint
on N could be avoided by changing the function f(-) to account for
sample time, but only at the cost of loss of perfortnance (increase
in response time).

8. UNMODELED DYNAMICS

Taking wnmaodeled dynamices into account in Theorem 2 is,
ithin the present analytical framework, impossible. Since ana-
yting condition A6 of Theorem 2 explicitly is not possible, it is
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Figure 7.8: The maximum value of & T,2 and minimum value of N
versus o, As design guides, these two curves could be considered
constants: N > 6.2, and k1 T2 < .49.
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Figure 7.9: The value of k3 T? as a function of N, for o = .95 and
the upper limits imposed by conditions A6 and A7.

hard to itnagine that throwing in more complexity will help in the
analysis. Thus, unfortunately we will have to fall back on Section 6
and make the assumption that for fas¢ enough sampling rates, the
unmodeled dynamics analysis for the continuous time case should
apply{1]. While this is not particularly satisfying, when coupled
with system simulations, it is a practical approach.

The design procedure for disarete time is thus to apply continu-
ous time measures of unmodeled dvnamics to the system, chose an
appropriate acceleration discount factor a, and verify this choice
by simulation of system performance.

9. AparTive PTOS

The same structure as used in the continnous time APTOS will
be used for the discrete time APTOS, with appropriate changes
in the idintification algonthuns: replace the plant gain a by the
estimated plant gain ain (2.8), and adjust the control gains ky and
ko by a as well.




9.1 IDENTIFIER

To fix ideas, we will propose and analyze a simple one parameter
identifier in the APTOS structure. In termis of polynomials in
the unit delay operator ¢=!, the input-output relationship of the
double integrator plant is

i 2
(e 4¢7u= (

+ dnovnz?
where anom represents the nominal or expected value of the plant
gain a. If the measured datais { u, y, t = 0,7T,,2T,, - } then we
.can form an equation error as follows:

Ja-ahi (ean)

- o 7:227—{’ (9.38)
where,
2 ) —1y2
2= | ———— (1 -9 v 9.39
=(=g)e- (3:39)
$=(q7' +¢7%)u (9.40)
Consider the LMS identifier for the normalized plant gain a:
e2z2-a¢ (9.41)
ak+1 = ak + gd:c (9.42)

where g is a positive constant. Define the parameter error as
a = Ganom — a (9.43)

The following Theorem gives conditions for convergence of this
single parameter identifier.

Theorem 3 (Parameter Convergence ). If

1. g¢2 €(0,2)
2. 3T > 0,6> o > 0 such that for all k:

(=T~}

82> E o
{=0

then the parameter errora — 0 as k — oo ezponentially fast.

Proof. The proof is contained in [1].

Thus as long as condition 2 of Theorem 3 holds, adaptive con-
trol based on & works. This is because exponential convergence of
a gaurantees that at some point the function f(y.,a) will meet the
conditions of Theorem 2 are met (a < 1). To gaurantee condition
2 of Theorem 3 holds, there must be enough changes in the input
reference command r. In implementation, the parameter estimate
is not updated when the system is in regulation mode, which pre-
venls parameter drift due to lack of persistant excitation. Hence,
after a countable number of input command changes, the system
is tuned.

10. SIMULATION AND EXPERIMENT

A sitaulation of the adaptive behavior of the discrete time AP-
TOS system is shown in Figure 10.10. An experimental setup
using a torque motor and an inertial load was used to test the
APTOS system. The adaptive behavior of the experimental sys-
tem matched simulation very well. Once tuned, the simulation
and measured responses were extremily close, as can be seen in

Figure 10.

Figure 10.10: APTOS behavior to an initial error in parameter

“estimate of 50%.

11w}

1}

Figure 10.11: Experiment versus simulation.
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Abstract

An Extended Proximate Time-Optimal Servomechanism (XPTOS) is developed for the control of a flexible structure
with a single structural mode. The resulting control svstem is closed-loop , and embodies in its structure the charac-
teristics of a time-optimal control law and the fine tracking properties of a properly tuned linear regulator. Simulation
results demonstrate the performance of the XPTOS, and its robustness in the face of uncertain plant parameters.

1 Introduction
One of the challenging tasks facing control cngincers and theorists is the design of control systems to achieve rapid
slewing and precision pointing of large space structures (LSS). With increasing demands being placed on the design
~and construction of lightweight LSS optical tracking systems, the nced has arisen for sophisticated control algorithms
‘that make optimal yse of the ma.cimum torque available for rapid slew, and achieve high tracking accuracy after the
tracking error signals hiave become sufliciently small. ' i

The “ideal” solution to this problem is obtained by computing the eptimal open-loop “switching” actuation sequence
that steers the siructure from initial to final (target) position in minimum time [5,6]. In practice, such a solution is very
difficult to ebtain, and a proximate time-optimal control law is nsually derived by considering the rigid body motion
only. The resulting input actuation sequence may result in significant excitation of the structural modes, and therefore
it must be modified so that its power spectrum has significantly lower harmoaic content. One apyproach is the sine-
versiic torque shaping technique, which attempts to achicve a good tradeofl between slewing time and structural mode
excitation {1]. The resulting control law, however, is open- loop and therefore the control system becomes very sensitive
10 raodeling errors and exogenous disturbances. In order to overcome these difficulties, a numiber of techniques have

~been propoused which combine feedforwvard sire-versine torque excitation with linear feedback information Lo provide
for active damnping of the structural modes (2,3]. '

In this paper, we consider the design of a practical “proximate” time-optimal fecdback controller for a flexible

~ structure with a single structural mode. The controller blends the time-optimal characteristics of a nonlinear (switching)

control law, and the fine tracking nroperties of a properiy tuned linear regulator. Furthermore, it exhibits good

~.robustness properties against plant parameter variations. The approach pursued here follows from some previous work

“reported in [§,9,10] on a proximate time-optimal servomechanism (PTOS) for a rigid structure with high frequency
unmodeled dynamics that are outside of the perfermance bandwidth. We extend these techniquas by taking directly
into account the existence of a lightly damped mode, which may possibly be within the desired performance bandwidth.
The resulting control law, referred to as the extended proximate time-optimal servoniechanism (XI1O5), retains the
simplicity of the basic structure introduced in the PTQOS aud offers attractive advantages when compared with the
approaches conventionally used for time-optimal control of large space structures.

The organization of the paper is as follows. Section 2 contains a brief deseription of a proximate time-optimal
scrvomechanism (PPTOS) introduced in {8,9]. Seeticn 3 1s devoled Lo the exiended proximate time-optimal serve
(XPTOS). Section 4 contains a detailed examiple that illnstrates the performance of the control algorithim introduced
in Section 3. Finally, Section § contains the conclusions and suggestions for further rescarch.




Figure 1: Time-Optimal Controller for Double Integrator Plant

2 The Proximate Time-Optimal Servo (PTOS): A Review

This section contains a brief review of a proximate time-optimal servomechanisn (PTOS) described in Workman,
Kosut, and Franklin [9) for a double integrator plant.

2.1 The PTOS algorithm

Let the plant P be described by the system of equations

y = v,
v = au,

where u and y denote the plant input and output respectively, a is the maximum acceleration available, and |u(t)] < 1.
Let the plant state z be defined by
zT = [yv].

Given an initial state z7 = {yo vg) at time t = 0, suppose it is required to steer z to a target state z7 = [r 0] in
minimum time. The resulting time-optimal control, depicted in Figure 1, is given by {5]

u = sgn(fiole)—7v) , - (1)
fole) = sgn(e)(2ale])? , - (2)
e = r—y, (3)
where :
+1, z>1
sgn(z)=¢ 0, z=0. (4)
-1, z<«1

The control law given by (1)—(4), although optimal, is not practical. In fact, any process or measurement noise will
make the control signal v “chatter” between its maximum and minimum values, thus exciting unmodeled dynamics
that are always present in a more accurate model of a real plant. Even in the absence of exogenous signals, the
time-optimal controller Jacks robustness with respect to neglected dynamics, since a lightly damped mode will induce a
linil cydle {Workman, {8]). To circumvent this difficulty, a more practical inplementation of o time- optimal contzchicr
was introduced in [8]. The resulting control system, referred to as a proximate time-optimal servomechanism (PTOS),
is diagrammed in Figure 2.
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" Figure 2: Proximate Time-Optimal Servomechanism (PTOS)

The equations that describe this “practical” version of the optimal control law zre

Y = v, (3)
v = asat(k[f(e) —v]) ; ka> 0, (6)
where
+1, z>1
sat(z) = z, =<1 (7)
-1, z<-1
and

£ { e el <w

sga(e) [(2eclel2 = & Jel> w ®)

In (8), k1, k2 and y; cre positive real constants, and 0 < « < 1, referred to as the acceleration discount foctor, is a
tuning parameter.

The finite-gain operator sat(:) has replaced the infinite gaiu operator sgn(-), and the switching function fro(e)
(the derivative of which is infinite at ¢ = 0) has been substituted by f(e), which is linear in the range |} < y. To

connect the nonlinear parts of f(-) in (8) such that f(-) remains continuous and has a continuous first denvatne the
following additional constraints wers Linposed in [8,9]:

kzr«\/_g}g, i (9)

Yo = -}::-1' . (10)

and

Stability of the resulting losed-loop systemn (for step inputs) follows from the fact that the zero solutior of
vo= v
a sat (k[f(—y) ~ v])

is globaily asymptotically stable (see {8, Theorem 3.1j). In addition, the closed-loop systen s close to titne-optimal in
the following sense:

i

v

Jet zd = [r0,01 denote the pl 1t initial state, and suppoan it is desired to steer z3 to [r,0) in minimum time. Using

Lope(L) = W \/L, (11)
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where
L=|r—rg].

We now consider the PTOS system described in (5)—(8). For large set point changes such that L >> kL, the time
1

__ it takes for the closed loop system to settle in the linear region of operation can be approximated by

1(L) = ‘-}-;\/Zﬁu

._.1 —
\/aa' ) 7 (12)

where, as shown in {8}, (L) is such that |r —y(t (L) = kl", . Defining P as the percentage increase in mancuver time

“of the practical controller, it follows from (11)-(12) that

-~ -Clearly, P is independent of the move length L. Moreover, P is close to 0 for values of o close to 1. The above

analysis is based on the assumption that, in the linear 1egion of operation, the dynamics of the closed-loop system
decay sufficiently fast on the time-scale of y{L). This can be achieved by proper selection of ky and a, as described
below.

2.2 Designing the Lincar Controller

Let H(s) = Y(s)/R(s) denote the transfer function of the closed-Joop system of Figure 2, when operating in the lincar

- region. With the usual notation for a second order system, and using (9), it follows that

H(s) v
§y= A
3%+ 2 awas + w3 (13)
where
Wy = -]i- (1:1)
] a 1 L4
and
1
(o (15)

vl

Thus, the overall closed-loop system bandwidth wy and damping factor {4 can be independently centrolled by the
parameters ky and a, respectively. As shown in [8,9], the PTOS algorithm can be applied to the control of & purely
rigid body with high frequency unmodeleds dynaniics that are outside of the performance bandwidth wy. However, if
the structural modes are within the desired closed loop system handwidih, then they must be treated explicitly in the
initial desigr. This is the subjact of the next section. :

3 The Fxtended PTOS Algorithn "XPTOS) '

In this section, we address the problem of designing a proximate time-optimel controller for o flexiile larpe space
structure. In this preliminary study, we restrict ourselves to the (idealized) cese where Lthe structure J' to Le eontrolled
is linear and contains A single structural mode. Hence, P can be deseribed by the travsfer function

Q.

Pls) e ot e 16
(2) J1 s Weips 4wl )
where wy and ¢ denote the frequency and duinping of the siructorad e foaprtivnly, d0d ap aud @, are resl nunbers,
We assume that both output position and rate measurements ore availabie for easurrinent. Tn this cace, the plant

adrmits the state-space realizalion
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m = (1, ), and =T = (y,,vr, s, vs) denotes the state-space vector. We shall henceforth refer to (yr,v,) and (vyyvy)
as the rigid body and structural mode coordinates, respectively.

'3.1 Proximate Time-Optimal Control of a Flexible Structure

Consider the autonemous linear process (17)~(18). Given an initial state zq at time ¢ = g, suppose it is required
to steer zo to a final (target) state z; in minimum time, by using inputs u such that |u(t)] < }. The problem of

““time-optimal control thu: defined has been the subject of extensive research, and a vast body of literature is available

on its theoretical and practical aspects (sce Lee and Marius [5§} and Oldenburg {6] for a rigorous exposition). Under
fairly generic conditions the optimal steering controller u,p (t) exists and is of the relay type, i.e. it ascumes the values
#+1 and switches a finite number of times. A closed-loop implementation of the optimal control law, however, requires
the construction of high-order switching surfaces. For systems with stale-space dimension greater than two, these

-surfaces become s0 complex as to exclude their use in the implementation of praciical time-optimal control algorithms.

An interesting approach to the solution of this problem has been reported by Kalman (in Oldenburg [6}), who used
linear wransformations in the phase space to replace a “high-order system with a second-order system which closely
approximates the former”. In particular, 2 nearly optimally compensated third-order saturating servomechanism was

. described for the plant G(s) = 4—,(—771—;1—5 consisting of a pure inertia and 2 first-order lag. The resulting control law
" relies on a single switching curve, and is effective if the dynamics of the first-order lag are sufficiently fast. Clearly, this

procedure is not directly applicable to the fiexible structure described in (17)-(18), since the structural mode typically
lias very small damping ¢, and therefore a very long settling time.

In Schmidt[7], a technique for the design of nonlinear saturaling controllers to achieve proximate tinic-optimal

" control of high order plants was described. In what follows, and motivated by the work reported in [6] and (7], we

propose a (nouliuear) feedback scheme for proximate time-optimal conteol of (17)-(18) that prescrves the basic structure

of PTOS.

3.2 The structure of the XPTOS

The rationale behind the XPTQS control syste:n can be explained zs {ollows: the dynamic bebavior of the flexible
structure described in (17)-(18) can be decomposed into its rigid and structural dynamics, which are completely
specificd by the state-space coordinates {u,,v.) and (yy,v;) respectively. Lo steer the structure from «n initial to a

final (target) position, apply the PTOS strategy to control the rigid body motion, and blend it sinoothly into a linear

state-feedback control law that actively damps out the structural modes. The resulting scheme is depicted in Figure 3.

et & := {3, 9,7y, Us] denote the estimate of z i= {ye, v, 3y, v4), obtiined from the state-estimator dynzmics
£ A+ Bu 4 Kofym — C3) (19)

where Ko is such that (A — KoC) is asyrmptotically stable. Then, the following desciiption of XPTOS is obtained:

r = Ar-4 Bsal(U) , ('/.U)
. ('
Jm = ey
where
S P P 91
u = };2 f(r’) - Up - -.iy/ - “v'( , (/l)
ko ky 71

T (22)
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Figure 3: Extended Proximate Time-Optimal Servomechanism (XPTOS)

£(-) is defined in (8), and
K, = [k1 ko ks k4] . (23)

is such that (A — BK,) is asymptotically stable.

+ 3.3 XPTOS: Design Methodology

The purpose of this section is to provide some guidelines for the design of the XPTOS system to accomplish rapid
slewing of the flexible stiucture described in (17)-(18). In a typical retargeting maneuver, the objective is to steer
rapidly the output y from 0 (at .ime ¢ = 0) to the final target value rg, 2nd remain there. To accomplish this, we
propose a design methodology that is based on the following control stratezy: during the initial phase of the marsuver,
let the nonlinear characteristics of XP'TOS takeover, in an attempt to steer the rigid body dynamics (v, v, ) from (0, 0)
~at 2 =0 to (ro,0) in minimum time; in the lest phase of the mancuver, use the properties of a properly tuned linear

regulator {o achieve high tracking accurecy and active damping of the structural mode.
1t is clear from the considerations above that the following constraints (inherited from the PTOS design methodology

described in Section 2) must be observed:

2%, '
(C1) k::\/li, (C2) 0<ax.
g, .
In practice, the degree of flexibility of the structure places & lower Yimit L, on the size of the meneuver for which
the “bang- bang” characteristics of XPTOS should be explored. Thus, given L,n selec’ ky so that
1 .
Lmin ’

We now examine the constrzints that arise from the performance requirements in the lincar region of operation.

(C3) k>

Conpsider the XPTOS system diagramined in Figure 3, and described by equations (18)-(23). In the linear region
of operation, aud in the zbsence of zny input signal r, the system can be simply viewed as the combination of a
state-observer and s linear regulator. The evolution of the feedback system is then governed by the equations

z = Arz— DK%, (24)
g- s KO 4 (A —- KoC - BKz (25)

where '
Iy = U\l k'l k3 }:4] P (?{})

Furthermore, the poles of the interconnected vystem consist of the observer poles (eigenvalues of A— FoC), together
with the regulator poles (eigenvalues of A — BK,). The fitst requirement on the systcr (24) (26) is that it be
65 :




asymptotically stable. In addition, Ko and K, must be selected so that the XPTOS exhibit good tracking propertics
(i.e. fast dynamics) in the linear region of operation.

3.3.1 Selection of K,

The PTOS design methodology detailed in section 2.2 reduces to the solution of simple algebraic equations. A similar
procedure may be derived for the design of XPTOS. In fact, it is straightforward to derive an expression for d(s), the
regulator characteristic polynomial, in terms of K, and «. Furthermore, given o and any set £ of desired clnsed-loop
(complex conjugate) eigznvalues, it is possible to ascert the existence (and in the afirmative case compute) I, so that
K, satisfies the constraints (C1)-(C3), and the roots of d{s) equal £. This method becomes rather cumbersome (and
therefore not practical) if extended to plants with more than one structural mode. With this objective in sight, we
describe a different design method. -

Assuming the state vector z is available for measurement, we seek a linear control law of the form
u:‘"K,I, X - - (27)

where I, = [k k2 k3 ky) is suitubly chosen to minimize the quadratic performance index

/ TET Q1) + pe()dt ; (25)

“p > 0 znd Q symmetric, positive semidefinite

subject to _
= Az 4 bu; z(0) = z¢ (29)

In thc sequel, we will refer to the problem described above as the linear quadratic regulator (LQOR) problem. Let
Q = z7z for some row vector z, and let the pairs (A,b) and (A, z) be stabilizable and detectsble, respectively, Then,
K, is obtained from the positive definite solution of an algebraic Riccati equation, #nd the xcuultmg feedback cont‘ol
law stabilizes the system (29)(Kwakernaak @nd Sivan,[4]).

“We remark that for our purpo¢co, the LOR design methodology is simply viewed as a design tool that provides a
systematic way of “scanning” a large set of stabilizing feedback laws Thus, p and z are tuning parameters that control
the location of the regulator poles to achieve good tracking properties.

The inclusion of the constraints (C1)-(C3) into the LQR design problens is considerably difficult, and we therefore
propose the following iterative algorithin for the design of XPTOS:

Step 1. Select an initial estimate for z, and let p vary in some interval {pmin, pinax). For each value of p, solve the LQR
problem (28)-(29) to obtain a stabilizing fecdback gain K,{p).

Step 2. Plot I{y and « == 2k, /kja, as functions of p, and check that a value of p == p” exicts for which (C1)-(C3) are
satisfied. In case these constraints are not satisiied, modify z and/for the interval [piin, pnax] and zo back to
Step 1.

Step 3. Check the final location of the regulator poles. (i.e., cigenvalues of A — BK,). As a design rule, require
the “dominant” time-constant, of the regulator system to be much smaller than t,,(Liin) = 2(Lin [ ar)#,
where Lo Liin) is the (theoretical) minimum time required for retargeting of the rigid body only (i.e., make
min R [\ (A - BK,)] 2> 1/tope(Limin))- If this condition is not met, modify z and/or the interval [prin, Puax),
and go back to Step 1.

Re marl_j 1 In the andly,is above, we enchew the qumtion of existence of a vector K, such that (CL)--(C3) are satisfied,

Remark 3.2 The choice of the quantitics p and z is not straightforward, and requires some nsight into how they sfiect
the relutive magnitnde of the gaine i, by ‘-J and kyoas well ag the location of the reantator noloe . Coneideratile
insight into this process is gained by examining the asymptotic behavior of the vepnlator polen 20 p -0 0 and

p — oo (Kwakernaak and Sivan [4]).
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3.3.2 Selection of Ky

Without any constraints imposed on its elements, Ky is simply obtained as the optimal solution to a stochastic
observer problem (Kwakernaak and Sivan, {4]). In this case, the state excitation noise and the measurement noise
characteristics act as tuning parameters to force the dynamics of the observer to be sufficiently fast compared with the
regulator dynamics. '

4 XPTOS Performance: An Tustrative Example

In this scction, we examine the performance of the XPTOS via a simulation example. As a representative test case,
we have selected a*flexible structure for which the PTOS algorithm (designed without consideration for the structural
mode) gave unsatisfactory results. The performance of the XPTOS is compared against the slew maneuvers that are
_obtaibned by using a sine-versine open-loop control law f1]. Furthermore, we examine the robustness of both algorithms
with respect to parameter variations. - : T o : . o

The flexible structure to be controlled has the state-space representation described in (17)-(18), with
a, =3, a; =50, (=.005, and w, = 26.8 rad-sec™!

The design methodology described in Section 3 gives the following values for the XPTOS parameters:

a = .8,
k, = [12.673.25.74 6],
2991 3.92
o 12.50 918
and ko = 1127 852
—58.53 101.15

The structure was subject to rest-to-rest maneuvers with amplitude L = 1. In order to compare the different control
strategies, we have (arbitrarily) defined the mancuver time t,,, as the time after which the error signal r — y becomes
smaller than .018. With reference to Figures 4 through 8§, the graphical summaries of the state and conttol time
histories are discussed.

Case 1. (Fig. 4) is a rest-to-rest maneuver using the X'LOS algorithm. The initial phase of the manecuver aims at
rapidly steering the rigid body state (y-,v;) = (0,0) to the ncigborhood of the final target value (1,0). This
results in considerable exciiation of the flexible mode. However, its amplitude is rapidly reduced after the
initial surge in the input control profile. In fact | the maneuver time t,, equals 1.32 seconds. Compare with
tope = 2(1/3)1/2 = 1.1547, the (theoretical) minimum time required to steer the rigid body only, in the absence
of the flexible mode (eq. (11)).

Case 2. (Fig. 5) is presented as evidence of the “stabilizing” effect of the nonlinear switching functior f() in (8). Let
the function f in (21) be defined by f(e) = (k1/k2)e for all e. The resulting control system is of the relay- type,
with a single nonlinear elerment at the input of the flexible structure. The response is highly oscilatory throughout
the maneuver, and the mancuver time t,, increases to 1.95 seconds.

Case 3. (Fig. 6) is a rest-to-rest maneuver using the (open-loop) sine-versine control law [1]

4\/u sin 2t 2l
1t(l)v l: g ( A )(]—COSA’]‘)} )

where the (theoretical) rigid body slew timne is

6
Ay = 75 == 1.9046 seconds .

The resulting maneuver cruses less excitation of the stractural mode (in comparicon with Cane 1), but s noticeably
4 I ) J

slower, with 1,,=1.6 seconds.
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Case 4. (Fig. 7) displays the robustness of the XPTOS with respect to plant parameter variations. We notice that in
both cases considered, ¢, < 1.36 seconds.

Case §. (Fig. 8) depicts the inherent lack of robustness of the sine-versine control algorithm. Clearly, a practical control”
system based on this algorithm requires switching to a linear regulator at the end of the sine-versine rigid body ‘
~ slew time Ar. However, this will further increase the total maneuver tir:-. -
. ’.\ A

A
' 5 Conclusions and Suggestions for Future Reeaarch

' In this paper, we have developed an Extended Proximate Time-Optimal Servo (}k PTOS) for the control of a flexible
structure containing a single structural mode. The performange of the closed-loop control algorithm was illustrated with
a representative example, which displays the excellent slewing and tracking properties of the XPTOS. A comparison

was made with typical slew maucuvers obtained by applying a sine-versine control law.

" Future work will require a rigorous analysis of the stability of the XPTOS, following the methodology proposed 1n
[8]. Tt is our objective to refine the design technique exposed in section 3 in order to accomodate disturban:es and
sensor noise, and provide some robustnesss against the presence of neglected higher-frequency structural modes.
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Adap‘ti,ve Time-Optimal Control of Flexible Structures

A. M. Pascoal & R. L. Kosut
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Abstract The Extended Proximate Time-Optimal
Servo (XPTOS) developed in [8] is analyzed for stability
using new techniques, >nd the performance of it com-
pared against alternate methods such as sine-versine for
the fast slewing of flexible structures. The XPTOS sys-
temn operates in closed loop, and blends in its structure

the characteristics of a time-optimal control law-and the -

fine tracking properties of a properly tuned linear reg-
ulator., This study is addressed to the (idealized) case
of flexible structures that contain a single or dominant
structural mode. Simulction results demonstrate the per-
formance of the XPTOS, and delineate its range of ap-
plicability.

1 Introduction

The advent of lightweight flexible structures bas pre-
sented engineers and theorists with a multitude of ¢hal-
lenging tasks in the area of control systems design (e.g.,
{2), (3], [6], [7]). Required are sophisticated control al-
gorithms that make optimal use of the maximum torque
available for rapid slew, and achieve high positioning or
wracking accuracy after the position or tracking error has
become sufficiently small.

In this paper, we develop a practical time-optimal con-
troller for rapid slewing of flexible structures; in particu-
lar, the case where the structure model contains a single
structural mode. A nonlinear feedback controller is ob-
tained that blends the time-optimal characteristics of a
switching control law, and the fine tracking properties of
a properly tuned linear regulator. The approach pursued
here is a reiteration and extension to the original work
by Workman (8], {10], [9] on a proximate time-optimal
servomechanism (PTOS), and on an extended adaptive
form of PTOS. (XAPTOS) for control of both rigid struc-
tures with high frequency unmodeled dynamics that are
outside of the performance bandwidth, as well as flexible
structures with resonances close to but beyond the band-
width of the linear regulation mode of operation. The
techniques exposed in [10], [9] are extended by taking
directly into account the existence of a lightly damped
structural mode as was done by Workman in {10}, and
in addition provide a technique suggested by Franklin
which aids in extension of XAPTOS (or XPTOS with-
out the adaptive feature) to the case of a flexible mode

G. F. Franklin & D. R. Meldrum
Information Systems Laboratory
Stanford University, CA 94305

M. L. Workman

IBM Corporation

5600 Cottle Road
San Jose, CA 95193

or modes which may possibly be within the performance
bandwidth. Numerical simulations show that the XP-
TOS algorithm is robust against plant parameter varia-
tions. o : :

The paper is organized as follows. Section 2 contains
a brief description of the proximate time-optimal ser-

vomechanism (PTOS) presented in [8], [9]. Section 3

is devoted to the extended proximate time-optimal ser-
vomeckanism (XPTOS) and presents some new theoret-
ical results on stability. Section 4 illustrates the per-
formance of the XPTOS via a parametric study. Sec-
tion 5 describes the extended adaptive proximate time-
optimal servomechanism (XAPTOS) which combines the

- XPTOS with a weighted recursive least squares (WRLS)

identification of the plant parameters as developed in [8].

_Finally, Section 6 contains the conclusions and sugges-

tions for future research.

2 Time-Optimal Control of a
Rigid Body '

2.1 The Proximate Time-Optimal Ser-
vomechanism: A Review
Let the plant P be described by the system of equations

y
v

v
ae Sat(u)

o

(1)

where u and y denote the plant input and - output re-
spectively, a, is the maximum magnitude of (rigid body)
acceleration available, and sat(-) is the normalized satu-
ration function, i.e. , sat(z) = z, |z| <1 and sat(z) =
sgn(z), |z] > 1 where sgn(-) is the “sign” function.
Given an initial state (yo,vo) at time ¢t = 0, suppose
it is required to reach a desired state (y, v) = (ydes, 0) in
minimum time. The well known time-optimal controller
is given by [4]

u = 5g0(frea(e) — )
fros(€) = sgn(e)y/2a,[e] (2)
€ F We-—VY
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The time-optimal control law (2), although optimal, is
not practical. In fact, the existence of process or mea-
surement noise will make the control signal u “chatter”
between its maximum and minimum values, thus excit-
ing unmodeled dynamics that are always present in a
more accurate model of a real plant. Even in the ab-
sence of exogenous signals, the time-optimal controller
lacks robustness with respect to neglected dynamics, as
the presence of (ignored) lightly damped modes may in-
duce the ouset of limit cycles (Workman, [8]). To cir-
cumvent these difficulties, a proximate time-optimal ser-
vomechanism (PTOS) was introduced by Workman (8]
and Workman, Kosut, and Franklin [9]. The resulting
control system is diagrammed in Figure 1.

w=lula v
_—l, s

wl’-l

Figure 1: Proximate Time-Optimal Servomechanism

The equations describing the PTOS controller are
u = 1{2[fptos(e) - v]

(K1 /Ka)e,

sgn(e) [\/Qalcl - 1/1{2] , el > e
(3)

where K1, K32, a, and e; are positive real constants and
are the control design variables. Observe that whenever
le|l < e¢, the PTOS control is linear, that is

le] < e
fpto-(e)

u= Kje~ Kav, Vie| <er

Thus, e, is the size of the linear region, Ky, K2 are the
linear position and velocity control gains, respectively,
and the constant a is a design acceleration.

As explained in reference (8], the linear and nonlinear
portions of foeos(+) in (3) can be connected in such a way
as to preserve the continuity of fpios(-) and its derivative.
This requires the satisfaction of the following constraints:

2K, 1
- T 4
1{5’ e /\’1 ( )

With ¢he above constraints, we have the following stabil
ity result from [8], [9].

Theorem 1 (Rest-to-Rest Stability) The
equiltbrium state (y,v) = (Ydes, 0) of the system (1) with

PTOS controller (3) is globally asymptotically stable 1f

0<a<a, (5)

The ratio a/a, is referred to in [9] as the acceleration
discount factor. Thus, during deceleration the PTQS
controller uses less acceleration than is actually available.
The acceleration a will be referred to here as the discount
acceleration.

2.2 Designing the Linear Controller

Let H(s) = Y(s)/R(s) denote the transfer function of
the closed-loop system of figure 1, when operating in the
linear tegion. With the usual notation for a second order
system, and using (9), it follows that

He) =77 2cj£ds + o] ©)
provided that, '
K, =wi/a, Ko = 2(qwd/ar (7)
Using the constraints (4), o ‘
a=a,f(2¢3) er =a,/uj (3)

Clearly then, from the above Theorem, a < a, if (g >
1//2, and hence, rest-to-rest stability of the PTOS sys-
tem is insured.

Thus, the overall closed-loop system bandwidth wy and
damping factor {4 can be independently controlled by the
parameters K, and a, respectively. As shown in [8]-{9],
the PTOS algorithm can be applied to the control of a
putely rigid body with high frequency dynamics that are
outside of the performance bandwidth wy. However, if
the structural modes are within the desired closed loop
system bandwidth, then they must be treated explicitly
in the initial design. This is the subject of Section 3.

3 Time-Optimal Control of a
Flexible Structure

The flexible structure to be controlled is described by

. =
vr = a,sat(u)
Iy =y (9)
vy = —2(qwyvy —wizs 4 aysat(u)
y = z.tay

The transfer function from sat(u) to the output y is then
P(s) = P.(s) + Py(s) where
a,

Pr(s) e

s<

ay
7

1” S) = —; r
s(5) 53+-}—2C/w]s+w]

(10)

The states (5., 1.} denote the rigid-body mode and
(zs,vy) denotes the fle cible mode at frequency wy with
modal damping {y. Without any rate damping mecha-
nism, {; << 1, a typical range being ¢, € [.001,.005].
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3.1 The structure of the XPTOS

The rationale behind the XPTOS can be explained as
follows. To steer the structure from an initial rest posi-
tion to a target rest position, the PTOS control strategy
iz fitst applied to control the rigid body motion, and later
amoothly blended into a linear state-feedback control law
that actively damps cut the structural mode vibration in-
duced by the PTOS control law. Although tae ides for
the XPTOS struciure was already nresented in (8], here
we define an approach to the problem of flexible modes
within the bandwidth of the controller by separating the

‘rigid body motion and the ﬁe.xible motion.

! “ Flexitie ’ .
x H Senac e
|

1

‘ <
-‘Q—-. [14 Q_..__.
'; R i s
' ' | ok P
— v
B 4
. y —  Sem U T TR
f{—_ o T )

Figure 2+ The Extended Proximate Time Optimal Ser-
vomechanism {XPTOS)

The resulting conirol scheme, depicted in Figure 2, is
described as follows:

u
e
uy

K'.![fptoa(ér) - ’Ur] — Uy
Ydes — Zr (11)
Kagy + Kavy

nmhn

The quantities Z,,9,,%y,7; are estimates (or measure-
nents) of T,, v, 27, Uy. respectively, and é, isan estimate
of the rigid-body position error e, = ydes ~ Zr. Qbserve
that in the P'LOS coatroller (3) the error used there is
the output error € = Ydes — ¥-

Suppese that y,u are the avaiable measurcments.
‘Theu a state observer systemn is of the form:

-';':r = U+ Ll(y_i/)

9 = arsat{u)+ L(y—17)

zy = dy+La(y-9)

iy = =2ywpiy —wizp+agsatfu) 4 La(y ~9)
i] = ir—i" -'Ej

(12)
‘The observer gains Ly, ..., L4 are chosen by the usual
means so that (E,, 9,2y, 0s) =~ (Zr,Vr, Ty, vp) a3 L —
co, exponendaily fast. Recall that to select the observer
gains in this way requires precise knowle se of the plant
parameters a,,wy, (r, 2nd ay.

3.2  Stability of XPTOS: I'ull State FFeed-
back

We now present z new stability result for rest-to-rest 1a-
neuvers of (9) using the XPTOS control with full state

feedback. Due to limited space the proof is omitted and
is available upon request. The contrel is

u = Ifz[fptas(er) - ‘UT] - uf
€r = Ydes — Te (13)
uy = KsJJ!+ K(Uf

Before stating the stability result, we define the transfer
functions ¢/(s) and F{s) by

PR C LR Pr(s)
)= fF( )= 1+(K2$)P,(5)+(K3+K4s)P;8))
R

‘With P.(s) and Py(s) from (10),

a. (5% + 2(jwys + w})
s+ s+ Ts + Kzarw}

F(s) =

where 8 = Kaa, + Kaa; + 2Cswy and T = w3 + Kaas +
2¢ywjsKaa,. Ouscrve that G(s) is the transfer function
from Kz fpieste) to z. when the control is unsaturated,
ie ,jul< L

Theorem 2 (XPTOS: Rest-to-Rest Stability)
Referring 1o the system of Figure 2 as described by (9)
and (11), suppose that:

(1) F(s) in (15) is stable.

(ii) There erists a constant ¢ > O such that for G(s) in

(14),
Re[(1 4 jwq)Gjw)] + 1/K, >0, Ywe R (16)

(i) The discouni sccele: {.} satisfics

0<a< = 2

where
9:(t) LoV {(Ka+ Ras)Py(s)}
h(ty = L£o{(-wiKe+ (18)
(K3 — 20w, Ka)]Py(s)}

and where || - |1 denctes the Ly-norm [|ffl; =

Il dt.

Under thes» -~ nditio.
ble, that 15, ., 'hr sys..

"
1]

system is vest-{o-rest sta-
1s initiallv at rest, then for
all Ygen € I, the siate (z,,vr,7,vy) asymptotically ap-
proaches (Yaes, 0,0,0).

Graphical Frequency Lest

Condition (i) has the following well known geometric
interpretation, .g¢., [1]. Plot wIm{G(jw)] vs. Re[G(jw)]
as w varies in [0,00). This plot is knowr as the Popov
plot of G(s). Condition (ii) states that the Popov plot
must lie to the right of a straight line of positive slope 1/q

| (15)




passing Lhrough the point --1/Ky + jO. Thus, condition
(iij can be checked graphically.
" As an example, we show that Theorem 1 (control of a
vure rigid body) is a special case of Theorem 2 with
ay = K3 = I\q 0
~Thus, condition (iii) becomes

0<ac<a,

as stated in (5). To satisfy (i) and (ii), we have

o 1 Qr
4a9f3L+Kw)

In this case F(s) from (15) is stable because a, and N>
are both posmve Moreover,

a,
w? 4 a?k2

Ke[G( jw)]

i

wim(G(jw)] = A

w? 4+ aZK3

Thus,
wIm[G(jw)] = a. K2Re[G(jw))

This means that the Popov plot is a straight line - arough
‘the origin with a positive slope and is always to the right
of the point ~1/ K, 4 70 for any value of Ky > U, and so
(111) nolds. This proves the PTOS Theorem.

4 Parametric Study of XPTOS

The study described in this section was motivated by the
following question: for what values of the plant parame-
ters ap,ayp,wy, {; is the XPTOS effective in rapidly slew-
ing the structure from an initial to a final rest position?
In particular, (i) how far is the XPTOS performance from
being time-cptimai, and (i) what improvement does it
show when comnpared with the slewing marneuvers that
are obtained by simply using the PTOS, with complete
disregard for the structiial mode? lu this section we as-
sess the domain of appl.zability of the XPTOS by fixing
the rigid body parameter «,, and letting a; and wy vary
over a certain range. For simplicity, we consider the case
where ¢; = 0.

4.1 Time-Opti:ual Slewing

Time-optimal rest-toest maneuvers for flexille strue
tures with control input saturation have been character.
ized in the work of Iien-Asier, Buins, and Chif [16] and
Singh, Kabamba, and McClamiroch {17). For vhe prob-
lem at hand, the ime-op timum resi- Lo-iess contre (1)
exists and is vuique, is bang-bang, and exhibits antisya-
metric characteristice, i.e,

i

T L N RS R AN

where t; is the optimum slewing time (sce {17). Fur-
thermore, u*(f) can be computed using the methods de-
scribed in [17] and [16]. For the flexible structure (9),
(10) with a, = 30 and {4 = 0, Figure 3 is a plot of
the optimal slewing time as a function of the structural
mode natural frequency wy, as the structure is subject
to rest-to-rest maneuvers of amplitude |yqe,] = 1. This
represents a fundamental limitation to the performance
that is achievable with bounded input control, and as
such, it is a benchmark against which the performance
of other algorithms can be compared. An interesting fact
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Figure 3: Time-Optimal Control of a Flexible Structun
(Performance Characteristics)

15 that the optimal control strategy 1s independent of the
ratio a;/a,, and the optimal slewing time is very close
to the rigid body optimal maneuver time for sufficiently
large values of wy. As the natural frequency of the sirue-
tural mode decreases, the optiral slewing time becomes
increasingly larger (see [16] for a thorough discussion con-
ceraing the asymptotic behavior of the time-optimal so-
lution).

4.2 TPerformance of PTOS and XPTOS

The PTOs5 and XPTOS control algerithms were tested
by suujecting the flexible structure (9), (10) to rest-to-
rest maneuvers with amplitude Jyg.,] = 1.
cters a, and {; were fixed at 3.0 and 0.0 respeciively,
while ay/ar and wy were varied over the discrete sets

The parata-

Suyza, = {.25,.5,0.0,2.0,3.0} ,

and
Sw, =18,9,10,12, 14, 16,18, 26, 3, 40,50} ,

Assuming that both the outpur position
and velocity and available for measurement, the PTGS
was designed taking into account the rigid & -
only This led to the design parameters Ko = 20 and
a/u, = .9
rameters i bhe sets .,,,//,,, and S,

respectively.
mobion,

, hr(’)p(rl,un of the Vj.lU 5 assimed by the pa-
Figur: 4 v
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of slewing time versus ay/a, and w;, wiere the slewing
timne here is defined as thé time after which the tra~¥ing
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Figure 4: Performance of PJOS and XPTOS (Siewing
Time Versus Frequency of Structural Mode)

For large values of wy and/or small values of g, /a,,
the practical slewing time approaches the time-op!imal
rigid body maneuver time. As the f{requency wy de-
creases or ay/a, increases, the PTOS maneuver time in-
creases rapidiy in comparison witli the theorstical opti-
mum value. The XPTOS maneuver time exhibits ihe
same trend in behavior, but the performance deterio-
ration occurs at a slower rate. In fact, over the range
of frequencies {8, 20] rad sec™ 1 its performance shows a
drastic improvemen* over the peiformence b luined with

the X®TOS.

¢ Adaptive Control

If thy flexibie yearameters wy and ay are not known or are
slowly changing, the performuce of the flenible structure
may be .mproved with an adaptive XPPTOS algorithm
called XAPTQ%. In this section the XAPTOL suretegy
{see 18], 121, (1)) is described and applie: .« the flexible
strucsute (9), (10). The discrete-tine system 15 .nore
efficient to impirment than the continuovs-iime sysiein
and hence o discrete-time version of the APTOS control
(11) i3 combisied with a pararueter identifier and « state
estimato: to form XAPTOS.

51 XAPTOS for s Flexible Structure

The main idea behind XAPTOS is to combine a gen-
era! self tuning observer controller (GSTOC) (8] with the
XPTOS controller. A weighted zecursive least squares
{WELS) algorithm is used to identify the unknown plant
paraineters and a state space model of the plant is
formed. The estim.ior and control gains are obtained
via pole placement and wird in the XPTOS controller.

A developmant of XAPTOS for the flexible structure
(9), (10) is now described. The overall dynamic re-
{ationship between the input and output of the struc-
ture is described by the discrete-time traunsfer function
P(z=Y) = P(z7}) + Py(z71) where

-1 _ T2 -14,-2
- .P,-(z ) .-_— GTT __z 7= :_2_
PzY) = =COSeyT)Ti4s7R)

wi(1=2C05w T2=7+2=T)

and T is the sampling interval. Assuming that the rigid
body parameter a, is known, the problem is to deter-
mine the flexible mode parameters ay and wy from the
measurement vector which forms the regressor

¢ (k)= [n(k ~ 1) p(k~1))

where
n(k) = ylk)~2y(k - 1) + y(k — 2)—
co(u(k — 1)+ u(k—2)
u(k) = u(k)—-u(k—1)—u(k—2)+u(k-3)
o = all
€ = ZcoswyT
€y = %(1 ~ cosw,T)

Then the input-output behavior is described by
Yy(k) = 6T (k)$(k), k=0,1,2,...

where 0(k) = [¢; ¢2]T and Yj(k) = n{k) 4+ n(k - 2) is a
function of y{;) and u(j), = k~4,..., k. The parameter
vector (k) can then be determined using WRLS:

1) m iy | PR
R P [ A)

T(}L
Py = =Pk = 1)~ - {P(’_‘I‘ e (MEGE 1)}
7 7L &7 ¢T(R) Pk = 1)¢(k)
where 0 <y < 1and x = 1~ 4,

With the parameter estimates ay and wy, a state-space
model of the plant is formed which partivions the known
double integrator plant from the identified flexible mode
and hias the state vector:

::T(k)::[xr Ve Ty vy]

]
A state vecwor of this form is desirable since the position }
and velocity estimates are needed in the XPTOS control
algorithm,




With the state space model, a state estimator and a
controller are constructed for the plant. The desired esti-
mator and controller characteristic polynorials, a, and
a., are formed by the known rigid body mode pole loca-
tions and a radial pole projection of the identified flaxible
mode pole locations. The estimator and control gains are
determined via pole placement. A closed form expression
of the estimator gains, L, and the control gains, K, are
deterniined and used on-line in the XAPTOS algorithm:

L =eT[hT &ThT %" AT @3 hT| 1o (@T)

K = T[T T @°T 93T a(®)

5.2 Simulation Results

The XAPTOS algorithm as described above but with
{ull-state feedback was implemented in simulations on
the flexible structure (9), (10). Tigure 5 presents the
results of the identification of ay and wy. Future results
will include the case of XAPTOS with both the identifier
and the state estimator.
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Figure 5: Identification of Plant Parameters ay (top) and
wy (bottom)

6 Concluding Remarks

In this paper, we have developed an Bxtended Proximate
Time-Optimal Servo (XP1TOS) for rapid slewing of flexi-
ble structure models containing a single structural mode,
Some prelitminary results were obtained concerning the
stability of the propesed closed-loop control scheme, The
performance of the contro! algorithim was illustrated with
a representative examnple, which displays the fine slewing

and tracking properties of the XP TGS, as well as its ro-
Dbustness against plant parameter variation. A detailed

‘parametic study was conducted to assess the domain of

applicability of the XPTOS. The XAPTOS algorithm
was described and shown to adaptively control the flexi-
ble structure. ’

Future work requires a cornplete analysis of the stabil-
ity of the XPTOS. It is also our objective to refine the
design technique exposad in section 3 to accommodate
disturbances and sensor noise, and provide robustness
against the presence of neglected high frequency struc-
tural modes.
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Abstract

An approximation to the time-optimal tracking problem is ex-
pressed in terms of a sequence of linear programs which are set up
using a transfer function approach. The results are applicable to any
linear time-invariant finite-dimensional multi-input multi-output plant.
An examplc illustrates the feasibility of the approach.

1. Introduction

Poatryagin’s Maximum Principle (see e.g., [1]) brings a complete

solution to the rioblem associated with the minimum-time tracking
-(of a fixed or moving target) subject to actuater saturation. In order
for such an approach to be implementable, one requires a characteri-
zation of the switching surfaces in the state-space. Compiete solutions
for single-input single-output low order models have been derived in
_the literature. The bang-bang nature of the solution requires a relay
in the implementation; hence, chattering subject to disturbances. One
way to overcome this difficulty is to approximate the infinite-gain non-
linearity (namely, the relay) with a finite-g1in nonlinearity. Hence one
is bound to step back from the time-optimal result for the sake of im-
plemeatation. Even if ane reformulates the open-loop minimum-time
problem as a fast finjte-time tracking problem (for a given reference
trajectory, determine an input {subject to actuator saturation) so that
the tracking error remains at zero after a finite time-instant) a feasi-
ble solution method for a closed-loop design ge- ' remains a challenge.
The demand for fast tracking with saturating actuators has produced
a variety of closed-loop implementations ranging from using idealized
relays, finite-gain relays, adaptation methods, ete. [6,7,8] . In the
meantime, openloop solution to the problem with flexible modes has
Yeen studied in detadl, for specific cases with no damping. The result-
ing proposed nonlinear optimization problems are derived using the
necessary optimality conditions posed by the Maximum Principle, for
spedific plant models [2,5)] .

In this paper, an approximation to the time-optimal tracking prob-
lem is proposed for lincar time-invarjant finite-dimensional multi-input
tﬁulti-output plants. The approximation relies on a transfer func-
tion approach to formulate constraints on the set of admissible finite-
duration sipnals that achieve precise point-to-point positioning of flex-
ible stractures (3] . The results reported in this paper have already
been used to desipn fast finite-time tracking closed-loop feedback sys-
tems. Due to space limitations, a portion of the open-loop results are
reported. An example iilustrates the feasibility of the approach.

2, Preliuminaries

Let the plant, P, be strictly proper and have a minimu state-space
description (A, 53, C), with n, inputs, n, outputs and n, states. The
state-space description can be in continuous-time or diccrete-time, The
results will be exclusively stated for the continuous-time strictly proper
multi-input multi-output plant P . Since the approach relics on a
rational transfer function description, with appropriate modifications,
discrete-lime setting can also be handled.

Definition (Ur) : Fora yiw n T G {0,00), Ur denotes the set of all
bounded inputs of duration 7", where
Up = {u i Ry — IR | u()r 0 for t>1T
Definition (7-track) :
rify()=r(Oforallt > 7. O
Fact 1 : For a given plant P with a minimal description (A, 1, ,
and a reference r , there exists an input u € Ur such that (7.« u)
T-tracks r if and only if r ¢ W7 . where

Rrom {ridty — W | r(f) = CeAlyg,zg € I, 02 1) 0

[iello, < o0} .G
For a given T' € (0,00) , y i8 said to T-track

From Fact 1, we conclude that the Laplace transform of a signal in
R can only have poles at the plant poles.
Fu.t 2: For a given plant I with a minimal description (A4, ), C) , let

‘Resrarch supported by AFOSR under contrant 49620 88 C-Co12

reRy
such that r(f) =

. Then there exists a unique rr € Ur and a unique z, € IR™
TT(t) + CCA‘Zr .a

3. Transfer Function Approach

Let r € Ry and the plant be at an initial state zgat t = 0 . Let
ry aud z, describe the unique decomposition of r as in Fact 2, The
goal is to find a v € Uy such that

Ry(s) + C(s] = A) 'z, = C(s - A)™ (20 4+ BU(s)).

Without loss of gencrality, we assume that o is zero. If 24 is not

zero, redefine z, as (z, — xq) .

Proposition 1: Let J” have the expansion P(s) = il (—.-'_‘-:!F .

where Ki; € M™*™ | Let + € Rr . Consider thc umque decompo-
sition =t rr 4 Terp , Where rp € Ur and 1, = Celz,
Under these a.ssumplionS‘ 1. r.p € R ; moreover, R..,(s) =

P pRIAN (._, 37 1 Where I € R™ . 2. The set of all signals
u € Ur such that (P + u) T-tracke r is given by

{u cUr | Kpmoien = gy (&5 1 - )™ PV,

t=1,...,k;j=1,...,m; .0

A Convex Approximation to the Minimum-Time Tracking
Problem : Choose a basis of Ur ; for a gpecified N |, truncate it
to a finite collection {h;) . Consider the subclass of s#na]s in Uy
whose Laplace transfonus are of the form U(s) = i, pifi(s) .
Clearly, all of the matching constraints in Proposition 1 trznslate into
a lincar cquation in terms of p € MY | say, T'(T)p = 4 . The entrics
of 7y arc solely determined by the cntries of }-(‘.-j corresponding Lo r.,,
(sec Proposition 1 )} . We will refer to the space 7 is in as the residue-
space (an 2buse of notation; after all, not all entries of «y correspond
to the residues in the partial fraction expansion) . By introducing the
actuation saturation constraints, we end up with a convex feasibility
problem:

Find p ¢ IWY such that I(T)p = + and pThllee €1
where (1) 1= [hy{t) An(0))7 . For a specified T and N | the
maximum perforinance along the desired direction 7 is determined by
M L EMY A C It

'(Tp = Ay
”}’T"”m <1
of convex. minimization problems by varying 7' (and N) to sweep a

maximum performance cutve; hence, obtaining an approximation to
the minimumn-time problem,.

A . Clecarly, one can then solve a sequence

A Particuler Choiee for U(s) 1 A Gme-oplimad input sipnal is neces.
sarily bang-bang. While there is no upper-bound orn the finite number
of switehingr in general, for a fixed number of ewitchings, say N , one
can choose a sequence of N pulses (with alternating amplitudes) with
varying, widths a< a family of functions in W7 . Que can then solve
for the constraints in Proposition 1 to obtain a family of nonlincar
(non-convex) algebraic equations [4) . Similar algebraic equations are
obtained by applying the Pontryagin’s Maximum Principle to specific
cases of ) using; state-space computations [2,5] .

Yor afixed 1", consider the weighted sum of a sequence of N pulses
vith uniform widths (T'/N) ; fe., U(s) = ‘ﬂ'i:-l SN preke TIN
Since the input signal is piccewise constant, the actuation bounds can
be expressed as —1 < p < 1, where p ¢ Y is to be determined.

An Approximation to the Minimum-Time Problem by a Se-
quence of Linear Programs: FYor a given plant P and N | the
maximuwm petformance function ¥ @ (0, 00) x WM™ — Wy is definnd
in taams of the linear prepram ¥(7',7) = max e RN A C I A
T(Typ == Ay
-lopsld
where (7 ) is obtained by the matching conditions in Proposition 1 .
Any p ¢ RN for which the linear progratn returns the value (7, y),
is used to define the relation ¢ (0,00) » "

- WM , where



&(T,q) = $ . For aspecified time-instant T', V(T,v) determines
the maximum-performance one can achieve along the specified direc-
tion v . For a fixed direction 7, by sweeping over T , one obtains
the y-maximum-performance curve (T, ¥T,7)) , TeRy . In
stead of generating the 7-maximum-performance curve forT € Ry,
introduce a time-resolution of AT and discretize the curve; i.e., for a
pre-determined Epoz , evaluate (T, ¥(T,7)) , T=kAT ,

0 k < knas - 3

The sub-optimal (due to the approximations) time-instant T for
which the residue 7 is achieved is in the interval T € [T, Tt + AT},
where ¥(T1,7) < 1, and ¥(T) + AT, 1) 2 1. The T-polytope S,

Sri= { M| veR", ylla=1, 2 & [0, UT}

is the sct of all points in the residue-space that can be reached inT
seconds. The boundary of this set, denoted by &St , is referred to
as the T-jsochrone. Consider the T-polytope St which is a subset of
Sri8r = (T NETeder | A S 1), where {er, ..oy ea)
is a basis in IR" .
A Map from the Residue-Space to the Input Space : Our goal
is to construct a map, possibly using look-up tables, such that given
a desired reference signal and the states of the plant, an input signal
is generated so that the plant output T-tracks the reference signal as
fast 28 possible, The desired reference signal {which should be in RT)
and the initial state determines the amount of change necessary in the
residues of the output signal. For this reason, we will focus on the
following subproblem: For a given 7 in the residue-space determine
an input signal such that the output of the plant achieves the residues
specificd by v as fast as possible. From now on, we will use the standard
orthonormal basis {€, ..., ¢4} in IR™ . In order to cut down on the
storage space, we will identify &7 with its “positive orthant™:

Sr = { T A¥(Tye)er | IAas1,A20}).

Let the signum function SGN : IR™ — R" be defined as the
entry by entry signum function over IV . Let the operator .« denote
element-by-element product in IR . Suppose that 4 € 88y . Let 5
be defined by v =: SGN(7) .+ 4 . Clearly, v € 8St if and only if
4 € 887 . Since ¢ can be expressed as a convex combination

§ o= v AW(T,e)e , A2 0, Ml =1,
we conclude that the input that achieves 7 residue in T seconds is
represented by p = Y1, :\.@(T, e;) . The input that achieves 7
residue in T scwonds is represented by
P = by (c:-rSGN('y)) ®(T,e¢) . Notethat -1 <p<1.

We now outline the procedure:

1. Pix N , AT and kpqr -

2. Solve (n - kpaz) linear programs; i.c., for the kmae time poinis

solve for and store ¥(I',¢), ¢(T,e;), i=1,...,n.

3. Yor a given 4 determine the siuallost 7" such that 7 € St . We
propose the following procedure: Let 7 € MEmes be defined as

Tn o= 1/ (S0 gt k=1,.k
exn = |\ i TV PO ) = 1oy Kimar -

Let the £th entry of n be the first entry which is less than or equal
to one. Since ¥ was in S, aT) o start with, such an £ exists.
Hence, we conclude that, among the family ol T-isochrones, ¥
can be achieved no faster than 7¢ seconds.

4. Once the index ¢ and the multiplier c'{u is determined, extract
the input sequence from p € mN

o (TET ) g e
D= La=t _vff(!fj‘,','c,;—dj(lli‘-\) .

Example
Consider the single-input single-output plant
P(s)= 4 + Yim wydonian
where [op oz 03) = [51090] | fwy wy wal = 27 (0.5 ] 1.5) rad/s and
G G2 G5} = (0.1 0.01 0.001] . Clearly, the admissible rozp's are linear
combination of steps, ramps and Jightly-damped sinusoids. The vast
majority of tracking problews restricts the references to 1o a linear
combination of steps and ramps:
{rlr)=ro+ nt,roC M, 1 cl,t>0).

1n order to show the efiiciency of the propused scheme, we will focus
on actuation signals in Uy , whese 77 ¢ [1,10)s . Standard bang-bang
actuation relying on the rigid-body approximation of P for sest-to-rest

slewing over the interval [1,10} s resulted in unsatisfactory outputs,
We choose N = 26 . All simulations were performed by sampling the
plant P at 100 :. lnorder to have at least one sample instant added
on for each time step AT . we choose AT = 0.23 . We set up the
linear programming problem, by constructing I'(T") from the matching
conditions in Proposition 1 . For illustration purposes, we assume that
the plant is initially af rest and the output is required to T-track steps
and ramps only. We solve 46 linear programs along 7 = €1 and another
46 lincar programs along 7 = €z . lat the reference trajectory ¢ be
as shown in Figure 1 (dashed line). The breakpoints and slopes in
Figure 1 reveal that the sequence of inputs should satisfy the following
increments in the residue-space denoted by the ordered pairs {rg,11)
aT=0,(+2, 0);atT =5,(~2,~1);at T =12,(+7,+1) . Using

‘the one-hyperplane approximations to the 46 T-polytopes, the fastest

tracking times for the sequence of residue increments are 3.2, 4.6 and
7 s , respectively. Figure 1'sliows the input and the associa* ~d output

of P.
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Figure 1: An input signal @ (top) such that I’ + ¢ (bottom solid) fast
T-tracks r (bottom dashed)
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