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1 Introduction I
1.1 Problem Description I

The motivation for this research arises from the maneuvering and target tracking func- I
tions currently envisioned for large space structure (LSS) optical tracking systems. Such

systems consist of lightweight structures which are mounted on, or articulated with respect

to, heavier less flexible structures. Within the lightweight structure is an optical system,
and within that system there are subsystems having similar further divisions. For example,
a typical LSS optical system might consist of the following subsystems, listed here in order

of increasing bandwidth: (1) coarse tracking of rigid body dynamics via gimbals, CMG's,
reaction jets, and isolation devices; (2) beam pointing via mirror actuators; (3) wavefront

and focus via secondary mirror control; and (4) fine tracking via fast mirrors and track illu-

mination. Due to the natural frequency separation between each descending subsystem, it
is possible to view each as essentially an independent tracking problem.

With this view in mind our reasearch has concentrated on a more generic and fundamental I
objective, namely, feedback control for rapid precision maneuvering of flexible structures.

This objective encompasses any or all of the typical subsystems involve(d in an LSS optical

tracking system. Our specific aims were as follows:

(1) Determine the performance limitations for iapid slewing.

(2) Develop methodologies to implement feedback slewing controllers which achieve speci-
fied performance goals. I

1.2 Overview of Results

The limitations of tracking performance, particularly target acquisition, arise principally
from actuator saturation. Since saturation is a nonlinear function, it is not surprising that

high performance slewing controllers are nonlinear. The rapid slewing problem, which is

perhaps more well known as the time-optimal control problem, has beeni the subject of
research for very many years. Mathematically, a complete formulation of this problem can be

obtained using Pontryagiri's Maximum Principle, e.g., [Athli]. Hlowever, in only the simplest I
cases has it been possible to obtain a solution. The general solution requires solving a two-

poinit boundary value problem. In addition, for practical reasons, such as rol)ustmess and

disturbance attenuation, it is necessary to implement the time-optimal control as a feedback
system. However, such an implementation requires determining very comlplicated multi-

dimensional switching surfaces. This is not a solved problem except for some very simple

cascs, e.g., rigid body dynamics. As a result, the research challenge undertaken here is the I
design and feedback implementation of tinie-optilfal control for syst(ms with the ('omphlexity
of typical LSS o; :al tracking systems.

Within the E: ' of linear (timc-invariant finitte-dime'i.sional) (con trol d(.sign and anlalysis,
there exists a •.iderable amnount of theory as well as comlehlmentary, very efliijeient com-

pItatioial tools. Many classes of performancm"e specifications can be included ini the d(hsign

I



methodology, e.g., minimum energy, worst-case gain, etc. Nonlinear control design, however,
is at its infancy, and except for very specific cases, a performance specification other than

stability is very hard to incorporate.

The minimum-time control design problem is a nonlinear control design problem. This

is due to the fact that the solution relies on maximizing the available actuation energy over

the finite duration of actuation. As is well known from Pontryagin's Maximum Principle, for

"a given reference the actuation is bang-bang, i.e., saturating at the two extremes. Clearly

"a scalar multiple of the reference will yield a similar actuation sequence over a different

duration. Observe that a closed-loop implementation is acceptable provided that it generates

the (open-loop) time-optimal solution at the plant input.

For a given plant model and reference trajectory, if one could solve the associated

minimum-time problem, one would obtain the description of the input in terms of the
costate. This costate-to-input map would in turn describe a closed-loop implementation.
Such a point of view, apart from the nontrivial issue of solving the minimum-time problem,
has two other major drawbacks:

i) A time-optimal maneuver requires an actuation sequence which does not excite the
structural modes. Since the structural modes can only be determined within some
tolerance, what is optimal for the design model may not prove to be satisfactory for
the perturbations of the design model. In other words, the complete solution lacks
information on the achieved robustness in performance.

ii) Regardless of the plant model, the solution is necessarily bang-bang. Hence, one re-

quires switching logic (sign functions) to implemnent the costate-to-input map. Such
an implementation is known to chatter for small error signals.

These drawbacks imply that one should step back from the mininmum-time and seek
approxi mate solutions which will make the closed-loop implementation feasible and achieve
performance degradation which is acceptable. Within the scope of this project, two distinct

approaches have been taken in the course of seeking an approximate solution:

* Approach 1 .
Start with a representative problemn for which the complete analytical solution can be
obtained. Modify the solution to obtain an implementable fast tracking closed-loop
systeili. Such an approach restricts the set of allowable, models. However, the existence

of an analytical solution provides a variety of extensions to be made, e.g., adaptation.
Section 2 focuses on the results obtained using this pai ticu ar approach.

* Approach 2 .
Ilisteaxd of modifying the solution to a specific problem, pose the original miIn imum-

time problem as the limit of a sequence of easy to solve convex optimization problems.

For a fixed member of this sequence, determine a closed-loop design scheme based

on the solution. Such an approach increases computationkal complexity in the design

2
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stage. However, for a satisfactory approximation to the original minimum-time prob- 1
lem, the closed-loop design makes intensive use of existing linear (time-invariant finite-
dimensional) design tools. The closed-loop design relies on a model follower scheme. I
Section 3 focuses on the results obtained using this particular approach.

I

I
I

I
I
I
I
I
I

I
I

I
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I
2 Approach 1

This phase of the project consists of the research leading to the following three publications 3
which are reprinted in Appendices B through D . Part of this research was motivated by the
publication in Appendix A (under an NSF grant), which is included for completeness.

1. M. L. Workman, R. L. Kosut and G. F. Franklin,
"Adaptive Proximate Time-Optimal Control: Discrete-Time Case,"
Proceedings of the IEEE Conference on Decision and Control, pp. 1548-1553, I
Los Angeles, California, December 1987.

2. R. L. Kosut , A. M. Pascoal, M. L. Workman and G. F. Franklin,
"Minimum-Time Control of Large Space Structures,"
Proceedings of the SPIE Conference,
Los Angeles, California, January 1988.

3. A. M. Pascoal, R. L. Kosut, G. F. Franklin, D. R. Meldrum and M. L. Workman,
"Adaptive Time-Optimal Control of Flexible Structures,"
Proceedings of the American Control Conference,
Pittsburgh, Pennsylvania, June 1989.

During this period Dr. Kosut collaborated with Prof. Franklin from the EE Dept. at
Stanford University and his graduate students M.L. Workman and D.R. Meldrum. Dr. Pas-
coal was employed by ISI.

I
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3 Approach 2

3.1 IntroductionI

Within the setting of finite-dimensional linear tine-invariarnt multi-input multi-output plant

modeling/identification and control design, increased computational power allows higher

order nominal plant models to be incorparated in the designs in order to meet stringent

performance demands. Currently used design methodologies include minimumn-energy, worst-

case energy-gain and peak-gain designs. In the case of actuator saturation, even if a globally

stabilizing compensator is designed, saturation of the actuators may significantly degrade

the overall performance. Typically, one forces sufficient conditions to guarantee that the

actuator signals do not saturate over the region of operation.

The minimum-time tracking (of a fixed or moving target) on the other hand becomes

an ill-posed problem if the saturation of the actuators is not incorporated in the problem

description. Subject to the specified saturation limits, minimum-time solutions are neces-

sarily bang-bang; hence, a linear control design will prove to be unsatisfactory. Closing the

loop aside, solving for the (or a, as the case might be) time-optimal input is a nontrivial

task. Pontryagin's Maximum Principle (see e.g., [Athl]) brings a complete solution to the

problem, using the calculus of variations. Solving for the equivalent nonlinear (non-convex)
non-differentiable programming problem brings up all the associated hardships. In order for

such an approach to be implementable, one requires a characterization of the switching sur-

faces in the state-space. Complete solutions for single-input single-output low order models

halve been derived in the literature; these results are extremely case specific and they are

derivations for the complete solution for the case at hand. Regardless of what the solution is,

the result requires a relay in the closed-loop; hence, chattering subject to disturbances. The

way to overcome this difficulty is to approximate the infinite-gain nonlinearity (namely, the

relay) with a finite-gain nonlinearity. Hence one is bound to step back from the time-optimal

result for the sake of implementation. Even if one reformulates the open-loop minimum-tine

problem as a fast finite-time tracking problem (for a given reference trajectory, determine an

input (subject to actuator saturation) so that the tracking error remains at zero after a finite

time-instant) a. feasible solution method for a closed-loop design goal remains a challenge.

Fast finite-time tracking of reference signals with saturating actuators has been a bench-
mark control problem since the complete solution method to the open-loop problem has been
derived using Pontryagin's Maximum Principle. Solutions for the rigid body approximations

have been used in different control strategies in applications areas such as the control of disk
drives and precise maneuvering of flexible syste ils. The demand for fast tracking with satu-

rating actuators has produced a variety of closed-loop implementations ranging from using
idealized relays, finite-gain relays, adaptation methods, etc. [\Vorl, Wor2, Wor3] . In the

meantime, openloop solution to the problem with flexible modes has been studied in detail,
for specific cases with no damping. The resulting proposed nonlinear optimization l)roblerns

are derived using the necessary optimality conditions posed by the Maximum Principle, for

slpecific plant models [Beni. Siiil].
In this report, an apl)roximation to the tinic-optinial tracking problem under actuator

iAn abridged version of a subset of the following results is to appear in the Proceedings of the IEEE'

Conference on Decision and Control, Brighton, United Kingdom, D)ecember 1991 (see Appendix E) 3
7 
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saturation constraints is proposed for linear time-invariant finite-dimensional multi-input
multi-output plants. The approximation relies on a transfer function approach to formulating
constraints on the set of admissible finite-duration signals that achieve precise point-to-
point positioning of flexible structures [Rhal] . The results are used to design fast finite-
time tracking closed-loop feedback systems using only linear time-invariant design tools;
the design replicates the open-loop behaviour with the added advantages of feedback. An
example illustrates the feasibility of the approach.

3.2 Motivation

Consider a linear time-invariant finite-dimensional multi-input multi-output plant P . For
preliminary arguments, consider the continuous-time case (the solution method proposed
relies on trnsfer function descriptions; hence it naturally extends to the discrete-time case).
Consider the following optimal control problem:

* For a given reference r , find the minimum time 1' such that a 7'-duration control input
u (IullI • 1) achieves (P * u)(t) = r(t) for all t > T .

Clearly, not all signals r can be tracked in such manner. Once the right class of r is described,
this problem boils down to the standard time-optimal intercept problem. As is well known,
Pontryagin's Maximum Principle sets up the necessary conditions to solve this problem;
however, literally computing the control u turns out to be a nasty nonlinear optimization
problem. E•ven if we had the the time-optimal u, that tracked r in T, seconds, trying this
input on an open-loop plant is a futile attempt. Consider a simple double integrator plant
with r as a step input. The time-optimal u, clearly satisfies foj ur(r)di - 0 ; otherwise
the plant would start to tumble. If one had an actuation disturbance (say a short duration
pulse with a DC component) there would be no way to implement a tinmc-optimal slew in
open-loop without exact knowledge of the input disturbance. Clearly, one requires a feedback
configuration.

For the double integrator plant, for any stabilizing compensator (in the unity-feedback
system), the sensitivity map has a zero at s = 0 ; hence, any additive DC disturbance at the
input is asymptotically rejected at the true plant input.Instead of choosing any stabilizing
compensator, if we designed an £1-optimal compensator, we will have a worst-case amplitude
gain from the input disturbance to the plant input. Using this headroom, we could solve the
time-oI)timal problemn with the actuation constraint modified to h1ulK• < (1 - E) , where
F G (0, 1) , is the discount factor keeping the worst case disturbance contribution. In other
words, the closed-loop design (how sophisticated one desires to get) can be decoupled from
the time-optimal problem by presetting e . Clearly, any stable unity-feedback systeni can be
used to track r once the time-optimal (or as close as one can get) i,. is determined (inject a,.
at the plant input and use Pur as the reference and let the compensator work on the output
measurement error); see Figure 1 . This line of reasoning works fine as long as one has the
suitable u, ; in other words, the open-loop solution.

So, a feasible closed-loop (robust, disturbance rejecting, ... ) design problemi boils down to
conputing I,. in a fast manner; possibly, after certain simplifications and getting sub-optinalUe sWu;s within a reasonable headroom.UOy
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Ur

PU,. + CYI

Figure 1: Stable unity-feedback system with zero initial conditions that achieves y = Pu.

This report focuses on an approximation to the time-optimal tracking problem. The
result can be expressed in terms of a sequence of linear programs, where the number of
variables is fixed throughout. The results are applicable to any multi-input multi-output P
with a minimal state-space description (A, B, C). Time-suboptimal tracking is achieved for
the set of admissible reference signals associated with P . The results are incorporated in a U
closed-loop design procedure. An example illustrates the feasibility of the approach. I
3.3 Finite-Time Tracking of Reference Signals

Let the plant, P , be strictly proper and have a minimal state-space description (A, B, C), ,
with ni inputs, n, outputs and n, states. The state-space description can be in continuous-
time or discrete-time. For the sake of illustration, the results will be exclusively stated for the
continuous-time strictly proper multi-input multi-output plant P . Since the approach relies I
on a rational transfer function description, with appropriate modifications, discrete-time
setting can also be handled. 5
3.3.1 Definition: (UT)

For a given 7' E (0, 0o) , U7, denotes the set of all bounded2 inputs of duration 7' , where

UT := { u: JR-+ - 13", 1 u(t)= 0 for t> T IjuII,<oo ) .13. -

Typically, the actuators have saturation limits. After appropriate normalization of the I
input u to the plant, we assume that the saturation constraints are expressed as jul _ 1. I
3.3.2 Definition: (T.-track)

For a given T E (0, oo) , y is said to T-track r iff y(t) = r(t) for all t > T . f 3
For a given reference signal r , the minimum-time tracking l)roblelfl is to det:rimiii tOe

minimum timc 7' and an input u C LIT , such that jjullo_< < 1 and (P * u) T-trackL'; 7, . Since

the inputs are restricted to 74T , the reference should T-track a zero-input response of P.

2with .,sptect to the ,,orm For u : ]R+ , JiC" , I J; := m+ x,<_<,, I,,I()l 3
9i



3.3.3 Fact:

For a given plant P with a minimal description (A, B, C) , and a reference r , there exists

an input u G UT such that (P * u) T-tracks r if and only if r G R2, , where

ZT : ={fr :ll *R no -- i'1r (t) = CeAtX ,xo E M!" t>_} .fl 1 (1)

Note that (1) is a complete description of reference trajectories that the plant output can

T-track with inputs in UT . From now on, we will refer to theset lZT as the set of admissible
-- reference trajectories. Using the description in (1) , any r E R.T has a unique decomposition

as stated in the following fact.

3.3.4 Fact:

For a given plant P with a minimal description (A, B, C) , let r E "C'T • Then there exists a
unique rT E UT and a unique x,. E IR" such that

r(t) = rr(t) + CCAtx, .El

3.3.5 Finite-Time Tracking Problem 'PT :

For a given r E RlT , determine a u E UT such that (P * u) T-tracks r . 0
Clearly, the problem PT has always a solution, since there is no constraint on the actuator

signal. The standard analytical solution method for PT is outlined in order to motivate the
results.

3.3.6 Finite-time tracking with unconstrained actuation:

Let (A, B, C) be minimal; without loss of generality, set initial time instant to zero. We now
briefly state the standard solution method.

1. Fix C' (O, Co)

2. Fix r RT.

3. Determine the unique x(T) describcd by thc constraint

r(t) C C A(t-T)X(T) , t > 7'

i.e,

CA vO(T)

C A ", 1l( -) T

4. Solve for W0 (T) where Wc(t) satisfies

Wu = AIV', .+ 4/-,A' + 131I", W(,,(O) 0

10



I
5. Compute the finite-duration minimum energy control that steers x0 to x(T) , namely

u() { BeA(T-t)W1(T)[x(T) - eATxo] t E [0, (•()= 0 t > T "[ 2

Recall that the minimum energy solution in (2) is a solution of the linear equation U
XT = ZT(u) , (3) f

where

XT x(T)- eAT x(O) I
1T(U) := T CeA(T-h)Bu(T)dr

If one obtains a pararnetrization of the null-space of ZT , together with the minimum
energy solution in (2) , one obtains a parametrization of all solutions to (3) . Note that, the
resulting parametrization is a parametrization of all inputs that achieve T-tracking of the
reference r . One could then search over the subspace of solutions for an input that satisfied
the maximum bounds. 3

A straightforward approach would be to introduce sampling at a fixed rate and zero-
order hold. Instead of keeping the input value at each sampling instant as ail independent
parameter (which would increase the complexity of the optimization problem considerably), I
hold the input signal constant over a fixed amount of sampling instants so that the number
of free parameters is reasonable. The equation in (3) would then be a linear equation in finite
number of parameters; together with the parameter bounds imposed by the saturation limts,
one ends up with a standard linea," programming problem. There is one major drawback of
this approach: setting up the approximate linear programming problem requires considerable
amount of computation (discretization, time-domain convolutions, state-transition matrix U
evaluations, etc.) .

The proposed solution method, sets up another linear programming problem using tranis-
fer function description and partial fraction expansions.

Before we start describing another way of parametrizing inputs in U1T that achieve 1-
tracking of r , we point out the fact that the standard minimum energy solution to P'" cain

be used to determine a lower bound on the T's the search is based on.
For a signal u E U-r , 1u7tlk < 1 implies that the energy" juIll < i'n . We know that

the minimum energy needed to steer x 0 to x(i) is given iby -

ATi

where x(T) - cT xo . Clearly, if I;ii•1• is greater than Tn'i , there cannot be it. bo,,ndlel
signal in UT. that can do th job. La,•c, duri.g the detailed description of an cx:mmiplc, wc- will_
use this energy bound condition in order to show the effect of the proposed approximations
to the ininiiiuni-timne rcaclhability p)roblem.

:31'or U : lit+ - R"' , I1JJUI1 U='(T)U(T)dT 3
11



3.4 Transfer Function Approach

Although time-domain solutions and necessary conditions of optimality formulate the com-
plete solution to the minimum-time tracking problem, it requires considerable computational
effort to solve the resulting nonlinear problem. What we propose is to approximate the
problem as a sequence of finite-time tracking problems in terms of linear programming. The
finite-time tracking problems are formulated in terms of partial fraction expansions; hence
they require no time-domain simulations. We now describe the procedure.

What we mean by the poles of a function of time are thc.poles of the Laplace-transform
of the function. Note that a signal in UT is entire; hence, it does not have any poles.

Recall that for a given minimal (A, B, C) , the set of all reference signals that can be
tracked in finite time is given by (1) . From Fact 3.3.4 , we conclude that the reference signal
can have poles at the plant poles and nowhere else.

Let r E TZT and the plant be at an initial state x0 at t = 0 . Let rT and x, describe the
unique decomposition of r as in Fact 3.3.4 . The goal is to find a u E UT such that

RT(S) + C(sI - A)-'Xr = C(sI - A)-' (xo + BU(s))

Since signals in UT do not have any poles, the set of all signals that achieve T-tracking is
described by partial fraction expansion matching conditions. From now on, without loss of
generality, we will assume that xo (the initial condition) is zero. If xo is not zero, one call
redefine xr as (Xr - x0) •

3.4.1 Proposition:

Let the plant P have the expansion

P(s+) E ji= 1  K

where Kij E IR"'"' . Let r ý: 7ZT . Consider the unique decomposition

7 -=: 7"T + ?*,,I)

where r]j E /UT and rexp = Cc At x (see Fact 3.3.4) . Under these assumptions,

1. xp C l'T ; moreover,

i=J =S -

where Kij C IR

'2. Thle set of all signals u G UT such that (P * u) T-tracks r is given by

U = ,. , , R .1; - .;1,...,2 *i .Y (,l)

12
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3.4.2 A Convex Approximation to the Minimum-Time Tracking Problem

In order to use the results mentioned above in a finite-dimensional optimization problem,InI
choose a basis of UT (preferably, one for which the Laplace transforms can be easily calcu-

lated) . Truncate this basis down to a finite collection {hi}N=1 , for a specified N. Consider

the subclass of signals in U7, whose Laplace transforms are of the formi

N

Up(s) = p pHi(s)

Clearly, all of the matching constraints in (4) translate into a lincar equation in terms of

p E •RN , say (

SV(T)p (5)

Note that -f E I' , where

71 := 71, 77irn
1==1

The entries of -y are solely determined by the entries of Kij corresponding to rexp (see 1Propo-

sition 3.4.1) . We will refer to the space -y is in as the residue-space (an abuse of notation;

after all, not all entries of ^t correspond to the residues in the partial fraction expansion) .

For the specified expansion Up(s) and specified T , (4) determines a unique I'(T) . Solv-

ing (5) for different vectors y in the residue-space, one obtains solutions to PT for different

admissible reference signals
As we have seen before, there is no loss of generality when the reference trajectory r

is expressed in terms of 7,p only. The finite duration portion has no contribution to the

matching constraints in (4) . We now point out an observation that may further simplify

setting up the problem. Typically, the reference r,.p does not have nonzero coefficients at I
each and every single pole of P , i.e., not all entries of -y are nonzero. The desired reference

is usually T-tracked by exciting a subset of the plant poles, Note that if none of the plant

poles are excited, the plant output will also be in UT1
Suppose that one has a model of P of the form

rol

S2 A12 + 3(ws4 ~

where the desired performance is to achieve rigid body l1erformance with minimal residual 3
vibration dite to the rest of the flexible modes. Note that the results mentioned so far are

quite general, not specifically derived with this simplification in mind. Carrying on with the

observation, since the flexible modes are distinct, zero residual vibration at ýsj is achieved I
if U(s•) -- 0 , provided that the plant is initially at rest. Since the rank of Ki is nonzero

(otherwise the inode would not show up in the miodel)., U(.si) has to be in the null-space of'

Ki . )efinitely, chosing U(si) = 0 is a sufficient condition; however, the re(tilts considerably

sinplify since thie perforinatce boils down to step and ramp constraints on U(.s) . Tile

null-space description Ior tie resid ual vibrationi port:oi can be rej)iaccd by setting dime ii1p t1,I I
to zero at those poles. Clearly, for single input systenis, thlis suftici('i t, (coldition is also

imecessary. Note tlhat, whlen one seeks an input thiat steers any state I to a teim ,nli al state,

1I(s') will not necessarily be zero, in ord('r to sUpprness the correspon cing mllmOd('. 3
13



Provided that (5) has a solution, one brings another way of solving the finite-time tracking
problem PT . Introducing the actuation saturation constraints, we end up with a convex
feasibility problem:

Find p E IR.N such that P(T)p = -y and I)p hTI < 1 ,

where h(t) := [h,(t) ... hN(t)]T . As it will be explained later on, by suitably choosing
the finite collection of functions in UT , the convex problem becomes a. linear programming
problem.

Instead of solving a sequence of convex feasibility problems and seek answers of the form
yes or no, one can form a slight variation to extract the most from each optimization run.
For a fixed T and N , -v denotes the desired direction and magnitude; instead of solving for
', solve for a scaled version:

max A (6)
p G IItN A E IR.

I'(T)p = A-f
I[pT htk• < 1

Solving the convex minimization problem (6) , one obtains the maximum performance
along the direction ^I for a specified T and N . Clearly, one can then solve a sequence of
convex minimization problems by varying T (and N) to sweep a maximum performance
curve; hencc, obtaining an approximation to the minimum-time problem. In the rest of
this report, we will fix N and vary T . The implications of this approach will be discussed
in detail for the specific convex setting: linear program. Such a choice is made only for
making sure that the complexity of the sequence of convex optimization problems stays the
same throughout the whole sweep. If one is not interested in further simplifying this convex
program (6) to a linear program, one could apply all of the topics discussed under the linear
program setup to this general convex setting.

3.4.3 A Particular Choice for Up(s)

A time-optimal input signal is necessarily bang-bang; i.e., it is pieccwise constant (with values
±1 , for a detailed treatment of the solution technique using calculus of variations, see e.g.,
[Athl]) . While there is no upper-bound on the finite number of switch ings in general, for a
fixed number of switchings, say N , one can choose a sequence of N pulses (with alternating
amplitudes) with varying widths as a family of functions in U7T . One can then solve for the
constraints in (4) to obtain a family of nonlinear (non-convex) algebraic equations [Schl] ,
Similar algebraic equations are obtained by applying the Pontryagin's Maximum Principle
to specific cases of 1', using state-space computations [Benl, Sinl] . Since the signals (by
construction) , do not violate the specified actuat;on bounds, solving for the lilininum width
pulse sequence brings an approxiinatioii to the solution of the iniinimun-tiie )rol)lein. II

order to avoid local iuuinima problemns, we choose a linear comlbinationl of fu,,ctioiis iM U1..
For a fixed 7' , coisider the weighted sum of a sequence of N pulses with uniformn widths

(TIN) ; i.e., choose, as

B{ ll(I-(k-)•) -1l(t-- k-N)

14



1

aNT/N pke (7)
"S k=l

£ denotes the Laplace-transform and 1 denotes the unit-step function.4 Since the input

signal is piecewise constant, the actuation bounds can be expressed as

- 1 <pl 1  ,

where p E IRN is to be determined.' Recall that, the general convex approximation was I
in fact a linear equation with convex constraint on the parameters. Now that the input
constraint can be equivalently represented as a parameter bound, we end up with a linear
program setup.

Before proceeding with the sequence of linear programs, we comment on the choice ofN. 3-
The matching conditions in (4) yield n equations in N unknowns. In order not to have

a trivial null-space, N should be greater than n . Note that the null-space solution will be
used to find a solution in the hypercube -1 < p < 1 . If the time-optimal switchings were I
at integer multiples of TIN , the resulting linear program would return a solution at one
of the corners of the hypercube. Ilence the specific approximation as a linear program will
consistently come up with solutions trying to reach a corner, but not necessarily get there. I
Clearly, the finer the pulse width, the higher the number of pulses that attain the maximum
bounds. In the detailed treatment of an example, we will comment on the improvements of
the solutions with respect to N . I

There is another way of interpreting this specific choice of input. Since the pulses are
uniform, one could view the coefficient matching in (4) as matching the output of the discrete-
time plant (namely, P sampled at NIT Ilz) . This dictates that the choice of N should be
so that

1rnag(si)T < 2rrN , i =1,...,k , (8) 3
(preferably, < rather than < ) , where si denotes the ith pole of P

Typically, one has energy constraints on the actuators, 3

where Ema denotes an upper bound on the actuation energy. Note that this brings an upper
bound on T since the inputs satisfy IluIIj < 1 .

1JUI,ll < ni,< E"",

Denote the upper bound onl 7' as 7,,,,. I
Hence, once the poles of P are determined, one can choose such an N and fix the order

of the linear program throughout the solution.

4 11 : I • - , I R l ~ l ) • 0 , t < 0

or lt .N, I1N .< P I -ote<-P1 <k 1 , for I < k < N

15



3.4.4 An Approximation by a Sequence of Linear Programs

For a given plant P and N , the maximum performance function

T : (o,oo) x W" --+ R+

is defined in terms of the following linear program.

T(T, max A (9)~P pE IRN,A E• IR

r(T)p = A-
-1 < P-.5 1

where r(T) is obtained by the matching conditions (4) . Any 3 E IRN for which the linear
program in (9) returns the value TI(T,7), is used to define the rclation 4)

S¢~< : (0, 00)× Xt -W lRN,

where

P (T, :p

For a specified time-instant T , %P (T,7 -) determines the maximum-performance one can
achieve along the specified direction -y . For a fixed direction -t , by sweeping over T , one
obtains the -y-maximum-performance curve

(T, P(T,7)) , TElR+

Instead of generating the -y-m-aximum-performance curve for T c lR+ ,introduce a time-
resolution of AT and discretize the curve; i.e., for a pre-determined kan, evaluate the curve
at integer multiples of AT:

(T, 7T(T,7)) , T=kAT , 0<-k<k,,,,ax

The sub-optimal (due to the approximations) time-instant T for which the residue 7 is
achieved is in the interval

T E [T1, t 1 + AT]

where

P(TI,) < 1

%F (TI + AT,7) 1

3.4.5 T-Polytopes and T-isochrones

Consider the maximum-performance function T defined in (9) . The T-polytope ST,

ST := {A\7 I Y E ': , 117112= 1, A E [o " I(Ty)] I (

is the set of all points in the residue-space that can be reached in T seconds. The boundary

of this set, denoted by 0S57 , is referred to as the T-isochrone.
L'et ST denote the set of all residues that can be reached in T seconds when inputs are

restricted to bounded (by one) signals in l1, ; i.e., the T-optimal-polytope. In other words,
S,,, is "the" complete result if we were not to restrict the inputs as we did in (9)

We have the following simple yet crucial properties:

16



* ST C ST.

* ST and ST are convex. 3
Hence, ST is a convex approximation to ST •

3.4.6 A Simple Approximation to ST

Consider the following T-polytope ,T which is a subset of ST in (10). 3
T-A-''(Te)e I I Ail1 • 1

where {e, ... ,) is a basis in Ilt'

3.4.7 A Map from the Residue-Space to the Input Space

Our goal is to construct a map, possibly using look-up tables, such that given a desired
reference signal and the states of the plant, an input signal is generated so that the plant
output T-tracks the reference signal as fast as possible.

The desired reference signal (which should be in X.T) and the initial state determines
the amount of change necessary in the residues of the output signal. For this reason, we
will focus on the following subproblem: For a given -y in the residue-space determinie an
input signal such that the output of the plant achieves the residues specified by -y as fast as
possible.

In the rest of this report, we will use the standard orthonormnal basis {ei, ... , c,} in 1lR.
In order to cut down on the storage space, we will identify ST with its "positive orthant":

S7, { ZAiT(T, ej)ej I IHAII_ •1, A _0> } 0 (12)

Let the signuni function SGN : .W ll1RW be defined as

I if eTt> 0

c' SGNO() := ifcTT-=0
-1 if eTq <0

Let the operator .* denote clement-by-element product inl' ; ie.,

,(y, .* '�2) := (c[),)(,y 2 ) I
Sl)uppose that -Y • OS. Let j be defined by

"-y z==: SGN(7f).

Clearly, '7 c OST if and only if j E OS' .- Since ' can be exIpr,'s('d as it (,ivex c(,hilbillafti. I
, : , ,,), i Ž0 , 0 Il1 -1
i=l

17



we conclude that the input that achieves 4 residue in T seconds is represented by

n

6= Z 4)(T, c)
i=-1

The input that achieves -y residue in T seconds is represented by

n

p 5 j (eTSGN(-y)) O(T, e,).

Note that

<-1 _p< 1

Since the input is assumed to be piecewise-constant over TIN second durations, suppose
that (with respect to the underlying sampling rate) there are M points per pulse. For the
sake of illustration, assume that ni = 1 ; let 'i E jRM be the vector will all entries equal to
one. The input sequence that is compactly represented by p E IRN is given by the following
sequence (from 0 to T) u E IRMN:

u=p (9 ,

where the operator 0 denotes the tensor product. Hence the underlying idea, is to express
a given residue vector -f as a convex combination; we choose to do this on one of the T-
isochrones.

We now outline the procedure:

1. Fix N and Tma, , following the points mentioned above.

2. Determine a time resolution AT. Suppose that NT := round(Tmeax/AT) points sweep
the desired range over which the actuation is considered. Note that, with respect to
this quantization, for any T E (To - AT, 70] , T-tracking is indistinguishable from
TO-tracking.

3. Solve (n. NT) linear programs; i.e., for the NT time points solve for and store

IP( , j , ¢ý(T, e,) , i = 1, ...,n

Note that if steady-state to steady-state 7/-tracking is to be desired, one need not span
all n directions, as it will become apparent later on in the detailed example.

4. So far, the storage space needed is (n • NT • (N + 1)) . This data represents the NT

isochrones, i.e., the boundaries aT . This completes all preprocessing that is necessary
to construct the desired map. Note that along each direction ci , we have reached
out as much as possible. Hence, for residues which are close to the directions, the
(convex approximation will yield the best possible result subject to the linear program
approximation to the time-optimal problem.

18



I. I
5. The domain of the desired map is

That is, for any - E S 2 , , we will generate an input ihat, achieves that residue as

fast as possible. Recalling the discussion above, we will i,_entify y with j c STax , by

keeping track of SGN("y) , to cut down on storage spaco,

6. For a given j determine the smallest T such that ' (" ST ., We propose the following

procedure: Let E IRNT be defined as 3
~~~% := T1, C i..., '

Let-the £th entry of 27 be the first entry which is less than or equal to one. Since • was
in St•,, to start with, such an t exists. Hence, we conclude that, among the family of
T-isochrones, j can be achieved no faster than Te seconds.

7. Once the index t and the multiplier eT77 is determined, assign p E J-N : 3
(T(I), e,) (13)

Note that p in (13) satisfies -1 < p < 1 , moreover, the input that is compactly
represented by p achieves the specified -y residue in It seconds, the fastest among the
family of T-isochrones.

8. Extract the input sequence from p. Provided that there are ni inputs, we have 3
N =: Nni ,

for some integer NV . Partition p as

p =: IN ... p,,]T , PE N, k. 3
As mentioned before, (with respect to the sampling rate specified) suppose that there
are M points per pulse width (of T/IN seconds). Let i! E IRM have entries equal to
one. The input waveform over TI/N is represented by

Uk = Pk®Ut , k= 1,...,hi , 3
where Uk E IRNM . 3

3.5 Example

Recall that none of the results stated so far, put any constraints on (A, B, C) . In order

to test out the proposed scheme, we focused on a specific siso plant, consisting of a double

integrator and three damped flexible modes. 3
19



3.5.1 Plant Model

Consider the single-input single-output plant P(s)

1 ac
P(s) .- + ZE + + c2 (14)

where

[•fa2a3i = [5 10 201

3 [w 2 w2 w3] = 2ir [0.5 1 1.5] rad/s

[(I ( (3] = [0.1 0.01 0.001]

The Bode-plot of P is shown in Figure 2 ; note that the specified time interval corresponds
to excitations with frequency content ranging over the band [0.1, 1] Hz . The choice of the
constants had no specific purpose other than making sure that the flexible modes significantly
contribute to the position output. In order to show the efficiency of the proposed scheme,
we will focus on actuation signals in 1.T , where T E [1, 10]s . Standard bang-bang actuation
relying on the rigid-body approximation of P for rest-to-rest slewing over the interval [1, 10]
s resulted in unsatisfactory outputs.

3.5.2 Admissible Reference Signals and Matching Conditions

For the plant model in (14) , admissible rep's are linear combination of steps, ramps and
lightly-damped sinusoids. The vast majority of tracking problems restricts the references to
to a linear combination of steps and ramps:

{ r I r(Q)=ro + rit, ro E IR, r1  E IR, t > 0}

In terms of the previous notation, we have:

ax 10

k 7,
=i 2

3m-2 = 3 . ... 777 =-= 1

namely, one input, one output, eight states, eight parameters, a maximum of ten seconds of
actuation, seven poles, one of multiplicity two and the rest of multiplicity one.

Following (8) , the constraint

ling~s)'tax< 2 T(rN , 1, . .. , k

yields
N > max{ 0 , 4.9749 , 9.9995, 15 } = 15
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Figure 2: Bode-plot of P in (14)
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We choose
N=20

All simulations were performed by sampling the plant P at 100 Hz . In order to have
one sample instant added on for each time step AT , we choose

AT = 0.2,

NT = 46

In order to set up the linear programming problem, we need to construct r(T) from the
matching conditions in (4) . For this example, we have

Si = 0 ,

S2 = S3 = -0.3142 +j3.1258 ,
S4 = 5 = -0.0628 +j6.2829 ,

S6 = 7 = -0.0094 +j9.4248

Expand P at its poles (three multiplicity one complex-conjugate pairs and two at zero)

k. ki k2  k2 k4 k_4  k6  k_6
P(S) S + + + + + + + -68 , 2  (8 -82) (s - 2) (8 -8) (s -h•) (8 -86) (8 -- •6)'

(15)
where

ko= 0
kc1 = 1

k2 =j0.7998

k4 = j0.7958
k6 = jl.0610

In general, admissible reference trajectories r will have the expansion

R(s) ro ri r 2  7'2  r 4  4 6  i;6= --+ ++ + + + + .(6
S S2  (8- 82) (S - )2) (S-S4) (s - ) (S-s 6 ) (- S (16)

Let the input be chosen as in (7) . Using the fact that signals in UT do not have any poles,
apply the matching conditions in (4 to

R(s) = P(s)Up(s)

where P and R are as in (15) and (16) , respectively. Equating the coefficients of the partial
fraction expansions, we obtain

k,Up(O) = r, (17)

koUp(o) + kU4)(o) ' - (is)

k2 Up(s2) = 72 (19)

k4 Up(s 4 ) = 7'4 (20)

k6 U,,(-S) = 7 .' (21)
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3
I

Note that equations (17 - 21) describe n = 8 linear equations with real coefficients in

N = 20 unknowns, namely

r(T)p = "y := [to ri Real(r 2) Imag(r 2) Real(,' 4) hmag(Qr4) Real(ro) Inag(r 6)] T

For case of notation let ones(i,N) denote the row vector whose entries are all equal to 1 1
Let [1 N] denote the row vector whose ith entry is equal to i . For .s c-•U

q+(s, T) v (s,T) I .. ] ,

w" escreN - 1 1Iw here 
es I

v(s, T')

For T 1 + (rn - 1)AT , 1'(T) E RV,,XN is given by I
(TIN)2 (0.5 . ones(1, N) - [1: N]) I

(7'/N) -ones(1, N) I
hmag(k 2v(s 2, T)( 2, 1')) (2

hinag(k 4v(S 4 , T)0(84 , T))

Real(nkc(sG, T)q(.s6, T))

For illustration purposes, we will assume that, the flexible modes are not excited and 3
the sequence of input signals achieve slewing and tumbling maneuvers; i.e., we will focus on
'1'-tracking of step)s and ranips only. Such an assumption is made so that the step)s taken :I-

can be easily comprehended; by working on a two-dimensional subspace of the residue space, I
we can illustrate the T-isochironcs and the T-tracking signal generation easily. However, as
emp)hasized throughout the study, the results are gmeral.

We now solve NJT linear programns along - = ei and another N-, linear programs along I
" G2 -

The el-niaxiinurn-perforinance curve and ( 2 -11axi1u11-H)erforinaiic' curve are sliowii in

Figure 3 .1

3.5.3 el-Maximurn-Performance Curve 3
In this section, we will evaluate the. c1 -naxinun-perfornance curve obtainied by Iinear pro--

grains. For the plant inodel 1P in (14) , we do not have the exact "tine-opti imial" perforiiance3

curve. lHence the true errors introduced in the approximation cannot be accounted for. I low-
ever, a very useful coniparison will be ind, inidcdl, bAsed on II ic ignil- ody appirxiillla[,

to P'. 3
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Note that, P can be considered as a perturbation of the double-integrator model P . The
el-time-optimal-performance curve of P is given by

upo(T) := 72 (23)2I
Recall that the optimal bang-bang input waveform (for P) is

1 +1 t E [0, T/2)

u(t) = -1 t E [T/2, T]
0 t>T 3

The curve upo is an upper bound on the performance of P In order to rate the adileved
performance, consider

0.97'
lowo(T) := ( 2 (24)

If the el-maximum-performance curve lies above lowo we can conclude that P a•.Aieves the
performance of P within a 10% relative error in time. In ( tiler words, if P can Tf-track ro0
then P can T-track r0 where T E [T, 1.17'] . Tile three curves: el-maxiinum-performance
curve, upo and lowo are shown in Figure 4

Note that after 3 s , the el-maximum-performance curve lies in between up0 and lowo .
In other words, for T c [3, 10] s, the 20-parameter linear program approximation generates
inputs for which P achieves the performance of the rigid-body approximation P within 10%
relative error in timle.

Before proceeding with tIle rest of the results, we would like to draw the attention to the
region 2' E [1, 3] s in Figure 4 . This region is shown again in Figure 5 .

We sought an explanation for the deviation over this region shown in Figure 5 from the
rigid-body performance. To be specific, we focused on the rigid-body performance at I s ,
which is achieved by the approximation after 2 s . Note that due to the time-quantization,3
current result will achieve r0 - 0.25 exactly in 2.2 s. In order to see the improvenients in
the linear program approximations versus the p)arameter N , we derived the cl-maximum- i
p)erformance at T = 2 s. TFhe resuiLs are listed in Table 1 . Even for 100--pulse approximation, I
the performance improved by only 4%

_N IP2,l

30 0.21451
40Y 0.2160J

L _100 0.2486J

JThle 1: (l-i-inaxiiiiiii-p(..rformnaice at 2 s .

As another approalch, we fixed N =- 20 anci d(creased dhe timne-qiiantization; r0 was
achieved in 2.013 s . In other words, the 20-partmneter approximation generates inputs so I

hia~t tlie plant J) can 2.013-track the 0. 2 5..step. Trhis translates into a 102% relative error iii
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In order to account for this 102% relative error in time, the intrinsic limitation of the 1 s
maneuver was revealed using the minimum energy solution as explained in Section 3.3.6 .

Consider a state-space description of the plant P in (14) , where the position is the first
state. The goal is to get from x0 = 0 E WR to XT [(T)2 0 ... 0]T' , which denotes the
rigid-body performance in T seconds. Let We(O, T(l -l-•)) denote the controllability gramian
at T(1 + 0). Clearly, if there exists an input u E UT(i+,) such that hulkl0. _< 1 and u steers
X0 to XT , necessarily,

16[Wj'(0, T(1 + 1)] 6 •-(1+c) (25)

where [.],I denotes the (1, 1)-entry and - denotes the relative error needed to satisfy the
necessary condition. At T = 1 s , we obtain the results in Table 2

6 [wJ(0, (1 + EM+I
o 1.2278 * 101

50% 78.8319
75% 3.7966
80% 2.1550
85% 1.2437
90% 0.7323
95% 0.4421

Table 2: Necessary condition (25) at T' = 1 s

From Table 2 , (which are evaluations of analytically derived necessary conditions), we
conclude that there exits a u E UT that steers x 0 to XT only if 7' > T E [1.85, 1.90] s
Recall that we are also interested in an input hjul[k. 5 1 ; even for 7' = T .here may not be
such a bounded input. Regardless, even if there is a bounded (by one) signal that achieves
the performance within 1.9 s , this translates into a 90% relative error in time which is an
intrinsic limitation. Compared with the 111% relative error obtained by 20-parameter linear
program approximation, we conclude that the approximation error is bounded by 12% .
Intuitively, 0.5 l1z mode implies that a 2 s slew will be a critical slew. Any slew time slower
than 2 s will affect the frequency band above 0.5 Ilz , namely the modes of the plant.

3.5.4 e2-Maximumn-Performance Curves

These results bring an approximate solution to the fast T-tracking of a moving target. Note
that in the cl case, namely the rest-to-rest slew, the goal was to get from an initial state
of the form fro 0 0 ... 0]"' to [ro + ro 0 0 ... 0 ]T . In other words, the target set is
fixed. in the c2-case, however, the goal is to reach from [ro 0 0 .O.. 0]t' to the moving target
[ro + rT rl 0 ... 0]" as fast as possible.

Recall that the c2-time-ol)timal-l)crformance of the doublC-integrlator J) ( iia;ly, 7I'-
tta !/kii1) Ic z steady-,slatc) is given by

+ ~77 .(2(0)8+ 7
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Note that the time-optimal bang-bang input waveform (for F) is

J+1 t E [0, T1 )

u(t) = -1 t [Ti,TI

where 

I0 
t>

T, r- ,(2 + V2)

2
The curve up, is an upper bound on the e2-perforinance of P . In order to rate the

achieved performance, consider

lowl(T) 0(.8T) 2  (27)
2

If the e2-maximum-performance curve lies above low, , we can conclude that P achieves the
performance of P within a 20% relative error in time. In other words, if P can 7'-track rlt ,
then P can T-track r 1t where T E [T, 1.2T] . The three curves: C2-maximum-performance
curve, up, and low, are shown in Figure 6 .

Note that after 3 s , the e2-maximum-performance curve lies in between up, and low1
In other words, for T E [3, 10] s, the 20-parameter linear program approximation generates
inputs for which P achieves the performance of the rigid-body approximation P within 20%
relative error iii time.

Similar intrinsic limitations could be worked out for this performance plot in Figure 6
Note that for [4.5, 10] s , the 20-parameter approximation has at most 10% relative error.

3.5.5 ST

Recall the T-polytope ST in the positive orthant of the residue-space (see (12)) . For the
purpose of illustration, consider the projection of ST onto the first two coordinates of the

residue-space. In the rest of this section we will refer to ST and the T-polytope ST (see (10)) -
as the projections:

ST 4-- Tn {x c- HU I X3 = X 4  X , 0 , (28) I
Sr 4- STnln xER I X 3 = X 4  =X,= 0

We now comment on the approximation ST of ST for the specific example. I
Consider Figure 7 , showing two sets of boundaries representing the 5-isochrone and

I 0-isochrone, resp)ectively.
5- and 10-Isochrones : I

Using the simple N7 -linear program approximations along cl and c2 , respectively, one
obtains NT isocliroiies . For the purpose of illustration, we focus on the 5- and 10-isochrones
shown in Figure 7 . Following (28) and (1.2), the polytope S5 is determined by the boundary I
0 A - 1) 0 . Thc polytope S,) is determnined by the boundmry 0 E' 11 -- 0 . Il order
to rate the effectiveness of the al)l)roxiniationI (S7I approxiinating ST) , we solvcd two sets of
lincar progranms along two more directions other thlan cl an(d c2 ; specifically,

,(Tl, [1 1 0 0 ... 0j"')I
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and
(T,[6 100 ... 0 ]T)

In other words, we obtained the maximum-peformance curves along the rays

(0-B-F) and (0-C-G)

respectively (see Figure 7) . Using the associated four-breakpoints, we obtain 0 - A - B -
C - D - 0 as an approximation to Ss and 0 - E - F - G -H - 0 as an approximation to
310 (see Figure 7) . Note the amount of improvement in each case. For the 10-second case,
comparison of the enclosed areas (0 - E - H - 0 versus 0 - E - F - G - H - 0) reveals an
8.64% improvement.

Clearly, by introducing more directions, one can obtain successively better approxima-
tions to ST . Our goal was to generate a map from the residue-space into the input space.
In the process, given a point in the residue-space, we seek a pair of succsessive T-isochrones
for which the point is outside one but inside the next. We then use the data associated
with the breakpoints of tile isochrones to determine the required input. Clearly, the one-
hyperplane approximation ST is the simplest. Introducing more hyperplanes increase the
accuracy of the T-polytope approximation, however it complicates the generation of inputs.
A multi-hyperplane approximation may eventually require another linear program solution
to determine the "cooordinates" of the point in the residue-space in terms of the "corners"
of the associated T-polytope.

3.5.6 A Fast T-Tracking Example

In this section we illustrate Steps 6-8 in Section 3.4.7 . Assume that the plant P in (14) is
initially at rest. Let the reference trajectory r be as shown in Figure 8 .

The breakpoints and slopes in Figure 8 reveal that the sequence of inputs should satisfy
the following increments in the residue-space denoted by the ordered pairs (ro, r71 )

atT=0 , (+2, 0)

at T=5 , (-2,-i)
at T= 12 , (+7,+1)

Using the one-hyperplane approximations to the NT T-polytopcs, the fastest tracking
times for the sequence of residue increments are 3.2 , 4.6 and 7 s , respectively. Figure 9
shows the input and the associated output of P in (14)

3.6 Robustness Considerations

Consider a plant P of the form

k
S= + (-)(29)

where

+s Iore'° 0.<_r_<1 , 0<0<_27r
A rnxo×, K' = (I + A)Ko , IIAlI, < 6
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I
In other words, the plant model P is "exact" up to P with an uncertainty description about
the pole at So . We assume that the location of this pole is uncertain, i.e., the multiplicity
of the pole remains the same in the region of uncertainty. As we will see later on, the
multiplicity of the pole (as long as it remains the same) and/or the region of uncertainty
about the pole can be more general (i.e., multiplicity can be greater than one; the region
can be any closed bounded simply connected region about the pole) . I

As we have seen before, in order for P to T-track the reference signals of interest, P is
assumed to have all the necessary poles. Our concern is the residual vibration due to the
(possibly uncertain) poles which do not coincide with the p6les of the reference signal. For
example, for the plant model in (14) , steps and ramps would be the set of reference signals
and P would have at least two poles at s = 0 ; the uncertainty due to, say, one of the flexible
modes could be incorporated as in (29) ; note that for such a case, there would be another
residue term due to so

The crucial point is, since the Laplace transforms of signals in UT are entire, we can use
the property of harmonic functions to bring an upper bound on the residual vibration due
to the uncertainties. Clearly, for any signal u e: UT with ijuII,,, < I ,

IIU~k)(s)tI < T•-k,[1 _ &-Uo] , k > 0 , for all s such that Real(s) > or

Such a bound is too conservative, since typically we will be dealing with a weighted sum of I
a specific set of input signals.

Let Un(s) denote the Laplacc-transform of a family of signals in U7, which is parametrized
by p EIN . I

One approach would be to introduce more constraints on p , in terms of derivatives of
Up(s) . Using the Taylor-series expansion about so , imposing the constraints

T,0U(2j)(S 0 )= 0 j =0,...,(-1) ,

for some N> 1 , guarantees that the residual term 1,ý is

N 71ko kcJOk I
It• = • k! UP)(°

In other words, for any .• , the norm of the residue of the output at A , cannot exceed 3
II(I+ A)Ko1?.•II

Note that, since U,(s) is entire, it cannot vanish for all .ý unless it is identically zero for all
s . Such an approach would increase the number of constraints on p ; however, thi resulting
problem is still a linear program, hence the previously 1)roposed mietliods still apply. I

Another approach gives up the linear progranm setting and ends up with a convex mini-
nization problem by minimizing the worst-case residue. Sinice Ut,(ý) is harmonic, for a closed
bounded simnply-connected region Q about so , we have I

sillu 11U,(0,)I = sup 111,(H) ,

I



where MfI denotes the boundary of the region fQ so . Discretize the boundary so that

OQ - fM :=-I {si I i=l...,M}

For the specified direction y in the residue-space, obtain the maximum-performance for the
nominal plant

Kfo
P + (S-so)

as explained in the previous sections. In other words, solve for

A = (T,
b = (T, 7

The linear contraints on p take into account

KoUP(so) = 0

For this A the norm of tile change in the residue over Q is bounded above by

n := 11((I + A)K0oI max IIUý(s)lI

Provided that K is not desirable, choose A < ý (i.e., give up from the performance; in
addition, one may also increase N) and solve the following convex minimization problem:

min max IUVp(s)JI
p E laN AEnm

r(T)p = A-y

Using the global minimum values (for different A's) , one could then see how much the
original performance A has to be degraded in order to have a desired residual performance.

3.7 Closing the Loop

In the previous sections, we proposed a method of generating an input signal u E UAT

that achieves fast T-tracking of the desired y subject to the actuator saturation constraints.
By solving a sequence of linear programs, a look-up table is generated over a region in the
residue-space. This look-up table is incorporated in a "signal generator" which is used to
drive a unity-feedback system. We now describe the procedure.

3.7.1 Signal Generator

Consider the interconnection in Figure 10 showing the proposed "signa! generator"
The desired reference signal is represented in the residue-space by Y, . Recall that for

a given plant model, the set of admissible reference signals that can be T-tracked can be
characterized by a partial-fraction expansion at the plant poles. The coefficients of this
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jure 10: Signal Generator I
expansion are the entries of "y, . In order to represent a series of reference signals, from now
on, -f in the residue space will be identified with a waveform -y : IR+ --+ IR' . Note that all
three versions (of -) in Figure 10 will be piecewise-constant waveforms.

Whenever there is a jump-discontinuity in y, , the "reset" command initializes the clock U
in Y and triy..,, :s the "HOLD" block to hold the value of the plant's state x at the time
of "reset" . Once the state x is held at xh , the contribution cf xh in the residue-space
is computed by multiplying xw, with the suitable Partial-Fraction Expansion Coefficients I
(denoted by the 1,iock "PFE COEFFS") . The difference between 1r and Yxh deternmines the
command ^I .

The block denoted by F implements the proposed scheme in Section 3.4.7 . For a given
command -t , the fastest T-tracking input fi is generated from the condensed data in the
look-up tables. The "reset" input synchronizes the clock in .- in order to generate the input
waveform fi from a data point in IRN . The look-up tables in F corresponds to the nominalI
plant model P0 . As explained before, specific uncertainty descriptions about the nominal
plant model PR can be incorporated during the pre-computations to generate the look-up
tables.

One of the many drawbacks of an open-loop implementation is sensitivity to disturbances.
Consider the model in Figure 11 , the SAT, ' block accounts for the saturation in the
actuators.

Clearly, when the input disturbance di is zero, the signal generator configiration can be
used to determine the desired ft for the desired ý . For a bounded disturbance di, € 0 , the
llnzero tracking error may even be unbounled when P is unstable.

3.7.2 Unity-Feedback Systen I
Once the desired it and 0 are determined, these signals are used in the unity-feedback con-
figuration in Figure 12 . We now describe a conservative design procedure for determining I
a compensator C . Some of the steps are illustrated with a satiple design where P is taken

6 'For a given a > 0 , SAT,(.) : 11t0 " , A{ 4 , IKl< k e...,

Note tlhat SAa(u) aSA'r, (1u)

37 I



U Aa ± pY

Figure 11: Plant model

as the model in (14)
Typically the model P in Figure 11 is not the same as P0 in the signal generator. Our

goal is to design a C such that certain disturbance rejection and/or robustness characteristics
are achieved by the closed-loop. The tracking specifications are totally ignored during this
design procedure since the fast T-tracking is achieved by the (fi, ý) pair.

In the rest of the section, we assume that the nominal plant model P0 in the signal
generator and the plant model P in the unity-feedback are the same; moreover, the ini-
tial conditions are identical. The disturbance di,, comes in after the saturation block (see
Figure 12)

~I + C + AT,:, + p Y
U

Figure 12: Closed-loop implementation

Note that the signal generator in Figure 10 does not have a SAT,, block pre-cascaded
since the output of " is always within the bounds (by construction).

For the closed-loop system in Figure 12 , over tie operation region for wihich 1Iull a ,
the closed-loop map from (fi, ý, di,) to u is given by

u = (J + CP')-l + C(I + PC)-') - Cl(I + C')-'di,

Provided that = P= t , we obtain

u = u - CP(I + CP)-ldi,

Clearly, when di, = 0 , wc have u = a ; hence the nominal closed-loop performance achieves
T-tracking. Note that this is true for any stabilizing C with IlulK _ a . This bring:• up
a trade-off issue: smaller the contribution of di,, at u meafi' fabtUo TA/-t. 1 iklig MIl gv'-Cxter
sensitivity to di, at the plant output y .

Let the input (listurbances be such that

38K 0.25 (30)
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Suppose that a = 2 and 50% of the actuation authority is to be used for disturbance reje( ion.
This specification requires that a stabilizing C satisfies

IICP( ±+CP)'111, < 4 (31)

where I" Iii denotes the C,-gain. By generating the look-up t~oles so that I < 1, using
(30) and (31) , we obtain

HuII < 2
Hence we have a conservative design since the SAT 2 block acts as the identity map over the
operation region. Note that the. T-tracking portion (i.e., the linear program solutions and
determining the signal generator) is a totally separate procedure from the compensator design
once the actuation authorities are allocated for fast T-tracking and disturbance rejection,
respectively.

A stabilizing compensator C is designed for which (31.) holds. We now use the (fl, ý) pair
in Figure 9 to illustrate the obvious advantage of a closed-loop design. A disturbance signal
satisfying (30) is shown in Figure 13 ; di,, has a DC component, the signal after 10 s is a sum
of four sinusoids at 0.1 , 0.5 , 1 and 1.5 Hiz , the last three at the modal frequencies of P . IFigure 13 also shows the open-loop implementation; P * (l + di,) introduces a considerable
tracking error.

Figure 14 shows the closed-loop signals u in y (see Figure 12 ; i ,1 and di are as
mentioned above) . The tracking error (- - ý) is shown in Figure 15
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Adaptive Proximate Time-Optimal
Servomechanisms: Continuous Time Case

M. L. WORKMAN' R. L. KOSUT 2 ' 3 , G. F. FRANKLIN 3

Information Systems Laboratory
Stanford University, Stanford, CA 94305

Abstract- A Proximate Time-Optimal Servo (PTOS) is V = (2.2)
developed, along with conditions for its stability. An al- where the "sat" function is defined as
gorithm is proposed for adapting the PTOS (APTOS) to ( -1 > 1
improve performance in the face of uncertain plant pa- sat(z) z(23s I, Izl<5 (2.3)
rameters. Under ideal conditions A.PTOS is shown to z <-1
be uniformly asymptotically stable. Simulation results The system state x is defined as
demonstrate the predicted performance.

1. INTRODUCTION 
(2.4)

For time-optimal control, the objective is to minimize the time
In many automatic control systemns, it is desirable to effect a required to transfer the system from an initial state [yo v0] to

nuinimum-time response to set point changes. The time-optimal a fiimal state [r 0], where r is a constant output reference or set
control is a non-linear function of the plant states and requires point. Tlme time-optimal control [1] for the system given by (2.1)
precise knowledge of the plant model [1]. An excellent compilation
of related work is contained in Oldenburger [2]. When the plant is
not precisely known, the time-optimnal control law can be adapted r o.tr '-u,-- Y
to changes in the plant. In this paper we will describe an adaptive
proximate time-optimal controller whidc aside from being adaptive,
is more practical than the ideal time-optimal conhtoller.

In the following section a non-linear controller is proposed which
is wnore practical than the time-optimial controller, and as will be
shown in a later section, can be very dose to timc-optimal. In the
third section, a theorem is given which guarantees stability of the
practical time-optimal cozntroller under r.asonable constraints. A
specific controller is then shown to ni,.i the stability constraints, Figmre 2.1: Double integrator plant with bounded control.
and is also shown to be close to the timne-optimal solution under and (2.2) is
reasonable assumptions. Adaptation of this proposed controller
is the topic of the following section, including a theorem which
has been proved showing the uniform asymptotic stability of the u = sgl(ft 0(y- ) - V) (2.5)
adaptive non-linear controller. Finally, the last section illustrates
via simulation the improved performance afforded by the adaptive fJo(YI) sgn(ye)(2a IlYe 1)1/2 q (2.6)
non-linear controller over the fixed par-ameter non-linear controller. A

y= r-.y (2.7)
2. CONTROL DESIGN: KNOWN PARAMETERS and the signum function is defined as

Consider the plant shown in Figure 2.1, a double integrator 4-1 , z > 1
driven by a limiter or saturation block. The equations dcscrib- sgm(z) 0, z = 0 (2.8)
hig this system are -1 , z < 1

ii--- a sat(ui) (2.1) The sat function of the plant is imposed by some physical con-

straint such as power supply voltage. Combining the control law
'Stanford University, oai Educational (Rcsident Study) leave from given by (2.5) and (2.7) yields the following description of the time-

International Business Machines Corp., San Jose, CA. optimal control system
2 Integrated Sy-tacms Inr, Palo Alto, CA. amnd Staniford tJimiver•- - v (2.9)
sity, Stanford, CA.

a, sgmm(,, ,d,(.f•) - a) (2.10)
3 Researdi support for both Dr. losut and Dr. Franklin from
NASA Grant NAG-2-359, fmo(y,) sgn(y,)(2. y.,l)/12 (2.11)
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I
The control law given by (2.5)- (2.7) and shown in Figure 2.2, Al) ak 2 > 0.

although optimal, is not practical in many cases. Even the small- A) f(O)I
est system process or measurement noise will cause the control

to "chatter" between the maximum and minimum values [3]. Re- AS) f(z)z > 0, V z V4 0.
moving the infinite gain operators fmom the time-optimal controller z

gives the system a finite bandwidth, and hence is much more prac- A4) lim-- f (6) d6 = o.

tical.
AS) f'(y) df(y)/dy, crisis, Vy.

A6) -ea+ ,f'(-y) < f'(--y))f(--y) < a - -f'(-y), V y.

Proof. Details of the proof are contained in [4,5] and will not be

repeated here. Instead, an outline of the approach taken in the
proof will be given. The proof consists of three parts. Referring to

Figure 3.4, it is first shown that all trajectories originating outside

ithe region U C ILI. will enter U in a finite time. Second, it is shown

that subject to Al through A6 trajectories in ULY remain inside U .

Third, it is shown that there exists a Lyapunov function for the
Figure 2.2: Time-optimal controller for double integrator plant, system when x E U. The regions in state space correspond to the

condition -of the control, unsaturated (U), saturated positive (S 4 ),

A proximate time-optimal servornedhanisin (PTOS) is shown in and saturated negative (S-), and are defined as follows:

Figure 2.3. The function f(.) is a finite slope
2 approximation to the

switching function fto(-) given by (2.11). The signum function of U C_(i,v) E 1.2: f(-y) - - <V < f(--y)+4- (3.16)+I

(2.10) has been replaced by the "sat" function which, together with k2 - -

the gain factor k2 , can be thought ofas a finite slope approximation S+ ( {(v) E R
2 

: k 2 (j(- y) - v) > 1) (3.17)

to the signum function. The equations which define this "practical"

version of (2.9)-(2.11) are S_ n (y,V)E R2 : k 2 (f(-Y) - v) < (3.18)

j' v (2.12)

i= a sat(k2 [f(Y,) -- V) (2.13) S_

where the function f(-) is as yet unspecified.

Without affecting the stability analysis (for atep responses), we

will drop r from the equations and analyze the system __

1/ t (2.14)

b = a sat(k2 If(-y) v]) (2.15)

* 55FigureS..4: olginseS 'andS fhphspac.Teoi

cuve rcpre-sents the points (y, v) such that v = f(-y).

___ ___ ___ ___ ___ __I

3.1 AN INTE1• U-LSTING f(.)

Figure 2,3: Proximiate Tite-Optital controller. Linear region of fi this section we propose a function f(.) which tneets tle condi-
tions of Theorem 1 and still produces nearly timne--optimal responsethe saturation function has gain k 2 , to changes in the position reference inlput r. The following choice

for f(.) is casy: to motivate: build a function f near to f.o such

that the restlting system trajectory requires less than the inaxi-

3. PTOS STABnLrTY mum acceleration capability of the system, a.

In this section we establish restrictiorns on the function f(.) and L L- (YV) for I y a I< y,
the gain k2 which will guarantee stability of the system (2.14) - A(ye) LII)/2 -i for '> (3.19)

(2.15) depicted in Figure 2.3 for step inputs. [ f / - L-j Il/cI> V1

The linear portioii of f(.) connects the two disjoint halves of the I
Theorem 1 (Step lUPvts). The zero solutiau.. vf(2.14) Ud (2.15) non-linear portion. To connect the non-linear regions of f(-) such

icor (syeptoticalystah)cd o that f(.) remains continuous, we have a constraint on the gains k,
is globalY asym ptotically stable if th i following conditions h old: and k 2, 2

oak2
2(.0

2
The derivative of f]o is inlfinite at y 0- O. ki < -2 (3.20)

- 2 I
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and a constraint on the size of the linear region during deceleration. Defining t1pom as the practical controller move

1 _ \2 , -k2 \ 2~e time, we obtain the following approximation for the move tine for

1 k0 1" k2  . / < \k J *i (3.21) the practical system :

We can choose ki as a function of k 2 so that f'(.) is continuous. = ---t V + --- T (3.30)
If f' is continuous, then the linear portion of f(.) is tangent to '' 'c'a

the non-linear square root portion at the point y v, and smooth We can define P as the percentage increase in move time of the
control results. Thus for continuous f(.) and f(.), we have practical controller as

'k, 1/2 P n' 107 tpts - iopt (3\1
k= -]) (3.22) 0 (3.31)

and the linear region is j ust Substituting (3.27) and (3.30) into (3.31) gives,

..-- (3.23) P = 100% 2 ---- 1 (3.32)

Whatever the choices for k1, kn, arid yt in (3.19) (subject to (3.20) This is an exciting result, in that the move time percentage increase
and (3.21)), we must verify that the conditions of Theorem I am is not a function of L, the move length. Although reasonable values
met. It is dear by inspection that the first five conditions are of c are usually such that o E [.9 .99], P is plotted for a wide range
met by (3.19), and we will check condition A6. The derivative ofo in Figure 3.5.
df(y.)/dy. is

f,(•_)= Ye ,{ - (3.24)(2c s,,)x/, , !Y. > Y1t

Calculating f f' yields I i

2 "
"GO { ee)t) 0 t< Y- (3.25)

e- Pf'(w) , V> Y 1.

Given ff', it is easy to show that (3.19) meets the conditions of
Theorem I if 0 << 1.

"Tihe question which now arises is, how close to tiue-optimal is
the proposed system (f(.) is as given by (3.19))? Consider the 103 ,.... o.' C 0 -A 0 , 0* .9 40.93

limiting case: l-t k 2 -- oo and a get arbitrarily close to 1. If we or

consider time to the target as approximated by time to the point
yi, and an upper bound on the size of r, their the time to the Figure 3.5: Percentage increase P in move time versus 0. The
target of our practical system will approach from above that of the point marked on the curve represents P = 1.3 % for or = .95.
time-optimal system. This means that for unrestricted values of
k2, we can get arbitrarily close to the time-optimal system. For
the system to remain practical there are restrictions to the size of
k2, and these restrictions will be addressed in Section 3.3. 3.2 DESIGNING rIlE LINEAR CONTROLLER

In the following analysis, it is helpful to define tire distance L Using a pole placement method [6,7], we can pick the control
which a repositioning from ro to r covers: gains to effect a desired closed-loop transfer function. When a is

L !Jr - rol (3.26) known, choosing k, and k2 us

For the time-optimal system let ti•,r denote the time it takes to k, uWa2/a (3.33)

move a distance L to the new target position. For a plant initially k 2 = 2(dwd/a (3.34)
at.rest we have,

to 51(L) ---2•2 (3.27) will yield tire following dosed-loop transfer function

For PTOS, extremely small moves (changes in set point) will leave Y(s) (3.35)
the system state in U , and the time to a given distance (allowable I(s) s2 + 2(dwds + -d

error tolerence) from the set point can be found fromn a linear anal- Of course the k, and k 2 must Ineet the constraints (3.20) arid (3.21)
ysis. For large set point changes, values of L > Ilk,, the linear when using (3.19) as f(.) in the practical tinre-optimal controller.
part of the response will be neglected. Although thie PTOS accel- Substituting (3.33) and (3.34) into (3.20) gives a lower bound on
erates as fast as the time-optitnal one, the deceleration is slower, the damnping ratio (d as a function of C:
The time elapsed in moving from point y = a to point y = 6 at a
velocity which can be written as a function of position is (d > v-2a (3.36)

time from a to b dY (. The choice of wd = ,k/1e• is otinh pl',,r•e -if - r'lTir e and of
. (Y) practical concern: higher bandwidth gives faster decay of position

The velocity of tire PTOS is approximated by errors, but high bandwidth necessitates that the model of our plant
be accurate well above wd. Model uncertainty will be covered in

v(ye) ' (2era t j)1/2 sgn(y) (3.29) So-ction 3.3.
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3.3 UNMODELED DYNAMICS Proof. The proof follows the swre attack taken in proving The- -

Tise stabil~ity analysis of Section 3 prov'ides its ith a eto reint I and is contained inl (4,5].
desin rlesforthedoube itegato sytem.Howver itis ell Interpretation. Theorems 2 differs from Theorem 1 in that it

keinoruesfn thet dobellegao systershvadionlyami cser with are wsully allows for bounded disturbances and untriodeled dyna~mics to per-

enwnth at aellec yted s o av adutoaldyaiowihwn.UU~l turb the double integrator model. To account for the unmodeled
eitler ngleced o unkowndeviations, condition A6 discounts the available aýcceleration by aI

Untially, we will not constrain the tunmodeled past of the plant conservative ansount: the absolute worst case contribuftui oI the
tobe linear ortime invariant. Stabilityof the open loop unnmodeled operator A, anid (lhe disturbance d. The factor ot in (3.1'9) is pre-
system wiill be the only contstraint. The: complete controller block ciscly the discount factor which cank be adjusted when -.y(A 1 ) and
diagram including unmodeled dynamics and kil input disturbance jjdJJý are specified. Thus we can set:I
d is shsowns in Figure 3.6. From Figure 3.6 we have: 1,=I- -Yoa(Ai f sat( ii) + d)) - Ild~l. (3.42)

ii aA{ sat(17i) + d) (3.37) Thus condition A6 call be stated as.-

S(3.38) lf(-W -Y <c,-f-1'(-Yt) (3.43)

Since we are trying to examine tile effects of the uninodeled dy- To have moves which are close to timie-optimlal, the unnioideled

itsazics and disturbances on tile control law designed in Section 2, dynamnics and disturbances must be smiaU enough such that ca is
we have the same control law (taking A into account when design- nearly one, say or E (.,.9.In terms of the disturbances, tireI
ing the control law irtak-es .6 modeled , and this is coinsidered ~i condition given by Theoremr 2 is very reasonable, as thie distur-

[4]): baiices forces should be much smlaller thais the available force to
thre actuat or.

u k2 [f(-W y)v (3.39) The probilenm with condition A6 is that it is too conscrvative.- it
The block diagram of the complete syscens r-epresenited b3' (3.37) does not even allow, for examiple, A to be a real-lpole of any band-

through (3.39) is shown in Figure 3.6. width or tulle constait. Ini fact thle types of unmodeled dynamics

Which yield reasonable os's are very limited, If we consider the sys-

d( t) sct of unmiodeled dynsamics, we canl expand tlie ranige of unniod-

cled dynamnics for which stability call still he proved (using lprescllt

r~ y. _ techniques). This is best sunimarized in cthe following Corollary to

s Theorem 2:

T ~ Corollar-y 2.1 ( Step input at t= 1(o). T'he system given by Equa-
lions 3.37-3.,19 is globally stable if it iniees the following condi-

Figure 3.6: Complete servo systens block diagrani with itiiiiiodcled AlI) -As5) of Thco remti 1,

dynlamlics and disturbance input d. .iA6) A is a stable, linear time invariant operator.

A 7) Al (s 0) = 0, Al has no de gain. This is a forinula-I
Ini the following theorem, we will rieed to defin iic:, operator vYý iiomi constraint. Decviations in crip-eacd gain are considered

which gives tlhe nlaxilnumn inagiiitudc of a function over all poissiblel as variations in the plant gain az

bone nus 34) AS.) (1 4- okkA/S)'l is a stable opecratorI

suW)) bp IAa)I(34) 4) If'(-yif(-y) 1< a~ll--~k[,/~Ii+dI 1k
H~I~I~oo9-f(-Y), Vt1, Vt > to

It is convenlient to define ProIh io samgtelnso loen.2 i sas

A1  A- I .1.' I) iveni in [4t,5]. To appl)y (his corollary to t(lie. rcad-Js)ole rise (A

As will be discussed later, using this operator (-y-) for dtcnnriii. I(s+1) elcd h ek ano ,s

ing peak amplitudes is correct, but yields extreniely eonsrrvativ( -y" (A I/s) vu(=-- 7y (3.44)I
coniditions for stability. Thc followiiig theeci-ni places limits ()it~ i l~ttle 1 Ckgu rp oa~ eoa ~.tm-cntn
both the sinmodeled dynamics and thie distulrb~ance iiipotis which Noeta lepa andop toand Zeroila ;1g t~it ii, condstianAt

are suflicien t to guarantee stahility oif (lhe following systeiii (sev apiahe zeo ktn n actliglil, odto

Figure 3.6): ywd y< ak2 7 1:.l I
W II i, -I I.. I lie C I IV taq ( larceis c we need: as t lie hai d wid tl

Thecorem, 2 (Step Inputs). The zero solution of (3.37) a 11d (3 .3) 1)f (lie. real polk grows, tite liimiit oiln dilinlishes. Thius for T =0,

with control (39.39) is globally stable if the following C onditions ir n111t lbe loSS thait onle aS ill TliMorensl I. lI hence We Call anialyze

hold:the effects of practical linn~odeled dviialnics onl the jserfoniialnce

of (lie sy)st cmii mrodn lo Cthe impi o se repoiie, 1f( fiftlie liii, modeled dy-
AlI) -AS.) of Th eorcem 1, and i iarmis teiii, Ill the( caseC oA the realU piole, tIke pt)Cl 0rii,;iie w~il ntI10

A6)I f'(-y)f(--y) 1< all - -ryA(Al I sat( i) A. d)) - 1ldilol. 1waversey idraiiped biiinidld dviiamsi carclbe iieiir o weer (Wh

T, - f , - Y ) , V yv l y a nd e rs e lv ap e ctd l hul o ey o d d I m t v i a i nI( a l e fi o ni i ( 3. I ) Ii~w v r t h i

~f(-) '~Y teifoi-iiiaiiwe of the( systeni1 iiiiist lie evahiiat '-d via sinioiiat io1n.
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4. APTOS Parameter Val, ie
(A 1.0

In this section we will derive an algorithm for adjusting the a 0.95
non-linear control law of Section 3.1 to uncertainty about, or slow .15
ehanges in, the plant parameter a. Figure 4.7 depicts the structurme r 0.02
of the system with adaptation of the non-linear control function (: 10
usirg information identified from input/output data of the plant. L 1 or 2

Table 1: Parameter values for simulations,

Control| 4.2 TiE ADAPTIVE CONTROLLER

Design [|Using thie structure of the control law (3.19) with a continuous
Identifier f(.) ((3.22), (3.23)), an adaptive version of dth PTOS control is

U~ sat(k(2 jc~ v)) (.3

-- Linear )lwith a generated from (4.51),(4.52) and whe- re.
, r Ye- v lon-linearl - ~ , II _u- . • ' ', . '. . .•

Figure 4.7: Structure of the Adaptive non-linear Controller

sgy.' gn(pI)[2a j,, J)'j') - I/l- for Iv0 I> f-

4.1 TIlE IDENTIFIER, and is the projection of a into a known region:

The identification scheme will be based on the following par'a- ,p = argoeA min I ti - p1 .. ' (4.58)

meric model of the plant: " :Hence, if the estimate & is in A, then A = 6.. Otherwise we tkke

,'• :: (if (4.46) the nearest value in A. The following theorem gives sufficient con..
dit.iri~s for stalhibty of APTOS.

where a is an unrkown constant. 'We also assunec that a is kCfiow 1id

to be in the interval- A = (In4T,,a.namal, Tlbeor-,iz 3 (Paramneter Gonvcrgeoce). .upposc that

a4Ia,.;,, . (4.47) j ai T k2(6)d > /I, V,, C Jo, /] o. S o)

Thle measured data is { u , a.id {y), Denoting the estimnat. of a.

as a, the fltered eqlation errar is defined as, where 7T and t3 are pooitisve .orn•stants independent of ty. Thent for
i > tyj

,r--= 2 .- , (4.48( ro , Vi - i > ( (t), u ) (r,,0,0) 14.r.9)
where z urd 4' are deMined by

/ Tie prooli of 'iI lwo C:eil 3 is (:2,inained in[,i].

SWz (41.49)
-5 T 7 +•,•.49) 5. S li IMA'ION EXAM" 'L.S

4,• .sat(ti) (4.50) ill this 0 sctIon we will .exairxie til. perfonanee, of Olwe P1OS and
/ !lTOS via sonic simulation examples. Table I )ev' .hi? the fixed

where ,rep.-xscnts the Laplace transform variable. The tune con- pivaineters for all of t(ie simnulatiolis. liesponsvn of tihe ideal time..

stant r,. affects thle hsndw;d.h of information used by the identifier, optimal controller and PTOS to two set point changes, L = 1, nid

ssid should be cho,-'n ruh!, smaller tha1 the time constant defin•d L = 2 are overlayed in Figure 5.1. No noise was Added to the simu-

by the maximlinm "learning" rate for &, lar ion of tle im|ne-.optimnal controller to illustrate the Ih.havior of the

To illustrate. tIle ideas we J)T-o)O•C the following simple identifi- so-eafled ideal systen The unsaturated PTOS control during de-

cationi scheme (LMS): celera(ion (o :.: 0.95) affirns that i.(t0) E U x. z(t) : U , V I > to.

Figure .5.2 lhows I•'OS respollse-s when tIre plant ga~il a is 11oL
5 y4& (4.51/ known, motivatiorg the desire for an adaptive P'TOS. Note the time

r= z ('4.52) resjponrse I)ecoliis slower with any deviation frorn the tnie value.

Adaptation of the prartical controller to a value of a = I from all

wheie g is a positive con-Atmit chiosen to give a reasonable lcaming initiad estiliiate of 5(O) ý 1.5 is shown in Figure 5.3. 'he initial
rate, depending on titre magntTitude of system floise, arid initen~ded estimate of ii is too large, carusing control saturation during dcel-

rlncd lnop sytaf, T, ,rlwa h,- ith:l , t6 imat.e fnr ,n i• in eralioI.. Althruhli die &v sum, al eAl s stable, a tile w magntuLde of

[amtn,awlaxj. It is possible to fchow f4] that under the condition thlie .ct point Ununge grows, the oscillatory behavior of the response

of persistant excitation this single paranrvetes ide.tifler is expo'n.-r- Krows. As ii .approacles a, the control does not f.aturate during de-

tially convergent (', the correct vAue ({u} and ( 1) ate inl the inudric celeration, and ti(le clo.ed-loop behavior of t(le system approaches

set). that of the ideal i"'OS.
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F~~.igurc 5 'Q AP'IOS (ransient. response Whels initial estintate oi a

'~-~i'IIL Iis too Ilugh, under jdcalI condj.6tons. Note changing control signal

~ --~j ~ as a) is jtied

dition vas elvrivnd.. it, waý ishownk that for ideal condiLions the

AP~TOS r espminse (ttime wiw~it approach thre ideal time-optimval re,
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Adaptive Proximate Time-Optimal
Servo mechanisms: Discrete Time Case

M. L. WORKMAN' R. L. KOSUT 2 3 , G. F. FRANK~LIN 3

Information Systems Laboratory
Stanford University, Stanford, CA 9.4305

Abstrilct- After a brief review of the continuous time v, a sgn(fc.(y.) - u)(2.2)

proximate time-optimal servomechanism (PTOS), a dis- .(ý=sgy)2aI.112(.3
crete time PTOS is developed, along with conditions for ~() snv)(aII) 1 (23
its stability. An algorithm is proposed for adapting PTOS where
when the plant parameters are not known yielding AP- Ye= (2.4)
TOS (adaptive PTOS). Under ideal conditions APTOS hIn this form, it is helpful to define the move length L as the Position
is shown to be uniformally asymptotically stable. Sim- error at the reciept. of a new reference (step) input-
ulation results demonstrate the predicted performance, =
and experimental results validate the practicality of AP- L (to) - ii(to) = Y.0o) (2.5)

TOS. The control law given by (2.2)- (2.3) and shown in Figure 2.1.
although time-optimal, is not practical in many cases. Even thle

1.INTRODUCTION smallest system process or measurement noise will cause the con-

In this paper, we will develop a proximate time-optimal 5cr- trol to . chatter" between the maximum and minimum values (3)
vomechanism(PTOS) fordiscrete time. controlofa&cont inuous time Removing th-t infiniti gain operators from the time-optimna! con-
double integrator plant. After establishiing stability, the PTOS tracicler.vstesse iiebnditadhnei uhmr
system will be extended to be adaptive (APTOS). The topic of
this paper is an extension of continuous time results presented at
the 1987 Automatic Control Conference, and hence a brief review
of the continuous time proximate time-optimal servomechanism is r VYuae
presented before addressing thle discrete time problem. Both the-
continuous and discrete time eases are coveired in Workman's dis-
sertation []]. In the dissertation. the! time-optimal trajectory was
calculated for a Plant modeled by a real pole followed by an integra-
tor. The complexity of thle tvesulting time-optimal trajectory, along
with the fact that it is a transcendeuita function in velocity for po-
sition, motivates thle transition to a discrete time implementation
of tile controhici.- Although tile discrete time system is at. lep-st as Figure 2.1 Tinre-optimal controller for double integrator pLanit.
complex as the continuoug time system, the implementation with
microprocessor techniology is much simpler and less costly than Lthe A proximate timc-optimal servomechanism (PTOS). is shown lit
ana~log circuits requ~red for the continuous time rcase. Figure 2.2. Thle function f(-) is a finite slope 2 approximation to th,-

switching function fjeý(*) given by (2.3). The siguimn function of
2. REVIEW: CONTINUOUS TIME PTOS (2.2) has been replared I" tile st"function which, together wi(th

Gont.ider tile time-optimal control system shown in Figure 2.1. thle gasiri factor k2 , can be thought of as a finite slope, approximation
The plant consists of A dIoulle intiegrator driven by a limiter or to the signuin function. The equations which define this "prac tical-
saturation block. Thie equations describing this system are[21 version of (21)(.)are!

o at (k, [ ffjy,) - vj) ('2.:)
-Staliforcl Uiiiversitv, on Lducational (It"-ident Study) leave froin tietl uitol sw ltuseiid
InteniHational Blusiness Machines Corp., San Jose. CA.whrte ucin() , isjcied

Ssc,,tt Q('Ic, C. 1he following, theorem isn the rrstriction.' onl the fuictio:tor f (-)2
ltcracd ~ AG. -r~--rrt. CAs. Mnd Stanfo.1"i' UnliVf!- and thet gaini 1-2 which will guarantee stability of tile. svsteln (2 .6) -

sitY, Staiifotd., CA. (2.7) depji.t-d im IFigium. 2.2 for step inpiits.

311eseardh stilpport fori both Di. 1<osni. mid Dr. 1-i amiklin fronit

N A rmtNy23; -j 2~1 he derlivative of J(,, cý. mimhmmmjie at 0~-t.



P

Fiue22.PoiaeTm-pia controller. Linea region of.. ~

Theorem 1 (Step Inpurts). TAc zero solution of (2.6) arnd (2.7) Figutre 2.3:- Percentage increase in move time P versus cr. The
is globally asymptotically, stable if the following conditions hold: point marked on the-cuj-ve represents P =1.3 % for cr 95

AlI) ak2 > 0. 
_______________

* 2) f(0) =0.
7A$)f(z)z >0,YVz 0.

A4) im,-.~ fo f(6) d6 o

As) f'(y) ý_ df(11)/d1 exist,, V y........ 4 I

A 6) --a+ -Lf'(-y) < -f'(-y)f(-ii) < a - Lf'(-y), V y. *-~ ~

The proof of this theorem is rather long and is contained in [1].A function f(.) which meets the conditions of Theorem I is given f AF
by (.)

f ;(i) o je< ) (2.8)

The positive factor or is referred to as the acceler ation discount fac- .

tor, and is less than one (0 < or < 1). Equation (2.8) is comrpo~sed

of a linear region (I ve IS yj) and a nonlinear region which is a..........
fairly close approximation to the time--optimal switching function AA _______________

f,,,. The linear portion of the curve connects the two disjoint halves
of the non-lintar portion. To connect thie nonibnear regions of f(-)
such that f(.) and f'(.) remain continuous, we have a constraint Figutre 2..4: Overlay of y anid u for- tirric-optirnal control arid PTOS.on the gains kj, k2 , and the size of tlie linear region yi:I

A- ?k 1 2  
29 Although VMTS is robust to deviations in thle. iodel, per-for.

and thie linear region is just niance improv'emenits cart lie achieved by adapting PTOS (APTOS)
I to changes in the plant. [1.4]. Thre continuous timec AI'TOS. applied

'(2.10
k-,2.0 to thie- double iritegrator plant, ;,erforfrnd veryv well. Howe.ver, a].

Ily aPproxirriating thle positioning timer as tile timie it takes Elie though it is possible to extenid AIPTOS to other plants such a-s aposition error to b- within the linear region, we cart define a per- r-esJ.1ole followed by alr integrator, thie resulting velocit~y trajectory

centage incrfaSe P in responise time of a PTOS system over- that. f(-) becomes unwieldy to adaptively Adjust. This implementation
of a ntrnimurn Ltitle control of the same plantt. diffic-ulty can be over-curi, by unzpleinerntat iota of a discrete tihme

version of APTOS. as thre rnicr-r-,ode for- the equations or look-up
Pý I077 [OVA -- i (2.11) table entries for- f(.) can be rmodified very eaiyi ucoproces.

l. 2,'V sor or signal hproce'~sor based systeml. All wve neced is thre theory to
Note that the value! of P is indlepenldent of tire si.,e of thle step input procee-d.

(move length 1.). Alt houghi r-easo~nable values of (Yare usually snivdi
that or E [.9 .99), 1' is plotted for a wide rnuge oif a in Vigur-e 2.3. 3. D 151tE''E, TIMEý J) LNT MOD1)ELI

A simuulation of both the niiriiunirnu- time controller- and tiv.
PTO S svst em wh en the pl an t gun, a ns knrowit is showit ill I ig- Couisider- ad I, fibl iii cgrt-aor pilantii dr-i en 1) 'v a zf mo-4,fe hr ' noh ld
far-e 2. L. 1-o01 thle case shown. tile' lPOS ss-stint is 1.3%, slower-. bin t As ill tile rout iliirilitt rle rose tlie states aie defined as psi tior
has much i nitprovc-d cointrol beki.-avior (]ii nitig r egul at ioi aniode. Inn arid veloimty . W it I o rin 'imigiIi crn t colc laiiion.ii dil av Iwe Iraw (leth

aldditiOn tO O tlji-. i.'. jL 11,..' e,.11- 1,0-CII bW WIon i [1] t'nos foiiowinig dis.Crete tinle srlite [pa,- 1A'srij l ur f OwI pla'.nit:
h'TO-S ha~s far- bettjer iobuhnsrness piroper-tirs to smnall changes inl a,

itniod ehd d itArt ndni an
t li stul ball, es ;%C i rig oil til e p1,la t. - "( ')
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Ilite t ci Coritiriuis I--tif all it ap"JtI tows poinit into a rgo .
,- Q 'It) r-- ) the hpim.e pflane fromt tile boxindri'es of t ile region, it is fairly le'.u-
"- that .ny trajectot y originaLing ins4ie Ittl reg•on imist be trapp',d

rinsidne the region. The argu ment hisit ý.s on thle Con t i nuii tv f (Ile

vNk) -trajetories: any trajectory originating in thie inside of a region
AID must pass th rough a point on thie boundry to leave the region, and

since all trajectories originating on points of thie boundarita go to
ýAID the interior of the region.

Such is not the case for discrete time systems. All we have are

Figure 4.5; Discrete time proxirate time-optimal servo (lTOS). points, not continuous trajectories. Thus the ý.rgurnent used in the
continous time case fails: we do not have to have a point on the

boundry to exit a region. Notwithstanding the difficulties, it isS1 aT, lz(k)+ [ 2stil o pov.ofow

[0k + J(k +(k) (3.13) silpossible topoestability ofordiscrete time practical time-
] '0 1[aT, optimal controller. The difficulty will come when we try to check

the conditions for stability. But we're getting ahead of ourselves,

3.1 KEY APPROXIMATION ftrst let us state a theorem for stability.

The ideal time-optimal control of a d.cisc'ete time system is in Theorem 2 (Step Inputs). The zero solution of the system given
general very complicated. A valuable fact however, permits us by (5.16) through (5.18) is globally asymptotically uniformly stable

to extend the strategy used in continuous PTOS [4] to discrete if he following conditions holdl
time systems: as the sampling rate increa.ses, the discrete control
tends to look identical to a sampled continuous time control. This Al) 0 < ak 2 T, < 2. Note the upper limit in contrast to the
does not mean that the sampling rate must be necessarily higher continuous time case.
than would otherwise be selected to make the approximation valid.
By ,djusting the acceleration discount factor a, PTOS will leave A 2) -A 5) of Thcoem I

enough unsaturated control margin while trajectory following that A 6 < J(-[y + A]) - ( + Atu) < v) E U. U
differt'nces between continuous time and discrete time optimal con- cor-responds to the region in state space where the control is
trol st.rategies can be absorbed. unsaiurated.

4. CONTROL DESIGN: KNOWN PARAMETERS .47) 1 J'({)J< ' , Vy,

The proposed control structure is a discrete time mapping of where Ay and Au are defined as follows:
the same proximate time-optimal control law ass lised in continuous
time PTOS in Section 2 with some slightly different conditions on Ay = T" V + 'T, sat(k:[2(-y) - u]) (5.1.0)
the function f(.) %ltich will be discussed later. The mapped control 2

law is then: A.5) = aT. sat(k-2 J(-p) - v]) (5.20)

u(k) = sat(k[ff(y.(k)) - v(k)]) (4.14)

Note that tile definition of y, is tile sanme as in tile continuou-s time Proof. The proof of this theorem is along the lines of the proof
case. Dropping tile sample or time index, we have: of tile continuous time proof of Theorem I and the details are also

-]) 0.15) coitained iii 14]. Tine approach to the proof is uIseful in under-
at()(lding the origin if the constraints of TI'e(siciii 2. Refe:rhing to

To simplify thie block diagramns. we will ltilize the transfer charac- Figure b.G:
teristic of tire D/A convec-ter in plaCe of the saturation ftunction, a-s
it is equivalent to the two transfer characteristics in series as long I . Show tiha the systent state will ',dway-t enter a region U ill
as the smnallest satruatiori hlie is us-I. Qwoitization in ttle D/A stiae Sfatre where tile cn,ii is uilsatu rated ( i:ordtidnu.s Al,

and A/D converters will be .ssinIteýd negligible. A block diagrarn .A7), ard then

of this s%'stenlll is shown ini F'igure 4.5.

2- Show thait orir- tilm' sy'%t1'tn state is ill U . it Will relaijin ill U

5. PTOS STAB311, ITY (c,,ndi(iofsl6, :17),

lit ten"is of tile continloo-ns i ti nme units, a nap )of t ltititn ois 3. I-ittalls, %how tlit tt ie is a LYap un v fui-tion for te t

time controller into the discrete time system yields: ill tLhn rgion U (,conilitions -11. A2, Ad, A,1 A,. /17).

y(k 4 1) y(k) 4- 7T$ v(k) 4- a(T2/2) u(k) (t,.1i)
llcmnarks. (iCoiiiiti,,t -J ' (Jlif'les fiuill the l colltiIlloI1.% Case ill

,(k 4- 1) =t(k) +a aTs i) (5.17) that ii puts ,rt upp,-r limit on the adue ,of akl-',. Th'lis lirutnt rf-fi,ctiv,,ly put:, a hawir Iirtmt oilr I iti' t,,of sariiqliiig- fi ,.qi,.iiy to

ti(k) sat(k-4f(r- y(k))-- i,,(k))) (5. 18) le..rle s 'ehii (,i,,, sath l -i ,th If :,- i i:l',,,sl o , hi tht,,t t1.:

For what valutes of k 2, ;wid 1•, is the sysfi- .isei b, y (5.1 6,) iuiti, f)-) us ,',ttnu,,us. th'n-i
through (5.18) stallI ? .Jntfortuinately Nie t Iswcl t,, this questilon is (4I:I , 10
more coi•plex than it is ill thrle corntilluotls tillte citse. TI ili,:reasid k,

Icoriplexity is du,. to the lack of coiutirnuous traj,--tor-i, ift the state
hpaie, taMid to tille ;alytical rlcttiphexiry of 's t' dili' I.il l uuov ml tt' sil,'u ti l i. . itAo 1,1l-i fi] mit ,,1 l't;aiiu

futctionus. k 1 ]"' .
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I
S that for hugh enough sampling rates. the function f(-) chosen for• • tilecontinuous time sstem should mieer tilecondition-s necessairyI

for stability set forth in Theoremn 2.
Thus the velocity trajectory function J(.) used in tile Continuous

• , along with tihe conditions for a continuous magnitude anad slope

' (2. 9) -(2.10).

"6.1 EVALUATION OF CONDITION A6
Choosing f(.) and f'(-) to be continuous functions, of the form

(2.8), has a benefit in that it allows us to check condition A6 on the

Figure 5.6: Regions U, S+, and S_ of the phase plane. The solid boundaries of U (ik = I and uk= -1)(1] as shown in Figure ??.

curve represents the points (y, v) such that v = f(-y). This is easier than evaluating A6 for all points in U . Evaluating
AG on the boundary u*. = +I1 yields-.

But this is less restrictive than the constraint imposed on k, T, by -1 <k 2 [-f(iY-T.f(Y)-T./k 2 +aT2)+f(Y)+ -- aT.] < I ,Vy
condition A7 as we shall see later in Section 7. k2

Condition A6 is the most difficult to analyze. It simply states (g.26y
that at no point in U can the next control be of magnitude greater Checking the remaining boundary (u -1), yields:
than or equal to one. It is difficult to determine what this means - 1 < k 2[-f(v-Tf(Y)+T./k 2 -aT2)+`y(Y)- 1+aT] < I , Vy

directly in terms of restrictions on the function f(.). It would helpk2 (6.27)I
if we knew whether condition A6 approached the similar condition
for the continuous time case as the sampling time approached zero. Note that if the function f(.) is symmetric the conditions need only

be checked for non-negative valuen of y.

6. STABILITY IN THE LIMIT The conditions given by (6.26) and (6.27) are difficult to analyze

directly (substituting (2.8) in for f(.)). Instead, a numerical anal-
We would expect that condition A6 Theorem 2 would approach ysis will be used to shed some light on exactly what the tradeoffs

that of Theorem 1 in the limit as T. - 0. To verify this expec- are in choosing wd, T,, and o given a.

tation, we will substitute the plant equations for Ay and Av into Before a numerical analysis of the above conditions can be per-

condition A6 of Theorem 2 and find the limits, formed, a design rule must be chosen for the free parameters in I
To begin, we will assume that we can exanine the condition AG the control law, namely the gain k, and the deceleration discount

on the boundaries of U . For high enough sampling rates there will fW-tor (X.

be points in the neighborhood of the boundaries, and by continuity

of f(.) we know that conditions of positiveness and negativeness of 7. LINEAR CONTROL LAW I
the control will apply in those neighborhoods.

Condition AG of Theorem 2 is: Designing the linear controller for the discrete time system is

again more complicated than the continuous time case. Let's define

- < J(-(y + Ay) - (u + Au) < - (6.21) the ratio of sampling frequency to desired bandwidth as N'

aroUu 1)2 k2 i
with Ay and AV given by (5.19) and (5.20). On tihe positive bound- N = -- (7.28)ary of U (u = ) . Wd ff

Substituting A y and Av on the positive boundary of U (u = 1) For most discrete time servomechmaisms, the value of N is
into (6.21) and taking the limit of all three terms as T, - 0 yield- greater than five. AstrZom and Wittenjnark (5] claim a good rule
tile following: of thumnb is to have

jo, i2 [-(-)y<. which for( <= .707 means N ; 14. For values of N as large as these.

and thus one would expect that the discrete time system gain k, should be

close to that of the continuous time case for the same desired closed
-0o < -J(-/)f'(-y) < a - -•-f'(-y) (6.23) loop Iandwidth. Unfortunately, although the damping ratio's are

Checking thke boundary where u = -1 yields the following inequal- very close, the bandwidths of the two systerms ale signifi,-antly I
t n tdifferent when N is as large as 10 as seen in Figure 7.7.

ity:a< '() < (6.24) Condition A7 of Theorem 2 put a restriction on the slope of the
k2a+ J( v ( !)f( v - (.4 function f(.). Le't

These two inequalities together yield condition A6 of Theorem 1, 1 pk. (7.29)1

2 y 2 k 2

- a + •.-J (-.,) < -f(-y).f'(-y) < a -- f'(-y) (6,25) Since condition A7 is that c < U/-I, it follows that.

"Thus the constraint .46 of Theorem 2 approaches the sirnilaý con- A2  
1

sraint for the continuous time system a-s T, -- 0. This is a plea-sing. k 2  2

rtult, especiaiiv in light of the complexity of the discrete time .ubstiLn iing for K2 yi,:i~is:

analysis. Besides providing a validation of the condition in dis- 2 I
crete time, the prmeceding analysis also leads to the concldsion A, 1. < -<

I
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Figure 7.7: Closed loop bandwidth and damping as a function of

the gain k 1 , for a sampling interval of 1 second. The bandwidth

and damping of a continuous system is shown by the dashed line

for comparison.

-a

which is larger than the result given by condition Al.
A much more difficult task is that of checking condition A6.

Since substituting the expression given by (2.8) for Jf(.) leaves us Figure 7,8: The maximum value of k1 TT and minimum value of N

with something which appears to be analytically intractable, we versus o. As design guides, these two curves could be considered
will resort to cheding the condition numerically. A program writ- constants: N > 6.2, and k1 r, < .49.
ten in PASCAL searched for the largest sampling interval T, which
would allow condition A6 to remain true, as a function of a range
of given k, ". From ki and k 2 , the dosed loop (-3 dB) bandwidth
of the system was calculated as follows. Given k 1 , calculate {

S1/2 kT fcondition A7
k2  = ---- (7.32)T

a k1 T,2
P1 + - ak 2 T - 2 (7.33)1

akT?. a k2Tc + 1 (7.34)A2

N
r I/V2 (7.35)

the closed loop bandwidth cali be found from (given the system
has complex poles): Figure 7. The value of k] T't as a function of N, for or .95 and

L _((vr)), (, )2] (7.36) the upper limits imposed by conditions A6 and 47.

Fa , [= --2 2- 7

A plot of the minimum N and maximum k1 T2 versus oa is shown hard to imagine that throwing in more complexity will help in the

in Figure 7.8. The analysis. Thus, unfortunately we will have to fall back on Section 6
Idl and make the assumption that for fast enough sampling rates, theInl ItummaTry, the desired bandwidth of the closed loop controller uunmodeled dyrnanics analysis for the continuous timne case should

is not significantly restricted by ccndition A7 of Theorem 2, but ppy].Wle this is n ot partcul tisfyin e c ould

is restricted by condition A6. In other words, the Lyapwiov func- apply~l]. While tis is not particularly satisfying, when coupled

tion is not placing an active constraint on N, but the condition of with system simulations, it is a practical approach.

remaining in the region U once in it, or avoiding jumping over U The design procedure for discrete time is thus to apply continu-

entirely, does place an a'tive constraint on the sampling rate versus ots time measures of unmodeled dynamics to the system, chose an

desired bandwidth. This is evident in Figure 7.9. The constraint appropriate acceleration discount factor cr, and verify this choice

on N could be avoided by changing the function f(.) to account for by simulation of system performance.

sample time, but only at the cost of loss of performanice (increase
in response time). 9. ADAPTIVE PTOS

8. UNIODELED DYNAM S Th'lc same structure as used in the continuous time APTOS will
be used for the discrete time APTOS, with appropriate clanges

T,3king ,!oled dyna-mJcs into account in Thcorcm 2 is, ii. th, id. atil,_i-6 ,.z itihis: replace the plant. gain a by tile
ithin the present analytical framework, impossible. Since ania- estimated plant gain ain (2.8), and adjust the control gains kt arid

Iy'ing condition A6 of Theorem 2 explicitly is not possible, it is k2 by & as well.
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iI
9.1 IDENTIFIER

To fix ideas, we will propose and analyze a simple one parameter -

identifier in the APTOS structure. In terms of polynomials in .-

the uEnit delay operator q-1, the input-output relationship of the
double integrator plant is a

W, q-,) (eno'? ) (9.37) aH T1
where anom represents the nominlx or expc, ted value of the plant A . i 1 i _ ____
gain a. If the measured data is { (u,, t =O,T.,2T,... } - then we.
can form an equation error as follows: . I

S| a S * ) * ta

C = z-4 (9.38) r-

where, I
n= ( m )(1 -q--)

2  
(9.39) Figure 10.10: APTOS behavior to an initial error in parameter

4) = (q-' 4 q- 2 )u (9.40) -estimate of 50%. 1
Consider the LMS identifier for the normalized plant gain a: i

z 4- '

C xa 41 (9.41)

ak+ = ak + g0c (9.42)

where g is a positive constant. Define the parameter error as .t .] - -

Zi = ato,n -- a (9.43) 1--_. _____,___,_I

The following Theorem gives conditions for convergence of this I

single parameter identifier. -- -, -�- --... --.... - ----.

Theorem 3 (Parameter Convergence). If 1

I I
- I - -- I . . . • . . .

2. 3T7> 0,G > Or > 0 such that Jor all k:

,=T-13> A + ' Figure 10.11: Experiment versus simulation.

1=0

then the parameter error a 0 as k - c.. exponentially fast. IM.EFERENCES

(1] Michael L. Workman. Adaptive Proximate Time-Optimal Ser- I
Proof. The proof is contained in [1]. vomechanisms, PhI) thesis, Stanford Univerity, 1987.
Thus as long as condition 2 of Theorem 3 holds, adaptive con-

trol based on a works. This is because exponential convergence of (2] B3ryson and 11o, Applied Optimal Control, lial-;tcd Press, 1010
a gaurantees that at some point the function f(y,, ii) will meet the Vernont Ave.. N. W., Washington, D.C. 20005, 1975. I
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Mininum-Time Control of Large Space Structures

Robert L. Kosut* , Antonio M. Pascoal* , Michael L. Workman' , and Gene F. Franklint

*Integrated Systems inc., 2500 Mission College Blvd. Santa Clara, CA 95054

tIBM Corporation, 5600 Cottle Road, San Jose, CA 95193
tInformation Systems Laboratory, Stanford University, Stanford, CA 94305

Abstract

An Extended Proximate Time-Optimal Servomechanism (XPTOS) is developed for the control of a flexible structure
with a single structural mode. The resulting control system is closed-loop , and embodies in its structure the charac-

teristics of a time-optimal control law and the fine tracking properties of a properly tuned linear regulator. Simulation

results demonstrate the performance of the XPTOS, and its robustness in the face of uncertain plant parameters.

1 Introduction

One of the clrslenging tasks facing control engineers and theorists is the design of control systems to achieve rapid
slewing and precision pointing of large space structures (L.SS). With increasing demands being placed on the design
and construction of lightweight LSS optical tracking systems, the need hz's arisen for sophisticated control algorithms

that make optimal use of the ma.6imum torque available for rapid slew, and achieve high tracking accuracy after the
trackinog error signals have beccrne sufficiently small.

The "ideal" solution to this problem is obtained by computing the opt~nal open-loop "switching" actuation sequence

that steers the structure from initial to final (target) position in minimum time [5,6]. In practice, such a solution is very

difficult to obhtAiri, an.I a proxiaiate time-optimal control law is usually derived by considering the rigid body motion

only. The r.sulting input actuation sequence may result in significant excitation of the structural modes, and therefore

it must be modified so that its power spectrum has significantly lower harmonic content. One approach is the sine-

versric to'que shaping technique, which attempts to achieve a good tradeoff between slewing timie and structural mode
excitation [fI. The resulting control law, however, is open- loop and therefore the control system becomes very sensitive

to modeling errors and exogenous disturLances. In arder to overcome these difliculties, a number of techniques have

been proposed which combine feedforward sine-versine torque excitation with linear feedback information to provide
for active damping of the structural modes (2,3].

In thin paper, we consider the design of a practical "proximate" time-optimal feedback controller for a flexible

structure with a single structural mode. The controller blends the time-optimal characteristics ofa nonlinear (switching)

control law, and the fine tracking properties of a properiy tuned linear regulator. Furtnerinore, -it exhibits good

Jrobustness properties against plant parameter variations. The approach pursued here follows from some previous work

reported in [8,9,10] on a proximate timne-optinal servomechanism (PTOS) for a rigid structure with high frequency

unmoodeled dynamics that are outside of the performance bandwidth. We extend these techniqu,.s by taking directly

into account the existence of a lightly damped mode, which may possibly be within iLe desired perfoi iance bandwidth.

The resulting control law, referred to as the extende: proximate time-optimal servonieclianism (XPTO'Sj), reta e.s the

simplicity of the basic structure introduced in the PI1OS and offers attractive advantages when compared with the

approaches conventionally used for time-optimal control of large space structures.

"[ihe organization of the paper is as follows. Section 2 contains a brief de.,cription of a proximate time-optimal

servomechanism (l'TOS) introduced ii [8,9]. Section 3 is devoted to the extended proximate time-optimal servo,

(XPTOS). Section 4 con t a det-,ailed e: p, i.h 1t illst.ratce-: the prformance, of the control alfrorithm introduced
in Section 3. Finally, Section 5 contains the conclusion3 and s..g.stions for further research.
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Figure 1: Time-Optimal Controller for Double Integrator Plant

i

2 The Proximate Time-Optimal Servo (PTOS)" A IReview

II

This section contains a brief review of a proximate time-optimal servomechanism (PTOS) described in Workman,
Fosut, and Franklin [9) for a double integrator plant.

2.1 The PTOS algorithm 1
Let the plant P be described by the system of equations

S au ,

where u and y denote the plant input and output respectively, a is the maximum acceleration available, and Iu(t)l • 1.

Let the plant state z be defined by

Given an initial state xT -= [yo v0] at time t = 0, suppose it is required to steer z T to a target state XT = [r 0) in

minimum time. The resulting time-optimal control, depicted in Figure 1, is given by [5]

U sgn (fo(e)- v), (1)

Jto(e) = sgn(e)(2alel)i, (2)

e = r-Y, (3)

where
sgn(z) 0 0, z = 0. (4)

z<1

The control law given by (1)-(4), although optimal, is not practical. In fact, any process or measurement noise will

make the control silnal , "cihatter" between its maximum and minimum values, thus exciting unmodeled dynamics

that are always present in a more accurate model of a real plant. Even in the absence of exogenous signals, the I
time-optimal controller lacks robustness with respect to neglected dynamics, since a lightly damped mode will induce a

limit cydcl'W(orkman, (8j). To 6ircum;vent this di"•:lculty, a mo... practia of a cpimnal zcritic1z

was introduced in [8]. The resulting control system, referred to as a proximate time-optimal servomechanism (PTOS),

is diagrammed in Figure 2.
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Figure 2: Proximate Time-Optimal Servomnechan ism (PTOS)

The equations that describe this "practical" version of the optimal control law are

v asat (k,[f (e) - v)) k-, > 0 ,(6)

wbere

sat~z z Iz~i ,(7)

- ~ -1',z < -1

and

In (8), k,,, k2 and yr e.re positive real constants, and 0 < cr< 1, rcferred to as the accedcr'tion discount focior, is a
tuning parameter.

The finite-gain operator sat(-) ~a.S %p~laced the infinite gain operator sgn(.), and the switching function fgo(e)
(the derivative of which is infinite at e =-0) has been substituted by 1(e), which is linlear in the range lid 5 yr. To
coninect the tonlinear parts of f () in (8) such that f () remains continuous an~d has a continaous first derivative, the
following additional constraints wer!z i-ailosed in [8,9]:

k=r2 k- (9)
Vaca

and

Stability of the resultingE .;loscd-loop systemn (for step inputs) follows from tile fact that thc zero solutior of

1/ V

V a ;at (k 2 [f(-Y) -- V])

is globally asymptoticaiiy stable (Sce iiheorein 3.j) i])n addition, the close~d loop sys~tein is c~osc to tlinci-optilinal Iin

the following sense:

T'et XT [o, 01. deniote the plant initial state, and suppose it is desired to te to [,0 niijnn ie sn

the (time-Qptima!oý corntro)l iw InI (I)-(~) mhannn: ' "2'uver tirimet, ~~i -

'2
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where

We now consider the PTOS system described in (5)-(8). For large set pointcagsschta L»- teie

it takes for the closed loop system to settle in the linear region of operation can be approximated by

t±I -+ -L (12)

wher e, as s hcwn in [81, ti(L) is tuch that jr - y(tj(L))I ýz- Defining P as tile percentage increase in maneuver timec

of -the-practical controller, it follows from (1l)-(12) that

-Clearly, P is independent of the move length L. Moreover, P is close to 0 for values of a close to 1. 'The above

analysis is based on the assumption t~hat, in the linear region of operation, the dynamics of the closed-loop systemn

decay sufficiently fast ou the time-scale of z,(L). This can be achieved by proper selection of k,1 and or, as described

below.

2.2 Designing the Linear Controller

Let H(s) = Y(s)/R(s) denote the travsfei function oif the closed-loop systemn of Figure 2, whenm operating in the linear

re-gion. W~th the usual notation for a se-cond order systemn, and using (9), itfollows that

11(s) 2 
13

where 
W

and3

Thus, the overall closed-loop systemn bandwidth Wd and darnping factor Cd can be inadependently cm:,rtrolled by the

ýaramete~s k, and ar, respectivcly. As shown in 180] the PTOS algorithmn c;arl be applied to the; 'on.trol <-.[ purlely

rigid body with high frequency unimodeleds dynamics that are outside of the performance bandwidth ('),. "How"eve., if

the structural miodes are within the desired closed loop sytein barndwidth, thcli they must be treate-d e~Plý;icitly iii the.

initial design. This is the subject, of thc next, section.

3 The(- Eixtended PTOS Algorithir. ATrf(S)

In this sectionl W,'w address the problem of desýr'nirijg a promimatetineopinl otrle fQ- u fi4-xij% he hr 3(
s-tructure. In this preliminary study, we re-strict oursetvies to t! - (ideaJizsed) casex wher-.e the structure I. to be" coltoi(

is linear and contains -, single structural mode. lhenc, P) can be described by the traxi-f,-r functioln

wthere ui,, and c dfenote time ircqien~cy mai d iaripi mu;i of Owm sm~mitm sm iii )'~ lj -:;.vý : I "A, 'il a, a;;d C' alc r

We &a"uyrrme that bothl outplut po~itionl aiid rate iatm r wjmem ttnnevailalbie for ua'urie t h i tm ýcue ti" I'lti

admits thej;lt-:- aeroi aim

A2, DU

G("i



where

A=0 1 0
0 0 0 0 0 1A K= -- -~ + - -4 ,B=[O r •" r[l o (1o8)

0 0 I -,• -2 ( a

M = (yjY), and xT = (yr, Vr,Yf, vI) denotes the state-space vector. We shall henceforth refer to (yr, vr) and (yf,vf)
as the rigid body and structural mode coordinates, respectively.

3.1 Proximate Time-Optimal Control of a Flexible Structure

Consider the autonomous linear process (17)-(18). Given an initial state xa at time t = to, suppose it is required
to steer =0 to a final (target) state xf in minimum time, by using inputs u such that Iu(t)I < 3. The problem of

":time-optimal control thu., defined has been the subject of extensive research, and a vast body of literature is available
on its theoretical and practical aspects (see Lee and Marlaus (5] and Oldenburg (6] for a rigorous exposition). Under
fairly generic conditions the optimal steering controller uop,(t) exists and is of the relay type, i.e. it assumes the values
t1 and switches a finite number of times. A closed-loop implementation of the optimal control law, however, requires

the construction of high-order switching surfaces. for systems with stae-space dimension greater than two, these
surfaces become so complex as to exclude their use in the implementation of practical time-optimal control algorithms.

An interesting approach to the solution of this problem has been reported by Kalman (in Oldenburg [6)), who used
linear transformations ih the phase space to replace a "high-order sy.stem with a second-order system which closely
.approx'mates the former". In particular., a nearly optimally compensated third-order satuiating servomechanism was

* described for the plant. G(s) - ,'(r,-i consisting of a pure inertia and a first-order lag. The resulting control law
relieos on a. .ingle switching curve, and is effective if the dynamics of the first-order las, are sufficiently fp. Clearly, this

procedure is not directly applicable to the fie.xdble structure described in (17)--(18), since the structural mode typically
has very small damping (, and therefore a very long settling timt.

In Schmidt[7], a technique for the design of nonlinear saturating controllers to achieve proximate tiie-optimal
control of high order plants was described. In what follows, and motivated by the work reported in [6] and [7], we
propose a (nonlinear) feedback scheme for pro.ximate time-optimal control of (17)-(13) that preserves the basic itructure
of PTOS.

3.2 The structure of the XPTOS

rhe rationale behind the XPTOS control syste:.i cai bfe explained as follows: the dynamic behavior of the flexible

structure described in (17)-(18) can be decomposed into its rigid and structural dynamics, which are completely
specified by the state-space coordinates (.r, v,.) and (yf, v;) respectively. To steer the structure flom ;.n initial to a

final (target) position, apply the PTOS strategy to control the rigid body motion, and blend it smoothly into a linear
state-feedback control law that actively damps out the structural modes. The resulting scherne i.- depicted in Ficgure 3.

Let £ := ;E r,•rP, i1rj denote the estirnate of z := [y,, ',Jy,vf), obt;..ined from the state-e.timator dynarmncs

x. : Ai, + tJil ± Iiohir,, - ;] ,(1J)

where JK0 is sudh that (A -- KoC) is a4<ympt-otically stable. Then, thl following desc:iption of XPtO'S is obtaiined:

;i z:: A :,r - B.,S., t(,• ,()o

I~~ k2rr k, -'.

Ax_ -4 BSIU ,(

where

r - i , (22)
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Figure 3: E2xtended Proximate Timne-Optimal Servomechanismn (XPTOS)

f(* is defined in (8), andI
K, = jkik, k~ik 4] (23)

is such that (A - BK,) is asymptotically stablc.3

3.3 XPTOS. Design Methodology

'The purpose of this section is to provide some guidelines for the design of the XPTOS system to accomplish rapid
slewin- of the flexible stnicture described in (17)-(18). In a typical retargeting m-anieuver, thc objective is to steer
rapidly the output y from 0 (at -imne i = 0) to the final target value ro, and remain there. To accomplish this , we
propose a design methodology that is bazed on the following control strategy,: during the initial phase of the rnia:uver,I
let ,the nonlinear c-haracteristics of XPTOS tak~eover, in an attempt to steer- the rigid body dynamics (Y,., iVr) from-. (0, 0)
at t =0 to (rQ, 0) in minimum time; in the last phase of the. maneuver, use the properties of a proper-ly tuned linear
regulator to achieve high tradling accuracy and activc damnping of the structural mode.

It is clear from the considerations above that the following constraints (inherited from the PTOS design methodology
described in Section 2) must be observed:3

(ClI) k2  I (C2) .0<or< 1.

In practice, the. degree of fle-xibility of thc structure places a lower limit Lmi,, onl 01h size, of the nlllneluver for whichI
the "bang- barig"characterintics of XPTOS should be. explosed. Thus, given L se;e& ki so that

5Z. *I
We now examinie the constr-aints that arise from the performance requiremnents in the linear region of operation.

Consider the XV1OS system diFagrammed in IFigure 3, and described by equations (18)--(23). In the linear regionI
of operation, and ill the abnence of any input signal -,, the system can be simply viewed as the combination of a
state-ob!server and a linear regulator. The evolution, of the feedback- systern is then governed by the equationr

C;AX - K, i, 
(24A) I

Ko.- 4- (A -- )C BK- (2)

Ki (k ik2 k3J:4] (26)

Furtliemniore, the poles of the 1nter-connecte(d z~ystetn coniAt Of thef obseVIrve o (CigenVUoLuC of A- KOC), tgte
with the regulator poles(ienaus of A -- 131f,). The first requiremnent onl the syf~teni (24)- (25) in tOit 'It be, I

--- ---- ------------- ------- ------ --



asymptotically stable. In addition, Ko and K, must be selected so that the XPTOS exhibit good track~ing properties
(i.e. fast dynamics) in the linear region of operation.

3.3.1 Selection of K,

The PTOS design methodology detailed in section 2.2 reduces to the solution of simple algebraic equations. A similar
procedure may be derived for the design of XPTOS. In fact, it is straightforward to derive an expression for d(s), the
regulator characteristic polynomial, in terms of K, and cr. Furthermore, given a and any set 9 of desired closed-loop
(complex conjugate) eiganvalues, it is possible to ascert the existence (and in the affirmative case compute) K, so that
If, satisfies the constraints (CL)-(c3), and the roots of d(s) equal £. This method becomes rather cumbersome (and
therefore not practical) if extended to plants with more than one structural mode. With this objective in sight, we
describe a different design method.

Assuming the state vector x is available for measurement, we seek a linear control law of the form

U = .-Kx, (27)

where K, = Lk- :2 k3 k14] is suitably chosen to minimize the quadratic performance index

J = j-(t)Q ) + pu2(t)]dt ; (28)

p > 0 and Q symmetric, positive semideflinite

subject to
Ax + bu ; x()= (29)

In the sequel, we will refer to the problem described above as th e linear quadratic regulator (LQR) problem. Let
Q = z~'z for some row vector z, and let the pairs (A, b) and (A,z) be stabilizable and detectable, respectively. Then,
K, is obtained from the positive definite solution of an algebraic Riccati equation, and the resulting feedback control
law stabilizes the system (29)(Kwakernaak and Sivan,[4]).

We remark that for our purposes, the LQt. design methodology is simply viewed as a design tool that provides a
systematic way of "scanning" a large set of stabilizing feedback laws. Thus, p and z are tuning parameters that control
the location of the regulator poles to achieve good tracking properties.

The inclusion of the constraints (C1)-(C3) into the IQR design problem is considerably difiicult, arid we theiefore
propose the following iterative algorithm for the design of XPTOS:

Step 1. Select an initial estimate for z, and let p vary in some interval [Pinn pna2i. For each value of p, solve the LQR
problem (28)-(29) to obtain a stabilizing feedback gain K,(p).

Step 2. Plot K, and a =- 2ki/k 2,i. a!; function:; of p, and check that a value of p : p" .i:t:, for whlich (C1 )--(C-3) are
satisfied. In case these constraints are not satisfled, modify z and/or the interval [Pni,,,PPrnax] arid go bac: to
Step 1.

Step 3. Check the final location of the regulator poles. (i.e., eigevalues of A - DK,). A:s a design rule, require-"
the "dorninant" time-con.tant of the regulator system to be much smaller than to (.,,,)
where to0 ,(Ln,irl) i.; the (theoretical) nriniiNumn time required for retai-geting of the rigid body only (i.e., mak,:
min R,[4,(A -- BK,)] >> 1 If this condition is not met, modify z and/or the interval [Prmi,,P,,,;•×]
and go back to Step 1.

Rermark 3.1 In the analysis above, vwe:. ss:clrw vthe qu,.;tion of e:(stence of a vector K, such t01t (G.I.) -((,3) ae,- satisfic-d,
d'11J If 0,,,-- . . .. " . f.r . .r .o tc r,jr,. ,f 0 and z.

Remark 3.2 Thie choice of the q iiantiti(.:; p and i. if; not straightforward, and r!qo ii,::; :.oi,.I il,:iht ilt,, how thl'y .:fii(.t

tlhe relativ<, v agniturde of t ,. g;ii , : , ;.3, k w A:,,, w, v.wll a; the: loc;ti,,,, of tde. !,,. :*I:.r , (" ,..

insight into this pr vc::.; is ie , , exarihing the a:ymptotic be'havio of the' le:. * 01 an1
p cx (Kwakmrn,.aak aind Sivr.,, [41).
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3.3.2 Selection of K 0  3
Without any constraints imposed on its elements, K0 is simply obtained as the optimal solution to a stochastic
observer problem (Kwakernaak and Sivan, (4]). In this case, the state excitation noise and the measurement noise
characteristics act as tuning parameters to force the dynamics of the observer to be sufficiently fast compared with the
regulator dynamics.

4 XPTOS Performance: An. Illustrative Example I
In this section, we examine the performance of the XPTOS via a simulation example. As a representative test case,
we have selected a~flexible structure for which the PTOS algorithm (designed' 'Without consideration for the structural
mode) gave unsatisfactory results. The performance of the XPTOS is compared against the slew maneuvers that are
obtaibned by using a sine-versine open-loop control law [1]. Furthermore, we examine the robustness of both algorithras
with respect to parameter variations. , I

The flexible structure to be controlled has the state-space representation described in (17)-(13), with

a, = 3 , aj = 50 , ( = .005 , and w, = 26.8 rad-sec-1 .I

The design methodology described in Section 3 gives the following values for the XPTOS parameters:

o = .8 , I

k, = [12.67 3.25 .74 .65]{ 29.91 33.921
12.50 9.18

and k0  = 11.27 -I.52 5 2

-58.53 101.15

The structure was subject to rest-to-rest maneuvers with amplitude L = 1. In order to compare the different control 3
strategies, we have (arbitrarily) defined the maneuver time t ,, as the time after which the error signal r - y becomes
smaller than .018. With reference to Figures 4 through 8, the graphical summaries of the state and control time
histories are discussed.

Case 1. (Fig. 4) is a rest-to-rest maneuver using the XPTOS algorithm. The initial phase of the maneuver aims at
rapidly steering the rigid body state (yr,v,) = (0,0) to the neigborhood of the final target value (1,0). This
results in considerable excitation of the flexible irode. towever, its amplitude is rapidly reduced after the
initial surge in the input control profile. In fact , the maneuver time t,, equals 1.32 seconds. Compare wi-th
t4opf = 2(X/3)1/2 = 1.1547, the (theoretical) minimum time required to steer the rigid body only, in the absence
of the flexible mode (eq. (11)).

Case 2. (Fig. 5) is presented as evidence of the "stabilizing" effect of the nonlinear switching functioi; f(.) in (8). Let
the function f in (21) be defined by f(e) = (ki/k 2)e for all e. The resulting control vyAtei is of the relay- type,
with a single nonlinear elerrient at the input of the flexible structure. The response is highly oscilatory throughout I
the maneuver, and the maneuver time t,, increases to 1.95 seconds.

Case 3. (Fig. 6) is a rest-to-rest maneuver usiing the (open-loop) sine-versine control law [1] 3
1i(t) =_ ý - ) (I _ cos - ,i

where the (theoretical) rigid body slew time is

A'1 , - .90,16 secoTI(Id'j.

The esul0ting maneuver c-tl.li:; 1e!;!; cxcitatiori of the sAtr'ctural mode (inI comi ar vif-ol tht W ai.t 1), but iJ. Iticeabl'/

slower, with sn=.6 secolds.i
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" Case 4. (Fig. 7) displays the robustness of the XPTOS with respect to plant parameter variations. We notice that in
both cases considered, t,, < 1.36 seconds.

Case 5. (Fig. 8) depicts the inherent lack of robustness of the sine-versine control algorithm. Clearly, a practical control'
system based on this algorithm requires switching to a linear regulator at the end of the sine-versine rigid body
slew time AT. However, this will further increase the total maneuver tim':.

5 Conclusions and Suggestions for Future Res' arch

I In this paper, we have developed an Extended Proximate Time-Optimal Servo (XPTOS) for the control of a fle.dble
structure containing a single structural mode. The performance of the closed-loop control algorithm was illustrated with
a representative example, which displays the excellent slewing and tracking properties of the XPTOS. A comparison
wa made with typical slew maueuvers obtained by applying a sine-versine control law.

SFuture work will require a rigorous analysis of the stability of the XPTOS, following the methodology proposed in
[8]. It is our objective to refine the design technique exposed in section 3 in- order to accomodate disturban-es and

I sensor noise, and provide some robustnesss against the presence of neglected higher-frequency structural mode.3.
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Adaptive Time-Optimal Control of Flexible Structures
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Santa Clara, CA 95054 San Jose, CA 95193

Abstract The Extended Proximate Time-Optimal or modes which may possibly be within the performance
Servo (XPTOS) developed in [8] is analyzed for stability bandwidth. Numerical simulations show that the XP-
using new techniques, z'nd the performance of it corn- TOS algorithm is robust against plant parameter varia-
pared against alternate methods such as sine-versine for tions.
the fast slewing of flexible structures. The XPTOS sys- The paper is organized as follows. Section 2 contains
tem operates in closed loop, and blends in its structure a brief description of the proximate time-optimal ser-
the characteristics of a time-optimal control law and the vomechanism (PTOS) presented in [8], [9]. Section 3
fine tracking properties of a properly tuned linear reg- is devoted to the extended proximate time-optimal ser-
ulator. This study is addressed to the (idealized) case vomechanism (XPTOS) and presents some new theoret-
of flexible structures that contain a single or dominant ical results on stability. Section 4 illustrates the per-
structural mode. Simulation results demonstrate the per- formance of the XPTOS via a parametric study. Sec-
formance of the XPTOS, and delineate its range of ap- tion 5 describes the extended adaptive proximate time-
plicability. optimal servomechanism (XAPTOS) which combines the

XPTOS with a weighted recursive least squares (WRLS)
I d c oidentification of the plant parameters as developed in [8].
1 Finally, Section 6 contains the conclusions and sugges-

The advent of lightweight flexible structures has pre- tions for future research.

sented engineers and theorists with a multitude of chal-
lenging tasks in the area of control systems design (e.g., 2 Time-Optimal Control of a
[2], [3], [6], [7]). Required are sophisticated control al-
gorithms that make optimal use of the maximum torque Rigid Body
available for rapid slew, and achieve high positioning or
tracking accuracy after the position or tracking error has 2.1 The Proximate Time-Optimal Ser-
become sufficiently small. vomechanism: A Review

In this paper, we develop a practical time-optimal con-
troller for rapid slewing of flexible structures; in particu- Let the plant P be described by the system of equations
lar, the case where the structure model contains a single
structural mode. A nonlinear feedback controller is ob- - v
tained that blends the time-optimal characteristics of a = a, sat(u) (1)
switching control law, and the fine tracking properties of
a properly tuned linear regulator. The approach pursued where u and y denote the plant input and output re-
here is a reiteration and extension to the original work spectively, a,. is the maximum magnitude of (rigid body)
by Workman [8], [10], [9] on a proximate time-optimal acceleration available, and sat(.) is the normalized satu-
servomechanism (PTOS), and on an extended adaptive ration function, i.e. , sat(x) = x, jzj • 1 and sat(x) =
form of PTOS: (XAPTOS) for control of both rigid struc- sgn(x), jzj > 1 where sgn(.) is the "sign" function.
tures with high frequency unmodeled dynamics that are Given an initial state (y0, vo) at time t = 0, suppose
outside of the performance bandwidth, as well as flexible it is required to reach a desired state (y, v) = (Yde, 0) in
structures with resonances close to but beyond the band- minimum time. The well known time-optimal controller
width of the linear regulation mode of operation. The is given by [4]
techniques exposed in [10], [9] are extended by taking
directly into account the existence of a lightly damped u = sgn (ft.(e) - v)
structural mode as was done by Workman in [10], and
in addition provide a technique suggested by Franklin ftos(e) = sgn(e)i., /aje (2)
which aids in extension of XAPTOS (or XPTOS with-
out the adaptive feature) to the case of a flexible mode e = Wes-- Y
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The time-optimal control law (2), although optimal, is The ratio a/a, is referred to in [9] as the acceleration

not practical. In fact, the existence of process or mea- discount factor. Thus, during deceleration the PTOS
surement noise will make the control signal u "chatter" controller uses less acceleration than is actually available.
between its maximum and minimum values, thus excit- The acceleration a will be referred to here as the discount
ing unmodeled dynamics that are always present in a acceleration. ]
more accurate model of a real plant. Even in the ab-

sence of exogenous signals, the time-optimal controller 2.2 Designing the Linear Controller
lacks robustness with respect to neglected dynamics, as
the presence of (ignored) lightly damped modes may in- Let H(s) = Y(s)/R(s) denote the transfer function of

duce the onset of limit cycles (Workman, [8]). To cir- the closed-loop system of figure 1, when operating i. the

cumvent these difficulties, a proximate time-optimal ser- linear region. With the usual notation for a second order

vomechanism (PTOS) was introduced by Workman [8] system, and using (9), it follows that I
and Workman, Kosut, and Franklin [9]. The resulting
control system is diagrammed in Figure 1. dI(s) s (6)

0 U Y provided that,

K1 = /a,. K 2 = 2
(du~d/Gr (7)

Using the consteaints (4),

1aa,/2Q) et ar./wd (8)

Figure 1: Proximate Time-Optimal Servomechanism Clearly then, from the above Theorem, a < a, if <d >

1/•, and hence, rest-to-rest stability of the PTOS sys-

The equations describing the PTOS controller are tem is insured.
Thus, the overall closed-loop system bandwidth wd and

U = K 2 [fpto.(e) - v] damping factor (d can be independently controlled. by the

parameters K, and a, respectively. As shown in [S]-[9],

(K1 /K 2 )e, :e5 <Ce the PTOS algorithm can be applied to the control of a

purely rigid body with high frequency dynamics that are

'Isgn(e) [0ajel - 1/1(21 , Idj > 11 outside of the performance bandwidth Wd. However, if

-(3) the structural modes are within the desired closed loop

where Ki, K2, a, and el are positive real constants and system bandwidth, then they must be treated explicitly

are the control design variables. Observe that whenever in the initial design. This is the subject of Section 3.

lel _< et, the PTOS control is linear, that is

u = Ke e- K,, Vil< el.3 Time-Optirnal Control of aKc-KvVcl< Flexible Structurei

Thus, et is the size of the linear region, KI, K 2 are the FS

linear position and velocity control gains, respectively, The flexible structure to be controlled is described by
and the constant a is a design acceleration.

As explained in reference [8], the linear and nonlinear Xr

portions of fpt,(') in (3) can be connected in such a way I = a, sat(u)

as to preserve the continuity of fpto(.) and its derivative. " 1 = v! (9)

This requires the satisfaction of the following constraints: 61 = -2(fw vI - ( I-2 - ja sat(u) U
2K,

a ; e= - (4) The transfer fuiction from sat(u) to the output Y is then

With ,he above constraints, we have the following stabil. P(S) = (S) + l)(5) where

ity result from [8], [9]. Pr(S) a- t'J(s) = 0 (10)

Theorem 1 (Rest-to-Rest Stability) The

equibrium state (y, v) = (Yd,, 0) hf ,hc systcrm (1) iith Th,; st~att- (--, vr) dtnot,, the rigid-body mode and

PTOS controller (3) is globally asymptotically stable if (zy, vj) denotes the fle :ible mode at frequency wI with

modal dampingQ. Without any rate damping mecha-
0 < < a (5) nisin, Q << 1, a typical range being (f C [.001,.005].
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3.1 The structure of the XPTOS feedback. D)ue to limited space the proof is omitted and

is available upon request. The control is

The rationale behind the XPTOS can be explained as

follows. To steer the structure from an initial rest posi- u K2[fpto,(er) -- V,] -- U-

tion to a target rest position, the PTOS control strategy e,. =Ya - (1:3)

i- first applied to control the rigid body motion, and later " i= K 3 ZX + rK4v,-

3moothly blended into a linear state-feedback control law

that actively damps out the structural mode vibratioa in- Before stating the stability result, we define the transfer

duced by the PTOS control law. Although tiie idez. for functions G(s) and F(s) by

the XPTOS strtcture was already presented in [8], here I d

we define an approach to the problem of flexible modes C(s) def 1-F(s) d- P-(S)_

within the bandwidth of the controller by separating the s 1 + (K 2S)Pr(s) + (K 3 + K 4 s)P1 (s))

rigid body motion and the flexible motion. 
_(14)

With P.(s) and Pj(s) from (10),

SF(s) = a•r(' 2 + 2Qwjs + cFs) (15)
" J.s + #s 2 + Ts + K 2 arL _

, :where /3 = K 2a, + .K4a0 + 2( 1 w! and T = w.+ K 3 af+

K I _ .2(LwfK2ar. Observe that G(s) is the transfer function

"9----- 'from K2 fpt,<.(e) to z, when the control is unsaturated,

_-, •___ .___i.e., Iu1 _ L1

Theorem 2 (XPTOS: Rest-to-Rest Stability)

ure2 The Extended Proximate Timc Optimal Set- Referring to the system of Figurt 2 as described by (9)
Figurnehi"m (PTh) t PTiand (11), suppose that:
vomnechanism (XPTOS)

The resulting control scheme, depicted in Figure 2, is

decribjeU follows: (ii) There erists a constant a > 0 such that for G(s) in

u= ]K2 [fpto.(jr) - Vr]- Uf (140,

ý r Ydc,- (11) ret[(l + jwq)G(jw)] ± 1/'K, > 0, Vw E IR (16)
uI " f-i K•+ K4ýj

T'he quantitieb Xr,, r,, u1, ý! are estimates (or measure- (iii) The discount accele: (.) satisfies

inents) of X, Vr, zx, vj. respectively, and 4, is an estimate

of the r'gid-body position error e, = y- , - Z,. Observe 0 < < - (

that in the PTOS coutroller (3) the error used there is

the output error e = Yde, - Y. where

Suppcse that y, u are the available tneaw;urcments.

Then a state observer systern is of the form: +1 (t) 1 {(fa + l 4 s)P 1 (s)}

XrG =2L (JK 4+ (18)

v. = ar sat(u) + L.I(y -) (K 3 - 2ýjwjK 4)]Pj(fi)}E -) 1 L 3 y-~)and where 1I j, denr.es, the L1 -norm 1huhi
-I -2t-wjij -,2i + ±a sat(u) + L 4(y - a) a ,' f 1 dI .
i+(12) Under the5' -nditio, sy.st(r is rr.at-to-rest sta-

'1The observer gains L,. L 4 are chosen by the usual ble, that is, .i,, 'ifi.. a. initial!, at rest, then for

means so that (i. ror 5,f, ýfi) - (Zr, Vr, X11 v) aM t -- all Yd,(, - III, the s5ate (Zr, Vr, 7f, V) asymptotically ap-

co, expe CnmIiy fast. Recall thaL to sele-7t the observer proache (Ye , , 0,0).

* gains in this way requires precise knowl'',(e of the plant

parameters ar,,w!, Q, v.nd aIj. Graphical trcquency Test

3.2 Stability of XPTOS: Pull State Feed- Condition (ii) has the following well known geometric

* back interpretation, .q. , (1]. Plot wlm[G(jw)] vs. Re[G(jw)]
as w varies in [0, oo). This plot is known as the Popov

We now present .2a new stability result for re•t-to-rest mna- plot of G(s). Condition (ii) stats that the Popov plot

neuvers of (9) using the XI'TOS control with full state must lie to thi right ofa straight line of positive 5l.opc 1/q
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passing through the point -1/K + j0. Thus, condition where t1 is the optimum slewing time (see [17]. Fur-
(1i) can he checked graphically. thermore, u'(t) can be computed using the methods de-.

.ks an. -.ý'ample, we show that Theorem I (control of a scribed in [171 and [161. For the flexible structure (9),
pure rigid body) is a special case of Theorem 2 with (10) with a, = 30 and ( = 0, Figure 3 is a plot of

the optimal slewing time ,as a function of the structural
a1 -" K3 = -K 4 =- 0 mode natural frequency wl, as the structure is subject

-Thus, condition (iii) becoes to rest-to-rest maneuvers of amplittde IYd,,I = 1. This
represents a fundamental limitation to the performance

0 < a < a, that is achievable with bounded input control, and as.uch, it is a benchmark against which the performance

as stated in (5). To satisfy (i) and (ii), we have of oLher algorithms can be compared. An interesting fact

S- CG(s) S 'SI"0r IIi i I i ll +i

I1n this case F(s) from (15) is stable because a, andK, ! I Iit I II I
are both positive. Moreover, 3_i_3

a, T-iI i ___-___.. .. __?_-

__,z~ l~l\ illI1!
lG(jw)] 2

W2 +t a 2il
I,,I Jm iii .,l"J.-,,)-

Thus,
wlm[G(Jw)) a,_KlRe[G(Jw))

This means that the Popov plot is a straight line 'inrough
the origin with a positive slope and is always to the right Figure 3: Time-Optimal Control of a ,lexilie Structure

of the point -1/K, + jO for any value of K, > 0, and so (Performance Characteristics)
(iii) noids. This proves the PTOS Theorem. iis that thre optimal control strategy is independent, of the:

ratio aj/at, and the optimal slewing time is very closet
4 Parametric Study of XPTOS to the rigid body optimal maneuver time for suflicientl'' I

large values of wf. As the natural frequency of the struc-
'The study described in this section was motivated by the tural mode decreases, the optimal slewing time becomes
following question: for what values of the plant parame- increasi;ngly larger (see [16 for a thorough discussion con-
ters a., af, wf, Ql is the XPTOS effective in rapidly slew- cer.iing the asymptotic behavior of the time-optimal so- D
ing the structure from an initial to a final rest position? lution).
In particular, (i) how far is the XPTOS performance from
being time-optimai, and (,i) what improvement does it 4.2 Performance of PTOS and XPTOS
show when compared with the slowing maneuvers that

are obtained by simply using thz PTOS, with complete '"'he PTOS and XITOS control algorithm: 'ere tested
disregard [or the structi ial mode? hI this section we a,- by suujecting the flexible structure (9), (10) to rest-ta- I
sess the domain of appl.cability of the XPTOS by fixing rest maneuvers with amplitude I~d-iI - 1 he parar-
the rigid boay parameter a,, and letting aj and wf vary eters a,. and Q were fixed at 3.0 and 0.0 respec'.i.ely,
over a certain range. For simplicity, we cons; Jer the c:xs, while al/a, and w! were, varied over the discr,:te sets
where Q = 0.

J• o = .25,.5, 1.0,2.0,.,.0)" '

4.1 '.'ime-Opti :ial Slewing Ian
Time-optima! rest-to-test mnane,.vers for flxil-e struc-
tures with control input saturation have been charact-r. = {8, 9 10, 12, 14, 10, 18, 20, -5, 10,50)

ized in the work of .m- -As'ier, 13umns, and Cliff [IG) arid
Singh, ]Kabamba, aid M eClaimroch [17]. For Owc prob.- retspectively. Assuriurtig that both th,4 ontp)it plr, 'trif I
lem at ha1,d tile Irnme-o[ rimur ri .-eý-)-i,:% . - ri,:!!) and velocity and avaidlable for Invrasuren,:rit, t0,. 1'TjS
exists arid is ,riq ,', is bangd • in , aid :5hibits an ti:yli- was desigrsd taking into aa.count thi ri5ijl i ' , 1,tol ,
metric c:.racteri7tic ", i.e onil This It!(] to the- d .f:5iri L. ;tr;aulneter:; K, '2-20 a d I

a/a, =ý .0, i re:ipec tive of the val i-:; a. , d by th,: 1p;I-
u'(.l - i) - (t 4- r+ ), 0 < f " /2/ ram tter if) ti, h set:, .• al id S..,1, i': 4 i a p1.,)

If
...........



of slewing time;, versus of /a, and ýoj, where the slewing L.1 XAPTOS for a Flexible Structure

timehere is defined as th time after which t.he t0a1.king The main idea behind XAPTOS is to combine a gen-
error Vdes'- y becomes smaller than .0. era. self tuning observer controller (GSTOC) [81 with the

XPTOS controller. A. weighted recursive least squares
(VR{LS) algorithm is used to identify the unknown plant

T U---- parameters and a state space model of the plant is
S : PSformed. The esti,_or and coutrol gains are obtained

A development of XAPTOS for the flexible structure
4 •-(9), (10) is now described. The overall dynamic re-* lationship between the input and output of the struc-

- ture is decribed by the discrete-time transfer function
. - t, Pin-u) =a d(Z-t) + P (z-th) ,uher

.Pr(z-') . arT'_ 2

.7 t- 1) = a'-coswT (z' +2-)i •(z'acd••sW•-+•-•)

-- XPTOS and T is the sarnplivg interval. Assuming that the rigid

:1: ,.. t it -- body parameter a, is known, the problem is to deter-

. mine tie flexible mode parameters a! and wj from the
S...measurement vector whi.h forms the regressor

-.;-------. ,-- ýT(k) = [,-(k -1) p(k - 1)]

" 2A Is M 24. S where

,y• (k) - 2y(k- - 1) + y(k - 2)-
co(u(k - I) + u(k - 2)ri~e•: e~o~an~ orv'rs ad XPOS S'•i• (k) = (k) - u(k - 1) - u(k - 2) + u(k - 3)

Figure 4: Performance of l-1'IS and XPTOS (Slewing CO a) u.1-u2 -)uk-)uk3
Time Versus Frequency of Structural Mode) Ci )2coswT

c'P = (-Cos Wj T)For large values of w! and/or small values of a, /a,,

the practical slewing time approaches the time-op, imal Then the input-output behavior is described by
rigid body maneuver time. As the frequency w! de-
creases or af/a, increascs, the PTOS maneuver time in- Y (k) (k) (k), k 0, 1, 2 .
creases rapidiy in comparison with the theoretical opti-
mum value. The XPTOS maneuver time exhibits the where O(k) := [c c2]T and Yj (k) rj(k) 4- rl(k - 2) is a
same trend in behavior, but the performance deterio- function of y(j) and u(j), j = k-4,..., k. The parameter
ration occurs at a slower rate. In fact, over the range vector O(k) can then be determined using WRLS:
of frequencies [8, 201 rad sc-c- I its performance shows a
drastic improvemen'. over the pc.formancc o': ,,;t a.u i d L 0(k4-1) 0(k)+ - (k -- 1)[+(k) (y(k)_Y (k))

I FP(k- 0kOTkPk-1

Adaptive Control 7",k) = _ ,)... 1) [- -1 + ••# )(k)rP(k - 1),0 (k)

where 0 < -y < 1 and n= 1 - 7.
If tsl qexibne th&r ameter, w and a1 are not known or are. With the parameter estimates a( and wf, a state-si)ar,"
slowly changing, th penorad xpice of the flexible structure model of the plant is formed which partitions the known
may be '.reproved with an adaptive XlT'DS algorithm double integrator plant from the identified flexible mode
called XAPTO".,. In this section the XAPTCY; strý..tegy and has the state vector:
(see t (1, (9, [10,]) is described and applie, tohe flexible
stric ;ure (9), (10). 'The discrte-tiijie system is 7oore zr(k) ( v, xf vf]

efficietit to imlpifnen-t than the continuous-Lime -'y:t,-e
and hence a.- discrcte-tirie version( of the XI'TOS control A state vw',.or of this formn is desirable since the position
(11) i. cornAblird with a parameter identifier and ,i state and vlocity es;timates are needed in the XPTOS control
estimnatt, tvi form XA 11TOS. alg::rithm.
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With the state space model, a state estimator and a and tracking properties of the XPTOS, as well as its ro.-
controller are constructed for the plant. The desired esti- ýustiwbss against plant parameter variation. A detailedI
mnator and controller characteristic polynomials, cc, and t pararnetic study was conducted to assess the domain of
a,, are formed by the known rigid body mode pole loca- applicability of the XPTOS. The XAPTOS algorithm

tions and a radial pole projection of the identified fti:xible was described and shown to adaptively control thelflexi-I
mode pole locations. The estimator arid control gains are ble structure.

-determined via pole placement. A closed form expression Future work requires a complete analysis of the stabil-
of the estimator gains, L, and the control gains, K, are ity of the XPTOS. It is also our objective to refinec the
determined and used on-line in the XAPTOS algorithm: design technique expose-d 'in section 3 to accommodate

disturbances and sensor rioise,, and provide robustness
eT~hT ýIh" 1"rhragainst the presence of neglected high frequency struc-

eT~h ~,TT ~Tj &Tfl~a~T)tural mode!-.

K eT[F 4,r Dlr r]'()
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Appendix E

To appear in the Proceedings of the IEEE Conference on Decision and Control, Brighton,
United Kingdom, December 1991.

83



I

I ..

I
I

" - ' G I _

I

I

I-
I_
I
I
I-
I

I-
I

84 I -



Fast Finite-Time "Fracking with Saturating Actuators

M. Giintekin Kabuli It. L. RosutI Integrated Systemrs Inc., 3260 Jay Street, Santa Clara, CA 95054M-3309

Abstract r E RT~ . T'hen there~ exists a unique rT- E UT and a unique z,. c-u-
An. approximation to the tinic-optimal tracking problem is; ex- such that r(t) = 1"T(1) + CcAtz, . 0

pressed in terms of a sequence of linear programs which ax set Tpr.Mansfer Function Approach
using a transfer function approach. The results axe applicable to any Let r E RT and the plant be at an initial state xo at t =0 Let

lnear time-invariant finite-dimensional multi-input multi-output plant. r 7- and T, describe the unique decomposition of r as in Fact 2 .The

Anexample illustrates the feasibility of the approach. goal is to find a us -: U,7 such that

1. Introduction JRT(S) + C(sI - A-x,= C(.sI - A)-' (xo + flU(s))
Poatryagin's Maximum Principle (see e.g., (1)) brings a complete Withrout. loss of generality, we assume that xo is zero. If zo is nob

solution to the r-oblem associated with the minimum-time tracking zero, redefine z,- as (z, - xo)
-(fa fixed or moving target) subject to actuator saturation. In order Proposition 1 LeUt 1' have the expansion P(s) 4 7'

for such an approach to be implementable, one requires a rharacteri- where Kii E lI-~".Let r E 7RT -Consider the unique decompo-
zation of the switching surfaces in the state-space. Complete solutions sition r =-. rT +- r... , where rr E U1 and r~,,= CeAt Zr

frsingle-input single-output low order moicdels have been derived in Uinder these assumptions: 1. r-, C- 7 T ;moreover, R_,(S)

the literature. The bang-bang nature of the solution requires a relay yj x'L Y-s'-- where 1(ij E R`" - 2. The set of all signl
in the implementation; hence, chattering subject to disturbances. One us E Zh such that (P~ * ui) T-tracke r- is given by nl

way to overcome this difficulty is to approximate the infinite-gain non- { - 1

linearity (namiely, the relay) with a finite-g ain nonlinearity. liene os C Ur ~)(i]I is bound to step back from the time-optimal result for the sake of un- 1 k; ,J j = ,.,in, .
ple-meatation. Even if one reformulates the open-loop mainirnum-tinse ACovx prxi tinoth Miiu-meTakg
problem as a fast finite-time tracking problem (for a given reference Aroblem ApChooxematbaisof Utfo r ah specifiedNe truncateitg

* trajectory, determine an input (subject to actuator saturation) so that troblm Cos a finits clctf {Ui) T ; C onsdr th spbcias fie truncate in t

the tracking error remains at zero after a finite tune-instant) a feasi- whoafiie rLalactran foeruis ar Cofsde the for bclass) o nas rin UT

* ble solution method for a closed-loop design g,-' remains a challenge. ChoeLarly, e allfons r of the fatrin cosritsi rpsito 1 tran ilslat int

The demand for fast tracking with saturating actuators has produced aClnearlequalofth ion hin g termrins ifpn sy Pro~posto 1 ythasae entoie

a variety of closed-loop implementations ranging from using idealized of -y tarequatolnl determined by tIRe etries of T~ =~ corespondingtoil

relays, finite-gain relays, adaptation methods, etc. 16,7,8] . Ins tile (seyae %roleosidtio erwiln e fe to the etispaicorespond inga th o resdue

mean tuime, opino soltaion tor theii probem with fledamiblTe roesuhts space (an abuse of notation; after all, not all entries of 'y correispoird
~ree ntdic in etal, or seciic ase wit nodaming.Thereslt- to the residue-s ini the partial fraction expansion) . Biy introducing the.

leg proposed nonlinear optimization problems aire derived Using thle actuation satuiration constraints, we end up with a convex feasibility
ncsayopt~imslity conditions posed by thre Ma~ximium Principle, for problem:

specific plant models [2,5].Fn E IN sc ht1(~ =7ad:

In this paper, an approximation to thle time-optimal tracking prob- where hl~) :ý [hl(t) hN . 1,'(Q . For a specified T and N ,thre

mn.ulti-output plants. Thes approximation relies on a transfer func- ainrpefmnealgthdsrddrcio-ysdtriedb

tion approach to formulate constrairits onl the set of admissible finite- Ma P C Ul." Ac (: A . Clearly, one can then solve a sequence
duration siginals that achieve precise point-to-point positioning of flex- l(7')p =A-f
ible structures [31 . Tihie results reported in this paper have already <i7

Ij[,' I
been use~d to design fast finite-time tracking closcdl-loop feedback tsys- of convex ,ojnirsi-zat~ioii Irrob~lefii% by varying '1' (arid N) to siweep a

tems. Duse to spare limitations, a portion of the open-loop results are niaxrimurn perfonrmanrce curve; lhenrce, obtaininig an approximation to
reported. An example illustrates the feasibility of the approach, the( ininliilium-tiniifl pioblciii.

2. Pr-111islhn rjrsijeu A Pllr~ tj,rjlrar Clioict- for- U(b) :A timie-optinial iniput sigiia1 is ner:es-
dLet thle planst, 1) , be strictly pro~per arid have aL inirnind state-spasc manily batig-liairg. Whlile there is no upper-hound on thre finite rtnumber

U escription (A, B, C) , with ii, inputs, n. outputs and rin, sitates. 'I),I-e (of 1witchl~riir inl lerrerid, for a fixed number of switclritns, say NV , ow,"
sitate-space description can be in continuous-time or discrete-time. 'lIhe call clroose, a Lequenice oif IV pul-ses (with alternating amplitudes) viii li
results will be, exclusively statcd fo,r tile Collitilluous-tinuie strictly proper varying widths iis a family of functions in UdT , One can then solve-

naulti-input multi-output plant. 1' . Since tire approach relies os a for tile Collst raili ts inl Propositiorn 1 to obtain a family Of nonliinear
rational transfer function denscription, with appropriate modifications, (non-convex) algebratic equations 14] . Simnilar algehuraic equations are

discrete-time setting can also lie handled, obtaine-d by apiplyinig th lo tyaini' Maximum P~rincipl toseic
Defi nition (UT) : For a gfiven TI C. (0, mx) , U-T denotes the set of all cWases of P', usinlg f.ts1te-sjia:e conliputationis[,]

bounded inputs of duration TF , where I-or a fixed T1 , ern,nsidcr tire! weighted suin of a se~quence oif IV phub/

UT := i tL:F4 .- lit'' I ti(l) __ 0 for f > 'Tis[~ < COi) w i sith uniformii widths (TI/N) ;ice., U(s) £"' S >-A , y-J~~-.I
Definitioni- (T-track) :For a given 7' c (0, oo) , y is siaid to T-tr ack Since the input signall is pircewise constant, the actuation hounds3 call
r iff Y(t) =r(t) for al t > TI -[ be exj~r' 1) -1 <r 1; < whiere p ciItN is to b~e determirned.
Fact I :For a given plant P' with a irriiniiral derceriptirir (A, 11, C) , Air Apirroxiiirrrtiori to tire Mirniirrsnrs-Tienie Prob~lemr by it S
and a reference r , there exists an input u Ci- U-T fiuch that (1<. *U) q uciico of Linear Programns: For a given plant P arid N , tIt,.
T-tracks r- if aiid onlv if r - RZ-j . where nlraxirniln no pt- foi mlalice function T : (0), co) Y• 111" 1114 is defrined

r : R4 -- El.", I T(1) ý cc`ý-O, -0 Do" i > ~~~'I.,-ni'iso h7IierI~(-,ai fT t la
7RT != {r : C1( 110'Ir, c~YZ l' 1) i un ftelierlrnrrr''(' ~ ~iic~ A C II

Froin Fact I I we coniclude: that tire Laplace tranisýforiri of it signal inn Y(T)p A-f

RTcan only have poleas at tlIre plaint prlolis -1I 1 < 5
Fa t 2: For a give'n plant P' with a nrininiiial description (All, C) , lit v'lieie 1I 7 ) if, Olita:rc1d by thne iiiatchlnin conlditionls iln l'ropoicitirril I

Airy j) , J- 1  for vhinch thne linearx proyji nl metwriii thre value Tl(T, 7)I ~ 11~i~~r~dby A 1tsri4n rr,ad l 88 G-5 0 tC -2 i% umed toi defisre tire eclatirri 4, (9, cci) X D(, *-fhwhirr[(
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$(T'y) For a specified time-instant T , %k(T,-t) determines slcwing over tile intcrval [1, 10) s resulted in unsatisfactory oiitputs.U

the munaxitmo-performa~nce one can achieve along the specified direc- Wc choose N =20 .All simulations were performed by sampling the

tion -7 For a fixed direction -y by sweeping over T , one obtains plant P at 100 . . lin order to have at least one sample instant added

the 7y-maximum-pcrformance curve (T, 'P(T,-t)) , T E R . In- on for each time step AT .we choose AT ý 0.23 . We act uip the

stead of generating the -y-maximum-performarice curve for T E R84. , linear programming problem, by constructing 1F(T) from the matchting

introduce a time-resolution of AT and discretize the curve; i.e., for a conditions in Proposition 1 . For illustration purposes, we assujme that

pre-determined k ,evaluate (T', 'V(T, .y)) T = kAT ,the plant is initially at rest and the output is required to T-track steps

0:S k:5 k... -and ramps only. We solvo 46 linear programs along 7 = es and another

The sub-optimal (due to the approximations) time-instant TY for 46 linear programs along -7=e . Let the reference trajectory r be

which the residue 7y is achieved is in the interval T~ E [Ti,T: + AT) as shown in Figure 1 (dashed line). The breakpoints and slopes in

where 'I'(Tz,7) •1 , and 'P(TI + AT, -y)> 1 The T-polytope ST., Figure 1 reveal that the sequence of inputs should satisfy the following

ST -= X- I -y e '7E 8 , 1171J12 1 , X E [0, 'P(T,-y)1 I increments in the residue-space denoted by the ordered pa~irs (ro, ri)

is the set of all points in the residue-space that can be reached in T' at T =0 , (+2, 0) ; at T' = 5 ,(-2, -1) ; at 2'= 12 ,(+7, +1) . Using

seconds. The boundary of this set, denoted by OST , is referred to the one-hyperplane approximations to the 46 T-polytopes, the fastest

&s the T-isochrone. Consider the T-polytope ST which is a subset of tracking times for the sequence of residue 'increments are 3.2 , 4.6 and3

ST ~ ~ ~ 6 ST { V ~(T,ei)ci 1 11),111 ý 1 } , where {cl .. e, 7 s , respectively. Figure I shows the input and the associa-~d output3

is a basis in at". of P.

A Map fromn the Residue-Space to the Input Space :Our goal

is to construct a map, possibly using look-up tables, such that given

a desired reference signal and the states of the plant, an input signal

fast as possible. The desired reference signal (which should be inT 7 ZT

and the initial state determines the amnount of chiangeý necessary in the

following subproblem: For a given -f in thle residue-space determine3

an input signal such that the output of the plant achieves the residues 0 1 2 15 i 1 2

specified by -7 as fast as possible. From now on, we will use the staridard

storage space, we will identify ST With its "positive orthant": 2

ST Y XiWl(Tci)ci 1 11),l1 1 :5 O 1_>_0

Let the signurn function SGNV 1V. -. R'. be defined as the0

entry by entry signum function over lIR . Let the operator .edenote .2-I

element-by-element product in liR' Suppose that 'IE 0.51 . Let 5 -. 4

be defined by y = SGN(-,).5- Clearly, 7Y E OST if and only if

5' E OS-r. Since 5' can be e~xpressed as a convex combinationI
5' ~ , ,(,,) ,A >, I~ii? 0 i s 9 1 S 1 1 2

we conclude that the input that achieves j' residue in T seconds is 3 6 9 112 15 1 21 4

represented by P -! I Aj,4(T, ej) . The input that achieves -Y

residue in T sewnlds is represented by Figure 1: Ani input signal ii (top) such that 1' 4 it (bottom solid) fast

p Et ,ýi( )____ei Note that -I CTp N(I . I-1.racks r (bottom dashed)

We now outline the procedure: hfrne

So lve ( N k,,, li nea k rog,, s i.. f[ h ~tiepid 1I I W Athans and 1'. b. Fallb, Optimal Control: An Introduction
2. Sov n-k,)lna rgan;iefrtl ,,tm olb to tile Thr.ot-y arid Its Applications, McGraw-Hill, 1966.I

solve for and store 'l(,c),47 , i~ = I~ i. [2 1 J. lBen-Ashicr, J1. A. Burns and E'. 14. Cliff, "Time-Optimal

3. For a given 5' determiinv e sh jijahhest T' Such that ' C- ST - We Slewing, of Flexible Spacecraft," P1roc. of the IEEE Gonference

propose the following procedure: Let 71 E 1115",' be defined as en; Decision and Control, pp. 524-528, Los Angeles., California,

CT, k ---. k_. .a andmbe 19 ).
Ck 13 1/ S. 1' 13ha an 1) ,.Dcmbr1 . X. Wii, "PITreiSC l'oint-to-I'oinlt Position-

Let the Ith entry of q~ be tile first entry which is less than or equal ing Control of Flexible Structures," 2',onsactiorr of tile ASME,

to one. Since 5' was in S(k_,.ATI to start With, such an 1 exists. Journal of Dynamic Systems, Ateasuremlent anid Control, vol.

Hence, we conclude that, amiong thle family ol T-isochirones, j' 112, no. 4 1,p. 667-674, Dccemiber 1990.

can be achieved no faste~r than 'T, seconids. [4 1 S. F. Schmidt, Vic Analysi3 arid D)csignm of Continuous arid

4. Once the inidex I and tile multiplier eTu, is determinetd, extract Surnpled-Dola Feedback Contiol S9,stemsi- with a Saturation Type

the input sequence from p, E_ - Nonlinearity, Phl.D). D~issertationm, Stanford University, June 1959.

~ ~ Optimald Slewing of a. Rigid Body with Flexible Appendages,"

Elxaniplc. I'oceedirmgs of the IEEE Corifert-nmec onl Decision anid Control,

Consider thle singfle-input single-output Olait pp. 1441-1',02, ILos Anigeles, Califominia, December 1987.

P(s) = 1I 4- >j'i~i -- ',[6 ] M. L. Workman, Adaptive Proximate Tirnme-optitnal Ser-vorriech-

v..hcr- [am ctý [S) in 9011 1w, 9 w' W-, 21r 10.5 1 1.5) rad/r aind armisms, Ph.D. Dissertation, Stanford Uniiversity, Mtiarch 1987.

KI (2(-1 [0.1 0.01 0.001) . Clearly, the adlmissýible r,,p'b art! linear [7 ] IA. L. Workmnan, It. L. Kousut aiid G. F. haiiklin, -Adaptive

combination of steps, ramps and lightly-dampeld sinusoids. The va.st 1'roxiinate Tiimie-Optimiiah (2nuitol: Coniiiuous-Tirne Case," Pro-
majority of tracking probflimss rstricts thilt! reflejenceS to to a liinear ceedirips of Vic Automnatic Contito! ConiftiicnQ, pp. 580-594, Mini-

combination of steps and ranips: nleapohis, Mýijnnesota, Jumie 19V

{ r Ir(t) -- r(, + rit , ro C lHt , ri C Kh , t > 0 1 8 ) M. L.. Workianu, It. L. Kosut amid G. Y. [-rammkhim, "Adaptive

In order to show tile ehliciienry of thet p~ropose(d s(I-hleii, we will focus, P'roximmate 'I iiie- Optimwiil Comntrol: Ihiscrete -'Jjlme Case," Po

on actuation signals ii, UT, , wlmeie T' - 11, 101.s . Stanidard bang-hangll ceedirmys of the IL1-,' Conffetn-cc on Decision andl Corarol, pp.

a.ctuationi relyinig onl the rigid-body approximutiaoni of 1' for restto-rcst 86h54b- 1553, L,,s Angclesi, Cahlornlia, ])ecemnjber 1987.


