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£ ‘ Abstract

This program-has investigated the use of limit cycles to represent and processing sym-
bolic information in the context of an-inference machine. This.approach was proposed as a
means of overcoming problems with fault tolerance and relatively small space-bandwidth
products in current spatial light modulator (SLM) technology. The program has focused
on-developing a storage medium with many limit cycles (oscillatory modes) available and
a method for coupling the various modes in a desired way. Because of their flexibility,
neural network ideas were used as the basis for the componcnts and algorithms developed.

In the theorelical realm, the program has had many accomplishments. First, the
self-oscillating neural network (SONN) model was developed and characterized as the
oscillatory medium. This model was designed with optical spatial SLMs in mind and
does not require any training or programming. Furthermore, it is highly tolerant of
static parameter variations inherent in the optics.

Next, the spectral back-propagation (SBP) training algotithm was developed with
complete generality as a means of forming the coupling trajectories. This algorithm
trains input-output sequences intu a network using an error criterion based on a Tourier
series decomposition of the scquences. The method allows the interconnects to have
trainable time delays in addition to the weights. FLis capability proved very beneficial

when developing a transition-detecting network fot realizing the mode couplings. The

algorithm also allows the cells to have finite bandwidth.

Both the SONN and the SBP algorithm were combined to demonstrate a simpie
symbolic processing system based on limit cycles. The chosen paradigm was a finite
state machine (FSM), a simple starting point for building up to a complete inference
machine.

With respect to optics, an optical architecture for the SONN model was designed.
This architecture is effectively a specialized optical neural network based on helographic
interconnects between SLMs. To satisify architectural demands, the program has devel-
oped a method for generating interconnection hologratus using & computer and current
color printer technology. The holograms are phasc-only, have very high efficiency. require
low cost processing facilitics. and are expediently made.
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1 Introduction

The goal of this research program was to investigate the use of optics in symbolic pro-
cessing systems, and in particular, inference machines. These systems: store information
in the form of relationships between symbols, usually arranged as a knowledge base of
rules. Their function is-to infer the answers to queries of the knowledge base by searching
through the set of relationships. The structure and function of an inference machine and
the necessary considerations-for an optical irnplementation are discussed in more detail
in Section 8.

The operational requirements for an inference machine are (1) to store many rules (i.e.,
have a large knowledge base capacity) and {2) to search the knowledge base very-quickly.
Unlike numerical processors such as matrix-vector multipliers, inference machines do
not require large dynamic range. Thus, the parallelism and speed of optics offered an
attractive implementation technology.

The initial optical architectures for an optical inference machine were based on thresh-
olding matrix-vector multipliers. These designs are described in more detail in Section 9.
Unfortunately, these architectures suffered from two major limitations: small capacity
and low fault tolerance. A rule was represented by a matrix that encoded a particular
relationship between vectors of symbols. In the optical implementation, the rule matrices
were stored on spatial light modulators (SLMs). Therefore, the size of the rule matrices
and thus the symbol vectors was limited by the size of current SLM technology. Further-
more, if a pixel on the SLM failed, the corresponding element in all the rule matrices
would be altered permanently, thus causing all rules to be changed in an undesired way.

We proposed to consider a very different approach to designing an inference machine
for an optical implementation in hopes of solving these two problems: Instead of repre-
senting symbols using fault-intolerant vectors (fixed points), we have investigated the use
of limit cycles for this role. This form constitutes a dynamic, temporal representation of
information. A known disadvantage of this method is reduced access time since multiple
points along a trajectory must be observed in order to recognize the current cycle (if one
is even active).

In order to construct an inference machine based on limit cycles, two fundamental
components are needed. The first one is a medium with many limit cycles (i.e., oscillatory
modes) available. Each cycle would represent a Jifferent symbol or a logical state of the
machine. Ideally, this component would not require any programming or training. We
successfully developed the self-oscillating neural nctwork (SONN) model for this purpose.
This model is designed with an optical SLM implementation in mind. It is described in
Section 2.

The second component is a method for coupling the cycles. Ideally, this method (1)
is not dependent upon cycle shapes, (2) can be reprogrammed or retrained as needed or
desired, and (3) does not perform any explicit conversions from a limit cycle (LC) to a
fixed point (FP).! We developed the spectral back-propagation (SBP) training algorithm
and a transition-detecting network for this purpose. Functionally, a transition detector

IThis requirement is not necessary for a practical machine. It is included here to focus-on the study
of using oscillatory phenomena to represent and process information.




achieves the first two characteristics, but not the third one. The SBP algorithm is
described with complete generality in Section 3

We demonstrated these concepts by simulating a finite state machine (FSM) based
on limit cycles (an LC-FSM). This-computation paradigm offers a simple starting point
for building up to a complete-inference machine. The simulated-L.C-FSM used-the SONN
both as an associative:-memory for limit cycles and as an input source for the LC-FSM.
In addition, the LC-FSM illustrated SBP-trained transition detectors for recognizing
transition conditions. This work is-discussed in Section 4.

The optical implementation considerations have focused on the SONN model because
of the latter’s robustness. An optical architecture for the SONN has been designed-and
is -discussed in Section 5. Besides ‘the SLMs, the key component of this architecture
are the interconnect holograms. Practical constraints require high efficiency interconnect
holograms which motivated the development of a-new approach to computer-generating
interconnection ‘holograms. This process we have developed takes advantage of current
color printer technology as 2 mechanism for modulating the exposure of black and white
film. Computer generated color masks representing desired phase-only functions ‘were
photoreduced onto high resolution black and white, and after developing and bleach
processing, each of the printer colors map to discrete phase levels as required by the
specified phase-only function. A total of 8 colors yielded a total of 8 discrete phase
levels which were used to construct arbitrary synthetic blazed grating interconnections
exhibiting efficiencies of atleast 50%. In addition, a computer-controlled system for
characterizing SLM parameters was- developed. This work also is discussed in Section 5.

2 Seif-Oscillating Neural Network Model

The SONN moddl is an oscillatory medium with many modes (i.e., limit cycles) available
naturally. No training or programming is required. Furthermore, the existence of the
modes is highly tolerant of static parameter variations in the network parameters.

The structure of the SONN in shown in Figure 1. The network is a hierarchical
arrangement of smaller feedforward networks called levels. Connections going up the
hierarchy are excitatory with value (', = 1. Similarly, connections going down the
hierarchy are inhibitory with value —H; = —1.

Each level uses the off-center, on-surround canonical interconnect topology shown in
Figure 2. The central inhibitory interconnect has a weight —H; = —1 and the off-center
excitatory interconnects have weights C; = §. For the levels shown in Figure 1, these
values correspond to a ratio of the total excitation to the total inhibition of % Simulations
showed that this ratio value is a good choice for robust oscillatory behavior to exist.

The cells in the SONN follow the model shown in Figure 3. They are governed by

the discrete-time equations,

wlt] = Z wiyi(t=Ti—1] + xilt), (1)
%lt] = ouift—1] + (1 —auilt], (2)
10
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Figure 1: Self-oscillating neural network (SONN). Solid lines indicate excitatory
interconnects whereas shaded lines-denote inhibitory interconnects.
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Figure 5: Sampling of the continuum of cycles available in the SONN with constant
inputs. The weights were perturbed randomly by £20% from the nominal values.
Similarly, the time delays were randomly selected from {0.1.2.3. 1} iterations.

wltl = %(nl) (3)

where u,[f] is the weighted input sum for the & cell. &[] is the filtered input sum
with damping factor a., #:[t] is the cell ontput as formed by the output function S,.
w;, is the weight associated with the interconnect from the j'® cell. and T, is the time
delay associated with the same interconnect. The nominal shape for a sigmoidal output
function is shown in Figure {. For simplicity. the time delays. if present. are taken to be
integers here. In the simulations. the damping factor a; was set 1o 0.7 which corresponded
to an cffective time constant of approximately 2.8 iterations.

A reode can be selected with cither a constant {i.e.. FP) or eyvelical {i.e.. LC) input.
Using constant inputs. a sampling of the cyeles available is shown in Figure 5. The
particular SONN that gencrated these ¢ ycles had its weights randomly perturbed by up
to £20% from their nominal values. Furthermore. the network had a distribution of time
delays throughout the network with T, ranging from 0 to | iterations with a mean of 2

11
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iterations. The periods of the-cycles generated by the SONN used in Figure 5 were all
approximately 64 iterations.

‘Simulations showed that (1) variations in the interconnect time delays create diverse
cycle shapes and (2) the SONN easily can tolerate static variations-of over 320% in -its
network paramneters (weights, sigmoid maxima and gains,-etc.).

The optical implementation of the SONN is discussed in Section 5.

3 Spectral Back-Propagation ’I‘raininé Algorithm

3.1 Overview

The SBP training algorithm is an extension of the convent. nal back-propagation
method [1] for training a neural network to learn a set of smooth input-output sequences.
It can adapt both the weights-and the time delays or any combination thereof. It can work
with either feedforward or recurrent networks. In addition, the cells-can have infinite-or
finite bandwidth using a first order approximation as in Equation (2).

The algorithm has been demonstrated successfully using computer simulations for
seve.al different cases. It has trained a simnple recurrent network with an infinite impulse
response (IIR) to learn continuous-time cycles. Similarly, it can train either the weights
or the time delays of a finite impulse response (FIR) network. Finally, it can train a
conventional feedforward network with vector input and output patterns.

3.2 Mathematical Basis for the Algorithm

Functionally, the SBP algorithm compares the spectral decomposition of the actual out-
put sequences to that of the desired output sequences to form an error measruement for
driving the adaptation.

Consider the continuous-time form of the cell equations given in (1)-(3):

Z w,y;(t=T15,) + 2.(), (4)
Tu'(-l%gﬂ = —(t) + u(L), (5)
() = S,-(v,-(t)) ) (6)

where a, = e~Y/™. Assuming the output y,(t) is smooth and “slowly varying,” it can be
approximated by the truncated Fourier series,

K
yi(t) = > [Yk cos(kwot) + Yi. sm(kwot)] (7)
k=0
where
,3 To
5= TO/y,( ?cos(kwot) dt, (8)

15




To
vy = 2 [ wi(t)sin(haot) dt, 9)
k Ty )

1 for k£ =0,

1l

Br (10)

2 for k>0,

(11)
and wy = %’ where Tp is the period of the current output sequence. Using the vector
notation

¢
“ ik

Yie =

Y/
< ik

s (12)

the cell equations can be transformed into the Fourier domain, resulting in:

) ) -cos(kon,-j) =sin(kwoTy) | |
U = Xat+) wy i, (13)
j sin(kwoTy;)  cos(kwoTy;)
. 1 [ 1 “AXUOTb .
70 = U, 14
k 1+ (kwory)? kooms . ks ( )
3 To cos(kwpt)
Yo = % / n(t) dt. (15)
09 sin(hwot)
For linear cells with
i{t) = miwi(t) (19)

where m; is a gain constant, the spectral cell output is simply
Vi = maVi. (17)

Note that the transformation into the Fourier domain causes the time delays T, to
become a simple quadrature phase matrix. Similarly, the cell time constant 7, becomes
an amplitude scaling factor that depends on the spectral frequency component kwp.

The spectral error criterion on which the training is based is obtained by comparing
the actual output sequence to the desired output sequence. In the time domain, the error
as a function of time is

eilt) = 119 (t) = yi() (18)

16
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where 7 refers only to the network output cells here. The total error for t_he current
output sequence over all output cells (N,) is-given: by

ToN

] ‘2 ¢X(t) dt. (19)

In the same way, the total error over all output sequences is simply the sum of E for
each sequence. Since this is a linear operation, the derivation below will be done as if
there only was one desired output sequence. The results are then summed-over all output
sequences to obtain the complete error criterion.

Using Parseval’s theorem, the error in Equation (19) can be approximated by

Ex i( [E]+[E ) (20)

where E¢ and E?, are the Fourier series coefficients of the temporal error sequence defined
in Equation (18). As in the conventional back-propagation algorithm, the weights -and
time delays are adapted according to the gradient descent driving term,

() &%ij dZU aE

—)— = i3 1
a dt naz{j Az] (2 )

where z;; is either w;; or T; and 7{?) is the adaptation time constant.
The spectral cell errors can be defined as

C9E
. OV,
by = — , (22)
oE
| Vi |
allowing the driving term to be written as
K Vs
Az =7 :':L- ik + &5 7 & (23)
k=0 z‘J “ij -

using the chain rule. Note that the opectral cell errors & are mdependent of z,, the
weight or time delay being adapted.
The term that is dependent upon z,,, OV,;;/ 0z,,, can be derived from the spectral cell

equations in (13) and (14). When z,, is the weight w;,, OVy/0w;, is given by
ov Au(Ty)  —AulTy) | | Y

r = (24)
Y Aw(Ty)  AwTy) | | Y

17




where

A(Ti5) = T5 (oors)? [COS(kwofl‘;,-) — kwor, sin(kon,-J-)] (25)
and- .

Agk(ﬂj) = m [Sifl(’k(doT{j) + kwov',, COS(kon,‘j)] . (26)

These coefficients incorporate the effects of both the cell filter and‘the interconnect time
delays. When z; is the time delay T;;, OVix/0T;; is given by

oty __, [T ] [ 453 ] e
--— IJ
oT:; Aa(Ty)  Awl(Ty) || dYj
where ,
s I ‘
g Y 01 ] PR
—— J.—r ' 7

v Tog 4t | sin(huot)

Given the expressions for GIAY 0z,,, only the spectral cell errors need to be determined
in order to compute the adaptation driving term Az;;. For an output cell,

— K - -
Sik =3 Eu, Yy Yir, (29)

in general. If the output cell is-linear so y,(t) = m,v,(t), the spectral cell error simplifies
to

S = myBa (30)

where F; is the set of Fourier scries components of the error sequence defined in Equa-
tion (18). However, if the output cell has a nonlinear output function S, the spectral
components of v,(t) are spread across the frequency spectrum. This effect is captured by
the term,

. Vi Vi
Vo Yi, =1 . (31)
v s

The components of this matrix can be calculated using:

g, _ B | Vi + (k) (32)
v, 2 | Bi-tal Bkt | ’
BY,L — ﬂl -)/fi(,:t—kzl _ )/t',(ck-*'kz) (33)
Vi 2 [ Bkt B |
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@2 ] Yi'(k'+'k2) n Yi’(k—"ﬂ for k> k,
oYs 2 | Bk Bieera) | m
81}}:2 = <7 (34)
Vik . [y?s Y2 o)
. .ﬁ_k".. i(k+k2) — ‘(k?-k)’ for k < k?,
2 [ Btk Biia-n
\ |
B Yi’(‘;&kz) _ Yibeors) for k > ks
oy 2 | Besks) Bk l -
e = )
ik g [yzs v T
_ _‘_Hﬁi ‘(k+L2) + '(k?-k) for k < k27
2 | By Bua-ry
(36)
where
T cos(kwot)
=1 [ S(0) . @0
04 sin{kwot)

and Sj(v) = dS,(v)/dv. Clearly, the nonlinear case involves much more computation
than when the cells are linear.

Ior a hidden cell (i.e., one whose output is not an output of the network), the spectral
cell errors can be computed using the recursive back-propagation relationship,

1T
2 x| OV OV A (Ty5)  Awe(T3) | | 65,
=Y wy; Yy - (38)
7 { k2=0 Q_JL- a_;k_z — Aok, (1)) Awy(T35) s
T

When the hidden cell is lincar, the back-propagation expression can be simplified to

ik Au(T;)  Aa(Ty5) | | 65
= m.J Z Wij . (39)
i ‘ —A(Ty5)  Aw(Ty) | | 63

Using these expressions, the adaptation driving term Az, can be computed for each
adaptable interconnect.

3.3 The Training Process

A training epoch consists of cycling through all sets of input-output training sequences.
This process is illustrated in Figure 6 for two training sequences. For each training set,

19




One Training Epoch
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Figure 6: A training epoch.

the period Ty is set to be the period of the current input and output sequence. Then, the
input sequence is presented to the network n. times in succession. The first (n.—1) cycles
provide the transient time during which all transients should decay away. During the n'?
cycle, the various Fourier series components are calculated and the gradient information
in Az, is accumulated. This process is repeated for each training set, at the end of which
time, the weights and/or time delays are updated according to Equation (21).

If n. is not large enough for transients to decay away, the spectral information com-
puted during the last cycle will not be valid. The resulting adaptation probably will not
converge onto a correct or even usable solution.

3.4 Performance Considerations

Several enhancements can be made to the SBP algorithm to decrease its average conver-
gence time. First, the weights and time delays can be updated after each training set
instead of after all training sets have been processed. Second, a momentum factor can be

20
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introduced into the-adaptation driving term, producing a new driving term Az, [¢] that
is given by ]
Az;[t] = omomAzi[t—1] + (1 — mom)Azij[t] (40)

where Az;t] is Az;; at time step ¢ and qom is the momentum factor. Typically, amom
is small (0.2-0.3). The weights and time delays are then updated using

zilt) = 25t -1) + (1 = a(z))Az’ [£] (41)

where o) = e~/
Another enhancement is the inclusion of variable adaptation gains, so 7 becomes

,17,J [t] That is, each weight and time delay has its own.adaptive gain associated with it.

We used the SuperSAB (Super Self-Adapting Back-propagation) method for adjusting

these gains [2].

3.5 Discrete-Time Considerations

The discrete-time form for the cell equations is given in Equations (1)-(3). However,
other approximations are necessary to simulate the SBP algorithm. First, the Fourier
series components are computed using ‘he approximation,

17'0—1

“ = = 3 y[t]cos(kwot) di, (42)
Fo t=0
lTo—l

A= = Y ylt)sin(kwot) dt. : (43)
To =0 .

The time derivative dy/dt is approximated by the backward difference formula,

dy

_(—lz = Aylt] = ylt] - ylt-1]. (44)

Finally, continuous time delay+ can be approximated by a lincar interpolator between
integral points. For example, the vawee of | [ »% 5.3 iteralions ago is approximated by

y,[t—5.3] = (0.7) y;|t=3] + (0.3) y,[t—6]. (45)
In general, T, can be decomposed intv a integral part and a fractional part such that
Ty = | T3] + 6T, ' (46)

where l_T,_,J is the largest integer less than or equal to T}, (i.e., the truncation function)
and 8T, is the fractional offset (0 < 61}, < 1). The general form for the linear interpolator

’ Bl =Ty~ {(1 - 8T, |t - le:'J]} i {(5T‘f) - (7] + 1]} "




3.6 Choosing Parameters

The main parameters to select are n., the number of cycles per epoch for each training set,
and K, the largest spectral component to compute. Several factors must be considered
when choosing both parameters.

In order for the Fourier spectral . *2lvsis to be valid, the network must be in a

dynamic steady state. Therefore, n, sl. - . _-be large enough so-all transients-can decay
away. However, the larger n. i3, tb. .o~ t%- runtime because each-epoch takes longer
to compute. Thus, the selection «. » . 'u oe an iterative process. If the network is
linear, an eigenvalue analysis can be-pr tormed for a reasonable-set of weights and time
-delays to determine the longest time ¢ .nstant. Then, n. initially can be set to, say, 4
times this duration. In general, thot. = a norlinear network can be simulated for an
initial set of weights and time dela;. - the response time can be measured. Then,
ne can be set to some multiple >f this titne constant. During the training process, the
transient time can be ‘measured to see if n, can be increased or decreased. Ideally, an
adaptive algorithm could be er:..loyed to adjust n, automatically, although we did not
-experiment with any algorithms during the program.
By comparison, choosing K is much simpler, but the computation-speed tradeoff still
exists. Ideally, K is as large as possible to represent the spectral information in the
sequences. However, as K increases, the computation: burder also increases, especially
for nonlinear networks. A working guideline is that in order avoid aliasing when calcu-
lating the Fourier coefficients, K should be less than T;/10 wiere Tj is the period of the
shortest training sequence. This limit also places an effective bandwidth limitation on
the sequence to make it “smooth” and “slowly varying” in order to avoid aliasing with
thue spectral measurem. ts, even when enough points are included in the culculation.

3.7 Time Delay Wrap-Around

When all training sequences have the same period Tp, the time delays T, can become
“negative” by allowing them to wrap around 0 to Tp. Thus, if after an adaptation pass
T, < 0, the actual time delay can be set to Ty + T;,. This wrap-around may lengthen
the transient response so n, must be large enough to accommodate this effect.

3.8 Sample Simulation Results

The simple recurrent network shown in Figure 7 was used to test the SBP algorithm on
an IIR network. Both the weights w;, and w,; and the time delays Tj, and T,; were
allowed to be adaptable. The initial weights were set to 0.5 and the time delays to 0.
The input interconnect was fixed with wip = 1 and Ty = 0. The input sequence was

aift] = sin @gg) (48)
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Figure 7: A simple linear filter/oscillator with an infinitc impulse resporze (IIR).

so To = 200 iterations. The desired output sequence was generated by the network by
setting:

T, = 49.498, = a, = 0.98,
wyp = I, Tyw = 0,
wy = 1, Ty = 30,
wy = -1, Ti: = 30,

m; = 1.

A total of five spectr: ' zomponents were computed, so i = 4. The number of cycles per
epoch was set to n, = 2, allowing for 1 transient cycle. The evolution of the training
error E during the resulting adaptation is shown in Figure 8. The evolutions of the
weights and the time delays arc shown in Figure 9. The initial anu {inal limit cycles are
illustrated in Figure 10.

These plots show the successful adaptation performed by the SBP algorithn  The
oscillations apparent in the evolution of the training error and the weights are . .0 -~d
by the gradient resets made by the SuperSAB adaptive gain algorithm. Sinece o'y one
training sequence was used here, the time delays were allowed to wrap around 0 to Ty.
The delay T, takes advantage of this ability as illustrated in Figure 9(b). If the wrap-
around is disabled, the .daptation seftles into an unsatisfactory local minimum, thus
preventing the training from completing successfully.

Other simulations showed that various combinations of the weights and time delays
can bu adapted. However, if the input interconnect [wyg, To] is allowed to vary, the
adaptation path is such that the network develops an cigenvalue that is very close to
1 in magnitude. The resulting long time constant prevents the network from reaching
a steady state within the allocated time. Coincidentally, the adaptation converges to a
solution but this solution:is not correct because it cancels out the long transient response.

The SBP algorithm also has been demonstrated on the FIR network shown in Fig-
ure 11. The algorithm has trained successfully (1) the tap weights along the tapped delay
line and (2) the tap time delays with the tap weights set to 1. These cases corresponding
to training amplitude-only and phase-only FiR. responses, respectively.
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Figure 8: The evolution of the total training error versus the number of training
epochs.
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Figure 10: (a) The initial (before training) and desired (final) output limit cycles.
(b) Snapshots of 8 output-cycles taken during the training process with 100 epochs
between cycles. This plot shows the output cycle evolution as w3, wsy, Ti2, and Ty
are adapted.

x[t]

¥l

Figure 11: Basic structure of a finite impulse response (FIR) network of length V.

The amplitude-only case provides an indication of the strengths and weaknesses of
the SBP algorithm. With a tapped delay line with .V = 25 cells, the impulse response A[(]
shown in Figure 12(a) was used as the desired output sequence and the input sequence
was a single unit impulse function. The total length of A[t] was set to Ty = 100 points to
allow a large range of K values to be tested. The corresponding spectral coefficients for
h(t] are shown in Figures 12(b) and (c).

With K = 6, the SBP algorithm can train the FIR network so that only the first
7 (include & = 0) spectral components are matched. The resulting impulse response
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Figure 12: The desired impulse response for an amplitude-only FIR network and
its first 10 Fourier series coefficients. (a) The first 30 points in ht]. The remaining

points (70) are zero. (b) The cosine spectral coefficients. (c) The sine spectral
coefficients.
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Figure 13: The learned impulse response for the FIR network when K = 6. (a)
The evolution of the total training error. (b) The resulting impulse response as
compared to the desired k[t]. (c) The cosine spectral coefficients of the actual A{l].
(d) The corresponding sine spectral coefficients.
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Figure 14: The learned impulse response for the FIR network when I = 20. (a)
The evolution of the total training error. (b) The resulting impulse response as
compared to the desired h[t]. (c) The cosine spectral coefficients of the actual ht].
. (d) The corresponding sine spectral coefficients.
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Figure 15: Dual-output XOR network. Cells 1, 2, 5,.and 6 are linear whereas cells

3 and 4 have nonlinear output functions. Cell 0 has a constant output. All time

delays are zero.

is close to the desired shape but the trailing edge is not reproduced faithfully. When
K is increased to 20, the impulse response is much closer to the desiréd A[t], including
the trailing edge. However, when I is set to 24, there are only To/K = 100/24 ~ 4
points per period of the sampling cosine and sine functions for computing the spectral
coefficients. This sampling is too infrequent and results in an aliasing condition. The
adaptation with K = 24 fails to converge and instead causes the tap weights to grow
without bound.

In a phase-only FIR network. the SBP algorithm can train either the tap time delays
or those in the delay line. However. simulations showed that the trained FIR networks did
not have the minimum time delays necessary to implement the filter. Thus, some post-

phase-only FIR network.

The SBP algorithm also was successfu! ln training a network to learn static patterns.
As an example, the network in Figure 15 was trained to-learn the dual-output exclusive-
OR (XOR) function described by the mapping:

Input Pattern — Output Pattern

Ty T2 Ys Ye
00 01
01 10
10 10
11 01

The output ys is the XOR output and ys is its complement.
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With a feedforward-network of this type, the number of cycles per epoch (1) should
be set to the number of layers including the input layer. Thus, n, was set to-3 for this
network. The input layer should be included in this-countbecause the spectral coefficients
for dy;/dt need to‘be zero for-static training patterns.

3.9 Disadvantages of the SBP Algorithm

The disadvantages of the SBP algorithm with respect to the conventional back-
propagation algorithm are:

1. It is more demanding computationally. There is more overhead required to store
and maintain the spectral information. Furthermore, the back-propagation process
involves a vector quantity instead of a scalar quantity.

2. Convergence can be slower. Training information is-not collected at every time step
but only after the-entire output sequence has been-observed.

3. A steady state network solution must exist for the training to be successful. If
the network output is still on its transient response or is chaotic, the spectral
information will be invalid and will cause the adaptation to fail:

4. Arbitrarily shaped sequences cannot be-trained because of aliasing concerns. The
discrete-time Fourier series of the sequences must be computable without any alias-
ing problems.

4 Limit Cycle Finite State Machine

4.1 Overview

A block diagram of a limit cycle finite state machine (LC-FSM) is shown in Figure 16. It
consists of a memory with many addressable limit cycles (e.g., a SONN) and a controller
to govern the transitions from one cycle to another. The cycles produced by the memory
correspond to the logical FSM states. The inputs and outputs to the LC-FSM are
intended to be continuous-time limit cycles also, but fixed-point inputs and outputs are
possible.

Like a traditional FSM, the operation of the LC-FSM is governed by a state transition
diagram. Each transition is determined by the current-state cycle from the memory,
the input cycle, and the relative phase between them. Thus, for the same state and
input cycles, several different state transitions are possible by assigning each transition
to a different relative phase. The total number of possible transitions is limited by
the resolution of the transition detectors, the phase-measuring components of the cycle
transition controller. These detectors will be trained using the SBP algorithm to recognize
the desired transition conditions.
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Figure 16: Block diagram of a finite state-machine based on limit cycles (LC-FSM).
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Figure 17: Expanded block diagram of the LC-FSM memory.

4.2 Limit Cycle Associative Memory

The function of the memory in the LC-FSM is to store the current state of the machine.
An expanded block diagram of this component is shown in Figure 17. It has two com-
ponents, a latch and a self-oscillating medium. The function of the latch is to accept,
recognize, and then store the current memory input if the recognition is successful. The
Jatch output is a fixed point corresponding to the cycle to be selected. The self-oscillating
medium produces a unique oscillation for a unique input. With the output of the latch
driving it, the self-oscillating medium thus generates a unique limit cycle as the memory
output for the most recently recognized memory input. Since the Jatch as a simple storage
register, the main component of the limit cycle associative-memory is the self-oscillating
medium. The SONN model presented in Section 2 is useful in this role.




4.3 'Cycle Transition Controller

A detailed block diagram-of the cycle transition controller is shown in Figure 18. It
performs two tasks: (1) to-detect desired transitions-and request the next state from the
memory, and (2) to-generate the desired output cycles and/or vectors.

The goal of the first task is to transform a multidimensional oscillatory signal (two
limit cycles) and produce a single binary-like-signal-indicating the input hasbeen “rec-
ognized.” This signal then can be used to trigger a transition to a new state. The
transformation should be sensitive to the amplitudes and :phases. of the two limit cycles
(i.e., their shapes and relative phase). This task is the function of-the transition detectors
(TDs) and the in-phase recognizers (IPRs) in Figure 18.

A transition detector network is shown in Figure 19. The network accepts-two cycles
a3 its inputs, the input cycle to the LC-FSM and the current-state cycle from the memory
SONN. Cells D1 and D2 are linear and respond immediately, so 7, = 0-and y; = v; = v,
where 7 is either D1 or D2 here: Cell DO is a constant-output cell with ypp = 1 and
provides a source of trainable biases for the other two cells. All the weights and time
delays are trainable, except for the time delays associated with cell DO which are fixed
at 0. ‘

Because a transition detector contains only a single layer of linear cells, the training
process.using the SBP algorithm is very quick, particularly when the SuperSAB adaptive
gain algorithm is enabled. To learn a given set of input and current-state cycles, these
cycles are presented to the network at the desired relative phase and the-output is trained

- to be the function,

wl) =l = 3 [l s (%?)} , (1)

where Tj is the period of both cycles. This signal generates a linear limit cycle as shown in
Figure 20(a) and indicates a recognized-oscillatory state. In order for the linear network
in Figure 19 to work, the input and current state cycles must have the same period,
but this period can vary from one to another transition detector. Note, however, that
either the inpul or the current-state (but not both) could be constant and not a cycle.
Furthermore, the phase of the sinusoid in Equation (49) can be set arbitrarily.

The second component in the recognition process is the in-phase recognizier, shown
in Figure 21. This network consists of two heterodyne circuits in parallel. For both
circuits, cells 11-14, B1-B4, M1-M4, and Ol and O2 are linear (y; = v,) and respond
instantaneously (7, = 0). However, cells M1-M4 have a multiplicative input structure
(as opposed to the conventional additive form) such that

N, .
wlt] = ] wijy;{t =T (50)
j=1
where ¢ is one of M1-M4 and j is one of either 11-14 or B1-B4, whichever is appropriate.
Only the interconnects between cells O1 and O2 and M1-M4 are trainable. Both the
weights and the time delays are allowed to be trained. Cells O1 and Q2 do not have
trainable biases as this would destroy the recognition properties of the network. Essen-
tially, the two heterodyne \ircuits create all possible cross products of the input with

33




,l_

6193/

mdmnp.

21960
mdinp

(323135 31942)
. N&B&h &g.wz

<~ =3
<- -

i

SRR

TR e e T as e e

NN YT N AR TN AR Qb Sy

AA

- 10)98j85

1 6jeiS-IxeN

bacibrd

4 T
.. TR T T

-

e

¥

S n ondien

s vzzﬂcv/; s

hoN_:mooom
eseyd-u|

1016j8q
7 uosuel)

DO AL
5 v 25 b

et R

eseyd-uy

._ou_:mooom

1008180

[y
A
. %
; .
. -}
~
.

fo ..m:oh:ou, Eo

N R R T T

.7....

14‘ L

Bcﬁ._a »0

NN Nt N

1 uopysueiy |

LN . - LY AT LI R
AR L N N
“V“/t’t‘l,)ﬂt’ulbﬂfb..b hozcoz . — - -
N I, o> Uon S s A
oy o .41,“.‘/,..61..4.“' ..J,.clv.]‘,. 1»...,......“(4,. L g .—08 N |
LY . - WA 11
PR s Eued i F h 1
S ~ o .-
Bart el ol rne X e ey an senBan an et st sad ) uoawc o s vt saa s 1
e T Ty S
AR IR e atae T ot . et ha JCRCENSRS oo RNt
RS R e S T d . SN
A . s ) R PO .
. .. . . RTEEEREETTR 0N e el f
z > . -
. L
x > i,
- -~ ., mlianimagsanty s TRomadatdedela iy IS
;

. N b¥

E X N

- | 10zjuBooey les] isoereq

K . e
o . eseyd-u| N uojiisuesy
N N T Lragaac oty T T~
N : ERN Qf
H sasea s an

219D
mduy

(31262 pa1>31as)
ID1S WALMD)

the LC-

in

f the cycle transition controller

iagram o

Expanded block d
FSM. The cycle monitor is an optional component and thus has dashed input and

output arrows.

o
-
o
=
=
20
=

34



Transition Transition
Detector Inputs Detector Outputs
(LC) (LC)
Current-State Cycle
(SONN -outputs y;, y,) )
To In-Phase

'Recognizer
inputs x;, x,

Input ‘Cycle [

Constant-Output
Bias Cell

Figure 19: A transition detector network for the LC-FSM. All weights and time
delays are trainable here using the SBP algorithm, except for the time delays
associated with the constant-output cell. These delays are fixed at T;; = 0.

the input shifted by —0.5. Using the SBP algorithm, the intermediate outputs y; and
y» are trained to be 1 for all time when the input is the linear limit cycle described by
Equation (49). The SBP algorithm effectively combines the cross-products to cancel out
the oscillatory terms and leave only the DC value.

Cells G1, G2, and O3 arc used to combine the outputs of the two heterodyne circuits.
Cells GI and G2 have Gaussian-shaped output functions in the form,

Si(v;) = e mw=1)? (51)

lo select the region of the (y;,y2) space about the point (1,1). The gain was set to
m = 50 and the cell filters were activated with 7, = 20 iterations. The finite bandwidth
prevents trajectories passing over (1, 1) from being falsely recognized as being the desired:
linear limit cycle.

The actual threshold point for a decision is made by cell O3 using the sum of the
outfputs of G1 and G2. Cell O3 is a thresholding cell with finite bandwidth (7, = 20
iterations) to inhibit any output oscillations about the threshold point vy = 0.8.

The final output of the complete in-phase recognizer (y3) is a binary signal that is 1
when the input is the linear limit cycle described by Equation (49). Because its function
is common to all transition detectors, the in-phase recognizer needs to be trained only
once and then replicated for each TD. When combined with a transition detector, the
TD/IPR combination produces a 1 every time a transition condition (i.e., the right input
and current-state cycles) is present.




(a) (b) (c)

Y2

A

Recognized Unrecogni’fz‘ed States
State

Figure 20: Possible outputs for a transition detector. Only the near-linear cycle
shown in (a)s to be considered a recognized state. Then, the input cycle and
the current-state cycle to t’ is particular transition detector are amplitude- and
phase-matched, signifying-a condition for a statc transition has been recognized.
The spatially-distributed cycle in (b) and the chaotic trajectory in (c) indicate no
state transition condition is present.

4.4 Next-State Controller

The outputs of all TD/IPRs go to the next-state controller as shown in Figure 18. This
network is a simple vector-to-vector mapping network which forms the correspondence
between the detected transition condition and the next state. Its function is to realize
the state transition diagram of the LC-FSM.

4.5 Simulated LC-FSM Results

A LC-FSM based on the SONN presented in Section 2 was simulated to test the capa-
bilities of the TD/IPR networks. Although the SONN contains many cycles, only the
ones corresponding to the constant inputs (z;,z2) = (0,1),(1,0), and (1,1) are consid-
ered here. The cycles generated by these inputs will be referred to as 01, 10, and 11,
respectively. This SONN will -be referred to as the memory SONN. For simplicity, the
~ output of the LC-FSM is simply taken to be the current state of the memory SONN.

In_addition to the memory SONN, another identical SONN was used as the input
to the simulated LC-FSM. It is referred to as the input SONN. Before going into the
LC-FSM, the output of the input SONN is sent through a variable-length time delay to
allow the relative phase of the input SONN cycles to be adjusted manually with respect
to the current-state cycle from the memory SONN.
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Figure 21: An in-phase recognizer network. The “-0.5"” inputs come from a
constant-output bias cell such as D0 in Figure 19. All time delays are 0 except
where labeled (T' = 1). These delays are needed to compensate for the unit prop-
agation delay through cells Bl and B2. Redundant cells B3 and B4 are shown for
clarity to illustrate the two parallel heterodyne circuits.
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Start

11(+m/2)

Figure 22: State transition diagram for the simulated LC-FSM. The (+#/2) notation
denotes a relative phase snifi with respect to the current-state cycle.

The simulated LC-F5M implements the state transition diagram shown in Figure 22.
The LC-FSM states correspond to the memory SONN cycles and the transitions are
labeled with the inpus SONN cycles. Thus, if the memory SONN is oscillating in the
state 01 and the inpur SONN is oscillating in the state 10 at the correct phase, the LC-
FSM should make a transition to the 10 state in the memory SONN. The actual SONN
cycles used and their relative phases are shown in Figure 23{a)-(b).

To demonstrate the phase sensitivity of the transition detection, two transitions from
the 11 state are induced by the 11 input cycle with two different relative phases. If the
input cycle leads the current-state cycle'by +#/2, the transition is to the 10 state. If, on
the other hand, the input cycle lags the current-state cycle by —#/2, the state changes
to 01. Since the period of the SONN oscillations is about 64 iterations, a phase lead/lag
of £7/2 equals a relative advance/delay of 16 iterations for the input cycle with respect
to the current-state cycle.

As an example of the TD/IPR networks in operation, consider the transition 11 BUN
01. The response of the transition detector for this transition to all 8 transition conditions
is shown in Figure 23(c). For the corresponding in-phase recognizer, the intermediate
output at cells O1 and O2 is shown in Figure 23(d). A composite view of the IPR graphs
is shown in Figure 24.

The discrimination capabilities of the combination of the TD/IPR networks now
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Figure 23: The response of the transition detector and in-phase recognizer for
the transition 11 —% 01 to all 8 transition conditions. The end-bar on each cycle
indicates the starting point for the cycle. Transition #5 is the one by which
this transition is recognized. (a) The LC-FSM current-state cycle. (b) The LC-
FSM input cycle. (c) The output of the 11 2L 01 transition detector. (d) The
intermediate output (y;,72) of the corresponding in-phase recognizer at celis Ol
and O2. These plots are typical of the other transitions. Continued on the next

.page.
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Figure 24: Composite view of the in-phase recognizer output for the transition
11 2% 01 to all 8 transition conditions. This -plot is combination of tne graphs
shown in Figure 23(d). The shaded circular region around (1,1)-is the recognition
region whereby a trajectory contained within indicates a transition condition is
present and accepted.

become apparent. The outputs of the TD mostly are shifted and scaled versions of the
desired linear limit cycle. However, the IPR separates these cycles into di: tinct parts of
the output space defined by cells Ol and O2. It thus becomes an casy task .o decideif the
LC-FSM input cycle and current-state cycle correspond to a valid transition condition.
The cycle must stay close to the point (y1,y2) = (1,1). With the parameters chosen for
the TD/IPR networks, the cycle recogmtlon is-done in under 3 periods and has a relative
phase sensitivity of about 7°

This particular transition (1r5, 11 % 01) was chosed because it was the worst case
of the 8 possible transitions. In the other cases, the IPR outpu's were more spread out,
making the discrimination even easier.

Given the set of 8 binary output signals from the TD/IPR. networks, the next-state
selector network was designed to set and reset the latch for the memory SONN such that
the state transition diagram shown in Figure 22 was realized. The resulting network is
shown in Figure 25 and its function table is given in Table I.

The latch network for the memory SONN is sin.ply a pair of identical set-reset (SR)
flip-flops and is shown in Figure 26. Each flip-flop has two inputs, one for sctting the
output to be 1 and the other for resetting the output to 0. The latching property
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Table 1: Input-output relationship for the next-state selector network shown in
Figure 25. The subscripts on the inputs correspond to the transition numbers
given in Figure 23.

Inputs from Outputs to Latch
In-Phase Recognizers To Flip-Flop 1 | To Flip-Flop 2
(Transition Number) (Sét) (Reset) | (Set) (Reset)
Ty T2 I3 Ty Ts Tg T7 Tg| Ui bz Ya Y4
1 0 0 0 0 0 0 0 -1 | -1 1
6 1 0 0 0 0 0 O] -1 1 1 ~1
6 0 1 0 0 0 0 O 1 -1 1 -1
6 0 0 1 0 0 O O 1 -1 1 -1
0 0 0 0 I 0 0 O} -1 1 1 -1
0o ¢ 0 ¢ 0 1t 0 O 1 ~1 -1 1
0 0 o0 0 0 0 I O} — 1 1 —1
0 0 0 0 0 0 O 1 1 -1 -1 1

Table 2: Function table for the latch in Figure 26.

Set Reset | Qutput
LTy Ly  T2. Ty Y iz

0 0 hold

I 0 1

0 1 0

1 1 1 (unstable)
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Next-State Next-State
Selector Inputs Selector Outputs
(FP) (FP)

To Latch
Flip-Flop 1
inputs x;, x,
In-Phase
Recognizer
outputs. (y)
To Latch
Flip-Flop 2
inputs xj, x4

Figure 25: Next-state selector network. The weights are given in Table 1. There
are no time delays here.

comes from the self-feedback connection on each cell (wiith a weight of 1) and the lateral
inhibitory connections. There are no time delays in any of the interconnects, nor is any
training required. The cells respond instantaneously (, = 0) and have a binary (on/off)
output function described by

(.1 for v; >= vy,
Si(vi) = (52)
0 for v; < vy,

where the threshold vo = 0.9 and ¢ is-either L1 or L2 here. The resulting function table
for each flip flop is given in Table 2. :

A block diagram of the complete simulated LC-FSM is shown in Figure 27. It illus-
trates the component networks and their relative interconnections. The only addition is
an adjustable time delay Tp so the relative phase of the input limit cycle with respect
to the current-state (memory) cycle can be varied. This ability is needed to establish
each of the 8 transition conditions because of the high phase sensitivity of the TD/IPR
networks.




Latch Inputs Latch Outputs
(0,1) (0,)
Set: x ~— ¥y To SONN
: ' input x;
Reset: x, ;.
1 Flip-Flop 1
Set:  x, «d sy, To SONN
input x,
Reset: x, —
Flip-Flop 2

Figure 26: The latch network for the associative memory in the LC-FSM. It consists
of two independent flip-flop networks, one for each input to the memory SONN.
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Table 3: Schedule for changing the input cycle delay Tp and -the resulting LC-
FSM state changes. The transition reference numbers (e.g., #4) are taken from
Figure 23. The times at which the transitions occurred are-taken to be when the
latch outputs changed.

At Tp Relative Transition  Transition New LC-FSM

Time ¢ Set To Input Phase Occurred At Simulated State
0 0 0° — — 11
400 40 225° 593 #8 10
800 0 0° 897 #4 11
1200 2 11° 1310 #7 01
1600 43 242° 1808 #3 11

Before the simulation run, the memory latch outputs were set to (y; = 1,52 = 1)
and the memory SONN was run for 200 iterations to allow it to converge onto the 11
cycle. Then, the LC-FSM was simulated for 2400 iterations, during which time the input
SONN was set to the 11 state. Only the phase of this cycle with respect to the memory
SONN cycle was adjustable via Tp. The schedule on which Tp was changed is given in
Table 3. The state evolution of the LC-FSM during this run is shown in Figure 28. For
reference, the times at which Tp was changed and when the resulting state transitions
occurred are shown with shaded vertical lines.

In this figure, the temporal trace and various state-space snapshots are shown for both
the input cycle to the LC-FSM as delayed by T and the LC-FSM output as taken from
the memory SONN. Each state-space plots consists of the 64 points before the reference
arrow above the top (y;) trace.

At the bottom of the figure, the corresponding evolutions of the TD/IPR networks
along with the memory latch outputs are shown to illustrate the timing relationship
between all the signals. The TD/IPR trace actually is a superposition of all 8§ TD/IPR
outputs. Similarly, the latch trace is a superposition of both y, and y, latch outputs.

Several observations can be made from Figure 28. First, the transitions occurred
within 3 periods of the input limit cycle as predicted by the TD/IPR discussion. Next, the
TD/IPR signals are usually very short in duration. Once the latch outputs have changed,
the memory SONN changes its output cycle, thus destroying the previous transition

condition. Finally, the first transition 21 1702 10 and the third transition 11 Hr(?)
01 show that the same input cycle can stimulate different transitions based on the relative
phase with respect to the memory cycle. -
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Figure 28: State progression of the simulated LC-FSM.
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5 Optical Implementation Considerations

5.1 Optical SONN Architecture

The SONN model discussed in Section 2 and shown in Figure 1 on page 11 was designed
with an-optical implementation in-mind. The SONN has the following desirable features:

1. All cells have the same nominal output characteristic. SLMs with sine-squared: or
parabolic output functions effectively match the nominal sigmoid -curve shown in
Figure 4 on page 13.

2. The off-center, on-surround: canonical interconnect topology within the levels sim-
plifies ‘the interconnect scheme and provides a low diversity of interconnects to
realize.

3. The model is very tolerant of static parameter variations (easily £20%). These
variations can arise in several ways. First, the crosstalk within the interconnects can
appear as weight perturbations. A nonuniform readout beam effectively changes
Ymax, the maximum cell output value, over many cells. Similarly, nonuniformities
within the SLM can cause the same effect, along with variations in the gain m of
the output function.

An optical architecture for the SONN depicted in Figure 1 is shown in Figure 29. It
is based on a ring of optically-addressed SLMs (O-SLMs) connected via interconnection
holograms (IHs). The O-SLMs implement the cell functions and are sequenced by a
computer controller. In Figure 29, O-SLMn contains the cells for the n'® layer in each
level. For example, the cell arrangement for O-SLM1 is shown in Figure 30. This device
has the cells from the first layer in all three levels. Similarly, tl.c second and third layers
of each level are on O-SLM2 and O-SLM3, respectively.

The IHs are fixed, computer-generated holograms which realize both the interlevel and
the intralevel interconnects. The interlevel connections are made by IH1. Its interconnect
mapping between the cells on O-SLM1 and O-SLM3 is shown in Figure 31. The off-center,
on-surround canonical interconnect topology in the levels is implemented by IH2 and IH3.
This intralevel mapping is shown in Figure 32.

The input to the. SONN is obtained from an electrically-addressed spatial light mod-
ulator (E-SLM) that is driven by the computer controller. Hologram IH1 performs the
input mapping from the input cells to the first layer in the first level. This mapping is
shown in Figure 33 for the case when the four input cells in the first level are independent
(in contrast to Figure 1 where they are derived from two external input cells).

The SONN output is collected by the controller using a two-dimensional photode-
tection device such as a camera or a photodetector array. This output is derived from
the last layer in the first level. Hologram IH4 forms the corresponding mapping from
O-SLM3 to the camera and is illustrated in Figure 34.

This architecture implements the discrete-time approximation of the continuous-time
network equations used in Section 3-with no time delays in the interconnects. In order to
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‘O-SLM1 Output Corresponding Cells
(First layers |n in the Network
eacn level)

Leve:s
123
o Level 3
1,69 @
Cells 2 ¥ @
3 | ®® . Level 2
4000
Level 1

Figure 30: Cell layout for O-SLM1 in Figure 29 with respect to the SONN in
Figure 1.

realize time delays, one way is to store the most recent N outputs (u(t], yi[t—1]; vi[t—2),

.+, ¥i[t=N+1]) on the O-SLMs and have a shift mechanism update the outputs at each
time step. This method only provides integral time delays so no interpolation in time
is required (nor is it possible to do conveniently). In addition, the optical devices must
have larger space-bandwidth products. For example, if N = 3 so the values u[t], v.[t—1],
and y,[t—2] are available, the 1 x 3 cell arrangement shown on the left side of Figure 30
would become the 4 x 9 layout shown in Figure 35. The mappings performed by the
interconnect holograms would have to be modified slightly to use the desired (delayed)
output.

If the O-SLMs do not have internal shift capabilities, the optical shift technique shown
in Figure 36 can be used. This figure depicts an O-SLM from Figure 29 with the shift
path. The key aspect of the shift path is the one-pixel offset in the positioning of the left
mirror (M) and beamsplitter (BS). This offset causes the O-SLM output #,[t] to be fed
back into the input position corresponding to y,[t—1]. In order to work, this technique
requires that the O-SLM output does not change directly with the input. In other words,
the input light beams must be detected and measured first and then the output beam
updated.

There are two other issues which must be addressed for the optical SONN architecture:
implementing mixture of excitation and inhibition with an SLM and realizing finite cell
bandwidth. The first issue stems from the fact that the input side of current SLMs are
square-law detectors and thus measure only the intensity of the incident light. Since the
intensity is always a positive quantity, it is difficult to realize an inhibitory input signal
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Figure 32: Intralevel connection mapping for IH2 from the cells on O-SLM1 to
those on O-SLM2. These interconnects realize the off-center, on-surround canonical
topology. The mapping for IH3 from O-SLM2 to O-SLMS3 is the same as IH2.
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Figure 33: SONN input connection mapping for IH1 from the E-SLM to the cells
on O'SLMlo

IH4 Input Plane IH4 Output Plane
(Output of O-SLM3) (Inhut to Camera)
Levels
123 y
1| oo e 1
Cell 2|@o-gt—Le 2
outputs 3 X/ Inputs to
4 O output cells
) Interconnect ‘

Key: ———— Excitatory interconnect C,,

Figure 34: SONN output connection mapping for IH4 from the cells on 0-SLM3
to the camera.
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Figure 35: Cell output distribution on the O-SLMs when recent outputs are re-
tained. The arrows between the cells in the right diagram indicate the shift mech-
anism at each time step.

to a cell on an SLM when the neighboring cell may have an excitatory input signal.
Previous methods such as implementing only inhibitory neurons (3] cannot be used here.
The SONN model tries to minimize this problem by having only one inhibitory input to
cach cell. Unfortunately, this approach does not solve the problem.

The second issue addresses the sum filters in the cells. These filters are necessary for
generating piecewise-continuous (i.c., smooth in a discrete-time sense) cycles. The filters
are optional if discontinuous limit cycles are acceptable, but this is not the case for the
simulated LC-FSM because the TD/IPR networks require continuous limit cycles for the
SBP training algorithm to work. Under exposing the SLMs while writing them offers an
approximation to the low-pass filter, but only until the SLMs need to be erased to avoid
saturation.

With these issues in mind, we have conceived a hybrid optical-VLSI SLM which solves
the inhibition and filter problems. In addition, it offers an elegant solution for realizing
time delays. A cut-away view of the proposed SLM is shown in Figure 37. Its functional
block diagram is shown in Figure 38.

The SONN SLM implements the cell functions electronically and relies on optics to
do the interconnections. Unlike previous optical-VLSI devices [4-9), this device relies on
three-dimensional integration technique to create an input side and an output side. The
input side contains two photodetectors, one for the excitatory light and the other for the
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Figure 37: Optical-VLSI SLM for an optical SONN implementation. Each cell has
the functional structure shown in Figure 38. Only three of the four cells in a layer
as shown in Figure 35 are illustrated here.

inhibitory light. These photodetectors are connected through the bulk substrate of the
device via vertically integrated wires to the output side which contains all the processing
electronics. Thus, the three-dimensional integration needs to provide only a method for
connecting one plane with another plane with a few writes.

A difference amplifier performs the necessary subtraction to compute the total
weighted cell input, u,[¢]. The cell filter follows and is shown as a simple RC low-pass
filter. An electronically controllable switch selects either the filtered form of the weighted
sum or the weighted sum itself to-be v.[t]. In this way, the filter can be cither activated
for continuous-time cycles or deactivated for discrete-time cycles.

Finally, »[t] is loaded into an analog latch at the next clock pulse. Also with this
clock pulse, the outputs of all the latches are loaded into the next respective latch in the
shift path. Once the latches have been loaded, their outputs are used to drive individual

56

)



[ <=}|08

[1-1)€ <=}; 4

(oiuonoe|e)

%9010

- b
>

D ..,\.sn\
HYRY }:

(ouonoe|e)
feubis Jelji4
eleAllora(/81eAlOY

0 <=lise

sindino
i1eo [eondo

e

>

) [7Ja

ured
TS

Pty MRiCan

- Pt 3
e rp .
i . i

JOJeAIOY

1334

Ssed-MOT  eousieylq

Joyasiep wbn

—owoud | <= fuonquyuy
] pn Jopmep] Wb

-oio4d Alorenox3

oy Jeyidwy

sindy; (180
reondO

I-VLSI SLM for the

ica

the opti

ic cell in

f an electron

iagram o

.

Block d
1 SONN architecture.

Figure 38
optica




optical light sources such as laser diodes or LEDs via buffer amplifiers. The final output
of the cell is a set of optical beams whose intensities are proportional to y(t], y[t—1], y[t~2],
vovy Y[t = N + 1], respectively (N = 3 in Figure 38). All beams are on simultaneously.
Their uniqueness is-maintained by their spatial separation. If time delays are not desired,
the shift path can be eliminated with the exception of the first analog latch.

The main disadvantages with the SONN SLM are mechanical support and thermal
cooling. Since both the top and bottom surfaces are active, the substrate can be mounted
only-on its sides. The substrate must be thick enough to provide sufficient rigidity and
durability. Fortunately, the thickness of the substrateis not constrained by the electronics
because the substrate only contains wires. As for the cooling issue, the cells in the center
of the device have limited- access to a heat sink. This access is necessary because the
laser diodes consume milliwatts of power as opposed to microwatts for all the other
electronics.?

Admittedly, a SONN SLM with all components mounted on one side would have
immediate access to a heat sink and would be easier to fabricate. However, it also would
complicate the interconnection scheme because the input and output light paths would
conflict. If this conflict could be resolved through a redesign of the interconnection
holograms, the cne-sided fabrication offers superior mechanical support, thermal cooling
properties, and well-developed manufacturing techniques.

5.2 Computer-Generated Hologram Development

In additioz to the SLMs, the interconnection holograms (IHs) form the other major com-
ponent of the optical SONN architecture. Considering the practical optical demands
of the SONN architecture, general, flexible, and efficient IHs were sought. A computer
generated approach seemed the best suited for the requirements, but after a review com-
puter generated hologram (CGII) fabrication techniques, we were motivated to develop
aCGH process to create IHs possessing high efficiencies, generality, low processing costs,
and expedient scheduling. Current high resolution color printer technology was used as
a mechanism for creating multiple discrete phase levels in bleach processed silver halide
photographic film. This technique allowed for the creation of arbitrary IHs possessing
the necessary high efficiencies.

Several techniques for creating CGHs have employed either binary or multiple step
representation for amplitude-only, phase-only, or amplitude and phase CGHs. The
Lohmann and Lee 1974 binary amplitude-only holograms encode amplitude and phase
information by defining a blocking area and its displacement within a CGH cell, but of
the many binary amplitude-only encoding techniques [12], these methods possess the
highest diffraction efficiencies of 0.1-0.2%. These techniques are easily implemented with

20ne possible solution is to place a glass covering over all the laser diodes. The thermal conductivity
of glass is an order of magnitude larger than that of air and thus would act as a better albeit transparent
heat sink. Another possible sulution 1s to make the substrate thick enough to allow a miniature cooling
system to be incorporated into it. Alternatively, the laser diodes could be removed entirely from the
SONN SLM and could be replaced by a reflective electro-optic material such as a miniature liquid crystal
display. In this case, the latches in the shift path in Figure 38 simply drive a high-impedance capacitive
load which requires very little power. The SONN SLM then would have to be read out using an external
laser with an expanded beam.
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a laser printer and photoreduction system but result with very poor optical efficiencies.
Multiple step amplitude-only CGHs encode phase and amplitude information by discrete
approximating the continuous gray level spectrum found when holograms are recorded
optically, but this technique requires a specialized gray level photoplotter and yields
marginal efficiency considering the amplitude-only nature.

A natural extension for efficiency improvement is phase-only encoding to eliminate
absorptive loss. Binary phase apprcaches include binary Dammann gratings . {13] which
provide controlled amplitude and phase relations in 1-D or uncoupled 2-D or direct grat-
ings for Fresnel lens implementation [14]. Dammann gratings provide efficiencies up to

about 75% but require very accurate phase transition placement and are impractical for

coupled 2-D functions. Binary Fresnel lens implementations are limited to a maximum
41% efficiency. To improve these efficiencies, multiple phase level approaches including
the kinoform and blazed surface relief elements have been considered [15, 16]. These
techniques represent the highest efficiencies achievable, but either require gray level pho-
toplotting or capital intensive processing equipment for glass etching.

Each of the above processes have their own merit, but high efficiency, low cost, flex-
ible, and expedient processed CGHs were required for the SONN architecture. Our
technique creates multiple phase levels in bleach processed black and white photographic
film by modulating film exposure with colors possessing differing spectral transmissions.
Figure 39 illustrates the entire process with cartoon style flow diagram. A convention
IBM compatible personal computer was used, but any computer is possible provided
the PostScript, a powerful illustration/documentation printer programming language, is
the ultimate file format. The PostScript program contains all necessary commands to
generate the -vquired color placement for CGH and IH implementation. The resultant
color mask was photoreduced with standard high resolution camera equipment on high
resolution black and white film, and photochemical processing developed and stabilized
the phase-only CGH image.

Current technology has allowed for the availablity of inexpensive color printers that

offer high resolution output. Of the many possible choices, we selected the QMS Col-

orScript 100 Model 10 for the quality of output and good price/performance ratio. This
printer cost ~ $8,200 and offered 300 dots per inch resolution with a total of eight solid
colors. Qutput from the printer was taken on clear transparency film for backlite illu-
mination during the photoreduction process. We constructed a vibration resistant high
resolution backlite copy stand for 30X photoreduction with off-the-shelf high quality opti-
cal components (camera, lens, and white sources). The input image plane possessed 5 to
10% illumination uniformity, and the photoreduced results were capable of approxnmately
200 line pairs per mm at an optical density of 3.0.

The format of the camera was 4x5 inches, and we used high resolutlon black and
white film of that dimension. The selection of the film was extremely important for
the distribution of color exposed/recorded optical densities (in turn, optical phases).
Each color acts as a spectral transmission filter to the backlite white light source, and
thus narrowing the spectral power density impinging onto the black and white film.
The monochrome equivalent (luminance) of the printer colors yields a relatively linearly
stepped growing relation [17]. To maintain this relation, a film with a relatively flat
spectral sensitivity was necessary so that linearily distributed optical densities would
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Figure 40: Nominal exposure color to density mapping for Kodak 649F.

result. Kodak 649F on a 4x5 inch glass substrate was selected, and the emperical
mapping of color to optical density is illustrated in Figure 40. For Kodak 649F, we
observed repeatable mapping for film plates within the same emulsion batch given uniform
processing conditions, but differing emulsions exhibited different photographic speeds
requiring exposure characterization for each emulsion. The chemical processing times
and conditions were optimized for the desired color mapping as illustrated [17].

Discrete phase levels were created by modifying the developing process to include
bleach. A reversal bleach was selected for removing the pigment of the latent image by
eliminating all of the exposed grains. This process yields less phase, or retarded phase, in
the emulsion regions that experienced higher net exposures. The emperical color to phase
mapping is illustrated in Figure 41. We measured the phase changes with a modified film
substrate grading technique we developed. A slight angle wedge (imperfect microscope
slide) was sandwiched to the film plate being measured with index matching fluid, and
this wedge provided closely spaced, approximately straight fringes when the sandwich
was read out in reflection with a colimated laser source. The discontinunity of the fringes
due to differently (color) exposed regions was measured. By organizing the colors by
growing luminances, the ambiguity in phase measurement was eliminated.

The major limiting factor for our color to phase mapping process was the photore-
duced rolloff affected by printer anomalies and camera diffraction limitations. We ob-
served poor print quality at resolutions (one to three printer pixels per color) near the
resolution limit of the printer we selected. The modulation transfer function (MTF) for
30X reduced color gratings was measured for optical density and illustrated in Figure 42,
and by optical density to phase correlation, the phase rolls off in the same fashion. This
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Kodak 649F. :

rolloff issue was observed to affect the diffraction efficiency of the example applications.

As the first application, eight phase level approximated Fresnel lens were imple-
mented. The Fresnel lens diffraction efficiency was modelled for eight phase levels with
respect to the non-uniform phase step height and/or widths [17]. A maximum diffrac-
tion efficiency of ~ 86% was determined (excluding insertion losses) for a given relative
density distribution of eight colors with uniform spacing. A sample side on view (optical
density - reverse contrast) of an example Fresnel lens implemented with color mapping is
shown in Figure 43, and bleaching removes the reversed contrast. This figure also illus-
trates how the outer Fresnel zones (smaller feature sizes) were rolled off which resulted
in a non-uniform phase modulation depth over the extent of the lens effectively reducing
diffraction efficiency.

We constructed a variety of single and compound Fresnel lenslet arrays possessing

differing focal lengths and aperture sizes. An example of two lenslet arrays is illustrated in-

Figure 44. We observed a peak measured efficiency of 67.2% for eight evenly spaced colors
(excluding insertion loss). Rolloff into the outer Fresnel zones retarded the maximum
diffraction efficiency from the 86% predicted peak. The highest efficiency 30 cm lens
exhibited a 130 um spot size corresponding to a Gaussian beam predicted size of 117.4
pm given the lens focal length and diameter of 2.4 mm. An insertion loss of 26.3%
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Figure 42: Modulation transfer function of the 30X photoreduced printer colors as
the feature size decreases (in printer resolution units).

due to front and back surface Fresnel reflection, scattering, and a high absorption losses
was experimentally measured. A large absorption loss was due to staining by the bleach
used, but other reversal bleaches may possess lower insertion loss attributes. By exposing
lenses within an array differently, we were able to produce lenses of varying diffraction
efficiencies which allowed us to quickly characterize different film emulsions for maximum
diffraction efliciency with only one film plate.

Ultimately, we implemented optical interconnections that offered a completely arbi-
trary nature with high optical power efficiency. Aibitrary interconnections can be cre-
ated with discrete phase level approximated diffractive blasze gratings (synthetic blazed
gratings) via a computer and this process. Figure 15 illustrates how the grating were
constructed with color to phase mapping. The blazed grating was used in transmission,
and off-axis diversion or elevation, 0, was specifing with the period of the grating. Phase
depth of the grating is set to 2 or one wavelength, A, and thus the off axis diversion is
specified by

tanf = —

A

where A is the period of the grating. For the interconnection examples we addressed, the
vector relative, r and y, displacements from the input plane to the output plane defines

the grating period as follows \

Ty

.where d is the throw distance between the input plane and the output plane. The grating
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Figure 43: Optical density profile of a 30 cm Fresnel lens.

lines are rotated by
é = tan™! z
Y
within the input connection cell to provide azimuth control.

With .his interconnection methodology, we implemented an arbitrary interconnection
with a 5x5 input plane and spelled out “MIT” in the output plane. Off-axis and on-
axis cases were considered with emphasis placed on the on-axis case. The input-output
mapping for the on-axis case is illustrated in Figure 46. Using PostScript, the color
mask(s) necessary for the IH was generated and photoreduced with an exposure level to
optimize diffraction efficiency. Figure 47 illustrates a photograph of the output plane,
and threshold functionality of photographic film effectively eliminated anomalous on or
off-axis noise.

For the on-axis case, the average diffraction efficiency was 54.2% with a peak efficiency
of 86.0% at the lower right corner of the M. The average contrast ratio was 11.5:1 with a
best case value of 18.2:1 and worst case value of 7.2:1 calculated against the average noise
power. The-ofl-axis MIT -interconnection exhibited similar efficiency, but it possessed a
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Figure 44: Focal plane photograph of (a)-a 5x5 30 cm lenslet array and (b)-a 15x15
5 cm lenslet array.

higher average contrast ratio of 17.4:1 with a 22.6:1 best case and 13.6:1 worst -case
because the interconnection was directed out of the on-axis power region. Given the
rolloff and diffraction efficiency as a function of resolution, off-axis deflection, 8, of 0.6°
with at least 50% efficiency was realizable which corresponds to a 7.5 pm minimum
feature size. Deflection of up to 0.78° with reduced efficiency was possible before printer
problems become insurmountable. '

M
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Figure 45: Construction of a synthetic blazed grating with the color to phase
mapping CGH process.
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Figure 46: On-axis MIT interconnection mapping.

Figure 47: Experimental construction of an on-axis MIT interconnection.

Considering these numbers, this color CGH process has provided an excellent mech-
anism for producing on-axis [Hs with efficiencies > 50% and good contrast ratios. Other
interconnection examples including the optical folded perfect shuffle and the sub-element
interconnection array for arbitrary fan-out (9 total connections) of input cells were im-
plemented with similar successes (17].

5.3 . Computer-Controlled SLM Characterization

We also developed a computer controlled system to quickly evaluate the limitations of
spatial light modulators (SLMs) used within our optical systems. The parameters con-
trolled and measured included framing rates, framing dynamics, contrast ratios, MTFs,
optical sensitivities, exposure dynamics, output uniformity, and input imaging. A PC

controlled data acquistion system with digital to analog ocutput was setup with serial

66

B N ' f o . | . i o L . f | | | . s




controlled linear translation and rotation stages. Optical powers were measured with a
high sensitivity autoscaled power meter interfaced to the central PC with an IEEE-488
connection.

With a computer controlled Michelson interferometer, we were able to create arbitrary
high spatial frequency fringes and record them onto a microchannel spatial light modu-
lator (MSLM), an- O-SLM, under test. Using these fringes, we mechanically scanned the
magnified MSLM output image with a fine razor blade apertured high gain photodetec-
tor, and under computer control, we collected all the necessary data to-compile a MTF
curve for the device under test. By recording a uniform input exposure, we scanned the
x and y output plane with pinhole mounted to the high sensitivity optical power meter
detector to determine the device output uniformity. The control software was.written in
a fashion to-maximize flexiblity and reconfigurability dependant upon application.

6 Conclusions

The original goal of the program was to develop hybrid optical inference machines. In-
stead of expanding upon the conventional approaches (based on nonlinear matrix-vector
multipliers), we opted to look at a different method. Because of problems with fault tol-
erance in the conventional approaches, we chose to consider encoding information using
limit cycles. This new approach created a whole new set of challenges and problems to
overcome. During the program, we solved many of the problems associated with process-
ing with limit cycles, but some issues remain unsolved with respect to a practical optical
implementation.

Given the unfamiliarity of processing with limit cycles, we chose to concentrate on a
simplified form of symbolic processing, the finite state machine (FSM). The limit cycle
form of this computation paradigm (LC-FSM) requires (1) a medium that supports
many cycles and (2) a method for establishing couplings between cycles. The first task
corresponds to an associative memory for limit cycles and the second one is a controller
for switching between cycles. Because of their flexibility, ncural networks were chosen as
the working medium.

In the program, we created the self-oscillating neural network (SONN) model for
solving the first task. This model was designed with an optical implementation in mind.
It is very tolerant of static variations in the network parameters (easily in excess of
#20%). In an optical implementation, these variations appear as nonuniformities in
the spatial light modulators (SLMs), the readout light, and crosstalk in the holographic
interconnections. The SONN is well suited to the first task because it has many cycles
available with no training or programming required. They can be selected by either
constant or cyclical inputs. The SONN is an example of a component which will work
as an associative memory for limit cycles in a LC-FSM.

For the second task, we derived the spectral back-propagation (SBP) training algo-
rithm for creating a LC-FSM controller for limit-cycles. This algorithm-is an extension of
the conventional back-propagation algorithm to train input-output sequences. The SBP
algorithm- uses discrepancies in the Fourier series spectra of the output sequences as an
error criterion. This approach allows not only the weights but also the time delays associ-
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ated with the interconnects to be trained. Furthermore, the cells in the-network can have
finite bandwidth via a first-order low-pass filter. We have demonstrated the algorithm
successfully on both feedforward and recurrent networks with both continuous-time and
discrete-time sequences.

In a simulated 3-state.LC-FSM with 8 possible transitions, the SBP algorithm allowed
us to develop a very simple set of networks (the transition detector and the in-phase
recognizer, TD/IPR) for recognizing a particular multidimensional limit cycle. These
networks can do the recognition in under 3 periods with a very high amount of phase
sensitivity (7°). They permit the same input and current-state cycle of the LC-FSM
to stimulate different transitions depending upon their relative phase. Furthermore, the
portions-of the TD/IPRs whose weights and time delays are trained by the SBP algorithm
are linear networks with-no hidden cells. Thus, the TD/IPRs can be trained very quickly.
These networks form the-key component of the LC-FSM controller. They generate binary
signals, each of which corresponds to a unique transition condition in the LC-FSM. The
transitions then can be made using a simple mapping network. The SBP algorithm thus
is useful tool for creating a LC-FSM. Using the SONN and the SBP algorithm, we were
able to demonstrate successfully a working LC-FSM using computer simulations.

The problems left unanswered by the program are associated with creating a practi-
cal optical LC-IF'SM, a intermediate but necessary milestone towards making a working
hybrid optical inference machine. We designed an optical architecture for the SONN and
developed a novel technique for making the required interconnection holograms using
conventional color printer technology. This IH foundry provided efficiencies exceeding
50% expediently, flexibly, and at a low cost. We demostrated arbitrarily defined IHs
with the color CGH process. However, limitations with current SLMs motivated us to
propose a new general-purpose hybrid optical-VLSI SLM. Development of this type of
device would greatly benefit the research into hybrid optical inference machines, partic-
ularly those based on limit cycles.
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Hybrid optical inference machines: architectural

considerations

Cardinal Warde and James Kottas

A class of optical computing systems is introduced for solving symbolic logic problems that are characterized
by-a set of data objects and-a set of relationships describing the data objects. The data objects and
relationships are arranged into sets of facts and rules to form a knowledge base. The solutions to symbolic
logic problems involve inferring conclusions to queries by applying logical inference to the facts and rules.
The general structure of an inference machine is discussed 1n terms of rule-driven and query-driven contrul
flows. As examples of a query-driven inference machine, two hybrid optical system architectures are
presented which-use matched-filter and mapped-template logic, respectively.

I, Introduction
A. Definitions

Symbolic logic problems involve, in an abstract
sense, a set of data objects and a set of relationships
describing the data objects. The data objects and
relationships constitute a knowledge base which is
generally arranged as sets of facts and rules. Afactisa
statement connecting a relationship with one or more
data objects so that the statement is always interpret-
ed as true. On the other hand, a rule is a statement
which defines a relationship using other relationships,
data objects, and/or facts.

A symbolic logic problem is usually stated in the
form of one or more queries which are questions con-
cerning relationships and data objects. The queries
are answered by applying logical inference to the
knowledge base of rules and facts. This inference
process generates a set of assertions (inferred facts)
from the knowledge base. The solution to the queries,
therefore, beconies a set of conclusions in the form of
data objects, which is inferred from the set of asser-
tions so as to satisfy the queries.

B. PROLOG

Symbolic logic problems are relatively common.
They arise in areas such as-expert systems and other
artificial intelligence applications. In recent years,
the computer science language PROLOG has become a
tool for solving these types of problem on electronic
computers.' For example, two goals of fifth-genera-
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tion computers are (1) to develop a machine capable of
logical inference and data base operations and (2)-to
design a language based on PROLOG that would be
suitable for inferring and representing knowledge.?

To solve a query, electronic PROLOG sequentially
searches for the knowledge base for the appropriate
rules and facts. This search process uses a flexible
pattern-matching technique called unification which
involves searching, matching, and backtracking
through the knowledge base.3* The performance-of
electronic PROLOG is limited by its use of serial search-
ing and backtracking. PARALOG, an implementation
of PROLOG-which uses parallel-unification, addresses
this issue and is currently under investigation:?

C. Role of Optics

It is well known that 2-D parallel optical processors
inherently perform high-speed pattern matching
Such systems should, therefore, be more efficient at
searching than their serial electronic counterparts be
cause the parallelism eliminates the need for back-
tracking through the knowledge base. Furthermore.
since searching and pattern matching processors do
not require high accuracy or large dynamic range, opti-
cal processors should in principle be well suited for
symbolic logic processing.

We believe, however, that optical inference ma-
chines should be designed to be compatible with elec
tronic computers. The goal should be to exploit the
strengths of both systems so as to realize hybrid infer-
ence -machines that are more efficient and versatile
than either purely electronic or optical computers.
For example, an optical inference machine could po-
tentially be integrated into an electronic fifth-genera-
tion computer so that a hybrid machine capable ot
operating at speeds in excess of 10 logical inferences
per second (LIPS) could be produced.
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D. History

Previous work in optical symbolic -processing was
performed by several researchers in thelate 1960s and
early 1970s. Gabor, Akahori and Sakurai,’ Nakajima
et.al.,” and Lohmann and Werlich8 used holography as
the basis for their processing techniques. Willshaw et.
al.,? Willshaw and Longuet-Higgins,!° and Gabor? ap-
proached the problem using associative network con-
cepts. However, during the 1970s and early 1980s, the
emphasis of research on optical computing systems
shifted-to numerical problems such as-matrix—-matrix
multiplication,!!-13 array processing,'* and solving sets
of linear equations.!®

More recently, there has-been a resurgence of-inter-
est in the area of optical symbolic processing.
Huang!617 has addressed the symbolic problem in a
general sense, investigating algorithms and architec-
tures for performing symbolic substitution optically in
classical finite-state machines. Furthermore,
Huang!® and Fisher et al.19 have recognized that there
may be a possible role for optics in symbolic processors,
particularly in solving certain classes of artificial intel-
ligence problems. However, specific applications of
optical computers to symbolic logic processing appear,
until now, to have been unaddressed.

In this paper, the concepts associated with symbolic
logic processors are introduced, and the general archi-
tecture of an optical machine capable of inferring logi-
cal conclusions from a set of facts and rules is dis-
cussed. The general system is approached from two
different information flow patterns: rule-driven and
query-driven flow. Two hybrid optical realizations
for a query-driven inference machine are presented
which use classical matched-filter logic and mapped-
template logic, respectively. The intent here is to
describe these systems from a conceptual point of view.
Therefore, no attempt is made to address all the issues
involved in realizing a practical system.

i. General Inference Machine Architecture

The general structure of an inference machine is
shown in Fig. 1. Itaccepts asinputasetoffacts- 'a
set of rules from the knowledge base and one ..  .e
queries. The output of the inference machine = 1set
of specific conclusions which are logica.,, .ferred
from the facts and rules in response to the queries.

For example, a set of data objects could be a set of
naimes of people. For illustrative purposes, let this set
be denoted as
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D= {Karen, Beth, Peg, Liz, Sue, Jean, Ruth,
Mike, Tom, Bill, Jim, Fred, Bob, Sam]. w

A set of relationships for D might be the possible

relationships between the people, such as marriage,
‘mother, father, male, and female. Let this set of rela-

tionships be denoted by

_ [married-to, mother-of, father-of, son-of,

" daughter-of, child-of; is-male, is-femalel. )

The data objects and relationships are linked as a
collection of facts and rules which relate the elements

of Dand R. Inthisexample, the facts could be defined.

as

Mike is-male.
Tom is-male.

Karen is-female.
Beth is-female.

Bill is-male. Peg is-female.
Jim is-male. Liz is-female.
Fred is-male. Sue is-female.
Bob is-male. Jean is-female.

Sam is-male. Ruth is-female. 3

Bob father-of Peg.
Bob father-of Tom.
Bob father-of Jean.
Jim father-of Ruth.
-Fred father-of Bill.

Mike married-to Karen.
Bob married-to Beth.
Jim married-to Liz.

Using -these facts, the remaining relationships in R
may be defined as rules. For example,

X mother-6f ¥ IF  Z married-to X AND

Z father-of Y,

Y mother-of X OR

Y father-of X )
X child-of YAND

X is-male,

X child-of Y AND

X is-female,

X child-of Y IF
Xson-of Y IF

X daughter-of Y IF

where X, Y, and Z are variables. The bodies of these

rules (i.e., the part to the right of IF) consist of two

conditions, each of which could be-a fact or another
rule. These conditions are then connected by the
logical operators AND or OR. In general, a rule could
have any number of conditions, and a condition could
have a logical NOT operation performed on it. For
example. the daughter-of rule could be modified to
use the son-of rule by defining it with

X daughter-of Y [F X child-of Y AND

NOT X son-of Y. )

To satisfy a rule, there must be at least one data
value for all variables for which all conditions are si-
multaneously true. Inthe mother-of rule, there must
be at least one value each for X, Y, and Z so that Z is
both married to X and the father of Y. Using the
format of Eq. (4), additional relationships such as sis-
ter-of and brother-of are straightforward to define.
Together, the facts in Eq. (3) and the rules in Eq. (4)
formthe knowledge base.

In general, a query into a knowledge base consists of
arule with at least one variable. For example, a possi-
ble query of this knowledge base could be “Who is the
mother of Jean?”", which can be expressed as
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? mother-of Jean, 6)

where ? represents the-desired-unknown data object.
From the knowledge base, only the-assertion Beth
mother-of Jean is true. Hence the conclusion of Eq.
(6) is that the query is true when ? is the data object

Beth.

Given a query and knowledge base, conclusions can
be inferred using either inductive or deductive reason-
ing. In the inductive case, conclusions of-a general
nature are inferred by the application of specific que-
ries to the knowledge base. The cardinality of the set
of induced conclusions could in general be quite large,
and, in principle, conclusions not representative of the
knowledge base would be possible.

On the other hand, deductive reasoning produces
specific conclusions from-a set of general rules and
facts, and the conclusions are always a subset of the
knowledge base. For simplicity and practicality, we
shall limit the allowed conclusions to the data objects
within the knowledge base. Therefore, in this paper,
we will consider only machines based on deductive
reasoning.

Block diagrams for two general architectures of a
deductive inference- machine are-shown in Figs. 2 and
3. Both systems have in common a knowledge base,
controller, and inference filter. The functions of the
controller are-to (1) control the flow of information
through the inference machine, (2) accept queries as
input from the operator, and (3) transmit conclusions
to the operator as output. The knowledge base stores
all the data objects-and relationships in the form of
facts and rules. The role of the inference filter is-to
generate a set of all conclusions possible given a set of
rules and facts from the knowledge base.

The system in Fig. 2 corresponds to a rule-driven
inference machine, whereas that in Fig. 3 represents a
query-driven inference machine. The systems are dis-
tinguished from each other by the methods they em-
ploy to infer the conclusions. In the rule-driven sys-
tem, all possible assertions and facts from the
knowledge base are generated ab tnitio0, and thereafter
the conclusions are derived from these inferences by
application of the query. In contrast, the query-driv-

Alig
ASSERTION | ossertions
GENERATOR | _°ndfocts | INFERENCE
WiTH " FILTER
MEMORY
Y J
Rules Focts Quenes Conclusrons,
KNOWLEDGE N
T
QasE CONTROLLER

OPERATOR

Fig. 2. Block diagram of a deductive rule-driven inference ma-
chine.
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en system first uses the query to select appropriate
subsets of the rules and facts and then infers specific
conclusions from these rules and facts:

The rule-driven system of Fig. 2 approaches the
ideal parallel system in-that the assertion generator
produces the facts-and all-possible assertions from the

-entire knowledge base by replacing all the rules with

appropriate assertions. In the previous example, the

_mother-of,-child-of, son-of, and daughter-of rules

would:lead to the assertions

Beth mother-of Peg,
Beth mother-of Tom, Tomson-of Beth.
Beth mother-of Jean, Bill son-of Fred.

Liz mother-of Ruth, ()

Peg child-of Bob,

Peg child-of Beth,
Tom child-of Bob,
Tom child-of Beth,
Jean child-of Bob,
Jean child-of Beth,
Ruth child-of Jim,
Ruth child-of Liz,

Bill child-of Fred,

Thus the output of the assertion generator-would-be
the set of facts and assertions defined by Eqgs. (3) and
(7). Note that the knowledge base is not updated by
the assertion generator and that the output produced
by the assertion generator is computed only once.

As shown in Fig. 2, the assertion generator of the
rule-driven machine transfers the entire set of facts
and assertions to an inference filter whose function is
to match the queries from the controller with the facts
and assertions-to determine the data objects which
satisfy the queries. After it has determined the con-
clusions for the query, the inference filter transfers the
conclusions to the controller for output to the operator

In the example ? mother-of Jean, the inference
filter would compare the facts and assertions defined
by Eqgs. (3).and (7) with-the query given in Eq. (6)
Realizing that ? is the desired variable, the filter woula
find a-match between the query with-the third asser
tion given in Eq. (7) to obtain the answer Beth. In this
example, there was only one possible conclusion. but.
in general, several data objects may satisfy a query.

In contrast, the query-driven system of Fig. 3 is a
more sequential machine than the rule-driven system
of Fig.2. Givena query from the operator, the control-
ler uses the rules associated with the query to select
subsets of rules and facts from the knowledge base that
are relevant to the query. In-the example of Eq. (6).
the mother-of rule is associated with the query. The
controller would examine the mother-of rule as de-
fined in the knowledge base and extract its condition
relationships married-to and father-of.

Once it has obtained the necessary subsets of rules
and facts, the controller transfers these subsets to the
inference filter along with the known data objects from
the query [Jean in Eq. (6)]. The inference filter then
matches the rules with the known query data to infer
the set of data objects which make the query true [Beth
for Eq. (6)]. Finally, the inference filter sends the

Tom son-of Bob.

Peg daughter-of Bob.

Peg daughter-of Beth.
Jean daughter-of Bob.
Jean daughter-of Beth,
Ruth daughter-of Jim.
Ruth daughter-of-Liz.
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Fig. 3. Block diagram of a deductive query driven interence ma-
chine.

conclusions back to the controller for output to the
operator.

When:-consideration is given to implementation of
an inference machine, the query-driven system may
appear more -attractive-than-the rule-driven system.
This is because inferring the possible assertions and
storing all the possible assertions and facts in_the rule-
driven system could be inefficient, expensive, and dif-
ficult to realize, particularly for rules which are recur-
sively defined (i.e., when the rule has itself as a
condition). Consequently, only query-driven systems
are considered in the remaining sections.

lit.  Hybxid Optical Realizations

We shall confine our discussion to optical inference
machines that complement the electronic computer.
A complete system, therefore, will be hybrid in nature.
This places design constraints on the input and output
interfacing devices of the optical system. The opti-
mum designs, therefore, are those that most effectively
combine the individual strengths of optics and elec-
tronics. Two query-driven designs are described-be-
low, the first of which uses matched-filter logic in the
inference filter, whereas the second is based on
mapped-template logic.

In these systems, the parallelism and speed of optics
are exploited to perform the functions of searching,
matching, and logic. The role of the electronics is to
perform information storage and retrieve and transfer
data, rules, and operator queries to the optical proces-
sor. Thus in Fig. 3 the inference tilter is the optical
processor, while the controller and knowledge base
constitute the electronic support system.

To implement these optical inference machines,
three types of optical devices are required: (1) an
input interfacing device which converts electrical sig-
nals to 2-D optical signals; (2) an optical logic device;
and (3) an output interfacing device for transforming
optical signals into electrical signals. The input inter-
facing device and optical logic device should exhibit at
least short-term storage.

In the specific systems discussed below. the electri-
cal-to-optical input device could be any 2-D electrical-
ly addressed spatial light modulator (E-SLM) which

has short-term storage,.such as the e-beam MSLM.2
An-example of an optical logic device which can per-
form 2-D logic with memory is the photo MSLM,21.22
which is-an optically addressed spatial light modulator
(0-SLM). The logic operations that can be performed
internally by the photo MSLM include AND, OR,
NAND, NOR, XOR, and NOT. The optical:to-elec-
trical output device is a 2-D photodetector array. To
obta:n good noise rejection and low error rates, digital
optical sigrals (binary intensity levels) are assumedfor
all input.and output signals in the optical processor.

A. Matched-Filter Optical Inference Machine

The general matched-filter optical inference ma-
chine employs analog pattern recognition techniques
and parallel optical logic to apply a'set of given rules to
a set of facts to infer a set of logical conclusions to the
queries. This method is similar to the optical correlo-
graph system described by Willshaw and Longuet-
Higgins.!0

Figure 4 shows a specific implementation of a query-
driven matched-filter hybrid optical inference ma-
chine. This machine consists of an electronic control-
ler, two-E-SLMs, two O-SLMs, and a photodetector
array which is operated-in a.thresholding mode. In
this and subsequent figures, it should be noted that (1)
the input light to the O-SLM is absorbed within the
device and is not transmitted, and (2) the readout light
is reflected out of the device by an internal mirror.

In the matched-filter system of Fig. 4, the facts and
rules are grouped in block form (subsets) and stored
electronically in the controller for rapid retrieval and
transfer to the optical system. The two E-SLMs, O-
SLM 1, thelenses L, L, and L3, and the photodetector
array are arranged to form a classical VanderLugt
matched-filter system.2 Thus lens L, is one focal
length away from the planes Py and P», lens L» is one
focal length away from planes P;and Py, andlens L, is
one focal length away from planes P;, Ps,and Ps. The
multiplication of the Fourier transforms of the signals

Fig. 4. Matched filtér uptical inference machine.

15 March 1986 / Vol, 25, No. 6 / APPLIED OPTICS 943




| . | | '
' "

to be matched is performed in O-SLM 1, and. the
matched-filter output is recorded on the photodetec-
tor array (shutter Sy open,.Ss closed). The photode-
tector then transfers ifs output to the controller.

If the query dictates that several rulés must be ap-
plied to the facts in succession, the resulting matched-
filter outputs can be-combined by using the optical
logic capabilities of O-SLM 2. With S} closed and S,
open, the logic output-of O-SLM 2 can be imaged onto
the photodetector array using lens L, and the photode-
tector output fed back to the controller. This ability
permits rules to-be applied as many times as necessary
to various-subsets of facts to generate the logical con-
clusions.

When operating the matched-filter optical inference
machine, the operator queries the system through-the
electronic controller. In response, the controller
writes the applicable subsets of facts onto E-SLM 1
and the applicable subset of rules onto E-SLM 2. This
information is coded.as a set of predetermined 2-D
binary-level patterns. Inthe queryexampleof Eq.(6),
the mother-of rule and the complete set of facts in Eq.
(3) would be the applicable sets.

The controller then activates O-SL.M 1 which holo-
graphically records the Fourier transform of:the facts
as formed by lens L;. The rules are similarly trans-

formed by lens L, and this transform is used to.read

out O-SLM 1 via mirror M, as shown in Fig. 4. The
output of 0-SLM 1 is transformed by lens Lj to form
the matched-filter output on the photodetector array.
This output consists of a set of focused spots of light
which indicates the positions of the matches. These
signals are then stored in O-SLM 2 and/or fed back to
the controller, which then uses this input to select the
possible conclusions from the set of facts.

Several options exist at this point, depending on the
nature of the query being solved. For example, the
controller could now load another part of the query
into E-SLM 2, -perform a second matched-filtering
operation, and with-S, closed and S» open perform a
logical AND (with O-SLM 2) of the second correlation
and the first which is already stored in O-SLM 2. The
output of 0-SLM 2 would then-be read out onto the
photodetector array. Thus the matched-filter infer-
ence.machine is capable of sequentially performing all
combinations of 2-D optical pattern correlations and
binary level logic operations on patterns representing
the data objects, rules, facts, and queries.

To solve the ? mother-of Jean query in Eq. (6), this
system would first examine the query for the specified
data objects (Jean in this case) and would then treat
the mother-of rule as if its variables were replacad by
the appropriate data objects. In this case, the effec-
tive mother-of rule would become

? mother-of Jean IF  Z married to ? AND

Z father-of Jean. @

Comparing Eq. (8) with the original mother-of rule as
defined in Eq. (4), the variables X and Y have been
replaced with the desired unknown symbol ? and the
data object Jean, respectively. Since the mother-of
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rule-has two conditions, the controller has to invoke
two matched-filtering operations.

The ordex-in which-the conditions are satisfied does
not matter since all of them must be true for the auery
to be satisfied. Since the-second condition s-the
data object Jean as a constraint, the first matched-
filtering operation-‘matches the father-of facts
(placed on E-SLM 1)-with the data object Jean (placed
on E-SLM 2). The-output of the matched-filter is
then a representation of all facts associated with the
condition father-of Jean. In this case, there is only
one fact associated with this condition, Bob father-of
Jean. The controller:then retrieves the father’'s name
Bob-and-matches the-condition'Bob married-to with
the set of facts. The second matched-filter output
points to the fact Bob married-to Beth. Finally,-the
controller simply associates the conclusion Beth with ?
and-returns the conclusion-to the operator.

In the case where there.dre several matches, it 1s
possible for the controller to match-all the resulting

conclusions with the next condition for full parallel-

ism. Furthermore, if no match is made (i.e:, no spots
of light above threshold on the photodétector array),
the-condition cannot_be satisfied, making the quer:
false.

The block electronic storage schemesuggested hera
isnot the most efficient means of storing the rules and
the facts because a single data object may be dssociated
with several different facts. However, because elec-
tronic storage is relatively inexpensive, block-form
storage does not appear to be inappropriate for the
initial investigations of these machines.

Since data objects are not expected to change often.
partitioning the knowledge base into blocks will gener
ally-not have to be done frequently. The advantage uf
block electronic storage is that it not only reduces the
data acquisition and retrieval time but also eliminates
the need to transfer-the entire knowledge base to the
spatial light miodulators which currently have uniy
modest space-bandwidth products.

B. Mapped-Template Optical Inference Machine

In the mapped-template optical inference machine
mapping templates are used to-store the relationship~
between the data objects and are thus defined by the
facts. Conclusions are inferred to queries by appiying
these mapping templates to the data objects in the
order prescribed by the rules. This usage of mapping
templates is similar to the associative nets described
by Willshaw and Longuet-Higgins.!0

Using the example defined by Eqs. (1)-(6), the rela-
tions is-male, is-female, married-to, and father-of
from the facts in Eq. (3) would map an input set from
D, the set of data objects defined in Eq. (1), to an
output set, also from D. Let D; and D, represent the
input and output sets of data objects. Furthermore,
let the data objects in the mth position of D;and D, be
denoted by d,» and d,n. Using the data set D for D
and D, as defined in Eq. (1), the mapping templates
corresponding to the is-female and father-of facts a-
defined in Eq. (3) are shown in Fig. 5 with the elements




{a) d.x is-female doy

Fig. 5. Mapping templates for (a) the is-female facts and (b) the
father-of facts for the entire set of data objects 1n Eq. t1).

(b) di father-of 4y,

of the input set D;(d;,) along the columns (x axis) and
the elements of the output set Dy(d,,) along the rows (y
axis) of the templates.

The mapping templates are binary masks-consisting
of transparent squares (logical 1 and shown as black
squares in Fig. 5) on an opaque background (logical 0
and shown as-whitein Fig. 5). The interpretation-of
these templates is as follows: A transparent square.in
the (x, y) position of, say, father-of indicates the fact

d, father-of d,,. 3]

Given these two templates, the mapping templates for
is-male and married-to are straightforward to gener-
ate.

Note that the mapping between D; and D, is not
necessarily one-to-one. However, a mapping tem-
plate is reciprocal in that if the right-hand side of Eq.
(9) is specified instead of the left, the relationships for
the left-hand side may be inferred from the template.

Alternatively, to limit the size of the mapping tem-
plate and conserve space, D could be subdivided into
subsets whose data objects are related in some way.
Considering the facts in Eq. (3), it is reasonable tosplit
D into a set of males and a set of females denoted by

Dn = Mike. Tom, Bill. Jim, Fred. B. b. Sami

= jKaren. Beth, Peg, Liz. Sue. ivan. Ruthi ‘o

where D,,, and Dy represent the male and temale sets.
respectively. With these subsets, the relationships is-
male and is-female would no longer be needed.

With the data set partitioned, the mapping tem-
plates for the factual relationships between the ele-
ments of D, and Dywould simply be the corresponding
regions in the original full-size mapping templates in
Fig.5. Fortherelation is-female and thedataset D,
the template would always be opaque.

To perform logical inferring, the mapping-template
concept is implemented as illustrated in Fig. 6. Given
an input vector D, the associated output vector D, for
a particular mapping template is found by first verti-
cally expanding D; along the y axis so it forms an array,
each row of which equals D;, as shown in Fig. 6. This
e'cpanded form of D;is then optlcally overlaxd with the
mapping template usmg imaging optics and a 2-D logi-
cal AND operation is performed. The resulting out-

-put, when viewed along-the rows, corresponds to-the -
output vector D,.

To perform the reciprocal operation of the mapping
template, the input vector would be expanded horizon-
tally and logically ANDed with the mapping template.
The output vector would then be taken looking down
the columns.

Depending on the mapping template, it is possible

for multipleinputs in D; to produce the same output

elementin D,. For this reason, a2-D output photode-

‘tectorarray is used for establishing the exact input-to-

output correspondence, should this be needed in solv-
ing the query.

A hybrid optical inference machine which imple-
ments mapped-template logic.is shown in-Fig. 7. It
consists of an electronic-controller, two E-SLMs, two

‘0-SLMSs, and a 2-D photodetector array. Like the
‘matched-filter optical inference machine, the control-
‘ler in-this system-electronically stores the knowledge
base and’ controls the SLMs and the shutter. The

modulator O-SLM 1 is operated in the logic mode and
usually performs the AND operation, while O-SLM 2
is used as a 2-D memory unit to allow further process-
ing of the outputs, and is optional.

When the controller is given a query by the operator,
a vertical lirie is written on E-SLM 1 at the location of

R R A e
A1D0A0RS je° I3
306G 1318

hd

Fiz 5 Conceptual implementation of mapped-template lugie

— *
US| K 33 W

Fig. 7. Mapped-template optical inference machine

78 15 March 1986 7 Vol. 25, No.6 / APPLED OPTICS 345




the known data objects-in D;. Then the controller
writes the mapping template corresponding to the rule
(or first condition) associated with the query onto-E-
SLM 2. The outputs of both E-SLMs are imaged onto
0O-SLM 1 with lens L;. The logical AND of:the two
inputs is formed in O-SLM 1 and imaged onto-the
photodetector array by lenses L, and L. If-desired,
the output could also be imaged onto O-SLM 2 by lens
Lo and latched. The stored output in O-SLM 2 could
then be imaged via lens- Ly back into O-SLM 1 by
opening shutter S:should-further processing be neces-
sary.

’I}"he output of the photodetector array is fed back to
the controller where the-inferred data objects in D,
which satisfy the- current mapping rule are deter-
mined. Further mapping templates are then applied
by the controller as determined by the query and rules.

Operation of this optical inference machine can be
demonstrated for the 2 mother-of Jean query in Eq.
(6). Aswith the matched-filter machine, the mapped-
template system considers the-effective form of the
mother-of rule given the data obiect Jean as specified
in Eq. (8). The controller first ses the mapping rule
template for father-of asshown in Fig. 5 and the input
vector corresponding to Jean, which is, from Eq. (1),{0
00000100000000]. Sincedeanis specified on the
output side of father-of, the input vector is expanded
horizontally rather than verticallyon E-SLM 1. Scan-
ning the rows of the output array produces the output
vector (000000000000 10} which corresponds-to
Bob.

The controller then feeds this output vector back to
E-SLM 1 as the input vector for the married-to map-
ping template. Since this input is on the right side of
the married-to rule, the vector is'expanded vertically
on E-SLM 1. The inference operation is repeated with
the married-to mapping template on E-SLM 2, pro-
ducing the output vector (view along the columns) [01
00000000000 0], which indicates the conclusion
Beth.

Since multiple outputs for the same data object
could be generated, viewing the rows or columns of the
output array could lead to an integral multiple of a
single light beam intensity. In this case, the photode-
tector output is electronically clipped to the single
light beam level if the photodetector output is to be fed
back:to E-SLM 1 as input via the controller.

If the optional optical feedback loop is not used,
thereis a possible modification to the system in Fig. 6
which will simplify the device requirements. Instead
of performing the logical AND operation in O-SLM 1.
the output of E-SLM 1 /the expanded input data vec-
tor) could be used to read out the mapping template in
E-SLM 2, thus eliminating the need for a 2-D optical
logic device. However, the advantage of having O-
SLM 1 is that (1) it can conveniently perform the
logical NOT operation on a condition, and (2) the
processed patterns are automatically latched into O-
SLM 1. This allows the controller to begin setting up
the next mapping template while it simultaneously
reads the photodetector array, thus providing some
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degree of concurrent operation.

Further possibilities for increasing processing speed
are to -place multiple mapping templates which are
spatially separated from each other on E-SLM 2; The
input data vectors on E-SLM 1 would have to be:repo-
sitioned accordingly. However, multiple inferences
could then be made in parallel.

V. Concluding Remarks

Basic architectures for a hybrid optical- machine ca-
pable of solving symbolic logic problems have been
discussed in general:terms. This:inference machine

‘was considered from both a rule-driven and query-

driven approach. Two hybrid optical designs of a
query-driveninference machine were described-which
used matched-filter logic and mapped-template logic.

In comparing the two designs, the mapped-template
system should be less demanding on the spatial resolu-
tion characteristics of the spatial light modulators and
should be easier to implement than the matched-filter
machine. Furthermore, the mapped-template system
should have better noise performance since there is no
analog processing in-this system. That is, all optical

signals remain encoded as binary intensity levels in the-

mapped-template system, whereas the matched-filter
system must contend with the noise from the analog
matched-filtering process, even though binary intensi-
ty input and output patterns are used.

Although two hybrid architectures have been pre-
sented, other equally effective system designs are pos-
sible. Given the growing interest in integrating sym-
bolic logic processing into the computer of the future,
the idea of downloading the inference operations of
scanning, searching, and matching to a parallel optical
processor merits continued investigation.

This.work was supported in part by the Air Force
Office of Scientific Research under grant AFOSR-84-
0358.
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ABSTRACT

Knowledge base systems (KBS’s)-are becoming i reamngly
more important for many scientific and-engineering apph-
cations. Over the-past few years, several rescarchers have
considered-optics for implementing KBS’s in an attempt to
capitalize on the potential speed and parallelisin.  [his-pa-

. per presents a review of recent research-effurts wivig with

a discussion of the relative ments and hnutatwns of using
optics as an implementation technology. Tu a larse «atent,
past efforts have focused on (1) representing huuwivdge s
ing matrix-like formalisms and (2) designing »ystcin archy-
tectures based on optical inner product processors (such as
matrix-vector multipliers) and optical correlaturs.  Actual
implementations are impeded primarily by the lumtations of
current spatial light modulators. New directiuns snciude the
use of symbolic substitution and neural networh wdeas.

INTRODUCTION

A knowledge base system (KBS) manipulates symbolic
information to produce useful output conclusion~ given input
queries or requests. Threé familiar examples are database
managers. relational database systems, and wference ma-
chines (such as expert systems). The knowlelee base con-
sists of sets of symbols and relationships between them. The
allowed operations are determined by the type of KBS being
considered. For example, if the knowledge base v a-database
{or relational database) containing records of wformation,
typical operations include sorting and searching.on specific
fields within a database record. For an inference machine,
the knowledge base is 2 collection of symbols and relation-
ships arranged as sets of facts (axioms) and rules Besides
searching, a fundamental operation of such a KBS is-infer-
ence (usually deductive). If the facts and rules are focused
on a specific area of knowledge, the KBS is known as an
expert system.

Conventionally, KBS's have been implemented in soft
ware on clectronic computers. The primary languages have
been LISP, PROL{G, and with specizalized hardware, PAR-
ALOG [1,2]. Witk the software approach, the knowledge
base and its as-r1a.cd operations arc programmed into the

CH2809-289/0003-1250 $1.00 © 1989 IEEE

KBS. More recently, a connectionistic (neural network) ap-
proach has been applied to an inference machine KBS to re-
alize a-trainable expert system {3]. This method allows facts
aud rules to be learned by a:KBS using a train by-example
prucedure on-knuwn sets of input queries and output conclu
sions.

While software based KBS’s have been- quite adequate
fur sinall to-medium size hnowledge bases, their performance
wan be degraded significantly by large and especially very
large knowledge bases. To process vast amounts of informa-
tiun, a large, fast memory that can be searched efficiently is
required. Herein lies the poténtial of an optical implementa-
tion of a KBS.

Optics offers a high degree of parallelism with its natural
two dimensional data path. This allows for efficient paral
lel searching techniy.es, particularly when holographic stor
age methods are employed. Furthermore, since light beams
can intersect with negligible interaction, large numbers of in-
terconnections between processing components can be made
with more flexibility than with electronic wires. To illustrate
the severity of the wiring problem, consider an optical data
path consisting of 1000 x 1000 pixels. Forming intercon-
nections between two planes with this format is relatively
straghtforward for an opuical system. However, electroni-
cally mterconnecting the 10% locations in one plane with the
10% locations n the second plane could require 10'? wires
i the worst case (i.e.. fully interconnected). Such a high
wiring density s effectively impractical for current VLSI
t\ery Large Scale Integration) technology.

In this paper, we present an overview of the basic ap-
proaches being considered for realizing optical KBS's. The
discussion begins with-a summary of the techniques for rep-
resenting symbolic information optically and continues with
a survey of the available optical hardware. Then, descrip-
tions of sclected optical architectures are given, followed by
a discussion of the relative strengths and limitations of these
optical systems. The interested reader is referred to Ref. -1
for arother view on the impact of optics on KBS's.

OPTICAL KNOWLEDGE BASE SYSTEMS

Representation of Symbolic Information

One of the fundamental design criteria for a KBS is how

83




Corporation-Name
“Address ;
- - Logo
City State
Zip Code Country .
Telephone Slogan

‘Figure 1 Example field structure for a corpuration database
record.

Corp.-1 Corp. 2 Corp. 3
Corp. 4 Corp. 5 Corp. 6
Corp. 7 Corp. 8 Corp. 9

Figure 2. Example record structurc fur a «orporation
database. Each corporation has a record entry like that
shown in-Fig. 1.

symbolic information is represented. In a database applica-
tion, the database usually is organized as an array of records,
cach of which is decomposed into a set of fiehls. For example,
in a database of corporations, each record could have ficlds
such as corporation name, address, telephone number, etc.
In an optical database system, the fields cuuld be arranged
in a suitable spatial pattern such as that shuwn in Fig. 1, and
this pattern would constitute a record within the-database.
An array of records could be organized into a matrix as illus

trated in Fig. 2, thus resulting in a twov Jimensional storage
format for the database.

In an optical inference machine. buth the basis symbols
of information and the relationships betacen them {which
form the facts and rules) are encoded in the knowledge base,
There are primarily two methods for torag this informa
tion. diffractive ype memories and e latonship matrices,
As shown in Fig. 3. a diffractive type metmory is an optical
subsystem that processes an input light shstribution using
diffraction to produce an output light distribution. The in-
put distribution represents either (1) the symbol, (2) a collee-
tion of symbols, or-(3) a portion of 2 symbel. The diffracted
output then corresponds to the associated or-inferred sym
bol implied by the input symbol in the first two cases or the
completed symbol.in the third case. Two examples of this
type of storage medium are holographic associative memo
ries (both hetero and auto associative) and matched spatial
filters (MSF's).

In a relationship matrix, a sy mbol of information s tep-
resented by a row and a column within the matris. \n ex-
ample format is shown in Fig. 1. The value of a matrix el-
ement, T,,, corresponds to the relative amount that symbol
5, implies symbol s,. In principle, T;, conld be a continuons

Undiffracted

Input:-Light Diffractive Light (ignored)

Distribution —— Optical Element
(Input symbols) (Relationships)

Output Light
Distribution
(Inferred symbols)

Figure 3. Diffractive-type memory-for stonng the knowledge
base.

Input Symbols

ABCD Relationships
A 0 010 A —- B
Output B- 1000 B — D
Symbole C 0 0006 O C -~ AD
D 01 1 1 D - D

Figure 1. Encoding relationships between symbols using
binary relationship matrix.

value, but in Fig. 4, it is shown as a binary value. Wah
2 relationship matrix, the inference process is sery sunna;
to an inner product operation like matrix-vector multipina
tion. For example, a binary input vector s has s, = 1 fin
each symbol ; that is active (0 otherwise). For a partic &
lar relationship matnix T, the set of output symbols impiie
by the sclected input symbols is given by thresholding .
matnia-vectur product Ts to form 2 binary output tettes
The thresholding operation is necessary to make the snpu
and wutput vectors compatible so other relationship mat:.
ces may be applied to generate further conclusions. The ¢
lationship matnx formatism includes the mapping tempine -
descnbed in Ref. 5 and the directed graphs and adjaer - .
matrices in Refs. 6-5,

By combimng a diffractive-ty pe memory with a relat..
shup smainx, more feabilits s guned for storing and a. <0
ing, a hnonledge base. This is the approach ased by seers
optical KBS's.

Optical Hardware

There are a varicty of general-purpose optical devines
that can be used i an optical KBS, Typically, an oplicas
KBS is 2 bybrid oplical/electronic system with the electron
ics serving to control the optics and to provide an inter
face between the user and the optics.  Consequently, fome
ciasses of devices ate needed. electrical-to-optical, opticas
ta-oplical, optical-to-clectrical, and specialized. Because
its unique coherence propertics, the laser is usually the hiar -
sonzce of choice and shaould be assumed below unless athe:
wise specified.

Electrical-to-optical devices, called electrcally -addeene ..
spatial hight modulators [E-SLM's), convert electrome « ¢




R ¥

SRR AT e wea

v rw e T o
i t et T R ety T

nals fromthe controlles into suitabls optical signala. For one-
dimuneional (3-D) inputs {vectors), azousto-optic light mod-
ulators and lincar arrays of hght-emitiing diodes- (LED's)
or laser diodes can be used, Two-dimensional (2-D) inputs
(matrices) can be realized with commercially available E-
SLWM’s such as the DightMod-{9]. With some modification,
portable liquid-crystal-display (J.CD) televisions also can bé
employed {10-12):

Optical-to-optical. devices, optically-addressed spalial
light-moduletors-(Q-SLM’s), cau_be used.as optical memo-
vies to stoxe intermediate <onclusions or as active processing
elements. Commercially available 0-SLM’s include the mi-
crochannel spatial Tight modulator (MSLM), the liquiderys
tal light value (LCLV), and the Pockels readout optical mod-
ulator PROM) [9]. Depending upon-their internal design,
these G-SL.M’s can differ significantly in the types of ac-
tive-processing operations offered. For example, the MSLM

-can perform logic functions and thresholding and-has-long-

term storage for-both analog and binary-level images-[13].
By comparison, the-LCLV also can implement logic -func-
tions and thresholding but only ‘has very short-term stor-
ay: [14,15)].

in addition to these commercia'l; available SLM’s,
many other SLM’s (both electrical-to-optical and optical-
to-oplical) ate currently under development {15}, including
bistable optical-devices (BOD'¢) [16).

Optical-to-elecirical devices (optical detectors) vransform
a 2-D light distribution into a seb of seria or parailel elec-
tronic signals that represent the output concluions-of the
optical KBS. Because of their usefulness in many other ap-
-plications, optical-to-elecirical devices ate the most well-
developed of those discussed so far. Examples of these
devices include -silicon photodetector attays and charge-
coupled-device (CCD) cameras.

Specialized-devices perform dedicated tasks that cannut
be-achieved.easily with any SLM. Besides-consentional op-
lical components such-a3 lenses, mirxors, and veamsplitiers,
fixed filter masks can be made from plotographic fil. u. Statie
diffractive elements can be formed using holegraphic film ard
dynamic-diffractive elements can be-reanized using photure

fractive crystals {17].

‘Fundamental-Optical Architectures

-Diffractive-Type Memory  The basic architecture for
implementing & -ditfractive-type memory s the correlator,
shown in rig. 5. It consists of two Fourier-transforming
lenses, Ly and Ly, and a diffractive-element arranged as a
coherent-oplical processor, The first lens-forms she 2-D spa-
tial-Fourier transform Jia(u,v) of theinput Light- dmnhutmn—

Uin{z,y) at the filter plone. Here, a diffractive-optical ele-
mept-such a3 o holographic filter o5 phiotorairactive crystal or
any other type of optical filter is placed. The vranymittance
of this element, Hg(y, v}, multiphies-the transiorm o,n(u ).
_ The light distribution exiting the diffractive element,
Un(u,v)Hn(u,v), is transformed back from the spatial
Fourier domain-into-the space domeain-by the second lens
to-produce-the output distrihution Upwlz, y). If the diffrac-

mf—@- A-f-s- RO 2 ....’.,.’
Coherent . — Gusput
Light ‘ Light
input Filter Ouiput
Plane Plane Plsne
Uin(=,y) Hps{u,2) Usut(=54)-

Figure 5: Basic optical correlator {spaca-invariznt).

Relationship Matrix
(Transmitiance Fliter)

Input .
Symbol . Output
Vector =~ Symbol

Vector

1-p
Thresholding SLM
or Photodetector

Figure 6, Optical inner product processor-for implementing
relationship matrices, Expansion optics net shown.

tive elemént. is a matched spatial filter (MSF), the output
plane will contain spots of light:at.the locations-in the input
planeof the-pattern being matched.

For example, in the database -record-shown in Fig. 2,
if the diffractive element was au MSF of a ity name and
the database of coiporation records was placed in the input
plane, then all corporations "1 that paiiiculer city would be
indicated by spots of light in the output plane. These light
beams would belocated at-the positions of the “city”field *n
the matching-records. This example illustrates the parallel
searching capabilities=of optics.

The -configuration shewn in Fig. 5 hae all planes and
lenses scparated by the focal leagth f  This setup per
forms space-invar.ant-provessing whereby a shift in-the inpuwt
Un(z,y) only causes the output Ypuelz.y) to shiit accori
ingly. However,.other clements {lenses, filters,.etc.) may be
added 1 addition to the distances being varied- {appropri
ately) to make a space-variant proceszor. In thic rase, the
output is not shift-invasiant but will change as thie input
light-distubulion is shifted,

Relaticnsiup Matrices Sinne relationship matrices zre
processed via a matrix-vector inner product with perhaps
a nonlinear thresholding on the result, this encoding scheme
can-be implemented using the-basic matrix-vegtor-processor
shown in Fig. 6. A vectorof light beams representing a set of
symbols is presented to the systen viaa 1-D SGM.:Ezch light
beam is spread-hotizontally using cylindrizal or fiber optics
{not shown) across a filter mask whose trapsmittances are
related to the values in a relationship matrix. This mask
can be implemented.using znother SLM.

The light then is-focused vertizally (using. cylindrical or




fiber optics again) onto a 1-D O-SLM or a linear photode-
‘tector array. Any thresholding operation that is needed is
performed by this device. Because of the crossed cylindrical
(or fiber) optics and the multiplicative transmittance mask,
this architecture implements the matrix-vector inner product
with complete parallelism.

Depending upon the type of relationship--matrix em-
ployed, it is also possible-to implement an effective inner-
product-type operation using the basic optical correlator in
Fig. 5. This method usually requires the correlation filter to
be encoded in a special way. Therefore, the details of th's
type of-approach only are referenced in-the next section.

Optical KBS Research

Several researchers have investigated various aspects of
optical knowledge base systems, particularly for inference
applications {5-8,18-29]. In this section, several of the ap-
proaches taken are summarized in terms-of the data repre-
sentations employed, the focus of the work with respect to
oplical-KBS’s, and the relevant optical architectures and is-
sues. The nomenclature used in the literature is retained
here and related to the general framework developed above,

The review focuses on inference machines-since most of
the research efforts have been directed towards this area. In
this type of KBS, the system is presented with a query and
tien conclusions are derived from the relationships in the
knowledge base using deductive inference. The conclusions
can be either yes/no responses or the set of symbols that
satisfy the query.

Warde and Kottas {5) present two architectures for an
optical inference machine based on a simplified implementa-
tion of PROLOG. Here, the relationships are used to con-
struct a set of facts and rules about data objects (the sym-
bols in Ref. 5). One architecture, shown in Fig. 7, stores
the relationships of a knowledge base in a diffractive-type
memory and uses an optical correlator as a matched filter to
infer new symbols from previous ones. The relationships are
stored holographically on O-SLM 1 via E-SLM 1 and can be
updated by the electronic controller as necded. The input
plane, filter plane. and output plane of the matched-filter
correfator are Py, Py, and Pg, respectively.  Alternatively,
plane Pg at the input to O-SLM 2 could be used as the cor-
relator output plane. In this case, 0-SLM 2 can be used to
perform additional processing on the image representing the
inferred symbols. Examples of such processing include ac-
cumulating sequences of inferred symbols and then combin.
ing them using thresholding and/or logic operations (AND’s,
OR’s, etc.).

The second architecture, shown in Fig. 8. implements a
relationship-matrix form of the knowledge base using optical
mapping templates. These templatés are binary transmis.
sion masks that, when used in an inner product processor,
can infer a new-vector of symbols from a given vector of sym-
bols The input symbols are written in an expanded form on
E SLM-1 by-the electrunic controller and the mapping tem-
plates are stored-on E SLM.2. In effect, the templates cause
E SLM 2 to become a-modifiable cross bar switch. The in-
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Figure 8: Mapped-template optical inference machine (from
Ref. 5).

ner product 1s formed by using the expanded vector of input
symbols from E-SLM 1 to read out the current mapping tem-
plate on E-SLM- 2. O-SLM 1 thresholds the output which
then can be latched into O-SLM 2 for further processing
or accumulation of results. The electronic controller has a
inore active role in this_architecture than in the-matched-




filter architecture because both the input symbols and map-
ping templates need to be updated as often as dictated by
the inference problem being solved.

Jau et.al. {§]-also have considered optical expert systems
from a PROLOG viewpoint and have investigated an ap-
proach based on relationship matrices that is similar to the
mapping templates of Warde and Kottas [5). They develop a
method for combining binary relationship matrices (fact ma-
trices) using matrix algebra into new relationships, allowing
more complex rules to be generated out.of the basis-set of
relationships and symbols (the facts in the knowledge base).
However, they extend-this formalism by presenting an algo-
rithm for updating the relationship matrices via an update
rule when new-information is available. The proposed:archi-
tecture is a general optoelectronic system based on optical
matrix-vector and matrix-matrix multipliers,

McAulay [18] uses a probabilistic relationship matrix to
develop a forward-inference architecture-for a-real-time di-
agnostic-expert system. In-this type of system, the-input
symbols-are a_set of-events or conditions and the output
symbols are a collection of hypotheses. A query consists of
a:particular set-of input events and the output-conclusion is

the probability that each hypothesis is true. In the medical

expert system described by McAulay, the input conditions
are symptoms and the output hypotheses are illnesses.

The architecture is shown in Fig. 9. Binary input symbols
(called events in Ref. 18) are presented to the system one at
a time on the 1-D SLM (left side of Fig. 9). This input is
split between parallel channels, each of which forms an inner
product processor. The 2-D SLM’s in each channel store a
relationship matrix. In one channel, the matrix is the set
of a priori probabilities that an input event corresponds to
a particular outcome, and the matrix in the other channel
stores the probability of an event occurring in the absence of
the particular outcome.

The outputs of these channels are detected by 1-D CCD’s
and combined in a set of N parallei processors to form a set
of a posteriori probabilities. These processors, in conjunc-
tion with another inner product processor configurad as a
do~bling summer, ~ompute the updated Bayesian probabili-
ties for each outcome (hypothesis) as each additional event is
given as input. Once all events have been processed, the out-
put of the final 1-D CCD array (on the nght side of Fig. 9)
contains the final probabilities of all outcomes given all the
events.

Eichmann and Caulfield {19] consider the same type of
problem as McAulay, although in a different context. They
present two methods for determining the clements of a rela-
tionship matrix which will aid in making decisions. The in-
put symbols are in the form of a binary knowledge vector that
contains the answers to several yes/no questions {the events
of McAulay [18]). The output is either a binary answer vec-
tor (one method) or a set of a posterior: probabilities (the
second method) indicating the inferred conclusions (which
hypotheses are true). Both methods are based on Bayesian
principles and optimal Gaussian classifiers, and an algorithm
for incrementally updating the relationship matrix elements
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Figure 9: Optical architecture for a real-time-diagnostic ex-
pert system (from Ref. 18).

(the weights) is prescribed. The implied optical architec-
ture utilizes threshold logic units in the conventional optical
matrix-vector and matrix-matrix multipliers (e.g., the inner
product-processor in-Fig. 6).

Szu and Caulfield [20}-employ relationship matrices as
associative memories. An interesting aspect of their optical
representation for the relationship matrices is that each ma-
trix value is represented by a 2-D binary submatrix rather
than a single transmittance. This submatrix allows particu-
lar attributes of a symbol to be incorporated into the knowl-
edge base, although it requires more space on an SLM. They
propose to input queries using SLM’s and to store the re-
lationship matrices in page-oriented holographic memories.
The paged memory uses many holograms, each of which
stores a subset of the total knowledge base. This method
al’sws the knowledge bzse to be increased by simply adding
holograms to the system.

Haney et al. [21] have investigated optical techniques for
increasing the cfficiency of heuristic searches. They use bi-
nary constraint matrices (another form of relationship ma-
trix) as a means of pruning a seaz~h tree through the knowl-
edge base before or during the search. In general, a con-
straint matrix is a binary-valued array indicating 2 special-
ized collection of facts which relate multiple sets of symbols.
Binary constraint matrices focus on two sets of symbols.

In Ref. 21, Haney et al. develop a set of 'inary con-
straint matrices using a consistent labeling problem as an
example. In this type of problem, there are N units {one set
of symbols), each of which is to be assigned one of L labels
{the second set of symbols). Let the units be denoted by
Uy, Uz,. .., up and the labels by §, ..., 1. Furthermore,
let R be a relationship that associates units with labels. Now,
a set of facts can be generated in the dyadic form “u, R-1,,"
and can be interpreted as “Unit i is associated with label
m through relationship R." A constraini matrix R(i,j) fin
Ref. 21] is an L x L matrix with binary elements rmn such
that r,, = 1 when the facts “u, R 1," and “u; R1." are con.
sistent with (i.e., satisfy) other constraints, such as each unit
must have a different label. These additional constraints are
actually higher level relationships which depend upon the
units, the labels, and the basic association relationship R.
If rmn = 0, both facts above cannot be true simultaneously,
and any other conclusions that would depend upon them can
be ignored.

With this formalism, the pruning of a search tree is equiv-
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Figure 10: Procedural-based optical inference processor
(from Ref. 23).

alent to a forward search through the-constraint matrices.
This can-be done using an optical matrix-vector multiplier.
To eliminate the j'" unit, the rows of R(3, j) are multiplied by
the-matrix R(j, k) to form the rows in the new (and stronger)
constraint matrix R/(i,k). This process can be repeated-to
reduce effectively the size of the search tree that needs tobe
traversed.

Casasent and his colleagues [6,22-25) have investigated
the use of knowledge base processing techmiques for ob-
Ject recognition, identification, and classification. These
researchers utilize an assortment of different architectures
based on the optical correlator shown in Fig. 10. The in-
put to this system (at plane Py) is an_image of objects to
be recognized rather. than an encoded- vector or matrix-of
symbols. A holographic filter containing a set of frequency-
multiplexed MSF's for the desired objects is placed in the
filter plane (P;). The spatial carrier frequencies cause the
output correlations for the objects to appear on different de-
tectors in the output plane (P3) [23].

The symbolic logic processor (unit)-after plane Pj 1s used
when various features of the objects are used to make the
MSF's instead cf the objects themselves. The electronic feed-
back loop from the symbolic logic processor to the filter plane
allows various filters to be synthesized and used to analyze
the image. As a result, more structured relationships such as
“Object A has all of the features of ubject B but aune of the
features of object C” can be processed. Since. in this exam-
ple, the features for B and C must be exarmmined first before a
determination about A can be made, this ar. hitecture imple-
ments a procedural-like algorithm to object recugmtion. The
symbolic logic processor can-be implemented using either an
clectronic controller or a more sophisticated arrangement of
optical correlators.

In the other work [6,22,24,25], Casasent and his col-

leagues develop other data representations based on directed-

and relational graphs (both forms of relationship matri-
ces) for performing object recognition using optical knowl-
edge base processing techniques. Furthermore, these au-
thors present alternative architectures such as space- and
time-integrating optical processors for directed graphs {6].
In another approach, multiple optical correlators are used
to implement a production system (a type of inference ma-
chtine) using both neural networh and symbulic substitution
ideas [26]. For further details, the interested reader 1s di-
rected to the references citea above.
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Figure 11. Block diagram of an optical resolution system
(from Ref. 29).

A rather novel approach to making inferences from sym-
bolic information is being investigated by Schmidt and
Cathey [27-29]. They are examining the use of mathemat-
ical resolution to make inferences as a means of avoiding
the often-large dynamic data requirements normally found in
artificial intelligence problems. This approach is unique in
that mathematical resolution is a “proof-by-contradiction”
method of inference.

Given a statement whose truth is in question (the query),
the process of mathematical resolution proves that the state-
ment is true by showing that the negation of the statement
contradicts the axioms (the facts and rules arranged from
the relationships and symbols in the knowledge base) This
involves accepting an input query in the form of a binary vec-
tor and combining it with the literals (the facts or axioms in
Refs. 27-29, also represented by binary vectors). The rules
of the knowledge base are used to test the resulting vec-
tors for tautologies. These tautology vectors can be reduced
further by eliminating nontautological vectors (conclusions
that contradict the knowledge base information) and useless
ur duplicate tautologies. This process may require several
iterations.

A bluck diagram of an optical resolution system is shown
in Fig. 11. [t combines five different subsystems.

1. A stack memory with parallel access for storing new

result vectors.

2. A processor to combine vectors in parallel.

3. A processor to reject nontautological vectors in paral-

lel.

1. A processor tu eliminate duplicate tautological vectors

in parallel.

5. A controller to monitor the vectors to end the iteration
Schmidt in Ref. 29 presents optical architectures for imple
menting these sub. _.tems. He has simula‘ed the systemon a
sample inference problem and compared it to a conventional
senal approach and has lcarned that the identification and
climination of tautologies (step 4 above) is computationally
the most significant steg of the optical resolution process.

A very different approach to syrbolicknowledge process
ing is considered by Derstine and Guha (7]. They propose
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Figure 12: Schematic of the SPARO architecture for an op-
tical finite state machine (from Ref. 7).

an optical architecture called SPARO (Symbolic Processing
ARchitecture 1 Optics) to implement a symbolic processing
language. Their work, along with-that of other researchers
already mentioned (Warde and Kottas [5] and Jau et al. [8]),
was influenced by the PROLOG language. In particular,
Derstine and Guha consider PARLOG, a version of PRO-
LOG in which predicates are evaluated in parallel rather than
serially.

The SPARO architecture is intended to selve a particular
symbolic processing problem, that of combinator graph-re-
duction in pure functional languages such as PARLOG. This
process involves reducing a combinator graph (similar to a
binary graph) to its simplest form that is consistent with the
relationships in the knowledge base.

The SPARO architecture is illustrated in Fig. 12 and
the corresponding optical data path in Fig. 13. It is a
type of optical finite state machine (OFSM) formed by lay-
ers of processing elements (optical logic gates) and optical
mterconnects. Sets of symbolic substitution optics in con-
junction with the interconnections effectively implement the
“microcode” between processor elements for performing the
graph reduction in parallel. As shown in Fig. 13, the opti-
cal data path 1s decomposed into an array of areas, one for
each processor node. A node is a collection of optical bits
that make up the state of the node (local memory) and an
interconnection register (analogous to a pointer in-a sofiware
data structure). There 1s no external ot addressable memory
system here.

With each iteration around the loop (cquivalent to one
machine cycle), the processor nodes are updated and the
new state information is broadcast to the appropriate desti-
nation nodes. In principle, it should be possible to reprogram
the system to perform different functions by redesigning the
symbolic substitution optics and the interconnects

Alternative Approaches

The idea of using symbolic substitution as a means of
doing optical processing is not new. However, the work by
Derstine and Guha (7] represents one of the first attempts at
using symbolic substitution specifically in an optical KBS.
Casasent and Botha [30] also have considered symbolic sub-
stitution in the context of multifunctional optical processing
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Figure-13: Optical data path-for the SPARO architecture at
the main processor plane in Fig. 12 (from Ref. 7).

systems based on multiple optical correlators. Several other
researchers have been working on optical-architectures for
performing general symbolic substitution [31-34). Work in
the field should be encouraged since this method is another
way to implement relationships between symbols.

Furthermore, the-theories of connectionistic (neural net-
work) computing offer several opportunities for optical
KBS’s. There currently is considerable work being done on
optical neural networks [35]. Given that neural networks
can be trained to perform a wide variety of tasks, this ap-
proach has the exciting possibility that the knowledge base
can be learned instead of programmed. Botha et al. {26)
have started to look at a combination of neural networks
and symbolic substitution for optical inference systems.

Other approaches include developing alternative data
representations. For example, Kottas and Warde [36] are
examining various neural network methods for incorporat-
ing the time domain into the representations of symbolic
information. This is in contrast to the relationship matrix
formalism in which the symbols are represented by static po-
sitions in thé matrices. One potential advantage of this ap-
proach is that the system could make use of its state space
more efficiently at the expense of slower data access, This
could allow larger knowledge bases to be considered using
current optical device technology. Preliminary results show
that the methods being developed actually could take ad
vantage of any imperfections or irregularities in the optiral
devices. Nevertheless, different data representation should
be considered in future designs of optical KBS’s.

Strengths and Limitations

Two of the advantages of an optical KBS implementa
tion result from the use of holographic storage techniques
and optical interconnects between processing stages, The
holographic storage offers large capacity, fault tolerance, and
parallel searching methods. Optical interconnects permut
large numbers of connections between pixels in two process
ing planes with low crosstalk, .

On the other hand, the development of practical optical
KBS’s, particulatly inference machines, is limited primar
ily by the SLM’s. Although some are commercially avail
able and many more are under development, current SLM's
have relatively low framing rates and resolutions. Thus




while the optical propagation:delay-between devices is neg-
ligible, the processing-delay within.an SLM is significant.
This also can cause input/output bottlenecks, particularly in
the electrical-to-optical and optical-to-electrical conversions.
Because of their limited resolution and finite device size,
SLM's can support only small numbers of symbols, either
for a database or a knowledge base: As a result, the optical
KBS architectures described above are usually slower than
‘their software counterparts. However, when large numbers
of symbols can be supported:by the SLM’s, optical KBS’s
could become feasible and cost effective.

SUMMARY

Optical knowledge:-base systems are still in the-research
stage. In the area of knowledge representation, several en-
coding schemes have been developed, although most rely on
some sort of matrix formalism. In the optics realm, vari-
ous system architectures have been proposed to implement
these enceding:schemes. These architectures are based pri-
marily on optical inner product processors (such as matrix-
vector multipliers) and optical correlators. Most of them
have been investigatated with theoretical analyses and/or
computer simulations. To date, few of them have been built
using real optical hardware. Because of device limitations,
particularly with spatial light modulators, :hese implemen-
tations are restricted to relatively small knowledge bases and
simple symbolic processing problems (like forward inference).
With improved devices, these architectures could prove to be
practical when large knowledge bases are considered.

In the -meantime, new methods for representing knowl-
edge and more advanced architectures are nceded that can
utilize current device technology. Fortunately, alternative
paths for research exist through areas such as optical neu-
ral networks and optical symbolic substitution techniques.
The future offers exciting potential for the development of
knowledge base processing systems based on optical imple-
mentation technologies.
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