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/( Abstract

This program-has investigated the use of limit cycles to represent and processing sym-
bolic information in the context of an inference machine. This-approach was proposed as a
means of overcoming problems with fault tolerance and relatively small space-bandwidth
products in current spatial light modulator (SLM) technology. The program has focused
on developing a storage medium with many limit cycles (oscillatory modes) available and
a method for coupling the various modes in a desired way. Because of their flexibility,
neural network ideas were used as the-basis for the components and algorithms developed.

In the theoretical realm, the program has had many accomplishiments. First, the
I self-oscillating neural network (SONN) model was developed and characterizcd as the

oscillatory medium. This model was designed with optical spatial SLMs in mind and
does not require any training or programming. Furthermore, it is highly tolerant of
static parameter variations inherent -in the optics.

Next, the spectral back-propagation (SBP) training algorithm was developed with
complete generality as a means of forming the coupling trajectories. This algorithm
trains input-output sequence into a network using an error criterion based on a Fourier
series decomposition of the sequences. The method allows the interconnects to have
trainable time delays in addition to the weights. his -capability -p roved very beneficial
when developing a transition-detecting network fo realizing the mdeco 'Vil e
algorithm also allows the cells to have finite bandwidt.T.

Both the SONN and the SBP algorithmn were combined to -demonstrate a simple
symbolic processing system based on limit cycles. The chosen paradigm was a finite
state machine (FSM), a simple starting point for building up to a complete inference
machine.

With respect to optics, an optical architecture for thc SONN model was designed.
This architecture is effecti~ely a specialized optical neural network based oil holographic

I interconnects between SLMb. To satisify architectural deriands, the program has devel-
oped a method for generating interconnection ,holograi ut,ii.ig a computer and current
color printer technology. The iolograms are phase-onily, li,te cry high efficiency, require
low cost processing facilities. and are expediently made.

DTIC AesitfAzi i r

J L C 193. Z.l¢ A t 1 ~k
ti

I s

.Di3t SpOi~iJ.



U
S
II

I
'I
I
I

I'
I
I
a
I
I
I
I
I

6 '1



I Contents

j1 Introduction 9

2 Self-Oscillating Neural Network Model 10

1 3 Spectral Back-Propagation Training Algorithm 15
3.1 Overview .................................... 15
3.2 Mathematical Basis for the Algorithm .................... 15
3.3 The Training Process ............................. 19
3.4 Performance Considerations ............................... 20
3.5 Discrete-Time Consideratio, ...... ........................ 21
3.6 Choosing Parameters ....... ............................ 22
3.7 Time Delay Wrap-Around ...... .......................... 22
3.8 Sample Simulation Results .............................. 99
3.9 Disadvantages of the SBP Algorithm .......................... 31

4 Limit Cycle Finite State Machine 31
4.1 Overview ............................................ 31
4.2 Limit Cycle Associative Memory ............................ 32
4.3 Cycle Transition Controller ...... ......................... 33
4.4 Next-State Controller ................................... 36

1 4.5 Simulated LC-FSM Results ...... ......................... 36

5 Optical Implementation Considerations 48
5.1 Optical SONN Architecture ............. . . . . . . . ..... . 8
5.2 Computer-Generated Hologram Development .................... 58
5.3 Computer-Controlled SLM Characterization ..................... 66

6 Conclusions 67

3 7 References 68

8 Hybrid Optical Inference Machines: Architectural Considerations 71

1 9 Trends in Knowledge Base Processing Using Optical Techniques 81

5 10 Publications, Conference Appearances, and Academic Theses Resulting
from DARPA/AFOSR Sponsorship 91

11 List of Personnel 92

I



I
I
£
I

ml

I
I
I
I
I
3
I
I
t
I
I
I
I
I



I(

£ 1 Introduction

The goal of this research program was to investigate the use of optics in symbolic pro-
cessing systems, and in particular, inference machines. These systems store information
in the form of relationships between symbols, usually arranged as a knowledge base of£ rules. Their function is to infer the answers to queries of the knowledge base by searching
through the set of relationships. The structure and function of an inference machine and
the necessary considerations for an optical implementation are discussed in more-detail

I -in Section 8.
The operational requirements for an inference machine are (1) to store many rules (i.e.,

have a large knowledge base capacity) and (2) to search the knowledge base very quickly.I1 Unlike numerical processors such as matrix-vector multipliers, inference machines do
not require large dynamic range. Thus, the parallelism and speed of optics offered an
attractive implementation technology.

The initial optical architectures for an optical inference machine were based on thresh-
olding matrix-vector multipliers. These designs are described in more detail in Section 9.
Unfortunately, these architectures suffered from two major limitations: small capacity
and low fault tolerance. A rule was represented by a matrix that encoded a particular
relationship between vectors of symbols. In the optical implementation, the rule matrices
were stored on spatial light modulators (SLMs). Therefore, the size of the rule matrices
and thus the symbol vectors was limited by the size of current SLM technology. Further-
more, if a pixel on the SLM failed, the corresponding element in all the rule matrices
would be altered permanently, thus causing all rules to be changed in an undesired way.

We proposed to consider a very different approach to designing an inference machine
for an optical implementation in hopes of solving these two problems. Instead of repre-
senting symbols using fault-intolerant vectors (fixed points), we have investigated the use
of limit cycles for this role. This form constitutes a dynamic, temporal representation of
information. A known disadvantage of this method is reduced access time since multiple
points along a trajectory must be observed in order to recognize the current cycle (if one
is even active).

I In order to construct an inference machine based on limit cycles, two fundamental
components are needed. The first one is a medium with many limit cycles (i.e., oscillatory
modes) available. Each cycle would represent a different symbol or a logical state of tile

SI machine. Ideally, this component would not require any programming or training. We
successfully developed the self-oscillating neural network (SONN) model for this purpose.
This model is designed with an optical SLM implementation in mind. It is described in
Section 2.

The second component is a method for coupling the cycles. Ideally, this method (1)
is not dependent upon cycle shapes, (2) can be reprogrammed or retrained as needed or
desired, and (3) does not perform any explicit conversions from a limit cycle (LC) to a
fixed point (FP).' We developed the spectral back-propagation (SBP) training algorithm
and a transition-detecting network for this purpose. Functionally, a transition detector

'This requirement is not necessary for a practical machine. It is included here to focus-on the study
of using oscillatory phenomena to represent and process information.

1 9
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achieves the first two characteristics, but not the third one. The SBP algorithm is
described with complete generality in Section 3

We demonstraced these concepts by simulating a finite state machine (FSM) based
on limit cycles (an LC-FSM). This computation paradigm offers a simple starting point
for building up to a complete inference machine. The simulated LC-FSM used-the SONN
both as an associative-memory for limit cycles and as an input source for the LC-FSM. I
In addition, the LC-FSM illustrated SBP-trained transition detectors for recognizing
transition conditions. This work is discussed in Section 4.

The optical-implementation considerations have focused on the SONN model because
of the latter's robustness. An optical architecture for the SONN has been designed and
is--discussed in Section 5. Besides 'the SLMs, the key component of this architecture
are the interconnect- holograms. Practical constraints require high efficiency interconnect
holograms which motivated the development of a-new approach to computer-generating
interconnection -holograms. This process we have developed takes advantage of current
color printer technology as a mechanism-for modulating the exposure of black and white
film. Computer generated color -masks representing desired phase-only functions were
photoreduced onto high resolution -black and white, and after developing and bleach
processing, each of the printer colors map to discrete phase levels as required by the
specified phase-only function. A total of 8 colors yielded a total of 8 discrete phase
levels which were used to construct arbitrary synthetic blazed grating interconnections
exhibiting -efficiencies of atleast 50%. In- addition, a computer-controlled system for
characterizing SLM parameters was- developed. This work also is discussed in Section 5.

2 Self-Oscillating Neural Network Model

The SONN model is an oscillatory medium with many modes (i.e., limit cycles) available
naturally. No training or programming is required. Furthermore, the existence of the
modes is highly tolerant of static parameter variations in the network parameters.

The structure of the SONN in shown in Figure 1. The network is a hierarchical
arrangement of smaller feedforvard networks called levels. Connections going up the
-hierarchy are excitatory with value CL, Similarly connections going down the
hierarchy are inhibitory with value -1f, = -1.

Each level uses the off-center, on-surround canonical- interconnect topology shown in
Figure 2. The central inhibitory interconnect has a weight -i-1 = -1 and the off-center
excitatory interconnects have weights Ct = -. For the levels shown in Figure 1, these
values correspond to a ratio of the total excitation to the total inhibition of -j. Simulations
showed that this ratio value is a good choice for robust oscillatory behavior to exist.

The cells in the SONN follow the model shown in Figure 3. They are governed by
the discrete-time equations,

UtJ] = w, yjt-i 3 - 1 + Xi,(1)

v,[t] = avit-1] + (I - ae)u[tI, (2)

10
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Figure 1: Self-oscillating neural network (SONN). Solid lines indicate excitatory
interconnects whereas shaded lines-denote inhibitory interconnects.
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M6C1-40X.NET Cycle Continuum

Each Input: 0.0 to 0.3 in steps of 0.02

X1

1.0
x, I

0.8 1
0.6-J

Y2

0.2-

0.0 Y10.0 0.2 0.4 0.6 0.8 1.0 3
Figure 5: Sampling of the continuum of cycles available in the SONN with constant
inputs. The weights were perturbed randomly by =16207c from the nominal values.
Similarly, the time delays were randomly selected from (0. 1.2.3. 1) iterations.

y-11 (,-.[) (3) I
where u,[t] is the weighted input .,uin for the ih cell. r,[1j is the liltered input suim I
with damping factor o=. y,[l] i l ihe cell output as formed by the output function S,.

wJ is the weight associated with -he interconnect front the .'h cell. and T,, is the Limtle

delay associated with the same interconnect. The nominal shape for a signoidal output 3
function is shown in Figure 1. Uur Ainplicity. the time delays, if present. are taken to be

integers here. In the simulations. the damping factor a_ %as .et t, 0.7 hich corresponded

to an effective time constant of approximately 2.N iterations.

A mode can be selected with either a constant (i.e.. FP) or cyclical (i.e.. LC) input.

Using constant inputs. a sampling or the cycles available is shown in Figure 5. The

particular SONN that generated tlh.,e . lrs had its weighik randomly perturbed by up i
to ±20% from their nominal values. ['uirtherniore. the network had a distribution of time

delays throughout the network with T, ranging from 0 to I iteration:, with a mean of 2 3
l-I 3



iterations. The periods of the- cycles generated by the SONN used in Figure 5 were all
approximately 64 iterations.

Simulations showed that (1) variations in -the interconnect time delays -create -diverse
cycle shapes and (2) the -SONN easily can tolerate static variations- of over ±20% in -its
network parameters (weights, sigmoid maxima and gains, -etc.).

The optical implementation of the SONN is discussed in Section 5.

3 Spectral Back-Propagation Training Algorithm

3.1 Overview

The SBP training algorithm is an extension of the convent,..Ial back-propagation
method [1] for training a neural network to learn a set of smooth input-output sequences.
It can adapt both the weights-and the time delays or any combination thereof. It can work
with either feedforward or recurrent networks. In addition, the cells-can have infinite-or
finite bandwidth using a first order approximation as in Equation (2).

The algorithm has been demonstrated successfully using computer simulations for
sevtLal different cases. It has trained a simple recurrent network with an infinite impulse
response (IIR) to learn continuous-time cycles. Similarly, it can train either the weights
or the time delays of a finite impulse response (FIR) network. Finally, it can train a
conventional feedforward network with vector input and output patterns.

3.2 Mathematical Basis for the Algorithm

Functionally, the SBP algorithm compares the spectral decomposition of the actual out-
put sequences to that of the desired output sequences to form an error measruement for
driving the adaptation.

Consider the continuous-time form of the cell equations given in (1)-(3):

,(t) = tv,)y(t-Tj) + x,(t), (0)

dv~i(t)
dt v (t) + ud(), (5)

Yj(t) = si(vj(t)), (6)
where a, = e- '/T. Assuming the output y,(t) is smooth and "slowly varying," it can be
approximated by the truncated Fourier series,

yi(t) E Z [Y 'cos(kwot) + Y1'.sin(kwot)] , (7)
k=O

where
To

I 0

* 15
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TO3
= k "O" yi(t) sin(kwot) dt, (9)

I for k =-o,
3k = (10)

for k>0,

and wo 2,71 where To is tthe period of -the current output sequence. Using the vector

notation

Iik= Y~k (12)3

the cell equations can be -transformed into the Fourier domain, resulting in: a
scos(kwoTj) - sin(kwoT j)

Vi = 1L + E [j •o]U (13)
j sin(kwoTi) cos(kwoT()

I -kwoTr

Vik =  1+ (kwoT,)2 Coik, (14)

ik Jyd(l)(15)
O [sin(kwot)J

For linear cells with
yu(l) = miV-(t) (16)

where mi is a gain constant, the spectral cell output is simply

Yk = m, k. (17)

Note that the transformation into the Fourier domain causes the time delays T, to
become a simple quadrature phase matrix. Similarly, the cell time constant r, becomes
an amplitude scaling factor that depends on the spectral frequency component kwo.

The spectral error criterion on which the training is based is obtained by comparing
the actual output sequence to the desired output sequence. In the time domain, the error 3
as a function of time is

ei1) = |1d)(j) - Yi( t)

16



where i refers only to the -network output cells here. The total error for the current
output sequence over all output cells (N) i's- given- by

TO 0 = - 2 e, ,(t) dt. (19)

In the same way, the total error over all output sequences is simply the sum of E for
each sequence. Since -this is a linear operation, the derivation below will be done as if
there only was one desired output sequence. The results- are then summed-over all output
sequences-to obtain the complete-error criterion.

Using Parseval's theorem, the error in Equation (19) can be approximated -by

E VZ (1 K [1 2(+[12) (20)

where E,& and E, k are-the Fourier-series -coefficients of the temporal-error sequence defined
in Equation (18). As in the conventional back-propagation algorithm, the weights -and
time delays are adapted according to the gradient descent driving term,

d = Azij (21)
adt -)

U where zij is either wij or Tij and r,() is the adaptation time constant.
The spectral cell errors can be defined as

" cOE

=ik : :(22)
OE

allowing the driving termi to be written as

'A zij :Ok + 6 (23)
k=O j i j

using the chain rule. Note that the 3pectral cell errors L are independent of z,, the
weight or time delay being adapted.3 The term that is dependent upon z%., OVkICz,., can be derived from the spectral cell
equations in (13) and (14). When z,, is the weight wo, OV&ikOwi. is given by

i__k Ak(Tij) -A 2k(Ti,) Yj'k. 1
awij A2k(Tij) Ak(Ti) Y, (24)

17
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where U
Alk(T 1) 1 [cos(kwoTj) - kwor, sin(kwoTi)] (25)

and-

AlkT, = 1 (krori)

A2k(anj) 1 [sin(kwoL?3 ) + kwor,, cos(kwoTij)] (26)1A~k(7i) =1 + (kworv,)2 +"

These coefficients incorporate the effects of both the cell filter and-the interconnect time
delays. When zij is the time delay Tj, aVik/8Ti_ is given by

SAk(Tij) -A 2k(Tj) dYj(.OT,--- -wj(27)
aTi1  1A2k(Tij) Alk(Tij) dY.]

where

= dy'k = To. dt -dt dt. (28)

3k -o sin(kwot)

Given the expressions for 0l,k/ 0 ,2 , only the spectral cell errors need to be determined
in order to compute the adaptation driving term Azjj. For an output cell,

K

5k = L Eik2 " V'kYk 2  (29)
k2 =0

in general. If the output cell is linear so y,(t) = mv,(t), the spectral cell error simplifies
to 

k = Mi;ik (30)

where ',k is the set of Fourier series components of the error sequence defined in Equa-
tion (18). However, if the output cell has a nonlinear output function S,, the spectral
components of v,(t) are spread across the frequency spectrum. [his effect is captured by
the term,

Y.kik2 a = v- a (31)

The components of this matrix can be calculated using:

aLlk-k l + , (32)

a6 Vkc [hI,-k + (k+k2)

2 L fi-, i'j~-k2 YiCk' k-2 )(33)

it 2LOlk-k21 fl(k+k 2)



|[ i(k+k 2 ) .* i(k-k 2 )] for k > k2,

aOyik 2 /i(k+k 2) 1(k-k 2) (4
O [ fL (k+k2 ) -+"2--o (34)

, 13(k2. k J for k < k2,

2 L(k+k2) i(k-k 2 )] for k > k2,
a's k 2[ 1(k+k2 ) P(k-k 2)J

fi k2___ o

a c(36)

where

= TO IS (v, ( ) dt (37)

o sin(kwot)

and S,(v) = dS,(v)/dv. Clearly, the nonlinear case involves much more computation
than when the cells are linear.

For a hidden cell (i.e., one whose output is not an output of the network), the spectral
cell errors can be computed using the recursive back-propagation relationship,

T

a yj,- a~ . (382
5k]jk A I Ak2(Tjj) 2k 2(Tij) ick2

J nb  _ [ ( (38)

When the hidden cell is linear, the back- propagation expression can be simplified to

C AlkTij) A2k(Ti3 ) 1 [sk
6Z:] J -A2k(Tj) Alk(Tij) [,k (

Using these expressions, the adaptation driving term Az,3 can be computed for each
adaptable interconnect.

3.3 The Training Process
A training epoch consists of cycling through all sets of input-output training sequences.
This process is illustrated in Figure 6 for two training sequences. For each training set,

19
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One Training Epoch I
I

Calculate A4 t) Accumulate Azij(t)
Set Azi(t) =0 [Adapt zy] and Adapt zi 3

Calculate Calculate
Sectral SectralI

Coeftents Coefcients

I/IA

Transient time: __ I Transient time: _
Converge onto LC Converge onto LC2 3

Steady state: Steady state:
Measure error Measure error 3

Input Input ---
Sequence #1 Sequence #2

(repeated 6 times) (repeated 6 times)
To = T To = 7

Figure 6: A training epoch.

the period To is set to be the period of the current input and output sequence. Then, the

input sequence is presented to the network n, times in succession. The first (n,- 1) cycles
provide the transient time during which all transients should decay away. During the n, 11

cycle, the various Fourier series components are calculated and the gradient information

in Az,, is accumulated. This process is repeated for each training set, at the end of which
time, the weights and/or time delays are updated according to Equation (21).

If ne is not large enough for transients to decay away, the spectral information com-

puted during the last cycle will not be valid. The resulting adaptation probably will not
converge onto a correct or even usable solution.

3.4 Performance Considerations

Several enhancements can be made to the SBP algorithm to decrease its average conver-
gence time. First, the weights and time delays can be updated after each training set
instead of after all training sets have been processed. Second, a momentum factor can be

20



introduced into the adaptation- driving term, producing a new driving term Az',[t] that
is given by
is gi[v] b a-- OmomAz Ij[t -1] + (1 - amo.)Azij[t] (40)

where Azi1 [t] is Azij at time step t and amm is the momentum factor. Typically, amom
is small (0.2-0.3). The weights- and time delays are then updated- using

zj[t] = z;t- 1] + (i - aoz))Az!j[t] (41)

whereaaz) -

Another enhancement is the inclusion of variable adaptation gains, so r; becomes
(')[t].- That is, each weight and time delay has its own-adaptive gain associated with it.

We used the SuperSAB (Super Self-Adapt;ng Back-propagation) method for adjusting
-these gains [2].

3.5 Discrete-Time Considerations

The discrete-time form for the cell equations is given in Equations (1)-(3). However,
other approximations are necessary to simulate the SBP algorithm. First, the Fourier
series components are computed using fhe approximation,

1 To- 1
-= y[fl cos(kwot) dt, (42)

0

AI
1To-i

' = - E y[t]sin(kwot)dt. (43)

The time derivative dy/d is approximated by the backward difference formula,

dy
-d L iu[tl = y[t - y[t- l. (44,)

Finally, continuous time dcl,t% can be approximated by a linear interpolator between
integral points. For examph., the vauc of [V " 5.3 iterations ago is approximated by

yJ,[-..31 (0.7)y,[t-.5] + (0.3),jy[t-6]. (45)

In general, T, can be decomposed intu a integral part and a fractional part such that

h = [J + ST,, (46)

where [T,] is the largest integer less than or equal to '1,, (i.e., the truncation function)
and U2,, is the fractional offset (0 < j, < I). The general form for the linear interpolator

i[- T t ,) - [7 J + (UTij) yj [t - [TjJ + ]. (47)

21



3.6 Choosing Parameters

The main parameters to select are n,, the number of cycles per epoch for each training set,
and K, the largest spectral component to compute. Several factors must be considered
when choosing both parameters.

In order for the Fourier spectral ., -'vsis to be valid, the network must be in a
dynamic steady state. Therefore, !, s. - be large enough so all transients -can decay
away. However, the larger n, s, 6 .. 0 "- runtime because each epoch takes longer
to compute. Thus, the selection ,., ,. oe an iterative process. If the network is
linear, an eigenvalue analysis can be p, tormed for a reasonable-set of weights and time
delays to determine the longest time nstant. Then, n, initially can be set to, say, 4
times this duration. In general, thot. a norlinear network can be simulated for an
initial set of weights and time dela-,. , he response time can be measured. Then,
n, can be set to some multiple ._f this time constant. During the training process, the
transient time can be 'measured to see if n, can be increased or decreased. Ideally, an
adaptive algorithm could be er.,loyed to adjust n, automatically, although we did not
experiment with any algorithms during the program.

By comparison, choosing K is much simpler, but the computation-speed tradeoff still
exists. Ideally, K is as large as possible to represent the spectral -information in the
sequences. However, as K increases, the computation, burder also increases, especially
for nonlinear networks. A working guideline is that in order avoid aliasing when calcu-
lating the Fourier coefficients, K should be less than To/10 where To is the period of the
shortest training sequence. This limit also places an effective bandwidth limitation on
the sequence to make it "smooth" and "slowly varying" in order to avoid alia.sing with
the spectral measurem-, ts, even when enough points are included in the calculation.

3.7 Time Delay Wrap-Around

When all training sequences have the same -period To, the time delays T, can become
"negative" by allowing them to wrap around 0 to To. Thus, if after an adaptation pass
T,3 < 0, the actual time delay can bc set to To + Tj. This wrap-around may lengthen
the transient response so nc must be large enough to accoir.modte this effect.

3.8 Sample Simulation Results

The simple recurrent network shown in Figure 7 was used to test the SBP algorithm on
an IIR network. Both the weights w12 and w21 and the time delays T12 and T21 were
allowed to be adaptable. The initial weights were set to 0.5 and the time delays to 0.
The input interconnect was fixed with w1o = 1 and T 0 = 0. The input sequence was

x1[t] = sin '(48)

22
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* x1(t) ' yy(t)

I 
12

IV 1-T 1 2 Y2(t)

Figure 7: A simple Hnear filter/oscillator with an ",finit impulse resporve (JIR).

3 so To = 200 iterations. The desired output sequence was generated by the network by
setting: -! = 49.498, , cr = 0.98,

W0 = 1, T10 = 0,
W21  1,T = 30,
W -1 , T2 = 30,

A total of five spectr;' ':omponents were computed, so K = 4. The number of cycles per
epoch was set to n, -= 2, allowing for I transient cycle. The evolution of the training
error E during the resulting adaptation is shown in -Figure 8. The evolutions of the
weights and the time delays are shown in Figure 9. The initial anU finai limit cycles are
illustrated in Figure 10.

These plots show the successfui adaptation performed by the SBP algoritli- mie
oscillations apparent in the evolution of the training error and the weights are . " -'d
by the gradient resets made by the SuperSAB adaptive gain algorithm. Sin e ortv one
training sequence was used here, the time delays were allowed to wrap around 0 to 70.

AThe delay T12 takes advantage of this ability as illustrated in Figure 9(b). If the wrap-
around is disabled, the .daptation sel.tles into an unsatisfactory local minimum, thus
preventing the training from completing-successfully.

Other simulations showed that various combinations of the weights and time delavsIcan be adapted. However, if the input interconnect [Iolo,Tol is allowed to vary, the
adaptation path is such that the network develops an cigenvalue that is very close to
1 -in magnitude. The resulting lOng time constant prevents the netwoik from reachingU0a steady state within the allocated time. Coincidentally, the adaptation converges to a
solution but this solution- is not correct because it cancels out the long transient response.

The SBP algorithm also has been demonstrated on the FIR network shown in Fig-

ure 11. The algorithm has trained successfully (1) the tap weights along the tapped delay
line and (2) the tap time delays with the tap weights set to 1. These cases corresponding
to training amplitude-only and phase-only FIR responses, respectively.
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Figure 10: (a) The initial (before training) and desired (final) output limit cycles.
(b) Snapshots-of 8 output cycles taken during the training process with 100 epochs I
between cycles. This plot shows the output cycle evolution as w 12 , w21, T12, and T21
are adapted.

z z Z ,,~

x[t] 3 " -P-.-

ho hi h2 hN.1 I

I

y[t]

Figure 11: Basic structure of a finite impulse response (FIR) network of length JV.

The amplitude-only case provides an indication of the strengths and weaknesses of
the SBP algorithm. With a tapped delay line with N = 25 cells, the impulse response h[t]
shown in Figure 12(a) was used as the desired output sequence and the input sequence
was a single unit impulse function. The total length of h[t] was set to To = 100 points to
allow a large range of K values to be tested. The corresponding spectral coefficients for
h[t] are shown in Figures 12(b) and (c).

With K - 6, the SBP algorithm can train the FIR network so that only the first
7 (include k 0) spectral components are matched. The resulting impulse response
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Figure 12: The desired impulse response for an amplitude-only FIR network and

its first 10 Fourier series coefficients. (a) The first 30 points in h4]. The remaining
points (70) are zero. (b) The cosine spectral coefficients. (c) The sine spectral
coefficients.
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Figure 13: The learned impulse response for the FIR network when K =6. (a)
The evolution of the total training error. (b) The resulting impulse response as
compared to the desired h*[l]. (c) The cosine spectral coefficients of the actual h[LJ.
(d) The corresponding sine spectral coefficients.
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Figure 14: The learned impulse response for the FIR, network when K =20. (a)

I I  The evolution of the total training error. (b) The resulting impulse response as

1 - compared to the desired h~t]. (c) The cosine spectral coefficients of the actual h[tJ.
I-I (d) The corresponding sine spectral coefficients.
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I,

x, Y5

X2 4

Figure 15: Dual-output XOR network. Cells 1, 2, 5,-and 6 are linear whereas cells
3 and 4 have nonlinear output functions. Cell 0 has a constant Output. All time
delays are zero.

is close to the desired shape but the trailing edge is not reproduced faithfully. When
K is increased to 20, the impulse response is much closer to the desired h[t], including
the trailing edge. However, when K is set to 24, there are only T0/K = 100/24 z 4
points per period of the sampling cosine and sine functions for computing the spectral
coefficients. This sampling is too infrequent and results in an aliasing condition. The
adaptation with K = 24 fails to converge and instead causes the tap weights to grow
without bound.

In a phase-only FIR network. the SBP algorithm can train either the tap time delays
or those in the delay line. Ilowc\(r. simulations showed tht the trained:FIR networks did
not have the minimum time dci, . necessary to implement the filter. Thus, some post-
processing of the resulting tiflle delays would be necchsary to realize a minimum-phase
phase-only FIR network.

The SBP algorithm also was sauccessfu: :,1 training a network to learn static patterns.
As an example, the network in Figure 15 was trained to- learn the dual-output exclusive-
OR (XOR) function described by the mapping:

Input Pattern -4 Output Pattern
X I X2 Y5 Y6

00 01
01 10
10 10
II 01

The output Y5 is the XOR output and Y6 is its complement. 3
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I With a feedforward-network of this type, the number of cycles per epoch (71,) should
be set to the number of layers including the input -layer. Thus, n, was set to-3 for this
network. The input layer should be included in this count because the spectral coefficients
for dyi/dt need to-be zero for-static training patterns.

13.9 Disadvantages of the SBP Algorithm

The disadvantages of the SBP algorithm with respect to the conventional back-Ipropagation algorithm are:

1. It is more demanding computationally. There is more overhead required to store
and maintain the spectral information. Furthermore, the back-propagation process
involves a vector quantity instead of a scalar quantity.

2. Convergence can be slower. Training information is-not collected at every time step
but only after the-entire output sequence has been-observed.

3. A steady state network solution must exist -for the training -to be successful. If
the network output is still on its transient response or is chaotic, the spectral
information will be invalid and will cause the adaptation to fail.

4. Arbitrarily shaped sequences -cannot be- trained because of aliasing concerns. The
discrete-time Fourier series of the sequences must be computable without any alias-5 ing.problems.

4 Limit Cycle Finite State Machine

4.1 Overview

A block diagram of a limit cycle finite state machine (LC-FSM) is shown in Figure 16. It
consists of a memory with many addressable limit cycles (e.g., a SONN) and a controller3 to govern the transitions from one cycle to another. The cycles produced by the memory
correspond to the logical FSM states. The inputs and outputs to the LC-FSM are
intended to be continuous-time limit cycles also, but fixed-point inputs and outputs arc
possible.

Like a traditional FSM, the operation of the LC-FSM is governed by a state transition
diagram. Each transition is determined by the current-state cycle from the memory,
the input cycle, and the relative phase between them. Thus, for the same state and
input cycles, several different state transitions are possible by assigning each transition
to a different relative phase. The total number of possible transitions is limited by
the resolution of the transition detectors, the phase-measuring components of the cycle
transition controller. These detectors will be trained-using the SBP algorithm to recognize'I the desired transition conditions.
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Figure 16: Block diagram of a finite state machine based on limit cycles (LC-FSM).

'As' Y .,

Selected Cycle o Self-Oscillating Cycle Cycle Select
Select (next state)(current state) .---- ', Medium- Latch (nxsae

Figure 17: Expanded block diagram of the LC-FSM memory.

4.2 Limit Cycle Associative Memory

The function of the memory in the LC-FSM is to store the current state of the machine.
An expanded block diagram of this component is shown in Figure 17. It has two com- -
ponents, a latch and a self-oscillating medium. The function of the latch is to accept,
recognize, and then store the current memory input if the recognition is successful. The
latch output is a fixed point corresponding to the cycle to be selected. The self-oscillating
medium produces a unique oscillation for a unique input. With the output of the latch
driving it, the self-oscillating medium thus generates a unique limit cycle as the memory
output for the most recently recognized memory input. Since the latch as a simple storage I
register, the main component of the limit cycle associative memory is the self-oscillating
medium. The SONN model presented in Section 2 is useful in this role.

I
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4.3 Cycle Transition Controller

A detailed block diagram of the cycle transition controller is shown in Figure 18. It
performs two tasks: (1) to-detect desired transitionszand request -the next state from the
memory, and -(2) to-generate the- desired output cycles and/or vectors.

The goal of the- first task is to transform-a multidimensional- oscillatory signal (two
limit cycles) and produce a single binary-like~signal: indicating the input has been "rec-
ognized." This signal then can- be used to "trigger a transition to a -new state. The
transformation should be sensitive to the amplitudes and -phases of the two limit cycles
(i.e., their shapes and relative phase). This task is the function of -the transition detectors
(TDs) and the in-phase recognizers (IPRs) in Figure 18.

A transition detector network is shown in -Figure 19. The network accepts-two cycles
as its inputs, the input cycle to the LC-FSM and the current-state cycle-from the memory
SONN. Cells D1 and D2 are linear and- respond immediately, so r, = 0-and yi = =u,5 where i is either D1 or D2 here. Cell DO is a constant-output cell with YDO 1 and
provides a source of trainable biases for the other two cells. All the weights and time
delays -are trainable, except for -the time delays associated- with cell DO which are fixed
at 0.

Because a transition detector contains- only a single layer-of linear cells, the training
process~using the SBP algorithm is very quick, particularly when the SuperSAB adaptive
gain algorithm is enabled. To learn a given set of input and current-state cycles, these
cycles are presented to the network at the desired relative phase and the output is trained3 to be the function,

Y1[ ]Y2[= 1+ sin, (7T, (49

- where To is the period of both cycles. This signal generates a linear limit cycle as shown in
Figure 20(a) and -indicates a recognized-oscillatory state. In order for the linear network
in [Figlire 19 to work, the input and current state cycles must have the same period,
but this period can vary from one to another transition detcctor. Note, however, that
either the input or the current-state (but not both) could be constant and not a cycle.
FurthermorL, the phase of the sinusoid in Equation (49) can be set arbitrarily.

The second component in the recognition process is the in-phase recognizier, shown
in Figure 21. This network consists of two heterodyne circuits in parallel. For both
circuits, cells 11-14, BI-B4, M-M4, and 01 and 02 are linear (yi = v,) and respond
instantaneously (r, = 0). However, cells M1-M4 have a multiplicative input structure
(as opposed to the conveitional additive form) such that

N,

11=t J[wijjyt-Tij (50)

where i is one of MI-M4 and j is one of either 11-14 or B1-B4, whichever is appropriate.
I Only the interconnects between cells 01 and 02 and M1-M4 are trainable. Both the

weights and the time delays are allowed to be trained. Cells 01 and 02 do not have
trainable biases as this would destroy the-recognition properties-of the network. Essen-3 tially, the two heterodyne ,ircuits create all possible cross products of the input with
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Transition Transition
Detector Inputs Detector Outputs

-(LC) (LC)

Current-State Cycle - X XY
(SONN outputs Yl, Y2) X2 YnI To In-Phase

Recognizer
Input Cycle inputs x1, x2

Constant-Output DO
Bias Cell

Figure 19: A transition detector network for the LC-FSM. All weights and time
delays are trainable here using the SBP algorithm, except for the time delays
associated with the constant-output cell. These delays are fixed at Tj = 0.

the input shifted by -0.5. Using the SBP algorithm, the intermediate outputs yi and

Y2 are trained to be 1 for all time when the input is the linear limit cycle described by
Equation (49). The SBP algorithm effectively combines the cross-products to cancel out
the oscillatory terms and leave only the DC value.

Cells G1, G2, and 03 are used to combine the outputs of the two heterodyne circuits.
Cells G1 and 02 have Gaussian-shaped output functions in the form,

s-(v) = - (51)

to select the region of the (YI,Y2) space about the point (1, 1). The gain was set to
M = 50 and the cell filters were activated with r,, = 20 iterations. The finite bandwidth
prevents trajectories passing over (1, 1) from being falsely recognized as being the desired
linear limit cycle.

I The actual threshold point for a decision is made by cell 03 using the sum of the
outputs of G1 and 02. Cell 03 is a thresholding cell with finite bandwidth (77 = 20
iterations) to inhibit any output oscillations about the threshold point vo = 0.8.

The final output of the complete in-phase recognizer (y3) is a binary signal -that is I
when the input is the linear limit cycle described by Equation (49). Because its function
is common to all transition detectors, the in-phase recognizer needs to be trained only
once and then replicated for each TD. When combined with a -transition detector, the
TD/IPR combination produces a I every time a transition condition (i.e., the right input
and current-state cycles) is present.
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(a) (b) (c)

Y2 Y2 Y2

A Y, Yi

Recognized Unrecognized States
State

Figure 20: Possible outputs for a transition detector. Only the near-linear cycle
shown in (a) -is to be considered a recognized state. Then, the input cycle and
the current-state cycle to t' is particular transition detector are amplitude- and
phase-matched, signifying oa condition for a state transition has been recognized.
The spatially-distributed cycle in (b) and the chaotic trajectory in (c) indicate no
state transition condition is present.

4.4 Next-State Controller

The outputs of all TD/IPRs go to the next-state controller as shown in Figure 18. This
network is a simple vector-to-%c(tor mapping network which forms the correspondence
between the detected transition (ondition and the next Atatc. Its function is to realize
the state transition diagram of the LC- SM.

4.5 Simulated LC-FSM Results

A LC-FSM based on the SONN presented in Section 2 was simulated to test the capa-
bilities of the TD/IPR networks. Although the SONN contains many cycles, only the
ones corresponding to the constant inputs (xi,x 2) = (0, [), (1,0), and (1, 1) are consid-
ered here. The cycles generated by these inputs will be referred to as 01, 10, and 11,
respectively. This SONN will -be referred to as the memory SONN. For simplicity, the
output of the LC-FSM is simply taken to be the current state of the memory SONN.

In~addition to the memory SONN, another identical SONN was used as the input
to the simulated LC-FSM. It is referred to as the input SONN. Before going into the
LC-FSM, the output of the input SONN is sent through a variable-length time delay to
allow the relative phase of the input SONN cycles to be adjusted manually with respect
to the current-state cycle from the memory SONN.
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Figure 21: An -in-phase recognizer network. The "-0.5" inputs come from aI constant-output bias cell such as DO in Figure 19. All time delays are 0 except
where labeled (2' = 1). These delays are needed to compensate for the unit prop-
agation delay through- cells Bl and B2. Redundant tells B3 and -134 are shown for

clarity to illustrate the two parallel heterodyne circuits.
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Figure 22: State transition diagram for the simulated LC-FSM. The (=:r/2) notation I
denotes a relative phase sihil with respect to the current-state cycle. I

The simulated LC-FSM implements the state transition diagram shown in Figure 22.
The LC-FSM states correspond to -the memory SONN cycles and the transitions are
:labeled with the input SONN cycles. Thus, if the memory SONN is oscillating in the
state 01 and the inpwu SONN is oscillating in the state 10 at the correct phase, the LC-
FSM should make a transition to the 10 state in the memory SONN. The actual SONN 3
cycles used and their relative phases are shown in Figure 23(a)-(b).

To demonstrate the phase sensitivity of the transition detection, two transitions from
the 11 state are induced by the 11 input cycle with two different relative phases. If the 3
input cycle leads the current-state cycle-by +r/2, the transition is to the 10 state. If, on
the other hand, the input cycle lags the current-state cycle by -r/2, the state changes
to 01. Since the period of the SONN -oscillations is about 64 iterations, a phase lead/lagI
of :7r/2 equals a relative advance/delay of 16 iterations for the input cycle with respect
to the current-state cycle.

As an example of the TD/IPR networks in operation, consider the transition 11 ---01

01. The response of the transition detector for this transition to all 8 transition conditions
is shown in Figure 23(c). For the corresponding in-phase recognizer, the- intermediate
output at cells 01 and 02 is shown in Figure 23(d). A composite view of the IPR graphs
is shown in Figure 24.

The discrimination capabilities of the combination of the TD/IPR networks now 3
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continued

Figure 23: The response of the transition detector and in-phase recognizer for
the transition 11 0i 01 to all 8 transition conditions. The end-bar on each cycle
indicates the starting point for the cycle. Transition #5 is the one by which
this transition is recognized. (a) The LC-FSM current-state cycle. (b) The LC-

FSM input cycle. (c) The output of the 11 1- 01 transition detector. (d) The
intermediate output (y,,y2) of the corresponding in-phase recognizer at cells 01
and 02. These plots are typical of the other transitions. Continued on the next

I page.
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Figure 23 continued.
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Figure 24: Composite view of the in-phase recognizer output for the tran ;ition
11 0 01 to all 8 transition conditions. This -plot is combination of the graphs
shown in Figure- 23(d). The shaded circular region around (1, 1)- is the recognition
region whereby a trajectory contained within indicates a transition condition is
present and accepted.

become apparent. The outputs of the TD mostly are shifted and scaled versions of the
desired linear limit cycle. However, the IPR separates these cycles into di; tinct parts of
the output space defined by cells 01 and 02. It thus becomes an easy task o decide if the
LC-FSM input cycle and current-state cycle correspond to a valid transition condition.
The cycle must stay close to the point (yi,y2) = (1, 1). With the parameters chosen for
the TD/IPIR networks, the cycle recognition is-done in under 3 periods and has a relative
phase sensitivity of about 70.

This particular transition (#5, 11 01; 01) was chosed because it was the worst case
of the 8 possible transitions. In the other cases, the IPR outpv'3 were more spread out,
making the discrimination even easier.

Given the set of 8 binary output signals from the TD/IPR networks, the next-state
selector network was designed to set and reset the latch for the memory SONN such that
the state transition diagram shown in Figure 22 was realized. The resulting -network is
shown in Figure 25 and its function table is given in Table I.

The latch network for the memory SONN is simply a pair of identical set-reset (SR)
flip-flops and is shown in Figure 26. Each flip-flop has two inputs, one for setting the
output to be 1 and the other for resetting the output to 0. The latching property
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Table 1: Input-output relationship for the next-state selector network shown in
Figure 25. The subscripts on the inputs correspond to the transition numbers
given in Figure 23.

Inputs from Outputs to Latch I
In-Phase Recognizers To Flip-Flop 1 To Flip-Flop 2

(Transition Number) (Set) (Reset) (Set) (Reset)
X 1 X2 X3 X-1 X5 XG X7 X8  y Y2 -Y3 Y4

1 0 0 0 0 0 0 0 1 -1 -1 1
0 1 0 0 0 0 0 0 -1 1 1 -1
0 01 00 1 -1 1 -1 3
0 0 0 1 0 0 0 0 1 -i 1 -1
o 0 0 0 1 0 0 0 -1 1 1 -1

00 1 -1 1
0 0 0 0 0 0 1 0 -1 1 1 -1
0 0 0 0 0 0 0 1 -1 - 1

I
Table 2: Function table for the latch in Figure 26.

Set Reset Output
Xl.X 3  X2X4 I YI, YI

0 0 hold
1 0 1
0 1 0

1 ( unstable)

4

4t2 3
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Next-State Next-State

* Selector Inputs Selector Outputs
(FP) (FP)

| x,
* Flip-Flop 1

In-Phase X S2 Y2 inFputs x1

Recognizer
outputs- (Y3) X5

X6 S - -Y3- To Latch
*7 Flip-Flop 2

X7 Sx4 A inputs x3, x4

X8
__w.=1

I ----- .W0-"1

I Figure 25: Next-state selector network. The weights are given in Table 1. There
are no time delays here.I
comes from the self-feedback connection on each cell (with a weight of 1) and the lateral
inhibitory connections. There are no time delays in any of the interconnects, nor is any
training required. The cells respond instantaneously (t = 0) and have a binary (on/off)
output function described by

r . 1 for vi > = v0,

si(vi) = (52)
0 for vi < Vo,

where the threshold vo = 0.9 and i is-either Ll. or L2 here. The resulting function table
for each flip flop is given in Table 2.

A block diagram of the complete simulated LC-FSM is shown in Figure 27. It illus-
trates the component networks and their relative interconnections. The only addition -is
an adjustable time delay TD so the relative phase of the input limit cycle with respect
to the current-state (memory) cycle can be varied. This ability is needed to establish
each of the 8 transition condif ions because of the high phase sensitivity of the TD/IPR
networks.
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Figure 26: The latch network for the associative memory in the LC-FSM. It consists
of two independent flip-flop networks, one for each input to the memory SONN.
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Table 3: Schedule for changing the input cycle delay TD and the resulting LC-
FSM state changes. The transition reference numbers (e.g., #4) are taken from
Figure 23. The times at which the transitions occurred are taken to be when the
latch outputs changed.

At TD Relative Transition Transition New -LC-FSM
Time t Set To Input Phase Occurred At Simulated State

0 0 00 - - 11
400 40 2250 593 #8 10

800 0 00 897 #4 11
1200 2 110 1310 #7 01
1600 43 2420 1808 #3 11

Before the simulation run, the memory -latch outputs were--set to (y1 = 1,y2 = 1)
and the memory SONN was run for 200 iterations to allow it to converge onto the 11
cycle. Then, the LC-FSM was simulated for 2400 iterations, during which time the input
SONN was set to the 11 state. Only the phase of this cycle with respect to the memory
SONN cycle was adjustable via TD. The schedule on which TD was changed is given in
Table 3. The state evolution of the LC-FSM during this run is shown in Figure 28. For
reference, the times at which TD was changed and when the resulting state transitions
occurred are shown with shaded vertical lines.

In this figure, the temporal trace and various state-space snapshots are shown for both
the input cycle to the LC-FSM as delayed by TD and the LC-FSM output as taken from
the memory SONN. Each state-space plots consists of the 64 points before the reference
arrow above the top (yi) trace.

At the bottom of the figure, the corresponding evolutions of the TD/IPR networks
along with the memory latch outputs are shown to illustrate the timing relationship
between all the signals. The TD/IPR trace actually is a superposition of all 8 TD/IPR
outputs. Similarly, the latch trace is a superposition of both yi and Y2 latch outputs.

Several observations can be made from Figure 28. First, the transitions occurred
within 3 periods of the input limit cycle as predicted by the TD/IPR discussion. Next, the
TD/IPR signals are usually very short in duration. Once the latch outputs have changed,
the memory SONN changes its output cycle, thus destroying the previous transition

11(+x/2) thr trnito 11 f/2
condition. Finally, the first transition . -1 10 and the third transition 11 4

01 show that the same input cycle can stimulate different transitions based on the relative
phase with respect to the memory cycle.

4
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Figure 27: Block diagram illustrating the interconnection of the component net-1
works in the simulated LC-FSM.
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Figure 28: State progression of the simulated LC-FSM.
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5 Optical Implementation Considerations

5.1 Optical SONN Architecture

The SONN model discussed in Section 2 and shown in Figure 1 on page 11 was designed
with an-optical implementation in mind. The SONN has the following desirable features:

1. All cells have the same nominal- output characteristic. SLMs with sine-squared- or
parabolic output functions effectively match the nominal sigmoid curve shown- in
Figure 4 on page 13.

2. The off-center, on-surround canonical interconnect topology within the levels sim-
plifies -the interconnect scheme and provides a low diversity of interconnects to
realize.

3. The model is very tolerant of static parameter variations (easily ±20%). These
variations can arise in several ways. First, the crosstalk within the interconnects can
appear as weight perturbations. A nonuniform readout beam effectively changes

Ymax, the maximum cell output value, over many cells. Similarly, nonuniformities
within the SLM can cause tile same effect, along with variations in the gain m of
the output function.

An optical architecture for the SONN depicted in Figure I is shown in Figure 29. ItI
is based on a ring of optically-addressed SLMs (0-SLMs) connected via interconnection
holograms (IHs). The O-SLMs implement the cell functions and are sequenced by a
computer controller. In Figure 29, O-SLMn contains the cells for the nth layer in each
level. For example, the cell arrangement for O-SLM1 is shown in Figure 30. This device
has the cells from the first layer iin all three levels. Similarly, tl-e second and third layers
of each level are on O-SLM2 and O-SLIM3, respectively.

The IHs are fixed, computer-generated holograms which realize both the interlevel and
the intralevel interconnects. The ititerlevel connections are made by 11i. Its interconnect
mapping between the cells on O-S LM I and- O-SLM3 is shown in Figure 31. The off-center,
on-surround canonical interconnect topology in the levels is implemented by 1112 and 11-13.
This intralevel mapping is shown in Figure 32. I

The input to the SONN is obtained from an electrically-addressed spatial light mod-
ulator (E-SLM) that is driven by the computer controller. Hologram 1111 performs the
input mapping from the input cells to the first layer in the first level. This mapping is
shown in Figure 33 for the case when the four input cells in the first level are independent
(in contrast to Figure 1 where they are derived from two external input cells).

The SONN output is collected by the controller using a two-dimensional photode-
tection device such as a camera or a photodetector array. This output is derived from
the last layer in the first level. Hologram 1114 forms the corresponding mapping from
O-SLM3 to the camera and is illustrated in Figure 34.

This architecture implements the discrete-time approximation of the continuous-time
network equations used in Section 3-with no time delays in the interconnects. In order to
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Figure 30: Cell layout for O-SLM1 in Figure 29 with respect to the SONN in
Figure 1. I

realize time delays, one way is to store the most recent N outputs (y,[t], yi[t-1], yi[t-2],
... , yi[t-N+1]) on the O-SLMs and have a shift mechanism update the outputs at each
time step. This method only provides integral time delays so no interpolation in time
is required (nor is it possible to do conveniently). In addition, the optical devices must
have larger space-bandwidth products. For example, if N = 3 so the values yt], y,[t-1],
and y,[t-2] are available, the -1 x 3 cell arrangement shown on the left side of Figure 30I
would become the 4 x 9 layout shown in Figure 35. The mappings performed by the
interconnect holograms would ha e to be modified slightly to use the desired (delayed)
output. I

If the O-SLMs do not have internal shift capabilities, the optical shift technique shown
in Figure 36 can be used. This figure depicts an O-SLM from Figure 29 with the shift
path. The key aspect of the shift path is the one-pixel offset in the positioning of the left
mirror (M) and beamsplitter (BS). This offset causes the O-SLM output y[t] to be fed
back into the input position corresponding to y[t - 1]. In order to work, this technique
requires that the O-SLM output does not change directly with the input. In other words,
the input light beams must be detected and measured first and then the output beam
updated.

There are two other issues which must be addressed for the optical-SONN architecture:
implementing mixture of excitation and inhibition with an SLM and realizing finite cell
bandwidth. The first issue stems from the fact that the input side of current SLMs are
square-law detectors and thus measure only the intensity of the incident light. Since the
intensity is always a positive quantity, it is difficult to realize an inhibitory input signal
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Figure 31: Interlevel connection mapping for 1111 from the cells on O-SLM3 toI those on O-SLMI.
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Figure 32: Intralevel connection mapping for IH2 from the cells on O-SLM1 to
those on O-SLM2. These interconnects realize the off-center, on-surround canonicalI
topology. The mapping for 1H3 from O-SLM2 to O-SLM3 is the same as IH2.
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Figure 33: SONN input connection mapping for IH from the E-SLM to the cells
on O-SLM1.

,I

* IH4 Input Plane IH4 Output Plane
(Output of O-SLM3) (Input to Camera)

Levels

123 y

3Cell 2 2
outputs 3 Inputs toI 4 output cells

Interconnect

direction

Key: - Excitatory interconnect C,0

Figure 34: SONN output connection mapping for IH4 from the cells on O-SLM3
to the camera.
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Figure 35: Cell output distribution on the O-SLMs when recent outputs are re-
tained. The arrows between the cells in the right diagram indicate the shift mech-
anism at each time step. !
to a cell on an SLM when the neighboring cell may have an excitatory input signal.
Previous methods such as implementing only inhibitory neurons [3] cannot be used here.
The SONN model tries to minimize this problem by having only one inhibitory input to I
each cell. Unfortunately, this approach does not solve the problem.

The second -issue addresses the sum filters in the cells. These filters are necessary for
generating piecewise-continuous (i.e., smooth in a discrete-time sense) cycles. The filters I
are optional if discontinuous limit cycles are acceptable, but this is not the case for the
simulated LC-FSM because the TD/IPR networks require continuous limit cycles for the
SBP training algorithm to work. Under exposing the SLMs while writing them offers an
approximation to the low-pass filter, but only until the SLMs need to be erased to avoid
saturation.

With these issues in mind, we have conceived a hybrid optical-VLSI SLM which solves
the inhibition and filter problems. In addition, it offers an elegant solution for realizing
time delays. A cut-away view of the proposed SLIM is shown in Figure 37. Its functional 3
block diagram is shown in Figure 38.

The SONN SLM implements the cell functions electronically and relies on optics to
do the interconnections. Unlike previous optical-VLSI devices [4-9], this device relies on
three-dimensional integration technique to create an input side and an output side. The
input side contains two photodetectors, one for the excitatory light and the other for the
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Figure 37: Optical-VLSI SLM for an optical SONN implementation. Each cell has
the functional structure shown in Figure 38. Only three of the four cells in a layer
as shown in Figure 35 are illustrated here.

inhibitory light. These photodetectors are connected through the bulk substrate of the
device via vertically integrated wires to the output side which contains all the processing
electronics. Thus, the three-dimensional integration needs to provide only a method for
connecting one plane with another plane with a few writes.

A difference amplifier performs the necessary subtraction to compute the total
weighted cell input, u,[t]. The cell filter follows and is shown as a simple RC low-pass
filter. An electronically controllable switch selects either the filtered form of the weighted
sum or the weighted sum itself to-be v[]. In this way, the filter can be either activated
for continuous-time cycles or deactivated for discrete-time cycles.

Finally, v,[t] is loaded into an analog latch at the next clock pulse. Also with this
clock pulse, the outputs of all the latches are loaded into the next respective latch in the
shift path. Once the latches have been loaded, their outputs are used to drive individual
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optical light sources such as laser diodes or LEDs via buffer amplifiers. The final output I
of the cell is a set of optical beams whose intensities are proportional to y[t], y[t-1], y[t-2],
... y[t - N + 1], respectively (N = 3 in Figure 38). All beams are on simultaneously.
Their uniqueness is maintained-by their spatial separation. If time delays are not desired, I
the shift path can be eliminated with the exception of the first analog latch.

The main disadvantages with -the SONN -SLM are mechanical support and thermal
cooling. Since both the top and bottom surfaces are active, the substrate can be mounted
only-on its sides. The substrate must be thick enough to provide sufficient rigidity and
durability. Fortunately, the thickness of the substrate-is not constrained by the electronics
because the substrate only contains wires. As for -the cooling issue, the cells in the center
of the device have limited- access to a heat sink. This access is necessary because the
laser diodes consume milliwatts of power as opposed to microwatts -for all the- other 5
electronics.2

Admittedly, a SONN SLM with all components mounted on one side would have
immediate access to a heat-sink and would be easier-to fabricate. However, it also would 1
complicate the interconnection- scheme because the input and output -light paths would
conflict. If this conflict could be resolved through a -redesign of the interconnection
holograms, the one-sided fabrication offers superior mechanical support, thermal cooling I
properties, and well-developed manufacturing techniques.

5.2 Computer-Generated Hologram Development

In addition to the SLMs, the interconnection holograms (IlHs) form the other major com-
ponent of the optical SONN architecture. Considering the practical optical demands
of the SONN architecture, general, flexible, and efficient IHs were sought. A computer
generated approach seemed the best suited for the requirements, but after a review com -1
puter generated hologram (CGII) fabrication techniques, we were motivated to develop
a-CGH process to create IHs possessing high efficiencies, generality, low processing costs,
and expedient scheduling. -Current high resolution color printer technology was used asI
a mechanism for creating multiple discrete phase levels in bleach processed silver halide
photographic film. This technique allowed for the creation of arbitrary Ills possessing
the necessary high efficiencies. I

Several techniques for creating CCI-Is have employed either binary or multiple step
representation for amplitude-only, phase-only, or amplitude and phase CGHs. The
Lohmann and Lee 1974 binary amplitude-only holograms encode amplitude and phase
information by defining a blocking area and its displacement within a CGH cell, but of
the many binary amplitude-only encoding techniques [12], these methods possess the
highest diffraction efficiencies of 0.1 -0.2%. These techniques are easily implemented with

2One possible solution is to place a glass covering over all the laser diodes. The thermal conductivity
of glass is an order of magnitude larger than that of air and thus would act as a better albeit transparent
heat sink. Another possible sulution is to make the substrate thick enough to allow a miniature cooling
system to be incorporated into it. Alternatively, the laser diodes could be removed entirely from the
SONN SLM and could be replaced by a reflective electro-optic material such as a miniature liquid crystal
display. In this case, the latches in the shift path in Figure 38 simply drive a high-impedance capacitive
load which requires very little power. The SONN SLM then would have to be-read-out using an external
laser with an expanded beam. 3
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a laser printer and pho.toreduction system but result with very poor optical efficiencies.
Multiple step amplitude-only CGHs encode phase and amplitude information by discrete
approximating the continuous gray level spectrum found when holograms are recorded
optically, but this technique requires a specialized gray level photoplotter and yields
marginal efficiency considering the amplitude-only nature.

A natural extension for efficiency improvement is phase-only encoding to eliminate
absorptive loss. Binary phase apprmaclics include binary Dammann gratings [13] which
provide controlled amplitude and phase relations in 1-D or uncoupled 2-D or direct grat-
ings for Fresnel lens implementation [14]. Dammann gratings provide efficiencies up to
about 75% but require very accurate phase transition placement and are impractical for
coupled 2-D functions. Binary Fresnel lens implementations are limited to a maximum
41% efficiency. To improve these efficiencies, multiple phase level approaches including
the kinoform and blazed surface relief elements have been considered [15, 16]. These
techniques represent the highest efficiencies achievable, but either require gray level pho-
toplotting or capital intensive processing equipment for glass etching.

Each of the above processes have their own merit, but high efficiency, low cost, flex-
ible, and expedient processed CGHs were required for the SONN architecture. Our
technique creates multiple phase levels in bleach processed black and white photographic
film by modulating film exposure with colors possessing differing spectral transmissions.
Figure 39 illustrates the entire process with cartoon style flow diagram. A convention
IBM compatible personal computer was used, but any computer is possible provided
the PostScript, a powerful illustration/documentation printer programming language, is
the ultimate file format. The PostScript program contains all necessary commands to
generate the ,i-:,qired color placement for CGH and IH implementation. The resultant
color mask was photoreduced with standard high resolution camera equipment on high
resolution black and white film, and photochemical processing developed and stabilized
the phase-only CGH image.

Current technology has allowed for the availablity of inexpensive color printers that
offer high resolution output. Of the many possible choices, we selected the QMS Col-
orScript 100 Model 10 for the quality of output and good price/performance ratio. This
printer cost - $8,200 and offered 300 dots per inch resolution with a total of eight solid
colors. Output from the printer was taken on clear transparency film for backlite illu-
mination during the photoreduction process. We constructed a vibration resistant high
resolution backlite copy stand for 30X photoreduction with off-the-shelf high quality opti-
cal components (camera, lens, and white sources). The input image plane possessed 5 to
10% illumination uniformity, and the photoreduced results were capable of approximately
200 line pairs per mm at an optical density of 3.0.
- The format of the camera was 4x5 inches, and we used high resolution black and
white film of that dimension. The selection of the film was extremely important for
the distribution of color exposed/recorded optical densities (in turn, optical phases).
Each color acts as a spectral transmission filter to the backlite white light source, and
thus narrowing the spectral power density impinging onto the black and white film.
The monochrome equivalent (luminance) of the printer colors yields a relatively linearly
stepped growing relation [17]. To maintain this relation, a film with a relatively flat
spectral' sensitivity was necessary so that linearily distributed optical densities would
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Figure 40: Nominal exposure color to density mapping for Kodak 649F.

result. Kodak 649F on a 4x5 inch glass substrate was selected, and the emperical
mapping of color to optical density is illustrated in Figure 40. For Kodak 649F, we
observed repeatable mapping for film plates within the same emulsion batch given uniform
processing conditions, but differing emulsions exhibited different photographic speeds
requiring exposure characterization for each emulsion. The chemical processing times
and conditions were optimized for the desired color mapping as illustrated [17].

Discrete phase levels were created by modifying the developing process to include
bleach. A reversal bleach- was selected for removing the pigment of the latent image by

eliminating all of the exposed grains. This process yields less phase, or retarded phase, in

the emulsion regions that experienced higher net exposures. The emperical color to phase
mapping is illustrated in Figure .11. We measured the phase changes with a modified film

substrate grading technique we developed. A slight angle wedge (imperfect microscope

slide) was sandwiched to the film plate being measured with index matching fluid, and

this wedge provided closely spaced, approximately straight fringes when the sandwich

was read out in reflection with a colimated laser source. The discontinunity of the fringes

due to differently (color) exposed regions was measured. By organizing the colors by

growing luminances, the ambiguity in phase measurement was eliminated.

The major limiting factor for our color to phase mapping process was the photore-

duced rolloff affected by printer anomalies and camera diffraction limitations. We ob-

served poor print quality at resolutions (one to three printer pixels per color) near the

resolution limit of the printer we selected. The modulation transfer function (MTF) for

30X reduced color gratings was measured for optical density and illustrated in Figure 42,

and by optical density to phase correlation, the phase rolls off in the same fashion. This
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Figure 41: Color to phase mapping at nominal exposure for several trial plates of
Kodak 649F.

rolloff issue was observed to affect the diffraction efficiency of the example applications.
As the first application, eight phase level approximated Fresnel lens were imple-

mented. The Fresnel lens diffraction efficiency was modelled for eight phase levels with
respect to the non-uniform phase step height and/or widths [171. A maximum diffrac-
tion efficiency of - 86% was determined (excluding insertion losses) for a given relative
density distribution of eight colors with uniform spacing. A sample side on view (optical
density - reverse contrast) of an example Fresnel lens implemented with color mapping is
shown in Figure 43, and bleaching removes the reversed contrast. This figure also illus-
trates how the outer Fresnel zones (smaller feature sizes) were rolled off which resulted
in a non-uniform phase modulation depth over the extent of the lens effectively reducing
diffraction efficiency.

We constructed a variety of single and compound Fresnel lenslet arrays possessing
differing focal lengths and aperture sizes. An example of two lenslet arrays is illustrated in-
Figure 44. We observed a peak measured efficiency of 67.2% for eight evenly spaced colors
(excluding insertion loss). Rolloff into the outer Fresnel zones retarded the maximum
diffraction efficiency from the 86% predicted peak. The highest efficiency 30 cm lens
exhibited a 130 zm spot size corresponding to a Gaussian beam predicted size of 117.4
yrm given the lens focal length and diameter of 2.4 mm. An insertion loss of 26.3%
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due to front and back surface Fresnel reflection, scattering, and a high absorption losses
was experimentally measured. A large absorption loss was due to staining by the bleach
used, but other reversal bleaches may possess lower insertion loss attributes. By exposing
lenses within an array differently, we were able to produce lenses of varying diffraction
efficiencies which allowed us to quickly characterize different film emulsions for maximumI diffraction efficiency with only one film plate.

Ultimately, we implewInwiited optical interconnections that offered a completely arbi-
trary nature with high oplt ,, power efficiency. Aibitrai interconnections can be cre-
ated with discrete l)hae l.wl approximated diffrative hlaw gratings (synthetic blazed
gratings) via a computer and this process. Figure 15 illu.trates how the grati^ng wereI constructed with color to phase mapping. The blazed grating was used in transmission,
and off-axis diversion or elevation, 0, was specifing with the period of the grating. Phase
depth of the grating is set to 2r or one wavelcngth, A, and thus the off axis diversion is
specified by

A
tan 0 = A-

where A is the period of the grating. For the interconnection examples we addressed, the
vector relative, x and y, dibplacements from the input plane tu the output plane defines
the grating period as follows

A -v/ +yi2

i . where d is the throw distance between the input plane and the output plane. The grating
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Figure 43: Optical density profile of a 30 cm Fresnel lens.

lines are rotated by
€=tan-1

within the input connection cell to provide azimuth control.
With .his interconnection methodology, we implemented an arbitrary interconnection

with a 5x5 input plane and spelled out "MIT" in the output plane. Off-axis and on-
axis cases were considered with emphasis placed on the on-axis case. The input-output
mapping for the on-axis case is illustrated in Figure 46. Using PostScript, the color
mask(s) necessary for the IHI was generated and photoreduced with an exposure level to
optimize diffraction efficiency. Figure 47 illustrates a photograph of the output plane,
and threshold functionality of photographic film effectively eliminated anomalous on or
off-axis noise.

For the on-axis case, the average diffraction efficiency was 54.2% with a peak efficiency
of 86.0% at the lower right corner of the M. The average contrast ratio was 11.5:1 with a
best case value of 18.2:1 and worst case value of 7.2:1 calculated against the average noise
-power. The-off-axis MIT -interconnection exhibited similar efficiency, but it possessed a
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i (a)

3Figure-44: FocaL plane photograph of (a)- a 5 x5 30 cm lenslet array and _(b) -a 15 x15
5- cm lenslet array.

higher average contrast ratio of 17.4:1 with a 22.6:1 best case and 13-6:1 worst -case
because the interconnection was directed out of the on-axis power region. Given the3 rolloff and diffraction efficiency as a function of resolution, off-axis deflection, 0, of 0.60
with at least 50% efficiency was realizable which corresponds to a 7.5 p'm minimum
feature size. Deflection of up to 0.78' with reduced efficiency was possible before printer

problems become insurmountable.

Ideal blazed profile

Figure 45: Construction of a synthetic blazed grating with the color to phase
mapping CGH process.
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Figure 46: On-axis MIT interconnection mapping.

I

Figure 47: Experimental construction of an on-axis MIT interconnection.

Considering these numbers, this color CGH process has provided an excellent mech-
anism for producing on-axis IHs with efficiencies > 50% and good contrast ratios. Other -
interconnection examples including the optical folded perfect shuffle and the sub-element
interconnection array for arbitrary fan-out (9 total connections) of input cells were im-
plemented with similar successes (17].

5.3 . Computer-Controlled SLM Characterization

We also developed a computer controlled system to quickly evaluate -the limitations of
spatial light modulators (SLMs) used within our optical systems. The parameters con-
trolled and measured included framing rates, framing dynamics, contrast ratios, MTFs, I
optical sensitivities, exposure dynamics, output uniformity, and input imaging. A PC
controlled data acquistion system with digital to analog-output was setup with serial-
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I controlled linear translation and rotation stages. Optical powers were measured with a
high sensitivity autoscaled power meter interfaced to the central PC with an IEEE-488
connection.

With a computer controlled Michelson interferometer, we were able to create arbitrary
high spatial frequency fringes and record them onto a microchannel spatial light modu-3 lator (MSLM), an O-SLM, under test. Using these fringes, we mechanically scanned the
magnified MSLM output image with a -fine -razor blade-apertured high gain photodetec-
tor, and under computer control, we collected all the necessary data to compile a MTF3: curve for the device under test. By recording a uniform input exposure, we scanned the
x and y output plane with pinhole mounted to the high sensitivity optical power meter
detector to determine the device output uniformity. The control software was- written in
a fashion to maximize flexiblity and reconfigurability dependant upon application.

* 6 Conclusions

The original- goal -of the program was to develop hybrid optical inference machines. In-
stead of expanding upon- the conventional approaches (based on nonlinear matrix-vector
multipliers), we opted to look at a different method. Because of problems with fault tol-
erance in the conventional approaches, we chose to consider encoding information using
limit cycles. This new approach created a whole new set of challenges and problems to
overcome. During the program, we solved many of-the problems associated with process-3- ing with limit cycles, but some issues remain unsolved with respect to a practical optical
implementation.

Given the unfamiliarity of processing with limit cycles, we chose to concentrate on a3 simplified form of symbolic processing, the finite state machine (FSM). The limit cycle
form of this computation paradigm (LC-FSM) requires (1) a medium that supports
many cycles and (2) a method for establishing couplings between cycles. The first task

3 corresponds to an associative memory for limit cycles and the second one is a controller
for switching between cycles. Because of their flexibility, neural networks were chosen as
the working medium.

In the program, we created the self-oscillating neural network (SONN) model for
solving the first task. This model- was designed with an optical implementation in mind.j It is very tolerant of static variations in the network parameters (easily in excess of
±-20%). In an optical implementation, these variations appear as nonuniformities in
the spatial light modulators (SLMs), the readout light, and crosstalk in the holographic

I interconnections. The SONN is well suited to the first task because it has many cycles
available with no training or programming required. They can be selected by either
constant or cyclical inputs. The SONN is an example of a component which will work

I- as an associative memory for limit cycles in a LC-FSM.
For the second task, we derived the spectral back-propagation (SBP) training algo-

rithm for creating a LC-FSM controller for limit-cycles. This algorithm-is an extension of
the conventional back-propagation algorithm to train input-output sequences. The SBP
algorithm uses discrepancies in the Fourier series spectra of the output sequences as an3 error criterion. This approach allows not only the weights but also the time delays associ-I' 67
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ated with the interconnects to-be trained. Furthermore, the cells in the-network can have
finite bandwidth via a first-order low-pass filter. We have demonstrated the algorithm
successfully on both feedforward and recurrent networks with both continuous-time and
discrete-time sequences.

In a simulated 3-state-LC-FSM with 8 possible transitions, theSBP algorithm allowed
us to develop a very simple set of networks (the transition detector and the in-phase
recognizer, TD/IPR) for recognizing a particular multidimensional limit cycle. These
networks can do the recognition in under 3 periods -with a very high amount of phase
sensitivity (70). They permit the same input and current-state cycle of the LC-FSM
to stimulate different transitions depending upon their relative phase. Furthermore, the
portions-of the TD/IPRs -whose weights and time delays are-trained by the SBP algorithm
are linear networks with no hidden cells. Thus, the TD/IPRs can be trained very quickly.
These networks form the-key component of the LC-FSM controller. They generate-binary
signals, each of which corresponds to a unique transition condition in the LC-FSM. The
transitions then can be made using a simple mapping network. The SBP algorithm thus
is useful tool for creating a LC-FSM. Using the SONN and the SBP algorithm, we were
able to demonstrate successfully a working LC-FSM using computer simulations.

The problems left unanswered by the program are associated with creating a practi-
cal optical LC-FSM, a intermediate -but necessary milestone towards -making a working
hybrid optical inference machine. We designed an optical architecture for the SONN and 3
developed a novel technique for making the required interconnection -holograms using
conventional color printer technology. This IH foundry provided efficiencies exceeding
50% expediently, flexibly, and at a low cost. We demostrated- arbitrarily defined IHs
with the color CGH process. However, limitations with current SLMs motivated us to
propose a new general-purpose hybrid optical-VLSI SLM. Development of this type of
device would greatly benefit the research into hybrid optical inference machines, partic-
ularly those based on limit cycles.
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Hybrid optical inference machines: architectural
considerations

I Cardinal Warde and James Kottas

Ii A class of optical computing systems is introduced for solving symbolic logic problems that are characterized
by- a set of data objects and- a set- of relationships describing the data objects. The data objects and
relationships are arranged into sets of facts and rules to form a knowledge base. The solutions to symbolic
logic problems involve inferring conclusions to queries by applying logical inference to the facts and rules.
The general structure of an inference machine is discussed in terms of rule-driven and query-driven cuntrul
flows. As examples of a query.driven inference machine, two hybrid optical system architectures are3 presented-which-use matched-filter and mapped-template logic, respectively.

I. Introduction tion computers are (1) to develop a machine capable of
A t logical inference and data base operations and (2)-to
A. Definitions design a language based on PROLOG that would--be

Symbolic logic problems involve, in an abstract suitable for inferring and representing knowledge.2

sense, a set of data objects and a set of relationships To solve a query, electronic PROLOG sequentially
describing the data objects. The data objects and searches for the knowledge base for the appropriate
relationships constitute a knowledge base which is rules and facts. This search process uses a flexible

generally arranged as sets of facts and rules. A fact is a pattern-matching technique called unification which
statement connecting a relationship with one or more involves searching, matching, and backtracking
data objects so that the statement is always interpret- through the knowledge base. 3,4 The performance-of
ed as true. On the other hand, a rule is a statement electronic PROLOG is limited by its use of serialsearch-
which defines a relationship using other relationships, ing and backtracking. PARALOG, an implementation
data objects, and/or facts. of PROLOG-which uses -parallel -unification, addresses

A symbolic logic problem is usually stated in the this issue and is currently under investigation 2

form of one or more queries which are questions con-
cerning relationships and data objects. The queriesI are answered by applying logical inference to the
knowledge base of rules and facts. This inference G. Roleof Optics

process generates a set of assertions (inferred facts) It is well known that 2-D parallel optical processorb
from the knowledge base. The solution to the queries, inherently perform high-speed pattern matching
therefore, becories a set of conclusions in the form-of Such systems should, therefore, be more efficient at
data objects, which is inferred from the set of asser- bearching than their serial electronic counterparts be
tions so as to satisfy-the queries, cause the parallelism eliminates the need for back-

tracking through the knowledge base. Furthermore.
B. PROLOG since searching and pattern matching processors do

Symbolic logic problems are relatively common. not require high accuracy or large dynamic range, opti-
They arise in areas such as -expert systems and other cal processors should in principle be well suited for
artificial intelligence applications. In recent years, symbolic logic processing.
the computer science language PROLOG has become a We believe, however, that optical inference ma-

tool for solving these types of problem on electronic chines should be designed to be compatible with elec
computers.' For example, two goals of fifth-genera- tronic computers. The goal should be to exploit the

strengths of both systems so as to realize hybrid infer-
ence -machines that are more efficient and versatile
than either purely electronic or optical computers.

The authors are with MIT Department of Electrical Engineering For example, an optical inference machine could po-
& Computer Science. Cambridge, Massachusetts 0219. tentially be integrated into an electronic fifth-genera-

Received 19 June 1985. tion computer so that a hybrid machine capable ol

0003.6935/86/060940.08$02.00/0. operating at speeds in excess of 109 logical inferencei
C 1986 Optical Society of America. per second (LIPS) could be produced.
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Fact ^D IKaren, Beth, Peg, Liz, Sue, Jean, Ruth,
D IMike, Tom, Bill, Jim. Fred. Bob, Sami.

BASE u'es- MACHINE Conclustons A set of relationships for D might be the possible
-relationships between the people, such as marriage,:'mother, father, male, and female. Let this set of rela-

tionships be denoted by

R = Imarried-to, mother-of, father-of, son-of, (o)
daughter-of, child-of;is-male, is-femalel.Fig. 1. General structure of an inference machine. The data objects and relationships are linked as a

collection of facts and rules which relate the elements

D. History ofDandR. In this example, the facts could be defined

Previous work in optical symbolic -processing was as

performed by several-researchers-in the-late 1960s and Mike is-male. Karen is-female.
early 1970s. Gabor,5 Akahori and Sakurai,6 Nakajima Tom is-male. Beth is-female.
et. at.,' and Lohmann and Werlich8 used holography as Bill is-male. Peg is-female.
the basis for their processing techniques. Willshaw et. Jim is-male. Liz is-female.
al.,9 Willshaw and LonguetmHiggins,' 0 and Gabor 5 ap- Fred is-male. Sue is-female.
proached the problem using associative network con- Bob is-male. Jean is-female.
cepts. However, during the 1970s and early 1980s, the Sam is-male. Ruth is-female. 3)

emphasis of research on optical- computing systems Mike married-to Karen. Bob father-of Peg.
shifted-to numerical -problems such as-matrix-matrix Bob married-to Beth. Bob father-of Tom.
multiplication,-'13 array processing, 14 and solving sets Jim married-to Liz. Bob father-of Jean.
of linear- equations.'15  Jim father-of Ruth.

More recently, there has-been a resurgence of-inter- Fred father-of Bill.

est in the area of optical symbolic processing. Using -these facts, the remaining relationships in R
Huang' "' has addressed the symbolic problem in a may be defined as rules. For example,
general sense, investigating algorithms and architec- 1
tures for performing symbolic substitution optically in X mother-of Y IF Z married-to X AND
classical finite-state machines. Furthermore, Z father-of Y,

Huang's and Fisher et al.19 have recognized that there X child-of Y IF Y mother-of X OR
Hag 8 Yfather-of-X (4)U

may be a possible role for optics in symbolic processors, son-of Y IF X child-of Y AND

particularly in solving certain classes of artificial intel- X is-male,
ligence problems. However, specific applications of X daughter-of Y IF X child-of Y AND
optical computers to symbolic logic-processing appear, X is-female, I
until now, to have been unaddressed.

In thispaper, the concepts associated with symbolic where X, Y, and Z are variables. The bodies of these

logic processors are introduced, and the general archi- rules (i.e., the part to the right of IF) consist of two

tecture of an optical machine capable of inferring logi- conditions, each of which could be-a fact or another I
cal conclusions from a set of -facts and rules is dis- rule. These conditions are then connected by the

cussed. The general system is approached from two logical operators AND or OR. In general, a rule could

different information flow patterns; rule-driven and have any number of conditions, and a condition could

query-driven flow. Two hybrid optical realizations have a logical NOT operation performed on it. For

for a query-driven inference machine are presented example. the daughter-of rule could be modified to

which use classical matched-filter logic and mapped- use the son-of rule by defining it with

template logic, respectively. The intent here is to X daughter-of Y IF X child-of Y AND
describe these systems from a conceptual point of view. NOT X son-of Y.

Therefore, no attempt is made to address all the issues To satisfy a rule, there must be at least one data
involved in realizing a practical system. value for all variables for which all conditions are si-

multaneously true. In the mother-of rule, there must
11. General Inference Machine Architecture be at least one value each for X, Y, and Z so that Z is

The general structure of an inference machine is both married to X and the father of Y. Using the
shown in Fig. 1. It accepts as input a set uf facts - 'a format of Eq. (4), additional relationships such as sis-
set of rules from the knowledge base and one k.. .e ter-of and brother-of are straightforward to define.
queries. The output of the inference machine ' t set Together, the facts in Eq. (3) and the-rules in Eq. (4)
of specific conclusions which are logica,, .ferred form-the knowledge base.
from the facts and rules in response to the queries. In general, a query into a knowledge base consists of

For example, a set of data objects could be a set of a rule with at least one variable. For example, a possi-
names of people. For illustrative purposes, let this set ble query of this knowledge base could be "Who is the
be denoted as mother of Jean?", which can be expressed as

15 March 1986 / Vol. 25. No. 6 / APPLIED OPTICS 941
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? mother-of Jean, (6) en system first uses the query to select appropriate

w r ?subsets of the rules and facts and then infers specific
wherek? represents thedeSiredunknown data object conclusions from these rules and facts.
From the knowledge base, only the -assertion Beth The- rule-driven system of Fig. 2 approaches the

mother-of Jean is true. Hence the conclusion of Eq. ideal parallel system in-that the assertion generator
(6) is that the query is true when? isthe data object produces the facts-and all-possible assertions from theUe-entire- knowledge base by replacing all the rules with

Given a query and knowledge base, conclusions can appropriate assertions. In the previous example, the
be inferred using either inductive or deductive reason- mother-of,child-of, son-of, and daughter-of rules
ing. In the-inductive case, conclusions of-a general wo thesertion
nature are inferred by the application of specific que-

ries to the knowledge base. The cardinality of the set Beth mother-of Peg. Tom son-of Bob.

of induced conclusions could in general be quite large, Beth mother-of Tom, Tom-son-of Beth.

and, in principle, conclusions not representative of the Beth mother-of Jean, Bill son-of Fred.

knowledge base would be possible. Liz mother-of Ruth, 7)
On the other hand, deductive reasoning produces Peg child-of Bob, Peg daughter-of Bob.

specific conclusions from a set of general rules and Peg child-of Beth, Peg daughter-of Beth.

facts, and the conclusions are always a subset of the Tom child-of Bob. Jean daughter-of Bob.

knowledge base. For simplicity and practicality, we Tom child-of Beth, Jean daughter-of Beth.

shall limit the allowed conclusions to the data objects Jean child-of Bob, Ruth daughter-of Jim.IJean child-of Beth, Ruth daughter-ofLiz.

within the knowledge base. Therefore, in this paper, Jean child-of Bet.
we will consider only machines based on deductive Ruth child-of Liz.

reasoning. Bill child-of Fred,

Block diagrams for two general architectures of a
deductive inference-machine are-shown in Figs. 2-and Thus the output of the assertion generator would be
3. Both systems have in common a knowledge base, the set of facts and assertions defined by Eqs. (3) and
controller, and inference filter. The functions of the (7). Note that the knowledg e is not updated by
controller areto (1) control the flow of information the assertion generator and that the output produced
through the-inference machine, (2) accept queries as by the assertion generator is computedonly once.
input from the operator, and (3) transmit conclusions As shown in Fig. 2, the assertion generator of the

to the operator as output. The knowledge base stores rule-driven machine transfers the entire set of facts
all the data objects-and relationships in the form of and assertions to an inference filter whose function is
facts and rules. The role- of the -inference filter is -to to match the queries from the-controller with the facts

generate a set of all conclusions possible given a set of and assertions -to determine the data objects which

rules and facts from the knowledge base. satisfy the queries. After it has determined-the con-

The system in Fig. 2 corresponds to a rule-driven clusions for the query, the inference filter transfers the

inference machine, whereas that in Fig. 3 represents a conclusions to the controller for output to the operator

query-driven inference machine. The systems are dis- In the example ? mother-of Jean, the inference

tinguished from each other by the methods they em- filter would compare the facts and assertions defined

ploy to infer the conclusions. In the rule-driven sys- by Eqs. (3) -and (7) with-the query given -in -Eq. (6)

tem, all possible assertions and facts from the Realizing that ? is the desired variable, the filter woula

knowledge base are generated ab intio, and thereafter find a-match between the query with-the third asser

the conclusions are derived from these inferences by tion given in Eq. (7) to obtain the answer Beth. In this

application of the query. In contrast, the query-driv- example, there was only one possible conclusion, but.
in general, several data objects may satisfy a query.

In contrast, the query-driven system of Fig. 3 is a
As oossiDte more sequential machine than the rule-driven systemINSSERTION assertions of Fig. 2. Given a query from the operator, the control-GENERATOR a nd facts -NEEC

WITH I FiLtER ler uses the rules associated with the query to select
SMEMORY subsets of rules and-facts from the knowledge base that

ul are relevant to the query. In the example of Eq. (6).
Rules Foods Ouerie Condus .os the mother-of rule is associated with the query. The

controller would examine the mother-of rule as de-
fined in the knowledge base and extract its condition

CONTROLLERrelationships married-to and father-of.
Once it has obtained the necessary subsets of rules

and facts, the controller transfers these subsets to the
inference filter along with the known data objects from
the query [Jean in Eq. (6)]. The inference filter then
matches the rules with the known query data to infer

Fig. 2. Block diagram of a deductive rule-driven inferente ma- the set of data objects which make the query true [Beth
chine, for Eq. (6)]. Finally, the inference filter sends the

942 APPLIED OPTICS / Vol. 25, No. 6 / 15 March 1986
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INFERENCE has short-term storage, such as the e-beam MSLM.2O

FILTER- An-example of an optical logic device which can per-
Conclusions form 2-D logic with memory is the photo MSLM,21,22

• .hcoblerules twhich is an optically addressed spatial light modulator

Rules associated and facts from (O-SLM). The logic operations that can be performed
with Queries knle aseinternally by the photo MSLM include AND, OR,

NAND, NOR, XOR, and NOT. The optical-to-elec-
KNOWLEGE CONTROLLER trical output device is a 2-D photodetector array. To

Rule Iobtain good noise rejection and low error rates, digital S
0ucries Conclusions optical signals (binary intensity levels) are assumed for

all input and output signals in the optical processor.
OPERATOR A. Matched-Filter Optical Inference Machine .

Fig. 3. Block diagram of a deductive quer) driven interenme ma- The general matched-filter optical inference ma- U
chine, chine employs analog pattern recognition techniques

and parallel optical logic to apply a set of given rules to
a set of facts to infer a set of logical conclusions to the i

conclusions back to the controller for output to the queries. This method is similar to the optical correlo-
operator. graph system described by Willshaw and Longuet-

When consideration is given to implementation of Higgins.' 3
an inference machine, the query-driven system may Figure 4 shows a specific implementation of a query-
appear more attractive than the rule-driven system. driven matched-filter hybrid optical inference ma-
This is because inferring the possible assertions and chine. This machine consists of an electronic control-
storing all the possible assertions and facts tn the rule- ler, two -E-SLMs, two O-SLMs, and a photodetector
driven system could be inefficient, expensive, and dif- array which is operated- in a thresholding mode. In
ficult to realize, particularly for rules which are recur- this and subsequent figures, it should be noted that (1)
sively defined (i.e., when the rule has itself as a the input light to the O-SLM is absorbed within thecondition). Consequently, only query-driven systems device and is not transmitted, and (2) the readout lightare considered in the remaining sections. is reflected out of the device by an internal mirror.In the matched-filter system of Fig. 4, the facts and
Ill. Hybrid Optical Realizatiom rules are grouped in block form (subsets) and stored

We shall confine our discussion to optical inference electronically in the controller for rapid retrieval and
machines that complement the electronic computer. transfer to the optical system. The two E-SLMs, 0-
A complete system, therefore, will be hybrid in nature. SLM 1, the lenses Lt, L 2, and L3, and the photodetector
This places design constraints on the input and output array are arranged to form a classical VanderLugt
interfacing devices of the optical system. The opti- matched-filter system.2 3 Thus lens L, is one focal
mum designs, therefore, are those that most effectively length away from the planes P, and P2, lens L2 is one
combine the individual strengths of optics and elec- focal length away from planes Pj and P4, and lens LI is
tronics. Two query-driven designs are described-be- one focal length away from planes P3, P5, and P. The
low, the first of which uses matched-filter logic in the multiplication of the Fourier transforms of the signals
inference filter, whereas the second is based on
mapped-template logic.

In these systems, the parallelism and speed of optics
are exploited to perform the functions of searching,
matching, and logic. The role of the electronics is to ...

perform information storage and retrieve and transfer N T .. .
data, rules, and operator queries to the optical proces-
sot. Thus in Fig. 3 the inference filter is the optical .- " -

processor, while the controller and knowledge base
constitute the electronic support system.

To implement these optical inference machines, " __, . ,
three types of optical devices are required: (1) an "
input interfacing device which converts electrical sig- .. t
nals to 2-D optical signals; (2) an optical logic device; "j A""

and (3) an output interfacing device for transforming
optical signals into electrical signals. The input inter-
facing device and optical logic device should exhibit at ' .:-
least short-term storage .du bw e

In the specific systems discussed below, the electri-
cal-to-optical input device could be any 2-D electrical-
ly addressed spatial light modulator (E-SLM) which Fig. .1. Matihed filter optical inference machine.

15 March 1986 1 Vol. 25. No. 6 I APPLIED OPTICS 943
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to be matched is performed in O-SLM 1, and the rule-has two conditions, the controller has to invoke
matched-filter output is recorded on the photodetec- two matched-filtering operations.
tor array (shutter $1 open,S 2 closed). The photode- The orde:- in which-the conditions are satisfied does
tector then transfers its output to the controller, not matter since all of them must be true for the query

If the query dictates that several rules must be ap- to be satisfied. Since the second condition s -the
plied-to the facts in succession, the resulting matched- data object Jean as a constraint, the first matched-
filter outputs can be combined by using the optical filtering operation matches the father-of facts
logic capabilities of Q-SLM-2. With S, closed and S2  (placed oil E-SLM 1)-with the data object Jean (placed
open, the logic output of O-SLM 2 can be imaged onto on E-SLM 2). The output of the matched-filter is
the photodetector array using lens L4 and the photode- then a representation of all facts associated- with -the
tector output fed back to the controller. This ability condition father-of Jean. In this case, there is only
permits rules to be applied as many times as necessary one fact associated with this condition, Bob father-of
to various-subsets of facts to generate the logical con- Jean. The controller then retrieves the father's name
clusions. Bob and matches the-condition-Bob married-to with

When operating the matched-filter optical inference the set of facts. The second matched-filter output
machine, the operator queries the system through-the points to the fact Bob married-to Beth. Finally,-the
electronic controller. In response, the controller controller simply associates the conclusion Beth with ?
writes the applicable subsets of facts onto E-SLM 1 and-returns the conclusion-to the operator.
and the applicable subset of rules onto E-SLM 2. This In the case where thereare several matches, it is
information is coded as a set of predetermined 2-D possible for the controller to match-all the-resulting
binary-levelpatterns. In the query example ofEq. (6), -conclusions with the next condition for full parallel-
the mother-of rule and the-complete set of facts in Eq. ism. Furthermore, if no match is made (i.e., no spots
(3) would be the applicable sets. of light above threshold on the photodetector array).

The controller then activates O-SLM 1 which holo- the-condition cannot-be satisfied, making the quer%
graphically records the Fourier transform of the facts false.
as formed-by lens Lt. The rules are similarly trans- The block electronic storage scheme suggested-here
formed by lens L2, and this transform is used to read is not the most efficient means of storing the rules and
out O-SLM 1 via mirror M, as shown in Fig. 4. The the facts because a single data object may be associated
output of O-SLM 1 is transformed by lens L3 to form with several different facts. However, because elec-
the matched-filter output on the photodetector array. tronic storage is relatively inexpensive, block-form
This output consists of a set of focused spots of light storage does not appear to be inappropriate for the
which indicates the positions of the matches. These initial investigations of these machines.
signals are then stored in O-SLM 2 and/or fed back to Since data objects are not expected-to change often.
the controller, which then uses this input to select the partitioning theknowledge base into blocks will gener

possible conclusions from the set of facts. ally not have to be done frequently. The advantage of
Several options exist at this point, depending on the block electronic storage is that it not only reduces the

nature of the query being solved. For example, the data acquisition and retrieval time but also eliminates
controller could now load another part of the query the need to transfer the entire knowledge base to the
into E-SLM 2, perform a second matched-filtering spatial light modulators which currently have onl%
operation, and with S, closed and So open perform a modest space-bandwidth products.
logical AND (with O-SLM 2) of the second correlation
and the first which is already stored in O-SLM 2. The B. Mapped-Template Optical Inference Machine
output of O-SLM 2 would then be read out onto the In the mapped-template optical inference machine
photodetector array. Thus the matched-filter infer- mapping templates are used to store the relation!hp,
ence-machine is capable of sequentially performing all between the data objects and are thus defined by the
combinations of 2-D optical pattern correlations and facts. Conclusions are inferred to queries by apply ink
binary level logic operations on patterns representing these mapping templates to the data objects in the
the data objects, rules, facts, and queries, order prescribed by the rules. This usage of mapping

To solve the ? mother-of Jean query in Eq. (6), this templates is similar to the associative nets described
system would first examine the query for the specified by Willshaw and Longuet-Higgins.t0
data objects (Jean in this case) and would then treat Using 4he example defined by Eqs. (1)-(6), the rela-
the mother-of rule as if its variables were replaced by tions is-male, is-female, married-to, and father-of
the appropriate data objects. In this case, the effec- from the facts in Eq. (3) would map an input set from
tive mother-of rule would become D, the set of data objects defined in Eq. (1), to an

? mother-of Jean IF Z married to ? AND output set, also from D. -Let Di and Do represent the
Z father-of Jean. (8 input and output sets of data objects. Furthermore.

let the data objects in the mth position of Di and D,, be
Comparing Eq. (8) with the original mother-of rule as denoted by dm and dom. Using the data set D for D
defined in Eq. (4), the variables X and Y have been and D0 as defined in Eq. (1), the mapping templates
replaced with the desired unknown symbol ? and the corresponding to the is-female and father-of facts a-
data object Jean, respectively. Since the mother-of defined in Eq. (3) are shown in Fig. 5 with the elements
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I
J,, . put, when viewed along the rows, corresponds to-the*

_. -output vector Do.
I KatTo perform the reciprocal operation of the mapping

..... ________ _ : , template, the input vector would be expanded horizon-
pegL I I ILIe tally and logically ANDed with the mapping template.
"a 'The output vector would-then be taken looking down

Afilie d the columns.
_____------_-_- Depending on the mapping template, it is possible

,__.___ _ ,I._ for multiple inputs in Di to produce the same output-I ___ _____ element in Do. For this reason, a 2-D output photode-

t l-f a ntector array is used for establishing the exact input-to-
output correspondence, should this be needed in solv-

(a) d,, is-female doy W di, fother-of doy ing the query.
Fig. 5. Mapping templates for(a) the is-female facts and Nb the A hybrid optical inference machine which imple-

father-of facts for the entire set of data objects in Eq. 1I). ments mapped-template logic is shown in Fig. 7. It
consists of an electronic controller, two E-SLMs, two

of the input set Di(di,) along the-columns (x axis) and -SLMs, and a 2-D photodetector array, Like the
the elements of the output set D 0(d,) along the rows y matched-filter optical inference machine, the control-

axis) of the templates. ler in-this system electronically stores the knowledge

The mapping templates are binary masks consisting base and controls the SLMs and the shutter. The

of transparent squares (logical 1 and shown as black modulator O-SLM 1 is operated in the logic mode and

squares in Fig. 5) on an opaque background -logical 0 usually performs the AND operation, while O-SLM 2

and shown as white in Fig. 5). The interpretation of is used as a 2-D memory unit to allow further process-

these templates is as follows: A transparent square in ing of the outputs, and is optional.

the (x, y) position of, say, father-of indicates the fact When the controller is given a query by the operator,
a vertical line is written on E-SLM 1 at the location of

d,. father-of d9,. (9)

Given these two templates, the mapping templates for
is-male and married-to are straightforward to gener-
ate.

Note that the mapping between D; and D0 is not , :4 '
necessarily one-to-one. However, a mapping tem- "
plate is reciprocal in that if the right-hand side of Eq. .. ,Afli
(9) is specified instead of the left, the relationships for - I - -
the left-hand side may be inferred from the template. '" - ] _

Alternatively, to limit the size of the mapping tem-
plate and conserve space, D could be subdivided into
subsets whose data objects are related in some way. Err' : .: .
Considering the facts in Eq. (3), it is reasonable to split ' • ... :-,3
D into a set of males and a set of females denoted by -

D, = iMike. Tom. Bill. Jim. Fred. ll, h. 'aml 1 Fz C ,nveptia implementatkn i, mapped-template I-'.

Di = IKaren. Beth. Peg. Liz. Sue. ;,,in. RuthL.

where D, and DI represent the male and female sets.
respectively. With these subsets, the relationships is-
male and is-female would no longer be needed. i

With the data set partitioned. the mapping tem- .. ,/. | - :
plates for the factual relationships between the ele- 7. . . -

mentsofDmandDiwouldsimplybe thecorresponding \- " " t1 -
regions in the original full-size mapping templates in .-7 .- -
Fig. 5. For the relation is-female and the data set Dn, . " ,
the template would always be opaque. *' " /

To perform logical inferring, the mapping-template ":: v
concept is implemented as illustrated in Fig. 6. Given " .
an input vector Di, the associated output vector D0 for r .. ,
a particular mapping template is found by first verti- .-

cally expanding Di along the y axis so it forms an array, -

each row of which equals Di, as shown in Fig. 6. This I
expanded form of D1is then optically overlaid with the
mapping template using imaging optics and a 2-D logi- ED
cal AND operation is performed. The resulting out- Fig. 7. Mapped-template optical inference machine
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the known data objects in Di. Then the controller degree of concurrent-operation.
writes the mapping template corresponding to the rule Further possibilities for increasing processing-speed
(or first condition) associated with the query onto E- are to =place multiple mapping templates which are
SLM 2. The outputs of both E-SLMs are imaged onto spatially separated from each other on E-SLM 2. The
O-SLM 1 with lens LI. The logical AND of the two input data vectors on E-SLM 1 would have to be-repo-
inputs is formed in O-SLM 1 and imaged onto the sitioned accordingly. However, multiple inferences
photodetector array by lenses L2 and L3. If desired, could then be made in parallel.
the output could also be imaged onto O-SLM 2 by lens
L2 and latched. The stored output in O-SLM 2 could
then be imaged via lens- L4 back into O-SLM 1 by IV. Concluding Remarks
opening shutter S-should-further processing be neces- Basic architectures for a hybrid optical machine ca-
sary. pable of solving symbolic -logic problems have been

The output of the photodetector array is fed back to discussed in-general terms. This inference machine
the-controller where the-inferred data objects in Do -was considered from both a rule-driven and query-
which satisfy the- current mapping rule are deter- driven approach. Two hybrid optical designs of a
mined. Further mapping templates are then applied query-driven inference machine were described-which
by the controller as determined by the query and rules. used matched-filter logic and mapped-templatelogic.

Operation of this optical inference- machine can be In comparing the two designs, the mapped-template
demonstrated for- the ? -mother-of Jean query in Eq. system should-be less demanding on the spatial resolu-
(6). As with the matched-filter machine, the mapped- tion characteristics of the spatial light modulators and
template system considers the -effective form of the should-be easier to implement than the matched-filter
mother-of rule given the data object Jean as specified machine. Furthermore, the mapped-template system
in Eq. (8). The controller first- ses the mapping rule should have better noise performance since there is no
template for father-of as shown in Fig. 5 and the input analog processing in-this system. That is, all optical
vector corresponding to Jean, which is, from Eq. (1),-[0 signals remain encoded as binary intensity levels in the-
0 0 0 0 0 10 0 00 00 0 01. Since Jean is specified on the mapped-template system, whereas the matched-filter
output side of father-of, the input vector is-expandcI system must contend with the noise from the analog
horizontally rather than vertically on E-SLM 1. Scan- matched-filtering process, even though binary intensi-
ning the rows of the output array produces the output ty input and output patterns are used.
vector [0 0 0 0 0 0 0 0 0 0 0 0 1 01 which corresponds-to Although two hybrid architectures have been-pre-
Bob. sented, other equally effective system designs are pos-

The controller then feeds this output vector back to sible. Given the growing interest in integrating sym-
E-SLM I as the input vector for the married-to map- bolic logic processing into the computer of the future,
ping template. Since this input is on the right side of the idea of downloading the inference operations of
the married-to rule, the vector is-expanded vertically scanning, searching, and matching to a parallel optical
on E-SLM 1. The inference operation is repeated with processor merits continued investigation.
the married-to mapping template on E-SLM 2, pro-
ducing the output vector (view along the columns) [0-1 This-work was supported in part by the Air Force
0 0 0 0 0 0 0 0 0 0 0 01, which indicates the conclusion Office of Scientific Research under grant AFOSR-84-
Beth. 0358.
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l
TRENDS IN KNOWLEDGE BASE PROCESSING

USING OPTICAL TECHNIQUES

Janies A. Kottas and Cardinal XVarde

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

Cambridge, Massachusetts, 02139

KBS. More recently, a connectionistic (neural network) ap-
A A proach has been applied to an inference machine KBS to re-

Knowledge base systems-(KBS's)-are becoming ao. rV,L'1gly ahize a- trainable expert system [3]. This method allows facts
more important for many scientific and-engineeruig tpph aind rules to be learned by a-KBS using a train by-example
cations. Over the-past few years, several reseirchtr. ha,e prvuedure on-kn wn sets uf input queries and output conclu
considered optics for implementing KBS's in an attempt to sions.
capitalize on the potential speed and parallehi i. 1,,_ pa- While softare based KBS's have been- quite adequate
per presents a review of recent research- efrt .ia;.g Aith for small to-medium size knowledge bases, their performance
a discussion of the relative merits and lniitatsuit. ,f ubing 4-an lie degraded significantly by large and especially very
optics as an implementation technology. Tu % ;ati;, ,.Ntnit. large knowledge bases. To process vast amounts of informa-
past efforts have focused on (1) representing k, ,edge t, tion. a large, fast memory that can be searched efficiently is3 ing matrix-like formalisms and (2) designing ii.t,, ,,rdi- required. lerein lies the potential of an optical implementa-
Lectures based on optical inner product processors (such as tion of a KBS.
matrix-vector multipliers) and optical correlatrs. A'tal Optics offers a high degree of parallelism with its natural
implementations are impeded primaril) by the ILtAtuniv of two dimensional data path. This allows for efficient paral
current spatial light modulators. New directuio, ,,,dude the lei searching techni,,es, particularly when holographic stor
use of symbolic substitution and neural netavfk ,,ta.'. age methods are employed. Furthermore, since light beams

can intersect with negligible interaction, large numbers of in-
terconnections between processing components can be made
with more flexibility than with electronic wires. To illustrate

INTRODUCTION the severity of the wiring problem. consider an optical data

A knowledge base system (KBS) manipulates symbolic path consisting of 1000 x 1000 pixels. Forming intercon-
i atntod e usef yte (KB s)ilate input nections between two planes with this format is relatively

uinformation to produce useful output conclusion- iven input, straightforward for an optical system. However, electroni-
queries or requests. Three familiar examph.' ,.re database tally interconnectng the" 10 locations in one plane with the

managers. relational database systems, and inference ma- 10 locatns i the secood plane could require 1012 wires

chine:. (such as expert systems). The knowlnLe,, bs;Le con-
in the worst case (i.e.. fully interconnected). Such a high

sists; of sets of symbols and relationships betwoenz tht-ni. The LilympatclfrcretVSwiring density is effectively impractical for current VLSI
allowed operations are determined by the type .,f [IS being wirng lent e

m considered. For example, if the knowledge base i, a- database In Lae e nt an teiology.
(or relational database) .containing records of iniformation, In this paper. we present an overview of the basic ap.

proaches being considered for realizing optical KBS's. The
typical operations include sorting and searching-on specific discussion begins wth-a summary of the techniques for rep-
fields within a database record. For an inference machine, resenting symbolic riformation optically and continues with

the knowledge base is a collection of-symbols and relation-

ships arranged as sets of facts (axioms) and rules Besides a survey of the a ilable optical hardware. Then, dscrip-

searching, a fundamental operation of such a KSgiven, followed by
cng, (usualydentaltive). Ifothefacts andesu ar fser- a discussion of the relative strengths and limitations of these

ence (usually deductive). If the facts and rules are focused optical systems. The interested reader is referred to Ref. .1

x specific area of knowledge the KBS is known as an for another view on the impact of optics on XBS's.expert system.

Convcnti6nally, KBSs have been implemented in soft OPTICAL KNOWLEDGE BASE SYSTEMS
I ware on electronic 'computers. The primary languages have OG

been LISP, PROLOt, and with specialized-hardware, PAR- Representation of Symbolic Information
ALOG f1,21. ith; the software approach, the knowledge
base and its as--',v.c operations arc programmed intu the One of the fundamental design criteria for a KBS is ho"

83

I CH280@-2I891000a-1250 $1.00 0 1989 IEEE



Corporation-Name Undiffracted

Address Input-Light Diffractive Light (ignored)
LooDistribution Optical Element "city State Loo(Input symbols) (Relationships) Otu-ih

Zip Code Country Distribution
Telephone Slogan (Inferred symbols)

Figure 1 Example field structure for a corpuration database Figure 3. Diffractive-type memory-fur storing the knoa ledge
rccord. base.I

Corp._1 Corp. 2 Corp. 3 Input SymbolsI
A B C D Relationships

Corp. 4 Corp. 5 Corp. 6 A_[T W A - B
Output B 100 B- D
Symbols C 10 0 1C - A.D

Corp.7T Corp. 8 Corp. 9 D D - D

Figure 2. Example record structure f~r a L.,rpuration Figure 1. Encoding relationships between s,%nbols umiiv,
database. Each corporation has a record entry like that binary relationship matrix.

shown in-Fig. 1.

symbolic information is represented. In a database applica- value, but in Fig. 4, it is shown as a binary value. %%thl
tion, the database usually is organized as ain array of records, a relationship matrix, the inference process is %cery biumi,.:
each of which is decomposed into a set of fields. For example, tv an inner product operation like matrix-vector multilpia
in a database of corporations, each record could have fields tion. For example, a binary input vector s; has s, I (..I

such as corporation name, address, telephone number, etc. each symbol j that is active (0 otherwise). For a parto & IIn an optical database system, the fields _.uld be arranged lar relationship matrix T, the set of output symbols 41114o-.
in a suitable spatial pattern such as that .liu'n in Fig. 1. and by thc selected Input symbols is given by thresholding i.
this pattern would constitute a record %%,ithin the-database. matrix-'-ector product Ts to form a binary output 16ct.~t
An array of records could be organized ;into a matrix as illus The thresholding operation Is necessary to make the ip.
trated in Fig. 2, thus resulting mna two d;mcnsional storage and output 'ectors compatible so other relationship tnat!.

format for the database. ces maybe applied to generate further conclusions. The re'
In an optical inference machine. b~tl, "he basis symbols lationsip matrix formalism includes the mapping tcmnpiu.

of information and the relationships h, t,% er. them (ahich ,l,.- rifivi in Ref. and the directed graphs arid a~
form the facts and rules) are encoded in iiihe knowledge base. ma~trice-s in icf-. 6; K.
There are primarily two methods for :..raig this iiiforma- hh uiihinin~ fr ai'cyp mei ayith a relat...
tion. diffractive type memories and rc. nship matries. mitrix, Inite flexil,- IS gainedt for storing and it.- -
As shown in Fig. 3. a diffractive ty6pe ifisur% Is an _Jptit al Ing rrmiledg ba-s. This is the approach Itsedlf 11.-r

subsystem that processes an input light distribution using optical KBlSs.
diffraction to produce an output light distribution. The in-. eia Hrwr
put~ distribution represents either (1) the symbol, (2) a collec- OtclHrwr
tion of symbols, or- (3) a portion of a symbol. The diffracted therte are a. variety of genecral-purpose optical de~i-r
output then corresponds to the associated or- inferred s.ym that can be used in an optical KI3S. Typically, an optirat

bol implied by the input symbol in the first two cases or the KBS is a hybrid opticalfelectronic system with the electron I
completed symbol- in the third case. Two examples of this Ics serving to control the optics and to provide an inter
type of storage medium are holographic associative memo face between the user and the optics. Consequently. fur
ries (both hetero, and auto associatit'.e arid matched spatial 4a:ac of devices arc needed. electrical-to-optical, opticas
filters (-MSF's). to-opt ical. optical-to-electrical, and specialized. Beeausr .-f

In a relationship matrix, a sy mbol of information ;s rep- it-. unique coherence properties, the laser Is usually the in:i
resented by a row and a column within the mnatrix. An ex- soiirce of choice and should be assumed below unless oth.-:

ample format is shown in Fig. 4. The value of a matrix el. wise specifiedf.
ement, T.,,, corresponds to the relative amount that symbol EleC(tricAl-t-optical deCVICeS, Called electriAlly air-.

simplies symbol j,_ In principle, Ti,, could be A contintious, spatial light modulators [E-SLMs), convert ehectronir
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nahs from-the coptroller into suitabte optical signalir. For one- ~I O~u
- . dzre:riii I in kt veor), acousto-optic light miud. Light, ' Light

ulators and lincar arrays of 'jiglit'ernitting d-,den_-(LEM') I V V
- ~ or laser diodes canx be used. Two-diniensional- (2-1)) inputs LI L2

(matrices) can be reaaized with commernially available E- nu ~ ltr Otu
SILMrs gcch-aa the LightMod-1(91. With some modification, Ilnu Filter Oulput

portab!e-!iquic4-erystrd -display (LCU)-televisions also can be U1 a(z, Planeu,~ Uutr i)

UOptcl-tootil- devices, Optically-addreWICed 3pt Fgr 5: Baaic optical- correlatar 'sa-in"""ant)

light -module.tors z(O.SLM's), cau-be used-as optical mio-igr
ties-to 3tore intermediate conclusions or as active processing

-~ elements. Commercially available O-SLM's include the mi- Mtosi a i
-~ -crochannel spatial-light modulator (NISLM), the liquidcrys- (Veastan i trx

tal light al ue (LCLV), and the Pockels reatdout optical-mod- (~nmtac itr
- ulator PPROM) [91. Depending upon-their internal design, Input Otu3 these O-SLM's can differ significantly in the types of c Symbol otu

tive-processing operations offered. For example, the MSLM Vector Syr-bol-
canl perform logic functions and thresholding and-has-long- Nrector

term storage for-both analog and binary-level images- [131. -D 11
-By comparison, the -LCL also can implement logic-func- SII Tr3hligLtions and thresholding but only-'has very short-term "tor-SLThsoligLN
a6. 114,151. o1r PhotodeteCtor

in addition to these commercia&l; tvailable SLNI's, Figure 6. -Optical inner product processor-for implementingI many other SLM's (both electrical-t-pia nidotcl relationship matrices. -xaso pisntson
to-optical) tire currently under development 1151, includin6
bistable optical-devices (BOD's) 116].UOptical-to-electrical d -evices (optical detectors)-tiansform tnve element. is a matched spatial filter (NISF), the output
a 2-D light distribution into a-6ei. of serial' or paralel dcc- plane will contain spots of-light-at~the locations-in the input
-tronic signals that -represent the output coacic.ions-of the plane-of the-pattern being matcbed.5optical I(BS. Because of-their usefulness in many other ap- For example, in the database -record- shown in Fig. 2,

- ~ -plications, optical-to-electrical devices are thie most well- if the diffr~cti ve elemnent was ani MSP of- a city itame an6
developed of those discussed so far. tyan~p;es of these the databate of coqoration records w as placed in the input
devices include -silicon photodectector arrtys am diar e- puete l oprtos> htp~cna iywudbI- coupled-device (COD) caineras. indicatf d by spots- of~light in the output plane. These light

Specialized -devices perform dedicated tasks that cenliut bcarns would be-located at-the positions of the 'city"-fleld
be-achieved-eosily with any SL Besjdes-c,.nf1ntional op- the inatfhing-records. This example illustrates the parallel
tical components such-as lenses, mirrors, and-bo~arnsplitters, searching capabilities-of optics.
-fixed-filter masks can be inade froin photographiic fil. Static 1" he -con figuration shown in Fig. 5 ha,- all planes an'd
diffractive (A -ont3 can be formed uskig hulograplnic-film atnd lenses separated by the focal1 length f This setup per

- dynamic-diffractive elements can be-reaized iising plioturq forms spat-c-nar~ant-prv,-essing1 a hereby a shift in-the imiput
-fractive crystals 111. U,~(z y) only causes the output y) to shift accor'-i

-. tcanna-itia rhtcue ingly. However,-other elemients (lenses, filters,,etc.) may be
FuriametaiOptial rchtecuresaddd i addtio tothedistances being varied- lappropri

-D~ffrciive-T,pe- Afeio The basic atrchitecture for ately-) -o ake a, spac-variant process-or. I-ti ae h(I- implementing r-dillfractive-type memory is the correlator, output is not shift-invariant but will change as the input
shown-in rig. 6. It consists of two Bourier-transforining light-distribu tion -is shifted.
lenbes, Ll and L7, and a diffiractive-elernent arra~nged as a Rd'atonsnip AMatrice-s Sire relationship matrices are
coherent -op ti cal- processor. The first ions-formns the-2-D) spa- piocessed via a matrix-vector inner prodluct with perhaps
tia[ Fourier transform Uin(u,v) of the-input light-distribution- a nonlinear threzholdirig on thr result, this encoding scheme
U1,,(x,y) at the-fitter-plane. Here, a diffractive-optical de- can-be implemented using the-basic. matrix-ve~-tor-processor
rneit-slich as a holographic filter o; photorofract ive crystal or shown in Fig. 6, A vectozi-of light beams represeating a set of- ally other typo of optical filter is placed. The transmittance symsbolsik presented to the systcr-. v~aa 1-D SLM:-Ecch light
of-thlis Plerriet; 11re(u, V), multiplies-the tiansformi 4h,,(u, U). beam is spread- hof izontally usinig cylindrical or flbei- optics

The light distribution exiting the dliffractive element, (not shown) across a filter inask vwho~e transmittanicis are
U,.(u,v)I1ra(u,v), is transformed -back from the spatial rclated to the values in a relationghip matrix. This mask
Fourier domnain- iunto-the -space domain--by the second leus can be ;mnplemented-using another SLM.
to-produce-the output distrihiitionz~u,~) If the diffrac- The light then is- focused-verk i eally (using. cylindrical or



fiber optics again) onto a 1-D O-SLM or a linear photode- PhotodetectorReference- O-SLM ,.Mt a rmy
-tector array. Any thresholding operation that is needed is beam I " J BS
performed by this device. Because of the crossed cylindrical Dl~8S
(or fiber) optics and the multiplicative transmittance mask, -VA

this architecture'implements the matrix-vector inner product P2  P3  5

with complete parallelism. 2232

Depending upon the type of relationship- -matrix em-
ployed, it is also possible- to implement an effective inner- -laser I
product-type operation using the basic optical correlator in BS <=>L4

Fig. 5. This method-usually requires the correlation filter to lser P BS

be encoded in a special way. Therefore, the details of th:3 -"P 1  SM 3

type of-approach only are referenced inIte next section. IE.L iSL Fromtypeof-aproah oly ae reerened n-th nexlsecion

Optical KBS Research laser
Several researchers have investigated various aspects of Facts CONTROLLER out

optical knowledge base systems, particularly for inference WITH

applications (5-8,18-29). In this section, several of the ap- KNOWLEDGE BASE
proaches taken are summarized in terms- of the data repre-
sentations employed, the focus of the work with respect to Qerehsins
optical-KBS's, and the relevant optical architectures and is-
sues. The nomenclature used in the literature is retained
here and related to the general framework developed above.

The- review focuses on inference machines-since most of Figure 7: Matched-filter optical inference machine (from
the research efforts have been directed towards this area. In Ref. 5).
this type of KBS, the system is presented with a query and
then conclusions are derived from the relationships in the From
knowledge base using deductive inference. The conclusions laser
can be either yes/no responses or the set of symbols that I 85 O-SLMI
satisfy the query. E-SLMIro BSm From

Warde and Kottas (51 present two architectures for an [BS laser
optical inference machine based on a simplified implementa- BS
tion of PROLOG. Here, the relationships are used to con- <Z L4  < L2
struct a set of-facts and rules about data objects (the sym- E-SLM 2 s
bols in Ref. 5). One architecture, shown in Fig. 7, stores 12T . BS
the relationships of a knowledge base in a diffractive-type IuldaFrom
memory and uses an optical correlator as a matched filter to vectors oP1 BS
infer new symbols from previous ones. The relationships are MappiI
stored holographically on O-SLM I via -SII 1 and can be lempl0tes L3
updated by the electronic controller as nieded. The input II
plane, filter plane. and output plane of the matched-filter CONTROLLER t0lpultaot
correlator are P1 , P3. and , respe I. Alternatively. vectors

plane P6 at the input to O-SLM 2 could b,. used as the cor- KNOWLEDGE BASE Photodeector
relator output plane. In this case, O-SlM 2 can be used to H array
perform additional processing on the image representing the Ouer flusions
inferred symbols. Examples of such processing include ac-
cumulating sequences of inferred symbols and then combin.
ing them using thresholding and/or logic operations (AND's,
OR's, etc.). Figure 8: Mapped-template optical inference machine (from

The second architecture, shown in Fig. 8. implements a Ref. 5).
relationship.matrix form of the knowledge base using optical
mapping templates. These templates are binary transmis.
;ion masks that, when used in an inner product processor, ner product is formed by using the expanded vector of input
can infer a new-vector of symbols from a given vector of sym- symbols from E-SLM 1 to read out the current mapping tem-
bols The input symbols are written in an-expanded form on plate on E-SLM- 2. O-SLM 1 thresholds the output which
E SLM- 1 by-the electronic controller and the mapping tem- then can be latched into O-SLM 2 for further processing
plates are stoied-on E SLM2. In effect, the templates cause or accumulation of resits. The electronic controller has a
E SLM 2 to become -a- modifiable cross bar sitch. The in- 86more active role in tliis-architecture than in the-matchcd-
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filter architecture because both the input symbols and map- -.

ping templates need to be updated as often as dictated by

*B the inference problem being solved. -
* Jau et-al. [8]-also have considered optical expert systems . ..

from a PROLOG viewpoint and have investigated an ap-
proach based on relationship matrices that is similar to the ...... - " . .
mapping templates of Warde and Kottas [5]. They develop a
method for combining-binary relationship matrices (fact ma- __ ....
trices) using matrix algebra into new relationships, allowing Figure 9: Optical architecture for a real-time diagnostic ex-
more complex rules to be generated out-of the basis-set of pert system (from Ref. 18).
relationships and symbols (the facts in the knowledge base).
However, they extend-this formalism by presenting an algo-
rithm for updating the relationship matrices via an update (the weights) is prescribed. The implied optical architec-
rule when new-information is available. The proposed archi- ture utilizes threshold logic units in the conventional optical
tecture is a general optoelectronic system based on optical matrix-vector and matrix-matrix -multipliers (e.g., the inner
matrix-vector and matrix-matrix multipliers, product- processor in-Fig. 6).

McAulay 118] uses a probabilistic relationship matrix to Szu and Caulfield (20] -employ relationship matrices as
develop a forward-inference architecture-for a-real-time di- associative memories. An interesting aspect of their optical
agnostic-expert system. In this type-of system, the-input representation for the relationship matrices is that each ma-
symbols-are a-set of events or conditions and tihe output trix value is represented by a 2-D binary submatrix rather

symbols are a collection of hypotheses. A query consists of than a single transmittance. This submatrix allows particu-
a-particular set of input events and the output-conclusion is lar attributes of a symbol to be incorporated into the knowl-
the probability that each hypothesis is true. In the medical edge base, although it requires more space on an SLM. They
expert system described by McAulay, the input conditions propose to input queries using SLM's and to store the re-
are symptoms and the output hypotheses are illnesses. lationship matrices in page-oriented holographic memories.

The architecture is shown in Fig. 9. Binary input symbols The paged memory uses many holograms, each of which
(called events in Ref. 18) are presented to the system one at stores a subset of the total knowledge base. This method
a time on the 1-D SLM (left side of Fig. 9). This input is ai'ows the knowledge base to be increased by simply adding
split between parallel channels, each of which forms an inner holograms to the system.
product processor. The 2-D SLM's in each channel store a Haney et al. [21] have investigated optical techniques for
rclationship matrix. In one channel, the matrix is the set increasing the efficiency of heuristic searches. They use bi-
of a priori probabilities that an input event corresponds to nary constraint matrices (another form of relationship ma-
a particular outcome, and the matrix in the other channel trix) as a means of pruning a sear-h tree through the knowl-
stores the probability of an event occurring in the absence of edge base before or during the search. In general, a con-
the particular outcome. straint matrix is a binary-valued array indicating a special-

Theoutputs of these channels are detected by I-D CCD's ized collection of facts which relate multiple sets of-symbols.

and combined in a set of N parallel processors to form a set Binary constraint matrices focus on two sets of symbols.
of a posteriori probabilities. These processors, in conjunc- In Ref. 21, laney ct at. develon a set of ' inary con-
tion with another inner product processor configured as a straint matrices using a consistent labeling problem as an
do-bling summer, -ompute the updated Bayesian probabili- example. In this type of problem, there are N units (one set
ties for each outcome (hypothesis) as each additional event is of symbols), each of which is to be assigned one of L labels
given as input. Once all events have been processed, the out- (the second set of symbols). Let the units be denoted by
put of the final I-D CCD array (on the right side of Fig. 9) it,, u ti,.., u. and the labels by I1, I t .. ,t. Furthermore.
contains the final probabilities of all outcomes given all the let R be a relationship that associates units with labels. Now,
events. a set of facts cal be generated in the dyadic form "u, R 1,2"

Eichmann and Caulfield (19] consider the same type of and can be interpreted as "Unit i is associated with label1 problem as McAulay, although in a different context. They m through relationship R." A constraint matrix R(ij) [in
present two methods for determining the elements of a rela- Ref. 211 is an L x L matrix with binary elements rmn such
tionship matrix which will aid in making decisions. The in- that r,,, = I when tie facts "u, JR 1,n" and "uj R 1," are con-
put symbols are in the form of a binary knowledge vector that sistent with (i.e., satisfy) other constraints, such as each unit
contains the answers to several yes/no questions (tie events must have a different label. These additional constraints are
of McAulay [18]). The output is either a binary answer vec- actually higher level relationships which depend upon the
tor (one method) or a set of a posteriori probabilities (the units, the labels, and the basic association relationship R.

3 second method) indicating the inferred conclusions (which If r,, = 0, both facts above cannot be true simultaneously,
hypotheses are true). Both methods are based on Bayesian and any other conclusions that would depend upon them can
principles and optimal Gaussian classifiers, and an algorithm be ignored.
for incrementally updating the relationship matrix elements With this formalism, tile pruning of a search tree is equiv-
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Figure 10: Procedural-based optical inference processor
(from Ref. 23). 0- ,

alent to a forward search through the-constraint matrices.
This can-be done using an optical matrix-vector multiplier. Figure 11. Block diagram of an optical resolution system
To eliminate the jth unit, the rows of R(i,j) are multiplied-by (from Ref. 29).
the-matrix R(j,-k) to form the rows in the new (and stronger)
constraint matrix I'(i,k). This process can-be repeated-to
reduce effectively the size of the search tree that needs to-be A rather novel approach to making inferences from sym-
traversed. bolic information is being investigated by Schmidt and

Casasent and his-colleagues [6,22-25] have investigated Cathey [27-29]. They are examining the use of mathemat-
the use of knowledge base processing techniques for ob- ical resolution to make inferences as a means of avoiding
ject recognition, identification, and classification. These the often-large dynamic data requirements normally found in
researchers utilize an assortment of different architectures artificial intelligence problems. This approach is unique in
based on the optical correlator shown in Fig. 10. The in- that mathematical resolution is a "proof-by-contradiction"
put to this system (at plane PI) is an image of objects to method of inference.
be recognized rather, than an encoded- vector or matrix -of Given a statement whose truth is in question (the query),
symbols. A holographic filter containing- a set of frequency- the process of mathematical resolution proves that the state-
multiplexed MSF's for the desired objects is placed in the ment is true by showing that the negation of the statement
filter plane (P2). The spatial carrier frequencies cause the contradicts the axioms (the facts and rules arranged from
output correlations for the objects to appear un different de- the relationships and symbols in the knowledge base) This
tectors in the output plane (P3) 1231. involves accepting an input query in the form of a binary vec-

The symbolic logic processor (unit)-after plane P3 is used tor and combining it with the literals (the facts or axioms in
when various features of the objects are used to make the Refs. 27-29, also represented by binary vectors). The rules
MSF's instead of the objects themselves. The eleatromnic feed- of the knowledge base are used to test the resulting vec- i
back loop from the symbolic logic processor to the filter plane tors for tautologies. These tautology vectors can be reduced
allows various filters to be synthesized and used to analyze further by eliminating nontautological vectors (conclusions
the image. As a result, more structured relationships sach as that contradict the knowledge base information) and useless
"Object A has all of the features of object 13 but none of the or duplicate tautologies. This process may require several I
features of object C" can be processed. Sinc,.. in this exam- iterations.

pie, the features for B and C must be examined first before a A block diagram of an optital resolution system is sho%%n
determination about A can be made, this ar, hiteciture imple- in Fig. I1. It conil,u,t., fie different subsystems.
ments a procedural-like algorithm to object reougnition. The 1. A staik lienury wkit% parallel access for storing new I
symbolic logic processor can-be implementedi using either an result vectors.
electronic controller or a more sophisticated arrangement of 2. A processor to combine vectors in parallel.
optical correlators. 3. A processor to reject nontautological vectors in paral- I

In the other work [6,22,24,251, Casasent and his col- lel.
leagues develop other data representations babed on directed- 1. A processor to eliniinate duplicate tautological vectors
and relational graphs (both forms of relationship matri- in parallel.
ces) for performing object recognition using uptiLal knowl- 5. A controller to monitor the vectors to end the iteration
edge base processing techniques. Furthermore, these au- Schmidt in Ref. 29 presents optical architectures for imple
thors present alternative architectures suLh as space- and menting these sub. tems. fie has simula*ed the system on a
time-integrating opti.al processors for direted graphs '6]. sample inference problem and compared it to a conventional
In another approach, multiple optical correlators are used serial approach and has learned that the identification and
to implement a production system (a type of inference ma- elimination of tautologies (step .t above) is computationally
chne) using both neural network and symbolic substtution the most significant step of the optical resolution process.
ideas [26]. For further detail.,, the interested reader is di- A very different approach to syribolic-knowledge processrected to the reference; citea above. ing is considered by Derstine-and Guha [71. They propose
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Norhnev elementslh to( 916d 1tC~f Figure-13: Optical data path-for the SPARO architecture-atIFigure 12: Schematic of the SPARO architecture for an op- the main processor plane in Fig. 12 (from Ref. 7).
tical finite state machine (from Ref. 7).

systems based on multiple optical correlators. Several other
an optical architecture called SPARO (Symbolic Processing researchers have been working on optical -architectures for
ARchitecture in Optics) to implement a symbolic processing performing general symbolic substitution [31-34]. Work in
language. Their work, along with- that of other researchers the field should be encouraged since this method is another
already mentioned (Warde and Kottas 15] and Jau et at. (81), way to implement relationships between symbols.
was influenced by the PROLOG language. In particular, Furthermore, the-theories of connectionistic (neural net-
Derstine and Guha consider PARLOG, a version of PRO- work) computing offer several opportunities for optical
LOG in which predicates are evaluated in parallel rather than KBS's. There currently is considerable work being done on
serially. optical neural networks 1351. Given that neural networks

The SPARO architecture is intended to solve a particular can be trained to perform a wide variety of tasks, this ap-
symbolic processing problem, that of combinator graph-re- proach has the exciting possibility that the knowledge base
duction in pure functional languages such as-PARLOG. This can be learned instead of programmed. Botha et at. 1261
process involves reducing a combinator graph (similar to a have started to look at a combination of neural networks
binary graph) to its simplest form that is consistent with the and symbolic substitution for optical inference systems.
relationships in the knowledge base. Other approaches include developing alternative dataI The SPARO architecture is illustrated in Fig. 12 and representations. For example, Kottas and Warde [361 are
the corresponding optical data path in Fig. -13. It is a examining various neural network methods for incorporat-
type of optical finite state machine (OFSM) formed by lay- ing the time domain into the representations of symbolic
ers of processing elements (optical logic gates) and optical information. This is in contrast to the relationship matrixI interconnects. Sets of symbolic substitution optics in con- formalism in which the symbols are represented by static po-
junction with the interconnections effectively implement the sitions in the matrices. One potential advantage of this ap-
"microcode" between processor elements for performing the proach is that the system could make use of its state space
graph reduction in parallel. As shown in Fig. 13, the opti- more efficiently at the expense of slower data access. This
cal data path is decomposed into an array of areas, one for could allow larger knowledge bases to be considered using
each processor node. A node is a collection of optical bits current optical device technology. Preliminary results show
that make up the state of the node (local memory) and an that the methods being developed actually could take aI
interconnection register (analogous to a pointer in-a software vantage of any imperfections or irregularities in the optical
data structure). There is no external ot addressable memory devices. Nevertheless, different data representation shold
system here. be considered in future designs of optical KBS's.

With each iteration around the loop (equivalent to one
machine cycle), the processor nodes are updated and the Strengths and Limitations
new state information is broadcast to the appropriate desti- Two of the advantages of an optical KBS implementa
nation nodes. In principle, it should be possible to reprogram tion result from the use of holographic storage techniqes
the system to perform different functions by redesigning the and optical interconnects between processing stages, The
symbolic substitution optics and he interconnects holographic storage offers large capacity, fault tolerance, and

Alternative Approaches parallel searching methods. Optical interconnects permit
large numbers of connections between pixels in two proccs

The idea of using symbolic substitution as a means of ing planes with low crosstalk.
dbing optical processing is not new. However, the work by On the other hand, the development of practical optical

- Derstine and Guha 17] represents one of the first attempts at KBS's, particularly inference machines, is limited primar
* using symbolic substitution specifically in an optical KBS. ily by the SLM's. Although some are commercially avail

Casasent and Botha [301 also have considered symbolic sub- able and many more are under development, current Sl.\l'i
i stitution in the context of multifunctional optical processing have relatively low framing rates and resolutions. Thii
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while the optical propagation delay- between devices is neg- -10 H.-K. Liu, J. A. Davis, and R. A. Lilly, "Optical-Data-Processing
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