
AD-A 2 4 3 983 E FCT F
, . DEC241991 U
' C

Very Large Scale Distributed Information Processing Systems

Final Technical Report

Contract No. F29601-87-C-0072

September 27 1991

Principal Investigators:
Gerald J. Popek
Wesley W. Chu

Computer Science Department
School of Engineering and Applied Science

University of California
Los Angeles

91-18754

Inforatio Proessig Sytems__________r_____NTI~ Rh

Very Large Scale Distributed .c .n []
Information- Processing Systems Just lrlea,:luto,

Defense Advanced Research Projects Agencyl Distributio/
Availability Codes

Final Technical Report ot ail AorD ' is Special

L Introduction
k

This final report covers the research carried out by the Very Large Distributed Infor-
mation Processing Systems group at UCLA under DARPA sponsorship during the period
-1987 - 1991=.

This- contract spanned-:two largely independent research -efforts. During the period
1987-1989, the Tangram project under the direction of Co-PIs Dr. R. Muntz and Dr. D.S.
Parker constructed an object-oriented declarative programming environment for systems per-
formance modelling.

In 1989,the project was retargeted. The distributed operating system effort directed
by Dr. G. Popek which had been ongoing during 1987-1989 was-expanded. Dr. W. Chu re-
placed Drs. Muntz and Parker as Co-PI and initiated the fault tolerant distributed database
research.

Reflecting this -history of the project, this- final report covers three- primary areas. We
will first introduce the distributed operating and file system work, followed by the database
research, and- finally the Tangram project. A selection of technical reports giving more detail
about aspects of each of the three areas of the research- follows.

1.1 Distributed Operating and Filing Systems (Dr. Gerald Popek)

1.1.1 The Ficus Replicated File System

The--centerpiece of our work over the last four years is the design and implementation
of Ficus, a replicated general filing environment for Unix intended to scale to very large (na-
tionwide) networks [GHMP90]. There are three fundamental characteristics of the work
which distinguish -the Ficus architecture. First, it embodies an optimistic view of update in
which any file or directory may be referenced or updated so long as some copy is available;
conflicts are addressed when reconnection occurs (Guy9l]. Second is its approach to modu-
larity through stackable layers [HP91]. Third is its solution to the very large scale naming
problem using on-disk volume grafting on demand [PGPH91]. Technology transfer efforts are
underway which appear likely to result in each of these three contributions being incorporated

I UCLA Computer Science

in commercially available versions of Unix in the next several -years:

Ficus is now operational and in use at UCLA. 'While currently running in the context
of SunOS, it has been constructed in a manner that can be added to any operating system (in-
cluding many versions of Unix and Mach) that provides a VFS file system interface. The im-
plementation consists of -two stackable layers, "logical" and "physical". The logical -layer
provides layers above with the abstraction of a single copy, highly available file; that is, the
existence of multiple replicas is made transparent by the logical layer. The physical layer im-
plements the abstraction of an individual replica of a replicated file. It uses whatever underly-
ing storage service it is stacked upon (such as a Unix file system or NFS) to store persistent
copies of files, and manage. the extended attributes-about each file-and directory entry. When
the logical and physical -layers execute on different machines, they may be separated by a
transport layer which maps vnode operations across an RPC channel in a manner similar to

NFS.

The stackable layers architecture provides a mechanism whereby new functionality can
be added to a file system transparently to all -other modules. This- is in contrast to today's
Unix file systems in which substantial portions must be rebuilt in order to add a new feature,
Each layer supports a symmetrical interface for both: a) calls to it from above and, b) with
which- it performs operations on the layers below. Consequently, a new layer could be insert-
ed anywhere in the stack, for-example, to encrypt data that passes through it, without disturb-
ing (or even having source code to) the adjacent layers. Thus, stackable layers is an architec-
ture-for extensible file systems.

The optimistic approach to replication taken here is particularly appropriate for very
large or geographically dispersed filing environments. In such a domain, the network is con-
stantily partitioned. Conventional approaches to replica management actually decrease availa-
bility for update as the number of replicas increases. Given the actual occurrence of
conflicting updates is believed to be quite low, it makes more sense to detect and repair
conflicts when they do occur than to take expensive measures to prevent them. Ficus em-
ploys a suite of distributed algorithms which reliably detects conflicting updates. In the case
of updates to directories, where the semantics of the updates are simple and well understood
by the system, Ficus is able to repair most conflicts automatically, thereby maintaining the in-
tegrity of the naming structure while providing maximal availability.

In Ficus, updates are first made to one replica of a file. Update propagation to other
replicas is performed in the background on a "best effort" basis. That is, update propagation
is not relied upon to ma:_.tain consistency. Replicas that- are not accessible when update pro-
pagation: is attempted find out about the updates upon "reconciliation" with a more informed
replica. The reconciliation algorithms perform periodic sweeps of the replicated file systems,
pulling in new -updates, detecting conflicts, and automatically reconciling directory replicas.

2 UCLA Computer Science

Ficus has been used to connect a cluster -of replicas at UCLA with remote replicas
stored at Trusted Information Systems, ISI and SRI -via the Internet. Elapsed time overhead
for file operations is typically invisible. While systerri time overhead measurements show an-
overhead: approaching 50% for worst-case benchmarks, this results in noticeabledelay only on
heavily -loaded machines when heavy name space activity occurs (e.g. recursive remove).
Further, it appears that most of this overhead can be-eliminated.

1.1.2 Distributed Shared Memory

Hardware and- architectural characteristics strongly favor multiprocessor systems
without shared memory hardware, due to switch costs and delays, as well as the ease of uset
of alternate LAN and optical fiber based methods. The question then becomes whether
software layers-can be fashioned to provide the functionality of shared memory MP systems

transparently, so that standard approaches to programming and use may be employed. We
demonstrated in- the context of Locus that it is feasible to do so for programs with controlled
sharing patterns. It is expected that many software packages exhibit the relevant behavior.

Early in the contract -period, we investigated extending network transparency not onlyto the file system, but also to access to distributed memory in a loosely coupled distributed

system. We designed and implemented distributed shared memory for the Locus disstributed
operating system without any- hardware support, in a manner suitable for use in a local area
network [FP89].

1.1.3 Graduates

Four students in the field of distributed operating systems received their Ph.D degree
under the partial support of this contract: Richard Guy [GLy91], Scott Spetka [Spet89], Brett
Fleisch [Flei89], Joseph Betser [Bets88].

1.2 Fault Tolerant Distributed Database Systems (Dr. Wesley Chu)

In a distributed database system, network partitioning occurs due to site and link
failures. Conventional techniques use replication to increase availability. However, network
partitioning may cause blocking and only partial operability. In real-time decision support
systems, availability of data is of primary importance and suspending processing is not accept-
able. Further, frequently accessing remote data may be too time consuming and the user may
be-obliged to use local knowledge to infer the result. Since data are often correlated (for ex-
ample, rank and salary; ship type and cargo), we developed a new approach that uses datainference techniques for fault tolerant and real-time query answering. Such inference tech-
niques use accessible data and knowledge to infer inaccessible data. A knowledge base along
with the database resides at each site, which can be used together to infer the inaccessible
data. The knowledge base may be automatically derived from database- content and applica-
tion domain knowledge.

3 UCLA Computer Science

During the past two years, we have studied the acquisition- of knowledge from data
base an. application domains [CLC90], developed open inference techniques to infer incom-
plete k.iowledge -[CCH90] and also used simulation to evaluate the improvements in availabil-
ity due to inference [CHL90]. We -have constructed a prototype that uses SyBase as its data-
base management system and built an inference engine to validate the proposed concept
[CPC90]. The prototype confirms the feasibility- of this approach and also sheds light on the

following new research- areas: sound inference path generation, knowledge update methodolo-
gies and correctness and completeness of the query answers, which will be investigated under
the next contract.

As a generalization of the fault tolerant research, we have also extended it to coopera-
tive distributed database systems (CoBase), in which knowledge is used to provide not only
missing data but approximate, summary, and intensional answers. We have obtained some
preliminary results as reported in the papers entitled "Cooperative Query Answering via Type
Abstraction Hierarchy" -[CCL90b], "Using Type Inference ai, I.duced Rules to Provide Inten-
sional Answers" [CLC91], and "A Pattern-based' Approach for Deriving Intensional and Ap-
proximate Answers" (CCL91]. The cooperative concept appears to have many application
areas, such as integration on heterogeneous database systems, real-time query processing, pro-

-cessing of image database systems, etc. These areas will also be under further investigation
over the next contract -period. We also plan to apply the methodology to the transportation
applications.

Three Ph.D. students, A. Hwang [HWA90], R. C. Lee [Lee90], and P. Ngai [Ngai90]
were graduated under the partial support of the contract. The results of their research were
presented at national and international conferences.

1.3 The Tangram Modeling Environment (9/87-5/89, Dr. R. Muntz and Dr. D.S. Parker)

Today, many computers are used for the modeling of real-world systems. Demands on
-the extent and quality of the modeling are growing rapidly. There is an ever-increasing need
for environments in which one can construct and evaluate complex models both quickly and
accurately.

Successful modeling environments will require a cross-disciplinary combination of
technologies:

System modeling tools
Database -management
Knowledgebase management
Distributed computing

Tangram is a distributed modeling enviornment developed at UCLA. It was an inno-
vative Prolog-based combination of DBMS and KBMS technology with access to a variety of
modcling tools including stochastic, statistical, structural, equational, constraint-based, rule-
based, semantic network, and-object-oriented models.

4 UCLA Computer Science

A more detailed overview may be found in the attatched documents "Tangram: Project
Overview," and "The Tangram- Project: Publications 1987-1988." A partial list of the results
of Tangram include:

1. Developed-the Log(F) stream data processing language which integrates database query
processing-and logic programming [Nara88].

Background/Significa.ice: Many approaches have been proposed to integrate
knowledge-based systems with database systems. However, there is an essential
mismatch -between Al systems and databases: they follow different processing models.
The tuple-at-a-time style of Al systems is notoriously inefficient while the query-at-a-
time style of databases overwhelms the workspace of an Al system with data. We can
eliminate the mismatch via the stream processing model. We implemented a Log(F)
to Prolog compiler and provided an interface to streams stored in Unix files-and Ingres
databases yielding a stream-based database query language.

2. Developed-a distributed concurrent stream-based programming environment [LM89].

Background/Significance: As observed above, loosely coupled multiprocessor systems
currently represent the most cost effective architecture- to deliver very high speed com-
puting. The execution model of stream data processing provides an ideal paradigm for
harnessing such distributed computing power. We developed the Aspen programming
environment for distributed Log(F).

3. Extended Log(F) with sophisticated pattern recognition grammars [Chau89].

Background/Significance: Parallel execution of events in a distributed system (or
simulation) may be captured in an event stream for analysis. We extended Log(F)
with functional grammars to produce a simple but powerful language and environment
which can recognize multiple patterns in parallel in a single event stream.

4. Designed and built and demonstrated the Tangram Object-oriented Modeling Environ-
ment [PBCM89].

Background/Significance: Tangram is a meta-modeling environment; a system for
creating, storing, retrieving, updating, sharing and querying models. It features a
graphical interface for constructing and querying models and allows model object
behaviors to be specified using an object-oriented extension of Prolog and Log(F).
Complex models may be composed of sub-models, forming a hierarchy. It features an
easily extensible base set of mathematical solvers including several packages for solv-
ing Markov chains and queueing networks. The system automatically selects the most
appropriate solver for a given model and query using a domain knowledge base.
Tangram's base modeling domains are customizable by domain experts. Special pur-
pose modeling environments with a look and feel tailored to individual problems may

5 UCLA Computer Science

be created quite rapidly. The system is currently in use- in several commercial settings.

Four Ph.D. students participating in Tangram graduated with partial support of this
contract: Hau-Ming Chau [Chau89], Thomas Page [Page89], Churng-Dak Shum [Shum89], and-
Sanjai-Narain,[Nara88].

REFERENCES

[Bets88] Joseph Betser, Performance Evaluation and Predictions for Large Heterogeneous
Distributed Systems, Ph.D. Dissertation, University of Califomia,-Los Angeles, 1988.

[Chau89] Hau-Ming Chau, Functional Grammar: A New Scheme for Language Analysis,
Ph.D. Dissertation, University of California, Los Angeles, 1989.

*[CCH90] Chu, W. W., Q. Chen, and A. Hwang, Open Data Inference and its Applications,

Proceedings of CIPS Edmonton Information Technology Conference, Edmonton, Canada, Oc-
tober 1990.

[CCL90a] Chen, Q., W. W. Chu, and R. Lee, Providing Cooperative Answers via
Knowledge-based Type Abstraction and Refinement, Proceedings of the 5th International Sym-
posium on Methodologies for Intelligent Systems, Knoxville, TE, 1990.

*[CCL90b Chu W. W., Q. Chen, and R. Lee, Cooperative Query Answering via Type

Abstraction Hierarchy, Proceedings of the 1990 International Conference on Cooperative
Knowledge Base System, Springer-Verlag, 1991.

*[CHL90] Chu, W. W., A. Hwang, R. Lee, Q. Chen, M. Merzbacher, and H. Hecht, Fault

Tolerant Distributed Database System via Data Inference, Proceedings of the 9th Symposium
on Reliable Distributed Systems, Huntsville, Alabama, October 1990.

*[CLC90] Chu, W. W., R. C. Lee, and K. Chiang, Capture Database Semantics by Rule In-

duction, UCLA Computer Science Department Technical Report, May 1990.

*(CLC91] Chu, W. W., R. C. Lee, and Q. Chen, Using Tupe Inference and Induced Rules to

Provide Intensional Answers, Proceedings of the 7th International Conference on Data En-
gineering, Kobe, Japan, April 1991.

*[CPC90] Chu, W. W., T. W. Page, Q. Chen, A. Hwang, and 0. T. Satyanarayanan,

Development of a Fault Tolerant Distributed Database via Inference, IEEE Workshop on Ex-
perimental Distributed Systems, Huntsville, Alabama, October 1990.

[Flei89] Brett D. Fleisch, Distributed Shared Memory in a Loosely Coupled Environment,

6 UCLA Computer Science

Ph.D. Dissertation, University of California, Los Angeles, 1989..

[FP89] Brett D. Fleisch and G. Popek, Mirage: A Coherent Distributed Shared Memory
Design, In Proceedings of the 12th ACM Symposium on Operating Systems Principles,
Litchfield Park, AZ, 1989.

[GHMP90] R. Guy, J. Heidemann, W. Mak, T. Page, G. Popek, and D. Rothemeier, Imple-
mentation of the Ficus Replicated File System, In USENIX Proceedings, pp. 63-71, June
-1990.

*[Guy9I) Richard G. Guy, Ficus: A Very Large Scale Reliable Distributed File System, Ph.D.

Dissertation (also UCLA CSD-910018), University of California, Los-Angeles, 1991.

:[HP91] John Heidemann and- G. Popek, A Layered Approach to file System Development,
-UCLA Tech. Report CSD-910007, University of California, Los Angeles, 1991.

[Hwang90] Andy Hwang, Fault Tolerant Distributed Database System via Data Inference,
Ph.D. Dissertation, University-of California, Los Angeles, 1990.

[Lee90] Rei-Chi Lee, Query Processing with Database Semantics, Ph.D. Dissertation, Univer-
isty of California, Los Angeles, 1990. [LM89] Brian Livezey and R. Muntz, ASPEN: A
Stream Processing Environment, In Proceedings of PARLE'89, Amsterdam, Netherlands,
1989.

*[Munt88] Richard R. Muntz and D.S. Parker, Tangram: Project Overview, UCLA Tech Re-

-port CSD-880032, University of California, Los Angeles, 1988.

*[Munt89] Richard R. Muntz, D.S. Parker, and Gerald J. Popek, The Tangram Project: Publi-

cations 1987-88, UCLA "Iech Report CSD-890003, University of California, Los Angeles,
January 1989.

[Nara88] Sanjai Narain, LOG(F): An Optimal Combination of Logic Programming, Rewriting,

and Lazy Evaluation, Ph.D. Dissertation (also UCLA CSD-880040), University of California,
Los Angeles, 1988.

[Ngai90] Patrick Ngai, Constraint Propagation as an Embedded Filtering Technique for Solv-
ing Constraint Satisfaction Problems, Ph.D. Dissertation, University of California, Los
Angeles, 1990.

[Page89] Thomas W. Page Jr., An Object-Oriented Logic Programming Environment for
Modeling, Ph.D. Dissertation (also UCLA CSD-890055, University of California, Los
Angeles, 1989.

[PBCM89] Thomas W. Page Jr., S. Berson, W. Cheng, and R. Muntz, An Object-Oriented
Modeling Environment, In Proceedings OOPSLA'89, New Orleans, LA, 1989.

7 UCLA Computer Science

[PGHP91] Thomas W. Page Jr., R. Guy, J Heidemann, G. Popek, W. Mak, and D.
Rothemeier, Management of Replicated Volume Location Data in the Ficus Replicated File
System, in Proceedings Summer USENIX Conference, Nashville, TE, 1991.

[Shum89] Chung-Dak Shum, Alternative Representations for the Synopsis of Database
Responses, Ph.D. Dissertation, University of California, Los Angeles, 1989.

[Spet89l Scott E. Spetka, Distributed Operating System Support for Distributed Data-intensive
Applications in Nenvork Transparent Environments, Ph.D. Dissertation, University of Califor-
nia, Los-Angeles, 1989.

* Attached with this report.

8 UCLA Computer Science

Ficus: A Very'Large Scale
Reliable Distributed File System

Richard G. Guy
June 3, 1991

Technical Report CSD-910018
Computer Science Department

University of California
Los Angeles, CA 90024-1596

UNIVERSITY OF CALIFORNIA
Los Angeles

Ficus: A Very Large Scale
Reliable Distributed File System

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Richard George Guy, H

1991

®c Copyright by
Richard Georgec Guy. 11?

-TABLE OF' COTENTS

1 Introduction...................................... 1

-1.1 Network performance. 2

1.2 Scale. 3

1.2.1 :Partial operation. 3

1.2.2 Data -replication 4

1.3 Hypothesis. 5

1.4 Research outline-.. 5

1.4.1 Lbarge scale testbed. 5

1.4.2 -Distributed access 8

1.4.3 'Replication. 10

1.4.4 Research summary. 13

1.4.5 Dissertation outline 13

1. Related work 14

1.25.1 -Distributed file systems 14

1.5.2 Replica management 16

2 Architecture. 19d

2.1 Stackable layers. 19

2.1.1 Related work. 19

2.1.2 Observations. 22

2-1.3 Requirements. 23

2.1.4 Ficus -layer mechanism 24

2.1.5 -File system decomposition 27

2.1.6 Summary 29

2.2 Volumes 29

2.2.1 -Related solutions 29

2.2.2 Ficus solution overview 31

=2.2.3 Graft points 32

2.2.4 Volume and file identifiers 34

iv

2.2.5- Autografting. 35112.2.6- Creating, deleting and modifying graft points 37

_2.2.7- Conflicting graft point updates 37

2.2 8 Volume-summary 38

2.3- Replication 39
2.3.1- Replication overview 39

2.3.2 Logical -layer. 41

2.1-1 Physical- layer. 46

2.3.4 Vnode transport layer. 49
2.4 -Synchronization 54

-2.4.1- Issues. 54

2.4.2- Control -flow examples 60

2.4.3- Summary 61

2.5 -Large scale -replication 62

2.5.1 Version vectors 62

2.5.2- Name space 65

2.5.3- Summary 71

2.6 Status and performance. 71

2.6.1 Performance measurements. 71

2.6.2 Discussion. 73

2.6.3 Wide area operation 74

2.6.4 Implementation effort. 74

3 Algorithms 76

3.1 -Introduction. 76

3.1.1 File systems 78

3.1.2 Outline. 78

3-.2 Algorithms 78

3.2.1 Model 79

3.2.2 Basic two-phase algorithm 80

=3.2.3 Intermediate algorithm... 85

3.2.4 Advanced two-phase algorithm 89

3.3 Correctness discussion 91

3.3.1 Reclamation if inaccessible 91

3.3.2 Reclamation only if inaccessible 1...............94

3.3.3 Reclamation exactly once.. 94

3.3.4 Termination 95

3.3.5 Deadlock-free 96

3.4 Applications and observations 97

3.4.1 Directed acyclic graphs 97

3.4.2 Performance 97

3.5 Related-work 98

4 Conclusions 100

4.1 Summary-and conclusions 100

4.2 Future research directions 101

4.2.1 Performance tuning 102

4.2.2 Security 102

4.2.3 Databases 102

4.2.4 Typed files 102

References ... 104

v

LIST OF FIGURES

2.1 Madnick's hierarchical- file system- design (top-down) 20

2.2 Stack with transport layer 26

2.3 File system configuration with thick layers 28

2.4 File system configuration with thinner layers 28

2.5 Graft point with both parent and child- volumes replicated . 33

2.6 Typical Ficus layer stack 40

2.7 File update notification and propagation 44

2.8 Decomposed physical-and storage layers 50

2.9 Multi-layer NFS design 53

2.10 Using NFS to interact with non-Ficus hosts 53

2.I1 Centralized synchronization- service 57

2.12 Token-based synchronization service 57

2.13 Quor-am-based synchronization service 58

2.14 Current UFS and Ficus name space relationship 66

2.15 Ficus global name context 66

2.16 Volume support for global name space. (n = Ireplicas) 70

2.17 Percentage overhead versus number of replicas 72

3.1 Basic two-phase algorithm 82

3.2 One phase network example 84

3.3 Intermediate algorithm, phase one 92

3.4 Intermediate algorithm, phase two 93

vii

ACKNOWLEDGMENTS

The path to the completion of this- dissertation (and beyond) has been influenced
by a number of mentors. These include my parents, who-encouraged my adoles-
cent interest in- computing despite the strains it placed on-our relationship at the
time;-Steve McClain, who thought it would be interesting -to teach programming
to a handful of pesky high school students; Vernon Howe, who demonstrated -the
difference that a gifted and dedicated college teacher can make in his students'
growth; Hilmer Besel, who recognized- that -the ignorance I felt upon graduating
with a bachelor's degree -in computing was evidence that a college education had
taught me-something after all; Jerry Popek, who welcomed me into his -research
group and nurtured-my intellectual development throughout the past decade; the
LOCUS research team, especially Bruce Walker and Evelyn Walton, who intro-
duced me to distributed- computing theory and practice; and, finally, the Ficus
research team, who have-been- a continuing- source of enthusiasm, excitement, and
encouragement. I am -further gratefully deeply indebted to the generous :support
that the Defense Advanced Research Projects- Agency has invested in computer
science research,1 without which I would be (ungratefully) deeply indebted to the
federal Student Loan Marketing Association.

'This research was sponsored under DARPA contract number F29601-87-C-0072

viii

ABSTRACT OF THE DISSERTATION

Ficus: A Very Large Scale
Reliable Distributed File System

by

Richard George Guy, II
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991

Professor Gerald J. Popek, Co-Chair
Professor Walter J. Karplus, Co-Chair

The dissertation presents the -issues addressed in the design of Ficus, a large

scale wide area distributed file system currently operational on a modest scale

at UCLA. Key aspects of providing such a. service include toleration of partial

operation in virtually all-areas; support for large scale, optimistic data replication;

and a flexible, extensible modular design.

Ficus incorporates a "stackable -layers" modular architecture and full support

for optimistic replication. Replication is provided by a-pair-of layers operating in

concert above a traditional filing service. A "volume" abstraction and on-the-fly

volume "grafting" mechanism are used to manage the large scale file name space.

The replication service uses a-family of novel algorithms to manage the prop-

agation of changes to- the filing environment. These algorithms are fully dis-

tributed, tolerate partial operation (including nontransitive commlnications),

and display linear storage overhead and worst case quadratic message complexity.

x

CHAPTER 1

Introduction

Two decades ago, the -first large scale, wide area network computing experiment
began at UCLA, SRI, UCSB, the University of Utah, and BBN [Cro87]. By 1980,
the ARPANET connected hundreds of hosts across North America, Hawaii, and
Europe. Nearly 100,000 hosts-are attached to the DARPA Internettoday; at this
rate_ the total will approach-ten million by the end of-the century.

Somewhat surprisingly, the phenomenal expansion of the user community
has not been in- response to, or even been accompanied by, changes in the style
of ARPANET usage. -Remote login, electronic mail and news, and bulk data
transfer remain the primary services using the network. The introduction of
internetworking-protocols- around 1980, ai:d a domain naming system a few years
later, have-siguificantly expanded the underlying capabilities of the ARPANET,
but higher -level services continue to be much the same-

During this same period, local area ietwork technology emerged from re-
search laboratories into the commercial marketplace. Based on the same packet-
switching concepts as wide area networking, local- area network services rapidly
evolved- from remote login and simple data transfer to include distributed file
system. :emote procedure call services, and even complete distributed operating
systems.

The explosive growth of the ARPANET, and its transformation into the In-
ternet, is directly attributable to the proliferation of local area -networks- As
service-rich local area networks have been interconnected with limited service
wide area networks, interest has grc-,-- in extending the services available on
wide area-networks to include, among othu :. ri;stribuied file systems.1

Two prominent issues immediately encountered when extending traditional

'A review committee of the National Research Council endorsed the concept of a national
research network in 1988 [NRC88]; in 1989, Senator Albert Gore, Jr., introduced legislation to
invest $1.75 billion- in a National Research and Education Network; in early 1990, the Presi-
dent's-Council of Advisors on Science and Technology's $1.9 billion Federal High Performance
Computing program (similar to Gore's proposal) has been endorsed by the Bush administra-
tion. Success of these programs hinges upon client-friendly services usable by the masses, not
those-endured by computer scientists.

local area network services into the wide area network arena are network perfor-
mance and- scale.2

1.1 Network performanCe

From its inception, the ARPA.,NE' -'-;:,rily used transmission lines with
much less bandwidth than an I/0 , ol ;. -ypical host. The bandwidth ratio
in the early 1970's was typically 1:200 k5- Kbls ARPANET : 12 Mb/s UNIBUS);
by the late 1980's, the ratio approach. c! 1:4,000 as- common workstation I/O
bus rates exceeded-200 Mb/s (VMEI bt 'he dramatic difference between I/O
bus and network capacity forced netwvr.,' .-ents to be conscious of the network
presence and conservative in its-use.

In contrast, the 10 megabit per second local area network transmission rates
of the-early 1980's closely matched minicomputer I/O bus rates of the day. This
similarity of bandwidth encouraged system designers to utilize network facilities
in new ways, such as distributed file systems. The concept of network :trans-
parency became fundamental, much as virtual memory was accepted a decade
earlier. Even with an order of magnitude difference-in bus and network band-
width today, local area network services continue to expand and be effective.

DARPA Internet sponsors are currently responding to the bandwidth dispar-
ity. A new Internet "backbone" with a bandwidth greater than one megabit
per second is being iinstai.,d in the United States. Over the next few years, the
bandwidth-will increase i.to the gigabit per second range as optical fibers replace
copper wires as the primary transmission media. This realignment of network
transmission capacity and host I/O bus rates lays a necessary portion of the
foundation to provide wide area services- that traditionally have been limited to
local area networks.

Another important network performance parameter is latency induced by
transmission delay. An inherent delay of 30 milliseconds is incurred by a transcon-
tinental round trip message traveling at the speed of light. (The delay increases
to I second for geosynchronous satellite channels.) Services such as interprocess
communication and remote procedure call for which the local latency is usually
measured in microseconds are dramatically affected by large inherent latencies.

21n reflecting on Carnegie-Mcilon University's network, Mahadev Satyanarayanan com-
ments, "The change that would most substantially improve the usability of Andrew [CMUI's
campus-wide distributed system] would b, a distributed file system that corapleteiy masked
failures from users and application programs. It is still an open question whether this goal is
achievable in conjunction with good performance and scalability." (Sat88]

2

In contrast, the effect of a minimum 30 millisecond delay is only moderately sig-
nificant for file system services today: the average access times for typical-disks
-are also -in the low tens of milliseconds.

1.2 Scale

Local area networks are not by definition-limited in scale, yet many services-are
implemented with assumptions of small scale. For example, the-Locus -distributed
• le system has a fixed design parameter Of a maximum-of thirty-twohosts. The
A3un Network File Syster. (NFS) assumes that the identity and Iocation of every
accessible filesystem--is placed in a single monolithic file o- every host; -such a- file

is not manageable in practice on a-large scale.

The issue of scale-is more complex than simply increasing design parameters
-or concocting algorithms that efficiently handle large amounts of data. Large
-scale impacts:administrative concerns such as resource management, protection,
and legal issues. Scale may also affect the usability of the system: a client may be
overwhelmed-by complexity if -large-scale implies a fundamentally different mode
of interaction with the computing environment.

Yet another aspect of large scale is the reliability of the system, at both a

component level -and overall. A distributed computing environment composed of
a million hosts will have af least a millionnetwork interfaces and communications
paths. The -probability-tha. all components will be operational a. any single time
is almost zero, and effectively zero over any useful period of time. This indicates
-that partial operation is the normal, not exceptional, mode for a system -,f this
scale. Services -intended for use in -this environment must consider -component
-failure to be a routine-condition; -in:some-cases, a failed component may never be
repaired.

1.2.1 Partial operation

In- this context, the definition of "failure" is broader than simply an unexpected
denial of service which will be repaired in the near future. Failure also includes
deliberate actions, such as terminating a communications link during high-tariff
periods or to protect a host from external threats. An overloaded gateway may
exhibit failure conditions when it is unable to respond in a timely fashion. Some
components may be taken out of service permanently, either by design or disaster.

ARPANET designers anticipated the partial operation problem, and quite
successfully resolved it with respect to communications paths by establishing a

3

multiply-linked network-of communications-controllers with an irregular topology.
Adaptive routing algorithms- are used to locate, evaluate, and select alternate
communications paths. In two decades of operation, network partitioning has

rarely occurred.3 .

The ARPANET solution is no panacea, however. Multiple (long-haul) links
are quite expensive from ail economic standpoint; in fact, the new Internet back-
bone is composedof just-a few well-connected regional hubs that interface-to area
networks. -Nevertheless, there-continue to- be single points of failure which can

inhibit communication -[Neu87]. A regional hub -failure may -isolate-a significant
portion of the network;-a gateway or host failure may isolate-just afew hosts, or
prevent access to data managed by a failed or inaccessible host.

Although partial operation-is unavoidable in a large-scale, wide area network,
its detrimental effects can often be -minimized. A wide area file- system is an
example of -a valuable service that -can, but need not, be -rendered impotent
by partial- -operation. As with the ARPANET communications links example,
redundancy at one or more levels is the primary tool -for counteracting partial
operation's negative consequences. This work proposes data replication as an
affordable approach to cope with partial operation in a wide area file system.

1.2.2 Data replication

Data replication techniques combat the problems of partial operation by using
redundancy- to avoid a single point of failure (the data). Rather than accessing a
specific single copy, a-client accesses a varying subset of data replicas. The number
of copies accessed depends on-the consistency method used, but the probability of
successfully -accessing a subset which satisfies the consistency criteria is expected
to be greater than-or equal to the-probability of successfully accessing a particular
copy.

A number of data replication methods have been incorporated into local
area network file system services: LOCUS [PW85], ROE [EF83], Isis [Bir851,
PULSE [TKW85], Eden [PNP86], Guardian [Bar78], Saguaro [PSA87], Gem-
ini [BMP87], GAFFES [GGK87], and a UNIX United variant [Bre86]. Most
assume that the number of copies -is small, and that they are stored among a
small number of hosts. A further assumption is that failures are rare, or of suf-

3Three notable exceptions: the 1987 partitioning resulting from a single broken fiber despite
7-fold redundancy [Neu87], the 1980 complete network failure which occurred when a single bit
was dropped from a widely propagated status word [Ros8l], and the 1988 Internet worm catas-
trophe which prompted many sites to preemptively shutdown as a means of protection [Spa89]

4

-ficiently short duration that clients can- wait until the -failure is repaired. These
assumptions are invalid -in- a large-scale -system;-new -replication techniques-must
be developed to cope with -large- scale issues.

1.3 Hypothesis

The hypothesis of this research is that a large scale, wide area file system is
-feasible. To -be feasible, it -must compensate for partial operation; it must sup-
-port -a large number of hosts, clients, and data; administrative issues must be
satisfactorily addressed; and the-Client interface must not be-complex.

The true-test of this hypothesis is to design,-build, install,-and use a wide area
file system that scales to millions-of hosts, compensates-for partial -operation, and
is manageable. This rescarch effort endeavors- to accomplish the first of these
-phases by presenting a large scale, wide area -file system design; the second is
accomplished by implementing the design. Installation and extensive use of -the
implementation are-beyond the scope of this-work.

1.4 Research outline

A number of research issues are directly -identifiable in the preceding discussion.
-Broad issues include large scale testbed design, distributed access methodology,
and replica management. Each is considered in more detail in the following
sections.

1.4.1 Large scale testbed

Conducting an experiment of this scale depends upon cooperation of a large num-
ber of installations, most of which must quickly perceive the potential near-term
benefits (to themselves) of participating in the experiment. Maximal cooperation
is dependent, in part, on minimal disruption of an organization's unrelated activ-
ity. This suggests that the experimental large scale file system services should be
engineered as modules which may be easily attached to an installation's operating
system environment(s).

The importance of a modular design extends beyond the initial development of
a testbed. File systems depend upon many other services which can be expected
to experience evolutionary, perhaps revolutionary, enhancement in the future.
File system services which are intertwined with current state of the art storage

5

services, for example, will- likely seldom benefit from novel developments. The
resulting hysteresis may even condemn both intertwined services to obscurity,
rather -than just the-one. Good modular design mitigates this problem.

1.4.1.1 Target environment

The available pool of candidate cooperating installations is the DARPA Internet
community, in which UNIX is the predominant software environment. Of the
various UNIX versions in common use, SunOS (Sun Microsystem's UNIX imple-
mentation) is attractive. The primary attraction is an internal design that readily
supports multiple filesystem implementations; a secondary benefit is that SunOS
is widely used- within the Internet.

The file system portion of the SunOS UNIX kernel is built around a generic
interface known as a virtual file system. The interface hides details of the particu-
lar file system implementation which is handling a request. AN extended version
of the virtual file system interface is used to add the experimental large scale file

systemservice to standard versions of SunOS.

1.4.1.2 Leveraging via stackable layers

Since this research focus is large scale issues, and- not file system services in
general, it is desirable to leverage existing (and future) services wherever possible.
Primary candidate services are raw disk management and network transport of
file data.

The virtual file system interface enables file system services to be leveraged
in an interesting way: a novel file system service can be added, which utilizes
existing services as though-it (the novel service) was simply a routine client (such
as a system call). This organization results in a "stack of layers" in which each
layer exports the same interface.

In addition to its leveraging benefits, the stackable layers concept allows trans-
parent services to be added. For example, a generic file system performance
monitoring layer can be "slipped in" between any two stacked layers sharing the
virtual file system interface.

This work uses the stackable layers model as an aid to designing and imple-
menting large- scale file system services. The existing UFS (UNIX File System)
and NFS (Network File System) services within SunOS are used to provide disk
management and network transport services, respectively. A new layer (or layers)
is constructed that supports the virtual file system interface, and which uses UFS

6

and NFS services. This layer is engineered as a module which can be linked into
a standard SunOS kernel.

1.4.1.3 Efficient layering

A layered implementation model often introduces additional overhead. The extra

cost is especially pronounced when an upper layer builds on on lower layer services
-that are richer than required. To some extent, this is the case when building a
large-scale file system on top of UFS.

For example, the replication service provides a more powerful directory service
than that currently provided by the UFS. The layered approach results in a
directory service in one layer which largely replaces the service in a lower layer,
-but is constrained to pay for the lower layer service as well. A -prototype of the
Andrew File System tried-this approach; it was abandoned because of significant

overhead, and the layers were replaced by a single-layer, customized UFS.

In this particular case, much of the additional overhead resulting from un-
needed UFS services may be avoided by exploiting various locality phenomena

:prevalent in UNIX system usage. Applying the results of recent studies of UNIX
file access patterns-to the new layers and exploiting the current finely tuned UFS
-implementation limits additional overhead to-acceptable levels.

1.4.1.4 Naming

The primary interface between clients and a file system is the naming scheme,
which includes the syntax of the-name space and the operations defined-over it. A

well designed naming scheme is a catalyst for network file sharing, a poor design
:hinders and frustrates sharing.

Design goals for a large scale file system are similar in many respects to those
of small scale distributed fiie systems. They include:

0 simplicity

* ease of:use

* file system boundary transparency

• syntax -transparency with respect to existing file system types

• location transparency

• name transparency

1 7

9 local autonomy for name management

* compatibility with embedded names in existing software

e support for large numbers of hosts, clients, and files

Existing naming schemes fail to meet one or more of these goals.

A testbed environment composed of existing installations necessarily places
some limitations on the design of a naming scheme. For example, the choice of
SunOS as a base system implies that the name space syntax must be compatible
with the UNIX naming scheme. These limitations are not significantly constrain-
ing, however. The tree-structured UNIX name space can be supported within the
context of a more general model, such as a directed acyclic graph.

The goals of simplicity and support for large scale suggest that some form
of hierarchy serve as the name space model. It is not immediately clear how to
integrate a few million existing, disjoint instances of the UNIX name space into
a hierarchy that meets all of the design goals. Major issues of name space design
-and supporting mechanism must be addressed.

1.4.2 Distributed access

The file system service must be able to locate a file and provide access to it
based solely on a client-provided, location transparent file name. Every host
supporting the large scale name space should be able to efficiently locate any file
nampd within the name space, and then support low-overhead read and update
access.

1.4.2.1 Volume mapping

Ideally, the logical organization of a name space is unrelated to the physical
location of the files themselves. In practice, effective resource managemenL is
achieved by physically grouping files with logically related names, yielding what
is-some.imes called a volume.4 A name space, then, is structured as a hierarchy
of volumes, each containing a rooted hierarchy of file names.

In existing distributed file systems, the macro-organization of volumes is usu-
ally represented as a table of mappings between names and volume roots. The

4Xoliume were introduced in the Andrew FileSystem [IIKM88]; they are used here in similar
ways, but with important diffierences in implementation and detail.

S

volume mapping table -(sometimes known as a mount table) is external to vol-
umes. Each-host supporting the name space maintains its -own volume mapping
table for the:portions of the name space in which it is interested.

The concept of volumes -is appropriate for a large scale file-system, but the
mechanisms -incorporated to date- in smaller scale systems-are generally not ap-
plicable. A large- scale file -system will contain millions of volumes, with new
volumes being established frequently. Few installations can afford to-attempt to
maintain a complete table of volume mappings, yet every :host -must be able to
locate any file named within- the entire name space.

This work addresses the volume mapping table problem by -distributing the
table and embedding table -entries within the name space itself. A new volume
graft point file type is introduced- into the large scale file system-service. A graft
point contains the-same mapping information formerly placed within-the volume

mapping table. With this mechanism, a host never needs to maintain a large3=: amount of volume mapping data. A graft point -is dynamically "interpreted" in
a manner similar to NFS automounting.

:II 1.4.2.2 File transport

A file that has been located for a client is usually accessed soon thereafter. If
the file is remote, its data pages must be transported to the client's host. Small
scale file systems-have used one of two approaches: demand paging, or whole file3 pre fetching and caching. Updates are handled either by asynchronous delayed
write-back, or synchronous write-through to the file itself.

The whole file prefetching approach exploits the locality of usage that is typ-I ical of UNIX clients. Most UNIX file access is to small files that are read se-
quentially in their entirety. File updates generally are preceded by a scan of the
entire file, and then the file is completely rewritten. Newly written data is often
rewritten or deleted shortly thereafter. When this behavior is prevalent, whole
file pre-fetching and caching has substanf:'lly less overhead than demand paging.
The whole file method is not appropriate for large, random access files such as
databases; demand paging is a muc better scheme.

The target system's existing transport service, NFS, uses demand pat-ng and
delayed write-back. NFS has been ieveraged to avoid having to design and build
a new transport service at the outset. The benefits of whole-file caching can be

obtained with the data replication services described in the sequel.

I,

1.4.3 Replication

Large scale distribu systems inherently possess two unpleasant characteris-
tics, partial operatioi and significant communications latency. Data replication
techniques have been-applied to small scale local area systems to address partial
operation- and latency problems (although they are much less pronounced). This
suggests that replication has the potential to ameliorate -these problems in large

* scale systems.

Data -replication methods maintain- multiple copies -of data, but strive to
present the client with the illusion of a single, highly available file. Major is-
sues include replica consistency, management-algorithms, and client interface.

1.4.3.1 Consistency

Almost all existing and proposed-replication mechanisms adhere -to serializability5

as a consistency definition. It is not clear, however, that enforcing strict serializ-
ability is appropriate for all, or even- most, file usage in a large scale, wide area
system.

-Serializability protects applications from interfering with each other. Existing
seriajizability enforcement techniques place substantial availability constraints on
access, often trading off read availability-requirements against update availability.

For example, the primary copy [AD76] strategy requires that all updates to a
file be performed on- a designated copy; other copies may be brought up to-date
in parallel with the designated copy, or at a later time. Read-only access may be
serviced by any accessible copy. In this case, read availability is very high, but
update availability is no greater than with a single copy.

The majority voting technique [Tho78] ensures that every update is applied
simultaneously to (at least) a majority of replicas. Read access which is to be
followed by a related update must involve at least a majority of -replicas, to

* guarantee that the latest version of the-file is read.

Quorum consensus [Gif79] is a generalization of the basic voting approach,
in which replicas are a priori allocated fixed, but possibly differing quantities of
votes, and read and update quorums can be assigned different thresholds. The
sum of the thresholds must be one greater than the number of replicas, but the
-update threshold must always be greater than one half of the number of votes.

-
5 nformally, serializability requires that all client actions be logically orderable in a serial,

non-concurrent fashion. The actions themselves may be physically concurrent, but their logical
order must be serial.

10

If -update is rare relative to read_ the read threshold can be made small, and the
update threshold made large. Such an arrangement optimizes-both performance
and availability to a particular job mix, but sacrifices the availability of update
in favor of read, or vice-versa.

Such approaches are inappropriate for an-environment characterized b par-
tial operation -and high latency. Partial operation- undermines the availability

* assumptions used to justify the read versus -update tradeoff: the quorums re-
quired by even a modest -number of replicas may never be achievable. High
latency makes the cost of consulting several replicas very-expensive.

The-result is that the average client has lower availability and poorer service
than a single client near a single replica. This is especially unfortunate since
empirical studies indicate -that very little concurrent file usage, and even less
update, actually occurs. Concurrent updates are even more rare. Thus, the-cost
and service limitations implied by serializability often seem to -be unwarranted.

The- rarity of concurrent update access suggests that -optimistic replica- con-
sistency strategies should be considered. This work adopts a novel one-copy
availability (OCA) consistency policy which enforces no lost updates semantics.I OCA permits read and update access when any data replica is accessible. A
spectrum of strictness can be enforced, ranging from "use any available replica"3 to "any replica no older that this client has used before." Strict serializability
enforcement can be constructed on top of OCA for those clients who demand it.

I1 1.4.3.2 Replica management algorithms

The one copy availability consistency policy initially applies an update to a sin-
gle file replica. The task of propagating the update (alternatively, the new file

version) rests with a separate service. A consistency policy like OCA that allows
- 3 concurrent, unsynchronized update further relies on an update reconciliation ser-

vice to detect concurrent update activity and- thereby ensure that no updates are
inadvertently lost. Detection of update conflicts may be accompanied by con-
flict resolution in those cases in which the reconciliation service understands the
semantics of the updates.

Accurate concurrent update detection can be accomplished using Parker's
version vector technique [PPR83, PW85, Guy87, SKK90]. A version vector is a
multi-dimensional version number in which each component corresponds to the
number- of updates applied initially to that replica. The absence of concurrent
updates is indicated when a comparison of replicas' version vectors determines
that one vector's components are each pair-wise greater than or equal to the cor-

I 11

1

responding components of another vector. Otherwise, concurrent update-activity
has occurred.

Concurrent updates are assumed -to represent conflicting unsynchronized ac-
tivity until some semantic-knowledgeable agent declares- the -conflict to be re-
solved. For many concurrently updated files, only the client can determine how
the conflict is to be resolved. But concurrent updates can- also-be applied to the
name space itself. Since the name space is closely managed by -the name service,
the potential exists for automatic resolution of concurrent name space updates.

A name space reconciliation service must first determine what updates should
be-propagated to -a particular replica, and then- apply those updates to--it. The
major issue here is how the reconciliation service learns which updates have oc-
curred.

One approach -is to maintain -replica-specific update logs. The reconciliation
service compares replicas' logs, identifies those -updates which -haven't been ap-
plied to the replica in -question, -and applies them to the replica and makes an
appropriate log entry. Log entries should be garbage collected when- they are no
longer relevant, i.e., when each replica has applied the update; an algorithm such
as that used in Jefferson's Global Virtual Time [Jef85] might suffice.

Name space update logs bear a striking resemblance to the name space to
which they refer. It is therefore interesting to consider coalescing or embedding
the log into the name space. Major benefits include a reduction in space overhead
and the reduced complexity of managing only one structure.

This research investigates a log-less approach in some depth and develops a
new class of low-overhead garbage collection algorithms. The algorithms place
few requirements on underlying communications services, in that the topology
may be arbitrary and continuously changing; no ordering of replicas is needed;
global storage requirements are quadratic in the number of replicas, with a small
coefficient (a few bits per replica); worst-case message complexity is quadratic,
with message length as a linear function of the number of replicas.

I This work incorporates these new garbage collection algorithms into the name
space reconciliation service for OCA. Further research is needed to extend the

i basic algorithms to support -dynamic growth and/or reduction of the number of
replicas. Early indications suggest that growth is fairly easy to support, and
reduction is more difficult.

I
U 12

1.4.3.3 Client interface

Replication should normally be a transparent feature of a file system. Neverthe-
less, there are -circumstances in which it cannot be transparent, such as when
conflicting file -updates must be resolved. There are also- times when its visibil-
ity can be helpful. For example, knowledgeable clients may wish to specify the
placement and number of replicas, rather than rely on the replication service's
default selections. Clients may-also wish to specify stricter or weaker consistency

* policies than that chosen:-by default.

Exposing replication services to clients is a perplexing problem for a-layeredI architecture, when the new service layers are separated- from clients by other
layers (which appropriately know nothing about the new-services). The solution
here exploits an extensible version of the virtual file system -interface [HP91a],
which supports a layer bypass mechanism that enables any layer to redirect an
unknown--service request to the layer immediately beneath it in a stack.

1.4.4 Research summary

The above research outline covers a broad range of issues which demand consid-
eration in the development of large scale, wide area file system. It covers testbed
development, including selection of a target operating system, identification of a
suitable interface for a layered architecture, and examination of naming issues.
Large scale distributed access research problems include volume management and
file transport. Finally, a comprehensive approach to replication is considered.

This research does not cover all issues fundamental to a large scale file sys-
tem. The most prominent, perhaps, is authentication and-security. The Internet
community is well aware of the importance of this aspect of large scale computing

environments;6 -it must be addressed at some point, but it is outside the scope of
this effort.

1.4.5 Dissertation outline

The remainder of this work consists of two main parts, the architecture and
implementation of the Ficus7 file system (Chapter 2), and a rigorous presentation

6The Internet worm case [Spa89] is a recent example of vulnerabilities in large scale
environments.

7The name was inspired by the topological similarity of two trees, one from cyberspace and
one from nature. The cyberspace tre.' is f.und in a large scale filing environment composed of
existing standalone tree-structured name bpaces connected by a shallow super-rooted sub-tree,

13

F

of the -family of two-phase algorithms used = in optimistic replica management
(Chapter 3). Chapter 4 summarizes the research and the conclusions which can
be drawn from it, and finally suggests future directions in which this research
could readily proceed.

1.5 Related work

The primary collections of related work are found in distributed file systems liter-
ature and replica management research. A brief summary of significant research
follows.

1.5.1 Distributed file systems

Several:interesting-distributed file systems have appeared in the last decade. They
are reviewed -here, along with relevant file access studies.

1.5.1.1 Important system implementations

The file systems mentioned here all support some form of network transparency.
Each supports distributed access and location transparent naming. The extent
to which name transparency is supported varies widely: it is guaranteed in some
(e.g., LOCUS), and must be-provided by convention in others (e.g., NFS).

* LOCUS
The LOCUS [PW85] distributed operating system provides clients with
the illusion of a very large, highly reliable single system. The (research)
LOCUS filesystem provides extensive file replication services. Within a
single partition, a very high degree of file access consistency is maintained.
Concurrent, partitioned updates are tolerated, and detected later through
the use of version vectors [PPR83].

LOCUS is intended for small scale environments, such as that typified by
office environments using a local area network. Each node regards the
others as peers, independent of their functionality.

* NFS
Sun Microsystem's Network File System is a distributed file system. Rep-

the 'natural' tree is the Ficus benghalensis, commonly known as the Banyan tree, a fig species
renowned for a wide-branching visible root structure seemingly grafted high onto a main trunk.

14

lication is not supported; UNIX consistency semantics are approximated to
some extent.

* Andrew/Coda
The Andrew [HKM88, Sat88] filesystem provides client workstations with
a highly reliable centralized file service. A client-server relationship exists
between workstations and the central pool of file servers; clients do not
privately share files. Client files are cached (in entirety) on the client's
workstation upon the first access to the-file. Andrew provides file replication
only amongst the pool of file servers, and assumes that no partitioning
occurs between servers storing file replicas.

A callback mechanism is used- between servers and clients for consistency
control. A callback is a promise by the server to notify every client with a
cached copy of a file that another client has finished updating a cached copy
and the server is -about to make its own copy consistent with the updated
cached copy. Clients are required to privately synchronize update activity
originating from distinct workstations.

This mechanism is not resilient to communications failures, and so unde-
tected conflicting updates can occur. This can result in a previous file
version being silently overwritten.

Andrew is intended for a campus-type environment: geographically dense,
with a few thousand client workstations.

Coda [SKK90] is a general purpose replicated filesystem service for Andrew.
It uses file replication techniques inspired by the LOCUS file system to sup-
port replication between partitioned file servers. Client workstations obtain
a temporary file "replica" (through Andrew's whole-file caching mecha-
nism), which may be modified even when a server is inaccessible. Con-
flicting updates are reliably detected; a simplification to the version vector
scheme introduces occasional false conflict notifications.

* Isis/Deceit
The Deceit file system [SBM89] is based on Isis [BJ87] Cornell's distributed
system kernel. Isis provides support for resilient objects, which Deceit uses
to underly file replication. Deceit allows a broad range of file consistency se-
mantics during network partitions, from serializability (using majority con-
sensus protocols to obtain mutual exclusion) to optimistic, non-serializable
semantics. No support for detection of partitioned conflicting updates is

provided.

15

Deceit appears to clients to be an extension to an NFS environment. It also
supports a-file versioning mechanism similar to that found in the VAX/VMS
operating system.

1.5.1.2 File access/placement studies

Three comprehensive file system activity traces have been performed, one in
a commercial mainframe setting [Smi8l] and two in university UNIX environ-
ments [OCH85, Flo86b]. These traces form the basis for a number of analy-
ses [Smi8l, 0CH85, MB87, Kur88, Flo86b, Flo86a].

These studies generally showed that a few files receive a large portion- of file
accesses; most files accessed are small, and read sequentially in their entirety.
A significant amount of working-set type locality was observed: a reference to
a file was frequently followed by another reference to the same file, and with
lesser frequency to a file located within the same file directory. Careful cache
management strategies were shown to be extremely useful in reducing I/O and
other file system overhead. Little file sharing occurred, with the exception of a
few heavily accessed (for read) system files.

1.5.2 Replica management

In the past twenty years, dozens of published papers have described various replica
management protocols. It is convenient to classify the protocols according to
several criteria: failure mode assumptions, pessimism about concurrent updates,
and mutual exclusion methodology. Specific replicated file system and directory
management proposals are also discussed.

1.5.2.1 Limited failure modes

Early work on replica management assumed that inaccessible replicas had com-
pletely failed; in this model, communications failures "do not occur." Ellis' [E1l77]
ring-oriented broadcast strategy utilized update history logs to recover failed
replicas. Despite its limitations, various improvements have been proposed, and
utilized in implementations. An improved atomic broadcast technique reduced
the overhead [JB86] and was incorporated in the Isis kernel [Bir85].

16

1.5.2.2 Pessimistic concurrency

Most replica management protocols are pessimistic about- concurrent update: po-

tentially non-serializable activity is explicitly prevented from occurring. Various
mutual exclusion techniques have been proposed to-ensure that concurrent, un-
synchronized- updates do not happen. All of these protocols occasionally prevent
update activity anywhere, even when each replica is accessible by one-client or
another-(but no-client-can access all replicas).

The-primary copy strategy was introduced by Alsberg [AD761. One-replica is
designated as primary and -receives all updates; secondary replicas are updated
lazily. A failed or inaccessible primary replica halts all update -activity. The
primary copy method has -been used- in the INGRES database [Sto79]' and the
commercial LOCUS file system [PW85].

Voting techniques (also known as majority consensus) have higher availability
than primary copy methods. Thomas' original voting method [Tho78] assigned
one "vote" to each replica; an update could proceed only if a majority of repli-
cas agreed to synchronously perform it. Unsynchronized concurrent updates are
prevented by the mutual exclusion behavior of "majority."

Weighted voting [Gif79] improved upon basic voting by allowing a different
number of votes at each replica, to account for varying reliability characteristics
of replicas. Gifford also noted that an explicit majority of votes is not required
for mutual exclusion: the actual:requirement is that the read quorum and update
quorum each be large enough to intersect.

Availability limitations imposed by infrequently accessible replicas have been
addressed by dynamic voting protocols [BGS86, Her86, ES83, DB85, JM87].
These allow adjustment of quorum definitions within a "majority partition," to
redefine the "size" of a majority by effectively disenfranchising currently inacces-
sible replicas. Ghost replicas have been proposed as a way to reduce the actual
storage costs of voting mechanisms [Par86, RT88].

Voting has been proposed or used in a wide variety of applications: name

servers [BG85], bulletin boards [Edi86], databases [VM871, reliable storage [Ber85,
BY87], file directories [BDS84], and Eden kernel replicated objects [NPP86].

1.5.2.3 Optimistic concurrency

Optimistic replica management approaches exploit the observation that concur-
rent update is relatively rare. Some support one-copy serializability by either
delaying update commit [AR85], or backing out updates at a later time [SBK85,

17

Dav84, Wri83]. Optimal ex -post facto analysis--of updates to determine which

should be backed out is an NP- complete problem [Dav84, Wri83], so some updates

may-needlessly revoked-for the sake-of efficient analysis.

Optimistic non-serializable approaches-have been proposed for computer con-

ferencing [Str8ll, commercial information retrieval services [ABG87], bulletin

board [BJS86], databases [BK85, SKS86, GAB83, A1183, Fai8l], and file direc-

tories [FM82, PPR83, Guy87l. Most of these base correctness criteria upon the

semantics of the data and the operations performed.

1.5.2.4 Replicated- directory management

The -directory replication problem has received particular attention because of the

central role it plays is designing a highly reliable distributed -file system. A wide

range of directory replication mechanisms have been proposed, from serializable

to non-serializable.

Fischer and Michaels [FM82I presented the first detailed examination of direc-

tory replication. They recast the problem as a replicated dictionary problem, to

focus on the basic insert and delete operations common to each. Unsynchronized,

concurrent directory modifications are resolved via timestamps.

Various inefficiencies in Fischer's work were addressed by Allchin [A1183].

Wuu [WB84] offered further improvements. Unfortunately, the successive im-

provements reduced communications complexity at the expenso of storage com-

plexity: each replica inXVua's scheme is required to maintain a version matrix.

Bloch (BDS84I utilized weighted voting in a serializable approach to directory

replication. A novel scheme was adopted in which no single directory replica need

(or can be assumed to) contain a true picture of the directory's status. Several

replicas must be con .jlted to compose a correct view of the directory. Bloch's

approach is inexpensive for interrogating or adding to . directory, but expensive

for deletions.

Guy [Guy87] proposed a norn-serializable solution in the spirit of the LOCUS

system. It is based on Parker's version vectors [PPR83J, and supports a wider

range of semantics than the earlier work by Fischer, et al. A novel feature of this

method is that it tolerates conflicting updates after the conflict is discovered.

(Earlier techniques made an immediate decision on how to resolve the conflict;

the haste often resulted in unpleasant effects, such as loss of a newly created file.)

18

CHAPTER 2

Architecture

This-chapter presents the main portions of the Ficus file system design. It begins
with a discussion of the stackable layers design methodology used throughout
Ficus. Section 2.2 describes Ficus volumes, which are a fundamental construct
for filing in general, and replication-in particular. Section 2.3 describes the Ficus
replication- approach and facilities, while Section 2.4 -focuses specifically on file
access synchronization issues-in Ficus.

2.1 Stackable layers

Stackable layers is a modular structuring paradigm distinguished -by the use of
identical interfaces for each layer. The application of structured -programming
techniques-to file system design is not new, nor is the concept of symmetric inter-
faces (which-has previously been applied to terminal I/O and-network protocols).

The contribution of this work is the integration and extension of these concepts
by the application of stackable layers to file system design.

2.1.1 Related work

The two primary classes of published work related to stackable layers are struc-
tured approaches-to file system design and the use of symmetric interfaces in I/O
and network protocols.

2.1.1.1 File system structuring

Previous work on structured design of file systems is typified by an early proposal
for hierarchical structuring of file systems and the current state of the art in
operating system support for multiple co-existing file systems.

In 1969, Madnick and Alsp [MA69] presented a modular approach to file
system design which was inspired by earlier work of Dijkstra [Dij67, Dij68] and
Randell [Ran68] on structured design. Their approach separates file system ser-

19

Symbolic file system File directory manipulation

Basic file system File meta-data access and management

Protection Access-control verification

Logical filesystem Access methods and file structure

Physical file system Logical to physical address mapping

Device strategies Initiate I/O, manage buffers, allocate storage

Figure 2.1: Madnick's hierarchical file system design (top-down).

vices into discrete levels of abstraction in which each level communicates only
with its immediate upper and lower levels. The resulting static organization
provides a framework for implementing a -file-system, such as the six-layer file
system design proposed in Madnick and Donovan [MD74] (see Figure 2.1). The
argument presented by Madnick, et al for modularity is the traditional one of
complexity management, both for ensuring logical completeness and for debug-
ging and quality assurance.

Operating systems have traditionally supported exactly one file system. Sun
Microsystems' SunOS' implementation of UNIX2 incorporates a switch which al-
lows multiple file system services to co-exist comfortably within a single operating
system.

3

The Virtual File System (VFS) switch mechanism [Kle86I is designed around
a vnode data structure which implements a stylized interface between a file system
and other portions of the operating system kernel. The interface is essentially
an information hiding technique that exports a set of operations (analogous to
methods in object-oriented terminology); all data is private to some vnode, and
can only be accessed via supplied vnode operations.

The-apparent initial motivation for the VFS switch was to support transpar-
ent remote file access without embedding remote access mechanisms within the
existing (local access) file system implementation [Kle86]. In SunOS, local filing
service is handled by the UNIX File System (UFS), while remote access is pro-

'SunOS is a trademark of Sun Microsystems, Inc.
'UNIX is a trademark of AT&T.
3A number of other UNIX implementations now also provide file system switches. These

include AT&T's File System Switch in UNIx System V Release 4, Digital's Generic File System
for ULTRIX [RK11861, and the 4.3-Reno BSD (Berkeley Standard Distribution)-KMS6J.

20

vided by the Network File System (NFS4) [SGK85]. NFS is "stacked" onto UFS,
in the sense that it exports the VFS- interface to its (local) clients and uses the
VFS interface on the remote site to access file systems (such as UFS) there. NFS
implements a custom data transport protocol between network sites.

Each of the dozen-plus file systems in the current (4.1) release of SunOS
supports a common set of vnode operations. The natural evolution-of file-system
s services has repeatedly forced a change in the definition of the VFS interface, as

new services require features not envisioned by the original designers. Thi lack
of extensibility is a major impediment to using the VFS interface as the base for
a general purpose stacking facility.

2.1.1.2 Symmetric interfaces

To date, the application of symmetric interfaces has focused- on protocol design
-for terminal I/O in UNIX and network communications-in a experimental kernel.

The STREAMS I/O system was developed by Ritchie [Rit84] as a replacement
for the (then' standard line discipline mechanism used to manage input and out-
put between -processes and terminals. The existing line discipline mechanism
had become extremely complex as a result-of adding various ad hoc routines to
improve performance; regularity of style and service suffered as well. A more pro-
nounced problem was the need to support multiple line disciplines concurrently
for the-same-process-a task never envisioned in its original design.

Ritchie's solution was -to define a simple queue-oriented interface which each
module uses to communicate with its neighbors in a "stream" of modules. Each
module filters the items placed on its input queues (one in each direction), perhaps
intercepting,-substituting, augmenting or passing on the items given to it. C->ntrce
messages may be queued in addition to regular data messages, which normaP.--
consist-of a simple sequence of characters.

The symmetric interface of each module allows a stream to be composed

of modules in whatever order is desired.5 A further feature of the STREAMS
approach is the ability to dynamically add and remove modules from the stream
while it is operating.

A layered design approach has also been used in the x-kernel operacLng system
kernel [HPA89, PH09O, IIP9lb]. The x-kernel is a configurablc kernel designed

4NFS is a trademark of Sun Microsystems, Inc.
'Note that the modules at each "end" of the stream support the interface on only one

"side-a different interface is typically used to communicate with modules not part of the
stream.

21

explicitly for simplifying the implementation of network protocols. Primary fea-
tures of -the x-kernel include a uniform interface to all protocols, late binding
between protocol layers, and a light-weight layer mechanism.

The x-kernel design is deliberately intended to encourage composition of pro-
tocol stacks on-the-fly, with run-time selection of layers supplying the appropriate
semantics. Layering efficiency is provided by using procedure calls. not context
switches, to pass information between- layers. T;"his economyin -,seooyis further used to

promote decomposition of protocols into multiple layers as a means of aiding
flexibility.

2.1.2 Observations

Operating systems and file systems have grown significantly in size and com-
plexity in the twenty years since Madnick's proposal was presented. Greater
complexity has often manifested itself as a tendency towards monolithic sys-
tern implementations which increasingly defy adequate testing and verification,
and hinder improvements--especially those not conceived within the monolithic
framework.

In recent years, micro-kernels in systems such as Mach [ABG86, RBF89] and
Chorus [RAA90] have emerged as a response to the monolithic implementations
of operating systems. I1owever, little has been done to tackle the monolithic filing
service portion of most kernels. Adding any new features to a filing environment
is usually a daunting task which frequently requires reimplementation of much
of the file system. This situation generally prohibits all but the major operating
system vendors from providing and distributing new filing services, and even then
artificially limits the services which will be offered to those which are easily added
to the existing product.

The file system switch approaches are an important step in the modular di-
rection, but have yet to be accompanied by a decomposition of monolithic file
system services. A few interesting new services (e.g., RAM-based filing) have
been constructed, but all are layered onto a fairly standard UFS-type file system
base. The new services are therefore constrained by the services and semantics
offered by a UFS: access to lower level services within the UFS is not provided.
and services must be used even when their richness is unnecessary.

It is also difficult to experiment with new lower level services. For exam-
ple, Rosenblum's log-struclurcd file system [R0911 for the Sprite operating sys-
tem [OCD]SS provides UFS semantics, but uses a very different disk management
algorithm from that used by Berkeley's Fast file system [MJLS-t]. The monolithic

22

nature -of the various- UFS implementations limits the -immediate wide-spread
utility of the log-structured file system (LFS) because porting LFS to other envi-
ronments (which may have made semantically orthogonal but tightly-integrated
changes-to their UFS :implementations) is a non-trivial task. A similar situation
-affects the RAID [PGK88I disk-array filing work.

A design technique and accompanying mechanism which provides the ability
to snap-together independently developed components to configure custom filing
services on a site by site (or even file'by file) basis would introduce unprecedented
flexibility. The result would be a mechanism whereby independent researchers
or vendors can deliver shrink-wrapped software -modules which contribute -hle
system- functionality without rewriting, replacing or retesting large portions of
the basic implementation.

2.1.3 Requirements

The above observations provide a strong motivation for stackable layers approach
to file system modularity. But what specific requirements must be met by an
acceptable stackable solution?

To add a bit of concreteness, suppose the goal is to design a highly available,
large scale, wide area file system using a stackable layers methodology. Suppose
further that remote access, replication, authentication, and a variety of as yet
unknown services are to be supported in addition to traditional single-system
UNIX file-services.

These goals place a number of requirements on a layering mechanism; some
requirements are novel individually, and the collection is-unprecedented in scope:

Efficiency: Numerous thin layers embedding few abstractions are preferable to
a few thick ones (to maximize the leverage of existing code), so the-inherent
cost of layering must be low.

Stack composition granularity: Stack contents should be customizable at a
process, application, or file granularity; layer services should generally be
optional, -not forced upon clients. The order of layers should be determined
-by layer-specific semantics, not fixed a priori.

Extensibility: New layers with custom operations should be supported any-
where in a stack (not only the-top) without disturbing existing layer imple-
mentations. New layers should be introducible at boot-time, irrespective of
existing layers; binary-only distribution of new layers should be feasible.

Stacks across address space boundaries: It should be possible to construct
a stack that crosses address space and machine boundaries. Graceful reac-
tion to partial stack disintegration resulting from node or communications
failures is essential.

23

Well-defined operations: The extensibility and address space boundary re-
quirements imply that a layer may need-to handle arguments for "unknown"
operations. These arguments must be -self-describing as to type,-etc.

Stack fan-in, fan-out: A stack may actually be an acyclic graph, with fan-in
and fan-out at any level. Fan-in occurs when several higher layers stack on a
common lower layer (as might occur when a file is -concurrently accessed by
several nodes); fan-out occurs when a layer-is stacked upon multiple lower
layers -(as might be the case when- several files stored on distinct nodes are
in use by a single-client).

Scale: No artificial limits should be placed on the depth (number-of layers) of a
stack or on the breadth of fan-in or fan-out.

Dynamic composition: Stacks should be -customizable on-the-fly, especially
when the layers to be added/removed are "invisible" -ones, i.e., -they are
semantics-free value-added- layers, such- as caching or monitoring- layers.

Backwards compatible: Compatibility layers should be constructible which
can encapsulate the new mechanism within the constraints presented by
older layering services. A lower compatibility layer allows the new mecha-
nism to-leverage services implemented with other layering mechanisms; an
upper compatibility layer allows older mechanisms to utilize new services,
subject to limitations imposed by the intersection of the various layering
mechanisms. In particular, existing system call interfaces must not be af-
fected, so that current application software will continue to run unmodified.

2.1.4 Ficus layer mechanism

The Ficus layering mechanism meets most, -but not all, of these requirements.
It: is derived from the SunOS VFS/vnode technique, but is much more flexible
and powerful than its predecessor. The mechanism is described in detail by its
designer in [HP90, HP91a]; the material that follows summarizes that work.

A Ficus layer is defined to be a set of operations which can be applied to a
vnode-data structure. A vnode structure embodies a layer's concept of a file. It
normally contains a-list of operations which can be applied to the vnode, and a
pointer to a procedure which implements each operation. The private data held
by a vnode is layer specific, of course, but usually contains one or more pointers
to vnodes from the layer immediately below. Adding a new file system service is
primarily a matter of implementing the desired operations for a new layer.

A vnode operation invocation contains a pointer to the vnode on which to
operate, the name-of the-operation, a pointer to the operation's arguments, and a
template which defines the type of each-argument. The layer mechanism mapsthe
operation name to the proper implementation of the operation for the indicated
vnode, and invokes the operation with the supplied arguments and template.

24

The implementation of a vnode operation may simply -forward the operation
to-one of its-descendants (analogous to inheritance), perform some actions and
then forward it to its descendants, call some-other operations on its descendants,
or even handle the-operation entirely internally. A layer knows nothing about
the type-of vnode below it; it simply holds a pointer to it. At the -base of the
stack is a layer which has no further descendants.

2.1.4.1 Bypass operation

Sometimes the operation to be invoked is not defined, as the layer designer did
not provide an implementation for that operation. (Perhaps the designer intends
for the implementation-to be "inherited" from some layer below; it-is also-possible

that the operation in question had not even been conceived when the layer was
built.) In this case, a bypass operation is executed to pass the invocation -through
to the next lower layer. The lowest layer in-a stack returns an error if a bypass
is-attempted.

In general, each layer must define its own bypass operation, since the nature
of the bypass may depend on a layer's semantics. Even if unusual semantics are
not involved, the pointer to a lower vnode is contained in a vnode's private data
area-whose structure is opaque to other layers.

The cost of a bypass operation is typically an additional procedure call which

simply passes on the pointers to the arguments with which it was originally called.
But when a layer "straddles" an address space boundary, the bypass operation
must marshal its arguments and pass them into the other address space. The
argument type template defines the arguments in sufficient detail for a bypass

operation to correctly transfer arguments from one address space to another.6

A transport layer (one that straddles an address space boundary) is actually
composed of two sets of operations: those called by the layer above, and those
executing in the other address space which in turn call the layer below. For
example, if a stack crosses machine boundaries via a network, the upper half of
a layer might implement one end of a data transfer protocol, while the lower half
implements the other end of the protocol. Figure 2.2 shows a sample stack with
a transport layer.

The current Ficus implementation contains a basic layer mechanism, a generic
bypass operation, and a generic transport layer pair for crossing address spaces.

6The External Data Representation (XDR) service in SunOS is used here; it also supports
data movement between heterogeneous data formats, as often occurs when a stack crosses
machine boundaries.

25

The implementation of a vnode-operation may simply forward the operation
to one of its -descendants (analogous to inheritance), perform some actions and
then forward it to its descendants, call some other operations on its -descendants,
or even handle the operation entirely internally. A layer knows nothing about
the type of vnode below it; it simply holds a pointer to it. At the base of the
stack is a layer which has no further descendants.

2.1.4.1 Bypass operation

Sometimes the operation to be invoked is -not defined, as the layer designer did
not provide an implementation for that operation. (Perhaps the-designer intends
for the implementation to be "inherited" from some layer below; it is -also possible
that the operation in question had not even been conceived when the layer was
built.)- In this case, a bypass operation is executed to pass- the invocation through
to -the next lower layer. The lowest layer in a- stack returns an error if a bypass
is attempted.

In general, each layer must define its own bypass operation, since the nature
of the bypass may depend on a layer's semantics. Even if unusual semantics are
not involved, the pointer to a lower vnode is contained in a vnode's- private data
area-whose structure is opaque to other layers.

The cost of a bypass operation is typically an additional procedure call which
simply passes on the pointers to the arguments with which it was originally called.
But when a layer "straddles" an address space boundary, the bypass operation
must marshal its arguments and pass them into the other address space. The
argument type template defines the arguments in sufficient detail -for a bypass
operation to correctly transfer arguments from one address space to another. 6

A transport layer (one that straddles an address space boundary) is actually
composed of two sets of operations: those called by the layer above, and those
executing in the other address space which in turn call the layer below. For
example, if a stack crosses machine boundaries via a network, the upper half of
a layer might implement one end of a data transfer protocol, while the lower half
implements the other end of the protocol. Figure 2.2 shows a sample stack with
a transport layer.

The current Ficus implementation contains a basic layer mechanism, a generic
bypass operation, and a generic transport layer pair for crossing address spaces.

6The External Data Representation (XDR) service in SunOS is used here, it also supports
data movement between heterogeneous data formats, as often occurs when a stack crosses
machine boundaries.

25

I should be able to incorporate or avoid- such features on demand, in reaction to
the dynamism inherent in general distributed computing. Rosenthal proposed
a push-down vnode-based mechanism [Ros90] for dynamic file system stacks in
a single address space; its utility is limited for distributed -file systems as the
mechanism does -not easily extend- across address spaces.

Dynamic filing stacks are not likely to be as "dynamic" as protocol streams,

though, because existing file data was created in the -context of -a particular
stack of semantically significant layers. Operational integrity requires that these
layers -be included, in the proper order, in later stack construction. But -invisi-
ble layers, such as caching, or invisible layer pairs providing (de)compression or
-(de)encryption, should-be dynamically stackable.

2.1.5 File system decomposition

On several occasions in-the preceding discussion, it has been argued that existing
file systems are monolithic (which- is bad) when they should be structured as a
number of layers which are relatively thin (which is good). A case study of several

~l current file system implementations for UNIX systems supports this argument in
more detail.

Consider the typical "layered" file system arrangement in SunOS that would
be displayed with UFS, NFS, Rosenblum's LFS, and the Andrew File System
(AFS) [HKM88]. Figure 2.3 shows a likely VFS-based arrangement.

U Internally, UFS and LFS contain substantial amounts of identical code to im-
plement standard UNIX directory semantics and so on; only the disk layout code
is different. On the other hand, UFS and AFS share the same disk management

code, but have different directory management code.

* Figure 2.4 shows the resulting organization if the file system layers are each
- I split into two layers, in which the basic "inode" abstraction is the dividing line.

There are now two semantically equivalent implementations of disk management
services, each available for use by two directory managers that provide somewhat
different directory services. Note, however, that the UFS and AFS directory
services are similar enough that NFS (as well as the basic OS system call services)
can be layered above each.

Further decomposition of file system services is both feasible and useful, as
will be seen in subsequent discussion of the Ficus replicated filing service in

Section 2.3.3.4.

2

SuO kene
NFIIprh

IN

Figure 2.3: File-system configuration with thick layers.

SuI kre
SunOS kernel

NFS
(lower half)

UFS AFS
dietr mg directory mgt

Berkeley IFFS Log-structured
cylinders J disk layout

I Figure 2.4: File system configuration with thinner layers.

1 28

2.1.6 Summary

The stackable layers paradigm is an promising design- methodology -for filing ser-
vices. The unprecedented flexibility and extensibility provided by stackable layers
can be expected to have a significant impact -on experimentation with new file
system services, -improvements in existing services, and the rapid adoption of
novel developments. Their use permeates the Ficus architecture.

2.2 Volumes

Ficus is- intended for very large scale distributed computing environments. Such
an- environment might have 106 -hosts, each with perhaps 105 files. Primary -goals
of-Ficus (see Chapter 1)-include-name and location transparent access to all Ficus
files while retaining a familiar access syntax and semantics.

Accordingly, the Ficus name space topology is a limited, directed acyclic graph
of files and directories. To ease management at several levels, the name space
hierarchy is divided into disjoint sub-hierarchies called volumes. A volume is a
singly-rooted, self-contained', connected set of files and directories. A volume
typically contains from -102-105 files, yielding an expected total of approximately
108 volumes.

Achieving name and location transparency at this scale implies that every
host can name, -locate, and access any of 101 files scattered amongst 108 volumes
on 106 hosts. This reduces to naming and locating volumes when (as in Ficus)
volumes contain a well-defined subset of files.

Solution to this problem are very much constrained by the number of volumes
in the name hierarchy, the number of replicas of volumes, the topology and failure
characteristics of the communications network, the frequency or ease with which
volume storage locations change, and the degree to which the hierarchy of volumes
spans multiple administrative domains.

2.2.1 Related solutions

Most volume naming mechanisms are descended from the original UNIX mounted
filesystem concept. In this model, a path name is expanded component by com-
ponent within a filesystem (volume) until a specially designated directory is en-
countered. The special designation indicates that path name expansion should
continue in the root directory of another volume, which is said to be mounted at

7Directory references do not cross volume boundaries.

29

I7

that point in the hierarchy.

The traditional UNIX mounted filesystem mechanism has been widely altered
or replaced to support both small and large scale -distributed file systems. Ex-
amples of the former are Sun's Network File System (NFS) [SGK85] and IBM's
TCF [PW85]; larger scale file systems are exemplified by AFS [Kaz88], Deco-
rum [KLA90], Coda [SKK90], and Ficus [GHM90, PGP91]).

-In a conventional single-host UNIX system, a single mount table exists which
contains the mappings between the mounted-on directories and the roots of
mounted volumes. However, in a -distributed file system, the equivalent of the
mount table must be a distributed data structure. The distributed- mount table
information must be replicated for reliability, and the replicas kept consistent in
the-face of update.

Most distributed UNIX -file systems to some degree attempt to- provide the
same view -of the -name space from, any site. Such name transparency requiresII mechanisms to ensure the coherence of the distributed and replicated-name trans-
lation database. NFS, TCF, and AFS each employ quite different approaches to
this problem.

To the degree that NFS achieves name transparency, it does so through co.
vention and the out-of-band coordination by system administrators. Each site

must explicitly mount every volume which is to be accessible from that site; NFS
does not traverse -mount points in remotely mounted volumes. If one admin-
istrator decides to mount a volume at a different place in the name tree, this
information is not automatically propagated to other sites which also mount the
volume. While allowing sites some autonomy in how they configure their name
tree is viewed as a feature by some, it leads to frequent violations of name trans-
parency which in turn significantly complicates the Users' view of the distributed
file system and limits the ability of -users and programs to move between sites.
Further, as a distributed file system scales across distinct administrative domains,
the prospect of maintaining global agreement by convention becomes impossible.

IBM's TCF, like its predecessor Locus [PW85], achieves transparency by rene-
gotiating a common view of the mount table among all sites in a partition every
time the node topology (partition membership) changes. This design achieves
a very high degree of network transparency in limited scale local area networks
where topology change is relatively rare. However, for a network the size of
the Internet, a mount table containing several volumes for each site in the net-
work results in an unmanageably large data structure on each site. Further, in
a nationwide environment, the topology is constantly in a state of flux; no algo-

rithm which must renegotiate global agreements upon each partition membership

_ ~~~ ~~30___ _ _ _ _ _ _

change may be considered. Clearly neither of the above approaches scales-beyond
a few tens of -sites.

Cellular AFS [ZE88] (like Ficus) is designed for larger scale application. AFS
-employs a Volume Location Data Base_(VLDB)-for each cell-(local cluster) which
is replicated on the cell's backbone servers. The mount point itself contains the
cell and volume identifiers. The -volume- identifier is used as a key to locate the
volume in a copy of the VLDB within the indicated cell. Volume location infor-
-mation once-obtained, is cached by each site. The VLDB is-managed separately
from the file system using its own replication and consistency mechanism. A
-primary copy of the VLDB on the system control machine periodically polls the
other replicas to pull over any updates, compute a new VLDB for the cell, and
redistribute it to the replicas.

The -Cellular AFS design does not permit volumes-to move across cell bound-
-aries, -and does not -provide- location transparency across cells, as each cell's man-
agement may-mount remote cell volumes anywhere in the namespace. This may
be viewed as a feature or a limitation depending on where one stands on the
tradeoff between cell autonomy and global transparency.

The AFS design- also explicitly assumes a slowly changing VLDB. This is not
likely to be the case for very large scale environments. Suppose that the number
of volumes is static and that a volume is likely to be relocated to another storage
device or host once a year. With 108 volumes, some volume can be expected to
move every . second. Although the rate of change for a single volume is very low,
the aggregate rate of change is quite high-too rapid to allow volume location
data to be distributed throughout the network in a timely fashion.

2.2.2 Ficus solution overview

Ficus uses AFS-style on disk mounts, and (unlike NFS) readily traverses remote
mount points. The difference between the Ficus and AFS methods lies in the
nature of Ficus volumes (which are replicated) and -the relationship of Ficus graft
points and volume location databases.

In Ficus, like AFS [HKM88], a volume is a collection of files which are man-
aged together and which form a subtree of the name space8 . Each logical volume

8Whereas a filesystem in UNIx is traditionally one-to-one with a disk partition, a volume is
a logical grouping of files which says nothing about how they are mapped to disk partitions.
Volumes are generally finer granularity than filesystems, it may be convenient to think of several
volumes within one filesystem (say one volume for each user's home directory and sub-tree)
though the actual mapping of volumes to disk partitions is a lower level issue.

31

in Ficus is represented by a set of volume replicas which form a maximal, but
extensible, collection-of containers- for file replicas. Files (and directories)- within
a logical volume are replicated in one or more of the volume replicas.' Each indi-
vidual volume replica is normally stored entirely within one UNIX disk partition.

[3 Ficus and- AFS differ in how volume location information is -made highly
available. Instead of employing -large, monolithic mount tables on each site,
Ficus fragments the- information needed to locate volumes and places the data
for an-individual volume in-a graft point-(the mounted-on directory).10

2.2.3 Graft points

A graft point (see Figure 2.5) is a special file type used to indicate that a (specific)

volume is to -be transparently grafted at this point in the name space. Grafting is
similar to UNIX filesystem mounting, but with a number of important differences.

A graft point maps a set of volume replicas to hosts, which in turn each
maintain a private table mapping volume replicas to specific storage devices.
Thus the various pieces of information required to locate and access a volume
replica are stored where they will be accessible exactly where and when they will
be needed.

A graft point contains a unique volume identifier and a list of volume rep-
lica and storage site address pairs. Therefore, a one-to-many mapping exists
between a graft point replica and the volume replicas which can be grafted on
it. Each graft point replica may have many volume replicas grafted at a time.
The particular volume to be grafted onto a graft point is fixed when the graft
point is -created, although the number and placement of volume replicas may be
dynamically changed.

A graft point may be replicated and manipulated just like any other object (file
or directory) in a volume. It-can be renamed or given multiple names; it can be a
replicated object itself, with replication parameters independent of the referenced
volume. Since a graft point resides in a "parent" volume, although referring to
another volume, the graft point is subject to the replication constraints of the
parent volume. There is no requirement that the replication factor (how many
replicas and their location in the network) of a graft point match, or even overlap,

9 Each volume replica must store a replica of the root node; storage of all other file and

directory replicas is optional.
101n the sequel, the term "graft" and "graft point" is used for the Ficus notion of grafting

volumes while the mount terminology is retained exclusively for the Ulx notion of mounting
filesystems.

32

V01=6

/.- "',. / /

. .. . ' o, ,,, ,, '-;., S"

Figure 2.5: Graft point with both parent and child volumes replicated.

33

that of the child volume.

As it happens, the format -of a graft point is compatible with that of a direc-
tory: a single bit indicates that it contains grafting-information and not file name
bindings. The syntactic and semantic similarity between graft points and normal
file directories- allows the use -of the same optimistic replication and reconcilia-
tion mechanism that manages directory updates. (See Section 2.3 and Chapter 3
for details of these mechanisms.) Without -building any additional mechanism,
graft point updates are propagated to accessible replicas, conflicting updates are
detected and automatically repaired- where possible, and reported to the system
administrators otherwise.

Volume replicas may be moved, created, or deleted, so long as the target
volume replica-and any replica of the graft -point are accessible in the partition
(one copy availability). This optimistic approach to-replica management-is critical
as one of the primary motivations for adding a new volume replica may be that
network =partition has left only one replica still accessible, and greater reliability
is desired.

This approach to managing volume location information scales to arbitrarily
large networks, with no constraints on the number of volumes, volume replicas,
changes in volume replication factors, or network topology and connectivity con-
siderations.

2.2.4 . Volume and file identifiers

When a file is created, it is given a globally unique, static identifier that is carried
by the file (its replicas) throughout its existence. A Ficus file identifier has several
components, but at its- highest level of abstraction, it is a tuple (volume-id, file-
id). The volume-id component is a globally unique identifier for the volume, while
the file-id component is unique within that volume.

Partial network operation should not hinder a host's ability to create new
volumes, so each host must be able to issue new volume-ids on its own. Prior
to system installation, each Ficus host is issued a unique value as its allocator-
id which the host can use in conjunction with a non-decreasing counter to is-
sue globally unique volume-ids. A volume-id is, therefore, a tuple (allocator-id,
counter-value).

Allocator-ids are issued by a central (possibly offline) service. Ficus allocator-
ids contain space for two fields the size of an Internet host address. In most
cases, one field will contain existing Internet host addresses; the other field is
present to allow easy integration of existing host identifiers from other networks.

34

A completely detailed volume-id is -a 3-tuple (internet-id, intranet-id, counter-
value).

Individual volume replicas are further identified by a replica-id, so a volume
replicais globally uniquely identified by the couplet (volume-id, replica-id).

11 A host not only has the autonomy to create new volumes at any time, it
can also-spawn a new volume-replica, irrespective of which host established the

-3 volume originally. Each volume replica is issued a contiguous range of replica-ids
that is disjoint from ranges issued to all other volume replicas. A new volume
replica can be created from any existing volume replica possessing a non-empty
range of replica-ids. The:new volume replica's replica-id is taken from either the
top or bottom of the existing replica's range; tHe new replica's range is further
drawn contiguously fromthe older replica's range.

Within the context of a particular volume, a logical file is uniquely identified
by-a file-id. A particular file replica is then identified by appending the replica-id
of the containing volume replica to the file-id, as in (file-id, rcplica-id). A fully
specified identifier for a file replica is (volume-id, f e-id, replica-id); this identifier3l is unique across-all Ficus hosts in existence.

Each volume replica assigns file identifiers to new files independently. To
ensure that file-ids are uniquely issued, afile-id is prefixed with the issuing volume
replica's replica-id. A file-id is actually, therefore, a tuple (replica-id, unique-ido.

A total of six components constitute a complete file replica identifier: (internet-
it, intranet-id, counter-value, replica-id, unique-id, replica-id). The first three
components constitute the volume-id, the fourth and fifth form the file-id, and
the sixth identifies a particular replica. Each component is a 32-bit field, which
should allow effectively unlimited growth at every level.

The values contained in any file identifier field place no constraints on the
actual physical location of any file or volume replica in the network; they merely
serve to uniquely identify a file or volume. There is no requirement that a host
ever store a volume for which it issued a volume-id; nor is it necessary for a
volume replica to store a replica of a file for which it provides a file-id.

2.2.5 Autografting

In a very large scale distributed file system, there may be millions of volumes to
which one might desire transparent access. However, any one machine will only
ever access a very small percentage of the available volumes. Hence it is prudent
to locate and graft volumes on demand, rather than a priori.

3535

If the volume in which the graft point resides is itself a replicated volume,
the graft point containing the volume replica location information may also be
replicated. If each parent volume replica which stores the directory in which the
graft point occuis also stores a-copy of the graft point, the location -information is
always available whenever the volume is nameable. There is-very little benefit to
replicating the graft point anywhere else and considerable loss if it is replicated
any less.

In the course of expanding a path name, a directory is first checked to see if it
is actually a graft-point. If so, and a volume replica is already grafted, pathname
expansion simply continues in that volume replica's root directory. More than
one replica of the grafted volume may-be grafted simultaneously, but if no grafted
replica is found, the system must autograft one of the volume's replicas onto the
graft point.

A graft point is a table which maps volume replicas to their storage site. The
sequence of records in a graft point table is in the- same format as a standard
directory and hence may be read with the same operations used to access direc-
tories. Each entry in a graft point is a triple of the form (volume-id, replica-id.
hostname), identifying one replica of the volume to be grafted. The volume-id is
a globally unique identifier for the volume. The replica-id identifies the specific
volume replica to which the entry refers. The hostname identifies the host which

is believed to house the volume replica." The system then uses this information
to select one or more of these replicas to graft. If the grafted volume replica is
later found not to store a replica of a particular file, the system can return to
this point and graft additional volume replicas as needed.

In order to autograft a volume replica, the system calls an application-level
graft daemon on its site. Each site is responsible for mapping from volume and
replica identifiers to the underlying storage device providing storage for that
volume. If the hostname is local, the graft daemon looks in the file /etc/voltab
for the location of the underlying volume to graft. If the hosiname is remote,
the graft daemon obtains a file handle for the remote volume by contacting the

remote graft daemon (similar to an NFS mount; see [SGK85]) and completes the
graft.

The system caches the pointer to the root directory of a grafted volume replica
so that the graft point does not have to be fully reinterpreted each time it is
traversed. (The cache supports pointers to multiple replicas for a single volume.)
The graft of a volume replica which is not accessed for some time is automatically

"Currently hoslnamc is an Internet host aldress, it could equally well bc a Domain Naming
System identifier or one from any other host naming or addressing mechanism.

.36

pruned so it does not continue to consume resources.

2.2.6 Creating, deleting and modifying graft points

The system must support creation, deletion, moving and updatir, -f graft points.
-Graft points are modified- whenever -the named volume replica is created, de-
stroyed, or moved from one host to another. Moving a graft point is equivalent
to creating a copy of it in -a different -place in the name hierarchy, and deleting
-the original.

While updating a graft point is a relatively rare event, when it does occur, it
-is generally important. Hence it is not reasonable to -require that all, or even a
:majority of the replicas of -the graft point -be accessible. Further, -the motivation
for updating a graft point may be at its greatest precisely when the- system is
unstable or partitioned. Perhaps the whole reason for updating -the -graft point
-is to add an additional replica of a volume for which, due -to partitions or host
failures, only a single replica remains accessible; this update must be permitted,
-even- though it cannot immediately -propagate to all replicas of the graft point.

Hence, for exactly the same reason that Ficus utilizes an optimistic philosophy
-for maintaining the consistency of files and directories, the same philosophy must
be applied to graft points. Fortunately, this is very easy to achieve in Ficus since
a graft point has the same format and, as a sequence of records, very similar
semantics to a directory.

2.2.7 Conflicting graft point updates

As with directories, the semantics of graft point updates -are quite simple, and
hence most updates which would have to be considered conflicting if viewed from
a purely syntactic point of view may be -automatically merged. For example, if in
non-communicating partitions, two new replicas of the same volume are creatd,
the two resulting graft point replicas will each have an entry that the other does
not have. However, it is clear that the correct merged graft point should contain
both entries, and this is what will occur.

Ficus uses the automatic reconciliation mechanism already in place for regular
file and directory update management to manage graft point updates. A detailed
description of these techniques is contained in Section 2.3 and Chapter 3; the
-following discussion is therefore free of most algorithmic detail.

Part of a graft point entry is mapped into the name field of a directory entry,
and the remainder is placed in the file named by that entry. The couplet (volume-

37

id, repl-id) is encoded as printable ASCII characters in the name field of the
directory entry, while the hostname component constitutes the contents of the
named file.

When a new child volume replica is created, an entry for the- new replica
(consisting of a new -ile and associated directory entry) is placed in one graft
point replica. The Ficus file-and directory automatic update propagation service
sees to it that -the new graft point data -is propagated to all other graft point
replicas.

When a volume replica-ismoved from- one host to another, the file contents (at
one graft point-replica) are simply updated to reflect the new hostname. Should a
graft point entry be concurrently updated-in two graft -point replicas, the normal
file update conflict detection mechanism will notice that state of affairs and flag
each replica in- conflict. Similarly, if a graft point entry is updated in one graft
point replica (to indicate that the Child volume replica has moved to~a new host),
and concurrently deleted in another graft point replica (to indicate that access
to the child volume replica is no longer possible for some reason), the regular
file remove/update conflict detection mechanisms detect the conflict. Standard
(manual) conflict resolution tools must then be used to resolve the conflict. In
the meantime, access -to the file data (i.e.,-the hostname) will be blocked as usual
for conflicted files.

If a volume replica is destroyed, the-graft point entry is eliminated by simply
removing the directory entry- for that particular volume replica in one graft point
replica. Update propagation and directory reconciliation ensures that the other
graft point replicas also receive notification of the change.

In general, graft point data is self-validating upon use: if it is wrong in some
way (perhaps the replica has been destroyed or moved to a new host) the queried
host will respond negatively to a graft request, and the autograft mechanism will
try some other replica.

2.2.8 Volume summary

The Ficus volume design is the foundation for a very large scale file system
name service. It supports a very large number of volumes and volume replicas,
in a flexible manner. Autonomous control of volume creation, placement, and
destruction is inherent, as are location transparency and name transparency.

38

__

2.3 Replication

A primary goal of the Ficus project is to provide a large scale -replication service
that can be readily -used by a sizable client community. Such a service -must,
therefore, be easy to-install and administer.

Easy installation-implies that the service be portable to a number of operating
system platforms; -that existing file systems need not be converted to a- new
format; that -existing network protocols continue to-operate without interference;
and that minimal changes be made to existing operating system kernels, so as
not to disturb- others' customizations and not unduly erode clients' confidence in
their kernel's integrity.

Easy- administration implies that the mechanism must be amenable to mul-
tiple bureaucratic domains; that -minimal cooperation with centralized authority
be-required; that it be easy-tointegrate new hosts (including entire subnets); and
that replication management be both powerful and- flexible in the face of partial
operation.

A second goal is that existing services be used whenever feasible. This allows
one to concentrate on specific issues, rather than on peripheral areas in which
contributions are not anticipated. Even when a service is not "just right," the
resulting leverage often enables a prototype service to be rapidly constructed;
finely tuned services can later be constructed in the context of more complete
(e.g., empirical) knowledge.

The Ficus replicated file service design embodies these goals. Replication is
a value-added service which can be "bolted on" to existing kernels. The design

I presented here also reflects a high degree of leveraged services; a number of "fine
tuning" ideas drawn from this experience are described in Chapter 4. Ficus
replication is a case study in providing a key piece of extended filing services
using the stackable layers architecture. In particular, the replication service is
largely indepe-ident of the underlying file system implementation, permitting a
high degree of configuration flexibility and portability.

2.3.1 Replication overview

The initial Ficus design specified that existing services should be leveraged in their
pristine form. It was clear from the outset that a suitable replication service would
incorporate a persistent storage service (e.g., UFS), a network data transport
service (e.g., NFS), and a stackable interface (e.g., VFS/vnode). SunOS provides
all three, so it was a natural platform on which to begin.

39

II
SunOS kernel SunOS kernel

loical logical

I
(elc) (file)

uph r al lpy)ca

(replica)

- Figure 2.6: Typical Ficus layer stack.

The early prototype of implementation of the replication layers was largely

~successful in regards to leveraging, but demanded an ever-increasing investment

~in techniques to compensatefor features not anticipated by the UFS, NFS, and
VFS designers, In response to this problem, the design and implementation of

" Ficus has moved steadily towards the development of services better attuned to
replication in particular, and stackable layers in general. The design described

~here is an enhanced version of an earlier one; it reflects the experience gained
: with layering and leveraging. Current implementation status is indicated as the
I discussion proceeds.

~The Ficus file replication service is packaged as a pair of stackable layers,
each building upon the abstractions provided by lower layers. Figure 2.6 shows

I a typical Ficus layer stack.

The logical layer provides to its--clients (i.e., layers above it) the abstraction
of a single-copy, highly available file. Tihe physical layer implements the concept
of a file replica. Underneath the physical layer is a persistent storage layer with

I4

I

traditional UNIX filing service semantics. When the logical and physical layers-

reside on different hosts or otherwise execute in different address spaces, a vnode
transport-layer is inserted between- the logical and physical layers.

The Ficus replication layers also support a-file system-name-service intended
for use in- a very large-scale -(nationwide) distributed system. Ficus builds -upon
the volume mechanism described in Section 2.2, NFS-style pathname -resolution,
and optimistic replication techniques to provide transparent access -throughout
the- overall-namezspace.

2.3.2 Logical layer

The primary function of the Ficus logical l1 " is -to provide the illusion that
each file is-highly available with single-copy semantics, when in reality a filezmay
be physically represented by multiple replicas whose -individual availability-is not
optimal. The illusion is the product of several optimistic consistency mechanisms
described in the sequel; a mechai.ism to support serializable concurrency control
is presented in Section-2.4. The optimistic mechanisms include replica selection,
update propagation, and -reconciliation.

Optimistic replication, like most other approaches to replicatioii, must often
choose which version of a file to use to service a- file access request. Once a version
decision has been made, file access performance differences may guide the final
replica selection.1 2

Optimistic replication has a greater range of version choices than conven-

tional replication- mechanisms. Optimistic concurrency control and lazy update
propagation yield a richer set of versions, including the possibility of conflicting
versions. The volatility and scale of a large geographically distributed environ-

ment can make it infeasible even to determine the range of accessible versions.
A further problem is that the appropriate version selection policy may well be
client, application, instance, or data specific.

The Ficus approach is to provide a default base level policy which will-often

be adequate, but can also serve as the foundation for policies with different re-
quirements. The synchronization mechanism in Section 2.4 is stacked upon the
logical layer, and exploits -its replica selection services. Further, a transaction
layer can be constructed and stacked above the synchronization layers to provide

12 0ne caniimagine circumstances in -which performance- differences are so great as to make
version issues a secondary issue. "Nearer before newer" may reasonably apply to utilities,
for example, if the choice is between access to a local disk and access via voice-grade serial
connection to a remote host.

41

full transaction semantics.

2.3.2.1 Replica selection

Three issues determine which, if any, of accessible replicas appropriately serves
the client: consistency policy, cost of replica access, and cost of the selection
process itself.

Replica selection primarily occurs at file open, that -is, when the logical layer
performs a lookup- operation for a client. If the client specifies a particular
replica, file version, or minimum file version, the logical layer will strive to locate a
qualifying-replica. An error is returned if no appropriate replica can be accessed.' 3

If a particular replica or version is not specified, the logical layer consults a
version cache indicating the greatest version of each file opened by the layer. 14

The cache value (if present) is used as an advisory minimum value: if no com-
patible replica is accessible, an accessible replica will be selected.

Except when a particular replica is specified, replica selection must decide in
which order to consult replicas for compatibility and eventual service to clients.
The most important factor is-nearness (cost of access), but transparency at several
levels in Ficus makes it difficult to distinguish degrees of nearness or cost. It is
:relatively easy, however, to determine if a physical layer is on the same host as
the logical, so a crude distinction between local and not-so-local can be made.
Ficus exercises a preference for local replicas.

After nearness, Ficus currently uses a random order to consult replicas. Rep-
lica selection ceases with discovery of a compatible replica, even though some
other (unconsulted)- replica with a greater version may exist and be accessible.

Composing a list of file replicas to consult during replica selection is a bit
complex because Ficus supports dynamic, selective replication of volumes and
files. A volume may be replicated any number of times, and stored by arbitrary
hosts. The number and placement of volume replicas is dynamic. Similarly,

the number of file replicas is dynamic within the constraints of the replication
-parameters of the volume that contains the file. (More details may be found in

Sections 2.2 and 2.3.3.)

The physical layer ensures that a (minimally skeletal) file replica can always
be accessed for a nameable file. A skeletal replica contains a replica list, which
replica selection uses as a starting point. (Because replica placement is dynamic,

3 Replica selection tries to access a replica no more than once per replica, per selection.
't The cache is volatile, large, but finite sized.

42

the list followed-by replica selection may change as-further replicas are consulted

and their-replica lists and version examined.)

The logical- layer ensures that a client continues-to be served- by the same rep-
lica- unless it becomes inaccessible. In that case, Ficus will attempt to substitute
a compatible replica,' 5 :that is, one-which has a version greater than or equal to
the greatest version of the original replica that is known to the logical layer.

No means exists for a logical layer to "lock" a physical replica, so a logical
layer never knows with-certainty the "current" version of a-replica, as other logical
layers might be updating the -replica. A logical layer can, however, monitor the
version as seen by the client: meta-data returned- from- the physical layer with
each read and write operation contains the replica version resulting from the
call.

The absence-of locking implies that-a logical layer cannot guarantee to provide
continuous access to a -particular version even in -the absence -of failure. It is,
however, possible to provide -a warning when a particular version is no longer
accessible-(or may not even exist anymore).

The current Ficus implementation does not contain the version cache de-
scribed above, but does support -access to- a -specified replica-or version. It ran-
domly selects a remote replica if a local is inappropriate.

2.3.2.2 Update notification and propagation

The optimistic consistency philosophy allows considerable flexibility in many as-
pects of replicated file management. In addition to the richer choices encountered
in replica selection, more options are possible when promoting consistency among
replicas. Ficus uses three asynchronous daemons in an optimistic manner to no-
tify replicas of updates, to propagate updates, and to ensure that eventual mutual
consistency is attained.

The flow of control for file update notification and propagation is displayed
in Figure 2.7. In Ficus, a file update is applied immediately to only one replica.
When a write operation is received by the logical layer, it is forwarded to the
physical layer to be applied-to the replica selected. After having been successfully
applied to one replica, the logical layer may then notify other replicas of the
update. The logical layer instance that handled the update places a summary of
the update on an outgoing update notification queue, and then returns control to
the client.

'1If a particular replica was specified in lookup, substitution is not attempted.

43

1. Write 5. Writo Logical Layer
Call Return Layer

Reconciliation-ogical "-o DasIDaemon
Logical Notification Io.

GRepaLa2er2.Wrtc 3. Writ.e IIIII.. . J \. # t

call Return

Fiur d27:Fie upaentfctonadpoaain

A a i io camon p i w u d i q

I / / Propagation File 1

• I := i4 ll.Fatch Da -

Physical - IPhysical
Laye r 1 2.Return Data ILayer I

Replica 1 Replic 2

Figure-2.7: File update notification and propagation.

An update notification daemon periodically wakes up and services the queue,

sending out notification via multicast datagram to all replica storage -hosts that a
new file version exists. Notification is a best-effort, one-shot attempt; inaccessible
replicas are not guaranteed to receive an update notification later.

Ficus' reliance upon optimism releases it from the burden of ensuring that
an update notification message is successfully delivered and processed- by the

receiver. If the receiver fails to update its replica for whatever reason, it is
assured that it will eventually learn of the update via the reconciliation daemon
running on its behalf. (See-discussion below.)

An update notification is not necessarily placed on the queue as part of every
update. If the logical layer has received an open operation, it may delay placing
a notification in the-queue until a close operation is received. If for some reason
a close operation never arrives, an- update notification might not be sent, which
is analogous to a lost update notification message-perfectly acceptable by the
optimistic philosophy, since reconciliation will find out about it later.16

The notification message contains the version vector (see Section 2.3.3) of the

new file version, and a hint about the site which stores that version. It is then
the responsibility of the individual replicas to pull over the update from a more

16A -logical layer that is servicing a remote client via NFS (see Section 2.3.4.3) will never
receive an open or close operation, so it may choose to issue an update notification for every
write operation. With optimism, this is all merely an optimization.

44

up-to-date site.

When a replica receives an update notification, it places that notification on
a queue. An update propagation daemon wakes up occasionally to- service the
queue. The notification message sometimes contains complete information about
the update (as is the-case for directory updates), and if so the daemon directly
- plies the update to its replica. If the notification only contains a summary of
the update (typical-for file updates), the replica which sent the notification must
be queried for the new data.

Update propagation is performed- atomically. Ficus contains an atomic com-
mit -mechanism used primarily by propagation to ensure that a replica's version
vector properly reflects the replica's data. A shadow replica is constructed con-
taining the new version, which is then substituted for the original replica.

No locking occurs- during the construction-of the shadow replica. The commit
mechanism verifies that the-shadow replica does not conflict with the original
replica as part of the-commit. It also verifies-that the remote-replica from which
the shadow has been constructed has not changed during that time. If any
changes have occurred, optimism allows update propagation to start over or abort
the propagation.

2.3.2.3 Reconciliation

The reconciliation daemon shoulders the responsibility of ensuring eventual mu-
tual consistency between replicas. For each replica housed by a node, the recon-
ciliation daemon directly or indirectly checks every other replica to see if a new
(possibly conflicting) version of the file exists. When a new version is discovered,
update propagation is initiated and follows the sequence of steps outlined above.

When reconciliation discovers a remote replica in conflict with its local replica,
a conflict mark is placed on the local replica. A conflict mark blocks normal
access until the conflict is resolved, at which point the mark is removed. Access
to marked files is permitted via a special syntax.

Ficus exploits the well-known semantics of director, files to automatically rec-
oncile directory modifications. The details of directory reconciliation are deferred
to Section 2.3.3.2, where the physical layer design provides additional context.

Imperfect communication affects how the reconciliation daemon undertakes
its tasks at two levels: the order in which local replicas are inspected, and the
order and timing of contact with other replicas' nodes.

For every locally housed volume, the reconciliation daemon must ensure that

45

every local replica is reconciled within finite time, directly or indirectly, with every
other replica of -that file. Since -a volume has a natural tree-like structure at oneI-level, and a linear structure internally- at a lower level, the "obvious" approach
for reconciliation is to reconcile files in one or another of the convenient orders.3_ Strict adherence to an order, however, -is not robust to communication failure.

If communications between two nodes is likely to be interrupted at inter-
vals less -than the length of time required by -the reconciliation daemon to scanI through -its local replicas and query the remote node, a fixed-starting point must
be avoided so that files-at the far end of the order are not victimized by starva-

- tion. Further, reconciliation must not be hamstrung propagating a large file that
has been- updated, but whose pages cannot be-transferred during an- operational

*interval. Reconciliation must either reconcile files in a random order, choose a
random restarting point each time, or be able to skip over problematic files.

The overall cost of reconciliation among a-set of replicas is-determined in part3 by the inter-node pattern in which reconciliation occurs. If each node directly
contacts every other node, a quadratic (in the number of nodes) message com-
plexity results, but if indirect contact (through intermediate nodes) is used in
an optimal fashion, a small-coefficient linear complexity can be achieved. The
interesting problem here is to exploit indirect reconciliation when inter-node com-3 munication is in excellent condition (to avoid quadratic complexity costs), but
gracefully handle degraded communications when the degradation follows no pre-
dictable pattern and may be quite volatile. The Ficus solution uses a two-node

I protocol that tends to structure indirect communications in a ring topology when
communications links permit, and automatically adjusts to a dynamic tree topol-3ogy in response to changes in the communications service.

The current Ficus reconciliation implementation is somewhat simpler than
the above design. It performs a breadth-first walk of a volume replica (always
beginning with the root directory), communicating with a single other replica per
walk. Reconciliation also steps through the volume replica list in a round-robin

m fashion, without considering the currency of results from recent reconciliations

with other replicas.

1 2.3.3 Physical layer

The physical layer performs two main functions: it supports the concept of a
file replica and it implements the basic naming hierarchy adopted by Ficus. The
persistent storage layer underneath it provides basic file storage services.3 The structure of tile current Ficus physical layer reflects an early design de-

46

I;

cision to use a standard UFS as the initial persistent storage layer, as well as
beginner's -inexperience with respect to the power, ease, and low cost of-layering.
From a strictly functional perspective, the "ideal" physical and persistent storage
layer design-is somewhat different, as described later in Section 2.3.3.4.

2.3.3.1 Replica abstraction

1 Recall from Section 2.2.4 that every Ficus volume and -file replica has its own
unchanging-globally unique identifier. Both logical and physical-layers-use these5 identifiers to unambiguously refer-to a file or volume.

Every file replica also possessestwo attributes,-a replica list and version vector,
-in addition to standard UFS file attributes. The replica list is a vector of volume

replica identifiers (repl-ids) that indicates which volume replicas maintain (or
have in the- past maintained) a replica of-the file. Some volume replicas store -a

* complete file replica; others store -a skeletal replica that contains only -extended
attributes, but no client data; and yet other volume replicas may not store- a file
replica at all.

The replica list serves as an index into-the version vector [PPR83]. A version
vector is a multidimensional version number in which each component corre-
sponds to a particular file- replica. It compactly encodes the partially ordered
update history -of a logical- file. Version vectors are used to accurately detect
concurrent file update, so that no lost updates semantics-are preserved.

2.3.3.2 Directories

* The Ficus name space is quite similar to its UNIX counterpart. It uses special
directory files to contain the information that represents the hierarchical name51 space, although the format has been extended. The main function of a directory
is to map between (mutable) file names and (immutable) file identifiers. In Ficus

3, a directory entry is a mapping from a file name to a file-id. The volume-id is
-. implicit from the containing volume (see Section 2.2.4). Although a file-id is the

fundamental file identifier -for Ficus, it must be -further mapped into a syntax
and structure compatible with the interface semantics of the persistent storage
-layer-currently a standard UFS-style file service.

A Ficus directory entry is a tuple (name, file-id, conflict, deleted, bitvector).
The conflict, deleted, and bitvector fields are used in the automatic reconciliation-
of directory files. Directory update semantics are well understood, so it is rea-
sonable to automatically reconcile directory updates, including those that occur

47I

concurrently at distinct replicas [Guy87].

In Ficus a directory update is either an insert or delete of a directory
entry; rename is insert followed by delete. -Concurrent directory entry insertion
may result in more than one ent'y with identical name fields. Ficus tolerates
this violation of directory semantics (all names are unambiguous within a single
directory) by setting the conflict flag-on entries with ambiguous names. This flag
blocks normal name resolution pending client resolution of the conflict; it can be
ignored by request.

The primary issue faced by the directory reconciliation mechanism is ascer-
taining which entries have been inserted into the directory replicas, and which
have been deleted. To solve this problem, known as the insert/delete ambi-
guity [FM82], Ficus incorporates a logical deletion flag (the delete field) and a
two-phase algorithm to garbage detect logically deleted entries. The algorithm,
fully described in Chapter 3, uses the bitvector field to record its progress.

When a file is concurrently renamed, several new names result: each rename
instance inserts a new entry, and marks the old entry logically deleted. For normal
files, no conflict results even though the old entry may be "deleted" more than
once. (Repeated entry deletion is not possible in UNIX) A conflict does emerge
for concurrent directory rename, however.

Like UNIX, every Ficus directory contains a special entry (..) that references
its parent directory. A directory rename, of course, must cause a.. entry to refer
to the proper parent directory. Ficus accomplishes this task by deleting the old

entry and inserting a new one with the correct referent. Concurrent directory
rename results in a directory with multiple parents (one for each rename instance),
and multiple ambiguous .. entries in the directory itself, each referring to the
respective parent directory. The .. entries are marked in conflict, as usual,
so backward pathname resolution will fail with a name conflict error until the
conflict is resolved by removing all but one of the new directory names. Forward
resolution is not affected by ambiguous .. entries.

2.3.3.3 Extended UFS abstractions

The Ficus directory structure does not map cleanly onto a standard UNIX file
system due to the additional directory entry fields used in reconciliation and the
possibility of multiple directory names at one time. Ficus also requires a few
additional file attributes, such as the replication list and version vector, which do
not comfortably fit within the space normally reserved for attributes (the UFS
Mode). Yet, an early design goal to stack upon an unmodified UFS remains

48

important.

The additional richness inherent in the Ficus-model led to the implementation
of a ful . name resolution mechanism in the physical layer with the slight additional[capabilities that -were needed, as well as a simple file attribute-service-similar in

spirit to the Apple Macintosh operating system resource fork [App85]. The UFS
-layer is relegated-to providing a simple file service with an almost flat name space.

Ficus directories map from file names to Ficus file identifiers, which must be
further mapped to UFS file names. Although Ficus file identifiers form a large

flat name space which has a trivial UFS-compatible translation, the standard
UFS name service is not well-suited for -efficient flat name service. To- overcome
this efficiency -problem, Ficus -identifiers are mapped into a two-level UFS hi-
erarchy which is--carefully constructed to minimize linear searching and exploit
expected file access locality patterns [Flo86b, Flo86a]. Extended file-attributes
are clustered in auxiliary files to-similarly benefit from locality.

2.3.3.4 Decomposed physical and storage layers

The current physical layer is somewhat monolithic and largely-duplicates (while
enhancing) services provided by the UFS persistent storage layer. A cleaner
design would separate the UFS and physical layers into-several additional layers,
each providing a narrower set of services. Replication support can then take
several forms: existing UFS storage services can be used as at present, when
compatibility is a premium; or, a (new) persistent storage service with a richer file
model but flat name space could be used when efficiency is very important. One
might also construct a UFS-style layer for placement on top of the new persistent
storage layer to provide a migration path away from the old monolithic UFS.
Figure 2.8 shows an exploded, layered design for the physical layer and a set of
persistent storage layers.

2.3.4 Vnode transport layer

When Ficus autografts a remote volume replica, it must construct a layer stack
using a vnode transport layer to cross the address space boundary between the
logical and physical layers. (Refer back to Figure 2.6 on page 40.)

The transport layer is essentially a remote vnode operation service which
maps calls from the layer above to operations on a vnode at a layer below, nor-
mally crossing an address space boundary (and often a machine boundary) in the
process. The ideal transport layer consists solely of a bypass operation, with no

49

Ficus attr->UFS-

Ficus attr format UFS attr format

simple flat filesys

FFS dis layout LFS disk layout _____

Figure 2.8: Decomposed physical and storage layers.

I

-semantic interpretation- beyond that necessary to marshal arguments. A trans-3 port layer can then be -inserted between-any two layers without regard for -their
-semantics.

2.3.4.1 NFS as a transport layer

The of ,inal Ficus design and implementation used NFS as an approximation to
an ideal vnode transport layer. Using NFS satisfied a design goal to leverage exist-
;ing services- whenever possible, and was further appealing due to the widespread

-adoption of NFS to provide remote file access. Introducing yet another network
file access protocol had the potential to needlessly hinder acceptance of Ficus in
-the community at large, with little-apparent benefqt.

Unfortunately, NFS is not a transparent transport mechanism. It was not
intended to be used between other services in a stackable layers architecture.

i Rather, it was meant to implement access to -remote filesystem., and hence, its
designers' opinions about the semantics of remote file access are built into NFS.
-In particular, NFS was designed around the notion of stateless- servers in order
to simplify failure recovery.

NFS achieves a certain quality of performance by interpreting, modifying,
-or intercepting some vnode operation invocations. Certain interface operations
which have no meaning in the context of the designer's view of remote file access

* (such as open and close, both stateful concepts) are not transmitted across
the network to the next layer in the stack. The operations are handled (or
ignored) internally, and-not passed through. NFS also incorporates optimizations
intended to reduce communications and improve performance. The file block
caching and directory-name lookup caching are not fully controllable (e.g., there
-is-no user-level way to disable all caching), which results in unexpected behavior
for layers which are-not able to adopt the assumptions inherent in the NFS cache
management policies.

It soon -became clear that a layer attempting to leverage NFS as a generi,.trnpr -mutb osrcetransport service must be constructed- with sabstantial NFS internal details in
mind. The early Ficu3 implementation demonstrates that it is certainly possi-
ble to use NFS as a transport service, but at the expense of building extensive
-Muchanisms -to defeat -numerous internal- NFS mechanisms.

For example, the Ficus logical layer needs -to obtain version vectors from the
-physical layer in order to perform replica selectiop. A version vector is too large
=to squeeze -into available NFS file -attributes, so some other means is required
to pass version vectors across machine boundaries. The first design called for

!1
51Il

3i

use of a control file, i.e., a pseudo-file with--a distinguished name known to both
layers as the channel over which version vectors are to be passed. NFS caches file
data blocks, so a-repeated read on the control file-frequently returned the cached
block without actually querying the next -layer-the required- course of action.
To defeat caching, a mechanism that cycles read -request offsets through a -large
cycle was employed. This was not immediately successful, as- NFS maintains a
notion of file size so that it can optimize for read requests to -non-existent data3 pages by simply returning a null page in response to such a read request, rather
than generating network traffic to transfer a "known" data page. The control
file mechanism had to be repaired so-that it always reported to-NFS that the file
"(size" was -larger than the cycle size-in use.

The extensible vnode interface and bypass operation were-developed in -large
I part due to unhappiness with -the never ending set of counter-mechanisms being

employed to outsmart NFS. The extensible interface has been installed in the
current Ficus implementation, and it has been used to add a -bypass routine to
the NFS layer so that the counter-mechanisms could be discarded.

2.3.4.2 Multi-layer NFS

The emergence of an ideal vnode transport layer suggests the possibility of re-
constructing NFS as a pair of remote file service layers surrounding a vnode
transport layer. (Note that the original Ficus design attempted just the reverse:
to construct an ideal vnode- transport layer around an NFS base.) Various bene-
ficial data page and attribute caching features of NFS are retained, but the core
protocol is different (see Figure 2.9).

In this design, the transport layer is common to both NFS and the Ficus logical
and physical layers. It can also serve as the basis for any future boundary-crossing
services, or be easily replaced in its entirety by a similar transparent service.

2.3.4.3 NFS compatibility

Altering the core NFS protocol renders the new NFS layer set incompatible with
the standard NFS protocol suite, yet retaining NFS compatibility with non-Ficus
hosts is important. Examples of the power of layering, and the importance of
standard NFS compatibility, are evident when considering the utility of an NFS
layer placed above the logical layer or between the-physical and UFS layers. Fig-

ure 2.10 displays several- interesting possibilities. When an NFS layer is above the
logical layer, an IBM PC running DOS and PC-NFS can access Ficus replicated

files without being aware that replication is occurring. Similarly, configuring NFS

52

logical (file) FS upperveneer

il ""detransportI

vnode transport

FS lower veneer I (rphyicaleplica)

Figure 2.9: Multi-layer NFS design.

I
~ PC-NFS* =

STransport Transport

Ficu F ,1 i cus iq
Fhics Physical Phyic al

1 Storage StorageNF I

tl Figure 2.10: Using NFS to interact with non-Ficus hosts.

I53

I

-below the physical layer allows sites on which Ficus does -not run -to act as rep-
lica storage sites. This arrangement permits- a Ficus site- to store replicas on a
mainframe running MVS and NFS.17

* 2.4 Synchronization

The optimistic consistency perspective is not universally appropriate: some ap-
plications require stronger consistency guarantees such as serializability. This
section considers -the -synchronization problemeof coordinating access by multiple
clients (possibly on distinct hosts) to a single file; multi-file synchronization is
not directly addressed.

The goal rhere is to identify and address issues--peculiar to the Ficus environ-
ment, especially the stackable- layers architecture and the use of an optimistically

* replicated filing service as a base. In the -course of the discussion, -a series of re-
lated- synchronization service designs which provide successively greater flexibility
and robustness is presented. These designs implement standard approaches to

- synchronization in the layered, optimistically replicated filing context by placing
a (multi-layer) synchronization service above the Ficus -logical layer.

A complete design for a particular synchronization policy is beyond the scope
of this work. These designs are not currently implemented, nor are a few necessary
minor enhancements to the existing layering mechanism and logical and physical
layers.

2.4.1 Issues

Recall that the Ficus replicated filing service (see Figure 2.6, page 40) is con-
- structed from three layers (logical, physical, UFS) whose execution environ-

ment(s) are intended to be set apart from the remainder of the operating system.
Recall also that a logical file is typically represented by multiple physical replicas.
In this context, several questions immediately arise. First, for whom is synchro-
nization to be provided? Second, what actions are to be synchronized? Third,
what is the subject of synchronization? A synchronization service must have
answers to each of these in order to be well defined.

7This has been demonstrated using a non-Ficus SunOS host; logistics hinder an MVS demon-
stration of the concept.

ii 54

2.4.1.1 Client identification

V The issue of client identity is currently difficult in Ficus. The information-hiding
aspect of the layering methodology obscures most identifying features of a client
with the exception of a credential that in the existing design contains a user
identifier. No notion of process family, process, or thread is routinely available
to a -layer. Further, the transparency provided by a transport layer hides even
the identity of the host executing the original process on whose behalf the layer
is working.

A synchronization service-must, however, have some means of accurately iden-
tifying its clients (or vice versa: a client identifying itself to the service) lest it
fail to provide an adequate degree of synchronization or fail to provide adequate

access- by enforcing an unnecessarily stringent synchronization policy. The de-
signs -here are based on the notion of a synchronization capability which supports
an abstract concept of identity.

Capabilities are generated by the synchronization service on demand for knowl-
edgeable clients via a new-capability operation. A capability is valid from time
of issuance until the synchronization service is next initialized, which is normally
at system boot time. Capabilities may be freely copied and passed among clients.
All file access requests accompanied by a particular capability which are recog-
nized by the synchronization service will be synchronized in accordance with the
policy in effect.

As most clients are (at least initially) expected to be completely unaware of

synchronization capabilities, a client identification layer normally lies between the
synchronization service and its immediate regular client, the system call service
of the operating system. The client identification layer ensures that all requests
made of the synchronization service include a capability, even when a client does
not include a capability with a file access request. In this case, the client iden-
tification layer makes a determination of the client's "identity" and appends an
appropriate capability to the request.

This layer bridges the gap between the synchronization service's client model
and the model supported by the host operating system. The default policy incor-
porated in the layer is thus quite dependent upon the native client model, be it a
process, process family, thread, or some other model. To obtain the necessary in-

formation about client identity, this layer may need to violate information hiding
principles and peek into some of the operating systems internal data structures
and extract a process or process family identifier for use in defining a "client."
This necessary interaction between the host operating system and layered ser-

55

vices is thus tightly confined to a- single layer; the task of porting Ficus to other
environments focuses primarily on this layer, and few others.1 8

Or,ce the-necessary client identification data has been obtained, the layer can
determine whether it already possesses (in a volatile database) an appropriate
capability to attach to the request, -or whether it must first obtain a new-capability
from the synchronization service. The default policy used when a client has
not provided a capability- will vary according to environment. For example, in
an academic environment a reasonable policy might be that all non-capability
requests possessing the same credentials (UNIX user identifier, group identifier)
be treated as emanating from a single "client" and so -should be associated with
a capability-unique-to that "client."

The identification layer-supports two similar-sets of file access operations: -the
standard set of operations -(read, write, etc.) which do not include a capability
parameter, and a -parallel- set that contains a capability. The standard (non-

capability)- operations consult the capability database so that a capability can
be attached- to the request before it is passed on to the next lower layer. The
capability-included operations simply pass the request on immediately.

The important point here is that a synchronization service must assume that
some appropriate notion of "client" exists, even when -that concept is not well
supported by either the host operating system or the layering methodology. A
combination of capabilities and a layer instituting a client abstraction satisfy this
requirement.

2.4.1.2 Client actions

The synchronization service acts as a funnel through which all file access requests
pass. The primary actions of interest are read and write, although other requests
(open and (close, for example) may also be of interest depending upon the
synchronization policy to be enforced.

Suppose, for example, -that the policy is to provide single-copy semantics to
all callers, much as would be provided by a standalone UNIX host. The synchro-
nization service must ensure that all read and write requests are (or appear to
be) directed-to a single file replica, and that any data caches maintained by lower
layers are coherent with respect to synchronized access.

Two architectures to support single-copy semantics are shown in Figures 2.11
and 2.12. The first design forces all requests to pass through a single layer

18The transport layer is necessarily hardware architecture specific, and might be operating
system specific as well.

56

SunOS kernel SunOS kernel

client identity client identit

server selector server selector

ode transport I-

synchro serverI synchro, server

logical (file) ica,,,ie) i
" vnode transport

rphysical (repica) physical

Figure 2.11: Centralized synchronization service.

SunOS kernel SunOS kernel

-client identity client identity

,tokenSsynchro.seiivier -i '.-,___=_-__.:- synchro, server

[logical (file) I____ I logical (file)

vnode transport

physical (replica) physical (replica)

Figure 2.12: Token-based synchronization service.

57

[SunOS kernel SunOS-kernel

client-identity- client-identity

tokens

i i l i

physical (replic) physical (reprica)

Figure 2.13: Quorum-based synchronization service.

instance, while the second uses a token mechanism to ensure that all read-and
write operations appear to happen to a single file, and are immediately visible
to all clients.

The centralized design incorporates an additional layer that directs a request
to a particular synchronization server. The "direction" information is extracted
from the capability, where it was placed when generated by the server. This
information consists of a host identifier and any other data required to locate the
indicated server.

2.4.1.3 Objects

At its lower levels, the synchronization service must be cognizant of optimistic
replication so that the- appropriate quality of service may be provided. A partic-
ularly useful distinction which can be made is between synchronized access to a
single file replica and synchronized access to a single logical file.

Replica-based service is adequately provided by the designs in Figures 2.11
and 2.12. Such service is constrained, however, by the robustness of the hosts
maintaining the replica and executing the synchronization servers.

A synchronization service with increased robustness is readily constructed by
exploiting replication to provide file-based synchronization. Figure 2.13 presents
a design that uses quorum consensus replica management techniques for synchro-

nization.

Each file replica contains a read quorum and write quorum attribute. The

58

quorum values are-initially set at file (replica) creation. The-entire "vote space"
of 232 votes is allocated among the replicas at all times; adding a replica requires
that some-replica surrender-some of-its voting space to the new replica.

The quorum consensus model differs from the previous-one in that a set of
tokens for each file (one for-each replica) must be managed-rather than a single
token. Each token is a voting proxy for its -respective replica, so a synchroniza-
tion= server must amass a quorum's worth of proxies before granting -a file access
request.

An interesting-aspect ofthis design is that a synchronized-update need only be

applied to-a-single replica. The existing replica management mechanisms (update
notification, propagation, and reconciliation) handle the details of -propagating
the update to other replicas. So long as the synchronization service correctly
compiles the quorum-related data from the- replicas when the service- commences

to operate, and properly manages the data after that, the optimistic-mechanisms
below it will satisfy -its requirements.

The fact that quorum consensus can be easily implemented on top of opti-
mistic replication is important not only to prove that serializable concurrency
control can be constructed above an optimistic base, but also because optimistic
services have the potential to provide a lower immediate cost for update opera-
tions. If an update can be applied to a single replica in the short term, on behalf
of many replicas that will reflect the update in the longer term, the impact of the
update operation on the system as a whole, and the client in particular, may be
greatly reduced.

2.4.1.4 Unsynchronized actions

The layered architecture places no absolute- requirements on stack composition,
nor is any explicit cross-layer locking facility provided. It is, therefore, possible
for clients ignorantly or deliberately to access and update file replicas without
utilizing the synchronization service. If such access could disturb a synchroniza-
tion service-s correctness criteria, the service must monitor replica state with each
access.

The necessary degree of control over replica state can be achieved by allowing
a replication client to specify with each access request which version (via a version
vector) of a replica is expected to satisfy the request,1" and also by appending
to the response the version vector resulting from the request (atomically, post

"9A client can initially obtain a version vector by retrieving the extended file attributes of a
replica.

59

read or write). If the supplied version vector does not match the -actual -version
of the replica, an error is returned to the caller. This change to the logical
and- physical layer services supplies the atomicity required by a synchronization
service to ensure that data is read -and written as- expected, without undetected

interference from unsynchronized activity.

2.4.2 Control flow examples

This section outlines the typical control flow for several common synchronization
scenarios. The first-two examples consider groups of processes that-are unaware of
the -replication or synchronization services. The third example assumes that the
clients are cognizant of the- synchronization service, but oblivious -to replication.

2.4.2.1 Process family

In this example, the collection of clients requiring synchronization is a process
family formed by an off-the-shelf UNIX application; it has no knowledge of the
synchronization service, replication, or any other non-traditional UNIX service.
This example assumes that the default synchronization policy (e.g., serializabil-
ity) provided by the synchronization server layer is appropriate for the applica-
tion.

Suppose that the default client identification policy is that all processes issuing
requests through the client identity layer but which do not include a capability
are to be treated collectively as a single "client." The identity layer could then use
a single, static capability (acquired during initialization at boot time) to attach
to each request it passes on down the stack.

This scenario exemplifies a basic approach to providing backwards compati-
bility for UNIX applications on Ficus. Treating all clients as peers, though, may
place undue strictures on availability for some clients. The following scenario
assumes a simple reduction in synchronization granularity based on credentials.

2.4.2.2 Independent processes with identical user-ids

Here the processes of interest are initiated by standard applications, but the
default identity granularity enforced by the client identification layer is a single
process. In this case, synchronization can be effected by including a user-id
based synchronization registration request as part of each login instance for the
particular user-id.

60

In- response to the first registration request, the client identity layer will ac-
quire- a capability from the synchronization- server, and store it in its in-core
(volatile) database. Further registration requests are satisfied: from the database.
For each file -access request, the client identity layer -locates -the appropriate ca-
pability in its database and attaches it to the request before it is passed on to
the layer below.

The general framework for these- synchronization service designs has an in-
herent limitation on default service: it assumes that the maximal- -granularity
of default client identification is the set of Clients of -a single identification layer
instance, which are usually co-resident on one host. Synchronization for clients
resident on multiple hosts requires -clients to be knowledgeable about the service
itself. The next example considers -synchronized service for clients from multiple
hosts.

2.4.2.3 Clients on multiple hosts

Suppose that several processes, each on a different host, wish to have synchro-
nized read and write access to a particular file. These processes are not aware
that an optimistic replication service exists, but are knowledgeable about the
synchronization capability service.

To begin, one of the processes requests and obtains a new synchronization
capability from the client identity layer. (The client identity layer doesn't support
such a request itself, so the bypass operation automatically passes the request on
to the next lower layer, and so on, until it is received by the synchronization
service layer.) The client identity layer stores the capability in its database, and
then returns it to the client. Having obtained the capability, the client shares it
with its colleagues via some form of interprocess communication.

Each of these clients then attaches the capability to every file access request
it issues. The client identity layer simply passes the requests on to the synchro-
nization server, where the appropriate synchronization is performed.

2.4.3 Summary

These designs are built around a general framework in which a variety of specific
synchronization policies can be implemented. It addresses the primary layering
and replication management problems encountered when providing strict syn-
chronization service in Ficus. The simple base services described above should
be sufficient for many applications in which optimistic consistency is inappropri-

61

ate.

2.5 Large scale replication

This section considers a number-of issues with -regards to very -large numbers of
replicas.

2.5.1 Version vectors

The theoretical ability of-a version vector to scale up to any number of replicas

does not obscure -the practical reality: as the number of replicas increases, the
processing, storage, and bandwidth overhead of a version vector eventually over-
shadows the costs of the-replicated object itself. It is not readily apparent that
the version vector mechanism is appropriate for -large scale replication.

The basic mechanism can be adjusted in several ways to facilitate large scale
replication. All of -these alterations preserve the integrity of version vectors'
support for "no lost updates" semantics. Some, however, may erroneusly --port
an update/update conflict in certain circumstances; such- anomalies are carefully
noted in the sequel.

I These adjustments all exploit various aspects of locality, with attendant im-
plications-for consistency mechanisms. Replica selection, update notification and
reconciliation must each be re-examined in the context of modified version vector
methods.

2.5.1.1 Compression

If a significant number of version vector components are zero-valued, coaventional
sparse matrix compression and manipulation techniques can be used to reduce
overhead. -But are version vectors sparse?

A non-zero version vector component indicates that the corresponding replica
has been directly updated (as opposed to receiving propagated data) at some
time in .the past. Version vector sparseness, therefore, is a function of locality
w;th respect to update access. Locality, in turn, is a function of the amount
of update by distinct clients, and the concurrency displayed by shared update

I. access.

File access locality studies have shown that shared update is rare in prac-

tice [Flo86b, Flo86a] in general purpose (university) settings. If, then, the (typi-

62

cally) single updating client's choice of replicas is biased towards a small subset
of actual replicas, it is reasonable to expect that few of the version vector com-
ponents would acquire a non-zero value.

The default replica selection policy (see Section 2.3.2.1) exhibits a bias towards
a locally stored replica if one exists, and randomly selects a replica otherwise. The
desired new behavior can easily -be obtained by altering the selection policy to
exhibit a preference for replicas known to have a non-zero vector component
already.

Update notification is -not especially affected by version vector compression;
reconciliation might exploit the bias and choose to consult "non-zero component"
replicas more frequently than others. This change does not result in false conflict
reports.

2.5.1.2 Read-only replicas

Another way to reduce the cost of version vectors is to classify a priori some
replicas to be read-only. These replicas do not have components in the version
vector at all; only directly writable replicas have slots. Read-only replicas may

even elect not to be mentioned in the replica list.

Declaring a replica to be read-only introduces an artificial -constraint on up-
date availability in return for reduced overhead. It forces replica selection to be
sensitive to intended read-write usage; it limits update notification to writable
replicas; and it alters the topology of reconciliation.

The absence of some read-only replicas in the replica list constrains the ability
of replica selection (and update notification and reconciliation) to locate read-only
replicas. In particular, the standard replica selection mechanism cannot locate
an unmentioned replica. A small change in the autografting service, however,
allows the selection mechanism to determine whether a local replica does or does
not exist. If no local replica exists, replica selection is forced to choose a replica
from the replica list as usual.

Read-only replicas that are not mentioned in the replica list do not receive
update notifications, nor will any other replicas initiate reconciliation with them.
The burden is entirely upon read-only replicas to keep up to date with writable
replicas. Read-only replicas that are listed will receive update notifications, but
will not be reconciled against as they are not expected to experience updates; a
writable replica would normally receive little benefit from checking the status of
a read-only replica.

63

2.5.1.3 Upgradable read-only replicas

The most onerous aspect of read-only replicas manifests itself when the only avail-
able replica is read-only, and yet the ability to apply an update is highly desired.
One solution to this problem is to allow a read-only replica to be upgraded to a
writable replica.

This may be accomplished in a manner similar to adding an entirely new
replica: simply add the replica's repl-id to the (local) replica list and permit
the update to proceed. The appropriate version vector component will be in-
cremented as usual. The newly-updatable replica then needs to persuade an
established writable replica to propagate the replica list modification, either by
issuing an update notification or by otherwise-coaxing the other replica to initiate
reconciliation with it so that it can learn of the list change.

The basic reconciliation algorithms (see Chapter 3) must be slightly adjusted
to cope -with additional-replicas. In particular, they must assume that the replica
list is a monotonic, length-increasing data structure. Aside from the difficulty
that received replicas lists must be routinely sorted to account for divergence
in the component ordering, the algorithms must tolerate a dynamic number of
participants. Further details are found in Section 3.2.4.

Upgrading a read-only replica to writable status is irreversible in this model.
If upgrading is a common occurrence for a single file (which would indicate that
access locality is not a property of this file), the replica list mv grow to an
unmanageable size. Second-class replicas address this situation.

2.5.1.4 Second-class replicas

A second-class replica begins as a read-only replica. When an update is necessary.
but only a read-only replica is accessible, the update is applied to that replica.
Rather than append a new slot to the version vector, a flag is set which indicates
that the replica is a logical descendant of the version indicated by its version
vector.

20

As with the upgradable strategy, a flagged replica must persuade a writable
replica to reconcile against it. A qualifying writable replica has a version vector
that is less than or equal to the flagged version vector. Any replica with a version

2'The idea of supporting an "updatable replica -while avoiding the expense of allocating and
maintaining a version vector component was first suggested for Coda in LSKK90. Coda version
vectors are quite different in detail from the original Parker version vectors (PPR 3 that are
used in Ficus.

64

vector that is greater than the base version vector (in any component) is-in conflict
with the flagged replica-but it is the flagged replica's responsibility -to resolve
the conflict.

Upon successfully--reconciling with the -flagged replica, the writable replica's
version vector component is incremented as though the update(s) were- originally

applied to the writable replica. The difficult part of this exchange is that the
flagged replicas version vector should atomically be adjusted to reflect the new
version vector-of the-reconciling replica. If the two vectors are not set atomically,
t may later appear that the flagged-replica-conflicts with-the reconciled replica-

when, in fact, it does-not. If this occurs, a false-conflict will be reported.21

This technique requires a small modification to the atomic commit mechanism
used by reconciliation-when a new version is propagated into a replica. No changes
to replica selection -beyond -those needed- for upgrading are required, nor any
changes-to the =update- notification or overall recoi.,iliation mechanisms-necessary.

2.5.2 Name space

In part due to the original goal of leveraging UFS, the Ficus name space is
currently P, stepchild of the UFS name si ace. The global perspective of this
relationship is shown in Figure 2.14. This name space arrangement has two major
flaws: most UFS files are nameable from only one host, and UFS file names are

host context dependent.

These problems can be addressed in part by altering the relationship between
the Ficus name space and the (existing) UFS name space(s) so that the Ficus
name space provides a global context for all file names. Figure 2.15 shows such an
arrangement. In essence, this arrangement constructs an umbrella naming hier-
archy above existing UFS hierarchies and in the process renders all files globally
nameable in the context of a globally recognized root.22

The "supertree" approach to global naming forces consideration of two re-
lated issues, backward compatibility (especially with embedded file names) and
shorthand naming. Both issues are aspects of the general name context question,
outlined in Saltzer's discourse [Sal78] on the naming and binding of objects.

21A false conflict will also appear if a flagged replica is propagated to another (formerly)
read-only replica. To maintain the integrity of the version vector, once a vector arid replica
are flagged, they must propagate together with the flag. Once propagated, it is :.possible
to disfinguish this situaticn from one in which two read-only replicas performed independent
updaks, and thus each resulted with a flagged replica.

2The idea of a global- name space incorporating Domain Naming System host names has
previously been suggested in [CM89].

65

UFS UFS

Figure 2.14: Current UFS and- Ficus name space relationship.

FICUS

UFS UFS

............................. ,,c',;

Figure 2.15: Ficus global name context.

66

2.5.2.1 Name contexts and closures

Applying Saltzer's terminology to Ficus, an object (Ficus file) -is represented- by a

(Ficus) identifier. A name is used by one object to refer to another object, via a
[mapping from name to identifier termed a binding. A particular set of bindings
-is termed a context; a name is always interpreted relative to some context. In
Ficus -(and UNIX), a-directory file (catalog in Saltzer's glossary) is the repository
for a context.

The name context question is to determine the context relative to which
a name should be resolved. For example, a UNIX file name is resolved either
-in the context of a working directory or in the context of a distinguished root
directory if the name begins with a "/" (forward slash) character. Some-shell
-mechanisms further support a search list, an ordered set of contexts in which
-certain- (command) name resolutions will be attempted.

Saltzer introduced the closure concept-to describe the association -of an object
which references another object by name-with a context in which that name is

(expected to be) bound. A mechanism that connects an object with a context is
called a closure.

Although the global Ficus name space does not require closure support in
-theory, in practice a closure mechanism is essential. Existing software with em-
bedded names such as /bin/login must -continue to work as expected, that is,
a name must map to the same object as before (pre-Ficus), despite the new su-
pertree above an old UFS name space root. A closure mechanism is necessary to
select the correct context in which to resolve the name.

Not only existing software with embedded names benefits from a closure ser-
vice. The additional three or more levels of names above the previous OFS
naming hierarchy significantly extends the length of all file names, which is a
-generally unacceptable increased burden on human clients. A flexible closure
mechanism that subsumes the UNIX working directory not-on and various shell
context mechanisms provides an integrated solution to this problem.

2.5.2.2 Ficus closures

MNuman [Neu89] argues for a simple closure mechanism in which a context is
associated with every object in a system. For example, a program image with
embedded names should also contain and provide the context for name resolu-
tion. Names supplied as program input should be resolved in the user's (process)
context (perhaps a working directory), and names embedded in a data file should

67

be interpreted in a context associated with -that file. A process-should always be
free to redefine its own context, and to ignore contexts provided by other objects
or processes.

Closure- support, as with some aspects of synchronization -(see Section 2.4),
straddles both file system and process management. Leveraging the existing
SunOS process management services necessarily constrains -the completeness of
closure support in- Ficus, to the extent that no process service enhancements are
made. A further constraint is :the pre-processing that SunOS -file access system
calls -perform on file names: names are parsed by a system call routine, and
partially or completely interpreted at the system call level without ever calling
the file service proper. Nevertheless, a rudimentary closure service provided-as a
stackable layer is feasible.

The Ficus closure service design utilizes- a new- distinguished character ("0")
as a prefix to signify a fully qualified file name; other names are interpreted in
the traditional UNIX working directory and working root contexts. An additional
context attribute is provided for each file. The closure layer is normally placed
somewhere above the logical layer in a Ficus layer stack.

At system initialization time, the closure layer sets the default host working
root to be a fully qualified name for a volume analogous to the traditional UFS
"root filesystem". An internal pointer to this volume is inherited by all processes
when-they are created; this is the context in which the system call pre-processing
routines will interpret "/"-prefixed names.

This approach offers immediate backward file naming compatibility, except
when an existing file name (component) begins with "D".23 It also offers a context-
knowledgeable process the ability to establish contexts for files, and to inquire
about file contexts. A process can simply prepend a context to a file name before
presenting it to the system call service for translation.

This method does not automatically provide a custom context in which an
executable image will execute, nor does it provide inherited contexts for process
families. Ideally, a context would automatically be prepended to file names,
without the need for a process to actually do so itself, and it would be inherited
by child processes as are other process environment attributes. Support for these
features-is dependent upon modifications to the process creation and management
services.

23This exception appears to be an unav-oidable consequence of not modifying the existing

process management and file access system call mechanisms. It is easy to avoid the exception
by appropriate enhancements.

68

2.5.2.3 Volume-based supertree

Cheriton and Manning [CM89] presented a taxonomy for classifying a global

naming hierarchy into levels based upon administrative, availability, and muta-
bility issues. Their taxonomy contains three levels: global, administrative, and
managerial. Using the Domain Naming System as an example, they place the
global root -and its children into the global level (e.g., /edu and /com); the ad-
ministrative level-lists organizations -and some hosts (e.g., the organizations ucla
and ucla/cs, possibly the host ucla/seas/admin); and finally, the managerial
level-lists namespaces spanning a single host or less (e.g., /bin and /usr/guy).

The Ficus volume mechanism allows for an even finer granularity when cir-
cumstances warrant. In the case of the global name space, a useful- criterion for
determining volume granularity is based upon the-desired replication- factor (i.e.,
number of replicas) for a node in the name space: a volume boundary should
be placed at any point in which the replication factors of a parent node and its
children differ by at weast one order of magnitude.

In the case of the DARPA Internet and its Domain Naming System, each of
the top four- or so levels fits the criterion. Figure 2.16 shows a particular extended
branch of an example global name space, and indicates the likely replication factor

of each volume shown. Note that the expected range of replication factors for each
volume differs by about one order of magnitude at each level in the hierarchy.
These ranges are determined primarily by the number of hosts that require a
volume replica simply to operate autonomously; some hosts may wish to house
replicas of volumes representing other portions of the name space as well.

The upper level volumes simply provide the overall name space structure; it
is only the lower level volumes that would typically contain "real" data files, ex-
ecutable images, and so on. In many cases these lower volumes will be replicated
only to promote higher availability, but in some cases replication will be used as
a system administration tool. For example, a local area network administrator
might choose to organize each node's standard library, utility, and application
volumes as a set of volume replicas rather than as individual volumes.24 Such
an arrangement would ease the administrative burden when new software is to
be installed, or patches applied: one could make the change to- a single volume
replica, and rely on the reconciliation daemons to propagate the changes.25

24Symbolic links may be useful in preserving a particular volume name space organization,
and yet benefit from replicated library volumes.

21Installation ease should be balanced against the inherent absence of a "firewall" to prevent
error propagation.

69

10 < n <10

/ 10< fl<10

10.<n<:105

Fiue21:VlmIupr o lblnm pc.(rpiai
270

I
2.5.3 Summary

The modest enhancements described above are important steps to be taken along
the path of achieving the goal of very large scale filing. Support for large numbers
of replicas is essential for the global name space to be effective. The Ficus-name
space transition from stepchild to umbrella is a further critical step.

2.6 Status and performance

The system as described in this chapter, including reconciliation, is operational
and in daily experimental use. The system has been tested with up to -eight
replicas. Ficus replication has been run with geographically remote cl;ters;
specifically, volumes:have been replicated at USC/ISI, SRI, and UCLA2".

Operational layers include the transport layer, the logical and physical replica-
tion layers, a null layer, and a measurement layer. Prototype implementations of
encryption, file versions, cache consistency, and "second-class" replication layers
have been constructed as class projects.

Ficus was originally based on SunOS 4.0.3 for the Sun 3 hardware family,
though ports to other versions of UNIX already supporting a VFS interface should
be quite straightforward. A port to SunOS 4.1 for the Sun 4 hardware family
has recently been completed. The initial implementation (completed Summer
1989) used an unmodified vnode interface with extended operations supported
by overloading existing operations. The current implementation uses the new
extensible vnode interface described in [HP91a]. Ficus kernels are about 20%
larger than a similar non-Ficus kernel.

2.6.1 Performance measurernents

This section reports performance measurements for various configurations of rep-
licated and unreplicated volumes. All measurements utilize-Sun 3/60s, each with
a SCSI disk and 10Mb ethernet connection. All nodes are part of the same
ethernet segment, with the exception of the machines at ISI and SRI.

The first benchmark used is the Modified Andrew Benchmark [Ous90, HKM88],
which is designed to reflect a typical mix of file operations. However, since this

26USC/ISI is located in Marina Del Rey and connected to UCLA (after several gateways)
via Los -Nettos. SRI is located in Palo Alto, California and connected to UCLA vi, Los Nettos
to the San Diego Supercomputer Center followed by NSFnet. Thanks to Bob Balzer of ISI and
Alan Downing of SRI for arranging for Ficus nodes at their repective institutes.

71

80- system overhead A-
- elapsed overhead

70- MAB overhead -
W-

Total 50- -

Overhead
(percent)40-

30--
20--I

0 1 2 3 4 5- 6 7 8
Number of Replicas

Figure 2.17: Percentage overhead versus number of replicas.

bencdhnrk is not particularly illustrative of replicated-file system performance (it
is dominated by a largely cpu bound compilation phase), a second benchmark is
used that is a much better worst case measure of Ficus. This second benchmark
is a-recursive copy ("cp -r /usr/include .") .o a disk local to a Sun-3/60 irom an
NFS-mounted file system housed on a Sun-3/480 connected to the same ethernet
segment. In the local environment, /usr/include is an unbalanced tree of depth
,our, with 47 directories and 1465 files totaling 4.7 Mbytes.2 7 The costs studied
were incurred by the site generating tie activity. These measurements do not
account for costs incurred by other processors.

Figure 2.17 shows the extent of Ficus costs (overhead) over normal SunOS

performance. (A horizontal plot along the-x-axis- would indicate that Ficus was no
more or less expensive than SunOS for a particular service.) Three sets of results
are plotted, each-measuring Ficus overhead as the target volume-replication factor
ranges from one to eight. One plot (MAB overhead) shows the overhead experi-
enced by the Modified Andrew Benchmark (MAB) normalized against base MAB

results obtained on standard SunOS. The other two plots blhow system time over-
head- (system -overhead) ind elapsed time overhead (elapsed overhead) displayedE by -the- recursive copy benchmark, normalized against SunOS test results.

7Plior tVo-execution-of each benchmark, operating system caches were llshed to remove all
refresrces to-the source and target volumes. The disk partition c.ontaining the target volume
was reinitialized before each run of a beuchmark. The measured node p-rformed no other
processing tasks during the benrchmark.

72

2.6.2 Discussion

These measurements are very encouraging. For the modified Andrew benchmark,
even with eight replicas, the overhead is only 14 percent. For the common case
of three replicas, overhead is less than 10--percent. There is considerably more
impact due to replication in the recursive copy case (between 30 and 50 percent).
For each file copied, the system must place- an entry in -the directory (updating
both- the directory and its auxiliary information), create -the file itself, placing its
Ficus-specific attributes in the auxiliary file, notify all replicas of the directory
operation to create the name for the new file, notify the-replicas of the -availability
of the file's contents, and serve all of the asynchronous -propagation- -requests as
the replicas pull over the file contents. Copy is a worst case operation in terms
of overhead for Ficus.

In interpreting-these numbers, it is important to remember that Ficus applies
an update synchronously to one replica and queues an "update notification"
for asynchronous delivery to other "secondary" replicas. Each replica queues
incoming update notifications and asynchronously processes the notifications.
Directory update notifications completely describe the update, so no interrogation
of the primary is needed to process a notification. File update notifications carry
no data (only a version vector), so a "pull" is initiated by a secondary to bring
its replica up to date. Data for updates is-generally served out of the cache on
the originating site.

The "system" times for all- Ficus measurements are similar because the cost
of asynchronous update notifications is in the background (there is some impact
of increased replication factors reflected in the measurements as the interrupt
handling for pull requests is included in system time).

The increased "elapsed" or "wall clock" time observed when more replicas are

employed is attributed primarily to the cost of servicing requests from the tile
secondary in response to update notifications. It should further be noted that
the recursive copy completes and the elapsed time is reported when it finishes
synchronously updating the single chosen replica. It is generally the case that
many of the remote replicas have not finished their asynchronous pull of the data.

Thus the greater the delay in the network, or the slower the remote disks, the
slower the requests arrive at the originating replica and hence the sooner the

synchronous part completes. Hence, some of the numbers actually look better
when the replicas are further apart.

73

2.6.3 Wide area operation

In the performance graphs shown, all replicas resided on machines on the same
physical ethernet cable. Several of these -measurements were repeated, this time
locating replicas on sites connected by the Internet 28 . For the case of the recursive
copy, locating one replica at SRI and one at UCLA yielded measurements for
both system and elapsed time that were essentially identical to the case where
both replicas were on the same local network. Measurements- of a three replica
configuration (UCLA, ISI, and SRI) resulted in a 36% overhead over UNIX for
elapsed time (vs. 35% for the local net case) and 48% overhead -for system -time
(vs. 56% for the local net case). For the modified Andrew benchmark the long
distance three replica configuration resulted in an overhead of 19.9% compared
to 9.5% when the three replicas were local.

Not surprisingly given the asynchronous update strategy, locating the back-
ground replicas at more remote sites has minimal impact on the performance of
these benchmarks. Of course, access to the remote replicas is correspondingly
slower, equivalent to that achieved by accessing them with NFS.

Only very preliminary efforts have yet been made to optimize the performance
of the implementation as work thus far has focused on functionality. There is
reason to believe that the numbers reported here can be improved substantially
with careful analysis and optimization of the system's behavior (especially the
effectiveness of its several caching mechanisms).

2.6.4 Implementation effort

Serious implementation work on Ficus has been underway for twenty four months.
On the average, three experienced systems programmers have been engaged in
full-time development. In addition, an average of two persons have worked on
the design in parallel with the implementation. This author contributed approxi-

mately one man-year to the implementation effort, in addition to ongoing design
research for more than three years.

The implementation has been done entirely in the C programming language.
The logical and physical layers comprise about 9,500 and 12,000 lines of code,
respectively.29 The logical layer includes the update notification and propagation

28To avoid excessive retransmissions, the mounts across the Internt use IK message block
sizes where 8K messages are used over the ethernet.

29About 5,000 lines of physical layer code is devoted to Ficus directory manipulation and
compatibility code to leverage UFS. Much of this code would be eliminated in a decomposed
implementation, as outlined in Figure 2.8, page 50.

74

mechanisms; the reconciliation mechanism constitutes an additional 1,400 -lines
of code. The layer mechanism is composed of 1,700-lines, and miscellaneous- tools
contain 5,000 lines.

75

CHAPTER 3

Algorithms

Management of related, replicated-objects is often fundamental to the design of
reliable distributed-systems. We are concerned both with the objects themselves:
propagation of updates and reclamation of storage; as well as management of the
possibly replicated directories used-to keep track of and find the objects.

This-chapter presents a family-of algorithms -for use in managing replicated
objects and the accompanying graph structured directory systems. Members of
this family are presented in order of increasing power and flexibility, followed
by discussion of their correctness. The use of the algorithms in a replicated file
system context is outlined throughout the presentation.

3.1 Introduction

Desires to improve availability and performance of information serves to moti-
vate replicating information at locatior.s "closer" to the data's intended use. A

continuing difficulty in the operation of replicated information storage services,
however, is unsatisfactory support for consistent update. Conventional methods
achieve mutual consistency of data and the ,directories which refer to them by
restricting availability for update. In the face of communications limitations,
methods such as primary site, majority voting, quorum consensus, and the like
reduce the performance and availability for update as the number of copies of an
object or directory references is increased. This pattern is the reverse of what is
desired.

There are numerous environments for which replicated storage is quite valu-
able. In some of these, rapid communication among sites is not suitable or even
possible. Interesting examples include conventional high availability systems us-
ing redundant hardware, significant numbers of workstation users collectively
engaged in a large software development project, an office workgroup composed
of several widely geographically separated workgroups, large numbers of laptops
operating while disconnected, and military systems subject to communications
silence. These examples share several common characteristics:

76

* low latency communications-on demand cannot be guaranteed, either due
to failures or-policy decisions (such as not keeping a line in operation during
high tariff periods);

* updates to data and meta-data (directories) are important to allow and
occur from sites-whose identity could not be specified in advance;

" concurrent updates of a given data item or directory entry are quite unlikely,
and in those rare cases where a conflict does occur, subsequent reconciliation
is feasible. Strict transaction semantics are not required.

We argue elsewhere (see Chapter 1) that these conditions -characterize a very
large set-of important environments, including much of today's use of distributed
file systems

Our approach to providing replicated storage in these environments is -called
optimistic replication. Optimistic replication uses a one-copy availability concur-
rency control policy for both read and update: if any copy is physically accessible,
read and update are permitted. Optimistic replication further guarantees no lost
updates semantics, so it is incumbent upon the system to detect conflicting up-
dates and manage the mutual inconsistency until it is repaired.

Conventional replica management schemes implicitly or explicitly always have
the property that a set of up-to-date "authority" replicas exists. No such au-
thority is present in optimistic replication, short of a consensus reached by all
replicas-a consensus not easily obtained when a complete communications graph
between all replicas is unattainable.

For example, consider the problem of creating and deleting objects under
optimistic replication. Object creation can be effected by causing a single replica
to exist at one node; another node may then notice that an object exists for
which it lacks a replica, and it will proceed to establish one of its own. But how
is an object deleted? Simply deleting a replica will not do, since in the absence
of additional mechanism that is indistinguishable from object creation: one node
has a replica, another does not, so which is it to be? Does the replica represent a
newly created object, or does the "missing" replica represent a recently deleted
object?

Attempting to determine whether an object is newly created or recently
deleted is futile in the absence of additional information. This create/delete am-
biguity (first noted by Fischer and Michael in [FM82]) is resolved in conventional
replication schemes by appealing to an authority; in optimistic replication, some
other means must be used. In this chapter, we provide solutions for this and
other problems typically encountered in optimistic replication.

77

3.1.1 File systems

The algorithms presented in this chapter are designed to provide for management
and garbage collection of distributed, selectively replicated graph structures with
associated resources. In practice, they have been extensively applied to the-sup-
port of an optimistically replicated -hierarchical filing system and accompanying
name service for UNIX(see Chapter 2).

Consider the primary components of a typical UNIX file system. Files are
hierarchically organized, with designated files (directories) containing the struc-
tural details (pathname components)-which indicate a file's place in the hierarchy.
The hierarchy is usually a restricted form of a directed acyclic graph.

Two types of "objects" are present, files and-file names. For replication man-
agement purposes, each object can be treated independently, including indepen-
dent consideration of a file and its names. In the algorithm model below, a UNIX
file corresponds to a multiply-named logical object, while the file's names are
considered to be singly-named objects in their own right.

Although we have applied these algorithms in the context of a sta:adard UNIX
file system, they can readily be used in other applications. For example, . dis-
tributed name service such as the DARPA Internet Domain Name System could
directly use these algorithms to manage its databases.

' 1.2 Outline

The next section specifies the problem to be solved in more formal terms and
presents a family of algorithms to address it. Section 3.3 presents correctness
arguments which aid understanding of the algorithms. Algorithm applications
are discussed in Section 3.4; an outline of related research in Section 3.5 concludes

the chapter.

3.2 Algorithms

The task of a management algorithm is to support the propagation of changes
to names and objects, and to identify and recover all resources supporting the
existence of a logical object. This section presents a simple model of object
and names, followed by several reclamation algorithms which addres arious
combinations of object properties.

78

3.2.1 Model

Our model provides clients with- a persistent storage service for a collection of
entities called -objects. A logical -object is represented by a finite set of physical
object replicas. Each object hasa replication factor which defines the intended
quantity and placement of replicas.' Clients access an object via a logical name,
which -is represented by a finite set of physical name replicas. Each name has a
replication factor separate from- the object it names and :from other names for
the object.

The system creates anew logical object by establishing a single physical object
replica-and a single physical name replica. Additional physical name and object
replicas for this obi, ct are established asynchronously as indicated by the relevant
replication factor. The first physical name replica to be established for a logical
name is tagged -with a unique value that- distinguishes this -particular usage-of the
name from all others; all physical name replicas -for this -logical name carry- this
same tag.

An object is initially created with one (logical) name. Some objects may be
restricted to only the original name; other objects allow names to be added or
removed at wilL Each object replica maintains a reference count indicating the
number-of (local) name replicas which refer to it.' Name removal will leave an
object inaccessible when no physical name replicas for the object exist. New
names can only be added to an accessible object, so an inaccessible object is
permanently inaccessible. Resources held by an inaccessible object are subject
to reclamation.

Name removal is effected by marking a name replica 'deleted', which prevents
its use in accessing an--object. This indelible mark eventually propagates to
other name replicas, but until then, the object may be accessible via unmarked
name replicas. An object replica's reference count is decremented atomically with
marking a name replica.

An additional name for an object may be established provided that the physi-
cal object replica referenced by the to-be-established initial name replica currently
has a non-zero reference count.

The-difficulty of replica management is determined (in part) by several issues:

'In this chapter, we use the term replica to include all of the resources at a node which are
devoted to the (logical) object. Typically, this includes a copy of the object's "client data," as
well as any replication or other bookkeeping meta-data associated with the object. Resources
consumed by meta-data must be reclaimed as well as resources used- by client data.

'A name replica is reflected in the reference count of exactly one replica.

79

* static versus dynamic naming

* object -mutability[equivalence of name-and object -replication factors

• static- versus dynamic replication factor

The algorithms presented- in the next several subsections vary in their ability
to handle these issues, ranging from the simplest combination (fixed name, im-
mutable object with equivalent static replication factors for both -name and ob-
ject) to the-most difficult (dynamically named mutable object- with non-equivalent
dynamic name and- object replication factors).

To aid clarity of discussion, we assume that- no more than one replica-is stored
by any given node. The algorithms generalize directly to multiple replicas per
node.

We make minimum assumptions about the available communications environ-
ment to assure successful -operation- of the algorithms in practice. All we require
is that information be -able to flow from any node to any other in the network
over time if relayed through intervening nodes. More formally:

nodes N1 and N,. are time flow connected if there is-a finite sequeaice
of nodes N1,N 2,...,Nm such that for 1 < i < m, a message can
successfully be sent -from Ni to Ni+1 at time ti, and- ti < ti+1 .

We require that every pair of nodes is time flow connected starting at any time.

This property does not require, for example, that any pair of nodes be op-
erational simultaneously, but it does mean that no relevant node can be down
indefinitely.

We also assume that nodes are truthful: Byzantine behavior does not oc-
cur. Finally, history only moves -forward: a node must never "roll back" from a
reported state, so stable storage of any reported state must precede that report.

3.2.2 Basic two-phase algorithm

The basic two-phase algorithm is appropriate for the simplest kind of replicated
object: static single name, immutable object, and equivalent fixed-name and ob-
ject replication factors. The task at hand is simply to garbage collect. Subsequent
more difficult types of management tasks adapt this algorithm to accomplish their
goals.

80

The basic reclamation algorithm proceeds -in two-phases at each node. The
first phase begins executing at a node- when the node learns the object is to be
reclaimed, that is, when-its (single) name replica is marked 'deleted.' This mark
is then also placed on the object replica. Actual physical-reclamation of the

object replica (and name replica) will not occur until after -the node completes
its second phase-of the algorithm. Figure 3.1 lists the-basic two-phase algorithm
in--pseudo-code.

Each node concurrently executes -the algorithm, and shares its progress- with
other nodes. Sharing improves-the algorithm's efficiency, but more importantly,
it-enables-the aigorithm-to cope with pathological communications failures.

3.2.2.1 Phase-one

The first phase proceeds by composing a list of nodes that have their object
replica marked-deleted. In effect, each node is engaged in the same activity:
collecting information about the deletion status of each object replica. A node
completes its first phase when every replica is listed as marked deleted.

When two nodes cannot directly communicate, information propagates by
way of intermediate nodes. Indirect communication is, in fact, an integral part
of the algorithm: when nodes inquire about each other's status, algorithm status
as well as deletion- status is shared. The list of replicas marked deleted which is
maintained by a node is shared with other nodes, who in turn incorporate the
information into their own lists.

A node that has completed phase one has limited knowledge about the sta-
tus of other nodes. It knows that all have marked their name replicas and object
replicas deleted, and thus have themselves begun executing phase one of the algo-
rithm. However, a node at this stage makes no assumptions about the knowledge
other nodes have of it. It is quite possible that no other node is aware that the
node in question -has marked its replica deleted, as the flow of information is not
guaranteed to be a two-way exchange at any step.

3.2.2.2 Phase two

Immediately upon completing phase one, a node begins executing phase two. In
this phase, a node compiles a list of nodes that it learns have finished phase one.
The first node placed on this second list is, of course, itself: phase two began at
this node precisely because it had finished phase one. As with the earlier phase,
phase two at this node is complete when all nodes are listed. The same style of

81

I
1
I

/* variables and data structures:
Let set R := replication factor,

r,s element drawn from R,
self is element of R,
PIE] binary vector of size- IRI,
P2E] binary vector of size IRI,
RE] binary vector-of size IRI.

begin: while (my name replica is not
marked deleted)

{donothing; }
mark my object replica deleted;

Pi[r-] : 0, for all replicas r;I P2[r] := 0, for all replicas r;
phasel: Pl[self] := 1;

while (PiEr] == 0 for any r) {
Rr]-: 0, for all r;
choose some r to query;
ask r for its P1 vector;
if r responds {

RE] : r-'s response;
foreach -(REs] == 1)

{ Pi[s] := ; }

phase2: P2E.zelf1 : 1;
- while (P2Er] = 0 for any r) {

R[r] := 0, for all r;
choose some r to query;
ask r for its P2 vector;
if r responds {

R[] := r's response;
foreach (R[s] -- i)- { P2[s] : 1; 1

postlude:
reclaim object replica resources;
reclaim name replica resources;

In Figure 3.1: Basic two-phase algorithm

82

lisct sharing utilized in phase one also occurs in phase two.

Nodes placed on a phase two list are those that know that all replicas are
marked deleted. A node with a complete phase two list thereforeknows that all
nodes know all replicas are marked deleted. This-global state is vital to providing
((once reclaimed, never re-established" behavior: it allows a node -(finished with
phase two) to reclaim- all local-resources devoted to the replicated-object and to
forget about -it entirely, secure in the knowledge that the replica will never be
re-established-in response to a-query from another node about the object.3

A node that is striving to finish phase two might query a node which has al-
ready reclaimed its resources and forgotten about the object. The query response
will indicate-that no such object is known, which the 4riquirer will (correctly) in-
terpret to mean that the queried node has completea phase two. The inquiring
node-uses this:inferred status to-complete its ownsecord phase, and proceed-with
reclaiming its -object -and name replicas' physical resources.

3.2.2.3 One phase -is not enough

The algorithm's first phase ensures that all nodes with replicas are aware that the

object's resources are to be reclaimed. This property guarantees that no replica
* will survive the reclamation effort without having been aware that reclamation

was in progress. The second phase guarantees that all portions of the distributed
algorithm will terminate despite barriers to information flow that are formed as
nodes reclaim their replicas' resources.

In order to appreciate why one phase is insufficient, consider a hypothetical3 one phase algorithm and its execution in a particular class of network configura-
tion behaviors. In the imagined algorithm, a node reclaims a replica's resources
upon learning that all extant replicas are aware that reclamation is in progress.
The network configuration of interest (see Figure 3.2) is composed of a group of
well connected nodes and two nodes which are weakly connected to the group
and very weakly connected to each other.

Suppose that an object is initially created at Node Z, with replicas to be
* established at all nodes A, B, ... Y, Z. Soon after establishing a replica, Node

A determines that the object should be reclaimed. According to the algorithm,
3 "Once reclaimed, never re-established" behavior is important for both practical and the-

oretical reasons: resource allocation and deallocation is costly and should be done only when
necessary; and, removing the possibility of re-allocation greatly simplifies algorithm termination

arguments. Note that the "logical deletion" design hides re-establishment issues from clients,
so it is strictly an internal systems issue.

83

I,"-
I I

Figure 3.2: One phase- network example

Node A notes -that it is self-aware of reclamation, and begins the process of
acquiring knowledge about other replicas'-reclamation status. Suppose that the
link between nodes A and B is the-only remaining (albeit weak) link from Node
A to the others.

Now consider Node B's possible perspectives-upon receiving an inquiry from
Node A (which contains the information that reclamation is in progress): Node
B is either aware of the object already (because a- replica exists at Node B),or it
is not aware (no replica exists at Node B).

In the first case (Node B is already aware of -the object), Node B notes that
reclamation is in progress and Nodes A and-B are cognizant of it. Node B, in-turn,
attempts to contact other nodes. Suppose the well connected group of nodes (B -
Y) rapidly succeeds in learning that reclamation is in progress, and even manages
to get a response back from Node Z acknowledging that reclamation is in progress.
Further suppose that Node B:is the first node to learn that every-node is-aware of
the-intent to reclaim. Node B therefore reclaims its resources and forgets entirely
about the object (including the fact that -its replica was reclaimed).

Continuing the scenario, when Node B receives the initial inquiry from Node
A,-it replies quickly. Unfortunately, congestion- on the link causes the reply to be
lost. Node A eventually sends another message to Node B inquiring about Node
B's reclamation status, since it failed to get a response to the first message. By
the time Node B receives- the second message, its replica is already reclaimed.
This scenario -forces consideration of case two: Node B is unaware of the object.

Another way in which Node B might be unaware of the object is that Node B
has neverlearned of the object before receiving the inquiry from Node A. (Perhaps
Node A learned of the object directly from Node Z via the very weak link between
them.) From Node B's-perspective, these two situations are indistinguishable, yet
its response must differ for the two scenarios: in one, Node B must establish a
replica (whose body may be empty) to support indirect communication to other
nodes about the reclamation initiated by Node A; in the other, all nodes are (or

84

were) aware of reclamation, and do not need-(or want) to re-establish replicas.

:Failure to support indirect communication that may be critical to algorithm
termination is unacceptable. It is also unacceptable to simply re-establish replicas
just in case indirect communication support is needed: re-establishment in the
above scenario is a side-effect of an event (successful transmission of a message)
whose frequency-is both unbounded (by the-algorithm) and may not contribute
to progress towards termination.

The two-phase nature of our algorithm provides an ignorant node with the

ability always to-distinguish "never knew" from "forgotten". An ignorant node

which receives a phase one message correctly concludes "never knew", and es-
tablishes a replica to provide-support for indirect communication. An ignorant

node concludes "forgotten" upon receiving a phase two message, and does not
establish a replica. (An- ignorant node's reply to a phase -two inquiry-"I know
nothing"-implicitly means "I finished- phase two, and so can you," which is all

the-inquirer needs to know to-reclaim-its replica's resources and terminate.)

3.2.3 Intermediate algorithm

The basic algorithm in the previous section applies to fixed name, immutable ob-
jects with-identical static name-and object replication factors. In this section we
relax the first two-constraints to allow dynamic naming and-object-updates, while
continuing to require name and-object replication factors to be both identical and
static.

Dynamic naming and object mutability each complicate the reclamation prob-

lem, and the combination of the two is especially difficult. Dynamic naming in-
troduces a global-stable state detection problem, while object mutability requires
special mechanisms to prevent inadvertent data loss.

3.2.3.1 Dynamic naming

A necessary, but not sufficient, condition for object reciamation is that tile object

have no names. In our model, 'no names' means that every name replica referring

to an object replica has been marked deleted.

In the basic two-phase algorithm, object reclamation inevitably follows name
removal; the two phases ensure that all replicas will be reclaimed, exactly once. In

the dynamic naming case, it is much harder to determine whether or not reclama
tion is to occur: names may be added or removed at any node at any time, since

optimism allows unsynchronized concurrent updates across non-communicating

nodes. When a name is added at one node concurrently with a name removal
at another node, a transient situation- may arise in -which a node has no names
for an object for a:time, until the new name propagates to that node. During
this time, reclamation of the 'nameless' object replica would be premature, even
though it has a zero-valued reference count.

Premature reclamation must be avoided -because of the potential -for data
loss. Concurrent update, name creation, and name removal together with the
non-atomicity of name and object propagation leave open the possibility that
the only object replica reflecting an update could temporarily have a zero-valued
reference count. Such a replica must not be prematurely reclaimed.

Although a single replica's zero-valued reference count may be a transient
condition, when all replicas have zero references a global stable state [CL851
exists. The problem- then, is to detect that all object-replicas simultaneously have
zero-valued reference counts in- an environment when simultaneous or pseudo-
simultaneous queries of all nodes is not feasible.

We provide an adaptation of our basic two-phase algorithm which exploits
the rules governing name additions to achieve a relatively inexpensive, fully dis-
tributed mechanism for determining the global zero-valued reference count stable
state. The adaptation requires that each object replica maintain a monotonic
counter in parallel with the reference counter, and that the algorithm compile
and distribute a vector of these new counters.

The new counter-is incremented atomically with the reference counter, but it
is never decremented. It functions as a 'total name counter' to reflect the number
of -name replicas at this node which have referred to the object replica. The total
name counter from each replica is used to determine that a zero-valued reference
counter has been quiescent between interrogations.

3.2.3.2 Algorithm for dynamic naming

This intermediate two-phase algorithm is triggered at a node when the object
replica's reference count is zero. In the first phase, two parallel vectors are main-
tained. One vector indicates which replicas have reported a zero-valued reference
count, and the other contains the total name counter value reported by those
replicas.

A node has completed its first phase when all replicas are listed with total
name count values recorded in the parallel vectors. This also implies that each
replica reported a zero-valued reference counter. These parallel vectors are shared
with other nodes executing the algorithm.

86

The second phase-proceeds similarly, with two parallel vectors of total name
count values and report indicators. In this phase, the total name count values
recorded reflect a replica's total name-count value at some point after the queried
replica has finished phase one.

As- a node is collecting values in the second phase, it compares the newly
reported values with-those recorded in its phase one vector. If any discrepancy is
discovered (i.e., the- corresponding values are not identical), the algorithm aborts,
initializes its vectors, and restarts phase one. This abort occurs when the tran-
sient behavior described above occurs.

A node finishes its second-phase when all-replicas have reported- values to it,
and the values are identical-to those collected in the first phase. At this point,
all object replicas are-guaranteed to be permanently inaccessible.

3.2.3.3 Mutability

As presented, the intermediate algorithm willldetermine that-an object is globally
inaccessible. A further condition is necessary (and sufficient) to allow physical
reclamation to proceed: data must not be lost inadvertently as an unavoidable
consequence-of optimism. We are not concerned here with the kind of 'inadver-
tent loss' that results when a -client mistakenly removes a name, but with the
consequences of concurrent update and name removal.

Consider a scenario with one object, two names, three replicas, and three
clients. (Imagine a journal paper draft, with three collaborating colleagues.)
Suppose that each of -the nodes is isolated, but optimism allows each author to
continue working. One author makes revisions to his object replica. Each of the
other two authors decides (differently) that one of the two names is superfluous,
and removes -it. Each of the-clients will be understandably disappointed if the
object is reclaimed (since it eventually will be declared globally inaccessible),
especially the one who updated it.

Our approach to the general problem of remove/update conflicts is to assume
that name removal is undertaken in the context of an object replica. We invest
the name removal operation with the additional semantics that a client wishes

object reclamation (when no -names exist) if no other object replicas are newer
than (or in conflict with) the object replica which is initially affected by the name

removal.

To accommodate the additional semantics, the reclamation algorithm must
determine which of the object versions represented by the replicas is the latest,
and which is the latest version to provide a context for name removal. (Opti-

87

mism-also introduces the possibility that no 'latest' version exists, such as when
unsynchronized concurrent updates occur to distinct replicas, thus generating an
update/update conflict.) After identifying the latest object version and removal

context version, it is trivial to decide whether a remove/update conflict exists.

Version identification and context recollection can be readily accomplished
with version vectors, which provide a multi-dimensional version numbering tech-
nique-for replicas [PPR83]. We augment the object replica model with two-data
items: a 'current' version vector, and a 'removal context' version- vector. The
current version vector always identifies the current value of the object replica.
The removal context vector is replaced by a copy of the current version vec-
tor when a name removal operation is issued with this object replica providing
context. Each replica's removal context vector will be checked to see that no
remove/update conflict exists.

3.2.3.4 Remove/update conflict algorithm

It is easy to modify the intermediate two-phase algorithm to collect and com-
pare the various vectors and determine if a remove/update conflict exists: each
instance of the algorithm can collect (and share) sets of vectors, and perform the
appropriate comparisons when- the sets are complete. This approach, however,
imposes quadratic storage and message size complexity upon each instance of the
algorithm.

4

Linear storage complexity can be achieved by exploiting the (partial) ordering
of version vector values. Instead of collecting each replica's version vector values,
an algorithm instance can retain only the greatest (latest) vector value encoun-
tered, along with a vector indicating which replica's vectors have been consulted
and whether the vectors conflict with the greatest values seen to this point in the
algorithm's execution.

The linear optimization is not free, however. A two-phase consultation scheme
is required to collect the vectors and correctly assert that a particular vector value
is greatest, or that no value is greatest due to conflicting versions. As it happens,
these two phases can be executed in parallel with the two-phase algorithm that

determines global inaccessibility, so the cost is effectively eliminated.

Once global inaccessibility and remove/update conflict status are determined,
a decision can be made whether to reclaim an object replica's resources. If a
remove/update conflict is discovered, reclamation will not occur; poper action at

this point is application dependent. (An example is described in a later section.)

"Each version vector is of length n, of which n must be collected in eaci set-(n = rcplicasl).

88

Figures 3.3 and 3.4 show the intermediate algorithm.

3.2.4 Advanced two-phase algorithm

The previous algorithms each assume that object and name replication factors
are fixed at creation time, and are identical. In practice, these constraints are
not attractive. Changing circumstances of network behavior or object usage
mav necessitate adding, deleting, or moving replicas, which can not be usefully
-predicted when an -object is created. -It should also be possible to change an
object's replication factor-without directly affecting object names.

Note that an object (or name) replication factor is itself a replicated data
structure which is used to manage other replicated data structures. The version
vector technique used to manage updates to replicated data can not easily be
applied to managing updates to version vectors themselves.

Our system supports an approximation to -an ideal flexible replication factor
mechanism: a replication factor can grow to be very large (232 replicas), with
masks -used to 'shrink' a replication factor. One mask is used to indicate that
:particular replicas should be (irrevocably) ignored during algorithm execution.
The second mask permits an object replica to avoid the expense of storing the
-object itself any further, but the 'skeletal' replica must continue to participate
in algorithm-execution. In short, a replication factor monotonically increases in
physical size, with adjustments available to reduce the actual number of physical
copies-of a client's data which are maintained.

Increasing a replication factor is straightforward. Any replica's replication
factor can be augmented simply by adding a-(globally unique) replica identifier
-to its list of replicas. A replica can form a new replication factor while executing
the one of the two-phase algorithms by taking the union of its replication factor
and that reported by another replica.

A replication factor's 'ignore' mask provides a way for a replica to be forever
ignored. This is especially useful when recovery of a destroyed replica is impos-
sible or too expensive. Indicating that a replica is to be ignored is an irrevocable
action. Like an increase in replication factor, a new ignore mask is formed by
-taking- the union of-the local mask and one reported by another replica.

The 'skeletal' mask indicates which object replicas don't actually store any
client data. This mask is maintained in an optimistic fashion, but without conflict
detection: mask updates cause a new timestamp to be generated for the mask;
the mask with the latest timestamp is deemed to be correct.

89

3.2.4.1 Algorithm

Very few changes need to be made to the intermediate two-phase algorithm to
support dynamic name and object replication factors. Each replication factor
must support -two additional parallel data structures (the masks), and the algo-
rithm must check reported replication factors for changes. Care must be exer-
cised, though, when increasing a replication factor not to violate the semantics
of an in-progress reclamation algorithm.

Our two-phase algorithms have two critical points: when a node finishes phase
oite, it believes that all replicas have been consulted; and when a node finishes
phase two, it believes that all replicas have finished phase one.

While a node is currently in phase one. its replication factor can be augmented
safely-because-every other node must consult it at least once more, during phase
two. When this node is consulted, other nodes will learn about the additional
replica(s). But a replication factor must not be augmented to create-a new replica
when the 'source' replica's node is in phase two.

For brevity, we do not show these minor algorithm modifications in a separate
figure.

ii
I

I9

3.3 Correctness discussion

The -basic two-ph-ase reclamation algorithm is correct if and only if these condi-

tions are satisfied:

* object reclamation occurs if, and only if, the object is globally inaccessible

-for each replica of an inaccessible object, reclamation occurs -exactly once,
in finite time

- all algorithm executions -terminate in finite time

* all algorithm executions-are free from deadlock

We first show -that reclamation occurs if an object -is inaccessible, followed by
the only if direction. We then show -that reclamation occurs exactly-once in finite
time-by proving- that it occurs at least once, and at most once.

3.3.1 Reclamation if inaccessible

The "information flow" requirement-governing network-behavior ensures that it is
possible for each node-to learn of status-changes at every other node. Since each
node periodically uses the propagation protocol to incorporate other replicas'
status changes into its own replica, and since all replicas are guaranteed to be
available at the same time, each node will, in fact, learn in finite time of the status
of every other replica. Therefore, every logical name deletion will eventually be
reflected at every node, as each name replica will be indelibly marked deleted.

Following the deletion of every name for an object, in finite time all name
replicas will be marked deleted. Each object replica will, in turn, have a zero-
valued reference count, and be inaccessible.

The first phase of the algorithm simply collects the information that, when
consulted, each replica was inaccessible. The second phase similarly collects
information from each node. By the previous argument, each node is guaranteed
to-learn the desired information. At the conclusion of executing its second phase,
a node reclaims its resources. Since each node is guaranteed to finish its pha..s if
the object -is inaccessible, each node will reclaim the resources consumed h-, the
object.

91

/* major changes to basic algorithm
show asterisks in first column. */

/* new vectors:
NCR total name count response
NCI total name count, phasel
NC2 total name count, phase2toti$ name count validation

rep v ca s erson vector
VVR version vector responseSVV saved-version vector response

-SR removal context vector
- removal context response

new scalars:
reference count response

RU remove/update conflict flag

begin: while (my ref-counter non-zero)
{ donothing; }

Rese alleemntso vectors:
1, eP2,NCR, N1,WNC, N

RU := 0;

phasel: Pl[self] : 1;
while (PI[r] == 0 for any r) {

NCR[r] := 0, for all r;
choose some r to query;

* ask r for its C, NCI, P1;
* VV, RC
* if r responds-with C==O {

NCRE]-:= r's NC1;
NV] := r's P1;

* foreach (NV[s] == 1) {
* NC1Es] NCR[s];

Pl[s] := 1;

* VVR := r's VV;

* RCR := r's RC;
* if (VVR >= VV)
* { SVV := VVR; }
* if (RCR >= RC)
* { RC := RCR; }}

Figure 3.3: Intermediate algorithm, phase one.

92

I

_phase2: P2[self] 1;
while (P2[r] == 0 for any r) {

NCR[r] :=-0, for all r;
choose some r to query;
ask r for its C, NC2, P2;.

* VV, RC
* if r responds with C==0 {
, NC[]: r's NC2;-
* NV]: r's P2;
* foreach (NV[s] 1) {
, NC2[s] NCR[s];
* P2[s] 1 ;
, if (NCl[s] != NC2[s])
* goto begin;

* VVR :- r's VV;
* RCR r's RC;
* if (VVR conflicts SVV or
* RCR conflicts RC)
* { RU:=1}

if (VVR >= VV)
* { SVV :- VVR; }
* if (RCR >= RC)
* fRC-:= RCR; }

} else if (C > 0)
{ goto begin; }}

-postlude:
if (RU == 0) {
reclaim object replica resources
reclaim name replica resources

} else {put object into orphanage}

Figure 3.4: Intermediate algorithm, phase two.

93

I

3.3.2 Reclamation only if'inaccessible

We argue by contradiction. Suppose reclamation of an object replica occurred
without the object being inaccessible. Therefore, some object replica must have
anon-zero reference count at -the end- of a node's second phase.

But, the algorithm's first phase demonstrated -that each replica had a zero-
valued reference count (though not necessarily simultaneously), and the second
phase ensured that each replica's reference count had not changed between the
first and second reference count queries. Since the-second set of queries:strictly
followed the first set, a point in time must exist at which all replicas were si-
multaneously inaccessible. Global inaccessibility is a global stable state, by the
-restrictions placed on additional name creation. Therefore, a non-zero object
replica reference can not exist, which contradicts the hypothesis.

3.3.3 Reclamation exactly once

If the object is inaccessible, each replica will be reclaimed at the end of its node's
execution of the algorithm, as per the-above arguments. Therefore, each replica
is reclaimed at least once.

Multiple reclamation requires multiple establishment of a replica. Replica
establishment occurs when a node without a replica receives a message that
indicates that the receiver is intended to have a replica and there is no indication
in the message of the replica's-prior existence. Therefore, to re-establish a replica,
a-node which has already reclaimed its replica must receive a message about the
object which does not indicate that the replica is known to have existed.

It suffices to hypothesize that such a message is received, and then prove that
such a message-cannot arrive. We do so by classifying all messages and showing
that none of the types which could cause replica establishment will be received
after reclamation.

Every message about an object replica implicitly indicates a "phase" of al-
gorithm execution. In addition to phase one and phase two messages, nodes
routinely send status query and response messages to learn of object updates
when the algorithm is not executing. For convenience, consider these routine
messages to be "phase zero" messages.

When a node -without a replica receives a message, its decision whether to
create a replica is based on the phase of the- sender:

zero A phase zero message contains no indication whether the receiving node
ever had a replica. Therefore, a replica must be established.

94

one A phase one message may or may not indicate that the replica has ever
existed. If it does not indicate that the replica existed, a replica must
be- established. If it indicates that a replica once existed, an anomalous
condition has-been encountered. (See discussion below.)

two A prerequisite for entering phase two is that all replicas have been-consulted,
which implies-that all -replicas exist.- Therefore, the replica has previously
existed, been-reclaimed, and must not be re-established.

A node which has already reclaimed its replica normally expects-to receive
only phase two messages, because a condition of phase two completion is- to
determine that all other nodes have:finished phase-one. Since phase two-messages
can not-cause-a replica to be-re-established,-only the receipt of phase zero or phase
one messages- after reclamation might cause a replica to-be established again.

Phase zero-or phase one messages received- by a node which has completed
phase two and- reclaimed its -replica could only have been sent -before the sender
began phase two. Such messages- have been delayed in transit, long enough -for
the sender to finish phase one-and the receiver to finish phase two.

The algorithm is resilient to delayed messages which- are received within the
next phase: phase one messages received by a node in the midst of phase two are
quite normal, as are phase zero messages received during phase one. It is only
when message delay exceeds one phase that replica re-establishment might occur.

We assume that message delays does not exceed the -time required for one
complete phase. If this bound is invalid, algorithm execution can be artificially
slowed to increase the length of a phase until a valid bound is achieved. It is,
therefore, feasible to prevent phase zero or phase one messages from arriving after
reclamation occurs.

The hypothesized message received after a replica has been reclaimed must
be from one of the three phases, but since delayed phase zero and phase one
messages can be prevented and phase two messages do not cause replica estab-
lishment, no message- which could cause replica establishment will be received.
This contradicts the hypothesis that such a message -might be received, and so
replica re-establishment (and subsequent reclamation) after an initial reclamation
is- not possible.

3.3.4 Termination

We show that the algorithm terminates by defining a partial order on the possible
states of a node during the algorithm's execution, and showing that all state tran-

95

sitions are monotonic with-respect-to this-order. (We showed above that sufficient

transitions will occur, based on the finite time information flow assumption.)

A node's algorithm execution status is-primarily determined-by the list com-
piled in each -phase of replicas consulted. The set of valid list values comprises all
subsets of the (finite) set of replicas indicated in the object's replication factor.
A partial order based on cardinality can then be defined over these subsets.

A state transition (list change)- is defined in the algorithm to be a set union
operation, which is monotonic over the partial order. A partial order is acyclic,
so all algorithm state transitions are acyclic. Progress towards termination is
guaranteed, unless deadlock occurs.

The intermediate algorithm occasionally aborts and restarts. The only cir-
cumstance in which abort occurs -(a mismatch- of total name count vectors) is
bounded in= occurrence by -the product of the number of names and the cardi-
nality of the object's replication factor. Since the number of aborts at a node is
bounded, some algorithm execution will not abort, and so the above termination
argument holds.

3.3.5 Deadlock-free

We show that the protocol is free from deadlock by developing a waits for graph
model and proving that it is acyclic for all algorithm executions.

Recall that the propagation protocol underlying state transitions is non-
blocking, so a node is never blocked-waiting for a particular response from another
node. It therefore suffices to consider the algorithm's behavior at the higher level
of phase transitions, where 'waiting' does-occur.

Define a total order over the states 'accessible', 'phase one', 'phase two', and
'reclaimed'such that accessible < phase-one <-phase two-< reclaimed.

A node transitions from accessible to phase one when its replica becomes
inaccessible, and from phase one to phase two when it learns that all nodes
have transitioned to phase one. It transitions from phase two to reclaimed upon
learning that all nodes have transitioned to phase two.

With the exception of the initial transition from accessible to phase one, a

node waits for all other nodes to reach the same state as itself, before transitioning
to a later (fully ordered) state. Therefore, a node only waits for "lesser" nodes;
since "lesser" is acyclic, no cycles can occur in the waits-for graph and so the
protocol is deadlock-free.

96

3.4 Applications and observations

Which two-phase algorithms are appropriate for managing a UNIX file system?
UNIX files are mutable, dynamically named objects, so at least the intermediate
algorithm should- be used for them. File- names (directory entries) are simple
objects which can be managed with the basic two-phase algorithm.

While the intermediate algorithm is a-sufficient base upon which to construct
a usable file system, the additional cost of implementing and- using the advanced
algorithm (with flexible replication factors) is negligible. Ficus incorporates the
advanced algorithm to-manage its files.

The advanced-algorithm is-also used to support the name service that connects
subtrees togetherto form a large connected hierarchical filing-environment. This
name service plays a role similar to-NIS (Yellow Pages)-in NFS, or volume support
in AFS. The implementations-of these twoapplications (file hierarchy and'volume
hierarchy)-are common, so multiple-facilities were not required.

3.4.1 Directed acyclic graphs

The UNIX filing environment is a simple directed acyclic graph (dag) structure.
These-algorithmsmay be applied to an arbitrary graph structure as well, so long
as there are no disconnected self-referential subgraphs. Additional mechanism is
needed to handle -that case.

In fact, modest mechanism beyond that discussed in this chapter is required
even to handle dags. That is because the discussion was cast in terms of a single
logical object. The additional facilities are simple, and discussed in [Guy87].

3.4.2 Performance

Performance of these algorithms is, of cours, -important. A suitable measure
is the number of -messages that -must be exchanged i ,ruer to cause a set of n
nodes with -replicas to reach agreement. One would expect that the worst case
could be expensive, since the underlying minimum communications assumptions
do not allow a stylized pattern of -interaction always to be employed. The worst
case -indeed requires 0(n2) messages, asmost nodes talk to most of the other
nodes to complete each -phase.5

51n each-phase, in the worst case, a first node pulls from the n - 1 other nodes to become
knowledgeable. A second node then pulls from the remaining n - 2 unknowledgeable nodes,
and then the first, knowledgeable one. The third node pulls from the remaining n - 3 unknowl-

97

However, in practice the situation is far better, since we can- communicate in
a stylized manner most of the time. As a simple exampleif the nodes order their
communications in a ring, then a total of 3n - 1 messages are used.6

3.5 Related work

Our-work is related to several areas of res.1 .-I- e -gossip" problem, whic:h has
received substantial- formal treatment; optimip ,c file systems, including LOCUS,
Coda, and Deceit; optimistic "dictionaries" directories) in file systems; and,
distributed garbage collection.

In the gossip problem, each node in a gxph must communicate a unique
item to every other node -in the graph. A wvriety of papers have appeared in
the -twenty years of its study [HHL88]. ,'ielding complexity results under varying

communications assumptions.

Heddaya, Hsu, and Weihl [HHW89] used a two-phase gossip protocol to man-
age distributed event histories of updates to object replicas. A timestamp vector
is-used to determine when history elements may be safely discarded. Their solu-
tion: does not address the problem of completely forgetting that a history exists,
but only forgetting :items in the history.

LOCUS [WPE83, PW85] is an intellectual ancestor of the Ficus file system
which incorpor tes these algorithms. LOCUS system prototypes incorporated
more -limited replica managerr. ,;it algorithms, from which the algorithms pre-
sented here-are descended.

The Coda project [SKK90] has similar-goals to our own Ficus work and bases
its replica management on the LOCUS version vector [PPR83] mechanism and
an earlier draft of this work [Guy87].

Fischer and Michael [FM82] proposed recasting the leplicated directory main-
tenance problem as a replicated "dictionary" problem, with slightly (but signif-
icantly) different semantics. A timestamp vector was used to infer from a com-
parison of two dictionary replicas which entries had been inserted and which had-
been deleted.

edgeable nodes, and then one of the knowledgeable ones. Thus each phase requires
(n--) + (n--1) + (n- 2) + (n-3) +...+1 "h"
pulls, and there are two phases. Thus, n -+ n - 2 pull messages are required.

6 Assume that a single message is active in the ring at any time. This ever-changi ig message
flows around the ring three times. Phase one of the algorithm begins for all nodes in the first
round trip. Phase one completes and phase two begins for all nodes during the second round
trip. Phase two completes for all nodes during the third round trip.

98

Allchin [A1183] and Wuu and Bernstein [WB84] expanded upon Fischer and

Michael's approach to use two-dimensional timestamp matrices to reduce the
number of messages exchanged, with small variations in semantics.

None of thes6 works addressed the general :problem of reclaiming resources
of named -replicated objects; they were concerned with "dictionary entries" as
isolated entities.

Wiseman's survey [Wis88] of distributed garbage collection methods includes

several techniques based on reference counting, but none are designed tor use
on repli, 'ted objects, and none are directly applicable to imperfectly connected
network:,.

I

I

Ug

10

U9

-CHAPTER 4

Conclusions

This final chapter summarizes the research and its results. It also spotlights
several areas in which future research is expected- to be fruitful.

4.1 Summary and conclusions

This dissertation presents a new architectural paradigm, stackable layers, as a
methodology for designing and -implementing a wide range of filing services for
operating systems. Coupled with a new volume management strategy and a
novel two-phase algorithm family, the stackable layers technique has been used
to construct a large scale replicated file service. The Ficus replicated file system
is in experimental use; neither layering nor replication demonstrate unacceptable
performance degradation.

This work reinforces the fact that today's file management systems are exceed-
ingly complex pieces of software. The challenges presented by the globalization-of
computer-networks will make them allthe more so. Many features will have to-be
added to traditional: filing- services: selective replication, data security, user au-
thentication, and type conversion among heterogeneous storage conventions are
but a few examples. The stackable layers architecture provides a methodology
for extensibility which is crucial for the advancement of distributed file system
technology. As a case-study, Ficus demonstrates that the stackable architecture
is logically feasible and can, with care, be made to perform satisfactorily.

All- of the experience gained in the course of this research supports the view
that optimistic replication is very attractive, whether it is merely between one's
home computer and the office network, or in a very large corporate information
sys tem. High performance, high availability, scalable distributed computing ser-
vice is feasible; it is hoped that the facilities described in this work will make
that high quality service commonplace, as they require no special hardware and
can easily be added to many existing systems. Many applications should benefit
from the ease -with which the basic optimistic replication reconciliation service
can be retargeted beyond its initial use for directory management, as is shown

100

-by its successful use to manage Ficus' replicated volume location tables.U The use of stackable layers as the framework for the Ficus -architecture has
-been- an unqualified boon. The ability -to leverage a common -filing service di-
-rectly permitted one to focus on development of new functionality inherent in
-the replication service, and avoid- much of the traditional cost of building an
-ideal -substrate at- the outset. The modularity afforded by the architecture, along
-with the ability of the transport layer to map operations across address space
-boundaries, allowed new layers to be developed and debugged in -user space, and
then moved- into the kernel only after they were working. This substantially sim-
-plified the testing and debugging enterprise. Layers can indeed-be transparently
inserted between other layers, and-even surround other layers. A replication ser-
vice can be added to a layer stack without modifying existing layers, and yet
-perform well.

The availability of a general reconciliation service is also very useful. Usu-
ally, one must deal with the many boundary and error conditions that occur in
a distributed program with a considerable variety of cleanup and management
-code throughout -the -system software. Instead, in Ficus failures -may occur moreI freely without as much special handling to ensure the integrity and consistency
of the data-structure environment. The reconciliation service- cleans- up later. For
example, volume grafting was made considerably easier by the (easy) transforma-
tion of its necessarily replicated data structures into Ficus directory entries. No
special code was needed to maintain their consistency. There is thus reason toI believe that services such as those provided by Ficus will be of substantial utility
in general, and easy to include as a third-party contribution to a user's system.

The two-phase algorithm family addresses the heretofore unsolved garbage
collection problem for replicated data structures. It may also be useful in similar
contexts, such-as cleaning up storage used in reliable broadcast protocols.

The final and perhaps most significant conclusion is that this work opens -up
a number of relevant research directions where one can expect to make rapid
progress, and provides the tools to investigate them. The following section pro-
vides several suggestions for future work.

- 4.2 Future research directions

The most prominent area of immediate future research is to demonstrate that
large scale is workable in practice. Further, a variety of additional layers are of in-
terest. General service areas include performance tuning, security, and databases.

101

4.2.1 Performance tuning

Two-immediately useful layers would be ones that take measurements and cache

data.

A measurement layer could easily and transparently collect the kinds of -per-

formance data normally sought after when measuring the cost of a particular

service. A simple measurement layer that counts vnode operations--can usefully
be placed between any other layers on a stack, without regard for what operations
and -semantics those layers support. A prototype measurement layer constructed

for an early Ficus implementation-demonstrated the feasibility of collecting data

in this way, but more complex measurement layers need to be constructed, for
example, to-gather trace data and operation duration.

File system services are-often initially designed with functionality and good

performance- as primary goals. It is not always clear from -the outset, however,
which portions of -a service design will benefit from caching or other enhance-

ments. A general purpose caching layer would -be of -great utility in experiment-
ing with performance improvements. Service-specific caching layers can also be

expected to appear.

3 4.2.2 Security

A large scale file system will- be vulnerable to security problems to an unprece-

dented degree. The- use of encryption and authentication services is clearly de-
sirable, but the appropriate means is as yet unknown. A related issue is that of

accounting for resource usage; the current state of affairs (no charges) soon may

not be acceptable.

1 4.2.3 Databases

3I It remains to be demonstrated (in practice) that database-oriented services such

as serializable concurrency control and transactions can be constructed on an op-
timistic replicated file service base, and can further provide the high-performance_U data-transfers that are required by this class of clients.

4.2.4 Typed files

If the stackable layers approach were to be applied at a single file granularity, not
simply a volume granularity, it seems feasible to provide support for typed files.
Each file might maintain as an attribute the particular services used to produce

102

the file; the attribute would then later be used at file open time to-construct a
custom, "typed" -file service forthat one file.

103

REFERENCES

[ABG86] Mike Accetta, Robert Baron, David Golub, Richard Rashid, Avadis
Tevanian, and Michael Young. "Mach: A New Kernel Foundation for
UNIX Development." In USENIX Conference Proceedings, pp. 93-
113. USENIX, June 1986.

[ABG871 Rafael Alonso, Daniel Barbari, Hector Garcia-Molina, and Soraya
Abad. "Quasi-copies: Efficient Data Sharing for Information Re-
-trieval Systems." Technical Report CS-TR-101-87, Princeton Univer-
sity, September 1987.

[AD76] P. A. Alsberg and J. D. Day. "A Principle for Resilient Sharing of Dis-
tributed Resources." In Proceedings- of the International Conference
on Software Engineering, pp. 562-570, October 1976.

[A1183] James E. Allchin. "A Suite of Robust Algorithms for Maintaining
Replicated Data Using Weak Consistency Conditions.! In Proceedings
of the Third IEEE Symposium on Reliability in Distributed Software
and Database Systems, October 1983.

[App85] Apple Computer, Inc. Inside Macintosh. Apple Computer, 1985.

[AR85] J. A. Anyanwu and Brian Randell. "Updateand Merge of Partitioned
Distributed Systems." Technical Report 294, University of Newcastle
Upon Tyne, 1985.

[Bar-78] Joel F. Bartlett. "A NonStop operating system.", In Proceedings of the
Eleventh International Conference on Systems Sciences, pp. 103-117.
Society for Computer Simulation, January 197S.

[BDS84] Joshua J. Bloch, Dean Daniels, and Alfred Z. Spector. "Weighted
Voting for Directories: A Comprehensive Study?" Technical Report
CMU-CS-S4-114, Carnegie-Mellon University, Pittsburgh, PA, 1984.

[BerS.5] Arthur J. Bernstein. "A Loosely Coupled Distributed System for Re-
liably Storing Data." IEEE Transactions on Software Engineering,
11(5):446--154, May 1935.

[BG85] Daniel Barbara and Hector Garcia-Molina. -Mutual Exclusion in Par-
titioned Distributed Systems." Tednical Report CS-001-346. Prince-
ton University, July 1935.

104

[BGS86] Daniel Barbari, Hector Garcia-Molina, and Annemarie Spauster.
"Protocols for Dynamic Vote Reassignment." In Proceedings of the
Fifth Annual ACM Symposium on Principles of Distributed Comput-
ing,-pp. 195-205, August 1986.

[Bir85] Kenneth P. Birman. "Replication and Fault Tolerance in the -Isis Sys-
tem." Technical Report TR 85-668, Cornell University, March 1985.

[BJ87] Kenneth P. Birman and Thomas A. Joseph. "A Logic-of Authentica-
tion." ACM Transactions on Computer Systems, 5(1):47-76, February
1987.

[BJS86]- Kenneth P. Birman, Thomas A. Joseph, Frank Schmuck, and Pat
Stephenson. "Programming with Shared- Bulletin Boards in Asyn-
chronous Distributed Systems." Technical-Report TR-86-772, -Cornell
University, August 1986.

[BK851 Barbara T. Blaustein and Charles W. Kaufman. "Updating Repli-
cated Data during Communications Failures." In Proceedings of the
Eleventh International Conference on Very Large Data Bases, pp. 49-
58, August 1985.

[BMP87] Walter A. Burkhard, Bruce E. Martin, and Jehan-Fran ois Paris. "The
Gemini Replicated File-System Test-bed." In- Proceedings of the Third
Interrational Conference on Data Engineering, pp. 441-488. IEEE,
February 1987.

[Bre86] 0. P. Brereton. "Management of Replicated Files in- a UNIX Envi-

rmnment." Soft ware-Pratice and Experience, 16(8):771-780, August
1986.

[BY87] F. B. Bastani and I-Ling Yen. "A Fault Tolerant Replicated Storage
System." In Proceedings of the Third Irrnational Conference on
Data Engineering, pp. 449-454. IEEE, February 1987.

[CL85] K. Mani Chandy and Leslie Lamport. "Distributed Snapshots: Deter-
mining Global States of Distributed Systems." ACM Transactions on
Computer Systems, 3(1):63-75, February 1985.

[CM89] David R. Cheriton and Timothy P. Mann. "Decentralizing a Global
Naming Service for Improved Performance and Fault Tolerance." ACM
Transactions on Computer Systems, 7:147-183, May 1989.

105

[Cro87] Stephen D. Crocker. "The Origins of RFCs." Network Working Group
Request for Comm(ts: 1000, August 1987.

[Dav84] Susan B. Davidson. "Optimism and Consistency in Partitioned Dis-
tributed Database Systems." ACM Transactions on Database Systems,
9(3):456-481, September 1984.

[DB85] Dan~o Dav:ev and Walter A. Burkhard. "Consistency and Recovery
Control for Replicated-Files." In Proceedings of the Tenth Symposium
on -Operating Systems Principles, pp. 87-96. ACM, December 1985.

[Dij67j Edsgar W. Dijkstra. "The structure of the THE multiprogramming
system." In Proceedings of the Symposium on Operating Systems
Principles. ACM, October 1967.

[Dij68]: Edsgar W. Dijkstra. "Complexity controlled by hierarchical ordering of
function and variability." Working paper for the NATO conference on
computer software engineering at Garmisch, Germany, October 1968.

[Edi86] Judy Lynn Edighoffer. "Distributed, Replicated Computer Bulletin
Board Service." Technical Report STAN-CS-86-1133, Stanford Uni-
versity, June 1986.

[EF83] Carla Schlatter Ellis and R. A. Floyd. "The ROE File System." In Pro-
ceedings of the Third IEEE Symposium on Reliability in Distributed
Software and Database Systems, pp. 175-181, October 1983.

[E1177] Clarence A. Ellis. "Consistency and Correctness of Duplicate Data-
base Systems." In Proceedings of the Sixth Symposium on Operating
Systems Principles, pp. 67-84, November 1977.

[ES83] Derek L. Eager and Kenneth C. Sevcik. "Achieving Robustness in
Distributed Database Systems." ACM Transactions on Database Sys-
tems, 8(3):354-381, September 1983.

[Fai8l] Sergio Zarur Faissol. Operation of Distributed Database Systems Un-
der Network Partition. Ph.D. dissertation, University of California,
Los Angeles, 1981.

[Flo86a] Rick Floyd. "Directory Reference Patterns in a UNIX Environment."
Technical Report TR-179, University of Rochester, August 1986.

106

[Flo86b] Rick Floyd. "Short-Term File Reference Patterns in a UNIX Envi-
ronment." Technical Report TR-177, University-of Rochester, March
1986.

[FM82] Michael J. Fischer and Alan Michael. "Sacrificing Serializability to
Attain High Availability of Data in an Unreliable Network." In Pro-
ceedings of the ACM Symposium on Principles of Database Systems,
March 1982.

[GAB83] Hector Garcia-Molina, Tim Allen, Barbara Blaustein, R. Mark Chilen-
skas, and Daniel R. Ries. "Data-patch: Integrating Inconsistent Copies
of a Database after a Partition." In Proceedings of the Third IEEE
Symposium on Reliability in Distributed Software and Database Sys-
tems, pp. 38-44, October 1983.

[GGK87] Shai Gozani, Mary Gray, Srinivasan Keshav, Vijay Madisetti, Ethan
Munson, Mendel Rosenblum, Steve Schoettler, Mark Sullivan, and
Douglas Terry. "GAFFES: The design of a globally distributed file
system." Technical Report UCB/CSD/8'/361, Unviversity of Califor-
nia, Berkeley, June 1987.

[GHM90] Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page,
Jr., Gerald J. Popek, and Dieter Rothmeier. "Implementation of the
Ficus Replicated File System." In USENIX Conference Proceedings,
pp. 63-71. USENIX, June 1990.

[Gif79 D. K. Gifford. "Weighted Voting for Replicated Data." In Proceedings
of the Seventh Symposium on Operating Systems Principles, pp. 150-
162. ACM, December 1979.

[Guy87] Richard G. Guy. "A Replicated Filesystem Design for a Distributed
UNIX System. ". Master's thesis, University of California, Los Angeles,
1987.

[Her86] Maurice Herlihy. "Dynamic Quorum Adjustment for Partitioned
Data." Technical Report CMU-CS-86-147, Carnegie-Mellon Univer-
sity, September 1986.

[HHL88] Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L. Liest-
man. "A Survey of Gossiping and Broadcasting in Communication
Networks." NETWORKS, 18:319-349, 1988.

107

-[HHW89] Abdelsalam Heddaya, Meichun Hsu, and William Weihl. "Two Phase
Gossip: Managing Distributed Event Histories." Information Sciences,
49:35-57, October 1989.

[HKM88] John Howard, Michael Kazar, Sherri Menees, David Nichols, Mahadev
Satyanarayanan, Robert Sidebotham, and Michael West. "Scale and
Performance in a Distributed File System." ACM Transactions on
Computer Systems, 6(1):51-81, February 1988.

[HP90] John S. Heidemann and Gerald J. Popek. "An- Extensible, Stackable
Method of File System Development." Technical Report CSD-900044,
University of California, Los Angeles, December 1990.

[HP91a] John S. Heidemann and Gerald J. Popek. "A Layered Approach to
File System Development." Technical Report CSD-910007, University
of California, Los Angeles, March 1991. -Submitted for publication.

[HP91b] Norman C. Hutchinson and Larry L. Peterson. "The x-Kernel: An ArT
chitecture for Implementing Network Protocols." IEEE Transactions
on Software -Engineering, 17(1):64-76, January 1991.

[HPA89] Norman-C. Hutchinson, Larry L. Peterson, Mark B. Abbott, and Sean
O'Malley. "RPC in-the x-Kernel: Evaluating New Design Techniques."
In Proceedings of the Twelfth Symposium on Operating Systems Prin-

ciples, pp. 91-101. ACM, December 1989.

[JB86] Thomas A. Joseph and Kenneth P. Birman. "Low Cost Management
of Replicated Data in Fault Tolerant Distributed Systems." ACM

Transactions on Computer Systems, 4(1):54-68, February 1986.

[Jef85] David R. Jefferson. "Virtual Time." ACM Transactions on Program-

ming Languages and Systems, 7(3):404-425, July 1985.

[JM87] Sushil Jajodia and David Mutchler. "Dynamic Voting." In Proceed-
ings of the 1987 Annual Conference of theACM Special Interest Group
on Management of Data, pp. 227-238, May 1987.

[Kaz88]° Michael Leon Kazar. "Synchronization and Caching Issues in the An-
drew File System." In USENIX Conference Proceedings, pp. 31-43.
USENIX, February 1988.

[KLA90] Michael L. Kazar, Bruce W. Leverett, Owen T. Anderson, Vasilis Apos-
tolides, Beth A. Bottos, Sailesh Chutani, Craig F. Everhart, W. An-
thony Mason, Shu-Tsui Tu, and Edward R. Zayas. "DEcorum File

108

System Architectural Overview." In USENIX'Conference Proceedings,
pp. 151-163. USENIX, June 1990.

[Kle86] S. R. Kleiman. "Vnodes: An Architecture for Multiple File System
Types in Sun UNIX." In USENIX Conference Proceedings, pp. 238-
247. USENIX, June 1986.

[KM86] Michael J. -Karels and Marshall Kirk McKusick. "Toward a Compatible
Filesystem Interface." In Proceedings of the European Unix User's
Group, p. 15. EUUG, September 1986.

[Kur88] Oivind Kure. "Optimization of File Migration in Distributed Sys-
tems." Technical Report UCB/CSD 88/413, Unviversity of California,
Berkeley,-April 1988.

[MA69] Stuart E. Madnick and Joseph W. Alsop, II. "A modular approach
to file system design." In AFIPS Conference Proceedings Spring Joint
Computer Conference, pp. 1-13. AFIPS Press, May 1969.

[MB87] John H. Maloney and Andrew P. Black. "File Sessions: A Technique
and its Application to the UNIX File System." In Proceedings of the
Third International Conference on Data Engineering, pp. 54-61. IEEE,
February 1987.

[MD74] Stuart E. Madnick and John J. Donovan. Operating Systems.

McGraw-Hill Book Company, 1974.

[MjL84] Michael McKusick, William Joy, Samuel Leffler, and R. Fabry. "A Fast
File System for UNIX." ACM Transactions on Computer Systems,
2(3)¢!81-197, August 1984.

[Neu87] Peter G. Neumann. "ARPANET Partial Outage Despite "Redun-
dancy"." ACM Software Engineering Notes, 12(1):17, January 1987.

[Neu89] B. Clifford Neuman. "The Need for Closure in Large Distributed Sys-
tems." Operating System Review, 23(4):28-30, October 1989.

[NPP86] Jerre D. Noe, Andrew B. Proudfoot, and Calton Pu. "Replication in
Distributed Systems: the Eden Experience." In Proceedings of the Fall
Joint Computer Conference, pp. 1197-1209. IEEE, November 1986.

[NRC88] National Research Network Roeiew Committee of the National Re-
search Council. "Toward a na(ional research network." National
Academy Press, 1988.

109

[OCD88] John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis,
Michael N. Nelson, and Brent B. Welch. "The Sprite Network Op-
erating System." IEEE Computer, pp. 23-36, February 1988.

[OCH85] John K.-Ousterhout, Hervd Da Costa, David Harrison, John A. Kunze,
Mike Kupfer, and James G. Thompson. "A Trace-Driven Analysis of
the UNIX 4.2 BSD File System." Technical Report UCB/CSD 85/230,
UCB, 1985.

[Ous90] John K. Ousterhout. "Why Aren't Operating Systems Geting Faster
As-Fast as Hardware?" In USENIX Conference Proceedings, pp. 247-
256. USENIX, June 1990.

[Par86] Jehan-Fran§ois Pi.ris. "Voting with Witnesses: A -Consistency scheme
for 'Replicated Files." In Proceedings of the Sixth International Con-
ference on Distributed Computing Systems, pp. 606-612, May 1986.

[PGK88 David A. Patterson, Garth Gibson, and Randy H. Katz. "A Case for
Redundant Arrays of Inexpensive Disks (RAID)." ACM SIGMOD 88,
pp. 109-116, June 1988.

[PGP91] Thomas W. Page, Jr., Richard G. Guy, Gerald J. Popek, and John S.
Heidemann. "Architecture of the Ficus Scalable Replicated File Sys-
tem." Technical Report CSD-910005, University of California, Los
Angeles, March 1991. Submitted for publication.

[PHO90] Larry L. Peterson, Norman C. Hutchinson, Sean W. O'Malley, and
Herman C. Rao. "The x-Kernel: A Platform for Accessing Internet

Resources." IEEE Computer, 23(5):23-33, May 1990.

[PNP86] Calton Pu, Jerre D. Noe, and Andrew B. Proudfoot. "Regeneration
of replicated objects: a technique for increased availability." In Pro-
ceedings of the Second International Conference on Data Engineering,
February 1986.

[PPR83] D. Stott Parker, Jr., Gerald Popek, Gerard Rudisin, Allen Stoughton,
Bruce J. Walker, Evelyn Walton, Johanna M. Chow, David Edwards,
Stephen Kiser, and Charles Kline. "Detection of Mutual Inconsistency
in Distributed Systems." IEEE Transactions on Software Engineering,
9(3):240-247, May 1983.

[PSA87] Titus Purdin, Richard Schlichting, and Gregory Andrcws. "A File
Replication Facility for Berkeley UNIX." Software-Practice and Ex-
perience, 17(12):923-940, December 1987.

110

[PW85] Gerald J. Popek-and Bruce J. Walker. The Locus Distributed System
Architecture. The MIT Press, 1985.

[RAA90] Marc Rozier, Vadim Abrossimov, Fran§ois Armand, Ivan Boule, Michel
Gien, Marc Guillemont, Frdd6ric Herrmann, Claude Kaiser, Sylvain
Langlois, Pierre L6onard, and Will Neuhauser. "Overview -of the
CHORUS Distributed Operating System." Technical Report CS/TR-
90-25, Chorus systemes, April 1990.

[Ran68] Brian Randell. "Towards- a methodology of computer system design."
Working paper for the NATO conference on computer software engi-
neering at Garmisch, Germany, -October 1968.

[RBF89] Richard Rashid, Robert Baron, Alessandro Forin, David Golub,
Michael Jones, Daniel Julin, Douglas Orr, and Richard Sanzi. "Mach:
A Foundation for Open Systems." In Proceedings-of the-Second Work-
shop on Workstation Operating Systems, pp. 109-113. IEEE, Septem-
ber 1989.

[Rit84] Dennis M. Ritchie. "A Stream Input-Output System." AT&T Bell
Laboratories Technical Journal, 63(8):1897-1910, October 1984.

[RKH86] R. Rodriguez, M. Koehler, and R. Hyde. "The Generic File Sys-
tem." In USENIX Conference Proceedings, pp. 260-269. USENIX,
June 1986.

f[RO91] Mendel Rosenblum-and John K. Ousterhout. "The Design and Imple-
mentation- of a Log-Structured File System." Technical report, Uni-
versity of California, Berkeley, March 1991.

[Ros8l] Eric Rosen. "Vulnerabilities of network control protocols." ACM Soft-
ware Engineering Notes, 6(1):6-8, January 1981.

[Ros90] David S. H. Rosenthal. "Evolving the Vnode Interface." In USENIX
Conference Proceedings, pp. 107-118. USENIX, June 1990.

[RT881 Robbert van Renesse and Andrew S. Tanenbaum. "Voting with
Ghosts." In Proceedings of the Eigth International Conference on
Distributed Computing Systems, pp. 456-461. ACM, June 1988.

[Sa178] J. H. Saltzer. "Naming and Binding of Objects." In R. Bayer, editor,
Operating Systems, volume 60 of Lecture notes in Computer Science,
chapter 3, pp. 99-208. Springer Verlag, 1978.

111

[Sat88] Mahadev Satyanarayanan. "On the Influe ce of Scale in a Distributed
System." In Proceedings of the Tenth International- Conference on
Software Engineering, pp. 10-18, April 198;.

[SBK851 Sunil K. Sarin, Barbara T. Blaustein, and C-arles W. Kaufman. "Sys-

tem-Architecture for Partition-Tolerant Distributed Databases." IEEE
Transactions on Computers, 34(12):1158-1163, December 1985.

I [SBM89] Alex Siegel, Kenneth Birman, and Keith Maz-zullo. "Deceit: A Flex-
ible -Distributed File System." Technical Report TR 89-1042, Cornell
University, November 1989.

[SGK851 Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and
Bob Lyon. "Design and Implementation of the Sun Network File Sys-
tem." In USENIX Conference Proceedings, pp. 119-130. USENIX,

June 1985.

[SKK90] Mahadev Satyanarayanan, James-J. Kistler, Puneet Kumar, Maria E.
Okasaki, Ellen H. Siegel, and David C. Steere. "Coda: A Highly Avail-
able File System for a Distributed Workstation Environment." IEEE
Transactions on Computers, 39(4):447-459, April 1990.

[SKS86]: Sunil K. Sarin, Charles W. Kaufman, and Janet E. Somers. "Using-
History Information to Process Delayed Database Updates." In Pro-
ceedings of the Twelfth International Conference on Very Large Data

Bases, pp. 71-78, August 1986.

[Smi8l] Alan J. Smith. "Analysis of Long Term File Reference Patterns for

Application to File Migration Algorithms." IEEE Transactions on
Software Engineering, 7(4), July 1981.

[Spa89] Eugene H. Spafford. "The Internet Worm: Crisis and Aftermath."
Communications of the ACM, 32(6):678-687, June 1989.

[Sto79] Michael Stonebraker. "Concurrency Control and Consistency of Mul-
tiple Copies of Data in Distrubted INGRES." IEEE Transactions on

Software Engineering, 5(3), May 1979.

[Str8l] B. Ivan Strom. "Consistency of Redundant Databases in a Weakly

Coupled Distributed Computer Conferencing System." In Berkeley
Workshop on Distributed Data Management and Computer Networks,

pp. 143-153, February 1981.

112

[Tho78] R. H. Thomas. "A Solution to the Concurrency Control Problem for
Multiple Copy Databases." In Proceedings of the 16th IEEE Computer
Society International Conference. IEEE, Spring 1978.

[TKW85] G. M. Tomlinson, D. Keeffe, I. C. Wand, and A. J. Wellings. "The
PULSE Distributed File System." Software-Pratice and Experience,
15(11):1087-1101, November 1985.

[VM87J K. Vidyasankar and Toshimi Minoura. "An Optimistic Resiliency

Control Scheme for Distributed -Database Systems." Lecture Notes
in Computer Science, 312:297-309, July 1987.

[WB84]= Gene T. J. Wuu and Arthur J. Bernstein. "Efficient Solutions to the
Replicated Log and Dictionary Problems." In Proceedings of the Third
Annual ACM Symposium on Principles of Distributed Computing, Au-
gust 1984.

[Wis88] Simon R. Wiseman. Garbage Collectiou in Distributed Systems. Ph.D.
dissertation, University of Newcastle Upon Tyne, November 1988.

[WPE83] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg
Thiel. "The LOCUS Distributed Operating System." In Proceedings
of the Ninth Symposium on Operating Systems Principles, pp. 49-70.
ACM, October 1983.

* [Wri83] David. D. Wright. "On Merging Partitioned Databases." In Proceed-
ings of the 1983 Annual Meeting of theACM Special Interest Group
on Management of Data, pp. 6-14, May 1983.

[ZE88] Edward R. Zayas and Craig F. Everhart. "Design and Specification of
the Cellular Andrew Environment." Technical Report CMU-ITC-070,
Carnegie-Mellon University, August 1988.

I1

113

iI

Fault Tolerant Distributed Database
System via Data Inference

I by

I Wesley W. Chu, Andy Y. Hwang, Rei-Chi Lee,
Qiming:Chen, Matthew Merzbacher,

-and Herbert Hecht

I'
!n
Ul

I'

I:,

:Fault Tolerant Distributed Database System via Data Inference*

Wesley W.-Chu, Andy Y. Hwang, Rei-Chi Lee, Qiming Chen and Matthew-Merzbacher
Computer Science-Department

University of California, Los Angeles
and

Herbert Hecht
Sohar Inc.:3 Los Angeles, CA

Abstract Correlated knowledge can be categorized into two
levels. At-the schema level, correlated knowledge between
objects is represented as inference paths. Inference paths

A knowledge-based approach is proposed for query suggest proper objects and -directions that the system
-processing during network partitions. The approach uses should select for data inference. At the instance level,
available domain and summary knowledge to infer inacces- correlated rules are used to represent their detailed correla-

! sible data =to answer the given query. A rule induction- tions. In-our approach, a rule induction technique is used
technique is used to extract correlated knowledge between to induce-correlated knowledge from the database contents.
attributes from the database contents. This knowledge-is The induced knowledge is then represented in the inference
represented as rules for data inference. Based on a set of graph where each node represents an object or an attribute
-queries. simulation is used to evaluate the effectiveness of in the domain and each edge represents the inferential rela-
the proposed data inference technique for improving data tionships among objects. Each edge has an inferential
availability under network partitions. Object allocation has confidence which indicates the degree the edge can be used
a significant impact on data availability. Allocating objects to infer other objects. Depending on target objects, object

i that increase remote redundancy and reduce local redun- availability status, and inferential relationships among ob-
* dancy increases data availability during network partitions. jects, proper inference paths are selected for inference. In

A prototype distributed database system that uses the pro- this paper, we shall first present our approach for
posed inference technique with correlated knowledge from knowledge-acquisition and data inference. We then presentI aship database has been implemented at UCLA. Our ex- the architecture of a DDBMS with data inference. Simula-
perience reveals that the proposed inference technique can tion is used to evaluate the effectiveness of the inference
significantly improve the availability of distributed data- technique for improving data- availability during network
base during network partitions, partitions and the data availability under different database

fragment allocations. Finally, to validate the feasibility of
L 1 INTRODUCTION our proposed approach, we present the implementation of a

prototype inference system for a commercially distributed
To improve the reliability and response time of dis- database system with correlated rules derived from a navyU tnibuted database- systems,-databases are often partitioned ship database.

into fragment objects which are replicated and- stored at
several sites. Such fragment replication requires additional 2. KNOWLEDGE ACQUISITION AND DATA
communication and processing overhead for maintaining INFERENCE
consistency among the replicated copies. Further, due to
channel and node failures, a network may be partitioned 2.1 Rule Induction
into two or more isolated parts. Since fragments may not
be fully replicated at all sites. certain fragments may be Because database attributes are often correlated and
inacccssible during network partitions. Most prior work contain redundant information, data inference can be used
used svntactir information to handle operations during net- to infer inaccessible data objects from other accessible and
work partitioning which lead to blocking or a partially op- correlated data objects. In our approach. a rule induction
erable system (GARC87]. However, in-many real time ap- technique is used to induce correlated rules from the data-
plications, the availability of data is of primary importance, base contents. Although different forms of rules may exist
It is often not acceptable for a site to suspend processing in a database, we shall only acquire the pairwise relation-
when it cannot communicate with other-sites. Because da- ship-among attributes. To induce rules between attributes
tabase attributes are often correlated and contain redundant X and Y, we use relational operations to retrieve instances
information (e.g., salary and rank, ship type and cargo), we of (X,Y) pairs from the database, and then select thoseI propose to use a data inference technique to infer inaccessi- pairs in which X has an unique corresponding Y value. As-
ble data from accessible data. Such a knowledge-based suming relation RR contains attribute pair (X,Y), the algo-
approach can greatly increase the availability of distributed r;thm to induce correlated rules for inference path X -- > Y
database systems [CHU90aJ [CHU90bI. can be described as follows :

Rule Induction Algorithm:
This research is supponed by DARPA contract F29601,87-C.0072.
ONR contract N00014-88-K0434 and RADC contract 1F306018C008 I. Retrieving (X,Y) value pairs

36
CH2912-4190100001008601.00 0 1990 IEEE

Retrieve-the instances of the (X.Y) pair from testbed to illustrate the above knowledge acquisition ap-
-the database. Let S-be the resultant relation. proach. The ship database was created by the System
The corresponding QUEL statement is: Development Corporation (SDC, now UNISYS) to provide

a fairlygeneric database based on [JANES11. For illustra-
Range of r is RR tion purposes, we-use a portion of the ship database which
retrieve into S unique (r.X, r.Y) only contains the following relations

sorted by-r.Y
2 m ovg y ir aSHIP = (Shipld, ShipName. Class)

2. Removing (XY) pairs in which X as different Y SONAR = (Class, Type, Sonar)
value TYPE = (Type, Surface, TypeName)

Retrievd all the (X.Y) pairs in-which X has The result-of applying the rule induction algorithm
-multiple values of Y. Let T be the resultant to an instance of-the sample database-is given in Appendix
-relation. The corresponding QUEL state- A. Both intra-relation and inter-relation rules are acquired'ment is: from rule induction. For instance, inference path

TYPE.type --> TYPE.surface represents intra-relation
Range of r is-RR knowledge since it describes correlated knowledge
Range of s is S between type attribute and surface attribute within the
retrieve intoT unique-(s.X, s.Y) TYPE relation. Inference path SHIP.class --> TYPE.type
where (r.X = s.X and r.Y != s.Y) represents inter-relation knowledge since it describes corre-

lated knowledge between class attribute in the-SHIP rela-
we then remove all the (XY) pairs from S in tion and type attribute in the TYPE relation.
Which X has different Y values. The rulesbetween ship classes and ship types are

Range of s is S fairly stable since the classification of ships into different
Range oft is T ship types does not change often. Further, the acquired
delete s rules also indicate that shiptype information can be used to
where (s.X = t.X and s.Y = t.Y) determine whether the ship-is a surface or subsurface ship-

We also note that certain rules are less static. For instance.
3. Constructing Rules the correlated rules between ship classes and sonars are

dynamic since the sonars that the ships installed may
The acquired rules are summarized in-the change with time.
range form : 2.2 Inference Graph and Path

Rule: if xi _<X x then Y=y Inference Graph

or in the set form:
An inference graph is a directed graph-G, = (Vt,

Rule-: if X in (xt, X2,.,Xn - then Y = y E1) where V1- is a set of vertices each of which represents
an object or attribute of the domain, and Et is a set of edges

The induced rules can be classified into intra- which represent- the inferential relationships among
relation and -inter-relation rules. Intra-relation rules objectsfattributes. Each edge has an inferential confidence
describe correlated knowledge between attribttes within which indicates the degree-the edge can be used to infer
the same relation while inter-relation rules describe other objects. An edge from X to Y is universal if the in-
knowledge between attributes of different relations. Since formation about Y can be precisely inferred from attribute
attributes within one relation are allocated at the same site, X. The inferential confidence for I edge is I since the re-
for fault-tolerance applications, the inter-relation rules are quested information can be inferred exactly. An edge is ex-
more useful than intra-relation rules. istendalfrom X to Y if the information of X can only infer

partial information of Y. Therefore, an inference graph can

The total space for the rule base should-be much be constructed based on the induced correlated knowledge.
smaller than its original data since rules are represented-as
summarized information. The induced rules-represent the The induced rules can be deterministic or proba-
current states of database instances which may contain both bilistic. The rule is deterministic if by knowing the in-
static and dynamic parts of database characteristics. Static stance information of one object, the other object's instance
rules such as integrity constraints do not change while information can be exactly inferred. For example, the rule"
dynamic rules may change as data values arc updated. if 'S101' < Shipid _ 'S120' then Battlegroup = 'B02* " is
However, the induced rules are less volatile than the origi- deterministic since by knowing the ship's id is between

nal data since the acquired rules are summarized as range SIOI and S120, its battle group can be uniquely deter-
or set form. mined. However, some rules are probabilistic since by

knowing the instance information of one object. another
To reduce the size of the rule base, we may discard object may have several alternate instances. For example. a

the rules which cover too few pairs of instances. For exam- rule may indicate that weapon SAM02" has 0.8 probabili-
pie, in the ship database, ship name can uniquely determine ty of being installed at DD shiptype and 0.2 probability of
its ship type. However, the volume of correlated rules being installed at another shiptype DDG.
between ship name and ship type is too large since each
rule covers only one pair instance- of ship name and ship Inferential confidence of edges. 1, .cm ix- deter-
type. Since rules which cover more instance pairs are usu- mined by the total number of instances for the target olltect
ally less volatile, this also reduces the overhead of main- and the number of instances that "tre covered bv the rles
taining the rules. We shall use a naval ship database as a For example, in the ship detab;ise. cmn inferential ed.e exit'

* 87I+ +

from "weapon" to "shiptype" with-the following correlated Our inference approach is different from the con-fromac to"hptpowthtefllwn-oreae
rules: ventional -deductive database approach. Conventional

deductive database systems developed so far are in-general-
underlain: by the relational- view mechanism or the first-Rule 1 : if weapon = "AAM01" then shiptype = "CV" order logic programming [GALL84] REIT84J. indeduc-

Rule 2 : if eapon= "SAM01" thenshiptype "DD" tive database, an attempt to-answer a query is referred to as
Rule 3: if weapon = "SAM02" then-shiptype "DD" with satisfying-a goal based on the presp ecified facts and rules.

p 0.8 From the inference-path point of view, the-execution order
if weapon = "SAM02" then shiptype "DDG" of the inference processes is-prespecified in the convention-
with p =0.2 al--logic programming framework. In our inference en-Rule 4: if weapon- "ASW03" then-shiptype "SS" with vironment, due to--the incompleteness of the correlated
p = 0.6 knowledge, the inferred results may not be-complete. Toif weapon "ASW03" then shiptype ="SSG* infer the missing information, the intermediate results fromwith p =0.4 separate processes -have to- be merged. Since we cannotRule 5 :if weapon in "ASW05.ASW07" then shiptype = predict the-outcome of intermediate results, the merging
"SSBN" process has-to be planned dynamically according to ".e in-

ferred results. Therefore, -totally p respecified inference
paths, as in the conventional logic programming environ-The inferential confidence from weapon to ship. ment, are not adequate for our inference requirements. Fortype. lJ(weapon -> shiptype). can be determined by the to- detail discussions -of the above issue, interesting readers

tal number of shiptype instances and the number of in- should referto [CHU90dJ
stances thatare covered by-the rules. Let us-considr-the
deterministic rules, assuming that access frequency zfor 3. THE ARCHITECTURE OF A DDBMS WITHeach-shiptypeis uniformly distributed and that-we have80 DATA INFERENCE

tuples out of-the total of l00-tuples-covered~by rules 1.2
and 5,-then It(weapon-> shiptypel equals 0.8 since 80% of A distributed database system with inference-capa-the time we-can uniquely infer each ship's type from-the bility consists of a query parser and-analyzer, an informa-weapon it carries. tion-module. and an-inference system as shown in Fig. 1.

Inference Path

An inference path can be constructed from infer- -Query Input Information Module
once edges. An inferenice path from X to Y exists if X can Database Fragment!
be connected to Y through one or more inferential edge(s). Allocation
A path-from Xto-Y is universal if and only if all the edges Availability
on the-path are-U edges. For a universal path. its infercnaial
confidence is - and the-requested .nformation can be com-
pletely-inferred. A path from X to Y is existential if infor- ;Query Parsen
mation of X can infer only partial information of Y. Under and
such a condition, several paths may be required to infer an Analyzer -

obet ah ahmyprovide partial information and IrrneSse
these intermediate results will-be extracted or merged to
derive the answer. Inference Engine

The confidence measurement should provide both "-Knowledge as
completeness -and correctness of he inference -results. For DDBMS
an-inference system only consisting of deterministic rules.
all the inference results obtained via correlated rules are
exact. The universal paths can infer the target object's-in-
formation completely while the existential paths infer-only
partial information about the target objects. The correctness

- issue is related to the probabilistic rules which depends on
whether the inference edges are independent. The evalua- Query Output
tion-of the correctness of an inference path is-complicated
particularly when the inference edges are dependent. Figure I DDBMS with Data Inference
Further- research is needed to provide the correctness of an
inference path. Information module provides allocation and avn.7!ability in-

When a network partition renders the required data formation of all the attributes in the system. A-, inference
objects inaccessible, depending on object availability status system consists of a knowledge base and an inference en-
and inferential relationships between objects. the-inference gine. The correlated know-ledge betwecn attributes is
system is invoked to infer the missing data. For each inac- represented as rules and is stored in the knowledge base.
cessible data object i. the inference system will traverse the During normal operations, queries can be processed by theconstructed inference graph and form a search tree-to find- query processor since all the database fragments are acces-those accessible objects that can be used to infcr-i. Based sible. When a network partition occurs, the information
on a predefined selection criterion. certain inference paths module and inference system -ill be invoked if any of theare selected and correlated rules are applied to infer the required attributes is inaccessible Based on the availability
missing objects, status and the correlated knowlzege between attributes, the

inference engine modifies the o -anal query to a new One

g8

so that all the required data for the query is accessible from 4.1 Availability Improvement with Data Inference
the requested site. Depending on the physical allocation of
the database fragments and the domain semantics, the We can classify queries into two typcs. Let a querymodified query may provide the exact, approximate or be called a type I query if all of its requested atcribues are
summarized answer of the original query. accessible. When any of the requested attributes is inac-

cessible, the query is classified as a type II query. Based on
4. IMPROVING AVAILABILITY USING DATA the above definition, for a given set of queries and attribute
INFERENCE AND ALLOCATION allocation, we define query mnx factor, a. as the percentage

of type I queries in the system. We shall now use simula-We shall use simulatior to evaluate the availability tion to evaluate the effect of data inference on the improve-
improvement with thepropo sed inference technique under ment in availability for selected-ca's. Assuming that after
different fragment allocations. The input parameters for several link failures, the network is partitioned into two
the simulation include attributes and their allocation, parts where LA and Norfolk are at one part and SF is atquerying site and its querying attributes. inferential capa- another as shown in figure 3a. Our simulation first random-
bilities between attributes, network partition topology and Iv generates a set of iueries. Each query in this set requires
cost function. In the simulation, a given query is first re- accessing different attributes at different=sites. For a given
ferred to the object availability table to check if all the tar- attribute allocation, depending on the accessibility status.get attributes are available. If not. the inference module we can classify each query into a type I or a type il query.will be invoked to iteratively apply each inferential path We can evaluate the probability of answering queries
and check to see if it will inprove data availability or correctly for a specific partition. e.g. partition SF. PSF (a)
reduce its cost without sacrificing availability. The object as a-function of a_ When the system consists of all type Iavailability table is updated according to the inference queries: i.e.. cc = 1. all the queries can be answered by ac-
results. A given query can then be answeredby referring to cessing the database directly. Therefore. PSF (C0 = I.
the new availability table. Since cc decreases as type If queries increase, thus PSF (C)decreases as a decreases. When-all the queries-are type IfConsider the following distributed ship database queries. then a = 0. Since the requested data is inaccessi-
that consists of five database fragments: ble. no queries can be answered. Thus. PSF (a) = 0 withoutdata inference. Therefore, without data-inference, the pro-

SHIP(shipname.class.base) bability of answering queries correctly is 0. However. ifTYPE(type.surface.typename) the data inference technique is used. certain missing data
SONAR(type.class.sonar) may be inferred. As a result. some ouceris can be answered
INSTALL(weapon.shipid) using the correlated knowledge. With the inference paths
WARFARE(weapon.%mrarfare) given in figure 2. our simulation results reveal that 32% of

the queries can still be answered which shows thewher SH P ad S NAR rc lloate to iteSF.IN-cffectiveness of our infernce approach. The percentage ofSTALL to site Norfolk and TYPE. WARFARE to site . queries that can be answered depends on many factors such
Further. a set of inference paths are also induced for the as object allocation, network partition topology, correlated
above database as shown in figure 2. For instance, our knowledge between attributes, cte.. which will be discussed
correlated knowledge indicates that shiptype information late For a given query based on the correatd
can be inferred from shipclass with confidence I and sonar knowledge between objects: there may-exist several infer-
information can be inferred from shipclass with confidence ence paths to infer the answer. Some may provide more ac-
0.7. curate answers but require a longer execution time. whileU SUIPSNRs SHIPishipid.shiprnme.closs) the others may take a shorter time but yields less accuracy.

TYPEtype~surface.tname The overhead for inference consists of communication de
SONARRltpe.cass~sonarj lay, database accessing and knowledge base processing de-

lay. Therefore. there is a cosifperfo-mance trade-off in
NSTLw on.shiidselecting inference path. Based on the predefined cost

function. one approach is to select the path that provides
U. - better confidence for answering the query or provides less

cost with the same level of confidence. Frher. using mul-tiple inference paths may achieve better availability. Let us
TIPMRRFXRE INSTALL con-idr the following example. Assuming a query is ini-

tiated at SF that requires accessing shiprype and v.mriarc in-class type fornation. With the database fragment allocation n
class ---> sonar resultant network partitions as shown in firure 4a. the giver0.4 query cannot be answered since warare information can-class -> weapon

0 not be accessed from site SF. However. there exists severaltype --- > surface inference paths to infer the warfiare information. It can be
sonar-.S- tpe remotely infcrred from the radar information at site LAwith confidence 0.6 or locally inferred from the class itfor-
class .> surface mation with confidencc 0.4. In our simulation, the path
class =-> warfare from radar is selected to infer %araifrc since it provides

higher confidence even though its cost is hieJ ,r than the
weapon -t-> warfare other path. On the other hand. t!iz pati front d.ss$ to war-

fare will be selected if cost is the curlcron Iorsleettin- IfFigure 2 R DistribUted Database lSgtam and its we combine the abolve two pit, n r-itcrr,-. ;te

Inference paths thctotal conlidence will Iv rfeait-r Ifin umlq , pi-Th "athAssumitngll th oii'!,lllttt n|l tted', Ih ath %%.I -nT,

I,

II
dependent, then the total inferential confidence wilbe-SRIP,TYPE (~ i I
(1 - 0.4) * (1 - 0.6) = 0.76, which is greater than 0.6. SxIPl(hipId.shlPname~cIassi

Note that combining knowledge from different sTV YP Rtype.urce,inam)

paths requires special algebraic tools. The usual relational RRORRtype~raar)

join operation is inadequate for merging intermediate IN ST8LLwea pn.shipidi
knowledge from different paths since some information WRRFrREtweapon.warIare)
may be dropped during the join operation. As a result, a Lo
special union~operation is used for merging results from
different paths in (CHU90c]. RAAR warfare. INSTALL

rigure 4a
SHIPSONR R network Is partitioned Into 2 sub-networks

LA"f 0.4 1.0

TYPE.WAAFRRE INSTALL.
Figure 3e

-1 network Is partitioned into 2 sub-networks: weaon7yp
it e SF and sit. LA, N folk II1.1

PSF offurers.flc
"SI fI 4

Figure 4b
ProbhiIity oaf ,pference graph for the databaze in figure 4a

answering
pueries ion s with infern We shall use simulation to-illustrate the above con-

wcept. For a three-node network with three database frag-

-ment allocations as shown in figure 5, since SHIP and
SONAR both contain shipclass information, allocating
them at the SF site (allocation A) yields redundant ship-

w/o Inf.er.nce class information at that site. Allocation B also introduces
a certain level of local redundancy for shiptype information

query ml. fectr since that information already exists in the TYPE relation
0.2 -. percentage of type I and it can also be inferred from shipclass in the SHIP rela-

queries in tt. system tion. Thus, allocation A yields redundant shipclass infor-
* percentage of aq.ores mationand allocation B yields redundant shiptype informa-

which do net tion for SF site. Since shipclass can infer more information

0.0 than shiptype can infer, allocation B yields better availabil-
0.2 0.4 0.6 e.9 1.0 CE ity than allocation A. Allocation (allocates SHIP and

WARFARE at the same site which does not introduce local
query mix factor redundancy for site SF. Therefore. allocation C provides

better availability than allocations A and B.

Figure 3b Probability of answering queries- Optimal allocation for normal operations may be
correctly with and w/o Inference different from that during network partitioning. From the

locality point of view, allocating two frequently co-
referenced database fragments at the same site reduces

42 Acommunication cost and thus response time. However,
4.2 Allocation of Database Fragments to Improve Avai- from the data inference point of view, allocating two un-
lability correlated database fragments to the same site and two

strongly correlated database fragments at different sites
Since data inference introduces a certain degree of provide .igher inferential capability and thus increases the

information redundancy, inference can be viewed as virtual virtual replication of those-two database fragments. Since
-replication. In general, there are two types of information locality and correlation may be dependent, we need to con-
redundancies: remote redundancy and local redundancy. sider both factors in allocating database fragments to
Local redundancy exists if-the same information is dupli- different sites in a distributed database design.
cated at a site. For instance, if object i can infer object j,
allocating them at the same site yields local redundancy for 5. AN IMPLEMENTATION
object j. Thus, allocating objects i and j at different sites
-provides remote redundancy which increases the availabili- In the following, we dis.uss the implementation of
ty of object j. Note that local redundancy reduces data avai- a data inference engine. An example based on a ship data-
lability, while remote redundancy increases data availabili- base is also included to illustrate the inference process.
ty.

90

SHIP. SONAR SHIP. WE 2)Instantiate relations based on summary information
S F and correlated knowledge. The instantiation pro-

cess is implemented -throughthe relation alteration
mechanism.

LR- IN 3) Combining intermediate results in terms of ap-
YPr.WtAFAFR INSTALL 5ONARWRAFRRE IN$TLL propriate system operations (viewed as -meta-

Rllocatlan- Ri oltacation a rules). Due-to the irnzompleteness of the inference
results, the combination of two relations is imple-
mented through a special union coeration

S..W~RRt developed in [CHUg0el. For more discussion and

SF formalism o the union operation, interested usersshould refer to [CHU90c JCHEN891.

LR 'folc) Select the-required-data objects from the final result. In

.oNNSTL the current implementation, since the target objects to
be inferred are relations, the inference process is

Allocation C designed to infer as much of the missing relations as
possible. The required attribute information is then

1.0 selected from the final result.

0.981 5.2 A Data Inference-Example

P roosbilIty -f Consider a distributed database that consists of
answering type It three database fragments : SHIP(shipid,sname,class),
st partitionsrt -INSTALL(shipid,weapon), and CLASS(classtype.tname)

0.38- which-are stored at sites LA,-SF and-Norfolk respectively.
I When-the site-SF is partitioned, the following query-cannot-

0.32- be answered since relation INSTALL is not accessible:

QI Find the ship names that carry weapon 'AAM01'

Since the target objects are relations, our inference engine
R iatti, S ,hisru, Ia .al i C needs to make an inference plan to select relevant inference

paths for inferring the missing relation INSTALL. The
Figure 5 Pobabiliity of answering type II queries inference engine currently exhaustively searches all the

-correctly-for different-data allocations derivations in the knowledge -base and selects the relevant-
derivations. In this example; the following two derivations
are used to infer the missing INSTALL relation :

5.1 Inference Engine DERIVATION I : select shipid, type from SHIP, CLASS
An experimental inference system has been imple-

mented:for a distributed database running on a set of Sun DERIVATION 2: CLASS(type) --> INSTALL(weapon)
3/60 workstations- interconnected by an Ethernet at UCLA.
The-system is-based on the relational model-where all the Derivation I represents the first type of derivation
source and-target data-objects are relations. The inference where the deductive rule is expressed by a view definition.
actions are exiensions of the relational operations which al- This derivation creates-a temporary relation which contains
low us-to build the inference engine on top of Sybase. a re- shipid and type information. Derivation 2 illustrates the
lational database system. The inference system operates in second type of derivation, where derivation is performed
the following way: from (type] to-[type,weaponl. This derivation also creates

a temporary relation with shiptype and- weapon informa-
a) When a network partition-renders required data objects tion. While information of shiptype is filled by accessing

inaccessible, the inference system develops an infer- the CLASS relation, weapon information is filled based on
ence plan-based on the given query, object availability the provided correlated rules between shiptype and
status, database schema and correlated knowledge weapon. The above two intermediate results are then-com-
stored in-the rule base, bined by the special union operation developed in

(CHU90c]. The resultant relation, referred to as
b) Data inference is then carried out via the inference plan INSTALLINF, is used to riplace the inaccessible IN-

which consists of a set of derivations and the execution STALL relation. Query QI can be answered by joining
sequence of those derivations. Each derivation process SHIP relation with the INSTALLINF relation.
represents a derivation from certain available data ob-
jects to an intermediate or final data inference result. 6. DISCUSSIONS
Three general types of derivations are implemented in
the system: In a distributed database system, data fragmenis-are

often replicated to increase data availability in case of
1)-Derive new relation based on certain source rela- failures [CERI841 [ELAB85J. However, performance can

tions. It is specified as relational views-and imple- be adversely affected by replication because of the com-
mented through the view generation mechanism. munication required to ensure consistency between copies

of the data. While full replication provides better availabil-
ity than partial -replication, it introduces more communica-

91

tion andprcessifg overhead-GARC821. However, in any work partitions. Object allocation has a significant impact
partilyrpiad scheme, some fragmentsmay be inac- on data availability. Allocating objects that increase re-
c essible during-network partition. mote redundancy and reduce local redundancy increases

data availability during network partitions. A prototype
Data inference provides an alternative to data repli- inference system has been implemented on a distributed

cation for increasing availability. As-a result, the-number database system that runs on a network of Sun 3/60 works-
of physical replicas may be reduced-withou reducing the tations at UCLA. Using ship database as a testbed, our ex-
number of logical replicas. To improve availability-during pcrience reveals that the proposed rule induction technique
network-partition, objects which cannot be inferred should is capable of obtaining useful correlated knowledge for
-be replicated and stored at different sites. Further, to data inference. As a result, data inference can significantly
reduce access time, objects with high transaction rates at improve the availability of the disibuted database during
several sites should be replicated at these sites. To in- network partitions.
crease inference capability and further improve availabili-
ty, we may want to replicate objects with high inferential Acknowledgements
capability. Therefore, with selective database fragment re-
plication-and the use of data inference, the availability of The authors would like to thank Brian Boesch of
the database system can be significantly improved. DARPA ISTO and Joseph Giordano of RADC for their en-couragement and support for carrying the-study and imple-

The degree of- improvement in availability is menting the prototype system. We also thank G. Popek and
affected by the database fragment allocation. Since-infer- T. Page of UCLA for their stimulating discussions.£ ence provides virtual replication of database fragments, to
maximize the benefit, data fragments should be allocated to
maximize the virtual replication of all the fragments
-(weighted by the access- frequency). For a given allocation,
the availability of the database fragments also depends on
how the-network is partitioned. Further research is needed
to determine the best allocation for database fragments
under network partition.

While we have constructed a system which is able
to infer missing data, several important problems remain.
Our approach uses the rule induction mechanism to induce
a set of rules which describe the correlation between attri-I butes. However, only correlations between individual attri-
butes are-used. Although a set-of attributes (two or more)
may also infer the value of another set of attributes, the
efficient selection of correlated sets is difficult due to the
combinatorial explosion of such correlations. Further
research in selecting for correlated sets-s needed.

So far, we have-considered knowledge acquisition
in-a slowly changing database environment. If data values
are changing dynamically, timely updating of the
knowledge base becomes an issue. One approach would be
to triggera knowledge base update every time the database
changes state, thus keeping the-knowledge base up-to-date
at all times. To reduce communication overhead, we may
select only a subset of the knowledge base to be consistent
at-all times, with the rest having weaker consistency. We
need to determine what type of knowledge is-critical with
respect to the mix of expected queries and how to best keep
that knowledge consistent. For less critical knowledge,
where weaker consistency will suffice, we must determine
how much and what types of inconsistency are allowable,
Further research is needed to investigate the cost of main-
taining a--knowledge base in a dynamically varying en-
vironment, and also the effect of using weakly consistent
knowledge for data inference.

7.CONCLUSION

A knowledge-based approach is proposed to im-
prove data availability for query processing during network
partitions. The approach uses available domain and sum-
mary knowledge to infer inaccessible data to answer the
query. A rule induction algorithm is used to acquire corre-
lated knowledge for data inference application. Simulation
is used to evaluate the effectiveness of the proposed data
inference-technique to improve data availability under net-

92

REFERENCE [GARC82] Garcia-Molina, Hector "Reliability is-
sues-for fully replicated distributed da-
tabases," IEEE Computer, Vol. 15, pp.

I[CERI84]= -Ceri, S. and Pelagatti, G. "Distributed 34 - 42, Sept. 1982
-Databases Principles and- Systems".
New York, NY: McGraw-Hill, 1984-

(GARC87] Garcia-Molina, H. and- Abbott, R. K.
"Reliable -Distributed Database

(CHEN89] Chen, Qiming "A High Order Logic Management", Proc. of the IEEE, May=Programming Framework for Complex 1987, pp. 601-620.

Objects Reasoning", International
Computer Software & Applications
-Conference (COMPSAC 89), 1989, [JANESI] Jane's Fighting Ships, Jane's Publish-
USA. ing Co., 1981.

[CHU90aJ -Chu, Wesley, Hwang, Andy, Hecht, [REIT841 Reiter, R. "Towards a Logical Recon-
-Herbert and Tai, Ann "Design Con- struction of Relational Database
siderations of a Fault Tolerant Distri- Theory", in On Conceptual Modeling,
buted Database System by Inference pp 191-234, Springer- Verlag -Ed
Technique", Extended Abstract, 1984.
-Proceedings of PARBASE-90, March-6
- 8, 1990, Miami

[CHU90bl -Chu, Wesley, Hwang, Andy "Inference
Techniques for a Fault Tolerant Distri-
buted Database System", Extended
Abstract, Proceedings of PARBASE-
90, March 6 - 8, 1990, Miami

[CHU90c]: Chu, Wesley, Hwang, Andy, Chen,
Qiming and Lee, Rei-Chi "An Infer-

-ence Technique for Distributed -Query
Processing in a Partitioned Network",
Technical Report, CSD-900005, Febru-
ary, 1990, UCLA

[CHU90dJ Chu, Wesley, Chen, Qiming, and
Hwang, Y. Andy "On Open Data Infer-
ence and its Applications", submitted
for publication

(ELAB85I -El Abbadi, Skeen. D. and Cristian, F.,
"An efficient fault-tolerant protocol for
replicated data management", in- Proc.
4th ACM SIGACT-SIGMOD Symp. on

-Principles of Database Systems, pp.
215 - 229, 1985

[GALL84] Gallaire, H. Minker, J. Nicolas, J.
"Logic and Databases : A Deductive
Approach", ACM Computing Surveys,
Vol. 16, No 2, June 1984.

93

-Appendix A The Rules econtiaedl):

Sample Ship Database and Its Induced Rules: Iew'*Reto~in Wes
Relaucinsflp IF THEN

Motioneoe ..oS0NP.kw CO: S Cleem S CO) To. *CG

Relwwo SHIP -Ii~'SOA SCue.SNARffyM1e Cis S Clus S C12 T."e. CV
s- nm ls- c LiuS type I014 0rtSI(i)->SN~~p 02 9 C1. SueTMO

'So icni-C2 C SQS.Z6 5MtlfSO1 I 01 7.1 C IS Tpe CO

i 121Date COTC0 C SQS-23 SHtPICluj1 .SOARTVTS4IClu S 503 Typ. SS
Sl03- Amlerica- D12 C03 CG SQS.TI3A SHM~Cleaee..SONAR(tweiiI S02 :5 Clu0e ! S oe Typ. SSN
S104- Barry Cit C11 C v SQS-53 0flue.SNARcypel I Nii : Clue S SNiZ Typ. .SSBN
S105 Texas C12 C12 I'CV SQS-53 SiONIlse... SONAR(Topn IS - 5 Cue 1. sit 1 r!T! SSG1

06- I ohn.kancock ISOY D02 D0 SQS-Z6 SHIPClos .>of'pE(Typei C02_ S Cliue S C03 Type.-CG
S107 Peterson- 002 002IL" 0> SQ.3 Slies plErwee CI 04: Clu S C12 IType.CV

S108- Nicholson D04- D04 DO0 SQS-23 SlUI1Cl-> ET) D 02 S <1uI !; PA Type : O0
iI S09- l ohn Rodgers 012 012 000 TACTAS SIP$ClU.I-OTYECTwe 1 le,~,5 Tp .0)

,Silo Ipaw, 014 D14 000 SQS.23 , lee.~dn. 012 5Clue !; !s TMpe.S

SI D onldBenry SNO4 015 000 SQS.23 SKIP(Clu:> TIEITypo $1402 Clue S 51404 Type -SSN
Si2jCak 015 $02Cl SS BS splw-TYfla(ieC I SNII Clue : SN5112 Type -SSIN

S14:3 S02 SS- BQQ.2 HPCee.OYEooe I Cle S 5 T.s
51t4 10.a D 12 S03 SS- BQQ-2 SHVICleue.-oSONARCSo~w Cot S -Clues S C02 so~r -SQS.26
5115)olis1{ll S02- $102 I SSN BQQ-2 SHPC1ls.- SONARISoiw 1 Cis Clioe !; C12 So,,,,,S.3
S 1 6 1 Seehorse 503 SN0T SSN BQS.8 SHIPICtiu1 S'SONAftlSonuC I D04 S Cle 04 $onar.SQS-23
S117 IRains SNO:2 S.NO4 I 551 BQS48 SHIPI(eaI..OSONAISSu 012 :5 Clue !; 012 -Smw -.SACTUSI

~S118 DelasI S S1I41 1 4 N L-o SHW$Chse..oSONARISOZZI) Il Cleu S 0IS Soa .SQS.Z)
it2 I N3 1 SSBN LFb-15PIlue.o0N5 ow I D14 lu oea.O.

Dcs~I SraI S1S so c5ue SHMPCwC-n SONARISonej SNOY :5 Clua ! SN SH-e I SeHBQS4t
I silt I aIis $N12 S16 ISSG I IelcuikI SHLPIClu e..SONAIowar 51411 Clues !5 112 Sonar.-LF.Io.
II 512' Bluefish SIS SIS SSG I heS lPCleu.,SlAs~n, S5 1-5 Clue S- SI Sarhe-nx I

S123 Ailania SI5 SHlPtCIauoe.>.PYpEuC Col- 5 Clue S 013 ~o~C
S1Iaoi 16- e 511&.eC*. yPO~EC S0 - 1 Clue SN5112 U. ebwle

SI25- SUL-i I 1 SONARlCleuI-,YPE(rpe I C02 S Clue S C03 Type CC
S ONARII.TYPErypeI C11 Clue S C12 Ty. CV

_______________________SONARICim).. TYPE(TypCC 002 5 Clue 5 004 IType -00

I Ration TYPE SONARlCleuJ.., TYPE(rypel 012 5 Clue :5 015 I ToP. -O
0 0

Ietype$ is a SO14APClouP.. >TYP2$rTpCS2 5 Cleu 5 SO) 1 Tye- S5

IC aSrface nsanseeur SONARCwi WTE~rypee I 5142 5Clues 5 Siu04 TM SSNGC C uiedMisie arie SONARiCeuI..TYPEdTypoi J 11 Clue S SN412 eTyp - SSBN
,cv urfae arrftcaer I ONlARICluee..TYPEITYC* SI) Clue.! Sit1 TlPe. SO

jOO surface i uidedmoisvic deSs,SOAee.Tu) C ee 5 010 *e-oic

55S subsurface . patmi subeane SO~CARlnnoeC. TYP!, 5 O _________c

*SSBN 'slubsurface j alsi nuclearC misl subnWanne SONARlSonw) -> iPIrre SQS*5) S son. S SQS.5) I T"~ - CV

SSG -subsurface .- guided milo SOI
4
AAlSonvi --> TYPlOrywe TAM7IS 6 son. !; TACTU.S 1 Tyne* 0

iS NI uhudsfce- nucemsubmanne SONAA(SonIl -. TYPEtrype)I BQS4 :5 Snar S BQS.8 IType * 51
SONARSnari-> TYE4TypeiI LP-bo- 6 Son. S LF auu TypeC S11"8
SONARISO., -. TYPECTyie I amm SSo ecfe Tp.0
SONARICiwl,.> rYPEl C02 S Cliwe. DI 05 urface
SONAR(lueC..TYPEtu I 012 !5 Clue S.51112 e~oe~o

The Rules:

ira Ridatio Rti

Enuty IF THNiF
TYPEtType' seu -CO S ryp. S 000 jueolee
TYPE rnne w isOS 5 T"t S SSG0 u.6-f"~ec
SONAR CIM -.rvpte C02 SClue S CO) IType.CG
SONARe Mwu-oTypes C1I Clue 5 C12 1 Tpp..Cv

I SONAR C~lu..o rmi C 02 S Clue S 004 Typ. OD
SONAR C..,type) 012 !5 Clue S 013 Type - DOG
SON4AR ICWo-ope $02P SM 5 Clue S $0) Type -SS
SONAR icleu... ypeI I 51402 !; Clue S 51404 Typ. SSN
SONARC-,,- rype 5141 5 Clue S :5 5 Ml TV.SSBN
$OV4A R CIeu .n. r.3l1 S1s S Clue IS Sts L.. SO
SONA1C1Wu-Son.1 C02 S Clu1 S C02 Sone.SQS,.6 I

:,)C~u.n~n I Cis s Clue CI2 Sowr- SOS)
SONAR Cleu.- So. 0 04 5 Clu 9 004 Sonr-SQS-23
SONAR #Cleu.. oon I 01. S Clue :5 012 SooM - rACTrUS

ISONARte40W...Sonarl ; 014 S Clu1 S 013 soew-SQS-23
SON4AR (CleAO..o-w I-S O) S Clue S%5102 Sonar - BQ.2
S ONAR C~u.nnnr Iow 1 02 :5 Clue S 51404 Sonar . BQI.0
SONAR Mwej .. om o I 5111 S Clue SNI Sonr 12b
SONA ICu,0n S- I 16 I Clue 5 _____ Son h~m

CSONAR ISnee..Type) Ql 5 low Se, - TM eCV I
SONAR eSmnu . Type TACTJS iS Sowa 5 TACTS Type OD00
SONAR Clone..Typ IQ~ 504 5 oe Sw 05 0 I Typ SSN
SON4A iSwaneTyeC I LF bow. S.lne S LFi.n TyeSB ",
0ONAR IS-w, . T!2,, perinke S one, s Henrke SS. *0

94

Proceedings of the IEEE Workshop on Experimental Distributed Systems

Huntsville, Alabama Oct. 1990

Development of a Fault Tolerant Distributed
Database via Inference*

Wesley W. -Chu Thomas W. Page Jr. Qiming Chen Andy Y. Hwang

0. T. Satyanarayanan

Department of Computer Science

University of California Los- Angeles

1 Introduction be~used to-restore-the database when the-partition
heals. Inh-this workshop, we report on the expe-
rience of -building a knowledge -based distributed

This- work-sets out-to test-the philosophy that not database testbed on top of a commercialrelational
only can syntactic redundancy (rePlication) be ex- database in which to experiment with semantics-for
ploited to improve fault tolerance, but that most fault tolerance.
data are correlated; -containing redundant informa-
tion at the-semantic:level as well. In order to be of
use, this redundancy must be recognized, automat-
ically-extracted, and encoded -as rules which can-be 2 Data Inference
used as input to an inference engine [5, 4]. The
database itself must be -engineered to make use of
the- inference engine to infer the inaccessible data Our data inference system-is based on the relational

from accessible data. The-inferred data may be ex- model where all the source and target data objects

act or approximate. However, in cases where time are relations. The inference actions are extensions

critical decisions must be -made -even though por- of relational operations which enabled us -to build

tions-of the database are unavailable due to net- -the inference engine on top of a coi;mercial rela-

work partitions or site failures, having such-inferred tional database system. Currently, two types of

data (with- completeness -and correctness measures) rules are used by the inference engine - deductive

is often preferable to no data at all. rules specified in terms of relational operations and
correlated rules which are specified as summarized

While inference enhances availability for query knowledge.

answering access, we can- also employ-semantic in-
-formation about the data and transactions to im- A rule induction- technique is used to extract

prove availability for update. Given the semantics correlated knowledge between attributes from the

of an update transaction on replicated data, it is database relations. In our implementation, only

often preferable to permit transactions to commit correlations between pairs of attributes are used.

during -network partition even though purely syn- Although two or more attributes may-also infer the

tactic definitions of correctness (serializability) may value of a set of attributes, the efficient selection

be violated'. The semantic knowledge can then of correlated sets is difficult due to the combinato-
rial explosion of such- correlations. To induce rules

*This work was sponsored by DARPA under contract between attributes X and Y, we use relational oper-
number F29601-87-C-0072. ations to retrieve instances of (X,Y) pairs from the

I This is based on the optimistic belief that that conflict- database, and then select those pairs in which X
ing-updates-are sufficiently rare that it is better to detect
and repair conflicts than to prevent them using existingal- has a corresponding unique Y value. The detailed

gorithms which reduce update availability algorithm is presented in [6]. The acquired rules are

t-7
in the range form if xl-< X < X.2 then Y = y or in petitive performance. However, our modular ar-
the set -form if X E {rX, X2,..., x,} then Y = y. chitecture renders our data inference and seman-

tic based -concurrency control=-highly -independent

When a network partitionoccurs, the inference of our choice of database engines.

system develops a plan which consists of a set of
derivations and the execution sequence of those The system architecture consists of a front-end
derivations. The inference plan is-based -on the process per user session and a pool of back-end
given query, object availability status, database database servers, at least one per site. The-front-
schema, and correlatedknowledge stored in the rule end process consists of an SQL parser, an object

base. Each derivation -process represents a-deriva- availability module, an-inference engine, and -a dis-
tion from certain available data objects to an inter- tribution layer. -Users submit queries to the front-
mediate and final data-inference result. end where they are parsed to form a -query tree.

The tree -is then- passed to an- object availability

Three types -of derivations are implemented in evaluator which checks -the status of the storage

the system. First, new relations can be derived sites for each data object named in the query. The

based on other relations. The derived relations object evaluator uses the-distribution module to de-

are specified as--relational views and-implemented termine data object locations and node/link status

through-the view generation- mechanism. The sec- information. If any data objectsare found to be un-

ond method consists of valuations of incomplete re- available due to network partition, the -list of miss-

lations based on summary information and corre- ing objects and the parse tree are submitted to the

lated knowledge. The valuation process is imple- inference engine.

mented -through the relation altering mechanism.
Finally, intermediate results can be combined via For each missing object, the inference engine at-
appropriate operations. The -combination of two tempts to infer an approximation. The knowledge
relations can -be implemented through relational base for the inference engine is stored (fully repli-
outer-join, which-keeps-all the necessary incomplete cated) in-the underlying local database server. The

tuples appearing in the intermediate results. These inference engine can infer a replacement data ob-
tuples may be valuated through other derivations or ject for each missing object and modify the query: combined with tihe data obtained from other deriva- tree to reference the inferred object. Alternatively,

tions. the inference engine may simply modify the query
to an equivalent one which accesses only available

The required data objects are selected from the data. In either case, a modified query tree is re-

results of-the inference process. The tuples in the turned to the parser. The modified-parse tree is

missing relation are inferred, as completely as pos- converted back to SQL and submitted to the dis-

s-ble, and the required attributes selected from the tribution module for execution' . Figure I shows a

final result. schematic view of the architecture.

3 Overview of the Architec- 4 Experiences

ture
We have a working prototype of a distributed data-

-n -order to avoid rebuilding large amounts of soft- base. knowledge induction mechanism, and infer-
T Inordr to rebildig lrgeence engine. The system automatically induces a

ware that are not central to our research, we are us- ec ng .Teyt aomily dus

ing an off-the-shelf, commercial database server for 2The distribution module simulates a distributed data-

local relational data management. We have chosen base on top of the collection of single site servers, It pro-

Sybase because it supports a chent/server model, vides access to remote data and simulates distributed joins
Sby forming temporary local copies, performs update prop-

supports a relatively standard SQL interface, has agation to replicated relations, and coordinates two phase

elements of an extensible architecture, and com- commit.

SQL
Parser

4

Object
Evalutator

Inference Knowledge
Engine- Induction

Distribution Module commit Module

Fyba7 Sybase SybaseI~se er I server IIserver

Figure 1: Inferential Database Testbed Architecture

set of summary rules from the data instance and do- -ference cycle, a copy of the schema of all the rela-
main model. Sets of sites can -be disconnectedfrom tions in the database was maintained at the client's
the network and the system automatically infers site. Consistency between the client and server
the data rendered inaccessible, answering queries copy was maintained by adopting a write-through
which would otherwise be impossible in conven- -policy, i.e., any changes made by the client would
tional distributed databases. The prototype effec- also result in the server's copy being updated. This
tively-demonstrates the-potential of inference as a was justified based on the observation that-updates
technique to improve fault- tolerance during net- to the schema were much lower compared to the
work partition. reads -required- to access- base relations and rules.

Knowledge Schema Cacheing

The inference engine makes use-of the rules induced To construct an inaccessible relation, the inference
by -the knowledge induction mechanism to con- engine makes use of several rules, each of which-
struct temporary relations from summarized knowl- serve the purpose of inferring some tuples of the
edge -and accessible relations. The rules were-also missing relation. In order to avoid the overhead of
storedin the-databasein a relational form for uni- communicating with the Sybase server each time
formity of access and storage. This necessitated the a new rule is required, all the rules that are in-
schema of the rules and relations to be known to the strumental in inferring a particular relation were
inference engine in order to be able to access them. batched together and cached at- the client's site for
To-avoid the-uverhead of communicating with the use by the inference engine. One more technique
Sybase server -to determine the schema for each in- adopted to improve performance was the cacheing

of base relations at tile client's site. Some of the all actual login to a Sybase server for each query
-rules required accessing otheravailab!e relations-to submitted by a user. This did not have any notice-
infer the tuples of the missing relation. Rather able performance overhead for normal operations.
than requesting an available base relation from the where the rate at which queries were submitted to
server each time a rule is applied, the base relation the system was governed by the user. However, dur-
is cached at the client's site and then all rules which ing-network partitions, the inference engine gener-
refer to the base relation are successiely applied-to ated a large number of queries in rapid succession
construct -tile missing tuples. The set of rules-re- in order to access rules and base relations, which
quired to infer . missing relation and the base rela- lead to a very rapid performance degradation. We
tions used by these rules are-predetermined b3 the solved the problem by having the client manage a
knowledge induction mechanism. This is facilitated pool of connections to-several servers. Each client
to alarge-extent by the static nature of the appli- on initiation would open at least one connection
cation, which had a predominance of queries and to each one of the available servers in the system
all updates were made to existing base-relations. and all requests are routed through this connec-

tion as much-as possible. Further connections are

As mentioned above, rules refer to other base re- opened depending on load requirements. This was,
lations to infer tuples of a missing relation. If it of course, the obvious approach, we were surprised,
turns out-that some of these base relations are also however, that the system was unusably slow until
inaccessible, they in turn have to be inferred, which we made this optimization. It is advisable to mini-
is possible-only if there are no cyclic dependencies mize the number of open connections to each server
between relations. In our experience, this is not from a particular client since the server supports a
true even for moderately large applications. This limited number of concurrent client connections. A
leads to the rather complex problem of optimal data large number of open connections also results in an
assignment in order to maximize availability during increase in the response time of the server.
network partitions.

Database Error Handling
Commercial Database

We are able to create dynamic necwork partitions

The commercial database server Sybase, on which and reconfigure sites back into the system dur-
the knowledge based distributed database testbed ing our demonstrations. This is facilitated to a
was implemented, both hindered and facilitated our large extent by Sybase's user supplied error han-
implementation. Sybase logs every update opera- dling mechanism, which prevents the client from
tion on its log device to aid recovery, including up- catastrophically aborting its execution if a severe
dates on relations in the temporary database, which error is detected. This enables the client to abort
can be used as scratch space in the server by all the query in progress gracefully and clean up its
database users. We avoided the overhead of a disk connections to the inaccessible server. A new con-
logging operation for each update by specifying a nection is opened up as soon as the partition is
UNIX file as a log device, so that the actual disk repaired and the server's presence detected by the
accesses were controlled by the file system's buffer- client- The aborted query is processed by the in-
ing mechanism. However, we discovered during the ference mechanism as explained above.
course of the implementation that frequent updates
very quickly filled up the log device which impeded
the server from accepting all further updates. This
necessitated database dumps to be made very fre- 5 Ideal Architecture
quently during peak operational periods in order to
clear the log device.

What the prototype does not do, in hindsight, is
Our initial design required our front-end to do demonstrate how distributed databases should be

architected to take advantage of inference tech- [3] Qiming Chen. A high order logic programming
niques. In order to recognize that -inference -is re- framework for complex-objects. In-Internatwnal
quired to materialize an- -inaccessible object. the Computer Software & Applications Conference
query must first -be parsed and the relevant ob- (COMPS: C 89). 1989.
jects identified. As commercial databases do not
typically provide an interface below the level of [4] Wesley W. Chu, Andy Hwang, Qiming Chen,
the parser. we are forced to parse the query our- and Rei-Chi Lee. An inference technique for-dis-
selves, manipulate the parse tree, turn it back into tributed query processing in a-partitioned-net-

SQL, and submit it to the database through the work. Technical Report CSD-900005, Depart-
high level- interface. Further, the inference -tech- ment of Computer Science, University of Cali-
niques require the invention of new -relational op- fornia Los Angeles, February 1990.
erators (eg. open S-union- [3, 5]). As we do not [5] Wesley W. Chu, Andy Hwang, Rei-Chi Lee, and
have source code to the database engine, we imple- Qiming Chen. Fault tolerant distributed data-
ment the-new operators intthe address space of the base system via data inference. Proceedings of
front-end. Consequently, intermediate results re- the Ninth Symposium on Reliable Distributed
quently have-to cross out of the database's address Systems. October 1990.
space using a "tuple-at-a-time" interface across-the
boundary. These-factors combine to- produce -unac- [6] Wesley W. Chu, Rei-Chi-Lee, and-Kuorong Chi-
ceptableperformance, ang. Capture database semantics by rule induc-

tion. Technical Report CSD-900013, Depart-

What is needed- is a truly open architecture for ment of Computer Science, University of Cali-3 distributed databases. Intelligent application pro- fornia Los Angeles, May 1990.
-grams need to- be able to interact with a database
service other than simply through the high-level
-language interface. The program should be able to
access and modify the parsed query. It should be
able to call-relational operators directly. Most im-
portantly, the set-of relational operators should be
extensible so that specialized, application-supplied
operations like open S-union can execute in the
database's address space, avoiding expensive copy-
ing. Of course, protection of the integrity of the

data must be guaranteed, perhaps -through provid-
ing extensibility via an interpreted language such
as Push [1] (proposed for operating system kernel
extensibility for the Raid database [2)).

References

[1] Bharat Bhargava, Enrique Mafia, and John
Riedl. Experimental facility for implement-
ing distributed database services in operating
systems. Department of Computer Sciences,
Purdue University, Submitted for publication,
1990.

[2] Bharat Bhargava and John Riedl. The Raid dis-
tributed database system. IEEE Transactions
on Software Engineering, 15(6), June 1989.

Proceedings of the CIPS Edmonton 1-90
Canada, Oct. 1990

ON OPEN DATA INFERENCE AND ITS APPLICATIONS*

Wesley W. Chu, Qiming Chen, and Andy Y. Hwang

Computer Science Department
University of California

Los Angeles

ABSTRACT

An-open data inference technique is proposed which uses domain and summary knowledge to-infer inac-
cessible data for query processing during network partitions. The open nature of data inference-is due to the incom-
plete knowledge available about data and the need to combine partial inference results from separate processes to
derive cooperative answers. To underliesuch-inference, new algebraic tools are developed for handling-incomplete
information. Further, a weaker correctness criterion, called toleration, is-introducedzto evaluate inference results.
The above concepts -have been implemented on-a prototype Cooperative Distril uted Database system, CDB, at
UCLA. Our preliminary experimental results reveal that open inference can significantly improve the availability of
distributed databases during network partitions.

1. INTRODUCTION

To improve -the reliability- and- response time in distributed systems, databases are often partitioned -into

fragments which are replicated and stored at several sites. Such fragment replication requires additional communi-
cation and processing overhead to maintain consistency among the replicated copies. Further, due to channel and
node failures, a network may be partitioned into two or more isolated parts. Since fragments may not be fully repli-
cated at all sites, certain fragments may be inaccessible during network partitions. Most prior work using syntactic
information to handle operations during network partitioning leads to blocking or-a partially operable system
[GARC87]. However, in many-real time applications, the availability of data is of primary importance. tt is oftenI not acceptable for a site to suspend processing when it cannot-communicate with other sites. Because database attri-

-. butes are often correlated and contain redundant information-(e.g., salary and rank, ship type and ship class), data
inference techniques can be used to infer inaccessible data from correlated and accessible data during network par-
titions- [CHU90]. Such a knowledge-based approach can greatly increase the availability of distributed database
systems. However, in general, such inferences must be made from incomplete information. This is because

1. the incomplete correlated knowledge and source objects.

2. the need to infer data based on partial results from sedfifite reasoning processes as follows:

(a)-inferring the missing data from multiple data sources and combining the partial results;

(b) inferring data based on partial results from previous phases, goals or subgoals, which may also
Vary with time and depend on the network status and other events therefore cannot be totally
pre-planned;

* This research is supported by DARPA contract F29601-87-C-0072 and ONR contract N00014-88-K0434

b -1-

(c) cooperative multi-agent systems require combining results from individual agents.

We shall refer-to this kind of inference as open data inference. It aims at deriving and filtering data from different-
knowledge sources, and measuring the inference results in situations where the system state is unknown and unk-
nowable. Since other events may occur during the inference which are-not predictable, open inference is a particu-
lar issue which-is part of the intersection oflogic programming and null-values in an open environment.

Null value is a=special case of theincomplete information problem which has been studied extensively in
relational database and-inference theory. The efforts made from the relational database point of view concentrate on-
how-to understand the meaning-of nulls occurring in the query answers. Different interpretations on nulls are pro-
posed. The formal treatment of nulls under-the unknown interpretation was given [CODD86] [BIS81] [BIS821. The
treatment of nulls under-the does-not exisi-interpretation was proposedlin [ZANI84]. In [VASS79]the problem of
managing nulls with both the unknown and does not exist is taken into account. In the context of the open world da-
tabase [REIT78], Zaniolo [ZANI84J introduced the no information interpretation of nulls.=[ROTH851 extended this
approach by considering unknown, does-not exist and no information interpretations of nulls together. [GOT1I88
defined operations which may return true,false, unknown, does not exist, and open to support a locally-controlled
open world database. This allows the definition of portions of a traditional closed world database as open world. A
taxonomy on the meanings of nulls is given-in [OLA89]. However, these studies are in the context of relational da-
tabase and without concem about logic reasoning.

From the logic~point of view, the-absent terms are related to Skolemt constants. The absence of negative
facts was the first concern. This problem was solved by the introduction of a closed world assumption [REIT78j by
assuming that negative facts may-simply be-inferred-from the absence of their positive counterparts, which has be-
come one of the foundations of deductive databases. The issue of query evaluation for databases containing existing
but unknown marked nulls was studied -in n[REIT86]. Incompleteness is also frequently:discussed together with
indefiniteness, where data are said to be indefinite if they are of the disjunctive form, e.g. a or b. This problem was
tackled by Reiter with a-precise solution on the basis of the proof-theoretic- point of view, and also discussed in
CLIP791 [WILL88]. The model developed by Lipski allows attribute values to be of either set or range types, a query
applied to a database containing incomplete information must-specify the answer as the set of values which might
possibly or definitely satisfy the query. Additional approaches to incomplete information reasoning use meta-
language techniques [LEV81] [KON811 based on information known about the domain of discourse. It is this fact
that many studies on this issue are based on nonmonotonic logics [ETH88].

However, we cannot directly adopt the above approaches to our open data inference applications for the
following reasons. First,:the interpretations of nulls studied from the relational database point of view are not in-
tegrated to the present logic programming framework underlying our implementation. Second, many of the above
approaches are based on rather strong assumptions. For instance, even though the data is unknown, they require that
certain-definite information (e.g. data existing) must be known. However, the above assumptions are not suitable
for open data inference since the system state is unknown and unknowable. The-existence of unknown data is still
unknown. Therefore, in our approach, we classify the status of data into two states : closed (including nonexisting)
and open (unknown, whether existing or nonexisting). Finally, many of the above studies from the logic point of
view cover fields of incomplete reasoning concemed-with negation, set, disjunction, etc, and in general, nonmono-
tonic reasoning, but not exactly in the context of open data inference. 0ir interests are in such issues as the impact
of open data inference environment-to the present logic programming model theory and the evaluation of the results
of open data inference.

Our effort consists of extending the present algebraic notions of logic programming for dealing with open
data inference. Thus, extended algebraic tools are developed to handle incomplete objects. Further, a semantic
framework is proposed to underlie the open data inference. Our solution is characterized by the following:

(a) Extending the logic programming framework to accommodate incomplete objects.
(b) Supporting dynamic inference planning.

.2-

(c) Inubducing toleration as a weaker correctness criterion.

In this paper we-shall first discuss the characteristics-of open data inference. Next, the algebra on incom-
plete objects is-develope. Then the notions of satisfaction and toleration are discussed. Finally, we present the im-
plementation issues which include the inference engine and-the combination of inference results- from diffcrent
derivations.

2. THE CHARACTERISTICS OF OPEN DATA iNFERENCE

Let us discuss the differences between the open data inference and the conventional data -inference- based
on logic programming. Throughout this paper, we shall use --> and <-- to represent logical implications, and use -4
to represent mappings.

The deductive database systems developed so far are based on the relational view mechanism or first-order
logic programming [GAL84] [RET84J. In a deductive database, rclation-names are treated as predicates and tuples
as predicated atomic formulas. An attempt to answer a query is referred -to as satisfying a goal based on
prespecified facts and rules. For example, given the following-logic program P (variables are represented by capital
symbols),

(
p(X,Y,Z) <-- r(X,Y), q(X,Z).
q(X,Y) <-- s(XY).

a,b).
s(ac).

there is a Herbrand base associated with P, denoted as Bp. It is the set ofground atoms that can b formed by using

predicate symbols and ground terms from P, such as

(p(a,b,c), p(ac,b), ... r(ab), r(a,c), r(bc), ... q(ab), ...s(ab), s(bc),...}

A (Herbiand) model of a given program P is identified with a subset of Bp containing at least the facts that can be
derived from P [LLOY83]. For example, the following is an interpretation and a model of P.

M = (p(abc), q(a,c), r(ab). s(ac)) -

The derived fact p(a,bc) is satisfied by the above interpretation, i.e., p(abc) c M.

Therefore, in logic programming, both the original and the derived facts appearing in the Herbrand base are
represented as ground formulas containing no null value. The notion of logic satisfaction and model are based onI Herbrand interpretations formed out of ground formulas. Further, a goal can succeed only if the derivation path
-from the given facts to the goal is complete.

However, the open data inference environment is characterized by the incompleteness of domain
knowledge and the need for combining partial inference results from separate reasoning processes for the purpose or
utilizing multiple knowledge sources, carrying out dynamically scheduled inferences, or cooperating multiple intel-

-! ligent agents. The above requirements are not supported by the conventional deductive database approach. To il-I lustrae it, let us consider the following program P':

-3-

staffl(EMP#, NAME, SEX, OCCUPATION) <--
person(EMP#, NAME, SEX), job(EMP#, OCCUPATION).

person(05, John, 8).
jo(05,)

based on the following relational-schema

ste ffj7(emp, name. sex, occupation).

person(enop#, name. sex).
lob(inip#, occupation).

where job(05, S) and person(05, John, 8) contains a. W6,representig the unknown information. Ile conventional

logic~programming framework-does not provide notions to derive-any new fact based on such incomplete facts.
However, by using some reasoning processes, the following new fact may be derivec

staffl(05, John, 5, 8).

Eventhough the derived information still contains !i-nknown i;-c,1-ienj. . i. ... ,, for assistrig-a decision
making or for merging-with other intermediate results to make further deductions.

Under the conventional notions of logic programming, it is not possible to include the given incomplete
fact job(05, 8)-or the inferred incomplete- result s=Mfl(05, John, 8, 8) in the Herbrand-base Bp'. Further, since a
model of P' is a subset of Bp', we do not have a base to determine whether staffl(05, John, 6, 8) holds or not. Thus

I. From the model semantics point of view, a fact may not be included in the models of a program P if it
cannot be inferred-from the rules and facts given in P. Since there is no notion to accommodate-in-
complete facts and results in the Herbrand base, a model of a program may never contain any incom-
plete fact. Further, no weaker correctness criterion is provided to evaluate the incomplete results.

2. From the inference path point of view, the execution order of the inference processes is pre-specified
in the conventional logic programming framework. In our inference environment, due to-the incom-
pleteness of the available knowledge, the inferred results may not be complete. To infer the missing
information, the intermediate results from separate processes have to be merged. Since-we canaot
predict the outcome ofthe intermediate results, the merging process must be planned dynamically ac-
cording to the inferred results. Therefore, totally pre-specified inference paths, as in the conventional
logic programming environment, are not adequate for our inference requirements.

To solve these problems, we shall first extend the base of a program to allow both original and derived
facts to be incomplete. For instance, the incomplete fact job(05, S) is accepted to the extended base, as is the derivcd
incomplete fact staffl(05, John, 8, 8). Further, we shall extend the interpretation of a program to allow the in-

volvement of incomplete information, and define such an-interpretation as a subset of the above extended base.
Thus for example we can have the following interpretation that does iorsatisfy but yet does not "violate7 the pro-
gram P':

(staffl(05, John, 8, 8), job(05, 8), person(05, John, 8)).

In other words, we allow-the derivation from job(05, 8) and person(05. John, 5) to staffl(05. John, 8, b) according to
the given rule in P'. To evaluate incomplete inference results, we shall introduce an extended correctness criterion
which is weaker-than the notion of satisfaction.

-4-

Next, let us consider the combining of intermediate incomplete results from multiple- knowledge sources
for.obtaining cooperative answers. Assume we need to infer the relation

stff(emp#, name, sex, occupation, status)

by combining the results of two separate programs P I and P2 where P I can be used to infer the relatic-

staffl(emp#, name, sex, occupaton)

and P2 can-be used to infer the relation

staf2(emp#, name, sex, status).

The program P 1 is specified as

staffl(El'MP#, NAME, SEX, OCCUPATION) <--
person(EMP#, NAME, SEX), job(EMP#, OCCUPATION).

person(05, John, 8).
person(06,-Smith, male).
job(05, engineer).
job(06, 8).

)
From program P 1, an open interpretation M I containing the derived facts

staffl(05, John, 8, engineer).
staffl(06, Smith, male, 8).

can be formed. Given the following additional relation schema

wk.status(emp#, status).

the program-P 2 is specified as

staff2(EMP#, NAME, SEX, STATUS) <--
person(EMP#, NAME, SEX), wk-status(EMP#, STATUS).

person(05, 8, male).
person(06, 8, 8).
wkstatus(05, 8).
wk-.status(06, fulltime).

From program P2, an open interpretation M2 containing the derived fact..

staff2(05, 8, male, 8).
staff2(06, 8, 8, fulltime).

can be formed. Assuming EMP# is the key of the relations "staffi" and "staff2", the above facts can be combined-to
obtain a (more) complete interpretation containing

staff(05, John, male, engineer, 8).
staff(06, Smith, male, 8, fulltime).

This combination generally involves the union of different tables with common attributes, the reduction of resulting

-5-

relations,-and the merging of certain tuples in terms of appropriate algebraic tools as will be discussed in the next
section. Therefore, in open data inference, it is-necessary to keep as many incomplete partial results as possible so
that they cn be combined to yield more complete results. Such a combining process is not explicitly specified by
the-domain-specific rules, but rather is handled by the system as a meta facility and performed according to the goal
and the data semantics.

We refer to a program which contains cts (source data) and-rules as a DataInference Program (DIP) and
refer to the execution of a DIP as a derivation. An open data-inference consists of one or-more statically or even
dynamically planned derivations. Each derivation is the execution of a DIP. In order to develop its semantics, we
shall discuss issues such as the algebra of incomplete object reasoning, two different levels of correctnessacriteria,
and-the implementation of an inference engine based on the above concepts. In this-paper, we do not address the
inference planning problem and assume all the rules are-consistent.

3. ALGEBRA FOR OPEN OBJECTS

In order to handle incomplete and dynamically reconstructed database objects, we shall discuss the notion
of variable null, open object and-valuation, and develop extended algebraic operations that are applicable to both
closed objects (not containing unknown components), and open objects (containing unknown components).

Variable Null

The treatment of "incomplete" information in the relational model has been addressed based on the Closed
World Assumption (CWA) and Open World Assumption (OWA) [REIT78]. Under CWA, only the facts expressed
by the database are true. Thus, a null may be interpreted either as- an existing but "unknown" fact
[CODD79][BISK81], or as a "non-existing" one [VASS79][ZANI84][CODD86]. Under OWA, besides the facts
specified in the database, io further information is available, thus things are left open [RKS85][GOT'T88][OLA891.
Since our goal is to develop a mxlel theory for open inference, we concentrate on the impact of incomplete infor-
mation on the inference process and classify a null as:

- a variable-null denoted as" 8" which may be substituted by different actual values, or
- an actual "non-exist" value called undefined and denoted as "4) ".

Since 4 is an actual value, it may be used to substitute 8.

Open-Range Object

T"- t,.odel database objects formally, the existence of some finite sets of values referred to as domains is as-
sumed, atr1 .ae special value "4)" is introduced. The product over domains D1, D2,..., D., denoted as D1 x D2 ... x
D,, is the set ofall-tuples [XI, X2,.-.,X41 such that Vi e [1,...,n) xi e Di. A-relation schema, called a range, consists-
of a-list of attributes A 1, A 2,...,A,, where each Ai is a subset of a domain-Unique Name Assumption (UNA) on attri-
butes-is assumed. Tuples and relations are generally called range-objects where an attribute value is allowed to be
"0" or "S". -A closed range-object is free of variable-nulls. An open range-object contains variable-nulls. Thus, a
tuple is open if at least one of its attribute values is variable-null. A relation is open if it contains at least one open
tuple. An open range-object cannot be compared with other range-objects. For example, assuming A,B,C are attri-
bute-names, we cannot determine whether [A:I, B:2, C:8] and- [A:I, B.2, C:8] are equal since both range-objects
are-left open, and the variable-nulls in each tuple may stand for different actual values. To define relationships and
operations on open range-objects, it is necessary to extend the notion of equality to represent syntactically identical
objects. Therefore, we adopt the notion of symbolic equality , denoted as = , as described in
[CODD86][GZC87][GOTT88]. Under this notion, all the variable-nulls represented by the same notation " 8 "are
symbolically equal. Further, two tuples are symbolically equal if the values of each attribute are symbolically equal.
Two relations are symbolically equal if their tuples are pairwise symbolically equal.

-6-

The notion of closed and open objects is related to the notion of closed formula in logic programming. A
non-closed formula may contain one or more specific variables such as X, Y, etc. However, -in the- framework
described-here, all the unknown-components in the open objects are syntactically specified-by the same variable-null
notation.

Valuation:

In order to define the notion of satisfaction for open data inference, the concept of valuation is introduced.
Valuation plays the role of instantiation of variables and variable-nulls in terms of-actual values under attribute type
constraints.

[Valuation]

The set of valuation mappings, 2, from the set of objects (open or closed)-to the-set of closed objects are
defined as follows:

(a) For a constant value a e A on attribute A, a -* a e Q.
(b) For a variable z on attribute A, (Va r A) z -4 a E 02.
(c) For a null-variable 8 on attribute A, (Va e A Au) a- 0.
(d) For a tupie t= (A :t 1 A,:t,];' t' =[A Itl ... , : ,]

Vie (1,...,n) ti-ti ' re-2 -->t-4t' E.
(e) For a relation R = t ,...tR), Vi 6 { 1,...,n) 3t e R' (ti - t E Q) --> R - R' e Q.

An open object is partially valuated if not all the variable-nulls are instantiated by actual values. For-in-
stance, as shown below, the relation "SHIP" is a partial valuation of another relation "ship" according to the follow-
ing rules-:

IF 'BOI' < battle._group < 'B02' THEN radar = 'SPS'.
IF 'S120'5 ship_|d 5 'S 150' THEN battle..group = 'B03'.

ship SHIP

shipid battle, group radar ship-id battle.group radar

S100 BOI S100 B01 SPS
S122 5 5 S122 B03 5

Note that valuations of variable-nulls should not be referred to as substitutions. Since all variable-nulls are
represented by the same notation "S", there is no way to separately represent each variable-null and the value used
to substitute for it. The usual concept of substitution in logic is only. applicable to distinct variables. However,
valuation does obey object typing constraints, thus we state that the valuation of a null-variable 8 on attribute A is
defined as

(Va c A ti)S .a e 2.

Sub-tuple, Sub-membership and Sub-containment on Closed and Open Objects

Data inference consists of mappings between range-objects. Open data inference involves open range-
objects. In order to study-its interpretation semantics, appropriate algebraic tools are required. This includes special
set membership and set containment between range objects, and the extension of these notions for dealing with open
range-objects. We first define the sub-tuple relationship between tuples. Let t, t' be tuples with attribute list W and

-7-

W', and t.X be the attribute value of t on the attribute X; t is the sub-tuple of t', denoted as-t _* t', and is defined as-:

t_<*t' iff W9W' A VX e W(t.X=$ v t.X-=t'.X)

For example, we-have the following sub-tuple relationships:

[a,b] _<* [a,b,c], [a,b] _* [a,b,8], [a, 0] <* [aib,81.

The third sub-tuple relationship holds since the first tuple contains the special non-exist value (i.e.,). We then
define a -special set membership and set containment [CHEN89a][CHEN89b] called s-Membership and s-
Cotainment, denoted as o * and c* respectively. Let t be a tuple and R be a relation, we say t e * R if t is a sub-U tuple of any tuple in R. Further, let R and-S be two relations, we say R Q* S if every tuple in R is-an s-Member of
S, That is,

It-e*R iff (Bt'E-R)t- *-t'.

R *S iff (Vt e R)t e* S.

In this case, R is also called the sub-relation of S. For example, given the-following relations "shipl" and"ship2",
we have shipl * ship2

shipl ship2

shipid battle-group shipid battlegroup radar

S100 BOI S100 BOI SPS
S122 B03 S122 B03

S130 BOI

Now let us extend the above notions to -open range-objects. By using-symbolic equality =, we can
-develop the notions of open sub-tuple _<, open s-Membership E^ and open s-Containment c;. Let t, t' be tuples with
attribute sets W and W' respectively; t is the sub-tuple of t', denoted as t -<I t', and is defined as:

t:t' iff WQW' A VXC W(tX==8 A t'.X # v t.X==t'.-X v tX=).

In short, the sub-tuple relationship t "-t' is extended to-t 5 t' by allowing t to contain variable-nulls (i.e. 6). For
example, we have the following open sub-tuple relationships: fa,8] _5" [a,b] and [a,81 :" [a,8]. Consequently, we
can also introduce open s-Membership e^ and open s-Containment g^ similar to the s-Membership and s-
Containment shown above. Let t be a tuple and R, S be relations, then

t r ̂ R iff (3t' e R) t:5'tV.

Rz^S iff (Vt e R)tE&S.

We call a relation s-reduced if none of the tuples in the relation is the sub-juple of another tuple. For the
set of s-reduced relations, it can be proved that the Q^ relationship is reflexive, transitive, and antisymmetric. We
can further show that the set 0f s-reduced relations form a partial order lattice under the C" relationship.

It is easy to see that-the *, e *, * relationships are special cases of the corresponding open relationships.
In fact, when we say that relation R is openly contained in relation S under _< or !" relationship, we mean that S
contains R, or S contains a valuation of R, or S contains a partial valuation of R.

-8

The reason g^is weaker than g can be explained as follows: let R and S-be two-relations; R S implies
that there exists valuations from R to R' and-from S to S' such that-R' c* S'. Conversely, if R c^ S does not hold,
no such valuations exist. More-generally, we have

Theorem 3.1

Let R and S be two relations. R !: S implies-that for each S -- S' e Q, there exists a closed relation R', such that

R -+ R'e Q A R' r* S'.

Proof outline:-see appendix.

The notions introduced in this section provide us with the mathematical tools for handling-the interpretation
semantics of data inference involving open objects in the next section.

4. SATISFACTION AND TOLERA1I "

In logic programming, the model of a program is the interpretation which satisfies all the rules-and facts
specified in that-program. In open data inference, since rules may not be sufficient for inducing all the necessary
data, both intermediate and final results may be left open. Since intermediate results can be used as base objects for
further inferencing, the base data objects in a DIP may be open. This requires us to study the interpretation seman-
tics in which both source and target data may be incomplete.

421 F-base

In logic programming, the static Herbrand base Bp of a program P containsonly the predicate symbols ap-
pearing in P, and any possible (Herbrand) interpretation of P is identified with a subset of Bp [LLOY831. Therefore,
onlypredefined predicates (relations) can be derived during the inference. To accommodate dynamically generated
predicates-during open inference, under the UNA on attributes, we need to extend the base of a program to the fol-
lowing. Let P be a DIP and A = (A ,...,A,.) be the set of attributes that appear in the relational schema in P. The F-
base p of P is the set of all products over the power set elements of A, except 0 , that is,

(bp= (A ... , A A 2xA, A IxA 3, A 1xA 2 xA 3 ...

At the relation level, each element of 4
'p is associated-with a virtual relation which can be syntactically

(may not be semantically) constructed by using attributes in P, referred to as the base of that virtual relation. The in-
stance of an actual relation R in P is a subset of its base. For a DIP in the F-base, there are no restrictions to forming
relation schemas. Relations and views are not fixed to the ones predefined in the DIP. Therefore, predicates, which
do not occur in the original facts and rules can be generated during the inference. This is the major difference of the
F-base defined here from the Herbrand base that is defined in the logic programming theory.

This notion allows us to discuss the interpretations of intermediate relations, viewed as sets of intermediate
predicates or atomic formulas, which are not predefined in the rules but generated by the inference process at run-
time.

-9-

I-7
4.2 Closed Interpretation and Open Interpretation

In our system, a DIP consists of relations and rules (tuple or relation oriented). An interpretation I of a data
inference pmgramP is drawn from Op such that

(Vr e I)((3R e Op) r C* R)).

That is, every relation in-the interpretation is the sub-relation of a relation in Op. The general form of an
interpretation is

An-interpretation is closed if it contains only closed relations; an-interpretation is open if it contains at-least one
open relation. There exist valuation mappings from open interpretations to closed interpretations. In the following
discussions, for simplicity, interpretations are handled at the relation level rather than at the-tuple level.

4.3 The Notions of Satisfaction and Toleration

The inference results can be evaluated in terms of two levels of correctness criteria: satisfaction and tolera-
tion. The notion of-satisfaction is usually for closed objects. We shall now extend the meaning of satisfaction for
the opea data inference which involves open range-objects. The satisfaction of a possibly open range-object in a
DIP-by an interpretation I means I contains an appropriate valuation of that range-object. Further none of the rules
specified in that DIP are not-violated.

-[Satisfaction]

Let I be an interpretation. The notion of satisfacion, denoted as 1=, is defined as

a) Foratuplet, I=t iff (3Re I) t-4 t'e f t'e* R.
For a-relation r, I I= r iff (3RE I) r - r'e rQ A r' g* R.

-b) For a rule h <-- bbA, for a substitution 0, based on I,
I= (h <-- bt,...,bR) iff I = bo.....I=b0 impliesll=hO,.

c) For a data inference program P, I 1= P if" Vpe P (I 1= p).

For:example, as shown below, range-object "SHIP" is correctly derived from another range-object "ship"
based on the rule r. In this case, the DIP containing range-object "ship" and rule "r" is satisfied by the interpretation
(SHIP).

rule r: IF 'S 120' < shipjd < 'S 150' THEN battle, group = 'B03'.

ship SHIP

ship-id batde._group ship-id battle-group

S100 BOI S100 BO1
5122 S122 B03

For a Data Inference Program, P, and an interpretation I of that program, we say I is the model of P iff I =
P.In the above example, (SHIP) is a model of the given DIP.

-10-

The execution of an open data inference may not-yield a-model containing complete and exact information
but rather a tolerant interpretation containing, partial information. To accommodate this, we introduce a weaker
correctness notion, called toleration, denoted as I. In general, a derivation program is tolerated by an-interpretation
if the known facts and-rules of the program are not violated and there exist valuations of the-open objects involved
in the interpretation -that makes the interpretation satisfy the program.

[Toleration]-

Let I be an interpretation. The notion of toleration, denoted as I-, is defined as

a) For a tuple t, I I- t iff (3RE I) t R.
'For a relation r, I I- r iff (,-F = R) r<^ R.

b) For a rule h <-- bl....bR,'
I I- (h <- bt,...,b,) iff l1= (h <---b

c)3For a data inference program P, I I-P iff Vp E P (I I- p).

Now let us observe the-following example, where range-object "SHIP 1" is-partially valuated from another
range object "ship I" based on the rule r :

IF 'S 120' ship-id < 'S 150' THEN battle..group = 'B03'.

ship I SHIP 1

ship_id battle_.group ship-id battle-group

S100 Bol S100 BO
S122 S 5122 B03
S300 8 S300 a

Let! 1 = (SHIP 1) -be an interpretation. For the given DIP containing rule r and range object ship1, we can-
not say that II- satisfies the DIP since I is still open. However,_SHIPI is indeed a reasonable derivation of ship1
although it is still open. In general, when a possibly open range-object in a DIP is tolerated by an interpretation I,
then I contains an appropriate partial valuation of that range-object and the rules in the DIP are not violated. For in-
stance, in-the above example, the execution of the given DIP containing rule r and range object ship, generates a
tolerant interpretation I, = {SHIP,). We can say range object ship, is tolerant by the interpretation I since 11 con-
tains an appropriate partial valuation of ship, and l does not violate rule r.

From theorem 3.1 and the definition of toleration, we can have the following:

Theorem 4.1

Let P-be a data inference program and I be an interpretation of P. Then I 1= P --> I I- P

Proof outline: see appendix.

5. IMPLEMENTATION

An experimental data inference system has been implemented on a prototype cooperative distributed data-
- -base, CDB, running on a set of Sun 3/60 workstations interconnected by an Ethernet at UCLA. The data inference

system is based on the relational model where all the source and target data objects are relations. The inference ac-
tions are extensions of the relational operations which allow us to build the inference engine on top of Sybase, a re-

-II-

lational database system. Currently, two types of rules are available:

1. Deductive rules specified in terms of relational operations.
2. Correlated rules which are specified as summarized knowledge. This consists of condition andac-

don parts such as "if 'S 120' < shipid < 'S 150' then battle.group = 'B03"'.

A rule induction technique is used to extract-correlated knowledge between attributes from-the database
contents. In our implementation, only correlations between individual attributes are used. Although-a set of attri-
butes (two or more) may also infer the value of another set of attributes, the efficient selection of correlated sets is
difficult due to the combinatorial explosion of such- correlations. To induce rules between attributes X and Y, we
use relational operations to retrieve instances-of (X,Y)zpairs from the database, and.then select those pairs in which
X has a unique corresponding Y value. For a detailed algorithm, interested readers should refer to [CHU90. The
acquired rules are summarized in the range form, as

IFx, <X<x THENY = y.

or in the set form, as

IFX G -(x1,x2,..,x.) THENY=y.

When a network partition occurs, the inference system operates in the following way:

a) Based on the given query, object availability status, database schema and correlated knowledge
stored in the rule base, the inference system develops a plan which-consists of a set of derivations
and the execution sequence of those derivations. Each derivation process represents a derivation
from certain available data objects to an intermediate or final data inference result.

b) Carry out the inference plan.

Three general types of derivations are-implemented in the system:

1. Deriving new-relations based on certain source relations. It is specified-as relational
views and implemented through the view generation mechanism.

2. Valuations of incomplete relations based on summary information~and correlated
knowledge. The valuation process is implemented through the relation alteration
mechanism.

3. Combining intermediate results via appropriate system operations (viewed as meta-
rules) to keep all the necessary open tuples appearing in the intermediate results.
These tuples may be valuated through other derivations or combined with the data
otained from other derivations.

In our approach, type I and type 2 derivations are trdated as basic units for type 3 derivation. To
infer the missing information, the data inference system first selects certain type 1 and type 2
derivations. Since our inference approach is designed to combine results from different deriva-
tions,-the improper combination of results may generate redundant information. Further, although
each derivation may provide valid information, an arbitrary combination of different results may
generate invalid information. Therefore, proper operations and control rules are required such that
neither redundant nor invalid information is generated.

The meta-operations for combining tables consists of natural outer-join [DATE831, reduction and
merge operations. natural outer-join is is used to combine relations involving incomplete data by

-12-

generating their least upper bound. Reduction is used-to remove -redundant information in the
same table. Such redundancy exists when- a-tuple appears more than once -in the same table.
Further, a tuple may not be able to provide extra information if it is the sub-tuple of other tuple(s)
in the same table. Removing such a tuple does not lose-any information since all the information
it can provide can also be-provided by the other tuple(s). Furthermore, in our inference environ-
ment, natural -outer-join -is combined with merge operation to integrate inference results from
different derivations. We say the merge result is safe with respect to the original database if no in-
valid information is generated. This requires the provision of data schema information. For cx-

., two tuples can be-merged when they have the same key value. Therefore, data inference
has to be integrated with-knowledge acquisition and schema design stage so that the -required
knowledge for inferencing is provided.

c) Select the required data objects from the inference result. In the current implementation, the target ob-
jects to be-inferred are relations. Tlie inference process infers as much of the missing relations as possi-
ble. In some case an-iterative inference is required up to the saturation of the derived result

As a data inference example, consider a distributed database that consists of three database frag-
ments: SHIP(shipid,sname,class), INSTALL(ship-id,weapon), CLASS(class,type,tname) which are stored
at sites LA, SF and NYC respectively. When the site SF is partitioned, the following query cannot be
answered since relation INSTALL is not accessible:

Q1 : "Find the ship names that carry weapon 'AAM01'"

Since the target objects are relations, our inference engine needs to make an inference plan, selecting
relevant inference paths for inferring the- missing relation INSTALL. We -have not yet implemented a
dynamic inference plan. Currently, to infer the missing relation the inference engine exhaustively searches
all the derivations in the knowledge base and selects the relevant derivations. In this example, the following
two derivations are used to infer the missing INSTALL relation :

DERIVATION 1 : select ship-id, type from SHIP, CLASS
DERIVATION 2-: CLASS(type) --> INSTALL(weapon)

Derivation 1 represents the first type of derivation where the deductive rule is expressed by a view
definition. This derivation creates a temporary relation which contains ship-id and type information.
Derivation 2 illustrates the second type of derivation, where derivation is performed from [type] to
[type,weaponj. This derivation also creates a temporary relation with shiptype and weapon information.
While information of shiptype is filled by accessing CLASS object, weapon information is filled based on the
provided correlated rules between shiptype and weapon. The above two intermediate results are then com-
-bined by the third type of derivation. The resulting relation-is used to replace the inaccessible information.

6. CONCLUSIONS

We have proposed the use of open data inference for distributed query processing to improve data-
base availability. This open nature of data inference is due to the incomplete knowledge about data and the
need of combining partial inference results from separate reasoning processes. New algebraic tools are
developed to support such-inference. To evaluate inference results under incomplete knowledge, a weaker
correctness criterion, called toleration, is introduced. This open inference technique has been implemented
at UCLA on a prototype cooperative distributed database system (CDB). Our experience reveals that the
proposed open inference approach can significantly improve the availability of the distributed database dur-
ing network partitions.

-13-

3 REFERENCES

(BIS81] Biskup, J. "A Formal Approach to Null Values in Database Relations", In Advance -in Data-
base theory, Vol.1, Plenum, New York, 1981.

[BIS821 Biskup, J. "A Foundation of Codd's Relational Maybe-oprations", Tech. Rcp. Computcr Sci-
ence Department, Univ. of Dortmund, West Germany, 1982.

(BROD84] Brodie, M., J. Mylopoulos, and J. W. Schmidt (eds.) On Conceptual Modelling. Perspectives
from Artificial Intelligence, Databases, and Programming Languages, Springer, New York,
-1984.

[CHEN89a] Chen, Qiming "A High Order Logic Programming Framework for Complex Objects reason-
ing", International Computer Software and Applications-Conference (COMPSAC89), 1989,| USA.

[CHEN89b] Chen, Qiming and Wesley Chu, "A High Order-Logic Programming Language (HILOG) for
NON-INF Deductive Databases", Proc. of 1st International Conference on Deductive and
Object-Oriented Databases, 1989, Japan.

• [CHU90] Chu, Wesley, Andy Hwahg,_Rei-Chi Lee, Qirning Chen, Matthew-Mer-zbacher, and Herbert
- Hecht, "Fault Tolerant Distributed Database via-Data Inference", 9th Symposium on Reliable

Distributed System, Huntsville, Alabama, October, 1990.
[CODD86 Codd, E. F. "Missing Information (Applicable and Inapplicable) in Relational Databases, SIG--MOD RECORD, Vol. 15, no. 4 December 1986.
[DATE83] Date, C. J. "The Outer Join", Proc. of the 2nd International Conference on- Databases, UK,

1983.
[ETH881 Etherington, D. "Reasoning with Incomplete Information", Morgan Kaufmann Publishers Inc.

1988.
[GALL84] Gallaire, H., J. Minker, J. Nicolas, "Logic and Databases : A Deductive Approach", ACM

Computing Surveys, Vol. 16, No 2, June 1984.
[GARC87] Garcia-Molina, H. and R. K. Abbott, "Reliable Distributed Database Management", Proc. of

the IEEE, May 1987, pp. 601-620.

[GOTT881 Gottlob, Georg andRoberto Zicari, "Closed World Databases Opened Through Null Values",
Proc. of 14th VLDB Conference 1988, pp. 50-61u [HAMM81] Hammer, M., and D. McLeod, "Database Description with SDM: A Semantic Database
Model," ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

(KONSi Konolige, K. "A Metalanguage Representation of Databases for Deductive Question Answer-
ing System", Proc. of-7th UCAI, 1981.

[LEV81] Levesque,-H. "The Interaction with Incomplete Knowledge Bases : A Formal Treatment",
Prop. of 7th IJCAI, 1981.

1LIP79) Lipski, W. "On semantic issues connected with incomplete information databases", ACM
Trans. on Database Systems 4 (1979).

[LLOY831 Lloyd, J. "Foundation of Logic Programming", Springer-Verlag, 1983.
[OLA89] Ola, Adegbemiga and Gultekin Ozsoyoglu, "A Family of Incomplete Relational Database

Models", Proc. of 15th VLDB pp. 23 - 31
[REIT78] Reiter, R. "On Closed World Databases Logic and Databases", PLenum, New York, 1978.
[REIT84] Reiter, R. "Towards a Logical Reconstruction of Relational Database Theory", in On Concep-

-I tual Modeling, pp 191-234, Springer- Verlag Ed., 1984.
[REIT86] Reiter, R. "A Sound and Sometimes Complete Query Evaluation Algorithm for Relational Da-

tabases with Null Values", JACM Vol.33, No.2 Apri 1986.
[ROTH85] Roth, M., H. Korth, and A. Silberschats, "Null values in Non-INF Relational Databases, Rep.

TR-85-32, Univ. of Texas at Austin, 1985.
(VASS791 Vassiliou, Y. "Null Values in Database Management: A Denotational Semantics Approach",

ACM-SIGMOD 1979, pp. 162- 169
[WIL88J Williams, M. and Q. Kong, "Incomplete Information in a Deductive Database", Data and

Knowledge Engineering 3 (1988).
[ZANI84] Zaniolo, C. "Database-Relations with Null Values", Journal of Computer and System Science,

Vol 28, No. 1, 1984 pp. 142 - 166

-14-!U"

*APPENDICES

Theorem 3.1

-Let R and S be two relations. R c^ S implies that for-each S -- S' e Q, there exists a closed relation R',
such that

R - R'- -AR' * S'.

Prove Outline:

I We denote the set of closed relations valuated from S as Is. Based on the definitions of valuation, closed
s-containment and open s-containment, the theorem can be proven in the following cases:

I case 1: R and S are both closed, then simply rs = (S) and R - Re 91 A R c-* S.

case 2: R is open and S-is closed. Clearly Is = (S). There exists a valuation from R-to R' defined as
follows: for any attribute X and-any such tuple r e R that r.X = 8, valuate r.X to r'.X (r' e R')
such that r'.X-= s.X (s E S). By the definition of g*, it can be shown-that R' Q* S.

case 3-: R is closed but-S is open. By the definition of C^ and c* R c* S. Therefore for any S' where S
-+ S'e Q, R -* S'.Thus R Q* S' for any S' in s = (S' I S -+ S' 0 Q).

case 4 : R and S are both open. By the definition of C^ and valuation, for any S' whereS -4 S' E Q, R
c;" S'. As described in case 2, for any S' valuated from S,-there exists a relation R' valuated
from R such that R' * S'.

I Theorem 4.1

Let P be a data inference program and I be an interpretation of P, I P--> I -P

Prove Outline:

For satisfaction, given-a-tple t, 11I= t iff (3R EI)t t' E fl A t' E * R; given a relation r, I1I= r iff
(R e i) r -4 r' e 0 A r' c* R. However, for toleration, given-a tuple t, I I- t iff (3R r I) t E" R; given
a relation r, I I- r iff (R1 e I r c" R. From the definitions of closed and open relationships between
range objects, if t -+ t' E A t' e* R holds, then t E R holds; if r - r' e Q A r'* R holds, then r
R holds.

.15-

Using Type Inference and Induced Rules to
Provide Intensional Answers

Wesley W. Chu, Rei-Chi Lee and Qiming Chen

Computer Science Department
University of California. Los Angeles

Los-Angeles, California 90024

ABSTRACT more specific intensional answers based-on the type hierar-
chy. The approach consists of two phases: the knowledge

An-intensional-answer pr ovides characteristics-rath- acquisition and -the intensional query aiswering. In the
-er than a listing of all the instances that-satisfy a query. -knowledge acquisiton phase, a model-based knowledge ac-
This paper presents- a--new approach that-uses knowledge quisition methodology is proposed -to facilitate the
-induction and type inference to provide intensional lenowledge acquisition. A -Knowldge-based Entity-
answers. Machine learning techniques-are used to analyze Relationship (KER) model is developed for specification of
database- contents and- induce aset of If-then rules. Type -the induced knowledge. Based on the type hierarchy, rules
-inference which is-based on forward inference and-back- can then -be generated and maintained-in the knowledge
-ward inference is developed that-uses database type hierar- base. In the intensional query answering phase, intensional
-chies to derive the intensional answers for-a query. Furth- answers -are-derived by type inference via traversing the
er, more precise intensional answers can -be derived by type hierarchies. Query condition is used to direct the
properly merging the-type inference results from multiple traversal direction. -The process stops when the desired
type hierarchies. A prototype intensional uery processing type specifications are obt ined then provided as the inten-
system which- uses the proposed approach has been imple- sional answers.
mented. Using-a ship-database-as-a test bed. we demon-
strate- the effectiveness of the use of type inference and in- -In this paper, -we will first present the methodology
duced rules-to derive-specific intensional answers. that usesdatabase schema and knowledge induction tech-

niques to extract useful meta-data from the database. Next,
we present the use of induced -rules and type hierarchies to

1. Introduction derive intensional answers. Finally, we use a ship database
as a testbed and present examples that use the proposed

Conventional database systems provide answers in type inference to derive intensional answers.
the-form of an enumeration of database instances retrieved
-from- the- database. Although such an answer conveys in- 2. Knowledge Induction
formation to the users, a general description of the answer
or summarized or ap proximate answers are often more use- 2.1 Database Semantics
ful. Meta-data of the database- such as-integrity constraints
and -semantic -rules can-be-used to infer hidden information To construct the database schema, objects with
within the database. For example. integrity constraints similar characteristics or properues are grouped into object
were used to improve query processing performance types and subtypes. These semantics, referred to as
KING8I. -HAMM801 and to derive intensional answers classificaton semantics or classification characteristics,

[MOTR89J. are useful in knowledge-based data processing. Table I
presents an example of the navy battleship characteristics

Type hierarchies specify the subtype and supertype that classify ships into ship types with different displace-
relationships in a database application domain. This can be ment ranges. These characteristics are database semantics
used to improve query processing (CHU901 and to provide describing the ship database domain and can be used to
an -aggregate response to queries [SHUM881. Such an ag- derive intensional answers. Since the database instances
gregate response can be provided to the users as the inten- follow these characteristics, these characteristics can be in-
sional- answer. However, only-very limited forms of-inten- duced by the following model-based learning methodology.
sional answers can-be generated by usinfgthe type hierar-
chy alone without database intensional knowledge. To Category I TyI Type Name I Displaxemcnititonsl i
remedy this problem-we propose to use database intension- I ss Budew Misile Subm 7250 16W
al knowledge to derive more specific intensional answers. I sufoc- SSN NuciSubm un nu e 720 6M
As in many other systems. one of the major problems of cvNa AtuckAtaif.iCL"e' 75700 NW600
-knowledge base design is the acquisition of knowledge. In cv A',craCjncr 41900 61000
-ihis paper,-we propose an approach which first uses rule in- BB Banhi ip 45000 .5000

duction to derive intensional knowledge by analyzing data- cGN GuidcdNuc rMissi¢lCrusct 7600 1400
I CG GudAMssie Crster 5670 13700

base contents. and then uses the generated rules to derive swface CA GUscmicr 1000 17000
DDG 436dcd Missile Destoya 3370 $300
DD Destroyer 2425 gill0
FFG Guided Milssile Ripte 3605% 3605

This research is supported in part by the DARPA Contract FF Fguidc 360 3011

F29601-87-C-0072, the ONR Contract N00014-88-K-0434, and
the Hughes Micro Contract 90-032. Table 1. Classification Characteristics of Navy Battleships

396
CH2968-610000/039650l .00 © 1991 IEEE

2.2 Model-based Learning Methodology information. Such knowledge specification associated with
each database definition is useful for knowledge-based data

The acquisition of knowledge is one of the most processing.
difficult problems in the development of a knowledge-
based system. Currently, knowledge acquisition is still In KER, an entity is a distinctly identified object.
largely a manual process which -is very time-consuming. for example, a specific person, a-department. or a course.
Further, it -is often not possible for domain experts -to An entity set is a collection of entities. Each of these enti-
describe their expertise -to others. To remedy this problem. ties is distinguished- by a unique identifier. The set- of
machine learning techniques can-be used to-construct the unique identifiers is called the pnmarv key ofthe entity-set.
knowledge base. Inductive learning [QUIN79. MICH831 is A-relationship specifies the connections between different
amachine learning technique that has been used in- Al entities. Conceptually, both entity type and relationship
research. For a given concept and a set of training exam- type can be-considered as object- type and can be modeled
-ples representing the concept, it-finds a description for the using the has/with const'uct. For-example.Figure I shows
concept such-that all positive examples satisfy and all nega- an object type SUBMARINE represented in KER.
tive examples contradict the description. Thus, using the
database contents as -the set of -training examples. object object type SUBMARINE
classification characteristics embedded within the database
can be induced. Since a database-schema- is-created by the has
designer based on the semantic of the application. such -se- key: Shipld domain: char[101
mantic can be used as the candidates for rule induction, has: ShipName domain: char[201
Therefore,-we propose-to use machine learning to acquire has: ShipType domain: char[4l
database characteristics and to use the database schema to has: ShipClass domain: char[4J
guide the rule induction process. has: Displacement domain: integer

has: Fleet domain: integer
The semantic knowledge associated with each data-

base are: intra-object knowledge and- inter-object with Displacement in (2000..300001
knowledge. -Intra-object knowledge defines specific proper-
-ties of each-entity set such as the attribute domains, value Figure 1.The KER representation of an object type
ranges, relationships between attributes, etc., and restricts SUBMARINE.
-the allowable instances of an entity set. For example, the
displacement-of an Attack Aircraft Carrier is in the range
of 75,700 tons --81,600 tons. The inter-object knowledge A type hierarchy uses specialization/generalization
specifies the constraints that the instances of a relationship constructs (isa or contains relationships) to define the sub-
set must satisfy. For-example, the relationship VISIT in- type and supertype relationships. For example. SSBN
volves entities of SHIP -and PORT and satisfies the con- (Ballistic NuclearMissile Submarine) is a subtype of SUB-
straint that the draft of the ship must be less than the depth MARINE. and CLASS-0101 is a subtype of" SBN. and
of the port. The inter-object knowledge can be induced therefore, a type hierarchy consisting of SUBMARINB,
from the interrelationship oetween SHIP and PORT linked SSBN. and CLASS-0101 is formed (see Figure 2).
by the VISIT relationship.

2.3 The Knowledge-based (KER) Data Model

To enhance the modeling of such- capabilities as
type hierarchy and knowledge specification, we introduce a SON s
Knowledge-based E-R (KER) model, an extension of the
Entity-Relationship Model [CH-EN761 and provides the fol-
lowitig three generic constructs of data modeling
(BROb84. HAMM81. MCLE821:

1. has/with (aggregation) which links an ob- I'1I '"
ject with another object and specifies a cer- cLAss.oo1 cLss.o0 cLss02s
tain property of the object (e.g., a CLASS Figure 2. A Type Hierarchy SUBMARINE
has an instructor);

2. isa/with (or contains/with) (generalizationl A subtype inherits all the properties of its supertypes. un-
specialization) which links an object type less the properties already have been redefined in the sub-
with another object type and specifies an oh- tye. For example, type SUBMARINE has attributes Shi-
E as a subtype ot another object (e.g.. pL .and hip rame. and type SSBN has attribute TypelD

and TypeName; subtype CL.SS-0101 will automaiicallvPROFESSOR is-a subtype of PERSON or ineiIrprisSlf ndSi~m rmspry

PERSON contains PROFESSOR, STU- iUhert porRies ShipID and ShipName from superype
DENT, and STAFF); SUBMAIE and inherit properties Type and

TypeName from another supertype SSBN.
3. has-instance (classification) which links atype to an object that is an instance of that A subtype can also be derived from another type by

e o n Stth is an instance of providing a derivation specification. For example. one cantype (e.g., "John Smith" is an instance of define a subtyp SSBN (all the ships with ship type SSBN)PROFESSOR). of type SUBMARINE by specifying:

Note that in addition to the semantic constructs provided by SSBN isa SUBMARINE with ShipTyp = "SSBN
most semantic datamodels. KER also provides knowledge
specification which is represented by the with-constraint

397

the with-clause defines the derivation specification of the 2.4 A Rule Induction Example
subtype SSBN. It can also be considered as associating a
constraint with this subtype. Rule induction is a process to generate a set of rules

to classify objects into classes called classification. In da-
The type hierarchy is represented in KER as: tabases. objects with similar properties are defined as the

same object type. Thus.object hierarchies may be used to
E t isa E with-TP! form such a classification. The inputs for rule induction are
E2 isa E with-P2 object instances, schema describing object types hierar-

chies. and criteria to evaluate the classification quality. In
E, isa E with %/ our implementation. the set of object instances is represent-

ed as relations and the database schema is represented in
or alternatively, it can also be represented as: the KER model. The induction system generates the

classification characteristics for each class based on the ob-
E contains E1 .E2 ... E, with T. ject hierarchy.

This definition states-that the-instances of E can be divided To illustrate the proposd rule induction and learning
into n disjoint subsets E_, E2. E,,, with the constraint T. methodology, we use the nuclear submarine portion of a
Each Eiis asubtype oftb. ship database* as a test bed which consists of'the following

Trelations (For a sample database instances, see Appendix):
To provide a graphical representation of the interre-

lationships among the entity typestsubtypes. relationship SUBMARINE = (Id. Name. Class. Fleet)
-types. and derivation specificanon. we can extend the ER CLASS- (Class. ClassName. Type. Displacement)
diagram by adding the type hierarchy with constraint TYPE = (Type, TypeName)
representaton as shown in Figure 3. A representation of a SONAR = (Sonar. SonarType)
ship database schema by the KER Diagram is shown in INSTALL = (Ship. Sonar)
Figure 4.

The database consists of five entity types: SUBMA-
RINE. CLASS, TYPE. SONAR. SONAR YPE and one
relationship tye: INSTALL The three entity types SUB-

, , MATOMMARINE. TYPE, and CLASS form a type hierarchy for
SUBMARINE, submarines with different fleet number also

^= AT-m-,T form a type hierarchy for SUBMARINE. and the entities
SONAR and SONAR TYPE form another type hierarch as
shown in Figure 4. Eachsubmarine type contains a set of
submarine classes and each submarine class contains a set
of submarine instances. For example. Submarines are di-
vided into two types: SSBN (Ballistic Nuclear Missile Sub-
marine) and SSN (Nuclear Submarine). The SSBN ships........ .contain three classes of ships: 0101 (Ohio). 0102 (Benja-
min Franklin), and 0103 (Lafayette). and there are three

Figure 3. Components of the KER Diagram ships that belong to the ship class 0103 (Lafayette). Each
ship class has its specific characteristics such as displace-

.m X A $t/ff Y aR 1 I

tOX - ..iS S K.. S-

Figure 4. Representing the Ship Database Schema in KER Diagram

The ship database was created by the System Development
Corporaton_(now UNISYS) to provide a generic naval database
based on [JA.NES 1i.

399

ment, length, beam, etc. For tactical oi strategic reasons, knowledge can be induced by our model-based knowledge
different sonars are installed on different ships. The rela- acquisition methodology. Using these induced rules and
tionship INSTALL indicates the sonars instzlled on the dif- based on the database schema, the condition, and-object
ferent ships. types specified in the query, the intensional answers may be

derived by traversing the -type -hierarchies of the--object
Aplying the specified in the query. We call-this technique typeAppyi gproposed knowledge acquisition teh typespeteeniisSUMR

nique-to te ship database, rules are generated and groupc" inference. For example, the entities SUBMARINE, SSN
by the object types as follows: (Nuclear Missile Submarines), and SSBN (Ballistic Nu-

clear Missile Submarines) forms a type hierarchy where the

(1) SUBMARINE set-of SUBMARINES can be divideinto two disjoint sub-
sets: SSBN and SSN. Representing this type hierarchy

R 1: if SSN623 < Id < SSN63" ihen- x isa C0103 togther with the induced rules in-KER, we have the follow-
R2 : it SSN648 < Id < SSN6fJ 'hen x isa C0204 ing intensional knowledge which can be used to provide in-
R3 : If SSN673 < Id 5 SSN686 then x isa C0204 tensional- answers to queies that involve SUBMARINE.

R4 :if SSN692<Id<SSN704 then x isa C0201
Rs: if Ol1l5<Class<0103 then x isa SSBN SSBN isa SUBMARINE with ShipType ="SSBN"
R6 : if 0201 5 Class < 0215 then x -isa SSN SSN isa SUBMARINE with ShipType = "SSN"
R7:-if Skate <ClassName<Thresher then x isa

SSN
R : if 2145 <Displ.it ement<6955 then X a object type SUBMARINE

Rg: it 7250 < Displacement 30000 then x isa haskey: Shipid domain: char[201
SSBN

R 10: if Displacement <-3500 then x isa Fleet..2s: Displacement domain: integer
R 11: if 3500 5 Displacement < 6000 then- x isa

Fleet_6 with /* x isa SUBMARINE
-R 12: it Displacement >- 6000 then x isa Fleet7

if x.Displacement > 7250 then x isa SSBN
() SONAR if x.Displacement 6955 then x isa SSN

R 13 : if BQQ-2 5 Sonar BQQ-8 then x isa ...

BQQ Figure 5. A Type Hierarchy of Submarine with Induced Rules.
R14:if BQS.04 5Sonar 5BQS-I5 -then- x isa

BQS

(3) INSTALL (x isa SUBMARINE and y isa SONAR) 3.1 Type and Type Hierarchy

Type hierarchy allows objects to be represented and
R is: if SSN582< xJd = SSN601 then y isa BQS processed-at different knowledge levels. An answer to a
R 16:if SSN604 < xid =SSN671 then yisa BQ query-is the set of database instances satisfying the query
R17: it x.Class=0203 then y isa BQQ qualification. An intensional answer to a query is a set of
R t1: if 0205 < x.Class 0207 then y isa BQQ descriptions that characterizes the set of database instances.
R 19: if 0208 x.Class -0215 then y isa BQS To derive the set of descriptions, it is necessary to consider
R20: if y.Sonar =-BQS-04 then x :isa SSN object representations at different levels of type hierarchy

and -to derive the set of descriptions as the intensional
answers. Before-we describe how intensional answers can

3. Intensiona!-Query Aniwcring be derived via type inference, let us first define type.

A relational database is made up of the extension Type: A type can be defined recursively as the following:

da-abase -(EDB) and the intension -database (IDB) a) A primitive type (e.g., integer, real, etc).
[GALL78. NICO73]. The -EDB is the set of tuples con-
tained in the relations. It is- expressed in relaions over
domain values. The 1DB is the -set of general rules (i.c., b) If . t, are types and a I ... , an are attri-

meia-data) about-tata stored in-the EDB. It is expressed in butis,
-closed well-formed formulas in first-order predicate cal-
culus. then t:(at:t , a,,: t,,) is a type called atwple-type which-can be abbreviated as t.

An answer to-a qucy-s-i the set of data values that

satisfy a qualificaan specified in the cuey. Generally, c) If t ... t, are types, then t: (t 1 , t is a
query answers are retieve.d i om the ED. nintenswnal type callea a set-type which can be abbrevi-
answer to-a query provides the characterizations of the set ated as t.
of data values that satisfies the query [MOTR89]. In many
applications, users are satisfied with or prefer to obtain This type definition actually covers the definition of the en-
summarized answers rather than te answers from the tity type and the relationship- type of the KER model.
EDB. Such sumniarized or abstract answers can be Definition b defines the relationship type in the KER model
represented as intensional answers. which states that a type t can be constructed from other

types, t 1. ..., t,;, nid each rt is a component of (or a part of)

The intra- and inter-object knowledge specifyin" t and can be denoted as:
the inter-relationships between tie databasa objects are the
essential components of the intensional database. This t IS-PARTOF t.

399

Definition c states that a type-t-can beconstructed more specific subtype descriptions. The traversal stops
from or decomposed into other types, t1 t, and ech t, when the query condition satisfies all classification rules of
is-a called-a subtype of t and denoted as: the subtypes and the intensional answer is the immediate

super-type of these subtypes.
ti IS.A t.

The process of forward inference can be describedDefinition e actually defines a type hierarchy with t as the asfollows: Eachgiven query Q can be represented as a
root in the KER model. There are two ways-to interpret cojnto of a~sto eeuncniin nteem
such a type definition: partition-based and construction- types as:
based. Based on the partition view, a type :hierarchy i t
buih from top (root) to bottom, that is, a super type is parti- Q = (T I A T A A (T. A ,)
tioned into many-subtypes and each subtype is in turn parti-
tioned into sub-subtypes, and so on. Based on the-con- where each T, is an entity type reference and each 'Vi is the
struction view, a type hierarchyLis built from bottom to top; query condition on each Ti. During forward inferencing,that is, asuper type is constructed from a set-of subtypes eaceh e is used to determine the subsumpion relaionshipBoth interpretations imply that a type at a higher level is a between ii and the with constraints associated with Ti. The
superset of all the tyes-below it. Any type described at a most specific type description of the type hierarchy rooted
higher level has-wi er coverage than a type defined ata at T- tat satisfes the query condition-, is the intensional
lower level. For example, a type SSBN covers the ballistic
nuclear missile submarines while its supertype SUBMA- answer.RINE covers all the submarines. 3.2.2 Backward Type Inference

3.2Deriving Intensional Answers via Type Inference Backward inference uses the known facts to infer

Traditional abl e lai databases-y flat re- what must be true according to the induced rules. For ex-
aTio adi a ea tiorlatnsssppnto fat re- ample, given a rule "if x isa SUBMARINE andlations and each-entity -Or relationship-is mapped intoa re- x.Disacement a 7250, then x isa SSBN". If "x isalational table. Query is -answered by-accessing datafom SSB N', we can conclude that some submarines must havethe database. Type inference is-a process of-tree traversal displacement a 7250 otherwise-we will not have such an

on the type hierarchies. Thus, type inference is a process to
move up-and down along the type hierarchy to expand or induced rule in the knowledge base. The backward infer-
reduce the variable scope of the query. Therefore, using ence described here is different-from the backward chain-
type-inference together with the induced knowledge allows ing in logic programming such as PROLOG which uses{ng rasogto pro vemigas. sin backwar w infues

us to derive intensional answers-without accessing the phy- backwcard infer-
sical data from the database. ence, we can only derive descriitions of a subset of the ex.tensional answers. For-example, there might have some

Intensional answers can be derived by forward SSBN ships with-displacements less than 7250.
inference and backward inference with the induced rules.Forward inference uses the known facts to derive more The process of the backward inference is also a tree
far ifervence uesf then , k non fact dri mre traversal but starts from the bottom to the top. -Unlike for-facts, , ward inference, backward inference derive! a set of
we can conclude "Y" is-true. Backward inference uses the classification rules that characterize the query results. Due
known facts to infer what must be true according to the in- to the inheritance property of type hierarchy, each subtype
duced rules, i.e., given a rule "if X then Y", and a fact "Y is inherits the properties from its super-types which can be
true, we-can conclude "X' must be true. Forward infer- used as the intensional answers. For each subtype in a
ence and--backward inference can be combined to derive ouery, the traversal of backward inference is performed
more specific intensional answers. from the subtype'to its ancestors in the type hierarchy. The

classification rules for attributes that are specified in the
3.2.1 Forward Type Inference query are collected along the traversal path. These rules

state the conditions that the subtype must hold in the data-
The process of using forward inference to derive in- base. The traversal stops when it reaches the root of the

tensional answers is to derive the most specific type type hieraichy and the set of classification rules collected is
description in the type hierarchy that satisfies the query merged and becomes the itensional answer.
condition. For example, consider a query askin for sub-
marines with displacement greater than 8,000. Using the
intensional knowlede as stated in Figure 5, we can 3.2.3 Properties of Intensional Answers
traverse down from the submarine hierarchy (Figure 4)10 Using forward inference, the intensional answer
derive an intensional answer "SSBN" since the condition gives a description of instances that includes the answers.
"Displacement > 8000" is subsumed by "Displacement -> The intensional answers derived from forward inference
7250". characterize a set of instances containing the cxtensional

answer. Using backward inference, the intensional answer
Using the rule inducton technque, a set of gives only a description of partial answers. As a result,

definition can be induced and maintained with each type there may be other extensional answers that satisfy the
hierarchytsing te ihucoanstaints cain. Theh tp- query condition but are not included in the intensionalherarchyanswer. Therefore, the intensional answer derived fromcess of forward inference is then a tree traversal, starting backward inference characterizes a set of answers con-with the root type, on the type hierarchy constrained by the taced in the extensional answer. Forward inference andclassificaiton rules and the query condition. If the query bacwd inferencen balso cobind tofereme
condition satisfies a classification rule for the subtypes. backward inference can be also combined to derive more
then the-traversal continues on that subtype for obtaining specific intensional answers.

I=

For forward inference, an attribute type can be re- The following is the extensional answer to the above query:
duced to a more specific type and the rules that are associ-
ated with the specific types can be used for inference. For
backward inference, more knowledge can bcderived-from name cLas
the rules which in turn can also be used to further reduce Nathniel Hale 0103
the -attribute-type. Therefore, the intensional answers that Daniel Boone 0103
are generated by the proposed type inference are relevant*. Sam Raybun 0103

Lewis and Clark 0102-
Mariano G. Vtlejo 0102

3.3 Type Inference-with Multiple Type Hierarchies RhodelIsland 0101

For a given-objectt tye, multiple tye hierarchies Typhoon 1301

may be formed. For examp e, given the S MARINE re-
lation example, wecan construct yp Usingbackward inference with the induced rule R 5, the
on the value of attribute Type and another type hierarchy Using inene wr the deruved r-this e
based on the value of attribute Fleet (See Figure 4). Eac% following intensional answer can be derived for this query:
type hierarchy is associated with certain knowledge At = "Ship Classes in the range of 0101 to 0103
represented in the rules. are SSBN.

When a query is specified, these hierarchies can be Note that ship class 1301 is also a SSBN (see Appendix),
traversed at the same time to derive the intensional but is not included in: the answer. This is because back-
answers. The results from the multiple tree traversal can ward inference is used to derive the intensional answer
then be merged to obtain the final results. As A result, more which yields only a partial answer. As a result, the answer
precise and relevant intensional answers can be derived via is incomplete.- Note the following rule
type-inference using multiple type hierarchies.

4. Sip ataase xamlesR,,: if x.Class = 1301 then x isa SSBN.
is satisfied only by a single instance. For efficiency reasons,

We shall now use type inference to derive inten- R,,, is not maintained-in the knowledge base. However, if
sional answers. Given the rules induced in Section 2.4, let this rule is maintained by the system, then the derived in-
us consider the following examples: tensional answer will be complete.

Example 1: Example 3:

Find the Ids, Names, Classes, and Types of the List the names,-classes-and types of SUBMARINEs
SUBMARINE with Displacement greater than equipped with sonar BQS-04.
8000.

SELECT SUBMARINE.NAME,
SELECT SUBMARINEID, SUBMARINE.NAME SUBMARINE.CLASS, CLASS.TYPE

SUBMARINE.CLASS, CLASS.TYPE -FROM SUBMARINE, CLASS, INSTALL

FROM SUBMARINE, CLASS -WHERE SUBMARINE.CLASS = CLASS.CLASS
WHERE SUBMARINE.CLASS = CLASS.CLASS AND SUBMARINE.ID = INSTALL.SHIP
AND CLASS.DISPLACEMENT-.> 8000 AND :INSTALL.SONAR = "BQS.04"

The extensional answer of the above query is: The extensional answer of the above query is:

I id ,-name class , type name class type
SSBN730 Rhode Island 0101 SSBN Boefish 0215 SSN

SSBNI30 Typhoon 1301 SSBN Seadragon 0212 SSN
Snook 0209 SSNRobert E. Lee 0208 SSN

Using forward~inference with-the induced rule R and the
definition ofSSBN in the database schema, we derive the
following intensional answer which provides a summarized Using forward inference, from rule R 20 , we know the ship
answer for the query: type must be SSN; and from.rule R14 , we know the sorar

type is BQS. Next, using backward inference with the rule
At = "Ship type SSBN has displacement greater 9 we conclude that the answers must contain ships with

than 8000'19.than 8000" class from 0208 to 0215 (See Figure 4). We therefore have
the following intensional answer:

S Example 2:
Exaple2:At = "Ship type SSN with class 0208 to

Find the names and classes of the SSBN ships. -0215 is equipped with sonarBQ~S-o4."
SELECT SUBMARINE.NAME, SUBMARINE.CLASS

FROM SUBMARINE, CLASS In this example, we combine both forward and backward
WHERE SUBMARINE.CLASS = CLASS.CLASS inferences to derive the specific intensional answer from

two object types (SUBMARINE and SONAR) that are re-
_ _ _lated by the INSTALL relation.

Relevance concerns with avoiding intensional answers that
have little or no value to the user [MOTR90.

401

-Example 4: References

List the-Id, Name, Fleet. and Type of the SUBMA-

RINE with displacement less than 3000. [BROD84] Brodie, M., Mylopoulos, J., and
Schmidt, J. W., (eds.) On Conceptual

SELECT SUBMARINE.ID, SUBMARINE.NAME Modelling. Perspectives from Artificial-
SUBMARINE.FLEET. CLASS.TYPE Intelligence, Databases, and Program-

FROM SUBMARINE, CLASS ming Languages, Springer-Verlag,
WHERE SUBMARINE.CLASS = CLASS.CLASS 1984.
AND CLASS.DISPLACEMENT < 3000

The extensional answer of the above query is: [CHEN76] Chen, P.P.S., "The Entity-Relationship
Model: Toward a Unified View of
-Data," ACM Trans. on Database Sys-

I id- Bname i type I fleet I tens, Vo. 1, No. 1, Mar-1976.
5BN58 Bonefish, 5N_

SSBN584 Seadraon SSN - 2 [CHU90] Chu, W. W., Lee, R., "Semantic Query-
Optimization via Database Restructur-
ing," Proc. of the 8th Intl. Congress of

Using the type-hierarchy based on Type. we will get the fol- -Cybernetics and Systems, 1990.
lowing intensional answer: [HAMM80] Hammer, M. and Zdonik, S. B., Jr.,

"Knowledge-based query processing,"
At,: "Ships are -SSN." In Proc. of the 6th Intl. Conf. on Very

Using-the type-hierarchy based on Fleet, we will get anoth- Large Data Base., pp. 137-147, 1980.

er intensional answer: [HAMM81] Hammer, M., and McLeod, D., "Data-
base Description withSDM: A-Seman-

A12: "Ships belong to Fleet 2." tic Database Model," ACM Transac-
tions on Database Systems, Vol,6, No.

These two intensional -answers can be merged to obtain a 3, Sept 1981.
more precise answer:

(JANE81] "Jane's Fighting Ships", Jane's Pub-
Al: "Ships are SSN and belong to Fleet 2." lishing Co., 1981.

Note that by merging type inference results from multiple [KING81] King, J. J., "QUIST: A system for se-
type hierarchies, a -more precise intensional answer are mantic query optimization in relational
aerived. databases," In proc. of the 7th Intl.

Conf. on Very Large Data Base. pp.
5. Conclusions 510-517, 1981.

In this paper, we present an approach using type [MCLE821 McLeod, D., and Smith, J. M.,
inference and induced rules-to provide intensional answers "Abstraction in Database," Proc.
-to queries. An inductive learning technique is developed to Workshop on Data Abstraction, Data-
induce knowledge from the database contents. Using the bases, and Conceptual Modelling, SIG-
induced knowledge, inference can be performed on the MOD Rec., Vol. 11, No. -2, 1981.
-type hierarchies to derive intensional answers.

A machine learning technique-is used to acquire the [MICH83] Michalski, R. S., et al, (eds.) Machine
rules from database contents. These rules are stored in rule Learning: An Artificial Intelligence Ap-
relations. Forward and backward type inferences can be proach, Tioga Press, Palo Alto,-1983.
used individually or combined to derive intensional
answers. Further. inference with multiple type hierarchies [MOTR89] Motro, A., "Using Integrity Constraints
may provide more precise intensional answers than infer- to Provide Intensional Answers to Re-ence with single type hierarchy. lational Queries," In Proc. 15th Intl.

Conf. on Very Large Data- Bases,
Our experiments reveal that induced rules can play 1989.

an important role in type inference in providing intensional
answers. Further, type inference with induced rules is a [MOTR90] Motro, A., "Intensional Answers to Da-
more effective technique to derive intensional answers than tabase Queries," working draft, 1990.
using integrity constraints when the database schema have
strong type hierarchy and semantic knowledge. [QUIN79] Quinlan, J. R., "Induction Over Large

Data Bases", STAN-CS-79-739, Stan-
ford University, 1979.

[SHUM881 Shum, C. D., and R. Muntz, "An
Information-Theoretic Study on Aggre-
gate Responses," in Proc. 14th Intl.
Conf. on Very Large Data Bases,
1988.

4O2

Appendix. An-Example Ship Database

A Ship-Database:
-LS

SClMRsN I classNanC Typec Displacement I_
_

_ _

8§N 130 Tyhoon -- 1301-1 7 _'1SSN 75
SBN623 Nathaniel Hlalt 0103= 7 010oz Benijamnin Franklin SSN 20

SB69 Duniel Boone -0103- 7 0103 Laayette SSBN 7250

BN65 amRabu 003 70201 LosAngeles SSN 6000

SBN644 L,~wis and Clark 0102 7 0)203 Narwhal SN45

SBN658 Mariano G. Vallejo 0102 7 02(K Sturgeon SSN 3640

SBN730 RhodelIsland -010!- 7 -0205 Thresher SSN 3750

14N582 Bonefish 0215 2 -0207 Ethan Allen SSN 6955

SSN584 Seadragon 0212 2 _020S George Washington SSN 6019

SSS2 Sok0209 2 0209 Skipjack SSN 3075
SSN5921 Snook . e 0208 7 0212 Skase SSN 2360

S5N604- Haddo 0205- 7 0215 Barbel t4 24

SSN610 Thomas A. Edison 0207 7 1301 1Typhoon - -SSBN 1 30000 _

SSN4614 Greenling 0205- 6
SSN648 Aspo 0204 6
SSN660 Sand Lance 0204 6 INTAL SONAR

SSN16 Narwhal 0203 6 -Ship . Sonar § Sonar -SonarType
sS1671 Nazhal020 6SSBNI3O BQQ-2- - QQ.2 -BQQ

SSN673 Flying Fish 0204 6 55N2 Q. QQ.5~ Q

SSN4679 Silversides 0204 6 SSBN629 - BQQ-5 BQQ.8 IBQQ
55SN686 L. Mendel Rivers 0204 6- 5843 Q.2 BS0 Q

SSN4698 Omah 0201 6 SSBN644 BOO-S BQS.12 ZBQS

SS468 rMerton 021 6SSBN6S8- BQS-12 BAQS.13 A~QS
SSN704 IBaltimore - 020 -11 6 5S8BN730 BQQ-5 805.15 _BQS

55SN582 BQS-04 TACrAS TACTAS
SSN584 BQS.44

- S55N592 BQS-04
- Y SS5N601 BQS.04

TyeI- Typ rne ISSN6O4 BQQ-2
T! Obisc nuclea nuitle sub SSN4610 BOO-S
SSN nuclear submaine -SS5N1614 BQQ.2

SSN4648 - BQQ-2
SSN660 BQQ.5
5514666 BQQ-8

-SS14671 BQQ.2
SSN4673 BQS-12
SSN679 BQS-13
SSN4686 BQQ-2
55SN692 BQS-15
SSN698 TACTAS

5514704 BOO-S

403

Reprinted from tie Proceedings +of the IMS-91, Kyoto Japan, April 1991

A Pattern-based Approach for Deriving Approximate and Intensional[Answers*

Wesley W. Chu, Qirning Chen and Rei-Chi Lee

Department of Computer Science
University of California,-Los Angeles

Los Angeles, California

3 Abstract

A pattern-based approach is proposed to derive the approxi- salary ; 20K,
Snate-and intensional query answers when the-exact answer is or
5navailable r too time consuming to-generate. The approxi- department = 'research'

mate- and intensional-query answers-may be-refined if more can be used to define a pattern on the class EMPLOYEE. The
ime is available. Since the -pattem-based query processing objects of that class satisfying a pattern condition match the
erforms mainly main-memory based manipulations without pattern. The set ofUObject identifiers (Oid's) of those objects

tabase access until the last step of generating the final who match the pattern with condition C form an Abstract Pat-
results, it should provide faster response to queries than the tern Class (APC). These Oid's are called the instances of the
onventionalquery processing in real-time applications. APC. The number of distinguished Oid's inan APC is called

its-population. An APC denoted as P(C), where P is its name
and C is its condition, can be abbreviated as P.

ntroduction, An APC can subsume another in the following two si-

tuations:
Conventional query processing technique has many

short comings in supporting-real-time- applications. It cannot 1. When the pattern with a weaker condition Ct
rovide-approximate answers or derive-relevant intensional in- covers the pattern with a stronger condition C2 ,
,ormation when the exact answer is not available within a time the APC defined by C I subsumes the APC
imit. Due to-the computation complexity of obtaining precise defined by C2 . For example, the APC defined

data, a query-processing may not be completed in a restricted by condition "salary>20K" subsumes the APC
*me limit and the users get no answer in return. Although the defined by condition "salary>50K" on the same

Research on processing time-constrained specific queries, such class EMPLOYEE.
as on the incremental evaluation of aggregate queries [LIU87,

ZS901 -hasbeen conducted, presently there is no methodolo- 2. When a super-class A subsumes a sub-class B,
available for processing time-constrained general queries. then the APC defined on A subsumes the APC

o remedy this problem, we propose to use a pattern-based ap- defined on B by the same pattern condition. For
proach to derive approximate and intensional answers. example, the A.PC defined by "sex=M'" on a

super-class PERSON subsumes the APC
In this paper we shall first introduce the notions of pat- defined by "sex='M' on its sub-class EM-

ern and abstract pattern class, then present the proposed time- PLOYEE.
constrained query processing techniques using abstract pattern

lasses and pattern-based intensional knowledge. A Subsumption relationship introduces the partial ordering and
underlies the inheritance among APC's.

1. Pattern and Abstract Pattern Class The Gid's of a class of objects can be divided into a
large number of APC's defined by various conditions. To

Database objects may be divided into classes based on reduce the amount of predefined APC's we can maintain the
their commonly shared properties. F-'-r instance, a relation can APC's defined on a single attribute, and use them combination-
be viewed as a class of objects. A pattern is defined on a class ally. For example, for the class EMPLOYEE, a set of APC's
f objects by specifying a query condition. For example, based can be defined on the attribute "salary" as
n the class of objects of the following relation schema

P1 (Csalary>20K"),
EMPLOYEE : (ID, name, address, department, posi- P 2 ("salary>50K"),

tion, salary) P 3("salary>70K"),

such a condition as and a set of APC's can be defined on the attribute "deoart-

is research is supported by DARPA contract F29601-87-C0072.

ent" as However, an exact match is only a special case for the
-patterns based on such an attribute whose values can be or-

PA("departrnent='research'") dered. -In this Case we are more interested in the situation
P8 ("department='marketing'"), -where the QPC of a simple query is contained in a predefined
Pc("department='administration"'). APC, P 1, and contains another predefined APC, P2. In such a

situation, P I contains the complete set of Oid's.for answering
Since we do not restrict the set of APC's defined on a single at- the query but also contains some extra Oid's; and all the:Oid's
tribute to be mutually disjoint, they do not necessarily form-a of P2 can be used to answer the query but they are incomplete.

flpartition (SPY87I. -Instead, they may form a sumsumption Although neither P I nor P2 matches the QPC exactly, they in-
Ibased partial order or even a total-order such as the set-of dicate the range of the answer.

APC's defined on the attribute "salary".
Note that in the above situation P, subsumes P2. In

Figure 1 shows an example of pattern definitions based fact, in this approach we intentionally organize the APC's
ionthe attributes of "address", "salary" and "department" for the defined on a single attribute in a partial order with subsumption

class EMPLOYEE. relationship among them. For example, based -on the APC's
defined on attribute "salary", for a simple query- with condition

pttern pptt "Salary > 30K", its QPC is within the APC with condition
--- i CAEMPLOYEE.... "Salary>20K" and subsumes the APC with condition

pat:tern pattern P -" "salary>50K".
Ad. I A"n Adr-"SF' m -'_

3 For pattern-based query processing, A QPC may fall
-pattern -between a more-general APC, referred to as the Upper Bound
sa ary> CK patte rnaa pttez pattern Class (UBC), and a more specific APC, referred to as the
Alr >50K !eparte t pt .- C.Pa:, -t Lower Bound Class (LBC), where the-UBC is the least APC

saiar' y70K --ss,,c.-" '.--k,,. among the available APC's subsuming the QPC, and the LBC
is the greatest APC among the available APC's subsumed by

Figure 1. Patterns Defined for EMPLOYEE the QPC. If the exact matching cannot-be achieved, a neigh-
-borhood is selected where the QPC contains the LBC but isI in the following sections we shall present two tech- contained by the UBC (see Figure 2). With respect to the QPC,

niques for using the notion of pattern to- speed up query the UBC is complete but not all correct while LBC is totally
Iresponse in real-time applications. First we shall use the Old in correct but not complete.

the APC toaprovide indexing for speeding up data access,
where inexact matching between-a query and a pattern yields The upper bound and the lower-bound computed-for a
approximate answering. Second we shall use the pattern- query may be returned as an approximate answer as the real-

lated rules to provide intensional answers. time deadline approaches. The approximation can be iterative-
ly refined by testing each tuple (in the case of the UBC) or ad-
ding additional tuples (for LBC's). Such an incremental query

1 2. Speed up Query Processing by Abstract Pattern Classes processing can improve-the accuracy of the result as time per-~mits.
A query can be viewed as a pattern called a query pat-......

tern. The set of Oid's of those objects who match a query pat-
tem is called the Query Pattern Class (QPC) for the query

attern. A query pattern matches a-predefined pattern means
at the QPC of the query pattern is identical to the APC of the.

I predefined pattern, then the Oid's contained in the APC can be
used- as pointers for accessing the desired data. Based on a
known application domain and a set of frequently used queries,
it is possible to provide a set of patterns with relatively large T,, re,,hborood of Quer tter. Claus (QPC)
APC populations for speeding up query processing. Therefore with a Upper Bound Class t3C) and a Lover Bound Class (LC)

creating APC's is similar to replicating data, except that APC's Figure 2. A Query Pattern Class Bounded by LBC and UBC
only-contain Oid's rather than complete data and thus require
less storage. Now let us consider complex queries whose conditions

involve multiple attributes. Such a query condition can be step-
Letvus first consider simple queries whose conditions wise decomposed into disjunction and conjunction of query

involve only one attribute. An exact match often occurs conditions.
- between a simple query and-a pattern defined on such an attri-

bute whose values do not form an order. For example, a query Patterns defined on a single attribute may form a pat-
pattern with condition "department='marketing"' matches a tern hierarchy. Since patterns can be defined on multiple attri-
pattern defined by the same condition. In this case the QPC of butes, multiple pattern hierarchies for a single relation can be
the query pattern is identical to the APC of the predefined pat- formed based on database schema. For example, the EM-
tern, then the Oid's contained in the APC can be used to speed PLOYEE relation has several pattern hierarchies: by "depart-
up database access by index techniques. ment", "position", "salary" range, or "age" range. When a

query is related to a combination of these attributes, these Using the above set union and intersection operations,
hierarchies can-be traversed and the results merged via opera- we cantfind the QPC, UBC or LBC for the query. However, for
tions on APC's-to obtain the desired query answer. a query with conjunctive conditions, the difference between its

QPC and UBC. and between its QPC and LBC, may lie beyond
The QPC of a query with disjunctive conditions is the the approximation tolerance. To remedy this problem, for the

union of the QPC's for each participating condition. For ex- frequendy used queries with complex conditions, defining
ample, the QPC of a query with condition specific patterns with complex conditions is -recommended.

"salary>50K v department='research"' Further, maintaining and organizing APC's are application-
is the union of the QPC for dependent."salary>50K"

and the QPC for
"department='research"'. 3. Speed up Query Processing by Pattern-based Intension-

In general, let the query condition C be expressed as the con- al Knowledge
junction of C1 v v Cn, the corresponding QPC's, UBC's
and LBC's be QPCct QPCc,, UBCc1, ..., UBCc,, and -Intensional knowledge induced from the database
LBCc I LBCc,. respectively, then the QPC, UBC and LBC domain-.and expressed as rules can be specified on each pattern
for this query can be generated as for facilitating intensional query answering. For example all

employees in Los Angeles-require sccurity clearance and can
n be reached by the-phone number (213) 208-2222. Further, the

QPCc = U QPCc,, knowledge of one pattern may be used to imply the knowledge
i=1 about another pattern. For example, all employees in- the
n, research department make more than 50K (see Figure 3).

UBCc = U UBCc,, and
1=1 -An intensional answer provides a description rather
n than detailed data to a query. For example, instead of listing

LBCc =j LBCc,. all the persons that satisfy the query-condition "salary > 50K",
j=t an intensional but-possibly partial answer to that query might

be
The QPC for a query with conjunctive conditions is the "The salary of employees in the research department >

intersection of the QPC's for each participating condition. For 50K".
example, the QPC of a query with condition In a real-time system, when the deadline is approaching, the"salary>50K A department='research"' system will provide intensional and partial answers, if a corn-
is the-intersection of the QPC for plete answer is not available. When more time is available, the

"salary>50K" system can refine the answer by continuing the inference pro-
and the QPC for cess on other patterns for further facts, or terminate the infer-

"department='research"'. ence process and start retrieving instances from the database.
In gerieral, let the query condition C be expressed as the con-
junction of Cl A ..., A Cn, the corresponding QPC's, UBC's The subsumption relationship between patterns intro-
and LBC's be QPCc,, ..., QPCc,, UBCc1, ..., UBCc,., and duces the partial ordering and allows the inheritance of inten-
LBCc,, ..., LBCc,. respectively, then the QPC for this query sional knowledge among patterns. Further, given a set of
can be-generated as APC's the APC resulted from their intersection inherits inten-

sional knowledge from the set of APC's.

QPCc =-n QPCc,, Since our approach performs mainly memory-based
i=1 inference without physical database access until the last step of
n generating the final result, it should take less time than conven-

UBCc UBCci, anrl tional query processing. Since patterns are used to match a set
i=t of instances that satisfy a given condition, they provide a finer
n granularity schema and therefore more specific intensional

LBCc = , LBCc4 . knowledge than that of types [CHU91].
1=!

=-.-ee: t2:3112C8-2222

eca..:e seeC.-1y c!e~rance

.. ~pattern pattern pattern pattern
s.- oy ore -, airy>2O p.rrrnr Depar .nt-=|opae .nr--as :.42S X .-ploy.e o-- Res..reh " Ark4t- 1' ,n
Slat)SOK 12: -@S

F lary0 has noh.o der

Figure 3. Intensional Knowledge of Patterns

4. Summary

The pattern-based approach-presented in this paper sup-
rts approximate-and intensional-query processing. We have

implemented a prototype system at UCLA using a naval ship
atabase as a testbed on Sybase, a commercial relational data-

se management system. Pattern hierarchies and other
owledge of the naval database are represented in LOOM

[MACG89]. Our preliminary experience indicates that the pro-
sed approach is an efficient method for providing approxi-

ate and intensional answers for real-time applications.

Referenes

HU91] W. Chu, R.-Lee and-Q. Chen, "Using Type Infer-
-ence and -Induced Rules to Provide Intensional
-Query Answering," Proc. 7th International Confer-
ence on Data Engineering, Japan, 1991.

T[LIU871 J. W. S. Liu, K. J. Lin, and S. Natarajan, "Schedul-
ing Real-Time, Periodic Jobs Using Imprecise
-Results," Proc. IEEE Real-Time Syst. Symp.,
-1987.

C891 MacGregor, R. and Yen, T. "LOOM: Integrating
Multiple Al Paradigms," USC/Information Sci-
"ences Institute, Technical Report, 1989.

ZS90] G. Ozsoyoglu, Z. Ozsoyoglu and W. Hou,
"Research in Time- and Error-Constrained Data-

7base Query- Processing," 7th IEEE- Workshop- on
Real-time Operating Systems and Software, 1990.

PY87] N. Spyratos, "The Partition Model-: A deductive
Database Model," ACM TODS, Vol.12, No.1,
1987.

Computer Science Department TechnicalReport

University of California

Los Angeles, CA 90024-1596

CAPTURE DATABASE SEMANTICS BY RULE INDUCTION

Wesley W. Chu May 1990

Rei.Chi Lee CSD-900013

Kuorong Chiang

Capture Database Semantics by Rule Induction •

Wesley W. Chu, Rei-Chi Lee and Kuorong Chiang

Computer Science-Department
University of California, Los Angeles

Los Angeles, California 90024

ABSTRACT

Database semantics can be classified into database structure and database characteris-

tics. Database structure specifies the inter-relationships between database objects, while data-

base characteristics defines the unique characteristics and-properties of-each object. To provide

knowledge-based data processing, we need to gather and maintain knowledge about database

characteristics. To capture the database characteristics, a Knowledge-based Entity Relationship

I (KER) Model that provides knowledge specification is proposed. A knowledge acquisition

methodology is developed that uses machine learnine to induce the database characteristics

knowledge from the database instances. Using a ship database as a test bed, a knowledge base

U has been generated by the proposed methodology. The induced knowledge has been used for se-

mantc query optimization and data inference applications.

This research is supported by DARPA Contract P29601-87-C-0072.

1. Introduction

The use of knowledge to support intelligent data processing has gained increasing atten-

tion in many database areas. For example, integrity constraints have been used as semantic

knowledge to improve query processing-[KING8 L, HAMM80]. Most of these works rely on hu-

man specified constraints and-very few, if any, tools exist in gathering this knowledge.

In recent years, much effort has been devoted to the development of semantic data

models LHAMM8i, MCLE82, BORD84]. Most of these works emphasize structure modeling

and allow for describing the database in a more natural way than traditional data models. These

models are used mainly to capture the semantics of the database structure as described in the-da-

tabase schema. However, when a database is designed, most database designers use some se-

mantic rules to distinguish among similar objects and specify the database schema-according to

-these rules. In many cases, objects are often classified into different categories according to cer-

tain characteristics or properties. To distinguish them from the semantics of database structure,

we shall refer to these semantics as database characteristics which are useful in- knowledge-

based data processing.

The type of database characteristics that are specified as integrity constraints [HAMM75]

by human experts is not only time consuming to acquire but also is not too useful for

knowledge-based data processing. To remedy this problem, we propose to use the database

schema to guide the learning process and use the machine learning technique to induce database

characteristics from the database. The database schema is specified in a knowledge-based

Entity-Relationship (KER) Model which provides knowledge specification capability.

In this paper, we shall first discuss the problem of knowledge acquisition in databases.

Next, we propose a model-based knowledge acquisition methodology that is based on the

knowledge-based Entity-Relationship (KER) Model. We then present a rule induction algorithm

and an example. Finally, we present the use of the induced rules for semantic query optimiza-

tion, intensional query answering, and data inference applications.

I it li, ,tm litm ,, nI

2. Knowledge Acquisition in-Databases

2.1 Knowledge Acquisition

The acquisition of knowledge is one of the most difficult problems in the development of

a knowledge-based system. Currently, the acquisition of knowledge is still largely a manual pro-

cess. The process usually involves a-knowledge engineer who uses some expert system tools to

transform the available knowledge into some internal form- (knowledge representation) that is

understandable by the expert system. It usually involves (MICH83]"

L studying application literature-to obtain fundamental background information,

2. interacting with the domain expert to obtain the expert level knowledge,

I . 3 -translating and encoding the expert knowledge for the-system,

4. refining the knowledge base through- testing and further interaction with the domain ex-

U pens.

Such a manual process is very time-consuming. Further, even if the domain experts have

the expertise, they may often not-be able to describe their own expertise to others. As a result,

useful knowledge may not be easy to collect. To remedy this problem, we propose to use the

machine learning technique to construct the knowledge base. Rather than using knowledge en-

gineers learning the application, or the domain experts learning the expert system tools and using

their understanding of the application to construct the knowledge base, we propose to usej machine learning technique to understand the database application -and to create the knowledge

base automatically.

il 2.2 Knowledge Acquisition by Rule Induction

Rule Induction [QUIN79, MICH83] is a technique of machine learning that has been

* used in Al research to induce rules from a set of training examples. For a given concept and a

- set of training examples representing the concept, find a description for the concept such that all

2

me positive examples satisfy the description and all the negative examples contradict tie

Al description. One approach is to examine the training examples simultaneously to deternine

which descriptors are most significant in identifying the concept from other related concepts.

This approach recursively determines aset of descriptors -that classify-each example and selects-

3 the best descriptor frcm a set of examples based on a statistical estimation or-a theoretical infor-

mation-content. The se. of examples is then partitioned into subsets S 1, S2, ..., S,, according to

the- values of -the descriptor for-each example. This technique is recursively applied to each Si

until each subset c .,,ains only positive examples so that the set of descriptors describes the ex-

ample set. Although the automated approach speeds up the knowledge acquisition process, it

-has been used mainly in applications wher. the size of training examples is small. To apply this

3 technique directly to a database would be too costly because the database usually consists of a

very large volume-of data. However, since a-database schema is created by-the designer-based

on the semantic characteristics of the application, and since semantic characteristics are the can-

didates for rule induction, we can use the database schema to guide the knowledge acquisition by

I machine learning and generate the rules automatically.

3. Model-based Knowledge Acquisition Methodology

I 3.1 The Knowledge-based Entity-Relationship (KER) Model

To enhance. -the modeling of such -capabilities as type hierarchy and knowledge

- specification, we introduce a Knowledge-based E-R (KER) model, an extension of the Entity-

Relationship Model [Chen76]. KER provides the following three generic constructs of data

I modeling:

1. has/wfh (aggregation) which links an object with another object and specifies a

certain property of the object (e.g., a CLASS has an instructor);

2. isa/with of contains/with (generalization /specialization) which links an object

type with another object type and specifies an object as a subtype of another ob-

ject (e.g., PROFESSOR is-a subtype of PERSON or PERSON contains PROFES-

V3

SOR, STUDENT, and STAFF);

3. has-instance (classification) which links a type to an object that is anzinstance of

that type (e.g., "John Smith" is an instance of PROFESSOR).

Note that in addition to the semantic constructs provided by most semantic data models, KER

also provides knowledge specification which is represented by ,he with-constraint information.

Such knowledge specification associated with each database definition is useful for knowledge-

based data processing.

In KER, an entity is a distinctly identified object, forexample, a specific person, a depart-

ment, or a course. An entity set is a collection-of entities. Each of these-entities is distinguished

by a unique identifier. The set of unique identifiers is called-the primary key of the entity set. A

relationship specifies-the connections between different entities. Conceptually, both entity type

and relationship type can be considered as an object type and can be modeled using the has/with

construct. For example, Figure I shows an object type SUBMARINE represented in KER.

-object type SUBMARINE

has key: Shipid domain: char[10]
has: ShipName domain: char[20]
has: ShipType domain: char[4]
has: ShipClass domain: char[4]
has: Displacement domain: integer

with Displacement in (2000..30000]

Figure 1. The KER representation of an object type SUBMARINE.

The object type can also be represented mathematically as:

{ ~[a l,a2,...,an] l a, e Dl, a2r= D 2,an rz Dn with T?

where each tuple [a 1, a2, ..., an] is an instance of such a type. Note that each ai defines an attri-

bute of the object type, and Di specifies its attribute domain while T states constraints on the al-

lowable values the tuple can have. An attribute domain can also be an entity type. The system

4

[provides aset of basicdomains such as integer, real, string, and date. A more complexdomain[Ican -be constructedj from these basic domains. For example, we can define a domain AGE on theba.s>-- domain INTEGER with the -range- [O.. 2001. A BNF description of the KER model--is given[in-the N~ppendix A.

[3A -yp- :iierarchv uses spca zto/eeaiato constructs (isa or contains relation-
ships to efin thesubtpe-and supertvpe relationships. For example- SSBN (Ballistic Nuc~eMissile Suumarine) is-a subtype of SUBMARINE, and CLASS-0101 is a subtype of SSBN, and* therefore, a type-hierarchy consisting of-SUBMARINE, SSBN, and CLASS-0101 is formed (see.1 Figure 2).

CLAS-0101 CL.ASS-0103 CLAS020 *** 01ASO

Figure 2. A Type Hierarchy SUBMARINE

A subtype inherits all the properties of its- supertypes, unless some of the properties have been
redefined in the subtype. For example, type SUTBMARINE has attributes ShipID ,and Ship-
Name, and type SSBN has attribute TypelD) and TypeName; subtype CLASS-0101 will automat-
ically -inherit properties -Ship!]) and ShipName from supertype SUBMARINE, and inherit pro-
perties TypelD) and TypeName from another supertype SSBN.

- A subtype can also be derived from another type by providing a derivation specificagion.
For example, one can define a subtype SSBN (all the ships with ship type SSBN) of type SUB-
MARINE by specifying:

-SSBN isa SUBMARINE with ShipType "SSBN'

The with-clause defines the derivation specification of the subtype SSBN. It can also be con-

sidered as associating a-constraint with this subtype.

The type hierarchy is represented in KER as:

E1 isa E with 'T,

E2.isa E with -Y2

E, isa E with Y,

or alternatively, it can also be represented as:

E Contains E 1, E2, ..., E, with P.

This definition states that the instances of E can be divided-into n disjoint subsets E 1, E2, ... E,

with the constraint 'P. Each Ei is a subtype of E.

To provide a graphical representation of the inter-relationships among the entity

types/subtypes, relationship types, and derivation specification, we can extend the ER diagram

by adding the type hierarchy with constraint representation, as shown in Figure 3. A representa-

tion of a ship database schema by the KER Diagram is shown in Figure 4.

6

RELATIONSHIP

CC1111)ATTRIBUTE

TYPE H[ERAWc~y

4> WITH CONSTRAIN4T

HAS-INSTANCE

Figure 3. Coinponet. ~s of the KER Diagram

P' X Ws SUBMAPJINF y isa SONAR 0/

If ~~~~i 0Q.0 So0gBS.I

BQ-04 .s Sonar <2I45cD15<6955

BQS.12 BQS-13 M

- co~o1 * . _C1301 ~ 1 o o o C 21

= Figure 4. Representing the Ship Database Schema in KER Diagram

7

3.2 Classification of Semantic Knowledge

Semantic knowledge of a database can be divided into- two categories: enterprise

knowledge- and database knowledge. Enterprise knowledge is the semantics of the database ap-

plication. For example, the integrity constraint is the enterprise knowledge. Database knowledge
is an instance of the enterprise knowledge which describes-the current database contents. For ex-

ample, enterprise knowledge specifies that the displacement of a ship must be greater than 2,000
tons, while database knowledge specifies that the displacements of the ships are between 2,360

tons to 81,600 tons. Thus, database knowledge is more effective for query optimization.

The semantic knowledge associated with each database are domain knowledge, intra-

object knowledge, and inter-object knowledge as follows:

Domain Knowledge:

Domain knowledge defines specific properties of each entity set such as the attri-

bute domains, value ranges, etc., and restricts the allowable instances of an entity

set. For example, the displacement of a ship is in the range of 2,000 tons -

100,000 tons, and the displacement of an Attack Aircraft Carrier is in the range of

75,700 tons - 81,600 tons.

Intra-Object Knowledge:

Intra-Object knowledge specifies the relationships between attributes within an

object type. For example, the object type submarine has the intra-object

knowledge that if the displacement is less than 7,000 then it is a nuclear subma-

rine (SSBN).

Inter-Object Knowledge:

The inter-object knowledge specifies the constraints that the instances of a rela-

tionship set must satisfy. For example, the relationship VISIT involves entities of

8

SHIP and PORT and satisfies the constraint that the draft of the ship must be less

than the depth of the port. The inter-object knowledge can be induced= from the3 interrelationship between SHIP-and PORT linked by-the VISIT relationship.

[3.3 The Knowledge Acquisition Methodology

After classifying different types of knowledge and defining the target attributes for

knowledge acquisition, let us now describe our Knowledge Acquisition Methodology (KAM),

which consists of three stages: schema generation, automated knowledge acquisition, and

knowledge base refinement as follows:

1 1. Schema Generation:

I The DBA uses the KER model to define a database schema. This step includes:

3 a. Identifying entities and associated attributes.

3 b. Identifying generalization hierarchies. If the database already exists, use the clus-

tering ' .dexes to define subtype entities. The indexes are the target attributes.

c. Identifying aggregation hierarchy. Designate each of the referential keys as the

target attributes. A referential key is the attribute of a relationship which is a key

to some other entity.

2. Automated Knowledge Acquisition:

I a. Determine the domain con.traint for each attribute of each entity type.

3 b. Use the rule induction algorirhm (described in the next section) to induce inter-

structure and intra-structure knowledge related to the target attributes from the

database.

I 3. Knowledge Base Refinement:

* 9

Based on the expert's own knowledge, domain experts can refine the rules in the
knowledge base to improve system performance Unlike the manual approach to
knowledge acquisition, ourmethodology uses the database schema to guide the learning
process to induce knowledge from the database contents. Such an automated process

reduces the time for knowledge acquisition.

I 3.4 The Rule Induction Algorithm

SWe have implemented a rule induction algorithm in-EQUJEL (Embedded QUEL) and C
on top of the INGRES- system. Rule induction is performed using the relational operations to

f generate semantic rules for pairwise attributes. We shall- present the algorithm that induces

-correlated relationships of the rule scheme X --> Y for attribute pair (X, Y).

Rule Induction Algorithm.

l 1. Retrieving (X, Y) value pairs

Retrieve into S the instances of the (X, Y) pair from the database. The corresponding

QUEL statement is:

ii range of r is relation

retrieve into S unique (r.Y, r.X)
sort by r.Y

2. Removing inconsistent (X, Y) value pairs

Retrieve all the (X, Y) pairs that have multiple Y values for the same valu. of X. Let T

be the result of this relation.

!ange of r is relation
range of s is S
retrieve into T unique (s.Y, s.X)where (r.X = s.X and r.Y != s.Y)

Remove all the (X, Y) pairs that have different Y values for the same X value from S.

I10

range of s is S
range oft is T
delete s
where (sX = t.X and s.Y = t.Y)

3. Constructing Rules

For each distinct value of Y in S, say y, determine -the value range x of X and create a

rule in the form-of

i if X X <X2 then Y =y.

.3 A value range -is defined as a consecutive sequence of X values that-occur in the data-

base. The rules-generated for the-same attribute pair-(X, Y) consist of the rule set desig-

i nated by the rule scheme-X --> Y. Note that when x = x2, then the rule reduces to

ifX =x then Y =y.

* 4. Pruning the Rule Set

Although storing more rules in the knowledge base-provides more opportunities for infer-

ence, it also increases the overhead for storing and searching these rules. Therefore,

when the number of rules generated becomes too large, the system must reduce the size

of-the rule set. In general, there are-two criteria for rle pruning:

1. Coverage Measure.

Each rule is satisfied by a certain number of database instances. Coverage

. specifies the number of database instances where the rule is satisfied.

1 For applications such as semantic query processing, the higher the cover-

age measure of a rule, the higher the probability that this rule will be used.

Thus, we keep these rules that have a coverage measure higher than a

prespecified number Nc, which is a cut-off point for pruning the rules.

11

11 _ _ _ __ _ _ _ _ _

Based on this criteria, we remove rules from the knowledge base when the

coverage measure is less than N,. Selecting the N, depends on the tra-

deoff-between the applicability of the rules and the overhead for storing

and searching these-rules.

2. Completeness Measure.

Im Each rule scheme (X --> Y) contains a set of rules specifying the relation-

ship between the attributes X and Y. The completeness measure is the

sum of the coverage of the rules of the same scheme divided by the total

number of (X, Y) value pairs in the database. If the completeness measure

is equal to 100%, that means we can always find a rule (andY's value) for

each X' s value.

For data inference applications, higher completeness measure enable us to

infer more accurate answers. Therefore, for such applications, we want to

i keep the completeness- measure of rule schema higher than a prespecified

number- C, which is a cut-off point for pruning the rules. Thus, we re-

move all the rule schema where completeness measure are less than C,.

I 4. A Rule Induction Example

Im To experiment the proposed knowledge acquisition methodology, we shall use a ship da-

tabase which was created by the System Development Corporation (now UNISYS) to provide a

a generic naval database based on (JANE81]. The database is-currently running on INGRES on a

Sun 3/60 machine. We shall use the nuclear submarine portion of the database which consists

the following relations (a sample database- instance is given in the Appendix C):

SUBMARINE = (Id, Name, Class)

CLASS = (Class, ClassName, Type, Displacement)

TYPE = (Type, TypeNamz)

12

SONAR = (Sonar, SonarType)

INSTALL = (Ship, Sonar)

The database consists of five entity types: SUBMARINE, CLASS, TYPE, SONAR,

SONAR-YPE and-one relationship type: INSTALL. The three entity types SUBMARINE,

TYPE. and CLASS form a ship hierarchy and the -entities SONAR and SONAR TYPE form

another hierarchy as shown in Figure-4. Each submarine type contains a set of submarine classes

and each submarine class contains-a set of submarine-instances. For example, submarines are di-

vided into two types: SSBN (Ballistic Nuciear Missile Submarine). and SSN (Nuclear Subma-

rine). The SSBN ships contain three classes of ships: 0101 (Ohio), 0102 (Benjamin Franklin),

and 0103 (Lafayette);and there are three ships that belong to the ship class 0103 (Lafayette).

Each ship class has its specific characteristics such as displacement, length, beam, etc..

For tactical or strategic reasons, different sonars are installed on different ships. The relationship

INSTALL indicates the sonars installed on the different ships. A textual representation of the

database-schema is given in Appendix B.

Applying our knowledge acquisition technique to the ship database generates 17 rules as

shown-below (rules are grouped by object types):

(1) SUBMARINE

R 1: if SSN623 < Id< SSN635 then x isa C0103
R 2: if SSN648 .IdS5SSN666 then x isa C0204
R3 : if SSN673 IdS SSN686 then x isa C0204
R 4 : if SSN692<Id< SSN704 then x isa C0201

(2) CLASS

R 5: if 0101 <Class<O003 then x isa SSBN
R 6:if 0201 Class 0215 then x isa SSN
R7 : if Skate<_.ClassName <Thresher then x isa SSN
R8 : if 2145< Displacement<6955 then x isa SSN
R 9: if 7250< Displacement < 30000 then x isa SSBN

(3) SONAR

RIO: if BQQ-2 Sonar BQQ-8 then x isa BQQ

13

Rjj: if BQS-04<Sonar<BQS-l5 then x isa BQS

(4) INSTALL (x isa SUBMARINE and yisa SONAR)

R 1:-if-SN58:5x~-=SSN601 then v isa BQS_
R 13: if SSN604 < xd= SSN671 then y isa BQQ
R 14: if x.Class = 0203 then y isa BQQ
R 15: if 0205 x.Class 0207 then y isa BQQ
R 16 : if 0208 x.Class _ 0215 then y isa BQS
R 17: if y.Sonar = BQS-04 then x isa SSN

I For the intna-object relationships, we have found rules about the -relationships between

Ship Id and Ship Class; Ship Class and Ship Type; Class Name and Ship-Type, and Displacement

and Ship Type. The classification of the submarines into different classes and types is fairly

stable, thus, these rules are stable as well. For the inter-object relationships, the following typi-

cal- rules have been found: the submarines of the classes from 0205 to 0207 carry only the

"BQQ" type of sonars (R 15); and the sonar "BQS-4" is only carried by the-SSN (Nuclear Subma-

rine) type of submarines (R 17); etc.

5; Applications

In this section, we shall illustrate the use of induced rules in such areas as semantic query

3 optimization, intensional query processing, and data inference applications.

5.1 Semantic Query Optimization

Semantic query optimization uses the semantics to transform a given query to a new

query. The transformed new query produces the same results as the original query but is more

3 efficient to process [KING81, HAMM80]. Integrity constraints are commonly used as semantic

knowledge for query transformation. However, due to the generality of the integrity constraints

-, that describe all -the valid states of the database instances, they are not effective for semantic

Squery optimization.

Using the proposed rule induction, the relationships between the attributes as well as the

Sinter-relationships between relations can be captured as semantic rules. These semantic rules

m provide more efficient semantic query transformation than the integrity constraints.

14

I It is well-known that using -a clustering index provides faster access to relations than that

of a segment scan. Therefore, a clustering index is often used to answer the queries. Due to

3 similar data characteristics, objects are often clustered together. If we select the clustering index

as-the target attribute during rule induction, useful classification rules representing the charac-

teristics of each cluster can be induced. For example, using ShipType as a clustering index, we

obtained the induced rules in Section 4. Based on R 9 , the following-query

Q: "List the names of the submarines with displacement greater than 8,000."

-I can-be transformed to

Q': "List-the-names of the SSBN submarines with displacement greater than 8,000."

Processing Q' is much faster than Q, since processing Q requires a scan of the entire relation,

while Q' can use ShipType as a clustering index.

5.2 Intensional Query Processing

Conventional query processing provides answers in the form of an enumeration of data-

base instances retrieved from the database. Intensional query processing provides answers that

characterize the instances satisfying the query rather than listing all the instances [SHUM88,

MOTR89]. Traditionally, the knowledge about the database structure such as type hierarchy is

used to derive intensional answers.

However, due to the limited semantics in database structure, using the type hierarchy

ft alone can only generate very limited forms of intensional answers. The induced rules can be

used to derive much more specific intensional answers. Based on the database schema, inten-

sional answers can be derived from the induced rules by traversing down the type hierarchies of
the object types as specified in the query. Such a technique is called type inference [CH- 90a].

For example, considering the query

"List the submarines with displacement greater than 8,000."

15

Since the condition "Displacement > 8000" is-subsumed by "Displacement a 7250", based on

the induced rule R 9, we can traverse down from the submarine hierarchy to derive an intensional

answer for the query which is "SSBN".

5.3 Data Inference Applications

In a distributed database system, databases are often partitioned into-fragments and repli-

cated and stored at several sites. However, during network partition, the data fragments-may be

inaccessible which reduces data availability. Since database-attributes are often related-to each

-other, the values of certain attributes often -can be inferred-from other attributes. To improve

data-availability, we can use data-inference to-infer inaccessible data-from accessible data [CHU

90b].

Using the proposed knowledge acquisition approach, correlated knowledge between attri-

butes can be extracted from the database contents- Since these-rules represent summarized -infor-

mation, the storage size of these rules is much less than that of the replicated copies of the data.

Such induced rules can then be replicated at each site or certain critical sites to imnprOve-data

availability during network partitions. For example, given the query,

"Which submarines carry the BQS type of sonar?"

To process the above query, we need the-INSTALL relation. However, due to network partition-

ing, the LNSTALL relation (See Section 4) is no longer available. As a result, we are unable to

answer the query by conventional query processing. However, using the induced rule R 1 2, we

can derive that the Id-of the ships are in the range from "SSN582" to "SSN601". Then, from the

SUBMARINE relation we can derive the following answer for the query:

_ SSN582, SSN584, SSN592, SSN601).

For more discussion on this, the readers should refer to (CHU 90b].

16

6. Conclusions

Database semnantics can be classified into database structure and database charactens-
tics. Semantic data models emphasize the modeling structural aspects of the database, while the
database characteristics define the unique characteristics and-properties of objects which are irn-
portant to knowledge-based data processing. A Knowledge-based Entity-Reiationship (ICER)
Model is proposed to provide knowledge specification capability and to maintain the database
semantic knowledge. A knowledge acquisition methodology is developed that:is based upon the
KER Model and machine learning techniques to acquire the database characteristics from the da-
tabase. These database characteristics are useful for semantic query optimization and data infer-

ence applications.

-17

REFERENCES

[BROD84] Brodie, M., Mylopoulos, J., and Schmidt, J. W., (eds.) On Conceptual
Modelling. Perspectives from Artificial Intelligence, Databases, and Pro-
gramming Languages, Springer, New York, 1984.

[CHEN76] Chen, P.P.S., "The Entity-Relationship Model: Toward a Unified View of
Data," ACM Transaction on Database Systems, Vo. 1,-No. 1, March 1976.

(CHU 90a] Chu, W. W, and=Lee, R., "Using Type Inference and Induced Rules to-Pro-
vide IntensionalAnswers," Tecinica1 ReportCSD-9000006, Computer Sci-
ence-Department, UCLA,-Los Angeles, 1990.

[CHU 90b] Chu. W. W, and-et al, "An Inference Technique for Distributed Query Pro-
cessing in a Partitioned Network," Technicaf R CSD-9000005, Com-
puter science Department, UCLA, Los Angeles, 1990.

(HAMM75] Hammer, M., and McLeod, D., "Semantic integrity in-a relational data base
system," In Proceedings of the First International Conference on Very Large
Data Bases, IEEE, New York, pp. 25-47, 1975.

[HAMM80] Hammer, M. and-Zdonik, S. B., Jr., "Knowledge-based query processing," In
Proceedings of the 6th International Conference on Very Large Data Bases

(Montreal, Oct. 1-3). IEEE, New York, pp. 137-147, 1980.

[HAMM81] Hammer, M., and McLeod, D., "Database Description with SDM: A Seman-
tic Database Model," ACM Transactions on Database Systems, Vol. 6, No.
3, September 1981.

[JANE8 1] Jane's Fighting-Ships, Jane's Publishing Co., 1981.

[KING8 1] King, J. J., "QUIST: A system for semantic query optimization-in relational
databases," In proceedings of the 7th International Conference on Very
Large Data Bases (Cannes; Sept. 9-11). IEEE, New York, pp. 510-517.

[MCLE82] McLeod, D., and Smith, J. M., "Abstraction in Database," Proc. Workshop
on Data Abstraction, Databases, and Conceptual Modelling, SIGMO
Record, Vol. i1, No. 2, February 1981.

[MICH83] Michalski, R. S., et al, (eds.) Machine Learning: An Artificial Intelligence
Approach, Tioga Press, Palo Alto, 1983.

[QUIN79I Quinlan, 1. R., "Induction Over Large Data Bases", STAN-CS-79-739, Stan-
ford University, 1979.

18

l

Appendix A. A BNF definition of the KER Model-

We willuse the following BNF conventions:

<...> non-terminal symbol

(x x x appears 0 or more times

x] x appears 0or I time

xl I x2 1-... I xn x 1 or x2 or...or xn

1' literal-symbol

A.I Data Definition Statements

<KER definition>

<domain definitions> I

<object-type definitions> I

<type hierarchy definitions>

A.2 Domain Definition Statements

<domain definitions> ".'=

<domain definition> (, <domain definition>)

<domain definition> ::=

domain <domain name> is <domain description>

[<domain sepcification>]

<domain name> ::= identifier

<domain description> ::= <standard domain> I <object domain>

19

<standard domain> :=string I integer I real I date

<domain specification>:-

<range -specification> I

set specification>

<range specification>:=

range <lowerboundary> <value> ',' <value> <upper boundary>

<lower boundary> ::= ['I (

<upper boundary> ::= II I

<set specification>:

set of '[{' <value> {, <value> 'V

<value> ::=-identifier I <integer> I <real>

<object domain> ::= <object type -name>

<object type name> ::"--identifier

A.3 Object Type DefinitiolIizStatements

<object type definition>:=

object type <object type name>

<attribute list>

<with constraints>

<attribute -list>

<attribute> (,<attribute>

<attribute>

has [key] : <attribute name> domain <domain name>

20

<with constraints>-:

with <constraints>-

4 A4 Type Hierarchy Definition Statemnen ts

<type hierarchy definition-::

<object type-name>- contains <sub-type list>

L<attribute -list>

[<with constraints>-]

<Sub-type list>

<object rype~name>{-(<object type-name>

A.5 -Constraint -Defi-nition Statemne nts

<constraints>-:

<constraint> [, <constraint>

<constraint>

<domnain range constraint> v

<semnantic rule>

<domnain range:constraint>

<attribute name> in <domain sepcificazion>

<semantic rule> -:

<constraint rule> I

<structure rule>

<constraint- rule>:

if' <prernise>then <consequence>

<premise>

21

<conjuntives>

<Conjunctves>-.-

<clause> { and <clause>)-

<clause> ::=

<attribute>-<operator> constant

<consequence>

<attribute> '=' constant

<structure rule>

if <role definitions>

and-<conjunctives>

then <variable> isa <object type name>

<role definitions> =

<role> { and <role>)

<role>-::= <variable> isa <object type name>

<variable> :-= identifier

22

Appendix B-. A KER Representation of a -Naval Ship Database-Schemna.

B.1- -Domain -Definitions

domain: NIA.ME isa CHAR(201

domain: CLASSNAIME isa NAME
dom ain: SHIP-IAINE isa NALME

domain: TYPENAIE isa CHARf 301

domain: SONAR _NAME isa CHAR[81

B.2 -Object, Type Definitions-

object type CLASS

has k ey: Class domain: CHAR(41
haW. Type domain: type
has: Qlassi~ame domain: CLASS_NAMVE
has: Displacement domnain: INTEGER

with /#-constraint rules-*/

if "0101-" Class S "0103" then Type-= "SSBN"
if "0201" Class 5 "0216" then Type = 'SSN"

CLASS-contaigs SSB\N. SSNs

BMWit* x isa CL ASSN *

it 2145 x-.Di.splacement -6955 then-x-isa SSN
if 7250:5 x.Displacement S 30000 then x isa SSBN

object type SUBMARINE

has key: Id -domain: CHAR(71
has: Namne -dornin: SHIP._NAME
has: Class -domain: class

-SUBMA,-RINE-contains-COll-,..., C1301

object-type rTYPE_

has -key: TYPe domain: CHAR(41
has: TyPeNan. domain: TYPE:,_NAMEF

object--type SONAR

has key., Sonar -domain: CHARM8
has: -Sorsai'ype domain: SONAR-NAMNE

SO.WAR con taills I3QQ, BQS, TACTAS

23

With 1*-X iS2 SONAR-*/

it BQQ-2 5 x.Sonar S _BQQ-8 then x isa, BQQIIif BQS-04:5 x.Sonar< B1QS_ 15z then x isa BQS
if x.Sonar: "T.ACTAS" then x isa TACTAS

object type INSTALL

has key: Ship -domain: SUBMARINE
has: Sonar domain: SONARI with /* xc isa SUBMARILNE and y isa SONAR/

if x.Class = 0203 then -y isa BQQ
if -0205S:5x.Caiss- 50207 then- y isa BQQ
if 0208 xCass 0215 then y isa BQS
if y.Sonar=BQS-04 then x isa SSN

24

AppendixC. A Ship Database and Its Induced Rules

A-Ship Database:

Relation SUBfARINE Relaon INST ALLE
Id Name Class)nip sonarS:'SSBNI3T- Typhoon 1-3"01 55BN30 BQQ-2-

SSBN623 Nathaniel Hale 0103 SSBN623 BQQ-5
S SBN629 Daniel Boone 0103 SSBN629 BQQ-5
SSBN635 Sam Rayburn 0103 SSBN635 BQS-12

l SSBN644 I Lewis-and Clark 0102 SSBN644 BQQ-5SSBN658- Mariano G. Vallejo 0102 SSBN658 BQS-12, SSBN730 Rhode-Island 0101 SSBN730 BQQ-5
SSN582 Bonefish 0215 SSN582 BQS-04
i SSN584 Seadragon 0212 SSN584 BQS-04-
SSN592 Snook 0209 SSN592 BQS-04
SSN601 RobertE. Lte -0208 SSN601 BQS-04
SSN604 Haddo- 0205 -SSN604 BQQ-2
SSN610 Thomas A. Edison 0207 SSN610 BQQ-5
SSN614 Greenling 0205 SSN614 BQQ-2
5SN648 Aspro 0204 SSN648 BQQ-2
-5SN660 Sand Lance 0204 SSN660 BQQ-5
SSN666 Hawkbill 0204 SSN666 BQQ-8
SSN671 Narwha 0203 SSN671 BQQ-2-SSN673 Flying Fish 0204 SSN673 BQS-12
SSN679 Silversides 0204 SSN679- BQS-13
SSN686 L. Mendel Rivers 0204 SSN686 BQQ-2
SSN692 -Omaha 0201 SSN692 BQS-15
SSN698 Bremerton 0201 --SSN698- TAC AS

ReSSN74 Baltimore 0201 I-SSN704 I BQQ-5

________Tff___
-R-Iino

T)Z TypeName - -R on SONaRTyp
* S BN I ballisuc nuclear missile sub - -- -

SSN I nuclear submarine -zBQQ-5 BQQ
BQQ-8 BQQ- - :-BQS-O4- BQS

Relation CLASS -BQS-12 BQS
Class - ClassName BQS.13 BQS
0101- Ohio 55N Z166OU -BQS-15 BQS
0102: Benjamin-Franklin SSBN 7250 TACTAS TACTAS
0103 Lafayette SSBN 7250
0201 LosAngeles SSN 6000
0203 Narwhal SSN 4450
0204- Sturgeon- SSN 3640
0205 Thresher SSN 3750
0207 Ethan AIen SSN 6955
0208 George Washington SSN 6019
0209- Skipjack SSN 3075
0212 Skate SSN 2360t-0215 Barbel SSN 2145
1301 Typhoon _ SSBN 30000

iI

Computer Science Department Technical Report
University of California

Los Angeles, CA 90024-1596

TANGRAM: PROJECT OVERVIEW

R. R. Muntz April 1988
D. Stott Parker CSD-880032

U,

3 Tangram: Project Overview t
R.R. Muntz

D. Sto Parker

Computer Science Dept.
University of California

Los Angeles, CA -90024-1596

3 ABSTRACT

Today, most computers are used for -the modeling of real-world systems.
Demands on the extent and quality of the modeling are growing rapidly. There
is an ever-increasing need for environments in which one can construct and
evaluate complex models both quickly and accurately.71 Successful modeling environments will require a cross-disciplinary combination
of different technologies:

31 System modeling tools
Database managemcnt
Knowledge base management
Distributed computing

None of these technologies by itself -provides all that is needed. A modeling
environment must offer high-speed retrieval and exploration of knowledge aboutIm systems, as well as integration of diverse information sources with existing
modeling tools.

Tangram is a distributed modeling environment being developed at UCLA. It is
an innovative Prolog-based combination of DBMS and KBMS technology with
access to a-variety of modeling tools.

I AprUl28, 1988

I1 ,$t&oned by DARPA cmusa F2960147--0072-
For ma infomd ora.

Rihmud LMmz(muntz~cs.ucia.edu) D. SiwuParkwr(scote: Ics.ucla.edu)3l (213) 825-34 cic.. 825-787 9 iscy. (213) 8256871 d,, 25.1322 cy.

I

Tangram: Project Overview
R.R.MUunz

D. Storr Parker

Comnputer Science Dept.
University of California

Los Angeles, CA 90024-1596-

1. Introduction: Modeling

Harrison Brownfwarns-that modern economies we complex and-Vulnersiue becams dangerous
dynamnic fcrces-are at work (growing populaton. decreasing resource bose,.grwn ga berweert
rich and poor natioss politica robiemaking on a world-wide scale.-esu.). -Despise -these
dynamric-forces and the complexity of worid economins& polic makers contiue-to make-deci-
sions withou t iebenefit of die poweriu anayticltols dw we available so dim. flmzthe deci-
sionts they make are bad, is self-evident.

-George Daig (3 1]
Tdynumerous environments contaiing specialized tools are under development. Often these

tools are for creating and managing models-of some kEnd [35,42,74]. There are many inrds of
analytic models alone:

- Stochastic processes/queueing models
--Statistical models
" Structural models
* Equational models (numeric or symbolic)
" General constraint-based. models
* Rule-based models
" Semantic network/entity-relationship models
" Object-based models, -with miethods or behaviors.

in diverse science and-engineering-disciplines, ranging from medicine to the-social sciences,
models -are applied in computer-aided specification, design, and analysis, including simulative
and statistical analysis. The divr-sity of the models used stem partly from their evolutionary
development- in different fields.

Modeling will be owe of the main enterprse of the informnation age. Today's emphasis on
modeling will only increas in the future. Darwinia3n pressures force information system to
grow in- sophistication, --to better answer questions-such-as 'What happened?', 'What is going
on?'-, and -'What would happen if .'? Future modeling environments must deal with three
significant needs:

- Structurally complex data
- Deep interpretation of data
- Integrated management of data.

-2-

1.1. Structurally Complex Data
Data used in models is becoming more detailed in terms of structural complexity. Present
modeling systems have trouble in representing this detail. For example, while structurally sim-
ple data is handled well by relational database technology, recently a great deal of attention has
been given to-more structurally-complex data that has interesting, non-tabular structure. This
data is commonly called 'complex objects' or 'non-first normal form' (NFNF) records in the
data management field, and semantic networks or knowledge bases in other contexts.
With increasing detail of description, the list of differences between any -two objects- will grow.
Deep models - models involving great detail, or multiple levels of detail - are always more
structured than simple or generic models, which are sometimes called shallow models by com-
parison. As we model objects in greater detail, we must deal with the -fact that some objects
have individualized attributes that may be unknown or irrelevant for other objects. Relational
structures model objects homogeneously, widi every object being represented by the same
sequence-of parameters or attributes. Relational storage therefore becomes impracticil when we
seek greater detail.
The ability to store complex structures is powerful: with it, one can store not-only facts-about
objects, but also rules governing the behavior of objects. This has immediate- consequences in
modeling, since it permits distinctions between data and-interpretation of data to disappear.

1.2. Deep Interpr~elation of Data
In addition to managing more detailed data, the operations one wishes to do on this data become
more sophisticated, or deep. These operations have been impractical in the past for a number of
reasons.
First, analytical or abstracted models are often used instead of doing direct analysis of real-world
data. There are inherent problems with such-models:
(1) Abstracted models are often shallow. In some cases an abstracted model permits the

researcher to get at essential aspects of the real-world system being studied, but then only at
those aspects. Detailed information about a system requires direct analysis of larger quanti-
ties of data.

(2) Abstracted models require estimation of suitable parameter values. Typically, parameter
estimates are defined as either the result of statistical queries against observed data, or the
solutions of a system of constraints. It is not always straightforward to obtain these esti-
mates.

(3) To be of real use, an abstracted model must be validated against the real-world data it sup-
posedly describes. Again, while this can be thought of as a query (Does the model match
the data?), validation is an unpleasant responsibility that is often avoided by model-
builders.

Second, models may be too large for conventional machines, even mainframes. Simu3lation of
microprocessors with significant numbers of gates takes weeks of CRAY-2 time. Intepretation
of more detailed data will require significantly more processing power than is available today.
Some argue that the current push into supercomputers is justifiable only because it will permit us
to model systems that have:been intractable in the past.
Third, researchers developing models have lacked appropriate data management tools. Labori-
ous data extraction from tapes or files is a traditional problem in large-scale modeling.

-3-

3Unfortunately, using modemn DBMS will not-be adequate for modeling needs.* The queries per-
missible in today's DBMS are very restricted: They map -tables into tables using a handfull of
well-defined- operators. More generally, queries should be any kind of computable feature
extraction operation.

It is important to consider what one really wants from a modeling environment. Three general
operations are performed against a collection of data in the process of modeling: abstraction of
-models, prediction of the future-using models, and validation of models against the past.
Abstraction is the least understood of the three kinds of operations, since it involves some sort of
creative or associative recall on the part of the modeler. The process of abstraction requirescompiling information from different contexts, or perspectives. In other words, abstraction-requires feature extraction, filtering, data reduction, etc. Important operations today include:

standard relational query
aggregate computation (min, max, average, count, sum)
statistical analysis (regression, analysis of variance, etc.)
pattern recognition (trends, transients, etc.)
estimation of model parameters-
estimation of certainty factors
induction of rules

No existing tools, even the most-advanced database systems, provide what is needed here.
Prediction is a process of evaluating various possible scenarios consistent with a current world
model. It typically involves some sort of simulation. Mathematical models involve structurally
simple data, and either the solution of systems of equalities and inequalities or continuous-time
simulation. What we might call structured models (with structurally complex data) involve

-either discrete event simulation, or some variety of rule- or object-based simulation.
Validation, finally, matches predictions obtained from a model of a system against the actual
behavior of the system. This involves-the definition of metrics or figures of merit on model per-
formance, and verifying somehow (statistically or formally) that a model achieves a level of
accuracy.I-These three operations are used in an abstraction-prediction-validation cycle. The results of
each cycle are used in refining the model for better accuracy. A reaonable modeling environ-
ment must support these three operations and their iterative application in the refinement of a
model.

1.3. Integrated Management of Data
To see the need for integrated data management, consider the problems encountered in a simple
case study. A 4-site model of the LOCUS distributed operating system was simulated using the

*Interestingly, work in the database field hus approached modeling from another direction. A da-
tabase is, after all, a model of some enterpri3eor more generally of some collection of objects and
relationshipi among them. The DBMS of today permit only static model& That is, they capture
the state of some system. The behavior of these systems must be captured with external pro-
-grams, not by the DBMS itself. Thus the DBMS accomodates simple models on vast quantities of
data, instead of inuicate models involving a few parametem

-4-

PAWS simulation package by Steven Berson ofUCLA.t

Altogether, nine different load-balancing algorithms were considered. In each experiment,
labelled by single letters in the table below, all sites used the same criteria for deciding when to
migrate process load to other sites. The criteria and offered load-varied among the experiments:
load balancing was done by inspecting-cpu and/or disk queue lengths, and offered load differed
by distribution and by-number of customers (between 2 and 20):

Experiment Load balancing on Work done
r disk queue lengths Exponential
s cpu queue length Exponential
u sum of cpu and disk queue lengths Exponential
v sum of cpu and disk queue lengths Hyperexponential
w sur of cpu and disk queue lengths Erlangian
X NO BALANCING. NO REMOTE ACCESS Exponential
U NO BALANCING Exponential

V NO BALANCING Hyperexponential
W NO.BALANCING Erlangian

The resulting average response times, in-milliseconds, were obtained:

&xperirment Number ofCustomners
2 4 6 8 10 12 14 16 18 20

r 2490 2390 2440 3200 3520 4610 5830 6630 8900 10500
s 2320 2450 2820 3150 4080 4510 5160 7240 9510- 11700
u 2470 2450 2620 2560 3600 3670 5010 6130 7920 104001
v 2430 2610 2260 2720 3210 3860 4660 5280 7680 7750
w 2330 2570 2720 2930 3260 4050 4690 6350 8060 9690
x 2750 2990 3140 3490 3910 6230 6190 8570 9060 10500
U 2700 2880 3680 4410 5130 5310 7190 8650 11100 13600
V 2220 3520 3100 3710 4780 6340 7480 9660 10900 12400
W 2580 3150 3200 3950 4640 5950 7780 8830 10600 13800

These results show that-the load balancing strategies taking both cpu and disk queue lengths into
account performed better than the others. It is difficult to 'get a feel' for what the differences are
here, however.

Modest as it is,-this experience underscores the importance of an environment for modeling:

(1) Data management of experiments requires enormous-effort. The data above were extracted
manually from the-printed output of many PAWS runs (possibly witherrors), required-crea-
tion of several different versions of the data for different tools (S, grap, bl, etc.), and so
forth. The data above cannot be queried automatically now.

(2) Various types of measurement data that must be captured beyond the standard statistics
(utilization, throughput, queue length, queueing time, chain population, point-to-point

t Each site had 1cpu and I disk. The access patterns were selected to be 80% local, 20% remote
disk access, with:an average disk seek time of 30ms. -Load on the system was generated by
between2 and 20 customers. The PAWS simulation system was used to simulate several tens of
thousands of events; in order to obtain mean response time.

timing, Ctc.) typified above. Event traces, for example, are needed for detailed understand-
ing of what goes on in distributed systems: cyclic behavior, correlated events, race condi-
tions, catastrophe-theoretic behavior, etc.

-(3) There are many different-kinds of queries that may be made against- measurement data: sta-
F tistical summary and analysis, pattern detection on time series, browsing through subsets of

event trace, animation with start/stop/replay, and of course graphical display -(bar plots,
contour plots, histograms, scatter plots, time-series plots, etc. [10])

-6-

2. Tangram: A Modeling Environment
Tangram is an environment for developing models of the scope suggested above. It is

implemented as an extension-of Prolog thzt includes integration with the Unix- environment and
database managers, and provides distributed processing constructs. This section gives an infor-
mal overview of the design of the environment. In later sections we describe more thoroughly
the individual research -projects which together comprise Tangram.

2.1. Functions-of Tangram
The main goal of Tangram is to provide an interactive modeling environment. The experiences
of the previous case study highlight some functions-that such an environment should provide. A
functional diagram of Tangram in use is sketched in Figure 1. With this system a user should be
able to:

1. Select models from-the Model Base
2- Select an experiment from the Model Base
3 Run the experiment

3.1 Find available tools from the environment Knowledge Base
3.2 Execute the experiment with a specific tool (or tesbed)
3.3 Store.results of the experiment in the Measurement Data Base

4. Query the results of the experiment interactively

We describe these capabilities further below.

2.1.1. Model Management
Just as DBMS are managers for data, Tangram is a manager of models. Model management
includes the storage and retrieval of 'data dictionary' knowledge about available models, work-
loads (load generators, benchmarks), experiments, experiment output, and tools. Where multiple
models are used-to describe a single-system from differat viewpoints or levels of abstraction,
model management also provides information on how these models relate.

The Tangram environment is to support various modeling.packages, and possess knowledge on
how these packages are applied. This knowledge comprises an expert system on easy, effective
access to:modeling "ools. The SACON system developed by Bennett et al. [13] illustrates the
kind of functionality needed: - ACON inspects a structure and recommends a particular subpro-
-gram from the (large, complex) MARC environment for structural-analysis. For example, given

the- description of an airplane wing, it applies knowledge about the domain to decide to use the
MARC inelastic-fatigue program to analyze stress and deflection of the wing.

-7-

2.1.2. Measurement Data Management
Modeling experiments generate massive quantities of data. Tangram is concerned with issues in
capturing this data from different tools, translating it to a common format, storing it, and sup-
porting arbitrary- queries with parallel- processing. This presents challenges in developing data
management technology. Not only is the data-structured, but it also contains important temporal
information. Also, current DBMS do not support 'exploration' of the data in the way that
exploratory data analysis systems such as S [10] do. It is important to be able to support explora-
don of a model, encouraging a modeler to get an intuitive -understanding of its behavior. The
modeler should be able to view his-model actually 'running' with various kinds of graphical
displays, for example.

Parallelism can make interactive real-time modeling possible, where it would not be possible oR
this scale otherwise. We see stream processing as the most natural parallel data management
paradigm. A great portion of the Tangram project is, then, concerned with stream processing.
The Tangram Stream Processor (TSP) is a stream-based system founded on the abstraction of
transducers. A transducer maps input streams to output streams. We discuss TSP in greater
detail in a later section.

2.1.3. Support-for Advanced Modeling Tools
Current modeling tools typically force- the modeler into expressing his model in a limited frame-
work, and investigating -the model's behavior with a limited set of-query facilities. These tools
are rarely extensible, i.e., they do not permit addition of new features. Tangram provides tools
that permit 'declarative' specification.Of models supporting complex structuring of knowledge
and deep interpretation as discussed earlier. We currently envision an object-oriented environ-
ment for developing these tools, supporting knowledge base management and arbitrary-query
processing. The environment will be extensible, permitting the addition of new kinds of models.

We have developed a methodology for building modeling tools based on Markov processes. A
prototype system-has been built based on this methodology [14]. In the system, users specify
system components in an object-oriented framework. This level of specification is significantly
higher than that provided by most modeling tools, which require input in the form of Markov
chains, Petri nets, etc. Lower-level derivates (such as Markov chains) can be obtained from this
specification when this is desired, or the specification can be simulated directly.
In the longer range we are developing-methodologies for designing and implementing modeling
tools that-are applicable to computer systems research. These will include analytic, statistical,
simulation as well as expert system-like 'conceptual' modeling. We are currently extending the
work already done with Partial Order Programming (69].

2.2. Prerequisites on Implementation
Tangram is implemented primarily in Prolog. Prolog is an excellent starting point for develop-
ing a modeling environment for-at least two reasons:

*Currendy Tangramis being implemented on top of SICStus Prolog. SICStus Prolog is a portable
Prolog environment-developed in Cat the Swedish Lnstilute of Computer Science.

~-8-

-Environment Knowledge Base

Tool De-scriptio

Tool Description

System Vocabulary

Model Base

system model•worla odel-

Measurement Data

expeimena1e

experiment 2

Fiue 1.Tn r output

~Figure 1. Tangram Modeling.Environment Functions

9.

(1) Prolog is unarguably the best candidate as a database/knowledge base language. It sub-
sumes relational databases, supports complex structure in data through its terms and rules,
and its first-order4logic foundations are appropriate in many situations: unification and pat-
tern matching, logical derivation and intensional query processing, backtracking and
search, and most generally declarativeness. It easily supports increases in structure of
models and 'expert system' techniques for interpr,-c, tion of these models.

(2) Prolog is flexible. It is an outstanding vehick , ;.id prototyping, and permits easy
access to existing systems that perform c; mpu .- v '. m,e.nsive tasks efficiently.

To be effective, however, an environment based on'.- Aoi; uffer the features cited below.

2.2.L Industrial Strength

As we pointed out earlier, increases in the quantity of ".- and in-the complexity of interpreta-
tionrequire distributed computing/supercomputer tecz '.;.. Massive parallelism is needed to
deal-with the-increased-volume of information. Interacnu-e display of model behavior is essential
for effective modeling. An environment like Tangram incorporating these techniques will be
successful only if it provides 'industrial strength' -)erformance. Keys to success here are:

* Optimization
* Advanced data management technology
* High-performance interactive graphics
* Support at the operating systems level

2.2.2. Integration

A modeling environment must be able to combine many different synems of different types
elegantly and: efficiently. The many tools and testbeds for developing models that have taken
man-centuries to develop should be accv,sible directly and conveniently from a single worksta-
tion. Prolog is excellent for representing and making inferences how these tools and testbeds
should be accessed, but efficient access prohibits the use of 'glue job' connections between them
and Prolog. Database systems, for example, require stream access rather than the tuple-at-a-time
access encouraged by Prolog. Keys to success here are:

. Modularization
* General ability to connect with diverse programs
* General knowledge representation of program functions
. Support for translation tools

2.2.3. Support for Evolution and Multiple Models

There are many ways to represent the same information. As models are refined over time they
become more detailed, and focus on specific aspects of systems. Also, different models using
different abstractions are necessary to represit complex systems accurately and efficiently.

Both evolution of models and different views of complex systems require different kinds of
models, and hence different languages or paradigm~s for capturing different aspects of the real

world.

Bobrow [16] criticizes Prolog on the grounds that there are many programming paradigms other

than logic programming, and existing Prolog environwt.nrts should, but do not yet, support them.

- 10-

For modeling-in particular, this criticism is of the essence. Paradigms can be low-level in nature,
such as with parallel/distributed-processing, object-oriented programming, or-constraint satisfac-

tion. They can also be more high-level or 'semantic' in nature, such as with extended queueing
networks. Keys to success here-are:

- Support formultiple modeling paradigms
- Representation of-connections among paradigms

2.3. Partial Evaluation as an Implementation Strategy

The list of prerequisites above may seem somewhat imposing. It is not immediately apparent
how they-may ah e achieved, or achieved -vith Prolog-as a foundation.

Tangram uses partial evaluation as a performance-oriented mechanism for extending what para-
digms are available in the Prolog environment. Software in the Tangram envw onment is written
in one of two ways:

(1) As ordinary Tangram Prolog code. This code looks like 'standard' Edinburgh-style Prolog
code, with the exception that a- module system developed- at UCLA is used, and many
UCLA-specific predicates have been added.

(2) As code from an appropriate pradigm. A paradigm consists of -both a language, and an
-interpreter for that language. In Tangram, there are many specialized paradigms, including:

" Parallel/Distributed processing
" Stream processing
* Object-oriented and functional programmnhg
" Constraint satisfaction

Extension through addition of new paradigms is encouraged.
Currently paradigms in Tangram are implemented using a general partial evaluation -cheme.
With partial evaluation, the paradigm interpreter is used to-translate paradigm language state-
ments into Tangram Prolog code which can be optimized and subsequently executed. Loosely
speaking, partia evaluation uses an interpreter as a 'macro'-for expanding input statements into
Prolog statemt..ts. As much evaluation of the 'macro' as possible is -performed-at expansion
time, so partialrwoluation can be-thought of as a-generdl optimization technique.

II - 11 -

-Paradigm code -

I Partial Eau r Tangram Prolog code

I Paradigm Interpreter

Figure 2. Partial Evaluation

Thus the interpreter for a paradigm can be used either for execution or compilation: paradigm-
code is either interpreted directly in Prolog, or partially evaluated into Prolog for subsequent
execution. Recent-work on partial evaluation is SumrxAized-in [87]; along with issues in using-it
for interpreting parallel programming languages. Speedup factors of 40 have been reported from
the use of partial evaluation instead of direct interpretation.

Partial evaluation can be performed multiple times, of course. That: is, paradigms can be used
hierarchically or accumulatively. For example, we can write the interpreter for a constraint
satisfaction paradigm in the language of the object-oriented paradigm In this case multiple lev-
els of partial evaluation are needed.

2.4. Pro.ect Overview

The individual tasks of the Tangram-project are summarized-in the following sections:

" Computer Systems Modeling
* Constraint Processing
• Stream Data Processing
* Industrial Strength Prolog

We have selected computer systems modeling as an initial modeling domain, as this is a domain
in which-weare expert. Constraint- processing is necessary for the specification of models, and
stream-processing-is necessary for the evaluation of model output. The industrial strength Pro-
log entends Prolog to be an effective language for 'real' applications, as opposed to the 'toy'
applications for which it has been used in the past.

- 12-

3. Computer Systems Modeling Applications
The only good environments are those that are used by their developers. To help guide

direction of the Tangram environment, we have selected the general application area of
knowledge-based modeling of complex computer systems. Within this area, Tangram is
focussed on two projects:

• Complex Computer System Modeling
- Distributed DBMS Performance Modeling

3.1. Complex Computer System Modeling (Steven Berson, Bill Cheng, Dick Muntz)
This project focuses on developing methodologies for computer system modeling. The main
objectives of this project are-the following:

(1) To construct an environment that integrates- various analysis tools so that computer
system modeling experts can access them through a common interface. The environ-
ment should also be capable-of giving-expert advice on how a model of a computer
system can be analyzed; and why. Such an environment would also allow integration
of new tools.

(2) To facilitate the construction of modeling packages that are tailored to particular
application-domains for non-experts.

Computer system-modeling falls into general domains such as performance analysis, availability
analysis, and reliability analysis. In order to analyze a computer system, a model in a certain
'domain' has to be constructed. For each kind of domain, there exist many tools that can
analyze models in the domain. However, tools are usually applicable only to a limited range of
problem areas, and they will-perform with different efficiencies in different problem areas. One
of the goals of our environment is to manage the complex relationships between various domains
and tools. Users of our environment should be able to-describe their-models in the form that is
naturalfor their application domain, and the system should be capable of translating that descrip-
tion to the form required by the appropriate analysis tool. A prototype for modeling computer
systems based on Markoy processes (14] is now running, and is being extended.
Sometimes, the exact analysis of a complex computer system model is infeasible due to the size
of the model; it is then necessary to perform approximate analysis of the model. There are
different techniques for the approximate analysis-of computer systems, and each of them works
well under different conditions. With knowledge based techniques, our environment can assist
users in using these approximate analysis techniques.
Cirrently, we an-focusing on Markov-processes and queueing networks. Continuing work on
the current prototype includes:

(1) Graphical interfaces for-entering, editing, and displaying modeling descriptions.
(2) Query facilities based on the high-level model.
(3) Model debuggingfconsistency checking.
(4) Extensions to allow the-modeler to specify approximation analysis techniques.
(5) Heuristic interpretation of the analysis results.
(6) Model 'optimization', e.g. providing automatic state space reduction where possible.

-13-

W; also wish to' explore the problems of dealing with real computer systems. This requires
developing methods for:

(1) Describing real computer syste.-ms: both their-structure and the measurements that are
-available.

(2) Query and display facilities based on- the system description.
(3) Correlation of-analytic and/or simulation models with a conceptual: model of the real

computer system. This would-provide the basis for model validation.

3.2. DistributedDBMSPerformance Modeling (Ron Hu, Dick Muntz)
A-performance measurement environment is being developed-for thezdistributed data manage-
ment system manufactured by Teradata, Inc. This system provides a rich environment in which
to study the application of our modeling-methodology. The system itself has a complex structure
both in terms of the hardware and software- architecture. The performance issues include:
configuration planning, evaluation of hardware/software design alternatives, evaluation of query
optimization strategies, logical and physical database design, and regression testing of the per-
formance of new software releases. We plan to investigate the application of our modeling
environment to this set of problems. The study wiUl concentrate on the database aspects as well
as-the unique features of-the architecture which-we expect to provide new insights. The system
described in [47] is a simple approximation -to what we have in mind, and resembles the
Tangram-environment illustrated-in Figure 1.

-14-

4. Cons traintProcessing
Until recently, models often enforced a strong distinction between the data of the model

(parameters, initial values, etc.) and the model itself. Modeling was-done as a very rigid-kind of
programming, with a-strong distinction between programs and-data.

This distinction has begun to blur. Largely a result of the influence of Al-tools in-software, new
modeling tools-have developed in which one can treat-parts of the model program as parameters,
or define parameters with additional models. Basically- the idea is that one can specify behavior
information (rules) in-the same way one specifies descriptive information (facts).

In -its essence, this idea amounts to what is commonly called declarariveness. That is, one
should be able to describe- real-world systems by declaring the constrainTs on their behavior,
rather than by giving programs or other procedural descriptions that somehow fulfill these con-
straints. Not only is it easier to specify constraints declaratively, it is also easier to validate the
correctness of a model thatis specified declaratively. It is notoriously difficult to verify that a
program satisfies the constraints that are expected of a model.

An instructive example of the importance of declarativeness -comes firom today's database sys-
tems. During the 1970s database- systems moved away from 'procedural' query languages to
declarative laiguges-in which users could specify the results they wished, without having to
specify ihow the results should be obtained. Today, fourth-generation languages (4Ls) are
accepted as important means for specifying queries and data processing requirements. Con-
straint processing can be viewed as the continuation of the evolutionary development from
DBMS to more powerful information processing systems.

Constraint processing is a modeling paradigm in which models may-be developed declaratively.
It is the modeling paradigm of choice within the Tangram project Constraint processing is also
used in other ways in Tangram, both in program-analysis ('absract interpretation') for optimiza-
tion of programs, and in graphical display of information.

4.1. Partial Order Programming
A good deal of the Tangram work in constraint processing is based on partial order programming
[69]. Partial order programming is a new paradigm developed by Parker at UCLA in which
statements are constraints over partial orders. In this paradigm a problem has the form

minimize us
subject to ui QvI

U2 V2

where u is the goal, and U lV1, U2Qv 2, is a collection of constraints called the program.
A solution of the problem is a minimal value for u determined by values for u 1, v 1, etc. satisfy-
ing the constraints. The domain of values here is a parda/ order, a domain D with ordering rela-
tion_3.

The partial order programming paradigm has interesting properties:

-15-

(I) It generalizes mathematical programming, dynamic programming, and computer program-
ming paradigms (logic, functional, and others) cleanly, and offers a foundation both for
studying and combining paradigms.

(2) It- akes thorough-advantage ofknown-results for continuous-functions on completew partial
orders, when the constraints involve expressions using only continuous and monotone
operators. These programs have an elegant semantics-coinciding with recent results on the
relaxation solution method for constraint problems.

(3) It provides a framework that may be effective in modeling complex systems, and in
knowledge representation for cognitive computation problems.

Recently we have applied partial order programming in the formalization of directed logic pro-
grams [70], logic programs which have specified input and output-arguments. Such a formaliza-
tion is important in defining the semantics of stream processing, and it unifies a number of
diverse knowledge representation primitives as well.

4.2. Knowledge Representation (Stott Parker)

Moderm knowledge representation systems tend to be frame-based systems or production sys-iiltemns with inheritance. They are largely ad hoc and support only certain kinds of shallow models

[67]. The knowledge representation system planned for Tangram is formally founded on partialIi order programming, and will provide the following useful features:

Common systems of inference (syllogisms, parts, roles) [5]
Constraint solution mechanisms, including propagation and relaxation
Naming and Events
Semantic Unification
Contexts and Modalities
Meta-Level Capability & Planning
Schemata/EpisodesIDefLnitions/Scripts/PrototypesDefaults/Situations

These features should prove useful in the representation of both computer systems and of
software packages used to model these systems. See (68].

We are developing a system for automated simpi linear regression modeling, Certainly linear
regression is the statistical test that is most useful in analyzing data. Our system is similar to the
REX system described in [37], but iteratively refines a Box and Cox model taking into con-
sideration bias, nonml distribution of residuals, and so forth. Issues in developing the system
include how to represent functionality knowledge of the regression analysis tools available, and
control knowledge for-obtaining the-desired t nsfom on the data from the regression tools.
Currently the S statistical analysis package is- being used.

A major issue in the design of the system is how much emphasis to put on interaction with the
user about solution strategy. While statsticians prefer to explore their data and make decisions

about transformations themselves, less knowledgeable users may prefer to have the system
operate without any interaction in analysis. The issue is the degree to which statistical strategy
in data exploration and analysis can be automat-d. Effective use of statistical analysis requires

thre kinds of expertise:

-16-

* Data expertise (general knowledge of what is in the data)
-System- expertise (knowledge of what generated the data)
-Statistical expertise (knowledge of what the analysis means)

A modeler will have all three kinds of expertise only rarely. Statistical expertise helps avoid
over- and under-interpreting data, and appears to be-the most inviting to automation.

4.3. Constraint Satisfaction (Richard Huntsinger, Stott Parker)

The goal of the constraint satisfaction-component of the projoct is the development of a-powerful
theoretical formalism which will provide semantics for a large class of model representations,
and a correspondingly powerful constraint satisfaction system implementation (43].

Partia order programming [69] serves as an initial theoretical formalism. It provides a model-
theoretic -semantics and a procedural fixpoint-basedsermantics for model representations. These
model representations are composed of partial ordering relations-between variables and mono-
tonic functions on variables. That is, models.are represented as collections of constraints of the
form x <fly), where x is a variable, 5 is a partial order, f is a monotonic function, and y is a
vector of variables.

This class of model representations corresponds to a subset of that on which relaxation can be
successfully applied. Indeed, in practice, constraint satisfaction system- implementations typi-
cally employ relaxation, and therefore operate only on restricted classes of all expressible model
representations.

Partial order programming is currently: being extended to permit some non-monotonic functions
on variables, resulting in semantics for a larger class of model representations. This class
corresponds to that on which a generalization of relaxation can be successfully applied.
Equivalently, it is a class for which each model representation can be transformed to a new
representation on which relaxation can be successfully applied. For example, the model
representation x gf(y), where f is a non-monotonic function, is provided semantics if x <f(y) =:

x < tf(y), tis an invrtible transformation, and tf is a monotonic function [44].

The theorems comprising this extension to partial order programming suggest several constraint
satisfaction algorithms. A constraint satisfaction system implementation is being realized as a
tool which facilitates experimentation with some of these algorithms. Specifically, it employs a
general parametrized algorithm; instantiated instances are various specific algorithms, including
relaxation.

Parameters of special interest include

- the strategy for organizing functional dependencies,
• the strategy for detectingtransformable constraints,
* the strategy for applying transformations, and
• the strategy for decomposing sets of constraints into approximating sets of constraints.

Some testbed model representations for the constraint satisfaction system implementation

-17-

include computer network configurations, solid-body animation sequences, and music-composi-
tions.

4.4. Abstract Interpretation (Arman-gostani, Stott Parker)

A lot of research has been done on thederivation and proof of properties of Prolog programs.
This work has been fueled by the desire to close the performance gap that exists between
imperative and logic programming languages running on conventional hardware. Several rea-
sons have been cited for this performance gap. Firstly, procedures in logic programs are quite
versatile and-the code can be general enough-to be used in many-different ways. Secondly, in
imperative programs, memory usage is- explicitly controlled by the programmer; this not only
saves memory, but also time since it avoids-copying whole data structures when only slight
modifications are made. Finally, type information that is available in an imperative language
allow a better-implementation of the programmers' data structures.

In the attempt to close the performance gap many researchers have implemented various
automated inference systems'which can generate polymorphic typing, mode declarations, deter-
minancy information, etc. To formalize this work onProlog programs, researchers have adapted
the ideas of Cousot and Cousot (30] on the abstract interpretation of imperative programs to the
field of logic programming. Since a characterization of the exact behavior of-a program is in
most cases computationally intractable, we are forced to interpret our programslabstractly. That
is, the program is thought-of as executing in an-abstract domain where less information about the
data items is-accountd for. Results of the computation in-this abstract domain then reflect the
properties of programs operating in the exact model.

Abstract interpretation of Prolog programs has been used in several applications:
• Automatic inference of polymorphic types (25].
• Automatic mode inference of Prolog predicates. Debray and Warren (34] describe a

data flow analysis which is more powerful than previous approaches which solely
relied on purely syntactic information.

* Detection- of determinancy. Mellish (59] discusses a method for detecting 'deter-
minate' Prolog code (i.e., finding those predicates that never return more than one
solution).

* Global optimization of Prolog programs. A general theoretical framework is provided
by Bruynooghe [21] with which an optimizizr, Prolog compiler may use abstract
interpretation for efficient code generation.

The main focus of our research has been to devise a system that will be able to derive various
properties of prolog programs such as mode, type, aliasing and predicate success information.
Previous re,.-arch has shown, however, that purely syntactic analysis of programs is insufficient
for the-derivation oftruly useful information. Thus, from the very beginning, our goal has been

to create a simple formalism under which we can represent both syntactic and semantic informa-
tion in-a-unified manner.

To capture the semantics of Prolog programs, we use 'inexact success models'. These success

models provide information on the function of a predicate by classifying its actions based on the

-18-

3 types of arguments with whizh the predicate is-invoked. Two elements determine the 'function'
of a predicate:

£ II Instantiation ofvariables
Success of the predicate

Information on the instantiation of variables can be used in the derivation of mode characteris-
tics of -the predicates. Also, the type classification -above is similar to conventionalpolymorphic
type inference. Determination of the-success-of predicates, however, affects the derivation of
mode and type information. The-idea of using success -information in abstract interpretation is
relatively new [21] and unexplored.

Our succe.-ss models provide bounds on the numberof choice points created by a predicate, and-
whether or-not it will 'fault'*. Thus, our system will be able to detect possible fault conditions
before-the execution of a program. The task of determinancy detection [59] is also easily per-
formed with this system (e.g., if a predicate generates only 0- or 1 choice points, it is deter-
inate).

The design-phase of the system for the inference of-these success- models is almost finished. -Our
next step will be to implement the success model derivation system. The system can then be
used with applications such as optimizing compiler, interactive debugging tool, performance

analysis, etc.

4.5. Graphics (Ted Kim, Stott Parker)
Many modeling applications require graphics. One approach would be to use a declarative
graphics in efface [41] based on formal picture description grammars. The formal framework
offers some attractive parallels to proof systems. This paradigm offers the capability to describe,
compose and generate pictures as well as 'prove' or recognize pictures. While we are-pursuing
some research in this area, we feel-that this graphics description is too low-level forgeneral use.

Our main effort is to- provide a higher level constraint-based graphics interface [19]. The
constraint-based orientation provides a-declarative style of programming graphics. Our system

uses the X Window system [75] to provide network graphics and windowing capabilities. X also
offers the advantage of being a de facto standard. At the lowest level, our design will provide

support for graphics by making the X library functions accessible in Prolog without requiring
extensive changes to-Prolog (e.g., no asynchronous operation).

On top of this layer, we provide a constraint-based graphics toolbox. This toolbox provides

common primitives for design of graphical applications-as well as support of constraint systems.

Speed is very important to graphical applications. The challenge here is to provide general
enough constraint solvers -that are also fast. Towards this end, our design includes a- notion of
graphical state. The system- responds to perturbations made to a current constraint solution,

while attempting to resolve as few constraints as possible. The state from-the previous solution

is used as much as possible in-forming the new solution. Tis allows local changes to be quickly

solved.

*In most Prolog systems a program may terminate unexpectedly due to a fault. A fault may be
caused, for example, by passing arguments of incorrect type to a system predkaie.

-19-

Typicaly, the toolbox would be used- to build graphical displays of -modeling solutions. These
displays would change automatically in response to perturbations of modeling data. This pro-
vides the basis for interactive model management, involving storage, retrieval, query, display,
and editing of models [50, 58, 82]. Animation can- also be provided in this fashion.
Continuity is also important in graphics, especially in animation. Changes in animation should
be smooth and continuous. The graphical state helps here, but is not sufficient. Out of the possi-
ble space of solutions for the constraints, we would like to pick a 'good' solution. For the ani-
mation problem, 'closeness' of a new solution to an old one is the -issue. For the automated
display problem [56], the criteria could be such things as expressiveness or color choice. More
generally, we can cast the problem as-optimization. To address these issues, we are planning to
-include an optimization mechanism for our graphics constraint solver.

Graphics is also important in- the presentation of refinement graphs of data flows in co
execution models. With the concurrent execution model, user annotations of programs-can be
used by the-system to generatediagrams of refined data flows implied-by the-annotations These

diagrams allow the user to spot-potential problems-with his annotations.

- 20 -

5. Stream Data Processing
In this section we describe projects -concerning the Tangram Stream Processor (TSP) [71], a
stream data management system. It is an extensible system based-on a functional sublanguage of
Prolog that provides a programmable stream processing capability with a number of interesting
ch" :acteristics.

5.1. Streams and Data Processing
Relational databases are founded on set theory: all relations are viewed as sets of tuples. Many
developments have encouraged- generalization of this model to one of ordered sets. For exam-
ple, ordered data can be processed much more- efficiently than unordered data. In fact, many
standard query evaluation techniques are described in terms of operators (filters, mappings,
actors) acting on ordered- sequences of tuples. Moreover, temporal query processing seems to
necessitate some kind of ordering if important kinds of queries are to be efficiently answerable.
Also of course, the order of the-tuples in relations is important in presentation of tl. elations-to
users.

In many important situations, then, it is advantageous to generalize the set foundation of the rela-
tional data model to an ordered-set model. We call ordered sets streams. Stream-oriented pro-
cessing is certainly not a new subject, although it has only recently come into its own right as a
programming paradigm.

An area where streams are inherent to query processing is for temporal data, data with explicit or
implicit time ordering. The analysis of streams has been done for many years as 'time series
ana"'sis'. Recently, the subject of time in databases has gotten increasing attention as more
applications requiring temporal reasoning have been uncovered [3,4,12, 18,27], and many
intert=ting systems handling temporal queries in novel ways have been developed
L2,33,49,51,52,55,77,84,851.

Previous research has concentrated either on database processing, or on representational issues
and generality of modeling. Two important database systems include:
(1) TQuel [84], a relatimal query language with embedded time primitives, is an extension of

Quel, both syntactically snd semantically. TQuel is essentially a relational query language,
resting on the relational model.

(2) The Time Sequence approach of Shoshani [77,79] characterizes properties of temporal data
and temporal operators without restriction to the relational-model. Data are organized into
Time Sequence Collecdons (TSC), which can take both relational and stream-like
representations. Five basic operatms v'rovide an algebra working on TSCs.

These systems emphasize performance and complete handling of a well-defined set of query
operators. Other researchers in temporal query processing have worked at more complex model-
ing, combining work on temporal logic and existing representational systems to define new
approaches. Sadri [731 reviews three general recent approaches to temporal reasoning:

(1) The 'event calculus' of Kowalski [49] is an approach for reasoning about events and time
within a logic programming framework.

-21 -

(2) Allen's approach [3,4] is similar to the event calculus, defining a set of binary predicates
giving basic relationships among time intervals (whether they overlap, one precedes the
other, etc.).

(3) Lee, Coelho and Cotta [52] present a temporal system for representing and-reasoning about
time-dependent information and events, specifically for business database applications.

In these -approaches it-is peculiar that stream processing has not-been emphasized more heavily
for temporal query processing, as well as for basic relational query processing. Tangram's
stream processing approach permits it to handle queries definable under each of the systems
listed here.

5.2. Streams and Parallel Processing

Concurrent, object-oriented, functional, and logic programming paradigms all intersect elegantly
in the abstraction of streias: the general architecture of cooperating parallel actors transforming
streams of events has found its way into many programming systems that have-been proposed in
the past few years. For example,- many parallel logic programming systems have been
developed essentially as stream processing systems. Typically, these systems-fall into one of
several camps:
(1) They resemble PARLOG [26,39] and the other 'committed choice' parallel programming

systems (78] (Concurrent Prolog, GHC, etc.).
(2) They introduce 'parallel and' or-'parallel or' operators into ordinary Prolog [53].
(3) They are extended Prolog systems that introduce streams by adding functional program-

ming constructs (32,48,54,62,86]. The thrust of this introduction-is to make Prolog more
like either Lisp or Smaltalk or both.

TSP has drawn on the designs of a number of previous systems which have included stream con-
cepts. These include FAD [6], various dataflow database systems [7,8,9,15,38], and LDL
(11,89].

After some experience with the tuple-at-a-time and whole-query-at-a-time (embedded query
language):Prolog/DBMS interfaces that have been developed to date, we feel a better way to
integrate Prolog and databases is through streams (65]. Only minor extensions to Prolog are
sufficient to provide fairly efficient stream processing [72]. A stream interface offers an effective
medium between these two alternatives, uniformly integrating bulk operations at the DBMS end
with incremental evaluation at the Prolog end. Prolog streamprocessing avoids backtracking
through a database, using efficient iterative (tail recursive) processing instead. It is a natural
approach for applications like analysis of modeling data.

5.3. The-Tangram Stream Processor

The Tangram Stream Processor is founded on the abstraction of transducers. A transducer is a
mapping from some number of input streams to one or more output streams. Thus, a transducer
may be viewed as an automaton. However, a transducer can. take parameters, and as such need
not have only a finite number of states. Thus, it is better initially to view transducers as map-
pings instead, and diagrams of transducer networks resemble dataflow diagrams:

- 22-

Serverl -
] elapsed-times

file_terms(' server .trace')

Transducers are the basic building blocks of TSP, and are maintained in an (extensible) library.
Since arbitrary transducers are permitted, the expressive power of TSP is equivalent to that of
any general programming language. Consequently, the stream-based transducer model is more
general than many previous approaches: it is capable of handling traditional database queries and
non-traditional queries that reason about time in event databases.

TSP has several further unique aspects:

(1) TSP permits operation on general stream structures, including for example -both lists and
array-models of data. It supports definition of and-parallel evaluation of operators on these
stream structures, including the operator families of the APL programming language, NLAL
[57], and the Nested Army model of data upon which both are based [60,61]. This
includes the ability to define higher-order Operators on streams, such as aggregate opera-
tors (min, max, sum, etc.), APL's reduction operator, LISP's maplist, etc. In addition, it
permits us to define many useful statistical operators on streams, as in the S data analysis
system [10].

(2) TSP permits operation on infinite streams. A stream may represent a non-terminating
sequence of values. This is not permitted, for example, by APL.

(3) TSP pernits both lazy and eager evaluation of streams. Lazy evaluation permits efficient
evaluation of some kinds of queries.

(4) TSP transducers are naturally implemented as concurrent processes. These transducers pro-
vide opportunities to place natural boundaries on parallelism, a feature not enjoyed by some
parallel Prolog systems.

The resulting system may be used for "database-flow' processing, a combination of 'dtaflow'
and database processing, as well as general feature extraction and data reduction operations that
-fit in a pipeline structure.

Execution-of queries in TSPis quite efficient, in the common situation that the input streams are
sorted properly. In fact, TSP query processing can be considerably more efficient than that in
relational DBMS. For many TSP queries a single scan of the input streams is sufficient, requir-
ing linear time and constant space, while relational DBMS approaches require significantly more
resources. Also, TSP can handle kinds of queries not easily handled by relational query process-
ing systems, including the following:

1. Sliding window queries [77]
2. Event calculus queries [49]
3. Pattern matching queries
4. Abstracting state information from event data
5. Reasoning about time.

--23-

As an example -of a query that reasons about- time, consider askin, about what investment stra-
tegy-would haveibeen optimal over a given period ofstock market history. This requires innova-
tive accumulation of dividends, interest rates and rules for compounding interest, days which-are
holidays, and many other important details. These 'hindsight querfes' illustrate the potential of
stream processing in database analysis.

5.4. Log(F)

The Tangram Stream Processor is based on Log(F), an integration of Prolog with a functional
language calledF*, developed by Sanjai Narain at UCLA (63,641; Log(F) is the integration
with Prolog of a functional language in which one-programs using rwrite rules. This section
reviews the major aspects of-Log(F), anddescribes its advantages for stream processing.

F* is a rewrite rule language. In F*, allstatements are rules of the form

LHS => RHS

where LHS and-RHS are structures (actually Prolog-terms) satisfying-certain modest restrictions
summarized below.

A single example shows the power and flexibility of F*. Consider the following two rules,
defining how lists may be appended:

append(f],W) -> W.

append(UIV],w) -> (u!append(V,W)1.

Like the Prolog rules for appending lists, this concise description provides all that is necessary.

Log(F) is the integration of F* with Prolog. In Log(F), F* rules are compiled to Prolog clauses.
The compilation process is straightforward. For example, the two rules above are translated
(partialy evaluated) into something functionally equivalent to the following-Prolog code:

reduce (append (A,) ,C) : educe(k, [), reduce(s, C).
reduce(append(A,B), C) reduce(A, [DISI), reduce((Dlappnd(Z,B); IC).

reduce(13, -[).-
rIduce ([XI], [xlX]).

An important feature of F* and Log(F) is the capability for lazy evaluation. With the rules
above, the goal

- reduae(appsnd([1,2,3],t4,5,6]), X).

yields the result

X - l lappand([2,3],[4,5,6])].

That is, in one reduce step, only the head of the resulting appended list is computed. The tail,
append((2,3], (4,5,6]), can then be further reduced if this is necessary. Demand-driven
computation like this is referred to as lazy evaluation or delayed evaluation, and is basic to

stream processing [1].

-24-

Log(F) is a superior formalism for stram processing, and thus for database query proccssing.
From the example above, it is.-clear that the rules have a-functional flavor. Stream operators are
easily expressed using recursive functional programs. The syntax-is convenient, and can be con-
sidered a useful query language in its own right.

It turns out furthermore that Log(F) has a formal foundation that captures important aspects of
stream processing:
(1) Determinate (non-backtracking) code is easily detected through syntactic tests only. This

avoids-the overhead of 'distributed backtracking' incurred by some-parallel logic program-
ming systems.

(2) Log(F) assumes that stream values are ground terms, i.e., Prolog terms without variables.
Again this avoids problems encountered-by other parallel Prolog systems which must
attempt-to provide consistency ofbindings-to variables used by processes on opposing erds
of streams.

These features of Log(F) make it a nicely-limited sublanguage in which to write high-powered
programs forstream processing and other performance-critical tasks. Special-purpose compilers
can be developed for Os sublanguage that produce highly-optimized code.

We must stress strongly that Log(F) is-an extension of Prolog. The Log(F) code shown above
runs as shown. The issues heme are not so much language design issues as in developing com-
pilers for Log(F) that generate fast code. Where speed is not critical, the full power of Prolog is
available to its users now, in a stable development enviroment.

$.5. Stream Transducers and Log(F) -(Lewis Chau, Dick Muntz, Stott Parker)

In [71] we show how transducers can- be written in Log(F) to solve both traditional and very
novel query processing problems. It is easy to develop significant stream transducers with com-
pact sets of rewrite rules. We currently have an implemmntation of Log(F) in Prolog that per-
forms all standard database query processing primitives, and many nonstandard ones as well.
For -example,.transducers can-be developed that manipulate streams of 'elapsed time' data, or
streams of 'service time' data. We can define transducers-as follows:

A Elapsed times for first-cam, first-sezd disciplineI e~cfe. ((J1,_) -> C1.

fcfs_e([(T) L] ,State) -> fcfs.e(L,append(State, (T3))-
fcfs-e((d(T)-lL], (TO I]) -> IT-TO Ifoa... (L, 8)1.

0 Elapsed times for last-com, first-served discipline

ef i,(],-) -Wos].
lcf..e([],_ => [].

lcfs e([a(T)IL],State) -> lefs e(L,[TlState]).
lcfse([d(T) !], OlS]) - T-Ol1cfs a(LS)].

-25-

% Service times for first-con, first-served discipline

fcfss(J,_) => [J•
fcfs 3([a(T) IL], (NTO)) > if(Nm0, (fcfs s(L, (1,T))],

[fcfs S(L, (N+1,,TO))]

fcfs_s([d(T) IL], (N, TO)) -> [T-TOfcfs_s(L, (N-l,T))].

% Service times for last-comn, first-served discipline
lcfss(],_) > [].
lcfs_s([a(T) IL],[]) -> lcfs..a(L, [(T, 0)]) .

lcfs_s([a(T) IL],[(TO,Tl) IS]) -> lcfs_s(L,[(T,O),(_,T-T+Tl)mIS]).
lc?3 s(d(T) IL], [(TO,Tl), (T2,T3) IS]) -> [T-TO+TlIlcfss(L, [(TT3) IS])-].

lcfs-.s([d(T)IlL], [(T0,T1)]) -> [T-TO+Tljlcfs s(L, [])].

These transducers may appear a little forbidding. We can however make these available in a
simpler and more-natural form by introducing 'higher level' transducers:

elapsed times (Server, S) -> policy elapsed times (type (Se4rver),S).

policyelapsoed times(Efcfs], S) -> fcfs e(8,[]).
policy elapsed timas([lcfs], S) > icfs_e(S, E]I

3ervice times-(Server,) -> policy service times (type (Server), S).

policy servicetimes([ffsd], S) -> fcfs_s(8,(O,_)).
policy sevice times(Clcs], $) => lcfsa(S, []).

Interesting statistics (e.g. mean, standard deviation, etc) can then be calculated from this output
stream by applying further aggregate operators. For example, the average elapsed times and
maximum service times at Server 1 can be obtained with:

avq(elapsed times (serveri, Lietems ('serverl.trace'))
max(service times(server1, file tem:s('serverl.trace'))).

Here file -terms (' serverl. trace') pf-oduces a stream of arrval and departure terms

&4 ArrivalTim)
d(DpattureTime

that ar tallied by the transducers defined here. Also, type (servr .) reduces -ither to (fcfs]

or to -ElcfsI, according to the type of the server.

5.6. Pattern Matching against Streams (Lewis Chau, Stott Parker)

In [71], we illustrate how Log(F) makes a powerful language for expressing transductions of
streams. In this section we show how, specifying patterns with grammars, it also makes an
expressive language for pattern matching against streams.

In order to match patterns against streams, the approach taken in Tangram is to let users specify
patterns with grammars, which are compiled into efficient transducers. Moreover, users can
express their patterns using a library of grammars. For example, regular expressions and, more
generally, path expressions, can be easily defined with grammar rules:

- 26 -

(X+)- X.
(W+): => (X, (X+)).
(X*) -> [(]

(X*) -> (X, (X*))
(X;Y) -> X.
(X;Y) => T.
(X, Y) => append(X, Y).

skipto(X) -> X.
skipto(X)- -> ([_,askipto(X)).

These:Log(F) rules behave just like the context free grammars they resemble.

Pattem matching is signaled-explicitly with the -match-transducer, which takes-as its-first argu-
ment a functionalgrammar term describing the- starting symbol(s) of some grammars used for
-the match, and as its second argument a Log(F) term that produces a stream For example,

match (([net_failure] +, [cpufailure]),fil etezms (,'e z4emntl, output')).

matches the-pattern 'one or more copies of net-Jailure followed by a cpujailure' to the stream
-of events in the file • zprinanti. output, into a stream of event types.

The rules for pattern matching-are very simple. The basic definition is as follows:

mtch([],S) -> S.

match([XiL], [XIS]) -> .atch(L, S).

The result of matching apattem against a stream-is what is left of the stream after pattern match-
ing completes, i.e., the remainder of the stream- that is not matched by the pattern. Simultane-
ously, arguments of the nonterminals are: bound to values resulting from parsing the input
stream. With this definition of match, we can immediately define grammars using rewrite
rules. We call a collection of these rules aftctional grammar.

In the section above we showed how transducers can manipulate streams of 'elapsed time' data.
It is also possible to specify it with a-functional grammar:

fcf"-e(Result) -> fcfe _((1,[],Result).
fcfse (_,Re-ult, R-sut) => (end offile].

fcfs_e(State, Cuzrent,Reault) -> [a(T)],
fafs i(append(State,IT]),Current-,Result).

fcfs e(TO IS],Cuzzrnt,Result) -> (d(T)-],
(T1 is ?-TO), fafs (,[TlCuzrrnt],Rasult).

The main issue here is finding a way to compile functional grammars and match into efficient
transducers, then we can define efficient classes of funci¢onal grammars. Not surprisingly, deter-
ministic tail-recursive grammar rules which do not co ,euct large structures for their state can
be compiled to efficient transducers. These gr=- m are muvh like classical right linear regular
grammars, and like DCGs that are actually written in -racice. See (24].

-27-

5.7. Distributed/Parallel Processing (Brian Livezey, Dick Muntz)-
Log(F) benefits from two aspects of distributed processing. First, computation can be performed
in parallel. There are many opportunities for computation concurrency in a stream-based pro-
gramming-environment. The execution behavior of sequential Log(F) is analogous to a pipeline
in which only one stage is active at any given time. By placing different stages of the-pipeline
on-different processors and replacing lazy evaluation by eager evaluation and stream flow, we
can achieve a state in which all stages of the pipeline are-active simultaneously. Second, in addi-
tion-to this 'pipeline concurrency', we can achieve other forms of parallelism. AND-parallelism
is achieved by producing all input streams-to a given transducer simultaneously (i.e. concurrent
reduction of all- arguments toa function). OR-parallelism results from having different portions
of the same stream being produced simultaneously on different processors.

The performance:of queries on distributed databases is greatly affected by-the relative locations
of the data and the processes that operate on that data. Many techniques exist for optimizing
queries on-distributed databases. Distributed Log(F) provides the-ability to exploit these tech-
niques. By providing the ability to-subdivide queries and specify the processor upon which each
portion is to execute, Log(F) allows programmersto express ecient 'stributed queries.

Many stream-based concurrent-programming systems [78] are designed for shared-memory mul-
tiprocessors and -therefore attempt to -exploit a very finet granularity of concurrency. In non-
shared memory environments, where communication and processes are not cheap, any perfor-
mance gained through concurrency will be4ost in overhead. For such environments, it is neces-
sary to allow a much coarser granularity of concurrency.

Ideally, in-non-shared memory environments, the compiler should be-able to recognize potential
concurrency, balance it against the- overhead, and decide how to distribute a given program.
While such compilers exist for distributed database queries, no such compilers exist for arbit--y
distributed-programs. Therefort, we must initially require that the programmer- specify how a
given program iso be d,'sributed. However, the-programmer should not have to define the dis-tribution of the program when designing the logic. Instead, the programmer should write the
entire program first and=then specify-concurrency-without changing the program's semantics.

We intend to provide two interfaces to distributed Log(F) to facilitate the composition of distri-
buted programs. First, we provide simple annotations which allow the programmer to-indicate
transducers which are to reside on remote -processors. -Second, we intend to provide a graphics
interface to Log(f). Programmers will select transducer icons from a toolbox and connect them
together to form -larger transducers. Process boundaries will be indicated by surrounding por-
tions of the-resuiting graph with boxes to indicate that that portion is to be-run on one processor.
Boxes will-be annotated to indicate which-processor they should be run on.

Ultimately, we will not require the programmer to specify how to distribute his program; we will
onlymrequire that-the programmer assign weights to each of the elementary transducers used in
his program. Weights will be-a function of the computational expense for each input element as
well as the-ratio- of input e!ements to output elements. Weights of larger transducers will be
determined by appropriately combining the weights of the-elementary transducers that compose
them. These weights will be-used by the compiler to determine how best to distribute the pro-
gram.

-28-

5.8. -Program/Query Optimization (Lewis Chau, Cliff Leung, Dick Muntz, Stott Parker)

Partial evaluation is a special kind-of program transformation for the purpose of optimization.
This optimization is accomplished mainly via-instantiation of parameters of a program by pro-
pagating values for top-level -formal arguments through the program (execution of the unification
at compile time),-and reduction of the number of logical inferences by opening calls. It is simi-
lar in-many ways-to macro expansion.

A query that is a-Prolog goal can be executed in many different ways. Two-level optimization is
-introduced as a means of finding a way to execute the query that is computationally as efficient
as possible. First-level optimization applies partial evaluation -as an alternative to compiling
queries. With this approach, the partial evaluation system-expands an input Prolog query, gen-
-erating a conjunction of calls,to the extensional database (EDB) intermixed with calls to-built-in
-predicates. Redundant goals can be eliminated- to some extent at-this level. The partial evalua-
tion system-then transmits conjunctions of calls which can-be the-subject of further optimization
by a database system. Second-level optimization (query planning) then optimizes a query at the
-database level. Its purpose is-to analyze and improve queries based on straightforward informa-
-tion about the Prolog program underlying the query and the EDB itself. See [23].

Partial=Evaluation Database

Level Level

Input Partial Intermediate Query Optimized

Query Evaluator Query Panner Query

Two-level Query OptiMization

We am interested in applying partial evaluation to query optimization. A knowledgc base is

composed of a set of rules and ground facts. We can treat the set of rules simply as a logic pro-
gram and the set of ground facts as a conventional relational database. Answering a quay is
equivalent to partially evaluating the query by an interpreter (partial evaluator), and executing
the resulting conjunction of calls to the database. Optimization can be applied both to the partial
evaluation level and to the database level. Currntly, we have implemented a partial evaluator
for full Prolog programs.

The output of partial evaluation-is a conjunction of calls to the extensional database intermixed

with calls to builtin predicates. In second-level optimization, our major concern is the design of

a query-plan such that the resulting query will be executed more efficiently. N~i Prolog, the order-

ing of clauses-in a program, and the ordering of goals in the right-hand side of a clause, is impor-

tarnt control information that helps to determine the way a program is ex/,uted. This control

information permits-generation of an efficient query plan. The control information that is critical

- 29 -

to -the query planner is described in [23]. Currently, we-are applying the two-level optimization
technique-to the TangramStream Processor.

5.9. The-Synopsis of Database Responses (Chung-Dak-Shum, Dick Muntz)

Conventional responses in database systems,.usually given as lists of atomic objects, although
sufficient-to serve--the purpose of conveying information, do not necessarily provide efficient and
effective communications between a user and the systenm Recently, new notions of answers to
queries have been receiving more research interest. For example, in (45], an answer to a query is
expressed in terms of both atomic facts andgeneral- rules; in [29], intensional descriptions or
concepts are being used as part of an answer. This latter notion of answers is particularly helpful
when the number of entities or objects which satisfy the query is very large.

In-(29], the answer to a query is expressed not as a set of individuals, but as a set of concepts or
predicates, whose extensions may not be explicitly-represented. Now suppose that we have
retrieved a set-of individuals as the answer to-a conventional database query, and we want to re-
express the answer in terms of a set of concepts. Those concepts-must, of course, be pre-defined;
otherwise, the user may not be familiar with them and the answer in terms of those concepts thus
will not make too much sense. One of the immediate drawbacks to such an approach of express-
ing answers is that the extensions of the pre-defined concepts-often do not satisfy the query con-
ditions as a whole. As a resylt, we cannot express answers the way we want except in very rare
cases.

We consider expressions for answers in terms of concepts and individuals (80]. Exceptions
within individual concepts am allowed. Two criteria are defined as measures of the goodness of
such expressions: (i) minimizing the total number of terms; (ii) minimizing the number of excep-
tions. Expressions satisfying these two criteria ae called optimal expressions. We have shown
that, under a strict taxonomy of concepts, any two optimal expressions for an extensional answer
share the same set of terms. The inductive proof also leads to an algorithm for obtaining such
expressions. Generalizing the strict taxonomy-of concepts to ajoin-semilatice of concepts elim-
inates the term uniqueness property and also makes the problem of finding an optimal expression
intractable. The problem under multiple taxonomies, although it involves a restricted type of
join-semilatnice, remains intractable.

One of the motivations behind our interest in different forms of answers is their conciseness.
However, if there is a large number of individuals within a concept and approximately -half of
the individuals satisfy the query. Using an expression of concepts and individuals, no longer are
we able to exspms our answer concisely. If we insist on concise answers, one possible 'solution'
is to sacrifice precenessfor cociseness (81]. For each concept, we associate a count of its
individuals and a count of qualified individuals which satisfy the query and refer to them, collec-
tively, as a quantified concept. An aggregate or imprecise response is just an expression of
quantified concepts. We study ,he tradeoff between conciseness and prccisoness. Conciseness is
measured by the length or the number of quantified concepts in an expression, and preciseness is
measured-by the entropy or the amount of uncertainty associated with the expression. Given its
length, an expression with the minimum, amount of entropy is considered optimal. Under a one-
level taxonomy with the same cardinalities for all leaf concepts, the problem of finding an
optimal expression can be solved inexpensively. An efficient heuristic is also proposed for the

i! -30-

general one-level taxonomy. For a taxonomy of more than one level, an algorithm is suggested.
Although it is does not always lead to an optimal expression, it avoids the combinatorial explo-
sion associated with the problem and appears to lead to good solutions.

Our work on imprecise responses is closely related to

* Statistical Databases
•- Categorical Databases

Studies-on statistical database management systens[40] suggests the definition summary tables
in .1 atabases-which are#physically stored and maintained as redundant data as well as the original
global database. Making use of such summaries, a large class of queries can be answered
without-extensively accessing data from the global databases. Currently, we are interested in the5l representations of-such summaries under the general context of information abstraction.

I

IlIi
I

-31 -

6. Tangram Industrial Strength Prolog

Prolog goes a long way toward providing the kind of declarative modeling functionality we
desire, and has the added benefit that-it has a strong connection (from its logical foundation) with
relational database systems. Still, to provide the 'industrial strength' environmentwe require-for
Tangram, a number of extensions to Prolog must be made:

• Module management
Prolog database management

* Object management

Tangram Prolog is-an extended Edinburgh-style Prolog system, augmented-with a development
environment and modules of low-level primitives for the functions listed above. Modules permit
selective-access to subsets of these primitives to-individual Prolog processes.

6.1. Module.Management (Tom Page, Dick Muntz)
The concept of reducing software complexity through modularization is well known and essen-
tial-. Conventional languages have employed procedures-and abstract data typing techniques to
achieve modularity. Program modules can-be constructed independently and composed to form
larger systems. Access to a module is available only via-its published interface. Internal data
structures and procedures are -invisible outside the module. The design andimplementation pro-
cess can be facilitated by transparently replacing initial, simple implementations of data struc-
tures or services with more sophisticated versions which maintain the same well-defined inter-
face.
By-contrast relatively little work has been done on modularization in logic programming sys-
tems. Tangram Prolog subdivides the name space of procedures so that each module has its own
complete name space. Different parts of a system can be written without knowledge about the
local names of other parts. Modules can be collected into libraries to group independent subsys-
tems. Libraries are modules of modules which have their own published interfac:s and hide the
interfaces of internal modules.

6.2. Prolog Database Management (Tom Page, Dick Muntz)
There is considerable interest in combining database and logic programming technologies
(66,46,90,93,94]. The motivation stems primarily from appreciation of the complementary
benefits of the two technologies which were developed largely independently [92,83,761. Our
modeling environment requires more sophisticated interpretation of data than current database
systems provide as well as efficient access to larger volumes of data than current Prolog imple-
mentations afford.

Many attempts at connecting Prolog with Relational DBMSs have been documented over the
past few years [17,94]. However, simply connecting the two systems via an interface is woe-
fully naive [22]. Current.Prolog implementations were designed to provide very fast unification
over small atom spaces. The problem is that all data that is brought into the Prolog workspace
becomes tightly intertwined in order to optimize unification, the performance bottleneck in Pro-
log. Atoms are not easily garbage collected or dropped from the workspace when they are no
longer of interest. The volume of data in database applications quickly swamps current Prolog

-32-

system tables. The size of applications envisioned taxes the Prolog programming environment
beyond its limits.

Our-assertion is that the database should be viewed as a huge virtual workspace for Prolog. This
workspace must cache units of data that are persistently stored in the database.

The workspace management replacement algorithm must handle three patterns of database
access.

(1) Large flat relations may -be accessed via the stream interface. Streams are sequences of
terms~that flow into transducers. An input stream-can be discarded after processing by-the
transducer.

(2) Large complex objects may be integrated into the Prolog workspace by 'opening' them,
and then operating upon them as though situated in memory. When they are 'closed', they
are either discarded or rewritten in the database.

(3) Modules of code stored in the database may be brought into the Prolog workspace. Code in
the modules may then be run until the modules are discarded.

Standard Pr.olog implementations lack the ability to deal with code or data as-modules. Each
clause is independent in Prolog; relationships or structure among clauses are not expressed but
rather established operationally via inference (20]. While Prolog programs exhibit little locality
when viewed from this perspective of extreme modularity, modules provide a logical- bundle of
code/data within which-locality is expected. Thus, we propose a new organization for the War-
ren Abstract Machine [36,91] in which separate atom and- functor tables are built for each
module. If locality exists, program execution will cross module boundaries infrequently relative
to intra-module unifications. Within each module, atom unification will be very fast at the
expense of translating arguments across module boundaries.

6.3. Object Management (Tom Page, Dick Muntz)
One characteristic of a logic =programming language is that the same call with the same argu-
ments returns the same results in any context [28]. All of the information needed to perform anoperation must be present in the arguments and not recorded in the state of the program. This

makes it very difficult to achieve the important principle of data abstraction in a logic program-
ming language. We must have a way to represent persistent state information in Prolog, espe-
cially if we are to -provide a transparent database modeL
Tangram Prolog will provide an object-oriented programming module which adds the notion of
persistent objects to the language. Objects may be managed by the database and become active
when they are addressed with messages which they support. Name binding issues with respect
to inherited methods will be explored.

-33-

7. Future Projects

The list of open projects is vast. For example, translation is a pervasive problem. The multitude
of differing- tool input/output formats requires good translation tools, and mapping among
different kinds of models is an important related problem. The SARA project at UCLA has dealt
heavily with translation issues, and it seems likely that some SARA tools can be adapted here.

Several important projects that-we have begun to address are listed here:

• Estimation of time/space requirements to find solutions of models
* Automated use of tools/testbeds given an experiment
* Automated sensitivity analysis
* Automated explanation
* Induction of analytic models from behavior (learning)
* Paradigm systems for

* Production Systems/Triggers
• Petri nets

Those who sell electronic gadgetry would have us believe that the computer age will be a new era
for scientific thought and humanity; they might also point out the basic problem, which lies in the
construction of models.

- Rene Thorn (881

4

-34 -

References-

1. Abelson, I-and G. SussmanThe Structure and Analysis of Computer Programs, pp. 242-
292, MIT Press, Boston, MA, 1985.

2. Adiba, M. and N.B. Quang, "Historical Multimedia Databases," Proc. Twelfth Intnl. Conf.
on Very Large Data Bases, pp.-63-70, Kyoto, Japan, 1986.

3. Allen, J.F., "Maintaining Knowledge about Temporal Intervals," CACM, vol. 26, no. 11,
pp. 832-843, November 1983.

4. Allen, J.F., "Towards a General Theory-of Action and Time," Artificial Intelligence, vol.
23, pp. 123-154, 1984.

5. Atzeni, P. and D.S. Parker, "Set Containment Inference and Syllogisms," Technical
Report CSD-880022, UCLA Computer Science Dept., June 1987,-issued March 1988. To
appear, Theoretical Computer Science

6. Bancilhon, F., T. Briggs, S. Khoshafian,and P. Valduriez, "FAD, a Powerful and Simple
Database Language," Proc. Thirteenth Intnl. Conf. on Very Large Data Bases, Brighton,
England, 1987.

7. -Bator-, D.S. and TY. L-ung, "ImplementadonCone ts for an Extensible Data Model and
Data Language," Tech. Report TR-86-24, Dept. of Computer Sciences, Univ. of Texas-at
Austin, Austin, TX 78712, 1986.

8. Batory, D.S., "A Molecular Database Systems Technology," Tech. Report TR-87-23,

Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712, 1987.
9. Batory, D.S., T.Y. Leung, and T. Wise, "Implementation Concepts For an Extensible Data

Model and Data Language," ACM Trans. Database Systems, to appear.
10. Becker, R.A. and J.M. Chambers, S: An Interactive Environment for Data Analysis and

Graphics, Wadsworth, Inc., Belmont, CA, 1984.
11. Beeri, C., S. Naqvi, R. Ramakrishnan, 0. Shmueli, and S. Tsur, "Sets and Negation in a

Logic Database Language (LDL1)," Proc. Sixth ACM Symp. on Principles of Database
Systems, pp.,21-37, San Diego, March-1987.

12. Ben-Zvi, J., "The Time Relational Model," Ph.D. Dissertation, UCLA Computer Science
Dept.,-Los Angeles, CA 90024-1596, 1982.

13. Bennett, 3.S., L. Creary, R. Engelmore, and R. Melosh, "SACON: A knowledge-based
consultant for structural analysis," Technical Report HPP 78-23, Computer Science Dept.,
Stanford University, 1978.

14. Berson, S., E. de Souza e Silva, and R.R. Muntz, "An Object-Oriented Methodology for
the Specification of Markov Models," Technical Report CSD-870030, UCLA Computer
Science Dept., Los Angeles, CA 90024-1596, July 1987.

15. Bic, L. andR.L. Hartmann, "AGM: A Dataflow Database Machine," Technical Report,
Dept. of Information and Computer Science, Univ. of California at Irvine, February 1987.

16. Bobrow, D.G., "If Prolog is the Answer, What is the Question?," Proc. Intnl. Conf. on
Fifth Generation Computer Systems, pp. 138-145, ICOT, Tokyo, November 1984.

17. Bocca, Jorge, "On the Evaluation Strategy of EDUCE," in Proceedings SIGMOD 1986,
pp. 368-378, 1986.

-35-

18. Bolour, A., T.L. Anderson, L.J. Dekeyser, and-H.K.T. Wong, "The Role of Time in Infor-
mation Processing," ACM SIGMOD Record, vol. 12, no. 3, pp. 27-50, 1982.

19. Borning, A., "The Programming Language Aspects of ThingLab, a Constraint-Oriented
Simulation Laborator ," ACM Transactions on=Programming Languages and Systems, vol.
3, no. 4, October 1981.

20. Brodie. Michael L. and Matthias Jarke, On Integrating Logic Programming and Databases,
pp. 40-62, Computer Corporation of America, Cambridge, Massachusetts.

21. Bruynooghe, M., G. Janssens, A. Callebaut, and B. Demoen, "Abstract Interpretation:
Towards the Global Optimization of Prolog Programs," Proc. Fourth International Sympo-
sium on Logic Programming, pp. 192-204, IEEE Computer Society, 1987.

22. Ceri, Stefano, Georg-Gottlob, and Gio Wiederhold, "Interfacing Relational Databases and
Prolog Efficiently," in Proceedings 2nd Expert Database Systems Conference, pp. 141-
153, 1986.

23. Chau, L., "Two-Level Query Optimization," Draft, UCLA Computer Science Dept., July
1987.

24. Chau, L., "Functional Grammars-and Stream PatternMatching," Draft, UCLA Computer
Science Dept, March 1988.

25. Chou, C., "Relaxation Processes: Theory, Case Studies and Applications," Report CSD-
860057 (M.S. Thesis), UCLA Computer Science Dept., 1986.

26. Clark, K. and S. Gregory, "Notes-on the-Implementation of PARLOG," J. Logic-Program-
ring, vol. 2, no. 1,-pp. 17-42, 1985.

27. Clifford; J. andD.S. Warren, "Formal Semantics for Time in Databases," ACM Transac-
tions on Database Systems, vol. 8,-no. 2, pp. 214-254,-June 1983.

28. ConeryJ. S., "Object Oriented Programming-with Horn Clause Logic," Draft, University
of Oregon, July 1987.

29. Corella, F., "Semantic Retrieval and Levels of Abstraction," in Expert Database Systems,
ed. L. Kerschberg, Benjamin-Cummings, New York, 1985.

30. Cousot, P. and R. Cousot, "Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints," Conf. Rec. 4th ACM
Symp. on Princ. of programming languages, pp. 238-252, 1977.

31. Dantzig, G., "Mathematical Programming and Decision Making in a Technological
Society," Tech. Report SOL 82-11, Systems Optimization Laboratory, Dept. of Operations
Research, Stanford Univ., August 1982.

32. DeGroot, D. and G. Lindstrom, Logic Programming: Functions, Relations, and Equations,
Prentice-Ha , 1986.

33. Dean, T.L. and D.V. McDermott, "Temporal Data Base Management," Artificial Intelli-
gence, vol. 32, pp. 1-55, 1987.

34. Debray, S. K. and D. S. Warren, "Automatic Mode Inference for Prolog Programs," Proc.
Third International Symposium on Logic Programming, pp. 78-88, IEEE Computer

Society, 1986.

35. Dolk, D.R., "A Generalized Model Management System for Mathematical Programming,"

ACM Trans. Math. Software, vol. 12, no. 2, pp.-92-126, June 1986.

-36-

36. Gabriel, John, Tim Lindholm, E.L. Lusk, and R.A. Overbeek, "A Tutorial on the Warren

Abstract Machine for Computational Logic," ANL-84-84, pp. 1-52, Argonne National
Laboratory, Argonne, Illinois, June 1985.

37. -Gale, W.A., "REX Review," in Artificial Intelligence & Statistics, ed. W.A. Gale,
Addison-Wesley, 1986.

38. Golshani, F., "The Basis of a Dataflow Model for Query Processing," Proc. Eighteenth
HICSS, Honolulu, January 1985.

39. Gregory, S., Parallel Logic Programming in PARLOG: The Language and its Implementa-
tion, Addison-Wesley, Reading, MA, 1987.

40. Hebrail, G., "A Model of Summaries for Very Large Databases," Proc. of the 3rd Int.
Workshop on Statistical and Scientific Database Management -, Luxembourg, 1986.

41. Helm, R. and K. Marriott, "Declarative Graphics," Proc. Third ntni. Conf. on Logic Pro-
gramming, pp. 512-527, Springer-Verlag, London, 1986.

42. Hoffmann, C.M. and J.E. Hopcroft, "Simulation of Physical Systems from Geometric
Models," Preprint, Dept.of Computer Science, Cornell University, Ithaca, NY, 1986.

43. Huntsinger, R., "On Constraint-Oriented Environments for Continuous System- Simula-
tion," CSD-880020, UCLA Computer Science Dept., Los Angeles, CA 90024-1596, March
1988.

44. Huntsinger, R., "Representation Transformation in Constraint Satisfaction Systems,"
CSD-880018, UCLA Computer Science Dept., Los Angeles, CA 90024-1596, March 1988.

45. Imielinski, T., "Intelligent Query Answering in Rule Based Systems," J. Logic Program-
ming, vol. 4,-no. 3, September 1987.

46. Jarke,-Matthias, Jim Clifford, and Yannis Vassiliou, "An Optimizing Prolog Front-End to a
Relational Query System," in Proceedings ACM SIGMOD, pp. 296-306, 1984.

47. Joyce, J., G. Lomow, K. Slind, and B. Unger, "Monitoring Distributed Systems," ACM
Trans. Computer Systems, vol.5, no. 2, pp. 121-150, May 1987.

48. Kahn, K., "A Primitive for the Control of Logic Programs," Proc. Symp. on Logic Pro-
gramming, pp. 242-251, IEEE Computer Society, Atlantic City, 1984.

49. Kowalski, R.A., "Database Updates in the Event Calculus," Research Report 86/12,
Department of Computing, Imperial College, London, 1986.

50. Kurose, J.F., K.J. Gordon, R.F. Gordon, E.A. MacNair, and P.D. Welch, "A Graphics-
Oriented Modeler's Workstation Environment for the RESearch Queueing Package
(RESQ)," Proc. Fall Joint Computer Conference, pp. 709-718, IEEE Computer Society
#743, 1986.

51. LeDoux, CIL, "A Knowledge-Based System for Debugging Concurrent Software,"
Technical Report CSD-860060 (PhD. Dissertation), UCLA Computer Science Dept., Los
Angeles, CA 90024-1596, March 1986.

52. Lee, R.M., H. Coelho, and J.C. CotM, "Temporal Inferencing On Administrative Data-
bases," Informanion Systems, vol. 10, no. 2, pp. 197-206, 1985.

53. Li, P-Y.P. and A.J. Martin, "The Sync Model: A Parallel Execution Method for Logic Pro-
gramming," Proc. Symp. on Logic Programming, pp. 223-234, IEEE Computer Society,
Salt Lake City, 1986.

-I373-

54. Lindstrom,-G. and P. Panangaden, "Stream-Based Execution of Logic Programs," Proc.

Syrup. on Logic Programming, pp. 168-176, IEEE Computer Society, Atlantic City, 1984.

55. Lum, V., P. Dadam, R. Erbe, J. Guenauer, P. -istor, G. Walch, H. Werner, and J. Woodfill,"De signing DBMS Support for-the Temporal Dimension," Proc. ACM SIGMOD Confer-

ence on Management of Data, pp. 115-130, June 1984.
56. Mackinlay, I., "Automating the Design of Graphical Presentations of Relational Informa-

tion," ACM Transactions on Graphics, vol.5, no.2, pp. 110-141, April 1986.
57- McCrosky, C.D., JJ. Glasgow, and M.A. Jenkins, "Nial: A Candidate Language for Fifth

Generation Computer Systems," Proc. ACM'84 Annual Conference, pp. 157-166, San
Francisco, October 1984.

58. Melamed, B., "The Performance Analysis Workbench: An Interactive Animated Simula-
tion Package for Queucig Networks," Proc..Fall Joint Computer Conference, pp. 729-
740, IEEE Computer Society #743, 1986.

59. Mellish, C. S., "Abstract Interpre tion- of Prolog Programs," Proc. Third !ntnl. Conf. on
Logic Programming, pp. 463-474, Springer-Verlag, London, 1986.

60. More, T., "Axioms and Theorems for a-Theory of Arrays," IBM J. Res. Develop,-vol. 17,
no. 2,pp. 135-175,1973.

61. More, T., "The Nested Rectangular Array as aModel of Data," Proc. APL79, pp. 55-73,
May-1979.

62. Naish, L., "All Solutions-Predicates inProlog," Proc. Symp. on Logic Programming, pp.
73-77, IEEE-Computcr Society, Boston, 1985.

63. Narain, S., "LOG(F): A New Scheme for Integrating Rewrite Rules, Logic Programming
and Lazy Evaluation," Technical Report CSD-870027, UCLA Computer Science Dept.,
Los Angeles, CA 90024-1596, 1987.

64. Narain, S., "LOG(F): An Optimal Combination of Logic Programming, Rewrite Rules and
Lazy -Evaluation,"' Ph.D. Dissertation, UCLA Computer Science Dept., Los Angeles, CA
90024-1596, 1988.

65. Page, T.W., "Prolog Basis for a Data-Intensive Modeling Environment," Dissertation
Prospectus, UCLA Computer Science Department, Los Angeles, CA 90024-1596, March
1988.

66. Parker, D.S., M. Carey, F. Golshani, M. Jarke, E. Sciore, and A. Walker, "Logic Program-
ming and Databases," in Proceedings First International Workshop on Expert Database
Systems, Kiawah Island, SC, October 1984. (also in Expert Database Systems, L. Kersh-
berg, ed. 1985).

67. Parker, D.S. and M. Matsuo, "Incompleteness in Conceptual Modeling," Proc. Advanced
Database Symposium, Tokyo, August 1986.

68. Parker, D.S., "The Modulus Knowledge Representation System," Draft, UCLA Computer
Science Dept., LosAngeles, CA 90024-1596, 1987.

69. Parker, D.S., "Partial Order Programming," Technical Report CSD-870067, UCLA Com-
puter-Science Dept., Los Angeles, CA 90024-1596, 1987.

70. Parker, D.S. and R.R. Muntz, "A Theory of Directed Logic Programs and Streams,"
Technical Report CSD-880031, UCLA Computer Science Dept., Los Angeles, CA 90024-

1596, April 1988.

-38-

71. Parker, D.S.,.R.R. Muntz, and L. Chau, "The Tangram Stream Query Processing System,"
Technical Report CSD-880025, UCLA Computer Science Dept., Los Angeles, CA 90024-
1596, March 1988.

72. Parker, D.S., T. Page, and R.R. Muntz, "Improving Clause Access in Prolog," Technical
Report CSD- 880024, UCLA Computer Science Dept., Los Angeles, CA 90024-1596,
March 1988.

73. Sadri, F., "Three Recent Approaches to Temporal Reasoning," Research Report 86/23,
Departmen: of Computing, Imperial College, London, Nov. 1986.

74. Sagie, I., "Computer-Aided Modeling and Planming (CAMP)," ACM Trans. Math.
Software, vo1. 12, no. 3, pp. 225-248; Sept. 1986.

75. Scheifler, R.W. and J. Gettys, "The X Window System," ACM Transactions on Graphics,
rl -1vol. 5, no. 29-pp. 79-I09, April 1986.

76. Sciore, E. and D.S. Warren, "Towards an Integrated Database-Prolog System," in Expert
Database Sype,-,-ed. Larry Kerschberg, pp. 293-305, Benjamin/Cummings Menlo-Park,

CA,_1986.

7-7. Sege, A, and A. Shoshani, "Logical Modelling of Temporal Data," Tech. Rep. LBL-
22636, Computer Science Research Department, Lawrence Berkeley Laboratory, Mar.
1987.

78- Shapiro, E.Y., Concurrent Prolog: Collected-Papers, MIT Prese, Cambridge,-MA, 1987.

79. Shoshani, A. and K. Kawagce, "Temporal Data Management," Proc. Twelfth Intnl. Conf.
on Very Large Databases, pp. 79-88, Kyoto, Japan, August 1986.

U 80. Shum, C-D. and R. Muntz, "Implicit Representation of Extensional Answers," Proc. on
2nd International Conference on Expert Database Systems, 1988.

81. Shum, C-D. and R. Muntz, "An Information-Theoretical Study on Aggregate Responses,"3l Technical Report, UCLA Computer Science-Dept., Los Angeles, CA 90024-1596, 1988.

82. Sinclair, J.B. and S. Madala, "A Graphical Interface for Specification of Extended Queue-
ing Network Models," Proc. Fall Joint Computer Conference, pp. 709-718, IEEE Com-
puter Society #743, 1986.

83. Smith, J.M., "Expert Database Systems: A Database Perspective," in Proceedings First
Int. Workshop on Expert Database Systems, 1984.4 84. Snodgrass, R., "The Temporal Query Language TQuel," ACM Transactions on Database
Systems, vol. 12, no. 2, pp. 247-298, June 1987.5 85. Studer, R., "Modeling Tume Aspects of Information Systems," Proc. Second Innl Conf.
on Data Engineering, Los Angeles, CA, 1986.

86. Subrahmanyam, P.A. and J-H. You, "Conceptual Basis and Evaluation Strategies for
Integrating Functional and Logic Programming," Proc. Symp. on Logic Programming, pp.
144-153, IEEE Computer Society, Atlantic City, 1984.

87. Takeuchi, A., "Affinity between Meta Interpreters and Partial Evaluation," Technical
Report TR- 166, ICOT, Tokyo, April 1986.

88. Thom, R., Structural Stability and Morphogenesis, Wiley, 1975.

89. Tsur, S. and C. Zaniolo, "LDL: A Logic-Based Data Language," Proc. Twelfth Intnl.
Conf. on Very Large Data Bases, pp. 33-41, Kyoto, Japan, 1986.I

I

-39-

90. Ullman, J., "Implementation of Logical Query Languages for Databases," in Proceedings
ACM SIGMOD Conference on Management of Data, 1985.

9-1. Warren, David H.D., "An Abstract Prolog -Instruction Set," Technical Report 309, SRI

International, Menlo-Park, CA 94025, October 1983.
92. Zaniolo, C., "The Representation and Deductive Retrieval of Complex Objects," in

Proceedings Very Large Data Bases, pp. 458-469, Stockholm, Sweden, 1985.
93. Zaniolo, C., "Prolog-- A Database Query Language for All Seasons," in Expert Database

Systems, ed. Larry Kerschberg, pp. 219-232, Benjarnin/Cummings, Menlo Park, CA, 1986.
94. Zanioio, C., "Safety and Compilation of Non-Recursive F-om Clauses," Expert Database

Systems, pp. -167-178, April, 1986.

I

Computer Science- Department Technical- Report
University of Cal ifornia.

Los Angeles,-CA 90024-1596

THE TANGRAM PROJECT:
PUBLICATIONS 1987-88

Richard R. Muntz January 1989
D. Stott Parker CSD-890003
Gerald J. Popek

The Tangram Project:
Publications 1987W88

Richard R. Muntz
D. Stott Parker

Gerald J. Popek

Computer Science Department
University of California

Los-Angeles, CA 90024-1596

The Tangram Project at UCLA is aimed at the development of an environment for
modeling of dynamic systems. it is an integration-of DBMS and KBMS technology with
distributed processing techniques. It is supported by DARPA, as contract F29601-87-
C-0072. This is a-summary of technical reports issued over the first year of the project,

I I

Table of Contents

1. OVERVIEW ... 2

2. STREAM-DATABASE PROCESSING 3

3. LANGUAGE SUPPORT 10

4. COMPUTER SYSTEM PERFORMANCE MODELING 14

5. CONSTRAINT-BASED MODELING .. 18

I !
I:
Ii

Ii

Ui

I

-2-

. OVERVIEW

TANGRAM: PROJECT OVERVIEW
Richard R. Muntz, D. Stott Parker
CSD-880032 (39pp.)
April 1988

Today, most computers are used for the modeling of real-world systems.
Demands on the extent and quality of the modeling are growing rapidly. There is
an-ever-increasing need for environments in which-one can construct and evalu-
atecomplex models both quickly and accurately.

Successful modeling environments will require a cross-disciplinary combination of
different technologies:

System modeling tools
Database management
Knowledge base management
Distributed computing

None of these: technologies by itself provides all that is needed. A modeling
environment -must offer high-speed retrieval and exploration of knowledge about
systems, as well as integration of diverse information sources with existing
modeling tools.

Tangram is a distributed modeling environment being developed at UCLA. It is
an innovative Prolog-based combination of DBMS and KBMS technology with
access toa variety of modeling tools.

-3-

2. STREAM DATABASE PROCESSING

THE TANGRAM STREAM QUERY PROCESSING SYSTEM
D. Stott Parker, Richard R. Muntz, Lewis Chau
CSD-880025 (28pp.)
March 1988

Tangram is an environment for modeling. It supports development and manage-
ment of models, simulation of models, analysis-of simulation output and analysis
of models -in general. Its current focus is on computer system performance
modeling.

Modeling -applications routinely generate large quantities of simulation data, and
analysis of this data requires a system that differs in significant ways from exist-
ing database systems. The data often takes the form- of time series, and there-
fore query processing requires :both stream processing techniques and heavy
numerical computations (e.g., basic statistical and time series analysis) beyond
ordinary aggregates.

Or-, of the driving concepts behind Tangram has therefore been the combination
of large-scale data access and data reduction with a powerful programming
environment. The Tangram environment is based on Prolog, extending it with a
number of features, including process management, distributed database access,
and generalized stream processing.

This paper describes the Tangram Stream Processor (TSP), the part of the
Tangram environment performing query processing on large streams of data. The
paradigm of transducers on streams is used throughout this system, providing a
'database-flow' (database C ,taflow) computation capability.

shorter version in Proceedings of the Sixth International Conf. on Data Engineer-
ing, Los Angeles, CA, February, 1989.

A THEORY OF DIRECTED LOGIC PROGRAMS AND STREAMS
D. Stott Parker, Richard R. Muntz
CSD-880031 (31 pp.)
April 1988

For some time it has been recognized that logic programmers commonly write
directed predicates, i.e., predicates supporting only certain input and output pat-
terns among their arguments. In many logic programming implementations,

-4-

programmers are encouraged touse 'mode declarations' to announce this direct-
edness, both as a matter of-style and as a directive for compiler optimization.

A common application of directed programming Is stream or list processing. Pro-
grams that operate on streams or lists usually have specific input and output
arguments. More generally, directed- predicates can represent functions, with
specific inputs and outputs.

We present a new declarative formalism for directedness In logic Iprogramming
systems. The formalism isbased on the use of partial ordering constraints rather
than unification. Semantics of the resulting system are-rigorously definable, and
extend ordinary logic program semantics in a natural way.

The- approach to directed logic programs presented here will probably provide
higher performance than is possible with undirected programs. Furthermore, the
approach provides perspective relating diverse concepts such as predicate
'modes', functional computation, constraint processing, and stream processing.

shorter version in R.A. Kowalski and K.A. Bowen (eds.), Logic Programming, MIT
Press, 1988, pp. 620-650.

IMPLICIT REPRESENTATION FOR EXTENSIONAL ANSWERS
Chung-Dak Shum, Rlchard Muntz
CSD-880067 (17pp.)
August 1988

An exhaustive list of atomic objects is not always the best means of information
exchange. This paper concerns the implicit representation of extensional
arizw's. Expressions for answers are given in terms of concepts and individu-
alE. iixceptions within individual concepts are allowed.

Two criteria are defined as measures of the goodness of such expressions: (i)
minimizing the number of terms; (ii) positive terms preferred over negative terms.
Expressions satisfying these two criteria are called optimal expressions. It is
shown that under a strict taxonomy of -concepts, any two optimal expressions for
an extensional answer share the same set of terms. The inductive proof elicits
an aigorithm for obtaining such expressions.

Generalizing the strict taxonomy of concepts to a join-semilattice of concepts
eliminates the term uniqueness property and also makes the problem of finding
an optimal expression intractable. The problem under multiple taxonomies,
although it.involves a restricted type of join-semilattice, remains Intractable.

in L. Kerschberg (ed.),Expert Database Systems, Benjamin Cummings, 1989, pp.
497-522.

-5-

AN INFORMATION-THEORETIC STUDY ON AGGREGATE RESPONSES
Chung-Dak Shum, Richard Muntz
CSD-880068 (12pp.)
August 1988

An enumeration of individual objects is not always the best means of information
exchange. This paper concerns the problem of providing aggregate responses to
database queries.

An aggregate response is an expression whose terms are quantified concepts.
The tradeoff between the conciseness and preciseness of an aggregate
response is studied. Conciseness is measured by the length (the number of
terms) of an expression, and preciseness is measured by the entropy or the
amount of uncertainty associated with the expression. For a given length, an
expression with the minimum amount of entropy is called optimal.

Under a one-level taxonomy with the same cardinalities for all leaf concepts, the
problem of finding an optimal expression can be solved inexpensively. An
efficient heuristic is also proposed for the general one-level taxonomy. For a tax-
onomy of more than one level, an efficient heuristic is suggested which experi-
ments indicate yields good solutions.

in Proc. International Conf. on Very Large Databases, Los Angeles, CA, August
29-September 1, pp. 479-490, 1989.

ASPEN: A STREAM PROCESSING ENVIRONMENT
Brian K. Livesey, Richard R. Muntz
CSD-880080 (26pp.)
October 1988

In this paper, we describe ASPEN, a concurrent stream processing system.
ASPEN is novel In that it provides a programming model in which programmers
use simple annotations to exploit varying degrees and types of concurrency. The
degree of concurrency to be exploited is not fixed by the program specification or
by the underlying system. Increasing or decreasing the degree of concurrency to
be exploited during execution does not require rewriting the entire program, but
rather, simply re-annotating it.

Examples are given to illustrate the varying types of concurrency inherent in pro-
grams written within the stream processing paradigm. We show how programs
may be annotated to exploit these varying degrees of concurrency. We briefly
describe our implementation of ASPEN.

-6-

ASPEN: A STREAM PROCESSING ENVIRONMENT
Brian K. Livesey
CSD-880098 (120pp.)
December 1988

Stream processing is an ideal paradigm for data-intensive applications. The solu-
tions to a rich and varied set of problems that are, at best, awkward to express in
other paradigms, can be expressed elegantly within the stream processing para-
digm. Furthermore, stream processing presents an execution model in which
such problems can be solved efficiently.

I This thesis describes ASPEN, a stream processing environment. A programming
language called Log(F) is extended to make it an appropriate language for
expressing stream processing programs. The thesis focuses on those exten-
sions that provide support for concurrent processing and access to distributed
data.

The approach is novel in that the programming model allows the determination of
the granularity of concurrency to be separated from the actual coding of the pro-
gram. The degree of concurrency to be exploited is not fixed by the program
specification or by the underlying system. Simple annotations allow the program-
mer to specify varying degrees of concurrency. Increasing or decreasing the
degree of concurrency exploited during execution does not require rewriting the
entire program, but rather, simply re-annotating it.

I Several examples are given to illustrate the varying types of concurrency inherent
in programs written within the stream processing paradigm. Examples are given
which demonstrate how programs may be annotated to exploit these varying
types and degrees of concurrency. The implementation of ASPEN is also
described.I
STREAM DATA ANALYSIS IN PROLOG
D. Stott Parker
CSD-890004 (54pp.)
January 1989

Today many applications routinely generate large quantities of data. The data
often takes the form of a time series, or more generally just a stream - an
ordered sequence of records. Analysis of this data requires stream processing
techniques, which differ in significant ways from what current database query
languages and statistical ana!ysis tools support today. There is a real need for

-7-

better stream data analysis systems.

Stream analysis, like most data analysis, is best done in a way that permits
interactive exploration. It must support 'ad hoc' queries by a user, and these
queries should be easy to formulate and run. It seems then that stream data
analysis is best done in some kind of powerful programming environment.

A natural approach here is to analyze data with the stream processing paradigm
of transducers (functional transformations) on streams. Data analyzers can be
composed from collections of functional operators (transducers) that transform
input data streams to output streams. A modular, extensible, easy-to-use library
of transducers can be combined in arbitrary ways to answer stream data analysis
queries of interest.

Prolog offers an excellent start for an interactive data analysis programming
environment. However most Prolog systems have limitations that make develop-
ment of real stream data analysis applications challenging.

We describe an approach for doing stream data analysis that has been taken in
the Tangram project at UCLA. Transducers are implemented not directly in Pro-
log, but in a functional language called Log(F) that can be translated to Prolog.
With Log(F), stream processing programs are straightforward to develop. A by-
product of this approach is a practical way to interface Prolog and database sys-
tems.

STREAM PROCESSING: AN EFFECTIVE WAY TO INTEGRATE Al AND DBMS
D. Stott Parker
CSD-890005 (11 pp.)
January 1989

We present a novel approach for integrating Al systems with DBMS. The
'impedance mismatch' that has made this integration a problem is, in essence, a
difference in the two systems' models of data processing. Our approach is to
avoid the mismatch by forcing both Al systems and DBMS into the common
model of stream processing.

By a stream here we mean an ordered sequence of data items. Stream process-
ing is a well-known Al programming paradigm in which functional operators
(which we call 'transducers') are combined to obtain arbitrary mappings from
streams to streams. The stream processing paradigm can be, and has been,
applied equally well as an Al programming model and as a query processing
model in databases.

We argue first that, in practice, the relational model of data is actually the stream

-8

model. The pure relational model cannot capture important aspects of relational
databases such as column ordering, duplicate tuples, tuple ordering, and access
paths, while the stream model does so naturally.

We then describe the approach taken in the Tangram project at UCLA, which
integrates Prolog with relational DBMS. Prolog is extended to a functional
language called Log(F) that facilitates development of stream processing pro-
grams. The integration of this system with DBMS is simultaneously elegant, easy
to use, and relatively efficient.

shorter version in Proceedings of the Sixth International Conf. on Data Engineer-
ing, Los Angeles, CA, February, 1989.

STATISTICAL RULES: A NOTION OF DATABASE ABSTRACT
AND ITS ROLE IN QUERY PROCESSING
Chung-Dak Shum, Richard Muntz
CSD-890007 (25pp.)
January 1989

A database instance is not an arbitrary collection of data, but rather many correla-
tions exist among data items. The notion of statistical rules is introduced as a
means of expressing such relationships. We demonstrate that statistical rules can
be utilized in the query optimization process. In selectivity factor estimation, for
example, statistical rules can actually be used to introduce relevant attributes the
same manner as exact rules in semantic query optimization. Other uses of sta-
tistical rules include the enhancement of parallelism in database machines, and
providing incomplete/quick answers as well as more informative responses.

We quantify the notion of how to measure the "inexactness" of a statistical rule
using an entropy measure. The lower the entropy or uncertainty of a rule, the
better the rule is. Based on such a measure, we show that constructing statisti-
cal rules using a "greedy" algorithm will result in a reasonable, although perhaps
not optimal rule.

3-WAY HASH JOIN QUERY PROCESSING IN
DISTRIBUTED RELATIONAL DATABASE SYSTEMS
Scott E. Spetka, Gerald J. Popek
CSD-890008 (17pp.)
January 1989

Initial distribution of relations as well as storage structures and organization have

-9-

an important impact on performance and the appropriate choice of processing
techniques for database operations. Consideration of data distribution for parti-
tioned relations used In hash Join processing lead us to experiment with a new
algorithm for processing 3-way join queries in a distributed system.

Database cacheing is also important for performance of distributed database
management systems. An important goal is to provide an algorithm that can
complement existing algorithms to provide sufficient generality to operate in a
network transparent environment where the location of available resources may
be changing, and to use those resources effectively. We present a new algorithm
for processing 3-way join queries that can take advantage of cacheing by provid-
ing improved performance when data is not ideally distributed for some other
algorithms.

-10-

3. LANGUAGE SUPPORT

LOG(F): A NEW SCHEME FOR INTEGRATING REWRITE RULES,
LOGIC PROGRAMMING AND LAZY EVALUATION
Sanjal Narain
CSD-870027 (18pp.)
July 1987

We present LOG(F), a new scheme for integrating rewrite rules, logic program-
ming, and lazy evaluation. First, we develop a simple yet expressive rewrite rules
system F* for representing functions. F* is ncn-Noetherian, i.e., an F* program
can admit infinite reductions. For this system, we develop a reduction strategy
called select and show that it possesses the property of reduction-completeness.
Because of this property, select exhibits a weak form of lazy evaluation.

We then show how to implement F* in Prolog. Specifically, we compile rewrite
rules of F* into Prolog clauses in such a way that when Prolog intereprets these
clauses, it directly simulates the behavior of select. Since it is not necessary to
change Prolog, it is possible to do lazy evaluation efficiently. Since Prolog is
already a logic programming system, a combination of rewrite rules, logic pro-
gramming and lazy evaluation is achieved.

IMPROVING CLAUSE ACCESS IN PROLOG
D. Stott Parker, Thomas W. Page, Richard Muntz
CSD-880024 (7pp.)
March 1988

One of the weakest aspects of Prolog is in its access to clauses. This weakness
is lamentable as it makes one of Prolog's greatest strengths, its ability to treat
programs as data and data as programs, difficult to exploit. This paper proposes
modifications to Prolog and shows how they circumvent important problems in
Prolog programming in a practical way. For example, the proposed modifications
permit Prolog programs that perform efficient database query (join) processing,
coroutining, and abstract machine interpretation. These modifications have been
used successfully at UCLA, and should be easy to implement within any existing
Prolog system.

-11-

LOG(F): AN OPTIMAL COMBINATION OF LOGIC
PROGRAMMING, REWRITING, AND LAZY EVALUATION
Sanjal Narain
CSD-880040 (176pp.)
June 1988

A new ap, -h for combining logic programming, rewriting, and lazy evaluation
is described. It rests upon subsuming within logic programming, instead of upon
extending it with, rewriting, and lazy evaluation.

A non-terminating, non-deterministic rewrite rule system, F* and a reduction stra-
tegy for it, select, are defined. F* is shown to be reduction-complete in that select
simplifies terms whenever possible. A class of F* programs called Deterministic
F* is defined and shown to satisfy confluence, directedness, and minimality.
Confluence ensures that every term can be simplified in at most one way. Direct-
edness eliminates searching in simplification of terms. Minimality ensures that
select simplifies terms in a minimum number of steps. Completeness and
minimality enable select to exhibit, respectively, weak and strong forms of lazi-
ness.

F* can be compiled into Horn clauses in such a way that when SLD-resolution
interprets these, it directly simulates the behavior of select. Thus, SLD-resolution
is made to exhibit laziness. LOG(F) is defined to be a logic programming system
augmented with an F* compiler, and the equality axiom X=X. LOG(F) can be
used to do lazy functional programming In logic, Implement useful cases of the
rule of substitution of equals for equals, and obtain a new proof of confluence for
combinatory logic.

EXECUTABLE TEMPORAL SPECIFICATIONS WITH FUNCTIONAL GRAMMARS
H. Lewis Chau, D. Stott Parker
CSD-880046 (20pp.)
June 1988

The Stream Pattern Analyzer (SPA) is one part of the Tangram Stream Query
Processing System being developed at UCLA. It uses functional grammars to
specify pattern analysis for streams of data.

Parallel execution events in a distributed system may be captured in an event
stream for analysis. Given a set of functional grammar rules, SPA can analyze
arbitrarily complex behavior patterns in this stream. At the same time a SPA
grammar can act as a declarative specification of valid event histories.

We define a simple but powerful scheme that coroutines recognition of multiple
patterns in an event stream. Propositional temporal logic queries can be

- 12-

expressed in SPA in terms of predefined temporal operators such as eventually,
implies, not_until, etc. Thus complex history-oriented specifications can be
developed easily.

Functional grammar rules by themselves act as pattern generators or specifiers,
and can be used to develop parsers by.compilation to Log(F). Log(F) is a combi-
nation of Prolog and a functional language called F*. We describe a simple algo-
rithm to compile functional grammars to Log(F), and prove its correctness.

PX REFERENCE MANUAL, VERSION 0.2
Ted Kim
CSD-880079 (47pp.)
October 1988

This manual describes an interface to the X Window System for Prolog. The X
Window System is a network-based window system providing a desktop style of
user interface and graphics. PX provides a low level interface to X for Prolog
similar to that provided by "Xlib" for the C language. PX is designed for use with
version 11 of the X Window System. Higher level interfaces (such as toolkits) are
built on top of this one and are outside the scope of this document.

PX is implemented in the C language using the C language foreign function inter-
face from Quintus Prolog. Almost any Prolog which supports the Quintus style
interface can use this package with few restrictions. In particular, SICStus Prolog
was used in the development of this system. This document is a reference
manual. As such, it is not a tutorial or user's guide to X or Prolog.

FUNCTIONAL LOGIC GRAMMAR:
A NEW SCHEME FOR LANGUAGE ANALYSIS
H. Lewis Chau, D. Stott Parker
CSD-880097 (16pp.)
December 1988

We present a new kind of grammar. It combines concepts from logic program-
ming, rewriting, lazy evaluation, and logic grammar formalisms such as Definite
Clause Grammar (DCG). We call it Functional Logic Grammar.

A functional logic grammar is a finite set of rewrite rules. It is efficiently execut-
able, like most logic grammars. in fact, fu"ctional logic grammar rules can be
compiled to Prolog and executed by existing Prolog interpreters as generators or
acceptors. Unlike most logic grammars, functional logic grammar also permits

-13-

higher-order specification and modular composition.

This paper defines functional logic grammar and compares it with the successful
and widely-used DCG formalism in logic programming. We show that pure DCG
can be easily translated into functional logic grammar. Functional logic grammar
enjoys the advantages of DCG, as well as its first-order logic foundation. At the
same time, functional logic grammar ranks higher in aspects such as expressive-
ness and modularity, and permits lazy evaluation.

-14-

4. COMPUTER SYSTEM PERFORMANCE MODELING

A NOTE ON THE COMPUTATIONAL COST OF THE
LINEARIZER ALGORITHM FOR QUEUEING NETWORKS
Edmundo de Souza e Silva and Richard R. Muntz
CSD-870025 (15pp.)
July 1987; revised February 1988

Linearizer is one of the best known approximation algorithms for obtaining
numeric solutions for product form queueing networks. In the original exposition
of Linearizer, the computational cost was stated to be O(MK 3) for a model with
M queues and K job classes. We show in this note that with some straightfor-
ward algebraic manipulation Unearizer can be modified to require only O(MK2)

computational cost.

We also discuss the space requirements for Linearizer and show that the space
can be reduced to O(MK) but with some increased computational cost.

To appear, IEEE Transactions on Computers, 1989.

AN OBJECT ORIENTED METHODOLOGY FOR
THE SPECIFICATION OF MARKOV MODELS
Steven Berson, Edmundo Silva, Richard Muntz
CSD-870030 (23pp.)
July 1987

Modelers wish to specify their models in a symbolic, high level language while
analytic techniques require- iow !eve!, numerical representation. The translation
between these description levels is a major problem.

We describe a simple, but surprisingly powerful approach to specifying system
level models based on an object oriented paradigm. This basic approach will be
shown to have significant advantages in that it provides the basis for modular,
extensible modeling tools. With this methodology, modeling tools can be quickly
and easily tailored to particular application domains. An implementation in Pro-
log, of a system based on this methodology and some example applications are
given.

-15-

ANALYTIC MODELING METHODOLOGY FOR EVALUATING THE3 IPERFORMANCE OF DISTRIBUTED, MULTIPLE-COMPUTER SYSTEMS
Alex Kapelnikov
CSD-870061 (201 pp.)

I November 1987

In this dissertation, we describe an analytic modeling methodology for evaluating
the performance of distributed, multiple-computer systems. The concepts and
techniques of this methodology are useful for the approximate analysis of a wide
range of distributed computing environments and communication networks. The
main strategy of our approach is to segregate, as much as possible, the model of
the "logical" behavior of an application (a program or a process) from the model
of its underlying execution environment. For representing program behavior,
graph-based techniques are used, while extended queueing networks are utilized
for modeling system architectures. The solutions of both types of models are
combined to estimate the performance of a distributed system in executing some
selected applications.

To illustrate the practical application of the methodology introduced in this disser-
: itation and provide an indication of its expected accuracy level, we have included

two case studies.

A MODELING METHODOLOGY FOR THE ANALYSIS
OF CONCURRENT SYSTEMS AND COMPUTATIONS
Alex Kapelnikov, Richard R. Muntz, and Milos 0. ErcegovacI in M.H. Barton, E.L Dagless, G.L. Reijns (eds.), Distributed Processing,
Elsevier Science Publishers, pp. 465-479, 1988.

In this paper, we describe a novel modeling methodology for evaluating the per-
formance of distributed, multiple-computer systems. Our approach employs a set
of analytic tools to obtain an estimate of the average execution time of a parallel3 implementation of a program (or transaction) in a distributed environment. These
tools are based on an amalgamation of queueing network theory and graph
models of program behavior. Hierarchical application of heuristic optimization
techniques facilitates the analysis of large and complex programs. A realistic
example is used to illustrate the practical application of our methodology.

I

I

-16-

A DISTRIBUTED ALGORITHM TO DETECT A GLOBAL STATE
OF A DISTRIBUTED SIMULATION SYSTEM
Behrokh Samadl, Richard R. Muntz, D. Stott Parker
in M.H. Barton, E.L Dagless, G.L. Reijns (eds.), Distributed Processing,
Elsevier Science Publishers, pp. 19-34, 1938.

In this paper, we describe a novel modeling methodology for evaluating the per-
formance of distributed, multiple-computer systems. Our approach employs a set
of analytic tools to obtain an estimate of the average execution time of a parallel
implementation of a program (or transaction) in a distributed environment. These
tools are based on an amalgamation of queueing network theory and graph
models of program behavior. Hierarchical application of heuristic optimization
techniques facilitates the analysis of large and complex programs. A realistic
example is used to illustrate the practical application of our methodology.

DISTRIBUTED SHARED MEMORY IN A LOOSELY COUPLED
DISTRIBUTED SYSTEM (EXTENDED ABSTRACT)
Brett D. Flelsch
in Proceedings COMPCON Spring 88, San Francisco, CA,
February-March 1988, pp.182-184.

In this work we describe new implementation experiences with a distributed
shared memory system implemented in a loosely coupled distributed system.
Our goal was to investigate the feasibility of distributed shared memory (dsm) in
an operating system-kernel. U (1986) demonstrated the feasibility of such a sys-
tem outside of the kernel with a number of numeric applications, but it remained a
relatively open question as to how well dsm performs for a vaiety of non-numeric
applications and what the effects of dsm are on other kernel services. The
organization of dsm we describe resembles a cross-processor segmented paging
system. Our talk relates implementation experiences and preliminary perfor-
mance results. We plan to report results from experiments with symbolic compu-
tation, which emphasizes rearragament of data, where often the sequence of
operations is highly data dependent and less amenable to compile time analysis
than numerical computation. One general goal of this work is to describe a set of
software primitives and to identify hardware features that can be used to support
the conversion of applications from nondistributed shared memory to distributed
shared memory. These features may include hints, user advice, control pirmi-
tives, and architectural modifications that will improve functionality and perfor-
mance.

- 17-

BOUNCING AVAILABILITY OF REPAIRABLE COMPUTER SYSTEMS
Richard Muntz, Edmundo Silva, A. Goyal
CSD-880070 (26pp.)
September 1988

Markov models are widely used for the analysis of availability of
computer/communication systems. Realistic nmiodels often involve state space
cardinalities that ark, so large that it is impractical to generato the transition rate
matrix let alone solve for availability measures. Various state space reduction
methods have been developed, part!cularly for transient analysis. In this paper
we present an approximation technique for determining steady state availability.
Of particular interest is that the method also prov!des bounds on the error.
Examples aro, given to illustrate the method.

18-

5. CONSTRAINT-BASED MODELING

SI

SET CONTAINMENT INFERENCE AND SYLLOGISMS
Paolo Atzeni, D. Stott Parker
CSD-870022 (34pp.)
March 1987

Type hierarchies and- type inclusion (isa) inference are now standard in many
knowledge representation schemes. In this paper, we show how to determine
consistency and inference for collections of statements of the form

mammal isa vertebrate.

These containment statements relate the contents of two sets (or types). The
work here is new in-permitting statements with negative information: disjointness
of sets, or non-inclusion of sets. For example, we permit the following state-
ments also:

mammal isa non(reptile)
non(vertebrate) isa non(mammal)

rnot(reptile isa amphibian)

Binary containment inference is the problem of determining the consequenres of
positive constraints P and negative constraints not(P) on sets, where posetive
constraints have the form P: X Q Y Negations of these constraints therefore
have the form not(P): X -r non(Y) * 0, so positive constraints assert contain-
ment relations among sets, and negative constraints assert that two sets have a
non-empty intersection.

We show binary containment inference is solved by rules essentially equivalent to
Aristotle's Syllogisms. Necessary and sufficient conditions for consistency, as
well as sound and complete sets of Inference rules, are presented for binary con-
tainment. The sets of inference rules are compact, and lead to polynomial-time
inference algorithms, so permitting negative constraints does not result in intrac-
tability for this problem.

To appear, Theoretical Computer Science, 1988.

-19-

PARTIAL ORDER PROGRAMMING
D. Stott Parker
CSD-870067 (B0pp.)
December 1987

We introduce a programming paradigm in which statements are constraints over
partial orders. A partial-order programming problem has the form

minimize u
subject to u1 ;-vI, u 2 -v 2, .

where u is the goal, and u1 v, u2 v 2 , '.. is a collection of constraints called
the program. A solution of the problem is a minimal value for u determined by
values for ul, v1, etc. satisfying the constraints. The domain of values here is a
partial-order, a domain D with ordering relation Q.

The partial order programming paradigm has interesting properties:

(1) It generalizes mathematical programming, dynamic programming, and
computer programming paradigms (logic, functional, and others) cleanly,
and offers a foundation both-for studying and combining paradigms.

(2) It takes thorough advantage of known results for continuous function-
als on complete partial orders, when the constraints involve expressions
using only continuous and monotone operators. These programs have an
elegant semantics coinciding with recent results on the relaxation solution
method for constraint problems.

(3) It presents a framework that may be effective in modeling of complex
systems, and in knowledge representation for cognitive computation prob-
lems.

ON CONSTRAINT-ORIENTED ENVIRONMENTS
FOR CONTINUOUS SYSTEMS SIMULATION
Richard A. Huntsinger
CSD-880018 (10pp.)
March 1988

Sets of simultaneous differential equations and sets of queries on those equa-
tions are naturally expressible as constraint networks in the constraint satisfaction-
modeling paradigm. Further, relaxation enhanced to exploit typed valued con-
strain's provides a procedural semantics for such constraints which in the best
case reduces to propagation, and in the worst case performs comparably to other
paradigms. Accordingly, constraint satisfaction is advocated as the paradigm of-
choice on which to base continuous systems simulation environments.

-20-

Examples are presented illustrating constraint network characterizations of con-
tinuous systems models, and their corresponding procedural semantics.

REPRESENTATION TRANSFORMATION IN
CONSTRAINT SATISFACTION SYSTEMS
Richard Huntslnger
CSD-880020 (11 pp.)
March 1988

A practical class of constraint satisfaction systems operate on relaxable
representations of the form N =f(N), where N is a set of variables, and the
declarative semantics is the set of instantiations of N which preserve the equality.
In general, relaxation-provides a complete procedural semantics for only a subset
p of such representations. Of interest, then, is the set of transformable represen-
tations a) p in which for each representation Mrr=a there exists a determinable
transformation T: a-+p such that the declarative semantics of Mr is identical to
that of T(Mr).

Relaxable representations for which f (N) is a polynomial are transformable, each
corresponding to a transform of the form N = (f(N)Nn)11(n+1), where n is a func-
tion of the degree and coefficients of the polynomial. This observation provides
some intuition about more general transformations, applicable to the implementa-
tion of powerful (complete over a superset of p) constraint satisfaction systems.

PARTIAL ORDER PROGRAMMING: EXTENDED ABSTRACT
D. Stott Parker
CSD-880086 (7pp.)
October 1988

We introduce a programming paradigm in which statements are constraints over
partial orders. A partial order programming problem has the form

minimize u I
subject to u1 vi, U2_V2, '

where u is the goal, and ul _v1, u2 -v 2, "" is a t.,.Iection of constraints called
the program. A solution of the problem is a minimal value for u determined by
values for ul, vj, etc. satisfying the constraints. The domain of values here is a
partial order, a domain D with ordering relation].

-21-

The partial order programming paradigm has interesting properties:

(1) It generalizes mathematical programming and also computer program-
ming paradigms (logic, functional, and others) cleanly, and offers a foun-3I dation-both for studying and combining paradigms.

(2) It takes thorough advantage of known results for continuous functionals
on complete partial orders, when the constraints involve expressions using
only continuous and monotone operators. The semantics of these pro-
grams coincide with recent results on the relaxation solution method for

* constraint problems.

(3) It presents a framework that may be effective in modeling, or
knowledge representation, of complex systems.

in Proceedings of the Sixteenth ACM SIGACT-SIGPLAN Symposium on Princi-
pies of Programming Languages, Austin, Texas, January 11-13,1989.

OPTIMIZATION BY NON-DETERMINISTIC, LAZY REWRITING
SanJal NaralnCSD-880092 (19pp.)
November 1988

Given a set S and a condition C we address the problem of determining which
members of S satisfy C. One useful approach is to set up the generation of S as
a tree, where each node represents a subset of S. If from the information avail-
able at a node, we can determine that no members of the subset it represents
satisfy C, then the subtree rooted at it can be pruned, or not generated. Thus,
large subsets of S can be quickly eliminated from consideration. We show how
such a tree can be simulated by interpretation of non-deterministic rewrite rules,
and its pruning simulated by lazy evaluation.

I

