3 983k
WMN“VMWWN&

Very Large Scale Distributed Information Processing Systems
Final Technical Report

Contract No. F29601-87-C-0072

September 27 1991

‘Principal Investigators:
Gerald J. Popek
Wesley W. Chu

L e T

F ey ,_.fo:
[ Rt 4

L U {”B

¢
;:" fo
..4(

Computer Science Department
School of Engineering and Applied Science
University of California
Los Angeles

<&
=
- 4
b

91-18754
IMNMWWMM%WM




A Aceasasion For t i

l . NTTS GRkal &
; Very Large Scale Distributed pre Ie¥ o
: ery Large Scaie isirioute Unenaonued 0
Information Processing Systems Justifteatton
3y e \X¢

Defense Advanced Research: Projects Agency| pastrivuttons
Availabllity Codes

fAvuil ard/or
Dist Spacial

Final Technical Report

2
~

1. Introduction

This final report covers the research carried out by the Very Large Distributed Infor-
‘mation Processing Systems group- at UCLA under DARPA sponsorship during the period
1987 - 1991.

This- contract spanned two largely independent research -efforts. During the period
1987-1989, the Tangram project under the direction of Co-PIs Dr. R, Muntz and Dr. D.S.
Parker: constructed an object-oriented declarative programming environment for systems per-
formance modelling.

In 1989, the project was retargeted. The distributed operating system effort directed
by Dr. G. Popek which had been ongoing during 1987-1989 was.expanded. Dr. W. Chu re-
placed Drs. Muntz and Parker as Co-PI and initiated the fault tolerant distributed database
research.

Reflecting this -history of the- project, this.final report covers three primary areas. We
will first introduce the distributed operating and file system work, followed by the database
research, and finally the Tangram project. A selection of technical reports giving more detail
about aspects of each of the three areas of the research follows.

1.1 Distributed Operating and Filing Systems (Dr. Gerald Popek)

1.1.1 The Ficus Replicated File System

The-centerpiece of our work over the last four years is the design and implementation
of Ficus, a replicated general filing environment for Unix intended to scale to very large (na-
tionwide) networks [GHMP90]. There are three fundamental characteristics of the work
which distinguish the Ficus architecture. First, it embodies an optimistic view of update in
which any file or directory may be referenced or updated so long as some copy is available;
conflicts are addressed when reconnection occurs [Guy91]. Second is its approach to modu-
larity through stackable layers [HP91]. Third is its solution to the very large scale naming
problem using on-disk volume grafting on demand [PGPH91]. Technology transfer efforts are
underway which appear likely to result in each of these three contributions being incorporated
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in commercially available versions of Unix in the next several years:

Ficus is now operational and in use at UCLA. ‘While currently running in the context
of SunQS, it has been constructed in a manner that-can be added to any operating system (in-
cluding many versions of Unix and Mach) that provides a VFS file system interface. The im-
plementation consists of -two stackable layers, ‘‘logical’’ and ‘‘physical’’. The logical layer
provides layers above with the abstraction of a single copy, highly available file; that is, the
existence of multiple replicas is made transparent by the legical layer. The physical layer im-
plements the abstraction of an individual replica of a replicated file. It uses whatever underly-
ing storage service it is -stacked upon (such as a Unix file system or NFS) to store persistent
copies of files, and manage: the extended. attributes about each-file-and directory entry. When-
the logical and physical layers execute on different machines, they may be separated by a
transport layer which maps vnode operations. across an RPC -channel in: a manner similar to
NFS.

The stackable layers architecture provides a mechanism whereby new functionality can
be added to a file system transparently to all other modules. This.is in contrast to today’s
Unix file systems in which substantial portions must be rebuilt in order to add a new feature:
Each layer supports a symmetrical interface for both: a) calls to it from above and, b) with
which it performs operations on the layers below. Consequently, a new layer could be insert-
ed anywhere in the stack, for-example, to encrypt data that passes through it, without disturb-
ing (or even having source code to) the adjacent layers. Thus, stackable layers is an architec-
ture-for extensible file systems.

The optimistic approach to replication taken here is particularly appropriate for very
large or geographically dispersed filing environments. In such a domain, the network is con-
stantiy partitioned. Conventional approaches to replica management actually decrease availa-
bility for update as the number of replicas increases. Given the actual occurrence of

-conflicting updates is believed to be quite low, it makes more sense to detect and repair

conflicts when they do occur than to take expensive measures to prevent them. Ficus em-
ploys a suite of distributed algorithms which reliably detects conflicting updates. In the case
of updates to directories, where the semantics of the updates are simple and well understood
by the system, Ficus is able to repair most conflicts automatically, thereby maintaining the in-
tegrity of the naming structure while providing maximal availability.

In Ficus, updates are first made to one replica of a file. Update propagation to other
replicas is performed in the background on a “‘best effort”” basis. That is, update propagation
is not relied upon to ma:_.tain consistency. Replicas that are not accessible when update pro-
pagation- is attempted find out about the updates upon *‘reconciliation’’ with a more informed
replica. The reconciliation algorithms perform periodic sweeps of the replicated file systems;
pulling in new -updates, detecting conflicts, and automatically reconciling directory replicas.
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Ficus has been used to connect a cluster -of rephcas at UCLA -with remote replicas.
stored at Trusted Information Systems, ISI and SRI ‘via the Internet. Elapsed time overhead
for file operations is typically invisible. While systeni time overhead measurements show an-
overhead: approaching 50% for worst-case benchmarks, this results in noticeable-delay only on

heavily loaded machines when heavy name space activity occurs (e: g. recursive remove).
Further, it appears that:most of this overhead can be-eliminated.

I:1.2 Distributed Shared Memory

Hardware and architectural characteristics strongly favor multiprocessor systems.
without shared memory hardware, due to switch costs and delays, as well as the ease of use:

of alternate LAN and: optical fiber based methods. The question then becomes whether

software layers-can be fashioned to provide:the functionality of shared memory MP systems

transparently, so that standard approaches -to programming and use may be employed. We

demonstrated in: the context of Locus that it is feasible to-do so for programs with controlled:

sharing patterns. It is expected that many software -packages exhibit the relevant behavior.

Early in the contract period, we investigated extending network transparency not only-
to the file system, but also to- access to distributed memory in a loosely coupled distributed
system. We designed and implemented distributed -shared -memory for the Locus disstributed:

operating system without any-hardware support, in a manner suitable for use in a local area
network [FP89]:

1.1.3 Graduates

Four students in the field of distributed operating systems received their Ph.D degree
under the partial support of this contract: Richard Guy [Guv91], Scott Spetka [Spet89], Brett
Fleisch [Flei89], Joseph Betser [Bets88].

1.2 Fault Tolerant Distributed Database Systems (Dr. Wesley Chu)

In a distributed database system, network partitioning occurs due to site and link
failures. Conventional techniques use replication to increase availability. However, network
partitioning may cause blocking and only partial operability. In real-time decision support
systems, availability of data is of primary importance and suspending processing is not accept-
able. Further, frequently accessing remote data may be too time consuming and the user may
be-obliged to-use local knowledge to infer the result. Since data are often correlated (for ex-
ample, rank and salary; ship type and cargo), we developed a new approach that uses data
inference techniques for fault tolerant and real-time query answering. Such inference tech-
niques use accessible data and knowledge to infer inaccessible data. A knowledge base along
with the database resides at each site, which can be used together to infer the inaccessible
data. The knowledge base may be automatically derived from database content and applica-
tion domain knowledge.
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During the past two years, we have studied the acquisition: of knowledge from data
base anc application domains [CLC90], developed open inference techniques to-infer incom-
plete kaowledge {CCH90] and also used simulation to evaluate the improvements in availabil-
ity due to inference [CHL90]. We have constructed a prototype that uses SyBase as its data-
base management system and built an inference engine to validate the proposed concept
[CPC90]. The prototype confirms the feasibility of this approach and also sheds light on the
following new research-areas: sound inference path generation, knowledge update methodolo-
gies-and correctness and completeness of the query answers, which -will be investigated under
the next contract.

As a generalization of the fault tolerant research, we have also extended it to coopera-
tive -distributed database systems (CoBase), in which knowledge is used to provide not only
missing data but approximate, summary, and intensional answers. We have obtained some
preliminary results as reported in the papers entitled "Cooperative Query Answering via Type
Abstraction Hierarchy" [CCL90b], "Using Type Inference ai. Ir.duced Rules to Provide Inten-
sional Answers" [CLC91], and "A Pattern-based- Approach for Deriving Intensional and Ap-
proximate Answers" [CCL91]. The cooperative concept appsars to have many application
areas, such.as integration on heterogeneous database systems, real-time query processing, pro-
-cessing of image database systems, etc. These areas will also be under further investigation
over the next contract -period: We also plan to apply the methodology to the transportation
applications.

Three Ph.D. students, A. Hwang [HWAO90], R. C. Lee [Lee90], and P. Ngai [Ngai90]
were graduated under the partial support of the contract. The results of their research were
presented at national and international conferences.

1.3 The Tangram Modeling Environment (9/87-5/89, Dr. R. Muntz and Dr. D.S. Parker)

Today, many computers are used for the modeling of real-world systems. Demands on
the extent and quality of the modeling are growing rapidly. There is an ever-increasing need
for environments in which one can construct and evaluate complex models both quickly and
accurately:

Successful modeling environments will require a cross-disciplinary combination of
technologies:

System modeling tools
‘Database -management
Knowledgebase management
Distributed computing

Tangram is a distributed modeling enviomment developed at UCLA. It was an inno-
vative Prolog-based combination of DBMS and KBMS technology with access to a variety of
modecling tools including stochastic, statistical, structural, equational, constraint-based, rule-
based, semantic network, and-object-oriented models.
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A _more detailed overview may be found in the attatched documents ‘‘Tangram: Project

Overview;” and. ““The Tangram-Project: Publications 1987-1988.”* A partial list of ‘the results
of Tangram include: :

o

Developed:the Log(F) stream data processing language which-integrates database query
processing-and logic programming [Nara88].

Background/Significa.ice: Many approaches. have been proposed to: integrate
knowledge-based systems with: database systems. However, there is an essential
mismatch between Al systems and databases: they follow different processing models.
The tuple-at-a-time style-of AI systems is notoriously inefficient while the-query-at-a-
time style.of databases overwhelms the workspace of an Al system with data. We can
eliminate the mismatch via the stream -processing model. We implemented a Log(F)
10-Prolog compiler and provided-an interface to streams stored in Unix files-and Ingres
databases yielding-a stream-based database query language.

Developed-a distributed concurrent stream-based programming environment [LM89].

Background/Significance: As observed above, loosely coupled multiprocessor systems
currently represent the most cost-effective architecture.to deliver very high speed com-
puting. The execution model of stream data processing provides an ideal paradigm-for
harnessing such distributed computing power. We developed the Aspen programming
environment for distributed Log(F).

‘Extended Log(F) with sophisticated pattern recognition grammars [Chau89].

Background/Significance: Parallel execution of events in a distributed sysiem (or
simulation) may be captured in an event stream for analysis. We extended Log(F)
with functional grammars to produce a simple but powerful language and environment
which can recognize multiple patterns in parallel in a single event stream.

Designed and built and demonstrated the Tangram Object-oriented Modeling Environ-
ment [PBCM§9].

Background/Significance: Tangram is a meta-modeling environment; a system for
creating, storing, retrieving, updating, sharing and querying models. It features a
graphical interface for constructing and querying models and allows model object
behaviors to be specified using an object-oriented extension of Prolog and Log(F).
Complex models may be composed of sub-models, forming a hierarchy. It features an
easily extensible base set of mathematical solvers including several packages for solv-
ing Markov chains and queueing networks. The system antomatically selects the most
appropriate solver for a given model and query using a domain knowledge base.
Tangram’s base modeling domains are customizable by domain experts. Special pur-
pose modeling environments with a look and feel tailored to individual problems may
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‘be created quite rapidly. The system is currently in use-in several commercial settings.

Four Ph.D. students participating in Tangram graduated with partial support of this
-contract: Hau-Ming Chau [Chau89]; Thomas Page [Page89], Churg-Dak Shum-:[Shum89], and:
Sanjai- Narain-[Nara§88].
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ABSTRACT OF THE DISSERTATION
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The dissertation presents the issues addressed in the design of Ficus, a large
scale wide area distributed file system currently operational on a modest scale
at UCLA. Key aspects of providing such a service include toleration of partial
operation in virtually all areas; support for large scale, optimistic data replication;

and a flexible, extensible modular design.

Ficus incorporates a “stackable layers” modular atchitecture and full support
for optimistic replication. Replication is provided by a-pair-of layers operating in
concert above a traditional filing service. A “volume” abstraction and on-the-fly

volume “grafting” mechanism are used to manage the large scale file name space.

The replication service uses a family of novel algorithms to manage the prop-
agation of changes to the filing environment. These algorithms are fully dis-
tributed, tolerate partial operation (including nontransitive commnnications),

and display linear storage overhead and worst case quadratic message complexity.



CHAPTER 1
Introduction

Two-decades ago, the first large scale, wide area network computing experiment
began at UCLA, SRI, UCSB,:the University of Utah, and BBN [Cro87]. By 1980,
the ARPANET connected hundreds of hosts across North America, Hawaii, and
Europe. Nearly 100,000 hosts are attached to the DARPA Internet-today; at this
rate, the total will approach-ten million by the end of-the century.

Somewhat surprisingly, the phenomenal expansion of the user community
has-not been in response to, or even been accompanied by, changes in the style
of ARPANET usage. Remote login, electronic mail and news, and bulk data
transfer remain the primary services using the network. The introduction of
internetworking protocols around 1980, ai:d a domain-naming system a few years
later, have:significantly expanded the underlying capabilities of the ARPANET,
but higher level services continue to be niuch the same:

During this same period, local area 1etwork technology emerged from re-
search laboratories into the commercial marketplace. Based on the same packet-
switching concepts as wide area networking, local area network services rapidly
evolved from remote login and simple data transfer to include distributed file
systems, -émote procedure call services, and even complete-distributed operating
systems.

The explosive growth of the ARPANET, and its transformation into the In-
ternet, is directly attributable to the proliferation of local area networks As
service-rich local area networks have been interconnected with limited service
wide area networks, interest has greiit in extending the services availabie on
wide area networks to include, among otherz. distribuied file systems.!

Two prominent issues immediately encountered when extending traditional

1A review committee of the National Reseatch Council endorsed the concept of a national
research network in 1988 [NRC88); in 1989, Senator Albert Gore, Jr., introduced legislation to
invest $1.75-billion-in a National Resezrch and Education Network; in early 1990, the Presi-
dent’s Council of Advisors on Science and Technology’s $1.9 billion Federal High Performance
Computing program (similar to Gore’s proposal) has been endorsed by the Bush administra-
tion. Success-of these programs hinges upon client-friendly services usable by the masses, not
those-endured by computer scientists.




local area network services into the wide area network arena are network perfor-
mance-and:scale.?

1.1 Network performance

From its inception, the ARPANEY -~ - ri:narily used transmission lines with
much less bandwidth than an I/G «. - 0! =+, - Jypical host. The bandwidth ratio
in-the-early 1970’s was typically1:200 (5" £b/s ARPANET : 12 Mb/s UNIBUS);
by the late 1980’s, the ratio approach. i 1:4,000 as- common workstation I/0
bus rates exceeded:200-Mb/s (VME bt~ i'he dramatic difference between 1/0
bus and network capacity forced netvw..;" ‘i.ents 1o be conscious of the network
presence and conservative in its-use.

In contrast, the 10 megabit per second local area-network transmission rates
of ‘the-early 1980’s closely matched minicomputer I/O bus rates of the day. Thkis
similarity of bandwidth-encouraged system designers-to-utilize network facilities
in new ways, such as distributed file systeins. The concept -of network trans-
parency became fundamental, much as virtual memory was accepted a decade
earlier. Even with an order of magnitude difference-in bus and network band-
width today, local area network.services-continue to expand an: be effective.

DARPA Internet sponsors are currently responding fo the bandwidth dispar-
ity. A new Internet “backbone” with a bandwidth greater than one megabit
per second is being instz’~d in the United States. Over the next few years, the
bandwidth-will'increase-izto the gigabit per second range as optical fibers replace
copper wires as the primary transmission media. This realignment of network
transmission capacity and host I/O bus rates lays a necessary portion of the
foundation to provide wide area services-that traditionally have been limited to
local area networks.

Another important network performance parameter is iatency induced by
transmission delay. An inherent delay of 30 milliseconds is incurred by a transcon-
tinental round trip message traveling at the speed of light. (The delay increases
to 7 second for geosynchronous satellite channels.) Services such as interprocess
communication and remote procedure call for which the local latency is usually
measured in microseconds are dramatically affected by large inherent latencies.

’In reflecting on Carnegie-Mcion University’s network, Mahadev Satyanarayanan com-
ments, “The change that vould most substantially improve the usability of Audrew [CMU’s
campus-wide distributed system] would b- a distributed file system that completely masked
failures from users and application programs. It is still an open question whether this goal is
achievable in conjunction with good performance and scalability.” [Sat88)
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In contrast, the effect of a minimum 30 millisecond delay is only moderately sig-
nificant for file system services today: the average access times for typical disks

.are also in the low tens of milliseconds.

1.2 Scale

Local area networks are not by definition-limited in scale, yet many servicesare
implemented with assumptions of small scale. For example, the-Locus distributed
#le system has a fixed design parameter of a maximum-of thirty-two-hosts. The
Zun Network File Syster. (NFS) assumes that the identity and:location of every
accessible filesystemis placed in a-single-monolithic file or «:very host; such a-file
is not manageable in:practice on a-large scale.

The issue of scale-is more complex than simply increasing-design parameters

or concocting algorithms that efficiently handle large amounts of data. Large
scale impacts-administrative concerns such as resource management, protection,

and legal issues. Scale may also affect the usability of the system: a client may be
overwhelmed by complexity if large scale implies a fundamentally different mode
of interaction with the computing environment.

Yet another aspect of large scale is the reliability of the system, at both a
component level-and overall. A distributed computing environment composed of
a million hosts will have at least a million network interfaces and communications
paths. The probability-thac all components will be operational a4 any single time
is almost zero, and-effectively zero over any useful period of time. Thkis indicates
‘that partial operation is the normal, not exceptional, mede for a system sf this
scale. Services intended for use in this environment must consider component

failure to be a routine condition;-in-some cases, a failed component may never be

repaired.

1.2.1 Partial operation

In this context, the definizion of “failure” is broader than simply an unexpected
denial of service which will be repaired in the near futire. Failure also includes
deliberate actions, such as terminating a communications link during high-tariff
periods or to-protect a host from external threats. An overloaded gateway may
exhibit failure conditions when it is unable to respond in a timely fashion. Some
components may be taken out of service permanently, either by design or disaster.

ARPANET designers anticipated the partial operation problem, and quite
successfully resolved it with respect to communications paths by establishing a




multiply-linked network-of communications.controllers with an irregular topology.
Adaptive routing algorithms. are used to locate, evaluate, and select alternate
communications paths. In two decades of operation, network partitioning has
rarely occurred.3.

The ARPANET solution is no panacea, however. Multiple (long-haul) links
are quite expensive from an economic standpoint; in fact, the new Internet back-
bone is composed-of just a few-well-connected regional hubs that interface to area
networks. Nevertheless, there-continue to-be single points of failure which can
inhibit communication [Neu87]. A regional hub failure may isolate a significant
portion of the network; a gateway or host failure-may isolate just a‘few hosts, or
prevent access to-data-managed by -a failed or inaccessible host.

Although partial operation:is unavoidable in a large scale, wide area network,
its detrimental effects can often be minimized. A wide area file system is an
-example of .a valuable service that can, but need not, be rendered impotent
by partial operation. As with the ARPANET communications links example,
redundancy at one or more levels is the primary tool for counteracting partial
operation’s negative consequences. This work proposes data replication as an
-affordable approach to cope with partial operation in a wide area file system.

1.2.2 Data replication

Data replication techniques combat the problems of partial operation by using
redundancy-to avoid a single point of failure (the data). Rather than accessing a
specific single copy, aclient accesses a varying subset of data replicas. The number
of copies accessed depends on-the consistency method used, but the probability of
successfully -accessing a subset which satisfies the consistency criteria is expected
to be greater than-or equal to the probability of successfully accessing a particular
copy.

A number of data replication methods have been incorporated into local
area network file system services: LOCUS [PW85], ROE [EF83], Isis [Bir85],
PULSE [TKW85)], Eden [PNP86], Guardian [Bar78], Saguaro [PSA87], Gem-
ini [BMP87], GAFFES [GGKS8T7], and a UNIX United variant [Bre86]. Most
assume that the number of copies is small, and that they are stored among a
small number of hosts. A further assumption is that failures are rare, or of suf-

3Three notable exceptions: the 1987 partitioning resulting from a single broken fiber despite
7-fold redundancy [Neu87), the 1980 complete network failure which occurred when a single bit
was dropped from a widely propagated status word [Ros81], and the 1988 Internet worm catas-
trophe which prompted many sites to preemptively shutdown as a means of protection [Spa89]




ficiently short duration that clients can wait until the failure is repaired. These
assumptions are invalid in-2 large-scale-system; new replication techniques must
‘be developed to cope with large scale issues.

1.3 Hypothesis

The hypothesis of this research is that a large scale, wide area file system is
feasible. To be feasible, it ‘must compensate for partial operation; it must sup-
port a large number of hosts, clients, and data; administrative issues must be
satisfactorily addressed; and the client interface must not be complex.

The true test of this hypothesis is to design, build, install, and use a wide area
file system that scales to millions of hosts, compensates-for partial operation, and
is manageable. This rescarch effort endeavors to accomplish the first of these
-phases by presenting a large scale, wide area file system design; the second is
accomplished by implementing the design. Installation and extensive use of the
implementation are-beyond the scope of-this-work.

1.4 Research outline

A number of research issues are directly identifiable in the preceding discussion.
Broad issues include large scale testbed design, distributed access methodology,
and replica management. Each is considered in more detail in the following
sections.

1.4.1 Large scale testbed

Conducting an experiment of this scale depends upon cooperation of a large num-
ber of installations, most of which- must quickly perceive the potential near-term
benefits (to themselves) of participating in the experiment. Maximal cooperation
1is dependent, in part, on minimal disruption of an organization’s unrelated activ-
ity. This suggests that the experimental large scale file system services should be
engineered as modules which may be easily attached to an installation’s operating
system environment(s).

The importance of a modular design extends beyond the initial development of
a testbed. File systems depend upon many other services which can be expected
to experience evolutionary, perhaps revolutionary, enhancement in the future.
File system services which are intertwined with current state of the art storage




services, for example, will likely seldom benefit from novel developments. The
resulting hysteresis may even condemn both- intertwined services to obscurity,
rather-than just the-one. Good modular design mitigates this problem.

1.4.1.1 Target environment

The available-pool-of candidate cooperating installations is the DARPA Internet
community, in which UNIX is the predominant software environment. Of the
various UNIX -versions in common use, SunOS (Sun- Microsystem’s UNIX imple-

‘mentation) is-attractive. The primary attraction is an internal design that readily

supports multiple filesystem implementations;-a secondary -benefit is that SunOS

1is widely used: within the Internet.

The file system portion of the SunOS UNIX kernel is-built around a generic
interface known as-a virtual file system. The interface hides-details of the particu-

lar file system:implementation which is-handling a request. AN extended version

of the virtual file system interface is used to add the experimental large scale file
system service to-standard versions of SunOS.

1.4.1.2° Leveraging via stackable layers

Since this research focus is large scale issues, and. not file system services in
general; it is desirable to leverage existing (and-future) services wherever possible.
Primary -candidate services are raw disk management and network transport of
file data.

The virtual file system interface enables file system services to be leveraged
in an interesting way: a novel file system service can be added, which utilizes

-existing services as though-it (the novel service) was simply a routine client (such

as a system call). This organization results in a “stack of layers” in which each
layer exports the same interface.

In addition to its leveraging benefits, the stackable layers concept allows trans-
parent services to be added. For example, a generic file system performance

-monitoring layer can-be “slipped in” between any two stacked layers sharing the

virtual file system interface.

This work uses the stackable layers model as an aid to designing and imple-
menting large scale file system services. The existing UFS (UNIX File System)
and NFS (Network File System) services within SunOS are used to provide disk
management and network transport services, respectively. A new layer (or layers)
is constructed that supports the virtual file system interface, and which uses UFS
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-and NFS services. This layer is-engineered as a module which can be linked into

a standard SunOS-kernel.

1.4.1.3 Efficient layering

A layered implementation model often:introduces additional overhead. The extra

‘cost is'especially pronounced when anupperlayer builds on on lower layer services
that are richer than required. To some extent, this is the case when building a
large scale file system on top of UFS.

For example, the replication service provides a more powerful-directory service

than that currently provided by the UFS. The layered approach results in a

directory service in-one layer which largely replaces the service:in a lower layer,

but is-constrained to pay for the lower layer service as well. A -prototype of the

Andrew File:System tried this-approach; it was abandoned because of significant

-overhead, and the layers were replaced by a single-layer, customized UFS.

In this particular case, much of the additional overhead resulting from -un-
needed UFS:services may be avoided by exploiting various locality phenomena

prevalent in UNIX system usage. Applying the results of recent studies of UNIX
file access patterns-to the-new layers and exploiting the current finely tuned UFS
implementation limits additional overhead to-acceptable levels.

1.4.1.4 Naming

The primary interface between clients and a file system is the naming scheme,
which-includes the syntax of the name space and the operations defined over it. A
well designed naming scheme is-a catalyst for network file sharing, a poor design

‘hinders and frustrates sharing.

Design goals for a large scale file system are similar in many respects to those
of small scale distributed fiie systems. They include:

e simplicity

e ease of -use

o file system boundary transparency

¢ syntax transparency with respect to existing file system types
e location transparency

e narme transparency

-1
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e local autonomy for name management
¢ compatibility with embedded names-in existing software

e support for large numbers of hosts, clients, and files

Existing naming schemes fail to meet one or more of these goals.

A testbed environment composed of existing installations necessarily places
some limitations on the design of a naming scheme. For example, the choice of
SunOS-as a base system implies that the name space syntax must be compatible
with the UNIX naming scheme. These limitations are not significantly constrain-
ing, however. The tree-structured UNIX name space can be supported within:the
context-of a more general model, such as a directed acyclic graph.

The goals of simplicity and support for large scale suggest that some form
of hierarchy serve as the-name space model. It is not immediately clear how to
integrate a few million existing, disjoint instances of the UNIX name space into
a hierarchy that meets all of the design goals. Major issues of name space design

‘and -supporting mechanism must be addressed.

1.4.2 Distributed access

The file system service must be able to locate a file and provide access to it
based solely on a client-provided, location transparent file name. Every host
supporting the large scale name space should be able to efficiently locate any file
named within the name space, and then support low-overhead read and update
access.

1.4.2.1 Volume mapping

Ideally, the logical organization of a name space is unrelated to the physical
location of the files themselves. In practice, effective resource management is
achieved by physically grouping files with logically related names, vielding what
is-sometimes called a volume.* A name space, then, is structured as a hierarchy
of volumes, each containing a rooted hierarchy of file names.

In existing distributed file systems, the macro-organization of volumes is usu-
ally represented as a table of mappings between names and volume roots. The

#Volumes were introduced in the Andrew File System [HHKMS8); they are used here in similar
ways, but with important differences in implementation and detail.




volume mapping table (sometimes known as a mount table) is external to vol-
umes. Each host supporting the name space maintains its-own volume mapping
table for the-portions of the name space in which it is interested.

The concept of volumes is appropriate for a large scale file-system, but the
mechanisms-incorporated to date in smaller scale systems-are generally not ap-
plicable. A large scale file system will contain millions of volumes, with new
volumes being established frequently. Few installations can afford to-attempt to
maintain a complete table of volume mappings, yet every host must be able to
locate any file named within: the entire name space.

This work addresses the volume mapping table problem by distributing the
table and embedding table entries within the name space itself. A new volume
graft point file type is introduced into the large scale file system service. A graft
point contains the'same mapping information formerly placed within-the volume
mapping table. With this mechanism, a host never needs to maintain a large
amount of volume mapping data. A graft point is dynamically “interpreted” in
a manner similar to NFS automounting.

1.4.2.2 File transport

A file that has been located for a client is usually accessed soon thereafter. If
the file is remote, its data pages must be transported to the client’s host. Small
scale file systems have used one of two approaches: demand paging, or whole file
pre fetching and caching. Updates are handled either by asynchronous delayed
write-back, or synchronous write-through to the file itself.

The whole file prefetching approach exploits the locality of usage that is typ-
ical of UNIX clients. Most UNIX file access is to small files that are read se-
quentially in their entirety. File updates generally are preceded by a scan of the
entire file, and then the file is completely rewritten. Newly written data is often
rewritten or deleted shortly thereafter. When this behavior is prevalent, whole
file pre-fetching and caching has substant:-lly less overhead than demand paging.
The whole file method is not appropriate for large, random access files such as
databases; demand paging is a much better scheme.

The target sysiem’s existing transport service, NFS, uses demand payng and
delayed write-back. NFS has been ieveraged to avoid having to design and build
a new transport service at the outset. The benefits of whole-file caching can be
obtained with the data replication services described in the sequel.
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1.4.3 Replication

Large scale distribu  systems inherently possess two unpleasant characteris-
tics, partial operation and significant communications latency. Data replication
techniques have been-applied to small scale local area systems to address partial
operation and latency problems (although they are much less pronounced). This
suggests that replication has the potential to ameliorate these problems in large
scale systems.

Data replication methods maintain- multiple copies -of data, but strive to
present the client with the illusion of a single, highly available file. Major is-
sues include replica consistency, management algorithms, and client interface.

1.4:3.1 -Consistency

Almost all existing and proposed-replication mechanisms adhere to serializability®
as a consistency definition. It is not clear, however, that enforcing strict serializ-
ability is appropriate for all, or even most, file usage in a large scale, wide area
system.

Serializability protects applications from interfering with each other. Existing
serializability enforcement techniques place substantial availability constraints on
access, often trading off read availability requirements against update availability.

For example, the primary copy [ADT6] strategy requires that all updates to a
file be performed on a designated copy; other copies may be brought up to-date
in parallel with the designated copy, or at a later time. Read-only access may be
serviced by any accessible copy. In this case, read availability is very high, but
update availability is no greater than with a single copy.

The majority voting technique [Tho78] ensures that every update is applied
simultaneously to (at least) a majority of replicas. Read access which is to be
followed by a related update must involve at least a majority of replicas, to
guarantee that the latest version of the file js read.

Quorum consensus [Gif79] is a generalization of the basic voting approach,
in which replicas-are a priori allocated fixed, but possibly differing quantities of
votes, and read and update quorums can be assigned different thresholds. The
sum of the thresholds must be one greater than the number of replicas, but the

-update threshold must always be greater than one half of the number of votes.

STnformally, serializability requires that all client actions be logically orderable in a serial,
non-concurrent fashion. The actions themselves may be physically concurrent, but their logical
order must be serial.

10
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If update is rare relative to read, the read threshold can be made small, and the
update threshold made large. Such an arrangement optimizes both performance
and availability to a particular job mix, but sacrifices the availability of update
in favor of read, or vice-versa.

Such-approaches are inappropriate for an-environment- characterized b par-
tial operation and high latency. Partial operation undermines the availability
assumptions used to justify the read versus update tradeoff: the quorums re-
quired by even a modest number of replicas may never be achievable. High
latency makes the cost of consulting several replicas very expensive.

The result is that the average client has lower availability and poorer service
than a single client near a single replica. This is especially unfortunate since
empirical studies indicate that very little concurrent file usage, and even less
update, actually occurs. Concurrent updates are even more rare. Thus, the cost
and service limitations implied by serializability often seem to be unwarranted.

The rarity of concurrent update access suggests that-optimistic replica-con-
sistency strategies should be considered. This work adopts a novel one-copy
availability (OCA) consistency policy which enforces no lost updates semantics.
OCA permits read and update access when any data replica is accessible. A
spectrum of strictness can be enforced, ranging from “use any available replica”
to “any replica no older that this client has used before.” Strict serializability
enforcement can be constructed on top of OCA for those clients who demand it.

1.4.3.2 Replica management algorithms

The one copy availability consistency policy initially applies an update to a sin-
gle file replica. The task of propagating the update (alternatively, the new file
version) rests with a separate service. A consistency policy like OCA that allows
concurrent, unsynchronized update further relies on an update reconciliation ser-
vice to detect concurrent update activity and thereby ensure that no updates are
inadvertently lost. Detection of update conflicts may be accompanied by con-
flict resolution in those cases in which the reconciliation service understands the
semantics of the updates.

Accurate concurrent update detection can be accomplished using Parker’s
version vector technique [PPR83, PW85, Guy87, SKK90]. A version vector is a
multi-dimensional version number in which each component corresponds to the
number of updates applied initially to that replica. The absence of concurrent
updates is indicated when a comparison of replicas’ version vectors determines
that one vector’s components are each pair-wise greater than or equal to the cor-

11
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responding components of another vector. Otherwise, concurrent update activity
has occurred.

Concurrent updates are assumed to represent conflicting unsynchronized ac-
tivity until some semantic-knowledgeable -agent declares the conflict to be re-
solved. For many-concurrently updated files, only the client can determine how
the conflict is to be resolved. But concurrent updates can also-be applied to the
name space itself. Since the name space is closely managed by the name service,
the potential exists for automatic resolution of concurrent name space updates.

A name space reconciliation service must first detérmine what updates should
be-propagated to-a particular replica, and then apply those updates to-it. The
major issue here is how the reconciliation service learns which updates have oc-
curred.

One approach is to maintain replica-specific update logs. The reconciliation
service compares replicas’ logs, identifies those updates which haven’t been ap-
plied to the replica in-question,-and applies them to the replica and makes an
appropriate log entry. Log entries should be garbage collected when they are no
longer relevant, i.e., when each replica has applied the update; an algorithm such
as that used in Jefferson’s Global Virtual Time [Jef85] might suffice.

Name space update logs bear a striking resemblance to the name space to
which they refer. It is therefore interesting to consider coalescing or embedding
the log into the name space. Major benefits include a reduction in space overhead
and the reduced complexity of managing only one structure.

This research investigates a log-less approach in some depth and develops a
new class of low-overhead garbage collection algorithms. The algorithms place
few requirements on underlying communications services, in that the topology
may be arbitrary and continuously changing; no ordering of replicas is needed;
global storage requirements are quadratic in the number of replicas, with a small
coefficient (a few bits per replica); worst-case message complexity is quadratic,
with message length as a linear function of the number of replicas.

This work incorporates these new garbage collection algorithms into the name
space reconciliation service for OCA. Further research is needed to extend the
basic algorithms to support dynamic growth and/or reduction of the number of
replicas. Early indications suggest that growth is fairly easy to support, and
reduction is more difficult.

12
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1.4.3.3 Client interface

Replication should normally be a transparent feature of a file system. Neverthe-
less, there are-circumstances in which it cannot be transparent, such as when
conflicting file updates must be resolved. There are also. times when its visibil-
ity can be helpful. For example, knowledgeable clients may wish to specify the
placement and number of replicas, rather than rely on the replication service’s
default selections. Clients may-also wish to specify stricter or weaker consistency
policies than that chosen by default.

Exposing replication services to clients is a- perplexing problem for a-layered
architecture, when the new service layers are separated from clients by other
layers (which appropriately know nothing about the new services). The solution
here exploits an extensible version of the virtual file system interface [HP91a],
which supports a layer bypass-mechanism that enables any layer to redirect an
unknown service request to the layer immediately beneath it in a stack.

1.4.4 Research summary

The above research outline covers a broad range of issues which demand consid-
eration in the development of large scale, wide area file system. It covers testbed
development, including selection of a target operating system, identification of a
suitable interface for a layered architecture, and examination of naming issues.
Large scale distributed access research problems include volume management and
file transport. Finally, a comprehensive approach to replication is considered.

This research does not cover all issues fundamental to a large scale file sys-
tem. The most prominent, perhaps, is authentication and security. The Internet
community is well aware of the importance of this aspect of large scale computing
environments;® it must be addressed at some point, but it is outside the scope of
this effort.

1.4.5 Dissertation outline

The remainder of this work consists of two main parts, the architecture and
implementation of the Ficus’ file system (Chapter 2), and a rigorous presentation

SThe Internet worm case [Spa89) is a recent example of vulnerabilities in large scale
environments.

"The name was inspired by the topological similarity of two trees, one from cyberspace and
one from nature. The cyberspace tree 1s fcund in a large scale filing environment composed of
existing standalone tree-structured name opaces connected by a shallow super-rooted sub-tree,
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of the family of two-phase algorithms used in optimistic replica management
(Chapter 3). Chapter 4 summarizes the research and the conclusions which can
be drawn from it, and finally suggests future directions in which this research
could readily proceed.

1.5 Related work

The primary collections of related work are found in distributed file systéms liter-
ature and replica-management research. A brief summary of significant.research
follows..

1.5.1 Distributed file systems

Severaliinteresting.distributed file systems have appeared in the last decade. They
are reviewed here, along with relevant file access studies.

1.5.1.3 Important system implementations

The file systems mentioned here all support some form of network transparency.
Each supports distributed access and location transparent naming. The extent
to which name transparency is supported varies widely: it is guaranteed in some
(e.g., LOCUS), and must be provided by convention in others (e.g., NFS).

e LOCUS
The LOCUS [PWB85] distributed operating system provides clients with
the illusion of a very large, highly reliable single system. The (research)
LOCUS filesystem provides extensive file replication services. Within a
single partition, a very high degree of file access consistency is maintained.
Concurrent, partitioned updates are tolerated, and detected later through
the use of version vectors [PPR83].

LOCUS is intended for small scale environments, such as that typified by
office environments using a local area network. Each node regards the
others as peers, independent of their functionality.

e NFS
Sun Microsystem’s Network File System is a distributed file system. Rep-

the ‘natural’ tree is the Ficus benghalensis, commonly known as the Banyan tree, a fig species
renowned for a wide-branching visible root structure seemingly grafted high onto a main trunk.




lication is.not supported; UNIX consistency semantics-are approximated to
some extent.

Andrew/Coda:

The Andrew [HKMS8S8, Sat88] filesystem provides client workstations with
a highly reliable centralized file service. A client-server relationship exists:
between workstations and the central pool of file servers; clients do not
privately share files. Client files are cached (in entirety) on the client’s
workstation upon the first access to the file. Andrew provides file replication
only amongst the pool of file servers, and assumes that no partitioning
occurs between servers storing file replicas.

A callback mechanism is used between servers and clients for consistency
control. A callback is-a promise by the server to notify every client with a
cached copy of a file that another client has finished updating a cached copy
and the server is-about to make its own copy-consistent with the updated
cached copy. Clients are required to privately synchronize update activity
originating from distinct workstations.

This mechanism is not resilient to communications failures, and so unde-
tected conflicting updates can occur. This can result in a previous file
version being silently overwritten.

Andrew is intended for a campus-type environment: geographically dense,
with a few thousand client workstations.

Coda [SKK90] is a general purpose replicated filesystem service for Andrew.
It uses file replication techniques inspired by the LOCUS file system to sup-
port replication between partitioned file servers. Client workstations obtain
a temporary file “replica” (through Andrew’s whole-file caching mecha-
nism), which may be modified even when a server is inaccessible. Con-
flicting updates are reliably detected; a simplification to the version vector
scheme introduces occasional false conflict notifications.

Isis/Deceit

The Deceit file system [SBM89] is based on Isis [BJ87] Cornell’s distributed
system kernel. Isis provides support for resilient objects, which Deceit uses
to underly file replication. Deceit allows a broad range of file consistency se-
mantics during network partitions, from serializability (using majority con-
sensus protocols to obtain mutual exclusion) to optimistic, non-serializable
semantics. No support for detection of partitioned conflicting updates is
provided.
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Deceit-appears to clients to be an extension fo an NFS environment. It also
supports afile versioning mechanism similar to that found in the VAX/VMS
operating system.

1.5.1.2° File aczess/placement studies

Three comprehensive file system activity traces have been performed, one in
a commercial mainframe-setting [Smi81] and two in nniversity UNIX environ-
ments [OCH85, Flo86b]. These traces form the basis for a number of analy-
ses-[Smi81, OCH85, MB87, Kur88, Flo86b, Flo86a).

These studies generally showed that a few files receive a large portion: of file
accesses; most files accessed are small, and read sequentially in their entirety.
A significant amount of working-set type locality was observed: a reference to
a file was frequently followed by another reference to the same file, and with
lesser frequency to a file located within the same file directory. Careful cache
management strategies were shown to be extremely useful in reducing I/O and
other file system overhead. Little file sharing occurred, with the exception of a

few heavily accessed (for read) system files.

1.5.2 Replica management

In the past twenty years, dozens of published papers have described various replica
management protocols. It is convenient to classify the protocols- according to
several criteria: failure mode assumptions, pessimism about concurrent updates,
and mutual exclusion methodology. Specific replicated file system and directory
management proposals are also discussed.

1.5.2.1 Limited failure modes

Early work on replica management assumed that inaccessible replicas had com-
pletely failed; in this model, communications failures “do not occur.” Ellis" [EIl77]
ring-oriented broadcast strategy utilized update history logs to recover failed
replicas. Despite its limitations, various improvements have been proposed, and
-utilized in implementations. An improved atomic broadcast technique reduced
the overhead [JB86] and was incorporated in the Isis kernel [Bir85).
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1.5.2.2 Pessimistic concurrency-

Most replica management protocols are pessimistic about concurrent update: po-
tentially non-serializable activity is explicitly prevented from occurring. Various
mutual -ezclusion techniques have been proposed to-ensure that concurrent, un-
synchronized updates do not happen. All of these protocols occasionally prevent
update activity anywhere, even when each replica is accessible by one-client or
another-(but no-client_can access all replicas).

The primary copy strategy was introduced by Alsberg [AD76]. One replica is
designated as primary and receives all updates; secondary replicas are updated
lazily. A failed or inaccessible primary replica halis all update activity. The
primary copy method has -been used- in the INGRES database [Sto79] and the
commercial LOCUS file system [PW85].

Voting techniques (also known as majority consensus)-have higher availability
than primary copy methods. Thomas’ original voting method [Tho78] assigned
one “vote” to each replica;-an update could proceed only if a majority of repli-
cas agreed to synchronously perform it. Unsynchronized concurrent updates are
prevented by the mutual exclusion behavior of “majority.”

Weighted voting [Gif79] improved upon basic voting by allowing a different
number of votes at each replica, to account for varying reliability characteristics
of replicas. Gifford also noted that an explicit majority of votes is not required
for mutual exclusion: the actual:requirement is that the read quorum and update
quorum each be large enough to intersect.

Availability limitations imposed by infrequently accessible replicas have been
addressed by dynamic voting protocols [BGS86, Her86, ES83, DB85, JMS8T].
These allow adjustment of quorum definitions within a “majority partition,” to
redefine the “size” of a majority by effectively disenfranchising currently inacces-
sible replicas. Ghost replicas have been proposed as a way to reduce the actual
storage costs of voting mechanisms [Par86, RT88].

Voting has been proposed or used in a wide variety of applications: name
servers [BG85], bulletin boards [Edi86), databases [VM87], reliable storage [Ber85,
BY87], file directories [BDS84], and Eden kernel replicated objects [NPPS6].

1.5.2.3 Optimistic concurrency

Optimistic replica management approaches exploit the observation that concur-
rent update is relatively rare. Some support one-copy serializability by either
delaying update commit [AR85], or backing out updates at a later time [SBKSS5,
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Dav84, Wri83]. Optimal ex post facto analysis-of updates to determine which
should be backed out is an NP- zomplete problem [Dav84, Wri83], so some updates
may-needlessly revoked for ihe sake of efficient analysis.

Optimistic non-serializable approaches have been proposed for computer con-
ferencing [Str81], commercial information retrieval services [ABGS8T], bulletin
board [BJS86], databases (BK85, SKS86, GABS3, All83, Fai81), and file direc-
tories [FM82, PPR83, Guy87]. Most of these base correctness criteria upon the
semantics of the data and the operations performed.

1.5.2.4 Replicated directory management

The-directory replication problem has received particular attention because of the
central role it plays is designing a highly reliable distributed file system. A wide
range of directory replication mechanisms have been proposed, from serializable
to non-serializable.

Fischer and Michaels [FM82] presented the first detailed examination of direc-
tory replication. They recast the problem as a replicated dictionary problem, to
focus on the basic insert and delete operations common to each. Unsynchronized,
concurrent directory modifications are resolved via timestamps.

Various inefficiencies in Fischer’s work were addressed by Allchin {All83].
Wuu [WB84] offered further improvements. Unfortunately, the successive im-
provements reduced comm:unications complexity at the expense of storage com-
plexity: each replica in-Wuu'’s scheme is required to maintain a version matrix.

Bloch [BDS84] utilized weighted voting in a serializable approach to directory
replication. A novel scheme was adopted in which no single directory replica need
(or can be assumed to) contain a true picture of the directory’s status. Several
replicas must be con-.ilted to compose a correct view of the directory. Bloch’s
approach is inexpensive for interrogating or adding to . directory, but expensive
for deletions.

Guy [Guy87] proposed a nor-serializable solution in the spirit of the LOCUS
system. It is based on Parker’s version vectors [PPR83], and supports a wider
range of semantics than the earlier work by Fischer, et al. A novel feature of this
method is that it tolerates conflicting updates after the conflict is discovered.
(Earlier techniques made an immediate decision on how to resolve the conflict;
the haste often resulted in unpleasant effects, such as loss of a newly created file.)
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CHAPTER 2
Architecture

This chapter presents the main portions of the Ficus file system design. It begins
with a discussion of the stackable layers-design methodology used throughout
Ficus. Section 2:2 describes Ficus volumes, which are a fundamental construct
for filing in:general, and replication-in particular. Section 2.3 describes the Ficus
replication. approach and facilities, while Section 2.4 focuses specifically on file
access synchronization issues=in Ficus.

2.1 Stackable layers

Stackable -layers is a modular structuring paradigm distinguished -by the use of
identical interfaces for each layer. The application of structured :programming
techniques-to file system design is not new, nor is the concept of symmetric inter-
faces (which has previously been applied to terminal I/O and:network protocols).
The contribution of this work is the integration and extension of these concepts
by the application of stackable layers to file system design.

2.1.1 Related work

The two primary classes of published work related to stackable layers are struc-
tured approaches:to file system design and the use of symmetric interfaces in [/O
and network protocols.

2.1.1.1 File system structuring

Previous work on structured design of file systems is typified by an early proposal
for hierarchical structuring of file systems and the current state of the art in
operating system support for multiple co-existing file systems.

In 1969, Madnick and Alsrp [MAG69] presented a modular approach to file
system design which was inspired by earlier work of Dijkstra [Dij67, Dij68] and
Randell [Ran68] on structured design. Their approach separates file system ser-
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Symbolic file system File directory manipulation
Basic file system File meta-data access and management

_Protection Access control verification

Logical file:system Access methods and file structure
| Physical file system Logical to physical address mapping

| Device strategies Initiate I/O, manage buffers, allocate storage

Figure 2.1: Madnick’s hierarchical file system design- (top-down).

vices into discrete levels of abstraction in -which each level communicates only
with its immediate upper and lower levels. The resulting static organization
provides a framework for implementing a file:system, such as the six-layer file
system design proposed in Madnick and Donovan [MD74] (see Figure 2.1). The
argument presented by Madnick, et al for modularity is the traditional one of
complexity management, both for ensuring logical completeness and for debug-
ging and quality assurance.

Operating systems have traditionally supported exactly one file system. Sun
Microsystems’ SunOS! implementation of UNIX? incorporates a switch which al-
lows multiple file system services to co-exist comfortably within a single operating
system.? 7

The Virtual File System (VFS) switch mechanism [Kl1e86] is designed around
a vnode data structure which implements a stylized interface between a file system
and other portions of the operating system kernel. The interface is essentially
an information hiding technique that exports a set of operations (analogous to
methods in object-criented terminology); all data is private to some vnode, and
can only be accessed via supplied vnode operations.

The-apparent initial motivation for the VFS switch was to support transpar-
ent remote file access without embedding remote access mechanisms within the
existing (local access) file system implementation [K1e§86]. In SunOS, local filing
service is handled by the UNIX File System (UFS), while remote access is pro-

1Sun0S is a trademark of Sun Microsystems, Inc.

2UnIX is a trademark of AT&T.

3A number of other UnNix implementations now also provide file system switches. These
include AT&T’s File System Switch in UNIX System V Release 4, Digital’s Generic File System
for ULTRIX [RKI86], and the 4.3-Reno BSD (Berkeley Standard Distribution)-[KM86].
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vided by the-Network File System (NFS*) [SGK85). NFS is “stacked” onto UFS,
in the sense that it exports the VFS.interface to-its (local) clients_and uses the
VFS interface on the remote site to access file systems (such as UFS) there. NFS
implements a custom data transport protocol between network sites.

Each of the dozen-plus file systems in the current (4.1) release of SunOS
supports a common set of vnode operations. The:natural evolution-of filesystem
services has repeatedly forced a change in the definition of the VFS interface, as
new services-require features not envisioned by the original-designers. Thi lack
of extensibility is a-major impediment to using the VFS interface as the base for
a-general purpose stacking facility.

2.1.1.2 Symmetric interfaces

To date, the-application:-of symmetric interfaces has focused-on protocol design

for terminal I/O in UNIX and network communications.in a experimental’kernel.

The STREAMS I/O system was developed by Ritchie [Rit84] as a replacement
for the (then) standard line discipline mechanism used to manage input and out-
put between processes and terminals. The existing line discipline mechanism
had become extremely complex as a result-of adding various ad hoc routines to
improve performance; regularity of style and service suffered as well. A more pro-
nounced problem was the need to support multiple line disciplines concurrently
for the:same.process—a task never envisioned in its original design.

Ritchie’s solution was:to define a simple queue-oriented interface which cach
module uses to communicate with its ncighbors in a “stream” of modules. Each
module filters the items placed on its input queues (one in each direction), perhaps
intercepting, substituting, augmenting or passing on the items given to it. C: atrc’
messages may be queued in addition to regular data messages, which normail_-
consist-of a simple sequence of characters.

The symmetric interface of each module allows a stream to be composed
of modules in whatever order is desired.®> A further feature of the STREAMS
approach is the ability to dynamically add and remove modules from the stream
while it is operating.

A layered design approach has also been used in the z-kernel operating system
kernel [HPAS9, PHO90, HP91b]. The z-kernel is a configurable kernel designed

ANFS is a trademark of Sun Microsystems, Inc.
SNote that the modules at cach “end” of the strecam support the interface on only one
“side” —a different interface is typically used to communicate with modules not part of the

stream.




explicitly for simplifying the implementation of network protocols. Primary fea-
tures of the z-kernel include a uniform interface to all protocols, late binding
between-protocol layers, and a light-weight layer mechanism.

The z-kernel design is deliberately intended to-encourage composition of pro-
tocol stacks on-the-fly, with run-time selection of layers supplying the appropriate
semantics. Layering-efficiency is provided by using procedure-calls, not context
switches, to pass information between layers. £his economy is further used to
promote decomposition of protocols into multiple layers as a means of aiding
flexibility.

2.1.2 Observations

Operating systems and file systems have grown significantly in size and com-
plexity in the twenty years since Madnick’s proposal was presented. Greater
complexity has often manifested itself as a tendency towards monolithic sys-
tem implementations which increasingly defy adequate testing and verification,
and hinder improvements—especially those not conceived within the monolithic
framework.

In recent years, micro-kernels in systems such as Mach [ABGS86, RBF89] and
Chorus [RAA90] have emerged as a response to the monolithic implementations
of operating systems. However, little has been done to tackle the monolithic filing
service portion of most kernels. Adding any new features to 2 filing environment
is usually a daunting task which frequently requires reimplementation of much
of the file system. This situation generally prohibits all but the major operating
system vendors from providing and distributing new filing services, and even then
artificially limits the services which will be offered to those which are casily added
to the existing product.

The file system switch approaches are an important step i the modular di-
rection, but have yet to be accompanied by a decomposition of monolithic file
system services. A few interesting new services (e.g., RAM-based filing) have
been constructed, but all are layered onto a fairly standard UFS-type file system
base. The new services are therefore constrained by the services and semantics
offered by a UFS: access to lower level services within the UFS is not provided,
and services must be used even when their richness is unnecessary.

A

It is also difficult to experiment with new lower level services. For exam-
ple, Rosenblum’s log-structured file system [RO91] for the Sprite operating sys-
tem [OCDSS] provides UFS semantics, but uses a very different disk management
algorithm from that used by Berkeley's Fast file system [MJLS4]. The monolithic
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nature -of the various UFS implementations limits the immediate wide-spread
utility of the log-structured file system (LFS) because porting LFS to other envi-
ronments (which may have made semantically orthogonal but tightly-integrated
changes to their UFS implementations) is a non-trivial task. A similar situation

-affects the RAID [PGK88] disk-array filing work.

A design technique and accompanying mechanism which provides the ability
to snap-together independently developed components to configure custom filing
services on a site by site (or even file:by file) basis would introduce unprecedented
flexibility. The result would be a mechanism whereby independent researchers
or vendors can deliver shrink-wrapped software -modules which contribute hle
system functionality without rewriting, replacing or retesting large portions of
the basic implementation.

2.1.3 Requirements

The above observations provide a strong motivation for stackable layers approach
to file system modularity. But what specific requirements must be met by an
acceptable stackable solution?

To add a bit of concreteness, suppose the goal is to design a highly available,
large scale, wide area file system using a stackable layers methodology. Suppose
further that remote access, replication, authentication, and a variety of as yet
unknown services are to be supported in addition to traditional single-system
UNIX file services.

These goals place a number of requirements on a layering mechanism; some
requirements are novel individually, and the collection is-unprecedented in scope:

Efficiency: Numerous thin layers embedding few abstractions are preferable to
a few thick ones (to maximize the leverage of existing code), so the-inherent
cost of layering must be low.

Stack composition granularity: Stack contents should be customizable at a
process, application, or file granularity; layer services should generally be
optional, not forced upon clients. The order of layers should be determined
by layer-specific semantics, not fixed a priori.

Extensibility: New layers with custom operations should be supported any-
where in a stack (not only the top) without disturbing existing layer imple-
mentations. New layers should be introducible at boot-time, irrespective of
existing layers; binary-only distribution of new layers should be feasible.

Stacks across address space boundaries: It should be possible to construct
a stack that crosses address space and machine boundaries. Graceful reac-
tion to partial stack disintegration resulting from node or communications
failures is essential.
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Well-defined operations: The extensibility and address space boundary re-
quirements imply that a layer may need to handle arguments for “unknown”
operations. These arguments must be self-describing as to type,-etc.

Stack fan-in, fan-out: A stack may actually be an acyclic graph, with fan-in
and fan-out at any level. Fan-in occurs when.several higher layers stack on a
common lower layer (as might occur when a file is concurrently accessed by
several nodes); fan-out occurs when a layer is stacked upon multiple lower
layers-(as might be the case when several files stored on distinct nodes are
in use by a-single-client).

Scale: No artificial limits should be placed on the depth (number-of layers) of a
stack or on the breadth of fan-in or fan-out.

Dynamic composition: Stacks should be -customizable on-the-fly, especially
when the layers to be added/removed are “invisible” -ones, i.e.,:they are
semantics-free value-added layers, such as caching or monitoring layers.

Backwards compatible: Compatibility layers should be constructible which
can encapsulate the new mechanism within the constraints presented by
older layering services. A lower compatibility layer allows the new mecha-
nism to-leverage services implemented with other layering mechanisms; an
upper compatibility layer allows older mechanisms to utilize new services,
subject to limitations imposed by the intersection of the various layering
mechanisms. In particular, existing system call interfaces must not be af-
fected, so that current application software will continue to run unmodified.

2.1.4 Ficus layer mechanism

The Ficus layering mechanism meets most, but not all, of these requirements.
It is derived from-the SunOS VFS/vnode technique, but is much more flexible
and powerful than its predecessor. The mechanism is described in detail by its
designer in [HP90, HP91a); the material that follows summarizes that work.

A Ticus layer is defined to be a set of operations which can be applied to a
vnode-data structure. A vnode structure embodies a layer’s concept of a file. It
normally contains a-list of operations which can be applied to the vnode, and a
pointer to a procedure which implements each operation. The private data held
by a vnode is layer specific, of course, but usually contains one or more pointers
to vnodes from the layer immediately below. Adding a new file system service is
primarily a matter of implementing the desired operations for a new layer.

A vnode operation invocation contains a pointer to the vnode on which to
operate, the nameof the operation, a pointer to the operation’s arguments, and a
template which defines the type of each-argument. The layer mechanism maps-the
operation name to the -proper implementation of the operation for the indicated
vnode, and invokes the operation with the supplied arguments and template.




The implementation of a vnode operation may simply forward the operation
to-one of its-descendants (analogous to inheritance), perform some actions and
then forward it to its descendants, call some other operations on its descendants,
or even handle the operation entirely internally. A layer knows nothing about
the type of vnode below it; it simply holds a pointer to it. At the base of the
stack is a layer which has no further descendants.

2.1.4.1 Bypass operation

Sometimes the operation to be invoked is not defined, as the layer designer did
not provide an implementation for that operation. (Perhaps the designer intends
for the implementation to be “inherited” from some layer beiow; it is also possible
that the operation in question had not even been conceived when the layer was
built.) In this case, a bypass operation is executed to pass the invocation through
to the next lower layer. The lowest layer in a stack returns an error if a bypass
is-attempted.

In general, each layer must define its own bypass operation, since the nature
of the bypass may depend on a layer’s semantics. Even if unusual semantics are
not involved, the pointer to a lower vnode is contained in a vnode’s private data
area—whose structure is opaque to other layers.

The cost of a bypass operation is typically an additional procedure call which
simply passes on the pointers to the arguments with which it was originally called.
But when a layer “straddles” an address space boundary, the bypass operation
must marshal its arguments and pass them into the other address space. The
argument type template defines the arguments in sufficient detail for a bypass
operation to correctly transfer arguments from one address space to another.®

A transport layer (one that straddles an address space boundary) is actually
composed of two sets of operations: those called by the layer above, and those
executing in the other address space which in turn call the layer below. Ior
example, if a stack crosses machine boundaries via a network, the upper half of
a layer might implement one end of a data transfer protocol, while the lower half
implements the other end of the protocol. Figure 2.2 shows a sample stack with
a transport layer.

The current Ficus implementation contains a basic layer mechanism, a generic
bypass operation, and a generic transport layer pair for crossing address spaces.

6The External Data Representation (XDR) service in SunOS is used here; it also supports
data movement between heterogeneous data formats, as often occurs when a stack crosses
machine boundaries.
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should be able to incorporate or avoid such features on-demand, in reaction to
the dynamism inherent in general distributed computing. Rosenthal proposed
a push-down vnode-based mechanism [Ros90] for dynamic file system stacks in
a single address space; its utility is limited for distributed -file systems as the
mechanism does not easily extend- across address spaces.

Dynamic filing stacks are not likely to be as “dynamic” as protocol streams,
though, because existing file data was created in the context of -a particular
stack of semantically significant layers. Operational integrity requires that these
layers ‘be included, in the proper order, in later stack construction. But invisi-
ble layers, such as caching, or invisible layer pairs providing (de)compression or

(de)encryption, should-be dynamically stackable.

2.1.5 File system decomposition

On several occasions in-the preceding discussion, it has been argued that existing
file systems are monolithic (which is bad) when they should be structured as a
number of layers wkich are relatively thin (which is good). A case study of several
current file system implementations for UNIX systems supports this argument in
more detail.

Consider the typical “layered” file system arrangement in SunOS that would
be displayed with UFS, NFS, Rosenblum’s LFS, and the Andrew File System
(AFS) [HKM8S]. Figure 2.3 shows a likely VFS-based arrangement.

Internally, UF'S and LIS contain substantial amounts of identical code to im-
plement standard UNIX directory semantics and so on; only the disk layout code
is different. On the other hand, UFS and AFS share the same disk management
code, but have different directory management code.

Figure 2.4 shows the resulting organization if the file system layers are each
split into two layers, in which the basic “inode” abstraction is the dividing line.
There are now two semantically equivalent implementations of disk management
services, each available for use by two directory managers that provide somewhat
different directory services. Note, however, that the UFS and AFS directory
services are similar enough that NFS (as well as the basic OS system call services)
can be layered above each.

Further decomposition of file system services is both feasible and useful, as

will be seen in subsequent discussion of the Ficus replicated filing service in
Section 2.3.3.4.
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2.1.6 Summary

The stackable layers paradigm is an promising design-methodology for filing ser-
vices. The unprecedented flexibility and extensibility provided by stackable layers
can be expected-to have a significant impact on experimentation with new file
system services, improvements in existing services, and the rapid adoption of
novel developments. Their use permeates the Ficus architecture.

2.2 Volumes

Ficus is'intended for very large scale distributed computing environments. Such
an environment might have 10%-hosts, each with perhaps 10%-files. Primary goals
of Ficus (see Chapter 1):includename and location transparent access to all Ficus
files while retaining a familiar access syntax and semantics.

Accordingly, the Ficus name space topology is a limited, directed acyclic graph
of files and directories. To ease management at several levels, the name space
hierarchy is divided into disjoint sub-hierarchies called volumes. A volume is a
singly-rooted, self-contained”, connected set of files and directories. A volume
typically contains from 102-10° files, yielding an expected total of approximately
108 volumes.

Achieving name and location transparency at this scale implies that every
host can name, locate, and access any of 10! files scattered amongst 108 volumes
on 10° hosts. This reduces to naming and locating volumes when (as in Ficus)
volumes contain a well-defined subset of files.

Solution to this problem are very much constrained by the number of volumes
in the name hierarchy, the number of replicas of volumes, the topology and failure
characteristics of the communications network, the frequency or ease with which
volume storage locations change, and the degree to which the hierarchy of volumes
spans multiple administrative domains.

2.2.1 Related solutions

Most volume naming mechanisms are descended from the original UNIX mounted
filesystem concept. In this model, a path name is expanded component by com-
ponent within a filesystem (volume) until a specially designated directory is en-
countered. The special designation indicates that path name expansion should
continue in the root directory of another volume, which is said to be mounted at

"Directory references do not cross volume boundaries.
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that point in the hierarchy.

The traditional UNIX mounted filesystem mechanism has been widely altered
or replaced to support both small and large scale distributed file systems. Ex-
amples of the former are Sun’s Network File System (NFS).[SGK85] and IBM'’s
TCF [PW85]; larger scale file systems are exemplified by AFS [Kaz88], Deco-
rum [KLA90], Coda [SKK90], and Ficus [GHM90, PGPI1]).

In a conventional single-host UNIX system, a single mount table exists which
contains the mappings between the mounted-on directories and the roots of
mounted volumes. ‘However, in a distributed file system, the equivalent of the
mount table must be a distributed data structure. The distributed mount table
information-must be replicated for reliability, and the replicas kep* consistent in
the-face of update.

Most distributed UNIX file systems to some degree attempt to- provide the
same view -of the name space from any sile. Such name transparency requires
mechanisms to ensure the coherence of the distributed and replicated-name trans-
lation database. NFS, TCF, and AFS each employ quite different approaches to
this problem.

To the degree that NFS achieves name transparency, it does so through co.
vention and the out-of-band coordination by system adminisirators. Each site
must explicitly mount every volume which is to be accessible from that site; NF'S
does not traverse -mount points in remotely mounted volumes. If one admin-
istrator decides to mount a volume at a different place in the name tree, this
information is not automatically propagated to other sites which also mount the
volume. While allowing sites some autonomy in how they configure their name
tree is viewed as a feature by some, it leads to frequent violations of name trans-
parency which in turn significantly complicates the users’ view of the distributed
file system and limits the ability of users and programs to move between sites.
Further, as a distributed file system scales across distinct administrative domains,
the prospect of maintaining global agreement by convention becomes impossible.

IBM’s TCT', like its predecessor Locus [PWS85], achieves transparency by rene-
gotiating a common view of the mount table among all sites in a partition every
time the node topology (partition membership) changes. This design achieves
a very high degree of network transparency in limited scale local area networks
where topology change is relatively rare. However, for a network the size of
the Internet, a mount table containing several volumes for each site in the net-
work results in an unmanageably large data structure on cach site. Further, in
a nationwide environment, the topology is constantly in a state of flux; no algo-
rithm which must renegotiate global agreements upon each partition membership
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-change may be considered. Clearly neither of the above approaches scales-beyond

a few tens of sites.

Cellular AFS [ZESS] (like Ficus) is designed. for larger scale application. AFS
-employs a Volume Location Data Base (VLDB) for each cell (local cluster) which
is replicated on the ceil’s backbone servers. The mount point itself contains the
cell and volume identifiers. The volume-identifier is used as a key to locate the
volume in a copy of the YLDD within the indicated cell. Volume location infor-
‘mation, once obtained, is cached by cach site. The VLDB is-managed separately
from the file system using its own replication: and consistency mechanism. A
-primary copy-of the VLDB on the system control machine periodically polls the

other replicas to pull over any updates, compute a new VLDB for the cell, and

redistribute it to the replicas.

The Cellular AI'S design does-not permit volumes-to move across cell bound-
-aries,-and does not -provide location transparency across cells, as each cell’s man-
agement may mount remote cell volumes anywhere in the namespace. This may
be viewed as a feature or a limitation depending on where one stands on the
tradeoff between cell autonomy and global transparency.

The AFS design also explicitly assumes a slowly changing VLDB. This is not
likely to be the case for very large scale environments. Suppose that the number
of volumes is static and that a volume is likely to be relocated to another storage
device or host once a year. With 10® volumes, some volume can be expected to
move every 1 second. Although the rate of change for a single volume is very low,
the aggregate rate of change is quite high—too rapid to allow volume location
data to be distributed throughout the network in a timely fashion.

2.2.2 Ficus solution overview

Ficus uses AFS-style on disk mounts, and (unlike NFS) readily traverses remote
mount points. The difference between the Ficus and AFS methods lies in the
nature of Ficus volumes (which are replicated) and-the relationship of Ficus graft
points and volume location databases.

In Ficus, like AFS [HKMS8], a volume is a collection of files which are man-
aged together and which form a subtree of the name space®. Each logical volume

8Whereas a filesystem in UNIX is traditionally one-to-one with a disk partition, a volume is
a logical grouping of files which says nothing about how they are mapped to disk partitions.
Volumes are generally finer granularity than filesystems, it may be convenient to think of several
volumes within one filesystem (say one volume for cach user's home directory and sub-trec)
though the actual mapping of volumes to disk partitions is a lower level issue.

31



N .

gAY

[ T CAhE Ly P L N
N W O e .

™I L ol T \

i i el A A g, 0 T iy
Il BN EE

in Ficus is represented by a set of volume replicas which form a maximal, but
extensible, collection of containers. for file replicas. Files (and directories) within
a logical volume are replicated in one or more of the volume replicas.® Each indi-
vidual volume replica is normally stored entirely within one UNIX disk partition.

Ficus and AFS differ in how volume location information is -made highly
available. Instead of employing large, monolithic mount tables on each site,
Ficus fragments the information needed to locate volumes and places the data
for an individual volume in-a graft point (the mounted-on directory).!®

2.2.3 Graft points

A graft point (see Figure 2.5) is a special file type used to indicate that a (specific)
volume is to be transparently grafted at this point in the name space. Grafting is
similar to UNIX filesystem mounting, but with a number of important differences.

A graft point maps a set of volume replicas to hosts, which in turn each
maintain a private table mapping volume replicas to specific storage devices.
Thus the various pieces of information required to locate and access a volume
replica are stored where they will be accessible exactly where and when they will
be needed.

A graft point contains a unique volume identifier and a list of volume rep-
lica and storage site address pairs. Therefore, a one-to-many mapping exists
between a graft point replica and the volume replicas which can be grafted on
it. Each graft point replica may have many volume replicas grafted at a time.
The particular volume to be grafted onto a graft point is fixed when the graft
point is-created, although the number and placement of volume replicas may be
dynamically changed.

A graft point may be replicated and manipulated just like any other object (file
or directory) in a volume. It-can be renamed or given multiple names; it can be a
replicated object itself, with replication parameters independent of the referenced
volume. Since a graft point resides in a “parent” volume, although referring to
another volume, the graft point is subject to the replication constraints of the
parent volume. There is no requirement that the replication factor (how many
replicas and their location in the network) of a graft point match, or even overlap,

9Each volume replica must store a replica of the root node; storage of all other file and
directory replicas is optional.

1%In the sequel, the term “graft” and “graft point” is used for the Ficus notion of grafting
volumes while the mount terminology is retained exclusively for the UNIX notion of mounting
filesystems.
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Figure 2.5: Graft point with both parent and child volumes replicated.




that of the child volume.

As it happens, the format of a graft point is compatible with that of a direc-
tory: a single bit indicates that it contains grafting information and not file name
bindings. The syntactic and semantic similarity between graft points and normal
file directories allows the use of the-same optimistic replication and reconcilia-
tion mechanism that manages directory updates. (See Section 2.3 and Chapter 3
for details of these mechanisms.) Without building any additional mechanism,
graft point updates are propagated to accessible replicas, conflicting updates are
detected-and automatically repaired-where possible, and reported to the system
administrators otherwise.

Volume replicas may be moved, -created, or deleted, so long as the target
volume replica-and any replica of the graft point are accessible-in the partition
(one copy availability). This optimistic approach toreplicamanagementis critical
as one of the primary motivations for adding a new volume replica may be that
network -partition has left only one replica still accessible, and greater reliability
is desired.

This approach to managing volume location information scales to arbitrarily
large networks, with no constraints on the number of volumes, volume replicas,
changes in volume replication factors, or network topology and connectivity con-
siderations.

2.2.4 . Volume and file identifiers

When a file is created, it is given a globally unique, static identifier that is carried
by the file (its replicas) throughout its existence. A Ficus file identifier has several
components, but at its highest level of abstraction, it is a tuple (volume-id, file-
id). The volume-id component is a globally unique identifier for the volume, while
the file-id component is unique within that volume.

Partial network operation should not hinder a host’s ability to create new
volumes, so each host must be able to issue new volume-ids on its own. Prior
to system installation, each Ficus host is issued a unique value as its allocator-
id which the host can use in conjunction with a non-decreasing counter to is-
sue globally unique volume-ids. A volume-id is, therefore, a tuple (allocator-id,
counter-value).

Allocator-ids are issued by a central (possibly offline) service. Ficus allocator-
ids contain space for two fields the size of an Internet host address. In most
cases, one field will contain existing Internet host addresses; the other ficld is
present to allow easy integration of existing host identifiers from other networks.




A completely detailed volume-id is -a 3-tuple (internet-id, intranet-id, counter-
value).

Individual volume replicas-are further identified by a replica-id, so a volume
replica is globally uniquely identified by the couplet (volume-id, replica-id).

A host not only has the autonomy to create new volumes at any time, it
can also-spawn a new volume-replica, irrespective of which host established the
volume originally. Each volume replica is issued a contiguous range of replica-ids
that is disjoint from ranges issued to all other volume replicas. A new volume
replica can be created from any existing volume replica possessing a-non-empty
range of replica-ids. The:new volume replica’s replica-id is taken from either the
top or bottom of the existing replica’s range; the new replica’s range is further
drawn contiguously from-the older replica’s range.

Within the context of a particular volume, a logical file is uniquely identified
by-a file-id. A particularfile replica is then identified by appending the replica-id
of the containing volume replica to the file-id, as in (file-id, replica-id). A fully
specified identifier for a file replica is (volume-id, file-id, replica-id); this identifier
is unique across all Ficus hosts in existence.

Each volume replica assigns file identifiers to new files independently. To
ensure that file-ids are uniquely issued, a jile-id is prefixed with the issuing volume
replica’s-replica-id. A file-id is actually, therefore, a tuple (replica-id, unigue-id).

A total of six components constitute a complete file replica identifier: (internet-
it, intranet-id, counter-value, replica-id, unique-id, replica-id). The first three
components constitute the volume-id, the fourth and fifth form the file-id, and
the sixth identifies a particular replica. Each component is a 32-bit field, which
should allow effectively unlimited growth at every level.

The values contained in any file identifier field place no constraints on the
actual physical location of any file or volume replica in the network; they merely
serve to uniquely identify a file or volume. There is no requirement that a host
ever store a volume for which it issued a volume-id; nor is it necessary for a
volume replica to store a replica of a file for which it provides a file-id.

2.2.5 Autografting

In a very large scale distributed file system, there may be millions of volumes to
which one might desire transparent access. Ilowever, any one machine will only
ever access a very small percentage of the available volumes. Hence it is prudent
to locate and graft volumes on-demand, rather than a priori.
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If the volume in which the graft point resides is itself a replicated volume,
the graft point containing the volume replica location information may also be
replicated. If each parent volume replica which stores the directory in which the
graft point occuts also stores a-copy of the graft point, the location-information is
always available whenever the-volumeis nameable. There is very little benefit to

eplicating the graft point anywhere else and considerable loss if it is replicated
any less.

In the course of expanding-a path name, a directory is first checked to sce if it
is actually a graft-point. If so, and a volume replica is already grafted, pathname
expansion simply continues in that voiume replica’s root directory. More than
one replica of the grafted volume may-be grafted simultaneously, but if no grafted
replica is found, the system must autograft one of the volume’s replicas onto the
graft point.

A graft point is a table which maps volume replicas to their storage site. The
sequence of records in a graft point table is in the-same format as a standard
directory and hence may be read with the same operations used to access direc-
tories. Each entry in a graft point is a triple of the form (volume-id, replica-id,
hostname), identifying one replica of the volume to be grafted. The volume-id is
a globally unique identifier for the volume. The replica-id identifies the specific
volume replica to which the entry refers. The hostname identifies the host which
is believed to house the volume replica.!! The system then uses this information
to select one or more of these replicas to graft. If the grafted volume replica is
later found not to store a replica of a particular file, the system can return to
this point and graft additional volume replicas as needed.

In order to autograft a volume replica, the system calls an application-level
graft daemon on its site. Each site is responsible for mapping from volume and
replica identifiers to the underlying storage device providing storage for that
volume. If the hostname is local, the graft daemon looks in the file /etc/voltab
for the location of the underlying volume to graft. If the hostname is remote,
the graft daemon obtains a file handle for the remote volume by contacting the

remote graft daemon (similar to an NFS mount; see [SGKS5]) and completes the
graft.

The system caches the pointer to the root directory of a grafted volume replica
so that the graft point docs not have to be fully reinterpreted cach time it is
traversed. (The cache supports pointers to multiple replicas for a single volume.)
The graft of a volume replica which is not accessed for some time is automatically

N Currently hosiname is an Internet host address, it could equally well be a Domain Naming
System identifier or one from any other host naming or addressing mechanism.
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-pruned so it does not continue to consume resources.

2.2.6 Creating, deleting and modifying graft points

The systemn must support creation, deletion, moving and updatir, -f graft points.
-Graft peints are modified- whenever the named volume replica is created, de-
stroyed, or moved from one host to another. Moving a graft point is equivalent
‘to creating a copy of it in a different -place in the name hierarchy, and deleting
the original.

While updating a-graft point is a relatively rare event, when it does occur, it
is generally important. Hence it is not reasonable to require that all, or even a
-‘majority of the replicas of the graft point be accessible. Further, the motivation
for updating a graft point may be at its greatest precisely when the system is
unstable or partitioned. Perhaps the whole reason for updating the graft point
1is to add an additional replica of a volume for which, due-to partitions or host
failures, only a single replica remains accessible; this update must be permitted,
-even though it cannot immediately-propagate to all replicas of the graft point.

Hence, for exactly the same reason that Ficus utilizes an optimistic philosophy
for maintaining the consistency of files and directories, the same philosophy must
be applied to graft points. Fortunately, this is very easy to achieve in Ficus since
a graft point has the same format and, as a sequence of records, very similar
semantics to a directory.

2.2.7 Conflicting graft point updates

As with directories, the semantics of graft point updates are quite simple, and
hence most updates which would have to be considered conflicting if viewed from
a purely syntactic point of view may be-automatically merged. For example, if in
non-communicating partitions, two new replicas of the same volume are created,
the two resulting graft point replicas will each have an entry that the other does
not have. However, it is clear that the correct merged graft point should contain
both entries, and this is what will occur.

Ficus uses the automatic reconciliation mechanism already in place for regular
file and directory update management to manage graft point updates. A detailed
description of these techniques is contained in Section 2.3 and Chapter 3; the
following discussion is therefore free of most algorithmic detail.

Part of a grait point entry is mapped into the name field of a directory entry,
and the remainder is placed in the file named by that entry. The couplet (volume-
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id; repl-id) is encoded as printable ASCII characters in the name field of the
directory entry, while the hostname component constitutes the contents of the
named file.

When a new child volume replica is created, an entry for the new replica
(consisting of a new ule and associated directory entry) is placed in one graft
point replica. The Ficus file-and directory automatic update propagation service
sees to it that the new graft point data is propagated to all other graft point

replicas.

When- a volume replica issmoved from-one host to another, the file contents (at
one graft point-replica) are simply updated to reflect the new hostname. Should a
graft point entry be concurrently updated-in two graft-point replicas, the normal
file update conflict detection mechanism will notice that state of affairs and flag:
each replica in conflict. Similarly,if a graft point entry is updated in one graft
point replica (to indicate that the child volume replica has moved to-a new host),
and concurrently deleted in another graft point replica (to indicate that access
to the child volume replica is no longer possible for some reason), the regular
file remove/update conflict detection mechanisms detect the conflict. Standard
(manual) conflict resolution tools must then be used to resolve the conflict. In
the meantime, access to the file data (i.e.,.the hostname) will be blocked as usual
for conflir:ted files.

If a volume replica is destroyed, the-graft point entry is eliminated by simply
removing the directory entry for that particular volume replica in one graft point
replica. Update propagation and directory reconciliation ensures that the other
graft point replicas also receive notification of the change.

In general, graft point data is self-validating upon use: if it is wrong in some
way (perhaps the replica has been destroyed or moved to a new host) the queried
host will respond negatively to a graft request, and the autograft mechanism will
try some other replica.

2.2.8 Volume summary

The Ficus volume design is the foundation for a very large scale file system
name service. It supports a very large number of volumes and volume replicas,
in a flexible manner. Autonomous control of volume creation, placement, and
destruction is inherent, as are location transparency and name transparency.
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2.3 Replication

A primary goal of the Ficus project is to provide a-large scale replication service
that can be readily used by a sizable client community. Such a service must,
therefore, be easy to-install and administer.

Easy installation-implies that-the service be portable to a number of operating
system platforms; that existing file systems need not be converted to a new
format; that existing network protocols continue to-operate without interference;
and that minimal changes be made to existing operating system kernels, so as
not to disturb-others’ customizations and not unduly erode clients’ confidence in
their kernel’s integrity.

Easy administration implies that the mechanism must be amenable to mul-
tiple bureaucratic domains; that minimal cooperation with centralized authority
be required; that it be easy-to integrate new hosts (including entire subnets); and
that replication management be both powerful and flexible in the face of partial
operation.

A second goal is that existing services be used whenever feasible. This allows
one to concentrate on specific issues, rather than on peripheral areas in which
contributions are not anticipated. Even when a service is not “just right,” the
resulting leverage often enables a prototype service to be rapidly constructed;
finely tuned services can later be constructed in the context of more complete
(e.g., empirical) knowledge.

The Ficus replicated file service design embodies these goals. Replication is
a value-added service which can be “bolted on” to existing kernels. The design
presented here also reflects a high degree of leveraged services; a number of “fine
tuning” ideas drawn from this experience are described in Chapter 4. Ficus
replication is a case study in providing a key piece of extended filing services
using the stackable layers architecture. In particular, the replication service is
largely indepedent of the underlying file system implementation, permitting a
high degree of configuration flexibility and portability.

2.3.1 Replication overview

The initial Ficus design specified that existing services should be leveraged in their
pristine form. It was clear from the outset that a suitable replication service would
incorporate a persistent storage service (e.g., UFS), a network data transport
service (e.g., NFS), and a stackable interface (e.g., VFS/vnode). SunOS provides
all three, so it was a natural platform on which to begin.
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Figure 2.6: Typical Ficus layer stack.

The early prototype of implementation of the replication layers was largely
successful in regards to leveraging, but demanded an ever-increasing investment
in techniques to compensate-for features not anticipated by the UFS, NES, and
VFS designers: In response to this problem, the design and implementation of
Ficus has moved steadily towards the development of services better attuned to
replication in particular, and stackable layers in general. The design described
here is an enhanced version of an earlier one; it reflects the experience gained
with layering and leveraging. Current implementation status is indicated as the
discussion proceeds.

The Ficus file replication service is packaged as a pair of stackable layers,
each building upon the abstractions provided by lower layers. Figure 2.6 shows
a typical Ficus layer stack.

The logical layer provides to its-clients (i.e., layers above it) the abstraction
of a single-copy, highly available file. The physical layer implements the concept
of a file replica. Underneath the physical layer is a persistent storage layer with
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traditional UNIX filing service semantics. When the logical and physical layers.
reside on different hosts or otherwise execute in different. address spaces, a vnode
transport-layer is inserted between- the logical and physical layers.

The Ficus replication layers also support a-file system-name-service intended
for use in- a very large-scale (nationwide) distributed system. Ficus builds upon
the volume mechanism described in Section 2.2, NFS-style pathname resolution,
and optimistic replication techniques to- provide transparent access throughout
the-overall-name:space.

2.3.2 Logical layer

The primary function of the Ficus logical 1. - is‘to provide the illusion that
each file is:-highly available with single-copy semantics, when in reality a file-may
be physically represented by multiple replicas whose-individual availability is not
optimal. The illusion is the product of several optimistic consistency mechanisms
described in the sequel; a mechawnism to support serializable concurrency control
is presented in Section-2.4. The optimistic mechanisms include replica selection,

update propagation, and reconciliation.

Optimistic replication, like most other approaches to replication, must often
choose which version of a file to use to service a file access request. Once a version
decision has been made, file access performance differences may guide the final
replica selection.?

Optimistic replication has a greater range of version choices than conven-

“tional replication mechanisms. Optimistic concurrency control and lazy update

propagation yield a richer set of versions, including the possibility of conflicting
versions. The volatility and scale of a large geographically distributed environ-
ment can make it infeasible even to determine the range of accessible versions.
A further problem is that the appropriate version selection policy may well be
client, application, instance, or data specific.

The Ficus approach is to provide a default base level policy which will-often
be adequate, but can also serve as the foundation for policies with different re-
quirements. The synchronization mechanism in Section 2.4 is stacked upon the
logical layer, and exploits its replica selection services. Further, a transaction
layer can be constructed and stacked above the synchronization layers to provide

120ne can-imagine circumstances in which performance-differences are so great as to make
version issues a secondary issue. “Nearer before newer” may reasonably apply to utilities,
for example, if the choice is between access to a local disk and access via voice-grade serial
connection to a remote host.
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full transaction semantics.

2.3.2.1 Replicaselection

Three issues determine which, if any, of accessible replicas appropriately serves
the client: consistency policy, cost of replica access, and cost of the selection
process itself.

Replica selection primarily occurs at file open, thatis, when the logical-layer
performs a lookup- operation for a client. If the client specifies a particular
replica, file version,-or minimum file version, thelogical layer will strive to locate a
-qualifying-replica. An error is returned-if no appropriatereplica can-be accessed.!®

If a particular replica or version is not specified, the-logical layer consults a
version cache indicating the-greatest version of each file-opened by the layer.!
The cache value (if present)-is used as an advisory minimum value: if no com-
patible replica is accessible, an accessible replica will be selected.

Except when a particular replica is specified, replica selection must decide in
which order to consult replicas for compatibility and eventual service to clients.
The most important factor is nearness (cost of access), but transparency at several
levels in Ficus makes it difficult to distinguish degrees of nearness or cost. It is
relatively -easy, however, to determine if a physical layer is on the same host as
the logical, so a crude distinction between local and not-so-local can be made.
Ficus exercises a preference for local replicas.

After nearness, Ficus currently uses a random order to consult replicas. Rep-
lica selection ceases with discovery of a compatible replica, even though some
other (unconsulted) replica with a greater version may exist and be accessible.

Composing a list of file replicas to consult during replica selection is a bit
complex because Ficus supports dynamic, selective replication of volumes and
files. A volume may be replicated any number of times, and stored by arbitrary
hosts. The number and placement of volume replicas is dynamic. Similarly,
the number of file replicas is dynamic within the constraints of the replication
parameters-of the volume that contains the file. (More details may be found in
Sections 2.2 and 2.3.3.)

The physical layer ensures that a (minimally skeletal) file replica can always
be accessed for a nameable file. A skeletal replica contains a replica list, which
replica selection uses as a starting point. (Because replica placement is dynamic,

13Replica selection tries to access a replica no more than once per replica, per selection.
14The cache is volatile, large, but finite sized.
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the list followed by replica selection may change as-further replicas are consulted
and theirreplica lists and version examined.)

The logical-layer ensures that a client continues-to be served-by the same rep-
lica unless it becomes inaccessible. In that case, Ficus will attempt to substitute
a compatible replica,!® that is, one-which has a version greater than or equal to
the greatest version of the original replica that is known to the logical layer.

No means exists for a logical layer to “lock” a physical replica, so a logical
layer never knows with:certainty the “current” version of areplica, as other logical
layers might be updating the replica. A logical layer can, however, monitor the
version -as seen by the client: meta-data returned from- the physical layer with
each read and write operation contains the replica version resulting from the
call.

The absence-of locking implies that-a logical layer cannot guarantee to provide
continuous access to a particular version even in the absence of failure. It is,
however, possible to provide a warning when a particular version is no longer
accessible-(or may not even exist anymore).

The current Ficus implementation does not contain the version cache de-
scribed above, but does support access to-a specified replica or version. It ran-
domly selects a remote replica if a local is inappropriate.

2.3.2.2 Update notification and propagation

The optimistic consistency philosophy allows considerable flexibility in many as-
pects of replicated file management. In addition to the richer choices encountered
in replica selection, more options are possible when promoting consistency among
replicas. Ficus uses three asynchronous daemons in an optimistic manner to no-
tify replicas of updates, to propagate updates, and to ensure that eventual mutual
consistency is attained.

The flow of control for file update notification and propagation is displayed
in Figure 2.7. In Ficus, a file update is applied immediately to only one replica.
When a write operation is received by the logical layer, it is forwarded to the
physical layer to be applied to the replica selected. After having been successfully
applied to one replica, the logical layer may then notify other replicas of the
update. The logical layer instance that handled the update places a summary of
the update on an outgoing update nolification queue, and then returns control to
the client.

I51f a particular replica was specified in Lookup, substitution is not attempted.
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Figure 2.7: File update notification and propagation.

An update notification-daemon periodically wakes up and services the queue,
sending out notification via multicast datagram to all replica storage hosts that a
new file version exists. Notification is a best-effort, one-shot attempt; inaccessible
replicas are not guaranteed to receive an update notification later.

Ficus’ reliance upon optimism releases it from the burden of ensuring that
an -update notification message is successfully delivered and processed by the
receiver. If the receiver fails to update its replica for whatever reason, it is
assured that it will eventually learn of the update via the reconciliation daemon
running on its behalf. (See-discussion below.)

An update notification is not necessarily placed on the queue as part of every
update. If the logical layer has received an open operation, it may delay placing
a notification in the queue until a close operation is received. If for some reason
a close operation never arrives, an. update notification might not be sent, which
is analogous to a lost update notification message—perfectly acceptable by the
optimistic philosophy, since reconciliation will find out about it later.!®

The notification message contains the version vector (see Section 2.3.3) of the
new file version, and- a hint about the site which stores that version. It is then
the responsibility of the individual replicas to pull over the update from a more

16A logical layer that is servicing a remote client via NFS (see Section 2.3.4.3) will never
receive an open or close operation, so it may choose to issue an update notification for every
write operation. With optimism, this is all merely an optimization.
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up-to-date site.

When a replica receives an update notification, it places that notification on
a queue. An update propagation daemon wakes up occasionally to-service the
queue. The notification message sometimes contains complete information about
the update (as is the-case for directory updates), and if so the daemon directly
~nplies the update to its replica. If the notification only contains a summary of
the update (typical for file updates), the replica which sent the notification must
be queried for the new data.

Update propagation is performed atomically. Ficus contains an atomic com-
mit mechanism used -primarily by propagation to ensure that a replica’s version
vector properly reflects the replica’s data. A shadow replica is constructed con-
taining the new version, which is then substituted for the original replica.

No locking occurs during the construction-of the shadow replica. The commit
mechanism verifies that the-shadow replica does not conflict with the original
replica as part of the-commit. It also-verifies-that the remote replica from which
the shadow has been constructed has not changed during that time. If any
changes have occurred, optimism allows update propagation to start over or abort
the propagation.

2.3.2.3 Reconciliation

The reconciliation daemon shoulders the responsibility of ensuring eventual mu-
tual consistency between replicas. For each replica housed by a node, the recon-
ciliation daemon directly or indirectly checks every other replica to see if a new
(possibly conflicting) version of the file exists. When a new version is discovered,
update propagation is initiated and follows the sequence of steps outlined above.

When reconciliation discovers a remote replica in conflict with its local replica,
a conflict mark is placed on the local replica. A conflict mark blocks normal
access until the conflict is resolved, at which point the mark is removed. Access
to marked files is permitted via a special syntax.

Ficus exploits the well-known semantics of directory files to automatically rec-
oncile directory modifications. The details of directory reconciliation are deferred
to Section 2.3.3.2, where the physical layer design provides additional context.

Imperfect communication affects how the reconciliation daemon undertakes
its tasks at two levels: the order in which local replicas are inspected, and the
order and timing of contact with other replicas’ nodes.

For every locally housed volume, the reconciliation daemon must ensure that
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every local replica is reconciled within finite time, directly or indirectly, with every
other replica of that file. Since a volume has a natural tree-like structure at one

level, and a linear structure internally at a lower level, the “obvious” approach

for reconciliation-is to reconcile files in one or another of the convenient orders.
Strict adherence to an order, however, is not robust to communication failure.

If communications between two nodes is likely to be interrupted at inter-
vals less than the length of time required by the reconciliation daemon to scan
through its local replicas and query the remote node, a fixed-starting point must
be avoided so that files-at the far end of the order are not victimized by starva-
tion. Further, reconciliation must not be hamstrung propagating a large file that
has been updated, but whose pages cannot be-transferred during an operational
interval. Reconciliation must either reconcile files in a random order, choose a
random restarting point each time, or be able to skip-over problematic files.

The overall cost of reconciliation among a set of replicas is:determined in part
by the inter-node pattern in which reconciliation occurs. If each node directly
contacts every other node, a quadratic (in the number of nodes) message com-
plexity results, but if indirect contact (through intermediate nodes) is used in
an optimal fashion, a small-coefficient linear complexity can be achieved. The
interesting problem here is to exploit indirect reconciliation when inter-node com-
munication is in excellent condition (to avoid quadratic complexity costs), but
gracefully-handle degraded communications when the degradation follows no pre-
dictable pattern and may be quite volatile. The Ficus solution uses a two-node
protocol that tends to structure indirect communications in a ring topology when
communications links permit, and automatically adjusts to a dynamic tree topol-
ogy in response to changes in the communications service.

The current Ficus reconciliation implementation is somewhat simpler than
the above design. It performs a breadth-first walk of a volume replica (always
beginning with the root directory), communicating with a single other replica per
walk. Reconciliation also steps through the volume replica list in a round-robin
fashion, without considering the currency of results from recent reconciliations
with other replicas.

2.3.3 Physical layer

The physical layer performs two main functions: it supports the concept of a
file replica and it implements the basic naming hierarchy adopted by Ficus. The
persistent storage layer underneath it provides basic file storage services.

The structure of the current Ficus physical layer reflects an early design de-
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cision to use a standard UFS as the initial persistent storage layer, as well as
beginner’s inexperience with respect to the power; ease, and low-cost of layering.
From a strictly functional perspective, the “ideal” physical and persistent storage
layer design-is somewhat different, as described later in Section 2.3.3.4.

2.3.3.1 Replica abstraction

Recall from Section 2.2.4 that every Ficus volume and file replica has its own
unchanging globally unique identifier. Both logical and physical layers-use these
identifiers to unambiguously refer-to a file or volume.

Every file replica also possesses:two attributes, a replica list and version vector,
in addition to standard UFS file attributes. The replica list is a vector of volume
replica identifiers (repl-ids) that indicates which volume replicas maintain (or
have in the past maintained) a replica of ‘the file. Some volume replicas store a
complete file replica; others store-a skeletal replica that contains only-extended
attributes, but no client data; and yet other volume replicas may not store a file
replica at all.

The replica list serves as an index intothe version vector [PPR83]. A version
vector is a multidimensional version number in which each component corre-
sponds to a particular file replica. It compactly encodes the partially ordered
update history of a logical file. Version vectors are used to accurately detect
concurrent file update, so that no lost updates semantics-are preserved.

2.3.3.2 Directories

The Ficus name space is quite similar to its UNIX counterpart. It uses special
directory files to contain the information that represents the hierarchical name
space, although the format has been extended. The main function of a directory
is to map between (mutable)-file names and (immutable) file identifiers. In Ficus
a directory entry is a mapping from a file name to a file-id. The volume-id is
implicit from the containing volume (see Section 2.2.4). Although a file-id is the
fundamental file identifier for Ficus, it must be further mapped into a syntax
and structure compatible with the interface semantics of the persistent storage
layer—currently a standard UI'S-style file service.

A Ticus directory entry is a tuple (name, file-id, conflict, deleted, bitvector).
The conflict, deleted, and bitvector fields are used in the automatic reconciliation
of directory files. Directory update semantics are well understood, so it is rea-
sonable to automatically reconcile directory updates, including those that occur
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concurrently at-distinct replicas [Guy87].

In Ficus a directory update is either an insert or delete of a directory
entry; rename is insert followed by delete.-Concurrent directoryentry insertion
may result in more than one entry with identical name fields. Ficus tolerates
this violation of directory semantics (all names are unambiguous within a single
directory) by setting the conflict flag on entries with ambiguous names. This flag
blocks normal name resolution pending client resolution of the conflict; it can be
ignored by request.

The primary issue-faced by the directory reconciliation mechanism is ascer-
taining which entries have been inserted into the directory replicas, and which

‘have been deleted. To solve this problem, known as the insert/delete ambi-

guity [FM82], Ficus incorporates a logical deletion flag (the delete field) and a
two-phase algorithm to garbage detect logically deleted entries. The algorithm,
fully described in Chapter 3, uses the bitvector field to record its progress.

When a file is concurrently renamed, several new names result: each rename
instance inserts a new entry, and marks the old entry logically deleted. For normal
files, no conflict results even though the old entry may be “deleted” more than
once. (Repeated entry-deletion is not possible in UNIX) A conflict does emerge
for concurrent directory rename, however.

Like UNIX, every Ficus directory contains a special entry (..) that references
its parent directory. A directory rename, of course, must cause a .. entry to refer
to the proper parent directory. Ficus accomplishes this task by deleting the old

. entry and inserting a new one with the correct referent. Concurrent directory
rename results in a directory with multiple parents (one for each rename instance),
and multiple ambiguous .. entries in the directory itself, each referring to the

respective parent directory. The .. entries are marked in conflict, as usual,

so backward pathname resolution will fail with a name conflict error until the
conflict is resolved by removing all but one of the new directory names. Forward
resolution is not affected by ambiguous .. entries.

2.3.3.3 Extended UFS abstractions

The Ficus directory structure does not map cleanly onto a standard UNIX file
system due to the additional directory entry fields used in reconciliation and the
possibility of multiple directory names at one time. Ficus also requires a few
additional file attributes, such as the replication list and version vector, which do
not comfortably fit within the space normally reserved for attributes (the UFS
inode). Yet, an early design goal to stack upon an unmodified UFS remains
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important.

~ The additional richness inherent in the Ficus-model led to the implementation
of a ful! name resolution mechanismin the physical layer with the slight-additional

-capabilities that were needed, as well as a simple file attribute-service:similar in

spirit to the Apple Macintosh operating system resource fork [App85]. The UFS

layer is relegated-to providing a simple file service with an almost flat name space.

Ficus-directories map from file names to Ficus file identifiers, which must be
further mapped to UFS file names. Although Ficus file identifiers form a large
flat name space which has a trivial UFS-compatible translation, the standard
UFS name service is not well-suited for-efficient flat name service. To-overcome
this efficiency problem, Ficus identifiers are mapped into a two-level UFS. hi-
erarchy which is carefully constructed to minimize linear searching and exploit
expected file access locality patterns [Flo86b, Flo86a]. Extended file-attributes
are clustered in auxiliary files to-similarly benefit fromlocality.

2.3.3.4 Decomposed physical and storage layers

The current physical layer is somewhat monolithic and largely-duplicates (while
enhancing) services provided by the UFS persistent storage layer. A cleaner
design would separate the UFS and physical layers into-several additional layers,
each providing a narrower set of services. Replication support can then take
several forms: existing UFS storage services can be used as at present, when
compatibility is a premium; or, a (new) persistent storage service with a richer file
model but flat name space could be used when efficiency is very important. One
might also construct a UFS-style layer for placement on top of the new persistent
storage layer to provide a migration path away from the old monolithic UFS.
Figure 2.8 shows an exploded, layered design for the physical layer and a set of
persistent storage layers.

2.3.4 Vnode transport layer

When Ficus autografts a remote volume replica, it must construct a layer stack
using a vnode transport layer to cross the address space boundary between the
logical and physical layers. (Refer back to Figure 2.6 on page 40.)

The transport layer is essentially a remote vnode operation service which
maps calls from the layer above to operations on a vnode at a layer below, nor-
mally crossing an address space boundary (and often a machine boundary) in the
process. The ideal transport layer consists solely of a bypass operation, with no
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Figure 2.8: Decomposed physical and storage layers.
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-semantic interpretation beyond that necessary to marshal arguments. A trans-
-port layer can then be inserted between any two layers without regard for their
-semantics.

2.3.4.1 NPFS as a transport layer

‘The or jinal Ficus design and implementation used NFS as an approximation to

an ideal vnode transport layer. Using NFS satisfied a- design goal to leverage exist-

ing services-whenever pcasible, and was further appealing due to the widespread
-adoption of NFS to provide remote file access. Introducing yet another network
file access protocol had the potential to-ucedlessly hinder acceptance of Ficus in
the community at large, with little apparent benefit.

Unfortunately, NF'S is not a transparent transport mechanism. It was not
intended to be used between other services in a stackable layers architecture.
Rather, it was meant to implement access to remote filesystems and hence, its
designers’ opinions about the semantics of remote file access are built into NFS.
In particular, NFS was designed around the notion of stateless servers in order
to simplify failure recovery.

NFS achieves a certain quality of performance by interpreting, modifying,

or intercepting some vnode operation invocations. Certain interface operations

which have no meaning in the context of the designer’s view of remote file access
(such as open and close, both stateful concepts) are not transmitted across
the network to the next layer in the stack. The operations are handled (or
ignored) internally, and-not passed through. NFS also incorporates optimizations
intended to reduce communications and improve performance. The file block
‘caching and directory-name lookup caching are not fully controllable (e.g., there
is'no user-level way to disable all caching), which results in unexpected behavior
for layers which are not able to adopt the assumptions inherent in the NFS cache
management policies.

It soon -became clear that a layer attempting to leverage NFS as a generic
transport service must be constructed with substantial NFS internal details in
mind. The early. Ficus implementation demonstrates that it is certainly possi-
ble to use NFS as a transport service, but at the expense of building extensive
-mechanisms to defeat numerous internal NFS mechanisms.

For example, the Ficus logical layer needs to cbtain version vectors from the
physical layer in order to perform replica selection. A version vector is too large
to squeeze into available NFS file attributes, so some other means is required
to pass version vectors across machine boundaries. The first design called for
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use of a control file, i.e., a pseudo-file with-a distinguished name known to both
layers as the channel over which version vectors are to be passed. NFS caches file
data blocks, so a-repeated read on the control file frequently returned the cached
block without actually querying the next layer—the required: course of action.
To defeat caching, a mechanism that cycles read request offsets through alarge
cycle was employed. This was not immediately successful, as NFS maintains a
notion of file size so that it can optimize for read requests to -non-existent data
pagés by simply returning a null page in response to such a read request, rather
than generating network traffic to transfer a “known” -data page. The control
file mechanism had to be repaired so-that it always reported to- NFS that the file
“size” was larger-than the cycle size-in use.

The extensible vnode interface and bypass operation were-developed in large
part due to unhappiness with-the never ending set of counter-mechanisms being
employed to outsmart NFS. The extensible interface has been installed in the
current Ficus implementation, and it has been used to add a bypass routine to
the NFS layer so that the counter-mechanisms could be discarded.

2.3.4.2 Multi-layer NFS

The emergence of an ideal vnode transport layer suggests the possibility of re-
constructing NFS as a pair of remote file service layers surrounding a vnode
transport layer. (Note that the original Ficus design attempted just the reverse:
to construct an ideal vnode-transport layer around an NFS base.) Various bene-
ficial data page and attribute caching features of NF'S are retained, but the core
protocol is different (see Figure 2.9).

In this design, the transport layer is common to both NI'S and the Ficus logical
and physical layers. It can also serve as the basis for any future boundary-crossing
services, or be easily replaced in its entirety by a similar transparent service.

2.3.4.3 NFS compatibility

Altering the core NFS protocol renders the new NFS layer set incompatible with
the standard NT'S protocol suite, yet retaining NI'S compatibility with non-Ficus
hosts is important. Examples of the power of layering, and the importance of
standard NFS compatibility, are evident when considering the utility of an NFS
layer placed above the logical layer or between the physical and UFS layers. Fig-
ure 2.10 displays several interesting possibilities. When an NFS layer is above the
logical layer, an IBM PC running DOS and PC-NFS can access Ficus replicated
files without being aware that replication is occurring. Similarly, configuring NFS
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below the physical layer allows sites on which Ficus does not run to act as rep-
lica storage sites. This arrangement permits-a Ficus site to store replicas on a
mainframe running MVS and NFS."7

2.4 Synchronization

The optimistic consistency perspective is not universally appropriate: some ap-
plications require stronger consistency guarantees such as serializability. This
section considers-the synchronization problem-of coordinating access by multiple
clients (possibly on distinct hosts) to a single file; multi-file synchronization is
not directly addressed.

The goal here is to identify and address issues-peculiar to the Ficus environ-
ment, especially the stackable-layers architecture and the use of an optimistically
replicated filing service as a base. In the course of the discussion,-a series of re-
lated synchronization service designs which provide successively greater flexibility
and robustness is presented. These designs implement standard approaches to
synchronization in the layered, optimistically replicated filing context by placing
a (multi-layer) synchronization service above the Ficus-logical layer.

A complete design for a particular synchronization policy is beyond the scope
of this work. These designs are not currently implemented, nor are a few necessary
minor enhancements to the existing layering mechanism and logical and physical
layers.

2.4.1 Issues

Recall that the Ficus replicated filing service (see Figure 2.6, page 40) is con-
structed from three layers (logical, physical, UFS) whose execution environ-
ment(s) are intended to be set apart from the remainder of the operating system.
Recall also that a logical file is typically represented by multiple physical replicas.
In this context, several questions immediately arise. First, for whom is synchro-
nization to be provided? Second, what actions are to be synchronized? Third,
what is the subject of synchronization? A synchronization service must have
answers to each of these in order to be well defined.

1"This has been demonstrated using a non-Ficus SunOS host; logistics hinder an MVS demon-
stration of the concept.
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2.4.1.1 Client identification

The issue of client identity is currently difficult in Ficus. The information-hiding
aspect of the layering methodology obscures most identifying features of a client
with' the exception of a credential that in the existing design contains a user
identifier. No notion of process family; process, or thread is routinely available
to a layer. Further, the transparency provided by a transport layer hides even
the identity of the host executing the original process on whose behalf the layer
is working. :

A synchronization service must, however, have some means of accurately iden-
tifying its clients (or vice versa: a client identifying itself to the service) lest it
fail to provide an adequate degree of synchronization or fail to provide adequate
access by enforcing an unnecessarily stringent synchronization policy. The de-
signs here are based on the notion of a synchronization capability which supports
an abstract concept of identity.

Capabilities are generated by the synchronization service on demand for knowl-
edgeable clients via a new-capability operation. A capability is valid from time
of issuance until the synchronization service is next initialized, which is normally
at system boot time. Capabilities may be freely copied and passed among clients.
All file access requests accompanied by a particular capability which are recog-
nized by the synchronization service will be synchronized in accordance with the
policy in effect.

As most clients are (at least initially) expected to be completely unaware of
synchronization capabilities, a client identification layer normally lies between the
synchronization service and its immediate regular client, the system call service

-of the operating system. The client identification layer ensures that all requests

made of the synchronization service include a capability, even when a client does
not include a capability with a file access request. In this case, the client iden-
tification layer makes a determination of the client’s “identity” and appends an
appropriate capability to the request.

This layer bridges the gap between the synchronization service’s client model
and the model supported by the host operating system. The default policy incor-
porated in the layer is thus quite dependent upon the native client model, be it a
process, process family, thread, or some other model. To obtain the necessary in-
formation about client identity, this layer may need to violate information hiding
principles and peek into some of the operating systems internal data structures
and extract a process or process family identifier for use in defining a “client.”
This necessary interaction between the host operating system and layered ser-
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vices is thus tightly confined to a single layer; the task of porting Ficus to other
environments focuses primarily on this layer, and few others.!®

Once the necessary client identification data has been obtained, the layer can
determine whether it already possesses (in a volatile database) an appropriate
capability to attach:to the request,-or whether it must first obtain a new-capability
from the synchronization service. The default policy used when a client has
not provided a capability- will vary according to environment. For example, in
an academiic environment a reasonable policy might be that all non-capability
requests possessing the same credentials (UNIX user identifier, group identifier)
be treated as emanating from a single “client” and so-should be associated with
a capability-unique-to that “client.”

The identification layer supports two similar sets of file access operations: the
standard set of operations (read, -write, étc.) which do not include a capability
parameter, and a -parallel set that contains a capability. The standard (non-
capability) operations consult the capability database so that a capability can
be attached to the request before it is passed -on to the next lower layer. The
capability-included operations simply pass the request on immediately.

The important point here is that a synchronization service must assume that
some appropriate notion of “client” exists, even when that concept is not well
supported by either the host operating system or the layering methodology. A
combination of capabilities and a layer instituting a client abstraction satisfy this
requirement.

2.4.1.2 Client actions

The synchronization service acts as a funnel through which all file access requests
pass. The primary actions of interest are read and write, although other requests
(open and (close, for example) may also be of interest depending upon the
synchronization policy to be enforced.

Suppose, for example, that the policy is to provide single-copy semantics to
all callers, much as would be provided by a standalone UNiX host. The synchro-
nization service must ensure that all read and write requests are (or appear to
be) directed to a single file replica, and that any data caches maintained by lower
layers are coherent with respect to synchronized access.

Two architectures to support single-copy semantics are shown in Figures 2.11
and 2.12. The first design forces all requests to pass through a single layer

¥The transport layer is necessarily hardware architecture specific, and might be operating
system specific as well.
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instance, while the second uses a token mechanism to ensure that all read .and
write operations appear to happen to a single file, and are immediately visible
to all clients.

The centralized design incorporates an additional layer that directs a request
to a particular synchronization server. The “direction” information is extracted
from the capability, where it was placed when generated by the server. This
information consists of a-host identifier and any other data required to locate the
indicated server.

2.4.1.3 Objects

At its lower levels, the synchronization service must be cognizant of optimistic
replication so that the appropriate quality of service may be provided. A partic-
ularly useful distinction which can be made is between synchronized access to a
single file replica and synchronized access to a single logical file.

Replica-based service is adequately provided by the designs in Figures 2.11
and 2.12. Such service is constrained, however, by the robustness of the hosts
maintaining the replica and executing the synchronization servers.

A synchronization service with increased robustness is readily constructed by
exploiting replication to provide file-based synchronization. Figure 2.13 presents
a design that uses quorum consensus replica management techniques for synchro-
nization.

Each file replica contains a read quorum and write quorum attribute. The




quorum values are-initially set at file (replica) creation. The-entire “vote space”
of 23? votes-is allocated among the replicas at all times; adding a replica requires
that some replica surrender-some of-its voting space to the new replica.

The quorum consensus model differs from the previous-one in that a set of
tokens for each file (one for-each replica) must be managed.-rather than a single
token. Each token is a voting proxy for its respective replica, so a synchroniza-
tion- server must amass a quorum’s worth of proxies before granting a file access
request.

An interesting aspect of this design is that a synchronized-update need only be
applied to 2 single replica. The existing replica management mechanisms (update
notification, propagation, and reconciliation) handle the details of propagating
the -update to other replicas. So long as the synchronization service correctly
compiles the quorum-related data from the replicas when the service commences
to operate, and properly manages the data after that, the optimistic-mechanisms
below it will satisfy-its requirements.

The fact that quorum consensus can be easily implemented on top of opti-
mistic replication is important not only to prove that serializable concurrency
control can be constructed above an optimistic base, but also because optimistic
services have the potential to provide a lower immediate cost for update opera-
tions. If an update can be applied to a single replica in the short term, on behalf
of many replicas that will reflect the update in the longer term, the impact of the
update operation on the system as a whole, and the client in particular, may be
greatly reduced.

2.4.1.4 Unsynchronized actions

The layered architecture places no absolute requirements on stack composition,
nor is any explicit cross-layer locking facility provided. It is, therefore, possible
for clients ignorantly or deliberately to access and update file replicas without
utilizing the synchronization service. If such access could disturb a synchroniza-
tion service’s correctness criteria, the service must monitor replica state with each
access.

The necessary degree of control over replica state can be achieved by allowing
a replication client to specify with each access request which version (via a version
vector) of a replica is expected to satisfy the request,'® and also by appending
to the response the version vector resulting from the request (atomically, post

194 client can initially obtain a version vector by retrieving the extended file attributes of a
replica.




read or write). If the supplied version vector does not match the actual version
of the replica, an error is returned to the caller. This change to the logical
and’ physical layer services-supplies the atomicity required by a synchronization
service to ensure that data is read and written as expected, without undetected
interference from unsynchronized activity.

2.4.2 Control flow examples

This section outlines the typical control flow for several common synchronization
scenarios. The first two examples consider groups of processes that are unaware of
the replication or synchronization services. The third example assumes that the
clients are cognizant of the synchronization service, but oblivious to replication.

2.4.2.1 Process family

In this example, the collection of clients requiring synchronization is a process
family formed by an off-the-shelf UNIX application; it has no knowledge of the
synchronization service, replication, or any other non-traditional UNIX service.
This example assumes that the default synchronization policy (e.g., serializabil-
ity) provided by the synchronization server layer is appropriate for the applica-
tion.

Suppose that the default client identification policy is that all processes issuing
requests through the client identity layer but which do not include a capability
are to be treated collectively as a single “client.” The identity layer could then use
a single, static capability (acquired during initialization at boot time) to attach
to each request it passes on down the stack.

This scenario exemplifies a basic approach to providing backwards compati-
bility for UNIX applications on Ficus. Treating all clients as peers, though, may
place undue strictures on availability for some clients. The following scenario
assumes a simple reduction in synchronization granularity based on credentials.

2.4.2.2 Independent processes with identical user-ids

Here the processes of interest are initiated by standard applications, but the
default identity granularity enforced by the client identification layer is a single
process. In this case, synchronization can be effected by including a user-id
based synchronization registration request as part of each login instance for the
particular user-id.
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In response to the first registration request, the client identity layer will ac-
quire a capability from the synchronization server, and store it in its in-core
(volatile) database. Further registration requests are satisfied from the database.
For each file access request, the client identity layer locates-the appropriate ca-
pability in its database and attaches it to the request before it is passed on to
the layer below.

The general framework for these synchronization service designs has an in-
herent limitation on default service: it assumes that the maximal granularity
of default client identification is the set of clients of -a single identification layer
instance, which are usually co-resident on one host. Synchronization for clients
resident on multiple hosts requires clients to-be knowledgeable about the service
itself. The next example considers-synchronized service for clients from multiple
hosts.

2.4.2.3 Clients on multiple hosts

Suppose that several processes, each on a different host, wish to have synchro-
nized read and write access to a particular file. These processes are not aware
that an optimistic replication service exists, but are knowledgeable about the
synchronization capability service.

To begin, one of the processes requests and obtains a new synchronization
capability from the client identity layer. (The client identity layer doesn’t support
such a request itself, so the bypass operation automatically passes the request on
to the next lower layer, and so on, until it is received by the synchronization
service layer.) The client identity layer stores the capability in its database, and
then returns it to the client. Having obtained the capability, the client shares it
with its colleagues via some form of interprocess communication.

‘Each of these clients then attaches the capability to every file access request
it issues. The client identity layer simply passes the requests on to the synchro-
nization server, where the appropriate synchronization is performed.

2.4.3 Summary

These designs are built around a general framework in which a variety of specific
synchronization policies can be implemented. It addresses the primary layering
and replication management problems encountered when providing strict syn-
chronization service in Ficus. The simple base services described above should
be sufficient for many applications in which optimistic consistency is inappropri-
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2.5 Large scale replication

This section considers a number-of issues with regards to very large numbers of
replicas.

2.5.1 Version vectors

The theoretical ability of a version vector to scale up to any number of replicas
does not obscure the practical reality: as the number of replicas increases, the
processing, storage, and bandwidth overhead of a version vector eventually over-
shadows. the costs of the-replicated object itself. It is not readily apparent that
the version vector mechanism is appropriate for large scale replication.

The basic mechanism can be adjusted in several ways to facilitate large scale
replication. All of these alterations preserve the integrity of version vectors’
support for “no lost updates” semantics. Some, however, may erronecusly -zport
an update/update conflict in certain circumstances; such anomalies are carefully
noted in the sequel.

These adjustments all exploit various aspects of locality, with attendant im-
plications-for consistency mechanisms. Replica selection, update notification and
reconciliation must each be re-examined in the context of modified version vector
methods.

2.5.1.1 Compression

If a significant number of version vector components-are zero-valued, coaventional
sparse matrix compression and manipulation techniques can be used to reduce
overhead. But are version vectors sparse?

A non-zero version vector component indicates that the corresponding replica
has been directly updated (as opposed to receiving propagated data) at some
time in the past. Version vector sparseness, therefore, is a function of locality
with respect to update access. Locality, in turn, is a function of the amount
of update by distinct clients, and the concurrency displayed by shared update
access.

File access locality studies have shown that shared update is rare in prac-
tice [Flo86b, Flo86a] in géneral purpose {university) settings. If, then, the (typi-




cally) single updating client’s choice of replicas is biased towards a small subset
of actual replicas, it is reasonable to expect that few of the version vector com-
ponents would acquire a non-zero-value.

The default replica selection policy (see Section 2.3.2.1) exhibits a bias towards
a locally stored replica if one exists, and randomly selects a replica otherwise. The
desired new behavior can-easily be obtained by altering the selection policy to
exhibit a preference for replicas- known to have a non-zero vector component
already.

Update notification is-not especially affected by version vector compression;
reconciliation might exploit the bias and choose to consult “non-zero component”
replicas more frequently than others. This change does-not result in false conflict
reports.

2.5.1.2 Read-only replicas

Another way to reduce the cost of version vectors is to classify e priori some
replicas to be read-only. These replicas do not have components in the version
vector at all; only directly writable replicas have slots. Read-only replicas may
even elect not to be mentioned in the replica list.

Declaring a replica to be read-only introduces an artificial constraint on up-
date availability in return for reduced overhead. It forces replica selection to be
sensitive to intended read-write usage; it limits update notification to writable
replicas; and it alters the topology of reconciliation.

The absence of some read-only replicas in the replica list constrains the ability
of replica selection (and update notification and reconciliation) tolocate read-only
replicas. In particular, the standard replica selection mechanism cannot locate
an unmentioned replica. A small change in the autografting service, however,
allows the selection mechanism to determine whether a local replica does or does

not exist. If no local replica exists, replica selection is forced to choose a replica
~ from the replica list as usual.

Read-only replicas that are not mentioned in the replica list do not receive
update notifications, nor will any other replicas initiate reconciliation with them.
The burden is entirely upon read-only replicas to keep up to date with writable
replicas. Read-only replicas that are listed will receive update notifications, but
will not be reconciled against as they are not expected to expericnce updates; a
writable replica would normally receive little benefit from checking the status of
a read-only replica.
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2.5.1.3 Upgradable read-only replicas

The most onerous aspect of read-only replicas:inanifests itself when the only avail-
able replica is read-only, and yet the ability to apply an update is highly desired.
One solution to this problem is to allow a read-only replica to be-upgraded to a
writable replica.

This may be accomplished in a manner similar to adding an entirely new
replica: simply add the replica’s repl-id to the (local) replica list and permit
the update to-proceed. The appropriate version vector component will be in-
cremented as usual. The newly-updatable replica then needs to persuade an
established writable replica to propagate the replica list modification, either by
issuing an update notification or by otherwise-coaxing the other replica to initiate
teconciliation with it so that it can learn of the list change.

The basic reconciliation algorithms (see Chapter 3) must be slightly adjusted
to cope-with additional-replicas. In particular, they must assume that the replica
list is a monotonic, length-increasing data structure. Aside from the difficulty
that received replicas lists must be routinely sorted to account for divergence
in the component ordering, the algorithms must tolerate a dynamic number of
participants. Further-details are found in Section 3.2.4.

Upgrading a read-only replica to writable status is irreversible in this model.
If upgrading is a common occurrence for a single file (which would indicate that
access locality is not a property of this file), the replica list may grow to an
unmanageable size. Second-class replicas address this situation.

2.5.1.4 Second-class replicas

A second-class replica begins as a read-only replica. When an update is necessary,
but only a read-only replica is accessible, the update is applied to that replica.
Rather than append a new slot to the version vector, a flag is set which indicates
that the replica is a logical descendant of the version indicated by its version
vector.2?

As with the upgradable strategy, a flagged replica must persuade a writable
replica to reconcile against it. A qualifying writable replica has a version vector
that is less than or cqual to the flagged version vector. Any replica with a version

0The idea of suppesting an “updatable” replica while avoiding the expense of allocating and
maintaining a version vector component was first suggested for Coda in [SKK90]. Coda version
vectors are quite different in detzil from the original Parker version vectors [PPRA3] that arc
used in Ficus.




vector that is greater than the base version vector (in any component) is in conflict
with the flagged replica—but it is the flagged replica’s responsibility to resolve
the conflict.

Upon successfully reconciling with the flagged replica, the writable replica’s
version vector component is incremented as though the update(s) were originally
appiied to the writable replica. The difficult part of this exchange is that the
flagged replica’s version vector should atomically be adjusted to reflect the new
version vector of the reconciling replica. If the two vectors are not set atomically,
t may later appear that the flagged:replica conflicts with-the reconciled replica—
when, in fact, it does not. If this occurs, a false conflict will be reported.?!

This technique requires a small modification to the atomic commit mechanism
used by reconciliation when a new version is propagated into a reglica. No changes
to replica selection beyond those needed for upgrading are required, nor any
changes:to the-update notification or overall recoi..iliation mechanisms necessary.

2.5.2 Name space

In part due to the original goal of leveraging UFS, the Ficus name space is
currently a stepchild of the UFS name s; ace. The global perspective of this
relationship is shown in Figure 2.14. This name space arrangement has two major
flaws: most UFS files are nameable from only one host, and UFS file names are
host context dependent.

These problems can be addressed in part by altering the relationship between
the Ficus name space and the (existing) UFS name space(s) so that the Ficus
name space provides a global context for all file names. Figure 2.15 shows such an
arrangement. In essence, this arrangement constructs an umbrella naming hier-
archy above existing UFS hierarchies and in the process renders all files globally
nameable in the context of a globally recognized root.2?

The “supertree” approach to global naming forces consideration of two re-
lated issues, backward compatibility (especially with embedded file names) and
shorthand naming. Both issues are aspects of the general name context question,
outlined in Saltzer’s discourse [Sal78] on the naming and binding of objects.

21\ false conflict will also appear if a flagged replica is propagated to another (formerly)
read-only replica. To maintain the integrity of the version vector, once a vector and replica
are ficgged, they must propagate together with the flag. Once propagated, it ic ..upossible
to distinguish this situaticn from one in which two read-only replicas performed independent
updates, and thus each resulted with a flagged replica.

22The idea of a global-name space incorporating Domain Naming Systein host names has
previously been suggested in [CM89).
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2.5.2.1 Name contexts.and closures

Applying Saltzer’s terminology to Ficus, an object (Ficus file)-is represented by a

(Ficus) identifier. A name is used by one-object to refer to another object, via a
‘mapping from name-to identifier termed a binding. A particular set of bindings
is termed a context; a name is always interpreted relative to some context. In
Ficus (and UNIX), a-directory file (catalog in Saltzer’s glossary) is the repository

for a context.

The name context question is to determine the context relative to which

-a name should be resolved. For example, a UNIX file name is resolved either
in the-context of a working directory or in the context of a distinguished root

directory if the name begins with-a “/” (forward slash) character. Some-shell

mechanisms further support a search list, an ordered. set of contexts in which
certain. (command) name resolutions will-be attempted.

Saltzer introduced the closure concept to describe the association of an object
which references another object by name with a context in which that name is
(expected to be) bound. A mechanism that connects an object with a context is
called a closure.

Although the global Ficus name space does not require closure support in

theory, in practice a closure mechanism is essential. Existing software with em-

bedded names such as /bin/login must.continue to work as expected, that is,
a-name must map to the same object as.before (pre-Ficus), despite the new su-
pertree above an old UFS name space root. A closure mechanism is necessary to
select the correct context in which to resolve the name.

Not only existing software with embedded names benefits from a closure ser-
vice. The additional three or more levels of names above the previous JFS
naming hierarchy significantly extends the length of all file names, which is a

generally unacceptable increased burden on human clients. A flexible closure

mechanism that subsumes the UNIX working directory notion and various shell
context mechanisms provides an integrated solution to this problem.

2.5.2.2 Ficus closures

Nveuman [Neu89] argues for a simple closure mechanism in which a context is
associated with every object in a system. For example, a program image with
embedded names should also contain and provide the context for name resolu-
tion. Names supplied as program input should be resolved in the user’s (process)
context (perhaps a working directory), and names embedded in a data file should
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be interpreted in a context associated with that file. A process should always be
free to redefine its.own context, and ‘o ignore contexts provided by other objects
Or processes.

Closure-support, as with some aspects of synchronization (see Section 2.4),
straddles both file system and process management. Leveraging the existing
SunOS process management services necessarily constrains the completeness of
closure support in-Ficus, to the extent that no process service enhancements are
made. A further constraint is the pre-processing that SunOS file access system
calls -perform on file names: names are parsed by a system call routine, and
partially or completely interpreted at the system call level without ever calling
the file service proper. Nevertheless, a rudimentary closure service provided.as a
stackable layer is feasible.

The Ficus closure service design utilizes. a new- distinguished character (“0”)
as a prefix to signify a fully qualified file name; other names are interpreted in
the traditional UNIX working directory and working root contexts. An additional
context attribute is provided for each file. The closure layer is normally placed
somewhere above the logical layer in a Ficus layer stack.

At system initialization time, the closure layer sets the default host working
root to be a fully qualified name for a volume analogous to the traditional UFS
“root filesystem”. An internal pointer to this volume is inherited by all processes
when they are created; this is the context in which the system call pre-processing
routines will interpret “/”-prefixed names.

This approach offers immediate backward file naming compatibility, except
when an existing file name (component) begins with “@”.23 It also offers a context-
knowledgeable process the ability to establish contexts for files, and to inquire
about file contexts. A process can simply prepend a context to a file name before
presenting it to the system call service for translation.

This method does not automatically provide a custom context in which an
executable image will execute, nor does it provide inherited contexts for process
families. Ideally, a context would automatically be prepended to file names,
without the need for a process to actually do so itself, and it would be inherited
by child processes as are other process environment attributes. Support for these
features js dependent upon modifications to the process creation and management
services.

23This exception appears to be an unavoidable consequence of not modifying the existing
process management and file access system call mechanisms. It is easy to avoid the exception
by appropriate enhancements.
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2.5.2.3 Volume-based supertree

Cheriton and Manning [CM89] presented a taxonomy for classifying a global
naming hierarchy into levels based upon administrative, availability, and muta-
bility issues. Their taxonomy contains three levels: global, administrative; and
managerial. Using the Domain Naming System as an example, they place the
global root and its children into the global level (e.g., /edu and /com); the ad-
ministrative level lists organizations and some hosts (e.g., the organizations-ucla
and ucla/cs, possibly the host ucla/seas/admin); and finally, the managerial
level lists namespaces spanning a single host or less (e.g., /bin and /usr/guy).

The Ficus volume mechanism allows for an even finer granularity when cir-
cumstances warrant. In.the case of the global name space, a useful criterion for

determining volume granularity is based upon the-desired replication-factor-(i.e.,

number of i‘eplicas) for a node in the name space: a volume boundary should
be placed at any point in which the replication factors of a parent node and its
children differ by at 1cast one order of magnitude.

In the case of the DARPA Internet and its Domain Naming System, each of
the top four or so levels fits the criterion. Figure 2.16 shows a particular extended
branch of an example global name space, and indicates the likely replication factor
of each volume shown. Note that the expected range of replication factors for each
volume differs by about one order of magnitude at each level in the hierarchy.
These ranges are determined primarily by the number of hosts that require a
volume replica simply to operate autonomously; some hosts may wish to house
replicas of volumes representing other portions of the name space as well.

The upper level volumes simply provide the overall name space structure; it
is only the lower level volumes that would typically contain “real” data files, ex-
ecutable images, and so on. In many cases these lower volumes will be replicated
only to premote higher availability, but in some cases replication will be used as
a system administration tool. For example, a local area network administrator
might choose to organize each node’s standard library, utility, and application
volumes as a set of volume replicas rather than as individual volumes.?? Such
an arrangement would ease the administrative burden when new software is to
be installed, or patches applied: one could make the change to a single volume
replica, and rely on the reconciliation daemons to propagate the changes.?

24Symbolic links may be useful in preserving a particular volume name space organization,
and yet benefit from replicated library volumes.

*Installation ease should be balanced against the inherent absence of a “firewall” to prevent
error propagation,
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2.5.3 Summary

The modest enhancements described above are important steps to be taken along
the path of achieving the goal of very large scale-filing. Support for large numbers
of replicas is essential for the global name space to be effective. The Ficus-name
space transition from stepchild to-umbrella is a further critical step.

2.6 Status and performance

The-system as described in this chapter, including reconciliation, is operational
and-inr daily experimental use. The system has been tested with up to eight
replicas. Ficus replication has been run with geographically remote cli.sters;
specifically, volumes-have been replicated at USC/ISI, SRI, and UCLA?.

Operational layers include the transport layer, the logical and physical replica-
tion layers, a null layer, and a measurement layer. Prototype implementations of
encryption, file versions, cache consistency, and “second-class” replication layers
have been constructed as class projects.

Ficus was originally based on SunOS 4.0.3 for the Sun 3 hardware family,
though ports to other versions of UNIX already supporting a VF'S interface should
be quite straightforward. A port to SunOS 4.1 for the Sun 4 hardware family
has recently been completed. The initial implementation (completed Summer
1989) used an unmodified vnode interface with extended operations supported
by overloading existing operations. The current implementation uses the new
extensible vnode interface described in [HP9la]. Ficus kernels are about 20%
larger than a similar non-Ficus kernel.

2.6.1 Performance measurements

This section reports performance measurements for various configurations of rep-
licated and unreplicated volumes. All measurements utilize Sun 3/60s, each with
a SCSI disk and 10Mb ethernet connection. All nodes are part of the same
ethernet segment, with the exception of the machines at ISI and SRI.

The first benchmark used is the Modified Andrew Benchmark [Ous90, HKMSS),
which is designed to reflect a typical mix of file operations. However, since this

26USC/1Sl1 is located in Marina Del Rey and connected to UCLA (after several gateways)
via Los Nettos. SRI is located in Palo Alto, California and connected to UCLA via Los Nettos
to the San Diego Supercomputer Center followed by NSFnet. Thanks to Bob Balzer of ISI and
Alan Downing of SRI for arranging for Ficus nodes at their raspective institutes.
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Figure 2.17: Percentage overhead versus number of replicas.

benckmark is not particularly illustrative of replicated file system performance (it
is-dominated by a largely cpu bound compilation phase), a second benchmark is
used that is a much better worst case measureof Ficus. This second benchmark
is a-recursive copy (“cp -t [usr/include .”) .o a disk local to a Sun-3/60 irom an
NFS-mounted file system housed on a Sun-3/480 connected to the same ethernet
segrent. In the local environment, /usr/include is an unbalanced tree of depth
wour, with 47 directories and 1465 files totaling 4.7 Mbytes.?” The costs studied
were incurred by the-site generating tue activity. These measurements do not
account for costs incurred by other processors.

Figure 2.17 shows the extent of Ficus costs (overhead) over normal SunOS
performance. (A horizontal plot aloug the x-axis-would indicate that Ficus was no
more or less expensive than SunOS for a particular scrvice.) Three sets of results
are plotted, each-measuring Iicus overhead as the target volume replication factor
ranges from one to eight. One plot (MAB overhead) shows the overhead experi-
enced by the Modified Andrew Benchmark (MAB) normalized against base MAB
results obtained on standard SunOS. The other two plots show sysiem time over-
kead. (system -ovcrhead) and elapsed time overhead (elapsed overhead) displayed
by the-recursive copy benchmark, normalized against SunOS test results.

" Pricr Lo-execution-of eack: benchmark, operating system caches were ilushed to remove all
references to-the source and target volumes. The disk partition containing the target volume
was reipitialized: before each run of a beiichmark. The measured node parformed no other
processing-tasks during the benchmark.
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2.6.2 Discussion

These measurements are very encouraging. For the modified Andrew-benchmark,
even with eight replicas, the overhead is only 14 percent. For the common case
of three replicas, overhead is less than 10 percent. There is considerably more
impact due to replication in the recursive copy case (between 30 and 50 percent).
For-each file copied, the system must place-an entry in-the directory (updating
both-the directory and its auxiliary information), create the file itself, placing its
Ficus-specific attributes in the auxiliary file, notify all replicas of the directory
operation to create the name for the new file, notify thereplicas of the availability
of the file’s contents, and serve all of the asynchronous propagation requests as
the replicas pull-over the file-contents. Copy is a worst case operation in terms
of overhead for Ficus.

In-interpreting-these numbers, it is important to remember that Ficus applies
an update synchronously to one replica and queues an “update notification”
for asynchronous delivery to other “secondary” replicas. Each replica queues
incoming update notifications and asynchronously processes the notifications.
Directory update notifications completely describe the update, so no interrogation
of the primary is needed to process a notification. File update notifications carry
no data (only a version vector), so a “pull” is initiated by a secondary to bring
its replica up to date. Data for updates is-generally served out of the cache on
the originating site.

The “system” times for all IFicus measurements are similar because the cost
of asynchronous update notifications is in the background (there is some impact
of increased replication factors reflected in the measurements as the interrupt
handling for pull requests is included in system time).

The increased “elapsed” or “wall clock” time observed when more replicas are
employed is attributed primarily to the cost of servicing requests from the the
secondary in response to update notifications. It should further be noted that
the recursive copy completes and the elapsed time is reported when it finishes
synchronously updating the single chosen replica. It is generally the case that
many of the remote replicas have not finished their asynchronous pull of the data.
Thus the greater the delay in the network, or the slower the remote disks, the
slower the requests arrive at the originating replica and hence the sooner the
synchronous part completes. Hence, some-of the numbers actually look better
when the replicas are further apart.




2.6.3 Wide area operaticn

In the performance graphs shown, all replicas resided or machines on the same
physical ethernet cable. Several of these measurements were repeated, this time
locating replicas on sites connected by the Internet®®. For the case of the recursive
copy, locating one replica at SRI and one at UCLA yielded measurements for
both system and elapsed time that were essentially identical to the case where
both- replicas were on the same local network. Measurements of a three replica
configuration (UCLA, ISI, and SRI) resulted in a 36% overhead over UNIX for
elapsed time (vs. 35% for the local net case) and 48% overhead for system time
(vs. -56% for the local net case). For the modified Andrew benchmark the long
distance three replica configuration resulted in an overhead of 19.9% compared
to 9:5% when the three replicas were local.

Not surprisingly given the asynchronous update strategy, locating the back-
ground replicas at more remote sites has minimal impact on the performance of
these benchmarks. Of course, access to the remote replicas is correspondingly
slower, equivalent to that achieved by accessing them with NFS.

Only very preliminary efforts have yet been made to optimize the performance
of the implementation as work thus far has focused on functionality. There is
reason to believe that the numbers reported here can be improved substantially
with careful analysis and optimization of the system’s behavior (especially the
effectiveness of its several caching mechanisms).

2.6.4 Implementation effort

Serious implementation work on Ficus has been underway for twenty four months.
On the average, three experienced systems programmers have been engaged in
full-time development. In addition, an average of two persons have worked on
the design in parallel with the implementation. This author contributed approxi-
mately one man-year to the implementation effort, in addition to ongoing design
research for more than three years.

The implementation has been done eatirely in the C programming language.
The logical and physical layers comprise about 9,500 and 12,000 lines of code,
respectively.?? The logical layer includes the update notification and propagation

28To avoid excessive retransmissions, the mounts across the Internet use 1K message block
sizes where 8K messages are used over the ethernet.

29 About 5,000 lines of physical layer code is devoted to Ficus directory manipulation and
compatibility code to leverage UFS. Much of this code would be climinated in a decomposed
implementation, as outlined in Figure 2.8, page 50.




mechanisms; the reconciliation mechanism constitutes an additional 1,400 lines
of code. The layer mechanism is composed of 1,700-lines, and miscellaneous tools
contain 5,000 lines.




CHAPTER 3
Algorithms

Management of related, replicated-objects is often fundamental to the design of
reliable distributed systems. We are concerned both with the objects themselves:
propagation of updafes and reclamation of storage; as well as management of the
possibly replicated directories used-to keep track-of and find-the objects.

This-chapter presents a family-of algorithms-for use in managing replicated
objects and the accompanying graph structured directory systems. Members of
this family are presented in order of increasing power and flexibility, followed
by discussion of their correctness. The use of the algorithms in a replicated. file
system context is outlined throughout the presentation.

3.1 Introduction

Desires to improve availability and performance of information serves to moti-
vate replicating information at locatiors “closer” to the data’s intended use. A
continuing difficulty in the operation of replicated information storage services,
however, is unsatisfactory support for consistent update. Conventional methods
achieve mutual consistency of data and the directories which refer to them by
restricting availability for update. In the face of communications limitations,
methods such as primary site, majority voting, quorum consensus, and the like
reduce the performance and availability for update as the number of copies of an
object or directory references is increased. This pattern is the reverse of what is
desired.

There are numerous environments for which replicated storage is quite valu-
able. In some of these, rapid communication among sites is not suitable or even
possible. Interesting examples include conventional high availability systems us-
ing redundant hardware, significant numbers of workstation users collectively
engaged in a large software development project, 2n office workgroup composed
of several widely geographically separated workgroups, large numbers of laptops
operating while disconnected, and military systems subject to communications
silence. These examples share several common characteristics:




¢ low latency communications-on demand cannot be guaranteed, either due
to-failures or policy decisions:(such as not keeping a line-in operation during
high tariff periods);

e updates to data and meta-data (directories) are important to allow and
occur from sites-whose identity could not be specified in advance;

¢ concurrent updates of a given data item or directory entry are quite unlikely,
and in those rare cases where a conflict does occur, subsequent reconciliation
is-feasible. Strict transaction semantics are not required.

We-argue elsewhere (see Chapter 1) that these conditions characterize a very
large set of important environments, including much of today’s-use of distributed
file systems

Our approach to providing replicated storage in these environments is-called
oplimistic replication. Optimistic replication uses a one-copy availability concur-
rency control policy for both read and update: if any copy is physically accessible,
read and-update are permitted. Optimistic replication further guarantees no lost
updates-semantics, so it is-incumbent upon the system to detect conflicting up-
dates and manage the mutual inconsistency untii it is repaired.

Conventional replica management schemes implicitly or explicitly always have
the property that a set of up-to-date “authority” replicas exists. No such au-
thority is present in optimistic replication, short of a consensus reached by all
replicas—a consensus not easily obtained when 2 complete communications graph
between all replicas is unattzinable.

For example, consider the problem of creating and deleting objects under
optimistic replication. ‘Object creation can be effected by causing a single replica
to exist at one node; another node may then notice that an object exists for
which it lacks a replica, and it will proceed to establish one of its own. But how
is an object deleted? Simply deleting a replica will not do, since in the absence
of additional mechanism that is indistinguishable from object creation: one node
has a replica, another does not, so which is it to be? Does the replica represent a
newly created object, or does the “missing” replica represent a recently deleted
object?

Attempting to determine whether an object is newly created or recently
deleted is futile in the absence of additional information. This create/delete am-
biguity (first noted by Fischer and Michael in [FM82]) is resolved in conventional
replication schemes by appealing to an authority; in optimistic replication, some
other means must be used. In this chapter, we provide solutions for this and
other problems typically encountered in optimistic replication.

]
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3.1.1 File systems

The algorithms presented in this chapter are designed to provide for management
and garbage collection of distributed, selectively replicated graph structures with
associated resources. In practice, they have been extensively applied to the-sup-
port of an optimistically replicated-hierarchical filing system and- accompanying
name service for UNIX(see Chapter 2).

Consider the primary components of a typical UNIX file system. Files are
hierarchically organized, with designated files (directories) containing the struc-
tural details (pathname components)-which indicate a file’s place in the hierarchy.
The hierarchy is usually a restricted:form of a directed acyclic graph.

Two-types of “objects” are present, files and-file names. For replication man-
agement purposes, each object can be treated independently, including indepen-
dent consideration of a file and its names. In the algorithm model below, a UNIX
file corresponds to a multiply-named logical object, while the file’s names are
considered to be singly-named objects in their own right.

Although we have applied these algorithms in the context of a standard UNIx
file system, they can readily be used in other applications. For example, a dis-
tributed name service such as the DARPA Internet Domain Name Sysicin couid
directly use these algorithms to manage its databases.

2 1.2 Outline

The next section specifies the problem to be solved in more formal terms and
presents a family of algorithms to address it. Section 3.3 presents correctness
arguments which aid understanding of the algorithms. Algorithm applications
are discussed in Section 3.4; an outline of related research in Section 3.5 concludes
the chapter.

3.2 Algorithms

The task of a management algorithm is to support the propagation of changes
to names and objects, and to identify and recover all resources supporting the
existence of a logical object. This section presents a siraple model of object
and names, followed by several reclamation algorithms which address various
combinations of object properties.
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3.2.1 Model

Our model provides clients with a persistent storage service for a collection of
entities called objects. A logical-object is represented by a finite set of physical
object replicas. Each object has-a replication factor which defines the intended
quantity and placement of replicas.! Clients access an object via a-logical name,
which is represented by a finite-set of physical name replicas. Each name has a
replication factor separate from the object it names and from other names for
the object.

The system creates a-new logical object by establishing a single physical object
replica-and a single physical name replica. Additional physical name and object
replicas for this obi ct are established asynchronously as indicated by the relevant
replication factor. The first physical name replica-to be established for a logical
name is tagged-with a unique value that-distinguishes this particular usage-of the
name from all others; all physical name replicas for this logical name carry this
same tag.

An object is initially created with one (logical) name. Some objects may be
restricted to only the original name; other objects allow names to be added or
removed at will. Each object replica maintains a reference count indicating the
number-of (local) name replicas which refer to it.2 Name removal will leave an
object inaccessible when no physical name replicas for the object exist. New
names can only be added to an accessible object, so an inaccessible object is
permanently inaccessible. Resources held by an inaccessible object are subject
to reclamation.

Name removal is effected by marking a name replica ‘deleted’, which prevents
its use in accessing an-object. This indelible mark eventually propagates to
other name replicas, but until then, the object may be accessible via unmarked
name replicas. An object replica’s reference count is decremented atomically with
marking a name replica.

An additional name for an object may be established provided that the physi-
cal object replica referenced by the to-be-established initial name replica currently
has a non-zero reference count.

The-difficulty of replica management is determined (in part) by several issues:

n this chapter, we use the term replica to include all of the resources at a node which are
devoted to the (logical) object. Typically, this includes a copy of the object’s “client data,” as
well as any replication or other bookkeeping meta-data associated with the object. Resources
consumed by meta-data must be reclaimed as well as resources used. by client data.

2A name replica is reflected in the reference count of exactly one replica.
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e static versus dynamic naming

¢ -object mutability
¢ equivalence of name-and object replication factors

o static versus dynamic replication factor

The algorithms presented in the next several subsections vary in their ability
to handle these issues, ranging from the simplest combination (fixed name, im-
mutable object with equivalent static replication factors for both name and ob-
ject) to the-most difficult-(dynamically named mutable object with non-equivalent
dynamic name and:object replication factors).

To-aid clarity of discussion, we assume that no more than one replica is stored
by any given node. The algorithms generalize directly to multiple replicas per
node.

We-make minimum assumptions about the available communications environ-
ment to assure successful operation of the algorithms in practice. All werequire
is that information be able to flow from any node to any other in the network
over time if relayed-through intervening nodes. More formally:

nodes N; and N, are time flow connected if there is a finite sequeace
of nodes Ny, Na,..., Ny, such that for 1 < 7 < m, a message can
successfully be sent from N; to Niyp at time ¢;, and ¢; < ;4.

We require that every pair of nodes is time flow connected starting at any time.

This property does not require, for example, that any pair of nodes be op-
erational simultaneously, but it does mean that no relevant node can be down
indefinitely.

We also assume that nodes are truthful: Byzantine behavior does not oc-
cur. Finally, history only moves forward: a node must never “roll back” from a
Teported state, so stable storage of any reported state must precede that report.

3.2.2 Basic two-phase algorithm

The basic two-phase algorithm is appropriate for the simplest kind of replicated
object: static single name, immutable object, and equivalent fixed name and ob-
ject replication factors. The task at hand is simply to garbage coliect. Subsequent
more difficult types.of management tasks adapt this algorithm to accomplish their
goals.
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The basic reclamation algorithm proceeds -in two-phases at each node. The
first phase begins executing at a node when the node learns the object is to be
reclaimed, that is, when-its (single) name replica is marked ‘deleted.” This mark
is ‘then also placed on the object replica. Actual physical reclamation of the
object replica (and name replica) will not occur until after-the node completes
its second phase-of the algorithm. Figure 3.1 lists the basic two-phase algorithm
in-pseudo-code.

Each node concurrently executes the algorithm, and shares its progress with
other nodes. Sharing improves-the algorithm’s efficiency, but more importantly,
it enables:the aigorithm-to cope with pathological communications failures.

3.2.2.1 Phase one

The first phase proceeds by composing a list of nodes that have their object
replica marked.-deleted. In effect, each node is engaged in the same activity:
collecting information about the deletion status of each object replica. A node
completes its first phase when every replica is listed as marked deleted.

When two nodes cannot directly communicate, information propagates by
way of intermediate nodes. Indirect communication is, in fact, an integral part
of the algorithm: when nodes inquire about each other’s status, algorithm status
as well as deletion status is shared. The list of replicas marked deleted which is
maintained by a node is shared with other nodes, who in turn incorporate the
information into their own lists.

A node that has completed phase one has limited knowledge about the sta-
tus of other nodes. It knows that all have marked their name replicas and object
replicas deleted, and thus have themselves begun executing phase one of the algo-
rithm. However, a node at this stage makes no assumptions about the knowledge
other nodes have of it. It is quite possible that no other node is aware that the
node in question-has marked its replica deleted, as the flow of information is not
guaranteed to be a two-way exchange at any step.

3.2.2.2 Phase two

Immediately upon completing phase one, a node begins executing phase two. In
this phase, a node compiles a list of nodes that it learns have finished phase one.
The first node placed on this second list is, of course, itself: phase two began at
this node precisely because it had finished phase one. As with the earlier phase,
phase two at this node is complete when all nodes are listed. The same style of




/* variables. and data structures:

Let set R := replication factor,
r,s element drawr from R,
self is element of R,

P1[] binary vector of size IRI,
P2[] binary vector of size-{Rl,
R[] binary vector of size [RI.
*/
begin: while (my name replica is not
marked deleted)
{ donothing; }
mark my object replica deleted;

Pi[r] := 0, for all replicas r;
P2[r] 0, for all replicas r;

phasel: P1[self] := 1;
while (P1[r] == 0 for any r) {
R[r]: := 0, for all r;
choose some r to query;
ask r for its P1 vector;
if r responds {
RI := r’s response;
foreach (R[s] == 1)
{ P1[s] := 1; }

¥

phase2: P2[salfl := 1;
while (P2[r] == 0 for any r) {
Rlr] := 0, for all r;
choose some r to query;
ask r for its P2 vector;
if r responds {
R[] := r’s response;
foreach (R[s] == 1)
{ P2[s] := 15 }

¥

postlude:
reclaim object replica resources;
reclaim name replica resources;

Figure 3.1: Basic two-phase algorithm
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list sharing utilized in phase one also occurs in-phase two.

Nodes placed on a phase two list are those that know that all replicas are
marked deleted. A node with a complete phase two list therefore knows that all
nodes know all replicas are marked deleted. This-global state is vital to providing
“once reclaimed, never re-established” behavior: it allows a node-(finished with
phase two) to reclaim all local-resources devoted to the replicated.-object and to
forget about it entirely, secure in the knowledge that the replica will never be
re-established in response to a-query from another node about the object.®

A node that is striving to finish phase two might query a node which has al-
ready reclaimed its resources and forgotten about the object. The query response
will indicate that no such object is known, which-the inquirer will-(correctly) in-
terpret to mean that the queried node has completea pnase two. The inquiring
node-uses this inferred:status to complete its own second:-phase, and proceed:with
reclaiming its-object and namereplicas’ physical resources.

3.2.2.3 One phase is not -enough

The-algorithm’s first phase ensures that all nodes with replicas are aware that the
object’s resources are to be reclaimed. This property guarantees that no replica
will survive the reclamation effort without having been aware that reclamation
was in progress. The second phase guarantees that all portions of the distributed
algorithm will terminate despite barriers to information flow that are formed as
nodes reclaim their replicas’ resources.

In order to appreciate why one phase is insufficient, consider a hypothetical
one phase aigorithm and its execution in a particular class of network configura-
tion behaviors. In the imagined algorithm, a node reclaims a replica’s resources
upon learning that all extant replicas are aware that reclamation is in progress.
The network configuration of interest (see Figure 3.2) is composed of a group of
well connected nodes and two nodes which are weakly connected to the group
and very weakly connected to each other.

Suppose that an object is initially created at Node Z, with replicas to be
established at all nodes A, B, ... Y, Z. Soon after establishing a replica, Node
A determines that the object should be reclaimed. According to the algorithm,

3“Once reclaimed, never re-established” behavior is important for both practical and the-
oretical reasons: resource allocation and deallocation is costly and should be done only when
necessary; «<nd, removing the possibility of re-allocation greatly simplifics algorithm termination
arguments. Note that the “logical deletion” design hides re-establishment issues from clients,
so it is strictly an internal systems issue.
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Figure 3.2: One phase network example

Node A notes that it is self-aware of reclamation, and begins the process of
acquiring-knowledge -about other replicas’-reclamation status. Suppose that the
link between nodes A and B-is the-only remaining (albeit weak) link from Node
A to the others.

Now consider Node B’s possible-perspectives-upon receiving an inquiry from
Node A (which contains-the information that reclamation is in progress): Node
B'is either aware of the object already (because a replica exists at Node B),.or it
is.not aware (no replica exists at Node B).

In the first case (Node B is already aware of the object), Node B notes that
reclamation is in progress and Nodes A and-B are cognizant of it. Node B, in turn,
attempts-to contact-other nodes. Suppose the well connected group of nodes (B -
Y) rapidly succeeds in learning that reclamation is in progress, and even manages
to get a response back from Node Z acknowledging that reclamation is in progress.
Further suppose that Node Bis the first node o learn that every node is-aware of
the-intent to reclaim. Node B therefore reclaims its resources and forgets entirely
about the object (including the fact that its replica was reclaimed).

Continuing the scenario, when Node B-receives the initial inquiry from Node
At replies quickly. Unfortunately, congestion on the link causes the reply to be
lost. Node A eventually sends another message to Node B inquiring about Node
B’s reclamation status, since it failed to get a response-to the first message. By
the time Node B receives-the second message, its replica is already reclaimed.
This scenario forces consideration of case two: Node B is-unaware of the object.

Another way in which Node B -might be unaware of the object is that Node B
has neverlearned of the object before receiving the inquiry from Node A. (Perhaps
Node A learned of the object directly from Node Z via the very weak link between
them.) From Node B’s perspective, these two situations are indistinguishable, yet
its response must differ for the two scenarios: in one, Node B must establish a
replica (whose body may be empty) to support indirect communication to other
nodes about the reclamation initiated by Node A; in the other, all nodes are (or
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were) aware of reclamation, and do not need:(or want) to re-establish replicas.

Failure-to support indirect communication that may be critical to algorithm
termination is unacceptable. It is also unacceptable to simply re-establish-replicas
just in case indirect communication support is needed: re-establishment in the
above scenario is a side-effect of an event (successful transmission of a message)
whose frequency is both unbounded (by the-algorithm) and may not contribute
to_progress towards termination.

The two-phase nature of our algorithm provides an ignorant node with the
ability always to-distinguish “never knew” from “forgotten”. An-ignorant node
which receives a -phase one message correctly concludes “never knew”, and es-
tablishes a replica to provide-support for indirect communication. An ignorant
node concludes “forgotten” upon receiving a phase two message, and does not
establish a replica. (An-ignorant node’s reply to a phase two inquiry-“I know
nothing”~implicitly means “I finished phase two, and so can you,” which is all
the-inquirer needs to know to-reclaim its replica’s resources-and terminate.)

3.2:3 Intermediate algorithm

The basic algorithm in the previous section applies to fixed-name, immutable ob-
jects with.identical static name-and object replication factors. In this section we
relax the first two-constraints to allow dynamic naming and-object-updates, while
continuing to require name and-object replication factors to be both identical and
static.

Dynamic naming and object mutability each complicate the reclamation prob-
lem, and the combination of the two is especiaily difficult. Dynamic naming in-
troduces a global stable state detection problem, while object mutability requires
special mechanisms to prevent inadvertent data loss.

3.2.3.1 Dynamic naming

A necessary, but not sufficient, condition for object reciamation is that the object
have no names. In our model, ‘no names’ means that every name replica referring
to-an object replica has been marked deleted.

In the basic two-phase algorithm, object reclamation inevitably follows name
removal; the two phases ensure that all replicas will be reclaimed, exactly once. In
the dynamic naming case, it is much harder to determine whether or not reclama
tion is to occur: names may be added or removed at any node at any time, since
optimism allows unsynchronized concurrent updates across non-communicating
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nodes. When a name is added at one node concurrently with a name removal
at another node, a transient situation may arise in which a node has no names
for an object for a time, until the new name propagates to that node. During
‘this-time, reclamation of the ‘nameless’ object replica would be premature, even
though it has a zero-valued reference count.

Premature reclamation must be avoided -because of the potential for data
loss. Concurrent update, name-creation, and name removal together with the
non-atomicity of name and object propagation leave open the possibility that
the only object replica reflecting-an update could temporarily have a zero-valued
reference count. Such a replica must not be prematurely reclaimed.

Although a single replica’s zero-valued reference count may be a transient
condition, when all replicas have zero references a global stable state [CL85]
exists. The problem, then, s to detect that all.object:replicas simultancously have
zero-valued reference counts in an environment when simultaneous or pseudo-
simultaneous-queries of all nodes is not feasible.

We provide an adaptation of our basic two-phase algorithm which exploits
the rules governing name additions to achieve a relatively inexpensive, fully dis-
tributed mechanism for determining the global zero-valued reference count stable
state. The adaptation requires that each object replica maintain a monotonic
counter in parallel with the reference counter, and that the algorithm compile
and disfribute a vector of these new counters.

The new counter-is incremented atomically with the reference counter, but it
is never decremented. It functions as a ‘total name counter’ to reflect the number
of name replicas at this node which have referred to the object replica. The total
name counter from each replica is used to determine that a zero-valued reference
counter has been quiescent between interrogations.

3.2.3.2 Algorithm for dynamic naming

This intermediate two-phase algorithm is triggered at a node when the object
replica’s reference count is zero. In the first phase, two parallel vectors are main-
tzined. One vector indicates which replicas have reported a zero-valued reference
count, and the other contains the total name counter value reported by those
replicas.

A node has completed its first phase when all replicas are listed with total
name count values recorded in the parallel vectors. This also implies that each
teplica reported a zero-valued reference counter. These parallel vectors are shared
with other nodes executing the algorithm.




The second phase-proceeds similarly, with two parallel vectors of total name
-count values and report indicators. In this phase, the total name count values
recorded reflect a replica’s total name count value at some point after the queried
replica has finished phase one.

As a node is collecting values in the second phase, it compares the newly
reported values with-those recorded in its phase one vector. If any discrepancy is
discovered (i.e., the corresponding values are not identical), the algorithm aborts,
initializes its vectors, and restarts phase one. This abort occurs when the tran-
sient behavior described above occurs.

A node finishes its second:phase when all:replicas have reported: values to it,
and the values are identical-to those-collected in the first phase. At this point,
all object replicas are:guaranteed to be permanently inaccessible.

3.2.3.3 Mutability

As presented, the intermediate algorithm will determine that -an object is globally
inaccessible. A further condition is necessary (and sufficient) to allow physical
reclamation to proceed: data must not be lost inadvertently as an unavoidable
consequence-of optimism. We are not concerned here with the kind of ‘inadver-
tent loss’ that results. when a client mistakenly removes a name, but with the
consequences of concurrent update and name removal.

Consider a scenario with one object, two names, three replicas, and three
clients. (Imagine a journal paper draft, with three collaborating colleagues.)
Suppose that each of the nodes is isolated, but optimism allows each author to
continue working. One author makes revisions to his object replica. Each of the
other two authors decides (differently) that one of the two names is superfluous,
and removesit. Each of the-clients will be understandably disappointed if the
object is reclaimed (since it eventually will be declared globally inaccessible),
especially the one who updated it.

Our approach to the general problem of remove/update conflicts is to assume
that name removal is undertaken in the context of an object replica. We invest
the name removal operation with the additional semantics that a client wishes
object reclamation (when no names exist) if no other object replicas are newer
than (orin conflict with) the object replica which is initially affected by the name
removal.

To accommodate the additional semantics, the reclamation algorithm must
determine which of the object versions represented by the replicas is the latest,
and which is the latest version to provide a context for name removal. (Opti-
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mism-also introduces the possibility that no ‘latest’ version exists, such as when
unsynchronized concurrent updates occur to distinct replicas, thus generating an
update/update conflict.) Afteridentifying the latest object version and removal
context version, it is trivial to decide whether a remove/update conflict exists.

Version identification and context recollection can be readily accomplished
with version vectors, which provide a multi-dimensional version numbering tech-
niquefor replicas [PPR83). We augment the object replica model with two-data
items: a ‘current’ version vector, and -a ‘removal context’ version vector. The
current version vector always identifies the current value of the object replica.
The removal context vector is replaced by a copy of the current version vec-
tor when a name removal operation is issued with this object replica providing
context. Each replica’s removal context vector will be checked to see that no
remove/update conflict exists.

3.2.3.4 Remove/update conflict algorithm

It is easy to modify the intermediate two-phase algorithm to collect and com-
pare the various vectors and determine if a remove/update conflict exists: each
instance of the algorithm can collect (and share) sets of vectors, and perform the
appropriate comparisons when the sets are complete. This approach, however,
imposes quadratic storage and message size complexity upon cach instance of the
algorithm.*

Linear storage complexity can be achieved by exploiting the (partial) ordering
of version vector values. Instead of collecting each replica’s version vector values,
an algorithm instance can retain only the greatest (latest) vector value encoun-
tered, along with a vector indicating which replica’s vectors have been consulted
and whether the vectors conflict with the greatest values seen to this point in the
algorithm’s execution.

The linear optimization is not free, however. A two-phase consultation scheme
is required to collect the vectors and correctly assert that a particular vector value
is greatest, or that no value is greatest due te conflicting versions. As it happens,
these two phases can be executed in parallel with the two-phase algorithm that
determines global inaccessibility, so the cost is effectively eliminated.

Once global inaccessibility and remove/update conflict status are determined,
a decision can be niade whether to reclaim an object replica’s resources. If a
remove/update conflict is discovered, reclamation will not occur; proper action at
this point is application dependent. (An example is described in a later section.)

*Each version vector is of length n, of which n must be collected in each set-(n = replicas]).
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Figures 3:3 and 3.4 show the‘intermediate algorithm.

3.2.4 Advanced two-phase algorithm

The previous algorithms-each assume that object and name replication factors
are fixed at creation time, and are identical. In practice, these constraints are

not attractive. Changing circumstances of network behavior or object usage
.may necessitate adding, déleting, or moving replicas, which can not be usefully
-predicted when an -object is created. It should also be possible to change an
-object’s replication-factor-without directly affecting-object-names.

Note that an object (or name) replication factor is itself a replicated data

structure which is used to manage other replicated-data structures. The version

vector technique used to-manage updates to replicated data can not easily be
applied to managing updates to-version vectors themselves.

Our system supports-an approximation to-an ideal flexible replication factor
mechanism: a replication factor can grow to be very large (2°2 replicas), with
masks ‘used to ‘shrink’ a replication factor. One mask is used to indicate that

-particular replicas should be (irrevocably) ignored during-algorithm execution.

The second mask permits an object replica to avoid the expense of storing the

object itself any further, but the ‘skeletal’ replica must continue to participate

in algorithm-execution. In short, a replication factor monotonically increases in
physical size, with adjustments available to reduce the actual number of physical
copies of a client’s-data which are maintained.

Increasing a replication factor is straightforward. Any replica’s replication
factor can be augmented simply by adding a (globally unique) replica identifier

to its list of replicas. A replica can form a new replication factor while executing

the one of the two-phase algorithms by taking the union of its replication factor
and that reported by another replica.

A replication factor’s ‘ignore’ mask provides a way for a replica to be forever
ignored. This is especially useful when recovery of a destroyed replica is impos-
sible or too expensive. Indicating that a replica is to be ignored is an irrevocable
action. Like an increase in replication factor, a new ignore mask is formed by

‘taking the union of the local mask and one reported by another replica.

The ‘skeletal’ mask indicates which object replicas don’t actually store any
client data. This mask is maintained in an optimistic fashion, but without conflict
detection: mask updates cause a new timestamp to be generated for the mask;
the mask with the latest timestamp is deemed to be correct.
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3.2.4:1 Algorithm

Very few changes need to be made to the intermediate two-phase algorithm to
support dynamic name and object replication factors. Each replication factor
must support two additional parallel data structures (the.masks), and the algo-
rithm must. check reported replication factors for changes. Care must be exer-
cised, though, when increasing a replication factor not to violate the semantics
of an in-progress reclamation algorithm.

Our two-phase algorithms have two critical points: when a node finishes phase
one, it believes that all replicas have been consulted; and when a node finishes
phase two, it believes that all replicas have finished phase one.

While a node is currently in phase one, its replication factor can be augmented
safely-because-every other node must consult it at least once more, during phase
two. ‘When this node is consulted, other nodes will learn about the additional
replica(s). But a replication factor must not be augmented to create-a new replica
when the ‘source’ repli¢a’s node is in phase two.

For brevity, we do not show these minor algorithm modifications in a separate
figure.
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3.3 Correctness discussion

The ‘basic two-phase reclamation algorithm is correct if and only if these condi-
tions-are satisfied:

e- object reclamation occurs if, and only if, the object is globally inaccessible

e for each replica of an inaccessible object, reclamation occurs-exactly once,
1in finite time

- all algorithm executions terminate in finite time

¢ all algorithm executions-are free from deadlock

We first show that reclamation occurs if an object is inaccessible, followed by
the only if direction. We then:show that reclamation occurs exactly-once-in finite
time:by proving that it occurs at least once, and at most once.

3.3.1 Reclamation if inaccessible

The “information flow” requirement governing network behavior ensures that it is
possible for each node to learn of status-changes at every other node. Since each
node periodically uses the propagation protocol to incorporate other replicas’
status changes into its own replica, and since all replicas are guaranteed to be
available at the same time, each node will, in fact, learn in finite time of the status
of every other replica. Therefore, every logical name deletion will eventually be
reflected at every node, as each name replica will be indelibly marked deleted.

Following the deletion of every name for an object, in finite time all name
replicas will be marked deleted. Each object replica will, in turn, have a zero-
valued reference count, and be inaccessible.

The first phase of the algorithm simply collects the information that, when
consulted, each replica was inaccessible. The second phase similarly collects
information from each node. By the previous argument, each node is guaranteed
tolearn the desired information. At the conclusion of executing its second phase,
a node reclaims its resources. Since each node is guaranteed to finish its phasss if
the object is inaccessible, each node will reclaim the resources consumed by the
object.
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/* major -changes to- basic algorithm
show -asterisks in first column. */
/* new vectors: )
NCR total name count response
NC1 total name count, phasel
NC2 total name count, phase2

§¥ totil neme count validation
v Treplica’s version vector

VVR version vector respounse
SVV saved version vector response

7&8 removal context vector
R removal context response

new s&ala
reference count response

RU  remove/update conflict flag
*/

begin: while .(my ref-counter non-zero)
{ donothing; }

BE o R MERS e,

phasel: Pi[self] 1= 1;
while (P1[r] == 0 for any r) {
NCR[r] := 0, for all r;
choose some r to query;

* ask r for its C, NCi, Pi;

* VvV, RC

* if r responds with C==0 {

* NCR[] := r’s NCi;

* NV[] := r’s Pi1;

* foreach (NV[s] == 1) {

* NCi[s] := NCR[s];
P1[s] := 1;

* VVR := r’s VV;

% RCR := r’s RC;

* if (VVR >= VV)

* { SVvV := VVR; }

* if (RCR >= RC)

* { RC := RCR; }

Figure 3.3: Intermediate algorithm, phase one.




phase2: P2[self] := 1;
while (P2[r] == 0 for any ) {
NCR[r] :=:0, for all r;
choose some r to query;
ask 5 forcits C, NC2, P2;
if r responds with C==0 {
NCE[] := r’s NC2;
NV[] := r’s P2;
foreach (NV[s] =1) {
NC2[s] := NCR[s];
P2(s] := 1;
if (Nc1[s] 1= NC2[s])
) -goto begln,

VVR := r’s VV;

RCR := r’s RC;

if (VVR confllcts SVV or
RCR conflicts RC)
{ RU := 1}

if (VVR >= VV)
{ SVV := VVR; }

if -(RCR >= RC)
{ RC :=RCR; }

} else if (C 5 0)
{ goto begin; }

% K K K K K K XX

LR R IR R IR K B I

}
postlude:

if (RU == 0) {
reclain object replica resources
reclaim name replica resources

} else {put object into orphanage}

Figure 3.4: Intermediate algorithm, phase two.
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3.3.2 Reclamation only ifinaccessible-

We argue by contradiction. Suppose reclamation of an object replica occurred
without the okLject being inaccessible. Therefore, some object replica must have
a-non-zero reference count at-the end of a node’s second phase.

But, the algorithm’s first phase demonstrated that each replica had a zero-
valued reference count (though not necessarily simultaneously), and the second
phase ensured that each replica’s reference count had not changed between the
first and:second reference count queries. Since the second:set of queries:strictly
followed the first set, a point in time must exist at which all replicas were si-
multaneously inaccessible. Global inaccessibility is a global stable state, by the

testrictions placed on additional name creation. Therefore, a non-zero object

replica reference can not exist, which:contradicts the hypothesis.

-3.3.3 Reclamation ezactly once

If the object is inaccessible, each replica will be reclaimed at the end of its node’s
execution of the aigorithm, as per the above arguments. Therefore, each replica
is reclaimed at least once.

Multiple reclamation requires multiple establishment of a replica. Replica
establishment occurs when a node without a replica receives a message that
indicates that the receiver is intended to have a replica and there is no indication
in the message of the replica’s-prior existence. Therefore, to re-establish a replica,
a-node which has already reclaimed its replica must receive a message about the
object which does not indicate that the replica is known to have existed.

It suffices to hypothesize that such a message is received, and then prove that
such a message cannot arrive. We do so by classifying all messages and showing
that none of the types which could cause replica establishment will be received
after reclamation.

Every message about an object replica implicitly indicates a “phase” of al-
gorithm execution. In addition to phase one and phase two messages, nodes
routinely send status query and response messages to learn of object updates
when the algorithm is not executing. For convenience, consider these routine
messages to be “phase zero” messages.

When a node without a replica receives a message, its decision whether to
create a replica is based on the phase of the sender:

zero A phase zero message contains no indication whether the receiving node
ever had a replica. Therefore, a replica must be established.
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one A phase one message may or may not indicate that the replica has ever
existed. If it does not indicate that the replica existed, a replica must
be-established. If it indicates that a replica once existed, an anomalous
condition has-been encountered. (See discussion below.)

two A prerequisite for entering phase twois that all replicas have been:-consulted,
which implies-that all replicas exist.. Therefore, the replica has previously
existed, been reclaimed, and must not be re-established.

A node which has already reclaimed its replica normally expects to receive
only phase two messages, because a condition of phase two completion is to
determine that.all other nodes have-finished phase:one. Since phase two messages
can not-cause-a replica to bere-established; only the receipt of phase zero or phase
one messages.-after reclamation might cause a replica to-be established again.

Phase zero-or phase one messages received by a node which has completed
‘phase two and reclaimed its -replica could-only have been sent -before the sender
began phase two. Such messages have been delayed in transit, long enough for
the sender to finish phase one and the receiver to finish phase two.

The algorithm is resilient to delayed messages which are received within the
next phase: phase one messages received by a node in the midst of phase two are
quite normal, as are phase zero messages received during phase one. It is only
when message delay exceeds one phase that replica re-establishment might occur.

We assume that message delays-does not exceed the time required for one
complete phase. If this bound is invalid, algorithm execution can be artificially
slowed to increase the length of a phase until a valid bound is achieved. It is,
therefore, feasible to prevent phase zero or phase one messages from arriving after
reclamation occurs.

The hypothesized message received after a replica has been reclaimed must
‘be from one of the three phases, but since delayed phase zero and phase one
messages can be prevented and phase two messages do not cause replica estab-
lishment, no message which could cause replica establishment will be received.
This contradicts the hypothesis that such a message might be received, and so
replica re-establishment (and-subsequent reclamation) after an initial reclamation
is not possible:

3.3.4 Termination

We show that the algorithm terminates by defining a partial order on the possible
states of a node during the algorithm’s execution, and showing that all state tran-
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sitions are monotonic with respect-to this.order. (We showed above that sufficient
transitions will occur, based on the finite time information flow assumption.)

A node’s algorithm execution status is-primarily determined:-by the list com-
piled in each phase of replicas consulted. The set-of valid-list values comprises-all
subsets of the (finite) set of replicas indicated in the object’s replication factor.
A partial order based on cardinality can then be.defined-over these subsets.

A state transition (list.change): is defined in the algorithm to be a set union
operation, which is-monotonic over the partial order. A partial-order is acyclic,
so all algorithm state transitions are acyclic. Progress towards termination is
guaranteed, unless-deadlock occurs.

The intermediate algorithm occasionally aborts and restarts. The only cir-
cumstance in which abort occurs :(a mismatch: of total name count vectors) is
bounded in- occurrence by -the product -of the number of names and the cardi-
nality of the object’s replication factor. Since the number of aborts at a node is
bounded, some algorithm-execution will not abort, and so-the above-termination
argument holds.

3.3.5 Deadlock-free

We show that the protocol is free from deadlock by developing a waits for graph
‘model and proving that it is acyclic for all algorithm executions.

Recall that the propagation protocol underlying state transitions is non-
blocking, so-a node is-never blocked-waiting for a particular response from another
node. It therefore suffices to consider the algorithm’s behavior at the higher level
of phase transitions, where ‘waiting’ does-occur.

Define-a total order over the states ‘accessible’, ‘phase one’, ‘phase two’, and
‘reclaimed’ such that accessible < phase-one < phase two- < reclaimed.

A node transitions from accessible to- phase one when its replica becomes
inaccessible, and from phase one to phase two when it learns that all nodes
have transitioned to phase one. It transitions from phase two to reclaimed upon
learning that all nodes have transitioned-to phase two.

With the exception-of the initial transition from accessible to phase one, a
node waits for all other nodes to reach the same state as itself, before transitioning
to a later (fully ordered) state. Therefore, a node only waits for “lesser” nodes;
since “lesser” is acyclic, no cycles can occur in the waits-for graph and so the
protocol is deadlock-free.
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3.4 Applications and observations

Which two-phase algorithms are appropriate for managing a UNIX file system?
UNIX files are mutable,.dynamically named objects, so at least the intermediate
algorithm should: be used for them. File names (directory entries) are simple
objects which can be managed with the basic two-phase algorithm.

While the intermediate algorithm is a sufficient base upon which to construct
a usable file system, the additional cost of implementing and using:the advanced
algorithm (with flexible-replication:factors) is negligible. Ficus incorporates the
advanced algorithm to manage its files.

The advanced:algorithm is-also used to support the name service that connects
subtrees together-to form a large connected hierarchical filing environment. This
name service plays a role similar to-NIS (Yellow Pages) in NFS, or volume support
in AFS. The implementations of these two-applications (file hierarchy and volume
hierarchy)-are common, so multiplefacilities were not required.

3.4.1 Directed acyclic graphs

The UNIX filing environment is a simple directed acyclic graph (dag) structure.
These algorithms.may be applied to an arbitrary graph structure as well, so long
as there are no disconnected self-referential subgraphs. Additional mechanism is
needed to handle that case.

In fact, modest mechanism beyond that discussed in this chapter is required
even to handle dags. That is because the discussion was cast in terms of a single-
logical object. The additional facilities are simple, and- discussed in [Guy87].

3.4.2 Performance

Performance of these algorithms is; of cours» important. A suitable measure
is the number of messages that must be exchanges i1 vrder to cause a set of n
nodes with replicas to reach agreement. One would expect that the worst case
could be expensive, since the underlying minimum communications assumptions
do not allow a stylized pattern of interaction always to be employed. The worst
case indeed requires O(n?) messages, as.most nodes talk to most of the other
nodes to complete each phase.®

5In each phase, in the worst case, a first node pulls fiom the n — 1 other nodes to become
knowlédgeable. A second node then pulls from the remaining n — 2 unknowledgeable nodes,
and then the first, knowledgeable one. The third node pulls from the remaining n — 3 unknowl-
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However, in practice the situation is far better, since- we can- communicate in
a stylized manner most of the time. As a simple example,if the nodes order their
communications in-a ring, then a total of 3n — 1 messages are used.®

3.5 Related work

Our-work is related-to several areas of res=z. =t e "gossip” problem, whih has
reccived substantial formal:treatment; optims- .c file systems, including LOCUS,
Coda, and Deceit; -optimistic “dictionaries” ,directories) in file systems; and,
distributed:garbage:-collection.

In the gossip problem, each node in a g*.ph must communicate a unique
item to every other nodein the graph. A vuriety of papers have appeared in
the twenty years of its study [HHLS88]. +ielding complexity results under-varying
communications assumptions.

Heddaya, Hsu, and Weihl [HHW89] used a two-phase gossip protocol to man-
age distributed event histories of updates to object replicas. A timestamp vector
is-used to determine when history elements may be safely-discarded. Their solu-
tion-does not address-the problem:of completely forgetting that a history exists,
but only forgetting items in the history.

LOCUS [WPES83, PW85] is an intellectual ancestor of the Ficus file system

which incorporutes these algerithms. LOCUS system prototypes incorporated
more limited replica manageir 2ut algorithms, from which the algorithms pre-
sented here-are descended.

The Coda project [SKK90] has similargoals to our own Ficus work and bases

its replica management on the LOCUS version vecior [PPR83] mechanism and:

an-earlier draft of this work [Guy87].

Fischer and Michael [FM82] proposed recasting the 1eplicated directory main-
tenance problem as a replicated “dictionary” problem, with slightly (but signif-
icantly) different semantics. A timestamp vector was used to infer from a com-

parison of two dictionary replicas which entries had been inserted and which had

beeﬁ deleted.

-edgeable nodes, and then-one of the knowledgeable ones. Thus each phase requires
(r=D+(n=-1)+@n=-2)+(n-3)+...+1=tr
pulls; and there are two phases. Thus, n? + n — 2 pull messages are required.

§Assume that a single message is active in the ring at any time. This ever-changing message
flows around the ring three times. Phase one of vhe algorithm begins for all nodes in the first
round trip. Phase one completes and phase two begins for all nodes during the second round
trip. Phase two completes for all nodes during the third round trip.
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Allchin [All83] and Wuu and Bernstein [WB84] expanded upon Fischer and
Michael’s approach to use two-dimensional timestamp matrices to reduce the
number of messages exchanged, with small variations in semantics.

None of thesc -works addressed the general problein of reclaiming resources
of named -replicate¢ objects; they were concerned with “dictionary entries” as
isolated-entities.

PR A
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Wiseman’s survey [Wis88] of-distributed garbage collection:methods inciudes
several techniques based-on reference counting, but none are designed tor use
l on repli- ited objects, and none are directly applicable-to imperfectly-connected

network:.
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.CHAPTER 24
Conclusions

This final chapter summarizes the research and its results. It also spotlights
several areas in which future research-is expected to be fruitful.

4.1 Summary and conclusions

This dissertation presents a new architectural paradigm, stackable layers, as a
methodology for designing and-irnplemerting a wide range of filing services for
operating systems. Coupled with a new volume management strategy and a
novel two-phase algorithm family, the stackable layers technique has been used
to construct a large scale replicated file service. The Ficus replicated file system
is in experimental use; neither layering nor replication demonstrate unacceptable
performance degradation.

This work reinforces the fact that today’s file management systems are exceed-
ingly complex pieces of software. The challenges presented by the globalization of
computer networks will make them all-the more so. Many features will have to'be
added to traditional filing services: selective replication, data security, user au-
thentication, and type conversion among heterogeneous storage conventions are
but a few examples. The stackable layers architecture provides a methodology
for extensibility which is crucial for the advancement of distributed file system
technology. As a case study, Ficus demonstrates that the stackable architecture
is logically feasible and can, with care, be made to perform satisfactorily.

All of the experience gained in the course of this research supports the view
that optimistic replication is very attractive, whether it is merely between one’s
home computer and the office network, or in a very large corporate information
system. High performance, high availability, scalable distributed computing ser-
vice is feasible; it is hoped that the facilities described in this work will make
that high quality service commonplace, as they require no special hardware and
can easily be added to many existing systems. Many applications should benefit
from the ease with which the basic optimistic replication reconciliation service
can be retargeted beyond its initial use for directory management, as is shown




‘by its successful use to-manage Ficus’ replicated volume location tables.

The use of stackable layers as the framework for the Ficus architecture has
‘been: an unqualified boon. The ability to leverage a common filing service di-
tectly permitted-one to focus on development of new functionality inherent in
the replication service, and avoid much of the traditional cost of building an
ideal substrate at the outset. The modularity afforded by the architecture, along
‘with the ability of the transport layer to map operations across address space
‘boundaries, allowed new layers to be developed and debugged in user space, and
then moved into the kernel only after they were working. This substantially-sim-
plified the testing and debugging enterprise. Layers can indeed-be transparently
inserted between other layers, and-even surround other layers. A replication ser-
vice can be added to a layer stack without modifying existing layers, and yet
perform well.

The availability of a general reconciliation- service is also very useful. Usu-
ally, one must deal with the many boundary and error conditions that occur in
a distributed program with a considerable variety of cleanup and management
.code throughout the system software. Instead, in Ficus failures may occur more
freely without as much special handling to ensure the integrity and consistency
of the data structure environment. The reconciliation service cleans up later. For
example, volume grafting was made considerably easier by the (easy) transforma-
tion of its necessarily replicated data structures into Ficus directory entries. No
special code was needed to maintain their consistency. There is thus reason to
believe that services-such as those provided by Ficus will be of substantial utility
in general, and easy to include as a third-party contribution to a user’s system.

The two-phase algorithm family addresses the heretofore unsolved garbage
collection problem for replicated data structures. It may also be useful in similar
contexts, such as cleaning up storage used in reliable broadcast protocols.

The final and perhaps most significant conclusion is that this work opens up
a number of relevant research directions where one can expect to make rapid
progress, and provides the tools to investigate them. The following section pro-
vides several suggestions for future work.

4.2 Future research directions
The most prominent area of immediate future research is to demonstrate that

large scale is workable in practice. Further, a variety of additional layers are of in-
terest. General service areas include performance tuning, security, and databases.
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4.2.1 Performance tuning

Two-immediately useful layers would be ones that take measurements and cache
data.

A measurement layer could easily and transparently collect the kinds of per-
formance data normally sought after when measuring the cost of a particular
service. A simple measurement layer that counts vnode operations-can usefully
be placed between any other-layers on a stack, without regard for what operations
and:semantics those-layers support. A prototype measurement layer constructed
for an early-Ficus implementation-demonstrated the feasibility of collecting data
in this way, but more complex measurement layers need to be constructed, for
example, to-gather trace data and operation duration.

File system services are often initially designed with functionality and good
performance- as primary goals. It is not always clear from the outset, however,
which portions of -a service-design will benefit from caching or other enhance-
ments. A general purpose caching layer would be of great utility in experiment-
ing with performance improvements. Service-specific caching layers can also be
expected to appear.

4.2.2 Security

A large scale file system will be vulnerable to security problems to an unprece-
dented-degree. The-use of encryption and authentication services is clearly de-
sirable, but the appropriate means is as yet unknown. A related issue is that of
accounting for resource usage; the current state of affairs (no charges) soon may
not be acceptable.

4.2.3 Databases

It remains to be demonstrated (in practice) that database-oriented services such
as serializable concurrency control and transactions can be constructed on an op-
timistic replicated file service base, and can further provide the high-performance
data transfers that are required by this class of clients.

4.2.4 Typed files

If the stackable layers approach were to be applied at a single file granularity, not
simply a volume granularity, it seems feasible to provide support for typed files.
Each file might maintain as an attribute the particular services used to produce
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the file; the attribute would then later be used at file open time to-construct a
custom, “typed” file service for-that one file.
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Abstract Correlated-knowledge can be categorized into two
levels. At-the schema level, correlated knowledge between
objects is represented as inference paths. Inference paths
A knowledge-based approach-is:proposed-for query suggest proper objects and -directions that the system
-processing- during network pantitions. The approach uses- should select for data inference. At the instance level,
available domain and summary knowledge to infer inacces- correlated-rules ase_used 1o represent their detailed correla-
sible data-to answer the given query. A rule -induction. tions. In-our approach, a rule induction technique is used
‘technique-is used to-exract correlated knowledge between to induce:correlated knowledge from the database contents.
autributes from the-database-contents. This knowledge-is The induced knowledge is then represented in the inference-
represented as rules-for data-inference: Based on a set of _graph where each-node represents an object or an aunbute
queries, simulation-is used to evaluate:the effectiveness of. in the domain and each edge represents the nferential rela-
the proposed data inference technique-for improving data- ‘tionships among objects. Each edge has an -inferenual
availability under network partitions. Object allocation has confidence which indicates the degree the edge can be used
a significant impact on data availability. Allocating objects to infer other objects. Depending on target objects, object
that increase remote redundancy and-reduce local redun- availability- status, and inferential relationships among ob-
-dancy increases data availability during network partitions. jects, proper inference paths are selected for inference. In
A- prototype. distributed database system that uses the pro- this paper, we shall first present our approach for
posed inference_technique with correlated knowledge from- knowledgé-acquisition and dara inference: We then present
a-ship database has been implemented at UCLA. Our ex- the architecture of 2 DDBMS with dat inference. Simula-
perience reveals that the proposed inference technique can tion is used to evaluate the effectiveness of the inference
significantly improve -the availability of distributed data- technique for improving data- availability during network
base during network partitions. partitions and the data availability under different database
fragment allocations. Finally, to validate the.-feasibility of
L INTRODUCTION -our proposed approach, we present the implementation of a
i ) prototype inference system for a commercially distributed
To.improve the reliability and response time of dis- database system with correlated rules derived from a navy
tributed database-systems, databases are often partitioned ship database.
into fragment objects which .are replicated and- stored at i
several sites. Such fragment replication requires additional 2. KNOWLEDGE ACQUISITION AND DATA
communication and processing overhead for maintaining INFERENCE
consistency among the replicated -copies. Further, due to
channel and node failures, a network -may be partitioned 2.1 Rule Induction
into.two or more isolatcd paris. Since fragments may not
be fully replicated at all sites, certain .fragments may be Because database auributes are often correlated and
inaccessible during network partitions. Most prior work contain redundant information, data inference can be used
used syntacti¢ information to handle operations during nct- to infer inaccessible data objects from other accessible and
work partitioning which lead to blocking or a panially op- correlated data objects. In our approach, a rule induction
¢rable system [GARC87]. However, in=many real time ap- technique is used to induce correlated rules from the data-
plications, the availability of data is of primary importance. base contents. Although different forms of rules may exist
It is often not acceptable for.a site to suspend processing in-a darabase, we shall only acquire the pairwise relaton-
when it cannot commmunicate with other-sites. Because da- ship-among attributes. To induce rules between attnbutes
tabase attributes are often correlated and contain redundant X and Y, we use relational operations to retneve instances
information (e.g., salary ard rank, ship type and cargo), we of (X,Y) pairs from the database, and then select those
propose 10 usc a data inference technique to infer inaccessi- pairs in which X has an unique corresponding Y value. As-
ble data from accéssible data. Such a knowiedge-based suming relation RR contains awribute pair (X,Y), the algo-
approach can greatly-increase the availability of distributed sthm to induce correlated rules for mference path X --> Y
database systems {CHU90a] [CHU90b]. can be described as follows :
—_—— Rule Induction Algorithin:
This research is supported by DARPA contract F29601.87.C.0072,
ONR contract N00D14-88-K0434 and RADC contrmet F3060288C008 1. Retrieving (X.Y) value pairs
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‘Retrieve the instances of the (X.Y) pair from
-the database. Let S-be the resultant relation.
The corresponding QUEL statement is:

Range of ris RR
retrieve into S unique (r.X, r.Y)-
sorted by r.Y

2. Removing (XY) pairs in-which X-has different Y
value

Retrieve all the (X)Y) pairs-in-which X-has
-muitiple values of Y. Let T be the resultant
-relation. The corresponding QUEL state-
-ment is:

Range of risRR

Range of sis S

retrieve into T unique (s.X,5.Y)
where (r.X-=s.X and r.Y '=5.Y)

we then remove all-the (X,Y) pairs from S in
which X-has different’Y values.

Rangeof sis S

Rangeof tisT

delete s

where (s.X=t.X ands.Y =t.Y)

3. Constructing Rules

The acquired rules are summarized in -the
range form:

Rule: if x; £X<x; then Y=y
or-in the set form :
Rule:if Xin { xy, X2,.uXq }then Y =y

The induced rules can be classified into intra-
relation and -inter-relation rules. Intra-relation rules
describe comrelated knowledge between atmibutes within
the same relation while inter-relation rules describe
knowledge between auributes of different relations. Since
attributes within one relation are-uilocated at the same site,
for fault-tolerance applications. the inter-relation rules are
more uscful than intra-relation rules.

The total space for the rule base should-be much
smaller than its oniginal data since rules are represented-as
summarized information. The induced rules-represent the
current states of database instances which may contain both
static and dynamic pans of database characteristics. Static
rules such as integrity constraints do not change while
dynamic rules may change as data values arc updated.
However, the induced rules are less volatile than the origi-
nal data_since the acquired rules are summarized as range
or set form.

To reduce the size of the rule base, we may discard
the rules which cover too few pairs of instances. Forexam-
ple, in the ship database, ship name can uniquely determine
its ship type. However, the volume of comcluied mules
between ship name and ship type-is too large since cach
rule covers only. one pair instance of ship name and ship
type: Since rulés which cover more instance pairs are usu-
ally less volatile, this also reduces the overheud of main-
taining the rules. We shall use a naval ship database as a
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testbed to illustrate the above knowledge acquisition ap-
proach. The ship database was created by -the System
Development Corporation(SDC, now-UNISYS) to provide
a fairly-generic database based on [JANES!]. For illustra-
tion purposes, we-use a portion of the-ship database which
only contains the following relations

SHIP = (Shipld, ShipName, Class)
SONAR = (Class, Type, Sonar)
TYPE = (Type, Surface, TypeName)

The result-of applying the rule induction algorithm
10 an instance of:-the sample database:is given-in-Appendix
A. Both intra-relation and inter-relation rules are acquired
from rule induction. For instance, inference path
TYPE.type --> TYPE.surface represents intra-relation-
knowledge since it describes comrelated knowledge
between fype auribute and surface -auribute -within -the
TYPE -relation. Inference-path SHIP.class --> TYPE.type
represcnts inter-relation knowledge since it describes corre-
lated knowledge between class attribute in the-SHIP rela-
tion and rype attribute in the TYPE relation.

The rules_between ship classes and ship types are
fairly stable since the classification-of ships into different-
ship types does not change often. Funher, -the -acquired
rules also indicate that shiptype information can be used to
determine whether the ship-is a surface or subsurface ship:
We also note that certain rules are less static. For instance,
the correlated -rules between ship classes and sonars are
dynamic since the sonars that the ships installed may
change with time.

2.2 Inference Graph and Path
Inference Graph

An inference graph is a directed graph-G; = (Vy,
Ep) where Vi is a set of vertices each of which represents
an object or atribute of the domain, and Ej is a set of edges
which represent- the inferential relationships among
objects/atributes. Each edge has an inferential confidence
which indicates the degree the edge can be used to infer
other objects. An edge from X to Y is universal if the in-
formation-about Y can be-precisely inferred from attribute
X. The inferential confidence for U edge is 1 since the re-
quested information can be inferred exactly. An edge 15 ex-
istential from X 10 Y if the information of X can only infer.
partial information of Y. Therefore, an inference graph can
be constructed based on the induced comrelated knowledge.

The induced rules can be deterministic or proba-
bilistic. The rule is deterministic if by knowing the in-
stance information of one object, the other object’s mnstance
information can bé exactly inferred. For example, the rule ™
if 'S101’ < Shipid < "S120’ then Baulegroup = 'B02" ~ is
deterministic since by knowing the ship’s id is between
S101 and S120, its baule group can be uniquely deter-
mined. ‘However, some rules are probabilistic since by
knowing the instance information of one object. another
object may have several altemate instances. For example, 4
rule may indicate that weapon "SAM(2” has 0.8 probabili-
ty of being installed at DD shiptype and 0.2 probability of
being installed at another shiptype DDG.

Inferential confidence of edges. I, . can be deter-
mined by the total number of instances for the target obiect
and the number of instances that ure covered hy the rules.
For example, in the ship duabase. an mferential edge enists




from “weapon” to “shiptype” with-the following correlated
rules:

Rule 1: if weapon = “"AAMO1" then shiptype = “CV"

Rule 2 : if weapon = "SAMO1" then-shiptype = "DD"

Rule 3:if ,wf)agon ="SAMO02" then shiptype = “DD"” with
p=0.
if weapon = "SAMO2" then shiptype = “DDG"
with p=0.2

Rule 4 : if weapon = "ASW03" then shiptype = "SS” with
p=0.6
if weapon = "ASW03" then shiptype = "SSG”
withp =04 )

Rule 5 :.if weapon-in "ASWO05.ASW0O7" then shiptype =
“SSBN*"

The inferential confidence from weapon to ship-
type,-I.(weapon -> shiptype), can be determined by the to-
tal number of shiptype instances and the number of in-
stances that-are covered by-the rules. Let us-considerzthe
deterministic rules, assuming that access frequency -for
cach-shiptype:is uniformly distributed-and that:we have 80
tuples out of-the total of 100:tuples-covered by rules 1.2
and 5, then I.(weapon:-> shiptype) equals 0.8 since 805 of
the time we_can uniquely infer cach ship’s type from-the
weapon it carries.

Inference Path

An inference path can be constructed from infer-
ence edges. An inference path from X-to Y exists if X can
be connected 1o Y through one or niore inferential cdge(s).
A path.from X:to-Y is universal if and only if all the edges
on the path are U edges. For a universal path, its inferential
confidence is 1 and the-requested nformation can be com-
pletely-inferred. A path from X 10 Y is existential if infor-
mation of X can infer only panial information of Y. Under
such a condition, several paths may be required io infer an
object. Each path may provide partial information and
these intermediate results will-be extracted or merged to
derive the answer,

The confidence measurement should provide both
completeness-and correctness of the inference results. For
an-inference sysiem only consisting of deterministic rules,
all the inference results obtained via comrelated rules are
exact. The universal paths can infer the rarger object’s in-
formation completely while the existential paths infer-only
partial information about the target objects. The comrectness
issue is related to the probabilistic rules which depends on
whether the inference edges are independent. The evalua-
tion of the correctness of an inference path is complicated
particularly when the inference edges are dependent.
Funher-research is needed to provide the correctaess of 2n
inference path.

When a network partition renders the required data
objects inzccessible, depending on object availability staws
and infercntial relationships between objects. the inference
system is invoked to infer the missing data. For éach inac-
cessible data object i, the inference system will traverse the
constructed inference graph and form a search tree-to find
those accessible objects thar can be used to infer i. Based
on a predefined selection criterion. certain inference paths
are sclected and comelated mules are applied to infer the
missing objects,
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Our inference approach is different from the con-
ventional .deductive database approach. Conventional’
deductive database systems developed so far are in-general-
underlain-by the relational. view mechanism or the first-
order logic programming [GALL84] [REIT84). In deduc-
tive database, an attempt to answer-a query. is referred to as
satisfyinga goal based on the prespecified facts and rules.
From the inference-path point of view, the execution order
of the inference processes is prespecified in the convention-
allogic programming framework. In our inference en-
vironment, due to--the incompleteness of the correlated
knowledge, the inferred results may not be-complete. To
infer the missing information, the intermediate resulis from
separatc processes -have to-be merged. Since we cannot
predict the-outcome of intermediate results, the merging
process has'to be planned dynamically according to ".c in-
ferred results. Therefore, -totally prespecified inference
paths, as in the conventional logic_programming environ-
ment, are not adequate for our inference requirements. For
detail discussions-of the above issu=, interesting readers
should refer to [CHU90d]

3. THE ARCHITECTURE OF A DDBMS WITH
DATA INFERENCE

A distributed database system with inference-capa-
bility consists of a-query parser and-analyzer, an informa-
tion"module, and an-inference svstem as shown in Fig. 1.

-Query Input Infonjmation Module

fDatabise Fragments
Allocation
Availability

¢

Query Parsen

and
’A,ml'v ;er Inference System
Unfe;ence Ehginel
' _
7 ‘Knowledge Ba—sﬂ
DDBMS l = b

Query Output

Figure 1 DDBMS with Data Inference

Information module provides allocation and availability in-
formation of all the attributes in the system. /i inference
system consists of a knowledge base and an inference en-
ginc. The comelated knowledge berveen atiibutes is
represented as rules and is stored in the knowledge base.
During normal operations, qucries can be processed by the
query processor since all the darzbase fragments are acces-
sible. When a network partition occurs. the information
module and inference system will be invoked if any of the
requircd atributes is inaccessible Based on the availability
status and the correlated knowlegge between auributes, the
inference engine modifics the e.zinal query to a new one




LB

WA il o

oI

so that all the required data for the query is accessible from
the requested site. Depending on the:physical allocation of
‘the database fragments and the domwin semantics. the
modified query may provide she exact, approximate or
summarized answer of the original query.

4. IMPROVING AVAILABILITY USING .DATA
INFERENCE AND ALLOCATION

We shall use simulatior to evaluate the availability
“improvement-with the:proposed inference technique under
different fragment allocattons. The input parameters for
the simulation include : auributes and their allocation,
querying site and its.querying auributes, inferential capa-
bilities between attributes, network partition topology and
cost function. In the simulation, u given query is first re-
ferred to the object availability-tuble to check if all the war-
get attributes are available. If not, the inference module
will be<invoked to iteratively apply-each inferensial path
and check to see if it will improve data availability or
reduce its cost withour sacrificing availability. The object
availability table is updated according 10 the inference
results. A given query can then be answered by referring 1o
the new availability table.

-Consider the following distributed ship database
that consists of five database fragments :

SHIP(shipname.class.base)
TYPE(type.surface typename)
SONAR(type.class.sonir)
INSTALL(weapon.shipid)
WARFARE(weapon.warfare)

where SHIP and SONAR aré allocated 1o site SE. IN-
STALL to site Norfolk and TYPE, WARFARE 10 site LA.
Further, a set of inferénce paths are also induced for the
above database as shown in figure 2. For instance, our
correlated knowledge indicates that shiptype information
can be infzmred from shipclass with confidence-1 and sonar
information can be inferred from shipclass with confidence
0.7.

SHIP,SONAR

TYPE(type,surface.tname)
SONRR({type,class.sonar]
INSTRLU(weapon,shipid)

farfelk,

TYPE,WARFARRE INSTALL

1.0

class --=> lype
0.7

class ~--> soner
0.4

tlass --> wespon
1.6

type ---> syrface
0.3

sonar ---> type
1.0

class --=> surface
0.4

class ---> werfare

1.0
wespon ---> warfare

Figure 2 R._Distributed Datebass Sysiam and ils
Inferancs paths

SHIP(shipid,shipname,class)

WARFARE(wespon,warfare)

4.1 Availability Improvement with Data Inference

We can classify queries into two types. Let 2 query
be called a type I query if all of its requested atmribures are
accessible. When:any of the requested- atributes is inac-
cessible, the query is classified as a type Il query. Based on
the above definition. for a given set of queries and atribute
allocation, we define guery mix facror, o, as the percentage
of type I queries in the system. ‘We shail now use simula-
tion to evaluate the effect of data inference on the improve-
ment in availability for selected-«’s. Assuming that after
several link failures, the-network is partitioned into two
parts-where LA and Norfolk are 2t one part and SF is at
another as shown in figure-3a. Qur simulation first random-
ly generates a set of queries. Each query.in this set requires
accessing different-attributes at different-sites. For a given
auribute allocation, depending on the accessibility status,
we can classify each query into a type I or a type 1l query.
We can evaluate the probability of answenng quenies
correctly fora specific pantition,-c.g. panition SF. Psg-()
as a:function of o When-the system consists-of all type |
queries; i.e., & = I all the queries can be answered by ac-
cessing the database directly. Therefore, Per (a) = 1.
Since a decreases-as type-1I queries increase, thus Psg- (o)
decreases as o decreases. When:all the queries-are type Il
querices, then o = 0. Since the requested dara is inaccessi-
ble. no queries can be answered. Thus, Psg (o) = 0 without
daa -inference. Therefore, without data‘inference. the pro-
bability of answering queries comectly is 0. However, if
the data inference-technique is used. cerain missing dara
may be infemred. As a result, some queries can be answered
using-the correlated knowledge. With the inference paths
given in figure 2, our simtlation results reveal that 32% of
the queries can sill be answered which shows the
cffectivencss of our inference approach. The percentage of
queries that can be answered depends on many factors such
as object allocation, network partition topology. correlated
knowledge between attributes, etc., which will be discussed
later.

For a given query. based on the comelated
knowledge between objects. there may-exist séveral infer-
ence paths to infer-the answer. Some may provide more zc-
curatc answers but require a longer execution time, while
the others may take a shorter timie but yields less accuracy.
The overhead for inference-consisis of communication de-
lay, database accessing and knowledge base processing de-
lay. Therefore, there is 2 cost/performance rade-off in
seleCting an inference path. Bascd on the predefined .cost
function, one 2pproach is to seleet the path that provides
better confidence for answering the query or provides fess
cost with the same level of confidence. Funher, using mul-
tiple inference paths may achieve better availability. Letus
consider the following example. Assuming a query is ini-
tiated at SF that requires accessing shipsype and warfare in-
formation. With the dambase fmgment allocation anc
resuliant network partitions as shown in Fgure 43, the giver
query cannot be answered since warfere information can-
not be accessed from site SF. However. there exists several
inference paths to infer the warfare informaton. {tcan be
remotely inferred from the radar information at site LA
with confideace 0.6 or locally inferred from the class infor-
mation with confidence 0.3. In our simulation, the path
from radar is scleeted 10 infer warfire since it provides
higher confidence even though its cost 1x higher than the
other path. On the other hamdl, the path from s o war-
fare will be selected if cost i the entenon tor selecton. 1€
we combing the abave two pathis Tor mfomuns warnere, hen
the total confidence will Ix 2reater thus sang x sngle pah
Axsunung the mfommuaies mivirad fron cach pah s o




-dependent, then the-total inferential confidence -will be 1 -
(1-0:4) * (1 -0.6) =0.76, which is greater-than 0.6.

Note that combining knowledge from different
-paths requires:special algebraic tools. The usual:relational
join operation is inadequate for merging intermediate
knowledge from different paths since some information
-may be dropped during the join operation. As a result, a
special-union-operation is used for merging results from
different paths-in (CHUS0c].
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4.2 Allocation of Database Fragments to Improve Avai-
“lability

Since data inference introduces a certain degree of
-information redundancy, inference can be viewed as virual
‘replication. In general, there are two types of information
redundancies: remote redundancy und local redundancy.
Local redundancy exists if-the same information is dupli-
cated at a site. For instance, if object i can infer object j,
allocating them at the same site yields local redundancy for
-object-j. Thus, allocating objects i and j at different sites
provides remote redundancy which increases the availabili-
ty of object j. Note that local redundancy reduces data avai-
lability, while remote redundancy increases data availabili-
ty.

SHIP,TYPE

SHIP(shipld,shipneme,class)

TYPE(type,surfoce,tname)
RADAR(type,rodar)
INSTALL{wesapon,shipid)
WARFARE(weapon,wertare)

RACAR werfare, INSTALL
Tigure- 48
A network .is partitioned Into 2 sub-networks

Figure 4b
Inference graph for the detabaeze in figure 4a

We shall use simulation to-illustrate the-above con-
cept. For a_three-node network with three database frag-
-ment allocations as shown in figure 5, since SHIP and
SONAR both- contain shipclasy information, allocating
them at the SF site (allocation A) yields redundant ship-
class information at that site. Allocation B also .introduces
a certain level of local redundancy for shiptype information
since that information already exists in the TYPE relation
and it can also be inferred from shipclass in the SHIP rela-
tion. Thus, allocation A yields redundant shipclass infor-
mation and allocation B yields redundant shiptype informa-
tion for SF site. Since shipclass can infer more information
than shiptype can infer, allocation B yields better availabil-
ity than allocation A. Allocation C allocates SHIP and
WARFARE at the same site which does not introduce local
rzdundancy for site SF. Therefore, allocation C provides
better availability than allocations A and B.

Optimal allocation for normal operations may be
different from that during network panitioning, From the
locality point of view, allocating two frequently co-
referenced database fragments at the same site reduces
communication cost and thus response time. However,
from the data inference point of view, allocaung two un-
-correlated database fragments to the same site and two
strongly -correlated database fragments at different sites
provide ..igher inferenual capability and thus increases the
virtual replication of those-two database fragments. Since
locality and correlation may-be dependent, we need to con-
sider both factors in allocaung database fragments to
different sites in a distributed database design.

5. AN IMPLEMENTATION

In the-following, we discusy the implementation of
a daia inference engine. An example based on a ship data-
base 15 also included to illustrate the inference process,
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5.1 Inference Engine

_An experimental inference system has been imple-
mented for a distributed database running on a set of Sun
3/60 workstations-interconnected by #n Ethernet at UCLA.
The-system is-based on the relational model- where all the
source and-target data-objects are relations, The inference
actions are extensions of the relational operations which al-
low us-to build the inference engine on top of Sybase, a re-
lational database system. The inference system operaies in
the following way :

a) When a network partition-renders.required data objects
inaccessible, the inference system develops an infer-
ence plan based on the given query, object availability
status, database schema and correlated knowledge
stored in-the rule base.

b) Data inference is then carried out via the inference plan
which consists of a set of derivations and the execution
sequence of those derivations. Each derivation process
represents a derivation from cerain available data ob-
jects to an intermediate or final data inference result.
Three general types of derivations are implemented in
the system :

1)-Derive new relation based on certain source rela-
tions. It is specified us relational views and imple-
mented through the view generation mechanism,

SONARWARFARE INSTALL
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2) Instantiate relations based on summary information
and .correlated knowledge. The instantiation pro-
cess is implemented through-the relation alteration
mechanism.

3) Combining intermediate results in terms of ap-
propriate system operations (viewed as -meta-
rules). Due to the incompleteness of the inference
results, the combination of two relations is imple-
mented through a special union c¢peration
developed in [CHUSOc). For more discussion and
formalism of.the union operation, interested users
should refer to [CHU9(¢] [CHENS9].

c) Select the required-data objects from the final result. In
the current implementation, since the target objects to
be inferred are relations, the inference process is
designed to infer as much of the missing relations as
possible. The required auribute information is then
selected from the final result.

5.2 A Data Inference:Example

Consider a distributed database that consists of
three databasé fragments SHIP(shipid,sname.class),
-INSTALL(shipid,weapon), and CLASS(class,type,tname)
which-are stored at sites LA,.SF and-Norfolk respectively.

When-the site-SF is partitioned, the following query cannot-

be answered since relation INSTALL is not accessible :
Q1 : " Find the ship names that carry weapon "AAMOL" "

Since the target objects are relations, our inference engine
needs to make an inference plan to select relevant inference
paths for inferring the missing relation INSTALL. The
inference engine currently exhaustively searches all the

derivations in the knowledge base and selects the relevant-

derivations. In this example; the following two derivations
are used to infer the missing INSTALL relation :

DERIVATION 1 : select shipid, type from SHIP, CLASS
DERIVATION 2 : CLASS(type) --> INSTALL(weapon)

Derivation 1 represents the first type of derivation
where the deductive rule is expressed by a view definition.
This derivation creates-a temporary relation which contains
shipid and type information. Derivation 2 illustrates the
second type of derivation, where dervanon 1s performed
from [type] to-[type,weapon). This derivation also creates
a temporary relation with shiptype and weapon informa-
tion. While information of shiptype is filled by accessing
the CLASS relation, weapon informauon is filled based on
the provided correlated rules between shiptype and
weapon. The above two intermediate results are then com-
bined by the special union operation developed in
{CHU90c). The resultant relution, referred to as
INSTALL_INF, is used to replace the inaccessible IN-
STALL relation, Query QI can be answered by joining
SHIP relation with the INSTALL_INF relauon,

6. DISCUSSIONS

In a distributed database system, data fragments-are
often replicated to incrcase data availability in case of
failures [CERI84) [ELAB85). However, performance can
be adversely affected by replication because of the com-
munication required to ensure consistency between copies
of the data. While full-replication provides better availabil-
ity than partial replication, it introduces more communica-
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tion and-processing overhead [GARCS82). However, in any
partially-replicated scheme, some fragments-may be inac-
cessible during-network partition.

Data inference provides an alternative to data repli-
cation for increasing availability. As a result, the-number
of physical replicas may be reduced-without reducing the
number of logical replicas. To improve availability-during

network:partition, objects which cannot be-inferred-should-

-be replicated and stored at different sites. Further, to
reduce-access time, objects -with high transaction -rates at
several sites should-be replicated wt these sites. To in-
crease inference capability and further improve availabili-
ty, we may want to replicate objects-with high inferential
capability. Therefore, with selective database fragment re-
plication-and the use of data-inference, the availability of
the database system can be significantly improved.

The degree of improvement in availability is
affected by the-database fragment allocation. Since-infer-
ence provides virtual replication of database fragments, to
maximize the benefit, data fragments should be allocated 10
maximize the -viral replication of all the fragments
(weighted by the access frequency). For a given allocation,
the availability-of the database fragments also depends on
how the-network-is partitioned. Further research is needed
to determine the best allocation for database fragments
under network partition,

While we have constructed a system which is able
to infer missing darta, several imporuant problems remain.
Our approach uses the rule induction mechanism to induce
a set of rules which describe the correlation between attri-
butes. However, only correlations between individual ateri-
butes are_used. Although-a set of auributes (two or more)
may also infer the value of another set of attributes, the
efficient selection of correlated sets is difficult due to the
combinatorial explosion of such comelations. Further
research in selecting for correlated sets-is needed.

So far, we have.considered knowledge acquisition
in:a slowly changing database environment. If data values
are changing dynamically, timely updating of the

-knowledge base becomes an issue. One approach would be

to trigger a knowledge base update every time the database
changes state, thus keeping the-knowledge base up-to-date
at all times. To reduce communication overhead, we may
select only a subset of the knowledge base to be consistent
at-all times, with the rest having weaker consistency. We
need to determine what type of knowledge is-critical with
respect to the mix of expected queries and how to best keep
that knowledge consistent. For less critical knowledge,
where weaker consistency will suffice, we must determine
how much and what types of inconsistency are allowable,
Further research is needed to investigate the cost of main-
taining a-knowledge base in & dynamically varying en-
vironment, and also the effect of using weakly consistent
knowledge for data inference.

7..CONCLUSION

A knowledge-based approach is proposed to im-
prove data availability for query processing during network
partitions. The approach uses available domain and-sum-
mary knowledge to infer inaccessible data o answer the
query. A rule induction algorithm is used to acquire corre-
lated knowledge for data inference application. Simulation
is used to evaluate the effectiveness of the proposed data
inference-technique to improve data availability under net-
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work partitions. Object allocation has a significant impact
on data availability. Allocating objects that increase re-
mote redundancy and reduce local redundancy increases
data availability during network partitions. A. prototype
inference system has been implemented on a distributed
database system that runs on a network of Sun 3/60 works-
tations at UCLA. Using ship database as-a testbed, our ex-
perience reveals that the proposed rule induction-technique
is capable -of obtaining useful correlated knowledge for
data inference. As-aresult, data inference can significantly
improve the-availability of the distnbuted database during
network partitions.
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1 Introduction

This-work-sets out-to test-the philosophy that not
only can syntactic redundancy (replication) be ex-
ploited to improve fault tolerance, but that most
data are correlated, containing redundant informa-
tion at the semantic level as well. In order to be of
use,-this redundancy must be recognized, automat-
ically extracted, and encoded as rules which can-be
used as input to an inference engine (5, 4]. The
database itself must be engineered to make use of
the-inference engine to infer the inaccessible data
from accessible data. The.inferred data may be ex-
act or approximate. However, in cases where time
critical decisions must be made even though por-
tions of the database are unavailable due to net-
work partitions or site failures, having such-inferred
data (with-completeness-and correctness measures)
is often preferable to no data at all.

While inference enhances availability for query
answering access, we can also employ-semantic in-
formation about the data and transactions to im-
prove availability for update. Given the semantics
of an update transaction on replicated data, it is
often preferable to permit transactions to commit
during network partition even though purely syn-
tactic definitions of correctness-(serializability) may
be violated!. The semantic knowledge can then

*This work was sponsored by DARPA under contract
number F29601-87-C-0072.

17This is based on the optimistic belief that that conflict-
ing updates are sufficiently rare that it is better to detect
and repair conflicts than to prevent them using existing al-
gorithms which reduce update availability.

be-used to-restore-the database when the-partition
heals. In -this workshop, we report on the expe-
rience of -building a knowledge based distributed
database testbed on top of a commercial relational
database in which to experiment with semantics-for
fault tolerance.

2 Data Inference

Our data inference system-is based on the relational
model where all the source and target data objects
are relations. The inference actions are extensions
of relational operations which enabled us-to build

-the inference engine on top of a cowmercial rela-

tional database system. Currently, two types of
rules are used by the inference engine - deductive
rules specified in terms of relational operations and
correlated rules which are specified as summarized
knowledge.

A rule induction- technique is used to extract
correlated knowledge between attributes from the
database relations. In our implementaticn, only
correlations between pairs of attributes are used.
Although two or more attributes may also infer the
value of a set of attributes, the efficient selection
of correlated sets is difficult due to the combinato-
rial explosion of such correlations. To induce rules
between attributes X and Y, we use relational oper-
ations to rétrieve instances of (X,Y) pairs from the
database, and then select those pairs in which X
has a corresponding unique Y value. The detailed
algorithm is presented in [6]. The acquired rules are




in the range form if 2. < X <raothenY =yorin
the set form if X € {z},z2,...,2p} then Y = ».

When a network partition-occurs, the inference
system develops a plan which consists of a set of
derivations and the execution sequence of those
derivations. The inference plan is-based -on the
given query, object availability status, database
schema, and correlated-knowledge stored in the rule
base. Each derivation.process represents a.deriva-
tion from certain available data objects to an inter-
mediate-and final data-inference result.

Three types-of derivations are implemented in
the system. First, new relations can be derived
based on other relations. The derived relations
are specified as-relational views and.implemented
through-the view generation-mechanism. The sec-
ond method consists of valuations of incomplete re-
lations based on summary information and corre-
lated knowledge. The valuation process is imple-
mented -through the relation altering mechanism.
Finally, intermediate results can be combined via
appropriate operations. The combination of two
relations can be implemented through relational
outer-join, which-keeps-all the necessary incomplete
tuples appearing in the intermediate results. These
tuples may be valuated through other derivations or
combined with the data obtained from other deriva-
tions.

The required data objects are selected from the
results of the inference process. The tuples in the
missing relation are inferred, as completely as pos-
sible, and the required attributes selected from the
final result.

3 Overview of the Architec-
ture

In-order to avoid rebuilding large amounts of soft-

ware that are not central to our research, we are us-
ing an off-the-shelf, commercial database server for
local relational data management. We have chosen
Sybase because it supports a chent/server model,
supports a relatively standard SQL interface, has
elements of an extensible architecture, and com-

petitive performance. However, our modular ar-
chitecture renders our data inference and seman-
tic based -concurrency control-highly -independent
of our choice of database engines.

The system architecture consists of a front-end
process per user session and a pool of back-end
database servers, at least one per site. The front-
end process consists of an SQL parser, an object
availability module, an-inference engine, and-a dis-
tribution layer. Users submit queries to the front-
end where they are parsed to form a-query tree.
The tree .is then- passed: to an: object availability
evaluator which checks -the status of the storage
sites for each data object named in the query. The
object evaluator uses the-distribution module to de-
termine data object locations and node/link status
information. If any data objects-are found to be un-
available due to network partition, the list of miss-
ing objects and the parse tree are submitted to the
inference engine.

For each missing object, the inference engine at-
tempts to infer an approximation. The knowledge
base for the inference engine is stored (fully repli-
cated) in-the underlying local database server. The
inference engine can infer a replacement data ob-
ject for each missing object and modify the query
tree to reference the inferred object. Alternatively,
the inference engine may simply modify the query
to an equivalent one which accesses only available
data. In either case, a modified query tree is re-
turned to the parser. The modified parse tree is
converted back to SQL and submitted to the dis-
tribution module for execution®. Figure 1 shows a
schematic view of the architecture.

4 Experiences

We have a working prototype of a distributed data-
base. knowledge induction mechanism, and infer-
ence engine. The system automatically induces a

2The distribution module simulates a distributed data-
base on top of the collection of single site servers. It pro-
vides access to remote data and simulates distributed joins
by forming temporary local copies, performs update prop-
agation to replicated relations, and coordinates two phase
commit.
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set of summary rules fiom the'data instance and do-
main model. Sets of sites can-be disconnected from
the network and the system automatically infers
the data rendered inaccessible, answering queries
which would otherwise be impossible in conven-
tional-distributed databases. The prototype effec-
tively-demnonstrates the potential of inference as a
teshnique to improve fault tolerance during net-
work partition.

Knowledge Schema

The inference engine makes use of the rules induced
by thé knowledge induction mechanism to con-
struct temporary relations from summarized knowl-
edge-and accessible relations. The rules were-also
stored.in the-database.in a relational form for uni-
formity of access and storage. This necessitated the
schema of the rules and relations to be known to the
inference engine in order to be able to access them.
To-avoid the-uverhead of communicating with the
Sybase server to determine the schema for each in-

ference cycle, a copy of the schema of all the rela-
tions in the database was maintained at the client’s
site. Consistency between the client and server
copy was maintained by adopting a write-through
policy, i.e., any changes made by the client would
also result in the server’s copy being updated. This
was justified based on the observation that updates
to the schema were much lower compared to the
reads required to access base relations and rules.

Cacheing

To construct an inaccessible relation, the inference
engine makes use of several rules, each of which-
serve the purpose of inferring some tuples of the
missing relation. In order to avoid the overhead of
communicating with the Sybase server each time
a new rule is required, all thé rules that are in-
strumental in inferring a particular relation were
batched together and cached at the client’s site for
use by the inference engine. One more technique
adopted to improve performance was the cacheing




of base relations at the client’s site. Some of the
-tules required accessing other-available relationsto
infer the ‘tuples of the missing relation. Rather
-than requesting an-available-base relation from the
server each time a rule is applied, the base relation
is cached at the client’s site and then all-rules which
-tefer to the base relation are successively applied:to
construct ‘the missing tuples. The set of rules.re-
quired to infer ¢ missing relation and the base rela-
tions used-by these-rules are-predetermined by the
“knowledge induction mechanism. This is facilitated
to alarge-extent by the static nature-of the appli-
cation, which had a predominance of: queries and
all updates were made to existing basé-relations.

As mentioned above, rules refer to other base re-
lations to-infer tuples of a missing relation. If it
turns out-that some of these base relations are also
inaccessible, they in turn have to be inferred, which
is possible-only if there-are no cyclic dependencies
between relations. In our experience, this is not
true even for -moderately large applications. This
leads to the rather complex problem of optimal data
assignment in order to maximize availability during
network partitions.

Commercial Database

The commercial database server Sybase, on which
the knowledge based distributed database testbed
was implemented, both hindered and facilitated our
implementation. Sybase logs every update opera-
tion on itslog device to aid recovery, including up-
dates on relations in the temporary database, which
can be used as scratch space in the server by all
database users. We avoided the overhead of a disk
logging operation for each update by specifying a
UNIX file as a log device, so that the actual disk
accesses were controlled by the file system’s buffer-
ing mechanism. However, we discovered during the
course of the implementation that frequent updates
very quickiy filled up the log device which impeded
‘the server from-accepting all further updates. This
necessitated database dumps to be made very fre-
quently during peak operational periods in order to
clear the log device.

Our initial design required our front-end to do

an actual login to a Sybase server for each query
submitted by a user. This did not have any notice-
able performance overhead for normal operations.
where the rcte at which-queries-were submitted to
the system was governed by the user. However, dur-
ing-network partitions, the inference engine gener-
ated a large-number of queries in rapid succession
in order to access rules and base relattons, which
lead to a very rapid performance degradation. Ve
solved the problem by-having the client manage a
pool of connections to-several servers. Each client
on initiation would open at least one connection
to-each one of the available servers in the system
and all requests are routed through this connec-
tion as much.as possible. Further connections are
opened depending on load requirements. This was,
of course, the obvious-approach, we were surprised,
however, that the system was unusably slow until

we made this optimization. It is advisable to mini-

mize the number of cpen connections to each server
from a particular client since-the server supports a
limited number of concurrent client connections. A
large number of open connections also results in an
increase in the response time of the server.

Database Error Handling

We are able to create dynamic necwork partitions
and reconfigure sites back into the system dur-
ing our demonstrations. This is facilitated to a
large extent by Sybase’s user supplied error han-
dling mechanism, which prevents the client from
catastrophically aborting its execution if a severe
error is detected. This enables the client to abort
the query in progress gracefully and clean up its
connections to the inaccessible server. A new con-
nection is opened up as soon as the partition 1s
repaired and the server’s presence detected by the
client. The aborted query is processed by the in-
ference mechanism as explained above.

5 1Ideal Architecture

What the prototype does not do, in hindsight, is
demonstrate how distributed databases should be




architected to take advantage of inference tech-
niques. In order to recognize that-inference is re-
quired to materialize an-inaccessible object. the
" query must first -be parsed and the relevant ob-
jects identified. As commercial databases do not
typically provide an interface below the level of
‘the parser, we are forced to parse the query our-
selves. manipulate the parse tree, turn it back into
‘SQL, and submit it to the database through the
high level interface. Further, the inference -tech-
-niques require the invention of new relational op-
erators (eg. open S-union. 3, 5]). As we do not
-have soutce code to the database engine, we imple-
-ment the new operators in-the address space of the
front-end. Consequently, intermediate results fre-
quently have-to cross out of the database’s address
space using a “tuple-at-a-time” interface across-the
-boundary. These-factors combine to-produce unac-
ceptable=performance.

What is needed is a truly open architecture for
distributéd databases. Intelligent application pro-
-grams néed to.be able to interact with a database
service other than simply -through the high-level
Janguage interface. The program should be able to
access and modify the parsed query. It should be
able to call relational operators directly. Most im-
portantly, the set-of relational operators should be
exlensible so that. specialized, application-supplied
operations like open S-union can execute in the
database’s address space, avoiding expensive copy-
ing. Of course, protection of the integrity of the
data must be guaranteed, perhaps-through provid-
ing extensibility via an interpreted language such
as Push [1] (proposed for operating system kernel
extensibility for the Raid database [2]).
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ABSTRACT

An_open data inference technique is proposed which uses domain and summary knowledge to-infer inac-
cessible data for query processing during network partitions. The open nature of data inference:is due to the incom-
plete knowledge available about data and the need to combine partial inference results from-separate processes 1o
derive cooperative answers. To underliezsuch: inference, new algebraic tools are developed for handling incomplete
information. Further,.a weaker comrectness criterion, called toleration, is-introduced-to evaluate inference results.
The above concepts -have been implemented on-a prototype Cooperative Distril uted Database-sysiem, CDB, at
UCLA. Our preliminary experimental résults reveal that open-inference can significantly improve the availability of
distributed databases during network partitions. )

1. INTRODUCTION

To improve -the reliability-and response time in distributed systems, databases-are often partitioned into
fragments which are réplicated and storéd at several sites. "Such fragment replication requires additional communi-
cation and processing overhead to maintain-consistency among the replicated-copies. Further, due to channel and’
node failures, a network-may be partitioned into two or more isolated parts. Since fragments may not be fuily repli-
cated at all sites, certain-fragments may-be inaccessible during network partitions. Most prior work using syntactic
information 10 handle operations during network partitioning leads to blocking or:a partially operable system
[GARCS7]. However; in-many:real time applications, the availability of data is of primary importance. -It is often
not acceptable for a site to suspend processing when it cannot communicate with other sites. Because database attri-
butes are often correlated and-contain redundant information-(e.g., salary and rank, ship type and ship class), data
infefence techniques can be used to infer inaccessible data from correlated and accessible data during network par-
titions [CHU90). Such-a-knowicdge-based approach can greatly increase the availability of distributed database
systems. However, in general, such inferences must be made from incomplete information. This is because

1. the incomplete correlated knowledge and source objects.
2. the need to infer data based on partial results from sepdrate reasoning processes as follows :
(a) inferring the missing data from multiple data sources and combining the partial results;

(b) inferring data based on partial results from previous phases, goals or subgoals, which may also
vary with time and depend on the network status and other events therefore cannot be totally
pre-planned;

* This rescarch is supported by DARPA contract F29601-87-C-0072 and ONR contract NOQO14-88-K0434
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(c) cooperative multi-agent systeins require combining results from individual agents.

We shall refer-to this kind of inference as open data inference. It aims at deriving and filtering data from different.
knowledge sources, and measuring the inference results in situations where the system state is unknown and unk-
nowable. Since other events may occur during the inference-which-are-not predictable, open inference is a particu-
lar issue which-is part of-the intersection of logic programming and null values in an open environment.

Null value is a-special case of the-incomplete information problem which has been studied extensively in
relational database and-inference theory. The efforts made from the relational database point of view concentrate on-
how-to understand the meaning-of nulls occurring-in the query answers. Different interpretations on nulls are pro-
posed. The formal treatment of nulls under-the unknown interpretation was given [CODD86] [BIS81] [BIS82]. The
treatment of nulls under-the does:not exist-interpretation was proposed-in [ZANI84]. In [VASS79]:the problem of
managing nulls with both the unknown and-does not exist is taken into account. In the context of the open world da-
tabase [REIT78), Zaniolo [ZANI84] introduced the no information interpretation of nulls. -[ROTHS5] extended this
approach by considering unknown, does not exist and no information interpretations of nulls together. [GOTT88]
defined operations which may retum true, false, unknown, does not exist, and open to support a locally<controlled
open world database. This allows the definition of portions of a traditional closed world database as open world. A
taxonomy on the meanings of nulls is given'in [OLA89]. However, these studies are in the context of relational da-
tabase and without concem about logic reasoning.

From the logic-point of view, the:absent terms are related to Skolem constants. The absence of negative
facts was the first concem. This problem was solved by the introduction of a closed world assumption [REIT78] by
assuming-that negative facts may-simply be-inferred-from the absence of their positive counterparts, which has be-
come one of the foundations of deductive databases. The issue of query evaluation for databases containing existing
but-unknown marked nulls was studied-in.[REIT86). Incompleteness.is also frequently: discussed together with
-indefiniteness, -where data are said to be indefinite if-they-are of the disjunctive form, .g. a or b. This problem was
tackled by Reiter with a-precise solution on the basis of the proof-theoretic. point of view, and also discussed.-in
{LIP79] {(WILLS88]. The model developed by Lipski allows attribute values to be of either set or range types, a query
applied to a database containing incomplete information must specify the answer as the set of values which might
possibly or definitely satisfy the-query. Additional approaches to-incomplete information recasoning use meta-
language techniques [LEV81] [KON81] based on information known about the domain of discourse. It is this fact
that many studies on this issue are based on nonmonotonic logics [ETHS8].

-However, we cannot directly adopt-the above approaches to our open data inference applications for the
following reasons. First,:the interpretations of nulls studied from the relational database point of view are not in-
tegrated to the present logic programming framework: underlying our implcmentation. Sccond, many of the above
approaches are based on rather strong assumptions. For instance, even though the data is unknown, they require that
certain-dcfinite information (e.g. data existing) must be known. However, the above assumptions are not suitable
for open data inference since the system state is unknown and unknowable. The existence of unknown data is still
unknown. Therefore, in our approach, we classify the status of data into two states : closed (including nonexisting)
and open (unknown, whether cxisting or nonexisting). Finally, many of the above studies from the logic point of
view cover ficlds of incomplete reasoning concemed-with negation, set, disjunction, elc, and in general, nonmono-
lonic reasoning, -but not exactly in the context of open data inference. Ofr interests are in such issues as the impact
of open data inference environment to the present logic programming model theory and the evaluation of the resulls
of open data inference.

Our cffort consists of extending the present algebraic notions of logic programming for dealing with open
data inference. Thus, extended algebraic tools are developed to handle incomplete objects. Further, a semantic
framework is proposed to underlic the open data inference. Our solution is characterized by the following :

(a) Extending the logic programming framework to accommodate incomplete objects.
(b) Supporting dynamic inference planning.
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(c) Introducing toleration as a weaker correctness criterion.

In this-paper we:shall first discuss.the characteristics-of open data inference. Next, the algebra on.incom-
plete objects is-developed. Then the notions of satisfaction and toleration are discussed. Finally, we present the im-
plementation issues which include:the inference engine and-the combination of inference results- from different
derivations.

2. THE CHARACTERISTICS OF OPEN DATA INFERENCE

Let us discuss the diffcrences between the open data-inference-and the conventional data inference based

on logic programming. Throughout this papcr, we shall use -->and <-- to represent logical implications, and use —»
to represent mappings.

The deductive database systems developcd so far are based on the relational view mechanism or first-order
logic programming (GALS4] [RET84). Ina deductive database, relation-names are treated as predicates and wples
as predicated atomic formulas. An attempt to apswer a query is referred -to as satisfying a goal based on
prespecified facts and rules. For example, given the following-logic program P (variables are represented by capital
symbols),

{

P(X’Y»Z) <-- f(x,Y), q(xvz)-

q(X,Y) <-- s(X,Y).

r(a,b).

s(a,c).

}
-there is 2 Herbrand base associated with P, denoted as Bp. It is the set of ground atoms that can be: formed by using
-predicate symbols and ground terms from P, such as

{ p(a,bc), p(ac.b), ... r(a,b), r(ac), r(b.c), ... q(a,b), ...s(a,b), s(bc), ... }

A (Herbrand) model of a given program P is identified with a subset of Bp containing at least the facts that can be
derived from P [LLOY83]: For example, the following is an interpretation and a model of P.

M ={p(ab,c), q(a.c), r(a.b); s(a,c)}-
The derived fact p(a,b,c) is satisfied by the above interpretation, i.e., p(a,bc) € M.

Therefore, in logic programming, both the original and the derived facts appearing in the Herbrand basc are
represented as ground formulas containing no null valie. The notion of logic satisfaction and model are bascd on
-Herbrand interpretations formed out of ground formulas. Further, a goal can succeed only if the derivation path
-from the given facts to the goal is complete, -

-However, the open data inference environment is charactérized by the incompleieness of domain
“knowledge and thé need for combining partial inference results from scparate reasoning processes for the purpose of
utilizing multiple knowledge sources, carrying out dynamically scheduled inferences, or cooperating multiple intel-
‘ligent agents. The above réquirements are not supported by the conventional deductive database approach. To il-
-Justrate it; let us consider the following program P':




staff1(EMP¥, NAME, SEX, OCCUPATION) <--

person(EMP#, NAME, SEX), jot(EMP¥, OCCUPATION).
person(0S, John, §). )
job(05, 3).

)
based on the following relational schema

staff1(emp#, name, sex, occupation).
person{emp#, name, sex).
Jjob{emp¥, occupation).

where job(05; 8) and person(05, John, 6) contains ar "§" representing the unknown information. The conventional
logic-programming framework-does not provide-notions-to derive.any new fact based on such incomplete facts.
However, by using some reasoning processes, the following new fact may be derived:

staff1(05, John, &, 3).

Even-though the derived information still contains unknown information, it may be-used for assisting-a decision
making or for merging-with other iniermediate results to make further deductions.

Under the conventional noticns of logic programming, it is not possible to include the given incomplete
fact job{05, &) or-the inferred incomplete-result staff1(05, John, 8, 3) in the Herbrand base Bp’. Further, since a
-model of P’ is a subset of Bp’, we do not have a base 10 determine whether staff1(05, John, §, 5) holds or not. Thus

T From the model sémantics point of view, a fact may not be included in the models of a program P if it
cannot be inferred:from the rules and facts given in P. Since there is no notion to accommodate-in-
complete facts and results in the Herbrand base, a model of a program miay never contain any incom-
plete fact. Further, no weaker correctness criterion is provided 1o evaluate the incomplete results.

2. From the inference path point of vicw, the execution order of the inference processes is pre-specified
in the conventional logic_programming framework. In our inference environment, due to the incom-
pleieness of the available knowledge, the inferred results may not be complete. To infer the missing
information, the intcrmediate results from separate processes have o be merged. Since we canziot
predict the outcome of the intermediate results, the merging process must be planned dynamically ac-
cording to the inferred results. Theréfore, totally pre-specified inference paths, as in the conventional
logic programming environment, are not adcquate for our inference requirements.

To solve these problems, we shall first extend the base of a program to allow both original and derived
facts to be incomplete. For instance, the incomplete fact job(05, 9) is accepted to the extended basc, as is the derived
incomplete fact staff1(05, John, 3, §). Further, wé shall extend the interpretation of a program o allow the ia-
volvement of -incompleie information, and define such an-interpretation as a subset of the above cxiended base.
Thus for example we can have the following interpretation that does not satisfy but yet docs not “violate™ the pro-
gam P’

{staff1(05, John, &, 3), job(05, &), person(03, John, 8)}.
In other words, we allow. the derivation from job(05, 8) and person(05, John, ) to swaff1(05, John, §, 8) according

the given rule in P'. To evaluate incomplete inference results, we sh‘xll ntroduce an extended comreciness critcrion
which is weaker than the notion of satisfaction.




Next, let us consider the combining of-intermediate incomplete results from multiple-knowledge sources
for.obtaining cooperative answers, Assume we need to infer the relation

stafflemp#, name, sex, occupation, siatus)

by combining the results of two separate programs P and’P2 where P can be used to infer the relatie=
staffl (emp#, name, sex, occupation)

and P, can-be used to infer the relation
staff2(emp#, name,; sex, status). -

The program P is specified as

A !

staff1(E*1P#, NAME, SEX, OCCUPATION) <--
person(EMP#, NAME, SEX), job(EMP#, OCCUPATION).

person(0S, John, §).
-person(06; Smith, maic).
job(05, engineer),

| job(06, 3).

From program P, an open interpretation M, containing the derived facts

staff1(05, John, §, engineer).
staff1(06, Smith, male, §).

can be formed. Given the following additional relation schema
wk_status(emp#, status),

the program P, is specificd as
{
" staff2(EMP#, NAME, SEX, STATUS) <--
person(EMP#, NAME, SEX), wk_status(EMP¥#, STATUS).

person(05, 6, male).
person(06, 8, 5).
wk_status(05, 6).
wk_status(06, fulltime).

)

*Froni program P,,-an open interpretation M, containing the derived fact..

staff2(05, 8, male, J). .-
staff2(06, 5, §, fulltime).

can be formed. Assuming EMP# is the key of the relations "staff1" and "staff2", the above facts can be combined-to
obtain a (more) complete interpretation containing

staff(05, John, male, engineer, 3).
staff(06, Smith, male, 8, fulltime).

This combination generally invoives the union of different tables with common attributes, the reduction of resulting




relations,-and the merging of certain tuples interms of appropriate algebraic_tools as will be discussed in-the next
section. Therefore, in open data inference, it is-necessary to keep as many incomplete partial results as possible so
that they can be combined to yield more complete results. Such a combining process is not explicitly specificd by
the domain-specific rules, but rather is handled by the system as a meta facility and performed according to the goal
and the data semantics.

We refer.to a program which contains f~cts (source data) and-rules as a Data'Inference Program (DIP) and
refer to the execution of a DIP as a derivation. An open datazinference consists of one or more statically or even
dynamically planned derivations. Each derivation is the execution of-a DIP. ‘In order to develop its semantics, we
shall discuss issues such as the algebra of incomplete object reasoning, two different levels of correctness:criteria,
and-the implementation of an inference engine based on the above concepts. In this paper, we do not address the
inference-planning problem and assume all the rules are.consistent.

3. ALGEBRA FOR OPEN OBJECTS-

In order to handle incomplete and dynamically- reconstructed database objects, we shall discuss the notion
of-variable null, open object and-valuation, and develop extended algebraic operations that-are applicable to both
closed objects (not containing unknown components), and open objects (containing unknown components).

Variable Nuil

The treatment of "incomplete” information in the relational model has been addressed based on the Closed
World Assumption (CWA) and Open World Assumption (OWA) [REIT78). Under CWA, only the facts expressed
by the database are true. Thus, a null may be interpreted either as- an existing but “"unknown" fact
[CODD79](BISK81],-or as-a "non-existing" one [VASS79]{ZANI84][CODDS86]. Under OWA, besides the facts
specified in the database, no further information is available, thus things are left open [RKS85)[GOTT88}[OLA893].
Since cur goal is to develop a madel theory for open inference, we concentrate on the impact of incomplete infor-
mation on the inference process and classify a null as :

- a variable-null denoted as " & " which may be substituted by different actual values, or
- an actual "non-exist” value called undefined and denotedas " ¢ ".

Since ¢ is an actual value, it may be used to substitute § .
Open-Range Object

Te 1.odel database objects formally, the existence of some finite sets of values referred to as domains is as-
sumed, au+ e special value " ¢ " is introduced. The product over domains Dy, D,..., D,, denoted as Dy X D3 ... X
D,, is the set of all tuples [xy, x2,., X,] such that Vi € {1,...,n} x; € D;. A-relation schema, called a range, consists-
of a’list of attributes A |, A2,...,A,, where each A; is a subset of a domain.-Unique Name Assumption (UNA) on attri-
butes is assurmed. Tuples and relations are generally called range-objects where an attribute value is allowed to be
"¢" or "8". A closed range-object is free of variable-nulls. An open range-object contains variable-nulls. Thus, a
tuple is open if at least one of its attribute values is variable-null. A relation is open if it contains at least one open
tuple. An open range-object cannot be compared with other range-objects. For example, assuming A,B,C are attri-
bute names,-we cannot determine whether [A:1, B:2, C:3) and: [A:1, Bi2, C:3] are equal since both range-objects
areleft open, and the variable-nulls in each tuple may stand for different actual values. To define relationships and
operations on open range-objects, it is necessary to exiend the notion of equality to represent syntactically identical
objects. Therefore, we adopt the notion of symbolic equality , denoted as == , as described in
-[CODD86][GZC87]{GOTT88). Under this notion, all the variable-nulls represented by the same notation ” § " are
symbolically equal. Further, two tuples are symbolically equal if the values of each attribute are symbolicaily equal.
Two relations are symbolically equal if their tuples are pairwise symbolically equal,




The notion of closed and open objects is related to the notion of closed formula in logic programming. A
non-closed formula may. contain one or more specific variables such as X, Y, etc. However, in the-framework
described:here, all the unknown components in the open objects are syntactically specified-by the same variable-null
notation.

‘Valuation-

In order-to define the notion of satisfaction for open data inference, the concept of valuation is introduced.
Valuation plays the role of instantiation of variables and variable-nulls in terms of-actual values under attribute type
constraints.

(Valuation]

The set of valuation mappings, €2, from the set of objects (open or closed)-to the:set of closed objects are
-defined as follows :

(a) Fora constant value a€ A on attribute A,a—»a e Q.
(b) For a variable z on attribute A, (Vae A)z - ae Q.
(c) For a null-variable 8 on attribute A, (Vae Au (¢ })§ > ae Q.
(dyForatuplet={Ay:ty, ., Anita], U=[A 01, v Anite '],
Vie (I,.n} 2 4'eQ ->t->1 € Q.
(e) ForarelationR = ¢y, .., 4, },Vie (1,..n} 3te R’ (; »te Q)-->R—= R e Q.

An open object is partially valuated if not all the variable-nulls are instantiated by actual values, For.in-
stance, as shown below, the relation "SHIP" is a partial valuation of another relation "ship" according to the follow-
ing-rules: :

IF ’BO1’ < battle_group < 'B02’ THEN radar = 'SPS’.
IF ’S$120°< ship_id < ’S150" THEN battle_group = 'B03".

ship SHIP
ship_id battle_group radar ship_id battle_group radar
S100 BO1 ) 5100 BO1 SPS
S122 b ) S122 B03 5

Note that valuations of variable-nulls should not be referred to as substitutions. Since all variable-nulls are
represented by the same notation "8", there s no way to separately represent each variable-null and the value used
to substitute for it. The usual concept of substitution in logic is only- applicable to distinct variables. Howéver,
valuation does obey object typing constraints, thus we state that the valuation of a null-variable  on altribute A is
defined as '

(Mae Au(d})6—>aec Q.
Sub-tuple, Sub-membership and Sub-containment on Closed and Open Objects
Data inference consists of mappings between range-objects. Open data inference involves open range-
objects. In order to studyits interpretation semantics, appropriate algebraic tools are required. This includes special

set membership and sct containment between range objects, and the extension of these notions for dealing with open
range-objects. We first define the sub-tuple relationship between tuples. Lett, t* be wples with atribute list W and




W, and t:X be the attribute value of t on the attribute X; t is the sub-tuple of t', denoted as:t <* t', and is defined as:

t<*t if WoW AVXe WaX=¢ v tX=t.X)

‘For example, we-have the following sub-tuple relationships :
fabl<*[abec]l, | fa,b] <*[a,b,3], (a, & ] <* (a;b,0).

The third-sub-tple relationship holds since the first tuple-contains the special non-exist value (i.e., ¢ ). We then
define a -special set membership and set containment [CHEN89a}{CHENS9b] called s-Membership and s-
-Containment, denoted as € * and ¢* respectively. -Let t be a tuple and R be a relation, we:say t e* R if t:is a sub-
tuple of any wple:in R. Further, let R and:S be two relations, we say R <* S if every tuple in R is-an s-Mémber of
S. That is, :

te*R iff @' e R t<*r.

Rc*S iff (Vte R)te*S.

In this case, R is also called the sub-relation of S. For example, given the following relations “ship1" and "ship2",
we have shipl c* ship2

shipl ship2
ship_id- battle_group ship_id battle_group radar
S100 BO1 S100 BO1. SPS
S122 BO3 S122 B0O3 o
S130 BO1 8

Now let us extend the above notions to-open range-objects. By using-symbolic equality ==, we can
-develop the notions of open sub-tuple <", open s-Membership €" and open s-Containment <. Let t, t’ be tuples with
attribute sets W and W' respectively; t is the sub-tuple of t’, denoted as t <° t°, and is defined as :

IS MWW AVXeWEX==8 At'X# ¢ v iX=t'X vV 1X=¢)

In short, the sub-tuple relationship t <* ¢’ is extended tot <™ t' by allowing t to contain variable-nulls (i.e. 8). For
example, we have the following open sub-tuple relationships: [3,8) <" [a,b] and [a,d) < [a,8). Consequendy, we
can also. introduce open s-Membership € and open s-Containment " similar to the s-Membership and s-
Containment shown above, Let t be a tuple and R, S be relations, then

te"Riff @' e R)t< ¢,
RS iff (Vte R)te”S. -

We call a relation s-reduced if none of the tuples in the relation is the sub-tuple of another tuple. For the
set'of s-reduced relations, it can be proved that the " relationship is reflexive, transitive, and antisymmetric. We
can further show that the set of s-reduced relations form a partial order lattice under the & relationship.

It is easy to see that.the <*, € *, c* relationships are special cases of the corresponding open relationships.

In fact, when we say that relation R is openly contained in relation S under < or <" relationship, we mean that S
contains R, or S contains a valuation of R, or S contains a partial valuation of R.




“The reason &"-is weaker than:c* can be explained as follows : let R and S-be two relations; R < S implics
that there exists valuations from R to R’ and-from S to §' such that R’ ¢* S’. Conversely; if R " S does not hold,
no such valuations exist. More-generally, we have

Theorem 3.1

Let Rand S betwo relations, R <* S’ implies-that foreach S - §’ € Q, there exists a closed relation R’, such that
RoR e QAR c*S’.

Proof outline : see appendix.

The notions introduced in this section provide us with the mathematical tools for handling the interpretation
semantics of data infercnce involving open objects in the next section.

4. SATISFACTION AND TOLERA'iL "<

In logic programming, the model of a program is the interpretation which satisfies all the rules-and facts
specified-in that-program. In open data inference, since rules may not be sufficient for inducing all the necessary
data, both intermediate and final results may be left open, Since intermediate results can be used as base objects for
further inferencing, the-base data objects in a DIP may be ojien. This requires us to study the interpretation seman-
tics in which both source and target data may be incomplete.

4.1-F-base.

In logic programming, the static Herbrand base B of a program P contains only the predicate symbols ap-
pearing in'P, and any possible (Herbrand)-interpretation of P is identified with a subset of Bp {LLOY83). Therefore,
only predefined predicates (relations) can be derived during the inference. To accommodate dynamically generated
predicates during open inference, under the UNA on attributes, we need to extend the base of a program to the fol-
lowing. Let Pbea DIP and A = (A,,....4, ] be the set of attributes that appear in the relational schema in P. The F-
base ®p of P is the set of all products over the power set clements of A, except @ , that is,

Gp = (A1, An, A1 XA2, A1 XA, o AL XA X A3, 0 )

At the relation level, each clement of @p is associated-with a virtual relation which can be syntactically
(may not be semantically) constructed by using auributes in P, referred to as the base of that virtual relation. The in-
stance of an actual relation R in P is a subset of-its base. For a DIP in the F-base, there are no restrictions to forming
relation schemas. Relations and views are not fixed to-the ones predefined in the DIP. Therefore, predicates, which
do not occur in the original facts and rules can be generated during the inference. This is the major difference of the
F-base defined here from the Herbrand base that is defined in the logic programming theory.

This notion allows us to discuss the interpretations of intermediate relations, viewed as sets of intermediate
predicates or atomic formulas, which are not predefined in the rules but generated by the inference process at run-
time.




4.2 Closed Interpretation and Open Interpretation

i In our system, a DIP consists of relations and rules (tuple or relation oriented). An interpretation I of a data
inference program P is drawn from ®p such that

(Vre D((3R € ®p) rc* R)).

That is, every relation in_the interpretation is the sub-relation of a relation in ®p. The general form of an
interpretation is

I= (Ry, o Ra)

An:interpretation is_closed:if it contains only closed relations; an.interpretation is open-if-it contains at:least one
open relation. There exist valuation mappings from open interpretations to closed interpretations. In the following
discussions; for simplicity, interpretations are handled at the relation level rather than at the-tuple level.

4.3 The Notions of Satisfaction and Toleration

The inference results can be evaluated in terms of two levels of correctness criteria: satisfaction and tolera-
tion. The notion of-satisfaction is usually-for closed objects. We shall now extend the meaning of satisfaction for
the-open data inference which involves open range-obiects. The satisfaction of a possibly open range-object in a
DIP by an interpretation I means I-contains:an appropriate valuation of that range-object. Further none of the rules
specified in that DIP are not violated.

‘[Satisfaction]
LetIbe an interpretation. The notion of satisfaction, denoted as I=, is defined as

a)Foratuplet, Ti=t iff @GRe Dt—o>e Q A Ue*R.
Forarelationr, Il=r iff GRe Dr-re Q Ar c*R.
-b) For a rule h <-- by,...,b., for a substitution 6, based on I,
I=(h<-- by,....hs) ilf I 1= 046y, ..., 1 1= by 0; impliesI|=h6;.
c) For a cata inference program P, I I=P iff Vpe P(II=p).

For-example, as shown below, range-object "SHIP" is correctly derived from another range-object "ship”
based on the rule r. In this case, the DIP containing range-object "ship” and rule "r" is satisfied by the interpretation
{SHIP}.

rule r: IF *S120" < ship_id < *S150° THEN battle_group = 'B03’.

ship SHIP
ship_id battle_group ship_id battle_group
S100 BO1 S100 BO1
S122 3 S122 B03

For a Data Inference Program, P, and an interpretation I of that program, we say I is the model of Piff I I=
P.In the above example, (SHIP) is a model of the given DIP.

-10-




The execution of an open data inference may not-yield a-model containing complete and exact information
but rather a tolerant interpretation containing partial information: To accommodate this, we introduce a weaker
correctness notion, called toleration, denoted as I-. In general, a derivation program.is tolerated by an-interpretation
if the known-facts and-rules of-the program are not violated and there exist-valuations of the-open objects involved
in the interpretation-that makes the interpretation satisfy the program.

[Toleration]:

.

-Let I be an-interpretation. The notion of toleration, denoted as -, is defined as

a)Forawplet,Il-t iff GRe Dt e"R.
‘Forarelationr,Il-r iff GRe )rC"R.
b) For a rule h <-- by,.0,bs, "
Il- (h <= br,.bn) iff H=(h <---by,...08).
¢)-For a data inference program P, I - P iff Vpe P(1l-p).

Now.let us observe the:following example, where range-object "SHIP ;" is-partially valuatedfrom another
range object "ship," based on the rule r :

IF’S120’ < ship_id < ’S150° THEN batle_group = 'B03’.

shipy SHIP
ship_id battle_group ship_id battle_group
S100 BO1 S100. BO1
S122 8 S$122 B0O3
$300 3 $300 )

Let /1 = {SHIP,} be an interpretation. For the given DIP containing rule r and range object ship1, we can-
not say- that /- satisfies the DIP since [/ is still open. However, SHIP) is indced a reasonable derivation of ship,
although it is still open. In general, when a possibly open range-object in a DIP is tolerated by an interpretation I,
then I contains an appropriate partial valuation of that range-object and the rules in the DIP arc not violated. For in-
stance, in-the above example, the execution of the given DIP containing rule r and range object ship; generates a
tolerant interpretation 7y = (SH/P ). We can say range object ship; is tolerant by the interpretation /, since /; con-
tains an appropriate partial valuation of ship, and Iy does not violate rule r.

From theorem 3.1 and the definition of toleration, we can have the following :
Theorem 4.1
Let P-be a data inference program and I be an interpretation of P. Thea I =P --> |- P

Proof outline : see appendix.

5. IMPLEMENTATION

An experimental data inference system has been implemented on a prototype cooperative distributed data-
-base, CDB, running on a set of Sun 3/60 workstations interconnected by an Ethemet at UCLA, The data inference
system.is based on the relational model where all the source and target data objects are relations. The inference ac-
tions are extensions of the relational operations which allow us to build the inference engine on top of Sybase, a re-
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lational database system. Currently;-two types of rules are available :

1. Deductive rules specified in terms of-relational operations.
2, Correlated rules which are specified as summarized knowledge. This consists of condition and-ac-
tion parts such as:"if *$120* < ship_id < *S150then battle_group = 'B03"".

A rule-induction technique is used to extract-correlated knowledge between attributes from-the database
contents. In our implementation, only correlations between individual attributes are used. Although-a set of attri-
butes (two or more) may also infer the value of another set of attributes, the efficient selection of correlated sels is
difficult due to the combinatorial explosion of such correlations. To induce rules between attributes X and Y, we
use relationai operations to retrieve-instances-of (X,Y)-pairs from the database, and.then select those pairs in which
X has-a unique corresponding Y value. For-a detailed-algorithm, interested readers should refer to {CHU90). The
acquired rules are summarized in the range form, as

IFx; SX<x2THENY =vy.

or in the set form, as
IFX € {x1,X2.,%x ) THEN Y = y.

When a network partition occurs, the inference system operates in the following way :

a) Based on the given query, object availability status, database schema and.correlated knowledge

stored in the rule base, the inference system develops a plan which-consists of a set of derivations
-and the execution-sequence of those derivations. Each derivation process represents a derivation
from certain available data objects to an intermediate or final data inference result.

b) Carry out the inference plan.

Three general types of derivations are.implemented in the system :

1. Deriving new relations based on certain source relations. 1t is specified-as relational.
views and implemented through the view gencration mechanism.

2. Valuations of incomplete relations based on summary information-and correlated
knowledge. The valuation process is implemented through the relation alteration
mechanism. .

3. Combining intermediate results via appropriate system operations (viewed as meta-

rules) to keep all the necessary open tuples appearing in the intermediate resuits.
These tuples may be valuated through other derivations or combined with the data
octained from other derivations.

In our approach, type 1 and type 2 derivations are tréated as basic units for type 3 derivation. To
infer the missing information, the data inference system first selects certain type 1 and type 2
-derivations. Since our inference approach is designed to combine results from different deriva-
tions, the improper combination of results may generate redundant information. Further, although
each derivation may provide valid information; an-arbitrary combination of different results may
generate invalid information. Therefore, proper operations and control rules are required such that
neither redundant nor invalid information is generated,

The meta-operations for combining tables consists of natural outer-join [DATES3), reductior and
merge operations. natural outer-join is is used to combine relations involving incomplete data by
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generating their least upper bound. Reduction is used-to remove redundant-information in the
same table. Such redundancy exists when-a-tuple appears more than once -in the same table.
Further, a tuple may not be able to provide extra information if it is the sub-tuple of other tuple(s)
in the same table. Removing such a:tuple does not lose-any information since all the information
it-can provide can also be-provided by the other tuple(s). Furthermore, in our-inference:-environ-
ment, natural -outer-join -is combined with merge operation to integrate inference results from
different derivations. We say the merge result-is safe with respect to-the original database if no in-
valid information is generated. This requires the provision of data schema information. For ex-

:, two tuples can be merged when they have the same key value. Therefore, daia inference
has-to be integrated with-knowledge acquisition and schema design stage so that the -required
knowledge for inferencing-is provided.

¢) Select the required data objects-from the infercnce result. In the current implementation, the target ob-
jects to be:inferred are relations. The inference process infers as much of the missing relations as possi-
‘ble. In some case an iterative inference is required up-to the saturation of the derived result.

As a data inference example, consider a distributed database that consists of three database frag-
ments: SHIP(ship_id,sname,class), INSTALL(ship_id,weapon), CLASS(class,type,tname) which are stored
at sites LA, SF and NYC respectively. When- the site SF is partitioned, the following query cannot be
answered since relation INSTALL is not accessible :

QI : " Find the ship names that carry weapon 'AAMOI" "

Since the target objects are relations, our inference engine needs-to make an inference plan, selecting
relevant inference paths for inferring the missing relation INSTALL. We have not yet implemented a
dynamic inference plan. Currently, to infer the missing relation the inference engine exhaustively scarches
all the derivations in the knowledge base and selects the relevant derivations. In this example, the following
two derivations are used to infer the missing INSTALL relation :

DERIVATION 1 : select ship_id, type from SHIP, CLASS
DERIVATION 2: CLASS(type) --> INSTALL (weapon)

Derivation 1 represents the first type of derivation where the deductive rule is expressed by a view
definition. This derivation creates a temporary relation which contains ship_id and type information.
Derivation 2 illustrates the second type of derivation, where derivation is performed from [type) to
[type,weapon]. This derivation also creates a temporary relation with shiptype and weapon information.
While information of shiptype is filled by accessing CLASS object, weapon information is filled based on the
provided correlated rules between shiptype and weapon. The above two intermediate results are then com-
“bined by the third type of derivation. The resulting relation-is used to replace the inaccessible information.

6. CONCLUSIONS _

We have proposed the use of open data inference for distributed query. processing to improve dala-
base availability. This open nature of data inference is due to the incomplete knowledge about data and the
need of combining partial inference results from separate reasoning processes. New algebraic tools are
developed to support such-inference. To evaluate inference results under incomplete knowledge, a weaker
correctness criterion, called toleration, is introduced. This open inference technique has been implemented
at UCLA on a prototype cooperative distributed database system (CDB). Our expericnce reveals that the
proposed open inference approach can significantly improve the availability of the distributed database dur-
ing network partitions.
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APPENDICES
Theorem 3.1

Let R and S be two relations. R <*°S implies that for-each S-— §’ € Q, there exists a closed relation R’,
-such that

R—-R"e QAR c*S".
‘Prove Outline :

We denote the set of closed relations valuated from S as I's. ‘Based on the definitions of valuation, closed
s-containment and open s-containment, the theorem can be proven in the following cases ;

case 1:: R and-S are both closed, then simply I's = {S} and R—+Re QARC*S.

case 2:: R is open and §-is closed. Clearly I's = (S}. There exists a-valuation from R-to R’ defined as
follows : for any autribute X and any suchtuple r € R thatr.X = §, valuate r.X'tor’. X (¢’ € R")
such thatr’.X =s.X (s € S). By the definition of <*, it can be shown.thatR’-c* S.

case 3: R is closed but'S'is open: By the definition of <" and <* R ¢* S. Therefore for any S’ where S
—-5eQRc*S . ThusRg*S foranyS'inIs={S'1S> S € Q]J.

case 4 : R and'S are both open. By the definition of <~ and valuation, for any §’ where. S - §' € Q,R
<" S!. As described in case 2, for any S’ valuated from S,.there exists a relation R’ valuated
from R'such that R’ ¢*§’.

Theorem 4.1
Let P be a data inference program and I be an interpretation of P, I =P --> |- P

Prove Qutline :
For satisfaction, givenawplet, [H=t if (GRe Dt—>t" e Q A t'€*R;givenarelationr, [I=r iff
BRe r->r e QA r c* R. However, for toleration, givenatuple t, I I- t iff 3R € I)t €"R; given
arclaton r, I I- r if (3R e ) r & R. From the definitions of closed and open relationships between
range objects, if t > ' € 2 A t' €* R holds, thente” R holds; if r = 1" € Q A r’ ¢* R holds, then r
<" R holds. :
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Using Type Inference and Induced Rules to
Provide Intensional Answers
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ABSTRACT

Anintensional.answer provides characteristics rath-
-er than a listing of all the instances that-satisfy a qlucry.
This paper-presents. a-new approach that-uses know edge
induction and type inference to provide intensional
answers. Machine learning techniques are:used to analyze
database_contents and induce a-set of If-then rules. Type
-inference which is-based on forward inference and-back-
ward inference is developed that uses database type hierar-
chies to derive the intensional answers for-a query. Furth-
er, more precise intensional answers can -be derived by
properly merging the-type inference resulis from multiple
type hierarchies.” A prototype intensional query processing
system which.uses the proposed:approach.has been imple-
mented. Using a ship database.as a test bed, we demon-
strate-the effectiveness of the use of type inference and in-
duced rules_to derive-specific intensional answers.

1. Introduction

Conventonal database sysiems provide answers in
the-form of an enumeration of database instances rewicved
-from.the database. Although such an answer conveys in-
formation to the users, a general description of the answer
or summarized or approximate answers are often more use-
ful. Meta-data of the database-such as integrity constraints
and semantic-rules can-be used to infer hidden information
within the database. For example, integrity constraints
were used 10 improve query processing performance

KING8!, HAMMBS0] and to denve intensional answers
MOTR89].

Type hierarchies specify the subtype and supcrtygc
relanonships 1n a database application domain. This can be
used 10 improve query processing (CHU90] and to provide
an -aggregate response (o queries (SHUMS8]. Such an ag-
gregate response can be provided to the users as the inten-
sional answer. However, only very limited forms of .inten-
sional answers can-be generated by using:the type hierar-
chy alone without database intensional knowledge. To
remedy this problem we propose to use database intension-
al knowledge to derive more specific intensional answers.
As in many other systems, onc of the mai(or problems of
knowledge base design is the acquisition of knowledge. In
this paper; we propose an approach which first uses rule in-
duction to derive intensional knowledge by analyzing data-
base contents, and then uses the generated rules to derive

* This research is supported in pant by the DARPA Contract
F29601-87-C-0072, the ONR Contract N0O0O14-88-K-0434, and
the Hughes Micro Contract 90-032.

CH2968-6/0000/0396$01.00 © 1991 IEEE
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-chy.

‘knowledge a
Relationship (
the induc

more specific intensional answers based on the ({pc hierar-
_The-approach_consists of two phases: the nowlcd{ﬁe
acquisition and the intensional query answering. In the

-knowledge acctxisixon phase, a model-based knowledge ac-
t

quisition methodology is proposed to facilitate the
cquisiion, A Knowledge-based Entity-

R) model is developed for specification of
knowledge. Based on the type hierarchy, rules
can then “be generated and maintained-in the knowledge
base. In the intensional query-answering phase, intensional
answers arc derived-by rype inference via waversing the
type hierarchies. Query condition is used to direct the
waversal direction. The process stops when the desired
type specifications are obtained then provided as the inten-
sional answers.

In this paper, -we will first present the methodology
that uses-database schema and knowledge induction tech-
niques to extract useful meta-data from the database. Next,
we present the use of induced rules and type hierarchies to
derive intensional answers. Finally, we use a ship database
as a testbed and present examples that use the proposed
type inference to derive intensional answers.

2. Knowledge Induction
2.1 Database Semantics

To construct the database schema, objects with
similar characteristics or propertics are grouped into object
types and subtypes. ese semantics, referred to as
classificanon semantics or classification characteristics,
are useful in knowledge-based data rroccssing. Table 1
presents an example of the navy battleship characteristics
that classify ships.into ship types with ditferent displace-
ment ranges. These characteristics are database semantics
descnbing the ship database domain and can be used to
derive ntensional answers. Since the database instances
follow these characteristics, these characteristics can be'in-
duced by the following model-based learning methodology.

FCawgory 1 Type Type Name Displacement un tons «
I Subsurface- SSBN | Bal Misnile § 7250 » 16600
SSN Nuclear Submanne 1720 6000
CVN Attack Aycralt Camer 15700 31600
[ Aureralt Carner 41900 61000
BB Batleship 45000 45000
CGN | Guiced Nuclear Missile Crusiet 7600 14200
Suface CG Guided Missile Cruster 5670 13700
CA Gun Cruiser 17000 17000
DDG | Guided Missile Deswoyer 1370 3300
oD Deszoyer 248 7810
FFG Guided Missile Frigate J603 3503
FF Frigate 2340 o

Table 1. Classification Characteristics of Navy Battleships




2.2 Model-based Learning Methodology

The acquisition of knowledge is one of the most
-difficult problems in the development of a knowledge-
based system. Currently, knowledge acquisition is still
largely a manual process which -is very time-consuming.
Further, it -is often not possible for domain experts to
describe their expertise to others. To remedy-this problem,
machine leaming techniques can-be used to consmruct the
knowledge base. Inductive leamning [(QUIN79, MICHS3] 15
a-machine learning technique that has be¢n used in Al
research, For a given concept and a set of training exam-
-ples representing the concept, it-finds a descnption for the
concept such that all positive examples satisfy and all nega-
‘tive examples contradict the description. Thus, using:the
database contents as the set of training examples, object
classification characteristics embedded within tgc database
can be induced. Since-a database schema is-created by the
designer based on the semantic of-the application, such se-
mantic can:be used as the candidates for rule induction.
Therefore, we propose-to use machine learning to acquire
database charactenistics and to use the database schema to
-guide the rule induction process.

The semantic knowledge associated with each data-
base are: imtra-object knowledge and- inter-object
‘knowledge. -Intra-object knowledge defines specific proper-
ties of each-entity set such as lhc;aluibulc'&mains. value
ranges, relationships between attributes, etc., and restricts
-the allowable instances of an endty set. For example, the
displacement_of an Attack Aircraft Camier is in the range
of 75,700 tons --81,600 tons. The inter-object knowledge
specifies the constraints that the instances of a relationship
set must satisfy. For.example, the relationship VISIT in-
volves entities of SHIP and PORT and sadsﬁpcs the con-
straint that the draft of the ship muss be less than the depth
of the port. The inter-object knowledge can be induced
from the interrelationship oetween SHIP and PORT linked
"by the VISIT reladonship.

2.3 The Knowledge-based (KER) Data Model

To enhance the modeling of such-capabilities as
type hierarchy and knowledge specification, we introduce a
Knowledge-based E-R (KER) model, an extension of the
Entity-Reladonship Model {CHENT6] and provides the fol-
lowing three generic constucts of daia modeling
(BRODS4, HAMMS1, MCLES2}:

L. has/with (aggregation) which links an ob-
ject with another object and specifies a cer-
tain propenty of the object (c.g.. a CLASS
has an instructor);

isa/with (or contains/with) (generalization/
specialization) which links an object type
with another object type and specifies an ob-
ject as a subtype of another object (e.g..

ROFESSOR 1s-a subtype of PERSON or
PERSON conuins PROFESSOR, STU-
DENT, and STAFF);

has-instance (classification) which links a
type to an object that is an instance of that

t {c.g., "John Smith" is an instance of
%FE&OR).

Note that in addidon to the scmantic constructs provided by
most semantic data models, KER also provides knowledge
specification which is represeated by the with-consiraint

i\

information. Such knowledge specification-associated with
each database definidon is useful for knowledge-based data
processing.

In KER, an entity is a distinctly identified object.
for example, a specific -person, a-depaniment. or a course.
An entity set is a collection of entities. Each of these enti-
ties is distnguished by a unique identifier. Tle set of
unique idendhers is called the primary key of the entity-set.
A-relationship specifies the connections between different
enuues. Conceptually, both entity type and relationship
type can be-considered as object type and can be modeled
usm%_thc has/with constuct. For example. Figure 1 shows

J

an object type SUBMARINE represented in KER.

object type SUBMARINE
has .
key: Shipld domain: char(190]
has: ShipName  domain: char{20]
has: ShipType -domain: char[4]
has: ShipClass  -domain: char{4]
has: Displacement domain: integer
has: Fleet -domain: integer
with Displacement in (2000..30000]

Figure 1. The KER representation of an object type
SUBMARINE.

A type hierarchy uses specialization/generalization
constructs (isa or contains relationships) to define the sub-
type and supertype relationships. For example. SSBN
(Ballisuc Nuclear Missile Submarine) 1s a subtype of SUB-
MARINE, and CLASS-0101 is a subtype of SSBN, and
therefore, 2 E,'Xc hierarchy consisting of SUBMARINE,
SSBN, and CLASS-0101 is formed (see Figure 2).

SUBMARINE

fcussmm ]' oo l CLASS010} ] ! CLASS-0201 ]- .o rmssons !
Figure 2. A Type Hierarchy SUBMARINE

A subtype inherits all the properties of its supertypes. un-
less the propenties already have been redefined in the sub-
type. For example, type SUBMARINE has atuibutes Shi-
pl% .and ShipName, and type SSBN has auribute TypelD
and TypeName; subtype CLASS-0101 will automatically
inherit properties ShipID and ShipName from supertype
SUBMX NE, and inherit propenies Type and
TypeName from another supertype SSBN.

A subtype can aiso be derived from another type by
providing a derivation specificarion. For example, one can

define a subrype SSBN (all the ships with ship type SSBN)
of type SUBMARINE by specifying:

SSBN isa SUBMARINE with ShipType = "SSBN"




The with-clause defines the-derivation specification of the
-subtype SSBN. It can also-be considered as associaung a
constraint with this subtype.

The type hierarchy is represented in KER as:

E (-isa E with¥y
Ezz,xsa E With’li’z
E, isa E with'¥,
or alternatively, it can also be represented as:
Econtains 4, E3, ..., E, with Y.
This definition statesthat the-instances of £ can be divided
into n disjoint subsets £y, E3, ..., E,, with the constraint Y.
Each E; is a subtype of é
) To_provide a-graphical representation of the-interre-
‘Tlationships  among “the entity -types/subtypes. relationshi
‘types. and:derivation specification, we can extend-the E
diagram by adding- the ‘ge hicrarchy with constraint
representation as shown in Figure 3. A representation of a.

ship database schema by the KER Diagram is shown in
Figure 4.

-ENTITY
RELATIONSH?
ATTRIOLTE
TYFEHSRARGHY
WITH CONSTRANT
HAS.-INSTANGE

‘Figure 3. Components of the KER Diagram

2.4 A Rule Induction Example

~ Rule induction is a process to generate-a set of rules
to classify objects into classes called classification. In-da-
tabases, objects with similar properties are defined as-the
same:object A ‘lhus.opljhcct hierarchies may be used to
form-such a classification. The inputs for rule.induction-are
object instances, schema cescribing object types hicrar-
chies, and criteria to evaluate the classification quality. In
our implementation, the set of object instances is represent-
ed as:reladons-and the database schema is represented in
the KER model. The induction system generates the
classification characteristics for cach class based on the ob-
ject hierarchy. )

To illustrate the groposd rule induction and leaming
methodology, we use the nuclear-submarine pordon. of a
ship daabase* as a test bed which consists of the following
relations (For a sample database instances, see Appendix):

SUBMARINE = (/d, Name; Class, Fleer)
CLASS =(Class, ClassName, Type, Displacement)
TYPE =(Type, TypeName)

SONAR =(Sonar, SonarType)

INSTALL = (Skip, Sonar)

_ The database consists of five entity types: SUBMA-
RINE. CLASS, TYPE. SONAR, SONAR_TYPE and one
relationship T%%e INSTALL. The three entity types SUB-
MARINE, TYPE, and CLASS form a type hierarchy “for
SUBMARINE, submarines with different fieet number also
form a type hierarchy for SUBMARINE, and the entities
SONAR and SONAR TYPE form another type hierasch as
shown in Figure 4. Each submarine type contains a-set of
submarine classes and each submarine class contains a set
of submarine instances. For example, Submarines are di-
vided into two gyges: SSBN (Ballistic Nuclear Missile Sub-
marine)-and SSN (Nuclear Submarine). The SSBN ships
contain three classes of ships: 0101 (Ohio), 0102 (Benja-
min Franklin), and 0103 ayette), and there are three
ships that belong to the ship class 0103 (Lafayette). Each
ship class has its specific characteristics such as displace-

£ X s SURMARINE. Y wa SONAR o/
> gg:«sxcia;munqvuuqs

"Seasc = $Q5-04 Than

<>
SO\L'

\/
1 BQS- Ot ¢ Soner
m-x-.%uqs LRas1s

Scanlrre

INOO1 l‘lOsj iACT

80s0e ¢ % pgsas Ty
3532 MQSY

()
S22 Dupl e soxss N3/

* The ship datbase was created by the Sysiem Development
Corporation (now UNISYS) to provide a generic naval database
based on [JANESIL

Xisa SV

4N
3/

Jrpe = SSN

1)
S 3145 < Dopl 2 6835

(el 73
] oo [e0] (] oo [0

Figure 4. Representing the Ship Database Schema in KER Diagram
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ment, length; beam, etc. For tactical o1 strategic reasons,
different sonars are installed on different ships. The rela-
tionship INSTALL indicates the sonars instzlled on the dif-
ferent ships.

Applying the proposed knowledge acquisition tech-
_nique-to the ship database, rules arc generated and groupcr’
‘by the object types as follows:

(1) SUBMARINE

Ry:if SSN623</d S SSN637 ihen- x isa C0103
R,:if SSN648 < /d < SSNGC5 then x isa C0204
‘Ry:if SSN673 < /d < SSN686 then x isa C0204
Ry:if SSN692S/d< SSN704 then x isa C0201
Rg:if 0101°'< Class <0103 then x isa SSBN
Rjg:if 0201 < Class 0215 then x -isa SSN
Rq:if Skate < ClassName < Thresher then x isa

asSN
Rg:if 2145 < Displi.ement 6955 -then x isa.

SN ]

Rg: isfs'ézlgo < Displacement < 30000 then x isa

Ryo:if Di%lacemem <-3500-then. x isa ‘Fleet_2

R“:g 35 A < Displacement < 6000 then- x isa
eet_

R \2:if Displacement >.6000-then x isa ‘Fleet 7

SONAR

Ry3:if BQQ-2S Sonar SBQQ-8 then x .isa

R N:‘iBf BQS-04 < Sonar S BQS-15 -then x isa
BQS

@

(3)- INSTALL (x isa SUBMARINE and y isa SONAR)
Ris:if SSN582 < x.Jd=SSN60! then y isa BQS
R5:if SSN604 < x./d = SSN671 then y-isa BQQ
:if x.Class=0203 then _Iy isa BQ

:if 0205 S x.Class £ 0207 then y isa BQQ
:if 0208 < x.Class £ 0215 then y isa BQS
y:if y.Sonar = BQS-04 then x-isa SSN

3. Intensional Query Answgring

A relational database is made up of the extension
dztabase -(EDB) and the .intension -database (IDB)
[{GALL78; NICO73). The EDB is the set of tuples con-
tained in the relations. It is- expressed in relanons over
domain values. The IDB is the set of general rules (i.c.,
meta-data) about-cata stored in-the EDB, It is expressed in
clcise;i well-formed formulas in first-order predicate cal-
culus.

An answer tG.a qucry-is the set of data values that
satisfy a qualification specified in the cuery. Generally,
query answers are retrieved {-om the EDE. Z'n ‘intensional
answer to.a query pravides the characterizations of the set
of data values that satisfies the query ([MQTR89). In many
applications, users are satisfied with or prefer to obtan
summarized answers rather than the answers from the
EDB. Such summarized or abstract answers can- be
represented as intensional answers.

The intra- and inter-object knowledge specifying
the inter-relationships between the database objects are the
essential components of the intensional dziabase. This
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knowledge can-be induced-by our model-based knowledge
acquisition methodology. ‘Using  these-induced rules and
based on the database schema, the condition, and-object
types specified in the query, the intensional answers may be
erived by t;*‘n/t:r_sm§1 the -type -hierarchies of the-object
types as specified in the query. We call-this ‘CChnli\?llSm é)g)e
inference. For -example, the entitics SUBMARINE, SSN
(Nuclear Missile Submarines), and SSBN (Ballistic Nu-
clear Missile Submarines) forms a t)q)c hierarchy where the
set of SUBMARINES can be divided into two disjoint sub-
sets: SSBN and SSN. Representing this type hierarchy
togther with the induced rules in' KER, we have the follow-
ing intensional knowledge which can be used to provide in-
tensional-answers to queries that involve SUBMARINE.

SSBN isa SUBMARINE with ShipType = "SSBN"
SSN isa SUBMARINE with ShipType = "SSN"

object type SUBMARINE

has key: Shipld domain: char(20]

ﬁ;s; Displacement - domain: integer

with /* x isa SUBMARINE */

if x.Displacement 2 7250 then x isa SSBN
if x.Displacement < 6955 then x isa SSN

Figure 5. A Type Hierarchy of Submarine with Induced Rules.

3.1 Type and Type Hierarchy
Type hierarchy allows objects to be represented and
sed at different knowledge levels. An answer 1o a
query-is the set of database instances satisfying the query
guahﬁcqnon. An intensional answer to a query is a set of
escriptions that characterizes the set of database instances.
To derive the set of descriptions, it is necessary to consider
object representations at different levels of type hierarchy
and to derive the set of descriptions as the intensional
answers, Before-we describe how intensional answers can
be derived via type inference, let us first define fype.

process

Type: A rype can be defined recursively as the following:

2) A primitive type (¢.g., integer, real, etc).

b) If £y, ..., I, are types and ay, ..., G, are attri-
butas,
then ti{2y:f1, ... Gal Is) is @ type called a
{uple-type which-can be abbreviated as t.

<) If ty, ..., I, are types, then t:{fy, .., £,) is 3

type called a set-type which can be abbrevi-
ated as t.

This type definition actually covers the definition of the en-
tity type and the relationship- type of the KER model.
Definttior: b defines the relationship type in the KER model
which states that a type t can be constructed from other
tYPES. £ 1+ -0 1y 22 €aCh 7; is 2 component of (or a part of)
t'and can be denoted as:

t; IS_PART OF t.




_ Definition ¢ states that-a type:t-can be-constructed
from or dcconug;cscd into other-types, ry, ..., {5, and-&-ch ¢,
is-a called-a subrype of t-and denoted as:

4 IS_A .

Definition ¢ actually defines a-type hierarchy-with ¢ as the
root in the KER model. There are two ways.to interpret
such a type definition: -partition-based and construction-
-based. Based on the partition- view, a type hierarchy i
built from top (root) to bottom, that is, a super type is parti-
tioned into many subtypes and each subtype is in tum parti-
tioned into sub-subtypes, and so on. Based-on the-con-
struction view, a‘type hierarchy:1s built from bottom to top;
that is, a-super type is constructed from a set-of subti'pcs.
Both interpretations imply that-a type at a higher level is a
superset of all the types-below it
higher level has-wider coverage than-a type-defined at a
lower level. For example, a type SSBN covers.the ballistic
nuclear missile submarines while its- supertype SUBMA-
RINE covers all the submarines. ’

3.2 Deriving Intensional Answers via-Type Inference

Traditional relational databases support only flat re-
lations and each-entity-or relationship-is mapped into-a re-
lational table. Query 15-answered by -accessing data:-from
the database. Type inference is a process of tree traversal

on the type hierarchies. Thus, type-inference 1s a process to-

move up:and down along the type hicrarchy to expand or
reduce the variable scope of the gucry. Therefore, using
type-inference together with the induced knowledge allows
us to denive intensional answers without accessing the phy-
sical data from the database.

Intensional answers can be derived by forward
inference and backward inference with the induced rules.
Forward-inference uses the known facts to derive more
facts, i.e., given a rule "if X then Y", and a fact "X is tue”,
we can conclude "Y" is true. Backward inference uses the
known-facts to infer what must be true according to the 1n-
duced rules, i.e., given a-rule “if X then Y", and a fact "Y is
rue”, we.can conclude “X" must be mue. Forward infer-
ence and-backward inference can be combined to-denve
more specific intensional answers.

3.2.1 Forward Type Inference

The process of using forward inference to derive in-
tensional answers is (o denve the most specific type
descripuion n the ‘type “huerarchy that sausfies the query
condition, For example, consider a query asking for sub-
marines with displacement greater than 8,000. Using the
intensional knowledge as stated in Figure 5, we can
traverse down from Su: -submarine hierarchy (Figure 4) to
derive an intensional answer "SSBN" since the condition
"Displacement > 8000" 1s subsumed by "Displacement 2
7250",

Using the rule inducuon techmque, a set of
classificanon rules that are associated with each type
defirition can be induced and mammtained with each type
hierarchy using the with consaint specification. The pro-
cess of forward inference 15 then a tree traversal, starting
with the root type, on the type hierarchy constrained by the
classificaiton rules and the query condiion. If the query
condison sausfies a classificanon rule for the subtypes.
then the traversal continues on that subtype for obtaining

ny type descnibed at a.

more specific subtype descnipnons. The traversal stops
when the query condition satisfies all classificanion rules of
the subtypes and-the intensional answer is the immediate
super-type of these subtypes.

The process of forward inference can be described
as -follows: Each-given query Q can be represented -as a
conjunction of a.set of selechon conditions on the enuty
types as:

Q=TI A¥IJ A A (T, AY,)

where each T, is an entity type reference and each ‘F; is the
query condition on each-T;. During forward inferencing,
each '¥; is used to determine the subsumption. relationship
between '¥; and the with constraints associated with T;. The
most specific type description of the tXBc hierarchy rooted
at T; that_satisfies the query condition ¥, 1s the 1ntensional
answer.

3.2.2 Backward Type Inference

Backward inference uses the known facts to -infer
what must be true according to the induced rules. For ex-
ample, given a nle "if x isa SUBMARINE and
x.Displacement 2 7250; then x isa SSBN". If "x isa
SSBN", we can conclude that some submannes must-have
displacement 2 7250 otherwise-we will not have such an

induced rule in the knowledge base. The backward infer-
ence described here is different- from the backward chain-
ing in logic programming such as PROLOG which uses
backwe:d reasoning to prove goals. Using backward infer-
ence, we can only derive descriptions of a-subset of the ex-
tensional answers. For-example, there might have some
SSBN ships with-displacements less than 7250,

The process of the backward inference is also a tree
traversal but starts from-the bottom 1o the top. Unlike for-
ward inference, backward inference derives a set of
classification rules that characterize the query results, Due
to the inheritance propernty of type hierarchy, each subtype
inherits the properties from its super-types which canyge
used as the intensional answers. For ‘each subtype in a
nuery, the traversal of backward inference is performed
f'rom_thc subtype:to its ancestors in the type hierarchy, The
classification rules for atributes that are specified in the
query are collected along the traversal path. These rules
state the conditions thar the subtype must hold in the data-
base. The traversal stops when 1t reaches the root of the
type hieraichy and the set of classification rules collected 1s
merged and becomes the 1ntenstonal answer.

3.2.3 Properties of Intensional Answers

) Using forward inference, the intensional answer
ives-a description of instances that includes the answers.

he intensional answers denved from forward inference
characterize a set of instances containing the cxtensional
answer. Using backward inference, the.intensional answer
gives only a description of parual answers. As a result,
there may be other extensional answers that sausfy the
query condition but are not included in the intensional
answer. Therefore, the intensional answer denved from
backward inference characterizes a set of answers con-
tained in the extensional answer. Forward inference and
backward inference can be also combined to derive more
specific intensional answers,




~ For-forward-inference, an attribute type can-be re-
duced-to a more specific type and the rules that are associ-
ated-with the specific types can be used for inference. For
backward inference, -more knowledge can be.derived -from
the-rules which in tum can also be used to further reduce
thc:attﬁbutcftgpc. Therefore, the intensional-answers that
are generated by the proposed type inference are relevant™.

3.3 Type Inference-with Multipie Type Hierarchies

For a givcn,objcct*t ¢, multiple lz}'gc hierarchies
may-be formed. For example, given the SUBMARINE re-
lation example, we_can construct one ty'ﬁc hierarchy based
on-the value of attribute Type and another type hierarch
based on the:value of atribute Flees (See Figure 4). *Eacl‘;
typé hierarchy i5 associated with certain knowledge
represented in the rules.

When a query is specified, these hierarchies can be
rraversed at the same time to derive the intensional
answers. The results from the multiple tree-traversal: can
then:be merged to obtain the final results. As a result, more
_precise and-relevant-intensional answers can be derived via
type-inference using multiple type hierarchies.

4, Ship Database Examples

We shall now use type inference to-derive inten-
sional answers. Given the rules induced.in Section 2.4, let
us consider the following examples:
Exainple 1:

Find -the -Ids,. Names, Classes, and Types of the
SUBMARINE with Displacement -greater than

8000.

SELECT SUBMARINE.ID, SUBMARINE.NAME
‘SUBMARINE.CLASS, CLASS.TYPE

FROM- SUBMARINE, CLASS

WHERE SUBMARINE.CLASS = CLASS.CLASS

AND CLASS.DISPLACEMENT:> 8000

The extensional answer of the above query is:

iq

~ name” class | type
SSBN730 | Rhode Island | 0101 | SSBN
§SBN130 | Typhoon 1301 | SSBN

Using forward:inference with-the induced rule R and the
definition of SSBN in the database schema, we derive the
following intensional-answer which provides a summarized
answer for the query:

Ay = "Ship rype SSBN has displacement greater
than 8§000"

Example 2:
Find the names and classes of the SSBN ships.
SELECT SUBMARINE.NAME, SUBMARINE.CLASS

FROM SUBMARINE, CLASS
WHERE SUBMARINE.CLASS = CLASS.CLASS

* Relevance concems with avoiding intensional answers -that
have little or no value to the user [MOTR90},
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The following is the extensional answer to the above query:

name class

- Nathsniel Hale 0103
Danicl Boone 0103
Sam Raybum 0103 |-

’| Lewis and Clark 0102-
| Mariano G. Vallejo | 0102

-1 Rhode Island 0101

| Typheon | 1301

Using backward inference with the induced rule Rs, the
following intensional answer can be derived for-this query:

Ap=  "Ship Classes in the range of 0101-t0 0103
-are SSBN."

Note that ship class 1301 is also a SSBN (see-Appendix),
but is-not included in-the answer. This is because back-
ward inference is used to derive the intensional answer
which yields only a partial answer. As a result; the answer
is incomplete. Note the following rule

Rpew: if x.Class = 1301 then- x isa SSBN.
is satisfied only by a single instance. For efficiency reasons,
Rppw is nOt maintained-in the knowledge base. However, if
this rule is maintained by the system,.then the denved m-
tensional answer will be complete.
Example 3;

List the names, classes:and ?pes of SUBMARINEs
equipped with sonar BQS-04.

MARINE.NAME,
SELECT gB%MA%INE.CLASS. CLASS.TYPE
-FROM SUBMARINE, CLASS, INSTALL
‘WHERE SUBMARINE.CLASS = CLASS.CLASS
AND SUBMARINE.ID = INSTALL.SHIP
-AND ‘INSTALL.SONAR = "BQS-04”

The extensional answer of the above query is:

lype

name class
Bonefish 0215 | SSN
Scadragon 0212 | SSN
Snook 0209 | SSN
Robert E. Lee | 0208 | SSN

Using forward inference, from rule R, we know the ship
type must be SSN; and from.rule R4, we know the sorar
type is BQS. Next, using backward inference with the rule

19, we conclude that the answers must contain ships with
class from 0208 to 0215 (See Figure 4). We therefore have
the following intensional answer:

"Ship type SSN with class 0208 1o
-0215 is equipped with sonar
BQS-04."

A

In this example, we combine-both forward and backward
inferences to derive the specific intensional answer from
two object types (SUBMARINE and SONAR) that are re-
lated by the INSTALL relation.




-Example 4;

List the-1d, Name, Fleet. and Type of the SUBMA-
‘RINE with displacement less than 3000.

SELECT SUBMARINE.ID, SUBMARINE.NAME
SUBMARINE.FLEET, CLASS.TYPE

"FROM SUBMARINE, CLASS

‘WHERE SUBMARINE.CLASS = CLASS.CLASS

AND CLASS.DISPLACEMENT <3000

The extensional answer of the above query is:
i name | type | Heet ]

SSBN582 | Bonefish | SSN

SSBNS84 | Seadragon | SSN .

(SN

Using the type hierarchy based on Type, we will get the fol-
lowing intensional answer:

Ap,: "Ships are'SSN."

Using the type-hierarchy based on Fleer, we will get anoth-
er intensional answer:

Ay, "Ships belong to Fleet 2."

These two inténsional -answers can be merged to obtain a
more precise answer:

Ap: "Ships are SSN and belong to Fleer 2.”

Note that by merging type inference results from multiple
type hierarchies, a -more precise intensional answer are
enved.

5. Conclusions

. In this paper, we present an approach using type
inference and induced rules-to provide intensional answers
‘to queries. An inductive learning technique is developed to
induce knowledge from the database contents. Using the
induced knowledge, inference can be performed on the
-type hierarchies to derive intensional answers.

A machine learning technique is used to acquire the
rules from database contents. These rules are stored in rule
relations. Forward and backward type inferences can be
used individually or combined to derive intensional
answers. Further, inference with multiple type hicrarchies
may provide more precise intensional answers than infer-
ence with single type hierarchy.

Qur experiments reveal that induced rules can play
an important role in type inference in providing intensional
answers, Further, type inference with induced rules is a
more effective technique 10 derive intensional answers than
using integrity constraints when the database schema have
srong type hicrarchy and semantic knowledge.
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Appendix. An-Example Ship Database

A Ship-Database:
- SUBMARINE i - - =CLASS -

id— “Name ] Class=] Fleet Class | ClassName Type | Displacement
SSBNI30 | Typhoon TET S ] 0101 | Ohio ] SSBN | 16600
SSBN623 | Nathaniel Hale 0103-| 7 0102 { Benjamin Franklin | SSBN 7250
SSBN629 | Daniel Boone 0103} 7 0103 | Lafayette SSBN 7250
SSBN635 | Sam Raybum o103:1 7 0201 | LosAngeles SSN 6000
SSBN644 | Lewis and Clark o2 | 7 0203 | Nerwhal SSN 4450
SSBN6S8 | Mariano G. Vallejo | 0102 | 7 0104 | Sturgeon SSN 3640
SSBNT30 | Rhode Istand 00| 7 -0205 | Thresher SSN 3750
SSN582 | Bonefish 0215 | 2 0207 | Ethan Allen SSN 6955
SSN584 Seadragon 0212 2 0208 | George Washington | SSN 6019
SSN392 Snook 0209 2 0209 | Skipjack SSN 3075
SSN601. | Robert E. Lee 0208 | 7 0212 | Skate SSN 2360
SSN604- | Haddo 0205 | 7 0215 | Barbel SSN 2145
SSN610 | Thomas A, Edison | 0207 7 1301 | Typhoon _SSBN 30000
SSN614 Greenling 0205-] 6 - - -

SSN648 | Aspro 0204 | 6
SSN660 | Sand Lance 0208 | 6 = =
SSN666 | Hawkbill 0208 | 6 ___INSTALL —___SONAR
SSN6T1 | Narwhal 0203 ) 6 Stup Sonr - Sonar__| Sonariype:
SSN673 | Flying Fish 0208 | 6 "SSBN130 1 BQQ-2~ BQQ2 1-BQQ
SSN679 | Silversides 0204 | 6 SSBNE23 | BQQ-§ BQQS |BQQ
SSN686 | L.Mendel Rivers | 0204 | 6 SSBN629 | BQQ-5 BOQS® |-BQQ
SSN692 | Omahs 0200 | 6 SSBN63S | BQS-12 BQS-04 | BQS
SSN698 | Bremerton o201 | 6 -SSBN644 | BQQ-5 BQS-12 |BQS *
SSN704 | Baltimore o0t | 6 SSBN6SS- | BQS-12 BQS-13  |:BQS
i - SggNggO 880& BQs-15 | BQS
SSNS BQS S
) Sinah | BOSOS TACTAS | TACTAS
- SSNS92 | BQS-04
=T ";f‘;eﬂme SSN601 | BQS-04
i = SSN604 | BQQ-2
SSBN | ballisuc nuclear nussile sub SSN610 BQQ-S
SSN nuclear submarine _ SSN614 BQQ-2
T j SSN&ds | 'BQQ-2
SSN&60 | BQQ'S
SSN666 | BQQ-8
SSN6T1 | BQQ2
SSN673 | BQS-12
SSN679 | BQS-13
SSN6s6 | BQQ-2
SSN692 | BQS-15
SSNE98 | TACTAS
SSN704 | BQQ:S




' Abstract

> A pattern-based approach _is- proposed to derive the- approxi-
ate:and intensional -query-answers when the-exact answer is
: Jinavailable or too time consuming to-generate. The-approxi-
mate. and intensional-query answers:-may be-refined. if more
iﬂmc:is available. Since the pattern-based query processing

erforms-mainly main-memory based- manipulations without-
 WRlatabase access until the last step of generating the final
- results, it should provide faster response to queries than the

'onvenn'onalquery processing-in real-time applications.

"'ntrqductionz

Conventional query processing -technique has many
E short-comings-in supporting-real-time. applications. It cannot
Bbrovide-approximate-answers or derive.relevant intensional in-
formation when the exact answer is not available within a_time
k- limit. Due to the computation complexity of obtaining precise
=_data, a query_processing may-not-be completed in a restricted
'imclimitandthc users get no answer in return, Although the

esearch on processing time-constrained specific queries, such
as on.the incremental-evaluation of aggregate queries (LIU87,
DZS90] -has-been conducted, presently there is no methodolo-

available for processing time-consmained general queries.
0 remedy this_problem, we propose to use a pattern-based ap-
: proach to derive approximate and intensional answers.

- In this-paper we shall first introduce the notions of pat-
>tern and abstract- pattern class, then présent the proposed time-
. constrained query processing techniques using abstract pattern
ii-1asses and pattern-based intensional knowledge.

1. Pattern and Abstract Pattern Class

Database objects may be divided into classes based on
- their commonly shared properties. Frr instance, a relation can
._be viewed as a class of objects. A pattern is defined on a class
HIDf objects by specifying a query condition. For example, based
pn the class of objects of the following relation schema
EMPLOYEE : (ID, name, address, department, posi-
tion, salary)

- such a condition as

is research is supponted by DARPA contract F29601-87-C0072.
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' Department of-Computer Science
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salary 2 20K,
or

department =‘research’ .
can be used to define a pattern on the class EMPLOYEE. The
objects of-that class satisfying a pattern condition match the
partern. The set of Object -identifiers (Oid’s) of those objects
who match the pattern with condition C forman Abstract Pat-
tern Class (APC). These Qid’s are called the instances of the
APC. The number of distingnished Oid’s in-an APC is called
its-population. An:APC denoted as P(C), where P is its name
and C is its condition, can b abbreviated as P.

An APC can subsume another in the following two si-
tuations :

1. When -the pattern with a weaker condition C,
covers the pattern with a stronger condition C,
the APC defined by C; subsumes the APC
defined by C,. For example, the APC defined
by condition- "salary>20K" subsumes the APC
defined by condition "salary>50K" on the same
class EMPLOYEE.

2, When a super-class A subsumes a sub-class B,
then the APC defined on A subsumes the APC
defined on B by the same pauern condition. For
example, the APC defined by "sex='M"" on a
super-class PERSON subsumes the APC
defined by "sex='M' on its sub-class EM-
PLOYEE.

A Subsumption relationship introduces the partial ordering and
underlies the inheritance among APC's,

The Cid’s of a class of objects can be divided into a
large number-of APC’s defined by various conditions. To
reduce the amount of predefined APC’s we can maintain the
APC'’s defined on a single attribute, and use them combination-
ally. For example, for the class EMPLOYEE, a set of APC’s
can be defined on the attribute "salary” as

P ("salary>20K"),
Po("salary>50K"),
P3("salary>70K"),

.and a set of APC’s can be defined on the atribute "depart-




*'ncm" as

P4 ("department="research’”);

: Pg("department="'marketing’"),

' Pc("department="administration’").
- Since we do not restrict the set of APC’s defined on a single at-
- wribute to be-mutually disjoint, they do not necessarily form-a
artition [SPY87]. ‘Instead, they may form a sumsumption
 @llbascd partial order or even-a total:order such as-the set-of
:  APC’sdefined on the attribute "salary”.

: Figure 1 shows an example of pattern definitions based
 fifon the attributes of "address”, "salary” and "department” for the
- classEMPLOYEE.

pattern |— — Type

- adr e CA" - s - R
pattern-| patterm EMPLOYEE

__-Adre"lA" -] Adrw SF" l

-pattern

Tsaiary>2CK
! salary>50K

' Figure 1. Patterns Defined for EMPLOYEE

pattern-|.

pattern-| pattern pattern |
Department=§ Cepartment~§ Departmence}-
"~Research” ] "Varketing=] *Adminis.” |-

in the following sections we shall present two tech-
= niques for using the notion of pattem to- speed up query
mmresponse in real-time applications. First we shall use the Oid in
lthc APC to-provide indexing for speeding up data access,
W here inexact matching between a query and a pattern yields
E approximate answering. Second we shall -use the pattern-
rlatéd rules to provide intensional answers.

2, Speed up Query Processing by Abstract Pattern Classes

A query can be viewed as a pattern called a query pat-
= tern. The setof Oid’s of those objects who match a query pat-
F tern-is called the Query Pattern Class (QPC) for the query
pattern. A query pattern matches a-predefined pattern means

= predefined pattern, then the Oid’s contained in the APC can be
- gused:as pointers for accessing the desired data. Based on a
known application domain and a set of frequently used querics,
it is poscible to provide a set of patterns with relatively large
= APC populations for speeding up query processing. Thercfore
mm creating APC's is similar to replicating data, except that APC’s
only-contain Oid’s rather-than complete data and thus require
" less storage.

Let-us first consider simple queries whose conditions
involve only one atmibute. An exact match often occurs
- between-a simple query and a pattern defined on-such an attri-
= bute whose values do not form an order. For example;, a query
pattern with condition “department="marketing’” matches a
pattern defined by the same condition. In this case the QPC of
- the query pattern is identical to the APC of the predefined pat-
o tern, then the Oid’s contained in the APC can be used to speed
up database access by index techniques.

at the QPC of the query pattern is identical to the APC of the:

However, an exact match is only a special case for the

‘patterns-based-on such an attribute whose values can be or-
dered. ‘In this case we are more interested in the situation
-where the QPC-of a simple query is contained in a predefined

APC, P, and contains another predefined APC, P,. In such a
situation, P contains-the complete set-of Oid’s-for answering
the query but also contains some extra Qid's; and all the-Qid’s
of Py-can be used to answer the query but they are incomplete.
Although neither £ nor P, matches the QPC exactly, they in-
dicate the range of the answer.

Note that in the above situation P, subsumes P5. In

fact, in this approach we intentionally organize the APC's

defined on a single attribute in a partial order with subsumption

-relationship among them. For example; based-on the APC's

defined on attribute "salary", for-a simple query-with condition
"Salary 2 30K", its QPC is within the APC with condition
"salary>20K" and subsumes the APC with conditon
"salary>50K".

‘For pattemn-based query processing, A QPC may fail

‘between a more:general-APC, referred to as the-Upper Bound

Class (UBC), and a more specific APC, referred to as the

‘Lower Bound Class (LBC), where the-UBC is:the least APC
-among the available APC’s subsuming the QPC, and the LBC

is the greatest APC among the available APC’s subsumed by
the QPC. If the exact-matching cannot-be achieved, a neigh-

-borhood is selected where the QPC contains the LBC.but is

contained by the UBC (see Figure 2). With respect to the QPC,
the UBC is complete-but not all correct while LBC is tcially
correct but not complete.

The upper bound and the lower bound computed for a

-query may be rsturned as an approximate answer as the real-

time deadline approaches. The approximation can be iterative-
ly refined by testing each tuple (in the case of the UBC) or ad-
ding additional tuples (for LBC’s). Such an incremental query
processing can improve the accuracy of the result as time per-
mits.

The Neighborhood ofA Query Pattern Class (QPC)
with a Upper Bound Class (UBC) and a Lower Bound Class (LBC)

Figure 2. A Query Pattern Class Bounded by LBC and UBC

Now let us consider complex queries whose conditions
involve multiple attributes. Such a query condition can be step-
wise decomposed into disjunction and conjunction of query
conditions.

Patterns defined on a single atribute may form a pat-
tern hierarchy. Since patterns can be defined on muldple attni-
butes, multiple pattern hierarchies for a single relation can be
formed based on database schema. For example, the EM-
PLOYEE relation has several pattern hierarchies: by "depart-

i L) " "

ment", "position”, "salary" range, or "age" range. When a




query is related to a combination- of these atibutes, these
hierarchies can-be traversed and the results merged via opera-
tions'on APC’s:to obtain-the desired query answer.

The QRC of a query with disjunctive conditions is the
union of the QPC's for-each participating condition. For ex-
ample, the QPC of a query with coridition

"salary>50K v department=‘research’™
is-the union of-the QPC for

"salary>50K"
and the QPC for

"department="research”".
In_general, let the query-condition.C be expressed as the con-
junction of Cy. v ..., v C,, the corresponding QPC’s, -UBC’s
and"LBC’s be-@PC¢,. ... QPCc,, UBC¢,, .., UBC¢,, and
LBC¢,, ..., LBCc, respectively, then the QPC, UBC and LBC
for this query can be generated as

n

QPC¢ = QPCc,,

i=1

n
UBC¢ =\ UBC¢;, and

i=1

n
LBCc = U LBCC‘..

i=l

The QPC for a query with conjunctive conditions is the-
intersection of the QPC's for each participating condition. For
" example, the QPC of-a query with condition
"salary>50K A department="research’

- is the’intersection of the QPC for
) “salary>50K"
and the QPC for

"department="research’”.

In general, let the-query condition C be expressed as the con-

junction of Cy A ..., A Cp, the corresponding QPC’s, UBC’s
" and LBC's be-QPC¢,, ..., QPCc,, UBC¢,, ..., UBCc,, and
LBC¢,, .., LBC¢, respectively, then the-QPC for this query
" can be-generated as

QPCc¢ = QPCc,,

i=]

UBCc = UBCg;, and

~ n
LBC¢ = LBC;,.

ras g

Using the above set union and intersection operations,
we can-find the QPC, UBCor LBC for the query. However, for
a query with conjunctive conditions,-the differerice between its
QPC and UBC, and between its QPC and LBC, may lie beyond
the approximadon-tolerance. To remedy this problem, for the
frequently used queries with complex conditions, defining
specific patterns with complex conditions is -recommended.
Further, maintaining and-organizing APC’s are application-
dependent.

3. Speed up Query Processing by Pattern-based Intension-
al Knowledge

-Intensional knowledge induced from the database
domain:and expressed as rules can be specified on each pattern
for facilitating intensional query answering. -For example, all
employees in Los Angeles-require sccurity clearance and-can
be reached by the phone number (213) 208-2222. Further, the
knowledge of one pattern may be used to imply-the knowledge
about another pattern. For example, all employees in- the
research department make more than 50K (see Figure 3).

An intensional answer provides a description rather
than detailed data to a query. For example, instead of listing
all the persons that satisfy the query-condition "salary > 50K",
an intensional but possibly partial answer to that query. might
be

"The salary of employees in the research department >

50K".
In a real-ime system, when the deadline-is approaching, the
system-will provide intensional and partial answers, if a com-
plete answer is not available. When more time is available, the
system can refine the answer by continuing the inference pro-
cess on other patterns for further facts, or terminate the infer-
ence process and start retrieving instances from the database.

The subsumption relationship between patterns intro-
duces the partial ordering and allows the inheritance of inten-
sional knowledge among patterns. Further, given. a set of
APC’s the APC resulted from their intersection inkerits inten-
sional knowledge from the set of APC’s.

Since our approach performs mainly memory-based
inference without physical database access until the last step of
gencrating the final result, it should take less time than conven-
tional query processing. Since pattemns are used to match a set
of instances that satisfy a given condition, they provide a finer
granularity schema and therefore more specific intensional
knowledge than that of types [CHU91).

pattern
a3e="CA"

attern
gd:-'LA' l

attern
dre=SF-

Secree: (2133208-2222 &

fec..ze securily clearance

EMPLOYEE

Type

pattaxn

orn— pltt.rﬁ

*&3 Z.a33 X erpioyee penef{irs ~gw

salary>20X

3alary>50K

salary>?0X

pattarn | pattern pattearn
Department=f Department={ Deparsmence
“Research® | "varketing®} "adminis.”

1=pliies ;
has Ph.0 degree

Figure 3. Intensional Knowledge of Pattemns




4, Summary

The pattern-based approach _presented-in‘this paper-sup-
Morts approximate and‘intensional-query processing. We have
-implemented a prototype system at UCLA -using a naval-ship
atabase-as a testbed-on Sybase, a-commercial-relational data-
s¢ management system. Pattern hierarchies and -other
PRnowledge of the naval database are represented in LOOM
=[MACG89}. Our preliminary experience indicates that the pro-
sed approach is an.efficient method for providing approxi-
ate and intensional-answers for real-time applications.
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ABSTRACT

Database semantics can-be classified into database structure and database characteris-
tics. ‘Database structure specifies the:inter-relationships between database objects, while data-
base-characteristics defines the unique characteristics and-properties of-each object. To provide
knowledge-based- data processing, we need to gather and maintain knowledge about database
characteristics. To capture the database characteristics, a Knowledge-based Entity Relationship
(KER) Model that provides knowledge specification is proposed. A knowledge acquisition
methodology is developed that uses machine learnine to induce the database characteristics
knowledge from. the database instances. Using a ship database as a test bed, a knowledge base
has been generated by the proposed methodology. The induced knowledge has been used for-se-

mantic query optimization and data inference applications.

* This research is supported by DARPA Contract P29601-87-C-0072.




1. Introduction

The use of knowledge to support intelligent data processing has gained increasing atten-
tion in many database areas. For example, integrity constraints have been used as semantic
knowledge to improve query-processing [KING81, HAMMS80]. Most of these works rely on hu-

man specified constraints and:very few, if any, tools exist in gathering this knowledge.

In recent years, much effort has been devoted to the development of semantic data
‘models (HAMMS1, MCLES2, BORDS84]. Most of these works emphasize structure modeling
and allow-for describing the database in:a more natural way than traditional data models. These
models are used mainly to capture the semantics of the database structure as described in the-da-
tabase schema. However, when a database is designed, most database-designers-use some se-
mantic rules to distinguish among similar objects and specify-the database schema according to
these rules. In many-cases, objecis are often classified into different categories according to cer-
tain characieristics or properties. To distinguish them from the semantics of database structure,

we shall refer to these semantics as database characteristics which are useful in knowledge-
based data processing.

The type of database characteristics that are specified as integrity constraints [HAMM75]

by human experts is not only time consuming to acquire but also is not too useful for
knowledge-based data processing. To remedy this problem, we propose to use the database
schema to guide the learning process and use the machine learning technique to induce database
characteristics from the database. The database schema is specified in a knowledge-based

Entity-Relationship (KER) Model which provides knowiedge specification capability.

In this paper, we shall first discuss the problem of knowledge acquisition in databases.
Next, we propose a model-based knowledge acquisition methodology that is based on the
knowledge-based Entity-Relationship (KER) Model. We then present a rule induction algorithm

and an example. Finally, we present the use of the induced rules for semantic query optimiza-

tion, intensional query answering, and data inference applications.




2. Knowledge Acquisition in Databases
2.1 Knowledge Acquisition

The acquisition of knowledge is one of the most difficult problems in the development of
a knowledge-based system. Currently, the acquisition of knowledge is still largely a manual pro-
cess. The process-usually involves a-knowledge engineer who uses some expert system tools to
transform the available knowledge into some internal form:(knowledge representation) that is

understandable by the exgert system. It usually involves (MICH83]:

L studying application literature-to obtain fundamental background information,

N

interacting with the domain expert to obtain the expert level'’knowledge,

)

‘translating-and encoding the expert knowledge for the system,

4, refining the knowledge base through:testing and further interaction with the domain ex-

perts.

Such a manual process is very time-consuming. Further, even if the domain expers have
the expertise, they may often not be able to describe their own expertise to others. As a resuit,
useful knowledge may not be easy to collect. To remedy this problem, we propose to use the
machine learning technique to construct the knowledge base. Rather than using knowledge en-
gineers leamning the-application, or the domain experts leamning the expert system tools and using
their understanding of the application to construct the knowledge base, we propose to use
machine learning technigue to understand the database application and to create the knowledge

base automatically.

2.2 Knowledge Acquisition by Rule Induction

Rule Induction [QUIN79, MICHS83] is a technique of machine learning that has been
used in AI research to induce rules from a set of training examples. For a given concept and a

set-of training examples representing the concept, find a description for the concept such that all




the positive ‘examples satisfy the description and all the negative examples contradict the
description. One approach is to examine the training examples simultaneously to determine
which. descriptors are most significant in identifying the concept from other related concepts.
This approach recursively determines a_set of descriptors-that classify-each example and selects.-
the best descriptor frem a set of examples based on-a statistical éstimation or-a theoretical infor-
‘mation:content. The set of examples is then partitioned into subsets Sy, S5, ..., S, according to
the values of the descriptor for-each example. This technique is recursively applied to each S;
until each subset ¢ nuiains only positive examples so that the set of descriptors describes the ex-
ample set. Although the automated approach speeds up-the knowledge acquisition process, it
‘has been used-mainly in applications wher the size of training examples is small. To apply this
technique directly to a database would-be too costly because the database usually consists of a
very large volume of data. However, since a database schema is created by-the designer-based
on the semantic characteristics of the application, and since semantic characteristics are the can-
didates for rule induction, we can use the database schema to guide the knowledge acquisition by

machine learning and generate the rules automatically.

3. Model-based Knowledge Acquisition Methodology
3.1 The Knowledge-based Entity-Relationship (KER) Model

To enhance the modeling of such -capabilides as type hierarchy and knowledge
specification, we introduce a Knowledge-based E-R (KER) model, an extension of the Entity-
Ré!ationship Model [Chen7G). KER provides the following three generic constructs of data
modeling:

1. has/with (aggregation) which links az object with another object and specifies a

certain property of the object (e.g., a CLASS has an instructor);

2. isa/with or contains/with (generalization /specialization) which links an object
type with another object type and specifies an object as a subtype of another ob-
ject (e.g., PROFESSOR is-a subtype of PERSON or PERSON contains PROFES-




"SOR, STUDENT, and STAFF);

3. ‘has-instance (classification) which links a type to an object that is an-instance of

that type (e.g., "John Smith” is an instance of PROFESSOR).

Note that in addition to the semantic constructs provided by most semantic data models, KER
also provides knowledge specification which is represented by the with-constraint information.
Such knowledge specification associated with each database definition is useful for knowledge-

based data processing.

In KER, an entity is a distinctly identified object, for-example, a specific person, a depart-
ment, or a course. An entity set is a collection.of entities. Each of these entities is distinguished
by a unique identifier. The set of unique-identifiers is called-the primary key of the entity set. A
relationship specifies-the connections between different entities. Conceptually, both entity -type
and relationship type can be considered as an object type and can be modeled using the has/with
construct. For example, Figure 1 shows an object type SUBMARINE represented in KER.

-object type SUBMARINE
has key: Shipld domain: char{10]
has: ShipName  domain: char(20]
has: ShipType domain: char([4]
has: ShipClass domain: char{4]
has: Displacement domain: integer

with Displacement in [2000..30000]

Figure 1. The KER representation of an object type SUBMARINE.

The object type can also be represented mathematically as:
([ay, @2 ..Gn]lay€ Dy,a2€ Dy, a, € Dy with ¥ }

where each tuple [ay, a7, ..., @»] is an instance of such a type. Note that éach a; defines an attri-
bute of the object type, and D; specifies its attribute domain while ‘¥’ states constraints on the al-

lowable values the tuple can have. An atribute domain can also be an entity type. The system




provides a set of basic-domains such as integer, real, string, and date. A more complex-domain

can be constructed from these basic domains. For example, we can define 2 domain AGE on the

NF description of the KER model.is given
in the ,>ppendix A.

A‘typ= hierarchy uses specialization/generalization conszructs-(isa or contains relation-
ships) to define the subtype .and supertype relationships. For example, SSBN (Ballistic Nuclear
Missile Suumarine) is.a subtype of SUBMARINE, and CLASS-0101 is a subtype of SSBN, and

therefore, a type hierarchy consisting of SUBMARINE, SSBN, and CLASS-0101 is formed (see
Figure 2).

l bas:~ domain INTEGER with the range [0..200]. A B

SUBMARINE

S

SSN

SSBN

CLASS-0101 [*®®f g Acs0103

CLASS-0201 [eee CLASS-0215

Figure2, A Type Hierarchy SUBMARINE

- A subtype inherits all the properties of its supertypes, unless some of the properties have been
redefined in the subtype. For example, type SUBMARINE has atmibutes ShipID ,and Ship-
7 Name, and type SSBN has attribute TypeID and TypeName; subtype CLASS-0101 will automat-
ically inherit properties ShipID and ShipName from supertype SUBMARINE, and inherit pro-
perties TypeID and TypeName from another supertype SSBN.

A subtype can also be derived from another type by providing a derivation specification:

% _ For example, one can define a subtype SSBN (all the ships with ship type SSBN) of type SUB-
MARINE by specifying:

SSBN isa SUBMARINE with ShipType = "SSBN"




The with-clause defines the derivation specification of the subtype SSBN. It can also be con-

sidered as associating a-constraint with this subtype.
The type hierarchy is represented in KER as:
E isa E with 'V,
Eqisa E with'¥3
E, isa E with\F,

or-alternatively, it.can also be represented as:
E -¢ontains E, Eo, ..., E, with \P.

This definition states that the instances of £ can be divided-into n disjoint subsets £, E, ..., Ey,

with- the constraint . Each E; is a subtype of E.

To provide a graphical representation of the inter-relationships among the entity
types/subtypes, relationship types, and derivation specification, we can extend the ER diagram
by-adding the type hierarchy with constraint representation. as shown in Figure 3. A representa-

tion of a ship database schema by the KER Diagram is shown in Figure 4.
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Figure 3. Componen s of the KER Diagram

#* Xits SUBMARINE, Y isa SONAR */
gmsxcuu 0215 Then Y isa BQS

-IfY.Sonar = Then X isa SSN
Sonar

. . °

SONAR - SUBMARINE .
f BQS-04 < Sonar < BQS-15 C Name >
Then X isa BQS
Type = SSBN Type = SSN
SonuType _
BQQ / TACT. SSBN SSN |
w0 7250 < Displ < 86000 2145 < Displ < 6955
BQ % ! % BQS-IS SDirpl < e

BQS-12 BQS-13 Class :
Q0101 [ eee| Cl1301 Q0201 { ¢4 CO2I3

Figure 4. Representing the Ship Database Schema in KER Diagram
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3.2 Classification of Semantic Knowledge

Semantic knowledge of a database can be divided into- two categories: enterprise
knowledge and database knowledge. Enterprise-knowledge is the semantics-of the database ap-
plication. For example, the integrity constraint is the enterprise knowledge. Database knowledge
1s an instance of the-enterprise knowledge which-describes:the current database contents. For ex-

ample, enterprise knowledge specifies that the displacement of a ship must be greater than 2,000

tons, while database knowledge specifies that the displacements of the ships-are between 2,360

tons to 81,600 tons. Thus, database knowledge is more effective for query optimization.

The semantic knowledge associated with each database are domain knowledge, intra-

object knowledge, and inter-object knowledge as follows:

Domain Knowledge:

Domain knowledge defines specific properties of each entity set such as the attri-
bute domains, value ranges, etc., and restricts the allowable instances of an entity
set. For example, the displacement of a ship is in the range of 2,000 tons -
100,000 tons, and the displacement of an Attack Aircraft Carrier is in the range of
75,700 tons - 81,600 tons.

Intra-Object Knowledge:

Intra-Object knowledge specifies the relationships between attributes within an
object type. For example, the object type submarine has the intra-object
knowledge that if the displacement is less than 7,000 then it is a nuclear subma-
rine (SSBN).

Inter-Object Knowledge:

The inter-object knowledge specifies the constraints that the instances of a rela-

tionship set must satisfy. For example, the relationship VISIT involves entitdes of




SHIP and PORT and satisfies the constraint that the draft of the ship must be less
than the depth of the port. The inter-object knowledge can be induced: from the:
interrelationship between SHIP-and PORT linked by:the VISIT relationship.

3.3 The Knowledge Acquisition Methodology

After classifying different types of knowledge and defining the target atwibutes for
knowledge acquisition, let us now describe our Knowledge Acquisition Methodology (KAM),
which consists of three stages: schema generatioi, automated knowledge acquisition, and

knowledge base refinement as follows:

1. Schema Generation:

The DBA uses the KER model to define a database schema. This step includes:

a. Identifying entities and associated attributes.
' b. Identifying generalization hierarchies. If the database already cxists, use the clus-
r tering . .dexes to define subtype entities. The indexes are the target attributes.
l c. Identifying aggregation hierarchy. Designate each of the referental keys as the

target attributes. A referential key is the attribute of a relationship which is a key

to some other entity.

[

Automated Knowledge Acquisition:
a. Determine the domair: constraint for each attribute of each entity type.

b. Use the rule induction algorirhm (described in the next section) to induce inter-
structure and intra-structure knowledge related to the target attributes from the

database.

3. Knowledge Base Refinement:




Based on the expert’s own knowledge, domain experts can refine the rules in the
knowledge base to improve system performance. Unlike the manual approach to
knowledge acquisition, our methodology uses the database schema to guide the leamning
process to induce knowledge from the database contents. Such an automated process

reduces the dme for knowledge acquisition.

3.4 The Rule Induction Algorithm

We-have implemented a rule induction-algorithm in:EQUEL (Embedded QUEL) and C

on top of the INGRES: system. Rule induction is performed using the-relational operations to

-generate semantic rules for pairwise atributes. We shall present the -algorithm that induces

-correlated relationships of the rule scheme X --> ¥ for attribute pair (X, 7).

‘Rule Induction Algorithm.

Retrieving (X, Y) value pairs

Retieve into S the instances of the (X, Y) pair from the database. The corresponding

QUEL statement is:

range of r is relation
retrieve into S unigue (r.Y, r.X)
sortbyr.Y

Removing inconsistent (X, Y) value pairs

Retrieve all the (X, Y) pairs that have muitiple ¥ values for the same valv= of X. Let T

be the result of this relation.

range of r is relation
rangeofsisS

retrieve into T unique (s.Y, s.X)
where (r. X =s.Xandr.Y !=s.Y)

Remove all the (X, ) pairs that have different Y values for the same X value from S.

10
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where (5. X =t.X and s.Y =t.Y)

3. ‘Constructing: Rules

For each distinct value of Y in §, say y, determine -the value range x-of X and create a

rule in the form of
if x; <X <x, then Y =y.

A value range is defined as a consecutive sequence of X values that-occur in the data-
base. The rules-generated for the same attribute pair(X, Y') consist of the rule ser desig--

nated by the rule scheme X --> Y. Note that when x; = x, then the rule reduces to
if X =x then Y =y.
4. Pruning the Rule Set

Although storing-more rules in the knowledge base.provides more opportunities for infer-
-ence, it also increases the overhead for storing and searching these rules. Therefore,
when the number of rules generated becomes too large, the system must reduce the size

of the rule set. In general, there are two criteria for rule pruning:

1. Coverage Measure.

Each rule is satisfied by a certain number of database instances. Coverage

specifies the number-of database instances where the rule is satisfied.

For applications such as semantic query processing, the higher the cover-
age measure of a rulé, the higher the probability that this rule will be used.
Thus, we keep these rules that have a coverage measure higher than a

prespecified number N, which is a cut-off point for pruning the rules.

11




i Based on this criteria, we remove rules from the knowledge base when the
coverage measure s less than N,. Selecting the N. depends on the tra-

. deoff between the applicability of the rules and the overhead for storing

- and searching theserules.

2. Completeness Measure.

Each rule scheme-(X -->Y') contains a set of rules specifying the relation-

ship between the attributes X -and Y. The-completeness measure is the
sum of the coverage of the rules of the same scheme divided by the total
number of (X, Y) value pairs in the database, If the completeness measure
is equal to 100%, that means-we can always find a rule (and'Y’ s value) for

each X’s value.

For data inference applications, higher completeness measure enable us to
infer more accurate answers. Therefore, for such applications, we want to
keep the completeness -measure of rule schema higher than a prespecified
number C., which is-a cut-off point for pruning the rules. Thus, we re-

move all the rule schema where completeness measure are less than C,..

4. A Rule Induction Example

To experiment the proposed knowledge acquisition methodology, we shall use a ship da-
tabase which was created by the System Development Corporation (now UNISYS) to provide a
generic naval database based on [JANE81]. The database is-currently running on INGRES on 2
Sun 3/60 machine. We shall use the nuclear submarine portion of the database which consists

the following relations (a sample database instance is given in the Appendix C):

SUBMARINE = (Id, Name, Class)
CLASS = (Class, ClassName, Type, Displacement)
TYPE = (Type, TypeNamz)




SONAR = (Sonar, SonarType)
INSTALL = (Ship, Sonar)

The database consists of five entity types: SUBMARINE, CLASS, TYPE, SONAR,
SONAR_TYPE and--one relationship type: INSTALL. The three ¢ntity types SUBMARINE,
TYPE. and CLASS form a ship ‘hierarchy and the -entities SONAR and SONAR TYPE form
another hierarchy as shown in Figure:4. Each submarine type contains a set of submarine classes
and each submarine class contains a set of submarine-instances. For example, submarines are di-
vided- into two types: SSBN (Ballistic Nuciear Missile Submarine). and SSN (Nuclear Subma-
rine). The SSBN ships contain three classes of ships: 0101 (Ohio), 0102 (Benjamin: Franklin),
and-0103 (Lafayette),-and there are three ships that belong to the ship class 0103 (Lafayette).

Each ship class has its specific characteristics such as displacement, length, beam, etc..
For tactical or strategic reasons, different sonars are installed on different ships. The relationship
INSTALL indicates the sonars installed on the different ships. A textual representation of the

database schema is given in Appendix B.

Applying our knowledge acquisition technique to the ship database generates 17 rules as

shown-below (rules are grouped by cbject types):

(1) SUBMARINE

R:1f SSN623 <Id < SSN635 then x isa C0103
Ro: if SSN648 <1d S SSN666 then x isa C0204
Ri:if SSN673 <Id < SSN686 then x isa C0204
R4 if SSN692 <Id < SSN704 then x isa C0201

(2) CLASS

Rs:if 0101 <Class 0103 then x isa SSBN

Rg:if 0201 < Class <0215 then x isa SSN

R if Skate <ClassName < Thresher then x isa SSN
Rg: if 2145 < Displacement < 6955 then x isa SSN
Ro: if 7250 < Displacement <30000 then x isa SSBN

(3) SONAR
R g if BQQ-2 < Sonar <BQQ-8 then x isa BQQ




Ryyif BQS-04 < Sonar < BQS-15 then x isa BQS
(4)  INSTALL (x isa SUBMARINE and y-isa SONAR)

R 15-if SSN582 < xJd'= SSN601 then v isa BQS

R 5 if SSN604 < xJd'=SSN671 then y isa BQQ

R 14: if x:Class =0203 then y isa BQ

Rys: if 0205 < x.Class <0207 then y isa BQQ

R y¢: if 0208 < x.Class:< 0215 then y isa BQS

R 7: if y.Sonar = BQS-04 then x isa SSN

For the inta-object relationships, we have found rules about the-relationships -between
Ship Id and Ship:Class; Ship Class and Ship-Type; Class Name and Ship Type, and Displacement
and Ship Type. The classification of the submarines -into-different classes and types is fairly
stable, thus, these rules are stable as well. For the inter-object relationships, the following typi-
cal: rules have been found: the submarines of the classes from 0205 to 0207 carry only the
"BQQ" type of sonars (R ;5); and the sonar "BQS-4" is only carried by the SSN (Nuclear Subma-

tine) type of submarines (R 17); etc.

5. Applications

In this section, we shall illustrate the use of induced rules in such arcas as semantic query

optimization, inténsional query processing, ana data inference applications.
5.1 Semantic Query Optimization

Semantic query- optimization uses the semantics to transform a given query to a new
query. The wansformed new query produces the same results as the original query but is more
efficient to process [KING81, HAMMS0j. Integrity constraints are commonly used as semantic
knowledge for query ransformation. However, due to the generality of the integrity constraints
that describe all the valid states of the database instances, they are not effective for semantic

query-optimization.

Using the proposed rule induction, the relationships berween the artributes as well as the
inter-relationships between relations can be captured as semantic rules. These semantic rules

provide more efficient semantic query transformation than the integrity constraints.




Itis well-known that using a clustering index provides faster access to relations than that
of a segment scan. Therefore, a clustering index s often used to answer the queries. Due to
similar data characteristics, objects are often clustered together. If we select the clustering index
as-the rarger attrihute during rule induction, useful classification-rules representing the charac-
teristics of each cluster can be induced. For example, using ShipType as a ciustering index, we

obtained the induced rules inSection 4. Based-on R, the following-query
Q: "List the names of the submarines with displacement greater than 8,000."
can:be wansformed to
Q': "Listthe-names of the SSBN submarines-with displacement greater than 8,000."

Processing Q is much faster than-Q, since processing Q requires a scan of the entire relation,

whije §’ can use ShipType as a clustering index.

5.2 Intensional Query Processing-

Conventonal query processing provides answers in the form of an enumeration of data-
base instances retrieved from the database. Intensional query processing provides answers that
characterize the instances satisfying the query rather than listing all the instances [SHUMSS,
MOTRS9]. Traditionally, the knowledge about the database structure such as type hierarchy is

used to derive intensional answers.

However, due to the limited semantics in database structure, using the type hierarchy
alone can only generate very limited forms of intensional answers. The induced rules can be
used to derive much more specific intensional answers. Based -on the database schema, inten-
sional answers can be derived from the induced rules by traversing down the type hierarchies of
the object types as specified in the query. Such a technique is called type inference [CHU 90a].

For example, considering the query

"List the submarines with displacement greater than 8,000."
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Since the condidon "Displacement > 8000" is-subsumed by “Dispiacement 2 7250", based on
the induced rule Rg, we can traverse down from the submarine hierarchy to derive an-intensional

answer for the query which is "SSBN".

5.3 Data Inference Applications

In a distributed database sysiem, databases are often partitioned into-fragments and:repli-
cated:and stored -at:several sites. However, during network partition, the data fragments may be
inaccessible which:reduces data availability. Since Gatabase-atwributes are often related-io-each
‘other, the values of certain attributes often_can be inferred from other atributes. To improve
data-availability, we can use data-inference to-infer inaccessible data-from accessible data (CHU
90b].

Using the proposed knowledge acquisition approach, correlated knowledge between attri-
butes can be exuracted from the database contents. Since these-rules represent summarized:infor-
mation, the storage size of these rules is much less than that of the replicated copies of the data.
Such induced ruies can then be replicated at each site or certain critical sites-1o improve-data

availability during network partitions. For example, given the query,
"Which submarines carry the BQS type of sonar?"

To process the above query, we need the:INSTALL relation. However, due to network parttion-
ing, the INSTALL relation (See Section 4) is no longer available. Asa result, we are unable to
' answer the query by ‘conventional query processing. However, using the induced rule R, we
can derive that the Id of the ships are in the range from "SSN582" to "SSN601". Then, from the

SUBMARINE relation we can defive the following answer for the query:
(SSN582, SSN584, SSN592, SSN601}.

For more discussion on this, the readers should refer to [CHU 90b].

e
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6. Conclusions

Database semnantics can be classified into database structure and database characters-
tics. ‘Semantic data models emphasize the modeling structural aspects of the database, while the
database characteristics define the unique characteristics and properties of objects which are im-
portant to knowledge-based data processing. A Knowledge-based Entity-Rerationship (KER)
Model is-proposed to provide knowledge specification capability and to maintain the darabase
semantic knowledge. A knowledge acquisition methodology-is developed that is based upon the
KER Model and machine learning techniques:to acquire the database characteristics from the da-
tabase. These database characteristics are useful for semantic:query optimization and data infer-

ence-applications.
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Appendix A. A BNF definition-of the KER Model

We will.use the following BNF conventions:

<...> non-terminal symbol

{x} xappears 0 or more times-

[x] xappearsOorltime
x11x2F..1xn xlorx2or...or xn

1©  literal:symbol

A.1:Data Definition Statements

<KER definitdon> ::=
<domain definitions> |
<object type definitions> |
<type hierarchy definitions>

A.2 Domain Definition Statements

<domain definitions> :i=

<domain definition> {, <domain definition> }

<domain definition> ::=
domain <domain name> is <domain description>

[ <domain sepcification>}
<domain name> ::= identifier

<domain description> ::= <standard domain> | <object domain>

19




<standard domain> ::= string | integer I-real l:date

<domain specification> ::=
<range specification> |

<set specification>

<range specification> ::=

range <lower-boundary> <value> ’,” <value> <upper boundary>

<lower boundary> ::

’[’ I ’(’

<upper boundary> ::

’]’ l ’:))

<set specificaticn> ::=

set of *{’ <value> {, <value> } '}’
<value> ::= identifier | <integer> I-<real>
<object domain> ::= <object type name>

<object type name> ::= identifier

A.3 Object Type Definition:Staiements

<object type definition> ::=
object type <object type name>
<attribute list>

<with constraints>

<attribute list> &=

<attribute> {, <attribute> }

<attribute> ::=

has [key] ":’ <attribute name> domain <domain name>

20
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<with constraints> ::=

with <constraints>

A4 Type Hierarchy Definition-Statements

<type hierarchy definition>::=

<object type:name>- contains <sub-type list>
[ <attribute fist> |

[ <with constraints>]

<sub-type list> ::=

<object type:name>-{, <object type-name> }

A.S Constraint Definition Statements

<constraints>-::=
<constraint> {, <constraint> }
<constraint> ;= -

<domain range constraint> |.

<semantic rule>

<domain range-constfaint> ::=

<attribute name> in <domain sepcification>

<semantc rule> ::=
<constraint rule> |

<structure rule>

<constraint rule> ::=

if <premise> then <consequence>

<premise> :i=

21
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<conjuntives>

<conjunctves> ::=

<clause> {-and <clause> }

<clause> ::=

<attribute> <operator> constant

<consequence> ::=
<attribute> ’=’ constant
<structure-rule> ::=
if <role definitions>
and'<conjunctives>

then <variable> isa <object type name>

<role definitions> :: =

<role> (-and <role> }

<role>-::=<variable> isa <object type name>

<variable>::= identifier




Appendix B. A KER Representation of a:Naval Ship Database Schema.
B.I' Domain-Definitions

domain: NAME isa CHAR(20]

domain: CLASS_NAME isa NAME
domain: SHIP_NAME isa NAME

domain: TYEE_NAME isa CHAR([30]
-domain: SONAR _NAME isa CHAR([8]

B.2 :Object Type Definitions.

object type CLASS
has key: Class domain: CHAR[4]
has: Type domain: type
nas: ClassiName domain: CLASS_NAME
has: Displacement domain: INTEGER

with /* constraint rules*/

if "0101"<Class < "0103" then Type= "SSBN"
if "0201" < Class € "0216" then Type = "SSN"

‘CLASS contaizs SSBN, SSNs
Bwith+/* x isa CLASS:%/

if 2145 < x.Displacement <6955 then-x isa SSN
if 7250 < x:Displacement < 30000 then x isa SSBN

-object type SUBMARINE
‘has key: Id -domain: CHAR{7]
has: Name domain: SHIP_NAME
has: Class domain: class
SUBMARINE coniains CO1CT; ..., C1301
object:type TYPE.
has key: Tvpe domain: CHAR(4]
‘has: TypeNams  domain: TYPZ_NAME
object-type SONAR
has key Sonar domain: CHAR(8]
has; SonarType domain: SONAR-NAME

SON 2K contains BQQ, BQS, TACTAS
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with /*x isa SONAR ¥/

if BQQ-2 < x:Sonar < BQQ-8 then x isa BQQ
il BQS-04 < x.Sonar <BQS-15then x isa BQS
if x.Sonar = "TACTAS" then x isa TACTAS

object type INSTALL
‘has key: Ship -domain: SUBMARINE
has: Sonar domain: SONAR

with /* x isa SUBMARINE and y isa-SONAR */

if x.Class = 0203 then 'y isa BQQ

if ‘0205°< x.Class <0207 then. y isa BQQ
70208 < x.Class <0215 then y isa BQS
if y.Sonar = BQS-04 then x isa SSN

24




Appendix-C. A Ship Database and Its Induced Rules

A:Ship Database:
— .~ Relation SUBMARINE = -
- d _.Name (lass
. 35BNL30™ Typhoon - 1501
SSBN623  Nathaniel Hale 0103
- SSBN629- * Daniel-Boone 0103
SSBN635 | Sam Raybum 0103
. SSBN644 | Lewis-and Clark 0102
SSBN658- : Mariano G. Vallejo | 0102
« SSBN730 | Rhode:Island 0101
; SSN582 Bonefish 0215
1 SSN3g4 Seadragon 0212
- SSN592 Snook 0209
SSN601 -Robenn E. Lee -0208
SSN6O4 Haddo- 0205
SSN610 Thomas A. Edison | 0207
; SSN614 Greenling 0205
SSN648 Aspro 0204
"SSN660 Sand Lance 0204
SSN666 Hawkbiil 0204
SSINGT1 Narvhal 0203
"SSN673 Flying Fish 0204
SSN679 Silversides 0204
SSN686 -L. Mendel Rivers 0204
SSN692 -Omaha 0201
SSN698 Bremerton 0201
'SSN704 | -Baltimore 0201
S - Relatwon I TPE
Type ‘TypeName _

SSBN§ ballisuc nuclear missile sub

SSN nuclear submarinc

T Relaton CLAYS .
Class_i ClassName _Type 1 Displacement
OI0L | Ohio SSBN 16600
0102° | Benjamin Franklin SSBN - 7250
0103 | Lafayette SSBN 7250
0201 | LosAngeles SSN 6000
‘0203 | Narwhal SSN 4450
0204 | Sturgeon - SSN 3640
0205 | Thresher SSN 3750
0207 | Ethan Allen | SSN 6955
0208 | George Washington | SSN 6019
0209- | Skpjack SSN 3075
0212 | Skate SSN 2360
0215 | Barbel SSN 2145
1301 | Tvphoon _ SSBN 30000

25

Relanon INSTALL -
Ship =~ . Sonar
SSBNLI0 ¢+ BQQ-Z
SSBN623 | BQQ-S
SSBN629 | BQQ-5
SSBN63S | BQS-12
SSBN644 | BQQ-S
SSBN658 | BQS-12
SSBN730 | BQQ-5
'SSN582 BGS-04
SSN584 BQS-04-
SSN592 BQS-04
SSN60L- BQS-04
‘SSN604- | BQQ-2
SSN610- BQQ-5
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ABSTRACT

Today, most-computers are used for the modeling of real-world systems.
Demands on the extent and quality of the modeling are growing rapidly. There
is an ever-increasing need for environments in which one can construct and
evaluate complex models both quickly and-accurately.

Successful modeling environments will require a cross-disciplinary combination
of different technologies:

System modeling tools
Database management
Knowledge base management
Distributed computing

None of these technologies by itself provides all that is nceded. A modeling
environment must offer high-speed retrieval and exploration of knowledge about
systems, as well as integration of diverse information sources with existing
modeling tools.

Tangram is a distributed modeling environment being developed at UCLA. Itis
‘an innovative Prolog-based combination of DBMS and KBMS technology with
access to a variety of modeling tools.
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1. Introduction: Modeling

Harrison Brown-warns that modem economies are comiplex and vulnerable because dangerous
—dymnucfacamatwat(gmmngpopﬂauon decreasing resource base, growing gap benween
rich and poor nations, political troublemsking on a world-wide scale,_exc.). -Despite these
dynamic forces and the complexity of worid economies, policy makers continue 10 make deci-

-sions without the benefit of the powerful analytical tools that are avsilable 10 them. That the deci-
sions they make are bad, is self-evident.

- George Dantzig [31]
Today, numerous environments containing specialized tools are under development. Often these
tools are for creating and managing models of some kind [35, 42,74]. There are many kinds of
analytc models alone:
« Stochastic processes/queueing models
« Statistical models
« Structural models
« Equational models (numeric or symbolic)
« General constraint-based models
* Rule-based models
« Semantic network/entity-relationship models
+ Object-based models, with methods or behaviors.
In diverse science and engineering disciplines, ranging from medicine to the-social sciences,
models are applied in computer-aided specification, design, and analysis, including simulative
and statistical analysis. The dive-sity of the models used stems partly from their evolutionary
development in different fields.
Modeling will be one of the main enterprises of the information age. Today's emphasis on
modeling will oaly increase in the future. Darwinian pressures force information systems to
grow in sophistication, ‘to better answer questons such as ‘What happened?’, “What is going
on?’, and “What would happen if...?” Future modeling environments must deal with three
significant needs:
» Structurally complex data
+ Deep interpretation of data
« Integrated management of data.

[ —




L.I. Structurally Complex Data

Data used in models is becoming more detailed in terms of structural complexity. Present
modeling systems have trouble-in representing this detail. For example, while structurally sim-
ple.data is handled well by relational database technology, recently-a great deal of attentdon has
been given to-more structurally-complex data that has-interesting, non-tabular structure. This
data is commonly called ‘complex objects” or ‘non-first normal form’ (NFNF) records in the
data management field, and semantic networks or knowledge bases in other contexts.

With increasing detail of description, the list of differences between any:two objects- will grow.
Deep models - models involving great detail, or multiple levels of detail - are always more
structured than-simple or generic models, which are sometimes called shallow models by com-
parison. -As we model objects in greater detail, we must deal with the fact that some objects
have individualized attributes that may be unknown or irrelevant for other objects. Relational
structures model objects homogeneously, with every object being represented by the same
sequence.of parameters or attributes. Relational storage therefore becomes impractic..l when we
seek greater detail.

The ability to store complex structures is powerful: with it, one can store not-only facts about
objects, but also rules governing the behavior of objects. This has immediate: consequences in
modeling, since it permits distinctions between data and-interpretation of data to disappear.

1.2. Deep Interpiretation of Data

In addition to managing more detailed data, the operations one wishes to do on this data become

more sophisticated, or deep. These operations have been impractical in the past for a number of
reasons.

First, analytical or abstracted models are often used instead of doing direct analysis of real-world
data. There are inherent problems with such models:

(1) Abstracted models are often shallow. In some cases an abstracted model permits the
researcher to get at essential aspects of the real-world system being studied, but then only at
those aspects. Detailed information about a system requires direct analysis of larger quanti-
ties of data.

(2)- Abstracted models require estimation of suitable parameter values. Typically, pirameter
estimates are defined as either the result of statistical queries against observed data, or the
solutions of a system of constraints. It is not always straightforward to obtain these esti-
mates.

(3) To be of real use, an abstracted model must be validated against the real-world data it sup-
posedly describes. Again, while this can be thought of as a query (Does the model match

the data?), validation is an unpleasant responsibility that is often avoided by model-
‘builders.

Second, models may be too large for conventional machines, even mainframes. Simnlation of
microprocessors with significant numbers of gates takes weeks of CRAY-2 time. Intevpretation
of more detailed data will require significantly more processmg power than is available today.
Some argue that the current push into supercomputers is justifiable only because it will permit us
to model systems that have:been intractable in the past.

Third, researchers developing models have lacked appropriate data management tools. Labori-
ous data extraction from tapes or files is a traditional problem in large-scale modeling.
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‘Unfortunately, using modern DBMS will not-be adequate for modeling needs;* The queries per-

-missible in today’s. DBMS are very restricted: They map -tables-into tables using a handfull of

well-defined” operators. More generally, queries should be any kind of computable feature

-extraction operation.

It is important to consider what-one really wants from a modeling environment. Three general

-operations-are performed against a collection of data in the process of modeling: abstraction of

‘models, prediction-of the-future-using models, and validation of models against the past.

Abstraction is the least understood of the three kinds of operations, since it involves some sort of
creative or associative recall on the part of the modeler. The process of abstraction requires
compiling information from different contexts, or perspectives. In other words, abstraction
requires feature extraction, filtering, data reduction, etc. Important operations today include:

standard relational query-

aggregate computation (min, max, average, count, sum)
statistical analysis-(regression, analysis of variance, etc.)
pattern recognition (trends, transients, etc.)

estimation of model parameters:

estimation of certainty factors.

induction of rules

‘No existing tools, even the most advanced database systems, provide what is needed here.
Prediction is a process of evaluating various possible scenarios consistent with a current world

:model. It typically involves some sort of simulation. Mathematical models involve: structurally

simple data, and either the solution of:systems of equalities and inequalities or continuous-time
simulation. What we might call structured models (with structurally complex data) involve
either discrete event simulation, or some variety of rule- or object-based simulation.

Validation, finally, matches predictions obtained from a model of a system-against the actual

‘behavior of the system. This involves the definition of metrics or figures of merit on model per-
formance, and verifying somehow (statistically or formally) that a model achieves a level of

-accuracy.

These three operations are used in an abstraction-prediction-validation cycle. The results of
each cycle are used in refining the model for better accuracy. A reasonable modeling environ-
ment must support these three operations and their iterative application in the refinement of a
model:

1.3. Integrated Management of Data

To see the need for integrated data management, consider the problems encountered in a simple
case'study. A 4-site model of the LOCUS distributed operating-system was simulated using the

*Interestingly, work in the database field has approached modeling from another direction. A da-
tabase is, after all, a model of some enterprise, or more generally of some collection of objects and
relationship; among them. The DBMS of today permit only static models. That is, they capture
the state of some system. The behavior of these systems must be captured with zxtemal pro-

-grams, not by the DBMS itself, Thus the DBMS accomodates simple models on vast quantities of

data, instead of intricate models involving a few parameters.




PAWS simulation package by Steven Berson of UCLA. 1

Altogether, nine different load-balancing algorithms were considered. In each experiment,
labelled by single letters in the-table below, all sites used the same criteria. for deciding when to
migrate process load to other sites. The criteria-and offered load:varied among the experiments:
load balancing-was done by inspecting-cpu and/or disk queue-lengths, and offered load differed

by distribution:and by number of customers (between 2 and 20):

Experzment Load. baIancmg on " Work done
r disk queue lengths ~ Exponendal
s cpu queue length Exponential
u sum of cpu and disk queue lengths Exponential
" sum of cpu and disk queue lengths Hyperexponential
w sum-of cpu and disk queue lengths Erlangian
X NO BALAMCING, NO REMOTE ACCESS  Exponential
U NO BALANCING Exponential
\4 NO BALANCING Hyperexponential
W NO BALANCING _ Erlangian
The resulting avcragc rcsponsc umcs, m tmlhseconds were obtained:
Expenmem ’ ‘ ‘Number of Cusromer:
2 4 6 8 10 12 14 16 18 _ 20
r 2490 2390 2440 3200 3520 4610 5830 6630 8300 10500
L] 2320- 2450 2820 3150 4080 4510 5160 7240. 9510 11700-
u 2470° 2450 26200 2560 3600 3670 5010 6130 7920 10400:
v 2430 2610 2260 2720 3210 3860 4660 5280 7680 7750
w- 2330 2570 2720 2930 3260 4050 4690 6350 8060 9690
X 2750 2990 3140 3490 3910 6230 6190 8570 9060 10500
6] 2700. 2880 3680 4410 5130 5310 7190 8650 11100 13600.
A 2220- 3520 3100 3710 4780 6340 7480 9660 10900 12400
W ,2580; 3150 3200 3950 4640 5950 7780 8830 10600 13800:

These results show that:the load balancxng strategxes takmg both cpu and- dxsk queue lengths into

account-performed better than the others. It is difficult to ‘get a feel’ for what the differences are
here, however.

Modest as it is, this experience underscores the iraportance of an environment for modeling:

(1) Data management of experiments requires enormous effort. The data above were extracted
manually from the printed omput of many PAWS runs (possibly with errors), required crea-
tion of several different versions of the data for different tools (S, grap, b, etc.), and so
forth. The data above cannot be queried automatically now.

Various types of measurement data that must be captured beyond the standard statistics
(utilization, throughput, queue length, queueing time, chain population, point-to-point

)

t-Each site had 1-cpu and 1 disk. The access paiterns were selected to be 80% local, 20% remote
disk access, with an average disk seek time of 30ms. Load on the sysiem" was genérated by
‘between 2 and 20 customers. The PAWS simulation system was used to simulate several tens of
-thousands of events; in crder to obtain mean response time.
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timing, etc.) typified above. Event traces, for example, are needed for detailed understand-
ing of what goes on in distributed systems:-cyclic behavior, -correlated events, race condi-
tions, catastrophe-theoretic behavior, etc.

(3) There are many different-kinds of queries that may be made against- measurement data: sta-
tistical-summary and znalysis, pattern-detection on time-series, browsing through subsets of
event trace, animation with start/stop/replay, and of course graphical display -(bar plots,
contour plots, histograms, scatter plots, time-series plots, etc. [10] )




2. Tangram: A Modeling Environment

Tangram is an environment for developing models of the scope suggested above. It is
implemented as an extension-of Prolog that-inciudes integration- with the Unix-environment and
database managers, and provides distributed-processing constructs. This:section gives an infor-
mal overview-of the design of the environment. In later sections-we describe more thoroughly
the individual research:projects which together comprise Tangram.

2.1, Functions of Tangram

The main goal of Tangram is:to provide an interactive modeling environment. The experiences
of the previous:case study highlight some functions-that such an environment should provide. A
functional diagram of Tangram in use is sketched in Figure 1. With this system a user should be
able to:

1. Select models from the Model Base
2. Select an experiment from the Model Base
3. Run the experiment :
3.1 Find available tools from the environment Knowledge Base
3.2 Execute the experiment with a spec:ﬁc tool (or testbed)
3.3 Store.results of the experiment in the Measurement Data Base
4. Query the results of the experiment interactively

We describe these capabilities further below.

2:1.1. Model Management

Just as DBMS are managers for data, Tangram is a manager of models. Model management
includes the storage and retrieval of ‘data dictionary’ knowledge about available models, work-
loads (load generators, benchmarks), éxperiments, experiment output, and tools. Where multiple
models are used to describe a-single-system from differeat viewpoints or levels of abstraction,
model management also provides information on how these models relate,

The Tangram eavironment is to support various modeling.packages, and possess knowledge on
how these packages are applied. This knowledge comprises an expert system on easy, cffective
access to-modeling wols. The SACON system developed by Bennett et al. [13] illustrates the
kind of functionality neéeded: SACON inspects a structure and recommends a particular subpro-
gram from the (large, complex) MARC environment for structural-analysis. For example, given
the description of an airplane wing, it applies knowledge about the domain to decide to use the
‘MARC inelastic-fatigue program to analyze stress and deflection of the wing.




2.1.2. Measurement Dats Management

Modeling experiments generate massive quantities of data. Tangram is concemed with issues in
capturing this data from different tools, translating- it to a-common. format, storing it, and sup-
porting arbitrary- queries with parallel processing. This presents challenges in developing data
‘management technology. Not only is the data-structured, but it also-contains iraportant temporal
information. Also, current DBMS do not support ‘exploration’ of the data in ‘the way that
exploratory data-analysis systems such as S [10] do. Itis irnportant to be able to support explora-
tion of a-model, encouraging a modeler to -get an intuitive-understanding:of its- behavior. The
modeler should be able to view his-model actually ‘running’ with various kinds of graphical
displays, for example.

Parallelism can-make interactive real-time modeling possible, where it would not be possible on
this scale otherwise. We see stream processing as the most natural parallel data management
paradigm. A great portion of the Tangram project is, then,-concemned with stream processing.
The Tangram Stream-Processor (TSP) is a stream-based system founded on the abstraction of
transducers. A transducer maps input streams to output streams. We discuss TSP in greater
detail in a later section.

2.1.3. Support for Advanced Modeling Tools

Current modeling tools typically force:the modeler into expressing his model in a limited frame-
work, and- investigating :the model’s behavior with a:limited set of query facilities. These tools
are rarely extensible, i.c., they do not permit addition of new features. Tangram provides tools
that permit ‘declarative’ specification-of models supporting:complex structuring of knowledge
and deep-interpretation as discussed-carlier. 'We currently envision an object-oriented environ-
meat for developing these tools, supporting knowledge base management and arbitrary-query
processing. The environment will be extensible, permitting the addition of new kinds of models.

We:have developed a methodology for building modeéling tools based on Markov-processes. A
prototype system has been built based on this methodology [14]. In the system; users specify
system components in an object-oriented framework. This level of specification is significantly
higher than that provided by-most modeling-tools, which require input in the form of Markov
chains, Petri nets, etc. Lower-level derivates (such as Markov chains) can be obtained from this
specification when this is desired, or the specification can be simulated directly.

In-the longer range we are developing methodologies for designing and implementing modeling
tools that-are applicable to computer systems research. These will include analytic, statistical,
simulation as well as expert system-like ‘conceptual’ modeling. We are currently extending the
work already done with Partial Order Programming [69].

2.2, Prerequisites on Implementation

Tangram is implemented primarily in Prolog. Prolog is an excellent starting point for develop-
ing a modeling environment for at least two reasons:

*Currently Tangram:is being implemented on top of SICStus Prolog. SICStus Prolog is a portable
Prolog environment developed in C at the Swedish Institute of Computer Science.
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(1) Prolog is unarguably the best candidate as.a database/knowledge base language. It sub-
sumes relational databases, supports complex structure in data through its terms and rules,
and its first-order-logic foundations-are appropriate in many situations: unification and pat-
tern matching, logical derivaton and intensional query processing, backtracking and
search, and most generally declarativeness. It easily supports increases in structure -of
models and ‘expert system’ techniques for interpre.. ficn of these models.

(2) Prolog is flexible. It is an outstanding vehicle st :127id prototyping, and permits easy
access to existing:systems that perform csmpucs:s <21~ in*ensive tasks efficiently.

To be effective, however, an environment based on .1 o< 4. ofer the features cited below.

2.2.1. Industrial Strength

As-we pointcd out earlier, increases in-the quantity of “..~ and in'the complexity of interpreta-
tion-require distributed computing/supercomputer tect=.: ‘u:i.. Massive parallelism is needed to
deal with the increased-volume of information. Interact.2- dxsplay of model behavior is essential
for effective modeling. An environment like Tangram incorporating these techniques will be
successful only if it provides ‘industrial strength’ »erformance. Keys to success here are:
Optimization

Advanced data management technology

High-performance interactive graphics

Support at the operating systems level

2.2.2. Integration

A modeling environment must be able to combine many different syitems of different types
elegantly and-efficiently. The many tools and testbeds for developing models that have taken
man-centuries to develop should be accy-ssible directly and conveniently from a single worksta-
tion. Prolog is excellent for representir:¢ and making inferences how these tools and testbeds
should be accessed, but efficient access prohibits the use of ‘glue job’ connections between them
and Prolog. Database systems, for example, require stream access rather than the tuple-at-a-time
access encouraged by Prolog. Keys to success here are:

Modularization
General ability to connect with diverse programs

General knowledge representation of program functions
Support for translation tools

2.2.3. Support for Evolution and Multiple Models

There are many ways to represent the same information. As models are refined over time they
become more detailed, and focus on specific aspects of systems. Also, different models using
different abstractions are necessary to repress:it complex systems accurately and efficiently.

Both evolution of models and different views of complex systems require differeat kinds of
models, and hence different languages or paradigrss for capturing different aspecss of the real
world.

Bobrow [16] criticizes Prolog on the grounds that there are many programming paradigms other
than logic programming, and existing Prolog environr:znis should, but do not yet, support tiiem.
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For-modeling in particular,-this criticism is-of the essence. Paradigms can be low-level in nature,
such as with parallel/distributed:processing, object-oriented programming, or-constraint satisfac-
tion. They can-also be more high-level or ‘semantic’ in nature, such as-with extended queueing
networks, Keys to success:here are:

« Support for-multiple modeling paradigms
+ Representation of‘connections among paradigms

2.3.. Partial Evaluation as-an Implementation Strategy

The:list-of prereguisites above-may seem-somewt:at imposing. It is not immediately apparent
how they may al: \ achieved, or achieved -with Prolog-as a foundation.

Tangram uses partial evaluation:as a performance-oriented mechanism for exiending what para-
digms are-available in the Prolog environment. Software in the Tangram envi:onmeri is written
in one of two ways:-

(1) As ordinary Tangram Prolog code. This code looks like ‘standard’ Edinburgh-style Prolog
code; with the-exception that a- module system developed-at UCLA is used, and many
UCLA-specific predicates have been added.

(2) As code from an appropriate paradigm. A paradigm consists of -both a language, and an
interpreter for that language. In Tangram, there are many specialized paradigms, including:

« -Parallel/Distributed processing

+ Stream processing

* Object-oriented angd functional programming
¢ Constraint satisfaction

Extension through addition:of ncw paradigms is encouraged.

Cinfcntly paradigms in Tangram are implemented using a general partial evaluation schcme.
With partial evaluation, the paradigm interpreter is used to-translate paradigm language state-

ments int0 Tangram Prolog code which can be optimized and subsequently-executed. Loosely-

speaking;-partial evaluation uses an interpreter as a ‘macro’ for-expanding input statements into
Prolog stateme:ts. As much evaluation of the ‘macro’ as.possible is-performed .-at expansion
time, so partial:e¢siuation can be-thought of as a-general optimization technique.

-~
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Figure 2. Partial Evaluation

Thus-the interpreter for-a paradxgm can be used either for execution or compilation: paradigm-
code is either interpreted directly in Prolog, or. partially evaluated into. Prolog for subsequent
execution. Recent:work on partial evaluation is sums:yirized-in [87}; along with issues in usingit
for interpreting parallel programming languages. Speedup factors of 40 have been reported from
the use of partial evaluation instead of direct intérpretation.

Partial evaluation can be performed multiple times, of course. Thatis, paradigras can be used
hierarchically or accumulatively. For example, we can write the interpretér for-a constraint
satisfaction paradigm in the language of the object-oriented paradigm In this case multiple lev-
els of partial evaluation are needed.

2.4. Pro ect Overview
The individual tasks of the Tangram project are summarized in the following sections:

» Computer Systems Modeling

¢ Constraint Processing

+ Stream Data Processing

+ Industrial Strength Prolog-
We have selected computer systems modeling as an initial modeling domain, as this is a domain
in which-we are expert. Constraint processing is necessary for the specification of models, and
stream-procéssing-is necessary for the evaluation of model output. The industrial strength Pro-
log enfends Prolog to be an effective language for ‘real’ applications, as opposed to the ‘toy’
applications for which it has been used in the past.
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3. Computer Systems Modeling:Applications

The only good environments are-those that:are used by their developers. To help guide
direction of the Tangram -environment, we have selected the general application area of
knowledge-based modeling: of complex computer systems. Within this area, Tangram is
focussed on two projects:

» Complex Computer System Modeling
* Distributed DBMS:Performance Modeling

3.1. Complex Computer System Modeling (Steven Berson, Bill Cheng, Dick Muntz)
This project focuses on developing methodologies for computer system wnodeling. The main
objectives of this project are-the following:

(1) To construct an environment that integrates-various analysis tools so that computer
system modeling-experts can access them through:a common interface. The environ-
ment should-also be capable.of giving-expert advice on how a model of a computer
system-can.be analyzed, and why. Such an environment would also allow integration
of-new tools.

(2) To facilitate- the construction of modeling packages that are tailored to particular
application domains for non-experts.

Computer system modeling falls into general domains such as performance analysis, availzbility
analysis, and reliability analysis. In order to analyze a computer system, a model in a certain
‘domain’ has to be constructed. For each kind of domain, there exist many tools that can
analyze models in the domain. However, tools are usually applicable only to a limited range of
problem areas, and they will perform with different efficiencies in different pmblem areas. One
of the goals of our environment is to manage the complex relationships between various domains
and tools. Users of our environment should be able to describe their models in the form that is
natural-for their application domain, and the system should be capable of translating that descrip-
tion to the form required by the appropriate analysis tool. A prototype for-modeling computer
systems based on Markov processes [14] is now running, and is being extended.

Sometimes, the exact analysis of a complex compuier system model is infeasible due to the size
of the model; it is then necessary to perform -approximate analysis-of the model. There.are
different techniques for the approximate analysis-of computer systems, and each of them works
well under different conditions. With knowledge based techniques, our environment can assist
users in using these approximate analysis techniques.

Currently, we are-focusing on Markov processes-and queueing networks. Continuing work on
the current prototype includes:

(1) Graphical interfaces for.entering, editing, and displaying modeling descriptions.

(2) Query facilities based on the high-level model.

(3) Model debugging/consistency checking.

(4) Extensions to allow the modeler to specify approximation analysis techniques.

(5) Heuristic interpretation of the analysis results.

(6) Model ‘optimization’, e.g. providing automatic state space reduction where possible.
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Wz also-wish to-explore the problems of dealing with real computer systems. This requires
developing methods for:

(1) Describing real computer systems: both their:structure and the measurements that are
.available.

(2) ‘Query-and display facilities based on-the system description..

(3) -Correlation of analytic and/or simulation models with a conceptual: model of the real
-computer system. This would:provide the basis for model validation.

3.2. Distributed:DBMS Performance Modeling (Ron Hu, Dick Muntz)

A performance measurement environment is being developed: for the-distributed data manage-
‘ment system manufactured by Teradata, Inc. This system provides a rich environment in which
to-study the application of our modeling methodology. The system itself has a complex structure
both in terms of the hardware and software architecture. The performance issues include:
configuration planning, evaluation of hardware/software design alternatives, evaluation of query
optimization strategies, logical and physical database design, and regression testing of the per-
formance: of new- software releases. We plan to investigate-the application of our modeling
environment to this set of problems. The study will concentrate on the database aspects as well
as:the unique features-of :the architecture which-we expect to provide new insights. The system
described .in [47] is a simple approximation to what we have in mind, and resembles the
Tangram-environment illustrated-in Figure 1.
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4. Constraint'Processing

Until recently, models-often enforced a strong distinction between the data of the model
-(parameters, initial values, etc.) and the model itselt. Modeling was done as a very rigid kind of
programming, with a strong distinction between programs and'data.

This distinction has begun-to blur. -Largely a result of the influence of Al-tools in-software, new
modeling tools:-have developed in which one can treat parts of-the model program-as parameters,
or define parameters with additional models. Basically-the idea is that one-can specify behavior
information (rules) in'the same way one specifies descriptive information (facts).

In-its essence, this idea amounts to what is commonly called declarariveness. That is, one
should be able-to describe real-world systems by declaring ‘the constraints on their behavior,
rather than by giving - programs or other procedural descriptions that somehow fulfill these con-
straints.. Not only is it easier to specify constraints declaratively, it is also easier.to validate the
correctness of a model that-is specified declaratively. It is notoriously difficult to verify that a
program satisfies the constraints that are expected of a model..

An instructive-example of the importance of declarativeness comes-from-today’s database sys-
tems. During the 1970s database: systems moved away from ‘procedural’ query languages to
declarative laiigurges-in which users could specify the results they wished, without having to
specify ‘how the results should be obtained. Today, fourth-generation languages (4GLs) are
acccpted as important means for specifying queries and data processing requirements. Con-
straint processing can be viewed as the continuation of the evolutionary development from
DBMS t0 more powerful information processing-systems.

Constraint processing is a-modeling paradigm in which models may-be developed declaratively.
It is the modeling paradigm of choice within the Tangram project. Constraint processing is also
used in other ways in Tangram, both in program analysis (‘abstract interpretation’)- for optimiza-
tion of programs, and in graphical display of infonnation.

4.1. Partial Order Programming
A good deal of the Tangram work in constraint processing is based on partial order programming

169]. Partial order programming is a new paradigm developed by Parker at UCLA in which
statements are constraints over partial orders. In this paradigm a problem has the form

i "
| subjectto  wuiav,
RJz;Vz/

where u is the goal, and uy vy, uzdvs, - - is a collection of constraints called the program.
A solution of the problem is a minimal value for 4 determined by values for uy, vy, etc. satsfy-

ingthe constraints. The domain of values here is a partial order, 2 domain D with ordering refa-
tion .

The partial order programming paradigm has interesting properties:
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(1) Itgeneralizes mathematical programming, dynamic programming, and computer program-
ming paradigms (logic, functional, and others) cleanly, and offers a foundation both for
studying and combining paradigms.

(2) Ittakes thorough-advantage of-known results for continuous-functions on complete:partial
orders, when the constraints involve -expressions using only continuous and monotone
operators. These:programs have an elegant semantics-coinciding with recent results on the
relaxation-solution method for constraint problems.

(3) It provides a framework that may be effective in modeling complex systems, and in
knowledge representation for cognitive computation problems. ’

Recently we have applied partial order programming in the formalization of directed logic pro-

grams [70], logic programs which have specified input and output-arguments. Such a formaliza-

tion is imporant in-defining the semantics-of stream processing, and it unifies a number of
diverse knowledge representation primitives as well.

4.2. Knowledge Representation (Stott Parker)

Modem-knowledge representation systems-tend to-be frame-based systems or production sys-
tems with inheritance. They are largely ad hoc and support only certain kinds of shallow models
[67). The knowledge representation system planned for Tangram is formally founded on partial
order programming, and will provide the following useful features:

Common systems of inference (syllogisms, parts, roles) [5]
Constraint solution mechanisms, including propagation and relaxation
Naming and Events

Semantic Unification

Contexts and Modalities

Meta-Level Capability & Planning
Schemata/Episodes/Definitions/Scripts/Prototypes/Defaults/Situations

These features should prove useful in the representation of both computer systems and of
software packages used to model these systems. See [68].

~ We are developing 2 system for automated simpic linear regression modeling, Certainly linear
regression is the statistical test that is most useful in analyzing data. Our system is similar to the
REX system déscribed in [37], but iteratively refines a Box and Cox model, taking into con-
sideration bias, nonmal distribution of residuals, and so forth. Issues in developing the system
include how to represent functionality knowledge of the regression analysis tools available, and
control knowledge for obtaining the desired transforms on the dat from the regression tools.
Currently the S statistical analysis package is being used.

A major-issue in the design of the system is how much emphasis to put on interaction with the
user about solution strategy. While statisticians prefer to explore their data and make decisions
about transformations themselves, less knowledgeable users may prefer to have the system
operate without any interaction in analysis. The issue is the degree to which statistical strategy
in data exploration and analysis can be automat~d. Effective use of statistical analysis requires
three kinds of expertise:
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» Data expertise (general knowledge-of what is in the data)
+ System:expertise (knowledge of what generated the data)
+ ‘Statistical expertise (knowledge of what the analysis means)

A ‘modeler will have all three-kinds of expertise only rarely. Statistical expertise helps avoid
over- and under-interpreting data, and:appears to be:the most inviting to automation.

4.3. Constraint Satisfaction (Richard Huntsinger, Stott Parker)

The goal of the constraint satisfaction-component of the projsct is the development of a-powerful
theoretical formalism which will provide semantics for a large class of model representations,
and a correspondingly powerful constraint satisfaction system implementation (43].

Partiai order programming [69] serves as an:initial theoretical formalism. It provides a model-
theoretic:semantics and-a procedural fixpoint-based semantics for model-representations. These
model representations are composed of partial ordering relations-between variables and mono-
tonic functions on variables. That is, models.are rcprescn.ed as collections of constraints of the

form x < f{y), where x is a variable, < is a partial order, f is a monotonic function, and y is a
vector of variables.

This class-of model representations corresponds to-a subset of that on which relaxation can be
successfully applied. Indeed, in practice, constraint satisfaction system-implementations typi-
cally employ relaxation, -and therefore-operate only on restncted classes of all expressible model
representations.

Partial order programming is currently  being extended to permit some non-monotonic functions
on variables, resulting in semantics for a larger class of model representations. This class
corresponds to that on which- a generalization of relaxation can be successfully applied.
Equivalently, it is a class for which each model representation can be -transformed to a new
representation on which relaxation can be successfully applied. For example, the model
rcprescntanoq x Sf(y), where f is a non-monotonic function, is provided semantics if x < f(y) =
x S f(y), t-is an invertible transformation, and r+f is a monotonic function [44].

The theorems comprising this extension to partial order programming suggest several constraint
satisfaction algorithms. A constraint satisfaction system implementation is being realized as a
tool which:facilitates experimentation with some of these algorithms. Specifically, it employs a
general parameterized algorithm; instantiated instances are various specific algorithms, including
relaxatioit.

Parameters-of special interest include
+ the strategy for organizing functional dependencies,
« the straiegy for detecting transformable constraints,
+ the strategy for applying transformations, and .
+the strategy for decomposing sets of constraints into approximating sets of constraints.

Some testbed model representations for the constraint satisfaction system implementation
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include computer network configurations, solid-body- animation seuences, and- music-composi-
tions.

4.4. Abstract Interpretation (Arman-Bostani, Stott Parker)

-A lot-of research has been done on the:derivation and proof of properties of Prolog programs.
This work has been fueled by the desire to close the performance gap that exists between
imperative and logic programming languages-running on conventional hardware. Several rea-
sons have been cited for this performance gap. Firstly, procedures in logic programs.are quite
versatile and-the code can be general-enough-to be used in many-different ways. Secondly, in
imperative programs, memory usage is-explicitly controiled by the programmer; this not only
saves memory, but.also time since it avoids copying whole data structures when only slight
modifications are made. Finally, type information that is-available in-an imperative language
allow a better.implementation of the programmers’ data structures..

In the attempt to close the performance gap many researchers have implemented various
automated inference systems'which can:generate polymorphic typing, mode declarations, deter-
‘minancy information, etc. To formalize-this work on:Prolog programs, researchers have adapted-
the ideas of Cousot and Cousot [30] on the abstract interpretation of imperative programs to the
field of logic-programming. Since a characterization of the exact behavior of-a program is in
most cases computationally intractable, we are forced to interpret our programs:abstractly. That
is, the program is thought of as executing in an abstract domain where less information about the
data items is-accounted for. Results-of the computation in-this abstract domain then reflect the
properties of programs operating in the éxact model.

Abstract interpretation of Prolog programs has been used in several applications:

«  Automatic inference of polymorphic types [25].

»  Automatic mode inference of Prolog predicates. Debray and Warren [34] describe a
data flow analysis which is more powerful than previous approaches which solely
relied on purely syntactic information.

»  Detection: of determinancy. Mellish [59] discusses a method for detecting ‘deter-

minate’ Prolog code (i.e., finding those predicates that never return more than one
solution).

-« Global optimization of Prolog programs. A general theoretical framework is provided
by Bruynooghe [21] with which an optimizir3 Prolog compiler may use abstract
interpretation for efficient code generation.

The main focus of our reséarch has been to devise a system that will be able to derive various
properties of prolog programs such as mode, type, aliasing and predicate success information.
Previous ressarch has shown, however, that purely syntactic analysis of programs is insufficient
for the deriation of truly useful information. Thus, from the very beginning, our goal has been
to.create a simple formalism under which we can represent both syntactic and semantic informa-
tion in-a-unified manner.

To capture the semantics of Prolog programs, we use ‘inexact success models’. These success
models-provide information on the function of a predicate by classifying its actions based on the
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types of arguments with:which the predicate is:invoked. Two elements determine the ‘functon’
of-a predicate:

-+ Instantiation of variables

* Success of the predicate

Information on the instantiation of variables can be used in-the derivation-of mode characteris-
tics of the predicates. Also, the type classification above is similar to conventional- polymorphic
type inference. Determination of the:success-of predicates, however, affects the derivation of
mode and type information. The:idea of using success-information in abstract interpretation is
relatively new [21] and unexplored.

Our success models-provide bounds on the number-of choice points created by a predicate, and:
whether or-not it will ‘fault'*. Thus,-our system will be able to-detect possible fault conditions
before-the execution of a program. The task of determinancy detection [59]is also easily per-
formed- with this system (e.g., if a predicate generates only 0-or 1 choice points, it-is deter-
trninate).

The design phase of the system for the inference of-these success:models is almost finished. -Our
next step will be to-implement the success model-derivation system. The system can then be
used with applications such as optimizing compiler, interactive debugging tool, performance
analysis, etc.

4.5. Graphics (Ted Kim, Stott Parker)

Many modeling applications require graphics. One approach would be to use a declarative
graphics in-erface [41] based on formal picture description grammars. The formal framework
offers some attractive parallels to proof systems. This paradigm offers the capability tc describe;
compose and generate pictures as well-as ‘prove’-or recognize pictures. While we-are-pursuing
some research in this area, we feel that this graphics description is too low-level for general use.
Our main effort is to provide a higher level constraint-based graphics interface [19]. The
constraint-based orientation provides a declarative style of programming graphics. Our system
uses the X Window system [75] to provide network-graphics and windowing capabilities. X also
offers the advantage-of being a de facto standard. At the lowest level, our design will provide
support for graphics by making the X library functions accessible in Prolog without requiring
extensive changes toProlog (e.g., no asynchronous operation).

On top of this layer, we provide a constraint-based graphics toolbox. This toolbox provides
common primitives for design of graphical applications as well as support of constraint systems.
Speed is very important to graphical applications. The challenge here is to provide general
enough constraint solvers that are also fast. Towards this end, our design includes a- notion of
graphical state, The system.responds to perturbationis made to a current constraint solution,
while attempting to resolve as fex constraints as possible. The state from the previous solution
is used as much as possible in forming the new solution. This allows local changes to be quickly
solved.

*In most Prolog sysiems a program may terminate unexpectedly due to a fault. A fault may be
caused, for example, by passing arguments of incorrect type to a system predicate.
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Typically, the toolbox would be used to build graphical-displays of modeling solutions. These

displays would change automatically -in response-to perturbations of-modeling data. This pro-
vides:the basis for interactive model -management, involving storage, retrieval, query, display,
and editing of models [50, 58, 82]. Animation can-also be provided in-this fashion.

Continuity is also-important in-graphics, especially in animation. Changes in animation-should
be smooth-and continuous. The graphical state helps here, but is not sufficient. Out of the possi-
ble space-of solutions for the constraints, we would like to pick a ‘good’ solution. For the ani-
mation problem, “‘closeness’ of a new solution to-an old one-is the-issue. For the automated-

-display problem [56], the criteria could be such things as expressiveness or-color choice. More

generally, we can cast the problem as:optimization. To address these:issues, we are planning to-

include an optimization mechanism for our graphics constraint solver.

Graphics is:also important in the presentation of refinement graphs of data-flows in coi-

-execution models. With-the concurrent execution. model, user:annotations-of programs-can be

used by the:system to generate-diagrams of refined:data flows implied:by the-annotations.. These

-diagrams allow the user to spot.potential problems.with his annotations.
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5. Stream Data Processing

In-this section we describe projects-concerning the Tangram Stream Processor (TSP) [71), a
stream data management system. It is an extensible system based on a functional sublanguage-of
Prolog that provides a programmable stream processing capability with a number-of interesting
ch- racteristics.

5.1. Streams and Data Processing

Relational databases are founded on set theory: all relations are viewed as sets of tuples. Many
developments have encouraged generalization of this model to one of ordered sets. For exam-
ple, ordered data can be processed much more-efficiently than unordered data. In fact, many
standard query evaluation techniques are described -in terms of operators (filters, mappings,
actors) acting-on ordered-sequences of tuples. ‘Moreover, temporal query processing seems to
necessitate some kind of-ordering if important kinds of queries are to be efficiently answerable.
Also of course, the order of the tuples in relations is important in presentation of tl. .elations-to
users.

In many important situations, then, it is advantageous to generalize the set foundation of the rela-
tional data model to an ordered set model. We call ordered sets streams. Stream-oriented pro-
cessing is certainly not a new subject, although it has only recently come into its own right as a
programming paradigm.

An area where streamns are inherent to query processing is for temporal data, data with explicit or
implicit time ordering. The analysis of streams has been done for many years as ‘time series
analvsis’. Recently, the subject of time in databases has gotten increasing attention as more
applications requiring temporal reasoning have been uncovered (3,4, 12, 18,27], and many
intere:ting systems handling temporal queries in novel ways have been developed
12,33,49,51, 32, 55,77, 84, 85].

‘Previous research has ccncentrated either on database processing, or on representational issues

and generality of modeiiig, Two important database systems include:

(1) TQuel [84], a relatizpal Guery language with embedded time primitives, is an extension of
Quel, both syntactically snd semantically. TQuel is essentially a relational query language,
resting on the relational madel. )

(2) The Time Sequence approackh of Shoshani [77, 79] characterizes properties of temporal data
and temporal operators without restriction to the relational - model. Data are organized into
Time Sequence Collections (TSCsj, which can take both relational and stream-like
representations. Five basic operators provide an algebra working on TSCs.

These systems emphasize performance and complete handling of a well-defined set of query

operators. Other researchers in temporal query processing have worked at more complex model-

ing, combining work on temporal logic and existing representational systems to define new
approaches. Sadri 73] reviews three general recen: approaches to-temporal reasoning:

(1) The ‘event calculus’ of Kowalski [49] is an approach for reasoning about events and time

within a logic programming framework.
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(2) Allen’s approach-[3,4] is similar to the cv‘ent{calculi;s, defining a set of binary-predicates
giving basic relationships among time- intervals (whether they overlap, one precedes the
other, etc.).

(3) Lee, Coelho and Cotta [52] present a temporal:system for representing and reasoning about
time-dependent information and-events, specifically for business database applications.

In these-approaches it-is peculiar that stream processing has not been emphasized more heavily

for temporal query processing, as well as:for basic relational -query processing. Tangram's

stream processing approach permits-it to handle queries-definable under each of the systems
listed here.

5.2. Streams and Parallel Processing

Concurrent, object-oriented, functional, and logic programming paradigms all intersect elegantly
in‘the abstraction of strewas: the general architecture of cooperating parallel actors transforming
streams of events has found its way-into many programming systems that have -been proposed-in
the past few years. For example;, many parallel logic programming systems have been

developed essendally as stream processing-systems. Typically, ‘these systems:fall into one-of
several camps:

(1). They resemble PARLOG {26, 39] and the other ‘committed choice’ parallel programming
systems (78] (Concurrent Prolog, GHC; etc:).
(2) They introduce ‘parallel and’ or ‘parallel or’ operators into ordinary Prolog [53].

(3) They are extended Prolog systems that introduce streams by adding functional program-
ming constructs [32, 48, 54, 62, 86]. The thrust of this introduction.is to make Prolog more
like either Lisp or Smalltalk or both.

TSP has drawn on the designs of a number of previous systems which have included stream con-
cepts. These include FAD [6], various dataflow database systems [7,8,9,15,38], and LDL
[11,89].

After some experience with the tuple-at-a-time and whole-query-at-a-time (embedded query
language)- Prolog/DBMS interfaces that have been developed to date, we feel a better way to
integrate Prolog and databases is through streams [65]. Only minor extensions to Prolog are
sufficient to provide fairly efficient stream processing [72]. A stream interface offers an effective
medium between these.two alternatives, uniformly ‘integrating bulk operations at the DBMS end
with incremental evaluation at the Prolog énd. Prolog stream processing avoids backtracking
through a database, using efficient iterative (tail recursive) processing instead. It is a natural
approach for applications like analysis of modeling data.

5.3. The Tangram Stream Processor

The Tangram Stream Processor is founded on the abstraction of transducers. A transducer is a
mapping from some number of input streams to one or more output streams. Thus, a transducer
may be viewed as an automaton. However, a transducer can-take parameters, and as such need
not have only a finite number of states. Thus, it is better initially to view transducers as map-
pings instead, and diagrams of transducer networks resemble dataflow diagrams:
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serverl —————

) elapsed times " avg —
file_terms(’serverl.trace’)r ' N

Transducers are the basic building blocks of TSP, and are maintained in an (extensible)-library.
Since arbitrary transducers are permitted, the expressive power of TSP is equivalent to that of
any general programming language. Consequently, the stream-based transducer model is more
general than many previous approaches: it is capable of handling traditional database queries and
non-traditional queries that reason about time in event databases.

TSP has several further-unique aspects:

(1) TSP permits operation on general stream structures, including for example ‘both lists and
array-models of data. It supports definition of and parallel evaluation of operators on these
stream structures, including the operator families of the APL programming language, NIAL
‘[57], and the Nested Array model of data upon which both are based [60,61]. This
includes the ability to define higher-order operators on streams, such as aggregate opera-
tors (min, max, sum, etc.), APL’s reduction operator, LISP’s maplist, etc. In addition,-it
permits-us to define many useful statistical operators on streams, as in the S data analysis
system {10].

(2) TSP permits operation on infinite streams. A stream may represent a non-terminating
sequence of values. Thisis not permitted, for example, by- APL.

(3) TSP permits-both Jazy and eager evaluation-of streams, Lazy evaluation permits efficient
evaluation of some kinds of queries.

(4) TSP transducers are naturally implemented as concurrent processes. These transducers pro-
vide opportunities to place natural boundaries on parallelism, a feature not enjoyed by some
-parallel Prolog systems. _

The resulting system may be used for ‘database-flow’ processing, a combination of ‘dataflow’

and database processing, as well as general feature extraction and data reduction operations-that

fitin a pipeline structure.

Execution of queries in TSP is quite efficient, in the common situation that the input streams are
sorted properly. In fact, TSP query processing can be considerably more efficient than that in
relational DBMS. For many TSP queries a single scan of the input streams is sufficient, requir-
ing linear time and constant space, while relational DBMS approaches require significantly more
resources. Also, TSP can handle kinds of queries not easily handled by relational query process-
ing systems, including the following:

1. Sliding window queries [77]

2. Event calculus queries [49]

3. Pattern matching queries

4. Abstracting state information from event data
5. Reasoning about time.
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As-an example-of a query that reasons about-time, consider asking about what investment stra-
tegy would have:been optimal over a given pericd of:stock market history. This requires innova-
tive-accumulation of dividends, interest rates and rules tor compounding interest, days which-are
holidays, and many other important details. These ‘hindsight queries’ illustrate the potential -of
stream processing in database analysis. A

5.4. Log(F)

The Tangram Stream-Processor is based on Log(F), an integration of Prolog with a functional
language called ‘F*, developed by Sanjai Narain at UCLA [63,64]. Log(F) is the integration
with Prolog of a functional language in-which one-programs using rewriie rules. This section
reviews the major aspects of:-Log(F), and describes its advantages for stream processing.

F* is a rewrite rule language. In F*, all-statements are rules of the form
LHS => RHS

where LHS and RHS are structures {(actually Prolog-terms) satisfying certain modest restrictions
summarized below.

A single example shows the power and flexibility: of F*. Consider the following two rules,
defining how lists may-be appended:

append({], W) => W,
append([U|V]; W) => (U]jappend(V,W)].
Like the Prolog rules for appending lists; this concise description provides all that is necessary.

Log(F) is the integration of F* with Prolog. In Log(F), F* rules are compiled to Prolog clauses.
The compilation process is straightforward. For example, the two rules above are translated
(partially evaluated) into something functionally equivalent to the following Prolog code:

reduce (append(A,B), C) :— reduce(A, [1), reduce(B,C).

reduce (append(A,B), C) :— reduce(A, [D|E]), reduce([D|append(E,B)],C).
reduce( (1, (1 ).

reduce( [X|Y], [XI¥] ).

An important feature of F* and Log(F) is the capability for lazy evaluation. With the rules
above, the goal

7- xeduce( ‘PP‘M( [11213117["51 ‘]) ’ X).
yields the result
X = [1]append((2,3],(4,5,6])1.

That is, ir-one reduce step, only the head of the resulting appended list is computed. The tail,
append ([2,3], [4,5,61), can then be further reduced if this is necessary. Demand-driven
computation like this is referred to as lazy evaluation or delayed evaluation, and is basic to
stream processing [1].
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Log(F) is a-superior-formalism for stream processing, and thus for database query processing.
From the example above, itis:clear that the rules have a-functional flavor. Stream operators are
easily expressed using recursive functional programs, The syntax-is convenient, and can be con-
sidered a useful query language in its-own righe,

It turns out furthermore that Log(F) has a formal foundation that captures important aspects of

stream processing:

(1) Determinate (non-backtracking) code is easily detected through syntactic tests only. This
avoids-the overhead of ‘distributed backtracking’ incurred by some-parallel logic program-
‘ming systems.

(2) Log(F) assumes-that stream values are ground terms, i.c., Prolog terms without variables.
Again this avoids problems encountered by otiier parallel Prolog- systems- which- must
-attempt:to provide consistency of bindings:to variables used:by processes on opposing erds
-of streams.

These features of Log(F) make it a nicely-limited sublanguage in which to write high-powered

programs fo:-stream processing and other performance-critical tasks. Special-purpose compilers

can be developed for tiis sublanguage that produce highly-optimized code.

We must stress strongly that Log(F) is an extension of Prolog. The Log(F)-code shown above
runs-as shown. The issues here are not so much language design issues as in developing com-
pilers for Log(F) that generate fast code. Where speed-is:not critical, the full power of Prolog is
available to its users now, in a stable development environment.

8.5, Stream Transducers and Log(F) (Lewis Chau, Dick Muntz, Stott Parker)

In-[71] we show how-transducers can be written in Log(F) to solve both traditional and very
novel query processing problems. It is easy to develop significant stream transducers with com-
pact-sets-of rewrite rules. We currently have an implementation of Log(F) in Prolog that per-
forms all standard database query processing primitives, and many nonstandard ones as well.
For-example, transducers can be developed that-manipulate streams of ‘clapsed time’ data, or
streams of ‘service time’ data. We can define transducers-as follows: .

‘% RElapsed times for first-come, first-served disciplins
tefs e ((1,_) => (1.

fcfs_e([a(T)|L],State) => fcfs e (L, append(State, (T])).
fcts_e({d(T) (L], (20(8]) => (T-70|£fcfs_e(L,8)].

% Elapsed times for last-come, first-served discipline
fcts_o([1,) => [].

lcts_e((1;_) => [I.

lcts_e([a(T)|L],State) => lcfs_e(L, [T]|State]).
lcfs_e([d(T) L], [T01S]) => [T-T0|lcfs_e(L,S)].




it g i L G

Y

&

i

T TR T s o e VTR £ s A AT Ve AT i e
-

TEPTTETI T P e P PP T
T .
S G N ua ..

iyl
L

.25 -

% Service timas for first-coma, first-served discipline
tcts s((1,_) = [(].
tcts_s ([l (T) |L] ’ (N} To)i)’ => if (Naor [fcfa_s (I‘I (Ier) ) ]—r
{£cfs_s(L, (N+1,70))]
).
fcfs_s([d(T) L], (N;T0)) => [T-T0|fcts s(L, (N-1,T))].

% Servica times for last-come, first-served discipline

lcts_s((1,_) => (].

lcfs s([a(T)|L], (1) => lcfs_s(L, [(T,0)]).

lofs_s([a(T) L], {(?0,T1)|8]) => lcfs_s(L,[(T,0), (_,T-TI+T1):|S]).

lc&3_s ([(d(T) L], [(TO,T1), (T2,T3) |8]) => [T-TO+rl|lcts_s(L, [(T,T3)]S])].
icfs_s((4(T):IL], [(TO,T1)]) => [T-TO0+T1l|lcfs s(L, (])].

These transducers may appear a little forbidding. We can however make these available in a
simpler and more:natural form by introducing ‘higher level’ transducers:

clgyud_;timg(Scrvi:,S) => policy elapsed_times(type(Server),S8).

policy eiapsed times( [fcfs], S) => fcfs _a(S,(1}.
policy elapsed timas( [lcfs], S) => lcfs_a(S,[]):

service_times(Server,S) => policy_.service_timeas(type(Server),3).

‘policy_service_tines( (fcfs], 8) => fcfs_s(S,(0,_)).
policy service times( [lcfs], 8) => lcfs_s(S,[]).

Interesting statistics (e.g. mean, standard-deviation, etc) can then be calculated from this output
stream by applying further aggregate operators. For example, the average elapsed times and
maximum service-times at Server 1 can be nbtained with:

avg( elapsed times(sexverl, ilie terms(’serverl.trace’)) ;
max( service _times(serverl, file terms(’serverl.trace’)) ).

Here £ile terms(’serverl.trace’) nroduces a stream of arrival and departure terms

&{ ArrivalTime )
4{ DapartureTime )

that are tallied by the transducers defined here. Also, type (serverl) reduces sither to [fcfs]
orto .[lcfs], according to the type of the server.

5.6. Pattern Matching against Streams (Lewis Chau, Stott Parker)

In [71], we-illustrate how Log(F) makes a powerful language for expressing transductions of
streams. In- this section we show how, specifying pattems with grammars, it also makes an
expressive language for pattern matching against streams.

In order to match patterns against streams, the approach taken in Tangram is to let users specify
patterns with grammars, which are compiled into efficient transducers. Morcover, users can
express their patterns using a library of grammars. For example, regular expressions and, more
generally, path expressions, can be easily defined with grammar rules:




-26-

(X4): => X,

(304): =»> (X, (X+)).

(X*): => [].

(X*): => (X, (X*}).

(X:Y) =>X.

(X:Y) => X,

(X, Y) => append(X,Y).
skipto(X) => X.

skipto (X)- => -([_],skipto(X)).

These:-Log(F) rules behave just like the context free grammars they resemble.

‘Pattern matching-is signaled-explicitly with the match-transducer, which-takes-as its-first argu-
ment a functional grammar term describing the.starting symbol(s):of some grammars used: for
‘the match, and as its second argument a Log(F) term that produces-a stream. For example,

match(([net_failure]+, [cpu_failure]),file_terms(’experimentl.output’)).

‘matches the-pattern ‘one or more copies of net_failure-followed by a cpu_failure’ to the stream
-of events in the file ’experimentl.output’ into a stream of event-types.

The rules for pattern matching-are very-simple. The basic definition is as follows:

match([],S) => S.
match ([X|L], [X|S]) ‘=> match(L,S).

The result of matching a pattern against a streamis what is left of the stream after pattern match-
ing completes, i.c., the remainder of the stream-that is not matched by the pattern. Simultane-
‘ously, arguments of the nonterminals are: bound to values resulting from parsing the input
stream. With this definition of mateh, we can immediately define grammars using rewrite
rules. We call a collection of these rules a functional grammar.

In the section above we showed how transducers can manipulate streams. of ‘elapsed time’ data.
Tt is-also possible to specify-it with a functional grammar:

fcfs: @ (Result) => fcfs e([], [],Rasult).
fcfs_e(_;Result,Result) => [end of_file].
fcfs_e(State,Current, Rasult) => [a(T)],
fcfs_e(append (State, [T]),Current,Result).
fcfs_e([70]8],Current,Rasult) => [4(T)],
{?1 is 7-70)}, fcfs_e(S, [T1|Cuxrent] Result).

The main issue here is finding a' way to compile functional grammars and match into efficient
transducers, then we can define efficient classes 6f functional grammars. Not surprisingly, deter-
ministic tail-recursive grammar rules which do not ccnstruct large structures for their state can
‘be compiled to efficient transducers. These grammsrs-are much like classical right linear regular
grammars, and like DCGs that are actually written in practice. Sec [24].
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5.7. ‘Distributed/Parallel Processing (Brian Livezey, Dick - Muntz):

Log(F) benefits from two aspects of distributed processing. First, computation can be performed
in parallel. There are-many opportunities-for computation concurrency in a stream-based pro-
gramming environment. The execution behavior of sequential Log(F) is analogous to a pipeline
in-which only one stage is active at-any given time. By-placing different stages of the-pipeline
on-different processors-and replacing lazy-evaluation by eager evaluation-and stream flow, we
can achieve a state in which all stages of the pipeline are active simuitaneously. Second,.in addi-
tionto this ‘pipeline concurrency’, we can achieve other forms of parallelism. AND-parallelism
is achieved by producing all input streams-to a given transducer simultaneously (i.e. concurrent
reduction of all-arguments to.a function). OR-parallelism results from having different portions
of the same stream being produced simultaneously on different processors.

The:performance-of queries on distributed-databases is greatly affected by-the relative locations
of the data and the processes-that operate-on that data. Many techniques- exist-for optimizing
queries on-distributed databases. Distributed Log(F) provides the-ability to exploit these tech-
niques. By providing the ability to-subdivide queries and specify the processor upon which each
portion is to execute, Log(F) alicws:programmers to express efficient distributed queries.

Many stream-based concurrent programming systerms {78]-arc-designed for shared-memory rul-
tiprocessors and :therefore attercpt to-exploit a- very fine granularity of concurrency. In non-
shared memory énvironments, where communicatior:- and pmccsscs are not cheap, any perfor-
mance gained through-concurrency will be-iost in overhead. For such environments, it is neces-
sary to allow a much coarser granularity of concurrency.

Ideally, in non-shared memory environments, the-compiler should be-able to recognize potential
concurrency, balance it against the.overhead, and decide how to distribute a given program.
While such compilers exist for distributed database queries, no such compilers exist for arbitrary

distribuied:programs. Therefore, we maust initially require that the programmer specify how a
given program is-io be distributed. However, the programmer should not have to define the dis-
tribution of -the program- when designing the logic. Instead, the programmer should write the
entire program first and then specify concurrency-without changing the program’s semantics.

We intend to-provide two intérfaces to distributed Log(F) to facilitate the composition of distri-
buted programs. First, we provide sitopic-annctations which allow the programmer to indicate
transducers which are to reside on remote processors. .Second, we intend to provide a graphics
interface 10 Log(F). Programmers will seiect iransducer icons-from a toolbox and connect them
together to form -larger transducers. Process boundaries will be indicated by surrounding por-
tions of the resuiting graph with boxes to indicate that that porticn is to be-run on one processor.
Boxes will:be annotated to indicate which processor they should be run on.

Ultimately, we will not-require the programmer to specify how to distribute his program; we will
only-require that:the programmer assign weights o each of the c;cmcmary transducers used in
his program. Weights will be 2 function of the computational expense for each input clement as
well as the. ratio. of inpui ¢lements to output clements. Weights of larger ransducers will be
determined by appropriately combining the weights of the elementary transducers that compose

them. These weights will be-used by the compiler to determine how best to distiibute the pro-

gram,
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5.8. ?Program/Query Optimization (Lewis Chau, Cliff Leung, Dick Muntz, Stott Parker)

Partial evaluation is a:special kind of programn transformation for the-purpose of optimization.
This-optimization is accomplished-mainly via-instantiation of parameters of a program by pro-
‘pagating values for top-level formal arguments-through the-program (execution of the unification

at compile time),-and reduction of the number of logical inferences by -opening calls. It is simi-
lar in:-many-ways:to macro expansion. ’

‘A query that is a-Prolog goal:can be executed in many different ways. Two-level optimization is
introduced-as a means of finding a-way to execute the query that is computationally as efficient
as possible. First-level optimization applies partial evaluation as an-alternative to compiling
-queries. With this approach,-the partial evaluation system.expands an input Prolog query, gen-
-erating a conjunction of calls'to the-extensional-database (EDB) intermixed with calls to-built-in
-predicates. Redundant goals can be eliminated:-to some extent at:this level. The partial evalua-
tion system-then transmits conjunctions of calls which can be the subject of further optimization
‘by a database system. Second-level.optimization (query planning) then optimizes a-query at the
database level. Its purpose is:to analyze-and improve queries based on straightforward informa-
tion about the Prolog program underlying the query and the EDB itself. See [23].

‘Partial-Evaluation- Database
Level Level
mput | T2 | permedire | PY | Oprimized
- e - — - - >
Query Evaluator Query ~ Planner Query
Two-level Query Optimization

We are interested in applying partial evaluation to query optimization. A knowledgc base is
composed of a set of rules and ground facts. We can treat the set of rules simply as a logic pro-
gram and the set of ground facts as & conventional relational database. Answering a quzry is
equivalent to partially evaluating the query by an interpreter (panial evaluator), and exccuting
the resulting conjunction of calls to the database. Optimization can be applied both to the partial
evaluation level and to the database level. Currently, we have implemented 2 partial evsluator
for full Prolog programs. ’

The output of partial evaluation-is a conjunction of calls to the extensional database intermixed
with calls to builtin predicates. In second level optimization, our major concem is the design of
a query-plan such that the resulting query will be executed more cfficienty. In Prolog, the order-
ing of clauses:in a program, and the ordering of goals in the right-hand side of a clause, is impor-
tant control information that helps to determine the way a program is exesuted. This control
information permits generation of an efficient query plan. The control inforization that is critical
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to-the query-planner is described in [23]. Currently, we-are applying-the two-level optimization
technique-to the Tangram Stream Processor.

5.9. The:Synopsis of Database Responses (Chung-Dak-Shum, Dick Muntz)

Conventional responses in databasz systems, usually given as lists of atomi¢ objects, although
sufficient to serve:the purpose of conveying information, do not necessarily provide efficient and.
effective communications:betweer a user and the system. Recently, new notions of answers to
queriss have been receiving more research interest. For cxamplc, in [45], an answer t0 a query is
expressed -in terms of both atomic facts-and:general rules; in [29], intensional descriptions-or
concepts are being used as part of an answer. This latter notion of answers is particularly-helpful
when the number of entities or objects which satisfy the query is very large.

In:(29], the answer to a query-is expressed not as-a set of individuals, but as a set of concepts or
predicates, whose extensions may not be explicitly -represented. Now suppose that we have
retrieved 2 set of individuals as the answer to a conventional database query, and:we want :o re-
express the answer in terms of a set of concepts. Those concepts must, of course, be pre-defined;
otherwise, the user may not be familiar with them and the answer in terms of those concepts thus
will not make:too much sense. One of the immediate drawbacks to such an approach of express-
ing answers is that the extensions of the pre-defined concepts often do not satisfy the query con-
ditons as a whole. As a result, we cannot express answers the way we want except in very rare
cases.

We consider expressions for answers in terms of concepts and individuais [80]). Exceptions
within individual concepts are allowed. Two criteria are defined as measures of the goodness of
such expressions: (i) minimizing the total number of terms; (ii) minimizinyg the number of excep-
tions. Expressions satisfying these two criteria are called optimal expressions. We have shown
that, under a strict taxonomy of concepts, any two optiznal expressions for an extensional answer
share the same set of terms. The inductive proof 2iso leads to an algorithm for obtaining such
expressions. Generalizing the strict taxonomy of concepts to a join-semilattice of concepts elim-
inates the rerm-uniqueness property and also makes the problem of finding an optimal expression
intractable. The problem under multiple:iaxonomies, although it involves a restricted type of
join-semilattice, remains intractable.

One of the motivations behind our interest in different forms of answers is their conciseness.
However, if there is a large number of individuals within a concept and approximately-haif of
the individuals satisfy the query. Using an expression of concepts and individuals, no longer are
we able to 2xpress our answer concisely. If we insist on concise answers, one possible ‘solution’

is to sacrifice preciseness-for conciseness [81]. For each concept, we associate a count of its
individuals and a count of qualified individuals which satisfy the query and refer to them, collec-
tively, as a quantified concept. An aggregate or xmprecxsc response is just an expression of
quantified concepts. We study the tradeoff between conciseness and preciseness. Conciseness is
measured by the length or the number of guantified coticepts in an expression, and preciseness is
measured by the entropy or the araount of uncertainty associated with the expression. Given its
length, an expression with:the minimuns: amount of entropy is considered optimal. Under a one-
level taxonomy with the same cardinalities for all leaf concepts, the problem of finding an
optimal expression can be solved inexpensively. An efficient heuristic is also proposed for the
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general-one-level taxonomy. For a taxonomy of more than one level, an algorithm is suggested.
Although it is does not always lead to an optimal expression, it avoids the combinatorial explo-
sion associated with the problem and-appears to lead to good solutions.

Our work on:imprecise responses is closely related to

¢ Statistical Databases
o Categorical Databases

Studies-on statistical database management systems-[40] suggests the definition summary tables.
in 3atabases-which are:physically stored and maintained as redundant data as wellas the original
global database. Making use of such summaries, a large class of queries can be answered
without.extensively accessing data from the global databases. -Currently, we are interested in the
representations of such summaries under the general context of information abstraction.

AT
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6. Tangram-Industrial Strength Prolog

Prolog goes a long way toward providing the kind of declarative modeling functionality we
desire, and has the added benefit that:it has a strong connection (from its logical foundation) with
relational database systems. Still, to:provide the ‘industrial strength’ environment we require for
Tangram, a number-of extensions to-Prolog must be made:

» Module management
+ Prolog database:management
+ Object management

Tangram Prolog is-an extended Edinburgh-style Prolog system, augmented-with a development
environment and modules of low-level primitives for the functions listed above. Modules permit
selective-access to subsets of these primitives to individual Prolog processes.

6.1. Module Management (Tom Page, Dick Muntz)

The concept of reducing software complexity through modularization.is well known and essen-
tial: Conventional languages have employed procedures-and abstract data:typing techniques to
achieve modularity. Program modules can be constructed-independently and composed to form
larger systems, Access to a module is available only via-its published interface. Internal data
structures and procedures-are invisible outside the module. The design-and-implementation pro-
cess can be facilitated by transparently replacing initial, simple implementations of data struc-
tures or services with more sophisticated versions which maintain the same well-defined inter-
face.

By-contrast relatively little work has been done on modularization in logic programming sys-
tems. Tangram Prolog subdivides the name space of procedures so that each module has its own
complete name space. Different parts of a system can be written without knowledge about the
local names of other parts. Modules can be collected into libraries to group independent subsys-
tems. Libraries are modules of modules which have their own published interfaces and hide the
interfaces of internal modules.

'6.2. Prolog Database Management (Tom Page, Dick Muntz)

There is considerable interest in combining database and logic programming technologies
(66,46,90,93,94]. The motivation stems primarily from appreciation of the complementary
benefits of the two technologies which were developed largely independently [92, 83,76]. Our
modeling environment requires more sophisticated interpretation of data than current database
systems provide as well as efficient access to larger volumes of data than current Prolog imple-
mentations afford.

Many attempts at connecting Prolog with Relational DBMSs have been documented over the
past few years [17,94]. However, simply connecting the two systems via an interface is woe-
fully naive [22]. Current Prolog implementations were designed to provide very fast unification
over small atom spaces. The problem is that all data that is brought into the Prolog workspace
becomes tightly intertwined in order to optimize unification, the performance bottleneck in Pro-
log. Atoms are not easily garbage collected or dropped from the workspace when they are no
longer of interest. The volume of data in database applications quickly swamps current Prolog
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system tables. The size-of applications envisioned taxes the Prolog programming environment
beyond its limits.

‘Our-asserton is that the database should be viewed as-a huge virtual workspace for Prolog. This
workspace must cache units of data that are persistently-stored-in the database.

The workspace management replacement algorithm must handle three patterns of database
access.

(1) Large flat relations may be accessed via the stream interface. Streams are sequences of
terms-that flow into transducers. An input stream-can be discarded after processing by-the
transducer.

(2) Large complex objects may be integrated into the Prolog workspace by ‘opening’ them,
and then operating:upon them as though situated in memory. When they are ‘closed’, they
are either discarded or rewritten in the database.

(3) Modules of code stored in the database may:-be brought into the Prolog workspace. Code in
the modules may then be-run until the modules are discarded.

Standard Pr.°log implementations lack the ability to deal with code or data as modules. Each
clause is independent in Prolog; relationships or structure among clauses-are not expressed but
rather established operationally via inference [20]. While Prolog programs exhibit little locality
when viewed from this.perspective of extreme modularity, modules provide a logical bundle of
code/data within which-locality is expected. Thus, we propose-a néw organization for the War-
ren Abstract Machine [36,91] in which separate atom and functor tables are built for each
module. If locality exists, program execution will cross module boundaries infrequently relative
to intra-module unifications. Within each module, atom unification will be very fast at the
expense of translating arguments across module boundaries.

6.3. Object Management (Tom Page, Dick Muntz)

One characteristic of a-logic :programming language is that the same call with the same argu-
ments returns the same results in any context [28]. All of the information needed to perform an
operation must be present in the arguments and not recorded in the state of the program. This
makes it very difficult to achieve the important principle of data abstraction in a logic program-
ming language. We must have a way to represent persistent state information in Prolog, espe-
cially if we are to provide a transparent database model.

Tangram Prolog will provide an object-oriented programming module which adds the notion of
persistent objects to the language. Objects may be managed by the database and become active
when they are addressed with messages which they support. Name binding issues with respect
to inherited methods will be explored.
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7. Future Projects

The list of open projects is vast. For example, translation is a pervasive-problem. The multitude
-of differing: tool input/output formats requires good translation tools, and mapping among
-different kinds of models is an important related problem. The SARA project at UCLA has dealt
heavily with:translation issues, and it seems likely that some SARA tools can be adapted here.

T G L TR L T

LR

Several important projects that-we have begun to address are listed here:

+ Estimation of time/space requirements to find solutions-of models
+ Automated use-of tools/testbeds given an experiment
+ Automated sensitivity analysis
Automated explanation
Induction of analytic models from behavior (leaming)
Paradigm systems for
« Production Systems/Triggers
¢ Petri nets

Those who sell electronic gadgetry would have us believe that the computer age will be a new era
for scientific thought and humanity; they might also point out the basic problem, which lies in the
construction of models.

— Rene Thom {88]

il
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1. ‘OVERVIEW

TANGRAM: PROJECT OVERVIEW
Richard R. Muntz, D. Stott-Parker
CSD-880032 (39pp.)

April 1988 '

Today, most computers are used for the modeling of real-world systems.
Demands on the extent and quality of the modeling are growing rapidly. There is
an:ever-increasing need for-environments in which-one can construct and evalu-
ate-complex models both quickly and accurately.

Successful modeling environments will require-a cross-disciplinary combination of
different technologies:

System modeling tools
Database management
Knowiedge base management
Distributed computing

None of these: technologies by itself provides all that is .needed. A modeling
environment_must offer high-speed retrieval and exploration of knowledge about
systems, as well as integration of diverse information sources with existing
modeling tools. /

Tangram is a distributed modeling environment being developed at UCLA. It is
an- innovative Prolog-based combination of DBMS and KBMS technology with
access to a variety of modeling tools.
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2. STREAM DATABASE PROCESSING

THE TANGRAM STREAM QUERY PROCESSING SYSTEM
D. Stott Parker, Richard R.-Muntz,.Lewis Chau
CSD-880025 -(28pp.)

March 1988

Tangram is an environment for modsling. It supports development and manage-
ment of models, simulation of models, analysls of simulation output and analysis

of models in- general. Its current focus is on computer system performance
modeling.

Modsling -applications routlnely generate large quantmas of simulation data, and
analysus of this data requires a system-that differs in significant ways.from exist-
ing-database systems. The data often takes the form-of time serigs, and there-
fore query processing requires -both stream processing techniques-and heavy
numerical computations (e.g., basic statistical and time series analysis) beyond
ordinary aggregates.

Oric of the driving concepts behind Tangram has therefore been the combination
of large-scale data access and data reduction with a powerful programming
environment. The Tangram-environment is based on Prolog, extending it with a
number of features, including process management, distributed database access,
and genaeralized stream processing.

This paper describes the Tangram Stream Prccessor (TSP), the part of the
Tangram environment performing query processing on-large streams of data. The
paradigm of transducers on streams is usec throughout this system, providing a
‘database-flow’ (database uataflow) computation capability.

shorter version in Proceedings of the Sixth International Conf. on Data Engineer-
ing, Los Angeles, CA, February, 1989.

A THEORY OF DIRECTED LOGIC PROGRAMS AND STREAMS
D. Stott Parker, Richard R. Muntz

CSD-880031 (31pp.)

April 1988

For some time it has been recognized that logic programmers commonly write
directed predicates, i.e., predicates supporting only certain input and output pat-
terns among their arguments. In many logic programming implementations,
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programmers are encouraged to-use ‘mode declarations’ to announce this direct-
edness, both as a matter of style-and as a directive for compiler optimization.

A common application of directed programming is stream or list processing. Pro-
grams that operate on streams.or lists usually have specific input and output

argumsnts. More generally, directed. predicates. can represent functions, with
specific inputs-and outputs.

We present a new declarative formalism for directedness in logic: programming
systems. The formalism is:based on the use of partial ordering constraints rather
than unification. Semantics of the resulting system are-rigorously definable, and
extend ordinary-logic program semantics in a natural way.

The: approach-to directed logic programs presented here will probably provide
higher performance-than is possible with undirected programs. Furthermore, the
approach provides perspective relating diverse concepts such as predicate
‘modes’, functional computation, constraint processing, and stream processing.

shorter-version in R.A. Kowalski and K.A. Bowen (eds.), Logic Programming, MIT
Press, 1988, pp. 620-650.

IMPLICIT REPRESENTATION FOR EXTENSIONAL ANSWERS
Chung-Dak Shum, Richard Muntz

CSD-880067 (17pp:)

August 1988

An exhaustive list of atomic objects is not always the best means of information
exchange. This paper concerns the implicit representation of extensional
anzwe’s, Expressions for answers are given in terms of concepts and individu-
als. iixceptions within individual-concepts are allowed.

Two criteria are defined as measures of the goodness of such expressions: (i)
minimizing the number of terms;.(ii) positive terms preferred over negative terms.
Expressions satisfying these two criteria are called optimal expressions. It is
shown that under a strict taxonomy of concepts, any two optimal expressions for
an extensional answer share-the same set of terms. The inductive proof elicits
an algorithm for obtaining such expressions.

Generalizing the strict taxonomy of concepts to a join-semilattice of concepts
eliminates the term uniqueness property and also makes the problem of finding
an optimal expression intractable. The problem under multiple taxonomies,
although it-involves a restricted type of join-semilattice, remains intractable.

in L..Kerschberg (ed.),Expert Database Systems, Benjamin Cummings, 1989, pp.
497-522.




AN INFORMATION-THEORETIC STUDY ON AGGREGATE RESPONSES
Chung-Dak Shum, Richard Muntz

CSD-880068 (12pp.)

August 1988

An enumeration of individual objects is not always the best means of information

exchange. This paper concerns the problem of providing aggregate responses to
database queries.

An aggregate response is an expression whose terms are quantified concepts.
The tradeoff between the conciseness and preciseness of an aggregate
response is studied. Conciseness is measured by the length (the number of
terms) of an exprassion, and preciseness is measured by the entropy or the
amount of uncertainty associated with the expression. For a given length, an
expression with the minimum amount of entropy is called optimal.

Under a one-level taxonomy with the same cardinalities for all leaf concepts, the
problem of finding an optimal expression can be solved inexpensively. An
efficient heuristic is also proposed for the general one-level taxonomy. For a tax-
onomy- of mora than one level, an efficient heuristic is suggested which experi-
ments indicate yields good solutions.

in Proc. International Conf. on Very Large Databases, Los Angeles, CA, August
29-September 1, pp. 479-490, 1988.

ASPEN: A STREAM PROCESSING ENVIRONMENT
Brian K. Livesey, Richard R. Muntz

CSD-880080 (26pp.)

October 1988

In this paper, we describe ASPEN, a concurrent stream processing system.
ASPEN is novel in that it provides a programming model in which programmers
use simple annotations to exploit varying degrees and types of concurrency. The
degree of concurrency to be exploited is not fixed by the program specification or
by the underlying system. Increasing or decreasing the degree of concurrency to
be exploited during execution does not require rewriting the entire program, but
rather, simply re-annotating it.

Examples are given to illustrate the varying types of concurrency inherent in pro-
grams written within the stream processing paradigm. We show how programs
may be annotated to exploit these varying degrees of concurrency. We briefly
describe our implementation of ASPEN.
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ASPEN: A STREAM PROCESSING -ENVIRONMENT
Brian K. Livesey

CSD-880098 (120pp.)

December 1988

Stream.processing-is an ideal paradigm for data-intensive applications. The solu-
tions to a rich and varied set of problems that are, at best, awkward to express in
other paradigms, can be expressed elegantly within the stream processing para-
digm. Furthermore, stream processing presents an execution mode! in which
such problems can be solved efficiently.

This thesis describes ASPEN, a stream processing environment. A programmirig
language called Log(F) is extended to make it an appropriate language for
expressing stream processing programs. The thesis focuses on those exten-

sions that provide support for concurrent processing and access to distributed
data.

The approach is novel in that the programming mode! allows the determination of
the granularity of concurrency to be separated from the actual coding of the pro-
gram. The degree of concurrency to be exploited is not fixed by the program
specification or by the underlying system. Simple annotations allow the program-
mer to specify varying degrees of concurrency. Increasing or decreasing the
degree of concurrency exploited during exscution does not require rewriting the
entire program, but rather, simply re-annotating it.

Several examples are given to illustrate the varying types of concurrency inherent
in programs written within the stream processing paradigm. Examples are given
which demonstrate how programs may be annotated to exploit these varying

types and degrees of concurrency. The implementation of ASPEN is also
described.

STREAM DATA ANALYSIS iN PROLOG
D. Stott Parker

CSD-890004 (54pp.)

January 1989

Today many applications routinely generate large quantities of data. The data
often takes the form of a time series, or more generally just a stream — an
ordered sequence of records. Analysis of this data requires stream processing
techniques, which differ in significant ways from what current database query
languages and statistical analysis tools support today. There is a real need for




better stream data analysis systems.

Stream- analysis, like most data analysis, is best done in a way that permits
interactive exploration. It must support ‘ad hoc' queries by a user, and thess
queries should be easy to formulate and run. It seems then that stream data
analysis is best done in some kind of powerful programming environment.

A natural approach-here is to analyze data with the stream processing paradigm
of transducers (functional transformations) on streams. Data analyzers can be
composed from collections of functional operators (transducers) that transform
input data streams to output streams. A modular, extensible, easy-to-use library

of transducers can be combined in arbitrary ways to answer stream data analysis
queries of interest.

Prolog offers an excellent start for an interactive data -analysis programming
environment, ‘However most Prolog systems have limitations that make develop-
ment of real stream data analysis applications challenging.

‘We describe an approach for doing stream data analysis that has been taken in
the Tangram project at UCLA. Transducers are implemented not directly in Pro-
log, but in a functional language called Log(F) that can be translated to Prolog.
With Log(F), stream processing programs are straightforward to develop. A by~

product of this approach is a practical way to interface Prolog and database sys-
tems.

STREAM PROCESSING: AN EFFECTIVE WAY TO INTEGRATE Al AND DBEMS
D. Stott Parker

CSD-890005 (11pp.)
January 1989

We present a novel approach for integrating Al systems with DBMS. The
‘impedance mismatch’ that has made this integration a problem is, in essencs, a
difference in the two systems’ models of data processing. QOur approach is to
avoid the mismatch by forcing both Al systems and DBMS into the common
model of stream processing.

By a stream here we mean an ordered sequence of data items. Stream process-
ing is a well-known Al programming paradigm in which functional operators
(which we call transducers’) are combined to obtain arbitrary mappings from
streams to streams. The stream processing paradigm can be, and has been,

applied equally well as an Al programming model and as a query processing
model in databases.

We argue first that, in practice, the relational model of data is actually the stream
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model. The pure relational model cannot capture important aspects of relational
databases such as column ordering, duplicate tuples, tuple ordering, and access
paths, whils the stream modsl does so naturally.

We then describe the approach taken in the Tangram project at UCLA, which
integrates Prolog with relational DBMS. Prolog is extended to a functional
language called Log(F) that facilitates development of stream processing pro-
grams. The integration of this system with DBMS is simuitaneously elegant, easy
to uss, and relatively efficient.

shorter version-in Proceedings of the Sixth International Conf. on Data Engineer-
ing, Los Angeles, CA, February, 1989.

STATISTICAL RULES: A NOTION OF DATABASE ABSTRACT
AND ITS ROLE IN QUERY PROCESSING

Chung-Dak Shum, Richard Muntz

CSD-890007 (25pp.)

January 1989

A database instance is not an arbitrary collection of data, but rather many correla-
tions exist among data items. The notion of statistical rules is introduced as a
means of exprassing such relationships. We demonstrate that statistical rules can
be utilized in the query optimization process. In selectivity factor estimation, for
example, statistical rules can actually be used to introduce relevant attributes the
same manner as exact rules in semantic query optimization. Other uses of sta-
tistical rules include the enhancement of paralilelism in database machines, and
providing incomplete/quick answers as well as more informative responses.

We quantify the notion of how to measure the "inexactness” of a statistical rule
using an entropy measure. The lower the entropy or uncertainty of a rule, the
better the rule is. Based on such a measure, we show that constructing statisti-
cal rules using a "greedy" algorithm will result in a reasonable, although perhaps
not optimal rule.

3-WAY HASH JOIN QUERY PROCESSING IN
DISTRIBUTED RELATIONAL DATABASE SYSTEMS
Scott E. Spetka, Gerald J. Popek

CSD-890008 (17pp.)

January 1989

Initial distribution of relations as well as storage structures and organization have
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an important impact on perfermance and the appropriate choice of processing
techniques for database operations. Consideration-of data distribution for parti-
tioned relations used in hash Join processing lead us to expsriment with a new
algorithm for processing 3-way join queries in a distributed system.

Database cacheing is also important for performance of distributed database
management systems. An important goal is to provide an algorithm that can
complement existing algorithms to provide sufficient generality to operate in a
network transparent environment where the location of available resources may
be.changing, and to use those resources effectively. We present a new algorithm
for processing 3-way join queries that can take advantage of cacheing by provid-
ing improved performance when data is not ideally distributed for some other
algorithms.
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3. LANGUAGE SUPPORT

LOG(F): A NEW SCHEME FOR INTEGRATING REWRITE RULES,
LOGIC PROGRAMMING AND LAZY EVALUATION

Sanjal Narain

CSD-870027 (18pp.)

July 1987

We present LOG(F), a new scheme for integrating rewrite rules, logic program-
ming, and lazy evaluation. First, we develop a simple yet expressive rewrite rules
system F* for representing functions. F* is ncn-Nostherian, i.e., an F* program
can admit infinite reductions. For this system, we develop a reduction strategy
called selsct and show that it possesses the property of raduction-completeness.
‘Because of this property, select exhibits a weak form of lazy evaluation.

We then show how to implement F* in Prolog. Spescifically, we compile rewrite
rules of F* into Prolog clauses in such a way that when Prolog intereprets these
clausss, it directly simulates the behavior of select. Since it is not necessary to
change Prolog, it is possible to do lazy evaluation efficiently. Since Prolog is
already a logic programming system, a combination of rewrite rules, logic pro-
gramming and lazy evaluation is achieved.

IMPROVING CLAUSE ACCESS IN PROLOG

D. Stott Parker, Thomas W. Page, Richard Muntz
CSD-880024 (7pp.)

March 1988

One of the weakest aspects of Prolog is in its access to clauses. This weakness
is lamentable as it makes one of Prolog’'s greatest strengths, its ability to treat
programs as data and data as programs, difficult to exploit. This paper proposes
modifications to Prolog and shows how they circumvent important problems in
Prolog programming in a practical way. For example, the proposed modifications
permit Prolog programs that perform efficient database query (join) processing,
coroutining, and abstract machine interpretation. These modifications have been
used successfully at UCLA, and should be easy to implement within any existing
Prolog system.
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LOG(F): AN OPTIMAL COMBINATION OF LOGIC
PROGRAMMING, REWRITING, AND LAZY EVALUATION
Sanjal Narain

CSD-880040 (176pp.)

June 1988

A new ap;  :h for combining logic programming, rewriting, and lazy evaluation
is described. It rests upon subsuming within logic programming, instead of upon
extending it with, rewriting, and lazy evaluation.

A non-terminating, non-deterministic rawrite rule system, F* and a reduction stra-
tegy for it, select, are defined. F* is shown to be reduction-complete in that select
simplifies terms whenever possible. A class of F* programs called Deterministic
F* is defined and shown to satisfy confluence, directedness, and minimality.
Conflusnce ensures that every term can be simplified in at most one way. Direct-
edness eliminates searching in simplification of terms. Minimality ensures that
select simplifies terms in a minimum number of steps. Completeness and
minimality enable select to exhibit, respectively, weak and strong forms of lazi-
ness.

F* can be compiled into Horn clauses in such a way that when SLD-resolution
interprets these, it directly simulatss the behavior of select. Thus, SLD-resolution
is made to exhibit laziness. LOG(F) is defined to be a logic programming system
augmented with an F* compiler, and the equality axiom X=X. LOG(F) can be
used to do lazy functional programming in logic, implement useful cases of the
rule of substitution of equals for equals, and obtain a new proof of confluence for
combinatory logic.

EXECUTABLE TEMPORAL SPECIFICATIONS WITH FUNCTIONAL GRAMMARS
H. Lewis Chau, D. Stott Parker

CSD-880046 (20pp.)

June 1988

The Stream Pattern Analyzer (SPA) is one part of the Tangram Stream Query
Processing System being developed at UCLA. It uses functional grammars to
specify pattern analysis for streams of data.

Parallel execution events in a distributed system may be captured in an event
stream for analysis. Given a set of functional grammar rules, SPA can analyze
arbitrarily complex behavior patterns in this stream. At the same time a SPA
grammar can act as a declarative specification of valid event histories.

We define a simple but powerful scheme that coroutines recognition of muiltiple
patterns in an event stream. Propositional temporal logic queries can be
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expressed in SPA in terms of predefined temporal operators such as aeventually,
implies, not_until, etc. Thus complex history-oriented specifications can be
developed easily.

Functional grammar rules by themselves act as pattern generators or specifiers,
and can be used to develop parsers by compilation to Log(F). Log(F) is a combi-
nation of Prolog and a functional language called F*. We describe a simple algo-
rithm to compile functional grammars to Log(F), and prove its correctness.

PX REFERENCE MANUAL, VERSION 0.2
Ted Kim

CSD-880079 (47pp.)

October 1988

This manual describes an interface to the X Window System for Prolog. The X
Window System is a network-based window system providing a desktop style of
user interface and graphics. PX provides a low level interface to X for Prolog
similar to that provided by “Xlib" for the C language. PX is designed for use with
version 11 of the X Window System. Higher level interfaces (such as toolkits) are
built on top of this one and are outside the scope of this document.

PX is implemented in the C language using the C language foreign function inter-
face from Quintus Prolog. Almost any Prolog which supports the Quintus style
interface can use this package with few rastrictions. In particular, SICStus Prolog
was used in the development of this system. This document is a reference
manual. As such, it is not a tutorial or user’s guide to X or Prolog.

FUNCTIONAL LOGIC GRAMMAR:

A NEW SCHEME FOR LANGUAGE ANALYSIS
H. Lewls Chau, D. Stott Parker

CSD-880097 (16pp.)

December 1988

We present a new kind of grammar. It combines concepts from logic program-
ming, rewriting, lazy evaluation, and logic grammar formalisms such as Definite
Clause Grammar (DCG). Woe call it Functional Logic Grammar.

A functional logic grammar is a finite set of rewrite rules. It is efficiently execut-
able, like most logic grammars. In fact, fu~ctional logic grammar rules can be
compiled to Prolog and executed by existing Prolog interpreters as generators or
acceptors. Unlike most logic grammars, functional logic grammar also permits
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higher-order specification and modular composition.

This paper defines functional logic grammar and comparss it with the successful
and widely-used DCG formalism in logic programming. We show that pure DCG
can be easily translated into functional logic grammar. Functional logic grammar
enjoys the advantages of DCG, as well as its first-order logic foundation. At the
same time, functional logic grammar ranks higher in aspsects such as expresswe-
ness and modularity, and permits lazy evaluation.
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4. COMPUTER SYSTEM PERFORMANCE MODELING

A NOTE ON THE COMPUTATIONAL COST OF THE
LINEARIZER ALGORITHM FOR QUEUEING NETWORKS
Edmundo de Souza e Sliva and Richard R. Muntz
CSD-870025 (15pp.)

July 1987; revised February 1988

Linearizer is one of the best known approximation algorithms for obtaining
numeric solutions for product form queueing networks. In the original exposition
of Linearizer, the computational cost was stated ic be O(MK3) for a model with
M queues and X job classes. We show in this note that witii some straightfor-
ward algebraic manipulation Linearizer can be modified to require only O(MK?2)
computational cost.

We also discuss the space requirements for Linearizer and show that the space
can be reduced to 0(MK') but with some increassd computational cost.

To appear, IEEE Transactions on Coiniputers, 1989.

AN OBJECT ORIENTED METHCOOLOGY FOR
THE SPECIFICATION CF MARKOV MODELS
Steven Berson, Edmuitdo Siiva, Richard Muntz
CSD-870030 (23pp.)

July 1987

Modelers wish to speciiy their models in a symbalic, high level language while
analytic techniques requirs-a-iow leval, numerical representation. The translation
between these description levels is a majorproblem.

We describe a simple, but surprisingly powerful approach to specifying system
level models based on an object oriented paradigm. This basic approach wili be
shown to have significant advantages in that it provides the basis for modular,
extensible modeling tools. With this methodology, modeling tools can be quickly
and easily tailored to particular application domains. An implementation in Pro-

qu, of a system based on this methodoiogy and some example applications are
given.
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ANALYTIC MODELING METHODOLOGY FOR EVALUATING THE
PERFORMANCE OF DISTRIBUTED, MULTIPLE-COMPUTER SYSTEMS
Alex Kapelnikov

CSD-870061 (201pp.)

November 1987

In this dissertation, we describe an analytic modsling methodoicgy for evaluating
the performance of distributed, multiple-computer systems. The concepts and
tecnhniques of this methodology are useful for the approximate analysis of a wide
range of distributed computing environments and communication networks. The
main strategy of our approach is to segregate, as much as possible, the model of
the “logical” behavior of an application (a program or a process) from the model
of its underlying execution environment. For representing program behavior,
graph-based techniques are used, while extended queueing networks are utilized
for modeling system architectures. The solutions of both types of models are
combined to estimate the performancs of a distributed system in executing some
selected applications.
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To illustrate the practical application of the methodology introduced in this disser-

tation and provide an indication of its expected accuracy level, we have included
two case studies.

A MODELING METHODOLOGY FOR THE ANALYSIS

OF CONCURRENT SYSTEMS AND COMPUTATIONS

Alex Kapeinikov, Richard R. Muntz, and Milos D. Ercegovac

in M.H. Barton, E.L. Dagless, G.L. Reijns (eds.), Distributed Processing,
Elsevier Science Publishers, pp. 465-479, 1988.

O L G L U e S

i

In this paper, we describe a novel modeling methodology for evaluating the per-
formance of distributed, multiple-computer systems. Our approach employs a set
of analytic tools to obtain an estimate of the average execution time of a parallel
implementation of a program (or transaction) in a distributed environment. These
tools are based on an amalgamation of queusing network theory and graph
models of program behavior. Hierarchical application of heuristic optimization
techniques facilitates the analysis of large and complex programs. A realistic
example is used to illustrate the practical application of our methodology.
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A DISTRIBUTED ALGORITHM TO DETECT A GLOBAL STATE

OF A DISTRIBUTED SIMULATION SYSTEM

Behrokh Samadl, Richard R. Muntz, D. Stott Parker

in-M.H. Barton, E.L. Dagless, G.L. Rsijns (eds.), Distributed Processing,
Elssvier Science Publishers, pp. 19-34, 1988.

In-this paper, we describe a novel modeling methodology for evaluating the per-
formance of distributed, multipls-computer systems. Our approach employs a set
of analytic tools to obtain an estimate of the average execution time of a parallel
implementation of a program {or transaction) in a distributed environment. These
tools are based on an amalgamation cf quesueing network theory and graph
modsls of program behavior. Hierarchical application -of heuristic optimization
techniques facllitates the analysis of large and complex programs. A realistic
exampls is used to illustrate the practical application of our methodology.

DISTRIBUTED SHARED MEMORY IN A LOOSELY COUPLED
DISTRIBUTED SYSTEM (EXTENDED ABSTRACT)

Brett D. Fleisch

in Proceedings COMPCON Spring 88, San Francisco, CA,
February-March 1988, pp.182-184.

In this work we describe new implementation experiences with a distributed
shared memory system implemented in a loossly coupled distributed system.
Our goal was to investigate the feasibility of distributed shared memory (dsm) in
an operating system-Xernel. Li (1986) demonstrated the feasibility of such a sys-
tem outside of the kemel with a number of numeric applications, but it remained a
relatively open question as to hiow well dsm perferms for a variety of non-numaric
applications and what the effects of dsm are on other kernsl services. The
organization of dsm we describa resembles a cross-processor segmented paging
system. Our talk relates implementation experisnces and preliminary perfor-
mance results. We plan to report resuits from experiments with symbolic compu-
tation, which emphasizes rearragement of data, where often the sequence of
operations is highly data dependent and less amenable to compile time analysis
than numerical computation. One general goal of this work is to describe a set of
software primitives and to identify hardware features that can be used to suppert
the conversion of applications from nondistributed shared memory to distributed
shared memory. These features may include hints, user advice, control pimi-
tives, and architectural modifications that will improve functionality and perfor-
mancae.
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BOUND!ING AVAILABILITY OF REPAIRABLE COMPUTER SYSTEMS
Richard Muntz, Edmundo Sliva, A. Goyal

CSD-880070 (26pp.)

September 1388

Markov models are widely used for the analysis of availability of
computer/communication systems. Realistic niodels often involve stats space
cardinalities that ar~ 30 large that it is impractical to generata the transition rate
matrix let alone solve for availability measures. Various state. space reduction
methods have besn developed, particularly for transient analysis. In this paper
we present an approximation technique for determining steady state availability.
Of particular interest is that the method also provides bounds on the error.
Examples ar given to illustrate the method.
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5. CONSTRAINT-BASED MGDELING

SET CONTAINMENT INFERENCE AND SYLLOGISMS
Paolo-Atzeni, D. Stott Parker

CSD-870022 (34pp.)

March 1987

Type hierarchies and- type inclusion (isa) inference are now standard in many
knowledge representation schemes. In this paper, we show how to determine
consistency and inference for coliections of statements of the form

mammal isa vertebrats.

These containment statements relate the contents of two sets (or types). The
work here is-new in-permitting statements with negative information: disjointness

of sets, or non-inclusion of sets. For example, we permit the following state-
ments also:

mammal isa non(reptile)
non(vertetrate) isa non(mammal)
not( reptile isa amphibian)

Binary containment inference is the problem of determining the consequences of
positive- constraints. P and negative constraints not(P) on sets, where positive
constraints have the form P: X ¢ Y. Negations of these constraints therefore
have the form not(P): X n non(Y) # &, so positive constraints assert contain-
ment relations among sets, and negative constraints assert that two sets have a
non-empty intersection,

We show binary containment inference is solved by rulss essentially equivalent to
Aristotle’s Syllogisms. Necessary and sufficient conditions for consistency, as
well as sound and complete sets of inference rules, ars presented for binary con-
tainment. The sets of inference rules are compact, and lead to polynomial-time
inference algorithms, so permitting negative constraints does not result in intrac-
tability for this problem.

To appear, Theoretical Computer Science, 1988.
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PARTIAL ORDER PROGRAMMING
D. Stott Parker

CSD-870067 (89pp.)

December 1987

We introduce a programming paradigm in which statements are constraints over
partial orders. A partial-order programming problem has the form

minimize

subjectto  u; vy, upAvy, -
where u is the goal, and uy dvy, uav,, *++ is a collection of constraints called
the program. A solution of the problem is a minimal value for u determined by

values for u, vy, etc. satisfying the constraints. The domain of values here is a
partial-order, a domain D with ordering relation 3.

The partial order programrning paradigm has interesting properties:

(1) It generalizes mathematical programming, dynamic programming, and
computer programming paradigms (logic, functiocnal, and others) cleanly,
and oifers a foundation both for studying and combining paradigms.

(2) 1t takes thorough advantage of known resuits for continuous function-
als on complete partial orders, when the constraints involve expressions
using only continuous and monotone operators. These programs have an
elegant semantics coinciding with recent results on the relaxation solution
method for constraint problems.

(3) It presents a framework that may be effective in modeling of complex

systems, and in knowledge representation for cognitive computation prob-
lems.

ON CONSTRAINT-ORIENTED ENVIROMMENTS
FOR CONTINUOUS SYSTEMS SIMULATION
Richard A. Huntsinger

CSD-880018 (10pp.)

March 1988

Sets of simultaneous differential equations and sets of queries on those equa-
tions are naturally expressible as constraint networks in the constraint satisfaction
modeling paradigm. Further, relaxation enhanced to exploit typed valued con-
strainis provides a procedural semantics for such constraints which in the best
case reduces to propagation, and in the worst case performs comparably to other
paradigms. Accordingly, constraint satisfaction is advocated as the paradigm of
choice on which to base continuous systems simulation environments.
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‘Examples are presented. illustrating constraint network characterizations of con-
tinuous systems models, and their corresponding procedural semantics.

‘REPRESENTATION TRANSFORMATION IN
‘CONSTRAINT SATISFACTION SYSTEMS
Richard Huntsinger

CSD-880020 (11pp.)

March 1988

A practical class of constraint satisfaction systems operate on relaxable
representations of the form N =f(N), where N is a set of variables, and the
declarative semantics is the set of instantiations of N which preserve the equality.
In general, relaxation provides a complete procedural semantics for only a subset
p of such representations. Of interest, then, is the set of transformable reprasen-
tations a > p in which for each representation M, e« there exists a determinable
transformation T: e — p such that the declarative semantics of M, is identical to
that of T (M, ).

Relaxable representations for which f (V) is a polynomial are transformable, each
corresponding to a transform of the form N = (f (W)N*)V(n+1), where n is a func-
tion of the degree and cosfficients of the polynomial. This observation provides
some intuition about more general transformations, applicable to the implementa-
tion of powerful (complete over a superset of p) constraint satisfaction systems,

PARTIAL ORDER PROGRAMMING: EXTENDED ABSTRACT
D. Stott Parker

CSD-880086 (7pp.)

October 1988

We introduce a programming paradigm in which statements are constraints over
partial orders. A partial order programming problem has the form

minimize u
subjectto  u;dvy, uzdvy, -

where u is the goal, and u; 3vy, us vy, - -+ is d Luilection of constraints called
the program. A solution of the problem is a minimal value for u determined by
values for uy, vy, etc. satisfying the constraints. The domain of values here is a
partial order, a domain D with ordering relation 3.
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The partial order programming paradigm has interesting properties:

(1) it generalizes mathematical programming and also computer program-
ming paradigms (logic, functional, and others) cleanly, and offers a foun-
dation-both for studying and combining paradigms.

(2) It takes thorough advantage of known resulits for continuous functionals
on complete partial orders, when the constraints involve expressions using
only continuous and monotone operators. The semantics of these pro-
grams coincide with recent results on the relaxation solution method for
constraint problems.

(3) It presents 4 framework that may be effective in modeling, or
Knowledge representation, of complex systems.

in Proceedings of the Sixteenth ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages, Austin, Texas, January 11-13, 1989,

OPTIMIZATION BY NON-DETERMINISTIC, LAZY REWRITING
Sanjai Narain

CSD-880092 (19pp.)

November 1988

Given a set S and a condition C we address the problem of determining which
members of S satisfy C. One useful approach is to set up the generation of S as
a tree, whereg each node represents a subset of S. If from the information avail-
able at a node, we can determine that no members of the subset it represents
satisfy C, then the subtree rooted at it can be pruned, or not generated. Thus,
large subsets of S can be quickly eliminated from consideration. We show how
such a tree can be simulated by interpretation of non-deterministic rewrite rules,
and its pruning simulated by lazy evaluation.




