
WL-TR-91-4131

AD-A243 972 ' . TI-- D

ENLIGHTEN: A LOW COST UNIFIED EXPERT SYSTEM TOOL
FOR MANUFACTURING

R.S. Insley, P. A. Evans, P. W. Kennedy,
R. F. Matejka, M. Samadar, Ph.D

Universal Technology Corporation
4031 Colonel Glenn Highway
Dayton, OH 45431-1600

December 1991

Final Report for period December 1988 - June 1991

Approved for public release; distribution is unlimited.

91-18552lIl N I! HEI U E II IT1!! HI
MATERIALS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

WL-TR-91-4131

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable) Materials Directorate (WL/MLIM)University Technology Corp. Wright Laboratory

6c. ADDRESS (City, State, and ZIP -ode) 7b. ADDRESS (City, State, and ZIP Code)

4031 Colonel Glenn Highway Wright-Patterson AFB, OH 45433-6533

Dayton, OH 45431-1600

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) F33615-89-C-S701

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

65502F 3005 51 24

11. TITLE (Include Security Classification)

ENLIGHTEN: A LOW COST UNIFIED EXPERT SYSTEM TOOL FOR MANUFACTURING

12. PERSONAL AUTHOR(S)

R.S. Insley, P.A. Evans P.W. Kennedy, R.F. Matejka, M. Samadar
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final FROM Dec 88 TO Jun 91 December 1991 70

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Knowledge engineering, Expert systems, Artificial

intelligence, Manufacturing, Semantics

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

- The positive impact of expert system technology upon manufacturing can be heightened by
eliminating some of the impediments in the creation of knowledge based systems. This report
discusses the development of a semantic-based expert system development software tool, titled
Enlighten, which is able to acquire, refine and deliver knowledge from a domain expert with
limited computer expertise. Enlighten builds upon the Apple Macintosh philosophy for the
user interface providing a tool that non-computer literate experts can use without the need
of an intermediary. The design effort relies on semantic interpretation of typed English-
like statements to create linked hierarchies of related concepts. Significant challenges in
semantic interpretation and knowledge representation were encountered and are documented in
this report.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
&I UNCLASSIFIED/UNLIMITED El SAME AS RPT. E DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Dr. Walt Griffith (513) 255-8787 WL/MLIM

DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

OLIVER D. PATTERSON, Captain, USAF WALTER M. G FIT /
Technical Program Manager Branch Chief, Manufacturing Research
Manufacturing Research Branch Integration and Operations Division
Integration and Operations Division Materials Directorate
Materials Directorate

MATHEW DIBIASE, MAJ, USAF
ASSISTANT DIVISION CHIEF
INTEGRATION & OPERATIONS DIVISION

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/MLIM , WPAFB, OH 45433- 6533 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

Table of Contents

1.0 Introduction1
1.1. G oals and O bjectives .. 1
1.2 S cope2
1.3. Background ... 2

1.3.1 SBIR Phase I 2
1.3.2 SBIR Phase II ... 3
1.3.3 Overview of Report ... 4

2.0 Project Tasks ... 4
2.1. Identify Applicable Manufacturing Tasks .. 4

2.1.1. The ICAM Manufacturing Hierarchy 5
2.1.2. Classification of Tasks .. 7

2.2. Choice of Application Domain ... 8
2.3. Survey of Computational Capabilities of Existing Tools 9

2.3.1. Com puting Platform .. 9
2.3.2. Programming Language ... 9
2.3.3. Choice of OO PS ... 9

2.4. Study of Existing Expert Systems Developed by Conventional
M ea ns 10

2.4.1. Expert System s ... 10
2.4.2. Knowledge Acquisition Systems 11

2.4.2.1. Auto-Intelligience ... 11
2.4.2.2. KAT: Knowledge Acquisition Tool 11
2.4.2.3. SALT: A Knowledge-Acquisition Tool for
Propose-and-Revise Systems ... 11
2.4.2.4. KRITON: A Hybrid Knowledge Acquisition Tool12
2.4.2.5. OPAL: A Knowledge Editor 12
2.4.2.6. Rulemaster3 12
2.4.2.7. Conclusions ... 12

2.5. Identify Capabilities of Approach and Implementation 13
2.5.1. Short Term Tool Capabilities 13

2.5.1.1. Knowledge Acquisition 13
2.5.1.2. Knowledge Refinement 13
2.5.1.3. Knowledge Delivery .. 14
2.5.1.4. Knowledge Engineering Capabilities 14
2.5.1.5. Types of Reasoning ... 14
2.5.1.6. Metaknowledge ... 14

2.5.2. Long Term Tool Capabilities ... 15 Ac* .. , for •
2.5.2.1. Extension to Other Domains 15
2.5.2.2. Machine to Machine Interfaces 15 T, ,
2.5.2.3. Alternative User Interfaces 15 - "
2.5.2.4. Future Natural Language Research 16
2.5.2.5. Future Mathematical Implementations16... 16 -

3.0 Developm ent O bjectives .. 1 6 16 ,. ..
3.1 Developm ent Approach .. 17
3.2 Theoretical Background ... 17 , ,

3.2.1 Sets and Relations ... 18: -, ,,
3.2.2 U ser-D riven Search .. 19 .t i

I iiiA

3.3 Design Goals ... 20
3.4 The Design .. 21

3.4.1 Representational Structure ... 22
3.4.2 Grammar .. 24
3.4.3 Representational Strategy ... 27

3.4.3.1 Representing Objects 27
3.4.3.2 Representing Facts ... 29

3.4.3.2.1. Representing Relations 29
3.4.3.2.2. Representing Properties 303.4.3.3 Representing Events .. 31

3.4.4 The Inference Mechanism .. 32
4.0 Enlighten, The Result .. 34

4.1. General Overview ... 34
I 4.1.1. Input Methods 34

4.1.2. Summary Methods ... 35
4.2. Knowledge Acquisition ... 36
4.3. Knowledge Refinement ... 37
4.4. Expert System Delivery ... 38

4.4.1. Non-Expert User .. 38
4.4.2. Expert User .. 39

4.5. Inquiry Capability ... 39
5.0 Review of Enlighten ... 39

5.1 Summary of Review 1 ... 39
5.2 Summary of Review 2 .. 40
5.3 Response to Review 2 ... 43

6.0 Results and Conclusions ... 44
6.1 Overview .. 44
6 .2 R esults 4 5
6.3 Limitations .. 45
6.4 Conclusions ... 47

Bibliography
Appendix A: Enlighten Tutorial .. A-1

IV

I

I List of Figures

Figure 1. A Knowledge Continuum .. 3
Figure 2. ICAM Manufacturing Hierarchy .. 6
Figure 3. A structural view of a category ... 22
Figure 4. Summary of semantic primitives ... 26
Figure 5. Summary of conceptual modifiers .. 26
Figure 6. Conceptual representation of an Object ... 28
Figure 7. Conceptual representation of a relation ... 30
Figure 8. Conceptual representation of a property .. 31
Figure 9. Conceptual representation of an event .. 32
Figure 10. Inheritance of facts via fact categories ... 33

List of Table

I Table 1. WATERMAN'S EXPERT SYSTEM CATEGORIES 7

I
I

1.0 Introduction

This Phase II Small Business Innovative Research (SBIR) effort created a software
tool to aid in the development of expert systems for manufacturing. Generally, the tool
was to facilitate knowledge acquisition, refinement, and delivery in some way whichwould minimize the requirement of the user to understand computer programming-
related tasks of expert system development. The domain of focus is manufacturing
with emphasis on aerospace manufacturing. The following is the final report which
summarizes the effort.

I 1.1. Goals and Objectives

This project is entitled "Low Cost Unified Expert System Tool for Manufacturing."
The key phrases of the title reflect the objectives of the project. Each is discussed
separately.

I The intent is to provide a tool to a large number of users, thus the "Low Cost"
requirement. Many of the better known expert system tools have costs only large
companies can afford, often $20,000 or more for the software alone. This cost does
not reflect the expert, knowledge engineer, or programmer time or training. Some of
the more successful tools include Knowledge Engineering Environment (KEE), ART
and Nexpert. The product, called Enlighten, was developed to be very affordable from
both a software and hardware perspective.

"Unified" suggests that Enlighten contains an integrated set of features to facilitate
the entire expert system development process. The tool is intended to provide a
novice computer user with the opportunity to add information to the system, have the
system perform some sort of refinement on that information, and then deliver that
information as a complete expert system. This acquire, refine, and deliver strategy is
intended to let the user capture and convey information about various concepts in
which he or she is interested with a single tool.

"Expert System" implies that Enlighten uses knowledge and reasoning, resulting in
something more than -data processing" for the user. This system accepts information
about various topics of interest to the user and processes them, rather than simply
placing data into a file. The system analyzes the content of information being added
and attempts to find relationships between the different concepts, and can display
these relationships to the user.

"Tool" implies that Enlighten amplifies the inherent power of the user. First
generation expert system tools, usually called expert system shells, allow a user to
build an expert system by contributing all domain knowledge necessary to make
useful conclusions. When the system is used later, the expert or another user must
answer a series of questions from the expert system in order to gain information or
reach conclusions. Enlighten moves beyond first generation tools since it contains
knowledge which assists users in building specific expert systems. Thus, Enlighten is
an expert system which helps users build expert systems. Enlighten also allows users

to explore information in any order desired. In traditional expert systems, the user

follows the expert system, answering questions as desired; in Enlighten the expert

system follows the user, showing all requested information on demand. Because it is
an expert system assisting in expert system building and because it allows the user to
maintain control, Enlighten is a second generation expert system tool.

IFinally, "Manufacturing" is the primary domain of focus for Enlighten. As will be
discussed in Section 2.1, the scope of this project was narrowed to include only
classification or diagnosis tasks as measures of the success of the system.

From its beginning, this project sought to create a usable product. There are a
multitude of programs which receive little use, if they are even purchased. Ease of
use, both start up (learning) and long term, and product usefulness were foremost
considerations during product design and implementation. The better known tools
mentioned above are flexible and comprehensive, but are difficult to learn to use and
require that the user provide a complete and detailed structure of domain knowledge
when building an expert system. The technical team chose an engineering approach
rather than a research or scientific approach as the best way to attain the goals of this
project. As a result, Enlighten has a complete design. Its program is easily supported
and can be expanded to include other target knowledge domains.

I 1.2 Scope

When this effort was begun, the SBIR project team was aware of the limited time
and resources available for system development. Thus the focus was always on what
was considered doable, given existing constraints. In this report, the reader will be
shown how the design and implementation of the final system incorporates the most
important concepts involved without containing extraneous "bells and whistles."I These frills, while perhaps desirable for commercialization, are not necessary for
measuring the successful implementation of concepts. -ney may be added in future
versions of Enlighten.

1.3. Background

1.3.1 SBIR Phase I

Many of the ideas behind Enlighten actually began in July 1987, with the
commencement of the first phase of this SBIR project. At the root was the idea that
elimination of a common bottleneck in expert systems development could greatly
benefit manufacturing operations. The problem is known as the "knowledge
engineering bottleneck" or the "knowledge acquisition bottleneck." It would be
desirable to create a product which removed the knowledge engineer filter and placed
expert system development directly in the hands of an expert. The expert could then
create an expert system based on his or her own knowledge without the additional
personnel and time needed for the knowledge engineering process required in first
generation expert system tools.

A knowledge-rich methodology was proposed and prototyped during the Phase I
effort. Knowledge-rich implies that the system itself has some knowledge which it uses
to operate on a user's input. Consider a knowledge continuum where one end is
knowledge-free and the other is knowledge-rich as shown in Figure 1.

2

I

Knowledge-free Knowledge-rich

Figure 1. A Knowledge Continuum

IExpert systems, having no knowledge of their own, reside at the knowledge-free
end of the continuum. These expert systems do not have any domain knowledge or a
semantic understanding of concepts. At the knowledge-rich end, an expert system
would have the ability to mimic human thinking, for example, generalizing about
concepts or drawing conclusions based on relationships between concepts.

IIf indeed a knowledge-rich system could be developed, the expert would no longer
be required to know how a computer operates or how to program a computer. (The
user would not have to discover how to model his or her own thoughts in a program.)
Instead, the system, which contained a general model of the user, would accept user
input in some natural way, e.g. voice input or handwritten text. The system could
accept information the user enters and do something with it, rather than wait for the
next instruction from the user. For example, the system would be programmed to
organize and map new information, which the user spoke, into the previously existing
information. This has been a goal since the inception of the Low Cost Unified ExpertjSystem Tool for Manufacturing project.

Phase I showed feasibility of this kind of system. It resulted in a program called
CCDEMO which allowed easy input from an expert and gave output in the form of a
decision tree. While limited, this effort showed that it was possible to move off the low
end of the knowledge continuum. This effort is summarized in the Phase I final report.

1.3.2 SBIR Phase II

Phase II took the knowledge-rich concepts several steps further. Enlighten
contains knowledge about knowledge engineering and general knowledge about
English language semantics. Information is entered by the user via a natural-
language-like syntax described in Appendix A. Enlighten then operates on this
information and allows the user to review his or her own knowledge in various ways.
Enlighten also allows other users to explore and, possibly build upon, previously
created knowledge bases. These previously developed knowledge bases can
become part of the knowledge the expert system tool possesses.

By no means does UTC claim to have moved to the knowledge-rich end of the
knowledge continuum. However, Enlighten steps away from the knowledge-free end
of the continuum. In this sense Enlighten is a second generation expert system
building tool.

The lofty goal of a knowledge-rich system loses its luster if there is no useful

application for the system. Thus Enlighten has a "use" metaphor which describes its
usefulness. The metaphor differs according to the user role. For an expert user role,
the metaphor is that of a notebook, in which the expert scribbles ideas to be referred to

3

later. The notes may seem disjoint to other users and indeed to the expert when he or
she looks at the notes several months later, thus Enlighten is a software tool which
organizes the notes. Additional notes may be added to the notebook later, and
Enlighten's goal is to place these notes appropriately within the framework of prior
information. This view of Enlighten shows the tool in a knowledge acquisition and
refinement mode.

A second type of user role, a non-expert, may use Enlighten as a dictionary. For
example, if an expert has built a knowledge base (notebook) giving details about tool
classifications, a non-expert may review that knowledge base, going from one detail to
another based on what he or she finds of interest. This mode of operation of Enlighten
is that of an expert system, the knowledge delivery aspect of the tool. These
metaphors may be somewhat difficult to understand upon first consideration, therefore
they will be explored in significantly more detail later in this report.

It is important to reiterate the concept of a unified tool here. Enlighten provides a
natural language-like syntax for knowledge acquisition. It organizes the knowledge,
finding relationships between concepts where possible, and makes the knowledge
available to the user in the original form as well as other forms for exploration.

1.3.3 Overview of Report

Aside from this introduction to the report there are seven additional sections which
provide more detailed information about the effort and its results. This report provides
background information in Section 2. Section 3 is devoted to discussing the details of
Enlighten's design. The result of the implementation is discussed in Section 4. UTC
provided prototype versions to two university people, a Ph. D. candidate and a
professor, for review. Their responses are in Section 5. Section 6 discusses UTC's

conclusions of this effort and potential work directions. The main report is followed by
a bibliography and an appendix, which is a brief tutorial on Enlighten's use.
2.0 Project Tasks

I The initial Phase II tasks sought to narrow the focus and select measures of
success. This set of tasks assisted in limiting the scope of product development for
Enlighten. Additionally, a cursory market survey was conducted which highlighted the"do's and don't's" of software development as well as the competition in the area of
expert system building tools.

2.1. Identify Applicable Manufacturing Tasks

The first task was to identify applicable manufacturing tasks for which a Low Cost
Unified Expert System Toc' would be useful. The design team identified a relatively
complete classification of manufacturing tasks. These tasks were compared to the
requirements for an expert system. The technical team chose fault diagnostics as the
target manufacturing domain.

4

I 2.1.1. The ICAM Manufacturing Hierarchy

Several years ago, the Integrated Computer Aided Manufacturing (ICAM) program
office at the Materials Laboratory at Wright-Patterson AFB, Ohio, developed a
comprehensive hierarchy of manufacturing tasks. This hierarchy is shown in Figure 2.

The SBIR project team reviewed this hierarchy extensively tc select appropriate
manufacturing tasks on which to focus the development. On the initial review of the
hierarchy two questions were used to evaluate the lowest node of each branch. The
first question was "Does the task involve decision making?" Some tasks involve a
high level of skill, but no decision making. Such tasks would not benefit from a
decision support or expert system tool. This question culled many performance tasks,
e.g., "perform routine maintenance" and "assemble product." These tasks involve skill,
but all decisions, such as what maintenance is routine and in what order to assemble
the pieces, were made prior to the actual operation, as part of another task (such as
planning tasks). No critical decisions related to the task are made at the time the task
is performed.

The second question related to the level of expertise required to make a decision:
"Does the task require expertise?" This question further narrowed the field of tasks for
which an expert system tool could be useful. For example, consider the selection of
sources for a material bid. Procedures require the selection of qualified sources for a
request for bid. Selecting qualifying sources does involve decision making, however,
the decision is based on pre-defined criteria. The "expertise" required to make the
decision is limited in this instance. There are many decisions like this throughout the
manufacturing process that do not require specialized knowledge or expertise.

Evaluating the hierarchy required assumptions about both the tasks and the
methodology used when constructing the hierarchy. One assumption was that some
lowest branch nodes described tasks that were outside the scope of the model, whose
highest level task is "Manufacture Product." For example, providing people is a
requirement to manufacturing. How those people are provided and the decisions and
tasks that go into providing people occur outside "Manufacture Product" domain.

No assumptions were made about the environment where the tool may be
implemented. For example, availability of expertise is usually an appropriate
consideration when building expert systems, whether too much expertise is already
available, thus an expert system is frivolous, or no expertise really exists, thur ,n
expert system is impossible. Because of the situational nature of availability ano Lhe
generic nature of the expert system tool the identification of applicable tasks ignored
the issue of expertise availability.

5

FIGURE 2. ICAM Manul

6

M93I~~CC

= ~. -, 1 .L
- -

- - -

Manufacturing Hierarchy

I 2.1.2. Classification of Tasks

After applicable manufacturing tasks were identified from the ICAM hierarchy, theI next step was to classify or categorize tasks to make general yet meaningful
statements about them. The specific breakdown of expert system categories used was
chosen from the book A Guide to Expert Systems by Donald A. Waterman. These

Scategories are shown in Table 1.

Table 1. Waterman's Expert System CategoriesI
Control Governing overall system behavior

I Debugging Prescribing remedies for malfunctions
Design Configuring objects under constraints
Diagnosis Inferring system malfunctions from observables

Monitoring Comparing observations to expected outcomes
Instruction Diagnosing, debugging, and repairing student behavior
Interpretation Inferring situation descriptions from sensor data
Planning Designing actions

Prediction Inferring likely consequences of given situations
Repair Executing plans to administer prescribed remedies

Manufacturing tasks from the ICAM hierarchy were mapped into Waterman's
categories. The fit was not always perfect. How does one categorize the task
"Determine storage location for purchased materials and tools?" Often the text
description of the task and its position relative to other tasks were used to help
categorize it. The difficulties and misfits can be attributed to forcing one mapping into
a different structure: the hierarchy of manufacturing tasks into expert systems classes.

Note that Planning is characterized in Table 1 as "designing actions." This
definition is very broad and seems to encompass even Diagnosis and Prediction to
some extent. This definition was used when the result of a manufacturing task was a

procedure or plan, instead of a physical product. Design was characterized by its
direct impact on a physical item.

The initial mapping of tasks to expert system classes resulted in several empty
classes. These include Repair, Instruction and Control. Repair of tools required for
manufacturing is not manufacturing; it is maintenance. Some routine maintenance
and inspection tasks do appear in the manufacturing hierarchy. These were perceived
as "action" tasks (some action must be taken to complete the task) which required
skills, but not decision-making or expertise. Maintenance and Inspection involve
performing a pre-defined list of tasks at specific times. Decisions and expertise to
determine tasking and frequency were determined inaependent of the hierarchy, i.e.,
outside the high level scope of "Manufacture Product."

7

Instruction falls out because it is also outside the scope of the high level task
"Manufacture Product." Instruction expert systems are used to train users and combine
the characteristics of the Diagnostic, Debugging and Repair classes of expert systems.
The personnel required for the manufacturing process were assumed to be trained,
qualified individuals. For this reason, Instruction falls outside the scope of the task and
no lower level manufacturing tasks are mapped into this category.

The Control class of expert systems did not initially contain any manufacturing
tasks. These tasks were placed in the "action" category because machine control
involves planning prior to implementation. Monitoring tasks did not imply any decision
making on the part of the system. These also fell into the "action" category. The value
of Monitoring expert systems is in removing the human factor from extremely mundane
tasks. These were not in need of a decision support expert system tool.

The remaining list of potential application domains was Interpretation, Prediction,
Diagnosis, Design, and Planning. Design and Planning were eliminated because
they both involved synthesis: aggregation of many parts to create a new whole.
Current literature in expert system development indicates that synthesis-type tasks are
very difficult and a continuing research topic. The focus on development precluded
pursuing research-based synthesis-type tasks for the target domain of this SBIR effort.

The Interpretation tasks involved interaction with another system. These tasks
require information about the state of a system via sensor data. While not all systems
are computerized, a user would most likely want to be able to digitally communicate
with other computer systems to gather the sensor data. An automated level of
interaction between Enlighten and a sensor system was viewed as beyond the scope
of the Phase II effort.

Prediction and Diagnosis tasks seemed very similar in that both required the expert
system to determine the state of a manufacturing system given the current description
of the system. Both classes of expert systems require information about the current
state of the target system. This information did not have to be sensor generated, but
only based upon "observable" data. Prediction involved the future state of the system
with its associated uncertainty. The lower level of complexity of Diagnosis led to
choosing Diagnosis as the area of focus in the manufacturing domain.

2.2. Choice of Application Domain

Diagnosis seemed to fit the metaphor of the user roles quite well. Current state of
practice in expert system development required the system developer to create a
network of relevant information about possible symptoms and combination of
symptoms and correlate them to possible causes. Little effort was made to understand
and capture why the expert might pursue a particular train of thought or why a
particular answer made the expert change approaches. The goal was to create an
expert system for diagnosis of some system. Once the tool was complete, any
changes required extensive testing to verify that previous knowledge was not affected
by the modifications. This contributes to the current bottleneck in knowledge base
development, incorporation of additional knowledge into the knowledge base.

8

2.3. Survey of Computational Capabilities of Existing Tools

At the outset of this project, the team considered commercial hardware and
software tools and techniques available to assist in program development. Several
selections were made and they are discussed in the following three subsections.

2.3.1. Computing Platform

One of the objectives of the project was to create a low cost tool. From a large
perspective, low cost must include not only the software tool, but also the hardware on
which the software must run. Two of the most commonly used, relatively inexpensive
computer platforms were reviewed. They are the IBM PC compatible computer and
the Macintosh computer. The Macintosh computer platform was selected.

The Macintosh computer has several features the project team believed to be
advantageous for the project. One feature is an intuitive, often graphical interface. All
Macintosh applications use similar user input devices (e.g., keyboard and mouse) and
commands (e.g., menus from which the user makes selections to move about among
the computer software). Thus a Macintosh user may simply install a program on the
computer and begin to use the program without having to learn new ways to operate
the computer software. While restrictive at times to program new software for the
Macintosh interface, it has its own model of the user which closely matched the design

i goals of the SBIR effort for modeling the user.

Memory availability was the second desirable feature for which the Macintosh
computer was selected. IBM PC compatible computers have certain limits placed on
memory by the operating system and hardware configuration. Macintosh does not.
Since the project team was uncertain about the memory that would be needed for the
program they were to develop, it made sense to select a machine without the IBM PC
restrictions. Enlighten was developed for the entire line of Macintosh computers,
however the resulting software currently requires a large memory capacity, on the
order of 2 megabytes.

I 2.3.2. Programming Language

After selecting a hardware platform, the project team turned to selection of an
appropriate programming language. The Forth language was selected for its excellent
text handling capabilities. Forth has a built-in dictionary and a self-contained parsing

I capability, thus, these do not have to be built.

Also, Forth is a rather "low-level" language--that is--instructions written in Forth do
not require the step-by-step breaking down required in other, more high-level,
languages. Therefore, Forth runs quickly, and applications written in Forth, in general,
run faster than they would if other languages were used.

2.3.3. Choice of OOPS

After some consideration, the members of the project team decided to use an
object oriented programming (OOPS) paradigm. This paradigm maintains certain
philosophies in programming and concept-relationship representation, which, as the

I
I

reader will be shown later in this report, are key to Enlighten. In addition, object-
oriented programming lends itself to easier maintenance than traditional structured
programming.

I2.4. Study of Existing Expert Systems Developed by Conventional
Means

As background for the work which is reported here, conventional expert systems
were reviewed to discover expert system techniques that could be used in Enlighten.
A general look at expert systems as well as a look at automated knowledge acquisition
systems is given below.

2.4.1. Expert Systems

In The Handbook of Artificial Intelligence Volume IV, Barr, Cohen, and Feigenbaum
have this to say about expert systems1 :

Expert systems are distinguished from conventional programs in several
important respects. Although none of the characteristics in the following list are
missing entirely from other well-designed software, all of them together describe
a distinct class of programs. Note that few expert systems exhibit all of the
following five desiderata to the same degree. An expert system is a computerI program that:

a. Reasons with domain-specific knowledge that is symbolic as
well as numerical (this is what we mean by calling an expert
system a knowledge-based system).

b. Uses domain-specific methods that are heuristic (plausible) as
well as following procedures that are algorithmic (certain).
[Conventional expert systems usually have an "IF-THEN"
paradigm--if something is true, do something else. This allows
the system to move through a set of questions logically.]

c. Performs well in its problem area.
d. Explains or makes understandable both what it knows and the

reasons for its answers.
e. Retains flexibility.

These desiderata, while defining expert systems, also pinpoint the techniques used
in successful expert systems. Each of these five techniques are part of Enlighten, to at
least some extent. In short, Enlighten reasons with domain-specific knowledge (both
knowledge engineering knowledge and domain-specific knowledge, which may be
symbolic or numeric), uses both heuristic and algorithmic domain-specific methods (for
user input, manipulating the user input below the surface of the system, and for
displaying output), performs well in its problem area (manufacturing classification),
understandably lays out all of the information a user desires, and mostly, Enlighten is
flexible. The user retains control.

Barr, et al. pg 151.

10

I2.4.2. Knowledge Acquisition Systems

It was important to review knowledge acquisition systems, since the main thrust of
this project was to reduce the knowledge acquisition bottleneck. A sampling of
knowledge acquisition systems is reviewed below.

2.4.2.1. Auto-Intelligience

IAuto-Intelligence2 is a knowledge acquisition tool used to build expert systems for
structured selection or heuristic classification tasks. The system provides aids in
decision making and choice selection based on available criteria. The system uses
induction (generalization from examples) to capture knowledge and forms a purely
rule-based expert system. The system consists of five main modules:

1. Interview Manager which interacts with the expert and captures knowledge.
2. Structure Discovery System which captures the structure of the knowledge,

helps identify the key components, and checks for inconsistency and
redundancy.

3. Example Manager which provides bookkeeping tasks.
4. Induction System which creates rules from the data and examples given.
5. Expert System Generator which generates an expert system.

2.4.2.2. KAT: Knowledge Acquisition Tool

KAT 3 provides a variety of ways in which a knowledge engineer can query a
domain expert. It operates in three different modes called Clarification, Prediction, and
Diagnosis. An expert defines the comp'9te process in an AND/OR graph in the
Clarification mode. In the Prediction mode, the AND/OR graph is presented in a flow
chart format to prompt the expert to think of additional details for the given information.
During Diagnosis, the expert examines the defined process by an automated "step-
through" to check for any incompleteness in the knowledge base.

2.4.2.3. SALT: A Knowledge-Acquisition Tool for Propose-and-Revise Systems

SALT 4 is a knowledge acquisition tool that is used to build expert systems in
synthesis-type domains such as design. It constructs, rather than selects, a solution.
The domain expert is required to provide three types of knowledge: procedure,
constraint, and fix, for each value in a design. Procedural knowledge is used to
determine configuration pieces and their values. Constraint knowledge describes theconstraints on each piece and provides a procedure to determine its value.
Knowledge represented in fixes is used to remedy constraint violations.

2 Parseye, K. and S. Murphree

3 Blaxton, T.A. and C.R. Westphal

4 Marcus, Sandra, pp8l-124.

11

I
The domain expert can add knowledge in pieces with no particular order. The

acquired knowledge, which is transformed into rules, combined with the problem-
solving shell creates a domain-specific knowledge base. SALT checks the knowledge
base for completeness and consistency then informs the user if there is missing or
inconsistent knowledge. The generated expert system uses a propose-and-revise
method. It creates a design by proposing a value for each of the design parameters,
then examines the constraints that are applicable to the parameters. The system
provides a revision where a constraint is violated.

2.4.2.4. KRITON: A Hybrid Knowledge Acquisition Tool

The KRITON 5 system is a hybrid knowledge acquisition tool that uses many
methods to capture different kinds of human knowledge. Automated interview
methods are used to capture declarative knowledge. A combination of the repertory
grid technique, forward scenario simulation, and laddering is used to acquire
knowledge during the interview. The repertory grid technique acquires an expert
inputs of knowledge in natural-language sentences and uses a scaling factor to
differentiate between them. Forward scenario simulation is a technique in which
experts define relevant terms and concepts which are used to determine the steps in
problem solving. The laddering technique requires experts to define important
concepts of the problem domain. These concepts are further used to lead an interview
of the expert. Procedural knowledge is captured using protocol analysis methods.
This technique requires that experts think aloud without attempting to rationalize their
problem-solving activities. The results of these knowledge elicitation methods are
captured by an intermediate knowledge representation system, which uses concepts
and relationships.

2.4.2.5. OPAL: A Knowledge Editor

OPAL6 elicits knowledge using a domain model, which consists of forms. This is a
"fill-in-the-blank" method. OPAL is specific to a certain expert system called
ONCOCIN, which is a cancer-therapy management expert system.

1 2.4.2.6. Rulemaster 3

RuleMaster 3 is an expert system shell. It has a knowledge acquisition module
which eiicits information in the form of examples. It then induces rules based on the
examples. The expert system is then used very much like most other expert systems.

2.4.2.7. Conclusions

Automated knowledge acquisition systems using a variety of techniques have been
developed. As the reader will discover later in this document, Enlighten uses a
number of techniques in common with the reviewed systems, as well as some new

i 5 Musen, M.A., L.M. Fagan, et. al., pp 83-94

6 ibid, pp 257-273

1
12

I

techniques. For example. KAT, OPAL, and Enlighten use fill-in-the-blank techniques.
SALT and Enlighten both allow the user to input information in any order; however
SALT does have an order of output, where as Enlighten allows the user to choose
what to review at any time. KRITON and Enlighten both use the concept/relationship
approach to knowledge elicitation and representation.

2.5. Identify Capabilities of Approach and Implementation

During the course of selecting the specific domain and outlining the requirements
of the tool, which tool capabilities were desired became more apparent. These

i capabilities can be separated into those which will be implemented during the current
phase of product development and those which are beyond the scope of this effort.
The short term tool capabilities will be developed, refined and used in Enlighten. Long
term tool capabilities represent research level issues and may be explored after the
current effort for inclusion in a second version of Enlighten. These capabilities are
discussed below as short term and long term tool capabilities. The reason for, and
implications of, the classification of the capability in terms of product development are
also discussed.

2.5.1. Short Term Tool Capabilities

The short term tool capabilities would be sought within the time available for this
Phase II effort. These capabilities should be incorporated into the final product. Each
of these capabilities are listed and discussed in terms of their impact on the SBIR
Phase II product. This section discusses the capabilities in terms of desires and
requirements. The success of Enlighten in achieving these goals in discussed in
Section 6.

2.5.1.1. Knowledae Acquisition

At the minimum Enlighten must be able to accept knowledge added by a novice

computer user. Both a domain expert and an eventual users must be able to interact
with the tool in as natural a fashion as possible. The choice of an English-like syntax
is a minimum capability. In the short term, implementation goals emphasized ease of
interactions with the computer-based system. The knowledge not only must be
acquired, but stored and available for the rest of the system. The technical team
decided on a tradeoff: the implementation of knowledge storage and retrieval would
be sacrificed to ease the knowledge acquisition process, if necessary.

2.5.1.2. Knowledge Refinement

Knowledge refinement involves the restating of knowledge acquired by whatever
means. For example, refinement of freehand notes is an outline. The information
contained in the notes was acquired by the reader and translated into another format.
This allows the original writer to see any incompleteness, inconsistency, or
incorrectness of the notes. It may also allow the original writer a new view of the same
old information. The translator may use a different grouping scheme than the author
used when taking the notes. This can lead to new insight on the part of the author.
Knowledge refinement as a minimum must present the acquired information in a
different format than it was originally acquired. Because this is such a fundamental

13

concept in terms of the overall goals of Enlighten, it must be accomplished in the short
term.

2.5.1.3. Knowledge Delivery

The product developed at this phase of the SBIR effort was supposed to implement
a knowledge acquisition, refinement and delivery tool for expert systems. Enlighten
must deliver the acquired knowledge is usable form. A short term capability required
of Enlighten is a knowledge delivery mode.

2.5.1.4. Knowledae Engineering Capabilities

Enlighten needs incorporate some characteristics of a knowledge engineer. The
goal was to formulate a model of knowledge engineering activities. A knowledge
engineer's responsibilities include checking for completeness of the knowledge
acquired, verifying the consistency of new knowledge before adding it to the
knowledge base, and deriving the relationships between the required inputs and
expected system outputs. Incorporating all knowledge engineering capabilities into a
program was not the objective; some human actions are beyond present
computational technology. From the model those activities which can be reasonably
incorporated into a computer program should be used in Enlighten. This capability
then involves two tasks: develop a model of knowledge engineering and choose
those aspects of the model to be incorporated into the tool. Because of the goals of
the tool, this capability must be attained in the current phase of the development.

2.5.1.5. Types of Reasoning

Within the diagnosis class of expert systems, knowledge about diagnosis can be
seeded in Enlighten. The types of reasoning relevant to diagnosis needed to be
included as a minimum. For example, to proper diagnose the failure in an engine, the
position of various components must be known. This requires spatial reasoning.
Additional reasoning types, which must be included in Enlighten for diagnosis, are
temporal reasoning, hierarchical reasoning, connection reasoning, and structural
reasoning. Structural reasoning does not mean that Enlighten is seeded with the
knowledge A is part of B, rather it must be seeded with the knowledge of what it means
that A is part of B. For example, if A is part of B and B is part of C, is A part of C? This
must be resolved in the development of Enlighten.

2.5.1.6. Metaknowledge

The inclusion of metaknowledge is critical to the implementation of Enlighten. The
metaknowledge will introduce the necessary vocabulary, reasoning concepts such as
temporal, structural, etc. and knowledge engineering knowledge, such as inconsistent
information, and other target application domain knowledge. Domain specific
knowledge discussed in the types of reasoning above is critical metaknowledge to be
included in Enlighten. A longer term goal would be to allow Enlighten to be seeded
with knowledge about different target application domains such as prediction.

14

I
i 2.5.2. Long Term Tool Capabilities

Long term tool capabilities are those capabilities requiring further research in areas
beyond the scope of this phase of the project. There may be several reasons to avoid
these areas at this time, including the length of time required, impact on the tool, and
priority of the project goals. The use of the tool by manufacturing experts will highlight
additional features that may be required of the tool. These may become part of the tool

I capabilities in future versions.

2.5.2.1. Extension to Other Domains

i As discussed in Section 2.1, the project must focus on a specific application
domain. The tool, however, can easily be extended to other domains. Testing
Enlighten in another domain will be a high priority goal after the current development
effort. The prediction domain may be the next area explored due to the similarity to
diagnosis. Manufacturing system Control and Monitoring are other possibilities.

I 2.5.2.2. Machine to Machine Interfaces

The current development effort requires a human for input of information and
interpretation of output. This dependence on humans maintains a largest possible
user community with a reasonable programming effort. While completely automated
interfaces (computer-to-computer) are desirable in some cases, they are nighly
specialized. The initial effort will develop for a single type of input -- human textual
input -- and a single type of output -- textual output to be interpreted by a human.

The machine interface can be either input or output. Machine communication of
input can be used by a domain expert or final user to access information. This
information may be in the form of a large database. This would require a specialized
query language interface. The tool could also interact with signal generator to monitor
a process. In both cases this enhancement lessens the input requirements of the
human user of the expert system.

I The second type of machine to machine interface is communication between the
tool and a machine for process control. This type of communication can be used to
control processes or machine tools like an automated machining cell. Both types of
communication involve development of custom interfaces which are not part of the
goal to develop a generic tool.

2.5.2.3. Alternative User Interfaces

The proposed natural-language-like interface requires the user to use textual input.
While this method maximizes the size of the potential user community, it is not the best
interface method for all domains. In some domains, experts may better express
information with symbols or graphics. A long term goal is to expand the user interface
to include non-text-based input and output.

15

2.5.2.4. Future Natural Language Research

No natural language research was undertaken due to the extremely complexity of
the natural language problem and since existing technology proved adequate. In the
future, this are may be explored to enhance the user interface.

2.5.2.5. Future Mathematical Implementations

Computational capabilities will not be developed during the Phase II effort.
Several elemental manipulations, however, are necessary to create a truly useful tool,
i.e., comparisons. For example, two numeric diameters of drilled holes may need to be
compared to determine which is larger. While necessary these capabilities are not
achievable in the time available to complete the development.

Moving beyond the initial scope of this project and extending it to the likely
computing power available to the average user in a few years, it can be envisioned
that a system which is capable of evaluating mathematical functions via a natural
language dialog, and perform reasoning upon the equations and algorithms extracted
from the user's language input will exist. Such a system would be able to perform
manipulations and reasoning on data either entered by hand or retrieved from other
sources.

3.0 Development Objectives

The development of Enlighten was driven by three primary objectives. The first
was the choice of theories appropriate for the representation of knowledge at a level
deeper than that of traditional expert systems. A wide variety of representation
theories were surveyed including semantic nets, frames, and first and second order
predicate logic. The key criterion in the selection process was that the representation
had to be robust enough to capture a deeper semantic meaning of knowledge than
simple IF-THEN relations of conventional expert systems.

The second objective was the choice of an appropriate user interface that would
simplify the capture of knowledge in comparison to traditional expert systems. The two
primary methods for the input of knowledge investigated were graphical and textual.
The most general form of communication is textual, though not always the most
appropriate. Seeking to create a useful tool for all levels of users required specifying a
generic and appropriate interface. In this case a text-based user interface paradigm
was chosen.

The final objective was to develop a model of the user that would result in a product
that the user found easy to learn and simple to use. A model of the user refers to the
the typical way that a user views the world. For example, if the user finds it natural to
describe the world in terms of textual information organized into outlines, the model of
the user would be an organizational framework based on text. In a conventional
expert system, there is no model of the user. Rather, the user is forced to learn the
model of the software or, more accurately, the designers' model of the software. While
every system will require some amount of learning, it was one of the goals of this
project to develop an expert system that was easier to use and learn by basing its
design on a model of typical users.

I
16I

3.1 Development Approach

The development of Enlighten can be separated into three distinct phases: theory,
design and implementation. The theoretical phase focused on the creation of a
complete theory for the design. This is the stage at which the technical team sought
philosophical theories which would satisfy parts or all of the goals. These theories
were then integrated to synthesize new theories which completely satisfied the goals
and objectives of the effort. These new theories distinguished the possible from the
impossible.

The design phase was concerned with integrating the various theoretical ideas
gathered in the first phase into a unified system design. This phase addressed
questions of how the theory was to be implemented to create a software tool. More
importantly, it was during the design phase where basic engineering design principles
were applied - the goal was the development of a product that implemented the
theories, and not a research tool that proved the theories. This is the first point at
which tradeoffs were identified. In general, these tradeoffs were between taking the
"purist" approach and implementing the theories completely, or taking an"engineering" approach and creating a useful product that may not be completely
compatible with the theory.

The implementation phase focused on the actual development of the code to
implement the design. The primary concern at this point was developing an
appropriate implementation of the design that successfully balanced the two scarce
resources - memory and processor speed. Every implementation level decision
involves a balance between these two resources. For example, a choice to develop a
portion of the code using arrays as opposed to linked lists may be faster, but it
consumes more memory. A poor implementation can have a direct impact on the userin terms of usefulness and ease of use.

The following sections will describe the three phases of the development of
Enlighten in detail. The emphasis is on not only what decisions were made, but why
they were made.

3.2 Theoretical Background

The choice of theoretical basis for Enlighten was driven primarily by the need for a
representational strategy that would allow the semantic content of a statement or
clause to be captured and applied. This differs from the approach taken in
conventional expert systems where there is no attempt to capture the semantics or
meaning of a statement. Rather the statement is simply assigned a value of true or
false, depending on its logical interpretation - no attempt is made to analyze the
statement at a deeper level or to gather additional information or knowledge. The
primary theory investigated as a means of attaining these goals is abstract set
theory. 7,8 The notion of categorizing information through the use of sets closely

7 Copi, Irving M.

17

approximates one model that a typical user has of reality. Additionally, the ability to
represent relations between objects as sets fu,-ther strengthens the applicability of this
approach.

33.2.1 Sets and Relations

As the name implies, abstract set theory is a formal theory for manipulating sets or
classes. The term set is a primitive term describing a collection or aggregate of
objects. These objects are referred to as the members or elements of the set. More
accurately, it is said that a membership relation holds between a set and its elements.
A membership relation is symb.- zed by the Greek letter "E ." It is important to note that
the membership relation is not transitive. That is, if "Ohio" is a member of "The United
States," and "The United States" is a member of "The United Nations," it does not hold

I that "Ohio" is a member of "The United Nations."9

The above notion may be confusing in view of conventional set theory. In
conventional set theory, if A = { 1,2, 3), and B = { A, 4, 5 }, then all of the elements of
set A are members of set B. This is not the case with abstract set theory. In order for
this to be true, it must be stated explicitly that A is a subset of B.

I A set can be defined in either of two ways: by extension, or by intension. An
extensional definition of a set would be a definition based solely on an explicit list of all
of its elements. An intensional definition is a specification that states the property that
must be true of all of the elements of the set.10 The intensional definition is often
referred to as the meaning of the set. For example, the following statement is an
extensional definition of a set: { 2, 4, 6, 8, 10 }. Note that it is not possible to know what
common property binds the members of this set. This infornation would only be
available in the intensional definition. One possible intensional definition for the set is
"even integers between 1 and 10."

There are a number of basic operations for creating new sets from other sets and
specifying relationships between sets. These are union, intersection, complement,
difference, subset, and proper subset. A detailed explanation of these operators can
be obtained from any introductory text on set theory. For the purposes of this project,
the primary operator of interest is the subset operator. By definition, if "A" is a subset of
"B," then all of the members of "A" are members of "B." Note that the converse is not
true - all of the members of "B" are not members of "A." The importance of the subset
operator is that it gives rise to a type hierarchy.

A type hierarchy is the structure formed by a set and its associated subsets, and
any subsets associated to the subsets, etc. The principal feature of a type hierarchy is
the notion of inheritance. Inheritance is a mechanism whereby any members of a set's

8 Whitehead, A. N. & Russell, B.

9 ibid, 1

10 Sowa, J. F., pp. 368

18

subsets are also assumed to be members of the set. In this case, if "A" is a subset of
"B," and "B" is a subset of "C," then all of the members of "A" and "B" are also members
of "C." The basis for inheritance is the transitive nature of the subset operator, in direct

i contrast to the intransitive nature of the memberchip relation.

In addition to the notion of a set is the notion of a relation. As is the case with
membership, a relation is a definition that holds between two or more sets. In general
terms, a relation refers to linguistic entity that relates two or more objects in a sentence.
For example, in the sentence "a car requires fuel," the term "requires" is the
relationship holding between the object "car" and the object "fuel." Symbolically, this
relationship is often depicted as requires(car, fuel). An important observation is that
the order of the objects in the relation is important in accurately representing therelation. It would be incorrect to state that "fuel requires a car" means the same thing

as "a car requires fuel."

A relation is defined extensionally in a manner similar to that of a set. In this case,
the relation is a set consisting of all of the ordered pairs of entities that stand in that
relation. In the previous example, the relation "requires" would be a set containing the
ordered pair <car, fuel>. An additional member of that set could be <fish, water>,
implying that "a fish requires water." The use of ordered pairs is a direct result of the
fact that the order of the objects standing in the relatior ;- important.

It is often advantageous to speak of trc domain and the range of a relation. The
domain of a relation is the set of all lirsi coordinates of the ordered pair and the range
ot a relation is the set of all second coordinates of the ordered pair. It is possible to
provide a conceptual interpretation of these t.vo se'.s ")r a given relation. For example,
given the statement, "a car requires fijel," the range could be interpreted as "the set of
things that a car requires." In this case, "'fuel" would be a member of the set. In a
similar manner, the domain could be given the interpretation "the set of things that
requires fuel" and "car" would be a member of the set.

3.2.2 User-Driven Search

From an end-user's perspective, a conventional expert system functions as an
investigator who asks a series of questions in order to arrive at some conclusion. Like
its human counterpart, the software expert system "investigator" is in charge - it
'determines what questions to ask and in what order. The people being interrogated
have little control in the matter. They simply provide informaticn. While the question
and answer sessions may be made less painful through use of various computer
interface gimmicks, e.g. providing a set of predefined responses from which to choose,
the underlying philosophy is still that of a computer-driven search.

The computer-driven approach to problem solving used in almost all conventional
expert system can be very frustrating to the end-users. The burden is placed on them
to read and interpret the multitude of questions and provide an appropriate response.
If the knowledge engineers who developed the expert system perceived the situation
differently than the users (i.e., their model of the user was incorrect) the users may be
faced with questions that are difficult to answer correctly. This can lead to a situation
where the user realizes after a response has been chosen that the response was
incorrect. Unfortunately, since the expert system is driving the search, there is typically

19

no way for the user to go back and change a response in order to follow a different line
of reasoning.

An alternative approach to the computer-driven search strategy is a user-driven
search. The primary idea behind a user-driven search is that the user is in control. He
r o sne decides what to investigate and when. The expert system still executes its
-iternal inference engine in order to arrive at some conclusion, but the user has more

ccntrol over this process.

This second approach has a number of benefits from a user's perspective. First,
because they are able to follow difh.,ent lines of reasoning at will, the users will be
more inclined to explore alternate possibilities that may be equally probable. Second,
the abi!ity to logically browse through the expert system knowledge base would
enhance the utility of the system as a tool for training. And finally, by allowing users to
gracefully recover in situations where they did not respond correctly to a question, the
expert system will appear more user-friendly, and thus more useful.

I3.3 Design Goals

There were two major drawbacks identified with conventional expert system
technology: the "brittleness" of conventional representational strategies and the need
for an intermediary, i.e. the knowledge engineer, to acquire and translate an expert's
knowledge into the syntax of the expert system shell. One of the major design goals
aimed at alleviating some of the brittleness inherent in conventional expert systems
was to develop a representational strategy that captures the knowledge behind an

expert's heuristics.

A situation will often arise during the delivery phase where the expert system is
unable to identify any suitable solutions to the problem. This occurs any time that the
user encounters a situation that was not originally envisioned by the expert. Even if
the situation closely resembles one of the scenarios described by the expert, the
expert system is unable to generalize the expert's "rules of thumb" or heuristics in an
attempt to find a solution to the problem. This lack of generality is a common problem
with conventional expert systems known as "brittleness."

Traditionally, the expert's heuristics are converted to a collection of IF-THEN
clauses that can be applied to solve a limited range of known problems.
Unfortunately, there is no attempt to encode the other body of general knowledge that
an expert uses to solve new problems. By capturing and organizing this body of non-
heuristic knowledge, a user could actively apply it to solve new problems for which no
heuristics exist.

Because of the complexity of the more powerful conventional expert systems, a
knowledge engineer is typically required. The function of the knowledge engineer is
to acquire and elicit the knowledge from an expert and then convert it into the form
required by an expert system shell. More often than not, the knowledge engineer must
be a skilled programmer in addition to having specific training in the development ofknowledge-based systems.

20

The task of converting an expert's knowledge into a form acceptable to the expert
system shell is an error prone process. The subtleties of verbal communication will
almost always result in some error in interpretation. Because of this, the knowledge
engineer must provide a prototype system for the expert to test. Upon locating errors
or deficiencies in the expert system knowledge, the expert must then attempt to explain
what the problem is, and the knowledge engineer, repair the fault. This is the stage of

Irefinement in a conventional expert system.

The delivery of an expert system refers to the actual use of the completed system
by the end-user. The end-user will rarely if ever be the original expert, but rather
someone that is less skilled in the particular area of concern. The typical way that the
end-user interacts with a completed expert system is through a computer-directed
question and answer session. The end-user has very little freedom in this process.

The second design goal was designing an expert system shell that could be used
directly by the expert.s By removing the knowledge engineers from the process and
putting the experts in charge of directly putting their knowledge into the shell, the
bottleneck in knowledge acquisition would be greatly reduced. Experts would be
more in control of their own schedules, and management of the development of the
expert system. More importantly, the resulting knowledge base would more closely
model what the experts intended since there is no error in translation through an
intermediary.

The critical consideration in removing the knowledge engineer from the
development loop was the creation of a shell that is simple enough for non-
programmers to use, yet powerful enough to create complex expert systems. To
achieve this, a syntactic interface was designed. The key feature of this interface was
that it provided both the expert and the end-user with a constrained, natural language-
like syntax for interacting with the system. While the syntax is constrained in the
number of syntactic forms it can distinguish, it does not limit the ability of the user to
represent their non-heuristic knowledge.

3.4 The Design

The design of Enlighten can be divided into five major elements: representational
structure, grammar, representational philosophy, inference mechanism, and user
interface. The representational structure is used to physically represent the non-
heuristic knowledge entered by the expert user. The grammar provides a constrained,
natural language-like syntax for entering the knowledge into the representational
structures. The representational philosophy describes how the meaning behind the
grammar is interpreted and converted into the representational structure. The
inference mechanism allows the information in the structure to be retrieved and
interpreted. The user interface provides a simple way for a user to enter, manipulate,
and retrieve non-heuristic knowledge. The subsections of 3.4 provide detailed
explanations of the first four elements of the design. Section 4.0 discusses the user
interface as it is implemented.

21

1 3.4.1 Representational Structure

The primary element of the representational structure is the category. From a
theoretical standpoint, a category is functionally equivalent to a set. It is used to
represent the basic components of the representational grammar, i.e. actions,
properties, events, and things (objects), as discussed later. Figure 3 provides a
structural view of a category and its various components.

ParentIContext Definition

CATEGORY.

Parer4. E'xamples FactsI7
CCnxt efitio Ste g e C ext Definition

Y CATEGORY

sExamples FactsIucae Subcategories

FacsExamples Facts:!i::i: :

Contextx Dea iniiion

C RCATEGORY
EExamples actsISubcategories

Figure 3. A structural view of a category

A category is composed of seven basic parts or relations: names, context,
subcaiegories, parent, examples, facts, and a definition. The names of a category are
the syntactic means by which a category is referenced. The context of a category
works in conjunction with its names. It is possible for multiple categories to exist, each
having the same name, but defined in a different context. For example, the term
"tanker" when referred to in the context of a truck refers to a different "thing" than when
referred to in the context of an airplane.

While many in the Al community handle this problem of reference by resorting to
hyphenated names, e.g. truck-tanker and airplane-tanker, this approach places the
burden of semantic interpretation on the user. Context, in Enlighten terms, allows the

22

user to naturally refer to "tanker" while the system works at determining which tanker is
being referenced.

The parent and subcategories of a category are the theoretical equivalent of
superset and subsets respectively. Thus, the parent of a category is defined as the set
containing all of the members of the category. By definition, a category may have only
one parent category. Also, it is possible that a category may have no parent defined
for it. In contrast, a category may have an unlimited number of subcategories. The
subcategories simply provide a method for categorizing the examples of the category.
Assume that category "A" contains the integers 1 through 10 as examples, i.e.
members. It is possible to create two subcategories, the first containing the numbers 2,
4, 6, 8, and 10, and the second containing 1, 3, 5, 7, and 9. The obvious semantic
interpretation for these sets is "even integers between 1 and 10" and "odd integers
between 1 and 10."

The examples of a category are theoretically equivalent to the members of a set.
The same duality that exists between a subcategory and a parent also exists with
examples. In this case, the dual of examples are facts. Assume that the category
'knife' is an example of the category "weapon." Viewed from the perspective of the
category "knife," it has a related fact category "weapon." That is, a fact about a "knife"
is that "a knife is a weapon" and from the perspective of "weapon" an example is
"knife."

IRecall that the names of the category provide a syntactic method for referencing a
category. The definition of the category provide a semantic or intensional method for
referring to a category. As the name implies, the definition of a category defines the
intension or meaning of the category. It typically describes the primary distinguishing
characteristic that all of its members have in common. In addition to this, it also
provides information that defines the category's parent.

More important however is the semantic interpretation of a category containing
these various relationships to other categories. The parent of a category can be
interpreted as describing a generalization of the category. For example, given the
category "dog" and its parent category "animal," "animal" would be described as a
generalization of "dog" or simply, "a dog is a animal." Note that the phrase "is a" can
have many different interpretations.1 1 In the case of a category's parent and
subcategory links, the "is a" phrase can be interpreted to mean that one category is a
specialization of the other. When viewed from the perspective of the parent, its
subcategories are said to be specializations. Thus, "dog" is a specialization or type of
"animal." In this sense, the parent and subcategories give rise to a traditional type
hierarchy.

I The semantic interpretation of examples is straight forward - they are simply
elements or members of the category. For example, consider a category "weapon"
with the following example categories: "gun," "knife," and "dog." In this case, "gun,"
"knife" and "dog" are examples of a weapon. Stated simply, "a gun is a weapon," "a

I
1 Brachman, Ronald J.

I
23I

knife is a weapon," and "a dog is a weapon." In this case, the "is a" phrase is being
interpreted differently than it was with the subcategories and parent. It is interpreted
here to mean is a member of. 12 This relationship is different from specialization in that
"is a" is not interpreted as is a type of as described above.

The definition of set membership (not to be confused with the definition of a
category) requires that all of the examples for a category share some common
characteristic. Thus, when viewed as a fact, a category is describing some
characteristic or feature of its associated example category. Consider the previousexample: while each of the three example categories are apparently different types of

things (i.e. they are not directly related via a subcategory or parent relation) they still all
share some common characteristic. In this case, the characteristic is that of "weapon-
ness" or the quality of being a weapon. From the viewpoint of the "gun" category, the
category "weapon" appears as the fact "a gun is a weapon," and is therefore a
characteristic of a gun. Here again, the same "is a" phrase is used to describe yet
another type of relationship. In this case, it can be interpreted as
is something that has the characteristic.

The meaning of the definition of a category has two parts. First, it defines the
category's parent. From this perspective, it defines what the category is a
specialization of. The second part of the definition is a fact describing the
characteristic that all of the examples of the category (members of the set) have in
common. For example, if the definition for the category "weapon" was "a tool that is
used in combat," the first part of the definition says that "a weapon is a tool" or that the
category "weapon" is a specialization of the category "tool." The second part says that
a weapon is something that has the characteristic "is used in combat."

There is no actual meaning ascribed to the context of a category. Rather, as
previously described, the context is used to disambiguate one category from another
having the same name.

The representational structure described provides a framework for representing

semantic information. The next section describes the representational grammar.

3.4.2 Grammar

The grammar of Enlighten is based on the notion that the goal of language is to
assert some fact about some object. To accomplish this, all languages provide some
method for specifying which of the multitude of objects in the world is being
referenced. Similarly, the language provides some means for specializing the factual
information being asserted.

Consider the statement "a drill with a tip that is made of carbide is required to drill
holes in titanium." At its most general level, the statement is expressing the idea that
"a drill is required." Through the use of prepositional phrases, e.g. "to drill," and
restrictive phrases, e.g. "that is made of carbide," the English language permits the

12 ibid,4

24

general references to be specialized. Thus, the object being specifically referred to is
"a drill with a tip that is made of carbide," and the specific fact is "is required to drill
holes in titanium."

An analysis of English statements at a semantic rather than syntactic level indicates
that a wide variety of concepts can be conveyed as specializations of factual
assertions about general categories of objects, as previously suggested. Thus, the
primary focus in developing the grammar was to decompose the English language
into a set of semantic components and a set of rules for manipulating thesecomponents or primitives.

The semantic primitives identified were objects, facts, and events. An object refers
to some general conceptual category. For example, "dog," "ocean," and "furniture" are
all objects referring to some general category of things. Together with the second
syntactic form, facts, an object forms a statement. Syntactically, an object corresponds
to the subject of a sentence or phrase when used within a statement.

Conceptually, a fact describes some characteristic or feature of an object.
Syntactically, a fact corresponds to the predicate of a statement. There are two basic
syntactic forms of a fact. The first form which is the conceptually easier to understand
contains two parts: an action and an object of the action. For example, in the
statement "a car requires fuel," the fact "requires fuel" is comprised of the action,
"requires," and the object of the action, "fuel."

The second syntactic form for a fact conceptually assigns a value or parameter to
some property of the object. Syntactically, this form of the fact consists of a single word
that directly follows the object it is associated with. In many cases, the word may be
preceded by "is." Consider the following statement: "coal is black." Conceptually, the
value "black" is being asserted about some unstated property of the object "coal."
Knowing what the meaning of "black" is allows one to determine that the unstated
property is actually "color." From a syntactic viewpoint, the property phrase is simply a
shorthand notation for the expanded phrase "the color of coal is black." For the
statement "a wheel rolls," the semantic interpretation is not as obvious. It is important
to realize, however, that semantically there is some property that is being assigned this
value. One possible interpretation for this unstated property is an "action" leading to
the expanded phrase, "an action of a wheel is rolls."

In addition to objects and facts, there is a special class of linguistic entities that
semantically correspond to events. Syntactically, an event is composed of either a
single action called the event action or an event action followed by an object. Valid
event actions are any action that has an "ing" ending, e.g. drilling, running, killing,
sawing. Thus, the phrase "curing composites" corresponds to an event whose action
is "curing" and object is "composites." There is also a special case of events that
follow the preposition "to" but do not end in "ing." Thus, in the phrases "to drill holes,"
"to run," and "to examine fossils," "drill," "run," and "examine" are all semantically
defined as event actions. Note that syntactically, an event will always follow a
preposition.

Although events are syntactically defined as transitive verbs, semantically they are
defined as a iype of object and are therefore another semantic primitive. Because of

25

this, it is possible to speak of facts about an event as is the case in the statement
"curing composites requires the use of an autoclave." In this case, the fact "requires
the use of an autoclave" is being asserted about the event "curing composites."

<Statement> - <Object><Fact>
--> <Event><Fact>

<Fact> -- <Action><Object>
--* <Value>
--* is<Value>

<Event> -- <Event Action>
--* <Event Action><Object>

Figure 4. Summary of semantic primitives

The majority of English statements are rarely as simple as the previous examples.
Typically, the references to objects and their associated facts are complex statements
that focus the attention of the reader on a specific object or a specific fact. Consider
the following: "a car with chains on the tires moves in the snow." In this case, the
phrase "a car with chains on the tires" refers to a specific car. Similarly, "moves in the
snow" is a statement that refers to a specialization of the general fact "moves." This
notion of conceptual specialization, where a general concept is further specialized to

refer to a specific concept, provides a powerful technique for semantically
decomposing a complex statement into smaller parts or concepts. The phrases that
modify the concepts will be referred to as conceptual modifiers. Figure 5 summarizesEnlighten's conceptual modifiers.

<Specialized Object> -- <Object><Prepositional Phrase>
--4 <Object><Restrictive Phrase>

<Specialized Action> -- <Action><Prepositional Phrase>

<Prepositional Phrase> -- <Preposition><Object>3-- <Preposition><Event>

<Restrictive Phrase> -- <Restriction><Fact>

Figure 5. Summary of conceptual modifiers

There are a number of syntactic indicators that aid in determining what part of a
phrase is functioning to specialize a concept. The two most common syntactic
indicators are prepositional phrases and restrictive phrases. A prepositional phrase is
syntactically defined as a preposition, e.g. of, in, to, on, with, above, and into, followed

26

by an object, referred to as the object of the preposition. For example, "of a car" is the
prepositional phrase that modifies "a part" in the statement "a part of a car." Notice that
the phrase restricts or specializes the reference "part." Prepositional phrases may
modify actions, objects, and events.

A restrictive phrase is defined as a restriction, e.g. "that" or "which," followed by a
statement. For example, in the statement "a car that runs on alcohol," the restrictive
phrase would be "that runs on alcohol." As with a prepositional phrase, the restrictive
phrase functions to specialize the reference to "car." Restrictive phrases may only
modify events and objects.

3.4.3 Representational Strategy

The representational strategy behind Enlighten is closely tied to both the
representational structure and grammar. It provides a conceptual framework for
interpreting and organizing non-heuristic knowledge. This conceptual framework in
essence defines the computer model of the user. From typical users' perspectives, it
describes their model of the world. More importantly, the strategy provides a method
for mapping the concepts conveyed by the grammar into the representational
structure.

In the representational strategy of Enlighten, everything in the world, both physical
and abstract, can be represented as a category. As a means of organizing such a
collection of abstract concepts, everything is assumed to belong to one of four possible
base categories: Actions, Events, Properties, and Things. Conceptually, the Actions
category contains any concept that describes an activity. Thus, "run," "eat," "kill,"
"cure," etc. all are valid members of the Actions category. The Events category
contains examples of concepts that describe actions being applied such as "running,"
"eating," "killing," and "curing." The Properties category contains examples that
conceptually describe characteristics of things. For example, "weight," "color," "height,"
and "speed" are types of properties. Finally, the Things category contains everything
else not falling into one of the other three categories. Its intended examples include
both physical and abstract concepts, including objects.

The strategy adopted for representing knowledge within the framework is based on
the theory of conceptual specialization described in Section 3.4.2. This theory
suggests that a general concept can be specialized giving rise to a more specific
concept. In other words, given a category representing some concept, it is possible to
represent a specialization of the concept as a subcategory. This results in the
generation of a complex hierarchy of concepts that has a direct correlation to the
grammar. The following sections describe the strategy taken in representing the
semantic primitives of the grammar: objects (or things), facts, and events.

3.4.3.1 Representing Obiects

In its simplest form, an object is grammatically equivalent to a single word. Thus,
"dog" is a grammatical representation of an object, which maps directly to a category in
the representational framework. The grammatical label, in this case "dog," is used as
the name of the category. Once added to the representational framework, any
grammatical reference to "dog" is an equivalent conceptual reference to this category.

27

I
Within the framework, objects are analogous to Things and are appropriately added as
examples to the Things category. Figure 6 shows a sample conceptual representation
of an object in Enlighten's representational framework.

"dog"

I E i iit. i Facs 'things that are used to locate drugs"
Subcategories P rint

CATEGORY
Parent

Examples Facts"

Subcategories

"a dog that is used to locate drugs"

Figure 6. Conceptual representation of an Object

Recall that a category (set) can be defined either extensionally or intensionally (see
Section 3.2.1). The process of conceptual specialization actually provides an
intensional definition offor in de f ct of the sucase, the
characteristic that differentiates the single subcategory from any others is captured in
the phrase funcition to th sciition. In the preceding example, the restrictive
phrase "is used to locate drugs" defines this distinguishing characteristic. From thestandpoint of the subcategory, this characteristic, which is also represented as a

category (see the following section for additional details), is a fact of the subcategory.
That is, subcategory is related to this characteristic category or fact category via a factrelation. In addition to this, since it is the primary fact that defines the subcategory, the

two are also related through the definition relation.

An important point needs to be made with regards to how these subcategories are
referenced grammatically, identified, or named. Unlike their base category that has a
single-word name as an identifier, the subcategories defined via conceptual
specialization require the entire grammatical phrase to completely specify which

subcategory is conceptually being referenced. It is however, possible through the list
of names associated with a category to provide a shorter identifier for the category. In
the above example, the category "a dog that is used to locate drugs" could be given
the name "police dog." Any subsequent references to the grammatical label "police
dog" would result in the category "a dog that is used to locate drugs" being identified
since the two grammatical references are conceptually equivalent.

28

3.4.3.2 Representing Facts

Grammatically, facts can take one of two forms: an action followed by an object (a
relation), or a value of an unstated property of the object (a property). These forms are
represented within the framework differently.

3.4.3.2.1. Representing Relations

In one form, a fact describes a relationship that holds between two objects: the
object of the action, and the object for which it is being asserted. This relationship can
be defined extensionally as a set of ordered pairs containing the objects that stand in
the relation (see Section 3.2.1). From the perspective of the representational
framework, the representation of a relation would require the creation of a new
primitive in Enlighten - the ordered pair. This method is viewed as inadequate since
there is no conceptual basis for representing relations in such a manner.

In contrast to the extensional definition of a relation, the definition of the domain of
a relation provides a logical conceptual interpretation. More importantly, the members
of the domain are objects rather than ordered pairs. For these reasons, relations are
actually represented in terms of their domain within the representational framework.
Consider the following fact: "rr quire fuel." The domain for this relation conceptually
would be the set of "th' that require fuel." This would be defined within the
framework as a conrr'.jai specialization of the Things category and would be
grammatically referred ,u as "things that require fuel." The object for which the fact is
asserted would be an example of this fact category.

At a more detailed level, the conceptual specialization of a fact actually generates
two subcatcgories. The first subcategory has the Things category as a direct parent. It
conceptually corresponds to a very general category of objects that have the specified
relatior to something. For the relation "requires," this subcategory of Things would be
referred to as "things that require something." The motivation for including this abstract
category in the representational framework is the ability to assert facts about "things
that require something." These facts can be viewed as knowledge about the relation
requires and, through the inference mechanism described in Section 3.4.4, will
automatically be inherited by any object that stands in this relation, i.e. a subcategory.

The second category, which corresponds to the actual range of the relation, is
actually a subcategory of the first subcategory. That is, it is a conceptual specialization
of the other subcategory with the object of the action providing the defining
characteristic. In the previous example, the subcategory "things that require
something" could further be specialized to generate a second subcategory that would
be "things that require <object>." For the fact, "requires fuel," this subcategory would
be "things that require fuel," which is the range of the relation. Further, for an assertion
of the fact that "a car requires fuel," the category "car" would become an example of the
category "things that requires fuel."

29

I
I "Things"

I I "things that require something"

Parent iii; ~

ii~~iii:.::....:.. ::::. .: :......., _iiii

:::G : .:ig]:i :i

Fig~ure 7, Co cte r epresnation farlto

CATEGORY

erepresent a I: Facats

Subcategories

"things that require s oue thng"
Parent

Atyt otr grExamples Facts

asocaFnga ur oe 7.Cnctuaeprentafteonj of treact dfiuyi

Toprsumaize, alloactis within the reptre setifoa nheftwrkae pretd asIuonpual uspecialaions of thxape This cacthegy Coctuallyhese o categories
crepntothe rangelaci nopcfid Thes elatio.Temles or membcers softhese" fat

3mcateores armple ithe cfor wh the cact is ar.

3.4.32.2. epreentin Proprtie

asiting a<au osm nttdproperty>o<ojc>i<vue. ofThiseape objectfteact ThFiue difiutyicxample s act

the vlue lacki r not specifed.tis statementato is a rneptaiortadoh

morrespn c omlt idthe colr of the oais blc.Tnnrl he expand o mm e d hs frmci

assithe g < au osm nttdproperty> of <ojc>it<au>"Thseape isbectfte incFigure 8.fiutyi

30

"Properties"

U CATEGORY

Exampa FcS

*Subcategories:

I "property of coal"

Parent

"black"
........i .. n CATEGORY5 C~ntd D~1i'd~i~Exa mplesias

CATEGORY Sbae~e

Exmples Facts

Figure 8. Conceptual representation of a property

With the above notion in mind, it is should be evident that to accurately represent
the conceptual structure of a property requires a specialization of the base category
Properties. This conceptual specialization is accomplished via the prepositional
phrase "of <object>" where object refers to the object being assigned the value of the
property. For the phrase "coal is black," this will be a subcategory of Properties
referred to as "a property of coal." Continuing, the final link in the representation is to
add the value, black, as a new example of "property of coal."

3.4.3.3 Representing Events

Grammatically, an event consists of, as a minimum, an action. In this case, the
event is simply represented as a category that is an example of the base category
Events. In many cases, the action will be followed by an object. Although it appears
that conceptually the object specializes the action, a further analysis of common
syntactical forms indicates that this form of the event is actually abbreviated. Consider
the example "curing composites" and a counter example, "the curing of composites."
Note that conceptually, these statements are identical. In this case, the latter statement
is the expanded grammatical form.

With the above discussion in mind, it is apparent that an event is simply a
conceptual specialization of the Events category. The named event is a new category
which is an example in the base category Events. For the above example, this is the
new category "curing." "Curing of composites" is defined As a subcategory of "curing."
The definition and facts relations of the category for the named event are associated
with the new category. Note that conceptually the definition and facts of the "curing of

31

composites" category can be abstracted to a category, "things of composites," which
simply indicates that the examples of the category are in some way related to"composites." The figure below provides the complete representation for this form of
the event.

"Events"

U O~ntextOcuring"cI CATEGORY

S,

... : 'things of composites"

tcrn of cmoes"

Theinernc Subca eg ri provies a method for erievid

, , , ... , ,... ,, . ,,, , ..

ioanh Canobeindietl Dinferrdtvia th e inDism: e
J ~~~~~~~....................,..iii iiiiiiiiiiiii[

CAATEGORY

Examples factsa t

Subcategories

tcuring of composites"

Figure 9. Conceptual representation of an event

3.4.4 Th e ference echanism

The inference mechanism of Enlighten provides a method for retrieving knowledge.
It defines which paths through the representational framework of related category
information can be validly taken to arrive at some conclusion. There are two types of
information that can be indirectly inferred via the inference mechanism: examples and
facts. Note that examples and facts can also be obtained directly by viewing a given

category. This is not considered a a a method of inference but as simple data retrieval.
Indirectly inferred facts and examples are information that is obtained from categoriesthat are indirectly related to some category.

Additional examples are inferred via a category's subcategories. This type of
inference is permitted since, by definition, all of the examples of a subcategory are
also examples of its parent category. Further, since the subcategory relation is
transitive, this process can be continued for any subcategories of the subcategories.

The inference of facts about a category occurs in two ways (shown in Figure 10).
First, categories inherit the facts of their parents. For example, if "animals requires

32

food," and a dog is a subcategory of animals, then it can be inferred that "a dog
requires food." Once again, because of the transitive nature of the subcategory and
parent (supercategory) relation, additional facts can be inherited from the related
parent categories. Note that the text reflects the exact wording used in Enlighten.
Proper Egiolish grammar has not been encoded in this version.

"things that requires water"I paren
'things that requires food" CATEGORY

ParentCATEGOR Yi

context Qafiniti, exam pies Facts

CATEGORY subcategories

sExamples Facts

Figre10 Iheitnceoffatsviutctcategories

I
ii:i:::iiii!:ii:::P a re n ti

"anitflw stma " a reur"d
Parent Because Facts are the'analogue:of Examples, "requires foo

,Context DefinitiorE .xa ,:,,,,,,, ,,.1.. p : I . Fact

CATEGORY .atb ut "ani . the

'things that requires food to survive"
Examples Facts

Subcategories

Figure 10. Inheritance of facts via fact categories

Secondly, the examples of a category inherit the category's facts. Recall that when
the following statement, "an animal requires food to survive" is asserted, that thecategory "things that requires food to survive" is created and "animal" is added as an
example of the category. Because Facts are the analogue of Examples, "requires food

to survive" becomes a fact about "animal." Further, note that the category "things thatrequires food to survive" can have its own set of facts such as "require water."

Because "animal" is an example of "things that requires food to survive," it can directlyinherit all of its facts. Thus, in addition to the fact "requires food to survive," the fact
"requires water" would also be inferred through this other fact.

It is important to realize that because the fact "requires food to survive" is actually
represented as the category "things that requires food to survive," additional
inferences can also be made though the parent categories of this category. Thus, if
the parent category of "things that requires food to survive" is "things that requires

food," any facts from this category would also be inherited by "animal" and, any facts

33

from this categories facts would also be inherited. This technique provides a means
for rapidly creating a very rich network of general knowledge.

1 4.0 Enlighten, The Result

4.1. General Overview

I The user cannot be completely unaware of the intended use of a software tool.
Like a homeowner's hand tool, the computer user must know that something is to be
gained by using the tool and have some idea about how the tool will achieve the
desired result. For example, a homeowner knows that a hammer is used to hit objects,
usually with more force than can be exerted with a hand. The possible uses of a
hammer are left to the homeowner to explore. The same is true of computer software
tools. However, more often than not, the model of the software must be made explicit
to motivate the potential users before they are left alone to apply the tool.

This section attempts to explain the intended use of Enlighten. After a discussion
about potential uses of Enlighten, the user roles and their probable interactions are
described. The discussion is in terms of metaphors which describe ordinary tasks
normally accomplished without any software tool. The discussion inclujes possible
motivations for each user group to use Enlighten.

Given Enlighten's objective, a unified acquisition, refinement, and delivery expert
system tool, the software has three modes of operation: acquisition, refinement and
delivery. Because the objective also includes the creation and delivery of an expert
system, it accommodates two user roles: knowledge "inputters" and knowledge users.
Traditionally, knowledge inputters were knowledge engineers who translated an

expert's knowledge and encoded it in the expert system tool. In Enlighten, knowledgeengineering is accomplished directly by the expert.

Experts will use the system primarily in the acquisition and refinement modes.
Experts might also want to use Enlighten as a tool after the knowledge has been
added as a data retrieval resource. Non-experts will typically use the system in a
delivery mode only. Each mode of operation of Enlighten is discussed below.

4.1.1. Input Methods

Interactions with Enlighten are text-based. The expert captures the concepts and
their definitions in words which must be typed into the system. The non-expert user
queries the expert system by requesting more information about specific concepts
entered as typed words or phrases. This reliance on text provides the most generic
interface mode for all applications. Text is used in all disciplines, even those with
highly formalized symbols such as chemistry and mathematics. Text is the ore
common denominator among manufacturing disciplines.

This choice of a text-based interaction also created additional design
considerations, most importantly the syntax. To allow non-programmers to interact
with Enlighten, a set of natural language-/ike syntax templates were defined. (See
Appendix A for listings of these templates.) These templates force users to rephrase
proper English into Enlighten's more limited syntax. All of the limits on the allowable

34

I
syntax take into account the potential for user errors and the effects of syntax rule
violations to the integrity of the knowledge base.

These syntax limits in no way compare to the prevalent use of hyphenated words to
capture the object's semantics. The hyphenated word "drilled-hole" relies on thereader to derive its semantic meaning; it has no semantic meaning to the system.

While this method of encoding semantics is used in most expert system shells, itjplaces the burden of semantic consistency on the user; all users must interpret the
word combinations consistently. The potential for misinterpretation of information is
very high, degrading the usefulness of current expert system tools. Word hyphenation,
while allowed, is not necessary to capture semantics in Enlighten. More importantly, it
captures semantics through definitions as opposed to such hyphenated labels. The
design of Enlighten sought to allow common English forms (templates) to be used toI name and define categories so as to maximize the naturalness of its syntax.

The design is based upon a model that assumes people think of, and organize,
information in categories. To capitalize on this model, Enlighten allows a user to enterinformation about a category in the form of facts, examples and subcategories.
Enlighten uses this information to build relationships or associations between

Icategories forming a complex interrelated network of knowledge.

While Enlighten's user interface is dependent upon typing information on the
computer, the design attempts to eliminate some of the effort required. One feature is
that typing the subject of each fact is eliminated. For example, the category "weapon"
could have the facts:

is used to inflict harm on people
is capable of killing people
is used to protect the user
causes fear

in each case the subject is assumed to be "a weapon." Appendix A discusses the
details of adding information to Enlighten.

4.1.2. Summary Methods

Enlighten summarizes and displays the information it has gathered using indexes.
Enlighten includes a core index consisting of the four base categories: Things, Actions,
Properties, and Events. New indexes may be created by the user to view the
relationships created by Enlighten.

An Enlighten index is similar to a document outline. The context of the category
and its associated categories are displayed in a "hierarchy" with the most generalcategory flush left and each restricted category indented and below its parent. The list
of categories at any each level, for each category is alphabetical. The order in which
the expert entered the categories does not determine their sequence of the index.

The associations or contexts of the objects and actions are displayed in the
indexes. For example, "hole that is drilled" is a subcategory to "hole." This context is
maintained by having "hole that is drilled" indented under the concept "hole." This

35

context is very different than a "tooth that is drilled," even though both have the same
restriction of being drilled. The index for objects would be displayed for this set of
object as:

hole
hole that is drilled

tooth
tooth that is drilled

Special indexes can be generated to summarize all facts, examples, or
subcategories of a category. These indexes include information directly associated
with the category, and information inherited from related categories. For example, an
index of facts for the category "hole that is drilled" will appear as:

opening
fact1
fact2

hole
is round
fact2

hole that is drilled
has sides that are smooth
fact2

I This example assumes that "opening" is a parent of "hole" and the above restriction of
hole is also in the the knowledge base. This format allows the user to see the level at
which a fact was asserted. The facts at the "opening" level apply to all examples, all
subcategories of "opening," and all subcategories of subcategories of "opening." This
index method shows the user information that may not have been apparent. For
detailed discussion of how Enlighten gathers this information see Section 3.3.4.

4.2. Knowledge Acquisition

The first step in the development of an expert system is knowledge acquisition.
Knowledge acquisition is the gathering of relevant information about a specific topic.
Traditionally, this information is acquired by a knowledge engineer who usudlly
interviews the expert or presents sample situations for the expert to solve. The
information is recorded and later massaged into an expert system shell.

In contrast, knowledge acquisition in Enlighten is performed by the expert through
the process of introspection. An expert can use Enlighten to capture and organize this

36I

knowledge through a process similar to taking notes. Starting with a single category
or topic, the expert provides facts about that category. Writing details reminds the
expert of other information which is then added to the category. This process
continues until the expert believes that the knowledge is complete enough to function
as an expert system.

In Enlighten the expert controls the knowledge acquisition process. The expert is
free to add information in any order and at any time. Thus the user is free to add facts,
examples and subcategories, but is not forced to do so. However, the user model of
Enlighten assumes that including facts, examples and subcategories adds richness to

jthe knowledge base not available in traditional expert systems.

An expert's use of Enlighten goes beyond the metaphorical note-taking. While
input method is not as flexible as note-taking, Enlighten allows the expert to put the
information in any order. As the expert adds new knowledge, Enlighten creates
organization transparently. Unlike a notebook, Enlighten automatically incorporates
the additional knowledge in the correct place and context, in contrast to a paper-based
system of cluttering the margins of a notebook with later observations.

The expert is not forced to follow a strict procedure to add knowledge to the system.
Nor is he or she forced to maintain a model of the expert system representational
framework to create or modify a knowledge base. The elaborate network of rules in a
traditional expert system can be scrambled with the addition of a single new rule,
rendering the system useless. This is not the case when adding or modifying
knowledge in Enlighten.

4.3. Knowledge Refinement

The acquisition phase should be followed by a refinement phase. Traditional
knowledge base development separates knowledge acquisition and refinement. Over
a period of time, the knowledge engineer uses the acquired information to create a
prototype knowledge base. Once the prototype has been created the expert and
knowledge engineer work together to evaluate the prototype knowledge base for
completeness, consistency, accuracy, etc. This process usually results in the expert
getting a "different" view of the knowledge, which often exposes nuances that he or
she had not previously seen.

Enlighten allows the expert to refine the knowledge base in a user-driven fashion.
The expert can review the acquired knowledge for completeness, consistency,
accuracy, etc. at any point in the acquisition process. Additionally, Enlighten provides
a summary view of the acquired knowledge in the form of indexes. These indexes
highlight where additional information may be needed to complete the knowledge
base, indirectly prompting the expert to add more information.

By generating an index Enlighten traverses the hierarchies and displays the
relevant relationships between the categories. This may result in new, formal
knowledge for the expert. In this way Enlighten also facilitates refinement by showing

a different view of the expert's knowledge.

37

4.4. Expert System Delivery

Enlighten's delivery system allows for the potential of two distinct user roles: the
domain expert and the non-expert. The non-expert is treated as having no prior
knowledge of the domain or, at most, minimal knowledge. The domain expert can use
the system as a non-expert to test it, and as an expert to explore the domain with a
"knowledgeable partner." The objectives and methods of each user role differ

* considerably.

4.4.1. Non-Expert User

*A complete Enlighten knowledge base can be viewed as an expert's body of
knowledge about a topic. The non-expert explores this collection of information to

* achieve some end.

The non-expert user interacts with Enlighten in two ways: through category
windows and indexes. Category windows show all of the information gathered about
a single category. Indexes summarize information about the entire knowledge base or
an individual category, specifically the facts, examples, or subcategories of the named
category. Non-expert users can use both types of feedback to get information from an
Enlighten expert system.

For the non-expert user, Enlighten must already contain knowledge, i.e. the"notebook" must have already been filled. The non-expert user uses the notebook asdictionary or encyclopedia to look up the desired information. The user can explore
the knowledge base from general to specific topics. The user chooses an initial topic
for which Enlighten displays all of its associated facts, examples and subcategories.
From there the user determines which, if any, of these new categories are relevant to
the objective of the search. By pointing and clicking on desired categories the user
navigates through the information contained in the knowledge base. The associations
between the categories are those of the expert; the search path is chosen by the non-
expert. Appendix A shows an example of navigating through the knowledge base.

Cross references in this "dictionary" are built-in. With clicks of the mouse the user
can quickly move between categories exploring meanings and relationships with other
categories. Categories are connected via facts, subcategories, and examples.
Enlighten shows these relationships as cross references between categories in the
indexes and in both category windows. Whenever the user wishes to know more
about any category in the knowledge base, Enlighten's interface allows easy
navigation through the references. See Figure 3 for a summary of interrelations
between a category and its subcategories, facts and examples.

The level of detail explored for any given category is user-specified. The user
controls what information about any category is shown. The user can explore
relationships between categories using only the index windows or actually look at theIfacts, subcategories, and examples of the categories using the category windows.
Indexes summarize information for both types of users, expert and non-expert.

The delivery mode of an Enlighten expert system is similar to the interaction
between a non-expert and an expert in a problem solving or information gathering

I
38

exercise where the non-expert is leading the discussion. While this is not often true in
expert/novice interactions, this approach can lead to more effective communication in
answering the questions of the relative novice. Human experts can lose patience with
the continuous question of a novice or resort to lecture after assuming the direction of
the questioning. Enlighten maintains the control in the hands of the current user. This
is part of the user model encoded in Enlighten.

4.4.2. Expert User

The expert user can have two levels of interaction with a resultant expert system:
testing and use. The expert user tests the expert system by playing the role of a non-
expert user. In this case the expert tests the knowledge base for completeness,
consistency, etc., modifying the information as necessary. More importantly, the expert
can simply use the expert system as an on-line tool for storing and retrieving
information. It is this ability that allows an expert to benefit from the use of Enlighten.

4.5. Inquiry Capability

The user, either expert or novice, can force Enlighten to search the knowledge
base in three ways: through categories, indexes and facts. The most general way to
inquire information from Enlighten is through a category. The user can retrieve facts,
examples and subcategories simply by "asking" Enlighten for the category by name.
This allows for basic "what" type questions e.g. what requires fuel, to be asked,
through restatement of the question as a category, e.g., things that requires fuel.

The second method is through the generation of indexes. Index generation, see
Section 4.1.2, gathers information from throughout the knowledge base.

En':yn, "n can respond to a specific query about the validity of some fact. Is a
staternent asserted or not. This is a separate function in Enlighten as a menu option.
When queried, Enlighten searches in the context provided of the fact; it can use
synonyms and inheritance to validate the information in the query. The query system
of Enlighten is one of the most limited aspects of the tool in its current version. The
power of the information contained in an Enlighten knowledge base is currently
untapped.

5.0 Review of Enlighten

The prototype version of Enlighten was subjected to use by two university-
associated people. Ms. Evans of The Ohio State University developed a knowledge
base about wave theory and music to test Enlighten's ability to distinguish different
categories with the same names. Dr. Deep of the University of Dayton, Ohio evaluatedI Enlighten for its potential as a commercial product. The goal of this portion of the
project was to validate the concepts as implemented.

5.1 Summary of Review 1

This section gives a reaction to Enlighten by one reviewer. The first reviewer, Ms
Evans, gave both positive and negative comments about the software. Aside from a
number of software "bugs" (non-working or strangely working features), the reviewer's

39

comments are generally positive. Typing concepts into the system did result in easy
knowledge input. However, the format required by Enlighten was sometimes difficult
to follow. Some information had to be worded oddly to fit into the system. The
reviewer found the indexes to be quite interesting and liked the idea of combining
different concepts in a knowledge base, but also found that some concepts were
parsed or connected inappropriately. Inappropriate connections may have been due
to the reviewer's lack of familiarity with the limited syntactic templates allowed by
Enlighten. Overall, the reviewer liked Enlighten and said she would use it to explore
thoughts and concepts, and to look for new connections she had not previously
considered.

The feedback from Ms. Evans was used to find and address the inappropriate
linking of categories. The delivered version of Enlighten addresses these bugs as
discussed in Section 6.0. Also, the review pointed out several deficiencies in the
context feature. The implementation of the context feature was frozen and left for
follow-on work.

5.2 Summary of Review 2

Dr. Deep's review is very extensive. This review discusses his comparison of
Enlighten to commercially available expert system shells as well as other expert
system development tools. His review is from the perspective of Enlighten as a
personal information manager (PIM) with a delivery mode as an expert system. Major
portions of this section are direct quotes (set off as block quotes) from Dr. Deep's
response.

Enlighten's structure can be likened to Hypermedia where entities are linked
in a non-linear fashion. Hypermedia allows the user of such a system to peruse
the information contained in any order or non-order. However, Enlighten stands
against an entrenched competition in the commercial market place where
several established hypermedia packages have grab significant market share.
All of these other hypermedia packages have also established a niche such as
personal calendar (Lotus Agenda), data base (Apple HyperCard), and outlining
(Symantec More). Enlighten will have to approach a very specific niche and
address that niche market better and, preferably, before any other product. The
general approach taken as a white collar software tool is too general and sure
to fail in a competitive market.

Enlighten is based on the Macintosh philosophy of the user determining
what to do and when, rather than relinquishing control to an inference engine.
In some sense, this is an illusion; for the most part, the computer seizes control
for shorter intervals under the Macintosh philosophy. Enlighten may afford
random access to the information thanks to hypertext, but most production
knowledge-based system can fire rules in virtually any order in response to a
given situation. Thus the approach taken by UTC to develop Enlighten on the
Macintosh does not necessarily give it the upper hand in user interface and
user control.

In terms of an expert system shell, Enlighten again is up against stiff
competition. Many vendors are now developing front-end knowledge

40

acquisition modules. Also, almost all significant expert system developed today
operate in concert with other forms of knowledge (data bases, spreadsheets,
graphics, communications packages, forms, word processing, report
generators, links to higher order languages, and hyper text applications for the
HELP modules, personal information managers, etc.) Today's expert system
shells exhibit the following properties:

• Implementable on relatively inexpensive PC's,
• Computationally efficient comparable to dedicated computers,
• Allow multiple modes of chaining (forward, backward, mixed),
• Allow several hundred rules (limited by computer memory),
• Permit bridging feature to external computer structures,
• Available run-time-only versions,
* Provide an integrated synergistic environment, and
• Allow for easy information input.

Uses of Enlighten could traditionally include a word processor, a data base,
an appointment calendar, an outliner, a text retrieval, an idea generator, etc. Or,
untraditionally, the most outstanding use of Enlighten would be to initiate an
alter ego information source which never forgets, and accepts and organizes
the bits and pieces of information fed it daily. Many times humans try to recall
something and search through piles of books, articles and papers. With an
implementation of Enlighten, they would never have to do it again, and they
would probably want to feed Enlighten a whole lot of information. Again, this
demands easy, friendly, flexible information input and output.

3Enlighten's raison d'etre should be to flexibly and easily accept and
manipulate information from users as the information occurs to them (order
independent). Then it would be desirable to have Enlighten contain an
inductive component which could not only accept examples from users, but
which could distill the examples into efficient summaries or rules. Enlighten
presently retrieves the bit and pieces as a more coherent whole that when the

i bits and pieces were entered.

There are several kinds of knowledge: declarative, semantic, procedural,
episodic, etc. Enlighten uses declarative knowledge or just plain facts (e.g., the
ball bounces), oerives semantic knowledge from the syntax, because it uses the
relationships between concepts and facts, procedural knowledge, because it
follows the action verbs, and some episodic knowledge. Enlighten must not
only take in information , but must also get rid of information at the user's
request.

i It may be argued that expert systems are brittle, but in fact expert systems do
not profess to go beyond their knowledge bases. Since Enlighten does not
parse for semantics, there are a lot of questions up front that make Enlighten
brittle in some sense. Enlighten knows what it doesn't know, but could well
exhaust the patience of a laic user unaware of the difficulty of imparting
commonsense to a computer program.

41

How does Enlighten handle contrary and contradictory statements? By
giving both on retrieval requests? For example, the wall is blue; the wall is red;
the wall is not red. It would be nice if Enlighten could flag contrary knowledge,
but it only returns products of the links.

Enlighten presently cannot handle adjectives or adverbial modifiers, thus
severely limiting user description and calling for stilted input. There may be
artificial ways of getting around this limitation; for example, A CAR HAS FOUR
TIRES can be formed into THE NUMBER OF TIRES ON A CAR IS FOUR; but
there is an implied price to pay.

How does Enlighten address fuzzy knowledge? For example, icy roads are
slippery. Rick is very bright. Smoking can cause cancer. Simply by recall may
not be sufficient. For example, BIRDS FLY. OSTRICHES ARE BIRDS.
OSTRICHES DO NOT FLY. OSSIE IS AN OSTRICH. Does OSSIE fly?

Finally, Enlighten's novelty is its inheritance hierarchy, but this hierarchy
puts the responsibility on the developer and the user to construct -- no easy task
-- and one that involves abstraction. For example, here are some questions that

* need to be answered:

* What objects and relations are important in the domain?
• What kind of queries will be made of the system (links)?I Will the facts change over time (like due dates)?
* Is there a well-understood taxonomy for the information?
• Can the structure be broken, changed, and mended at will?
• What happens if CATEGORIES are misused or misidentified?
* Is the structure computationally efficient?
* How will the knowledge be organized?

* • Will categories be nested ,but only accessed from within?

Considering the relatively short development time thus far for Enlighten,
what has been done is well within the reach of most software houses which do
development efforts for a living. Thus competition is and will remain keen.
Although Enlighten's idea of mingling hypertext with hierarchy may be
considered novel, both features are well developed and understood in and of
themselves. The existing data structure technique called "frames" exploits
inheritance and hierarchy as well. Object-oriented applications are based on
nested inheritance, encapsulation (chunks), and polymorphisms (links) and are
often combined with hypertext.

Enlighten could be easily learned with context-sensitive help. Enlighten will need
to make good use of color, Dr. Deep has reviewed (by reading) over a dozen
packages on the market and to prepare Enlighten for the commercial market is a
formidable task. A niche for Enlighten needs to be determined so that if commercial
preparations are in order, the preparations can be tailored to the niche. Dr. Deep
would assign a very high risk to the endeavor based on the existing commercial
products. In any case, since Enlighten is being billed as a white collar personal
information manager (PIM), it is best to have a very gentle learning curve, i.e.,
immediately easy to use. A completed Enlighten should allow users to easily and

42

flexibly input their own knowledge and retrieve it in a useful way so that the users need
only query their alter ego structures.

5.3 Response to Review 2

In response to Dr. Deep's comments, UTC believes he has several valid points and
identifies areas of future work. However, UTC also disagrees with other points. Dr.
Deep states that the choice of the Macintosh platform does not provide any advantage
over other computing platforms. The whole Macintosh operating system philosophy is
based on user knowledge and control. All of the possible actions, in both the
operating system and all applications, are readily available for the user to select;
nothing need be memorized. The value of this type of interface is obvious from the
market trend over the last 5 years; the market share for graphical user interface-based

operating systems (GUI's) has dramatically increased. Enlighten takes advantage of
the Macintosh's interface and philosophy of making things easiest for the user (not
necessarily for the programmer) and minimizing the potential and severity of mistakes.

The increasing availability of knowledge acquisition modules on current
commercial expert system shells does not necessarily bring these tools any closer to
the expert. No matter what the shell, backward and forward chaining systems require
an extensive network of rules. To optimize this type of system, the user must
understand the way the rules are encoded in the software. The potential for creating
spaghetti networks is very high. The potential of a novice modifying an existing,
functional knowledge base system by adding a single rule is low because of the
network structure of current rule-based systems. Enlighten is not rule-based rather it is
a hierarchy of related categories based on the information added by the expert. The
expert has no need to understand the hierarchy to begin to add information to
Enlighten.

Dr. Deep has valid criticism in how Enlighten handles conflicting and contradictory
statements. This is part of the incompleteness of the implementation. It is part of the
design to flag these as they are added to the knowledge base, or at a point when the
expert asks for all of the conflicts, allowing the expert to eliminate the incorrect
statement, leaving the correct one. Deletion of existing knowledge is an incompleteaspect of the current implementation making resolution of conflicts impossible.

Towards the end of his review, Dr. Deep asserts that any development house could
have developed Enlighten. True, any development house worth its existence can
code a complete design. Development of innovative design is the objective of the
SBIR program. It is an opportunity for a company to get started as a development
house. With a new and innovative approach to an existing problem, the solution can
benefit the Air Force. Enlighten offers a new approach to gathering and using
information as an expert system which both the author (expert) and non-author can
use.

43

6.0 Results and Conclusions

6.1 Overview

The primary goal of this SBIR program was to the development of a low-cost tool
that would allow experts in a given field to easily and quickly construct useful expert
systems. Further, it was essential that the expert was capable of accomplishing this
task without the assistance of a knowledge engineer and with little or no programming
experience. From a design perspective, the most critical goal was viewed as the
ability for an expert to use the "shell" directly without a knowledge engineer as an
intermediary.

It is UTC's view that current rule-based expert system shells require too much
detailed informp.tion regarding the actual inner workings of the shell and force the user
to "codify" their knowledge in a form that is not as natural as was oice believed, i.e.
rules. As an alternative to this rule-based approach, a more natural, "facts about
objects" approach was chosen. With this approach, the experts input their knowledge
in terms of facts about specific topics, e.g. "a composite is a material that is
manufactured in an autoclave". Further, these topics can be organized in a
hierarchical fashion by the expert. This not only aids the expert in the development
process, but also facilitates retrieval of the knowledge by a different, non-expert user.

From a non-expert user's perspective, traditional expert systems exhibit a
"computer-driven user" philosophy. It is the expert system that drives the user through
a series of questions requiring a set of specific answers; the user has little or no choice
in the particular line of inquiry chosen. Worse, it is often impossible for a user to retract
a previous answer or compare the expert system's outcome if they had chosen a
different path in the inquiry. Thus, rather than allowing the user to freely explore the
various solutions to a problem, the expert system leads the user to its best solution.

In contrast to this, UTC chose to design a shell that put the user in charge of the
inquiry process, i.e. a user-driven computer. The "facts about objects" approach to
representing knowledge was viewed as the fundamental technique in obtaining this
mode of operation. For example, given a knowledge base that is organized by the
domain expert as facts about different categories of problems with a particular device,
a user can quickly narrow in on a solution to the problem by working from very general
categories of problems - "a problem with the engine," to very specific categories - "a
problem with the engine when starting the car on days when the temperature is below
70 0F." Further, potential causes of the fault are immediately accessible in the category

"can be caused by excessive humidity in the air." In the same manner, solutions
could also be viewed - "is prevented by decreasing the amount of fuel injected into the
carburetor."

The user interface was seen as a key design issue in order to obtain this
functionality. Because text is the most general form of communication, it was chosen
as the primary method for entering information into the shell. More importantly, a need
to easily organize and relate the incoming information to existing information was
needed. To facilitate this, a common method for organizing text-based information
was chosen - the outline. By automatically organizing the various information entered
by an expert into hierarchies of categories and displaying this information in an

44

abbreviated form via an outline, called an index in Enlighten, both the expert and the
non-expert user can quickly and easily access large amounts of information.

* 6.2 Results

The primary goal of a phase two SBIR is to generate a commercial-quality product
that can then be marketed during the phase three effort. Due to time limitations and
the complexity of the task, UTC was unable to completely meet this goal. While the
current version of the software satisfies many of the original design goals, a
considerable amount of additional programming is required for its commercialization.
The majority of the effort in developing the current version of the software was
expended in the user interface which comprises approximately 90% of the actual
code.

Functionally, the current version of Enlighten allows the user to create, view, index,
and edit topic categories, and to enter facts, examples, and subcategories related to
any of these categories. In addition to these features, a simple query engine exists
that allows Yes/No types of questions to be answered. For example, having asserted
the above example, when asked if a car requires fuel, Enlighten would respond, yes.

Where appropriate, textual entries are linked to their corresponding categories (hot
text). This not only provides a means to quickly navigate through the information
network, but it also aids in resolving problems in reference due to context. Thus, if a
user were to double-click on the example "engine" within the category "a part of a car,"
and then double-click on the example "engine" within the category "a part of a jet," two
different category windows would be opened. The first would be an engine in the
context of a car, and the second, engine in the context of a jet.

The information entered into Enlighten is internally organized as described in
Section 3. For example, the addition of the fact that "a car requires fuel for power" is
not only added to the category car, but also causes the categories "things that requires

fuel" and "things that requires fuel for power" to be generated. These additional
Scategories include the reference to car and are directly available to the user to add

additional facts about these general categories or view what additional objects within
the knowledge base meet these criterion.

I The current version of Enlighten also includes the basic commands necessary for
opening, closing, and saving a knowledge base. While this allows the user to create
multiple knowledge bases for different domains, only one knowledge base may be
loaded at a given time.

6.3 Limitations

The primary functional limitations of the current version of Enlighten are in the area
of its inferencing capabilities. The original design goal was to include a robust set of
inferencing capabilities to include hierarchical, temporal, structural, causal, spatial,
and conditional relationships. Due to time limitations however, only hierarchical
inferencing is complete. Structural inferencing is partially complete, allowing a user to
view simple structural hierarchies. The deeper form of structural inferencing relating to
analysis based on structure, however, is not complete.

I
45I

It is UTC's view that while the implementation of these inferencing modes is not
complete, the overall design of the system supports this type of inferencing through the
use of semantic knowledge as opposed to simple, heuristic knowlPdze ., in fact,
these inferencing capabilities that drove the design of the represer,,auJndl structures.
The extreme amount of effort required to develop a usable user interface for entering
and viewing a knowledge base precluded the development of some of these very
desirable features. It was decided that the overall goals of the proipcc would be better
exemplified by having a functional user interface with partial ih,-:;ncing, rather than a
complete inference engine with an interface that only a knowledgeable programmer1 could use.

Another functional limitation is in the area of context. Of particular concern during
the development of Enlighten was the ability for a user to reuse the same words in
different situations or contexts. As in the previous example, the engine of a jet is not
the same as the engine of a car, but both can be referred to as engines within their
respective contexts. Enlighten includes the necessary mechanisms to internally
represent these categories differently in the different contexts. Unfortunately, there
was inadequate time to develop the associated user interface elements that would
allow the user choose a category in situations where Enlighten is unable to determine

* the appropriate context.

The support of conjunctions in statements is also not included in the current version
of Enlighten. This would provide a powerful method for not only querying Enlighten,
but also asserting facts, e.g. "a car requires fuel, a battery, a driver, and tires." Once
again, the implementation of these ideas was curtailed due to time constraints as
opposed to design flaws. An earlier prototype did, in fact, support conjunctions.

Other functional limitations of Enlighten, including the representation of quantities
and the use of adjectives and adverbs in descriptions, were ignored due to time
limitations. The representational structures are currently able to accommodate these
concepts. The problem in their implementation however lies in the development of a
parsing strategy that could deduce the word type, e.g. adjective, adverb, or quantity,
from the sentence without asking the user or referring to some predefined list of
options.

While most parsers utilize a predefined list of words to make these determinations,
this still does not solve the problem of what to do when an unknown word is
encountered. Continual bantering of the user with inappropriate questions such as "is
this word an adjective" are considered unacceptable by UTC. What is sought, is some
transparent method for making these determinations or, as a minimum, some simple
method for allowing the user to unambiguously inform Enlighten of the word type

I without relying on an understanding of English grammar.

Because development oi the user interface was so time-intensive, there was only
adequate time to complete a minimal interface. A complete commercial version of
Enlighten will include extended editing within the category dialogs including
individually resizable fields, greatly enhanced indexing capabilities that will allow a
user to generate indexes along any given topic, e.g. "cars that require fuel," and an
expanded query dialog and associated query engine to handle complex questions
involving conjunctions, e.g. "What requires fuel AND is used by the military."

I
46

I

6.4 Conclusions

While the development of Enlighten did not result in a ready-for-market software
package. the current implementation provides an excellent prototype of a second
generation expert system shell. The key elements of Enlighten that move it ahead of
traditional heuristic expert systems are its use of semantic knowledge as opposed to
purely heuristic knowledge, a user-driven approach where the user is in charge of
deciding where to go first with Enlighten providing assistance only when asked, and
the ability to actively organize incoming information into a network of related concepts
further providing a method for refining knowledge.

In retrospect, there are a number aspects of the original design that would be
changed or augmented having worked with the current version of Enlighten. Perhaps
the most important would be the development of a syntax that would allow users to
organize their knowledge into a single text file that is developed off-line. This would
be done using a similar constrained syntax with perhaps key words being used to set
the current context of the incoming information. Consider the following:

TOPIC: car

NAME:
automobile

DEFINITION:
a machine that is used for...

FACT:
requires fuel to function
costs money to maintain

EXAMPLES:
Mustang Probe

In this example, the key words TOPIC:, NAME:, FACT:, and EXAMPLES: could be used
to organize the information textually in a manner that is similar to that done graphically
by the user interface. This is viewed as an engineered solution that avoids the
difficulties associated with true natural language parsing. Further, this method of
organization actually requires less text than its equivalent form in prose as shown
below.

A car, or automobile, is a machine that is used for.... It requires fuel to function
and costs money to maintain. The Mustang and Probe are both examples of
cars.

47

IBibliography
Aiello, Luigia, and Levi, Giorgio, The Uses of Metaknowledae in Al Systems, Elsevier

I Science Publishers B.V., 1988, pp. 243-255.

Barr, Avron, Paul R. Cohen, and Edward A. Feigenbaum, The Handbook of ArtificialIIntelligence, Volume IV, Addison-Wesley Publishing Co., Inc., Reading, MA, 1989.

Blaxton, T.A. and C.R. Westphal, "Combining explicit queries with simulationItechniques during knowledge acquisition," 1988.

Brachman, Ronald J., What IS-A and Isn't: An Analysis of Taxonomic Links in
Semantic Networks, Fairchild Laboratory for Artificial Intelligence Research,
Computer Magazine, October 1983, pp. 30-36.

Carnap, Rudolf, Meaning and Necessity: A-Study in Semantics and Modal Logic, The
University of Chicago Press, 1956.

Copi, Irving M., Symbolic LQic, Fifth Edition, Macmillan Publishing Co., Inc.,1979.

Dement, Charles W., et. al., PACIS: A Platform for the Automated Construction of
Intelligent Systems, Ontek Corporation, 1988.

Facione, Peter A., and Schere, Donald, Logic and Logical Thinking A Modular
Approach, Woodbridge, Connecticut, Ox Bow Press, 1984.

Finin, Tim, and Silverman, David, Interactive Classification as a Knowledge
Acquisition TQol, Expert Database Systems, 1986, pp. 79-90.

Henghold, W. M. , Insley, R. S., Evans, P. A., and Park, J., Low Cost Unified Expert
System Tool for Manufacturing, AFWAL-TR-88-4041, 1988.

Israel, David J., and Brachman, Ronald J., Distinctions and Confusions: A Catalogue
Raisonne, unpublished manuscript.

Lenat, Doug, et. al., CYC: Using Common Sense Knowledge to Overcome Brittleness
and Knowledge Acquisition Bottlenecks, The Al Magazine, Winter 1986, pp. 65-
92.

Marcus, Sandra, Automati-ig Knowledge Acquisition for Expert Systems, Kluwer
Academic Publishers, Boston, 1988.

McArthur, Tom, Lexicon of Contemporary English, Longman Group UK Limited, 1981.

Musen, M.A., Fagan, L.M., et. al., Knowledge Acauisition Tools for Expert Systems,
Volume 2, Academic Press, 1988.

Parsaye, K. and Murphree, S., "Automating The Knowledge Acquisition Process",
Intelligence Ware Technical Report, March 1987.

48

Patel-Schneider, Peter F., et. al., Term Subsumption Languages in Knowledge
Representation, Al Magazine, Summer 1990, pp. 16-23.

Ralescu, Anca L., A Case for the Use of Conceptual Graphs for Knowledge
Representation In a Knowledge Based System.

Regoczei, Stephen, and Hirst, Graeme, Knowledge Acquisition as Knowledge
Explication by Conceptual Analysis, Technical Report CSRI-205, January 1988.

Regoczei, Stephen, and Hirst, Graeme, On 'Extracting Knowledge from Text':
Modelling the Architecture of Language Users. Technical Report CSRI-225,
January 1989.

Regoczei, Stephen, and Plantinga, Edwin P.O., Creating the Domain of Discourse:
Ontology and Inventory, Knowledge-Based Systems, Vol. 2, pp. 293-309.

Selfridge, Mallory, Cognitive Expert Systems and Machine Learning: Artificial
Intelligence Research at the University of Connecticut, The Al Magazine, Spring
1987, pp. 75-79.

Sowa, J. F., Conceptual Structures Information Processing in Mind and Machine, The
Systems Programming Series, Addison-Wesley Publishing Company, 1984.

Whitehead, Alfred N., and Russell, Bertrand, Principia Mathematica. Volume 1,
Second Edition, Cambridge The University Press, 1957.

Wilensky, Robert, Some Problems and Proposals for Knowledge Representation,
University of California, Berkley.

49

I Table of Contents
1.0 Getting Started ... 1

1.1 Loading 'Core' Information .. 1I1.2 Adding Categories... 2
1.3 Getting Around... 5

1.3.1 Hot Text ... 5I1.3.2 Accessing Categories.. 6
1.4 Entering and Viewing Category Information 6

1.4.1 Names... 6I1.4.2 Definition ... 7
1.4.3 Facts... 7
1.4.4 Examples ... 9I1.4.5 Subcategories... 9

1.5 Editing Categories... 9
1.6 Saving New Information (Save As, Save)..............................1 0I2.0 Creating Indexes.. 11
2.1 View All Subcategories .. 11
2.2 View AlFacts .. 12
2.3 View All Examples... 13

3.0 Context.. 13
4.0 Asking questions.. 14
5.0 Summary ... 15

Figure 1. Enlighten's Menu...L.is.t.of.F g.u r.s...1I
Figure 2. Enlighten's Core Index ... 1
Figure 3. Adding a New Category.. 2
Figure 4. Category Window ... 3
Figure 5. Category Window for Part of a Car... 4
Figure 6. Syntactic forms for categories... 5
Figure 7. syntactic forms for definitions.. 7
Figure 8. Syntactic forms for facts .. 8
Figure 9. New Subcategory Index.. 11
Figure 10. Chevy Facts Index ... 12
Figure 11. Index for Machine Examples...1 3
Figure 12. Fact? Window ... 15

A-i

1.0 Getting Started APPENDIX A: ENLIGHTEN TUTORIAL

This tutorial provides a general overview on how to use Enlighten. It explains how
categories are created, defined, and edited. It describes how indexes are created to
provide an overview of a category's facts, examples, and subcategories. It also
explains how to quickly access a particular category using 'hot text'. Just as
importantly, the tutorial addresses Enlighten's user interface limitations.
Understanding these limitations is essential to prevent user frustration and enable
productive knowledge base development.

1.1 Loading 'Core' Information
After the application has finished loading, a menu bar like the one shown

in Figure 1 will be displayed. Select Open in the File menu, and select the file
named "Core" in the Open dialog box. This action loads the core knowledge that
Enlighten uses to interpret and organize new information entered by a user.

S File Edit Category Index

Figure 1. Enlighten's Menu

Once the Core is loaded, the application's main index window will
appear (Figure 2). Notice that the window contains four root categories: action,

--- _ _ _ _ Core

action
event
property
thing

II

Figure 2. Enlighten's Core Index

A-1

event, property, and thing. Recall from Section 3.4.3 that these categories are the
building blocks upon which an knowledge base is organized. Each category created
in the system will be related (directly or indirectly) to one of these root categories via a
subcategory, example, or fact relation.

1.2 Adding Categories

Select Add in the Category menu to add a new category to the knowledge base.
Add will bring up the window shown in Figure 3. It has a field for describing a new
category and a set of buttons for selecting its type.

_ED=__ _Add Category

Category:

Type: * Thing OProperty OAction OEvent

(Cancel . (dd

Figure 3. Adding a New Category

Notice that the types are the four root categories discussed in the previous section.
Every category created in the Add Category will be asserted as an example of the
selected type. To verify this, try adding the category, 'engine' as an example of a
'Thing':

• Select the button labeled 'Thing', if it is not already selected

* Type "engine" into the Category box

* Click on the Add button.

This creates the 'engine' category and opens the Category window shown in Figure 4.
Now, double click on the Context field which contains 'thing' to view its category
information. Notice the category, 'engine' appears as an example of a 'thing', as
originally asserted.

It is important to note that a multiple word category name (e.g. "car part") cannot be
used to create a new category in the Add Category window. Entering a multiple word
name using hyphenation is discouraged (e.g. "car-part"). The recommended method
is to create the categnry by entering its definition (e.g. "part of a car") and then assign
the multiple word name in the category's Names field. Enlighten allows the expert to
then refer to this category with the multiple word name or definition.

A-2

engine

Parent_

Context thing

Definition

Names
engine

Facts
is a thing

Examples

Subcategories

Figure 4. Category Window

I Go to the Add Category (M-A or select Add in the Category menu)

• Enter "a part of a car" in the Category box

* Click on the Add button. This will create the category and open the Category
window shown in Figure 5.

Name the category, 'a part of a car as "car part".

• Click in the Names fie!d

• Type "car part"

I Press return.

After the return, the window's title will change from "a part of a car" to "car part" to
indicate that the category can now be referred to by name or its definition.

A-3

- a part of a car

Parent Ia part

ConteHt Ithing

Definition a part of a car

Names

Facts
Ii

I EHamples

Subcategories

Figure 5. Category Window for Part of a Car

Examine the new categories that were just asserted into the system as examples of
'thing'. Click on the window for 'thing' or double click on the Context field for 'a part of
a car'. Notice that two new categories: 'a part' and 'a car' were asserted and added to
the Examples field for 'thing'. Wondering what happened to 'a part of a car'? Double
click on 'a part': 'a part of a car' is a subcategory of 'a part'. The category, 'a part of a
car' does not appear in the Examples field for 'thing' because its an implied example.
That is, since 'a part' is an example of a 'thing' and 'a part of a car' is a subcategory of
a 'a part' then 'a part of a car' is an implied example of a 'thing'. As a general rule,
Enlighten does not show implied examples in the Examples field of a Category
window. However, if the user selects 'View All Examples' in the Category menu,
Enlighten opens a complete index of examples for the current category. This includes
those examples like 'car part' that are implied through a subcategory relation.

I In summary, the Add windoow allows the user to enter the name or definition of a
category. Categories are described using an option article (a, an, the), a subject
word, and optional prepositional (<pp>) and restrictive (<rp>) phrases which restrict

A-4

the subject as shown in Figure 6. Multiple word names cannot be interpreted and will
result in a syntax error.

<category> forms: examples:
<subject> engine
<article> <subject> an engine
<subject> <pp> part of an engine
<subject> <rp> an engine that is part

of a car

Figure 6. Syntactic forms for categories

1.3 Getting Around

1.3.1 Hot Text

One of the key features of Enlighten's user interface is hot text. In general, hot text
is text that has an active link to additional information. Thus, by double clicking on the
text, a user can immediately view the information that the text is linked to. In Enlighten,
each entry in the Index and Category windows is hot text. By double clicking on one of
these entries, the user can quickly open for viewing the category that the entry
references.

Examples:

Enlighten provides active 2-way links between subcategories and their parent.

• Double click on the entry, 'a part' in the Parent field of 'car part'

0 Double click on the entry, 'car part' in the Subcategories field of 'a part'

The 'thing' category is accessible using the hot text in the Context field of either a part'
or 'car part' as well as through the fact 'is a thing' in the category 'a part'.

0 Double click on 'thing', in the Context field of 'car part'

0 Double click on 'is a thing' in the Facts field of 'a part'

The hot text in the Definition field of 'car part' provides quick access to 'things of a car'
which in turn provides access to 'a car'. See Section 3.4.3 for an explanation of how
these categories are linked to each other.

* Double click on 'car part', in the Definition field of 'car part'

I Double click on 'a thing of a car' in the Definition field of 'a thing of a car'

A-5

1.3.2 Accessing Categories

A user can also access a category using the Add Category. Just follow the same
steps that you used to create a category above. Since the category has already been
asserted, Enlighten will find the category in the knowledge base and display its
information in a Category window, rather than creating a new one of the same name.
Try accessing the category 'a part of car' using the Add Category.

0 Go to the Add Category (N-A or select Add in the Category menu)

0 Enter "car part" in the Category field

* Click on the Add button.

I 1.4 Entering and Viewing Category Information

All of the fields in a Category window allow the user to enter information, except for
the Parent and Context fields. The Parent field displays the category's parent and the
Context field displays the context in which the category was asserted, neither of which
may be altered. (Context will be discussed in more detail below.)

New information entered in a Category window field is asserted in the system
when the user hits the return key. Before the return key is pressed, the information is
completely editable by standard Macintosh methods. After the return, the information
is locked and can only be deleted. It cannot be modified.

The user can move from field to field within a Category window in two ways. A field
can be selected with the mouse, or, sequentially, selected with the tab key. Try
selecting the fields in the Category window for 'car part' using both methods.

A cursor will appear in each of the selected fields except the Parent, Context, and
Definition fields which are read-only. When one of these fields is selected, the whole
field is highlighted to indicate that it cannot be modified. It is important to note that the
Definition field is read-only when a definition has already been entered for the
category. Otherwise, when creating a new catcgory enlighten allows the user to
define the category (see section 1.4.2).

1.4.1 Names

The Names field allows the user to enter and view the names and synonyms for a
category. Note, that a name or synonym can consist of multiple words (e.g. car part).

As a rule, the first name in the field should be the primary or most common name
for the category. This is the name that will be used whenever the category is referred
to by other categories.

The other names in the Names field are important because they provide additional
ways in which a user can reference the category. Therefore, it is a good idea to
include both singular and plural forms of all names and synonyms, (e.g., ?car parts').
Enter this synonym into the Names field.

A-6

1.4.2 Definition

The Definition field allows the user to enter and view the definition of the category.
Categories are defined using an article (a, an, the), a subject word, and prepositional
or restrictive phrases which restrict the subject as shown in Figure 7.

* <definition> forms:
<subject> <pp> a part of an engine
<subject> <rp> an engine that is part

of a car

Figure 7. Syntactic forms for definitions

Define the category 'engine' as "a machine that converts energy into motion that is

mechanical".

0 If the 'engine' Category window is closed, reopen it using the Add Category.

0 Click on the Definition field

• Type "a machine that converts energy into motion that is mechanical"

* Press return.

The definition sounds a little awkward because one would prefer to say "mechanical
motion" rather than "motion that is mechanical", but the former does not meet the
syntactic requirements of Enlighten described in Section 3.4.2 and would therefore
result in a syntactic error.

As a result of the definition, 'a machine' is recognized in the Parent field as the
parent of 'engine'. Recall from Section 3.4.3 that this parent relationship is formed
because the set of machines is being subdivided into those which 'convert energy into
motion that is mechanical' and those which do not. The former category is called
'engine'.

1.4.3 Facts

Facts must always begin with a predicate containing a form of "is", an action verb or
a combination of both. An action predicate may be followed by prepostional phases or
a category. In the latter case, the category can be followed by prepositional phrases
which modify the predicate. Each of these acceptable syntactic forms is shown in
Figure 8.

A-7

<fact> forms: examples:
is <category> is a machine
is <action> <pp>..<pp> is made of metal

is used to power other machines
<action> <category> (<pp>..<pp>) requires energy to function

Figure 8. Syntactic forms for facts

Tab down to the Facts field so that you can enter some facts about an engine. Try
typing in the following facts, making sure to terminate each one with a return.

* requires energy to function
0 is made of metal: is a motor
• is used to power a machine

Now, take a look at how Enlighten asserts a fact about a category. Double click on
'is made of metal'. This action brings up the Category window for 'thing that is made of
metal'. Notice that 'engine' is an example for this category. Enlighten uses each fact

entered about a category to subdivide one of the root categories and form a new
category. In this case, the fact, "is made of metal", is used to subdivide the root
category 'thing', forming the category 'thing that is made of metal'. Furthermore, the
original category, 'engine', is an example of a 'thing that is made of metal'.

These new categories which are formed automatically by asserting facts can be
very useful in building an knowledge base. Facts can often be asserted about them
which in turn will be inherited by all of their examples. Consider the category, 'thing
that is made of metal'. There may be facts that can be asserted about this category
which in turn, are implied facts about an 'engine' as well as all things that are made of
metal. For example, by entering the fact "is a conductor of electricity" for 'a thing that is
made of metal', it is implied that an engine "is a conductor of electricity". Verify this.

* Open the category 'thing that is made of metal' by double clicking on the fact 'is
made of metal' for the category 'engine'

• Click on the Facts field, enter "is a conductor of electricity", and press return

* Activate the Category window for'engine'

• Select View All Facts in the Category menu

The fact 'is a conductor of electricity' is not displayed in the Facts field for 'engine'
since it is an implied fact. The only way to view implied facts about a category is in a
facts index (see Section 4.1.2).

A-8

1.4.4 Examples

A category's examples should consist of those things that are grouped into sets or
subcategories based upon specific properties. The properties used to uniquely define
an example of a category will vary based on application requirements. An engine
manufacturer, for example, would derine engine examples based on model and year
(e.g. 303-1979.), but an engine repair person, would also include make as a defining
property (e.g. Chevy-303-1979). A layman on the other hand, might only have engine
type as a defining property (e.g. V6). Add the following examples to the 'engine'
category.

• Chevy-303-1979
• Chevy-303-1980
* Chevy-356-1980

Judd-V8-1980
* Judd-V8-1981

Examples are themselves categories and therefore can be described by name or
by definition (Refer to Figure 6). As in the Add Category window, names can only be
one word. If there is a need to refer to a category using multiple words, enter the
category's definition, open the example category, and add the multiple word name in
the Names field.

1.4.5 Subcategories

Subcategories are defined in order to group examples together. Those examples
of a category which share one or more common properties can be grouped together in
a subcategory. One subcategory of 'engine' is 'an engine that is manufactured by
Chevrolet'. This subcategory is formed by restricting the parent category, 'engine'.
based on a particular manufacturer. Here are some subcategories that can be added
to 'engine'.

" an engine that is manufactured by ChevroletI an engine that is manufactured by Judd
• an engine that was manufactured in 1979

an engine that was manufactured in 1980I an engine that was manufactured in 1981
• V6
0 V8

Subcategories can be described by name or by definition just like an example or
category entered in the Add Category window. The first five subcategories shown
above are described by definitions because multiple word names (e.g. Judd engine
and 1980 engine) cannot be entered in the Subcategories field. A subcategory must
be created before it can be assigned a multiple word name.

1.5 Editing Categories

Enlighten supports the editing operations: Cut, Copy, Paste, and Clear in the Facts
and Examples fields, and Clear in the Names and Subcategories fields. An operation

A-9

is performed by selecting an entry and then the desired operation from the Edit menu.
Only one entry in a field can be manipulated at a time.

The Clear function allows the user to delete a name, fact, example, or subcategory
from a category. For example, try adding a dummy fact for the category 'engine' and
then delete it.

* Activate the Category window for 'engine' if its not already active.

* Add the fact, "is a dummy"

Select the fact that was just added with the mouse.

• Select Clear from the Edit menu.

The Cut, Copy, Paste operations allow the user to copy and move both facts and
examples from one category to another. These operations are particularly valuable
when a category's examples must be moved into the appropriate subcategories. To
illustrate, the example category, 'Chevy-303-1979' in 'engine' belongs in the
subcategories: 'an engine that is manufactured by Chevrolet', 'an engine that was
manufactured in 1979', and 'V8'. Copy and Paste can be used to perform these
operations as described below.

& Open the subcategory, 'an engine that is manufactured by Chevrolet'

* Open the subcategory, "an engine that was manufactured in 1979'

0 Open the subcategory, 'V8'

• Activate the 'engine' category window and select the example, 'Chevy-303-
1979'

I Select Copy in the Edit menu to move the example to Enlighten's clipboard

• Activate the subcategory window for 'an engine that is manufactured by
Chevrolet' and click in the Examples field

Select Paste in the Edit menu to move 'Chevy-303-1979' from the clipboard into
I the Examples field

• Repeat the last two steps for the other two subcategories.

I Open 'Chevy-303-1979' to view the effects of performing these operations. The
category has been restricted from an 'engine' to an 'engine that is a V8 that is
manufactured by Chevy in 1979'.

1.6 Saving New :.formation (Save As, Save)

U A user can save an knowledge base to disk by selecting one of the Save
operations from the File menu. The Save operation will update the currently open file

IA-10

with the recent changes made to the knowledge base. Do not use Save when theCore file is open unless the knowledge base is to be used as core knowledge for
building all other knowledge bases.

IThe Save As... operation will create a new file where the knowledge base is stored.

Use Save As... to store the knowledge base that was developed in this exercise.

• Select Save As... in the File menu.

• Enter the name of the file where the engine knowledge base is to be stored.

* Click on the Save button.

2.0 Creating Indexes

Index windows can be created by the user to display separate hierarchies of facts,
examples, and subcategories for any category in the knowledge base.

2.1 View All Subcategories

I An index window which displays a subcategory hierarchy for a category can be
created using the View All Subcategories function in the Category menu. Try creating
the subcategory index for the category 'machine' (Figure 9).

• Open the category 'machine' (double click on 'machine' in the Parent field of the
'engine' category window).

• Select View All Subcategories in the Category menu.

-_1__ a machine - SubCategories
An engine

An engine that is manufactured by Chevy
An engine that is manufactured Dy Judd
An engine that is manufactured in 1979
An engine that is manufactured in 1980
An engine that is manufactured in 1981

I Figure 9. New Subcategory Index

For convenience, a user can also create the subcategories index by double clicking on
the header in the Subcategories field.

* Activate the Category window for 'machine'

• Double click on the "Subcategories" header in the Subcategories field.

A-11

2.2 View All Facts

An index window can also be created to display a comprehensive hierarchy of facts
for any category. Recall from Section 4.1.2 that a fact index allows the user to view all
of the facts about a category including those which are inherited from other categories.
Try creating the fact index for the category 'Chevy-303-1979' shown in Figure 10.

I • Open the category 'Chevy-303-1979' (double click on 'engine' in the
Subcategories index window, then double click on 'Chevy-303-1979' in the
Examples field of 'engine').

Select View All Facts in the Category menu or double click on the "Facts"
header in the 'Chevy-303-1979' Category window.

The index is indented to show the category level where each fact is asserted. For
example, the fact 'is an engine' in not indented because it is asserted for the category
'Chevy-303-1979'. The facts, 'converts energy into motion that is mechanical', 'is
made of metal', 'is a motor', 'is used to power a machine', and 'is a machine', are
indented under 'is an engine' because they are asserted for the category 'engine'.
Similarly, the fact, 'is a conductor of electricity' which is displayed incorrectly in the
index because of a software glitch as intended under 'is made of metal'.

Chevy-303-1980 - Facts
is an engine

converts energy into motion that is mechanical
is a thing that converts energy into 'something'

is a thing that converts energy
is a thing that converts

is a thing
is made of metal

is a conductor is made of electricity
is a conductor

is a thing that is made of 'something'
is a thing that is made

is a is motor
is used to power a machine

is a thing that is used to 'something'
is a thing that is used

is a machine

II Figure 10. Chevy Facts Index

A-12

I 2.3 View All Examples

An index window can also be created to display a hierarchy of examples for any
category. An example index allows the user to view all of the examples of a category
including those which are inherited through subcategory relations. Try creating the
examples index for the category 'machine' shown in Figure 11.

I a machine - Examples
An engine

An engine that is manufactured by Chevy
Chevy-303- 1979

An engine that is manufactured in 1979
Chevy-303- 1979

Chevy-303- 1979
Chevy-303- 1980
Chevy-356-1980
Judd-V8- 1980
Judd-V8- 1981

Figure 11. Index for Machine Examples

Enlighten uses indentation and contrasting text styles to show the category level
where each example is asserted. Subcategories are displayed in bold and examples
are displayed in a normal style. Therefore, 'engine' is a subcategory of 'machine'
which has the five examples: 'Chevy-303-1979', 'Chevy-303-1980', 'Chevy-356-1980',
'Judd-V8-1980', and 'Judd-V8-1981'. Further, 'an engine that is manufactured byChevrolet' is a subcategory of 'engine' which currently has one example (e.g. 'Chevy-
303-1979') defined for it. Because 'Chevy-303-1979' was copied, instead of cut from
the Example field of 'Engine' then pasted to the Example fields of 'an engine that is
manufactured by Chevy' and 'an engine that is manufactured in 1979', it appears three
times in the list.

3.0 Context

Enlighten allows a user to define multiple categories with the same name. For
example, it is possible to have two categories named "Judd": Judd, the manufacturer
and an engine that is manufactured by Judd.

To create multiple categories with the same name, the user must create eachcategory within a different context. (see Section 3.4.1) or category. To illustrate,
create the category 'manufacturer' and add 'Judd' as an example.

I Open the Add Category

* Enter "manufacturer" in the category field, select the category type, Thing, and
click on Add

A-13

0 Enter "Judd" in the Examples field of the 'manufacturer' Category window and
hit return

0 Double click on 'Judd' to verify that its context is 'manufacturer'.

The category 'Judd' is defined in the context of 'manufacturer' since it was added in
the 'manufacturer' Category window.

The same rule applies when a subcategory is added to a Category window. Open
the category 'an engine that is manufactured by Judd' from the category 'engine'.

I * Open the category 'engine'.

I• Open the category 'an engine that is manufactured by Judd'

Enter the name "Judd" into the Names field and hit return.

Note, that the subcategory's context is set to 'engine' because it was added in the
'engine' Category window above. This subcategory is the other 'Judd' category that
was described earlier. The user can name it, "Judd" and still have two distinct
categories.

The context of a category created in the Add Category, is initially the root category
type selected by the user. Recall that the category 'manufacturer' was created in the
Add Category with the root category type 'thing' selected. Therefore, the context of
'manufacturer' is 'thing'. Verify this by opening the category, 'manufacturer'.

A category's context changes when a category is given a definition. To illustrate,
define the category 'manufacturer' as "an organization that produces goods".

• Click on the Definition field for 'manufacturer'

i * Enter "an organization that produces goods" and hit return.

The category 'organization' is the parent and context for 'manufacturer'. Thus, this
manufacturer' category captures the organizational sense of a manufacturer and it's
examples are organizations like GM and Chevrolet. If needed, the user could define
another category called 'manufacturer' which is defined as "a person that producesI goods".

Context is intended to help a user easily distinguish between categories with the
same name when accessing information in a knowledge base. Thus, if a user asked a
question about Judd, Enlighten would be able to determine which Judd category they
were referring to by asking the question (Judd the manufacturer or the Judd the
engine?). Unfortunately, this capability is not yet implemented in Enlighten.

I 4.0 Asking questions

Enlighten's Fact? dialog is intended to provide a convenient medium for asking
yes/no type questions about a category's facts. For example, a user can find out it if a
thing that is made of metal is a conductor of electricity. Try this.

A-14

I Select Fact? in the Category menu.

Enter "a thing that is made of metal" into the category field of the Fact? dialog
(Figure 12).

Enter "is a conductor of electricity" into the fact field.

I •Click onthe Fact? button

ED Fact?

I Category: a thing that is made of metal

Fact: is a conductor of electricity

Answer: Cancel Fact?I

Figure 12. Fact? Window

Enlighten responds with "yes" to this question because "is a conductor of electricity"
has been asserted as a fact about the category 'engine'.

The current implementation of the Fact? dialog is very limited in that it can only
correctly answer questions about categories that are defined in the context of 'thing'.
For example, the user cannot ask a question about the category 'engine' since its
context is 'machine'.

5.0 Summary

The knowledge base that has been developed through the examples presented
here represents a very small chunk of what an engine repair person would need to
troubleshoot car engines or that engine manufacturer would need to maintain
information about different models and parts. After trying the examples presented
here, a user should have the confidence and ability to expand on this knowledge base
or create knowledge bases for other application areas.

A-15

