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Preface

the purpose of this thesis was to examine the

viscoelastic behavior of thermorheologically complex

materials, a typical example of which is a soft, rubbery

material. Materials such as these are very useful in damping

vibrations in structures, but the relaxation moduli of these

materials change significantly with temperature and frequency.

In the case of space structures applications where

temperatures vary greatly and a stable platform is necessary,

a method to predict this changing modulus is needed.

I was interested in the subject for two reasons. First,

this thesis allows me to apply some of my controls knowledge

if the task is treated like a problem of finding the transfer

function of a system. Secondly, this thesis gave me the

opportunity to learn about the fractional derivative.

-The original approach was to validate a previously

developed viscoelastic model, but the task expanded to include

extending the model to materials with two transitions from a

low modulus value to a higher value and applying thermodynamic

principles to validate the extended model. The results were

very promising.

I could not have performed this analysis or have written

this thesis without a great deal of help. I would like to give

special thanks to my faculty advisor, Lt Col Ronald Bagley,

for his continuing patience and strong guidance in times of

ii



need. I would like to thank my sponsor, Dr David Jones of the

Flight Dynamics Directorate for his assistance and support of

this project and I would like to thank Mr Paul Macioce of the

Anatrol Corp. for his assistance. Finally, I want to thank my

wife, Earlean, for her understanding, concern and motivation

through the long, frustrating days and nights devoted to this

thesis.
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Abstract

The research presented here was accomplished in

three parts. In the first part, a fractional order time

derivative model of viscoelastic behavior was validated using

experimental data for viscoelastic materials. Descriptions of

internal energy loss at the molecular level led to the

fractional order time derivative model. The fractional

calculus stress-strain constitutive laws used in the model are

easily applied to the temperature and frequency dependent

moduli of viscoelastic materials. The second portion describes

the extension of the above fractional order time derivative

model to predict the viscoelastic behavior of

thermorheologically complex materials that exhibit two modulus

transitions with respect to frequency. The final portion

determines the necessary restrictions on the parameters of the

double transition viscoelastic model to insure the model

doesn't violate thermodynamic principles.



A COMPARISON OF FRACTIONAL ORDER TIME DERIVATIVE MODELS OF
THE VISCOELASTIC STRESS RELATIONS IN THEXMORHEOLOGICALLY

COMPLEX MATERIALS.

I. Introduction

Approach. The approach taken is to validate a previously

developed model by applying it to candidate materials. Once

the model is validated, the approach is to extend the model to

capture more complex viscoelastic behavior.

Problem Statement, This thesis presents the evaluation and

development of mathematical models used to predict the

viscoelabtic behavior of amorphous polymers and similar

materials. Knowing the viscoelastic behavior of these

amorphous polymers is essential to employing these materials

properly as damping materials in a wide range of structures

and applications. The basis of the process of learning the

viscoelastic behavior of these materials is through

experimental measurement. Experimental measurement unde all

possible conditions over the entire operating envelope of an

application would be extremely expensive. An accurate model

that would be simple enough to be used as an engineering tool

would eliminate the need for exhaustive experimental

measurement. The model also should characterize viscoelastic
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behavior under -onditions that cannot be duplicated in the

laboratory [1:1]. One way to simplify the model necessary to

capture the viscoelastic behavior of an amorphous polymer is

to assume the material acts as a thermorheologically simple

one.

In the past, the idea of the thermorheologically simple

material was used as the basis for describing the viscoelastic

behavior of the material. Using this approach, the frequency

dependent complex modulus for additional temperatures could be

constructed by shifting measured storage and loss moduli by

some experimentally derived shift factor. The

thermorheo-ogically simple material is one in which the

trequenc1 dependent modulus retains the same shape over a

large temperature range. By choosing a specific temperature as

a reference temperature, a "master curve" for the entire

temperature range can be created. Adjusting the "master curve"

using the shift factor corresponding to a particular

temperature will give the viscoelastic modulus of the material

at that temperature (2:52]. The principle motivation for

modeling a material as thermorheologically simple is that all

of the mechanical modulus values lie on a single "master

curve". Changes in the viscoelastic behavior of a material

caused by temperature variations are nonlinear. Changes in the

viscoelastic relationship due to mechanical stress or strain

2



are linear processes if the stress or strain stays within the

elastic range (2:14]. The assumption of thermorheologically

simple behavior is acceptable for a large class of materials,

but is not acceptable for all materials, as may be expected.

The progression from the idea of a thermorheologically simple

material to the idea of a thermorheologically complex

material, in which the shape of the frequency dependent

modulus is temperature dependent, is natural.

Summary of Approach. While developing a simple model that

captures the viscoelastic relationship of a

thertirheologically complex material, Bagley used a theory

oased on internal energies at the molecular level that lead to

a fractional order time derivative model [3:2]. The model will

be the starting point for the research presented in this

thesis, which is divided into seven chapters and three

appendices. The first chapter is the introduction. Chapter two

provides the background information on the fractional order

derivative and how molecular theory leads to a fractional

order time derivative viscoelastic model. Chapter three

discusses the Modplot.ex executable file developed for this

thesis and the procedure used to curve-fit the measured

viscoelastic data. Chapter four examines the ability of the

model described in chapter two to predict the

thermorheologically complex behavior of several materials

3



correctly. These materials are polyisobutylene, polyvinyl

chloride dimethyl thianthrene, atactic polystyrene, and a

material designated C-1002 and manufactured by the EAR Corp.

of Indianapolis, Indiana. The fifth chapter of the thesis

develops and discusses the extension of the chapter two model

to materials that exhibit two distinct moduli transitions with

respect to frequency. The new double transition model also

will be applied to atactic polystyrene data. The sixth chapter

checks the double transition model to insure that it does not

violate the First and Second Laws of Thermodynamics. The final

chapter provides a summary of the results and discusses some

recommendations for future research. The first appendix

contains the listings of the programs written specifically for

this research effort and the two remaining appendices list the

data obtained from unpublished sources.

4



1I. Background

To understand the particular approach taken in this

research effort, one must understand what is the theory and

development of the model that represents the starting point.

This section will briefly discuss the fractional order time

derivative. This section also will quickly detail the

development and derivation of the fractional order time

derivative viscoelastic model, which constitutes the starting

point of this research.

Since the early 1950s, researchers have alluded to the

idea of using fractional order time exponentials as

phenomenological descriptors of linear viscoelasticity [3:3].

Examples can be found in the work of Debast and Gilard in 1965

[4]. Examples also can be found in the work of Leko and

Meshcheryakova in 1976 and in both cases the researchers tried

to describe the strain in silica glasses using an exponential

time function with time taken to a fractional power [5]. There

were several other researchers that developed similar

equations, but none seemed to grasp the full application of

the fractional order time derivative.

The Fractional Order Time Derivative The fractional order

time derivative is defined as a linear convolution operator as

5



seen in Equation 1 [3:10]:

Definition of the Fractional Derivative

Do [e (t)] 1 te(t-?)d (1)
M-P dfo To

0o< 0< 1

(i w) P*(ic) - SAC* (s) - DO[e (t)] (2)

Equation 2 shows the relationship of the fractional derivative

in the Fourier, Laplace, and time domains. The Fourier domain

is a very convenient domain in which to pose the viscoelastic

model because it directly shows the frequency content of the

function. Convolution in the time domain is performed by

multiplication in the Fourier domain, so the transform of the

P order derivative of a function is obtained by multiplying

its Fourier transform by (iw)O. This is similar to the way a

transform of a first order integer derivative would be

obtained in the Fourier domain, multiplying the Fourier

transformation by (io). Using the one-sided Laplace transform

was another way to simplify some calculus used in the

derivation. The Laplace domain is easily associated with the

Fourier domain.

Fractional Order Time Derivative Viscoelastic Model The

6



viscoelastic model is based on a theory of internal energy

loss at the molecular level. The complete derivation of the

model can be found in Reference 3. The theory hypothesizes

that the mechanical stress relaxation in viscoelastic polymers

is the result of a reduction in the elevated energy states of

the polymer chains [3:5]. The polymer chains are stretched in

their elevated energy state and relaxation occurs as the

chains return to their random orientations.

The derivation begins from the development of a time

dependent probability density function of the internal energy.

With the probability density, the model predicts the

probability that the material of interest has or has not

transitioned from an elevated energy state to a more relaxed

energy state. The probability function also accounts for

barrier energies that must be overcome in order for the

material to transition to a relaxed energy state. The result

of this derivation is a fractional order derivative

constitutive law, shown in Equation 3, that describes the

fractional order viscoelastic relationship between stress and

strain existing in these polymers. The shift parameter, a,

and P, the derivative order of the equation, are both

functions of temperature. Because the parameters, a(T) and

P(T), are functions of temperature, they describe frequency

dependent moduli curves of different shapes for different

7



temperatures which would correspond to behavior of a

thermorheologically complex material.

Fractional Order Derivative
Conti tutive Law

o(t) + OPDA[o(t)] = E.e(t) + EaADP[e (t)] (3)

a(T), P(T)

The shift parameter is related to the temperature

dependent energy barrier shape of the material. The concept of

a barrier shape is a hypothesis about various types of

particles migrating and impeding motion during the relaxation

process. The shift parameter is a crude descriptor of these

barriers' interference with the energy transition that

determines the frequency dependent modulus [3:7-11]. As stated

earlier, it is the transition to higher internal energy levels

that are believed to be the cause of the modulus transition in

the amorphous polymers. In the cases presented in this thesis,

the stimulus to higher internal energy levels is an applied

stress.

As it pertains to the model, the shift parameter, which

accounts for the barrier shape, determines the frequency at

which the modulus transition will occur. An increase in the

shift parameter moves the model curve to the left and a

8



decrease in the shift parameter moves the model curve to the

right.

The fractional derivative order describes the fractal

dimension of the Cantor set of the underlying energy decay

process that causes the energy transitions [3:10-11]. In the

model, the derivative order affects the slope of the model

predictions in the regions in which the prediction curves

resemble lines. For the regions of the model predictions that

are curved, the derivative order affects the amount of

curvature. An increase in the derivative order increases the

slope or increases the amount of curvature. A decrease in the

derivative order decreases the slope or decreases the amount

of curvature.

Another equation that results from the derivation is the

relaxation modulus shown in Equation 4. The "rubbery"

Relaxation Modulus

E(t) = E. + (E, - E..)Ep(-(t/a)P) (4)

modulus, E., represents the material's normal steady state

modulus and E0, the "glassy" modulus represents the highest

energy state modulus or stiffest modulus. The last term in the

9



relaxation modulus equation is a P order Mittag-Leffler

function, which is defined in Equation 5.

Mittag-Leffler Function

E0 (x) = (-n) (5)

0 < 0 ( 1

The Mittag-Leffler function is very similar in form to the

exponential function [3:11-12].

The result of the derivation is the fraction order time

derivative viscoelastic model. The model shown in Equation 6

is rewritten as a transfer function and posed in the Fourier

domain. This eases the interpretation of the output with

respect to frequency [3:13).

Fractional Order
Time Derivative Model

E(w) = E. + E0 (i0) (6)
1 + ap (ia) 0

The resulting four parameter transfer function is compact and

easy to implement, making it suitable for engineering

analysis. Two of the four parameters, E. and E, can be

determined directly from viscoelastic data and are constant

10



for all temperatures for the materials analyzed in this

thesis. The remaining two parameters can be determined through

curve fits of viscoelastic data. Details of the process of

determining the parameters will be discussed in Chapter Four

which presents the effort to validate the model.
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III. Curve Pit Procedure

The phenomena this model was developed to predict is a

very complex process and an accurate model would be a

significant advance for the rheological sciences. Past methods

used to characterize the viscoelastic behavior of amorphous

polymers involved empirical formulas and educated guessing.

This chapter will examine how accurately the model

characterizes the viscoelastic behavior of amorphous polymers

by comparing the predicted behavior obtained from the

viscoelastic model to actual viscoelastic data obtained from

several sources. Through the comparison, the four parameters

of the model can be determined. The four parameters that

characterize the material are the combination of parameter

values that gives the curves that best match the data curves.

The model curves can then be analyzed for how well they match

the data curves.

The first step in determining the model parameters

involved finding the "glassy" and "rubbery" modulus. Both

parameters can be read directly off the data curves if a wide

enough frequency and temperature range was used for the data

acquisition. If the data was taken over a wide enough

frequency range, the modulus transitions from an asymptotes

that can be found at very low frequencies or high temperatures

to another asymptote that can be found at very high

frequencies or low temperatures, respectively.
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The "glassy" modulus represents the condition in the

material where the bond energies are in an excited state and

are not allowed enough time to relax because of the high

frequencies or low temperatures and therefore the modulus is

at its maximum [3:71. The "rubbery" modulus represents the

softer modulus measured at high temperatures or low

frequencies, where the material has the time to continually

relax.

Because the data used for this research was not taken

with a sufficiently wide frequency range, the asymptote were

estimated from the available data and adjusted using the data

curves at several different temperatures. It should be noted

that although each the viscoelastic response due to frequency

was different at each temperature for the materials modelled

in this thesis, the data used for this research suggests the

"glassy" and "rubbery" moduli are constants throughout the

process for each material. The lower temperature conditions

were used to adjust the "glassy" modulus. At the lower

temperatures, the modulus values tended to be the largest and

were more heavily influenced by the "glassy" modulus. The

higher temperature conditions were used to adjust the

"rubbery" modulus. At the higher temperatures, the modulus

values tended to be the smallest and more heavily influenced

by the "rubbery" modulus.
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The curve fits were performed using just a visual

approach. Although it would have been desirable to have the

degree to which the curve fits matched the data based on some

objective norm and the process automated, the nonlinear

behavior of the viscoelastic response of the materials made

these tasks very difficult. By adjusting the temperature

dependent shift parameter, a (T), and the fractional derivative

order, 0(T), accurate curve fits of the measured data could be

obtained. The shift parameter slips the model curve left or

right over the frequency range while the derivative order

changes the slope of the model curve.

The approach taken to perform the adjustments to the

"glassy" and "rubbery" moduli was to start the curve fits with

the first couple of high temperature data curves and adjust

the "rubbery" modulus. Next, the first couple of low

temperature data curves were fitted to adjust the "glassy"

modulus. For the data curve at the highest temperature, one

would attempt to curve fit with estimated values of the

"glassy" and "rubbery" moduli. The values for the shift

parameter and the derivative order were estimated also and

were adjusted until the predicted curves for the real and

imaginary portions matched the data curves for the real and

imaginary portions as well as possible. The "glassy" and

"rubbery" moduli would then be adjusted to try to improve the

14



match. Next, one would attempt to curve fit data at the next

lower temperature using all of the parameters from the

previous curve fit attempt at the higher temperature. The

shift parameter and the derivative order would be adjusted to

give the best possible match between the predicted curves and

the data curves. The "rubbery" modulus would then be adjusted

to improve the match. The parameters for the previous curve

fit with the new value for the "rubbery" modulus would be

checked to insure they still produced a good match between the

predicted curves and the data curves. If not, the change in

the "rubbery" modulus would be reduced enough to give the best

curve fit at both temperatures. This procedure of curve

fitting the next lower temperature, adjusting the value of the

"rubbery" modulus, checking how the change in the "rubbery'

modulus affects the previous curve fits, and adjusting to give

the best fit in all cases was repeated one or two more times.

Next, attention would be focused on determining the

"glassy" modulus. The procedure was very similar. The

difference was the procedure started with the lowest

temperature and the value for the "rubbery" modulus was

assumed to be known. Again, the procedure involved, curve

fitting the three or four lowest temperatures in increasing

order, adjusting the value of the "glassy" modulus, checking

the previous curve fit, and adjusting the changes to the

15



"glassy" modulus to give the best fit in all cases. After

these tasks were completed, the "rubbery" and "glassy" moduli

were assumed constants.

It is important to note that the four parameters of the

model may simultaneously give accurate curve fits for both the

real and the imaginary portions of the modulus. The

parameters, aT) or O(T), may by determined more readily from

the real or the imaginary portion of the modulus. The best

portion of the modulus to use derEndz oi the frequency range

that is being modelled and learning the best portion to use is

a judgement that comes with exerie in curve fitting these

materials.

16



IV. Validation of the Viscoelastic Model

Polvis:butvlene The first material the Modplot.ex program

was used to model was really a test case for the program.

Polyisobutylene was modelled previously in Reference 3. The

same experimentally measured viscoelastic data for

Polyisobutylene was used to determine the model

parameters[6:655]. Using Polyisobutylene made it possible to

check the previous results as well as test the Modplot.ex

program. The results matched the work previously done except

for one minor adjustment in the shift parameter at the

temperature of 232.8 K. The results of the curve fits are

contained in Fig. 1 and Fig. 2. The figures show that the

model accurately represents the viscoelastic behavior of

polyisobutylene by closely matching approximately two decades

of measured viscoelastic data. The data and the predictions

are of the compliance modulus which is the inverse of the

shear modulus. The results are equally good for both the real

and imaginary portions of the modulus, which is important to

note since only two parameters were varied over the

temperature range modelled and only four parameters were used

in the model overall. The parameters used to produce the

curves displayed in Fig. 1 and Fig. 2 are listed in Table 1.

Also included in Table 1 are cutoff frequency values for

17
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each particular temperature evaluated by the model. The cutof f

frequency represents the frequency point above which the

model's predictions are questionable. Because of an

approximation made in the development of the

Table 1. Model Parameters for Polyisobutylene

Temperature (K) Alpha Beta Cutoff Frequency

228.6 8.00e-05 0.565 115.24

232.8 2.80e-05 0.580 354.44

238.5 9.50e-06 0.590 1094.97

243.4 3.80e-06 0.600 2864.75

248.2 1.75e-06 0.600 6220.60

253.3 9.40e-07 0.620 12627.61

258.4 4.70e-07 0.630 26317.59

263.3 2.70e-07 0.640 47677.75

268.2 1.84e-07 0.660 75501.72

273.1 9.80e-08 0.660 141758.33

278.1 6.05e-08 0.670 238136.49

283.0 4.03e-08 0.677 366490.81

288.0 2.45e-08 0.680 609195.91

293.0 1.43e-08 0.680 1043727.27

298.2 7.80e-09 0.677 1893535.83

G zero=l.6lE10 Pa ____________

G infinity=2.91E6 Pa ____________

model, the fractional derivative constitutive law developed

from the original hypothesis of the energy transitions in the

20



molecular bonds contains a strong singularity. The

approximation to overcome this shortcoming results in the

following condition:

(a(T) (iw) 1 :5 (7)5

The use of this condition is to insure the results of the

model are valid (3:11]. The expression for the cutoff

frequency is as follows:

1 1

1T 1 ][.2]3 (8)

Greater detail on the model's development and the use of the

approximation can be found in Reference 3 (3:15].

The curves at the bottom of Figure 1 and Figure 2

represent the viscoelastic behavior of polyisobutylene at the

lowest temperature (228.6 K) and each curve above them

represents the viscoelastic behavior of polyisobutylene at the

next progressively higher temperature. To determine the

accuracy of the model, the cutoff frequencies listed in Table

1 need to be compared to the model curves in the figures. For

21
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polyisobutylene, the cutoff frequencies only mildly affect the

accuracy of the model. Actually, the model was very accurate

for frequencies above the cutoff point, but in these cases the

frequencies are only slightly above the cutoff point and only

involve the four lowest temperatures, 228.6 - 243.4 K.

The affect of temperature on the parameters of the model

can be observed in Figure 3 and Figure 4. The two figures show

that the shift parameter and derivative order are indeed

functions of temperature respectively.

Polyvinyl Chloride Dimethyl Thianthrene The next material,

for which the model parameters were determined, was polyvinyl

chloride dimethyl thianthrene. The data for this material was

provided by Dr. David Jones of the Wright Laboratories' Flight

Dynamics Directorate and is contained in Appendix B [7]. The

results of the curve fits are shown in Figure 5 and Figure 6.

This material was chosen for this thesis since its

viscoelastic data suggested it exhibited thermorheologically

complex behavior. The model parameters for this material are

listed in Table 2. Unlike polyisobutylene, the top curves on

Figure 5 and Figure 6 correspond to the lowest temperature.

Each curve below the preceding curve reflects the affects of

progressively higher temperatures. The difference in the

position of the lowest temperature curve is explained by the
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fact that the data and model curves presented for

polyisobutylene were of the compliance modulus. The data and

model curves presented for polyvinyl dimethyl thianthrene were

of the shear modulus. The shear modi:lus will be presented for

the remainder of the materials analyzed for this thesis.

Again, it is also important to note the cutoff frequencies

listed in Table 2 since they affect the four lowest

temperature cases. The accuracy of the model is very good for

most of the data, even at the frequencies above the cutoff

point for the four lowest temperatures. Oddly, the accuracy

starts to taper off at the higher frequencies and higher

temperatures where conditions meet the requirements of

Equation 7. This may suggest there are additional events

happening at the molecular level during high frequency and/or

high temperature conditions. These events affect the

approximate and assumed equations governing the process of

internal energy transitions and the underlying hypothesis of

the fractional calculus model. These approximate and assumed

equations, some of which are not directly testable at the

molecular level, are based on theory themselves, but any

influence on the equations by the environment is likely to

influence the ability of the model to predict the viscoelastic

behavior of a material accurately (3:5-8].
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Table 2. Model Parameters for Polyvinyl Chloride

Dimethyl Thianthrene

Temperature (K) Alpha Beta Cutoff Frequency

307.61 6.200e-05 0.470 83.61

313.01 1.836e-05 0.520 392.44

313.03 1.102e-05 0.525 673.39

318.16 6.000e-06 0.595 1773.90

323.11 2.171e-06 0.640 5929.52

323.14 1.814e-06 0.645 7236.16

328.11 6.800e-07 0.655 20053.10

333.41 1.883e-07 0.640 68364.27

337.81 5.100e-08 0.620 232744.26

343.16 5.100e-09 0.560 1762338.11

G zero=8.5E8 Pa

G infinity=1.31E6 Pa

Examining the effects of temperature on the model

parameters, Figure 7 and Figure 8 show the relationships of

the shift parameter and the derivative order with temperature.

The shapes of the curves of the shift parameter and derivative

order as they vary with temperature are very similar to those

of polyisobutylene. A pattern has started to develop and the

pattern supports the idea of the thermorheologically complex

material model.
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Atactic Polystyrene The next material analyzed was atactic

polystyrene. Polystyrene was unique in the fact the modulus

transitioned at a very low frequency. This is especially

interesting since the available data suggests atactic

polystyrene exhibits two distinct transitions with frequency.

The other transition occurs at an even lower frequency range.

This aspect of the data will be explored later. The analysis

performed in this section deals with the data for the higher

frequency transition. The data was obtained from Reference 1

[1:1237-1238].

Figure 9 and Figure 10 show the results of the curve fit

performed with the atactic polystyrene viscoelastic data.

Table 3 lists the parameters used to generate the model

predictions shown in these figures. The accuracy of the model

is good when the cutoff frequencies are observed, even though

this double transition material is being modelled as a single

transition material. The frequency dependent modulus of a

double transition material increases from one modulus value to

a higher value, stabilizes over a finite frequency range, and

then increases to an even higher modulus value. For atactic

polystyrene, the cutoff frequencies affects every temperature

condition. At the peaks of the transition, the model departs

significantly from the measured data, but the peaks all occur

above the cutoff frequencies. Near the start of the
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transition, the model also departs from the measured data

generally more than in the two

Table 3. Model Parameters for Atactic Polystyrene

Temperature (K) Alpha Beta Cutoff Frequency

359.7 60.00000 0.780 0.00034

364.5 2.62560 0.920 0.01054

367.5 0.68570 0.900 0.03882

369.0 0.29710 0.900 0.08960

371.6 0.06991 0.880 0.36559

373.9 0.02259 0.872 1.11258

G zero=7.0E8 Pa

G infinity=2.0E5 Pa

previous cases. This observation is probably explained by the

fact that the start of the transition here is actually the end

of another transition. Generally, the accuracy of the model is

good outside of these trouble regions and the model always

follows the trends of the data.

The pattern noted earlier about the shape of the curves

that describe the variation of the model parameters with

temperature is also observed in atactic polystyrene. Figure 11

shows the relationship of the shift parameter with temperature

exhibits the exponential behavior described earlier and Figure

12 shows the relationship of the derivative order with
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temperature resembles what may be a parabolic curve. The small

number of temperature conditions is probably the reason the

curve doesn't arc more, so additional data would be necessary

to show conclusively that the pattern noted earlier is

continued with atactic polystyrene. The pattern seems to hold

clearly for the exponential behavior of the shift parameter.

The varying of the parameters as a function of temperature

continues to support the concept of the thermorheologically

complex material.

C-1002 The final material analyzed was a material

designated C-1002 and used by the Anatrol Corp. for

specialized damping applications. The Mr. Paul Macioce of the

Anatrol Corp. provided the data for the material, which is

manufactured by the EAR Incorporated, Indianapolis, IN [8].

The data is listed in Appendix C. The results of the curve

fits are shown in Figure 13 and Figure 14 and the model

parameters are shown in Table 4. The measured data was unique

because it seems to be data that is very close to the

beginning of the transition region. Because of this condition,

the imaginary portions of the moduli are noticeably curved as

opposed to nearly straight lines as presented in the analysis

of all of the other materials.
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Table 4. Model Parameters for C-1002

Temperature (K) Alpha Beta Cutoff Frequency

292.0 2.925e-06 0.408 1053.25

297.0 2.410e-07 0.370 8525.01

303.0 6.500e-09 0.320 160186.35

G zero=12500 Psi
infinity=105 Psi

The results of the curve fits are good for the real portion of

the two highest temperature curves, but the accuracy of the

prediction of the lowest temperature curves, which is the top

curves of the figures, are not as good as what has been

normally demonstrated by the rodel. In the imaginary portion

of the curves, the model does not capture the curvature that

is present in the measured data. The cutoff frequencies can be

ruled out as an explanation since the frequency range analyzed

in well below all of the cutoff frequencies. A possible

hypothesis that explains the reduced accuracy of the results

is that the data provided only represents one of the

transitions the material exhibits. This material may have

other transition regions above and below the frequency range

presented in Figure 13 and Figure 14 that would explain the

discrepancies. The single transition model was not developed

to capture the effects of the other transition regions. It is

important to note, when modelled using the fractional calculus

40
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transfer function, the predicted viscoelastic behavior of

atactic polystyrene differs from the measured data slightly

more than normal. This is more evidence to support the idea

that events happening at lower frequency ranges are affecting

the viscoelastic response of the material and therefore, the

accuracy of the model. Another possible explanation is

incorrect data, since one would expect the imaginary portion

of the data to resemble a straight line based on an

observation of the data of the other materials presented in

this thesis.

Although there were only three temperatures analyzed for

this material, the shapes of the model parameters curves as

they vary with temperature were similar to those for the

previous materials. They are shown in Figure 15 and Figure 16.

Again, as noted in all the cases analyzed, the data supports

the concept of the thermorheologically complex material.

Because the shapes of the curves of the shift parameter

verses temperature and the derivative order verses temperature

ware similar for all of the materials modelled, there was an

attempt to find analytical expressions to describe the

relationships of both parameters have with temperature.

Williams, Landel, and Ferry have derived an empirical equation

to describe how the shift parameters of amorphous polymers
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vary with temperature [9:3701]. The equation, referred to as

the WLF equation is shown in Equation 9.

WLF Equation

loga = -8. 86 (T - T , ) (9
101.6 + T - T S

-50* < T - T S < 500

The equation assumes that there exist a reference temperature,

Ts, that is constant and arbitrarily chosen [9:3701]. Using

the parameters determined in this thesis within the WLF

equation showed T. was not constant for the system and the WLF

equation did not provide a good analytical expressicn for how

the shift parameter varies with temperature. Another possible

analytical expression that describes how the shift parameter

and the derivative order vary with temperature is the

Arrhenius equation shown in Equation 10. The stress

Arrhenius Equation

T= Toexp (-A ) (10)
RY

relaxation time is T, To is a constant, AH is an activation
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relaxation time is r, ro is a constant, AH is an activation

energy and R is the ideal gas constant. This equation is very

similar to the transition rate parameter equatior described in

Reference 3 and shown in Equation 11 (3:5]. TIe transition

Transition Rate Parameter

-A (I
10 = v (7 exp(-) (11)

kT

rate parameter is 10' vkT) is the energy barrier shape

parameter, A is the energy barrier height parameter, and k is

the Boltzman's constant. Comparing Equations 10 and 11, one

will find that TO of Equation 10 corresponds to 10 of Equation

11. Using this comparison and some additional relationships

from Reference 3, shown in Equations 12 and 13, where O(T) is

the barrier distribution parameter, a modified Arrhenius

relationship is hypotheized to exist. This expression,

4pT = v-P(r(I+p)r(1-P) (12)

( T (13)

shown in Equation 14, is very similar to an Arrhenius
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relationship. In the case of the thermorheologically complex

material, the constant in the Arrhenius equation, rot

Modified Arzhenius Equation

= (71exp( -) (14)
RT

can be described as a function of temperature. Unfortunately,

because the transition rate parameter, ro (1o), and the

barrier energy, AH (A), change with temperature, it is not

possible to check the Modified Arrhenius equation with just

the parameter data resulting from the curve fits. The stress

relaxation time, r (v(T)), and the barrier distribution

parameter, e(T), are easily calculated from Equations 12 and

13 respectively.

The results of the curve fitting task were very good.

Most of the time, the model demonstrated the ability to

predict accurately the viscoelastic behavior of the many

different materials analyzed. The limitations of the model,

specifically the cutoff frequency needs to be observed, but

the model seems to be accurate well above the cutoff point. It

is also important to recognize other significant conditions

may be occurring that affect the equations used to govern the
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process of internal energy transformation in the material, an

underlying hypothesis used by the model. These significant

conditions and the influence of other transition regions over

different frequency ranges may affect the accuracy of the

model. The latter point will be examined in the following

chapter. As stated earlier, the measured data for atactic

polystyrene supports the idea that an additional transition

region exists at a lower frequency range than examined during

this analysis. The next chapter discusses the development of

a double transition model as opposed to the single transition

model used for this analysis.
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V. Development of the Double Transition Model

For most physical phenomena in which a total

understanding of the mechanisms that drive the process are

unknown, one can find specimens that exhibit unexpected

behavior if the examination of the phenomena is extensive

enough. This situation exists in the viscoelastic behavior of

certain materials. Materials that exhibit a frequency

dependent modulus transition may actually exhibit multiple

frequency dependent modulus transitions. The only method of

learning if other transitions exists is by examining the

viscoelastic behavior of the material in the frequency range

of the transition, otherwise each transition appears distinct

with its own "glassy" and "rubbery" modulus.

Atactic Polystyrene exhibits another frequency dependent

modulus transition in the frequency range of 10- 7 to 10 - 5 Hz.

This frequency range equates to cycle periods from one day to

four months. The data was obtained from Reference 1 along with

the other atactic polystyrene data, but the data was provided

at only one temperature (388 K) (1:1239-1240]. The remainder

of this chapter discusses the development of a double

transition viscoelastic model. This double transition model

captured the viscoelastic behavior of atactic polystyrene over

both of the modulus transition regions discussed previously.
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Double Transition Model Development Equation 4 can be

rewritten as:

Energy Transition Probability

Erei (t) - E_
= - (t) (15)E - E.

The probability that an energy transition has not occurred is,

t(t) and it is defined by a 1 order Mittag-Leffler function.

The probability is based on the assumption that the elevated

internal energy states caused by the cyclic stressing of the

material are randomly scattered throughout the material. When

the elevated energy states transition to lower levels, they

result in a slight temperature rise [3:9]. For the double

transition model, the energy transition probability was

assumed to be a linear combination of two Mittag-Leffler

functions as shown in Equation 16. Equation 17 displays the

restriction on the constants Al and A2. The restriction forces

a combination of the two Mittag-Leffler functions to represent

the energy transition probability as opposed to multiples of

the Mittag-Leffler functions representing the energy

transition probability. Actually, the constants are easily

determined from measured viscoelastic data. The constants

represent the respective percentage of modulus change compared

to the total modulus change over both transition regions.
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Because the mathematical operations were easier, it

Double Transition Model

Energy Transition Probability

Erel ( ) - E) = A lEE (-(-- ) ) I +A2 [E ," -0:t ) (16 1

Eo - E_ al a2

Al + A2 = 1 (17)

was more convenient to develop the model in the Laplace

domain. Equation 18 shows the result of taking the Laplace

transform of the relaxation modulus derived from Equation 16.

Using the fundamental stress-strain relationship shown in

Laplace Domain Relaxation Modulus

EreE(S) - + (Eo-E_) [AI[ ] + A2[ s (18)S S§+a, 1 SP2+a22

Equation 19, an expression for the Young's modulus can be

obtained. Shown along with Equation 19, Equation 20 is the

Laplace domairn form of the stress-strain relationship. The

result of applying Equation 20 to Equation 18 is the Laplace
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Fundamental Stress Strain Relation

a(t) d Ee(- r ) e (t - r) dr (19)

Laplace Domain

Fundamental Stress Strain Relation

u(s) = S[Erei(s)C(s)] (20)

domain Young's modulus expression shown in Equation 21. With

a fair amount of algebra, Equation 21 can be rewritten into

the form of a transfer function. This transfer function,

displayed in Equation 22, is the double transition

viscoelastic model. Equation 21 will be used later as the

starting point for the thermodynamic analysis since it avoids

the cross terms in Equation 22.

Laplace Domain Young's Modulus Equation

C E(s) = E. + Al(EO-E . ) + A2(Eo-E . ) S (21)

Double Transition Viscoelastic Model

E [A2 (a sp 03Sol) +1] +E[a a02 + (1-A2) a +(2-A2) a s] 22)
01  02 P5112 02P P2  +
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Although the double transition model is similar to the

previous model, the effect of the extra transition region

added several higher order terms and increased the total

number of model parameters to seven. Three of the model

parameters, the "glassy" modulus, the "rubbery" modulus, and

the A2 constant, are not temperature dependent and could be

determined directly from measured viscoelastic data.

As a quick check to insure the model follows expected

trends, the double transition viscoelastic model was examined

at very low frequencies. Very low frequencies correspond to s

approaching zero in the Laplace domain. It also was examined

at very high frequencies. Very high frequencies correspond to

s approaching infinity in the Laplace domain. At very low

frequencies, the modulus should approach the "rubbery" modulus

and at very high frequencies, the modulus should approach the

"glassy" modulus. Both conditions held true for the case of

the double transition model.

The same assumptions used for the single transition

viscoelastic model were employed for the double transition

model, so the restriction shown in Equation 7 is still

applicable.

52



Because the model contained two sets of model parameters

that consisted of a shift parameter and the derivative order,

there existed two cutoff frequencies, one corresponding to

each set. The set of parameters corresponding to the first

transition region would be expected to have a lower cutoff

frequency than that of the second transition region. For that

portion of the frequency range that would be above the first

cutoff frequency, a small amount of error would be introduced.

Some error would be introduced in the second transition region

as well since the viscoelastic behavior model was based on the

effects of both transition regions and their effects on each

other.

Curve Fit Procedure ChanQes Most the procedures used to

curve fit the measured viscoelastic data with the single

transition model were still used with the double transition

model. The "glassy" and "rubbery" moduli were determined just

as they were determined earlier. The A2 constant could be

calculated by finding the change in the modulus from the

beginning to the end of the second transition region and the

total change in the modulus over both transition regions. The

A2 constant is the fraction of the change in modulus over the

second transition region divided by the total change in the

modulus over both transition regions. The remainder of the

parameters were determined using the same procedure described
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earlier. With the first shift parameter and derivative order

corresponding to the first transition region and the second

set of these parameters corresponding to the second transition

region. The effects caused by varying theses parameters were

the same as described earlier.

One major difference occurred while using the double

transition model. The user had to consider that changes in one

transition region would affect the other transition region.

This complicated the curve fitting process and required more

iterations than were performed using the single transition

model to determine the model parameters.

Accuracy of the Double Transition Model As stated

earlier, atactic polystyrene was the only material in which

the measured viscoelastic data showed the material exhibited

two frequency dependent modulus transitions. Although, many

materials may have multiple modulus transition regions, the

data necessary to learn if a material exhibited this

viscoelastic behavior would normally be required to have a

very wide frequency range and data such as this seems rare.

Because the data of atactic polystyrene at 388 K was the

only data used to evaluate the accuracy of the double

transition model, no real conclusions can be made from the
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results. Figure 17 and Figure 18 show the result of the curve

fit performed using the double transition model. The model

accurately predicts the viscoelastic behavior over the vast

majority of the frequency range, but departs at the end of the

frequency range for the real portion of the modulus. The

prediction for the imaginary portion of the modulus was very

good, even at the end of the frequency range. The parameters

used to generate the model curves in Figure 17 and Figure 18

are shown in Table 5 . A significant portion of the data is

above the first cutoff frequency, but all of the data is below

the second cutoff frequency. Since there is only one set of

data, it is impossible to tell if this curve fit is typical of

the results achievable with this model, but considering the

data covered over five decades of frequency, the performance

of the model should be considered satisfactory for many

applications.

Caution would force one to recognize this analysis was

performed for only one material at one temperature. Caution

would force one to also recognize the model results and the

measured data diverged at the end of the frequency range for

the real portion of the modulus, but the analysis did show

some positive things as well. Although no conclusions can be

made about the success of the extension of the single

transiti n viscoelastic model to the double transition model,
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the model does accurately predict the viscoplastic behavior of

atactic polystyrene over a wide frequency range. The model

also followed expected trends for the low and high frequency

conditions a material would experience while transitioning.

These positive characteristics and the fact that the imaginary

and the real portion of the modulus are obtained

simultaneously using only the seven parameters in the model

lends credibility to the double transition model. To examine

further the validity of the double transition model, the next

chapter will apply thermodynamic principles to the model to

insure the results are realistic.
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VI. Application of the Principles of Thermodynamics

Approach The approach taken examines the results of a

viscoelastic material undergoing a sinusoidal strain. The

temperature of the material will be assumed to be constant

even with the external sources of heat and the dissipation of

internal energy. It is possible for the temperature of a

specimen of material to remain fairly constant if that

material is undergoing a uniform, steady-state strain, the

conductivity of the material is high, and the specimen is

sufficiently small [10:138-139].

If the strain is sinusoidal, as defined by Equation 23,

Sinusoidal Strain

c(t) = Sinwot (23)

then the resulting stress when the transients decay will be

sinusoidal as well with an in phase portion and an out of

phase portion that can be written in the form shown in

Equation 24. The expression for the rate of internal work

Sinusoidal Stress

a(t) = XSinwot + YCOSAot (24)
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shown in Equation 25 can then be determined from Equations 23

Rate of Internal Work

d(t) (t) X 0tCoswot Sinwot + YWoCOS 2 (aOt (25)

and 24 [10:139]. The Sin(wot) in the first term results from

the stress response and is apart of the component of the rate

of work that is in phase with the strain. The Cos(wot) in the

second term, which also results from the stress response,

represents the part of the rate of work that is out of phase

with the strain. The phase difference in the two terms, ninety

degrees, is equivalent to the phase difference between a

purely real and purely imaginary value. In a direct comparison

to the complex modulus, the in phase response to a real strain

is the real portion of the modulus and it corresponds to the

first term on the right side of Equation 25. The out of phase

response to a real strain is the imaginary portion of the

modulus and it corresponds to the second term on the right

side of Equation 25. When the temperature of the material is

constant, the expression is also equivalent, term by term, to

the thermodynamic statement shown in Equation 26, which is a

statement of the First Law of Thermodynamics, where d/dt(p)
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Ist Law of Thermodynamics

d (p) _ d (q) + (26)
dp) d

is the rate of mechanical internal work, d/dt(*) is the rate

of change in the free energy, and 6 is the rate of energy

dissipated.

The results of this approach show the components of the

complex modulus actually represent internal energy

relationships. The real portion of the modulus represents the

amount of internal energy stored by the material and the

imaginary portion of the modulus represents the amount of

energy dissipated by the material. By applying the Second Law

of Thermodynamics to this concept of the modulus, it follows

that the energy stored by the material and the energy

dissipated by the material must both be positive quantities.

To insure the double transition model meets the conditions

that the stored and dissipated energies are positive

quantities for all positive frequencies, the constraints shown

in Equations 27a and 27b must be satisfied. Satisfying these

constraints will lead to certain restrictions on the model

parameters that will then force the model to predict
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viscoelastic behavior that is consistent with the Second Law

of Thermodynamics.

Thermodynamic Constraints

Re[E(w)] ; 0 (27a)

0 < (a < 

Im[E(w) I 0 (27b)

0 < ) <

Results The first step in analyzing the double transition

model was to break the model into its real and imaginary

components. Equation 21 was used as the starting point. This

form of the frequency dependent modulus equation avoids the

cross terms that would occur if the entire transfer function

were separated into its real and imaginary components. The

real and imaginary components were obtained by multiplying the

numerator and denominator of each term by the complex

conjugate of the denominator of that term. Since the

denominators are always positive once multiplied by their

conjugates, the thermodynamic constraints are satisfied by

placing the restrictions on model parameters in the numerators

of each term. Normally, it would be expected that the

expression would be combined into the standard form of a

transfer function. Because the entire transition region was

assumed to be described by the linear combination of two
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Mittag-Leffler functions and multiplication being a

distributive operation, the terms 'in the model could remain

separate for multiplication by the conjugate. Equation 28

shows the combined sum of the real components of numerator

terms. Equation 29 shows the combined sum of the imaginary

components of the numerator terms. The restrictions on the

model parameters can easily be determined from these equations

by examining two cases. The first case is the condition as the

frequency becomes very small. Taking the limit of Equations 28

and 29 as frequency goes to zero leads to one of the

restr-ictions on the model parameters. This restriction, shown

in Fluation 30, is necessary to satisfy the

Real Component of the Model

E.+ (So-p ) AIa____Cos( ) 2)1  p,
2

sA~a 02(AP Cos( 2___ A2 0 A)0 (28)

Imaginary Component of the Model

(E,-E.) [Ala'WA'Sin( 1--1 
) +A2a2 C02Sin( ) ] (29)

2 2 2

thermodynamic constraints. The next case is the condition at

all other frequencies. To meet the thermodynamic constraints
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Model Parameter Restriction - 1

E. z 0 (30)

for this second case, all terms in both equations must remain

positive for all positive frequencies. The assumptions listed

in Equations 31a and 31b concerning the derivative orders of

the model are important factors in the analysis of this case.

Because of the~e two assumptions, the Cos(3ln/2), Sin(o3n/2),

Cos(3 2n/2), and Sin(02n/2) terms are positive for all positive

frequencies since the arguments of the

Derivative Order Assumptions

0 ! 1 (31a)

0 2 :! 1 (31b)

trigonometric functions remain in the first quadrant. The

remaining restrictions for the conditions of the second case

can be determined by observation and are listed in Equations

32a through 32e. These restrictions insure all the terms in

both the real and imaginary components remain positive. The

model parameter restrictions shown in Equations 30 and 32 are

necessary for the double transition model to predict

viscoelastic behavior consistent with thermodynamic
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constraints. It follows that the parameters used to model the

viscoelastic behavior of atactic polystyrene in the previous

Model Parameter Restrictions - 2

E, E (32a)

Al 0 (32b)

A2 0 (32c)

a 1  0 (32d)

a 2  0 (32e)

chapter should and does meet the restrictions listed in

Equations 30 and 32. This observation was obtained by

comparing the model parameters of Table 5 to the model

parameter restrictions. The ability of the model to meet the

thermodynamic constraints adds support to the validity of the

results obtained fr om the double transition model.
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VII. ConclusionS and ReOommendations

The research presented by this thesis was to accomplish

three objectives. The first objective was to validate the

ability of a previously developed viscoelastic model to model

accurately the frequency dependent viscoelastic behavior of

thermorheologically complex materials. This model was based on

a theory of energy transitions at the molecular level that led

to a fractional derivative order model of viscoelastic

behavior. The model assumes one transition between a steady

state modulus value and a maximum modulus value that occurs

when the material is in an excited state. The second objective

involved extending the model described above to account for

two distinct transitions between the steady state modulus

value and the maximum modulus value. This second objective was

caused by the observation that the measured viscoelastic data

for atactic polystyrene, as frequency was varied, exhibited at

least two transitions. The third and final objective of the

thesis applied the First and Second Laws of Thermodynamics to

the double transition model. By applying these thermodynamic

principles to the double transition model, favorable results

would add support to the validity of the model results.

The single transition model was used to predict the

viscoelastic behavior of polyisobutylene, polyvinyl chloride

dimethyl thianthrene, atactic polystyrene, and C-1002 with
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good results for most of the materials. The model also

supported the concept of the thermorheologically complex

material. Users of this model must remember that the model

does involve some assumptions. The accuracy of some

assumptions and therefore, the accuracy of the model may be

affected by environmental conditions. The assumptions that

need to be considered include the molecular energy theory used

as the basis of the model and the restriction shown in

Equation 7. There are several possible topics that arose for

this objective that need to be addressed. The topics would

include examining the affect of the assumed molecular energy

distributions on the model while modeling additional materials

to provide a larger sample on which to base the validity of

the model. The ability of the model to predict the

viscoelastic behavior of C-1002 was not as good as its ability

to predict the viscoelastic behavior of the other materials.

Causes for the discrepancies between the model and the

measured data, which may include faulty data or other

transition regions, need to be examined as well.

Possibly, the most important result from this thesis is

the observation of the similarities between the parameter

curves verses temperature for each material. Similarities were

noted between the shift parameter curves for each material and

the derivative order curves for each material. The fact that
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these similarities exist suggest there may be an analytical

relationship between the parameters and temperature. This

analytical relationship is worthy of examination since it may

reduce the amount of experiment data necessary to model a

particular material. The concept of the Modified Arrhenius

equation provides a starting point for any effort in this

area.

The double transition model produced a viscoelastic

behavior prediction of atactic polystyrene that compared

favorably with the measured data. Again, the user needs to

note the assumptions embedded in the model, which are the same

as those assumptions in the single transition model. Future

efforts in this area should be focused on finding other

materials that exhibit two modulus transitions as frequency

varies and applying the model to these materials to validate

the results. The search for materials that have multiple

transition regions should begin with the other material

analyzed in this thesis since they already exhibit

thermorheologically complex behavior. However, the width of

the frequency range necessary to identify materials with

multiple transition regions may provide impractical test

conditions.

The fact the model parameters met the restrictions that

69



caused the model predictions to be consistent with the First

and Second Laws of Thermodynamics lends credibility to the

model results. The restrictions of the model parameters were

very simple. The restrictions could be applied easily to the

results of other temperature conditions or even predictions of

the viscoelastic response of other materials.

Overall, the results of this thesis show there are

candidate models or potential candidate models that would

provide a compact engineering tool to use in predicting

complicated viscoelastic behavior. The compactness of the

models also would allow them to be used in adaptive control

schemes where the nature of a thermorheologically complex

material would influence the dampening characteristics of the

system. Furthermore, the fractional derivative order of the

model may be an insight into the underlying processes of

nature.
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Appendix A. Modplot.ex Executable File

The Curve Fit Routine The HERCULES computer system at the

Air Force Institute of Technology was used for the vast

majority of the calculations and plots. Instead of writing

software in computer languages such as FORTRAN or PASCAL

specifically for the model calculations and curve comparisons,

several existing mathematics software packages were examined

for use in this thesis. The MATRIXx package from Integrated

Systems Inc. was chosen as the software package to use. The

MATRIXx software package was selected because it already

included an extensive mathmatics library and many useful

algorithms, it works readily with complex numbers, it has plot

routines incorporated that allow logarithmic scales, and most

importantly, it can execute user-defined command files. 2hese

command files, defined as executable files by the MATRIXx

package, resemble FORTRAN programs, but they also can include

MATRIXx commands since they execute within the MATRIXx package.

The program created for this thesis is run under the file,

Modplot.ex. Because of the limitation of the MATRIXx package,

which allows a maximum of 4096 characters on a line and the

requirement that looped commands be performed on one line, the

Modplot.ex executable file calls seven other executable files,

which may call additional executable files themselves. The

program was developed in two stages. In the first stage, the

Modplot.ex program was developed to perform the calculations
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and plot the data curves and model curves fur the fractional

order time derivative viscoelastic model described above. In

the second stage, the Modplot.ex program was modified to

perform additional tasks. The additional tasks were required

by the extension of the viscoelastic model to predict the

viscoelastic behavior of materials that exhibit two

transitions of modulus with frequency. The modifications

preformed in the second stage of the modplot.ex program

development will be discussed later. A complete listing of all

of the executable files developed for this thesis is included

in Appendix A. Setup.ex is the executable file that loads the

mathematical viscoelastic model in the Modplot.ex program and

initialize the variables. Modplot.ex is a menu driven piogram

that is designed to give the user access to change or leave

unchanged any model parameter for calculations. The Menul.ex

executable file lists the menu commands and asks the user for

the desired command. The Modplot.ex executable file performs

some menu tasks itself, but the larger more complicated tasks

are performed by specialized executable files. The

mathematical model is coded in a user defined function that is

another type of MATRIXx executable file and is listed under

the file name Modmodel.fun. The Inputfr.ex executable file

allows the user to enter the desired frequency range tor the

model calculations in hertz or radians. Inputfr.ex also

calculates frequency points at a user specified multiple of
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the previous frequency point. Frequency points separated by a

multiple of the previous frequency provides for equal spacing

of points plotted on a logarithmic scale. The Plotmod.ex and

Pcomply.ex are executable files that plot the modulus data

predicted by the model and compliance modulus data predicted

by the model respectively. The Discurve.ex and Discomp.ex

executable files respectively plot the modulus and compliance

modulus data as well. They differ from the Plotmod.ex and

Pcomply.ex executable files because they also plot

experimental viscoelastic data on the same plots as the values

predicted by the model. The experimental data files are

created in a matrix format. The first column lists the values

of frequency at which the data was taken, the second column

lists the real portion of the measured data and the third

column lists the imaginary portion of the measured data. All

the columns must be of equal length. The Discurve.ex

subroutine calls four additional executable files, Discl.ex,

Disc2.ex, Disc3.ex and Disc4.ex. These four additional files

are the plot formats used in the Discurve.ex program.

Pcurve.ex, Pcomply.ex, Discurve.ex, and Discomp.ex all call

two other executable files, Hplot.ex and Dataset.ex. Hplot.ex

stores user requested plots under a user defined filename and

Dataset.ex stores the data used in those plots in an ASCII

file named Hardout.dat.
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The Modplot.ex program was designed to be very user

friendly. Anyone with a small amount of knowledge about the

fractional order time derivative viscoelastic model should be

able to use the program effectively. The program was developed

specifically as a tool for the research performed in this

thesis and because of the specific nature of its development,

a user's guide is not provided with the Modplot.ex program.

Modifications to Modplot.ex With the addition of the

second set of model parameters, and the development of the

double transition model, the Modplot.ex executable file was

updated to adapt to the requirements caused by these

additions. Additions were made to the Modplot.ex executable

file to allow the user to input a second shift parameter, a

second derivative order and the A2 constant. The double

transition model was coded in a Matrixx user defined function

called 2tmodmodel.fun. The Modplot.ex program was also

modified to allow the user to choose between the single

trans4+ion or the double transition model. With these changes

integrated into the Modplot.ex program, modeling a material

with two modulus transition regions was not anymore difficult

than modeling a material with one modulus transition region.

//This Program Plots the Frequency Dependent,
//Modulus using a Fractional Calculus Model,
exec ('setup. ex') ;//Initializes variables and requests data
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format
//Running Menu Program,
While opt <> 15,...

exec ( menul .ex') .... .//Menu Program

if opt=l....//Menu Item 1
inquire ezero 'Input Glassy Modulus',....

end; ... //End if Optl

if opt=2 ....//Menu Item 2
inquire einf 'Input Rubbery Modulus',...

end; ... //End if Opt2

if opt=3....//Menu Item 3
inquire alpha 'Input Alpha Value',...

end; ... //End if Opt3

if opt=4....//Menu Item 4
inquire alpha2 'Input 2nd Alpha Value',....

end; ... //End if Opt4

if opt=5 ....//Menu Item 5
inquire beta 'Input Beta Value',....

end; ... //End if Opt5

if opt=6 ....//Menu Item 6
inquire beta2 'Input 2nd Beta Value',....

end;...//end if Opt6

if opt=7,....
inquire a2 'Input A2 Coefficient',....

end; ... /end if Opt7

if opt=B,....
exec( 'inputfr.ex') ,.. .//Inputs frequency range
end; ... //End if Opts

if opt=9 ....//Calculates modulus using one or two
transition model

if transition-l,..
[ereal,eimag,erealinv,eimaginvJ=...
freqmod(ezero,einf,alpha,beta,omega); ...

end; ... //End if one transition

if transition=2, ....
[ereal,eimag,erealinv,eimaginv]=...

freqmod2 (a2,ezero,einfalpha,alpha2,beta,beta2,omega);...
end; ... //End if two transition

end; ... //End if Opt9
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if opt=10,...
exec('plotmod.ex') ,.... //Plots Complex Modulus

Calculations
end;...//End if OptlO

if opt=ll,...
exec('pcomply.ex') ,... //Plots Complex Compliance Modulus

Calculations
end;...//End if Optll

if opt=12,...//Input Data File to Curve Fit
inquire datafile 'Input Data Filename (enclosed in

quotes)',...
load (datafile) ,...
inquire datavar 'Input Data Variable Name (no

quotes) ',...
end;.. .//End if Optl2

if opt=13,...
exec('discurve.ex'),...//Displays Data and Model Curves

for Curve Fit
end;.. .//End if Opt13

if opt=14,...
exec('discomp.ex') ,.. .//Displays Data and Model Curves

for Curve Fit
end;.. .//End if Optl4

if opt=15,...//Ends While Loop
exit, ...

end;...//End if Optl5

end;//End While Loop
display ('Youe done?, If not you''re out of the program');
Return

SetuDsex
//This program is designed to fit in the Modplot.ex routine
//and initializes variables for the Modplot.ex routine and

request data format
//
//Setting Default Values,

Opt=O;//Option Default
Counter=l;//Counter in Menul.ex Default
Hertz=l;//Frequency Units Flag
Radians=O;//Frequency Unit Flag
Axial=l;//Stress Type Flag
Shear=;//Stress Type Flag
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one=l;two=2;//Transition Number Flag
y=1;yes=l;//Request Flag
n=O;no=O;//Request Flag

/
//Defines Frequency Dependent,
//Modulus Transfor Functions, File on Disk,

define 'modmodel.fun';
define '2tmodmodel.fun';

//
//Requesting which units to plot
inquire whichunit 'What unit of frequency (hertz or radians)';
if whichunit=l,...//Determine which units to use

display ('Units will be HERTZ');...
else,...

display ('Units will be RADIANS');...
end;...//End Whichunit If
Il
//Requesting which stress type is being used
inquire stresstype 'What type of stress (axial or shear)';
if stresstype=l,...//Determine which stress to use

display ('Stress will be AXIAL');...
else,...

display ('Stress will be SHEAR');...
end;...//End Stresstype If
inquire transition 'How many transitions does the material

exhibit (one or two)';
Return

Menu.ex
//This program is designed to fit in the Modplot.ex routine
//and displays the menu in which to operate to the Modplot.ex

routine
display('Complex Modulus Plot
choices=['l. Input Glassy Mod 2.Input Rubbery Mod

3. Input Alpha Value ';
'4. Input 2nd Alpha Value 5. Input Beta

6. Input 2nd Beta '-
'7. Input A2 Coefficient 8. Input Freq Range

9. Calculate Modulus ';
'10. Plot Modulus 11. Plot Compliance Mod

12. Input Data File ';
'13. Display Curve Fit 14. Compliance Curve

Fit...
15. Quit '];

display(choices)
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inquire opt 'Enter Menu Option',
counter=counter+l;
Return

Modmodel.fun
//[realmod,imagmod, invreal,invimag,modulus]=...

Freqmod(glassmod,rubmod,bound,fractal,rate);
//This function calculates the frequency dependent modulus
//based on the fractional calculus model developed by Lt Col

Bagley.
The outputs are:
// realmod-real part of complex modulus
// imagmod-imaginary portion of complex modulus
// invreal-real part of the complex compliance

modulus
// invimag-imaginary part of the complex

compliance modulus
// modulus-total complex modulus
//the inputs are:
// glassmod-glassy modulus or E infinity
// rubmod-rubbery modulus or E zero
// bound-energy boundary coefficent or alpha
// fractal-fractional derivative order
// rate-frequency in radians//
[m,n]=size(rate);//Determine number of elements of frequency
vector
for i=l:m,...//Calculate modulus at each frequency

x=bound*(jay*rate(i,l));...
x=x**fractal;...
modulus(i,l)=(glassmod+(rubmod*x))/(l+x);...
realmod(i,l)=real(modulus(i,l));...
imagmod(i,l)=imag(modulus(i,l));...
invreal(i,l)=real((l/modulus(i,l)));...
invimag(i,l)=imag((l/modulus(i,l)));...

end,//End For Loop
retf

2TModmodel.fun
//[realmod, imagmod, invreal,invimag,modulus]=...

Freqmod2(coeff,glassmod,rubmod,boundl,bound2,fractall,
fractal2,rate);

//This function calculates the frequency dependent modulus
//based on the double transition fractional calculus model
//developed by Capt Victor Chambers referencing the model

developed by Lt Col Bagley.
The outputs are:
// realmod-real part of complex modulus
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1/ imagmod-imaginary portion of complex modulus
1/ invreal-real part of the complex compliance

modulus
II invimag- imaginary part of the complex

compliance modulus
1/ modulus-total complex modulus

//the inputs are:
// coeff-coefficient in derivation of A2 in

Al+A2=l
// glassmod-glassy modulus or E zero
II rubmod-rubbery modulus or E infinity
1/ boundl-lst energy boundary coefficent or alpha
// bound2-2nd energy boundary coefficent or alpha
// fractall-lst fractional derivative order
1/ fractal2-2nd fractional derivative order

1/ rate-frequency in radians

£m,n]=size(rate);//Determine number of elements of frequency
vector

al=boundl**fractall;a2=bound2**fractal2;
for i=l:m ....//Calculate modulus at each frequency
wl=((rate(i) *jay) **fractall) ;w2=((rate(i) *jay) **fractal2);.

w3=((rate(i)*jay)**(fractall+fractal2)); ...
xl=(al*wl) ;x2=(a2*w2) ;x3=(al*a2*w3); ...
c=(coeff*(xl-x2))+l;d-x3+((l-coeff)*xl)+((2-coeff)*x2); ...
yl=xl;y2=x2 ;y3=x3;y-(l+yl+y2+y3); ...
modulus(i,l)=(((rubmod*c)+(glassmod*d))/y); ...
realmod(i,l)=real(modulus(i,l)); ...
imagiod(i,l)=imag(modulus(i,l)); ...
invreal(i,l)=real((l/modulus(i,l))); ...
invimag(i, l)=imag( (l/modulus(i, 1))); ...

end,//End For Loop
ret f

//This program is designed to fit in the Modplot.ex routine
//and allows the user to input the frequency range. It
//includes logic to account for use of hertz or radians

clear cycles;clear omega;
inquire x 'Input Initial Value of Frequency',
inquire z 'Input Final Value of Frequency',
inquire w 'Input Increment Multiplier of Frequency',
nextfreq=x;counter2=O; ...
while nextfreq < z....

counter2=counter2+1; ...
omega(counter2)=nextfreq; ...
nextfreq= (w*nextfreq); ...

end;//End while
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if whichunit=l....//Converts Cycles to Radians
cycles-omega; ... //Input was actually Cycles
omega=(2*pi) *cycles; ...
end ;//Convert Units

Return

Plotmd~x
//This program is designed to fit in the Modplot.ex routine
//and plots the results of the Fractional Calculus Modulus

model
eimag=abs (eimag); ...

if whichunit=l,....
if stresstype=l,....

plot (cycles, ereal, 'log/xlabel/Hertz/ylabel/ ...
Real E/report=1') ,....

exec ( hplot. ex') ,....

pause,....

plot e, eimag, 'log/xlabel/Hertz/ylabel/ ...
Imaginary E/report= 1') ,....

else,....

plot(cycles,ereal, 'log/xlabel/Hertz/ylabel/ ...

Real G/report=l'),....

exec( 'hplot.ex') ..

pause,....

plot(cycles,eimag, 'log/xlabel/Hertz/ylabel/ ...
Imaginary G/report=l') ,....

end; ... //End if Stresstype
else, .

if stresstype=l,....

plot oeg,ereal,llog/xlabel/Radians/ylabel/ ...

Real E/report=l') ,....

exec( 'hplot.ex') ,...

pause,....

plot(omega,eimag, 'log/xlabel/Radians/ylabel/ ...

Imaginary E/report=l') ,....

so



else,....

plot(omega,ereal, 'log/xlabel/Radians/ylabel/ ...
Real G/report=l'),..

exec ( hplot. ex') ,....

pause, ...

plot (omega, eimag, lo/xlabel/Radians/ylabel/...
Imaginary G/report=l'),....

end; ... //End if Stresstype2
end; ... //End if whichunit

if ifhardout=l....//Stores Plot File
hardcopy(3,hardplot); ...
exec( 'dataset.exl) ,....

end; ... //End if ifhardout
Return

HR10tLex
//This program is designed to run inside the plot program for
//the MODPLOT.EX program. This program ask for a user defined
//filename and stores MatrixX plot files in that file.
inquire ifhardout 'Do You Want a Hardcopy (yes or no)',....

if ifhardout=l,.. .//Files in Hardout.dat and Hardplot.dat
inquire hardplot 'Enter Plot File Name (enclose in

quotes)',...
hardcopy(3,hardplot); ...

end; ... //End if ifhardout
Return

//This program is designed to be used in the Modplot.ex
//program to save data calculated using the program.
f save 'hardout.dat' cycles omega ereal eimag erealinv eimaginv
return

//This program is designed to fit in the Modplot.ex routine
//and plots the results of the Fractional Calculus Modulus

model
eimaginv=abs(eimaginv); ...
erealinv=abs(erealinv); ...

if whichunit=l, ....
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if stresstype-1,....

plot(cycles,erealinv,'log/xlabel/Hertz/ylabel/...
Real J/report=1') ,....

exec ( hplot. ex') ,....

pause,....

plot (cycles,eimaginv,'log/xlabel/Hertz/ylabel/...
Imaginary J/report=11',.

else,....

plot(cycles, erealinv, 'log/xlabel/Hertz/ylabel/...

Real J/report-l'),....

exec ( hplot. ex') ,....

pause,....

plot(cycles,eimaginv, 'log/xlabel/Hertz/ylabel/ ...
Imaginary J/report= 1') ,....

end; ... //End if Stresstype
else,....

if stresstype=l,....

plot(omega,erealinv, 'log/xlabel/Radians/ylabel/ ...

Real J/report=l'),..

exec( 'hplot.ex'),..

pause,....

plot (omega, eimaginv, 'log/xlabel/Radians/ylabel/ ...
Imaginary J/report= 1') ,....

else,....

plot(omega,erealinv, 'log/xlabel/Radiaris/ylabel/ ...

Real J/report=lt ) ..

exec ( hplot. ex') ,....

pause, ...

plot(omega,eimaginv, 'log/xlabel/Radians/ylabel/ ...
Imaginary J/report-l') ,....

end; ... //End if Stresstype2
end; ... //End if whichunit
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if ifhardout=l....//Stores Plot File
hardcopy(3,hardplot); ...
exec( 'dataset.ex') ..

end;... .//End if ifhardout
Return

Discurveex
//This program is designed to fit into the Nodplot.ex routine
//and plots experimental data over calculated data to

determine curve fit
eimag=abs(eimag); ...

if whichunit=l,....
if stresstype=l,....

exec( 'discl.ex') ,....

else,....
exec ( disc2 .ex') ,....

end; ... //End if Stresstype
else,....

if stresstype=l,....

exec('disc3.ex'), ...
else,....

exec( 'disc4 .ex') ,....

end; ... //End if Stresstype2
end; ... //End if whichunit

if ifhardout=l....//Files in Hardout.dat and
Hardplot .dat

hardcopy(3,hardplot); ...
exec ( dataset. ex') ,....

end; ... //End if ifhardout
Return

//Program called by curve fit plot routine

plot (cycles,ereal, 'log/xlabel/Hertz/ylabel/...
Real E/report=l')

plot(datavar(:,l),datavar(:,2),'log,symbol mark 2/...
report=l/keep')

exec( 'hplot.ex')

pause
plot(cycles,eimag, 'log/xlabel/Hertz/ylabel/...

Imaginary E/report=11)
plot(datavar(:,l),datavar(:,3),'log,symbol mark 2/...

report= 1/keep')
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//Progam called by curve fit plot routine

plot (cycles,ereal, 'log/xlabel/Hertz/ylabel/...
Real G/report=l')

plot(datavar(:,l),datavar(:,2),Ilog,symbol mark 2/..
report= 1/keep')

exec( 'hplot.ex')

pause

plot(cycles,eimag, 'log/xlabel/Hertz/ylabel/...
Imaginary G/report=l')

plot(datavar(:,l),datavar(:,3),'loq,symbol mark 2/..
report=l/keep')

//Progam called by curve fit plot routine

plot(omega,ereal, 'log/xlabel/Radians/ylabel/...
Real E/report=l')

plot(datavar(:,l),datavar(:,2),'logsymbol mark2/...
report=l/keep')

exec( 'hplot.ex')

pause

plot(omega,eimag, 'log/xlabel/Radians/ylabel/...

Imaginary E/report=l')
plot(datavar(:,l),datavar(:,3),'log,symbo1 mark2/...

report= 1/keep')

//Program called by curve fit plot routine

plot(omega,ereal, 'log/xlabel/Radians/ylabel/...
Real G/report=l')

plot(datavar(:,l),datavar(:,2),'logsymbol mark2/...
report=l/keep')

exec( 'hplot.ex')
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pause

plot(omega,eimag, 'log/xlabel/Radians/ylabel/...
Imaginary G/report=l1)

plot(datavar(:,1) ,datavar(:,3), 'log,symbol mark2/...
report=l/keep')

Discomy.ex
//This program is designed to fit into the Modplot.ex routine
//and plots experimental data over calculated data to
//determine curve fit for the Compliance Modulus

eimaginv=abs(eimaginv); ...
erealinv=abs(erealinv); ...

if whichunit=l, ....

plot e, erealinv, 'log/xlabel/Hertz/ylabel/...
Real J/report=l') ,....

plot(datavar(:,l),datavar(:,2),'log,symbol mark 2/...
report=1/keep') ,...

exec( 'hplot.ex'),....

pause, ...

plot (cycles, eimaginv, 'log/xlabel/Hertz/ylabel/...
Imaginary J/report=') , ...

plot(datavar(:,l),datavar(:,3),Ilog,symbol mark 2/...
report=l/keep') ,....

else,....

plot (omega, erealinv, 'log/xlabel/Radians/ylabel/...
Real J/report=l'),..

plot(datavar(:,l),datavar(:,2),'log,symbol mark 2/...
report=l/keep') ,....

exec ( hplot. ex) ,....

pause, ...

plot(omega,eimaginv, 'log/xlabel/Radians/ylabe1/...
Imaginary J/report=l') ,...

plot(datavar(:,l),datavarf:,3),'log,symbol mark 2/...
report=1/keep') ,...

end; ... //End if whichunit

if ifhardout=l....//Files in Hardout.dat and
Hardplot .dat

hardcopy(3,hariplot);...

as



exec( dataset.ex') ..
enid; ... //Enxd if ifhardout

Return
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Appendix B. Viscoelastic Data for Polyvinyl Chloride
DiMethyl Thianthrene

Table B-I. Polyvinyl Chloride

Dimethyl Thianthrene Data

Modulus (MPa)

Temperature (K) Frequency (Hz) Real Imaginary

307.61 75 118.16 63.86

307.61 100 147.02 86.93

307.61 140 156.47 98.39

307.61 140 159.58 104.33

307.61 210 186.61 113.59

307.61 320 213.765 116.98

307.61 320 216.01 124.14

307.61 450 244.13 132.88

307.61 660 259.41 144.7

307.61 660 271.52 150.2

307.61 1000 300.52 151.96

307.61 1500 325.88 146.96

307.61 1500 340.48 155.53

307.61 2100 357.6 164.09

307.61 2100 372.1 168.53

307.61 3000 373.71 155.71

307.61 3000 403.84 165.54

307.61 4200 438.69 160.64

307.61 5100 388.99 144.24

313.01 30 25.34 24

313.01 45 30.86 31.05

313.01 75 47.38 42.89
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Table B-i con't

Modulus

Temperature (K) Frequency (Hz) Real Imaginary

313.01 100 53.05 51.36

313.01 140 63.35 61.63

313.01 210 79.46 70.055

313.01 210 80.35 68.92

313.01 320 100.665 85.34

313.01 450 117.06 96.18

313.01 660 134.53 119.34

313.01 1000 168.42 126.32

313.01 1500 194.13 129.785

313.01 2100 220.425 146.25

313.01 3000 251.4 146.44

313.01 4200 264.86 152.02

313.03 30 20.3 21.25

313.03 45 25.37 26.03

313.03 75 33.3 34.93

313.03 100 40.63 41.99

313.03 140 48.07 49.01

313.03 210 60.93 58.5

313.03 210 60.29 55.96

313.03 320 75.87 68.94

313.03 450 89.85 79.1

313.03 660 109.27 92.11

313.03 1500 153.95 115.74

313.03 2100 177.57 127.79

313.03 3000 207.92 132.53

313.03 4200 199.7 146.85
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Table B-i con't

Modulus

Temperature (K) Frequency (Hz) Real Imaginary

318.16 30 9.4 11.3

318.16 45 30.86 31.055

318.16 75 47.38 42.89

318.16 100 18.24 23.69

318.16 140 22.43 28.85

318.16 210 28.55 36.49

318.16 210 29.57 35.83

318.16 320 37.81 45.51

318.16 450 46.02 54.835

318.16 660 57.9 68.235

318.16 1000 79.43 82.58

318.16 1500 91.22 89.265

318.16 2100 108.15 104.32

318.16 3000 133.97 111.49

323.11 30 4.39 4.35

323.11 45 5.17 6.04

323.11 75 6.64 8.34

323.11 100 7.62 10.5

323.11 140 9.12 12.57

323.11 210 11.52 16.43

323.11 210 11.78 16.44

323.11 320 15.03 21.38

323.11 450 18.53 26.64

323.11 660 23.47 34.09

323.11 1000 30.45 42.91

323.11 1500 38.47 52.42
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Table B-i con't

Modulus

Temperature (K) Frequency (Hz) Real Imaginary

323.11 2100 45.47 61.76

323.11 3000 59.18 69.52

323.14 30 4.16 3.87

323.14 30 4.09 3.84

323.14 75 5.99 7.015

323.14 75 4.84 5.17

323.14 100 6.85 8.47

323.14 100 6.04 7.09

323.14 140 19.32 4.84

323.14 140 6.85 8.61

323.14 210 10.14 13.85

323.14 210 8.19 10.78

323.14 210 10.33 13.85

323.14 210 10.25 14.11

323.14 320 13.22 18.32

323.14 320 10.44 14.11

323.14 450 16.18 22.72

323.14 450 13.36 18.53

323.14 660 20.275 28.86

323.14 660 16.43 22.97

323.14 1000 73.67 37.36

323.14 1000 20.47 29.06

323.14 1500 34.09 44.01

323.14 1500 33.795 43.93

323.14 2100 38.12 54.77

323.14 2100 38.6 54.76
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Table B-1 con't

Modulus

Temperature (K) Frequency (Hz) Real Imaginary

323.14 3000 47.46 61.28

323.14 3000 49.27 61.02

328.11 30 2.8 1.895

328.11 45 3.13 2.5

328.11 45 3.14 2.48

328.11 75 3.7 3.49

328.11 100 4.1 4.23

328.11 140 4.68 5.33

328.11 210 5.58 7

328.11 210 5.56 7.01

328.11 320 6.86 9.395

328.11 320 7.04 9.39

328.11 450 8.24 11.84

328.11 450 8.32 11.935

328.11 660 9.94 15.925

328.11 1000 12.87 20.61

328.11 1500 16.67 24.965

328.11 2100 18.42 31.1

328.11 3000 22.49 34.24

333.41 30 2.1555 0.885

333.41 30 2.13 0.87

333.41 45 2.275 1.12

333.41 45 2.29 1.12

333.41 75 2.54 1.54

333.41 100 2.71 1.8

333.41 140 2.99 2.32
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Table B-1 con't

Modulus

Temperature (K) Frequency (Hz) Real Imaginary

333.41 140 3.02 2.32

333.41 210 3.37 3.09

333.41 210 3.36 3.03

333.41 320 4 4.06

333.41 450 4.51 5.1

333.41 660 5.26 6.72

333.41 1000 5.64 8.95

337.81 30 1.8 0.496

337.81 45 1.89 0.617

337.81 75 2.04 0.839

337.81 100 2.15 1

337.81 140 2.3 1.24

337.81 140 2.32 1.24

337.81 210 2.52 1.71

337.81 210 2.54 1.71

337.81 320 2.88 2.19

337.81 450 3.2 2.69

337.81 660 3.47 3.59

337.81 660 3.42 3.47

337.81 1000 3.73 4.61

343.16 30 1.54 0.278

343.16 45 1.62 0.336

343.16 75 1.68 0.435

343.16 100 1.73 0.493

343.16 140 1.82 0.611

343.16 140 1.84 0.619
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____________ Table B-i con't

Modulus

Temperature (K) Frequency (Hz) Real Imaginary

343.16 1 320 2.14 1.03

343.16 660 2.28 1.57
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Appendix C. Viscoelastic Data for the Anatrol Corp.
Material

Table C-1. Anatrol Corp. Material Data

Modulus (PSI)

Temperature (K) Frequency (Hz) Real Imaginary

297 96 509.80 545.49

297 64 445.50 397.83

297 32 369.00 268.63

297 16 303.50 178.76

297 8 254.10 127.05

297 4 220.60 85.37

297 2 192.00 54.49

297 1 173.20 36.20

297 0.5 161.40 26.95

297 0.25 150.70 19.74

297 0.125 139.80 16.78

297 0.0625 133.40 12.94

297 0.03125 127.10 10.84

297 0.01563 123.00 9.58

297 0.00781 118.20 8.546

297 0.00393 119.40 7.64

297 0.00197 113.60 5.226

297 0.000954 112.20 6.17

297 0.000477 119.20 6.32

292 32 567.00 520.51

292 16 431.00 354.28

292 8 338.00 229.16

292 4 283.30 159.21
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Table C-I con't

Modulus

Temperature (K) Frequency (Hz) Real Imaginary

292 2 234.00 106.94

292 1 213.00 68.59

292 0.5 188.40 48.98

292 0.25 171.12 35.94

292 0.125 156.70 27.89

292 0.125 158.20 27.37

292 0.0625 147.03 21.17

292 0.03125 139.10 16.41

292 0.0156 133.40 13.07

292 0.00781 129.00 11.61

292 0.00393 123.90 8.67

292 0.00197 121.20 7.88

292 0.000954 119.00 5.59

303 16 215.50 98.31

3J3 8 193.60 61.18

303 4 173.60 43.05

303 2 160.70 31.66

303 0.5 142.90 15.86

303 0.25 135.00 12.80

303 0.125 128.70 10.90

303 0.0625 122.40 9.36

303 0.03125 118.50 7.77

303 0.01563 115.00 7.18

303 0.00393 108.00 5.40

303 0.00197 106.30 5.42

303 0.00781 113.30 6.91
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