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Abstract

Many studies of aircraft high angle of attack-dynamics have argued the need
for rotary aerodynamic data to be included in a model in order to effectively model
aircraft spin-behavior. The purpose of this research paper was to use bifurcation
analysis to investigate the effectiveness of rotary balance data in the prediction of
aircraft spin behavior as both a stand alone representation of a model’s
aerodynamic data and in a conventional hybrid model. Equilibrium solutions from
both models were compared to previous studies which utilized conventional static
and forced oscillation aerodynamic data and to flight test results to analyze the
effectiveness of rotary aerodynamic data for the prediction of spin behavior.

Using the foundation of a previously developed model of the F-15B, the rotary
balance aerodynamic force and moment data were implemented as a function- of
angle of attack, angle of sideslip, non-dimensional rotation steady state rate and
the control surface deflections (3,,5,,5.,8,). Bifurcation diagrams were developed
as a function of alpha versus 3,,6,, and 8, to show highlights of equilibrium and
dynamic behavior of the aircraft. For selected configurations, the resulting aircraft
state variables showed the rotary balance data model having close correlation to
experimental flight test data. Comparison of these selected configurations with the
hybrid and conventional static and forced oscillation models, showed comparable
results. However, the models bifurcation diagrams were very different. Problems

were identified with static contributions of the rotary balance data indicating a

xii




possible cause. Despite the static contribution problem, the overall results
indicated the rotary balance data mode! did provide a reasonable representation
of the spin dynamics of the aircraft. The development of the hybrid model
dispiayed the difficulties in blending of the- aerodynamic coefficient data in the
presence of deficient experimental data, inaccurate modelling of aerodynamic
coefficients or possible differences in the databases such as Reynolds -number
effects. Recommendations-on continued investigation of the effects of the static

contributions of the rotary balance data were made.
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INVESTIGATION OF THE INFLUENCE OF
ROTARY AERODYNAMICS ON THE STUDY OF
HIGH ANGLE OF ATTACK DYNAMICS OF THE

F-15B-USING BIFURCATION ANALYSIS

|. Introduction

The flat spin is the most dangerous spinning-motion exhibited by an airplane
where the aircraft’s angle of attack (AOA) approaches 90° with a high rate of
rotation. Conventional aircraft control surfaces become increasingly-ineffective as
the AOA approaches 90° and as the spin develops it may become impossible for
the pilot to recover. Today’s fighter aircraft are also heavier than earlier designs,
with weight more concentrated along the fuselage. This design evolution was a
factor of the desirability of a more maneuverable aircraft. With this distribution of
mass, the yaw moment of inertia of the aircraft has increased as much as 20 times
compared to early fighters but the effective control surfaces have remained
practically the same (11:1). This combination of high yaw moment of inertia and
relatively ineffective control surfaces at high angles of attack warrants analysis of
spin characteristics of aircraft because recovery is very difficult if not fatal.

Aircraft high angle-of-attack research has been increasing over the past twenty
years. The most recent full scale research effort is the X-31 where one of its

areas of investigation is the use of thrust vectoring paddles to improve the agility




and handling qualities of an aircraft while flying at high angles of attack. In
February 1991, testing began at AOA up to 70°. The ability of an aircraft to
achieve high angle of attack will considerably reduce the time needed to maneuver
an aircraft to obtain a good firing position in close-in combat (14:38). Research
is ongoing to improve designs of future aircraft and their control systems to have
stability and agility during high- AOA maneuvers. For developed aircraft, it is
desired to design either effective pilot procedures or aircraft control systems that
can predict and recover an aircraft from potentially fatal attitudes accompanied with
high angle of attack maneuvers. Loss of control of the aircraft can-occur through
non-linear behavior such as stalls, departures, wing rock, nose slice, spin entry,
and full spins. Considering the costs involved in full scale testing, it is desirable
for the development of a methodology that could investigate the aircraft dynamics
associated with high angle of attack flight, specifically aircraft spin behavior, with
the use of scale model aerodynamic data. Investigations of this form have used
combinations of static wind tunnel, forced oscillation and rotary aerodynamic data.
It is the objective of this paper to investigate the effectiveness of rotary
aerodynamic data in modeling high angle of attack dynamics in the ragime of

a=30° to 90° using the methodology of bifurcation analysis.

Previous Studies

The mathematical modeling of an aircraft’s motion during high angle of attack
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maneuvering has shown to be an effective tool for the flight dynamicist however
it is highly dependent on the results of wind tunnel tests forthe required static and
dynamic aerodynamic-data (27:244). In 1972, Adams (1) used a numerical routine
to predict spin modes for various aircraft by searching for steady spin states. His
vesults did not compare well-with flight test data. Adams attributed poor results to
the deficiencies of the aerodynamic data his model was based on. The
discrepancies he found may have been corrected with the inclusion of rotary
balance data.

As technology advanced with digitai computers in the 1960s many flight
dynamic models of aircraft spinning were developed. In most cases these models
involved the combination of aerodynamic data from static tests with small
disturbance oscillatory data. In these models the aerodynamic cata were
sometimes inaccurate and spin modes could not be predicted (22:144). Early
studies of spins involved numerical simulations using static wind tunnel data to
predict spin entry and possible recovery technigues. As indicated above, their
results did not compare well with flight test data nor spin tunnel resuits.
Chambers, Bauman and Anglin determined that rotary balance data was necessary
to correctly model the aerodynamics during a spin (11). in many investigations
utilizing rotary balance data, this conclusion has been substantiated.

During the past forty years many research efforts have been made on the study
of aircraft spin behavior utilizing rotary acrodynamic data. Some encountered

problems obtaining acceptable results utilizing the rotary balance data. However
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most have found significance of including rotary aerodynamic data in their models
for prediction of aircraft spin modes. In 1954, Scher (32) applied equations of
motion and spin-geometry relationships-with rotary balance aerodynamic data to
calculate step by step the details of a spin recovery moticn for an tnswept-wing
fighter-airplane configuration. At first, his results did not aaree with the
assumptions -of steady spin. However, as also determined by Stone, Burk and
Senger (37), the rotary balance data had to be modified due to inconsistencies in
the- mounting of the model. The vaiues he obtained were inconsistent with the
assumption that the aerodynamic and inertial forces and moments should balance
during steady spin. As a result, the spin-behavic: he obtained were not validated
by the test aircraft of the investigation.

‘With the improvement of the technique of rotary balance wind tunnel testing, the
integrity of the data has improved from the tests of over forty years ago. A most
recent analysis was performed in 1989 by Martin and Hill (22) where rotary
balance data was used in a model of a basic training aircraft using a six-degree
of freedom flight dynamics model of aircraft spin. The model was used to predict
equilibrium spin conditions and spin recovery techni.uzs. Their results were
promising when compared to scale model wind tunnel tests. in 1981, Tischler and
Barlow (38) were able to accuraiely determine spin modes of a low-wing general
aviation aircraft using rotary balance data. Studies by Birhle (9) on-a fighter
aircraft design in 1980, had demonstraied that the spin computed with static

aerodynamic data did not match the flight motion whereas the spin computed with
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rotational data duplicated the developed spin. This result again emphasized the
significance of rotary balance data representing the dynamics during spin motion.
Ogburn, Nguyen and Hoffler (27) have dr.:e -~cent research showing that the
addition of dynami(; terms, including ro.2: ge v -amics can significantly affect
the simulated flight motions. Their efforts ak 5 showed a substaitial influence of
the rotary aerodynamic data on the moi-:.s and controls for the aircraft
configurations they tested.

High angle of attack maneuvers- zre very ronlinear and require complex
analysis tools to study the behavior. Mehra and Carroll (26) performed fairly
extensive analysis of the F4 Phantom fighter in 1979 demonstrating the use of
bifurcation and continuation- methodology as an analysis tool for the study of
aircraft high AOA behavior. Bifurcation theory was not a new concept however it
had not been previously-applier: w aircraft dynamics. The tooi enables an analyst
to use more complex (higher order, nonlinear) aircraft models thereby enabling
analysis of more demanding flight conditions such as spins, stalls and wing rock.
Bifurcation methodology provides insight into the solution of nonlinear equations
through development of a mapping of equilibrium and periodic solutions ot an
aircraft's equations of motion. This results in a global view of the nonlinear
behavior of the aircraft. Further discussion of bifurcation theory is presented in
Chapterill.

Many recent research efforts have used bifurcation analysis for the study of

aircraft dynamics. Hawkins (17), Jahnke (18,19,20), Zagaynov and Goman (39),
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and Guicheteau (16; used bifurcation theory to analyza nonlinear behavior
associated with high AOA maneuvers of various zircraft configurations including
the [-14 and F-15 fighters. Barth (0 and Planeaux and Barih (28) did an
investigation of-high AOA behavior of the F-15 using bifurcation analysis &::d were
able to identify periodic solutions inuicative of aircraft wing rock behavior.
Baumann {7), Beck (8) and Plareaux, Beck and Baumann (29) ccntinued the F-15
research with an expanded aercdynamic database allowiné ai.alysis up to 90°
AOA. With the new model they analyzed the effectiveness of control
augmentation. The most recent effort with the F-15 model, performed by
McDonnell (24) and Planeaux and McDonnell (30) investigated the effectiveness
of thrust vectoring for spin recovery. Many options for spin recovery using thrust
vectoring were identified.

Of the efforts mentioned utilizing bifurcation methodology, only three included
the contributions of rotary aerodynamic data. Hawkins (17), Jahnke (28) and
Mehra and Carroll (26,10) developed hybrid models combining the data from static,
forced w:geillation and rotary balance testing in attempt, to more accurately model
the aircraft dynamics. Mehra and Carroll’s analysis included an investigation of
different approaches to integrating rotary aerodynamic data-into a model. Their

effert did provide many methods for consideration some of which were

incorporated by Hawkins and Jahnke in their aircraft models.




Qverview

There.is still a debate over what effective benefit rotary balance data provides
in @ model. This paper will continue the development of the F-15B model by

Barth (6), Beck (8), Baumann (7) and McDonnell (24). The inclusion of rotary

balance data will be analyzed in two developments. The rotary balance data will

first be used in the model as the principal representation-of the static, oscillatory
and rotary aerodynamic force and moment coefficients. The results of bifurcation
analysis and continuationi theory-will L2 used to compare the static and forced
oscillation aerodynamic based model and a stand alone rotary aerodynamic based
model. The comparison will assist in identification of the strength and weakness
of rotary balance data as well as possible deficiencies in the modeling of the
coefficient data. The second phase of the-investigation will be the develcpment
and analysis of a hybrid model utilizing the rotary aercdynamic data through
blending with the static and forced oscillation aerodynamic data based model. In
addition, based on problems encountered with the rotary balance databasé, an
analysis of static aspects of the rotary balance database and perturbation of two
ci the rotary balance coefficients will be made.

Chapter Il will discuss spin tunnel testing, the rotar, halance data used in this
analysis and the data processing required. Chapter lll will present a brief
introduction to bifurcation theory and the continuation methodology. Chapter IV

will describe the F-15 model and the modifications required with implementation
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of the rotary balance data. Chapter V presents thé findings of-the analysis. The

conclusions will be drawn as. well as recommendztions for future research in

Chapter VI.




Il. Rotary Balance Data

It should be rather intuitive that the best method to -investigate a particular
motion of an aircraft would be to use a technique that most accurately represents
that motion. The standard wind tunnel aerodynamic coefficient data consists of
two types, static and forced oscillation. Both sets of data have been used as the
foundation for dynamicist to study the dynamics of aircraft. For the study of
aircraft in spinning or coning motion, the most representative modeling would be
to rotate a model with its spin axis parallel to the free stream velocity of the
relative wind. This reasoning has been identified for the study of aircraft research
since the pioneer days of aviation. In response, rotary balance techniques have
been developed providing information on the effects of rotational rates on the
overall aerodynamic forces and moments acting on the aircraft.

The fundamental problem of the dynamicist is to properly represent the
equations of motion with the aerodynamic reactions and motion variables (control
parameters and states) of interest. When analyzing low angle of attack dynamics,
adequate dynamic predictions can be made using a linearized small perturbation
model with constant aerodynamic derivatives. However, when motions involve
large variation in any of the state variables, change in some of the aerodynamic
derivatives may vary appreciably with factors of the flight conditions thereby the
analysis must involve non-linearities to properly represent the dynamics. It is

argued that use of the combination of aerodynamic data of oscillatory and rotary
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motion can produce the data required for calculation-of flight motions inciuding
fairly large excursion motions such as high angle of attack departure and spin
entry. The difficulties involved in performing such tests and receiving substantial
data concern the clorrelation between wind-tunnel dynamic test data which are
usually available from separate oscillatory and rotary tests, where the mode! or
its motion did not exactly simulate the relevant flight motion of interest (2:209).
For rotary tests, the axis of rotation is parallel to the wind axis. The
aerodynamic loads are measured by a strain gauge aligned along the model body
axis. The model has a fixed orientation of angle of attack, angle of sideslip and
selected. control deflections to the wind direction as the model is rotated. The
model is seeing a constant rate of motion resulting in a consistent collection of
data. In oscillatory tests the motion is not of constant rate thereby the flow is
constantly changing and under certain conditions the measurements of the
derivative data may be a function of the history of the flow (2:209). At low angles
of attack and sideslip the flow is attached to virtually all of the surface of the model
and fairly good agreement of the derivative data is found between the rotary and
oscillatory test results. However, at high angle of attack, there is increased flow
separation and lag effects that may introduce significant differences between the
two testing results.  As indicated in the AGARD Advisory Report (2:210), tests
comparing rotary and oscillatory data have attributed this lag effect for their
apparent differences. These effects may influential in the development of the

hybrid model. These effects will be considered when comparing the stand alone
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rotary balance model with the static. and forced oscillation data based model.
The above discussion -brings up the issue of the integrity of the F-15 1988
Aerobase which is the source of aircraft aerodynamic force and moment
coefficients for the McDonnell (24) and Baumann (7) theses. Part of this
investigation involves both the blending and comparing of the dynamics resulting
from both the rotary balance and the 1988 Aerobase which represents the
oscillatory testing data. The 1988 ‘F-15 Aerobase was obtained from the F-15
System Program Office (SPO) at Wright-Patterson AFB, Ohio and has been used
for simulation testing of the aircraft. This database is not well documented on the
exact source for its content. However, the McDonnell Douglas Documentation {23)
indicates that the stability and control derivatives were derived by analysis of flight
t;est data and where appropriate, superseded relative wind tunnel based estimates.
Additionally, in order to provide the maximum amount of range on flight conditions,
data from flight test results were utilized to adjust the associated wind tunnel
coefficient data (23). Neither the method utilized for blending the flight test data
nor a discussion of the methods of data processing used on the raw wind tunnel
data were identified in the documentation. It should be noted that inconsistencies
may be present for this investigation in the effectiveness of rotary balance data,
when the baseline model to be compared and blended consisted of actual flight
test data. The 1988 F-15 Aerobase is not a true representation of the limitations
of conventional wind tunnel testing results. This factor will be considered when the

results are analyzed in Chapter V.
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Description of the Rotary Aerodynamic Data

The rotary balance technique measures the 6 aerodynamic force and moment
coefficients C,, C,, C,, G, G, and G, as a function of the 3 state variables: spin
rate, angle of attack and angle of sideslip; and the control deflections: g, §,, 3., 3.
The rotary balance data obtained for this analysis is documented in NASA
Coniractor Report 3478 (5) and 3479 (4). The database was obtained from the
NASA Langley Spin Tunnel in the form of data files on floppy disk. The data files
were arranged by aircraft configuration representative of the data presented in
reference (5) and consisted of the six aerodynamic force and moment coefficients
tabulated with their associated state variables and control deflections. The spin
tunnel data consisted of configurations ranging from the build-up of individual
airplane components (body,wings,tail), the basic airplane configured with various
control deflections and the airplane configured with conformal fuel tanks. Since
this analysis was restricted to a basic F-15B with no stores carriage nor conformal
fuel tanks, only 16 configurations were used from the available database. Table
| shows the 16 configurations that were used to represent the rotary balance data
in this analysis.

The Langley Spin Tunnel tests were conducted at a free stream velocity of 25
ft/sec, which correspond to a Reynolds number of approximately 211,000 based
on the model wing cord of 1.33 ft. Studies by G.N. Malcolm at NASA-Ames

(2:117) on the sensitivity of the rotational flow fields to Reynolds number variation.
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Table I Rotary Balance Database Testing Configurations

Configuration o 5, 5, 5" 5"
1 0 0 0 0 0
2 0 0 6 0 0
3 0 0 11 0 0
4 0 0 6 20 0
5 0 0 -6 -20 30
6 0 0 6 20 -15
7 0 0 -11 -20 30
8 0 -25 0 0 0
9 -10 0 0 0 0

10 10 0 0 0 0
11 10 0 6 0 0
12 10 0 11 0 0
13 10 0 -5 -20 30
14 10 0 6 20 -15
15 10 0 -11  -20 30
16 10 -25 0 0 0

Bach configuration is tested for all combinations of
a=8,10,12,14,16,18,20,25,30,35,40,45,50,55,60,70,80,90

degrees and |Q.b/2v..| = 0.0,0.1,0.2,0.3,0.4 (some for
0.5,0.6,0.7,0.9) for clockwise and counter clockwise
rotations.

* in degrees

have shown that variation in Reynolds number does have a significant effect on
the behavior of the aerodynamic derivative coefficients. Aircraft with slender noses
or slender forebodies can experience large side forces due to asymmetric
separation and vortices on the leeward side of the vody. It has been found that
the behavior of these vortices and flow separation change as Reynolds number
varies. The high Reynolds number effects from the experimental flight test data
inherent in the 1988 Aerobase may introduce noticeable differencés in the
aerodynamic coefficients when compared to the rotary balance data. Since high

Reynolds number rotary balance data was unavailable, this investigation was
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constrained to blending of the dissimilar Reynolds number data. The Reynolds
number effect may account for gross differences when comparing the coefficient
data from each model. For alltests, the spin axis passed through the full scale:
airplane nominal center of gravity (CG) location for AOA above 30°. Testing below
30° AOA required shifting of the-spin axis to allow the model a full range of motion.
Use of this data would require adjustment of the coefficient data to the nominal cg
location. For this analysis only o > 30° was used. The McDonnell (24) analysis
was based upon an aircraft at 0.6 Mach and 20,000 ft altitude.

The data was presented for an angle-of-attack range of 8° to 90°, and clockwise
and counter-clockwise rotations covering Q. b/2V, range from 0 to 0.4. Some
configurations were presented with an-extended Q,b/2V, range from 010 0.8. The
data used for this investigation is not the specific data published in reference (5)
but a second run collection of the same configurations performed in June-August
1981. The integrity of the axial and side force coefficient data may be
questionable (40). Analysis of the data files identified this problem and will be
discussed in the next section. A complete description of the testing apparatus and
model are in reference (5).

As shown by Table |, the depth of the rotary balance database is limited by the
fe'v airplane configurations tested for the basic F-15. This investigation will limit
itself to analysis of only configurations that fit within these restrictions. Table |I
shows the F-15B operation.al control deflection limitations as compared to the

rotary balance database limitations. Unlike the static and oscillatory test data, the
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rotary balance data will not be adjusted to the limitations of the operational flight
configurations and will thereby provide a better indication of the capabilities of this-

data as a stand alone representation of the aircraft dynamics.

Table II Control Deflection Limits.

Operational Control Deflection Limits (8:26):

Control Surface Positive Limit Negative Limit
Stabilator (§,,984) 15° -29°
Aileron (39,) 20° -20°
Rudder (9,) 30° -30°

Rotary Balance Database limitations:

Control Surface Positive Limit Negative Limit
Stabilator (9,) 0° -25°
Differential

Stabilator (9,) 11° -11°
Aileron (9,) 20° -20°

Rudder (9,) 30° 0°

Data Analysis and Preparation

In examining the raw data, it was identified that the rotary balance data showed
problems in the static configurations (i.e. Q = 0). It is difficult to identify what
characteristics of the data is due to pocr testing or is inherent in the character of
the- rotary aerodynamics. To identify possible problems, each data file ‘was

compared to the data in reference (5) to identify if any test cases showed very
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different results. All coefficients compared fairly well except for a few isolated
cases of C, and C,. A few cases showed negative signs missing on a series of
axial force coefficients and were easily corrected. More severe problems were
encountered with particular configuration datasets of G, and C,. The magnitudes
of the coefficient data for configurations 1 and 4 on Table | for C, were very
different than cases with similar configurations in both reference (5) and the
available data on floppy disks. These cases were simply elimfnated since no other
-data was available to replace those -configurations. Similarly the test data
configurations 1 and 13 for G, also showed very different results. However, the
data for case 1 in reference (5) was satisfactory (compared relative to the 1988
Aerobase coefficient data) and was used as a replacement. In general, the overall
éstimations of the axial and side force coefficients are questioned.

As the experimental data was collected during the spin tunnel testing, static
results were obtained prior to both clockwise and counter clockwise rotations.
Therefore, twice as much data was available with static conditions (Q,=0) as with
any other rotation rate. This provided an opportunity to examine the consistency
of the coefficient values for static condition. Many test cases showed reasonably
close coefficient values however most cases were inconsistent.  Having no
available means to decipher which was the best coefficient value from the
clockwise and counter clockwise tests, the static condition coefficient data were
simply averaged.

In preparation for creating-a hybrid model, it needed to be determined whether
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the two coefficient databases were reasonably based on the same testing
conditions before blending them. The conditions chosen for the 1988 F-15
Aerobase model has been a thrust setting of 8,300 Ibs (military power, thrust
setting for trim conditions,steady level flight) at 0.6 Mach and 20,000 feet. The
testing conditions for the rotary balance coefficients were obtained in a low
Reynolds number environment which was not specifically set for variable flight
conditions. The CG location as wel! as the aircraft body fixed coordinate frames
were identical for both databases. -Both databases are body frame referenced with
the (CQG) position of 25.65 percent mean aerodynamic chord. Figure 2.1 and 2.2
show comparison of the 1988 F-15 Aerobase as modelled by Baumann (7) and the
raw rotary balance force and moment coefficient data for a selected configuration.
Of the six coefficients (three force and three moment), the moment coefficients
have the better correlation to the 1988 Aerobase. However, given the 1988
Aerobase and rotary balance data base were acquired from different testing
facilities, have possible variation in Reynolds number and possible testing errors
may be evident in the spin tunnel data, the coefficients would not be expected to
match. Some coefficients as with the axial force and roll moment coefficients show
large qualitative differences. However, their magnitude differences are everywhere
relatively-small. Results may not be sensitive to the differences. The effects of
variations of the axial and side force coefficient were investigated.

Data analysis is a highly creative venture. Most engineering and research data

are assembled in unbalanced sets that provide no attention to the requirements
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Figure 2.1 Comparison of force coefficients for the raw rotary balance data
and the 1988 F-15 Aerobase model by Baumann (7).
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of statistical analysis of the experimental results. However, because of the limited

- availability of data, the analyst must work with what he gets. The bifurcation

analysis'package AUTO (discussed in Chapter IIl) works best with functions with
continuous first partial derivatives. Previous works using AUTO (6),(7).(8),(24)
demonstrated problems performing calculations with functions that have
discontinuities. It was determined to develop a polynomial as a function of seven
variables for each coefficient providing a representation of the coefficients without
any discontinuities or sharp changes. This enabled the full character of the
database to be modelled in terms of how the coefficients varied with changes of
the control surfaces as well as angle-of-attack, angle of sideslip and rotation rate.
Reprzsenting the data in terms of polynomial equations also provided an efficient
means for computation. Table look-ups and cubic spline interpolation between
discrete values were considered. However, the high order characteristics of the
data and fimited depth in configurations led concarns for sudden transitions or
discontinuities in the coefficient values resulting in problems with AUTO. As well,
there are extreme complexities of implementing a seven variable local fit cubic
spline routine. A spline routine used for three dimensional imaging was
researcﬁed and examined which led to the conclusion that a seven variable effort
would be too complex for the intention of this research. Polynomial curve surface
fitting of the data will introduce smoothing and possibly invite characteristics into
the data that are not discretely present in the raw data. However, the developed

characteristics will be driven by the pattern established by the raw data. For the

-
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reader interested in- discussion of problems and methods of fitting equations to
data, reference (12) is recommended.

Curve fitting is an art. With the size of the database (approximately 2000
experimental casesi, the odds of developing the polynomial that perfectly fits are
very small. However rewarding results could be obtained even with a moderate
fit. Any software used should provide the user with control over the analysis;
providing the user with a variety of options. The need for a curve fitting software
that could riandle a function of seven variables limited the choice to two software

packages, SAS (31) and STATISX (36). SAS is 2 mainframe based package and

STATISX is a PC based package. Both software were used for the development

of the polynomials. SAS and STATISX were-able to provide statistical measures
of how accurate the curve fit was. They also provided direct comparison between
the raw data and the polynomial function fit.

The raw data consisted of many outliers which were difficult to identify. Plots
of various dimensions of the data were made to assist in-outlier identification and
to identify its complexity for polynomial fitting. Even though most datasets had
non-dimensional rotation rates to £ 0.7, it was determined that the values of the
coefficients at rates above + 0.5 were inconsistent in sign and magnitude and
would contribute more difficulty to the SAS fitting than contribute to the-modelling
of the database.

The limited configurations available in the rotary balance database determined

the maximum order of any of the variables in the polynomial model. Table Il
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indicates the maximum order of each of the variables based on the available
variation of each. !t was deterinined to limit the polynomial dimension to fourth
order for any individual or coupled variables. Higher order polynomials were
possible however the complexity in determining- a quality fit was increased. The
increase in data processing depth seemed to outweigh the benefit of a closer fit.
A sixth-and eighth order model were developed for some of the coefficients. The
‘higher order models did not provide a tremendous improvement to the fit and
displayed unwanted behavior with some of the independent variables. The

complexity in identifying the cause of the behavior cutweighed the improvements.

Table IIT Maximum Order of Each Polynomial Variable
m

Variable Maximum Polynomial Order
a 8
B 2
Q.b/2V,, 10
S, 2
3, 1
d, 2
,&H—.’m

The curve fitting began by identifying all cornbinations of tne variables to a
fourth order muiti-variable polynomial. Some combinations should not even be
considered. Control surface effects would not be strongly coupled since their
positions are mechanically independent and aerodynamic coupled influences are
negligible. For example, aileron settings may create aerodynamic influences on

rudder derivatives but the distance between the control surfaces resuit in the
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effects being negligible. The only coupled terms involving multiple control
deflections are the differential stabilator and aileron- since- they .are inherently
coupled inthe design-of the aircraft by the linear relation, §,=(0.3)3,. Six of the
sixteen available configurations in Table | varied &, independent of the defined
linear relationship with §,. This allowed the resulting polynomial to have
independent terms of §, in addition to coupled with 3,. It was left to SAS to identify
terms that had no correlation to the behavior of the data. Indicating the strength
of SAS and giving validity to the polynomial "surface" fit, SAS was able to identify
those coupled terms that were not needed in the polynomial. The coupled term
of aileron and differential stabilator deflection was identified, as predicted.

STATISX was used to prepare the raw data for use in SAS. The SAS routine
GLM was used to perform a linear regression to determine the coefficients of the
defined polynomial. Using a method of maximizing the standardized residual mean
square value towards 1.0 and identifying strong terms using the student’s t
distribution function, the "best" polynomial was determined. At times, the process
involved trial and error in removing and adding terms. However, each SAS run
presented evidence of the sensitivity of a coefficient to particular variables or their
combination. The student’s t distribution function provided "clues" to what the
next "guesses” should be. The residuals of each polynomial fit were plotted
against the independent variables to identify trends and to assist in determination
of the "quality" of the fits.

As an experiment, to test the method used, a fourth order polynomial of four
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variables was created and a random database of results was constructed.
Knowing the "answer" to the polynomial fit, SAS runs were performed utilizing
similar decisions made on the rotary balance database. This was performed to
validate the method utilized. The resulting polynomial was very similar to the one
created showing validity in the development process used for the rotary balance
coefficient polynomials.

The first attempt at fitting the data was to break each coefficient into 6 individual
polynomials broken at 20° increments with 10° overlapping in-angle of attack. The
objective was to reduce the amount of data each fitting needed to use and
decrease the residuals for a more accurate representation of the data. The

.decision to use angle of attack was determined by examining the effects of
breaking up the data base into sets based on each of the seven independent
variables (i.e. dividing the entire database into three groups defined by angle of
sideslip: B=-10°,=+10°,3=+10°). Seven combinations of the data (22 resulting
datasets) were developed representing each of the independent variables. Using
the complete fourth order polynomial representation (approximately 200 terms), the
standardized residual mean square results were compared to see which
combination of datasets provided the "best" fit. This processing also assisted in
identifying which variables were most difficult to model. Datasets divided by angle
of attack showed the best standardized residual mean square values and those
by angle of sideslip the worst. This:resulted in the development of 36 equations

representing the six coefficienis. The resulting polynomials consisted of equations
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ranging from 15 to 37 multi-variable terms. Once the 36 equations were
developed, 79 distinct monomials-in 7 variables were identified. A matrix of the
polynomial coefficients was constructed with those terms not required for a
particular polynomial term given a null value. Each set of six equations was
blended together using a cubic spline relationship similar to Eqn (45) of Chapter
Iv.

When the 36 equation model was used with AUTO, each of the six coefficients.
encountered problems in'performing parameter sweeps. This indicated difficulties
with the transitions between the individual equations. As shown in Figure 2.1,
-C,,C, and G, show fairly linear behavior which resulted.in minimal problems with
transitions from individual equations in their modelled polynomials.-However, each
did experience occasional problems. C, (see Figure 2.5),C, and G, had much
more character for the polynomials to represent which resulted in more frequent
discontinuous transitions between the equations representing the coefficient.
Figure 2.3 shows the G, and C, six part polynomial models for two different
configurations as compared to the raw rotary balance data. The model obviously
was an excellent fit. However, the sharp transitions between the -individual
equations are evident. Figure 2.3 is not representative of the "worst" case
discontinuities. Because each equation of a coefficient polynomial was defined on
alimited database, each displayed different behavior to the independent variables.
Most often the behavior difference was slight. Occasionally gross differences

occurred. It was difficult to examine every dimension of the seven variable
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polynomials and identify when difficult transitions occurred. AUTO encountered
discontinuity problems-on every continuation run, hindering theinvestigation. Two
and one half months of development were invested in the 36 equation model
however a different’ representation of the data had to be pursued. The range of
angle of attack for blending the transition between equations was expanded
however the results with AUTO were still not successful. It is anticipated that
problems with individual polynomials for particular combinations of independent
parameters may have undesirable behavior. With further development, the six part
polynomials could work and would be the better polynomial representation of the
data because of its close fit. However if noise were present in the data, the
polynomial would also be amplifying its contribution.

A two piece equation was also developed which encountered similar problems.
Figure 2.4 shows the C, and C, coefficients for two different configurations. The
second case for each coefficient demonstrate how the polynomial can show very
different behavior and result in a poor fit while having good correlation on other
configurations as shown in‘the first case. Ratherthan experience similar problems
as with the six part model, it was decided to focus on a single equation fit;
eliminating the discontinuity problems, allowing the full database to be used and
providing better control over the overall sensitivity of a polynomial to individual
parameters.

A single equation representation of each coefficient was developed utilizing the

79 identified terms of the 36 equation development. The standardized residual
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square criteria ranged from 0.80 t0-0.98 with C, being the worst and C_, the best
coefficient data fit. All-coefficients except C, had a value greater than 0.9. The
resulting polynomials were -continuous resulting in smooth operation. with-AUTO.

The coefficient functions were plotted for different sample aircraft configurations
and states comparing them to the raw rotary balance data and the 1988 Aerobase
to validate the accuracy of the fits. Figures 2.5 and 2.6 are an indication of
comparison of the single 79 term polynomial, raw rotary balance data and the
Baumann model.

It is evident from Figures 2.5 and 2.6 that the polynomial curve fitting has
introduced characteristics that are not evident in the raw data as well as missing
some that are evident. What the polynomial fitting has done is to model the
database as a-whole rather than looking strictly at a snap shot picture-of the data
that would be found with a table look-up routine. The polynomial fit has basically
smoothed the data pacifying outliers and smoothing subtle changes in the data.
Comparing the rotary balance coefficient polynomials to the 1988 Aerobase
polynomial fitted data shows some similarity in their character but obvious
differences. It is apparent that the differential between the rotary balance data
polynomial fit and the raw rotary balance data is much smaller than that between
the rotary and 1988 Aerobase data. During spin tunnel testing, the problem of
aerodynamic interference caused by the aircraft model’s wings/fuselage vortices
being influenced by the support structure can be significant. In addition, any

motion that alters the rotation center-location.of a test could cause error in the post
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processing which was based on a predetermined rotation center location (2:7-11).
The-behavior of the rotary balance data in Figures 2.5 (b) and 2.6 (a) could be
attributed to these possible inaccuracies in spin tunnelitesting. It is anticipated that
the results using either database exclusively or combined will provide -quite
different.results. The Baumann (7) 1988 Aerobase coefficient representation and
the 79 term rotary balance database polynomial-can be referenced on page 119

and 145 respectively in Appendix C.

29




. Bifurcaﬁon Theﬁory

This chapter will discuss the basic principles of bifurcation theory and its
application toward r;onlinear systems. The qualitative study of nonlinear differential
equations is concerned with how to deduce important characteristics of the solution
without actually solving the equations. Through- bifurcation theory this study can
investigate highly nonlinear motion of aircraft in a spin without the need to basically
destroy information contained in the nonlinear equations by linearizing them with
small perturbation analysis. There are-many types of bifurcations and each type
has a different effect on-the response of a system. The concepts to be discussed
are: equilibrium points, phase space, stability, turning points, bifurcation points,
periodic solutions, Hopf points and an-example of unfolding of an organized center.
Most of the information in this chapter is referenced from Seydel (34). Other
useful texts on the subject of bifurcation theory are references (15) and (21). A
brief description of the software-program AUTO will follow with a short discussion
on homotopy, an important application of continuation theory needed for this

research.

Equilibrium Points

When a system is in physical equilibrium or in a steady state for bodies in

motion ( i.e. an aircraft), the states that describe the system are termed the
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equilibrium points. Equilibrium-points-are also.referred to-as stationary points. In
the study of aircraft dynamics, only autonomous systems will be analyzed. For an
autonomous system, the differential equations of motion do not explicitly contain
time on the right hand side of the equations. An autonomous system can be
written as

g = fu) , (1)

where u is an n-dimensional vector of state variables and f is an n-dimensional

vector of functions describing the motion of the system. The system is in
equilibrium when the states are constant, 0 = 0. The states that describe this

equilibrium of the system would satisfy the equation

flu) = 0 )

These states are called the equilibrium points or stationary points.

Phase Space

Suppose the state of a system is described by the state vector u and the

nonlinear equation

U= fu) @)

defining the behavior of the system where A is a control parameter of the system.

Points along the solution of Eqn (3) consist of a time coordinate t, the fixed value
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control parameter A and the n dimensional space coordinates (y,,Ya-..,¥,). !f the
vector function f is continuously differentiable, there is a unicue trajectory through
each point u, of Egn (3).

Consider a three dimensional phase space representing the coordinates
(Y1,Y2A): At equilibrium, A =0 , for a fixed-value of A the solution will remain in a

plane, the phase plane. A stationary solution is represented by a point, Figure 3.1.
As the parameter A is varied, the position of the state solutions change in the
phase plane. If the parameter A is freely variable, the equilibrium solution-path
forms a curve in the (y,.y,,A) space, Figure 3.2. These curves represent
equilibrium solutions as they depend on variable parameters-of the system. This
is simple to visualize in three dimensions but consider a set of eighth state
equations of motion of an aircraft dynamic model and the multiple parameters-that
can be varied. The parameter A could represent the control deflections of the
aircraft’s rudder, stabilator, ailerons or any parameter within an aircraft attitude
control system. It becomes evident that the visualization of the equilibrium solution
curves can become quite complex. However, qualitative information can be .found
by viewing the curve projections of a chosen system state as the value of a single
control parameter is varied, i.e. viewing the aircraft state o as elevator deflection
is varied. The resulting projection is a bifurcation diagram. Applications of a
bifurcation diagram-utilized for this investigation are the examination of effects on

particular states of aircraft dynamics as control surfaces are varied. The resulting

32




Figure 3.1 A stationary solution in several phase planes (41:3).

“ Y2

;1
—
\k

Figure 3.2 Solution curves in (y,A)- space (41:3).
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solution curves provide information for identification of effective controls for aircraft
maneuvers or of unusual aircraft states that could occur when the .aircraft is
configured with particular control surface deflections. Figure 3.3-is-an example of:
a bifurcation diagram. Bifurcation diagrams. also allow for the identification of
multiple states a system can attain for a given-value of a control parameter, A. It
is advantageous to identify-configurations that could lead to abrupt-changes in the

aircraft dynamics as the aircraft states jump to a different solution value.
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Figure 3.3 Example Bifurcation -Diagram.

Stability

Stability is the tendency of a system, when disturbed from-a given equilibrium,

to return to that equilibrium. An equilibrium may be stable for a smali perturbation
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but unstable for a large perturbation showing that a system’s stability is only valid
within the domain of attraction of the solution of interest. Fi‘gure 3.4 is a way of
looking at the various deﬁ‘nitions of stability. A marble placed perfectly balanced
on the top of the hill (A) is an unstable equilibrium state. Any disturbance will
cause the marble to leave its position and never return. At position (B) the marble
is apparently stable for small disturbances however under a strong influence, the
marble may leave this location. Equilibrium locations (B) and (C) represent weak
stable equilibrium and location (D) represeélts a strong stable equilibrium. A larger
disturbance at location (D) will allow return of the marble to its original stable

position.

(A)
(B)

(C)

(D)

Figure 3.4 Geometrical -example of stability.

Stability of a stationary point determines whether the state of the system is

attracted to or repelled from the point. Local stability refers to the stability in a
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small region around a statior}ary point. Local stability of a fixed point of a
nonlinear system can be calculated by determining the. eigenvalues of the
equivalent linear system. The eigenvalues are obtained by linearizing the
equations of the system about the stationary point of interest. A stationary point
is stable if the real parts of all eigenvalues are less than zero and unstable if any
eigenvalue has a real part that is greater than zero. In two dimensions, Figure-3.5
shows the various stability types in the phase space. If the éigenvalues,are real
numbers greater than zero, the stationary point is a source or if less than zero a
sink. If the eigenvalues.are real numbers with opposite sign, a saddle point is
formed. For complex conjugate eigenvalues with nonzero real parts, if Real <0
a-stable spiral is formed else if Real > 0-an unstable spiral. For the condition with

complex conjugate eigenvalues with zero real parts a center is formed. With multi-

Sink Source Unstable Spiral

N
SF

Stable Spiral Saddle Center

Figure 3.5 Stability types.

36




dimensional systems, the higher dimensional, analogous-phase behavior to Fig 3.5

must be imagined. The-behavior are too complex to visualize however do occur.

Turning Point

A simple example of a turning point can be introduced using the scalar equation

y=l_y2 (4)

0=2X-y>° (5)

The solutions y(A) of equation (4) form a parabola that is only defined for A>0. At
A=0 there is only one solution (y=0) where-as for A>0 there are two solutions. The
point where a solution begins to exist (A=0,y=0) is a turning point or also referred
to as a limit point. Figure 3.6 graphically shows a limit point. A solid-line depicts
a stable solution branch and a dashed line an unstable branch. This convention
will be used throughout this report. It should be noted that in n-dimensional
systems a turning point does not always separate stable equilibrium from unstable
equilibrium. An eigenvalue always changes sign at the turning point but others
may already be greater than zero.

Turning points often arise in pairs resulting in hysteresis effects. Figure 3.7 is
an example of a hysteresis effect. Characteristic of hysteresis are jump

phenomena which take place at A, and A,. As A is increased along-the upper
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Figure 3.7 Example of a hysteresis or jump-phenomenon.




branch approaching the right limit point, increasing the value of A beyond the value
A, will cause a jump to the:lower branch. Similar-characteristics can be found for
the value &,. This phenomenon is also referred to as a jump phenomenon Such
behavior -has been found in aircraft dynamics as-discussed-in reference (33) by

Schy and-Hannah.

Bifurcation Points

A bifurcation-is a point where something is divided into two-parts. A bifurcation
occurs in a system when the variation of an independent.control parameter creates
a point where the behavior of the system can assume one of two different states
for the same set of system parameters. Consider a system described by the

scalar equation

y=ay -y (6)
For all values of A there is the trivial solution y=0. If A=0 the non-trivial solution is
y=XA. A stability exchange occurs as depicted in Figure 3.8. The point at A=0 is
referred 10 as a transcritical bifurcation point. Other qualitative types of simple
bifurcations are possible but will not be discussed.
When the branch y=0 loses stability at the bifurcation point and branches into

two stable trajectories, the event is referred to as a supercritical pitchfork. If the
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Figure 3.8 Example transcritical bifurcation pzint.

branch y=0 gains stability at the bifurcation point and the bifurcation of unstable
branches occur, the result is called a subcritical pitchfork. Examples of

supercritical and- subcritical pitchforks are shown in Figure 3.9.

//

I

/
\ —’{_/-
- - \‘—-..4——

supercritical subcritical

Figure 3.9 Examples of supercritical, subcritical bifurcations.
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Limit Cycle

A limit cycle represents regular motion such as the vibration of a string -or
current flowing through an electrical circuit. A limit cycle is an isolated periodic
solution of an autonomous system, represented in the phase plane or phase space
for n-dimensional systems by an isolated closed path. Unlike a center, the
neighboring paths are not closed but either spiral into of away from-the limit cycle.
Figure 3.10 is an illustration of a stable limit cycle. For the stable limit cycle, any
state of the system near the limit cycle will drift into the periodic. motion defined by

the limit cycle.

Figure 3.10 Example stable limit cycle.

Hopf Bifurcation

Hopf bifurcation is the door that opens from the small room of
equilibria-to the large hall-of periodic solutions (34:61).
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The type of bifurcation that connects equilibria with periodic motion is Hopf

bifurcation. Consider the system

Vi =AY * Y, - '}’1(}’12' + }/22)

(7)

Y2 —y1 + x'.yz - .yz(y12 * y22)

y,=Y,=0 are the only equilibrium values for all A and no stationary bifurcations

occur. The Jacobian matrix for-this-system is
A -1 I

8

I 1 A ( ).

and has eigenvalues A=xi. The equilibrium solutions are stable for A<0 and-

unstable for A>0 with a loss of stability at A=0. Using polar coordinates

Y, = rcosé , y, = rsind (9)

the system of equations can be simply expressed as

F=rh - )

. (10)
and 0 =1

If A<0 the entire-phase diagram is a stable spiral. If 2>0.an unstable spiral is
formed at the origin surrounded by a stable limit cycle which grows out from the
origin as A increases. The origin changes from being asymptotically stable to

being unstable without passing through the stage of a center. Figure 3.11 shows
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the phenomenon-in two dimensional slices and-Figure 3.12 in three dimensions by

including . On the bifurcation diagram, periodic solutions will be depicted by

-circles along-a branch as-shown in-

Figure 5.2(c) of Chapter V. Closed circles will

depict stable limit cycles and open circles unstable limit cycles. It should be

understood that a stable periodic orbit is approached by nearby trajectories,

whereas trajectories leave a neighborhood of an unstable periodic orbit.

Ya

Y1

A<0

2=0

Figure 3.11 Devélopment of a limit cyéle in a Hopf bifUr{:ation.

Figure 3.12 Three-dimensional representation of a Hopf bifurcation.
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Organized-Centers

Locations in solution- branches where -dynamical -behavior -changes in- the
sequence: no multiplicity, then two jumps, then four jumps, then two jumps, is one
example of an organized center.  This phenomena can best be explained
graphically. Figure 3.13 shows various bifurcation diagrams as a second control
parameter v is varied. For this example y>y>v;>y,>Y,. For v, two branches are
found without connection, the upper branch-is an isolated branch, the-path A-B is
smooth. For v, the situation is the same but the two branches are closer. For v,
there is no longer an isolated branch, with the overall branch structure now
resembling a mushroom.. In this state, the consequences for the path from A to
B is severe. There are two hysteresis jumps. There is a transcritical bifurcation
that occurs between the values v, and v, that separates a two jump situation to a
four jump situation. ‘At some value of y the branches merge in an isola point. An
isola point would be equivalent to-the transcritical bifurcation point in Fig 3.8-with
two of the like stability branches being a closed path. Increasing y-further can
result in a two jump situation. This representative sequence of high-order
bifurcations is governed by theory beyond the scope of this investigation. For
discussion on understanding why these events occur and further examples of this
phenomena, Seydel (34) is referred. This type of phenomena occurs in reality.and

has been shown during this investigation:




(a)

(b)

(c)

(d)

(e)

A

i)

Y2

Ya

Ya

Vs

Figure 3.13 Sequences of an organized center.




AUTO Software

The software tool utilized in this investigation for continuation and bifurcation-
analysis-is AUTO. AUTO, written by-Eusebius Doedel of Concordia -University, is
a collection of FORTRAN routines concerning the numerical analysis of nonlinear
systems of algebraic and ordinary differential-equations. The software’s primary
purpose is to compute branches of stable or unstable periodic solutions of systems
of the form of Eqn (3). Given a function, the Jacobian of the function, the
derivative f,, a steady state solution for some value X and a number of control
parameters, AUTO can compute steady state branches, accurately determine
steady state and Hopf bifurcation points and switch branches at such-points. The
k.ey to initiating an analysis using AUTO is the identification of a steady state
solution of the system of equations to be analyzed. This can be accomplished by
considering a simple flight condition or the methods of homotopy could be
exercised. Described is only a partial outline of AUTO’s capabilities. The reader
is encouraged to reference the AUTO User's Manual (13) for additional information

on its capabilities and application.

Gontinuation and IjomoLpr

Continuation theory is the methodology of answering the question of how

solutions of equations vary with a parameter. Continuation methods involve four
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basic -elements: (1) an initial guess of the solution, (2) choice of the system
parameter to vary, (3) a correction iteration of the solution and (4)-variation of the
iteration step size: Given a set of differential equations describing a dynamical
system, a numerical integration routine such as Euler’s or Newton’s method could
be used to integrate the equations. Predictions of the next solutions along a
branch are determined- as small incremental changes are ‘taken of the-chosen
system parameter. A corrector iteration is then used improving the guess of the
next solution. As the solution branches are identified, variable step lengths are
used to allow for small details to be resolved and not skipped, assist in
transitioning through turning points and to aid in processing of the numerical
iteration methods. The result is a tracing of equilibrium solutions of the system
of differential equations.

One important application -of continuation is homotopy. Consider an equation
f(u)=0 which is difficult to solve for a sclution. An-initial guess may be even harder
to determine. Note that this equation is probably nonlinear and would require
iterating to solve . Iterative solution algorithms usually converge very slowly or
diverge away from the solution if the initial guess is way off. Assume that an
equation g(u)=0 is known that is easily solved with solution u,-and can be obtained
by simplifying f(u)=0. Homotopy is a construction of equations that are linked
together and are solved one at a time. The last equation solved is the original
-equation f(u)=0. The solution of each successive equation is used as an initial

guess for the next equation. This describes a discrete homotopy with finite
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number of equations. A continuous homotopy is where a parameter A is

introduced that varies on the interval 0 <A<1. This leads to

fuX) =0,0<A<1

11
fu,0) = glu)  Au1) = fu) an

An example of such a process is with
fud) = M) + (1 - Mg(u) (12)

AtA=0, u, is the solution. As A is-varied-to 1.0, the solution-set transitions to that
of the equation of interest f(u)=0. The method of homotopy will be applied in
chapter IV to acquire equilibrium solutions required by AUTO for the rotary-balance
data model using the known solutions of the McDonnell model (24). For the
reader interested in a short tutorial on the methods of continuation, the article

"Tutorial on Continuation" by Seydel (35) is highly-recommended.
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IV. Aircraft Mpdel

The aircraft for this investigation-is the McDonnell Douglas-Corporation F-15B,
a two place high performance fighter developed for the United States Air Force.
The F-15 was designed with a cockpit sized for two crew members requiring the
only major change of a larger canopy to-form-the two seat (F-15B) froma single
seat version (F-15A). This design feature allowed for application of the F-15.in a
multitude of roles in ftraining, air-to-air combat, air-to-ground- combat -and
reconnaissance. The flight characteristics of the F-15A and F-15B are very similar
even with the added weight of the second crew member configuration. This will
enable some flight test-data of the F-15A to be considered in-the analysis of the
F-15B. One design feature sought for in the F-15 was an aircraft capable of ﬁigh-
energy maneuverability in turning, accelerating and climbing in order to gain a
tactical advantage in combat. The low wing loading, very high thrust design of the
aircraft adds to its air superiority capability. This air superiority was demonstrated
in the F-15’s multiple roles in Operation Desert Storm. A figure of the aircraft with
control surface sign conventions is located in Appendix B along with aircraft
physical dimensions and specifications.in Appendix A.

The F-15B has multiple independent control surfaces, left and right aileron, left
and right rudder, left and rig'ht stabilator, speed brake and variable inlet ramps.
The ailerons and stabilator were set by the manufacturer to act differentially with

the linear relationship §,=(0.3)8, . The speedbrake was not modeled because it
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is not a-nominal control surface used during-high-angle of attack maneuvers and
is designed for retraction at angles of attack above 15°. The aircraft is an
inherently stable design without the use of the Control Augmentation System.
(CAS). This stability characteristic enabled this analysis to be performed without
CAS engaged. The aircraft- was modeled for gear up, retracted. flaps-and stores
carriage. The Baumann/McDonnell Model aerodynamic coefficients were modeled
for a flight condition of 20,000 feet and a Mach number M<0.6 (7). The testing

conditions for the rotary aerodynamic coefficients fall within-this criterion.

Model Development

The development of the aerodynamic force and moment coefficients for the
F-15-model used by McDonnell (24) are documented in the thesis by Baumann
(7:20-21). Baumann curve fitted the 1988 F-15 Aerobase which represents the
F-15 aerodynamic coefficients for static and forced oscillation testing as well as the
inclusion of some actual flight test data. Results of those curve fits are
documented in the AUTO Driver program presented in Appendix C. The thrust
contributions to the force and moment coefficients used in this research are those
developed by McDonnell (24:24). The feature of thrust vectoring will be included
in the rotary aerodynamic model however its effectiveness will not be pursued in

this investigation. The rotary aerodynamic coefficients obtained by the NASA
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Langley Spin Tunnel are represented as

C, = Axial Forcel(q S) (13)
C, = Side Forcel(q S) (14)
C, = Normal Forcel(q S) (15)
C, = Rolling Moment/(q S b) (16)
C, = Pitching Momentl(q S ¢) (17)
C, = Yawing moment/(q S b) (18)-

These coefficients are used to represent the rotary contributions for the
d'evelopment of a hybrid model. The coefficients are calculated using the
measured forces and moments generated on the test model during rotary balance
testing. To include thrust contributions for the stand alone rotary balance data
model, the thrust terms developed-by McDonnell (24) are combined with the rotary

balance coefficient terms. The resulting equations are:

C, = (Axial force + T)I(q S) (19)
C, = (Side Force + T)/(q S) (20)
C, = (Normal force + T)/(q S) (21)
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C, = (Rolling moment + T,d;, - T,d,

Ty

Y(G S by (22)

b4

C,, = (Pitching moment + T, d,, - T,d.)J(q S ¢) (23)

C, = (Yawing moment + T dp, - T,dp - T,

xr xl

d-Y(q S b) (24)

b4

Equations of Motion

The development of the equations of motion for an airplane are outlined by
McRuer, et al (25) which represent a conventional set of differential equations
defining the dynamics of an aircraft. With the assumptions of a rigid airframe,
inertial earth fixed reference, constant mass and mass distribution of the aircraft
and constant gravity, the resulting equations of motion are a ninth order set of
differential equations for a body fixed frame of reference. The aircraft’s state of
motion can be described by the nine state variables (a, B, p, g, 1, 6, ¢, v, V,,) and
the deflections of any control surfaces defining the moments and forces acting on
the aircraft. Following the development by McRuer, et al (30) the following
equations are formed.

Translational acceleration equations:

: qS , : ,
a=qg+|- rCZJV,, Cx—%sme*r rsmB]snna
) (25)
+|9S C, + 9 cose cosp - p sinf }cosa }secB
_m\/fr \/f!
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B = - [ q SCX - % cosf }sin[& + r}cosa

r tr

+1 950 + 9 coso sing }COSB

v, Y, (26)
-l as c, + 9 cose cosd : sinf - p |{sina
mV, * V, |
V, =V, aqS C, - _g_ sin® | cosa cosP
L m ir I
qS C, + 9 cose sing |si
+~ mV” Y V“ ing |[sinp 27)
.| 95 C, + 9 coso COS$ | sinat cospP
| mV, Ve
Rotational acceleration equations:
I -1 P - /
T I R SO P [ Tl P
IX IXIZ IZ IX
(28)
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G958 ¢, v 2 xpre e (popr) @)

(30)

Aircraft orientation relative to the earth inertial.reference frame (Euler angles):

6 = g-cosd - rsind (31)
b =p+(qgsing +rcos ¢) tand (32)
W = (g sing + rcosd ) sech (33)

By the definition of the Euler-angles, the yaw angle v, is decoupled from the rest
of the equations of motion. For application to aircraft dynamics, the usual
convention for Euler angle rotations is the sequence: yaw, pitch, roll. Because the
yaw rotation does not change the gravity vector relation to the body frame z axis,

the aircraft can be modeled without the 1 orientation equation resulting in an

eighth order model.
A more accurate model of the dynamics of an aircraft would be to include

variation. in thrust due to the motion of-the aircraft. As an aircraft enters high-

54




energy dynamic attitudes tﬁe state-of the-flow conditions about the air intakes of
the engines change resulting in the effective thrust varying. The current model has
the aircraft thrust set at a fixed setting of-8300 Ibf for an altitude of 20,000 ft. The
effects of variable-thrust are evident in Figures (5-8) and (5-9)-of reference (29)
showing changes in the equilibrium solution branches and the effects are further
discussed in- reference (30). This inaccuracy in the current model is noted
however for comparison to previous studies, this modification will not be pursued

for this investigation.

Total Rotation Vector

When -incorporating rotary balance data into a modet it should be referenced
under the same conditions upon which it was collected. During rotary balance spin

tunnel testing, the model is rotated at a constant rate about an axis parallel to the

free stream velocity vector of the tunnel. The test model sees a constant

configuration of a, B and free stream velocity. Therefore, the rotary balance data
should be referenced using the component of the total rotational rate that-is along
the free stream velocity vector. The total rotational rate is defined in terms of the

body axes rates as

Q=pb +qb,+rb, )

and | Q|=yp*+q+ P
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For spin analysis, the total rotational vector Q s projected into four rotation rates,

Q,, the steady state component of the rotation vector along the free stream velocity
vector and po..doseTose Which-represent the body frame components of the residual

rotational vector. Referring to Figure 4.1, these components are defined as

Qta!=(Q.VI)VI='stV1 (35)
Qasc = Q - Qroré posc 51 + qosc 52 * rosc 53 (36)

—

Q . is the projection of the total rotation vector onto the velocity vector and

rot

represents the rotary aspects of the total rotation vector. S_iosc is the orthogonal
component of the total rotation vector and is representative of the oscillatory

dynamics inherent in the total rotation vector. By the process of vector projections

the oscillatory components are defined as

Poss = P = Q,,COS0.COSP (37)
Qose = G = Qgsinp (38)
lose = ' = Qqsinaicosp (39)

Since the rotary balance data was experimentally obtained as function of a, B

and Q,b/2V, and additionally through development of the polynomials as a
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Representation of the rotation vector in the aircraft body frame and

Figure 4.1
wind frame.

Figure 4.2  Orientation of the rotation vector when oscillatory contributions are
negligible.




function of §,,64,8, and §,, the key to the proper use of rotary aerodynamic data
rely on the appropriate definition of the steady state rotation. rate Q.. Hawkins
(17:184) used Q,, = (pcosa + rsina) which restricted. his analysis to zero sideslip-
angles or the assumption of very small perturbations in sideslip. A more robust

representation is

Q. = (pcosa + rsina)cosP + gsinB - (40)

<

rr

which is found from Q_ = Q.

NS

r

It is evident that when a stand alone rotary aerodynamic model is used it is

assumed that the oscillatory components of Q are relatively small (Do Qoserlosc =
0) compared to Q  (=Q,,) indicating that the rotation vector is closely aligned with
the free stream velocity vector (Figure (4.2)). If the orientation of the total rotation
vector were grossly misaligned with the free stream velocity vector, the oscillatory
terms would play a larger role in the representation of the dynamics of the aircraft.
This would support the argument for the need of both forced oscillation and rotary

aerodynamic data to properly represent the aircraft’'s motion. However, for spins

which are the basis for this investigation, it is reasonable to assume the steady

state rotation and free stream velocity vector are closely aligned.




Rotary Balance Model

For the stand alone rotary balance model, Eqn (40) is used to determine the
aerodynamic coefficients as a function of the body rates of the aircraft, angle of
attack and sideslip angle. The method of homotopy was incorporated to determine
a starting equilibrium solution. A rudder sweep was performed with the McDonnell
model using the equilibrium solution («,8,8,) = (5.0,12.02,-1.39) identified by
Baumann (7:34). Because of the-dissimilarities between the two coefficient
databases, the equilibrium solution used for the homotopy application needed to
be located at high angle of attack, o> 60° and with zero control deflections. Using
the method of homotopy and the known solution from the McDonnell. model the
path of the equilibrium solution was transitioned to a stand alone rotary balance

model using

G =ACgs + (1 - MG,y (41)

where i=x,y,z,l,m and n. The C,gq coefficients are representative of Egns (19) to
(24). The parameter A was used as the control parameter in AUTO to trace the
path of equilibrium solutions until A=1 where the model was completely defined by
the rotary balance coefficient data. This model will be referred to as the Rotary
Balance (RB) Model.

Because of the questionable quality of the axial and side force rotary balance

coefficients, a second stand alone-rotary balance model was created which used
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the Baumann model Cx‘ and G, coefficients in lieu of the associated RB
coefficients. Again using the method of homotopy for the remaining four
coefficients a starting equilibrium solution was determined. This model will be
referred to as the Modified Rotary Balance (RB)-Model. The Modified RB Model
will assist in the determination of the impact to the investigation of the undesirable
coefficients. The validity of combining the two databases-may be of some concern
due to the different testing conditions however results should provide information
on the impact of a perturbed coefficient database and specifically the contributions

of the axial and side-force contribution to the equilibrium solution paths.

Hybrid Model

When combining the two coefficient databases it is important not to duplicate
information. The rotary aerodynamic data-contains static information. The forced
oscillation coefficient contributions -of the 1988 Aerobase contain dynamic
information which is at least partially duplicated by rotary data. To eliminate the
duplicate information, the rotary balance data will be biased to eliminate static
contribution. The rate components p,.,9,s,and r,.. are used to isolate the and
eliminate the duplicate rotary contributions of the 1988 Aerobase. The new

coefficients are now represented by

Ci,Hybn'd = Ci.HB B C:',RB static * Ci.Mc non-rol (42)
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where i=x,y,z,l,m and-n. The static rotary-aerodynamic coefficients are determined
for a given configuration by setting Q. = 0. The static and dynamic terms from the

1988 Aerobase coefficients with the rotary contribution eliminated are represented

by

Ci.Mc non-rof Ci.Mé(a'B’posc'qosc’rosc’89581’83’—7;' Tnspvrsyv) (43)

h

Since the integrity of static configurations of the rotary aerodynamic data is
questionable, a Modified Hybrid model has also been-developed. The Modified
Hybrid-Model replaces the static contribution of the 1988 Aerobase with the static
contribution inherent in the rotary balance data. This will investigate the strength
and weakness of the static aspect of the rotary balance data. The Modified-Hybrid

Model coefficients are defined by the relation

C

iaocited Hybrid = Cimte non-rot = Cinte static * Cire (44)
where i=x,y,z,l,m, and n. The static contributions of the 1988 Aerobase, C, \. siaue:
are determined for a given configuration by setting the body rates equal to zero.
Once the databases are combined, the transition. from the stand alone 1988
Aerobase and the Hybrid Models across o = 30° needed to be smoothed. Figure

5.4 of chapter V show the large difference that could occur in coefficient values.
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The high and low o databases are blended together with the relation

G = Cie * (Ciyymio. = Cipd3 - 2 Blend)(Blend)?
a-30- (45)

Where Blend =

for angles of attack from 30° to 35°. Due to the limitation of the rotary balance
database the comparison of the models for the analysis will be limited to angles
of attack above 30°. Unlike previous studies mentioned in Chapter | utilizing RB
data in bifurcation analysis models, the span of angle of attack was not restricted
by spin tunnel testing limitations of « > 55°. Eqn (45) was utilized as a method of
homotopy for transition from known McDonnell Model solutions in low a to the

Hybrid Model equilibrium solutions in high- a.
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V. Besults

The objective of-this investigation was to-determine the effectiveness-of using
rotary balance data for modeling of high AOA aircraft dynamics. The best
indication of the capability of a-model is-to compare its-output to experimental flight
test data. For asymmetric configurations, flight tests of the F-15 showed highly
oscillatory spinning motion at a=50" to 65° with yaw rates of 40 to 90 °/sec. These
results can ve'y as much:as £ 20° in AOA and + 20 in degrees/sec in yaw rate for
a given configuration. Smooth spin modes with symmetric loadings exhibited
‘average AOAs from 65° to 75° with average yaw rates of 75 to 133°/sec. Spins
of higher rates are possible. However, because of the pilot’s physical limitations,
flight testing does not pursue determination of the maximum spin rate capability
(3:27-28). A typical full-scale aircraft flight test showed-a right spin of a = 75° with
a spin rate of 3 sec/turn (4:12). During spin tunnel testing, to investigate free spin
modes, the scale model was allowed to rotate freely when subjected to the free
stream air. The tests with pro-spin controls, recovery controls and symmetric
stabilator deflection gave results comparable to the full scale flight test results
(4:12). To investigate the effectiveness of RB data, bifurcation. diagrams
comparable to full scale flight test results were developed and then used to
compare the aircraft models developed.

Utilizing equilibrium solutions acquired from the McDonnell model and methods

of homotopy, control surface variations were made on each of the five models: RB,
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Modified RB, Modified Hybrid, Hybrid and the McDonnell. AUTO was used to
acquire equilibrium starting points for high a rudder deflections, elevator defiections
and aileron deflections representative of pro-spin and recovery control
configurations. To acquire specific configurations, alternating variations of different
control surfaces occasionally had to.be exercised to acquire equilibrium solutions
on a desired solution branches in the high o regime. All bifurcation diagrams were
developed with a fixed thrust level of 8300 Ibf. The results of the investigation will
be discussed in the order of the "control surface deflections indicated with
numerical and graphical results presented at-the conclusion of the chapter. The
bifurcation diagrams presented do not always contain all possible equilibrium
branches due to the difficulty in-obtaining starting equilibria for unknown solution

branches.

Rudder Sweep

As an initial comparison of the rotary balance and Hybrid models a rudder
sweep was performed at high AOA to determine how different the equilibrium
solution paths were. During full scale flight tests it was found that a rudder roll
entry technique was the easiest method to intentionally enter a spin. A rudder roll
would be initiated after the aircraft was positioned above 20° AOA (3:26). Similarly
it was identified by Baumann (6:47) and McDonnell (24:30), an effective method

for obtaining an initial high AOA. attitude was through an elevator deflection
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followed by a rudder sweep (i.e. continuation) to obtain-high AOA spin conditions.
To further investigate the development of the equilibrium solutions, rudder
continuations were made at elevator deflections of -5°, -19° and -25°. The
equilibrium solution‘paths of the rudder continuations are shownin Figure 5.1 for
the five models.

Comparison of the RB Model and Modified RB Model (Figure 5.1a,b) show-minor
changes due to variation in the axial and side force coefficients. The RB model-
is exhibiting an expanding center phenomenon in the range of o = 30° to 40°.
Cause of such behavior has not been determined -however it may be reflective of
the polynomial behavior inherent in the RB coefficient model.

The Hybrid model (Figure 5.1c) shows similarity to the McDonnell Model (Figure:
5.1e) in the upper branch for o = 85° with rudder deflections from -20° to 10°.
Otherwise the results are rather different. The Modified Hybrid Model (Figure 5.1d)
shows indication that the static contributions of the 1988 Aerobase are a major
contributor to the character of the equilibrium solutions. The Modified Hybrid
Model with RB static contributions shows results closer to the isola of the RB
Model as well as the upper branch. Examining the development of the solution
paths of the Hybrid model shows a closed path for §,=-5° indicating possible
formation of an isola center. This is indicative of the RB model however the event
is occurring across high a.

Full scale flight test results showed rudder deflection, either pro-spin or anti-spin

had -no apparent effect on spin recovery (3:28). Comparing the behavior of the
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solution branches to full-scale flight tests shows the RB.model (Figure 5.1a) having
the best correlation. The ineffectiveness of rudder in a pro-spin.configuration at
high AOA with elevator stick aft is reflected in the- RB Model results with a
continuous branch for full = §, with-no bifurcation branches to lower AOA. The RB
model indicates large jumps in state would need to-occur for transition to the
solution branches.in lower a.. The'McDonnell-model (Figure 5.1¢) exhibits effective
rudder deflection spin recovery solution paths from high to Ioiw o. Small jumps in
states could occur-as the aircraft states transition -between continuation branches.
McDonnell investigated the effectiveness of rudder in his model for spin recovery.
He found the rudder effectiveness was caused by the curve fitting of the stability
derivative C,, resulting in twice the effectiveness of the rudder at larger negative
v.alues of §,. He made the conclusion that the model was somewhat inaccurate
in the effects of rudder at high AOA (29:39). This could explain- the many
differences found in Figure 5.1.

The blending of the rotary balance data with the McDonnell model in the Hybrid
model may not be indicative of the capabilities of the Hybrid model because of the
identified problem with the McDonnell/Baumann coefficient database.. However,
it would be expected for the Hybrid model to exhibit behavior that lie between the
two contributing parts. Figure 5.1(c) is exhibiting unique behavior especially along
the high a right spin branch. There may be a detached branch that was not

acquired that accounts for the solutions above 70° AOA.
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E!revato’r Sweep

The rudder deflection parameter sweeps with fixed elevator and aileron
deflections represented asymmetric configurations. A second set of bifurcation
diagrams were developed-for comparison of a symmetric configuration. Aileron.
and rudder were-held fixed at zero deflection while the elevator was varied from
-25° to 25°. Even though the RB coefficient data-was not defined for elevator
deflections greater than zero, it-was felt the symmetry of the configuration-could-
support meaningful results above §, = 0°.

Again comparison of the results from the Modified RB model (Figure 5.2b)
exhibited minor variation in state variables and equilibrium solutions of the RB
model (Figure 5:2a). It was found for each configuration analyzed during this
investigation the Modified RB Model exhibited minor variations in state variables
and equilibrium solution branches. The results indicated that perturbations in axial
and side force coefficients had a minor impact on the equilibrium solutions.

Again the results of the RB model (Figure 5.2a) and McDonnell model (lfigure
5.2e) are very differept. They both have a branch of right flat spin modes across
high o but the RB model exhibits very linear behavior. The RB model was also
unable to identify stable solutions. Mehra and Carroll (26:76) found it was usually
not possible to obtain flat spin equilibria when only static and forced oscillation
data are used. The Baumann and McDonnell model were able to identify flat spin

equilibria leading one to believe that the blended flight test data may have been
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a- major contributor to the character of the equilibrium solutions. The stable
regions identified by the McDonnell model are small however. The results of the
RB model follow the fin;iings of Mehra and Carroll for no stable equilibria. The
RB model did exhibit unstable branches in similar location of the periodic wing rock
behavior of the McDonnell model however at a much higher o and non-periodic.

Figures 5.2¢ and 5.2e show the Hybrid modei is very similar in appearance to
the McDonnell model. The Hybrid model result shows a more drastic hysteresis
with jump phenomena very likely for positive and negativ-, elevator deflections in
the range 8° to- 15°. Considering the concept of expanding centers, the Hybrid

solution appears to be at a different stage- of development compared to the

‘McDonnell model. Again another parameter influence appears evident. to reflect

the stages of isola development between models. Between §, = +5° the a - &,
bifurcation diagrams appear approximately the same. Table IV compares the
ai raft states for §, = 0° to determine how different the models are. The Hybrid
Model is indicating siower rates resulting in a-much slower spin. To investigate
the possible cause of the differences of the models, the force and moment
coefficiants and states of the aircraft in the region -25° < §, < -5° on the high«
branch of Figure 5.2 were examined.

Figure 5.3 shows the comparison of each-of the remaining seven states. In
each diagram the states have similar behavior in each model until the turning point
at §, = -15°; i.e. the Hybrid and McDonnell branches have similar states for

8.>-15°, until the turning point on the Hybrid model at §, = -15° after which the
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Table IV Comparison of right spin states of the Hybrid and
McDonnell model at high AOA with
$,=0",8,=0",3,=0" and 6,=0".

Hybrid Model McDonnell Model
o 66.35° 64.29°
B -11.48° -6.71"
p 0.4728 rad/sec 0.7629 rad/sec
q -0.1261 rad/sec -0.0901 rad/sec
r 1.072 rad/sec 1.593 rad/sec
b -23.65° -25.56°
¢ -6.71" -3.236°
Ver 238 ft/sec 238 ft/sec
Spin Rate 6.36 sec/turn 3.56 sec/turn

model's exhibit qu[te different-behavior.

As discussediin Chapter lIl, a jump event could occur within the hysteresis. The
jumps in states would be evident-of abrupt changes in the aircraft attitude and
rates. If the Hybrid model were a prediction of actual F-15B flight behavior, the
aircraft would experience sudden changes in attitude if the elevator were held
between a -8° and -15° elevator deflection during a spin.

The examination of the states has given additional views of the-differences
between the models however the coefficients are now examined to assist in
identifying the cause of the difference. Figure 5.4 are plots of the three force and
three moment coefficients values as the elevator is swept between -5° and -25°.
It should be noted-that-the coefficients for each model were determined following
the locus of equilibrium states from Figure 5.3. The hysteresis event is very

evident in each of the coefficients. With such strong differences in coefficient
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values it would be expected to have very different equilibrium solutions. The
bifurcation diagrams of Figures 5.2(c) and (e) may have visual similarity, but the
underlying state of the aircraft.dynamics does not.

It would be best to compare the coefficients at a single set of state values. The
force and moment coefficients were determined for a fixed aircraft state-with varied
-elevator deflections of -5° to -25°. The-fixed state chosen was the flat right spin
exhibited by the McDonnell model- along the upper branch of Figure 5.2e at an
-elevator deflection of -15°. The aircraft state is exhibited in Table V.

Table V Representative aircraft state for comparison of
the Hybrid and McDonnell model coefficient
behavior.

a B p q r 0 ) Ver
68 -5.44 0.69 -0.079 1.714 -21.92 -2.65 236.5

It should be noted that for bifurcation analysis the diagrams are traces of the
equilibrium solutions of the system. The state in Table V from the McDonnell
model is only an equilibrium solution for that model and does not represent an
equilibrium solution for the Hybrid model. Therefore it should not be compared
relative to the behavior exhibited in Figures 5.2 and 5.3.

Figure 5.5 shows the comparison of the coefficients for the aircraft state defined
in Table V. Except forthe-axial-force coefficient (Figure 5.5a) , which is practically

the same,; all. the coefficients appear to be-offset by a "static" bias. There are
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slight changes in-slope along some of the coefficients however the bias is the'most
predominate effect. It is.most probable-that the questioned-static aspects-of the
modeled rotary balance data has introduced an error bias in the Hybrid
coefficients. The Modified Hybrid model (Figure 5.2d) shows very different
behavior-when the static contributions are representative of only-the rotary balance
data. The dramatic change in the equilibrium surface is most likely caused by the
erroneous static data. Ifithere are errors in the static data, aé it'is either-added or
subtracted from a model it may be removing essential information-leaving noise
vice relevant information.

Table VI is a. comparison of each of the five models to-the spin tunnel spin
mode predictions and the full.scale flight test spin mode of 75° AOA and 3 sec/spin
rate all at common control settings. Comparing the Hybrid model to the spin
tunnel predictions, the inclusion of RB data has not modeled the aircraft states
better than the McDonnell- model. The:Hybrid model results did not lie between
the RB and McDonnell model as would be- expected. There appears to be an
additional factor influencing its results. The RB, Modified RB and Modified Hybrid
models showed very-good correlation to full scale flight test results and the spin

tunnel predictions.

Aileron Sweep

Various sweeps of different control surfaces were performed with AUTO to set
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up the conditions for the spin modes identified in Tables VIl and VIlI. Once a
solution for a specific configuration was acquired, an aileron continuation was
made. By fixing all controls except aileron, the aircraft-behavior was examined-as
aileron was-deflected through the desired pro-spin or spin recovery-configuration.
Only right spins were identified.

Pro-spin controls are acquired by- obtaining full cross-controlled lateral-
directional.inputs (i.e full positive aileron ar.d full negative rudder)-during an-abrupt
full negative elevator deflection (full aft stick position). Immediately after-high a
attitude is obtained, the elevator is returned-to a neutral position as the aircraft
settles into the spin (3:27). -Analogous, using AUTO, alternating rudder and
elevator sweeps were made to acquire high a:solutions and then an-aileron sweep
was made to acquire a cross-control configuration. A final elevator sweep was
made to obtain a neutral elevator deflection. Using the resulting equilibrium
solution.an aileron continuation was performed resutting in Figure 5.6.

Full scale flight tests showed satisfactory spin recovery can be accomplished
with near full aileron/differential stabilator-deflection into the spin-direction (3:28).
For recovery from the right spin identified in Figure 5.6; Hull negative
aileron/differential- elevator deflection was made. Since rudder deflection has
already been determined earlier to be ineffective for spin recovery, its position is
not critical. Figure 5.6 also showed recovery control effectiveness as the aileron
was deflected into the right spin direction (negative deflection). Figure 5.7 was

similarly developed for comparison of the specific data in Table Viil.
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The RB model showed good correlation to the spin tunnel predictions and full
scale flight test predictions for the behavior in a pro-spin- and.recovery control
configuration. The conditions identified-in Table VII are for pro-spin controls. The
RB model (Figure 5.6a) identifies the equilibrium solution along-a near horizontal
branch showing no immediate spin recovery to lower o with moderate
perturbations about §, = 20°. The conditions in Table Vill-arefor recovery controls.
The RB model (Figure 5.7a) identifies the equilibrium solution along a vertical
branch indicating spin recovery to lower a, i.e. recovery will occur as §, decreases
towards -20°.

Comparing the.RB model between Figures 5.6 and 5.7 does provide evidence
-of some effects of rudder on recovery controls. Figure-5.6 with- negative rudder
deflection shows recovery with less aileron deflection- positioned into the spin
direction than with full positive rudder deflection as shown in Figure 5.7.

In contrast to the RB model results, the-McDonnell model- (Figures 5.6e and
5.7e) did not exhibit pro-spin nor recovery solutions for the same configurations.
McDonnell noted the ineffectiveness of aileron deflection for spin recovery in his
‘model however did not pursue investigating its cause- other than noting it was a *

cause of the spin charactenstics of the aircraft and not a problem with the mode|

(24:40).




Discussion

The states extracted: for a specific aircraft configuration presented in Tables
VILVil-and Vil may-be deceiving as to the similarity between models. The discrete
examples present similar results however the qualitative structure of the bifurcation
diagrams indicate very different behavior.

Considering-that nearly all solutions obtained were unstable, it-was difficult to
justify that a -particular behavior may occur. Unfortunately, with the gross
differences between models, it was hard to draw any conclusions to the "influence"
of rotary balance data. Conclusions could be drawn howeverto what information
it-could -and could not provide when examined-by itself. It was identified by the
results of the Hybrid and Modified Hybrid model that the static rotary balance data
contributions had a major influence on the proper blending rotary aerodynamic
information into the Hybrid model. If large errors were evident in the static data
they could cause meaningful rotary information to be "erroneously removed"
leaving noise perturbations. This may account for the seemingly independent
character of the Hybrid model with the exception of elevator deflection bifurcation
diagrams. The rotary balance data apparently has less sensitivity to the elevator
control surface than the.McDonnell model. The model conflicts that occurred as
rudder and aileron deflections were made provided additional difficulty for the

Hybrid model to provide meaningful information.
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Table VI  Clockwise spin state. §,=0°,8,=0",08,=-25",8,=0"

o Spin Rate Q,b/2V,.. Q6 Ve
(deg) (sec/turn) (rad/sec)(ft/sec)

RB Model 75-.3 3.2 0.16 1.973 260
Modified
RB Model 75.4 3.2 0.16 1.972 261
Hybrid 84.9 1.7 0.30 3.657 257
Modified
Hybrid 76.5 5.1 0.11 1.220 245
McDonnell/
Baumann 82.2 2.1 0.29 3.013 226
Spin Tunnel
Predict 65.0 5.1 0.10 1.271 272
Flight Tests 75.0 3.0 ---- 2.0 ---

Table VII Pro-spin controls model comparisons.
'8a=,20 : ’ 8d=6 * 7 8'e=0 : /*82-:- 15 -

o Spin Rate Q.b/2V,. Q. Ver
(deg) (sec/turn) (rad/sec) (ft/sec)

RB Model 84.4 1.98 0.25 3.177 263
Modified
RB Model 83.6 2.04 0.26 3.080 255
Hybrid 63.2 5.28 0.11 1.189 236
Modified
Hybrid 85.9 1.31 0.34 4.794 301
McDonnell/
Baumann- 60.3 3.79 0.15 1.658 241
Spin Tunnel
Predict 80-.0 2.70 0.21 2.390 244
Flight Tests 70-85 2-6 --- 1-3 ---
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Table VIII Recovery controls model comparisons.
8,=-20",8,=-6",08,=0",8,=30"

a Spin Rate Q,.b/2V.. Q.. Ve

(deg) (sec/turn) (rad/sec)(ft/éec)
RB Model 62.2 4.60 0.12 1.363 250
Modified .
RB- Model 62.2 4.78 0.11 1.313 257
Hybrid 66.0 5.17 0.11 1.2158 244
Modified
Hybrid 52.1 7.02 0.08 -0.895 252
McDonnell/ 7
Baumann 64.8 3.50 0.16 1.790 240
Spin Tunnel
Predict 56.0 6.10 0.08 1.039 278
Flight Tests 50-65 4-6 .- 0.7-1.6 ---
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VI. Conclusions

As evidenced from this investigation, one of the distinctive differences and
sources of difficulty in models. of aircraft dynamics is the representation of the
aerodynamic forces and moments. It is difficult to accept any research results that
apply experimental data for modeling without a validation of the integrity of the
data upon which the research was based. This. investigation presented an
opportunity to compare three models based on three very different aerodynamic
coefficient databases. The results have given evidence of the caution that needs
to be exercised when models are compared as well as the possible error that is
introduced when two different sets of data are combined.

Both the McDonnell and RB model have the ability to predict high AQA behavior
of the F-15B. The fundamental difficulty is that the qualitative and quantitative
outlay of equilibria is very different. There is still the question of which model is
better. The McDonnell model, representing static and forced oscillation data, has
demonstrated wing rock behavior indicative of full scale flight test results as
identified in reference (3). It does however have problems with the consequences
of aileron and rudder deflection at high o which is probably more evident of the
modelling of the stability derivatives than with the capability of static and forced
oscillation data. With the possible problems with the McDonnell/Baumann

coefficient modelling in 8, and &, it is difficult to draw any conclusions concerning
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its relative merits when compared to the RB-model. The McDonne!l model-would
however provide initial indication of high o spin behavior to initiate further
investigations with the RB model. ‘Moreover, the McDonnell model was used at
8,=8,=0-with thrust vectoring producing.quality results, so it is nct aiways limited
by this prcblem (24).

The results of Chapter V have shown that rotary balance data does enable
prediction of aircraft spin motion with good correlation to full scale ;Iight test
results.

In particular:

(1) The RB model properly represented rudder motion as not being optimum for
‘'spin recovery as demonstrated by full scale fligh® tests.

(2)  The RB model properly represented recovery control behavior with ailerons

in a.representative flight test recovery configuration.

(3) In pro-spin control configuration representative of full scale flight test

behavior, the RB model showed no immediate spin recovery.

In addition:

(4)  Therotary balance model was unable .o 2\entify-stable equilibrium branches.
as predicted by Mehra and Carroll for fighter aircraft and shown in their research

results for the F-4 fighter (26).

The results from the RB model does demonstrate rotary balance data has strength

in representing spinning motions of the aircraft however there is not enough
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evidence 10 declare supremacy over the McDonne" model.

These results were determined with a single polynomial repfesentation of each
of the aerodynamic force and moment coef. . ~~is. It-should be evident that the
modeling of the RB data has smocthes «ocs 2 the character of the original
database. However, even with a "smoothed” -:presentation of the RB:data, it was
able to provide good correlation to experinss ' .light test results. The promising
resuits shown by the RB data as a stard alor.2 1epresentation of the aerodynamic
coefficients in high- AOA dynamics-analysis yields further investigation of the
effects of the static errors. With the RB data more effectively modelled it may
provide more character in the bifurcation diagrams.

The problems encountered- with the blending of two databases acquired from
different testing facilities was evident in the Hybrid model. Because of the different
sources of the data, inherent «¢rors may conflict or even amplify. It needs to be
assured that the data being blended is representative of the same testing
condition.  The error evident in the RB coefficient static configuration had a
definite influence on the results found with the Hybrid model. The problems with
aileron and rudder deflection in the McDonneli/Baumann model introduced error
with the Hybrid model. Any research intending to use a hybrid model needs to
develop three models. The RB, hybrid and static and forced oscillation model,
need to be examined to ensure eaci. is representing basic behavior such as rudder
ineffectiveness or anticipated recovery rusults before the hybrid is used. If the

databases were blended without concern, the Hybrid model may be presenting
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1

false information which is based on conflicting databases.

Results from the Modified RB model showed:that perturbation in the Axial and
Side Force coefficients had a minor influence on the-equilibrium. ; Jjuticit branches
when investigating the spin regime of the F-15B. The Modified Hybrid'model gave
indication that the static contributions 1o the aerodynamic coefficients was most

influent:al in the character of entilibrium solutions.

Recommendations

1. An investigation of the evident static contribution problem of the rotary balance
data and its effects on the Hybrid model could be made. A filtering process could
be developed to adjust the removal of the rotary balance static contribution at
small increments, artificiaiiy redicing its contribution to the model. A-homotopy
variable could be defined to adjust the proportions of the rotary balance siatic
contributions removed and then a continuation: on this variable could be performed
to se= what features of the bifurcation -diagrams are most effected.,

2. T e static and forced oscillation contributions of the McDonneli model
coefficients could be isolated ard analyzed using bifurcation analysis to provide
insight into which features of the equilibrium solutions are driven by static and
forced oscillation information separately. The results from the analysis of the
McDonnell modei static contributions may provide assistance in determining the

ievel of adjustments that could be made on the rotary balance data in
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recommendation (1).

3. As demonstrated by the Modified RB model, analysis of the influence of each
force and moment coefficient on the equilibrium solutions_should be investigated.
Before bifurcation analysis can be used confidently for analysis of aircraft dynamics
its tolerance to perturbations in each of the force and moment coefficients needs
to be determined. In addition, the analysis may provide insightinto the behavicral
differences between the models. Using the iMcDonnell,Rotary balance or an
artificial database, each coefficient could be perturbed separately with either a
'static bias or a selected function. 1ha res.ts could assist in identification of which
coefficients are driving the gross a:fferences. The data could be adjusted to
develop certain phenomena and then by adjusting- the coefficient data until the
phenomena distorts or disappears, the tolerance in accuracy of the coefficients

could be determined.
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Appendix A: F-15B Specification Data

The F-15 specifications for the F-15 are contained in Table IX. The data was

obtained-from Beck (8) and (23).

Table IX. Physical Characteristics of the F-15B

Wing

Area (theoretical) 608 sq ft

Aspect Ratio 3:01

Airfoil
Root NACA64006.6-
Xw 155 NACAB4A(x)04.6 (a = 0.8 MOD)
Tip NACAG64A203 ( a = 0.8 MOD)

Span 42.8 ft

Taper Ratio 0.25

Root Chord. (Theoretical) 2733 in

Tip Chord 68.3 in

Mean Aerodynamic Chord 191.3in
Leading Edge Sweep Angle  45°

25% Chord Sweep Angle 38.6°
Dihedral -1°
Incidence None
Twist at Tip None
Aileron Area 26.5 Sq ft
Flap Area 35.8 sq ft
Speed Brake Area 31.5sq ft

Control Surface Movement

Aileron +20°
Speedbrake 45° up

Flap 30° down
Horizontal Tail 29° down, 15° up
Rudder +30°
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Vertical Tail
Area (Theoretical Each)
Rudder Area (Each)
Span
Root Chord
Tip Chord
Airfoil - Root
- Tip
Taper Ratio
Leading Edge Sweep Angle
25% Chord Sweep Angle
Mean Aerodynamic Chord
Cant
Length (.25¢c,, to .25¢ )

Horizontal Tail
Area (Theoretical)
Area (Actual)
- Span
Aspect Ratio
Taper Ratio
Root Chord
Tip Chord
Airfoil - Root
- Tip
Leading Edge sweep Angle
25% Chord Sweep Angle
Mean Aerodynamic chord
Dihedral
Length (.25¢,, to .25¢,)

Wetted Area
Fuselage
Nozzles
Horizontal Tail
Vertical tail
Wing

Total Area

62.6 sq ft

10.0 sq ft

10.3 ft

115.0 in
30.6in
NACAQ0005-64
NACAO0003.5-64
0.27

36.6°

29.7°

81.0in

2° out

2124 1in

120.0 sq ft
111.4 sq ft

15.7 ft

2.05

0.34

137.2in

46.5 in
NACAQ005.5-64
NACA0002.5-64
50°

43.6°

99.3 in

Oo

241.0in

1405 sq ft
53 sq ft
216 sq ft
257 sq ft
698 sq ft
2629 sq ft




Miscellaneous Data
Aircraft Length
Aircraft Height
Aircraft Volume
Aircraft Gross Weight
C.G. Station X Direction

Y Direction
Z Direction

63.8 ft
18.6 ft
1996 cu ft
37000 Ibs
557.173
0.0
116.173

Inertia Data is for a basic F-15 with 4 AIM-7F missiles, ammo, 50% fuel and gear

up.

X

~

F4

xZ

25480 slug-fi?
166620 slug-ft?
186930 slug-ft
-1000 slug-f
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Appendix B: Sign Conventions

The airplane is-considered in an upright attitude with all directions with respect
to the pilot seated in the cockpit. Refer to figure B-1. The sign convention-data for

the F-15 was obtained from (23).

Airplane
Forces - Positive up, aft or te the right

Moments - Positive when the nose pitches up, to the right, or the left wing
rises.

Angular
Velocity. - Positive when the nose rotates up, to the right, or the left wing rises.

Control Surfaces
Aileron - Positive when right aileron is down.

Differential
Horizontal Tail - Positive winen right panel is down.

Symmetrical
Horizontal tail - Positive when trailing edge is down.

Rudder - Positive when irailing edge is to the left.
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Figure B-1 F-15B control surface sign conventioh and aircraft drawing.
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Appendir G: AUTO Driver Program

CAPTAIN RALPH D. FERO AFIT GA-91D
MASTERS THESIS

THE FOLLOWING DRIVER PROGRAM IS A MODIFIED VERSION OF
CAPT ROBERT MCDONNELL’S 1990 THESIS. THE ADDITIONS IN
THIS VERSION OF THE PROGRAM INVOLVE INTEGRATION OF
F-15 ROTARY AERODYNAMIC DATA. THIS PROGRAM SOLVES THE
NONLINEAR DIFFERENTIAL EQUATIONS OF MOTION FOR THE
F-15B AIRCRAFT. FOR THIS RESEARCH EFFORT, THIS-PROGRAM
WILL BE USED TO INVESTIGATE THE EFFECTS OF ROTARY
-BALANCE DATA ON THE ANALYSIS OF HIGH ANGLE OF ATTACK
PHENOMENA. THE PROGRAM IS CAPABLE OF VARYING
ELEVATOR, AILERON, RUDDER DEFLECTIONS, ENGINE

THRUST VECTOR (PITCH AND YAW), PORT AND STARBOARD
ENGINE THRUST, AND TOTAL THRUST. "IN ADDITION, THE
PROGRAM HAS BEEN MODIFIED TO VARY DIFFERENTIAL
ELEVATOR AND A HOMOTOPY BLENDING PARAMETER FOR
TRANSITION FROM THE 1988 F-15-AEROBASE DATA TO ROTARY
AERODYNAMIC DATA.

LAST EDITED ON 14 OCTOBER 1991

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
COMMON /RBPOLY/ PC, OMEGA
DIMENSION W(300000), IW(1000),PC(6,79)

OPEN(UNIT=3,FILE="fort.3")
OPEN(UNIT=4,FILE="fort.4")
OPEMN(UNIT=7,FILE="fort.7")
OPEN(UNIT=8,FILE="fort.8)
OPEN(UNIT=9,FILE="fort.9")
OPEN(UNIT=10,FILE="fort.10’)
OPEN(UNIT=12,FILE="s¢ize’)
OPEN(UNIT=13,FILE="seizet)

REWIND 7
REWIND 8
REWIND 9
REWIND 10
REWIND 3
REWIND 4
REWIND 12
REWIND 13

C ADDED 15 AUG 91
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O OO0 O

OO OO

.00

OO0 OOOOCOO

OO0

CALL RBPOLYCOEF

CALL AUTO - CONTINUATION & BIFURCATION LOCATION
SUBROUTINE

CALL AUTO(W,IW)
STOP
END

SUBROUTINE FUNC(NDIM,NPAR,U,ICP,PAR,IJAC,F,DFDU,DFDP)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /KS/ K1,K5,K7,K8,K9,K10,K12,K13,K14,K15,K16,K17
COMMON /ACDATA/ BWING,CWING,SREF,RHO,RMASS )
DOUBLE PRECISION K1,K5,K7,K8,K9,K10,K12,K13,K14,K15,K16,K17
COMMON /SEIZE/ CX,CY,CZ,CLM,CMM,CNM

COMMON /SEIZET/ CXT,CYT,CZT,CLMT,CMMT,CNMT

COMMON /SEIZER/ CXR,CYR;CZR,CLMR,CMMR,CNMR

COMMON /RBPOLY/ PC, OMEGA

DIMENSION DFDU(NDIM,NDIM),DFDP(NDIM,NPAR),DELF1(8),
+ DELF2(8),U(NDIM),PAR(10),F(NDIM),DX(8),PC(6,79)

INITIALIZE SOME CONSTANTS THAT ARE PASSED THROUGH
THE COMMON BLOCK ACDATA

DATA IS FROM MCAIR REPORT# A4172 AND AFFTC-TR-75-32
F-15A APPROACH-TO-STALL/STALL/POST-STALL EVALUATION

BWING - A/C WINGSPAN, FT

CWING - A/C MEAN AERODYNAMIC CHORD, FT

SREF - A/C WING REFERENCE AREA, SQ FT

RHO - AIR DENSITY AT 20000 FT ALTITUDE, SLUG/FTA3
RMASS - A/C MASS, SLUGS

BWING=42.8
CWING=15.94
SREF=608.
RHO=.0012673
RMASS=37000./32.174

DETERMINE CONSTANTS K1 THROUGH K17. SOME ARE MADE
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COMMON AND PASSED TO SUBROUTINE FUNX AND USED IN THE
EQUATIONS OF MOTION THERE

INERTIAS HAVE UNITS OF SLUG-FTA2
K1 HAS UNITS OF 1/FT

K6, K8, K11, K14, AND K17 HAVE UNITS OF 1/FTA2

IX= 25480.0d0

Y= 166620.0d0

IZ= 186930.0d0

IXZ= -1000.0d0
K1=0.5d0*RHO*SREF/RMASS
K2=(1Z-IY)IX

K3=IXZ*IXZ/(1X"1Z)

Ka=(IY-1X)/Z

K5=IXZ/NX
K6=0.5d0*RHO*BWING*SREF/IX
K7=IXZNZ
K8=0:5d0*RHO*SREF*CWING/IY
Ko=(1Z-IX)1Y

K10=IXZNY
K11=0.5d0*RHO*SREF*BWING/IZ
K12=(K2+K3)/(1.0d0-K3)
K13=(1.0d0-K4)*K5/(1.0d0-K3)
K14=K6/(1.0d0-K3)
K15=(K3-K4)/(1.0d0-K3)
K16=(1.0d0+K2)*K7/(1.0d0-K3)
K17=K11/(1.0d0-K3)

K1 = 3.350088890D-04
K5 =-3.924646781D-02
K7 =-5.349596105D-03
K8 = 3.685650971D-05
K9 =.96897131196
K10 =-6.001680471D-03
K12 = 79747314581
K13 =-9.615755341D-03
K14 = 6.472745847D-04
K15 =-.754990553922
Ki6 = K13

K17 = 8.822851558D-05

FIND THE VALUES OF F(1) THROUGH F(NDIM). SUBROUTINES
COEFF AND FUNX ARE CALLED ONGE.

111




O 0000000000 OO

O00000 OO0 O O 00HOOOHOOO

CALL COEFF(U,PAR,NDIM,ICP)
THE FOLLOWING ADDED 15-AUG 91

THE SUBROUTINE RBPOLYCOEF AND RBCOEF DETERMINE THE
ASSOCIATED COEFICIENTS USING ROTARY BALANCE DATA
OBTAINED FROM THE NASA LANGLEY SPIN TUNNEL. THE DATA
WAS OBTAINED-ON-FLOPPY DISKS. THE DATA IS DOCUMENTED
IN NASA CR 3478. THE DATA IS.ONLY CODED FOR AOA ABOVE
30 DEGREES THEREFORE WILL BE BLENDED AT THIS VALUE.

IF (U(1) .GT. 30) THEN
CALL RBCOEF(U,PAR,NDIM)

SUBROUTINE BLEND PERFORMS THREE FUNCTIONS. USING THE
"PARAMETER BLEND, (1) IDENTIFY A UNIQUE EQUILIBRIUM

STATE SOLUTION FOR PURE ROTARY BALANCE DATA BASED
MODEL,(2) PERFORM THE ADDITION THRUST CONTRIBUTIONS TO
THE PURE ROTARY BALANCE DATA BASED MODEL, (3) PERFORM
THE BLEND TRANSITION FROM MCDONNELL'S MODEL TO THE
HYBRID ROTARY BALANCE DATABASE MIXED MODEL (HYBRID
MODEL).

CALL-RBBLEND(U,PAR,NDIM,ICP)
ENDIF

CALL FUNX(NDIM,U,F)

IF(IJAC.EQ.0) RETURN

SET THE VALUES OF DX
MODIFIED TO SCALE DX ACCORDING TO VARIABLE
13 JUN 88

DX0=1.0D-9
DX(1)=DX0°50.0d0
DX(2)=DX0"10.0d0
DX(3)=DX0"0.5d0
DX (4)=DX0"0.25d0
DX (5)=DX0"0.5d0
DX(6)=DX0*50.0d0
DX(7)=DX0750.0d0
DX(8)=DX0*0.5d0
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NEXT THE PARTIAL OF F W.R.T. A GIVEN PARAMETER ARE
FINITE DIFFERENCED

OOOO0

PTEMP=PAR(ICP)
PAR(ICP)=PTEMP+DX(1)

-CALL COEFF(U,PAR,NDIM,ICP)

FOLLOWING-ADDED 15 AUG 91

OO0 OO

IF (U(1) .GT. 30) THEN.
CALL RBCOEF(U,PAR,NDIM)
CALL RBBLEND(U,PAR,NDIM,ICP)

ENDIF

‘CALL FUNX(NDIM,U,DELF1)

PAR(ICP)=PTEMP-DX(1)

CALL COEFF(U,PAR,NDIM,ICP)

FOLLOWING-ADDED 15 AUG 91

OO0 OO O O

IF (U(1) .GT. 30) THEN
CALL RBCOEF(U,PAR,NDIM)
CALL RBBLEND(U,PAR,NDIM,ICP)
ENDIF
CALL FUNX(NDIM,U,DELF2)
DO 13 I=1,NDIM

DFDP(1,ICP)=(DELF1(1)-DELF2(1))/(2.0d0* DX(1))

oo O O

13 CONTINUE
PAR(ICP)=PTEMP

THE NEXT DO LOOP CALCULATES THE PARTIAL DERIVATIVE OF
F W.R.T. TO U USING FINITE DIFFERENCES.

SET U{J) EQUAL TO U+DU, THEN CALL COEFF WITH THIS
UPDATED STATE VECTOR. THIS IS DONE SIMILARLY WITH
U-DU

OOO.O0OO0OO0
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C
DO 20 J=1,NDIM

(@]

UTEMP=U(J)

O

U(J)=UTEMP+DX(J)

CALL COEFF(U,PAR,NDIM,ICP)

FOLLOWING-ADDED 15 AUG 91

OO0 OO0

IF (U(1) .GT. 30) THEN
CALL RBCOEF(U;PAR,NDIM)
CALL RBBLEND(U,PAR,NDIM,ICP)
ENDIF

(@]

CALL FUNX(NDIM,U,DELF1)

U(J)=UTEMP-DX(J)

CALL COEFF(U,PAR,NDIM,ICP)

FOLLOWING ADDED 15 AUG 91

OO0 OO O

IF (U(1) .GT. 30) THEN
CALL RBCOEF(U,PAR,NDIM)
CALL RBBLEND(U,PAR,NDIM,ICP)
ENDIF

CALL FUNX(NDIM,U,DELF2)

DO 16 1=1,NDIM
DFDU(1,J)=(DELF1(1)-DELF2(1))/(2.0d0* DX (J))
16 CONTINUE
C
U(J)=UTEMP
20 CONTINUE

RETURN
END
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SUBROUTINE FUNX(NDIM,U;F)

SUBROUTINE FUNX EVALUATES THE NDIM EQUATIG!HS GIVEN THE
STATE VECTOR U.

NDIM- THE DIMENSION OF THE PROBLEM

U - THE VECTOR-OF STATES ALPHA, BETA, ... (INPUT)

F - THE VECTOR RESULT OF FUNCTION EVALUATIONS
(OUTPUT)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /SEIZE/ CX,CY,CZ,CLM,CMM,CNM

COMMON /SEIZET/ CXT,CYT,CZT,CLMT,CMMT,CNMT

COMMON /KS/ K1,K5,K7.K8,K9,K10,K12,K13,K14,K15,K16,K17
DOUBLE PRECISION K1,K5,K7,K8,K9,K10,K12,K13,K14,K15,K16,K17
DIMENSION U(NDIM),F(NDiM)

SET TRIGONOMETRIC RELATIONSHIPS OF THE STATES ALPHA,
BETA, THETA,-AND PHI AND THEN SET P, Q, R, AND VTRFPS

IWRITE=1

DEGRAD=57.29577951D0

CA=COS(U(1)/DEGRAD)
SA=SIN(U(1)/DEGRAD)
CB=COS(U(2)/DEGRAD)
SB=SIN(U(2)/DEGRAD)
CTHE=COS(U(6)/DEGRAD)
STHE=SIN(U(6)/DEGRAD)
CPHI=COS(U(7)/DEGRAD)
SPHI=SIN(U(7)/DEGRAD)

P=U(3)
Q=U(4)
R=U(5)
VTRFPS=1000.0d0°U(8)
SET THE GRAVITATIONAL CONSTANT, FT/SEC
G=32.1740d0

THE FOLLOWING SYSTEM OF NONLINEAR DIFFERENTIAL
EQUATIONS GOVERN AIRCRAFT MOTION

UPDATED FOR PROPER DEGREE-RADIAN UNITS AND PROPERLY
SCALED VELOCITY EQUATION: 7 JUN 88
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C F(1)=ALPHA-DOT
c
1 F(1)=Q+(-(K1*VTRFPS CX-G*STHE/VTRFPS+R"SB)*SA+(K1*VTRFPS
+ *CZ+(G*CTHE*CPHIINTRFPS)-P*SB)"CA)/ICB
F(1)=F(1)"DEGRAD

F(2)=BETA-DOT

oXo NN

2 F(2)=-((K1*"VTRFPS*CX-G*STHE/VTRFPS)*SB+R)*CA+(K1*VTRFPS’CY
+ +G*CTHE*SPHIVTRFPS)*CB-((K1"VTRFPS*CZ+G'CTHE CPHIVTRFFS)
*SB-P)*SA

F(2)=F(2)*"DEGRAD

F(3)=P-DOT

0000

3 F(3)=-K12'Q'R1 K13"P*Q+K14°(CLM+K7"CNM)'VTRFPS*VTRFPS

F(4)=Q-DOT

OO0OO0

4 F(4)=K8*'VTRFPS'VTRFPS'CMM+K9*P*R+K10°(R*R-P*P)

F(5)=R-DOT

OO0

5 F(5)=K15'P*Q-K16°Q"'R+K17*VTRFPS 'VTRFPS*(K5'CLM+CNM)

F(6)=THETA-DOT

OO0

6 F(6)=Q°CPHI-R*SPHi
F(6)=F(6)*DEGRAD

F(7)=PHI-DOT

OO0

7 F(7)=P+Q*(STHEICTHE)'SPHI+R*(STHE/CTHE)*CPHI
F(7)=F(7)"DEGRAD

F(8)=VTRFPS-DOT (SCALED BY A FACTOR OF 1000)

o XoXeXe)

8 F(8)=U(8)"((K1"VTRFPS'CX-G'STHE/VTRFPS)*CA'CB+(K1*VTRFPS'CY
+ +G*CTHE*SPHI/VTRFPS)*SB
+ +(K1*VTRFPS*CZ+G*CTHE*CPHI/VTRFPS)*SA*CB)
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RETURN
END

SUBROUTINE STPNT(NDIM,U,NPAR,ICP,PAR)

THIS SUBROUTINE SETS THE VALUES OF THE STATES AND
PARAMETERS AT THE START OF THE ANALYSIS. THE STATES
AND CONTROL SURFACE SETTINGS REPRESENT AN EQUILIBRIUM
STATE OF THE AIRCRAFT

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION U(NDIM),PAR(10)
U{1) - ALPHA, DEG
U(2) - BETA, DEG
U(3) - P, RADISEC
U(4) - Q, RADISEC
U(5) - R, RADISEC
u(6) - THETA, DEG
U(7) - PHI, DEG
U(8) - TRUE VELOCITY, IN THOUSANDS OF FT/SEC

THE STARTING POINT (VECTOR)

OPEN(UNIT=15,FILE="fort.15")
REWIND (15)

READ(15,") U(1)
READ(15,") U(2)
READ(15,") U(3)
READ(15,") U(4)
READ(15,”) U(5)
READ(15,") U(6)
READ(15,") U(7)
READ(15,") VTRFPS
U(8)=VTRFPS/1000.0d0

PAR(1)=DELESD

PAR(2)=DRUDD  THE PARAMETERS, IN DEGREES
PAR(3)=DDA

PAR(4)=ENGPA PORT ENGINE THRUST, POUNDS/1000
PAR(5)=ENGSA STARBORD ENGINE THRUST, POUNDS/1000
PAR(6)=TPTAL PITCH THRUST VECTOR, DEG
PAR(7)=TYTAL YAW THRUST VECTOR, DEG
PAR(8)=TTHRST TOTAL THRUST, POUNDS/1000

MODIFIED 13 AUG 21
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C PAR(9)=DELEDD DIFFERENTIAL ELEVATOR, IN DEGREES

C PAR(10)=BLEND TRANSITION PARAMETER-FROM STATIC TO
C ROTARY BALANCE COEFICIENT DATA
C

READ(15,) PAR(1)
READ(15,") PAR(2)
READ(15,") PAR(3)
READ(15,") PAR(4)
READ(15,") PAR(5)
READ(15,") PAR(6)
READ(15,") PAR(7)
READ(15,") PAR(8)

C MODIFIED 13-AUG 91

READ(15,") PAR(9)
READ(15,") PAR(10)

oo

RETURN
END

SUBROUTINE INIT

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

O OO0 OO0

COMMON /BLCSS/-NDIM,ITMX,NPAR,ICP,IID,NMX IPS,IRS
COMMON /BLCPS/ NTST,NCOL,IANCH,NMXPS, IAD,NPR,NWTN;ISP,ISW1
COMMON /BLDLS/ DS,DSMIN,DSMAX,IADS
COMMON /BLLIM/ BLO,RL1,AQ,A1,PAR{10)
COMMON /BLOPT/ ITNW,MXBF,IPLT,ICP2,ILP
COMMON /BLEPS/ EPSU,EPSL,EPSS,EPSR
C
C
C IN THIS - SUSROUTINE THE USER SHOULD SET THOSE CONSTANTS
C THAT REQUIRE VALUES DIFFERENT FROM THE DEFAULT VALUES
C ASSIGNED IN THE LIBRARY SUBROUTINE DFINIT. FOR A
C DESCRIPTION OF THESE CONSTANTS SEE THE DOCUMENTATION
C CONTAINED IN THE LIBRARY. COMMON BLOCKS CORRESPONDING TO
C CONSTANTS THAT THE USER WANTS TO CHANGE MUST BE INSERTED
C ABOVE. THESE COMMON BLOCKS SHOULD OF COURSE BE IDENTICAL
C TO THOSE IN DFINIT.
c
C
DSMAX = 10.0d0
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DSMIN =0.00000010d0

EPSU = 1.0D-07
EPSL = 1.0D-07
EPSS = 1.0D-05
EPSR = 1.0D-07
IAD =1

P =1

ITMX =40
ITNW =20
MXBF =5
NDIM =8
NPAR =10

OPEN(UNIT=25,FILE="fort.25)
REWIND (25)

READ(25.") RLO,RL1

READ(25,°) AO,A1

READ(25,")-DS

READ(25,") NMX

READ(25,") NTST,NCOL,NMXPS,NPR
READ(25,) ISP,IRS,ICP,ICP2,IPLT,IPS
READ(25,") ISW1

RETURN

END

SUBROUTINE BCND

RETURN
END

SUBROUTINE ICND

—————e—— om——

RETURM
END

SUBROUTINE COEFF(U,PAR,NDIM,ICP)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /ACDATA/ BWING,CWING,SREF,RHO,RMASS
COMMON /SEIZE/ CX,CY,CZ,CLM,CMM,CNM .
COMMON /SEIZET/CXT,CYT,CZT,CLMT,CMMT,CNMT

DIMENSION U(NDIM),PAR(10)

THE PRIMARY SOURCE OF THESE COEFFICIENT EQUATIONS IS
SUBROUTINE ARO10 FROM MCAIR CODE USED IN THE F15
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BASELINE SIMULATOR.

MOST OF THE COEFFICIENTS-USED IN THE EQUATIONS WERE
COMPUTED USING SAS WITH RAW DATA FROM THE F15-SIMULATOR
DATA TABLES.

THIS SUBROUTINE IS CALLED BY THE DRIVER PROGRAM FOR THE
AUTO SOFTWARE. IT MERELY TAKES:INPUTS ON THE A/C

STATE, CONTROL SURFACE POSITIONS, AND THRUST VALUES
AND RETURNS THE APPROPRIATE AERO COEFFICIENTS CX, CY,
CZ, CL, CM, AND-CN.

INPUTS TO THIS SUBROUTINE

AL - ANGLE OF ATTACK, DEG

BETA - SIDESLIP ANGLE, DEG 7

DDA - AILERON DEFLECTION ANGLE, DEG

DELEDD - DIFFERENTIAL TAIL DEFLECTION ANGLE, DEG

DELESD - SYMMETRICAL TAIL DEFLECTION ANGLE, DEG

DRUDD - RUDDER DEFLECTION, POSITIVE TRAILING EDGE
LEFT, DEG

P - ROLL RATE, RAD/SEC

Q - PITCH RATE, RAD/SEC

R - YAW RATE, RAD/SEC

ENGPA - PORT ENGINE THRUST, POUNDS/1000

ENGSA - STARBOARD ENGINE THRUST, POUNDS/1000

TYTAL - YAW THRUST ANGLE, DEG

TPTAL - PITCH THRUST ANGLE, DEG

TTHRST - TOTAL THRUST, POUNDS/1000

VTRFPS - TRUE AIRSPEED, FT/SEC

INTERMEDIATE VARIABLES USED IN THIS SUBROUTINE

ABET - ABSOLUTE VALUE OF BETA, DEG

ARUD - ABSOLUTE VALUE OF RUDDER DEFLECTION, DEG

BWING - WING SPAN, FEET

CA - COSINE RAL (RAL IN RADIANS)

CD - COEFFICIENT OF DRAG

CL - BASIC LIFT COEFFICIENT

CWING - MEAN AERODYNAMIC CHORD, FEET

DAHD - DIFFERENTIAL ELEVATOR DEFLECTION, DEG

DAHLD - LEFT AILERON DEFLECTION, DEG

DAHRD - RIGHT AILERON DELFECTION, DEG

DELEDR - DIFFERENTIAL TAIL DEFLECTION ANGLE, RAD

DELESR - SYMMETRIC TAIL DEFLECTION ANGLE, RAD

ENGP - PORT ENGINE THRUST, POUNDS

ENGS - STARBOARD ENGINE THRUST, POUNDS

PTAL - PITCH THRUST VECTOR, RAD

QBARS - DYNAMIC PRESSURE TIMES WING REFERENCE AREA,
LBF
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RABET - ABSOLUTE VALUE OF BETA, RADIANS
RAL - ABSOLUTE VALUE OF ALPHA, RADIANS
RARUD - ABSOLUTE VALUE OF RUDDER, RADIANS
SA - SINE RAL (RAL IN RADIANS)

YTAL - YAW THRUST VECTOR, RAD

OUTPUTS FROM THIS SUBROUTINE

CX - BASIC AXIAL FORCE COEFFICIENT, BODY AXIS,

+ FORWARD

CcY - BASIC SIDE FORCE COEFFICIENT, BODY AXIS,
+ BIGHT

(074 - BASIC NORMAL FORCE COEFFICIENT,-BODY AXIS,
+ DOWN

CLM - BASIC ROLLING MOMENT COEFFICIENT, BODY AXIS,
+ R WING DOWN

CMM - BASIC PITCHING MOMENT COEFFICIENT, BODY AXIS,
+ NOSE UP

CNM - BASIC YAWING MOMENT COEFFICIENT, BODY AXIS,
+ NOSE RIGHT

ANGLES USED IN CALCULATING CL, CLLDB, ..., ARE IN

RADIANS. THIS IS BECAUSE RADIANS WERE USED IN THE CURVE
FITTING PROGRAM TO OBTAIN THE COEFFICIENTS OF THE
ALPHA, BETA, ..., TERMS IN THE

FOLLOWING EQUATIONS.

MOMENT REFERENCE CENTER WAS SET IN ARO10 PROGRAM AS:
DATA CMCGR /.2565/, CNCGR /.2565/

THE AERO STABILITY DATA WAS TAKEN REFERENCED TO THESE CG
LOCATIONS. THE MOMENTS OF INERTIA AND OTHER AIRCRAFT
DATA ARE FOR A CLEAN CONFIGURATION TEST AIRCRAFT WITH A
CG AT THE SAME CG. AS A RESULT, THERE IS NO 'CG OFFSET'

TO BE COMPUTED.

IWRITE=0

AL=U(1)
BETA=U(2)
P=U(3)
Q=U(4)
R=U(5)
THETA=U(6)
PHI=U(7)
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VTRFPS=U(8)*1000.

DELESD=PAR(1)
DRUDD=PAR(2)
DDA=PAR(3)
ENGPA=PAR(4)
ENGSA=PAR(5)
TPTAL=PAR(6)
TYTAL=PAR(7)
TTHRST=PAR(8)

DEGRAD=57.29577951
DELESR=DELESD/DEGRAD
YTAL=TYTAL/DEGRAD-
PTAL=TPTAL/DEGRAD

IF BLOCK TO CHANGE TOTAL THRUST

IF(ICP.EQ.8)THEN'
DIFT=PAR(4)-PAR(5)
THALF=TTHRST/2.0d0
ENGPA=THAL+DIFT/2.0d0
ENGSA=THALF-DIFT/2.0d0

ENDIF

ENGP=ENGPA*1000.0
ENGS=ENGSA*1000.0

QBARS=0.5d0*"RHO*VTRFPS*VTRFPS*'SREF
CO2V=CWING/(2.0d0*VTRFPS)
BO2V=BWING/(2.0d0*VTRFPS)
QSB=BWING*QBARS

ARUD=ABS(DRUDD)
RARUD=ARUD/DEGRAD

RAL=ALUDEGRAD

ABET=ABS(BETA)

RABET=ABET/DEGRAD

P L R e T

1) ALL THE AERODYNAMIC COEFFICIENTS IN
THIS VERSION OF THE DRIVER PROGRAM
ARE TAKEN DIRECTLY FROM THE 1988
F15 AEROBASE (0.6 MACH, 20000 FEET)
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2) THIS SECTION SUMMARIZES THE
AERODYNAMIC COEFFICIENTS AS TO WHAT
THEY ARE AND HOW THEY ARE USED.

THE FIRST ACCRONYM IS THE JOVIAL
NAME OF THE AERODYNAMIC COEFFICIENT
(GFX1, ETC), THE SECOND ACCRONYM S
THE F15 AEROBASE CODE OR CTAB NAME
(ATAB15, ETC). A BRIEF DEFINITION

OF THE AERODYNAMIC-COEFFICIENT IS
ALSO PROVIDED.

3) THERE'IS ALSO A SECTION THAT
PROVIDES A TABLE OF CONVERSIONS
BETWEEN WHAT THE VARIABLE IS CALLED
IN THE OR SECTION OF THIS PROGRAM
AND ITS NAME IN THE 1988 F15
AEROBASE. FOR.THE SAKE OF
CONTINUITY THE ORIGINAL PROGRAM NAME
IS USED AND THE 1988 F15 AEROBASE
NAME IS PROVIDED AS BOOK KEEPING
INFORMATION.

AERRERERRRR R KRR KRR AR R RARRRARRRRRARRRAR RN R RARAKPRRARRRARRRRRRAN R A%

CFX = FORCE IN STABILITY AXIS X DIRECTION (CD IN BODY AXIS)
(FUNGCTION OF CL OR CFZ1) ) )
CFX = CFX1 + CXRB + STORE INCREMENTS + CXDSPD + DCXLG + DCD

CFX1 = ATAB15 = PERFORMANCE DRAG COEFFICIENT - CD

CXRB = ATAB22 = DELTA CD DUE TO CG (=0.0)

CXDSPD = ATAB27 = DELTA CD DUE TO SPEEDBRAKE (NORMALLY = 0.0436)
SET TO 0 SINCE THIS STUDY IS CONCERNED
WITH HIGH ANGLES _
OF ATTACK PHENOMENON (>40 DEGREES) AND BECAUSE
THE SPEEDBRAKE WILL NOT DEPLOY AT ANGLES OF
ATTACK GREATER THAN 15 DEGREES.

DCXLG = ATAB19 = DELTA CD DUE TO REYNOLD'S NUMBER (=-0.0005)

DCD = BTABO3 = DELTA CD DUE TO 2-PLACE CANOPY (F15B) (=0.0005)

*s+++2x NOTE THAT DCXLG AND DCD CANCEL EACH OTHER *******

PRRRR I P RR AT R RA PRI R AR R D AR AR IR AR AR RR RN P AN NN R RARR SRS R AP A RN P RS I PO

CFY = FORCE IN BODY AXIS Y DIRECTION

CFY = CFY1*EPAO2 + CYDAD*DAILD + [CYDRD*DRUDD*DRFLXS]*EPA43
+{CYDTD*DTFLX5 + DTFLX6}"DTALD + CFYP*PB + CFYR*RB
+CYRB + STORE INCREMENTS + DCYB*BETA
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CFY1 = ATAB16 = BASIC SIDE FORCE COEFFICIENT - CY(BETA)
EPA02 = ATAB21 = BETA MULTIPLIER TABLE
CYDAD = ATAB75 = SIDE FORCE COEFFICIENT DUE TO AILERON

DEFLECTION
DAILD = AILERON DEFLECTION (DEG)
CYDRD = ATABS9 = SIDE FORCE COEFFICIENT DUE TO RUDDER DEFLECTION
DRUDD = RUDDER DEFLECTION (DEG)

DRFLX5-= ATABS8 = FLEX MULTIPLIER ON CYDRD (=0.89)
EPA43 = ATAB20 = MULTIPLIER ON CNDR, CLDR, CYDR DUE TO
SPEEDBRAKE
(=1.0) _
CYDTD = ATAB72 = SIDE FORCE COEFFICIENT DUE TO DIFFERENTIAL TAIL
DEFLECTION - CYDDT 7
DTFLX5 = ATAB10 = FLEX MULTIPLIER ON GYDTD (=0.975)
DTFLX6 = ATAB77 = FLEX INCREMENT TO CYDTD (=0.0)
DTALD = DIFFERENTIAL TAIL DEFLECTION (DEG) WHICH 1S
DIRECTLY PROPORTIONAL TO AILERON DEFLECTION
AND IS PRIMARILY USED TO ASSIST IN ROLLING THE
F-15B (DTALD=0.3*DAILD)
CFYP = ATAB13 = SIDE FORCE COEFFICIENT DUE TO ROLL RATE (CYP)
PB = (PEOBB*SPAN)/(2*VILWF)
PEOBB = ROLL RATE IN RAD/SEC = P
SPAN = WING SPAN = 42.8 FEET = BWING
VILWF = VELOCITY IN FT/SEC = VTRFPS
CFYR = ATABO7 = SIDE FORCE COEFFICIENT DUE TO YAW RATE (CYR)
RB = (REOBB"SPAN)/(2*VILWF)
REOBB = YAW RATE IN RAD/SEC = R
CYRB = ATABO3 = ASSYMETRIC CY AT HIGH ALPHA (ANGLE OF ATTACK)
DCYB = 0.0 THERE IS NOINCREMENT DELTA-CYB (SIDE
FORCE)
DUE TO A 2-PLACE CANOPY ON THE F15B. THIS IS
BECAUSE THE SAME CANOPY IS USED ON BOTH THE
BASELINE F15A AND THE-F15B8. THE SIDEFORCE IS
THE SAME FOR BOTH VERSIONS OF THE F15 AND
ALREADY INCLUDED IN THE BASIC SIDE FORCE (CFY1).
THE TWO PLACE CANOPY IS MOUNTED DIFFERENTLY
HOWEVER, SO THERE IS A DIFFERENCE IN YAWING AND
ROLLING MOMENT.
(SEE DCNB AND DCLB)

R g Yy I TR 2 2]

CFZ = FORCE IN STABILITY AXIS Z DIRECTION (CL IN BODY AXIS)
CFZ = CFZ1 + CZDSPD + STORE INCREMENTS + DCL*BETA

CFZ1 = ATAB17 = BASIC LIFT COEFFICIENT - CL
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CZDSPD = ATAB26 = DELTA GL DUE TO SPEEDBRAKE
SET TO 0 DUE TO THE REASONS GIVEN ABOVE IN
~ CXDSPD 7
DCL = BTABO1 = DELTA CL DUE TO 2-PLACE-CANOPY (F15B) (=0.0)

C'k*'ﬂ't*tt?'ik'*ﬂ**ﬂtﬁ***iﬁt***ﬂﬂﬂ!t*!"ﬂ!*Q*Qit*'!lﬁkiﬁ**t*tﬂk'**
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CML = TOTAL ROLLING MOMENT COEFFICIENT IN BODY AXIS

CML = CML1*EPAO2 + CLDAD*DAILD +-[CLDRD*DRUDD*DRFLX1]*EPA43 +
[CLDTD*DTFLX1 + DTFLX2}*DTALD + CMLP*PB + CMLR*RB +
STORE INCREMENTS + CLDSPD + DCLB*BETA

CML1 = ATABO1 = BASIC ROLLING MOMENT COEFFICIENT - CL(BETA)
EPAO2 = ATAB21 = BETA MULTIPLIER TABLE
CLDAD = ATAB73 = ROLL MOMENT COEFFICIENT DUE TO AILERON
DEFLECTION
-(CLDA)
DAILD = AILERON DEFLECTION (DEG)
CLDRD = ATAB67 = ROLLING MOMENT COEFFICIENT DUE TO RUDDER
DEFLECTION -(CLD)
DRUDD = RUDDER DEFLECTION (DEG)
DRELX1 = ATAB8O = FLEX MULTIPLIER ON CLDRD (=0.85)
EPA43 = ATAB30 = MULTIPLIER ON CNDR, CLDR, CYDR DUE TO-
SPEEDBRAKE
(=1.0)
CLDTD = ATAB70 = ROLL MOMENT COEFFICIENT DUE TO DIFFERENTIAL
TAIL
DEFLECTION - CLDD
DTFLX1 = ATAB04 = FLEX MULTIPLIER ON CLDTD (=0.975)
DTFLX2 = ATAB84 = FLEX INCREMENT TO CLDTD (=0.0)
DTALD = DIFFERENTIAL TAIL DEFLECTION (DEG) WHICH 1S
DIRECTLY PROPORTIONAL TO AILERON DEFLECTION
AND IS PRIMARILY USED TO ASSIST IN ROLLING THE
F-158
(DTALD = 0.3*DAILD)
CMLP = ATABO2 = ROLL DAMPING DERIVATIVE -CLP
PB = (PEOBB*SPAN)/(2"VILWF)
PEOBB = ROLL RATE IN RAD/SEC = P
SPAN = WING SPAN = 42.8 FEET = BWING
VILWF = VELOCITY IN FT/SEC = VTRFPS
CMLR = ATAB11 = ROLLING MOMENT COEFFICIENT DUE TO YAW RATE - CLR
RB = (REOBB*SPAN)/(2" VILWF)
REOBB = YAW RATE IN RAD/SEC = R
CLDSPD = ATAB29 = DELTA CL DUE TO SPEEDBRAKE
SET TO 0 DUE TO THE REASONS GIVEN ABOVE IN
CXDSPD
DCLB = BTABO4 = INCREMENT DELTA CLB (ROLLING MOMENT) DUE TO

€
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CMM = TOTAL PITCHING MOMENT COEFFICIENT IN STABILITY AXIS |
(BODY AXIS - AS WELL) |
CMM = CMM1 + CMMQ*QB + STORE INCREMENTS + CMDSPD + DCM

CMM1 = ATABO3 = BASIC PITCHING MOMENT COEFFICIENT - CM
CMMQ = ATABO5 = PITCH DAMPING DERIVATIVE - CMQ
QB = (QEOBB*MAC)/(2* VILWF)

QEOBB = PITCH RATE IN RAD/SEC = Q

MAC = MEAN AERODYNAMIC CHORD = 15.94 FEET = CWING

VILWF = VELOCITY IN FT/SEC = VTRFPS
CMDSPD = ATAB25 = DELTA CM DUE TO SPEEDBRAKE

SET TO 0 DUE THE REASONS GIVEN ABOVE IN CXDSPD

DCM = BTABO2 = DELTA GM DUE TO 2-PLACE CANOPY (F158) (=0.0)

KRN R RN A AR AR RN R AR A AR AR RRRR R I AR RN RN R AR ARAARRAAN AR CAARA R NN

CMN = TOTAL YAWING MOMENT COEFFICIENT IN BODY AXIS

CMN = CMN1"EPA0O2 + CNDAD"DAILD + [CNDRD*DRUDD*DRFLX3]*EPA43
+([CNDTD*DTLX3 + DTFLX4]'DTALD + CMNP*PB + CMNR*RB + CNRB
+DCNB2*EPA36 + STORE INCREMENTS + CNDSPD + DCNB*BETA

CMN1 = ATAB12 = BASIC YAWING MOMENT COEFFICIENT - CN (BETA)

EPAO2 = ATAB21 = BETA-MULTIPLIER TABLE

CNDAD = ATAB74 = YAW MOMENT COEFFICIENT DUE TO AILERON
DEFLECTION -CNDA

DAILD = = AILERON DEFLECTION (DEG)

CNDRD = ATAB68 = YAWING MOMENT COEFFICIENT DUE TO RUDDER
DEFLECTION -CNDR

DRUDD = RUDDER DEFLECTION (DEG)

‘DRFLX3 = ATAB85 = FLEX MULTIPLIER ON CNDRD

EPA43 = ATAB30 = MULTIPLIER ON CNDR, CLDR, CYDR DUE TO SPEEDBRAKE

CNDTD = ATAB71 = YAWING MOMENT COEFFICIENT DUE TO DIFFERENTIAL TAIL
DEFLECTION - CNDDT

DTFLX3 = ATABO8 = FLEX MULTIPLIER ON CNDTD

DTFLX4 = ATABO9 = FLEX INCREMENT ON CNDTD (=0.0)

DTALD = = DIFFERENTIAL TAIL DEFLECTION (DEG) WHICH IS
DIRECTLY PROPORTIONAL TO AILERON DEFLECTION
AND IS PRIMARILY USED TO ASSIST IN ROLLING
THE F-15B (DTALD = 0.3*DAILD)

oXoXeXoXoXeXeXeoXeXeXoXe ko Xe ke koo kool Xo s ke o X ko ke ko ke ke ko Xe koo ke ko XeXe ke ke ko ke XeXoXe Xe o Xo X2 XS
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CMNP = ATAB06 = YAWING MOMENT COEFFICIENT DUE TO ROLL RATE - CNP
PB = (PEOBB*SPAN)/(2*VILWF)

PEOBB=ROLL RATE IN RAD/SEC = P

SPAN = WING SPAN = 42.8 FT = BWING

VILWF = VELOCITY IN FT/SEC = VIRFPS
CMNR = ATAB14 = YAW. DAMPING DERIVATIVE - CNR-
RB = (REOBB*SPAN)/(2*VILWF)

REOBB = YAW RATE IN RAD/SEC = R
CNRB = ATABS6 = ASSYMETRIC CN'AT HIGH-ALPHA /
DCNB2 = ATAB44 = DELTA CNB WITH STABILATOR EFFECT - DELCNB (=0.0)
EPA36 = ATAB94 = MULTIPLIER ON DCNB2 (=BETA)
CNDSPD = ATAB28 = DELTA CN.DUE TO SPEEDBRAKE

SET TO 0 DUE TO THE REASONS GIVEN ABOVE IN CXDSPD

DCNB = BTABO5 = INCREMENT DELTA CNB (YAWING MOMENT) DUE TO

2-PLACE CANOPY (F158B)
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MISCELLANEQUS COEFFICIENTS AND NAME CONVERSION TABLE

1988 F15 ORIGINAL

AEROBASE NAME PROGRAM NAME DEFINITION

AL77D AL ANGLE OF ATTACK
(DEG)

BE77D BETA SIDESLIP ANGLE
(DEG)

BE77D RBETA SIDESLIP ANGLE
(RAD)

BO77D ABET ABSOLUTE VALUE OF
SIDESLIP ANGLE
(DEG) ,

DAILA DAILA ABSOLUTE VALUE OF
AILERON DEFLEC-
TION (DEG)

DAILD DDA AILERON DEFLEC-
TION (DEG)

DRUABS ARUD ABSOLUTE VALUE OF
RUDDER DEFLEC-
TION (DEG)

DRUABS RARUD ABSOLUTE VALUE OF
RUDDER DEFLEC-
TION (RALj}

DRUDD DRUDD RUDDER DEFLECTION
(DEG)
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DSTBD DELESD(R) AVERAGE
STABILATOR
DEFLECTION
DEG (RAD)

DTALD DELEDD(R) DIFFERENTIAL TAIL
DEFLECTION
DEG (RAD)

RBETA=BETA/DEGRAD
DAILA=ABS(DDA)

PB=(P’BWING)/(2.0d0*VTRFPS)
QB=(Q*CWING)/(2.0d0*VTRFPS)
RB=(R*BWING)/(2.0d0*VTRFPS)

THE F-15B AERO DATA TABLES DO NOT CONTAIN STABILITY COEFFICIENT
DATA FOR BETA AND RUDDER DEFLECTION ,DRUDD, LESS THAN 0
DEGREES. THE ABSOLUTE VALUE OF BETA, ABET, AND THE ABSOLUTE
VALUE OF RUDDER DEFLECTION, ARUDD, ARE USED IN THE FOLLOWING
EQ' ATIONS. IN RADIANS THESE PARAMETERS ARE RABET AND RARUD,
RESPECTIVELY. IN SOME CASES THE COEFFICIENT IS MULTIPLIED BY A
-1 FOR PARAMETER VALUES LESS THAN ZERO.

EPA02 IS A MULTIPLIER THAT ADJUSTS THE PARTICULAR COEFFICIENT
IT IS WORKING ON (CFY1,CML1,CMN1) BY CHANGING THAT PARTICULAR
COEFFICIENTS SIGN (POSITIVE OR NEGATIVE) DEPENDENT ON THE SIGN
OF THE SIDESLIP ANGLE (BETA). IF BETA IS NEGATIVE THEN
EPA02=-1.0. IF BETA IS POSITIVE THEN EPA02=1.0. SINCE THIS
FUNCTION IS DISCONTINUOUS AT THE ORIGIN A CUBIC SPLINE HAS
BEEN EMPLOYED TO REPRESENT THIS FUNCTION IN-ORDER THAT

AUTO CAN RUN.

IF (BETA .LT. -1.0) THEN
EPA02S= -1.0d0
ENDIF

IF ((BETA .GE. -1.0) .AND. (BETA .LE. 1.0)) THEN
EPA02S=-1.0d0+(1.50d0*((BETA+1.0d0)**2.0d0))-
1 (0.5040*((BETA+1.0d0)**3.000))
ENDIF

IF (BETA .GT. 1.0) THEN

EPA02S=1.0d0
ENDIF
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IF (BETA .LT. -5.0) THEN
EPAO2L= -1.0d0
ENDIF

O

IF ((BETA .GE. -5.0) .AND. (BETA .LE. 5.0)) THEN
EPA02L=-1.0d0+(0.060d0* ((BETA+5.0d0)**2.040))-
1 (0.0040d0*((BETA+5.0d0)**3.0d0))

ENDIF :
¢
IF (BETA .GT. 5.0) THEN
EPAO2L=1.0d0
ENDIF
C
C
C DTALD=0.30d0*DAILD
DELEDD=0.30d0"DDA
DELEDR=0.30d0*(DDA/DEGRAD)
C
C
C
C","n«aannn;aann"n*:n:nnnnmnnn**h.a-'ngnnnnnfnnﬂ
C
C
C
C -
CFZ1=-0.00369376+(3.78028702"RAL)+(0.6921459"RAL"RAL)-(5.0005867
+*(RAL**3))+(1.94478199"(RAL**4))+(0.40781955"DELESR)+(0.10114579
+*(DELESR*DELESR))
C
CFZ=CFzZA1
C
C
C.‘..'n.nonnn.nannnnnnnnnnw.nnnngnn.nnnn.n"
C
C
C
C
C
CL=CFZ1/567.29578
C
C  THIS CONVERSION-OF CFZ1 TO CLIS AN ARTIFACT FROM THE
C CURVE FITTING PROCESS WHERE ALL THE INDEPEMDENT VARIABLES
C WERE ANGLES THAT WERE CONVERTED FROM DEGREES TO RADIANS.
C ITJUST SO HAPPENED THAT FOR CFX1 ONE OF THE VARIABLES
C WAS NOT AN ANGLE BUT A DIMENSIONLESS COEFFICIENT.
C
C ,
CFX1=0.01806821+(0.01556573*CL)+(498.96208868*CL"CL)
+-(14451.56518396*(CL**3))+(2132344.6184755°(CL""4))
C
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C TRANSITIONING FRON. LOW AOA DRAG TABLE TO HIGH AOA DRAG TABLE
C

CFX2=0.0267297-(0.10646919*RAL)+(5.39836337*RAL*RAL)

+-(5.0086893*(RAL**3))+(1.34148193*(RAL**4))+

+(0.20978902* DELESR)+(0.30604211*(DELESR**2))+0.09833617
C.

A1=20.0d0/DEGRAD

A2=30.0d0/DEGRAD

A12=A1+A2

BA=2.0/(-A1**3+3."A1*A2*(A1-A2)+A2**3)

BB=-3.0d0*BA*(A1+A2)/2.0d0

BC=3.0d0*BA*A1*A2

BD=BA*A2"*2*(A2-3.0d0*A1)/2.0d0

F1=BA*RAL**3+BB*RAL""2+BC*RAL+BD

F2=-BA"RAL**3+(3.0d0*A12*BA+BB)*RAL**2.0d0-

+ (BC+2.0d0*A12*BB+3.0d0*A12**2*BA)*RAL+

+ -BD+A12'BC+A12**2*BB+A12**3"'BA

IF (RAL .LT. A1) THEN
CFX=CFX1

ELSEIF (RAL .GT. A2) THEN
CFX=CFX2

ELSE
CFX=CFX1'F1+CFX2°F2

ENDIF
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DTFLX5=0.975d0
DRFLX5=0.89d0
c
CFY1=-0.05060386-(0.12342073"RAL)+(1.04501136°RAL’RAL)
+-(0.17239516*(RAL"*3))-(2.90979277°(RAL*"4))
++(3.06782935*(RAL**5))-(0.88422116"(RAL**6))
+-(0.06578812"RAL*RABET)-(0.71521988*RABET)-(0.00000475273
+*(RABET**2))-(0.04856168*RAL’ DELESR)-(0.05943607*RABET* DELESR)+
+(0.02018534°*DELESR)
c
IF (RAL .LT. .52359998) THEN
c
CFYP=0.014606188+(2.52405055°RAL)-(5.02687473"(RAL""2))
+-(106.43222962*(RAL**3))+(256.80215423*(RAL**4))
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+4+(1256.39636248* (RAL**5))
+-(3887.92878173*(RAL""6))-(2863.16083460°(RAL"*7))+
+(17382.72226362* (RAL**8))-(13731.65408408* (RAL**9))

ENDIF

1F ((RAL .GE. .52359998) .AND. (RAL .LE. .610865)) THEN
CFYP=0.00236511+(0.52044678*(RAL-0.52359998))-(12.8597002" (RAL-
+0.52359908)"*2)+(75.46138*(RAL-0.52359998)**3)

ENDIF

IF (RAL .GT. 0.610865) THEN

CFYP=0.0d0
ENDIF

IF (RAL .LT. -0.06981) THEN

CFYR=0.35d0
‘ENDIF

IF ((RAL .GE. -0.06981) .AND. (RAL .LT. 0.0)) THEN
CFYR=0.34999999+(35.4012413"(RAL+0.06981)**2)-(493.33441162"
+(RAL+0.06981)**3)

ENDIF

IF (RAL .GE. 0.0) .AND. (RAL .LE. 0.523599)) THEN
CFYR=0.35468605-(2.26998141 *RAL)+(51.82178387"RAL*RAL)
+-(718.55069823*(RAL"*3))
++(4570.00492172* (RAL"*4))-(14471.88028351" (RAL**5))+
+(22026.58930662* (RAL"*6))-(12755.99029404* (RAL**7))

ENDIF

IF ((RAL .GT. 0.523599) .AND. (RAL .LE. 0.61087)) THEN
CFYR=0.00193787+(1.78332496"(RAL-0.52359903))-(41.63198853" (RAL-
+0.52359903)"*2)+(239.97909546" (RAL-0.52359903)" *3)

ENDIF

IF (RAL .GT. 0.61087) THEN

CFYR=0.0d0
ENDIF

IF (RAL .LT. 0.55851) THEN

CYDAD=-0.00020812+(0.00062122°RAL)+(0.00260729'RAL"RAL)
++(0.00745739°(RAL"*3))-(0.0365611 *(RAL"*4))
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+-(0.04532683"(RAL**5))+(0.20674845"(RAL""6))
+-(0.13264434"(RAL""7))-(0.00123383"(RAL"*8))
ENDIF

IF ((RAL .GE. 0.55851) .AND. (RAL .LT..0.61087)) THEN

CYDAD=0.00023894+(0.00195121*(RAL-0.55851001))+(0.02459273
+*(RAL-0.55851001)**2)-(0.1202244" ((RAL-0.55851001)*3))
ENDIF

IF (RAL .GE. 0.61087) THEN

CYDAD=0.27681285-(2.02305395"RAL)+(6.01180715"RAL"RAL)
+-(9.24292188"(RAL"*3))+(7.59857819"(RAL""4))
+-(2.8565527*(RAL"*5))+(0.25460503*(RAL"**7))
+-(0.01819815"(RAL**9))

ENDIF

IF (RAL .LE. 0.0) THEN

EPA43=1.0d0

ENDIF

IF (RAL .GT. 0.0 AND :LE. 0.6283185) THEN

0.6283185 RADIANS = 36 DEGREES
EPA43=0.9584809+(4.13369452* RAL)-(18.31288396"RAL*RAL) +
+(19.5611466*(RAL™*3))-(1.09295946*RAL’DSPBD)+(0.17441033"
+DSPBD*DSPBD)

ENDIF

IF (RAL .GT. 0.6283185) THEN

EPA43=1.0d0

ENDIF
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NOTE - THE PARAMETER EPA43 IS A MULTIPLIER ON RUDDER
EFFECTIVENESS DUE TO SPEEDBRAKE. THIS TABLE IS ALSO
LIMITED TO 36 DEG AOA. HOWEVER, THERE IS NO AERODY
NAMIC SEFFECT FOR ANGLES OF ATTACK LESS THAN 16 DEG,
AND THE SPEEDBRAKE IS AUTOMATICALLY RETRACTED AT AOA
GREATER THAN 15 DEG. THEREFORE, THIS TABLE SHOULD
NOT BE NECESSARY FOR THE ORDINARY OPERATION OF THE
AIRCRAFT
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CYDRD=0.00310199+(0.00119963"RAL)+(0.02806933 RAL"RAL)
+-(0.12408447* (RAL**3))-(0.12032121*(RAL"*4))

++(0.79150279" (RAL**5))-(0.86544347*(RAL" *6))
++(0.27845115"(RAL**7))+(0.00122999° RAL‘RARUD)+(0.00145943
+"RARUD)-(0.01211427°RARUD*RARUD)+(0.00977937*(RARUD"*3))

CYDTD=-0.00157745-(0.0020881°RAL)+(0.00557239"RAL"RAL)
+-(0.00139886°(RAL"*3))+(0.04956247*(RAL""4))
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+-(0.0135353*(RAL**5))-(0.11552397*(RAL"*6)) ,
++(0.11443452*(RAL**7))-(0.03072189"(RAL"*8))-(0.01061113"
+(RAL**3)*DELESR)-(0.00010529*RAL*RAL"DELESR*DELESR)
+-(0.00572463*RAL*DELESR'DELESR)
++(0.01885361*RAL*RAL*DELESR)-(0.01412258"RAL*(DELESR**3))
+-(0.00081776*DELESR)+(0.00404354*(DELESR"*2))-
+(0.00212189*(DELESR**3))+(0.00655063"(DELESR**4))
++(0.03341584"(DELESR**5))

RALY1=0.6108652
RALY2=90.0d0/DEGRAD
RBETY1=-0.0872665
RBETY2=0.1745329

AY=0.164000
ASTARY=0.95993
BSTARY=0.087266

ZETAY=(2.0D0"ASTARY-(RALY1+RALY2))/(RALY2-RALY1)
ETAY=(2.000*BSTARY-(RBETY1+RBETY2))/(RBETY2-RBETY1)

X=(2.000*RAL-(RALY1+RALY2))/(RALY2:RALY1)
Y=(2.0D0*RBETA-(RBETY1+RBETY2))/(RBETY2-RBETY1) .

FY=((5.0D0*(ZETAY"**2))-(4.0D0*ZETAY"X)-1.0D0)*(((X**2)-1.0D0)
+**2)*(1.0DO/(((ZETAY**2)-1.0D0)"*3))

GY=((5.0D0"(ETAY**2))-(4.0DO"ETAY*Y)-1.0D0)*(((Y**2)-1.0D0)*"2)
+*(1.0DO/(((ETAY**2)-1.0D0)**3))

CYRB=AY'FY'GY

IF (RAL .LT. 0.6108652) THEN

CYRRB=0.0d0

GOTO 500

ENDIF

IF ((RBETA .LT. -0.0872665) .OR. (RBETA .GT. 0.1745329)) THEN
CYRB=0.0d0

GOTO 500
ENDIF

500 CFY=(CFY1°EPA02L)+(CYDAD'DDA)+(CYDRD’DRUDD’DRFLX5"EPA43)+

C
C

+{(CYDTD*DTFLX5)"DELEDD)+(CFYP*PB)+(CFYR’RB)
++CYRB

Coo"O'a'QQooOQ'cooootooaooaaoo.'aoo.00...oooc.aa.acooc.'o'aaaocoqooto
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DTFLX1=0.9750d0
-DRFLX1=0.850d0

CML1=-0.00238235-(0.04616235*RAL)+(0.10553168"RAL'RAL)
++(0.10541585"(RAL**3))-(0.40254765*(RAL**4))
++(0.32530491*(RAL**5))-(0.08496121*(RAL"*6))
++(0.00112288*(RAL**7))-(0.05940477*RABET*RAL)-
+(0.07356236* RABET)-(0.00550119*RABET*RABET)+(0.00326191
+*(RABET**3))

IF (RAL .LT. 0.29671) THEN

CMLP=-0.24963201-(0.03106297*RAL)+(0.12430631*RAL*RAL)
+-(8.95274618"(RAL**3))+(100.33109929* (RAL**4))
++(275.70069578" (RAL**5))-(1178.83425699° (RAL**6))
+-(2102.66811522* (RAL"*7))+(2274.89785551*(RAL**8))

ENDIF

IF ((RAL .GE. 0.29671) .AND. (RAL .LT.-0.34907)) THEN

CMLP=-0.1635261-(3.77847099"(RAL-0.29671001))+(147.47639465
+*(RAL-0.29671001)**2)-(1295.94799805"(RAL-0.28671001)**3)
ENDIF

IF (RAL .GE. 0.34907) THEN

CMLP=-1.37120291+(7.06112181°RAL)-(13.57010422*RAL"RAL)
++(11.21323850"(RAL"*3))
+-(4.26789425°(RAL""4))+(0.6237381*(RAL"*5))

ENDIF

IF (RAL .LT. 0.7854) THEN

CMLR=0.03515391+(0.59296381°RAL)+(2.27456302* RAL"RAL)
+-(3.8097803*(RAL"*3))

+-(45.83162842* (RAL"*4))+(55.31669213" (RAL**5))+
+(194.29237485*(RAL"*6))-(393.22969953" (RAL’ *7))+(192.20860739°
+(RAL"*8))

ENDIF

IF ((RAL .GE. 0.7854) .AND. (RAL .LE. 0.87266)) THEN
CMLR=0.0925579071-(0.6000000238* (RAL-0.7853999734))
++(1.3515939713°((RAL-0.7853999734)"*2))

++(29.0733299255"((RAL-0.7353999734)*"3))
ENDIF
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IF (RAL .GT. 0.87266) THEN

CMLR=-311.126041+(1457.23391042"RAL)-(2680.19461944"RAL"RAL) +
+(2361.44914738" (RAL™*3))-(893.83567263" (RAL"*4))+(68.23501924*
+(RAL"*6))-(1.72572994*(RAL"*9))

ENDIF

CLDAD=0.00057626+(0.00038479*RAL)-(0.00502091*RAL’RAL)
++(0.00161407*(RAL"*3))+(0.02268829*(RAL**4))
+-(0.03935269" (RAL**5))+(0.02472827*(RAL"*6))
+-(0.00543345*(RAL**7))+(0.0000007520348* DELESR"RAL) +
+(0.000000390773*DELESR)

CLDRD=0.00013713-(0.00035439°RAL)-(0.00227912*RAL*RAL)
++(0.00742636*(RAL**3))+(0.00991839* (RAL**4))
+-(0.04711846(RAL**5))+(0.046124* (RAL"*6))
+-(0.01379021*(RAL**7))+(0.00003678685°RARUD*RAL) +
+(0.00001043751*RARUD)-(0.00015866°RARUD*RARUD)+(0.00016133
+(RARUD""3))

CLDTD=0.00066663+(0.00074174"RAL)+(0.00285735°RAL°RAL)
+-(0.02030692" (RAL**3))-(0.00352997*(RAL"*4))

++(0.0997962* (RAL**5))-(0.14591227*
+(RAL""6))+(0.08282004*(RAL"*7))
+-(0.0168667*(RAL**8))+(0.00306142*(RAL**3)* DELESR)
+-(0.00110266"RAL*RAL*(DELESR" "2))+(0.00088031°RAL"
+(DELESR"*2))-(0.00432594*RAL*RAL*DELESR)-
+(0.00720141°RAL*(DELESR**3))
+-(0.00034325*DELESR)+(0.00033433* (DELESR**2))+(0.00800183
+*(DELESR**3))-(0.00555986° (DELESR"*4))-(0.01841172*(DELESR**5))

IF (RAL .LT. 0.0) THEN

DGLB=-0.000060d0
ENDIF

IF ((RAL .GE. 0.0) .AND. (RAL .LE. 0.209434)) THEN

DCLB=-0.000060d0+(0.0041035078°RAL"RAL)-(0.0130618699°(RAL*"3))
ENDIF

IF (RAL .GT. 0.209434) THEN
DCLB=0.0d0
ENDIF

CML=(CML1°EPA02S)+(CLDAD*DDA)+(CLDRD*DRUDD"DRFLX 3 "EPA4S)+
+((CLDTD*DTFLX1)°DELEDD)+(CMLP*PB)+(CMLR"RB)+(DCLB*BETA)
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CMM1=0.00501496-(0.08004901"RAL)-(1.03486675*RAL"RAL)
+-(0.68580677* (RAL**3))+(6.46858488* (RAL**4))
+-(10.15574108*(RAL**5))+
+(6.44350808"(RAL"*6))-(1.46175188*(RAL**7))
++(0.24050902*RAL*DELESR)

+-(0.42629958* DELESR)-(0.03337449* DELESR*DELESR)
+-(0.53951733*(DELESR**3))

modified 25 Jul 90 to use new curve fit for CMQ

OLD EQUATION
IF (RAL .LE. 0.25307) THEN
CMMQ=-3.8386262+(13.54661297"RAL)+(402.53011559"RAL"RAL)
+-(6660.95327122*(RAL**3))-(62257.89908743"(RAL**4))
++(261526.10242329*(RAL**5))
++(2177190.33155227*(RAL**6))-(703575.13709062*(RAL**7))-
+(20725000.34643054*(RAL*"8))-(27829700.53333649"(RAL**9))
ENDiF
IF ((RAL .GT. 0.25307) .AND. (RAL .LT. 0.29671)) THEN
CMMQ=-8.4926528931-(2705.3000488281*(RAL-0.2530699968))
++(123801.5*(RAL-0.2530699968)**2)
+-(1414377*(RAL-0.2530699968)**3)
ENDIF
IF (RAL .GE. .29671) THEN
CMMQ=47.24676075-(709.60757056*RAL)+(3359.08807193"RAL*RAL)-
+(7565.32017266*(RAL**3))+(8695.1858091*(RAL"*4))
+-(4891.77183313*(RAL**5))+(1061.55915089*(RAL**6))
ENDIF

CMMQ vs. alpha n degrees

NEW EQUATION
convert alpha to degrees
A=RAL*DEGRAD

F1=-4.33509d0+A*(-0.141624d0+A*(0.0946448d0+A*(-0.00798481d0
+ +A*(-0.00168344d0+A"(0.000260037d0+A*(6.64054d-6+A"(
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+ -2.20055d-6+A*(-2.74413d-8+A*(7.14476d-9+A*
+ 2.07046d-10)))H))))

F2=-302.567+a"(106.288+a"(-14.7034+A*(1.02524+A*(-0.0393491
+ +A*(0.00084082+A*(-0.3656-6+A4.2355¢-8))))))

F3=1724.99+A*(-158.944+A*(5.59729+A*(-0.0949624+A*(
+ 0.000779066+A*(-2.47982¢-6)))))

O

ramp functions

R1=1.0-0.75*(A-10.0)**2+0.25*(A-10.0)**3
R2=1.0-R1
R3=1.0-7.5%(A-40.0)"*2/62.5+(A-40.0)**3/62.5
R4=1.0-R3

IF(A.LT.10.0)THEN.
CMMQ=F1
ELSEIF(A.LT.12.0)THEN
CMMQ=F1*R1+F2"R2
ELSEIF(A.LT.40.0)THEN
CMMQ=F2
ELSEIF(A.LT.45.0)THEN
CMMQ=F2*R3+F3"R4
ELSE
CMMQ=F3
ENDIF
C
CMM=CMM1+(CMMQ*QB)
C
C
Ctﬁttt:t*ﬂﬁﬂtit!t*kﬁtttttntﬂt’tﬁQﬂtttﬂ'tﬁﬁ'titﬁQtttﬁﬁﬁtttﬂlﬁ'tﬂtﬁkﬁﬂttc
C
C
DTFLX3=0.9750d0
DRFLX3=0.830d0

CMN1=0.01441512+(0.02242944*RAL)-(0.30472558* (RAL**2))
++(0.14475549*(RAL**3))
++(0.93140112*(RAL**4))-(1.52168677*(RAL**5))+
+{0.90743413*(RAL**6))-(0.16510989*(RAL**7))
+-(0.0461968*(RAL*"8))

++(0.01754292* (RAL**9))-(0.17553807*RAL*RABET)+
+(0.15415649*RAL*RABET*DELESR)
++(0.14829547*(RAL**2)*(RABET**2))
+-(0.11605031*(RAL**2)*RABET*DELESR)
+-(0.06290678*(RAL**2)*(DELESR**2))
+-(0.01404857*(RAL**2)*(DELESR**2))
++(0.07225609* RABET)-(0.08567087* (RABET**2))
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++(0.01184674*(RABET**3))
+-(0.00519152*RAL*DELESR)+(0.03865177*RABET*DELESR)
++(0.00062918*DELESR)

CNDRD=-0.00153402+(0.00184982°RAL)-(0.0068693*RAL'RAL)
++(0.01772037*(RAL**3))
++(0.03263787*(RAL**4))-(0.15157163*(RAL*5)}+(0.18562888
+*(RAL**6))-(0.0966163*(RAL**7))+(0.01859168* (RAL**8))+(0.0002587
+*RAL*DELESR)-(0.00018546*RAL*DELESR*RBETA)-(0.00000517304*RBETA)
+-(0.00102718*RAL*RBETA)-(0.0000689379*RBETA* DELESR)-(0.00040536
+*RBETA*RARUD)-(0:00000480484*DELESR*RARUD)
+-(0.00041786*RAL*RARUD)
++(0.0000461872"RBETA)+(0.00434094*(RBETA**2))
#-(0.00490777*(RBETA**3)) 7
++(0.000005157867*RARUD)+(0.00225169*RARUD*RARUD)-(0.00208072
+*(RARUD**3))

IF (RAL .LT. 0.55851) THEN

CMNP=-0.00635409-(1.14153932*RAL)+(2.82119027*(RAL**2))+
+(54.4739579* (RAL**3))-(140.89527667" (RAL**4))-(676.73746128"
+(RAL**5))+(2059:18263976* (RAL**6))+(1579.41664748*(RAL"*7))
+-(8933.08535712*(RAL**8))+(6806.54761267*(RAL™*9))

ENDIF

IF ((RAL .GE. 0.55851001) .AND. (RAL .LE. 0.61087)) THEN
CMNP=-.07023239+(1.085815*(RAL -0.55851))
++(8.852651*((RAL-.55851)*"2))-(192.6093*((RAL-0.55851)*"3))
ENDIF

IF (RAL .GT.0.61087) THEN
CMNP=-71.03693533+(491.32506715"RAL)
+-(1388.11177979*(RAL""2))+

+(2033.48621905*(RAL**3))

+-(1590.91322362* (RAL"*4))+(567.38432316* (RAL**5))

+-(44.97702536"(RAL*"7))+(2.8140669"(RAL**9))
ENDIF

IF (RAL .LE. -.069813) THEN

CMNR= -0.28050d0
ENDIF

IF ((RAL .GT. -.069813) .AND. (RAL .LT. 0.0)) THEN

CMNR=-0.2804999948+(35.9903717041*(RAL+.0698129982)"“2)
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+-(516.1574707031*(RAL+.0698129982)**3)
ENDIF

IF ((RAL .GE. 0.0) .AND. (RAL .LE. 0.78539801)) THEN

CMNR=-.28071511-(2.52183924*RAL)+(68.90860031*(RAL"*2))
+-(573.23100511*(RAL**3))+(2009.08725005* (RAL**4))
+-(3385.15675307*(RAL**5))
++(2730:49473149*(RAL*6))-(848.12322034*(RAL**7))

ENDIF

IF ((RAL .GT. 0.78539801) .AND. (RAL .LT. 0.95993102)) THEN

CMNR=-0.1096954+(0.52893072*(RAL-0.78539801))-(6.09109497* (RAL-
+0.78539801)**2)+(17.47834015*(RAL-0.78539801)"*3)
ENDIF

IF (RAL .GE. 0.95993102) THEN.

‘CMNR=-0.110d0
ENDIF

CNDTD=0.00058286+(0.0007341*RAL)-(0.00746113*RAL*RAL)
+-(0.00685223* (RAL**3))
++(0.03277271*(RAL**4))-(0.02791456*(RAL"*5))
++(0.00732915*(RAL**6))
++(0.00120456*RAL*DELESR)-(0.00168102* DELESR)+(0.0006462*
+DELESR*DELESR)

CNDAD=0.00008228887-(0.00014015*RAL)-(0.0013493"RAL*RAL)+
+(0.00020487* (RAL**3))+(0.00561241*(RAL**4))

+-(0.00634392* (RAL**5))

++(0.00193323* (RAL**6))-(2.05815E-17*(RAL*DAILA))+(3.794816E-17"
+(DAILA**3))

DCNB=-2.500E-4
RALN1=0.69813
RALN2=90.0d0/DEGRAD
RBETN1=-0.174532
RBETN2=0.34906
AN=0.034d0
ASTARN=1.0472d0
BSTARN=0.087266

ZETAN=(2.0D0"ASTARN-(RALN1+RALN2))/(RALN2-RALN1)
ETAN=(2.0D0*BSTARN-(RBETN1+RBETN2))/(RBETN2-RBETN1)

XN=(2.0D0*RAL-(RALN1+RALN2))/(RALN2-RALN1)
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YN=(2.0D0* RBETA-(RBETN1+RBETN2))/(RBETN2-RBETN1)

FN=((5.0D0*(ZETAN**2))~(4.0D0*ZETAN*XN)-1.0D0)"
+(((XN**2)-1.0D0)**2)/(((ZETAN"*2)-1.0D0)**3)

GN=((5.0D0*(ETAN**2))-(4.0D0*ETAN*YN)-1.0D0)*
+(((YN**2)-1.0D0)**2)/(((ETAN**2)-1.0D0)**3)

CNRB=AN'FN*GN
IF (RAL .LT. 0.69813) THEN

CNRB=0.0d0
GOTO 1000
‘ENDIF

IF ((RBETA .LT. -0.174532) .OR. (RBETA .GT. 0.34906)) THEN

CNRB=0.0d0
-GOTO 1000
ENDIF

000 CMN=(CMN1*EPA02S)+(CNDAD*DDA)+((CNDRD*DRUDD*DRFLX3)*EPA43)+
+((CNDTD*DTFLX3)*DELEDD)+(CMNP*PB)+(CMNR*RB)+(DCNB*BETA)
++CNRB
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THIS SECTION DETERMINES THE EFFECT OF THE THRUST VALUES FOR
ADDITION TO CX, CY, CZ, CLM, CMM, AND CNM VALUES DETERMINED
ABOVE AND CONTAIN THE FOLLOWING VARIABLES:

CPTAL - COSINE OF PITCH VECTOR ANGLE

SPTAL - SINE OF PITCH VECTOR ANGLE

CYTAL - COSINE OF YAW VECTOR ANGLE

SYTAL - SINE OF YAW VECTOR ANGLE

ENGPQ - PORT ENGINE THRUST/(QBAR'S)

ENGSQ - STARBOARD ENGINE THRUST/(QBARS*S)

CXENGP - COEFFICIENT OF PORT ENGINE THRUST IN X DIRECTION
CXENGS - COEFFICIENT OF SBRD ENGINE THRUST IN X DIRECTION
CXT - COEFFICIENT OF TOTAL THRUST IN X DIRECTION

CYENGP - COEFFICIENT OF PORT ENGINE THRUST IN Y DIRECTION
CYENGS - COEFFICIENT-OF SRBD ENGINE THRUST IN-Y DIRECTION
CYT - COEFFICIENT OF TOTAL THRUST IN Y DIRECTION

CZENGP -

CZENGS -

czr -

CLMT -
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CMMT -
CNMT -

‘CPTAL=COS(PTAL)
SPTAL=SIN(PTAL)
CYTAL=COS(YTAL)
SYTAL=SIN(YTAL)
CRAL=COS(RAL)
SRAL=SIN(RAL)

ENGPQ=ENGP/QBARS
ENGSQ=ENGS/QBARS

CXENGP=ENGPQ*'CPTAL*CYTAL
CXENGS=ENGSQ*CPTAL*CYTAL
CXT=CXENGP+CXENGS

CYENGP=ENGPQ'CPTAL'SYTAL
CYENGS=ENGSQ'CPTAL"SYTAL
CYT=CYENGP+CYENGS

CZENGP=ENGPQ'SPTAL
CZENGS=ENGSQ*SPTAL
CZT=CZENGS+CZENGP

CLMT=(CZENGS-CZENGP)*(25.5d0/12.0d0)/BWING

CMMT=CXT"*(0.25d0/12.0d0)/CWING+
+  CZT7°20.219d0/CWING

CNMT=(CXENGP-CXENGS)*(25.5d0/12:0d0)/BWING-
+ CYT'20.219d0/BWING

CX=CFZ*SRAL-CFX*CRAL+CXT
CY=CFY+CYT
CZ=-(CFZ*CRAL+CFX*SRAL)+CZT
CLM=CML+CLMT
CMM=CMM+CMMT
CNM=CMN+CNMT

THE 0.25/12.0 IS THE OFFSET OF THE THRUST VECTOR FROM THE CG
THE 20.219 is the moment arm from the nozzle pivot to the cg

THE 25.5/12.0 is the moment arm of the engines from the cg

RETURN CX, CY, CZ, CLM, CMM, CNM TO CALLING PROGRAM.

-‘RETURN
END
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* THIS SUBROUTINE EXECUTES THREE DIFFERENT BLENDS FROM
* THE MCDONNELL MODEL COEFICIENT DATABASE TO THE ROTARY
* BALANCE COEFICIENTS GIVEN THE VALUE OF PARAMETER (10);
* BLEND. THE FIRST MODE-(PAR(10)<1.0) IS INTENDED TO
* BE USED TO DETERMINE AN EQUILIBRIUM STATE SET OF
* PARAMETERS FOR THE ROTARY BALANCE DATA MODEL GIVEN A
* SET OF KNOWN STATIC AERODYNAMIC EQUILIBRIA. THE
* SECOND MODE (PAR(10) = 2.0) SETS THE MODEL TO EXECUTE
* PURE ROTARY BALANCE DATA ABOVE AOA 35 DEGREES. THE
* THIRD-MODE (PAR(10)-= 3.0) IS A HYBRID MODEL WHERE
* BOTH THE STATIC AND ROTARY BLANCE ‘DATABASES ARE
) COMBINED UTILIZING UNIQUE ASPECTS OF BOTH 'DATABASES.
C -
SUBROUTINE RBBLEND(U,PAR,NDIM,ICP)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /SEIZE/ CX,CY,CZ,CLM,CMM,CNM
COMMON /SEIZET/ CXT,CYT,CZT,CLMT,CMMT,CNMT
COMMON /SEIZER/ CXR,CYR,CZR,CLMR,CMMR,CNMR
COMMON /RBPOLY/ PC, OMEGA
DIMENSION PAR(10),PC(6,79),U(NDIM)

IF (PAR(10) .LT. 2.0) THEN

BLEND = PAR(10)

O OO OO

CXS = CX-CXT

CYS = CY-CYT

CZS = CZ-CZT

CLMS = CLM-CLMT
CMMS = CMM-CMMT
CNMS = CNM-CNMT

CX = CX + (CXR-CXS)'BLEND

CY = CY + (CYR-CYS)'BLEND

CZ = CZ + (CZR-CZS)"BLEND

CLM = CLM + (CLMR-CLMS)*BLEND
CMM = CMM + (CMMR-CMMS)*BLEND
CNM = CNM + (CNMR-CNMS)*BLEND

ENDIF
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IF (PAR(10) .EQ. 3.0) THEN

AL = U(1)
BETA = U(2)

DEGRAD = 57.2957795
RAL = ALUDEGRAD
RBETA = BETA/DEGRAD

PTEMP =U(3)
QTEMP = U(4)
RTEMP = U(5)

P = U(3) - OMEGA*DSIN(RBETA) S
Q = U(4) - OMEGA"DSIN(RAL)*DCOS(RBETA)
R = U(5) - OMEGA*DCOS(RAL)*"DCOS(RBETA)

O

Uu@g)="P
U4)=Q
Uid)=R

CXRP = CXR
CYRP = CYR
CZRP = CZR
CLMRP = CLMR
CMMRP = CMMR
CNMRP = CNMR

CALL COEFF(U,PAR,NDIM,ICP)

CALL RBCOEF(U,PAR,NDIM)

CXRO = CXR
CYRO = CYR
CZRO = CZR
CLMRO = CLMR
CMMRO = CMMR
CNMRO = CNMR

CXS = CX-CXT

CYS = CY-CYT

CZS = CZ-CZT

CLMS = CLM-CLMT
CMMS = CMM-CMMT
CNMS = CNM-CNMT
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CXR = CXS + (CXRP-CXRO0)

CYR = CYS + (CYRP-CYRO)

CZR = CZS + (CZRP-CZRO)
CLMR = CLMS + (CLMRP-CLMRO)
CMMR = CMMS + (CMMRP-CMMRO)
CNMR = CNMS + (CNMRP-CNMRO)

U(8) = PTEMP
U@4) = QTEMP
U(5) = RTEMP

CALL COEFF(U,PAR,NDIM,ICP)

ENDIF

IF (PAR(10) .GE. 2.0) THEN

DEGRAD = 57.2957795

AL = U(1)

RAL = AUDEGRAD

DELTA = 5/DEGRAD

BLEND = (RAL - 0.523598776)/DELTA

IF ((RAL .LE. 0.610865238) .AND. (RAL .GE. 0.523598776))THEN

CX = CX + (CXR-CX+CXT)*(3-2°BLEND)"BLEND*BLEND

CY = CY + (CYR-CY+CYT)*(3-2"BLEND)*BLEND*BLEND

CZ = CZ + (CZR-CZ+CZT)*(3-2"BLEND)"BLEND*BLEND

CLM = CLM + (CLMR-CLM+CLMT)"(3-2"BLEND)*"BLEND"BLEND
CMM = CMM + (CMMR-CMM+CMMT)"(3-2"BLEND)*BLEND”BLEND
CNM = CNM + (CNMR-CNM+CNMT)"(3-2°BLEND)*BLEND*BLEND

ELSE

CX = CXR + GXT

CY = CYR + CYT

CZ = CZR + CZT

CLM = CLMR + GLMT
CMM = CMMR + CMMT
CNM = CNMR + CNMT

ENDIF
ENDIF

RETURN
END
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THE FOLLOWING TWO SUBROUTINES, RBPOLYCOEF AND RBCOEF,
REPRESENT THE ROTARY BALANCE COEFICIENT DATA. THE FIRST
ROUTINE READS IN THE COEFICIENTS OF THE POLYNOMIALS THAT
REPRESENT THE SIX COEFICIENTS AND THE SECOND ROUTINE IS THE
POLYNOMIAL THAT REPRESENTS THE POLYNOMIAL.
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C
SUBROUTINE RBPOLYCOEF
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /RBPOLY/ PC, OMEGA
DIMENSION PC(6,79)

OPEN(99,FILE="RBDATA.150’,STATUS="OLD’)
REWIND(99)
DO 110 1=1,6
DO-100 L=1,79
READ(99,") PC(I,L)
100 CONTINUE
110 CONTINUE
RETURN
END

SUBROUTINE RBCOEF(U,PAR,NDIM)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /SEIZER/ CXR,CYR,CZR,CLMR,CMMR,CNMR
COMMON /RBPOLY/ PC, OMEGA

DIMENSION U(NDIM),PAR(10),PC(6,79)

AL =U(1)
DEGRAD = 57.29577951

RAL = AUDEGRAD
IF ((RAL .LE. 1.5708) .AND. (RAL .GE. 0.5235988)) THEN

CALL RBDATA(U,PAR,NDIM,1,CXR)
CALL RBDATA(U,PAR,NDIM,2,CYR)
CALL RBDATA(U,PAR,NDIM,3,CZR)
CALL RBDATA(U,PAR,NDIM,4,CLMR)
CALL RBDATA(U,PAR,NDIM,5,CNMR)
CALL RBDATA(U,PAR,NDIM,8,CMMR)
CXR-= -CXR

CZR =-CZR

ENDIF

RETURN

END
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SUBROUTINE RBDATA(U,PAR,NDIM,|,CF)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/ACDATA/BWING,CWING;SREF,RHO,RMASS
COMMON /RBPOLY/ PC, OMEGA

DIMENSION U(NDIM),PAR(10),PC(6,79)

DEGRAD = 57.29577951
A = U(1)/DEGRAD

B-= U(2)/DEGRAD

P = U(3)

Q = U(4)

R = U(5)

VTRFPS = U(8)*1000

DE = PAR(1)/DEGRAD

DR = PAR(2)/DEGRAD

DA = PAR(3)/DEGRAD
DD = PAR(9)/DEGRAD-

FOR COMPARISON TO PREVIOUS MODELS, DIFFERENTIAL ELEVATOR

WILL BE VARIED AS A FUNCTION OF AILERON DEFLECTION.
DD = 0.3'DA

OMEGA = (P*DCOS(A) + R*DSIN(A))*DCOS(B) + Q*"DSIN(B)
OM = (BWING*OMEGA)/(2’VTRFPS)

79 TERM ROTARY BALANCE DATA POLYNOMIAL

C1 = PC(,1) + PC(1,2)°A + PC(1,3)'B

C2 = PC(1,4)"DA + PC(1,5)°DD + PC(l,6)*DE

C3 = PC(i,7)"OM + PC(1,8)’DR + PC{l,9)"A"A

C4 = PC(1,10)’DA’B + PC(1,11)B*B + PC(1,12)’B'DR

C5 = PC(1,13)*A*OM + PC(},14)"DA*DD + PC(1,15)°'DR"DR

C6 = PC(1,16)"OM*OM + PC(1,17)'DA*A + PC(I,18)"B*OM

C7 = PC(1,19)°DD*DD + PC(1,20)*OM°DE + PC(1,21)*'DD*A

C8 = PC(1,22)’A"DE + PC(1,23)'B*DE

C9 = PC(1,24)*BA + PC(1,25)°OM*DD + PC(1,26)*B*DD

C10 = PC(1,27)*OM’DR + PC(1,28)"DA*OM'OM + PC(1,29)"DA"A'A
C11 = PC(1,30)"DD*DD*B+PC(1,31)"OM*OM*A+PC(1,32)" OM*OM*OM
C12 = PC(1,33)’A*B"B + PC(1,34)*B"A"OM

C13 = PC(1,35)'B*A’DR + PC(1,36)"A'B*DD + PC(1,37)°B*B'OM
C14 = PC(1,38)'DD"OM*OM + PC(1,39)"B*DA*OM

C15 = PC(1,40)"B*OM*DR

C16 = PC(1,41)*B*DA*A + PC(1,42)'DD*DD*A

C17 = PC(1,43)"A'DR’DR

C18 = PC(1,44)'DD*A"A + PC{1,45)"A*A*DE + PC(1,46)"B'A"A
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C19 = PC(1,47)*B*OM*DE+PC(1,48)"OM*DR*DR+PC(1,49)*B*OM*OM

C20 = PC(1,50)*A*A"OM ,

C21 = PG(1,51)*OM*OM*DE+PC(1,52)*A*OM* DR

C22 = PC(1,53)*DD*DD*OM + PC(1,54)*A*A*A+PC(1,55)"A*DD*OM
C23 = PC(1,56)*A*A*DR+PC(1,57)*OM*OM*DR+PC(1,58)* A*"OM* DE
C24 = PC(1,59)*A*A*OM*OM + PC(1,60)"B*B*OM*OM.

C25 = PC(1,61)*DD*DD*OM'OM

C26 = PC(1,62)'DD*DD*DD*A + PC(1,63)*B*DD*DD*DD

C27 = PC(1,64)*A*A*B*B + PC(1,65)"B"OM*OM*OM

C28 = PG(1,66)*OM*OM*OM*OM + PC(1,67)*OM*OM*OM*DE

C29 = PC(1,68)*A*OM"OM*OM + PC(1;69)’DD*DD*A*A

C30 = PC(1,70)'DE*AA’A + PC(1,71)*DAA*A*A

C31 = PC(1,72)'B*A'AA + PC(L,73)'A'A'A'A

C32 = PG(1,74)’A"A"A"DD + PC(1,75)"OM*DD*DD*DD

C33 = PC(1,76)*A*A*A"DR + PG(I,77)*A*A*DR*DR

C34 = PC(1,78)*OM*OM*DR*DR + PC(1,79)*OM’OM*OM'DR

CF1=C1+C2+ C3+C4+ C5+C6+ C7 + C8+ CS + C10
CF2=C11+C12 +C13 + C14 + C15 + C16 + C17 + C18
CF3=C19 + C20 + C21 + C22 + C23 + C24 + C25 + C26
CF4 =(C27 + C28 + C29 + C30 + C31 +C32 + C33 + C34
CF =CF1 + CF2 + CF3 + CF4

RETURN
END
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