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Abstract

Many studies of aircraft high angle of attack dynamics have argued the need

for rotary aerodynamic data to be included in a model in order to effectively model

aircraft spin -behavior. The purpose of this research paper was to use bifurcation

analysis to investigate the effectiveness of rotary balance data in the prediction of

aircraft spin behavior as both a stand alone representation of a model's

aerodynamic data and in a conventional hybrid model. Equilibrium solutions from

both models were compared to previous studies which utilized conventional static

and forced oscillation aerodynamic data and to flight test results to analyze the

effectiveness of rotary aerodynamic data for the prediction of spin behavior.

Using the foundation of a previously developed model of the F-15B, the rotary

balance aerodynamic force and moment data were implemented as a function- of

angle of attack, angle of sideslip, non-dimensional rotation steady state rate and

the control surface deflections (8a,d,5 er). Bifurcation diagrams were developed

as a function of alpha versus , and 8a to show highlights of equilibrium and

dynamic behavior of the aircraft. For selected configurations, the resulting aircraft

state variables showed the rotary balance data model having close correlation to

experimental flight test data. Comparison of these selected configurations with the

hybrid and conventional static and forced oscillation models, showed comparable

results. However, the models bifurcation diagrams were very different. Problems

were identified with static contributions of the rotary balance data indicating a

xii



possible cause. Despite the static contribution problem, the overall results

indicated the rotary balance data model did provide a reasonable representation

of the spin dynamics of the aircraft. The development of the hybrid model

dispiayed the difficulties in blending of the aerodynamic coefficient data in the

presence of deficient experimental data, inaccurate modelling of aerodynamic

coefficients or possible differences in the databases such as Reynolds number

effects. Recommendations on continued investigation of the effects of the static

contributions of the rotary balance data were made.
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INVESTIGATION OF THE INFLUENCE OF
ROTARY AERODYNAMICS ON THE STUDY OF
HIGH ANGLE OF ATTACK DYNAMICS OF THE

F-15B USING BIFURCATION ANALYSIS

I. Introduction

The flat spin is the most dangerous spinning motion exhibited by an airplane

where the aircraft's angle of attack (AOA) approaches 900 with a high rate of

rotation. Conventional aircraft control surfaces become increasingly ineffective as

the AOA approaches 900 and as the spin develops it may become impossible for

the pilot to recover. Today's fighter aircraft are also heavier than earlier designs,

with weight more concentrated along the fuselage. This design evolution was a

factor of the desirability of a more maneuverable aircraft. With this distribution of

mass, the yaw moment of inertia of the aircraft has increased as much as 20 times

compared to early fighters but the effective control surfaces have remained

practically the same (11:1). This combination of high yaw moment of inertia and

relatively ineffective control surfaces at high angles of attack warrants analysis of

spin characteristics of aircraft because recovery is very difficult if not fatal.

Aircraft high angle-of-attack research has been increasing over the past twenty

years. The most recent full scale research effort is the X-31 where one of its

areas of investigation is the use of thrust vectoring paddles to improve the agility

1



and handling qualities of an aircraft while flying at high angles of attack. In

February 1991, testing began at AOA up to 700. The ability of an aircraft to

achieve high angle of attack will considerably reduce the time needed to maneuver

an aircraft to obtain a good firing position in close-in combat (14:38). Research

is ongoing to improve designs of future aircraft and their control systems to have

stability and agility during high AOA maneuvers. For developed aircraft, it is

desired to design either effective pilot procedures or aircraft control systems that

can predict and recover an aircraft from potentially fatal attitudes accompanied with

high angle of attack maneuvers. Loss of control of the aircraft can occur through

non-linear behavior such as stalls, departures, wing rock, nose slice, spin entry,

and full spins. Considering the costs involved in full scale testing, it is desirable

for the development of a methodology that could investigate the aircraft dynamics

associated with high angle of attack flight, specifically aircraft spin behavior, with

the use of scale model aerodynamic data. Investigations of this form have used

combinations of static wind tunnel, forced oscillation and rotary aerodynamic data.

It is the objective of this paper to investigate the effectiveness of rotary

aerodynamic data in modeling high angle of attack dynamics in the regime of

a=30' to 900 using the methodology of bifurcation analysis.

Previous Studies

The mathematical modeling of an aircraft's motion during high angle of attack

2



maneuvering has shown to be an effective tool for the flight dynamicist however

it is highly dependent on the results of wind tunnel tests for-the required static and

dynamic aerodynamic data (27:244). In 1972, Adams (1) used a numerical routine

to predict spin modes for various aircraft-by searching for steady spin states. His

results did not compare well with flight test data. Adams attributed poor results to

the deficiencies of the aerodynamic data his model was based on. The

discrepancies he found may have been corrected with the inclusion of rotary

balance data.

As technology advanced with digital computers in the 1960s many flight

dynamic models of aircraft spinning were developed. In most cases these models

involved the combination of aerodynamic data from static tests with small

disturbance oscillatory data. In these models the aerodynamic Oata were

sometimes inaccurate and spin modes could not be predicted (22:144). Early

studies of spins involved numerical simulations using static wind tunnel data to

predict spin entry and possible recovery techniques. As indicated above, their

results did not compare well with flight test data nor spin tunnel results.

Chambers, Bauman and Anglin determined that rotary balance data was necessary

to correctly model the aerodynamics during a spin (11). In many investigations

utilizing rotary balance data, this conclusion has been substantiated.

During the past forty years many research efforts have been made on the study

of aircraft spin behavior utilizing rotary aerodynamic data. Some encountered

problems obtaining acceptable results utilizing the rotary balance data. However

3



most have found significance of including rotary aerodynamic data in their models

for prediction of aircraft spin modes. In 1954, Scher (32) applied equations of

motion and spin-geometry relationships with rotary balance aerodynamic data to

calculate step by step the details of a spin recovery motion for an unswept-wing

fighter-airplane configuration. At first, his results did not agree with the

assumptions of steady spin. However, as also determined by Stone, Burk and

Senger (37), the rotary balance data had to be modified due to inconsistencies in

the mounting of the model. The vallues he obtained were inconsistent with the

assumption that the aerodynamic and inertial forces and moments should balance

during steady spin. As a result, the spin behavic, he obtained were not validated

by the test aircraft of the investigation.

With the improvement of the technique of rotar, balance wind tunnel testing, the

integrity of the data has improved from the tests of over forty years ago. A most

recent analysis was performed in 1989 by Martin and Hill (22) where rotary

balance data was used in a model of a basic training aircraft using a six-degree

of freedom flight dynamics model of aircraft spin. The model was used to predict

equilibrium spin conditions and spin recovery techn.i)s. Their results were

promising when compared to scale model wind tunnel tests. In 1981, Tischler and

Barlow (38) were able to accurately determine spin modes of a low-wing general

aviation aircraft using rotary balance data. Studies by Birhle (9) on a fighter

aircraft design in 1980, had demonstrated that the spin computed with static

aerodynamic data did not match the flight motion whereas the spin computed with

4



rotational data duplicated the developed spin. This result again emphasized the

significance of rotary balance data representing the dynamics during spin motion.

Ogburn, Nguyen and Hoffler (27) have dr,-o .. cent research showing that the

addition of dynamic terms, including ro::r', ae'i. -amics can significantly affect

the simulated flight motions. Their efforts al, ) showed a substantial influence of

the rotary aerodynamic data on the mo':-" ,s and controls for the aircraft

configurations they tested.

High angle of attack maneuvers .4re very nonlinear and require complex

analysis tools to study the behavior. Mehra arid Carroll (26) performed fairly

extensive analysis of the F-4 Phantom fighter in 1979 demonstrating the use of

bifurcation and continuation- methodology as an analysis tool for the study of

aircraft high AOA behavior. Bifurcation theory was not a new concept however it

had not been previously applie,; io aircraft dynamics. The tooi enables an analyst

to use more complex (higher order, nonlinear) aircraft models thereby enabling

analysis of more demanding flight conditions such as spins, stalls and wing rock.

Bifurcation methodology provides insight into the solution of nonlinear equations

through development of a mapping of equilibrium and periodic solutions of an

aircraft's equations of motion. This results in a global view of the nonlinear

behavior of the aircraft. Further discussion of bifurcation theory is presented in

Chapter III.

Many recent research efforts have used bifurcation analysis for the study of

aircraft dynamics. Hawkins (17), Jahnke (18,!9,20), Zagaynov and Goman (39),

5



and Guicheteau (16) used bifurcation theory to analyzq nonlinear behavior

associated with high AOA maneuvers of various aircraft configurations including

the F-14 and F-15 fighters. Barth (6)- and Planeaux and BartLh (28) did an

investigation of high AOA behavior of the F-15 using bifurcation analysis a::d were

able to identify periodic solutions in:,icative of aircraft wing rock behavior.

Baumann (7), Beck (8) and Plareaux. Beck and Baumann (29) ccntinued the F-15

research with an expanded aerodynamic database allowing ai.alysis up to 90

AOA. With the new model they analyzed the effectiveness of control

augmentation. The most recent effort with the F-15 model, performed by

McDonnell (24) and Planeaux and McDonnell (30) investigated the effectiveness

of thrust vectoring for spin recovery. Many options for spin recovery using thrust

vectoring were identified.

Of the efforts mentioned utilizing bifurcation methodology, only three included

the contributions of rotary aerodynamic data. Hawkins (17), Jahnke (28) and

Mehra and Carroll (26,10) developed hybrid modelscombining the data from static,

forced oscillation and rotary balance testing in attempt, to more accurately model

the aircraft dynarmics. Mehra and Carroll's analysis included an investigation of

different approaches to integrating rotary aerodynamic data-into a model. Their

effort did provide many methods for consideration some of which were

incorporated by Hawkins and Jahnke in their aircraft models.

6



Overview

There is still a debate over what effective benefit rotary balance data provides

in a model. This paper will continue the development of the F-15B model by

Barth (6), Beck (8), Baumann (7) and McDonnell (24). The inclusion of rotary

balance data will be analyzed in two developments. The rotary balance data will

first be used in the model as the principal representation of the static, oscillatory

and rotary aerodynamic force and moment coefficients. The results of bifurcation

analysis and continuation theory-will b. used to compare the static and forced

oscillation aerodynamic based model and a stand alone rotary aerodynamic based

model. The comparison will assist in identification of the strength and weakness

of rotary balance data as well as possible deficiencies in the modeling of the

coefficient data. The second phase of the- investigation will be the development

and analysis of a hybrid model utilizing the rotary aerodynamic data through

blending with the static and forced oscillation aerodynamic data based model. In

addition, based on problems encountered with the rotary balance database, an

analysis of static aspects of the rotary balance database and perturbation of two

of the rotary balance coefficients will be made.
Chapter II will discuss spin tunnel testing, the rottrbalance data used in this

analysis and the data processing required. Chapter III will present a brief

introduction to bifurcation theory and the continuation methodology. Chapter IV

will describe the F-15 model and the modifications required with implementation

7



of the rotary balance data. Chapter V presents the findings of the analysis. The

conclusions will be drawn as well as recommendations for future research in

Chapter VI.
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II. Rotary Balance Data

It should be rather intuitive that the best method to investigate a particular

motion of an aircraft would be to use a technique that most accurately represents

that motion. The standard wind tunnel aerodynamic coefficient data consists of

two types, static and forced oscillation. Both sets of data have been used as the

foundation for dynamicist to study the dynamics of aircraft. For the study of

aircraft in spinning or coning motion, the most representative modeling would be

to rotate a model with its spin axis parallel to the free stream velocity of the

relative wind. This reasoning has been identified for the study of aircraft researc.h

since the-pioneer days of aviation. In response, rotary balance techniques have

been developed providing information on the effects of rotational rates on the

overall aerodynamic forces and moments acting on the aircraft.

The fundamental problem of the dynamicist is to properly represent the

equations of motion with the aerodynamic reactions and motion variables (control

parameters and states) of interest. When analyzing low angle of attack dynamics,

adequate dynamic predictions can be made using a linearized small perturbation

model with constant aerodynamic derivatives. However, when motions involve

large variation in any of the state variables, change in some of the aerodynamic

derivatives may vary appreciably with factors of the flight conditions thereby the

analysis must involve non-linearities to properly represent the dynamics. It is

argued that use of the combination of aerodynamic data of oscillatory and rotary

9



motion can produce the data required for calculation of flight motions including

fairly large excursion motions such as high angle of attack departure and spin

entry. The difficulties involved in performing such tests and receiving substantial

data concern the correlation between wind-tunnel dynamic test data which are

usually available from separate oscillatory and rotary tests, where the model or

its motion did not exactly simulate the relevant flight motion of interest (2:209).

For rotary tests, the axis of rotation is parallel to the wind axis. The

aerodynamic loads are measured by a strain gauge aligned along the model body

axis. The model has a fixed orientation of angle of attack, angle of sideslip and

selected control deflections to the wind direction as the model is rotated. The

model is seeing a constant rate of motion resulting in a consistent collection of

data. In oscillatory tests the motion is not of constant rate thereby the flow is

constantly changing and under certain conditions the measurements of the

derivative data may be a function of the history of the flow (2:209). At low angles

of attack and sideslip the flow is attached to virtually all of the surface of the-model

and fairly good agreement of the derivative data is found between the rotary and

oscillatory test results. However, at high angle of attack, there is increased flow

separation and lag effects that may introduce significant differences between the

two testing results. As indicated in the AGARD Advisory Report (2:210), tests

comparing rotary and oscillatory data have attributed this lag effect for their

apparent differences. These effects may influential in the development of the

hybrid model. These effects will be considered when comparing the stand alone

10



rotary balance model with the static and forced oscillation data based model.

The above discussion brings up the issue of the integrity of the F-1 5 1988

Aerobase which is the source of aircraft aerodynamic force and moment

coefficients for the McDonnell (24) and Baumann (7) theses. Part of this

investigation involves both the blending and comparing of the dynamics resulting

from both the rotary balance and the 1988 Aerobase which represents the

oscillatory testing data. The 1988 F-1 5 Aerobase was obtained from the F-15

System Program Office (SPO) at Wright-Patterson AFB, Ohio and has been used

for simulation testing of the aircraft. This database is not well documented on the

exact source for its content. However, the McDonnell Douglas Documentation (23)

indicates that the stability and control derivatives were derived by analysis of flight

test data and where appropriate, superseded relative wind tunnel based estimates.

Additionally, in order to provide the maximum amount of range on flight conditions,

data from flight test results were utilized to adjust the associated wind tunnel

coefficient data (23). Neither the method utilized for blending the flight test data

nor a discussion of the methods of data processing used on the raw wind tunnel

data were identified in the documentation. It should be noted that inconsistencies

may be present for this investigation in the effectiveness of rotary balance data,

when the baseline model to be compared and blended consisted of actual flight

test data. The 1988 F-1 5 Aerobase is not a true representation of the limitations

of conventional wind tunnel testing results. This factor will be considered when the

results are analyzed in Chapter V.

11



Description of the Rotary Aerodynamic Data

The rotary balance technique measures the 6 aerodynamic force and moment

coefficients Cx, CY, Cz) C1, Cm and C, as a function of the 3 state variables: spin

rate, angle of attack and angle of sideslip; and the control deflections: 5e, 8a, 8 d

The rotary balance data obtained for this analysis is documented in NASA

Contractor Report 3478 (5) and 3479 (4). The database was obtained from the

NASA Langley Spin Tunnel in the form of-data files on floppy disk. The data files

were arranged by aircraft configuration representative of the data presented in

reference (5) and consisted of the six aerodynamic force and moment coefficients

tabulated with their associated state variables and control deflections. The spin

tunnel data consisted of configurations ranging from the build-up of individual

airplane components (body,wings,tail), the basic airplane configured with various

control deflections and the airplane configured with conformal fuel tanks. Since

this analysis was restricted to a basic F-1 5B with no stores carriage nor conformal

fuel tanks, only 16 configurations were used from the available database. Table

I shows the 16 configurations that were used to represent the rotary balance data

in this analysis.

The Langley Spin Tunnel tests were conducted at a free stream velocity of 25

ft/sec, which correspond to a Reynolds number of approximately 211,000 based

on the model wing cord of 1.33 ft. Studies by G.N. Malcolm at NASA-Ames

(2:117) on the sensitivity of the rotational flow fields to Reynolds number variation.
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Table I Rotary BalancP Database Testing Configurations

Configuration , "* 8d* * r

1 0 0 0 0 0
2 0 0 6 0 0
3 0 0 11 0 0
4 0 0 6 20 0
5 0 0 -6 -20 30
6 0 0 6 20 -15
7 0 0 -11 -20 30
8 0 -25 0 0 0
9 -10 0 0 0 d

10 10 0 0 0 0
11 10 0 6 0 0
12 10 0 11 0 0
13 10 0 -6 -20 30
14 10 0 6 20 -15
15 10 0 -11 -20 30
16 10 -25 0 0 0

Each configuration is tested for all combinations of
at= 8,10,12,14,16,18,20,25,30,35,40,45,50,55,60,70,80,90
degrees and Jfs4b/2Vtrt = 0.0,0.1,0.2,0.3,0.4 (some for
0.5,0.6,0.7,0.9) for clockwise and counter clockwise
rotations.
* in degrees

have shown that variation in Reynolds number does have a significant effect on

the behavior of the aerodynamic derivative coefficients. Aircraft with slender noses

or slender forebodies can experience large side forces due to asymmetric

separation and vortices on the leeward side of thc oody. It has been found that

the behavior of these vortices and flow separation change as Reynolds number

varies. The high Reynolds number effects from the experimental flight test data

inherent in the 1988 Aerobase may introduce noticeable differences in the

aerodynamic coefficients when compared to the rotary balance data. Since high

Reynolds number rotary balance data was unavailable, this investigation was
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constrained to blending of the dissimilar Reynolds number data. The Reynolds

number effect may account for gross differences when comparing the coefficient

data from each model. For all tests, the spin axis passed through the full scale

airplane nominal center of gravity (CG) location for AOA above 300. Testing below

300 AOA required shifting of the spin axis to allow the model-a full range of motion.

Use of this data would require adjustment of the coefficient data to the nominal cg

location. For this analysis only a > 300 was used. The McDonnell (24) analysis

was based upon an aircraft at 0.6 Mach and 20,000 ft altitude.

The data was presented for an angle-of-attack range of 80 to 900, and clockwise

and counter-clockwise rotations covering !2ssb/2 Vtr ran.ge from 0 to 0.4. Some

configurations were presented with anextended f2,,b/2V,, range from 0 to 0.9. The

data used for this investigation is not the specific data published in reference (5)

but a second run collection of the same configurations performed in June-August

1981. The integrity of the axial and side force coefficient data may be

questionable (40). Analysis of the data files identified this problem and will be

discussed in the next section. A complete description of the testing apparatus and

model are in reference (5).

As shown by Table I, the depth of the rotary balance database is limited by the

fewv airplane configurations tested for the basic F-15. This investigation will limit

itself to analysis of only configurations that fit within these restrictions. Table II

shows the F-15B operational control deflection limitations as compared to the

rotary balance database limitations. Unlike the static and oscillatory test data, the
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rotary balance data will not be adjusted to the limitations of the operational flight

configurations and will thereby provide a better indication of the capabilities of this

data as a stand alone representation of the aircraft- dynamics.

Table II Control Deflection Limits.

Operational Control Deflection Limits (8:26):

Control Surface Positive Limit Negative Limit
.......................................................

Stabilator (8 c, 8d) 15" -29"
Aileron (81) 20' -20'
Rudder (8r) 30" -30"

Rotary Balance Database limitations:

Control Surface Positive Limit Negative Limit

Stabilator (8,) 0" -25"
Differential
Stabilator (8 d) ii" -ll"
Aileron (8) 20" -20'
Rudder (8r) 30' 0"

Data Analysis and Preparation

In examining the raw data, it was identified that the rotary balance data showed

problems in the static configurations (i.e. n - 0). It is difficult to identify what

characteristics of the data is due to poor testing or is inherent in the character of

the rotary aerodynamics. To identify possible problems, each data file -was

compared to the data in reference (5) to identify if any test cases showed very
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different results. All coefficients compared fairly well except for a few isolated

cases of Cx andCy. A few cases showed negative signs missing on a series of

axial force coefficients and were easily corrected. More severe problems were

encountered with particular configuration datasets of Cx and Cy. The magnitudes

of the coefficient data for configurations 1 and 4 on Table I for Cx were very

different than cases with similar configurations in both reference (5) and the

available data on floppy disks. These cases were simply eliminated since no other

data was available to replace those configurations. Similarly the test data

configurations 1 and 13 for CY also showed very different results. However, the

data for case 1 in reference (5) was satisfactory (compared relative to the 1988

Aerobase coefficient data) and was used as a replacement. In general, the overall

estimations of the axial and side force coefficients are questioned.

As the experimental data was collected during the spin tunnel testing, static

results were obtained prior to both clockwise and counter clockwise rotations.

Therefore, twice as much data was available with static conditions (!Q,,=O) as with

any other rotation rate. This provided an opportunity to examine the consistency

of the coefficient values for static condition. Many test cases showed reasonably

close coefficient values however most cases were inconsistent. Having no

available means to decipher which was the best coefficient value from the

clockwise and counter clockwise tests, the static condition coefficient data were

simply averaged.

In preparation for creating a hybrid model, it needed to be determined whether
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the two coefficient databases were reasonably based on the same testing

conditions before blending them. The conditions chosen for the 1988 F-15

Aerobase model has been a thrust setting of 8,300 lbs (military power, thrust

setting for trim conditions,steady level flight) at 0.6 Mach and 20,000 feet. The

testing conditions for the rotary balance coefficients were obtained in a low

Reynolds number environment which was not specifically set for variable flight

conditions. The CG location as wel! as the aircraft body fixed coordinate frames

were identical for both databases. -Both databases are body frame referenced with

the (CG) position of 25.65 percent mean aerodynamic chord. Figure 2.1 and 2.2

show comparison of the 1988 F-15 Aerobase as modelled by Baumann (7) and the

raw rotary balance force and moment coefficient data for a selected configuration.

Of the six coefficients (three force and three moment), the moment coefficients

have the better correlation to the 1988 Aerobase. However, given the 1988

Aerobase and rotary balance data base were acquired from different testing

facilities, have possible variation in Reynolds number and possible testing errors

may be evident in the spin tunnel data, the coefficients would not be expected to

match. Some coefficients as with the axial force and roll moment coefficients show

large qualitative differences. However, their magnitude differences are everywhere

relatively small. Results may not be sensitive to the differences. The effects of

variations of the axial and side force coefficient were investigated.

Data analysis is a highly creative venture. Most engineering and research data

are assembled in unbalanced sets that provide no attention to the requirements
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Figure 2.1 Comparison of force coefficients for the raw rotary balance data
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Figure 2.2 Comparison of the moment coefficients for the raw rotary balance
data and the 1988 F-15 Aerobase model by Baumann (7).
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of statistical analysis of the experimental results. However, because of the limited

availability of data, the analyst must work with what he gets. The bifurcation

analysis package AUTO (discussed in Chapter 11) works best with functions with

continuous first partial derivatives. Previous works using AUTO (6),(7),(8),(24)

demonstrated problems performing calculations with functions that have

discontinuities. It was determined to develop a polynomial as a function of seven

variables for each coefficient providing a representation of the coefficients without

any discontinuities or sharp changes. This enabled the full character of the

database to be modelled in terms of how the coefficients varied with changes of

the control surfaces as well as angle-of-attack, angle of sideslip and rotation rate.

Representing the data in terms of polynomial equations also provided an efficient

means for computation. Table look-ups and cubic spline interpolation between

discrete values were considered. However, the high order characteristics of the

data and limited depth in configurations led concerns for sudden transitions or

discontinuities in the coefficient values resulting in problems with AUTO. As well,

there are extreme complexities of implementing a seven variable local fit cubic

spline routine. A spline routine used for three dimensional imaging was

researched and examined which led to the conclusion that a seven variable effort

would be too complex for the intention of this research. Polynomial curve surface

fitting of the data will introduce smoothing and possibly invite characteristics into

the data that are not discretely present in the raw data. However, the developed

characteristics will be driven by the pattern established by the raw data. For the
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reader interested in discussion of problems and methods of fitting equations to

data, reference (12) is recommended.

Curve fitting is an art. With the size of the database (approximately 2000

experimental cases), the odds of developing the polynomial that perfectly fits are

very small. However rewarding results could be obtained even with a moderate

fit. Any software used should provide the user with control over the analysis;

providing the user with a variety of options. The need for a curve fitting software

that could handle a function of seven variables limited the choice to two software

packages, SAS (31) and STATISX (36). SAS is a mainframe based package and

STATISX is a PC based package. Both software ,aere used for the development

of the polynomials. SAS and STATISX were able to provide statistical measures

of how accurate the curve fit was. They also provided direct comparison between

the raw data and the polynomial function fit.

The raw data consisted of many outliers which were difficult to identify. Plots

of various dimensions of the data were made to assist in-outlier identification and

to identify its complexity for polynomial fitting. Even though most datasets had

non-dimensional rotation rates to ± 0.7, it was determined that the values of the

coefficients at rates above ± 0.5 were inconsistent in sign and magnitude and

would contribute more difficulty to the SAS fitting than contribute-to the modelling

of the database.

The limited configurations available in the rotary balance database determined

the maximum order of any of the variables in the polynomial model. Table III
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indicates the maximum order of each of the variables based on the available

variation of each. !t was deter,nined to limit the polynomial dimension to fourth

order for any individual or coupled variables. Higher order polynomials were

possible however the complexity in determining a quality fit was increased. The

increase in data processing depth seemed to outweigh the benefit of a closer fit.

A sixth-and eighth order model were developed for some of the coefficients. The

higher order models did not provide a tremendous improvement to the fit and

displayed unwanted behavior with some of the independent variables. The

complexity in identifying the cause of the behavior outweighed the improvements.

Table III Maximum Order of Each Polynomial Variable

Variable Maximum Polynomial Order

CE 8
2

-Qb/2Vr 10
sa 2
8d 3

5r  2

The curve fitting began by identifying all combinations of tne variables to a

fourth order multi-variable polynomal. Some combinations should not even be

considered. Control surface effects would not be strongly coupled since their

positions are mechanically independent and aerodynamic coupled influences are

negligible. For example, aileron settings may create aerodynamic influences on

rudder derivatives but the distance between the control surfaces result in the
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effects being negligible. The only coupled terms involving multiple control

deflections are the differential stabilator and aileron since they are inherently

coupled in the design-of the aircraft by the linear relation, 8d=(0. 3)8a. Six of the

sixteen available configurations in Table I varied S independent of the defined

linear relationship with 6a. This allowed the resulting polynomial to have

independent terms of &5 in addition to coupled with 8,. It was left to SAS to identify

terms that had no correlation to the behavior of the data. Indicating the strength

of SAS and giving validity to the polynomial "surface" fit, SAS was able to identify

those coupled terms that were not needed in the polynomial. The coupled term

of aileron and differential stabilator deflection was identified, as predicted.

STATISX was used to prepare the raw data for-use in SAS. The SAS routine

GLM was used to perform a linear regression to determine the coefficients of the

defined polynomial. Using a method of maximizing the standardized residual mean

square value towards 1.0 and identifying strong terms using the student's t

distribution function, the "best" polynomial was determined. At times, the process

involved trial and error in removing and adding terms. However, each SAS run

presented evidence of the sensitivity of a coefficient to particular variables or their

combination. The student's t distribution function provided "clues" to what the

next "guesses" should be. The residuals of each polynomial fit were plotted

against the independent variables to identify trends and to assist in determination

of the "quality" of the fits.

As an experiment, to test the method used, a fourth order polynomial of four
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variables was created and a random database of results was constructed.

Knowing the "answer' to the polynomial fit, SAS runs were performed utilizing

similar decisions made on the rotary balance database. This was performed to

validate the method utilized. The resulting polynomial was very similar to the one

created showing validity in the development process used for the rotary balance

coefficient polynomials.

The first attempt at fitting the data was to break each coefficient into 6 individual

polynomials broken at 200 increments with 100 overlapping in angle of attack. The

objective was to reduce the amount of data each fitting needed to use and

decrease the residuals for a more accurate representation of the data. The

decision to use angle of attack was determined by examining the effects of

breaking up the data base into sets based on each of the seven independent

variables (i.e. dividing the entire database into three groups defined by angle of

sideslip: IP=-10°,I3=+10°,1=+10*). Seven combinations of the data (22 resulting

datasets) were developed representing each of the independent variables. Using

the complete fourth order polynomial representation (approximately 200 terms), the

standardized residual mean square results were compared to see which

combination of datasets provided the "best" fit. This processing also assisted in

identifying which variables were most difficult to model. Datasets divided by angle

of attack showed the best standardized residual mean square values and those

by angle of sideslip the worst. This-resulted in the development of 36 equations

representing the six coefficients. The resulting polynomials consisted of equations
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ranging from 15 to 37 multi-variable terms. Once the 36 equations were

developed, 79 distinct monomials in 7 variables were identified. A matrix of the

polynomial coefficients was constructed with those terms not required for a

particular polynomial term given a null value. Each set of six equations was

blended together using a cubic spline relationship similar to Eqn (45) of Chapter

IV.

When the 36 equation model was used with AUTO, each of the six coefficients

encountered problems in performing parameter sweeps. This indicated difficulties

with the transitions between the individual equations. As shown in Figure 2.1,

CXCZ and Cm show fairly linear behavior which resulted.in minimal problems with

transitions from individual equations in their modelled polynomials. However, each

did experience occasional problems. Cy (see Figure 2.5),C, and C, had much

more character for the polynomials to represent which resulted in more frequent

discontinuous transitions between the equations representing the coefficient.

Figure 2.3 shows the C, and C, six part polynomial models for two different

configurations as compared to the raw rotary balance data. The model obviously

was an excellent fit. However, the sharp transitions between the -individual

equations are evident. Figure 2.3 is not representative of the "worst" case

discontinuities. Because each equation of a coefficient polynomial was defined on

a limited database, each displayed different behavior to the independent variables.

Most often the behavior difference was slight. Occasionally gross differences

occurred. It was difficult to examine every dimension of the seven variable
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polynomials and identify when difficult transitions occurred. AUTO encountered

discontinuity problems on every continuation run, hindering the-investigation. Two

and one half months of development were invested in the 36 equation model

however a different representation of the data had to be pursued. The range of

angle of attack for blending the transition between equations was expanded

however the results with AUTO were still not successful. It is anticipated that

problems with individual polynomials for particular combinations of independent

parameters may have undesirable behavior. With further development, the six part

polynomials could work and would be the better polynomial representation of the

data because of its close fit. However if noise were present in the data, the

polynomial would also be amplifying its contribution.

A two piece equation was also developed which encountered similar problems.

Figure 2.4 shows the C, and C, coefficients for two different configurations. The

second case for each coefficient demonstrate how the polynomial can show very

different behavior and result in a poor fit while having good correlation on other

configurations as shown in the first case. Rather than experience similar problems

as with the six part model, it was decided to focus on a single equation fit;

eliminating the discontinuity problems, allowing the full database to be used and

providing better control over the overall sensitivity of a polynomial to individual

parameters.

A single equation representation of each coefficient was developed utilizing the

79 identified terms of the 36 equation development. The standardized residual
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square criteria ranged from 0.80 to 0.98 with Cx being the worst and Cm the best

coefficient data fit. All coefficients except Cx had a value greater than 0.9. The

resulting polynomials were continuous resulting in smooth operation with- AUTO.

The coefficient functions were plotted for different sample aircraft configurations

and states comparing them to the raw rotary balance data and the 1988 Aerobase

to validate the accuracy of the fits. Figures 2.5 and 2.6 are an indication of

comparison of the single 79 term polynomial, raw rotary balance data and the

Baumann model.

It is evident from Figures 2.5 and 2.6 that the polynomial curve fitting has

introduced characteristics that are not evident in the. raw data as well as missing

some that are evident. What the polynomial fitting has done is to model the

database as-a-whole rather than looking strictly at a snap shot picture-of the data

that would be found with a table look-up routine. The polynomial fit has basically

smoothed the data pacifying outliers and smoothing subtle changes in the data.

Comparing the rotary balance coefficient polynomials to the 1988 Aerobase

polynomial fitted data shows some similarity in their character but obvious

differences. It is apparent that the differential between the rotary balance data

polynomial fit and the raw rotary balance data is much smaller than that between

the rotary and 1988 Aerobase data. During spin tunnel testing, the problem of

aerodynamic interference caused by the aircraft model's wings/fuselage vortices

being influenced by the support structure can be significant. In addition, any

motion that alters the rotation center-location-of a test could cause error in the post
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processing which was based on a predetermined rotation center location (2:7-11).

The-behavior of the rotary balance data in Figures 2.5 (b) and 2.6 (a) could be

attributed to these possible inaccuracies in spin tunnel-testing. It is anticipated that

the results using either database exclusively or combined will provide quite

different results. The Baumann (7) 1988 Aerobase coefficient representation and

the 79 term rotary balance database polynomial can be referenced on page 119

and 145 respectively in Appendix C.
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Ill. Bifurcation Theory

This chapter will discuss the basic principles of bifurcation theory and its

application toward nonlinear systems. The qualitative study of nonlinear differential

equations is concerned with how to deduce important characteristics of the solution

without actually solving the equations. Through bifurcation theory this study can

investigate highly nonlinear motion of aircraft in a spin without the need to basically

destroy information contained in the nonlinear equations by linearizing them with

small perturbation analysis. There are many types of bifurcations and each type

has a different effect on-the response of a system. The concepts to be discussed

are: equilibrium points, phase space, stability, turning points, bifurcation points,

periodic solutions, Hopf points and an example of unfolding of an organized center.

Most of the information in this chapter is referenced from Seydel (34). Other

useful texts on the subject of bifurcation theory are references (15) and (21). A

brief description of the software-program AUTO will follow with a short discussion

on homotopy, an important application of continuation theory needed for this

research.

Equilibrium Points

When a system is in physical equilibrium or in a steady state for bodies in

motion ( i.e. an aircraft), the states that describe the system are termed the
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equilibrium points. Equilibrium points- are also referred to as stationary points. In

the study of aircraft dynamics, only autonomous systems will be analyzed. For an

autonomous system, the differential equations of motion do not explicitly contain

time on the right hand side of the equations. An autonomous system can be

written as

= f(u) (1)

where u is an n-dimensional vector of state variables and f is an n-dimensional

vector of functions describing the motion of the system. The system is in

equilibrium when the states are constant, 0 = 0. The states that describe this

equilibrium of the system would satisfy the equation

0(u) =0 (2)

These states are called the equilibrium points or stationary points.

Phase Space

Suppose the state of a system is described by the state vector u and the

nonlinear equation

0 = f(u,X) (3)

defining the behavior of the-system where A ;s a control parameter of the system.

Points along the solution of Eqn (3) consist of a time coordinate t, the fixed value
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control parameter ?X and the n dimensional space coordinates (Y1,Y2,...,Y,). if the

vector function f is continuously differentiable, there is a unique trajectory through

each point uo of Eqn (3).

Consider a three dimensional phase space representing the coordinates

(y1,y2,X). At equilibrium, i=0 , for a fixed-value of X. the solution will remain in a

plane, the phase plane. A stationary solution is represented by a point, Figure 3.1.

As the parameter ), is varied, the position of the state solutions change in the

phase plane. If the parameter X is freely variable, the equilibrium solution path

forms a curve in the (y1,y2,X) space, Figure 3.2. These curves represent

equilibrium solutions as they depend on variable parameters of the system. This

is simple to visualize in three dimensions but consider a set of eighth state

equations of motion of an aircraft dynamic model and the multiple parameters-that

can be varied. The parameter X could represent the control deflections of the

aircraft's rudder, stabilator, ailerons or any parameter within an aircraft attitude

control system. It becomes evident that the visualization of the equilibrium solution

curves can become quite complex. However, qualitative information can be found

by viewing the curve projections of a chosen system state as the value of a single

control parameter is varied, i.e. viewing the aircraft state a as elevator deflection

is varied. The resulting projection is a bifurcation diagram. Applications of a

bifurcation diagram- utilized-for this investigation are the examination of effects on

particular states of aircraft dynamics as control surfaces are varied. The resulting
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Figure 3.1 A stationary solution in several phase planes (41:3).

Y2

Figure 3.2 Solution curves in (y,X)- space (41:3).
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solution curves provide information for identification of effective controls-for aircraft

maneuvers or of unusual aircraft states that could occur when the aircraft is

configured with particular control surface deflections. Figure 3.3-is an example of

a bifurcation diagram. Bifurcation diagrams also allow for the identification of

multiple states a system can attain for a given value of a control parameter, X. It

is advantageous to identify configurations that could lead-to abrupt-changes in the

aircraft dynamics as the aircraft states jump to a different solution value.

8
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4 .......................................

S 0 ......... ................ . . ..
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-30 -20 -10 0 10 20 30

Aircraft Rudder Deflection (dcg)

Figure 3.3 Example Bifurcation -Diagram.

Stability

Stability is the tendency of a system, when disturbed from a given equilibrium,

to return to that equilibrium. An equilibrium may be stable for a small perturbation
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but unstable for a large perturbation showing that a system's stability is only valid

within the domain of attraction of the solution of interest. Figure 3.4 is a way of

looking at the various definitions of stability. A marble placed perfectly balanced

on the top of the hill (A) is an unstable equilibrium state. Any disturbance will

cause the marble to leave its position and never return. At position (B) the marble

is apparently stable for small disturbances however under a strong influence, the

marble may leave this location. Equilibrium locations (B) and (C) represent weak

stable equilibrium and location (D) represents a strong stable equilibrium. A larger

disturbance at location (D) will allow return of the marble to its original stable

position.

(A)

O 

(C)

Figure 3.4 Geometrical -example of stability.

Stability of a stationary point determines whether the -state of the system is

attracted to or repelled from the point. Local stability refers to the stability in a
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small region around a stationary point. Local stability of a fixed point of a

nonlinear system can be calculated by determining the eigenvalues of the

equivalent linear system. The eigenvalues are obtained by linearizing the

equations of the system about the stationary point of interest. A stationary point

is stable if the real parts of all eigenvalues are less than zero and unstable if any

eigenvalue has a real part that is greater than zero. In two dimensions, Figure 3.5

shows the various stability types in the phase space. If the eigenvalues are real

numbers greater than zero, the stationary point is a source or if less than zero a

sink. If the eigenvalues are real numbers with opposite sign, a saddle point is

formed. For complex conjugate eigenvalues with nonzero real parts, if Real < 0

a-stable spiral is formed else if Real > Oan unstable spiral. For the condition with

complex conjugate eigenvalues with zero real parts a center is formed. With multi-

Sink Source Unstable Spiral

Stable Spiral Saddle Center

Figure 3.5 Stability types.
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dimensional systems, the higher dimensional, analogous-phase behavior to Fig 3.5

must be imagined. The behavior are too complex to visualize however do occur.

Turning Point

A simple example of a turning point can be introduced-using the scalar equation

, = )L _ y2 (4)

The equilibrium solutions can be determined from

0 = X - y2 (5)

The solutions y(?.) of equation (4) form a parabola that is only defined for X.0. At

?.=0 there is only one solution (y=0) where-as for X>O there are two solutions. The

point where a solution begins to exist (?.=0,y=0) is a turning point or also referred

to as a limit point. Figure 3.6 graphically shows a limit point. A solid-line depicts

a stable solution branch and a dashed line an unstable branch. This convention

will be used throughout this report. It should be noted that in n-dimensional

systems a turning point does not always separate stable equilibrium from unstable

equilibrium. An eigenvalue always changes sign at the turning point but others

may already be greater than zero.

Turning points often arise in pairs resulting in hysteresis effects. Figure 3.7 is

an example of a hysteresis effect. Characteristic of hysteresis are jump

phenomena which take place at X, and X2. As X is increased along the upper
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Figure 3.6 Representation of a limit point.
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t V
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Figure 3.7 Example of a hysteresis or jump phenomenon.
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branch approaching the right limit point, increasing the value of X beyond the value

?-2 will cause a jump to the lower branch. Similar characteristics can be found for

the value -X. This phenomenon is also referred to as a jump phenomenon Such

behavior has been found in aircraft dynamics as discussed in reference (33) by

Schy and Hannah.

Bifurcation Points

A bifurcation is a point where something is divided into two-parts. A bifurcation

occurs in a system when the variation of an independent.control parameter creates

a point where the behavior of the system can assume one of two different states

for the same set of system parameters. Consider a system described by the

scalar equation

-y - y2 (6)

Foi all values of X there is the trivial solution y=O. If X O the non-trivial solution is

y=X. A stability exchange occurs as depicted in Figure 3.8. The point at ?'=0 is

referred to as a transcritical bifurcation point. Other qualitative types of simple

bifurcations are possible but will not be discussed.

When the branch y=O loses stability at the bifurcation point and branches into

two stable trajectories, the event is referred to as a supercritical pitchfork. If the
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y

Figure 3.8 Example transcritical bifurcation -Int.

branch y=O gains stability at the bifurcation point and the bifurcation of unstable

branches occur, the result is called a subcritical pitchfork. Examples of

supercritical and subcritical pitchforks are shown in Figure 3.9.

Y

supercritical subcritical

/
/

/

Figure 3.9 Examples of supercritical, subcritical bifurcations.
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Limit Cycle

A limit cycle represents regular motion such as the vibration of a string or

current flowing through an electrical circuit. A limit cycle is an isolated periodic

solution of an autonomous system, represented in the phase plane or phase space

for n-dimensional systems by an isolated closed path. Unlike a center, the

neighboring paths are not closed but either spiral into or away from-the limit cycle.

Figure 3.10 is an illustration of a stable limit cycle. For the stable limit cycle, any

state of the system near the limit cycle will drift into the periodic motion defined by

the limit cycle.

Y1

Figure 3.10 Example stable limit cycle.

Hopf Bifurcation

Hopf bifurcation is the-door that opens from the small room of
equilibria to the large hall-of periodic solutions (34:61).
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The type of bifurcation that connects equilibria with periodic motion is Hopf

bifurcation. Consider the system

= Y1 + Y2 -Y,(YI + Y2

Y, + ?'Y2 - Y2(Y + Y2) (7)

y1=y2=O are the only equilibrium values for all- X and no stationary bifurcations

occur. The Jacobian matrix for this system is

(8)

and has eigenvalues ?=+i. The equilibrium solutions are stable for 1<0 and-

unstable for X>O with a loss of stability at X=O. Using polar coordinates

y = rcosO, y2 = sinO (9)

the system of equations can be simply expressed as

S= r1X - r2)
(10)

and 0=1

If X 50 the entire phase diagram is a stable spiral. If )>O an unstable spiral is

formed at the origin surrounded-by a stable-limit cycle which grows out from the

origin as ?, increases. The origin changes from being asymptotically stable to

being unstable without passing through the stage of a center. Figure 3.11 shows
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the phenomenon in two dimensional slices and Figure 3.12 in three dimensions by

including X. On the bifurcation diagram, periodic solutions will be depicted by

-circles along-a branch as-shown in Figure 5.2(c) of Chapter V. Closed circles will

depict stable limit cycles and open circles unstable limit cycles. It should be

understood that a stable periodic orbit is approached by nearby trajectories,

whereas trajectories leave a neighborhood of an unstable periodic orbit.

yY 2

y1 YY1

X<O ?=_0x>o

Figure 3.11 Development of a limit cycle in a Hopf bifurcation.

~Y2

Y1

Figure 3.12 Three-dimensional representation of a Hopf bifurcation.
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Organized Centers

Locations in solution branches where dynamical behavior changes in the

sequence: no multiplicity, then two jumps, then four jumps,-then two jumps, is one

example of an organized center. This phenomena can best be explained

graphically. Figure 3.13 shows various bifurcation diagrams as a second control

parameter y is varied. For this example 7y5>y4>y3>y > 1. For -y2 two branches are

found without connection, the upper branch is an isolated branch, the path A-B is

smooth. For y the situation is the same but the two branches are closer. For'y 4

there is no longer an isolated branch, with the overall branch structure now

resembling a mushroom. In this state, the consequences for the path from A to

B is severe. There are two hysteresis jumps. There is a transcritical bifurcation

that occurs between the values y and % that separates a two jump situation to a

four jump situation. At some value of y the branches merge in an isola point. An

isola point would be equivalent to the transcritical bifurcation point in Fig 3.8-with

two of the like stability branches being a closed path. Increasing 'y further can

result in a two jump situation. This representative sequence of high-order

bifurcations is governed by theory beyond the scope of this investigation. For

discussion on understanding why these events occur and further examples of this

phenomena, Seydel (34) is referred. This type of phenomena occurs in reality-and

has been shown during this investigation.
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Figure 3.13 Sequences of an-organized center.

45



AUTO Software

The software tool utilized in this investigation for continuation and bifurcation

analysis is AUTO. AUTO, written by Eusebius Doedel of Concordia University, is

a collection of FORTRAN routines concerning the numerical analysis of nonlinear

systems of algebraic and ordinary differential equations. The software's primary

purpose is to compute branches of stable or unstable periodic solutions of systems

of the form of Eqn (3). Given a function, the Jacobian of the function, the

derivative f., a steady state solution for some value ?, and a number of control

parameters, AUTO can compute steady state branches, accurately determine

steady state and Hopf bifurcation points and switch branches at such points. The

key to initiating an analysis using AUTO is the identification of a steady state

solution of the system of equations to be analyzed. This can be accomplished by

considering a simple flight condition or the methods of homotopy could be

exercised. Described is only a partial outline of AUTO'S capabilities. The reader

is encouraged-to reference the AUTO User's Manual (13) for additional information

on its capabilities and application.

Continuation and Homotopy

Continuation theory is the methodology of answering the question of how

solutions of equations vary with a parameter. Continuation methods involve four
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basic elements: (1) an initial guess of the solution, (2) choice of the system

parameter to vary, (3) a correction iteration of the solution and (4)-variation of the

iteration step size. Given a set of differential equations describing a dynamical

system, a numerical integration routine such as Euler's or Newton's method could

be used to integrate the equations. Predictions of the next solutions along a

branch are determined as small incremental changes are -taken of the chosen

system parameter. A corrector iteration is then used improving the guess of the

next solution. As the solution branches are identified, variable step lengths are

used to allow for small details to be resolved and not skipped, assist in

transitioning through turning points and to aid in processing of the numerical

iteration methods. The result is a tracing of equilibrium solutions of the system

of differential equations.

One important application of continuation is homotopy. Consider an equation

f(u)=O which is difficult to solve for a solution. An initial guess may be even harder

to determine. Note that this equation is probably nonlinear and would require

iterating to solve . Iterative solution algorithms usually converge very slowly or

diverge away from the solution if the initial guess is way off. Assume that an

equation g(u)=0 is known that is easily solved with solution uo and can be obtained

by simplifying f(u)=O. Homotopy is a construction of equations that are linked

together and are solved one at a time. The last equation solved is the original

equation f(u)=O. The solution of each successive equation is used as an initial

guess for the next equation. This describes a discrete homotopy with finite
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number of equations. A continuous homotopy is where a parameter X is

introduced that varies on the interval 0 _X:51. This leads to

f(u,X) = 0 , 0 < X < 1

f(u,0) = g(u) f(u,l) = f(u)

An example of such a process is with

f(u,) = XI(u) + (1 - X)g(u) (12)

At- X=0, uo is the solution. As X, is varied to 1.0, the solution-set transitions to that

of the equation of interest f(u)=0. The method of homotopy will be applied in

chapter IV to acquire equilibrium solutions required by AUTO for the rotary balance

data model using the known solutions of the McDonnell model (24). For the

reader interested in a short tutorial on the methods of continuation, the article

"Tutorial on Continuation" by Seydel (35) is highly recommended.
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IV. Aircraft Model

The aircraft for this investigation-is the McDonnell Douglas Corporation F-1 5B,

a two place high performance fighter developed for the United States Air Force.

The F-15 was designed with a cockpit sized for two crew members requiring-the

only major change of a larger canopy to-form the two seat (F-1 5B) from a single

seat version (F-1 5A). This design feature allowed for application of the F-1 5 in a

multitude of roles in training, air-to-air combat, air-to-ground combat and

reconnaissance. The flight characteristics of the F-1 5A and F-1 5B are very similar

even with the added weight of the second crew member configuration. This will

enable some flight test data of the F-15A to be considered in the analysis of the

F-15B. One design feature sought for in the F-15 was an aircraft-capable of high-

energy maneuverability in turning, accelerating and climbing in order to gain a

tactical advantage in combat. The low wing loading, very high thrust design of the

aircraft adds to its air superiority capability. This air superiority was demonstrated

in the F-1 5's multiple roles in Operation Desert Storm. A figure of the aircraft with

control surface sign conventions is located in Appendix B along with aircraft

physical dimensions and specifications in Appendix A.

The F-15B has multiple independent control surfaces, left and right aileron, left

and right rudder, left and right stabilator, speed brake and variable inlet ramps.

The ailerons and stabilator were set by the manufacturer to act differentially with

the linear relationship 8d=(0. 3 )8. The speedbrake was not modeled because it
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is not a-nominal control-surface used during high angle of attack maneuvers and

is designed for retraction at angles of attack above 15". The aircraft is an

inherently stable design without the use of the Control Augmentation System

(CAS). This stability characteristic enabled this analysis to be performed without

CAS engaged. The aircraft was modeled for gear up, retracted flaps and stores

carriage. The Baumann/McDonnell Model aerodynamic coefficients were modeled

for a flight condition of 20,000 feet and a Mach number M0.6 (7). The testing

conditions for the rotary aerodynamic coefficients fall within this criterion.

Model Development

The development of the aerodynamic force and moment coefficients for the

F-15 model used by McDonnell (24) are documented in the thesis by Baumann

(7:20-21). Baumann curve fitted the 1988 F-15 Aerobase which represents the

F-15 aerodynamic coefficients for static and forced oscillation testing as well as the

inclusion of some actual flight test data. Results of those curve fits are

documented in the AUTO Driver program presented in Appendix C. The thrust

contributions to the force and moment coefficients used in this research are those

developed by McDonnell (24:24). The feature of thrust vectoring will be included

in the rotary aerodynamic model however its effectiveness will not be pursued in

this investigation. The rotary aerodynamic coefficients obtained by the NASA

50



Langley Spin Tunnel are represented as

C, = Axial Forcel(q S) (13)

Cy = Side Force/(q S) (14)

C, = Normal Forcel(q S) (15)

C, = Rolling- Moment/(q S b) (16)

C, Pitching Momentl(q- S ) (17)

C,= Yawing momentl(q S b) (18)

These coefficients are used to represent the rotary contributions for the

development of a hybrid model. The coefficients are calculated using the

measured forces and moments generated on-the test model during rotary balance

testing. To include thrust contributions for the stand alone rotary balance data

model, the-thrust terms developed-by McDonnell (24) are combined with the rotary

balance coefficient terms. The resulting equations are:

Cx = (Axial force + Tx)l(q S) (19)

Cy= (Side Force + TY)/(q S) (20)

Cz= (Normal force + Tz)/(q S) (21)
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C0= (Rolling moment + Tdry - T,dry)/(q S b) (22)

C, = (Pitching moment + TdTz - TzdTx)/(q S ) (23)

C= (Yawing moment + TydT - T,dTy - T dTY)/( S b) (24)

Equations of Motion

The development of the equations of motion for an airplane are outlined by

McRuer, et al -(25) which represent a conventional set of differential equations

defining the dynamics of an aircraft. With the assumptions of a rigid airframe,

inertial earth fixed reference, constant mass and mass distribution of the aircraft

and constant gravity, the resulting equations of motion are a ninth order set of

differential equations for a body fixed frame of reference. The aircraft's state of

motion can be described by the nine state variables (a, P3, p, q, r, 0, , Vp, Vt,) and

the deflections of any control surfaces defining the moments and forces acting on

the aircraft. Following the development by McRuer, et al (30) the following

equations are formed.

Translational acceleration equations:

dc q C - -2 sine- + r sinP ]sinct+~q - V s c  I

S1 1 (25)

[W C, + 52cosOcos-psin Cosa secp
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I- C, ,0  g00 5 0 -in + r ]Cosa
L[-m Vt,x Vt, JJ

+ -y+ -- cosO sin COSP (26)

r qS cz +.2..coseCOO sinp - p sina
L;5n, Z J

Vt, t, C, 9 inOCosat cosj

+ -[_S y+ 9 cosO sinO]sinp 27

+ [ m , C., + -v os COO sin cos3

Rotational acceleration equations:

(28)
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ql C + S Z - I, pr + XZ(_ -p 2  (29)

+ Sb z(30)

+qS b In CF +I, 2xzT'

Aircraft orientation relative to the earth inertial. reference frame (Euler angles):

q cosp - r sin (31)

=p + ( qsinp + r cos )tan0 (32)

= ( q sin + r cosp ) secO (33)

By the definition of the Eulerangles, the yaw angle V, is decoupled from the-rest

of the equations of motion. For application to aircraft dynamics, the usual

convention for Euler angle rotations is the sequence: yaw, pitch, roll. Because the

yaw rotation does not change the gravity vector relation to the body frame z axis,

the aircraft can be modeled without the i orientation equation resulting in an

eighth order model.

A more accurate model of the dynamics of an aircraft would be to include

variation- in thrust due to the motion of-the aircraft. As an aircraft enters high-
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energy dynamic attitudes the state-of thi-flow conditions about the air intakes of

the engines change resulting in the effective thrust varying. The current model has

the aircraft thrust set at-a fixed setting of 8300 lbf for an altitude of 20,000 ft. The

effects of variable thrust are evident in Figures (5-8) and (5-9) of reference (29)

showing changes in the equilibrium solution branches and the effects are further

discussed in reference (30). This inaccuracy in the current model is noted

however for comparison to previous studies, this modification will not be pursued

for this investigation.

Total Rotation Vector

When -incorporating rotary balance data into a model it should be referenced

under the same conditions upon which it was collected. During rotary balance spin

tunnel testing, the model is rotated at a constant rate about an axis parallel to the

free stream velocity vector of the tunnel. The test model sees a constant

configuration of a, 1P and free stream velocity. Therefore, the rotary balance data

should be referenced using the component of the total rotational rate that is along

the free stream velocity vector. The total rotational rate is defined in terms of the

body axes rates as
£2=pb, +qb 2 +rb 3p q (34)

and Ig2 I p 2 + q2 + 2
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For spin analysis, the total rotational vector Q is projected into four rotation rates,

92, the steady state component of the rotation vector along the free stream velocity

vector and pqo,ro, which-represent the body frame components of the residual

rotational vector. Referring to Figure 4.1, these components are defined as

Kot K2 - V• , ) V, = nss V, (35)

o0 =5 - 2,ot- PosC 61 + qo0 52 + ro. 63  (36)

n, is the projection of the total rotation vector onto the velocity vector and

represents the rotary aspects of the total rotation vector. K2o. is the orthogonal

6omponent of the total rotation vector and is representative of the oscillatory

dynamics inherent in the total rotation vector. By the process of vector projections

the oscillatory components are defined as

POS = P - Qwcosacosp3 (37)

qo = q - 92,sinl3 (38)

ro = r - 92,8sincacosP3 (39)

Since the rotary balance data was experimentally obtained as function of a, P

and C4 b/2Vt, and additionally through development of the polynomials as a
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V/- wind frame

3b - body frame
S a - intermediate frame

3

Figure 4.1 Representation of the rotation vector in the aircraft body-frame and
wind frame.
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...... 4...rl

b1 :

r

. ' .. .. -

46,
Figure 4.2 Orientation of the rotation vector when oscillatory contributions are

negligible.
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function of 8a,d,e and 8,, the key to the proper use of rotary aerodynamic data

rely on the appropriate definition of the steady state rotation- rate 92,,. Hawkins

(17:184) used 92,, = (pcosct + rsinct) which restricted his analysis to zero sideslip

angles or the assumption of very small perturbations in sideslip. A more robust

representation is

R,= (pcosca + isina)cosl3 + qsinl3 (40)

which is found from 9SS 92 * V .
Vt

It is evident that when a stand alone rotary aerodynamic model is used it is

assumed that the oscillatory components of Q are relatively small (pos,qos,ro

0) compared-to 92. (= ,o) indicating that the-rotation vector is closely aligned with

the free stream velocity vector (Figure (4.2)). If the orientation of the total rotation

vector were grossly misaligned with the free stream velocity vector, the oscillatory

terms would play a larger role in the representation of the dynamics of the aircraft.

This would support the argument for the need of both forced oscillation and rotary

aerodynamic data to properly represent the aircraft's motion. However, for spins

which are the basis for this investigation, it is reasonable to assume the steady

state rotation and free stream velocity vector are closely aligned.
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Rotary Balance Model

For the stand alone rotary balance model, Eqn (40) is used to determine the

aerodynamic coefficients as a function of the body rates of the aircraft, angle of

attack and sideslip angle. The method of homotopy was incorporated to determine

a starting equilibrium solution. A rudder sweep was performed with the McDonnell

model using the equilibrium solution (a,e,8e) = (5.0,12.02,-1.39) identified by

Baumann (7:34). Because of the-dissimilarities between the two coefficient

databases, the equilibrium solution used for the homotopy application needed to

be located at high angle of attack, a> 600 and with zero control deflections. Using

the method of homotopy and the known solution from the McDonnell model the

path of the equilibrium solution was-transitioned to a stand alone rotary balance

model using

Ci = XCRB + (1 - X)CiMC (41)

where i=x,y,z,l,m and n. The C.RB coefficients are representative of Eqns (19) to

(24). The parameter ?, was used as the control parameter in AUTO to trace the

path of equilibrium solutions until =1 where the model was completely defined by

the rotary balance coefficient data. This model will be referred to as the Rotary

Balance (RB) Model.

Because of the questionable quality of the axial and side force rotary balance

coefficients, a second stand alone rotary balance model was created which used
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the Baumann model C, and CY coefficients in lieu of the associated RB

coefficients. Again using the method of homotopy for the remaining four

coefficients a starting equilibrium solution was determined. This model will be

referred to as the Modified Rotary Balance (RB) Model. The Modified RB Model

will assist in the determination of the impact to the investigation of the undesirable

coefficients. The validity of combining the two databases may be of some concern

due to the different testing conditions however results should provide information

on the impact of a perturbed coefficient database and specifically the contributions

of the axial and side-force contribution to the equilibrium solution paths.

Hybrid Model

When combining the two coefficient databases it is important not to duplicate

information. The rotary aerodynamic data-contains static information. The forced

oscillation coefficient contributions of the 1988 Aerobase contain dynamic

information which is at least partially duplicated by rotary data. To eliminate the

duplicate information, the rotary balance data will be biased to eliminate static

contribution. The rate components po,.,qo.,and r,, are used to isolate the and

eliminate the duplicate rotary contributions of the 1988 Aerobase. The new

coefficients are now represented by

C,.Hybd = Ci.RB - Ci.RB Static ' CiMc non-,ot (42)
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where i=x,y,z,l,m and n. The static rotary aerodynamic coefficients are determined

for a given configuration by setting K2, = 0. The static and dynamic terms from the

1988 Aerobase coefficients with the rotary contribution eliminated are represented

by

CiMc non-ot = C,.MCa(a,'',poscjqoscrosc, e ,5,, , T T,,1 v5y) (43)

Since the integrity of static configurations of the rotary aerodynamic data is

questionable, a Modified Hybrid model has also been developed. The Modified

Hybrid Model replaces the static contribution of the 1988 Aerobase with the static

contribution inherent in the rotary balance data. This will investigate the strength

and weakness of the static aspect of the rotary balance data. The Modified Hybrid

Model coefficients are defined by the relation

LModifled Hybd i.Mc non-tot- Ic Static i.RB (44)

where i=x,y,z,l,m, and n. The static contributions of the 1988 Aerobase, C.Mc stavC,

are determined for a given configuration by setting the body rates equal to zero.

Once the databases are combined, the transition from the stand alone 1988

Aerobase and the Hybrid Models across a = 30* needed to be smoothed. Figure

5.4 of chapter V show the large difference that could occur in coefficient values.
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The high and low a databases are blended together with the relation

Ci = Ci.a, + (CiHybjd- Ci.M)(3 - 2BIend)(Blend)2

Where Blend = c-30 (45)

5

for angles of attack from 300 to 350. Due to the limitation of the rotary balance

database the comparison of the models for the analysis will be limited to angles

of attack above 300. Unlike previous studies mentioned in Chapter I utilizing RB

data in bifurcation analysis models, the span of angle of attack was not restricted

by spin tunnel testing limitations of a > 55° . Eqn (45) was utilized as a method of

homotopy for transition from known McDonnell Model solutions in low a to the

Hybrid Model equilibrium solutions in high a.
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V. Results

The objective of this investigation was to-determine the effectiveness of using

rotary balance data for modeling of high AOA aircraft dynamics. The best

indication of the capability of a model is to compare its-output to experimental flight

test data. For asymmetric configurations, flight tests of the F-15 showed highly

oscillatory spinning motion at a=50" to 650 with yaw rates of 40 to 90 °/sec. These

results can vy as much as ± 200 in AOA and ± 20 in degrees/sec in yaw rate for

a given configuration. Smooth spin modes with symmetric loadings exhibited

average AOAs from 650 to 750 with average yaw rates of 75 to 1330/sec. Spins

of higher rates are possible. However, because of the pilot's physical limitations,

flight testing does not pursue determination of the maximum spin rate capability

(3:27-28). A typical full-scale aircraft flight test showed a right spin of a = 750 with

a spin rate of 3 sec/turn (4:12). During spin tunnel testing, to investigate free spin

modes, the scale model was allowed to rotate freely when subjected to the free

stream air. The tests with pro-spin controls, recovery controls and symmetric

stabilator deflection gave results comparable to the full scale flight test results

(4:12). To investigate the effectiveness of RB data, bifurcation diagrams

comparable to full scale flight test results were developed and then used to

compare the aircraft models developed.

Utilizing equilibrium solutions acquired from the McDonnell model and methods

of homotopy, control surface variations were made on each of the five models: RB,
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Modified RB, Modified Hybrid, Hybrid and the McDonnell. AUTO was used to

acquire equilibrium starting points for high a rudder deflections, elevator deflections

and aileron deflections representative of pro-spin and recovery control

configurations. To acquire specific configurations, alternating variations of different

control surfaces occasionally had to be exercised to acquire equilibrium solutions

on a desired solution branches in the high a regime. All bifurcation diagrams were

developed with a fixed thrust level of 8300 lbf. The results of the investigation will

be discussed in the order of the 'control surface deflections indicated with

numerical and graphical results presented at-the conclusion of the chapter. The

bifurcation diagrams presented do not always contain all possible equilibrium

branches due to the difficulty in obtaining starting equilibria for unknown solution

branches.

Rudder Sweep

As an initial comparison of the rotary balance and Hybrid models a rudder

sweep was performed at high AOA to determine how different the equilibrium

solution paths were. During full scale flight tests it was found that a rudder roll

entry technique was the easiest method to intentionally enter a spin. A rudder roll

would be initiated after the aircraft was positioned above 200 AOA-(3:26). Similarly

it was identified by Baumann (6:47) and McDonnell (24:30), an effective method

for obtaining an initial high AOA attitude was through an elevator deflection
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followed by a rudder sweep (i.e. continuation) to obtain high AOA spin conditions.

To further investigate the development of the equilibrium solutions, rudder

continuations were made at elevator deflections of -50, -190 and -250. The

equilibrium solution paths of the rudder continuations are shown in Figure 5.1 for

the five models.

Comparison of the RB Model and Modified RB Model (Figure 5.1a,b) show minor

changes due to variation in the axial and side force coefficients. The RB model-

is exhibiting an expanding center phenomenon in the range of a = 300 to 400.

Cause of such behavior has not been determined however it may be reflective of

the polynomial behavior inherent in the RB coefficient model.

The Hybrid model (Figure 5.1c) shows similarity to the McDonnell Model (Figure-

5.1e) in the upper branch for a = 85' with rudder deflections from -20* to 100.

Otherwise the results are rather different. The Modified Hybrid Model (Figure 5.1 d)

shows indication that the static contributions of the 1988 Aerobase are a major

contributor to the character of the equilibrium solutions. The Modified Hybrid

Model with RB static contributions shows results closer to the isola of the RB

Model as well as the upper branch. Examining the development of the solution

paths of the Hybrid model shows a closed path for Be=-5 ° indicating possible

formation of an isola center. This is indicative of the RB model however the event

is occurring across high a.

Full scale flight test results showed rudder deflection, either pro-spin or anti-spin

had no apparent effect on spin recovery (3:28). Comparing the behavior of the

65



solution branches to full scale flight tests shows the RB-model (Figure 5.1 a) having

the best correlation. The ineffectiveness of rudder in a pro-spin configuration at

high AOA with elevator stick aft is reflected in the RB Model results with a

continuous branch for full ± 8, with no bifurcation branches to lower AOA. The RB

model indicates large jumps in state would need to -occur for transition to the

solution branches in lower a. The McDonnell model (Figure 5.1 e) exhibits effective

rudder deflection spin recovery solution paths from high to low a. Small jumps in

states could occur-as the aircraft states transition between continuation branches.

McDonnell investigated the effectiveness of rudder in his model for spin recovery.

He found the rudder effectiveness was caused by the curve fitting of the stability

derivative C,,, resulting in twice the effectiveness of the rudder at larger negative

values of 8e. He made the conclusion that the model was somewhat inaccurate

in the effects of rudder at high AOA (29:39). This could explain the many

differences found in Figure 5.1.

The blending of the rotary balance data with the McDonnell model in the Hybrid

model may not be indicative of the capabilities of the Hybrid model because of the

identified problem with the McDonnell/Baumann coefficient database. However,

it would be expected for the Hybrid model to exhibit behavior that lie between the

two contributing parts. Figure 5.1 (c) is exhibiting unique behavior especially along

the high a right spin branch. There may be a detached branch that was not

acquired that accounts for the solutions above 700 AOA.
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Elevator Sweep

The rudder deflection parameter sweeps with fixed elevator and aileron

deflections represented asymmetric configurations. A second set of bifurcation

diagrams were developed for comparison of a symmetric configuration. Aileron

and rudder were held fixed at zero deflection while the elevator was varied from

-250 to 250. Even though the RB coefficient data was not defined for elevator

deflections greater than zero, it was felt the symmetry of the configuration could

support meaningful results above 8e = 0°-

Again comparison of the results from the Modified RB model (Figure 5.2b)-

exhibited minor variation in state variables and equilibrium solutions of the RB

model (Figure 5.2a). It was found for each configuration analyzed during this

investigation the Modified RB Model exhibited minor variations in state variables

and equilibrium solution branches. The results indicated that perturbations in axial

and side force coefficients had a minor impact on the equilibrium solutions.

Again the results of the RB model (Figure 5.2a) and McDonnell model (Figure

5.2e) are very different. They both have a branch of right flat spin modes across

high a but the RB model exhibits very linear behavior. The RB model was also

unable to identify stable solutions. Mehra and Carroll (26:76) found it was usually

not possible to obtain flat spin equilibria when only static and forced oscillation

data are used. The Baumann and McDonnell model were able to identify flat spin

equilibria leading one to believe that the blended flight test data may have been
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a major contributor to the character of the equilibrium solutions. The stable

regions identified by the McDonnell model are small however. The results of the

RB model follow the findings of Mehra and Carroll for no stable equilibria. The

RB model did exhibit unstable branches in similar location of the periodic wing rock

behavior of the McDonnell model however at a much higher a and non-periodic.

Figures 5.2c and 5.2e show the Hybrid model is very similar in appearance to

the McDonnell model. The Hybrid model result shows a more drastic hysteresis

with jump phenomena very likely for positive and negativ', elevator deflections in

the range 80 to 150. Considering the concept of expanding centers, the Hybrid

solution appears to be at a different stage- of development compared to the

McDonnell model. Again another parameter influence appears evident to reflect

the stages of isola development between models. Between . = ±-5" the a - 8e

bifurcation diagrams appear approximately the same. Table IV compares the

ar raft states for 8 e = 00 to determine how different the models are. The Hybrid

Model is indicating slower rates resulting in a much slower spin. To investigate

the possible cause of the differences of the models, the- force and moment

coefficients and states of the aircraft in the region -250 < 8e < -50 on the high -a

branch of Figure 5.2 were examined.

Figure 5.3 shows the comparison of each of the remaining seven states. In

each diagram the states have similar behavior in each model until the turning point

at 8. = -150; i.e. the-Hybrid and McDonnell branches have similar states for

8e>-1 5, until the turning point on the Hybrid model at , = -150 after which the
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Table IV Comparison of right spin states of the Hybrid and
McDonnell model at high AOA with
sa= 0 ",d=0 " ,Sc=0" and 8r=O

Hybrid Model McDonnell Model

a 66.35" 64.29"
-11.48" -6.71"

p 0.4728 rad/sec 0.7629 rad/sec
q -0.1261 rad/sec -0.0901 rad/sec
r 1.072 rad/sec 1.593 rad/sec
0 -23.65" -25.56"

-6.71" -3.236"
Vtr 238 ft/sec 238 ft/sec

Spin Rate 6.36 sec/turn 3.56 sec/turn

model's exhibit quite different behavior.

As discussed in Chapter III, a jump event could occur within the hysteresis. The

jumps in states would be evident -of abrupt changes in the aircraft attitude and

rates. If the Hybrid model were a-prediction of actual F-15B flight behavior, the

aircraft would experience sudden changes in attitude if the elevator were held

between a -8* and -150 elevator deflection during a spin.

The examination of the states has given additional views of the differences

between the models however the coefficients are now examined to assist in

identifying the cause of the difference. Figure 5.4 are plots of the three force and

three moment coefficients values as the elevator is swept between -50 and -25 °.

It should be noted that the coefficients for each model were determined following

the locus of equilibrium states from Figure 5.3. The hysteresis event is very

evident in each of the coefficients. With such strong differences in coefficient
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values it would be expected to have very different equilibrium solutions. The

bifurcation diagrams of Figures 5.2(c) and (e) may have visual similarity, but the

underlying state of the aircraft dynamics does not.

It would be best to compare the coefficients at a single set of state values. The

force and moment coefficients were determined for a fixed aircraft state with varied

elevator deflections of -50 to -25'. The-fixed state chosen was the flat right spin

exhibited by the McDonnell model along the upper branch of Figure 5.2e at an

elevator deflection of -150. The aircraft state is exhibited in Table V.

Table V Representative aircraft state for comparison of
the Hybrid and McDonnell model coefficient
behavior-.

a p q r 0 Vtr

68 -5.44 0.69 -0.079 1.714 -21.92 -2.65 236.5

It should be noted that for bifurcation analysis the diagrams are traces of the

equilibrium solutions of the system. The state in Table V from the McDonnell

model is only an equilibrium solution for that model and does not represent an

equilibrium solution for the Hybrid model. Therefore it should not be compared

relative to the behavior exhibited in Figures 5.2 and 5.3.

Figure-5.5 shows the comparison of the coefficients for the aircraft state defined

in Table V. Except for-the-axial:force coefficient (Figure 5.5a) , which is practically

the same, all the coefficients appear to be-offset by a "static" bias. There are
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slight changes in slope along-some of the coefficients however the bias is the-most

predominate effect. It is most probable that the questioned static aspects of the

modeled rotary balance data has introduced an error bias in the Hybrid

coefficients. The Modified Hybrid model (Figure 5.2d) shows very different

behavior when the static contributions are representative of only-the rotary balance

data. The dramatic change in the equilibrium surface is most likely caused by the

erroneous static data. If there are errors in the static data, as it is either added or

subtracted from a model it may be removing essential information leaving noise

vice relevant information.

Table VI is a- comparison of each of the five models to the spin tunnel spin

mode predictions and the full-scale flight test spin mode of 750 AOA and 3 sec/spin

rate all at common control settings. Comparing the Hybrid model to the spin

tunnel predictions, the inclusion of RB data has not modeled the aircraft states

better than the McDonnell model. The-Hybrid model results did not lie between

the RB and McDonnell model as would be- expected. There appears to be an

additional factor influencing its results. The RB, Modified RB and Modified Hybrid

models showed very-good correlation to full scale flight test results and the spin

tunnel predictions.

Aileron Sweep

Various sweeps of different control surfaces were performed with AUTO to set
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up the conditions for the spin modes identified in Tables VII and VIII. Once a

solution for a specific configuration was acquired, an aileron continuation was

made. By fixing all controls except aileron, the aircraft behavior was examined as

aileron was deflected through the desired pro-spin or spin recovery configuration.

Only right spins were identified.

Pro-spin controls are acquired by obtaining full cross-controlled lateral-

directional inputs (i.e full positive aileron ard full negative rudder)-during an-abrupt

full negative elevator deflection (fullaft stick position). Immediately after high a

attitude is obtained, the elevator is returned-to a neutral position as the aircraft

settles into the spin (3:27). Analogous, using AUTO, alternating rudder and

elevator sweeps were made to acquire high a-solutions and then an aileron sweep

was made to acquire a cross-control configuration. A final elevator sweep was

made to obtain a neutral elevator deflection. Using the resulting equilibrium

solution an aileron continuation was performed resulting in Figure 5.6.

Full scale flight tests showed satisfactory spin recovery can be accomplished

with near full aileron/differential stabilator deflection into the spin direction (3:28).

For recovery from the right spin identified in Figure 5.6 -full negative

aileron/differential elevator deflection was made. Since rudder deflection has

already been determined earlier to be ineffective for spin recovery, its position is

not critical. Figure 5.6 also showed recovery control effectiveness as the-aileron

was deflected into the right spin direction (negative deflection). Figure 5.7 was

similarly developed for comparison of the specific data in Table VIII.
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The RB model showed good correlation to the spin tunnel predictions and full

scale flight test predictions for the behavior in a pro-spin and recovery control

configuration. The conditions identified-in Table VII are for pro-spin cGntrols. The

RB model (Figure 5.6a) identifies the equilibrium solution along a near horizontal

branch showing no immediate spin recovery to lower a with moderate

perturbations about Sa = 200. The conditions in Table VIIl-are for recovery controls.

The RB model (Figure 5.7a) identifies the equilibrium solution along a vertical

branch indicating spin recovery to lower-a, i.e. recovery will occur as Sa decreases

towards -200.

Comparing the-RB model between Figures 5.6 and 5.7 does provide evidence

of some effects of rudder on recovery controls. Figure 5.6 with negative rudder

deflection shows recovery with less aileron deflection positioned into the spin

direction than with full positive rudder deflection as shown in Figure 5.7.

In contrast to the RB model results, the McDonnell model (Figures 5.6e and

5.7e) did not exhibit pro-spin nor recovery solutions for the same configurations.

McDonnell noted the ineffectiveness of aileron deflection for spin recovery in his

model however did not pursue investigating its cause other than noting it was a

cause of the spin characteristics of the aircraft and not a problem with the model

(24:40).
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Discussion

The states extracted for a specific aircraft configuration presented in Tables

VI,VII and VIII may be deceiving as to the similarity between models. The discrete

examples present similar results however the qualitative structure of the bifurcation

diagrams indicate very different behavior.

Considering that nearly all solutions obtained were unstable, it was difficult to

justify that a particular behavior riay occur. Unfortunately, with the gross

differences between models,-it was hard to draw any conclusions to the "influence"

of rotary balance data. Conclusions could be drawn however-to what information

it could and could not provide when examined--by itself. It was identified by the

results of the Hybrid and-Modified Hybrid model that the static rotary balance data

contributions had a major influence on the proper-blending rotary aerodynamic

information into the Hybrid model. If large errors were evident in the static data

they could cause meaningful rotary information to be "erroneously removed"

leaving noise perturbations. This may account for the seemingly independent

character of the Hybrid model with the exception of elevator deflection bifurcation

diagrams. The rotary balance data apparently has less sensitivity-to the elevator

control surface than the McDonnell model. The model conflicts that occurred as

rudder and aileron deflections were made provided additional difficulty for the

Hybrid model to provide meaningful information.
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Table VI Clockwise spin state. 8a=0" 8d=0 ,-25" ,r=0"

a Spin Rate sb/2Vtr -P Vtr
(deg) -(sec/turn) (rad/sec)-(ft/sec)

RB Model 75-.3 3.2 0.16 1.973 260

Modified
RB Model 75.4 3.2 0.16 1.97-2 261

Hybrid 84.9 1.7 0.30 3.657 257

Modified
Hybrid 76.5 5.1 0.11 1.220 245

McDonnell/
Baumann 82.2 2.1 0.29 3.013 226

Spin Tunnel
Predict 65.0 5.1 0.10 1.271 272

Flight Tests 75.0 3.0 2.0

Table VII Pro-spin controls model comparisons.
5a=20 , 8 d=6 ,8 =0 ,Sr = - 15

c Spin Rate f2,b/2V,, Q1 Vtr

(deg) o(sec/turn) (rad/sec)(ft/sec)

RB Model 84.4 1.98 0.25 3.177 263

Modified
RB Model 83.6 2.04 0.26 3.080 255

Hybrid 63.2 5.28 0.11 1.189 236

Modified
Hybrid 85.9 1.31 0.34 4.794 301

McDonnell/
Baumann 60.3 3.79 0.15 1.658 241

Spin Tunnel
Predict 80-.0 2.70 0.21 2.390 244

Flight Tests 70-85 2-6 --- 1-3
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Table VIII Recovery controls model comparisons.
5a=-20",'8d=-6 ,8 =0",'r=30

c Spin Rate 4b/2V,, fs Vtr

(deg) (sec/turn) (rad/sec)(ft/sec)

RB Model 62.2 4.60 0.12 1.363 250

Modified
RB Model 62.2 4.78 0.11 1.313 257

Hybrid 66.0 5.17 0.11 1.2158 244

Modified
Hybrid- 52.1 7.02 0.08 0.895 252

McDonnell/
Baumann 64.8 3.50 0.16 1.790 240

Spin Tunnel
Predict 56.0 6.10 0.08 1.039 278

Flight Tests 50-65 4-6 0.7-1.6 ---
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(8d=0 .35a)5e=O",5=3O) (a) Rotary Balance Model.

90 1 .. . .. . . -- - -

Right Spin

80-

-1,

S60-

4 0-

3003

Aileron Deflection (deg)

Figure 5.7 Aileron Sweep Bifurcation Diagram With Recovery Controls
(8dO=.38a,)8e0 0,5,=3O0 ) (b) Modified Balance Model.
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VI. Conclusions

As evidenced from this investigation, one of the distinctive differences and

sources of difficulty in models of aircraft dynamics is the representation of the

aerodynamic forces and moments. It is difficult to accept any research results that

apply experimental data for modeling without a validation of the integrity of the

data upon which the research was based. This investigation presented an

opportunity to compare three models based on three very different aerodynamic

coefficient databases. The results have given evidence of the-caution that needs

to be exercised when models are compared as well as the possible error that is

introduced when two different sets of data are combined.

Both the McDonnell and RB model have the ability to predict high AOA behavior

of the F-15B. The fundamental difficulty is that the qualitative and quantitative

outlay of equilibria is very different. There is still the question of which model is

better. The McDonnell model, representing static and forced oscillation data, has

demonstrated wing rock behavior indicative of full scale flight test results as

identified in reference (3). It does however have problems with the consequences

of aileron and rudder deflection at high a which is probably more evident of the

modelling of the stability derivatives than with the capability of static and forced

oscillation data. With the possible problems with the McDonnell/Baumann

coefficient modelling in Sa and 5. it is difficult to draw any conclusions concerning
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its relative merits when compared to the RB model. The McDonnell model would

however provide initial indication of high- a spin behavior to initiate further

investigations with the RB model. Moreover, the McDonnell model was used at

8a=,=O-with thrust vectoring producing quality results, so it is not aiways limited

by this problem (24).

The results of Chapter V have shown that rotary balance data does enable

prediction of aircraft spin motion with good correlation to full scale flight test

results.

In particular:

(1) The RB model properly represented rudder motion as not being optimum for

spin recovery as demonstrated by full scale fligh': tests.

(2) The RB model properly represented recovery control behavior with ailerons

in arepresentative flight test recovery configuration.

(3) In pro-spin control configuration representative of full scale flight test

behavior, the RB model showed no immediate spin recovery.

In addition:

(4) The rotary balance model was unable ,o .'entifyst,ib!e equilibrium branches.

as predicted by Mehra-and Carroll for fighter aircraft and shown in their research

results for the F-4 fighter (26).

The results from the RB model does demonstrate rotary balace data has strength

in representing spinning motions of the aircraft however there is not enough

100



evidence to declare supremacy over the McDonne" model.

These results were determined with a single polynomial representation of each

of the aerodynamic force and moment coe "'-,ts. It should be evident that the

modeling of the RB data has smocthe,, , ' the character of the original

database. However, even with a "smoothed' -presentation of the RB,.ta, it was

able to provide good correlation to experimt,; 7' Jight test results. The promising

results shown by the RB data as a stand alor.e iepreser.tation of the aerodynamic

coefficients in high. AOA dynamics analysis yields further investigation of the

effects of the static errors. With the RB data more effecti-,ely modelled it may

provide more character in the bifurcation diagrams.

The problems encountered with the blending of two databases acquired from

different testing facilities was evident in the Hybrid-model. Because of the different

sources of the data, inherent ,.:'rors may conflict or even amplify. It needs to be

assured that the data being blended is representative of the same testing

condition. The error evident in the RB coefficient static configuration had a

definite influence on the results found with the Hybrid model. The problems with

aileron and rudder deflection in the McDonneli/Baumann model introduced error

with the Hybrid model. Any research intending to use a hybrid model needs to

develop three models. The RB, hybrid and static and forced oscillation model,

need to be examined to ensure eaci, is representing basic behavior such as rudder

ineffectiveness or anticipated recovery rusults before the hybrid is used. If the

databases were blended without concern, the Hybrid model may be presenting
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false information which is based on conflicting databases.

Results from the Modified RB model showed-that perturbation in the Axial and

Side Force coefficients had a minor influence on the equilibrium ..Jlution branches

when investigating the spin regime of the F-15B. The Modified Hybrid model gave

indication that the static contributions to the aerodynamic coefficients vvas most

influent:,,l in the character of equilibrium solutions.

Recommendations

1. An investigation of the evident static contribution problem of the rotary balance

data and its effects on the Hybrid model could be made. A filtering process could

be developed to adjust the removal of the rotary balance static contribution at

small increments, artificiaiiy red icing its contribution to the model. A- hornotopy

variable could be defined to adjust the proportions of the rotary balance- siatic

contributions removed and then a continuation on this variable could be performed

to see what features of the bifurcation diagrams are most effected.,

2. T, e static and forced oscillation contributions of the McDonnell model

coefficients could be isolated ard anallyzed uiing bifurcation analysis to provide

insight into which features of the equilibrium solutions are driven by static and

forced oscillation information separately. The results from the analysis of the

McDonnell model static contributions may provide assistance in determining the

level of adjustments that could be made on the rotary balance data in
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recommendation (1).

3. As demonstrated by the Modified RB model, analysis of the influence of each

force and moment coefficient on the equilibrium solutions should be investigated.

Before bifurcation analysis can be used confidently for analysis of aircraft dynamics

its tolerance to perturbations in each of th force and moment coefficients needs

to be determined. In addition, the analysis may provide insight into the behavicral

differences between the models. Using the McDonnell,Rotary balance or an

artificial database, each coefficient could be perturbed separately with either a

static bias or a selected function. "I h. res.,,ts could assist in identification of which

coefficients are driving the gross aifferences. The data could be adjusted to

develop certain phenomena and then by adjusting- the coefficient data until the

phenomena distorts or disappears, the tolerance in accuracy of the coefficients

could be determined.
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Appendix A: F-1 5B Specification Data

The F-1 5 specifications for the F-1 5 are contained in Table IX. The data was

obtained from Beck (8) and (23).

Table IX. Physical Characteristics of the F-15B

Wing
Area (theoretical) 608 sq ft
Aspect Ratio 3.01
Airfoil

Root NACA64006.6
Xw 155 NACA64A(x)04.6 (a = 0.8 MOD)
Tip NACA64A203 (a = 0.8 MOD)

Span 42.8 ft
Taper Ratio 0.25
Root Chord (Theoretical) 273.3 in
Tip Chord 68.3 in
Mean Aerodynamic Chord 191.3 in
Leading Edge Sweep Angle 450
25% Chord Sweep Angle 38.60
Dihedral -10

Incidence None
Twist at Tip None
Aileron Area 26.5 Sq ft
Flap Area 35.8 sq ft

Speed Brake Area 31.5 sq ft

Control Surface Movement
Aileron +200
Speedbrake 450 up
Flap 30* down
Horizontal Tail 290 down, 150 up
Rudder ±300
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Vertical Tail
Area (Theoretical Each) 62.6 sq ft
Rudder Area (Each) 10.0 sq ft
Span 10.3 ft
Root Chord 115.0 in
Tip Chord 30.6 in
Airfoil - Root NACA0005-64

- Tip NACA0003.5-64
Taper Ratio 0.27
Leading Edge Sweep Angle 36.60
25% Chord Sweep Angle 29.70
Mean Aerodynamic Chord 81.0 in
Cant 20 out
Length (.25c, to .25cv)- 212.4 in

Horizontal Tail
Area (Theoretical) 120.0 sq ft
Area (Actual) 111.4 sq ft
Span 15.7 ft
Aspect Ratio 2.05
Taper Ratio 0.34
Root Chord 137.2 in
Tip Chord 46.5 in
Airfoil - Root NACA0005.5-64

- Tip NACA0002.5-64
Leading Edge sweep Angle 500
25% Chord Sweep Angle 43.60
Mean Aerodynamic chord 99.3 in
Dihedral 00

Length (.25c, to .25ch) 241.0 in

Wetted Area
Fuselage 1405 sq ft
Nozzles 53 sq ft
Horizontal Tail 216 sq ft
Vertical tail 257 sq ft
Wing 698 sq ft

Total Area 2629 sq ft
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Miscellaneous Data
Aircraft Length 63.8 ft
Aircraft Height 18.6 ft
Aircraft Volume 1996 cu ft
Aircraft Gross Weight 37000 lbs
C.G. Station X Direction 557.173

Y Direction 0.0
Z Direction 116.173

Inertia Data is for a basic F-15 with 4 AIM-7F missiles, ammo, 50% fuel and gear
up.

Ix 25480 slug-ft2

ly 166620 slug-ft2

Iz  186930 slug-ft2
Ixz -1000 slug-ft2
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Appendix B: Sign Conventions

The airplane is considered in an upright attitude with all directions with respect

to the pilot seated in the cockpit. Refer to figure B-1. The sign convention data for

the F-15 was obtained from (23).

Airplane

Forces - Positive up, aft or to the right

Moments - Positive when the nose pitches up, to the right, or the left wing
rises.

Angular
Velocity - Positive when the nose rotates up, to the right, or the left wing rises.

Control Surfaces

Aileron - Positive when right aileron is down.

Differential
Horizontal Tail - Positive when right panel is down.

Symmetrical
Horizontal tail - Positive when trailing edge is down.

Rudder - Positive when trailing edge is to the left.
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Figure B-1 F-15B control surface sign convention and aircraft drawing.
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Appendiy 0: AUTO Driver Program

C
C CAPTAIN RALPH D. FERO AFIT GA-91 D
C MASTERS THESIS
C
C THE FOLLOWING DRIVER PROGRAM IS A MODIFIED VERSION OF
C CAPT ROBERT MCDONNELL'S 1990 THESIS. THE ADDITIONS IN
C THIS VERSION OF THE PROGRAM INVOLVE INTEGRATION OF
C F-15 ROTARY AERODYNAMIC DATA. THIS PROGRAM SOLVES THE
C NONLINEAR DIFFERENTIAL EQUATIONS OF MOTION FOR THE
C F-15B AIRCRAFT. FOR THIS RESEARCH EFFORT, THIS-PROGRAM
C WILL BE USED TO INVESTIGATE THE EFFECTS OF ROTARY
C BALANCE DATA ON THE ANALYSIS OF HIGH ANGLE OF ATTACK
C PHENOMENA. THE PROGRAM IS CAPABLE OF VARYING
C ELEVATOR, AILERON, RUDDER DEFLECTIONS, ENGINE
C THRUST VECTOR (PITCH AND YAW), PORT AND STARBOARD
C ENGINE THRUST, AND TOTAL THRUST. IN ADDITION, THE
C PROGRAM HAS BEEN MODIFIED TO VARY DIFFERENTIAL
C ELEVATOR AND A HOMOTOPY BLENDING PARAMETER FOR
C TRANSITION FROM THE 1988 F-15AEROBASE DATA TO ROTARY
C AERODYNAMIC DATA.
C
C LAST EDITED ON 14 OCTOBER 1991
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
COMMON /RBPOLY/ PC, OMEGA
DIMENSION W(300000), IW(1000),PC(6,79)

C
C

OPEN(UNIT=3,FILE='fort.3')
OPEN (UN IT=4,FI LE='fort.4')
OPEN(UNIT=7,FILE='fort.7')
OPEN(UN IT=8,FI LE='fort.8')
OPEN(UNIT=9,FILE='fort.9')
OPEN(UNIT=1 0,FILE='fort.1 0')
OPEN(UNIT=1 2,FILE='seize')
OPEN(UNIT=1 3,FILE='seizet')

C
REWIND 7
REWIND 8
REWIND 9
REWIND 10
REWIND 3
REWIND 4
REWIND 12
REWIND 13

C
C ADDED 15 AUG 91
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C

CALL RBPOLYCOEF
C
C CALL AUTO - CONTINUATION & BIFURCATION LOCATION
C SUBROUTINE
C

CALL AUTO(W,IW)
C

STOP
END

C
C

SUBROUTINE FUNC(NDIM,NPAR,U,ICP,PAR,IJAC,F,DFDU,DFDP)
C -----..-- - ..................------- - .---

C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /KS/ K ,K5,K7,K8,K9,KlO,K12,K13,K14,Kl5,Kl6,Kl7
COMMON /ACDATA/ BWING,CWING,SR EF,RHO,RMASS
DOUBLE PRECISION K1 ,K5,K7,K8,K9,K10,K12,K13,K14,Kl5,Kl6,K17
COMMON /SEIZE/ CX,CY,CZ,CLM,CMM,CNM
COMMON /SEIZET/ CXT,CYT,CZT,CLMT,CMMT,CNMT
COMMON /SEIZER/ CXR,CYRCZRCLMR,CMMR,CNMR
COMMON /RBPOLY/ PC, OMEGA

C
C

DIMENSION DFDU(NDIM,NDIM),DFDP(NDIM,NPAR),DELF1 (8),
+ DELF2(8),U(NDIM),PAR(10),F(NDIM),DX(8),PC(6,79)

C
C
C
C INITIALIZE SOME CONSTANTS THAT ARE PASSED THROUGH
C THE COMMON BLOCK ACDATA
C
C DATA IS FROM MCAIR REPORT# A4172 AND AFFTC-TR-75-32
C F-15A APPROACH-TO-STALL/STALLPOST-SIALL EVALUATION
C
C BWING - A/C WINGSPAN, FT
C CWING - A/C MEAN AERODYNAMIC CHORD, FT
C SREF - A/C WING REFERENCE AREA, SO FT
C RHO - AIR DENSITY AT 20000 FT ALTITUDE, SLUG/FTA3
C RMASS - A/C MASS, SLUGS
C

BWING=42.8
CWING=1 5.94
SREF=608.
RHO=.0012673
RMASS=37000./32.174

C
C
C DETERM!NE CONSTANTS K1 THROUGH K17. SOME ARE MADE
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C COMMON AND PASSED TO SUBROUTINE FUNX AND USED IN THE
C EQUATIONS OF MOTION THERE
C
C INERTIAS HAVE UNITS-OF SLUG-FTA 2
C
C K1 HAS UNITS OF 1/FT
C
C K6, K8, K1 1, K1 4, AND K1 7 HAVE UNITS OF 1/FTA2
C

C IX= 25480.OdO
C- IY= 166620.OdO
C IZ= 1 86930.0 dO
C IXZ= -1000.OdO
C K1=0.5d0*RHO*SREF/RMASS
C K2=(IZ-IY)IIX
C K3=IXZ*IXZI(IX*IZ)
C K4=([Y-IX)/IZ
C K5=IXZ/IX
C K6=0.5d*RHOBWING*SREF/IX
C K7=IXZ/IZ
C K8=0.5d*RHO*SREF*CWING/IY
C K9=(IZ..IX)/IY
C K1O=IXZ/IY
C K1 1 =0.5d*RHO*SREF*BWING/IZ
C K1 2=(K2+K3)/(1 .OdO-K3)
C K1 3=(1 .OdQ-K4)'K6/(1 .OdO-K3)
C Ki 4=K6/(1 .OdO-K3)
C K1 5=(K3-K4)I(1 .OdO-K3)
C K1 6=(1 .OdO+K2)*K7/(1 .OdO-K3)
C Ki 7=K1 1/(1 .OdO-K3)
C
C

Ki =3.350088890D-04
K5 =-3.924646781 D-02
K7 =-5.3495961 05D-03
K8 = 3.68565097 1 D-05
K9 = .96897131196
K1 0 =-6.001 680471 D-03
K12 = .79747314581
K1 3 =-9.615755341 D-03
K14 = 6.472745847D-04
K15 =-.754990553922
K16 = K13
K17 = 8.822851558D-05

C
C
C
C FIND THE VALUES OF F(1) THROUGH -F(NDIM). SUBROUTINES
C COEFF AND FUNX ARE CALLED ONCE.



C
C

CALL COEFF(U,PAR,NDIM,ICP)
C
C THE FOLLOWING ADDED 15-AUG 91
C
C THE SUBROUTINE RBPOLYCOEF AND RBCOEF DETERMINE THE
C ASSOCIATED COEFICIENTS USING ROTARY BALANCE DATA
C OBTAINED FROM THE NASA LANGLEY SPIN TUNNEL. THE DATA
C WAS OBTAINED ON FLOPPY DISKS. THE DATA IS DOCUMENTED
C IN NASA CR 3478. THE DATA IS ONLY CODED FOR AOA ABOVE
C 30 DEGREES THEREFORE WILL BE BLENDED AT THIS VALUE.
C

IF (U(1) .GT. 30) THEN
C

CALL RBCOEF(U,PAR,NDIM)

C SUBROUTINE BLEND PERFORMS THREE FUNCTIONS. USING THE
C PARAMETER BLEND, (1) IDENTIFY A UNIQUE EQUILIBRIUM
C STATE SOLUTION FOR PURE ROTARY BALANCE DATA BASED
C MODEL,(2) PERFORM THE ADDITION THRUST CONTRIBUTIONS TO
C THE PURE ROTARY BALANCE DATA BASED MODEL, (3) PERFORM
C THE BLEND TRANSITION FROM MCDONNELL'S MODEL TO THE
-C HYBRID ROTARY BALANCE DATABASE MIXED MODEL (HYBRID
C MODEL).
C

CALL RBBLEND(U,PAR,NDIM,ICP)
C

ENDIF
C

CALL FUNX(NDIM,U,F)
C
C

IF(IJAC.EQ.0) RETURN
C
C SET THE VALUES OF DX
C MODIFIED TO SCALE DX ACCORDING TO VARIABLE
C 13 JUN 88
C
C

DXO=1.OD-9
DX(1)=DX0°50.OdO
DX(2)=DXO10.OdO
DX(3)=DXO*0.5d0
DX(4)=DXO00.25d0
DX(5)=DX00.5d0
DX(6)=DX0*50.OdO
DX(7)=DX0*50.OdO
DX(8)=DXO00.5d0

C
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C
C NEXT THE PARTIAL OF F W.R.T. A GIVEN PARAMETER ARE
C FINITE DIFFERENCED
C

PTEMP=PAR(ICP)
PAR(ICP)=PTEMP+DX(1)

C
C

CALL COEFF(U,PAR,NDIM,ICP)
C

C
C FOLLOWING-ADDED 15 AUG 91
C

IF (U(1) .GT. 30) THEN
CALL RBCOEF(U,PAR,NDIM)
CALL RBBLEND(U,PAR,NDIM,ICP)

ENDIF
C

CALL FUNX(NDIM,U,DELF1)
C

PAR(ICP)=PTEMP-DX(1)
C
C

CALL COEFF(U,PAR,NDIM,ICP)
C
C
C FOLLOWING-ADDED 15 AUG 91
C

IF (U(1) .GT. 30) THEN
CALL RBCOEF(U,PAR,NDIM)
CALL RBBLEND(U,PAR,NDIM,ICP)

ENDIF
C

CALL FUNX(NDIM,U,DELF2)
C

DO 13 I=1,NDIM
C

DFDP(I,ICP)=(DELF1 (I)-DELF2(I))/(2.0d0DX(1))
C
C

13 CONTINUE
PAR(ICP)=PTEMP

C
C THE NEXT DO LOOP CALCULATES THE PARTIAL DERIVATIVE OF
C F W.R.T. TO U USING FINITE DIFFERENCES.
C
C SET U(J) EQUAL TO U+DU, THEN CALL COEFF WITH THIS
C UPDATED STATE VECTOR. THIS IS DONE SIMILARLY WITH
C U-DU
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C
DO 20 J=1,NDIM

C
UTEMP=U(J)

C'

U(J)=UTEMP+DX(J)
C
C;

CALL COEFF(UPAR,NDIM,ICP)
C

C FOLLOWING-ADDED 15 AUG 91

IF (U(1) .GT. 30) THEN
CALL RBCOEF(UPARNDIM)
CALL RBBLEND(U,PAR,NDIM,ICP)

ENDIF
C

CALL FUNX(NDIM,U,DELFl)

U(J)=UTEMP-DX(J)

CALL COEFF(U,PAR,NDIM,ICP)
C
C FOLLOWING ADDED 15 AUG 91
C

IF (U(1) .GT. 30) THEN
CALL RBCOEF(U,PAR,NDIM)
CALL RBBLEND(U,PAR,NDIM,ICP)

ENDIF
C

CALL FUNX(NDIM,U,DELF2)
C
C

DO 16 I=1,NDIM
DFDU(I,J)=(DELF1 (I)-DELF2(I))I(2.OdrnDX(J))

16 CONTINUE
C

U(J)=UTEMP
C

20 CONTINUE

RETURN
END
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SUBROUTINE FUNX(NDIM,UF)
C --......... ........

C
C SUBROUTINE FUNX EVALUATES THE NDIM EQUATIO1W4S GIVEN THE
C STATE VECTOR U.
C
C NDIM- THE DIMENSION OF THE PROBLEM
C U - THE VECTOR OF STATES ALPHA, BETA, ... (INPUT)
C F - THE VECTOR RESULT OF FUNCTION EVALUATIONS
C (OUTPUT)
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /SEIZE/ CX,CY,CZ,CLM,CMM,CNM
COMMON /SEIZET/ CXTCYTCZT,CLMT,CMMT,CNMT
COMMON IKS/ K1 ,K5,K7.K8,K9,K1O,K12,K13,K14,K15,K16,K1 7
DOUBLE PRECISION Ki ,K5,K7,K8,K9,K1O,K12,K13,K14,K15,K16,K17
DIMENSION U(NDIM),F(NDIM)

C
C SET TRIGONOMETRIC RELATIONSHIPS OF THE STATES ALPHA,
C BETA, THETA, AND PHI AND THEN SET P, Q, R, AND VTRFPS
C

IWRITE=I
C
C

DEGRAD=57.29577951 DO
c

CA=COS(U(1)/DEGRAD)
SA=SIN(U(1)/DEGRAD)
CB=COS(U(2)/DEGRAD)
SB=SIN(U(2)/DEGRAD)
CTH E=COS(U(6)/DEGRAD)
STHE=SIN(U(6)/DEGRAD)
CPHI=COS(U(7)/DEGRAD)
SPHI=SIN(U(7)/DEGRAD)

C
P=U(3)
Q=U(4)
R=U(5)
VTRFPS=1 000.OdOU(8)

C
C SET THE GRAVITATIONAL CONSTANT, FT/SEC
C

G=32.1740d0
C
C THE FOLLOWING SYSTEM OF NONLINEAR DIFFERENTIAL
C EQUATIONS GOVERN AIRCRAFT MOTION
C
C UPDATED FOR PROPER DEGREE-RADIAN UNITS AND PROPERLY
C SCALED VELOCITY EQUATION: 7 JUN 88
C
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C -F(1)=ALPHA-DOT
C

1 F(1 )=Q+(-(K1 * TR FPS CX-G*STH EVTRF PS+ R'SB) SA (K1 *VTRFpS
+ *CZ±(G*CTHECPHI/VTRFPS)-P*SB)*CA)/CB
F(1 )=F(1 pDEGRAD

C
C
C F(2)=BETA-DOT
C
2 F(2)=-((K1 -VTR FPS CX- GSTH E/VTR FPS) *SB+ R)*CA (Kl VTR FPS *CY

"+ G*CTH E*S PH I/TR FPS) CB-((K1 *VTR FPS*CZ G*CTH ECP HIVTRFPS)
" *SB-P)*SA

F(2)=F(2)-DEGRAD
C
-C
-C F(3)= P-DOT
-C

3 F(3)=-K1 20QR4 i ,3*P*Q+K 4*(CLM±K7*CNM)VTRFPS*VTRFPS
C
C
C F(4)=Q-DOT
C
4 F(4)=K8*VTRFPSVTRFPS*CMM±K9*P*R±Kl 0(R*R-P*P)

C
C
C F(5)=R-DOT
C

5 F(5)=K 5'PQ-K1 6Q0R±K 7*VTRFPS*VTRFPS(K5CLM+CNM)
C
C
C F(6)=THETA-DOT
C

6 F(6)=Q-CPHI-R-SPHi
F(6)=F(6)'DEGRAD

C
C
C F(7)=PHI-DOT
C

7 F(7)=P±0(STHECTHE)ySPHI+R*(STHE/CTHE)*CPHI
F(7)=F(7)'DEGRAD

C
C
-C F(8)=VTRFPS-DOT (SCALED BY A FACTOR OF 1000)
C

8 F(8)=LJ(8) '((K1 -VTRFPS-CX-G-STH EIVTR FPS) CA-CB(K1 VTRFPS*CY
"+ G*CTHE*SPHI/VTRFPS)*SB
" .i(Kl*VTRF PSCZ±G CTH E*CPH I/VTR FPS) SA CB)

C
C
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RETURN
END

SUBROUTINE STPNT(NDIM,U,NPAR,ICP,PAR)
C------------------- -----
C

C THIS SUBROUTINE SETS THE VALUES OF THE STATES AND
C PARAMETERS AT THE START OF THE ANALYSIS. THE STATES
C AND CONTROL SURFACE SETTINGS REPRESENT AN EQUILIBRIUM
C STATE OF THE AIRCRAFT
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C

DIMENSION U(NDIM),PAR(10)
C U(1) - ALPHA, DEG
C U(2) - BETA, DEG
C U(3) - P, RAD/SEC
C U(4) - 0, RAD/SEC
C U(5) - R, RAD/SEC
C U(6) - THETA, DEG
C U(7) - PHI, DEG
C U(8) - TRUE VELOCITY, IN THOUSANDS OF FT/SEC
C
C THE STARTING POINT (VECTOR)
C

OPEN(UNIT=15,FILE='fort.15')
REWIND (15)

C
READ(15,*) U(1)
READ(15,-) U(2)
READ(15,-) U(3)
READ(15,') U(4)
READ(15,') U(5)
READ(15,') U(6)
READ(15,') U(7)
READ(15,') VTRFPS
U(8)=VTRFPS/1000.OdO

C
C PAR(1)=DELESD
C PAR(2)=DRUDD THE PARAMETERS, IN DEGREES
C PAR(3)=DDA
C PAR(4)=ENGPA PORT ENGINE THRUST, POUNDS/1000
C PAR(5)=ENGSA STARBORD ENGINE THRUST, POUNDS/1 000
C PAR(6)=TPTAL PITCH THRUST VECTOR, DEG
C PAR(7)=TYTAL YAW THRUST VECTOR, DEG
C PAR(8)=TTHRST TOTAL THRUST, POUNDS/1000

C MODIFIED 13 AUG 91
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C PAR(9)=DELEDD DIFFERENTIAL ELEVATOR, IN DEGREES
C PAR(10)=BLEND TRANSITION PARAMETER FROM STATIC TO
C ROTARY BALANCE COEFICIENT DATA

C
READ(15,-) PAR(l)
READ(15,-) PAR(2)
READ(15,*) PAR(3)
READ(15,-) PAR(4)
READ('15,*) PAR(5)
READ(15,') PAR(6)
READ(15,*) PAR(7)
READ(15,*) PAR(8)

C MODIFIED 13 AUG 91

READ(15,') PAR(9)
READ(15,-) PAR(10)

C
C

RETURN
END

C
C

SUBROUTINE INIT
C --
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
C

COMMON /BLCSS/NDIM,ITMX,NPAR,ICP,IID,NMX,IPS,IRS
COMMON /BLCPS/ NTST,NCOL,IANCH,NMXPS,IAD,NPRNWTNISP,ISW1
COMMON /BLDLS/ DS,DSMIN,DSMAX,IADS
COMMON /BLLIM/ RL0,RL1,A0,A1,PAR(!0)
COMMON /BLOPT/ ITNW,MXBF,IPLT,ICP2,ILP
COMMON /BLEPS/ EPSU,EPSL,EPSS,EPSR

C
C
C IN THIS SUBROUTINE THE USER SHOULD§SET THOSE CONSTANTS
C THAT REQUIRE VALUES DIFFERENT FROM THE DEFAULT VALUES
C ASSIGNED IN THE LIBRARY SUBROUTINE DFINIT. FOR A
C DESCRIPTION OF THESE CONSTANTS SEE THE DOCUMENTATION
C CONTAINED IN THE LIBRARY. COMMON BLOCKS CORRESPONDING TO
C CONSTANTS THAT THE USER WANTS TO CHANGE MUST BE INSERTED
C ABOVE. THESE COMMON BLOCKS SHOULD OF COURSE BE IDENTICAL
C TO THOSE IN DFINIT.
0
C

DSMAX = 1O.Od0
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DSMIN =0.OOOOO01lCdO
EPSU =1.O1)-07
EPSL 1.00-07
EPSS 1.OD-05
EPSR 1.OD-07
lAD = 1
ILP = 1
ITMX =40
ITNW 20
MXBF =5

NDIM =8
NPAR =10

C
OPEN(UNIT2FIEfo.5'
REWIND (25)

C
READ(25.') RLO,RL1
READ(25,') A0,Al
READ(25,') Os
READ(25,') NMX
READ(25,') NTST,NCOLNMXPS,NPR
READ(25,') ISP,IRS,ICP,ICP2,IPLT,IPS
READ(25,*) ISW1
RETURN
END
SUBROUTINE BOND

C ---

C
RETURN
END

C
SUBROUTINE ICND

C
C

RETURN
END

C
C

SUBROUTINE COEFF(U,PAR,NDIM,ICP)
C
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON IACDATAI BWING,CWING,SREF,RHO.RMASS
COMMON /SEIZE/ CX.CY,CZ,CLM,CMM,CNM
COMMON ISEIZETICXT,CYT,CZTCLMTLCMMT,CNMT
DIMENSION U(NDIM).PAR(10)

C
C
C THE PRIMARY SOURCE OF THESE COEFFICIENT EQUATIONS IS
C SUBROUTINE AR010 FROM MCAIR CODE USED IN THE F15
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C BASELINE SIMULATOR.
C
C MOST OF THE COEFFICIENTS USED IN THE EQUATIONS WERE
C COMPUTED USING SAS WITH RAW DATA FROM THE F15-SIMULATOR
C DATA TABLES.
C
C THIS SUBROUTINE IS-CALLED BY THE DRIVER PROGRAM FOR THE
C AUTO SOFTWARE. IT MERELY TAKES INPUTS ON THE A/C
C STATE, CONTROL SURFACE POSITIONS, AND THRUST VALUES
C AND RETURNS THE APPROPRIATE AERO COEFFICIENTS CX, CY,
C CZ, CL, CM, AND-CN.
C
C INPUTS TO THIS SUBROUTINE
C
C AL - ANGLE OF ATTACK, DEG
C BETA - SIDESLIP ANGLE, DEG
C DDA - AILERON DEFLECTION ANGLE, DEG
C DELEDD - DIFFERENTIAL TAIL DEFLECTION ANGLE, DEG
C DELESD - SYMMETRICAL TAIL DEFLECTION ANGLE, DEG
C DRUDD - RUDDER DEFLECTION, POSITIVE TRAILING EDGE
C LEFT, DEG
C P - ROLL RATE, RAD/SEC
C Q - PITCH RATE, RAD/SEC
C R -YAW RATE, RAD/SEC
C ENGPA - PORT ENGINE THRUST, POUNDSiI000
C ENGSA -STARBOARD ENGINE THRUST, POUNDS/i000
C TYTAL - YAW THRUST ANGLE, DEG
C TPTAL - PITCH THRUST ANGLE, DEG
C TTHRST - TOTAL THRUST, POUNDSIO00
C VTRFPS - TRUE AIRSPEED, FT/SEC
C
C INTERMEDIATE VARIABLES USED IN THIS SUBROUTINE
C
C ABET -ABSOLUTE VALUE OF BETA, DEG
C ARUD - ABSOLUTE VALUE OF RUDDER DEFLECTION, DEG
C BWING - WING SPAN, FEET
C CA - COSINE RAL (RAL IN RADIANS)
C CD - COEFFICIENT OF DRAG
C CL - BASIC LIFT COEFFICIENT
C CWING - MEAN AERODYNAMIC CHORD, FEET
C DAHD - DIFFERENTIAL ELEVATOR DEFLECTION, DEG
C DAHLD - LEFT AILERON DEFLECTION, DEG
C DAHRD - RIGHT AILERON DELFECTION, DEG
C DELEDR - DIFFERENTIAL TAIL DEFLECTION ANGLE, RAD
C DELESR - SYMMETRIC TAIL DEFLECTION ANGLE, RAD
C ENGP - PORT ENGINE THRUST, POUNDS
C ENGS -STARBOARD ENGINE THRUST, POUNDS
C PTAL -PITCH THRUST VECTOR, RAD
C OBARS - DYNAMIC PRESSURE TIMES WING REFERENCE AREA,
C LBF
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C RABET - ABSOLUTE VALUE OF BETA, RADIANS
C RAL - ABSOLUTE VALUE OF ALPHA. RADIANS
C RARUD - ABSOLUTE VALUE OF RUDDER, RADIANS
C SA - SINE RAL (RAL IN RADIANS)
C YTAL - YAW THRUST VECTOR, RAD
C
C
C

C OUTPUTS FROM THIS SUBROUTINE
C
C CX - BASIC AXIAL FORCE COEFFICIENT, BODY AXIS,
C + FORWARD
C CY - BASIC SIDE FORCE COEFFICIENT, BODY AXIS,
C + RIGHT
C CZ - BASIC NORMAL FORCE COEFFICIENT, BODY AXIS,
C + DOWN
C CLM - BASIC ROLLING MOMENT COEFFICIENT, BODY AXIS,
C + R WING DOWN
C CMM - BASIC PITCHING MOMENT COEFFICIENT, BODY AXIS,
C + NOSE UP
C CNM - BASIC YAWING MOMENT COEFFICIENT, BODY AXIS,
C + NOSE RIGHT
C
C ANGLES USED IN CALCULATING CL, CLLDB, ..., ARE IN
C RADIANS. THIS IS BECAUSE RADIANS WERE USED IN THE CURVE
C FITTING PROGRAM TO OBTAIN THE COEFFICIENTS OF-THE
C ALPHA, BETA ..., TERMS IN THE
C FOLLOWING EQUATIONS.
C
C
C MOMENT REFERENCE CENTER WAS SET IN ARO10 PROGRAM AS:
C
C DATA CMCGR /.2565/, CNCGR /.25651
C
C THE AERO STABILITY DATA WAS TAKEN REFERENCED TO THESE CG
C LOCATIONS. THE MOMENTS OF INERTIA AND OTHER AIRCRAFT
C DATA ARE FOR A CLEAN CONFIGURATION TEST AIRCRAFT WITH A
C CG AT THE SAME CG. AS A RESULT. THERE IS NO 'CG OFFSET'
C TO BE COMPUTED.
C

IWRITE=O
C

AL=U(1)
BETA=U(2)
P=U(3)
Q=U(4)
R=U(5)
THETA=U(6)
PHI=U(7)
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VTRFPS=U(8)'1 000.
C

DELESD=PAR(1)
DR UDD=PAR(2)
DDA= PAR(3)
ENGPA=PAR(4)
ENGSA=PAR(5)
TPTAL=PAR(6)
TYTAL=PAR(7)
TTHRST=PAR(8)

C
DEGRAD=57.29577951
DELESR=DELESD/DEGRAD
YTAL=TYTAL/DEGRAD-
PTAL=TPTAL/DEGRAD

C
C IF BLOCK TO CHANGE TOTAL THRUST
C

IF(ICP.EQ.8)TH EN-
DIFT=PAR(4)-PAR(5)
THALF=TTHRST/2.OdQ
ENGPA=THALf+DIFT/2.OdO
ENGSA=THALF-DIFT/2.OdO

*ENDIF
C

ENGP=ENGPA*1 000.0
ENGS=ENGSA*1 000.0

C
QBARS=0.5dO*RHO*VTRFPS*VTRFPS*SREF
CO2V=CWI NG/(2.OdO*VTRFPS)
BO2V=BWING/(2.OdO*VTR FPS)
QSB=BWING*OBARS
ARUD=ABS(DRUDD)
RARUD=AR UD/DEG RAD
RAL=AL/DEGRAD
ABET=ABS(BETA)
RABET=ABET/DEGRAD

C
C
C

C
C

C 1) ALL THE AERODYNAMIC COEFFICIENTS IN
C THIS VERSION OF THE DRIVER PROGRAM
C ARE TAKEN-DIRECTLY FROM THE 1988
C F15 AEROBASE (0.6 MACH, 20000 FEET)
C
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C 2) THIS SECTION SUMMARIZES THE
C AERODYNAMIC COEFFICIENTS AS TO WHAT
C THEY ARE AND HOW THEY ARE USED.
C THE FIRST ACCRONYM IS THE JOVIAL
C NAME OF THE AERODYNAMIC COEFFICIENT
C (CFX1, ETC), THE SECOND ACCRONYM -IS
C THE F15 AEROBASE CODE OR CTAB NAME
C (ATAB15, ETC). A BRIEF DEFINITION
C OF THE AERODYNAMIC COEFFICIENT IS
C ALSO PROVIDED.
C
C 3) THERE IS ALSO A SECTION THAT
C PROVIDES A TABLE OF CONVERSIONS
C BETWEEN WHAT THE VARIABLE IS CALLED
C IN THE-OR SECTION OF.THIS PROGRAM
C AND ITS NAME IN THE 1988 F15
C AEROBASE. FOR.THE SAKE OF
C CONTINUITY THE ORIGINAL PROGRAM NAME
C IS USED AND THE 1988 F15 AEROBASE
C NAME IS PROVIDED AS BOOK KEEPING
C INFORMATION.
C
C
C
C

C CFX = FORCE IN STABILITY AXIS X DIRECTION (CD IN BODY AXIS)
C (FUNCTION OF CL OR CFZ1)
C CFX = CFX1 + CXRB + STORE INCREMENTS + CXDSPD + DCXLG + 1CD
C
C CFX1 = ATAB15 PERFORMANCE DRAG COEFFICIENT - CD
C CXRB = ATAB22 = DELTA CD DUE TO CG (=0.0)
C CXDSPD = ATAB27 = DELTA CD DUE TO SPEEDBRAKE (NORMALLY = 0.0436)
C SET TO 0 SINCE THIS STUDY IS CONCERNED
C WITH HIGH ANGLES
C OF ATTACK PHENOMENON (>40 DEGREES) AND BECAUSE
C THE SPEEDBRAKE WILL NOT DEPLOY AT ANGLES OF
C ATTACK GREATER THAN 15 DEGREES.
C DCXLG = ATAB19 = DELTA CD DUE TO REYNOLD'S NUMBER (=-0.0005)
C DCD = BTAB03 = DELTA CD DUE TO 2-PLACE CANOPY (F15B) (=0.0005)
C .. NOTE THAT DCXLG AND DCD CANCEL EACH OTHER .
C
C

C
C

C CFY = FORCE IN BODY AXIS Y DIRECTION
C CFY = CFY1*EPA02 + CYDAD*DAILD + [CYDRD*DRUDD*DRFLX5]*EPA43
C +[CYDTD*DTFLX5 + DTFLX6]*DTALD + CFYP*PB + CFYR*RB
C +CYRB + STORE INCREMENTS + DCYB*BETA
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C
C CFY1 = ATAB16 = BASIC SIDE FORCE COEFFICIENT - CY(BETA)
C EPA02 ATAB21 = BETA MULTIPLIER TABLE
C CYDAD = ATAB75 = SIDE FORCE COEFFICIENT DUE TO AILERON
C DEFLECTION
C DAILD = AILERON DEFLECTION (DEG)
C CYDRD = ATAB69 = SIDE FORCE COEFFICIENT DUE TO RUDDER DEFLECTION
C DRUDD = RUDDER DEFLECTION (DEG)
C DRFLX5 = ATAB88 = FLEX MULTIPLIER ON CYDRD (=0.89)
C EPA43 = ATAB30 = MULTIPLIER ON CNDR, CLDR,'CYDR DUE TO
C SPEEDBRAKE
C (=1.0)
C CYDTD = ATAB72 = SIDE FORCE COEFFICIENT DUE TO DIFFERENTIAL TAIL
C DEFLECTION - CYDDT
C DTFLX5-= ATAB10 = FLEX MULTIPLIER ON CYDTD (=0.975)
C DTFLX6 = ATAB77 = FLEX INCREMENT TO CYDTD (=0.0)
C DTALD = DIFFERENTIAL TAIL DEFLECTION (DEG)-WHICH IS
C DIRECTLY PROPORTIONAL TO AILERON DEFLECTION
C AND IS PRIMARILY-USED TO ASSIST IN ROLLING THE
C F-15B (DTALD=0.3*DAILD)
C CFYP = ATAB13 = SIDE FORCE COEFFICIENT DUE TO ROLL RATE (CYP)
C PB = (PEOBB*SPAN)/(2*VILWF)
C PEOBB = ROLL RATE IN RAD/SEC = P
C SPAN = WING SPAN = 42.8 FEET = BWING
C VILWF = VELOCITY IN FT/SEC = VTRFPS
C CFYR = ATAB07 = SIDE FORCE COEFFICIENT DUE TO YAW RATE (CYR)
C RB = (REOBB*SPAN)/(2*VILWF)
C REOBB = YAW RATE IN RAD/SEC = R
C CYRB = ATAB93 = ASSYMETRIC CY AT HIGH ALPHA (ANGLE OF ATTACK)
C DCYB = 0.0 THERE IS NO-INCREMENT DELTA CYB (SIDE
C FORCE)
C DUE TO A 2-PLACE CANOPY ON THE F15B. THIS IS
C BECAUSE THE SAME CANOPY IS USED ON BOTH THE
C BASELINE F15A AND THE-F15B. THE SIDEFORCE IS
C THE SAME FOR BOTH VERSIONS OF THE F15 AND
C ALREADY INCLUDED IN THE BASIC SIDE FORCE (CFY1).
C THE TWO PLACE CANOPY IS MOUNTED DIFFERENTLY
C HOWEVER, SO THERE IS A DIFFERENCE IN YAWING AND
C ROLLING MOMENT.
C (SEE DCNB AND DCLB)
C
C
C****************************
C
C
C CFZ = FORCE IN STABILITY AXIS Z DIRECTION (CL IN BODY AXIS)
C CFZ = CFZ1 + CZDSPD + STORE INCREMENTS + DCL*BETA
C
C
C CFZ1 = ATAB17 = BASIC LIFT COEFFICIENT - CL
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C CZDSPD = ATAB26 = DELTA CL DUE TO SPEEDBRAKE
C SET TO 0 DUE TO THE REASONS GIVEN ABOVE IN
C CXDSPD
C DCL = BTAB01 = DELTA CL DUE TO 2-PLACE CANOPY (F15B) (=0.0)
C
C

C
C
C CML = TOTAL ROLLING MOMENT COEFFICIENT IN BODY AXIS
C CML = CML1*EPA02 + CLDAD*DAILD + [CLDRD*DRUDD*DRFLX1J*EPA43 +
C [CLDTD*DTFLX1 + DTFLX2]*DTALD + CMLP*PB + CMLR*RB +
C STORE INCREMENTS + CLDSPD + DCLB*BETA
C
C
C CML1 = ATAB01 = BASIC ROLLING MOMENT COEFFICIENT - CL(BETA)
C EPA02 ATAB21 = BETA MULTIPLIER TABLE
C CLDAD = ATAB73 = ROLL MOMENT COEFFICIENT DUE TO AILERON
C DEFLECTION
C -(CLDA)
C DAILD = AILERON DEFLECTION (DEG)
C CLDRD ATAB67 = ROLLING MOMENT COEFFICIENT DUE TO RUDDER
C DEFLECTION -(CLD)
C DRUDD = RUDDER DEFLECTION (DEG)
C DRFLX1 = ATAB80 = FLEX MULTIPLIER ON CLDRD (=0.85)
Q EPA43 = ATAB30 = MULTIPLIER ON CNDR, CLDR, CYDR DUE TO
C SPEEDBRAKE
C (=1.0)
C CLDTD = ATAB70 = ROLL MOMENT COEFFICIENT DUE TO DIFFERENTIAL
C TAIL
C DEFLECTION - CLDD
C DTFLX1 = ATAB04 = FLEX MULTIPLIER ON CLDTD (=0.975)
C DTFLX2 = ATAB84 = FLEX INCREMENT TO CLDTD (=0.0)
C DTALD = DIFFERENTIAL TAIL DEFLECTION (DEG) WHICH IS
C DIRECTLY PROPORTIONAL TO A!LERON DEFLECTION
C AND IS PRIMARILY USED TO ASSIST IN ROLLING THE
C F-15B
C (DTALD = 0.3*DAILD)
C CMLP = ATAB02 = ROLL DAMPING DERIVATIVE -CLP
C PB = (PEOBB*SPAN)/(2*VILWF)
C PEOBB-= ROLL RATE IN RAD/SEC = P
C SPAN = WING SPAN = 42.8 FEET = BWING
C VILWF = VELOCITY IN FT/SEC = VTRFPS
C CMLR = ATAB1 1 = ROLLING MOMENT COEFFICIENT DUE TO YAW RATE - CLR
C RB = (REOBB*SPAN)/(2-VILWF)
C REOBB = YAW RATE IN RAD/SEC = R
C CLDSPD = ATAB29 = DELTA CL DUE TO SPEEDBRAKE
C SET TO 0 DUE TO THE REASONS GIVEN ABOVE IN
C CXDSPD
C DCLB = BTAB04 = INCREMENT DELTA CLB (ROLLING MOMENT) DUE TO
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C 2-PLACE
C CANOPY FROM PSWT 499
C
C
C
C
C

C CMM = TOTAL PITCHING MOMENT COEFFICIENT IN STABILITY AXIS
C (BODY AXIS --AS WELL)
C CMM = CMM1 + CMMQ*QB + STORE INCREMENTS + CMDSPD + DCM
C
C CMM1 = ATAB03 = BASIC PITCHING MOMENT COEFFICIENT - CM
C CMMQ = ATAB05 = PITCH DAMPING DERIVATIVE - CMQ
C QB = (QEOBB*MAC)/(2*VILWF)
C QEOBB = PITCH RATE IN RAD/SEC = 0
C MAC = MEAN AERODYNAMIC CHORD = 15.94 FEET = CWING
C VILWF = VELOCITY IN FT/SEC = VTRFPS
C CMDSPD = ATAB25 = DELTA CM DUE TO SPEEDBRAKE
C SET TO 0 DUE THE REASONS GIVEN ABOVE IN CXDSPD
C DCM = BTABO2 = DELTA CM DUE TO 2-PLACE CANOPY (F15B) (=0.0)
C
C

C
C
C
C CMN = TOTAL YAWING MOMENT COEFFICIENT IN BODY AXIS
C CMN = CMN1*EPA02 + CNDAD*DAILD + [CNDRD*DRUDD*DRFLX3]*EPA43
C +[CNDTD*DTLX3 + DTFLX4]*DTALD + CMNP*PB + CMNR*RB + CNRB
C +DCNB2*EPA36 + STORE INCREMENTS + CNDSPD + DCNB*BETA
C
C
C CMN1 = ATAB12 = BASIC YAWING MOMENT COEFFICIENT - CN (BETA)
C EPA02 = ATAB21 = BETA-MULTIPLIER TABLE
C CNDAD = ATAB74 = YAW MOMENT COEFFICIENT DUE TO AILERON
C DEFLECTION -CNDA
C DAILD - = AILERON DEFLECTION (DEG)
C CNDRD = ATAB68 = YAWING MOMENT COEFFICIENT DUE TO RUDDER
C DEFLECTION -CNDR
C DRUDD = RUDDER DEFLECTION (DEG)
C DRFLX3 = ATAB85 = FLEX MULTIPLIER ON CNDRD
C EPA43 = ATAB30 = MULTIPLIER ON CNDR, CLDR, CYDR DUE TO SPEEDBRAKE
C CNDTD = ATAB71 = YAWING MOMENT COEFFICIENT DUE TO DIFFERENTIAL TAIL
C DEFLECTION - CNDDT
C DTFLX3 = ATAB08 = FLEX MULTIPLIER ON CNDTD
C DTFLX4 = ATAB09 = FLEX INCREMENT ON CNDTD (=0.0)
C DTALD = = DIFFERENTIAL TAIL DEFLECTION (DEG) WHICH IS
C DIRECTLY PROPORTIONAL TO AILERON DEFLECTION
C AND IS PRIMARILY USED TO ASSIST IN ROLLING
C THE F-15B (DTALD = 0.3*DAILD)
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C CMNP ATAB06 = YAWING MOMENT COEFFICIENT DUE TO ROLL RATE - CNP
C PB = (PEOBB*SPAN)/(2*VILWF)
C PEOBB=ROLL RATE IN RAD/SEC = P
C SPAN = WING SPAN = 42.8 FT = BWING
C VILWF = VELOCITY IN FT/SEC = VTRFPS
C CMNR = ATAB14 = YAW- DAMPING DERIVATIVE - CNR
C RB = (REOBB*SPAN)/(2*VILWF)
C REOBB = YAW RATE IN RAD/SEC = R
C CNRB = ATAB86 = ASSYMETRIC CN AT HIGH ALPHA
C DCNB2 = ATAB44 = DELTA CNB WITH STABILATOR EFFECT - DELCNB (=0.0)
C EPA36 = ATAB94 = MULTIPLIER ON DCNB2 (=BETA)
C CNDSPD = ATAB28 = DELTA CN DUE TO SPEEDBRAKE
C SET TO 0 DUE TO THE REASONS GIVEN ABOVE IN CXDSPD
C DCNB = BTAB05 = INCREMENT DELTA CNB (YAWING MOMENT) DUE TO
C 2-PLACE CANOPY (F15B)
C
C
C
C
C

C MISCELLANEOUS COEFFICIENTS AND NAME-CONVERSION TABLE
C

.c
C 1988 F15 ORIGINAL
C AEROBASE NAME PROGRAM NAME DEFINITION
C
C
C AL77D AL ANGLE OF ATTACK
C (DEG)
C BE77D BETA SIDESLIP ANGLE
C (DEG)
C BE77D RBETA SIDESLIP ANGLE
c (RAD)
C B077D ABET ABSOLUTE VALUE OF
C SIDESLIP ANGLE
C (DEG)
C DAILA DAILA ABSOLUTE VALUE OF
C AILERON DEFLEC-
C TION (DEG)
C DAILD DDA AILERON DEFLEC-
C TION (DEG)
C DRUABS ARUD ABSOLUTE VALUE OF
C RUDDER DEFLEC-
C TION (DEG)
C DRUABS RARUD ABSOLUTE VALUE OF
C RUDDER OEFLEC-
C TION (RAD)
C DRUDD DRUDD RUDDER DEFLECTION
C (DEG)
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C DSTBD DELESD(R) AVERAGE
C STABILATOR
C DEFLECTION
C DEG (RAD)
C DTALD DELEDD(R) DIFFERENTIAL TAIL
C DEFLECTION
C DEG (RAD)
C

RBETA=BETA/DEGRAD
DAILA=ABS(DDA)

C
C
C
C
C

PB=(P'BWING)/(2.OdO*VTRFPS)
QB=(Q'CWING)/(2.OdO*VTRFPS)
RB=(R*BWING)/(2.0d0*VTRFPS)

C

C THE F-15B AERO DATA TABLES DO NOT CONTAIN STABILITY COEFFICIENT
C DATA FOR BETA AND RUDDER DEFLECTION ,DRUDD, LESS THAN 0
C DEGREES. THE ABSOLUTE VALUE OF BETA, ABET, AND THE ABSOLUTE
C VALUE OF RUDDER DEFLECTION, ARUDD, ARE USED IN THE FOLLOWING
C EQ' ATIONS. IN RADIANS THESE PARAMETERS ARE RABET AND RARUD,
C RESPECTIVELY. IN SOME CASES THE COEFFICIENT-IS MULTIPLIED BY A
C -1 FOR PARAMETER VALUES LESS THAN ZERO.
C
C EPA02 IS A MULTIPLIER THAT ADJUSTS THE PARTICULAR COEFFICIENT
C IT IS WORKING ON (CFY1,CML1,CMN1) BY CHANGING THAT PARTICULAR
C COEFFICIENTS SIGN (POSITIVE OR NEGATIVE) DEPENDENT ON THE SIGN
C OF THE SIDESLIP ANGLE (BETA). IF BETA IS NEGATIVE THEN
C EPA02=-1.0. IF BETA IS POSITIVE THEN EPA02=1.0. SINCE THIS
C FUNCTION IS DISCONTINUOUS AT THE ORIGIN A CUBIC SPLINE HAS
C BEEN EMPLOYED TO REPRESENT THIS FUNCTION IN-ORDER THAT
C AUTO CAN RUN.
C
C

IF (BETA .LT. -1.0) THEN
EPA02S= -1.0dO
ENDIF

C
IF ((BETA .GE. -1.0) .AND. (BETA .LE. 1.0)) THEN
EPA02S=-1.OdO+(1.50d0*((BETA+ 1.OdO) "*2.0dO))-

1 (0.50d0*((BETA+1.0d0)**3.0d0))
ENDIF

C
IF (BETA .GT. 1.0) THEN
EPA02S=1.0d0
ENDIF

C
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IF (BETA .LT. -5.0) THEN
EPA02L= -1 .OdO
ENDIF

_C
IF ((BETA .GE. -5.0) .AND. (BETA .LE. 5.0)) THEN
EPAO2L=-1 .0dO (0.060d0*((BETA.I5.0d0)**2.0d0))-

1 (0.0040d0((BETA+5.0dQ)**3.Od0))
EN DIE

C
IF (BETA .GT. 5.0) THEN
EPA02L~l .0d0
ENDIF

C

C DTALD=0.30d0*DAILD
DELEDD=0.30dO*DDA
DELEDR=0.30d0*(DDA/DEGRAD)

C

C

*********
C
C

CEZi =-0.00369376+(3.780287O2*RAL)+ (0.6921 459*RAL*RAL)-(5.0005867
+ *(RAL* *3)) +(1 .944781 99*(RA L**4)) +(0.40781 955 DE LES R) +(0. 10114579
+*(DELESR* DELESR))

C
CFZ=CFZ1

C
C

******,*

C
C
C

CL=CFZ1 /57.29578
C
C THIS CONVERSION-OF CFZi TO CL-IS AN ARTIFACT FROM THE
C CURVE FITTING PROCESS WHERE ALL THE INDEPENDENT VARIABLES
C WERE ANGLES THAT WERE CONVERTED FROM DEGREES TO RADIANS.
C IT JUST SO HAPPENED THAT FOR CFXi ONE OF THE VARIABLES
C WAS NOT AN ANGLE BUT A DIMENSIONLESS COEFFICIENT.
C
C

CFX 1 0.01 806821 +(0.01 556573*CL)+(498.96208868*CL*CL)
+-(l 4451.5651 8396*(CL**3))+(21 32344.61 84755*(CL**4))

C
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C TRANSITIONING FROM- LOW AOA -DRAG TABLE TO HIGH AOA DRAG TABLE
C

o FX2=0.0267297-(Q. 1064691 9*RAL)+(5.39836337*RAL* RAL)
+-(5.0O86893(RAL**3))+(1 .34148193*(RAL**4))+
+(O.20978902*DELESR)+(0.3060421 1 *(DELESR**2))+0.09833617

C_
Al _20.0d0/DEGRAD
A2=30;0Od0/DEGRAD
Al 2=A1 +A2
BA=2.Q/(-Al **3+3.*Al *A2*(Al A2)+A2**3)
BB=-3.0d0*BA*(Al +A2)12.OdO
BC=3.0d0*BA*A1 *A2
BD=BA*A2**2'(A2-3.0d0'A1 )12.OdO
Fl =BA*RAL**3+BB*RAL**2+BC*RAL+BD
F2=-BA*RAL**3+(3.OdO*Al 2*BA.+BB)*RAL**2.0d0-

+ (BC+2.OdO*A12BB 3.OdO*Al2**2*BA)*RAL+
+ -BD+A1 2*BC+A1 2**2*BB+A1 2**XBA

IF (RAL .LT. Al) THEN

CFX=CFX1
C

ELSEIF (RAL .GT. A2) THEN
C

CFX=CFX2
c

ELSE
C

CFX=CFX 1*F1 .ICFX2*F2

ENDIF
C
C

DTFLX5=0.975d0
DRFLX5=0.89d0

C
CFY1 =-0.05060386-(0.l 2342073*RAL)+( 1.045011 36*RAL RAL)

+-(0.1 723951 6(RAL3))-(2.90979277(RAL**4))
+i.(3.06782935(RAL**5))-(0.884221 1 6(RAL**6))
+-(0.O6578812*RAL*RABET)-(0.71521 988*RABET)-(0.00000475273
+*(RABETh*2))-(0.048561 68*RAL*ELESR)-(0.O59436Or*RABETPDELESR)+
+(0.0201 8534*DELESR)

IF (RAL .LT. .52359998) THEN

CFYP=0.01 46061 88+(2.52405055*RAL)-(5.02687473*(RAL**2))
+-(1 06.43222962(RAL*'30))+(256,8021 5423*(RAV 4))
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++(l 256.39636248*(RAL**5))
+-(3887.928781 73(RAL**6))-(2863. 16083460*( RAL**7))+
+(l 7382.72226362*(RAL**8))-(1 3731 .65408408*(RAL**9))
ENDIF

c
IF ((RAL .GE.-.52359998) .AND. (RAL .LE. .61 0865)) THEN

C
CFYP=0.0023651 1 +(0.52044678(RAL-0.52359998))-(1 2.8597002*(RAL-

+0.52359998)**2)+(75.461 38*(RAL-0.52359998)**3)
ENDIF

IF (RAL .GT.-0.610865) THEN

CFYP=0.OdO
ENDIF

C
IF (RAL .LT. -0.06981) THEN

C
CFYR=0.35d0
ENDIF

C
IF ((RAL .GE. -0.06981) .AND. (RAL .LT. 0.0)) THEN

C
CFYR=0.34999999+(35.4012413(RAL+0.06981)**2)-(493.33441 162*

+(RAL+0.06981 )**3)
ENDI F

IF ((RAL .GE. 0.0) .AND. (RAL .LE. 0.523599)) THEN

CFYR=0.35468605-(2.269981 41 *RAL)+(51 .821 78387*RAL*RAL)
+-(71 8.55069823*(RAL**3))
++(4570.004921 72*(RAL**4))-(1 447-1.88028351 *(RAL**5))+

(22026.58930662(RAL**6))-(1 27S5.99029404*(RAL**7))
ENDIF

C
I F ((RAL .GT. 0.523599) .AND. (RAL .LE. 0.61087)) TH EN

C
CFYR=0.001 93787+ (1 .78332496(RAL-0.52359903))-(4 1.631 98853*(RAL-

+0.52359903)*2)+(239.97909546(RAL-0.52359903)* 3)
ENDIF

C
IF (RAL .GT. 0.61087) THEN

CFYR=0.OdO
ENDIF

IF (RAL .LT. 0.55851) THEN
C

CYDAD=-0.0002081 2+(0.00062 122*RAL)+(0.00260729*RAU*RAL)
++(0.0O745739'(RAL**3))-(0.036561 1 *(RAL**4))
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+-(0.04532683*(RAL**5))+(0.20674845(RAL**6))
+-(0.1 3264434*(RAL**7)).(0.00193383*(RAL**8))
ENDIF

IF ((RAL .GE. 0.55851) .AND. (RAL .LT.-0.61087))- THEN
C

CYDAD=0.00023894i(0.001 95121 *(RAL-0.55851 001 ))+(0.02459273
+*(RALO .55851 001 )**2)-(0. 1202244((RAL-0.55851 001 )**3))
ENDIF

C
IF (RAL .GE. 0.61 087) THEN

CYDAD=0.27681 285-(2.02305395-RAL)+(6.01 18071 5*RAL-RAL)
*i-(9.242921 88*(RAL**3))+(7.5985781 9*(RAL**4))
+-(2.8565527*(RAL**5))+(0.25460503*(RAL**7))
+-(0.01 81981 5(RAL**9))
ENDIF

C
C
C IF (RAL .LE. 0.0) THEN
C EPA43=1.OdO
C ENDIF
C IF (RAL .GT. 0.0 AND .LE. 0.62831 85) THEN
'0 0.62831 85 RADIANS = 36 DEGREES
C EPA43=0.9584809+(4. 13369452* RAL)-(1 8.31 288396*RAL*RAL)+
C .i(1 9.5511 466*(RAL**3))-(1 .09295946*RAL*DSPBD)+(0.1 7441033*
C +DSPBD*DSPBD)
C ENDIF
C IF (RAL .GT, 0.62831 85) THEN

EPA43=1 .OdO
C ENDIF
C *.**.. *..*..... **** * *

C * NOTE - THE PARAMETER EPA43 IS A MULTIPLIER ON RUDDER
C * EFFECTIVENESS- DUE TO SPEEDBRAKE. THIS- TABLE IS ALSO
C * LIMITED TO 36 DEG AOA. HOWEVER, THERE IS NO AERODY
C * NAMIC EFFECT FOR ANGLES OF ATTACK LESS THAN 16 DEG,
C *AND THE SPEEDBRAKE IS AUTOMATICALLY- RETRACTED AT AOA
C * GREATER THAN 15 DEG. THEREFORE, THIS TABLE SHOULD
C ' NOT BE NECESSARY FOR THE ORDINARY OPERATION OF THE
C * AIRCRAFT
C *.............I....

C
CYDRD=0.0031 01 99+(0.001 19963'RAL)i(0.O28O6933XRALVRAL)

+-(0.1 2408447T(RAL**3))-(0.1 2032121*(RAL**4))
+(0.791 50279*(RAL**5))-(0.86544347*(RAL**6))

++(0.278451 1 5(RAL**7))+(0.001 22999*RALVRARUD)i-(0.001 45943
g*RARUD)-(0.01 211 427TRARUD*RARUD)+(0.00977937T(RARUD**3))

C
CYDTD=-0.001 57745-(0.0020881 * RAL)+(0.00557239*RAL*RAL)

+-(0.00 139886(RAL* 3))+(0.04956247*(RAL**4))

132



+-(.0135353*(RAL**5))-(O.1 1552397*(RAL'6))
++(0.t1443452(RAL**7))-(0.030721 89*(RAL**))-(0.01 061113'-
+(RAL**3)*DELESR)-(0.0001 0529.RAL*RAL*DELESR*DELESR)
+-(0.00572463*RALiJELESR*DELESR)

+(0.01 885361 *RAL*RAL*DELESR) (0.0141 2258*RAL*(DELESR**3))
.i-(0.00081 776*DELESR)+(0.0O404354*(DELESR**2))-
+ (0.0021 21 89*(D ELES R**3)) +(0.00655063 (DE LES R* 4))
++(0.03341 584*(DELESR**5))

c
RALY1 =0.6108652
RALY2=90.OdO/D EGRAD
RBETY1 =-0.0872665
RBETY2=0.1 745329

C
AY=0.1 640d0
ASTARY=0.95993
BSTARY=0.087266

-C
ZETAY=(2.ODO*ASTARY-( RALY1 +RALY2))/(RALY2-RALY1)
ETAY=(2.ODO*BSTARY-(RBETY1 +RBETY2))/(RBETY2-RBETY1)

C
X=(2.ODO*RAL-(RALY1 +RALY2))/(RALY2-RALY1)
Y=(2.ODO*RBETA-(RBETY1 +RBETY2))/(RBETY2-RBETY1)

C
FY=((5.0DO*(ZETAY*2))-(4.0DXZETAYX)-1 .ODO)(((X'-2)-1 .ODO)

+**2)*(1 .0D0/(((ZETAY**2)-.1 .0D0)*3))
C

GY=((5.ODO(ETAY'*2))-(4.ODO-ETAY-Y)-1 .ODOy*(((Y*2)-1 .000)*2)
+*(1.ODO/(((ETAY*2)-1 .000)*3))

C
CYRB=AYFYGY

C
IF (RAL .LT. 0.61 08652) THEN

C
CYRB=0.OdO
GOTO 500
ENDIF

C
IF ((RBETA .LT. -0.0872665) .OR. (RBETA .GT. 0.1745329)) THEN

C
CYRB=0.OdO
GOTO 500
ENDIF

C
500 CFY=(CFY1 EPAO2L)+(CYDADDDA)(CYDRDDRUDDDRFLX5*EPA43)+

+((CYDTD*DTFLX5*DELEDD)+(CFYPPB)+(CFYR*RB)
++CYRB

C
C

........................................
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C
C
C

DTFLX 1=0.9750d0
DRFLX1 =0.850d0

C
OMLi =-0.00238235-(0.0461 6235*RAL)+(0. 105531 68*RAL*RAL)

.i+(0. 10541 585*(RAL"3))-(0.4O254765*(RAL**4))
++(0.32530491 *(RAL**5))-(0.084961 21 *(RAL**6))
++(0.001 12288*(RAL*7))-(0.05940477*RABET*RAL)-
+ (0.07356236* RAB ET)- (0.O05501 19 RA BET* RA BET)+ (0.003261 91
+*(RABET**3))

C
IF (RAL .LT. 0.29671) THEN

C
CMLP=-0.24963201 -(0.031 06297*RAL)+(0.1 2430631 *RAL*RAL)

+-(8.9527461 8(RAL**3))+(1 00.331 09929(RAL**4))
++(275.70069578*(RAL**5))-(1 178.83425699*(RAL**6))
+-(21 02.66811 522*(RAL**7)) (2274.89785551 *(RAL**8))
ENDIF

C
IF ((RAL .GE. 0.29671) .AND. (RAL .LT.-0.34907)) THEN

C
CMLP=-0.1 635261 -(3.77847099*(RAL-0.29671 001 ))+(1 47.47639465
*(RAL-0.29671 001 )*2)-(1 295.94799805*(RAL-0.29671 001 )**3)
ENDIF

C
IF (RAL .GE. 0.34907) THEN

C
CMLP=-1 .37120291 +(7.061 121 81 *RAL)-(1 3.5701 0422*RAL*RAL)

++i(l 1 .21323850*(RAL**3))
+-(4.26789425'(RAL**4))+(0.6237381 *(RAL-5))
ENDIF

C
IF (RAL .LT. 0.7854) THEN

C
CMLR=0.0351 5391 +(0.59296381 *RAL (2.27456302*RAL*RAL)

+-(3.8097803*(RAL'*3))
+-(45.831 62842(RAL**4))-(55.31 66921 3(RAL*'5))+
+-(1 94.29237485*(RAL%*))-(393.22969953X(RAL *7))+ (1 92.20860739,
i.(RAL**8))
ENDIF

C
IF ((RAL .GE. 0.7854) .AND. (RAL .LE. 0.87266)) THEN

C
CMLR=0.0925579071 -(0.6000000238&(RAL-0.7853999734))
+(1 .351593971 3((RAL-0.7853999734)'*2))

++(29.0733299255*((RAL-0.7853999734y*3))
ENDIF

C
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IF (RAL .GT. 0.87266) THEN
c

CMLR=-31 1.126041 +(1 457.23391 042*RAL)-(2680.1 9461 944*RALURAL)+
+ (2361.4491 4738*(RAL"3))-(893.83567263'(RAL'*4))+(68.23501 924*
+(RAL**6))-(1 .72572994*(RAL**9))
ENDIF

C
CLDAD=0.00057626+(0.00038479*RAL)-(0.00502091 *RAL*RAL)

++(0.001 61407(RAL**3))+(0.02268829*(RAL**4))
+-(0.03935269(RAL* *5))+(0.02472827*(RAL**6))
+-(0.00543345*(RAL**7))+(0.0000007520348*DELESR*RAL)+
+(0.000000390773*DELESR)

C
OLD RD=0.0001 371 3-(0.00035439*RAL)-(0.0022791 2RAL*RAL)

++(0.00742636*(RAL**3))+(0.00991 839*(RAL**4))
+-(0.0471 1846*(RAL**5))+(0.0461 24*(RAL**6))
+i-(0.0 1379021 *(RAL*7))+(0.00003678685*RARUD*RAL)i.
+(0.00001 043751 *RARUD)-(0.0001 5866*RARUD*RARUD)i(0.0001 6133

*(RARUD**3))
C

CLDTD=0.00066663+(0.00074 174*RAL) (0.00285735*RAL RAL)
+-(0.02030692(RAL* 3))-(0.00352997*(RAL**4))
++(0.0997962*(RAL**5))-(0. 14591 227*
+(RAL*6))+(0.08282004*(RAL**7))
+-(0.01 68667*(RAL**8))+(0.003061 42*(RAL**3)*DELESR)

-+-(0.001 10266*RAL*RAL*(DELESR*2))+(0.00088031 RAL*
+(DELESR**2))-(0.00432594RAL*RALtDELESR)-
i-(0.007201 41 *RAL*(DELESR**3))
+-(0.00034325tDELESR)+(0.00033433(DELESR*2))+(0.008001 83
+*(DELESR**3))-(0.00555986(DELESR**4))-(0.01841 172*(DELESR**5))

C
IF (RAL .LT. 0.0) THEN

C
DCLB=-0.000060d0
ENDIF

C
IF ((RAL .GE. 0.0) .AND. (RAL .LE. 0.209434)) THEN

C
DCLB=-O.OOOO6OdOi(0.004 1035078*RAL RAL)-(0.01 3061 8699*(RAL**3))
ENDIF

C
IF (RAL .GT. 0.209434) THEN

C
DCLB=0.OdO
ENDIF

C
C

CML=(CML1 -EPAO2S)+(CLDADDDA)+(CLDRD'DRUDD*DRFLX I *EPA43)
+((CLDTD'DTFLX1 )DELEDD)+(CMLP'PB)+(CMLRnRB)+(DCLB*BEA)

C
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C

-C
C

OMMi =0.00501 496-(0.08004901 *RAL) (1 .03486675*RAL*RAL)
+-(0.68580677*(RAL**3))+(6.46858488*(RAL**4))
+-(1 0.1 557410D8*(RAL**5))+
+(6.44350808(RAL**6))-(1 .461751 88*(RAL**7))
+(0.24050902*RAL*DELESR)

+-(0.42629958* DEL ESR)-(0.03337449* DELES R *DE LES R)
+-(O.53951 733*(DELESR**3))

C
C modified 25 Jul 90 to use new curve fit for CMQ
C
C OLD EQUATION
C
C IF (RAL .LE. 0.25307) THEN
C
C CMMQ=-3.8386262+(1 3.54661 297*RAL)+(402.5301 1559*RAL*RAL)
C .I.(6660.95327122*(RAL**3))-(62257.89908743(RAL**41)
C ++(261 526.10242329*(RAL**5))
C ++(21 77190.331 55227*(RAL**6))-(703575.1 3709062*(RAL**7))-
o +(20725000.34643054*(RAL**8))-(27829700.53333649*(RAL**9))
C ENDiF
C
C IF ((RAL .GT. 0.25307) .AND. (RAL .LT. 0.29671)) THEN
C
C CMMQ=-8.4926528931 -(2705.3000488281 *(RAL-0.2530699968))
C ++(1 23801.5*(RAL02530699968)**2)
C +-(1 41 4377*( RAL-0.2530699968)**3)
C ENDIF
C
C IF (RAL .GE. .29671) THEN
C
C OMMQ=47.24676075-(709.60757056*RAL)+ (3359.088071 93*RAL*RAL)-
o +(7565.3201 7266*(RAL**3))+(8695.1 858091 *(RAL**4))
C +-(4891 .7718331 3*(RAL**5))+(1 061.5591 5089*(RAL**6))
C ENDIF
C
C CMMQ vs. alpha n degrees
C
C
o NEW EQUATION
C
C convert alpha to degrees
C

A=RAL*DEGRAD
C

Fl =.4.33509d+A*(-0.1 41 624d0+A*(0.0946448d0+A*(-0.00798481 dO
+ +A*(-0.001 68344d0+A*(0.000260037d0+A*(6.64O54d-6+A*(

136



+ -2.2O055d-6 A*(-2. 7441 3d-8+A*(7. 144-76d-9+A*
+ 2.07046d-10)))))))))

C

F2=-302.567+a*(iO06.288+a*(-l14.7O34+A*(1 .02524+A*(-O.0393491
+ +A*(0.OO8482+A*(-9.365e-6+A*4.2355e-8))))))

C
F3=i 724.99g.*(-i 58.944+A*(5.59729+A*(-0.0949624+A*(

+ 0.000779066+A*(-2.47982e-6)))))
c
c ramp functions
C

Ri =1 .O-.75*(A-1 O.O)**2+O.25*(A-1 0.O)**3
R2=i .0-Ri
R3=i 0-75*(A-400)**2/62.5+(A-400.)**3/62.5
R4=i .0-R3

C
IF(A.LT.1 0.0)THEN-

CMMQ=Fi
ELSEIF(A.LT.1i2.0)THEN

CMMQ=Fi *R1+F2*R2
ELSEIF(A.LT.40.0)TH EN

CMMQ=F2
ELSEIF(A.LT.45.0)THEN

* CMMQ=F2*R3+F3*R4
ELSE

CMMQ=F3
ENDIF

C
CMM=CMMi +(CMMQ*QB)

C
C

C ******t*********l****t*************

C

DTFLX3=Q.9750d0
DRFLX3=0.890d0

C

CMN1=0.0i44i 512+(0.02242944*RAL)-(0.30472558(RAL**2))
++(0. 14475549*(RAL**3))
++(0.93i 4011i2*(RAL**4))-(i .521 68677*(RAL**5))+
+(0.907434i 3*(RAL**6))-(0.1 651 0989*(RAL**7))
+-(0.046i 96B*(RAL**8))
++(0.i 1754292* (RAL**9))-(0.1 7553807* RA L* RA BET)+
+(0.i 541 5649*RAL*RABET*DELESR)
++(0.1 4829547*(RAL**2)*(RABET**2))
+-(0.i 1605031 *(RAL**2)*RABET*DELESR)
+-(0.06290678*(RIAL**2)*(DELESR**2))
+-(0.0i404857*(RALV*2) *(DELESR**2))
+ +(0.07225609* RAB ET) -(0.08567087(RA BET* *2))
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++(O.01l 1 84674*(RABE-T**3-))
+-(0.0051 91 52* RA L* DELESR)+(O.038651 77* RAB ET* D ELES R)
++(0.0006291 8*DELESR)

c
CNDRD=-O.001 53402+(0.001 84982*RAL)-(0.0068693*RAL*RAL)

++(0.O1 772037*(RAL**3))
++(0.O3263787*(RAL**4))-(O.1 51571 63*(RAL**5))+(0.1 8562888
.I*(RAL**6))-(0.09661 63*(RAL**7))+(0.01 8591 68*(RAL**8))+(.0002587
.I*RAL*DELESR)-(0.0O01 8546*RAL*DELESR* RBETA)-(O.0000051 7304*RB3ETA)
+-(0.001 0271 8* RAL* RB ETA)-(0.00689379* RBETA*D ELES R)(.00040536
+* RBETA*RARUD)-(0-.00OOO480484*DELESR*RARUD)
+-(O.00041 786*RAL*RARUD)
+ +(0.0000461 872*R BETA)+ (0.00434094 *(R BETA**2))
+-(0.OO49O777*(RBETA**3))
++(o.ooob05l 57867*RARUD)+(0.002251 69*RARUD*RARUD)-(0.00208072
+*(RARUD**3))

c
IF (RAL .LT. 0.55851) THEN

C
CMNP=-0.00635409-(1 .141 53932*RAL)+(2.821 19027(RAL**2))+

+(54.4739579*(RAL**3))-(1 4O.89527667*(RAL**4))-(676.737461 28*
(RAL**5))+(2059.-18263976*(RAL**6))+(1 579.41 664748*(RAL**7))

+-(8933.0853571 2*(RAL**8))+(6806.54761267*(RAL**9))
ENDIF

C
IF ((RAL .GE. 0.55851 001) .AND. (RAL .LE. 0.61087-)) THEN

C
CMNP=-.07023239+(1 .08581 5*(RAL -0.55851))

++(8.852651 *((RAL-.55851 )**2))-(1 92.6093*((RAL-0.55851 )**3))
ENDIF

C
IF (RAL .GT.-0.61087) THEN

C
CMNP=-71 .03693533+(491 .3250671 5*RAL)

+-(l1388.1 11 77979*(RAL*'2))+
+(2033.48621 905(RAL**3))
+-(l 590.91 322362*(RAL**4))+(567.3843231 6*(RAL**5))
+-(44.97702536(RAL**7))+(2.81 40669*(RAL**9))
ENDIF

C

IF (RAL .LE. -.069813) THEN

CMNR= -0.28050d0O
ENDIF

IF ((RAL-.GT. -.069813) .AND. (RAL .LT. 0-.0)) THEN
C

CMNR=-0.2804999948+(35.990371 7041 *(RAL+.06981 29982)**2)
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+-(51 6.1574707031 *(RAL+.06981 29982)**3)
ENDIF

C
IF ((RAL .GE. 0.0) .AND. (RAL .LE. 0.78539801)) THEN

C
CMNR=-.28071 511 -(2.521 83924*RAL)+(68.90860031 *(RAL**2))

+-(573.2310051 1 *(RAL**3))+(2009.08725005*(RAL**4))
+-(3385. 15675307*(RAL**5))
+i+(2730.-494731 49*(RAL**6))-(848.1 2322034*(RAL**7))
ENDIF

C
IF ((RAL .GT. 0.78539801) .AND. (RAL .LT. 0.959931 02)) THEN

C
CMNR=-0. 1096954+(0.52893072*(RAL-0.7853980 1))-(6.091 09497*(RAL-

+0.78539801 )**2) (1 7.4783401 5*(RAL-0.78539801 )**3)
ENDiF

-C
IF (RAL .GE. 0.95993102) THEN-

C
CMNR=-0.l1 lO
ENDIF

C
CNDTD=0.00058286+(0.000734 1 * RAL)-(0.007461 13* RAL* RAL)

+-(0.00685223*(RAL**3))
+i+(0.03277271 *(RAL**4))(0.02791456*(RAL**5))
++(0.0073291 5*(RAL**6))
++(0.001 20456*RAL*DELESR)-(0.001 681 02*DELESR)+(0.0006462*

DELESR*DELESR)
C

CNDAD=0.00008228887-(0.00014015*RAL)-(0.001 3493*RAL*RAL)+
+(0.00020487*(RAL**3))+(0.00561 241 *(RAL**4))
+-(0.00634392*(RAL**5))
++(0.001 93323*(RAL**6))-(2.0581 SE-i 7*(RAL*DAILA))+(3.79481 6E-1 7*
+(DAILA**3))

C
DCNB=-2.500E-4

C
RALNi =0.69813
RALN2=90.OdO/DEGRAD
RBETN1 =-0.i 74532
RBETN2=0.34906

C
AN=0.034d0
ASTARN=1 .0472d0
BSTARN=0.087266

C
ZETAN=(2.ODX'ASTARN-(RALN1 +RALN2))f(RALN2-RALN1)
ETAN=(?.0D0*BSTARN-(RBETN1 +RBETN2))f(RBETN2-RBETN1)

C
XN=(2.0D0*RAL-(RALN1 +RALN2))/(RALN2-RALN1)
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YN=-(2.ODO* RBETA-(RBETN1 +RBETN2))/(RBETN2-RBETN1)
C

FN=((5.0D0*(ZETAN*2))-(4.0DOZETANXN)-1 .0D0)-
+ (((X N **2)-1 .0D0) *2)/(((Z ETA N'*2)-l. .DO) **3)

C
G N= ((5.0 DO(ETAN *2))-(4.0 D*ETAN *YN)-1 .ODO)*

.*(((YN**2)-1 .0D0)**2)/(((ETAN**2)-1 .ODO)**3)
C

ON RB=AN*FN*GN
C

IF (RAL .LT. 0.69813) THEN
C

CNRB=0.0d0
GOTO 1000
ENDIF

C
IF ((RBETA .LT. -0.174532) .OR. (RBETA .GT. 0.34906)) THEN

C
CNRB=0.OdO
GOTO 1000
ENDIF

C
C
C
1000 CMN=(CMN1*EPAO2S)+(CNDAD*DDA)+((CNDRD*DRUDD*DRFLX3)*EPA43)+

*+((CNDTD*DTFLX3)*DELEDD)+(CMNP*PB)+(CMNR*RB)+(DCNB*BETA)
++CNRB

C
C

C
C THIS SECTION DETERMINES THE EFFECT OF THE THRUST VALUES FOR
C ADDITION TO CX, CY, CZ, CLM,_CMM, AND CNM VALUES DETERMINED
C ABOVE AND CONTAIN THE FOLLOWING -VARIABLES:
C CPTAL - COSINE OF PITCH VECTOR ANGLE
C SPTAL - SINE OF PITCH-VECTOR ANGLE
C CYTAL - COSINE OF YAW VECTOR ANGLE
C SYTAL - SINE OF YAW VECTOR ANGLE
C ENGPQ - PORT ENGINE THRUST/(OBAR*S)
C ENGSQ - STARBOARD ENGINE THRUST/(OBARS*S)
C CXENGP - COEFFICIENT OF PORT ENGINE-THRUST IN X DIRECTION
C CXENGS - COEFFICIENT OF SBRD ENGINE THRUST IN X DIRECTION
C CXT - COEFFIQIENT OF TOTAL THRUST IN X DIRECTION
C CYENGP - COEFFICIENT OF PORT ENGINE THRUST IN Y DIRECTION
C CYENGS - COEFFICIENT-OF SRBD ENGINE THRUST IN Y-DIRECTION
C CYT - COEFFICIENT OF TOTAL THRUST IN Y DIRECTION
C CZENGP-
C- CZENGS-
C CZT
C CLMT-

140



C CMMT -
C CNMT -

C
CPT AL=COS(PTAL)
SPTAL=SIN(PTAL)
CYTAL=COS(YTAL)
SYTAL=SIN(YTAL)
CRAL=COS(RAL)
SRAL=SIN(RAL)

C
ENGPQ=ENGP/QBARS
ENGSQ=ENGS/QBARS

C
CXENGP=ENGPQ*CPTAL*CYTAL
CXENGS=ENGSQ*CPTAL*CYTAL
CXT=CXENGP+CXENGS

CYEG=NP*PA*YA
CYENGP=ENGPQCPTALSYTAL

CYT=CYENGP+CYENGS
C

CZENGP=ENGPQ*SPTAL
CZENGS=ENGSQ*SPTAL
CZT=CZENGS+CZENGP

C
CLMT=(CZENGS-CZENG3P)*(25.5dO/1 2.0d0)/BWING

CMMT=CXT*(0.25d0/1 2.0d0)/CWING
+ CZT*20.21 9d0/C WING

CNMT=(CXENG P-CX ENGS) (25.5d0/1 2.OdO)/BWI NG-
+ CYT*2O.219d0/B WING

C
C-X=CFZ*SRAL-CFX*CRAL+CXT
CY=CFY+CYT
CZ=-(CFZ*CRAL+CFX*SRAL)+CZT
CLM=CML+CLMT
CMM=CMM+CMMT
CNM=CMN+CNMT

C
C
C THE 0.25/12.0 IS THE OFFSET OF THE THRUST VECTOR FROM THE CG
C THE 20.219 is the-moment arm from the nozzle pivot to the cg
C THE 25.5/12.0 is the moment arm of the engines from the cg
C
C RETURN CX, CY, CZ, CLM, CMM, CNM TO CALLING PROGRAM.
C

RETURN
END
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C
C
C THE FOLLOWING SECTIONS ADDED 13 AUG 91
C
C

* THIS SUBROUTINE EXECUTES THREE DIFFERENT BLENDS FROM
* THE MCDONNELL MODEL COEFICIENT DATABASE TO THE ROTARY
* BALANCE COEFICIENTS GIVEN THE VALUE OF PARAMETER (10);
* BLEND. THE FIRST MODE (PAR(10)<1.0) IS INTENDED TO
* BE USED TO DETERMINE AN EQUILIBRIUM STATE SET OF
* PARAMETERS FOR THE ROTARY BALANCE DATA MODEL GIVEN A
* SET OF KNOWN STATIC AERODYNAMIC EQUILIBRIA. THE

SECOND MODE (PAR(10) = 2.0) SETS THE MODEL TO EXECUTE
* PURE ROTARY BALANCE DATA ABOVE AOA 35 DEGREES. THE
* THIRD MODE (PAR(10) = 3.0) IS A HYBRID MODEL WHERE
* BOTH THE STATIC AND ROTARY BLANCE DATABASES ARE
* COMBINED UTILIZING UNIQUE ASPECTS OF BOTH -DATABASES.

C

SUBROUTINE RBBLEND(U,PAR,NDIM,ICP)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /SEIZE/ CX,CY,CZ,CLM,CMM,CNM
COMMON /SEIZET/ CXT,CYT,CZT,CLMT,CMMT,CNMT
COMMON /SEIZER/ CXR,CYR,CZR,CLMR,CMMR,CNMR
COMMON /RBPOLY/ PC, OMEGA
DIMENSION PAR(10),PC(6,79),U(NDIM)

C
C

IF (PAR(10) .LT. 2.0) THEN
C
C

BLEND = PAR(10)
C

CXS = CX-CXT
CYS = CY-CYT
CZS = CZ-CZT
CLMS = CLM-CLMT
CMMS = CMM-CMMT
CNMS = CNM-CNMT

C
CX = CX + (CXR-CXS)*BLEND
CY = CY + (CYR-CYS)*BLEND
CZ = CZ + (CZR-CZS)*BLEND

CLM CLM + (CLMR-CLMS)*BLEND
CMM = CMM + (CMMR-CMMS)*BLEND
CNM = CNM + (CNMR-CNMS)*BLEND

C

ENDIF
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C
IF (PAR(10) .EQ. 3.0) THEN

C
AL = -U(l)
BETA = U(2)
DEGRAD = 57.2957795
RAL = AL/DEGRAD
RBETA = BETA/DEGRAD

C
PTEMP =-U(3)
OTEMP = U(4)
RTEMP =-U(5)

C
P = U(3) - OMEGA'DSIN(RBETA)
o = U(4) - OMEGA'DSIN(RAL)*DGOS(RBETA)
R = U(5) - OMEGA'*DCOS(RAL)*DCOS(R BETA)

C
U(3) =- P
U(4)--= 0
U(5) = R

C
CXRP = CXR
CYRP= CYR
CZRP = CZR
CLMRP = CLMVR

* CMMRP=GMMR
CNMRP =CNMVR

C
CALL COEFF(U,PAR,NDIM,IGP)

C
U(3) = 0
U(4) = 0
U(S) = 0

C
GALL RBCOEF(U,PAR,NDIM)

C
CXRO = CXR
GYRO = CYR
CZRO = CZR
GLMRO = CLMVR
GMMRO =CMMR

CNMRO = GNMVR
C

GXS = CX-CXT
GYS = GY-CYT
CZS = CZ-GZT
CLMVS =CLM-CLMT

GMMS C MM-GMMT
GNMVS =CNM-GNMT

C
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CXR = CXS +-(CXRP-CXRO)
CYR = GYS + (CYRP-CYR0)
CZR = CZS + (CZRP-GZRO)
CLMVR =CLMVS +(CLMRP-CLMRO)
CMMR =CMMS + (CMMRP-CMMRO)
CNMVR =CNMVS + (GNMRP-CNMR0)

C
U(3) = PTEMP
U(4) = QTEMP
U(5) =-RTEMP

C
CALL COEFF(U,PAR,NDIM,ICP)

C
EN DIE

C
C

IF (PAR(10) .GE. 2.0) THEN
C

DEGRAD = 57.2957795
AL = U(l)
RAL = AL/DEGRAD
DELTA = 5/DEGRAD
BLEND = (RAL - 0.523598776)/DELTA

IF ((RAL .LE. 0.610865238) .AND. (RAL .GE. 0.523598776))THEN
C

CX = CX + (CXR-CX+CXT)*(3-2*BLEND)*BLEND*BLEND
CY = CY + (CYR-CY+CYT)*(3-2*BLEND)*BLEND*BLEND
CZ = CZ +(CZR-CZ+CZT) *(3-2 *BLEND)*BLEND* BLEND
CLM =CLM + (CLM R-CLM+CLMT) (3-2BLEND)*BLEND*BLEND
CMM = MM +- (CMMR-CMM+CMMT)(3-2*BLEND)BLEND*BLEND
CNM =CNM + (CNMR-CNM+CNMT)(3-2*BLEND)* BLEN DBLEN D

C
ELSE

C
CX = CXR +CXT
CY = CYR + CYT
CZ = CZR + CZT
CLM = CLMR +CLMT
0MM = CMMR + CMMT
CNM = CNMVR + CNMVT

ENDIF
ENDIF

C
RETURN
END

C
C
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* THE FOLLOWING IWO SUBROUTINES, RBPOLYCOEF AND RBCOEF,
* REPRESENT THE ROTARY BALANCE COEFICIENT DATA. THE FIRST
* ROUTINE READS IN THE COEFICIENTS OF THE POLYNOMIALS THAT
* REPRESENT THE SIX COEFICIENTS AND THE SECOND ROUTINE IS THE
* POLYNOMIAL THAT REPRESENTS THE POLYNOMIAL.

C
SUBROUTINE RBPOLYCOEF
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /RBPOLY/ PC, OMEGA
DIMENSION PC(6,79)

C
OPEN(99,FI LE='RBDATA. 1 50',STATUS='OLD')
REWIND(99)
DO 110 1=1,6

DO- 100 L=1,79
READ(99, °) PC(I,L)

100 CONTINUE
110 CONTINUE

RETURN
END

C
SUBROUTINE RBCOEF(U,PAR,NDIM)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /SEIZER/ CXR,CYR,CZR,CLMR,CMMR,CNMR
COMMON /RBPOLY/ PC, OMEGA
DIMENSION U(NDIM),PAR(10),PC(6,79)

C
AL =U(1)
DEGRAD = 57.29577951

C
RAL = ALJDEGRAD

C
IF ((RAL .LE. 1.5708) .AND. (RAL .GE. 0.5235988)) THEN

C
CALL RBDATA(U,PAR,NDIM,1 ,CXR)
CALL RBDATA(U,PAR,NDIM,2,CYR)
CALL RBDATA(U,PAR,NDIM,3,CZR)
CALL RBDATA(U,PAR,NDIM,4,CLMR)
CALL RBDATA(U,PAR,NDIM,5,CNMR)
CALL RBDATA(U,PAR,NDIM,6,CMMR)
CXR-= -CXR
CZR = -CZR
ENDIF
RETURN
END

C
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SUBROUTINE -RBDATA(U, PAR,N DIM, I,CF)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON/ACDATA/BWING3,CWING-,SREFIRHO,RMASS
COMMON /RBPOLY/ PC, OMEGA
DIMENSION U(NDIM),PAR(1O),PC(6,79)

C
DEGRAD = 57.29577951

C
A =U(1)/DEGRAD
B-= U(2)/DEGRAD
P = U(3)
o U(4)
R =U(5)

C
VTRFPS = U(8)'1000

C
DE = PAR(1)/DEGRAD
DR = PAR(2)/DEGRAD
DA = PAR(3)/DEGRAD
DD = PAR(9)/DEGRAD-

C
C FOR COMPARIS -ON TO PREVIOUS- MODELS, DIFFERENTIAL ELEVATOR
C WILL BE VARIED AS A FUNCTION OF-AILERON DEFLECTON.
C

DD = 0.3*DA
C

OMEGA = (PDOCOS(A) + R*DSIN(A))YDCOS(B) + Q*DSIN(B)
OM = (BWING-OMEGA)/(2'VTRFPS)

C
C 79 TERM ROTARY BALANCE DATA POLYNOMIAL
C
C

Cl = PC(I,1) + PC(I,2)*A + PC(1,3)*B
C2 = PC(I,4)*DA + PC(1,5)*DD + PC(I,6)*DE
C3 = PC(i,7)0OM + PC(1,8)*DR + PC(I,g)'A'A
C4 = PC(I,l)DA-B + PC(I. 1 )B*B + PC(I,l 2)*BDR
C5 = PC(I,13'A-OM +PC(1,14)*DA*DD + PC(1,15)*DR*DR
C6 =PC(1,16Y-OM'OM +PC(I,17)'DA*A + PC(,18)BOM
C7 =PC(I,19Y-DD-DD + PC(I,20)*OM*DE + PC(I,21p*DD*A
C8 = PC(1,22)'ADE +-PC(,23)BDE
C9 =PC(I,24)*B*A + PC(I,25)*OM'DD + PC(,26)*BDD
C10 = PC(,27)'OM*DR + PC(I,28)*DA*OMOM +PC(1,29)*DAA
Cll = PC(1,30)'DD*DDB+PC(1,31 )0MOMA+PC(1,32)*OMOM*OM
C12 = PC(1,33)ABB +i PC(,34)*B*AOM
C13 = PC(,35)BA*DR + PC(,36)A*BDD + PC(1,37)B*BOM
C14 = PC(,38)'DD*OMOM + PC(,39)*BDA*OM
C15 = PC(1,40)BOM*DR
C16 = PC(I,41)'B'DAA + PC(I,42)*DD*DD*A
C17 = PC(I,43)-ADR-DR
C18 = PC(,44)DD*AA + PC(I.45)A*ADE + PC(,46*B*A*A
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C1 9 = PO(I,47)'B*OM*DE PC(I,48)*OM*DR*DRP(,49)*B*OM*OM
020 =PO(I,50)A'A'OM
021 = PO(1,51yOM0OM*DE PC(1,52*A*OM*DR
C22 =PC(I,53y'DD*DD*OM + P0(1,54)*A*A*A P0(I,55)*A*DD*OM
C23 = P0(I,56)'A*A*DR P(,57)*OM OM*DR PC(I-58)A*OM*DE
024 = PC(I,59)*A*A*OM*OM + PO(I,60)*B*B*OM*OM-
025 = P0(I,61)*DD'DD*OM*OM
026 = PC(I,62)'DD*DD*DD*A + PC(1,63)*B*DD*DD*DD
027 =PO(I,64)'A*A*B*B + PO(I,65)*BOMOM*OM
028 = PC(1,66)*OM*OM*OMOM + PO(I,67)*0M*OM*OM*DE
029 = P0(I,68)A*OM*OM*OM + PC(I,69)DD*DDA*A
030 = PC(I,70)*DE*A*A*A + PC(I,71)DA*A*A*A
031 = PO(I,72)*B*A*A + PC(I,73)*A*A*A*A
032 =PC(I,74)*AA*DD + PC(,75)OMDDDDD
033 = PC(1,76)'A'A*A*DR + PO(1,77)*A*A*DR*DR
034 = PC(1,78)*OM*OM.DR*DR + PO(I,79)*OM*OM*OM*DR

C
GFl = 01+02+ 03 + 04 i C5 + 06 + 07 + C8-+ C9 0 10
0F2 = 011 + 012 + 013 + C14 0 15 0 16 + C17 + 018
0F3 = 019 + 020 + 021 + 022 + 023 + 024 + 025 + 026
0F4 = 027 + 028 + 029 + 030 + 031 +-032 + 033 + 034

C
CF = GFl + 0F2 + 0F3 + 0F4

C
RETURN
END
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