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Preface

The purpose of this study was to investigate the application of a conservative synchro-

nization paradigm for parallel discrete event simulations; specifically, to solve the classical

pool- balls -simulation. This -thesis effort has demonstrated that the conservative approach

can -produce comparable performance to an optimistic approach by comparing the results

of the pool balls simulations produced at Cal Tech with those of this thesis.

This thesis effort also demonstrates the viability of spatially partitioning a simulation

model in a conservative environment. Several design approaches were analyzed-and their

respective advantages and disadvantages were derived. Two conservative formulations

for a minimum safe time were developed both of which maintain system correctness and

simulation progress. The tradeoff between them is shown to be scalability versus execution

efficiency. The more efficient, less scalable one, was chosen for empirical study.

In the development of the simulation software, I had to acquaint myself with the C

programming language. Were it not for the invaluable help of Lt Kevin Hanrahan, I would

never have developed a working program. I would like to thank Professor Gary Lamont

for his ceaseless encouragement and brilliant inspiration. Without his help, I would have

pursued many wrong approaches in system design, theory and writing. HIe was particularly

useful in the application of predicate logic for developing the theorems and proofs plebented

in this thesis.

I am deeply indebted to my wife Kelly and my daughter Rachel for their encourage-

ment, support, patience and love. The time required to fulfill the requirements of Master

of Science of Computer Engineering has been extraordinary. Without the direct support of

my family, I could not have maintained the exacting pace demanded of my studies. Thank

you.

Robert S. Moser
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A Spatially Partitioned

Parallel Simulation of

-Colliding Objects

L Introduction

This thesis investigates the application of a conservative synchronization paradigm

for the execution of parallel discrete event simulations implementing spatially pai titionable

models. The methodology developed for this thesis is-of particular interest to operations

researchers and simulation system designers because a parallel processor having N nodes

can potentially execute a distributed simulation up to N times faster than a single pro-

cessor (21:315). The realization of this potential increase in performance is the primary

motivation to distribute simulations over many processors. Furthermore, a distributed

approach may be the only practicle or possible solution to some large, complex models.

For example, Misra has investigated a sequential simulation of a complex telephone switch.

Misra assumed that the switch can generatc about 100 internal messages while completing

a local telel)hone call and that 100 switches per second can be accommodated by a complex

switch. A sequential simulation simulating 15 minutes of real time will generate nearly

10 million messages requiring several hours of simulation time on a. very fast uniprocessor
(i8).

This thesis develops a general methodology from which many systems iay be lnod-

eled in a distrilbuted manner. This methodology is developed from the investigation of a

specific distributed simulation in which pool balls move about on a pool table and collide

with one another and xwith the pool table with perfect elasticity. There are several reasons

why this simulation has been chosen for analysis.

1. The model is simple to comprehend, thereby emphasizing the process of developing

a distributed simulation and not the simulation itself.

2. Basic simulation parameters such as computational loading, number of processors,

number of logical processes, number of simulated objects, etc, are easily varied for

performance measurement and analysis.



3. The pool balls simulation concept has becom- a classical simulation problem hav-

ing been developed and conceived at Cal Tech under the title 'Colliding Pucks' (13)

and benchmarked at the Jet Propulsion Laboratory under the title 'Pool Balls Bench-

mark' (4, 3). The pool balls simulation concept has also been studied using a modified

version of the Time Warp operating system (17) and using a time driven simulation

approach (7).

4. The published benchmark results from the Jet Propulsion Lab allow some perfor-

mance comparisons to be made between the conservative- and optimistic paradigm

implementations for the pool balls simulation.

1.1 Background

According to Banks and Carson, 'a simulation is the imitation of the operation of a.

real-world process or system over time (2:2).' A model is a representation of a real-world

system and takes the form of a set of a.sumptions concerning the behavior of the system.

If the model of a real-world system accurately reflects the behavior of the system, then a

simulation can be used to study the system without changing the real-world system. This

form of experimentation can increase a user's knowledge of the system. Simulation can also

be used to experiment with models of systems that do not yet exist, thereby providing an

often used system design tool for complex and costly systems (2:4). Pritsker (19:6) states

that simulations of real-world systems provide the experimenter with inferences about

systems

'... without building them, if they are only proposed systems; without disturb-
ing them, if they are operating systems that are costly or unsafe to experiment
with; without destroying them, if the object of an experiment. is to determine
their limits of stress.'

For the Department of Defense, military battle simulations precisely conform- to all

of Pritsker's observations. Wars are certainly unsafe to experiment with. During times

of peace battle simulations provide valuable information concerning our preparedness for

war. Many battle simulations are complex enough that sequential uniprocessors require

several hours and even days to simulate a relatively short tactical scenario (10). There are

still several questions regarding the parallelization of complex simulations. These questions

include the following:

2



1. How should the problem domain be partitioned?

2. Which method of synchronization should-be used?

3. Can load balancing be achieved across N processors?

This thesis investigates each of these questions in the context of the classical pool

balls simulation.

1.2 Thesis Statemnent

A concurrently executing non-queueing model discrete event simulation can achieve

neat linear speedup implemented with a conservative synchronization paradigm incorpo-

rating spatial partitioning and limitied data replication.

1.3 Scope

This thesis effort investigates the parallelization of a conservative discrete event sim-

ulation incorporating a classical, spatially partitionable model. The specific model chosen

for investigation is the well defined pool balls problem. The conclusions are applicable to

any spatially partitionable model such as battlefield simulations. The distributed software

design is object oriented and spatially partitioned. The movement of -each pool ball is

recorded to disk for analysis and graphics display. The user can specify the number of

pool balls to simulate, the number of logical processes, the number of physical processes,

the simulation run time and the pool table dimensions. The user may also specify various
op.tions such as writing to disk, printing to screen, collecting statistics and checking for

errors. Each option selected affects the execution time of the overall simulation.

Each pool ball is created during initialization. The parameters of position specified

as X - Y coordinates and velocity specified as X - Y" vectors are randomly generated

using a machine independent pseudo random number generator developed by Law and

Kelton (14).

The performance of this pool table simulation is compared to that of Cal Tech's

'Colliding Pucks' experiment to gain insight towards the desirability of the conservative

synchronization paradigm over the optimistic synchronization paradigm. This is particu-

larly important because the conservative paradigm has been shown to require only as much

memory as its sequential counterpart while the optimistic paradigm requires large amounts

of memory and has the potential to exhaust memory before simulation termination.

3



1.4 Research Objectives

The objectives of this thesis-effort are:

1. To demonstrate by example-that a spatially partitionable model discrete event sim-

ulation can be parallelized on distributed loosely coupled processors using a conser-

vative synchronization paradigm.

2. To demonstrate that the parallelization of a spatially partitionable model discrete

event simulation can achieve reasonable speedup.

3. To demonstrate that the conservative synchronization paradigm is comparable to an

optimistic synchronization paradigm when applied to a. spatially partitionable model

parallel discrete event simulation.

1.5 Assumptions

Several assumptions were made in the analysis, design and development of the pool

balls simulation. As a minimum, the following equipment and hardware specificationb vei e

assumed:

1. A distributed loosely coupled hypercube having eight or more nodes.

2. Monotonicity of message traffic between nodes is strictly maintained. This require-

ment states that if messages (i 1 ,i 2, ... , m,,) occur at time (t1 , ti_ ... , 1,) such that

0 < t, t, < -t,, then the target nodes will receive the messages in the same order.

3. Dynamic allocation and deallocation of memory is allowed.

1.6 General Approach

The general approach for this thesis consisted of six steps:

1. A literature search was conducted. Familiarity with different types and classes of

simulations was acquired and an understanding of the Chandy-Misra paradigm de-

veloped.

2. The requirements analysis was performed for the software system. The assumptions

generated were required to conform to those developed by Cal Tech to provide a.

means for performance comparison.
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3. The requirements analysis was validated and the pool balls simulation was designed.

An object oriented approach was used to enhance software documentation, mainte-

iance and changeability.

4. The software was written in a three-step process. First, a sequential pool balls

simulation was designed implementing a non-partitioned pool table. Second, the

sequential system from the first stage was modified so that the pool table could -be

partitioned into vertical 'slices'. Third, the partitioned pool table resulting from

the second stage was parallelized on the Intel iPSC/2 hypercube. All three software

versions were coded in the C programming language.

5. Various test simulations were developed which provided the speedup estimates and

performance comparisons between Cal Tech's experiments and AFIT's experiments.

Tests were executed-using all three software stages to demonstrate output consistency.

1.7 Summary

A spatially partitionable model discrete event simulation can be parallelized onto a

distributed, loosely coupled processor. Near linear speedup is achievable using a conser-

vative synchronization paradigm. Thebe assertions are demonstrated by implementing the

well documented, classical pool balls simulation which was conceived and developed by

scientists at Cal Tech and later benchmarked at the Jet Propulsion Laboratory. A conser-

vative paradigm results in comparable performance to the Time Warp optimistic paradigmn

based upon the reported results from Cal Tech and the Jet Propulsion Lab.

5



H. Issues in Distributed Discrete Event Simulation

2.1 Introduction

This chapter surveys current literature on topics related to this thesis. This review

is limited to on-going research in parallel discrete event simulations and briefly discusses

various classes of computer architecture used in distributed processing.

2.2 Motivation for Parallel Computing

If a computer performs one iistruction at a time in sequential fashion then the

only possibility for increasing execution perforuance is to increase the speed at which
instructions are performed. Despite the fact that VLSI technology has been doubling the

performance of computing hardware every couple of years, it is doubtful that this trend

can continue beyond the 21st century and is certain not to continue indefinitely (9:23).

An alternative approach for increasing execution performance is to design and use

computer architectures that perform multiple instructions simultaneously. If a. sequential

processor requires T, time to complete a process, then a parallel processu, having M

processors requires a lower bound of Tn time to complete the same process, provided that

each of the Al processors is equal in power to the sequential processor and that all 11

processors are 100 percent utilized. The increase in run time performance ,s a factor less

than. or equal to H. This theoretical upper bound on parallel computing performance is

the primary motivation towards parallel computing. In the futu,~e, thih n,.y be the only

means available to decrease execution time. Even if technology can continue increasing the

speed of sequential processors, the rate of performance increase is significantly less than

the potential of establishing an M-fold increase by using massive parallelism.

2.3 Flynn's Taxonomy

Michael . Flynn classified all digital computers into four categories according to

the types of instruction and data streams used. An instruction stream is a sequencL of

instructions executed by a given computer. A data stream is a sequence of data repi esentilmg

input, output or temporary results used to calculate the output. Flynn's four categories

are (12:32):

1. Single Instruction stream, Single Data stream (SJSD).
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2. Single- Instruction stream, Multiple Data stream (SIMD).

3. Multiple Instruction stream, Single Data Stream (MISD).

4. Multiple Instruction stream, Multiple Data stream (MIMD).

The simplest architecture is the SISD class. These computers execute -one instructiol, at

a time and operate on one piece of data at a tlme. The most complex architecture is the

M1I1D class. MIMD-conputers execute multiple instructions simultaneously on different

data. One may think of a MIMD computer as several processors tied together, each

processor of which is a. fully functional and often times powerful computer. The mannier

in which the processors of a MIMD architecture are tied together distinguishes loosely

coupled and tightly coupled MIMD computers.

2.4 Tightly Coupled VS Loosely Coupled Mh'IMD Architectures

The individual processors of a parallel process, r architecture must cooperate with

one another in order to solve a particular applicatio;-. This cooperation often entails the

sharing of data structures and variables which reside i memory. One approach to parallel

architecture design is to have a global memory whic.i each processor may access. This

shared memory design i: referred to as tightly coupled. This debign has the advantage of

internodal communications at memory speeds. The disadvantages-include bus contention,

cache coherence and memory access. Memory can only be read from or written to one

address at a time; hence, the individual processors of a tightly coupled architecture often
'fight' over access rights to memory. Current bus-architect.re-technology limits the number

of processors to 40 or 50. Cache coherence is a l)roblem in that multiple processors may alter

variables in memory even though some or A1 of the variables reside within an individual

processors cache. This poses the problem of having miniti.,: .,,i)le values within the

local caches of different processors (9:19).

An alternative approach to parallel architectvu design is to have sel)ara.te local

memories owned and controlled b, the individual processors. Such a. design is referred

to as loosely coupled. These designs prohibit -processors from accessing memory variableb

outside of lo~al memory. These variables must thn be communicated via message passing

which i considerably slower tha.i the memory speeds achieved by the shared memory

concept discussed above, but cache coherence and bus contention are not problems and

the size of the architecture is scalable to several thousand procebsors depending upon the

connectivity between the processors (9:20,21). Research continues as to the applicability

7



of both architecture designs towards specific problems. This thesis effort focuses on the

application of the Intel iPSC/2 hypercube loosely coupled MIMD architecture towards-the

classical-pool balls simulation.

2.5- lypercube MIMD Architectures

A loosely coupled distributed architectur- ;. Astsend and receive comm.unicated vari-

ables across interconnecting communications n- .;orjs which are significantly slower than

CPU cycles, bus cycles or even memory cycles, '%te appr-alh tcward keeping communi-

cati'ns time to a minimum is to have each pro, -ss.,r (often times referred to as a 'node')

directly connected to every other processor so that the commumications line is both short

and direct. This type of fully connected ' .MD architecture is known as a-crossbar. Cross-

bars require A12 links betx\een .1f nodes which is expensive boi in terms of hardware

cost and size. Scalability of crossbars ib severely rest~icted since the communications links

grow with the square of iV. Thus, the communicationb time complexity is 0(1) at the cost

of 0(M) links (9:114-116). A., architecture wHich uses fewer communications links has

greater scalability but greater tommunications time. The least number of links possible

betmeen nodes is two represented by linear arrays and ring netw,,rks. These interconnec-

tion networks o.ve communications time complexity of O(M) at the cost of only 0(i)

links (9:114-116). These types c, networks work well if the application requires nodes to

share data between themselves and their immediate neighbor.

The hypercube enjoys the greatest popularity amongst loosely coupled MIM]) ar-

chitectures because of its versatility, scalability and communications time. A hypercube

has A1 = 2.. processors intercomected as a binary cube. Each processor is a fully self

contained computer with its own clock. CPU and local memory. Each processor also has

mn connections with other processor, in the cube. Hence, the worst case communications

time between any two processors is -O(1ogM). This places the communications time be-

tween the high speed of the fully connected MIMD architecture-ind the ring architecture

while preserving the capability of scalability. The Intel iPSC/2 hypercube has a front end

processor that is directly connected t, each node of the cube via a 10 Mbps ethernet con-

nection. Each node employs a. Direct Connect Module (DCM) which frees a. node's CPU

from directing message traffic. Each of the nodes is made up of a, standard Intel 80386

processor rated at 4 MIPS (9:4,1-451).

S



2.6 Performance Altasures

There are beveral measures of performance for-pat allel computing. Tile most common

mfeasuiernent is spccdup which Hayes (lescribes as the ratio of -thle tot .xec~.tion time onl

a seque!lAial computer to the corresponding execution time onl a parallel computer using

Mf processors k1 1). Matlhemati cally,

SinceAl' time speedup .5 < Af. Stone feels that the defl tion-used by Haves
and others leads to ambiguity beccutb- the dlefinition provides for inflated valiu'-s. Ilstedl,

Stone states that speedup is thle iatio of thme bcst possible serial algorithin implementation

.c, tme p~arallel implemientationi (21:141). A speedlup which measures the performance of thle

same algorithmn implemlented serialI% amid-im parale! sliould, according to Stone, beC (Ifiiied

as i-clative speedup. This thesis ubes Stonies concept of relative speedup for performance

analysis.

Another useful performnance measure is efficiency which Hayes describes a.- speedup

per degree of parallelism (11:583), defined mathematically as:

S((2)

2.7 T7hxonomy of S5imzdalions and Simulation AMdl

;,- simulatiou may be eithei- discrete or continuous. A discrete system allows thle state

varia1.ic. to change only at discrete points in time wvhereas a continuous system allows the

state v;,.alies to change contiously over time. A model is defined as a represenltationi of

a sste. Amodl ieedoiy includc ti., -,pects of a real systen uiider observation whose

behavioral characteristics arc intended for study. The model is hentce a. representation

of a real world entity Lut it is also a simiplificationi of that enitity. Models are typically

described by three attributes: static or dlynamic, deterministic or stochastic, and dibcre'e

or continous. A static model represents an entity at a particular point in time (usually

referred to as a Monte Car-lo model) whereas a dynamic model represents an entity as i

iangm-s over time. Thle poolbalis simulation uses a dynamic model. A deterministic model

has a known set of inputs and results in a unique set of outputs. There are no random

variables inl a (deterministic model. A stochastic model is probablistic, and relies u11)01 one
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or more random variables as inputs. Due to the randomness of the inputs, a stochastic

model must be considered only as an estimator of an entity's behavior. Statistical estimates

sought as outputs of a stochastic model include the mean time between -failure, the mean

service, or mean wait time. The pool balls simulation uses a stochastic model as the pool

balls are generated with random positions and velocities. A simulation model may be either

discrete or continuous. A dist-rete simulati,. u model represents an entity that changes only

at discrete points in time. A continuous model represents an entity that changes constantly

over time. Most queueing models are discrete. The pool balls model is continous. It is

important to note that a continous model may be observed only a. discrete points in time

and a discrete model may be continously observclt over time. The pool balls simulation

is discrete but the model 's continous as each pool ball continously changes with time

(2:3-12).

A simulation may be time dri,,e, or . :ent driven. A time driven simulation- updates

a dynamic simulation model by con. :ant time intervals. With -regard to the pool balls

simulation, a time driven implementation would move each pool ball by a predetermined

delta t. A time driven simulation may be allowed to process faster by increasing the delta

t value thereby requiring fewer updates over a specified time iiterval; however, resolution

of the simulation output decreases as the delta t increases.

An event driven simulation updates objects within a simulation model at discrete

points in time which have been defined as 'events of interest'. If the events can be properly

defined. the event driven simulation promises theoretical in.provement over its time driven

counterpart. This potential performance gain of the-e~ent driven approach arises from

only having to calculate the state information for the exact set of events of interest. The

time driven approach will calculate the state information for no, only the set of events of

interest but also for all of the incremental states corresponding to the delta. times (which

.,.re not events of interest).

2. $ Distributcd Discrete Event Simulation Pairadigms

Chandy and Misra developed a conservative synchronization paradigm in 1979 for

the bcessful impleuentation of a distributed discrete event simulation. Jefferson et al

preseited their optimistic synchronization paradigm in 1985. To date, all other proposed

paradigms are variationZ and extensions to the two original paradigms. The problem that

both paradigms overcon.e is the handling of out-of-sequence messages. Consider the pool

balls-scenario presented in -Figure 1.

10
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NODE 0 NODE I NODE 2

Figure 1. A Partitioned Pool Table with a Future Collision

In Figure 1. suppose that pool balls 1 and 2 will collide with one another at time

= . Let us assume that for the parallel implementation, the pool table is sliced into

sectors with one sector allocated to each of three nodes. Each node knows only of tie

existence of its pool balls. The leftmost sector on node 0 cannot 'see' ball 2 on node 2 and

vice versa. This situation causes node 0 to predict that ball 1 will strike the top horizontal

cushion at time t = 5 while node 2 will predict that ball 2 will exit the sector at time

t = 1. If both node 0 and node 2 execute their events simultaneously, node 2 will be

cor rect and node 0 will be incorrect. Eventually, ball 2 wil! migrate to node 0 but the

collision between the two pool balls will no longer be -possible because ball I has already

been simulated past the collision time of I = 4.0. The arrival of ball 2 at node 0 at time

= 3.0 is an oul-of-seqiiencc rnessagc if node 0 has already simulated past tinle t = 3.0.

An optimistic strategy assumes that out-of-sequence messages will not occur; thus,

every node in the distributed system processes all of the data that it can. As-each event is

processed, the state data is stored in memory. If an out-of-sequence message does occur as
it would in the scenario of Figure 1, the node that receives the message reverses (referred to

as rollback) the simulation back to the last event executed just prior to the out-of-sequence

message. The simulation is then recalculated with the newly arrived message data.
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A conservative strategy prevents out-of-sequence messages from occuring by pre-

venting processors from executing until such a time that they call safely guarantee that no

out-of-sequence messages will arrive. Thus, node 2 of Figurel would have been allowed to

process -the exit event of ball 2, but node 0 would have been required to wait (i.e. to sit

idle) until it was safe to process. The mechanism used by Chandy and Misra to guaran-

tee system correctness is the Minimum Safe Time (MST) which is a calculated value of

simulation time which guarantees that no out-of-sequence messages will occur up to time

t < MST.

Both paradigms have strengths and weaknesses. The optimistic strategy requires

largc amounts of memory for rollback and can exhaust the-memory during the simulation.

Chand and Misra have shown that theii conservative paradigm requires onl3 a bounded

amount of memory and does not require more memory than a sequential simulation (15).

Lipton and Mizell assert that Time Warp outperforms Chandy-Misra by a factor-of p in

the best case and cannot lag arbitrarily far behind Chandy-Misra in the worst case (16).

This is based on the intuitive premise that Time Warp can 'win big' if it correctly guesses

the correct choices concerning what events to process and what events not to process.

Furthermore, even if a processor incorrectly -processes an event, as in Figure 1, it is the

processor which -has processed furthest in simulation time which is penalized; therefore,

the simulation is no slower than the slowest processor plus some constant overhead factor

to enforce the roll back. Lin and Lazowska have taken a more analytical view but conclude

basically the same thing. Their conclusion is based upon models of the Time \\arp and

Chandy- Misra paradigms which employ several underlying assumptions. Assumption 2.1

in Lin and- Lazowska's paper states that each logical process is assigned to a. dedicated

processor. This assumption reduced the potential speedup of their model because not all

conser-,ative models require a one to one mapping between logical processes and processorb.

Let the number of logical processes be kand the number of processors be n. The probability

of an idle processor using Chandy-Misra decreases as n decreases such that k > n. (15).

Therefore, Lin and Lazowska's conclusions may be erroneous for conservative strategies

that can assign multiple processes to processors. Lin and Lazowska, referenced this fact in

their concluding remarks. Assumption 2.2 in Lin-and Lazowska's paper states that Time

Warp can rollback a simulation in negligable time. This underlying assumption is perhaps

required to reduce the variables in an analytical model, but the assumption is not realistic.

Indeed, Lin and Lazowska state in their concluding remarks that the overhead of the Time

Warp operations is greater than that of the Chandy-Misra operation. This discrepency has
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beei taken into consideration by Lipton and Mizell causing them to conclude that Time

Warp is always within-a constant factor of optimal. The question addressed by this thesis

is whether or not a conservative approach can also be-made within a-factor-of optimal and

whether or not this factor can be higher than Time Warp. This thesis also demonstrates

that the pool balls simulation can be effectively partitioned such that multiple logical

processes can be assigned to each processor.

2.9 The Theories of Chandy and Misra

Each process in a physical system is simulated by a separate logical process. Chandy

and Misra use the term LP for logical processes and PP for physical processes. The logic

of an LP depends solely upon the PP that it is simulating. An LP, has a. communications

link to LPj if and only if PP has a communications (dependency) link to PP. All

messages between LP, and LP consist of a tuple (t,m) such that I represents the time of

the message and in represents the contents of the message. An LP can only process up to

the time of the latest tuple which was received. This condition is sufficient to guarantee

that no out-of-sequence messages will be received by any IP and simulation correctness

is thus guaranteed (1). These concepts form the basis for Chandy and Misra.'s original

publication in 1979 subject to the following constraints:

1. A process may decide to send a message at any arbitrary time . > 0 (6:140).

2. For all message tuples of a simulation time period (0, Z),

0 < tI < ... < k _< Z (6:412).

3. A message is sent from L, to LP if and only if LP, is ready to send the message

and LP is ready to receive it (6:4,13).

The third constraint stated above allows for the possibility of deadlock. Chandy and

Misra assert that all distributed discrete event simulations using a conservative paradigm

are subject to deadlocks and therefore require a mechanism to accommodate it. Chandy

and Misra provide three such mechanisms. The first two are straight forward deadlock

detection and recovery and deadlock avoidance. The third mechanism which is both favored

and pioneered by Chandy and Misra is the concept of NULL messages. Such a. message

consists of the tuple (t, NULL) which does not exist in the physical system. The presence

of a NULL message allows LP's to continue processing up to the time of the NULL message

when they would otherwise be blocked. The following queucing network taken from Chandy

and Misra.'s article serves to demonstrate this process (6:4,16).
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SOURCE 1:

Figure 2. A Queuing N~etwork that can Deadlock

1. Source outputs (.50.-nil) to LPL.

2. 121 outputs (SQ int) to 11P2.

3. 122 outputs (55, in1 ) to LP3. At this point. LP3 is still wvaiting to receive a message

from LPJ.

4. Source outputs (100,m,) to LP1.

.5. LPI outputs (100, 7n,) to LP2.

6. LP2 wails to output (105,) to LP3 because LP3 is not ready to receive another

niessage- from 122 until it first receives a. message from LP1.

1. Source ou tput's (1.50. ly3 ) to LPi.

S. LP1 ilis to output (1.50.M 3) to LP2 because LP2 is not. ready to receive another

mess~ge fromn LP1 until (105.. m2) is sent, to LP3.

At this pinlt, the queucing net.work is deadlockul because LP3-is expecting a. message fromn

LP1 which it niever received; therefore. LP3 cannot accept LP2-s second mnessage which

cannot accept 121 's third miessage. LP1 wvill niever be ab~le to sendl LP3 a mnessage because

it is waiting for LI'2 to accept LPI's thirdi messaige. Every 12 is tints waiting upon every

other LP~.

Insertion of NULL mnessages in Chandy and] M.'isra~s example avoidls th:2 possibility

of deadlock. At the timie of Lte arrival of the first message in, at 121, 121 dletermined

the message should be addressed to LP2. Even though this nmage was not Lte type

requiredI lby 123, LPI can still send a, NULL message to 123 at tunec L, = .50. This



would have allowed LP2 to send the tuple (105, 7n 2) to LP3 and LP3 could have then

received- the tuple. It should be clear that the NULL messages corresponding to the

tuples (50,NULL), (100,NULL) and (150,NULL) are sufficient to avoid the deadlock

situation. The drawback to the NULL message approach is that logical processes are

required to process more messages than exist in the physical system. Such approaches are

ill suited towards course grain machines due to the excessive message traffic which can

result.

Chandy and Misra expanded their theory and presented a-follow up paper in 1981 (5).

They developed a new constraint such that within a physical system, the '...behavior

of a PP at time t cannot be influenced by messages transmitted to it after t (5:198)'.

This necessary condition is called the realizability condition. This leads indirectly to the

assertion that if LP sends LP, a. message (1k, ink), it implies that all messages from

PPi to-PP have been simulated up to time tk (5:199).

2.10 Event Modeling

Schruben defines a system as a set of entities. Entities may fall into one of two

general categories referred to as resident and transient. A resident entity is considered to

have the property of permanent existence. For example, a simulation of a factory might

model the machines-in the factory as resident entities since the machines are always there.

A transient entity is not permanent. Thus the factory simulation might instead model the

behavior of the parts as they pass from machine to machine (20:101-102). With respect to

the pool balls simulation, this corresponds to modeling the pool table sectors as resident

entities or modeling the behavior of the pool balls as transient entities. Schruben maintains

that both viewpoints are equally valid and both viewpoints should be considered during

the simulation design phase.

2.11 Spatial Partitioning

Wieland and Hawley researched the application of sectoring a battlefield for the

STB89 tactical battle simulation (22). Each object in the simulation has a 'perception

radius' which defines the range that an object can detect another object. As an object

approaches a partition border, the perception radius eventually becomes tangent to the

border. If the object continues to- move toward the border, the perception radius will

protrude into the adjacent sector. This condition requires that the object have knowledge of
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all objects residing within-the au :ent sector. Wieland identified two techniques available

to accommodate this condition. The first is to have the sector owning -the moving object

receive a copy of all- of the objects residing within the- adjacent sector. This technique is

presumed to yield poor results because the search space of the original sector will approach

the search space of a non-partitioned battlefield thereby negating any potential gains. The

second approach that Wieland identified is to provide the second sector -with a copy of-the

object which is moving towards it. Hence, only one object is passed and the search space

of both sectors has at most an O(1) increase. Wieland's strategy identifies three critical

events as shown in Figure 3 (22:3).

Sector 0 Sector 1

Figure 3. Wieland's Grid to Grid Pioximity Detection

Wieland states that the first event occurs whenever a part of an object's perception

radius is tangent to the sector boundary. At this time, an 'AddUnit' message is sent

to the adjacent sector; however, the adjacent sector does not 'control' the object added.

Wieland refers to this additional object message as 'data replication' since the object exists

on two processes (sectors). The second event occurs when the object's center (i.e. that

which defines the object's location) crosses the sector border. At this time, a. change of

ownership message is sent from the original sector to the gaining sector. The third event
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occurs when the-object's perception radius is again tangent to-the sector border. At this

time, a 'DeleteiUnit' message is sent from the gaining sector to the losing sector.

Wieland added a comment in his analysis stating that the second event which he

identified in his data-partitioning and replication strategy could be eliminated. There were

no comments regarding any experimental studies concerning this latter assertion.
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III. Requirements Analysis

3.1 Introduction

The Air Force Institute of Technology is interested in developing techniques for the

successful design and implementation of parallel discrete event simulations beneficial to

the Department of Defense. Two specific applications include hardware design simula-

tions (using VIIDL, for example) and battlefield simulations. The Institute is currently

emphasizing distributed simulations incorporating the conservative synchronization strat-

egy rather than the optimistic strategy. Unfortunately, there has been little reported in

the literature on either design or implementation for non-queucing theoretic models for

discrete event simulations which use the conservative paradigm. Several questions need

to be addressed before at tacking the parallelization of large software systems such as the

battlefield simulations used by the DoD. These questions include:

1. How can (or should) the problem domain be partitioned?

2. Can a distributed simulation achieve comparable (or superior) performance using a

conservative strategy rather than an optimistic strategy?

3. Can speed up be achieved to a large enough degree to make the parallelizing of existing

DoD simulations worthwhile?

4. Are successful distrilbuted simulations incorlporating a conservative strategy scalable?

Insights into the above questions may be found through- the design and implemen-

tation of a small scale simulation. The classical pool balls simulation is ideal subject

matter because it has -many of the same processes that a. battlefield simulation has. These

processes include the handling of moving objects through space (albeit two dimensional),

search algorithms for object event identification, geographic domain structure and appli-

cation of spatial partitioning with limited data, replication. Furthermore, the pool balls

problem doinain is well understood and documented and tebt results are available for the

comparison between an optimistic strategy and a conservative one. This will also be the

first research effort at the Institute for the design and implementation of a non-queueing

problem incorporating an event list with the conservative paradigm; therefore, this research

will provide valuable experience to the Institute for follow on work.
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3.2 Requirements

The following- requirements were established for this project.

1. Comply with Stated Requirements of Cal Tech's Pool Ball Experiment. It

was desirable to maintain consistency with Cal Tech's simulation for all matters of

relevance so that a comparison could be made between the- two- paradigms used (3).

Some of -the stated requirements of the Cal Tech experiment were not considered

relevant and were thus ignored. Two specific instances include Cal Tech's requirement

that -the -pool balls have variable radius and mass. The following requirements -were

extracted-from Cal Tech's requirements.

(a) Each pool ball has measurable size and measurable mass (i.e. the pool balls are

not point particles).

(b) Collisions between pool balls are perfectly elastic thereby conserving energy and

momentum.

(c) The-pool balls move without friction.

(d) Rotational energy of pool balls is ignored.

(e) The enforcement of collisions follows the physical properties of elastic collisions

(i.e. the collisions are realistic).

(f) The pool table has no 'pockets'; therefore, the number of pool balls for any

given simulation does not change for the duration of the simulation.

(g) Every pool ball occupies a unique space on the table and no two balls can occupy

a portion of the same space (i.e. overlap is not allowed).

2. The Simulation Will Support Variable Quantities of Pool Balls. The upper

bound on the number of pool balls is specified in terms of the memory available for

dynamic allocation of pool ball instantiations and what will physically fit on the pool

table.

3. The Dimensions of the Pool Table Will Be Modifiable. Although the length

and width of the pool table is not deemed a highly dynamic variable, the capability for

changing the length and width is required. This factor allows for changing densities

of pool balls on the table as well as the ability to expand the pool table so thlatmore

pool balls can physically be located on it.
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4. The Radius and Mass of Each Pool Ball Will Be Equal.

5. This Simulation Will Incorporate a Conservative Synchronization Strat-

egy.

6. The AFIT Generic Simulation Shell Will be Used Both in the Simulation

Design and Implementation. AFIT has developed a generic simulation- driver for

discrete ev3nt simulations for standardization purposes. This driver is object oriented

and consists of a next event queue, a clock, an event manager, and a simulation

controller -that sequences through the simulation. The application specific software

interfaces to AFIT's simulation driver.

3.3 Developing the Equations of Motion

The requirements for this thesis demand that the-collisions between pool balls con-

form to the principles of elastic collision and frictionless motion. Since the development

of the equations of motion was not specifically stated in previous literature, it is shown

here to support this research. The initial equations used- can be found in most elementary

physics books.

The equations for conservation of energy and momentum for two pool balls B and b

having initial velocity vectors V and vo and final velocity vectors V1 and v, are-respectively

as follows:

M1.U2 +11 = !rnI iI2 + !vI1112 (3)

,1 I . , rno = ,,, 1 + MV' 1  (4)

Equations (3) and (4) form the basis to develol) algorithms for solving the events of pool

balls colliding with cushions and pool balls colliding with one another.

Another useful equation is tha.t of frictionless motion on a two dimensional plane.

X, = Xo + V'• AT )

3/Y 3 + V, A TJ

The set of events S contains five event types which have-been defined as events of in-

ter-est. These events are S = {VERT, IOR, COLL, PART, EXIT}. These event types
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correspond to vertical cushion collisions, horizontal cushion collisions, collisions between

pool balls, reaching a sector boundary and crossing -a sector boundary respectively. The

partition and exit events are only used for a partitioned pool table in accordance with

Wieland's two step sectoring strategy (22). The following sections derive the equations

used to calculate the time at which each of the five event types will occur and the equa-

tions used to calcute the ball state information for a pool ball that executed an-event type.

It is assumed that the pool table is a rectangle with its top and bottom -cushions parallel

to the X-axis and its left and right cushions parallel to the Y-axis. Throughout this-thesis,

the top and bottom cushions are referred to as 'horizontal cushions' while the left and

right cushions are referred -to as 'vertical cushions'. Figure 4 shows the layout of the pool

table on an X-Y coordinate system. Each ball has its position defined by the X and Y
coordinates pf the bali's center. Each pool ball has the following state information:

* ball time tag

*X
.Y

The pool balls algorithm calculates the time of the next event for each pool ball. Each

pool ball will have an event corresponding to one of the event types in S. To determine

which of the event types will occur for any given pool ball, an event time is calculated for

each of the five event types. By definition of monotonicity, the earliest calculated event

time for the set S defines the next possible event for a pool ball. The time 1. of each event

type in S is determined by _2 = I1 + AT where AT is calculated using equation 5 and t1

is the current ball time tag.

3.3.1 Event Calculations for Collision.s with Cuudiions This section develops the

equations used to cAlculate the time at which a, pool ball will strike any of the foui table

cushions an(l the ball state information after striking any of the four table cushions.

3.3.1.1 Calculating-AT to Strike a Cushion The X-axis coordinate is known

for both the left and right vertical cushions. These values are 0.00 and A Ijc-, respec-

tively where Xab l .engh is the user defined length of the pool table. The velocity V, of
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Figure 4. Layout of-a Pool Table on an X/Y Axis System

a pool ball dletermines whether the ball wvill strike the left or right vertical cushion. The

known X-axis coordinate for the ap~propriate vertical cushion is subbtituted into equation 5

as X1. Using equation 5, the delta time of the collision is defined by

(Xi -XO)

The Y-axis coordinate is known for both top and bottom horizontal cushions. These
values are 0.00 andl 1 abIe~uzdgjh resp~ectively where 1 .bij,dh -steue defindwdho

the pool-table. The velocity 1; of a, pool. bailldetermines whether the ball will strikethe top

or b~ottoml horizontal cushion. The known )'-axis coordinate for the app)Iropria te horizon tal

cushion is substi tued-into equation 5 as Y,. U~sing equation .5, the delta time of the collision

is (defined by

-AT =(1Ily0
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3.3.1.2 Calculating- the State Information for Cushion Collisions The ball

time tag-is simply replaced with-the time of the event to be executed. This time is-stored

as a parameter with the event message. The parameters X and A" can be calculated directly

from equation 5. The velocities v, and vy are calculated indirectly from equations 3 and

4. Let V be the velocity of the cushion and-9 be the velocity of the ball- object. The mass

of the cushion is much greater than the mass of the ball; therefore, the following equations

can be used for a vertical cushion event.

- ] (6)

If the eve.'2 type is a horizontal cushion event, then equation 7 defines the new values of
vx, and .

Vx (7)
VY I -VYO d

Equation 6 requires the X-axis velocity to change direction while the Y-axis velocity re-

mains unchanged. Equation 7 is just the opposite.

3.3.2 Calculations for Partition and Exit Events This section develops the equa-

tions used to calculate the time at which a pool ball will reach a- sector border (partition

event), or depart a sector -to an adjacent one (exit event). This section also develops the

equations used to update the ball state information after a partition or exit event.

3.3.2.1 Calculating AT for Partition and Exit Events The X-axis coordinate

is known for both the left and right borders of any interior sector. These values are de-
termined dynamically during initialization based upon-the user specified table dimensions

and the number of sectors desired. For partition events, a. pool ball is moved to a loca-
tion corresponding to (Xicftborder + -R) or (Xnghtborder - 11) where . is -the specified poo
ball radius. For exit events, a pool ball crosses a partition into the neighboring sector

and moves a distance of 2R. The new X-axis coordinates will be (Xlfttbordr - B.) or

(Xghg.bo,dr + .1?). The velocity . of a. pool ball determines whether the ball will reach

the left or right border, or exit the sector to the left or to the right. Using equation 5, the

delta time of the partition or exit event is defined by

(X1 - X0)
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3.3.2.2 Calculating the State Information The ball time tag is simply re-

placed with the time of the event to be- executed. The parameters X and Y can be

calculated directly from equation 5. Since partition and- exit events are not -associated
with collisions, the pool ball velocities I" and V, do not change.

3.3.3 Event Calculations for Collisions Between Pool Balls To determine if a pool

ball will strike another -pool ball, -the two point formula for the distance between two -lines

can be used. This formula is stated as equation (8).

12 = (Xi - X) 2 + (yi - )2(8)

where I is the straight, line dibtance between the-centers of the two colliding pool balls at

the point of impact. This is-shown ili Figure 5.

A

-I >x

Figure 5. Two Balls Colliding at the Point of Impact

3.3.3.1 Calculating the time of Impact for a Ball Collision The location of a

pool ball is defined by the coordinates of its-center of mass; therefore, the linear distance

separating two balls at the moment of impact is the sum of the radii. Since every pool

ball for this simulation has equal radius, the value of 12 in equation (8) is 41 -0 . Equation
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(8) is most easily implemented if the two colliding pool balls have -the same initial logical

times; otherwise, the difference in logical times must be accounted -for as variables. The

possibility exists that two-colliding pool balls could have different initial-logical times. To

accommodate this possibility, the pool ball having the lesser -logical time is moved by a

delta t such that its logical time is equal to that of the-other pool ball. The values of

Xl,xl,) and Yj (after both pool balls have equal logical times) must be substituted

with those of equation (5). Solving for AT results in equation- (9).

0 = aAT 2 + bAT + c (9)

where

a = 2'+l§2 -2v l' / -2v, , + ' + V,

b = 2 Xo + 2) V, - 2Xov., - 2Y)v* -

2xol/ - 2yolI + 2xov., + 2yovy

= -+ 2xo-Xo - 2yoYo + X + y-4R2

The values of a, b and c are simply the coefficients to the quadratic formula from which AT

may easily be solved. From an algorithmic point of view, only real roots to the quadratic

solution represent viable collision times. As such, the determinant must be inspected for

non-negative values. If the quadratic solution consists of two real roots, the lesser of the

two represents the delta time at which the two pool balls in question will collide.

3.3.3.2 Calculating the Stale Information after a Ball Collision Once two

pool balls collide with one another, both velocity vectors will change. Solving for the new

velocity vectors in the X/Y coordinate system is most easily solved if the coordinate system

is rotated to form a new R./P orthogonail system where R is the axis formed by the tangent

to the two pool balls at the point of collision and P is the axis which is perpendicular to

R. It will be shown that the vector components Vn and vjR are simply interchanged as a

result of a pool ball collision.

To solve for the new velocity vectors, equations (3) and (4) are used where 1,6012 =

V O + v 0 and Wfol = Vno + Vf 0 in equation (3). After substituting the values of Io12 and

I01 into equation (3), the equations for conservation of energy and momentum become

25



that of equation (10) and (11) in -terms of -the new -ft/P coordinate system.

V[ o + Vo Vh, + V11 1 (10)

v Po + , , + V],

VRO + VRO vnI + VI(

Vpo + V[ vpe + Vei

Equations 11 and 10 can be easily manipulated to produce equation 12.

0] (VRI - VRO)(R --Vj10 ) 1(12)-
0 (VP, - vpo)(V,, - Vpo)

Solving for Vm1 and Vp1 yields VRI = vio and V1p = Vpo. Substituting these values into

equation (11) results in equation (14) which-represents the resultant velocity vectors of the

two colliding pool balls in terms of the R/P coordinate system.

[ 1 r 1O)Pj J [Vpo
(13)

[Vr~1 1 r 1 (14)

3.3.3.8 Rotating the X/Y Coordinate Systcm Figure 6 illustrates the rotation

of the X/Y coordinate system to form the new It/P coordinate system. The line connecting

the two pool bali's centers is one of the desired orthogonal axes. Let this line be L. Let 0

be the angle made with this line and the X-axis. Then-

O = arctan (X2 )(

Let 0 be the angle made with the velocity vector V and the X-axis. Then

= arctan (,) (16)

Let p be the angle made with the velocity vector V and the line L. Then
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Figure 6. Translating an X/Y Axis System

= (17)

The new orthogonal reference system has axes fR and P where R is the axis along the

line L connecting the two balls and P is perpendicular to R. The new velocity vector of

a. given ball is then defined by VR and Vl, which are clearly tie following.

[ 1? V cos((p) ](
vp vsin((P)

The velocity components VR and viz may now be interchanged in accordance with

equation (14); however, it is more convenient to first decompose Vn and Vp, into their
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respective X and Y components yielding equation (19).

1,zi VR c0S(O)

'YR _ r Vsill(O) (19)

X VP VRCS(O)

Onc,,z and I,'r are interchianged with vr and Vy, the resultant velocities must

be translated back into the X/Y orthogonal-axis system resulting in equation (20).

Vx ~ Vz)1 + VP

Y" + y (20)

3.4 Sinutldedion E.nvironment

A simulation environment existed -for all distributed discrete event applications. This

environment was required to be used in an effort to standlardize softwvare fromn various

reseairch efforts. The environment is object oriented in Lte C programming language. The

objects dlefinedl in the environment include a simulation dIriver, ii clock, a- next. event queue

-ind a generic event which muist lbe tailoredl to a specific ap~plication.

3.-4.1 Simulation Driver

Functional Description The drivecr forms a basic coniditional loop construct.. At each

iteration, an eient. is executedl. a. new evcnt determined. andl aniother event is executed

until a DONE'F event is reached. A DONE event signifies that tile execution of another

event would set thle siimulatioin clock beyond the user specified sinulation run time.

The loop exits, and control-of Lte p~rogram is returned to Lte iPSC/2 host, processor.



Functional Description: The clock object manages all aspects of the simulation clock.

The simulation time is updated each time the clock object is called. The simulation

-time is a double precision floating point variable.

Attributes: Time.

Operations:

* inittinie

e set-time

0 adv-time

9 get-time

3.4.2 The Next Event Queue Object

Functional Description: The next event queue (NEQ) object stores all scheduled events.

The events are insertion sorted by simulation time (next event time). The NEQ is

implemented as a singularly linked list.

Attributes: None.

Operations:

9 init-neq

0 show.neq

* add-event

* get-event

a count-event

* neq-tiile

* simultaneous

• count

3.4.3 The Event Object

Functional Description: The Event object-as implemented is actually a class of objects

such that each desired event must be instantiated from the 'event' operations. Each

instantiation becomes an-object.
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Attributes:

a Time

* ID

e Type-of event

@ Pool Ball ID(s)

Operations:

" -new-event (allocates memory for an event)

" Showvevent

" zap-event (deletes memiory allocation for an event)
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IV. Software Design

4.1 Introduction

This chapter outlines the design steps used to develop the parallel pool balls simula-

tion. The-pool balls simulation was designed in three incremental steps.

1. Development of a sequential simulation without partitioning or data replication.

2. Development of a sequential simulation with partitioning and data replication.

3. Development of a parallel simulation with partitioning, data replication and conser-

vative synchronization.

Each of the above designs were object oriented. An object oriented-design (OOD) approach

was selected to enhance software maintenance capabilities for follow-on research of the

pool balls concept. This chapter describes the evolution of the sequential, non-partitioned

simulation into the parallel implementation by first analyzing the sequential version and

then by highlighting the design changes required to implement the follow on versions.

4.2 Design of a Sequential Simulation without Spatial Partitioning

The simulation environment was object oriented. An object oriented application

was therefore easier to interface than alternative designs such as functional, top down,-or

Jackson (JSD). The-OOD pool balls application (lefined objects representing a ball object,

ball object manager, table sector, table sector manager, random number generator and an

event handler object. The table object creates the pool table for the appropriate or specified

table dimensions and stores all of the boundary information related -to the table. The ball

object creates all of the pool balls for the simulation and stores them in a data structure.

All operations related to-the management of pool ball objects take place here. The randorn

numbcr gcneraloi i. a machine indel)endent pseudo-mandom numlbei generator developed

by Law and Kelton (14). This random number generator is capable of generating uniform,

logarithmic, exponential and normal distributions having a lower and upper bound. The

event.handler object determines the next event of interest and enforces an event passed-to

it.
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4.2.1 zDesign of the Ball Object

Functional- Description: The ball object is an instantiation of a 'class of pool-balls. Each

pool ball object is dynamically allocated- and deallocated to and -from memory.

Attributes:

" Radius

" BalLID

" Bal-Time

ex
sy

*I

eVy

*Do.LSee.Jt

*Do.L0wn.Jt

*Who-Owns-It

Operations: None.

4.2.2 Design of the Ball Object kManager

Functional Description: Thme ball manager is am abstract (data. typ~e whose sole purpose

is to store the pool balls which are assigned to it.

Attributes: None.

Operations:

* Initialize

" Add

" Remove

* Reset

" Increment

" Set

* More
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* Get-and.Delete

" GetNextBall

" GetThisBall

" PrintBallsnInThisSector

* Head

" Tail

" IsiiEmpty

" Is.ound

" LengthOf

* CheckThis.Ball

Detailed Design: It was desirable to design data structures for the sequential, non-

partitioned application which required as few changes as possible to accommodate the

more complex sequential, partitioned version and the parallel, partitioned version of the

software. It was also desired to minimize the search, add and delete functions for the ball

object manager. These functions require searching and traversing the data structure which

stores the ball objects. For the relatively simple case of the sequential, non-partitioned

application, an array structure minimizes the search and traversal time. This is not the

case for a partitioned application because each sector has a. high probability of containing

only a subset of pool balls. Let N be the total number of pool balls created and let M be

the number of pool balls in any given sector at some instant in time. Then Ad < N. Three

data structures were considered during the design phase: an array, a linked list and an

indexed linked list. The time complexities for each of the three data structures considered

are shown in Table 1 for the search and traversal operations.

Table 1. Order of Analysis for the Ball Manager Data Structure

[Data. Tinme to Time to
Structures Search Traverse

Array -0(1) O(N)
Linked List 0(M) O(M)
Indexed LL 0(1) 0(A'I)

From Table 1, the indexed linked list provides superior time complexity for both

searching and traversing, especially when N > Al. Therefore, the indexed linked list data
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Figure 7. Data. Structure for Stoiing Pool Balls

structure was selected even though the initial a)plication uses only a.single sector, negating

any advantages of the indexed linked list over the simple array. The data. structure is shown

pictorially in Figure 7. All ball objects contain a. Ball-ID attribute which is implemented
with unique positive integers. The array element corresponding to zero is set to always

point to the tail of the linked list.

4.2.3 Design of the Table Sector Object

Functional Description: The table sector object is an instantiation of a class of sectors.

Even though the initial application did not incorporate sectoring, it was desirable

to develop data structures which were easily transportable to the more complex

applications to be designed later. For the inital software version, the pool table

consisted of a single 'sector'. The sector object defines the sector boundaries. Each

sector is assigned a. unique SectorID number.

Attributes:

" SectorJID

* Left-Border

" RightBorder

" Top

" Bottom

" TypeLeft.Border

" Type.Right=Border
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" Left-Neighbor

" Right-Neighbor

" Is-.Left

* Isilight

Operations: None.

4.2.4 Design of -the Table Sector Manager

Functional Description: The table sector manager object stores all of tle-sector objects

and p~rovid~es information abouit the sectors.

Attributes:

" Table-Length

" Table-Width

Operations:

* Determine-Table.fimensions

" Deterxine-Sectors

" Get..)LLength

" Get-Y-ength

* Get-Left-Border

" Get-Right..Border

" Get..Top

" (,et-Bottoin

*Get-Left.Type

*Get-11ight.J'3'pe

" Do-I-iave-a-efvNeighbor

* Do-1-L1ave-a..ightLNeighbor

" GetLefNeighbor

" GetRightLNeighbor

" Print-.Sector

" Print-AlL-Sectors
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Detailed Design: Each pool ball has a finite radius and the pool table has a finite area;

therefore, for any given -pool ball radius and table area, there is an upper bound on the

-number -of pool balls which can fit on the table without overlap. Three methods were

considered during the design phase to determine the-length and- width of the table.

1. command line-argument

2. constant

3. dynamic calculation

The first option was deemed too awkward-to work with from a user's point of view.

The second option was favored because it is easy to implement and requires no coipu-

tations; however, recompiling beconies necessary if the table dimensions are too small to

accommodate a desired quantity of pool- ball objects. The last option avoids recompiling.

Both options two and three above were finally selected by adding a single command line

argument. The default was set to a constant value for length and width. The variable

dimension option (if selected) dynamically calculates the length and width of the table by

using a constant density formula. The density of pool balls to table area was defined by

taking the ratio of a the area occupied -by 16 pool balls, each having a one-inch radius,

to the area. of a 6 foot by 12 foot table. The table length was defined to be twice the

table width; therefore, the known table density and the user specified quantity of pool

balls dynamically determines the length and width of the pool table if the variable table

dimension option is selected in the command line arguments.

4.2.5 Design of the Random Nurnber Generator Object

Functional Description: The random number generator object was borrowed from the

works of Law and Relton (14). This object is a machine independent pseudo-random

number generator which produces a stream of random numbers given anm input seed.

Attributes:- Seed.

-Operations:

" Uniform

" Exponential
* Normal

* Lognormal
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4.2.6 Design-of the EventHandler Object

Functional Description: The EventIIandler object determines -the next event for-a given

sector and executes all event which is passed to it.

Attributes: None.

Operations:

9 Initialize

* Determine_.NextEvent

* ExecuteNext-Event

4.2.7 Event Definitions Four event types are possible for the sequential, non-partitioned

version of the pool balls simulation:

1. A pool ball striking a vertical cushion.

2. A pool ball striking a horizontal- cushion.

3. A pool ball striking another pool ball.

4. A 'DONE' event indicating that the simulation is over.

The 'CUSHION' events were identified as either horizontal or vertical since the be-

havior of the collision differs between them. A 'COLLISION" event consists of a. collision

between two pool -balls and the identification of both ball objects is stored with the event

information. A 'DONE" event signifies that the next event has an event time greater than

the user specified simulation time; therefore, the execution of a DONE event terminates

the simulation.

,.2.8 Algorithm Design Two-high level algorithms were considered for the design

of the pool balls-simulation. One-has a time-and space coinplexity-of O (. .a 0nd )-while

the other has O(NV2 ) and 0(1). AFIT's iPSC/2 hypercube has ,4 megabytes of memory per

node; therefore, memory space was not considered to be a limiting factor for reasonable

quantities of pool balls. The three factors that were considered are granularity, research

time and event list manipulation. The iPSC/2 is a course grain machine. DeCegama.shows

how performance on distributed processors is affected by the granularity of the software
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with respect to-the machine's grain size (9). lie concludes that a-fine grain-algorithm must

be implemented on a fine grain machine to achieve reasonable -speedup. The pool balls

simulation-is inherently fine grain. This mis-match in granularity was anticipated to-result

in poor speedup results. This raises the following question: if speedup results are poor,

does this conclude that spatially partitionable models should not be implemented with

conservative paradigms, or does it simply reinforce the-assertion that fine grain algorithms

should not be implemented on course grain machines? The latter-statement fails to address

any of the objectives of this thesis. The following options were available:

1. Use the O(N) algorithm on the iPSC/2 knowing that the mis-match in granularity

exists.

2. Use the O(N) algorithm on a. fine-grain machine.

3. Use the O(N) algorithm on the iPSC/2, but incorporate spit, loops to artificially

raise the computational complexity of the algorithm. This increases the computa-

tions/communications-ratio which changes the granularity of the algorithm from fine

to course.

1. Use the the 0(N, 2 ) algorithm on the iPSC/2 which also artificially raises the compu-

tations/communications ratio.

The first option was dismissed because it fails to address the objectives of this thesis. The

second option was not possible because AFIT has only course grain machines (iPSC/] and

iPSC/2). The third and fourth options are both viable and both were analyzed carefully.

The O(N) algorithm was considered to be more difficult to implement and therefore

would require more time to design, implement and debug. The O(N) algorithm requires

efficient storage of future events known as event list manipulation. Misra has shown that
event list manipulation is the limiting factoi toward speedul) (18). The O(NA 2 ) algorithm

avoids complex event list manipulation by storing only one event at a time. This is rel-

atively easy to implement. In the final analysis, time %kas considered the limiting factor;

therefore, ol)tion four was selected.

The basic algorithm for the pool balls simulation revolves around a loop construct.

In each loop, every ball is analyzed to determine which ball will have the minimum next

event time. This event is scheduled by inserting it into the next event queue; thus, the next

event queue is refreshed in every loop. Simultaneous events are both possible and allowed

in which case multiple events are inserted into the next event queue. After scheduling the
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next event, -the event is removed from -the queue and executed. Execution of an event

consists of removing the appropriate pool balls(s) from the ball object manager, updat-

ing the new position, calculating a new velocity, updating the-pool ball's time stamp and

returning the pool ball to the ball object manager. The next event queue is checked for

additional (simultaneous)-events. After the next event queue is confirmed to be- empty,

the loop starts over again. The simulation ends if the next event stored -in the next event

queue is a DONE event. A DONE event is inserted into the next event queue if, in the

determination of-the minimum-next event, the next event time corresponding to the next

event is greater than the user specified simulation time. This time is specified as a com-

mand line argument. The algorithm may be summarized by the following loop.

While (! Done) loop
1. Determine the next event(s).
2. Schedule the next event(s).
z. while-(! empty) loop

if (Type 5 DONE)
Execute the next event

else
Done = TRUE

End loop

The basic algorithm used in this simulation has a time complexity of 0(NJ 2 ) and a

space complexity of 0(1). The time complexity stems from the fact that each pool ball

must inspect every other pool ball on the table to determine if and when a collision will

occur. Thus, the first ball must inspect N - 1 balls, the second ball must inspect N - 2

pool balls and the N - Ih ball must inspect 1 ball. Thus, the time complexity is:

I j 2 + N

i= 2

Time Complexity = O(INr2)

The O(N) algorithm, although not implemented, works as follows. During the first

loop iteration,. each ball will have inspected every other ball. At most N events will be

pheasible, one for each ball and each with different event times. These events will be

stored in memory. After executing an event involving ball B, all events in the event list

containing ball B must be removed. Ball B must then inspect all remaining (N - 1) balls

39



to regenerate the previously removed events. If the event list data structure is designed

efficiently, at most O(N) time is required to remove events involving ball:B and 0(.A')

time is required to regenerate the new events involving ball -B. Thus, the overall time

complexity is O(N) instead of 0(N 2 )

4.2.9 Design of the Queue Structures This thesis defines the scheduling of an event

to be the insertion of an event into the next event queue. No other-events are inserted into

the next event queue unless they occur at the same simulation time. As each- pool ball

is inspected during the-determination of the next event, the current minimum next event

is temporarily stored. A simple event structure -does not suffice because the- possibility

exists of finding an event whose next event time is equal to the current minimum. Such an

event cannot be discarded nor can it repl]ace- the -current minimum next event. Therefore,

a candidate queue was designed to store the current next event. After all of the- pool

balls hiae been inspected for next events, the candidate queue guarantees to contain the

absolute minimum next event. This event is then 'scheduled' by placing it on the next

event queue.

4.2.10 Version 1 Srulure Chart The structure chart for the non-partitioned se-

quential simulation is shown as Figure S.

4.2.11 Command Line Arguments The pool balls simulation design incorporates

ten command line arguments all of which are optional to the user. Each argument has

a default value in the event that an option is not selected. The arguments available are

listed in Table 2.

Write to Disk: This option writes the ball state information to disk after each pool ball

changes state. This output file allows the user -to inspect the data and to compare

data runs. This option degrades the run time performance of the simulation not only

due to slow disk I/O but also because the host processor performs all of the writing

to disk. As each pool ball is moved, the node processor sends the d: ta to the iPSC/2

host processor for writing. Thus, a heavy penalty is extracted for this command line

argument.

Error Checking: This option examines each pool ball prior to being moved and was

intended for debugging purposes only. A pool ball must lie within the borders of

the sector to which it is assigned and the time tag must be both positive and less
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Table 2. Command Line Arguments

Argument Function Default
-w write to disk FALSE

-e error checking FALSE
-cp Continuously print FALSE

to screen
-ip initially print FALSE

to screen
"-b# number of balls 25

-p# number of partitions 1
-f fixed table dimensions TRUE

_t simulation time 60.0-sec
-s collect statistics FALSE

-ne# niumber of events 50

than the event time associated with the requested event. If any of these items are

incorrect, the event is not executed, an error message prints to the screen and the

simulation abruptly-terminates.

Continuously Print to Screen: This option prints all of the pool ball state information

to the screen each time a pool ball is moved. This allows real-time examination of

the simulation; however, a hefty penalty is placed oil run time performance.

Initially Print to Screen: This option prints the initial state information for all of the

pool balls after initialization. There is no penalty in run time performance because

the real-time clock is not started until after initialization.

Number of Balls: This option specifies the number of pool balls desired for the sinula-

tion.

Number of Partitions: This option specifies the number of partitions desired for the

simulation.

Fixed Table Dimensions: This option determines whether the table length and width

are set by a pre-defined constant in the software or if a dynamically calculated table

length and width are to be used based upon- a pre-defined density constant and the

number of pool balls selected.

Simulation Time: This option specifies the simulation time.
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Collect Statistics: This option writes the simulation run time as-a function- of the num-

ber of pool balls to- a file. This file can then be -used to plot the results of many test

runs without manual data entry.

Number of Events: This option allows an alternate technique to be used to terminate

the simulation. Each node of the iPSC/2 keeps track of the number of events that

have been processed. When- using a single node, the simulation may be set to ter-

minate after processing a specified number of events. This option is not valid when

using multiple nodes for the-parallel version.
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Figure 8. Version 1 Structure Chart
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4.3 Design of a Spatially Partitioned Sequential Simulation

The basic-design of the second simulation -version was the same as the first version;

however, additionally functionality had to be incorporated and sonie of the data structures

had to be modified. The high level algorithm was unchanged.

4.3.1 Changes to the Ball Object The previous simulation design incorporated a

single indexed linked list for the ball object mangager data structure. The partitioned

version requires all indexed linked list per sector. To accommodate this change, each

indexed linked list is encapsulated into a-record structure; thus, each sector has one record

type. An array of sectors of length P was designed where P equals the number of

sectors. Each array element contained a-pointer to the appropriate record type containing

the indexed linked list.

4.3.2 Changes to the Table Object The previous sequential simulation called for

a simple record structure storing the table's boundary information; -however, there was

only one sector to contend with. The design of the spatially partitioned version of the

sequential simu!ation incorporates an array of sectors of size P where P equals the

number of sectors. Each array element points to a record structure containing individual-

sector boundaries. The sectors were designed to be equal in length and width. The table

is partitioned vertically along the X axis. The table may be partitioned into P < P,,,,,

where P,,,,, is the number of sectors corresponding to a sector width greater than the

predefined pool ball diameter.

4.3.3 Changes to Evcnt Definitions In the pievious -non-partitioned version, it was

possible for a pool ball to traverse the entire pool table along-the X-axis in one step. The

partitioned version requires two or more incremental steps depending upon the number of

sectors requested. A pool ball must now stop at a sector border whereupon data replication

may take place, followed by a crossing from one sector to the next sector. The former event

is defined to be a 'PARTITION' event while the latter event is defined to be an 'EXIT'

event. Control of a pool ball normally takes place during an EXIT event. As the number

of partitions increase, the number of incremental events increases for pool balls moving in

the X direction.

4.3.4 Changes to the Simulation Algorithm The algorithm was changed in the fol-

lowing manner:
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1. 'Partition' and 'exit' events were added.

2. Determination of the next event was modified.

3. Enforcement of Wieland's data replication was added.

4. Design of the ball object data structure was modified to allow-each sector to have its

own ball manager.

5. Design of the table data structure was-modified to-allow storage of individual sector

information.

The basic algorithm now consists of the following steps:

1. Determine the next -event.

2. Schedule the next event.

3. Execute the next event.

4. Enforce Data Replication (as needed).

To determine the next event, each sector is inspected one at a time. There is one

global candidate next event queue and one global next event queue. As each sector is

inspected, the individual e- nts are -compared against the global candidate next event

queue. The time to determine the next event requires searching P sectors, each containing

on average N pool bails; thus. the time complexity is reduced from 0(N2 ) to 0 ( )
where N is the total number of pool balls and P is the number of sectors.

Scheduling the next event remains unchanged. After completing the next event

determination phase, the single candidate list guarantees to contain the minimum next

event for all sectors (the minimum next event for the entire pool table). Scheduling that

event consists-of removing the candidate event from the candidate queue and inserting it.

into the next event queue.

Executing the event requires knowledge of the sector from which the next event orig-

inated. All of the procedures in the simulation were thus changed to allow this information

to be passed as in-type parameters. The sector identified as enforcing the collision retrieves

the ball(s) from its ball object manager, updates the position(s), calculates and stores the

new velocity trajectories, updates the ball time tag(s) and returns the pool ball(s) to the

sector's ball object manager.
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This simulation used-a two step data replication strategy proposed by Wieland (22).

The replication rules were established in a communicator object. Ball objects must be

replicated or de-replicated under the following conditions:

1. Providing Visibility: A sector must be given visibility of a pool ball- if the ball

-was previously owned by another sector but upon moving, the ball now lies within

the border region. The center -of the ball must still lie within the adjacent -sector;

otherwise, the gaining sector not only has visibility of the ball but also- has -control

of the ball.

2. Providing Ownership-(Control): A sector must be given control of a pool ball- if the

ball was previously owned- by another sector but upon moving, the ball now has its

center of mass within the gaining sector's-boundaries.

3. Removing Visibility: A sector must remove a ball friom its ball manager object if the

ball was previously visible but upon moving, the ball's center of mass lies outside

of the losing sector's border region. This implies that the ball is owned by another

sector after moving.

4. Removing Ownership (Control): A sector must relinquish control of a pool ball if the

ball was previously owned by the losing sector but upon moving, the ball's center of

mass now lies beyond the losing sector's boundaries. A ball meeting this condition

cannot move any further in one step-than the edge of the losing sector's border region.

In this manner, control of the ball is passed to the gaining sector but the-losing sector

retains visibility.

5. Updating Visibility: A sector must have an updated copy of a pool ball if the ball

was previously visibile (but not owned) by an adjacent sector and upon moving, the

ball is still visible (and still not owned) by the adjacent sector.

Each pool ball object has associated witlh it a visibility flag and an ownership flag. All

pool balls owned-by a sector must also-be visil)le to the sector or an error condition is raised.

The act of providing visibility of a pool ball to an adjacent sector consists of providing

a copy of the pool ball object to the adjacent sector's ball object manager. The only

difference between the two cr.pies is the status of the ownership flag. Removing visibility

consists of requesting an adjacent sector's ball object manager to delete the replicated

ball. Changing of ownership status is analogous. Since this version of the simulation

is still implemented on a single processor, all commands may be implemented directly

through memory. Messages are not required.
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4.4 Design of -a Parallel Simulation

The basic -design of the parallel simulation was the same as the sequential simu-

lation with spatial partitioning and data replication. Some additional functionality had

to be added to enforce the conservative synchronization paradigm and some of the data

structures had to be-changed to accommodate the distributed environment.

4.4.1- Changes to-the Ball Object The partitionable sequential design encapsulated

a ball object manager for each sector. An array of length P contained pointers to each

sector's ball manager. For the distributed simulation, no one node will ever contain all

of the table sectors; therefore, the data structure was changed as follows. Each node has

one data structure consisting-of an array of pointers representing a. list of ball managers.

The length- of each node's array is P where P-is the number of table sectors and M is the

number of nodes. This ratio represents the number of partitions per node n~hich is defined

to be the same for all nodes. Therefore,-a design constraint limits the -number of sectors

to-be an even multiple of the number of nodes.

4.4.2 Changes to the Table Object The partitionable sequential design encapsulated

each sector's boundary information in an array of length P. The distributed design assigns

one array of sector information to each node and the length of each array-is reduced from

P to p

4.4.3 Changes to the Candidate Queue Structure Both sequential simulation de-

signs encapsulated a single candidate next event queue for the entire pool table. The

distrbuted design encapsulates a candidate next event queue -for each sector. Each node is

allocated an array of candidate queues representing the hierarchical class of queues. The

length of each array is P. This design decision is important because a. candidate event is

nolonger scheduled based solely upon the criterion that it has the smallest next event time.

For the distributed simulation, it is highly desirable to schedule as many sectors as possible

to achieve efficient parallelism. Obviously -if more than one sector is scheduled-to execute

a candidate event, one event has the smallest next event time while all other scheduled

events have a greater next event time. The determination of scheduling candidate events

must now reside with determining a minimum safe time per sector. This is discussed later.

4.4.4 Changes to the Next Event Queue Structure Both sequential simulation de-

signs allocated a. single next event queue defined by the Institute. The distributed design
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must allocate one next event queue per node to reduce internode communications. This is

discussed further in Chapter V.

4.4.5 Changes to the Simulation Algorithm Tie basic high level algorithm was

changed to incorporate the minimum safe time calculation. The formulation of a mini-

mum safe time (MST) is explained in detail in Chapter V. The high level algorithm for

the parallel application consists-of the following steps:

While (! Done) loop-
1. For each node in parallel, determine the candidate next event.
2. For each node in lockstep, determine the minimum safe time.
3. For each node in parallel, schedule a candidate event if

and only if a. sector's candidate next event time is
less than or equal to the sector's calculated minimum
safe time.

4. While (! Empty) loop

If (Type 0 DONE)
For each node in parallel, execute the next event.

else
Done- = TRUE

5. For each node-in lockstep, enforce Wieland's data
replication strategy.

End Loop

The above algorithm is repeated in a loop until -the next event time is greater than

the user specified simulation time. The loop -thus created is performed in lock step syn-

chronizing at exactly two points. Steps 2 and 5 must be in lock step and- are performed

sequentially. Parallelism may be achieved during steps 1,3 and 5. For the case of step 1,

not only is parallelism achieved, but the search space per sector is reduced from 0(N 2 ) to

0(-I). The gains produced from the decreased search time and parallelism- are reduced

by the increased number of incremental events created by PARTITION and EXIT event.

types. These events are required for simulation correctness but are not of real interest in

the simulation. Each additional sector adds two -more incremental steps for a pool ball

to traverse the table in the X-axis direction. This increase is not linear because a multi-

partitioned table can result in more than one candidate event meeting its minimum safe

time. Thus, one search can yield multiple-event executions.

The software design of the parallel pool balls simulation is represented by the leveled

data. flow diagrams of Figures 9, 10 and 11. The process bubbles having multiple, ovellayed
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bubbles represent processes that execute inl parallel. There is no current standard for

parallel data flow diagrams.
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1. Parallel Simulation Design and Implementation

5.1 Introduction

This chapter discusses the design of the pool balls simulation model and the algorithm

used to enforce distributed simulation synchronization in a conservative environment. Al-

ternative algorithms are- discussed and their respective advantages and disadvantages are

analyzed.

5.2 Design-of a Parallel Simulation Model

Design of a distributed discrete event simulation requires-selection of an appropriate

model. Schruben's concepts of transient and resident models were analyzed for considera-

tion (20). The following analysis explains why the resident entity model was selected.

5.2.1 Modeling Pool Balls as Transient Entities With this model, each pool ball is

an entity and parallelism is possible by distributing the pool balls to varying nodes of a.

distributed processor. In order for a node to determine if a collision will occur between

one of its ball objects and another ball object, the node must know of the existence of the

other ball. This could be done in any of several manners.

A simple approach is to appoint a central manager. This manager has the state in-

formation concerning every ball. Nodes that need to gain access to ball state information

request the information from the central manager. If there are M node,% and N pool balls,

this approach would require each node to cyclically communicate N messages. With Al

nodes, the time complexity for communications is O(N log P). This approach requires

each node to wait upon the central manager thus forming a bottleneck. The run time

performance is then reduced to the speed of the central manager, thereby driving the sim-

ulation to approach sequential performance (3). In terms of search time, each node would

require a complete search of all N pool- balls. The best. possible algorithm incorporating

all N pool balls is O(N). The algorithm used in this thesis would require 0(jy2 ) time.

An alternative approach to modeling the pool balls as transient entities assigns a

unique subset of N-pool balls to each node such that Si n Sj = 0, Si u Sj = S

and S,, S1 C S where Sis the set of N pool balls. Each node is provided a mapping-of

pool balls to -nodes. A table look-up function provides each node with the capability of

requesting ball state information directly from the appropriate owner. If the N pool balls
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are evenly divided between 1M nodes, then each node must cyclically request ball state

information from all other nodes. Therefore, each node communicates M-1 times to the

remaining 11-1 nodes and each node must provide A- pool balls. If every node requires the

same quantity of messages,<the time complexity-for this model is O(N log-M). While the-

time complexity appears to be the same between this approach and the central manager

approach, this technique is actually superior because there are no bottlenecks to form.

Each node would still have -O(N) search space for which -to determine a candidate next

event.

A third approach assigns a copy of all N pool balls to each node. Each-node maintains

two lists such that S, is a set of pool balls owned by node, and S, is a set of -pool balls

not owned by node, where Si, Sj C N and (Si n Sj = 0) A (Si U Sj = S), S being

the set of all N pool balls. As each node changes the-ball state -information of a. pool ball

in the set S,, it must broadcast the state change to all other nodes maintaining a copy of

ball, E S.. Given M'! nodes, each event execution requires M messages communicated in

O(log Al) time. If every node can process simultaneously, then the communications time

approaches O(M-log M). Since every node maintains the set S of all pool balls, the search

time is at best O(N). Bottlenecks do not occur. This approach was considered for the

Sharks World simulation but rejected during the design phase (8).

5.2.2 Modeling the Pool Table as Multiple Resident Entities With -this model, the

pool table is partitioned into multiple slices. The slices can be of any shape and can be one
or two dimensional. The following discussion considers only one dimensional partitioning,

such as slicing the pool table along the X or Y axis.

If the pool balls are uniformly distributed, each node will have approximately

pool balls. If V i, node, has every pool ball lying within a border region, then using

Wieland's data replication- strategy , pool balls must be replicated between adjacent
nodes via message passing. Given M11 nodes, the communications time complexity worst

case is O(N); however, this depends upon the predicate that each nodc, has all , pool-balls

-lying-within border regions. Furthermore, each node need only communicate 1 pool balls

once during initialization. After initialization, at most two pool balls-per ector can move

(representing a collision event). If each sector can execute an event simultaneously,. then

at most- O(M) messages must be sent. This-is based-upon the constraint that nodes need

only communicate with their nearest neighbor. This time complexity is further reduced

based upon the probability that a sector will have all of its L pool balls lying within a,
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border region. Therefore, the communications time is better than- O(M). If each node is

partitioned into multiple sectors then-each sector -has approximately I pool balls where

P is the number of sectors for the entire pool table. If each sector, has every pool ball

lying within a border region, and if sectors assigned to the same node are adjacent to one

another and communicate via memory at memory speeds, then the initial communications

time reduces to 0(1- M). Since P > M, the communications time is less than O(N) with

or without parallelism. If P > M, the communications approaches -constant time. Adding

potential parallelism in-communications:and the probability of having nominal percentages

of-pool balls lying within border regions results in-near constant communications time even

for P > Al. In terms of search time, the time complexity reduces from O(N) best case to

0(s), P > M and reduces to 0(E,) using the O(N 2) algorithm lresented in Chapter IV.

Therefore, the resident entity model is superior to-the transient entity model.

5.3- Developing the Ainimum Safe Time Calculation

A conservative synchronization paradigm requires a logical process to postpone the

execution of an event if there is a possibility of receiving an out-of-sequence message. Each

out-of-sequence message has an associated time stamp. This chapter will show'that it is not

possible to exactly calculate the value of the time stamp for an out-of-sequence message;

however, it is possible to estimate it. An estimator is shown to be valid if it guarantees

to be less than or equal to the time of arrival of the first transient ball message. Bounds

are placed on the estimate from which an estimator is proven to be valid. Simulation

progress using the estimator is also proved. This chapter develops and presents three

unique estimators all of which are valid; however, only two of them guarantee progress.

These two estimators are analyzed and compared. Each estimator has advantages and

disadvantages. This chapter will state which of the estimators was selected for design

iml)lementation and why.

Definition 5.1: A transient ball message is a message containing a pool ball and all of

its assiciated state information sent from one sector to another as a result of the pool ball

crossing a sector border. Let u be the time of a transient ball message, v, be a discrete time

interval representing the simulation iteration number, and i be the sector which receives

it; then, uti(i) is the time of arrival at sector i of the next chronological transient ball

message. If the simulation time of sector i is iv,, then the condition %i(V) < ivi defines

the transient ball message corresponding to u(') -to be an out-of-sequence message.
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Definition 5.2: The set of event types for the pool balls simulation consists of five types;

partition, exit, collision, vertical cushion, and horizontal cushion events. Let the set of

event types be denoted by S; then

S - {PART, EXIT, COLL, VERT, JIOR} (21)

Definition-5.3: An event E in sector i is defined as the tuple

E, (t(cv), B) (22)

where

* ej is an event type ei E S

* i, is a discrete time denoting the simulation iteration number,

0 ti(ei, v) is the time of the event E , and

e B is the set of pool balls associated with the event Ej

Definition 5.4: The Minimum Safe Time for sector i is an estimate of the time of the next

transient ball message to be received by i. This estimate is denoted MST,(v). The three

estimates developed by this thesis are denoted (MiST'(Q,), MST(v). and MST,(v)).

Lemma 5.1: The minimum safe time in sector i must be greater than zero and less than

or equal to the time of the first transient ball message received by sector i to be a. valid

estimate of vi(,). This is stated mathematically as

0 < IST{(V) < "1O(,) (23)

Proof: Due to monotonicity of events, the time of arrival-of the first transient ball message

must be greater than zero. By definition of conservative, a logical process can only execute

an event if the event time is less titan or equal to the time of arrival of the next transient ball

message. Suppose that the next event time t,(e,, i,) were greater than tt,(v); then. execution
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of E, would not be allowedl. Suppose also that all estimate of u1(m) were calculated1. Let

this estimate be J11STJ(il) such that J1IS~T(v) > u~(il). If the cond~itionl existed1 such that

ti(c2, iV) : JUST",)-' ri the-execuition of 13, then-the conservative property wVould

be violated and simulation correctness no longer -guaranteed. Therefore, ait estimator of

vj(v) must be t,-,ss than or equal to uj(v).

Definition 5.5: 1P is (lefined as thle p~redicate of execcuting ani event E i = (11(e,v), 13)

such that

i~E~ ~JTRWE if ti(ei, r.) :5 MSE1(i) (2)
PALS E otherwise

Definition 5.6: At- any instant in timle, sector i has a, set of pool b~alls inl i. Denlote this

set of pool1 balls Gi(v1); thoul

G~i(tv) _ {b1, b2,b.$,,".) (25)

whlere b, is at p)001 ball with ball idlentification number j. All values of j are unique.

Definition 5.7: By dlesign, ever, sector in the simulation hias thle same dimensions. Ea-very

pool1 ball has at mininmm timc to cros.5 at tector based uiponk its X-axis velocity vector. Then

where C, is anl event typeC inl S, // is an1 iteration number, 147 is the widlth of at sector, 13 is
at p)00l ball in~ G, corresponding to the event E, (i3(ei ,i), 1B), and V' (B) is the X-axis

velocity of thle 1)00l ball inl Erj.

Lemniai 5.2: The time of arrival at sv;Ctor, i of thle first, tranlsienlt ball message, uvis

greater thani or equal to

ui(v) :ji mm it jj (i,, = PARlT, il) +1 (n - J) * TTiE,(i, = PA RT, v)) (27)

Vu n:54- 0, i -n v>0, i +n< P

where i E {0, 1, 2,, (P - 1)) and P is the numnber of sectors specified lby the user.
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Proof: Given the set of event types S, a ball cannot arbitrarily enter sector i from sector

j without first being scheduled for a partition event -in j. This premise is based on the

definition of Wieland's two step- secloring strategy. A pool ball in a sector adjacent to

sector i produces a transient ball-message to sector i as a direct consequence of a partition

event E(,=- ) = (t(,+l)(e, = PART,v), B). A pool ball in sectors- (i + 2)or (i-2) must have

a partition event in order to reach sectors (i + 1) or -(i - 1) respectively followed by the

unobstructed traversal-of sectors (i + 1) or (i - 1) to reach-sector i. Similarly, a pool ball

in sector (i + n) or (i - n) must have a partition-event in sector (i + n) or (i - n) followed

by traversing (n - 1) sectors to reach sector i. This results in equation 27-of Lemma 5.2.

Lemma 5.3: The time of the earliest transient ball message which can -be received by

sector i, vtj(v). is not solvable for the pool balls simulation.

Proof: If the next event E is not a partition event, then -it(ei, v) < t,(ei = PART, t/)

where ,/ > vi by definition of monotonicity of events. The ball in sector i which has

the event Ej is in the set of pool balls Gi(v). The set of pool balls G,(v) cannot be

propagated in time to calculate Ej = (ti(ei = PART,v'),B) because the set of pool

balls G,(v') cannot be determined. The set G,(v') cannot be determined because during

the time interval corresponding to (VI - v), additional pool balls may arrive in sector i

from sectors (i ± 1). By definition of Wieland's sectoring strategy, sector i knows only

of the existence of pool balls in i and not of any other sector; therefore, it is impossible

for sector i to predict the arrival of additional pool balls in the interval (v' - v). Since

this is true, it is impossible for sector i to predict the event E, = (t,(e, = PART, v'), B).

Without knowing E,, the values t,(e, = PART, v') cannot be determined to solve equation

27. Without B in E,, it is impossible to determine Vx(B) and therefore it is impossible

to determine TTC,(c, = PART, v') from Definition 5.7. This is true not only for sector i

but for all sectors in {0,1,2...); therefore, uj(v) is not solvable.

Definition 5.8: For any sector i and any iteration v, the set of pool balls G,(v) has a

pool ball whose X-axis velocity is greater than or equal to all of the other balls in G,(v).

From Definition 5.7, this ball will have the minimum- time to cross a sector. Denote this

minimum time to cross by TTCi,..; then,

TTC=,,(v) mm (TTCj(e, ,)) (28)
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for all pool balls in Gi(u).

Definition 5.9: The estimator of uj(v), denoted MST'(v) is defined-as

MSTi'(v) min (t-,, (e,,, v) + (n - 1) * TTCi:,,.,. (v)) (29)

Vn: n 00, n-i>O, n+i<P

where i E {0,1, 2,..., (P - 1)}, and P is the number of sectors specified by the user.

Theorem 5.1: The estimator MIST'(v) is valid.

Proof: Any estimator of ui,(v) which satisfies Lemma 5.1 is valid and simulation correctness

is therefore guaranteed. Lemma 5.1 can be shown to be satisfied as follows. The next event

E, has an event time which is always greater than zero by definition of monotonicity of

events. The maximum X-axis velocity of any pool ball-in G,(v) is always less than infinity;

therefore, the minimum time to cross any sector, TTC,....(v ), is always greater than zero.

Therefore, MST(v) > 0 for all i in {0,1,2...}.

If e, # PART then li(ei 5 PART, v) < ti(e, = PART, v') by definition of monotonicity.

From Definition 5.8, TTCi,.,, (v) < TTCj(ej = PART, v). Therefore, MSTi'(v) < ui(v).

Lemma 5.1 is satisfied; therefore, MISTi'(v) is valid.

Theorem 5.2: The estimator MSTI(v) guarantees progress; that is, there exists a sector

whose event Ei can be executed for all v.

Proof: Given P sectors where P is specified by the user, there exists a. sector i, i E

{0. 1,2...P - 1), whose next event time is less than or equal to the next event time for

all other sectors. From Definition 5.9, the minimum safe time estimator is the minimum of

all other sector's next event times plus some overhead. Therefore, sector i's iniilnum safe

time is at best the iiinum of the remaining event times, but sector i's event time is less

than or equal to all of the others; therefore, sector i's next event time must be less than-or

equal to its minimum safe time estimate. From Definition 5.5, sector i can execute. This

is true for all v; therefore, progress is guaranteed.
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5.3.1 Additional Properties of .M ST'(v) Two interesting- properties of M STil(I')

can be shown. First, no-two adjacent sectors can execute an event simultaneously if their

event times are not equal. Second, the maximum -number of sectors which can execute

simultaneously is [] where P is the number of sectors specified by the user. This has

implications for sector assignments which will be discussed later.

Lemma 5.4: Adjacent sectors cannot both meet their minimum safe times using MSTi'(v)

asan estimator of ui(v) if their event times are not-equal.

Proof: Let two adjacent sectors be-denoted by (i) and (i + 1). If ti(ei, v) 0 t(,+l)(e(,+I), v)

then either ti(ei, iv) > t(,+l)(e(,+,), v) -or t{,+I)(e(i+l), v) > t,(e,, v) by definition. Both

cases can be shown to have the propeirty tha.t at least one of the two sectors cannot execute

their event.

CASE 1: ii(ei, v) > t(i+,)(e(i+l)v)

From Theorem 5.1, MST (v) is the minimum of all other sector's event times plus some

overhead. For adjacent sectors, the value of n in equation 29 is one; therefore, the addi-

tive term for the time to cross is zero. Thus, when comparing adjacent sectors only, the

minimum safe time of sector i is the minimum of its two neighbor's next event times. There-

fore, MIST, (v) is at most equal to tci+:)(e(i+I), v) such that MSTi'(v) : t(i+l)(e(,+l), v).

If i,(e,, v) is greater than t(i+l)(e ,+I), i) then t,(e,,vi) > MST, (v) and execution is not

allowed by Definition 5.5.

CASE 2: t(i+l) > ti(Ci)

The argument of case 1 is the same for case 2 resulting in MST;+I)(v) < 1i(e , , v) and

t(,+l)(e(,+l),v) > t,(e,,v);,:therefore, t(i+l)(e(,+l), v) > AMST,'(v) and execution is not

allowed by Definition 5.5. Therefore, for both cases, at least one sector of two adjacent

sectors cannot execute their next event if their next event times are not equal.

Lemma 5.5: If each sector i in {0,1,2...P-1} has a unique next event time, then the

maximum number of sectors that can execute their event in- parallel is r i where P is the

number of sectors specified by the user.
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Proof: From Lemma 5.4, no -two -adjacent sectors can execute if -their event times are

unique. Since the pool table is partitioned in a linear array, the maximum number of

non-adjacent sectors is r[i.

5.3.2 Analysis-of MSTi'(v) It is clear from Definition-5.9 that every sector must

have knowledge of every other sector's candidate next event and minimum time to cross.

Global communications are thus required. Several techniques are available to accomplish

this. The simplest technique is to have each sector broadcast its next event time and

maximum velocity to every other sector. Given M nodes, this technique requires O(M 2)

communications tune, and each message requires more than two orders of magnitude of

time to process than floating division (1). To reduce the number of -communications,

each node could communicate in a logarithmic fashion thereby requiring only O(MJ log H.)

communications-time. The lower bound on communications isO(4M) if each node commu-

nicates only with its immediate neighbors (in terms of a pool table sector neighbor, not

a hypercube node neighbor). Each of the techniques :requires every node to wait for the

slowest node. After each sector determines its candidate next event, each sector must cal-

culate its MST. To do-this, each sector must know every other sector's candidate next event

time and every other sector's fastest ball velocity (X-axis only). The node which finishes

calculating its candidate next event first must necessarily wait to calculate its MST until

the last node calculates its candidate next event. A broadcast communications scheme

cannot eliminate the potential wait state. Therefore, the 0(Mf) communcations scheme is

the optimum implementation. This scheme requires an end-sector to communicate with its

immediate neighbor. In this manner, sector 0 sends its data to sector 1. Sector 1 combines

its data with that of sector 0 and sends a single message to sector 2. Finally, sector (P-i)

receives a message from sector (P-2) thereby giving sector (P-i) all of the data from every

other sector. This data can then be passed back to each sector. Parallelism can be achieved

by recognizing the independance of sector 0 and sector (P-I). As sector 0 sends its data to

sector 1, sector (P-1) can send its data. to sector (P-2) in parallel. This technique performs

in lockstep and requires every sector to wait on the two end sectors.

5.4 Developing an Alternative A4IST Calculation

Chandy and Misra's paradigm requires the following constraints:

1. LP sends LP a message if and only if PlP has an edge connecting PPj (6:4,13).
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2. There exists a prespecified constant c such-that

4 - jk-1 > cfork = 2,...,k (6:442).

3. The minimum safe time for sector i is the -minimum of the message tuples (tk, nk)

received from all input arcs (Tik) (6:444).

The MST calculation stated in Definition 5.9 is slightly different from that proposed

by Chandy and Misra. Specifically, items one and three above disallow global communi-

cations. Chandy and Misra require an MST based only upon the input arcs represented

by the edges connecting each PP,. In the strictest sence, Definition 5.9 does not adhere

to a true Chandy-Misra paradigm. It is desirable to develop an estimator that conforms

to Chandy and Misra because their paradigm avoids global communications. This factor

allows their paradigm to be scalable across any cube size-where as MSTt(v) is not scal-

able. As the number of nodes-increases, the communications overhead of MSPTI(v) can be

expected to negate any gains from potential parallelism.

5.5 Developing a Second Minimum Safe Time Calculation

This section develops the estimator MST7(v) which will be shown to be valid but

does not guarantee progress. The estimator is derived from MSTj'(v).

Definition 5.10: There exists an upper bound on the velocity for any pool ball. Due

to the conservation of energy and momentum, the total -energy of all of the pool balls

will not change after initialization. Therefore, there is a maximum velocity that any pool

ball can have in the X-axis direction based- upon the initialization values and there is a.

corresponding global minimum timc to cross any sector. The absolute minimum time to

cross a sector for any pool ball once initialized is denoted TTCgjobaj_,j,i,.

Definition 5.11: The estimator-of un(v), denoted AIS2T(il), is defined as

111 S7-'(/) '" = in (1j:Lj (ej4 ), TT q,,.,, (30)
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Theorem 5.3: The estimator MST(v) is valid.

Proof: Any -estimator of ui(u/) which satisfies Lemma 5.1 is valid. By definition,

AIST i(v) = min(hi±,(ei:h,,v)+ (n- 1)*TTCie,.,o(v))

Vnt:?tnO, n-i>O, n+i< P

tij,(ei.,v) + (n- 1) -*TTC,,,,, (v)

Vn: 1 0, n 1, n - i > 0, -n +-i < P

Also,

0+(n-1)*TTCij±,,(v) < , ,v)+(n-1)*TTCi.,, (.i) (31)

if tj± (eii.,,) > 0

The next event time is always greater than zero by definition of monotonicity of events;

therefore, the inequality of equation 31 is true. Furthermore,

(n- 1)* TTCglob_,i,, < (n - 1) * TTC'iE,,..(v) (32)

if TTCgM,,b._,nh <_ TT h,,..

The global minimumn time to cross is always less than or equal to TTC,.,, .... by Definition

5.10; therefore, the inequality of equation 32 is true. Last,

TTGq'oba1_,in < (n - 1) * TTCatn ,,

These substitutions reduce MS2T'(,1) to MS'T (i) and MST,(v) < M$,/5T(v). Since

MS!'1(v) has been proven valid, then by Lemma. 5.1, MST 2(vJ) is valid.

Theorem 5.4: The estimator MSTl(v) does not guarantee progress.

Proof: Given -that MSTj (v) = min (1.j(j)(e(.2 ,), vi), TTCobalY,,) from Definition 5.11,

suppose that TTgC, 0 bgm,,i < t4(e.v) for all i in {0,1.2...P-1}. Then ASTr(v) =

TTCglobal..nn for all i by definition of MS, 2(V). If the minimum safe time is less than
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the event time for every sector i, then no sector can execute its next event by Definition

5.5. The value of TTC9gobal-mn is a constant by definition of conservation of energy and

momentum; therefore, for all values of i., A'ST 2(i,) = TTC1obalm,,. The next- event times

for all sectors will remain unchanged because each value of v produces the same results if

none of the pool-balls ever change state information. For this example, the simulation will

run indefinitely while the simulation time will remain at zero!

5.6 Developing a Third MST Calculation

The third MiST formulation relies heavily upon Chandy and Misra's concept of input
arcs and output arcs. A sector i outputs a message to a. neighboring sector which represents

the earliest estimated time that sector i-can send a transient ball message to its neighbor.

This is an output arc from sector i to sector (i ± 1). Equivalently, each sector receives

a message sent from its neighbors as input- arcs. The formulation for the third MST

estimator which adheres to Chandy and Misra's constraints has the following logic. If one

iteration ago at v' = (Vi - 1), sector (i + 1) passed a message to sector i indicating that no

transient ball messages will be sent before time tj then for the next iteration v, -it must

still be true that sector-(i + 1) will not send a transient ball message-before time tL due to

mnonotonicity of events. Furthermore, if a pool ball were to cross sector (i + 1) into sector i

in no less than time TTCo&atrn,, and one iteration ago at (V - 1) sector (i+ 1) could not

output a transient ball message until at least time t1 , then for iteration iv, sector (i + 1)
cannot output a transient ball message to sector i until at least time 77 = Ix +TC~.,o0bL_1 ,,.

This concept allows the MST estimator to constantly increase in size until at least one

sector can execute an event. After executing the event, there is no guarantee that an

event can be executed for iteration (v, + 1), but there is a guarantee that execution will

be possible before (il + cc) because the estimator itself constantly increases with vn. The

potential to have non-executing iterations reduces the efficiency of the l)arallel simulation

and the lower estimate of the MIST reduces the probal;ility of multiple executing sectors;

however, the l)aradigm is scalable to Jl nodes where H is limited only by the hardware.

The following definitions support the development of the Chandy andl Misraestimator and

the theorems that follow.
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Definition 5.12: Let 0,,(i+l)(v) be the output -arc of sector i to- sector (i + 1) at some

discrete time interval v. Then,

Oi,(i+,)(v) min (t,(ei, v), J,(,_i)(v - 1) + TTCqloba,_,,,,,,)

Oi,(i-,)(') = min (t(ei, v), I,(,+,)(v - 1) + TTCt9IobaI._min) (33)

-where I,,(,±)(V - 1) is the input arc to sector i from sector (i ± 1). The inputs and outputs

are related-by Ii,(j:)(v) = O(i:l),i(v) and-all inputs and outputs at (V = 0) = 0.

Definition 5.13: The eslimator of ami(v),denoted MST 3(v), is defined as

VI.sT 3(v) ' min (I,,+l)(v), Ii)()) (34)

Theorem 5.5: The estimator MSTj3(v) is valid.

Proof: To prove that MIST 3(v) is valid, it will be shown that for all v, MST3 (v) <

MST,'(v). This will be (lone by analyzing the specific instances for v = 1 and- 2 from

which a general solution for all v clearly presents itself. The general solution is equivalent

to the combination of-Definitions 5.12 and 5.13.

CASE 1: v = I

Through substitution, MST2,(v = 1) can be equivalently written as min (Ouiki)(1)). Sub-

stituting the output terms with Definition 5.12 results in the-following equation:

A.'IST(1) = min min(tI+m (ei-+ , 1), TTCfob ,,, nin),

ti-,1(e *1 . 1) + 0 -T.c21 ob1 .,3,,,
= m i n liIh( e j:E :. , ) + * T ) g ob a j_ mI n(ti:L2(Ci± 2, 0) + I * TTG1gobni-in J,

where ti(ei, v = 0) = 0 for all -i.

65



CASE 2: v = 2

Using the same substitution steps, the following is seen to be true-for v = 2.

AIS2i 3(2) =miii min(tj+i(ej+i .2). i)(+)()+TCIio,,)

nun(tjI.. 1(ej. 1, 2), I1i-1)#(i2)(1)+ TTgtoba'-Tnin)}

= mii (mi(1j+(ej+I 2), O(i+2),(i+l) (1) + TTClobE.,"i,,)

ii(tj-1 (ejj, 2), O(i-2),(~i-)(1) +TT~gobaL-fliI)

mi .min (I4+2(ej+2, 1), TTCgiobat-nzi,) 1 Tqobi.,

If ±1 UiT(ei21) Taiiba-n,,,

(4±1~ (ii. 2) + 0 * Mgoa-it

= min i2(ci±b2, 1) + I * TTCygiobczt-ni,;,

1i± 3(Ci± 3, 0) + 2 * TT~iobat-,,iu )
where tik ei: v = 0) = 0.

GENERAL SOLUTION:

From the p~receding two cases, the general solution for all vi is:

JMST,3(v) = rin ( -ii ~i,(i.,,v 7+ )) + (i -I) *TTCIo&bim,, (35)

Equation .5 has a striking resemb~lance to the definition of ,1S7j'(v'): howvecr, it is

easily shown that MVST 3(w1) < il'JSTj1(v) as follows. For all i, T2' j, b _'": TTc-i,..

from Definition 5.10. Due to monotonicity of events, (-+1) i)

since (v - it + 1) :5 v for (71 > 1). Therefore, kISTj3Q;) M ST/(v) which implies that

MSTj'(i') is valid.

66



Theorem 5.6: The estimator of ui(v), MV!STl(v), guarantees progress.

Proof: After substituting the definition of output arcs into the definition-of MSTi3 (v), the

estimator can be written as

MST,(v) = min (O(+ 1),i(v), Oy- 1 )X())

- mill mi [ti+x(ei+:, v), -(i+
2),+l(v) + TTC,60-min

mi V),-O(i 2 ),(ni)(u) + TTCgoboa,..,i,,]

This equation clearly shows that the value of MST(v) constantly increases because either

the next event time t,+ (e,±., v) increases by definition of monotonicity of events, or the

term representing the output arc of -previous iterations increases by a constant factor

TTCgo&a._,,Ii,. Therefore, execution of events is possible as v increases.

5.7 Analyzing Alternative MST Calculations

MST,1(v) requires global communications whereas MST 3(v) does not. The comnu-

nications time for VST,'(v) can be reduced to at most O(M) where A, is the number

of nodes. The communications time for MST 3(v) is 0(1). Thus, scalability is a major

tradeoff. VSI mT,(v)-specificallv requires (il - 1) communications per node while MIST 3 (')

requires a constant two communications per node for all but the end sectors which require

only one. Thus, for il = 2, the two MST calculations require approximately the same

communications time. For .11 = 4, AISTi3(v) is perhaps slightly superior if all else is the

same. Clearly, all else is not the same because MST(v) guarantees to execute at least

one event per iteration whereas MVST,(v) does not. This factor constitutes the tradeoff

between execution rate and communications time complexity. Not only can JIISTi'(il)

guarantee to execute at least one event per iteration, but up1) to rEJ sectors can execute

per iteration. A simple four sector example highlights the differences between the two

paradigms.

Conjecture 5.1 For small M where MkIis the number of nodes in the pool balls simulation,

MSTl(v) is superior to MVST3(tv). The size of AM! has been shown to be at least 4.

5.7.1 An Example using Both MST's To demonstrate the implementation of both

conservative paradigms, consider the four node, four sector pool balls simulation diagram-
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of Figure 12. The terms 'NET' and 'TTC' represent the next event time and time to cross

a sector for the fastest ball in sector i. The simulation time for each sector is currently

0.00 seconds.

NET = 3.0 2.0 4.0 2.5

TTC = 2.0 2.5 1.5 3.0

Figure 12. A Four Node, Four Sector Process Graph

Using the MSTj'(v) with Global Communications

Each message sent from sector i to sector k has the form (NETj, TTCj, NULL).

Node 0 sends (3.0, 2.0., NULL) to Node < 1,2,3 >

Node I sends (2.0. 2.5: NULL) to Node < 0.2.3 >

Node 2 sends (4.0, 1.5, NULL) to Node < 0,1.3 >

Node 3 sends (2.5, 3.0., NULL) to Node < 0,1.2 >

AISTo = min {(2.0 + 0 * 2.5). (4.0 + 1 * 1.5), (2.5 + 2 * 3.0)) = 2.0

,1ST = min {(3.0 + 0 * 2.0). (4.0 + 0 1.5). (2.5 + 1 * 3.0)) = 3.0

MST = min {(3.0 + I * 2.0), (2.0 + 0 • 2.5), (2.5 + 0 * 3.0)) = 2.0

MST = min 1(3.0 + 2 * 2.0), (2.0 + 1 • 2.5), (4.0 + 0.1.5)} = 4.0

P(Eo), P(EI), P(E 2 ), P(E3 )
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Using the- M'STj3(v) with Constant Communications

For A'ST(i'), the global mninimium TTC inust be known a priori. For the scenario of

F igure 12, the minimnum TTC is 1.5- for all sectors.

LOOP 1

0o,i(i) = min(3.0, 1.5) = 1.5-

01,2(1) = min(2.0, 1.5) = 1.5

0-1,3(l) = miin(4.0, 1.5) = 1.5

03,2(l) = rnin(2.5, 1.5) = 1.5

0,,1(1) = nini(4.0, 1.5) = 1.5

01,0(1) = min(2.0, 1.5)- = 1.5

AISTo(i) = mini(1.5) = 1.5

AIST 1 (1) = min(1.5, 1.5) = 1.5

MST,41) = in(1.5. 1.5) = 1.5

MST3(I)- =min(1.5, 1.5) = -1.5

P(E0), 4(0 1), P(E2), P(E3)

At this point: the first high level loop construct hias -finished. Each- node calculated

a candlidate next event, determined its HST and executedl its next event. for all sectors

providled NET < JUST. This exaipjle shows that none of the sectors could safely

execute an event based upon the information provided. The estimiator MSI'(v) executed

two events on twvo nodles thereby achieving 50% parallelismi (luring the execution phase.

This was possible because each node had additional iiforination upon which to calculate

a superior M4ST at the cost of increasedl commnunications. The estimiator in ust

inilemeiit a- second~ high level -loop to attain the samne simulation state show i as follows.

LOOP 2

00,1(2) = min(3.0, (1.5 + 1.5)) = 3.0

01,2(2) = min(2-;0, (1.5 + 1..5)) =2.0

02,3(2) = min(4.0, (1.5 + 1.5)) = .3.0

03,2(2) = iniin(2.5, (1.5 + 1.5)) = 2..5

02,1(2) = mnin(4.O, (1.5 + 1.5)) = 3.0
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0,o(2) = min(2.0, (1.5 + 1.5)) = 2.0

MS'T0 (2) = min(2.0) = 2.0

MST(2) = min(3.0,-3.0) = 3.0

MST,(2) = rain(2.0, 2.5) = 2.0

MST3(2) = min(3.0) = 3.0

P(Eo), P(E,), P-(E.-), P(E 3)

The scenario above illustrates the typical -wind up' overhead of conservative sim-

ulations implemented with Chandy-Misra. The number of loops required to reach an

executable state depends upon the difference between "'TC,,,, and NETm,,. The scenario

presented incorporated a Ax I small enough that the wind up cost consisted of only one

loo); however, this will not always be the case. Even after the windup is finished, the

proof presented earlier validates-the possibility that Vk : MSTk < ti..

5.8 Selecting an MST Formulation

Both equations for calculating tihe minimum safe time were considered for this-thesis

effort. The estimator AMST,(ii) seemed to be more intrinsically programmable and AFIT

is currently limited to an eight node hypercube which favors MST'(i;) due to small cube

size. No attempt was made to implement both strategies so empirical data is not available

to (late. The foilo%%ing sections describe the implementation strategy used to incorporate

T' ,

5.8.i Implemcilin. the Minimum Safe Time Implementing-Definition 3.2is straight

foruard. T'o umebsage communications datastructLures were defined. Both (latastructures

have the following fields:

1. Sector Number

2. Candidlate Next Event Time

3. Time to Cross (for the fastest ball in Sector z)

4. Time to be affected by any left sector.
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5. Time to be affected by any right-sector.

6. MSTj

Sector zero completes fields one through four. Field four is infinity (defined in a header

file to be 99999999.99 seconds) since sector 0 has no left neighbor. This- structure is next

passed to sector 1. Sector 1 fills in fields-one through four. This structure is then passed

to sector 2. This series continues until sector (P - 1) receives the data structure. At this

point, every sector (0 - K) knows the earliest that it can receive a transient ball message

fiom any sector to their left. As this entire process takes place, sector (P-i) sends a-data

structure to its neighibor (P-2) in parallel. Sector-(P-1) assigns infinity to the time to be

affected by any right sector as it has no right neighbor. Assu-ing near-equal processing

time,- sector (P-1) will receive its message originated by sector 0 at the same time that

sector 0 receives its message originated by sector (P-1). At this point, every sector now

knows the earliest time at which they can receive a transient ball message from either the

left or the right. The MSTis simply the minimum of these-two values.

5.8.2 Implementing Wieland's Data Replication Strategy The data replication strat-

egy remains basically unchanged from the partitioned sequential version. Pool bail objects

must still transition from one sector to-an adjacent sector in a two step-process via rARTI-

TION events and EXIT events. If adjacent sectors are collocated on one node, data repli-

,tion may take place directly through memory as described in Section-4.3.4. If sectori 's

adjacent sector resides on- a different node, the rules for data replication presented in Sec-

tion 4.3.4 must be enforced through discrete message passing. It is imperative that each

sector have its data replication updated prior to determining its next event; otherwise,

incorrect events can occur. For example, sector, could have a. replicated ball object stored

in its ball object manager. This replicated ball could be scheduled for a collision with an-

other of sector, 's ball objects. If the rcplicated ball was previously moved by the owning

sector (i.e. sector,_ o sector,+1 ),a.nd if sector, had not updated its replicated copy, -the

predicted- collision event would be in error. In fact, the case could arise thtt the replicated

ball should not even be visible to ,ector, had the update been enforced. This condition

requires that every sector wait to- determine -candidate events until data replication has

been cempleted.

To implement the synchronous waiting condition, every node sends a message counter

to the adjacent node(s) stating the number of data replications that will occur. If a node

has no ball objects to send, the message counter sent equals zero. In this fashion, each
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node can simultaneously execute scheduled events immediately followed by sending data

replication message counters to adjacent nodes. At this point, lockstep synchronization is

again enforced as no node may continue processing until- it has received message counters

from all adjacent nodes. Once a node receives a message counter from an -adjacent node,

that node is able to receive the proper number of replicated object commands.

5.9 Snmmary

The design of the pool balls simulation is object oriented. The equations of mo-

tion conform to the laws of physics for elastic collisions (i.e. conservation of energy and

momentum) and frictionless motion. The parallel design of the pool balls simulation incor-

porated Schr'iben's concept of resident entities thereby modeling the table as a distributed

set of table sectors. This has shown to reduce the amount of communications over a

transient entity design approach. The paradigin developed for the synchronization of the

distributed simulation has been shown to be conservative. This conservative paradigm

is superior to that proposed by Chandy and Misra for small . Both this paradigm and

Chandy-Misra's paradigm avoids the possibility of deadlock via NULL message passing.

With both paradigms, improved -parallelism can -be achieved-by assigning multiple sectors

(Li's) to individual nodes. The upper bound on the number of sectors that can safely

execute a candidate event using the paradigm developed in this thesis is [1; therefore,

100% parallelism is possible if and only if each node has assigned to it two or more table

sectors.
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1I. Test Results

6.1 Introduction

Chapter VI outlines the measures taken in this thesis effort to validate the pool

balls software and the test procedures used to generate performance data. The results of

the tests are discussed from which conclusions are made. The conclusions are stated in

Chapter VII.

6.2 Verification and Validation

The pool balls simulation was designed and implemented in three major steps con-

sisting of the following:

1. Design and implementation of a sequential simulation without spatial partitioning

and data replication.

2. Design and implementation of a sequential simulation incorporating spatial parti-

tioning and data replication.

3. Design and implementation of a parallel simulation incorporating spatial partitioning

and data. replication.

The first sequential simulation was validated in several stages consisting of the fol-

lowing tests:

1. Test a, collision between a pool ball and a cushion (both horizontal and vertical).

(a) Create a scenario with known behavior. Force the simulation to produce the

specified pool balls (i.e. positions,-times and velocities) and compare the simu-

lation results with expected results.

(b) Enable the simulation's random number generator to produce a random pool

ball and collisions. Record the events to disk and verify output by calculating

each event by hand.

2. Test a collision between two pool balls.

(a) Create a scenario-with known behavior. Force the simulation to produce the

specified pool balls (i.e. positions, times and velocities) and compare the simu-

lation results with expected results.
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(b) Enable the-simulation's random number generator to-produce random-pool balls

and collisions. Record the events to disk and verify the output by calculating

each event by hand.

Test la consisted of creating a single pool ball scenario on paper with known time,

position and velocity. The random number generator was disabled to allow -the creation

of a pre-specified pool ball. Four separate tests were run to verify -correct operation of a

left and right vertical cushion collision and a top and bottom horizontal cushion collision.

The simulation output was compared against the hand calculated results.

Test lb consisted of creating a randomly generated pool ball and simulating 25

events. With only one pool ball, all 25 events were guaranteed to be limited to horizontal

and vertical cushion events. The simulation output was checked by hand- for all 25 events.

This test was performed three times to produce a. high-level of-confidence.

Test 2a consisted of creating various- scenarios- involving two or more pool balls pre-

positioned to intentionally produce pool ball collisions at known times. The random numn-

ber generator was disabled to allow creation of deterministic inputs. The simulation-output

was verified by comparing each collision (including the cushion collisions) with the expected

hand calculated results.

Test 2b con.isted of creating randomly generated pool balls and simulating 10 events.

Each event was verified by hand. This test was-performed five times with varying random

inputs and number of pool balls.

Large quantities of pool balls as well as large quantities of events were not possible

to test due to the labor intensive calculations required for-comparison. While these limited

tests do not prove system correctness, the test results produce a high level of confidence

in system correctness.

The sequential siminulation incorporating spatial partitioning and data. replication

was validated by comparing the output against the output of the first simulation under

the following constraints:

1. The number of pool balls and initial conditions for both simulations were equal.

2. Partition and Exit events were not recorded to disk.

3. The user specified simulation- time was the same for both simulations.
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Since th e pseudo random -number generator nises a seed without reference to a system

clock, each simulation test run produces the exact same initial conditions provided the

seed remains unchanged. In this manner, the number of pool balls could be specified for-

-both simulation software versions resulting in identical initial-conditions. By not recording

PARTITION and EXIT events to disk, the test outputs from- both simulation versions

should have been the same. This was verified by using the Unix 'diff' command on the two

output files. To gain further confidence in valid system operation, sector crossings were

verified by hand for 25 different pool balls corresponding to 25 different discrete-points in

simulation time.

The parallel simulation version was tested against the original sequential simulation

and against the partitioned sequential version in that order. The first series of tests x\ere

identical to those discussed above. The Unix diff' command was used to highlight any

differenes in limulation ou t puts between the sequential, non-partitioned version and the

parallel version. A lengthy test consisting of 100 pool balls and a simulation time of 60

seconds was used as a final test. During the second series of tests, all PARTITION and

EXIT events were included in- the simulation output. The sequential and parallel software

versions were compared against each other to test the functionality of the border crossings.

Again, 100 pool balls were simulated for 60 seconds. The Unix 'diff' command did not

l)roduce any differences between the two partitionable software versions.

6.3 Simulation Perfoimnance Test Plant

Seyeral parameters were available to-vary. It was desirable to gain insight into the

performance of the implementc.d design as the parameters change. Scalability in terms of

cube size and load factor performance are tuo qualities of particular interest. The follo' ing

section defines the variables of interest which were scrutinized during the test phase.

6.3.1 Defining the Variables of Interest The number of nodes is a variable of in-

terest without which speedup calculations aie impossible. Therefore, all test cases defined

must be duplicated foi various node configurations. The software design imposed the con-

straint that the-number-of nodes selected must be a power of two. AFIT has an eight node

hypercube; therefore, four test runs must be made-for any given test case corresponding

to one, two, four and eight nodes.

The number of pool balls is a variable of interest. Changing this variable allows

inspection and analysis of the relationship between speedup and computational loading.
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The algorithm design and analysis phase predicted that the speedup should generally

improve with increased loading due to the overall 0(N 2) algorithm. Furthermore, as the

loading increases, there is a greater probability that each sector will contain one or more

pool balls and therefore produce useful candidate events which may be executed-in parallel

with other useful events.

The number of sectors is a variable of interest. The algorithm design and analysis

phase predicted- that the-run time performance can improve with increased sectoring. If

this is in fact -true, then sectoring becomes crucial in the calculation of speedup. Since

speedup relates the parallel run time to the best sequential time, the optimum sectoring on

a single node must be determined. There was no technique available in the analysis phase

to determine a priori the optimum sectoring for a-given quantity of pool balls; therefore,

sectoring must -be a. variable if the optimum sectoring is to be found.

6.3.2 Defining the Constants As-variables of interest are changed from test to-test,

the simulation-run time and pool table-dimensions must remain constant to produce any

meaningful results. The simulation run time was set to 2.00 seconds. This time was selected

based upon the results of some trial experiments. Using 500 pool balls on a single node,

the test run required approximately four hours of wall clock time. Using 10 pool- balls, the

test run required approximately one minute. This range seemed reasonable based upon

the time constraints of this thesis effort.

The table dimensions were set to 1024 x 512 inches. The width of 512 was arbitrary.

The length of 1024 was selected to provide a reasonable degree of sectoring capability.

Given-a one inch pool ball radius (arbitrarily selected), a length of 102,4 inches allows up

to 256 sectors of equal size such that no two sectors overlap and a.-pool ball can reside in

a. sector without overhanging into a. border region between sectors.

6.3.3 The Test Plan fhe quantity of pool balls was tested at values of 10, 20, 30,

40, 50, 100 and 200. The range of sectors to implement was I to 68 )ased upon some

sample test runs. The two, four and eight node tests varied the number of sectors by an

even multiple of the number of nodes. The single node tests could have varied the number

of sectors between 1 and 68 in multiples of one; however, multiples of two were arbitrarily

selected to save time. After the initial series of tests were finished, additional tests were

added. The performance curves were later extended by performing test runs at 300 and

400 1' balls. The quantities 120 and 160 were added to be able to compare test results
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with those of Cal Tech. The results of the first seven tests are shown as figures 13 through

19.

6.4 Test Results

6.4.1 Analysis of Pool Table Sectoring Figures 13 through 19 graphically illustrate

the effect of sectoring the pool table on one, two, four and eight nodes for various levels

of computational loading. The execution time of figures 13 and 14 does decrease with

increased sectoring. This is due to the fact -that the gains from adding additional sectors

are outweighed by the increase in intermediate events. Recall that the only real events-of

interest consist of collisions between pool balls and table cushions and collisions between

different pool balls. A pool ball can traverse the entire table in one step using a single

partition provided there are no pool bahl collisions. Each additional sector adds-two events

(PARTITION and EXIT) for a pool ball to traverse the table. Hence, increasing the

number of sectors increases the total number of events to-process. Although the number

of events to process increases, the time to determine the next event decreases with P,

where P is the number of table sectors. As the number of sectors increases, the average

number of -pool balls in any sector decreases. If the average density decreases below one

pool ball per sector, then there will be at least one sector which has no pool balls in

it. Adding more sectors beyond this limit will therefore not decrease the search space;

however, the total number of events to process will continue to increase. The tradeoff

between decreasing the search space and increasing the total number of events determines

the optinium number of sectors. When using multiple nodes, the tradeoff is less intuitive

because of the effects described in Theorem 5.2. This theorem states that no-two adjacent

sectors can both meet their minimum safe times provided the next event times are not

equal. Adding more sectors on multiple nodes therefore increases the probability that a

node has at least one executable process from Theorem 5.3. The upper limit for increasing

performance by adding additional sectors is still a. density of one pool ball per sector since

adding additional sectors beyond this point will not give a- node a greater probal)ility of

executing a. usefuil process.

Figure IS has more of a parabolic shape. Notice that as the number of pool balls

(loading factor) increases, sectoring the pool table increases in importance. Fig 19 ap-

pears to be more of a -t relationship; however, it is conjectured that the family of curves

eventually rises -with increased sectoring.
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Figure 19. Performance Curves for 200 Balls

The curves of figure 20 indicate that the speedup for any cube size approaches an

assymptotic limit regardless of load factor. This was slrprising because it was- expected

that the speedup would generally improve with N. Since the algorithm time complexity

is O(N 2 ). increasing the number of pool balls should increase the computations to corn-

inunications ratio thereby favoring the course granularity of the iPSC/2 hypercube. It is

-conjectured that this is not the case because the optimal number of sectors increases with

,; therefore, the search space orly increases with 0('). urthermore, as the optimum

number of sectors increase: the percentage of parallelism increases due to the effects of

Lemma 5.A and 5.5. The curves of figure 21 show the same data in the more traditional

format.

The efficiency (--) is shown in figures 22 and 23. The curves of figure 22 show

the relationship between efficiency and load factor. The efficiency appears to approach a

limit for each cube size regardless of the number of objects to simulate. Both figures 22

and 23 clearly show that the efficiency decreases with increasing cube size. This is not

surprising because the analysis phase of Chapter V stated that the estimator ,MST(v)

is not scalable due to the global communications. It is reasonable to assume -that the
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efficiency will continue to decrease beyond- a cube size of three although this cannot be

testedl with AFIT's eight. node hypercube.
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Analysis of the data for optimum sectoring reveals an interesting trend. After 50

pool balls, the trend appears .to establish a relationship between the optimum sectoring

for ail nodes and the number of pool balls per sector (density). The curves are shown

as Fig 24. In fact, these curves were used to tailor the test plan for the 300 and 400

pool ball- trials in an effort to reduce the time to complete the test runs. It was not

surprising that the optimum sectoring is related to the pool ball density due to the tradeoffs

discussed earlier in Chapter VI; however, another possibility exists. As the number of pool

balls increases, the total number of events to process also increases. These events can be

divided in two categories: events which are internal to a node and events wlich require

communications. These correspond to the subsets {VERTICAL, IIORIZONTAL, COLL}

and {PARTITION, EXIT} respectively. Currentlh, the software keeps track of events by

type (i.e. VERTICAL, IORIZONTAL, etc); however, with multiple sectors per node, not

every PARTITION and EXIT event requires communications via message passing. Should

a relationship exist between optimum sectoring and the ratio of internal event processing

to external event processing, then a conclusion can be made regarding all simulations

incorporating a two dimensional spatial partitioning scheme. Analysis of this relationship

has not yet been accomplished.
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6.5 Compar2son of A FIT and Cal Tech Simulation Results

Cal Tech developed the original pool balls simulation concept. Their research re-

volved around the Time Warp optimistic synchronization paradigm. The simulati.,.As de-

veloped by AFIT and Cal Tech are very similar, but not identical; therefore, comparisons

are limited to general trends. The software designs for the two systems are different in

several respects.

1. Each pool ball in AFIT's program has identical radius while Cal Tech's program

allows for varying radii.

2. Each pool ball in AFIT's program has identical mass while Cal Tech's program allows

for varying mass.

3. The AFIT software design establishes the entire table as a single object. Cal Tech's

software design divides the four table cushions into sections, each of which is -an

object.

4. Cal Tech describes each pool ball (or puck) to be a separate object whereas the AFIT

design defines a class of pool balls and a single ball manager object (3).

5. Cal Tech chose the more efficient O(N) algorithm to manage a next event queue

containing events. The AFIT simulation algorithm is O(N 2 ) and avoids complex

event list manipulation by storing on average only one event at a. time.

The first four differences enumerated above should not affect the test results for either

system in any appreciable manner. These differences represent implementation decisions.

The implementation differences will probabl. result in different execution times but relative

speedup measuremcnts enable valid comparison exercises. Item five, however, represents a

significant design difference. As the Intel hypercube is course grain, the O(N 2) algorithm

provides a better match between software and hardware. Thus, one would expect that

an Q( 1N12) simulation would result in superior speedup over an O(N) algorithm, all else

remaining the same. This highlights another potentially bignificap. difference between the

two simulations; that is, the -hardware is not the same. Cal Tech used the .JPL Mark III

hypercube whereas AFIT used the Intel iPSC/2 hypercube. With differing granularities,

the two machines will )roduce different speedup results even for the same software. During

the course of this research, no subjective measures of granularity were found to adequately

compare the two machines.
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Cal Tech reported in the 1988 SCS Multiconference that speedup on eight nodes for

120 pool balls was approximately 3.2 (3:5). The simulation run -time was not specified

nor was the sectoring specified. There was no mention concerning optimal sectoring for

the single node and 8 node configuration. For this thesis, a 120 pool ball scenario was

generated for two seconds simulation time. The speedup on eight nodes was 4.97. The

graph is shown as Fig 25. Cal Tech also published the speedup results using 160 pool

balls. Their speedup was approximately 4.0 on eight nodes using-64 table sectors. From

the reported test, it appears that Cd Tech did not use optimum table sectoring to calculate

speedup. They chose instead to fix the-sectoring for each of the-cube sizes from one to

32 nodes. Test results using 16 0-pool balls were reported using 16, 32 and 64 sectors for

which the 64 sector table produced the best of the three speedup results for all cube sizes.

The AFIT simulation produced speedup-of 5.40 for 160 pool balls on 8 nodes.
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Figure 25. AFIT Speedup Curves for 120 & 160 Pool Balls
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17I. Conclusions and Recommendations

7.1 Introduction

This chapter discussesl 0 conclusions which can be-made from -the results of Chap-

ter VI. These conclusions are conjectured to apply not only to the pool balls simulation

but also to any simulation which incorporates a two or three dimensional space through

which the objects of study move-or pass. Examples- include particle dynamics and battle

field- simulations.

7.2 Impact of -Computational Load

Speedup is-independent of the number of objects to be simulated for large N provided

that optimum sectoring is used. The empirical data suggests that the speedup stabalizes

at approximately N = 100

7.3 Impact of Spatial Partitioning-

Sectoring the pool table results in a tradeoff between decreased search space and

increased number of events to process. Each additional -sector adds two incremental events

to process for pool balls which must cross the additional sector. These events are not

real events of interest and therefore represent overhead. Empirical data suggests that the

optimal number of sectors increases with N, that it is dependant upon the ratio of pool

balls to-table sectors -(density), and that the optimum number of sectors for any given size

of N is independent of the cube size.

7.,f Determining the Optimal Number of Sectors

The empirical data- shown in- figure 2,4 suggests that the relationship between the

optimum number of sectors and the number of pool balls is logarithmic. Using liucar

regression on an equation of the form-Y = a logX + c, where Y is the optimnum number

of sectors and X is the number of pool balls to be simulated, and minimizing the error

of the model results in a = 2.3 and c = -1.5. The empirical data. is plotted with the

optimum sectoring estimate in figure 26.
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7.5 Impact of 11.e Conservative Paradigm upon Scalability

This thesis developed two formulations, M STI(tv) and .AIST3(v), for calculating the

minimum safe time. The estimator iMST,(v) represents the tightest upper bound pos-

sible at the cost of global communications. The estimator ,MST3 (v) complies with the

constraints formally presented by Chandy and Misra. This approach uses less information

to-produce a lower estimate-of the miniinumsafe time; however, communications time is

a constant limited only to nearest neighbor communications. The approach favored by

Chandy and Misra can result in an indeterminant number of iterations in which no sector

can meet its minimum safe time. The additional information provided by global communi-

cations of the first scheme has been proved to-guarantee that at least one sector can always

meet its -minimum safe time. The efficiency curves of figure 2 clearly illustrate the cost

of global communications upon the parallel performance of the pool balls simulation. As

the number of nodes increases, theefficiency generally decreases. Due to the global com-

munications, MST(v) is conjectured to yield superior speedup over the nearest neighbor

scheme for small Al only wherte MV is at least four nodes. Due to the indete:minate number

of-idle iterations which can result with MST3 (v), it is not possible to predict the value of
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Al for which the two estimators will produce equal speedup without empirical test -data.

The-second estimator has not yet been implemented.

7.6 Conservative Versus Optimistic Paradigms

There are several differences between the pool balls simulation implemented by Cal

Tech and AFIT. The two-most significant differences are the overall algorithm time-com-

plexity and the-hardware used to measure speedup. Cal Tech's simulation incorporated an

O(N) search algorithm while AFIT's simulation incorporated an O(N 2 )- algorithm. Cal

Tech used a JPL Mark 111-32 node hypercube while AFIT uses- an Intel iPSC/2 hypercube.

There were no quantitative or qualitative measurements -for hardware granularity for com-

parison. It is reasonable to assume that Lh(c measured speedup results for either simulation

design would be different if run on different machines; therefore, an accurate comparison is

not possible. Lin and Lawzowska performed an analytical study of the two paradigms and

concluded that the optimistic approach is generally superior and that in the worst case,

an optimistic approach cannot lag arbitrarily-behind the conservative model. The speedup

results presented in this thesis are approximately 35% higher on eight nodes than Cal

Tech's reported speedup on eight nodes. 'While this does not disprove Lin and Lazowska.'s

work, it (toes indicate tha. a conservative paradigm applied to a distributed discrete event

simulation can produce significant speedup. This has important ramifications because an

optimistic approach c:an require vast amounts of memory to execute. Chandy and Misra,

on the other hand, have shown that their paradigm requiies-a bounded amount of memory

and that the memory requirements are not more than :for a sequential simulation. This

thesis concludes that the conservative paradigm has many useful applications where the

optimistic approach would otherwise exhaust memory. If designed properly, a. conservative

simulation can produce significant, speedup.

7.7 Recommendations for Future Study

The concept of spatially partitioning the pool table for the 1)001 balls simulation

worked exceptionally well. This was due predominantly to the fact that the pool balls

were uniformly distributed. A battlefield simulation is not guaranteed to have this advan-

tage. Most of the computational load-for a battlefield simulation occurs at the boundary

between opposing forces. To ensure that as many sectors as possible have objects located

within them, a dynamically defined sectoring scheme must be implemented. The pool balls

concept is readily understood and is therefore easier to work with than complex battlefield
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simulations. It -is recommended that a dynamically assigned sectoring strategy can -be cre-

ated using- the pool -balls problem domain,. The insights gained -from this endeavor would

apply to any non-uniformly distributed object-model.

The design. of the pool balls simulation intentionally incorporated an -O(N 2) algo-

rithm to match the design with the granularity of the-iPSC/2 hypercube. An- O(N) would

require less overall execution-time; therefore, it is recommended that the pool-balls simula-

tion be re-designed to-accommodate the-O(N) algorithm. This allows further comparison

with -the pool balls simulation tested at Cal Tech. If the speedup of the O(N) algorithm

implemented using a coaservative paradigm still outperforms the O(\T) algorithm using

an optimistic paradigm, then-the degree of confidence inthe asserions.stated in this thesis

increase.

AFIT has been experimenting with a. standard conservative synchronization pack-

age called SPECTRUM. This package was originally written at, -the University of Vir-

ginia and incorporates multiple filters for internodal comminications. The main-thrust of

SPECTRUM is isolate machine dependant software in a low level implementation layer

of software and to separate the synchronization protocal from the specific application. -It

is recommended that the pool balls software -design be modified to interface to UVA's

SPECTRUM package. This would standardize the pool balls simulation with other.simu-

lations produced at AFIT and would allow the software to -be more easily ported to other

distributed processing systems.

This thesis developed two minimum safe time estimators. The first estimator does

not conform to Chandy-'Misra's paradigm, but i4 is more efficient for small cube-sizes. The

second estimator does conform to Chandy-Misra's paradigm, but is less efficient and more

scalable. This thesis implemented the pool balls simulation using the first estimator which

is more efficient but less scalable. It is recommended ,hat the pool balls simulation be

redesigned with the second estimator for detailed performance comparison. This recom-

menldation is based on the premise that,nassive parallelism is desired -by the-DoD to .olve

many of its-complex battle simulations and large VI DL descriptions.

A two-dimensional sectoring strategy is recommended for future investigation. Sev-

eral large simulations, such as a battlefield simulation, are better suited to two dimensional

sectoring due to the distribution of-objects. By partitionilig.the domain in-along two axes,

the objects can be dispersed with a. better chance of achieving superior load balancing.

This conjecture can be tested with the pool balls problem.
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Appendix A. Software Listings

A .1 Sqfttvarc Files

The software for the parallel implementation of the 1)001 balls problemincludes the

following files:

" Initialize.c. M vain Host Code

" Simdrive.c Main Node Code

" baiI.ADT.c

"table..ADT.c

" (jueueICADT.c

" Eventllandler.c

" Conimunicator.c

* clock.c

*event.c,

* neqi.c

*pool-balls.c

*randoin.c

* ctube.h

" evenit.h

" prototktype.li

" structure.hi

.. i. Functional Doscriplion

Initialize.c: This is the inain prograiin for Lte host. Its p~rimnary functions arc to

readl in the cominand line arguments from the user, create Lte specified numbeCr of pool1

balls, create the pool table witi. the specified table dimensions, initialize all simulation

paramieters, place the pool balls into-the appropriate table sectors, enforce Wieland's data.

replication for pool balls-residing in border regions, and communicate this information to

the ind~ividual- nodlcs. The host program then enters a continuous loop until receiving a

message from a niode ind(icating that, the simulation is over at which time Lte host kills all

processes.



simdrive.c: This is the main program for the nodes. Its primary purpose is to

enforce the-high level loop construct for the simulation. The loop-consists of:

* Determine the next event

" Determine the minimum safe time

" Schedule the-next event(s)

" Execute the scheduled event(s)

* Enforce Data Replication

pool-balls.c: This is the main application code driver for the nodes. It has an

initialization procedure whfich is called only once by the main code, simdrive.c. This

procedure receives the command Hue arguments sent from the I. ist, creates the pool table

for each node, receives each pool ball sent from the host and inserts the pool balls into

the appropriate sector, and initializes all other packages which require initialization. It is

important-to note that each node only receives the pool balls which are assigned to-a sector

which resides on that node. Last. the initialization program determines the first event(s)

to)e executed.

The l)rogram 'l)ool-balls.c' also has a procedure which is continuously called by the

main-node program which implements (via procedure calls) the funcions-of executing an

event, determining the next event, determining the minimum safe time, ani schedulig the

next event..

EventHandler.c: This file perlorms two basic tasks: it determines tle next event

possible for a pool ball which is passed to it,.and it executes an event message which is

passed to-it.

Conimunicator.c: This file performs all of Wieland's data. replication strategy.

Each time a pool ball is moved, this file is invoked. The pool ball state information which

is passed to the file is inspected. All replication and ,e-replication occurs here.

bail..DT.c: This file is implemented as an- abstract data type. It represents the

ball object manager for each node. The manager can perform the-following operations on

a. pool ball:

* Add
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" Remove (without returning a pool ball)

" Get-andDelete

" Get (without removing a pool ball)

Several other functions are available but do not change the state of the ball object

manager. These operations-include printing, error checking, counting, and-searching.

clock.c: Manages the simulation clock.

event.c: Dynamically allocates and deallocates memory for events.

neql.c: Manages the next event queue. Each node has one NEQ and each NEQ

stores scheduled events. Each NEQ also has one dummy event to ensure that the queue is

never empty. If the dummy event is p)opped, it must be re-inserted before-tie simulation

can proceed.

queueADT.c: This file has two basic functions: it -creates, manages and updates

the candidate queues, and it enforces the synchronization protocol. It currently enforces

the MST' estimator. Each sector has one candidate queue which stores candidate events.

After each sector -determines its minimum safe time, each candidate queue is inspected- to

determine if its candidate event is less than or equal to its minimum safe time. If it is,

then the candidate event is popped off the queue and inserted into the node's next event

queue. The event is now said to be scheduled. If the candidate event is greater than the

minimum safe time, then the candidate event is removed and its memory is freed.

random.c: This file is a machine independant, pseudo-random number generator

based on the works of Law and Kelton. It can return random numbers with the-following

distributions:

" uniform

* exponential

" normal

0 logarithmic

table..ADT.c: This file is implemented as an abstract data type. The ADT repre-

sents the table sector manager. It not only creates the table and sectors, but it returns

information about the table such as the table length, table width, and sector coordinates.
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cub-l: This header file includes all cube specific information as 'define' statements

in -the C programming language.

event.h: This header file -defines the data structure of an event type.

prototypei: This header file prototypes all of the files used in the pooi balls

simulation.

structure.1i: This -header file defines all-golobal structures such as the ball structure,

linked list structure, aind- sector structure. It also dlefines several global variables -such as

the length of a pool ball radius, the value of-r, the maximum allowvable X and Y axis 1)001

ball velocities and some key initialization parameters such as writing to clis -and printing

to- screeni.

A .2 Compiling -Instuctions

The mnakefile specifies how the various host and node files compile. The maefile is

as follows:

host: Initialize.o randorn.o ball-.ADT.o table-.ADT.o

cc -o host Initialize.o random.o ba1llADT.o table-.ADT.o
-1m -host

node: simdrive.o pool-balls.o clock.o neql.o
event.o random.o ba1llADT.o table-.ADT.o

EventHandler .o Communicator .o queue-.ADT.o

cc -o node simdrive.o pool-.balls.o clock.o neql.o
event.o random.o, ball-ADT.o table-.ADT.o
EventHandier .o Comntunicator .0 queue-.ADT.o
-lam -node

Initialize.o: Initialize.c structure.h cube.h prototype.h
cc -C Initialize.c

simdrive.o: simdrive.c event.h cube.h prototype.h structure.h
cc -C simdrive.c

clock.o: clock.c
cc -C clock.c
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neql.o: neql.c event.h
cc -C -neql.c

event.o: event.c event.h
cc -C event.c

random.o: random.c
cc -C random.c

pool-balls .o: pool-balls .c structure .h prototype .h
cc -C pool-balls.c

ba1llADT.o: ball..ADT.c structure .h prototype.h
cc -c ba1llADT.c

table-ADT.o: table-.ADT.c structure.h
cc -C table-.ADT.c

EventHandler.o: EventHandler.c structure .h event .h prototype .h
cc -C EventHandler.c

queue-.ADT.o: queue.ADT.c structure.h event.h prototyp.h cube.h
cc -C queue-.ADT.c

Comniunicator.o: Communicator.c structure.h event.h prototype.h cube.h
cc -C Communicator.c
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