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Preface

The purpose of this study was to investigate the application of a conservative synchro-
nization paradigm for parallel discrete event simulations; specifically, to solve the classical
pool balls-simulation. This thesis effort has demonstrated that the conservative-approach
can-produce comparable performance to an optimistic approach by comparing the results

of the pool balls simulations produced at Cal Tech with those of this thesis.

This thesis effort also demonstrates the viability of spatially partitioning a simulation
model in a conservative environnent. Several design approaches were analyzed and their
respective advantages and disadvantages were derived. Two conservative formulations
for a minimum safe time were developed both of which maintain system correctness and
simulation progress. The tradeoff between them is shown to be scalability versus execution

efficiency. The more efficient, less scalable one, was chosen for empirical study.

In the development of the simulation software, I had to acquaint myself with the C
programming language. Were it not for the invaluable help of Lt Kevin Hanrahan, I would
never have developed a working program. I would like to thank Professor Gary Lamont
for his ceaseless encouragement and brilliant inspiration. Without his help, I would have
pursued many wrong approaches in system design, theory and writing. He was particularly
useful in the application of predicate logic for developing the theorems and proofs piesented

in this thesis.

I am deeply indebted to my wife Kelly and my daughter Rachel for their encourage-
ment, support, patience and love. The time required to fulfill the requirements of Master
of Science of Computer Engineering has been extraordinary. Without the direct support of
my family, I could not have maintained the exacting pace demanded of my studies. Thank

you.

Robert S. Moser
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Abstract

This study investigated the application of a conservative synchronization paradigm
to the classical, distributed pool balls simulation executed on an eight-node, Intel iPSC/2
hypercube. Wieland’s concept of spatial partitioning and limited data replication was used.
Analysis has shown that 100% parallelization of execution is possible in a conservative en-
vironment via assignment of multiple sectors to nodes. Two conservative formulations for
minimum safe time were derived. A tradeoff exists between scalability and efficiency. Opti-
mum sectoring prediction has -been shown possible tlirough application of linear regression

techniques. The results of this research reveal that a conservative approach to distributed,

discrete event simulations can achieve significant speedup.




A Spalially Partitioned
Parallel Simulation of

‘Colliding Objects

I. Introduction

This thesis investigates the application of a conservative synchronization paradigm
for the exccution of parallel discrete event simulations implementing spatially paititionable
models. The methodology developed for this thesis is-of particular interest to operations
researchers and simulation system designers because a parallel processor having /N nodes
can potentially execute a distributed simulation up to N times faster than a single pro-
cessor (21:315). The realization of this potential increase in performance is the primary
motivation to distribute simulations over many processors. Furthermore, a distributed
approach may be the only practicle or possible solution to some large, complex models.
For example, Misra has investigated a sequential simulation of a complex telephone switch.
Misra assumed that the switch can generate about 100 internal messages while completing
a local telephone call and that 100 switches per second can be accommodated by a complex
switch. A sequential simulation simulating 15 minutes of real time will generate nearly

10 million messages requiring several hours of simulation time on a very fast uniprocessor
(18).

This thesis develops a general methodology from which many systems may be mod-
eled in a distributed manner. This methodology is developed from the investigation of a
specific distributed simulation in which pool balls move about on a pool table and collide
with one another and with the pool table with perfect elasticity. There are several reasons

why this simulation has been chosen for analysis.

1. The model is simple to comprehend, thereby emphasizing the process of developing

a distributed simulation and not the simulation itself.

2. Basic simulation parameters such as computational loading, number of processors,
number of logical processes, number of simulated objects, etc, are easily varied for

performance measurement and analysis.




3. The pool balls simulation concept has becom2 a classical simulation problem hav-
ing been developed and conceived at Cal Tech under the title ‘Colliding Pucks’ (13)
and benchmarked at the Jet Propulsion Laboratory under the title ‘Pool Balls Bench-
mark’ (4, 3). The pool balls simulation concept has also been studied using a modified
version of the Time Warp operating system (17) and using a time driven simulation

approach (7).

4. The published benchmark results from the Jet Propulsion Lab allow some perfor-
mance comparisons to be made between the conservative-and optimistic paradigm

implementations for the pool balls simulation.

1.1 Background

According to Banks and Carson, ‘a simulation is the imitation of the operation of a
real-world process or system over time (2:2)." A model is a representation of a real-world
system and takes the form of a set of a.sumptions concerning the behavior of the system.
If the model of a real-world system accurately reflects the behavior of the system, then a
simulation can be used to study the system without changing the real-world system. This
form of experimentation can increase a user’s knowledge of the system. Simulation can also
be used to experiment with models of systems that do not yet exist, thereby providing an
often used system design tool for complex and costly systems (2:4). Pritsker (19:6) states
that simulations of real-world systems provide the experimenter with inferences about

svstems

<

... without building them, if they are only proposed systems; without disturb-
ing them, if they are operating systems that are costly or unsafe to experiment
with; without destroying them, if the object of an experiment is to determine
their limits of stress.’

For the Department of Defense, military battle simulations precisely conform- to all
of Pritsker’s observations. Wars are certainly unsafe to experiment with. During times
of peace battle simulations provide valuable information concerning our preparedness for
war. Many battle simulations are complex enough that sequential uniprocessors require
several hours and even days to simulate a relatively short tactical scenario (10). There are
still several questions regarding the parallelization of complex simulations. These questions
include the following:




1. How should the problem domain be partitioned?
2. Which method of synchronization should be used?

3. Can load balancing be achieved across N processors?

This thesis investigates each of these questions in the context of the classical pool

balls simulation.

1.2 Thesis Statement

A concurrently executing non-queueing model discrete event simulation can achieve
neai lincar speedup implemented with a conservative synchronization paradigm incorpo-

rating spatial partitioning and limited data replication.

1.3 Scope

This thesis effort investigates the parallelization of a conservative discrete event sim-
ulation incorporating a classical, spatially partitionable model. The specific model chosen
for investigation is the well defined pool balls problem. The conclusions are applicable to
any spatially partitionable model such as battlefield simulations. The distributed software
design is object oriented and spatially partitioned. The movement of .each pool ball is
recorded to disk for analysis and graphics display. The user can specify the number of
pool balls to simulate, the number of logical processes, the number of physical processes,
the simulation run time and the pool table dimensions. The user may also specify various
options such as writing to disk, printing to screen, collecting statistics and checking for

errors. Bach option selected affects the execution time of the overall simulation.

Each pool ball is created during initialization. The parameters of position specified
as X — Y coordinates and velocity specified as X — Y vectors are randomly generated
using a machine independent pseudo random number generator developed by Law and
Kelton (14).

The performance of this pool table simulation is compared to that of Cal Tech’s
*Colliding Pucks’ experiment to gain insight towards the desirability of the conservative
synchronization paradigm over the optimistic synchronization paradigm. This is particu-
larly important because the conservative paradigm has been shown to require only as much
memory as its sequential counterpart while the optimistic paradigm requires large amounts

of memory and has the potential to exhaust memory before simulation termination.




1./ Research Objectives

The objectives of this thesis-effort are:

. To-demonstrate by example-that a spatially partitionable model discrete event sim-

ulation can be parallelized on distributed loosely coupled processors using a conser-

vative synchronization paradigm.

. To demonstrate that the parallelization of a spatially partitionable model discrete

event simulation can achieve reasonable speedup.

To demonstrate that the conservative synchronization paradigm is comparable to an
optimistic synchronization paradigm when applied to a spatially partitionable model

parallel discrete event simulation.

1.5 Assumptions

Several assumptions were made in the analysis, design and development of the pool

balls simulation. As a minimum, the following equipment and hardware specifications weie

assumed:

1.6

. A distributed loosely coupled hypercube having eight or more nodes.

. Monotonicity of message traffic between nodes is strictly maintained. This require-

ment states that if messages (my,my,...,m,) occur at time (4;,1s,...,¢,) such that

0 <t <t <1, then the target nodes will receive the messages in the same order.

. Dynamic allocation and deallocation of memory is allowed.

General Approach

The general approach for this thesis consisted of six steps:

. A literature search was conducted. Familiarity with different types and classes of

simulations was acquired and an understanding of the Chandy-Misra paradigm de-

veloped.

. The requirements analysis was performed for the software system. The assumptions

generated were required to conform to those developed by Cal Tech to provide a

means for performance comparison.




3. The requirements analysis was validated and the pool balls simulation was designed.

1.7

An object oriented approach was used to enhance software documentation, mainte-

nance and changeability.

. The software was written in a three-step process. First, a sequential pool balls

simulation was designed implementing a non-partitioned pool table. Second, the
sequential system from the first stage was modified so that the pool table could be
partitioned into vertical ‘slices’. Third, the partitioned pool table resulting from
the second stage was parallelized on the Intel iPSC/2 hypercube. All three software

versions were coded in the C programming language.

. Various test simulations were developed which provided the speedup estimates and

performance comparisons between Cal Tech's experiments and AFIT’s experiments.

Tests were executed-using all three software stages to demonstrate output consistency.

Summary

A spatially partitionable model discrete event simulation can be parallelized onto a

distributed, loosely coupled processor. Near linear speedup is achievable using a conser-

vative synchronization paradigm. These assertions are demonstrated by implementing the

well documented, classical pool balls simulation which was conceived and developed by

scientists at Cal Tech and later benchmarked at the Jet Propulsion Laboratory. A conser-

vative paradigm results in comparable performance to the Time Warp optimistic paradigm

hased upon the reported results from Cal Tech and the Jet Propulsion Lab.




II. Issues in Distributed Discrete Lvent Stmulation

2.1 Introduction

This chapter surveys current literature on topics related to this thesis. This review
is limited to on-going research in parallel discrete event simulations and briefly discusses

various classes of computer architecture used in distributed processing.

2.2 Motivation for Parallel Computing

If a computer performs one instruction at a time in sequential fashion then the
only possibility for increasing execution performance is to increase the speed at which
instructions are performed. Despite the fact that VLSI technoiogy has been doubling the
performance of computing hardware every couple of years, it is doubtful that this trend

can continue beyond the 21st century and is certain not to continue indefinitely (9:23).

An alternative approach for increasing execution performance is to design and use
computer architectures that perform multiple instructions simultaneously. If a sequential
processor requires T, time to complete a process, then a parallel processe, having M
processors requires a lower bound of Z—} timne to complete the same process, provided that
cach of the M processors is equal in power to the sequential processor and that all A/
processors are 100 percent utilized. The increase in run time performance ,s a factor less
thar or equal to Af. This theoretical upper bound on parallel computing performance is
the primary motivation towards parallel comnputing. In the futu,e, this n.ay be the only
means available to decrease execution time. Even if technology can continue increasing the
speed of sequential processors, the rate of performance increase is significantly less than

the potential of establishing an v-fold increase by using massive parallelism.

2.3 Flynn's Tazonomy

Michael J. Flynn classified all digital computers into four categories according to
the types of instruction and data streams used. An instruction stream is a sequence of
instructions executed by a given computer. A datastream is a sequence of data representing
input, output or temporary results used to calculate the output. Flynn’s four categories
are (12:32):

1. Single Instruction stream, Single Data stream (SISD).




2. Single Instruction stream, Multiple Data stream (SIMD).
3. Multiple Instruction stream, Single Data Stream (MISD).

4. Multiple Instruction stream, Multiple Data stream (MIMD).

The simplest architecture is the SISD class. These computers execute one instruction at
a time and operate on one piece of data at a titae. The most complex architecture is the
MIMD class. MIMD-computers execute multiple instructions simultaneousiy on different
data. One may think of a MIMD computer as several processors tied together, each
processor of which is a fully functional and often times powerful computer. The manuer
in which the processors of a MIMD architecture are tied together distinguishes loosely

coupled and tightly coupled MIMD computers.

2.4 Tightly Coupled VS Loosely Coupled MIMD Axrchitectures

The individual processors of a parallel process:r architecture must cooperate with
one another in order to solve a particular applicatior. This cooperation often entails the
sharing of data structures and variables which reside . 1 memory. One approach to parallel
architecture design is to have a global memory whica each processor may access. This
shared memory design iz referred to as tightly coupled. This dewign has the advantage of
internodal communications at memory speeds. The disadvantages-include bus contention,
cache coherence and memory access. Memory can only be read from or written to one
address at a time; hence, the individual processors of a tightly coupled architecture often
fight’ over access rights to memory. Current bus-architecture-technology limits the number
of processors t0 40 or 50. Cache coherence is a problem in that multiple processors may alter
variables in memory even though some or al' of the variables reside within an individuval
processor’s cache. This poses the problem of having muiliaie (ariable values within the

local caches of different processors (9:19).

An alternative approach to parallel architectii. design is to have separate local
memories owned and controlled b, the individual processors. Such a design is referred
to as looscly coupled. These designs prohibit -processors from accessing memory variables
outside of loval memory. These variables must then be communicated via message passing
which i; considerably slower tha.a the memory speeds achieved by the shared memory
concept discussed above, but cache coherence and bus contention are not problems and
the size of the architecture is scalable to several thousand processors depending upon the

connectivity between the processors {9:20,21). Research continues as to the applicability

=1




of both architecture designs towards specific problems. This thesis effort focuses on the
application of the Intel iPSC/2 hypercube loosely coupled MIMD architecture towards-the

classical pool balls simulation.

2.5 Hypercube MIMD Architectures

A loosely coupled distributed architectur- ;. ust send and receive comm.:nicated vari-
ables across interconnecting communications ne .sorhs which are significantly slower than
CPU cycles, bus cycles or even memory cycles. "'.ae approach feward keeping communi-
cati~ns time to a minimum is to have each proc ssur (often times referred to as a ‘node’)
directly connected to every other processur so that the communications line is both short
and direct. This type of fully connected ™. MD architecture is known as a crossbar. Cross-
bars require Af® links between M nodes which is expensive both in terms of hardware
cost and size. Scalability of crossbars is severely restiicted since the communications links
zrow with the square of M. Thus, the communuications time complexity is O(1) at the cost
of O(M?) links (9:114-116). A.. architecture which uses fewer communications links has
greater scalability but greater communications time. The least number of links possible
between nodes is two represented by linear arrays and ring netw.rks. These interconnec-
tion networks Lave communications time complexity of O(M) at the cost of only O(1)
links (9:114-116). These types ¢, networks work well if the application requires nodes to

share data between themselves and their immediate neighbor.

The hypercube enjoys the greatest popularity amongst loosely coupled MIMD ar-
chitectures because of its versatility, scalability and communications time. A hypercube
has M = 2™ processors interconunected as a binary cube. Each processor is a fully self
contained computer with its own clock, CPU and local memory. Each processor also has
m connections with other processors in the cube. Hence, the worst case communications
time between any two processors is O(log #/). This places the communications time be-
tween the high speed of the fuily connected MIMD architecture-and the ring architecture
while preserving the capability of scalability. The Intel iPSC/2 hypercube has a front end
processor that is directly connected t- each node of the cube via a 10 Mbps ethernet con-
nection. Each node employs a. Direct Connect Module (DCM) which frees a node’s CPU
from directing message traffic. Each of the nodes is made up of a standard Intel 80336
processor rated at 4 MIPS (5:441-451).

L)




2.6 Performance Mvasures

There are several measures of performance forpa. allel coinputing. The most common
measuiement is specdup which Hayes describes as the ratio of the total _xec.tion time on
a sequeztial computer to the corresponding execution time on a parallel computer using
M processors (11). Mathematically,

T,

S() = H (1)

Since T, > Z—} the speedup S < M. Stone feels that the defi- ition nsed by Hayes
and others leads to ambiguity because the definition provides for inflated values. Instead,
Stone states that speedup is the 1atio of the best possible serial algorithm implementation
o the parallel implementation {21:141). A speedup which measures the performance of the
same algorithm implemented serially and in parallel should, according to Stone, be defined
as rclative speedup. This thesis uses Stone’s concept of relative speedup for performance

analysis.

Another useful performance measure is efficiency which Hayes describes a~ speedup
per degree of parallelism {11:583), defined mathematically as:
S(M)

E(M) = = (2)

2.7 Taxonomy of Simulations and Simulation Models

A simulation may be either discrete or continuous. A discrete system allows the state
variale; to change only at discrete points in time whereas a continuous system allows the
state veriables to change continously over time. A model is defined as a representation of
a system. A model need only include the zspects of a real system under observation whose
behavioral characteristics are intended for study. The model is hence a representation
of a real world entity Lut it is also a simplification of that entity. Models are typically
described by three attributes: statlic or dynamic, deterministic or stochastic, and discre’e
or continous. A static model represents an entity at a particular point in time (usually
referred to as a Monte Ca:lo model) whereas a dynamic model represents an entity as it
changes over time. The pool.balls simulation uses a dynamic model. A deterministic model

has a known set of inputs and results in a unique set of outputs. There are no random

variables in a deterministic model. A stochastic model is probablistic and relies upon one




or more random variables as inputs. Due to the randomness of the inputs, a stochastic

model must be considered only as an estimator of an entity’s behavior. Statistical estimates
sought as outputs of a stochastic model include the mean time between -failure, the mean
service, or mean wait time. The pool balls simulation uses a stochastic model as the pool
balls are generated with random positions and velocities. A simulation model may be cither
discrete or continnous. A discrete simulatic n model represents an entity that changes only
at discrete points in time. A continuous model represents an entity that changes constantly
over time. Most queueing models are discrete. The pool balls model is continous. It is
important to note that a continous model may be observed only .. discrete points in time
and a discrete model may be continously observed over time. The pool balls simulation

is discrete but the model "s continous as each pooi ball continously changes with time
(2:3-12).

A simulation may be time driven or .. ent driven. A time driven simulation-updates
a dynamic simulation model by con:*ant time intervals. With regard to the pool balls
simulation, a time driven implementation would move each pool ball by a predetermined
delta t. A time driven simulation may be allowed to process faster by increasing the delta
t value thereby requiring fewer updates over a specified tim« interval; however, resolution

of the simulation output decreases as the delta ¢ increases.

An event driven simulation updates objects within a simulation model at discrete
points in time which have been defined as ‘events of interest’. If the events can be properly
defined, the event driven simulation promises theoretical inprovement over its time driven
counterpart. This potential performance gain of the-event driven approach arises from
only having to calculate the state information for the exact set of events of interest. The
time driven approach will calculate the state information for no. only the set of events of
interest but also for all of the incremental states corresponding to the delta times (which

«re not events of interest).

Do

2.& Distributed Discrete Event Simulation Paradigms

Chandy and Misra developed a conservative synchronization paradigm in 1979 for
the sacessful implenentation of a distributed discrete event simulation. Jefferson et al
presented their optimistic synchronization paradigm in 1985. To date, all other proposed
paradigms are variations and extensions to the two original paradigms. The problem that
hoth paradigms overcon.2 is the handling of out-of-sequence messages. Consider the pool

balls scenario presented in Figure 1.
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t=5.0

@
=4.0 t=3.0 t=1.0
®
NODE 0 NODE 1 NODE 2
i Figure 1. A Partitioned Pool Table with a Future Collision

In Figure 1, suppose that pool balls 1 and 2 will collide with one another at time
{ = 4. Let us assume that for the parallel implementation, the pool table is sliced into
sectors with one sector allocated to each of three nodes. Each node knows only of the
existence of its pool balls. The leftmost sector on node 0 cannot ‘see’ ball 2 on node 2 and
vice versa. This situation causes node 0 to predict that ball 1 will strike the top horizontal
cushion at time ¢ = 5 while node 2 will predict that ball 2 will exit the sector at time
t = 1. If both node 0 and node 2 execute their events simultaneously, node 2 will be
correct and node 0 will be incorrect. Eventually, ball 2 will migrate to node 0 but the
collision between the two pool balls will no longer be possible because ball 1 has already
been simulated past the collision time of { = 4.0. The arrival of ball 2 at node 0 at time

= 3.0 is an oul-of-sequence message if node 0 has already simulated past time ¢ = 3.0.

An optimistic strategy assumes that out-of-sequence messages will not occur; thus,
every node in the distributed system processes all of the data that it can. As-each event is
processed, the state data is stored in memory. If an out-of-sequence message does occur as
it would in the scenario of Figure 1, the node that receives the message reverses (referred to
as rollback) the simulation back to the last event executed just prior to the out-of-sequence

message. The simulation is then recalculated with the newly arrived message data.
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A conservative strategy prevents out-of-sequence messages frorm occuring by pre-
venting processors from executing until such a time that they can safely guarantee that ne
out-of-sequence messages will arrive. Thus, node 2 of Figurel would have been allowed to
process the exit event of ball 2, but node 0 would have been required to wait (i.e. to sit
idle) until it was safe to process. The mechanism used by Chandy and Misra to guaran-
tee system correctness is the Minimum Safe Time (MST) which is a calculated value of

simulation time which guarantees that no out-of-sequence messages will occur up to time
t < MST.

Both paradigms have strengths and weaknesses. The optimistic strategy requires
large amounts of memory for rollback and can exhaust the memory during the simulation.
Chandy and Misra have shown that their conservative paradigm requires only a bounded
amount of memory and does not require more memory than a sequential simulation (15).
Lipton and Mizell assert that Time Warp outperforms Chandy-Misra by a factor-of p in
the best case and cannot lag arbitrarily far behind Chandy-Misra in the worst case (16).
This is based on the intuitive premise that Time Warp can ‘win big’ if it correctly guesses
the correct choices concerning what events to process and what events not to process.
Furthermore, even if a processor incorrectly processes an event, as in Figure 1, it is the
processor which has processed furthest in simulation time which is penalized; therefore,
the simulation is no slower than the slowest processor plus some constant overhead factor
to enforce the roll back. Lin and Lazowska have taken a more analytical view but conclude
basically the same thing. Their conclusion is based upon models of the Time Warp and
Chandy-Misra paradigms which employ several underlying assumptions. Assumption 2.1
in Lin and Lazowska’s paper states that each logical process is assigned to a dedicated
processor. This assumption reduced the potential speedup of their model because not all
conservative models require a one Lo one mapping between logical processes and processors.
Let the number of logical processes be k and the number of processors be n. The probability
of an idle processor using Chandy-Misra decreases as n decreases such that k& > n. (15).
Thercfore, Lin and Lazowska’s conclusions may be erroncous for conservative strategies
that can assign multiple processes to processors. Lin and Lazowska referenced this fact in
their concluding remarks. Assumption 2.2 in Lin-and Lazowska’s paper states that Time
Warp can rollback a simulation in negligable time. This underlying assumption is perhaps
required to reduce the variables in an analytical model, but the assumption is not realistic.
Indeed, Lin and Lazowska state in their concluding remarks that the overhead of the Time

Warp operations is greater than that of the Chandy-Misra operation. This discrepency has




beer taken into consideration by Lipton and Mizell causing them to conclude that Time
Warp is always within a constant factor of optimal. The question addressed by this thesis
is whether or not a conservative approach can also be made within a factor of optimal and
whether or not this factor can be higher than Time Warp. This thesis also demonstrates
that the pool balls simulation can be effectively partitioned such that multiple logical

processes can be assigned to each processor.

2:9 The Theories of Chandy and Misra

Each process in a physical system is simulated by a separate logical process. Chandy
and Misra use the term LP for logical processes and PP for physical processes. The logic
of an LP depends solely upon the PP that it is simulating. An LP, has a communications
link to LP; if and only if PP; has a communications (dependency) link to PP,. All
messages between LP, and LP, consist of a tuple (t,in) such that £ represents the time of
the message and m represents the contents of the message. An LP can only process up to
the time of the latest tuple which was received. This condition is sufficient to guarantee
that no out-of-sequence messages will be received by any LP and simulation correctness
is thus guaranteed (3). These concepts form the basis for Chandy and Misra’s original

publication in 1979 subject to the following constraints:

1. A process may decide to send a message at any arbitrary time ¢ > 0 (6:440).

2. For all message tuples of a simulation time period (0, Z),
0< 8 < < b €27 (6:442).

3. A message is sent from LFP, to LP, if and only if LF, is ready to send the message

and LP; is ready to receive it (6:443).

The third constraint stated above allows for the possibility of deadlock. Chandy and
Misra assert that all distributed discrete event simulations using a conservative paradigm
are subject to deadlocks and therefore require a mechanism to accommodate it. Chandy
and Misra provide three such mechanisms. The first two are straight forward  deadlock
detection and recovery and deadlock avoidance. The third mechanism which is both favored
and pioneered by Chandy and Misra is the concept of NULL messages. Such a message
consists of the tuple (¢, NULL) which does not exist in the physical system. The presence
of a NULL message allows LP’s to continue processing up to the time of the NULL message
when they would otherwise be blocked. The following queueing network tahen from Chandy

and Misra’s article serves to demonstrate this process (6:446).
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Figure 2. A Queuing Network that can Deadlock

1. Source outputs (50.m;) to LPI.
2. LP1 outputs (50,m,) to LP2.

3. LP2 outputs (55,m,;) to LP3. At this point, LP3 is still waiting to receive a message
from LP1.

4. Source outputs (100, m;) to LP1.

. LP1 outputs (100,m,) to LP2.

o

6. LP2 wails to output (105,m2) to LP3 because LP3 is not ready to receive another

message from LP2 until it first receives a message from LP1.

. Source ontputis (150.m3) to LP1.

-1

il

. LP1 waits 1o output (150.m3) to LP2 because LP2 is not ready to receive another

message from LP1 until (105, m2) is sent to LP3.

At this point, the queueing network is deadlocked because LP3is expecting a message from
LP1 which it never received; therefore. LP3 cannot accept LP2's second message which
cannot accept LP1’s third message. LP1 will never be able to send LP3 a message because
it is waiting for LP2 to accept LP1’s third message. Every LP is thus waiting upon every
other LP.

Insertion of NULL messages in Chandy and Misra’s example avoids th2 possibility
of deadlock. At the time of the arrival of the first message m; at LP1, LP1 determined
the message should be addressed to LP2. Even though this message was not the type

required by LP3, LP1 can still send a NULL message to LP3 at time t = 50. This
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would have allowed LP2 to send the tuple (105,m,) to LP3 and LP3 could have then
reccived: the tuple. It should be clear that the NULL messages corresponding to the
tuples (50, NULL), (100, NULL) and (150, NULL) are sufficient to avoid the deadlock
situation. The drawback to the NULL message approach is that logical processes are
required to process more messages than exist in-the physical system. Such-approaches are

ill suited towards course grain machines due to the excessive message traffic which can

tesult.

Chandy and Misra expanded their theory and presented afollow up paper in 1981 (5).
They developed a new constraint such that within a physical system, the ‘...behavior
of a PP at time ¢ cannot be influenced by messages transmitted to it after t (5:198)".
This necessary condition is called the realizability condition. This leads indirectly to the
assertion that if LP; sends LP, a message (1, my), it implies that all messages from
PP; to-PP; have been simulated up to time t; (5:199).

2.10 FEvent Modeling

Schruben defines a system as a set of entities. Entities may fall into one of two
general categories referred to as resident and transient. A resident entity is considered to
have the property of permanent existence. For example, a simulation of a factory might
model the machines-in the factory as resident entities since the machines are always there.
A transient entity is not permanent. Thus the factory simulation might instead model the
behavior of the parts as they pass from machine to machine (20:101-102). With respect to
the pool balls simulation, this corresponds to modeling the pool table sectors as resident
entities or modeling the behavior of the pool balls as transient entities. Schruben maintains
that both viewpoints are equally valid and both viewpoints should be considered during

the simulation design phase.

2.11 Spatial Partitioning

Wieland and Hawley researched the application of sectoring a battlefield for the
STBS89 tactical battle simulation (22). Each object in the simulation has a ‘perception
radius’ which defines the range that an object can detect another object. As an object
approaches a partition border, the perception radius eventually becomes tangent to the
border. If the object continues to-move toward the border, the perception radius will

proirude into the adjacent sector. This-condition requires that the object have knowledge of




all objects residing within-the au :ent sector. Wieland identified two techniques available
to accommodate this condition. The first is to have the sector owning the moving object
receive a copy of all of the objects residing within the adjacent sector. This technique is
presumed to yield poor results because the search space of the original sector will approach
the search space of a non-partitioned battlefield thereby negating any potential gains. The
second approach that Wieland identified is to provide the second sector with a copy of the
object which is moving towards it. Ilence, only one object is passed and the search space
of both sectors has at most an-O(1) increase. Wieland’s strategy identifies three critical

events as shown in Figure 3 (22:3).

()
O—
-

Sector 0 Sector 1

Figure 3. Wieland’s Grid to Grid Pioximity Detection

Wieland states that the first event occurs whenever a part of an object’s perception
radius is tangent to the sector boundary. At this time, an ‘Add_Unit’ message is sent
to the adjacent sector; however, the adjacent sector does not ‘control’ the object added.
Wieland refers to this additional object message as ‘data replication’ since the object exists
on two processes (sectors). The second event occurs when the object’s center (i.e. that
which defines the object’s location) crosses the sector border. At this time, a change of

ownership message is sent from the original sector to the gaining sector. The third event

16




occurs when the object’s perception radius is again tangent to-the sector border. At this

time, a ‘Delete.Unit’ message is sent from the gaining sector to the losing sector.

Wieland added a comment in his analysis stating that the second event which he
identified in his data-partitioning and replication strategy could be eliminated. There were

no comments regarding any experimental studies concerning this latter assertion.




III. Requirements Analysis

3.1 Introduction

The Air Force Institute of Technology is interested in developing techniques for the
successful design and implementation of parallel discrete event simulations beneficial to
the Department of Defense. Two specific applications include hardware design simula-
tions (using VIIDL, for example) and battlefield simulations. The Institute is currently
emphasizing distributed simulations incorporating the conservative-synchronization strat-
egy rather than the optimistic strategy. Unfortunately, there has been little reported in
the literature on either design or implementation for non-queueing theoretic models for
discrete event simulations which use the conservative paradigm. Several questions need
to be addressed before attacking the parallelization of large software systems sucl as the

battlefield simulations used by the DoD. These questions include:

1. How can (or should) the problem domain be partitioned?

2. Can a distributed simulation achieve comparable (or superior) performance using a

conservative strategy rather than an optimistic strategy?

3. Can speedup be achieved to alarge enough degree to make the parallelizing of existing

DoD simulations worthwhile?

4. Are successful distributed simulations incorporating a. conservative strategy scalable?

Insights into the above questions may be found through. the design and implemen-
tation of a small scale simulation. The classical pool balls simulation is ideal subject
matter because it has-many of the same processes that a battlefield simulation has. These
processes include the handling of moving objects through space (albeit two dimensional),
search algorithms for object event identification, geographic domain structure and appli-
cation of spatial partitioning with limited data replication. Furthermore, the pool balls
problem domain is well understood and documented and test results are available for the
comparison between an optimistic strategy and a conservative one. This will also be the
first research effort at the Institute for the design and implementation of a non-queueing
problem incorporating an event list with the conservative paradigm; therefore, this research

will provide valuable experience to the Institute for follow on work.
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3.2 Requiremenls

The following-requirements were established for this project.

1. Comply with Stated Requirements of Cal Tech’s Pool Ball Experiment. It
was desirable to maintain consistency with-Cal Tech’s simulation for all matters of
relevance so that a comparison could be made between the two paradigms used (3).
Some of the stated requirements of the Cal Tech experiment were not considered
relevant and were thus ignored. Two specific instances include Cal Tech’s requirement
that the-pool balls have variable radius and mass. The following requirements were

extracted-from Cal Tech’s requirements.

(a) BEach pool ball has measurable size and measurable mass (i.e. the pool balls are

not point particles) .

(b) Collisions between pool balls are perfectly elastic thereby conserving energy and

momentum.
(c) The pool balls move without friction.
(d) Rotational energy of pool balls is ignored.

(e) The enforcement of collisions follows the physical properties of elastic collisions

(i.e. the collisions are realistic).

(f) The pool table has no ‘pockets’; therefore, the number of pool balls for any

given simulation does not change for the duration of the simulation.

(g) Every pool ball occupies a unique space on the table and no two balls can occupy

a portion of the same space (i.e. overlap is not allowed).

2. The Simulation Will Support Variable Quantities of Pool Balls. The upper
bound on the number of pool balls is specified in terms of the memory available for
dynamic allocation of pool ball instantiations and what will physically fit on the pool
‘table.

3. The Dimensions of the Pool Table Will Be Modifiable. Although the length
and width of the pool table is not deemed a highly dynamic variable, the capability for
changing the length and width is required. This factor allows for changing densities
of pool balls on the table as well as the ability to expand the pool table so that-more

pool balls can physically be located on it.
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4. The Radius and Mass of Each Pool Ball Will Be Equal.

5. This Simulation Will Incorporate a Conservative Synchronization Strat-
egy.

6. The AFIT Generic Simulation Shell Will be Used Both in the Simulation
Design and Implementation. ATIT has developed a generic simulation-driver for
discrete event simulations for standardization purposes. This driver is object oriented
and consists of a next event queue, a clock, an event manager; and a simulation
controller that sequences through the simulation. The application specific software
interfaces to AFIT’s simulation driver.

3.3 Developing the Equations of Motion

The requirements for this thesis demand that the collisions between pool balls con-
form to the principles of elastic collision and frictionless motion. Since the developinent
of the equations of motion was not specifically stated in previous literature, it is shown
here to support this research. The initial equations used. can be found in most elementary

physics books.

The equations for conservation of energy and momentum for two pool balls B and &
having initial velocity vectors V4 and vg and final velocity vectors V; and v, are respectively

as follows:

,l ) 1 )
;Z-mlvol' + 5771]\/0]-

I . 1 =,
§m|v1|' + -2—le1|‘ (3)

mi, +mVy = mi; +mV] (4)

Equations (3) and (4) form the basis to develop algorithms for solving the events of pool

balls colliding with cushions and pool balls colliding with one another.

Another useful equation is that of frictionless motion on a two dimensional plane.

‘X.l JYO + ‘/x * AT
Y; o+ V, 4 AT

The set of events S contains five event types which have been defined as events of in-
terest. These events are S = {VERT, HOR, COLL, PART, EXIT}. These event types
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correspond lo vertical cushion collisions, horizontal cushion collisions, collisions between
pool balls, r'eaching a sector boundary and crossing.a sector boundary respectively. The
partition and exit events are only used for a partitioned pool table in accordance with
Wieland’s two step sectoring strategy (22). The following sections derive the equations
used to calculate the time at which each of the five event types will occur and the equa-
tions used to calcute the ball state information for a pool ball that executed an event type.
It is assumed that the pool table is a rectangle with.its top and bottom cushions parallel
to the X-axis and its left and right cushions parallel to the Y-axis. Throughout this-thesis,
the top and bottom cushions are referred to as ‘horizontal cushions’ while the left and
right cushions are referred to as ‘vertical cushions’. Figure 4 shows the layout of the pvol
table on an X-Y coordinate system. Each ball has its position defined by the X and Y

coordinates pf the ball’s center. Each pool ball has the following state information:

ball time tag
o X
o Y
v,

Yy

The pool balls algorithm calculates the time of the next event for each pool ball. Each
pool ball will have an event corresponding to one of the event types in S. To determine
which of the event types will occur for any given pool ball, an event time is calculated for
each of the five event types. By definition of monotonicity, the earliest calculated event
time for the set S defines the next possible event for a pool ball. The time - of each event
type in S is determined by f» = 1, + AT where AT is calculated using equation 5 and

is the current ball time tag.

3.3.1  Event Cualeulations for Collisions with Cushions This section develops the
equations used to calculate the time at which a pool ball will strike any of the four table

cushions and the ball state information after striking any of the four table cushions.

3.3.1.1 Calculaling AT lo Sltrike a Cushion The X-axis coordinate is known
for both the left and right vertical cushions. These values are 0.00 and Xegpre sewpen respec-

tively where Xasregengn is the user defined length of the pool table. The velocity V; of
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Figure 4. Layout of a. Pool Table on an X/Y Axis System

a pool ball determines whether the ball will strike the left or right vertical cushion. The
kuown X-axis coordinate for the appropriate vertical cushion is substituted into equation 5

as X;. Using equation 5, the delta time of the collision is defined by

AT = ——-—(Xl — o)
Ve
The Y-axis coordinate is known for both top and bottom horizontal cushions. These
values are 0.00 and Y qpre_wiaen respectively where Yiaste_wias is the user defined width of
the pool table. The velocity 1}, of a pool ball determines whether the ball will strikethe top
or bottom horizontal cushion. The known Y-axis coordinate for the appropriate horizontal
cushion is substitued-into equation 5 as ¥;. Using equation 5, the delta time of the collision

is defined by

_ (-Y)
AT = S




3.3.1.2  Calculating the State Information for Cushion Collisions The ball
time tag-is simply replaced with-the time of the event to be executed. This time is stored
as a parameter with the event message. The parameters X and Y can be calculated directly
from equation 5. The velocities v; and v, are calculated indirectly from equations 3 and
4. Let ¥ be the velocity of the cushion and-¥ be the velocity of the ball object. The mass
of the cushion is much greater than the mass of the ball; therefore, the following equations

can be used for a vertical cushion event.
= (6)

If the eveu. type is a horizontal cushion event, then equation 7 defines the new values of
v, and 1,.

v::l -l _ Perr S (-{-)
'vyl J 7 —'Uyo J

Equation 6 requires the X-axis velocity to change direction while the Y-axis velocity re-

mains unchanged. Equation 7 is just the opposite.

3.3.2  Calculations for Parlition and Exzit Events This section develops the equa-
tions used to calculate the time at which a pool ball will reach a-sector border (partition
event), or depart a sector to an adjacent one (exit event). This scction also develops the

equations used to update the ball state information after a partition or exit event.

3.3.2.1 Cualculating AT for Partilion and Exit Events The X-axis coordinate
is known for both the left and right borders of any interior sector. These values are de-
termined dynamically during initialization based upon-the user specified table dimensions
and the number of sectors desired. For partition events, a. pool ball is moved to a loca-
tion corresponding to (Xiesetorder + R) OF (Xyignisorder — R) where R is the specified pooi
ball radius. For exit events, a pool ball crosses a partition into the neighboring sector
and moves a distance of 2R. The new X-axis coordinates will be (Xiess_porder — R) or
(Xrightborger + ). The velocity V. of a pool ball determines whether the ball will rcach
the left or right border, or exit the sector to the left or to the right. Using equation 5, the

delta time of the partition or exit event is defined by

(X1 - Xo)
V.

AT =




3.8.2.2 Clalculating the State Information The ball time tag is simply re-
placed with the time of the event to be executed. The parameters X and Y can be
calculated directly from equation 5. Since partition and exit events are not -associated

with collisions, the pool ball velocities V; and V, do not change.

3.8.3 PEwvent Calculations for Collisions Between Pool Balls To determine if a pool
ball will strike another pool ball,-the two point formula for the distance between two lines

can be used. This formula is stated as equation (8).
P o= (Xi—a)l+ M -n) . (8)

where [ is the straight line distance between the centers of the two colliding pool balls at

the point of impact. This is shown ia Figure 5.

N

X

Figure 5. Two Balls Colliding at the Point of Impact

3.8.8.1 Calculating the time of Impact for a Ball Collision The location of a
pool ball is defined by the coordinates of its.center of mass; therefore, the linear distance
separating two balls at the moment of impact is the sum of the radii. Since every pool

ball for this simulation has equal radius, the value of I* in equation (8) is 4R%. Equation
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(8) is most easily implemented if the two colliding pool balls have the same initial logical
times; otherwise, the difference in logical times must be accounted for as variables. The
possibility exists that twocolliding pool balls could have different initiallogical times. To
accommodate this possibility, the pool ball having the lesser logical time is moved by a
delta ¢ such that its logical time is equal to that of the other pool ball. The values of
X1,21, Y, and 3 (after both pool balls have equal logical times) must be substituted

with those of equation (5). Solving for AT results in equation- (9).

0= AT +bAT + ¢ (9)
where
a = VIeV:-20V, =20V, 40+

b o= 2XeV, +2YV, — 2Xou, — 2¥ev, —
2.’!;'0‘/; - 2y0‘/y + 2.’1:01)1 +- 22’0?13/

¢ = X§+Y3— 220X~ 2ypYo + a2 + yd — 4R?

The values of a, b and ¢ are simply the coefficients to the quadratic formula from which AT
may easily be solved. From an algorithmic point of view, only real roots to the quadratic
solution represent viable collision times. As such, the determinant must be inspected for
non-negative values. If the quadratic solution consists of two real roots, the lesser of the

two represents the delta time at which the wwo pool balls in question will collide.

3.3.3.2 Culculating the Stale Information after a Ball Collision Once two
pool balls collide with one another, both velocity vectors will change. Solving for the new
velocity vectors in the X/Y coordinate systemn is most casily solved if the coordinate system
is rotated to form a new R/P orthogonal system where R is the axis formed by the tangent
to the two pool balls at the point of collision and P is the axis which is perpendicular to
R. 1t will be shown that the vector components Vp and vy are simply interchanged as a

result of a pool ball collision.

To solve for the new velocity vectors, equations (3) and (4) are used where |H]* =
3y + v3o and |V]? = Vi3 + V3, in equation (3). After substituting the values of |Ff* and

[V4]? into equation (3), the equations for conservation of energy and momentum become
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that of equation (10) and (11) interms of the new R/P coordinate system.

- v? + V2 ,02 + ‘/2

RO RO = fl R1 (10)
“vho + Vi vpy + VE
- vro + Vo _ | + Vpy | (11)
- vpo + Vo ] | vpr Vpi ]

Equations 11 and 10 can be easily manipulated to produce equation 12.

0 - (Va1 = vro)(Vry — Vo) (12)
0 (Vp1 = vpo)(Vey — Vpo)

Solving for Vp and Vp, yields Vg = vpo and Vp; = Vpy. Substituting these values into
equation (11) results in equation (14) which represents the resultant velocity vectors of the

two colliding pool balls in terms of the R/P coordinate system.

v | | Vo
vp1 - Vpo
- (13)
Vpi - Vno (14)
RGY | Vo |

3.3.3.3 Rotaling the X/Y Coordinate System Tigure 6 illustrates the rotation
of the X/Y coordinate system to form the new R/P coordinate system. The line connecting
the two pool ball’s centers is one of the desired orthogonal axes. Let this line be L. Let @

be the angle made with this line and the X-axis. Then-

Yi-wn
= —_ 5
# = arctan (Xl ; 1) (15)

Let ¢ be the angle made with the velocity vector V' and the X-axis. Then

Y
¢ = arctan A (16)
x

Let ¢ be the angle made with the velocity vector V' and the line L. Then
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Figure 6. Translating an X/Y Axis System

v = ¢-0 (17)

The new orthogonal reference system has axes  and P where R is the axis along the
line L connecting the two balls and P is perpendicular to R. The new velocity vactor of

a given ball is then defined by Vi and Vp which are clearly the following.

V V cos(¢)
R _ (v (18)

Ve vsin(p)

The velocity components Vp and vp may now be interchanged in accordance with

equation (14); however, it is more convenient to first decompose Vi and Vp into their




respective X and Y components yielding equation (19).

[ Vi 1 [ Vi cos(8) ]
Vor | 1 Vgsin(@
| _ | Ve (6) (19)
Vep —Vpsin(9) -
| ‘/yp i i ‘IR COS(O) ;

Once V. and V,, are interchanged with v;, and v,,, the resultant velocities must

be translated back into the X/Y orthogonal axis system resulting in equation (20).

Ve vep + Vop
Vol _ | wrtVr | (20)
Vr V:R + t.p

L vy | i Vir + vyp |

3.4 Simulation Environment

A simulation environment existed for all distributed discrete event applications. This
environment was required to be used in an effort to standardize software from various
research efforts. The environment is object oriented in the C programming language. The
objects defined in the environment include a simulation driver, a clock, a next. event queue

and a generic event which must be tailored to a specific application.

32.4.1  Simulation Driver

Functional Description The driver forms a basic conditional loop construct. At each
iteration, an event js executed, a new event determined, and another event is executed
until 2 DONE event is reached. A DONE event signifies that the execution of another
event would set the simulation clock beyond the user specified simulation run time.

The loop exits, and control-of the program is returned to the iPSC/2 host processor.




Functional Description: The clock object manages all aspects of the simulation clock.
The simulation time is updated each time the clock object is called. The simulation

‘time is a double precision floating point variable.
Attributes: Time.

Operations:

init_time

set.time

adv_time

get_time
3.4.2 The Neat Event Queue Object

Functional Description: The nezt event queue (NEQ) object stores all scheduled events.
The events are insertion sorted by simulation time (next event time). The NEQ is

implemented as a singularly linked list.
Attributes: None.

Operations:

e init_neq

¢ show.neq

o add_event

o gel_event

e count_event
s neq.time

o simultancous

s count
3.4.8 The Lvent Object
Functional Description: The Event object as implemented is actually a class of objects

such that each desired event must be instantiated from the ‘event’ operations. Each

instantiation becomes an-object.
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Attributes:

o Time

o ID

o Typeof event
¢ Pool Ball ID(s)

Operations:

¢ new_event (allocates memory for an event)

e show_event

o zap_event (deletes memory allocation for an event)
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IV, Software Design

4.1 Introduction

This chapter outlines the design steps used to develop the parallel pool balls simula-

tion. The pool balls simulation was designed in three incremental steps.

1. Development of a sequential simulation without partitioning or data replication.
2. Development of a sequential simulation with partitioning and data replication.

3. Development of a parallel simulation with partitioning, data replication and conser-

vative synchronization.

Each of the above designs were object oriented. An object oriented design (OOD ) approach
was selected to enhance software maintenance capabilities for follow-on research of the
pool balls concept. This chapter describes the evolution of the sequential, non-partitioned
simulation into the parallel implementation by first analyzing the sequential version and

then by highlighting the design changes required to implement the follow on versions.

4.2 Design of a Sequential Simulation without Spatial Partitioning

The simulation environment was object oriented. An object oriented application
was therefore easier to interface than alternative designs such as functional, top down,-or
Jackson (JSD). The-OOD pool balls application defined objects representing a ball object,
ball object manager, table sector, table sector manager, random number generator and an
event handler object. The table object creates the pool table for the appropriate or specified
table dimensions and stores all of the boundary information related to the table. The ball
object creates all of the pool balls for the simulation and stores them in a data structure.
All operations related to-the inanagement of pool ball objects take place here. The random
number generator js a machine independent pseudo-random number generator developed
by Law and Kelton (14). This random number generator is capable of generating uniform,

logarithmic, exponential and normal distributions having a lower and upper bound. The

event.handler object determines the next event of interest and enforces an event passed-to
it.




4.2.1 :Design of the Ball Object

Functional Description: The ballobject is an instantiation of a class of pool balls. Each

pool ball object is dynamically allocated and deallocated to and from memory.

Attributes:

Radius
BallID
Ball_Time

o
< "M

o Vx

o Vy

Dol Seedt

e Dol Own.lt
WhoOwns.It

Operations: None.
4.2.2  Design of the Ball Object Manager

Functional Description: The ball manager is an abstract data type whose sole purpose

is to store the pool balls which are assigned to it.
Attributes: None.

Operations:

o Initialize
s Add
Remove

Reset

Increment
e Set
More
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¢ Get.and_Delete

e GetNext.Ball

e Get_This_Ball

e Print_Balls.In.This_Sector
o Head

e Tail

o Is Empty

e Is_Found

o Length_Of

o Check_This.Ball

Detailed Design: It was desirable to design data structures for the sequential, non-
partitioned application which required as few changes as possible to accommodate the
more complex sequential, partitioned version and the parallel, partitioned version of the
software. It was also desired to minimize the search, add and delete functions for the ball
object manager. These functions require searching and traversing the data structure which
stores the ball objects. For the relatively simple case of the sequential, non-partitioned
application, an array structure minimizes the search and traversal time. This is not the
case for a partitioned application because each sector has a high probability of containing
only a subset of pool balls. Let N be the total number of pool balls created and let M be
the number of pool balls in any given sector at some instant in time. Then M < N. Three
data structures were considered during the design phase: an array, a linked list and an
indexed linked list. The time complexities for each of the three data structures considered

are shown in Table 1 for the search and traversal operations.

Table 1. Order of Analysis for the Ball Manager Data Structure

Data Time to | Time to
Structures Search | Traverse
Array “0(1) O(N)

Linked List || O(M) | O(M)
Indexed LL | 0(1) | O(aM)

From Table 1, the indexed linked list provides superior time complexity for both

searching and traversing, especially when ¥ > M. Therefore, the indexed linked list data
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Figure 7. Data Structure for Storing Pool Balls

structure was selected even though the initial application uses only a single sector, negating
any advantages of the indexed linked list over the simple array. The data structure is shown
pictorially in Figure 7. All ball objects contain a Ball.ID attribute which is implemented
with unique positive integers. The array clement corresponding to zero is set to always

point to the tail of the linked list.

4.2.8  Design of the Table Sector Object

Functional Description: The lable sector object is an instantiation of a class of sectors. )
Even though the initial application did not incorporate sectoring, it was desirable |
to develop data structures which were easily transportable to the more complex
applications to be designed later. For the inital software version, the pool table
consisted of a single ‘sector’. The sector object defines the sector boundaries. Each

sector is assigned a unique Sector_ID number.

Attributes:

SectordD
Left_Border
Right.Border
e Top

Bottom

Type_Left_Border

Type_Right_Border




Left_Neighbor
Right Neighbor
Is_Left

Is_Right

Operations: None.

4.2.4 Design of the Table Sector Manager

Functional Description: The table sector manager object stores all of the sector objects

and provides information about the sectors.

Attributes:

o Table_Length
o Table.Width

Operations:

Determine.Table_Dimensions

¢ Determine Sectors

o GetX_.Length

e Get.Y_Length

s GetLeft_Border

¢ Get_Right_Border

e Get.Top

o Get Bottom

o Get Left_Type

o GetRight.Type

o Dol llave.a.Teft_Neighbor
e Dol .Have.aRight_.Neighbor
¢ Get_Left_Neighbor

e Get Right.Neighbor

e Print _Sector

e Print_All_Sectors




Detailed Design: Each pool ball has a finite radius and the pool table has a finite area;
therefore, for any given pool ball radius and table area, there is an upper bound on the
number -of pool balls which can fit on the table without overlap. Three methods were

considered during the design phase to determine the length and-width of the table.

1. command line argument
2. constant

3. dynamic calculation

The first option was deemed too awkward to work with from a user’s point of view.
The second option was favored because it is easy to implement and requires no compu-
tations; however, recompiling becomes necessary if the table dimensions are too small to
accommodate a desired quantity of pool ball objects. The last option avoids recompiling.
Both options two and three above were finally selected by adding a single command line
argument. The default was set to a constant value for length and width. The variable
dimension option (if selected) dynamically calculates the length and width of the table by
using a constant density formula. The density of pool balls to table area was defined by
taking the ratio of a the area occupied -by 16 pool balls, each having a one-inch radius,
to the area of a 6 foot by 12 foot table. The table length was defined to be twice the
table width; therefore, the known table density and the user specified quantity of pool
balls dynamically determines the length and width of the pool table if the variable table

dimension option is selected in the command line arguments.

4.2.5  Design of the Random Number Generalor Object

Functional Description: The random number generator object was borrowed from the
works of Law and Kelton (14). This object is a machine independent pseudo-random

number generator which produces a stream of random numbers given an input seed.
Attributes: Seed.

Operations:

Uniform

Exponential

Normal

Lognormal
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4.2.6 Design-of the EventHandler Object

Functional Description: The EventHandlerobject determines the next event for.a given

sector and executes an event which is passed to it.
Attributes: None.

Operations:

¢ Initialize
o Determine_Next_Event

o Execute_Next_Event

4.2.7 Event Definitions Four event types are possible for the sequential, non-partitioned

version of the pool balls simulation:

1. A pool ball striking a vertical cushion.
2. A pool ball striking a horizontal cushion.
3. A pool ball striking another pool ball.

4. A ‘DONE’ event indicating that the simulation is over.

The ‘CUSHION" events were identified as either horizontal or vertical since the be-
havior of the collision differs between them. A ‘COLLISION" event consists of a collision
hetween two pool balls and the identification of both ball objects is stored with the event
information. A ‘DONE’ event signifies that the next event has an event time greater than

the user specified simulation time; therefore, the execution of a DONE event terminates

the simulation.

4.2.8  Algorithm Design Two high level algorithms were considered for the design
of the pool balls-simulation. One has a.time-and space complexity-of O(¥ ).and O(N Y while
the other has O(/V?) and O(1). AFIT’s iPSC/2 hypercube has 4 megabytes of memory per
node; therefore, memory space was not considered to be a limiting factor for reasonable
quantities of pool balls. The three factors that were considered are granularity, research
time and event list manipulation. The iPSC/2 is a course grain machine. DeCegama shows

how performance on distributed processors is affected by the granularity of the software
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with respect to-the machine’s grain size (9). e concludes that a fine grain-algorithm must
be implemented on a fine grain machine to achieve reasonable-speedup. The pool balls
simulation is inherently fine grain. This mis-match in granularity was anticipated to-result
in poor speedup results. This raises the following question: if speedup results are poor,
does this conclude that spatially partitionable models should not be implemented with
conservative paradigms, or does it simply reinforce the-assertion that fine grain algorithms
should not be implemented on course grain machines? The latter statement fails to address

any of the objectives of this thesis. The following options were available:

1. Use the O(NV) algorithm on the iPSC/2 knowing that the mis-match in granularity

exists.
2. Use the O(N') algorithm on a. fine-grain machine.

3. Use the O(XN) algorithm on the iPSC/2, but incorporate spin loops to artificially
raise the computational complexity of the algorithm. This increases the computa-
tions/communicationsratio which changes the granularity of the algorithin from fine

to course.

4. Use the the O(N°®) algorithm on the iPSC/2 which also artificially raises the compu-

tations/communications ratio.

The first option was dismissed because it fails to address the objectives of this thesis. The
second option was not possible because AFIT has only course grain machines (iPSC/1 and

iPSC/2). The third and fourth options are both viable and both were analyzed carefully.

The O(N) algorithm was considered to be more difficult to implement and therefore
would require more time to design, implement and debug. The O(N) algorithm requires
efficient storage of future events known as event list manipulation. Misra has shown that
event list manipulation is the limiting factor toward speedup (18). The O(N'?) algorithm
avoids complex event list manipulation by storing only one event at a time. This is rel-
atively easy to implement. In the final analysis, time was considered the limiting factor;

therefore, option four was selected.

The basic algorithm for the pool balls simulation revolves around a loop construct.
In each loop, every ball is analyzed to determine which ball will have the minimum next
event time. This event is scheduled by inserting it into the next event queue; thus, the next

event queue is refreshed in every loop. Simultaneous events are both possible and allowed

in which case multiple events are inserted into the next event queue. After scheduling the




next event, -the event is removed from -the queue and executed. Execution of an event
consists of removing the appropriate pool balls(s) from the ball object manager, updat-
ing the new position, calculating a new velocity, updating the-pool ball’s time stamp and
returning the pool ball to the ball object manager. The next event queue is checked for
additional (simultaneous)-events. After the next event queue is confirmed to be empty,
the loop starts over again. The simulation ends if the next event stored-in the next event
queue is 2 DONE event. A DONE event is inserted into the next event queue if, in the
determination of the minimum-next event, the next event time corresponding to the next
event is greater than the user specified simulation time. This time is specified as a com-

mand line argument. The algorithm may be summarized by the following loop.

While (! Done) loop
1. Determine the next event(s).
2. Schedule the next event(s).
. while (! empty) loop
if (Type # DONE)
Execute the next event
clse

Done = TRUE

(3

End loop

The basic algorithin used in this simulation has a time complexity of O(¥?) and a
space complexity of O(1). The time complexity stems from the fact that each pool ball
must inspect every other pool ball on the table to determine if and when a collision will
occur. Thus, the first ball must inspect N — 1 balls, the second ball must inspect N ~2

pool balls and the N — I** ball must inspect 1 ball. Thus, the time complexity is:

N 72 7
Si= ﬁ_ziﬁ

i=1

. Time Complexity = O(N?)

The O(N) algorithm, although not implemented, works as follows. During the first
loop iteration, each ball will have inspected every other ball. At most N events will be
pheasible, one for each ball and each with different event times. These events will be
stored in memory. After executing an event involving ball B, all events in the event list

containing ball B must be removed. Ball 3 must then inspect all remaining (N ~ 1) balls
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to regenerate the previously removed events. If the event list data structure is designed
efficiently, at most O(NV) time is required to remove events involving ball B and O(N)
time is required to regenerate the new events involving ball -B. Thus, the overall time
complexity is O(IV) instead of O(N?)

4.2.9 Design of the Queue Structures This thesis defines the scheduling of an event
to be the insertion of an event into the next event queue. No other-events are inserted into
the next event queue unless they occur at the same simulation time. As each pool ball
is inspected during the-determination of the next event, the current minimum next event
is temporarily stored. A simple event structure -does not suffice because the- possibility
exists of finding an event whose next event time is equal to the current minimum. Such an
event cannot be discarded nor can it replace the current minimum next event. Therefore,
a candidate queue was designed to store the current next event. After all of the pool
balls have been inspected for next events, the candidate queue guarantees to contain the
absolute minimum next event. This event is then ‘scheduled’ by placing it on the next

event queue.

4.2.10 Version I Structure Chart The structure chart for the non-partitioned se-

quential simulation is shown as I'igure 8.

4.2.11 Command Linc Arguments The pool balls simulation design incorporates
ten command line arguments all of which are optional to the user. Each argument has
a defanlt value in the event that an option is not selected. The arguments available are
listed in Table 2.

Write to Disk: This option writes the ball state information to disk after each pool hall
changes state. This output file allows the user to inspect the data and to compare
data runs. This option degrades the run time performance of the simulation not only
due to slow disk I/O but also because the host processor performs all of the writing
to disk. As each pool ball is moved. the node processor sends the d: ta to the iPSC/2
host processor for writing. Thus, a heavy penalty is extracted for this command line

argument.

Error Checking: This option examines each pool ball prior to being moved and was
intended for debugging purposes only. A pool ball must lie within the borders of

the sector to which it is assigned and the time tag must be both positive and less
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Table 2. Command Line Arguments

| Argument | Function | Default |
-w write-to disk FALSE
-e error checking FALSE
-cp - Continuously print | FALSE
) to screen
-ip initially print FALSE
i to screen )
-b# ~ number of balls 25
-p# number of partitions 1
-f fixed table dimensions | TRUE
-t# simulation fime 60.0-sec
- collect statistics FALSE
-ne# number of events 50

than the event time associated with the requested event. If any of these items are
incorrect, the event is not executed, an error message prints to the screen and the

simulation abruptly terminates.

Continuously Print to Screen: This option prints all of the pool ball state information
to the screen each time a pool ball is moved. This allows real-time examination of

the simulation; however, a hefty penalty is placed on run time performance.

Initially Print to Screen: This option prints the initial state information for all of the
pool balls after initialization. There is no penalty in run time performance because

the real-time clock is not started until after initialization.

Number of Balls: This option specifies the number of pool balls desired for the simula-

tion.

Number of Partitions: This option specifies the number of partitions desired for the

simulation.

Fixed Table Dimensions: This option determines whether the table length and width
are set by a pre-defined constant in the software or if a dynamically calculated table
length and width are to be used based upon a pre-defined density constant and the

number of pool balls selected.

Simulation Time: This option specifies the simulation time.




Collect Statistics: This option writes the simulation run time as a function-of the num-
ber of pool balls to-a file. This file can then be used to plot the results of many test

runs without manual data entry.

Number of Events: This option allows an alternate technique to be used to terminate
the simulation. Each node of the iPSC/2 keeps track of the number of events that
have been processed. When using a single node, the simulation may be set to ter-
minate after processing a specified number of events. This option is not valid when

using multiple nodes for the-parallel version.




Driver

Application

)

EventHandler

Table

Clock

Random

Event

<

NEQ

=

Figure 8. Version 1 Structure Chart
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4.8 Design of a Spatially Partitioned Sequential Simulation

The basic-design of the second simulation-version was the same as the first version;
however, additionally functionality had to be incorporated and some of the data structures

had to be modified. The high level algorithm was unchanged.

4.8.1 Changes to the Ball Object The previous simulation design incorporated a
single indexed linked list for the ball object mangager data structure. The partitioned
version requires an indexed linked list per sector. To accommodate this change, each
indexed linked list is encapsulated into a record structure; thus, each sector has one record
type. An array of sectors of length P was designed where P equals the number of
sectors. Each array element contained a-pointer to the appropriate record type containing

the indexed linked list.

4.3.2  Changes to the Table Object The previous sequential simulation called for
a simple record structure storing the table’s boundary information; however, there was
only one sector to contend with. The design of the spatially partitioned version of the
sequential simulation incorporates an array of sectors of size P where P equals the
number of sectors. Each array element points to a record structure containing individual
sector boundaries. The sectors were designed to be equal in length and width. The table
is partitioned vertically along the X axis. The table may be partitioned into P < P0z
where P,.. is the number of sectors corresponding to a sector width greater than the

predefined pool ball diameter.

4.3.3 Changes to Event Definitions In the pievious non-partitioned version, it was
possible for a pool ball to traverse the entire pool table along the X-axis in one step. The
partitioned version requires two or more incremental steps depending upon the number of
sectors requested. A pool ball must now stop at a secter border whereupon data replication
may take place, followed by a crossing from one sector to the next sector. The former event
is defined to be a ‘PARTITION’ event while the latter event is defined to be an ‘EXIT"
event. Control of a pool ball normally takes place during an EXIT event. As the number
of partitions increase, the number of incremental events increases for pool balls moving in
the X direction.

4.3.4 Changes to the Simulation Algoritivn The algorithm was changed in the fol-

lowing manner:
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1. ‘Partition’ and ‘exit’ events were added.
2. Determination of the next event was modified.
3. Enforcement of Wieland’s data replication was added.

4. Design of the ball object data structure was modified to allow each sector to have its

own ball manager.

5. Design of the table data structure was modified to-allow storage of individual sector

information.
The basic algorithm now consists of the following steps:

1. Determine the next.event.
2. Schedule the next event.
3. Bxecute the next event.

4. Enforce Data Replication (as needed).

To determine the next event, each sector is inspected one at a time. There is one
global candidate next event queue and one global next event queue. As each sector is
inspected, the individual ev.nts are-compared against the global candidate next event
queue. The time to determine the next event requires searching P sectors, each containing
on average ‘—,\,1 pool balls; thus, the time complexity is reduced from O(N?) to O (%3:)

where N is the total number of pool balls and P is the number of sectors.

Scheduling the next event remains unchanged. After completing the next event
determination phase, the single candidate list guarantees to contain the minimum next
event for all sectors (the minimum next event for the entire pool table). Scheduling that
event consists of removing the candidate event from the candidate queue and inserting it

into the next event queue.

Executing the event requires knowledge of the sector from which the next event orig-
inated. All of the procedures in the simulation were thus changed to allow this information
to be passed as in-type parameters. The sector identified as enforcing the collision retrieves
the ball(s) from its ball object manager, updates the position(s), calculates and stores the
new velocity trajectories, updates the ball time tag(s) and returns the pool ball(s) to the

sector’s ball object manager.




This simulation used a two step data replication strategy proposed by Wieland (22).
The replication rules were established in a communicator object. Ball objects must be

replicated or de-replicated under the-following conditions:

1. Providing Visibility: A sector must be given visibility of a pool ball if the ball
‘was previously owned by another sector but upon moving, the ball now lies within
the border region. The center of the ball must still lie within the adjacent sector;
otherwise, the gaining sector not only has visibility of the ball but also-has-control
of the ball.

2. Providing Ownership-(Control): A sector must be given control of a pool ball if the
ball was previously owned by another sector but upon moving, the ball now has its

center of mass within the gaining sector’s-boundaries.

3. Removing Visibility: A sector must remove a ball from its ball manager object if the
ball was previously visible but upon moving, the ball’s center of mass lies outside
of the losing sector’s border region. This implies that the ball is owned by another

sector after moving.

4. Removing Ownership (Control): A sector must relinquish control of a pool ball if the
ball was previously owned by the losing sector but upon moving, the ball’s cénter of
mass now lies beyond the losing sector’s boundaries. A ball meeting this condition
cannot move any further in one step-than the edge of the losing sector’s border region.
In this manner, control of the ball is passed to the gaining sector but the losing sector

retains visibility.

5. Updating Visibility: A sector must have an updated copy of a pool ball if the ball
was previously visibile (but not owned) by an adjacent sector and upon moving, the

ball is still visible (and still not owned) by the adjacent sector.

Each pool ball object has associated with it a visibility flag and an ownership flag. All
pool balls owned by a sector must alsobe visible to the sector or an error condition is raised.
The act of providing visibility of a pool ball to an adjacent sector consists of providing
a copy of the pool ball object to the adjacent sector’s ball object manager. The only
difference between the two cr.pies is the status of the ownership flag. Removing visibility
consists of requesting an adjacent sector’s ball object manager to delete the replicated
ball. Changing of ownership status is analogous. Since this version of the simulation
is still implemented on a single processor, all commands may be implemented directly

through memory. Messages are not required.
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4.4 Design of a Parallel Simulation

The basic -design of the parallel simulation was the same as the sequential simu-
lation with spatial partitioning and data replication. Some additional functionality had
to be added to enforce the conservative synchronization paradigm and some of the data

structures had to be-changed to accommodate the distributed environment.

4.4.1  Changes to the Ball Object The partitionable sequential design encapsulated
a ball object manager for each sector. An array of length P contained pointers to each
sector’s ball manager. For the distributed simulation, no one node will ever contain all
of the table sectors; therefore, the data structure was changed as follows. Each node has
one data structure consisting-of an array of pointers representing a list of ball managers.
The length-of each node’s array is ‘-"-’,- where P-is the number of table sectors and M is the
number of nodes. This ratio represents the number of partitions per node which is defined
to be the same for all nodes. Therefore, a design constraint limits the number of sectors

to-be an even multiple of the number of nodes.

4.4.2  Changes to the Table Object The partitionable sequential design encapsulated
each sector’s boundary information in an array of length P. The distributed design assigns

one array of sector information to each node and the length of each array-is reduced from

r
PtO'ﬁ.

4-4.3  Changes to the Candidate Queue Structure Both sequential simulation de-
signs encapsulated a single candidate next event queue for the entire pool table. The
distr*buted design encapsulates a candidate next event queue for each sector. Each node is
allocated an array of candidate queues representing the hierarchical class of queues. The
length of each array is £. This design decision is important because a candidate event is
no longer scheduled based solely upon the criterion that it has the smallest next event time.
For the distributed simulation, it is highly desirable to schedule as many sectors as possible
to achieve efficient parallelism. Obviously if more than one sector is scheduled to execute
a candidate event, one event has the smallest next event time while all other scheduled
events have a greater next event time. The determination of scheduling candidate events

must now reside with determining a minimum safe time per sector. This is discussed later.

4.4.4 Changes to the Next Event Queue Structure Both sequential simulation de-

signs allocated a single next event queue defined by the Institute. The distributed design
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must allocate one next event queue per node to reduce internode communications. This is

discussed further in Chapter V.

4.4.5 Changes to the Simulation Algorithm The basic high level algorithm was
changed to incorporate the minimum safe time calculation. The formulation of a mini-
mum safe time (MST):is explained in detail in Chapter V. The high level algorithm for

the parallel application consists-of the following steps:

While (! Done) loop-
1. For cach node in parallel, determine the candidate next event.
2. For each node in lockstep, determine the minimum safe time.
3. For each node in parallel, schedule a candidate event if
and only if a sector’s candidate next event time is
less than or equal to the sector’s calculated minimum
safe time.
4. While (! Empty) loop
If (Type # DONE)
For each node in parallel, execute the next event.
else
Done = TRUE
5. For each node-in lockstep, enforce Wieland’s data
replication strategy. ;
End Loop }

The above algorithm is repeated in a loop until the next event time is greater than ‘
the user specified simulation time. TThe loop thus created is performed in lock step syn-
chronizing at exactly two points. Steps 2 and 5 must be in lock step and are performed
sequentially. Parallelism may be achieved during steps 1,3 and 5. Tor the case of step 1,
not only is parallelism achieved, but the search space per sector is reduced from O(N?) to
O(ﬁ,',:) The gains produced from the decreased search time and parallelism-are reduced
by the increased number of incremental events created by PARTITION and EXIT event
types. These events are required for simulation correctness but are not of real interest in
the simulation. Each additional sector adds two more incremental steps for a pool ball
to traverse the table in the X-axis direction. This increase is not linear because a multi-
partitioned table can result in more than one candidate event meeting its minimum safe

time. Thus, one search can yield multiple-event executions.

The software design of the parallel pool balls simulation is represented by the leveled

data flow diagrams of Figures 9, 10 and 11. The process bubbles having multiple, overlayed
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bubbles represent processes that execute in parallel. There is no current standard for

parallel data flow diagrams.
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V. Parallel Stimulation Design and Implementation

5.1 Introduction

This chapter discusses the design of the pool balls simulation model and the algorithm
used to enforce distributed simulation synchronization in a conservative environment. Al-
ternative algorithms are discussed and their respective advantages and disadvantages are

analyzed.

5.2 Design-of a Parallel Simulation Model

Design of a distributed discrete event simulation requires-selection of an appropriate
model. Schruben’s concepts of transient and resident models were analyzed for considera-

tion (20). The following analysis explains why the resident entity model was selected.

5.2.1 Modeling Pool Balls as Transient Entities With this model, each pool ball is
an entity and parallelism is possible by distributing the pool balls to varying nodes of a
distributed processor. In order for a node to determine if a collision will occur between
one of its ball objects and another ball object, the node must know of the existence of the

other ball. This could be done in any of several manners.

A simple approach is to appoint a central manager. This manager has the state in-
formation concerning every ball. Nodes that need to gain access to ball state information
request the information from the central manager. If there are A nodes and N pool balls,
this approach would require each node to cyclically communicate N messages. With A/
nodes, the time complexity for communications is O(N log P). This approach requires
each node to wait upon the central manager thus forming a bottleneck. The run time
performance is then reduced to the speed of the central manager, thereby driving the sim-
ulation Lo approach sequential performance (3). In terms of search time, each node would
require a complete search of all N pool balls. The best possible algorithm incorporating

all NV pool balls is O(N). The algorithm used in this thesis would require O(N'?) time.

An alternative approach to modeling the pool balls as transient entities assigns a
unique subset of N pool balls to each node such that 5; n §; = 0, S; U S; =5
and S,, S; C S where S is the set of N pool balls. Each node is provided a mapping-of
pool balls to nodes. A table look-up function provides each node with the capability of

requesting ball state information directly from the appropriate owner. If the JV pool balls




are evenly divided between M nodes, then each node must cyclically request ball state
information from all other nodes. Therefore, each node communicates M=1 times to the
remaining A-1 nodes and each node must provide % pool balls. If every node requires the
same quantity of messages,-the time complexity for this model is O(N log M). While the-
time complexity appears to be the same between this approach and the central manager
approach, this technique is actually superior because there are no bottlenecks to form.
Each node would still have O(N) search space for which to determine a candidate next

event.

A third approach assigns a copy of all N pool balls to each node. Eachnode maintains
two lists such that S, is a set of pool balls owned by node, and S, is a set of pool balls
not owned by node, where $;, §; C Nand (S;in S; = 0) A (S; U S; =85), S being
the set of all N pool balls. As each node changes the ball state information of a. pool ball
in the set S,, it must broadcast the state change to all other nodes maintaining a copy of
ball, € §,. Given M nodes, each event execution requires M messages communicated in
O(log M) time. If every node can process simultaneously, then the communications time
approaches O(M log M). Since every node maintains the set S of all pool balls, the search
time is at best O(V). Bottlenecks do not occur. This approach was considered for the

Sharks World simulation but rejected during the design phase (8).

5.2.2 Modeling the Pool Table as Multiple Resident Entilies With this model, the
pool table is partitioned into multiple slices. The slices can be of any shape and can be one
or two dimensional. The following discussion considers only one dimensional partitioning,

such as slicing the pool table along the X or Y axis.

If the pool balls are uniformly distributed, each node will have approximately .%
pool balls. If Vi, node, has every pool ball lying within a border region, then using
Wieland's data replication- strategy % pool balls must be replicated between adjacent
nodes via message passing. Given M nodes, the communications time complexity worst
case is O(.V); however, this depends upon the predicate that each node, has all ;"‘—, pool-balls
lying-within border regions. Furthermore, each node need only communicate :-‘3, pool balls
once during initialization. After initialization, at most two pool balls-per ector can move
(representing a collision event). If each sector can execute an event simultaneously, then
at most O(M) messages must be sent. This is based upon the constraint that nodes need
only communicate with their nearest neighbor. This time complexity is further reduced

based upon the probability that a sector will have all of its "‘l; pool balls lying within a
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border region. Therefore, the communications time is better than O(M). If-each node is
partitioned into multiple sectors then-each sector has approximately % pool balls where
P is the number of sectors for the entire pool table. If each sector, has every pool ball
lying within a border region, and if sectors assigned to the same node are adjacent to one
another and communicate via memory at memory speeds, then the initial communications
time reduces to O(% - M). Since P > M, the communications time is less than O(NV) with
or without parallelism. If P > M, the communications approaches-constant time. Adding
potential parallelism in-communications-and the probability of having nominal percentages
of pool balls lying within border regions results in near constant communications time even
for P > M. In terms of search time, the time complexity reduces from O(N) best case to
O(%), P > M and reduces to O(‘%) using the O(N?) algorithm presented in Chapter IV.

Therefore, the resident entity model is superior to-the transient entity model.

5.3 Developing the Minimum Safe Time Calculation

A conservative synchronization paradigm requires a logical process to postpone the
execution of an event if there is a possibility of receiving an out-of-sequence message. Each
out-of-sequence message has an associated time stamp. This chapter will show that it is not
possible to exactly calculate the value of the time stamp for an out-of-sequence message;
however, it is possible to estimate it. An estimator is shown to be valid if it guarantees
to be less than or equal to the time of arrival of the first transient ball message. Bounds
are placed on the estimate from which an estimator is proven to be valid. Simulation
progress using the estimator is also proved. This chapter develops and presents three
unique estimators all of which are valid; however, only two of them guarantee progress.
These two estimators are analyzed and compared. Each estimator has advantages and
disadvantages. This chapter will state which of the estimators was selected for design

implementation and why.

Definition 5.1: A lransient ball message is a message containing a pool ball and all of
its assiciated state information sent from one scctor to another as a result of the pool ball
crossing a sector border. Let u be the time of a transient ball message, v be a discrete time
interval representing the simulation iteration number, and i be the sector which receives
it; then, u;(v) is the time of arrival at sector 7 of the next chronological transient ball
message. If the simulation time of sector i is w,, then the condition u;(v) < w; defines

the transient ball message corresponding to u,()-to be an out-of-sequence message.
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Definition 5.2: The sel of event lypes for the pool balls simulation consists of five types;
partition, exit, collision, vertical cushion, and horizontal cushion events. Let the set of

event types be denoted by S; then

S & {PART, EXIT,COLL, VERT, HOR} (21)

Definition 5.3: An-event F in sector i is defined as the tuple
E: £ (t(ei,v), B) (22)

where

e g; is an event typee; € S

v is a discrete time denoting the simulation iteration number,

t:(e;,v) is the time of the event E;, and

B is the set of pool balls associated with the event E;

Definition 5.4: The Minimum Safe Time for sector i is an estimate of the time of the next
transient ball message to be received by i. This estimate is denoted AfST,(r). The three
estimates developed by this thesis are denoted (M ST} (v), M ST3(v), and MST3(v)).

Lemuma 5.1: The minimum safe time in sector i must be greater than zero and less than
or equal to the time of the first transient ball message received by sector i 1o be a. valid

estimate of u;(r). This is stated mathematically as

0 < MSTi(v) €ui(v) (23)

Proof: Due to monotonicity of events, the time of arrival of the first transient ball message
must be greater than zero. By definition of conservative, a logical process can only execute
an event if the event timeis less than or equal to the time of arrival of the next transient ball

message. Suppose that the next event time 1,(e,, ) were greater than u,(r); then. execution
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of I, would not be allowed. Suppose also that an estimate of u,(¢) were calculated. Let
this estimate be M ST, (») such that MST,(v) > u,(v). If the condition existed such that
tie,v) £ MST,.. .o2"inain theexecution of £, then the conservative property would
be violated and simulation correctness no longer guaranteed. Therefore, an estimator of

w;(#) must be 12ss than or equal to w;(r).

Definition 5.5: P is defined as the predicate of exccuting an event £; = (4(e,,v), B)
such that
TRULE  if t;(e;,v)

FPALSIE otherwise

< MSTi(v)

P(E) & - (24)

Definition 5.6: At any instant in time, sector i has a set of pool balls in ¢. Denote this
set of pool balls G;(1); then

Gi(”) é {bl,bg,b;’, e } (25)

where b, is a pool ball with ball identification number j. All values of j are unique.

Definition 5.7: By design, every sector in the simulation has the same dimensions. Every

pool ball has a minimumn time to cross a sector based upon its X-axis velocity vector. Then

34

TTCile;,v) & AT

(26)
where ¢, is an event type in S, i is an iteration number, W is the width of a sector, B is

a pool ball ir G, corresponding to the event T, = ({,(¢;,v), B), and V,(B) is the X-axis

velocity of the pool ball in £;.

Lemma 5.2: The time of arrival at seetor 7 of the first transient ball message, u, (), is

greater than or equal to

wi(v) 2 min {lign(eign = PART, 1) + (n= 1) ¥ TTCign(eizn = PART,v)} (27)
Va:n#0,i—n20,i4n< P

where 7 € {0,1,2,...,(P = 1)} and P is the number of sectors specified by the user.
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Proof: Given the set of event types S, a ball cannot arbitrarily enter sector i from sector
J without first being scheduled for a partition event in j. This premise is based on the
definition of Wieland’s two step sec'oring strategy. A pool ball in a sector adjacent to
sector ¢ produces a transient ball- message to sector ¢ as a direct consequence of a partition
event Exyy = (toer)(e; = PART,v), B). A pool ballin sectors-(i+2).or (¢~ 2) must have
a partition event in order to reach sectors (7 + 1) or (¢ — 1) respectively followed by the
unobstructed traversal of sectors (i 4 1) or (¢ — 1) to reach sector 7. Similarly, a pool ball
in sector (i 4 n) or (i — ») must have a partition event in sector (i + n) or (i — n) followed

by traversing (n — 1) sectors to reach sector i. This results in equation 27-of Lemma 5.2.

Lemma 5.3: The time of the earliest transient ball message which can be received by

sector 7, u;(1), is not solvable for the pool balls simulation.

Proof: 1f the next event E; is not a partition event, then t;(e;,r) < t,(e; = PART, V")
where ¥/ > v by definition of monotonicity of events. The ball in sector ¢ which has
the event E; is in the set of pool balls G;(v). The set of pool balls G,(v) cannot be
propagated in time to calculate E; = (t;(e; = PART, V'), B) because the set of pool
balls G,(v') cannot be determined. The set G,(+') cannot be determined because during
the time interval corresponding to (¢ — »), additional pool balls may arrive in sector ¢
from sectors (i & 1). By definition of Wieland’s sectoring strategy, sector ¢ knows only
of the existence of pool balls in 7 and not of any other sector; therefore, it is impossible
for sector 7 to predict the arrival of additional pool balls in the interval (¥ — v). Since
this is true, it is impossible for sector ¢ to predict the event B, = (i,(e, = PART, V"), B).
Without knowing E,, the values t,(e, = PART,v’) cannot be determined to solve equation
27. Without B in FE,, it is impossible to determine Vy(B) and therefore it is impossible
to determine TTC,(e, = PART, ") from Definition 5.7. This is true not only for sector 7

but for all sectors in {0,1,2...}; therefore, u;(~) is not solvable.

Definition 5.8: For any sector ¢ and any iteration v, the set of pool balls G;(») has a
pool ball whose X-axis velocity is greater than or equal to all of the other balls in G,(»).
From Definition 5.7, this ball will have the minimum- time to cross a sector. Denote this
minimum time lo cross by TTC;  ; then,

TTC;,,. (V) £ min (TTCi(ei,v)) (28)
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for all pool ballsin G;(v).

Definition 5.9: The estimator of w;(v), denoted M ST}(v) is defined-as

MSTHv) & min(Lign(eszn,¥) + (v = 1) % TTCign,...(¥)) (29)
Vo:n#0,n-i20,n+i< P

where ¢ € {0,1,2,...,(P — 1)}, and P is the number of sectors specified by the user.

Theorem 5.1: The estimator M S$T}(r) is valid.

Proof: Any estimator of v, () which satisfies Lemma 5.1 is valid and simulation correctness
is therefore guaranteed. Lemma 5.1 can be shown to be satisfied as follows. The next event
E, has an event time which is always greater than zero by definition of monotonicity of
events. The maximum X-axis velocity of any pool ballin G,(v) is always less than infinity;
therefore, the minimum time to cross any sector, TTC,
Therefore, MSTH(v) > 0 for all ¢ in {0,1,2..}.

(v), is always greater than zero.

mn

If e, # PART then t;(e; # PART,v) < ti(e, = PART, V') by definition of monotonicity.
From Definition 5.8, I'TC; ... (v) £ TTCi(e; = PART,v). Therefore, MST}(v) < w(v).

Lemma 5.1 is satisfied; therefore, M ST}(v) is valid.

Theorem 5.2: The estimator M ST}(r) guarantees progress; that is, there exists a sector

whose event F; can be executed for all v.

Proof: Given P sectors where P is specified by the user, there exists a sector 7, ¢ €
{0.1,2...P -1}, whose next event time is less than or equal to the next event time for
all other sectors. From Definition 5.9, the minimumn safe time estimator is the minimum of
all other sector’s next event times plus some overhead. Therefore, sector 7's minimumn safe
time is at best the minimum of the remaining event times, but sector i's event time is less
than or equal to all of the others; therefore, sector i’s next event time must be less than or
equal to its minimum safe time estimate. From Definition 5.5, sector 7 can execute. This

is true for all v; therefore, progress is guaranteed.




5.3.1 Additional Properties of M ST}(v)  Two interesting properties of M ST} (v)
can be shown. First, no-two adjacent sectors can execute an event simultaneously if their
event times are not equal. Second, the maximum number of sectors which can execute
simultaneously is [ -’,}] where P is the number of sectors specified by the user. This has

implications for sector assignments which will be discussed later.

Lemma 5.4: Adjacent sectors cannot both meet their minimum safe times using 31 ST} (v)

as.an estimator of u;(v)if their event times are not-equal.

Proof: Let two adjacent sectors be-denoted by (7) and (7 +1). If t;(e;, ) # toany(epsr), ¥)
then either ti(e;, ) > tupn(eusny:¥) of tuen(eisny, ) > t(e,r) by definition. Both
cases can be shown to have the property that at least one of the two sectors cannot cxecute

their event.

CASE 1: ti(es, ) > tasny(egny)

From Theorem 5.1, MST}(v) is the minimum of all other sector’s event times plus some
overhead. For adjacent sectors, the value of n in equation 29 is one; therefore, the addi-
tive term for the time to cross is zero. Thus, when comparing adjacent sectors only, the
minimum safe time of sector 7 is the minimum of its two neighbor’s next event times. There-
fore, M ST} () is at most equal to Liy1y(€is1),¥) such that MSTHv) < tupny(ensr)s v)-
If 1,(e,, ¥) is greater than f41)(€uyr) ) then t(e,v) > MST}(v) and execution is not

allowed by Definition 5.5.

CASE 2: Yy > ti{e;, v)

The argument of case 1 is the same for case 2 resulting in M ST}, ,y(v) < ti(e,») and
tarry(epen), ¥) > (e, v)i therefore, Ly (eniry,v) > MST}(r) and execution is not
allowed by Definition 5.5. Therefore, for both cases, at least one sector of two adjacent

sectors cannot execute their next event if their next event times are not equal.

Lemma 5.5: If each sector ¢ in {0,1,2...P-1} has a unique next event time, then the
maximum number of sectors that can execute their event in parallel is [£] where P is the

number of sectors specified by the user.

60




Proof: From Lemma 5.4, no ‘two adjacent sectors can execute if -their event times are
unique. Since the pool table is partitioned in a linear array, the maximum number of
non-adjacent sectors is [£].

5.3.2  Analysis-of MSTH(v) 1t is clear from Definition-5.9 that every sector must
have knowledge of every other sector’s candidate next event and minimum time to cross.
Global communications are thus required. Several techniques are available to accomplish
this. The simplest technique is to have each sector broadcast its next event time and
maximum velocity to every other sector. Given M nodes, this technique requires O(M?)
communications time, and each message requires more than two orders of magnitude of
time to process than floating division (1). To reduce the number of -communications,
each node could communicate in a logarithmic fashion thereby requiring only O(M log M)
communications-time. The lower bound on communications is:O(Af) if each node commu-
nicates only with its immediate neighbors (in terms of a pool table sector neighbor, not
a hypercube node neighbor). Each of the techniques requires every node to wait for the
slowest node. After each sector determines its candidate next event, each sector must cal-
culate its MST. To do-this, each sector must know every other sector’s candidate next event
time and every other sector’s fastest ball velocity (X-axis only). The node which finishes
calculating its candidate next event first must necessarily wait to calculate its MST until
the last node calculates its candidate next event. A broadcast communications scheme
cannot eliminate the potential wait state. Therefore, the O(A) communcations scheme is
the optimum implementation. This scheme requires an end sector to communicate with its
immediate neighbor. In this manner, sector 0 sends its data to sector 1. Sector 1 combines
its data with that of sector 0 and sends a single message to sector 2. Finally, sector (P-1)
receives a message from sector (P-2) thereby giving scctor (P-1) all of the data from every
other sector. This data can then be passed back to each sector. Parallelisin can be achieved
by recognizing the independance of sector 0 and sector (P-1). As sector 0 sends its data to
sector 1, sector (P-1) can send its data to sector (P-2) in parallel. This technique performs

in lockstep and requires every sector to wait on the two end sectors.

5.4 Developing an Alternative MST Calculation

Chandy and Misra’s paradigm requires the following constraints:

1. LP; sends LP, a message if and only if PP; has an edge connecting PFP; (6:443).
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2. There exists a prespecified constant ¢ such-that
=ty > efork = 2,---k (6:442).

3. The minimum safe time for sector 7 is the minimum of the message tuples (¢, my)

received from all input arcs (Tjx) (6:444).

The MST calculation stated in Definition 5.9 is slightly different from that proposed
by Chandy and Misra. Specifically, items one and three above disallow global communi-
cations. Chandy and Misra require an MST based only upon the input arcs represented
by the edges connecting each PP,. In the strictest sence, Definition 5.9 does not adhere

to a true Chandy-Misra paradigm. It is desirable to develop an estimator that conforms

to Chandy and Misra because their paradigm avoids global communications. This factor
allows their paradigm to be scalable across any cube size where as M ST}(v) is not scal-
able. As the number of nodes.incréases, the communications overhead of M ST}(v).can be

expected to negate any gains from potential parallelism.

5.5 Developing a Second Minimum Safe Time Calculation

This section develops the estimator 3 ST?(v) which will be shown to be valid but

does not guarantee progress. The estimator is derived from M ST} (v).

Definition 5.10: There exists an upper bound on the velocity for any pool ball. Due
to the conservation of energy and momentum, the total -energy of all of the pool balls
will not change after initialization. Therefore, there is a maximum velocity that any pool
ball can have in the X-axis direction based upon the initialization values and there is a
corresponding global minimum time lo cross any sector. The absolute minimum time to

cross a sector for any pool ball once initialized is denoted TTCyropat_min-

Definition 5.11: The estimatorof u;(1), denoted M ST?(v), is defined as

MSTE(v) & min (tig1(eiz1, ), TTCtosatmin) (30)
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Theorem 5.3: The estimator M ST?(v) is valid.

Proof: Any estimator of u;(1) which satisfies Lemma 5.1 is valid. By definition,

MSTN(v)

I

min (lign(€izn, v) + (0 — 1) * TTCign,,,, (v))
Va:ns#0,n—-i>20,n+i< P

iz (€ix1, V),
tizn(€ign, V) + (n = 1)+ TTCisp,,. (v)
Va:ns#0,n#l,n—1i20,n4+i< P

min

Also,

0+ ('n - 1) * TTC:':.‘:H,,..,.(V) < ti:!:n(ei:!:rn U) + (TL - 1) * TTCI':i:nmm(V) (31)

if ti:!:n(eiin:”) > 0

The next event time is always greater than zero by definition of monotonicity of events;

therefore, the inequality of equation 31 is true. Furthermore,

A

(77. - 1) ¥ TTCglobal-min
if Tj,cglobal-mir'x

(n-1)*TTCisy,,. (V) (32)
TTCigp,,.

IN

The global minimuim time to cross is always less than or equal to T'T'C, 4, by Definition

5.10; therefore, the inequality of equation 32 is true. Last,

TTConanZ.mx'n < (n - 1) * 1‘Tcglobnl_min

These substitutions reduce MST{(v) to MST?(v) and MST?(v) < MSTHw). Since
M ST} () has been proven valid, then by Lemma 5.1, M ST?(v) is valid.

Theorem 5.4: The estimator M ST?(v) does not guarantee progress.

Proof: Given-that MST?(v) = min ({21)(epz1), ¥), TTCptotatmn) from Definition 5.11,
suppose that TT'Cpoparmin < L(e;;v) for all i jn {0,1,2..P-1}. Then MST?(v) =
TTCyiotatmin for all 7 by definition of M ST*(v). If the minimum safe time is less than
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the event time for every sector ¢, then no sector can execute its next event by Definition
5.5. The value of TTCyopar_min is @ constant by definition of conservation of energy and
momentum; therefore, for all values of v, M ST?(v) = TTCyiobarmin- The next-event times
for all sectors will remain unchanged because each value of v produces the same results if
none of the pool balls ever change state information. For this example, the simulation will

run indefinitely while the simulation time will remain at zero!

5.6 Developing a Third MST Calculation

The third M ST formulation relies heavily upon Chandy and Misra’s concept of input
arcs and outpul arcs. A sector i outputs a message to a-neighboring sector which represents
the carliest estimated time that sector i can send a transient ball message to its neighbor.
This is an output arc from sector  to sector (7 & 1). Equivalently, each sector receives
a message sent from its neighbors as input arcs. The formulation for the third M ST
estimator which adheres to Chandy and Misra’s constraints has the following logic. If one
iteration ago at v = (v — 1), sector (i + 1) passed a message to sector 7 indicating that no
transient ball messages will be sent before time ¢, then for the next iteration v, it must
still be true that sector (i + 1) will not send a transient ball message -before time ?; due to
monotonicity of events. Furthermore, if a pool ball were to cross sector (z + 1) into sector i
in no less than time TTCyioparmm, and-one iteration ago at (v — 1) sector (7+ 1) could not
output a transient ball message until at least time ¢;, then for iteration v, sector (i 4 1)
cannot output a transient ball message to sector ¢ until at least time t» = ¢, +7'T'Ciobat_mn-
This concept allows the A7ST estimator to constantly increase in size until at least one
sector can execute an event. After executing the event, there is no guarantee that an
event can be executed for iteration (v + 1), but there is a guarantee that execution will
be possible before (v + o) because the estimator itself constantly increases with 1. The
potential to have non-executing iterations reduces the efficiency of the parallel simulation
and the lower estimate of the A/ST reduces the probaliility of multiple executing sectors;
however, the paradigm is scalable to Af nodes where Af is limited only by the hardware.
The following definitions support the development of the Chandy and Misra estimator and

the theorems that follow.
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Definition 5.12: Let O, (;41)(r) be the output arc of sector i to-sector (i 4 1) at some

discrete time interval v. Then,

>

O i+1)(¥) min (4i(e;, v), Jigi-1)(v = 1) + TTCyrobat-min)
01',(:'—1)(”) é min (ii,(ei”/)a Iz',(i-i-l)(’/ - 1) + TTCglobaI-min) (33)

where I, (;+1)(v — 1) is the input arc to sector i from sector (i 1). The inputs and outputs

are related by I (;x1)(¥) = Ogsy(v) and-all inputs and outputs at (v = 0) = 0.

Definition 5.13: The estimalor of u;(v),-denoted M ST(v), is defined as

MST}v) & min (Li (@), Ti-1y(v)) (34)

Theorem 5.5: The estimator M ST(v) is valid.

Proof: To prove that MST?(v) is valid, it will be shown that for all v, MST?(v) <
M ST}(v). This will be done by analyzing the specific instances for » = 1 and 2 from
which a general solution for all v clearly presents.itself. The general solution is equivalent

to the combination of Definitions 5.12 and 5.13.

CASE1: v=1
Through substitution, M ST?(v = 1) can be equivalently written as min (Oix1y,(1)). Sub-

stituting the output terms with Definition 5.12 results in the following equation:

min(t,-ﬂ ((.’,'.H Py 1), TTCglobal_min ):
min(t;—y(e;=1,1); TTCebatmin)

min

MST3()

Il'il(c'x';‘.:l: 1) + 0# TTCglobal_mins
tii’.’(ei:i::’:o) + L* TTCglobnl-min

min

where t;(e;,v = 0) = 0 for all 1.




CASE2:v=2

Using the same substitution steps, the following is seen to be truefor v = 2.

min(lig (€41, 2)s Ty 42)(1)+ TTCotobat_min)

MST?2) = min ,
min(t;-y(ei-1,2), J-1),6-2)(1) + TTCgtobat_tnin)

min(i4(€i41,2), Ogiga)i41)(1) + TTCytobat_min)

= min
min(ti-y(€i-1,2), Oi-2).(i-1)(1) + TTCytobat min)
min (4;449(ei45,1), TTC _miy
min ( * ( > ) globat-m ‘) +TTC_tJlobal_mz'n
tip1(€ig1,2)
= min

min [,‘_g(C’,‘_g, 1 . TTC, —mi
min ( ) globat-m l) + TTCglobal_min
] ti-1(€i-1,2)

tiil(eiil: 2) + 0 TTCglobal-mina
= M| fpo(eire, 1) + 1% TTChiobat_min,

iii—S(ciiIh 0) + 2% TTCgIobul_m:'u
where 2, (Cizn, v = 0) = 0.

GENERAL SOLUTION:

From the preceding two cases, the general solution for all v is:

AJST:?(V) = min (liiix(ei;!:n: (” -n+ 1)) + (7). - 1) * TTCylobal_mx'n) (35)

Equation 35 has a striking resemblance to the definition of M ST}(r); however, it is
easily shown that M ST?(v) < MSTHw) as follows. For all i, TT Zyppatmin < TTGC;,...
from Definition 5.10. Due to monotonicity of events, &, £4(€izn, (¥ =n+1)) £ lizn(Cizn,?)
since (W —n+1) £ vfor (n > 1). Therefore, MST}(v) < MST}(v) which implies that
MST3(v) is valid.
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Theorem 5.6: The estimator of u;(v), MST?(v), guarantees progress.

Proof: After substituting the definition of output arcs into the definition of MST?(v), the

estimator can be written as

MSTHv) = min(O@sna(¥), O-1)a(v))

min [ti-i-l(ei-l»l, U): O(i+2),(i+l)(V) + TTCglobal_mx'n]
min [t;-1(€i—1, )5 O0g-2),i-1)(¥) + TT Cytobat_min)

= min

This equation clear]y shows that the value of M ST?(1/) constantly increases because ejther
the next event time ¢,4,(e,4,, ) increases by definition of monotonicity of events, or the
term representing the output arc of previous iterations increases by a constant factor

TTC giopat.min- Therefore, execution of events is possible as v increases.

5.7 Analyzing Alternative MST Calculations

M ST!(v) requires global communications whereas M ST?(v) does not. The commu-
nications time for M-ST!(v) can be reduced to at most O(M) where M is the number
of nodes. The communications time for M ST3(v) is O(1). Thus, scalability is a major
tradeofl. M ST!(v)specifically requires (M — 1) communications per node while M ST?(v)
requires a constant two communications per node for all but the end sectors which require
only one. Thus, for M = 2, the two MST calculations require approximately the same
communications time. For M = 4, M ST?(v) is perhaps slightly superior if all else is the
same. Clearly, all else is not the same because M ST} (r) guarantees to execute at least
one event per iteration whereas M ST>(r) does not. This factor constitutes the tradeofl
between execution rate and communications time complexity. Not only can M ST}(v)
suarantee to execute at least one event per iteration, but up to [%] sectors can execute
per iteration. A simple four sector example highlights the differences between the two

paradigms.

Conjecture 5.1 For small M where M is the number of nodes in the pool balls simulation,

M ST}(v) is superior to M ST?(r). The size of A has been shown to be at least 4.

5.7.1  An Ezample using Both MST’s To demonstrate the implementation of both

conservatjve paradigms, consider the four node, four sector pool balls simulation diagram-
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of Figure 12. The terms ‘NET’ and “TTC’ represent the next event time and time to cross
a sector for the fastest ball in sector i. The simulation time for each sector is currently

0.00 seconds.

OO0

NET= 3.0 2.0 4.0 2.5
TTC = 2.0 2.5 1.5 3.0-

Figure 12. A TFour Node, Four Sector Process Graph

Using the MST!(v) with Global Communications
Each message sent from sector i to sector k has the form (NET;,TTC;, NULL).

Node 0 sends (3.0, 2.0, NULL) to Node < 1,2,3 >
Node 1 sends (2.0, 2.5, NULL) to Node < 0,2,3 >
Node 2 sends (4.0, 1.5, NULL) to Node < 0,1,3 >
Node 3 sends (2.5, 3.0, NULL) to Node < 0,1.2 >

MSTs = min {(2.04 0 £2.5), (4.0+ 1%1.5), (2.5+2%3.0)} = 2.0
MSTy = min{(3.04+04%2.0), (1.04+0x1.5), (25+ 1%3.0)} = 3.0
MST> = min{(3.041#2.0), (2.0+ 0%2.5), (25+0%3.0)} = 2.0
MSTs = min{(3.0+22.0), (2.0+ 1+ 2.5), (4.0+0.1.5)} = 4.0

« P(Eo), P(Ey), P(E2), P(E3)




Using the MST?(v) with Constant Communications

For M ST3(v), the global minimum TTC must be known a priori. For the scenario of

Figure 12, the minimum TTC is 1.5-for all sectors.

LOOP 1

Oo1(1) = min(3.0,1.5) = 1.5
0,,2(1) = min(2.0, 1.5) = 1.5
025(1) = min(4.0, 1.5) = 1.5
03,(1) = min(2.5, 1.5) = 1.5
0,,(1) = min(4.0, 1.5) = 1.5
0,,6(1) = min(2.0, 1.5) = 1.5

MSTy(1) = min(1.5) = 1.5

MSTi(1) = min(1.5,1.5) = 1.5
MST>(1) = min(1.5, 1.5) = 1.5
MST3(1) = min(1.5, 1.5) = 1.5

o P(kp), P(Ey), P(E.), P(E;)

At this point, the first high level loop construct has finished. Each node calculated
a candidate next event, determined its MST and executed its next event for all sectors
provided NET < MST. This example shows that none of the sectors could safely
execute an event based upon the information provided. The estimator 3 ST} (1) executed
two events on two nodes thereby achieving 50% parallelism during the execution phase.
This was possible because each node had additional information upon which to calculate
a superior MST at the cost of increased communications. The estimator M .ST3r) must

implement a second high level loop to attain the same simulation state shown as follows.

LOOP 2

04,1(2) = min(3.0, (1.5+ 1.5)) = 3.0
01.2(2) = min(2:.0, (1.5 + 1.5)) = 2.0
023(2) = min(4.0, (1.5 + 1.5)) = 3.0
03,2(2) = min(2.5, (1.5 + 1.5)) = 2.5
0,,(2) = min(4.0, (1.5 + 1.5)) = 3.0
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01.0(2) = mm(20. (15 + 15)) = 2.0

MSTy(2) = min(2.0) = 2.0
MST\(2) = min(3.0,.3.0) = 3.0
MST»(2) = min(2.0, 2.5) = 2.0
MST5(2) = min(3.0) = 3.0

= P(Eo), P(E)), P(E2), P(Es)

The scenario above illustrates the typical *wind up” overhead of conservative sim-
ulations implemented with Chandy-Misra. The number of loops required to reach an
executable state depends upon the difference between T'T'C,y,,,, and N ET,,,,. The scenario
presented incorporated a A { small enough that the wind up cost consisted of only one
loop; however, this will not aliways be the case. Even after the windup is finished, the

proof presented earlier validates-the possibility that Vk: M STy < ..

5.8 Selecting an MST Formulalion

Both equations for calculating the minimum safe time were considered for this thesis
effort. The estimator M ST}'(r) seemed to be more intrinsically programmable and AFIT
is currently limited to an eight node hypercube which favors M ST}(r) due to small cube
size. No attempt was made to implement both strategies so empirical data is not available

to date. The following sections describe the implementation strategy used to incorporate
MSTHv).

5.8.1 Implemcnting the Minimum Safc Time Implementing Definition 3.2 is straight
forvard. Two message communications data structures were defined. Both data structures

have the following fields:

1. Sector Number

!\3

Candidate Next Event Time

3. Time to Cross (for the fastest ball in Sector 7)

-

t. Time to be affected by any left sector.
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5. Time to be affected by any right sector.

6. MST;

Sector zero completes fields one through four. TField four is infinity (defined in a header
file to be 99999999.99 seconds) since sector 0 has no left neighbor. This-structure is next
passed to sector 1. Sector 1 fills in fields one through four. This structure is then passed
to sector 2. This series continues until sector (P — 1) receives the data structure. At this
point, every sector (0 — K') knows the earljest that it can receive a transient ball message
from any sector to their left. As this entire process takes place, sector (P-1) sends a-data
structure to its neigubor (P-2) in parallel. Sector (P-1) assigns infinity to the time to be
affected by any right sector as it has no right neighbor. Assur ing near-equal processing
time, sector (P-1) will receive its message originated by sector 0 at the same time that
sector 0 receives ils message originated by sector (P-1). At this point, every sector now
knows the earliest time at which they can receive a transient ball message from either the

left or the right. The MST is simply the minimum of these fwo-values.

5.8.2 Implementing Wieland’s Data Replication Strategy The datareplication strat-
egy remains basically unchanged from the partitioned sequential version. Pool bail objects
must still transition from one sector to.an adjacent sector in a two step process via rARTI-
TION events and EXIT events. If adjacent sectors are collocated on one node, data repli-

~tion may take place directly through memory as described in Section -4.3.4. If sector;’s

adjacent sector resides on-a different node, the rules for data replication presented in Sec-

‘tion 4.3.4 must be enforced through discrete message passing. It is imperative that each
sector have its data replication updated prior to determining its next event; otherwise,
incorrect events can occur. For example, sector, could have a replicated ball object stored
in its ball object manager. This replicated ball could be scheduled for a collision with an-

other of sector, ’s ball objects. If the replicated ball was previously moved by the owning

(e v gr—

sector (i.e. seclor,_, o1 sector,yy), and if sector, had not updated its replicated copy, the
predicted collision event would be in error. In fact, the case could arise that the replicated
ball should not even be visible to sector, had the update been enforced. This condition
requires that every sector wait to-determine-candidate events until data replication has
been cempleted.

To implement the synchronous waiting condition, every nede sends a message counter
to the adjacent node(s) stating the number of data replications that will occur. If a node

has no ball objects to send, the message counter sent equals zero. In tlis fashion, each




node can simultancously execute scheduled events immediately followed by sending data
replication message counters to adjacent nodes. At this point, lockstep synchronization is
again enforced as no node may continue processing until it has received message counters
from all adjacent nodes. Once a node receives a message counter from an adjacent node,

that node is able to reccive the proper number of replicated object commands.

5.9 Summary

The design of the pool balls simulation is object oriented. The equations of mo-
tion conform to the laws of physics for elastic collisions (i.e. conservation of energy and
momentum) and frictionless motion. The parallel design of the pool balls simulation incor-
porated Schriben’s concept of resident entities thereby modeling the table as a distributed
set of table sectors. This has shown to reduce the amount of communications over a
transient entity design approach. The paradigm developed for the synchronization of the
distributed simulation has been shown to be conservative. This conservative paradigm
is superior to that proposed by Chandy and Misra for small N. Both this paradigm and
Chandy-Misra’s paradigm avoids the possibility of deadlock via NULL message passing.
With both paradigms, improved parallelism can be achieved by assigning multiple sectors
(LPs) to individual nodes. The upper bound on the number of sectors that can safely
execute a candidate event using the paradigm developed in this thesis is [£]; therefore,
100% parallelism is possible if and only if each node has assigned to it two or more table

sectors.
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VI. Test Results

6.1 Introduction

Chapter VI outlines the measures taken in this thesis effort to validate the pool
balls software and the test procedures used to generate performance data. The results of

the tests are discussed from which conclusions are made. The conclusions are stated in
Chapter VIIL

6.2 Verification and Validation

The pool balls simulation was designed and implemented in three major steps con-

sisting of the following:

1. Design and implementation of a sequential simulation without spatial partitioning

and data replication.

2. Design and implementation of a sequential simulation incorporating spatial parti-

tioning and data replication.

3. Design and implementation of a parallel simulation incorporating spatial partitioning

and data replication.

The first sequential simulation was validated in several stages consisting of the fol-

lowing tests:

1. Test a collision between a pool ball and a cushion (both horizontal and vertical).

(a) Create a scenario with known behavior. Force the simulation to produce the
specified pool balls (i.e. positions, times and velocities) and compare the simu-

lation results with expected results.

(b) Enable the simulation’s random number generator to produce a random pool
ball and collisions. Record the events to disk and verify output by calculating

each event by hand.
2. Test a collision between two pool balls.

(a) Create a scenario- with known behavior. Force the simulation to produce the
specified pool balls (i.e. positions, times and velocities) and compare the simu-

lation results with expected results.




(b) Enable the-simulation’s random number generator to-produce random pool balls
and collisions. Record the events to disk and verify the output by calculating

each event by hand.

Test 1a consisted of creating a single pool ball scenario on paper with known time,
position and velocity. The random number generator was disabled to allow the creation
of a pre-specified pool ball. Four separate tests were run to verify correct operation of a
left and right vertical cushion collision and a top and bottom horizontal cushion collision.

The simulation output was compared against the hand calculated results.

Test 1b consisted of creating a randomly generated pool ball and simulating 25
events. With only one pool ball, all 25 events were guaranteed. to be limited to horizontal
and vertical cushion events. The simulation output was checked by hand for all 25 events.

This test was performed three times to produce a high level of confidence.

Test 2a consisted of creating various scenarios:-involving two or more pool balls pre-
positioned to intentionally produce pool ball collisions at known times. The random num-
ber generator was disabled to allow creation of deterministic inputs. The simulationoutput
was verified by comparing each collision (including the cushion collisions) with the expected

hand calculated results.

Test 2b consisted of creating randomly generated pool balls and simulating 10 events.
Each event was verified by hand. This test was-performed five times with varying random

inputs and number of pool balls.

Large quantities of pool balls as well as large-quantities of events were not possible
to test due to the labor intensive calculations required for-comparison. While these limited
tests do not prove system correctness, the test results produce a high level of confidence

in system correctness.

The sequential simulation incorporating spatial partitioning and data replication
was validated by comparing the output against the output of the first simulation under

the following constraints:

1. The number of pool balls and initial conditions for both simulations were equal.
2. Partition and Exit events were not recorded to disk.

3. The user specified simulation time was the same for both simulations.




Since the pseudo random number generator uses a seed without reference to a system
clock, ez'u;h simulation test run produces the exact same initial conditions provided the
seed remains unchanged. In this manner, the number of pool balls could be specified for
‘both simulation software versions resulting-in identical initial-conditions. By not recording
PARTITION and EXIT events to disk, the test outputs from both simulation versions
should have been the same. This was verified by using the Unix ‘diff’ command on the two
output files. To gain further confidence in valid system operation, sector crossings were
verified by hand for 25 different pool balls corresponding to 25 different discrete points in

simulation time.

The parallel simulation version was tested against the original sequential simulation
and against the partitioned sequential version in that order. The first series of tests were
identical to those discussed above. The Unix ‘diff’ command was used to highlight any
differences in simulation outputs between the sequential, non-partitioned version and the
parallel version. A lengthy test consisting of 100 pool balls and a simulation time of 60
seconds was used as a final test. During the second series of tests, all PARTITION and
EXIT events were included in the simulation output. The sequential and parallel software
versions were compared against each other to test the functionality of the border crossings.
Again, 100 pool balls were simulated for 60 seconds. The Unix ‘diff’ command did not

i . o .
produce any differences between the two partitionable software versions.

6.3 Si1‘nulalion Performance Test Plan

Several parameters were available to-vary. It was desirable to gain insight into the

performance of the implemented design as the parameters change. Scalability in terms of
I

cube size and load factor performance are two qualities of particular interest. The following

section defines the variables of interest which were scrutinized during the test phase.

6.3.1 Defining the Variables of Interest The number of nodes is a variable of in-
terest without which speedup calculations aie impossible. Therefore, all test cases defined
must be duplicated for various node configurations. The software design imposed the con-
straint that the number-of nodes selected must be a power of two. AFIT has an eight node
hypercube; therefore, four test runs must be made-for any given test case corresponding

to one, two, four and eight nodes.

The number of pool balls is a variable of interest. Changing this variable allows

inspection and analysis of the relationship between speedup and computational loading.




The algorithm design and analysis phase predicted that the speedup should generally
improve with increased loading due to the overall O(N?) algorithm. Furthermore, as the
loading increases, there is a greater probability that each sector will contain one or more
pool balls and therefore produce useful candidate events which may be executed.in parallel

with other-useful events.

The number of sectors is a variable of interest. The algorithm design and analysis
phase predicted that therun time performance can improve with increased sectoring. If
this is in fact -true, then sectoring becomes crucial in the calculation of speedup. Since
speedup relates the parallel run time to the best sequential time, the optimum sectoring on.
a single node must be determined. There was no techmque available in the analysis phase
to determine a priori the optimum sectoring for a:-given quantity of pool balls; therefore,

sectoring must be a variable if the optimum sectoring is to be found.

6.3.2 Defining the Constants As-variables of interest are changed from test to-test,
the simulation run time and pool table-dimensions must remain constant to produce any
meaningful results. The simulation run time was set to 2.00 seconds. This time was selected
based upon the results of some trial experiments. Using 500 pool balls on a single node,
the test run required approximately four hours of wall clock time. Using 10 pool-balls, the
test run required approximately one minute. This range seemed reasonable based upon

the time constraints of this thesis effort.

The table dimensions were set to 1024 x 512 inches. The width of 512 was arbitrary.
The length of 1024 was selected to provide a reasonable degree of sectoring capability.
Given-a one inch pool ball radius (arbitrarily selected), a length of 1024 inches allows up
to 256 sectors of equal size such that no two sectors overlap and a -pool ball can reside in

a sector without overhanging into a border region between sectors.

6.8.3 The Test Plan TIhe quantity of pool balls was tested at values of 10, 20, 30,
40, 50, 100 and 200. The range of sectors to implement was 1 to 6 based upon some
sample test runs. The two, four and eight node tests varied the number of sectors by an
even multiple of the number of nodes. The single node tests could have varied the number
of sectors between 1 and 68 in multiples of one; however, multiples of two were arbitrarily
selected to save time. After the initial series of tests were finished, additional tests were
added. The performance curves were later extended by performing test runs at 300 and

400 ;- " balls. The quantities 120 and 160 were added to be able to compare test results




with those of Cal Tech. The results of the first seven tests are shown as figures 13 through
19.

6.4 Test Results

6.4.1 Analysis of Pool Table Sectoring Figures 13 through 19 graphically illustrate
the effect of sectoring the pool table on one, two, four and eight nodes for various levels
of computational loading. The execution time of figures 13 and 14 does decrease with
increased sectoring. This is due to the fact that the gains from adding additional sectors
are outweighed by the increase in intermediate events. Recall that the only real events-of
interest consist of collisions hetween pool balls and table cushions and collisions between
different pool balls. A pool ball can traverse the entire table in one step using a single
partition provided there are no pool ball collisions. Each additional sector adds-two events
(PARTITION and EXIT) for a pool ball to traverse the table. Hence, increasing the
number of sectors increases the total number of events to-process. Although the number
of events to process increases, the time to determine the next event decreases with P,
where P is the number of table sectors. As the number of sectors increases, the average
number of -pool balls in any sector decreases. If the average density decreases below one
pool ball per sector, then there will be at least one sector which has no pool balls in
it. Adding more sectors beyond this limit will therefore not decrease the search space;
however, the total number of events to process will continue to increase. The tradeoff
between decreasing the search space and increasing the total number of events determines
the optimum number of sectors. When using multiple nodes, the tradeoff is less intuitive
because of the effects described in Theorem 5.2. This theorem states that no-two adjacent
sectors can hoth meet their minimum safe times provided the next event times are not
equal. Adding more sectors on multiple nodes therefore increases the probability that a
node has at least one executable process from Theorem 5.3. The upper limit for increasing
performance by adding additional sectors is still a density of one pool ball per sector since
adding additional sectors beyond this point will not give a node a greater probability of

executing a. useful process.

Figure 18 has more of a parabolic shape. Notice that as the number of pool balls
(loading factor) increases, sectoring the pool table increases in importance. Fig 19 ap-
pears to be more of a # relationship; however, it is conjectured that the family of curves

eventually rises with increased sectoring.
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The curves of figure 20 indicate that the speedup for any cube size approaches an
assymptotic limit regardless of load factor. This was snrprising because it was expected
that the speedup would generally improve with N. Since the algorithm time complexity
is O(N'?), increasing the number of pool balls should increase the computations to com-
munications ratio thereby favoring the course granularity of the iPSC/2 hypercube. It is
-conjectured that this is not the case because the optimal number of sectors increases with
N; therefore, the search space only increases with 0(%:) Furthermore, as the optimum
number of sectors increase, the percentage of parallelism increases due to the effects of
Lemma 5.4 and 5.5. The curves of figure 21 show the same data in the more traditional

format.

The efliciency (5) is shown in figures 22 and 23. The curves of figure 22 show
the relationship between efficiency and load factor. The efficiency appears to approach a
limit for each cube size regardless of the number of objects to simulate. Both figures 22
and 23 clearly show that the efficiency decreases with increasing cube size. This is not
surprising because the analysis phase of Chapter V stated that the estimator M ST} (v)

is not scalable due to the global communications. It is reasonable to assume that the
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efficiency will continue to decrease beyond a cube size of three although this cannot be

tested with AFIT’s eight node hypercube.
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Figure 20. Speedup Curves as a Funtion of Load Factor
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Analysis of the data for optimum sectoring reveals an interesting trend. After 50
pool balls, the trend appears .to establish a relationship between the optimum sectoring
for aix nodes and the number of pool balls per sector (density). The curves are shown
as Fig 24. In fact, these curves were used to tailor the test plan for the 300 and 400
pool ball trials in an effort to reduce the time to complete the test runs. It was not
surprising that the optimum sectoring-is related to the pool ball density due to the tradeoffs
discussed earlier in Chapter \"I'; however, another possibility exists. As the number of pool
balls increases, the total number of events-to process also increases. These events-can be
divided in two categories: events which are internal to a node and events which require
communications. These correspond to-the subsets { VERTICAL, IIORIZONTAL, COLL}
and {PARTITION, EXIT} respectively. Currently, the software keeps track of events by
type (i.e. VERTICAL, HORIZONTAL, etc); however, with multiple sectors per node, not
every PARTITION- and EXIT event requires communications via message passing. Should
a relationship exist between optimuin sectoring and the ratio of internal event processing
to external event processing, then a conclusion can be made regarding all simulations
incorporating a two dimensional spatial partitioning scheme. Analysis of this relationship

has not yet been accomplished.
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6.5 Comparison of AFIT and Cal Tech Simulation Results

Cal Tech developed the original pool balls simulation concept. Their research re-
volved around the Time Warp optimistic synchronization paradigm. The simulatiias de-
veloped by AFIT and Cal Tech are very similar, but not identical; therefore, comparisons
are limited to general trends. The software designs for the two systems are different in

several respects.

1. Bach pool ball in AFIT’s program has identical radius while Cal Tech’s program

allows for varying radii.

2. Each pool ball in AFIT’s program-has identical mass while Cal Tech’s program allows

for varying mass.

3. The AFIT software design establishes-the entire table as a single object. Cal Tech’s
software design divides the four table cushions into sections, each of which is -an

object.

4. Cal Tech describes each pool ball (or puck) to be a separate object whereas the AFIT

design defines a class of pool balls and a single ball manager object (3).

5. Cal Tech chose the more efficient O(NV) algorithm to-manage a next event queue
containing events. The AFIT simulation algorithm is O(N?) and avoids complex

event list manipulation by storing on average only one event at a. time.

The first four differences enumerated above should not affect the test results for either
system in any appreciable manner. These differences represent implementation decisions.
The implementation differences will probably result in different execution times but relative
speedup measurements enable valid comparison exercises. Item five, however, represents a
significant design difference. As the Intel hypercube is course grain, the O(N?) algorithm
provides a better match between software and hardware. Thus, one would expect that
an O(N?) simulation would result in superior speedup over an O(N) algorithm, all else
remaining the same. This highlights another potentially significap. difference between the
two simulations; that is, the hardware is not the same. Cal Tech used the JPL Mark III
hypercube whereas AFIT used the Intel iPSC/2 hypercube. With differing granularities,
the two machines will produce different speedup results even for the same software. During
the course of this research, no subjective measures of granularity were found to adequately

compare the two machines.




Cal Tech reported in the 1988 SCS Multiconference that speedup on eight nodes for
120 pool balls was approximately 3.2 (3:5). The simulation run time was not specified
nor was the sectoring specified. There was no mention concerning optimal sectoring for
the single node and 8 node configuration. For this thesis, a 120 pool ball scenario was
generated for two seconds simulation time. The speedup on eight nodes was 4.97. The
graph is shown as Fig 25. Cal Tech also published the speedup results using 160 pool
balls. Their speedup was approximately 4.0 on eight nodes using 64 table sectors. From
the reported test, it appears that Cal Tech did not use optimum table sectoring to calculate
speedup. They chose instead to fix the sectoring for each of the:cube sizes from one to
32 nodes. Test results using 160-pool balls were reported using 16, 32 and 64 sectors for
which the 64 sector table produced the best of the three speedup results for all cube sizes.

The AFIT simulation produced speedup-of 5.40 for 160 pool balls on 8 nodes.
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w
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Figure 25. AFIT Speedup Curves for 120 & 160 Pool Balls
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VII. Conclusions and Recommendations

7.1 Inlroduction

This chapter discusses t} ¢ conclusions which can be-made from -the results of Chap-
ter VI. These conclusions are conjectured to apply not only to the pool balls simulation
but also to any simulation which incorporates a two or three dimensional space through
which the objects of study move-or pass. Examples include particle dynamics and battle

field simulations.

7.2 Impact of Computational Load

Speedup issindependent of the number of objects to be simulated for large N provided
that optimum sectoring is used. The empirical data suggests that the speedup stabalizes

at approximately ¥ = 100

7.3 Impact of Spatial Partilioning

Sectoring the pool table results in a tradeoff between decreased search space and
increased number of events to process. Each additional sector adds two incremental events
to process for pool balls which must cross the additional sector. These events are not
real events of interest and therefore represent overhead. Empirical data suggests that the
optimal number of sectors increases with N, that it is dependant upon the ratio of pool
balls to-table sectors (censity), and that the optimum number of sectors for any given size

of N is independent of the cube size.

7.4 Determining the Opltimal Number of Sectors

The empirical data shown in. figure 24 suggests that the relationship between the
optimum number of sectors and the number of pool balls is logarithmic. Using linecar
regression on an equation of the form'Y = alogX + ¢, where Y is the optimum number
of sectors and X is the number of pool balls to be simulated, and minimizing the error
of the model results in @ = 2.3 and ¢ = —1.5. The empirical data is plotted with the

optimum sectoring estimate in figure 26.
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7.5 Impact of the Conservative Paradigm upon Scalabilily

This thesis developed two formulations, M ST} (v) and M ST?(v), for calculating the
minimum safe time. The estimator M ST}(r) represents the tightest upper bound pos-
sible at the cost of global communications. The estimator M ST3(v) complies with the
constraints formally presented by Chandy and Misra. This approach uses less information
to-produce a lower estimate of the minimum safe time; however, communications time is
a constant limited only to nearest neighbor communications. The approach favored by
Chandy and Misra can result in an indeterminant number of iterations in which no sector
can mecet its minimum safe time. The additional] information provided by global communi-
cations of the first scheme has been proved to.guarantee that at least one sector can always
meet its minimum safe time. The efficiency curves of figure 2 clearly illustrate the cost
of global communications upon the parallel performance of the pool balls simulation. As
the number of nodes increases, the efficiency generally decreases. Due to the global com-
munications, M ST, (v) is conjectured to yield superior speedup over the nearest neighbor
scheme for small A only where M is at least four nodes. Due to the indeteriinate number

of idle iterations which can result with M ST?(v), it is not possible to predict the value of




M for which the two estimators will produce equal speedup without empirical-test-data.

The second estimator has not yet been implemented.

7.6 Conservative Versus Optimistic Paradigms

There are several differences between the pool balls simulation 1mplemented by Cal
Tech and AFIT. The two most significant differences are the overall algorithm time com-
plexity and the hardware used to measure speedup. Cal Tech’s simulation incorporated an
O(N) search algorithm while AFIT’s simulation incorporated an O(N?) algorithm. Cal
Tech used a JPL Mark III 32 node hypercute while AFIT uses an Intel iPSC/2 hypercube.
There were no quantitative or qualitative measurements for hardware granularity for com-
parison. It is reasonable to assume that the measured speedup results for either simulation
design would be different if run on different machines; therefore, an accurate comparison is
not possible. Lin and Lawzowska performed an analytical study of the two paradigms and
concluded that the optimistic approach is generally superior and that in the worst case,
an optimistic approach cannot lag arbitrarily ‘behind the conservative model. The speedup
results presented in this thesis are approximately 35% higher on eight nodes than Cal
Tech’s reported speedup on eight nodes. While this does not disprove Lin and Lazowska’s
work, it does indicate that a conservative paradigm applied to a distributed discrete event
simulation can produce significant speedup. This has important ramifications because an
optimistic approach can require vast amounts of memory to execute. Chandy and Misra,
on the other hand, have shown that their paradigm requizes a bounded amount of memory
and that the memory requirements are not more than for a sequential simulation. This
thesis concludes that the conservative paradigm has neny useful applications where the
optimistic approach would otherwise exhaust memory. If designed properly, a conservative

siinulation can produce significant speedup.

7.7 Recommendations for Fulure Study

The concept of spatially partitioning the pool table for the pool balls simulation
worked exceptionally well. This was due predominantly to the fact that the pool balls
were uniformly distributed. A battlefield simulation is not guaranteed to have this advan-
tage. Most of the computational load for a battlefield simulation occurs at the boundary
between opposing forces. To ensure that as many sectors as possible have objects located
within them, a dynamically defined sectoring scheme must be implemented. The pool balls

concept is readily understood and is therefore easier to work with than complex battlefield
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simulations. It is recommended that a dynamically assigned sectoring strategy can-be cre-
ated using the pool balls problem domain. The insights gained from this endeavor would

apply to any non-uniformly distributed object model.

The design. of the pool balls simulation intentionally incorporated an -O(N?) algo-
rithm to match the design with the granularity of the iPSC/2 hypercube. An O(V) would
require less overall execution time; therefore, it is recommended that the pool balls simula-
tion be re-designed to-accommodate the-O(N) algorithm. This allows further comparison
with -the pool balls simulation tested at Cal Tech. If the speedup of the O(N) algorithm
implemented using a conservative paradigm still outperforms the O(N) aigorithm using
an optimistic paradigm, then the degree of confidence in.the asserions.stated in this thesis

increase.

ATIT has been experimenting with a standard conservative synchronization pack-
age called SPECTRUM. This package was originally written at -the University of Vir-
ginia and incorporates multiple filters for internodal comminications. The main-thrust of
SPECTRUM is isolate machine dependant software in a low level implementation layer
of software and to separate the synchronization protocal from the specific application. It
is recommended that the pool balls software-design be modified to interface to UVA’'s
SPECTRUM package. This would standardize the pool balls simulation with other-simu-
lations produced at AFIT and would allow the software to be more easily ported to other

distributed processing systems.

This thesis developed two minimum safe time estimators. The first estimator does
not conform to Chandy-Misra’s paradigm, but iv is more efficient for small cube-sizes. The
second estimator does conform to Chandy-Misra’s paradigm, but is less efficient and more
'scalable. This thesis implemented the pool balls simulation using the first estimator which
is more efficient but less scalable. It is recommended that the pool balls simulation be
redesigned with the second estimator for detailed performance comparison. This recom-
mendation is based on the premise that massive parallelism is desired by the DoD to solve

many of its-complex battle simulations and large VIIDL descriptions.

A two-dimensional sectoring strategy is recommended for future investigation. Sev-
eral Jarge simulations, such as a battlefield simulation, are better suited to two dimensional
sectoring due to the distribution of-objects. By partitioning the domain in-along twe axes,
the objects can be dispersed with a better chance of achieving superior load balancing.

This conjecture can be tested with the pool balls problem.
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Appendix A. Software Listings

A.1 Sottware Files

The software for the parallel implementation of the pool balls problem.includes the

following files:

e Initialize.c = Main Host Code
e Simdrive.c = Main Node Code
e ball ADT.c

o table.ADT.c

e queue ADT.c

e Eventllandler.c

¢ Communicator.c

e clock.c

e evont.c

s neql.c

e pool_balls.c

e random.c

e cube.h

e event.h

o protottype.h

o structure.h

A.1.1 Funclional Descrinlion

Initialize.c: This is the main program for the host. Its primary functions are to

read in the command line arguments from the user, create the specified number of pool

balls, create the pool table witl the specified table dimensions, initialize all simulation

parameters, place the pool balls into-the appropriate table sectors, enforce Wieland's data,

replication for pool balls-residing in border regions, and communicate this information to

the individual- nodes. The host program then enters a continuous loop until receiving a

message from a node indicating that the simulation is over at which time the host kills all

processes.

91




simdrive.c: This is the main program for the nodes. Its primary purpose is to

enforce the high level loop construct for the simulation. The loop-consists of:

Determine the next event

Determine the minimum safe time

Schedule the next event(s)

Execute the scheduled event(s)

Enforce Data. Replication

pool_balls.c: This is the main application code driver for the nodes. It has an
initialization procedure wkhich is called only once by the main code, simdrive.c. This
procedure receives the command line arguments sent from the b Jst, creates the pool table
for each node, receives each pool ball sent from the host and inserts the pool balls into
the appropriate sector, and initializes all other packages which require initialization. It is
important-to note that each node only receives the pool balls which are assigned to-a sector
which resides on that node. Last. the initialization program determines the first event(s)

to-he executed.

The program ‘pool_balls.c’ also has a procedure which is continuously called by the
main node program which implements (via procedure calls) the funcions-of executing an

event, determining the next event, determining the minimum safe time, and scheduiing the

next event.

EventHandler.c: This file pertorins two basic tasks: it determines the next event
possible for a pool ball which is passed to it,.and it executes an event message which is
passed to-it.

Communicator.c: This file performs all of Wieland’s data replication strategy.
Each time a pool ball is moved, this file is invoked. The pool ball state information which

is passed to the file is inspected. All replication and Je-replication occurs here.

bail_. ADT.c: This file is implemented as an-abstract data type. It represents the

ball object manager for each node. The manager can perform the-following operations on
a. poc! ball:

e Add
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e Remove (without returning a pool ball)
o Get.and_Delete

o Get (without removing a pool ball)

Several other functions are available but do not change the state of the ball object

manager. These operations.include printing, error checking, counting, and- searching.
clock.c: Manages the simulation clock.
event.c: Dynamically allocates and deallocates memory for events.

neql.c: Manages the next event queue. Each node has one NEQ and each NEQ
stores scheduled events. Each NEQ also has one dummy event to ensure that the queue is
never empty. If the dummy event is popped, it must be re-inserted before-the simulation

can proceed.

qgueue_ ADT.c: This file has two basic functions: it-creates, manages and updates
the candidate queues, and it enforces the synchronization protocol. It currently enforces
the M ST? estimator. Each sector has one candidate queue which stores candidate events.
After each sector-determines its minimum safe time, each candidate queue is inspected to
determine if its candidate event is less than or equal to its minimum safe time. If it is,
then the candidate event is popped off the queue and inserted inlo the node’s next event
queue. The event is now said to be sclieduled. If the candidate event is greater than the

minimum safe time, then the candidate event is removed and its memory is freed.

random.c: This file is a machine independant, pseudo-random number generator
based on the works of Law and Kelton. It can return random numbers with the following

distributions:

uniform

e exponentjal

normal

logarithmic
table.ADT.c: This file is implemented as an abstract data type. The ADT repre-

sents the table sector manager. It not only creates the table and sectors, but it returns

information about the table such as the table length, table width, and sector coordinates.
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cube.h: This header file includes all cube specific information as ‘define’ statements

in the C programming language.
event.h: This header file defines the data structure of an event type.

prototype.h: This header file prototypes all of the files used in the pool balls

simulation.

structure.h: This header file defines all global structures such as the ball structure,
linked list structure, and sector structure. It also defines several global variables such as
the length of a pool ball radius, the value of 7, the maximum allowable X and Y axis pool
ball velocities and some key initialization parameters such as writing to dis.and printing

to-screen.

A.2  Compiling Instructions

The makefile specifies how the various host and node files compile. The makefile is

as follows:

host: Initialize.o random.o ball_ADT.o table_ADT.o
cc -o host Initialize.o random.o ball_ADT.o table_ADT.o
-lm -host
node: simdrive.o pool_balls.o clock.o neql.o
event.o random.o ball_ADT.o table_ADT.o
EventHandler.o Communicator.o queue_ADT.o
cc -o node simdrive.o pool_balls.o clock.o neqi.o
event.o random.o ball_ADT.o table_ADT.o
EventHandler.o Communicator.o queue_ADT.o
-1lm -node

Initialize.o: Initialize.c structure.h cube.h prototype.h

cc ~¢C Initialize.c

simdrive.o: simdrive.c event.h cube.h prototype.h structure.h
cc -¢ simdrive.c

clock.o: clock.c
cc -¢C clock.c




neql.o: neql.c event.h

cc -¢ neqgl.c
event.o: event.c event.h
cc ~¢ event.c
random.o: random.c
cc -¢ random.c

pool_balls.o: pool_balls.c structure.h prototype.h

cc -c pool_balls.c
ball_ADT.o: ball_ADT.c structure.h prototype.h
cc -¢ ball_ADT.c

table_ADT.o: table_ADT.c structure.h
cc -¢ table_ADT.c

EventHandler.o: EventHandler.c structure.h event.h prototype.h
cc -¢ EventHandler.c

queue_ADT.o: queue_ADT.c structure.h event.h prototyp.h cube.h
cc -c queue_ADT.c

Communicator.o: Communicator.c structure.h event.h prototype.h <cube.h
cc -¢ Communicator.c
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