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PREFACE

The work described in this report was authorized under Project No.
1L162622A552, Smoke and Obscurants. This work was started in June 1989 and
completed in July 1989.

The use of trade names or manufacturers' names in this report does
not constitute an official endorsement of any commercial products. Tips
report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited
except with permission of the Commander, U.S. Army Chemical Research, Develop-
ment and Engineering Center, ATTN: SMCCR-SPS-T, Aberdeen Proving Ground, MD
21010-5423. However, the Defense Technical Information Center and the
National Technical Information Service are authorized to reproduce the
document for U.S. Government purposes.

This report has been approved for release to the public.
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REPRESENTATIONS OF 3-D SCATTERING MATRICES

1. INTRODUCTION

Aerosols play an increasingly significant role in the way the
military views its battlefields. Airborne dusts impair the ability of the eye
and the electronic sensor to perceive danger or acquire targets. Dusts may be
generated incidentally as by-products of military activity (e.g., battlefield
road dusts, smokes from burnings), or they may be intentionally delivered as
screening smokes. The early detection of deadly chemical or biological agents
that might be dispersed in the air is clearly a matter of enormous importance
to the U.S. Army.

In any study of aerosols and their effects, it is necessary to
characterize the aerosol in question [e.g., to describe the range of sizes and
shapes of the constituent particles, their concentration, the material(s) of
which they are made, and the changes these properties undergo as the cloud
develops and ages]. Inelastic (i.e., no change in wavelength) light scatter-
ing is an important technique among those available for aerosol characteriza-
tion. Broadly speaking, an aerosol is illuminated by a light beam, and
inferences about the aerosol are drawn according to the nature and spatial
distribution of the resulting scattered light. Numerous applications of this
technique have been found because of its versatility and speed. Light
scattering can be used to scrutinize a single aerosol particle or probe clouds
many kilometers thick; with it, one can study samples on hand in the labora-
tory or particulates remotely distant in the atmosphere or even in interstel-
lar dust clouds.

The U.S. Army Chemical Research, Development and Engineering Center
(CRDEC) Nephelometry Laboratory was set up to explore fresh ways of applying
light scattering techniques to aerosol characterization. For example, the
advent of screening smokes effective in infrared and millimeter-wave regions
of the spectrum has been based on using highly nonspherical particles (flakes
and fibers). This resulted in a need to replace traditional instruments for
sizing spherical particles with new methods capable of analyzing irregular
particles. Over the years, CRDEC's attention has been primarily focused on
finding the size and shapes of aerosol particles. To that end, we have been
particularly interested in the description and measurement of the polarization
states of light and in trying to relate polarization transformations to
characteristics of the aerosol. In modern optical parlance, the polarization
state of a light beam is summarized by a set of four numbers known as the
beam's Stokes vector. A process that alters the Stokes vector is described
with the Mueller matrix, which is a 4 by 4 matrix relating incident and

altered (or scattered) Stokes vectors.

In this report, we review the standard Stokes/Mueller formalism
applicable to scattering in a plane and then extend those ideas to scattering
in three dimensions (i.e., the case when a description is required for light
scattered simultaneously into all directions about a particle).
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2. STOKES VECTORS

All experimentally accessible information needed to characterize
the intensity and state of polarization of a nearly monochromatic light beam
is contained in the Stokes vector, the four elements of which are called
Stokes parameters. Several different sets of optical quantities can serve as
Stokes parameters for describing light, and at least three have been suggested
over the years. In this report, the term "Stokes vector" refers to the system
most commonly used today, usually denoted {I, Q, U, V,} and discussed by Van
de Hulst,1 and Bohren and Huffman,2 and by Kerker3 who prefers the symbols(so# S, s2F s3}.

Mueller's phenomenological definition of the Stokes parameters was
reported by Parke,4 one of his students. For the experimentalist, Mueller's
definition has the compelling attraction of referring only to observable
quantities. In fact, Mueller's definition of Stokes parameters is a prescrip-

tion for measuring the parameters; conversely, the numerical values one
obtains upon carrying out the prescribed measurements on a beam of light are
the Stokes parameters of that particular beam. Mueller's definition may be
described by referring to Figure 1.

.e(

Figure 1. Optical Elements Required to Determine
the Stokes Parameters of a Light Beam
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In Figure 1, a reference plane containing the parallel beam of
light in question is specified, and the beam intensity is measured with
detector D. The beam passes through an ideal polarizer whose transmission
axis is at an angle p with respect to the reference plane. The beam may also
transit an ideal wave plate of retardation 6, whose preferred axes are
parallel and perpendicular to the reference plane. (Mueller's phenomenologi-
cal approach is carefully self-consistent but is not reproduced here. Terms
such as "ideal polarizer," "ideal wave plate," "transmission axis," etc., and
even "parallel beam of light" are defined operationally.)

The detected intensity in the setup of Figure 1 can be described by
the following formula:

Int = 1/2 [I + Q cos 2p + (U cos 6 + V sin 6) sin 2p] (1)

A sequence of measurements with various polarizer angles (p = 00,
90 ° , 450, -450) and phase shifts [6 = 900, 00 (i.e., wave plate removed)] will

determine the Stokes parameters of the beam, I, Q, U, and V (Mueller referred
to them as I, M, C, and S).

Today, Stokes parameters corresponding to the set defined by
Mueller are usually expressed in terms of the electric field components of a
plane wave satisfying Maxwell's equations. If the electric field of a simple
plane wave is written as follows:

E = Re [Ell + Err] (2)

where E, and Er are the complex, oscillating field components parallel to and
perpendicular to the reference plane (r x 1 in the direction of propagation
z), Mueller's Stokes parameters can be shown to be the following real quanti-
ties:

I= F, Et* + Er Er*
Q = E Et - Er Er. (3)

U = E Er* + Er Ei
V = i(E Er* - Er Et*

Many find it easier to visualize the field in terms of real
amplitudes and phases. If one writes the following equations,

Ef = a, e- i (kz + E) eit
Er ar e-i(kz + er) e it (4)
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then the Stokes parameters are expressed as follows:

I = a,2 + ar2

Q=a t2 - ar2

U = 2aja r Cos 6 (5)

V = 2ata r sin 6

where 6 = l- Er, the phase difference between parallel and perpendicular
components whose amplitudes are a, and ar.

The Stokes vectors of equations 3 and 5 are not identical to the
operationally defined Stokes vector. Equations 2 and 4 describe only a
100% polarized plane wave satisfying 12 = Q2 + U2 + V2; actual light is often
quite different. Real light is modeled as a superposition of simple plane
waves (not necessarily all identical) arriving in rapid succession. The
theoretical ztokes vectors are then modified by including a time average of
sufficient length to smooth the instantaneous field fluctuations as follows:

I = (EtE + ErEr*) = (a,2 + ar2)
Q = (EtE t * - ErEr*) = (a2+ ar2)

U = (EIE + ErEt*) = (2aja r cos 6) (6)

V = i(EtEr* ErE ) = (2ajar sin 6)

Then, as in the Mueller definition, 12 a Q2 + U2 + v2 and
Q = U = V = 0 correspond to completely nonpolarized (natural) light. Notice
that the definitions of equation 6 involve theoretical quantities that cannot
be directly observed (field amplitudes and phases) and that fluctuate much too
rapidly to track and average, even inferentially from intensity measurements.
However, electromagnetic theory is indisputable, and definitions in terms of
its elements are indispensable for making theoretical predictions of the
Stokes parameters and the matrices that connect incoming and outgoing Stokes
vectors across an optical instrument or scattering region.

Whatever is taken as the primary definition of the Stokes vector, a
reference plane must always be specified, for either resolving fields into
orthogonal parallel and perpendicular components or serving as a reference
direction for setting optical elements. Even when the Stokes vector is
unambiguously defined, the values of its parameters Q and U are not intrinsic
properties of the radiation alone but depend on this reference plane. The
selection of a reference plane is quite arbitrary with respect to the light
source, except that it must contain the beam in question. Usually, it is
chosen in a manner that is natural for the experimental setup contemplated or
used and often is simply the table top onto which the equipment is mounted.

If the Stokes parameters of a beam are known with respect to some
reference plane, then the Stokes vector referenced to any other plane contain-
ing the beam can be calculated by applying the rotation matrix R ( ).
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A light bea. directed into the reader's eye is indicated in Figure 2. The
beam's Stokes vector should be So = {I, Q, U, V} with respect to the reference
plane P. A new reference plane P results from rotating P' counterclockwise
about the beam by a (positive) angle 0 The Stokes vector referenced to the
new plane, S' = {I', Q', U', V'}, is given by equation 7:

S, = R(O) So (7)

or, explicitly by equation 8:

i I'i 1i 0 0 0 I
JQ'I i0 cos2q sin2q05 IQI (8)
i U' 0 -sin2o cos20 0 I U
Iv' 0 0 0 0 Iv!

Notice that I (intensity), V (dominance of right circular polarization over
left circular polarization), and the quantities Q2 + U2 + v2 (a measure of the
degree of polarization) are invariant under reference frame rotations.

p/

Figure 2. Rotation of the Reference Plane

3. MUELLER MATRIX

Nearly all interactions of light with matter, and particularly all
the elastic scattering processes with which this report is concerned, are
linear in nature. When a beam of light with Stokes vector So is incident on
3n optical instrument or scattering system, any emerging beam S can be related
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to the incident beam by a 4 by 4 matrix N whose elements are independent of
the intensity.

S = M S0  (9)

M is called the Mueller matrix; its purpose is to allow the prediction of S,
given any S0.

Although the concept of Mueller matrices can be very useful for
following the polarization changes experienced by an essentially unscattered
beam of light transmitted or reflected by the elements of an optical instru-
ment, we are only concerned with light scattering phenomena and will hence-
forth restrict the discussion to such cases in this report.

The two Stokes vectors S0 and S are always defined with reference
to the plane that contains them both. The numerical values of the 16 matrix
elements in any instance depend on the configuration of the scattering system,
its orientation in the reference plane, and the directions of So and S. The
use of the Mueller matrix is illustrated in Figure 3; a light beam is incident
on a scattering object, and we consider light scattered into a narrow cone at
250 off the incident direction.

The Mueller matrix H in Figure 3 was made up for illustrative
purposes and tells us, for instance, that if horizontally polarized light of
unit ir..ensity strikes the scatterer (So = {, 1, 0, 0)), then the outgoing
light at 250 will have the Stokes vector S = {0.013, 0.010, 0.001, 0.000},
which is considerably diminished in intensity and no longer purely hori-
zontally polarized, although nearly so. The same set of numbers in N operates
on any incident Stokes vector S0 .

It is often convenient to express scattering in terms of the
normalized Mueller matrix (indicated in Figure 3), which is derived by
dividing each element of the Mueller matrix by the 1, 1 element. The 1, 1
element is taken outside the mat-ix as a multiplying scalar; the remaining
elements of the normalized matrix all lie in the [-1, 1] range.

Mueller sought to formulate all concepts of optics on the basis of
empirical laws and devised an operational definition for the matrix that
transforms Stokes vectors. In Mueller's definition, a scatterer is illumi-
nated in turn by four light beams prepared in four independent polarization
states, and the Stokes parameters of the corresponding scattered beams are
measured. The Mueller matrix elements are then constructed from combinations
of incident and scattered beam Stokes parameters.

The Mueller matrix may also be defined in terms of wave theory
concepts by considering the most general transformation of a simple wave. If
an incident wave is represented with the complex electric field components El0
and ErO, as in equation 4, and if only linear processes are involved, then the
emerging or scattered wave is most generally represented by E, and Er, where
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E l = A 2 E 0 + A 3 ErO
Er = A 4 E10 + A1 ErO (10)

Van de HulstI shows how to write each of the 16 elements of the
Mueller matrix in terms of the four complex coefficients Ai above, and points
out that because there are only eight constants represented by the A's
(including one irrelevant phase), there can be only seven independent con-
stants contained in the Mueller matrix. The nine relations that must there-
fore exist among the 16 Mueller matrix elements were not worked out by Van de
Hulst; however, they have been derived and published by Fry and Kattawar.

5

S0

0.010 0.003 0.001 0.000 1.0 0.3 0.1 0.0
0.003 0.007 -0.002 0.000 0.3 0.7 -0.2 0.0

M(25) = -0.001 0.002 -0.004 0.003 = 0.01 -0.1 0.2 -0.4 0.3

0.000 0.000 -0.003 -0.004 0.0 0.0 -0.3 -0.4

Figure 3. Mueller Matrix Predicts the Scattered Stokes

Vector Produced by Any Incident Stokes Vector

Of course, not all scattering systems consist of rigid immutable
objects as was supposed above. For example, aerosol particles are in constant
motion, rotating, tumbling, and shifting positions relative to each other.
The Stokes vector of light scattered from a dynamic particle (or an assembly
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of particles) fluctuates in concert with the particle motions and may be
regarded as "produced" by a Mueller matrix with correspcndingly rapidly
fluctuating elements. Most experiments that measure Mueller matrix elements
of fast dynamic systems will report independently time-averaged values for
each of the 16 elements because the scattering system ranges rapidly many
times over its allowed values during the course of a single measurement.

Fry and Kattawar5 also treated this time-averaged case (viewed
equivalently as an incoherent sum of Mueller matrices) in their paper and
showed that each of the nine equations relating quadratic functions of Mueller
matrix elements, which they had derived for the simple stationary case, either
failed completely or at best became one-way inequalities when averaging had to
be taken into account. Therefore, in this most general case, all 16 Mueller
matrix elements are independent. (However, the number of independent elements
may still be reduced to fewer than 16 even in a dynamic or multiparticle
scattering system, depending on symmetries exhibited by the individual
particles. Van de HulstI or Perrin 6 provide further details.) The distinc-
tion drawn between the Mueller matrices of stationary and dynamic systems is
analogous to the earlier distinction between Stokes vectors of simple plane
waves (wherein 12 a Q2 + U2 + V2) and Stokes vectors of superpositions of
plane waves (12 z Q2 + U2 + V2).

The light scattering instruments developed for CRDEC - the Boeing
Multichannel Nephelometer (Boeing Company, Seattle, WA) and the Wyatt Sub-
micron Particle Analyzer (Wyatt Technology Corporation, Santa Barbara, CA) -
do not make time averaged intensity measurements. The instruments sample
light scattered by individual particles in a laser beam through time windows
so short (microseconds) that there can be no perceptible change in the
particle's orientation during data acquisition.

Scattering problems are frequently concerned with how an optically
observable quantity, such as intensity, is distributed as a function of
scattering angle. Mueller matrix elements are observable quantities; in fact,
taken together, they comprise a complete description of the scattering
properties of a system. Figure 4 shows the angular dependence of the normal-
ized Mueller matrix elements corresponding to a homogeneous sphere with a size

parameter X = 2( ) = 3.600 and a complex refractive index (N = n - iK)

given by n = 1.500 and x = 0.01.

The 16 matrix element values were calculated at each degree of
scattering angle in the range of 00, 1800. The plots in Figure 4 are in
positions that correspond to the matrix elements displayed on them (i.e., the
plot located in the first row and second column shows M1 ,2 versus 0. The 181
discrete values in each plot have been joined point-to-point by straight lines
to give the appearance of continuous curves.

Although such graphs are loosely called Mueller matrices, Figure 4
is actually a representation of many different but related Mueller matrices
(181 matrices in this example), all corresponding to the same sphere but
connecting incident to outgoing Stokes vectors at 181 different directions.

14



The Mueller matrix formalism was invented as a convenient mean of
predicting and summarizing the action of a scatterer or an instrument on a
beam of light. However, the Mueller matrix, especially an elaborate represen-
tation of multiple matrices such as shown in Figure 4, can play a second role
by serving as a descriptor of the scattering system. In that role, the
Mueller matrix may constitute a valuable method for particle characterization.

F r 4 4. 44 M.E

f S a* .0

15 *..
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To the slightly practiced eye, Figure 4 reveals information about

its associated scatterer. The facts that at all scattering angles M2 ,2 = 1,
M1, 2 = M 2 ,1 , M3 ,4 = -M4 ,3 , M3 (3 = M4 ,4 and the upper light and lower left
quadrants vanish are all consistent with a spherical scatterer. The sphere's
size parameter can be roughly estimated by counting the number of relative
minima (or maxima) across any of the oscillating matrix elements. In fact, it
is probable, but rnt certain (uniqueness questions are still quite unresolved
in this area) that only a sphere with X = 3.6, n = 1.5, and x = 0.01 is
consistent in every detail with the Mueller matrices represented in Figure 4.
Therefore, in principle, measuring the Mueller scattering information of
Figure 4 is tantamount to identifying the scatterer as a sphere with the
stated properties.

4. 3-D MUELLER MATRICES

We can attempt to identify a sphere by its Mueller matrices because
we expect a one-to-one correspondence between the sphere's physical properties
and its set of matrix values. There can be only one set of Mueller matrices
associated with any given sphere, and presumably no other scatterer has
exactly the same matrix set as that sphere. However, this correspondence is
lost in the scattering of nonspherical pazticles. The pattern of light
scattering around an irregular particle depends on the particle's orientation
in the scattering plane. Therefore, there will be as many different sets of
Mueller matrices (i.e., Figure 4) associated with any one irregular particle
as there will be ways to twist and turn its orientation.

To sidestep this problem and make at least some progress beyond
spheres, we first consider light scattering only from particles with fixed
orientations. Then, we may be able to at least postulate a one-to-one
relationship between the shape of an oriented irregular particle and its
Mueller matrices; but, the situation is still more complicated than with
spherical scatterers. Unlike the case with spheres, Mueller matrices belong-
ing to an irregular particle generally differ from one plane to another
because the particle's appearance varies with the plane in which it is viewed,
and the scattering in one plane is not predictable from the scattering in
another. Even for a fixed particle, knowledge of the light scattering in a
single plane is only a small portion of the information available for its
characterization; therefore, we must enlarge the Mueller matrix concept to
include all directions about a scatterer.

The extension of the planar representation of Mueller matrices with
elements Mi, j (0) to a 3-D representation [Di,, (0, 0)] is straightforward,
assuming that the planar Mueller matrices are available by calculation or
measurement in any desired plane through the scatterer.

Looking at the calculation first, suppose a particle whose Mueller
matrix is calculable in any orientation is fixed in some reference frame, as
in Figure 5. First, we calculated the Mueller matrix elements for a number of
scattering angles (in the 0-1800 range) in that reference plane, whose azimuth
(i) was taken to be 00. In other words, we tabulate values for Di, j (00, 0).
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The incident Stokes vector and all scattered Stokes vectors
connected by Mueller matrices calculated in this fashion are referenced to the

= 0 plane. So far, this is the sort of data displayed in Figure 4.

Next, we changed our vantage point to a different half plane
corresponding to a different azimuth angle (i.e., for instance 0 = 100 in
Figure 5). In this plane, the particle has a different orientation; it is
rotated by -100 about the incident beam compared to its appearance in the

= 00 plane. We again calculated the Mueller matrix elements (for the "new"
scatterer) for scattering in the 0 = 100 plane and obtained the connection
between incident and scattered Stokes vectors that all referred to the 0 = 100
azimuth plane Di, j (100, 0)]

0 :Z 10.

0-0

Figure 5. Calculating Matrix Elements Along Many
Scattering Planes Passing Through the
Incident Beam

We repeated this procedure in many half planes about the incident
beam (in the example in Figure 5) at 200, 300, etc., around to 350. In each
case, we calculated the Mueller matrix elements as functions of scattering
angle for the particle viewed in that particular azimuth plane.
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To display this calculated data, we constructed a 3-D graph for
each of the Mueller matrix elements, plotting the element along the z-axis
above an x-y plane scaled by scattering angle [00, 1800] and azimuth angle
[00, 3600]. To illustrate such plots, we considered scattering from the
homogeneous sphere of Figure 4 and calculated and plotted its Mueller matrix
elements as described above. The results are shown in Figure 6.

A single slice through all 16 plots at 0 = 00 is the exact equiva-
lent of the data in Figure 4. There is no 0 dependence in this special case
because a sphere looks the same no matter how it is rotated. The pattern in
the plane 0 = 00 is simply repeated at all other azimuth angles. All special
characteristics (noted in Figure 4) that revealed the scatterer to be a sphere
(D2,2 = 1 everywhere and so on) are still plainly evident.

(The data in Figures 6 and 7 were plotted using OMNIPLOT, a
commercial graphics software package for IBM compatible PCs. Values of z
(matrix element) are plotted for 6 from 00 to 1800 in increments of 50, for

0 from 00 to 3600 in steps of 100, and those values are connected by lines
making a fishnet display. The plot is then converted to a solid display by
removing hidden lines. A perimeter of four lines with z = 0 has been added
around the actual data points to aid visualization of positive and negative
matrix values as a sort of trampoline display. Other artifacts are spikes of
+1 and -1 in opposite corners added to force OMNIPLOT's automatic scaling to
produce plots of uniform appearance and to aid in visualization of the data.]

While a sphere may seem a poor example with which to illustrate
creating a 3-D representation because there is no 0 dependence, it is a very
good choice to illustrate the following point: The D matrix data displayed in
Figure 6 are wrong, at least in the traditional sense of what a Mueller matrix
dces. We require a matrix that will predict the Stokes vector of every
scattered light beam, given the Stokes vector of any incident beam. The
matrix D fails this test.

According to the data in Figure 6, the matrix elements of D are
independent of azimuth angle 0. If it were true that at every angle Sout =

DSin, then the outgoing Stokes vectors Sout would also be independent of o;
this is generally not true, even for a spherical scatterer. For example,
consider a specific incident beam that is linearly polarized parallel to the
reference plane 0 = 00 (i.e., the beam is horizontally polarized). Its Stokes
vector is, to within a constant, given by Sin = (1, 1, 0, 0}. The light
scattered at any scattering angle e0 in the 0 = 00 plane is also horizontally
polarized (Sout {l, i, 0, 0}). However, light scattered from the same
incident beam through an angle (including 00) in the 0 = 900 plane must be
polarized perpendicularly to that 900 plane. Its Stokes vector will be
proportional to (1, -1, 0, 0} and cannot be the same as the Stokes vector at
the same scattering angle in the . = 00 plane, as indicated in Figure 6.

The problem is that in calculating the 3-D representation from a
sequence of 2-D representations, we have introduced a multiplicity of refer-
ence planes without taking their effect into account. In the calculation, we
assumed that at each azimuth plane both the scattered and incident Stokes
vectors were referenced to that plane. It is true that each scattered beam's

18



Stokes vector must be referenced to the particular azimuth plane in which the
beam lies, but the incident beam lies in all the azimuth planes and can be
referenced to any of them. At each step in the calculation leading to Figure
6, we allowed the incident Stokes vector to be redefined, depending on which
plane we were in. However, at the end, we talk of the incident Stokes vector,
meaning only the Stokes vector referenced to the plane = 00.

I I

Figure 6. Representation of the D-Matrix Elements as Functions
of the Scattering Directions 0 and e (Azimuth and
Scattering Angle) for the Sphere of Figure 4
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I.I

Figure 7. Representation of the Mueller Matrix Elements
as Functions of the Scattering Directions 0 and 6
(Azimuth and Scattering Angle) for the Sphere of
Figure 4
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The solution is to repeat the calculation and explicitly rotate the
incident Stokes vector (originally referenced to the 0 = 00 plane) to its
representation in any other 0 plane before performing the Mueller matrix
calculation in that plane. For example, beams scattered into the 0 = 100
plane from an incident beam So (referenced to the e = 00 plane) are given by
equation 11:

S(100,6) = D(100 ,) R(100 ) S0 (11)

because R (100) So is the incident Stokes vector expressed in the = 100
plane.

It is the product of D and R that serves as the Mueller matrix
description of the scattering event in the sense of predicting all the
scattered beams for any one given incident beam. We call that product N (0,
0).

N(q,() = D(q,0) R( ) =

DI,1 (Di,2cos2o - D1 ,3sin2o) (Di,2sin2q = dl, 3cos2o) D1 ,4
D2 ,1 (D2 ,2cos2o - D2,3sin2o) (D2 ,2sin2o = d2 ,3cos2o) D2 ,4  (12)
D3 ,1 (D3 ,2cos2q - D3 ,3sin2o) (D3 ,2sin2o = d3 ,3cos2o) D3 ,4
D1 ,4 (D4 ,2cos2o - D4 ,3 sin26) (D4 ,2sin2o = d4 ,3cos2o) D4 ,4

Performing the multiplications indicated above, we obtained the
data in Figure 7 as the "correct" Mueller matrix elements for the x = 3.60
size parameter sphere. However, those relationships and symmetries that
helped identify the scatterer as a sphere in the D matrix display (Figure 6)
do not carry over into the Mueller matrix display, K, in Figure 7. It is no
longer true at all scattering directions that M2 ,1 = 1, M3 ,4 = -M4 ,3 , M2 ,1 =
M1 ,2 ,, M3 ,3 = M4 ,4 ; and half of the upper right and lower left quadrant
elements no longer vanish.

The price for obtaining the functionally correct Mueller matrix is
an increased complexity in its graphical representation increased in fact to a
degree even greater than that suggested by comparing Figures 6 and 7.
Equation 12 shows that elements from the second and third columns of D are
mixed (i.e., summed) in the matrix K. It so happens that for spheres, one
member of each of the pairs Di,2 and Di,3 is always zero; therefore, the
transformation from D to N only involves multiplying the second and third
column elements of D by cos2o or sin2o. However, for nonspherical scatterers,
that simplification will not hold and a most intractable pattern can be
expected to emerge in the second and third columns of K, even for relatively
simple shapes.

It was pointed out in Section 3 that the 2-D representation of
Mueller matrices served two purposes: (1) the data predicted the outcome of
light scattering experiments, and (2) the data characterized the scattering
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particles. In the 3-D case, we see that those two functions are best per-
formed by two different matrices. The D matrices should be plotted when a
description or characterization of the scattering particle is required;
whereas, the Mueller M matrices predict how incident light will scatter from
the particle. The two matrices are related by equation 12.

Computer codes are available for calculating the 2-D scattering
matrix (as a function of 6) for a few basic nonspherical particles such as
spheroids, cylinders, cubes, etc. If a 3-D matrix is required for such a
particle, then D would be the natural matrix to calculate because to obtain it

the 2-D case would simply be applied over and over while incrementally
rotating the particle about the incident beam axis. The elements of N, if
needed, could later be computed from the elements of D. On the other hand,
laboratory experiments such as those at CRDEC, designed to detect and measure
particle scattering properties on several different planes simultaneously,
will yield data directly in terms of the Mueller matrix N (Oi 0). If particle
characterization is the ultimate goal of the measurements, then elements of D
should be computed from the measured data.

Finally, we note that eight elements of the first and last columns
are the same in both M and D representations. This is a cogent reason to
design experiments that concentrate on measuring those eight values. A
related observation is that circularly polarized incident light [whose Stokes
vector is invariant under R (0)] produces scattered beams in all directions
whose Stokes vector elements contain only the eight transformationally
invariant matrix elements from the first and last columns of K.

5. CONCLUSIONS

In extending the notion of the Mueller matrix from its ordinary 2-D
use to a 3-D application, we encountered a question of how to define reference
frames. The Stokes vector describing a scattered beam of light is always
referenced to its own scattering plane, the plane containing itself and the
incident beam. However, two separate methods for referencing the incident
beam itself are possible. In the first method leading to D, the incident
Stokes vector "floats" in the sense that it is continuously redefined with
respect to whichever scattering plane is under consideration at the moment.
In the second method resulting in M, the incident beam's Stokes parameters are
given fixed values that are tied to one particular selected reference plane.
The first method is the most natural result of a calculation, lends itself to
relatively simple graphical representations, and is most useful for character-
izing a scattering particle. The second method is often the most natural
result of an experiment, and the corresponding M matrix predicts the outgoing
Stokes vectors, in all directions, resulting from given incident Stokes
vectors. However, the M matrix is represented by graphical images whose
complexity can mask the underlying symmetries of the scatterer. This report
is intended to show that it is not a matter of deciding which reference system
is "correct," but rather to choose the one more suitable for the task at hand.

22



LITERATURE CITED

1. Van de Hulst, H.C., Light Scattering by Small Particles, John
Wiley and Sons, Incorporated, New York, NY, 1957.

2. Bohren, C.F., and Huffman, D.R., Absorption and Scattering of
Light by Small Particles, John Wiley and Sons, Incorporated, New York, NY,
1983.

3. Kerker, M., The Scattering of Light and Other Electromagnetic
Radiation, Academic Press, Incorporated, New York, NY, 1969.

4. Parke, N.G., Statistical Optics: II. Mueller Phenomenological
Algebra, Technical Report No. 119, Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, MA, 1949.

5. Fry, E.S., and Kattawar, G.W., "Relationships Between Elements
of the Stokes Matrix," Applied Optics Vol. 20, pp 2811-2814 (1981).

6. Perrin, F., "Polarization of Light Scattered by Isotropic
Opalescent Media," J. Chem. Phys. Vol. 10, pp 415-427 (1942).

23


