V

AD- 3 958 s @

MWWMWMM

This document }‘c Fﬂen apps oved |
I opuccrzas and sale; ils :
distriibution iz uniimited

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
University of Washington
Seattle 98195

91-19
WWWWWWW - vl 1227 110

SECUMTY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

[T REPORT NUMBER 2. GOVT ACCESSION NO,

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Optimal Retiming of Multi-Phase, Level-Clocked

S. TYPE OF REPORT & PERIOD COVERED
Technical

Circuits

| 6 PERFORMING ONG. REPORT NUMBER

7. AUTHOR(s)

Brian Lockyear and Carl Ebeling

1. CONTRACT ON GRANT NUMBER(e)

N00014-91-J-4041

8. PERFORMING ORGANIZATION NAME AND ADORESS
Norchwest Laboratory for Integrated Systems
University of Washington
Dept. of Comp. Science, FR-35 Seattle, WA 98197

e e——
OORAM ELEMENT. PROJECY, TASK
A S SRS

WORN URIT NULST

Jal
AN

11. CONTROLLING OFFICE NAME AND ADDRESS
DARPA-ISTO

12. -REPORT DATEK

October, 1991

1400 Wilson Boulevard
22209

13, NUM.E%%F PAGES

[} lONITORIEgr:.GINCY NAME & ADDRESS(il ditferent (rom Conireliing Ollice)
Office of Naval Research - ONR)
Information Systems Program - Code 1513: CAF

18. SECURITY CLASS. (of this repert)

800 North Quincy Street

Arlington, VA 22217

18s. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited.

17,

DISTRISUTION STATEMENT (of the abetract entered in Block 20, I{ dliferent ltom Report)

18. SUPPLEMENTARY NOTES

. KEY WORDS (Continue on reverae alde i{ necessary and identily by block number)

retiming, level-clocked circuits, circuit optimization

20, ABSTRACT (Continue on reverse side il necessary and identily by block number)

implementations.

Using Tevel-sensitive Tatches instead of edge-triggered registers for storage
elements in a synchronous system can lead to faster and less expensive circuit
This advantage derives from an increased flexibility in

scheduling the computations performed by the circuit.
the amount of time available for the computation between two registers is pre-
cisely the length of the clock cycle, while in circuits using level-sensitive
Tatches a computation can borrow time across latches, thus reducing the amount
f dead time in the clock cvcle, In either tyne of circuit i

In edge-clocked circuits,

achipyi

FORM
JAN T3

oD , 1473

EDITION OF | NOV 6813 OBSOLETE
$/N 0102.LF.014.6601

" (Lonth

SECURITY CLASSIFICATION OF THIS PAGE (When Defe Bniered)

ve
B
~ -
Nar

CoN<t.
orF £
AD NUMBER: AE43Z958
ARSTRACT : USING LEVE.~SENSITIVE LATCHES INSTERAD OF eEDGBE-TRIGGERED
REGISTERS FCR STORAGE ELEMENTS IN A SYNCHRONOUS ‘SYSTEM CAN LEAD TOC
FASTER AND LESS EXFENSIVE CIRCUIT IMPLEMENTATIONS. THIS ADVANTRGE
DERIVES FROI AN INCREASED FLEXIRILITY IN SCHEDULING THE
COMPUTATIONS FERFORMED BY THE CIRCUIT. IN EDGE-CLOCHKED CIRCUITS THE
AMOUNT OF TIME AVAILABRLE FOR THE COMRUTATION BETWEEN TWGO REGISTERS
I8 PRECISELY THE L=NBTH OF THE CLOCK CYCLE, NHILE IN CIRCUITS USING
LEVEL~-SENSITIVE LATCHES A COMPUTATION CAN EORROW TIME ACROSS
L ATCHES THUS REDUCING THE AMOUNT OF DEAD TIMc IN THE CLOCK CYCLE.
IN EITHER TYPE OF CIRCUIT, ACHIEVING MARXIMUM PERFORMANCE REQUIRES
LOCATING THE STORAGE ELEMENTS IN SUCH A WAY AS TO SFREAD THE
COMPUTATION UNIFORMLY ACROSS A NUMBER OF CLOCK CYCLES. RETIMING IS
THE S2ROCESES OF REARRANGING THE STORAGE ELEMENTS IN A CIRCUIT TO
REDUCE THE CYCLE 7TIME OR THE NUMBER OF STORAGE ELEMENTS WITHOUT
CHANGING T=zZ INMTERFACE BEHAVIOR GF THE CIRCUIT AS VIEWED EBY AN
CUTSIDE HOST. RETIMING IN EFFECT RESCHEDULES THE CIRCUIT
COMRUTATIONS IS5 TIME BASED ON THE LENGTH OF THOSE COMRPUTATIONS. IN
THIS PAPER, WE EXTEND THE RETIMING TECHNIQUES DEVELOFPED FOR EDGED-~
CLOCKED CIRCUITS BY LEISERSON. ROSE AND SAXZ TO A GENERAL CLASS OF
MULTI-PHASE, LLEVEL-CLOCKED CIRCUITS. WE FIRST DESCRIEBE THIS CLASS
CF WELL-FORMED CIRCUITS PND DEFINE WHAT IT MEANS FOR A WELL-FORMED,

LEVEL-CLOCKED CIRCUIT TO GFERATE CORRECTLY. WE THEN SHOW THAT A SET
OF CONSTRAINTS CAN THEN CBE USED TO RETIME A LEVEL-CLOCKED CIRCUIT
USING EFFICIENT INTEGER LINEAR FROGRAMMING TECHNIQUES SIMILAR TO
THOSE USED FOR EDGE-CLOCKED CIRCUITS.

Optimal Retiming of Multi-Phase,
Level-Clocked Circuits’

Brian Lockyear and Carl Ebeling
‘Department of Computer Science and Engineering
University of Washington

Seattle, Washington 98195

Technical Report ~ 91-10-01
October, 1991

This documaont has been approvad
for public 1clease and sale; ifs
distribution is unlimited.

VThis research-was funded in part by the Defense Advanced Research Projects Agency under Contract N00014-J-
91-4041. Carl Ebuling is supported in part by an NSF Presidential Young Investigator Award with matching funds
provided by IBM Corporation and Sun Microsystems. .

Abstract

Using level-sensitive latches instead of edge-triggered registers for storage elements ir .. synchronous
system can lead to faster and less expensive circuit implementations. This advantage .icrives from
an increased flexibility in scheduling the computations performed by the circuit. In edge-clacked
circuits the amount of time available for the computation between two registers is preciset, the
length of the clock cycle, while in circuits using level-sensitive latches a computation can borrow
time across latches thus reducing the amount of dead time in the clock cycle. In either type of
circuit, achieving maximum performance requires locating the storage elements in such a way as to
spread the computation uniformly across a number of clock cycles.

Retiming is the process of rearranging the storage elements in a circuit to reduce the cycle
time or the number of storage elements without changing the interface behavior of the circuit as
viewed by an outside host. Retiming in effecc reschedules the circuit computations in time based
on the length of those computations. In this paper, we extend-the retiming techniques developed
for edge-clocked circuits-by Leiserson. Rose and Saxe to a general class of multi-phase. level-clocked
circuits. We first descril,e this class of well-formed circuits and define what it means for a well-
formed. level-clocked circuit to operate correctly. We then show that a set of constraints can be
efficiently derived for a circuit which preserve its correctness under retiming. These constraints can
then be used to retime a level-clocked circuit using efficient integer linear programming techniques
similar to those used for edge-clocked circuits.

P

i

1 Introduction f"

Synchronous circuits rely on clocked storage elements to hold values waile computation is performed
on them. The most widely used storage element is the edge-triggered register which samples its
input at the beginning of each clock period, holding that valuc for the entire clock period. Edge-
triggered registers provide a straightforward way to analyze the minimum clock peried of a circuit
by determining the maximum delay between any two registers. This simplified timing analysis leads
to efficient retiming-techniques for adjusting the placement of registers to.optimize the cycle time
or the number of registers [6. 7].

Level-clocked circuits-are synchronous circuits that use level-sensitive latches. These latches are
clocked storage elements that allow the inputs to flow through the latch during the active phase
of the clock. latching the value during the inactive phase. In level-clocked circuits it is less clear
how much time is available to the computation placed between latches because the input values
may arrive early and flow through the input latch. This borrowing of time between clock cycles
makes the deter:uination of the constraints on the clock period difficult. ITowever. the flexibility
it scheduling the computation provides more opportunity to optimize the ciuer pertod than in the
case of edge-clocked circuits.

This difference in scheduling is shown by the example circuits in Figures 1 and 2 where the
same computation is implemented using an edge-clocked circuit in the first case and a level-clocked
in the second. The circuit of Figure 2 uses a two-equal-phase, non-overlapping clock with each
edge-triggered register replaced by a pair of ¢;, @2 latches. The edge-clocked circuit of Figure 1
shows an optimal placement of registers which achieves a cycle time of T4 = 8. By contrast, the
level-clocked circuit of Figure 2 shows an optimal placement of latches that achieves a cycle time
of Tp = 6. This level-clocked circuit is also cheaper. Assuming that the cost of an edge-triggered

host + host

N :

Circuit Simple-A.

o= —(_» (=)
I L i |

of 1| 2| 3| 4l s| e 7 s o 10] 1 12} 13 14| 15| 16] 17] 18]
Schedule for Circuit Simple-.

[OPEpeE, S

Figure 1: 4 simple circuit optimally timed using edge-triggered registers and the resulting cluck
schedule.

host, host
% &/ 2/ o) s N
=7}

Circuit Simple-B.

T CD GECIS GUID
5 © GRS

o1 *

of 1] 2 3 4 s e 7 8 o 10| 13} 12| 13| 14 15| 6] 27| 13

Schedule for Circuit Simnple-B with 2, equal-phase clock.

Figure 2: The simple circuit now timed using level-sensitive lalches.

register is 2 and that of a latch is %, then the storage element cost for the edge-clocked circuit
is 3R while t1 at of the level-clocked circuit + only 2R. Tle © xibility provided by level-sensi -~

letehos can @ -2 o used to peance ot whele | eetive a pars: -clock s -+, Toriastance
circuit in Figure 2 is 1o be retimed with 1. Ty the latches « e euge- ween odes Ty dinl 1y

may be moved to the single edge vy — v2 reducing the storage clement - -0 R, one-third that of
the slower optimal edge-clocked circuit.

In this paper we show how the retiming techniques developed by Leiserson et. al. for edge-
clocked circuits can be extended to optimize level-clocked circuits. Figure 3 shows the edge-clocked
correlator example from their paper in its original state, which can be retimed to the circuit in
Figure 4 which operates with a clock period of 13. We can convert the circuit of Figure 3 into
an equivalent level-clocked circuit by using a two-equal-phase, non-overlapping clock schedule and

DD

Figure 3: The correlator circuit from Leiserson et. al. in its initial configuration with registers
shown as solid bars.

/ |
\
O+O—O+C

Figure 4: The edge-clocked correlator circuit optimally retimed to a clock period Ty = 13.

/m—m:@
LT

Un
\, D i
g

\.

b |

On20n 262720,
Figure 5: The correlator circuit optimally retimed using a two-equal-phase clock. Latches are
represented by solirl circles and marked with controlling clock phase. The resulting clock cycle

time is 10 units.

4

replacing each register with a pair of ¢, @, latches. This circuit can be retimed to the one in Figure 5
using the retiming techniques described in this paper to achieve an optimal clock period of 10.. The
retiming teckniques we describe also handle more complex clock schedules with multiple phases and
phase overlap and underlap. For example, retiming the correlator example to a two-equal-phase
clock with 10% underlap between phases achieves a clock period of 10.4. These techniques can also
be extended to clock schedules with unequal length phases through a technique of adding tightly
constrained variables to the system which contain information regarding the current phase of nodes
in the circuit graph.

There are 2 number of obstacles to level-clocked retiming each of which is explored in this paper.
These include:

o Circuit Correctness: The definition of a correctly operating circuit may vary widely depending
on latch phasing and clock schedule. The variety of clocking strategies possible causes a
general retiming technique for level-clocked circuits to be much more complex than required
for typical cases. We restrict the techniques in this paper to common circuit structures and
take corresponding advantage of those structures to simplify the retiming techniques.

o Minimum vs Mazimum Delay Constraints: In an issue related to circuit correctness, some
circuit structures combined with particular clock schedules impose minimum as well as max-
imum delay constraints on combinational logic paths. In this-work we restrict legal circuits
and clock schedules such that this additional complexity does not arise.

e Identification of Critical Cycles: As demonstrated in Figure 2. time allocated to a combina-
tional logic block may be shared across the active period of a latch. We will show that path
based constraints which allow the flexibility to share acro-s latches do not sufficiently bound
the computational time available around a cycle. Instead vycles in the circuit graphs forin an
independent lower bound on possible clock periods. \Ve provide a technique for identifving
this lower bound initially so that only path-based constraints need be considered above the
Critical Cycle period.

o [dentification of Critical Paths: An additional impact of computational time sharing is that
critical paths betwen two nodes in s, circuit graph may differ irom those identified for edge-
clocked retiming. Moreover. critical paths in a level-clocked graph are not the same for all
clock periods. We provide a new definition of critical paths necessary for correct retiming of
level-clocked graphs and provide a technique for identifving the critical paths based on that
definition.

o Constraints on Hicher Weinit Paths: C'omputationa! *ime sharing requires constraints on

Paiie Of onh-40ro wenilin t ecirewss ~eapn Whicii - @0 o dunaaii to consiraiits on ze
weight paths as they were in edge-cloc: i c:rcuits. Tuanauques for correctly gencrating higher
order constraints are provided. '

¢ Constraints Dependent on Phase of Latch Placement: In clock schedules utilizing unequal
phases, the maximum delay constraints for a given computation path may differ depending
on the phase of latches placed along the path. Techniques for writing constraints that correctly
restrict maximum delay dependent on latch- placement are provided as well as modifications
of existing algorithms required to efficiently solve the more complex constraint sets.

1.1 Overview of the Paper

We first review tlie work of Leiserson et. al. [6, 7] on which our work is based and present the
underlying circuit graph model. Next we review the clock model we have adopted from the work
of Sakallah, Mudge and Olukotun [5]. We then describe the class of well-formed level-clocked
circuits to which we will be limited and define what it means for a level-clocked circuit to operate
correctly. In Section 5 we then use this model to derive the set of constraints that fully specify
the multi-phase, maximum delay timing restrictions of level-clocked circuits. Section 6 applies
these timing restrictions to circuits using multi-phase clocks with equal phases-to form sets of ILP
constraints which restrict the movement of latches through circuit graphs. Finally Section 7 extends
our techniques to handle valid clock schedules with arbitrary length phases.

2 Background

In this section. we briefly review the terminology and graph model of digital circuits described
in Leiserson et. al. [6] and extend it to handle level-sensitive latches. e then review the basic
retiming results of their paper. The reader is encouraged to read {6, 7] for full details.

A circuic is modeled as a directed multigraph G = (V, E. w.d, s) whose vertices IV model the
functional clements of the circuit and whose edges £ model the interconnections between the
functional elements. Each vertex v is given a delay d(v) that is associated with the corresponding
functional element. .\ unique host vertex v, with d(vp) = 0 is used to represent the environment of
the circuit. Each edge is given a weight w(e) which is the number of registers along the connection.
This notion of edge weight is sufficient for edge-clocked circuits which use a single register type, but
must be extended for level-clocked circuits which use latches controlled by different clock phases.
We do this by associating with cach edge e the sequence s(e) = (I5.lz,....ly)) of latches along
the connection.

The notation « — r is used to represent an edge e from vertex u to vertex v. A path in the
circuit graph is a sequence of vertices and edges from a vertex u to a vertex v and is denoted by
w - v. A simplc path contains no vertex twice. For level-clocked circuits, we also refer to paths
that begin at a latch / and end at a latch m for which we use the notation ! = m.

The weight w{p) of a vertex terminated path p = up == vy 2 ... 2! uk is the count of registers
or latches along the path. that is. the sum of the edge weights along the path: w(p) = Tk ow(er).
We define the sequence of latches along the path with & edges to be the concatenation of the edge

latch sequences along the path: IIf";(,l s(e;). Thus for a vertex terminated path p, w(p) = [s(p)|-

For a latch terminated path p == v9 £ v & ... %=y % that begins at a latch | € s(e—)
and ends at a latch m € s(ec], the path latch sequence s(p) begins with the tail of s{¢_;) (beginning
with {) and ends with the head of s{e.) (ending with m). Ualike the vertex teinunated path. e
weight w(p) of a latch terminated path { <= m is defined to be [s(p)] — 2: that is. the initial anu
final latches are not included in the path weight.

The weight of a vertex terminated cycle ¢ = to < vy £ --. =" g is identical to the weight of
the same sequence of edges and vertices treated as a path. Howaver, in the case of a cycle beginning
and ending at a latch /, the weight of a path w(l =) does not include the beginning and ending
latch. Thus w(c) = w(p)+ 1 where ¢ is a cycle beginning and ending at latch i and p is the same
cycle treated as a path beginning and ending at latch /.

The delay d(p) of a path is the sum of the delays of the vertices along the path: d(p) =
5k o d(v;). The delay, d(c), of a cycle ¢ = vp 2 v, & - %= 45 includes the delay of node vy only
once, hence d(c) = S5} d(v;).

2.1 Correct Operation

In order to retire a circuit, whether edge-clocked or level-clocked, a definition of correct operation
must exist. This allows an initial circuit graph to have registers moved within it and to_able to
determine using the definition whether the result is operating correctly with respect to the initial
circuit. For edge-clocked circuits, a simple definition of correct operation is used for retiming which
requires that the following conditions be maintained:

e CI1. For any path p in G, if d(p) > clock period, then w(p) > L.
e C2. For any cycle cin G, w(c) > 1.

Retiming a circuit is the process of transforming a circuit graph G into another graph G, by
relocating registers (or latches) such that the input/output behaviors of G and G, are-identical.
Transforming a circuit G into a corresponding retimed circuit G, can be viewed as assigning a
retiming (or lag) value r(v) to each of the vertices of G. This retiming value represents the number
of registers (latches) removed from the output edges of vertex v and added to the input edges.
More formally, for any edge u = v. w,(e) = w(e) + r(v) — r(u).

The movement of registers in retiming introduces an additional aspect of correctness which is
the relative difference in the weight of two paths between the same two vertices. For example,
assume two distinct paths « 2~ » and v - v. In order to preserve the logical scructure of the
circuit the difference in path weight w(p) — w(q) must be preserved during retiming. Leiserson
et. al. show that retiming by assigning retiming values to vertices maintains a constant difference
between the weight of paths with the same endpoints and a constant number of registers on any
cycle in the graph. Using the same result. correctness condition C2 is also maintained.

The key retiming result of [6, 7] defines the following set of constraints which must be met by a
legal retiming of an edge-clocked circuit graph using a clock period ¢. These constraints are given
in terms of the maximum delay along the critical paths in G. A critical path in an edge-clocked
circuit graph is defined as a minimum-weight path of maximum delay from u to v. In reality what
is being identified is a particular path such that if that path is retimed correctly then all other
paths between the same two end-points will -also be retimed correctly. Note that some sub-paths
may not be retimed- correctly but that fact will be detected independently of the overall path. The
edge-clocked definition of critical path-is used to define the matrices I¥ and D:

W(u,v) = nunfw(p) | « = ej.
The maximum delay on any critical path from u to v is given by
D(u,v) = maz{d(p) | v -5 v and w(p) = W(u,v)}.

We will show that the above definitions for are insufficient to identify critical paths in level-
clocked circuits and in fact the critical path between two end nodes will vary with the clock period
of interest. Ilowever the above definitions are sufficient for edge-clocked circuits and using them
it is possible to generate a set of constraints on retiming of an edge-clocked circuit such that the

-1

resulting circuit operates correctly under our definition. The constraints on edge-clocked retiming
are:

I/O 1‘(‘Uh) =0
Positive edge weight: r(u) — r(v) < w(e) for all edges u = v
Maximum path delay: r(u) - r(v) < W(u,v) - 1 for all (u,v) for which D(u,v) > ¢

The I/O constraint maintains the I/O behavior under retiming. Although it is not necessary to-
require that the host vertex have a retiming value of 0, having the retiming value identified at a
particular node is useful in some solution methods. To show that it is not necessary to require
7(vr) = 0, note-that changing all node retiming values by any constant amount resuits in-the same
graph. In other words. since the weight of a retimed edge is r(u) — r(v), if all values of r(u) are
changed by a constant amount to a value 7(u) the resultant edge weight values must be identical:
r(u) — r(v) = #(u) — #(v). Thus for any retiming there is exists an identical circuit graph such that
F(vy) = 0.

The positive edge weight constraints keep the retiming from assigning negative-edge weights
which have no physical meaning.> The maximum path- delay constraints force proper timing by
placing at least a single register along any path with delay greater than the clock period of inter-
est. Linear programming techniques can be used to solve this constraint set and return a valid
assignment of the retiming variables if one exists. The set of possible optimum clock periods is
derived from the delay of critical paths in the graph and a binary search is performed over that set
to determine the fastest possible clock-period to which the circuit may be retimed.

The host vertex vy is a zero-delay vertex defined as the source of all circuit inputs and the
destination of all circuit outputs. .\s a result, additional constraints on circuit timing are imposed
along paths which pass through the zero-delay host vertex. These cross-host constraints may over-
constrain the actual design by implying relationships between output and input signals which are
not intended. If such a relationship were intended it should be represented as an explicit edge in
the graph rather than an implicit and unavoidable one.

The Correlator circuit example used in this paper retains constraints through the host vertex
to allow comparison with [6, 7). The simple circuits in Figures 1 and 2 omit cross-host constraints
and can be thought of as providing implicit registers or latches in the host vertex. Or it may
be thought of as dividing the single host vertex into two parts with no edge between them. The
[/O constraint can be expanded to prevent retiming of any host vertex. Various additional input
and output timing constraints may be represented by placing additional delay vertices on input or
output edges and the appropriate constraint on their retiming value.

3 Clock Model

e have adopted the clock model of Sakallah, Mudge & Olukotun [5] which provides.a convenient
way to describe the constraints on multi-phase clocks. A k-phase clock is a set of k periodic signals
® = {¢1...9x} where ¢; is referred to as phase ¢ of the clock ®. All ¢; have a common cycle time
Ts- Each phase divides the clock cycle into two intervals as shown in Figure 6: An active interval
of duration T, and a passive interval of duration (Tp — Ti3;). The latches controlled by a clock
phase are enabled during its active interval and disabled during its passive interval. The transitions

2In some applications negative edge weights can be useful as an intermediate step [8].

into and out of the active interval are called the enabling and latching edges respectively. We refer
to the clock phase controlling latch ! by P(l).

. Enabling Edge Latching Edge
i

f—— Passive Interval —>-‘-- Active: Interval —i/
1

L B i
0 (Te — Ty,) Te

Figure 6: Diagram from Sakallah et. al. showing a clock phase ¢: and its local time zone.

Associated with each phase is a local time zone such that its passive interval starts at ¢ = 0, its
enabling edge occurs at ¢ = Ty — Tj;, and its]atching edge occurs at Ty. The domain of the local
time zone is defined to be the interval (0,T4] since the start of the current clock cycle ccincides
with the end of the previous cycle. Sakallzh et. al. additionally introduce an arbitrary global time
reference and the value e; which denotes the time relative to the global time reference at which
phase ¢; ends.

Phases are ordered relative to the global time reference so that e; < e2 < --- < ex_; < ex. The
global time reference is arbitrarily set such that e; = Tp. The phase sequentially following ¢; in
the clock set is referred to as d;4) with phase ¢r41 = & 2nd 6;-; = &;.

Finally-a phase shift operator is defined:

Eri= (ej — &), fori<j
ME (Te+e—e), fori>j

which takes on positive values in the range [0,Tg]. When subtracted from a timing variable in the
current local time zone of 8,, E,; changes the frame of reference to the next local time zone of ¢;,
taking into account a possible cycle boundary crossing (see Figure 7). Because because the period
of each clock phase is identical and ¢; > e;-y, the sum of the shifts between all successive phases is
Te:

k
in.iH =Ts. (1)

=1

We assume that the setup, hold and propagation delay times of latches are zero. The timing
characteristics of a given latch may vary as it is moved across combinational logic nodes and thus

L
i %

——0kF;; |
éj T-éj

Figure 7: The phase shift operator provides the relative difference between times in the local time
zones of different phases.

l) m

é1 é1

$1 l : [
$o___ [1 [bl 1 .

Figure 8: An illustration of a circuit for which it is not clear what the mazinium computational
time available for loyic block CL is.

we treat latches as pass gates followed by a non-inverting buffer of zero delay and infinite drive
capability. Refining this simplified latch model is a topic for further research.

When enabled. the output value of a latch is defined to be equal to its input value. When
disabled, the output value remains that-of the input at the time of the most recent latching edge.
The final parameters of interest are the values for the arrival and departure times of a latch.
The arrival time of a signal at latch [is denoted by A; and the departure time is denoted by D
in the local time zone. If 4 > T — Tp() then the latch output is undefined over the interval
(Te — Tp(ry, A1). The:departure time is given by:

D, = max{.»'ll,Tcp - Tp(l)} (2)
and the arrival time at a latch m-of a signal from latch ! connected by a zero-weight path is:
Am = D1~ Lp(),pim) + d(p) (3)

Note that this clock model does not provide for clock phases with differing periods nor for gated
clock signals.

4 Well-Formed Circuits and Valid Clock Schedules

The goal of the retiming process is one of determining the fastest clock at which latches may be
placed in the circuit graph such that the circuit performs *correctly”. Thus a definition must exist
of when a retimed graph operates-correctly. General definitions of-correctness for circuits, whether
edge-clocked or level-clocked, are difficult to form because the timing constraints which are critical
in the initial circuit depend on the designer’s intentions of how that. circuit is to-operate. Given
an initial rir~nit. the clock reriod for which the cirenit operates as intended by 1he designer may
unty be determined through tle use of a restricted definition of correctness o wiich the designer
adhered. For instance in Figure 8 we see a pair of latches with some amount of combinational
logic in between. Without some external knowledge it is not possible to state whether the designer
intended -that the maximum delay through the logic block is limited such that a signal departing
from [arrive at m before latching edge a, b or-c.

In this paper a definition of correctness very similar to that for edge-clocked circuits is used.
We first restrict the ordering of latch phases as they occur in the circuit graph to allow a sim-
plifed definition of correctness and for retiming constraints to be written which take advantage of
knowledge about the graplh:structure and are least restrictive of the movement of latches during

10

retiming. The resulting “well-formed” circuits form a large and useful class of circuits including
those that are easily produced by automatic synthesis-tools. These restrictions can be eased hy
placing appropriate additional constraints on the retiming, but this is not addressed in this paper.

A well-formed circuit is one in which the latches occur in clock phase order along any path
through the circuit. More precisely, a circuit graph G is well-formed if:

W1. For every path between latches I -5+ m in G, if w(p) = 0 then P(m) = P(I) + 1.
W2. For every cycle ¢ in G, w(c) > 1.

The first constraint simplifies equations defining the minimum weight along a circuit path by forcing
any two n-weighted paths which end at the same point in the graph to have the identical ordered
latch sequence so that any two paths of equal delay ending at the same vertex require the same
number of latches. The second constraint is necessary to avoid races and is the same as that
required for edge-clocked graphs. Together these two constraints require every cycle to contain a
multiple of £ latches for a k-phase clock. In the case of level-clock circuits. this constraint must
be combined with constraints on the clock schedule to ensure that all cycles contain at least one
disabled latch at all times. This will be provided by the valid clock schedules described later in
this section.

If we define the clock phase of a vertex v, denoted P(v), as the phase of the latch immediately
preceding v on any path leading to v then the latch immediately following vertex » on any path
has phase P(v)+ 1.

Retiming a level-clocked graph can now be defined similarly to retiming a edge-clocked graph.
The definition of the retiming value r(v) must be extended to include its effect on the latch sequence
of adjacent edges. That is, for any edge, u = v, the relationship w.(e) = w(e) + r(v) — r(u) still
holds. In addition, r(v) latches (in phase order) are appended to s(e) and r({u) initial latches are
deleted from s(e) to form s.(e). (The case where r is negative is treated symmetrically.)

Well-formed graphs avoid the complexities of identifying when to limit vertex retiming values
to prevent movement of latches of differing phases across the vertex. The following lemma assures
us that this will not happen in well-formed graphs. However. because the retiming value of the
host vertex is restricted to 0, we can relax the well-formed definition on paths crossing vy, to allow
circuit inputs and outputs to occur on different clock phases as long as cross-host constraints are
not used when-clocking with unequal phase clocks.

Lemma 1: A well-formed circuit graph remains well-formed under a valid retiming.

Proof: Tet v be a vertex in the original graph and v, the corresponding vertex in the retimed
eraph. Let P(r) = &: and thus the phase of the latch following # is d;4q. A retiming value of
r(v) = , awemoves Lie list latch from the latch sequence of each output edge and apj uus a latch
of phase ¢ 4 1 to the latch sequence of each input edge. The case for 7(v) = —1 is symmetric and
induction provides a proof for any value of #(v). Thus latch ordering (W1) is maintained. That
W2 is maintained for cycles follows from the retiming results for edge-clocked circuits [6]. O

4.1 Correct Operation of Level-Clocked Circuits

There are two conditions which must be met to ensure the correct operation of a level-clocked
circuit. The first states that along any path in the circuit, the signal departing a latch must arrive

11

&; 2
Pitr

Figure 9: Graphical representation of the constraints on the clock phases that are required for correct
operation of a well-formed level-clocked circuit.

at the next latch before the next latching edge for that latch. The second states that along any
path in the circuit, the signal departing a latch must not arrive at the next latch before the previous
latching edge for that latch. More precisely,

L1. Maximum delay: For any zero-weight path | %+ m, A, = D - Ep(y,p(m) + d(p) < Tp.
L2. Non-interference: For any zero-weight path | £ m. d,, = Dy - Epq),p(m) + d(p) > 0.

We now want to remove any assumptioz about minimum delay-in a correctly operating level-clocked
circuit. This allows us to-avoid two-sided delay constraints and allows retiming to relocate latches
without concern for retaining vertices-between latches.

We now define a valid clock schedule and show that any well-formed circuit operated by a
valid clock schedule satisfies the non-interference constraint L2. That is, if a retiming satisfies the
maximum delay constraint, then it results in a correctly operating circuit even with zero delays
between latches.

A clock schedule is valid if it meets the following constraints:

P1. e,41 > e;, which follows from the definition of a clock schedule (constraint a in Figure 9).

P9 { ei+To—Ty >eiqy fori#k

eim Ty > e forick } (constraint b in the figure).
-~ L 0 =

Note that these constraints allow for multiple phase clock schedules with overlapping and under-
lapping phases. Ilowever, two-phase clocks are required to be non-overlapped.

It follows from constraint P2 that there is no time ¢ where e; — Tp(;) < t < ¢; for i = 1,..., k.
That is, not all latches can be active simultaneously and thus we avoid race conditions in cycles.

Theorem 2: Any well-formed level-clocked circuit operating with a valid clock schedule meets
the non-interference constraint L2.

Proof: Bv Tam. 2 on page 10. D > Ty — T, that is. the departure time ivom a & latch
st uocly b or agter the eraoling edge. By constraing P2, L5 0, = 5y = < I = T, ana so
Eiiyy < Dy Since P(m) = P(I) + 1 for any path { £ m with w(p) = 0-in a well-formed graph,
Ep(1y,pmy < D1 and thus Dy — Ep(jy p(m) > 0. Thus constraint L2 holds for any d(p) 2 0. O

Corollary 3: The phase P.(u) of a node v in a well-formed, retimed graph G, using a k-phase
clock and given P(u) in the initial graph G with r(u) the retiming value of u, is:

Pr(u) = [P(u) + r(u)]) mod k.

12

Where ¢o = ¢x.

Proof: r(u) = n is defined as the movement of n latches across node u. By the definition
of a well-formed graph, P(l;) = P(lp) + 1 for any lo, !y connected by a zero-weight path. Thus,
P(l,) = [P(lp) + n] mod. k since there are k-phases in the clock schedule and ¢r41 = ¢; as defined.
Under retiming:

P(u) = P(lyw)
= [P(lo) + r(x)] mod k
= [P(u)+ r(u)] mod k.O.

5 Level-Clocked Timing Constraints

This section derives the fundamental Theorem 4 which will provide the basis for ILP path constraint
sets that ensure a valid retiming of a graph G for a given multi-phase clock schedule . The theorem
provides an upper bound on the delay of an n-weight simple path in a level-clocked graph in terms
of the departure time of a signal at the beginning of the path and the arrival time at the end. The
proof is based on the maximum delay constraint L1 of the previous section extended to paths of
non-zero weight. Figure 10 gives a graphical representation of this theorem.

Theorem 4 provides an exact bound on the maximum possible delay of a path based on the
departure time of signals from the latch preceding the path and the subsequent arrival time of
signals at the latch terminating the path. For retiming purposes we are interested in a maximum
bound on path delay which is presented in Corollary 5. We then show in Corollary 6 that cycles
additionally constrain the clock period and show how an analysis of critical cycles can be used to
derive a lower bound on the clock period.

Finally we demonstrate that the edge-clocked definition of a critical path between two nodes is
insufficient to ensure correct retiming of the nodes at all clock periods. A new definition for critical
pathsis derived and a method of identifying a critical path between two nodes is presented.

¢ [L_ -
by [L. -

F——"Tp(10) =B p(to),p(t)~ T 7m Ep(t;), ity 1) =+ EPn),P(tng1) —

: maximum d(u—»v) - “
S $i-t
e L_9@j

—
i ‘ l! III f'u-o-l
P | ree —?—- U _Y——
Tdh‘ \J |¢-’+1 4’;‘-1@ é5
Figure 10: Graphical representation of the constraint on the simple path delay between two latches
lo and l,41 in a correctly operating circuit.

Theorem 4: A multi-phase, level-clocked circuit graph G is correctly timed using a valid clock
schedule if and only if for every simple path lo -5+ l,4; with weight w(p) = n and latch sequence

13

s(p) = {lo, 1. ..Int1}, the path delay d(p)-is bounded by:

w(p)

d(PY< Atnyy = Di + D EP(1),P(ii41)-
=0

Proof: (=) By induction on the weight of a path w(p).

Basis: When w(p) = 0, d(p) = A1, — Di, + Ep(,),pq,) by Eqn. 3 on page 10.

Induction: Divide p into two paths [y a, Iy and I} 2 lng1. From Eqn. 3, d(p1) = A, = Dy +
Ep((o),p(l‘). By the inductive hypothesis, d(pg) < A{n_“ - Dy + Z:‘.:_EI;) EP(I;),P(I;+,)~ By Eqn. 2 on
page 10 4;, < Dy, and for a correctly operating circuit, 4, < Te. Thus 4;, < Dy, £ Te and so-
d(p) = d(p1) + d(p2) S Aty = Dig + TP EP(I)Pl)

(«=) We show that if d(p) > Ai,,, = Di, +Z =0 Ep (1:),P(l,41) then the constraint on valid timing
defined by Eqn. 3 must be violated at some latch.

Case [: If w(p) = 0: Eqn. 3 is violated directly.

Case 2: If w(p) > 0: We:-assume that no zero-weight subpath ¢ of p exists such that Eyn. 3
is volated and show by contradiction that this cannot be true. Since d(p) = ¥ 1=od(q.) where

I; % liyy, and from our assumtion d(q;) < Ay = Di; 4 Epy;y,P(i;4,)» therefore:

Zd(qz) < Z[Az,“ Di, + Ep(t;),p.y))-
=0

Substituting for d(p) and ¥ d(q):

w(p) w(p)
Atgy = Do + 3 EPPitisn) > Aty = Dio +) Ep(t,P(t4)»
=0 =0
forming a contradiction. O
The following two corollaries use the minimum departure and maximum arrival times of signals
from latches to state the maximum simple path delay and maximum cycle delay in terms of the
clock schedule and path weight.

Corollary 5: - multi-phase, level-clocked graph G using & valid clock schedule is correctly
timed if and only if the delay of any simple path lo 2 lyt1 is bounded by:

w(p)
d(p) < Tougy + Y Epuy.p

t=U

v t)”

Proof: The result follows directly from Theorem 4 by observing from Eqn. 2 that the minimum

departure time Dy = T ~Tp(1,) and from constraint L1 that the maximum arrival time Ay, ,, = Tp.
a

Corollary 6: A multi-phase, level-clocked graph G using a valid clock schedule is correctly
timed if and only if the delay of any cycle ly -5+ l,4y is bounded by:

14

w(c)-1

d(c) £ Z EPU-'),?’('H:)'
1=0

Proof: The result follows directly from Theorem 4 by observing that ly = l,4; and thus 4;,,,, < Dy,.
Additionally, since the weight of a cycle includes all latches placed on the cycle, the weight of a
path lo-=» L1 is w(e) — 1. O

Given the result of Corollary 6 we can form a tight lower bound -based on cycle delays on
clock periods for which the circuit will operate correctly. Unlike in edge-clocked circuits, thisiower
bound may more restrictive in some cases than-path based constraints for the same circuit. Hence
the-critical cycle period must be found independently of path constraints. The following corollary

derives the lower bound on the clock period of a circuit based on cycies in the graph.
Theorem 7: For any correctly operating, well-formed graph G using a k-phase clock schedule:

Veyclesc €G: Te2k (d((c)))

Proof: By Corollary 6:

w(c)-1
d&) < Y Epy,pitg)-
=0

In a well formed graph each cycle must contain L(El latches of each phase. By Eqn. 1 on page 9,

Z;:l Eiiy1 = Tp. lHence:

wic)
3

d(c) < Z Tp = w(c) - %,

To > :(l:—i‘z‘fcl)) 0

In our search for an optimal retiming, we are restricted to clock valu.s greater than & -—‘-)-) A
critical cvcle, denoted CR, is a cycle which ma.xlmally restricts the clock period, that is, a. Lycle
for which (3 is maximum. The value of —i(%ﬁ)i for a critical cycle in the graph may be found

by setting the values a(u = v) = d(v) and ¢(e) = w(e), and solving the mazimum-ratio-cycle
problem for "(‘ : Polvnomial-time algorithms are available to solve this problem from Megiddo (9]
A Poong 121 L warienlar the algorithn by Burns has a prov.lle ~aning time of O(1E]- V] - i)
Wik, the - wan.m weight of acyes in . The resulting — — . vides afu. ‘ower bound on
the «.::e time «.. the citcuit. Although tlis clock-cycle may not ve realizable due to restrictions of
the more general path constraints, it provides a useful starting point in searching for the optimum

cycle time of the circuit.

5.1 Critical Paths

Now that a lower bound on possible clock periods has been established based on cycles in the
graph, a search process must be performed to determine the minimum clock period above that

15

path r

Figure 11: Critical paths in level-clocked circuits may not be the same as critical paths in edge-
clocked circuits.

bound for which a retiming can be found that satisfies path constraints. To avoid having to
determine constraints for all-paths in the circuit which is possibly exponential-in nuiaber of edges,
a critical path between any two nodes u and v is found such that the minimum weight constraints
for all paths between the nodes can be met by just satisfying the constraints of the critical paths.

We redefine a critical path for a circuit to be the path u L. v such that if the minimum weight
constraint is met for p, then it is met for all paths from u to v for any valid retiming. Critical
paths are more difficult to determine in level-clocked. circuits. The reason is that the path limiting
the clock period may not be a zero-weight path as guaranteed for edge-clocked circuits. This is
demonstrated in Figure 11. Three paths exist bet'.een nodes u and v, labeled from top to bottom:

path || vertices w(p) | d(p)
p [u—ve—vs—-2]| d 9
q U— v = 2 3
r U~ Uy — Vg — U 2 5

In an edge-clocked circuit, path 7 is clearly critical since w(r) = min{w(p), w(q), w(r)} and
d(r) = max{d(q),d(r)}; However. if we consider this a level-clocked circuit, with 2-equal-phases
and period T = 2. and using the techniques presented in Section 6, the minimum réquired weight
of path p is 7 while that of path 7 is 4. If path r were selected as the critical path between « and v,
a retiming which results in-w,(r) = 4 would be considered successful even though (since retiming
maintains a constant difference in path weight between p-and r) the resulting w,(p) = ¢ . Under
the new definition, the critical path between u and v is path p for clock period Ty = 2. Note that
the critical path under the sew definition will vary with differing clock periods. For instance, the
critical path in Figure 11 at Ty = 10 is r insteuu of p.

We must now identify the most constraining path 7 om uto-» for a given clock period. The
foilowing lemma-provides the basis jor efficiently detennining 2 critical path.

Lemma8: A path u 2 v in a well-formed w.rcuit is « critical path if

() ~ AP} S (D)2 - di@)} for allu Lo,

Proof: By Contradiction. The delay constraint of Sorollary 5 may be restated as:

w(p)
Tr(y) + ZO Ep(1:),P(ti31) = 4(p) 2 0,
1=

16

Assume that u -~ v is a path where {w(p)% —d(p)} = {w(q)z‘f— —-d(q)} for all paths u—»v but
p is not a critical path. This implies that there exists some u —» v and a retiming such that:
Tpgo) + S Ep(t piis) = 4(p) 2 0, and Tpry) + srla) Ep(1;),P(1i41) — 4(g) < 0. That is, the
minimum weight constraint is satisfied for p tut not for ¢ in the retimed circuit. However, since
retiming majntajns a constant difference in pnf - ight for p and ¢, and the graph is well formed,
wr(p) — we(q) = = w(p) — w(q) where-/: = *, vwamber of clock phases and m is some integer.
Combining the welght constraint inequaliti-z grveer

wr(p) we(9)
Teuo) + 2 Ept,pitip) —dP) > Ty + Z Ep(s).p(tign) = 4a),
i=0
wr(p) w.-l‘,-.':- mo
Z Epg.pit) = dp) > ‘/_, Ep(i). (1) =9
=0 .20
~dp) > Y Ep)ppa — d9)
i=w, (p)+1

Using the result from Eqn. 1 on page 9, 5™ 1 B tipy = mTe. Nlence:
-d(p) > mTe —d(q),
-d(p) > kmz’ki - d(q),

~d(p) > (w(q)—w(p))z,}’—d(q),

T T.
w(P)T?’—d(P) > w(q.‘-fl—d(q).

Which contradicts our initial assumption. O

We now determine the values in the matrices D(u,v,Ts) and W(u,v.Ts) as d(p;) and w(p.)
for a critical path « 2= v. This in turn requires identifying the path which minimizes the quantity
{w(p):%L —d(p)} over all paths u -~ v. We can find the paths which minimize this value by running
an all-pairs shortest path algorithm on G using new edge weights @(e) = (w(e)g-;?- — d(vz)) for each
N A 02.3

The Floyd-Warshall algorithm may be used to solve the all-pairs shortest path problem since it
will handle the possibly negatne weight values of w(e) as long as there are no negatwe weight cycles
in the graph. This requires showing that there is no cycle ¢ for which @(c) = w(c)Zt — d(c) < 0.
As a rosuit of Theorem 7. we can place 2 iower Eound on the clock perind used to retime a circvit.
Iliat 1s, we wiil use only cleck periods sucn that Ly - k (w(c')) or iy Lescin . Thus saere cats
be no negative weight cycles for clock periods of interest and all critical paths can be determined
efficiently.

Note that unlike edge-clucked circuits, in general D and W must be recomputed for every
clock perlod attempted by the retiming; However, returning to Figure ¥ we can piov the result
of {w(p)f- d(p)} from Lemma 8 for each path against the clock penod Ts. The resulting plot

¥The sum of all d(v2) in @ cquals d{u ~» v) — d(u) rather than d{p). However. because node u is the first node in
all paths u = v, minimization of t will minimize {wip)TE ~ d(p)} as well,

17

L3

p—
[e]
1

A0 P

'

ey

o
1

Figure 12: Plot of slack vs. clock period for paths p, ¢ and r.

is shown in Figure 12. The slack value for each path p is a linear function in clock period with
slope= ﬂ{_ﬂ and v-axis intercept at —d(p). At all clock periods greater than the iniersection point
between the slack functions for two paths, one of the paths will have less slack than the other-and
the other path will have less slack at all clock periods less than the intersection-point. For any two
paths of the same weight, the path with greater delay will always have less slack than the other.
Due to these properties. if a par cular path is critical for -any two clock periods, it will also be
critical for all clock periods in beivween.

Once two clock periods are found, one above the optimal clock .period T epet and one below
the optimal clock-period Tq,opt—, for which W(u,v, To,p—) = W(u,v,Tq,op,-}-) for all values v and
v, then for any clock periods Tg opt— S Ty < Tp,,,+ the arrays W and D will remain constan:
and need not be recomputed. Additionally, because the slope of each slack function is > 0, .
Wit v, To,,~) = min{w(p) | u % v} then W(u,v,Tp) = W(u,v,Ty,,,—) for all Te 2 To 5~ -

6 Retiming for Equal Phase Clocks

The theorems in the previous sestivn £~i.n-the basis for a set of constraints wLich can be used to
defeymine whether a ietimng exisis for a particular clock schiedule. In this sectio, we investi_ate
a simple clock schedule with equal length phases. In Section 7 we extend the capability to more
complex clocks with unequal length phases. The resulting constraint sets can be solved in a manner
similar to the original-Leiserson et. al. methods to perform retiming of level-clocked cirzuits.

An equal-phase clock schedule is a valid k-phase clock set ¢ = {¢y, ..., #x} where all active phase
periods T35, are equal, and all phase shifts E; ;1 = T—f- Since the length of the active period is the
same for all phases. we use Ty to refer to the length of the active period of any phase. Note that this
definition allows overlapped clock phases under the general constraints on valid clocks. Because:the
active periods and phase shift values of the phases of each adjacent pair of latches are equal, the

18

retiming process can-ignore the actual phase of the individual latches. In the identical manner to
edge-clocked circuits, a retiming value 7(v) is assigned to each vertex of the circuit graph. However,
a value of r(v) = n now moves n latches across the vertex rather than n registers.

Proofs in {6, 7] for edge-clocked circuit graphs showing that all cycles maintain-the same number
of latches and that phase differences between paths with common endpoints remain constant also
hold for level-clocked graphs. Additionally, because 7(vx) = 0, no new latches will be introduced
from or transferred to the outside world. It is not possible to limit path constraints for level-
clocked circuits to the length of zero-weicht paths as in edge-clocked circuits. The delay of any
latch-bounded path is affected by the paths yreceding and following it, requiring constraints for
higher weight paths as well.

Corollaries 5 and 6 -provide a basis for retiming level-clocked circuits operating under an k-
equal-phase clock schedule. These constraints take two forms: » minimum possible clock period
based on simple cycles and sets of timing constraints for given clock periods on paths.

The method used to form the required constraint set is to first guarantee that tlie minimum
cycle period constraint imgosed by Corollary 6 wili be met. Following identification of the minimum
possible clock period based on cycl-s we-combine the result of Corollary 5 with knowledge of an
equal-phase clock to derive L(u, v), tle mini.cam weight for a critical path between v and v. Using
this result a pass is made through the W and D arrays corresponding to the critical paths in G to
form a set of path constraints requir.ng L(u, v) latches rather than one as in the previous work.

We now restate the maximum delay constraint as a minimum weight constraint which provides
a lower bound on the number of latches on a simple path in terms of the path delay.

Corollary 9: The weight of any simple path p in a orrectly operating, well-formed circuit
graph G using a k-equal-phase clock schedule is bounded by:

d(])? — T,_s] -1

Ly
3

w(p) 2 [
Preof: The result follows directly from Corollary 5 on page 14 using the fact that for k-equal-phase
clock schedule, E; ;4 = Lj‘- and ¥y 5, Ty, = Ty, = Tg = Tp(i). ©

We define L(u,v) = D—('i}-’_}:—n’-
path from u to v. This value forms the basis for a set of constraints for retiming well-formed circuit
graphs controlled by a k-equal-phase clock schedules for-a given clock period Ty:

/O o) =0
Positive edue weigh.: = 1) = r(r}Y < wi2) for all dees » =
Maxumum path detws: o) = riv) £ W(u,v) ~ Liv.oryia ait . o). oo that Ll,v) 2 0

.l ~ 1 as the minimum number of latches required on a critical

6.1 Correlator Example Revisited

The correlator shown in Figure 3 on page 4 can be transformed into a well-formed, two-phase,
level-clocked circuit by replacing each register in the edge-clocked circuit with a pair of @;,¢
latches, thereby doubling the weight of each edge. Retiming this example using a two-equal-phase,
non-overlapped clock schedule leads to the circuit graph of Figure 5 on page 4. The W and D

19

matrices -are the same as in the original example except that all values in W are multiplied by two
to reflect the conversion to latches.
Finding T¢j, results in a value of 10 units. Several cycles are critical in this particular graph:

Vertices in cycle d(cycle) | w(cycle) | d/w
Vhy V1, V7, Ui 10 2 5
Vhy V1, V2, Vs, UT, Uh 20 4 b)
Uhy U1, V2, U3, Us, Ve, U7y Up 30 6 5

Retiming to an ideal two-equal-phase clock schedule with T4 = 10 (d/w = 5 for any critical
cycle, which requires Ty = 10 for a 2 phase clock) requires that the following path constraints be
met: '

Path # latches D(p) Path | # latches D(p)
U=y req’d Uy req’'d
1—d, 1—6,2—5 | 1 > (1-Ts) S—7,6—23 3 >(2-Ts)
5es3, 6T, T—2 i T—o5
1er 5,20 7,36 3=, 41,52 4 > (2.5-Ty)
Jomre3, G 1. 73 | 2 > (1:5-Ty) G—rd, 65)
70 =3, 5o 3 > {3:Ts)

The above set of constraints when combined with-the necessary edge constraints may be solved
successfully to define a set of retiming values resulting in the latch placement in Figure 5.

6.2 Determining Potential Optimum Clock Periods

It is not always possible to retime level-clocked circuits to the lower bound clock period given by
a critical cycle as in the previous example. Tor a theoretically precise optimum value, it becomes
necessary to determine a set of possible optimum clock periods over which to search for a minimum
legal clock period. In an optimal edge-clocked circuit there exists some critical path of zero weight
with delay exactly the value of the clock period and thus it is a simple matter to make a list of all
path delays from the D array and perform a binary search on that list to determine the optimal T.
In level-clocked circuits the critical path may be many clock phases in length and of weight greater
than zero. Additionally the critical path between two vertices may change given two differing clock
periods. Enumeration of all possible paths between two vertices can be exponential in the number
of edges and so is not practical as-a starting point for determining possible critical path weights.

The following theorem uses the fact that for an optimal retiming of a level-clocked circuit graph
(not retimed to the critical cycle period) there will exist some critical path which exactly meets the
minimum weight requirements. If this were not true there would exist a faster clock period for the
same weighting. As we approach the optimal clock period for the graph we identify a range in which
the oprimal clock period exists and over which the criticai paths in the circuit graph = il not chanee;
Howees. incerrain cases. wien the intersection of slack values ior two paihs occ..1, at preasely
the optimal clock period, it is not possible to determine a range over which the critical path arrays
will match. In this case we our algorithm must exit at some desired level of accuracy. Assuming
a range over the optimal period is found with matching W arrays, we change the inequality from
the minimum path weight result in Corollary 9 to an equality and form a set of possible optimal
clock periods.

Theorem 10: The optimal cycle time Ty opt 0f @ well-formed circuit graph G clocked by a

k-equal-phase clock is in the set C:

D(u,v) o
C = { (ﬁ) u,v € Vi€ {0,1...77,}}

where: Ty = duty cycle of each phase = % and n is the mazimum integer value for which the
resulting clock period computed is greater than the critical cycle period.

Proof: Follows from setting the left and right hand sides of Corollary 9 equal and solving for
Ts. Because the value Ty is proportional to T, substitute in duty cycle (Ty - To) instead which
remains constant. for the clock schedule. O

Real circuit graphs have built-in error due to estimation of combinational logic delays, and thus
the value of generating a precise set of possible optimum clock periods is questionable. Large, com-
plex circuits with many combinations of possible path delays and weights have a densely populated
set of possible optimum clock periods. A more reasonable approach is simply to perform a search
over real values to the desired level of accuracy given some knowledge of the accuracy of the circuit
modeling process. [lowever. the technique of finding an exact optimum is presented here to show
it is significantly different from the original work.

We can now define a new algorithm for finding the optimal retiming-of a k-equal-phase, level-
clocked circuit graph:

Algorithm: Optimal k-Equal-Phase Retiming:

1. Determine the critical cycle period Tg, = & (-:f’l(%’%) .

1. Attempt to retime to Tgp; if successful T¢opt =Tep-

2. Repeatedly multiply the value of Tgy, by o until a legal retiming is found. Set Ty optT 10 the

opl+

T
clock period of the first legal retiming. Set T Popt— to 2

3. If for all v and v, W(u, v,T.;,op‘-) = i'V(u,v,T.;,opt—), proceed to step 4, otherwise perform a
binary search over (Tg ,Ta,,+] until matching ¥ arrays are found or a desired level of
accuracy is met.

opt apt
4, Perform a binary search over the set of possible optimum cycle times C' computed from W
and D to find the minimum value for which a legal retiming can be found.

As pointed out above, finding an exact optimal solution in practice is probably not worthwhile.
Instead climinate Step 4 above and replace Step 3 with:

3. Perform a binarv search over (ﬂ:w..,,-.?k.,p‘-é-] until the desired level of aceuracy is rearciind,
Since in practice Iy, , will likely be near the value of Ty, biasing the search pattern suci that
the lower end is favored is often worthwhile. Qur system uses o = 1.25. Additionally, because
high values of n in Theorem 10 result in the smallest values in set C, the set may be generated
incrementally as needed rather thau ail at once.

Example 2: A 2-equal-phase example with phase underlap
Real circuits cannot be designed with an ideal clock schedule as was used in the previous
example. Instead a typical clock schedule might have each active period T3 = 0.47% giving an

21

0 -1 -3
(D4
% \
\ $2 1 %1 !
é1 -1 —-2 —4 -4
OCO—O1=®

Figure 13: The correlator circuit optimally retimed using a 2-phase, equal-period clock where Ty =
0.4Tg; Te_ _, = 10.345 units.

0

opt

underlap between phases of 0.17¢. In this example we retime the correlator circuit graph using
such a clock schedule.

As in the previous example T¢:, = 10; however, in this case a retiming to that clock period
cannot be found. A legal retiming is found to T4 = 20 and the ¥ and D matrices match at 20 and
10. The set of possible time periods C is:

C = {10.0, 10.345. 10.526, 10.833, 11.053, 11.111, 11.25...}

A binary search ove - this list finds the fastest time possible T.popl = 10.345. The circuit retimed to
this clock schedule i shown in Figure 13.

6.3 Reducing the Required Number of Constraints

We do not consider the larger number of constraints required for the level-clocked retiming to be
much of a problem since the overall number of constraints is still limited to [V]|2. However, it is
true that the expected number of consiraints is much greater than for edge-clocked retiming since
long paths usually have a different constraint imposed on them than on their sub-paths whereas in
edge-clocked graphs constraints on long paths were usually redundant with a shorter sub-path. The
exact relationship between the number of constraints for the two retiming methods is dependent
on the graph structure and on the delay of vertices in the graph relative to the length of the
clock period of interest. The correlator example is again useful here because it may easily be
extended lengthwise and the number of constraints for different-sized graphs compared. Table 1
displays T, , in relationship to number of nodes in the correlator grapi and the number of path
-LilsLeai Ly Fratired tui cau. lectiigue to retime to the corresponding optimal ciock period.

It is possible to fimit the number of constraints required for retiming by limiting the number of
latches through which borrowing is allowed. If borrowing is allowed only through ¥ latches, path
constraints are defined as:

path constraints: r(u) — r(v) < W(u,v) — L(u,v) for any 0 < L(u,v) < NV
limited path constraints: r(u)— r(v) < W(u,v) — L(u,v) = 1 for any N < L(u,v)

Since long paths arz now over-constrained and a greater portion of the path constraints will be
redundant to shorter sub-paths, limiting borrowing in this manner reduces the number of constraints

22

Correlator T¢op, # path T"opt # path’

-size in nodes || Edge-Trig | constraints || Ideal 2-equal-phase | constraints
8 13 S 10 23)
10 13 8 10 41
12 14 16 10.286 65
14 14 20 10.286 - 95
16 14 24 10.5 129
20 14 32 10.5 219
30 14 52 10.5 528
50 14 92 10.5 1546
100 14 192 10.5 6354

Table 1: Comparison of optimal clock periods found for varying sizes of correlator circuits.

path T"opt for # path ’ T+°pi for
N | constraints | Ideal 2-equal-phase | | N | constraints | Ideal 2.equal-phase
1 142 14.00 |8 1225 11.17
2 285 12.74 9 1309 11.02
3 474 11.56 10 1437 10.78
4 658 11.72 12 1757 10.78
5 R38 11.72 15 2098 10.78
6 880 11.02 16 2169 10.70
T 1056 10.94 17 2240 10.50

Table 2: Optimal clock periods found while using restricted constraint sets that allow borrowing over
N latches in the 100 node correlator ezample.

required to retime the graph at the expense of finding a less than optimal solution. The experimental
results shown in Table 2 demonstrate that the 100 node correlator example can be retimed to the
optimal clock period with many fewer constraints than those used for the most general case.

The time values in Table 2 were derived using smaller. limited constraint sets. In most cases
the resulting graph can actually be operated at a higher speed than that shown, however the over-
constrained retiming process cannot show that to be true without a less restrictive constraint set.
The difficulty with this heuristic technique is also demonstrated: The optimal time period found
does not decrease monotonically with increasing number of levels. This is due to an interaction of
the graph granularity with the level at which paths are over-constrained.

7 Retiming of Unequal Phase Circuits.

Inlike eaual-phase retiming - » minimum weight of a path -.uder an unequal phase clock scitedule
iepenas on the pre « contro...... .tesatch at which the paun . . - Duisediiforece b vamos, :
in Figure 14 which s.ows that the maximum length of 0 an... « weigit paths beginning at a«.
controlled by each phase of a 2-phase clock. Neither the edge-clocked retiming methods from {&. 7]
nor the equal-phase retiming developed in Section 6 can differentiate which phase of latch is being
moved across a particular vertex in the graph; However, because latch phases alternate along
paths in well-formed graphs, the knowledge of what phase latch precedes a given vertex is directly
available from the retiming values.

First, the minimum weight value for a critical path is extended to a set of values Li(u,v), i &

{0...k — 1}, indexed relative to the initial arrangement of latches in the circuit graph. Similarly,

23

w(p) = It]
w(p) ='0|-————i

ol 1 [1 i |
LIIIILIIII—ImllIIllslllllmlllIlzsllllIso

NS e I e | T

w(p) = 0 |

w(p) = 1t |

Figure 14: A two-phase underlapped clock schedule. Distances are the mazimum time period for a
path-of given weight beginning at a vertex preceded by the adjacent clock phase.

in order to form constraints based on the phase of a latch at which a path begins, the single
retiming value r(u) is divided into a set of values r;(u), i € {1...k}. In-a general ILP constraint
set. new constraints are added to maintain the sequential movement of latches using these “phased
retiming” values. Given these new capabilities, “phase specific” constraints are derived which
require the correct number of latches be placed along any path given any legal combination of
phased retiming values. Although-a complete set of ILP constraints may be formed and solved in
this manner it is also possible to find-a solution using a modification of the Bellman-Ford technique
and a constraint set of approximately the same size as required for equal-phase retiming and using
the same (]V]) number of variables.

7.1 Minimum Weight Requirements

The result of Corollary 5 on 14 may be re-written to provide a general equation for the minimum
weight of a-path. The equation must be solved on a case by case basis.

Corollary 11: The weight w(p) of any path u =~ v in a correctly timed. well-formed circuit
graph G using a valid k-phase clock schedule is bounded by:

[-1 lf ((l(p) - Tp(u)) mod Ty =0
0 if0<(d(p) = Tp)) mod Te < Ep(u),P(u)+1
> EP(u),P(u)+1
w(p) > k [M']’_fﬁuj + L if (d(p) = Tp(wy) mod To 4 < Ep(u),P(u)+1
+Ep(u)41,P(u)+2

E=3 df(dp) = Tppy) mod Ty > yok-2 Fotpz, pruysj

e F=Y

Proof Sketch: From Corollary 5 we have:

w(p)
Y Erwsipwitr 2 d(p) = Ty
j=0
w(p) mod &
w(p
l. fcl)J To + Z EP(u)+j,P(u)+j+1 2 d(P) - Tp(u)
Jj=0

24

Applying (mod Tg) results in:

w(p) mod &

0+ > Epu+iPu+is] modTe > [d(p) - Tpy)] mod To. (4)
=0

Case 0: If [d(p)~ Tp(y)] mod Te < Ep(u),p(u)+1s then w(p) mod k = 0 and by Eqn. 1 on page 9,

w(p) =k lﬁl(—p)-;TTMJ

The remaining cases follow similarly. O

We define L;(u. v) as the minimum number of latches required on a critical path from u to v
when P.(u) = P(u)+1i, i € {0...(k - 1)}. Pr(u) = the phase of node u in the retimed graph
Gr. Values for L;(u,v) are computed by substitution of D(u,v) in for d(p)-in Corollary 11. For
notational convenience we will sometimes refer to Lx which is equivalent to-Lg in all cases.

Now that a set of minimum weight values has been determined, it is necessary to form ILP
constraint sets which require the correct number of latches on a path given the phase of the first
node in the path. For example in a 2-phase system, for any pair of nodes u and v the following two
constraints are required:

r(w) = r(v) < W(u,v) ~ Lo(u,v) for P(u) = IP(u)
r(u) = r(v) < W(u,v) ~ Ly(u,v) for P(u) = IP(u)+1

These two constraints may not be implemented simultaneously because of the conditional expression
on when each is valid. If both were imposed: the minimum value of L;(u,v) would be the value
required at all times on critical paths from u to v. Instead we formulate-a new set of variables
which contain knowledge of the current phase of node « and form constraints using those variables
such that the correct value of L,(u,v) is imposed. The new variables for each node are known as
“Phased Retiming” variables.

7.2 Phased Retiming Values

We now split each retiming value »(u) into a set (ry(w), r2(w), ..., rr(u))-according to the following
definition:

() = '_ " J+l for i < r(u) mod k;
ﬂ"ﬂJ for ¢ > r(u) mod k;

Physical -+ soresents the nummer of s o, laten s moved ucross vertex » v a retiming,
For notationat conventence we will sometimes refer to rg wlich is equivalent to 7, in all cases. In a
sense we are exposing information about the phase of a node under any retiming given knowledge
of the well-formed graph structure. The following lemma makes use of this information to form
path-weight constraints which are specific to the current phase of the node beginning the path.

Lemma 12: A set of values (ri(u);r2(u),...,7x(u)) is a set of phased retiming values as
defined above iff the following constraints are met:

25

Phased Variables: r(u) =k riw)

ri(w) =@ <1 o ”{ie{l...k}

Latch ordering: ri() = ri() < 0 [je{l...i-1)

Proof: (If:) Restating the two latch ordering-constraints:

for all r;(u) where j < i, rj(u) < ri(u)+ 1. (5)
for all rj(u) where j < i, rj(u) 2 ri(u). (6)

If any value r;(u) = ri(u) + 1, as allowed by constraint 5, then all rx(u) +1 < r;(u) > ri(u) for
all j < i. Therefore r;(u) = r;(u). In other words, if there is any r;(u) greater than ri(u) it will be
greater by 1 and all values r;(u) = ri(u) = rr(u) + 1 where j < i.

Thus, under the constraints, all r;(u) are equal or there exists exactly one value-r,(u) such that
for all j < i, ri(u) = rj(u) and for all § > 4, ry(u) = rj(u) + 1.

Case 1: All r;(u) are equal. Since r(u) = Zf;l r.(u) and by Corollary 3 r(u) mod k = 0 then
ri(u) = [ﬂkﬂj satisfving the definition.

Case2: All ri(u) are not all equal. Therefore r; = R+ 1,i < m and r; = R.i > m for some R
and m. Then:

k

m k
2orlw) =Y (R+ 1)+ 3 (B)
i=1

] t=m+1

t=1
mR+1)+{(k=mR=kR+m

r(u)

Thus. m =7 mod £ and R = i#l] and r;(u) meets the definition above.
(Only If:) Summing the ;(«) values results in:

k .
Z ri{u) = k- l_r_ljﬂJ + r(u) mod £
i=1

= r(u)

Let j = r(u) mod k. Then definition, for all'i < j, ri(x) = r;j(u), andfor all i > j, ri(u) = rj(u)-1.
Thus the Latch Ordering constraints are true. O
7.3 Phase Specific Constraints

Using the exnressions for minimum path weight and phased retiming values. it i- now possible ta
WD WAL Pl peetie consiraints waich mpose weight restricions vh ... slns petWoen
nodes u and v conditional on the phase of node u.

Theorem 13: A well-formed graph G using a k-phase clock schedule ® operates correctly
under a retiming iff for all v and v in V:

k
> o ri(w)[Li(a,v) = Li—1(u,v) + 1] = 7(v) < W(u,v) — Lo(u, v).

i=]

26

Proof: -(If:) We expand the above equation to:

k k k
Y ori(u)Li(u, v) = Y ri(u)Lici(u,v) + 3 ri(u) = r(v) < W(w,v) - Lo(u, v)

i=1 =1 i=1
k k=1
Yo ri(u)Li(u,v) = 3 riga(w)Li(u, v) + r(w) = r(v) < W(w,v) - Lo(u, v)
1=1 i=0
k
Z(r,-(u) ~ rip1(W)) Li(u, v) + r(u) = r(v) < W(u,v) - Lo(u,v) (7
i=1

Case 1: If r(u) mod k = 0; P.(uv) = P(u) and 7i(u) — ripy(u) = O-forall i. Thus Eqn. 7 becomes:
r(u) - r(v) < W(u,v) ~ Lo(u,v)
as desired.
Case 2: If r(u) mod k = j, P.(u) = P(u)+ j and
1 for i=j
ri(u) = rigi(u) = ¢ =1 fori=k
0 otherwise
Thus Eqn. 7 becomes:
Li(u,v) = Lo(u.v) + r(u) = r(v) < W(u,v)— Lo(u,v)
r(u)=r(v) £ W(u,v)— Lj(u,v).0

(Only If:) If the constraint set-is not satisfied then for some constraint:

k
Zr;(u)[L;(u. v) = Li-y(w,v) + 1) = 7(v) > W(u,v) ~ Lo(u,v).

1=1

Using the expansion to Eqn. 7:

k
E(r;(u) = rig1(w)) Li(u, v) + r(u) = r(v) > W(u,v) = Lo(u,v). (8)

i=1

Case 1: If r(u) mod k = 0, Pr(u) = P(u) and ri(u) — ri31(u) = 0 for all i. Thus Eqn. 8 becomes:
r(u) = r(v) > W(u,v) ~ Lo(u,v)

For a critical path u 2 n, we(p) = W(u,v) = r(v) + rlu) < Lo(u.v “hus the path weight is
s§ thoen the minhun b woreht required for correct eve .on.
Case 2: If r(u)ymod k = 7, P.(u) = P(u) + j and Eqn. 3 bec umes:
Lj(u,v) = Lo(u,v) + r(u) ~ r(v) > W(u,v)— Lo(u,v)
ru)~r(v) > W(u,v)— L;(u,v).
Again, for a critical path u 5+ v, w(p) = W(x, v)~7(v)+r(x) < Lo(u,v). And the path weight
in the retimed graph is less than that required for correct operation. O

The complete set of constraints that must be met by a retiming of a multi-phase circuit graph
G using a valid k-phase clock schedule is:

27

¢ é2
O

S

Figure 15: Level-clocked Correlator example and resulting computational schedule when retimed to
a 2-phase clock schedule where To = 10, Ty, =3, and Ty, = 7.

I1/0: »(vn)=0
Positive Edge Weight: 7(u) — 7(v) < w(e) for all edges u = v
Phased Variables : r(u)~ k%, ri(u) =0
o) r(w)-ri(u) <1 ie{l...k}
Latch Ordering: { ri() - r3(u) < 0 for all je{l...i-1}
Maximum Path Delay: Y5, ri(u)[Li(u,v) = Licy(w,v) + 1] = r(v) < W(u,v) ~ Lo(u,v)

Because L,(u,v)is a constant value throughout the retiming process, each of the above equations
is a legal ILP constraint with a summing of variables multiplied by constants on the left hand
side and a constant bound on the right hand side. Additionally, because of the highly restricted
relationship between r;(u) and r(u), the constraint set may still be solved using the Bellman-Ford
algorithm as in [6, 7]. Intuitively, the Bellman-Ford technique holds one of the two variables in
a two variable constraint constant while modifying the other variable such that the constraint is
met. 'lolding r(w) constant also holds each value of r,(u) constant, allowing manipuiation of r(v)
to meet the constraint requirement.

P(u) = [r(u) mod k] in a well formed graph, so an actual implementation of the Bellman-Ford
approach can make use of a modified path constraint where the correct value of Lpy) is stoied
in a look-up table array indexed by [r(u) mod %]. “This allows access to the correct number of
registers .required for a particular retiming value while ignoring the individual phased retiming
variables required in the general approach. A variation on the Bellman-Ford algorithm provided in
Appendix A makes use of this technique.

28

8 Summary and Future Work

We have described an efficient method for optimally retiming the class of well-formed, multi-phase,
level-clocked circuits using valid clock with arbitrary-length phases. This not only is a large class
of circuits widely used in practice; they are also circuits that can be easily produced by current
sequential synthesis tools and optimal retiming of these circuits will become increasingly important.

Our next goal is to remove some of the restrictions we have placed on both circuit structure and
clock schedules. Valid clock schedules can be redefined to assume a delay greater than zero between
latches of specific phases. This introduces two-sided constraints and the manipulation of minimum
delays as well as maximum delays. Work along these lines but in a different context has already
been done by Shenoy [11] and Sakallah [5]. Extending the class of circuits beyond well-formed
circuits places additional constraints on the movement of latches in the circuit. These constraints
depend largely on the clock schedule itself and the implications of removing the ordering constraint
on the correctness constraints.

The idea of retiming has also been used in the area of logic synthesis as a way of exposing and
applying more of the functional relationships in a sequential circuit. Malik, Sentovich and Brayton
describe the technique of peripheral retiming which allows registers in a sequential circuit to be
moved to the periphery of the circuit, thus allowing the global resynthesis of the combinational logic
as an single unit (8], and Borriello, Bartlett and Raju have explored the use of localized retiming
combined with logic resynthesis to reduce the overall clock period. Our techniques allow this work
to be extended to level-clocked circuits.

Sakallah et. al. describe a technique whereby the cycle time is minimized by adjusting the
clock schedule instead of the circuit [5]. Typically there is not much freedom in the design of a
clock schedule as it must conform to larger system constraints. However, it would be interesting
to consider simultaneously adjusting the clock schedule and latch placement to minimize the cycle
time.

In our circuit graphs. combinational components do not interact with the clock. In CMOS
circuit design, however. there are circuits such as precharged logic gates whose inputs and outputs
are synchronized to the clock. A future topic of research is to represent these types of combina-
tional logic circuits in our circuit graphs so that retiming can be extended to more of the circuits
encountered in practice.

Level-sensitive circuits have long been used for circuits where performance is important. Only
recently, however, have algorithms for analyzing and manipulating these circuits become available.
The potential benefits of level-sensitive circuits will make this a very fertile area of CAD research
for some time to come.

A AT . 1 .
Achiowl -dgnirnts

We want to thank Gaetano Borriello for valuable discussions and comments on this paper and Steve
Burns for pointing us to the algorithm forfinding the maximum-ratio-cycle and the construction
for finding critical paths in level-clocked circuits.

29

A Algorithm: Modified Bellman-Ford for Unequal-Phase Re-
timing

An important impact of introducing phased retiming variables to allow retiming of unequal phase
clock schedules is that the resulting ILP constraints no longer have the form of the difference
between two variables. The fact that all constraints were of this form was used in edge-clocked
and equal-phase retiming to allow-solution of the constraint sets by the Bellman-Ford single-source
shortest paths problem [6, 3]. If this efficient short-cut to solution of the constraint set is no longer
available, solving for the optimal clock period of the circuit will now require a general ILP solution
method and- a large additional expense incurred due to the increased number of variables and
constraints required to guarantee legal combinations of those variables.

Fortunately it is possible to format the unequal-phase constraint sets in such a manner that a
slightly modified version of the Bellman-Ford approach can solve them. This modification makes
use of the fact that all phased retiming variables (r,(u)) can be uniquely determined from any given
value of r(u). The process of mapping r(u) : (r,(u)) imposes all of the additional constraints added
to the constraint set for Phased Variables and Latch Ordering, and the proper number of latches
required on an edge is stored as a complex weighting function where w(z — v) is dependent on the
value of r(u) for each edge.

To present the modified version of the Bellman-Ford we proceed through the identical steps
used in [3] to prove the correctness of the standard algorithm. The new problem being solved may
be stated in the following manner:

Problem: Given a weighted. directed graph G = (V, E), with weight function w : (£, (s, u)) =R
mapping edges to rcal valued weights dependent on the shortest-path é(s, «) from a source vertex
s to the head of the edge v — v, determine é(s,u) for all v € V.

Ezample: For a real-world analogy of the problem, assume you wish to travel by plane from
New York to Chicago using the least expensive route. Fares are discounted at each departure point
based on the expense of travel to that lncation. In keeping with airline tradition. for a given arrival
cost the amount of discount is-completely arbitrary and is contained in a look-up table accessed by
arrival cost.

Figure 16 provides an illustration. The the source node, New York, is shown with two paths
existing to the destination node Chicago. The value §(s,s) = 0 so the edge weights from New York
to Chicago and Houston are 6 and 10 respectively. This provides the value of §(s, Houston) = 10,
therefore the edge weight from Houston to Chicago is -5. The shortest path from New York to
Chicago is then the path through Houston and has a weight of 5.

In our modification of the shortest paths problem we are given a weighted, directed graph
G = (V, E), with weight function w : (E, §(s.v)) —R mapping edges to real-valued weights using a
function based on the weigitt of the shortest path leading to the node at the beginuing oi the eage.
The weight of a path p = (vo, t1,....v%) is the sum of the weights of the edges awng the patn in
the identical manner to the original:

k
w(p) = Y w(viey,)-
i=1

The shortest-path weight from u to v is:

6(,v) = min{w(p) : « -~ v} if there is a path from to v,
’ 0o otherwise.

30

w[~1.] =5
w(0] = 6

w(l} =2
Chicago)_
\
New
o

w[9]: =8

w{10] = -5 :
w11} =0 w{-1]=3
. w[0] = 10

wfl] = -8

Figure 16: A simple graph itlu.trating the shortest path problem with edge weights dependent on
weight of shortest path lcading to a the node beginning-the edge. In this graph the source node is
New York and edge weights of interest are shown in the form w[é(s, u)) for each edge v — v.

Beginning with Lemma.25.1 in [3) we substitute our new definition for edge weight and show
that each of the proofs leading to use of the Bellman-Ford algorithm still apply.

Lemma 25.1°: (Subpaths of shortest paths are shortest paths)

Given a weighted. directed graph G = (V, E) with weight function w : (E.§(s,u)) —R, let
p = (vo,vy,....Vx) be a shortest path from vertez vy to verter vy and. for any i and j such that
1<i<j <k let py = (ny0igr,....0;) be the subpath of p from vertex v; to vertex v;. Then pi;
is a shortest path from v; to v;.

Proof: The definition of the weight of a path has not changed from the original, hence this
proof follows identically from the original: decomposing the path p into vy 22, &ij 2K ok, then
w(p) = w(py;) + wipy,) + w(p,x)- I there is a path p;; from v; to v, with weight w(p;;) < w(p;;).
Then v, Z5u; -'-sf;’-»v, %%y is a path from v, to v, whose weight w(pr,) + w(pi;) + wpjk) is less than
w(p), which contradicts the premise that p is the shortest path from v, to v;. O

Corottaw- 25,7 .
Leeu =V .. be ¢ wewnted, direcied grapn u: - weight functton w: (L. 01s.u)) —R. & se

that a shortest path p from a source s to a vertez v can be decomposed into s — u—v for some
vertez u and path p. Then the weight of a shortest path from s to v is:

6(s,v) = 8(s, u) + w(u,v,8(s,u)).

Proof: By Lemma 25.1°, subpath 7 is a shortest path from source s to vertex u. Thus:

§(s,v) = w(p)

31

w(p) + w(u, v,6(s,u))
§(s;u) + w(u,v,6(s,u)). 0

It is now necessary to redefine the relaxation technique to make use of our new definition of
edge weighting. Identically to the original work, for each vertex v € ¥V we maintain an attribute
d[v}, which is an upper bound on the weight of a shortest path from source s to v. d[v] is called
a shortest-path estimate. The shortest-path estimates are initialized using-the following procedure
identical to theoriginal:

INITIALIZE-SINGLE-SOURCE(G, 5)

1. for each vertex v € V[G] do {
d[v] — oo;
={v} ~NIL; }

. d[s] — 0;

e W

The relaxation algorithm tests whether we can improve the shortest path to v found se far by
going through u and if so, updating d{v] and x([v]. The code for performing the relaxation step
is only slightly modified from the original in order to account for the more complex edge-weight
function.

‘RELAX(v, v, w)

L if d[v)-> d{u] + w(z,v, dfu]) then {

2. dfv] — d[u] + wlu, v, d[u]);

3. wfu) e~ ;)

As shown in the following Lemmas and Corollaries, this new definition of relaxation supports
the same properties required of the original relaxation function. Because these key proofs are
supported, algorithms for finding shortest paths based on the relaxation method work for the new
weighting function as well as for the old.

Lemma 25.4":

Let G = (V,E) be a weighted. directed graph with weight function w : (E,6(s,u)) =R, and let
v — v € B. Then, immediately after relazing edge u — v by ezecuting RELAX(u,v,w), we have
dv] < d[u] + w(u, v, d[uj).

Proof: If just prior to relaxing v — v we have d[v] > d[u] + w(u,v,d[u]), then d[v] = d[u] +
w(u, v, d[u]) afterward. If, instead d[v] < d[u] + w(u,v,d[u]) just before the relaxation, then neither
d[u} nor dfv] changes, and so d{v} < d[u] + w(u,v,d[u]) afterward. O

Lemma 25.5":

Let G = (V, E) be a weighted, directed graph with weight function w : (E,6(s,u)) —=R. Lets € V
be the source vertez. and let the graph be initialized by INITIALIZE-SINGLE-SOURCE(G, s). Then
dv] > é(s,v) for all v € V, and this invariant is maintained over any sequence of relazation steps
on the edges of G. Moreover, once d[v] achieves its lower bound §(s,v), it never changes.

Proof: The invariant dfv] > 6(s,v) is true after initialization since d[s] = 0 > 6(s,s) and
d[v] = oo implies d[v] > é(s,v) for all v € V — {s}. Using contradiction, let v be the first vertex for

32

which_a relaxation set of an-edge u — v causes d[v] < §(s,v). Then, just after relaxing v — v we
have:

d[u] + w(u, v, d{u])

d[v}
< &(s,v)
6(s,u) + w(u,v,8(s,u))

IN

which-implies that d[«] < 6(s,u). But because relaxing v — v does not-change d[u], this inequality
must have been true just before the edge was relaxed, which- contradicts the choice of v as the-first
vertex for which dfv] < §(s,v). O

Corollary 25.6":

Suppose that in a weighted, directed graph G = (V, E) with weight function-w : (E, (s, 1)) »R,
no path connects-a source vertez s € V to a given-vertez v € V. Then after the graph is initialized
by INITIALIZE-SINGLE-SOURCE(G, s), we have dv] = §(s,v), and this equality is maintained
as-an-invariant over any sequence of relazation steps on-the edges of G.

Proof: By Lemma 25.5°, we always have oo = §(s,v) < d[v]; thus d[v] = 0o = é(s,v). O

Lemma 25.7":

Let G = (V, E) be a weighted. directed graph with weight function w : (E,6(s,u)) —R, lets € |4
be a source vertez. and let s—u — v be a shortest path in G for some verlices u,v € V. Suppose
that G is initialized by INITIALIZE-SINGLE-SOURCE(G, s) and then « sequence of relazation
steps. than includes the call RELAX (u,v,w) is executed on the edges of G. If d{u] = é(s,u) at any
time prior to the call then d[v] = §(s,v) at all times after the call.

Proof: By Lemma 25.5", if di.j = 8(5,u) at some point prior to relaxing edge v — v, then this
equality holds thereafter. In particular, after relaxing u — v we haya:

dlv] < dlu]+ wlun,v.du]) (by Lemma 25.4")
= 6(s.uj+ wiv. v, 6(s,u))
= §(s,v) (by Corollary 25.2°).

By Lemma 25.5", (s, v) bounds d[v] from below, thus dfv] = 6(s, v}, aad this equality is maintained
thereafter.

Now that the above properties of relaxation have been proven for the modified relaxation tech-
nique. proofs for shortest paths algorithms dependent on the-original relaxation technique may
be sruwn to work or algorithms using the modified technique as well. This includes both Dijk-
Sl s antd tie Seliasu-roic asu.tiim. Because tie Bellman- ford sigorivhm can hawdle negative
weight edges, it is possible t. restate the linear programming problem using difference constraints
as a-graph upon which a single-source, shortest paths algorithm is run to determine if a feasible
solution to the constraint set exists or .not.

Using the modified relaxation technique it is possible to restate the more complex constraints
formed for unequal-phase retiming as a constraint graph where the weight of each edge is dependent
on the weight of a shortest path to the beginning of the edge. In essence the set of variables
(r1(1),. .., e(t)) are determined directly from the modulo function on 7(u) and the corresponding
constraint- weighting selected. Thus w(u,v) is a function of r(u).

33

Path and edge constraints for unequal phase retiming may be written as a set 5 of m sub-sets
of linear inequalities where each sub-set is of the form:

r(u) —r(v) < W(u,v)- Li(u,v) forie {0...k}

The constraints may be represented as a constraint graph G = (V, E,w[0...k — 1]). For each
variable r(u) there is a vertex in V. For each set of constraints in § there is an edge u SovinE
with weights w(e)(i] = W(u,v) — Li(u,v), i € {0...k — 1}. For each constraint in S there is an
edge u = v in 2, with weight wa(e) = w(u,v).

BELLMAN-FORD(G, w. s) N

1. INITIALIZE-SINGLE-SOURCE(G, s);

2, fori«—1to |V[G]-1]do {

3. foru—v € E[G)do {

4. RELAX(u,v, w); }}

5. for u — v € E[G] do {

6. if d[v] > dlu]+ w{u, v,d[u]) then return FALSE:)
7. return TRUE:

References

[1] Karen Bartlett, Gaetano Borriello, and Sitaram Raju. Timing optimization of multiphase
sequential logic. [EEE Transactions on Computer-Aided Design, 10(1):51-62, January 1991.

(2] Steven M. Burns. Performance Analysis-and Optimization of Asynchronous Circuits. PhD
thesis, California Institute of Technology, 1991. Caltech-CS-TR-91-01.

[3] Thomas H. Corman. Charles E. Leiserson, and Ronald L. Rivest. Introduction o Algorithms.
The MIT Press. 1990. Chapter 25.

(4] Alexander T. Ishii and Charles E. Leiserson. A timing analysis of level-clocked circuitry. in
Advanced Research in VLSI: Proc. of the 6th MIT Conference, 1990.

{5] K.Sakallah, T. Mudge, and O. Olukotun. Analysis and design of latch-controlled synchronous
digital circuits. In Proc. 27th ACM-IEEE Design Automation Conf., pages 111-116, January
1990.

[6) C. Leiserson. F. Rose. and J. Saxe. Optimizing synchronous circuitry by retiming. In Proc. of
the 3rd Caltech Conference on VILSI. March 1983.

[7] C. Leiserson and J. Saxe. Retiming synchronous circuiiry. .lgorithmica, 6(1):5-35, 1991.

[8) Sharad Malik, Ellen M. Sentovich, and Robert K. Brayton. Retiming and resynthesis: Opti-
mizing sequential networks with combinational techniques. In Proc. of the 23rd Hawaii Int.
Conf. on System Sciences, Kailua-Kona, III, January 1990.

(9] Nimrod Megiddo. Combinatorial optimization with rational objective functions. athematics
of Operations Rescarch, 4(4):414~424, 1979.

34

(10) Giovanni De Micheli. Synchronous logic synthesis: Algorithms for cycle-time minimization.
IEEE Transactions on Computer-Aided Design, 10(1):63-73, January 1991.

(11) Narendra Shenoy, Robert K. Brayton, and Alberto Sangiovanni-Vincentelli. Retiming of cir-

cuits with single phase transparent latches. In International Workshop on Logic Synthesis,
North Carolina, May 1991. MCNC.

