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AFIT/GCA/LSQ/91s-10
Abstract

This thesis covers three objectives: 1) a background
reference document concerning recoverable spares cost
eétimating was developed; 2) a representative sample of
eyisting spares cost models were evaluated; and 3) aircraft
physical and performance characteristics were used to
develop a model for estimating annual replenishment spares
costs. The two-part model involved developing a
condemnations cost estimating relationship (CER) first and
then developing both a CER and spreadsheet generated factors
-which related condemnations to replenishment spares costs.

Four condemnation CERs were evaluated--one linear, one
.arithmetic transformation and two logarithmic transformation

(both X and Y) CERs. Only the logarithmic transformations
provided statiscally acceptable results, and even these
models exhibited wide prediction intervals. This weakness
was due to the large amount of variability in the CER
databases (as evidenced by the number of outliers).

The CER relating condemnations to replenishment spares
costs was a poorer statistical performer. Spreadsheet
generated factors showed that the ratio of replenishment
spares to condemnations requirements exhibited a downward
trend across the data years--suggesting that the factors
should be periodically re-validated. Mission design

averages for fourteen weapon systems are also provided.
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A MODEL FOR ESTIMATING AIRCRAFT RECOVERABLE

SPARES ANNUAL COSTS

I. Introduction

General Issue

In the not too distant past, when new aircraft were
being considered for development and production, logistics
support "took a back seat" to considerations such as
acquisition cost, schedule, and performance (Templin:21-22).
Current Air Force policy now recognizes the need to consider
logistical support throughout a weapon system's life cycle,
from the earliest stage of concept exploration to final
phase-out and disposal (TASC, 1989:Ch 5, 3). This change in
emphasis is appropriate because operations and support (0&S)
costs, at 60%, typically account for the largest share of a
aircraft's total life cycle cost (TASC, 1989:Ch 5, 9).
While political pressure is still great to reduce the
acquisition costs of new aircraft, an underlying theme of
this new emphasis on logistics support is that by spending
more money up front to buy highly reliable/maintainable
weapon systems, the Air Force can save money over the
system's life cycle due to reduced 0&S costs.

A major contributor to these 0&S cost is the cost of

recoverable spares (those which can be repaired when




broken). Several factors point to the need for improved
spares cost prediction capabilities.

The first factor is the inadequacy of current cost
models which can be used early in a weapon system's life
cycle. Because cost estimates must be created for new
weapon systems long before detailed maintenance plans and
aircraft performance history are available, cost models used
in the early design stage typically have limited input data
and provide estimates only at highly aggregated levels (May,
1982:Ch 3, 5-6; TASC, 1989:Ch 5, 55). Cost estimating
relationship (CER)-based models (also known as parametric
models) are typically used during this stage. Even this
early in the acquisition life cycle, however, important
information concerning such factors as aircraft physical and
performance characteristics are often evaluated for their
cost impact. The problem lies in the fact that,
historically, parametric spares models used at this stage
have failed to include these important potential cost
drivers (May, 1982:Ch 3, 3; Rexroad, Tillia, and Tritle,
1990:1). Because the models do not adeqgiately explain what
logically "drives" their estimates, they are difficult to
defend. Additionally, since they are typically based solely
on acquisition costs, any increases in design or production
will indicate increased 0&S costs. Thus, they can't be used
to justify additional acquisition funds to save 0&S funds.
They provide inadequate insight into how cost changes in

relation to the various design tradeoffs being evaluated.
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Cost estimates are also required to support the
development of spares budgets several years before the
actual deployment of new weapon systems. The same situation
described above applies here as well. The parametric cost
models used to support the budget regquirements provide no
insight into what is driving the estimate., The
requirements, therefore, are hard to defend and are subject
to Congressional budget cuts.

Another cause for concern about current spares cost
prediction capabilities is that HQ AFLC/FMBSR has recently
transferred most of its responsibility for initial spares
budget preparation to the Air Logistics Centers (ALCs)
[FMBSR still budgets for common support equipment, a small
percentage of the total requirement, and whole engine spares
are handled separately]. The FY 92/93 Budget Estimate
Submission (BES), dated September 1990, marked the first
time that the ALCs were given this responsibility. Faced
with this new task, the ALCs had many procedural questions
for the previous estimators--HQ BAFLC/FMBSR (Neuhart, 1991).
Given the fact that FMBSR has been using a technique
criticized for its exclusion of cost drivers (as described
above), new techniques are desired (Rexroad, Tillia, and
Tritle, 1990:1).

A final factor is the Defense Management Review
Decision (DMRD) 904, dated 9 November 1989, which placed
depot level repairable parts under a stock fund concept

(LaGrone, 1990:Ch 1, 1). Under this concept, control of




dbligation authority for recoverable spares will also be
handed dgwn from HQ AFLC to the individual ALCs. This
should prompt much greater interest from the ALCs in
obtaining new, more defendable cost estimating models for
use, not only in the early acquisition stages, but over the

entire life cycle of their weapon systems.

Specific Problem

A much criticized, yet common CER used to predict
spares costs involves multiplying recurring aircraft flyaway
costs by a spares "factor" (Dement, 1990:Sec 1; May,
1982:Chap 3,3: Rexroad, Tillia, and Tritle, 1990:1). The
underlying logic of this model is limited to the assumption
that the greater a weapon system's flyaway cost, the more
expensive its spares will be. Potential cost drivers such
as aircraft physical and performance characteristics are
excluded. Parametric models which provide greater insight
into underlying causal relationships are needed.

In addition to needing improved models for spares cost
estimating, both DMRD 904 and the ALCs' new responsibility
for estimating spares costs necessitate a greater
understanding of the entire spares cost estimating process
at management levels below the major command. As new
personnel become involved in estimating spares costs for the
first time, they will need a basic understanding of the
factors they must consider and a familiarity with the

current estimating techniques available. Although numerous




0&S cost models can be used to predict recoverable spares
requirem=2nts, frequently organizations are familiar with
their own model(s) but know little, if anything, about other
available models. Research is needed to differentiate

between the models and identify their appropriate uses.

Research Cbijectives

Given these serious deficiencies ir the current
recoverable spares cost estimating field, the objectives of
this thesis are threefold:

1) A general overview of the entire recoverable spares
cost estimating process will be provided for
personnel new to this field.

2) A summary-level description of several currently
available cost models anplicable to recoverable
spares will be provided.

3) BAircraft physical and parformance characteristics
will be evaluated as porential cost drivers to
develop a new parametri¢ model for estimating
annual replenishment spares costs.

In satisfying these objectives there are a number of

questions that will have to be answered:

1) How are recoverable spares currently managed?

2) What factors afiect the cost of recoverable spares?

3) How do cost estimarinn techniques vary depending cn
the estimate's purpose and/ox ciig aircraft's life
cycle stage?

4) What are the purposes, algorithms, data inputs and

sources, and underlying logic of the existing
models?
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Scope

The scope of this paper is limited to estimating the
cost of crecoverable spares. These spares can be defined as
“repairable parts, assemblies. -~nponents, etc. used in the
repair of higher level asssrniavs ™ (Reynolds, 1989:49).

This excludes repair parts, wh .ch can be defined as
"consumable, non-repairable p..°- used to repair higher
level assemblies" (Reynolds, is.2:49). The following
sentence uses these terms in context: "It may be cheaper to
repair a broken 'spare' circuit poard than to buy a new one,
but it is never more economical ‘o fix a broken 'repair
part' such as a nut or a screw."

Additionally, the costs estimated are limited to
peacetime operating stock (POS) requirements and therefore
excluds War Readiness Material (WRM) calculations. The
logistics support ?eé¢guired during war time is very different
than that needed in peace time and therefore the two
scenarios require separate cost prediction models
(Hoffmayer, Finnegan, Jr., and Rogers, 1980:5).

According to reliability theory (Gill, 1991:21-41), the
number of component failures (and therefore condemnatiocns)
is higher early in a weapon system's life cycle due to
manufacturing defects and higher later ia the weapon
system's life cycle dua to wear out. This thesis is limited
to predicting recoverable swares reqairements during the
time between these two extremes--when failure rates are,

according to theory, fairly canstant. In order to




II1. Background

Introduction

To enhance readability, the general spares cost
estimating overview and summary of existing cost models
applicable to spares (research objectives one and two) are
included as Appendix B and C to the thesis. Those readers
who are new to spares cost estimating may want to read these a
appendices before proceeding. This chapter relates to the
third research objective--development of a new spares CER.
It begins by describing the selection of data used in the
CER development. Following this, a brief justification for
the use of the parametric estimating technique is provided
and the assumptions of linear regression are addressed.
Next, existing spares CERs are evaluated in an attempt to
narrow down the list of cost driver candidates. Finally, a

brief summary of the literature review is provided.

Data Selection

Perhaps one of the most difficult aspects of developing
a good aircraft spares CER is obtaining an adequate
database. This section begins by describing the problems
associated with using obligation data as a dependent
variable. Condemnation spares costs were chosen as an
alternative dependent variable for a replenishment spares
model and the rationale for this decision is discussed.

Because condemnation costs do not equate exactly to

10




(called the dependent variable), to nne or more other
cost drivers (called the independent variables) (Ch 10,
3).

Cost Drivers - "Those [independent] variables that
exhibit some systematic relationship with cost" (Ch 10,
3).

FPlyaway Costs - Non-recurring plus recurring costs

for airframe, propulsion and avionics, program

management, test and evaluation, [and] allowances for .
engineering changes. (Levine and Horowitz, 1989:5)

Initial Spares - Repairable components which support

newly fielded end items (or principal items) for the

entire production run of the aircraft (Rexroad, Tillia, r
and Tritle, 1990:21).

Life Cycle Cost (nCC) - The total cost to the
Government of acquisition and ownership of the system
over its full life it includes the cost of
development, acquisition, operation, support, and where
applicable, disposal. (Ch 5, 33)

Obligation ~ As used in the Air Force program control
community, funds are said to be "ohligated" at that
point in time when the contractual agreament between
the Air Force and contractor is posted into the
official accounting and finance records. "Obligations"
are separate from "commitments" and "expenditures.”

The former takes place when a purcnase request or other
authorized commitment document is signed by the
accounting and finance certifying offiicial and the
latter takes place when the Air Force actually pays the
Contractor.

Operations and Support (0&S) Costs - Fixed and variable

costs of personnel, material, facilities, and other -
items needed largely for the peacetime operation,

maintenance, and support of a system during activation,

steady state operation, and disposal. (Ch 17, 3)

Provisioning - The process of determining and acquiring
the range and gquantity (depth) of spares and repair
parts, and support and test equirwent required to
operate and maintain an end item of material for an
initial period of service. (Ch 5, 34)

Reliability - The probability that the system will
satisfy the need for which it was intended in an
acceptablz manner, for a given period of time, when
deployed and used under a given set of operating
conditions. . . . Satisfactory performance describes




the level at which the item/system must perform;
performance below this level is then considered
"failure" even though the specific part/component has
not broken or reached a zero performance level. (Ch 5,
16)

Replenishment Spares - Repairable components,
assemblies, or subassemblies required to resupply
initial stockage or increased stockage for reasons
other than support of newly fielded end items.
Replenishment would include additional stockage due to
increases such as usage, readiness initiatives, and
redeployment of end items. (Ch 17, 40)
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11. Background

Intyoduction

To enhance readability, the general spares cost
estimating overview and summary of existing cost models
applicable to spares (research objectives one and two) are
included as Appendix B and C to the thesis. Those readers
who are new to spares cost estimating may want to read these
append}cen before proceeding. This chapter relates to the
third research objective~~-development of a new spares CER.
It begins by describing the selection of data used in the
CER development. PFollowing this, a brief justification for
the use of the parametric estimating technique is provided
and the assumptions of linear regression are addressed.
Next, existing spares CERs are evaluated in an attempt to
narrow down the list of cost driver candidates. Finally, a

brief summary of the literature review is provided.

Data Selection

Perhaps one of the most difficult aspects of developing
a good aircraft spares CER is obtaining an adequate
database. This section begins by describing the problems

asgociated with using obligation data as a dependent

variable, Condemnation spares costs were chosen as an

alternative dependent variable for a replenishment spares
model and the rationale for this decision is discussed.
Because condemnation costs do not equate exactly to
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replenishment spares costs, the findings from previous
studies of the relationship between these two cost
categories is provided. Next, the problems associated with
finding an alternative dependent variable for an initial
spares model are discussed. Finally, the logic behind the
independent variable candidates analyzed in the CER
development is provided.

Dependent Variable Data Problem. The problem in spares

cost model development most frequently mentioned in the
literature is the lack of good data to validate the cost
models (Alexander, Brookey, Erhart, Fulton, Hofmann, and
Shutak, 1990:ch IX, 7; Dement, 1991; Levine and Horowitz,
1989:1; May, 1982:Ch 10, 5-6). The most commonly used
dependant variable for spares cost model development was
actual spares obligations. Obligation data presents two
general problems: 1) reliable data is hard to find, and 2)

even if reliable data can be found, what “was obligated" is
still a poor proxy for what "should have been obligated."
There were several reasons given for why finding

reliable obligation data is judged "difficult to impossible”
(Rlexander, Brookey, Erhart, Fulton, Hofmann, and Shutak,
1990:Ch IX, 7). The current definition of initial spares
(Rexroad, Tillia, and Tritle, 1990:21) has only been in
existence since March 1985 when the Office of the Secretary

of Defense provided the current interpretation. Until that

time there was no formal definition. The common practice,

11




however, was to budget enough initial spares money (BPl6) to
cover the first two years' requirements after initial
deployment of the weapon system; with subsequent spares
funded by replenishment spares money. Because initial
spares, as currently defined, now cover the entire
production run of the weapon system, including any increased
requirements for previously fielded systems (Neuhart, 1990),
the mix of initial and replenishment spares funding has
shifted. This definitional change makes it difficult to
separate weapon system obligations over time between initial
spares and replenishment spares.

Additional reasons cited for difficulty in finding
reliable obligation data include:

vast quantities of data at very detailed levels with

few pre-existing levels of data aggregation other than

the top ones; [and]

separation of explanatory worksheet files from the

quantitative data. . . . (Alexander, Brookey, Erhart,

Fulton, Hofmann, and Shutak, 1990:ch 1X, 7)

Once these difficulties are overcome one is still faced
with the fact that "what was obligated" does not necessarily
coincide with "what should have been obligated." Many cost
model projections are based upon given values for
independent variables such as the number of flying hours,
maintenance factors, and part utilization rates (Rexroad,
Tillia, and Tritle, 1990:7, 9, 11, 12, 14). Through these
factors the cost estimate is, in effect, provided for and

based upon a given demand/availability performance level.

12




However, flexibility is allowed and the "replenishment
spares budget does not have to be expended in the same
manner as it is justified" (May, 1982: ch 10, 6). The
operational performance level used as the basis for the cost
estimate may therefore not be achieved. The cost estimate
could conceivably provide accurate estimates for the
proposed performance level and still not resemble the actual
obligation figures because of the difference between the
proposed and achieved performance levels. In addition,
switching obligations from one weapon system to another can
be influenced by political considerations pot envisioned in
the cost model. Thus, the obligations' correlation to the
cost estimate is greatly impaired (Dement, 1991).

Finally, it is hard to track obligations to actual
usage of spares because: 1) the spares budgets are forecast
two years before funds are actually obligated (due to budget
cycle) for spares that won't be used for another two years
(due to contractor delivery lead time) and 2) the obligation
money budgeted for one fiscal year, say 1990, can be spent
over three fiscal years (1990 - 1992) making it impossible
to determine what spares are procured with what budget
year's obligations (May, 1982; ch 10, 6) [Note that spares
money wWill only be good for one year's obligation under the
new stock fund concept but this problem still affects old
data].

The end result of these data problems is that: 1) those

cost models developed using obligation data as their

13




dependent variable impair the internal validity of their
model and must ca at their results, or 2) cost models are
developed based on logical relationships but never validated
against actual data,

Initial Spares Data. Because of these problems with

obligation data, an attempt was made to identify another
sﬁitable dependent variable. Historically, differences in
tﬁe requirements development processes for initial and
replenishment spares has made alternative dependent variable
identification more difficult for initial spares.

In the replenishment spares arena, annual buy
requirements are generated by the D041, "Recoverable
Consumption Item Requirement System." These near term
requirements are then used as inputs to a regression-based
model known as the BAir Logistics Early Requirements
Technigue (ALERT) which is used to develop Program Objective
Memorandum (POM) requirements [the POM is a long range
budget document]. This computerized process provides a
central database of historical requirements that can be used
as an alternative dependent variable data set.

The situation is different in the initial spares arena.
Because the initial spares requirements process, governed by -
AFLCR 57-27, has to date been primarily a manual system, no
central database of annual initial spares requirements

exist. Without a central database, no methodology akin to

ALERT has been developed for budget development purposes.




To develop a historical database, one would have to
contact the numerous inventory management specialists and
end article item managers at each of the Air Logistics
Centers., It is these individuals who developed the initial
spares requirements and, hopefully, kept records of their
manual computations.

A computerized approach to developing initial spares
requirements using computations similar to D04l is currently
in systems validation test and is due to come on line by the
end of the summer of 1991 (Horner, 1991). The new
computerized system, known as the Initial Requirements
Determination (IRD) system, will have the capability to
store historical data and will be useful to future analysts.
Given the time constraints of this thesis, this task was not
attempted and therefore a CER for initial spares is not
attempted.

Replenishment Spares Data. The central regquirements

database for replenishment spares made identifying an
alternative dependent variable an easier task. A partial
solution to the problem was found in "condemnation spares"”
costs. Current AF policy states that if the cost to repair
a failed spare part exceeds 75% of the cost to purchase a
new spare, the item is "condemned" (i.e., not repaired)
(Novak, 1991). Condemnation spares, therefore, are those
new spares purchased to replace the condemned spares.
Condemnation spares make for a better dependent

variable in that they are not obfuscated by many of the
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factors affecting total replenishment spares obligations.
For example, an aircraft's annual condemnation spares costs
(as maintained in the Weapon System Cost Retrieval System
(WSCRS)) are the aggregated product of all its condemned
parts multiplied by the latest purchase price on record for
these parts. Although condemnations are only a part of the
total replenishment spares requirement, they are, at least,
a true indicator of spares usage. Additionally, the WSCRS
condemnation costs for each fiscal year (FY) correspond
directly to the condemnations requirements for the same FYs.
Finally, condemnations spares requirements track logically
to cost drivers such as aircraft performance and physical
characteristics.

Alternatively, obligations take place acquisition lead
time away (approximately two years) from the actual demand
and are, therefore, only estimates of the true demand.
Obligations are tracked by fiscal years just like
condemnations; but, as mentioned befcre, because any given
fiscal year's funds may be obligated over a three year time-
frame, the obligations are much harder to track to the
spares they purchase, Finally, like condemnations,
obligations may logically track to aircraft performance and
physical characteristics, but they are greatly influenced by
other factors, such as political pressures, which aren't
accounted for in the model (Dement, 1991).

It was stated that condemnation costs are just a

partial solution to the replenishment spares dependent
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variable data set problem. This is true because
condemnations costs are just one segment of total
replenishment spares costs. In a world with perfect
predictive powers, the term "replenishment" spares would be
completely accurate because all the factors affecting demand
for spares would be known (e.g., flying hour programs, parts
utilization rates, maintenance factors). Because (in this
perfect world) the right number of initial spares would
always be bought, the replenishment spares function would
simply be to "replenish" those spares which are no longer
economically repairable (condemnations). 1In reality, funds
aren't always available to purchase the desired number of
initial spares, mission requirements change, and actual
performance histories show that maintenance factors need
revision. The result is that sometimes the Rir Force buys
too many initial spares, sometimes too few. At other times,
changes require the purchase of spares for other than
replacement of condemnations.

Demand Volatility. BAll of these factors which
make up the difference between condemnation spares costs and
total replenishment spares costs drive what is known in the
HQ AFLC/FMCA office as the 'churn" or "demand volatility"
factor. 1t (demand volatility) accounts for the fact that
replenishment spares funds are used to purchase additive
requirements and {on occasion) pipeline spares requirements.
The '"churn" factor used in FMCA's Logistics Support Cost

(LSC) model is 2.15 (Novak, 1991). This value is multiplied
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by the condemnation spares cost generated by the model to
arrive at the total replenishment spares cost.

The condemnation costs were identified as being a
partial solution to the dependent data set problem because
demand volatility must be accounted for before a total
replenishment spares cost can be predicted. To compliete the
spares models for this thesis, research will be done to
either validate or improve upon the current churn factor.
Two churn studies were evaluated.

Mr. Bob Novak, a Operations Research Analyst £rom HQ
AFLC/FMCA, performed the first of the analyses in 1987 using
replenishment spares cost predictions obtained from the D04l
c;mputer system., The D041 product used in budget
development is known as the Central Secondary Item
Stratification (CSIS) report. Each June CSIS contains spare
réquirements forecasts for the June quarter and the
following 12 quarters. BAs the fiscal year progresses, each
passing quarter is dropped from the computations until the
following June cycle when another fiscal year's (four
quarters) forecast is added (LMMIMO6, 1987:Ch 7, 8). As a
result, the last guarter's requirements for each fiscal year
will be predicted 12 times (once every quarter) over a three
year period before the quarter is entered into. The
assumption behind Mr. Novak's analysis was that the first
time a quarter was predicted, it represented purely
condemnations spares requirements. None of the changes

associated with demand volatility would, he presumed, be

18

W) Ny e g Lt

RY S I A R P L




made until closer fo the actual time that the quarter
arrived. So by subtracting the first prediction for a
fiscal quarter from the twelfth prediction for that same
quarter, he assumed the delta would, in fact, be "demand

' He ran this analysis for several aircraft and

volatility.'
received several different churn factors (i.e., last
estimate divided by the first estimate). His bottom line
recommendation was to support a 2.5 churn factor.

By his own admission, the number of aircraft studied
and quarters of data evaluated were insufficient to justify
conclusive findings. The Repairable Stock Program Manager
pointed out that three of the five ALCs feeding quarterly
inputs into the D041 system have failed to update the system
during the June and December runs for as long as he could
remember (Rosenthal, 1991). This also makes the results of
the analysis suspect.

Mr. Ray Johnson, a Cost Analyst from the Air Force Cost
Center, performed the second analysis, dated December 1988.
He used weapon system obligation data from the Departmental
On Line Accounting and Reporting System (DOLARS) tracking
located at the Accounting and Finance Center, Lowry AFB, in
Denver, Colorado and weapon svstem condemnations costs from
the Weapon System Cost Retrieval System (WSCRS) located at
Wright-Patterson AFB, Ohio in the analysis. In his study,
Mr. Johnson compared the spares obligation data for twelve
aircraft from FY 1979 to FY 1985 with the condemnations

spares costs associated with these obligations. He dropped
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three of the resulting ratios out of *he analysis because he
felt they were outliers and averaged the remaining nine
values. His nine aircraft average was 2.15--the same value
used today by HQ AFLC as the standard chu-n value for all
LSC model computations. Mr. Johnson, likz Mr. Novak, felt
that his data set was too small to provics conclusive
results (Johnson, 1991).

To perform a more comprehensive analysis of churn for
this thesis, another approach will be used that combines
aspects from both of the previous studies. BAn ideal data
source would aggregats spares deliveries by weapon system
for each fiscal year, so that actual deliveries could be
compared to condemnations to develop a churn factor. The
D041l system receives this sort of delivery data at the
national stock number level but it doesn't have the
capability to aggregate the information to the weapon system
level (as needed for this thesis). Because of this, spares
deliveries will be replaced by annual replenishment spares
requirements generated by the D041 system (CSIS) and
scrubbed by the Recoverable Stock Program Manager. These
requirements will be compared to condemnations to develop a
churn factor. This data is available in hard copy from the
Recoverable Stock Program Manager at HQ AFLC/FMBSR.
Condemnations data will come in hard copy format from the
WSCRS system at HQ AFLC/FMCA.

Independent Variable Selection. Physical and

performance characteristics of aircraft are available from a
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number of sources (e.g. BAir Force Guide No. 2, Vol. 1

(Green Book) and 2 (Brown Book), Rand, Jane's All the

World's RAircraft). The Green Book and Brown Book contain
official Air Force "blessed" data which is used by HQ
AFLC/FMCA in their anal’ses and these sources will therefore
be used (unless specified otherwise) in this analysis.

In an attempt to ni.rrow down the candidates for
independent variables, "rior parametric models were
evaluated to see which ,;elationships were used and their
supporting logic (see subsection entitled "Previous CER
Work"). BAdditionally, a literature search was conducted for
information pertinent to the independent variable(s)
selection. The balance of thigs swusection provides the
results of this analysis, beginning first with casual
relationships which were not included in this thesis' CERs
and then providing the logic behind those variables which
were included.

Component reliabil .ty is logically related to
recoverable spares requ.rements. Less reliable parts are
more likely to f£fail and require more maintenance attention.
1f the failures themselves do not result in the parts being
condemned, the increased maintenance activity may cause wear
and tear on the component until it finally must be
condemnad. Engineering estimate based models such as the
Logistics Support Cost {LSC) model use factors such as
component mean time between demand (MTBD) to account for

reliability. However, no equivalent reliability factor at
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the weapon system level of aggregation was identified in the
literature review..

A RAND study discussed several complications in
determining recoverable spares requirements. Although
engineering estimate based models typically include
reliability factors such as the MTBD; because these factors
are common to all users of the components, they lead one to
assume (erroneously) that all users should expect the same
levels of component reliability. However, the operating
environments in which the components are placed vary
considerably and this impacts the compcnents' reliability.
For example, summer temperatures at bases like Luke AFB are
such that "temperatures in the avionics kay of idle aircraft
méy exceed the Mil Specs for solid state devices" (Crawford,
1988:10). At night the ftemperatures at Luke AFB cool down
significantly, and th» day to night differential is cited
for causing leaks in hydraulic actuators (Crawford,
1988:10).

Changes in ma.nhtenance policies and training programs
will impact the need for spare parts. Two "AC initiatives--
Combat Oriented Supply Organizatior (COS0) and Combat
Oriented Maintenance Organization (COMO)--encouraged
"increased reliance on remove-and-replace actions instead of
remove-repair-and-replace maintenance actions" (Crawford,
1988:10). Deployment of aircraft to Red Flag exercises may

be accompanied by a surge in spares requirements as aging,
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but still functioning parts, are replaced to ensure maximum
performance during the training (Crawford, 1988:10).

Finally, the RAND study revealed that "to a certain
extent demand patterns may follow parts availability"
(Crawford, 1988:10). The number of aircraft continuing to
fly with a certain defective, non-critical part may continue
to rise until a shipment of the part becomes available--then
a surge of requests for the part come in.

All of the complications identified in the RAND study
have at least one thing in common. It is very difficult, if
not impossible, to capture their effects in generic weapon
system CERs. Even detailed engineering estimates do not
adequately account for these factors. This accentuates the
need for expert judgement in the requirements development
process. '"Good models" alone will not guarantee an accurate
estimate.

The number of levels of maintenance (base,
intermediate, and depot) can also be logically tied to
recoverable spares requirements. In the initial spares
arena, as the number of repair levels increases, so does the
number of components in the repair "pipeline" required to
achieve support objectives. Levels of maintenance can also
be tied to replenishment spares due to the fact that
pipeline requirements are typically paid for with
replenishment spares funding when initial spares funds are
inadequate. The levels of maintenance may also influence

the design of the spares; which, in turn, may affect the
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replenishment spares requirement. The relationship of
maintenance levels to recoverable spares is more direct in
the initial spares arena, and because an initial spares CER
will not be developed in this thesis, no attempt was made to
determine the number of levels of maintenance associated
with each of the data base MDS.

! The "bath tub curve" theory of reliability, as
presented in AMGT 559, "Life Cycle Cost and Reliability," at
the Air Force Institute of Technology (AFIT), was already
méntioned in defining the scope of this thesis. This theory
suggests that component failure rate (and therefore
condemnations) is a function of component age--with failure
rates that are higher during the early and late stages of a
weapon system's life and relatively constant in between
these extremes (Gill, 1991:21). The "inverse of average
fleet age" is used in the ALERT spares model (Rexroad, Lucas
and Collins, 1989:2) and the "average fleet age" is used in
a RAND spares model (Crawford, Landsdowne, and Finnegan,
1438:22-23) to account for this relationship. However,
given that the scope of this thesis has been limited to
mature weapon systems (where, according to theory the
failure rate is reasonably constant), this type of factor
should have no impact on the recoverable spares
requirements.

An unsuccessful attempt was made to evaluate the
"inverse of average fleet age'" factor as a check on the

"mature weapon system" constraint placed on this thesis's
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data base. The historical database for this variable (used
in the ALERT model) was at the "MD" level of aggregation
instead of "MDS." No other source for this variable was
identified. 1If, when evaluated, the variable had been
statistically significant, this would have been considered
an indication that either: 1) immature or old weapon system
data was erroneously included in the data (i.e., the
separation of weapon systems as being early, mature, or old
was done inaccurately), or 2) the bath tub theory is
difficult to apply on real weapon systems that experience
numerous modifications and therefore have components with a
myriad number of different ages.

Not only is it logical to assume that components will
deteriorate with age, it is also logical to assume that
greater utilization of components will cause them to wear
out due to repeated operational stress. One spares model
accounted for this using annual "flying hours”" as an
independent variable (Crawford, Lansdowne, and Finnegan,
1988:24).

Unless one knows something about the intensity of these
flying hours (i.e., the number of aircraft the hours are
spread over), however, this measure does not logically seem
to measure physical stress as much as it measures
"opportunities for somelhing to go wrong" (e.g., bird
strikes). This doesn't invalidate "flying hours" as a
potential cost driver. It simply changes its underlying

logic. 1Its effect is similar in nature to a RAND spares CER
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“"active aircraft”™ in the

cost driver--the annual number of
MDS inventory (Hoffmayer, Finnegan, Jr., and Rogers,
1980:16). For this thesis, "annual flying hours", "number
of aircraft" and "annual flying hours divided by the number
aircraft” will all be evaluated.

For some components the "nhumber of sorties per
aircraft” or "landings per aircraft" would be a better
indicator of physical stress than "flying hours per
aircraft" (e.g., landing gear). The annual numbers of
sorties and landings were cbtained from AFALDP 800-4 (also
referred to as BFALCP 800-4 and ALDP 800-4 in later
versions), "Acquisition Management Aircraft Historical
Reliability and Maintainability Data."™ ‘'fhe numbers of
"sorties" and "landings" are, once again, considered
measures of opportunities for things to 3o wrong. The
"annual sorties per aircraft”™ and "aanua landings per
aircraft" are evaluated as measures of utilization
intensity. "Annual flying hours divided by annual sorties"”
was evaluated as an indicator of MDS mission profiles.
Greater sortie lengths should imply greater utilization of
some components while shorter sortie lengths would imply
greater utilization of others.

1t should be noted that, due to holes in the annual
sorties and annual landings data, thise models developed

with these variables or derivations of these variables had

significantly smaller databases.
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Some components are not being utilized during flight
and others are utilized even before flight begins. However,
given the weapon system level of aggregation in this thesis,
it was not possible to account for individual component
utilization differences.

Dummy variables will be used to separate the MDS by two
classes of aircraft: 1) fighter/attack/trainer/fighter-
bomber and 2) bomber/cargo/tanker. It is logical to assume
that relatively light, highly maneuverable aircraft
(fighter/ attack/trainer/fighter-bomber) put different kinds
of stresses upon their components than heavy, unmaneuverable
aircraft (bomber/cargo/tanker).

Engine spares account for a large percentage of the
total recoverable spares requirement (Steinlagy, 1991) and
therefore it is appropriate to evaluate independent
variables which relate to this weapon system subsystem's
requirements. '"Thrust per engine" is cited as an indicator
of engine complexity (Issacs, Montanaro, and Olivo,
1986:169). As this variable increases, one expects the
number and cost of engine spares required to increase. For
this thesis, maximum sea level static thrust is used. The
"number of engines" per weapon system is related to the
number of components which can be condemned and therefore to
the spare requirement as well.

Another factor which contributes to the number of

components is the weapon system size. Two types of sizing




factors will be evaluated for this thesis: 1) "empty weight"
and 2) aircraft "length plus span."

Finally, weapon system technical complexity and
performance are thought to influence the cost of annual
spares requirements. Logically, one would expect high
performance aircraft with high technical complexity to place
greater stress on their components during operations.
Additionally, the individual components are expected to be
more expensive for the high performance, high technical
complexity aircraft. Relating this logic to another
transportation medium, one would expect a greater number of
failures and more expensive failures on an Indy race car
than on the family van.

In addition to the "thrust per engine™ variable
mentioned earlier, other candidate variables examined as

performance and technical complexity drivers include:

"maxload factor" (i.e., how many "Gs" was the aircraft
designed to withstand), the "ratio of maximum takeoff weight
to empty weight", the "maximum rate of climb at sea level,”
and the "maximum combat radius."
Data Population. The range of the aircraft
"population" was largely determined by the availability of -
data meeting the "mature weapon system" criteria established
in the thesis scope. The number of MDS included in the
independent variable database was smaller for some of the
variables. While most variables had five years of data for

nineteen MDS (95 data points), "annual landings" data was
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only available for sixteen MDS for varying numbers of years

(41 data points).

Parametric Model Technigue

As discussed before, part of the motivation for this
thesis comes from the critical reviews being given to the
current factor-based approaches used to develop spares
estimates. This dissatisfaction was expressed in a SAF/FMC
message, dated October 1990, and coordinated on by SAF/AQK,

~ SAF/AQX and USAF/LEX (Robinson, 1991). The message stated
their preference that demand based models be used during
milestone reviews and for independent cost estimates. They

questioned the use of factor based estimates when the data

required for demand based models is usually available by
Milestone II (program initiation approval).

The loss of insight into underlying causal
relationships in the factor based method is not inherent in
all parametric models, however. The problem lies in the

fact that costs based on flyaway cost alone, although easy

to use, do not include the driving forces behind the
' estimate. This thesis will attempt to develop a CER(s) with
both increased visibility of its underlying causal
relationships and the ease of use which is characteristic of
parametric models.
Ease of use is an important consideration when analysts
lack either the time or the expertise required to derive

estimates from the more complicated demand based approaches.
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Iﬁ does no good to have a more powerful model if no one can
use it.

Because the models are designed for use early in the
acquisition life cycle, the aggregate level for the model
will be at the weapon system level or perhaps at the major
subsystem level. This is due to the limited data input
available prior to completion of full scale development
(TASC, 1989, ch 5, 55). CERs are well suited for dealing
with high aggregate level relationships.

Linear regression describes relationships bhetween
dependent and independent variables in mathematical terms

and, therefore, is the logical choice for CER development.

Regression Assumptions

The following assumptions are required for the validity
of classical regression analysis (Murphy, 1990-1991):

1) The appropriate cost drivers (independent variables)
are included in the wmodel.

2) The regression model specifies the correct
relationship between the dependent and independent
variables.

3) The independent and dependent variable data come
from random distributions.

4) There is no bad data (i.e. free of measurement
error, bias, and anomalies).

5) The regression error terms all come from a
normal distribution with a mean of zero.

6) The error terms have constant variance and are
independent from one another.

7) The cost drivers are independent from one another,
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8) Predictions of future requirements can be made by
examining past requirements.

The term "assumption'” is a little misleading in that it

implies that these properties are taken for granted. This

is only the case when one is evaluating a poorly documented

regression model. There are tests which can be performed to

provide the analyst confidence that these "assumptions" are
in fact true. The assumptions and the corresponding
diagnostic tests will be discussed in more detail in the

methodology section of the thesis.

Previous CER Work

Using CERs to predict spares costs is not a new idea.
However, the fact that previous parametric models have been
developed does not negate the need for new models. Because
parametric models are based on historical data, they should
be continuously revised and updated to reflect the most

current available data. It is easier to validate an

existing model with new data than to start from ground zero.

A search was conducted, therefore, to identify existing
spares parametric models. The following models will be
discussed in this section: 1) Rand model, 2) Modular Life
Cycle Cost Model (MLCCM), 3) Rir Logistics Early
Requirements Technique (ALERT) model, 4) Oversight of
Resources and Capability for Logistics Effectiveness
(ORACLE) model, and 5) Levine and Horowitz Study [The first
three models meet the selection criteria for inclusion in

Appendix C and are included there to make the appendix a
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stand alone document. The discussion concerning the model's
independent variable logic is more extensive in this section
than in Appendix C because of its relevance to the selection
of cost drivers for the CER(s) developed in this thesis.
Appendix C also contains evaluations of non-parametric
models]. A standard format will be followed as closely as
possible for ease of comparison between the five models.

Model #1: Rand Model. All references in this

subsection, unless identified otherwise, come from the

developer's (see below) 1980 report, Estimating USAF

Aircraft Recoverable Svares Investment.

Developer(s): K.J. Hoffmayer, F.W. Finnegan, Jr.,

and W.H. Rogers of the Rand Corporation, August 1980.

Model Purpose: The model is an update to a 1976

Rand model for estimating USAF aircraft recoverable spares
investment. It includes models for estimating total
replenishment spares requirements at the major subsystem
level (airframe, avionics, and propulsion) and for
estimating condemnation spares requirements at the same
level (v). BAn attempt was made to develop an initial spares
model but this was unsuccessful due to limited data
availability (23). The models provide annual estimates for
peacetime operating stock. War readiness material, spare
engines, and engine spare parts are excluded. The models
ave intended for use prior to the preproduction or

deployment decision stages of the acquisition life cycle

(iidi).




Model Algorithm: Table 1 provides a list of the

independent variables associated with each subsystem CER.

Subsystem CER

Table 1

Independent Variables (12-14)

Airframe CER

Avionics CER

Propulsion CER

Total active

Total active

Total number of

aircraft aircraft installed engines
inventory of the inventory of the in the MDS force
given MDS given MDS

Airframe flyaway
cost

Avionics flyaway
cost

Propulsion
flyaway cost

Peak flying hours
per MDS per year

Dummy variable for
bomber

Dummy variable for
reconnaissance

Dummy variable for
fighter/attack

Cargo dummy var.

Durmy variable for
tanker

The following logarithmic form is common to each of the

subsystem CERs (11):

log ¥;; = log @ +2:jﬁj log Xjjp + €4 (1)

where

Yy = investment in POS spares inventory of aircraft
subsystem i at time t.

subsystem i at time t.

« and ﬁj = regression coefficients.

ijt = the jth characteristic observed on aircraft

€;; = the error for aircraft subsystem i at time t.
The errors are assumed to be independent across
subsystems but correlated over time with

subsystem.
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The source document states that a logarithmic form was
chosen to develop the CERs due to their superior handling cf

1"

heteroscedasticity and their more "real world"
multiplicative nature (11, 15). They fail to clearly state
whether the transformations are natu:al (ln) or common (log)

logarithmic in nature.

Data Inputs and Sources: Jost data from 1975 to

1978 was provided for the following iircraft (7):

A-7D C-5A RF-4C F-111D
B-52D KC~-135A F-4D F~111F
B~52G C-141Aa F-4E T-37B
B-52H F-4C F~1111 T-38A

Specific data elements and sources ace as follows (4-5):
D041 "Recoverable Consumption Item R2quirements System:"

National Stock Number (NSN)

Unit Price (in then-year dollars)

Program Begin Date (earliest rezord of use)

Program Selection Code (Material Program managing part)

Organization Field Maintenance (OFM) Total Demand
Rate (total item demand expressed in terms
appropriate for its material orogram)

Base Level Condemnations (NSN lzvel condemnations at
base level)

Depot Level Condemnations (NSN level condemnations at
depot level)

Total Overhaul Condemnations (NSN level condemnations
resulting from planned overhauls)

Total Peacetime Operating Stock Assets

Application (the mission design series (MDS) or other
stock number using the item)

Quantity Per Application

J041 "Procurement History File:"

National Stock Number (NSN)
Contract Date

Aamount of Contract (§)
Quantity Procured

"Aerospace Vehicle Inventory Status and Utilization and
Reporting System" (AVISURS):
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Aircraft MDS

Calendar Year and Month

Flying Hours

Sorties

Landings

Average Number of Possessed Aircraft

Other data used in the model development was obtained from
the following sources:
¥ TO 0025-30, Technical Manual, "Unit Cost of
Aircraft, Guided Missiles, and Engines."”

*  USAF statistical Digests

* PA, "USAF Program, Aerospace Vehicles and Flying
Hours."

Assessment: The accuracy of the models provided
are difficult to assess due to the minimal coverage of model
diagnostics. Because Rand does not specify which base was
used in the logarithmic transformations (natural or common),
the reader is left to guess at the significance of the
standard error of the estimate (the SEE is a measure of
prediction accuracy for a transformation using the natural
base)(Murphy, 1990-1991). The propulsion model CER has poor
statistics: R! of .5841 and SEE of .67318.

It is unclear if the logarithmic form is really
appropriate because they never actually state that they
observed heteroscedasticity in the data; or why they feel a
multiplicative equation is more "real world". They fail to
document any diagnostics performed or other models attempted
and discarded.

There was limited discussion concerning the logic

underlying the independent variables chosen for the CERs.
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The manner in which subsystem flyaway costs were included in
each of the subsystem CERs may be questioned. One tenet of
the integrated logistics support philosophy is that as an
item's reliability improves, the reduction in its operations
and support costs over its life cycle more than compensates
for its increased acquisition cost (which has resulted from
its improved reliability) (TASC, 1989:Ch 5, 25). The
multiplicative nature of the subsystem CERs does not account
for this belief logically. According to these CERs,
increased acquisition costs will always result in greater
spares costs.

Although the source text does not explain its rationale
for using component flyaway costs, a case can be made that
life cycle 0&S costs reduce with improved reliability for
reasons other than reduced spares requirements. BAfter all,
replenishment spares costs are only a subset of the total
0&S costs. More reliable parts should fail less often and
therefore cost less for maintenance and repair. If RAND
believes that these types of savings exceed the increased
spares costs associated with more expensive components, then
their model logic is not contradictory to reliability
theory.

In addition to airframe flyaway cost, the airframe CER
included several additional cost drivers: 1) total active
aircraft inventory of the MDS, 2) peak flying hours, and 3)
mean organization field maintenance total demand rate.

Total active aircraft inventory is a logical cost driver.
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More spares are required as the number of aircraft
increases.

Peak flying hours was used in lieu of programmed flying
hours because it gave "a better statistical £it" (16). The
authors stated that this resulted from "significant
inventories of stock" remaining which had been purchased to
support the Vietnam war (data is from 1975 to 1978) (16).
Although this distinction was not clear to the author, the
use of some sort of flying hour program is logical because
one would expect that the more wear and tear that is placed
on an aircraft, the greater the number of condemnations.

The mean organization field maintenance total demand
rate (OFMTDR) was included as a "measure of airframe
reliability"” (17). Component reliability can be logically
tied to condemnations because unreliable parts will fail
more often and may, in the process, be damaged beyond repair
or cause irreparable damage to other components.
Additionally, even parts that can be easily repaired may
receive wear and tear ii. the maintenance process itself
(e.g., stripped bolts, etc) and therefore are condemned
sooner than more reliab.e parts. In this model, however,
the manner in which the OFMTDR was obtained is not
consistent with applicalion of the CER in early stages of
aircraft development (wiere the authors claim their CERs are
applicable). This variuble was a "mean, weighted by the
total item count, of the OFMTDRs of all the recoverable

airframe items" (17). “ince a complete list of airframe
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items is unlikely to be available during early stages of
aircraft development, it is unclear how this type of
statistic will be readily available.

The Avionics CER included, in addition to avionics
flyaway costs, dummy variables to distinguish the mission of
the aircraft (bomber, reconnaissance, fighter/attack, cargo,
or tanker) and, once again, the total number of active
aircraft in the MDS inventory. It is logical that the
amount of aircraft avionics equipment will vary by mission
type, and the number of spares required should increase as
the amount of avionics equipment increases. Total aircraft
inventory is logical for the same reason explained
previously.

The propulsion CER included only one additional cost
driver besides the propulsion flyaway costs. The total
number of installed engines in the MDS force is a logical
cost driver--the number of spares required should increase
as the number of engines increases, It should be noted that
this CER includes no cost drivers which will vary over time.
Engines spare parts account for the majority of the
condemnation spares requirements (as seen in the dependent
variable data set) and yet this CER would lead one to
believe that propulsion spares remain relatively constant
over time, This is in contradiction to the "bathtub" theory
of reliability which states that failures (and logically
therefore condemnations) are greater early in a weapon

system's life due to manufacturing defects and later in life
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due to wear out (Crawford, Lansdowne and Finnegan, 1988:23;
Gill:21).

The RAND model was evaluated by an Initial Spares
Working Group comprised of twenty two members representing
HQ AFLC, ASD and HQ AFSC. They concluded that the model's
database should be updated and a clear distinction made
between initial and replenishment spares before they could
use the model (Rexrocad and others, 1990:11).

Model #2: Modular Life Cycle Cost Model (MLCCM). All

references in this subsection, unless specified otherwise,
come from Grumman Aeroswace Corporation's 1986 report

entitled Modular Life Cicle Cost Model for Advanced Rircraft

Systems, Cost Methodolojy Development and Application. The

authors were R. Isaacs, N. Montanaro, and F. Olivo.

Developer(s): Grumman Corporation, Program Team

directed by Mr. R. Isaacs, September 1986.

Model Purpose: The MLCCM is a parametric-based

series of models for

predicting advancel technology aircraft costs, to the
major subsystem lesels, for the Research, Development,
Test, and Evaluation, Production, Initial Support, and
Operations and Sup»sort phases of the system life cycle
during conceptual and preliminary design. (Isaacs,
1986:iii)
Initial and replenishment spares are but subsets of the
overall costs within th2 production and 0&S periods,

respectively. Their cost is broken out for 14 subsystems

(structure, crew system, landing gear, flight control, cargo
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handling, engines, engine installation, environmental
control systems, electrical, hydraulic/pneumatic, fuel
system, avionics, armament, auxiliary power unit) (11) for
two classes of aircraft (fighter/attack/bomber and
cargo/transport/tanker)(x).

Model Algorithm: Because the MLCCM was developed
as a tool for conducting trade studies during the design
stage, the CERs were developed using a Work Breakdown
Structure (WBS) format. 1In this way the design engineers
would be able to relate costs to the WBS elements for which
they were responsible. Step-wise regressisn was used to

develop log-linear regression equations. Aagain, it is

unclear if they used natural or common base transformations.

They limited, for most cases, the number of parameters in
any CER to one third the number of data points (47-48).
While it makes sense to preserve degrees of freedom by
limiting the number of variables used (compared to the
number of data points), it isn't clear why the developers'
chose one third as a criteria ratio.

Data Inputs and Sources: Cost data was derived

from several sources including: "Visibility and Manageicent
of Operating Support Costs' (VAMOSC) system, AFR 173-13

Factors, and the 1975/1976 Operating and Support Cost

Estimating Report. Independent variable technical data
sources include: Standard Rircraft Characteristics (SAC)

charts, group weight statements, technical orders, and the

manufacturer.
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The SAC charts were used to obtain data on engine
design and performi:nce, fuel and tankage, armament,
loading and aircrart performance, development dates,
etc. Weights, areas, volumes, dimensions, and general
aircraft design characteristics were obtained from the
group weight statements and the manufacturers. Flight
manuals were used for data on electrical, £l .' power,
and flight actuator systems and for general ¢ +craft
design characteristics as well [note that not all of
these variables are used in the replenishment spares
CERs]). (13)

Assesgment: The fact that the models were
developed with obligation data brings with it all the
uncertainty previously discussed in the data problem
section. The report admits the need for better cost data
inputs (219).

The model statistics provided were not complete, "R"
values were provided as opposed to the "R gtatistic
commonly seen. The R! values for 5 of the 14 subsystems in
the fighter/attack/bomber class of aircraft were poor (less
than .7) (165-169). No discussion of model diagnostics was
provided.

The independent variables used in the subsystem CERs
differ between two general classes--those for cargo/trans-
port/tanker aircraft and those for fighter/attack/bomber
aircraft. The following text describes the independent
variables used in the cargo/transport/tanker class and how
the variables logically impact subsystem spares
requirements:

1) Structure CER: "Cargo weight” and "cargo

volume” were included as measurements of aircraft size.
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"The size of the aircraft directly relates to the amount of
structural spares required" (209).

2) Crew Systems CER: The "number of primary
compartments" and the "length + span" (LENSPN) were included
as measures of the fuselage interior. '"As such [they]
reflect a degree of the demands imposed on the crew system.
Increased size results in larger crews, seats, etc, and as
such results in an increase in replenishment spares costs"
(209). Apparently the logic here is that larger crews

require bigger "crew systems,"

composed of more parts, and
therefore more spare parts are needed.

3) Landing Gear CER: The "number of landing gear
wheels" is included as "indicative of the number of wheels,
tires, prakes, and associated hardware requiring repair
action and maintenance attention" (210). "An increase in
the number of wheels results in an increase in [subsystem]
replenishment spares costs" (210).

Additionally, the "Mass times Velocity Squared" (MVSQ)
is included as a measure of the energy absorption
requirement placed on the landing gear. "An increase in the
MVSQ results in abuse to the wheels, tires and brakes.
Consequently, an increase in replenishment spares costs will
result" (210).

4) Flight Controls CEE: The "number of flight
control actuators" (NOACTS) is incluled as "an indicator of
the overall complexity of the flight control subsystem .

[and] one of the largest contributors to the cost of spares"
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(210). This increased complexity is said to cause
"increased removal activity of the major flight control
components" and thus an increased spares requirement (210).
It isn't clear if this means complex systems have a greater
number of parts which can fail or if it takes more work to
remove the components causing more wear and tear that is
maintenance related.

The "takeoff gross weight maximum" (TGWMAX) is included
as "a measurement of ai:craft size and, as such, is an
indicator of flight con:rol size. The larger aircraft
requires more flight control components and, as such, more
spares" (210).

5) Engine Ins-.allation CER: Again, TGWMRAX is
included as a measure o’ aircraft size. Size is said to be
proportional to spares tost. The "engine pressure ratio is
a measure of engine sophistication and, as such, has an
influence on the engine installation component requirements"
(211) [The source text describing the subsystem CERs and
their supporting logic did not specify what type of "engine
pressure ratio" is used]. An increase in the number of
installation components means that more parts are available
to fail and therefore more spares should be required.

6) Environmental control System (ECS) CER: "Hours
per mission" is included as a measure of aircraft and
component usage. ''Maintenance cost increases with aircraft

utilization" (211).
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"Fuselage Volume" (FLGVOL) is said to measure the "ECS
size and complexity relative to the amount of cooling
capacity"”" (211). BAs this variable increases, so does the
size and number of ECS components resulting in increased
spares requirements.

7) Electrical CER: The "number of generators" is
included as a measure of the "size and number of components
in the electrical generating and distribution system" (212)
Again increased size equates to increased spares
requirements.

The "cargo floor area" is a measure of the space
requiring electricity. "An increase in the useable floor
space results in an increase in size of the electrical
subsystem and consequently replenishment spares costs"
(212).

8) Hydraulic/Pneumatic CER: The LENSPN and "number
of hydraulic pumps" are included as "measures of the size
and complexity of the aircraft hydraulic system and
indicative of the number of supply ¢ircuits and components
required"” (212). Again, as size and complexity grows the
spare requirement is also said to grow.

9) Fuel System CER: The LENSPN and "fuel system -
weight™ are included as "measures of aircraft size, and
hence, fuel system size" (213). Increased size relates to
increased spares requirements.

10) Cargo Handling CER: "Cargo weight" and "cargo

volume" (CARVOL) are included as measures of the cargo

44




handling subsystem's load capacity. As the number and size
of cargo handling equipment increases, so does the number of
spares regquired.

11) Auxiliary Power Unit CER: FLGVOL and CARVOL
"are sizing factors relative to the amount of air
conditioning to be supplied by the APU" (213). As these
variable increase, "larger and more complex" APUs must be
used and thus, an increased requirement for spares (213).

12) Avionics CER: "Total KVA" and "avionics black
box weight" were included as measures of the avionics
subsystem size and complexity. Increases in these variables
are said to result in increased spares costs.

13) Engine CER: "Sea level maximum mach" and
"thrust per engine” were considered measures of engine
complexity. '"The more complex the engine, the more costly
are the spares, therefore, an increase in these parameters
will result in an increase in the cost of spares" (169).
This CER was also used for the fighter/attack/bomber class
of aircraft's engine CER.

Rather than detailing each subsystem’'s independent
variables for this second class of aircraft, the following
text describes only those cost drivers which weren't already
mentioned above.

The landing gear CER for this class included "takeoff
gross weight clean” as a cost driver. This was said to be a
measure of the "kinetic energy absorption capability and

size of the landing gear components," and because of this,
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it directly related to tire, brake and wheel wear, and thus
the need for more spares.

The engine installation CER included "engine thrust to
weight ratio" as '"a degree of sophistication and size [of
what the documentation does not say] in relation to the
aircraft performance capabilities" (166). Increases in
these factors are said to lead to increased maintenance
activity and thus, the need for more spares.

The environmental control system CER includes "BTU per
hour" as a '"measure of the cooling capacity and the size of
the ECS" (167). Increased size, once again, equates to a
need for more spares.

"Avionics installation weight" is used in both the
electrical CER and the Avionics/Armament CER. This weight
is said to be a measure of the size and number of components
in the avionics subsystem. BAn increase in this variable
leads to increased spares requirements for both subsystems.

The fuel system CER uses "internal fuel weight" as a
measure of the size and number of fuel system components.
The greater the number of parts, the greater the number of

"a

spares required. Additionally, "maximum mach' is used as
degree of sophistication required of the fuel system" (168).
Increased sophistication is said to require more parts and
thus more spares.

The discussion of independent variable selection

contained in this model's documentation needs additional

work. 1In many cases it isn't clear why one measure of size
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is used in one CER and another size measure is more
appropriate for another CER. It some cases it appears as
though the authors had to stretch their imagination to come
up with the logic behind their cost drivers. This might be
attributable to the fact that step-wise regression was used
to identify the cost drivers. The logic might have been
developed after the selection of cost drivers.

Model #3: Air Logistics Early Requirements Technique

(ALERT). Unless stated otherwise, references in this
subsection will come from a 1989 report entitled Air

Logistics Early Requirements Technigque (ALERT) FY90-94

Program Objective Memorandum (POM) Forecast. The authors

were Adrienne Rexroad, Robert Lucas, and Larry Collins.

Developer(s): AFLC/MMM, 1984.

Model Purpose: ALERT has been used since 1984 by

HQ AFLC as the starting point for developing BPl5 aircraft
peacetime spares Program Objective Memorandum (POM) inputs.
The POM is the Rir Force's long range budget requirements
document. ALERT is the "starting point" because the output
from ALERT is scrubbed by the BP15 Program Manager prior to
its submittal (1).

Model Algorithm: Sixteen separate CERs are

developed with straight linear regression to predict the

first year of POM requirements for thirteen different weapon

systems, the F-100 engine, common spares (to multiple weapon

systems), and an "other" category. This first year's

estimate is then used as historical input for the next four
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years' predictions~--a regression technique which is referred
to as "bootstrapping." (2).

Data Inputs and Sources: The dependent variable

data used were the requirements submitted in the last Budget

Estimate Submission (BES). There were a total of four

independent variables used (not all at once) in the CERs: 1) N
Mission Design Series buy requirements from the D04l

"Recoverable Consumption Item Requirements System," 2)

Average Fleet Value, as calculated by USAF/AC, 3) the

reciprocal of the estimated Present Fleet Age, also provided

by USAF/AC, and 4) Chronological Year.

Assegsment: Only six of the sixteen weapon system

class CERs hac adjusted r! values exceeding .7 and only one
class exceeded .75. The BP Manager scrub that followed
subsequent to the ALERT run changed the input values
further. The BP Manager is critical of the D041 input data
since it uses the June data run (a quarter not updated by
three of the five ALCs). He also questioned the logic of
using the fleet value as a cost driver. USAF/AC based their
estimate of fleet value on projected future flying hour
programs which decrease over time. The fleet values,
therefore, decrease over time. The spares requirement,
however, logically gets larger as the fleet gets older (7).
A 1988 validation study of the ALERT model compared the
scrubbed ALERT forecast to three other forecasting
approaches: 1) cost per flying hour factors, 2) inflation

growth, and 3) unscrubbed, "pure" ALERT forecasts. This
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analysts concluded that the scrubbed ALERT forecast was the
most accurate approach and, in fact, this technique
predicted (in 1984) 1987 spares requirements within two
percent of the actual obiigations recorded that year
(Rexroad and Collins, 1938:8). However, it should be noted
that this "two percent"” accuracy was for the total
replenishment spares forecast. Within the individual CERs,
several of the estimates missed the mark considerably. The
B~52 estimate ($148.2 million) was $109.2 million higher
than the funds obligated. The F-16 estimate ($372.2
million) was $225.6 million higher than actuals and the F-
100 engine estimate ($393.4 million) was $232.4 million
lower than the actual obligations (Rexroad and Collins,
1988:7-8). The remarkable "accuracy" of this model,
therefore, could be nothing more than the RAir Force
obligating everything they had to obligate (provided as a
result of the ALERT forecast), without saying anything about
whether real requirements were met.

The validation study pointed out several concerns with
the model. A chi-square test was performed on all four
estimating techniques being evaluated and it was determined
that "none of the forecasting approaches are statistically
close to the actual obligated dollars" (Rexroad and Collins,
1988:9). Additionally, the authors concluded that although
a high correlation existed between the dependent variable
and the independent variables in their data set, they found

no causality and therefore had no "complete 'intuitive’
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interpretation of why past relationships exist" (Rexroad and
Cgllins, 1988:5). The authors recommended that additional
analysis be performed to "include variables like actual
flying hours, type of mission, and the expzcted occurrence
of a major modification to predict cause aad effect
relationships" (Rexroad and Collins, 1988:10).

A 1988 RAND report (see next model below) provided a
brief evaluation of the ALERT methodology. One additional
shortcoming which it identified is that the model does not
"correct for inflation by converting dollar estimates into
constant dollars" (Crawford, Lansdowne, and Finnegan,
1988:8).

Model #4: Oversight of Resources and Capability for

Logistics Effectiveness (ORACLE). Unless stated otherwise,
all references in this subsection come from a 1988 RAND

réport entitled, ORACLE and Requirements Forecasting, Vol.

II: Predicting the Peacetime Spares Requirement. The

atithors are Gordon B. Crawford, Z.F. Lansdowne, and F.W.
Finnegan.

Developer(s): RAND Corporation (see authors

above),

Model Purpose: ORACLE is "a methodology developed

to relate dollars expended on recoverable components to the
goals set in the Planning, Programming, and Budgeting (PPB)
process” (1). The ORACLE methodology was developed with

three hypotheses in mind:
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1. A constant requirement methodology and the
converting of prices to constant year dollars with
reasonable inflation indices would make the BP1l5S
requirement more stable and more readily predictable.

2. Breaking the total requirement for a weapon system
into several federal stock class (FSC) groupings and
analyzing the regression of each group on the several
explanatory variables would permit identification of
certain grours that do not regress well and hence
deserve expert attention and judgement to predict their
requirement.

3. Removing these 'hard to predict' groupings for
individual attention would then make the remainder of
the expenditure substantially more stable and easier to
predict. (2)

Model Algorithm: CERs were developed for three

weapon systems (F-15, F-16, and C-5). Ten years of data
(1975 - 1984) was used for the C~5. In the case of the F-15
and F-16, the data bases were reduced to seven years (1978 -
1984) and six years (1979 -1984) respectively. The
modelers felt that these aircraft were too new to the
inventory in the mid-70s and that this early data would not
accurately predict the requirements for mature weapon
systems.
The modelers performed what they called "a loose

. approximation of what others might call a regression
analysis" (19). They say this because they did not believe

. that the residuals in their analysis would be "normally
distributed with a precisely described covariance matrix"
(19) [see regression assumptions 5 and 6 on page 20] and
they took "repeated and excessive liberties” in such

subjective areas as "rejecting outliers and replacing their
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values" (22). The modelers claim that if the CERs did not
éerform well under these relaxed conditions, they would
perform even poorer using the stricter linear regression
assumptions (20).

The dependent variable being studied for each weapon
system was the marginal annual cost of the replenishment
spares requirement. Given the small size of the F-16 data
base, the authors limited the number of coefficients in any
one CER to two (assumably to preserve degrees of freedom).
The independent variables evaluated included the average age
of the fleet, flying hours and the value of the fleet.
Little explanation is given for why "value of the fleet" is
used other than the Navy has "long used it to predict Naval
air requirements" (22). The "average age of the fleet" is
included to account for the "bath tub" theory of reliability
(described earlier in the RAND Model evaluation) (23). The
"Flying hours" variable was included to account for the fact
that "many spare parts fail as a result of repeated physical
stress or wear that is a direct result of flying, taking
off, or landing"” (24). "Flying hours" were used in lieu of
"aircraft sorties" due to better availability of flying hour
data and the modelers' contention that, when plotted, a
curve describing sorties per year "tends to look like curves
that describe flying hours per year" (24).

As stated earlier, the modelers wanted to determine if,
by separating hard to predict FSC groupings, they could

improve their ability to predict requirements for the
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balance of the weapon system's requirements. In other
words, they wanted to separate the "art" (hard to predict
groupings requiring expert judgement) from the "science"
(remaining groupings) in spares requirements determination
(25). To accomplish this, separate CERs were developed for
fourteen separate FSC classes for each weapon system, in
addition to the overall weapon system CER. Those FSC
classes which failed to show a strong statistical
relationship to the independent variables were then removed
from the overall weapon system data base end the impact on
its CER was noted.

Data Inputs and Sources: The dependent and

independent variable data used in this analysis (discussed
above) was taken from the D041, "Recoverable Consumption
Item Requirements System."

Assessment: The idea of separating "hard to
predict” components from the total weapon system data base
is an interesting and logical idea. According to the
modelers' conclusions, they did find support for their
second hypothesis that this sort of separation could be
accomplished. Some of the FSC groupings exhibited "wild
swings,'" and the modelers felt that they would be difficult
to predict no matter what independent variables were used
(41). Unfortunately, the exclusion of these FSC groupings,
according the modelers, showed no marked improvement in the
ability to predict requirements for the remainder of the FSC

groupings. The first hypothesis (concerning anticipated
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improvements garnered from a constant requirements
methodology and constant year dollars) was also not
supported. Additional research would have to be conducted
to determine if a larger data base or different independent
variables would impact these results.

Model #5: Levine and Horowitz Study. Unless stated

otherwise, references in this subsection will come from a
1989 study conducted by Daniel B. Levine and Stanley A.

Horowitz ent tled, Predicting the Cost of Initial Spares.

Model Purpose: The purpose of this study was to

develop a CER for predicting initial spares costs. The CER
would benefit service and 0SD budget planners in laying in
long range budgets for new aircraft many years before their
deployment (1).

Model Algorithm: The authors used linear
regression to test hypothesized relationships in data from
twenty one Navy and Air Force aircraft. The dependent
variable was the total obligation authority (TOA) for
procurement of initial spares during the life of the weapon
systems' programs. Actual obligation data is used from 1972
- 1988, and TOA is included through 1994. Aircraft mission
design series (MDS) selected were limited to those MDS for
which data was available for the entire program (i.e., the
program started after 1972 and will finish before 1994).
Independent variables evaluated included weapon system cost,

empty weight, maximum speed, total program procurement




quantity, and dummy variables to control for the aircraft
mission (2).

Three criteria were established for selection of the
final CER(s): 1) Szzl“*-e signs for the cost driver
coefficients, 2) high R}, and 3) high t-statistics (2).
This study resulted in the development of four CERs which
met the criteria.

Data Inputs and Sources: The dependent variable

data came from the FY 1989 historical procurement annex
covering the fiscal years 1972 =~ 1994. The independent
variable data (discussed above) came from "Standard Aircraft
Missile Characteristics" (Air Force Guide No. 2) and Jane's

All The World's Aircraft (5).

Assessment: The use of actual obligations as the
dependent variable carries with it all the uncertainties
discussed previously in the subsection entitled "data
problems"” (e.g., "what was spent" is a proxy for "what

should have been spent,"

some initial spares requirements
were purchased with replenishment spares budget authority,
etec.).

The authors provided no discussion of the logic behind
the cost drivers selected other than to say they anticipated
a positive relationship with the dependent variable. The
two CERs with the highe;st R! values both involved the single
independent variable, “weapon system cost." One CER was

linear and the other involved a logarithmic transformation

of the dependent and independent variable, The authors made
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né comment as to which CER they felt most accurately
described the true relationship. This, they said, depended
upon "the analyst's best intuition about the underlying
relationships" (8). The next model included three linear
independent variables~--procurement quantity, empty weight,
and maximum speed. The final model included these same
variables plus two dummy variables to distinguish attack,
fighter, electronic, and bomber aircraft from cargo and
tanker aircraft (8). Again, there is no discussion
concerning which relationship the authors preferred, and no
discussion of any model diagnostics performed at any time

during the study.

Literature Review Summary

Throughout the course of the literature review, one
factor stood out--and that was the great number of
difficulties associated with developing spares CERs. Upon
concluding their attempts to develop a better spares CER,
RAND modelers summarized their feelings: "In short, the
problem is extremely difficult. That was clear before, but
it is even clearer now" (Crawford, Lansdowne, and Finnegan,
1988:vi). Data selection poses numerous problems for model
developers. Assuming one can even locate a data source, one
is often disappointed to find that: 1) the data is at the
wrong level of aggregation, 2) the data covers a different
time span than required (e.g., calendar year instead of

fiscal year), 3) there are strategic holes in the data, and
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4) the data is discredited by numerous other factors (e.g.,
the obligation data is influenced by political
considerations, is hard to track to spares usage due to its
multi-year availakility, etc.).

An examination of existing spares CER based models
provided ideas for cost driver candidates but little comfort
that a statisticelly significant model would be found. The
models were weak in this area (i.e., poor Rz's, poor mean
standard errors, etc.). The model source documents were
also weak in explaining the underlying logic behind their
models. One had no idea, for the most part, if the
relationships found were correlational or causal in nature.
Additionally, the model source documents provided little, if
anything, in the way of model diagnostics descriptions.

Although the author cannot guarantee that he will
develop a statistically significant model, an attempt will
be made to improve upon (relative to the models evaluated in

the literature review) the documentation of the model.
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III. Methodology

Introduction
The general overview of the entire cost estimating

process (research objective number one) and summary-level

description of current 0&S cost models applicable to spares »
(research objective number two) are purely descriptive in

nature. This chapter will explain the methodology used in

support of research objective number three.

This third objective involved developing a parametric
model for predicting recoverable spares costs. No initial
spares CER was attempted due to a lack of practically
accessible data, as identified in Chapter II. The
replenishment spares model was accomplished in two parts: 1)
a'multiple independent variable (MIV) CER relating
condemnation costs to aircraft physical and performance
characteristics, and 2) a single independent variable (SIV)
CER comparing replenishment spares requirements to
condemnation costs. This second part is, in essence, part
of an attempt to develop a demand volatility factor. The
predicted condemnation spares cost must be multiplied by its
associated demand volatility factor to arrive at the total
replenishment spares estimate. Both MIV and SIV models were
developed with linear regression using SAS statistical
analysis software (maintained on the Rir Force Institute of
Technology (AFIT) VAX computer system). The data used to
develop the condemnations CER is at the "MDS" level of
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aggregation; while the demand volatility factor data is at
the "MD" level. This chapter provides a detailed

explanation of the methodology used to create both models,
beginning first with the condemnations CER and ending with

the demand volatility CER.

Condemnations CER Development

The following subsections discuss the specific
procedures which were used to develop and validate the
condemnations spares model. General explanations are given
for some terms and the reason for using techniques are
explained, but detailed explanations of the actual
regression technigues are not. Readers who are unfamiliar
with linear regression will need to refer to a regression
text for further details. The techniques mentioned below

are from the COST 671 (Nhefense Cost Modeling) and COST 672

(Model Diagnostics) counrses taught at AFIT (Murphy, 1990-
1991).

Model Identification. The first step in developing the
condemnations CER involved identifying logical cost drivers.
This process is known as model identification. 1In order to
identify the underlying causal relationships which drive a
cost estimate, one shouid become familiar with the system(s)
for which the cost estimate is being developed. Given the
time constraints of this thesis, this task was accomplished
through a review of prevrious spares CER work and

consultation with spares experts. While one can never be
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sure of capturing all the cost drivers, statistical measures
(which will be discussed shortly) can be used to determine
what portion of the total error is captured by the model.

A specific consideration under the general '"model
identification" heading is testing for interaction effects
and indicator variables. Both were examined in the model
development. If one changes the value of an independent
variable and the resulting change in cost is dependent upon
the value of another independent variable, there is an
"interaction effect" between the independent variables. For
example, if the change in spares cost related to a change in
an aircraft's "maximum speed" also depends upon the "empty
weight" of the aircraft, there is interaction between these
tho variables. "Maximum speed" and "empty weight" were in
fact tested for an interaction effect, along with "maximum
load factor" and "aircraft length plus span." This was done
by multiplying the variables against one another in each of
the above pairs. The resultant products became new
candidate independent variables.

Indicator variables are used to determine if the sample
population can be divided into separate classes based upon
qualitative differences. 1Indicator variables were included
to determine if spares costs are related to the following
categories of aircraft: 1) fighter, attack, fighter-bomber,

or trainer aircraft; or 2) bomber, tanker and military

transport.




Model Specification. Closely related to id=antifying
the cost drivers is the next step--hypothesizing logical
relationships between the dependent variable (cost) and the
independent variables (cost drivers). This process is known
as model specification. For example, "is the relationship
linear or non-linear?"

There is no simple way to quickly develop a CER from a
list of cost driver candidates. Knowing which variables to
include in the model and what relationships to specify
requires a great deal of professional judgement. One should
ensure that a model makes logical sense. For example, a
model may use aircraft weight as a cost driver for
recoverable spares. The logic behind this driver could be
that increased weight implies more aircraft parts and
therefore more spares are required. However, the aircraft
for which spares costs are being gpredicted may be heavy
because it is built with heavier, sturdier materials. 1In
this case, the model logic fails because the heavy aircraft
weight is not due to more parts. Rote application of a CER,
without professional judgement, can lead to erroneous
estimates.

When numerous variables are identified as potential
cost drivers, one must do one's best to determine which
variable or set of variables constitute the most logical
CER. The more candidates for inclusion there are, the
greater the numbe.: of possible combinations that one is

tempted to evaluate. The danger here lies in the fact that
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simply by testing a large number of different candidate
variables using different assorted transformations, it is
likely that one can develop a statistically significant
model merely by chance. Additionally, with no logical
expectations concerning the underlyiang causalities of the
variables, one has no basis for determining if a
statistically significant model is based upon correlation
between the dependent and independent variables, as opposed
to causality.

Given the pitfalls associated with arbitrarily testing
different combinations of variables. the author attempted to
identify expected relationships prior to running the models
themselves. It seemed logical that sizing variables such as

aircraft "empty weight" and "length plus span'" and the

LI 2 1]

annual utilization factors, "flying hours, sorties,"

' and "number of active aircraft in MDS

"landings,'
inventory," would have direct linear relationships to
condemnation costs. No plausible rationale could be thought
of for either an inverse relationship or even a direct
relationship with a changing slope.

For "intensity" of utilization factors such as "flying
hours per aircraft," "landings per aircraft,” and "sorties
per aircraft," and performance/techriical complexity factors

L1

such as '"thrust per engine, maximum speed,” "maximum climb

rate at sea level, maximum load factor," etc., it was felt
that condemnations costs would increase at an increasing

rate as these factors increased. This type of relationship
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is typically tested with quadratic transformations and/or
logarithmic transformations of both the dependent and
independent variables ("log-log" transformations).

The "flying hours per sortie" factor (mission profile
factor) was thought to cause condemnation costs to increase
but at a decreasing rate. Given that an aircraft is
performing the same type of mission continuously, performing
it for longer periods of time will result in increased wear
and tear on the aircraft. However, after a point, longer
m:.ssions begin to reflect different types of missions. A
long ferry mission may not cause as much wear and tear as a
shorter mission practicing "touch and go's." This type of
relationship is typically modeled by raising the independent
variable to the ".5" or "-1" power, a log-log
transformation, or a logarithmic transformation of the cost
driver alone,

The aircraft "flyaway costs" is expected to have a
direct relationship to condemnatisns costs. More expensive
aircraft means more expensive parts and it is felt that this
will outweigh any reduction in condemnations due to improved
reliability (which may drive the higher acquisition cost).
There was insufficient evidence to judge whether this should
be a linear relationship or not.

Data Normalization. Once the hypotheses to be tested

were developed, the raw data was collected and then
normalized. This was required to ensure that differences in

costs between different years was not merely related to
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iﬁflation effects. The dependent variable data obtained
from the Weapon System Cost Retrieval System (WSCRS) was
already inflated to a common base yesr--FY91. The
replenishment spares annual requirements used in the demand
volatility analysis had to be inflated to FY91 dollars also.

Linear Regression. The next step involved actually

using SAS to specify the relationship between the dependent
and independent variables in mathematical terms. SAS fits
data to a regression line using the method of least squares
best fit.

Each regression line is expressed in the following

equation form:

Yi = Bo + leil + Blez + ,.. + BP‘IXI.,P'I + ey (2)

(Neter, Wasserman, and Kutner, 1989:229)

where
Bo, BI""'BPJ are parameters X“, XM""'XLPd are
known constants
e, are independent N(0, 0% ) i=1,...,n

SAS can only work with linear relationships and so cost
drivers with anticipated nor-linear relationships were
transformed (e.g., setting the independent variable equal to
itself raised to 2 power) so that the relationship would be
linear as transformed.

The initial SAS runs were made using selected logical

linear independent variables. BAdditional runs were then
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performed based upon what logically made the most sense and
the results of this initial analysis.

The SAS forward stepwise regression function evaluates
how the model statistics change as SAS adds each possible
independent variable one at a time to the model, starting
with the most significant variable. This function does not
guarantee the best model, however, and it was used only as a
check against the final model developed.

Model Validation. Having stated that developing a CER
is not an easy task, it is appropriate to discuss the
diagnostics which can be performed to check a model's
internal validity. Each SAS regression run provides an
analysis of variance (ANOVA) table with many of the
statistics necessary to evaluate the model (e.g., R%
Adjusted R% F-Value, etc.). The format of this table is
provided in Table 2,

Numerous factors must be evaluated before a final CER
is selected. One simple check is to examine the signs of
the parameter estimates from each ANOVA table to see if they
are logical. For example, a negative sign would be logical
if one had reason to believe that the relationship between
the cost driver and cost was inverse.

Given a logical sign for the parameter estimate, a
number of statistics from the ANOVA table can then be
examined together to determine the overall predictive
strength of the model. The coefficient of determination

(Rh tells one the percentage of total squared error
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TABLE 2

ANOVA Table Format (SAS)

Source Degrees Sum of Mean
of of Squared Squared
Error Freedom Error Error F Value P Value
Model P-1 SSR= 3, (¥,~¥)? MSR=8SR/df MSR/MSE *
Error n-p ssE= 3. (¥,~¥,)® MSE=SSE/df
Total n-1 ssT= ¥ (¥,-¥)? MST=SST/df
Root MSE ® R-squared *
Dep Mean * Adj R-sq *
C.V. %
Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0
Prob>|T!
Intercept * % % * b
Driver$l % * * * *
Driver#2 % * * * *
Driver#P * * * % *
Where

f} = the ith fitted value on the regression line

Y = the mean of the observed values in sample set

Y; = the ith observation from the sample set n

P = the number of parameters in the model

n = the number of observations in the sample set

accounted for by the regression line. For this thesis, the

general rule of thumb is that one doesn't want to accept an
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R! value less than 70%. A value of 80% or greater was
looked for in the final model. This statistic can be
misleading, however, in that it can be artificially driven
up by increasing the number of independent variables whether
they are true cost drivers or not. For this reason the
adjusted R! was compared to the R! value. If the

two values were not within 20% of one another, it was
assumed that insignificant variables were impacting the RZ.

The F~-test was used to check the statistical
significance of each overall model evaluated and the t-test
was used to check on each individual independent variable's
significance given that the other independent variables were
included in the model being tested. The probability values
associated with the F and t-values were used to determine at
what level of confidence the variables could be considered
significant. Again, 70% is a typical rule-of-thumb minimum.
An 80% or better value was sought in the final model.

The P-Value was looked at to determine "the smallest
significance level at which the null hypothesis can be
rejected" (Newbold, 1988:339). Since one wants to reject
the null hypothesis (because one believes a relationship
exists to begin with), obviously the smaller the P Value the
better.

The coefficient of variation (CV) and prediction
intervals (SAS has functions that can print out the 95%
prediction limit bounds and, for SIV models, plot these

bounds around the regression line) were used to examine the
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model's external validity. The CV provides approximately a
70% prediction interval (estimate plus or minus CV) at the
center of the data. 1If a natural logarithmic transformation
of the dependent variable was used, the CV was replaced by
the root mean squared error (MSE) (which equates to the CV
in a natural logarithmic transformation). Since the CV (o=
root MSE) gives one a rough idea of how well one is
predicting at the center of the data, where the bounds are
the smallest, a large CV can end the analysis because one
knows that it's not going to get any better. If the CV is
small, however, the prediction interval analysis can be us=d
to examine how well the model predicts over the entire
sample data set. The larger the prediction intervals, the
more uncomfortable one becomes over the model's predictive
capability. If the prediction intervals seem to widen
dramatically at the outer edges of the sample data, this
will be taken as an indication that the model may only apply
to the range of the current data set.

In order to identify which data points are in the
center of the data and which are at the outer edges, one can
examine the width of the prediction limit bounds for each
data point. Those data points with the smallest prediction
intervals should be relatively close to the center of the
data, while those with the largest prediction intervals
should be the farthest from the center of the data. When

conducting this analysis on a model with a log-log
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¢ransformation, one should examine the prediction intervals
in logarithmic space as opposed to arithmetic space.

In addition to the 95% prediction intervals piovided by
SAS, ‘70%, 80% and 90% prediction intervals will also be
derived (for the data point closest to the center of the
data) to determine the impact of changing confidence levels
upon the model prediction intervales. These bounds will be
plotted around the predicted value to graphically depict how
the bounds increase as the alpha level decreases.

None of the statistics described above, taken alone,
can tell you how "good" the model is. %hey all must be
considered together to evaluate the various models because,
for example, R! can be artificially inflated at the expense
of the model's significance. Additionally, these statistics
are only meaningful if one can assume that the model is
properly identified and specified. The diagnostics,
therefore, do not stop with these statistics.

Residual Plots. Another check is to see if the

models are properly specified. SAS allows one to plot the
residuals (deltas between the observed and predicted
condemnation «osts) against the independent variable data.
Theoretically, one can examine these plots for patterns in
the data and if all the residual plots appear to be
completely random, then one may assume that the model is
properly specified and no further action is required. 1If
even one plot shows a pattern, this indicates that the data

is not linear as transformed and thus a (different)
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transformation is required. If and when this is the case,
two other SAS functions can be used in combination with
these basic residual plots to determine which
transformations are required. Partial regression plots and
residuals plotted against important independent wvariables
omitted from the model can also be used to identify
necessary transformations. This "theoretical" procedure was
not followed in this thesis, however, because patterns in
the data were expected but not found. Rather than stopping
at this point, the author went with his professional
judgement and continued with the partial regression plots
and omitted variable plots, hoping to identify necessary
transformations. Each time a variable was transformed, the
p%ocess was started all over with plotting the residuals for
every independent variable and checking for patterns in the
data. Additionally, transformations which made logical
sense were evaluated, even in the residual plots did not
indicate that the transformations were necessary.

Outliers. Still another check involves
identifying outliers in the sample data. SAS has a function
which prints out leverage values {(measurements of an
observation's distance from the center of the data) which
can be used to identify outliers with respect to X. 1If a
leverage value (hﬁ) is greater than twice the number of
parameters (P) divided by the number of data points (n),
than the data point is an outlier. 1If P is large relative

to n, then this formula's value may exceed one, If this is
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the case, the rule of thumb value is switched to .5 for the
maximum acceptable hy;.

"Internally studentized residuals" were used to
determine outliers with respect to Y. The following
equation can be used to produce internally studentized

residual values:
e / [MSE(1 - hy)1? (3)

If this value exceeds the t-value associated with 10% alpha
and n - P degrees of freedom, the data point is an outlier,.
SAS has a function which prints out the internally
studentized residuals

There are numerous possible causes for these extreme
values in the data:

1) The outlier dat: point belongs to a different
population.

2) The independent varizble data includes measurement
error.

3) There was some unique major event with significant
impact on the data.

4) significant independent variables are excluded from
the model.

5) The data point just so happens to fall in a tail of
the data distribution.

6) The model is imjroperly specified.

7) The error terms come from non-normal distributions.

What one decides t« do about the outliers depends upon
their cause(s) and theii influence. 1If one determines that

an outlier belongs to arother population, it can be thrown
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out. If there are an jinsignificant number of outliers
compared to the sample size, they can be thrown out. If the
outliers are needed, due to the sample size, and they are
non-infiuential, they can be left alone. If they are needed
and influential, an attempt must be made to adjust the
outliers to minimize their effect on the model.

To determine if an outlier is influential, SAS produces
three measures of influentiallity: 1) DFFITS, 2) DFBETAS,
and 3) Cook's Distance.

DFFITS values measure the influence of "case i" on the
"fitted value" of condemnation costs and it can be

calculated with the following equation:

(DFFITS); = d'; (hy/(1 - hy))? (4)

(Neter, Wasserman, and Kutner, 1989:401)

The rule of thumb for this equation is that the absolute
value of DFFITS may not exceed one for small to medium sized
data sets and 2(P/n)'5 for large data sets.

DFBETAS values measure "the influence of the ith case

on each regression coefficient by' and can be calculated as

follows:
- .5
(DFBETAS)bk = bk - bk(i) / (MSE(UCkk) (5)
(Neter, Wasserman, and Kutner, 1989:402)
where

Cyy is the kth diagonal element of (X'X)'1
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The rule of thumb for DFBETAS is that its absolute value may
not exceed 2/(n)5.

Cook's Distance is "an overall measure of the combined
impact of ith case on all of the estimated regression
coefficients”" and it can be calculated with the following

equation:

D; = (b - by;))'X'X(b - b)) / PMSE (6)
(Neter, Wasserman, and Kutner, 1989:403)
where

b is the vector of estimated regression coefficients
obtained when all n data points are used.

b“) is the vector obtained when the ith case is
omitted.

The rule of thumb for Conk's Distance can be found by
comparing it to the F distribution value for the fiftieth
percentile with numerator degrees of freedom equal to the
number of regression coefficients (p) (including the
intercept term) and denominator degrees of freedom equal to
n - p. If the Cook's Distance value exceeds the F
distribution value the point is considered an influential
outlier.

Multicollinearity, Multicollinearity is a
violation of the assumed independence between the
independent variables. As multicollinearity is introduced
to a model the variance of the regression coefficients
become very large and the coefficient values themselves

become highly unstable. They may even take on the wrong
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sign. BAs a result, the predicted co:fficient values are
more likely to be further from the t:-ue population parameter
values and the variables' t-values may get smaller.

SAS provides several functions to test for
multicollinearity in addition to the symptoms mentioned
above. Pairwise correlation matrices, tolerance values and
the SAS COLLINOINT function can be used. B pairwise
correlation matrix shows the collinearity between two
variables., The tolerance values depict multicollinearity
between a variable and the rest of tie model. The
COLLINOINT function is a good method to use if the number of
cost drivers exceeds four. For each variable a "condition
number" is given. If this number exceeds ten, then a
significant degree of multicollinearity is present. After
identifying a variable with multicollinearity, one looks to
the "variance proportions" listed fcr each remaining cost
driver to determine what variables are contributing to the
multicollinearity.

Heteroscedasticity. Heteroscedasticity is a

violation of the assumption that the error terms come rom
distributions with constant variance. To check for th.s
problem, the residuals can be plotted against the expected
value of condemnation costs. If hetesroscedasticity is
present, the residual pattern will either converge or
diverge as the expected condemnatior cost values increase.
If the spread of residuals remains relatively constant, one

may assume that heteroscedasticity is not present.
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Model Predictive Capability. After completing the

diagnostic checks described above, the best linear model,
the best arithmetic transformation model and the two best
log-log transformation models were used to predict the
condemnation costs for an MDS database excluded (for this E
purpose) from the original data set. The predicted values ;
vere compared to the actual values to see how well the
models performed,.

Model Sensitivity. The best linear model, best

arithmetic transformation model and two best log-log

PR,

transformation models were also tested to see how sensitive 3
they were to changes in the values of independent variables.
This was accomplished by first using the models to predict

condemnation costs for several aircraft MDS. Then new F

estimates were created after increasing the value of one

independent variable in each MDS by twenty percent (and

leaving the other independent variable values alone). After
repeating this action for each of the models' independent
variables and noting the impacts on the condemnation costs
estimates, the process was repeated except that the
independent variable values were decreased by twenty
percent.

Small Database Performance. Only those

independent variables dealing with component utilization
changed over time (e.g., sorties, number of aircraft in MDS
inventory). It was anticipated that reducing the database

by replacing these annual variable values (five data points
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for most of the variables) with their MDS averages might
provide a more statistically significant model if the
individual values varied greatly within an MDS. However,
this smoothing effect might also lead to unrealistic
confidence in the models' ability to predict an annual
spares requirement. This database smoothing technique was

tested as the final analysis step.

Demand Volatility Factor CER

The SIV model for demand volatility was developed by
regressing annual replenishment spares requirements data
against annual condemnation costs for the same MD data set.
By restricting the Y-intercept to equal zero, the demand
volatility factor is simply the value of the regression
coefficient from the resulting CER. 1In order to look at the
statistical measures associated with the CER, another model
w 5 created with no restriction on the Y-intercept. No
logical explanation was found for any relationship between
replenishment spares and condemnations other than a direct
linear one and therefore no transformations of the
condemnations data were considered.

The demand volatility factor currently used in the HQ
AFLC/FMC Logistic Support Cost model was arrived at by
comparing condemnations with replenishment spares
obligations and simply averaging the various MDS ratios to
come up with a standard factor. As mentioned in Chapter II,

there are numerous factors which discredit the us=e of
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obligations data in model development. Using scrubbed
replenishment spares requirements generated by the D04l
system is an improvement over the obligation data.
Additionally, using SAS to derive the CER provided
information on the statistical significance of the
relationship--something not found in a straight ratio of
replenishment spares obligations to condemnation costs.

In addition to the SAS produced CER, however, annual
demand volatility factors were calculated by dividing annual
MDS replenishment spares requirements oy annual MDS
condemnations costs. These results were analyzed for any
year-to-year trends in MDS specific demand volatility
factors. Additionally, demand volatility factors were
considered for different mission categories (e.qg., fighter,
bomber, etc.).

Before the replenishment spares and condemnations data
could be compared, however, there were several steps which
had to be taken to ensure (as much as possible) that apples
Wwere being compared to apples, and not oranges. For
example, it was already mentioned that the Weapon System i
Cost Retrieval System (WSCRS) condemnation data was provided
in FY 91 dollars and that the scrubbed D041 replenishment
spares requirements had to be inflated from then-year to FY
91 dollars. The WSCRS system inflates prior year
condemnations to FY 91 dollars using separate escalation
rates (obtained from AFR 173-13) for engine material,

avionics material, and airframe material (AFLCM 173-264,
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1990:136). Because the replenishment spares requirements
d;ta was aggregated at the MD level, the best that could be
done was to inflate the data using the 3080 Other
Procurement inflation rates (also obtained from AFR 173-13).

Two additional factors had to be accounted for in order
to compare the replenishment and condemnation spares
requirements data sets. First, the scrubbed D041
replenishment spares requirements included separate
categories for "comnion spares,” and the F100 and F110 engine
spates {(used in the F-15 and F-16 aircraft); while the WSCRS
system had already distributed the condemnations costs for
these categories among the relevant MDS.

The WSCRS system can split out for each MD what percent
of the annual condemnations costs are MD unique and what
percent are common to other MDs. 2An attempt was made to
distribute the scrubbed D04l replenishment spares "“common
spares" category using these WSCRS MD percentages. For
example, if the WSCRS system showed that fifty percent of an
MD's condemnation costs were MD unique, it was assumed that
the replenishment spares requirement for that MD represented
only fifty percent of the total replenishment spares
requirement also, and the remaining fifty percent must be
included in the "common spares" requirements pool. It
became apparent that there was a definitional difference in
the term "common spares” between the D041 and WSCRS systems.
Using the WSCRS ratios suggested that annual common spares

allocations should be significantly greater than the annual
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common spares pools identified. Given no clear
understanding of the exact problem, this methodology was
abandoned.

The HQ AFLC Recoverable Spares Stock Fund Manager
indicated that his office used factors developed by the
Logistics Management Ins-itute (LMI) to spread the common
spares among the various aircraft MD when necessary. The
LMI factors are used, not because they are believed to be
perfect by any means, but because they represent the best
methodology available (Rosenthal, 1991). The LMI factors
provide the percentage of the common spares requirements
attributable to each MD based upon guarterly MD buy
requirements for the common components. The factors change
from year to year and even from quarter to quarter depending
upon the current status and projected buy requirements.

These factors were used to allocate the common spares
to the individual MDs. It should be noted that of the seven
sets of factors used (one for ezach data year), four sets
were based upon end-of-March databases which estimated MD
percentages for the same fiscal year (e.g., FY88 percentages
were based upon end-of-March FY88 status); while another two
sets used end-of-September status to project percentages for
the following fiscal year (e.g., the FY82 percentages were
developed based upon end-of-September FY81 status). The
final factor set used end-of-March status in FY84 to predict
the FY385 percentages. The fact that different quarters were

used and that, in three cases, the percentages were
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projected a year into the future, introduced additional
uncertainty to the identification of trends between the
fiscal years.

In order to spread the annual F100 and F110
replenishment spares requirements between the F-15 and F-16,
annual engine flying hour data from the WSCRS system was
used. This data set divided the total annual engine £lying
hours for each engine type between tae two MDs. 1t was
assumed that the number of engine £l /ing hours for a
particular engine drove the same ratioc of replenishmen.
spares in the F-15 as it did in the ®~16. For example, if
the FP-15 was accountable for seventy five percent of the
total engine flying hours, then it aiso received seventy
five percent of the engine's replenishment spares
requirements pool.

The second factor which had to »e accounted for was the
fact that replenishment spares are pirchased lead time away
from the year in which they will be ictually used (according
to predicted usage). Therefore the -eplenishment spares
requirements should have been compared to the associated MD
condemnation costs lead time away. For this analysis, an
average lead time of two years was used to offset the
replenishment spares requirements ani condemnation costs
data sets. For example, FY 1982 replenishment spares
requirements were compared to FY 1984 condemnation costs.

In order to smooth the error introduzed by this approach, an

additional comparison was made between the total (all FY¥s)
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condemnations costs for each MD and the associated total

(all FYs) replenishment spares requirements.

Meeting the Research Obijectives

In designing the condemna*“ions cost model,

relationships between cost and potential cost drivers taken
from aircraft performance and physical characteristics were
evaluated. It was thought that these relationships could
offer a great improvement over historical factor-based
models using aircraft flyaway costs. They offer insight
into those factors which actually "drive" the cost of
recoverable spares.

The condemnations cost model had to pass the
diagnostics tests described earlier if it was to be accepted
as a valid cost prediction model. 1In reality, one should

never expect tc obtain a "perfect model" that passes all

tests with flying colors. For example, multicollinearity is
a very common issue because the cost drivers being evaluated
are all common to the weapon system for which the model is
being designed. This commonality breeds multicollinearity!
In the end, the analyst must use his or her professional
judgement in compromising between the various diagnostics
results to come up with a reasonable model. The general
criteria which were established as goals for the research
are summarized below:

1) The models’ R! should ge greater than or equal to
8?%. Their adjusted R‘ is should be within 20% of
R*.
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2)

3)

4)

5)

6)

7)

model .

Confidence levels for the models' significance
should be greater than or equal to 80%.

P-values should be relatively small (no rule of
thumb) .

Prediction intervals should not widen dramatically
at outer bounds of the sample distribution.

Residual plots for the cost drivers should be
random.

Qutliers should be minimal and their influence
reduced through proper data adjustment.

The impact of multicollinearity should be minimal.

The demand volatility factor CER was developed to see
if a statistically significant SIV model could be developed
using condemnation costs as the independent variable. The

same seven criteria listed above were applicable to this
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1V. BAnalysis and Findings

Introduction

This chapter presents the analysis and findings
generated by the procedures described in Chapter III,
"Methodology." The discussion is divided into two main
sections beginning with the condemnation CERs analysis and
ending with the demand volatility factor analysis. Within
the condemnation CERs section, the results from four models
are presented: the best linea: model, the best arithmetic
transformation model, the second best log-log transformation
model, and the best log-log transformation model. The
demand volatility factor section contains both the SAS
generated SIV model results and analysis of spreadsheet

generated demand volatility factors.

Condemnation CERs

The four models in this section were developed using
the procedures described in Chapter III, "Methodology.”
Instead of providing a single "best” model, the best linear,
arithmetic transformation and log-log transformation models
are presented. Although evaluations are not presented for
all the models tested in reaching the best model (the second
log-log transformation model in this case), these four
models show how the model performance changed as different

types of transformations were attempted.
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Tables 3 and 4 provide a condensed look at the data

used in the development of these models. While the data in

Table 3

MDS Averages for Annual Data

AVG AVG AvVG AVG
ANNUAL ANNUAL AVG ANNUAL ANNUAL
CONDEMN # OF ANNUAL FLY HRS $ OF
MDS COsTS MDS FLY HRS PER MDS SORTIES

Fl5A 47,134,882 317 72,5¢€3 229.25

F15B 8,797,006 54 13,6C2 253.82

Flea 61,525,807 606 169,8.5 280.70 122,246
F4D 17,702,001 468 98,6.8 210.75 71,363
F4E 18,968,917 608 145,11 238.19 110,123
A7D 12,667,978 389 95,804 246.68 59,341
A7K 1,110,592 30 7,553 249.34 2,826
aAl0a 21,580,794 654 220,953 338.07 105,629
F111D 14,226,418 85 17,0..5 201.17 7,476
T37B 5,830,023 689 272,151 397.02 196,644
T38A 14,560,060 897 334,218 373.80 248,339
B52G 49,673,391 173 65,510 378.83 8,980
B52H 20,689,628 96 36,523 378.88 4,842
c5a 41,076,959 717 46,674 606.59 8,537
Cl30B 3,393,740 94 37,355 397.51 17,466
Cl30E 14,515,170 296 163,935 556.65 85,617
Cl41B 48,950,346 268 284,354 1,062.72 68,047
Cl35A 62,641,457 599 200,259 333.99 45,669
FB11llAa 13,878,724 69 17,335 252.43 4,832

Table 3 provide MDS averages for variables which change over
time, annual (fiscal year) data was used in the actual model
development. Appendix D provides the data as it was used in
the model development.

Best Linear Model. ©None of the linear models tested

provided very good statistical results. BRmong the many
problems identified in the models, a universal issue was

that the criterion for R (80%+) was not achieved.
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Additionally, C.V.s were universally high (40%+). Despite
these less than awe inspiring results, the "best" linear CER
is provided for comparison with the transformed models. This
CER is expressed in the following equation:
CONDEMN = -103,454,577 + 149.20001(SORT) + 1,047.701346
(THRUST) + 45,649,536(TOEMPWT) (1)

where
CONDEMN = annual condemnations requirement ($§)

SORT = MDS annual sorties

THRUST = maximum thrust per engine (1b)

TOEMPWT = maximum takeoff weight (lk)/maximum
empty weight (1b)

An immediate flaw in this CER is fairly obvious. The
large, negative Y-intercept term allows this model to
predict negative annual condemnation requirements for those
MDS with small cost driver inputs (particularly those with
small TOEMPWT). Additional statistical information can be
found in Table 5, which provides the SAS analysis of
variance (ANOVA) results for this CER.

Looking at the positive attributes of this model, each
of the cost drivers are significant to the 99.9% level and
possess the correct sign. The adjusted R! is close to the
R value, indicating, once again, that all the variables are
making significant contributions to the model and aren't
included simply to drive up the R?. Additionally, the
overall model has a very low P-Value (.0001). Finally, the

model is parsimonious in its selection of cost drivers.
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Table 5

Linear Model Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 3 2.0833471E16 6.9444903E15 57.013 0.0001
Error 66 8.0391021E1lS 1.2180458E14
C Total 69 2.8872573E16
Root MSE 11036511.0996 R-square 0.72186
Dep Mean 26944355.,4429 Adj R-sq 0.7089
c.v. 40.96038

Parameter Estimates

Rarameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob>|T!
INTERCEP 1 -103454572 10464398.517 -9.886 0.0001
SORT 1 149.200010 22.42411015 6.654 0.0001
THRUST 1 1G47.701346 180.16734946 5.815 0.0091
TOEMPHWT 1l

45649536 4066074.0692 11.227 0.0001

—

Unfortunately, the model has a more extensive list of
negative attributes. Although the model appears to be
significant and parsimonious, its R! value (.7216) does not
pass the model acceptance criterion. This low value implies
that there may be other scurces of error not accounted for
by the model.

The C.V. value (40.96038%) doesn't instill confidence
in the model's predictive accuracy. Since one knows that
the prediction interval will only get wider as one attempts
to predict farther from the center of the data, one would be
justified in stopping at this point. For completeness of

analysis, however, the prediction intervals for every data
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point were examined to record how the interval widths varied
across the data. The smallest bound (using the SAS provided
95% bounds) for the data set was plus or minus $22,249,322.
The largest bound in the data set was plus or minus
$24,161,129. One can infer from these numbers that,
percentage wise, the bounds do not increase dramatically as
one moves from the center of the data to the outer edges of
the data. Unfortunately, the interval was poor to begin
with, so this information provides little benefit.

Another test was performed to determine how the model's
prediction intervals were impacted by varying the level of
confidence used in the model development. Figure 1L showus
the predicted condemnations cost for the datapoint closest
to the center of the data (i.e., the datapoint with the
smallest prediction interval) and it: associated upper and
lower bounds for four different levels of confidence (70%,
80%, 99%, and 95%).

This figure allows one to see tlie magnitude of
prediction interval growth as one's .;onfidence level moves
from 70% (plus or minus $11,641,288) to 95% (plus or minus
$22,249,322). If one is attempting .o predict costs for a
datapoint away from the center of th: data, and do so with a
high confidence .evel, one can expec'. a very large
prediction interval.

The BNOVA based analysis was only the beginning of the

diagnostics performed on each CER. The following

subsections address the complete line of diagnostic checks performed.

-
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Figure 1. Linear Model Confidence Level Sensitivity

Residual Plots. For each cost driver, data point

residuals were plotted against their corresponding cost
driver values in an attempt to identify necessary variable
transformations. In every case tested, the plots appeared
to be randomly scattered. Normally this is exactly the
results one hopes to achieve, because it indicates that the
variables are properly specified. It was anticipated that
variables such as "number of sorties" and "number of
aircraft" would have direct linear relationships; but for

those varianles dealing with the intensity of parts
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utilization and parts performance, transformations were
logically expected. Therefore the "random plots™ were
attributed to noise in the data and two additional residual
plot tests were performed: 1) partial regression plots and
2) omitted variable residual plots.

For these plots, one hopes to see a pattern in the
residuals, because the pattern (be it linear, or some sort
of non-linear pattern) signifies that the independent
variable does, in fact, have a relationship with the
dependent variable. Two variables were removed from the
"hest" linear model because these residual plots show no
patterns in the data. This action was also confirmed by
improvement in the model's significance. The only non-
linear pattern identified is that reproduced in Figure 2.
The partial regression residual plot for tl : variable
"maximum takeoff weight/maximum empty weight (TOEMPHT)"
displays residuals increasing at an increasing rate as the
TOEMPHT values increase. The KC-135 data points at the
extreme right in the graph appear to compose a separate
grouping from the rest of the data points. The nature of
the cargo and mission (aerial refue’ing) for this aircraft
may provide unique design considera‘ions that make this MDS
an outlier with respect to the Y variable. The pattern seen
in Figure 2 suggests that TOEMPWT should either be
transformed using a positive exponent greater than one (an
exponent value of two was used) or a log-log transformation

should be used for the entire model.
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Outliers. The KC-135 was not the only MDS with
datapoints that were outliers. Seventeen of the seventy
data points had studentized residual values which classified
them as outliers with respect to ¥ (the cutoff value being
approximately 1.296). The MDS represented by these outliers
include the F-16A, the B-52G and H models, the C-5A, the C-
130E, the C-141B and the KC-135A. The leverage values for
six datapoints indicated that these MDS were outliers with
respect to X (the cutoff value being .1143). The MDS
represented by these outliers include the T-38A and the C-
5A.

Additional tests were run to determine how influential
these outliers were. The results varied depending upon the
test used. According to the Dffits test, five data points
representing three MDS (F-16A, C-5A, and KC-135A) were
identified as influential outliers with respect to Y (the
cutoff value being .47804). Though this is a significant
reduction from the earlier figure of seventeen, the number
is still too high. By definition, outliers should represent
an abnormality, not a common occurance. The Dfbeta test
showed that four F-16A datapoints, one T-38A datapoint, two
C~-5A datapoints, one C-130B datapoint and three KC-135A
datapoints were influential outliers (the cutoff value being
.2390). The final influentiallity test, Cook's D, failed to
identify any influential outliers.

Typically, one doesn’. expect to see a large proportion

of outliers within a data set. Outliers, by definition,
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should not be the norm. However in this model a large
number are identified. This phenomenon is at least
partially explained by the wide variety of MDS represented
in the model database. In attempting to develop an all-
inclusive CER for aircraft condemnations requirements, noisy
data became a byproduct of the model's generalizability.
After identifying the outliers the next issue was how

to deal with them. According to acceptance criterion number
six, the number of outliers should be "minimal" and their
impact should be minimized through proper data adjustment
techniques. However, in this case the broad population
definition (all Air Force MDS meeting the "mature" weapon
system criteria) made it impossible to simply drop
datapoints for being outside the population. BAdditionally,
no information was found which supported any type of data
adjustment. Therefore, no action was taken to remove or
adjust the outliers.

Multicollinearity. Both tolerance values and the
SAS COLLINOINT function were evaluated to determine the
impact of multicollinearity upon the model. Neither test
showed any sign of a significant problem. The minimum
tolerance value was .64698110 (with the cutoff being .10)
and the maximum condition number was 2.00869 (with the
cutoff being 10.0).

Heteroscedasticity. When datapoint residuals were
plotted against predict:d condemnation values (see Figure

3), a diverging pattern in the data indicated the presence
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of heteroscedasticity. GCiven the large number of problems
already identified with this model, no attempt was made to
correct for the apparent heteroscedasticity.

Model Predictive Capability. Table 6 shows how

well the best linear model performed in predicting costs for
datapoints outside the development database (see Appendix E

for validation data set).

TABLE 6

Linear Model Validation Test Results

ACTUAL BEST Estimate

CONDEMN LINEAR Divided by
MDS COSTS ESTIMATE ACTUAL
Fl6A 27,537,555 39,829,790 1.45
F4D 24,151,890 18,676,955 0.77
F4E 24,254,355 21,647,671 0.89
A7D 20,075,237 10,814,153 0.54
ATK 1,560,822 2,477,468 1.59
Aloa 12,012,017 30,443,456 2.53
F111D 14,831,043 16,865,879 1.14
B52G 43,909,467 36,073,742 0.82
B52H 20,415,995 36,107,341 1.77
C5A 71,036,363 50,403,420 0.71
C130B 4,698,837 (5,223,867) (1.11)
C130E 18,837,210 29,406,501 1.56
Cl41B 51,264,650 36,080,213 0.70
FB11l1lA 13,471,819 26,930,368 2.00

As one might have guessed from the preceding
discussion, this model did not come through the validation
test with flying colors. As previously identified, the
model predicts "negative" condemnations costs in some

instances. 1In this case, the FY 1981 C-130B requirement is
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estimated to be negative $5.2 million when the actuals were
really $4.7 million. The largest ansolute error (almost $21
hillion) is seen in the FY 1981 C-5A estimate. Although the
F-4E estimate is within eleven percent of the actual, the
average absolute percentage error among the fourteen
estimates was 63.6 percent.
Model Sensitivity. Each model was also tested

(with the same database used above) to determine how
sensitive it was to changes in the values of its independent
variables. The best linear model was relatively insensitive
to a plus or minus twenty percent change in the "annual MDS
sorties" variable. The average increase in the condemnation
estimate was only 5.6 percent.

Adjustments to the second variable, "thrust per

" provided mixed results. 1If the original

engine,
condemnations cost estimate for an MDS is small relative to
the size of the model's parameter estimate, variable value,
or product of the two, it is dramatically impacted
(percentage wise) by the plus or minus twenty percent
adjustment. For example, the A-7K original condemnation
costs estimate was only $2.48 million. The "thrust"
parameter value, multiplied by the value for thrust, was
15.2 million. Increasing the "thrust" variable resulted in
a new estimate that was 2.23 times the size of the original

estimate., Over the entire data set, the average estimate

change attributable to adjusting this variable was 24.3

percent.




Adjusting the third variable "maximum takeoff weight
divided by maximum empty weight (TOEMPWT)," had the greatest
impact upon the model estimates. For example, the original
C-130B estimate was "negative" $5.2 million. Increasing the
"TOEMPWT" by twenty percent resulted in a new estimate of
$11.8 million. The A-7K estimate increased by 727 percent.
Here once again the relative size of the parameter value
compared to the original estimate made a difference. The
pAarameter value was 45.65 million compared to an original
estimate of only $2.48 million. The average estimate change
attributable to adjusting this variable was 145.5 percent.

It is clear from these results that the linear model is
extremely sensitive to the TOEMPWT variable. The large
parameter values in this model led to greater percentage
changes in the estimates than the percentages used to adjust
the variables. Appendix F contains the complete results of
the sensitivity test for the linear and arithmetic
transformation models.

Small Database Performance. The final

test run on each model was to reduce the model development
database by replacing annual MDS values (for those variables
which changed over time) with a single MDS average. This
test was performed to eraluate the impact of data smoothing
on the model statistics.

Upon condensing the best linear model's database, most
of the statistics were actually degraded. The model's F-

Value fell from 57.013 to 12.34. The C.V. rose from 40.96
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to 45.20. Only the R! improved slightly from 72.16 percent
to 74.01 percent. Additionally, the data smoothing did not
aide in the interpretation of residual plots as had been
hoped. Given that this type of data smoothing did not
improve the model performance, no further analysis was
performed using the smaller data set and this linear model.
Best Arithmetic Model. 1In general the arithmetic
transformations did not fair much ketter than the linear
models. In two instances, extremely high R%;(92%+) and
relatively low C.V.s (19% and 24%) were obtained; but both
of these models involved extremely high multicollinearity
and counter-intuitive parameter signs. The "best"
arithmetic transformation includes the same variables as
those in the "best" linear model; but the "maximum takeoff
weight divided by maximum empty weight” variable is squared
(one of the transformations indicated by the linear model
partial regression residual pleot). The arithmetic equation
for this CER is as follows:
CONDEMN = -50,924,161 + 141.626044(SORT) + 1,140.836199
(THRUST) + 9,469,327 (TOEMPWT2) (8)

where
CONDEMN = annual condemnation requirement ($)

SORT = MDS annual sorties
THRUST = maximum thrust per engine (1lb)

TOEMPWT2 = (maximum takeoff weight (1lb)/maximum
empty weight (lb))2
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A standard gquadratic equation was also attempted which
included both the TOEMPWT and TOEMPWT2 terms; but this

model's performance measurements were inferior to the model

using TOEMPWT2 alone.

The transformation of TOEMPWT to TOEMPWT2 did not have
a great impact upon the model's performance relative to the
linear model,
predicting negative condemnation costs due to the large,
negative Y-intercept.
less than one half that of the linear model's Y-intercept
but it still is a large negative number. This model's ANOVR

statistics are also similar to the linear model's. Table 7

Once again, this model is capable of

The absolute value of the term is

provides the SAS ANOVA table.

Arithmetic Transformation Model BRnalysis of Variance

Table 7

Source

Model
Error
C Total

Variable

INTERCEP
SORT
THRUST
TOEMPWT2

D

1l
1
1
1

Sum of
DF Squares

3 2.09961E16

Mean
Square

6.9987E1S5 58.645 0.0001

66 7.8764732E15 1.19340
69 2,8872573El6

Root MSE 10924307.8761
Dep Mean 26944355.4429

c.V.

Parameter
F Estimate

-50924161
141.626044
1140,836199
9469327

40.54396

Parameter

Standard
Error

6306361.7189

21.89513677
177.95185884
830485.53975

F Vvalue Prob>F

S5El4

R-sgquare 0.7272
Adj R-~sq 0.7148

Estimates

T for HO:
Parameter=0 Prob>|T)
~-8.075 0.0001
6.468 0.0001
6.411 0.0001
11.402 0.0001
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The good qualities of this model mirror those of the
linear model. Each of the cost drivers are significant to
the 99.9 percent level and they all possess the anticipated
pbsitive sign. The adjusted R! value is very close to the
R! value and the overall model's P-Value is very low
(.0001). This model is also parsimonious in its use of cost
drivers.

Unfortunately, this models shares the same negative
ANOVA attributes as well. The R! is only negligibly higher
at 72.72% (compared to the linear model's 72.16%). The C.V.
value is also only slightly improved (40.54396 compared to
40.96038). The prediction intervals did not increase
significantly from the center of the data ($22,026,530) to
the outer edges of the data ($23,918,251); but like the
linear model, the prediction interval was already so large
in the center of the data that this positive attribute is
inconsequential.

Figure 4 illustrates how this model's prediction
intervals are impacted by adjustments to the level of
confidence used in the model development. The intervals
decrease by almost fifty percent as one moves from the SAS
provided 95% confidence level (plus or wminus $22,026,530) to
a 70% confidence level (plus or minus $11,524,720). These
bounds, once again, are only slightly improved (smaller)

over the linear model bounds.
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Sensitivity

Residual Plots. The same three forms of residual

plots used on the linear model were applied to this model
also. The plots were almost identical. 1In other words, the
transformation of TOEMPWT did not signii.cantly change the
partial regression residual plot which had originally
suggested the need for a transforjation (Figure 2). If
changing TOEMPWT to TORMPWTZ had been the answer, one would

expect. the new plot to show a linear pattern. The second

alternative to squaring the TOEMPWT variable was performing
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a log-log transformation rn the entiie model. This type of
transformation is discussed in the ne¢ xt model subsection.
Qutliers. Seventeer -f tht seventy datapoints in
the model development databe-- .:*e :dent: fied as outlier
with respect to Y by their .- :3.:2¢d rasidual values.
With the exception of one C-5k datapcint being swapped for a -
C-141B datapoint, these outlie.. were the same as those
identified in éhe linear wodel analysis. The databases used
to develop the two models are identical, except for the
TCEMPWT values which are squared in this model; and because
the number of variables are the szme, the cutoff values used

in the various outlier tests are also the same.

g The different outlier influentiallity tests provided
py mixed results., The arithmetic transformation model's Dffits

test identified six data points as being influential

outliers with respect to Y. The T-38A was the sole addition

4
el N RN 7 I a0 A A

to the linear model's list of MDS containing these outliers
(F-16A, C~5A, and KC-135A). The Dfbata test showed that
four F-16A datapoints, one T-38A datapoint, three C-5A
datapoints, and three KC-135A datapoints were influential
outliers. All but two of these datapoints were identical to
the linear model's results. The Cook's D test failed to
identify any influential outliers.

The outlier problem for this model was essentially the
same as that in the linear model. As with all the models
tested, no attempt was made to adjust the data due to a lack

of information supporting app:opriate adjustments.
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Multicollinearity.

Both the tolerance values and

COLLINOINT condition numbers indicated that there was no

significant multicollinearity problem in the model.

The

smallest tolerance value was .665 (with a cutoff valuve of

.10).

value of ten).

Heteroscedastiazity..

pred.cted condemnaticu value plot looked exactl:

linear model's corresponding plot (Figure 3).

The largest condizion number was 1.95 (with a cutoff

The datapoint residual versus

like the

.nce again,

however, no action was taken to correct for the apparant

heteroscedasticity.

idodel Predictive Capability.

the predictive capability of this model.

TABLE 8

Table 8 addresses

The validation

Brithmetic Transformation Model validation Test Results

MDS

Fléa
F4D
F4E
A7TD
A7K
L1OA
F111D
R52G
B52H
CSA
C1l30B
Cl30E
C1l41B
FB111lA

ACTUAL
CONDEMN
COSTS

27,537,555
24,151,890
24,254,355
20,075,237

1,560,822
12,912,Cc17
14,831,043
43,909,467
20,415,995
71,036,363

4,698,837
18,837,210
51,264,650
12,471,819

BEST Estimate

LINEAR Divided by
ESTIMATE  ACTUAL
39,006,511 1.42
18,413,977 0.76
21,467,963 0.89
10,681,295 0.54
3,126,105 2.00
27,935,278 2.33
17,001,586 1.15
35,646,512 0.81
35,708,541 1.75
51,640,071 0.73
(4,224,276) (0.90)
27,056,999 1.44
35,027,409 0.68
26,212,317 1.9%
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data set found in Appendix E was run through the model to
determine how well this model performed.

Just as in the linear model, the C-120B stands out like
a sore thumb because the model predicts "regative
condemnation requirements. Because conly living creatures
regenerate their broken parts, this type ¢f estimate would
be difficull to sell. The largest absolute error was
a;sociated with the C-5A ($19.4 willion). The average
absolute percent~ge error among the iourtcen estimates is
60.9 percent--a 2.7 pe'.cent improvement over the linear
model .

Model Sensitivity. The arxthme'ic transformation

model was relatively insensitive to the "1IDS annual sorties”
variable adjustment. Increasing this; vur .able by twenty
percent increased the condemnation cost estimates, on
average, by only 6.79 percent. Adiusting the second
variable, "thrust per engine,”" in the same: way increased the
condemnation cost estimates, on averzge, by 25.29 percent.
A twenty percent increase in the third variable, "(maximum
takeoff weight divided by maximum empty weight)z," resul ted
in the largest average estimate incr2ase--135.07 percent.
These estimate increases were similar to the linear “

model results. The first two variable~ were impacted

DK

slightly more in the arithmetic transformation model; but
*he thiré variable's average estimate increase was over ten
percent less (in the arithmetic model). Because the third

variable was *"e most sensitive of the lot, the arithmetic
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model was, overall, less sensitive than the linear model.
As seen in the linear model, those MDS with smaller initial
condemnations costs were, percentage wise, impacted more
severely during the sensitivity test.

Small Database Performance. Using the condensed

database had practically the same impact on this model as it
did the linear model. The szalue rose slightly from
72.72% to 74.63% but other statistics were degraded. The F-
Value dropped from 58.645 to 12.749. The C.V. increased
from 40.54396 to 44.65703. For these reasons, no additional

analysis was performed with the small database.

Second Best Lod-Log Transformation Model. As one could
see in the preceding analysis, the linear and arithmetic
transformation models were very similar in their
performance. It wasn't until log-log transformations were
used that significant improvements in the model statistics
were achieved., It should be noted that direct comparisons
between the two log-log models presented in this thesis and
the preceding models are hampered by the fact that different
databases were used in the development of the log-log
models. The "MDS annual sorties" and "MDS flyaway cost"
variables were incomplete for some MDS and therefore,
depending on which variables were included in a model, the
databases differed. The first log-log model's database
excludes the T-37B, T-38A,and KC-135A datapoints (as found
in the first two models) and adds FB-111A datapoints. The

second log~log model discussa2d also excludes the same three
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MDS; but in addition to the FB1l1llR, its database includes F-
15A and F-15B datapoints. The second log-log model is also
the only one to contain five datapoints for all the MDS
contained in its database (the other models contained a few
MDS with less than five datapoints). Given that a generic
aircraft spares model was being developed (i.e., not mission
specific), it was considered more important to include as
many MDS as possible in each model rather than restricting
the models to a common database.

The mathematical equation for the second best log-log

transformation model is expressed in the following equation:

CONDEMN = antilog(-11.621185)*(s0RT) B x (HRsORT) 168«
(SPEED ) 5109 (uaxLE) 35784 % (ToEMpRT) 3085454
(FLYCosT) §318 (9)
where
CONDEMN = annual condemnations requirement ($)
SORT = annual sorties
HRSORT = annual flying hours/MDS annual sorties

SPEED

maximum speed (kn)

MAXLF

maximum load factor (g's)

TOEMPWT = maximum takeoff weight (lb)/maximum empty
weight (1b)

FLYCOST = flyaway cost (8)

Without going into the model‘'s statistical performance,
one improvement in this model, relative to its predecessors,

is immediately apparent. Because this model has no large
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negative Y-intercept term, it will always provide one with
positive condemnation cost estimates.

Looking at Table 9, one can see that this model also
has many statistical impiovements over the linear and

2 value

arithmetic transformatio: models. For example, the R
(92.81%) for this model .s the first to meet the acceptance
criterion? established in Chapter III (80.0%). The adjusted

R! value (92.08%) is very close tc the R? value, indicating

Table 9

Second Best Log-Log Transformation Model
Enalysis of Variance

Sum of Mean
Source DF Squares Square F value Prob>F
Model 6 56.84300 9,47383 126.985 0.0001
Errox 59 4.40173 0.07461
C Total 65 61.24473
Root MSE 0.27314 R-square 0.9281
Dep Mean 16.67773 Bdj R-sgq 0.9208
Cc.V. 1.63775

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob>!Ti
INTERCEP 1 -11.621185% 1.72285885 -6.745 0.0001
LSORT 1 0.857977 0.0438854 19.550 0.0001
IHRSORT 1l 0.97684° 0.19575726 4.990 0.0001
LSPEED 1l 0.557096 0.08992126 6.195 0.0001%
LMAXLF 1l 0.525784 0.14409791 3.64 0.0006
LTOEMPHWT 1 3.085454 0.53437101 5.74 0.0001
LFLYCOST 1l 0.696182 0.09304748 7.82 0.0001

indicating that the increase in R? is not due simply to an

influx of insignificant independent variables. 1In fact. all
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of the individual variables are significent to the 99.9%

level and the F-Value (126.985) more
previous models' statistics.

model's P-Value is very low (.0001).

The model's Root MSE value (27.314%

significant improvement; but it stil.

would like to see. A figure closer
have provided a much warmer feeling
predictive accuracy.

The prediction interval varied
upon whether one was near the center

Using the SAS 95% prediction interva

that at the center of data the width

interval (converted to zrithmetic sp-

the outer edge of the data, the pred

grew to 57,336,284--a difference of

this model is more sensitive to a da-

the center of the data,

models had poor intervals even in th:

Being consistently bad is not an imp
moves to the exztreme high end of the
model have larger prediction interva

One must be careful when compar
performance for a log-lcg model with

arithmetic transformation model. Be

one must rem.

‘ovement .

thar doubles the

Additionally, the overall

also represents =
isn't as low as one
o ten percent would
bout this model's
ignificantly depending
of the data or not.
bounds, it was noted
of the prediction
ce) was 11,324,214. &t
ction interval width
6,032,070. 2lthough

apoint's distance from

'mber that the previous

cent,r of the data.
Only when one
data does the log-log
widths.

ng prediction interval
that of a linear or

ng at the center of the

data in a log-log model does not guarantee that the

arithmetic width of the prediction interval is the smallest

108




in the model (as it does in the linear and arithmetic
transformation models). This datapoint's prediction
interval, when converted to arithmetic space, is the
smallest, percentage wise, relative to the predicted value
of the dependent variable (¥). BAs will be seen in the
second log-log model, if the center of the data is located
nearer the larger predicted values for Y, the prediction
interval can be rather large and still be, percentage wise,
the best predictor of Y.

The only area in which this log-log model is weaker
than its predecessors is in its "ease of application.”" This
model has more cost drivers and therefore additional data
must be gathered before it can be used. However, the
variables were considered logical and they all tested to be
significant. If one were to exclude significant variables
simply for ease of application, one would have to accept a
lower R

The next test conducted was the confidence level
sensitivity test. The center of the data was located in
logarithmic space and then converted to arithmetic space.
Figure 5 shows how the bounds (converted to arithmetic
space) are impacted by varying the level of confidence. BAs
in the previous models, moving the level of confidence from
70% to 95% had a tremendous impact on the prediction

interval width. The wid“h more than doubles from 5,698,179

to 11,324,210.
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Figure 5. #2 Log-Log Transformation Model
Confidence Level Sensitivity

Residual Plots. The same three forms of residual

plots used in the previous analysis were also used on the
log-log models. Once again, all of the standard residual
plots appeared to show randomly scattered datapoints. For
this model, however, neither of the two additional residual
plot forms identified the need for a variable
transformation. The patterns in thewe plots appeared to be
positively sloped and linear, indicaf.ing that the correct

transformations had been found. It thould be noted that the
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data dispersion was greater for the "TOEMPWT" and "MAXLF"
variables.

Outliers. Using a log-log transformation did not
improve the outlier problem seen in the previous models.
Fifteen of the 66 datapoints used in this model were
identified as outliers with respect to Y by their
studentized residual values. The MDS represented in these
outliers included the F-4D, F-4E, A-7D, A-7K, B~52G, B~52H,
C-130B, C-141B, and FB-111A. The leverage values for only
one of the 66 datapecints indicated it was an outlier with
respect to X. This was a C~5A datapoint. The percentage of
outliers actually increased with this transformation.

The number of outliers which were influential was also
high according to the Dfbeta test. Fifteen different
datapoints were influential outliers for one variable or
another according to this test. The MDS included in this
category were the F-4D, F-4E, A-7D, A-7K, A-10A, C-130B, C-
130E, C-141B, and FB-111lA. The Dfits test, however,
indicated that only four datapoints (including F-4E, C-130B,
and A-7K datapoints) were influential outliers with respect
to Y. The Cook's D test, however, revealed no influential
outliexrs. Once again, no action was taken to alleviate the
outlier condition.

Multicollinearity. Whether or not one believes
there is a serious multicollinearity problem in this model
depends upon which test's rule of thumb one has more faith

in. The rule of thumb used for the tolerance test is that
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each variables's tolerance value must be ten percent or
higher. The "HRSORT" variable has a tolerance value of
.07621283. The rule of thumb used in this thesis for the
COLLINOINT test is that the highest condition number can be
equal to or greater than ten. This model's largest
condition number is 8.19456. Even if a large degree of
multicollinearity exists, it doesn't necessarily mean that
the model will not continue to predict in a consistent
manner. 1If the multicollinearity is constant over time,
such as when it is due to some physical law, the model will
continue to predict as well as if the multicollinearity was
not present. According to the COLLINOINT test, the

multicollinearity relationship appears to be between the

1" on Hwon

“"flying hours per sorty, maximum load factor, ratio of
maximum takeoff weight to maximum empty weight," and
"flyaway cost" variables. Given the time constraints of
this thesis, there was inadequate time to thoroughly study
the relationship among these variables to determine if a
constant relationship should be expected. Because the final
log-log model (discussed in the next model subsection) did
not appear to have a severe multiccllinearity, no effort was
made to adjust this model. Given the mixed results of the
tests, and the possibility that the multicollinearity is
constant over time, it hasn't really been determined that

there i1s a need for any adjustment.

Heteroscedasticity. The “datapoint residual

versus predicted condemnations plot" did not suggest the
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presence of heteroscedasticity in this model. The scatter

pattern maintained a fairly constant width across the data.

Model Predictive Capability. Table 10 shows how

well this log-log transformation nodel performed in
predicting costs for the validation data set (see Appendiz
E). Each estimate produced by SAS was multiplied by a bias
adjustment factor of 1.038.

The average absolute percent

error among the fourteen estimates was 30.6 percent. This

is a considerable improvement over the previous models'
percent error (63.6 percent and 60.9 percent) and as was

already stated, this model provides no '"negative'" cost

TABLE 10

£2 Log-Log Transformation Model Validation Test Results

ACTUERL #2 Estimate

CONDENN Log-Log Divided by
MDS COSTE ESTIMATE ACTUAL
F16A 27,537,555 39,235,008 1.42
F4D 24,151,890 14,723,360 0.61
F4E 24,254,355 21,934,295 0.90
A7D 20,075,237 9,165,037 0.46
A7K 1,560,822 1,690,062 1.08
AlOA 12,012,017 25,926,341 2.16
F111D 14,831,043 13,946,359 0.94
B52G 43,909,467 39,742,968 0.91
B52H 20,415.995 25,424,376 1.25
c5a 71,036,363 45,137,070 0.64
Cl30B 4,698 837 2,881,839 G.61
Cl30E 18,837 210 15,197,728 0.81
Cl41RB 51,264,650 59,692,585 1.16
FB1lla 13,471,819 12,312,288 0.91
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estimates. However, the largest abs>lute error was $25.9 E
million (for the C-5A), compared to $21 million and $19.4
for Lhe previous models. :

Model Sensitivity. Table 11 presents the results e

of the model sensitivity test. For each cost driver, the )
impact of a plus or minus twenty peircent change in X (the .
cost driver value) is presented. A: one can see, the model

1s relatively insensitive to change: in all the cost drivers z
except one "the ratio of maximum ta) eoff weight to maxzximum ;
empty weaght'" (TOEMPWT). A twenty ;ercent increase in this 3
variable results in a 76 percent in:rease in the cost
estimate. The only other variable shich, when adjusted by ?

twenty percent, caused a percent acjustment in the

Table 11 ;

#2 Log-Log Transformation Model
Sensitivity Test

Delta Y due to Delta Y due to 4
Variable increase in X decrease in X ;
SORT +.17 -.29 P
HRSORT +.19 -.20 ¥
SPEED +,11 -.12 E
MAXLF i.10 -.11 E
TOEMPWT +,76 -.50 1
FLYCOST +.14 -.14 -

condemnations estimate greater than twenty percent was the

"annual sorties" variable. When the SORT value was

multiplied by .8, the cost estimate decreased by 29 percent.




Small Database Performance. The condensed

database test resulted in mixed results. The model's R‘
went up from 92.81 percent to 97.04 percent and the C.V.
fell from 27.314 percent to 25.285 percent. These welcomed
results were offset by the fact that the model’'s F-~vValue
fell from 126.985 to 38.314. Additionally, the condition
value on the COLLINOINT test went up to 9.8942. For these
reasons, no further analysis was performed on the condensed
data set model.

Best Log-Log Transformation Model. The "best" log-log

transformation model was actually outperformed by the log-
log model discussed above in several respects, but it was
decided that its overall performance made this last model
the best one developed during the analysis.

The mathematical equation for the "best”™ log-log

transformation model is expressed in the following equation:

CONDEMN = antilog(-9.185307)*(AcNuM)!-0181x (purusr) 1134«
(ToEMPWT ) 14959 x (pLYcOST) 86707 (10)
where
CONDEMN = annual condemnations requirement ($)
ACNUM = annual number of aircraft in MDS inventory

THRUST = maximum thrust per engine (lb)

TOEMPHT = maximum takeoff weight (lb)/maximum empty
weight (1b)
FLYCOST = flyaway cos ($§)
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Like the first log-log model just described, this model
always provides positive estimates ( .e., the sigyn is
positive). Since the superiority of -he last log-log model
over the linear and arithmetic transiermation models was
made clear in the last model subsect:on, the following text
will focus on the comparison of the two log-log models.
Table 12 provides the ANOVA staiistics for the "best"”
log-log transfocrmation model. As previously stated, there
are several statisitics in which the "irst log-log model
example, the first

performs better than this model. Fo.

log-log model’'s R’ value (92.81%) is slightly better than

Table 12

Best Log-Log Transformation Model
Analysis of Variance

Sum of Mea .
Source DF Squares Square F Value Prob>F
Mcdel 4 78.44007 19.61012 239.074 0.0001
Error 75 6.15187 0.08212
C Total 79 84.59193
Root MSE 0.28640 R-sguare 0.9273
Dep Mean 16.64209 Adj R-sq 0.9234
C.V. 1.72094

Parameter Es:imates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob>|T|
INTERCEP 1 -9.185307 1.14373918 -8.031 0.0001
LACNUM 1 1.018916 0.05170451 19.707 0.0001
LTHRUST 1 0.743450 0.11291517 6.584 0.0001
LTOEMPWT 1 2.491597 0.44931709 5.545 0.0001
LFLYCOST i 0.6670679 0.08913384 7.484 0.0001




that of this model (92.73%). Both model's adjusted Rls are
close to their R!, and so the overall difference in the R!
statistic is minuscule. The first model's Root MSE
(27.314%) is also slightly better than that of this model
(28.640%). The individuals variables in both models are
highly significant (99.9%) and they both have very small P-
Values (.0001).

The first major difference in the models is in their F-
Values. The "best" model's F-Value (239.074) almost doubles
that of the first log-log model (126.985). This indicates
that it is a more statistically significant model. The best
log~log model also has two fewer ~est drivers. This will
make the data gathering process easier for this model.

The prediction interval analysis for the best log-log
model was interesting in that the bounds widths behaved
differently. Like the last model, the prediction interval
varied significantly depending upon whether one was near the
center of the data or not. ﬁsing the SAS 95% prediction
interval bounds, one can see that at the center of data the
width of the prediction interval (converted to arithmetic
space) is 50,932,443. Though this interval is significantly
wider than the first model's (11,324,212), this doesn't mean
that the model will always have larger bounds. At the outer
edge of the data (where ¥ is the smallest), the prediction
interval actually shrinks to a width of 4,142,632--a

reduction of 46,789,811. The fact that this model's bounds
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are wider in the center of the data simply means that the
point at which this mcdel predicts the best, percentage
wise, occurs at higher estimated values of Y. The magnitude
of the prediction interval change is actually only 758
thousand higher in this model.

Figure 6 displays the confidence level sensitivity test

results. Like the other models, the results show that the
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Figure 6. Best Log-Log Transformation Model Confidence
Level Sensitivity

prediction interval almost doubles as the level of

confidence increases from 70 percent to 95 percent. In
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order to show the relative size of the various model's
bounds when the same scale is used for ali the models, one
additional graph (Figure 7) was created. The bounds for the
linear and arithmetic transformation models were essentially
the same width and therefore, to make a cleaner graph,

Figure 7 includes only the linear bounds. The two log-log
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Figure 7. Model Prediction Interval Bounds Comparison

model bounds are also plotted. While the widths of the best
log~log model and the linear model appear to he

approximately the same, the intervals for the log-log model
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occur at a much higher predicted valie of Y. B plus or minus
$12.8 million bound for an estimate »f $41.6 million is much
more accurate (percentage wise) than a plus or minus $11.6
million bound for an estimate of $19.9 million.

Residual Plots. The same :hree forms of residual

plots used in the previous analysis were also used on this
log-log models. The model performed essentially the same as
first log-log model. Once again, al of the standard
residual plots appeared to show randimly scattered
datapoints. Neitherthe of the two auditional residual plot
forms identified the need for a vari.ble transformation.

The data dispersion was a little tighter for this model
however.

Qutliers. The best log-lo« transformation .still
possessed an outlier problem. Seven:een of the eighty
datapoints used in this model were identified as outliers
with respect to ¥ by their studentized residual values. The
MDS represented in these outliers included the F-15A, F-15B,
P-4D, F~4E, A-7D, A-7K, B-52G, B-52H, C-5A, C-130B, C-130E,
and FB-111A. None of the datapoints were outliers with
respect to X according to the leverage values.

Once again, the number of outliers which were
influential was high according to the Dfbeta test. Fourteen
different datapoints were influentia out'iers for one
variable or another, including F-15A F-15B, F-~4E, A-7K, C-
S5A, C-130B, and FB-111lA datapoints. The Jfits test

indicated that only four datapoints -including one each of
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the P-4E, A-7K, C-5A, and C-130B datapoints) were
influential »>jutliers with respect to Y. Once again, no
action was taken to allesiate the outlier condition.

Multicollinearity. Neither the tolerance values

or the COLLINOINT ccndition values indicated the presence of
significant multicoilinearity in this model. The highest
cond:rtion number was only 4.3115, compared to 8.19456 for
the last model. The lowest tolerance value was .19756894.
This is a significant reduction in the level of
multicollinearity within the model.

Heteroscedasticity. The "datapoint residual

versus predicted condemnations plot" did not suggest the
presence of heteroscedasticity in this model. The scatter
pattern maintained a fai.ly constant width across the data.
Model Predicti e Capability. Table 13 shows how
well this log-log transf>rmation model performed in
predicting costs for the validation data set (see Appendix
E). The SAS provided estimates were multiplied by a bias
adjustment factor of 1.042 to arrive at the estimates in
Table 13. The average absolute percent error among the
fourteen estimates was 27 percent, compared to 30.6 perceint
for the first log-log model. The model provides no
"negative" cost estimates and the largest percentage error
was 77 percent (for the BA-10A), compared to 116% for the
same datapoint in the first log-logy model. The largest

absolute error was $13,477,655 (for the C-5A) compared to
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£25,897.293 for the same datapoint i

model .

the

TABLE 13

first log-loyg

Best Log-Log Transformation Model V..lidation Test Results

MDS

Fl6A
F4D
F4E
A7TD
A7K
Aloa
F111D
BS52G
B52H
C5a
C130B
Cl30E
Cl41B
FBl1lA

ACTUAL
CONDEMN
COSTS

27,537,555
24,151,890
24,254,355
20,075,237

1,560,822
12,012,017
14,831,043
43,909,467
20,415,995
71,036,363

4,698,837
18,837,210
51,264,650
13,471,819

Be: t
Log- Log
ESTIMATE

46,493,354
18,820,898
24,178,775
12,534,068

1,518,977
21,269,329
11,966,556
42,115,435
27,415,449
57,558,708

3,149,006
12,688,688
43,537,881
11,701,858

Estimate
Divided by
ACTUAL

1.68
0.78
1.00
0.62
0.97
1.717
0.81
0.96
1.34
0.81
0.67
0.67
0.85
0.87

Model Sensitivity. Table 14 presents the results

of the model sensitivity test. For ‘:ach cost driver, the

Table 14

Best Log-Log Transformation Model
Sensitivity Test

Delta Y due to Delta Y due to

Variable increase in x decrease in X
ACNUM +.20 -.20
THRUST +.15 -.15
TOEMPHT +.58 ~.43
FLYCOST +.13 -.14




impact of a plus or minus twenty percent change in X (the
cost driver value) is presented.

Like the first log-log model, this model is relatively
insensitive to changes in all the cost drivers except one
"the ratic of maximum takeoff weight to maximum empty
weight" (TOEMPWT). A twenty percent increase in this
variable results in a 58 percent increase in the cost
estimate (compared to 76 percent for the first log-log
model).

Small Database Performance. The condensed

database test provided mixed results for this model. Using
this database, the model's R weat up from 92.73 percent to
95.36 percent. Its Root MSE dropped from 28.64 percent to
26.38 percent. Reducing the database size resulted in a
large drop in the model's F-Value. It fell from 239.074 to
56.555. The small improvements were not considered
significant enough to pursue further analysis using the

small database.

Demand Volatility Analysis

This section is dividec into two subsections, the first
section presenting the results of a replenishment spares CER
and the second section looking at spreadsheet generated
demand volatility factors.

Replenishment Spares CER. The ultimate goal of
producing the condemnation CERs described in the preceding

text was to take the estimates generated by these models and
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use them to predict annual replenishment spares costs. BAs
discussed in Chapter II, this type of% approach is currently
included in the HQ AFLC/FMC's Logist.cs Support Cost Model
(LsSC) [the LSC model, however, is an acccunting type model
as opposed to a CER]. BAn attempt was made to irmprove upon
the accuracy of the demand volatility factor used in the LSC
model to convert condemnation costs to replenishment spares
costs. The following text presents the results of this
effort.

A SIV replenishment spares model was created with SAS
using annual MD condemnation costs as the sole cost driver.
Appendix G provides the condemnations cost database and
replenishment spares requirements database used in
development of the SIV. The tables in this appendix also
include the mission design (MD) and fiscal year associated
with each datapoint. The arithmetic expression of this

model is expressed in the following equation:

REPLEN = ~10,613,130 + 3.75853(CONDEMN) (1)
where
REPLEN = annual replenishment spares requirement ($)

CONDEMN = annual condemnations cost ($)

This model has the same problem found in the linear and
arithmetic transformation condemnation CERs--it has a large
negative intercept and therefore can result in negative cost
estimates. This model also has poor statistics, as one can

see in the ANOVA table provided below.
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The "condemnations cost'" variable has the correct
parameter estimate sign and is a significant cost driver
(P-Value of .0001). The model's F-Value (129.849) is also
greater than that seen in the first two models; but
everything else goes down hill from there. The R! value
(59.06) suggests that there are other sources of error not
captured in this model. This statistic is well below the 80
percent acceptance criterion stated at the end of Chapter
II1. The C.V. (58.46779) tells one that this model is not a
very reliable predicter of annual replenishment spares
requirements. This is confirmed in Figure 8, which presents
the SAS 95% prediction intervals for this model. The
interval width is extremely large and still some datapoints

fall outside the bcunds.

Table 15

Replenishment Spares CER Bnalysis of Variance

Sum of Mean
Soutrce DF Squares Square F Value Prob>F
Model 1 1.6558149E18 1.6559149E18 129.849 0.0001
Error 90 1.1477359E18 1.2752621EL6
C Total 91 2.803650¢E18
Root MSE 112927504.960 R-square 0.5906
Dep Mean 193144805,913 Adj R-sq 0.5861
c.v. 58.46779

Parameter Estimates

Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob>!7T|
INTERCEP 1 -10613130 21409126.648 -0.496 0.6213
CONDEMN 1 3.758530 0.32983652 11.395 0.0001
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The model's database also has an abundance of outliers,
as seen in the preceding models. Twelve out of 92
datapoints are identified as being outliers with respect to
Y and sixpoints are outliers with respect to X. Of these
numbers, eight datapoints were tested (Dffits test) as being
influential outliers with respect to Y. Six of these eight
datapoints and one¢ additional one were also identified as
being influential outliers by the Dfbetas test. The Cook's
D test did not identify any influential outliers. Once
again, no action was taken to adjust the database.

Although the statistics of this model are not very
impressive, they do provide one with a sense of how accurate
one can expect to be in using the model. The analysis
supporting the demand vclatility factor used in the LSC
model did not provide s'ich statistics.

An additional SAS 1wdel was created with the Y-
intercept restricted to a value of zero. This action
flattened the slope fouid in the previous model so that one
doesn't obtain "negativ:" estimates. The slope for this
model (3.621965) is the value one would use as the demand
volatility factor. 'The ANOVA statistical measurements are
no longer meaningfil fo: this model because of the
restriction placed upon the model. The demand volatility
factor from this model, 3.621965, is significantly larger
than the 2.15 value used in the LSC model.

Demand Volatility Analysis. In addition to the 8SaS

generated SIV model described above, demand volatility

127

BV A IO AL S P AR b




féctors vere developed by comparing !{D arnual condemnation
costs with the annual replenishment spares requirements
developed for these MDs two years eaclier. Table 16
provides the results of this analysis. The missing demand
volatility factors in the T-37 and T-38 data sets are due to
holes in the replenishment spares requirements data set.
The one missing demand volatility factor in the FB-11l1 data
set is due to the fact that this MD is being converted to
another F-111 MDS (Rosenthal, 1991). The factor was
agnormally high and it was felt that this was due to the
start of the conversion process.

In addition to the individual demand volatility
factors, averages are provided both by FY and within the
MDs. 1In fact, two different averages are provided. The
first is the average of all the individual demand volatility
factors by category (FY and MD). The second average is
based upon the raw data behind the demand volatility factors
(i.e., rather than just averaging the factors, the total
replenishment spares redquirements are divided by the total
condemnation costs). The first average give equal weight to
each of the individual factors, reg:rdless of the MD's
relative contribution to total cost:. The raw data average
gives more weight to high cost item:.

Additionally, Table 16 includes the results of a simple
t-end analysis. If the last three datapoints within a

particular MD data set were either lower or higher than the
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data set average, a downward (DWN) or upward (UP) trend was
identified.

Although numerous individual demand volatility factors
were less than the factor (2.15) used in the LSC model, only
the T-37 (with only three factors i1. the data set) had an MD
average which was less. In fact, meny of the factor
averages were substancially higher than 2.15. Looking at
the FY averages shows that none were less than the current
LSC factor. The average demand volatility factor for all
MDs across all the FYs was 3.46. The raw data average was
just a little higher--3.56. BAgain, this value is
substancially higher than the current LSC factor.

When one looks at the trends in the MD factor data
sets, however, one sees that half of the MDs have downward
trends and none exhibit upward trends. The FY averages
confirm this. The annual average demand volatility factors
steadily decrease each year. The annual raw data averages
do not exhibit a steady decrease, but the trend is
definitely downward. The 2.15 factor used in the LSC model
comes much closer to the averages experienced over the last
few FYs.

The overall downward trend in the factor averages is
consistent with the tightening of DoD budget purse strings
seen in recent years. The first few years of the analysis
database included the "Reagan build-up years.'" A part of
Ronald Reagan's campaign strategy had bern to suggest that,

under President Carter, the DoD had become a hollow force,
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ill-equiped to adequately protect the nation. Funding was
not an issue in these years and therefore the replenishment
spares requirements were much higher. The abundance of
funding, however, was not sustained across the entire
analysis database. The lower factor averages in the latter
years of the analysis may be due, at least in part, to this
fact.

Besides looking for treads in the factor averages, the
individual factors were also evaluated to see if they
appeared to fall into groupings by aircraft mission (e.g.,
fighter, bomber, etc.). There was too much variability
within the different mission categories and insuffiicient
sample size to draw conclusive results. It was interesting
to note, however, that come of the high cost MDs' averages
were consistently highe:r than the current LSC factor. The
F~16 and F-15 factoxrs, in particular, have consistently been
closer to four than to 2.15.

While no mission-unique demand volatility factors are
suggested from this analysis, it is clear that a single
factor, used over a numker of years for all aircraft, will

introduce a significant amount of error to one's estimate.
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V. Summary and Recommendations

Introduction

This Chapter summarizes the results of the annual
condemnations cost model development and demand volatility
analysis. Recommendations for use of the models developed

and for further study are also provided.

Summary -

The major objective of this thesis was to develop a
parametric model for estimating annial replenishment spares
costs based upon aircraft physical znd performance
characteristics. The methodology for achieving this
objective was divided into two parts. PFirst, a CER for
estimating annual condemnation costs was developed and then
the relationship between condemnation costs and
replenishment spares requirements was evaluated. The
analysis of this relationship was further divided into two
steps: 1) a SIV model for estimating replenishment spares
costs was developed using annual cordemnations as the sole .
cost driver; and 2) annual replenishment spares reguirements
(by MD) were compared to annual condemnation costs to arrive
at factors known as "demand volatility" or "churn" factors.

Four condemnations CERs were evaluated in the text.

The best linear and arithmetic transformation models failed
to produce statistically acceptable results. The two best

log-log transformation models provided significantly
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The replenishment spares CER hal even poorer statistics
than the linear and arithmetic transiormation condemnation
CERs and therefore isn't recommended for use.

The overall demand volatility arserage was significantly
higher than that currently used by HQ AFLC/FMC in their
Logistics Support Cost Model. However, there is a downward
trend in the data and if one were to average the factors
over the last three years in the data set, the factors would
not be nearly as far apart. Given the number of adjustments
made to the replenishment spares database so that it could
be compared with the condemnation ccsts catabase (see
Chapter III), it would probably only be vanity that suggests
this thesis's factor average is superior to the one
cﬁrrently in use. This point is really mute, however,
because the analysis suggests that cne factor should not be
used for all aircraft and across numerous fiscal years. The
MD factor averages are recommended as starting points for
developing analogous weapon system demand volatility
factors. Because trends were identified in the data, future
users should first update the database with the latest data
available before using the MD factor averages.

Recommendations for Future Study. There are several

areas related to this research which would benefit from
additional study. The whole topic of demand volatility is a
relatively unexplored domain with very little research
conducted and even less written down. Though one would

think that condemnations should be the major driver of
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replenishment spares requirements, what little research that
has been conducted to date indicates otherwise.

If the number of replenishment spares required each
year truly exceeds the condemnations by the ratios of two to
one and greater, one must wonder what happens to all the
spares. With aircraft modifications occurring continuously,
perhaps a large number o: spares become obsolete. Whether
data exists for this kinl of study is unknown; but the
research would be enlightening.

This demand volatil:ty factor analysis examined whether
or not the factors tended to group by mission category.
Additional study shoiuld bhe conducted to determine if the
work unit code unique factors could be developed. For
example, avionics spares may have a different factor average
than the airframe spares.

If a suitable database is discovered or deveioped, the
same research conducted in this thesis for replenishment

spares can be conducted for initial spares.
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Appendix A: Definition of Terms

Unless specified otherwise, the following definitions

are taken from the AFLC Cost Analysis Handbook (TASC,1989):

Additives ~ Initial spare “additives" are special stock
level requirements over and abcve those determined by
the standard AFLC Form 614 process. Replenishment
spares additives are, as the name implies, requirements
which are calculated separately from the D041l
calculations and added manually into the D041 system
(Rosenthal, 1991).

Analogy Based Estimating - method of cost estimating
based upon adjusting the actual cost of a similar
existing system for "complexity, technical, or physical
differences,”" between it and the new system for which
the estimate is being derived (Ch 14, 27).

Availability - A measure of the degree to which an item
is in an operable and committable state at the start

of a mission when the mission is called for at an
unknown (random) time. (Ch 5, 31)

Base Repair Cycle Time (BRCT) Pipeline - The average
number of spares resident in the base level repair
process at any given point in time (Dement, 1990:Appen
1, sec 2.1.2).

Condemnations - When the cost to repair a spare exceeds
75% of the cost to purchase a new spare, the item is
"condemned" (Novak, 1991). Condemnation spares,
therefore, are those spares purchased to replace the
condemned spares.

Cost Estimating Relationship (CER) - a mathematical
relationship that relates one variable, usually cost
(called the dependent variable), to one or more other

cost drivers (called the independent variables). (Ch -
10, 3)

Cost Drivers - "Those [independent] variables that

exhibit some systematic relationship with cost" (ch 10,

3).

Demand Based Sparing - A category of inventory

control/cost estimating models which base their
stockage recommendations upon the probability of
meeting the demand for a spare part out of available
stock (AFLCP 57-13, 1987:10).
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Demand Volatility - Condemnation spares are only a
subset of the total replenishment spares requirement.
The difference between these two requirements is
attributed to "demaad volatility" (as known as
"churn"). The causes of demand volatility include: 1)
replenishment spares funds are used to purchase
pipeline spares when initial spares funds are
inadequate, 2) changes i* flying hour program. parts
utilization rates and mairtenance factors, and 3)
additive requirements (Novak, 1991).

Depot Repair Cycle Time (DRCT) Pipeline - The average
number of spares in the depot level repair process
which were originally generated at the base level
(Dement, 1990:Appen 1, sec 2.2.1).

Engineering Cost Estimate - An approach to cost estima-
ting that "encompasses a detailed 'build-up' of labor
hours, material costs, and overhaul at very finite sub-
indentures of the program/activity/item for which cost
is to be estimated" (Ch 14, 28).

Flyaway Costs ~ Non-recurring plus recurring costs for
airframe, propulsion and avionics, program management,
test and evaluation, [and] allowances for engineering
changes. (Levine and Horowitz, 1989:5)

Initial Spares - Repairable components which support
newly fielded end items (or principal items) for the
entire production run of the aircraft (Rexroad, Tillia,
and Tritle, 1990:21).

Independent Cost Estimate (ICE) - A cost estimate per-
formed by an "honest broker" with no ties to the
program office. It is used as a check for the
reasonableness of the program cost estimate (Ch 14, 8).

Initial Spare Support List (ISSL) - ISSLs include those
provisioned items which the equipment specialist and
the using comnmand agree should be stocked and on-hand
for support of operations and maintenance at the
operational location when the first items become
operational. (Reynolds, 1989:15)

Job Routed (JR)/Non~-JR Repair Cycle Time Pipeline and
Depot Overhaul Stock - spares required to cover
"programmed depot maintenance and component overhaul"”
(Dement, 1990:Appen 1, sec 2.2.2).

Life Cycle Cost (LCC) - The total cost to the

Government of acquisition and ownership of the system
over its full life. It includes the cost of
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development, acquisition, operation, support, and where
applicable, disposal. (ch 5, 32)

Line Replaceable Unit (LRU) - Ar aircraft is composed
of major subassemblies such as the avionics system.
These systems are, in turn, comrosed of final
assemblies or components known s LRUs (AFLCP 57-13,
1987:3).

Maintainability - A system or ccmponent characteristic
which "refers to the ease with vhich a given
component/system can be maintaired" (Ch 5, 18).

Mean Time Between Demand (MTBD) - A derivative of the
mean time between failure (MTBF) which has been
modified to account for demand crivers not included in
the MTBF. For example, the MTBEF does not include
component failures which are beyond the contractor's
responsibility such as operator error and mishandling
(Reynolds, 1989:81-82).

Mean Time Between Failure (MTBF) - For a particular
interval, the total functional life of a population of
an item divided by the total number of failures within
the population. (Ch 5, 33)

Most Probable Cost (MPC) - Bn estimate used during
source selection to check the reasonableness of a
bidder's cost proposals (Ch 14, 9).

Obligation - As used in the RAir Force program control
community, funds are said to be "obligated" at that
point in time when the contractual agreement between
the Air Force and contractor is posted into the
official accounting and finance records. "Obligations"
are separate from "commitments" and "expenditures."

The former takes place when a purchase request or other
authorized commitment document is signed by the
accounting & finance certifying official and the latter
takes place when the Air Force pays the Contractor.

Operations and Support (0&S) Costs - Fixed and variable
costs of personnel, material, facilities, and other
items needed largely for the peacetime operation,
maintenance, and support of a system during activation,
steady state operation, and disposal. (Ch 17, 3)

Order and Shipping Time {0ST) Pipeline - The number of
spares required to cover the time to order and ship
spares to the base from the depot whenever components
are sent to the depot for repair or are condemned [see
"condemnations" above] at the base, It is based on the
averadge shipping and handling times and average supply
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demand rates at the base level. (Dement, 1990:Append
1, sec 2.1.1)

Procurement Lead-time - The sum of the administrative
and production lead times. Administrative lead time
(ALT) is "the period of time, in whole months, from the
start of I [item manager] preparation of purchase
request/military interdepartmental purchase request
(PR/MIPR) to date of contract award" (AFLCR 57-4,
1983:Ch 1, 5). Production lead time (PLT) is "the time
between award of the contract or purchase order and
resultant first significant delivery quantity" (AFLCR
57-4, 1983:Ch 1, 6).

Procurement Lead-time Spares - spares which are
purchased to ensure adequate stock during the
administrative and production lead-times for items"
(Dement, 1990:Append 1, sec 2.3.2).

Program Cost Estimate (PCE) - The "program manager's
official estimate of the financial resources required
to competently conduct the program contained in its
Program Management Directive (PMD)" (Ch 14, 8).

Provisioning - The process of determining and acquiring
the range and quantity (depth) of spares and repair
parts, and support and test equipment required to
operate and maintain an end item of material for an
initial period of service. (Ch 5, 34)

Provisioning Technical Documentation - A "generic
term for all ihe provisioning data developed by the
contractor, including listings, drawings, diagrams,
schematics, etc." (Reynolds, 1989:10),.

Recoverable Spares - “"Repairable parts, assemblies,
components, etc. used in the repair of higher level
assemblies" (Reynolds, 1989:49).

Readiness Based Sparing - A category of inventory con-
trol/cost estimating models which base their stockage
recommendations upon maintaining sufficient spares to
ensure aircraft availability goals are met. The key
difference between this approach and demand based
sparing is that the demand for a spare does not neces-
sarily imply that an aircraft cannot perform its
mission (Horner, 1991).

Reliability - The probability that the system wall
satisfy the need for which it was intended in an
acceptable manner, for a given period of time, when
deployed and used under a given set of operating
conditions. . . . Satisfactory performance describes
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the level at which the item/system must perform:
performance below this level is then considered
"failure" even though the specific part/component has

not broken or reached a zero performance level. (Ch
5, 16)
Repair Parts - "Consumable non-repairable parts used to

repair higher level assemblies" (Reynolds, 1989:49).

Replenishment Spares - Repairable components,
assemblies, or subassemblies required to resupply
initial stockage or increased stockage for reasons
other than support of newly fielded end items.
Replenishment would include additional stockage due to
increases such as usage, readiness initiatives, and
redeployment of end items. (Ch 17, 40)

Safety Level - The quantity of spares held at both the
base and depot repair facilities to account for
fluctuations in the pipeline requirements (Dement,
1990:Appen 1, sec 2.1.3 & 2.2.3).

Shop Replaceable Unit (SRU) - The subcomponents which
together compose a line replaceable unit (LRU) are
known as SRUs (AFLCP 57~13, 1987:3).

Should Cost Estimate (SCE) - A cost estimate developed
for individual contracts as a basis for the
Government's negotiation objective (Ch 14, 9).

Single Best Estimate (SBE) - A cost estimate which
results when the independent cost estimate and program
cost estimate processes are combined as one. Both
program office and staff cost analysts combine to form
a)joint estimating team in developing the SBE (Ch 14,
9).

Source, Maintenance, and Recoverability (SMR) Code - A
code assigned to every item (both recoverable spares
and repair parts) identified in the provisioning
technical documentation. The code "indicates the
method of support [i.e., base, intermediate, or depot
repair), authorized maintenance actions [e.g., repair,
reconditioning, etc.], and appropriate disposal
authority for each item" (Reynolds, 1989:12-13).
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Appendix B: Recoverable Spares Cost Estimating Background

Introduction

The purpose of this appendix is to provide additional
background information for those readers new to the field of
tircraft recoverable spares cost estimating. The text
begins with definitions for key terms. Following this are
descriptions of the curreant methodologies for developing
both spares budgets and buy requirements. These

descriptions are divided into separate subsections devoted

to the two major classes of recoverable spares--initial and
replenishment~--beginning with the former élass. After this,
a discussion of how spares cost estimating relates to the
life cycle phase of the aircraft is provided. Related
subtopics in this section are: 1) the maintenance plan
development, 2) the various methodologies for cost
estimating, and 3) the different reasons for cost estimates.
Finally, the appendix concludes with an analysis of the
different sources of data relating to recoverable spares

evaluated for this thesis.

Key Terms

Before proceeding any further in the text it is
important that several key terms be defined. First, the two
major classes of recoverable spares (those which can be

repaired when broken) are defined as follows:

141




Initial Spares - Repairable components which support
newly fielded end items (or principal items) for the
entire production run of the aircraft. The budget will
support stockage at all levels including the pipeline
Initial spares will also include whole spare engines.
(Rexroad, Tillia, and Tritle, 1990:21)
Replenishment Spares - Repairable components,
assemblies, or subassemblies required to resupply
initial stockage or increased stockage for reasons
other than support of newly fielded end items.
Replenishment would include additional stockage due to
increases such as usage, readiness initiatives, and
redeployment of end items. (TASC, 1989:Ch 17, 40)
These definitions requires some clarification and
further definition. Before 1985, initial spares would only
cover newly fielded aircraft for an average of two years.
After this point, all spares were considered replenishment
spares, even if the actual production line for the new
aircraft continued on for many years. Under the new
definition of initial spares, each production lot is covered
for a period of approximately two years before transitioning
to replenishment spares. If the production line provides
(for example) ten lots of aircraft over a ten year period,
each lot is covered by initial spares for its own two year
period (Rexroad, Tillia, and Tritle, 1990:21). There were
aircraft whose production line began before the new
definition and continued on afterwards. For these aircraft,
if the two year initial spares coverage period had already
ended and replenishment spares were being used when the
definition changed, they continued to use replenishment

spares funds to cover all future spares requirements. In

other words, these aircraft were "grandfathered” under the
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old definition. Those aircraft still in the midst of their

two year initial spares coverage adopted the new definition

and thus future production lots received their own initial

spares coverage period (Rosenthal, 1991; Neuhart, 1991).
The initial spares definition mentions that this class
covers the "pipeline”. Because recoverable spares can, by
definition, be repaired there are always a number of spares
in the process of being repaired or in transit to or from
the repair facilities. The "pipeline" is divided into
several pieces. The Or ler and Shipping Time (OST) Pipeline
is
the time to order .nd ship spares to the base from the
depot whenever comonents are sent to the depot for
repair or are cond:mned [see "condemnation spares"
below] at the base. It is based on the average
shipping and handling times and average supply demand

rates at the base level. (Dement, 1990:Append 1, sec
2.1.1)

The Base Repair Cycle T.me (BRCT) Pipeline is "the average
number of spares resident in the base level repair process
at any given point in time" (Dement, 1990:RAppen 1, sec
2.1.2). The Depot Repa.r Cycle Time (DRCT) Pipeline is "the
average number of spares in the depot level repair process
which were originally generated at the base level" (Dement,
1990:Appen 1, sec 2.2.1). The Job Routed (JR)/Non-JR Repair
Cycle Time Pipeline and Depot Overhaul Stock provide spares
to cover "programmed depot maintenance and component
overhaul"™ (Dement, 1990:Appen 1, sec 2.2.2). An analogy for
this last subset of initial spares is when an auto mechanic

is performing a scheduled maintenance check on one's car and
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he recommends that a few parts be replaced. These parts
have not yet failed; but it isn't worth trying to prolong
their 1ife when their failure may result in greater,
costlier damage to the vehicle,

Also included in initial spares requirements are safety
level stock, procurement lead-time, additives, and
condemnation spares. The base and depot safety levels
provide additional spares to account for fluctuations in the
pipeline requirements (Dement, 1990:Appen 1, sec 2.1.3 &

2.2.3). AFLCR 57-27, Initial Requirements Determination,

does not provide for initial spares "safety stock" by name
as seen in the replenishment spares regulations. It does,
however, alluw budgeting for the purchase of initial spares
to cover the lead-time (the period of time from obligation
of funds to spares delivery) plus an additional three month
supply (AFLC 57-27, 1986:60; Rosenthal, 1991). This
standard three month period is not as sophisticated as the
marginal analysis techniques used to develop replenishment
spares safety level (Rosenthal, 1991) but it serves the same
purpose. '"Procurement lead-time spares ar- purchased to
ensure adequate stock during the administrative and
production lead-times for items" (Dement, 1990:Append 1, sec
2.3.2). 1Initial spare "additives" are special stock level
requirements over and above those determined by the standard
AFLC Form 614 process. When the cost to repair a spare

exceeds 75% of the cost to purchase a new spare, the item is
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"condemned" (Novak, 1991). cCondemnation spares, therefore,
are those spares purchased to replace the condemned spares.
The definition for replenishment spares implies that
this class of spares coverage basically picks up when 2
initial spares coverage ends. In reality, the break between :
the categories is not as clean as the definitions imply.
The term "replenishment"” suggests maintaining a previously
established level of spares. Condemnation spares do fulfill
this function as one of the major elements of replenishment
spares; but they are only a part of the total replenishment
spares requirement. There have been (and continue to be)
situations where the initial spares estimates were
inadequate and pipeline requirements were filled with
replenishment spares funding (Rosenthal, 1991). The final
major element of replenishment spares are additives. The
"Recoverable Consumptior. Item Requirements System" (D041)
computes replenishment :spares requirements based upon
historical demand. Replenishment spares additives are, as
the name implies, requiiements which are calculated
separately from the D0O4.. calculations and added manually
anto the D041l system (Rosenthal, 1991). AFLCR 57-4, the
governing regulation forr D041, provides a list of the
numerous additive requirements. Replenishment spares also
cover smaller categories of requirements such as safety
level and procurement lead-time spares.
Finally, several additional spares requirements such as

negotiated base stock level:s, forward supply support levels,
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war readiness material kits, depot ‘loating stock,
insurance, and foreign military sal:s are included in the
total recoverable spares requiremen.. These categories of
spares represent special requiremen:s that are tracked
separately. BAs such, they are not .ncluded in the scope of
this discussion. One may look to A'LCR 57-4, Recoverable

Consumption Item Requirements Syste:i (D041) for additional

details on these requirements.
Additional terms requiring def .nition at this time

include:

Availability - A measure of th: degree to which an item
is in an operable and committasle state at the start of :
a mission when the mission is :alled for at an unknown E
(random) time. (TASC, 1989:Ch 5, 31) :

Flyaway Costs - Non-recurring vlus recurring costs for .
airframe, propulsion and avionics, program management, -
test and evaluation, [and] allowances for engineering
changes. (Levine and Horowitz, 1989:5)

Provisioning - The process of determining and acquiring
the range and quantity (depth) of spares and repair ;
parts, and support and test eqiipment required to :
operate and maintain an end it:m of material for an :
initial period of service. (T..8C, 1989:Ch 5, 34)

Initial Spares Budget Development

Historically, the agency responsible for initial spares
budget preparation, HQ AFLC/FMBSR, has used a factor based ¢
approach to developing their initial spares requirements
(with the exception of whole engine spares). This has
primarily involved multiplying airciaft flyaway cost by a
spares "factor" [additional factors are applied against

training and peculiar support equiprnient]. These factors are
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sometimes adjusted based on the expert opinion of the budget
manager given any input from other sources such as the Air
Logistics Centers (ALCs) or System Program Offices (SPOs)
(Neuhart, 1991; Rexroad, Tillia, and Tritle, 1990:1). The
underlying logic of this methodology is limited to the
assumption that the greater a weapon system's flyaway cost,
the more expensive its spares will be. It continues to be
used because: 1) data inputs required for other models are
either not available or very hard to come by, and 2) it is
easy to apply.

There are two changes to this historical perspective.
First, HQ AFLC/FMBSR has given most of its responsibility
for budget preparation to the BLCs [they still budget for
common support equipment and whole spares engines are
handled separately]. The FY 92/93 Budget Estimate
Submission (BES), dated September 1990, was the first ALC
input (Neuhart, 1991). Second, the factor based approach to
developing initial spares budgetary requirements has been
criticized for its lack of insight into the underlying
causal relationships driving the estimates (Dement, 1990:Sec
1; Rexroad, Tillia, and Tritle, 1990:1) and efforts are
underway to develop a new methodology.

For a while, demanc based approaches similar to those
used in the initial spares provisioning process were
considered the likeliest candidates to replace the factor
based approach. This mentality is seen in a coordinated

message from SAF/FMC, SAF/AQK, SAF/AQX, and HQ USAF/LEX,

147

Ll o b

il

TRy

IR T

LR R o S I e b Sl b bl B gttt e

I

Ll

ety by Lot

VOB




dated 2 October 1990, which stated that the Air Force Cost
Analysis Improvement Group (AFCAIG) preferred the use of
"valid, demand based models for calculating initial and
condemnation spares for POE's [Program Office Estimates] and
ICA's [Independent Cost Estimates] presented to them for
Defense Acquisition Board (DAB) milestones" (SAF/FMC, 1990,
2). Demand based approaches such as the Logistics Support
Cost (LSC), and ModMETRIC (see Appendix C) are concerned
with the probability of meeting the demand for a spare part
out of available stock (Alexander, 1990:11I-24; AFLCP 57-13,
1987:10). Studies were conducted to evaluate demand based
approaches that would fulfill the initial spares budget
development role (Dement, 1990; Rexroad, Tillia, and Tritle,
1990); but before an "approved" methodology was arrived at,
the emphasis switched from "demand based” to "availability”
or "readiness based" approaches.

The use of readiness based sparing (RBS) methodologies
is expected to reduce recoverable spares costs (Beckett, 1).
While demand based models try to ensure that spares are
available upon demand, the RBS models recognize that demand
for a spare doesn't necessarily imply that an aircraft must
be grounded or can't perform its mission. The RBS
methcdology, rather than focusing on the demand for
individual spare parts, is concerned with maintaining
sufficient spares stock to ensure aircraft availability
goals are met (Horner, 1991). This theoretically smaller

stock results in reduced reccverable spares costs.
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Bccording to a HQ USAF/LEYS letter dated 14 November
1990, the Office of the Assistant Secretary of Defense,
Production and Logistics (OASD/P&L) was preparing a new
regulation to replace DoDI 4140.42, Determination of

Requirements for Secondary Item Spare and Repair Parts

Through the Demand Period, which will mandate the use of RBS
methods (Beckett, 1). HQ AFLC/XRI is currently evaluating
the RBS methodology used by the Army and Navy for potential
Air Force implementation (Robinson, 1991).

Until a practical alternative methodology is developed
to replace the factor based approach, it will probably
continue to be relied upon for developing initial spares
budgets (as evidenced by the number of ALCs using it for

their FY 92/93 BES inputs (Neuhart, 1991)).

Initial Spares Provisioning Requirements Development

Due to the length of the Program Objective Memorandum
(POM) process (the long range budget plan), initial spares
budget wedges are typically put in place several years
before initial spares provisioning actually occurs (Neuhart,
1991). Details of an aircraft’'s maintenance plan required
for initial spares provisioning are not always available
when these budgets are being developed (TASC, 1989:Ch 5,
55); therefore, the factor based approach to budgeting
discussed above bears little resemblance to the method used
for initial spares provisioning. While budgets are

submitted for "aircraft" requirements, provisioning takes
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place at the individual "parts" leve'. This section will
provide an overview of the method used to letermine the
“"range and depth" of initial spares 1equir=ments known as
the initial spares provisioning (Reynolds, 1989:5). 1t
should be remembered that "provisioning', as defined
previously, encompasses more than initial spares; but the
scope of this discussion excludes information not pertinent
to spares. Unless indicated otherwise, references in this
section will come from a 1989 analysis of the Initial Spares

Support List (ISSL) process sponsored by the Air Force

Logistics Management Center. The analysis team was led by
Captain Steve Reynolds. This reference is recommended for
readers who are interested in an in depth analysis of the

entire provisioning process.

3
3
3
E

Provisioning Methods. Activities which take place

during provisioning include

the assigning of Source, Maintenance, and

Recoverability codes; assignment and review of the

various provisioning factors which quantify projected

usage requirements; assignment of Item Management

codes; assignment of Federal Supply Classes; etc." (7). -

ST I

Before explaining these activities in more detail, the three

methods used for provisioning will be described in the :
following order: 1) the Provisioning Conference; 2) the

Resident Provisioning Team; and 3) the Depot Committee.

The Provisioning Conference is the most commonly used
provisioning method. Participants may include the prime

contractor, the Systems Program Manager (SPM)/End Article
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Item Manager (EAIM), representatives from the using command
and the Defense Logistics Agency (DLA), and the Air
Logistics Center equipment specialists. This team meets on
a temporu.y w.Ziws at a time and place which is mutually
agreed upon to accomplish the provisioning function (7).

Major weapon systems may make use of the Resident
Provisioning Team approach. In this method, the
provisioning team is a small group of specially qualified
personnel who are assigned on a permanent basis to the
contractor's facility. The objective of this approach is

to reduce the time required to furnish the contractor

with spare and repair parts orders, to achieve a

greater degree of understanding and cooperation between

the contractor and the Air Force, and to ensure a

greater degree of compliance with provisioning

requirements by the contractor. (9)

The final provisioning approach is reserved for those
cases where the "system or end item is not overly complex or
the number of items involved is not too great" {(10). This
smaller scale version of the Provisioning Conference takes

place at a Depot and is called the Depot Committee.

Provisioning Technical Documentation (PTD). PTD is a

"generic term for all the provisioning data developed by the
contractor, including listings, drawings, diagrams,
schematics, etec." (10). The PTD is the basis for the
provisioning team's decisions regarding the range and depth
of required spares. The System Program Office (SPO) is the

agency responsible for including PTD requirements in their
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systems acquisition contract. PTD is entered into and
maintained on the AFLC Provisioning System (D220) (10).

Provisioning Activities. BAs previously stated,

provisioning activities include assiyning codes and factors
which "identify (1) which items will be required for systems
support, (2) how many items will be required, and (3) how
those items will be managed in the inventory" (12).

A Source, Maintenance, and Recoverability (SMR) code is
assigned to every item (both recoverable spares and
consumable repair parts) identified in the PTD. This code
"indicates the method of support [i.2., base, intermediate,
or depot repair], authorized maintenance actions [e.g.,
repair, reconditioning, etc.], and appropriate disposal
authority for each item" (12-13). It is this code, assigned
by the ALC equipment specialist (12), which fulfills the
function of identifying the range of recoverable spares
required.

Other codes include the Item Management Code (IMC)
which assigns management responsibility for each item and
the Material Management Aggregation Code (MMAC) which groups
related hardware for management purposes that might
otherwise be separately managed (13 & 15). The Federal
Supply Class identifies which commodity group the item
belongs to (15).

B subset of the recoverable spares identified by the

SMR code are placed on the Initial Spare Support List

(18sL).




ISSLs include those provisioned items which the
equipment specialist and the using command agree should
be stocked and on-hand for support of operations and
maintenance at the operational location {emphasis
added] when the first items become cperational.
(Reynolds, 1989:15)

The "operational locations" must have a stock quantity
of at least one for every spare identified on their ISSL
(24).

Identifying the "range" of spares required is only a
partial fulfillment of the initial spares provisioning

objective. The "depth," or number of spares required must

also be computed. AFLCR 57-27, Initial Requirements

Determination, is the governing regulation for determining

the quantity of new spares (those not already stocklisted).
The computations associated with AFLC Form 614, "Recoverable
Item Initial Requirements Computation Worksheet," are the
"standard" methodology for determining the depth of required
spares; but other computerized models may be authorized by
AFLC/XRI on an exception basis (20). In fact, according to
one source (Dement, 1990:Sec 3), XRII (then MMIE) recommends
the use of the Mod-Multi~Echelon Technique for Recoverable
Item Control (Mod-METRIZ) model. This model, discussed in
appendix C, was used on both the F-15 (Huff, 1979) and F-16
(27) fighter aircraft programs.

The AFLC Form 614 computations make use of provisioning

factors supplied by the ALC Equipment Specialist (16) and

information relating to the aircraft's "operational use"
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sﬁpplied by the Systems Program Manager (18) to determine
the spares requirements.

The provisioning factors are based upon contractor
input and the knowledge and experience of the Equipment
Specialist. The following factors are used in the process
of determining initial spares requirements:

a. Maintenance factor,

b. Overhaul replacement percent,

¢. Base condemnation percent,

d. Depot condemnation percent, and

e. Not reparable this station (NRTS) percent (16).

Maintenance Factor. The maintenance factor

estimates the rate of demand for a spare part. It is
defined as "the estimated average maintenance replacement
rate per operating program increment (OPI). The OPI is
either considered to be 100 operating hours or 1000 rounds
expended, whichever is appropriate" (16).

Overhaul Replacement Percent. The overhaul

replacement percent "represents the replacement rate for a
spare or repair part in the overhaul of the next higher
assembly (NHA)" (17). This estimated percentage includes
those items replaced because they have failed and those
items replaced because they are deemed to be near failure.
This is analogous to an auto mechanic wanting to change
one's oil filter--aot because it won't last a couple hundred

miles more, but because it isn't worth risking the
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catastrophic failure of one's engine for the price of a new
oil filter.

Base Condemnation Percent. This factor is, as the
name implies, the estimate of the percentage of spares which
will be condemned at the base repair level (17).

Depot Condemnation Percent. This factor is the
estimate of the percentage of spares replaced during depot
overhaul which are condemned (18).

Not Repairable This Station (NRTS) Percent. This

factor "corresponds to the portion of assets which are
authorized intermediate level repair which will have to be
returned to the depot for repair action" (18). The causes
for this vary but they include inadequate equipment and
labor skills and/or insufficient capacity at the
intermediate levels (18).

As stated previously, these factors, along with
operational program information collected by the System
Program Manager on checklists such as the AFLCR 57-27, are
then used in computations to determine spares requirements.
Figure 9 provides examples of these computations.

The AFLC Form 614 computations have, historically, been
a manual process. This process is being automated on a
system known as the Initial Requirements Determination (IRD)
system. The IRD is currently in system validation test and
should be on line by the end of the summer of 1991 (Horner,

1991).
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As previously stated, the AFLC Form 614 process is used
to predict requirements for spares which are new to the
inventory. These new spares are "assigned National Stock
Numbers (NSNs) for purpose of identification and management"
(11) and, if AFLC managed, their requirements are entered
into the D041l system for determination of replenishment
spares requirements. Some spares are acquired from Non-AFLC
agencies. These agencies will also stocklist their new
spares for managing future Air Force requirements (27).

Initial spares requirements must also be determined for
items already in the inventory. For those "existing” items
which are AFLC managed, the Item Manager uses the D041l
system (used for replenishment spares calculations) to
determine any additional quantities required to support the
new aircraft (Horner, 1991; Rosenthal, 1991). The Item
Manager may use the AFLC Form 614 worksheet to determine
requirements for non-AFLC managed existing items and must
work with the non-AFLC agencies to determine if they have

adequate stocks for these parts (27).

Eeplenishment Spares Buy Requirements Determination

Unlike initial spares, where the budget process bares
little resemblance to the execution (provisioning) process,
replenishment spares budget forecasts are based upon the
same process (D04l calculations) used to execute the budget.
It is appropriate, therefore, to reverse the order of

presentation used for initial spares and begin this section
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by describing the D04l system used to calculate
replenishment spares buy requirements. Unless stated
otherwise, references in this section will come from a June
1987 AFLC training program entitled "Introduction to D041l
Requirements System" (course # LMMIMO6).

The Recoverable Consumption Item Requirements
Computation System (D041) actually serves several functions.
In addition to determining buy requirements, D041
computations: 1) assist in managing depot repair
requirements, 2) develop Central Secondary Item
Stratification (CSIS) lists for spares budget development,
3) determine spares contract termination requirements, 4)
report excess requirements for disposal action, and 35)
provide for control of distrikution of the spares
requirements (Ch 1, 5-6).

Figure 10 provides a summary level view of the basic
requirements computation process employed by D04l. The
methodology is similar to that used for initial spares
provisioning (AFLCR 57-27) in that factors are developed to
predict future requirements. It differs, however, in that
the initial spares provisioning factor estimates are
typically manually developed by the ALC equipment
specialists based upon contractor inputs and their own
expertise, while the automated D041l factors can be updated
based on historical usage recorded during the initial spares
coverage period (an average of two years worth of data).

Figure 11 provides examples of the D041l requirements
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* USAGE / PAST PROGRAM = FACTOR
* PFACTOR x FUTURE PROGRAM = PROJECTED USAGE
* PROJECTED USAGE

+ STOCK LEVELS

+ WAR READINESS MATERIALS

+ ADDITIVE REQUIREMENTS

= GROSS REQUIREMENT

* GROSS REQUIREMENT

- ASSETS (Serviceable assets plus base and
depot repairables)

= NET REQUIREMENT

Figure 10. D04l Requirements Determination
Methodology (Ch 1, 2 & Ch 7, 1)

computation factors. These factors, developed on past
usage, are then applied to the projected future flying
programs to predict future spares requirements. Stock level
requirements, war readiiess material requirements, and
additives are added to these predicted levels to arrive at
gross regquirements. Serviceable assets on hand and those
projected to be repaired at base and depot facilities are
then subtracted to arrive at the net buy requirement (Ch 1,

1).
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The D041l system is actually at the center of numerous
other computerized systems that feed data into it. Chapter
10 of AFLCR 57-4 describes these input systems in detail.
There are three major categories of input data: 1)
programmatic information, 2) historical spares usage data,
and 3) inventory assets information. The "Worldwide Stock
Balance and Consumption Report" (SB&CR) provided by the D104
system provides two of these categories--usage and assets.
Because it is the major data contributor, the data cutoff
dates for the quarterly D04l runs are aligned with the SB&CR
cutoff dates--30 June, 30 September, 31 December, and 31
March (Ch 2, 2).

Each June D041l cycle contains quarterly spares
requirements forecasts for 25 quarters plus a three year
lump~sum retention estimate (9 1/4 fiscal years total). As
the fiscal year progresses, each passing quarter is dropped
from the computations until the following June cycle when
another fiscal year's (four quarters) forecast is added. 1In
this way the number of quarters included in the forecast
varies from 25 to 22 (and then back to 25) (ch 7, 7).

For budgeting purposes, separate runs known as the
Central Secondary Item Stratification (CSIS) runs are
compdted. Each June CSIS contains forecasts for the June
quarter and the following 12 quarters. The number of
quarters forecasted varies for each cycle in the same manner

described above (Ch 7, 8).
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These automated computations are reviewed by the
iﬁventory management and equipment specialists at the ALCs
for error correction and validation before they are
formalized. The specialists' interface with the D04l system
is known as "file maintenance'" (Ch 2, 1-2). It is the
inventory management specialist who is ultimately
responsible for a computation's accuracy and, along with it,

the Air Force's support posture for the item (Ch 1, 1).

Replenishment Spares Budget Development

As stated previously, the replenishment spares budget
forecasts are based upon the D041l system computations.
Near-term budgetary requirements such as the President’s
Budget (PB) and Budget Estimate Submission (BES) inputs are
"scrubbed" versions of the D04l CSIS reports. According to
the Repairable Stock Division Progran Manager at HQ AFLC,
the scrubbing process which he and the ALC specialists
perform can involve numerous assorted modifications to the
Cs1IS8. Besides corrections for problems such as data entry
errors (a few stray zeros can really mess up a forecast),
changes are made to accommodate Congressional or
Headquarters Air Force direction concerning the size of the
budget. 1In one instance, the Office of the Secretary of
Defense (0SD) predicted that moving the replenishment spares
budget to a stock fund concept (DMRD 904) would save 10% of
the budget and therefore the spares judget was decremented

by 10%. 1In general, the budget is "scrubbed" so that, for
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whatever reason, an item's budgetary requirement does not
fall drastically out of line with its recent execution
experience. For example, it would be politically
unacceptable for an item which has experienced an annual
usage requirement of one million dollars for five straight
years to suddenly require (per D0O4l) a ten million dollar
annual budget (Rosenthal, 1991).

Long range budget requirements for the Program
Objective Memorandum (POM) are also based on D041l CSIS
reports. The Air Logistics Early Requirements Technique
(ALERT) (described in more detail in Appendix C) has been
used since 1984 to develop POM inputs (Rexroad, Lucas, and
Collins, 1989: 1). This approach combines linear regression
and expert judgement to predict out-year requirements based
upon, among other chings, the aggregated sum (aircraft
mission/design level) of past CSIS reports.

The expert judgement comes into play when the
Repairable Stock Division Program Manager "scrubs™ the
output of the ALERT's linear regression-based models. This
scrubbing process is similar to that described earlier but
it also includes adding requirements for new items not
included in the D04l inventory. In those situations where
long range forecasts must be made for new items with no

historical usage database, BALC specialists must resort to

using factor-based computations similar to those prescribed

in AFLCR 57-27 (the initial provisioning bible) (Rosenthal,

1991).
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Relationship of Recoverable Spares to Life Cycle Phase

In discussing the differences petween the initial
spares budgeting and provisioning methodologies, it was
briefly mentioned that they (the differences) resulted from
a lack of available data during the earlier budgeting phase.
This section will provide a more in depth analysis of the
relationship of recoverable spares cost estimating to an
aircraft's life cycle phase. The section begins with
definitions of the major life cycle phases and milestones.
Following this are subsections which relate these phases to
their effect on maintenance plan development, cost
estimating methodologies, and the different reasons for cost
estimating.

Definitions for Life Cycle Phases/Milestones. Figure
12 jillustrates the different weapon system life cycle
phases. Before passing from one phase to the next, new
acquisition programs must be approved at major milestone
reviews (shown between the life cycle phases in Figure 12).
Unless specified otherwise, references in this subsection
will come Srom Captain Reynold's 1989 ISSL study.

The DoD components (e.g., Air Force, Army, etc.)
continuously monitor their capabilities in relation to new
mission requirements. Deficiencies may arise for numerous
reasons such as "obsolescence of existing systems, the
development of new technologies, [and] the emergence of new
threats' (51 & 53). Within the Air Force, the various major

commands identify changes in their operational requirements
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by coordinating (with other effected major commands) and
then publishing a Statement of Operational Need (SON) (53).
The Milestone 0 review authorizes the exploration of
alternative solutions to the SON.

Before discussing the subsequent phases and milestone
reviews a brief description of the milestone review process
may be helpful. The Air Force Systems Acquisition Review
Council (AFSARC) reviews the programs at each milestone and
makes its recommendations to the Secretary of the Air Force
(SAF). The DoD assistant secretaries and directors then
meet at the Defense Acguisition Board (DAB) to obtain
Secretary of Defense approval for continuing the program
into the next life cycle phase (TASC, 1989:Ch 14, 7).

During the concept exploration phase, program
management solicits industry %o identify solutions to their
mission need. A Request For Proposal (RFP) is issued that
"includes complete information concerning the mission need,
the operational and threat environments, schedule and cost
goals, and capability objectives" (55). Each contractor
proposal is evaluated, and cost estimates are developed for
each alternative. BAlthough the program is still in its
infancy, the decisions made as the result of these
evaluaticns will typically lock in about 70 percent of the
program's life cycle cost (60). For exanple, one
alternative may include developing a brard new weapon system

while another may recommend modifying or buying more of an
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existing system. Depending on which route (if any) is
taken, there can be a dramatic impact on life cycle costs.
Milestone I approval allows one or more proposed
programs (if funding is available) to proceed into the
demonstration and validation phase. During this phase paper
studies and/or prototype development are used to definitize
the system's design and technology (55). Though not as
dramatic as in the concept exploration phase, the tradeoff
analyses conducted in this phase still have a great impact
on life cycle cost. Bt the end of this stage, approximately
85 percent of the cost has typically been fixed (60).
Milestone II approval allows the system to enter into
full-scale development phase. "During this phase, the
system, including all essential support equipment and
documentation, is designed, developed, fabricated, and
tested" (56). Some programs are also granted permission to
begin low rate initial production (56). By this time the
opportunities to impact life cycle cost have been
substantially reduced and at the end of this phase, 95
percent of the costs have already been locked in (60).
Milestone III approval "commits the Rir Force to buy
the system for operational deployment and moves the system
from the developmental environment into f£ull production"
(56). It is during this phase that
mission hardware, support equipment, spares and repair
parts, personnel, facilities, etc. necessary to operate

and maintain the system are produced, acquired, and
assigned. (56-57)
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At milestone IV, the Logistics Readiness and Support
Review, the system is evaluated to see if it is functioning
according to contractual standards. If it isn't, this is
the time for the Air Force to exercise any warranties it may
have included in the contract. At this point the weapon
system enters the longest phase of its life cycle-~-the
operations and support phase. There is typically some
overlap of the production and operations phases because
production can be scheduled over many years (57).

The final milestone comes at that point in time when
the system is '"no longer capable of meeting the operational
need for which it was acquired" (57). The Major Upgrade or
System Replacement Decision (milestone V) decides exactly
what its title says it does. Some systems, such as the B-
52, are kept in the operational inventory for many years
through major modifications; while others enter the final
phase of the acquisition life cycle--the disposal phase.

Maintenance Plan Development. One of the major

difficulties facing a life cycle cost analyst is that while
tradeoff decisions made during the earliest phases typically
have the greatest impact on life cycle c¢costs, the
availability of data on which to bate the decisions is very
limited during this period. This is particularly true for
Operations & Support cost aralysts who must attempt to
estimate 0&S costs based on immature, ill-defined system

designs.
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The initial objectives for logistics support are
formulated in the concept exploration phase and developed
into a Integrated Logistics Support Plan (ISLP). These
objectives are refined and individual ISLPs are developed
for each alternative approved to enter into the
demonstration/validation phase of the contract (TASC,
1989:Ch 5, 8 & 11).

It isn't until completion of the full-scale development
phase, however, that the maintenance plan for a new system
is fully developed.

Until that time, the predicted parameters and desired

characteristics stated in the Maintenance Concept, will

not have been validated. It is virtually impossible to
effectively plan for Support and Test Equipment,

Spares, Technical Data, Personnel and Training

requirements unless the projected maintainability,

reliability, and repair level criteria for a given
system and its components have been confirmed. (TASC,

1989:Ch 5, 55)

It is obvious from the above quote that recoverable
spares are but one of many considerations which occupy the
minds of logistics planners. It is also clear that many of
the factors impacting spares cost estimating
(maintainability, reliability and repair level criteria) are
not confirmed until completion of the full-scale development
phase. It is important to understand these factors in more
detail because they are important cost drivers in
recoverable spares cost estimating.

"Maintainability refers to the ease with which a given

component/system can be maintained" (TASC, 1989:Ch 5, 18).
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This has obvious implications for maipower costs because the
“"harder" a system is to maintain, th: longer it typically
takes to do the job. This is also related, however, to the
design of recoverable spare parts. Newer aircraft such as
the F-16 have been designed with modilar components that can
be quickly removed when broken and raplaced with serviceable
spare components to minimize the air:raft maintenance
downtime (AFLCP 57-13, 1987:4).

Reliability is another major O&3 cost driver. 1It is
defined as

the probability that the system will satisfy the need

for which it was intended in an acceptable manner, for

a given period of time, when deployed and used under a

given set of operating conditions. {TASC, 1989:Ch 5,

16)

It is easy to see where the reliability factors must be
speculative in the early concept exp.oration phase. System
specifications which define "acceptable" performance may not
be set in concrete and specific operiting conditions (e.g.,
temperature cycles, flying hour prof:.les, vibration
extremes, etc.) have not been defini:ized (TASC, 1989:Ch 5,
16).

Reliability is quantified throujh "terms such as: mean .
time between failure (MTBF), mean tine between maintenance
(MTBM), and mean time between repair (MTBR)" (TASC, 1989:Ch
5, 17). The "maintenance factor" discussed in the earlier
section on initial spares provisioniig factors is based upon

another reliability factor known as mean time between demand
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(MTBD). While contractor data provides estimates for MTBF,
historical data has shown these estimates to be "overly
optimistic" (Reynolds, 1989:81). The MTBD is a derivative
of the MTBF which has been modified to account for demand
drivers not included in the MTBF. For example, the MTBF
does not include component failures beyond the contractor's
responsibility such as operator error and mishandling. Not
every failure leads to a2 demand and this also is accounted
for in the MTBD (Reynolds, 1989:81-82).

The levels of maintenance were also referred to in the
earlier discussion on initial spares provisioning. The SMR
code identifies what repair actions are permitted at what
repair level. As the number of locations with authority to
perform a repair action increases, greater numbers of spares
are required to maintain adequate working stocks at the
different repair facilities. "Level of Repair policies have
undergone continuous development and change since the
inception of the use of aircraft as a military component"
(TASC, 1989:Ch 5, 56). While there were four echelons of
repair in World War II, increased maintenance specialization
requirements reduced this number to the three level
structure--organizational, intermediate and depot--used by
most aircraft today. Today, further advances in the need
for "highly specialized personnel, test, recalibration,
repair equipment, and specialized facilities" are pushing
new systems toward a "two level concept" that centralizes

most maintenance at the depot level, "leaving only some
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test, plug-in replacement (i.e., circuit boards), and pre-
flight maintenance at the organizational/field level™ (TASC,

1989:¢ch 5, 57).

Cost Estimating Methodologies.

The availability of data with which one predicts costs
has an important impact upon the cost estimating methodology
used. The following major classes of cost estimating
methods will be briefly discussed in regards to this factor:
1) parametric, 2) analogy, and 3) engineering (or "bottoms-
up") .

Parametric Models. Parametric models use
mathematical equations known as cost estimating
relationships (CERs) to identify the relationship between an
item's cost (the dependent variable) and one or more
characteristics of that item (the independent variable(s))
(Tasc, 1989:Ch 14, 25). These CERs are developed by
examining relationships exhibited in past data, and their
validity rests upon, among other things, the assumption that
the future conditions can be predicted based upon this
historical data set.

CERs can be useful in performing trade-off studies
during the early stages of an acquisition life cycle.
Although final system designs may not be available,
different characteristic values may be input into the model
to evaluate their effect on cost and design goals may be

substituted for firm characteristics. Great care, however,
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must be given to ensure that the CER's provide logical

conclusions. For example a CER might show that, based on

the sample data, engine maintenance costs are directly

related to engine size, as measured in thrust. For the new

engine being predicted this relationship may fail because
by increasing the size of the engine, as measured in
thrust, the engines can be operated at derated thrust
levels and thereby significantly reduce engine

maintenance costs. (May, 1982:Ch 3, 5).

The factor based approach to predicting initial spares
regquirements discussed earlier is an example of a very
simple CER. In many cases, such as this one, CERs are
relied upon when insufficient data exists to conduct more
detailed analysis.

Analogy Method. This methodology depends upon

identifying a comparable or "analogrus™ system to the one
being evaluated. Stated simply,

Analogy estimating begins with the actual cost of a

similar existing system, adjust these costs for

complexity, technical, or physical differences, and

then derives a new system estimate. (TASC, 1989:Ch 14,

27)

The difficulty in this method is in finding a truly
"similar®” system and then knowing how tc adjust costs to
account for the differences between the systems. Typically,
cost analysts must seek advice from technical experts to

evaluate these differences and their impact on cost.

Finding "experts” who are familiar with both the analogous
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system and the new system can be difficult and the "detailed
program and technical definition" of the new system may not
be available during the initial phases of the acquisition
life cycle (TASC, 1989:Ch 14, 27).

Engineering Estimation. This approach

"encompasses a detailed 'build-up' of labor hours, material
costs, and overhaul at very finite sub-indentures of the
program/activity/item for which cost is to be estimated”
(TASC, 1989:Ch %4, 28). BAs such, it provides the most
detailed and accurate cost estimates. Due to its
complexity, however, this approach alsc requires the
greatest amount of "calendar time" to perform, and very
detailed system data must be available (May, 1982:Ch 3, 8).
Since the Maintenance Plan for a new system is typically not
definitized until completion of the full-scale development
phase, the data required for this approach is not available
until that time.

It is frequently the case that a combination of
methodologies are used in predicting costs (TASC, 1989:Ch
14, 28-29). For example, an alternative (recommended by two
separate studies) to the factor based approach currently
used in estimating initial spares requirements is using the
Logistics Support Cost (LSC) model (Dement, 1990; Rexroad,
PTillia, and Tritle, 1990). The LSC model is an engineering
or "bottoms-up”" model. Using this approach during early
life cycle phases requires that data from analogous systems

are modified and input into the model (Dement, 1990:Ch 2).
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By combining approaches in this way one can work around some
of the limitations unique to the individual methodologies.

Purposes for Cost iistimates. The cost estimating

m2thodologies are not the only thing which may vary
depending upon the zcquisition life cycle phase, the puirpose
behind the cost est .mate also varies.

The Program Cost Estimate (PCE), also known as the
Program Office Estimate (POE), is the "program manager's
official estimate of th: financial resources required to
competently conduct the program contained in its Program
Management Directive (PMD)Y™ (TASC, 1989:Ch 14, 8). PCEs are
maintained throughout tie system’'s life cycle and are used
in all the program's

formal reports--baselines, Selected Acquisition Report

(SARs), Program Assessment Reviews (PARS), Command

Assessment Reviews (CARs), Secretarial Program Reviews

(SPRs), and financial reviews. (TASC, 1989:Ch 14, 8).

An Independent Cost Analysis (ICA) is a separate
estimate performed by an "honest broker" with no ties to the
program office. It is used as a check for the
reasonableness of the PCE. "“ICAs, by law, (DoD
Authorization Act of 1984) must be performed on major
defense acquisitions in support of Milestone Decisions™
(TASC, 1989:Ch 14, 8). 1ICAs are briefed to the Rir Force
Cost Analysis Imprc¢vement Group (CAIG) which, in turn, pass
their recommendations along for AFSARC milestone decisions.

They are also briefed to the 0SD CAIG which makes inputs to
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DAB milestone reviews. ICAs are also perZormed on selected
programs during the POM process. These e timates are known
as Defense Resource Board (DRB) ICAs (TAS:, 1989:Ch 14, 8).
Additional estimates include: 1) The Should Cost

Estimate (SCE) which is developed for ind. vidual contracts
as a basis for the Government's negotiation objective; 2) A
Most Probable Cost is used during source selection to check
the reasonableness of bidder's cost propcsals; and 3) the
Single Best Estimate results when the IC and PCE processes
are combined to arrive at one estimate. Both program office
and staff cost analysts combine to form joint estimating

team (TASC, L989:Ch 14, 9).

Dzta Sources for Recoverable Spares Cost Estimating

Having discussed the different types of cost estimating
methodologies and the numerous purposes for which they are
developed, it is appropriate to address the data sources
available for developing recoverable spaies estimates. The
following remarks are based upon the res:arch conducted ir
support of this thesis. The sources wil be discussed in
the following order: 1) D041, the "Recov:rable Consumptioa
Item Requirements System:" 2) HO036C, the "Weapon System Cost
Retrieval System" (WSCRS); 3) Visibility and Management of
Operating and Support Costs (VAMOSC); an- 4) AReronautical
Systems Division (ASD) Cost Library.

D041 contains a tremencdous amount of recoverable spares

data (e.g., usage and inventory data, reliability factors,
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item demand rates, condemnations, unit costs, etc.). There
were two major obstacles to using this data source for this
thesis, however. The primary obstacle was the fact that
D041 controls individual spares at the National Stock Number
(NSN) level. Since each aircraft contains thousands of
individual parts, it was impractical to attempt manual
aggregation of this data. The D041l system's Central
Secondary Item Stratification (CSIS) reports, used for
budget development, do provide spares requirements
aggregated to the Mission Design level. "Scrubbed" versions
of these reports were obtained from the Repairable Stock
Division Program Manager (HQ AFLC/FMBSR).

Other analysts have attempted to use the D041 data and
encountered the second major obstacle--D041 was not designed
to be a cost analysis tool and the mainframe based program
is not "user friendly." Very little computer time is
allotted to system inquiries and "what if" exercises. For
those brave enough to attempt analysis with D041, data is
provided on large magnetic tapes. 1In one instance, analysts
devoted a large amcunt of effort to learning the D041l
software program and interpreting the data they received on
the magnetic tapes only to f£ind that there were gaps in the
data rendering it useless (Dement, 1991).

The Weapon System Cost Retrieval System (WSCRS) was a
better source of data for this thesis. The WSCRS system

collects and assembles the historical depot maintenance
cost expenditures, and the base level and depot level

17/
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condemnation cost expenditures, for the major USAF

aircraft and missile weapon systems. . . . WSCRS also

collects and assembles historicil weapon system program
data by weapon system standard 4DS. The weapon
system's actual and programmed itilization data are

collected by fiscal year. (AFL:M 173-264, 1990:7)

Unlike D041, the WSCRS system wis originally designed
and is maintained by HQ AFLC/FMC to support cost analysis
projects (AFLCM 173-264, 1990:5). R:quest for WSCRS data
(which begins with FY 1975) must be iddressed to HQ AFLC/FMC
and the data is provided in hard copy. Several different
aggregate levels of data can be requested, including mission
design series (MDS), fleet (MD), and mission (i.e., fighter,
bomber, cargo, etc.). Data can be further divided to weapon
system work breakdown structure (Steinlegy, 1991).

The VBAMOSC system, as its name implies, was originally
designed in the mid-1970's to provide increased management
insight into weapon system costs (May, 1982:Ch 5, 13).
Through the years this system has been modified and updated
in order to fulfill its original promise. Several factors
have impaired this process and the system is still in need
of maturation.

Responsibility for VAMOSC has switched hands on
different occasions. The Air Force Cost Center is the
present OPR but they are looking for an alternative host
site. Manpower and facilities limitations have impaired
VAMOSC development at the Cost Center. When researched for

this thesis, only three quarters of data were input into the

VAMOSC automated system. Past history at the NSN level was
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available on microfiche; but given the thesis time
constraints, this formidable aggregation task was even less
appealing tkan the D041 system (Masserro, 1991).

The ASD Cost Library was also briefly evaluated. It
appeared to be an excellent source for identifying
historical cost methodolecgies used by various programs but
it contained very little cost data with which to conduct

original research.
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Appendix C: Models Which Predict Recoverable Spares Costs

Introduction

The purpose of this appendix is to evaluate selected
models which can be used to predict recoverable spares
costs. The intent is not to provide in-depth operating
instructions Lut rather to familiarize the reader with the
models and their applicability. While not exhaustive, the
appendix includes both engineering or "bottoms-up" models
and parametric models selected for: 1) their general (as
opposed to SPO specific) applicability, and 2) their
prominent use in the AFLC community [one parametric model,
developed by Rand Corporation, was included even though it
is not in "prominent” use. It was evaluated simply because
there were few parametric models in the literature review
and this model was evaluated by the AFLC "Initial Spares
Working Group" as a potential candidate for predicting
initial spares requirements]. The text begins with the
analyses for the following parametric models: 1) Rand study
2) Modular Life Cycle Cost Model (MLCCM); and 3) Air
Logistics Early Requirements Technique (ALERT). Next, the
following engineering models are evaluated: 1) D041, the
"Weapon System Cost Retrieval Systen;" 2) AFLC Form 614, the
initial spares requirements computation form; 3) Logistics
Support Cost (LSC) Model; 4) Mod-Multi-Echelon Technique for

Recoverable Item Control (Mod-METRIC); and 5) Dyna-METRIC.
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A standard format is used during each analysis to simplify

comparisons between the models.

Rand Study
Rll references in this subsection, unless identified
otherwise, come from the developer's (see below) 1980

report, Estimatincg USAF Aircraft Recoverable Spares

Investment.
Developer(s): K.J. Hoffmayer, F.W. Finnegan, Jr., and
W.H. Rogers of the Rand Corporation, August 1980.

Model Purpose: The model is an update to a previous

1976 Rand model for estimating USAF aircraft recoverable
spares investment. It includes models for estimating total
replenishment spares requirements at the major subsystem
level (airframe, avionics, and propulsion) and for
estimating condemnation spares requirements at the same
level (v). An attempt was made to develop an initial spares
model but this was unsuccessful due to limited data
availability (23). The models provide annual estimates for
peacetime operating stock. War readiness material, spare
engines, and engine spare parts are excluded. The models
are intended for use prior to the preproduction or
deployment decision stages of the acquisition life cycle
(iii).

Model Algorithm: The study states that a logarithmic
form was chosen to develop the CERs due to its (logarithmic

CERs in general) superior handling of heteroscedasticity and
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its more "real world" multiplicative nature (11, 15). They
fail to clearly state whether the transformations are

natural (1n) or common (log) logarithmic in nature.

Table 17 shows the cost drivers used on each CER.

Subsystem CER

Table 17

Independent Variables (12-14)

Airframe CER

Avionies CER

Propulsion CER

Total active
aircraft in MDS
inventory

Total active
aircraft in MDS
inventory

Total number of
installed engines
in the MDS force

Airframe flyaway
cost

Avionics flyaway
cost

Propulsion
flyaway cost

Peak flying hours
per MDS per year

Dummy variable for
bomber

Dummy variable for
reconnaissance

Dummy variable for
fighter/attack

Dummy variable for
cargo

Dummy variable for
tanker

The following logarithmic form is common to each of the

subsystem CERs (11):

log ¥;; = log @ fﬁ:jﬂj log Xﬁt*'eﬂ
Where

(12)

Y;; = investment in POS spares inventory of aircraft
subsystem i at time t.

Xﬁt= the jth characteristic observed on aircraft
subsystem i at time t.

@ and P, = regression coefficients
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e = the error for aircraft subsystem i st time t.
The errors are assumed to be independent
across subsystems but correlated over time with
subsystem.

Data Inputs and Sources: Cost data from 1975 to 1978

was provided for the following aircraft (7):

A-7D C-5A RF-4C F-111D
B-52D KC-135Aa F-4D F-111F
B-52G C-141A F-4E T-37B
B-52H F-4C F-111A T-382

Specific data elements and sources are as follows (4-5):
D041 "Recoverable Consumption Item Reguirements System:"

National Stock Number (NSN)

Unit Price (in then-year dollars)

Program Begin Date (earliest record of use)

Program Selection Code (Material Program managing part)

Organization Field Maintenance (OFM) Total Demand
Rate (total item demand expressed in terms
appropriate for its material program)

Base Level Condemnations (NSN level condemnations at
base level)

Depot Level Condemnations (NSN level condemnations at
denot level)

Totzl Overhaul Condemnations (NSN level condemnations
resulting from planned overhauls)

Total Peacetime Operating Stock Assets

Application (the mission design series {MDS) or other
stock number using the item)

Quantity Per Application

J041 "Procurement History Pile:"

National Stock Numker (MSN)
Contract Date

Amount of Contract ($)
Quantity Procured

"Berospace Vehicle Inventory Status and Utilization and
Reporting System" (RVISURS):

Rircraft MDS

Calendar Year and Month

Flying Hours

Sorties

Landings

Average Number of Possessed Bircraft
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Other data used in the model development was obtained from

Ay

the following sources:

* TO 0025-30, Technical Manual, "Unit Cost of 3

Bircraft, Guided Missiles, and Engines." 3
X  USAF Statistical Digests 3
* PA, "USAF Program, Aerospac2 Vehicles and Flying 4
Hours."

ssessment: The accuracy of the models provided are

bl S bt b

difficult to assess due to the minimal coverage of model
diagnostics. The R? provided for the propulsion model has
poor statistics: R! of .5841 and SEE of .67318. Because
Rand does not specify which base was used (natural or
common) the reader is left to guess at the significance of

the standard error of the estimate (the SEE is a measure of E

prediction accuracy for a transformation using the natural
base)(Murphy, 1990~1991).

It is unclear if the logarithmic form is really

ALt f L 0 e e b

appropriate because they never actually state that they

observed heteroscedasticity in the data; or why they feel a
multiplicative equation is more “real woild". They fail to
document any diagnostics perfcormed or other models attempted
and discarded.

The manner in which subsystem flyaway costs were

included in each of the subsystem CERs may be questioned. -

One tenet of the integrated logistics support philosophy is

that as an item's reliability improves, the reduction in its

O S TR T S VTR A TR O

operations and support costs over its life cycle more than
compensates for its increased acquisition cost (which has

resulted from its improved reliability) (TASC, 1989:Ch 5,
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25). The multiplicative nature of the subsystem CERs does
not account for this belief logically. According to these
CERs, increased CERs will always result in greater spares
costs.

Although the source text does not explain its rationale
for using component flyaway costs, a case can be made that
life cycle 0&S costs reduce with improved reliability for

reasons other than reduced spares requirements. BAfter all,

replenishment spares costs are only a subset of the total
0&S costs. More reliable parts should fail less often and
therefore cost less for maintenance and repair. If RAND
believes that these types of savings exceed the increased
spares costs associated with more expensive components, then
their logic is not contradictory to reliability theory.
This methodology was evaluated by the Initial Spares
Working Group comprised of twenty two members representing
HQ AFLC, ASD and HQ AFS>. They concluded that the model's
database should be updated and a clear distinction made
between initial and replenishment spares before they could

use the model (Rexroad, Tillia, and Tritle, 1990:11).

Modular Life Cvcle Cost Model (MLCCM)

All references in this subsection, unless specified
otherwise, come from Grumman Rerospace Corporation's 1986

report entitled Modular Life Cycle Cost Model for Advanced

Aircraft Systems, Cost Methodology Development and
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Application. The authors were R. Isaacs, N. Montanaro, and

F. Olivo.

Developer(s): Grumman Corporation, Program Team

directed by Mr. R. Isaacs, September 1986.

Model Purpose: The MLCCM is a parametric-based series

of models for

predicting advanced technology aircraft costs, to the

major subsystem levels, for the Research, Development,

Test, and Evaluation, Production, Initial Support, and

Operations and Support phases of the system life c¢ycle

during conceptual and preliminary design. (iii)

Initial and replenishment spares are but subsets of the
overall costs within the production and 0&S periods,
respectively. Their cost is broken out for 14 subsystems
(structure, crew system, landing gezr, £light control, cargo
handling, engines, engine installation, envircamental
cbntrol systems, electrical, hydraulic/pneumatic, fuel
system, avionics, armament, auxiliary power unit) (11) for
two classes of aircraft (fighter/at:ack/bomber and

cargo/transport/ tanker)(x).

Model Algorithm: Because the MLCCM was developed as a

tool for conducting trade studies during the design stage,
the CERs were developed using a Work Breakdown Structure
(WBS) format. 1In this way the design engineers would be
able to relate costs to the WBS elements for which they were
responsible. Step-wise regression was used to develop lag-
linear regression equations. Again, it is unclear if they

used natural or common base transformations. They limited,
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for most cases, the number of parameters in any CER to one
third the number of data points (47-48). While it makes
sense to preserve degrees of freedom by limiting the number
of variables used (compared to the number of data points),
it isn't clear why the developers chose one third as the
criteria ratio. The developers provide no explanation for
this criteria.

Data Inputs and Sources: Cost data was derived from

several sources including: "Visibility and Management of
Operating Support Costs" (VAMOSC) system, AFR 173-13

Factors, and the 1975/1976 Operating and Support Cost

Estimating Report. Independent variable technical data

sources include: Standard Rircraft Characteristics (SAC)
charts, group weight statements, technical orders, and the

manufacturer.

The SAC charts were used to obtain data on engine
design and performance, fuel and tankage, armament,
loading and aircraft performance, development dates,
etc. Weights, areas, volumes, dimensions, and general
aircraft design characteristics were obtained from the
group weight statements and the manufacturers. Flight
manuals were used for data on electrical, f£luid power,
and flight actuator systems and for general aircraft
design characteristics as well [note that not all of
these variables are used in the replenishment spares
CERs]. (13)

Assessment: The fact that the models were developed
with obligation data brings with it all tle uncertainty

previously discussed in the data problem section. The

report admits the need for better cost data inputs (219).




The model statistics provided were not complete. R
values were provided as opposed to the R! statistic commonly
seen. The R! values for 5 of the 14 subsystems in the
fighter/attack/bomher class of aircraft were poor (less than
.7) (165-169). ©No discussion of model diagnostics was

provided.

BAir Logistics Early Requirements Technigue (BRLERT)

Unless stated otherwise, references in this subsection

will come from a 1989 report entitled Air Logistics Early

Requirements Technique (ALERT) F¥20-94 Program Objective
Memorandum (POM) Forecast. The authors were Adrienne
Rexroad, Robert Lucas, and Larry Collins.

Developer(s): AFLC/MMM, 1984,

Model Purpose: ALERT has beer used since 1984 by HQ
AFLC as the starting point for developing BP15 aircraft
peacetime spares Program Objective Memorandum (PCM) inputs.
it is the "starting point" because the output from ALERT is
scrubbed by the BP15 Program Manager prior to its submittal
(1).

Model Algorithm: The CERs developed used straight

linear regression to predict the first year of requirements.
This first year's estimate is then used as historical input

for the next four years' predictions--a regression technique
which referred to as "bootstrapping." (2).

Data Inputs and Sources: The dependent variable data

used were the requirements submitted in the last BRudget
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Estimate Submission (BES). There were a total of four
independent variables used (not all at once) in the CERs: 1)
Mission Design Series buy requirements from the D041
"Recoverable Consumption Item Requirements System,” 2)
BAverage Fleet Value, as calculated by USAF/AC, 3) the
reciprocal of the estimated Present Fleet RAge, also provided
by USARF/AC, and 4) Chronological Year.

Assessment: Only six of the sixteen weapon system
class CERs had adjusted R! values exceeding .7 and only one
class exceeded .75. The BP Manager scrub that followed
subsequent to the ALERT run changed the input values
further. The BP Manager is critical of the D041 ianput data
since it uses the June data run (a quarter not updated by
three of the five ALCs). He also questioned the iogic of
using the fleet value as a cost driver. USAF/AC based their
estimate of fleet value on projected future flying hour
programs which decrease cver time. The fleet values,
therefore, decrease over time. The spares requirement,

however, logically gets larger as the fleet gets older (7).

D04l

Unless stated otherwise, references in this subsection
will come from a June 1987 AFLC training program
entitled "Introduction to D04l Requirements System"” (course
# LMMIMOSG).

Developer(s): Unidentified. Managed by HQ AFLC/MM

(Material Management Division).

189

ph e L L s S

g

TV DR

TR

3 L Lt b g Tt

[




Model Purpose: The Recoverable Consumption Item

Requirements Computation System (D0¢41) actually serves
several functions. In addition to cetermining buy
requirements, D041 computations: 1) assist in managing depot
repair requirements, 2) develop Central Secondary Item
Stratification (CSIS) lists for spares budget development,
3) determine spares contract termination requirements, 4¢)
report excess requirements for disposal action, and 5)
provide for control of distribution of the spares
requirements (Ch 1, 5-6).

D041 can hardly be classified as simply a cost model.
Because it is the system used to execute the replenishment
spares budget, however, other cost models, such as the
Logistics Support Model, are compared to D041 to validate
their results (Alexander, Brcokey, Erhart, Fulton, Hofmann,
and Shutak, 1990:I-2; Dement, 1990). For this reason it is
included in the appendix

Model Algorithm: Figure 13 provides a summary level

view of the basic requirements computation process employed
by D041. The methodology is similar to that used for
initial spares provisioning (AFLCR 57-27) in that factors
are developed to predict future requirements. It differs,
however, in that the initial spares provisioning factor
estimates are typically manually developed by the ALC
equipment specialists based upon contractor inputs and their
own expertise, while the automated D041 factors can be

updated based on historical usage recorded during the
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* USAGE / PAST PROGRAM = FACTOR
* FACTOR x FUTURE PROGRAM = PROJECTED USAGE
* PROJECTED USAGE

+ STOCX LEVELS

+ WAR READINESS MATERIALS

+ ADDITIVE REQUIREMENTS

= GROSS REQUIREMENT

* GROSS REQUIREMENT

- ASSETS (Serviceable assets plus base and
depot repairables)

= NET REQUIREMENT

Figure 13. D041 Requirements Determination
Methodology (Cch 1, 2 & ¢h 7, 1)

initial spares coverage period (an average of two years
worth of data). Figure 14 provides examples of the D041
requirements computation factors. These factors, developed
on past usage, are then applied to the projected future
flying programs to predict future spares requirements.
Stock level requirements, war readiness material
requirements, and additives are added to these predicted
levels to arrive at gross requirements., Serviceable assets

on hand and those projected to be repaired at base and depot
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facilities are then subtracted to arrive at the net buy
requirement (Ch 1, 1).

Data Inputs and Sources: The D041 system is actually

at the center of numerous other computerized systems that
feed data into it. Chapter 10 of AFLCR 57-4 describes these
input systems in detail. There are three major categories
of input data: 1) programmatic information, 2) historical
spares usage data, and 3) inventory assets information. The
"Worldwide Stock Balance and Consumption Report'" (SB&CR)
provided by the D104 system provides two of these
categories--usage and assets. Because it is the major data
contributor, the data cutoff dates for the quarterly D041
runs are aligned with the SB&CR cutoff dates--30 June, 30
September, 31 December, and 31 March (Ch 2, 2).

Assessment: It is difficult to evaluate D041l without
examining the many contiibuting systems which feed into it.
For example, the Modified Dyna-METRIC model provides factors
used by D041l for determining War Readiness Spares Kits
(WRSKs) (Oster, Sakulich, and Stone, 1989:3). Additionally,
D041 uses inputs from the Aircraft Availability Model (AAM)
to determine its base safety level stock (Alexander,
Brookey, Erhart, Fulton, Hofmann, and Shutak, 1989:1X-16).
Bs a result, D04l snares in the same benefits and drawbacks
associated with its input systems. 1In the preceding
examples, both models allow D041l to optimize the repair
capability gained for these spares categories within a given

budget constraint. Marginal analysis techniques are
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utilized to examine the relationship between final
assemblies (e.g., a "black box"), known as the line
replaceable units (LRUs), and their various, less expensive
components (e.g., a circuit board), known as shop
replaceable units (SRUs) (Rlexander, Brookey, Erhart,
Fulton, Hofmann, and Shutak, 1989:1IX-16; Oster, Sakulich,
and Stone, 1989:2). If the components within an assembly
that are most likely to fail can be identified, it is more
economical to stock a number of the SRUs rather than
purchasing numerous, more expensive LRUs to arrive at the
same amount of repair capability.

As previously stated, the D04. system is the standard
by which other models are evaluated for their validity.
That is not to say that it is a perfect system by any means.
The D041 product used for budget development, known as the
Central Secondary Item Stratification (CSIS) report, must be
thoroughly scrubbed by the Repairable Stock Division Program
Manager and the ALC inventory management and equipment
specialists. According to the Repairable Stock Division
Program Manager, it is not uncommon for the CSIS reports to
contain numerous errors (e.g., data entry problems) that,
before being "scrubbed,"” predict requirements which are
substantially off the mark (Rosenthal, 1991).

The D041l system was also not designed as a cost
estimating tool. It manages recoverable spares down to the
Federal Stock Number level and it can aggregate requirements

to the aircraft mission design level. It has no built in
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capability to aggregate its data to other levels (such as
work unit code, for example). For this reason it is
impractical to think of the D041 as a cost estimating tool.
It is too inflexible to perform what-if type exercises and
very little computer time is made available for system

inquiries (Artley, 1991).

AFLC Form 614

Unless stated otherwise, references in this subsection
will come from a 1989 report entitled Analysis of Initial

Spares Support Lists (ISSL). This report was written by a

team headed by Captain Steve Reynolds.

Developer(s): Unidentified. Policy for initial

requirements determination is made by HQ AFLC/MMMIE. The

AFLC Form 614s have, historically, been manually prepared.

This process is beirg automated by XRII on a system known as

the Initial Requirements Determination (IRD) system. The
IRD is currently in system validation test and should be on
line by the end of summer 1991 (Horner, 1991).

Model Purpose: The AFLC Form 614 computations are the

"initial spares" equivalent of the those performed by D041
0 determine replenishment spares buy requirements. Unlike
7041, however, the AFLC Form 614 process has not been used
in the budget development process. 1Initial spares budgets
are developed using a factor based approach that relates
spares requirements to aircraft flyaway costs (Rexroad,

Tillia, and Tritle, 1990:1). This approach has been used
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because the numerous data inputs required in the AFLC Form
614 process are typically not available until completion of
the full-scale development life cycle phase (TASC, 1989:Ch
5, 55). Budget wedges must be estimated prior to this time
and so HQ AFLC/FMBSR, the agency responsible for the initial
spares budget, has fallen back on the factor based approach.

The factor based method has been criticized for its
lack of lzck of insight into underlying causal relationships
and alternative cost models are being evaluated as
candidates to replace it. The Logistics Support Cost (LSC)
Model (the next model evaluated in this appendix) has been
recommended by two studies for this purpose (Dement, 1990;
Rexroad, Tillia, and Tritle, 1990). The LSC model, however,
presents the same data input scarcity problem which has
prevented the AFLC Form 614 process from doing the job all
along. Although the AFLC Form 614 process has not been used
as a cost estimating tool in the past, it is included in
this appendix because it seems that the samme work around
being suggested for the LSC data problem (i.e., using data
from analogous systems (Dement, 1990:Ch 2)) would work for
it also.

Model RAlgorithm: The AFLC Form 614 computations are

similar in nature to the D041 computations. BAs stated in
the D041 analysis, the provisioning factors used in the AFLC
Form 614 computations are estimates based upon contractor
inputs and the expertise of the equipment specizlist(s)

making the estimate. This contrasts with the 041 factors
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which may be adjusted based upon observations of the items'
performance during the initial spare coverage perioa (an
average of two years) (16). Figure 15 provides examples of
the AFLC Form 614 requirements computations.

Data Inputs and Sources: The following provisioning

factors are provided by the equipment specialist(-) during
the provisioning process:

Maintenance Factor

Overhaul Replacement Percent

Base Condemnation Percent

Depot Condemnation Percent

Not Reparable This Station (NRTS) Percent

In addition tc these factors, information concerning
the weapon system's operational prcgram is collected by the
System Program Manager on checklis®s such the AFLCR 57-27
(18). Together, these data provide the inputs required to
compute the AFLC Fcrm 614 initial spares requirements.

Assessment: Eesides the previously mentioned data
availability problems, there are two important deficiencies
inherent in the AFLC Form 614 process that were identified
in Capt Reynold's ISSL study.

The first problem is thet the 614 worksheets do not
maximize the repair capability for a <iven budaet
constraint. The reason this ic so is that no consideration
is given to the LRU/SRU indenture relationships (41). 1t
is probable, therefore, that a better mix of LRUs and SRUs

could provide the same zmount of repair capability at a
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cheaper price; or, using the same budget, a greater repair
capability could be obtained.

The second problem is that the 614 worksheets have "no
direct linkage to readiness and availability obje.tive™ as
required b DoD mandate (DODI 4140.42)(41). The 614
worksheet computaticns attempt to fill backorders for :tems
durir~ the initial spares co.erage period, but there is no
direct link made between filling backorders and neeting a
readiness objective. Not all parts are critica. for an
aircraft to be "ready" or "available" to perform its

mission.

Logistics Support Cost (LSC) Model

Unless stated otherwise, references in this subsecticn
will come from an independent validation of the LSC Model
(version 2.0) performed “y Management Consulting & Research,
Inc. (MCR). The final report, written by Areve B.
Alexander, Lori E. Brookey, Robert J. Erhart, Sarah J.
Fulton, Dr. Jerry D. Hofmann and Michael D. Shutak, is dated
15 May 1990.

Developer(s): Original version (1.0) was developed in

1975 by the Air Force Air Logistics Division (AFALD) to run
on a mainframe computer (II-1). The current personal
computer based version (2.2) was released in 1991 and
developed by HQ AFLC/FMC (then ACC) (Passage, 1391).

Model Purpose: The current LSC model can be used to

provide estimates for the following life cycle cosis: 1)
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initial spares {(including base and depot safety stock), 2)
replenishment spares, 3) depot maintenance, 4) second
destination transportation, and 5) Repair Support Division
(RSD) Stock Fund (Passage, 1991).

The LSC model is accepiad as a valid estimating model
by both the AF and 0SD Cost Analysis Improvement Groups
(CAIG). Among its recent applications, the LSC model was
used to perform independent cost analyses for the Advanced
Tactical Fighter (ATF), C-17, Global Positioning System, and
Joint Stars program offi-«es (Passage, 1991).

Model Algorithm: The L.52 model performs computations

similar to those used by 3041 and the AFLC Form 614 process.
It provides cost estimates for individual reparable items
(LRU or SRU) and then aggregates these ccsis to the
subsystem and system level (IZI-2).

Numerous assumptions are incorporated into the LSC
model. A selection of these assumptions include:

1) "The logistics support processes and costs of an
item are mathematicelly independent of those of
other items, even items physically related to it"
(I11-2).

2) "The support cost calculation of one item does not
affect the support costs calculation for any other
item" (I11-2).

3) "The model assumes the standard USAF maintenance
concepts for the repair of r=parable components
from aircraft apply"” (III-3). For this reason, the
model can handle three level or two level

meintenance scenarios.

4) 1A Poisson probability function is used in the
modeling of queues (111-8).
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5) Little's equation is used to calculate the number

of items repaired monthly at the intermediate level

(111-7).

6) The interwmediale level repair process meets the
following requ:rements:

a. The number of arrivals per unit of time is
described by a Poisson distribution.

b. Customers are served in order of arrival.
¢. There is one server or serving facility.

d. The mean arrival rate is less than the mean
service rate.

e. The waitinc space for customers is infinite;
that is, nc customers are turned away or leave
of their own accord, due to limited waiting
space or slow service times.

f. The population of customers is finite.

g. Service times are describe by a deterministic
distribution function. (III-9)

Figure 16 provides examples of the computations used by

the LSC model.

Data Inputs and Sources: The LSC model contains five

data input files: 1) system; 2) hardware; 3) cost; 4)
support equipment; and 5) SRU factor file. Tables 18
through 20 identify recuired data inputs and data sources
for three of these files to illustrate the large amount of
data required in the LSC model [the system file, not shown
below, contains another 29 data inputs]. It is the large
number of data inputzs wrich prohibits this type of model
from being used in the early acquisition phase without
resorting to analogous systems data or design goals to

complete the data files.
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Table 18

LSC Hardware File Inputs & Sources

DATA INPUT __SOURCE |
£ of subsystems SPO/SPM
WUC identification SPO/SPM/ALD
System name SPO/SPM/ALD
# of LRU/SRU records SPO/SPM/ALD
Design or target mean time to SPO/SPM/ALD
repair at the organizational
level
Design of target mean time SPO/SPM/ALD
between removals
Engineering change order LSC USER
indicator
WUC identification of LRU/SRU SPO/SPM/ALD
Description or r.ame of SPO/SPM/ALD
LRU/SRU
Stocklisted :tem indicator SPO/SPM/ALD
Quantity per application SPO/SPM/ALD
Expendability, LSC USER
recoverability, reparability
category (ERRC) record to be
read from System File
LRU/SRU mean time between SPO/SPM/ALD
removal
LRU/SRU mean time between SPO/SPM/ARLD
demand
Average # of hours for depot ALC/SPO/SPM/ALD

to repair an SRU from this
LRU
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Table 18 (Continued)

LSC Hardware File Inputs & Sources (Passage, 1990)

repair this item at the depot

DATAR INPUT SOURCE
Not reparable this station % SPO/SPM/ALD
Base condemnation rate SPO/SPM/ALD
Depot condemnation rate ALC/SPO/SPM/ALD
Average # of labor hours to ALC/SPO/SPM/ALD

Labor rate for Interim
Contractor Support (ICS) or
RIW repair

SPO/SPM/AFLCP 173-10

Fraction of time this LRU is
repaired at base by removal
of an SRU and sending an SRU
to depot

ALC/SPO/SPM

LRU/SRU weight (in lbs)

SPO/SPM/ALD

SRU indicator: 1 = LRU with
unknown SRUs; 2 = LRU with
SRU data to follow; 3 = item
is an SRU

SPO/SPM/ALD

Utilization Factor - ratio of
operating hours to fiying
hours

SPO/SPM/ALD

User defined category
indicator

LSC USER

Derating index indicator

LSC USER




Table 19

LSC Support Equipment File Inputs & Sources (Passage, 1990)

another Program

DATA INPUT N . §OUREEH_»~W___. B
Index value identifying type SPO/SPM/ALD
of support equipment (SE)
# of years of SE costs LSC USER
Cost of SE inherited from SPO/SPM

Cost of SE developed for this
Program

SPO/COST TEAM

Table 20

LSC Cost File Inputs & Sources (Passage, 1990)

DATA INPUT N - __~4_,g“§9q§C§L__a o
5 digit Work Unit Code (WUC) SPQ/SPM/ALD
matching Hardware File WUC
for same item
# of cost fields on this line LSC USER

Lot average unit cost for
each year specified by second
input above

SPO COST TEAM

Assessment:

As previously stated, the LSC model has

been approved for use by both the AF and 0SD CAIGs and it

was independently validated by

MCR.

The LSC was one of the

two models chosen (out of a group of six alternatives) by an

Initial Spares Working Group as an alternative to the

current factor based approach to developing initial spares

budgets (Rexroad, Tillia, and Tritle, 1990).

performed by Capt Anne Dement,

Another study

an ALD operations research

analyst, attempted to validate the use of a demand based
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budget estimating model (i.e., the LSC model) during the
early acquisition pun jes by using it to estimate initial
spares costs for the Advanced Tactical Fighter. According
to the report's Executive Summary, "the test showed the
approach was executable, provided a reasonable estimate, and
offered several significant advantages over current
estimating techniques” (Dement, 1990).

Even with all of these factors in its favor, the LSC
model is still not without its shortcomings. Like the AFLC
Form 614 process, the LSC model has no marginal analysis
capability to optimize the LRU/SRU mix for a given budget
constraint. The model also doesn't include spares required
for programmed depot maintenance and component overhaul in
its calculations (Dement, 1990:Append 1, Sec 2.2.2).
Finally, the out of production and demand volatility factors
used in the model need additional analysis to validate them.
In both cases these factors make significant contribution to
the overall spares requirements and yet little research has
been conducted to validate their default values [see Chapter
two of this thesis for a description of the demand

volatility factor history].

Mod-METRIC

Developer(s): John A. Muckstadt developed Mod-METRIC

based upon the earlier Multi-Echelon Technique for
Recoverable Item Control (METRIC) developed by Craig C.

Sherbrooke of the RAND Corporation (Muckstaadt, 1973:472).
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Model Purpose: While METRIC was designed for

determining both the requirements and distribution of
recoverable spares in a two-echelon (base and depot)
inventory system (Muckstadt, 1973:472), Mod-METRIC also
"permits two levels of parts to be considered, an assembly
and its components" (Muckstadt, 1973:474). 1In other words,
Mod-METRIC uses marginal analysis techniques to identify the
optimum mix of LRUs and SRUs for a given budget constraint.

Current Mod-METRIC applications include "initial
provisioning, engine requirement computations and
redistribution of spares" (AFLCP 57-13, 1987:3).

Model Algorithm: Keeping weapon systems in serviceable
condition is the goal of the Air Force maintenance process
described in this paragraph (AFLCP 57-13, 1987:3-4). Modern
weapon systems have modular designs to allow failed LRUs or
SRUs to simply be removed and replaced from the base stock
of serviceable spares. The stock is replenished when the
base repairs the failed item and places it in the stock. If
the base cannot repair the item, it is sent to the depot for
repair and the base requests that its serviceable spares
stock be resupplied from the depot stock. It is clear that
the stock levels of serviceable items impact the performance
of this system. If demanded items cannot be supplied from
the base stock, the aircraft goes into not mission capable
(NMC) status until the item is: 1) repaired at the base
level, 2) repaired at the depot level, or 3) obtained from

the depot stock (if ava:.lable). When items demanded at the
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base level cannot be supplied from base stock, the items are
considered on backorder. One backorder day equates to one
item on backorder for one day (AFLCP 57-13, 1987:8).

Both METRIC and MOD-METRIC model this maintenance
process. The objective function for METRIC is to determine
the amount of LRU stock and where to place it (base or
depot) that will minimize the number of backorder days for a
given budget constraint (AFLCP 57-13,1987:10). The
objective function for MOD-METRIC focuses on a single LRU
and determines the optimum mix of the LRU and its associated
SRUs that will minimize the number of backorder days for the
LRU for a given budget constraint [Another METRIC based
model known as COMBINE supplements t.ie MOD-METRIC model to
solve problems with many LRU-SRU groups considered
simultaneously] (AFLCP 57-13, 1987:1)).

Both METRIC and Mod-METRIC have the same assumptions
(AFLCP 57-13,1987:8):

a. No lateral resupply betweer. bases.,

b. No batching of items before repair is started

on an item (infinite channel queuing assumption).

¢. The level at which repair is performed depends

only on the complexity of the repair, not on

existing workload.

d. Repair times are statistically independent.

e. A stationary compound Poisson probability

distribution describes the demand process for

each item.

f. Simultaneous failures of SRUs do not occur.

g. A failure of one type of item is statistically

independent of those that occur for any other type of

item.

Both the METRIC and MOD-METRIC models employ operations

science techniques such as Lagrangian multipliers and
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Fibonnacci searches. The scope of this paper limits the
following algorithm discussion (AFLCP 57-13, 1987:9-10) to a
more general level. As previously stated, METRIC determines
optimum LRU stock levels for a given budget constraint.
Because partial LRUs are not considered, the cost of the
stock level will probably not equal the budget constraint
exactly. The Lagrangian multipliers are part of a marginal
analysis process that evaluates the reduction in backorders
per additional dollar invested in the various LRUs which
compose the weapon system and provides a solution very close
to the budget constraint. The model then increments the
budget and determines the optimum stock level for the new
budget constraint. This allows one to plot backorder
performance versus cost.

The MOD-METRIC model has the added complexity of
evaluating the optimum mix of an LRU and its SRUs. The
available budget is first allocated between purchasing whole
LRUs and the associated SRUs using the Fibonnacci search.
Bfter a portion of the budget has been allocated to SRUs,
the same marginal analysis employed by METRIC is used to
determine the optimum number of the various SRUs which
compose the LRU and to cistribute these SRUs between the
bases and the depot. The budget is then incremented and the
process is repeated for the new budget constraint. Again,
performance versus cost can be plotted.

Data Inputs: Data files for running mod-METRIC can bhe

created at HQ AFLC using CREATE (a Honeywell 6000 series
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computer). Mod-METRIC may be run from other systems given
that specific formats (addressed in hapter eight of AFLCP
57-13) are adhered to in developing he data files. The
following data inputs are required (.FLCP 57-13, 1987:15):
Flying hour program data:
1) Number of bases.
2) Flying hours per month rer base.
3) Order and shipping time per base,
Recoverable item data:
1) Identification.
2) Unit cost.
3) Mean time between demanl.
4) Not repairable this sta:ion percentage.
5) Condemnation percentage.
6) Quantity per next highe: application.
7) Base repair time.
8) Depot repair time.
9) Procurement lead time.
10). Item~dependent order and ship time.
Computer program control data: This data category
refers to information provided by th2 user when prompted by
a series of questions from an intera:tive preprocessor
called BUILD. The answers to these juestions (e.g., user-
id, target budget value, size of increment between
successive budgets evaluated, etc.) are required for the
program to know the specifics of what type of output the
user is seeking (AFLCP 57-13, 1987:15-17).
Assessment: The F-15 program was one of the first
weapon systems to employ the MOD~METRIC model. Previous
weapon systems made use of the methodology prescribed in

AFLCR 57-27 (still an accepted approach). This methodology

"was written and published when maximum-base-self-
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sufficiency was an accepted maintenance concept" (Huff,
1979:9). This concept does not allow for optimization of
resources because individual bases, using this approach,
tend to purchase more LRUs and less SRUs to prevent LRU
backorders. More repair parts are required at each base in
order for them to be self-gufficient. The MOD-METRIC model
is credited as one of the factoxs behind the F-15 program's
ability to complete initial spares provisioning within
budget (Huff, 1979:10-11).

The Mod-METRIC model is not without limitationms,
however., Because the Mod-METRIC model assumes that demand
is described by a stationary compound Poisson probability
distribution and that each item is equally critical, critics
argue that the use of backorders to approximate aircraft
availability is not adequate. The Dyna-METRIC model was
developed after Mod-METRIC to accommodate for the dynamic
requirements process (e.g. surge requirements in a war-time
scenario) and the differing criticality of different spares
(Mills, 1985:11).

Dyna-METRIC

Unless stated otherwise, all references from this
subsection will come from a 1988 RAND Corporation report
entitled, Dyna-METRIC Version 4 Modeling Worldwide Logistics

Support of Aircraft Components. The authors were Karen E.

Isaacson, Patricia Boren, Christopher L. Tsai and Raymond

Pyles.
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Developer(s): The Dyna-METRIC mocdel has evolved as the

result of several RAND Corporation proiects dating back to
the 1970's. R. J. Hillestad and M. J. Carrillo are credited
with the "theoretical development of the dynamic queuing
equations that form the heart of Dyna-METRIC Hillestad,
1982:5). The Headguarters Air Force Logistics Command
Management Sciences Division (HQ AFLC/XPS) is responsible
for the current version of the model (iii).

Model Purpose: Dyna-METRIC is a readiness, or

availability, based model that "relates logistics resources
and policies to wartime readiness'" (V). 1t was developed
for logisticians to assess the impact of "wartime dynamics
and repair constraints and provides operational performance
neasures, problem detection, and spares requirements" (V).
Dyna-METRIC will soon replace Mod-METRIC as the model used
to determine whole engine and engine module requirements
(both wartime and peacetime requirements). Additionally,
code is currently being written to incorporate Dyna~-METRIC
into the Logistics Support Cost (LSC) model. This will
change the LSC from a pure demand based approach to one that
uses marginal analysis to maximize improvements in
availability per dollar spent (Niklas, 1991). Dyna-METRIC
allows one to model three echelons of maintenance repair and
three indenture levels of components (V).

Model Algorithm: Dyna-METRIC allows one to predict the
number of aircraft components that are flowing from point to

point in the repair process (i.e., through repair

212




"pipelines"). Central .o these predictions is the delay or
processing time these components must spend in each pipeline
segment. "The expected number of components in each
segment, then, depends on the rate at which demands occur
and the time the components spend in each segment' (VI).

Dyna-METRIC uses the user-supplied pipeline variance to
mean ratio (VIMR) to determine what type of distribution to
use to predict the number of components within a pipeline
segment. A VTMR of less than one corresponds to a binomial
distribution. A VTMR of one suggests a poisson
distribution, and a VIMR of greater than one suggest a
negative binomial distribution. These distributions are
used by the model to "recommend st. v levels for components"
and "to predict performance at each base for each time of
analysis” (92).

Unlike Mod-METRIC, Dyna-METRIC also allows one to
consider policies ¢of full and partial cannibalization of
aircraft. The full cannibalization routine involves two
assumptions. First, it assumes that all the aircratt at a
base look alike (i.e., composed of the same LRUs) and will
lead to overly optimistic results if this assumption is

Ycannibalization

violated. The second assumption is that
can be done instantly and without consuming resources" (95).
When either of the above assumptions are broken, it is

recommerded that, if one wants to include cannibalization in

one's model, a partial cannibalization policy is modeled in

lieu of the full cannibalization routine (94-95).
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It is beyond the scope of this appendix to introduce
the numerous mathematical equations utilized by Dyna-METRIC.
Interested readers should consult th2 reference listed at
the beginning of this model's analysis.

Data Inputs: The Dyna-METRIC model requires numerous

user inputs. The following is a partial list of these

inputs:

* Expected pipeline size (i.e., component quantity)
at the location being analyzed

* Pipeline Variance to Mean Ratio (VTMR)

* Component stock level

* Number of aircraft at the base, after attrition

* Number of diffeirent types of LRU of which the
aircraft are constructed

* Quantity per application cf LRU i

* Quantity per application of LRU i that must be
operational if the aircraft is fully mission
capable (FMC)

* LRU i stock level at base (92-93)

Bssessment: Dyna-METRIC's ability to predict logistics
requirements under dyuzmic conditions has made it a valuable
tool. Early uses of the model are numerous. Ogden Air
Logistics Center uzed the model to study F-4 and F-16
aircratt readiness and supportability. Headquarters Air
Force Logistics Command used it to study Flu0 engine
requirements, and the Tactical Air Command has used it to
analyze the impact of different repair and supply strategies
on F~15 readiness and deployability (Hillestad, 1982:iv).

Dyna-METRIC is not without its limitations, however.
Although the model allows one to model multiple bases, this

capability is weakened because the model can not handle

multiple types of collocated aircraft. Additionally,
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lateral supply and flight line constraints are also 'not
explicitly modeled” (V).

A 1988 RAND Corporation report questions the ability of
models such as Dyna-METRIC to model the "failure process and
the resulting series of random demands on supply and
maintenance" (Crawford, 1988:V). Specifically, those models
which assume that component removals follow a Poisson
arrival process "assume the flow of broken parts ('demand
process') into the repair facility will be random, but with
a certain mean and a certain degree of randomness or
'irregularity' (Crawford, 1988:4). The variance-to-mean
ratio (VIMR) is a measure of this variability and thus the
unpredictability of the demand process. Crawford's findings
show that actual VTMRs experienced are significantly greater
than those assumed by the models (such as Dyna-METRIC)
(Crawford, 1988:1). When this happens, "the part will
arrive at the repair process in what appear to be large
random clusters instead of random, but more evenly spaced,
intervals"” (4). These results, according to Crawford,
reduce the confidence one can place in these models and may
have a "damaging effect on aircraft availability and wartime
readiness" (Crawford, 1988:vi).

Dyna-METRIC also fazils to identify the least cost mix
of LRUs and SRUs needed to satisfy availability goals. The
RAircraft Sustainability Model (BASM)) was developed by the
Logistics Management Institute (LMI) to correct this problem

(Oster, Sakulich, and Stone, 1989:2).
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Appendix D. Condemnation; CER _Database

The data in Table 21 represents the entire database
used in the development of condemnation C2ZRs for this
thesis. The data comes from numerous sources. The annual
condemnation costs, number of aircraft, and annual flying -
heurs were all obtained from the Weapon System Cost
Retrieval System (HO36C).
The annual sorties and annual landings were obtained
from what is currently referred to as Acquisition Logistics

Division (ALD) Pamphlet 800-4, Acgquisition Management :

Aiy

(b

raft Historical Reliability and vaintainability Data.

Because ALD has been known by different names through the
vears, the different volumes of 800-4 have different titles.
The first three volumes were labeled AFALD Pamphlet 800-4.
Sorties and landings data from FY75 through the first hal
of FY78 was taken from Volume I. Data f£rom the second half

-

(o)

If,

¥v78 through FY80 came from Volume II, and data from FY81
thfough the first half of FY83 came from Volume III. The
next two volumes were known as the Air Force Acguisition
Logistics Center (AFALC) Pamphlet 800-4. Data from the
second half of FY83 through FY85 came from Volume IV, and
data from FY¥86 through FY87 came from Volume V. Finally,
data from FY88 to FY89 came from Volume VI, known as ALD
Pamphlet 800-4.

The remaining physical and performance characteristics

data was taken from various addenda to AFG 2, Standard
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Aircraft Characteristics. Data for the F-4D and F-4E came

from Addendum 55, Volume 1. Data for the C-53 came from
Addendum 53, Volume 2. Data for the C-130B and T-38A came
from Addendum 54, Volume 2. Data for the F-16A came from
Addendum 58, Volume 1. Data for the A-7D, R-7K, KC-135A,
and A-10A came from Addendum 59, Volume 1. Data for the T-
378, C-130E, and C-141B came from Addendum 56, Volume 2.
Data for the F-152 and F-15B came from September 1989
Standard Aircraft Characteristics pamphlets (no AFG
references were found on these pamphlets). Finally, the B~
52G, B-52H, F-111D, and FB-111A data was taken from Addendum

60, Volume 1.




Table 21 E
Condemnations CER Database 3
D
ANNUAL # ENNUAL ANNUAL U ]
CONDEMN OF ANNUAL # OF # OF M EMPTY 3
MDS FY COSTS A/C FLY HRS SORTIES LANDINGS Y WEIGHT E
F15A 85 56,284,486 321 71,586 0 26,749 ]
F15A 86 46,541,266 318 75,559 0 26,749 r
F15A 87 46,559,725 317 74,363 0 26,749 3
F15A 88 46,305,459 314 69,722 0 26,749 3
F15A 89 39,983,476 313 71,684 0 26,749 E
F15B 85 9,949,506 54 12,691 0 26,832 o
F15B 86 8,634,666 54 14,114 0 26,832 -
F15B 87 9,087,565 53 14,327 0 26,832 E
F15B 88 8,948,457 54 13,495 0 26,832 1
F15B 89 7,364,837 53 13,382 0 26,832 E
Fl16A 85 62,780,304 627 171,748 125,503 127,526 O 15,306 E
F16R 86 60,804,303 619 168,671 126,265 127,488 0 15,306 4
Fl16A 87 67,173,261 615 175,137 134,365 138,092 0 15,306 ;
F16A 88 61,454,897 604 167,914 112,759 113,563 O 15,306 E
F16A 89 55,416,270 563 165,706 112,336 113,021 0 15,306 3
F4D 76 15,609,443 494 104,756 68,020 0 28,873
F4D 77 13,008,510 472 101,750 70,z10 0 28,873 E
F4D 78 17,001,188 467 96,590 72,091 0 28,873 E
F4D 79 20,153,467 456 100,067 77,301 91,781 O 28,873 3
F4D 80 22,737,395 450 89,927 69,192 86,888 0 28,873 3
F4E 77 13,565,579 697 168,900 121,195 0 30,328 3
F4E 78 19,369,172 671 158,431 119,474 0 30,328 3
F4E 79 18,444,521 626 155,493 119,391 144,590 0O 30,328 3
F4E 80 19,210,958 546 129,388 101,179 114,328 O 30,328 ;
F4E 81 24,254,355 499 113,343 89,376 98,232 0 30,328 3
A7D 76 13,370,606 407 82,159 51,267 0 19,733 E
A7D 77 9,251,047 406 109,914 64,787 0 19,733 3
AR7D 78 14,151,911 384 101,421 61,127 0 19,733 N
A7D 79 13,002,152 376 94,101 59,537 59,903 0 19,733 B
A7D 80 13,564,173 371 91,423 59,985 60,285 0 19,733 i
A7K 83 1,251,303 31 8,292 0 21,300 :
A7TK 84 1,057,256 31 8,630 0 21,300 E
A7K 85 1,179,063 29 8,122 5,520 5,533 0 21,300 - 3
A7K 86 1,145,533 30 6,040 4,159 4,181 0 21,300 ]
ATK 87 919,806 30 6,583 4,450 4,464 0 21,300 E
A1OA 84 17,683,981 668 226,171 0 21,541 3
R1OA 85 18,505,945 663 222,569 132,998 133,776 © 21,541 ;
ALOA 86 22,482,695 659 219,958 132,998 133,314 0 21,541 1
A1OA 87 26,952,091 651 224,177 134,048 134,057 0 21,541 E
R10A 88 22,279,258 627 211,892 128,100 128,119 0 21,541 E
F111D 78 13,729,867 90 15,140 6,335 0 46,949 3
F111D 79 13,600,558 85 17,270 7,416 11,288 0 46,949 :




Table 21 (Continued)

Condemnations CER Database

MDS

F111D
F11llD
Fl1l11D
T37B
T37B
T37B
T37B
T378B
T38A
T38A
T38A
T38A
T38Aa
B52G
B52G
B52G
B526G
B52G
B52H
B52H
B52H
B52H
B52H
c5a
C5A
C5a
Cc5a
C5A
Cl1l30B
Cl30B
C130B
Cl30B
Cl30B
Cl30E
C1l30E
Cl30E
Cl30E
Cl130E
Cl41B
Cl41B
Cl41B
Cl41B
Cl41B

ANNUAL
CONDEMN
COSTs

15,719,180
14,234,373
13,848,110

5,344,323

4,247,758

6,278,631

7,757,701

5,521,700
15,501,426
10,235,854
13,817,793
14,497,282
18,747,947
35,158,761
49,605,497
52,700,602
56,680,050
54,222,043
16,499,476
20,263,183
21,980,774
22,330,298
22,374,407
37,813,318
34,824,717
41,647,986
44,176,326
46,922,447

3,968,334

2,893,091

2,738,158

2,781,287

4,587,832
16,066,401
12,728,896
12,935,999
12,414,932
18,359,622
50,958,201
55,749,449
53,723,129
39,329,435
44,991,514

#
OF
a/c

Q.
b=l

338
309
280
27
274
269
268
268
267
265

ANNUAL
FLY HRS

17,828
17,906
16,933
255,018
273,220
255,861
288,414
288,141
404,275
309,753
338,751
305,805
312,855
69,194
65,512
64,269
65,013
63,713
36,635
36,346
36,513
36,691
36,430
36,710
48,590
48,282
48,657
51,133
37,811
36,585
37,836
36,923
37,621
169,480
162,304
164,117
161,280
162,342
262,960
289,119
290,509
290,142
289,039

ANNUAL
# OF
SORTIES

8,152
7,811
7,666
208,570
219,115
94,961
229,489
231,083
338,665
247,519
278,209
119,751
257,550
9,335
8,496
8,324
9,042
9,705
4,920
4,543
4,567
5,075
5,103
7,252
9,948
4,693
10,222
10,570
14,905
14,208
18,398
19,536
20,285
74,174
66,747
90,682
96,839
99,644
73,405
87,879

89,976
88,977

ANNUAL
# OF
LANDINGS

12,108
11,609
11,678

790,846
798,415

829,486

25,617
27,839

15,055
13,971

31,690
32,389

50,361
52,571

225,448
234,637
161,239
177,036

184,982
187,656

<KX aQuo

FPHP PR R RRERRR IR R R R R R R R R R R R R R RO 000000000000

EMPTY
WEIGHT

46,949
46,949
46,949

4,067
4,067
4,067
4,067
4,067
7,410
7,410
7,410
7,410
7,410

180,041

180,041

180,041

180,041

180,041

184,291

184,291

184,291

184,291

184,291

320,085

320,085

320,085

320,085

320,085
72,300
72,300
72,300
72,300
72,300
73,804
73,804
73,804
73,804
73,804

140,882

140,882

140,882

140,882

140,882
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Table 21 (Continued)

Condemnations CER Database

D

ANNUAL # ANNUAL ANNUAL U
CONDEMN OF ANNUAL # OF # OF M EMPTY
MDS FY COSTS A/C FLY HRS SORTIES LANDINGS Y WEIGHT
KC135A 75 57,757,551 607 220,148 47,430 1 97,030
KC135A 76 41,902,937 606 205,175 39,807 1 97,030
KC1358 77 60,962,617 599 189,271 43,958 1 97,030
KC135a 78 70,731,943 598 193,618 47,549 1 97,030
KCl135a 79 81,852,238 587 193,084 49,601 157,466 1 97,030
FB11lA 76 10,251,819 7 16,886 3,892 0 47,481
FB11lA 77 10,123,838 70 18,469 4,870 0 47,481
FB11llAa 78 16,176,540 68 15,839 4,566 0 47,481
FﬁlllA 79 13,769,682 67 18,286 5,416 9,295 0 47,481
FB11llAa 80 19,071,741 66 17,443 5,418 10,491 0 47,481

Table 21 (Continued)
Condemnations CER Database
THRUST E LENGTH MAX MAX MAX

\ PER N PLUS MAX TAKEOFF LOAD CLIMB COMBAT
MDS ENGINE G SPAN SPEED WEIGHT FACTOR RATE RADIUS
F15A 23,830 2 106.56 1,309 56,000 61,340 515
F15B 23,830 2 106.56 1,309 56,000 59,930 502
Fl6A 23,830 1 82.28 1,181 35,400 60,288 693
F4D 17,000 2 96.6 1,210 59,483 55,600 783
F4E 17,900 2 101.4 1,245 61,795 49,800 741
A7D 14,250 1 84.8 608 39,325 8,000 600
A7TK 14,500 1 87.42 569 42,000 9,485 282
Al0R 9,065 2 110.5 362 49,774 6,203 351
Fl1lD 20,840 2 136.47 1,262 100,000 45,000 1,270
T37B 1,025 1 63.1 357 6,800 3,609 167
T38A 3,850 2 71.6 709 11,761 33,300 305
B52G 13,750 8 346.9 549 488.000 2 8,243 3,118
B52H 17,000 8 345.3 547 488,000 2 9,628 3,747
C5a 40,805 4 470.5 495 769,000 2.5 5,580 2,519
Cl30B 9,388 4 230.4 330 135,000 3 4,420 1,549
Cl30E 9,388 4 230.4 317 175,000 3 4,060 1,866
Cl41B 21,000 4 328.4 493 323,100 2.5 6,300 2,366
KC135a 13,750 4 267.00 527 300,800 2.00 6,350 1,613

FB11lla 20,350 2 145.54 1,262 119,243 3.00 33,800
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Appendix E. Model Validation Database

The following table provides the data used in both the
validation and sensitivity tests. Data included in Table 22

taken from the same sources used in Table 21.

Table 22

Model Validation Database

CONDEMN # OF ANNUAL FLY HRS # OF
MDS COSTS FY MDS FLY HRS PER AC SORTIES
F1l6A 27,537,555 198% 514 118,018 229.61 85,379
F4D 24,151,890 198). 445 89,844 201.90 68,869
F4E 24,254,355 1981 499 113,343 227.14 89,376
A7D 20,075,237 1981 360 83,120 230.89 56,073
ATK 1,560,822 1988 30 7,381 246.03 4,874
R10A 12,012,017 1989 586 218,690 373.19 126,809
F111D 14,831,043 1983 82 18,368 224.00 8,406
B52G 43,909,467 1981 172 63,959 371.85 9,465
B52H 20,415,995 1981 96 37,873 394,51 5,226

csa 71,036,363 1981 77 52,160 677.40 10,373 0
Cl30B 4,698,837 1981 91 36,443 400.47 20,310 :
Cl30E 18,837,210 1981 279 168,526 604.04 99,436 ;
Cl41B 51,264,650 1987 267 284,065 1,063.91 87,102 ;]
FB11l1A 13,471,819 1981 63 17,332 275.11 5,513 :
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Table 22 (Continued)

Model Validation Database

MDS

F16A
F4D
F4E
A7D
ATK
Al0A
F111D
B52G
B52H
CS5A
Cl30B
Cl30E
Cl41B
FB11l1la

TAKEQFF

FLY HRS THRUST WEIGHT
PER PER EMPTY

SORTY ENGINE WEIGHT
1.38 23,830 2.31
1.30 17,000 2.06
1.27 17,900 2.04
1.48 14,250 1.99
1.51 14,500 1.97
1.72 9,065 2,31
2.19 20,840 2.13
6.76 13,750 2.71
7.25 17,000 2.65
5.03 40,805 2.40
1.79 9,388 1.87
1.69 9,388 2.37
3.26 21,000 2.295
3.14 20,350 2.37

/
FLYAWAY

COSsT

11,646,586
8,433,735
10,140,562
8,734,940
16,767,068
8,734,940
39,859,438
54,819,277
60,240,964
139,959,839
18,172,691
10,943,775
34,437,751
39,658,635

MBX
MAX LOAD
SPEED FACTOR
1,181 9.00
1,210 6.50
1,245 7.75
608 7.00
569 7.00
362 7T.33
1,262 7.00
549 2.00
547 2.00
495 2.50
330 3.00
317 3.00
493 2.50
1262 3.00
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Appendix F. Model Sensitivity Test Results 3

Table 23

Model Sensitivity Test Results

"SORT" Variable Multiplied by 1.2

NEW NEW
NEW EST./ NEW EST./
‘ LINEAR ORIG. ARITHMETIC ORIG.
MDS ESTIMATE EST. ESTIMATE EST.
F1l6A 42,377,500 1.06 41,424,889 1.06 ¥
F4D 20,732,006 1.11 20,364,706 1.11
o F4E 24,314,651 1.12 23,999,556 1.12
A7D 12,487,371 1.15 12,469,575 1.15
A7K 2,622,908 1.06 3,264,162 1.04
Al0A 34,227,437 1.12 31,527,170 1.13
F1l11D 17,116,714 1.01 17,239,688 1.01 i
B52G 36,356,178 1.01 35,914,610 1.01 :
B52H 36,263,284 1.00 35,856,568 1.00
C5a 50,712,950 1.01 51,933,888 1.01
Cl1l30B (4,617,817) 0.88 (3,648,991) 0.86
Cl30E 32,373,571 1.10 29,873,545 1.10
Cl41B 38,679,337 1.07 37,494,591 1.07
FB11llAa 27,094,376 1.01 26,468,474 1.01
"SORT" Variable Multiplied by .8
NEW NEW
NEW EST./ NEW EST./
LINEAR ORIG. ARITHMETIC ORIG.
MDS ESTIMATE EST. ESTIMATE EST.
Flea 37,282,981 0.94 36,588,133 0.94
- F4D 16,621,904 0.89 16,463,249 0.89
F4E 18,980,691 0.88 18,936,369 0.88
A7D 9,140,934 0.85 9,293,016 0.85
A7K 2,332,028 0.94 2,988,048 0.96
AlOA 26,659,475 0.88 24,343,387 0.87
~ F11l1D 16,615,044 0.99 16,763,485 0.99
B52G 35,791,307 0.99 35,378,414 0.99
B52H 35,951,397 1.00 35,560,513 1.00
C5A 50,093,889 0.99 51,346,253 0.99
Cl1l30B (5,829,918) 1.12 (4,799,561) 1.14
Cl30E 26,439,330 0.90 24,240,454 0.90
Cl4lB 33,481,089 0.93 32,560,226 0.93
FB111A 26,765,860 0.99 26,156,160 0.99




Model Sensitivity Test Results

Table 23 (Continued)

MDS

F16A
F4D
F4E
A7TD
ATK
AlOA
F111D
B52G
B52H
C5a
C130B
Cl30E
Cl41B
FB11l1lA

MDS

Fl6A
F4D
F4E
A7D
ATK
AlOA
F111D
B52G
B52H
c5a
Cl30B
Cl30E
Cl41B
FB111lA

“PHRUST" Variable

NEW
LINEAR
ESTIMATE

44,823,135
22,239,140
25,398,441
13,800,101
5,515,802
32,342,939
21,232,698
38,954,921
39,669,525
58,953,710
(3,256,703)
31,373,665
40,480,559
31,194,512

"THRUST" Variable

NEW
NEW EST./
LINEAR  ORIG.
ESTIMATE EST.
34,836,446 0.87
15,114,770  0.81
17,896,900 9.83
7,828,204 0.72
(560,866) (9.23)
28,543,974 0.94
12,499,060 0.74
33,192,563  0.92
32,545,156  0.90
41,853,129 0.83
(7,191,031) 1,38
27,439,337  0.93
31,679,867 0.88
22,666,224 0.84

NEW

EST./
ORIG.

EST.

1.13
1.19
1.17
i.28
2.23
1.06
1.26
1.08
1.10
1.17
0.62
1.07
1.12
1.16

NEW

ARITHMETIC

ESTIMATE

44,443,737
22,292,820
25,552,156
14,132,678
6,434,530
30,003,614
21,756,592
38,783,811
39,587,384
60,950,435
(2,082,242)
29,199,033
39,818,921
30,955,520

NEW
NEW EST./
ARITHMETIC ORIG.
ESTIMATE  EST.
33,569,286 0.86
14,5%%,134 0.7S
17,%83,769 0.81
7,622,512 0.70
(182,320) (0.06)
25.866,942 0.93
12,246,581 9.72
32,509,212 90.91
31,829,698 0.89
42,329,706  0.82
(6,366,310) 1.5
24,914,965 0.92
30,235,897 0.86
21,665,114 0.82

Multiplied by 1.2

NEW
EST./
ORIG.

EST.

1.14
1.21
1.19
1.30
2.06
1.07
1.28
1.09
1.11
1.18
0.49
1.08
1.14
1.18

Multiplied by .8
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Table 23 (Continued)

Model Sensitivity Test Results

MDS

Fl6A
F4D
F4E
A7D
ATK
Al0A
F111D
B52G
B52H
c5a
Cl30B
Cl30E
Cl41B
FB11llA

MDS

F16A
F4D
F4E
ATD
A7TK
Al0A
F111D
B52G
B52H
c5a
Cl30B
Cl30E
Cl4lB

FB111lD 5,282,032

TOEMPWT and TOEMPWT2
Multiplied by 1.2

NEW
NEW EST./ NEW
LINEAR ORIG. ARITHMETIC
ESTIMATE EST. ESTIMATE

60,945,609 1.53 61,293,680
37,486,025 2.01 36,097,700
40,250,368 1.86 38,765,765
29,008,730 2.68 27,428,438
20,480,102 8.27 19,325,961
51,539,598 1.69 50,180,931
36,312,315 2.15 35,904,080
60,815,791 1.69 66,245,733
60,301,595 1.67 64,967,814
72,315,197 1.43 75,639,133
11,849,059 (2.27) 10,345,571
51,044,381 1.74 50,459,835
56,987,700 1.58 56,876,972
48,578,704 1.80 49,737,775

~~
HERRNRERHRED RGN

TOEMPWT and TOEMPWT2
Multiplied by .8

NEW
NEW EST./ NEW

NEW
EST./
ORIG.

EST.

.57
.96
.81
.52
.18
.80
L1l
.86
.82
.46
.45)

.62
.89

NEW
EST,

/

LINEAR ORIG. ARITHMETIC ORIG.

ESTIMATE EST. ESTIMATE

18,713,972 0.47 20,771,555
(132,115) (0.01) 3,945,477
3,044,973 0.14 7,315,216
(7,380,425) (0.68) (2,657,276
(15,525,166) (6.27) (10,128,323
9,347,314 0.31 9,734,289
(2,580,557) (0.15) 1,535,910

11,331,694 0.31 10,610,785
11,913,086 0.33 11,769,135
28,491,642 0.57 32,004,474
(22,296,794) 4.27 (16,145,060
7,768,621 0.26 7,909,225
15,172,725 0.42 17,150,493
0.20 7,146,033

EST

)
) (

0.
0.
0.
0.
3.
0
0.
0
0
0
y 3
0
0
0

53
21
34
24)
24)

.35

09

.30
.33
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Appendix G. Demand Volatility Analysis Database

The tables presented in Appendix G provide the data
used to perform the demand volatility analysis. Table 24
and 25 provide the actual data used in the analysis. Table
26 provides the original replenishment spares database. It v
is in then year dollars and the engine spares and common
spares pools have not been distributed. Table 27 provides
the inflation rates used to adjust the figures in Table 26 "
to FY¥91 constant dollars. Table 28 shows what percentage of
the engine hours were associated with the F-15 and F-16
aircraft and then shows how this data was used to determine
how the engine spares pool would be distributed between the
F-15 and F-16. Finally, Table 29 provides the common spares
allocation factors used to distribute the common spares pool
among the MD.

Several sources were used to obtain the data. The
condemnations and engine hours data was obtained from the
Weapon System Cost Retrieval System (WSCRS). The orignal
replenishment spares requirements data was obtained from
unpublished records maintained by HQ AFLC/FMBSR. The common
spares distribution factors were obtained from Ms. Virginia
Mattern of the Logistics Management Institute (LMI).
Finally, the inflation factors were obtained from AFR 173-

13, US RAir Force Cost and Planning Factors.
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Original

Table 26

Replenishment Spares Requirements Data

MDS FY82 FY83 FY84 FY85 FY86 FY87 FY88
A7 48,2 57.3 28.4 20.3 11.8 14.2 9.3
AlQ 8l1.9 114.4 101.1 84.3 37.8 43.9 46
B52 155.8 275.7 196.2 96.9 75.3 36.9 50.5
FB1lll 37.2 62.2 28.3 19.8 10.3 17.2 0
F11l1 357.4 459 270.5 220.6 155 255.2 232.6
c5 434.6 148.9 97 45 .4 78.4 124.5 150
C130 123 84.5 93.1 100.3 87.4 53.3 51.8
Cl35 104.3 69.2 54.5 113.3 107.5 69.1 111.6
Cl41l 53 36.7 43.9 56.5 le 46.7 34,1
F4 143.9 237.7 181.2 87.1 57.8 58.1 40.5
Fl5 284.,1 192.8 182.8 93.8 62.6 157.9 224.4
Fl6 59.7 61.5 77 313.4 162.9 1lli.6 211.9
T37 30.1 27.5 12 7.5 3.5 1.6
T38 77.2 31.9 42.9 30.8 15.5 20.7
F100 409.8 421.4 285.4 397.8 453.7 493.7 380.9
F1l0 0 0 0 0 66.9 107.7 155.8
COoMM 704.9 719 419.8 419.4 276 239.5 265.3
TOT 3105.1 2999.7 2114.1 2140.8 1697.7 1848.5 1987.0
Table 27. Inflation Factors
FY82 FY83 FY84 FY85 FY86 FY87 FY88
.771 .801 .824 .852 .886 .921 .959
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Table 28

Engine Spares Requirements Distribution

FY82 FY83 FY84 FY85 FY86 FY87 FY88
F1l5 298,958 327,872 353,232 363,792 389,576 385,474 360,181
F15A
©15B
F15D 2,907 3,936
F1l5¢C 1,802 19,855 37,977
F15E 838
SUB 298,958 327,872 353,232 363,792 391,378 408,236 402,932
Fl6 95,755 137,843 194,490 211,820 242,284 268,076 271,992
F16B
Fl6C 2,442 6,255
F16D 419 299
SUB 95,755 137,843 194,490 211,820 242,284 270,937 278,546
TOT 394,713 465,715 547,722 575,612 633,662 679,173 681,478
Fl5% 0.76 0.70 0.64 0.63 0.62 0.60 0.59
F1l5
SHARE 310.38 296.67 184.06 251.41 280.23 296.75 225.21
Fl6
SHARE 99.42 124.73 101.34 146.39 173.47 196.95 155.69
Table 29
LMI Common Spares Distribution Factors
FY82 FY83 FY84 FY85 FY86 FY87 FY88
A7 3.9 1 1.2 1.8 1.0 1.2 2.6
alo0 7.0 4,2 3.0 4.0 4.0 2.2 0.9
B52 17.5 25.2 15.8 22.1 22,0 8.7 5.8
FB1l1 0.6 0.2 0.3 0.3 0.6 0.5 0.2
Fl11 4.6 1.5 1.8 1.2 0.7 1.3 1.1
C5 1.1 0.7 0.9 1.3 1.3 1.5 0.8
Cl30 3.5 1.8 5.1 7.5 7.7 7.9 4.4
C135 5.2 11.4 12 11.8 13.8 19.0 12.2
cl4l 10.4 13.3 12.3 7.9 9.8 13.5 8.1
F4 24.2 10.1 9 5.7 4.0 2.8 2.4
F15 6.1 2.5 4.1 3.8 2.4 4.2 8.6
Flé 5.7 3.2 4.4 10.1 6.2 13.7 33.0
T37 1.4 1.0 0.4
T38 4.0 12.7 11.4 1.4 2.0 1.5
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