
AD- 243 914

AFIT/GAIENY/91 D-1 5

DuOCSJANO 092D

Discrete Simulation of

Fractional Order Systems

THESIS

Jeffrey A. Blank

AFITIGAIENYI91 D-1 5

92-00064

Approved for public release: distribution unlimited.

9 21

AFIT/GA/ENY/91 D-15

Discrete Simulation of Fractional Order Systems

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Astronautical Engineering

Jeffrey A. Blank, B.S. in Astronautical Engineering ,

Captain, USAF K> 7

13y

December 1991

Approved for public release: distribution unlimited. A"

Acknowledgments

This thesis reflects the influence of many people. First and foremost, I

want to thank my advisor, Lt Col Bagley, whose enthusiasm and confidence in my

abilities inspired me to try a road less travelled. He encouraged good research

and independent thinking and his perspectives on "the bigger picture" were

always appreciated. My thanks also to the other members of my committee, Maj

Riggins and Capt Warhola for their valuable feedback. Thanks as well to Lt Mark

Leonard, whose knowledge and enthusiasm provided a ready springboard for

ideas.

A large support network had the daunting tasking of helping me maintain

my sanity during the effort. As always, Mom and Dad were supportive through

earfuls of triumphs and setbacks, and I love them for it. Jeff, Sherrill, Ken, Steve,

and Bob gave me a proper introduction to the Institute, and I'll keep the end of

tour tradition alive. Finally, my thanks to the members of the WNST&PG (Jeff,

Joan, Pauleta, Neal, Kathleen, Sandi, and Jean-Luc, et al.) for splitting a

sometimes unbearable week into bite-size chunks.

"But there are folks who want to know and aren't afraid to look and won't

turn tail should they find it..." - Tom Robbins

- Jeffrey A. Blank

Table of Contents

Page

Acknowledgments ... ii

List of Figures .. v

Abstract..vA

I. Introduction .. 1

11. The Fractional Differintegral Operator........................... 5

Ill. Integration - Convolution Summation Algorithm 14

IV. Integration - Difference Equation Algorithm 28

V. Differentiation... 40

VI. Fractional Differential Equations............................. 43

VII. Conclusions and Recommendations.......................... 56

Appendix A - Computer Programs............................... 60

Appendix B - Time Response Plots.............................. 73

Bibliography .. 80

Vita... 82

List of Figures

Figure Page

Figure 1 Fractional Integrator Exact Frequency Responses 11

Figure 2 Fractional Differentiator Exact Frequency Responses 13

Figure 3 Fractional Integrator Pulse Response Sequences 21

Figure 4 Convolution Summation z-Plane Pole-Zero Structure 25

Figure 5 Convolution Summation Frequency Response 26

Figure 6 Integrator Example z-Plane Pole-Zero Structure 32

Figure 7 Integrator Example s-Plane Pole-Zero Structure 34

Figure 8 Integrator Example Frequency Response 36

Figure 9 Integrator Example Passbands 38

Figure 10 FDE Exact Frequency Responses 46

Figure 11 FDE Example z-Plane Pole-Zero Structure 50

Figure 12 FDE Example s-Plane Pole-Zero Structure 51

Figure 13 FDE Example Frequency Response 52

Figure 14 FDE Example Passbands 54

iv

AFIT/GAIENY/91D-15

Abstract

Fractional calculus has been shown useful for describing many real world

systems, and studies are currently underway to generalize control theory to

incorporate fractional states. This investigation derives a method for simulating

the time response of fractional order systems using a recursive difference

equation. The technique used effectively approximates a simple fractional order

integrator as a summation of integer order terms. The discrete transfer function

is also derived and the frequency response of the discrete algorithm is compared

to the exact continuous case. Using 20 or more retained past values in the

difference equation, the discrete half-order integrator demonstrates a passband

of more than three decades. A slightly modified method is used to derive a

recursive difference equation which simulates the response of a modal fractional

order differential equation. Frequency response analysis of an example having

an eigenvalue of -1 shows the characteristics of a low pass filter, effectively

simulating the continuous system response for all frequencies below the Nyquist

limit, even when using a small number of retained past values.

v

Discrete Simulation of Fractional Order Systems

I Introduction

Z1 Background

The key to understanding and controlling any system is to construct a

model which accurately describes its behavior. Although integer order differential

equations are most often used for such models, fractional order differential

equations have been shown useful to describe some systems (10:1-3,197, 1:13-

14). An example currently under study at AFIT involves viscoelastic material

damping applicable to the design of large flexible space structures (3:304-306).

Integration and differentiation to fractional order was envisioned by

L'Hospital in 1695 and defined in 1884 (12:115,118). It has seen limited use,

however, since most systems can be approximately modelled to increasing

accuracy by using increasingly large numbers of integer order terms. Enthusiasm

in fractional order models stems from their ability to accurately model observed

behavior for many systems with significantly fewer terms (1:13-14).

A relatively new application of fractional order models which is being

explored is to control theory (7:92-94,3:311). Fractional order models may be

useful, not only for systems exhibiting fractional order behavior, but also for

systems well described by integer order models. Although not physically intuitive,

1

fractional order states can be defined "in between" traditional integer order states,

such as those corresponding to position, velocity, and acceleration. Use of these

fractional order states in feedback control techniques are being investigated.

1.2 Motivation

Theoretical development and experimental work using fractional order

models has generally dealt only with continuous or analog signals (2:4-6,7:92-

94). Attempts to simulate fractional order systems in the laboratory using analog

devices has met with limited success (7:92-94). This investigation seeks to lay

the foundations for applying the power and flexibility of digital computers to the

future study and application of fractional order system descriptions.

Simulating the response of a system to various outputs allows focused

study in a laboratory environment. System responses to a variety of inputs can

be easily simulated using a computer. System parameters may also be changed

quickly and easily to allow study of a wide variety of cases. Digital computer

simulation is dependent on a discrete representation of the continuous system

model. Discrete models are also required for real-time system state estimation

and control using digital computers. In this case, an effective algorithm for the

discrete model must be relatively fast and efficient, requiring little computer

memory and few calculations per time increment.

2

1.3 Objective

Discrete algorithms which simulate the response of simple fractional

integrators will be derived. In addition, discrete algorithms will be oerived which

simulate the response of equations similar to fractional order differential

equations. The algorithms should have as few terms as possible to minimize the

computer memory and speed required. Since these discrete representations

approximate continuous models, the frequency range of the input forcing function

will be determined over which the algorithm output adequately simulates the

exact response.

Z 4 Scope

The continuous systems to be simulated are assumed to possess linear,

constant coefficient models. The order of the fractional integrator or differentiator

remains general throughout this investigation, but it is always assumed real. The

development limits the system input to those functions for which Laplace

transforms exist. Sinusoidal forcing functions are used to evaluate frequency

response of the various discrete algorithms, but this should not be viewed as

limiting the input forcing function to that class. Finally, the system is assumed in

a rest state prior to the application of the input forcing function, so only zero-state

initial conditions are considered.

3

15 Approach

The method used here to derive discrete algorithms for a continuous

fractional order system first finds the sampled response of the system to a unit

pulse input. This pulse response sequence, as it is called, is then used to

calculate the coefficients of a recursive difference equation. This discrete

algorithm uses past input and past output values to calculate the current output.

Once the coefficients have been determined, this discrete algorithm simulates the

time response of the continuous system for a wide range of input forcing

functions.

Much of the rest of the effort is spent determining the conditions for which

the difference equation adequately simulates the continuous response. For a

given fractional order system and a given sampling period, the fidelity of the

discrete simulation will depend only on the frequency content of the input forcing

function, so the discrete algorithm is manipulated to achieve a discrete transfer

function which is evaluated over a range of input frequencies. A frequency range

of acceptable magnitude and phase response performance, called the passband,

can be determined by comparing the discrete algorithm frequency response to

the known continuous system frequency response over a wide range of input

forcing function frequencies.

4

II. The Fractional Differintegral Operator

I 1 Definition

H. Ladrent defined the fractional integration operator as (12:118)

t

Vx(t) _ D-'x(t) = 1fX(t-)d(
r(a) , (r

a >0

where r is the gamma function or generalized factorial, given by (10:16)

r(x) lim N! NX (2)

N-- "x(x+I)(x2)... (x +N)

Eq (1) is usually called the Riemann-Liouville (R-L) integral, since it united two

earlier competing definitions (12:118-119). Only functions for which x=0 for t<0

are considered, so the lower terminus of integration, c, will always be zero for this

investigation.

Extending the R-L integral definition to fractional differentiation is not

possible directly since the integral diverges for a! 0. To solve this problem,

integer order derivatives are used to pose a fractional derivative in terms of the

R-L integral:

D'x(t) - Dv-Ox(t) d" I fx(t-') d(
dt5 r(p) o r,-P (3)

-00 < a < +0 0 = v-a 0 <1 1

5

where v is the least nonnegative integer greater than a (12:119). Eq (3) is

sometimes called the differintegral operator, since it incorposates integration and

differentiation to any order into one equation (10:45).

11.2 Properties

The differintegral operator of Eq (3) has the following properties (12:118):

1) When a is a negative integer, the result is identical to ordinary a-fe'd

integer order integration. Similarly, when a is a positive integer, the result is

identical to ordinary a-fold integer order differentiation.

2) The operator is linear.

3) If the order of differintegration is zero, the operator leaves the function

unchanged, i.e. D°[x(t)] = x(t).

4) The law of exponents holds, i.e. Dm[D'x(t)] = Drm" x(t). This property,

known as the composition law, can be seen in the derivation of the differintegral

operator from the R-L integral above.

Note in the definition that the limits of the convolution integral are r=0 and

i=t, where r is the dummy variable of integration. Since the independent

variable represents time in this investigation (without loss of generality), the

definition implies knowledge of the entire past history of a function in order i.o

calculate its differintegral. This presents no contradiction with intuitive notions of

first order integration, which is often visualized as a summation of infintestimally

thin areas to find the "area under the curve." The fractional order differintegr3l

6

operator can be visualized as a weighted summation of these areas, in which the

relative weighting value of each area is not constant as with integer order

integration. This weighting function is dependent on the fractional order of

integration and will be explored later.

/. 3 Frequency Response

The discrete algorithms to be derived in this investigation will simulate the

continuous time response of a fractional order system to a wide variety of time

domain input forcing functions. As a tool for evaluation, all these possible input

forcing functions can be represented by sinusoidal time functions of various

Trequencies. Since the fractional differintegral is a linear operator, the sinusoidal

input will cause a sinusoidal output at the same frequency, which may have a

different amplitude (magnitude) and/or phase compared to the input. The

discrete algorithm's magnitude and phase response for a range of frequencies

can then be used as performance measures by comparing them to the magnitude

and phase response of the exact continuous case.

The continuous time response, y(t), of a simple fractional integrator system

to an input function, u(t), is given by

7

t

y(W =- I.(u - f U(t--)da
y~t)= luat (4)

a >0

The complex frequency response of this system can be found by performing a

Laplace transformation of both sides:

9 NOt) = 9 u___ 0, (5)_

The one-sided Laplace transform used here is defined by the following transform

pair relations (11:143)

F(s) = {f(t)} f ()e-Sdt (6)
0"

f(t) = V-{F(s)- - f F(s)ends (7)

where j=(-1)'A and s is a complex variable consisting of a real part, a, and an

imaginary part, jco. (Use of the one-sided transform is justified since u(t)=O and

y(t)=0 for t<O in this investigation.) In order for these integrals to exist, the time

domain function, f(t), must be sectionally continuous in every finite interval in the

range t>O and must be of exponential order as t approaches infinity (9:25). The

input and response functions, u(t) and y(t), are assumed to meet these

restrictions throughout this investigation in order to apply the Laplace transform

8

technique. Most forcing functions of interest in engineering applications conform

to this assumption, including the "sinusoidal" functions (turned on at t=0) which

will be used to evaluate the discrete algorithms, so this does not greatly restrict

the variety of possible system inputs.

Using the convolution property of the Laplace operator, Eq (5) becomes

Y(s) = 1 9 1u(t)} It' -1} (8)
17(a)

where Y(s) is the Laplace transform of the output. The transform of the last term

is (8:1022)

sa (9)

>O0

So the Laplace domain representation of a simple fractional integrator is

Y(s) = s- U(s) (10)

where U(s) is the Laplace transform of the input. The familiar rule for the Laplace

transform of a simple integrator is seen to generalize to fractional order; the order

of the integrator appears as a negative exponent of the Laplace variable, s.

The transfer function for the system is

H(s) = Y(s) - (11)
U(s)

9

The frequency response of the system can be found by evaluating the transfer

function along the imaginary axis in the complex s-plane, that is s=jw. The

resulting complex quantity, H(w), or IH(jw)Ije in polar coordinates, represents the

complex system response for any given input frequency w. As mentioned, the

frequency will not change from the input, but the magnitude and/or phase may.

The relative magnitude of the output compared to the input is often plotted in

decibels, where dB=201oglo(IH(j)j), and the phase shift of the output compared

to the input, , is often plotted in degrees. The input frequency, (, will be plotted

in radians per second.

Figure 1 shows the frequency response of a fractional integrator for

several values of a. Given the extension of the Laplace transform for the simple

integrator to fractional order, it is not surprising that the frequency response is

simply an extension of the integer order case. The rule governing the magnitude

plot for a simple integrator, slope=-20n dB/decade, where n is the order of

integration, generalizes to fractional order. Similarly, the simple integrator phase

response of a constant =-90n degrees generalizes to fractional order. These

exact frequency responses can now be used to gauge the performance of

discrete fractional integration algorithms.

/L 4 Fractional Differentiator Frequency Response

The continuous time domain response, y(t), of a simple fractional

differentiator system (limited to fractional order 0a<1) to an input function, u(t), is

10

400

200- 0.1

0.5
20 0.9

10-2 10-1 100 101 102

Frequency (rad/sec)

50
..,o

U - 0.10Ol

0.5
-50

0.9

10-2 10-1 100 101 102

Frequency (rad/sec)

Figure 1 Fractional Integrator Exact Frequency Responses

given by

t

y(t) = D a U(t) d4 fu(t-)d(
r(1 -a) dt a 12

0 a<1

Prior to transforming this equation into the Laplace domain, Leibnitz' rule for

differentiation of an integral is used to obtain

11

1 f _(t_'O_ + u(0) (13)
y(t) - r(l-a) f t:" ter(0-a)

Taking the Laplace transform of both sides yields

Y(s) - 1 i(t) } aI-0 + u(O) (14)

Using the transform given in Eq (9) and the time differentiation property of the

Laplace transform, Sf{(t)}=sU(s)-u(O+), the equation becomes

Y(s) = [s U(s)- u(O)---- + () (15)
S 1 -a 1 -4

Since the last two terms cancel, the Laplace domain representation of a simple

fractional order differentiator is

Y(s) = s' U(s) (16)

This representation of a fractional order differentiator differs in one

important aspect from that of integer-order differentiators; the initial condition of

the input function does not appear (as in the time differentiation property used

above). This has no bearing on the frequency response technique used here, but

it does hint at complications to solution of the initial value problem for fractional

differential operators (2:37-38). Otherwise, the Laplace transform of a simple

differentiator generalizes to fractional order, with the order of differentiation

appearing as a positive exponent on the Laplace variable, s.

12

The transfer function of the simple fractional differentiator is

Y(s) = s (17)

U(s)

Figure 2 shows that this operator also follows the frequency response

rules of the integer order case. The magnitude slope is given by 20n dB/decade

and the constant phase angle is given by 90n degrees, where n is the order of the

differentiator.

40.

S0.9

-20

Frequency (rad/sec)

0.5

50

4.)

0.1
j~

t"

-50

10-2 10-1 100 101 102

Frequency (rad/sec)

Figure 2 Fractional Differentiator Exact Frequency Responses

13

I// Integration - Convolution Summation Algorithm

The convolution summation will be shown to be a poor algorithm for

discrete simulation of fractional order systems, since its frequency response does

not closely match that of the continuous case. However, its simplicity allows

straightforward explanation of many of the concepts which will be used

throughout this investigation and yields valuable insight into the nature of the

fractional integration operator.

III. 1 Derivation

The derivation of a discrete algorithm for fractional integration begins with

the continuous R-L integral:

y(t) = Ial(t) 1 (18)r(a) . T8

a >0

The first step is to make the substitution t=kT, k=1,2,..., and replace the

integration operation with a summation of k integrals, each integrating over a

small time interval, T, called the sample period. This yields

1) k j Ty(kT)= E fu T r dc(9

The output is said to be "sampled" and is identical to the continuous response

14

only at integer multiples of the sample time, i.e.:

y(k) E y(t)1,=,T k = 1,2,... (20)

During the sample period, i.e. when kT!t<(k+l)T, the sampled output, y(kT),

holds a constant value while the continuous output may vary.

Next, the input forcing function is also sampled and approximated as

constant over each sample period:

u(kY) u(t) l,=kT k = 1,2.... (21)

Here again, the sampled input, u(kT), is constant over the sample time,

kT!t<(k+1)T, while the actual input, u(t), may vary. This sample-and-hold (or

piecewise-constant) approximation is a close approximation of the input signal for

sufficiently small T, as will be discussed in more detail shortly. Since the input is

now assumed constant over each sample period, it can be factored out of the

integral:

k U jr c(2
yk7) -[u((k-.f)ftu-dt] (22)

P() j=

This new assumption changes the character of the output, highlighted by

the addition of the T subscript to the output variable. In general, y(kT) as defined

above will not equal y(kT) as defined in Eq (19), since y(kT) represents the

sampled output due to a continuous input, and y(kT) represents the sampled

output due to a sampled input. In other words, y(kT) would equal y(kT) (and

15

match the exact continuous response at multiples of the sample time), only in the

unlikely case of a constant input or one changing solely at integer multiples of T

(11:173).

The validity of the piecewise-constant input approximation of Eq (21) is

governed by the Nyquist criterion. It stipulates that the sample period be less

than half the period of the highest frequency component in the input signal in

order for the sampled signal to unambiguously represent the input signal (5:81-

82). Hence, the sample time must conform to

T < -C (23)
(6)

where w is the highest input frequency component in rad/sec.

For any given value of the sample period, T, the piecewise-constant

approximation is valid for input frequencies less than the Nyquist frequency

(defined as n/T). For frequencies above the Nyquist frequency, the sample time

is large relative to the quickly changing input. In this case, the sampled input

function does not unambiguously represent the high frequency signal, but rather

will be interpreted as the sampled input function of a lower frequency input. This

phenomenon, wherein frequencies at or above the Nyquist frequency cause

system responses corresponding to lower frequency inputs, is called folding or

aliasing. In general, sampled-data systems are expected to be unreliable at input

frequencies equal to or greater than the Nyquist frequency (5:81).

16

To complete the derivation, the integration is performed to yield

y~kT 1ec) [u((k-j)T)(ITDa - W(-1)Tj 24r~)j., (24)

a4O

Distributing the gamma function over the summation, the equation becomes

k

yT(k7) = .,u((k-j)T)hT(J7) (25)
j=1

where

hT(jT) = (T)" -((-1)T)" (26)
r(1 +a)

Note that (a)r(a)=r(1+a). The convolution summation of Eq (25) represents the

sampled response of a fractional integrator to a piecewise-constant input. This

algorithm is similar to the Ri algorithm of Oldham and Spanier (10:138-139).

The problem with this convolution summation algorithm is that the number

of past input values used in the calculation increases with each time step (value

of k). This implies that for a given time step, k past input values and k fixed

coefficients (hT values) must be stored in memory (2k total). Additionally, 2k-i

calculations (k multiplications and k-1 additions must be performed to find the

response value for that time step. Obviously, this representation is not

reasonable for a real-time fractional integration algorithm which must function

over any length of time.

17

Of course, one way to get around the storage and calculation problems

inherent in the convolution summation is to limit the number of past values which

will be retained and used in the calculation. If only m past input values are

retained, Eq (25) becomes

m

yT(kT) = .,u((k-j)T)hT(jT) (27)
j=1

where only the range of the summation has changed. This formulation requires

storage of 2m values, including m fixed coefficients (hT values) and the m most

recent input values, regardless of the value of k. The number of calculations

required for each time step is also constant at 2m-1 (m multiplications and m-1

additions).

The convolution summation limited to m terms given in Eq (27) is an

approximation of the exact convolution summation of Eq (25). For k values less

than m, this formulation yields the same response as Eq (25), since u(iT)=0 for

i<O. More important for the frequency response of the algorithm are those time

steps greater than m. In that case, Eq (27) approximates the response of Eq (25)

by summing only the m most recent values, weighted by the appropriate hT value.

This results in an inherent error for step function inputs (u(jT)=constant, j>O) and

low frequency inputs where the periou of the input is large compared to the

sample time. As the number of past input values retained increases, the low

frequency performance of the algorithm is expected to improve.

18

111.2 The Pulse Response Sequence

The hT sequence calculated in Eq (26) is known as the pulse response

sequence for the fractional integrator, since it is defined as the sampled response

of the system to a unit pulse input. The unit pulse input itself is defined as

(11:174)

{t 1 0<, eT} (28)G" () =- 0 therwise

The pulse response sequence is the key to deriving discrete system models.

This sequence can be viewed as the weighting function discussed in the last

chapter. (This is an inexact analogy, however, since the pulse response

sequence contains the "width" of the rectangle, T, as well as the weighting

factor.) It is interesting to note that the pulse response sequence can be

relatively easily generated in many real world applications and applied to a

system under study. The resulting sampled output is the pulse response

sequence of that system (by definition) and cart be used in the methods

described in this investigation to derive system models regardless of any a priori

knowledge of the underlying principles of the system (11:176).

The unit pulse can also be represented as the difference of two unit step

functions, separated in time by the sample time duration:

8T) = U1(t) - U.l(t-I") (29)

where u-1(t) indicates a unit step input. The continuous response of the fractional

19

integrator to a unit step input is given by

r 1) 1 - T (30)
17(a) 0

ac > 0

Performing the integration and sin.pling the output yields

r(kT) = (kT)' (31)
r(1 +a)

Since the fractional integrator is a linear operator, the pulse response sequence

can now be calculated as the difference of two of these unit step input responses,

separated by one sample period:

hrkT) = r(kT) - r((k-1)T) = (k)" - ((k-1)7)" (32)
r(1 +a)

This is identical to the pulse response sequence definition given in Eq (26).

Fractional integrator pulse response sequences are given in Figure 3 for a

sample time of 0. 1 seconds (T=O. 1) ar d various values of a. Past input values

tend to be weighted equally for a near one. A: a innrases, more emphasis is

placed on recent values compared to distant past values. In fact, for a=0.1, the

pulse response sequence weights the most recent input much more heavily than

past inputs. This corresponds to a weighting sequence approaching a zero order

integrator, which passes the current input forcing function directly to the output.

20

100

+

10-1 + , + +
+

+ +

10-2

++ 10" + . +.- 4 4 + + + .- 4

10-3

cj- 4-

c 10-2 + + + + + +

0 2 4 6 8 10 12 14 16 18 20

Time Step, k

Figure 3 Fractional Integrator Pulse Response Sequences

Il1.3 Pole-Zero Structure

The convolution summation algorithm simulates the time response of a

continuous fractional integrator. As discussed earlier, an effective way of

measuring the fidelity of the discrete algorithm is to compare its magnitude and

phase frequency responses to that of the continuous fractional integrator over a

wide range of input forcing function frequencies. It is then possible to specify a

21

band of input frequencies over which the discrete algorithm simulates the

continuous system response to the accuracy required for a given application.

In order to directly compare the frequency responses of the discrete and

the continuous representations, a new operator must be defined. The one-sided

z-transform of a discrete sequence f(k), k=O, 1,2,..., is defined as

ZV(k)) = F(z) -f(k)Zk (33)
k=O

provided the summation converges (11:196). This is a discrete analogue of the

Laplace transformation. The complex variable, z, can also be defined in terms of

sTthe Laplace variable and the sample period using z =e

The convolution summation of Eq (25) can also be written as

k

YT(kT) = u(T) h((k-j)T) (34)
j=1

Taking the z-transform of both sides yields

Z(YT(kT)} = Y(z) = Z{ u(T)hT((k-j)T)} (35)

where Y(z) is the z-transform of the sampled output. Analogous to the Laplace

transform of a convolution integral, the z-transform of a convolution summation is

equal to the product of the individual z-transforms (6:126). Hence, Eq (35) can

be expressed as

where U(z) is the z-transform of the sampled input function. Applying the

22

Y(z) = Ziu(kT))Z{hT(kT)} = U(z)Z{hT(kT)i (36)

definition of the z-transform yields the exact discrete transfer function for the

convolution summation:

1(z) - Y(z) (37)x: hT(j)z' 37U(z)
,=0

This formulation reiterates the fact that the number of terms in the algorithm

increases with each time step, since the transfer function changes based on the

value of k.

Limiting the series to m terms and realizing that hT(O)=O yields the transfer

function corresponding to the approximate convolution summation of Eq (27):

H(z) = hT(jT)z -j (38)
J=1

Multiplying the numerator and denominator by zm and rearranging another form of

the discrete transfer function:

m

E- h(kT) Zm-k (39)

H(z) = Y(z) - = 1
U(z) z"

This discrete transfer function will be used to find the frequency response of this

discrete simulation of the continuous fractional integrator.

Although not required to find the frequency response, the discrete transfer

function can be factored to yield

23

nt-1

G ~(z -z,)
H(z) j= ' (40)

m

(z -p)

G is the transfer function gain (which is equal to hT(1T) in this case), zi is a

discrete zero, and p, is a discrete pole. The discrete zeros and poles can be

plotted on the complex z-plane. The discrete pole-zero structure in the complex

z-plane indicates characteristics of the discrete system response in much the

same way as the continuous pole-zero structure in the complex s-plane.

The z-plane pole-zero structure of a typical convolution summation

fractional integration algorithm is given in Figure 4, where "o" indicates a zero and

"x' indicates a pole. This example uses 8 retained terms (m=8) and a sample

time of 0.1 seconds (T=0. 1) to simulate a half order integrator (a=0.5).

Interestingly, this roughly circular pattem of the z-plane zeros always occurs for

the convolution summation approximation of the half order integrator regardless

of the number of retained past values, m. There is an mlh order repeated pole

located at the origin. The unit circle is also indicated on the z-plane plot; the

complex z-plane enclosed by the unit circle corresponds to the left-half s-plane as

the stable region for pole locations.

24

0.8 -

0.6-

0.4 -

0.2

0 0

E
-0.2

-0.4- %

-0.60

-0.8 0

-1 -0.5 0 0.5 1

Real Axis

Figure 4 Convolution Summation z-Plane Pole-Zero Structure

111.4 Frequency Response

With the discrete transfer function of Eq (39), the response of the

convolution summation algorithm to a range of input forcing function frequencies

can be found and compared to the exact continuous response. Since the transfer

function is in the discrete z-domain, it must be evaluated at z-plane points which

correspond to the s-plane imaginary axis. These z-plane points form a unit radius

circle surrounding the origin, and can be calculated from s-plane imaginary axis

25

,~T

points using the relationship z=e' . (This unit circle is included in all z-plane

plots in this investigation.) Evaluating the transfer function at various complex

values of z=e ,T yields the relative magnitude IH(elT)I and phase shift, 4), of the

output of the convolution summation for various input forcing function

frequencies.

Figure 5 shows the frequency response of the same half-order convolution

summation example discussed above and the frequency response of the exact

continuous half-order integrator. The magnitude response is surprisingly good for

1 0 1.

10
". 0
4Discrete0

-10-

Continuous-20 '

10-1 100 101 102
Frequency (rad/sec)

0

-1001 Continuous

_ -100-

-300 Discrete

-400
10-1 100 101 102

Frequency (rad/sec)

Figure 5 Convolution Summation Frequency Response

26

this simple algorithm, roughly simulating the exact continuous magnitude

response for nearly two decades. Since T=0.1 sec in this case, the Nyquist

frequency is r/-T=31.4 rad/sec. As expected, input forcing function frequencies

higher than the Nyquist frequency result in poor discrete simulation of the exact

continuous case.

This algorithm obviously does a poor job of simulating the continuous

phase response. Although not shown here, the phase response of the discrete

simulation is not improved by increasing the number of past values retained. This

deficiency makes the convolution summation useless for most system simulation

and control applications.

This chapter has introduced the concepts which will be used to derive and

analyze the discrete algorithms in the remainder of this investigation. The next

chapter shows that a recursive difference algorithm is able to discretely simulate

the magnitude and phase response of a continuous fractional integrator over a

wide frequency range.

27

IV Integration - Difference Equation Algorithm

IV 1 Derivation

The differintegral operator has been called a fading memory operator,

since the current output is a function of all previous inputs, weighted to favor the

recent past. Chapter III used this concept to derive a discrete convolution

summation algorithm using only a weighted summation of a fixed number of

previous input values to calculate the current output. However, this algorithm

was shown inadequate for simulating a continuous simple fractional integrator.

The differintegral operator is also a hereditary operator, meaning that the

current output depends on the state of the system (the previous response value,

in this case) as well as the input. This is consistent with the concept of a

weighted summation of all previous inputs, since the previous outputs are simply

functions of previous inputs. In fact, algorithms can be derived for discrete

simulation of the continuous fractional integrator using various combinations of

past input and response values to calculate the current response.

A discrete algorithm for fractional integration which uses an equal number

of past input and past response values is the finite difference equation:

Yr(kT) = a.-yT((k-1)T) - a._2Yr((k-2)T) -.. aoy((k-n)T) (41)

+ b._1 u((k-1)T) + bn_2u((k-2)T) + + bou((k-n)T)

28

Since the current output value depends on past values of the output, this is called

a recursive equation. The total number of retained terms in this representation is

2n; n past input values and n past output or response values. This algorithm

requires storage of the 2n coefficients and 2n past values, while requiring 4n-1

calculations for every time step (2n multiplications and 2n-1 additions).

The same approximations discussed for the convolution summation also

apply here. Since the input signal is sampled, the high end frequency response

will be limited based on the Nyquist criterion. Also, low frequency performance

will be degraded since this algorithm uses a finite number of terms to represent

what is, in effect, an infinite summation.

The following method for calculating the coefficients of the difference

equation is paraphrased from Reid's illustration of the process (11:173-178). This

method makes use of the pulse response sequence, so it is assumed known,

either experimentally or calculated using Eq (26) using a given order of

integration and sample time. Once the pulse response sequence is known, the

coefficients of Eq (41) can be uniquely determined. The coefficients will vary

depending on the value of n, the number of past input and response values

retained, so this must be decided prior to calculating the coefficients.

From the definition given by Eq (28), a unit pulse input to the differen.

equation requires u(OT)=1 and u(iT)=O for i>0. By definition, the output at

successive time steps will then be the pulse response sequence, i.e.

yT(kT)=h,(kT). Making these substitutions into Eq (41) and propogating the

29

response for the first 2n time steps yields

hTOlT) = b-
hT(2T) = -a,,-hT(lT) + b,. 2
hr(3T) = -a,,-hT(2T) - a,,-2hT(lT) + b.- 3

(42)
hT(nT) = -a.-,hT((n-1)T) - -aihT.(lT) + bo

hT((ni-l)T) =-a,hT(nT) - -aihT.(2T) - aohT(l T)

hT((2n)T) = -a.-lhT((2nl1)T) - -a.,hT((n+l)T) - ac~h AnT)

Since the pulse response sequence is known, the system of equations in Eq (42)

contains 2n equations and 2n unknowns, and can be solved to yield the a and b

coefficients.

The a, coefficients are calculated first by reformulating the last n equations

of Eq (42):

hT~l T) hT(2 T) .. hT(nT) ao -hT((n+l)T)

hT(2T) hT(3 T) .. hT(Q'z+l)T) a, -hT((n+2)T) (43)

.hT(nT) hT((n+l)T) ..h T((2n-l1)T7) a -hT(2nT)

This equation can be solved by using a variety of linear algebra methods. The n

x n matrix on the left side of Eq (43) is called the Hankel matrix. The b,

' oefficients can then be found by rewriting the first n equations of Eq (42):

b.1=hTOl7)

bn2= hT(2T) - a,1 lhT(lT)
b-3= hT(3T) + a,hT(2T) +. afl 2 hT(l 7) (44)

b= hT~nT) + afllhT((n-l)T) + + alhT(lT)

30

With the coefficients determined, the recursive difference algorithm of Eq (41) is a

discrete time simulation of a continuous fractional integrator.

1V2 Pole-Zero Structure

Using the time delay property of the z operator, Eq (41) becomes

Y(z) = - a._1 z-1 Y(z) - a._2z- 2y(z) ..- az-"Y(z)

+ b,._z-1 U(z) + b._2z- 2 U(z) . + boz-,U(z)

This yields a discrete transfer function of

H(z) = bn-lzR- 1 + bn-2zn-2 + + b O (46)
Z n + anl z n - 1 + an_2Zn-2 + ... + a 0

Similar to the convolution summation, this discrete transfer function can now be

factored into discrete poles and zeros, and plotted on the complex z-plane.

Figure 6 gives the z-plane pole-zero struture for a typical recursive

difference algorithm. This example involves simulating the same half order

integrator originally discussed in the convolution summation example. The

sample time remains 0.1 seconds and the total number of retained terms remains

8, although this now consists of 4 past input values and 4 past output values.

The poles and zeros are distinct and line up on the positive real axis of the z-

plane.

As mentioned in Chapter III, the discrete pole-zero structure in the z-plane

offers the same information available with the continuous pole-zero structure in

31

0.8

0.6

0.4-

0.2

0 0 . o. X . -
E

-0.2

-0.4-

-0.6

-0.8

-1 -0.5 0 0.5 1

Real Axis

Figure 6 Integrator Example z-Plam,., Pole-Zero Structure

the s-plane. However, the z-plane is usually not as familiar as the Laplace

domain to most engineers. Transforming the discrete poles zeros into the

continuous domain yields some additional insight into the discrete simulation of

the fractional integrator.

Mapping the poles and zeros of the discrete fractional integration algorithm

from the z- to the s-plane will be accomplished using the Tustin transformation:

32

2 + sT (47)
2 - sT

This is a bilinear transformation, meaning that the number of poles and zeros will

be equal in the new plane regardless of unequal numbers in the old plane. This

transformation can be derived by approximating z=e sT as a finite series, and it can

be shown to be very accurate up to the Nyquist frequency for a given sample time

(6:246). This transformation to allow continuous frequency response comparison

of discrete systems is sometimes called a w-transformation (6:216-217).

The resulting continuous poles and zeros represent a continuous integer

order transfer function which has the same frequency response (in the range of

interest) as the continuous fractional integrator. In fact, to the accuracy of the

Tustin transformation, the continuous integer order transfer function will possess

a oulse response sequence identical to that of the fractional integrator. Hence,

they share the same recursive difference equation representation.

Using the Tustin transformation, this discrete fractional integrator example

yields the continuous s-plane pole-zero structure given ip Figure 7. Note that all

but one of the poles and zeros line up alternately on the negative real axis. The

exception is the pole at s=20 (=21T), which was "created" by the bilinear

transformation as a result of the sample-and-hold operation on the input. This

produces a non-minimum phase system, indicating that poor transient time

domain response can be expected for the sampled aiscrete system (5:33-34).

33

30

20

10

0- X 0 1 X 0 X' 0

E

-102

-20]

-30
-30 -20 -10 0 10 20 30

Real Axis

Figure 7 Integrator Example s-Plane Pole-Zero Structure

The poles Pnd zeros in the s-plane can be directly related to the algorithm

frequency response plot which will be given in the next section. Focusing for the

moment on the magnitude response, each of these terms tend to contribute an

additive ±20 dB/decade slope at frequencies higher thar their breakpoint, which

is the distance of the pole or zero from the origin along the real axis. By

appropriately spacing alternate poles and zeros, the magnitude plot smoothly

approximates the -10 dB/decade slope desired with a half order integrator. The

34

residues of the s-p!ane poles and zeros can also be directly related to the time

response of the system.

Since pole and zero locations define the frequency response breakpoints,

they will also roughly define the range of acceptable performance of the

algorithm. Poles and zeros closer to the origin will accompany better low

frequency performance for the algorithm, and conversely, poles and zeros further

from the origin will accompany better high frequency performance.

IV 3 Frequency Response

Using the method described for the convolution summation, the recursive

difference algorithm can be evaluated to determine its frequency response.

Figure 8 shows the frequency response of this algorithm and the exact

continuous case for the half-order integrator whose pole-zero structures for both

planes are given above. The phase response for this algorithm has the same

general shape as that of the convolution summation, but can now be seen to

approximate the continuous case over a range of frequencies roughly the same

as the magnitude response passband. The magnitude response itself has

improved, closely approximating the continuous case for over 2 decades. Once

again, the upper end of the useful range is near the Nyquist frequency, with

aliasing problems at higher frequencies. This algorithm is a marked improvement

over the convolution summation and would be useful for simulating the response

of a fractiona! ntegra - r over a wide frequency range.

35

20

Io-
0- Discrete

Continuous

-20 1 - I I I , I
10-2 10-' 100 101 102

Frequency (rad/sec)

0
Continuous

-100

~ -200Discrete

-300

-400
10- 101 100 101 102

Frequency (rad/sec)

Figure 8 Integrator Example Frequency Response

Appendix B shows several time response plots using this discrete

fractional integration algorithm for several input forcing function frequencies: n/4,

n/I2, and t (all in rad/sec). The magnitude and phase response of the discrete

algorithm read from these time response plots confirms the magnitude and phase

frequency response plots for those specific frequencies. The time response plots

show that the recursive difference equation does simulate the response of a

continuous fractional integrator.

36

In order to compare the performance of the recursive finite difference

algorithm for a variety of cases, criteria can be established to define the algorithm

passband in terms of the absolute magnitude and phase error with respect to the

exact continuous case. For this study, the passband is defined as the largest

contiguous frequency range over which the magnitude error is less than 3 dB and

the phase error is less than 60 degrees. Using these criteria, a large number of

different magnitude and phase plots like Figure 8 can be compared to bring out

trends in the performance of the algorithm. The passbands obtained will be valid

only for the criteria defined above.

Figure 9 gives the passband of the recursive difference algorithm

simulating a half order integral for several values of sample time, T, and

number of retained values, n. As expected, increasing the number of retained

values increases the performance of the algorithm at the low frequencies. The

upper passband limit is dependent on the sample time through the Nyquist

criterion.

Another characteristic of the passband plots that is not so readily apparent

is that the bandwidth (the "width" of the passband measured in decades of the

frequency spectrum), is not dependent on the sample time. While decreasing the

sample time improves the high frequency performance, it also degrades the low

frequency performance by the same degree. Therefore, it is possible to "place"

the bandwidth of the algorithm anywhere along the frequency spectrum by

varying the sample time.

37

m n-20

T-1 sec n-1O

.... 2n-20

T-0.01 sec .n....n-i 0
tttl~lt~tttttttlttttttttttn-4lttl -

Log of Frequency (radlsec)

Figure 9 Integrator Example Passbands

This chapter has shown that the response of a continuous fractional

integrator system can be successfully simulated over a wide frequency range

using the discrete recursive difference algorithm. Chapter V will show that a

pulse response sequence shows singularities for the simple fractional

differentiator, so this technique is limited to fractional integrators (or as Chapter VI

will show, those systems which can be reformulated as fractional integrators).

38

V Differentiation

The pulse response sequence has been shown to be an important tool for

deriving discrete algorithms to simulate the simple fractional integrator.

Unfortunately, this technique does not generalize to the simple fractional

differentiator. This brief chapter will show that the simple fractional differentiator

has an unbounded pulse response sequence, which makes derivation of a

discrete algorithm impossible using the method described in Chapter IV.

The continuous response of a simple fractional differentiator system to a

input, u(t), is given by

y(t) = Dau(t) d 1 fu(t-) (48)
r(1 -) dt 8

0 a<1

To derive the pulse response sequence, the unit pulse will be represented here

by the difference of two step responses, separated by one sample period. (This

was discussed in Chapter II1.) For a unit step input, u(t)=1 for t>Q, so the

system's continuous unit step response, r(t), is

r(t) 1 d" f-fdr t-a (49)

rol-a) d0 r(1-a)

The continuous pulse response can now be found by subtracting a delayed step

response from this one, yielding

39

hT(t) = r(t) - r(t-T) - - (tT)- (50)
r(1-a) r(1-a)

As before, the time scale is now partitioned into k equal time steps of T

duration. This is the same as saying the output has been sampled, so the

sampled pulse response sequence is

hT(kT) = (kT)- - ((k-1)T)-* (51)
r(1 -a)

Note that this equation for the pulse response sequence of a fractional

differentiator (limited to orders 0<.a<l) is identical that for a fractional integrator

given by Eq (26). Once again, this points back to the inverse relationship

between the two operators.

The problem comes about when pulse response sequence values need to

be calculated using Eq (51). For k=0, the definition yields hT(OT)=+- and for k=1,

the definition yields hT(1T)=-oo. Since a simple differentiator of any order

responds to instantaneous changes in the input, this result makes sense for a

pulse input with infinite positive slope at k=O and infinite negative slope at k=1.

Obviously, these unbounded pulse response sequence values for k=0 and k=1

yield unbounded values in the Hankel matrix and make calculation of the

difference equation coefficients impossible.

So it has been shown that the pulse response sequence method of

deriving a discrete fractional differentiation algorithm will not work. This apparent

40

gap in the types of systems which can be discretely simulated should not be of

great concern, however. Simple differentiatuis of any order are avoidCd in

practice since they are susceptible to noise. Where possible, systems requiring a

differentiator should be recast in terms of fractional integrators. This technique

will be used successfully in the next chapter to represent a fractional order

differential equation as a fractional integrator system allowing derivation of a

discrete algorithm for simulating its response.

41

VI. Fractional Differential Equations

VI 1 Definition

The preceding chapters developed algorithms for discrete simulation of a

simple fractional integrator. The method can be extended to simulation of larger,

more complex systems involving many terms and different orders of integration

and/or differentiation. Systems are most often described using differential

operators, so this chapter will focus on fractional order differential equations

(FDE's).

The system under study is assumed to have been decomposed into a

number of uncoupled modal fractional differential equations, each of the form

D y(t) - Xy(t) = ui(t) (52)

0-a<1

Bagley shows this process for a general constant coefficient system incorporating

fractional derivatives (2:7-12). This is similar to decomposition of coupled integer

order differential equations into a number of decoupled first order differential

equations. The difference is that the original model may now contain fractional

order terms and the resulting decoupled equations are, in general, of fractional

order.

It is important to realize that Eq (52) is valid as a fractional differential

equation only for the special case of a zero initial condition. True fractional

42

differential equations must be posed in terms of a slightly different operator in

order to accommodate initial conditions and to possess other than a trivial

homogeneous solution (2:13-18). Such a restriction does not affect this

investigation, since initial conditions are ignored for frequency response analyses

anyway.

V1.2 Continuous Time Solution

Solving for the continuous response of Eq (52) begins with a Laplace

transformation:

sKY(s) - IY(s) = U(s) (53)

Note that the "i" subscript denoting the specific modal equation has been

dropped. The Laplace domain equation can be rearranged to yield

Y(s) - U(s) (54)
S - I

Since multiplication in the Laplace domain is equivalent to convolution in the time

domain, the time domain FDE solution is

y(t) = f -1 u(t-t)dc (55)

0 eX

where 'sY indicates the inverse Laplace transform operation.

A power series expansion of the function can be used to find the inverse

43

Laplace transform:

(s{1} - + + + (56)

This series converges for bounded values of s which satisfy IsI>X1/a . Distributing

the operator over the summation and using the transform relationship from Eq (9)

for each of the terms yields

{_ a } - - + t2 1+ - + 'x3 t4'- 1 (57)
s(P) F(2a) (3a) F(4a)

which is valid for all t. In summation form, this is

- 1 =1tPlP -1 (58)
" - , p =1 r (p a)

With the inverse Laplace transform in hand, the solution to Eq (52) is

y(t) =f (lp-ea-1)u(t-,c)dt (59)
o rUpa) I

The time-domain solution can be presented in a more compact form by

recognizing the alpha order Mittag-Leffier function (2:19):

E = xP (60)
p=O F(+pa)

This function can be viewed as a generalized exponential; note that it is the

power series representation of an exponential for a=1. Using Mittag-Leffler

44

function notation, the FDE solution is (2:19-20)

t

y(t) = f D'-[Ef(Xt')]u(t-t)dt (61)

0

VI. 3 Frequency Response

The transfer function of the system is obvious from the Laplace domain

representation of Eq (53):

H(s) - Y(s) _ 1 (62)
U(s) sU -

Figure 10 shows the frequency response for this system for ;.=-1 and several

values of a. For low frequencies relative to ,, which is the breakpoint, the

transfer function is approximately 1, so the magnitude and phase for all cases

tend toward zero. The breakpoint at 1 rad/sec (equal to A) is clearly seen in the

responses of the a=0.9 case, which approaches the response of a first order

term. The breakpoint is less obvious for the a=0.5 case and practically

imperceptible for a=0.1. As a decreases, the frequency range over which s=l

increases, stretching out the transition region. For higher frequencies, each case

approaches the response of a pure integrator.

VI. 4 Pulse Response Sequence

Starting with the continuous time solution of Eq (59), the now familiar

45

method of discretizing the integral and assuming a piece-wise constant input can

be used to yield

k jT (XP- T tPO-1 (631
YT(kT) = u((k-j)T) f d-j (63)M~ (i-liT P= r(pa) I

By reversing the order of the integral and the second summation and by factoring

constants out of the integral this becomes

y (U) = ((k-j)r) Pa- Jr(64

0

-10)

S-20-

0.9

-30
-4 L - - - ' - l ' I . l I I II .

10-2 10-1 100 101 102

Frequency (rad/sec)

0.1
-20

-40 ---
0.5

" -60

0.9
-80

10-2 10-' 100 101 102

Frequency (rad/sec)

Figure 10 FDE Exact Frequency Responses

46

Performing the integration yields

k____)T P- (65)
YT(kT) = I:r+1) (U___ - (U-1)TY0

The second summation is now distributed over the two terms resulting from the

integration and ;L-1 is factored out to obtain

k U((j -)1 ;pj~a Xwip' (6
yT(kT) = Elu((k-j)T)-'-I 7 -) (66)j= x ru0+l) =1r a +1))

The last summations are recognized as forms of the Mittag-Leffler function so the

convolution summation representation of the time response is

YT(kT) = F u((k-j)T) E (.P(jTY)V E,(XI((I-)T)) (67)
j=l

and the pulse response sequence is

hi(iT) = {1E,[X(jT)I] E,.[((j-1)T)"] (68)

Once again, the definition of the pulse response sequence points back to

the representation of the unit pulse response as the sum of two unit step

responses of opposite magnitude and separated by one sample period. Hence,

this definition for the pulse response sequence could also be derived by solving

the Mittag-Leffler representation for the time response, Eq (61), for a unit step

input.

47

VI.5 Alternate Method

Using the pulse response sequence given above, the coefficier'ts of the

recursive difference equation can be found yielding a discrete representation of

the original modal fractional differential equation. A drawback to this method is

the infinite summation of the Mittag-Leffler function. If the coefficients of the

discrete system are to be precalculated and will not change for a given

application, the computer time required to approximate these functions with a

large number of terms may not oe problem. However, in parameter estimation

and adaptive systems, new coefficients are often calculated in real-time or ncar

real-time. The large number of terms required to approximate the Mittag-Leffler

functions in those cases may overburden the computer.

An alternate method of calculating the coefficients can be used which

significantly reduces the number of required calculations. The first step is to

operate on both sides of the original nodal equation with the alpha order

fractional integral:

Iu[D"y(t) - =y(t)) = lu[u(t)] (69)

Using the law of exponents (discussed in Section 11.2) and rearanging yields

y(t) = tM[u(t) + Xy(t)] (70)

The effect is to transform the system into a simple fractional integrator system,

using the response output, y(t), as an input to the system. This can be visualized

48

as proportional feedback on a simple block diagram.

The coefficients of the fractional integrator can be calculated based on the

order and the sample time. Assuming the integrator input is u(t)+Xy(t) from

above, the standard difference equation of Eq (41) becomes

YT(kT) - aly((k-1)T) - a. 2yT((k-2)T) - --- aoYr((k-n)T)

+ b,_l[u((k-1)T) +X yT((k-l)T)]

+ b._2[u((k-2)T) +.yT((k-2)T)]

(71)

+ bo[u((k-n)T) + Xy.((k-n)T)]

Combining terms yields the standard difference equation format with new

coefficients. The new coefficients, called Ai here to distinguish them from the

simple integrator coefficients, are calculated using the simple integrator

coefficients based on the formula

ai = a, - bi (72)

The b, coefficients calculated for the simple integrator do not change.

Using this method, a difference equation was derived for a half order

modal differential equation with X=-1. The sample time was 0.1 seconds (T=0.1)

and 4 input and 4 output past values were used (n=4). The discrete transfer

function for this system has the z-p!ane poles and zeros shown in Figure 11.

49

0.8

0.6

0.4

0.2

0 a. X.......... i O - 0 0 XI -

E
-0.2

-0.4

-0.6

-0.8-

-1 -0.5 0 0.5 1

Real Axis

Figure 11 FDE Example z-Plane Pole-Zero Structure

The alternating poles and zeros on the real axis resemble the integrator example

from Chapter 4.

Figure 12 shows the poles and zeros transformed into the continuous

Laplace domain through the Tustin transformation. The sampling zero is again

evident on the positive real axis at s=21T. The other poles and zeros alternate on

the negative real axis, but more than the other examples they are closer together,

which tends to cancel out the effect of both on the frequency response.

50

30

20

10

0 -o -xo - o

E

-10

-20

-30
-30 -20 -10 0 10 20 30

Real Axis

Figure 12 FDE Example s-Plane Pole-Zero Structure

In this case, the pole and zero locations themselves are not good

indicators of the approximate passband. The pole near s=-29 would seem to

indicate an upper limit near the Nyquist frequency of 31.4 rad/sec. As will be

seen however, the upper limit is around 13 rad/sec using the criteria defined

earlier. This value agrees with the earlier examples using a sampling period of

0. 1 seconds. The poles nearer the origin are also poor indicators of passband

limits since the frequency response shows a low frequency limit does not exist.

51

__ Discrete

. -10

-15
Continuous

-20 iwi i li I
10-3 10-2 10-1 100 101 102

Frequency (rad/sec)

0. . . - T [] I]]I I i I I I [

Continuous
-100

UUo -200

Discrete
-300

-400 .
10-3 10-2 10-1 100 101 102

Frequency (rad/sec)

Figure 13 FDE Example Frequency Response

Figure 13 gives the frequency response of this discrete algorithm and the

exact response of the continuous system. The low frequency continuous

response is easily simulated since it tends toward zero magnitude or phase

change; hence unlimited low frequency bandwidth can be achieved by simply

restricting steady state error to less than 3 dB. (Phase error does not need to be

specified; it is meaningless with respect to the step input implied by a steady

state error specification.) The upper passband limit is once again influenced by

52

the Nyquist criterion. One interesting note here is that the magnitude response

exceeds the passband criteria at a lower frequency than the phase response,

which is a change from previous examples.

Appendix B shows several time response plots for this discrete algorithm

simulating the response of the example continuous FDE. The frequencies again

are 7r/4, 7r/2, and 71 rad/sec. The time response plots confirm the accuracy of the

frequency response plot at several points and show that the method is valid for

this example.

The passbands for several values of sample time and number of retained

terms are compared in Figure 14 for the case of a=0.5 and 1=-1. As mentioned,

the upper passband limits for any given sample time are on the same order as

the integrator examples. The arrows indicate that no lower passband limit exists.

The only cases which do not have unlimited low frequency bandwidth are those

for T=0.01 using less than 20 retained past input and 20 retained past output

values. The existence of unlimited low frequency performance for this case

(using the defined criteria) using only a small number of terms offers wide

frequency range flexibility of the algorithm, dependent mostly on sample time.

In this chapter, the modal fractional differential equation has been

presented with its solution. Two methods of calculating the difference equation

coefficients for a discrete representation have been derived, and an example

problem was calculated and compared to the exact continuous frequency

response. Successful discrete simulation of modal equations shows that any

53

n-20

T-1 sac n-1O

I n-4 20

T-0.1 sec ,, n-I0
n-4

~n-20

T-O.01 sec i h iinii uin-l0
intiiiiiiinnwmtintiiiiiiiiiinimin n,-4

-5 -4 -3 -2 -1 0 1 2

Log of Frequency (rad/sec)

Figure 14 FDE Example Passbands

large system which can be decomposed into modal equations similar to Eq (52) is

a candidate for discrete simulation using these methods.

54

VII. Conclusions and Recommendations

VI. 1 Conclusions

This investigation has successfully derived a method for discretely

simulating the response of continuous fractional order systems. The pulse

response sequence method of calculating difference equation coefficients is well-

suited for extension to fractional order systems. The difference equations

themselves are recursive in nature, requiring few calculations in each time step

and little computer storage. These difference equations are easily implemented

on a digital computer, for system simulation or real-time estimation and control.

Using passband criteria (3 dB in magnitude and ±60 degrees in phase

were used here) various cases can be compared to establish trends. It is clear

that the Nyquist frequency (based on the sample time) determines the order of

the high frequency passband limit in all cases, as expected given this sampled

input system. For the simple fractional integrator, the sample time also

establishes the low frequency passband limit for a given number of retained past

values, allowing placement of the bandwidth where desired on the frequency

spectrum.

The bandwidth for the simple integrator can be increased by increasing the

number of retained past values. It is probably possible, theoretically, to simulate

these cases down to whatever frequency is desired by approaching an infinite

number of retained values, n. However, the cases plotted here indicate

55

diminishing returns for increasingly larger values of n. Also, the Hankel matrices

used in the calculation of the coefficients are ill-conditioned in most of the n=20

cases (with respect to the computer precision of 1017 being used). The matrix

condition number would be expected to get worse as n increased, so the practical

limit on bandwidth, as defined, for the half order case seems to be about 3.5

decades for the simple integrator. Assuming n=20 is required to achieve this

performance and the coefficients are precalculated, 40 multiplication operations

and 39 addition operations are required each time step, and storage of 40 values

is needed in memory.

The fractional order differential equation results obtained for the half order

case and).=-1 offer a much wider passband range since most cases had no

lower limit, regardless of the number of retained terms. It would seem possible,

then, to simply set the sample time based on the highest expected input

frequency and be assured of lower frequency performance. However, the T=0.01

sec case varies from that pattern, not reaching unlimited low frequency

performance until n=20, so that general rule does not hold in every case. For the

cases not exhibiting a lower passband limit, there are interesting possibilities for

large bandwidths using a small number of retained terms.

V1 2 Recommendations

One drawback of the method described here is that no analytic

relationship has been produced relating the number of retained terms to the

56

resulting bandwidth. Deriving such an expression would free a potential user

from engaging in an iterative technique to minimize the number of retained values

while meeting frequency response specifications. A possible starting point to find

such an expression is to derive the exact z-transform for a fractional differintegral.

A simple rule of thumb would also suffice, but would yield less insight into the

problem.

Another drawback of this study is that it ignores initial conditions.

If the algorithm is "turned on" at some time other that t=O with an initial condition,

this method will not given accurate results until the transients caused by that

initial condition have sufficiently died out. To solve this problem, a discrete

algorithm simulating the response of the system to initial conditions must be

derived and the result added to the current algorithm.

If high accuracy response is desired for a certain frequency range, it may

be worthwhile to investigate "tuning" the difference equation. Small changes in

the pole or zero locations of the transfer function, corresponding to changes in

the difference equation coefficients, can change the frequency response. It may

be possible to move these pole and zero locations slightly to more closely match

the exact continuous response for a given frequency or range of frequencies.

Along this same line, there may be better methods of calculating the difference

equation coefficients once the pulse response sequence is found, depending on

the specific application.

A method of increasing bandwidth for all the discrete algorithms could be

57

derived which operates at several different sampling rates. Several different

sampling rates (where sampling rate is 1/T in Hz) would correspond to several

different (probably overlapping) passbands on the frequency spectrum. This

would allow a larger bandwidth for the system than would be possible for a single

rate system.

The last recommendation concerns implementation of these difference

equations. An interesting experimental follow-up study would implement these

equations in a real-time computer program. Using integer order states as input

signals, these algorithms would be able to estimate "in between" fractional states.

Assuming the time functions of the integer order states used as inputs are

relatively simple, the response of the discrete algorithms can be compared to the

exact analytical results and possibly also compared to the results of analog

devices.

58

Appendix A - Computer Programs

All calculations and most plots for this project were accomplished using the

program Pro-Matlab (version 3.5i, 18 Jul 91, (c) The Mathworks, Inc.). The

following is a sample of several command files and function definitions ("m-files")

created to implement the methods derived in this investigation. Previously

existing functions in the Matlab main program or any of the Matlab toolboxes are

not repeated here. Note: The "dbodel" function is identical to Matlab's "dbode"

function except that its phase angle calculation does not include an the unwrap

function. The fractional order of integration or differentiation is referred to as 0 in

these command files and function definitions, as opposed to a in the main body of

the thesis.

59

FICRESP - Used to generate Figure 5 1=-0.5
T=O.1
n=8
w=logspace(-2,2,401)

% Command (script) file "ficresp"

% Command file to calculate the following for a fractional
% integrator using the convolution summation
% representation:

% 1) pulse response sequence, h (2n x 1)
% 2) coefficients of the finite difference equation, a
% and b (n x 1)
% 3) Hankel matrix of appropriate size (2n x 2n)
% 4) discrete transfer function polynomials, znum
% (nxl)
% and zden, (n+l x 1)
% 5) algorithm response magnitude and phase,
% almagdb and alphase (pts x 1)
% 6) exact magnitude and phase, exmagdb and exphase
% (nx 1)
% (this is plotted vs. 5) on the screen)
% Note: the number of frequency points used, pts, is an
% input variable

% Before running, ensure the following variables are
% defined:

% 1) beta, the order of integration (must be neg.)
% 2) T, the sample time in sec
% 3) n, the number of past input and output values to
% retain (2n total)
% 4) w, the frequency range of interest (pts x 1)

clear h a b H znum zden almag almagdb alphase

60

clear exmagdb exphase magerr phaseerr

% Calculate the pulse response sequence using 'prsgen'
% function

h=prsgen(beta, 2*n, T);

% Calculate the discrete transfer function polynomials
% using the pulse response sequence

zden(1)=1;
for k=l:n

znum(k)=h(k);
zden(k+1)=0;

end

% Calculate the algorithm frequency response magnitude
% and phase using 'dbodel' function and convert
% magnitude to dB

[almag,alphase]=dbodel (znum,zden,T,w);
almagdb=20*logl O(almag);

% Calculate the exact frequency response using the
% 'derexact' function and calculate frequency response
% errors

[exmagdb,exphase]=derexact(beta,w);
respgrf

61

FIZPLN - Used to generale Figure 6
T=O.1
n=4

% Command (script) file "fizpln"

% Command file to calculate the following for a fractional
% integrator:

% 1) pulse response sequence, h (2n x 1)
% 2) coefficients of the finite difference equation, a
% and b (n x 1)
% 3) Hankel matrix of appropriate size (2n x 2n)
% 4) discrete transfer function poiynomials, znum
% (nx 1)
% 5) discrete poles and zeros, zpoles (n x 1), zzeros
% (n-1 x 1)
% (graphed on the screen)

% Before running, ensure the following variables are
% defined:

* 1) beta, the order of intec-ation (must be negative)
* 2) T, the sample time in sec
* 3) n, the number of past input and output values to

% retain (2n total)

clear h a b H znum zden zzeros zpoles zgain

% Calculate the pulse response sequence using 'prsgen'
% function

h=prsgen(beta, 2*n, T);

% Calculate the discrete transfer function coefficients

62

% using 'coeff function

[a,b,H]=coeff(h,n);

% Calculate the discrete transfer function polynomials
% using the 'disctf' function

[znum,zden]=disctf(a,b);

% Calculate the discrete transfer function zeros, poles

% and gain using 'tf2zp' function

[zzeros,zpoles,zgain]=tf2zp(znum,zden)

% Draw a unit circle and map the poles and zeros
% using 'pzmap'

axis([-1.2 1.2-1 1])
t=O:.i:6.3;
plot(sin(t),cos(t),'--')
hold on
pzmap(zpoles,zzeros)
hold off

63

FDESPLN - Used to generate Figure 12 03=-0.5
T=O.1
n=4
w=logspace(-2,2,401)

% Command (script) file "fdespln"

% Command file to calculate the following for a fractional
% differential equation:

% 1) pulse response sequence, h (2n x 1)

% 2) coefficients of the finite difference equation, a
% and b (n x 1)
% 3) Hankel matrix of appropriate size (2n x 2n)
% 4) discrete transfer function polynomials, znum
% (nx 1)
% 5) discrete poles and _.eros, zpoles (n x 1), zzeros
% (n-1 x 1)
% 6) continuous poles and zeros, spoles and szeros
% (graphed on the screen)

% Before running, ensure the following variables are

% defined:

* 1) beta, the order of integration (must be negative)
* 2) T, the sample time in sec
* 3) n, the number of past input and output values to
% retain (2n total)

* 4) lambda, the modal equation eigenvalue

clear h a b H znum zden zzeros zpoles zgain
clear snum sden szeros spoles sgain

% Calculate the pulse response sequence using 'prsgen'
% function

64

h=prsgen(beta, 2*n, T);

% Calculate the discrete transfer function coefficients
% using 'coeff' function

[a,b,H]=coeff(h,n);

% Calculate the revised coefficients taking into account the
% the input function of (lambda*y(t) + g(t))

for k=l:n
a(k)=a(k)-(Iambda*b(k));

end

% Calculate the discrete transfer function polynomials
% using the 'disctf' function and print the discrete
% poles and zeros

[znum,zden]=disctf(a,b);
[zzeros,zpoles,zgain]=tf2zp(znum,zden)

% Calculate the continuous transfer function polynomials
% using 'd2cm' (Tustin transform method) and print the
% continuous poles and zeros

[snum,sden]=d2cm(znum,zden,T,'tustin');
jszeros,spoles,sgain]=tf2zp(snum,sden)

% Print the continuous poles and zeros and plot them in
% the s-plane using 'pzmap' and 'sgrid'

pzmap(snum,sden)

65

PRSGEN

function h=prsgen (beta, n um, samptime)

% FUNCTION "prsgen" - generates pulse response sequence
% using piecewise-constant method

% h=prsgen (beta, n um,samptime)

for k=1:num
h(k)=((k*samptime)A (-beta)-((k-1)*samptime)A (-beta))

/gamma(1 -beta):
end

DEREXACT

function [mag, phase]= derexact(beta,w)

% FUNCTION "derexact" - generates the exact phase and
% magnitude response for a simple differintegrator

% given beta and the input freq's (rls)

% [ma g, phase] =d erexact(beta,w)

num=Iength(w);
for k=1:num
g(k)(w(k)* i)A beta;
mag(k)=20*Iogl O(abs(g(k)));
phase(k)=(l 1 BOpi)*atan2(imag(g(k)),real(g(k)));

end

66

RESPGRF

% Command (script) file "respgrf'

% Command file to plot the algorithm magnitude
% and phase response vs. the exact magnitude
% and phase response

% The following variables must be defined:
% 1) w, frequencies of interest (rad/sec)
% 2) almagdb, algorithm magnitude response over w (dB)
% 3) alphase, algorithm phase response over w (deg)
% 4) exmagdb, exact magnitude response over w (dB)
% 5) exphase, exact phase response over w (deg)

subplot(21 1), semilogx(w,exmagdb)
axis;
subplot(21 1), semilogx(w,almagdb)
xlabel('Frequency (rad/sec)')
ylabel('Magnitude (dB)')
axis;
subplot(212), semilogx(w,alphase)
axis;
subplot(212), semilogx(w,exphase)
xlabel('Frequency (rad/sec)')
ylabel('Phase (deg)')
axis;
subplot(1 11)

67

COEFF

function tacoeff,bcoeff,H]=coeff(h,num)

% FUNCTION "coeff" - finds finite difference equation coefficients
% and also returns the Hankel matrix

% [acoeff,bcoeff,H]=coeff(h,num)

clear H acoeff bcoeff

% Calculate Hankel matrix and solve for a coefficients

H=hankel(h(1 :num),h(num:2*num-1));
acoeff=H\[-h(num+ 1 :2*num)]l;
acoeff=acoefF;

% Calculate b coefficients

bcoeff(num)=h(1);
for k=1:num-1

sum=O;
for j= 1: k
sum=SU m+ (ho)*acoeff(nu m-k+j));

end
bcoeff(num-k)=sum+h(k+ 1);

end
bcoeff(1 :num)=[bcoeff(1 :num)]';

68

DISCTF

function In um poly, den poly]= disctf(acoeff, bcoeff)

% FUNCTION "disctr' - finds the discrete transfer
% function numerator and denominator polynomials
% in decreasing powers of z

% [nu mpoly, den poly]=d isctf(ac)eff, bcoeff)

num=Iength(acoeff);
numpoly=[bcoeff(num:-1 :1)];
den poly=[1,acoeff(nu m:-1: :1)];

FIDEEXACT

function [ma g, phase] =fdeexact(beta,Ilam bda,w)

% FUNCTION "fdeexact" - generates the exact phase and
% magnitude response for a fractional differential
% equation given beta, lambda, and the input
% freq's (rls)

% [mag, phase] =fdeexact(beta, lambda,w)

num=length(w);
for k1l:num

g(k)= 1/((w(k)*i)A beta-lambda);
mag(k)=20*logl O(abs(g(k)));
phase(k)=(1 80/pi)*unwrap(atan2(imag(g(k)),real(g(k))));

end

69

FINDBW

% Command (script) file "findbw"

% Command file to calculate the bandwidth (based on
% magnitude and phase) for a discrete fractional
% differintegral algorithm

* Outputs:
* 1) magbw - the bandwidth based on magnitude

% ~ error of 3dB
* 2) phsbw - the bandwidth based on phase error of 60 deg

% Ensure the following are defined before execution:
% 1) magerr - the magnitude error vector in dB (pts x 1)
% 2) phserr - the phase error vector in deg (pts x 1)
% 3) w - the frequency vector in rad/sec (pts x 1)

clear magerri phserri num diffm diffp indexm diffp
clear maxmagi maxphsi magbw phsbw
magerri=find(magerr<3);
phserri=find(phserr<60);
numm=length(magerri);
for j=2:numm
diffmoj-1)=magerrioj)-magerrioj-1);

end
indexm=find(diffm>1);
maxmagi=magerri(min(indexm));
if isempty(maxmagi)

maxmagi=max(magerri);
end
magbw=log 1 0(w(maxmagi))-log 1 Q(w(magerri(1)));
nump=length(phserri);
for j=2:nump

diffpOj-1)=phserriOj)-phserriUj-1);

70

end
indexp=find(diffp>1);
maxphsi~phserri(min(indexp));
if isempty(maxphsi)
maxphsi=max(phserri);

end
phsbw= log 1 Q(w(maxphs i))-I og 1 O(w(p hserri (1);
if w(magerri(1))==w(1)
disp('Lower end of mag bw not found.')

end
if w(maxmagi)==max(w)
disp('Upper end of mag bw not found.')

end
if w(phserri(1))==w(1)

disp('Lower end of phs bw not found.')
end
if w(maxphsi)==max(w)

disp('Upper end of phs bw not found.')
end
magbw=[w(magerri(1))' log 1 O(w(magerri(1)));w(maxmagi),Ilog 1 O(w(maxmagi))]
phsbw=[w(ptisern(1)),Iog 1 O(w(phserri(1)));w(maxphsi), logl1 O(w(maxphsi))]

71

Appendix B - Time Response Plots

These time response plots were generated by propogating the recursive

difference equation forward through 200 time steps, corresponding to a 20

second simulation of the continuous fractional order system (since T=0.1 sec in

all examples). The difference equations were implemented and graphed using

the Quattro Pro spreadsheet program (version 1.0, (c) Borland, Inc.)

72

o- c

cu 0

CXC

0

04-00

LL) 0 LL)xx
00

XX73

0

0a0

xxy

4- C

6=> 0
x X x x xoI)

Cy0aM

1~ 0

4-074

0

xx

A X >

>0 X A
(6

.4- X0

0 0*x~yxC) 0

XXXX
E) X X 0
cu X x

8Pf1-AV 8A! Ie

75

0

7- 0

E

G-)LU

ci) 10 a)

0 .0

U i
U) '0 0I

0

apnlu6LoAJ @Aij~E)H

76

0

0 0

E
Ox+

W'

02 C
0

++ ++cc6
I-)

0L
+++

L() 0++

77

E0

o 0

+ ++ +~

a ++ +
E~+ ++

+ cz
x ++

W0

+ ++U

UU

4-0

00

ep1ucz' e!e

+78

Bibliography

1. Bagley, Ronald L. "On the Fractional Order Initial Value Problem and
Its Engineering Applications," Fractional Calculus and Its Applications,
International (Tokyo) Conference Proceedings. 12-20. Tokyo: College
of Engineering, Nihon University, 1990.

2. Bagley, Ronald L. The Initial Value Problem for Fractional Order
Differential Equations with Constant Coefficients. AFIT-TR-EN-88-1
(2nd Edition). School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, September 1989.

3. Bagley, R.L. and R.A. Calico. "Fractional Order State Equations for the
Control of Viscoelastically Damped Structures," Journal of Guidance,
Control, and Dynamics. 14304-311 (March-April 1991).

4. Bagley, Ronald L. and Peter J. Torvik. "A Generalized Derivative Model for
an Elastomer Damper," The Shock and Vibration Bulletin. 49135-143
(September 1979).

5. Franklin, Gene F. and J. David Powell. Digital Control of Dynamic
Systems. Reading, MA: Addison-Wesley, 1981.

6. Houpis, Constantine H. and Gary B. Lamont. Digital Control Systems -
Theory, Hardware, Software. New York: McGraw-Hill, 1985.

7. Klonoski, Capt Kevin D. Fractional Order Feedback in Linear Systems. MS
Thesis, AFIT/GAENY/88D-05. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 1989.

8. National Bureau of Standards. Handbook of Mathematical Functions.
Applied Mathematic Series 55. Washington: Government Printing Office,
December 1972.

9. Ogata, Katsukiko. Modern Control Engineering. Englewood Cliffs, NJ:
Prentice-Hall, 1970.

79

10. Oldham, Keith B. and Jerome Spanier. The Fractional Calculus. Orlando:
Academic Press, 1974.

11. Reid, J. Gary. Linear System Fundamentals. New York: McGraw-Hill,
1983.

12. Ross, Bertram. "Fractional Calculus," Mathematics Magazine, 50 115-122
(May 1977).

80

Form Approved
REPORT DOCUMENTATION PAGE OB No. 07040188

Publ(i reporting burden for this collection of information is estimated to average I hour per response. inluding the time for reviewing ifnstructions, searching enisting data sources.
gathering and maintaining the data needed, a nd completing and revewing the collection of information Send comments reiarding this burden estimate or any other aspect of this
collectirn of information. including suggestions for reducing this burden. to Washington HeadQuarters Services. Directorate or information OperatiOns and Reports, 1215 Jefferson
Davis Highway. Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Projct (0704-0188), Washington, DC 20503

1. AGENCY USE" ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVEREDDecember 1991 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Discrete Simulation Of Fractional Order Systems

6. AUTHOR(S)
Jeffrey A. Blank, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GNENY/91D-15

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Mr. Jerome Pearson
WL/FIBG
WPAFB OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

/,pproved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
- _ Fractional calculus has been shown useful for describing many real world systems, and studies are

currently underway to generalize control theory to incorporate fractional states. This investigation derives a
method for simulating the time response c- fractional order systems using a recursive difference equation. The
technique used effectively approximates a simple frac:;onal order integrator as d summation of integer order
terms. The discrete transfer function is also derived and the freq, .-ncy response of the discrete algorithm is
compared to the exact continuous case. Using 20 or more retained past values in the difference equation, the
discrete haft-order integrator demonstrates a oassb,'nd of more than three decades. A slightly modified method
is used to derive a recursive difference eouation wl-,h simulates the response of a modal fractional order
differential equation. Frequency response analysis of an example hiivirg ir eigeivalue of -I ch'ows the
charactr";stics of a low pass filter, effectively simulating the continuous system response for all frequencies
below the Nyquist limit, even when using a small number of retained past values.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Fractional Calculus, Fractional Order Differential Equations, Discrete Simulation, . 88

Discrete Modelling, Digital Control, Sampled-Data Systems, State Estimation 6. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unrclasp.d UL
NSN 7540-01-280-5500 Standard Form 298 (Rey 2-89.

Prescribed by ANSI Std 139-1B
298-102

