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ABSTRACT

The dynamics of the Free Electron Laser are governed by Maxwell's equations which causes

many highly nonlinear regimes to exist in Free Electron Laser Physics. This thesis will examine two

such areas and develop simple models to describe the highly dynamic and rich behavior two of these

regimes.

In the strong-field, high-current regime, the Free Electron Laser driving current can be

modeled by a single macroparticle representing the trapped electrons. When the trapped electrons act

collectively as a macroparticle, solutions which include synchrotron oscillations can be found for the

self-consistent pendulum and wave equations.

In an FEL oscillator with low single-pass gain, the evolution of the optical wave can lead to

sideband development. This phenomenon is studied by applying Maxwell's equations to an oscillator

with two optical modes and deriving a two-mode wave and pendulum equation. The two-mode wave

and pendulum equations are implemented numerically on computers so that the onset of the sideband

can be explored.
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I INTRODUCTION

Free Electron Lasers (FELs) are proving to be an exciting and practical source of radiation

with a wide assortment of applications over a broad range of the RF spectrum. First proposed in

1970 by John Madey [Ref.1], and experimentally demonstrated by Madey and his colleagues in 1975

and 1976 [Ref. 2,3), they are now being considered for use in a wide variety of applications. The

FEL is based on the original work by Motz who demonstrated that light could be amplified by an

electron beam propagating through a periodic magnetic field [Ref. 4,5,61. In 1960, the ubitron was

developed by Phillips which operates on similar principals to the FEL [Ref. 71.

The FEL has many attributes that make it attractive for a wide assortment of uses. The most

notable of these attributes is the FEL's continuous tunability. FELs have been demonstrated to

operate over a range of frequencies that varied by a factor of 10 [Ref. 81. Closely related to

continuous tunability is the "designability" of the FEL. The same basic theory and mechanisms that

work for a FEL operating in the millimeter range will also work in the tens of nanometer range.

FELs can also be scaled to high power applications since the gain medium contains only a relativistic

electron beam in a periodic magnetic field, and does not suffer the nonlinear material affects that

plague convention atomic lasers in the high power regimes. This also makes FELs very reliable since

the weakest link in FEL design, the accelerator, is generally considered very reliable. FELs do suffer

two major drawbacks, size and cost. Some of the current work in FELs is aimed at reducing the size

which will help with the associated high cost [Ref. 81.

Another active area of FEL research is in the high-power regime where they have many

applications ranging from plasma heating to weaponry. Unfortunately, in the high-power regimes,



two different areas where nonlinearities arise, and develop simple theories that provide useful insight

into these dynamic regimes.

Chapter I1 will provide the necessary background on classical FEL theory. Chapter M11 will

develop a simple theory that treats the bunched electrons in the FEL as a single macroparticle. This

greatly simplifies the FEL dynamics and allows simple solutions to be derived describing FEL

behavior in this highly nonlinear regime. The solutions can then be used to study the trapped-particle

instability, sideband development, and chaos in the FEL. The solutions can also be used for design

criteria. Chapter IV develops a simple two-mode model of the FEL oscillator by solving Maxwell's

equations for two optical modes in the oscillator. The model is then used to study the growth of

sidebands in an oscillator. A quantitative understanding of this phenomenon will add a tremendous

degree of control in FEL oscillator design.
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!1 FREE ELECTRON LASER THEORY

A. BASIC FREE ELECTRON LASER PHYSICS

An FEL consists of two major components, an electron accelerator to produce a relativistic

electron beam and a wiggler or undulator with a static, periodic magnetic field to "wiggle" the

electrons with a periodic oscillatory motion. It is this periodic motion of the electrons in the

undulator that causes radiation in the forward direction. Some of this spontaneous radiation is saved

in the laser resonator causing stimulated emission that leads to coherent radiation. Since the electron

beam is highly relativistic, the electrons "see" the undulator's magnetic field wavelength as being

much shorter due to relativistic Lorentz contraction. Subsequently, the optical field produced by the

undulating electrons is of a much shorter wavelength than the undulator's magnetic field wavelength.

The above is a Quantum Mechanical description of the basic FEL physics. Despite this, the

FEL mechanism is essentially classical and can be adequately described with Electro-Magnetic

Theory. Figure 2-1, illustrates the major features of the classical approach.

The incoming electrons enter the undulator and begin to oscillate due to the periodic magnetic

field of the undulator as shown in the top of Figure 2-1. The oscillating action of the electrons causes

them to emit photons in a manner analogous to a radiating antenna. In the middle of Figure 2-1, one

undulator wave section is enlarged to show both the optical and magnetic fields of the undulator

superimposed over the oscillating path of the electron. The forces acting on the electrons are

governed by the Lorentz force law

d(y+) - ,e (0 , 2-1
dt mc mc

where = v7c and y- 2 = 1 - . The speed of light is c, the mass of the electron is n, the electron

charge is e, and the velocity of the electron is '. g and g represent the electric and magnetic fields

present in the undulator from both the optical wave and the static undulator magnetic field. By

3
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examining the bottom third picture in Figure 2-1, it can be seen that the electrons are effected by the

optical field and the effect is dependent on the electron's phase relative to the optical field. This

coupling between the electrons and the optical wave is best illustrated with an example. When the

electron has a velocity component both in the z direction and out of the page, and the magnetic field

of the optical wave is directed downward, the electron will experience a force retarding its forward

motion and causing the electron to lose energy. Conservation of energy requires that the electron's

lost energy go to the optical wave causing subsequent amplification of the optical field. Different

electron phases with respect to the optical field can also cause the electron to gain energy from the

optical field. Therefore, careful analysis is required of the electron and optical field coupling to

produce amplification of the optical field.

B. ELECTRON DYNAMICS AND THE PENDULUM EQUATION

In order to fully understand the interaction of the electrons and the optical field inside the

undulator, the equations governing the evolution of the electrons must be developed. Begin by

assuming a helically polarized static magnetic undulator field of the form:

B B(cos(koz), sin(koz), 0) , 2-2

where B is the field strength, z is the distance alont he longitudinal axis of the undulator, andk o

is the wace number of the undulator's magnetic field. Also assume that a circularly polarized plane

wave is present in the undulator cavity of the form

ER = E(cos*i, -sin*, 0), BR = E(sin*, cos*, 0) , 2-3

where E is the optical field strength and -- kz - wt + with Co kc. The wave number for

the optical field is denoted by k, time by t, and the optical phase by .

5



Substituting equations 2-2 and 2-3 into the Lorentz force equations, 2-1, aad separating the

electron motion into their transverse and longitudinal components the following is obtained

d( .) =___ [E( - P,)(cos ,-sini,O) + pB(-snkz,coskz,O)] , 2-4
dt mc

- -- [E(pcosW - PsinW) + B(Psinkoz - P,coskoz)] 2-5

dt mc

and

- E[EPcos-PsinI] 2-6
dt mc

where - (3" ,[Py ,O). Since the electrons are highly relativistic, the approximation 1-P, 0

can be used to show that E(I - d -c BP, [Ref. 8]. This simplifies the transverse equation 2-4

and allows it to be solved by inspection giving

-(coskoz,sinkoz,O) , 2-7

where K = eBk/2nmc2  is a dimensionless parameter that characterizes the properties of the

undulator. In a FEL K is usually close to 1. The transverse motion solution, 2-7, assumes perfect

beam injection so that there are no constants of integration. The transverse motion is on a much

smaller scale than the average z motion along the z axis [Ref. 81.

Substituting the transverse motion, 2-7, into equation 2-6 gives

eKE (cos(koz)osW - sin(koz)sin'y)) 2-8
mct

Using trigonometric identity for the cosine of the sum of two angles and the definition

6



w (k + ko)z - ot the change of the electron's energy is found to be

= eKEcos( + 2-9y mc

is a dimensionless "microscopic" variable that describes the electron's phase with respect to the

optical wave and the undulators magnetic field. is on the "scale" of X , the wavelength of the

optical wave in the undulator, since k 2. ko and z ct. The exchange of energy of the electrons is

easily understood in terms of the electron's phase from 2-9. For example, electrons with phases such

that, -n/2 < (? + *) <5 n/2 , will receive energy from the optical wave causing them to accelerate.

Other electrons at phases, n/2 < ( + ) 5 3n/2 will lose energy to the optical wave. Since some

electrons gain and some electrons lose energy, a beam of initially random, but essentially

continuously spaced electrons, will begin to bunch during the trip down the undulator. This bunching

process is the important feature of the FEL gain mechanism as will be discussed in more detail in

section D.

To further simplify the dynamics of the electrons in the undulator, it is convenient to relate

' to . Using the definition

y2n- 1 - 1- p2 -_p , 2-10

and recalling 2-7, for the P.L motion, we have

1 - P, - _ ' 2-11

since p2 =K2/y2 . Solving equation 2-11 for P, and differentiating with respect to time gives

(1 +K 2 ) , 2-12
Y 2 Y:

using y 3. 1, and 1, . Differentiating the definition of twice respect to time, and solving

for I3, gives

7



S= 2-13
(k + k)c

Equating 2-11 and 2-12 gives
____V 2-14

y (k +ko)c 1 + K2

When one wavelength of light passes over an electron as the electron traverses one undulator

wavelength, the electron is in resonance with the optical wave, and the electron is oscillating at the

same rate as the optical field so that = 0 . Using this, the resonance condition can be derived

which will be used to simplify 2-14. Starting with the definition of and differentiating with respect

to time yields

- (k +ko)cp-kc = 0 2-15

Solving 2-11 for 3 and substituting into 2-15 yields

k Y y2 2-16
2X. (I + K2)

since I.

Combining equations 2-14 and 2-16 and solving for , gives

Zy I, = y k 2-17

(k + k)c 21 (k + kdc 2ko

Since k3ko,

.C = y_ 2-18
2koc 2 w.o

Equating equation 2-9, the energy equation, and equation 2-18, and solving for gives

8



2 cos(C + 0) 2-19
Y mc

which is the simple pendulum equation. To put the pendulum equation, 2-19, in dimensionless form.

define a dimensionless time c - ct/L , such that 0 < T < 1, where L is the length of the

undulator. Applying the chain rule gives d 2C/dr 2 = C(LIc) 2 so that

2 E cos( +)= 2 cos( +0) 2-20
y2mc 3  y 2Mc 2

since k0c = o. = c2r/ 0 . N is the number of periods in the magnetic field of the undulator and

the ,,O- refers to differentiation with respect to c , as will always be the case. Defining

ja I- (41reKELN)/(y 2Inc 2) as the dimensionless optical field strength so that the optical field is

a = Iale'4 gives

a cos( + 2-21

The pendulum equation given in equation 2-21 is valid for both strong and weak-fields. The

only restrictions placed on using equation 2-21 are that y be high enough that the electron is not

bent excessively by the undulator's magnetic field and that the FEL is not so efficient that y

decreases substantially as the electron traverse the undulator. The optical field strength ja I in front

of the cos term explains why stronger optical fields produce rapid electron evolution.

As the FEL normally saturates, the electrons lose enough energy that they drop out of the gain

bandwidth. As the electrons continue to lose energy and shift across the gain bandwidth, the beam's

phase velocity v m decreases by Av - 4nNAy/y -2n . By either decreasing the

undulator's magnetic field wavelength k0 along the z axis, or by decreasing the magnetic field

strength B along z, or both, the electrons could be accelerated in phase-space to maintain resonance

with the optical wave. Each method is conceptually equivalent and both are called "tapering" the

undulator [Ref. 8]. The phase acceleration can be added to the pendulum equation as an added

constant that is turned on near saturation at time trs . This makes the pendulum equation

9



jaI cos( + ) 2-22

1+ jajcos( .*)>

where 8 is the necessary added phase acceleration. When the phase acceleration is created by

decreasing the undulators wavelength, 6 - -2nNAX, . and when the acceleration is provided by

weakening the magnetic field 6 - -4nNK2 AB/B(I +K2) [Ref. 81. If 8 > ja i , then the path of

the electron in phase-space will not repeat itself nor return to its initial conditions. Paths in phase-

pace that do not repeat themselves are called open orbits. Paths that do close on themselves and

repeat are called closed orbits. If fa I > 8 some of the electrons can be trapped in closed orbits,

and with Ia I 6 most of the electrons can be trapped near resonance around it producing

high gain. Successful tapering requires strong optical fields [Ref. 81.

C. OPTICAL WAVE EVOLUTION AND THE WAVE EQUATION

In both FEL oscillators and FEL amplifiers, spontaneous emission rapidly forms a classical

wave with some degree of coherence since the bandwidth of the spontaneously emitted light is

comparable to the inverse of the number of undulator periods traversed by the electrons [Ref. 8]. As

discussed during the pendulum equation's derivation, there is either energy loss or gain depending

on the electron's phase relative to the optical wave.

The optical wave is taken to vary slowly in time during an optical period (EcoE, 4Cc O)

and vary slowly in space over an optical wavelength (E'ckE, .ck ) . This approximation is

known as the slowly varying amplitude and phase approximation (SVAP) and is consistent with the

narrow bandwidth expected for any laser. The evolving optical wave can be viewed as a carrier wave

made up of a single high frequency that is modulated by a complex wave envelope that varies slowly

in amplitude and phase over many optical wavelengths. It is this complex envelope that meets the

SVAP approximation. If the complex wave envelope did not meet the SVAP approximation, the light

from the laser would have a much broader bandwidth than expected and poor coherence. This is

evident through Fourier analysis.

To begin the derivation of the FEL wave equation, assume a circularly polarized plane-wave

10



is established in the undulator as in 2-3 of the previous section with a vector potential of the form
- E,(t) 22

A - (sin*,cos,O) 2-23
k

where all the variables are the same as those defined in 2-3. Using the vector potential in the wave

equation [Ref. 8]

12 _I12 x = _4n 2-24

where J is the transverse current from the transverse motion of the electron beam, and the SVAP

approximation to eliminate all terms with two derivatives, gives

12\. - (cos*,-sin,O)( 2 &2 C C2-25

2E

--- (sin*,cosO,0) -- 4

The sin and cos functions of W in equation 2-25 rotate fast with respect to the slowly

evolving complex envelope. To eliminate this fast rotation in equation 2-25, two orthogonal unit

vectors can be defined,

C* a (cosp,-sinw,O) , C2 m (sinW,cos,O) , 2-26

to project into 2-25. This reduces Maxwell's second-order vector equation, 2-25, into two first-order

scaler equations

-. 2 2  1 2 0._O ., 2-27

I 1



and

e2( ~- _ 2-28

The single-particle current is given by .i -ecO8 3 (. - f,) where 1 is the position of the

i'th electron, and 8'(." - F,) is a three dimensional Dirac delta function [Ref. 9]. This implies that the

transverse single-particle current with the transverse motion [5 from 2-7 of the previous section

is

.' = (cos(kz),sin(koz),O)8 (1 - F) , 2-29
ymw o

where B is the field strength of the undulator's magnetic field, m is the electron mass and woo is the

radial frequency of the undulator's magnetic field. Substituting the single-particle transverse current,

2-29, into the first-order Maxwell equations, 2-27 and 2-28, and taking the appropriate dot products

gives

e cos( + k0 Z)8 3(f - r) 2-30

and

" 2 = e2B sin(*, + koz)84(f - r,) 2-31

Summing over all the particles to obtain the total transverse current and averaging both equations at

a fixed time over a volume element dv that is much smaller than the coherence volume but much

larger than the optical wavelength, gives [Ref. 81

12



IaER -.. _ 2neK P(cos( + 4)) , 2-32

and

' - 2neKp(sin( + t ) )  2-33

where p is the particle density and the brackets represent the ensemble average over all the

electrons. Equations 2-32 and 2-33 can be simplified further by introducing another dimensionless

parameter

j = 8N(enKL)2p 2-34
Y 3 "Ic 2

representing the dimensionless current of the electron beam [Ref. 8]. The dimensionless current, j,

along with the dimensionless field strength lal simplifies equation 2-32 and 2-33 to

It 1-- -j(cos( + )2-35

and

I y.(sin( + 4))) 2-36

The above two equations describe how the complex optical field evolves with the electron

beam. With high-current densities, j v n, the gain will be high since JaO will be large. Also,

strong optical fields will slow down the evolution of the optical phase. The above wave equation

used with the pendulum equation of section B describe the simple FEL optical and electron evolution.

In general, the pendulum and wave equations have no simple analytical solution, but are easy to

simulate numerically to show the major features of FEL physics. Section E will present numerical

simulations that demonstrate important FEL physics.

13



D. FREE ELECTRON LASER GAIN

1. Low-Current, Weak-Field Gain

In weak-fields and low-current, an approximate solution to the pendulum equation, 2-21, can

be obtained by assuming that and Jal are constant. Using conservation of energy in the

undulator and relating Av , from the pendulum equation's solution, to the change of energy in the

optical field, an analytic equation can be found to give the gain of the FEL for weak-fields and low-

current [Ref. 81.

The derivation begins by finding a second-order perturbation solution to the pendulum

equation assuming weak-fields and low-current so that q 0 and Id. - 0 . The solution is

Ia. I
(T)= + V V - a°  [cos(& o + vor) - cos( ) + voi sin( 0)]+ "" , 2-37

V0

so that

v(T) = Vo + IaI[sin(o + v 0 t) - sin( o)I +
V0

a. 2-38

- -(cos(2 0 +2v 0'r) -cos(2 0)) +cos(v0 r) -I.L 4

1 -voxsin(W0cos(9 o + V0 1)] +...

At injection, the electrons form an essential continuum that are evenly spread in phase space.

As the electrons evolve along the orbits in phase-space some will gain energy and move ahead in

phase space while others will lose energy and fall behind. This bunching occurs on the scale of an

optical wavelength. Since the optical wave evolves slowly in time and space, each adjacent 2n

section of phase-space is essentially the same as its neighbors over many optical wave lengths

allowing equation 2-38 to be spatially averaged over a single 2n length giving

14



Ia 012 r1 1 2-39Mv = 2n ~d 0  V 3 Icos('yt)-1 + 2 vOri~~)2g~o voL 2L

From the resonance condition, it can be shown that Av = 4nNAy/y [Ref. 8]. Therefore,

the change of energy in the optical wave can be found from the average change of energy of the

electron beam due to conservation of energy. Namely,

dP -- -(pFdV)yntc((v) - v° )  2-40

4irN

where p is the real current density, F is the ratio of the "effective" cross-sectional area of the

electron beam over the optical beam and is known as the filling factor, and dV is a microscopic

volume element one optical wavelength long and with the thickness of the optical beam.

The optical power in a similar microscopic volume with a length of one optical wavelength

and cross sectional area of the optical beam is P = 2E'dV/8i . Therefore, since gain is defined

as G a dP/P , the gain is

G -pFdV[ynmc 2((v) -v)/4nN] 2-41
[2E2 di'8t I

Substituting equation 2-39 for (v) and the dimensionless current density defined in 2-34 into 2-41

gives

G(v0 ) = j[2 - 2 cos(v 0o) - vtsin(v0 )] 2-423
V0

Figure 2-2 is a plot of the low-gain curve. It is interesting to note that the optimal gain

occurs at Vo - 2.6 rather than on-resonance or far off-resonance. This is because near resonance,

the electrons can not drop a large distance through phase-space. Far above resonance, v,, -it the

gain will oscillate many times along the undulator resulting in small final gain. In this low-current,

weak-field regime, gain is not exponential.

15



***Gain and Phase Curves **
j=l ao0=l oY=0

N=100oo=
Gain 0.1335

0.0

___1-0.1335

-16 V o  16

Figure 2-2: The weak field gain spectrum for low current.

2. High-Current, Strong-Field Gain

A gain spectrum, G(ao,v o) , is easily obtained numerically by calculating the gain at the

end of a simulation at each point (vo,a o) with current j. Figure 2-3 is the result of such a

calculation.

For weak-fields Ia0 I < n the profile in Figure 2-3 is essentially that derived analytically

in section 1 and plotted in Figure 2-2; ie it is anti-symmetric with a peak gain of G = 0.135j at

vo - 2.6 However, as the initial field strength increases, the peak gain of Figure 2-3 shifts to

higher v . This is due to the large initial separatrix, whose height is 2Vfj , that can now trap

more particles farther off-resonance. The trapped electrons can then lose more energy dropping

through phase-space. Also, the peak gain diminishes with higher field strengths. This is saturation,

16
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Figure 2-3. The gain spectrum for high current with increasing initial field strength.

and is caused by the trapped particles in the closed orbits of phase-space. After trapping, the particles

"slosh" back and forth in phase-space producing synchrotron oscillations as will be described in detail

later in section E.4. Finally, note that the gain spectrum distorts and the gain bandwidth broadens

in V0 [Ref. 8].

3. Gain Degradation Due to Beam Quality

Free Electron Laser design often involves a trade off between high-current and beam quality

from the accelerator. Since the optical wavelength is usually set by the application, the dimensionless

current j is determined by either the real current or the number of undulator periods. Increasing the

real current degrades beam quality by producing a beam with more energy spread which degrades the

maximum theoretical gain. Conversely, increasing the number of undulator periods to increase
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coupling, may decrease the maximum theoretical gain since the undulator is now more sensitive to

angular spread of the beam.

Emittance is the measure of the electron beam quality, and is a constant given by the product

of the average radial and angular spread of the electrons = 0, It can be shown (Ref. 8] that

the average decrease of phase velocity due to the emittance of the beam is

A 2tnN 2 2 2 2
AV- 2(K koyo + y'0,) 2-43

1 +K 2

In order to get an understanding how the spread of phase-velocities affects gain, it is

necessary to assume weak-fields and combine the wave and pendulum equations. First, solve the

pendulum equation for the i'th electron with a first-order perturbation , - ,, + vx + (1) , and

substitute this solution into the wave equation. Integrating over all initial phase velocities, fdv

gives an integro-differential equation governing the evolution of the optical field

- ) , 2-44

where F(xT) - fdqftq)e -'q" is the characteristic function for the distribution flq) , and 3fq)

is the initial distribution of electron phase velocities v. = V. +q about v, . In the integral

equation, 2-44, all reference to electron phases has been removed, but there still exists the average

distribution of initial electron phase velocities [Ref. 8].

Two common distributions exist, the Gaussian

exp(-q/2(Y.)

fG(q) =ex(-q/2 2-45

and the exponential

fq(q) - exp(q/a*) for q<O 2-46
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These common distributions have an easy functional form, but real beams generally have additional

factors complicating their shape and their exact functional form is unknown. Still the Gaussian and

exponential forms provide realistic insight to the gain degradation problem which can be explored by

substituting one of their functional forms into the integral equation 2-44 and integrating it numerically

in (1+G)

j0o .14

-16 Vo  1

Figure 2-4: The weak field gain profile for low current with an increasing Gaussian energy spread.

to obtain the gain profile in Fikure 2-4. Several features aie immediately evident from Figure 2-4.

First, the peak gain decreases steadily as the beam quality decreases with bigger a . The peak gain

also shifts further off-resonance with poorer beam quality and finally, the gain bandwidth becomes

wider. These general features are common to many other beam distributions, but the details of the

degradation can be dramatically different. With high-currents, j , 1 , and poor beam quality, the

gain is exceeding difficult to predict and can be off by several orders of magnitude [Ref. 81.
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4. High-Current, Weak-Field Gain

In the high-current, weak-field regime, the integral equation, 2-44, can be used to develop

analytic solutions for the optical field strength and phase. In order to solve the integral equation,

consider an FEL with perfect beam quality, f(iT) = 1 , and starting on-resonance, v. = 0
coo

Taking successive derivatives of 2-44 then gives, a = ija(,t)/2 , which has a general solution

inv-lving three roots of the form a exp(oa,'C) . The coefficients are determined by the initial

conditions a(O) = ao and a(0) -= (0) = 0 . The exponents a., are complex roots of the cubic

3equation a,, - ij/2 = 0 giving a solution which is the sum of all three roots

a(T) = exp(j/2)f(i + V3-)T/2 + exp(j12)'3(i-r[3)T/2 + exp-i(j/2)'/3"T 2-47
3

During the bunching process, r < 'r, (2fj)'I -c I , 2-47 reduces to

a()= a 0(1 + ijT 3/12 +...) , 2-48

implying that the optical field strength remains esser...a., constant while the phase increases

proportional to 3 . With high-currents oily the fastest growing root dominates after the bunch

is complete giving

la(r)I _ a 0exp(j/2)'O r3'Y/2 , (') - (j/2)'13,/2 , 2-49
3

implying that the gain is exponential until the onset of strong-fields. With large currents, j 3. 1

the optical phase shift is large as well.

E. NUMERICAL SIMULATION OF FREE ELECTRON LASER DYNAMICS

The pendulum and wave equations, 2-22, 2-35 and 2-36 are three nonlinear differential

equations that have no easy, general analytic solution. However, they are easy to implement

numerically and can be used to illustrate major features of FEL physics.
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1. Electron Bunching

Figure 2-5, illustrates electron bunching with a monoenergetic, low-current beam with a

weak optical field present. The electrons are at resonance, v0 = to = 0 . The large plot in Figure

2-5 shows the evolution of the electrons in phase-space. The phase-space plot is a plot of the

electron's phase, C, versus the electron's phase-velocity and reveals many of the FEL's dynamics.

The initial positions of the electrons are shown in light grey and become darker as they evolve. The

separatrix separates orbits that repeat and close on themselves, closed-orbits, from open-orbits that

do not close on themselves. The separatrix shifts position with time due to the 4 term in the
pendulum equation. The separatrix is plotted in this simulation as the black line in phase-space. It

can be shown [Ref. 81 that the separatrix height is 2 fa 1" . The remaining two smaller plots show

*** FEL Phase Space Evolution ***
j=l ao0=2 Vo=0 N=100

5I  P/Po-1 0.01

VT
0.1

0

-n/2 3n/2 0 1

Figure 2-5: Electron bunching with sample electrons on resonance.
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gain and the evolution of the optical wave's phase 4 . At time -z = ' the electrons enter the

undulator evenly spaced in phase with respect to the optical wave, and begin travelling down the

undulator slightly slower than the optical wave. The electrons whose phase n/2 < + 4 3n/2

lose energy and begin to fall back in phase space while those electrons with -n/2 < + 4 <n/2

gain energy and accelerate in phase space. This bunching, under the right conditions, can trap

particles in the separatrix and leads to substantial gain and subsequent saturation as will be

demonstrated in section E.3. In this example, the gain is minimal since approximately half the

electrons gained and half lost energy. The little gain that exists is due to the optical phase shift, 4)

that causes the separatrix to shift slightly from its initial position leaving the average position of the

electrons slightly greater than n/2

2. Low-Currents

To achieve non-trivial gain, it is best to start the electrons off-resonance as illustrated Figure

2-6. Here the electrons were started at v = 2.6 and a, = 2 with a low-current and weak initial

fields. More electrons were used to show the virtual continuum of electrons present in the undulator

as well as increase the accuracy of the simulation. Note that the most dense bunching occurs near I -

where the phase space paths are directed downward implying the highest loss of energy for the

electrons, and henceforth the largest gain. Also, note that the electrons followed the open orbits

outside the separatrix, and that there was only a minimal shift in the optical phase.

3. Strong-Fields, Low-Currents, and Saturation

Figure 2-7 shows a simulation that demonstrates saturation in a low-current, but strong-field

FEL as might occur during a single pass in a FEL oscillator. In this simulation the electron beam

is no longer monoenergetic, but has a Gaussian distribution of phase-velocities with a width of

g = 5 . This more realistic situation prevents all the particles from being trapped inside

separatrix, which ultimately lowers the maximum theoretical gain that would have been obtained with

a monoenergetic beam as discussed in section D.1 and D.3. The dots in phase space represent the

final positions of the electrons at the end of the simulation rather than their time evolution through
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**FEL Phase Space Evolution *
j=l ao=2 vo=2.6 N=100

5 p/Po-l !0.14

V 00.02

-n/2 3n/2 0 1

Figure 2-6: Starting electrons off resonance increases gain for a single pass through the undulator.

phase-space. The electron dynamics of this simulation illustrate several important FEL features. Due

to the initial energy spread in the beam, many of the electrons did not become trapped inside the

separatrix and are more spread out in phase-space than those that are bunched inside the separatrix.

Inside the separatrix, the electrons bunch quickly due to the strong-fields and the optical power grows

exponentially as the electron bunch moves past +0 = n at about 'r 1/2 . It is the peak to

peak height of the separatrix, 4 ja 1',' , at this point that determines the amount of energy that the

electrons can transfer to the wave since Av(T) - 4 ja 1' 2 . This change of phase velocity is enough

to move the electon bunch aaos the gain bandwidth. The groth begins to slow dwn until near +4 , -rn/2

where the electrons lost all the energy possible, and flow into the -TC/2 < + 0 <n/2 region of

phase space where the electrons will take energy from the optical wave and cause the drop in gain.
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FEL Phase Space Evolution ***
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Figure 2-7: A low current beamn in strong fields at saturation.

4. II igh-C urrent, Str-ong-Fields and Synchr-otron Oscillations

Figure 2-8 corresponds to a high-current beamn with j = 10000X. the optical wave grows

exponentially, as discussed in section D.4, until the onset of saturation. The saturation occurs with

similar dynamics as the example of section EA3 However, after saturation and the downward trend

of the gain evolution caused by the electron bunch flowing into the -n/2 < + 4 < ir/2 region

of phase space, the bunch continues to be driven by the optical wave around the closed orbit inside

the separatrix and back into the ir/2 < t + < 3n~/2 region of phase space. There the electrons

transfer their energy back to the optical wave which causes the second increase of the optical power

that is seen in the gain evolution. This oscillation in the gain evolution is known as a synchrotron

oscillation. Also note how rapidly the optical phase evolves with time.

In Chapter 11, it will be shown that the frequency of the synchrotron oscillation is

v,=j " . Chapter 111 will also develop a simple theory using the concept of the a single
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FEL Phase Space Evolution ***

j=10000 a0 =40 Vo0=0 N=100
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Figure 2-8: ligh currents and strong fields cause synchrotron oscillations due to the electron bunch
"sloshing" around phase space following the closed obits in the separatrix.

"macroparticle" to represent the electron bunch. This will allow the development of an approximate

solution of the wave and pendulum equations in this highly nonlinear regime.

5. The Tapered Undulator

This example illustrates the effect of tapering an undulator to achieve higher gain. At

injection, the electron beam had a Gaussian energy spread with a width of oC = 5 , and a current

of j = 2000. The tapering begins near saturation at rs ft 0.6 with a tapering rate of 8 = 70nt.

Note that most of the electrons were trapped inside the separatrix, but that some remain outside the

separatrix and are randomized in phase-space. These randomized electrons play a minimal role in

the gain mechanism whereas the trapped electrons bunch near the critical point lose energy, and lead

to gain. The "sloshing" of the electrons due to synchrotron oscillations is still visible in the gain

evolution, but now the closed-orbit area of phase-space is relatively small due to the tapering of the
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Figure 2-9: A strongly tapered, high-current undulator.

pendulum equation. This causes the electrons to bunch near +) 3nr/2 so that there is

continual growth. The electrons still "slosh", but over a much smaller area of phase-space which is

why synchrotron oscillations play a relatively small role in strongly tapered undulators compared to

untapered undulators.
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III MACROPARTICLE MODEL

A. INTRODUCTION

The high-current, strong-field regime of the FEL is highly nonlinear and difficult to analysis

quantitatively. However, simple analytic models can be developed by treating the particles trapped

in the closed orbit region of phase-space as a single macroparticle. The macroparticle approach was

originally developed and used to derive simpler expressions of the pendulum and wave equations that

could be used to facilitate FEL design [Ref. 10,11]. The macroparticle approach has also been

successfully used to study the stability of Klystron-type FEL's [Ref. 12], and to explore the limits of

the pendulum model for FEL dynamics [Ref. 131. In this chapter, simple solutions to the wave and

pendulum equations are derived using the macroparticle approach. The solutions allow quantitative

analysis of the optical wave evolution, and provide useful insight into the trapped particle instability.

The macroparticle model presented here is first solved for the tapered undulator where

synchrotron oscillations are small. Then a slightly more complex model is developed leading to

solutions that describe synchrotron oscillations in the untapered undulator. Comparisons of the simple

theory with particle simulations will be interspersed to demonstrate the validity of the model.

B. MACROPARTICLE MODEL

In the high-gain, strong-field regime, the trapped electrons bunch in the closed-orbit region of

phase-space allowing them to be treated as a single macroparticle. The untrapped electrons will

randomly disperse in phase-space and play a greatly diminished role in the gain mechanism. This

removes the required averages from the wave equations and simplifies the system, equations 2-22,

2-35 and 2-36, from 2n + I equations to a system of 3 equations,

8 0('r -i s ) + IaIcos( +€) 3-1a
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0 -jT cos(04+) 3-1b

lajo = jrsin( +)) 3-1c

where 0(,r - rTs) is the step function for the tapering constant, 8. The trapped particles are described

by a reduced particle current jr - 0.6j .The macroparticle remains trapped near resonance, at the

bottom of the potential well, so that , 0

I. Solutions Without Synchrotron Oscillations

The near-resonance assumption allows for the immediate solution of the pendulum

equation, 3-la, to give cos(( + 4) -6 /at . When combined with the wave equations, 3-lb and

3-1c the result is

jT6 3-2a

3-2b
ji$1 = jr. (I - 1"1-r j Jr

A properly designed undulator requires 62 8 1lal to insure that there will be closed-orbits that trap

the electrons which is consistent with the approximation in 3-2b. The solution to 3-2a is found to

be
la(T)12 = 2jr8(6-r,) + Ia'I2  3-3

The solution to 3-2b is found by combining 3-3 with 3-2b and integrating with the appropriate initial

conditions yielding

(r) = as Ia[(I +2jrT(r-'Cs)/ia5 I2)'a - 11/6 3-4

Without tapering the solutions, 3-4 and 3-5, simplify to

Ia( )I' = Ia IS 2  + a- 3-5
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Figure 3-1 illustrates a simulation of a tapered undulator with an initial optical field

ao = 10 , a dimensionless current j = 20000 , and a tapering rate of 8 = 270ir The

electrons are initially placed with a random Gaussian spread in phase velocity related to an energy

spread in the electron bean by 4nNAy/y - Av. The random Gaussian distribution about v0 is given

by fr (q) = exp[-q2/2oy ]/V2-o where the i'th electron's phase velocity is v, = v o + q. In Figure

3-1 the width of the distribution is %r = 3 The large left window in the figure is a plot the

electron phase-space; electron phase, t, versus electron phase velocity, v, where each dot is the

electron's final position. Note that the trapped electrons are bunched inside the separatrix while the

untrapped electrons were dispersed randomly. The separatrix separates the closed-orbit region of

phase-space from the open-orbit region and is plotted as the thin black line in phase-space. The

electrons inside the separatrix are bunched near g which causes the continual growth of the power.

Synchrotron oscillations are visible as small modulations in the gain evolution and are caused by the

"sloshing" of the electrons inside the separatrix. The top-right window plots the power of the FEL

*** FEL Phase Space Evolution ***
j=20000 a0=10 Vo=0 N=100

OFG=3 8=270n

800 in (I+G) 14
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- 2 3i/2 0 t 1

Figure 3-1: High Current, strongly tapered undulator.
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over time with the derived analytic solutions superimposed in grey. The simulation's gain evolution

is plotted in black. The flat initial portion of the analytical solution, " - 0 , and the exponential

gain portion, t, < 'r < r, , are from the results stated in Chapter H, section D.4. The final portion

of the analytical solution is the macroparticle solution that begins after saturation when tapering

commences at 'r - 0.3. Sixty percent of the electrons were assumed trapped in this example. After

saturation when tapering commences, the power grows linearly. The bottom-right window plots the

evolution of the optical phase with the same three regions of the analytical solution superimposed in

grey. Note that the phase grows linearly in time during the exponential growth as predicated. There

is close agreement between the analytic solution and the simulation. A gain of G = 2 x 10' is

achieved.

Figure 3-2 illustrates a tapered undulator with a lower current of j = 10000 and a

smaller taper rate of 8 = 200n , but a strong initial optical field a0 = 100 . The initial electron

beam has a Gaussian spreal ii pnase velocity with a width of or = 5 . Saturation occurs at

* FEL Phase Space Evolution *
j=10000 a0 100 Vo=0 N=100

GG=5 8 200

700 In (1 fG) 8
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n/2 3n/2 0 1

Figure 3-2: High initial field in a strongly tapered undulator.
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rs = 0.2 since the initial field is near saturation. The gain grows linearly after saturation. Figure

3-3 is sinilar to the simulation of Figure 3-2, but the initial field is much weaker, a. = 10 . This

delays saturation until t 5 = 0.4 . Both simulations assume J. = 0.6j. In both figures, the simple

macroparticle model compares extremely well with the simulations. Synchrotron oscillations are

visible in both figures as the small modulation in the gain and phase evolution. The analytic solution

* FEL Phase Space Evolution **
j=10000 a0=10 Vo=0 N=I00

Y G =5 8---2001c

700 ln(I+G) 12
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-n/2 3n/2 0 1

Figure 3-3: Weak initial field in strongly tapered undulator.

can not follow the synchrotron oscillations in the gain evolution since the analytic solution assumed

that the macroparticle was rigidly trapped at the bottom of the optical potential well. However, the

macroparticle can oscillate slightly as is evident by the closed orbits inside the separatrix and the

slight modulation of the gain evolution. With tapered undulators, these oscillations are relatively

small and can be ignored. In untapered undulators, synchrotron oscillations are substantially more

pronounced and must be accounted for. The next section will account for the oscillations of the

macroparticle in the potential well and accurately predict the synchrotron oscillations.
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Figure 3-4 shows a simulation with parameters similar to the LLNL ELF experiment, but

with better beam quality [Ref. 141. The dimensionless current is j = 7000 with a random phase-

velocity spread of width a. = 3 . The initial optical field is a. = 12 , and the taper rate is

= 80n . Again, the analytic solution closely follows the simulation. The simulation and the

analytic solution both show efficiency of about 30% which compares well with the experiment.

**FEL Phase Space Evolution**
j=7000 ao0=12 Vo=0 N=30

(Y+=3 8-80n

250 in (P/Po0) 12

0

-2501

-jT/2 3n[/2 0 IE 1

Figure 3-4: A simulation of an FEL with parameters close to LLNL ELF is compared with the
macroparticle model.

2. Solutions withn Synchrotron Oscillations

The macroparticle model can be extended to include synchrotron oscillations for untapered

undulators, 8 -- 0, where the effect of synchrotron oscillations is more pronounced. With the

assumption that the macroparticle is trapped at the bottom of the optical potential well, 0 , the

pendulum equation, 3-1a, can be solved for an equilibrium position
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3-6
2

The macroparticle is now allowed to oscillate near the bottom of the optical potential well, around "

so that

+ x() = _ + x() 3-7
2

where x(r) <t n. Assuming that the optical field does not change rapidly after saturation.

IaI = -0 , the solution for x(t) can be found by combining 3-7 with the pendulum equation

3-1a. Using a small angle approximation for x(r) yields

= Ia, I cos( " + x(T) + I) -Ia x(t) 3-8

where Ia, I was substituted for Ia I since Ia I is nearly constant after saturation. Equation 3-8 has

a solution of

x(t) = ocos(vs@ - Ts)) 3-9

The frequency of the synchrotron oscillation is v s - Ia, 11' . The initial conditions for the

macroparticle in phase-space aie determined phenomenologically by comparing with simulations. The

best solution is found to be 0 - 0.6 and v o = 0 as expressed in 3-9.

Combining 3-7 with 3-lb yields

IaI= jT cos(" +x(T) + ,) 3-10
Jr xT A ) I

after the small angle approximation is applied. Combining 3-9 and 3-10 produces a solution for the

optical field strength

la(x)I =j r° sin(vs (t -,c,)) + Ia 1 3-11
vs
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Combining the optical phase expression of 3-2b with the new optical field strength solution from 3-11

gives

+J r j2 cos(v, (C - T)) , 3-12

after expanding to first-order in x(x) and integrating.

Figures 3-5 and 3-6 compare the improved macroparticle model for untapered undulators

with simulations using current j = 1000 , and initial optical fields of la, I = 1 and lao I = 30

respectively. These examples illustrate the macroparticle model's excellent ability to predict the onset

of saturation. Both simulations use nearly monoenergetic beams described by YG = I with 1000

sample electrons and 300 time steps. Note that in Figure 3-5, the FEL just saturates, whereas in

Figure 3-6, the FEL saturates and undergoes nearly two synchrotron oscillations. This is due to the

high initial field that causes saturation to happen at a much earlier time.

3,/ 00

Figure 3-5: A comparison of the macroparticle model's solutions with a weak initial field simulation
and current j = 1000.

34



3i/ 00

Figure 3-6: A comparison with higher initial fields and a current of j =1000.

Figures 3-7 and 3-8 demonstrate the macroparticle model capabilities with much higher

currents of j = 10000, and initial fields of ja0 I = 10 and Ioa I = 100 Both simulations have

nearly monoenergetic beams, 0 YG = 1, with 1000 sample particles, use 600 time steps, and assume

sixty percent of the electrons are trapped. In both examples, the macroparticle model predicts

saturation very well and follows the synchrotron oscillation. The analytic optical phase solutions also

follow the simulation closely and show the synchrotron oscillations. With the higher initial field,

saturation occurs sooner.

Figure 3-9 shows a simulation of an untapered undulapor with a much higher current of

j = 20000, and nearly perfect beam quality, 0 = 1. Note the very tight bunch inside the separatrix

even after nearly four synchrotron oscillations. Once again the analytic solution follows tls

simulation closely, but the predicted synchrotron frequency is slightly higher than in the actual

simulation. ?*zte that the analytic power solution, P(T) , after saturation is sinusoidal but in the
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FEL Phase Space Evolution
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Figure 3-7: High current with 3 synchrotron oscillations.

simulation the synchrotron oscillations are not exactly sinusoidal. This is due to the assumption that I ' 0

after saturation which is not completely accurate. In the simulations, the peaks of the power curve

are sharper than the troughs since Ia(r)I is not completely constant as was assumed. In Figure

3-10, Coulomb affects havw been examined for this example and appear to have little effect on the

theory.

As a final example, Figure 3-11 shows the comparison between the solutions of 3-7 and

3-8 and a simulation using 5000 electrons that has parameters similar to the LLNL ELF untapered

undulator [Ref. 15]. The initial field strength is la01 10 , the dimensionless current is

j 3350 and the random phase-velocity spread is oY = 3 . From the power evolution, P(t)
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Figure 3-8: Hfigher initial field causes saturation to occur sooner.

it is apparent that the electrons undergo about two synchrotron oscillations, and that the analytic

solution closely follows the simulation. The analytic phase solution also shows synchrotron

oscillations as it follows the simulation.

C. CONCLUSION

The macroparticle model provides simple analytic solutions to FEL dynamics in the highly non-

linear regime with high-currents and strong-fields. The results could provide the necessary tools to

lead to multimode theoretical studies of the trapped-particle instability, sideband development and

chaos in the FEL. Such simple analytic results can be used in the design of future high-power, high-

gain FEL's.
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Figure 3-9: A high current example, j =20000, with four synchrotron oscillations.

**FEL Phase Space Evolution**
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Figure 3- 10: A high current FEL with many synchrotron oscillations compared to the macroparticle
model with Coulomb affects considered.
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Figure 3-11: Macroparticle model compared with untapered undulator that has parameters close to
the LLNL ELF FEL.
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IV TWO MODE THEORY

A. INTRODUCTION

In the FEL oscillator, the optical evolution can develop sidebands and become highly chaotic

over many low gain passes just as the FEL amplifier can develop sidebands and chaotic behavior over

one high gain pass. This highly non-linear behavior in the FEL oscillator is difficult to analyze due

to the complexity that arises from the multiple longitudinal optical modes interacting with the

electrons. One of the consequences of this nonlinear behavior is the trapped particle instability which

can be analyzed through longitudinal, multi-mode analysis [Ref. 16-21]. In this chapter, a simpler

model will be developed that limits the number of modes in the oscillator to two, which is sufficiently

simple to study the stability of the FEL oscillator, but not excessively simple so as to be unrealistic.

The two-mode model presented here will provide a valuable tool to study long term stability of the

optical wave, the development of sidebands and the onset of chaos in a FEL oscillator.

B. ELECTRON AND OPTICAL DYNAMICS

To study the electron and optical dynamics in the oscillator with two optical modes present,

equations )i i.:-tion for the electrons must be developed and then used to derive the driving current

in the optical wave equation. This can be accomplished in a manner analogous to the derivation of

the pendulum and wave equations of Chapter H, producing two-mode pendulum and wave equations.

These two-mode wave and pendulum equations will then be used in computer simulations to explore

stability in the FEL oscillator.

1. Electron Dynamics and the Two-mode Pendulum Equation

The derivation of the two-mode pendulum equation is very similar to the single mode

pendulum equation of Chapter II, so only a sketch of the two-mode pendulum equation derivation will

be presented. With two optical modes present, the electron equations of motion are
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d~~ ±(~e x(++) 4-la

dt m c

where g and i are the electric and magnetic fields of the primary optical field, and i, and A, are

the electric and magnetic fields of the secondary optical field. The charge and mass of the electron

are denoted by e and m, and c is the speed of light. The undulator's magnetic field is denoted by

B,," Assume that the primary optical field is of the form

If = E(cos*,-sin*,O), f= E(sin*,cos*,O) 4-2

and the secondary field is of the form

E, - E,(cos*,,-sin,,O), B, -(sin*,,cos*,,O) 4-3

where kz - wt + P and s ks - t + 4s, k and ks are the wave numbers, w and ca are the

frequencies, and + and os are the phases of their respective optical waves. Also assume the

undulator field is helical of the form

B,, _. B.(cos(koz),sin(koz),O) 4-4

where ko is the wave number of the undulator's magnetic field and z is the longitudinal coordinate

for the long axis of the undulator.

Substitute 4-2, 4-3 and 4-4 into the equations of motion, 4-1, and solve for the perpendicular

motion as in the derivation of the pendulum equation in Chapter i. Use of the approximations,

IJE( 1 - P,) < CIfm and 1g) (l - ot)< IB9,I (Ref. 81 gives

K -__(cos(kO),sin(ko),o) ,: 4-5

where K g eBm/2nmc 2 is the undulator paameter. The energy equation is
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A.

dy e K (Ecos(k~z ,) + Ecos(kz + ,)) 4-6
dt mcy

/

Now a relation between the electron's phase with respect to the optical wave and y needs

to be derived. As in the single mode pendulum equation, start with y- 2  1 - p . Using the

perpendicular motion solved for in 4-5, solve for P, yielding

( y 24-
____1__(I K") 4-7

2¥9

since the electrons are relativistic. Taking the time derivative yields

, (K2 +1) + 4-8
2 y

Now define the electron phase with respect to the primary optical wave so that w - (k + ko)z - wt.

Taking the second time derivative of C yields

z4-9
- (k+ ko)c

when solved for

Equating 4-8 and 4-9, and using the resonance condition 1.121 y2/(l + K 2) gives

y k ' __.__ 4-10

(k + ko)c 2k0  2kc

since kck. Equating 4-6 and 4-10, combining with the definition of C and introducing the

dimensionless time -r ctlL and dimensionless optical fields jal v 4ntNKeLE/9mc2 and

Ia,! 4nNeKLE1y 2mc 2 gives the two-mode pendulum equation

a 00
v j - lalcos(C +,t) + lalcos(kz *r,) 4-11

As before, "°" denotes dd-. The z dependence in the pendulum equation can be eliminated by

using the approximation k, k, k, and the definition Av, e ((k - k)/k)2n N ((AI,- k)/I.)2nN

where N is the number of undulator periods. This gives
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O0

Ia lcos(C +) + Ia.lcos(C + Avr + *) 4-12

Normally Av. is between 2n and 107t since the areas of interest are (X, - X)2nN/A. a 'A which

is the typical range of synchrotron oscillations. It is interesting to note that by defining C with

respect to the carrier wave (k,co), the symmetry of the two-mode equation is broken.

2. Optical Wave Evolution and the Two-Mode Wave Equation

The two-mode wave equation is derived in the same manner as the single. mode wave

equation. The optical fields of 4-2 and 4-3 have the vector potential

- -(sin,,cos*,O) + - (sin*,cosqs,O) 4-13

k k ,

Substituting 4-13 into the general wave equation 2-24 and applying the slowly varying amplitude and

phase approximations (SVAP) to eliminate all terms with two derivatives yields the left. hand side of

the wave equation

(~2 # - - (cos,-sin*,O)

2 E$(sin*,cos*,0) 4-14

C

+ 2s(cos* s,-sin*,0)
C

2 2Es,(sin*,,cos*,,0 )
C

The rapidly rotating 4 terms of 4-14 can be eliminated by defining four polarization vectors

, = (cosV,-sin ,O) t = (sin ,cos ,0) 4
-" 4-15

=sl = (cosiv,,-sinxV,,O) tS2 - (sinw,,cosw,,O)

to project into the wave equation producing four equations
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2 +Etcm(*-*) + EOWsi(*- *3 )) = 4,f

C C

2 + +Etsin(*1- E3 45cos(* _- s) 47
C C S 4-16

2(Ecos( - * s) - E c n(* -_*s) + tE,) 4-- _ j . "£s1

c C LS

-2(Esin(* -*s)-Eltcs(W - s) - Ess)) _4 4
C C

Now the right side of the general wave equation needs to be developed to find the transverse beam

current. Since a single particle has a transverse current, f 4 L -ec68 (i- i ) [Ref. 91, giving

-j4 = (ecK/y)(cosk0 zsinkz,0 )8 (3) ( i - fJ) when combined with the transverse electron motion, 4-5.

Projecting each of the four polarization vectors into the single particle current yields

ecK
4~ e1 -cos(j6z + ,)5(0)(Y- Ir)

Y

- ecK
J'4 e2 = esin(koz +)8 (3(i- Y )

Y 4-17

4 es1 -= Cxco (k Z + 8 ( - r(Y )

JJ S2 ' Si(kz + - F)
Y

Summing the single particle currents, 4-17, over all the particles, equating with the left hand side of

the wave equation, 4-16 and multiplying each of the four resultant equations of motion with

4nNeKL 2/y 2nzc 3 yields

la I + IaIcos(Av, , - ) - la, l'sin(Avr -4 ) = -J(cos( +4))

lal + 16.1sin(Avs + + Ia. I Oscos(Av5x + t, -4) j(sin( + 4-18

IaIcos(Av. +, -) + IaI sin(Av.- +, -4) + I =J -j(cos(koz +0)) -

-Ia Isin(Av1 + + Ia14,cos(Av, + ts - +) + Ia, 5 ,= j(sin(koz +W))

when the dimensionless time 'r is introduced and j is the dimensionless current defined as before.

Multiplying the second and fourth equations of 4-18 by i and then combining the first and the
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second, and the third and the fourth equations yields the two-mode wave equations

a+ a, e" = -j~e-,r,)
4-19

a+ as e l . _-_j(e- -,,,s

since ko + V, (1 - Av/2nN) () + Avr + 4s" Consistency between the two equations of 4-19

requires Av. < 2nN. This eliminates the second of the equations in 4-19 so that there is only one

wave equation to follow

0 0 i, a )4-20a+ ase,,, _j(e-,)42

3. Computer Implementation of Two-mode Theory

The two-mode wave equation, 4-20, is not immediately implementable for computer

simulation since the two-modes need to be separated into two separate equations. To separate a froma,

in 4-20, one simplifying approximation must be made, the gain over a single pass will be small. This

limits the two-mode theory to FEL oscillators with low single pass gain since amplifiers have large

gain over one pass. This approximation allows the wave equation to be integrated over time to

eliminate one of the optical terms. Before separating the two optical terms in 4-20, a value forAy5

must be established. Since the sideband is the mode that is modulating the carrier wave, and is

produced by the synchrotron oscillations, it will have a frequency that is different from the carrier

wave by 2n, the frequency of one synchrotron oscillation. Therefore Av, - 2n.

To separate the two-modes out of 4-20, integrate 4-20 over time 'r from 0 to 1. using the

two approximations above. This yields

4-21Aa ,1-j(joe -(')d)

To find the change in the sideband, multiply 4-20 by e ,"' and integrate over time again yielding

_-j( 'e-; " 2.) d,) 4-22
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Since it is easier to deal with real rather than complex numbers in computers, equations 4-21

and 4-22 can be broken into real and imaginary parts by application of Euler's theorem yielding

Aa, = -Jf (cosQdt

Aa, j if(sin )dt
4-23

Aa.s = -jf (cos( + 2n-))d.

Aas, - Jf (sin(t + -

Similarly, the two-mode pendulum equation, 4-12, can be broken into its real and imaginary parts

= 5 + aR cos - asin + asR cos(Q +2na) - a., sin( + 2nr) 4-24

where 8 is the tapering constant or artificial acceleration applied to the electrons after saturation in

order to maintain resonance. Unlike an FEL amplifier, the tapering constant is always on in a FEL

oscillator if there is to be tapering applied.

The program to implement the two-mode model is now straight forward. There are three

main loops. The first, inner most, loop integrates the pendulum equation, 4-24, over all the electrons

and keeps a sum of cost, and cos( j + 2n) to be used as the averages in the wave equation. The

next outer loop is the time loop repeated for each time step of a single pass. It integrates the wave

equations using the averages produced by the inner most electron loop. The averages are reset for

each time step. The outermost loop is the pass loop that controls the number of passes through the

undulator. At the end of each pass, the optical wave is attenuated by the oscillator Q factor.

4. Simple Oscillator Model

For low-cunns and weak-fields, the gain can be calculated from 2-42 as appraxmately G - 0.135j

for v) = 2.6 for each pass through the undulator. For many passes, the power will beP = Po e "
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where n is the number of passes. The loss of optical power due to cavity losses is related to the "Q"

factor of the oscillator so that over many passes the power in the oscillator will be

P = P. exp(O.135jn - n/Q) = P0 exp(O.135jQ - l)n/Q 4-25

From this simple model, any combination of jQ = Cl and n/Q = C2, where Cl and C2 are

constants, will scale the power and phase evolutions to look identica; etoi n passes. With this

simple model, many different combinations of n, j and Q can be explored with one simulation.

C. RESULTS OF COMPUTER SIMULATION OF TWO-MODE MODEL

1. Comparison with Existing Simulations

In order to establish the validity of the two-mode model and the correctness of its integration

routine, simulations using the two-mode model over one pass are compared with existing simulations

known to give correct results over one pass. Figure 4-1 and 4-2 compare the two-mode model with

the single-mode model used to produce the earlier FEL simulations. In both figures, the large

window is the phase-space evolution of the electrons with the final phase-space position plotted at

the end of the undulator pass. Over one pass, the evolution of the second mode will not have a

significant affect on the power, phase or electron phase-space evolution if it is started at zero power

since it does not grow significantly. From Figure 4-1 and 4-2, it is apparent that the phase-space

evolution is nearly identical. The optical power and phase in both simulations produce nearly the

same final powers and phase. From this comparison it can be seen that the two-mode's integration

technique is probably correct.

The two-mode model can be compared with a much more sophisticated model to

demonstrate that the two-mode model accurately predicts the onset of a single sideband. Figure 4-3

shows a simulation of the two-mode model for j = 5 and Q = 7 over 1000 passes. Note how

quickly the main mode grows, saturates, and has a decaying oscillation. The sideband has a similar
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** FE. Phase Space Evolution **

j1 ao=l Vo=2. 6 N=100

0=0

10

V

-10_________________ _

3 //2
Figure 4-1: Single-mode simulation for comparison with the two-mode model.

pattern but oscillates about a much lower power, about 1/5 the power of the main mode. Figure 4-4

is a multi-mode simulation where each mode is freely allowed to evolve at its natural frequency. This

simulation has a random fluctuation with a rms value of 8a = 5 added to the initial optical field

strength to simulate noise in the optical wave. The left-center window displays the evolution of the

optical power, la(z,n)I, over 1000 passes through a gray scale where black is la(z)l = 0 and white

represents la(z)l = 25.5 with a contour line at la(z)l = 12.8. The window has a width of two

slippage distances with periodic boundary conditions. The slippage distance is the interaction distance

that the electrons can couple with the optical wave. The shppage distance is the distance that the

optical wave gains over the electron pulse while overtaking it during the trip down the undulator and

is given by, ANX, where N is the number of undulator periods and ), is the wavelength of the main

lobe of the optical wave. For each pass, the electrons start almost uniformly spread in phase-space
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r L Phase Space Evolution ***
J=1 ao=l vo-2. 6 8z=O

asoc-.O 0=1000

10

V

-10_

-7r/2 31c/2

Figure 4-2: Two-mode model for comparison with figure 4-1.

at each site along z, but have a small random displacement in phase where a rms spread of

6 = 0.0001 is added to simulate shot noise. The optical wave begins with no modulation but

undergoes substantial gain during the first 100 passes. The bottom left window plots the gain per

pass. By n = 50, the optical wave is already displaying some modulation and by n - 200 the

modulation is easily visible as the fluctuations in intensity across the middle-left window. The top-

left window shows the final power at the end of the 1000th pass which is clearly modulated. The

modulation is caused by the electrons which slip back past the optical field sites and execute

synchrotron oscillations. The synchrotron frequency is imposed on the optical wave over many

pases, so that only a small fraction of a synchrotron oscillation is sufficient to pass information to

the optical wave. The bottom-right window plots the total average power in the oscillator. Note the

power saturates at n 100, but begins to grow slowly at n- 250 as the modulations in the main
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** EL Phase Space Evolution**
j=5 ao0=1 Vo0=2. 6 Sz=0

as•0=0 Q=7

30 3.2×102

V0

00
•..g@ * 3. 14159

0 0

So

-300

-n/2 3E/2 0 n 1000

Figure 4-3: Two-mode simulation with j = 5, Q = 7, for comparison with figure 4-4.

lobe become more pronounced from the growing sideband. The sideband and the main lobe are

clearly visible in the middle-center window where the power versus frequency is plotted with the

same gray scale at the end of each pass. The main lobe is clearly visible as the thick, white line

down the center of the window with the sideband approximately 2n away becoming visible at about

n = 250. The top-center window is a plot of the final power versus frequency. The ratio of power

between the sideband and the main lobe is about 1/5 which compares favorably with the two-mode

simulation of Figure 4-3. The right-middle window is a plot of electron phase-velocity at the end of

each pass. It is interesting to note the phase velocities spread out as the sideband becomes more

pronounced. The top-right window plots the final electron phase-velocity distribution. The bottom

center window is a plot of the gain spectrum. In the multi-mode simulation, the total final powear is 3.2 x 102

which compares favorably with the total power of 3.2 x 102 in the two-mode simulation.
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FEL Wrap Evolution ******
j=5 8 =0.0001 aG=O a0=1 vo=2.6

Q=7 8=0 N=100 8a=5

ja(z,n) 0 0125.5 P(v,n) f(v,n)

1000 0 2

0-1 z 1-50 v 50 -50 v 50
0(n) 0.093 G(v) 0.72 P(n) 2X102

0 n 1000-50 v 500 n 1000
Figure 4-4: Multi-mode simulation with j = 5, Q = 7, showing the onset of a single sideband.

Figure 4-5 and Figure 4-6 show a two-mode and multi-mode simulation similar to the

examples above, but now Q = 9. The higher Q value allows the sideband to fully develop to a

power comparable to the main lobe. In Figure 4-5, the two-mode simulation shows the sideband

being fully developed at it = 390. Before becoming fully developed, the sideband undergoes two

large fluctuations before reaching the power of the main lobe and stabilizing. These fluctuations will

be examined in more detail in the next subsection. The multi-mode simulation shows the sideband

developing much sooner, and being completely developed by i - 170 without the large fluctuations

of the two-mode model. In the multi-mode simulation, single-mode saturation occurs at i - 50, but

growth of the total power continues as the sideband grows from it 50 to n = 170. A second

sideband begins to appear at n 180, but never grows to a comparable power. The two-mode

simulation has a total power of P 4.4 x 102 which compares well with P = 5.9 x 102 for the multi-

51



**FEL Phase Space Evolution**
j=5 ao0=l Vo0=2. 6 Sz=0

aso0=0 Q=9

30 -4.4x10 2

V *• 0 * * -3.14159

3 0

-n/2 3n/2 0 n 1000
Figure 4-5: Two-mode simulation showing sideband growth that is comparable to the main lobe.

mode simulation. In the multi-mode simulation, the optical power is strongly modulated from the

very beginning of the simulation because of the early growth of the sideband.

The last four examples were not to show that the simple two-mode model could get the

same answer as the much more complicated multi-mode simulation, but were to show that the simple

two-mode model is basically correct and produces results that can give insight into the development

of sidebands. In the next subsection, the two-mode model produces results that give insight into an

instability that leads to the onset of sidebands. Comparisons with the multi-mode simulation show

that the instability is real and not an artificial feature of the two-mode model. It will be the simplicity

of the two-mode model that will hopefully allow greater insight into the dynamics of the instability

at the onset of sidebands.
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****** FEL Wrap Evolution ***
j=5 8 =0. 0001 (TG=0 ao=l Vo0=2.6
Q=9 &_=0 N=100 8a=5

ja(z,n)I 08 40.I P (Vn) f (Vn)

1000

-1 z 1-50 v 50-50 V 50
rG(n) 0.1 G(v) 0.72 iP(n) 2

. Illlll|~ ~ I L l 11111111 I l l tI

0 n 1000-50 v 500 n 1000

Figure 4-6: Multi-mode simulation with early growth of the sideband to powers comparable to the
main lobe.

2. The Onset of Sideblands

Figures 4-7 through 4-12 illustrate a very interesting phenomena during the development

of a sideband as Q is increased gradually over different simulations while holding j = 5 constant.

In Figure 4-7, where Q = 5, the sideband only grows to about 1/5 of the power of the main lobe.

Both the main mode and the sideband saturate very early at n = 50, and the sideband has a small

"ripple" that quickly decays away. The main lobe achieved a power of P = 2.0 x 102. In Figure 4-8,

Q = 6, and the power in the main lobe is slightly higher at P = 2.5 x 1(2. but the sideband is still

about 1/5 of the power of the main lobe. The "ripple" in the sideband decays slower than in Figure

4-7 and the main lobe is beginning to pick up a similar "ripple". The optical phase changes rapidly.

The "ripple" is now very pronounce in both the main lobe and the sideband. In Figure 4-9,

Q = 7.47, the "ripple" no longer appears to decay. In Figure 4-10, Q = 7.5, the "ripple" is a

growing oscillation. The mean power of the sideband is still about 1/5 of the mean power of the
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Figure 4-8: Onset of the sideband, j =5, Q =6.
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Figure 4-9: Onset of the sideband, j =5, Q =7.47.

SFEL Phase Space Evolution
j=5 a 0=1 V 0 =2. 6 Sz=0

as 0=0 Q=7.5

30 3.5x10 2
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-30
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Figure 4- 10: Onset of the sideband, j =5, Q =7.5.
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* *FEL Phase Space Evolution
j=5 a0 =1 V 0=2. 6 bz=0
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Figure 11: Onset of the sideband, j =5, Q =7.8.

30 
-. x0

V 
0

00

-301

-n23n/2 0 n 1000

Figure 12: Onset of the sideband, j =5, Q 8.
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main lobe. In Figure 4-11, Q = 7.8, several interesting changes happen in the simulation. First, the

sideband's average power grows and the oscillations in the sideband's power evolution cross the main

lobes's power evolution twice. Second, the main lobe's average power falls. Third, the sideband's

power evolution, after crossing the main lobe's power evolution twice, oscillates to zero, then builds

up to a steady power at nearly the same power as the main lobe. Fourth, in all the earlier

simulations, the electrons were contained within a 2t region of phase-space so that A < 2ir, and

only had to cross the periodic boundaries of phase-space once. In Figure 4-11, A - 3r since the

electrons are widely spread in phase-space. Finally, note the difference in the optical phase evolution.

In the previous examples, the optical phase of the sideband and the main lobe evolved rapidly, but

at a constant rate and together. In Figure 4-11, the optical phase evolves much slower after the

sideband reaches steady state. In Figure 4-12, Q = 8, the sideband's power evolution crosses the

main lobe's power evolution twice before it reaches a steady state. Again, the optical phase evolution

is slower after the sideband reaches steady state, and the electrons have a large spread, 8 t < 3r.

The oscillations and instability presented in Figures 4-7 through 4-12 are not due to

numerical integration errors. Numerous simulations were tried with many more particles and time

steps and the oscillations still appeared with the same shape and frequency and only slightly different

amplitude. Near the critical Q value that causes the "ripple" to start growing instead of decaying,

the number of particles and time steps do affect the pass that sideband develops at. The "ripple" still

has the same frequency. The slight differences between the simulations with more time steps and

particles are most likely due to numerical accuracy. Figures 4-13 and 4-14 show simulations with

200 particles and 201 time steps to compare with Figures 4-3 and 4-11 which were run with 30

particles and 30 time steps.

The sequence of two-mode simulations in Figures 4-7 through 4-12 can be compared with

multi-mode simulations at critical values of Q to show that certain key features exist between the two

models. Some care must be exercised when making direct comparisons between the two-mode and
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I *** EL Phase Space Evolution**

j=5 ao0=l Vo=2. 6 8z=0

aso0=0 Q=7
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Figure 4-13: A simulation of 200 particles and 201 time steps at Q = 7.

multi-mode model since the two-mode model does not demonstrate much sensitivity to noise. Noise,

however, has a strong influence on when the sidebands begin to develop in the multi-mode model

and sidebands will not develop without some noise present in the multi-mode simulations. Figures

4-4 and 4-6 of the previous subsection are far enough away from the critical values of j and Q near

the instability, that the noise sensitivity does not appear to affect the results substantially and the

multi-mode model accurately reproduces comparable sideband power predicted by the two-mode

model.

In Figure 4-15, the multi-mode simulation is run with j = 5, and Q = 7.5. The simulation

also has a large amount of shot noise, 8 0.001 which tends to cause the sideband to develop

early. This region of j and Q is similar to Figure 4-10, so that the sideband would now have a

growing oscillation. Since the multi-mode simulation is run to 5000 passes, there is probably time
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**FEL Phase Space Evolution**
j=5 ao0=l Vo0=2. 6 Sz=0

aso0=0 Q=7.8

30 3.7x102
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3K/2 3n/2 0 n 1000

Figure 4-14: A simulation with 200 particles and 201 time steps at Q = 7.8.

for the sideband's power evolution to grow and overlap with the main lobe's power oscillation as

happens dramatically in Figure 4-11. The large shot noise probably made this interaction happen at

an earlier time than in the two-mode simulation. This overlapping of the side and main lobe power

evolutions could be the cause of the sideband that appears to "grow" out of the main lobe in the

center middle window of Figure 4-15 and then "grow" back into the main lobe. This process could

repeat itself many times as the sideband and main lobe's oscillations slowly grow and merge as in

the two mode model. It is also interesting to note that the electron phase velocities became more

dispersed upon the first appearance of the sideband oscillation in Figure 4-15. This phenomenon also

was apparent in the two-mode model. Note that the total power plot in the bottom right of Figure

4-15 is constant after the first 1000 passes implying that the main lobe and the side lobe are

exchanging power as the merge and re-emerge with each other. This will produce the out of phase
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****** FEL Wrap Evolution ***
j=5 6 =0. 001 OG--0 ao =l Vo =2.6
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Figine 4-15: The emergence of a sideband out of the main lobe.

oscillations that are visible in the two-mode simulation of Figure 4-10.

Figure 4-16 is a multi-mode simulation with j = 5 and Q = 7.6 with no shot noise, but

a large random fluctuations in the initial optical power, ba = 5. Here, the sideband starts growing

almost immediately which is visible by the slight grey trail that forms early just to the right of the

main lobe in the center-middle picture of Figure 4-16. However, it is not until i = 280 that the

electron phase velocity widens substantially which is when the sideband is at nearly half the

maximum power of the main lobe. The main lobe mad sideband never merge in this simultion. but

they both have oscillations across different frequencies as they evolve. Note that the total power does

not become constant until ii = 400.

The final three figures of this chapter demonstrate the simple oscillator model of section B.4

with the two-mode model. In these examples, j Q = 39 and nQ = 128.20513 and are constants.
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****** FEL Wrap Evolution ******
j=5 =0 a G =0 ao0=1 Vo=2.6
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Figtue 4-16: Multi-mode simulation with the sideband developing early.

In Figure 4-17, j = 2, n = 2500 and Q = 19.5, In Figure 4-18, 1 = 1, n = 5000, and Q = 39.

In Figure 4-19, j = 0.5, n = 10000, and Q = 78. Note all three simulations are similar, and the

differences are probably due to numerical error. These figures also are sinilar to Figure 4-11 where,

j = 5, n = 1000, and Q = 7.8.

D. CONCILUSION

Even though no quantitative theories for the development of sidebands in the FEL oscillator

have been developed from the two-mode model, the two-mode model was instrumental in the

discovery of the apparent instability that exists just prior to the growth of the first sideband. Together

with the multi-mode model, the two-mode model will provide a powerful tool for the exploration of

sideband development. It is the simplicity of the two-mode model that will probably provide the

necessary intuitive understanding of the dynamics of sideband development to allow a simple,
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FEL Phase Space Evolution ***
j=2 a0=1 V0=2.6 8z=O
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Figure 4-17; Simple oscillator comparisons, j = 2, Q = 19.5 and n = 2500.

quantitative theory to be developed explaining sideband development. The two-mode model can be

easily extended to three or more modes without excessive loss of simplicity so that studies can be

conducted or. the onset of chaos as well as the growth of many sidebands.
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FEL Phase Space Evolution**
j=l 0=1 V 0 =2. 6 8z=0
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Figure 4-18: Comparison of simple oscillator model, j = 1, Q = 39, n =5000.
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Figure 4-19: Comparison of simple oscillator model, j = 0.5, Q = 78, n = 10000.
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