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Abstract

In this thesis, three approaches were used for Automatic Target Recognition (ATR).

These approaches were shape, moment and Fourier generated features, Karhunen-Lobve

Transform (KLT) generated features and Discrete Cosine Transform (DCT) generated fea-

tures. The KLT approach was modelled after the face recognition research by Suarez, AFIT,

and Turk and Pentland, MIT. A KLT is taken of a reduced covariance matrix, composed of

all three classes of targets, and the resulting 'eigenimages' are used to reconstruct the origi-

nal images. The reconstruction coefficients for each original image are found by taking the

dot product of the original image with each 'eigenimage'. These reconstruction coefficients

were implemented as features into a three layer backprop with momentum network. Using

the hold-one-out technique of testing data, the net could correctly differentiate the targets

100% of the time. Using standard features, the correct classification rate was 99.33%. The

DCT was also taken of each image, and 16 low frequency Fourier components were kept as

features. These recognition rates were compared to FFT results where each set contained

the top five features, as determined by a saliency test. The results proved that the DCT and

the FFT were equivalent concerning classification of targets.

x



INFRARED TARGET RECOGNITION

I. INTRODUCTION

1. 1 Background

The military has presented a need for an automatic target recognizer (ATR) which

would remove the dependency on a human interface to aim a missile in a battlefield scenario.

The missile would be sent to search a certain area for potential targets and take out the most

important of the targets found. Most of the 'searching' has been done with infrared sensors,

however, Laser RADAR (LADAR), Synthetic Aperature RADAR (SAR) and Millimeter

Wave (MMW) are three other sensors also being tested. With the infrared images, all

the approaches to ATR deal with standard feature extraction methods, like finding the

length-to-width ratio of the segmented target. However, alternate approaches have been

tried in the realm of face recognition. Two such approaches deal with Karhunen-Lo~ve

Transforms (KLT) and Discrete Cosine Transforms (DCT). The eigenimages (eigenvectors)

from a Karhunen-Lo~ve transform could be used to reconstruct the original images, and the

reconstruction coefficients could be used as features for target recognition. This approach

has been done for face recognition producing very positive results (18, 15). Also, Discrete

Cosine 'ilansforms have been used in face recognition research replacing the Fast Fouier

Transform (FFT) for the generation of the low frequency Fourier components (7).

1.2 Problem Statement

Very little work has been done beyond the standard feature extraction methods in

target recognition. We will compare the standard feature extraction technique to two new

techniques. One of these will find 'eigenimages' based on the eigenvectors produced from

the KLT of a reduced covariance matrix. Then, the eigenimages will be used to reconstruct



the original images. The reconstruction coefficients will be implemented as features to a

neural network which will classify the targets. The second new technique will use a DCT

to generate Fourier components. The low frequency components will be implemented as

fetaures to the same neural net which will be used for classification.

1.3 Research Objectives

This thesis will compare the use of a KLT to produce 'reconstruction features', and

standard features in training and testing a neural network for ATR. Also, it will compare

the use of DCT generated features in target recognition to FFT generated features.

1.4 Research Questions

1. Will a KL image reconstruction feature set, using a reduced covariance matrix, be ablc

to recognize targets?

2. Will the KL image reconstructed feature set work better than a standard feature set?

3. Will a DCT be able to recognize targets?

4. Will DCT features work better than standard FFT and/or shape features in target

recognition?

1.5 Approach

1.5.1 Target Segmentation 512x512 images will be captured from a VHS tape of

FLIR data. Each image contains three classes of targets: tanks, jeeps and towers. The target

and local background will be cropped out ftom the original image, histogram equalized, and

thresholded. The thresholded and cropped images will be reduced to 128x128 pixels, and

the thresholded, binarized images will be used as 'segmented' targets.

1.5.2 Standard Feature Generation Intcnsity, shape and Fourier feature sets will

be generated and tested independently as well as together for target recognition. The shape

features will be generated using the segmented images.
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1.5.3 KL Transform A reduced covariance matrix will be found using a subset

of the entire image set. Eigenimages and eigenvalues will be generated from this reduced

covariance matrix, and the best eigenimages will be kept based on a percentage of the

eigenvalue's energy desired to keep for reconstruction, o 99%. All of the original images will

be reconstructed using this reduced eigenimage set, and the reconstruction coefficients for

each eigenimage will be used as features in a neural network.

1.5.4 Discrete Cosine Transform A Discrete Cosine Transform (DCT) will be

computed for each image, and a small portion of the low frequency Fourier components will

be kept as features. These results will be compared to those found using all FFT to generate

the features.

1.5.5 Hardware All the feature sets will be tested on a three layer backprop with

momentum neural network. The hidden layer will consist of 7 nodes. All the results will be

determined using the hold-one-out technique of testing (14). Saliency will also be used to

reduce the feature sets so that Foley's criteria, explained later, will be met.

3



I1. LITERATURE REVIEW

2.1 Introduction

The military would like an automatic target recognizer to put on the front end of its

various munitions. The advantage of such a system is in the minimalization of friendly life

loss due to the removal of any human interface in the targeting aspect, The immediate

approach was to model the human visual system (HVS). However, no one is sure how the

HVS works or the interaction of the human mind in adjusting the picture the eye sees. It

appears that the HVS can adjust in most cases for scale, rotation and aspect of an image.

It cannot memorize pictures it has not seen, yet a new angle of viewing a hammer tells us

it is still a hammer. While the HVS works great, the military is still stuck. Maybe, we, as

engineers, do not need to know how computers recognize targets, but only that they can-the

same idea as the HVS. This leads to the approach of giving a computer an entire image and

letting it decide what is and is not important in determining the presence of a target. This

idea would currently be too computationally intensive due to the number of pixels per image

required for decent resolution; however, different approaches are availabl6 to reduce the size

of data given to the computer. These different approaches involve generating a set of features

that can linearly separate the different target classes from each other. Unfortunately, no one

knows what measurements and computations comprise the perfect feature set, instead many

approaches are tried.

2.2 Neural Networks

A brief explanation of neural networks will be included since a neural net will be used

for all feature set processing. Hopefully this explanation will explain why the feature sets are

being generated. The basic idea behind a neural net is that the computer is given a feature

set for each target, an exemplar, and it is told to derive a known output, the target type. If

the net works on the first try, it is left alone. If it doesn't, the weights which produce the

output are adjusted towards producing the correct output. The next exemplar is processed,
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and an output is produced for it. Again the weights are updated depending on the correct

classification of the output (12, 13, 14). Eventually, the computer 'learns' how to produce

the desired output for a given input. One advantage to this process is that the user does not

need to know how the network works, only that it does, like the HVS.

The feature sets that are given to a neural net to train and test with need to be

generated in some fashion. Three different sets include standard features, KLT reconstruction

features and DCT low frequency Fourier features. Each is discussed below.

2.3 Standard Feature Set Generation

Standard feature sets include Fourier components, intensity values and shape features.

The Fourier components are typically low frequency components, and the intensity features

typically involve ratios between different local areas, such as target/non-target. The shape

features need some type of truthing image of the original image to compute them. These

values include moments, length to width ratios, complexity, etc. However, the need to know

which pixels are target pixels is necessary.

2.3.1 Moment Features Moments can be used to reconstruct the images they were

generated from if enough are included (17). This is the motivation to include moments as

features. However, up through third order moments are usually the minimal amount to

classify targets. This turns out to be quite a few features, ten to be exact. Michael Teague's

article on moments mentioned that first and second order moments together completely

specify an ellipse (17).

Since an ellipse only needs its semi-major, a, and semi-minor, b, axes to be regenerated,

these two values could replace the moments through second order which turns out to be a

reduction of six features to two.

Mi= f f(x,y)x' v dxdy (1)
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a M20 + M02 + VM20- M02)2 + 4M21]1/2 (2)Mfo0/2

b M20 + M0 2 - [(M20 - M02)2 + 4M2]1/ 2  (3)

b =Moo/2

Equation 1 is used to find each moment, and Equations 2 and 3 are used to find the semi-

major axis, a, and semi-minor axis, b.

Each of the moments were normalized using target area squared, Equation 4.

normal = (area)2  (4)

There is no particular justification to choosing this normalization value except it is related

to the size of the target. Inside of Equation 1, the kernel f(x, y) describes the brightness of

the target at (x, y).

By varying the density function of the target, different moments can be calculated.

Three of these are listed below:

silhouette moment making the kernel one for a target pixel and zero otherwise,

outline moment making the kernel one for a target outline pixel and zero otherwise, and

standard moment making the kernel equal to the gray scale value for target pixels and

zero otherwise,

When using the standard moment approach, a problem usually arises concerning the mag-

nitude of the moment, it is oftentimes too large for a program variable to store. Because of

this standard moments are usually replaced with either silhouette or outline moments.

2.3.2 Shape and Intensity Features Besides moment features, there are other

shape features that are typically used. Some of thcse arc

length-to-width ratio computed for a rectangle barely encompassing the entire target,

6



complexity ratio of the # of perimeter pixels to the area of the target,

compactness ratio of the area of the target to the area of a rectangle barely encompassing

the entire target,

perlmeter 2 /area self-explanatory, and

boxness ratio of target perimeter to perimeter of rectangle from above.

Shape features, such as the ones listed above, have been the bread and butter of many

previous feature sets used in target recognition. About the only other type of feature used

previously is related to intensity.

Temperature intensity features can only be used with infrared images. They relate

the temperature in one section of the image to the temperature in another. Some rommnn

intensity measurements are:

(max intensity - min intenslty)/average intensity self-explanatory,

max intensity to average intensity ratio self-explanatory,

max intensity self-explanatory, and

gray level contrast ratio of the average target intensity to the average background inten-

sity.

In a multisensor environment, this is where FLIR imagery would contribute the most-it

adds features not measurable by other sensors.

2.3.3 Low Frequency Fourier Features Low frequency Fourier components can

reproduce a very close approximation of an image with an inverse FFT. Ev.ry fing but the

sharp changes which require higher frequency components can be restored. Based on this

reasoning, Fourier com,)onents have been used as features for target recognition.
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2.4 Feature Set Generation Using the Karhunen-Lobve Transform of a Coverl-

ance Matrix

A KL transform of the covariance matrix of a set of images creates a new orthogonal

basis set for those images based on the statistical properties of them. The importance of

each new orthogonal dimensioi, described by its eigenimage, can be judged by the size of

its eigenvalue. By keeping only the most important eigenimages, the amount of reconstruc-

tion of the original image can be determined by an energy ratio of the eigenvalues from

the eigenimages used for recognition to the total eigenvalues. The original images can be

reconstructed using only the eigenimages, and these reconstruction coefficients can be used

as features in a neural network. If the entire covariance matrix were used, each image could

be reconstructed exactly using the eigenimages; however, if a reduc, d set of the eigenimages

were used, the best representation of the original image by a reconstructed imagr would be

based on a minimization of a Mean Squared Error term. The fact that the MSk ter, is

always minimized for the number of eigenimages used, ie. the dimensionality of the new

feature space, is the advantage of using a KLT on the covariance matrix.

2,4.1 Normal KL Transform Mathematical Derivation The eigenvalues and

eigenimages are determined for the covariance matrix of the input images. First, each NxN

image is stored in a N2 vector:

x42]

x,= (5)
xLj]

xi [N2]

where x•j] corresponds to the jth pixel value of the i"t image. The covariance matrix is

defined as:

Cx = E {(x - mx)(x - inx)T} (6)

8



where

x = E{x} (7)

According to Gonzalez and Wintz (8), the mean vector and covariance matrix can be ap-

proximated with the following:
x M L()

i-I

where M is the number of NzN images, and

Cx -- x - mx)(Xi - Mex)T
M[ 1

1 fE = 1(9Cx - •x~xTJ - mxmxT (9)

The covariance matrix will have N2 eigenimages, ej, and corresponding eigenvalues,

A\. These N 2 eigenimages can be arranged in a N 2xN2 matrix, A, where the eigenimages

have been arranged in decreasing order as determined by the magnitude of their respective

eigenvalues, Aj,

el l  e12  ., elNa

A e21  e22  ... e2N2 (10)

eNal en22 ... eN2N2

whei., eij is the j'1 compoitunt of the ith eigenimage. Now let

y = A(x -- inx) (i

and define the covariance matrix of y, C., the ,game way it wz., Th.,dfilf for x in Equation 6.

It can be shown that:

Cy = ACxAT (12)

9



where C. is a diagonal matrix with its values equal to the ordered eigenvalues of the oAginal

covariance matrix, Cr.

A, 0 ... 0

0 A2  0 (13)

0 ... A3  ...

0 0 ... AJV

Because the covariance matrix above has values only on the diagonal, the eigenvectors of the

matrix are orthogonal, changing one value will have no affect on any other value. This proves

the orthogonality of the KL transform, and makes the KL transform an excellent method of

reducing dimensionality, including in feature sets, because it finds the best representation of

feature set.

2.4.2 Reduced Covariance Matrix KL Transform Instead of using the entire

N2 xN2 covariance matrix, a reduced covariance matrix can be found. This approach is

modelled in Turk and Pentland where it was used for face recognition (18, 15). According

to Turk and Pentland,

If the number of data points in the image space is less than the dimension of
the space (M < N2 ), there will be only M - 1, rather than N 2, meaningful
eigenvectors. (The remaining eigenvectors will have associated eigenvalues of
zero.) (18:6)

The reduction is from an N2 xN 2 matrix to a MxM matrix, where N is the number of

rows/columns in the image and M is the number of images used in the KL transform.

Assuming that 10 images are used to produce the reduced covariance matrix, the reduction

in the number of elements for a 128x128 image is 2.68x10 to 100, a factor of ; 108. This

is quite a difference. Using the reduced covariance matrix, the all the images will not be

completi',,i restorable; however, the question of importance to this research is whether the

reconstruction .coefficients will be able to separate the target classes for classification of an

independent test sf.
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The reduced covariance matrix was found by setting up an N2 xM matrix:

xI [11 X2[11 ... XM[11

A= xi[2] x 2 12] ... xm2] (14)

xi[N2 ] x22[N 2 ] ... XM[N 2]

where xj•] is the jilh pixel value of the iOh training image. The reduced covariance matrix L

is found by multiplying the A matrix by its transpose:

L=ATA (15)

This produces an M.xM matrix which is used as the new covariance matrix, The eigenimages

and eigenvalues can be found now. There will be MA of each. More details involving this

reduced covariance matrix can be found in Suarez's thesis and Turk and Pentland's research

(15, 18).

1,5 Feature Set Generation Using a Discrete Cosine Transform

The DCT is a modified FFT where the original image is entirely real and symmetric

so that the transform would also consist of only real values. The immediate advantage is In

the computation. The phase terms turn out to be only real values so that no complex math

is required with this transform. This makes the DCT extremely fast. The DCT produces a

128x128 transformed image of an original 128x128 image. The only quadrant from the FFT

that is produced is the first, the one containing only positive frequencies.

The DCT is a simplified Discrete Fourier Transform (DFT). It can be derived from

the DFT equation if the image is real and it has even symmetry, see Figure 1. However,

the image need not demonstrate even symmetry for the DCT to work, see Appendix A.

The math involved in this relationship is rather painstaking so it has been deferred to an

appendix.
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forced o ymmetry of the right aideof the axle to produce the OCT results

Figure 1, The forced even symmetry necessary to derive the DCT from the FFT.

24.5.1 DCT Mathematics The DCT kernel can be derived directly from the FFT

kernel by taking the real part of the FFT equation (8). In one dimension, this is shown

below:

c12,) 2N1j2u
C(u) = f (x) ep( 4 (16)

U = 1,2,..., N - 1

C(U) = /(2z+i)ur (17)
N WWO2N

The above derivation is based on Euler's equation:

c= CosX +jsinx (18)

By taking the real part of the above equation, the cosine term is the only remaining term.

'Ihi two dimensional DCT equation is listed below:

) I N-I
C(Y,0) . -f(x,y) (1D)

WIU Y-.-1

1('V N-1 N-1 r) (2x + l)U'7r1I [CO (2y + 1)vir (20)Cu,Fv) = " fx,y) f ,. 2N j LC., 21V
rmO V-0O

12



for u,v = 1,2,... ,N-1.

2.5.2 Implementation The DCT based system is implemented much as any Fourier

coefficient recognizer would be (7). The low frequency components are used as feature inputs

to a neural net. The neural net trains off of these values.

2,6 Feature Set Generation Using a Cottrell Network

Garrison Cottrell has developed a backprop neural network that can generate its own

non-specific features for face recognition (2, 4).

The model is accurate at distinguishing faces from non-faces, recognizing new
instances of familiar faces, and determining the faceness and, to a degree, sex of
new faces (4:1).

Cottrell's network may be general enough to expand it to all areas of pattern recognition,

including speech and target recognition. Choosing good features is a field in itself concerning

ATR, and the use of a Cottrell network to decide which features it wants to use may be a

better approach than having a human determine 'optimal' specific features.

Cottrell has shown that i 64x64 image can be regenerated by only storing 40 features

of the image, called 'holons'. This is a reduction of 4096 inputs by a factor of over 100,

see Figure 2. By properly training the network towards being a target classifier, the 'auto-

associative' level of Figure 2 could generate a number of non-specific features for input to the

'face information extractor' which might be termed 'target classifier'. This target classifier

would look for targets instead of gender and emotion.

2.7 Feature Set Reduction

There are a few rules that need to be adhered to if the results generated are to be

valid. These rules are listed below:
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xl x2 ... x64

Figure 2. A Cottrell network.
(2:2)

Foley's rule for each class of outputs you have, you need 3 times the number of input

features for your training vectors (5),

Cover's rule if you have less than 2 times the number of input features per class of outputs

for training vectors, the classifier has a 50% probability of being 100% trainable because

the problem has a 50% probability of being linearly separable (3), and

'Uncle Bernie's' rule the number of training vectors must be greater than or equal to

W/e, where TV ii the number of weights and e is the error percentage desired. This

rule came from personal communication with Bernie Widrow.

Now it isn't always easy to generate more exemplars so often the feature set is reduced

instead. There are a few approaches that can be used to reduce the feature set: Karhunen-

Loive transform, Cottrell net and saliency. Each is explained below.

2. 7.1 Karhunen-Lo~ve Transform The Karhunen-Loeve transform is the same

that was described above. The KLT finds a best representation of all the features in an

14



orthogonal feature space. The eigenvectors will be orthogonal to each other and will be

linear combinations of the original features. By examining the eigenvalues associated with

each eigenvector and ignoring the small ones, the set of eigenvectors can be reduced. This

reduces the number of features to the neural network while still using all the original features.

The weights between the original features and the new 'reduced feature set' are fixed so the

transform is extremely fast.

2.7.2 Cottrell Network A Cottrell net can he used any time there is a need to

reduce the number of elements in a set. The Cottrell net finds an identity matrix that maps

the original feature space to the new reduced feature space, where the size of the new set

must already be specified, and back to the original feature space. The new reduced feature

set can be sent to a neural net for processing without the need to regenerate the original

feature set. This again is a summation of fixed calculations between the two sets; however,

the weights are determined by training the Cottrell net to find an approximation of the

P'entity matrix.

2.7.8 Saliency Saliency is a measure of the 'goodness' of a certain feature with

respect to all the other features in the feature set (14). The above two approaches still use

the entire original feature set as input to the feature set reducers so they do not eliminate

the useless ones. Saliency can eliminate the useless features from a set. The basic idea is

that an important feature would have a large weight associated with it so that it could affect

the training of the net more than an unimportant feature which would have a small weight

associated with it. By taking only those features with large weights associated with them,

you select only the most salient features of the set. The problem with this approach is that of

relativity. This method, as with any other, only tells the user the importance of one feature

relative to a certain set of features. IR does not predict how a feature will do in another set

of features or by itself.

Using the weight values as a test of saliency between features has been proven to be

a very close approximation to actually calculating the contribution of a given feature to

15



the output (18). So by examining the weights, the saliency routine is much faster. The

only catch with this approach is the need to statistically normalize the data prior to any

processiug.

R.8 Suumiary

The need for an ATR system has been presented. Differing approaches have been

tried; however, none has incorporated the use of eigenimages outside of face recognition

(15, 18). Maybe the approach that worked so well for face recognition could also be used in

generic target recognition. Also, the use of a DCT verses an FFT has yet to be compared

to determine the advantages, if any, in ATR systems. The next chapter will explain the

methodology behind the research as well as the procedures used.
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IIl. METHODOLOGY

3.1 Introduction

All the images used in this research were infrared. These images included jeeps, taiiks

and C41 towers. The images were cropped and 'segmented' on KHOROS, a data manip-

ulation .ckage from the University of New Mexico. Using the segmented images as truth

images, basic features for each image were computed and then processed on NEURAL

GRAPHICS(16). Next a Karhunen-Lobve transform of a reduced covariance matrix for a

subset of the images was taken and general eigenimages were found. These eigenimages were

used to reconstruct each original image, and the resulting reconstruction coefficients were

processed again on NEURAL GRAPHICS as features. Finally, a DCT of the images

was computed, and the low frequency cor, pcr,.ents were used as features. These results were

then compared to the previous work done with an FFT in the 'basic features' area mentioned

above.

3.2 Target Segmentation

The FLIR images were originally stored on VHS tape. The desired images were con-

verted to frames, moved onto a SUN workstation, and preprocessed there using KHOROS.

The images were originally 512x512 pixels but were eventually reduced to 128x128 pixels for

processing.

3.2.1 Capturing the FLIR Images The FLIR images were stored in VHS format

on a standard VHS tape. Captain Greg Tarr had previously written code on the IMAGER

that allowed single frame capture of 512x512 images off of a VHS tape. Using his code, the

frames were converted to images. The images were then moved onto LOUVRE through CSC

(Hercules) using the following commands:
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IMAGE& to CSC from inside CSC

COPY RAVEN: : DUAl: (SROGERS. KPRIDDY) *. BIN *

where SROGERS.KPRIDDY is the directory with the images

CSC to LOUVRE inside LOUVRE

csc> ftp -i cec

ftp> mget *.bin

ftp> bye

The connection through CSC was necessary because there is no immcdiate connection

to any UNIX machine from the IMAGER. Once the images were stored on LOUVRE, the 64

byte header was removed, and the images were moved to SCGRAPH using the ftp commands

from above.

3.2.2 KHOROS KHOROS is a software package written and updated by the

University of New Mexico. The routines available on KHOROS are all controlled by input

and output connections of the glyphs. Using KHOROS the desired portion of the image was

extracted and pasted onto a 512x512 black background. KHOROS offerred many options

for target segmentation and spatial filters.

3.2.3 Target Segmentation The image in Figure 3 was binarized using KHOROS,

see Figure 4. Next, a Sobel transform was performed on Figure 3 which extracted the edges

extremely well. The thresholded image and the Sobel transformed image were combined

using the logical AND operator. Finally, a region growing routine was used to fill in some

of the choppy regions of the target, see Figure 5.
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Figure 3. Original tank image. Its row and column size is 512x512 pixels.

SI

Figure 4. Biinrized image of the above tank after it has been cropped and histogram
equalized.
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Figure 5. An image that has been combined using a Logical AND operator. The two images
that were combined were a Sobel Transformed image and a histogrammed image.
The final result has been enhanced using region growing.

The thresholded image, Figure 4, and the final region growing image, Figure 5, appear

to be very similiar. Due to this, the shape analysis program just used the thresholded image

as the truthed image of the target. To avoid the need to adjust the thresholding value each

time, the cropped images were histogram equalized prior to the thresholding routine.

3.2.4 Image Compression Once the images were cropped and 'segmented', their

size was reduced to 128x128 by using a 4 to 1 pixel averager. This was done to decrease both

disk storage and image processing time. The pixel averaging scheme that the Utah Raster

Toolkit (URT) included in its package was used for the averaging. This package can be found

on the NEXT machines. Before the URT tools were used, the images were converted to RLE

(Run Link Encoded) format.
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3.3 Feature Set Generation

Three approaches were used to generate the feature sets: standard feature extrac-

tion, Karhunen-Lobve image regeneration, and Discrete Cosine Transform regeneration. For

each approach, the data sets produced were processed using NEURAL GRAPHICS. The

results are covered in Chapter IV.

3.3.1 Standard Feature Sets Two directions were taken concerning standard fea-

ture set generation. The first set of features was composed of shape and intensity features

while the second set consisted of Fourier components. Note: all code written for these

routines was in C, and can be found in Appendix B.

9.3.1.1 Moment Features Moments can be used to reconstruct their images

if enough are included (17 was the motivation to include moments in the feature set.

The moments used in thc it consisted of third order silhouette moments and the

semi-major/semi-minor axes components that represent the first and second order moments.

Equation 1 was used to find each moment, and Equations 2 , 3 were used to find the

semi-major axis and semi-minor axis, respectively. Each of the moments were normalized

by dividing each moment by target area squared, Equation 4. There was no particular

justification to choosing this normalization value except its relation to the size of the target.

3.3,2 Shape and Intensity Features Besides the moment features, some other

shape features used were

1. length to width ratio-always larger than one,

2. complexity-ratio of the # of perimeter pixels to the area of the target,

3. compactness-ratio of the area of the target to the area of a rectangle barely enconi-

passing the entire target,

4. perimeter2/area-self-explanatory,

5. boxness-ratio of target perimeter to perimeter of rectangle from above.
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By incorporating the local background into the target e.nvironment, the following in-

tensity features were calculated.

1. (max intensity - min intensity)/average intensity-self-explanatory,

2. max intensity to average intensity ratio,

3. max intensity,

4. gray level contrast-ratio of the average target intensity to the average background

intensity.

The intensity features have been used before with FLIR images. In a multisensor environ-

ment, this is where FLIR imagery would contribute the most-it adds features not measur-

able by other sensors.

3.3.3 Low Frequency Fourier Features To reiterate, low frequency Fourier com-

ponents can reproduce a very close approximation of an image with an inverse FFT. A 4x7

window was placed around the DC from the FFT image and the 28 components were used

as features. Originally, 49 low frequency components were going to be kept, a 7x7 window

about the origin. However, since the spatial images were real, only two adja..ent quadrants

needed to be kept from the FFT. The last two could be regenerated from the first two due

to the hermitian quality of the Fourier Transform, F[] (6:193).

Y[-(, 7] = '[-, -77]

To visualihe this relationship, consider Figure 0. The signal from quadrant one is ru•ated

1800 about the origin into quadrant three. And the same holds true for quadrants two ail'

four.

3.3.4 Karhunen-Lobve Transform Using the Reduced Covariance Matrix

The reduced covariance matrix explained in Chapter II was found for two different numbers
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Figure 6. The odd symmetry in the Fourier domain due to a real image in the spatial
domain.

of input images. These were six and nine input images, two and three from each class

respectively. Eigenimages were kept or discarded according to their eigenvalues. At least

90% of the eigenvalues energy, see Equation 21, was desired for reconstruction.

A! K

ELOSS A2 _ E A? (21)
J-1 j=1

where ELOSS is the energy lost in reconstruction, M is the number of total eigenvectors and

K is the number kept, (K <= AI). The reconstruction will minimize the Mean Squared

Error (MSE) term:
1 NV2

MSE = x -xi) 2  (22)

where x is the original imiiage, and x' is the reconstructed image. This minimalization is

guaranteed by the definition of a KLT. The actual reconstruction coefficients were found

by simply taking the dot product of the original images with each of the eigenimages, see

23



Equation 23.

Coeffij = xiej (23)

where Coeffij is the j" reconstruction coefficient for the ith image, xi is the i"h original

image, and ej is the jt" eigenimage. The reconstruction coefficients for each target were used

as features in a neural net. The results are listed in Chapter IV.

3.3.5 Discrete Cosine Transform Feature Generation The DCT is a modified

FFT where the image implemented is entirely real and symmetric so that the transform

would also consist of only real values. The immediate advantage is in the computation, The

phase terms turn out to be zero so that no complex math is required with this transform, see

Equation 18, page 12. This makes the DCT extremely fast. The DCT produces a 128x128

transformed image of an original 128x128 image. The only quadrant from the FFT that is

produced in the DCT is the first quadrant, positive frequency components only.

The DCT is based on a real, symmetric image. However, the image only has to be

real, the symmetry part can be ignored. An explanation is given in Appendix A.

3.3.5.1 Implementation A DCT of the images will be taken, and the first

3 fundamentals in each direction will be saved as features. This corresponds to the first 3

frequency components and the DC term in each direction, including the combinations. Then,

these features will be used to train and test a neural network for ATR.

3.4 Artifical Neural Network Processing

NEURAL GRAPHICS was used for all of the neural network processing (16). This

program was written and updated by Captain Greg Tarr. He offerred many options with

NEURAL GRAPHICS, including a saliency measure as well as hold-one-out testing.

Both of these options were used extensively. The only neural network used for training and

testing was a backprop with momentum.
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3.4.1 Backpropagation with Momentum The backprop with momentum setup

used was the same for all of the training routines. The net contained one hidden layer with

seven hidden nodes, and all training iterations were set at 10,000. The network can be seen

in Figure 7.

1 Y2 Y3

3 class output

7 hidden l1ayer t 8 j

units

x1 x2 ... X N
N Input features

Figure 7. The 3 layer backprop with momentum network used for all neural network
processing.

The backprop with momentum network was standard in the NEURAL GRAPHICS

program. The derivation of the network itself can be found in many publications, namely

Rogers' and Kabrisky's book, Ruck's dissertation, Chan's and Fallside's paper and Tarr's

thesis (12, 14, 1, 16).

3.4.2 Saliency NEURAL GRAPHICS offerred a weight saliency option. This

saliency measured the usefullness of an input feature with respect to the set of features that

it was a member of. Once the network finished its training, an input feature's contribution

to the output could be determined based on the interconnecting weights values. If a feature

has very little contribution, its corresponding weights would be small numbers compared to

that of an important feature's interconnecting weights. By using NEURAL GRAPHICS'

saliency test, the top features were chosen, and this reduced feature set were tested.
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3.4.2.1 Why Saliency Saliency is used to reduce a feature set. The advantage

of reducing the feature set is twofold. First, the processing time is reduced for the neural

network. Second and more important, less exemplars are needed to validate the testing

results of the network. To reiterate, there are three rules that dftermine the accuracy of a

set of test results. They are Foley's rule, Cover's rule and 'Uncle Mzrr~ie's' rule, see page 14.

Using the saliency of each feature set, Foley's rule could be met without generating any more

exemplars. As an example, consider the author's situation:

3 class output problem: tanks, jeeps and towers

# of exemplars per class:

47 tanks,

29 jeeps, and

25 towers

Lowest * of exemplars is 25

Violating Cover's Rule:

25 < 2(# of features)

# of features > 12

Meeting Foley's Rule:

25 >m 3(# of features)

# of features <- 8

So the largest feature set possible with the above number of exemplars is 8.

3.4.3 Hold-One-Out Hold-one-out is a method to test data with a neural network.

Since Foley says that there must be a minimum of three times the number of features as

exemplars per class to train the network with, and a net should not be tested with an
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exemplar it has used for training, this method gives the best results with the least amount

of exemplars (14). Basically, the net is trained with all but one exemplar. When the net

is trained satisfactorily, the exemplar that was held out is tested. This process is done for

every exemplar, and an overall probability of correct classification is found by dividing the

number of correct classifications by the total number of classifications. This method also

gets around Cover's rule because the net is not trained with the exemplar it is tested with.

3.4.4 Statistical Normalization All the feature sets were statistfcally normalized

prior to usage in the neural net. The statistical normali zation wAA Gaussian, where a mean

and variance were computed based on the below equations (14).

T(mean) = I

N Nx

Var(variance) = I- 1 _. -

N -
-Tnorrn -..

The data was statistically normalized because one feature may consistently have values

larger than one million while another may have values very close to one, and the neural

network cannot account for such a dynamic range. Therefore, by keeping all the values

within a range of ;[-2,2], the network could handle each of the features equally well.

3.5 Summary

In this chapter, the approach to the research as well as an explanation of the approach

were presented. The next chapter deals with the results from the research and a discussion

of each.
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IV. RESULTS AND DISCUSSION

4.1 Target Segmentation

Segmenting the targets was the area with the most human intervention in the entire

ATR process. KHOROS was used to do the entire segmentation process because it offerred

the best on screen interaction routines. It was impossible to automatically segment out just

the target because other objects in the image also had sharp lines as well as bright spots. So

the targets were hand 'cropped' and pasted elsewhere. The rest of the routine was a simple

histogram equalization and threshold routine. The threshold value was set at 225 for every

image. The 'thresholded' image was used as the segmented image to generate all the shape

features.

4.1.1 Cropped Images No routine, tried by the author, could extract the target

only and ignore everything else in the image. Most of the extraction routines offerred in

KHOROS were based on thresholding and/or edge extraction, and all of the images used

included other edges besides the targets. Thus, it was necessary to extract only the target

from the entire image and paste it elsewhere.

4.1.2 Histogram Equalization A histogram equalizer was used to process the

cropped image prior to thresholding it. Figure 8 shows a cropped image for each class

and its corresponding 'segmented' image. The author's assumption was that by histogram

equalizing the cropped image, the need to vary the thresholding value would be removed.

The results after processing the features in a neural network are covered below. Due to

the high recognition rates with a constant threshold value, up to 99% using the 'segmented'

image, the need to vary the threshold valtie was removed.

4.1.3 Problems with the FLIR Images With IR sensors, the sensors determine

the gray scale value based on a dynamic thresholding. Depending on the highest and lowest

temperature values in the image, the IR sensor varies its correlation between the gray scale
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Figure 8. Cropped image (left) and its corresponding 'segmented' image (right) for each
target class. The segmented ihnages have been histogram equalized and binarized.
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value and temperature step size. With older IR sensors, if a hot spot were to appear, the

gray scale would be changed so much that the target would dissappear. This occurred with

some of the data due to the sensor used. Captain Ken Fielding supplied some IR imagery

with a new sensor and a real-time front end histogram equalizer. With this new data, the

hot spots no longer made the target dissappear. Unfortunately, there was not enough time

to experiment with this new data.

4.2 ATR Using Features

The feature sets mentioned in Chapter III were trained and tested using a backprop-

agation network with momentum. Each net contained one hidden layer consisting of seven

nodes, and the testing procedure for each feature set was the hold-one-out method described

in Chapter III. Six feature sets were tested that met the Foley and Cover criteria. Specif-

ically, the smallest number of exemplars for a given class was 25. In order to meet Foley's

criteria, the largest number of features in any given set was 8, see page 26. Thus, the largest

feature set used consisted of 8 features, and each feature set contained 100 total exemplars:

29 jeeps, 46 tanks and 25 towers.

4.2.1 Shape and Intensity Features 11 shape and intensity features were used to

train/test a network. The 11 features were

1. (max Intensity - rini Intensity) / average Intensity,

2. max Intensity / average Intensity,

3. max Intensity,

4. semi-major axis / semi-minor axis: these can be found in Chapter II on page 6,

5. Afornent0 3: all the moments are silhouette moments,

6. Moment3 o,

7. Moment1 2,

8. Moment2 l,
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FEATURE VALUE
(max Intensity - min Intensity) / average Intensity 3.23
max Intensity / average Intensity 3.57
max Intensity 0.00
semi-major axis semi-minor axis 5.00
Moment03  8.77
Moment3 o 6.11
Moment 12  6.11
Momenti2  6.86
Moment2I 2.30
length / width 8.18
gray level contrast 1.20
perimeter2 area 9.77

Table 1. Saliency of the 11 shape and intensity features. A large value means the feature
is very salient.

9. length / width,

10. gray level contrast: explained on page 7,

11. perimeter 2 /area.

Using the hold-one-out method on the aforementioned eleven features, the net recognized

correctly at 100%. This result is good; however, Foley's rule was not met. So a saliency test

was done on the features. The results are listed in Table 1. The top five features are listed

below.

1. perimeter 2 /area,

2. Momento3,

3. length / width,

4. Moment 12 , and

5. Moment 3o.

Using the top five features, the net correctly recognized at 95.33%, see Table 2.

31



Run Results
1 99.00%
2 93.00%
3 94.00%
Average 95.33%

Table 2. Results from testing the reduced feature set for shape features. The same set of
features was run each time; the three runs were used to reinforce the results.

4,.2. Low Frequency Fourier Features Using the 28 low frequency Fourier com-

ponents as features, the net trained to 100% for target classification, and it tested at 100%

using the hold-one-out method. Even though the hold-one-out method of testing was used,

Foley's criteria was also not met, see page 26. So a saliency test was done, see Table 3, and

the highest five Fourier components were kept. The top five Fourier features were

1. fft[O][-1],

2. fft[2][-1],

3. fft(l][-2],

4. fft[3][-1]. and

5. fft[0][-3].

Using the above five features, the net tested at 89.00% correct target classification, see

Table 4. So the addition of the other 23 frequencies made quite a difference in recognition

rates.

Concerning the cropping of the image, the sharp boundaries around the target did pro-

duce ringing in the FFT. However, this was of no concern because only the lower frequencies

were used. Ringing is predominantly a higher frequency anomaly.
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FEATURE VALUE FEATURE VALUE
fft 3,-31 9.00 fft ,-2 11.50
ift 3,-i] 23.00 fit 3,01 8.00
fft 3,11 11.50 fft 3,21 8.50
fft 3,3] 11.50 1ft 2,1-3] 15.00
fft 2,-21 16.00 1 fftl2,-1] 25.50
fft 2,0] 7.50 fft 2,1 18.00
fft 2,2] 9.50 1ft 2,31 20.00
fft ,-3] 2.00 1ft 1,-21 24.00
fft 1,-1 0.00 fft 1,0] 7.50
fft 1,1] 7.50 fft 1,2] 2.00
fft 1,3 11.00 fft 0,-3 20.50
ift 0,.2] 16.50 fft o,.i 27.00
fft o,0 19.50 fft o,1 15.o0
Fit b,2 14.80 MIt 0,3 13.50

Table 3. Saliency of the low frequency Fourier features. A large value means the feature is
very salient.

Run Results
1 89.00%
2 91.00%
3 87.00%
Average 89,00%

Table 4. Results from testing the reduced feature set for low frequency Fourier features.
The same set of features was run each time; the three runs were used to reinforce
the results.

33



Run Results
1 99.00%
2 100.00%
3 09.00%
Average 99.33%

Table 5. Results from testing the reduced feature set for low frequency Fourier and shape
features. The same set of features was run each time; the three runs were used to
reinforce the results.

4.2.3 Fusion of the Shape and Fourier Features Using the saliency data, the

top four features from each feature set were made into a new eight feature set. The basic

premise here is that any target incorrectly classified by only one sensor should be picked up

with the fused set. Also, any target incorrectly classified by both sets of features may have

enough additional information from the fusion of the sets to correctly classify them. The

features chosen are listed below.

1. perimeter 2/area

2. Moment03

3. length / width

4. AMoment 1 2

5. fft[0][.1]

6. fft[21[-ll

7. fft[l][-2]

8. fft[3][-1]

Using these eight features, the correct target classification percentage was 99.33%, see Ta-

ble 5. This result meets the Foley rule for validation of test results, and it was tested with

an independent set.
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The fusion of the sets did produce some interesting results concerning the targets

misclassified by the shape and Fourier feature sets. Using only the Fourier features, the

algorithm misclassified 11 targets out of 100. The shape feature algorithm misclassified 5

targets out of 100. Only one of the targets was misclassified by both sets, and the fused

feature set correctly classified this lone target. This result lends credence to the theory that

the combination of features produces some extra information not available by each set alone.

The fused feature set also correctly classified all the misclassified targets from the shape

algorithm and all but one of the misclassified targets from the Fourier algorithm.

4.3 ATR Using Karhunen-Lobve Image Reconstruction Coefficients

A reduced covariance matrix was generated using images from all three targets: tanks,

jeeps and towers. Then, the Karhunen-Lobve transform was taken, and the eigenvalues and

eigenimages were found. The eigenvalues were representative of the usefullness of the given

eigenimages in the reconstruction of the original images. So any eigenimage with a compar-

atively large eigenvalue would be used heavily in the reconstruction process. Comparing the

eigenvalues, the eigenimages could be rank ordered by importance. The graph in Figure 9

shows the eigenvalues for a nine eigenimage routine. By keeping the first six eigenimages,

f 99% of the reconstruction energy was kept, see same plot. Based on this approach, the

number of eigenimages kept was determined, see Equation 21.

Using the reduced set of eigenimages, each original image, from the entire training

set, was reconstructed. For each image, a weight corresponding to each eigenimage resulted

for the reconstruction. These weights were determined by taking the dot product of the

original images with the new eigenimages, see Equation 23. Due to the mathematics of

the KLT, the Mean Squared Error between the original image and the reconstructed image,

see Equation 22, was minimized. Using these reconstruction coefficients as features in an

exemplar, a neural net was than trained and tested in the same manner as the above feature

sets were.
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Run Results
1 100.00%
2 10o.00o%
3 100.00%
Average o100.00%

Table 6. Results from testing the 6 reconstruction coefficients as features. The same set of
features was run each time; the three runs were used to reinforce the results.

4.3.1 KL Reconstruction Using Six of Nine Eigenimages A KL transform

was taken of a reduced covariance matrix made up of nine original images. The nine input

images consisted of three targets per class of tanks, jeeps and towers. Of the nine eigenimages

created, six were kept which accounted for f 99% of the reconstruction energy, see Figure 9.

Using the six reconstruction coefficients as features, the net tested at 100% correct target

classification, see Table 6.
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Figure 9. The eigenvalues for a nine eigenimage XLT. The energy is the magnitude of the
eigenvalue squared.

The nine eigzaimages produced are in Figure 10. Notice the distinct representation of
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Figure 10. The 9 eigenimages of a 9 elgenirnage I(L Transform.
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Run Results
!1 100.00%

2 100.00%
3 100.00%
4 98.00%
5 98.00%
6 98.00%
7 100.00%
8 100.00%
9 100.00%
Average 99.33%

Table 7, Results from testing the 5 reconstruction coefficients as features with three differ-
ent sets of KL Transforms. The first three runs used one set of images to generate
the eigenimages that was different than the next six runs. The second and third
sets of three runs each used the same images to generate the eigenimages; however,
the images were arranged in a different order.

the tower class in almost every eigenimage. The jeep is only apparent in one eigenimage,

number 7. However, the tank class is apparent in s 5 eigenimages. We would expect to see

the tower and tank class reconstructions to be very accurate while the jeep class' would be

difficult to see. This is explained below, see page 40. Since the results were so good, the

reduced covariance matrix was created with six input images instead of nine.

4.3.2 KL Reconstruction Using Five of Six Elgenimages A KL transform was

taken of a covariance matrix consisting of six input images, two per class of tanks, jeeps

and towers. The approach was the same as the one modelled on page 35. The results of

this testing can be seen in Table 7. The last six runs were based on using five out of six

eigenimages from six new input images. The last KL transform was to test the reduced

covariance matrix to see if it would generate the same eigenimages if the same input images

were given but in a different order, and it did. The results can be seen in Figure 14. An

interesting point about the middle three runs is that the network missed each time for the

same two exemplars. The two tanks it incorrectly recognized are in Figure 11. As you can
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Figure 11. The two incorrectly recognized tanks for the 5/6 eigenimage KL reconstruction.
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Figure 12. The eigenvalues for a six eigenimg KNLT. The energy is the magnittude of the
eigenvalue squared.
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see, they look like tanks. The author has no deep conceptual explanation as to why the

neural net couldn't correctly recognize either of these tanks.

4.3.3 Lack of a Need for Visual Recognition to Achieve Target Recogni-

tion By examining the reconstructed targets, the author noted a definite lack of target

identification between the jeep and tank class. However, the network had no problems with

determining the classification of these two targets. In Figure 13 the reconstructed targets

can be seen, By examining the reconstructed images, the tower class is definitely existent

The Original Images: One per Class

The Reconstructed Images Using the Top 5 of 6 Elgenlmages

Figure 13. The original and reconstructed images for each class of a 6 eigenimage KL
Transform using 5 eigenimages in the reconstruction.

for the tower class and definitely nonexistent for the other two classes. This is determined

by the bright tower in the reconstructed tower which recaus there is quite a bit of energy in

that spot, and the dark tower in the other two reconstructed images which means there is
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a lack of energy in that spot. Since the tank and jeep classes are not distinguishable from

each other, one would surmise that targets do not have to be humanly recognizable to be

computationally recognizable using the proper algorithm. Cottrell understood this when he

said

... in a sense, neurocomputing places a higher premium on domain knowledge
and network use cleverness than on deep technical understanding (10:328).

This lack of understanding adds the element of 'magic' to the neural network as well

as the Karhunen-Lobve Transform; however, there is none concerning each of these. The

KLT simply finds the best orthogonal representation of a set of vectors, and the neural net

simply determines how a set of features cluster.

4.9.4 Incomplete Reconstruction Using the KL Eigenimages A standard KL

transform that processes the entire 16384x16384 covariance matrix, for a 128x128 image,

would produce 16384 eigenimages and 16384 corresponding eigenvalues. These eigenvalues

could than be rank ordered, and the corresponding reduced eigenimage set could be used for

the reconstruction. The problem with this appro.ch is that it takes a long time to process a

16384x16384 matrixl The reduced covariance matrix approach reduced the matrix to MxM,

where M is the number of input images to the routine. With this compression of the covari-

ance matrix to an approximation of it, complete reconstruction is lost; however, classification

of the targets is still possible. So nothing is being sacrificed as far as classification goes which

is the ultimate goal. The user does not need to see a tank as long as the missile knows what

it is and where to go.

The eigenimages turned out to be orthogonal which is to be expected. This was tested

by taking the dot produict of any two eigenimages. If the two vectors are orthogonal, their

dot product will be zero since the angle between two orthogonal vectors is always 900, see

Equation 24.

coso- (IaII)(lIbI ) (24)

41



where i, 6 are eigenvectors. However, the question remained as to whether the same eigenim-

ages would be produced for a version of the training input images that was moved around.

As it turns out, the eigenimages were the same, see Figure 14. This result is due to the

determinant of the reduced covariance matrix, L, remaining constant.

4.3.5 KL Transform as a Glorified Correlator Since the KL transform is very

sensitive to the size of the targets as well as to their location in the image, the author believes

the KL transform is only doing correlations where the correlator templates are the eigenim-

ages. This could be a maximization of the correlation routine because the eigenimages, the

templates in this case, might be the best possible templates.

4•.4 ATR Using Discrete Cosine Transforms

The results were positive when the DCT was used as another FFT. To reiterate, the

DCT was taken of each original image, and the transform was the same size as the original

image. With the DCT, a 4x4 window was taken about the origin to contain the 01h through

3 rd harmonics. This amounted to 16 features. Using the neural net, the recognition rate was

100%, but the results are not valid. The feature space needed to be reduced to meet Foley's

rule.

4.4.1 Reduced DCT Feature Set The saliency routine was done on the 16 fea-

tures, and the results are listed in Table 8. Based on these results, the top eight features

were taken to compose a new, reduced feature set listed below:

1. D[I][0],

2. D[1)[1J,

3. D[1]12],

4. D[1][3],

S5. D[2][4],
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6 Eigenlmages Created from First Ordering of
6 Input Images

...... ................

6 Eigenimages Created from Second Ordering of
6 Input Images Used in Poth 'L Transforms Above

Figure 14. The 6 eigenimages produced using the same tfa;,,;nq set only the set has been
presented to the covariance matrix in a different order. Notice that the eigen-
images created with the same set of six original images are the same regardless
of ordering.
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Feature Value Feature Value
,D 0 0.00 D 1 3.50

D 2 1.50 DO 3 8.50
D1 0 15.00 D 10.50
Di 2 14.00 D 3 12.00

D 3.50 D2 19.00
D2 2 1.50 D2 3 6.50

[0 12.0 MO 3 1 8.00
31 8.00 D 3 6.50

Table 8. Saliency of the 16 DCT features. A large value means the feature is very salient.

Run Rcsults
1 96.00%
2 94.00%
3 93.00%
Average 94.33%

Table 9. Results from testing with the top 8 DCT features. The same set of features was

run each time; the three runs were used to reinforce the results.

6. D[3][0],

7. D[3][I], and

8. D[3][2].

Using these features, the net was trained and tested using the hold-one-out method. The

results are listed in Table 9. The results were surprising since they should be comparable to

the low frequency Fourier results. However, no direct comparisons can be made with Table 9

because the feature sets were not the same size.

4.4.2 Comparison of the DCT Results to the Low Frequency Fourier Re-

sults A new feature set was generated containing the top five DCT features. This was done

for comparison between the low frequency Fourier results and the DCT results. The DCT
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Run Results
1 87.00%
2 89.00%
3 87.00%
Average 87.67%

Table 10. Results from testing with the top 5 DCT features. The same set of features was
run each time; the three runs were used to reinforce the results.

results are listed in Table 10, and the FFT results are listed in Table 4. The FFT produced

better results than the DCT, 89.00% versus 87.67% for the DCT. However, the difference

between the two is pretty small. Again, each percentage was averaged from three separate

runs to determine the correct classification using hold-one-out testing.

As it turns out, the top five FFT features were

1. fft [o][. l],

2. fft(2](-1],

3. fft[l][-2],

4. fft[3][-1], and

5. fft[OlF-3].

And, the top five DCT features were

1. D[1][0],

2. D[1][2],

3. D[l][3],

4. D[3][0], and

5. D[1][1].
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Approach Results
TOP 5 SHAPE FEATURES 95.33%
TOP 5 FFT FEATURES FROM 28 LOW FREQUENCIES 89.00%
8 FEATURES: TOP 4 SHAPE FEATURES AND TOP 4 FFT FEATURES 99.33%
6 RECONSTRUCTION COEFFICIENTS FROM 6 OF 9 EIGENIMAGES 100.00%
5 RECONSTRUCTION COEFFICIENTS FROM 5 OF 6 EIGENIMAGES 99.00%
TOP 8 DCT FEATURES 94.33%
TOP 5 DCT FEATURES 87.67 %

,. . .......

Table 11. Each approach to ATR and its correct classification percentages.

It was not surprising that the saliency routine for the DCT picked almost the exact same

features as those from the saliency routine for the FFT. Each reduced feature set includes

one third harmonic in each direction where the counterharmonic is a first harmonic or a

DC. There are also terms including a firs# harmonic in one direction with the other direction

being a DC term. The similarity between the sets is quite relieving. The author would have

been worried if there appeared to be no correlation between the two reduced feature sets.

Also, the results from using those particular components are so close, 89.00% for the FFT

and 87.67% for the DCT, that one would surmise each is equivalent.

4.5 Comparison of All the Approaches to Target Recognition

Many approaches were tried to classify tanks, jeeps and towers. The main three areas

were feature set generation using shape and FFT features, KL Transform reconstruction co-

efficients and DCT coefficients. Here the results will be recapped concerning the percentages

of correct target classification for each approach and its variations.

It appears that the best approaches were the KL Transform reconstruction coefficients

using six of nine, 100.00%, and the top eight shape/FFT features determined by a saliency

routine, 99.33%. The shape/FFT approach would be faster because the only preprocessing

would be a histogram equalization/thresholding routine. However, if the eigenimages were

already stored, a dot product of the original image with each eigenimage would be fast for
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the reconstruction routine as well.
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V. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This thesis has presented some very interesting results. The work done with the elgen-

images opened up a new area of ATR. The results prove that the reduced covariance matrix

that Suarez and Turk and Pentland used for face recognition can be just as powerful for

other targets as well (15, 18). More importantly, the need for three separate KL Transforms,

one for each class of targets, was not found. The recognition rates of 100% for the combined

class transform demonstrates this. Also, these results can be compared directly to standard

feature extraction implementation. Using saliency routines to pick the best, the recognition

rates were as high as 99.33%. These are also outstanding results in and of themselves consid-

ering the assumption of having segmented targets was not made. The only user interaction

was in the cropping of the targets. The rest of the segmenting to classification stages was

automatic. Now one point needs to be reiterated: the KL Transform mathematics is just

doing a one time correlation between the original image and the eigenimages. The combina-

tion of how much each eigenimage looks like the input image determines the reconstruction

coefficients and, apparently, separates the target classes in some space where the neural net

could classify them. Note: in a real-time application, the covariance matrix would not have

to be generated, the eigenimages would already be stored, and these would be used for the

reconstruction.

The DCT was also evaluated and compared to an identical FFT application. The DCT

results were very close to those of the FFT when the low frequency components from each

set were kept. Also, a saliency routine done on both the low frequency Fourier feature sets

proved that certain components are definitely more beneficial than others regardless of how

the Fourier features were generated. The best recognition by the DCT with 8 features was

94.33%.
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The backprop with momentum network used in all of the feature processing worked

very well. It was a fast network due to the single hidden layer with only seven nodes, and

the training iterations being set to 10,000 before the net was tested. Also, the hold-one-out

testing method proved to work very well. It offerred the best approach to meeting Foley's

criteria of validating the test results.

5.2 Recommendations

5.2.1 Cottrell Since the KL transforms worked so well, a Cottrell network would

be an obvious next step. Cottrell's 'holons' would replace the 'eigenimages' from the KLT

and could be implemented much as the KLT was.

5.2.2 Karhunen-Lobve Transform The KLT proved very successful in target clas-

sification; however, it is still dependent upon scale, shift and rotation. Maybe a routine to

make the input Images scale, rotation and shift invariant could be implemented before the

KLT stage. Assuming the PSRI stage would not take too long, this could make a complete

target classifier with real-time applications.

Also, as a preliminary step to make the classifier user independent, concerning cropping

the images, the entire image could be scanned a section at a time using the previous KL

transform except with an additional class: non-target. This could prove very useful for the

above idea in that it would remove the need to make the images shift invariant,

5.2.3 Discrete Cosine Transform The DCT in the author's resRarch was imple-

mented much the same as any FFT has been implemented: to generate low frequency Fourier

features. However, Robert Gray's efforts with the DCT show that eigenvectors and eigenval-

ues can be generated from a covariance matrix that is some permutation of the DCT values

(9). This could be pursued and implemented as the KLT was.

5.2.4 Multisensor Applications The wave of the future in ATR is directed to-

wards multisensor applications. Many feel that it is the best method of modelling the
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human visual system, and the author agrees. Simply, one sensor can offer advantages that

another sensor cannot. In other words, one sensor's downfall rmay be another's trump. So

the multisensor direction should definitely be pursued, and the KLT could be used with the

FLIR imagery while another transform might work better with another sensor.

50



Appendix A. FFT Implementation of the DCT

This Appendix presents a method of taking the DCT using only an N-point FFT.

Makhoul demonstrated a method of taking the DCT of an N-point sequence using a

2N-point FFT of a reordered version of the original sequence (11). To take the DCT of an

N-point real data sequence x(n), 0 S n < N - 1 first define a 2N-point even extension of

x(n)

Y(n) ={xn), 0l it n IV - 1 (28)

x(2N - n- 1), N < n7<52N- 1

Figure 15 shows x(n) and it's even extension y(n) as defined in equation 25. Note that
y(2Nr - n - 1) -- y(n).

The DFT of y(n) is given by

2N-1

Y(k) = , y(n)W2k (26)
"WmO

Where WM = e-M2 /M (11:28). Substituting equation 25 into equation 26 yields

N-1 2N-I

Y(k) = x(n)W,")wv + E x(2N - n - 1)Wnk (27)
n-O nMN

Changing the summation variable in the right-hand term, noting that W2N = 1 for m an

integer, and factoring out WV/ 2 yields

'V-1
Y(k) = Wk/-22 >* z(n)[w•w% 2 + wj•w/ 2 ] (28)

nao

Equation 28 can be written as

-k2 -1 Ir(2n. + J)k
Y(k) - W 22 _:x(n)cos - +0 < k <k 2N- 1 (29)2 n0 2N
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x(n)

N-i
(a)

n

(b)
w(2)

4 I(O wv(2) 0
0)(0) w(1) 0

0 0vii

(c)

Figure 15. (a) Causal signal x(n). (b)Even extension of x(n), y(n). (c) Division of y(n)
into its even and odd parts v(n) and w(n).

or

Y(k) = W"''2Re E2 x(n)W I, 0:< k _< 2N- 1 (30)
L ninO I1

Making a slight change in the magnitude term of the DCT definition in equation 31 yields

2 M-1 (2m + 1)krG,(k) - M .o] X(m)cos 2M , k = 1,2,...,M-1 (31)

N-i ?r(2'n + 1)k
C(k) = 2Ex(n)cos 0<k<g-1 (32)

.- o 2N
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using equation 29 and equation 32 gives

Y(k) = WjN2 C(k) (33)

C(k) = W~2'Y(k) (34)

and, from equation 30 and equation 33

C(k) = 2Re [MV E x(n)W2] (35)

Thus, the DCT of x(n) by taking the 2N.point FFT of y(n), which equation 35 demon-

strates is equivalent to equation 37 except for magnitude (11:29).

G. (0) =V1M-
( X(m) (36)

tn-O

G,(k) ! Re e-ik ,/2M X(rn)W"} (37)
M MM I.

Where W = ed-w/ 2M, i = V'-T, and X(m) = 0, for m = Al, (M + 1),..., (2MI - 1). Now to

demonstrate that this can be further reduced to an N-point FFT.

First divide y(n) into two N-point sequences

v(n) = y(2n), 0<n_5N-1 (38)

w(n) = y(2n + 1), O<n<N-1 (39)

where v(n) and w(n) are the even and odd points of the sequence y(n) as labeled in fig-

ure 15(c). Note that both v(n) and w(n) contain all of the samples of the original sequence

x(n). It can be shown using equations 25, 38 and 39 that

w(n)=v(N-n-1), 0_<n<N-1 (40)
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Now, substituting equation 38 and 39 into equation 26 yields

5'-1 N-I
Y(k) v(n)W;'W' + F, w(n) N (41)

Now, substituting equation 40 into equation 41, noting that W2N = WIN, massaging terms,

and using equations 33 and 34 yields

r N-I 1
C(k) = 2RM [W• o v(n)W J, o •0 5k N-1 (42)

which may be written as

N-I(4+ )i
C(k) = 2 v(rn)cos 2N0 < k < N- 1 (43)

n.O

which is a valid alternate definition for the DCT (11:30).
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Appendix B. C Code

All code used for this research was written in C. Some of the code was written by other

students, and can be found in their theses. Specifically, the Karhunen-Loebve Transform

code can be found in Captain Pedro Suarez' thesis(15), and the DCT codt can be found in

Captain Jim Goble's thesis(7). The KLT code was changed only in that the average image

value for each pixel was not added back in to the reconstructed image. The DCT code was

adjusted to take the DCT of a 128x128 image.
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MM19.C-takes the FFT, shape and intensity features. Needs MOMENT.C, FFT1.C,
FOURN.C, DOFLIP.C and NRUTIL.C.

FEATURE GENERATOR------------
/,===== 2LT BRIAN SINGSTOCK - -
/,===== ADVISOR: MAJOR ROGERS-- - ,-

----------- -------------7

:==== --=SYSTEM INCLUDES -/

include <stdio.h>
include <math.h>
include <string.h>

/, = ----.DEFINES ===-----------------=

V define ROW 128

define COLUMN 128
#define SQ(A) (A*A)
#define loopi(X) for (i=l; i<X; i++)
#define loopj(X) for (j=l; j_5X; j++)
#define loopk(X) for (k=l; k•5X; k++)
#define max(a,b) (a > b) ? a: b;
#define min(a,b) (a < b) ? a: b;

MAIN ROUTINE--

void main(argc, argv)
int argc;
char *argvo;{

/*=== PROGRAM INCLUDES :=-------- /

void dofilip(;
void fourn);
void fftl();
void nrutil();
void momento;
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LOCAL VARIABLES

int i, j, k, c;
int **tru, **dat, **imatrix0;
int tgt.type, TRUTH, maxI, minl;
int area, perimeter, nn[2], count;
float *mag, *vectoro, glc, avgl, tI, bI;
float ab, momn30, mom03 mom2l, mom12, xdivy;
char truflle[50], datflle[501;
FILE *ftru, *fdat, *fout, *fopeno;

/,= = ... EXPLAIN USAGE, IF PROBLEM */

if (argc # 2)

printf("\n\nUeage: m19 filename wo/extension\n\n");
exit(10);}

CALL HEADER AND BEGIN MANIPULATION ==*/

printf("Inside of mml9.c for W.a\nl, argv[1]);

/,= READ IN TRUTHED AND DATA VALUES INTO VECTORS =,/

sprintf(truflle,"%~s-tru, dat", argv[1]);

sprintf(datfile, "e.s.dat•', argv[1]);

/*= CHECK TO SEE WHAT THE TARGET TYPE IS FROM THE NAME =,
/*= OF THE INPUT STRING. IF IT ISN'T ONE OF THE ONES =,/
/*= BELOW THAN EXIT CAUSE IT MAY BE A TRUTH FILE !!!! =,/

if ((strlen(argv[1])) _Ž 9)1
printf(" Exiting program for %a: truth f ile\n", argv[1]);
exit(100);}

else if (datfile[2]='a')

57



tgt..ype = 1;

else if (datfilef 2]-- 'e)

tgt-type = 2;

else if (datflle[2J=='o)

tgt-type =3;,

else

tgt-type =0;

TRUTH =1

if(!(ftru =fopen(trufile, "lrb")))

TRUTH = 0;

if (!(fdat = fopen(datfile, 'IrbI')))

fclose(ftru);
exit(100);

if (!(fout = fopen(Ilf aturojfft. .dat", "ab"))

{coefr)
fclose(fdtr);

exit(100);

dt=i mtilRW1,CLM)
dtr = imatrix(1, ROW, 1, COLUMN);
mag = vector(1, 28);

loopi(ROW)

loopj(COLUMN)

fiscanf(ftru, "%d ",&truli] J)
fscanf(fdat, "%d ",&dat[if])

fclose(ftru);
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fclose(fdat);

loopi(ROW)

loopj(COLUMN)

if (tru[i]U] :5 10)

truli][j] = 0;

else

truli)][j = 1;

/*=NOW FIND SOME FEATURES

/*====F1ND INTENSITY STUFF

maxI=0;
minI 0;
avgI 0.0;

loopi(ROW)

loopj(COLTJMN)

c = dat[9][j;
a~vgl += (float)(c);

maxI = rax(c, maxl);

midI min(c, minI);

avgI /= (float)(ROW + COLUMN);

/* fprintf(fout,"l %f %f %d ",('fioat)(m&x-driinl)/avgl,
(fioat)(maxI)/avgI, maxl); *

/*=THE NEXT SECTION IS DEDICATED TO FINDING THE =*
/* == 7x7 FOURIER COMPONENTS, KEEP 28 CAUSE REAL IMAGE =*



/*== FIND THE FFT OF THE IMAGE ==*/

fftl(mag, dat, ROW);

I-=--= PRINT TO FILE ------ /

fprintf(fout, "1 ");

loopi(28)

fprintf(fout, "%.f ", mag[i]);}

- -------SKIP MOMENT STUFF CAUSE FOURIER FILE --------

TRUTH = 0;

/= IF TRUTHED DATA WAS AVAILABLE, FIND SOME OTHER STUFF =*/

if (TRUTH)

/--= FIND THE MOMENT STUFF =--==---/
/,==A, B and THIRD ORDER ======--

moment(tru, ROW, &ab, &mom03,

&mom30, &nioml2, &mom2l, &xdivy);

ab = max(ab, 1.0/ab);

xdivy = max(xdivy, 1.o/xdivy); */

fprintf(fout,"Kf %fV.1 %f %f %f ", ab, mom03, mom30,
mrnoml2, mom2l, xdivy);

area = 0;
perimeter = 0;
count = 0;
tI = 0.0;
bI - 0.0;

for (i=2; i<COLUMN; i++){
for (j=2; j<ROW; j++)

tI += (float)(tru[i] );
bI += (float)(dat[iJ]);
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if (tru[i~jjJ)

area++;
count++;

if d((tru~i+J1] r))II(!(tru[iJjU1])))
perimeter++;

WI/ (float)(ROW + COLUMN - count);

tI 1=(float)(count);
gic =tI / bI; /*== GREY LEVEL CONTRAST /

fprintf(fout, Ie%/f %f 11, gic, (floa~t) (SQ(perinieter)) /(float)(area.));

fprintf(fout, "Vd\n\n", tgt..type);
fclose(fout);

1* ------------------------ 1~

/*=CLOSE UP THE MATRICES OPENED - - -"

/* free-imatrix(dat, 1, ROW, 1, COLUMN);
free-Jmatrix(tru, 1, ROW, 12, COLUMN);
free-vector(mag, 1, 28); *

printf( "FINISHEDWn");

/*=GOOD NIGHT, GOOD BYE, AND GOOD RIDDANCE =*
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MOMENT.C-takes the silhouette moments of the input object.

-, ==: SYSTEM INCLUDES - - -==-/

include <stdio.h>include <math.h>
include <string~h>

, -- -- --= DEFINES ===------- - - - -- - - -

#define SQ(A) (A*A)
#define loopi(X) for (i=l; i_<X; i++)
#define loopj(X) for (j=l; j_<X; j++)
#define loopk(X) for (k=l; j<X; j++)
#define max(a,b) (a > b) ? a: b;
#define min(a,b) (a < b) ? a: b;

---------- ----------_ -_-.-- =_____-------_-=-_=------4
/,=== ROUTINE TO FIND A, B, AND THIRD ORDER MOMENTS ==-*/

void moment(tdata, ROW, ab, momO3, mom30, moml2, mom2l,
x-y)

int **tdata, ROW;
fBoat *x-y, *ab, *mom3O, *mom03, *mom2l, *moral2;

int ix, y, x, y, COLUMN, area;
int max-wid h, max.height, max.x, min.x, max-y, min-y;
int CX, CY i, j, k;
double bsmO Usm02, bsmll, bsm30, bsm03, bsml2, bsm2l;
double normal2, normal3, average-y;
double tx, ty, a, b, x.shift, y.shift, average.x;

COLUMN = ROW;
CX = COLUMN/2;
CY = ROW/2;,

/*=== find center of image ===/

ix = iy = 0;

for (y = 1; y S ROW; y++)
{

for (x = 1; x < COLUMN; x++)
{

if (tdata[y][x])
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ix += x;
iy .+= y;

}}I

average.x = (double) ix area);
average.y = (double)( iy/ area);

/,=== find amount to shift data for shift-invariance ===*/

x.shift = average..x - (double )(CX);
y.shift = averagey - (double)(CY);

/*=== find Binary-Shape-Moments (BSM) ===*/

bsm20 = bsm1l = bsm02 = bsm30 = bsm03 = bsm2l = bsml2 = 0.0;

for (y = 1; y < ROW; y++){
for (x = 1; x < COLUMN; x++){

if (tdata[y][x]){
tx = (double)(x) - x.shift;
ty = (double)(y) - y.shift;

bsm20 += tx * tx;
bsm1l += tx * ty;
bsm02 += ty * ty;

bsm30 += bsm20 * tx;
bsm03 += bsm02 * ty;

bsam2 += bsm20 * ty;
bs=12 += bsm02 * tx;I

I

1*,=== calculate normalization constants ===,/

normral2 = (double)area;
normal3 = (double)(area) * (double)(area);

---------------------- ----=---.

/*= Find the a and b values of the ellipse ====,/
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/,---- from the third order moments
---------------------- =-==--

a = sqrt((bsm20+bsmO2+sqrt(SQ(bsm2O-bsmO2)+
4*bsmll*bsmll))/area/2.0);

b = sqrt((bsm20+bsmO2-sqrt(SQ(bsm2O-bsmO2)+
4*bsml1*bsmll))/area/2.0);

/,=== calculate the maximum horizontal
/,===and vertical chords

-----------------------------------------_----_--- ----- ----- _--_--- -- _-- --- _-- -- --- '

min.x = COLUMN; /, set range one past opposite ends */

max.x = -1;

max-width = 0;

for (y = 1; y _< ROW; y++){
for (x = 1; x 5 COLUMN; x++){

if (tdata(y][x]){
niinx = min(x, min.x);
max.x = max(x, max-x);}

}
max.width = max(max.width, max.x - min.x +1);}

/*=== calculate maximum vertical chord ===*/

min.y ROW; /* set range one past opposite ends */
max-y = -1;

max-height = 0;

for (x = 1; x 5 COLUMN; x++){
for (y = 1; y < ROW; y++){

if (tdata[y][x]){
min-y = min(y, min-y);
.max.y = max(y, max-y);}

}
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)max-.height = max(max..height, max-y - min..y +1);

*ab = (float)(a/b);
*mom3O = (float) bsm3O/normal3);
*momO3 = (float )(bsmO3/normal3);
*mom2l = (float )bszn2l/normal3);
*moml2 = (floa~t )bsml2/normal3);

*xy= (float) (m -width)/(float) (max~height);
printf("%4 %f %fi %f %I\n",*ab,*mom3O,

*morni3,*mom2l ,*moml2);

-------- THE END Ill--------------"
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FFT1.C-takes the FFT of the input object. Needs DOFLIP.C and FOURN.C.

SYSTEM INCLUDES ==/-- --- ----------- -----_--,

include <stdio.h>
Include <math.h>
include <string.h>

/,== FFT ROUTINE THAT IS SIZE FLEXIBLE
/ JUST INPUT THE LENGTH AND WIDTH OF THE IMAGE

TO BE FFT'D. THE OUTPUT IS THE UPPER HALF OF ==,/
A 7 BY 7 LOW FREQ FOURIER BOX-REAL IMAGE -- */1*,== =,

2LT BRIAN SINGSTOCK
9 AUG 1991
MAJ ROGERS,== =,

-, DEFINES---

#define SQ(A) (A*A)
#define loopi(X) for (i=1; i_•X; i++)
#define loopj(X) for (j=l; j_<X; j++)
#define loopk(X) for (k=-1; jX; j++)
#define max(a,b) (a > b) ? a: b;
#define min(a,b) (a < b) ? a: b;

void fftl(mag, dat, ROW)
int **dat, ROW;
float *mag;

void doflip();
void fourn();

int count, i, j, nn[2], LENGTH;
float *fft, *vectoro, dummy;

LENGTH = ROW;

count = 1;

fft = vector(l, LENGTH*LENGTH*2);

loopi(LENGTH*LENGTH*2)
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{
fft[i] = 0.0;

loopi(LENGTH)

loopj(LENGTH)

fft((LENGTH*2*(i-1))+(j*2-1)] = dat[i][j];

/,= NOW FFT IS ZERO PADDED AND COMPLEX FORMAT IS ACCT'D FOR -. /

nn[O] = LENGTH;
nn1] = nn[O];

fourn(fft, nn, 2, 1);

doflip(fft, LENGTH);

*------------------------ =----
now take the magnitude of the complex response ==*/

/,== and send the 28 components for a 4x7 box to ==,/
/*== the feature file

count = 1;

for (i=LENGTH/2-3; i_<LENGTH/2; i++)

for (j=LENGTH-7; j•5LENGTH+5; j+=2)

mag[count] = sqrt(SQ(fft[i*2*LENGTH+j])
+ SQ(fft[i*2*LENGTH+j+1]));

count++;}

free-vector(fft, 1, LENGTH,*LENGTH*2);

}
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