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Preface

This study was initiated to examine the feasibility of applying fractional
calculus to a control algorithni. The mathematical development led to tractional
order states and the solution of fractional order ditferential equations. The pros

and cons of introducing additional states 1 a control law were examined. The

results yielded evidence that the application of tractional order control laws have
merit and should continue to be investigatec.
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would also like to thank my commitice members, Dr. B. Liebst and Dr. D. Khatri,
for their technical assistance. A special thanks is made to my family and friends
who supported me during this investigation - especially Capt J. Blank who was a
springboard for many ideas. [ would like to thank my witfe Kimberly for her
unwavering support and understanding during the many times I was withdrawn
into the books. Lastly, I would like to thank my Lord Jesus Christ for everything -
especially sirse He is the only one who truly understands every aspect of

fractional calculus ...
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Abstract
D

The purpose of this investigation was to determine if introducing fractional
order states in a feedback system was be..eficial to overall system performance.
Fractional order differential equations have been used in the past primarily to
model viscoelastic damping in structures. This study examined the use of
fractional order differential equations in formulating a control algorithm with
additional degrees of freedom. The algorithm presented is best suited for active
structural dampirg. Including the fractional order time derivatives in the state
allowed some additionai flexibility in chovsing relevant control parameters in the
system. Optimization with respect to robustness was examined to determine a
solution. Many additional questions arose in this inquiry as to the applications of

\—

fractional order states in control systems. C
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AN INVESTIGATION OF OPTIMALLY ROBUST STRUCTURAL

DAMPING THROUGH FRACTIONAL ORDER FEEDBACK

1. Introduction

Objective

The purpose of this investigation is to determine the effects on a system of
artificially introducing additional states with the intention of harnessing them in a
control algorithm. These additional states will be determined by integrating the
accelerations on a system by a fractional order rather than an integer order. The
nature of the solutions to the resulting fractional order ditferential equations will
be determined. The benefits and limitations to adding these other states to the
traditional mathematical model will be explored. The goal is to determine if the
benefits gained from adding the fractional order states outweigh the additional

complications of impiementing them.

Motivation

The motivation for this imvestigation is current research in digital and
analog fractional order integrators and differentiators.  Until recently. the accuracy
of fractional order integrators and differentiators was too poor for consideration in
a control algorithm. As these integrators and ditferentiators become better. the

question arises as to how this additional intormation can be harnessed in a




constructive way. The possibility of using fractional states in a control algorithm
has been acknowledged (3:309) but not investigated. This inquiry was initiated in
hopes of using the additional information from the fractional states to improve

system performance.

Background (13:115-112)

The concept of arbitrary order integration and differentiation is essentiall
as old as traditional calculus. It was rot vigorously pursued at the onset due to
the lack of apparent application in light of the many of uses for traditional
calculus. Joseph Liouville was the first o perform a major study on fractional
calculus. He was also one of the first persons to solve differential equations using
fractional calculus. G. F. Bernhard Riemann also developed a theory on fractional
calculus that based its relevant definitions on a generalized Taylor series. Various
other mathematicians defined tractional operations with mixed results. The
contemporary definitions are attributed to Riemann and Liouville. At present.
one of the primary applications of fractional calculus has been modelling
viscoelastic damping in materials (3:1412-1416: 5:304-311: 12:247-273). Traditional
viscoelastic material models are constrained to be functions of integer powers of
the assaciated frequencies. Fractional caleulus allows the frequency dependency
to be of an arbitrarv order which better muodels the properties of the material.

The potential applications of tractional calculus have only begun to be

investigated.
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Organization

This report will be organized into eight chapters. The first chapter will
introduce the problem and discuss its background. Chapter 2 will examine
solutions of fractional order difterential equations in general. Chapter 3 will apply
the techniques from chapter 2 to solve the specific class of fractional ditferential
equations employed in the ensuing control algorithm. It will also discuss some of
the characteristic behavior of the solutions to this class of fractional order
differential equations. Chapter 4 will develop the fractional order control law.
Chapter 5 will outline the optimization of the control algorithm. The goal of the
optimization will be to make the system as insensitive to unavoidabic errors as
possible. Chapter 6 will examine procedures to compare the results of the
optimized fractional control algorithm to traditional results. Chapter 7 will contain
several example problems and discuss the general implications of the specitic
results. The last chapter will consist of the resulting conclusions and

recommendations for future investigation.




II. Solutions ol Fractional Order State Equations

Fractional State Equations

A fractional order differential equation is a mathematical expression that
relates a dependant variable to fractional order derivatives of itself with respect to
an independent variable. The order of the differential equation is given by the
highest order derivative in the equation. The extended Riemann-Liouville

definition of the fractional derivative is (4:7)

o
DPx(t)] = & f—X(—t-t) dt, 0<B<a (1)
0

where g is the order of the derivative. The above definition is valid for irrational
and complex g although only rational numbers will be used in the formulation of
the subsequent equations. It should be noted that the fractional derivative is a

linear operator. It Leibnitz's rule is applied to the above equation, the result is

B - AP .. x(0) tP
DPix(0)] = BPLete)) + FEts (2)
where
B = t (L t) 3)
AP ix(e)] ! T ZEtldr,  0spsi (

The modified linear operator of Eq (3) is the Riemann Liouville fractional integral

of order 1-g of the first derivative of x(1) or effectively, the -g order integral of the




function (4:17). The definitions in Eqs (1) and (3) are both valid expressions for a
fractional derivative. The modified operator of Eq (3) will be used by convention.

The state equations of a structure are normally written in the familiar form
X = Ax - Bu ¥ =Cx + Dy (4)

where

n = (order of the system ) x ( number of masses )

X = state vector ( n by 1)

v = output vector ( p by 1)

1 = control vector ( mby 1)

A,B,C,D = state tormulation matrices
The traditional state formulation poses the dynamics of a system as n first order
equations in matrix form. The first derivative of a state is the sum of a linear
combination of the other states and the control force. Bagley has formulated the

fractional order state equations (5:309) in a straight forward manner:

~

PP (x) = Ax + Bu v = Cx + Du (5)

where

B = I/N = basis fraction of svstem ( < 1)

"~

N = smallest integer common to all fractional derivatives
n = (order of the system ) x ( number of masses ) x N

X = state vector (n by 1)

y = output vector (p by 1)

u =

control vector ( m by 1)

N




A,B,C,D = fractional order state formulation matrices
To avoid ambiguity, further use of the integer order state eqilations will be
subscripted by a capital I denoting integer. The n states and the matrix 4 are not
unique for a given system in the integer or fractional formulation. Regardless,
some relationships between the states can be better to work with than others.

It should be noted that an integer order system can always be written in the
fractional order form. If this is done, all of the elements in the matrix A
corresponding to the fractional order states will be zero. An integer order system
posed in the fractional order state equations must obviously have the same
solution, but the eigenvalues of the corresponding A matrices are not the same.
An integer order system posed in the g-order fractional equations will have N
times as many eigenvalues. For each integer order eigenvalue A, N eigenvalues in

the g-order equations will satisfy Ai=(4,5.

The Mittag-Leftler Solution

One approach to solving a fractional order differential equation is by using

the Mittag-Leffler function (5:307):

Ey (2) (6)

Z1‘(1 +[3k

Notice that if g is one, the above expression is the definition of an exponential.
The g-order Mittag-Leffler function has properties for g-order derivatives

analogous to the exponential function for integer order derivatives. Namely,

DPLE; (at®)] = aEy (ath) (7)

6




The homoegeneous solution of a linear g-order ditterential equation is a linear
combination of g-order Mittag-Lettler tunctions. The particular solution can be
found by convoluting the Mittag-Leftler functions with the input. A system can be
solved using modal analysis or the Mittag-Leffler exponential matrix (5:310). The
Mittag-Leffler exponential matrix is defined like a waditional exponential matrix
and has analogous properties. A system of equations can be solved given the
initial conditions. Bagley has shown (2:17) that the initial values of the fractional
derivatives are identically zero. The complete solution resembles the traditional

state solution:

L
x(8) = By (ach) x(0) + [Eyla(£-0)*) Bu(c) dr (8)
0

The solution technique for fractional order differential equations and
integer order differential equations are similar. The following transformation on

the characteristic polynomial clears the fractional exponents:
r,=zxr¥ (9)

where

r; = variable in integer order characteristic polynomial

r = variable in fractional order characteristic polynomial
This change of variables effectively increase the order of the characteristic

polynomial by a factor of N¥. The roots of this chatacteristic polynomial are the

arguments of the Mittag-Leffler functions.




There are several benefits to this solution technique. The Mittag-Leftler
solution is analogous in practice to the integer order solution. Consequently,
closed form solutions can be written down easily using traditional techniques. For
state formulations, the eigenvalues of the plant matrix are the arguments of the
Mittag-Leftler functions. These eigenvalues are the "tractional poles" of the
system and can be plotted in the complex plane. The complex plane containing
these roots is a Riemann surface (7:303). Figure | shows the Riemann surface
and an example mapping between the fractional aud integer order spaces for g

equal to 1/3:

X .
s X
’ :
4
X X !
; z°
’
3
.
N
N
X \‘ X
Y
N X
X v,

Figure 1 - Riemann Surface and Mappiﬁg to the
Integer Complex Plane
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To ge from a fractional space to the integer space, the fractional space must be
transformed by z/®. The wedge centered around the poritive real axis on the
Riemann surface which is 360° g wide is the principal branch of the
transformation A=(4,® and is called the primary Riemanr sheet. In Figure 1, the
boundary of the primary Riemann sheet is at * 60°. The corresponding
boundary 1n the integer space is along the negative real axes. The roots nn the
primary Riemann sheet are the only roots mapped onto the integer order complex
plane. The remaining roots map to other Riemann suifaces ( not shown ). The
roots on the other surfaces determine much of the fractional behavior. The plane
containing the entire Riemann surface will be referred to as the g-plane. For an
integer order system posed in fractional equatjons, the roots on the g-plane are
syrametric with respect to the boundaries between the lifferent Riemann sheers.
Porticns of the Mittag-Leftler functions add out and le. ve the traditional
exponential solutions. [t wiil be shown later that the concept of the g-plane is
useful from a design standpoint.

There are also some disadvantages irherent in Mittag-Leftler solution
technique. The most obvious is that the Mittag-Leffler function is, by definition,
an infinite sum. Consequently, using the definition airecily i o jnerical
calculations is impossible. Computation enforces truncating the series which can
lead to convergence problems. Anothe: difficulty frota a design standpoint is the
lack of understanding the transient behavior of Mittag-Leffler functions. This
compounds the problem of determir ing the nuiaber of terms necessary in

computation.




The I.aplace Transform Solution

The Laplace transform has been shown by many (9:2047; 6:138,141-143;

12:247-275) to have analogous use in the representation of fractional order

differential equations. The familiar differentiati.n . - ~crty is still valid:
LID[x ()] = s*Lx(L) ., a<l (3.0)
where
LUx(e)] = x(s) = [ x(U)edt (11)

A
The difficulty in this technique arises in the calculation of the inveise Laplace
t.ansform, Bagley and Torvik have shown the calculaticn of the inverse Laplace
transform for the impulse response of fractional dificrential equations {6:141-143).
The impulse response was solved for because it leads to most particular sotutions
of interest through cuavolution. T inverse Laplace transform is calculated using
contour integration in the complex plane. The inverse Laplace transform of a

function X{s) is defined as:

Yolm

x(£) = =L ] X(s) et ds (12)

nd

o

il

Y- 10

The specific contours of the integration are shown in Figure 2. Contour 1
becomes the inversion integral as R approaches infirity. The result is the 1esidues
at the poles. Contours 2, 4 and 6 can bz shown to be zero as R approaches
infinity and p approaches zero (6:142). Contonrs 3 and 5 are the portion ¢ * 1112

integration that are affected by fractional order equations. Since these integrals

N—
-
—
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Figure 2 - Contours ofnintegration Used to
Evaluate the Inverse Transform of the
Inpulse Response (6:141)

lie along the branch cut ( that is. the negative real axis ), their combined
contributicn is termed the branch cut integral. Since their directions are opposite.
their contribution is their ditference. For integer cases. the integration of contour
3 is equal to 'ne integration of contour 5 and their ditference is zero. For
fractional cases, the ir.iegration of contour 3 is equal to the conjugate of the
integration of contour 3. In general, they do not sum to zero.

The impulse response of a fractional order differential equation is:

x() =Y e <1(e) (13)
K=1




where
I(t) = branch cut integral
The residues can be found by the "limiting process” just as in the integer order

case (6:142). Specifically,

Cp = lim { (s - Iw,} X(s) } (14)

-0,
> “')K

For a Laplace transtorm of the form

1
X(s) = ——
. ; (15)
Y K;sh
-1':0 J
where
K, = real constants
the branch cut integral can be shown to be
2 0]
L o E Kj'r“'sin([}jﬁ)]-e‘" ]
I(c) = = f 30 dr
H3
0

(16)

[t s obvious that the evaluation of the branch cut integral is less than trivial. It
should be noted that the branch cut integral is always bounded and stable due to
the arguments of the exponential in the numerator of the integrand. It is also
ob ious t1om the exponential that the branch cut integral b o maximum
magritude i time equal o zero.

The Lapiace transform technique does have some obvious advantages. The

exponentials associated with 1he response are easily determined. It is these




exponentials that determine the stability of the system. Also, the exponentials
allow for some understanding of the overall response of the structure. This
technique sums all of the "fractional” behavior into the branch cut integral. The
integral can be analyzed to determine which coefficients minimize or maximize its
magnitude. Bagley has shown that the fractional order solution is continuous
everywhere (1:73-76) ( as could expected if it were modelling structural motion).
Consequently, the initial value of the integral ( which is also its maximum
magnitude ) is simply the negative of the sum of the residues for a system starting
from rest. The primary disadvantage of the Laplace transform technique is that

the evaluation of the integral itself leads to approximations when numerically

implemented.




1. The Half Order Case

Up until now, the focus has been on fractional order differential equations
in general. Now, the half order case will be looked at exclusively. This is due to
some favorable features of the g equal to 1/2 case. Aspects from both of the
solution techniques presented will be discussed.

For the halt order case. the state vector will be twice as large as the integer
order state vector. For modelling the dynamics of a structure, the integer order
states are the position and velocity of the structure. Now, the 1/2 derivative
between position and velocity will be sensed as well as the 3/2 derivative between
velocity and acceleration. The model of a system is assumed an integer order
representation. It must be posed in the fractional order equations to allow for the
additional states being sensed to appear in the mathematics.

Given the mode] of a structure, it can always be put in the following form:

DY*(x) = ax + Bu {(17)
where
X = state vector

u = input vector

A = plant matrix

B

control matrix

The above half order state equation will be the starting point for the control

algorithm discussed in the next chapter.




The Half Order Mittag-Leftler

The half order Mittag-Lettler function is defined as:
o Lk

Eyp () EEO T - 53 (18)
When the above equation is looked at caretully, it is seen that the sum includes
the definition of an exponential. Indeed, any rational g of the form 1/N would
lead to an embedded exponentiul. What is left if the exponential is extracted is
the half integral of an exponential. The definition of a fractional order integral
can be found directly by integrating the definition of the fractional derivative one

full time. The Riemann-Liouville §-order fractional integral is defined as (5:307):

_HEmT) 4 (19)
)

It is a linear operator just like the fractional derivative. The half order Mittag-

Leftler function can now be writien as
s o'f’*”{e“zc] (20)

where

o = constant ( real, imaginary or complex )
It should be noted that if ¢ above is replaced with -¢. the only change in the
above equation is the sign of the half integral. To investigate the stability of the
half order Mittag-Leftler function. the half order integral of an exponential must

be characterized.

——
N




Applying the definition from Eq (19) to an exponential yields:
oz PR
S [Sra (21)
A tl/a

The above equation is a disguised form of the incomplete gamma function. The
(22)

incomplete gamma function of 1/2 is:

[
v(1/2,¢6) = f—e_—:,-dr
A Ti/2
Consider the change of variables
T = 61 dt = ¢*dn (23)
(24)

-o%n

z6™*
_ \-/_sz —
o N7

an

®

The definition can now be written as

v(1/2,¢)

The constant brought outside of the integral can not be simplified without

changing the meaning of the expression. If 1 is now allowed to approach infinity

° -
&

=

e 4

a)

- e
v

to determine asymptotic behavior, the following is the result:
N 7o 3 P .:“':’l .
!(1r’i,"°. = r¢i1/2) _ ['.,,Gﬂ (25)
Jo? o AR
Combining Eqs (20). (21) and (23). it is now seen that tor large 1.
- (26)

The above expression contains all of the stability information. It shows that for

large ¢ any ¢ in the right halt side of the complex plane leads to the sum of two




identical exponentials while any o in the left half side leads to their difference.
Theretore, all arguments of the Mittag-Leffler tunctions that have negative real
parts are stable. The arguments with a positive real part that are smaller than the
magnitude of their imaginary part will vield stable solutions since the square of the
argument has a negative real part.

For any physical system, the Mittag-Leffler functions will appear in
conjugate pairs analogous to exponentials for integer order <ystems. Also, the
coefficients on conjugate pairs will themselves be conjugates. Expanding

conjugate Mittag-Leffler functions yield

(a + bi) E,,,[(c + di) t¥?) = (a - bi) By, [(c - di) £¥?]) =
2el¢®-dV¢e(a-cos(2¢dt) - bsin(2cde)] + (27)
(a + bi) (c + di) 'fl/z[e(c‘di)zc] .
(@ - bi) (¢ - di)- fY/¥etc - an?]
where
a,b,c,d = real numbers
The importance of the above equation is numeric in nature. The exponentials
have been extracted and consequently can be calculated exactly. In this manner,
only half of the solution has to truncate an infinite sum.

As previously mentioned, the primary Riemann sheet is a wedge centered
around the positive real axis in the g-plane which is 360° 8. For half order
systems, the primary Riemann sheet is the entire right half side of the plane. Only
half of the Mittag-Leffler functions for a given system will have their arguments on

the primary sheet. The significance of this will be explored later.

17




The Half Order Branch Cut Integral

The Laplace transform method yields the residues and the branch cut
integral in a straight forward manner. The poles are found using the "limiting
process” and the branch cut integral can be simplified from Eq (16). For a system

of the form

X + aD¥2(x) + bx + cD¥?(x) + dx = f(¢t) (28)
where
a,b,c,d = real numbers

the contribution of the branch cut is

- 1 % [Cr1/2 _ ar3/2] e-ft 29
I(t) n[{ e s e vy AL

From the above expression it is obvious that for @ and ¢ identically zero, the
branch cut integral is zero. For a given integer order system model, the smaller
the fractional gains are, the smaller the contribution of the branch cut integral (as
expected). As previously mentioned, the magnitude of the branch cut integral is
largest at time zero because of the decaying exponential in the numerator of the
integrand. The denominator of the integrand will become small as the integration
variable r passes by the roots of 17-br+d. Consequently, the integral will tend to
get large - especially if their are positive real roots. The negative sign only
changes the sign of the roots of r*-+br+d which is the original form of the equation
with ¢ and ¢ identically zero. Therefore, given the coefticients of the fractional

order terms, the branch cut integral will be minimized if the original system is

18




purely oscillatory. If the roots of the original system are real, the fractional order

terms will have a dramatic effect on the solution.

Hvbrid Analvsis

The two solution techniques can be used in parallel to better understand
the nature of the fractional order solutions. The Mittag-Leffler solution posed in
the B-plane is elegant but does not easily lend itself to interpretation. The
expansion of the Mittag-Leftler function will produce an exponential, but it is not
necessarily the pele of the system. Consequently, the relevancy of the pole
structure is not immediately obvious. The Laplace transform solution, however,
explicitly separates the fractional nature of the response from the integer order
exponential solution. Therefore, the poles of the system will be known and can be
identified.

If the g-plane and the pole structure on it undergo the transformation z7,
the system will be posed in integer space. Any pole on the primary sheet will be
squared and placed on the integer order complex plane. The other poles will be
placed on other sheets of the Riemann surface. The poles on the primary
Riemann sheet are the actual system poles while the poles on the other branches
are accounted for in the branch cut integral.

In the integer complex plane, any pole in the right half side of the plane
causes instability while any pole in the left half side is stable. An equivalent
statement is any pole with its phase magnitude between 0° and 90° is unstable

while poles with their phase magnitudes between 90° and 1807 are stable. When a




complex number is squared, the magnitude is squared while the phase is doubled.
Therefore, roots of a half order cquation on the primary Riemann sheet with a phase
magnitude less than 45° are unstable while roots with phase magnitudes between 45°
and 90° are stable. For fractional orders other than 1/2, the same type of phase
magnitude analysis determines stability.

The above conclusion is outlined by the previous stability analysis of
Mittag-Leffler functions and the expression for the branch cut integral. The
Laplace transform analysis showed that the poles of the system determine the
stability while the fractional behavior contained in the branch cut integral is always
stable. This shows that the poles in the g-plane on the primary sheet determine
stability while those off of it are ahvays stable. This is restating the 45° stability
criteria in the g-plane demonstrated in the analysis of the half order Mittag-
Leffler function. It was shown that half integrals negate the growing exponentials
associated with the non-principal roots of the system as time approaches infinity.
In fact, the fractional behavior is simply the difference between the exponentials
associated with non-principal roots and the sum of all the half integrals associated
with the system. Armed with a better understanding of fractional systems, a

control algorithm can be formulated.




IV. Pole Placement in the g-plane '

An understanding of the fractional order behavior enables the design of a
control scheme posed in the fractional order notation. Design in the g-plane is
now possible since the relevancy of the pole structure is known. A pole
placement algorithm can be devised to select the position of all of the roots of the
system. Although only the g equal to 1/2 case will be analyzed, the results will

generalize.

Restating Eq (17) for convenience, the model of the structure is in the

following form:

DY¥2(x) = Ax + Bu (30)

I

where

X = state vector

1 = input vector
A = plant matrix
B = control matrix

It should be noted that the dimension of the input vector Is equal to the number

of actuators on the structure. To specify the control law, the input vector will now

be defined as:




where

K = gain matrix
This is tull state feedback of the system states. The number of rows in the matrix
K is equal to the number of actuators on the structure. For multiple actuators,
the solution is not unique for fructional or integer order systems. External inputs
can be ignored without loss of generality since the closed loop pole structure will

determine system behavior. The equation that determines the g-plane structure is

DY*(x) = Fx (32)

where

F=4-BK
The individual elements of K can be chosen to place the roots of the system at
desired Jocations. Pole placement on the g-plane is the same algorithm as pole
placement on the integer complex plane. However, increasing the complexity of
the system by adding twice as many gains is pointless unless there is a benefit to
be realized.

Although all of the cigenvalues must be specified to uniquely determine the
solution, some eigenvalues have more impact on the solution than others. The
fractional formulation shows that regardless of the position of the roots on the left
half side of the g-plane, the solution is always stable. Only the eigenvalues on the
primary Riemann sheet must be specified 1o determine system stability.
Consequently, the poles on the right half side of the g-plane can be chosen to be

stable while the poles on the left hand side can be allowed to vary. This wiil




affect the transient behavior of the system by intreducing additional damping.
The additional damping is the result of energy decaying out of the system
proportional tu the fractional states and not just the velocity of the structure.

The damping added by fractional feedback is commendable for the
application of motion suppression but may sometimes be modest. A system
warranting active damping will by oscillatory in nature. The previous analysis of
the branch cut integral showed that an oscillator; system gives rise to a smaller
contribution than a heavily damped system. The actual size of the contribution is
problem specific. Regardless if it is small or not, the solution still has a very
favorable quality. Permitting the roots to vary on the non-principal sheet allows
for unprecedented ftlexibility in the pole placement algorithm.

Let the desired intezer order poles of the system be:

Pr= (P11 Pz Prs. -+ Pra} (33)
where
P, = set of desired poles on complex plane
The transformation of Eq (9) is used to determine the pole location on the g-
plane. Specifically,
p, = [ Pr, " (34)
Define

Q(r) = (r-p)(r-p)(r-py) ... (r-py (35)




where

Q(r) = omega polynomial
The roots of this polynomial of order n are the desired poles un the primary
Riemaan sheet. The characteristic equation for the fractionai vrder system is a

polynomial of order 2n:
| rT1-F| =0 (36)

where

I = identity matrix
The above equation must contain the omega polynomial as a tactor to guarantee
the desired pole location on the primary Riemann sheet. Synthetic division of the
omega polyromial into the characteristic equation yields a polynomial of order 1

with a remainder of order n-1:

(37)

where

¥ (r)

m

psi polynomizl

R(r) = remainder polynomial
It is evident that the psi and remainder polynomial are constrained to be zero.
The psi polynomial contains the # non-principal roots of the system. The Routh-
Hurwitz stability criterion (11:222-224) can be used on the coefficients of the psi
polynomial tc constrain the roots to remain in the left half side of the g-planc.

The result will be 1 inequality constraints. The reason the g equal to 1/2 case was




chosen is now evident. It is the only fractional order that has the branch cut in
the g-plane on the imaginary axis. These constraints would be more difficult to
determine for other fractional orders. As already mentioned, the remainder
polynomial is of order n-1. It must be zero for r equal to all n principal roots of
the system. This is only possible if all n coefficients are identically zero. This will
produce n equality constraints.

In summary, the tractional order pole placement algorithm situates the
roots on the primary Riemann sheet at their desired locations while allowing the
remaining 100ts to vary on the non-principai sheet. Equality and inequality
constraints between the gains are generated. This added flexibility may allow

decreased sensitivity to errors.

o
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V. Optimization fo- Robustness

The previous chapter discussed pole placement in the g-plane and
concluded with an algorithm that produced constraints. The next logicai step is to
optimize the algorithm for an advantageous quality. The most redeeming attribute
a controller can possess is an insensitivity to errors in the system. This insensitivity
to errors is a property called robustness. Although robustness is easily understood
in principle, 2 mathematical expression .neasuring it accurately can be less than
trivial. The object is to determine if the added latitude of the fractional pole
placement technique can be used to make the poles on the primary Riemann

sheet more robust.

Condiiwor_Numbers

A beneficial property of the Miti..,-Leffler solution to fractional order
equations is the conventional matrix notation. This allows linear system theory to
be applicable. One methor! to characicrize the sensiiivity of eigenvalues in a
matrix is determining the condition number associated with the matri of
eigenvectors. The condition number associated with the eigenvector inatrix is

defined as (10:1131):

c= x| X 21 (38)

where

¢ = condition number




X = matrix of eigenvectors
The condition number is a measure of how singular or ill conditioned an
eigenvector matrix is. Alternatively, it is also measuring the "amount of
orthogonality" between the eigenvectors of the system (10:1141). The more
orthogonal the eigenvectors of the solution are, the better. A robust system has
solutions that are as decoupled as possible so that an error in one mode wil’
primarily affect only itself. A high condition number characterizes an il
conditioned matrix which will magnify errors. A condition number of one denotes
a perfectly conditioned matrix which will minimize the effect of errors. Only a
normal matrix is perfectly conditioned since it has orthogonal eigenvectors.

For application to the pole placement algorithm, the eigenvalues do not
need to be equally robust. The eigenvalues on the primary Riemann sheet are the
only ones that determine stability if the others are constrained to remain on their
own sheet. Traditional optimization of the above definition for the condition
number should not be used since halt of the eigenvalues do not need to be
optimized. The sensitivity of specific eigenvalues needs to be measured
mathematically. To accomplish this, the asymmetric eigenvalue problem must be
exploited. The asymmetric eigenvalue problem consists of two eigenvectors for

each eigenvalue:

Fv, = \.v, yiTF = Lys (39)

where




= k" eigenvalue
v, = right eigenvector of i,
v, = left eigenvector of 4,
The right eigenvector is the traditional eigenvector of the solution. The two
eigenvectors must now be distinguished between so there is no confusion. The

condition number of a specific eigenvalue is defined as (10:1131):

i
o = Iy, 1vel, - (40)
X lye = vl

where
¢, = condition number of k™ eigenvalue

v, = right eigenvector of 1,

¥, = left eigenvector of A,
Although the above does not look like Eq (38) at first glance, the two definitions
are very similar. It each right eigenvector in the system is normalized to unity
length, the inverse of the right eigenvector matrix is equal to the transpose of the
left eigenvector matrix (10:1140). The relevancy of the magnitude of the above
condition number is the same as tor the previous condition number. A low
condition number denotes low sensitivity to errors. The first definition did not
distinguish between eigenvalues in ity measure of robustness. Consequently, each
eigenvalue was weighted equally. The above definition will allow each eigenvalue
to be weighted separately or not at all.

The advantage of the above expression is that the robustness associated

with an eigenvalue is written in terms of its own eigenveciors. Forcing all of the
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right eigenvectors of a system to being orthogonal is exactly the same as forcing
the left and right eigenvectors of each eigenvalue to being identical. For real
eigenvalues, the condition number is simply the reciprocal of the cosine of the
angle between the left and right eigenvectors. It should be noted that a general
expression for an eigenvector will contain the associated eigenvalue in it.

Consequently, the sensitivity of an eigenvalue is related to the eigenvalue itself.

The Cost Function

The cost function in an optimization algorithm is the expression that will be
minimized or maximized subject to possible constraints. A cost function should
accurately represent the property it measures while remaining as elementary as
mathematically possible. For this application, the eigenvalue condition numbers
can be modified to facilitate computation. The numerator and denominator of Eq
(40) both calculate the magnitude of complex expressions. In practice, this leads
to taking the square root of entire complex polvnomials. If Eq (40) is squared,
this can be avoided without losing the significance of the condition number. Tt
should also be noted that the condition numbers of conjugate eigenvalues are
identical. Consequently. only one eigenvalue per mode must appear in the cost
function.

The cost function will be subject to the equality and inequality constraints
derived in the pole placement algorithm. The constraints can either be appended

to the cost function using tae method of Lagrange multipliers or substituted into

the expression to solve for only independent variables. The left and right




eigenvectors for a given eigemvalue can be written symbuolically in terms of the
gains, but only half of the gains are independent. Considering the large number
ot dependant gains in the problem. using redundant variables would prove to be
burdensome. The equality constraints can be solved for half of the gains and
substituted directly into the condition numbers. In conclusion, the cost function
can be written as the sum of the squares of the condition numbers associated with

each mode on the primary Riemann sheet:

o
o

J=Y ci (41)

ne
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where
J = cost function
n = order of tractional order plant matrix

¢, = condition number associated with the k™ mode

Controllable Canonical Form

It has already been mentioned that some state formulations are better to
work with than others. One sucl. representation is the controllable canonical
form. It will be used exclusively in the remainder of this investigation due to one
of its favorable properties. The right eigenvectors of the system can be writien in

a general form that facilitates calculation. This form is expressed in the following

partitioned matrix. For a system with & number of masses.
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0 I
a[0 2]

where

A = plant matrix ( from state equation )

0 = zero matrix ( n-x by x)

I = identity matrix ( n-x by n-x )

M = mass matrix ( Nx by Nk )

C, = stiffness matrix ( Nx by Nk )
The matrix B also has a standard form. It contains all ones in the bottom row and
zeros everywhere else. For a system expre ,sed in controllable canonical form, the

right eigenvector can easily be written as a function of the eigenvalue and mode

shape. Specifically,

ve=0d, b, ... § Ady Ad,. .. AP AZD, A2, .. A2,
I’)K-lcbl }.K'lq}z . A'K-l(bx] T
where
A = eigenvalue
v = right eigenvector associated with 4
¢x = structural mode shape of mass x

To appreciate this, consider the right eigenvector problem associated with an

eigenvalue A:




(A -A)vy =20 (44)

When calculating the elements of v, the top n-x rows of the matrix 4- A7 relate all
of the components of v to the first x components of the vector. This is only
because the system model is in controllable canonical form. The first
components are termed the structural mode shapes. The relationship between the
mode shapes can be found from the remaining bottom rows of the matrix A-A/.
This means that the open loop right eigenvectors can all be written compactly as a
function of their own eigenvalue.

When feedback is applied, the relationship between the modes becomes
more complicated. The expression for the right eig *nvector can still be written as
shown in Eq (43), but the relationships between the mode< will in general change.
The relationships are determined from any x-I rows ot the bottom i of the closed
loop matrix F. This result yields a special case for the single actuator application.

When only a single actuator is used, a single row of gains will appear in
one of the bottom x rows of the matrix F. Since only x-1 of the bottom x rows of
matrix F are necessary to determine the eigenvector, one of the rows vields
redundant information. This means that the relationship between the structural
modes can not change when only one actuator is employed. The only "variable” in
Eq (43) will be the eigenvalue itself. For an integer order system, the eigen alues
are unique and therefore the eigenvectors will be also. Indeed, this is the reason

robustness is not an issue in single actuator integer order cases. For the fractional

(9]
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order system, the eigenvalues on the non-principal sheet are variables that appeai
in the optimization.

The benefit realized from this is in the calculation of the cost function for a
structure with only one actuator. It a closed loop right eigenvector is only a
function of the eigenvalue, then altering the gains within the constraints will not
change the right eigenvector. This means that the 2-norm of the right eigenvector
is a constant and therefore does not affect the optimization. For systems where
the right eigenvectors are only functions of the eigenvalues, the cost function can

be simplitied:

a4yl

&1y - vel?

The cost tunction must be minimized to produce the optimal solution. A
gradient search technique can be implemented numerically to determine the gains
that will minimize the cost function. The remaining dependant gains can be
determined from the equality constraints. If the optimal solution violates the
inequality constraints, the constraints must be applied separately and in
combination to determine the true optimal solution. However, violating the
inequality constraints will not always be harmtul for the application of structural
damping.

For structural damping, the exact transient behavior is not as crucial as
long as the system is stable and damped. If a root of the system is optimized

without applying the inequality constraints und migrates to a stable portion of the

(O3]
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primary Riemann sheet, the transient behavior will be altered but not detrimental
a priori. If the additional pole in the system were lightly damped, the resulting
behavior would not be desirable. If, however, the added pole increased damping
or did not change the damping, the new configuration would be better since it is
optimally robust. In actual practice, it will be simpler to determine only the
equality constraints and optimize subject to them. If the resuit is unfavorable,

then the inequality constraints can be determined and applied.




VI. Comparison of Fractional and Integer Order Solutions

The emphasis so far has been on optimizing the fractional pole placement
algorithm. The focus of this chapter is to compare the results of the algorithm
with traditional results. For the fractional order controller to have extraordinary
value, it should be superior to a traditional controller on the same structure. For
an integer order controller with more than one actuator, the solution must also be
optimized. This is because the multiple actuator case does not yield unique
results. An authentic comparison between fractional and integer order solutions
must compare optimized results from both methods. Consequently, methods to
compare the robustness between integer and fractional order solutions must be

investigated.

Onptimization Differences

There is a fundamental difterence between the fractional and integer order
optimization methods. For an integer order solution, each eigenvalue affects
stability. Consequently, each eigenvalue has equal importance in the cost function.
This is the 1eason that the cost function is traditionally the condition number
associated with the eigenvector matrix (10:1131) as defined in Eq (38). In the
fractional order controller, half of the eigenvalues are constrained variables. This

difference allows the fractional order controller to optimize for robustness in an

additional manner.




For the integer order optimization, all of the eigenvalues are specified.
Robustness is achieved in a system by assigning the eigenvectors so that the
system is as well conditioned as possible. As was previously mentioned, this
occurs when the right eigenvectors are as "orthogonal” as possible. For a single
actuator, the eigenstructure is unique since the relationships between the
structural modes can not change. Consequently, robustness is not an issue.

For the fractional order optimization, half of the eigenvalues are subject to
the optimization algorithm. The eigenvectors of the eigenvalues on the primary
Riemann sheet will be optimized just like in the integer case. The right
eigenvectors will be placed as "orthogonal” as possible. The entire eigenstructure
on the non-principal Riemunn sheet, eigenvalues included, will then be chosen so
that their right eigenvectors are as "orthogonai" as possible with respect to
themselves and the eigenvectors on the principal sheet. For a single actuator, the
fractional order case must still be optimized to determine the eigenvalues on the
non-principal sheet that yield a robust eigenstructure. It should be noted that as
with the integer order case, the single actuator fractional controller can not change

the eigenvectors of the eigenvalues on the principai shect.

Condition Number Analvsis

The most logical basis for comparison of fractional and integer order
systems is the eigenvalue condition numbers. These are the condition numbers
appearing in the cost function of the fiactional order optimization algorithm. The

definition is recalled from the previous chapter for convenience:




% Tzl (o)
where
¢, = condition number of k" eigenvalue
v, = right eigenvector of i,
v, = left eigenvector of 4,

At first glance, it seems legitimate that the integer order system should be posed
in the expanded fractional space to compare results. This would allow direct
comparison of specific condition numbers on the relevant eigenvalues. It should
be rioted, however, that the condition numbers of the integer system posed in
fractional space are not the same as the condition numbers of the original system
in integer space. This is caused by fractional states present in mathematical model
that are absent in the actual integer order system. Consequently, comparing
corresponding condition numbers ir fractional space is not the correct method.

The next logical step is to compare the condition numbers of the fractional
solution to their integer order counterparts in integer space. This would ensure
the fractional states did not interfere in the integer order solution. It appears the
fractional solution would be the more robust if its condition numbers were smaller
than the corresponding condition numbers of the integer system in integer space.
It should be noted, however, that errors in 4, from perturbations O(¢) in the

elements of a square mairix are (10:1131):




€ (47)

where

it = pumber of eigenvalues in matrix
The previous expression shows that the size of a matrix has a bearing on
robustness. This seems intuitive since a larger matrix corresponds to a more
complex system. This would appear to contradict the former assertion. Applying
Eq (47) would dictate that the tractional order condition numbers must be half of
the corresponding integer order ones to be of equal robustness. In actuality, the
sensitivity of an eigenvalue is a function of the eigenvalue itself and not just
through the relationship of the eigenvectors in the condition number. This
relationship is not expressed in the above equation. If the fractional and integer
order solutions posed in their natural space had the same eigenvalues, Eq (47)
would dictate the true comparison. In actuality, the fractional order system has
eigenvalues that are square roots of the integer order eigenvalues. This
complicates the comparison process. The true relationship appears impossible to
generalize explicitly. The actual sensitivity will probably be related to the
eigenvalue by an exponent. Regardless, it should be noted that if the fractional
order condition numbers are less than half of the integer condition numbers the
results are decisive in tavor of the fractional controller. This, however, is a
sufficient condition but not a necessary one. [t is obvious that this comparison is

not globally definitive. Nevertheless. it yields correct results when applicable.




Perturbation Analvsis

The condition number analysis is only conclusive part‘of the time.
Consequently, another comparison technique is required. A traditional
perturbation analysis of the eigenvalues can be done to supplement the previous
section. Deif (8:205-207) has pertormed a perturbation analysis for the symmetric
eigenvalue problem that can be extended to the asymmetric case. The subscripts
will be dropped since the tollowing analysis is valid for any distinct eigenvalue and
its associated eigenvectors. Assume for small e that a perturbed system can be

written as

ﬁD=F+GF1+Gr2*
= ; 2
A, =L +ed, - ek, -
. (48)
Vo =Y ey, +efy, +
Yp =X ¥ &Y ¥ ey, + ...

The right eigenvalue problem for a perturbed system can be written in terms of
the above definitions. The zero order solution is simply the unperturbed
eigenvalue problem. For a first order perturbation solution, all €’ terms or higher
are disregarded. The zero order solution can be extracted from the first order
solution and the reraaining terms can have an e factored out. The result is the

foillowing expression:
Fv, - v = v, = AV (49)

The above expression can now be pre-multiplied by the transpose of the left

eigenvector. By definition, the first and third term are equal and can be removed.




]

The above expression can be solved for 4, and substituted back into the definition

of 4, Therefore, the first order perturbation solution is

(50)

This solution is slightly different than the first order soluticn from the previous
section. The condition number does not explicitly appear although the expression
contains both eigenvectors.

The perturbation walysis has some strengths and shortcomings. One
obvious benefit of the above approximation is that individual elements of the
nominal matrix can be perturbed while other elements remain unchanged. This
quality leads to the question of which elements should be perturbed. It is obvious
that any element of the closed loop matrix F that contains a gain will be subject to
errors. The sub-matrices M and C, from the controllable canonical form will
contain modelling errors whether gains are present or not. Perturbatjons in the
main diagonal of the identity matrix could be caused by errors in the actual

integrations of the acceleration signal. All of the elements remaining that are zero

and not affected by a feedback gain will be immune to errors. This is because the
zero elements arise from variable assignment in the model.

Another factor that must be considered is the magnitude of the
perturbations. Each source of error has a difterent averege amplitude. The error
from acceleration integration will be very small. The errors in the gains of a
controller will be larger than integration errors, but may still be rather modest.

The modelling errors may be & magnitude greater than the gain errors. It will
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depend on the specific application. These difterent error sources could demand
difterent weightings for an authentic comparison. Since this 'type of analysis is
problem specitic. the choosing of error magnitudes could be tedious.

The best way to implement the perturbation equation is to perturb each
element of the nominal matrix individually, determine the error in each eigenvalue
from each perturbed element, and sum all of the magnitudes of the errors. This
means that each element subject to perturbations in the closed loop matrix £ must
be perturbed individually. This will enable the determination of the magnitude of
the error. This magnitude is the radius of a circle in the g-plane around the
nominal eigenvalue. This circle will be referred to as the error circle. Given an
individual perturbation € on an element, the perturbed eigenvalue will be
somewhere on the circumference of the error circle. The error radius is obviously
proportional to e since this is a first order perturbation solution. In reality, some
of the errors will sum together and some will cancel out. For a given eigenvalue,
summing the radii of the error circles from each perturbed element will give the
absolute upper limit on the eigenvalue error. This maximum error would occur if
each perturbation constructively added simultaneously. The controller producing
the lowest limit on the sum of errors from all the eigenvalues on the principal
Riemann sheet will be the more robust. The obvious disadvantage of this
comparison technique is that it is extremely time consuming for even a simple
system.

The condition number and perturbation analysis can both be used to

comprre results. The condition number analysis is inconclusive in many cases but
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is simple to implement. When applicable it yields results quickly. The
perturbation analysis is valid for all cases but is laborious to execute. Also, the
desired weightings for each error source must be determined. This task could also
be very burdensome if all of the error sources are modelled. The analysis could
be simplified by only considering the larger sources of error. The outcome of
these comparisons will dictate whether the fractional controllers are truly more

robust.




VII. Example Problems

This chapter will present three example problems applying the techniques
from the previous chapters. A model of the structure will be assumed. The
damping of the closed loop response will then be specified. The damping of the
actual response will be greater than the specitied damping due to the fractional
feedback. As previously mentioned, this additional damping will be small for a
lightly damped structure. The pole placement algorithm will then be optimized
for robustness. Lastly, the fractional and int=ger order solutions will be compared.

Although the following problems yield precise numeric solutions, a great
deal can be learned from the general implications of the results. All of the
problems presented will contain only one actuator. This does not skew the utility
of the algorithm but rather emphasizes its forte. Specifically, any increase in
robustness from the fractional order controller must come from the choice of
eigenvalues on the non-principal sheet since the eigenstructure of the principal
roots is fixed for both integer and fractional order controllers. Using only one
actuator also allows the simplificd version of the cost function to be applicable in
the numerical optimization. For a structure with one actuator implementing full
state feedback. the associated gains e contained in a vector which is the same

length as the state vector. This drives the matrix B of the state space formulation

to also being a vector.




The rirst two examples will model a structure as a single mass system. The
last example will model the structure as a two mass sysiem. For examples 1 and

2, consider the following model:

AU AR AN AN NN

— (1)

3

Figure 3 - Single Mass Model of
Structure

The condition number associated with the mode of the mass will be subscripted

with an m to avoid contusion with the viscous damping coefficient c.




Example Problem 1
Given:
m = 1 kg k = 10 N/m ¢ = 2 N/m/s

The differential equation associated with the open loop response is
W+ 2w + 10w = £(¢t) (51)
The desired locations of the system poles will be:
P, = (=5+i, -5-1i) (52)

It should be noted that these pole locations produce heavy damping.

Integer Order Solution

F, = 0 . kKT=116 8] c,. = 13.5 (33)
T |-10-K, -2-K, =z - L
Fractional Order Solution
0 1 0 0
0 0 1 0
= (54)
F 0 0 0] i

~10-K, -K, -2-K, -K,

The constraints on the gains from the pole placement algorithm are:




K, - (5.1) K, - (2.27) K, = -24.787

K, + (0.445) K, - (4.9) K, = 3.56

(55)
K, + (0.445) K, > 2.9

K, > -0.445

As long as the equality constraints are satisfied, two of the eigenvalues of matrix F
are equal to the square roots of the desired pole locations. The inequality
constraints keep the non-specified eigenvalues off of the primary Riemann sheet.

Ortimizing the algorithm subject to the constraints yields:
T (56)
Kf=1[-9 0.3578 3.2563 =-0.3577 ] Cp = 1.4571

It should be noted that the inequality constraints were never active.
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Example Problem 2

Given:

m=1kg k = 101 N/m ¢ = 2 N/m/s

The differential equation associated with the open loop response is

w = 2w + 101w = £(¢) (57)
The desired locations of the system poles will be:

P, = (-2+81, -2-81i) (58)

This system will be moderately damped.

[nteger Order Solution

F, = 0 t K= 1[-33 2] =4 3125(59)
T 7 1-101-K, -2-K, 2z T Cm = &
Fractional Order Solution

0 1 0 0
0 0 1 0

- (60)
F 0 0 0 1
-101-K, -K, -2-K, -K,

The constraints on the gains from the pole placement algorithm are:




X, - (8.25) K, - (29.15) K, = -49.49

K, + (3.535) K, + (4.25) K, = 7.07
(61)
K, + (3.535)K, > -6.25

K, > -3.535
The significance of the constraints is the same as before. Optimizing the

algorithm for robustness subject to the constraints yields:

62
KT = [ -100 3.03 4.625 -3.03 ] Cm=1.8606( )

It should be noted that the inequality constraints were never active.




The two previous examples yield excellent results. The comparison of the
examples with their integer order counter parts is straighttorward since the
condition number analysis is applicable. For borh examples, the fractional order
condition numbers were less than half of their corresponding integer order
condition numbers. Therefore, the fractional order solutions are more robust in
each case. As a side note, the condition numbers of the eigenvalues of the non-
principal roots were the exact sume as those for the principal roots in both
examples. Although not explicitly calculated. the contribution of the branch cut
integral will be much larger for Example Problem 1. This is due to the heavy
damping desired for the closed loop response.

A trend can also be noted in the optimal solution for these single mode
cases. Specifically, the position of the poles on the non-principal sheet followed
the same general pattern. The unspecified roots were placed at the negative
reciprocal of the roots on the primary Riemann sheet. This is no accident. The
right eigenvector of a principal root is orthogonal to the right eigenvector of the
negative reciprocal of the root. The associated conjugate eigenvectors are nearly

orthogonal. Although not explicitly proven. this is a general result for a single

mode case.
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Example Problem 3

Consider the following model:

e vrrp——
CIIIEIIIL,

Given:
m, =1 kg k,
m, = 2 kg k,

The differential equations associated

Figure 4 - Multi-

Mass Model of Structure

i

15 N/m f(t) =0
= I8 N/m

with the open loop response are:




m oo [in] fkiek, -k, wl] -, £,(6) (63)
0 m,| W, -k, k| |wy) £, (¢t)

It should be obvious that the above system is purely osciilatory. The desired
damping will be 2% on each mode. The closed loop response will be very lightly

damped. This yields the following:

P, ={-0.0375+1.87241, ~0.0375-1.87241,

; : (64)
-0.124+6.2031, -0.124-6.2031 )
The branch cut integral for this example will be small.
Integer Order Solution
0 0 1 o]
0 0o 1
Fo=| 0 (65)
o ~-33 18 0 0
9-K, -9-K, -K, -k,|
kf=1-0.0340.019 -0.384 0.323 ]
(66)

c, = 1.2769 c, = 3.2979

N
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Fractional Order Solution

0 0 1 0 0 0 0 0]
0 0o 0 1 0 0 0 O
0 o 0 0 1 0 0 O
ol 0 0o 0 0 0 1 0 0 (67)

0 o 0 0 0 0 1 0
0 o 0o 0 0 0 o0 1
-33 18 0 O 0 0 0 ©

| 9-K, -9-K, ~K, -K, ~K; ~K; ~K, ~K,

There are four constraints of equality and inequality each. In light of the last two
examples, the equality constraints will be determined first and the optimal solution
will be calculated. If the result yields eigenvalues that migrate across the branch

cut and decreases damping. then the inequality constraints will be determined and

applied. The equality constraints are:

K, - (5.48) K + (1.20) K, - (18.92) K, + (4.48) K, = 2.454
K, + (2.20) K5 - (2.60) K, + (9.33) K, - (6.31) Ky = ~1.665(6g)
K, + (3.27) K - (0.35) K, + (5.54) K, - (0.72) K, = ~1.371
K, - (0.82) K, + (2.13) K, - (2.25) K, + (2.22) K, = -1.003
When the equality constraints are optimized, the result is:
KT =1 -0.627 -2.658 ~0.077 1.155
n.072 0.470 -0.356 -0.852 ] (69)

¢, =1.1777 c, =~ 4.7017
The inequality constraints do not need to be calculated because the optimized

result yielded roots that remained on the non-principal Riemann sheet.

(¥4
o




The roots on the non-principal Riemann sheet did not follow the trend
from the single mass case. Two of the roots did, however, move toward the unit
circle on the g-plane where their reciprocal eigenvalues were. The other two
moved away from the integer order symmetric pattern. The pole assignment did
not lend itself to any other interpretation. It did show that the optimal solution is
not found from optimizing each mode separately. 1f each mode were optimized
separately, all of the non-principal roots would be at negative reciprocal
eigenvalues of the primary roots.

The results from Example Problem 3 are not conclusive using the condition
number analysis. For ihe fractional solution, the first mode ( the lower frequency
mode ) has a lower condition number than the integer solution while the second
mode has a higher condition number. The fractional order cordition number on
the lower mode is not less than half of the integer order condition number.
Therefore, a further analysis is required on the first mode. The fractional order
condition number on the second mode is higher than the integer order condition
number. It would appear that the second mode is more robust for the integer
solution. Regardless, the results are inconclusive and the perturbation technique
must be applied. As a side note. the condition numbers of the eigemvalues on the
non-principal shect were about the same as those that were optimized on the
principal sheet.

It will be assumed for the perturbation analysis that the errors in the
model of the structure are much greater than all of the other sources of error.

This assumption is usually justitied since the model is often determined

(¥
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experimentally. Conversely, current integration techniques and gain accuracies are
rather reliable. The stated assumption dictates that the perturbations will only be
in the sub-matrices M and C, of the plant model matrix 4. Since only one error
source is being modelled, the weighting will be unity on each element.

The perturbation analysis is a linearization around a nominal solution.
Consequently, the error from a perturbation e will be proportional to € itself. As
previously described, the analysis is best applied by perturbing each element of the
sub-matrices A and C, indinvidually by € and summing the maximum magnitude of
the errors for each eigenvalue on the primary Riemann sheet. The result will be a
radius R of maximum eigenvalue error. The results of applying the perturbation

analysis are summarized below.

Inteser Order Solution

Mode One: R, = 0.529 ¢

Mode Two: R, = 0.294 ¢

Fractional Order Solution

Mode One: R, = 0810 ¢
Mode Two: R, = 0.230 ¢

The first mode appears more robust for the integer order controller while the
second mode appears more robust for the fractional one. This example problem

produced mixed results.

N
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VIII. Closing Remarks

A control algorithm was derived that utilized fractional order states. The
algorithm was best suited for active damping due to unusual transients inherent in
fractional order systems. The algorithm was then optimized for robustness.
Example problems were presented employing the derived techniques. The
resulting solutions were then compared to the solutions from a traditional

algorithm.

Conclusions

Control algorithms implementing fractional order feedback have a
promising future. Only one fractional algorithm was considered in this
investigation but the results were tavorable. The fractional order controller was
more robust than the integer order controller for the single mass cases. The same
algorithm produced mixed results on the multi-mass example problem. It should
be noted that only one multi-mass case was examined which makes decisive
judgments difficult. Regardless, the conclusion is that feedback of fractional states

can often produce a more robust system than traditional techniques can.

Recommendations

There are many possible avenues of future investigation. The first two
example problems produced positive evidence that the fractional order controller
f

has value. Although the third example problem had mixed results, there are still
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multi-mass cases that may benetit globally from a fractional order controller. The
most probable would be multi-mass systems which have inherent condition
numbers much worse than the example did. The example was very well
conditioned to begin with. On actual structures, the condition numbers can be in
the hundreds or even thousands. The fractional order controller may prove

superior in such cases.

There are some specific topics that need to be investigated in the future:

Cost Function

The cost tunction employed only optimized robustness for the principal
roots of the system. It was asswmed that the non-principal roots would remain on
the non-principal sheet and consequently not affect stability. If, however, the non-
principal roots are poorly conditioned. they could migrate to the unstable region
of the principal sheet driven by errors. Consequently, a cost function accounting
for the conditioning of the non-principal roots should be investigated to negate
this possibility.

Furthermore, the condition number associated with an eigenvalue may not
be the best measure of robustness. The condition number assumes possible error
in every element of a given matrix. The perturbation analysis revealed that not
every element in the closed loop matrix is subject to errors. Only certain elements

will be subject to errors. Also, the condition number assumes unity weighting for




each error source. In reality, this will seldom be the case. A better cost function

ay be realized by using modified equations from the perturbation analysis.

Other Fractional Orders

The inequality constraints were not active in any of the example problems.
Although not proven, it appears that the optimal solution does not tend to
produce roots that migrate across the branch cut. If this is the case, other
tractional orders should be investigated since the only reason the 1/2 order case
was explored was so that the inequality constraints could easily be determined.
There are an infinite number of other tractional orders that could be utilized.

Some fractional orders may have some inherent benefits not perceived at present.

Other Fractional Control Algorithms

Only one type of fractional order controller was investigated during this
study. There are a large number of other control schemes that could be modified
to implement fractional feedback. Other algorithims may harness the additional

information from the fractional states in a better or more efficient manner.

Case Studies

Only three examples were presented in the text. There are whole classes
of examples not studied that may benefit from this algorithm. The class of
problems with the most to gain would by systems that are inherently ill-

conditioned.
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