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Preface

This study was initiated to examine the feasibility of applying fractional
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results yielded evidence that the application of fractional order control laws have

merit and should continue to be investigated.
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Abstract

The purpose of this investigation was to determine if introducing fractional

orde.r states in a feedback system was bt..,dicial to overall system performance.

Fractional order differential equations hae been used in the past primarily to

model viscoelastic damping in structures. This study examined the use of

fractional order differential equations in formulating a control algorithm with

additional degrees of freedom. The algorithm presented is best suited for active

structural damping. Including the fractional order time derivatives in the state

allowed some additional flexibility in choosing relevant control parameters in the

system. Optimization with respect to robu.tness was examined to determine a

solution. Many additional questions arose in this inquiry as to the applications of

fractional order states in control systems.

Viii



AN INVESTIGATION OF OPTIMALLY ROBUST STRUCTURAL

DAMPING THROUGH FRACTIONAL ORDER FEEDBACK

I. Introduction

Objective

The purpose of this investigation is to determine the effects on a system of

artificiallk introducing additional states with the intention of harnessing them in a

control algorithm. These additional states will be determined by integrating the

accelerations on a system by a fractional order rather than an integer order. The

nature of the solutions to the resulting fractional order differential equations will

be determined. The benefits and limitations to adding these other states to the

traditional mathematical model will be explored. The goal is to determine if the

benefits gained from adding the fractional order states outweigh the additional

complications of implementing them.

Motivation

The motivation for this inestigation is current research in digital and

analog fractional order integrators and differentiators. Until recently, the accuracy

of fractional order integrators and differentiators wa, too poor for consideration in

a control algorithm. As these integr;!tor. and differentiators beconle better. the

question arises as to how this additional A!t orm:ttion can be lharnessed in, a



constructive way. The possibility of using fractional states in a control algorithm

has been acknowledged (5:309) but not inestigated. This inquiry was initiated in

hopes of using the additional information from the fractional states to improve

system performance.

Background (13:115-112)

The concept of arbitrary order integration and differentiation is essentiall"

as old as traditional calculus. It was rot vigorously pursued at the onset due to

the lack of apparent application in light of the many of uses for traditional

calculus. Joseph Liouville was the first to perform a major study on fractional

calculus. He ,was also one of the first persons to solve differential equations using

fractional calculus. G. F. Bernhard Riemann also developed a theory on fractional

calculus that based its relevant definitions on a generalized Taylor series. Various

other mathematicians defined fractional operations with mixed results. The

contemporary definitions are attributed to Riemann and Liouville. At present.

one of the primary applications of fractional calculus has been modelling

viscoelastic damping in materials L 2- 1416: 5:304-31 1: 12217-75). Traditional

vi-scoelastic material model. are constrained to be functions of integer powers of

the associated frequencies. Fractional calculus .llows the frequenc% dependency

to be of an arbitrary order which bettcr nodcls the properties of the material.

The potential applications of fractional calculus have only begun to be

investigated.



Organization

This report will be organized into eight chapters. The first chapter will

introduce the problem and discuss its background. Chapter 2 will examine

solutions of fractional order differential equations in general. Chapter 3 will apply

the techniques frorn chapter 2 to solve the specific class of fractional differential

equations employed in the ensuing control algorithm. It will also discuss some of

the characteristic behavior of the solutions to this class of fractional order

differential equations. Chapter 4 will develop the fractional order control law.

Chapter 5 will outline the optimization of the control algorithm. The goal of the

optirnization will be to make the system as insensitive to unavoidable errors as

possible. Chapter 6 will examine procedures to compare the results of the

optimized fractional control algorithm to traditional results. Chapter 7 will contain

several example problems and discuss the general implications of the specific

results. The last chapter will consist of the resulting conclusions and

recommendations for future investigation.



I. Solutions of Fractional Order State Equations

Fractional State Equations

A fractional order differential equation is a mathematical expression that

relates a dependant variable to fractional order derivatives of itself with respect to

an independent variable. The order of the differential equation is given by the

highest order derivative in the equation. The extended Riemann-Liouville

definition of the fractional derivative is (4:7)

C

DP' 0 x )X '
-t: fit Or3 (1) P0 if) 1

where p is the order of the derivative. The above definition is valid for irrational

and complex p although only rational numbers will be used in the formulation of

the subsequent equations. It should be noted that the fractional derivative is a

linear operator. If Leibnitz's rule is applied to the abov eqjuation, the result is

D5[x(t)] = 150[x(t)] + x(O) tp (2)Pmi-Ip)

where

r
r~~f (-)d O; 1 (3)

The modified linear operator of Eq (3) is the Riemann Liouville fractional integral

of order I-pe of the first derivative of x(t) or effectively, the -p order integral of the

4



function (4:17). The definitions in Eqs (1) and (3) are both valid expressions for a

fractional derivative. The modified operator of Eq (3) will be used by convention.

The state equations of a structure are normally written in the familiar form

Ax - Bj y = Cx + Du (4)

where

n = ( order of the system ) x ( number of masses )

x = state vector ( n by 1 )

v = output vector ( p by I )

it = control vector mi by I )

A,B,C,D = state formulation matrices

The traditional state formulation poses the dynamics of a system as n first order

equations in matrix form. The first derivative of a state is the sum of a linear

combination of the other states and the control force. Bagley has formulated the

fractional order state equations (5:309) in a straight forward manner:

150 X)  A-y + B.Lv Cx + D-L (5)

where

P I/N = basis fraction of system ( < 1)

N = smallest integer common to all fractional derivatives

n1 = ( order of the system ) x ( number of masses ) x N

X = state vector( 1 by I )

v = Output vector (p by 1)

it = control vector (II by I )

5



A,B,,D = fractional order state formulation matrices

To avoid ambiguity, further use of the integer order state equations will be

subscripted by a capital I denoting integer. The n states and the matrix A are not

unique for a gven system in the integer or fractional formulation. Regardless,

some relationships between the states can be better to work with than others.

It should be noted that an integer order system can always be written in the

fractional order form. If this is done, all of the elements in the matrix A

corresponding to the fractional order states vill be zero. An integer order system

posed in the fractional order state equations must obviously have the same

solution, but the eigenvalues of the corresponding A matrices are not the same.

An integer order system posed in the P-order fractional equations will have N

times as many eigenvalues. For each integer order eigenvalue 2, N eigenvalues in

the p-order equations will satisfy 2=(Ad.

The Mittag-Leffler Solution

One approach to solving a fractional order differential equation is by using

the Mittag-Leffler function (5:307):

Z (6)
ko P(i + Dk)

Notice that if , is one, the above expression is the definition of an exponential.

The 6-order Mittag-Leffler function has properties for p-order derivatives

analogouIs to the exponential function for integer order derivatives. Namely,

E= E (a) (7)

6



The homogeneous solution of a linear p-order differential equation is a linear

combination of p-order Mittag-Leffler functions. The particular solution can be

found by convoluting the Mittag-Leffler functions with the input. A system can be

solved using modal analysis or the Mittag-Leffler exponential matrix (5:310). The

Mittag-Leffler exponential matrix is defined like a traditional exponential matrix

and has analogous properties. A system of equations can be solved given the

initial conditions. Bagley has shown (2:17) that the initial values of the fractional

derivatives are identically zero. The complete solution resembles the traditional

state solution:

C

x(t) = Ep(At:)x(O) - fED[A(t-r)B1B1(t)dr (8)
0

The solution technique for fractional order differential equations and

integer order differential equations are similar. The following transformation on

the characteristic polynomial clears the fractional exponents:

S " (9)

where

r= variable in integer order characteristic polynomial

r= variable in fractional order characteristic polynomial

This change of variables effectively increase the order of the characteristic

polynomial by a factol of N. The roots of this chat acteristic polynomial are the

arguments of the I'Mittag-Lelfler functions.

7



There are several benefits to this solution technique. The Mittag-Leffler

solution is analogous in practice to the integer or-ler solution. Consequently,

closed form solutions can be written down easily using traditional techniques. For

state formulations, the eigenvalues of the plant matrix are the arguments of the

Mittag-Leffler functions. These eigenvalues are the "fractional poles" of the

system and can be plotted in the complex plane. The complex plane containing

these roots is a Riernann surface (7:303). Figure I shows the Riernann surface

and an example mapping between the fractional and integer order spaces for /

equal to 1/3:

X , X
X ,'X

x. 3

X x'

Figure I - Riemann Surface and Mapping to the
Integer Complex Plane

8



To go from a fractional space to the integer space, the fractional space must be

transformed by z"13. The wedge centered around the po:itive real axis on the

Riemann surface which is 360 6 wide is the principAI branch of the

transformation A=(2)d and is called the primary Riemann sheet. In Figure 1, the

boundary of the primary Riemann sheet is at ± 600. The corresponding

boundary in the integer space is along the negative real axes. The roots om the

primary Riemann sheet are the only roots mapped onto the integer ordei complex

plane. The remaining roots map to other Riemann suifaces ( not shown ). The

roots on the other surfaces determine much of the fractional behavior. The plane

containing the entire Riemann surface will be referred to as the 6-plane. For an

integer order system posed in fractional equations, thc roots on the 8-plane ar?

symmetric with respect to the boundaries between the Jifferent Riemann sheets.

Portions of the Mittag-Leffler functions add out and le, ve the traditional

exponential solutions. It will be shown later that the concept of the p-plane is

useful from a design standpoint.

There are also some disadvantages inherent in Mittag-Leffler solution

technique. The most obvious is that the Mittag-Leffler function is, by definition,

an infinite sum. Consequently, using the definition ur-c': . n. ; nrical

calculations is impossible. Computation enforces truncating the series which can

lead to convergence problems. Anotht-u difficulty from a design standpoint is the

lack of understanding the transient behavior of Mittag-Leffler functions. This

compounds the problem of deterrni ing the number of terms necessary in

computation.

9



The Laplace Transform Solution

The Laplace transform has been shown by many (9:2047; 6:138,141-143;

12:247-275) to have analogous use in the representation of fractional order

differential equations. The familiar differentia .r, . :'rty is still valid:

[D= x(L) s52[x( t). ,< (10)

where

I fx(t)] = X(s) = f x(t)e'st dt (11)

I

The difficu-lty in this technique arises in the calculation of the inve,se Laplace

t, ansform. Bagley and Torvik have showvn the calculati.-n of the ii:verse Laplace

transform for the impulse response of fractional differential equations (6:141-143).

The impulse -esponse was solved for because it leads to most particular sokutions

of interest through cuwvolution. T!- inverse Laplace transform is calculated using

contour integration in the complex plane. Th_ inverse Laplace transform of a

function X(s) is defined as:

Yt *i'

x(t) - 2 X(s) est ds (12)

V -2

'rhe specific contours of the integration are shown in Figure 2. Contour 1

becomes the inversion integral as R approaches infinity. The result is the esidues

at the poles. Contours 2, 4 and 6 can b.. shown to be zero as R approaches

infinity and p approaches zero (6:142). Conto,'rs 3 and 5 are the portion , I

integration that are affected by fractional oider equations. Since these integials

I 0



ICID

Figure 2 -Contours of Integration Used to
Evaluate the Inverse Transform of the

Im,)ulse Response (6:141)

lie along the branch cut ( that is. thle negative real axis ), their comnbined

contribution is termied the branch cut integTral. Since their directions are opposite.

their contribution is their difference. For inteizer cases. thle integration or contour

.is equal to -n integration of contour 5 and their difference is zero. For

ifractional cases, the i.tegration Of contour 3 is equal to tihe conljugate of thle

integration of contour 5.In general, they do not sumi to zero.

The imnpulse response of a fractional order differential equation is:

X( z) = ~ Ce' k - t) (13)
k=1I



where

I(t) =-branch Cut integral

The residues can be found by the "limiting process" Just as in the inte-ger order

case (6:142). Specifically,

Ck = lrn { (S- ) -X(S) (4

For a Laplace transformi of the form

X(.S)= 1

where

Kj= real constants

the branch cut integral can be shown to be

1(c) =2f1  
- L~K-.rPi -sin (PI~jT)]e

(16)

It ;s obvious that thle evaluation of the branch Cut integral is less tl.,dn trivial. It

should be noted that the branch cut integral is always bounded and stable due to

the amrguents of the exponential in the nlumerator of the integand. It is also

ob iou3, 11011 the exponential that the branch Cut integral !-i maximum

rnagnPtucle .,' time equal to zero.

Trhe Laplace transform technique dues have some obvious adva ntages. The

exponentials associated with 0-.e response are easily determined. It is these

12



exponentials that determine the stability of tile system. Also, the exponentials

allow for some understanding of the overall response of the structure. This

technique sums all of the "fractional" behavior into the branch cut integral. The

integral can be analyzed to determine which coefficients minimize or maximize its

magnitude. Bagley has shown that the fractional order solution is continuous

everywhere (1:73-76) ( as could expected if it were Modelling structural motion).

Consequently, the initial value of the integral ( which is also its maximum

magnitude ) is simply the negative of the sum of the residues for a system starting

from rest. The primary disadvantage of the Laplace transform technique is that

the evaluation of the intetgral itself leads to approximations when numerically

implemented.

13



Ill. The Half Order Case

Up until now, the focus has been on fractional order differential equations

in general. Now, the half order case will be looked at exclusively. This is due to

some favorable features of the p equal to 1/2 case. Aspects from both of the

solution techniques presented will be discussed.

For the half order case. the state vector will be twice as large as the inte,,er

order state vector. For modelling the dynamics of a structure, the integer order

states are the position and velocity of the structure. Now, the 1/2 derivative

between position and velocity will be Nensed as well as the 312 derivative between

velocity and acceleration. The model of a system is assumed an integer order

representation. It must be posed in the fractional order equations to allow for the

additional states being sensed to appear in the mathematics.

Given the model of a structure, it can always be put in the Following form:

!/2(13-u, B 17 )

where

x = state vector

Lt = input vector

A = plant matrix

B = control matrix

The above half order state equation will be the starting point for the control

algorithm discussed in the next chapter.

1 4



The Half Order Mitta--Leffler

The half order Mittag-Leffler function is defined as:

Xk
E/,2 (X) T (I + k/2)(

k-0

When the above equation is looked at carefully, it is seen that the sum iwcludes

the definition of an exponential. Indeed, any rational p of the form 1/N would

lead to an embedded exponential. What is left if the exponential is extracted is

the half integral of an exponential. The definition of a fractional order integral

can be found directly by integrating the definition of the fractional derivative one

full time. The Riemann-Liouville 6-order fractional integral is defined as (5:307):

LX( 0 d (19)

It is a linear operator just like the fractional derivative. The half order Mittag-

Leffler function can now be written as

Z1 12 (ot'/2) = t: o.fi.t] (20)

where

c = constant ( real. imaginary or complex )

It should be noted that if a above is replaced with -;. the only change in the

above equation is the sign of the half integral. To investigate the stability of the

half order Mittag-Leffler function. the half order integral of an exponential mu.st

be characterized.

15



Applying the definition from Eql (19) to an exponential yields:

f ed~..(21)
r(1/2) /0

Thle above equation is a disguised form of the incomplete gamma function. Thle

incomplete gamma function of 1/2 is:

C

Consider~ ~ th chng o arabe

t.- d- (24)

0

TConsrtant brought outaides h neza a o esmlfe ihu

Til deinition Eqn n20) (21 wrtnd (2)aisnwsenttfo ric

E1 / 2, c) f (24)
0 0

Thenyn abovenaofte expression. containno alloe of thpprtoilih inforiionitsowhty

tordetermn asintetrczhehavf idor. the olompleg plae esto h umow

lb, 25



identical exponentials while any a in the left half side leads to their difference.

Therefore, all arguments of the Mittag-Leffler functions that have negative real

parts are stable. The arguments with a positive real part that are smaller than the

magnitude of their imaginary part will yield stable solutions since the square of the

argument has a negative real part.

For any physical system, the Mittag-Leffler functions will appear in

conjugate pairs analogous to exponentials for integer order cystems. Also, the

coefficients on conjugate pairs will themselves be conjugates. Expanding

conjugate Mittag-Leffler functions yield

(a + bi) E1/2 [ (c + di) t11  - (a - bi) E112 [ (c - di) -1
2 ]

2e(c2 - d2l.[a -cos(2cdt) - b'sin(2cdc)] (27)

(a + bi) (c + di)'I1/2[e(c +di)t2] :

(a - bi) (c - di) f 1/2[e(c -d)
2 :]

where

a,b,c,d = real numbers

The importance of the above equation is numeric in nature. The exponentials

have been extracted and consequently can be calculated exactly. In this manner,

only half of the solution has to truncate an infinite sum.

As previously mentioned, the primary Riemann sheet is a wedge centered

around the positive real axis in the p-plane which is 3600 p. For half order

systems, the primary Riernann sheet is the entire right half side of the plane. Only

half of the Mittag-Leffler functions for a gi,,en system will have their arTuments on

the primary sheet. The significance of this will be explored later.

17



The Half Order Branch Cut Integral

The Laplace transform method yields the residues and the branch cut

integral in a straight forward manner. The poles are found using the "limiting

process" and the branch cut integral can be simplified from Eq (16). For a system

of the form

J+ aD3 /2 (x) + bk + cD/ 2 (x) + dx f(t) (28)

where

a,b,c,d = real numbers

the contribution of the branch cut is

1(e) 0 , [cr"/2 - ar31 2 e-rC dz (29)f [r2 - br d32  - [ar 3 / 2 - cr/ 2 ] r

From the above expression it is obvious that for a and c identically zero, tile

branch cut integral is zero. For a given integer order system model, the smaller

the fract;onal gains are, the smaller the contribution of the branch cut integral (as

expected). As previously mentioned, the magnitude of the branch cut integral is

largest at time zero because of the decaying exponential in the numerator of the

integrand. The denominator Ot tile integrand will become small as the integration

variable r passes by the roots of 1
2-br+d. Consequently, the integral will tend to

get large - especially if their are positive real roots. The negative sign only

changes the sign of the roots of 1
2+br+d which is the original form of tile equation

with a and c identically zero. Therefore, given the coefficients of the fractional

order terms, the branch cut integral will be minimized if the original system is

18



purely oscillatory. If the roots of the original system are real, the fractional order

terms will have a dramatic effect on the solution.

Hybrid Analysis

The two solution techniques can be used in parallel to better understand

the nature of the fractional order solutions. The Mittag-Leffler solution posed in

the fl-plane is elegant but does not easily lend itself to interpretation. The

expansion of the Mittag-Leffler function will produce an exponential, but it is not

necessarily the pole of the system. Consequently, the relevancy of the pole

structure is not immediately obvious. The Laplace transform solution, however,

explicitly separates the fractional nature of the response from the integer order

exponential solution. Therefore, the poles of the system will be known and can be

identified.

If the -3-plane and the pole structure on it undergo the transformation z2,

the system will be posed in integer space. Any pole on the primary sheet will be

squared and placed on the integer order complex plane. The other poles will be

placed on other sheets of the Riemann surface. The poles on the primary

Riemann sheet are the actual system poles while the poles on the other branches

are accounted for in the branch cut integral.

In the integer complex plane, any pole in the right half side of the plane

causes instability while any pole in the left half side is stable. An equivalent

statement is any pole with its phase magnitude between 0° and 900 is unstable

while poles with their phase magnitudes between 90' and 180' are stable. When a
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complex number is squared, the magnitude is squared while the phase is doubled.

Therefore, roots of a half ozer equation on the primay Riemann sheet with a phase

magnitude less than 450 are unstable while roots with phase magnitudes between 450

and 90' are stable. For fractional orders other than 1/2, the same type of phase

magnitude analysis determines stability.

The above conclusion is outlined by the previous stability analysis of

Mittag-Leffler functions and the expression for the branch cut integral. The

Laplace transform analysis showed that the poles of the system determine the

stability while the fractional behavior contained in the branch cut integral is always

stable. This shows that the poles in the 6-plane on the primary sheet determine

stability while those off of it are always stable. This is restating the 45' stability

criteria in the p-plane demonstrated in the analysis of the half order Mittag-

Leffler function. It was shown that half integrals negate the growing exponentials

associated with the non-principal roots of the system as time approaches infinity.

In fact, the fractional behaviot is simply the difference between the exponentials

associated with non-principal roots and the sumn of all the half hitegrals associated

with the system. Armed with a better understanding of fractional systems, a

control algorithm can be formulated.
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IV. Pole Placement in the B-plane

An understanding of the fractional order behavior enables the design of a

control scheme posed in the fractional order notation. Design in the p-plane is

now possible since the relevancy of the pole structure is known. A pole

placement algorithm can be devised to select the position of all of the roots of the

system. Although only the 8 equal to 1/2 case will be analyzed, the results will

generalize.

Restating Eq (17) for convenience, the model of the structure is in the

following form:

P"/2 (x) = Ax + B!u (30)

where

x = state vector

it = input vector

A = plant matrix

B = control matrix

It should be noted that the dimension of the input vector is equal to the number

of actuators on the structure. To specify the control law, the input vector will now

be defined as:

21 -K (31)
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where

K = gain matrix

This is full state feedback of the system states. The number of rows in the matrix

K is equal to the number of actuators on the structure. For multiple actuators,

the solution is not unique for fractional or integer order systems. External inputs

can be ignored without loss of generality since the closed loop pole structure will

determine system behavior. The equation that determines the p-plane structure is

Fx (32)

where

F -A - BK

The individual elements of K can be chosen to place the roots of the system at

desired locations. Pole placement on the p-plane is the same algorithm as pole

placement on the integer complex plane. However, increasing the complexity of

the system by adding twice as many gains is pointless unless there is a benefit to

be realized.

Although all of the eigenvalues must be specified to uniquely determine the

solution, some eigenvalues have more impact on the solution than others. The

fractional formulation shows that regardle.sS of the position of the roots on the left

half side of the p-plane, the solution is always stable. Only the eigelahtes ol the

primaqy Rienzann sheet must be specified to determine system stability.

Consequently, the poles on the right half side of the p-plane can be chosen to be

stable while the poles on the left hand side can be allowed to vary. This will

22



affect the transient behavior of the system by introducing additional damping.

The additional dlamping is the result of energy decaying out of the system

proportional to the fractional states and not just the velocity of the structure.

The damping added by fractional feedback is commendable for the

application of motion suppression but may sometimes be modest. A system

warranting active damping will by oscillatory in nature. The previous analysis of

the branch cut integral showed that an oscillatory system gives rise to a smaller

contribution than a heavily damped system. The actual size of the contribution is

problem specific. Regardless if it is small or not, the solution still has a very

favorable quality. Permitting the roots to vary on the non-principal sheet allows

for unprecedented flexibility in the pole placement algorithm.

Let the desired integer order poles of the system be:

Pr = { PI,1" P 1, 2, PI, 3 ... P, } (33)

where

P, = set of desired poles on complex plane

The transformation of Eq (9) is used to determine the pole location on the ,-

plane. Specifically,

p; [ Pr, ]:j 2  (34)

Define

) r- p.) (r- p 2 ) (r -p 3 ) ... (r-,p) (35)
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where

n(r) - omega polynomial

The roots of this polynomial of order it are thc desired pole, on the primary

Rieman sheet. The characteristic equation for the fractional order system is a

polynomial of order 2z:

r rI - Fi = 0 (36)

where

I = identity matrix

The above equation must contain the omega polynomial as a factor to guarantee

the desired pole location on the primary Riemann sheet. Synthetic division of the

omega polynomial into the characteristic equation yields a polynomial of order it

with a remainder of order n-1:

I r:-l (r) + R(r) (37)

where

T() psi polynomial

R0) remainder polynomial

It is evident that the psi and remainder polynomial are constrained to be zero.

The psi polynomial contains the it non-principal roots of the system. The Routh-

Hurwitz stability criterion (11:222-224) can be used on the coefficients of the psi

polynomial to constrain the roots to remain in the left half side of the ,p-plane.

The result will be n inequality constraints. The reason the 6 equal to 1/2 case was
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chosen is now evident. It is the only fractional order that has the branch cut in

the p-plane on the imaginary axis. These constraints would be more difficult to

determine for other fractional orders. As already mentioned, the remainder

polynomial is of order n-1. It must be zero for r equal to all n principal roots of

the system. This is only possible if all n coefficients are identically zero. This will

produce n equality constraints.

In summary, the fractional order pole placement algorithm situates the

roots on the primary Riemann sheet at their desired locations while allowing the

remaining loots to .ary on the non-principai sheet. Equality and inequality

constraints between the gains are generated. This added flexibility may allow

decreased sensitivity to errors.
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V. Optimization fo- Robustness

The previous chapter discussed pole placement in the P-plane and

concluded with an algorithm that produced constraints. The next logical step is to

optimize the algorithm for an advantageous quality. The most redeeming attribute

a controll-r can possess is an insensitivity to errors in the system. This insensitivity

to errors is a property called robustness. Although robustness i,, easily understood

in principle, a mathematical expression measuring it accurately can be less than

trivial. The object is to determine if the added latitude of the fractional pole

placement technique can be used to make the poles on the primary Riemann

sheet more robust.

Cond.;Ior Numbers

A beneficial property of the Mitt,.-Leffler solution to fractional order

equations is the conventional matrix notation. This allows linear system theory to

be applicable. One m,.tho' to chaiact ,rize the sensitivity of eigenvriues in a

matrix is determining the condition number associated with the matri% of

eigenvectors. The condition number associated with the eigevMector matrix is

defined as (10:1131):

C = lIxil >x'II -i (38)

where

c -condition number
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X = matrix of eigenvectors

The condition number is a measure of how singular or ill conditioned an

eigenvector matrix is. Alternatively, it is also measuring the "amount of

orthogonality" between the eigenvectors of the system (10:1141). The more

orthogonal the eigenvectors of the solution are, the better. A robust system has

solutions that are as decoupled as possible so that an error in one mode wil'

primarily affect only itself. A high condition number characterizes an ill

conditioned matrix which willi magnify errors. A condition number of one denotes

a perfectly conditioned matrix which will minimize the effect of errors. Only a

normal matrix is perfectly conditioned since it has orthogonal eigenvectors.

For application to the pole placement algorithm, the eigenvalues do not

need to be equally robust. The eigenvalues on the primary Riemann sheet are the

only ones that determine stability if the others are constrained to remain on their

own sheet. Traditional optimization of the above definition for the condition

number should not be used since half of the cigenvalues do not need to be

optimized. The sensitivity of specific eigenvalues needs to be measured

mathematically. To accomplish this, the asymmetric eigenvalue problem must be

exploited. The asymmetric eigenvalue problem consists of two eigenvectors for

each eigenvalue:

Fv= T (39)

where

F-A -BK
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2 k = k"' eigenvalue

.= right eigenvector of Xk

-~= left eigenvector of X 

The right eigenvector is the traditional eigyenvector of the solution. The two

eigenvectors must now be distinguished between so there is no confusion. The

condition number of a specific eigenvahte is defined as (10:113 1):

CK Il~dk ll '1,2:(0ck - y (40)

where

ck = condition number of k"' eigenvalue

= right eigenvector of X.

v, = left eigenvector of ).k

Although the above does not look like Eq (38) at first glance, the two definitions

are very similar. If each right eigenvector in the system is normalized to unity

length, the inverse of tile right eigenvector matrix is equal to the transpobe of the

left eigenvectcor matrix (10:1140). The relevancy of the magnitude of the above

condition number is the same as tor the previous condition number. A low

condition number denotes low sensitivity to errors. The first definitionl did not

distinguish between eigenvalues in its measure of robu,,tness. Consequently, each

eigenvalue was weighted equally. The above definition will allow each eigenvalue

to be weighted separately or not at all.

The advantage of the above expression is that the robustness associated

with an eigenvalue is Written in terms of its own eigenvectors. Forcing all of the
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right eigenvectors of a system to being orthogonal is exactly the same as forcing

the left and right eigenvectors of each eigenvalue to being identical. For real

eigenvalues, the condition nmber is simply the reciprocal of the cosine of the

angle between the left and right eigenvectors. It should be noted that a ,eneral

expression for an eigenvector will contain the associated eigenvalue in it.

Consequently, the sensitivity of an eigenvalue is related to the eigenvalue itself.

The Cost Function

The cost function in an optimization algorithm is the expression that will be

minimized or maximized subject to possible constraints. A cost function should

accurately represent the propertx it measures while remaining as elementary as

mathematically possible. For this application, the eigenvalue condition numbers

can be modified to facilitate computation. The numerator and denominator of Eq

(40) both calculate the magnitude of complex expressions. In practice, this lead.,

to taking the square root of entire complex polynomials. If Eq (40) is squared,

this can be avoided without losim the significance of the condition number. It

should also be noted that the condition numbers of conjugate eigenvalues are

identical. Consequently. only one eigenvalue per mode must appear in the cost

function.

The cost function will be subject to the equality and inequality constraints

derived in the pole placement algorithm. The constraints can either be appended

to the cost function using the method of Lagrange multipliers or substituted into

the expression to solve for only independent variables. The left and right
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eigenvectors for a given eigenalue can be written symbolically in terms of the

gains, but only half of the gains are independent. Considering the large number

of dependant gains in the problem. using redundant variables would prove to be

burdensome. The equality constraints can be solved for half of the gains and

substituted directly into the condition numbers. In conclusion, the cost function

can be written as the sum of the squares of the condition numbers associated with

each mode on the primary Riemann sheet:

1:14

LT C (41)

where

J = cost function

n = order of fractional order plant matrix

ck = condition number associated with the k" mode

Controllable Canonical Form

It has already been mentioned that some state formulations are better to

work with than others. One sucl, reprcsentation is the controllable canonical

form. It will be used exclusivelv in the remainder of this in.estigiation due to one

of its favorable properties. The right eigenvectors of the sy.stem can be written in

a general form that facilitates calculation. This form is expressed in the following

partitioned matrix. For a system With - number of masses.
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A=[M C] (42)

where

A = plant matrix ( from state equation )

0 = zero matrix ( n-- by K )

I = identity rnatrix( -K by 11-K)

M = mass matrix ( NK by NK )

C, = stiffness matrix ( NK by NK)

The matrix B also has a standard form. It contains all ones in the bottom row and

zeros everywhere else. For a system exprtsed in controllable canonical form, the

right eigenvector can easily be written as a function of the eigenvalue and mode

shape. Specifically,

V = [40 42 ""4K P14 ) 2 "' ).4X X242 """24. (43)

k 41 4 2 4: (43

where

2 = eigenvalue

= right eigenvector associated with A

OK = structural mode shape of mass x

To appreciate this, consider the right eigenvector problem associated with an

eigenvalue 2:
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(A - X.T) = (44)

When calculating the elements of t, the top -K rows of the matrix A1-2l relate all

of the components of v to the first K components of the vector. This is only

because the system model is in controllable canonical form. The first K

components are termed the structural mode shapes. The relationship between the

mode shapes can be found from the remaining bottom rows of the matrix A-2I.

This means that the open loop right eigenvectors can all be written compactly as a

function of their own eigenvalue.

When feedback is applied, the relationship between the modes becomes

more complicated. The expression for the right eig nvector can still be written as

shjwn in Eq (43), but the relationships between the mnodei, %,,ill in general change.

The relationships are determined from any K-1 rows ot the bottom ;z of the closed

loop matrix F. This result yields a special case for the single actuator application.

When only a single actuator is used, a single row of gains will appear in

one of the bottom K rows of the matrix F. Since only K-1 of the bottom K rows of

matrix F are necessary to determine the eigenvector, one of the rows yields

redundant information. This mean, that the relationship between the structural

modes can not change when only one actuator is employed. The only "varable" in

Eq (43) will be the eigenvalue itself. For an integer order system, the eigen.'alues

are unique and therefore :he eigenvectors will be also. Indeed, this is the reason

robustness is not an issue in single actuator integer order cases. For the fractional
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order system, the eigenvalues on the non-principal sheet are variables that appeai

in the optimization.

The benefit realized from this is in the calculation of the cost function for a

structure with only one actuator. If a closed loop right eigenvector is only a

function of the eigenvalue, then altering the gains within the constraints will not

change the right eigenvector. This means that the 2-norm of the right eigenvector

is a constant and therefore does not affect the optimization. For systems where

the right eigenvectors are only functions of the eigenvalues, the cost function can

be simplified:

k=1 I ' 1!

The cost function must be minimized to produce the optimal solution. A

gradient search technique can be implemented numerically to determine the gains

that will minimize the cost function. The remaining dependant gains can be

determined from the equality constraints. If the optimal solution violates the

inequality constraints, the constraints must be applied separately and in

combination to determine the true optimal solution. However, violating the

inequality constraints will not always be harmful for the application of structural

damping.

For structural damping, the exact transient behavior is not as crucial as

long as the system is stable and damped. If a root of the system is optimized

without applying the inequality con.straints and migrates, to a stable portion of the



primary Riemann sheet, the transient behavior will be altered but not detrimental

a priori. If the additional pole in the system were lightly damped, the resulting

behavior would not be desirable. If, however, the added pole increased damping

or did not change the damping, the new configuration would be better since it is

optimally robust. In actual practice, it will be simpler to determine only the

equality constraints and optimize subject to them. If the result is unfavorable,

then the inequality constraints can be determined and applied.
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VI. Comparison of Fractional and Integer Order Solutions

The emphasis so far has been on optimizing the fractional pole placement

algorithm. The focus of this chapter is to compare the results of the algorithm

with traditional results. For the fractional order controller to have extraordinary

value, it should be superior to a traditional controller on the same structure. For

an integer order controller with more than one actuator, the solution must also be

optimized. This is because the Multiple actuator case does not yield unique

results. An authentic comparison between fractional and integer order solutions

must compare optimized results from both methods. Consequently, methods to

compare the robustness between integer and fractional order solutions must be

investigated.

Optimization Differences

There is a fundamental difference between the fractional and integer order

optimization methods. For an integer order solution, each eigenvalue affects

stability. Consequently, each eigenvalue has equal importance in the cost function.

This is the ieason that the cost function is traditionally the condition number

associated with the eigenvector matrix (10:1131) as defined in Eq (38). In the

fractional order controller, half of the eigenvalues are constrained variables. This

difference allows the fractional order controller to optimize for robustness in an

additional manner.
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For the integer order optimization, all of tile eigenvalues are specified.

Robustness is achieved in a system by assigning the eigenvectors so that the

system is as well conditioned as possible. As was previously mentioned, this

occurs when the right eigenvectors are as "orthogonal" as possible. For a single

actuator, the eigenstructure is unique since the relationships between the

structural modes can not change. Consequently, robustness is not an issue.

For the fractional order optimization, half of the eigenvalues are subject to

the optimization algorithm. The eigenvectors of the eigenvalues on the primary

Riemann sheet will be optimized just like in the integer case. The right

eigenvectors will be placed t., "orthogonal" as possible. The entire eigenstructure

on the non-principal Riemann sheet, eigenvalucs included, will then be chosen so

that their right eigenvectors are as "orthogonal" as possible with respect to

themselves and the eigenvectors on the principal sheet. For a single actuator, the

fractional order case must still be optimized to determine the eigenvalues on the

non-principal sheet that yield a robust eigenstructure. It should be noted that as

with the integer order case, the single actuator fractional controller can not change

the eigenvectors of the eigenvalues on the principal sheet.

Condition Number Analysis

The most logical basis for comp{,rison of fractional and integer order

systems is the eigenvalue condition numbers. These aie the condition numbers

appearing in the cost function of the I lactional order optimization algorithm. The

definition is recalled from the previous chapter for L onvenience:
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k-E7I2 I'1.II2 >( 46)

where

ck = condition number of k ' eigenvalue

vk = right eigenvector of A,

= left eigenvector of Ak

At first glance, it seems legitimate that the integer order systern should be posed

in the expanded fractional space to compare results. This would allow direct

comparison of specific condition numbers on the relevant eigenvalues. It should

be rioted, however, that the condition numbers of the integer system posed in

fractional space are not the same as the condition numbers of the original system

in integer space. This is caused by fractional states present in mathematical model

that are absent in the actual integer order system. Consequently, comparing

corresponding condition numbers ip fractional space is not the correct method.

The next logical step is to compare the condition numbers of the fractional

solution to their integer order counterparts in integer space. This would ensure

the fractional states did not interfere in the integer order solution. It appears the

fractional solution would be the more robust if its condition numbers were smaller

than the corresponding condition nunbers of the integer system in integer space.

It should be noted, however, that errors in )., from pertu rlbations O(C) in the

elements of a square matrix are (10:1131):
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error z n cke (47)

where

n = number of eigenvalues in matrix

The previous expression shows that the size of a matrix has a bearing on

robustness. This seems intuitive since a larger matrix corresponds to a more

complex system. This would appear to .ontradict Ahe former assertion. Appy ing

Eq (47) would dictate that the fractional order condition numbers must be half of

the corresponding integer order ones to be of equal robustness. In actuality, the

sensitivity of an eigenvalue is a function of the eigenvalue itself and not just

through the relationship of the eigenvectors in the condition number. This

relationship is not expressed in the above equation. If the fractional and integer

order solutions posed in their natural space had the same eigenvalues, Eq (47)

would dictate the true comparison. In actuality, the fractional order system has

eigenvalues that are squaiare roots of the integer order eigenvalues. This

complicates the comparison process. The true relationship appears impossible to

generalize explicitly. The actual sensitivity will probably be related to the

eigenalue by an exponent. Regardless, it should be noted that if the fractional

order condition numbers are less than half of the integer condition numbers the

results are decisive in favor of the fractional controller. This, however, is a

sufficient condition but not a necessary one. It is obvious that this comparison is

not globally definitive. Nevertheless. it vields correct results when applicable.
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Perturbation Analysis

The condition number analysis is only conclusive part of the time.

Consequently, another comparison technique is required. A traditional

perturbation analysis of the eigenvalues can be done to supplement the previous

section. Deif (8:205-207) has performed a perturbation analysis for the symmetric

eigenvalue problem that can be extended to the asymmetric case. The subscripts

will be dropped since the following analysis is valid for any distinct eigenvalue and

its associated eigenvectors. Assume for small c that a perturbed system can be

written as

Fp = F + C F, + c2F 2 +

XP = X + CXt ." e2X . .
(48)

= V + e V., + 
2

V. + ...

y, = v + ey, + e 2y + ...

The right eigenvalue problem for a perturbed system can be written in terms of

the above definitions. The zero order solution is simply the unperturbed

eigenvalue problem. For a first order perturbation solution, all 62 terms or higher

are disregarded. The zero order solution can be extracted from the first order

solution and the remaining terms can have an e factored out. The result is the

following expression:

Fv, - ,'iv = X v_ - 1-Y (49)

The above expression can now be pre-multiplied by the transpose of the left

eigenvector. By definition, the first and third term are equal and can be removed.
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The above expression can be solved for 2, and substituted back into the definition

of A,,. Therefore, the first order perturbation solution is

X X+ e c -Fj (50)

This solution is slightly different than the first order solution fiom the previous

section. The condition number does not explicitly appear although the expression

contains both eigenvectors.

The perturbation ,ialysis has some strengths and shortcomings. One

obvious benefit of the above approximation is that individual elements of the

nominal matrix can be perturbed while other elements remain unchanged. This

quality leads to the question of which elements bhould be perturbed. It is obvious

that any element of the clo.sed loop matrix F that contains a gain will be subject to

errors. The sub-matrices Al and C from the controllable canonical form will

contain modelling errors whether gains are present or not. Perturbations in the

main diagonal of the identity matrLx could be caused by errors in the actual

integrations of the acceleration signal. All of the elements remaining that are zero

and not affected by a feedback gain will be immune to errors. This is because the

zero elements arise from variable assignmnrt in the model.

Another factor that must be considered is the magnitude of the

perturbations. Each source of error has a different averige amplitude. The error

from acceleration integration will be very small. The errors in the gains of a

controller will be larger than integration errors, but may still be rather modest.

The modelling errors nia, be a magnitudC greater than the gain errors. It will
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depend on the specific application. These different error sources could demand

different weightings for an authentic comparison. Since this type of analysis is

problem specific. the choosing of error magnitudes could be tedious.

The best way to implement the perturbation equation is to perturb each

element of the nominal matrix individually, determine the error in each eigenvalue

from each perturbed element, and sum all of the magnitudes of the errors. This

means that each element Subject to perturbations in the closed loop matrix F must

be perturbed indi\ idually. This will enable the determination of the magnitude of

the error. This maginitude is the radius of a circle in the 8-plane around the

nominal eigenvalue. This circle will be referred to as the error circle. Given an

individual perturbation E on an element, the perturbed eigenvalue will be

somewhere on the circumference of the error circle. The error radius is obviously

proportional to E since this is a first order perturbation solution. In reality, some

of the errors will sum together and some will cancel out. For a given eigenvalue,

summing the radii of the error circles from each perturbed element will give the

absolute upper limit on the eigenvalue error. This maximum error would occur if

each perturbation constructi ely added sin ultaneouslv. The controller producing

the lowest limit on the sum of errors from all the eigenvalues on the principal

Riemann sheet will be the more robust. The obvious disadvantage of this

comparison technique i.-, that it is extremely time consuming for even a simple

system.

The condition number and perturbation analysis can both be used to

conn*,;r, results. The condition numbem Malvsis is inconclusive in many cases but
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is simple to implement. When applicable it yields results quickly. The

perturbation analysis is valid for all cases but is laborious to execute. Also, the

desired weightings for each error source must be determined. This task could also

be very burdensome if all of the error sources are modelled. The analysis could

be simplified by only considering the larger sources of error. The outcome of

these comparisons will dictate whether the fractional controllers are truly more

robust.
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VII. Example Problems

This chapter will present three example problems applying the techniques

from the previous chapters. A model of the structure will be assumed. The

clamping of the closed loop response will then be specified. The damping of the

actual response will be greater than the specified damping due to the fractional

feedback. As previously mentioned, this additional damping will be small for a

lightly damped structure. The pole placement algorithm will then be optimized

for robustness. Lastly, the fractional and int-ger order solutions will be compared.

Although the following problems yield precise numeric solutions, a great

deal can be learned from the general implications of the results. All of the

problems presented will contain only one actuator. This does not skew the utilitv

of the algorithm but rather emphasizes its forte. Specifically, any increase in

robustness from the fractional order controller must come from the choice of

eigenvalues on the non-principal sheet since the eigenstructure of the principal

roots is fixed for both integer and fractional order controllers. Using only one

actuator also allows the simplified version of the cost function to be applicable in

the numerical optimization. I'M a structure with one actuator implementing full

state feedback. the a.ssociated gains aic contained in a vector which is the same

length as the state vector. This drives the matrix B of the state space formulation

to also being a vector.
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The iirst two examples will model a structure as a single mass system. The

last example will model the structure as a two mass system. For examples 1 and

2, consider the following model:

k)
m f (.0

Figure 3 - Single Mass Model of
Structure

The condition number associated with the mode of the mass will be subscripted

with an in to avoid confusion with the viscous damping coefficient c.
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Example Problem 1

Given:

m= lkg k= 10N/m c= 2N/r/s

The differential equation associated with the open loop response is

P+ 20 + low = f(t) (51)

The desired locations of the system poles will be:

Pz = (-5+1, -5-i} (52)

It should be noted that these pole locations produce heavy damping.

Integer Order Solution

o ! ](53)
-1o-K -2-K 2] 1= 16 8] Cm 13.5

Fractional Order Solution

o 0 1 (54)F = 0 0 0 '
-10-K, -K 2 -2-K 3 -K4

The constraints on the gains from the pole placement algorithm are:

45



KI - (5.1) K3 - (2.27) K4 = -24.787

K12 + (0.445) K3 - (4.9) K4 = 3.56

K3 + (0.445) K4 > 2.9

4 > -0.445

As long as the equality constraints are satisfied, two of the eigenvalues of matrix F

are equal to the square roots of the desired pole locations. The inequality

constraints keep the non-specified eigenvalues off of the primary Riemann sheet.

Of ltimizing the algorithm subject to the constraints yields:

= [-9 0.3578 3.2563 -0.3577 Cm = 1.4571 ( 5 6 )

It should be noted that the inequality constraints were never active.
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Example Problem 2

Given:

m = lkg k= 101N/m c=2N/m/s

The differential equation associated with the open loop response is

i - 27 -" 101w = f(t) (57)

Tile desired locations of the system poles will be:

PI = {-2+8i, -2-8i) (58)

This system will be moderately damped.

Integzer Order Solution

F I  -1001-K 21 K Kr= -33 2 ] Cm = 4.3125 5 9 )

Fractional Order Solution

0 1 0 0

0 0 1 0 (60)
0 0 0 1

-101-K1  -K 2 -2-K 3  -K4

The constraints on the gains from the pole placement algorithm are:

47



K - (8.25) K3 - (29.15) K = -49.49

K2 + (3. 535) K3 + (4.25) K4 = 7.07 (61)
K3 + (3.535) K4 > -6.25

K4 > -3.535

The significance of the constraints is the same as before. Optimizing the

algorithm for robustness subject to the constraints yields:

= [ -!00 3.03 4.625 -3.03 1 Cm = 1.8606 (62)

It should be noted that the inequality constraints were never active.
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The two previous examples yield excellent results. The comparison of the

examples with their integer order counter parts is straightforward since the

condition number analysis is applicable. For both examples, the fractional order

condition numbers were less than half of their corresponding integer order

condition numbers. Therefore, the fractional order solutions are more robust in

each case. As a side note, the condition numbers of the eigenvalues of the non-

principal roots were the exccl aame as those for the principal roots in both

examples. Although not explicitly calculated. the contribution of the branch cut

integral will be much larger for Example Problem 1. This is due to the heavy

damping desired for the closed loop response.

A trend can also be noted in the optimal solution for these single mode

cases. Specifically, the position of the poles on the non-principal sheet followed

the same general pattern. Vhe un pec~fied rools were placed at the negative

reciprocal of the roots on the primaly Riemnann sheet. This is no accident. The

right eigenvector of a principal root is orthogonal to the right eigenvector of the

negative reciprocal of the root. The associated conjugate eigenmectors are nearly

orthogonal. Although not explicitly proven, this is a general result for a single

mode case.
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Example Problem 3

Consider the following model:

2 f2(f) 2 f2 (i/

Vk2

Figure 4 -multi-Mass Model of Structure

Given:

In, = I' ka k, = 15 N/rn r

The differential equations a.ssuciated with the open loop resJ)onle are:
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0 w1 [1 + kl+k2 k] 2 fl (t) (63)01M2 02 [-k2 k2 [w] 2 f( )(3

It should be obvious that the above system is purely oscillatory. The desired

damping will be 2% on each mode. The closed loop response will be veiy lightly

damped. This yields the following:

Pr = { -0.0375+1.87241, -0.0375-1.8724i, (64)
-0.124+6.203i, -0.124-6.203i)

The branch cut integral for this example will be small.

Integer Order Solution

0 0 1 01

0 0 0 o (65)
-33 18 0 0

9-K -9-K, -K 3 -K4

4= -0.034 0.019 -0.384 0.323]
(66)

C, 1.2769 C2 = 3.2979
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Fractional Order Solution

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
o 0 0 0 0 1 0 0

F 0 0 (67)0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
-33 18 0 0 0 0 0 0
9-K -9-K, -K3 -K4 -K5 -K -K4 -K8

There are four constraints of equality and inequality each. In light of the last two

examples, the equality constraints will be determined first and the optimal solution

will be calculated. If the result yields eigenvalues that migrate across the branch

cut and decreases damping. then the inequality constraints will be determined and

applied. The equality constraints are:

K, - (5.48) K5 + (-.20) K, - (18.92)1K + (4.48) K = 2.454

K2 + (2.20) K5 - (2.60) Ks + (9.33) K - (6.31) K8 = -1.665(68)

K3 + (3.27)K s - (0. 3 5 )K5 + (5.54)Y7 - (0.71) K -1.371

K4 - (0.82) K, + (2.13) K6 - (2.25) K7 + (2.22) K8 = -1.003

When the equality constraints are optimized, the result is:

K.I :[ -0.627 -2.658 -0.077 1.155

,r.072 0.470 -0.356 -0.852 ] (69)

C= 1.1777 C2 =- 4.7017

The inequality constraints do not need to be calculated because the optimized

result yielded roots that riemained on the non-principal Riemann sheet.
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The roots on the non-principal Riemann sheet did not follow the trend

from the single rnass case. Two of the roots did, however, move toward the unit

circle on the p-plane where their reciprocal eigenvalues were. The other two

moved away from the integer order symmetric pattern. The pole assignment did

not lend itself to any other interpretation. It did show that the optimal solution is

not found from optimizing each mode separately. If each mode were optimized

separately, all of the non-principal roots would be at negative reciprocal

eigenvalues of the primary roots.

The results from Example Problem 3 are not conclusive using the condition

number analysis. For the fractional solution, the first mode ( the lower frequency

mode ) has a lower condition number than the integer solution while the second

mode has a higher condition numlber. The fractional order corndition nuillber on

the lower mode is not less than half of the integer order condition number.

Therefore, a further analysi. is required on the first mode. The fractional order

condition number on the second mode is higher than the integer order condition

number. It would appear that the second mode is more robust for the integer

solution. Regardless, the results are inconclusie,,C and the perturbation technique

must be applied. As a side note. tile condition numbers of the ealenxalues on the

non-principal sheet were about the same as those that were optimized on the

principal sheet.

It will be assumed for the perturbation analysis that the errors in the

Ilodel of the structure are much greater than all of the other sources of error.

This assLImlption is usually justilied since the model -s often determined
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experimentally. Conversely, current integration techniques and gain accuracies are

rather reliable. The stated assumption dictates that the perturbations will only be

in the sub-matrices Al and C. of the plant model matrix A. Since only one error

source is being modelled, the weighting will be unity on each element.

The perturbation analysis is a linearization around a nominal solution.

Consequently, the error from a perturbation e will be proportional to E itself. As

previously described, the analysis is best applied by perturbing each element of the

sub-matrices AI and C, indih idually by E and summing the maximum magnitude of

the errors for each eigenvaiue on the primary Riemann sheet. The result will be a

radius R of maximum eigenvalue error. The results of applying the perturbation

analysis are summarized below.

Inteeer Order Solution

Mode One: R, = 0.529 E

Mode Two: R, = 0.294 E

Fractional Order Solution

Mode One: R, = 0.810 c

Mode Two: R, = 0.230 E

The first mode appears more robust for the integer order controller while the

second mode appears more robust for the fractional one. This example problem

proiuced mixed resulhs.
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VIII. Closing Remarks

A control algorithrn was derived that utilized fractional order states. The

algorithm was best suited for active damping due to unusual transients inherent in

fractional order systems. The algorithm was then optimized for robustness.

Example problems were presented employing the derived techniques. The

resulting solutions were then compared to the solutions from a traditional

algorithm.

Conclusions

Control algorithms implementing fractional order feedback have a

promising future. Only one fractional algorithm was considered in this

investigation but the results were favorable. The fractional order controller was

more robust than the integer order controller for the single mass cases. The same

algorithm produced mixed results on the multi-mass example problem. It should

be noted that only one multi-mass case was examined which makes decisive

judgments difficult. Regardless, the conclusion is that feedback of fractional states

can often produce a more robust system than traditional techniques can.

Recommendations

There are many possible avenues of future investigation. The first two

example problems produced positive evidence that the fractional order controller

has value. Although the third example ploblem had mixed results, there are still
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multi-mass cases that may benefit globally from a fractional order controller. The

most probable would be multi-mass systems which have inherent condition

numbers much worse than the example did. The example was very well

conditioned to begin with. On actual structures, the condition numbers can be in

the hundreds or even thousands. The fractional order controller may prove

superior in such cases.

There are some specific topics that need to be investigated in the future:

Cost Function

The cost function employed only optimized robustness for the principal

roots of the system. It was assumed that the non-principal roots would remain on

the non-principal sheet and consequently not affect stability. If, however, the non-

principal roots are poorly conditioned, they could migrate to the unstable region

of the principal sheet driven by errors. Consequently, a cost function accounting

for the conditioning of the non-principal roots should be investigated to negate

this possibility.

Furthermore, the condition number associated with an eigenvalue may not

be the best measure of robustness. The condition number assumes possible error

in every element of a given matrix. The perturbation analysis revealed that not

ever, element in the closed loop matrix is subject to errors. Only certain elements

will be subject to errors. Also, the condition number assumes unity weighting for
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each error source. In reality, this will seldom be the case. A better cost function

may be realized by using modified equations from the perturbation analysis.

Other Fractional Orders

The inequality constraints were not active in any of the example problems.

Although not proven, it appears that the optimal solution does not tend to

produce roots that migrate across the branch cut. If this is the case, other

fractional orders should be investigated since the only reason the 1/2 order case

was explored was so that the inequality constraints could easily be determined.

There are an infinite number of other fractional orders that could be utilized.

Some fractional orders may have some inherent benefits not perceived at present.

Other Fractional Control Algorithms

Only one type of fractional order controller was investigated during this

study. There are a large number of other control schemes that could be modified

to implement fractional feedback. Other algorithms may harness the additional

information from the fractional states in a better or more efficient manner.

Case Studies

Only three examples were presented in the text. There are whole classes

of examples not studied that may benefit from this algorithm. The class of

problems with the most to gain would by systems that are inherently ill-

conditioned.
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