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CHAPTER -

INTRODUCT T4 .

1.1 Motivation Of Research

Many fluid dynamic problems zi:sz~u.ated with flows over
airplane, missile, ship, submarinz '. ground vehicle are
three dimensional and turbulent. Lecause of the practical
importance of these external ilows in designing moving
vehicles in the air, on ground and in the sea. the
prediction of laminar and turbulent fiow arournd a body has
attracted considerably interest. To predict these flows is
not a simple task since the flow past a simple body geometry
can easily ecome three dimensional and turbulent if the
approaching flow has an angle of attack to the body and when
the Reynolds number is large. What is more is that the flow
around the body may develop shedding if separation of flow
is developed on the body. It is the aim of this study to
develop a numerical prediction method for predicting complex
laminar and turbulent flow past a two dimensional and
axisymmetric body with or without angle of attack.

Although many numerical algorithms have been developed
over the past decade to solve the three dimensional

turbulent flow, most of these works are developed for




external flow problems with governing equations of boundary
layer flow type or £»r internal flow problems witi. govevrning
equations of partially parabolized type. “hese works ~an
not be implimented in prediction ¢¢ the total flow fieid or
flow with separation. This is due partly to the limitation
of computer storage and computaticnal time and partly to th:
lack of gei.ral turbulence model for prediction of complex
flows involving flow separation and recirculation.

In the preseat study only external flcows are
considered. The prediction of external flow problems are
indeed difficulit and few solutions are available. However,
many external flow problems are of great importance. 1In
order to predict the complete flow past a body involving
separation the complete Navier-Stokes equations are used in
this study. For the case of ’ 'rbulent flow the ensemble
averaged process is used to obtain the averaged
Navier-Stokes equations and the turbulence model based on
second order correlation is adapted. As the prediction of
complex three dimensional flows past three dimensional
Ibbodies is a formidable task. 1In the present study the
prediction cof flow past a2 finite flat plate from the
upstream to the wake region is first made and then the flow
past the finite length of axisymmetric body is predicted.
Although the geometry of an axisymmetric body is simple in

comparision with those practical configurations, the flow




over the axisymmetric body at incidence is a complex three
dimensional flow and contains most of the flow features
observed on more complex geometries. Therefore, the
prediction of flow past an inclined axisymmetric body is the
first step in develcping numerical prediction capability for
flow past more complicated geome.ry. The primary objective
of the present study is then to develop a numerical scheme
with some available turbulence models for prediction of

flows past an axisymmetric body of finite length.

1.2 Previcus Works

Before the detail of the present study is given, a
brief review of the previous works on experimental study,
numerical solutions for three dimensional turbulent flow are

first made.

1.2.1 Experimental Study

Prandtl, the father of boundary layer theory, was the
first to recognize the importance of three dimensionality in
turbulent flow and had proposed a simple turbulent flow
profile model [1] at the beginning of the 20th century. But
Gruschwitz [2] (1935) was the first to conduct and publish
the results of a comprehensive experiment involving three
dinensional turbulent flows. He measurcid the free stream
and the boundary layer mean flow field over many stations

covering the flat end-wall of a curved two dimensional duct.




Since then the experimental studies in three dimensional
turbulent flow grew. Unfortunately no turbulent stress data
for three dimensional flows had been measured and published
before 1967. Bradshaw and Terell [3] (1969) measured the
turbulent stress on an 'infinite' sweep wing at Reynolds
number around 6x104 which is believed to be the first detail
study of turbulent flow in three dimensional boundary layer.
They used this experiment to test Bradshaw's assertion that
the ratio of turbulent stress to the turbulent kinetic
energy is constant in the boundary layer. They found that
the assertion is only approximately true.

Three dimensional turbulent experiments are painstaking
and time consuming and definitely not abundant. Scme
experiments are conducted for greater understanding of the
turbulent phenomena and can be used to develop suitable
mathematical models for turbulent flow prediction. For an
experiment to be useful in developing and testing the
mathematical models the experimental data should provide
adequate information for possible numerical simulation. In
other words, in addition to the measurements of velocity,
pressure and turbulent stress in the flow region, initial
and boundary conditions must be carefully measured and
documented. Since in this study the emphasis is placed on
the turbulent flow past axisymmetric body that a brief

review of experimental work pertaining to the flow past

axisvmmetric body with or without angle of attack is given.




Richmond [4] (1957) was probably the first to study the
turbulent flow on a circular cylinder. He measured the
velocity profile along the surface of a slender circular
cylinder at several subsonic and hypersonic speeds. He
obtained the law of the wall for the axisymmetric boundary
layer by using Cole's streamline hypothesis. Later Yasuhara

[5] (1959) measured a 20 mm diameter brass pipe, 1750 mm

6

long with ogive-nose at Reynolds 1.2 ~ 1.8x10 . Willmarth

and Young [6] (1970) measured the boundary layer development
for air flowing on a steel tube of 40 ft long and 3 in.
diameter at 200 ft/sec free stream speed. In these
experiments, although the velocity profile and pressure
along the cylinder were measured, no turbulent quantities
were measured.

Other experimental studies on flow over an axisymmetric
body without angle of attack with measured turbulent
quantities are shown in the table 1. They are Chevray [7]
(1967), Patel, Nakayama and Damian (8] (1974), Patel and Lee
(9] (1977), Huang, Santelli and Belt [10] (1978), and Hung,
Groves and Belt [11] (1980). Chevray's experiment was the
first attempt to measure turbulence stress in the wake. In
his experiment a small separation was observed ahead of the
tail. The data provided detailed information far into the

wake. This experiment was recommended as a test case at the

1980-81 Stanford Conference onr Complex Turbulent Flows but,
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to date, it has not been successfully predicted by any
method. The remaining four experiments are quite well known
and had been used extensively as test cases. None of these
experimental studies involved separation, and all provided
mean-£flow and turbulence data in the stern boundary layer.
The measurements were confined near the body therefore, the
data did not provide sufficient information far into the
wake. All of the above studies are restricted to
axisymmetric flow i.e., without angle of attack.

Ramaprian, Patel and Choi [12] (1981) measured three
dimensional flow past an inclined cylinder body. In this
study only velocity profiles and pressure along the cylinder
body were measured and no turbulent quantities were given.
Baek [13] (1984) continued the previous experiment and
concentrated in his work on the measurements of turbulent

quantities. The other available sources of turbulent data

vertaining to inclined cy

f aad
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nder is the ekperiaents made by
Meier et al. [14] (1984) at DEVLR in Gottingen, West
Germany. However, all of these three dimensional turbulence
data are measured only on the body between the region

0.2<x/L<0.9, where L is the body length, x=0 is the leading

e

edge of the body and %=L is the tail of the body. No
measurements involving the separation flcw or inside the

wake are yet available.




1.2.2 Numerical Approach

The primary difficulty in obtaining numerical solution
of the three dimensional turbulent flow is that the
governing Navier-Stokes and turbulent transport equations
are non-linear and elliptic with respect to space variables.
The numerical solution of the three dimensional flow problem
must be found simultaneously in all three spatial
directions. Generally speaking, the computer systems
available in the academy or industry are still not large
enough to store all the values associated with large number
of discretized nodes and variables that are required in
three dimensional flow calculation. Thus, to solve the
three dimensional turbulent flow problem by using truely
elliptic treatment is an impractical proposition at the
present time. The computer storage reguirements and the
computational effort can be greatly reduced by the use of
approximate equations whose applicability lies somewhere
between that of the fully elliptic Navier-Stokes eguations
and the classical parabolic boundary layer equations. There
are two different approaches in deriving the approximate
equations. The first one is to simplify the Navier-Stokes
equations by discarding certain terms and the second is to
modify the boundary layer equations by introducing
additional terms. Both approaches lead to the same

equations. These intermediate equations representing an




improvement over the classical boundary layer approximations
and have been used by many authors [15]. In solving these
approximate equations the integral as well as differential
mathods have been proposed. Generally, the integral method
needs additional empricism to predict the crossflow across
the boundary layer and this empricism varies from one
problem to the other. A more general solution can be
obtained if the differential solutions are solved
numerically. Many available three dimensional solutions for
the external flows problems are based on boundary layer
equations rather than the Navier-Stokes equations. This
approach has the major shortcoming of not being able to
predict the flow separation. In order to develop a
prediction scheme that is capable of predicting separation
flow one must consider the Navier-Stokes equations. Here
only the differential methods based on the Navier-Stokes
equations are reviewed. Among the works based on simplified
Navier-Stokes equations known as the partially-parabolic
equations is perhaps the most popular one to date used in
the three dimensional flow problem. The partially-parabolic
approximations were first introduced +y Patankar, Pratap and
Spalding [16,17] (1972), to describe internal flows in a
curved tube where the predominant flow direction is along
the tube axis. The diffusion term is neglected in the

approximation. Although there is no recirculation in the
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flow, significant pressure effects, unlike boundary layer
assumption, propagate upstream. By neglecting the diffusion
term in the axial direction the governing equation become
parabolic in the axial direction for the velocity variables.
It should be remarked that the pressure variable is governed
by an elliptic equation which can be shown if the velocity
variables in the continuity equation are expressed in
pressure variable. Nevertheless, the numerical solution can
be obtained by marching the solution from the upstream to
the downstream instead of solving the whole velocity field
that is required in the elliptic case. The approximation
still enables one to compute a wide class of three
dimensional flows of practical interest other than that of
boundary layer flows.

Table 2 summarizes some numerical works using a
partially parabolic approach on three dimensional external
turbulent flow. They are Abdelmeguid, Markatos and Spalding
(18] (1978), Muraoka [19) (1980), Huang and Chang [(20]
(1985), Chen and Patel [21,22] (1985). Similar to the
published applications in internal flows [16,17], these
studies used essentially the same numerical scheme based on
the work of Patankar and Spalding et al. [23], and the k-t
turbulence model with specified wall functions for flow
variable near the wall boundary. Some good success of

numerical predictions is obtained in [20,21,22]. However,
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three dimensional flows that can be described by the
approximated partially-parabolic equations are limited to
those flows having no flow separation. In the present study
the numerical solution is derived, in addition to the above
flows, for prediction of separation flows. In order to
achieve the prediction capability of separation flows,
instead of neglecting the diffusion term in the direction of
the predominant flow direction as in the partially-parabolic
approximation, in this study the diffusion term is kept and
cast into the source term, hence the fully elliptic
governing eguations are retained. The approximation is made
only numerically to evaluate the longitudial diffusion term
from the previous iteration. This approximation called the
"semi-elliptic approximation" has an advantage that the
fully elliptic solution is kept in the whole computational
domain and that the computational effect and storage equals
to that of the partially-parobolic approach. More details
of the semi-elliptic solution procedure and numerical

analysis will be explained later in chapter III.

1.3 Selection Of Methods And Models

As mentioned before, the numerical predictions of three
dimensional turbulent flow are complicated and sometimes
unrzliable. These difficulties are not just with the

geometry treatment, coordinates and numerical method
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adopted, but also in the turbulence models used to relate
the Reynolds stresses to the mean flow. Therefore, in order
to solve a complex three dimensional turbulent flow one
must, in addition to an appropriate coordinate system and an
accurate numerical method, have a turbulence model that is
valid for three dimensional flow including flow separation.
The selection of coordinate system, numerical method and

turbulence model are outlined in the following sections.

1.3.1 Coordinate System

The simple and familiar coordinate systems that are
usually used in the early numerical approach are Cartesian,
Cylindrical and Spherical coordinates. However, it is
obvious that these coordinate systems are appropriate only
for the problem geometry having the coordinate lines as the
boundaries. Consequently, the numerical solution based on
the standard coordinate systems has difficulty in specifying
the non-slip boundary conditions on the surface of arbitrary
shaped bodies. In the present study the body-fitted
coordinate system, such that the surface of the body is one
member of a family of the ccordinate surfaces, is used to
avoid this difficulty.

The ideal body fitted coordinate system is the
analytic, orthogonal curvilinear cocrdinate system that

traces the problem boundary and satisfies the requirements
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of orthogonality in three dimensional space. In this systen,
the coordinate surfaces normal to the body must intersect
the body surface in its lines of principal curvature. Thus,
to find this coordinate system for a body of any given shape
it is necessary to obtain the lines of curvature of the body
surface, which can be mathematically derived as shown in the
paper published by Miloh and Patel [24]. Unfortunately, the

use of the lines of principal curvature to form the

analytical body fitted coordinate system is not very

convenient since the determination of these lines of

principle curvature is rather complicated. Moreover, for an
arbitrary shaped body the curvature of these lines may be
quite large on some part of the body so that the numerical
evaluation of coordinrate value reguires great care to attend
sufficient accuracy.

To rectify the problem, many numerically-generated
coordinate systems have been tried in the past decade.
investigators have constructed curvilinear meshes to span
the whole physical region and some others have even tried
different modifications of conformal transformation
procedures [25]. The real breakthrough came from the
elliptic~transformation procedure proposed by Thompson et
al. [26]. 1In this method, one of the coordinate lines or
surfaces is matched with the body identically and another

with some outer boundaries, and internal points of the
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physical region are automatically generated on the computer
by the solution of an elliptic system of partial
differential equations. In contrast to a conformal mapping
prccedure, which is limited to bodies in two dimensions, the
Thompson's procedure can be extended to three dimensional
problems. The numerically-generated body fitted coordinates
is not only proved to be mathematically sound, but also has
the capacity of contracting the coordinate lines to a point
or along some specified lines and surface in the physical
region. Generally, the contraction of the grid lines fo the
surface of of body is required for obtaining more accurate
results while solving the flow problem which has large
gradient and rapid change of variables near the body.
Therefore, in this study the body-fitted coordinate system
based on Thompson [26] is used to generate the grid
distribution in the computational domain. It should be
remarked here that the use of the body-fitted coordinate
systems which enables us to solve the flow past a body with
irreqular body shape has some disadvantages. The first is
that many cross derivative terms are added to the governing
equations after the transformation from the physical
coordinates to the body-fitted cocrdinates. Therefore one
must solve more complex governing equations in the

body-fitted coordinates. The second is that numerical error

due to difference approximation in those transformation
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functions relating the physical and body-fitted coordinates

may decrease the accuracy of numerical solution. Third, the
departure of the body-fitted coordinates from orthogonality

may create additional difficulties and numerical error

during the computation.

1.3.2 Numerical Method

Depending on how the algebraic representation of the
differential equation is derived the numerical method may be
classified as finite difference, finite volume, finite
element or finite analytic. In the finite difference method
[27] the discrete algebraic equation is cobtained by
Taylor-series expansion of differential te.ms while the
finite volume method (23] derived the algebraic equation by
formulating the conservation principle in a finite control
volume without taking the limits to the infinitesimal
volume. In the finite element method [28], the variational
formulations and the method of weighted residuals are often
used to derive an intergal form before an algebraic equation
relating the nodal values in the element is obtained. The
finite analytic method presented by Chen et al. [29-37]
invokes another means of deriving the algebraic equaticns.
Unlike the finite difference, finite volume or finite
element method, the discretized algebraic equation is

obtained from the analytic solution for each local element.
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inite element method which is used very successfully
in the solid mechanics was first introduced to the fluid
problem in the late of sixties. And the first conference on
finite element in fluid mechanics was held in 1974 at
Swansea [28]. During the last two decades the number of the
applications of the finite element procedure for various
areas of fluid mechanics had been increased. However the
majority of applications of finite element in fluid
mechanics occur in the slow viscous flow, wave phenomena and
fluid-structure interaction. But for high Reynolds number
or turbulent flow and external flow the finite element
solutions are scarce. This is partly due to the fact that
at high Reynolds number the finite element treatment of the
convective term is often inadequate and the finite element
£~lution can become unstable and inaccurate. Since in the
rresent study the high Reyrolds number external turbulent
flows are going to be solved, then the finite element
approach is not a suituakrle numerical meithod for this study.

The finite diffexrsnce method is perhaps the mest used
numerical method in solving fluid flow. Various forms of
finite difference methods had been used to solve fluid
problems for a long time, and many successful solutions have
been obtained. However there are still several difficulties
in obtaining finite difference numerical solution. The first

is the numerical instability in solving the system of
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algebraic equations that approximate the governing partial
differential equations. The second is numerical error
associated with the numerical method known as numerical or
false diffusion which in some situations can become so
severe as to completely overshadow the physical turbulent or
viscous diffusion. The instability of the finite difference
solution basically arises from the improper finite
difference approximation of the original governing
differential equation. If the original governing
differential equation is well posed the numerical solution
of the properly approximated finite difference equation must
be stable. However the proper and accurate finite
difference equation for the Navier-Stokes equation is not
easy to derive. On the other hand it is known [27] that the
finite difference equation based on the central difference
approximation for the Navier-Stokes equations is unstable
when the element Reynolds number is greater than two. To
partially overcome the instability of the finite difference
solution of Navier-Stokes equation, the upwind scheme was
introduced [38] to preserve the proper characteristic of the
original partial differential equation that is present. The
upwind scheme uses some special formula to shift the weight
of the difference scheme or nodal influence on the element
to the points where the flow pass. However, if the

formulation of upwind scheme is improperly implimented, the
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scheme may produce large numerical diffusion even though the
solution is stable.

Unlike the finite difference method, the finite
analytic method invokes the analytic solution of the
governing equation in the local element in formulating the
algebraic representation of the governing partial
differential equation. The finite analytic method produces a
stable solution because the analytic solution of a well
posed problem is stable. Further more the finite analytic
solution has the ability of automatically upwinding shift of
the weight oé the coefficients that are associated with the
analytic algebraic equation. The finite analytic solution
thereby minimizes the false numerical diffusion while
providing a stable solution. The finite analytic method has
been applied successfully in solving the vortex shedding,
recirculation flow, free convection flow and laminar and
turbulent flow at high Reynolds numker (21,22,29-37]. From
these published results the finite analytic solutions were
shown to be indeed stable and accurate. Consequently the

finite analytic method is adopted in this study.

1.3.3 Turbulence Model
Equations for describing the fluid motions, known as
the Navier-Stokes equations, have been postulated and

derived for over a century. However, it is difficult to




20

solve these equations for both laminar and turbulent flows
mainly due to the nonlinearlity of the equations. For
turbulent flows, the difficulty is even more formidable to
overcome because the turbulent fluid motion is irregular,
random, time dependent and three dimensional. However, in
most engineering applications, the detailed analysis of
irstantaneous turbulent motion is not necessary and the
gross.parameters like mean velocity, average pressure and

wall shear stress are often sufficient for engineering

analysis and design.

In studying the turbulent flow O. Reynolds [39]
proposed an averaging technique by assuming that the
variable ¢* at any instant of time to consist of the mean
quantity ¢, an averaged value of ¢* during the long time ‘

period T, i.e. |

1¢T
b =g, 0% at

and a fluctuating part ¢'. Hence,

¢* = ¢ + ¢' The time averaging process when applied
to the Navier-Stokes equations, creats six additional
unknowns'ﬁzﬁg. These unknowns, although called Reynolds
stress, are created f£rom the convective or non-linear terms
of the Navier-Stokes equations. Instead of time average a

more general average, ensemble average, can be used to

derive turbulent Navier-Stokes equations. In the ensemble
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average, the averaged value ¢ is now the average of many

repeated same experiments or 1 x
b = 532 ¢*

where N is the total number of the experiments, and ¢' is
the deviation of the instantaneous value ¢* from that of the
ensemble averaged value ¢. The advantage of considering
ensemble average 1s that the process of ensemble average may
be applied to unsteady turbulent flows, preserving the time
depenéénce in the average value ¢ which the original
Reynolds average can not do.

Many turbulence models have been proposed to evaluate
the unknown Reynolds stress. All models have them coupled to
the mean quantities through either algebraic or differential
equations. Some are based on empirical relation and others
on postulations.

In 1877, Boussinesq [40] proposed the concept of eddy
viscosity which assumes that, in analogy to the viscous
stresses in laminar flows, turbulent stresses are
proportional to the mean velocity gradients. For general

flow situations, it is expressed as

aU. U
i, _dy- 25, .3
- u.u. = \’('\ + ) 0. K

Here v_ is the turbulent or eddy viscosity which, unlike
L
molecular viscosity, v, is not a fluid property but depends

on the state of turbulence. k represents the

"

inetic energy

of the fluctuating motion or uiui/z. Boussinesg did not
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provide a general model for v In 1925, Prandtl [41]

.
proposed a turbulence model called the 'mixing length'
model. This model created a relation for the eddy viscosity,
as a function of a length scale L characterizing the size of
turbulent eddies and a suitable turbulent velocity scale, V.
Since Vi has the dimension of length squared over time,
Prandtl proposed Ve @ VL. Both the turbulent velocity
scale, V, and the mixing length scale, L, could be
reasonably approximated for many flows. However for each
flow empirical constants were needed to prescribe a length
scale. The flows that are most successfully modelled by the
mixing lengtl odel are of thin shear flows such as boundary
layer, jets, wake, mixing layver flows and pipe flows. The
constants of the mixing length model were obtained by
fitting the calculated results to experimental data of a
particular flow under study. These mixing length model
constants were found [42] to vary often from one flow to
another. Consequently, the mixing length turbulence model is
successful only in predicting turbulent flows in similar
geometry and flow conditions but lacks the universality and
predictability when the turbulent flow and geometry are
different.

To overcome the lack of predictability and generality,
several more complex models were developed during the 1940's

and 1950's which employed differential transport equations
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for the turbulent quantities. However, these equations could
not be solved directly as there were mathematical
difficulties involved and numerical techniques and fast
computers were not available. Alternatively, the governing
partial differential equations for turbulent flows were
often solved by integral method which reduced the governing
partial differential equations to ordinary differential

equations. These integral methods assumed some shape of

‘mean profile and used some empirical relations for global

‘behavior of turbulence. They lacked flexibility since the
assumed profile must be approximately the same in the flow
field and could not be applied for different flows.
Advances in computational facilities and numerical
methods during the late 1960's and 1970's led to the use of
more advanced models which solve complete partial
differential equations for both mean flow and turbulent
quantities. One of these models which solves the
differential equation for the turbulent kinetic energy, k or
ﬁ;ﬁi/z, is called the one-equation model as opposed to the
zero-equation model proposed by Boussinesq or Prandtl where
no differential equations are solved for turbulent
quantities. With the kinetic energy known, the Boussineq's

eddy viscosity can be written as

ez CukL
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where Cu is an empirical constant, k represents a turbulent
velocity scale where k is solved from the modelled governing
equation of the turbulent kinetic energy, and L the length
scale is a varible which is obtained from simple empirical
relations similar to those for the mixing layer. The one
equation model was found [42] useful only in predicting thin
shear flow since in many complex flows it is difficult to
specify the length scale empirically. The logical extension
of the turbulence modelling is that the length scale be
obtained from a differential transport equation.

Models which solve differential equations for both
turbulent velocity scale or turbulent kinetic energy k, and
length sacle or alternatively the dissipation rate of
turbulent kinetic energy ¢ (=v§%E%%) are known as
two-equation models. The most popular one is the one

suggested by Jones and Launder [43] which has kl'S/L instead

1.5

of L. The term k /L has physical significance as it has

the same dimension as, &, the dissipation rate of turbulent
kinetic energy. Hence this model is usually cailed k-¢
turbulence model. The conventional k-&¢ turbulence model
which only uses k and ¢ to characterize the turbulent
velocity ( Jk ), length ( kl's/s ) and time ( k/¢ ) scale
will be called one-scale k-¢ turbulence model in this study.

t was found that one-scale k-t¢ turbulence model can predict

acceptable mean flow variables when flow geometry is not too
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complex. It also can predict a fair result for the turbulent
transport properties. However, the one-scale k-¢ turbulence
model was found to be unsatisfactory in predicting the
result for two dimensional and axisymmetric jets unless the
turbulence constants which calibrated with experimental data
are altered. In order to improve the prediction capability
of turbulence model a two-scale k-t turbulence model was
proposed recently by Chen and Singh [44]. This model
employs the concept of two different scales in
characterizing the turbulent scales. One scale which is
based on k and ¢ for the large energy containing eddies
(l=k1’5, v= Kk, t=k/g) is used for modelling turbulent
diffusion and other turbulent production phenomena and the
other which is based on Kolmogrov's scale [45] ¢ and v for
the small eddies in the dissipation range (1=(v-/e)°"7>,
v=(vs)o'25, t=(v/s)o's) to model destruction of dissipation
of turbulent kinetic energy and other turbulent dissipation
phenomena. Based on the two-scale concept the ¢ eguation is
remodeled. It is found (44] that the two-scale k-=
turbulence model can predict many turbulent free shear flows
and some recirculation flows without altering the turbulent
constants including the turbulent two dimensional and
axisymmetric jets and turbulent wakes and mixing phenomena.

During the early stage of this study the two-scale k-t

turbulence model was tested for the boundary layer flow and
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found that the FANS-3DEF with the turbulent constants of the
two-scale k-t model often encounter numerical instability.
It is found that the numerical instability started when the
dissipation rate of the turbulent kinetic energy, ¢, is
larger than the production of turbulent kinetic energy.
Therefore it is reasoned that the turbulent constants Ck'
CE, Csl and CE2 used in the two-scale turbulence model
require further investigation. In the present study the
one-scale k-¢ model is choosen since the one-scale k-¢ model
in the present form was known to be stable in predicting the
turbulent external flow although the model required further

improvement in modeling.

1.4 Scope Of The Study

This study is undertaken to develop a prediction method
capable of analyzing both laminar and turbulent flows past a
finite or semi infinite two dimensional or axisymmetric body
with and without an angle of attack. 1In chapter II, the
partial differential equations governing the flow situation
considered in the present study are described. The
different turbulence models and the treatment of the
boundary conditions near the wall are also discussed. 1In
chapter III, the derivation of finite analytic formulation
on the body-fitted coordinates, the formulation of pressure

equation on a control volume and the description of
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numerical algorithm used in this study are presented. From
chapters IV to chapter VI the prediction of the laminar and
turbulent flow past two dimensional and axisymmetric bodies
with and without angle of attack are given and discussed.
In chapter VII, the conclusions of the present study are
summarized and the recommendations for the future work are
proposed.

The brief formulation for calculating the two
dimensional finite analytic coefficients are given in
appendix A. 1In appendix B, the brief introduction of the
computer program FANS-3DEF (Finite Analytic Numerical
Solution for Three Dimensional External Flow) and sample
output on the interactive screen are outlined, and the

complete program of FANS-3DEF is listed.
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CHAPTER 11

MATHEMATICAL EFORMULATION

In this chapter a general mathematical formulation for
predicting laminar and turbulent flow past a two dimensional
and axisymmetric body with or without an angle of attack is
introduced. The general governing equations for three
dimensional turbulent flow are first formulated in Cartesian
coordinates. The turbulence model based on the second order
correlation for the Reynolds transport equation is then
considered. The general features of boundary conditions are
also stated to complete the mathematical formulation.
Therefore, simple geometries like a flat plate or a
cylindrical tube can be treated as a special case of the
general formulation. All governing equations and boundary
conditions are then transformed and rewritten in the

body-fitted coordinate systems.

2.1 Governing Equations

Figure 1 depicts the whole computational domain to be
considered in this study and a general geometry of a body

which is subjected to an incoming flow UO with an angle of

attack «. The body geometry can be thought to simulate an
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Figure 1. Computational
Domain And Body Geometry
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airborne object in air, a ground vehicle on the road or a
submerged marine ship in the sea. For the total body domain
the body which has a characteristic length of L is located
in the center of the computational domain. The tip of the
body is located at a distance L; downstream of the inlet
boundary, the body center is located at a distance.LF from
the side boundary, and the rear end of the body is kept at a
distance LO from the downstream boundary. If a small
computational domain is desired a partial body domain can
also be considered as shown in figure 1(b).

For a three dimensional turbulent flow problem, the
ensemble averaged incompressible Navier-Stokes equations in

Cartesian tensor form are

00,

3Xi

9U. au. oU. au.

—= iy _L1l 3 3 L. b -Tu. } (2
(37 +Ujaxj ="5% axi+axj{“ (axj o, i

where uiu:j are turbulent Reynolds stresses. When the flow
is laminar the Reynolds stresses are set equal to zero.
Equations (1) and (2) are 4 independent equations governing
4 unknowns, U, V, W, P, and providing existence of
solutions. Uniike laminar flow, if the flow is turbulent,
equations (1) and (2) have 4 equations but with 10 unknowns.
They are U, V, W, P, uu, Vv, ww, uv, uw, and vw. Clearly,

the closure of the turbulent problem requires additional
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information between the Reynolds stresses and the mean flow
variables. The closure of turbulent flow equation can be
dene by the introduction of turbulence models for the

Reynolds stresses, uiuj, which is discussed in the next

section.

2.2 Turbulence Model

In order to solve turbulent flow problems governed by
Egs. (1) and (2), the Reynolds stresses, ﬁ;ﬁj, must be
known. In general, the exact equation for turbulent
quantities, ﬁ;ﬁj, can be derived from Navier-Stokes
equations. However, in these turbulent transport equations
there exist additional unknown correlations other than'ﬁZﬁj.
Therefore, a turbulence model must be established to close
the problem. The turbulence model may be classified
according to how the Reynolds stresses that appear in the
ensemble averaged Navier-Stokes egquations are modelled.
Generally, the more the number of differential transport
equations are solved the more complete the turbulence model
becomes. However, the effort in analyzing large numbers of
differential equations will also increase. As mentioned in
chapter I, the current trend in turbulent modelling is to
model the Reynolds stresses by transport eguations for the
second order correlation. In the past ten years, the two
equation k-g¢ turbulence model has become the most popular

model in the turbulent flow calculation.
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In the k-&¢ turbulence model the turbulent kinetic
du, Ju,

enexgy k (=uiui/2) and its dissipation rate € (==vaxlaxl ) are
59X

.J
solved from two modelled differential transport equations.

The Reynolds stresses,uiuj is then a function of k, ¢ and
other known mean velocity quantity. Typically, the two
equation k-¢ turbulence model contains five empirical
constants which are determined from some basic experimental
configurations such as grid turbulence, homogeneous shear
flow and boundary layer flow [42]. Although more effort is
required in analyzing the two equation k-&¢ turbulence model
than in other simpler models such as the mixing length model
proposed by Prandtl [41], it is found [46] that the k-t
model or more generally the second order closure model with
its empirical constants are less problem dependent.
Therefore, some hope for predictability and universality of
the turbulence model is established although the model still
require further investigation and improvement.

In the present study the conventional one-scale k-¢
turbulence model, known as the standard k-¢ turbulence
model, by Launder et al. [46] is considered. 1In the k-¢
turbulence model the Reynolds stresses'ﬁ%ﬁ% can be modeled
either approximating the differential Reynolds stresses
transport equation into an algebraic form or by an algebraic
equation based on Boussinesq's assumption which relating

Reynolds stresses to the gradients of mean velocities as
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Here Ve is the eddy viscosity and based on the dimensional

analysis of (k,e) we have

_uiuj= \)t(-a-}—(;'f'axl)- §6ljk

where Cu is an empirical constant (=0.09-0.128), k is the
turbulent kinetic energy per unit mass (k=ﬁ;ﬁh/2), and ¢ is
the dissipation rate of k (=:§5§72 ). In the present
study.éeneralized Boussinesq's equation (3) is adopted.

In addition to algebraic Reynolds stresses equation
(3), two differential transport equations, namely, the
turbulent kinetic energy and the rate of dissipation of
turbulent kinetic energy are needed to close the problem. In

this study the turbulent kinetic energy ,k, and its

dissipation function are solved from following two modelled

equations [46].

- 3u,

Dk _ k2 ak —_ i_

BT +ck ) X } (“iuj)axj € (4)
3u;

DE_ 3 k2 3k 1 5

—Ur‘—a {v+c=) ax Y+ {c (uu)aXJ ceze}(t) (5)

Here t in Eg. (5) is the characteristic turbulent time scale
associated with the destruction of ¢. If t is determined
based on k and £ or t=k/tc then the turbulence model is the
conventional one-scale k-&¢ turbulence model. The model

constants C , C,, C , C and C in the one-scale k-¢
H K £ el £2
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turbulence model can be determined from several basic
experiments, namely isotropic grid turbulence, homogeneous
shear flow, and boundary layer flow. The model constants

suggested by Launder et al. [46] are:

Cﬁ = 0.09, Ck = 0.09, Ce =0.07, C_, =1.44, C,=1.92

el €2

With the introduction of above turbulence model, the
problem for solving turbulent flow is closed. A unique
solution of equations (1) to (5) can be cbtained for U, V,

W, P, uiuj, k and £ if the boundary conditions for U, V, W,

P, k and € are properly specified.

2.3 Boundary Conditions

In addition to the governing equations (1) through (5),
the complete specification of external flow past a body
requires an adequate prescription of boundary conditions.
This means that the flow conditions must be specified at the
inlet and outlet planes and at the lateral boundaries of the
flow domain of interest (see figure 1). It should be noted
that the boundary location may be placed arbitrarily with
respect to the solid body by assigning different values of
LI, LF and LO for the computational domain.

(1) Inlet plane: The inlet plane is located at LI distance
upstream (Fig. 1(a)) or downstream (Fig. 1(b)) from the tip
of the body. If LI is placed far upstream from the tip of

the body then the uniform velocity profile with or without
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angle of attack is specified. In this study a constant
ambient pressure, zero ambient turbulent kinetic energy k
and its dissipation rate ¢ are assigned at the inlet plane.
If inlet plane is placed at LI distance downstream of the
tip of the body then the distribution of the wvelocity
components (U,V,W), pressure P and the turbulence gquantities
(k,e) are prescribed at this plane either from detailed
experimental measurements, boundary-layer calculation, or
from simple flat-plate correlations.

(2) Outlet plane: Since this study includes the flow
phenomenz inside the wake region the outlet plane is always
chosen to be far downstream of rhe body where the second
derivatives of all variables are set equal to zero. This
implies that the effect of diffusion from the outlet plane
to the upstream locations are negligible.

(3) Lateral boundaries: There are three types, namely:
walls, planes of symmetry and free stream boundaries.

(i) Wall boundaries: The wall of the bedy can be plane,
cylinder or arbitrary cross section. For laminar flow, the
numerical solutions are carried out upto the wall where the
usual no-slip conditions, U=V=W=0, are imposed. For
turbulent flows, since the turbulence model can not be
emploved in the viscous sublayer region, an alternative

L1 &

method should be used instead of applying no-slip conditions

bl

directly. In this study the two-node wall function is used
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to avoid the use of the low Reynold number turbulence model
or a large number of grid points to resolve the large
gradients in the near-wall region. The basic idea of the
two-node wall function is the numerical solution from ti .
wall to the first two nodal points near the wall and is
replaced by a semi-analytic solution obtained from the
turbulent inner layer equation for the near-wall region
namely .the log-law equation (47]. 1In doing so, the first
two computational nodal points are placed at nondimensional
distance y+, y+ away from the wall. Here the values of y+

and y+ should be arranged batween 12 to 200 and y+ is

defined as Uy

where UT is the friction velocity or (/ﬂyb) with T, as
total wall shear stress, Y is the distance away from the
wall., If Ul’ U2 are respectively the resultant velocities
parallel to the wall at first two nodal points as shown in
figure 2, then wall boundary conditions can be specified
through the log-law equation by the following steps.
(1) Using an initially assumed or update velocity U2
rhrough log-law equation to obtain UT.
(2) Using UT which just obtained from step (1) through log
-law equation to obtain velocity Ul'
(3) Ul is then used as the boundary condition for turbulent

flow calculation.
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Figure 2. Two-Node Wall Function
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In this study a two dimensional log-law eugtion for U

-

velocity component based on fully developed or parallel flow

assumption is used. It is [45]

ug _ 1 + +
5;‘f < ‘W (Ey) 12 <y < 200 (6)
with Karman constant kx=0.42 and integration constant E=9.
The corresponding turbulent kinetic energy k and its

dissipation rate ¢ at the first node are given [47] as

. %
1T €1=5T (7)

Here Cu=0.09 is determined empirically [42] and Cu=0'128 if
the value is obtained from the algebraic reynolds stress
model [47].

It should be mentioned that the normal velocity
componenent is taken to be zero at the first nodal point

from the wall. This may not be the case when the flow

separates near this node. At present there is no known wall
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function for flow near the separation. Thus the general
practice is to use the same wall function, Egs (6) and (7),
even for the flow involved separation. Numerically the
point of separation is unlikely to occur a: one numerical
node exactly. In other words T, OF UT at those numerical
nodes even close to the separation will have non zero
values. Therefore the U1 velocity at the first node y+ will
have a value, either positive or negative depending on the
direction of Ty The positive value denotes the point
before the separation while the negative value denotes the
point behind the separation. In the region where the flow
near the separation zone, either before or behind the
separation the wall functions (6) and (7) for Ul may still
be approximately used since the flow vector is properly
oriented and since the U1 velocity at y+ is small while near
the separation. Although the use of wall function based on
parallel flow assumption for the nodes near the separation
is questionable, but this is currently done in just about
every turbulent prediction calculations using a wall
function. The weak justification of such a practice is that
the number of nodes that are near the separation is far less
than the total number of nodes where the wall functions (6)
and (7) are applicable. Thus the error caused by the above
practice may be confined only near the separation point. In

the actual test from many calculatio:'s it seems to bear out
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that the separation phenomena can be reasonably predicted
with this practice.

(ii) Symmetric planes: In some flow problems the symmetric
condition may be used. For example, the flow past a
symmetric body with no angle of attack. If no vortex
shedding is exXpected in the axisymmetric flow the symmetric
condition may be imposed on the line or plane of symmetry so
that a smaller computational domain can be used to save
computer time and storage. The velocity components which
are normal to the line or plane of symmetry are set equal to
zero, and there are no fluxes of any variable across
symmetric planes.

(iii) Free stream boundaries: In figure 1 it is shown that
the free stream boundaries were set at LO distance away from
the axis of the body. LO is set far enough as numerically
and computationally possible to avoid any unrealistic
representation. The normal derivative of all vailables
along the free stream boundary are set to be zero.

After specifying the boundary conditions along the
boundary the mathematical description of the problem is
complete. Since the exact mathematical solution can not be
obtained, the numerical analysis of the problem is
considered and discussed in the next chapter.

For the convenience of the numerical analysis the

governing equations (1) to (5) are made dimensionless and

summarized below




3ui . 1)
a_x.. = (0 ( )

i
gu, du, ou, ou.

i iy _ _ % 1 2 i )3y - BT 2)!
(at + ujaxj) : axia + Re axj { xj + xi)} axj(uiuj) (2)
—_ k*2. ui".:ii 2 .
113! = LAY S - *
wul=G eF Gt T30k ()

3 1
dk* ok*, _ 9 k*2.  ok* * '
9t T U T (VG axi} G- . @
dek  deh 3 k*2, det Ccew (L :
au,
G= -0l =  tr=X
1] axj g*

Where the variables are made dimensionless with the body

length L and approaching velocity UO as the references. They

are U. X. K
1 1L eL
u, = ——, X, =—=, k* = — , g% = —p ,
i UO i L U0 UO
UOL p ulu
= = ' =
Re v _ ! P Eﬁ‘z“' ' uiuj “ﬁz‘l
0 0
There are five turbulence constants C , C,, C , C and C
u k £ el A

that must be specified. They are

Cu = 0.09, Ck = 0.09, C€ = 0.07, Cel = 1.44, C€2 = 1.92
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CHAPTER III

NUMERICAL ANALYSIS

In the following sections the basic idea and principle
of the numerical techniques for grid generation (body-fitted
coordinate system), the numerical approach (FA numerical
method) and the derivation of the pressure equation for

modified SIMPLER algorithm are discussed.

3.1 Body-Fitted Coordinates

In order to develop a prediction scheme for a three
dimensional flow past an arbitrary two dimensional or
axisymmetric body, the body-fitted coordinate system
proposed by Thompson et al. [26] is used in this study.
The basic idea of body-fitted coordinate system is to
generate a curvilinear coordinate system as shown in figure
3 which has coordinate surfaces coincided with all the
boundaries of a general multiply-connected body including
the boundaries formed by solid walls and external
boundaries. Thus, on the transformed domain, the numerical
solution of the governing equations may be obtained on a
fixed parallelepiped domain with a uniform mesh size. In

this way no interpolation of the boundary variable is
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required regardless of the shape of the physical boundaries
or the spacing of the curvilinear surfaces in the physical
domain.

These body-fitted coordinates (%, n, ¢) can be
generated from the solution of three partial differential
equations with Dirichlet boundary conditions, to provide the
contour of (x,vy.,z), n(x,y,z) and Z(X,y,z) on the physical

plane -(x,y,z). The partial differential equations are
V% = F1, V%n = F2, V% = F3 - (8)

Here V? is Laplacian operator and F1l, F2 and F3 are control
functions which are used to concentrate the grid lines to
the desired region.

When the flow problem with Egs. (1) through (5) in
(x,v,2) physical plane are transformed by Egq. (8) into the
(¢, n, ¢) transformed plane, the computational domain will
become a simple rectangular domain which is shown in figure
3. Therefore it is more convenient to perform numerical
calculation in uniform cubic grid in the transformed domain
(¢, n, ¢). It should be mentioned that in this study the £
coordinate on the transformed domain for coavenince is taken
to coincide with the axial direction, x, in the physical
domain. In order to solve Egs. (1) through (3) in (&, a, ¢)
coordinate system it is more convenient first to inverse Eqg.

(8) into a form of x(§, n, &), y(&, n, ¢) and z(§, n, §) so
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that the contour of £, n and ¢ can be accurately identified
on the physical coordinate (x,v,z).
I£f M is the Jacobian of the transformation from (x,y,z)

coordinates to (§,n,¢) coordinates then

We further assume that the inverse transformation exists and

-

is continuous. For this transformation, the Jacobian J is

xg xn XC
J= Yo ¥, Yy
ZE zn %

so that MJ=1.

Using the relationship between these two Jacobians, Eq.

(8) can be inversely rewritten as

allxEE sznn 33XCC+2a12 €n+2al3x€C+2a23xnC

+J2 (le€+F2x +F3x ) =0

+? (FlyE+F2y +F3yc) = o (9)

P10%5E 220337 2 % P2 97 2037,
+J* (Flz€+F22 +F3z ) =0

3
where Q.. = Z B




is the transformation coefficient and

B., = Y.2,~y.z , B.. = -
1L~ %%y By = vz, P13 = Yezv 2,

By, = - =
21~ PR Z By, = Xg2, X 2, B

g "ng’

B,. = x 23 7 ang—xgzn
31 ° XY XY, B

=x - -

With suitable boundary conditions for the computational
domain: Eq. (9) can then be solved by any stable numerical
method to produce the coordinate relations between the
physical and transformed domain. The detail of numerical
procedures to obtain the body-fitted coordinates is further
discussed in chapter IV and V.

After calculating the coordinate relationships, the
governing equations (1) through (5) in the physical domain
must also be transformed to the body-fitted coordinate

system. The dimensionless continuity equation (1) in the

transformed coordinate system becomes

{J(Exu+£yv+gzw)}€+ {J(nx}1+nyv+nzw)}n + { J(;xu+;yv+czw)}g =0 (10)

X X X

3 £ "n g
e Y e
Z, z_ zZ
£ ™ cl
where J is the Jacobian and the subscripts x, y, z, ... etc.

mean the derivative with respect to %, vy, z, ... etc.. It
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should be remarked that only the independent variables in
the physical domain (X,y,z) are transformed, however the
dependent variables u, v and w are not transformed since the
problem can be solved on the transformed coordinates without
the transformation of u, v and w. The momentum and
turbulent transport equations (2), (4) and (5) can also be

rewritten as

¢ ¢ J o, _ 0 0 $ ¢, ¢
a ¢tf b .+ C ¢n+ d ¢C =g ¢£E+ £ ¢nn+ g ¢CC+ hi+ 1 (11)

b
where ¢ can be u, v, w, k and € . The coefficients a?, bt,
...... etc. in Eq. (11) respectively the coefficient for u,
v, w, k and ¢. They are listed in table 3. Again only the
independent variables x, y and z are transformed to the
body-fitted coordinates. The velocity components u, v and w

are still the velocity components in the Cartesian x, y and

Zz direction.

3.2 FA Formulation

The basic idea of FA method proposed by Chen et al.
[29-37], is the inco=poration of local analytic solution in
the numerical solution of partial differential equations. In
the finite analytic method, the whole region of the problem
is divided into many small elements in which the governing
equation is solved analytically. An algebraic equatior which
approximates the governing eequation is then obtained when

the analytic solution is evaluated in an interior node of
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Table 3

The Coefficients Of Momentum And
Turbulent Transport Equations




the element for numerical solution. The principle and
procedures in obtaining these FA solutions are illustrated
in detail in many published papers by Chen et al. [29-37].
Here we derive the finite analytic (FA) solution for a three
dimensional unsteady flow. Detail of the FA coefficients
which are used in this study are given in Appendix A.
Mathematically Eg. (11) shown in the last section is a
fully éhree dimensional elliptic partial differential
equation in space. An accurate and complete finite analytic
numerical solution for Eg. (11) can be derived [34] based on
the principle of the FA method to obtain an finite analytic
algebraic equation based on 27-node FA element as shown in
figure 4(a). However the finite analytic solution basad on
the 27-node element requires large storage and at the
present it is beyond the computer capacity that is available
for the user. 1In order that the problem of three
dimensional flow can be solved with the limited facilities,
the unsteady three dimensional elliptic partial differential
equation (11) is solved by a hybrid finite analytic-finite
difference method as follows. Eg. (11) is first cast into
Egq. (12) where the derivatives of dependent variables with

respect to time t and the axial direction are shifted into

the source term s¢ as shown in Eqg. (12).

oo+ %, = ey + g

. (12)
4 a9

+ S
Pec
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In the hybrid finite analytic and finite difference method
the terms in the source term of Eq. (12) ¢££’ ¢§ and 3, are
approximately expressed by the finite difference such that
¢t by the impl:.it or backward difference, ¢££ central

difference and ¢£ by the upwind difference, or

3 o = ¢t+l _ ¢t
t At
. ¢U+¢D~2¢P
LI
_'p U PR
¢€ = _;-7E;__— (if b" > 0)
. £ 1P
¢E = iE (if b" < 0)

Allspace derivatives ¢;, ¢££ are evaluated from the previous

time step.

If we introduce the coordinate-stretching functions

Eq. (12) is reduced to the standard two dimensional
convective transport equation described in Chen & Chen

(34,37], i.e.,
Pruge ¥ Opus = 20, + 2BY - s
with

_a

A=
2/g¢’

r B =




for a local element with dimensions

8E =1
1
on =k = —5=
. /e
1
Az =h = —5~
vg

This hybrid FA-FD formulation gives the 1ll-point algebraic

solution of Eq. (12) for three dimensional time dependent

-

flow for an element as shown in figure 4(b) as

8 . ¢, t-1
oo bttt oL [ (€%40,6%16  (ePac by g, tnP4i®) 171y 28y
F 1+c? (c bPr2eP+ %‘2__ )

(13)

Here if bY > 0, C

[
L
0
28]
(o]
0
I
H

1
if Hb< 0, C

|
=~
-~

C2==—l,(: =0

1 3

Figure 4(b) shows the relation between each of the 11 nodes.
In Eg. (13) the superscript t-1 denotes the previous time
step, and the term with the superscript i-1 means the value
of previous iteration. On the same time step ¢U and ¢D are
the values of node p at the upstream and downstream of the §
coordinate and At is the time increment. The expressions of
these FA coefficients Cnb’ CP are listed in Appendix A.
Physically, the above formulation preserves the three

dimensional ellipticity and still allows the recirculation

to exist. 1In Eg. (13) the calculation sweeps iteratively
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along the £ direction. It should be remarked that since the
numerical solution in the { direction is approximated by
finite difference with only one upstream and one downstream
node the prediction of the separation or the vortex
formation in the ! direction can only be regarded
approximately. Therefore if one expects a flow problem
which has strong recirculation in all three directions, then
it is suggested that dense nodes must be arranged in the £

axial direction or small spacing in the axial direction.

3.3 Pressure Equation

To complete the numerical solution, in addition to
solving the finite analytic algebraic egquations, i.e., Eq.
(13), for variables u, v, w, k and ¢, one more equation is
needed for solving the unknown p. There are several ways to
solve the pressure variable. For example, Roach [27] solved
the pressure varible from the Poisson equation which is
derived by taking the divergence of the momentum equation.
In this approach, a velocity correction term is incorporated
in the Poisson equation where velocity is corrected to
satisfy the continuity equation. In the other methods,
Patankar and Spalding et al. [23] proposed to use the
continuity equation for the pressure variable. The basic

idea of their approach is to express the velocity variable

in the continuity equation in terms of pressure variables.
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The equation for the pressure variables is obtained when the
algebraic expressions for the velocity from the momentum
equation are substituted into the continuity equation which
is expressed either in a finite difference or finite volume
expression. In the numerical procedure, the pressure
variable is then updated in each numerical calculation such
that the velocity components respectively solved from the
momentum equation are made to satisfy the conservation of
mass. Depending on the approximations made in updating
pressure, different governing equations for pressure may be
obtained. Among them, the pressure-update-Patankar (PUP)
scheme [48] combined with Pantankar-Spalding p' equation (or
called SIMPLER algorithm) gives the best result. Here p' is
known as the pressure correction and defined as the
difference between the true or exact pressure field and that
of the approximate or incorrect pressure field. In the PUP
scheme, instead of updating pressure gradually from the
pressure correction p', a pseudovelocity, us obtained by
omitting the pressure gradient term in the momentum equation
is introduced so that the pressure field can be obtained
from a guessed velcoity field. The general procedure of
SIMPLER (Semi-Implicit Method for Pressure-Linked Equations
Revised) algorithm is adopted and modified in this study.
Details of the derivation of pressure equation and the

pressure correction equation are provided in the following

sections.
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Figure 5 shows a typical control volume (shaded area)
that is used to derive the pressure equation based on mass
conservation applied to the shaded element in the present
study. It should be noted that the shaded element for the
velocity variables has a smaller control volume
(AZ=4n=A%=0.5) in the transformed domain than that for the
pressure variable. All the velocity components u, v and w
are specified at the surface nodes e, w, n, s, u and d of
the shaded control volume and are assumed known and stored.
Then the pressure p is assigned at the surface nodes of
unshaded control volume (Af=An=A¢=1) i.e., E, W, N, S, U and
D. In order to replace the velocity variables in continuity
equation Egq. (10) by pressure variable, we first decompose
the actual velocity field (u, v, w) in the momentum

equations Eq. (13) into two parts. They are

u=Q4+ Dup&, ve=9¢+ Dvpy, w={@+ prz (14)
u v w
Re C Re C Re
D = ‘-P p D = ——?_ ' D = ___CP—.
u X v oV W N
P P P
8 . ¢, t~1
b ¢ ) ¢ ¢ B4i-1, a’¢
6_n§=1cnb“’nb“cp{[(e 10 VOt (€THCDN) T T =)
D¢
P
$ for 4, ¢, &
where

b
¢ _ b, a b ¢
Dp =1+ Col o +Cb +2e7)
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Here all the notations have been described in Eq. (13). In
Eq. (14) ﬁ, G, W are called pseudovelocities equal to the
values that the velocities would have without the pressure
contribution. Then substitution of Eg. (14) into the
continuity equation Eq. (10) written in the pressure control
volume i.e., the shaded control volume in figure S, one

obtains

Wg = @)+ V) = @)+ @) - @) =0 (15

where the subscripts d, u, n, s, e and w denote downstream,

upstream, north, south, east and west side of the shaded

area. And

- N~ - ~ -— ~

VE = vg + Cgpg, Vﬁ = vh + Cnpn’ Vc = Vc + CCPC (16)
where

~
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vn = J(ﬂxu+ny0-mz®+D12pE+D23pn)

.= J(CXG+Cy9+Cz®+Dl3p€+D23pn)
DlZ - Dugxnx+Dv€yny+Dw€znz
DB=D€L;+D€C+D€C

u’x’x vVyy wz’z

o
|

23 Dunxcx+Dvnycy+Dwnzcz

_ 2 2 2
£~ J(Dugxmvgymwgz)

= 2 2 2
Cn J(Dunx'*'Dvnyd*-Dwnz)
C, = J(D.¢2+D g%+D ¢?

C u’x vy w’z)
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Here C '<%V CC are the mean pressure-velocity linkage
coefficients obtainable from the transformed momentum
equation, and variables ié, E%, Gt and ;E, %h,‘GC are the
velocities and pseudovelocities in the body fitted
coordinates along the &, n and § directions. Similarly PE,I%
and Pclrespectively are the pressure gradients in the
transformed domain. Using central difference for these
pressure gradients, one may rewrite Eg. (15) and obtain the

pressure equation as

2pPp = aPpt PyT agPst APyt ApPpt Pyt S (17)
where
= Gy ay= )y 3= )
O 2= Oy 3= (),
dpFfaytayytagtagtyy

= Ug = W+ @) = G+ G -G,

o J
] 1

&
[

ap, 8gs oe-- etc. are the coefficients of pressure equation
(17).

In deriving the pressure equation Eq. (17) a proper
choice of grid system is very important. There are two
commonly used grid systems in the numerical calculation. One
is the staggered grid system which distributes the variables

at different nodes, the other is the regular grid system

which solves all vari.bles at the same node. In the
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following sections these two different grid systems will be

investigated and discussed.

3.4 Staggered Grid System

Figure 6 is the general view of the staggered grid
system [49]. If the dashed lines represent the control
volume faces, the pressure and scalar variables such as k
and are stored at the center of the control volume, while
the velocity components are stored at midway between these
nodes denoted with arrow "4" for v component and "-" for u
component. Here the velocity components are perpendicular
to the control surfaces or in the direction of the
coordinate lines.

In this study all equations are transformed and solved
on the transformed domain (&, n, ¢), where the coordinate
lines £, n, ¢ in general are curvilinear and non-orthogonal
in the physical (x,y,z) domain. The velocity components u, v
and w that are defined in the X, y and z direction are
neither perpendicular to the control surfaces nor in the
direction of the coordinate lines £, n and ¢. Therefore the
velocities in the &, n, ¢ directions. must be projected
from the velocity components u, v, w defined in the X, y and
z directions. Conseguently examining the source term of

pressure equation Eg. (17), one finds a total of eighteen

velocity components are needed, three velocity variables in
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each of the six surfaces, in each small control volume as
shown in figure 5. The projection of u, v, w velocities in
the x, v and z coordinates to the £, n and { coordinates
certainly provides numerical error either from interpolation
or difference approximation. However, in the staggered grid
system as shown in figure 6 the velocity component u at node
points d and u, velocity component v at node points n and s,
and velocity component w at node points e and w had been

solved from the momentum egquation or Eg. (13), thus six of

v., v_, w_ and

i i ompo t m u u
eighteen velocity components, namely, a %u Vn s e

ww can be obtained directly from the surfaces. It is,
therefore, only to approximate the remaining twelve by
interpolation or difference approximation.

One way to reduce the numerical error is to reduce the
use of interpolation or difference approximation. This can
be achieved by letting one of the transformed coordinate
lines, say coordinate to be just a function of x only. In
this way the velocity component u is perpendicular to the
n~¢ section, no other velocity components are needed in §
direction. In other words the velocity component u in the x
direction is identical to that in the § direction.

Therefore in the source term of Eq. (17) only eight velocity
components are still unknown on the n-¢ section and reqguire
interpolation. The coordinate arrangement of letting

Z=f (%) is reasonable since in the present investigation cf
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the flow past an axisymmetric body most of the experimental
measurements are made along the section normal to the x axis
of the body, that is on the y-z or n-% plane. Further more
if the flow past the body is predominately along the x
direction then the magnitude of the velocities v and w are
in general smaller than that of the u velocity. Therefore, a
simple linear interpolation can be used here to evaluate
these walues of v and w components from the velocity field
known at the previous time step or iteration without causing
too much error. In summary, under the present arrangement
the source term of pressure equation Eg. (17) on the

staggered grid system only needs the following eight

approximations.
1Y 1 4 4
U ==7% = =1 =1
e T T Ve ST My Y, = FIu,s Vo T T P
1Y 18 4 Yy
u ===z = = -—.1; —l
n- 7i%y Yh ti%whb' Us = 3 %unb' wé'—7f§whb

Where nb denotes the known neighbor nodes surrounding the
unknown surface node e, w, n and s.

In order to impliment the arrangement of a staggered
grid in computer programing it requires not only a large
computer storage but also tedious work. As an alternative
the regular grid system which solves all variables at the
same node maybe used in the present computation. It is

discussed in the next section.
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3.5 Regular Grid System

Figure 7 shows a typical control volume in the regular
grid system. Since all variables u, v, w, p, k and ¢ are
stored and calculated at the same node in the unit control
volume there are no velocity components at the surfaces of
the small control volume shown as the shaded area in figure
7 for the pressure equation Egq. (17). It is, therefore,
necessary to approximate all velocity components by

interpolations. The interpolations are

g = S Epr@ag), @, = 3Ty @l
CAREE (CANTAR P UANES (AEANE
@), = SE @) @, =3(@r @)
) ok (COIICRI PR CON (RN
CRIEE (CRIETCR I PRI (CRICCRINY
CRIEE (CONTCEM PRNCREES (CRINCRN

where all the notations have been described in Eqg. (15).

Although the regular grid system may commit

interpolation error, the use of the regular grid system when

compared with the staggered grid system can save
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computational time and storage. Therefore in the present
study the regular grid system is used for laminar flow over

a finite flat plate with or without angle of attack.

3.6 Pressure Correction Equa*ion

The governing equations formulated in chapter 2 are
Egs. (1) to (5). These equations are recasted into Egs.
(10) and (11) in the transformed domain. We are thus
required to solve Eq. (1l1l) for u, v, w, k and ¢ and Eq. (10)
for p. The corresponding algebraic equations lor Egs (11)
and (10) are Egs. (13) and (17). Thc system of these
nonlinear equations are solved iteratively in the present
study. In this section we derive a scheme to snsure that
the iterative procedure leads to a converged solution.
Before we derive the pressure ccrrection equation it should
be noted that either with staggered grid or regular grid
systems when both the momentum arnd continuity equations Egs.
(13) and (17) are exactly satisfied the value of DS on the
right hand side of pressure equation Eq. (17) will be zero.
However during the iterations because momentum and mass are
not conserved in the volume element there exists some error
in u, v, w and therefore D3 in Egq. (17) is nonzero. The
pressure correction equation is derived to improve the
convergence of the solution. The following are the
derivation znd steps considered in this study for solving

Egs. (13) and (17) iteratively.
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-

During iterations we first compute the velocity field
from Eg. (13) with a guessed pressure field p*. With the
guessed pressure field p* given, one can solve the momentum
equation Eg. (13) directly and obtain the guessed velocity
field u¥. At the beginning since p* is not a correct
solution so that u} do not satisfy the continuity equation.
Then one may assume the velocity correction ui which when
added-.to uf will satisfy the continuity equaticn Eq. (10).
Thus substituting u; (=u3+u£) into continuity equat:ion Eq.
(10), one obtains

[J(Exu'+&'yv'+EZW' )]E + [J(nxu'+nyv'+nzw‘ )]n
+ (_J(cxu'+z;yv'+z;zw')]g = -ERR (18)
ERR = [J(Exu*+€yv*+52w*)] g * [J(T]X\J.*'H']yv*'*'nzw*)]n

LJ(cxu*+;yv*+gzw*)]C

Since there are three velocity corrections (u', v', w') in
one equation, it is impossible to solve Eg. (18) directly.
Alternatively, one may assumes that p is the correct
pressure £f£ield to produce correct velocity us then the
correct pressure p may be written as the sum of the pressure
correction p' and the inaccurate pressure p* or p=p*+p'.
Substituting both velocity and pressure expressions into h¢

term of the momentum equation Eg. (13), one obtains the
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equations for velocity correction u; and pressure correction

1

p . They are ; QﬁPAb Cg
u' =4 + s' + Dp' (19)

pd ¢ u u X

R P 4

L Cc.v! v
ot o1 Sob'mb CPS.+DVP.
Dy o v Y

8 P P

L C.,w i
wo= Ll IBIb Cps' + D p!
o oW A

P P

If the first two terms of equation (19) were retained, they
would have to be expressed in terms of the pressure
corrections and the velocity corrections at the neighbors of
ui . These neighbors would, in turn, bring their neighbors,
and so on. Ultimately, the velocity correction formula would
involve the pressure correction at all grid points in the
calculation domain, and the resulting pressure correction
equation would become unmanageable. Therefore in the
present study the first two terms of equation (19) will be

neglected. Eq.(19) is simplized to

u! = ! Vo= =
PPyt V' = DR W =Dp, (20)

The omission of the first two terms enables us to cast the
relation between velocity correction and pressure correction
in a much simpler form. The omission of the first two terms
in Eg. (19) can be justified since if p' is zero u will be
zero too which give the right asymptotic behavior for

convergence. In fact the converged solution should not be




67

influenced by any approximations made in correction
equations during iterations. In other words, all
formulations of the correction equations should give the
same final solution if the formulation leads to a converged
solution. However the rate of convergence of the sciution
will depend on the particular formulation of the correction
equations used. If a too simplistic formulation is used,
divergence may result.

From the above formulation it is clear that if the
pressure correction p' can be solved then the guessed
velocity uf can be approximately corrected by the velocity
correction u/ to satisfy the continuity equation Eq. (10).
To derive an eqguation for the pressure correction p', the
same procedure from Eq. (14) to Eg. (17) can be followed by
dividing the velocity field Uy into guessed velocity u} and
velocity correction ui which is expressed by Eq. (20), i.e.
u=u*+Dup', v=v*+Dvp', w=w*+pr'. Substituting these
expressions into the continuity equation Eg. (10), one had
the pressure correction equation which is similar to the

pressure equation Eq.(17).
3pPp = 3pPp* APyt AgPst APyt APEt APyt DS (21)
Here aj, a;, .... etc. are as the same as Eq. (17) and Ds'

is same as DS in Eqg. (17) except that the values of {1 , ¢

’

# , and p* in the DS are replaced by u*, v*, w*, and p'.
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After using pressure correction p' to correct the
velocity field to satisfy continuity equation, the next step
is to update the pressure field by solving pressure equation
Eg. (17) with the velocity uy which had just been corrected.
Although the velocity field (ui=u§+u£) had been corrected to
satisfy continuity equation they may not satisfy momentum
equation unless the velocity correction u{ are zero, i.e.
ui=uf and uf satisfied the momentum equation already.
Therefore, in order to have the solutions of p and ui that
both satisfy the momentum and continuity equations
simultaneously, we need an iteration procedure to ensure the
convergence of the solution. From Eg. (20), it shows that
if the pressure correction p' is zero then the convergent
solutions of p and u; will satisfy both the momentum and
continuity equgtions simultaneously. Thus, the convergent
criterion in this study is based on the value of the
pressure correction p' that tends to be zero. Generally, if
the value of '._.essure cc. 2:tion p' is smaller than one

percent of value of pressure p the solution is considered as

a convergent solution.

3.7 Algorithm

Accuracy and efficiency are two major considerations in
designing the algorithm of a numerical program. In this

study a modification to SIMPLER algorithm [23] is made so
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that it is more efficient in computational time and storage

and more accurate in compucational results. The overall

numerical procedure for a three dimensional case used in

this study may be summarized as follows.

1.

Start the inlet (or present) station with the guessed
pressure p* and velocity distribution uf.

Calculate FA coefficients from Eg. (12) with the
guessed velocity u}¥ or best velcoty available Uy then
solve starred-velocity u} from Eq. (13) with the
guessed pressure p¥.

Calculate pressure correction p' from Eq. (21) with
the starred-velocity uf in DS'.

Calculate velocity correction u; from Eg. (20) with
the pressure correction p'.

Obtain the correct velocity u; by combining the
starred-velocity uf and the velocity correction u]
for the present iteration.

Calculate the pseudovelocity ﬁi as defined in Eqg.
(14) with the correct velocity u, -

If it is turbulent flow solve k and ¢ from Eg. (13)
with the correct velocity u; -

Repeat from step 2 to step 7 until the last station

was reached. This repeatition is called the inner

loop.
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9. Calculate pressure field p from Eq. (17) with the
pseudovelocity ﬁi in the whole computational domain
based on the correct velocity u, - The resulting
pressure field is considered as the updated pressure
p*.

10. Start from the inlet station in step 1 with the
update pressure field p and correct velocity uy -
This part is called the outer loop.

11. Stop if the steady state criterion is achievbed, or
the time t exceeds the maximum time period ascsigned.

It should be remarked here that the line by line
tridiagonal s<heme is adopted to solve pressure equation Eg.
(17) and pressure correction equation, Eq. (20), while the
modified strongly implicit MSI procedure [50}, which uses
lower and upper triangle matrices te¢ solve 9-point
difference scheme at the same time, is adopted to solve Eq.

{(13) for other variables u, v, w, kK and ¢.

3.8 FANS-3DEF Program

In the present study a computer program called
FANS-3DEF is developed. FANS-3DEF (Finite Analytic
Numerical Soluticn of Three Dimensional External Flow)
consists of a preprocessor and a main solver. This program
includes options for (1) two or three dimensional flow, (2)

staggered or regular grid system, (3) incompressible laminar
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or turbulent flow and (4) two types of turbulence model. It
is compiled by FORTRAN 77 compiler, and has been implemented
and tested on PRIME 750 at the University of Iowa. In this
section a brief introduction of this program is given. The
detailed discussion of the whole program, the flow chart of
main program, 1/0 system and two examples of how to control
I/0 system will be given in appendix B.

The main structure of a general program should contain
(1) data input module (preprocessor) (2) analysis and
solution (solver) (3) output module (postprocessor). This

is illustrated in the following figure.
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Start

b

Data Input Module
(Preprocessor)

|

Analysis and Solution
(Solver)

L

Output Module
(Postprocessor)

. ]

Stop

Figure 8. Simplified

Schematic Of A General Program
In the present FANS-3DEF program the output module
(postprocessor) is not included. This is partly because at
the present the graphic package is highly hardware orinted
and partly because there are many professional graphic
packages readily available. For example, at the University
of Iowa a graphic package called 'GCS' is available and can
be adopted as the output module.

In the FANS-3DEF program before the solver can be
activated to solve the problem, sufficient information must
be transmitted by the user to the data input module
(preprocessor). This input system is described in detail in

appendix B. put is completed then may initiate the problem
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the main program of FANS-3DEEF. The computer program
FANS~3DEF has been employed to calculate a variety of
two-dimensional, axisymmetric and three-dimensional flows.
In the next three chapters some representative examples and
solutions are given to illustrate the capability of the
numerical method used in this study. Suggestions for future

applications are also given.
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CHAPTER IV
TWO DIMENSIONAL FLOW OVER
A FINITE FLAT PLATE

In this chapter the flow over a finite flat plate is
considered. This is an important and fundamental external
flow involving the development of the boundary layer flow on
the plate and the evolution of the w.ke behind the plate.
Although the geometry is simple in this case, and Cartesian
coordinates can be used to solve the flow directly in the
physical plane, the body-fit 4 coordinates in the FANS-3DEF
(Finite Analytic Numerical Solution of Three Dimensional
External Flow) are still used in order to verify the
technique and program of the grid-generation. The numerical
solution of this case . 1 provide a useful test of the
numerical method and the modified SIMPLER solution procedure
for computing pressure and velocities during the iteration
and a verification of turbulence models. In the following
sections the solutions for both laminar and turbulent flows
over a finit flat plate are given. The solution of laminar
flow is first examined to verify the numerical algorithm and
numerical scheme used in the FANS-3DEF. The solution of

turbulent flow is then considered. The turbulent solution
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may be used to examine the predictability of the turbulence

models.

4,1 Numerical Grid System

Figure 9 shows the computational domain of the finite
flat plate. If the Cartesian coordinate (Xx,y) in the

physical plane is chosen with distances x and y normalized

by the plate length L, then x=0 and 1 correspond to the
leadiﬂ; and trailing edges respectively, and y is the normal
distance to the plate. Since the solution of variables u,
v, W, k and ¢ vary rapidly in the neighborhood of the
leading and trailing edges than other places, more grids are
needed around these two regions. A desired grid
distribution can be arranged by stretching and condensing
the grids along the x, y coordinates in the physical plane.
In this study a nonuniform rectangular grid is generated
using the body-fitted coordinate technique as described in
chapter III. With x=x(§), y=y(n), Eg. (9) is simplified to

@y + I FL = 0 (22)

¥ + J2F2yn =0

where
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I1£ the control functions Fl and F2 are prescribed a priori,
then Eq. (22) can be solved for the coordinate variables
(%,y) as a function of the uniform body fitted coordinstes
(8,n). In analysing Eq. (22) one may choose the control
functions F1 and F2 to remain constant within each numerical
cell, thus Eq. (22) is solved analytically with x(l,G)=xD,
x(-1,0)=x_., y(O,l)=yN and y(O,-1)=yS.

. a _
e“xy + e 2y
X, = D
a

e + e

where -2
J°F1 J2F2

11 4&22

The subscript P, D, U, N and S denote the node at center,
downstream, upstream, north and south of the numerical cell
as shown in figure 10. Therefore £for every nodal location

there is one equation (23) to govern the transformation.

r1)

or tﬂe computational domain as shown in figure 9 there is a
set of simultaneous algebraic equations of Eg. (23) which
can be solved easily by the tridiagonal algorithm if the
appropriate boundary conditions for the computational domzin

and the flat plate are provided.




S

-1 Py o

T (4 ::,0){ rU(Tjoy >
(0f;-1)

Figure 10. The Numerical Cellk

In this study the distribution of a and:b used to
generate the grid nodes along the { and n directions was the

one suggested by Chen and Patel [22]. They are

-al — ¢ &
0 < zq RS 5
: 1
Al Sln(nzl) 5 < zl < 2
a =
. A 3
A2 Sln(wzz) 0 g 2, ¢ 3
~A2 s 2
Zz > >
where E-2E_+1
-1 1

1~ €l~l ! Z; F 52—2gi+1

51 and 52 correspond to the leading and trailing: edges
respectively, and Al, A2 and A3 are positive. constarts: which:
can be selected to vield the desired grid concentration:

around x=0, 1 and y=0.
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4.2 Laminar Flow Without Angle Of
Attack

To compare the results of this study with those shown
by Chen and Patel [22], same values of Al, A2 and A3 are
given. They are Al1=0.3, A2=0.2, A3=0.4 and £1=19 at x=0,
£2=49 at x=1, n=1 at y=0 and =10 at y=0.2196. Thus, a
65%10 mesh was used to cover the physical region that
extends from a distance 1.385L upstream of the leading edge
to 3.488L downstream of the trailing edge, and 0.2196L
normal to the plate, with the grid concentrated in the
neighborhood of the leading and trailing edges and the
plate. Figure 9 shows the numerical grid in the whole
computational domain.

In order to compare with some previous studies
[22,51,52], the Reynolds number Re=105 is chosen for the
calculation of laminar flow over the flat plate without
angle of attack. In this study the regular grid system
discussed in section 3.5 is used and the incompressible
laminar Navier-Stokes equations Egs. (1) and (2) with G;ﬁ.=0
are solved. The uniform velocity with zero pressure was
specified at the upstream station x=-1.385L. Symmetric
boundary condition at y=0 and free stream boundary condition
outside the computational domain at y=0.2196L are prescribed
as discussed in chapter II. The FANS-3DEF is then used to

solve this problem in which Egs. (1) and (2) are expressed

e T £
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in the algebraic form on the body-fitted coordinates as Egs.
(13) and (17). The solutions for Egs. (13) and (17) are
obtained with the time marching procedure. Since this is a
steady state flow problem a large time increment can be
used, here At=1l is used.

Figure 11 shows the history of the dimensionless

pressure distribution(P=(P-Pambient)/pU8) before the plate,

on the.plate and along the wake centerline calculated at
different time steps. The flow starts with an initially zero
pressure throughout and uniform velocity u=l, v=0. 1t is
seen that the solution reaches the steady state first around
the leading edge in 10 time steps, while the flow in the
wake area is still in the transient change and becomes
steady after 30 time steps. Figure 12 compares the pressure
distribution around the trailing edge predicted by the
FANS~-3DEF with other previous studies. It is seen that the
present analysis predicts a pressure distribution between
that calculated by Chen and Patel [22] also that of
Saint-Victor and Cousteix [51], and that calculated by Rubin
and Reddy [52]. It should be remarked that the preuent
solution is obtained from the elliptic solution by
specifying the upstream condition at x=-1.385L with uniform
free stream, and the downstream condition at x=4.488L with
vanishing second derivatives. The previous studies

[22,51,52] were based on partially parabolic solution
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specifying the upstream condition on the flat plate behind
the leading edge. Rubin and Reddy used the triple-deck
solutions and obtained the solution with the Blasius profile
imposed at a large distance upstream of the trailing edge on
the plate (x=0.1L), whereas the other two methods [22] and
[51] specified the initial conditions on the plate at x=0.5L
with Blasius solution. Chen and Patel [22] had investigated
the solution with the initial conditions specified closer to
the leading edge (typically x=0.18L) and found ithat the
pressure distribution along the flat plate will be lower and
hence closer to the present solution. They also commented
on the influence of the location of the outer boundary of
the solution domain on the upstream pressure distribution.
In the present study the Navier-Stokes equations are solved
by FANS-3DEF. The pressure distribution around the leading
edge is predicted and shown that the peak value of the
pressure at the leading edge is about 0.156 which is not a
negligible value. This is in contrary to the boundary layer
approximation that assumes the pressure is uniform even at
the leading edge. The prediction of non zero pressure at
the leading edge is physically sound, since the flow is
decelerated from a uniform velocity distribution before
reaching the plate to zero velocity on the plate surface.
The pressure at the leading edge is thus expected to

increase from this velocity deceleration. Once the flow
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past the leading edge, the magnitude of wvelocity
deceleration is then gradully reduced. Consequently the
pressure drops to almost that of the free stream value
again.

The wall skin coefficient (CT=/§ETw/pué) shown in
fiyure 13 indicates that there is a feed back from the
downstream since the skin friction is increased near the
trailing edge. Physically this is due to flow near the
trailing edge and is influenced by the acceleration of the
flow in the wake because the flow is no longer hold to the
no-slip zero velocity at the center line. When the flow at
the center line is accelerated, the velocity gradient normal
to the plate near the trailing edge is increased and hence
the skin friction. At Re=105 it seems that the flow from
x=0.8L to the trailing edge are affected by the wake flow.
The prediction of skin friction by the FANS-3DEF in the
trailing edge region is in good agreement with that
predicted by other methods. From the present result it also
shows that the Blasius solution may be specified in the
region 0.4<x/L<0.8 of a flat plate to predict the wall skin
coefficient in the trailing edge. Figure 13 also shows that
in the leading edge region the present analysis of the
Navier-Stokes equations shows that the Blasius solution
based on the boundary layer equation predicts higher value

of wall skin friction. Figure 14 shows the velocity
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variation along the wake centerline. Here the present
solutions agree well with that predicted by Saint-Victor and
Cousteix [51]). When compared to the present solution one
finds that the analysis of Chen and Patel [22] predicted a
higher velocities and that of Rubin and Reddy [52] predicted
smaller velocities.

From the above comparisons one observes that with
different numerical approaches, initial conditions and
computational domain the solution to the same problem may be
different although all solutions are qualitatively similar.
The FANS-3DEF program shows here that it is capable of
solving the complete laminar flow past a

finite flat plate

from the upstream of the plate to the wake region.

4.3 Laminar Flow With Angle Of Attack

Altiiough the solutions for the flow past a flat plate
without angle of attack are available the solution for the
flow with an angle of attack is scarce if not available.
This is primarily because when there is an angle of attack
the flow may be separated and shedded and the problem
becomes unsteady and is governed by the Navier-~Stokes
equations and not the parobolized equation or boundary layer
equation. In the present study since the FANS-3DEF solves
the Navier-Stokes equation the flow over a flat plate with

angle cf attack may be solved. Since the symmetric
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condition is no longer applied for laminar flow over a flat
plate with an angle of attack the computational domain are
redefined with extended bounrdaries both in the x and y
directions as shown in figure 15. The same numerical grid
generation technique used in the previous section was again

employed but with Al1=0.3, A2=0.2, A3=0.2 and £,=19 at x=0,

1
82=49 at x=1, =1 at y=0 and n=19 at y=+1.5 for both upper
and lower domains. Thus, a 67x37 mesh was used to cover the
physical region that extends from a distance 1.385L upstream
of the leading edge to 8.762L downstream of the trailing
edge, and 1.5L normal to the plate on both upper and lower
boundaries.

In this study the regular grid system with
Navier-Stokes equations are solved again by the FANS-3DEF
for two different angles of attack, namely o= 5 and 10 at
Reynolds number Re=104. The inclined uniform velocities u,
v (u=Uocos(a), v=UO sin{a)) and zero pressure were specified
at upstream and both upper and lower free stream boundaries.
Since the outlet plane is located at 7.762L downstream of
the trailing edge which is far downstream from the plate,
the seccond derivatives of all the variables at this plane
are approximately set egual to zero. The problem then is
solved on the FANS-3DEF program with the time marching

procedure, since the separation and unsteady flow phenomena

is expected for the flow at incidence, a smaller time
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increment At=0.1 is used here. The initial guess of the
velocities in the whole computational domain are the
uniformly inclined velocity. A total of 30 time steps were
calculated. Calculation for each time step approximately

consumes 60 seconds CPU time on PRIME 750.

4.3.1 5 Degree Angle Of Attack

Figure 16(a) shows the instantaneous streamline
distribution around the flat plate at 5 degree angle of
attack at time t=3 after the calculation. At this instance
a small separation at the leading ed¢ on the upside plate
can be seen in figure 16(b), where the y coordinate normal
to the plate is greatly stretched in order to visualize the
separation zone. It should be remarked that the flow at a 5
degree angle of attack does not show shedding. In other
words the separation at the leading edge is a staticnary
separaticn zone. Werle [53] experimentally showed the
existence of the stationary separation at a small angle of
attack and the shedding of separatiocn flow at a large angle
of attack. Figure 17(a) shows the experimental study of
werle (53] who used a very thin flat plate (t=0.02L) at
Reynolds number 10 for 2.5 degree angle of attack. In this
figure a much larger separation zone than that predicted by
the present study for =5 was seen at the leading edge over

the upper surface of the plate. It should be kept in mind




91

that in the present study a zero thickness is assumed while
in the expermental study a two percent thickness of flat
plate with sharpened leading edge is used. The sharpened
edge tends to promote separation and make the separation
zone bigger.

Figure 18 shows the convercence history of the pressure
distribution on both the upside and downside of the plate at
a 5 degree angle of attack. Since at this angle of attack
the separation zone is still small and no shedding phenomena
is seen the pressure distribution is stationary on both
sides of the plate. The solution converges on the downside
of the plate in 10 time steps and on the upside of the plate
in 15 time steps. The pressue value on the windward or
downside of the plate is positive while it is negative on
the leeward or upperside of the plate. The maximum and
minimum pressure distribution occurs at the leading edge of
the plate. The maximum of p=0.48 on the windward and the
minimum of p=-0.74 on the leeward. The absolute value of
pressure on both sides continues to decrease from the
leading edge to the trailing edge where the same pressure
value p=-0.02 is found. No experimental data of pressure
for the flow past a very thin flat plate at angle of attack
is available. Figure 19 [54] shows the pressure
distribution on the NACA 0012 airfoil at 4 degree of angle

attack. NACA 0012 airfoil is a symmetric airfoil but has a
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maximum thickness of 12 percent of the cord. Comparing the
predicted result and experiment data of NACA 0012 airfoil,
one sees that the present analysis predicted a similar
solution for pressure distribution on both sides of the flat

plate to that on the NACA 0012 airfoil.

4.3.2 10 Degree Angle Of Attack

In order to investigate the flow past a flat plate with
a larger angle of attack so that the flow is shedded from
the separation, the angle of attack is increased from 5 to
10 degree. At this angle of attack the same computational
domain, grid space, time increatment and initial and
boundary conditions used in the previous section for S
degree angle of attack are adopted here. Figures 20 and 21
show a series of changes of streamline distribution and
velocity vectors around the flat plate from time t=2 to t=6.
The dimensionless t is defined by t=TUO/L. Where T is the
dimensional time, UO, the free stream velocity and L the
length of the plate. From figure 20(a) and 21(a) one sees
that at time t=2 a large separation bubble which covers 0.8L
of the upper surface is formed. From t=3 to t=5 these
figures reveal that while the separation bubble is being
pushed down toward the trailing edge of the plate a new
separation bubble is created at the leading edge and grows

in size. At time t=6 the first separation bubble is
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completely washed away behind the plate and the second new
separation bubble has grown to a size such that the pressure
in front of the bubble is larger than that behind and
consequently the bubble begins to move and the shedding
process repeats. A complete period is then achieved. The
shedding Strouhal number, S, from this shedding is found to
approximately 0.2. The Strouhal number is defined as S=nL/Uo
where n is frequency, UO and L are reference velocity and
length.

In this chapter the calculation of flow past a flat
plate is used to test the capability of the FANS-3DEF
numerical algorithm and numerical method. It is found that
the FANS-3DEF can predict laminar flow with or without angle
of attack with reasonable accuracy. If a more accurate
result of the flow phenomena is desired more fine grids and
smaller time step should be used.

Figure 22 shows the corresponding pressure distribution
on the both upper and lower sides of the plate at different
times. One sees that the pressure distribution on the
downside of the plate is almost constant at each different
time step but the pressure on the upside of the plate varies
rapidly even at two close time steps revealing the occurence
of vortex shedding. In table 7 the value of pressure on
each different station at different time step is shown. It

shows that the pressure in front of the separation zone is
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large and only next to the pressure at the leading edge.

The pressure difference created arround the separation zone
is then responsible for moving the separation zone
downstream and producing shedding. The feed back of shedding
phenomena on the upper plate also promotes the change of
maximum and minimum values on the leading edge at different
time steps.

4.4 Modelling Of Laminar-
Turbulent Transition

Before using the numerical method to solve a complete
solution of high Reyneclds number flow over a finite flat
plate, a brief review of how the flow chgnges from the
laminar to turbulent is needed. Figure 23(a) is a sketch of
flow evolution from the leading edge of a flat plate at zero
angle of incidence. It shows that between laminar and
turbulent flow, there exists a small region called the the
transition zone. Figure 23(b) shows the corresponding
coefficient of skin friction around the transition zone., It
can be seen that in the transition zone there is a sud._en
increase of skin friction and increase in the boundary layer
thickness from laminar flow to turbulent flow. At present
only a small and initial portion of the transition zone is
amenable to a theoretical analysis. The analysis and

theoretical treatment of the complete transition flow are
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still unavailable. Numerically Cebeci and Smith [55] and
Granville [56] had proposed some correlation functions for
predicting transition flow but they are all based on the
boundary layer assumption. Since there exists this kind of
difficulty and inability in predicting the transition zone,
then many previous numerical studies [19,20,22] for
turbulent flow past a plate or bodies were made only for the
region where the flow is turbulent. In the present study an
attempt is made to create a simple numerical model for
predicting the transition.

In devising a numerical model for the transition zone
the question is how the numerical treatment can be done to
connect the laminar flow and turbulent flow so that the
location of transition can be approximatel predicted and the
overall behavior of the skin friction Cf(th/onz) on the
plate can also be predicted. In other words since the
actual length of the transition zone is not clearly defined
no attempt is made to numerically predict the transition
length. As mentioned in section 2.3, once the flow becomes
turbulent we shall, instead of applying no-slip conditions
on the surface, use the two-node log-law equation to
approximate the near wall solution up .3 the first node from
the wall. While in the laminar flow the computational
domain is numerically extended to the wall. The numerical

model for transition then requires a criteria to indicate
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is turbulent so that turbulent wall function
following is the process to identify the
the flow chang from laminar to turbulent.

in figure 24(a) the flow over a surface which

can be a flat plate or a curved surface without an abrupt

change in the curvatures is considered. When the local
Reynolds number is sufficiently large on the surface the
flow may go through transition from laminar to turbulent in

and Xp - Here let's assume the

the flow domain between Xq
transition from laminar motion to turbulent motion occures
at two close computational nodes denoted by 3% and X, and
the tangential velocities at these two locations are uy and
u,.. The subscript 1 means the laminar flow while the
subscript t means the turbulent flow. 1In reality the
transition will normally take a larger distance, before the
laminar motion becomes a completely three dimensional,
irreqular unsteady and rotational flow of turbulent motion.
A more realistic model of transition will be discussed
later. Before we continue, some assumptions about the flow
around the transition zone are made as (1) the velocity near
the wall along the surface continues to decrease whether the
flow is laminar or turbulent (2) the flow starts with
laminar flow at the leading edge and continues to be laminar

until the point of turbulent flow is defined (3) after this

point the fully turbulent flow is considered. Under these
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(a) Grid Nodes Along The Surface

(b) Tangential Velocity Between Two Computational Nodes

Figure 24. Criteria Ot Transition Zone
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assumptions a comparison between the two close tangential
velocities at same normal distance yp to the wall is made.
Since in this study the log~law formulation is uset for the
turbulent calculation, therefore y must the value between
12 and 200. In this study we choose y ¢ 0.0006 and find that
it satisfies the requirement for Re=2.48x106 on the whole
plate. As shown in figure 24(b) if ul(xz,yp) is larger than
ut(x3,yp) then the turbulent velocity at (x3,yp) is replaced
by the laminar velocity and the comparison moves downstream
by one node, or between ul(x3,yp) and ut(x4,yp). 1f
ul(xz,yp) is less than ut(x3,yp) then the turbulent is
assumed to occure at (xs,yp) and the comparison moves
upstream by one node, or between ul(xl,yp) and ut(xz,yp).
Repeat the same process until ul(xz,yp) is less than
ut(x3,yp) and ut(xz,yp) is less than ul(xl,yp) then the
location (xz,yp) is the starting point of transition.

As mentioned before, in reality the transition occurs

in a larger spacing than between two computational nodes.

To remedy the drastic transition of the solution from a |
laminar to turbulent flow in the present study the solution f
in the laminar region from the leading edge to the location

of the transition is not solved by the laminar Navier-Stokes
equations but by turbulent Navier-Stokes equation with a

reduced eddy viscosity. The reduced eddy viscosity at a

given location or node in this region is set equal to a 807%
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of the eddy viscosity of the downstream node. In other words
the value of the eddy viscosity from the starting point of
turbulent flow to the leading edge is set equal to 80% of
the downstream value or vt(xt_l,yp)=0.8 vt(xt,yp),
vt(xt_z,yp)=0.8 vt(xt_l,yp) etc., where Xy is the location
of transition to turbulent flow.

4.5 Turbulent Flow Without Angle Of
Attack

The grid distribution for the calculations of the
turbulent flow over the flat plate without angle of attack
was again generated by the body-fitted coordinate
transformation given in the previous section but with
Al=0.3, A2=0.12, A3=0.25, and §(=1 at x=-1.0619, =19 at x=0,
=55 at x=1, £=82 at x=8.1406, n=1 at y=0 and n=15 at y=1.0.
The grid distributien for turbulent flow calculation in the
y direction is different from that for laminar flow
calculation. This is because the turbulent flow near the
plate differs from the laminar flow and the implimentation
of the wall function for the numerical calculation requires
that the first two nodes from the wall must be within 12< y+
<200. Thus a total of 82x15 grid nodes is used for solving
high Reynolds number flow over the flat plate without angle
of attack. A partial view of grid distribution is shown in
figure 25. Ramaprian, Patel and Sastry [57] measured the

turbulent flow over a streamline body at Reynolds number
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6

Re=2.48x10". 1In order to compare the present calculation

with the above experiment data, the Reynolds number

6

Re=2.48%10" is chosen in this study. The same boundary

conditions as described in the laminar flow calculation in

the previous section, section 5.2, are used here again. The

FANS~-3DEF program with one-scale k-&¢ turbulence model on the
staggered grid system was solved by using time step At=1.

The total marching steps are 100.
Figure 26 shows the convergence history of the wall

skin coefficient Cf(th/pUez) on the plate. It can be seen
that after 30 time steps the wall skin coefficient hardly

changes any more. A jump from C£=0.0012 to C_.=0.00455 occurs

£
around x/L=0.108 which is equal to a local Reynolds number

5

about 2.6x10”. 1In other words the transition was predicted

to take place at x/L=0.108 or Rex=2.6x105 while H.
Schlitting (58] had predicted it was leOS in his
theoretical study. This indicates that the proposed model
for numerical prediction of transition from laminar to
turbulent motion is applicable to the flow over the flat
plate. The convergence history of centerline velocity along
the wake is shown in figure 27.

A comparison with the experimental data published by
Ramparian, Patel and Sastry [(57], shows that the present

result has a slower velocity recovery in the wake

centerline. The convergence history of the dimensionless
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pressure distribution for the entire region including
upstream of the plate and wake region is shown in figure 28.
A small rise of pressure or p=0.00165 is predicted at the
leading edge. A better result of pressure distribution at
the leading edge can be obtained by increasing the grid
nodes near the plate. The slight underprediction of
centerline velocity in the wakes region may be due to the
use of two-node wall function on the wall and coarse grids.
To improve the prediction more grids are needed especially
at the centerline both before the plate and after the plate.
In order to achieve a dense grid distribution at the region
very close to the wall the concentration factor A3 is
changed from 0.25 to 0.2835 and a total of 19 grid nodes
along the y direction are used. The partial view of the new
grid distribution is shown in figure 29. The computation of
the flow is repeated on the FANS-3DEF program.

Comparing the grid distribution between 15 grid nodes
and 19 grid nodes, one finds that the four additive grid
nodes are created inside the original first node of 15 grid
nodes distribution. In other words, the first node near the
wall in 15 grid nodes distribution becomes the fifth node in
the 19 grid nodes distribution. Since the log~law wall
function is still used for the turbulent flow calculation
and must be applied between 12< y+ <200, the computational

domain for the 19 grid nodes is rearranged as shown in the

following figure.

-
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Starting point of turbulent flow
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Figure 30. Computational

Domain for 19 Nodes
The velocity component u, kinetic energy k and its
dissipation rate t inside the fifth node which involving the

use the wall function are evaluated based on the log-law

formulation or

u 1 +
“ﬁ: = - in(Ey’) 12 < y+ < 200
+
—_ =yt vy o< 12
T
vy U3
: Y
kK = 1.1 = T += 1N
Y ¢ T T y .

Here Yn meana the normal distance at the nth node, so0o that
Y5 is the normal distance at the fifth node.

Figure 31 shows the convergence history of the
dimensionless pressure distribution hefore the plate, on the
plate and along the wake centerline. One sees that the
pressure distribution at the leading edge is now p=0.055 in

the 19 nodes grid distribution, while it is only 0.00165
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when 15 nodes were used in the éomputation. Also a much
smooth pressure distribution is obtained in figure 31 when
compared to that in figure 29. Figure 32 gives an
exergarate pressure distribution along the centerline of the
plate. It shows a slight fluctuation close to the leading
edge. This is perhaps affected by the velocity change from
the laminar flow to the turbulent flow. The starting point
of turbulent is predicted at x/L=0.067 or local Reynolds
number Rex=1.68x105 as shown in figure 33. During the
transition the skin friction Cf jumps from 0.0015 to 0.0047.
Examining one point of the skin friction Cf measured by
Ramaprine, Patel and Sastry [57] around the trailing edge,
it shows a little difference between the experimental data
and the present result. The convergence history of
centerline velocity along the wake is shown in figure 34.
Again it is compared with the experimental data published by
Ramaprine, Patel and Sastry [57]). It shows that the
prediction based on 19 grid nodes along the y direction now
gives good agreement result at far wake. This also can be
checked from figure 35(a) to 35(g) at different cross
section. Figure 36(a) to 36(f) show the kinetic energy
profile at different cross section. The comparison between
the experimental data and the predicted result shows that
the distribution profiles are very similar to each other.
Slightly lower values under the experimental data are

predicted by the present result.
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From the above predictions, one can see that the
numerical model of transition for the turbulent flow over
the flat plate without angle of attack is able to predict a
good result when compared to the experimental data.
Therefore, this transition model is used for the flow with

angle of attack in the next section.

4.6 Turbulent Flow With Angle Of Attack

In this section the turbulent flow past a finite flat
plate with two angles of attack, namely, «=5 and 10 both at
Reynolds number Re=2.48x106 are solved. Since the symmetric
condition is no longer applied for this case, the
computational domain needs to be redefined with extended
boundaries in the y direction as shown in figure 37. The
same numerical grid generation constants Al, A2 and A3 used
in the last section for 19 grid nodes are used here again
but with the outer boundary in the y direction extended to
y=+3 at n=21. Thus a 82xX41 mesh was used to cover the
physical region that extends from a distance 1.0619L
upstream of the leading edge to 8.1406L downstream of the
trailing edge and 3L distance normal to the plate on both
upper and lower bouncdaries. The same boundary conditions
used in section 5.3 for the laminar flow with angle of
attack over the flat plate are used here again. The same

numerical modeling used in the last section for the
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determination of transition from laminar to turbulent flow
is used for the present calculation on both upper and lower
sides. The FANS-3DEF program with time step 4t=0.1 and

total 100 time steps for both 5 and 10 degree angles of

attack are solved.

4.6.1 5 Degree Angle Of Attack

Figure 38 shows the streamline distribution around the
flat plate at 5 degree angle of attack. At this high
Reynolds number flow Re=2.48x106 no separation zone at the
leading edge on the upper side of the plate is found. It
should be remarked that the same problem at Re=104 solved in
section 4.3.1, shows a small separation zone at the leading
edge on the upper side of the plate. This can be explained
because when the Reynolds number is increased at this small
angle of attaéﬁ the length of the separation zone is
decreased until it disappears completely.

The convergence history of the pressure distribution on
both the upper and lower sides of the plate is shown in
figure 39. It shows that the pressure distribution is
monotonically convergent about 30 time steps on the lower
side and 40 time steps on the upper side of the plate. The
pressure value on the lower side of the plate starts from a
maximum pressure p=0.24 at the leading edge drops to p=-0.16

at the trailing edge, while the pressure value on the upper

T T e e e BT s T e T e et e g 3 e TaemewR S0 0
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side of the plate starts from a minimum pressure p=-0.198
increases to p=0.0557 at the trailing edge. A comparison of
the pressure distribution given in figure 39 for turbulent
flow Re=2.48x106 and that shown in figure 18 for the laminar
flow Re=104, shows that there is a mark difference between
these two flows in the pressure drop at the trailing edge. A
larger pressure difference between the lower side and upper
side is observed at the trailing edge of the plate for
turbulent flow at Re=2.48x106, or p=0.0557 on the upper side
and p=-~0.16 on the lower side, while it is almost the same
value p=-0.02 for the laminar flow Re=104. The difference
in turbulent and laminar flows can also be seen in the
streamline distributions given in figures 16 and 38. Figure
16 for laminar flow Re=lO4 shows that the zero streamline
has a 5 degree ungle of attack to the plate and leaves the
plate at S degree too, while figure 40 for turbulent flow
Re=2.48x106 shows that the zero streamline has a 5 degree
angle of attack to the plate and leaves the plate almost at
90 degrees then decreases sharply and becomes 5 degrees
again in the far wake. With the carefully ewamination there
iz a small separation around the trailing edge at
Re=2.48x106 with a 5 degree angle of attack. Figure 40
shows the convergence history of the skin coefficient
Cf(er/onz), while using the same numerical modeling of <the

transition zone for both the upper and lower sides of the
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plate. The starting point of turbulent flow is predicted at
x/L=0.067 on the lower side of the plate and at x/L=0.165 on
the upper side of the plate. The skin coefficient Cf on the
lower side starts a shaxp drop at the leading edge and then
jumps from 0.00155 at x/L=0.067 to 0.004341 at x/L=0.108
where the flow becomes fully turbulent and Cf gradually
decreases till close to the trailing edge. Then there is a
sudden increase in Cf at the trailing edge to a value
0.004316. The skin coefficient Cf on the upper side of the
plate also drops sharplv from the leading edge to 0.001 at
Xx/L=0.067 then decreases slowly to 0.00922 at x/L=0.165.
From x/L=0.238 where the flow becomes fully turbulent to the A;:
trailing edge the friction coefficient Cf gradually
decreases, with no sudden increase around the trailing edge
is found. The different behavior of the skin coefficient at
the trailing edge on both the upper and lower sides of the
plate can also be explained from the behavior of the
streamline pattern shown in figure 38. 1In figure 38 one
observed that the upper zero streamline is almost 90 degrees
when it leaves the upper trailing plate into the wake while

the zero streamline on the lower side converges to the

trailing edge parallel to the plate.
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4.6.2 10 Degree Angle Of Attack

Figures 41 to 45 give the solution of a 10 degree angle

of attack for Re=2.48x106. The flow patterns shown in figure

41 to 45 have many similarities with the flow patterns for 5
degree angle of attack shown in figures 37 to 40. However
there are some differences. The following are some
different points which require explanation. At this high
angle of attack «=10 one finds that a very small separation
exists at the leading edge, also a strong separation around
the trailing edge on the upper side of the plate is found as
shown in figure 41. Like the flow with a 5 degree angle of
attack, figure 42 shows the pressure distribution at the
trailing edge of the plate has a large pressure difference
between the upper and lower sides of the plate. The
pressure distribution on both the upper and lower sides of
the plate is similar to that of the 5 degree angle of attack
except that the magnitude is higher for the 10 degree angle
of attack. The convergence for a 10 degree angle of attack
is slower as shown in figure 43. The convergence history of
the skin coefficient given in figure 44, shows that the
solution 1s convergent after 80 time steps. Figure 45 also
shows a sudden decrease of skin coefficient at x/L=0.68 in
the fully turbulent flow on the upper side of the plate.
This sudden decrease may correspond to the strong separation

on the upper side of the plate as shown in figure 41.
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From the solutions presented in the last section and in
this section, one may conclude that the proposed criteria
for predicting the transition provide a reasonable and
accurate solution. Also the FANS-3DEF is a stable program
and can predict good results for the case of zero incidence
and reasonable sol *ions for the flows with angle of attack.
This application is further extended to the flow over an

inclined axisymmetric body in chapter 6.




144

CHAPTER V
FLOW PAST AXISYMMETRIC BODY
WITHOUT ANGLE OF ATTACK
In the last chapter the FA numerical solution for
laminar and turbulent flows over a finite flat plate with
and without an angle of attack had been solved by the
FANS-3DEF program. Therefore the FANS-3DEF code is verified
at least for prediction of flows past a finite flat plate at
varied angles of attack using the body-fitted coordinate
transformation and FA method in solving turbulent
Navier-Stokes equations with the k-¢ turbulence model. In
this chapter the turbulent flows past more complicated
axisymmetric bodies for which detailed experimental data are
available are predicted by the FANS~3DEF. Two bodies were
chosen because of their importance in ship hydrodynamic
study and availability of experimental data. The first
geometry is known as "Afterbody 1" used by Huang et al. [10]
who provide detailed measurements of velocity, pressure and
turbulent quantities arround the rear part of the body. The
second geometry is "F-57 body" used by Lee [9] in his study
of turbulent flow past the body. The geometries of these

two bodies are shown in figure 46. These body shapes are




described by an analytic equation and detailed measurements.
In this chapter the k-t&¢ turbulence model is used to obtain

the numerical results and a comparison is made with the

experimental data.

5.1 Numerical Grid System

In the FANS-3DEF program, the body fitted coordinate
system is again used to generate the grid nodes for
axisyémetric bodies. To minimize the pnossible approximation
error in the pressure equation Eq. (17) as described in
section 3.3, the staggered grid system where the constant §
stations is a sole function of the x coordinate or § = §(X)
is used in this study. Under this arrangement, Eg. (9) can
then be rewritten in the cylindrical polar coordinates as

%y y¥pg * JZ(leg) =0

’ (24)
. 2
allrgg +a22rrm + 2a12r€n + J (Flr€+F2rn) =

Ry
N

where

2,,2,.2
o rc(x<+r a = 2 (25,2
11 n n)' 2g = L (x£+r£),

- _..2
alz r (xgxn+r

r ) J = X.r =3
g n ’ r(*(t,rn ‘{qr‘_;
i

The control function F1l is therefore determined by the

desired distribution of the axial station or

1y

1=-(allx£€)/(sz£). With Fl specified, equation (24)
yields the distribution of points in the radial direction,

r(f,n). To obtain the desired grid distribut:ion in the

—ed

"

direction, the control Zunction F2 must be prescribed.
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1

F2 = g+ R206)

then Eg. (23) can be rewritten as

+ J¥(Flr, +£f2r_ ) =0
allrgg + a22rrm + 2a12rgn J*(Flr n)

3
which is equivalent to the two-dimensional body fitted
coordinates for the Cartesian coordinates (x,y) as given in
Eg. (22) with the control functions Fl and £2. 1In other
words,'the same grid distribution can be generated in both
the cylindrical and Cartesian coordinates if the control
function F2 is replaced by f£f2 in the cylindrical
formulation.

In this chapter the FANS-3DEF progrm is used to solve
the flow over a more complicated axisymmetric body with the
k-¢ turbulence model. Since the ;xperimental measurements
of Huang et al. [10]) on "Afterbody 1" and Lee [9] on the
"F-57 body" provide data only at the rear part of body to
the wake, the computational domain is chosen from the half
part of the body to the far wake. As the body shape and
computational domain are different from the flat plate

problem the distribution of control factor a ( a =

(J’Fl)/(Zall) ) as shown in Eg. (23) for generation of the

grid nodes along the ! direction 1is chosen as

-Al 0.25 g 2y < 0.5

a = Al Sln(nzl) 0.5 < zl < 1 (25)
A2 Sin(wzl) 1« Zl < b
-A2 2, s b
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= &

h
wnere zl 52

52 corresponds to the trailing edge, the constant b (>1) is
the grid number to be affected by the concentration at the
near wake region and Al and A2 are positive constants for
condensing the grid nodes to the trailing edge. For
"Afterbody 1" Al1=0.05, A2=0.2, b=1.2 and £2=40 at x=1.0 are
used. For "F-57 body" Al1=0.01, A2=0.2, b=1l.1 and £2=4O at
%x=1.0 are used. Here the grid nodes along the body near the
trailing edge and in the near wake region are assigned. To
concentrate the grid nodes at the inlet plane, the same
concentration values obtained around the trailing edge are

used and assigned them to the nodes at the inlet plane. In

this study it is set as:

a(1) = -a(N2+I-5) 1 ¢<I g5
a(I) = -a(l0-I) 6 ¢ I <9

where the number shown in the bracket is the grid number
along the ¥ direction, 1I=1 is inlet plane and N2=4O is the
trailing edge of the body. 1In this study £f2 is also defined
as Fa(n) £ <8,

fz((':/n) = Fc(grn) ga < E < Eb

Fb(n) g > gb




where Fa and Fb are given by the user or deterimed by the

node distribution at the initial, (=1, and final stations,

£=n, as

= - %22%nn
ern E=1

®22%nn
FP = - ern |£=n

and Fc is obtained by a linear combination of Fa and Fb or

Fe(g,n) = | (E,~E)Fa(n)+(E=E )F ()| / (£ =)

In this study £a=15, £b=42, Fa=0.2 and Fb=0.15 are given for

the prediction of flows past the two bodies.

5.2 Afterbody 1

As shown in figure 46(a) the total length of the
Afterbody 1, L, is 3.066m and the maximum diameter of the
parallel middle body is 27.94cm. The experimental
investigation was conducted by Huang et al. [10] in the wind

tunnel of the DINSRDC anechoic flow tacility. The common

forebody and a portion of the parallel middle bogy were

constructed with wood. The afterbody and the reﬁéining

portions of the parallel middle body were constructed with
molded fiberglass. The wind tunnel was a 2.44m by 2.44m

closed jet test section, followed by a 7.16m by 7.1l6m open
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jet test section. In this experiment the velocity of the
wind tunnel was held constant at 30.48 m/sec therefore the
Reynolds number based on the maximum diameter or Re=6.6x106
was obtained.

Since in this experiment the velocity profile and
turbulent shear stress are measured from x/L=0.706 to
x/L=1.182 (in the open jet test section), where X is
measured along the axis of the body from the body nose and L
is the body length, the prediction of flow was made for the
latter half of the body. The calculations for Afterbody 1
were performed with 56 stations in the domain
0.364<x/L<6.58. A partial view of the body-fitted
coordinates is shown in figure 47. 19 grid nodes were used
between the body surface and the external boundary which
varies from r/L=0.68 to 0.72. Here r is the radial distance
from the body axis. The use of coordinate-stretching
functions F1 in the longitudinal direction and F2 in the
radial direction ensure that the grid points are closely
spaced inside the region of large velocity gradient and near
the stern.

The numerical calculation is confined to the domain
from x=0.364L at the middle part of the body to the wake
region x=6.58L. Since the FANS-3DEF program solves elliptic
partiai differential equations Eq. (12) the boundary

conditions at the boundary of the computational domain must
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be given. Afterbody 1 as shown in figure 46 (a) has a long
section of middle body (from x/L=1.64 to x/L=0.6064) which
is a slender circular cylinder with constant radius
r/L=0.0456, therefore it seems reasonable to assume constant
ambient pressure, i.e. p=0 as the pressure profile at the
upstream boundary condition at x/L=0.364 and use one-seventh
power formulation for turbulent velocity. The turbulent

profiles for k and at this upstream condition (x=0.364L)

are specified too.

u(y)=(y/8y+1"3 for y < §

k=.002 (1-y/s)

(/E;k)l-s
Ky r Cu=.09, K=.42

£=
r

Here § is the dimensionless boundary layer thickness and is
assumed as 0.004 in this study.

The FANS-3DEF program with the k-&¢ turbulence model was
solved with t=1. The total marching steps are 40. Figure
48 shows the convergence history of the dimensionless

pressure field, defined by (P-P )/pUé, on the body

ambient
surface and along the wake centerline.

It is seen that the solution converges monotonically and the

converged solution is obtained after 10 time steps. The
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The typical computational time for each time step on the
PRIME 750 is 16 cpu seconds. Since Afterbody 1 has a long
section of constant radius (from x/L=0.164 to x/L=0.6064)
before a gradual reduction of radius from r/L=0.0456 to zero
radius at the trailing edge, the pressure begins to change
from the location x/L=0.6064 and the behavior like the flow
over the trailing edge of the flat plate. As the radius of
"Afterbody 1" along the axis decreases gradually from
r/L=0.0456 at x/L=0.6064 to zero at x/L=1, the pressure is
gradually increased due to the deceleration of the flow.
Then the pressure along the center line of the wake has to
recover the ambient pressure in the far wake. The predicted
solution for pressure in figure 48 is in fairly good
agreement with the data of Huang et al. [10]. 1In the wake
the pressure along the wake centerline (x/L>1.0) decays
somewhat faster than the experimental data in the near wake
and becomes slightly negative before gradually recovering to
the zero ambient pressure in the far wake. The detailed
pressure variations in the radial direction is shown in
figure 49, with the pressure as a function of the normal

distance from surface (r-ro), where rq is the local radius

of the body.

»

lere again the agreement with the available
experimental data is quite good, considering the

difficulties in measuring pressure in such an enviroment. It
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is seen that zero ambient pressure is recovered when the
radius distance is beyond r=0.35L from the body surface
r=rg. Here rO=O.O456L between x/L=0.164 to 0.6064 and
ro<0.0456 between x/L=0.6064 to 1.

Figures 50 and 51 show the detailed comparisons between
calculated and experimental profile of the axial velocity
(u), radial velocity (v) and kinetic energy k at different
stations. Here u and v are dimensionless x and r velocity
components normalized by UO and k the dimensionless kinetic
energy normalized by UO. It is seen that the boundary layer
thickness and half-width of the wake are correctly
predicted. The axial (u) and radial (v) components of
velocity in the rear end of the body and near wake region
are also in good agreement with the corresponding data. The
predicted turbulent kinetic-energy k shown in figure 51
gives a somewhat larger value in the wall region near the
tail (x/L>0.96), where the boundary layer becomes thick.

The larger values are predicted for the mean velocity, hence
the velocity gradient in the wall region of the thick
boundary layer are presumably related to the over-estimation
of the eddy-viscosity by the k-t& turbulence model.

Figure 52 shows that the predicted wall-shear velocity
UT or (Tw/p) is slightly larger than the data especially
the last S5 percent of the body length. All these differences

maybe due to the use of the simple wall functions, Egs (6)
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and (7), at the tail of the body where the curvature changes
sharply. In the future investigation the simple two-node
log-law wall function used in FANS-3DEF may require
modification in oxder to provide a real similation of flow

over a surface where the large curvature occurs.

5.3 F-57 Body

As shown in figure 46 (b) the total length, L, of F-57

body 1s 1.219m (4£ft). The coordinates of this body are given

by
For 0<x<xm (fore-body)
r
—2 = (-1.1723a +0.7088a +1.0993a +0.3642a)°"" 26 (a)
m
For xﬁ:x<L (pointed aft-body)
r .
_;Q = (-0.11996b -2.58278b +3.52544b +0.l773b)0'5 26 (b)
m

where a=x/xm, b=L-x/L-xm, X 1s the axial distance measured
from the nose, r is the local radius, X (=0.4446L) is the
axial location of maximum radius T (=0.117L), and L is the
total length of the body. In the experiments the main body
of the model was made of seasoned wood but metal nose~ and
tail-pieces, 5.08cm and 12.70cm in length, respectively,
were used to provide accuracy and durability. The

experiments were performed by Lee (9] in the large wind
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tunnel of the Iowa Institute of Hydraulic Research. The
working section of the tunnel is 7.3m long with a
cross-section in the form of a 1.5m octagon provided by
throating a 3.7m square approach section. In this
experiment the vzlocity of wind tunnel was held constant at
15.24 m/s (50 fps), where a Reynolds number of Re=1l 2x106
was obtained. The model was mounted in the wind tunnel by
means of eight 0.84mm diameter steel wires in tension at
x/L=0.475, and the major measurements were conducted only
from x/L=0.601 to x/L=2.472.

Like Afterbody 1, the staggered grid system with the
k-¢ model is used in the FANS-3DEF program for the
calculations of flow past F-57 body. There are 56 stations
in the axial direction between 0.364<x/L<6.580 and 19 grid
points between the body surface and the external boundary
r/L=1.35. The partial viw of grid distributions is shown in
figure 53. The same coordinate-stretching functions and
upstream condition as for Afterbody 1 were used again in
this case. The principal results of the calculations for
F-57 body are shown in figures 54 through 58.

Figure 54 shows the convercgence history of the pressure
on the body surface and along the centerline of the wake.
Unlike the Afterbody 1 the F-57 body does not have a

constant radius at the middle part of the body, instead the

F-57 body continuously increases radius from the leading
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edge with Eq. 26(a) to the maximum radius at x/L=0.4446 then
continuously decreases with Eq. 26(b) to the trailing edge.
Thus the minimum pressure occurs at the location where the
radius is maximum (r/L=0.117,x/L=0.4446). The pressure
smoothly recovers at the trailing edge and drops again to
the ambient pressure in the wake region. The converged
solution as shown in figure 54 is obtained in less than 20
time steps and is in excellent agreement with the
experimental data except at the tail of the body and near
wake where the predicted values are slightly lower than the
dat-= Before a comparison is made between the calculated
and experimental profile in the radial direction at
different stations, it should be remarked that the F-57
experimental data were measured along the direction normal
to the body surface while the numerical calculations were
solved along the direction normal to the axis of the body.
Since it is not easy to transfer results in either way
without avoiding any error and since the curvature of body
surface does not change sharply except at the region very
close to the tail. in this study both the experimental data
and numerical solution are kept in their orginal directions.
Figures 55, 56 and 57 show the detailed comparisons between
the calculated and experimental profile of pressure, axial
velocity (u), radial velocity (v) and kinetic energy k at

each different station. Overall the predictions are in good
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agreement with experimental data except that the axial
velocities along the center line of the wake are higher.
This is again due to use of simple wall function along the
body surface, and simple initial condition at the upstream
station. Unlike Afterbody 1 the surface of F-57 body

continuously changes its shape, therefore it is more

difficult in specifying the initial condition for the

computational domain. In the next chapter the pr

o

[(3

diction of
flow past the whole axisymmetric body will be considered.
In this situation the specification of the initizil condition

at upstream of the body may become simple and accurate.
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CHAPTER VI
FLOW PAST AXISYMMETRIC BODY
WITH ANGLES OF ATTACK

In this chapter the FANS-3DEF program that includes all
numerical methods described before is used to predict flow
past an inclained axisymmetric body. The prediction of
turbulent flow past an axisymmetric body is conducted for
the whole axisymmetric body including (1) the approaching
flow, (2) the flow past the body from the leading to
trailing edge and (3) the wake region. The calculation was
first made for the flow corresponding to the experiments of
Yasuhara [5]. The experiment was conducted on a 20 mm
diameter brass pipe that was 1750 mm long with a 100 mm long
ogive-nose as shown in figure 59(a).

This model was placed at zero degree angle of attack in
a wind tunnel that has a velocity range from about 8 m/s to
35 m/s. The ogive-nose extends 100 mm from the base of the
cylinder. The brass pipe was clamped by a supporting device
at the rear end and the model was supported by a cantilever
beam. The pressure distribution was measured by a Pito tube

with 0.2mm x 1.0mm hole. For wind velocities up to 20.3 m/s

or Reynolds number based on the length of cylinder,
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Figure 59 (b).
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Therefore, the computational domain is -1.02<x/L<8.146,
O<(r-ro)/L<O.85 where ry is the radius of cylinder changes
along the axis of the cylinder body. A nonuniform grid,
with 82 points in the x direction and 19 points in the r
direction was used. A partial view of the grid distribution
is shown in figure 60. The computation was done by marching
in time with a time step At=0.1. The initial guess of
uniform velocity and zero pressure were used. The total
time steps of 100 were used when a steady solution was
predicted.

The same numerical model of transition used for the
flat plate is used here again. Figure 61 shows the
convergence history of the skin coefficient Cf on the
cylinder body. The predicted transition is near x/L=0.06 or
local Reynolds number Rex=2.22x105. It is obvious that the
numerical modelling of transition predicts that the
transition to occur at x/L=0.06, the intersection point of
the ogive-nose curve and the straight cylinder. Physically
the flow on the ogive-nose cone is constantly accelerated
between 0<x/L<0.06 because of the increase in body radius
from the leading edge to the straight cylinder. Therefore
the u velocity inside the boundary layer was predicted to
increase until the flow reaches the intersection point of
the ogive-nose and the straight cylinder. The velocity on

the straight cylinder then begins to decelerate due to the

S s
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disappearence of the pressure gradient on the straight
cylinder and the constant resistance of the viscous flow.
The prediction of transtion based on the criteria discussed
in section 5.4 to occur at Rex=2.22x105 seems to predict
much earlier transition than that indicated by Yasuhara (5]
of Rex=l.2—1.8x106. Yasuhara [5] determined the transition
by examining the measured velocity profiles at four stations
namely x/L=0.143, 0.286, 0.429, 0.572 and reported that the
transition may start between Rex=1.2-l.8x106. The numerical
modelling of transition proposed for the flat plate thus
required further modification.

The above computation is repeated with the exception
that the transition is set at x/L=0.37 or Rex=1.37x106 as
given by Yasuhara [5]. The predicted skin coefficient for
this case with experimentally determined transition and that
predicted with built-in transition criteria are given in
figure 62 for comparison. It shows that the skin
coefficient on the ogive-nose cylinder based on transition
model did not have dip in the distribution when the flow
changes from laminar to turbulent flow. The predicted skin
coefficient with the transition point fixed at x/L=0.37
shows a dip at the skin coefficient arcund the end of the
ogive-ncse or Xx/L=0.06 even the flow is laminar at this
region. As shown in figure 62 both calculations give

approximately the same maximum skin friction coefficient of
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about 0.023 and the same value in the turbulent flow from
x/L=0.5 to 1. The comparison of the predicted pressure
distribution on the cylinder body with the experimental data
[5] was shown in figure 63.

It shows that the predicted surface pressure based on
the transition model under prediction but gives the same
trend with the experiment. The predicted surface pressure
with experimentally determined transition point seems to
match closely to the experimental data. In general both
calculations predict that the pressure rises as the flow
approaches the nose and then drops to a minimum before
recovering to a constant value before it reaches the tail
edge where the pressure increases before the flow past the
tail. The physical explanation is that as the flow
approaches the ogive-nose it decelerates and the pressure
begins to rise. Once the fluid is on the ogive-nose it
begins to accelerate as the pressure starts to drop sharply
and reaches the minimum pressure around the end of nose (or
the start of the straight cylinder). The flow begins to
decelerate after it reaches the end of the ogive-nose. Once
the £fluid is on the straight cylinder surface the pressure
quickly recovers to a level which is almost that of the free
stream pressure. This is because the fluid is no longer

accelerated =lorg the straight surface of the cylinder and

the pressure variation across the boundary layer on the
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straight cylinder is negligible. When the flow enters the
rear region x/L>0.5 where the flow is decelerated due to
decrease in the diameter of the cylinder. The pressure on
the surface rises again so that the sum of velocity head and
pressure head is approximately conserved. When the flow
leaves the body to beco... wake, the flow along the axial
direction is then accelerated from zero velocity at the
nonslip surface to some velocity. This acceleration causes
the pressure momenterly to drop but recoves to the free
stream pressure soon after the acceleration is reduced.
Yasuhara (5] remarked that his experimental data are not
accurate after x/L=0.6 because his model was clamped by a
supporting device at its rear end, and the model was hanged
from above by a cantilever beam. Therefore pressure
variation near the trailing edge which was predicted by the
present method can not be compared with Yasuhara's data.
However the predicted pressure distribution shown in figure
€3 is qualitatively similar to those predicted by inviscid
theory or experimrntaly obtained by Ramaprian, Patel and
Choi (12] for flow past a body with hemispheroid at the rear
end.

The predicted longitudial velocity based on the
experimentally determined transition at x/L=0.37 shown in
figure 64 is quite the same as that measured by Yasuhara

[5]. Cebeci [59] solved the same flow past the slender
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cylinder by the boundary layer equations using two-layer
mixing length model, and also found that there is a good
agreement between the prediction and measured velocity

profiles of Yasuhara. It should be remarked that the use of

boundary layer equations can not predict the pressure
distribution since the boundary layer approximatiorn assumes
that the pressure is given by the free stream flow.

Therefore, in Cebeci {59] calculation the experimental data

of pressure distribution was used as inputs. However in the

present FANS-3DEF calculation the pressure distribution and
velocity components are predicted simultaneously and no
experimental data of pressure distribution or assumed

potential flow solution are required as a priori. Figure 65

shows the development of the x-component velocity u from

upstream to the wake region. It should be mentioned that

the y coordinate in figure 65 is streched about nine times

over the axial scale in order to visualize the velocity
distribution near the body. It is seen that the boundary
layers grew symmetrically along the axial direction and

merged at the rear end to form wake.

6.2 Flow Past Inclined Ogive Cylinder

Once the FANS-3DEF program was verified with the
experiment for the flow past the axisymmetric body without

angle of attack, the flow past the ogival cylinder for
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angles of attack at 5, 10 and 15 degrees are predicted.
This is a complex three dimensional flow calculation since
the flow is no longer a symmetric one and three dimensional
variables and grids in the x, r and 6 directions zre
required. Since the computational space for each user is
limited at the University of Iowa, relative coarse grid
spaces are used here. The whole compuational domain are
-0.65<x/L<8.55, O<(r-r0)/L<0.850. Figure 66 is the partial
view of the whole computatonal domain. There are 62 points
in the x direction (axial direction), 19 points in the r
direction (radial direction) and 9 points in the 8 direction
(azimuthal direction). It should be mentioned that the
relative coarse grid spaces zarxe used only to illustrate the
capabilities and stabilities of the FANS-3DEF program. bdore
accurate solutions can be achieved when *the grid spaces are
allowed to be refined. The upstream and boundary conditions
for the x and r component velocity u, v were reset as
u=UOCOS(a) and v=UOSIN(a). The zngle of attack ¢ was varied
from 5, 10 to 15 degrees. The Reynolds number Re=3.7x105 is
used.

The transition model for the flat plate is not quite
adequate for the flow past an ogive-nose cylinder as solved

in the last section. One can not pre-predict the real
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angle of attck. Therefore in this study, we approximately

assume that the turbulent flow starts at X/L = 0.4 or local
Reynold number is 14.8x10. i

Figure 67 - 69 show the predicted skin coefficent L at
three generators (8 = 0°, 90°, and 180°) with respect to the
angle of attack a« = 5, 10 and 15 degrees. All these three
figures show the following common features. First the
values of skin coefficient at 8 = 0° are increased sharply
at the front part of ogive-nose; then drov to a very small
value at the end of the ogive-nose or X/L = 0.06. After X/L
= 0.06, the skin coefficients increases sharply again till
X/L = 0.1. Beyond it, the skin coefficients varies slower
till the end of the cylinder. For 8 = 90° the skin
coefficient o increase slowly and then a a big drop cccurs
at X/L=0.06. After that, there is no too much change till
X/L=0.28. At X/L=0.4, the flow is assumed to be turbulent
flow and the skin coefficients conseguently have an obvious
jump. The skin coefficient then decrease slightly
downstream. For 9 = 180°, which is the rearward of the
cylinder, the trend of skin coefficent is almost the same as
that at 8 = 90°, except that the variation is smaller and
smoother.

Figures. 70 to 72 show the corresponding pressure

distribution at three generators, namely 8=0° (windward

side; solid line), 90° (dotted line) and 180° (leevard side,
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dashed-dot line), with respect to the angle of attack e=5,
10 and 15 degrees. All these three figures show the
following common features. First, the pressure at the
upstream location of the ogive-nose unlike the case of zero
angle attack, first decrezses along the axis before it
reaches the nose. This is due to the fact that the flow is
accelerated along the axial line when there is an angle
attack so that the flow on the axial no longer like that of
the case of zero angle attack where the flow slows down as
it approaches the stagnation point at the nose tip. In other
words when there is an angle of attack the stagnation point
is no longer on the axial line and the flow along the axial
line never needs to decelerate and instead it accelerates.
Consequently the pressure decreases. Second, the increase
of pressure in the nose region on the windward side (8=0°%)
is the largest because of the existence of stagnation region
on its plane and the increase of pressure in the leeward
side (98=180°) is the smallest with the tangential side
(86=90°) in the middle. Third, the greater the angle attack
the larger is the spread in pressure difference from
windward side to the leewardside.

Figures. 73 to 75 depict the wvariation of the x
component velocity ,u, on the plane of 8=0 and 180 at
different angles of attack. It is found as expected that the

boundary thickness is thinner on the windward side (8=0°)
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than that on the leeward side (6=180°). No boundiry
separations are predicted for 5, 10 and 15 degrees of angle
attack. This is partly due tc a small angle of attack and
partly diue to moderate curvature of the cgive-nose shape at
the front end and hemispheroid body at the rear end. It is
seen that the wake flow is unsymmetrical when there is an
argle of attack and it shows the location of the maximum
defect in the u velocity in the wake region is not on the
axial line. As the degree of angle of attack increases, the
lecation of the maximum defect moves mere to the leeward
side. Figures. 76 to 78 show the variation of the r
component velocitr ,v, at different angies of attack. Here
the positive value denotes that the flow in the positive r
direction or the radial direction. It is seen there the v
component velocity on the leeward =ide in general is small
except near the body where the fluid merged after it passes

the body from the windward side.
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CHAPTER VII

CONCLUSION AND SUGGESTION

In this study a user int.ractive numerical program
called FANS-3DEF (Finite Analytic Numerical Solution of
Three Dimensional External Flow) is developed. This program
which is based on the finite analy:ic method on the
body-fitted coordinate system with modified SIMPLER
algorithm was used to pr«dict ‘ncompressible laminar and
turbulent flows past the finite flat plate and axisymmetric
bodies with or without angles of attck. Some examples of
flow prediction where the experimental data are available
are presented to demonstrate the accuracy and validity of
the FANS-3DEF program.

The major contributions of the present work are:

1. Derivation of Finite Analytic solution for unsteady
three dimensional laminar and turbulent flows on the
body-£fitted coordinate system.

2. Calculation of a computational domain includes the
entire geometry from the apprcaching flow to the wake
region.

3. Development of FANS-3DEF program and its

applications.
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4., Investigation of complex vortex shedding behind a
flat plate and complex flow past axisymmetric bodies.

5. A simple numerical model for transition zone is
developed and tested on the flat plate so that the
prediction of a flow may be calculated for the entire
plate from the approaching flow to the wake region.

All calculations presented here were performed on a
Prime 750 minicomputer at the CAELAB of the University of
Iowa with computing times of less than half hour for the two
dimensional and axisymmetric cases, and of the order of two
hours for the flat plate with vortex shedding and flow past
axisymmetric body with angles of attack. It should,
therefore, be rasonable to use the FANS-3DEF program for
practical applications.

While the overall predicted results are shown to be in
good agreement with experimental data or reasonable when the
experimental data are unavailable there are still several
aspects about the numerical methods and turbulence and
transition models in the FANS-3DEF that can be further
developed and improved. The following suggestions are
submitted for further study.

1. The application of the numerical model of transition
zone: the numerical model of transition zone
presented here is developed based on the simple

physical phenomena on the flat plate, therefore it
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needs more study and tests before it can be
completely applied to other geometries of bodies or
the flow problem involving the strong curvature.

The sensitivity of the solution to the turbulence
model: the validity of the one-scale k-g turbulence
model for more complex flow problems has not been
verified. The two-scale k-& turbulence model which
has strong physical support can be considered in the
further study. The two-node wall function based on
the fully developed flow assumption in general is not
applicable to flow with separation. Thus a wall
function that is valid for the turbulent flow with
separation should be developed if complex separation
flows are to be predicted.

The use of a grid system for the pressure equation:
the regular grid system which has some advantages in
saving computer time and storage requires further
study to become competiable with the staggered grid
system in accuracy and stability.

The programing of FANS-3DEF: the FANS-3DEF program
is a research code, it needs more testing and

modification to become a general program.
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In this appendix a general finite analytic algebraic
representation of two dimensional convective transport
equations is briefly outlined. We consid:r a two
dimensional convective transport equation in a given finite

analytic element shown in Fig. A-1. The equation is
Dby + 2Ady + 2Bdy = dyy * dyy + £ - (A -1)

Where D, A, B and £ are constants in a given FA element
such as those shown in Eq. (12). 1In order to solve Eq.
(A-1) in a given element, one must specify boundary and
initial conditions for the element. Among the possible
solution forms of Eg. (A-1) are a constant, an exponential
and a linear function. A conatant, an exponential and a
linear function then are used to describe the boundary
function of the local element. For example the northern

boundary function of a element as shown in figure A-1 can be
approximated by
2Ax
¢N (x) = aN(e - l) + bNX + CN (A"Z)
In term of the three nodal values on the northern boundary

the coeifificients aN, bN’ and N are

_%uE * %nw ~ 29yc
4 sinh?Ah

ay

by = 2_;‘;_{4’};5 ~ %yw — coth Ah (dyg + Onw ~ 2¢hC)}

cn = *nc
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similary, the boundary conditions for south, east and west

side can be approximated as follow:
2Ax

¢5(x) = ag(e -1) + bgx + Cg
2BY

dply) = ag(e -1) + bzy + C

2By
‘*W(Y) = aw(e -1) + bwy + Cw

where ag, bS Cg vvvvn-- etc. are expressed in terms of nodal

values on each boundary in a way similary to that for a b

N’ ©N

and cn- The FA solution of Eg. (A-~1) can be derived
directly from uniform grid mesh as shown in figure A-1.
Details of the derivation and related discussion can be
found in Ref. (31]. When the FA solution is evaluated at

node p the FA formulation or uniform grid mesh can be

written as: 1 3 -
p = (- Chptpp + Cpf el BCp,n-1
1+ 0Cp nb=l P At

it

}
(A-3)
where ¢ and ¢n-1 means the value evalued at the nth and

(n-1)th time step respectively. For uniform grid mesh, the
FA ccefficients are:

eBk

-28k
Csc = ! wosnteny 'Pac Swc " ¢ Csc
Ah
- ] « o AL
Cuc * ' ot 'P8r ‘e "¢ Cue
AR tek
Cow = | teosnantcosnieny | (17Fa7Py)
~2Ah =-28% =2{Ah»Bk)
cst: » e CS". C"H v e CSH' cm: - e Csu
h Tanh(Ah} . % Tanh(Bk) . _
Cp + TE -, )« ——JRRSS(1-Py)




One may use one of the following series to evaluate P, and

PB in the above expression. They are:
B y2 2y2
{(an)* + (gh)*)* cosh(u_k)

P, = 4E2 Ah Cosh(ah) Cosh(Bk) Coth(ah)

Ez=

m=1

Bh Coth(BK) o .
5 = 1 * 2 Gotn(an)y Fa"V

J
|

uml = (AZ + Bz _*Ar'nz,]’

M = (A? + B2 + };L)%

(B) E) = E -(-1)™\p'k
m=l [(Bk)? + ( Agk)2)? cosh(u'ph)
P, = 4E) Bk Cosh (Ah) Cosh (Bk) Coth (Bk)
- Ak Coth(ah) -
Py = 1+ Ercoth(ek) (T Y
y = (2m - 1)«
m 2h
>‘| = (2m - 1)
n 2k

Although both series should provided same PA and PB values,

it is however more convenient to use E2 over E2' series if

the first term of E2 series is less than that of E2' series

and vice versa.

In the present study the problem is solved on the
transformed domain, and the general two demensional FA

equation on the transformed domain can be written as
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D¢t + 22, + 28¢>n = E¢€g + F¢ +£ (A-4)

13 nn

Here if E and F are equal to one then Eqg. (A-4) is reduced
to Eq. (A-1l). However, in general E and F are positive
values and not equal to one. Therefore in order to cast Eq.
(A-4) into Eq. (A~1), one can introduce the

coordinate-stretching functions.

- £ =~ n* =
Then Eqg. (A-4) can be reduced to the same form as Eg. (A-1)
as
Do, + 2A*¢E* ¥ 28*¢n* = ¢£*€* * cbn*n* v
with
ax = A, BY = 2

and a local element with dimensions

1

A€*=h=7—E—I Aﬂ*=k=7’ET‘
Thus one will obtain the same FA formular as shown in Eq.
(A-3). For non-uniform grid, the FA solution becomes:
L 8 n-1 _ DBp
¢p = g5 £ Bnpbnp + Bpfp ~ + gD

G + —=— nb=1
At (a-5)

where



' G = 1-(2-3-8)Cye ~(2-t-E)Cge = (2-3-3) (2-t-F) gy
BNy = Cyg +{s-l)Cyw + (e-1)Cgp + (s~1) (t-1)Cgy
Byw = 'S Cyyw + s(t-l)Cgy
Bsg = € Csp + E(s-licgy
Bsw = S € Cgy
Bec = Cec + (5~1)Cyc + (2-t-E)cgg + (s-1) (2-t-F)Cgy
Buc = S Cye + 3(2-t-Ticgy
BNc = Cyc + (£-1)Cse + (2-s=S)Cyyw + (t-1) (2-5-3)Cgy
Bgc = t Cgg + E(2-3-3)Cgy
Bp = Cp

where C's are FA coefficients of uniform grid space and

2Ah -2Ah
I Pk it .
hy(e?™E - 1) + ngle™?MW -1y, n
hg(eZBhN + e~2Bhy - 2 - hyg
" R v
hs(eZBhN - l) 3+ hN(e-ZBhs - 1) [ W

The above relations between B's and C's coefficients
are derived from interpolation of nodal values for uniform
grid between nodal value of non-uniform grid with

interpolating function of a.exp(x)+bx+c.
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APPENDIX B

THE FANS-3DEF PROGRAM
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B.1 Main Program

The main program of FANS-3DEF is essentially written to
solve the unsteady three dimensional turbulent
incompressible flow governed by continuity equation, Eqg.
(1), momentum egquation, Eq. (2), and turbulent transport
equation, Egs. (3) to (5), based on one or two scale k-s¢
turbulence model. These equations, Egs.(1l) to (5), are
transformed to the body-fitted coordinate system based on
Poisson equation Eg. (8). Thus Eg. (1) is expressed in Edg.
(10) and Eg. (2) combines with Egs. (3), (4) and (5) are
expressed in a general form given in Eqg. (11). Numerically
the finite analytic feormulation converts Egs. (10) and (11)
into algebraic equations. They are Eq. (11l) into Eq. (13)
and Eq. (10) into the pressure equation (17). In summary
the main program of FANS-3DEF is written to obtain solution
of Eq. (1) to (5) based on their algebraic equations given
by Egs. (13) and (17).

The numerical procedure for solving Egs. (13) and (17)
is programmed based on the modified SIMPLER algorithm
introduced in the section 3.7 of the last chapter. The
computer programs are written such that there are many

independent subroutines which can be called to the main
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program to execute some specified func*ion. 1In this way
these independent subroutines can be m .dified by the user

and some new subroutines can be added by user as desired.

In table 5 and table 6 the computational prccedure and
structure the main program of FANS-3DEF are illustrated.
Table S shows the flow chart of the main program and table 6
shows the relationship between each subroutine. In the
following the funcitions of each subroutine in the main

program are described in the alphabetical order.

- . S A R S e e G e e e e e S e A G Y e A M e M p M e e e = e M e e e G

(1) CHECK(N)

This is a check and change subroutine. It check
if it is required to update boundary conditions |
either along with symmetric line or at the center
line of wake. The N in the bracket denotes as

1 for velocity component u, 2 for velocity component
v, 3 for velocity component w, 4 for pressure, 5

for kinetic energy and 6 for dissipation rate.

- . - - B g S M e S e e —— e e e e ey e My -

(2) COEF

COEF solves FA coefficients, based on Eqg. (12).

o e et gy . e G ey y e S S s n A -

(3) EQCOE

EQCOE calculates the coefficients of governing

equation Eq. (12). The coefficient a¢, b¢,...
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INPUT INFORMATION
{PREFROCESS0R) <———— PROCEED
]
\4
' nATA FILES
» | (MAIN) — PHYSCOEF
COLLECT AND
+ UPDATE DATE 800VCOEF
N—— RIESS
(OUTER LOOP)
V
. =2, IMAH - 1
(INTER LOOP) SPECIFY ALL
l | UARINBLES AT |
— )
AYTPYT 3 \ ALL
FILE ) 7 THECKON ves ¢
s
™ j \JURBULANCE WALLEN
NG \ /
| = NO
cuccx NO
= 1TER )
vss\ PRESS i2)
SUFL
UPDATEIT)
B l
N
PRESS | yes /CHECK N0 LR e S1K0
‘- —_
\ NN \Q“""EEN“ T weomiesa
Table 5 (B~1) : The Flow Chart of Main

Program of FANS-3DEF
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—iUALLFN

—FPRESS(2——— TRIDAG

— EQCOE
t—cocr
i T TRIDAG
L SUEL™—SOLVE — CHECK
| ~ MSI ———— CHECK
— UELCOR —- TRIDAG
— HUEL— SOLDE —— L CHECK
| Mst — cHECK
— EDCOE
___STKD._ COEF
; ~ TRIDAG
— SOLJE—— CHECK
OMSE ———CHECK

L PRESS{1)__ TRIDAG

Table 6 (B-2) : The Structure of Main
Program of FANS-3DEF
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are listed in table 3.

(4) HVEL

(S) MSI
MSI stands for Modified Strongly Implicit method
(see Ref. 50). The subroutine solves the system of
9-point FA algebraic equations.

(6) PRESS(N)
PRESS(N) solves pressure equations given in Egs. (17)
and (21). N=1 refers to pressure variable in the
whole domain and N=2 for pressure correction at each

cross scetion given in Eq. (21).

(7) SOLVE

SOLVE is a solution subroutine using either MSI

or tridiagonal method.

(8) STKD
STKD solves the turbulent transport equations for

kinetic energy k and its dissipation rate .

o — .  — a —— — —  E m  — — m o — — — —— —  — A S e gt TN A e - M -

(9) SVEL

SVEL solves the starred velocity (u*).

A B S AE T em—mseae S oo
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(10) TRIDAG
TRIDAG stands for tridiagonal metric solver. It
solves a set of algebraic eqguation have a tridiagonal
matrix. The subroutine can be execute either in the

row or column direction in the flow.

(11) UPDATE(N)
UPDATE(N) updates the outlet boundary conditions.

N=1 to 3 for velocity components, 4 for pressure

and 5, 6 for k and

e o A G - e = . . > A = b v G o = e W R en e e e e e e =

. (12) VELCOR

VELCOR solves the correction velocity (u'). which is

defined in the section 'Pressure Equation' Eg. (20).
(13) WALLEN

WALLEN is a subroutine to specify the values for

u, v, w, k and ¢ for the first computational node

from the wall if the flow is turbulent. The wall

functions are specified in Egs. (7) and (8).

- e S - A - —— e S G S MR S e e e e e e = am AS
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B.2 1/0 System

FANS-3DEF has a very flexible 1/0 system. The input
operations can be read from a data {ile or interactively
from the terminal. If the user uses interactive session, all
input data once installed will be saved in a data file named
FANS_INPUT automatically. This is useful because, if the
computed result is not satisfied or the user wants to revise
a portion of data, he/she may do so in the data file and
then run the program without needing to type the whole input
data again. The output result is always stored in the
output files but the user has options to print the result
after nth iteration and to choose the three types of output
file. The "n" specified in the output result means that an
output result is printed at the end of every n iterations.

A list of the commands, options and variables which

control the I/0 system are given below.

COMMANDS :
(1) RDFILE
This command executes EFANS-3DEF from the data

file named EFANS_INPUT directly.

——r - - — = - R = e dwe b A e e N mm S S A e e W e S e S e e G e e e S e

(2) RDINT
This command reads input data from the

interactive terminal and stores them in the




file named FANS INPUT automatically.

e e R N L

(3) CHECK
This command displays the information selected

by the user.

- . — — —— ——— — ——— " —— . - = hn e = - —— - — O W= - ——

This command executes the main program to solve

the problem.

- o —— A —— W ————— T S ——— . —— = . - —— ———

(5) sToOP
This command is used to stop the computation

and tc be out of the precgram FANS-3DEF.

- e . — . — . — ————— — ————— T — —— T —————— o ———

Iin the command RDINT, there are some built options.

Their functions and selections are:
pticns Selections
GRID -- STAggered or REGular grid system.

DIMN -- 2D, AXiIsymmetric or 3D dimension.

LORT ~~- LAMinar or TURbulent £flow.

TUMS -~ ONE or TWO scale k-g¢ turbulence model.
INIT -- UNIform or UPDate initial guess.

FORM ~-- TY1, TY2 or TY3 output files.

END -- To leave RDINT.

M~ WM
et e ot S o e (O

In FANS-3DEF the codes for the options and selections
to be used are the ones shown in bold characters. For

example, in selectiny the grid system, the option is GRID

ection of staggered grid syste

-

 3Ed
8
et
n

in this option, the se
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STA and the selection of regular grid system is REG. Thus
one should type either GRID STA or GRID REG for staggered or
regular grid system.

The size or length of variables must be given after
choosing the cption DIMN, INIT and FORM.

(a) The variables after the option DIMN are:

Variables Meaning

(1) IMAX -- The maximun node number in the (%) direction.
(2) JMAX -- The maximun node number in the (n) direction.
(3) KMAX -~ The maximun node number in the (¢) direction.
(4) ITER -- The total iteration numbers allowed.

(5) RE =~- Reynolds number. )

(6) DT -~ Time increatment or At in Eqg. (13).

(b) The variables after the option INIT are:

Var .woles Meaning
(1) Ul -- The u velocity component of incoming flow.
(2) VI -~ The v velocity component of incoming flow.

(c) The variables after the option FORM are:

Variables Meaning

(1) IT -~ The output result is printed at each IT
iteration.

FANS-3DEF recognizes free format inputs. The user can
type variables with real or integer number but no character.
To distinguish many variables in the same line, the user
should use a space or a comma between two variables. The
structure of I/0 system is shown in table 7.

The easiest way for the user to become familiar with

the FANS-3DEF program 1s to illustrate I/0 system with some

examples. In the following sections both interactive




Command Optlon jetaction s cadtdata lile
10 varighles

——— ROFILE >
2D (e, Ml
— DIMN ——— qg1 A PR
| 3 (IFR. BE. DT}
L 6AI0 —— A
! REG
|
A —— Ao LORT LAM
INEF ] o TUR e ONF
} L e
; !
; b— INIT  ——— UNI mvn
; i L UPD AN GUESS
| |
[ —
i FORM ——— TY¥2 "n
' e TVS
!
L CHECK
—  RUN
— STOP

Table 7 (B-3) : The Structure of I/0 system
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session and data file reading will be introduced to expla

how to input desired data into the FANS-3DEF program.

B.3 Interactive Session

After compiling FANS-3DEF program by FORTRAN 77
compiler, the user can then run the program. In PRIME
sysytem SEG command was used to run a compiled program.
Here we present the print-out which was actually shown on
the screen between the two symbols --#%--*--n. Where n is
the number of 1, 2, 3 ..... used to distinguish the
different print-out. The erplanation of the print-out is

given in the parentheses.

S S . |
SEG FANS-3DEF
NS SO ., |

(A welcome message and commands will come out as)

——FeakaD

S R R R R R R T
WELCOME TO USE RESEARCI CODE

FANS-3DETF

Version.l 1986

please inform

C.J. CHEN (2216EB)
UNIVERSITY OF IOWA
I1OWA CITY, IOWA 52242

*
*
*
*
*
*
*
*
*
*
*
*
khkkrkF hhkrkFr kb hkkd A I b A I XSRSk AAFFF A A A I FFI P I 453

*
*

*

*

*

*

-1f you have any comments or suggestions *
*

#

*

*

¥

y

Specify the f{ollowing commands:
(RDEFILE), RDINT, CHECK, RUN, STOPR
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in




Command is >

ek ek D

(If the interaclive session is usecd,

RDINT and the screen will show)

S

Command is > RDINT
Specify the following options:

-~ DIMN
-- GRID
-- LORT
-- INIT
-- FORM
-~ END

Option is
NS R

(2D, AXI, 3D)
(STA, REG)
(LAM, TUR)
(UNI, UPD)
(TY1, TY2, TY3)
To leave RDINT

>
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the user should type

(There are six options to be chosen and no particular order

is set. Thus the user can choose any option except the last

opticon END, because if the option EHND is chosen the 1/0

system will return from the option level back to the orginal

command level.

options from DIFN to END.

The following are explanations of these

I1f the user chooses 2D or AXI for

DIMN, then the user types DIMN 2D or DIMN AXI. The terminal

will respond)

cmbentoaq

Option is > DIMN 2D

TYPE VALUES FOR IMAX,JMAX, ITER,RE,DT
THEY ARE >

(ox)

Option is

TYPE VALUES FEOR
THEY ARE >

P U ;)

> DIMN AXI

IMAX, JMAX, ITER,RE,DT
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(For 2D or axisymmetric flow, FANS-3DEF solves the fully
elliptic eguation on the XY cross section automatically.
Thus one only has to specify variables such as IMAX, JMAX,
ITER, RE and DT. For example the user may choose IMAX=20,
JMAX=20, ITER=30, RE=100000 and DT=0.1, then the user can
type as)

S SN .

THEY ARE > 20., 20 30. 100000,0.1

weFackon§

(Since FANS-3DEF recognizes free format inputs, the user

can type real or integer numbers for either real

variables. The user doesn't have to worry about

variables are integer or real, the FANS-3DEF can

them. In order to distinguish one variable from

or integer
whether
recognize

the other,

the user needs to use either a space or a comma between the

variables. Now if the user chooses 3D for DIMN then the

user should type DIMN 3D. The FANS-3DEF program will

respond)

etk
Option is > DIMN 3D
TYPE VALUES FOR IMAX,JMAX, KMAX, ITER,RE,DT

THEY ARE >
S SR "

(Here the user needs one more variable KMAX if three

dimensional problem is considered. After the user specifies

all variables more messages will come on the terminal)

S S P

THEY ARE > 20, 20, 20, 30, 100000., 0.1
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N U S

(After specifying the option DIMN, the user may go for the
option GRID. In this option there are two selections STA

(staggered grid system) and REG (regular grid system)).

U R Y-
Option is > GRID STA

(or)
Option is > GRID REG
~=¥oot-_8g
(Next option is LORT (laminar or turbulent). If one chooses

LAM for laminar flow, then)

SR I JEY.

Option is > LORT LAM

Option is >

N PR .|

(Here no other selections or messages will be shown.

However when the user chooses TUR for turbulent flow then)

ke ®--10

Option is > LORT TUR

Please type ONE for one-scale or TWO for two-scale k-t
turbulence model

IT 1S >

k%0

(Here we can type ONE or TWO for one or two scale
turbulence model. Although the two-scale k-¢ turbulence
model was not tested in tais study, the optien for this

model is provided here for further expansion and study.)
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The next option is initial guess INIT. In this option
there are two selections. One is UNI for uniform
distribution, the other is UPD which uses the previous
result as initial guess. The message and variables of each

selection are)

——keekon1]

Option is > INIT UPD
Please make sure you have a data file called GUESS.

(or)

Option is > INIT UNI

Now the velocity components are uniform and
other variables are zero in the whole domain.
Please type the values for velocity components
of incoming flow, that is: UI, VI.

THEY ARE >
S S ]

(Here the user may need a hand calculator to find out the
values of Ul and VI. For example, if angle of attack =5
then UI=0.9961947, VI=0.0871557.)

The next option is to choose the type of output files.
There are three types TY1l, TY2 and TY3. The format of each
output file will be listed and explained in the next

section. If the user chooses TY3 then)

——Fa_*12

Option is > EORM TY3
Type number of iterations per output

IT IS >
S

(So the user needs to specify the number of iteration at

which the output of computed result is made. After having
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specified all desired data, then user can use the option END

to return to the orginal command level. They are)

S e .
Option is > END

Specify the following commands:
(RDFILE), RDINT, CHECK, RUN, STOP

Command is >
——kook--13

(The user is returned to the command level. The user can
use command CHECK to find out whether the desired data had
been read correctly or not)

——*o—-%-_14
Command is > CHECK

XX ZEI TSRS TSRS SRS S SR EE S SR IS IS A SRS TS SRS S SRS RS

The FANS-3DEF program will run under the following *
conditions: *

*

*

*

¥ -~ DIMN is:3D

¥ -~ GRID is:STA

* ~- LORT 1is:TUR

¥ -- TUMS is:TWO

*# -~ INIT is:UNI

* % UI=0.9961947 VI=0.0871557

¥ -~ FORm is:TY3

* *% gt 5 iteration

* IMAX=20 JMAX=20 KMAX=20 ITER=30
* RE= 0.1000e+05 DT= 0.1000E+00

[ X P P F E E R E E R F F R T R X E EE LS E XL EF P A EEEEEEE R ELT I EEE AL LE L L L L XS

W oH o % N A ok H H *

Specify the following commands:
(RDFILE), RDINT, CHECK, RUN, STOP

Command is >
——ko_F%a-14




(If the user finds some input data in which changes are
needed, he/she may use command RDINT again and give the
desired data. These new data will replace the original
data. If all the desired data are correct and input data
files (PHYSBODY, GUESS) are ready, then the user may use
command RUN to call subroutine SOLVER to solve the problem.

So far, only the correct typing was used as an example.
Suppose the user has made some typing errors. FANS-3DEF
will return a warning message immediately and the user may
retype it. For example)

(in command level)

——%e_%.-15

Command is > CHECC
** INVALID COMMAND, CHECK MANUAL!

Specify the following commancs:
(RDEFILE), RDINT, CHECK, RUN, S:iMP

Command is >
(or in option level)

Option is > LOT
** INVALID OPTION, CHECK MANUAL!

Option is >
——Feat_=18§

(If the user forgets typing selection after the opticen,
then FANS-3DEF will give the message and the user can add

those selections immediately. For example)

——F.%__1p

Option is > LORT

NEED SELECTIONS 1 THROUGHE 1
SELS:

~—Fotu-16




(Here "1 THROUGH 1" means need selections from selection 1
to selection 1. Since for LORT there is only one selection
so we can just type LAM or TUR.

If user wants to leave the FANS-3DEF gprogram, he/she
can do so by typing command STOP then a good-bye message

will come out. It is)

.
Command is > STOP

RS SRR AR ST E SRS LSS LRSS R SRR LT AR EE RS RS EE LR L L L]

* BYE NG« ! %
* *
* ~- Thank you for using FANS-3DEF *

I EE 2 X R ST ST RS S LS LR L E SRS SRS RS R A SRS LSS T LR R T ELE &

——ken®--]17

B.4 Reading from Data File

In this section the same data file FANS INPUT which is
created by the interactive session is used as an example.
Before using this data file, the user must add command
RDFILE at the first line of tne file and corrects some
errors that were made during the creation of the data fiel

FANS INPUT. The fol

owing j< an example of the correct list

RDINT
DIMN 3D

20 20 20 30 0.1000E+05 0.1000E+00
CORD 30D




LORT TUR

TWO

FORM TY3
5

END

CHECK

RUN

- Sy o AP s e v S Ty OB G i S M e S T - S s G = . - — - -

Then, run the program FANS-3DEF as before.

e—ko_%--18
SEG FANS-3DEF
——*__-%--18

(A welcome message and commands will come out as)

—ekeak-~19

[ XX 22X XSS LRSS LS R A SRS LT R L EEEE LR L RS T L LS L]

WELCOME TO USE RESEARCH CODE
FANS-3DETF

Version.l 1986

piease inform

C.J. CHEN (2216EB)
UNIVERSITY OF IOWA
IOWA CITY, IOWA 52242

*
*
*
*
*
*
* -If you have any comments or suggestions
*
*
*
*
*
*

[ Z X F T EXTE RS EE S S EEE S S S S SR EA S A LR S SRS SRR X SRR

Specify the following commands:
(RDFILE), XDINT, CHECK, RUN, STOP

Command is >
——ka_*_..19

*
*
*
*
*
*
*
*
*
*
*
*
*

(Now type command RDFILE and on a terminal it appears as)

Option is > RDEILE
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Do you want to see the procedure on the terminal (Y/N)

Answer is >
—mkenk-=20

(I£f the user already has the general idea of the whole
procedure, he/she may use N (no) to save time. In this case
the FANS-3DEF only provides information of the total input
data and the ¢good-bye message when the program is finished.

They are)

——ke_%--21
Answer is > N

I EEE XX EERSA SRS SR E LS LR RS E AR RS RS S SR LR RS R LT EEEE S

* The FANS-3DEF program will run under the following *
* conditions: *
* *
¥ -- DIMN is:3D *
* -~ GRID is:STA *
* -- LORT is:TUR *
* ~~ TUMS is:TWO *
¥ -~ INIT is:UNI *
* ** Ui=0.9961947 VI=0.0871557 *
* -~ FORm is:TY3 *
* ** at 5 iteration *
* IMAX=20 JMAX=20 KMAX=20 ITER=30 *
* RE= 0.1000e+05 DT= ©0.1000E+00 *
22 S X AR RS S E RS R A SRR T R RS SRR S S FEEEE S SRS T R R RS R EF YR EFE XX

(If the subroutine SOLVER is executed completely, then
gocd-bye message will come out.)

IE S 2SS AL AR AR RS R SR A RS EE A RS RS EE R L RS X R

* BYZ NOW !! *
* *
* -- Thank you Zfor using FANS-3DEF *
(A E AR A ST LRSS AL LS LS LRSS AR RS SRR ER LSRR E £ 37
oK,
——k__%-_21

r-1
'

the user still desires to see the whole procedure on
the screen ne may choose Y (yes) instead of N (no) at the

last question.




B.5 Format Of Input Data File

There are two kinds of input data files in the
FANS-3DEF program. One is the data file named PEYSBODY for
coordinate relationships, the other is the data file named
GUESS for initial guess of the wvariables u, ., p, k and ¢.
Since these two input data files must be read immediately
after the command RUN is executed, the user has to create
these twec data files before running the program and has to
make sure that they have the same format as shown in the
following. Otherwise, a I/0 error message will e shown on
the screen and the program FANS-3DEF will be forced out of

the running mode by PRIME computer.

B.5.1 PHYSBODY
The format of data file PHYSBODY for 2D and

axisymmetric flows are:

I R P R P Y R R R R PR R X R AR EE RS S RIS E XS EF I E ST RS S ESE R E LS R L XX 4
READ(,1) (NBOSE(I),I=1,2)
READ(,2) ((X(I,J),I=1, IMAX),J=1, JMAX)
READ(,2)((¥(I,J),I=1, IMAX),J=1, JMAX)
READ(,2) ((F1(I,J),I=1,IMAX),J=1, JMAX)
READ(,2) ((F2(I,J), I=1, IMAX),J=1, JMAX)

1 FORMAT(1X,6110)

z FORMAT(1X,6E12.4)
LR R L E R YT R I T T S P R P TS T P L P

Here the first sta<ement NBCSE is the integer number
Leed

between 1 to IMAX. The user needs to specify two different

positicns under NBOSE, cone for the leading edge and the
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other for the trailing edge. NBOSE(l) is the nodal point
denoting the leading edge of the body, NBOSE(2) is the nodal
point denoting the trailing edge of the body. The second
and third statement X and Y are the cartesian coordinates
for 2D body shape or the cylindrical coordinates for
axisymmetric body shape. Fl and F2 are the control
functions given in Eqg. (8).

Then the format of PEYSBODY for 3D body shape are:

P E P R S R R E E R E P X R T P R I F E LS E X P E P XX S ST E I S ST A S S S XSS XL X X4
READ(,1) (NBOSE(I),I=1,2)
READ(,2) (((X(I,J,K),I=1, IMAX),J=1,JMAX),K=1,KMAX)
READ(,2) (((¥(I,J,X),I=1, IMAX),J=1,JMAX),K=1,KMAX)
READ(,2) (( J,K),I=1,IMAX),J=1,JMAX),K=1, KMAX)
READ(, 2) (( ,J,K), I=1, IMAX), J=1, JMAX ), K=1, KMAX)
READ(,2) (( ,J,K), I=1, IMAX), J=1, JMAX), K=1, KMAX)
READ(,2) (( ,J,K), I=1, IMAX), J=1, JMAX),K=1, KMAX)

1 FORMAT(1X,6I10)

2 FORMAT(1X,6EL2.4)

(I ZZ 22 RS RSS2SR SRS A A S SRS S LSS S S S RS AL S S RS £ 21

(1
(1
(1

For 3D body the meaning of each variable is the same as
2D flow and two more READ statements for the third

cocrdinate 2 and control function F3 are added.

B.5.2 GUESS

The user has two options for INIT (initial guess), cne
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whole domain. If UPD was chosen, then the user has to

prepare a data file GUESS according to following format.

The format of GUESS are

ER AR R RS EEE R R R R RS NE S SRR R R R R N A A ] -k

READ(,1) UI, VI

READ(,2) (((TK(I,J, K
READ(,2) (((TD(I,J,K)
1 FORMAT(1X,6110)
2 FORMAT(1X,6E12.4)

IR R RS R R AR S R RS RS SR NS IR EEERES FEEEEEEEE XX T TR T I TR

READ(,2) (((U(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)
READ(,2)(((V(I,J,K),I=1,IMAX),J=1,JMAX),K=1, KMAX)
READ(,2) (((W(I,J,K),I=1,IMAX),J=1,JMAX),K=1, KMAX)
READ(,2)(((PR(I,J,K),I=1,IMAX),J=1,JMAX),K=1, KMAX)
), I=1,1IMAX), J=1,JMAX), K=1, KMAX)
1=1,

7
1
4

IMAX),J=1,JMAX), k=1, KMAX)

Here UI, VI are the velocity components of the incoming
flow, and U, V, W, PR, TK, TD are the three velocity
components, pressure, turbulent kinetic energy k and its
dissipation rate €. For laminar flow, the user may just
specify the turbulent kinetic energy TK and its dissipation
rate TD all are zero. For 2D or AXI flow, the user may just

think KMAX=1 and W velocity component is zero everywhere.

There are three options, TY1l, TY2 and TY3 for the user
to choose. TY1 creates a file called 'RESULT.1'. The
format of RESULT.1 is the same as the input data file GUESS.
The reason for creating the output file RESULT.1 to be the
same format as the input file GUESS is so that later

RESULT.1 can be used as the initial guess for other similar
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problems, or when the selected iteration number ITER is not
large enough to obtain a converget solution. Since RESULT.1
is designed for computer reading, it may not be a good
output format for users to read. The second option TY2
creates a file called 'RESULT.2' which has a readable

format. They are

P R P B P PR R E Y EEEEFE R R EE R R E R R SRR E R LR SR R E X EE]
DO 10 I=1,IMAX
YRITE(,3) IT, I, X(I)
WRITE(, &)
DO 9 K=1,KMAX
WRITE(,S) K
DO 8 J=1,JMAX
WRITE(,6) U(I,J,K),V(I,J,K),W(I,J,K),
TK(I,J,K),TD(I,J,K),PR(I,J, K)
8 CONTINUE
9 CONTINUE
10 CONTINUE
3 FORMAT(//3X,'NO. OF ITERATION=',13,4X,'STATION=',
13,4X,'X=',F7.4)
4 FORMAT(//4X,'U VEL',7X,'V VEL',7X,'W VEL',6X,
'"TURB KE',SX,'TURB DISP',2X,' PRESS '//)
5 FORMAT(SX,'AT K= ', I3)
6 FORMAT(1X,6E12.4)

IEEEEEZE SR RS E RS R AR RS SR AR R RS R R RS SRR R R R R R R SRR R R RS EE S

The third choice of the output format is TY3 which provides

both 'RESULT.1' and 'RESULT.2' fo, computer and user's

reading.

B.7 Program Listing
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efedered s s BT bbb ab s el s b e e b o b s s ek

. INTERACTIVE PROGRAM (I/O SYSTEM) OF FANS-3DEF

... PROGRAMMED BY WU-SUN CHENG
.... MAY, 1985

[0kt o o e e T T T e T T e e T T ey L o e e o
c
IMPLICIT REAL*8 (4-H,0-2)
CHARACTER*10 COM, ARG(5), CMANDS(10)
CHARACTER*10 OPTION(10), OPT
CHARACTER*10 BLANKS
CHARACTER*10 GRID, DIMN, LORT, INIT, TUMS, FORM, YON
CHARACTER*80 LINE
CHARACTER BLANK
INTEGER F, CRT
LOGICAL HELP, ASK
COMMON/COEF1/ IMAX,JMAX,KMAX
COMMON/COEF2/ RE,DT,IPRINT,ITER,CNU,AK,E
COMMON/COFF3/ NA23,NSR,LOT,NTS, INI ,NTY
COMMON/COEF4/ UI,VI,M1,M2,M3
COMMON/UVW8/ C1,C2,CK,CD
DATA BLANK/' '/, BLANKS/' '/
DATA CMANDS(1) /'RDFILE '/, CMANDS(2) /'RDINT "/,
S CMANDS(3) /'CHECK !
$ CMANDS (4) /'RUN '
DATA OPTION(1) /'DIMN '

CMANDS(5) /'STOP '/

, OPTION(2) /'GRID "/
] OPTION(3) /'LORT )

OPTION(4) /'INIT '/
$ OPTION(5) ., 'FORM

OPTION(6) /'END Y
. PRINT WELCOME MESSAGE

OO

CALL LEAD

CRT=1
RET=0.
PN=0.

OPEN(UNIT=8, FILE='FANS_ INPUT')

5 IF(PN .LT. S5) THEN
PRINT *, ' '
PRINT *, ' Specify the following commands:'
PRINT *, ' (RDFILE), RDINT, CHECK, RUN, STOP'
* ]
+

PRINT
PRINT *
END IT

1
]
’
I

)
’

"Command is >

C
C.... INITIALIZE 'LINE' AND 'COM' TO ALL BLANKS
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F=1

DO 6 I=1,80
LINE(I:I)=BLANK
COM=BLANKS

READ(CRT,1000) LINE
IF(RET .LT. 5.) WRITE(8,1000) LINE

. GET THE FIRST WORD FROM THE LINE (WHICH IS COMMAND)

CALL PARSE(LINE, COM, F, LENGTH)

. IGNORE AN ALL BLANK LINE

IF (LENGTH .EQ. 0) GO TO 5

.. FIND OUT COMMAND AND EXECUTE IT

. COMMAND 1, READ FROM DATA FILE

IF(COM(1:LENGTH) .EQ. CMANDS(1)(1:LENGTH)) THEN
CRT=8
RET=9.

PRINT *, 'Do you want to see the procedure on the termin
PRINT *, ' Answer 1s > '

READ(1,1000) YON

IF(YON(1:1) .EQ. 'Y') THEN
PN=0.

ELSE IF(YON(1l:1) .EQ. 'N') THEN
PN=9.

ELSE
PRINT *, ' Please use Y or N '
GO TO 1

END IF

GO TO 5

. COMMAND 2, READ FROM INTERACTIVE TERMINAL

ELSE IF(COM(i:LENGTH) .EQ. CMANDS(2)(1:LENGTH)) THEN
IF(PN .LT. S) THEN

PRINT *, ' '

PRINT *, 'Specify the following options:'
PRINT *, ' -- DIMN (2D, AXI, 3D)'

PRINT *, ' -- GRID (STA, REG)'

PRINT *, ' -- LORT (LAM, TUR)'

PRINT *, ' -- INIT (UNI, UPD)'

PRINT *, ' -- FORM (TY1l, TY2, TY3)'
PRINT *, ' -- END To leave RDINT'
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END IF

F=1

IF(PN .LT. 5) THEN
PRINT *, ' '

PRINT *, ' Option is > '
END IF

.. INITIALIZE 'LINE' AND 'CPT' TO ALL BLANKS

16

17

DO 16 I=1,80
LINE(I:I)=BLANK
DO 17 I=1,5
ARG(T)=BLANKS
OPT=BLANKS

READ(CRT, 1000) LINE
IF(RET .LT. 5.) WRITE(8,1000) LINE

.. GET THE FIRST WORD FROM THE LINE (WHICH IS OPTION)

CALL PARSE(LINE, OPT, F, LENGTH)

. FIND OUT OPTION AND EXECUTE IT

. OPTION 1, SPECIFY DIMENSION

IF(OPT(1:LENGTH) .EQ. OPTION(1)(1:LENGTH)) THEN

CALL ARGCHK(LINE, ARG, 1, F, HELP)

IF(HELP) GO TG 20

DIMN=BLANKS

DIMR=4RG(1)

IF(DIMN(1:2) .EQ. '2D' .OR. DIMN(1:3) .EQ. 'AXI")
NA23=1
IF(DIMN(1:2) .EQ. '2D') NA23=2
IF(PN .LT. 5) THEN

PRINT *, ' TYPE VALUES FOR IMAX,JMAX,ITER,RE,DT'

PRINT *, ' They are > '

END IF

READ(CRT,*) AIMAX,AJMAX,AITER,RE,DT

IMAX=AIMAX

JHAX=AJMAX

KMAX=3

ITER=AITER

IF(RET.LT.5) WRITE(8,2500)IMAX,JMAX, ITER,RE,DT
ELSE IF(DIMN(1.2) .EQ '3D') THEN

[F(PN .LT. 5) THEN

PRINT *, 'TYPE VALUES FOR [MAX,MAX,KMAX,ITER,RE

PKINT *, ' They are > '
END IF
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READ(CRT,*) AIMAX,AJMAX,AKMAX,AITER,RE,DT

IMAX=ATMAX

JMAX=ATMAX

KMAX=AKMAX

ITER=AITER

IF(RET.LT.S) WRITE(8,2000)IMAX, JMAX, KMAX, ITER,RE
ELSE

WRITE(1,3000)
END IF

.. OPTION 2, SPECIFY GRID SYSTEM

ELSE IF(OPT(1:LENGTH) .EQ. OPTION(2)(1:LENGTH)) THEN

CALL ARGCHK(LINE, ARG, 1, F, HELP)
IF(HELP) GO TO 20

GRID=BLANKS

GRID=4RG(1)

IF(GRID(1:3) .EQ. 'STA') THEN
IF(PN .LT. S5) THEN
PRINT *, ' Using staggered grid system '
END IF
ELSE IF(GRID(1:3) .EQ. 'REG') THEN
IF(PN .LT. 5) THEN ’

PRINT *, ' Using regular grid system '
END IF

ELSE
WRITE(1,3000)

END IF

. OPTION 3, CHECK LAMINAR OR TURBULENCE

ELSE IF(OPT(1:LENGTH) .EQ. OPTION(3)(1:LENGTH)) THEN

CALL ARGCHK(LINE, ARG, 1, F, HELP)
IF(HELP) GO TO 20

LORT=BLANKS

LORT=ARG(1)

IF(LORT(1:3) .EQ. 'LAM') THEN
LOT=1
GO 10 20
ELSE IF(LORT(1:3) .EQ. 'TUR') THEN
LOT=2
IF(PN .LT. 5) THEN
PRINT *, ' Please type ONE for one-scale or TWO

PRINT *, ' two-scale turbulence model’
PRINT *, ' It 1s > '
END IF

READ(CRT, 1000) TUMS
[F(RET .LT. 5) WRITE(8,1000) TUMS




C.... NEAR WALL COEFFICIENTS

c.

aaa

@]

(@]

CNU=0.
AK=0.
E=9.

IF(TUM
NTS=
CK=1
CDh=1
Cl=1
C2=1

ELSE I
NTS=
CK=1
CD=0
DRE=
Ci=l
¢2=1

END IF

. OPTION

09D0
41D0
DO

. TURBULENCE SCALE

S(1:3) .EQ. 'ONE') THEN
1

.Do

.3D0

.44D0

.92D0

F(TUMS(1:3) .EQ. 'TWOQ') THEN
2

.DO

.043D0

1.DO/DSQRT(RE)
7.5D0*DRE

8.9D0*DRE

ELSE
WRITE(1,3000)
END IF

4, SPECIFY INITIAL GUESS

ELSE IF(OPT(1:LENGTH) .EQ. OPTION(4)(1:LENGTH)) THEN

CALL ARGCHK(LINE, ARG, 1, F, HELP)
IF(HELP) GO TO 20

INIT=BLANKS

INIT=4RG(1)

IF(INIT(1:3) .EQ. 'UNI') THEN

INI=1

IF(PN .LT. 5) THEN

PRINT *, ' Now the velocity components are uniform
PRINT *, ' other variables are zero in the whole d
PRINT *, ' Please type the values for velocity com
PRINT *, ' of incoming flow, that is: UI, VI.'
PRINT *, 'They are > '

READ(CRT,*) CI, VI

IF(RET.LT.5) WRITE(8,1500) CI, VI

END IF
TLSE IF(INIT(1:3) .EQ. 'CPD') THEN
INI=2
IF(PN .LT. 3) THEN
PRINT *, ' Please make sure vou have a data file ¢

PRINT *, ' GUESS.'
END IF

wm




ELSE
WRITE(1,3000)
END IF

. OPTION 5, SPECIFY OUTPUT FILES

aOOn

ELSE IF(OPT(1:LENGTH) .EQ. OPTION(S5)(1:LENGTH)) THEN
CALL ARGCHK(LINE, ARG, 1, F, HELP)
IF(HELP) GO TO 20
FORM=BLANKS
FORM=ARG (1)

IF(FORM(1:3) .EQ. 'TY1') THEN
NTY=1
GO TO 57
ELSE IF(FORM(1:3) .EQ. 'TY2') THEN
NTY=2
GO TO 57
ELSE IF(FORM(1:3) .EQ. 'TY3') THEN
NTY=3
GO TO 57
ELSE
WRITE(1,3000)
GO TO 20
END IF
IF(PN .LT. 3) THEN
PRINT *, ' Type number of iterations per output'
PRINT *, ' It is > '
END IF
READ(CRT,*) AIT
IT=AIT
IPRINT=IT
IF(RET .LT. 5) WRITE(8,2000) IT

w
~J

. OPTION 6, LEAVE RDINT

aaO

ELSE IF(OPT(1:LENGTH) .EQ. OPTION(6)(1:LENGTH)) THEN
GO TO 5

ELSE
PRINT #, ' #**INVALID OPTION, CHECK MANUAL!'

END IF

a

GO0 TO 20

COMMAND 3, CHECK INFORMATION

OO0

ZLSE IF{COM(1.LENGTH) .EQ. CMANDS(3)(1:LENGTH)) THEN
PRINT =, ' '
PRINT *, ' FANS-3DEF will run under Zhe following cond
PRINT =, ' '
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PRINT *, ' -- DIMN is:', DIMN 237
PRINT *, ' -- GRID is:', GRID

PRINT *, ' -- LORT is:', LORT

PRINT *, ' -- TUMS is:', TUMS

PRINT *, ' -- INIT is:', INIT

PRINT *, ' = (I=', UI, ' VI=', VI

PRINT *, ' -- FORM is:', FORM

PRINT =*, ** at',IT,' ircration’
PRINT 4000, IMAX,JMAX,KMAX,ITER,RE,DT

C
C.... COMMAND 4, CALL MAIN PROGRAM
C
ELSE IF(COM(1:LENGTH) .EQ. CMANDS(&4)(1:LENGTH)) THEN
IF(NA23 .EQ. 2) THEN
CALL MAIN2D
ELSE
CALL MAIN3D
END IF
C
C.... COMMAND 5, STOP THE PROGRAXM
C
ELSE IF(COM(1:LENGTH) .EQ. CMANDS(5)(1:LENGTH)) THEN
PRINT =, ' '
PRINT *, ' BYE NOW !! '
PRINT *, ' '
PRINT *, ' -- Thank you for using FANS-3DEF '
PRINT =, ' '
PRINT #*, ' '
CLOSE (8)
CALL EXIT
C
ELSE
PRINT *, ' =*INVALID COMMAND, CHECK MANUAL!'
C
END IF
C
GO TO 5
C
C
1000 FORMAT(A)
1500 FORMAT(6F8.4)
2000 FORMAT(413,2E12.4)
2500 FORMAT(3I3,2E12.4)
3000 FORMAT(3X, ' #**INVAID ARGUMENT, CHECK MANUAL''H
4000 ?ORﬂAT(3X,‘fﬂAX=',I3.3X.'JMAX='.I3.3X.'KﬁAX=',f3,3X.'fTE
) /3%, 'RE=",E12.4,3X,'DT=",E12.%)
END
c
Ot * 2 +
C
.. SUBROLTINE LEAD




c
C*ﬁ*ﬁ**m*ﬂf:ﬂﬁffﬁ*ﬁ****ﬁm:&:‘::‘::':-.‘::‘:'.‘rz‘::‘::'::‘::‘::‘::‘::’r‘.’::‘:’.‘::‘:'.‘.".‘:'.':'.‘.--.':-.*:-.’:-.'r-.‘:-.'.-.‘::‘:'.‘.-v’:
c

SUBROUTINE LEAD

CHARACTER*60 B(17)

INTEGER I

B(1)='

B(2)="

B ( 3 ): ! drdd e d e A A e ke e e b e e s e ke b i R A e e e

B(&4)=' * WELCOME TO USE RESEARCH CODE *

B(5)=" = *

B(6)=' * FANS-3DEF *

B(7)=" = *

B(8)=' * *

3(9)=' * -
B(10)='
B(11)='
B(12)=" -
B(13)=' Prof. C.J. CHEN (2216EB) *
3(14)=' The Cniversity Of Iowa *

Version.l 1986

If you have any comments or suggestions
please inform

Fock Sk ok F R SR

B(15)=" Iowa City, Iowa 532242
B(1)=' = (319) 353-4473

B(17)=' irmmimnirdddine i

Do 10 I=1,17
PRINT 100, 3(I)
10 CONTINUE

100 FORMAT(A)
RETURN
END

. SUBROUTINE ARGCHK

L o who e o A ke ke " e eler e mi o ar odo uk o e o oo

.. CHECKS TO SEE IF NUNBER OF ARGUMENTS SPECIFIED IS EQUAL

.. TO 'NUMARG'. IF NOT, THE USER IS PROMPTED FOR NECESSARY

.... ARGUMENTS. IF ANY OF THE ARGUMENTS IS 'HELP', THE HELP
.. FLAG IS RETURNED 'TRUE'. 'NXTCOL' IS THE LOCATION IN
"LINE' WHERE SEARCH FOR THE ARGUMENTS BEGINS.

OO0 00000

SUSRCUTINE ARGCHK (LINE. ARG, NUMARG, NXTCOL, HELP)
IMPLICIT REAL*8 (A-H, 0-2)

INTEGER CRT, NXTCOL, START, NARG

CHARACTER*(30) LINE

CHARACTER=10 ARG(10), BLANKS

LOGICAL HELP
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239
DATA CRT/1/

DATA BLANKS/' '/
C
NARG=1
HELP=.FALSE.
C
C
100 START=NARG
C
C.... GET THE NEXT ARGUMENT
C
DO 110 I=START, NUMARG
CALL PARSE(LINE, ARG(I), NXTCOL, LENGTH)
IF(LENGTH .EQ. 0) GO TO 120
IF(ARG(I) (i:4) .EQ. 'HELP') HELP=.TRUE.
NARG=NARG+1
110 CONTINUE
C
C.... RETURN BECAUSE ALL ARGUMENTS ARE SPECIFIED
[
RETURN
C
C.... REACH HERE IF SOME ARGUMENTS ARE MISSING
C
120 IF (HELP) RETURN
C
C
WRITE (CRT,2000) NARG, NUMARG
2000 FORMAT(' NEED SELECTIONS ',12,' THROUGH ',I2)
PRINT *, ' Selections '
C
C
READ(CRT, 1000) LINE
1000 FORMAT(A80)
NXTCOL=1
GO TO 100
C
END
C
C:‘... 27 o &
C
C.... SUBROUTINE PARSE
C
Crrdrmmdedrdioirda o ddr b, > e =1 bk e
C
C.... PARSES THE 'LINE' AND RETURNS MNEXT 'WORD™ WHICH IS 'LENG
C.... LONG. IF THE WORD IS LONGER THAN 'MANLEN' CHARACTERS THE
C.... EXTRA CHARACTERS ARE IGNORED.
C

SUBROUTINE PARSE {LINE, WORD, NXTCOL, LENGTH)
IMPLICIT REAL*8 ta-H.0-2)

avii




PARAMETER (MAXLEN=10)
CHARACTER *(*) LINE
CHARACTER *(*) WORD
CHARACTER BLANK, COMMA
LOGICAL FIRST

DATA BLANK/' '/, CoMMA/','/

LENGTH=0
IST=NXTCO"
FIRST=.TRUE.

DO 90 I=1,MAXLEN
WORD(I:I)=BLANK
90 CONTINUE

aa

DO 109 I=IST,LEN(LINE)
NXTCOL=I

IF(LINE(I:I) .EQ. BLANK .OR. LINE(I:I) .EQ. COMMA) THE
IF(.NOT. FIRST) RETURN
GO TO 100
ELSE
FIRST=.FALSE.
IT(LENGTH .LT. MAXLEN) THEN
LENGTH=LENGTH+1
WORD (LENGTH : LENGTH)=LINE(I:I)
END IF
END IF
100 CONTINUE

RETURN
END

..... i P e e ey ae e e e : fok e o i o o

. SUBROLTINE MAIN2D

.... MAIN2D IS USED TO SOLVE 2D FLAT PLAT PROBLEM
.. WITH ANGLE OF ATTACK

2z Kz s kakr Ky

SUSROUTINE MAIN

IMPLICIT REAL*8 (A-H.0-2)

SINSERT BLCCK.MAIN
COMMON,COEF1 ™ IE,JE.KE
COMMON,COEF2, ARE,ADT,IPRINT, ITER.CNUU.ARK,EE
COMMON,COEF3/ NAZ3, NSR,LOT.NTS.INITIAL,NTY

COMMON,CCEFS, ULLVIMIL M2M3
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DIMENSION UL(99), UTL(99), TAUW(99), NT2(2)
COMMON/BO1/ UBO(82,44)
COMMON/BO2/ VBO(82,44)
COMMON/BO3/ PRBO(82,44)
COMMON/BO4/ TKBO(82,44)
COMMON/BOS/ TDBO(82,44)

OPEN(6,FILE='DATA.IN")
NNX=IE-1
NNY=JE-1
RE=ARE
DT=ADT
NB1=M1
NB3=HM2
NB2=M3
11=45
RET=RE/DT
NT2(1)=NB2
NT2(2)=NB2
JE2=JE+2
JE3=JE+3

CALL BFC TO CALCULATE BODY-FITTED COORDINATE
CALL BFC

ABC=0.33206

DO 35 1=NB1+1,NB3
X¥=X(1,2)

REX=DSQRT (RE*XX)
UTL(I)=DSQRT(ABC/REX)
CONTINUE

DO 33 1=19,29
UL(I)=1.0%UI
UL(30)=0.9994*UI
UL(31)=0.9852%UI

UL(32)=0

.9250*U1
UL(33)=0.
UL(34)=0.
UL(35)=0.
UL(36)=0.
UL(37)=0.

8200*UI
7050%U1
6027*U1
5275*%U1
4862*U1

IF( INITIAL .EQ.
DO 20 I=1,IE
DO 20 J=1,4é&
UBO(1,J)=UI
VBO(I,J)=VI
IF((T.GE.NB1.AND.I.LE.NB3).AND.
{J.EQ.2.0R.J.EQ.JE2)) THEN
UBO(I,J)=0.

1 ) THEN
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VBO(I,J)=0.
END IF
PRBO(I,J)
TKBO(I,J)
TDBO(I,J)
CONTINUE
ELSE
PRINT *, 'READ GUESS'
OPEN(10,FILE='GUESSP',STATUS='0LD")
OPEN(11,FILE='GUESSU',STATUS='0LD")
OPEN(12,FILE='GUESSV',STATUS='0LD")
OPEN(I&,FIL£='GUESSKD',STATUS='0LD')
READ (10,2400) (( PR(I,J),I=1,IE ), J=2
READ (11,2400) ( ( U(I,N),I=1,IE ), J
READ (12,2400) ( ( v(I,J3),I=1,IE ), J=2
READ(1&,2400) (( TK(I,J),I=1,IE), J=2,JE
READ(14,2400) (¢ TD(I,J),I=1,IE), J=2,JE
CLOSE(10)
CLOSE(11)
CLOSE(12)
CLOSE(14)

0

0.D
1.D-9
1.D-9

END IF

DST(I,J)=0.0
PP(1,J)=0.0
CONTINUE

PRINT *, 'BEGIN'
OPEN(7,FILE="RESULT')
OPEN(5,FILE="EPST')
OPEN(15,FILE='DATAP')
OPEN(16,FILE="DATAU")
OPEN(17,FILE='DATAV')
OPEN(18,FILE='DATAKD')
OPEN(19,FILE='DATAEV')
OPEN(20,FILE='DATA.ADD')
ITC=0

2,JE
2,JE
,JE

)
)
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234

235

236

237

344

ITC=ITC+1
ITC1=ITC1+1

DO 888 IBO=1,2
IF(IBO.EQ.1) THEN
DO 235 I=1,IE

DO 234 J=2,JE
U(I,J)=UB0(I,J)
V(I,J)=-VBO(I,J)
PR(I,J)=PRBO(I,J)
TK(T J)=TKBO(I,J)
TD¢ . ,J)=TDBO(I,J)
CONTINUE
U(I,1)=UBO(I,JE3)
V(I,1)=-VBO(I,JE3)
PR(I,1)=PRBO(I,JE3)
TK(I,1)=TKBO(I,JE3)
TD(I,1)=TDBO(I,JE3)
CONTINUE

DO 236 I=1,IE
V(I,JE)=-VI

DO 237 J=1,JE
V(NNX,J)=-VI
V(IE,J)=-VI

ELSE

DO 345 I=1,IE
DO 344 J=2,JE
JJ=J+JE
U(I,J)=UBO(I,JJ)
V(I,J)=VBO(I,JJ)
PR(I,J)=PRBO(I,JJ)
TK(I,J)=TKBO(I,JJ)
TD(I,J)=TDBO(I,JJ)
CONTINUE
U(I,1)=UBO(I,3)
V(I,1)=VBO(I,3)
PR(I,1)=PRBO(I,3)
TK(I,1)=TKBO(I,3)
TD(I,1)=TDBO(I,3)
CONTINUE

DO 346 I=1,IE

V(I, ®)=Vi

DO 347 J=1,JE
V(NNX, J)=V1
V(IE,J)=VI

END IF

DO 456 I=1,IE

DO 436 J=1,JE
RU(I,J)=C(1,J)
RV(I,J)=V(1,J)
RPR(I,J)=PR(1,J)
RTX(I,J)=TK(1,J)

e EoEaTd N ERELaR Cu REeenAr 4 he—emSmat - 17~
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456 RTD(I,J)=TD(I,J)

10
30
50

9

c
c
C
C---

c---

Com==

0

NB2=NT2(IBO)

DO 10 I=1,IE

JB(I)=JMM
IF(I.LT.NB2.0R.I.GT.NB3+1) JB(I)=3
CONTINUE

DO 30 I=NB2,IE

DO 30 J=2,JE

IF(TD(I,J).LT.1.D~9) TD(I,J)=1.D-9
EV(I,J)=TK(I,J)*TK(I,J)/TD(I,J)*CNU
CONTINUE

CALL CHECK(EV,6,IE,JE)

DO 50 I=NB2,IE

DO 50 J=5,JE

IF(EV(I,J-1).LE.EV(I,J-2) .AND. EV(I,J-1).LT.EV(I,J))

$ EV(I,J)=EV(I,J-1)

CONTINUE

DO 90 I=NB2-1,1,-1

DO 90 J=2,JE
TK(I,J)=TK(I+1,J)*0.8
TD(1,J)=TD(I+1,J)%0.8
EV(I,J)=EV(I+1,J)*0.8
CONTINUE

CALL BFC(IBO)

L&*LL-&MM&L*—L&M-&M&L&LJ‘&.LJ.J..HJ-J..L-&-LJ—.LJ-
R T L T T T T L T e T T T T S T T T e T T T T T T e T A TR At A A T TR 1

oo
w

MODIFIED SIMPLER ALGORITHM

DOODDIODDIODOOIIOODDIIODIDIDOOIIODOOOIIOIODID>

CALCULATE THE MOMENNTUM EQUATIONS
CALL SVEL

CALCULATE THE PRESSURE CORRECTION
CALL PRESS(2)

COMPUTE THE PSEUDO-VELOCITY FIELD
CALL HVEL

CALCULATE THE PRESSURE FIELD

CALL PRESS( 1)

CALCULATE TURBULENT VARIABLES

CALL STKD
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Ce=n

END OF ONE SWEEP

WRITE(1,2500) NB2

WRITE(S5,2500) NB2

IF(IT .GT. 2) THEN

IF(U(NB2,JMN) .LT. UL(NB2+1)) NB2=NB2+1
IF(U(NB2,JMN) .GT. U(NB2-1,JMN)) NB2=NB2-1

END IF
C  #dddrioinbdvirhiekioidobioirioiodoiolidetolioiieitoiok i
C * RESULTS

C DOOOODOOODD5DDOO5D55550DDOOIDD3DDOODIDDIOOEOIODDO55>

4111

4112

4222

4113

550

110
123

WRITE(7,6111) IT

FORMAT(/5X,'NO. OF ITERATION =',615,5X,'PR0. DIS.")
WRITE(7,2400) (PR(I,2),I=1,IE)
WRITE(7,4112)

FORMAT(/5X, 'SKIN-FRICTION COEFFICIENT ')
DO 4222 I=NB1+1,NB3

IF(I.LT.NB2) THEN
UT=UTL(I)*U(I,JMN)/UL(I)

ELSE

UT=UTA(I)

END IF

TAUW(I)=2.*UT*UT

CONTINUE

WRITE(7,2400) (TAUW(I),I=NB1+1,NB3)
WRITE(7,4113)

FORMAT(/5X, 'CENTERLINE VELOCITY')
WRITE(7,2400) (U(I,2),I=NB3+1,IE)

IF(ITC1 .EQ. IPPINT) THEN
PRINT *, 'WRITE RESULT'

DO 123 1I=15,70

IF(I.GT.30.AND.I.LT.45) GO TO 123

WRITE(7,2000) IT, I, X(I1,2)

WRITE(7,2109)

DO 110 J=2,JE

WRITE(7,2400) U(I,J),v(I,3),PR(1,J),TK(1,J),TD(1,J),EV(I
CONTINUE

CONTINUE

. WRITE SHEAR STRESS, MOMENTUM THICKNESS, REYOLNDS STRESS

DO 120 I=1,NNX
UvVOS(I,2)=0.0
UVOS(I,JE)=0.0
THAT(1)=0.0

DO 120 J=3,NNY

R T
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THAT(I)=THAT(I1)+(U(I,J)-U(I,J)*U(I,J))*(Y(I,T)-¥Y(I,J-1))
TD11=B11(I,J)/DSJ(I, )
TD22=B22(1,J)/DSJ(1,J)
UVOS(I,J)=EV(I,J)*((U(I,J+1)-U(I,J))*TD22
$ +(V(I,J)-V(I-1,J3))*TD11)

120 CONTINUE

WRITE(20,2400) (UTA(I),I=1,NNX)
WRITE(20,2400) (THAT(I), I=1,NNX)
WRITE(20,2400) ((UVOS(I1,J),I=2,NNX),J=2,JE)

END IF

IF(ITC.EQ.IPRINT) THEN
WRITE(15,2300) IT
WRITE(16,2300) IT
WRITE(17,2300) IT
WRITE(18,2300) IT
WRITE(19,2300) IT

WRITE(15,2400) ((PR(I,J),I=1,IE),J=2,JE)
WRITE(16,2400) (( U(I,J),I=1,IE),J=2,JE)
WRITE(17,2400) (( v(I,J),I=1,IE),J=2,JE)
WRITE(18,2400) ((TK(I,J),I=1,IE),J=2,JE)
WRITE(18,2400) ((TD(I,J),I=1,IE),J=2,JE)
WRITE(19,2400) ((EV(I,J),I=1,IE),J=2,JE)

IF (ID.EQ.1) GO TO 500
END IF

EPSU=0.0

EPSV=0.0

EPSP=0.0

EPTK=0.

EPTD=0.

EPDS=0.0

DO 150 I=},IE

DO 150 J=2,JE
EPS2=RU(I,J)-U(1,J)
IF(DABS(EPS2) .GT.DABS{EPSU)) THEN
EPSU=EPS2

aU=1

MU=J

END IF
EPS2=RV(I,J)-Vv(I,J)
IF (DABS(EPS2).GT.DABS(EPSY)) THEN
EPSV=EPS2

\v=l

Mv=J

END IF
EPS2=RPR(I,J)-PR(I,J)
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IF (DABS (EPS2) .GT.DABS (EPSP)) THEN
EPSP=EP32
NP=1
MP=J
END IF
IF (DABS(DST(I,J)).GT.EPDS) THEN
EPDS=DABS (DST(I,J))
NDT=1I
MDT=J
END IF
IF(I.LT.NB2) GO TO 150
EPS2=RTK(I,J)-TK(I,J)
IF (DABS (EPS2) .GT.DABS (EPTK)) THEN
EPTK=EPS2
NK=1
MK=J
END IF
EPS2=RTD(I,J)-TD(I,J)
IF (DABS (EPS2) .GT.DABS (EPTD)) THEN
EPTD=EPS2
ND=1I
=J
END IF

CONTINUE

WRITE(1,1100) EPSU,NU,MU, IT
WRITE(5,1100) EPSU,NU,MU,IT
WRITE(1,1200) EPSV, NV, MV
WRITE(5,1200) EPSV,NV,MV
WRITE(1,1300) EPSP,NP,MP
WRITE(S,1300) EPSP,NP,MP
WRITE(1,1400) EPTK,NK,MK
WRITE(5,1400) EPTK,NK,?
WRITE(1,1500) EPTD,ND,D
WRITE(5,1500) EPTD,ND,MD
WRITE(1,1600) EPDS, NDT, MDT
WRITE(5,1600) EPDS, NDT, MDT

IF(DABS(EPSU) .LT.EPST.AND.DABS(EPSV).LT.EPST.AND.DABS (EP
+.LT.EPST) THEN

ITC=IPRINT

iD=1

GO TC 550

END IF
NT2(1BO)=NB2
IF(IBO.EQ.1) THEN
DO 788 I=1,IE

DO 788 J=1,JE
CBO(I,J)=U(I,J)
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788

799

888

899

999

C---

VBO(I,J)=-V(1,J)
PRBO(I,J)=PR(I,J)
TKBO(I,J)=TK(I,J)
TDBO(I,J)=TD(I,J)

CONTINUE

ELSE

DO 799 I=1,IE

DO 799 J=1,JE

JJ=J+JE

UBO(I,JJ)=U(1,J)
VBO(I,JJ)=V(I,J)
PRBO(I,JJ)=PR(I,J)
TKBO(I,JJ)=TK(I,J)
TDBO(1,J33)=TD(I,J)

CONTINUE

END IF

CONTINUE

IF(ITC.EQ.IPRINT) ITC=0
IF(ITC1.EQ.IPRINT) ITC1=0

DO 899 I=1,IE
IF(I.GE.NB1.AND.I.LE.NB3) GO TO 899
UU=.5*(UBO(I,3)+UBO(I,JE3))
VV=.5*(VBO(I,3)+VBO(I,JE3))
PM=.5*(PRBO(I,3)+PRBO(I,JE3))
TKA=.5*(TKBO(I, 3)+TKBO(I,JE3))
TDA=.5*(TDBO(I,3)+TDBO(I,JE3))
UBO(I,2)=UU

VBO(I,2)=VV

PRBO(I,2)=PM
TKBO(I,2)=TKA

TDBO(I,2)=TDA

UBO(I,JE2)=UU

VBO(I,JE2)=VV

PRBO(I,JE2)=PM
TKBO(I,JE2)=TKA
TDBO(1,JE2)=TDA

CONTINUE

CONTINUE

CLOSE(6)
CLOSE(7)
CLOSE(5)
CLOSE(15)
CLOSE(16)
CLOSE(17)
CLOSE(18)
CLOSE(19)
CLOSE(20)

END OF PROGRAM
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C desdeslosboddsstostoaboskoslosdeatosledealoababsloalectealsbociabstostisbeskostsbosbslososbostoshosldfosoaloalesee it

c * FORMAT

C SIEDDIIDDIDDDDDDDIDDIDDIDIDDDODDDIDDODIDDII>OOIDOOODDD>

1000 FORMAT(2X,'RE=',Ei0.5,' DT=',6F10.5,' IE=',613,' JE='
$' ITER=',13,' IIl=',13,' II=',13,/,'NBl=',I3,"' NB3='
$' ISCALE=',I3,' INITIAL=',613,' EPST=',F10.5)

1100  FORMAT(/3X,'EPSU=',kF10.5,' 1I=',15,' J=',15,5X,"IT=',IS

1200 FORMAT(3X,'EPsv=',F14.5,' 1=',15,'J=',I5)

1300 FORMAT(3X,'EPSP=',F10.5,' 1I=',15,'J=',I5)

1400 FORMAT(3X,'EPTK=',F10.5,' 1I=',15,'J=',15)

1500 FORMAT(3X,'EPTD=',F10.5,' 1I=',15,'J=',15)

1600  FORMAT(3X,'DT= ',F10.5,' 1I=',15,'J=",15)

2000 FORMAT(10X,'NO. OF ITERATION=',I3,4X,'STATION=',613,
S 4%, '¥=', F10.5)

2100 FORMAT(5X,'U VEL', 8X,'V VEL',b8X,'PRESSURE',SX,'TK',
$ 8%,'TD', 14X, 'EV")

2300
2400
2500

500

FORMAT (24X, 13)
FORMAT(6E13.4)
FORMAT('START POINT OF TURBULENT FLOW ---',I5)

RETURN
END

C.L-LJ-J.-:.J-J-J--L.L-L.J-J-.LJ--L-LJ--L.&--L.’-J..&M.L.\-J-A—.LJ-J-.I-.I-J--L-LJ.J.-L-&.L*J-.L-LJ—.L
BT T e T T T T T e e T T e T e T T e e T T A S T e e T T T I T T R T L S )

OO 0O0n

............................

. BLOCK.MAIN IS THE COMMON BLOCK USED IN THE 2D
. FLAT PLATE PROBLEX

COMMON/COR1/ X(82,22), Y(82,22)

COMMON/COR2/ B11(82,22), B12(82,22)
COMMON/COR3/ B21(82,22), B22(82,22)
COMMON/COR&4/ F1(82,22), F2(82,22), DSJ(82,22
COMMON/VEL1/ €(82,22), V(82,22)

COMMON/VEL2/ US(82,22), VS(8 ,22)
COMMON/VEL3/ UH(82,22), Vii(82,22

COMMON/PRE1/ PR(82,22), PP(82,22)

COMMON/PRE2/ AN(82,22), AS(82,22), AE(82,22), AW(S8
COMMON/PRE3/ AP(82,22), DS(82,22), DST(82,22)
COMMON/COEL/ EB(82,2
COMMON/COE2/ EH(82,2

) , EC(82,22), EE(82,
COMMCN/COE3,; SU(82,2

o
o

, SV(82,22), SK(82,22), SD(8

PUE A

), EF(82,

2 %9

-y e

’)’))

-

2,22)

COMMON/FAEL/ 2S(82,22), ZN(82,22), ZW(82,22), ZE(82,22)
|

COMMCN/FAED2, ZSW(82,22), ZSE(82,21), ZNW(82,22
COMMON, FAE3  IC(82,22), DU(82,12), DV(8Z.,22)

puppnp K

ZNE(82,
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COMMON/CAL1/ KRE, DT, RET
COMMON/CAL2/ JB(82), NB1, NB2, NB3, NNX, NNY

COMMON/TUB1/ TK(82,22), TD(82,22), EV(82,22)
COMMON/TUB2/ CK, CD, Cl, C2, CNU, AK, E, ISCALE

COMMON/ADD1/ RU(82,22), RV(82,22), RPR(82,22)
COMMON/ADD2/ RTK(82,22), RTD(82,22)
COMMON/STEP/ IT, FT(82,22)

COMMON/DATA/ THAT(82), UVOS(82,22), UTA(82)

cheatecloatoatoaks vk sl eloats als ks olo ehoake:
R T T O O T T T T T T 1

* SUBROUTINE BFC IS TO GENERATE THE BODY-FITTED *
* COORDINATE SYSTEM ON FLAT PLATE FOR TURBULENT FLOW *
DODDDDODIODDODDODIDDDOIDIDDIDIIDIDDOIIDDIIDIDODIOIIOOOOOOID

aaOaQ

SUBROUTINE BFC
IMPLICIT REAL*8 (A-H,0-2)

SINSERT BLOCK.MAIN
COMMON/COEF4/ UI, VI, NX1,NX2,NX3
REAL*8 AX(99), BY(99)
REAL*8 4A(99),BB(99),CC(99),DD(99),A(99),
S DX(99),DY(99),XX1(99),YET(99)

ABCD=3.0DO

PRINT*, '##*% BFC #*%*'
IMAX=82

JMAX=22

NX1=19

NX2=55

NX3=22

DX(NX1)=0.0
DX(NX2)=1.0
DX(Nx3)=1.0

DY (2)=0.D0

DY (JMAX)=ABCD
A1=-0.3

42=-0.12

B=0.2835

IMAM=TMAX-1
JMAM=JMAN-1
PI=3.141592653589793D0
EPS=1.D-12

C.... Y-DIRECTION
EBG=DEXP(B)

ZBR=1.DO/EBG
PSN=EBG+EBR
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EB2=EBG*EBG
EB2R=1.DO/EB2
PPSN=2.D0*B/(EB2-EB2R)

DO 10 J=3,JMAM
AA(J)=-EBG
BB(J)=PSN
CC(J)=-EBR
DD(J)=0.DO

DD(3)=DD(3)-AA(3)*DY(2)
DD (JMAM)=DD (JMAM) -CC (JMAM)*DY (JMAX)

CALL TRIDAG(3,JMAM,AA,BB,CC,DD,DY)

DY(1)=-DY(3)

. YET

40

DO 40 J=2,JMAM
YET(J)=PPSN*(DY(J+1)-DY(J-1))

YET(2)=.5D0*(DY(3)-DY(1))
YET(1)=YET(3)
YET(JMAX)=YET (JMAM)*YET (JMAM) /YET (JMAN-1)

DO 45 J=1,JMAX
BY (J)=PPSN

DO 45 I=1,IMAX
Y(I,J)=DY(J)
CONTINUE

.. X-DIRECTION

AX1=NX1-1.
AX2=2.%*NX1-1.
AX3=NX2-AX2

D0 50 I=1,IMAX
21=(I-1)/4X1
22=(1-4X2)/4X3

IF(Z21 .LE. 0.5) THEN

A(I)=Al

ELSE IF(Z1 .GT. 0.5 .AND. 21 .LE. 2.)THEN
PIZ=PI*Z1

A(IY=A1*DSIN(PIZ)

ELSE IF(Z22 .LE. 1.5) THEN

PIZ=PI*Z2

ACII=A2EDSINGPIZ)

ELSE IFt22 GT. 1.5) THEN
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50

60

72

80

85

A(I)=-A2
END IF

CONTINUE

DO 60 I=2,IMAM
AA(I)=-DEXP(A(I))
CC(I)=1./AA(TI)
BB(I)=-(AA(I)+CC(I))
DD(I)=0.D0

N1=NX1+1
N2=NX2-1

DD(N1)=DD(XN1)-AA(N1)*DX(NX1)
DD(N2)=DD(N2)-CC(N2)*DX(NX2)

CALL TRIDAG(N1,N2.AA,BB,CC,DD,DX)

DO 72 I=NX1,2,-:

DX(I-1)=-(DX(I1)* _3(I)+L. I+1)*CC(I))/AA(I)
CONTINUE

DO 74 I=NX2,IMAM

DX(I+1)=-(DX(I)*BB(I)+DX(I-1)*AA(I))/CC(I)
CONTINUE

X1

DO 80 I=2,IMAM
IF(DABS(A(I)) .LT. EPS) THEN
EA=.35D0

ELSE

EA2=AA(I1)*AA(I)

EA2R=1./EA2
EA=2.*A(I1)/(EA2-EA2R)

END IF

AX(1)=EA

XXI (I)=EA* (DX(I+1)-DX(I-1))
CONTINUE

XXT(1)=XXT(2)*XXI(2)/XXI(3)
XXI(IMAX)=XXT (IMAM)*XXI (IMAM)/XXI (IMAM-1)
AX(1)=4X(2)

AX(IMAX)=4X(IMAM)

D0 85 I=1,IMAX
=l

DO 85 J=1,JMaX
X(I,3=DX(II)
CONTINLCE
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DO 90 I=1,IMAX
DO 90 J=2,JMAX
DSJ(I,J)=XXI(I)*YET(J)
B11(Y,J)=YET(J)
B12(I,J)=0.0
B21(I,J)=0.0
B22(I1,J)=XXI(I)
F1(I,J3)=-2.%A(I)/XXI(I)/XXI(I)
F2(I,J)=-2.*B/YET(J)/YEL(J)
90 CONTINUE
DO 106 I=1,NNX+1
DO 106 J=1,NNY+1
K=1
X(I,7)=X(K,J)
Y(I,7)=Y(,J)
B11(I,J)=B11(K,J)
B12(I,J)=B12(K,J)
B21(1,J)=B21(K,J)
B22(I,J)=B22(K,J)
F1(I,J)=F1(K,J)
F2(1,J)=F2(X,J)
AX(I)=AX(K)
DSJ(I,J)=DSJ(K,J)
106  CONTINUE

OPEN(30,FILE='OUTFP')

WRITE(30,2400) (X(I,2),I=1,NNX+1)

WRITE(30,2400) (Y(1,J),J=2,NNY+1)
2400 FORMAT(6E13.4)

CLOSE(30)
RETURN
END
ek A ettt et e e e st st s e s e e ettt

* SUBROUTINE EQCOE IS TO CALCULATE THE COEFFICIENTS
* OF GOVERNING EQUATIONS
S S PO oS > P P S P S > PSS

aaoaOa

SUBROUTINE EQCOE (M)
IMPLICIT REAL*8 (A-H,0-2)

SINSERT BLOCK.MAIN
iF(M .EQ. 2) THEN
C.... Y MOMENTUM EQUATION

DO 100 I=2,NNX
IPi=i+1

e oo o e P V=P =PI oy S T S e N
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1M1=I-1
DO 100 J=JB(I), NNY
JP1=J+1
TM1=J-1

Vi1l = (B11(I,J)/DSJ(I,J)+B11(IM1,J)/DSJ(IM1,J))*0.5

V12 = (B12(I,J)/DSJ(I,J)+B12(IM1,J)/DSI(IM1,J))*0.5
v22 = (B22(1,J)/DSJ(1,J)+B22(IM1,J)/DSJI(IM1,J))*0.5
V21 =

(B21(1,J)/DSJ(I,J)+B21(IM1,J)/DSI(IM1,J))*0.5
EVV=0.5%(EV(I,J)+EV(IM1,J))

REV= 1.0/(1.0/RE+EVV)
EVDY=0.25%(EV(IM1,JP1)-EV(IM1,JM1)+EV(I,JP1)-EV(I,JM1))
EVDX=EV(I,J)-EV(IM1,J)

EVDX1=(EVDX*V11+EVDY*V21)

EVDY1=(EVDX*V12+EVDY*V22)

Gv=0.25*(U(I,JP1)+U(I,J)+U(IML,JP1)+U(IM1,J))

EB(I,J)=REV*(V11*(UV-EVDX1)+V12*(V(I,J)-2.*EVDY1))
$-(F1(I,J)+F1(IM1,J))*0.5

EC(I,J)=REV*(V21*(UV-EVDX1)+V22*(V(I,J)-2.*EVDY1))
$-(F2(I,J)+F2(IM1,J))*0.5

EE(I,J)=(V11%V11+V12¥V12)

EF(1,J)=(V21*V21+V22%*V22)

EH(I,J)=REV/DT

TKDY=0.25*%(TK(IM1,JP1)-TK(IM1,JM1)+TK(I,JP1)~-TK(I,JM1))
TKDX=TK(I,J)-TK(IM1,J)
TKDY1=2./3.*(TKDX*V12+TKDY*V22)
UDX=0.5*(U(I,JP1)-U(IM1,JP1)+U(I,J)-U(IM1,J))
UDY=0.5*(U(IM1,JP1)-U(IM1,J)+U(1I,JP1)-U(I,T))
UDY1=UDX*V12+UDY*V22
VDXDY=0.25*(V(IP1,JP1)~-V(IP1,JM1)+V(IM1,JM1)-V(IM1,JP1))
SOR=2.*(V11*V21+V12#V22)*=VDXDY
PRI=0.25*(PR(IP1,JP1)-PR(IM1,JP1)+PR(IP1,J)-PR(IML1,J))
PRJ=PR(I,JP1)-PR(I,J)
SV(I,J)=SOR+REV*(-PRI*V12-PRJ*V22-TKDY1+EVDX1*UDY1)
&+-REV/DT*V(I,J)

CONTINLE
ELSE IF( M .EQ. 1 ) THEN
X MOMENTUM EQUATION

90 200 I=2,NNX
1Pi=I+]
iMi=I-1
DO 200 j=JB(I), NNY
JP1=J+1
M1=j-1




200

(@]

U11=(B11(I,J)/DSJI(I,J)+B11(I,IM1)/DSI(I,TM1))*0.5
U12=(B12(I,J)/DSJI(I,J)+B12(I,JM1)/DSI(I,TM1))*0.5
U22=(B22(I,J)/DSJI(I,J)+B22(I,JM1)/DSI(I,JM1))*0.5
U21=(B21(I,J)/DSJ(I,J)+B21(I,JM1)/DSI(I,JIM1))*0.5

EVV=0.5*(EV(I,J)+EV(I,JM1))

REU=1.0/(1./RE+EVV)

EVDY=EV(I,J)-EV(I,IM1)
EVDX=0.25%(EV(IP1,J)-EV(IM1,J)+EV(IP1,JM1)-EV(IM1,JM1))
EVDX1=(EVDX*U11+EVDY*U21)

EVDY1=(EVDX*U12+EVDY*U22)

VU=0.25%(V(I,J)+V(I,IM1)+V(IP1,J)+V(IP1,JM1))
EB(I,J)=REU*(Ul1*(U(I,J)-2.*EVDX1)+U12*(VU-EVDY1))
$-(F1(I,J)+F1(I,J41))*0.5
EC(I,J)=REU*(U21#(U(I,J)-2.*EVDX1)+U22* (VU-EVDY1))
§-(F2(I,J)+F2(I,JM1))*0.5

EE(I,J)=(U11*U11+G12%012)
EF(I,J)=(U21*U21+U22%U22)

EH(I,J)=REG/DT

TRDY=TK(I,J)-TK(I,JM1)
TKDX=0.25*(TK(IP1,J)-TK(IM1,J)+TK(IP1,JM1)-TK(IM1,JM1))
TKDX1=2./3.*(TKDX*U11+TKDY*U21)
VDX=0.5=(V(IP1,J)-V(I,J)+V(IP1,0M1)-V(I,JM1))
VDY=0.5*(V(1,J)-V(I,JM1)+V(IP1,J)-V(IP1,JM1))
VDX1=VDX*U11+VDY*U21
CDXDY=0.25+(U(IP1,JP1)-U(IP1,JM1)+U(IM1,JM1)-U(IM1,JP1))
PRJ=0.25*%(PR(IP1,JP1)-PR(IP1,IM1)+PR(I,JP1)-PR(I,JM1))
IF(J.EQ.3) PRJ=0.5*(PR(IP1,4)+PR(I,4)-PR(IP1,3)-PR(I,3))
PRI=PR(IP1,J)-PR(I,J)
IF(J .EQ. 3) THEN
UDXDY=0.25*(U(IP1,JP1)-U(IP1,J)+U(IM1,J" U(IM1,JP1))
PRJ= 0.25%(PR(I,JP1)-PR(I,J)+PR(IP1,JP1)-PR(IP1,J))
END IF
SOR=2.*(U11*L21+C12*022)*UDXDY
SU(I,J)=SOR+REU*(-PRJ*U21-PRI*U11-TKDX1+EVDY1*VDX1)
&+REU/DT*C(1,J)

CONTINUE

ELSE IF( M .EQ. & .OR. M .EQ. 5 ) THEN
TK AND TD EQUATION

DO 300 I=NB2,NNX
1P1=1+1

M1=1-1

DO 300 J=JB(I),NNY
JP1=J+1

JMi=J-1

255




256

T11=B11(I1,J)/DSJ(I,J)
T12=B12(1,J)/DSJ(1,J)
T22=B22(I,J)/DSJ(I,J)
T21=B21(I1,J)/DSJ(I,J)

EVDX=0.5*(EV(IP1,J)-EV(IM1,J))
EVDY=0.5*(EV(I,JP1)-EV(I,JM1))
EVDX1=(EVDX*T11+EVDY*T21)
EVDY1=(EVDX*T21+EVDY*T22)

DY=U(I,JP1)-U(I,J)
UDX=0.25*(U(IP1,JP1)-U(IM1,JP1)+G(IP1,J)-U(IM1,J))
UDX1=UDX*T11+UDY*T21

UDY1=UDX*T12+UDY*T22
VDY=0.25*(V(I,JP1)-V(I,JH1)+V(IP1,JP1)-V(IP1,JH1))
VDX=V(IP1,J)-V(i,J)

VDX1=VDX*T11+VDY*T21

VDY1=VDX=*T12+VDY*T22
GG=EV(I,J)*(2.*(UDX1*UDX1+VDY1*VDY1}+(UDY1+VDX1)*(UDY1+V

IF(M .EQ. 5) THEN
SG=CD

ELSE IF(M .EQ. 4) THEN
SG=CK

END IF
RED=1./(1./RE+EV(I,J}/SG)

CC=0.5*(U(1I,JP1)+G(I,J))

VC=0.5*%(V(I,J)+V(IP1,J))
EB(I,J)=RED*((UC-EVDX1/SG)*T11+(VC-EVDY1/SG)*Ti2)-F1(I,J
EC(I,J)=RED*(({UC-EVDX1/SG)*T21+(VC-EVDY1/SG)*T22)-F2(I1,J
EE(I,J)=T11¥T11+T12%T12

EF(I,J)=T21%T21+T22*T22

IF(M .EQ.%) THEN
TRDXY=0.25*(TK(IP1,JP1)-TK(IM1,JP1)+TK(IM1,JM1)-TK(IP1,J
SOR=2.*(T11*T21+T12*T22)*TKDXY
SK(I,J)=SOR+RED*(GG)+RED/DT*TK(I,J)
EH(I,J)=TD({,J)*RED/TK(1,J)+RED/DY

ELSE IF( M. EQ.3) THEN
TDDXY=0.25*(TD(IP1,JP1)-TD(IM1,Jr1)+TD(IM1,IM1)-TD(IP1,J
SOR=2.*(T11*T21+T12*T22)*TDDXY

IF (ISCALE.EQ.1l) THEN

TSCAL=TD(I,J)/TR(L,J)

ELSE IF(ISCALE.EG.2) THEN

TSCAL=DSQRT(TD(1,J))

ZLSE
PRINT#, 'ERROR IN SELECTION OF TURBULENT SCALE!!'
END IF

SD(I,Jy=S0R+C1*RED*GG*TSCAL+RLD, DT*TD(I,J)
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C
C
C

SINS
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EH(I,J)=C2*RED*TSCAL+RED/DT
END IF

CONT INUE

END IF

RETURN
END

oot J.J-J.’I—J..LJ-J-.LJ--I—J-J-J..LJ-MWW&J{J a4 .L-I-—?-HM*M**—*—**

* SUBROUTINE HVEL IS TO CALCULATE THE PSEUDOVELOCITY
SOSOSOO5D5O5E5DSDODIIDOIDDIIIIIDIIIIIDIIE LODOSBISIISIISIISDO>D

SUBROUTINE HVEL
IMPLICIT REAL*8 (A-H,0-2)

ERT BLOCK.MAIN
PRIN’I\}\' s R HVEL St

IE
JE

NNX+1
NNY+1

. CORRECT THE VELOCITY BY PRESSURE CORRECTION

DO 10 I=2,NNX

TPl=I+1

IMi=I-1

DO 10 J=JB(I),NNY

JP1=J+1

JM1=J-1
V(I,J)=VS(I,J)-DV(I,J)*(PP(1,JP1)-PP(I,]))
U(1,J)=Us(1,J)-DU(1,J)*(PP(IP1,J)-PP(1,J))
CONTINUE

CALL WALLFN
CALL CHECK(U,1,IE,JE)
CALL CHECK(V,2,IE,JE)

. PSEUDOVELOCITY OF V

CALL EQCOE (2)

CALL CO;F(Z)

DO 150 I=Z,NNX
IP1= I+1
IMi=I-1

DO 150 J=JB(I),NNY
JP1=J+1

JM1=J-1
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REV=EH(I,J)*DT

V22=(B22(1,J)/DSJ(I,J)+B22(IM1,J)/DSJI(IM1,J))/2.
VHS=SV(I,J)+REV*V22*(PR(I,JP1)-PR(I,J))

DV(1,J) = 2C(1,J) * REV
VH(I,J)=V(IP1,J)*Z2E(I,J)+V(IP1,JP1)*ZNE(I,J)
&  +V(IP1,JM1)*ZSE(I,J)+V(I,JM1)*Z2S(1,J)

&  +V(IML,JM1)*ZSW(I,J)+V(IM1,J)*2ZW(I1,J)

&  +V(IM1,JP1)*ZNW(I,J)+V(I,JP1)*ZN(I,J)+ZC(1,J)*VHS

150  CONTINUE
C..... PSEUDOVELOCITY OF U

CALL EQCOE (1)
CALL CCEF(1)

DO 100 I = 2, NNX
IP1=I+1
IM1=I-1

DO 100 J = JB(I), NNY
M1=J-1
JP1=J+1

Ur1=(B11(1,J)/DSJI(I,J)+B11(I,JM1)/DSI(I,JM1))/2.
REU=EH(I,J)*DT
CHS=SU(I,J)+REU*U11*(PR(IP1,J)-PR(I,J))
pu{1,J) = 2C (1,J) * REU
UH(I,J)=U(IP1,J)*ZE(I,J)+U(IP1,JP1)*ZNE(I,J)
&  +U(IPY,JM1)*ZSE(I,J)+U(I,M1)*2S(1,J)
&  +U(IM1,IM1)*ZSW(I,J)+U(IM1,J)*2W(1,J)
&  +U(IMY,JP1)*ZNW(I,J)+U(I,JP1)*ZN(1,J)+ZC(I,J)*UHS

100 CONTINUE

C... SET THE BOUNDARY DATA

DO 200 I =1, IE
VH(I,JE ) = V(I,JE)
CH(I,JE ) = U(I,JE)

=JB(I)-1

UH(T,3)=C(I,J)
VH(I,J)=V(I,J)
200 CONTINUE

C... ALONG THE I=1 -- THE INLET LINE
DO 300 J =1, JE
VH{1,J) = V(1,J)
UH(L1,J) = U(L1, )

CH(IE ,J)=U(IE ,J)
VH(IE ,J)=V(IE ,J)




300 CONTINUE

RETURN
END
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* SUBROUUTINE SVEL IS TO SOLVE THE VELOCITY
P PS5 TSP PSS SS TS PR PS> PO PP P ISP S PP O S

aaaa

SUBROUTINE SVEL
IMPLICIT REAL*8 (A-H, 0-2)

SINSERT BLOCK.MAIN
PRINT®, '##% SVEL #w'

IE=NNX+1

JE=NNY+1

DO 20 I=1,NNX+1

DO 20 J=2,NNY+1

GS(I,J)=U(1,J)

Vs(1,J)=v(1,J)
20  CONTINUE

C.... U VELOCITY

CALL EQCOE( 1 )
CALL COEF(1)

DO 100 I =2 ,NNX

DO 100 J = JB(I), NNY

FT(I,J)=2C(1,J)*SU(I,J)

DU(I,J)=2C(I,J)*EH(I,J)*DT
100 CONTINUE

CALL SOLVE(LS,FT,1,2,IE,JE)
CALL CHECK(Us,1,IE,JE)

C.... V VELOCITY

CALL EQCOE( 2 )
CALL COEF(2)

DO 150 I=2,NNX

DO 150 J=JB(I).NN\Y
FT(I,J)=2C(1,)~sV(1,J)
DV(1,J) = 2C(1,J) * EH(I,J)*DT
CONTINUE

p—
W
(o)

CALL SOLVE(VS.FT

rT,2,2,1E,JE)
CALL CHECKUVS,2,IE

2.1
.JE)

259




RETURN
END

B e
* SUBROUTINE PRESS IS USED TO SOLVE 1. PRESSURE

* 2. PRESSURE CORECTION
PSS 2o PP TR PSSR S S PSPPI PSS S ST ST P

aaaaa

SUBRCUTINE PRESS (NC)
IMPLICIT REAL*8 (A-H,0-2)

$INSERT BLOCK.MAIN
DIMENSION AA(S9),BB(99),CC(99),DD(99),T(99)

PRINT*, ' ::: PRESS ::: NC = ',NC
IE = NNX+1
JE = NNY+1

JMN=JB(NB3+1)-1

DO 20 J=2,JE
DU(IE,J)=DU(NNX,J)
DV(IE,J)=DV(NNX,J)
DU(1,J)=DU(2,J)
DV(1,J)=DV(2,J)

20 CONTINUE

DO 30 I=1,IE
J=JB(I)-1
JP1=J+1
DU(1,J)=DU(I,JP1)
PV(I,J)=DV(I,JP1)
DU(I,JE)=DU(I,NNY)
DV(I,JE)=DV(I,NNY)
30 CONTINLUE

DO 210 I=2, NNX
DO 210 J=JB(I), NNY
M=I-1
JM1=J-1
P11=(B11(I,J)/DSJ(I,J)+B11(I,JM1)/DSI(I,IM1))/2.
DU(I,J)=P11*DU(I,J)
P22=(B22(1,J)/DSJ(1,J)+B22(IM1,J)/DSJ(IM1,J))/2.
DV(1,J)=P22*DV(I,J)

210 CONTINLE

DO 100 I=2,NNX
[P1=1+1

IM1=I-1

DO 100 J=JB(I) ,NNY

260




100

175

JP1=J+1

JM1=J-1
AE(I,J)=(Y(I,J)-Y(I,M1))*DU(I,J)
AW(I,J)=(Y(IM1,J)-Y(IM1,JM1))*DU(IM1,J)
AN(I,J)=(X(1,J)-X(IM1,J))*DV(I,T)
AS(I,J)=(X(I,JM1)-X(IM1,JM1))*DV(I,JH1)
AP(I,J)=AE(I,J)+AW(I,J)+AN(I,J)+AS(I,J)
CONTINUE

DO 175 J=3,NNY

AP(NNX, J)=AP (NNX,J) -AE (NNX, J)
AP(2,J)=AP(2,J)-AW(2,J)
AE(NNX,J)=0.

AW(2,J)=0.

CONTINUE

DO 117 I=2,NNX

J=JB(I)
AP(I,J)=AP(I,J)-AS(I,J)
AS(1,3)=0.0

CONTINUE

DO 234 J=3,JMN
AP(NB3+2,J)=AP(NB3+2,J) -AW(NB3+2,J)
AW (NB3+2,J)=0.0

CONTINUE

. FORM THE SOURCE TERM OF PRESSURE CORRECTION EQUATION

343

52

62

IF(NC .EQ. 2) THEN

DO 343 J=3,JMN
VS(NB3+1,J)=V(NB3+1,J)
US(NB3+1,J)=U(NB3+1,J)
CONTINUE

DO 52 I=2,NNX
IP1=I+1

IMl=1 °

D0 - J=JB(I), M
JP1=J+1

JM1=J-1

DS(I,J)=(Y(I,J)-Y(I,IM1))*US(I,J)

S =(Y(IM1,J)-Y(IM1,JM1))™*US(IM1,J)
S +(X(I,T)-X(IM1,J))*VS(I,J)

§  =(X(I,JM1)-X(IM1,JM1))=VS{I,JH1)
DST(1,J)=DS(I,J)

CONTINUE

DO 62 I=1,IE
DO 62 J=1,JE
FT(I,J)=0.0
CONTINUE

P v
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ELSE IF(NC .EQ. 1) THEN

DO 456 J=3,JMN

UH(NB3+1,J)=U(NB3+1,J)

VH(NB3+1,J)=V(NB3+1,J)
456 CONTINUE

DO 150 I=2,NNX

IP1=I+1

IM1=I-1

DO 150 J=JB(I), NNY

JP1=J+1

JM1=J-1

DS(I,J)=(Y(I,J)-Y(I,JH1))*UH(I,J)

S -(Y(IML,J)-Y(IM1,JM1))*UH(IM1,J)

§  +(X(I,J)-X(IM1,J))*VH(I,J)

§  -(X(I,IM1)-X(IM1,JM1))*VH(I,JM1)
150 CONTINUE

Do 270 J=1,JE

Do 270 I=1,IE

FT(I,J)=PR(I,J)
270 CONTINUE

END IF

. SOLVE THE EQUATION DOMAIN BY USING TRIDIAGONAL METHOD

ITP=50
FAC=0.1
EPS=1.D-7

DO 400 IP=1,ITP
SOR=0.

DO 300 I=2,NNX
IF(I.EQ.NB2) GO TO 300
IP1=I+1
1M1=I-1
J3=JB(I)

DO 320 J=JJ,NNY

JP1=J+1

JM1=J-1

A8(J)=-AS(I,J)

BB(J)=AP(I,J)

CC(J)=-AN(I,J)

DD(J)=AE(I,J)*FT(IP1,J)+AW (I,J)*FT(IM1,J)-DS(I,J)

320 CONTINUE
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C
C

340

300

310

500

w
w
[en}

900

DD(JJ)=DD(JJ)-AA(JI)*FT(I,JJ-1)
DD (NNY)=DD (NNY)-CC(NNY)*FT(I,JE)
CALL TRIDAG(JJ,NNY,AA,BB,CC,DD,T)

DO 340 J=JJ,NNY

ST =FT(I,J)-T(J)

IF (DABS(SOR) .LT. DABS(ST)) SOR=ST
FT(I,3)=T(J)

CONTINUE

CONTINUE

DO 310 J=1,NNY
IF(NC.EQ.1)FT(NB3+2,J)=0.5%(FT(NB3+1,J)+FT(NB3+3,J))
FT(NB2,J)=0.5*(FT(NB2-1,J)+FT(NB2+1,J))

IF(DABS(SOR) .LT. EPS) GO TO 345

CONTINUE

WRITE(6,900) NC, IP, SOR
CALL CHECK(FT,3,IE,JE)

IF(NC .EQ. 1) THEN

DO 500 I=1,IE

DO 500 J=2,JE

PR(I,J)=(1.-FAC) *PR(I,J)+ FAC*FT(I,J)
CONTINUE

ELSE IF(NC .EQ. 2) THEN
DO 550 I=1,IE

DO 550 J=2,JE
PP(1,J)=FT(1,J)
CONTINUE

END IF

FORMAT(2I10,E12.4)

RETURN
END

R b e e e e e e e e e e e e
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SUBROUTINE COEF IS USED TO CALCULATE THE FA COEFFICIENTS

DODDODOOODOODDODDO55DDDOODOOOPDODIDODIODIIIIIOIOODIDOIO5OD>>>

SUBROUTINE COEF( NC )
IMPLICIT REAL*8(4-H,0-2)

SINSERT BLOCK.MAIN

DIMENSION CF(3,3)

pmetep e —————
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[

PI=3.141592653589793D0
MAX=6

EPE=1.D-5

Ciw=1.D0

EMAX=20.D0

IJ1=2

IF(NC .GE. 4) IJi=NB2
DO 200 I=IJ1,NNX

DO 200 J=JB(I),NNY

AR=EB(I,J)/2.DO
BR=EC(I,J)/2.DO
ER=DSQRT(EE(I,J))
FR=DSQRT(EF(1,J))

IF ( FR .LT. 1.D-23) PRINT*, 'ERROR IN COEF, FR=0.

HX=1./ER
HY=1./FR
AR=AR/ER
BR=BR/FR

IF (DABS(AR) .LT.EPE)AR=DSIGN(EPE,AR)
IF(DABS(BR) .LT.EPE)BR=DSIGN(EPE,BR)

CHECK THE SIZES OF THE GRIDS IF IT AGREES WITH THE ASSUM
DIRECTIONS IN THE DERIVATION, AND IF IT DOES NOT CHANGE

SEE PAGE 53. OF DR. H.C CHEN DISSERTION.

ER2=ER*ER
FR2=FR*FR
AB2=AR*AR+BR*BR
-H=4R" HX
AKW=AR*HY
BH=BR*HX
BK=BR*HY
DAH=DABS (AH)
DBK=DABS (BK)
AH2=aH*AH
BK2=BK*BK

M=0

JM=0

I (DAH.GT.EMAX) IM=1
IF(DBK.GT.EMAX) JM=2
M=IMEIM+L

GO TO (1,2,3,%), M

ZPAH=DEXP(AH)
EPBK=DEXP(BK)
ZPAHI=1./EPAH

264




11

12
19

EPBKI=1./EPBK
COSHA=0. 5* (EPAH+EPAHI)
COSHB=0.5* (EPBK+EPBKI)
COTHA=2.*COSHA/ (EPAH-EPAHI)
COTHB=2.*COSHB/ (EPBK-EPBKI)
AKCTHA=AKW*COTHA
BHCTHB=BH*COTHB

PWR=1.

IF(HX .GT. HY) GO TO 11

EX2=0.

DO 10 II=1,MAX

2A=(1I-0.5)*P1

ZA2=ZA%ZA

PWR=-PWR

DABK=DSQRT (AB2+ZA2*ER2)*HY
IF(DABK .GT. 100.) GO TO 9
AB=DEXP (DABK)
EX2=EX2-PWR*ZA/((AB+1./AB)*(AH2+ZA2)* (AH2+2A2))
PA=8 .*AH*COTHA*COSHA*COSHB*EX2
PB=1.+BHCTHB/AKCTHA*(PA-1.)
CF(2,2)=0.5*HX/(AR*COTHA)*(1.-PA)
GO TO 100

EY2=0.

DO 12 II=1,MAX

ZA=(II-0.5)*PI

ZA2=74*%Z4

PWR=-PWR

DABH=DSQRT (4B2+ZA2*FR2)*HX
IF(DABH.GT.100.) GO TO 19

AB=DEXP (DABH)
EY2=EY2-PWR*ZA/((AB+1./AB)*(BK2+ZA2)*(BK2+ZA2))
PB=8.*BK*=COTHB*COSHA*COSHB*EY2
PA=1.+AKCTHA/BHCTHB*(PB-1.)
CF(2,2)=0.5%HY/(BR*CQTHB)*(1.-PB)
GO TO 1900

EPBK=DEXP(BK)

EPBKI=1./EPBK
COSHB=0.5*(EPBK+EPBKI)
COTHB=2.*COSHB/ (EPBK-EPBKI)
COTHA=DSIGN(C1W,6AR)
AKCTHA=AKW*COTHA
BHCTHB=BH-*COTHB

PWR=1.

IF(AKCTHA.LT.BHCTHB) GO TO 22
EXZ=0.

FY2=0.

DO 20 [i=1,MAX
2A=(11-9.35)*PI

cA2=ZAYZA
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20

22

23
29

PWR=-PWR

PZ=PWR*ZA/ ((AH2+ZA2)*(AH2+242))
FX2=FX2-PZ

DABK=DSQRT (AB2+ZA2*ER2)*HY

AB=1.

IF(DABK.GT.100.) GO TO 20
EPABK=DEXP (DABK)
AB=1.-COSHB/(EPABK+1./EPABK)
EX2=EX2-PZ*AB

PA=1.-EX2/FX2
PB=1.+BHCTHB/AKCTHA*(PA-1.)
CF(2,2)=0.5*HY/(BR*COTHB)*(1.-PB)
GO TO 100

EY2=0.

DO 23 1I=1,MAX

Z2A=(1I-0.5)*PI

2A2=ZA%ZA

PWR=-PWR
DABH=DAH-DSQRT (AB2+. A2*FR2)*HX
IF(DABS(DABH).S3T.10¢ ) GO TO 29
AB=DEXP (DABH)

EY2=EY2-PWR*ZA*AB/ ((BK2+ZA2)*(BK2+ZA2))
PB=4 ,*BK*COTHB*COSHB*EY2
PA=1_+AKCTHA/BHCTHB* (PB-1.)
CF(2,2)=0.5*%HY/(BR*COTHB)*(1.-PB)
GO TO 100

EPAH=DEXP(AH)

EPAHI=1./EPAH
COSHA=0.5*(EPAH+EPAHI)
COTHA=2.*COSHA/ (EPAH-EPAHI)
COTHB=DSIGN(C1W,BR)
AKCTHA=AKW=COTHA
BHCTHB=BH*=COTHB

PWR=1.

IF(AKCTHA.GT.BHCTHB) GO TO 32
EY2=0.

FY2=0.

DO 30 iI=1,MAX
2a=(11-0.5)*PI

ZA2=ZA*ZA

PWR=-PWR

PZ=PWR*ZA/ ((BK2+ZA2)*(BK2+ZA2))
FY2=FY2-P2

DABH=DSQRT (AB2+ZA2*FR2)*HX
AB=1.

IF(DABH.GT.100.) GO TO 30
EPABH=DEXP(DABH)
AB=1.-COSHA/(EPABH+1./EPABH)
EY2=EY2-PZ*AB

P8=1.-EY2/FY2
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32

33
39

100

PA=1.+AKCTHA/BHCTHB*(PB-1.)
CF(2,2)=0.5*HY/ (BR*COTH3)*(1.-PB)
GO TO 100

EX2=0.

DO 33 II=1,MAX

ZA=(II-0.5)*PI

ZA2=ZA%ZA

PWR=-PWR

DABK=DBK-DSQRT (AB2+ZA2*ER2)*HY
IF(DABS(DABK).GT.100.) GO TO 39
AB=DEXP (DABK)

EX2=EX2-PWR*ZA*AB/ ((AH2+ZA2)* (AH2+ZA2))
PA=4 . *AH*COTHA*COSHA*EX2
PB=1.+BHCTHB/AKCTHA*(PA-1.)
CF(2,2)=0.5%HY/(BR*COTHB)*(1.-PB)
GO TO 100

DAK=DABS (AKW)

DBH=DABS (BH)
COTHA=DSIGN(C1W,AR)
COTHB=DSIGN(C1W,BR)
IF(DAK.LT.DBH) GO TO 41
PA=0.

PB=1. -DBH/DAK
CF(2,2)=0.5*HX/(AR*COTHA)
GO TO 100

PB=0.
PA=1. -DAK/DBH
CF(2,2)=0.5*HY/(BR*COTHB)

Q=1.-PA-PB
TANHA=1. /COTHA
TANHB=1./CO" .-
BE=0.5*(1.-TANHA)
BW=0.5*(1.+TANHA)
BN=0.5%(1.-TANHB)
BS=0.5*(1.+TANHB)
CF(1,1)=BW*BS*Q
CF(3,1)=BE*BS*Q
CF(1,3)=BW*BN*Q
CF(3,3)=BE*BN*Q
CF(2,1)=BS*Pa
CF(2,3)=BN~PA
CF(1,2)=Bw*PB
CF(3,2)=BE*PB

CFC=CF(2,2)

CFP=1.+CFC*EH(I,J)
ZC(1,J)=CrC/CrP

R et
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C.... FINAL FA COEFFICIENTS ON TRANSFORMED DOMAIN

Zs(1,J)=CF(2,1)/CEP
ZN(I,J)=CF(2,3)/CFP
ZW(I,J)=CF(1,2)/CFP
ZE(I,J)=CF(3,2)/CFP
ZSW(I,J)=CF(1,1)/CFP
ZSE(I,J)=CF(3,1)/CFP
ZNW(I,J)=CF(1,3)/CFP
ZNE(I,J)=CF(3,3)/CFP

200 CONTINUE

END
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* SUBROUTINE SOLVE IS USED TO SOLVE STARED VELOCITY
PSS 22 PSP SIS S S SS SIS S PSS S S >SS SRS PSS 4

OO0

SUBROUTINE SOLVE(HT,FZ,NC,IS1,IX,IY)
IMPLICIT REAL*8 (A-H, 0-2)

SINSERT BLOCK.MAIN
DIMENSION FZ(IX,IY),HT(IX,IY)
REAL*8 AA(99),BB(99),CC(99),DD(99),T(99)

IE=NNX+1
JE=NNY+1
DO 900 I=1,10

EPSR=0.0
DO 100 I=IS1,NNX
IPI=I+1
IMi=I-1
JJ=JB(I)
DO 200 J=JJ, NNY
JPi=J+1
JMi=J-1

AA(J)=-2S(1,J)

BB(J)=1.

CC(J)=-2ZN(1,J)

DD(JIY=ZE(I,JY*HT(IP* ,J)+2W(I,J)*HT(IM1,J)
S H#ZSE(I,JY=HT(IPL,JM1)+ZNW(I,J)*~HT(IM1,JP1)+2ZNE(I,J)
S <HT(IP1,JPL)+ZSW(I,J)*HT(IM1,JM1)+FZ(IL,J)

200 CONTINCE
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DD(JJ)=LN(JI)-AA(JJ)*HT(I,TT-1)
DD (NNY )=DD (NNY) -CC(NNY)*HT(I,JE)
CALL TRIDAG(JJ,NNY,AA,BB,CC,DD,T)
IF(I.LT.NB1.OR.I.GT.NB3+1) CALL UPDATE(HT,I,NC,IX,IY)

DO 50 J=JJ,NNY

EPS2=DABS (HT(I,J)-T(J))

IF(EPS2.GT.EPSR) EPSR=EPS2
50 HT(I,J)=T(J)

100 CONTINUE
IF(EPSR.LT.1.0D-7) GO TO 20

900 CONTINUE

20  WRITE(6,1000) NC, IM,EPSR
1000 FORMAT('SOLVE NC=', IS5, 'ITERAT.= ',I10,' EPSR=',El12.4

RETURN
END
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C * SUTROUTINE CHECK IS TO UPCATE BOUNDARY VALUES
T D o S T S s S T S e

SCBROUTINE CHECX(GG,NC,IX,IY)
IMPLICIT REAL*8 (A-H, 0-2)

SINSERT BLUTK.IJAIN
DIMENSION GG(IX,IY)

IE=NNK+1

JE=NNY+1

DO 100 I=2,NNX

CALL UPDATE(GG,I,NC,IX,IY)
100 CONTINLUE

IF(NC .EQ. 1) THEN

DO 110 J=1,JE

IF(GG(NNX,J) .LT. GG(NNX-1,J)) THEN
GG (NNX, J)=GG(NNX-1,J)+%1.001
GG(IE,J) =GG(NNX-1,J)*1.002

ELSE

D1=X(IE,J)-X(NNX,J"
D2=X(NNX,J)-X(NNX-1,])
DX1=(D1+D2)'D2

DxX2=D1.D2
GG(IL,J)=GGINNX,J)*DX1-GG(NNX-1,7J)%0X2
END IF

tF{GG{IE.SY .GT.1.0) GG(IE,J)=1.0
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C
C
C
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10

360

CONTINUE

ELSE IF(NC .EQ. 2) THEN
DO 210 J=1,JE
GG/1IE,J)=GC (WNX,J)
CONTINUE

ELSE IF(NC .EQ. 3) THEN
DO 360 J=1,JE
GG(IE,J)=GG(NNX,J)
CONTINUE

ELSE IF(NC .GE. &4 ) THEN
DO 410 J=1,JE
GG(IE,J)=GG(NNX,J)
CONTINUE

END IF

RETURN
END
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SUBROUTINE UPDATE IS TO UPDATE BOUNDARY VALUES

SUBROCTINE UPDATE (GG, I,NC,IX,
IMPLICIT PEAL*8 (A-H, 0-2)

SINSERT BLOCK.MAIN

DIMENSION GG{IX,IY)

IE=NNX+1

JE=NNY+1
JJ=JB(I)-1
JJ1=Ji+1

JJ2=JJ+2

IF(NC .EQ. 1) THEN

IF(I .GE

Ir(r.zq. V B3+i) THEN
D5=(Y(I,JJ2)+Y(I,JJ1))%0.5
Da=(¥(1,JJ1)+¥(1,J3))*0.5
DA2=(D3-Y(I,2))**2
352=(D5-Y(L,2)1%*2
SG{I.21=GG(1-1,3)
IG=GGi{1.JJ11-GG(I,2

20 50 j=3,J4

DEDDUDDOODDODDOODDIDPEDIDDDDDODIDODIOIDDIOIDOIOOODIIDIE>N

iY)

NB1 .AND. I .LE. NB3) RETURN
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D3=(Y(I,J)+Y(I,J-1))*0.5
D32=(D3-Y(I,2))**2
GG(I,J)=6G(I1,JJ1)-(GG(I,JJ2)-GG(I,JJ1))*(D42-D32)/(D52-D
GG(I,J)=GG(I,2)+DG*D32/D42
CONTINUE
END IF
D4=(Y(I,4)+Y(I,3))%0.5
D3=(Y(I,3)+Y(I,2))*0.5
D32=(D3-Y(I,2))**2
D42=(D4-Y(I,2))**2
GG(I,2)=(GG(I,3)*D42-GG(I,4)*D32)/(D42-D32)
IF(IT .LT. 5) THEN
DO 10 J=3,10
J1=J+1
DO 20 JM=J1,JE
IF(GG(I,J) .GT. GG(I,JM)) GG(I,J)=GG(I,TM)
CONTINUE
END IF

ELSE IF(NC .EQ. 2) THEN

GG(I,JE)=GG(I,NNY)
TF(I.GE.NB2.AND.I.LE.NB3) THEN
DO 60 J=3,JJ-1
GG(I,J)=GG(I,JJ)*Y(I,J)/Y(1,JT)
GG(I,JJ)=0.

END IF

IF(I.EQ.NB3+1) THEN

DO 70 J=3,JJ
GG(I,J)=GG(I,JJ1)*Y(I,J)/Y(I,JJ1)
END IF

ELSE IF(NC .EQ. 3) THEN

GG(I,JE)=0.

IMl=I-1

D2=(Y(I,2)+Y(IM1,2))*0.5
D4=(Y(I,JIL)+Y(I,JI)+Y(IM1,JT1)+Y(IM1,JT))*0.25
D5=(Y(I,JI2)+Y(I,JI1)+Y(IM1,JJ2)+Y(IM1,JJ1))*0.25
D52=D5-D2

D&42=D4-D2

IF(I.GE.NB2.AND.I.LE.NB3) THEN

DO 80 J=3,JJ
D3=(Y(I,J)+Y(I,J-1)+Y(IM1,J)+Y(IM1,J-1))*0.25
D53=D5-D3

D43=D4-D3
GG(I,J)=(D53*GG(1,JJ1)-D&3*GG(I,JJ2))/(D53-D4&3)
CONTINCE
GG(I,2)=(D52*GG(1,JJ1)-D&2GG(1,JJ2))/(D52-D42)
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D42=D42%D42
IF(I.EQ.NB3+1) THEN
DO 90 J=3,JJ
D3=(Y(I,J)+Y(I,J~1)+Y(IM1,J)+Y(IM1,J-1))*0.25
D32=(D3-D2)#**2
GG(I,J)=GG(I,JJ1)-(GG(I,JJ2)-GG(I,JJ1))*(D42-D32)/(D52-D
GG(I,J)=0.5%(GG(I+1,J)+GG(I-1,J))
CONTINUE
END IF
IF(I.GE.NB1.AND.I.LT.NB2) THEN
D3=(Y(I,3)+Y(I,2)+Y(IM1,3)+Y(IM1,2))*0.25
D&=(Y(I,4)+Y(I,3)+Y(IM1,4)+Y(IM1,3))*0.25
D32=(D3-D2)**2
D&42=(D4-D2)**2
GG(I,2)=(D42*GG(I,3)-D32*GG(I,4))/(D42-D32)
END IF
END IF

ELSE IF(NC .GE. &4 ) THEN

IF(I.LE.NB3) RETURN

D42=Y(I,JJ1)*Y(I,}J1)

D52=Y(I,JJ2)*Y(1,JJ2)

IF(I.EQ.NB3+1) THEN

DO 100 J=3,JJ

D32=Y(I,J)*Y(I,J)
GG(I,J)=GG(I,JJ1)-(GG(I,JJ2)-GG(I,JJ1))*(D42-D32)/(D52~D
CONTINUE

END IF

D32=Y(I,3)*Y(I,3)

D42=Y(1,4)*Y(1,4)
GG(I,2)=(D42*GG(I,3)-D32*GG(1,4))/(D42-D32)

END IF

RETURN
END
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SUBROUTINE IS USED TO SOLVE 1. TURBULENT KINETIC ENERGY
2. DISSIPATION RATE

DOOODODODE5DO35555 5555555535355 5555555050050 55505D5D555000>

SUBROUTINE STXKD
IMPLICIT REAL*8(A-H,0-2)

SINSERT BLOCK.MAIN

C....

IE=NNX+1
JE=NNY+1
SOLVE K EQUATION
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CALL EQCOE( 4 )
CALL COEF (4)

DO 10 I=NB2,NNX

DO 10 J=JB(I),NNY

FT(1,J)=2C(I,J)*SK(I,J)
10 CONTINUE

CALL SOLVE{7K,FT,4,NB2,IE,JE)
CALL CHECK{TK,4,IE,JE)

DO 60 I=NB2,IE

DO 60 J=2,JE

IF(TK(I,J).LT.1.D-9) TK(I,J)=1.D-9
60  CONTINUE

C.... SOLVE DISSIPATION EQUATION

CALL EQCOE(5)
CALL COEF (5)

DO 20 I=NB2,NNX

DO 20 J=JB(I),NNY

FT(I,J)=2C(I,J)*SD(I,J)
20 CONTINUE

CALL SOLVE(TD,FT,5,NB2,IE,JE)
CALL CHECK(TD,5,IE,JE)

DO 30 I=NB2,IE

DO 30 J=2,JE

IF(TD(I,J).LT.1.D-9) TD(I,J)=1.D-9
EV(I,J)=TK(I,J)*TK(1,J)/TD(I,J)*CNU
CONTINUE

CALL CHECK(EV,6,IE,JE)

DO 30 I=NBZ,IE

DO 50 J=5,JE
IF(EV(I,J-1).LE.EV(I,J-2) .AND. EV(I,J-1).LT.EV(I,J))
S EV(I,J)=EV(I,J-1)

CONTTNUE

DO 90 I=NB2-1,1,-1

DO 90 J=3,JE

TK(I,J)=TK(I+1,J)*0.8
TD(I,J)=TD(I+1,J)*0.8
EV(I,J)=EV(I+1,J)%0.8

90 CONTINCE

QOO0O0O0
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RETURN
END
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* SUBROUTIVE WALLFN Is USED TO DEFINE THE BOUNDAUY CONDITI
P S OSSP PSS S S S S oSS SR S S S S5 S 5SS S e e o
¥YD2: DISTANCE OF THE FIRST NODE
YD3: DISTANCE OF THE SECOND NODE
U3: VELOCITY OF SECOND NODE

u2: FIRST NODE

RKAR: RECIPROCAL OF KARMAN CONSTANT
E : LOG LAW CONSTANT E

RE : REYONDS NUMBER

SHSQR SHEAR STRESS AT FIRST TWO

SUBROUTINE WALLEN
IMPLICIT REAL*8 (A-H,0-2)

ERT BLOCK.MAIN

DO 900 I=NB2,NB3

JJ=JB(I)

JM1=JJ-1

C3=0(1,JJ)

YD3=DABS ((Y(I,JJ)+Y(I,JM1))*0.5
YTD=DABS (Y{I,JM1))

-Y(I,2))

ARG=RE~E*YD3
SHEAR=0.1
AVEL=DABS (U3)
RKAR=1./AK
DO 10 IH=1, 100

ARSH=ARG:**SHEAR

DENUM=RKAR® (1.+DLOG (ARSH))

SHNEW=( RKAR*SHEAR+AVEL)/DENUYM

DIFF=DABS (SHNEW-SHEAR)
SHEAR=SHNEW
IF( DIFF.LE.1.D-7) GO TO 20

CONTINCE

SIGN=U3/AVEL

SHSQR=SHEAR

DO 30 J=J0M1,3,-1
¥YD2=DABS(0.5%(Y(L,J)+Y(IL,J-1))-Y(1,2))
YT2=DABS(Y(I,J))

ARG=RE*E*YD2*SHSQR

SHEAR=SHSQR*SHSQR

TR(I,J)=SHEAR/DSQRT(CNU)*YT2/YTD
To(I,J3=RKAR~SHEAR“SHSQR/YT2

Ee ey e T ST S S
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YPLUS=ARG/E

IF(YPLUS.GT.20.) THEN
U(I,J)=RKAR*DLCG (ARG)*SHSQR*SIGN

ELSE

YD4=DABS (0. 5% (Y(I,J+1)+Y(I,J))-Y(I,2))
U(I,J)=U(I,J+1)*YD2/YD4

END IF

30 CONTINUE

UTA(I)=SHSQR
V(I,M1)=V(I,JI)*u(I,JM1)/U3
9500 CONTINUE

RETURN
END
C
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C SUBROUTINE TRIDAG TO SOLVE ALGEBRAIC EQUATIONS

C SIMULTANEOUSLY FOR EACH ROW OR COLOUM

Gttt e e e e e e e e A A A e e ek
C

C

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(99),B(99),C(99),D(99),V(99),BETA(99),GAMMA (9
BETA(IF)=B(IF)
GAMMA (IF)=D(IF)/BETA(IF)
IFP1=IF+1
DO 1 I=IFP1,L
BETA(I)=B(I)-A(I)*C(I-1)/BETA(I-1)
1 GAMMA(I)=(D(I)-A(I)*GAMMA(I-1))/BETA(I)
V(L)=GAMMA (L)
LAST=L-IF
DO 2 K=1,LAST
I=L-K
V(I)=GAMMA(I)-C(I)*V(I+1)/BETA(I)
RETURN

™~
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SUBROUTINE MAIN3D

B it o S e R R e

C.... MAIN3D IS USED TO ARRANGE THE COMMON SPACE
C.... FOR FLOWS PAST AN AXISYMMETRIC BODY WITH
C.... OR WITHOUT ANGLE OF ATTACK. THE MAXIMUM SPACE
C.... CAN BE INCREASED OR DECREASED DEPENDING ON

C . THE PROBLEM.

C
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wm




SUBROUTINE MAIN3D

IMPLICIT REAL*8 (A-H, 0-Z)

COMMON M(2000000)
COMMON/NUMBER/N1,N2,N3,N&4 N5 ,N6,N7,N8,N9,N10,

N11,N12,N13,N14,N15,N16,N17,N18,N19,N20,
N21,N22,N23,N24,N25,N26,N27 ,N28 ,N29,N30,
N31,N22,N33,N34,N35,N36,N37,N38,N39,N40,
N41,N&2 N&3 N&G& NG5S N&6 ,N&T N&8 ,N&9 NS0,
N51,N52,N53,N54,N55,N56 ,N57 ,N58,N59,N60,
N61,N62,N63,N64 ,N65 ,N66 ,N67 ,N68 ,N69,N70,
N71,N72,N73,N74,N75 ,N76 ,N77 ,N78,N79,N80,
N81,N82,N83,N84 ,N85,N86,N87 ,N88 ,N89,N90,
N91,N92,N93,N94 ,N95,N96 ,N97,N98,N99,N100,
N101,N102,N103,N104,N105,N106,N107,N108

COMMON/COEF1/ IE,JE,XKE

DATA IPR/2/

MAXI=2000000

I1=TE*JE*KE*IFR

I2=JE*KE*IPR
3=IE*KE*IPR

£~
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IE*IPR
*IPR
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N2=N1+11
N3=N2+11
NS=N3+I1
N3=N4+11
N6=N5+I1
N7=N6+11
N8=NT+I1
N9=N8+I11
N10=N9+11,
Nii=N10+11
N12=N1i+il
NI3=H12+]1
N14=N13+11
N13=N14+11
Nlo=N15+I1
N17=N16+13
N18=N17+I3
N19=N18+I3
N20=N19+I3
N21=N20+I3
N212=N21+I3
N23=N2Z+I3
NIa=N23+13
NI5=N2-4+i3
N29=N253-13
NI7=NIo+i2

NI8=NIT-I2
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N29=N28+12
N30=N29+I2
N31=N30+I2
N32=N31+I2
N33=N32+12
N34=N33+12
N35=N34+12
N36=N35+12
N37=N36+12
N38=N37+I12
N39=N38+I2
N4O=N39+12
N&41=N40+I2
N&2=N41+12
N&43=N42+12
N44=N&3+12
N45=N4L+]I2
N46=N45+I2
N&47=NL6+12
N48=N&GT+]I2
N49=N48+1I2
NSO=N49+12
N51=N50+12
N52=N51+I2
N53=N52+I2
N534=N53+12
N35=N534+12
N56=N535+]12
N57=N56+12
N38=N57+I12
N39=N58+12
N60=N59+12
N61=N60+12
N62=N61+12
N63=N62+12
N64=N63+12
N65=N64+12
N66=N65+12
N67=N66+12
N68=N67+12
N69=N68+12
N70=N69+12
N71=N70+I2
N72=N71+1I2
N73=N72+12
N74=N73+12
AYERAYES 4 U
NT6=N753+12
N77=NTo+I2
N78=N77+I2
NTO=NTE+]2
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N80=N79+I12
N81=N80+I2
N82=N81+I2
N83=N82+I12
N84=N83+12
N85=N84+12
Nge=M85+I12
N87=N86+I12
N88=N87+12
N89=N§8+I2
NSO=N89+I2
N21=N90+I2
NG2=N91+I2
N93=N92+I2
N34=N93+12
N95=N95+I2
N96=N95+12
N97=N96+12
N98=N97+I2
NS9=NG8+I2
N10O=NGS+I2
N101=N100+I2
N102=N101+I4
N103=N102+1I4
N104=N103+I4
N105=N104+I4
N106=N105+15
N197=N106+15
N108=N107+I5
N109=N108+I5

IF(N109 .GE. MAXI) THEN
PRINT 10, MAXI, N1C9

TISF
SLoL

NMAX=MAXI/IPR
NN=N109/IPR
CALL ZERO(M,NMAX,NN)

CALL MESH(M(N101),M(N13),M(N15),M(N102),M(N15),M(N108),

IE,JE,KE)

CALL STAG3D(M(N1),M(N2),M(N3),M{N&)Y ,M(N5),

M(NB) ,M(NT) ,M(N8) ,M(NT),M(N10),

M(N11),M(N12),4(N13

JMON1S) MONLS),
M(N16),M(NL7),M(N18),

M{N19) ,M(N20),

MUN21) ,M(N22),M(N23),M(N24) ,M(N25),

NIN26) ,M(N27),4(N28),
MON317,M(N32),M(N33),

MON36),MIN37),M(N38)

MONGL) LV MINSG2Y MM,
MINSS) MINGTY MINLE)Y
MONSTY,MONS2) M(N3DY
MIN36),MINSTY M(N38)

M(N29),M(N30),
MN34),M(N33),

,H(N393 ,M(NLO),

MUNGLY H(NGS),

LINSS) L MIN50),
CIONSSY MINSS),
1(N39),M(N60),




9
3

M(N101) ,M(N102) ,M(N103) ,M(N104) ,M(N105),
M(N106),M{N107),M(N108),IE,JE,KE)
END IF

10 FORMAT(' WARNING*** INSUFFICIENT STORAGE ',/5YX,

aaogaon

2005
2006

&

-~
[ACI o
DY e

$

' MAXIMUM = ',110,5X,'PRACTICAL = ', I10)
RETURN
END

L“b-&-k-l—-‘.—'n.l--b-l-.’_.l.d..’--‘-&-b.l -I -I--LJ-J.J. ' -I-.I.J—l_l—l.-l—l.-l-l_-l--l--l—-'--l -I-J-.I-L*-'l‘-

SUBRIZUTINE MESH IS USED TO READ COORDINATES

-I.-L B.-J-—LJ-J -I..I-.L.I-J.-I..L—-—-L-L.LJ-.LJ.J.J.J- L—LLL&&MMW

SUBROUTINE MESH(XP,YP,ZP,F1,F2,F3,IP1,JP1,KP1)
IMPLICIT REAL*8.A-H,0-2)

DIMENSION YP(IPl,JPl,KPl)

DIMENSION ZP(IP1,JP1,KP1)

DIMENSICN F2(IP1,JP1,KP")

DIMENSION XP(IP1),F1(IF.),F3(XP1)
COMMON/COEFS4/ UI, VI, M1, M2, M3

OPEN(UNIT=11,FILE='PHYSBODY')
READ(11,2005) M1,M2,M3
READ(11,2006)(XP(I),I=1,IP1)
READ(11,2006)(F1(I),I=1,IP1)
READ(11,2006)(YP(1,J,1),J=1,JP1)
READ(11,2006) F2(1,1,1)
CLOSE(il)

TORMAT(6110)

FORMAT(5E14.7)

DO 422 K=1,KP1

F3(K)=0.
DO 421 J=
I

CONTINUE

> CONTINUE

RETURN

END

SUBROUTINE ZERO(V,NMAX,NN)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION V(NMAX)

DO 10 i= L \\

\Y(T) 1

RETCRN

IND
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C.... SUBROUTINE STAG3D

c

(e i ettt et R i et bt etk

C.... STAG3D IS USED TO SOLVE 3D FLOWS PAST AN AXISYMMETRIC

C.... BODY WITH STAGGER GRID SYSTEM.

c

SUBROUTINE STAG3D(UO,V0,W0,AKEQ,ADSO, ZUT, PR, PP, DH,
BCU,BCV,BCW,YP,ZP,F2,DPDYU,DPDYW,
DPDZU,DPDZV,YP2,YP3, YP4 ,VSF,WSF, UTAUA,
BD,BU,BV,BW,DS,US,VS,¥sS,
CHP,UHF , VH,WH,UB,UP, UF, VB, VP, VF,WB, WP,
AKEB,AKEP ,ADSP,FU,GW,DF,
CU,CV,CW,CUY, CWY,CUZ,CVZ,XP,F1,UL,UTL,
TAUW ,UTAU, YPP,F3,1P1,JP1,KP1)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION UO(IP1,JP1,KP1)

DIMENSION VO(IP1,JP1,KP1)

DIMENSION WO(IP1,JP1,KP1)

DIMENSION AKEO(IP1,JP1,KP1)

DIMENSION ADSO(IP1,JP1,XP1)

DIMENSION ZUT(IP1,JP1,KP1)

DIMENSION PR(IP1,JP1,KP1)

DIMENSION PP(IP1,JP1,KP1)

DIMENSION DH(IP1,JP1,KP1)

DIMENSION BCUG(IP1,JP1,KP1)

DIMENSION BCV(IP1,JP1,KP1)

DIMENSION BCW(IP1,JP1,KP1)

DIMENSION YP(IP1,JP1,KP1)

DIMENSION ZP(IP1,JP1,KP1)

DIMENSION F2(IP1,JP1,KP1)

DIMENSION DPDYG(IP1,KP1),DPDYW(IP1,XP1),DPDZU(IP1,XP1),

WV N w

S DPDZV(IP1,KP1),YP2(IP1,KP1),YP3(IP1,KP1),YP4(
5 VSF(IP1,XP1),wSF(IP1,KP1),UTACA(IPL,KP1)
DIMENSION 38D(JP1,KP1),BU(JPL,KP1),BV(JP1,KP1),BW(JP1,XP
S DS(JP1,XP1).GG(JP1,KP1)
DIMENSION (US(JP1,XP1),VS(JP1,KP1),WS(JPL1.KP1),
S CHP(JPL,KP1),UHF(JPL,KP1) ,VH(JPL ,KP1) ,WH(JP1,
S ra(Jpi.xp1),LP(JpPL,XP1) ,LF(JPL,KP1),

5 VB(JPL,XP1),VP(JPL,KP1),VF(JP1.KP1),
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$ WB(JP1,KP1),wP(JP1,KP1),WF(JP1,KP1)
DIMENSION FU(JP1,KP1),GW(JP1,KP1),DF(JP1,KP1),

$ AKEB(JP1,KP1),AKEP(JP1,KP1),ADSP{JP1,KP1)
DIMENSION CU(JP1,KP1),CY(JP1,KP1),CW(JP1,KP1),

$ CUY(JP1,KP1),CwY(JP1,KP1),CUZ(JP1,KP1),CVZ(JP
DIMENSION XP(IP1l),F1(IP1),UL({IP1),UTL(IP1),

$ TAUW(KP1),UTAU(KP1),YPP(KP1),F3(KP1)

DIMENSION AA(99),BB(99),CC(99),0D(99),T(99)

COMMON M(1)

COMMON/NUMBER/N1,N2,N3,N4 ,N5,N6,N7 ,N8 ,N9,N10,
N11,N12,N13,N14,N15,N16,N17,N18,N1¢9,N20,

N21,N22,N23,N24 ,N25
N31,N32,N33,N34,N35
NG1,N42 ,NG3 N&& NG5
N51,N52,N53,N54,N55

,N26,N27,N28 ,N29,N30,
,N36,N37,N38,N39,N40,
,NG6 ,N&T N&8 ,N&I N50,
,N56,N57,N58,N59,N60,

N61,N62,863,N64 ,N65 ,N66,N67,N68,N69,N70,
N71,N72,N73,N74,N75,N76,N77,N78,N79,N80,
N81,N82,N83,N84,N85,N86,N87,N88,N89,N90,
N91,N92,N93,N94 ,N95,N96,N97,N98,N99,N100,
N101,N102,N103,N104,N105,N106,N107,N108

COMMON/COEF2/RE, TAU, IPRINT, ITERT,CD, AK, E

COMMON/COEF3/NA23,NSR, LOT,NTS, INI,NTY

COMMON/COEF4/UI,VI,M1,M2,M3

COMMON/UVW1/IMAX , JMAX ,KMAX, JPP KPP, JA, JAML, T, KM1, MM

[T R 7, DRV, BV BT W Vo NG Vo B 72 B Vo B 04 ]

JPP=JP1

KPP=KP1
IMAX=IP1-1
JMAX=JP1-1
KMAX=KP1-1
CD2=DSQRT(CD)
CD4=DSQRT(CD2)
CD3=CD&4=CD4*CD4&
CD2I=1./CD2
REI=1./RE
TAUI=1./TAU
OPEN(UNIT=6, FILE='OGPT')
WRITE(6,1232)RE,TAU
FORMAT(//5X,'RE =" F

10.1,5X,'TAC =',F6.3//)
WRITE(6,2005)(XP(IY, 1=

1,IP1)

M21=M2-1

M23=M2-3

M31=M3-1

KMi=2

KMM=2
iF(NA23.EQ.3Y THEN
NM1=Klax-1

KMM=3

END IF

JTERASS




Camm-m

237
C-mn-

38
Cemm-
C-=n-

103

ITPP=2

EPE=0.0001

ABCD=0.06

JOPT=3

INITIAL PROFILES AT INLET STATION
TF(INI .EQ. 1) THEN

DO 935 K=1,KP1

DO 935 J=1,JP1

VIV=ZP(1,J,K)
VIW=.5%(ZP(1,J,K)+2P(1,J,k+1))
U0“1,J,K)=UI

vO(1,J,K)=VI*DSIN(VIV)
WO(1,J,X)=VI*DCOS(VIW)

CONTINUE

ELSE

OPEN(UNIT=11,FILE='GUESS")

END IF

IPR=0

CALL GLUTL(M(N101),M(N103),M(N104),RE,1IP1,M1,421,4BCD)
DO 237 X=1,KP1

UTAUA(M31,K)=ABCD

RETURN POINT OF GLOBAL SWEEPS

DO 4000 IT=1,ITERT

PRINT 2500, M3

FORMAT(' STARTING POINT OF TURBULENT FLOW aT ---', I5)
IPR=IPR+1

DO 38 Jj=1,JP1

DO 38 K=1,XP1

CHP(J,X)=UI

CONTINUE

RETURN POINT OF MARCHING PROCESS FOR
CONVECTIVE TRANSPORT EQUATIONS

DO 3000 I=2,IMAX

ja=2

IF(I.GE.M3) JA=JOPT

JAM1=JA-1

IF(IT.£Q.1) THEN

DO 103 I=1,IP1

DO 103 X=1,KP1
YP2(I,X)=YP(I,1,K)**2+YP(I,JaAM1,K)**2-2.5YP(I,1,X)*YP(I,

S *DCOS(2P(I,JaM1,K)-2P(1,1,X))
YP3(I,K)=YP(I,1,X)**2+YP(I,Ja,K)**2-2 . *YP(I,1,K)*YP(I,JA
S =DCOS(ZP(1,JA,K)-2ZP(I,1,X))
YP4(I,K)=YP(I,1,K)**2+YP(I,JA+1,K)**2-2 *YP(I,1,K)*YP(I,
S *DCOS(ZP(I,Ja+1,K)-2ZP(1,1,K))

CONTINUE

D0 1202 Jj=1,JP1
DO 1202 X=1,KP1
LO(I,J.X)=t0(i-1,J.K)
VO(I,4.X)=V0(1-1,J,K)
WO(I,J,X)=Ww0(i-1,3,K)
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AKEO(I,J,K)=AKEO(I-1,J,K)
ADSO(I,J,K)=ADSO(I-1,J,K)
Uo(I+1,J,K)=U0(1,J,K)
Vo(I+1,J,K)=v0(I,J,K)
Wo(I+1,J,K)=w0(I,J,K)
AKEO(I+1,J,K)=AKEO(I,J,K)
ADSO(I+1,J,K)=ADS0O(I,J,K)

1202 CONTINUE
IF(I .EQ. M1) THEN
DO 1203 K=1,KP1
Uo(M1,1,K)=0.
vo(M1,1,K)=0.
WO(M1,1,K)=0.

1203 CONTINUE
END IF
END IF

C---- DEFINE THE BCDY VISCOSITY DISTRiBUTION

IF(I .GE. M3) THEN
DO 149 K=2,KMAX
DO 149 J=1,JP1

149 ZUT(I,J,K)=CD*AKEO(I,J,K)*AKEO(I,J,K)/ADSC(I,J,K)
DO 150 K=2,KMAX
DO 150 J=4,JP1

IF(ZUT(1,J-1,K).LE.2ZUT(I,J-2,K).AND.2UT(I,J-1,K).LT.

$2UT(I,J,K)) 2ZUT(I,J,K)=2UT(I,J-1,K)

150 CONTINUE
DO 143 J=1,JP1
ZUT(I,J,1)=2UT(I,J,KMH)

143 ZUT(I,J,KP1)=2UT(I,J,KM1)
IF(IT.EQ.1) THEN
DO 198 J=1,JP1
DO 198 K=1,KP1

198 ZUT(I+1,J,K)=2UT(I,J,K)
END IF
END IF
IF(IT.GT.1.AND.I.LT.M3) THEN
DO 189 J=1,JP1
DO 189 K=1,KP1
AKEO(I,J,K)=AKEO(I+1,J,K)*0.8
ADSO(I,J,K)=ADSO(i+1,J,K)*0.8

189 ZUT(I,J,K)=2UT(I+1,J,K)%0.3
END IF

C---- RESET THE SECTION VARIABLES

DO 190 K=1,KP1
DO 190 J=1,JP1
UB(J,X)=U0(I+1,J,K)
CP(J,X)=L0(],J,K)
CF(J.X)=L0(1-1,J,K)
VB(J,X)=VO(I+1,J,K)
VP(J,K)=V0(I,J,K)
VF(J,K)=V0r1-1,J.K)
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150
Commnm

Comw-m

WB(J,K)=WO(I+1,J,K)

WP(J,K)=W0(1,J,K)

WF(J,K)=W0(I-1,J,K)
AKEB(J,K)=AKEO(I+1,J,K)
AKEP(J,K)=AKEO(I,J,K)
ADSP(J,K)=ADSO(I,J,K)

CONTINUE

FA COEFFICIENTS OF MOMENTUM EQUATIONS
CALL FAUVW(M(N101),M(N102),M(N51),M(NS2),M(N53),M(N26),
$ IP1,JP1,KP1,NA23,REI,TAUI)
DO 900 ITA=1,ITERA
IF(I.GE.M3.AND.I.LT.M2) THEN

BOUNDARY CONDITIONS: WALL FUNCTION
XXI=XP(I+1)-XP(I)

DO 155 K=2,KMAX
R=0.5%(YP(I,1,K)+YP(I+1,1,K))

IF(NA23 .EQ. 2) R=l.
YXT=YP(I+1,1,K)-YP(I,1,K)
YET=0.5%(YP(I+1,2,K)-YP(I+1,1,K)
$+YP(I,2,K)-YP(I,1,K))
YZT=0.25%(YP(I+1,1,K+1)-YP(I+1,1,K-1)
S+YP(I,1,K+1)-YP(I,1,K-1))
RZXI=R*(2P(I+1,1,K)-2ZP(I,1,K))
RZET=0.5*R% (ZP(I+1,2,K)-2P(I+1,1,K)
$+2P(I,2,K)-2P(I,1,K))
RZZT=0.25%R*(ZP(I+1,1,K+1)-2P(I+1,1,K-1)
$+ZP(I,1,K+1)-2P(I,1,K-1))
B1il=YET*RZZT-YZT*RZET
B12=YZT*RZXI-YXI*RZZT
B13=YXI*RZET-YET*RZXI

B22=XXI*RZZT

B23=-XXI*RZET

B32=-XXI*YZT

B33=XXI*YET
G11=XXI*XXI+YXI*YXI+RZXI*R2ZXI
G22=YET*YET+RZET*RZET
633=YZT*YZT+RZZT*RZZT
G12=YXI*YET+RZXI*RZET
G13=YXI*Y2T+RZXI*R22T
G23=YET*YZT+RZET*RZZT
G=G11*G22%G33+2.*G12%G13%G23-G23*G23%G11-
$G13*G13%G22-G12+G12%G33

GI=1./G

A11=GI*(G22*G33-G23%G23)
A22=GI#(G11%G33-G13%G13)
A33=GI*(G11+G22-G12%G12)
A12=GI#*(G13*G23-G12%G33)
A13=GIx(G12%G23-G13+G22)
A23=GI=(G12%G13-G23+G11)
AJI=DSQRT(GI)

DG11=DSQRT(G11)
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DG33=DSQRT(G33)

COSA=DABS (B22*YET+B32*RZET)/DSQRT (G22*G*A22)
GRADP=(PR(I+1,1,K)-PR(I,1,K))/(XP(I+1)-XP(I))*C0OSA
IF(I.GE.M23.0R.IT.LT.5) GRADP=0.
U3=UP(JA,K)
V3=0.25%(VP(JAM1,K)+VB (JAM1,K)
$+VP(JA,K)+VB(JA,K))
W3=0.25%(WP(JA,K-1)+WB(JA,K-1)
S+WP (JA,K)+WB (JA,K))
Q3=DSQRT (U3#*U3+V3*V3+y3*W3)
Q3XI=AJI*DG11*B11*U3
Q3ZT=AJI*DG33* (B13*U3+B23*V3+B33*W3)
UTAU(K)=UTAUA(I,K)
IF(IT.EQ.1) UTAU(K)=UTAUA(I-1,K)
DO 555 IJK=1,50
DPR=GRADP/ (RE*UTAU (K)*UTAU(K)*UTAU(K))
DPR=DMAX1(DPR,EPE)
DTAU=0.5%DPR
SQRT3=DSQRT(1.+DTAU*RE*UTAU(K)*DSQRT(YP3(I,K))*C0OSA)
UTAUN=Q3/ ((DLOG(4.*(SQRT3-1.)/(SQRT3+1.)/DTAU)
$+2.*SQRT3-2.)/AK+5.45+3.7*DPR)
IF(DABS (UTAUN-UTAU(K)).LT.1.0D-5) GO TO 556
UTAU(K)=UTAUN
555 CONTINUE
556 TAUW(K)=2.*UTAU(K)*UTAU(K)
YPP (K)=RE*~UTAU(K)*DSQRT(YP2(I,K))*COSA
SQRT2=DSQRT(1.+DTAU*YPP(K))
Q2=UTAU (K)*((DLOG(4.*(SQRT2-1.)/(SQRT2+1.)/DTAU)
$+2.%SQRT2-2.)/4K+5.45+3.7%DPR)
UTAUK=0.5*(UTAUA(I-1,K)+UTAU(K))
AKEP(JAM1,K)=UTAUK*UTAUK*CD21I
ADSP(JAM1,K)=UTAUK*UTAUK*UTAUK/ (AK*DSQRT (YP2(I,K))*C0SA)
Q2XI=Q3X1*Q2/Q3
Q22T=Q32T*=Q2/Q3
UP(JAM1,K)=Q2XI*XXI/DG11
VSF(I,K)=Q2XI*YXI/DG11+Q2Z2T*YZT/DG33
WSF(I,K)=Q2XI*RZXI/DG11+Q2ZT*R2ZT/DG33
153 CONTINUE
DO 151 K=2,KMAX
UTAUA(I,K)=UTAU(K)
V2=0.5%(VSF(I,K)+VSF(I-1,K))
HN=0.5*(YP4(I,K)-YP2(I,K))
HS=0.5*(YP3(I,K)-YP2(I,K))
VP(JAM1,K)=(HN*V2+HS*VO(I,3,K) )/ (HN+HS)
IF(K .EQ. KMAX) GO TO 151
WP (JAM1,K)=0.25%(WSF(I,K)+WSF(I-1,K)+WSF (I, K+1)+WSF(I,K+
151 CONTINUE
UP(JAML, 1)=UP(JAM1,KMM)
UP(JAM1,KP1)=UP(JAM1,KM1)
VP(JAML, 1)=VP(JAML ,KMM)
VP(JAML,KP1)=VP(JAML,KM1)




WP (JAM1,1)=-WP(JAM1,2)
WP (JAM1,KMAX)=-WP (JAML,K}M1)
AKEP (JAM1,1)=AKEP (JAM1,KMM)
AKEP (JAM1,KP1)=AKEP (JAM1,KM1)
ADSP(JAM1,1)=ADSP (JAM1,KMM)
ADSP (JAM1,KP1)=ADSP (JAM1,KM1)
END IF
DO 304 K=1,KP1
DO 304 J=1,JP1
US(J,K)=UP(J,K)
VS(J,K)=VP(J,X)
WS(J,K)=WP(J,K)
304 CONTINUE
C---- CALCULATE THE STAR VELOCITY FIELD
CALL FASVEL(PR,M(N16),M(N17),M(N18) ,M(N19),M(N26) ,M(NS&4)
M(NS55),M(NS6),M(NS7),M(N58) ,M(N59),M(N60),
M(N32),M(N33),M(N34) , M(NGL) ,M(N27) ,M(N28),
M(N29),M(N30),M(N53) ,M(N31),
iP1,JP1,KP1,NA23)
C---- CALCULATE THE PRESSURE-CORRECTION FIELD
179 DO 797 J=1,JP1
DO 797 K=1,KP1
PP(I-1,J,K)=0.
PP(I,J,K)=0.
797 PP(I+1,J,K)=0.
DO 798 ITER=l,ITPP
CALL PRESU(PP,M(N31),M(N10),M(N11),M(N12),0,IP1,JP1,KP1)
DO 796 J=1,JP1
PP(I,J,1)=PP(I,J, M)
796 PP(I,J,KP1)=PP(I,J, KM1)
798 CONTINUE
C---- CORRECT VELOCITY FIELD BY PP
CALL FAVELCOR(PP,M(N&0),M(N&3) ,M(N&6) ,M(N32),M(N33) ,M(N3
s M(N54) ,M(N55),M(N56),M(N29) ,M(N20) ,M(N21),
$ IP1,JP1,KP1,NA23)
900 CONTINUE
C---- CALCULATE THE PSEUDO-VELOCITY FIELD
CALL FAHVEL(M(N35),M(N36),M(N37),(N38),M(N43) ,M(N26),M(

N W WD n

S M(N58),M(N59),M(N60) ,M(N16) ,M(N17),M(N18) ,M(N19),
S M(N27),M(N28) ,M(N29) ,M(N30) ,M(N53),
] IP1,JP1,KP1,NA23)

IF(I .GE. M3) THEN
C---- CALCULATE THE TURBULENT QUANTITIES

CALL FAUVW(M(N101),M(N102),M(N51),M(N52),M(N53),M(N26),

S IP1,JP1,KP1,0,REI,TAUI)

END IF
C---- UPDATE TRANSPORT QUANTITIES AT UPSTREAM STATIOM

DO 679 K=1,KP1

00 679 J=1.,JP1

LO(1,2,K)=CP(J,K)

Ve(I,J,K)=VP(J,K)

R I e e
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679

373

2

2098
2099

2222
3001

3002
3003
3004

C

C 300
C

C 300
3007
3008
3009
3010
3011
3012

C

C 301

C
C 301

Wo(I,J,K)=WP(J,K)
AKEO(I,J,K)=AKEP(J,K)
ADSO(I,J,K)=ADSP(J,K)
IF(I.EQ.IMAX) THEN
DO 373 K=1,KP1
DO 373 J=1,JP1
Uo(Iri,J,K)=U0(IMAX,JT,K)
VO(IP1,J,K)=V0(IMAX,J,K)
WO(IP1,J,K)=WO(IMAX,J,K)
AKEO(IP1,J,K)=AKEO(IMAX,J,K)
ADSO(IP1,J,K)=ADSO(IMAX,J,K)
2UT(IP1,J,K)=2UT(IMAX,J,K)
CONTINUE
END IF
IF(IPR .EQ. IPRINT) THEN
WRITE(6,2)IT,I,XP(I),TAU
FORMAT(//5X,'NO. OF ITERATION =',6I3,5X,'STATION',I3
$,5X,'X ='F7.4,5%, 'TAU ="' ,F6.3)
IF(I.LT.M3.0R.I.GE.M2) GO TO 2222
DO 2098 K=2,6KMAX
WRITE(6,2099) K,YPP(K),UTAU(K), TAUW(K)
FORMAT (35X, 'K=",15,5X, 'YPLUS=',E12.4,5X, 'UTAU=' ,E12.4,3X,
S'TAUW=',E12.4)
WRITE(6,3001)
FORMAT(/5X, 'VELOCITY U='//)
DO 3002 K=2,KMAX
WRITE(6,2007) (UP(J,K),J=1,JP1)
WRITE(6,3003)
FORMAT(/5X, 'VELOCITY V="'//)
DO 3004 K=2,KMAX
WRITE(6,2007) (VP(J,K),J=1,JP1)
WRITE(6,3005)
5 FORMAT(/5X, 'VELOCITY W='//)
DO 3006 K=2,KMAX
6 WRITE(6,2007) (WP(J,K),J=1,JP1)
WRITE(6,3007)
FORMAT (/5X, "TURBULENT KINETIC ENERGY='//)
DO 3008 K=2,KMAX
WRITE(6,2007) (AKEP(J,K),J=1,JP1)
WRITE (6,3009)
FORMAT (/5X, ' TURBULENT DISSIPATION='//)
DO 3010 K=2,KMAX
WRITE(6,2007) (ADSP(J,K),J=1,JP1)
WRITE(6,3011)
FORMAT (/5X, 'PRESSURE ='//)
DO 30612 K=2,KMAX
WRITE(6,2007) (PR(I,J,K),J=1,JP1)
WRITE(6,3013)
3 FORMAT(/5X, 'MASS SOURCE ='//)
DO 3014 K=2 ,KMAX
4 WRITE(6,2007) (DS(J,K),J=1,JP1)




——

3015

3016

3000
2007

Comw-

4111

4110

4009

4112

WRITE(6,3015)

FORMAT(/5X, 'EDDY VISCOSITY ='//)
DO 3016 K=2,KMAX

WRITE(6,2007) (ZUT(I,J,X),J=1,JP1)
END IF

CONTINUE

FORMAT(6E12.4)

IF(IPR .EQ. IPRINT) IPR=0

UPDATE THE PRESSURE FIELD

(IR T P s e v e e

CALL FAPRESS(PR,PP,M(N9),M(N31),M(N20),M(N21),M(N22),M(N

S IP1,JP1,KP1,J0PT)
WRITE(6,4111) IT,M3

FORMAT(/5X,'NO. OF ITERATION =',I5,5X,'M3 =',I5)

WRITE(6,4110)

FORMAT(/5X, 'PRESSURE DISTRIBUTION ALONG THE WALL')

DO 4009 K=2,KMAX

WRITE(6,2005) (PR(I,:,K),I=1,IP1l)
CONTINUE

WRITE(6,4112)

FORMAT(/5X, 'SKIN-FRICTION COEFFICIENT')
DO 4221 K=2,KMAX

DO 4222 I=M1,M21

IF(I .LT. M3) THEN
UT=UTL(I)"U0(I,2,K)/UL(I)

ELSE

CT=UTACA(I,X)

END IF

TAUW (1)=2.*UT*UT

CONTINUE

WRITE(6,2005) (TAUW(I),I=M1,M21)
CONTINUE

WRITE(6,4113)

FORMAT(/5X, 'CENTERLINE VELOCITY')
DO 4140 K=2,KMAX

WRITE(6,2005) (UO(I,1,K),I=M2,IMAX)
IF(IT .GT. 2) THEN
IF(UO(M3,2,K).LT.UL(M3+1)) M3=M3+1
IF(UO(M3,2,K).6T.CO(M31,2,K)) M3=M3-1
END IF

YSF(M1-1,K)=VO(¥1-1,2,K)

CONTINUE

CONTINUE

IF(IT .LT. ITERT+9) GO TO 9999

DO 5001 I=1,IP1

DO 5001 J=1,JP1

DO 5001 K=1,KP1

5001 WRITE(6,2005) Co(I,J,K),v0(I,J,K),w0(I,J,K),AKEO(I,J,K)

2005
9399

$,ADSO(I,J,X),PR(I,J,K)
FORMAT(¢E12.4)

CLOSE (11)

CLOSE (6)
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CAL.L EXIT
END
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C.... SUBROUTINE ULUTL

C

Ot te bt de e dd e e e e e e e R A e R R ek e o
SUBROUTINE ULUTL(XP,UL,UTL,RE,IP1,M1,421,ABCD)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION XP(IP1),UL(IP1),UTL(IP1)

ABC=0.33206
DO 35 I=M1,6M21
¥=0.5%(XP(I)+XF(I+1))
REX=DSQRT (RE*XX)

35 UTL(I)=DSQRT(ABC/REX)
DO 33 I=19,29

33 UL(I)=1.0
UL.(30)=0.9994
UL(31)=0.9852
UL(32)=0.9250
UL(33)=0.8200
UL(34)=0.7050
UL(35)=0.6027
UL(36)=0.5275
UL(37)=0.4862
ABCD=0.06
RETURN
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..........................................

SUBROUTINE FAUVW(XP,F1,FU,G¥.DF,GG,
S IP1,JP1,KP1,NA23,RED, TAUT)
IMPLICIT REAL*8(A-H,0-2)
COMMON M{1}
COMMON/UVW1/IMAX , MAX,KMAX, JPP KPP, JA, JAM1, I, K1, KO0
COMMON/UVWL,AL,A2,A3,4%.0C,VV W
COMMON/UVW3/REFF , ZUTP,ZU1X « , CUTET. 27777, FX1,FY2 ,FZ3
COMMON/UVW7 /R, XXI,¥YXI,YET,Y?T,R7Y.  &4ET,RZ2T
COMMON/UVW8/C1,C2,CEFFK,CEFFD
COMMON/NUMBER/N1,N2,N3,N4 N5 ,N6,N7, N8, N9, N10,
N11,N12,N13,N14,:015,N16,N17,N18,N19,320,
MZ1,N22,N23,N24,N25,N26,N27 ,N28,N29, N30,
N31,N32,N33,M36,N35,N36,N37 ,N38,N39,N40,
N41,NAY NGB NGS NS5 NG6, NGT NA8 NG9 NSO,
\51,%52,N53,N54,N55.N56,N57,N58,N59,N60,
N6..N62,N62, N4 N6, NB6,M67 ,N68 ,NE9,NTO,
N71.N72,N73,N74,N75,N76,N77,N78,N79, N80,

(T RNV RV, RV, I 7, N Ve )




S
$
$
3
C
Cuem-=
C
C----
$
$
S
$
$
S
S
C----
S
S
S
$
$
S
$
Cownn

[T IR 7, RV T Vo I Ve B )

N81,N82,N33,N84 ,N85,N86,487,N88,NGI,N9O,
N91,N92,N93,N94 ,N95,N96,N97,M98,N99,N100,
N101,N102,N103,N104,N105,N106,N107,N108

DIMENSION FU(JP1,KP1).uW(JP1,KP1),.7(JP1,KP1),GG(JP1,KP1

XP(IP1),F1(IP1)
FA MOMENTUM EQUATION

IF(NA23 .NE. 0) THEN

Mi=1

X-MOMENTUM

XXI=XP(I+1) -XP(I)

Al=2.

a2=1.

A3=1.

A4=1.

FX1i=0.5%(F1(I;+F1(T+1))

CALL FACST(M(N1),M 13} ,M(N1 ), M(N15),2(N108) ,M(N6),
M(N39),M(N&G) ,M(N&1) ,M(N&2),M(N&3) ,M(NL4),
M(NGS) ,M(N&EY,M(NGT) ,M(NLB) ,bI(NGI) ,M(NS0),
M(N100),M(No1r),M(N62) ,M(N63) ,M(N64) ,M(NE5),
M(N6€) ,M(N67) ,M(N68) ,M(N69),M(70),M(N71),
ANT2) ,M(N73) ,M(N28) ,M(N27) ,M(N5&) ,M(NST),
M(N59),M(N10),
IP1,JP1,KP1,MM ,NA23 ,REI, TAUT)

qM=2

Y -MOMENTUM

XXI=0.5%(XP(I+1)-XP(I-1))

Al=l.

42=2.

FXI=F1(I)

CALL FACST(M{N2:.“(N13),M(N14) ,M(N15),M(N108),M(N6),

M(N32),M(N&Q) ,M(N&1)Y ,M(NG2) ,M(NG3) , M(NLSL)
M(NGS) ,M(NSG) ,M(NGT)  M(NLB ), M(N&T) ,M(N50),
M(N100),M(N74) ,M(N75) ,4(N76) ,M(N77) ,M(N’S),
M(N79),M(N80),M(N81) ,M(N82),M(N83) ,M(N84),
M{N85),M(XN86),FU,M(N29),4(N55),M(N60),
M(N59},M(N11),
1P1,JP1,KP1,M1,NA23,REI,TAUI)

IF(NA23 .EQ. 3) THEN

MM=3

Z-MOMENTUM

A2=1.

A3=2.

CALL FACST(M(N3),M(N13),M(N1&),M(N15),4(N108),M(N6),
M(N39),M(NSO) ,M(NAL) , M(NG2) , M(N&3) ,M(N&4) ,
MING3) ,MINLE) , M(NGT)  M(NGB) , M(NLI) ,M(N50),
M(N100;,I(N87),M(N88) ,M(N89),M(NJO0) ,4(NI1),
M(N92),M(NI3) ,M(NIL) , M(NIS),M(NI6) ,M(N9T),
M(N98),M(N9Y) .5W,M(N30) ,M(N56) ,M(N58),
M(N593,M(N12),
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$ IP1,'P1,KP1,MM,NA23,REI, TAUI)
END IF
G
C---- CALCUTATE THE MASS SOURCE AND PRESSURE GRADIENTS
C
DO 500 J=JA, JMAX
DO 500 K=2,KMAX
DF(J,K)=FU(J,K)-FU(J-1,K)+GW(J,K)-G¥W(J,K-1)
S00 CONTINUE
C
ELSE
C---- TURBULENT EQUATION
ITGVW=2

[0 697 K=1,KP1
DO 697 J=1,JP1
697 GG(J,K)=0.
=4

C-~-- K-EQUATION

XXI1=0.5%(XP([+11-XP(I-1))

FX1=F1(I)

al=l.

A2=1.

a3=1.

A4L=CEFFK

CALT, FACST(M(NG),M(N13),M(N14) ,M(N15),M(N108) ,4(NE),
M(N39),M(NGO) , M(NG1) , MING2) ,M(N&3) , M(NGL),
M(NGS) ,M(NG6) ,M(NGT Y, M(NGB) ,M(N&I) ,M(N50),
M(N100),M(N87),M(NS8),4(N89),M(N90),M(N91),
M(NG2),M(N93),M(N94) , M(NI5) ,M(NI6) ,M(N9T),
M(N98) ,M(N99),GW,M(N30) ,M(N56) ,M(N58),
M(NS ,,M(N12),
iP1, "P1,KP1,MM,NA23,REI, TAUT)

CALL SVEL(M(N&9),GG,M(N&),M(N87),M(N88),M(N89),M(Ng M/

(VIR IR IRV 7 B V2 B 2

S M(N92),M(N93Y ,M(NI&) , M(NIS) , M(N9E) ,M(NIT) ,M(NS
35 M(N99) ,M(N20},M(N21) ,M(N22) ,M(N29),
S iP1,JP1,KP1,ITUW,1,3,1)
MM=5
C---- D-EQUATION
A4=CEFFD

CALL FACST(M(NS),M(N13),M(N1&),%(N15),M(N108),4(N6),
M(N39),M(NGO) , M(NGL) , M(NS2) , M(NG3) ,M(N&s),
MNG3) ,M(NGE) ,M(NGT) (NGB ) ,M(NLI) , M(N50),
M(N1O0) T NBT),M(NSS) , (N8I ), M(NIO) , M(NIL),
M(N92),M(N93),M(NOL) ,M(NIS) , M(NIE) , M(N9T),
M(NI8),M(NI9),GW,M(N30) ,M(N56) ,M(N58),
M(N59),M(N12),
IP1,JP1,KPL,MM,NA23 ,REI, TACI)

CALL SVEL{MIN5G),GG,M(N3),M{(N87),M(N88),M(N§9),M(N90),M(
MONGZY MINGS ), M(NIS) L MINTS),M(NG6) , M(NGT Y, M(NS
MING9 ), M(N20) ,M(N21),M(N22) ,M(N29),
IP1,JP1,KPL,ITCVW, 1,3, 1)

W N ;W

L%

(7 I I V) ]

)

]
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END IF
RETURN
END

CMMM“MMLMJ-&&%J-J-.:_-LJ-J.J.-LJ-MJ—J-J—-LJ—
ORI TR A TR T T L T T e T T T T LA T I R T e TR T R e e T R T I R S L D ]

c
c..
C

. SUBROUTINE FASVEL
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688

C
C-=--

330

SUBROUTINE FASVEL(PR,DPDYU,DPDYW,DPDZU,DPDZV,GG,CU,CV,CW

5 CUY,CWY,CUZ,CvZ,US,VS,Ws,UF,BD,BU,BY,

5 BW,DF,DS,IP1,JP1,KP1,NA23)

IMPLICIT REAL*8(A-H,0-2)

COMMON M(1)

COMMON/UVW1/ IMAX , JMAX, KMAX , JPP KPP, JA, JAMI, I, Ki1, KoM

COMMON/NUMBER/N1,N2,N3,N4 N5, N6 ,N7,N8 N9 ,N10,
N11,N12,N13,Ni%4,N15,N16,N17,N18,N19,N20,
N21,N22,N23,N24,N75 ,N26 ,N27,N28,N29,N30,
N31,N32,N33,N36,535,N36,N37,N38,N39,N40,
NG1,N42,NG3 NGL NG5 N&6 N&T NGB, N4I NSO,
NS1,N52,N53,N54,N55,N56 ,N57,N58,N59,N60,
N61,N6%,N63,N64,N65,N66,N67,N68,N69,NT0,
N71,N.2,N73 74 ,N75,N76 ,N77,N78,N79,N80,
N81,N&2,N8. N84 ,N85,N86 ,N87 ,N83,N89,N90,
N91,N97,N93,N94,N95,N96,N97,N98,N99,N100,
N101,N132,N103,N104,N105,N106,N107,N108

DIMENSION PR(IP1,JP1,KP1)

DIMENSION DPDYU(JP1,KP1),DPDYW(JP1,KP1),dPDZU(JP1,KP1)

DIMENSION DPDZV(JP1,KP1),GG(JP1,KP1),CU/JP1,KP1),CV(JP1,

DIMENSION CW(JP1,KP1),CUY(JP1,KP1),CUZ(FL,KP1),CVZ(JPL,

DIMENSION CWY(JP1,XP1),US(JP1,XP1),VS(JP1.KP1),WS(JP1,KP

DIMENSION UF(JP1,KP1),DS(JP1,KP1),BD(JPL,KP1),DF(JP1,KP1

DIMENSION BU(JP1,KP1),BV(JP1,KP1),BW(JP1,KP1)

[T R R IR AR R T, AR 6 RV, B V)

ITGVi=4

DO 688 J=Jja,JMAX

DO 688 K=2,KMAX
DPDYU(J,K)=0.25%(PR(I,J+1,K)+PR(I+1,J+1,K)

S -PR(I,J-1,K)-PR(I+1,J-1,K))
DPDYW(J,K)=0.25%(PR(I,J+1,K)+PR(I,J+1,K+1)
S -PR(I,J-1,K)-PR(I,J-1,K+1))
DPDZU(J,K)=0.25%(PR(I,J,K+1)+PR(I+1,J,K+1)
5 -PR(I,J,K-1)-PR(I+1,J,K-1))
DPDZV(J,K)=0.25*(PR(I,J+1,K+1)+PR(I,J,K+1)
S -PR(I,J+1,K-1)-PR(I,J,K-1))

CALCULATE THE LONGITUDIAL VELOCITY FIFTD

DO 330 K=2,KMAX
DO 330 J=JA,JMAX
GG(J,xy=CU(J . K)*(PR{I+1,J,K}-PR(I.,J,K))
§-CCY (5, X)=DPDYU(J,X)+CL2(J,K)*DPDZU(J,K)
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CALL SVEL(US,GG,M(N1),M(N61),M(N62),M(N63),M(N6&),M(N65)

$ M{N66),M(N67),M(N68) ,M(N69) ,M(NT70) ,M(N71),M(N7
$ M(N73),M(N20) ,M(N21),M(N22),M(N29),
$ 1P1,JP1,KP1,ITUVW,1,1,1)

C

C---- CALCULATE THE RADIAL VELOCITY FIELD

c

DO 430 K=2,KMAX
DO 430 J=JA,JMAX
430 GG(J,K)=CV(J,K)*(PR(I,J+1,K)-PR(I,J,K))+
$Cv2(J,K)*DPDZV(J,K)
CALL SVEL(VS,GG,M{N2),M(N74) ,M(N75),M(N76),4(N77),M(N78)

$ M(N79),M(N80),M4(N81),M(N82),M(N83),M(N84),M(N8
S M(N86) ,M(N20),M(N21),M(N22),M(N29),
S IPt,JP1,KP1,ITUVW,1,2,3)

C

C---~ CALCULATE THE CIRCUMFERENTIAL VELOCITY FIELD

c

IF(NA23 .EQ. 3) THEN
DO 530 J=JA,JMAX
DO 530 K=2,KwMl .
530 G&(J,K)=CW(J,K)*(PR(I,J,K+1)~PR(I,J,K))
SCWY(J,K)*DPDYW(J,K)
CALL SVEL(WS,GG,M(N3),M(N87),M(N88),M(N89),M(N90),M(NI1)

S M(N92),M(N93),M(N94&),M(N95) ,M(N96) ,M(NIT7),M(NI
S M(N99),M(N20),M(N21),M(N22),M(N29),
S IPi,JP1,KP1,ITUVW,2,3,3)

LO 580 J=2,JMAX
DO 580 K=2,KMAX

580 DS(J,K)=8BD(J,K)*CS(J,K)-BU(J,K)*UF(J,K)+
SBV(J,K)*VS(J,K)-BV(J-1,K)*VS(J-1,K)+BW(J,K)*
SWS(J,K)-BW(J,K-1)*WS(J,K-1)+DF(Z,K)
END IF

1000 FORMAT(I10)

2000 FORMAT(6E12.4)

RETURN
END

Gl ot st bt e e e A A A R A

c

C.... SUBROUTINE FAVELCOR

c

Crrtdrdrirtediet i St e e e ke e e et
SUBROUTINE FAVELCOR(PP,CP,VP,WP,US,VS,WS,CC,CV,CW,BV,
S Y2,Y3,Y4,1P1,JP1,KP1,NA23)

IMPLICIT REAL*8(A-H,0-2)

COMMON/COEF4/ UILVI ML, M2,M3

COMMON/UVWY/ IMAX,JMAX . KMAX,JPP KPP,JA,JAMI, T,KM1,KMM
DIMENSION PP(IP1,JP1,KPl1)

DIMENSION UP(JPY,KP1),VP(JP1,XP1),WP(JP1,KP1)
DIMENSION US(JPL,KP1),VS(JP1,KP1),WS(JP1,KP1)




800

879

801

811
810

DIMENSION CU(JP1,KP1),CV(JP1,KP1),CW(JP1,KP1),3V(JP1,KP1
DIMENSION Y2(IP1,KP1),Y3(IP1,KP1),Y4(IP1,KP1)

CORRECT THE IMPERFECT VELOCITY FIELD TO SATISFY
THE EQUATION OF CONTINUITY

DC 879 K=2,KMAX

DO 800 J=JA,JMAX
UP(J,K)=US(J,K)-CU(J,K)*(PP(I+1,J,K)-PP(I,J,K))
IF(I.LT.M1.0R.I.GE.M2) THEN

P (JAM1,K)=((¥4(I,K)-Y2(I,K))*UP(JA,K)-
S(Y3(I,K)-Y2(I,K))*UP(JA+1,K))/(Y4(I,K)-Y3(I,K))
IF(JAM1 .GE. 2) THEN

JAMM=JAM1-1

DO 700 J=1,JAMM

UP(J,K)=UP(JaM1,K)

END IF

END IF

CONTINUE

DO 801 J=1,JP1

CP(J, 1)=UP(J,K}M)

UP(J,KP1)=UP(J,KM1)

DO 810 K=2,KMAX

DO 811 J=JA,JMAX
VP(J,K)=VS(J,K)-CV(J,K)*(PP(I,J+1,K)-PP(I,J,K))
VP(JP1,K)=VP (JMAX,K)*BV(JMAX,K)/BV{JP1,K)

DO 812 J=1,JP1

VP(J, 1)=VP(J, )

VP(J,KP1)=VP(J,KM1)

IF(NA23 .EQ. 3) THEN

DO 821 K=2,KM1

DO 821 J=JA.JP1

WP (J,K)=WS(J,K)-CW(J,K)*(PP(I,J,K+1)-PP(I,J,K))
DO 822 Jj=1,JP1

WP(J, 1)=-WP(J,2

WP (J,KMAX)=-WP(J,KM1)

END IF

RETURN

END

(e o e e e e e e e e e

C
C....
c

SUBROUTINE FAHVEL

Mo o e e s S o T e e e

SUBROUTINE FAHVEL(UHP,UHF,VH,WH,VP,GG,CUY,CWY,CUZ,CVZ,

S DPDYC,DPDYW ,DPDZU,DPDZV,DH, BD,BU BV, BW
S TP1.JP1,KP1,NA23)

IMPLICIT REAL*8(A -H,0-2)

COMMON M(1)
COMMON/NUMBER/N1T N2 N3 N4 N5,N6,N7,N8,N9,N10,
S N11,N12,N.3,N14,N15,N16,N17,N18,N19,N20,

294



N21,N22,N23,N24 ,N25 ,N26,N27,N28 ,N29 N30,
N31,N32,N33,N34,N35,N36 ,N37,N38 ,N39,N4O,
N&1,N&2 N43 N&b NGS5 N66 ,N&T ,N68 ,N69 NSO,
N51,N52,N53,N54,N55,N56 ,N57,N58 ,N59,N60,
N61,N62,N63,N64,N65,N66,N67 ,N68 ,N69 ,N70,
N71,N72,N73,N74 ,N75,N76 ,N77,N78 ,N79,N8O,
N81,N82,N83,N84 N85 ,N86,N87,N88 ,N89 ,N9o,
N91,N92,N93,N94,N95,N96,N97,N98,N99,N100,
N101,N102,N103,N104,N105,N106,N107,N108

N W A A0 D A

COMMON/UVW1/IMAX, JMAX,KMAX,JPP,KPP,J4,JAM1, I, KM1, KM
DIMENSION DH(IP1,JP1,KP1)

DIMENSION UHP(JP1,KP1),UHF(JP1,KP1),VH(JP1,XP1),WH(JP1,K
DIMENSION GG(JP1,KP1),CUY(JP1,KP1),CWY(JP1,KP1),CUZ(JP1,
DIMENSION CVZ(JP1,KP1),DPDYU(JP1,KP1),DPDYW(JP1,KP1)
DIMENSIGN DPDZV(JP1,XP1),BD(JP1,KP1),DF(JP1,XP1),DPDZC(J
DIMENSION BU(JP1,KP1),BV(JP1,KP1),BW(JP1,KP1),VP(JP1,XP1

C---- CALCULATE THE PSEUDO-VLLOCITY FIELD AND THE
C---- ASSOCIATED M»SS SOURCE

DO 671 K=2,KMAX
DO 671 J=2,TMAX
671 UHF(J,K)=UHP(J,K)
DO 672 K=2,KMAX
DO 672 J=JA,MAX

672 GG (J,X)=CUY(J,K)*DPDYU(J,K)

$+CUZ (J,K)*DPDZU(J,X)

CALL HVEL(UHP,GG,M(N1),M(N&0),M(N61),M(N62) ,M(N63),4(N6&
M(NG5),M(N66) ,M(N6T) , M(N68) ,M(N69) ,M(NTO) ,M(N7
M(NT2),M(N73),

$ IP1,JP1,KP1,1)

N An

DO 673 X=2,KMAX
DO 673 J=JA,MAX

673 GG(J,K)=CVZ(J,K)*DPDZV(J,K)
CALL HVEL(VH,GG,M(N2) ,M(N&3) ,M(N75) ,M(N73) ,M(N78) ,M(N7TT)
S M(N78),M(N79) ,M(N80) ,M(N81),M(N82) ,M(N83),M(N8
S M(N85),M(N86),
S IP1,JP1,KP1,1)

DO 674 K=2,KMAX
674 VH(1,K)=VP(1,K)
IF(NA23 .NE. 3) GO TO 1234
DO 676 K=2,KM1
DO 676 J=Ja,JMAX
676 GG(J,K)=CWY(J,K)*DPDYW(J,K)
CALL HVEL(WH,GG,M(N3) ,M(N&6) ,M(N87),M(N88),M(N8T),M(N9O)

S MNIL) ,M(NG2) ,M(NI3) ,M(NI&) ,M(NI5) ,M(NG6) ,M(N9
S M(N98),M(N99),
S IP1,JP1,KP1,2)

D0 677 J=JA,JMAX
WH(J, 1)=-WH(J,2
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677 WH(J,KMAX)=-WH(J,KM1)

1234 DO 680 J=JA,JMAX
DO 680 K=2,KMAX

680 DH(I,J,K)=BD(J,K)*UHPJ,K)-BU(J,K)*UHF(J,K)
$+BV(J,K)*VH(J,K)-BV(J-1,K)*VH(J-1,K)
S+8W(J,K)*WH(J,K)-BW(J,K-1)*WH(J,K-1)+DF(J,K)

RETURN
END

. SUBKOUTINE FAPRESS

OnaaQ

e ctoalealootsalnaloatoclocls tedoaloatentalontoeteatontoskonloetuatistoatoatralsatvate slonte adoadontuatralrotoals uakeuinatonds

SUBROUTIVE FAPRESS (PR, PP,DH,DS,¥25Q, ¥35Q, Y45Q,XP, IP1,JP1

$ ,JOPT)

IMPLICIT REAL*8 (A-H,0-2)

COMMON M(1)

COMMON /NUMBER/N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,
N11,N12,N13,N14,N15,N16,N17,N18,N19,N20,
N21,N22,N23,N24 ,N25 ,N26,N27 ,N28,5N29,N30,
N31,N32,N33,N36,N35 ,N36,837,N38,N39,N40,
NG1,N&2,N63 NG& NG4S NG6,NGT NG4S, N&9, NS0,
N51,N52,N53,N54,%55,N56,N57 ,N58,N59,N60,
N61,N62,N63,N64 ,N65 ,N66,N67 ,N68,N69,N70,
N71,N72,N73,N74,N75,N76,N77,N78,N79,N80,
N81,N82,N83,N84,N85,N86,N87,N88,N89,N90,
N91,N92,N93,N94,N95 ,N96 ,N97,N98,N99,N100,
N1G1,N102,N103,N104,N105,N106,N107,N108

€O N/COEF4/UI,VI,M1,M2,M3

CO:  §/UVW1/IMAX,JMAX,KMAX,JPP,XPP,JA,JAML, I, KM1,X0M

DIME..3I0N PR(IP1,JP1,XP1)

- DIMENSION PP(IP1,JP1,XP1)

DIMENSION DH(IP1,JP1,XKP1)

Y I IR BT R T I Y, ALV BV R V]

DIMENSION Y2SQ(IP1,KP1),¥3SQ(IP1,KP1),Y¥%5Q(iP1,KP1)
DIMENSION DS(JP1,XP1),XP(IP1)
c
RFP=0.3
ITERP=15

Xi=xpP(43)-XP(M3-1)
X2=X7 43+1)-XP(M3)
DO 1le<0 I=1,iP1
DO 1660 J=1,JP1
DO 1660 K=1,KP1

i660 PP(I,J,K)=PR(I,J.X)
DO 3999 ITERG=1,ITERP
DO 661 II=2,IMAX

I=IMAX+2- 11

Ja=2
IF(I .GE. M3) JA=JOPT
SaMi=JA-1

{F(1.EQ.M3 .OR. I.EQ.(M2-1)) THEN




662

666

660

661

$
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DO 662 K=1,KP1

DO 662 J=1,JP1
PR(I,J,K)=(X1*PR(I+1,J,K)+X2*PR(I-1,J,K))/ (X1+X2)
ELSE

DO 666 K=1,KP1

DO 666 J=1,JP1

DS(J,K)=DH(I,J,X)

CALL PRESU(PR,DS,M(N10),M(N11),M(N12),1,IP1,JP1,KP1)
DO 660 J=1,JP1

PR(I,J,1)=PR(I,J,KMM)

PR(I,J,KP1)=PR(I,J,KM1)

END IF

CONTINUE

DO 664 1=2,IMAX

JA=2

IF(I .GE. M3) JA=JOPT

JAM1=JA-1

DO 663 K=1,KP1
PR(I,JAM1,K)=((Y4SQ(I,K)-Y2SQ(I,K))*PR(1,JA,K)~
(¥3SQ(1,K)-Y28Q(I,K))*PR(I,JA+1,K))/(Y4SQ(I,K)-Y3SQ(I,K)

663 CONTINUE
664 CONTINUE

4001
3999

4004
4003

DO 4001 J=1,JP1

DO 4001 K=1,KP1
PR(IP1,J,K)=PR(IMAX,J,K)
CONTINUE

DO 4003 I=M2,IP1

DO 4004 K=1,KP1

DO 4004 J=1,JP1
PR(I,J,K)=PP(I,J,K)+RFP*(PR(I,J,K)-PP(I,J,K))
CONTINUE

END IF

RETURN

END

CJ-J-J‘*J-J.-L-L-L-I--L-I..LJ.J-J—J-.LJ.J-J.J.-L.I-.L-I-Ju-l--l--l..l-A-.LJ-J‘J‘&.L;L-L-L-L-L-LJ-J-.LJ-*J-
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C
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C

... SUBROUTINE FACST
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C

W N N W\

SUBROUTINE FACST(PHI,YP,ZP,F2,F3,2LUT,UB,UP,UF,
VB,VP,VF ,WB,WP,WF,AKEB,AKEP,ADSP,
GE,b1,E1,H1,SU,
UMM, UMN, UMP,UNM, UNN, UNP, UPM, UPN, UPP,
XX,YY,AA,BB,CC,DD,II,JJ,KK,M,NA23,REI,T

IMPLICIT REAL*8(A-H,0-2)

DIMENSION YP(II,JJ,KK)

DIMENSION ZP(I1,JJ,KK)

DIMENSION F2(II,JJ3,KK),F3(KK)

DIMENSION ZUT(II,JJ,KK)

DIMENSION PHI(II,JJ,KK)




C-mm-
Cr==-

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

UB(JJ,KK),UP(JJ,KK),UF (JJ,KK)

-VB(JJ,KK),VP(JJ,KK),VF (JJ,KK)

WB(JJ,KK) ,WP(JJ,KK) ,WF (JJ,KK)
AKEB(JJ,KK) ,AKEP(JJ,KK) , ADSP(JJ,KK)
D1(JJ,KK),E1(JJ,KK),SU(JT,KK) ,H1(JJ,KK)
UMM(JJ,KK) , UMN(JJ,KK) ,UMP (JJ,KK)
UNM(JJ,KK) ,UNN(JJ,KK) ,UNP (JJ,KK)
UPM(JJ,KK) ,UPN(JJ,KK) ,UPP(JJ,KK)

GE (JJ,KK) , XX(JJ,KK) ,YY(JJ,KK)
AA(JJ,KK),BB(JJ,KK),CC(JJ,KK)
DD(II,JJ,KK)

COMMON/UVW1/IMAX, JMAX ,KMAX, JPP KPP, JA, JAML, I ,KMP ,KMM
COMMON/UVW2/A1,A2,A3,A4,0U,VV WW
COMMON/UVW3/REFF, 2UTP, ZUTXI , ZUTET, 2UTZT,FX1,FY2,F23
COMMON/UVW4/AR, BR,DR,ER,FR,GR
COMMON/UVW5/6G11,G22,G33,A11,A22,A33,G,AJ1
COMMON/UVWé/B11,B12,B13,B22,823,832,B33,SG

COMMON/UVW7/R,XXI,¥XI,YET,Y2T,RZXI,RZET,RZZT
COMMON/COEF?/ CF(3,3)

FACT=1.
IF(M .GE.
IP1=I+1
M1=I-1

4) FACT=30.

DO 200 K=2,KMAX

IF(M.EQ.3.

FZ3=F3(K)
KP1=K+1
KM1=K-1

AND.K.EQ.KMAX) RETURN

IF(M.EQ.3) F23=0.5%(F3(K)+F3(KP1))
DO 190 J=JAM1,JMAX
IF(J.EQ.JAM1 .AND. M.NE.2) GO TO 190

JP1=J+1
Ni=J-1

IF(M.EQ.1) THEN

CALCULATE

THE FINITE-ANALYTIC COEFFICIENTS AND

SOURCE FUNCTION FOR LONGITUDINAL MOMENTUM EQUATION
FY2=0.5%(F2(I,J,K)+F2(IP1,J,K))
R=0.5%(YP(I,J,K)+YP(IP1,J,K))
YXI=YP(IP1,J,K)-YP(I,J,K)
YET=0.25%(YP(IP1,JP1,K)-YP(IP1,JM1,K)

S$+YP(I,JP1

,K)-YP(I,JM1,K))

YZ2T=0.25*(YP(IP1,J,KP1)~-YP(IP1,J,KM1)
$+YP(I,J,KP1)-YP(I,J,KM1))

ZXI=ZP(IP1,J,K)-2P(I1,J,K)

2ET=0.25%(ZP(IP1,JP1,K)-ZP(IP1,JM1,K)

$+2ZP(1,JP1

yK)-2P(I,JM1,K))

22T=0.25%(ZP(IP1,J,KP1)-ZP(IP1,J,KM1)
$+ZP(I,J,KP1)-ZP(I,J,KM1)) s
UTP=0,5%(ZUT(IP1,J,X)+2LT(1,J,K))
ZUTXI=ZCT(IPL,J,K)-2U0T(1,J,K)
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ZUTET=0.25* (ZUT(IP1,JP1,K) -ZUT(IP1,J41,K)
$+2UT(I,JP1,K)-2UT(I,JM1,K))
ZUTZT=0.25*(ZUT(IP1,J,KP1) -ZUT(IP1,J,K¥1)
$+ZUT(I,J,KP1)-2UT(I,J,KM1))
UU=UP (J,K)
VV=0.25% (VP (JM1,K)+VB(JIM1,K}
S+VP(J,K)+VB(J,K))
WW=0.25% (WP (J,KM1)+WB (J,KM1)
S+WP (J,K)+WB(J,K))
ELSE IF(M.EQ.2) THEN
C---- CALCULATE THE FINITE-ANALYTIC COEFFICIENTS AND
C---- SCURCE FUNCTION FOR RADIAL MOMENTUM EQUATION
FY2=0.5*(F2(I,JP1,K)+F2(I,J,K))
R=0.5%(YP(I,JP1,K)+YP(I,J,K))
YXI=0.25%(YP(IP1,JP1,K)-YP(IM1,JP1,K)
S+YP(IP1,J,K)-YP(IN1,J,K))
YET=YP(I,JP1,K)-YP(I,J,K)
Y2T=0.25%(YP(I,JP1,KP1)-YP(I,JP1,KM1)
$+YP(I,J,KP1)-YP(I,J,KM1))
ZXI=0.25*%(ZP(IP1,JP1,K)-2ZP(IM1,JP1,K)
$+ZP(IP1,J,K)~ZP(IM1,J,K))
ZET=2P(I,JP1,K)~2P(I,J,K)
22T=0.25%(ZP(I,JP1,KP1)-2P(I,JP1,KM1)
$+ZP(I,J,KP1)-2P(I,J,KM1))
ZUTP=0.5%(ZUT(I,JP1,K)+2UT(I,J,K))
ZUTXI=0.25%(ZUT(IP1,JP1,K)-ZUT(IM1,JP1,K)
$+ZUT(IP1,J,K)-2UT(IM1,J,K))
ZUTET=2UT(I,JP1,K)-2UT(I,J,K)
ZUT2T=0.25*%(ZUT(I,JP1,KP1)-ZUT(I,JP1,K1)
$+2UT(I,J,KP1)-2UT(I,J,KM1))
UU=0.25* (UF (J,K)+UF (JP1,K)
$+UP(J,K)+UP (JP1,X))
VV=VP(J,K)
Ww=0.25% (WP (J,KM1)+WP(JP1,KM1)
S+WP (J,K)+WP (JP1,K))
ELSE IF(M.EQ.3) THEN
C---- CALCULATE THE FINITE-ANALYTIC COEFFICIENTS AND
C---- SOURCE FUNCTION FOR CIRCUMFERENTIAL MOMENTUM EQUATION
FY2=0.5%(F2(I,J,K)+F2(I,J,KP1))
R=0.5%(YP(1,J,KP1)+YP(I,J,K))
YXI1=0.25%(YP(IP1,J,KP1)-YP(IM1,J,KP1)
S+YP(IP1,J,X)-YP(IM1,J.K))
YET=0.25*(YP(I,JP1,KP1)-YP(I,JM1,KP1)
S+YP(I,JP1,K)-YP(I,J41,K))
YZT=YP(I,J,KP1)~-YP(I,J,K)
ZX1=0.25%(ZP(IP1,J,KP1)-ZP(IM1,J,KP1)
$~ZP(IPL,J,K)-ZP(IM1,J.K))
ZET=0.25%(ZP(1,JPL,KP1)-2P(I,JM1,KP1)
§=ZP(1,JP1.K)-ZP(1,JM1,K))
22T=IP(1,3.KP1)~2P(I,].K)
TUTP=D . 3E(IUT(L, I, KP+2LT(1,J,K))




ZUTXI=0.25*(ZUT(IP1,J,KP1)-ZUT(IM1,J,KP1)
$+2UT(IP1,J,K)-ZUT(IM1,J,K))
ZUTET=0.25*(ZUT(I,JP1,KP1)-ZUT(I,JM1,KP1)
$+2UT(I,JP1,K)-2UT(I,JM1,K))
ZUTZT=2UT(I,J,KP1)-2UT(I,J,K)
UG=0.25* (UF (J,KP1)+UF (J,K)
$+UP(J,KP1)+UP(J,K))
VV=0.25%(VP(JM1,KP1)+VP (JM1,K)
$+VP(J,KP1)+VP(J,K))

WW=WP(J,K)

ELSE IF(M.GE.4) THEN

CALCULATE THE FINITE-ANALYTIC COEFFICIENTS AND
SOURCE FUNCTIONS FOR TURBULENCE QUANTITIES
FY2=F2(1,J,K)

R=YP(I,J,K)
YXI=0.5%(YP(IP1,J,K)-YP(IM1,J,K))
YET=0.5%(YP(I,JP1,K)-YP(I,JM1,K))
Y2T=0.5*(YP(I,J,KP1)-YP(I,J,KM1))
2XI=0.5%(ZP(IP1,J,K)-ZP(IN1,J,K))
ZET=0.5*%(ZP(I,JP1,K)-2ZP(I,JM1,K))
22T=0.5%(ZP(I,J,KP1)-2P(I,J,KM1))
ZUTP=2UT(I,J,K)

ZUTX1=0.5* (ZUT(IP1,J,K)-2UT [IM1,J,K))
ZUTET=0.5*%(ZUT(1,JP1,K)-ZUT(I,M1,K))
ZUTZT=0.5*(2UT(I,J,KP1)-ZUT(I,J,KM1))
UU=0.5* (UF (J,K)+UP(J,K))
VV=0.5% (VP (JM1,K)+VP(J,K))
WW=0.5% (WP (J,KM1)+WP(J,K))

END IF

IF(NA23 .EQ. 2) R=1l.
RZXI=R*ZXI
RZET=R*ZET
RZZT=R*ZZT
REFF=1./(REI+2UTP)
CALL EQCOE(PHI,UB,UP,UF,VB,VP,
$ AKEP,ADSP,GE,II,J
DDD=DABS (DR)
D1(J,K)=DR
E1(J,K)=A4*REFF*TAUI*FACT
Hi(J,K)=GR
SU(J,K)=SG

" IF(J .EQ. JAM1) GO TO 180
CALL COEF
UMM(J,K)=CF(1,1)
UMN(J,K)=CF(1,2)
CMP(5,K)=CF(1,3)
UNM(J,K)=CF(2,1)
UNN(J,K)=CF(2,2)
UNP(J,K)=CF(2,3)
CPM(J,K)=CF(3,1)

P,VF,W
,JJ,KK,M,1,J,K,NA23)

,WB,WP,WF ,AKEB,
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180

190

200

201

202

UPN(J,K)=CF(3,2) 301
UPP(J,K)=CF(3,3)
D=AJI*REFF*UNN(J,K)/(1.+(DDD+2%H1(J,K)+E1(J,K))*UNN(J,K)
IF(M.EQ.1) THEN

XX(J,K)=YY(J,K)

YY(J,K)=B11

AA(J,K)=D*B11

BB(J,K)=D*B12

CC(J,K)=D*B13

ELSE IF(M.EQ.2) THEN

XX (J,K)=B12*UU+B32*WW

YY(J,K)=B22

IF(J .EQ. JAMJAM1) GO TO 190
AA(J,K)=D*B22

BB(J,K)=D*B23

ELSE IF(M.EQ.3) THEN

XX (J,K)=B13*UU+B23%VV

YY(J,K)=B33

AA(J,K)=D*B33

BB(J,K)=D*B32

ELSE

GO TO 190

END IF

DD(I,J,K)=YY(J,K)*AA(J,K)

CONTINUE

IF(M.EQ.2) YY(JPP,K)=(1.5%YP(I,JPP,K)-0.5*YP(I, MAX K))*
SXXI*0.5%(ZP(I,JPP,KP1)-ZP(I,JPP,KM1))
CONTINUE

IF(I.EQ.2 .AND. Y.EQ.1) THEN

DO 201 J=1,JPP

DO 201 K=1,KPP

DD(1,J,K)=DD(2,J,K)

XX(J,K)=YY(J,K)

END IF

IF(¥.EQ.3) THEN

DO 202 J=1,JPP

YY(J,KMAX)=YY (J,KMP)

YY(J,1)=YY(J,2)

AA(J,1)=4A(J,2)

AA(J,KMAX)=AA(J,KMP)
DD(I,J,1)=DD(I,J,2)
DD(I,J,KMAX)=DD(I,J,KMP)
¥X(J,1)=-XX(J,2)

XX (J, KMAX)=-XX (J,KMP)

CONTINUE

END IF

RETURN

END

"""""" i devede e dedr A v ettt

SUBROUTINE EQCOE: THE COEFFICIENTS OF r& EQUATION

ST Do




SUBROUTINE EQCOE(PHI,UB,UP,UF,VB,VP,VF,WB,WP,WF,
$ AKEB, AKEP, ADSP,GE,
I1,JJ,KK,M,1,J7,K,NA23)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION PHI(II,JJ,KK)

DIMENSION UB(JJ,KK),UP(JJ,KK),UF(JJ,KK)
DIMENSION VB(JJ,KK),VP(JJ,KK),VF(JJ,KK)
DIMENSION WB(JJ,KK),WP(JJ,KK),WF(JJ,KK)
DIMENSION AKEB(JJ,KK),AKEP(JJ,KK),ADSP(JJ,KK)
DIMENSION GE(JJ,KK)
COMMON/UVW2/A1,A2,A3,A4,UU, YV, WW
COMMON,/UVW3/REFF, ZUTP , ZUTXI , ZUTET, ZUTZT, FX1,FY2,FZ3
COMMON,/UVW4 /AR, BR, DR, ER, FR, GR
COMMON/UVWS/G11,622,G33,A11,422,A33,G,AJ1
COMMON/UVW6/B11,B12,313,B22,823,832,B33,5G
COMMON/UVW7/R,XXI, YXI,YET,YZT,R2XI,R2ET,RZZT
COMMON/UVW8/C1,C2,CEFFK, CEFFD

B11=YET*RZZT-YZT*RZET
B12=YZT*RZXI-YXI*RZZT
B13=YXI*RZET-YET*RZXI
B22=XXI*RZZT

B23=-XXI*RZET

B32=-XXI*YZT

B33=XXI*YET
Gl1=XXI*XXI+YXI*YXI+RZXI*RZXI
G22=YET*YET+RZET*RZET
G33=YZT*YZT+RZZT*RZIT
G12=YXI*YET+RZXI*RZET
Gi3=YXI*YZT+RZXI*RZZT
G23=YET*YZT+RZET*RZZT

=G11%G22*G33+2.%G12*G13%G23-G23*G23*G11-
§G13%G13%#G22-G12*G12*G33
GI=1./G
A11=GI*(G22*G33-G23%G23)
A22=GI*(G11*G33-G13*G13)
A33=GI*(G11*G22-G12*G12)
A12=GI*(G13*G23-G512*G33)
A13=GI*(G12*G23-G13*G22)
A23=GI*(G12*G13-G23*G1l)
AJI=DSQRT(GI)

=-2.%A11*FX1

FY=-2.%A22*FY2

IF(NA23 .NE. 2) FY=FY+1./R/YET
FZ=-2.%A33*FZ3
ZUT1=AJI*(B11*2UTXI+B12*ZUTET+B13*ZUTZT)
2UT2=AJT*(B22*ZUTET+B23*2CT2T)
ZUT3=AJI*(B32*ZUTET+B33*2ZLTZT)
AP1=44*(U-A1*ZLT1
AP2=A4%VV-42%70T2
AP3=A4%WW-A3*2LUT3
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=0.5*%(REFF*AJI*(B13*AP1+B23*AP2+
$B33*AP3)-FZ)
BR=0.5*%(REFF*AJI*(B12-*AP1+B22*AP2+
$B32%AP3)-FY)
DR=REFF*AJI*B11+*AP1-FX
ER=DSQRT (A33)
FR=DSQRT (A22)
GR=411

§S=-0.5%A12*(PHI(I+1,J+1,K)+PHI(I-1,J-1,K)-PHI(I+1,J~.,K
$-PHI(I-1,J+1,K))-0.5*%A13*(PHI(I+1,J,K+1)+PHI(I-1,J,K-1)
§-PHI(I+1,J,K-1)-PHI(I-1,J,K+1))~-0.5%A23*(PHI(I,J+1,K+1)
S+PHI(I,J-1,K-1)-PHI(I,J+1,K-1)-PHI(I,J-1,K+1))

IF(M .EQ. 1) THEN

DKXTI=AKEB(J,K)-AKEP(J,K}

DKET=0.25*(AKEP(J+1,K)+AKEB (J+1,K) -AKEP(J-1,K)
S-AKEB(J-1,K))

DKZT=0.25*%(AKEP (J,K+1)-+AKEB(J,K+1)-AKEP(J,K-1)
S-4KEB(J,K-1))

DVKI=0.5*(VB(J,K)+VB(J-1,K)-VP(J,K)-VP(J-1,K))

DVET=0.5*{VB(J,K)+VP(J,K)-VB(J-1,K)-VP(J-1,K))

DVZT=0.125%(VB(J,K+1)+VB(J-1,K+1)+VP(J,K+1)
S+VP(J-1,K+1)-VB(J,K-1)-VB(J-1,K+1)~-VP(J,K-1)
$-VP(J-1,K+1))

DWXI=0.5*(WB(J,K)+WB(J,K-1)-WP(J,K)~WP(J,K-1))

DWET=0.125%(WB(J+1,K)+WB(J+1,K-1)+WP(J+1,K)
S+WP(J+1,K-1)-WB(J-1,K)-WB(J-1,K-1)-WP(J-1,K)
S-WP(J-1,K-1))

DW2T=0.5*(WB(J,K)+WP(J,K)-WB(J,K-1)-WP(J,K-1))

DKX=:AJI*(B11*DKXI+B12*DKET+B13*DKZT)

DVX=AJTI*(B11*DVXI+B12*DVET+B13*DVZT)

DWX=aJI*(B11*DWXI+B12*DWET+B13*DWZT)

SG=SS+REFF*(2./3.*DKX-2ZUT2*DVX-ZUT3*DWX)

ELSE IF(M .EQ. 2) THEN

DKET=AKEP (J+1,K) -AKEP(J,K)

DKZT=0.25%(AKEP (J+1 ,K+1)+AKEP(J,K+1) -AKEP(J+1,K-1)
S-AKEP(J,K-1))

DUET=0.5* (UP (J+1,K)+UF (J+1,K)-UP(J,K)~-UF (J,K))

DUZT=0.125%(UP(J+1,K+1)+UP(J ,K+1)+UF (J+1,K+1)
$+UF (J,K+1)-UP(J+1,K-1)-UP(J,K-1)-UF (J+1,K-1)
$-UF(J,K-1))

DWET=0.5*%(WP(J+1,K) -WP(J,K)+WP(J+1,K-1)-WP(J,K-1))

DWZT=0.5% (WP (J,K)+WP(J+1,K) -WP(J,K-1)-WP(J+1,K-1))

DKY=AJI*(B22*DKET+B23*DKZT)

DUY=AJI*(B22*DUET+B23*DUZT)

DWY=AJI*(B22*DWET+B23*DWZT)

DWZ=AJI*(B23*DWET+B33*DWZT)

SG=SS+REFF*(2./3.*DKY-ZUT1*DUY-ZUT3*DWY)

IF(NA23 .NE. 2) SG=SG+REFF*(ZUT3*WW/R-
SWiw*Ww/R)+2./R*DWZ+VV/R/R

ELSE IF(M .EQ. 3) THEN
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DKET=0.25*(AKEP(J+1,K+1) -AKEP(J~1,K+"V+AKEP (J+1,K)
$-AKEP(J-1,K))

DKZT=AKEP (J,K+1)-AKEP (J,X)
DUET=0.125%(UB(J+1,K)+UB(J+1,K-1)+UP(J+1,K)
$+UP(J+1,K-1)-UB(J-1,K)-UB(J-1,K-1)-UP .J-1,K)
$-UP(J-1,K-1))

DUZT=0.5*(UP(J,K+1)+UF (J,K+1)-UP(J,K) -UF (J,K))
DVET=0.53*(VP(J,K+1)-VP(J-1,K+1)+VP(J,K}-VP(J-1,K))
DVZT=0.5%(VP(J-1,K+1)-VP(J-1,K)+VP(J,K+1)-VP(J,K))
DKZ=4J1*(B32*DKET+B33*DKZT)
DUZ=AJT*(B32*DUET+B33*DUZT)
DVZ=AJI*(B32*DVET+B33*DVIT)
SG=SS+REFF*(2./3.*DKZ+WW*VV/R-ZUT1*DUZ-ZUT2*(DVZ-
SWW/R)-ZUT3*2.%VV/R)~2. /R*DVZ+WW/R/R

ELSE IF(M .EQ. &) THEN

DUXI=UP(J,K)-UF(J,K)

DUET=0.25*(UP{J+1,K)+UF (J+1,K)-UP(J-1,K)-UF(J3-1,K))
DUZT=0.25*%(UP(J,K+1)+UF(J,K+1)-UP(J,K-1)-UF(J,K-1))
DVXI=0.5*(VP{J ,K)+VP(J-1,K)-VF(J,K)-VF(J-1,K))
DVET=VP(J,K)-V?{J-1,K)
DVZT=0.25%(VP(J.K+1)+VP(J-1,K+1)~-VP(J,K-1)-VP(J-1,K-1))
DWXI=0.5*(WP{J,K)+WP(J,K-1)-WwF (J,K)-WF(J,K-1))
DWET=0.25*(WP(J+1,K)+WP(J+1,K-1)-WP(J-1,K)-WP(J-1,K-1))
DWZT=WP(J,K)-WP(J,K-1)
DUX=AJI*(B11*DUXI+B12*DUET+B13*DUZT)
DVX=AJI*(B11*DVXI+B12*DVET+B13*DVZT)
DWX=AJI*(B11*DWXI+B12*DWET+B13*DWZT)
DUY=AJI*(B22*DUET+B23*DUZT)
DVY=AJI*(B22*DVET+B23*DVZT)
DWY=AJI*(B22*DWET+B23*DWZT)
DUZ=AJI*(B32*DUET+B33*DUZT)
DVZ=4aJI*(B32*DVET+B33*DVZIT)
DWZ=AJI*(B32*DWET+B33*DWZT)
GE(J,K)=2UTP=*(2.*DUX*DUX+2.*DVY*DVY+2.*DWZ*DWZ
S+(DUZ+DWX)**2+(DVX+DUY ) **2+(DVZ+DWY ) **2)

IF(NA23 .NE. 2) GE(J,K)=GE(J,K)+ZUTP*(2.*(DWZ+VV/R)**2-
$2.*DWZ*DWZ+(DVZ+DWY -WW/R)**2- (DVZ+DWY)**2)
SG=SS-CEFFK*REFF* (GE(J,K)-ADSP(J,K))

ELSE IF(M .EQ. 5) THEN

SG=8S-CEFFD*REFF+~(C1*GE (J,K)*ADSP(J,X)-
SC2*ADSP(J,K)*ADSP(J,K))/AKEP(J,K)

END IF

RETURN

END

* e e s e e
SLBROUTIVE SVEL IS USED TO SOLVE FA ALGEBRAIC -QUATIOW

etk ateeie vl mte ke cheodeaks whrabeele vk aks ol ks ke ahe olocheake ele ale ale ake abe olofeabpke ol aleed

SUBRCUTINE SVEL(US,GG,LO0,D1,E1,H1,SU,
5 UM, OMN,CMP, UNM, UNN, UNP,
S UpM,UPN,UPP,Y2,Y3,Y4,BV,
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S IT,JJ,KK, ITUW,M,L,N)
IMPLICIT REAL*8(A-H,0-2)

DIMENSION U0O(II,JJ,KX)

DIMENSION US(JJ,KX),GG(JJ,KK)

DIMENSION D1(JJ,KX),E1(JJ,KK),H1(JJ,KK),SU(JJ,KK)
DIMENSION UMM(JJ,KK),UMN(JJ,KK),UMP(JJT,KK)

DIMENSION UNM(JJ,KK),UNN(JJ,KX),UNP(JJ,KK)

DIMENSION UPM(JJ,KX),UPN{JJ,KK),UPP(JJ,XX)

DIMENSION BV(JJ.KX),Y2(II,XK),Y3(II,KK),Y4(II,KK}
DIMENSION AA(99),BB(99),CC(99),DD(9%),T{99)
COMMON/UVW1/IMAX, MMAX,RMAX,JPL,KP1,54,JAM1, T, KM1, KO
COMMON/COE¥4/ UT, VI, M1,M2,M3

. CALCULATE THE LONGITUDIAL VELOCITY FIELD

DO 305 ITER=1,ITUW

DO 330 K=2,XMAX

IF(M.EQ.2 .AND. K.EQ.KMAX) GO TO 230

DO 320 J=J4, M

DOD=DABS(D1(J,K))

tU=U0(1-1,J,K)

IF(D1{J,X).LT.0.) UU=U0O(I+1,J,K)
AL(}=-UMN(],K)
BB(J)=1.+(DDD+2*H1(J,K)+E1(J,K))*UNN(J,K)
CC(J)=-UPN(J,X)

320 BD(J)=UNP(J,K)*US(J,K+1)+UNM(J K, :US{J,K-1)

310
330

(W3 ]

ra

S+UPP(J,K)*US (J+1,K+1)+UPM(J,K)*US (J+1,K-1)
S+UMP(J,KY*US(J-1,K+1)+UMM(J,K)*US(J-1,K-1)
S+UNN(J,K)*(DDD*CU+EL (T ,K)*00(I,J,K)-SU(J,K)
$+H1(J,K)*(UC(I+1,J,K)+C0(1-1,J,K)))
$S-BB(J)*GG(J,X)
DD(JA)=DD(Ja)-AA(JA)Y*US(JAML,K)

DD (JMAX)=DD(JMAX) -CC( ™MAX)*US(JP1,K)

CALL TRIDAG(JA,JMAX,aA,BB,CC,DD,T)

DO 310 J=JA,MAX

CS(J,K)=T({J)

CONTINUE

DO 333 K=2,KMAX

IF(L .EQ. 1) THEN

s (JP1,X)=UI

ELSE IF(L .EQ. 2) THEN

US (JP1,K)=U5 (JMAX,K)*8V(JMAX,K)/BV(JP1,K)
ELSE IF(L .EQ. 3) THEN

CS(JP1,K)=US (JMAX,X)

END IF

CONTINLE

SFOLLLT.M1 JOR. I.GE.M2) THEN

00 334 K=2 KXMAX

IF(N .EQ. 1) THEN

CSCJAML K= (Y& (T, K5-Y2( I ,K))=US(JA,K) - (Y3(I,K)-Y¥2([,X))
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$ *US(JA+L,K) )}/ (Y4(1,K)~Y3(I,K))

ELS® [F(N .EQ. 2) THEN

US(JAML,K)=US (JA,K)*Y2(I,X)/Y3(I,K)

ELSE IF(N .EQ. 3) THEN

US (JaM1,K)=0.

END IF
334 CONTINUE

END IF

IF(M .EQ. 1) THEN

DO 331 J=1,JP1

US(J,1)=Us(J kM)
331 US(J,KP1)=US(J,XM1)

ELSE IF(M .EQ. 2) THEN

DO 332 J=1,JP1

Us(J,1)=-U5(J,2)
332 CS(J,KMAX)=-US(J,Kr1)

END IF
305 CONTINUE

RETURN
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CALCULATE THE PSEUDO- VELOCITY FIELD
el e e A A e eV = S

SUBROUTINE HVEL(UH,GG,UO,UP,D1,E1,H1,SU,

$ UMM, UMN, UMP , UNM, UNN, GNP,
$ UPM,UPN,UPP, IT,JJ,KK, )

IMPLICIT REAL*8(A-H,0-2)

DIMENSION UG(II,JJ,KK)

DIMENSION UP(JJ,KK),UH{JJ,KK),SU(JJ,KK)

DIMENSION GG(JJ,KK).D1(JJ,KK),E1(JJ,KK),H1(JJ,KK}
DIMENSION UMM(JJ,KK).udN(JJ,KK) ,UMP(JJ,KK)

DIMENSION UNM(JJ,KE,,UNN(JJ,KK),UNP(JJ,KK)

DIMENSION UPM{JJ,iX),UPN(JJ,KK),UPP(JJ,KK)
COMMON/UVW1/ IMAX, JMAX , KMAX, JP1,KP1,JA, JAML, I, KM1, K

DO 672 K=2,KMAS

IF(M.E%.2 .AMD. K.EQ.KMAX) RETURN
DO 672 J=Ja,JuiX

DDD=DABS(D1(J,X))

UU=U0(1-1,J,K)

IF(D1(J,K) .LT. 0.) UU=CO(I+1,J,K)

672 UH(J,K)=(UMN(J,K)*UP(J-1,K)+UPN(J,K)*UP(J+1,K)
S+UNP(J,K)=UP(J,K+1)+UN}N(J,K)*UP(J,K-1)
s+UGPP(J,K)*UP(J+1,K+1)+CPH(J,K)*UP(J+1,K-1)
S+UMP(J,K)*UP(J-1,K+1)+UMM(J ,K)=UP(J-1,K-1)
S+UNN(J,K)* (DDD*CU+H1 (J,K)*(LO(I-1,J,K)+CO(I+1,J,K))
S+EL(J,K)*C0(I,J,K)-SC(J,K)))/{1.+(DDD+2*H1(J,K)
S+E1(J,K))=UNN(J,K)1-GG(J,K)

RETURN
END
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SUBROUTINE PRLQSURE EQUATION

oot "-I.J.H..L..L.l_lrd.-‘:dn.k. .L.I—'--l_.l..l—-h.l..l..l—-l..l. -J‘Jod—l‘-lr.b.l.d..&’k.h

SUBROUTINE PRESU(P,DHS,BCU,BCV,BCW,M,II,JJ,KK)

IMPLICIT REAL¥*8(A-H,0-2)

DIMENSION P(II,JJ,KK)

DIMENSION DHS(JJ,KK)

DIMENSION BCU(II,JJ,KK)

DIMENSION BCV(II,JJ,KK)

DIMENSION BCW(II,JJ,KK)

DIMENSION AA(99),BB(99),CC(99),DD(99),T(99)

COMMON/UVW1/ IMAX, JMAX ,KMAX, JP1,KP1,JA, JAML, I, KM1,KMM

DO 655 K=2,KMAX

DO 660 J=JA,JMAX

AA(J)=-BCV(I,J-1,K)

BB(J)=BCU(I-1,J,K)*M+BCU(I,J,K)+BCV(I,J-1,K)

$+BCYV(I,J,K)+BCW(I,J,K-1)+BCW(I,J,K)

CC(J)=-BCV(I,J,K)
660 DD(J)=BCU(I,J,K)*P(I+1,J,K)+BCU(I-1,J,K)*P(I-1,J,K)

$+BCW(I,J,K)*P(I,J,K+1)+BCW(I,J,K-1)*P(I,J,K-1)-DHS(J,K)

DD(JA)=DD(JA)-AA(JA)*P(I,JaM1,K)

DD (JMAX)=DD ( JMAX) -CC (JMAX)*P(I,JP1,K)

CALL TRIDAG(JA,JMAX,AA,BB,CC,DD,T)

DO 671 J=JA,JMAX
671 P(I,J,K)=T(J)
655 CONTINUE

RETURN

END

SUBROUTIVE COEF IS USED TO CALCULATE THE FA COEFFICIEVTS

M-&W“M.& LJ-&-LMLW*J—MMM&J.M“ T

rmrzr:q:cu

aon

SUBROUTINE COEF
IMPLICIT REAL*8(A-H,0-2)

COMMON/COEF7/CF(3,3)
COMMON/UVW4/AR,BR,DR,ER,FR,GR
DATA MAX,EMAX,C1,EPE,PI /12,20.,1.,1.D-5,3.1415926535897

HX=1./ER

HY=1./FR

AR=AR/ER

BR=BR/FR
IF(DABS(AR).LT.EPE)AR=DSIGN(EPE,AR)
IF(DABS(BR).LT.EPE)BR=DSIGN(EPE,BR)
ER2=ER*ER

FR2=FR*ER
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AB2=AR*AR+BR¥*BR
AH=AR¥HX
AR=AR*HY
BH=BR¥*HX
BK=BR¥*HY
DAH=DABS (AH) : |
DBK=DABS (BK) |
AH2=AH=AH
BK2=BK#*BK

I¥=0

Ju=0

IF(DAH.GT.EMAX) IM=1
IF(DBK.GT.EMAX) JM=2
MT=IM+IM+1

GO TO (1,2,3,4), MT

1 EPAH=DEXP(AH)
EPBK=DEXP (BK)
EPAHI=1./EPAH
EPBKI=1./EPBK
COSHA=0.5* (EPAH+EPAHI)
COSHB=0.5* (EPBK+EPBKI)
COTHA=2.*COSHA/ (EPAH-EPAHI)
COTHB=2.*COSHB/ (EPBK-EPBKI)
AKCTHA=AK*COTHA
BHCTHB=BH**COTHB
PWR=1.
IF(HX .GT. HY) GO TO 11
EX2=0.
DO 10 II=1,MAX
ZA=(II-0.5)*PI
ZA2=2A%TA
PWR=-PWR
DABK=DSQRT (AB2+ZA2*ER2)*HY
IF(DABK .GT. 100.) GO TO 9
AB=DEXP (DABK)

10 EX2=EX2-PWR*ZA/((AB+1./AB)*(AH2+ZA2)*(AH2+ZA2))
9 PA=8.*AH*COTHA*COSHA*COSHB*EX2
P3=1.+BHCTHB/AKCTHA*(PA-1.)
CF(2,2)=0.5*%HX/ (AR**COTHA)*(1.-PA)

GO TO 100

11 EY2=0. |
DO 12 II=1,MAX
ZA=(11-0.5)*PI
ZA2=2A"74
PWR=-PWR
DABH=DSQRT (AB2+ZA2%FR2)*HX
IF(DABH.GT.100.) GO TO 19
AB=DEXP (DABH)
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12 EY2=EY2-PWR*ZA/ ((AB+1./AB)*(BK2+ZA2)*(BK2+2A2))
19 PB=8.*BK*COTHB*COSHA*COSHB*EY2
PA=1.+AKCTHA/BHCTHB*(PB-1.)
CF(2,2)=0.5*HY/(BR*COTHB)*(1.-PB)
GO TO 100

2 EPBK=DEXP(BK)

EPBKI=1./EPBK
COSKB=0. 5* (EPBK+EPBKI)
COTHB=2.*COSHB/ (EPBK-EPBKI)
COTHA=DSIGN(C1,AR)
AKCTHA=AK*COTHA
BHCTHB=BH:*COTHB
PWR=1.
IF (AKCTHA.LT.BHCTHB) GO TO 22
EX2=0.
FX2=0.
DO 20 II=1,MAX
ZA=(I11-0.5)*PI
ZA2=ZA*ZA
PWR=-PWR
PZ=PWR*ZA/ ( (AH2+ZA2)* (AH2+ZA2))
FX2=FX2-PZ
DABK=DSQRT (AB2+ZA2*ER2 )*HY
AB=1.
IF(DABK.GT.100.) GO TO 20
EPABK=DEXP (DABK)
AB=1.-COSHB/ (EPABK+1. /EPABK)

20 EX2=EX2-PZ*AB
PA=1.-EX2/FX2
PB=1.+BHCTHB/AKCTHA*(PA-1.)
CF(2,2)=0.5%HY/ (BR*COTHB)* (1. -PB)
GO TO 100

22 EY2=0.
DO 23 II=1,MAX
ZA=(II1-0.5)*PI
ZA2=ZA*ZA
PWR=-PWR
DABH=DAH-DSQRT (AB2+ZA2%FR2)*HX
IF (DABS(DABH) .GT.100.) GO TO 29
AB=DEXP (DABH)

23 EY2=EY2-PWR*ZA*AB/ ((BK2+ZA2)*(BK2+ZA2))

29 PB=4.*BK*COTHB*COSHB*EY2
PA=1.+AKCTHA/BHCTHB* (PB-1.)
CF(2,2)=0.5%HY/(BR*COTHB)* (1. -PB)
GO TO 100

[

EPAH=DEXP(AH)

tPAHI=1./EPAH
COSHA=0. 5% (EPAH+EPAHI)
COTHA=2.*COSHA/ (EPAH-EPAHI)




30

32

33
39

‘.\

COTHB=DSIGN(C1,BR)
AKCTHA=AK*COTHA

BHCTHB=BH*COTHB

PWR=1.

IF (AKCTHA.GT.BHCTHB) GO TO 32
EY2=0.

FY2=0.

DO 30 II=1,MAX

ZA=(II-0.5)*PI

ZA2=ZA*ZA

PWR=-PWR

PZ=PWR*ZA/ ((BK2+ZA2)* (BK2+2A2))
FY2=FY2-P2

DABH=DSQRT (AB2+2A2*FR2)*HX
AB=1.

IF(DABH.GT.100.) GO TO 30
EPABH=DEXP (DABH)

AB=1.-COSHA/ (EPABH+1./EPABH)
EY2=EY2-PZ2*AB

PB=1.-EY2/FY2
PA=1.+AKCTHA/BHCTHB*(PB-1.)
CF(2,2)=0.5*HY/(BR*COTHB)*(1.-PB)
GO TO 100

EX2=0.

DO 33 II=1,MAX

ZA=(1I-0.5)*PI

ZA2=ZA*ZA

PWR=-BWR

DABK=DBK-DSQRT (AB2+ZA2*ER2)*HY
IF(DABS(DABK).GT.100.) GO TO 39
AB=DEXP (DABK)
EX2=EX2-PWR*ZA*AB/ ((AH2+2A2)*(AH2+ZA2))
PA=4  *AH*COTHA*COSHA*EX2
PB=1.+BHCTHB/AKCTHA*(PA-1.)
CF(2,2)=0.5*HY/(BR*COTHB)*(1.-PB)
GO TO 100

DAK=DABS (4K)

DBH=DABS (BH)
COTHA=DSIGN(C1,AR)
COTHB=DSIGN(C1,BR)
IF(DAK.LT.DBH) GO TO 41
PA=0.

PB=1. -DBH/DAK
CF(2,2)=C.5*HX/ (AR*COTHA)
GO TO 100

P3=0.
PA=1, ~-DAK/DBH
CF{l,2)=0.5*HY/(BR*COTHB)




100 Q=1.-PA-PB
TANHA=1./COTHA
TANHB=1. /COTHB
BE=0.5%(1.-TANHA)
BW=0.5*(1.+TANHA)
BN=0.5*(1.-TANHB)
BS=0.5*(1.+TANHB)
CF(1,1)=BW¥BS*Q
CF(1,3)=BE*BS*Q
CF(3,1)=BW*BN*Q
CF(3,3)=BE*BN*Q
CF(1,2)=BS*PA
CF(3,2)=BN*PA
CF(2,1)=BW*PB
CF(2,3)=BE*PB

c
RETURN
END
C
Crirdededede oot e At e e e ek de e e el
c SUBROUTINE TRIDAG 7O SOLVE ALGEBRAIC EQUATIONS
C SIMULTANEOUSLY FOR EACH ROW OR COLOUM
C-L&Jo&“&.b-l- elaa’ .J-JoJ-JoJ-Jo*J- -J'-QJ-M )..I..L et foete ok hoctoats
C
c

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(99),B(99),C(99),D(99),V(99),BETA(99),GAMMA(9
BETA(IF)=B(IF)
GAMMA(IF)=D(IF)/BETA(IF)
IFP1=IF+1
DO 1 I=IFP1,L
BETA(I)=B(I)-A(I)*C(I-1)/BETA(I-1)

1 GAMMA(I)=(D(I}-A(I)*GAMMA(I-1))/BETA(I)
V(L)=GAMMA(L)
LAST=L-IF
DO 2 K=1,LAST
I=L-K

2 V(I)=GAMMA(I)-C(I)*V(I+1)/BETA(I)
RETURN
END

C.... THIS PROGRAM IS USED TO GENERATE THE BODY~FITTED

C.... COORDINATES ON THE AFTERBODY1
C
PP ot et et g e e St s o e

IMPLICIT REAL*8 (A-H,0-2)
COMMON/GEOL/ XP(62),YP(62,20,4)
COMMON/GEO2/ ZP(62,20,4)

311




COMMON/BODY2/ F1(62),F2(62,20),F3(4),GE(20,4)
DIMENSION AA(90),BB(90),CC(90),DD(%0),T(90)
DIMENSION FA(20), FB(20)

IMAX=62
JMAX=20
KMAX=1
IMAM=IMAX-1
JHAM=JMAX-1
KMAM=KMAX-1
EPE=1.D-5
Al=-.05
42=0.2
NA=15

NB=42

NX1=5
NX2=40
NX3=40

P1=3.141592653589793D0
EPS=1.D-12

. X-DIRECTION

20

30

50

56

60

AX3=NX3

DO 50 I=10,IMAX
21=1/4%3

IF(Z1 .LE. 0.5) F1(I)=Al

IF(Z1 .GT. 0.5 .AND. 21 .LE.
1. .AND. 21 .LE.
1.

2) F1(I)=42

1.)G0 TO 2¢C

IF(Z1 .GT. 1.2) GO TO 30

IF(21 .GT.
GO TO 50
PIZ=PI*Z1
F1(I)=A1*DSIN(PI2)
GO TO 50

PIZ=PI*Z1
F1(1)=-A2*DSIN(P1Z)
CONTINUE

Do 55 I=1,5
F1(I)=-F1(NX2+I-5)
DO 56 I=5,9
F1(I)=-F1(10-I)

DO 60 I=2,IMAM
AA(I)=-DEXP(F1(I))
CC(I)=1./4A(I)
BB(I)=-(AA(1)+CC(I))
DD(I)=0.D0

P e
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70

72

74

150

160

XP(NX1)=0.4446D0
XP(NX2)=1.D0
N1=NX1+1
N2=NX2-1

DD(N1)=DD(N1)-AA(N1)*XP(NX1)
DD(N2)=DD(N2)-CC(N2)*XP(NX2)

CALL TRIDAG(N1,N2,AA,BB,CC,DD,T)

DO 70 I=N1,N2
XP(I)=T(I)

DO 72 I=NX1,2,-1
XP(I-1)=-(XP(I)*BB(I)+XP(I+1)*CC(I))/AA(L)
CONTINUE

DO 74 I=NX2,IMAM
XP(I+1)=-(XP(I)*BB(I)+XP(I-1)*AA(I))/CC(I)
CONTINUE

. Y-DIRECTION

. READ THE BODY SURFACE FROM THE MEASUREMENTS

OPEN(UNIT=S,FILE='AFTERBODY1")
READ(5,300) (YP(I,1,1),I=1,IMAX)
CLOSE(S)

DO 150 I=1,IMAX
YP(I,JMAX,1)=1.0
CONTINUE

DO 160 J=3,JMAM
FB(J)=0.15
FA(J)=0.20
CONTINUE
FB(2)=-0.15
FB(3)=0.
FA(2)=-0.20
FA(3)=0.

DO 10 J=2,JMAM
EB=DEXP(FA(J))
EBR=1.DO/EB
PSN=EB+EBR
EB2=EB*EB
EB2R=1./EB2
PPSN=2.*B/(EB2-EB2R)
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AA(J)=-EB

BB(J)=PSN

CC(J)=-EBR
10 DD(J)=0.D0

DO 170 I=1,IMAX
DD(2)=-4A(2)*YP(I,1,1)
DD (JMAM)=-CC(JIMAM)*YP(I,JMAX,1)

CALL TRIDAG(2,JMAM,AA,BB,CC,DD,T)

DO 379 J=2,JMAM
379 YP(I,J,1)=T(J)
170 CONTINUE

DO 1000 ITY=1,250

$0S=0.

DO 200 I=2,IMAM

DO 210 J=2,JMAM
XXIXI=XP(I+1)-2.*XP(I)+XP(I-1)
YETET=YP(I,J+1,1)-2.%YP(I,J,1)+YP(I,J-1,1)
XXI=.5%(XP(I+1)-XP(I-1))

XET=0.
YXI=.S*(YP(I+1,J,1)-YP(I-1,J,1))
YET=.5*(YP(I,J+1,1)-YP(I,J-1,1))
AJI=XXI*YET

G11=(YET*¥2)/AJI/AJI
G22=(XXI**2+YXI**2) /AJI/AJI
G12=-YXI*YET/AJI/AJI

IF(I .LT. NA)THEN

F2(1,J)=FA(J)

ELSE IF(I .GT. NB) THEN
F2(I,J)=FR(J)

ELSE
F2(1,J)=((NB-I)*FA(J)+(I-NA)*FB(J))/ (NB-NA)
END IF

A=F1(I)

B=F2(I,J)

IF(DABS(B) .LT. EPE) B=DSIGN(EPE,B)
EPA=DEXP(4)

EPB=DEXP(B)

EPAI=1./EPA

EPBI=1./EPB

COSHA=. 5* (EPA+EPAI)
COSHB=. 5* (EPB+EPBI)
CSCHA=2./(EPA-EPAI)
CSCHB=2./(EPB-EPBI)
COTHA=COSHA**CSCHA
COTHB=COSHB*CSCHB
AB=G22:8*CSCHB

AA(J)=-AB¥*EPB
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BB (J)=2.*(G11*A*COTHA+G22*B*COTHB)
CC(J)=-AB*EPBI
DD(J)=.5%G12*(YP(I+1,J+1,1)+YP(I-1,J-1,1)-YP(I-1,J+1,1)

$ -YP(I+1,J-1,1))+G11*%A*CSCHA*(EPA*YP(I-1,J,1)
$ +EPAI*YP(I+1,J,1))
210 CONTINUE

220
200

666

1000

999

w
s
[9]]

444

DD(2)=DD(2)-AA(2)*YP(I,1,1)

DD (JMAM)=DD (JMAM) -CC (JMAM)*YP(I,IMAX,1)
CALL TRIDAG(2,JMAM,AA,BB,CC,DD,T)

DO 220 J=2,JMAM

YT=T(J)-YP(I,J,1)

IF(DABS(S0S) .LT. DABS(YT)) SOS=YT
YP(I,J,1)=1.8*T(J)-0.8*YP(1,J,1)
CONTINUE

IF(DABS(S0OS) .LT. 0.00001) GO TO 999

DO 666 J=2,JMAM
YP(IMAX,J,1)=YP(IMAX-1,J,1)-YP(IMAX-1,1,1)+YP(IMAX,1,1)
CONTINUE

WRITE(1,222) ITY, SOS
CONTINUE

DO 555 I=1,IMAX
F2(I,1)=0.
F2(I,JMAX)=F2(I,JMAM)
CONTINUE

DO 444 J=1,JMAX
F2(1,J)=F2(2,J)
F2(IMAX,J)=F2(IMAM,J)
CONTINUE

OPEN(UNIT=6,FILE='PHYSBODY')
WRITE(6,300) (XP(I),I=1,IMAX)
WRITE(6,300) (F1(I),I=1,IMAX)
DO 550 J=1,19
WRITE(6,300)(YP(I,J,1),I=1, IMAX)
WRITE(6,300)(F2(I,J),I=1,IMAX)
CONTINUE

CLOSE(6)

FORMAT(3E14.7)

FORMAT (1X,6110)
FORMAT(I10,E12.4)

CALL EXIT

END

...........................

SUBROUTINE TRIDAG TO SOLVE ALGEBRAIC EQUATIONS
STMULTANEOUSLY FOR EACH ROW OR COLOUYM




S davive oo e Yol e test

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(90),B(90),C(90),D(90),V(90),BETA(90),GAMMA(S
BETA(IF)=B(IF)
GAMMA(IF)=D(IF)/BETA(IF)
IFP1=IF+1
DO 1 I=IFPL,L
BETA(I)=B(I)-A(I)*C(I-1)/BETA(I-1)
1 GAMMA(I)=(D(I)-A(I1)*GAMMA(I-1))/BETA(I)
V(L)=GAMMA (L)

LAST=L-IF
DO 2 K=1,LAST
I=L-K
2 V(I)=GAMMA(I)-C(I)*V(I+1)/BETA(I)
RETURN
END
C sttt dot it drdir dededete ot e ok ot e et e b fee e oot

C.... THIS PROGRAM IS USED TO GENERATE THE BODY-FITTED
C.... COORDINATES ON THE F-57 BODY

IMPLICIT REAL*8 (A-H,0-2)

COMMON/GEO1/ XP(62),YP(62,20,4)

COMMON/GEO2/ ZP(62,20,4)

COMMON/BODY2/ F1(62),F2(62,20),F3(4),GE(20,4)
DIMENSION AA(90),BB(90),CC(90),DD(90),T(90)
DIMENSION FA(20), FB(20)

TMAX=62
JHMAX=20
KMAX=1
MAM=IMAX-1
JHaAM=MAX-1
CMAM=KMAX-1
EPE=1.D-5
Al=~.01
A2=0.2
NA=15

NB=42

NX1=5
NX2=40
\X3=40

OPEN(UNIT=6, FILE='PHYSBODY')
PI=3.141592653589793D0
EPS=1.D-12

316




2

. X-DIRECTION

60

70

74

AX3=NX3

DO 50 I=10,IMAX
21=1/AX3

IF(Z1 .LE. 0.5) F1(I)=Al

IF(Z1 .GT. 0.5 .AND. 21 .LE. 1.)GO TO 20
IF(Z21 .GT. 1. .AND. 21 .LE. 1.1) GO TO 30
IF(Z1 .GT. 1.1) F1(I)=4A2

GO TO 50

PIZ=PI*Z1

F1(I)=A1*DSIN(PIZ)

GO TO 50

PIZ=PI*Z1

F1(I)=-A2*DSIN(PIZ)

CONTINUE

DO 55 I=1,5
F1(I)=-F1(NX2+I-5)
DO 56 I=5,9
F1(I)=-F1(10-I)

DO 60 I=2,IMAM
AA(I)=-DEXP(F1(I))
CC(I)=1./4A(I)
BB(I)=-(AA(I)+CC(I))
DD(I)=0.DO

XP(NX1)=0.4446D0
XP(NX2)=1.D0
N1=NK1+1
N2=NX2-1

DD(N1)=DD(N1)-AA(N1)*XP(NX1)
DD(N2)=DD(N2)-CC(N2)*XP(NX2)

CALL TRIDAG(N1,N2,A4,BB,CC,DD,T)

DO 70 I=N1,N2
XP(I)=T(I)

DO 72 I=NX1,2,-1

XP(I-1)=-(XP(I)*BB(I)+XP(I+1)*CC(I))/AA(I)

CONTINUE

DO 74 [=NX2,IMAM

XP(I+1)=-(XP(I)*BB(I)+XP(I-1)*AA(I))}/CC(I)

<ONTINCE
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. Y-DIRECTION

Al=0.0112135D0
A2=0.0761285D0
43=0.1104047D0
44=-0.4107083D0
B2=0.007868094D0
B3=0.281687965D0
B4=-0.371566458D0
B5=-0.031072748D0

DO 100 I=1,IMAX

[Pi=I+1

IM1=I-1

IF(XP(I) .LT. 0.DC .OR. XP(I) .GT. 1.DO) GO TO 110
IF(XP(I).GE.0. .AND. XP(I).LE.0.4446) GO TO 120
IF(XP(I).GT.0.4446 .AND. XP(I).LE.1.) GO TO 130

110 YP(I,1,1)=0.D0
GO TO 100

120 P=XP(I)
YP(I,1,1)=DSQRT((((A4*P+A3)*P+A2)*P+A1)*P)
GO TO 100

130 P=1-XP(I) ‘
YP(I,1,1)=DSQRT((((B5*P+B4)*P+B3)*P+B2)*P*F)

100 CONTINUE

DO 150 I=1,IMAX
YP(I,MAX,1)=2.0
150 CONTINUE

DO 160 J=3,JMAM
FB(J)=0.15
FA(J)=0.20
160 CONTINUE
F3(2)=-0.15
FB(3)=0. |
FA(2)=-0.20
FA(3)=0.

DO 10 J=2,JMAY 1
EB=DEXP(FA(J)) |
FBR=1.D0/EB
PSN=EB+ESR
E32=EB*EB
E32R=1./EB2
PPSN=2.%B/ (EB2-EB2R)

aa(J)=-EB
8B (J)=PSN
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CC(J)=-EBR
10 DD(J)=0.DO

DO 170 I=1,IMAX
DD(2)=-5A(2)*YP(I,1,1)
DD (MaAM)=-CC(JMAM)*YP(I,JMAX,1)

CALL TRIDAG(2,JMAM,AA,BB,CC,DD,T)

DO 379 J=2,JMAM
379 YP(I,J,1)=T(J)
170 CONTINUE

DO 1000 ITY=1,250

S0S=0.

DO 200 I=2,IMaM

DO 210 J=2,JMAM
KXIXI=XP(I+1)-2.*XP(I)+XP(I-1)
YETET=YP(I,J+1,1)-2.*YP(1,J,1)+YP(1,J-1,1)
XXI=.5*%(XP(I+1)-XP(I-1))

XET=0.
YXI=.5*(YP(I+1,J,1)-YP(I-1,J,1))
YET=.5%(YP(I,J+1,1)-YP(I,J-1,1))
AJI=XXI*YET

Gll=(YET**2)/AJI/AJI
G22=(XXI**2+YXI*#*2)/AJI/AJ1
G12=-YXI*YET/AJI/AJI

IF(I .LT. NA)THEN

F2(I,J)=FA(J)

ELSE IF(I .GT. NB) THEN
F2(1,J)=FB(J)

ELSE
F2(I,J)=((NB-I)*FA(J)+(I-NA)*FB(J))/(NB-NA)
END IF

A=F1(I)

B=¥Fz(I,J)

IF(DABS(B) .LT. EPE) B=DSIGN(EPE,B)
EPA=DEXP(A)

EPB=DEXP(B)

EPAI=1./EPA

EPBI=1./EPB

COSHA=. S*(EPA+EPAI)
COSHB=.5*(EPB+EPBI)
CSCHA=2./(EPA-EPAI)
CSCHB=2./(EPB-EPBI)
COTHA=COSHA*CSCHA
COTHB=COSHB**CSCHB

AB=G22*B*CSCHB

AA(J)=-AB*EPB
BB(J)=2.*(Gl1*A*COTHA+G22*B*COTHB)
CC(J)=-AB*EPBI
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DD(J)=.5%G12%(YP(I+1,J+1,1)+¥P(I-1,J-1,1)-YP(I-1,J+1,1)
$ -YP(I+1,J-1,1))+G11*4*CSCHA* (EPA*YP(I-1,J,1)
$ +EPATAYP(I+1,J,1))

CONTINUE

DD(2)=DD(2)-AA(2)*YP(I,1,1)

DD (JMAM)=DD (JMAM) -CC (JMAM)*YP (T, JMAX, 1)

CALL TRIDAG(2,JMAM,AA,BB,CC,DD,T)

DO 220 J=2,JMAM

YT=T(J}-YP(I,J,1)

IF(DABS(SOS) .LT. DABS(YT)) SOS=YT

YP(I,J,1)=1.8%T(J)-0.8%YP(I,J,1)

CONTINUE

IF(DABS(SOS) .LT. 0.00001) GO TO 999

DO 666 J=2,JMAM
YP(IMAX,J,1)=YP(IMAX-1,J,1)-YP(IMAX-1,1,1)+YP(IMAX,1,1)
CONTINUE

WRITE(1,222) ITY, SOS
CONT:XIE

DO 555 I=1,IMAX
F2(I,1)=0.
F2(I,MAX)=F2(I,JMaM)
CONTINUE

DO 444 J=1,JMAX
F2(1,J)=F2(2,J)
F2(IMAX,J)=F2(IMAM,J)
CONTINUE

WRITE(6,700) IMAX, JMAX
WRITE(6,300) (XP(I),I=1, IMAX)
WRITE(6,300) (F1(I),I=1,IMAX)
DO 550 J=1,19

WRITE(6,300) (YP(I,J,1),I=1, IMAX)
WRITE(6,300) (F2(I,J),I=1,IMAX)
CONTINUE

CLOSE(6)

FORMAT(SE14.7)

FORMAT(1X,6110)
FORMAT(I10,E12.4)

CALL EXIT

END
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SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(90),B(90),C(90),D(90),V(90),BETA(90),GAMMA(Y
BETA(IF)=B(IF)
GAMMA(IF)=D(IF)/BETA(IF)
1 IFP1=IF+1
DO 1 I=IFP1,L
BETA(I)=B(I)-A(I)*C(I-1)/BETA(I-1)
1 GAMMA(I)=(D(I)-A(I)*GAMMA(I-1))/BETA(I)
V(L)=GAMMA (L)
LAST=L-IF
DO 2 K=1,LAST
I=L-K
2 V(I)=GAMMA(I)-C(I)*V(I+1)/BETA(I)
RETURN
END

Crrtddeirte ooy it e e it e R e A et e e

C

C.... THIS PROGRAM IS USED TO GENERATE THE BODY-FITTED

C.... COORDINATES ON THE OGIVE-NOSE BODY

c

o B L
IMPLICIT REAL*8 (A-H,0-2)
COMMON/GEO1/ XP(67),YP(67,20,9)
COMMON/GEQ2/ 2P(67,20,9)
COMMON/BODY2/ F1(67),F2(67,9),F3(9),GE(20,9
DIMENSION aA(90),BB(90),CC(90),DD(90),T(90)
DIMENSION FA(20), FB(20)

IMAX=62
JMAX=20
KMAX=9
[MAM=IMAX-1
JMAM=TMAX-1
KiaM=KMAX-1
EPE=1.D-5
Al=-.3
a2=-.2
NA=190

NB=42
NX1=12
NX2=4
NX3=25

OPEN(UNIT=6, FILE='PHYSBODY')
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. ¥-DIRECTION

aaOn

AX1=NX1-1.
AX2=2 .*NX1-1.
AX3=NX2-AX2

D0 50 I=1,IMAX
21=(I-1)/4X1
22=(1-AX2)/AX3

IF(Z1 .LE. 0.5) THEN
F1(I)=A1

ELSE IF(Z1 .GT. 0.5 .AND. 21 .LE. 2.)THEN
PIZ=PI*Z1
F1(I)=41*DSIN(PIZ)

ELSE IF(Z2 .LE. 1.5) THEN
P1Z=Pi*2Z2
F1(I)=42*DSIN(PIZ)

ELSE IF(Z22 .GT. 1.5) THEN
F1(I)=-A2

END IF

50 CONTINUE

DO 60 I=2,IMAM

AA(I)=-DEXP(F1(I))

CC(I)=1./4A(I)

BB(I)=-(AA(I)+CC(I))
60 DD(I)=0.D0

XP(NX1)=0.DO
XP(NX2)=1.D0O
N1=NX1+1
N2=NX2-1

DD(N1)=DD(N1)-AA(N1)*XP(NX1)
DD(N2)=DD(N2)-CC(N2)*XP(NX2)

CALL TRIDAG(N1,N2,4A,BB,CC,DD,T)

DO 70 I=N1,N2
70 XP(I)=T(I)

(@]

DO 72 [=NX1,2,-1
XP(I-1)=-(XP(I)*BB(I)+XP(I+1)*CC(I))/AA(I)
72 CONTINUE

DO 74 I=NX2,IMAM
XP(1+1)=-(XP(I)*BB(I)+XP(I-1)*aA(I))/CC(I)

74 CONTINUE




100

123

. Z-DIRECTION

DO 421 K=1,KMAX
F3(K)=0.

DO 421 J=1,JMAX
DO 421 I=1,IMAX

ZP(I,J,K)=(K-5.)*P1/6.

. Y-DIRECTION

AL=0.5D0
BL=0.006D0
XL=0.5D0

DO 100 I=1,IMAX
IP1=I+1
IMI=I-1

IF(XP(I) .LT. 0.DO .OR. XP(I) .GT. 1.D0O) THEN

YP(I,1,1)=0.D0

ELSE IF (XP(I) .GE. 0.DO .AND. XP(I) .LE. 0.06D0) THEN

YP(I,1,1)=0.1D0*XP(I)

ELSE IF (XP(I) .GT. 0.06DO .AND. XP(I) .LE. 0.5D0) THEN

YP(I,1,1)=0.006D0

ELSE IF (XP(I) .GT. 0.5D0 .AND. XP(I) .LE. 1.D0) THEN
IF(XP(I) .GT. 0.9999D0) XP(I)=0.99999D0

XXL=XP(I)-XL

YP(I,1,1)=BL*DSQRT(1.D0~(XXL/AL)**2)
IF(XP(I) .GE. 0.9999D0) XP(I)=1.D0O

END IF
CONTINUE

DO 150 X=1,KMAX

DO 150 I=i,IMAX
YP(I,1,K)=YP(I,1,1)
YP(I,JHMAX,K)=1.5
CONTINUE

DO 123 X=2,KMAM

FA(X)=0.26+(KMAM-X)**2/1000.
FB(K)=0.26+(KMAM-K)**2/1000.

FA(K)=0.2835
FB(K)=0.2835
CONTINUE
FA(1)=FA(3)
FB(1)=FB(3)
FA(KMAX)=FA(KMAM-1)
F3(XMAX)=FB(KMAM-1)

D0 10 X=1,KMAX
£B=DEXP(FA(K))
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EBR=1.D0O/EB
PSN=EB+EBR
EB2=EB*EB
EB2R=1./EB2
PPSN=2.*B/(EB2-EB2R)

DO 40 J=2,MAM
AA(J)=-EB

BB (J)=PSN
CC(J)=-EBR
DD(J)=0.D0

DO 170 I=1,IMAX
DD(2)=-AA(2)*YP(I,1,K)
DD (JMAM)=-CC (JMAM)*YP (I, JMAX,K)

CALL TRIDAG(2,JMAM,a4,BB,CC,DD,T)

DO 379 J=2,JMAM
YP(I,J,K)=T(J)
CONTINUE
CONTINUE

DO 1000 ITY=1,500

S0S=0.

DO 190 K=2,KMAM

C=F3(X)

DO 200 I=2,IvAM

IF(I .LT. NA)THEN

F2(I,K)=FA(X)

ELSE IF(I .GT. NB) THEN

F2(I,K)=FB(X)

ELSE
F2(I,K)=(INB-I)*FA(K)+(I-NA)*FB(K))/ (NB-NA)
END IF

A=F1(ID)
3=F2(I,K)
IF(DABS(B) .LT.
EPA=DEXP(A)
EPB=DEXP(B)
EPC=DEXP(C)
EPAI=1./EPA
EPBI=1./EPB
EPCI=1./EPC
COSHA=.35%(EPA+EPAI)
COSHB=.5*(TPB+EPBI)
COSHC=.5*(EPC+EPCI)
CSCHA=2. /(SPA-EPAX)
CSCH3=2./(EPB-EPBI)
CSCHC=2./(EPC-EPCI)
COTHA=COSHA*CSCHA

[t}

PE) B=DSIGN(EPE,B)
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COTHB=COSHB*CSCHB

COTHC=COSHC*CSCHC
DO 210 J=2,JMAM
XXI=.5*(XP(I+1)-XP(I-1))

YXI=.5*(YP(I+1,J,K)-YP(I-1,J,K))
YET=.5*(YP(I,J+1,K)-YP(I,J-1,K})
YZT=.5*(YP(I,J,K+1)-YP(I,J,K-1))
ZXI=0.
ZET=0.

227=0.5%(ZP(I,J,K+1)-2P(I,J,K-1))*YP(I,J,K)

AL1=XXT*XXI+YXI*YXI+ZXI*2XI

A22=YET*YET+ZET*ZET

A33=YZT*YZT+2ZT*ZZT

A12=YXI*YET+ZXI*ZET

ALl3=YXI#*YZT+ZXI*2ZT

A23=YET*YZT+ZET*Z2T

G=A11%A22%A33+2.%A12%A13%423-423%A23%Al11-

SAL13*A13%A22-A12%A12%A33

GI=1./G

G1l1=GI*(A22*%A33-A23*A23)

G22=GI*(ALl1*A33-A13*A13)

G33=GI*(A11%A22-A12*A12)

G12=GI*(A13*A23-A12*A33)

G13=GI*(Al2*A23-A13%A22)

G23=GI*(A12*A13-423"Al1l)

AB=G22*B*CSCHB

AA(J)=-AB*EPB

BB(J)=2.%*(G11*A*COTHA+G22*B*COTHB+G33)

CC(J)=-AB*EPBI

DD(J)=.5%G12*(YP(I+1,J+1,K)+YP(I-1,J-1,K)-YP(I-1,J+1,K)
-YP(I+1,J-1,K))+G11*A*CSCHA* (EPA*YP(I-1,J,K)
+EPAI*YP(I+1,J,K))+G33*(EPC*YP(I,J,K~1)
+EPCI*YP(I,J,K+1))+0.5%(G13*(YP(I+1,J,K+1)
+YP(I-1,J,K-1)-YP(I+1,J,K-1)-YP(I-1,J,K+1))
+G23*(YP(I,J+1,K+1)+YP(I,J-1,K-1)-YP(I,J+1,K-1)
-YP(I,J-1,K+1)))

CONTINUE

DD(2)=DD(2)-AA(2)*YP(I,1,K)

DD (JMAM)=DD (J¥AM) -CC (JMAM)*YP (I, JMAX,K)

CALL TRIDAG(2,JMAM,AA,BB,CC,DD,T)

DO 220 J=2,JMAM

YT=T(J)-YP(I,J,K)

IF(DABS(S0OS) .LT. DABS(YT)) SOS=YT

YP(I,J,K)=1.8*T(J)-0.8*%YP(I,J,K)

CONTINUE

Y1i=YP(1,JMAX,K)-YP(1,1,K)

Y2=YP(2,MAX,K)-YP(2,1,K)

DO 666 J=2,JMAM

YP(1,J,K)=(YP(2,J,K) -YP(2,1,K))*Y1/Y2+YP(1,1,K)

YP(IMAX,J,K)=YP(IMAM,J,K)-YP(IMAM,1,K)+YP(IMAX,1,K)

CONTINUE
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190 CONTINUE

DO 478 I=2,IMAX
DO 478 J=2,JMAM
YP(I,J,1)=YP(I,J,3)

478 YP(I,J,KMAX)=YP(I,J,KMAM-1)

IF(DABS(SOS) .LT. 0.00001) GO TO 999

WRITE(1,222) ITY, SOS
1000 CONTINUE

DO 444 K=2,KMAM
F2(1,K)=FA(K)
F2(IMAX,K)=FB(K)
444 CONTINUE
DO 555 I=1,IMAX
F2(I,1)=F2(1,3)
F2(I,KMAX)=F2(I,KMAM-1)
555 CONTINUE

999 WRITE(6,300)(XP(I),I=1,IMAX)
DO 540 K=1,KMAX
DO sS40 J=1,19
540 WRITE(6,300) (YP(I,J,K),I=1,IMAX)
WRITE(6,300) (F1(I),I=1,IMAX)
DO 550 K=1,KMAX
550 WRITE(6,300) (F2(I,K),I=1,IMAX)
CLOSE(6)
300 FORMAT(5E14.7)
700 FORMAT(1X,6I10)
222 FORMAT(I10,E12.4)
CALL EXIT
END
C
Credrtededetrieteddrideirioiofeferledeieioioh

C SUBROUTINE TRIDAG TO SOLVE ALGEBRAIC EQUATIONS
C SIMULTANEQUSLY FOR EACH ROW OR COLOUM

C
C

SUBROUTINE TRIDAG(IF,L,A,B,Z,D,V)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(90),B(90),C(90),D(90),V(90),BETA(30),GAMMA(S
BETA(IF)=B(IF)
GAMMA(IF)=D(IF)/BETA(IF)
[FP1=IF+1
DO 1 I=IFP1,L
BETA(I)=B(I)-A(I)*C(I-1)/BETA(I-1)
1 GAMMA(I)=(D(I)-A(I)*GAMMA(I-1))/BETA(I)
V(L)=GAMMA(L)




LAST=L-IF
DO 2 K=1,LAST
I=L-K
2 V(I)=GAMMA(I)-C(I)*V(I+1)/BETA(I)
RETURN
END
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