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CHAPTER

INTRODUC(2 ,.'

1.1 Motivation 01 1esearch

Many fluid dynamic problems -.--:x-ated with flows over

airplane, missile, ship, submarizi, ground vehicle are

three dimensional and turbulent. Lecause of the practical

importance of these external ilows in designing moving

vehicles in the air, on ground and in the sea, the

prediction of laminar and turbulent flow around a body has

attracted considerably interest. To predict these flows is

not a simple task since the flow past a simple body geometry

can easily become three dimensional and turbulent if the

approaching flow has an angle of attack to the body and when

the Reynolds number is large. What is more is that the flow

around the body may develop shedding if separation of flow

is developed on the body. It is the aim of this study to

develop a numerical prediction method for predicting complex

laminar and turbulent flow past a two dimensional and

axisymmetric body with or without angle of attack.

Although many numerical algorithms have been developed

over the past decade to solve the three dimensional

turbulent flow, most of these works are developed for
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external flow problems with governing equations of boundary

layer flow type or for internal flow problems wit_ governing

equations of partially parabolized type. These works can

not be implimented in prediction of the total flow fie', or

flow with separation. This is due partly to the limitation

of computer storage and computational time and partly to th_.

lack of gei,.ral turbulence model for prediction of complex

flows involving flow separation and recirculation.

In the presenit study only external flows are

considered. The prediction of external flow problems are

indeed difficult and few solutions are available. However,

many external flow problems are of great importance. in

order to predict the complete flow past a body involving

separation the complete Navier-Stokes equations are used in

this study. For the case of 'irbulent flow the ensemble

averaged process is used to obtain the averaged

Navier-Stokes equations and the turbulence model based on

second order correlation is adapted. As the prediction of

complex three dimensional flows past three dimensional

bodies is a formidable task. In the present study the

prediction of flow past a finite flat plate from the

upstream to the wake region is first made and then the flow

past the finite length of axisymmetric body is predicted.

Although the geometry of an axisymmetric body is simple in

comparision with those practical configurations, the flow



3

over the axisymmetric body at incidence is a complex three

dimensional flow and contains most of the flow features

observed on more complex geometries. Therefore, the

prediction of flow past an inclined axisymmetric body is the

first step in developing numerical prediction capability for

flow past more complicated geome,.ry. The primary objective

of the present study is then to develop a numerical scheme

with some available turbulence models for prediction of

flows past an axisymmetric body of finite length.

1.2 r)'evic7. Works

Before the detail of taqe present study is given, a

brief review of the previous works on experimental study,

numerical solutions for three dimensional turbulent flow are

first made.

1.2.1 Experimental Study

Prandtl, the father of boundary layer theory, was the

first to recognize the importance of three dimensionality in

turbulent flow and had proposed a simple turbulent flow

profile model [11 at the beginning of the 20th century. But

Gcuschwitz [21 (1935) was the first to conduct and publish

the results of a comprehensive experiment involving three

diensional turbulent flows. He measur%:c the free stream

and the boundary layer mean flow field over many stations

covering the flat end-wall of a curved two dimensional duct.
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Since then the experimental studies in three dimensional

turbulent flow grew. Unfortunately no turbulent stress data

for three dimensional flows had been measured and published

before 1967. Bradshaw and Terell [31 (1969) measured the

turbulent stress on an 'infinite' sweep wing at Reynolds

number around 6xlO 4 which is believed to be the first detail

study of turbulent flow in three dimensional boundary layer.

They used this experiment to test Bradshaw's assertion that

the ratio of turbulent stress to the turbulent kinetic

energy is constant in the boundary layer. They found that

the assertion is only approximately true.

Three dimensional turbulent experiments are painstaking

and time consuming and definitely not abundant. Some

experiments are conducted for greater understanding of the

turbulent phenomena and can be used to develop suitable

mathematical models for turbulent flow prediction. For an

experiment to be useful in developing and testing the

mathematical models the experimental data should provide

adequate information for possible numerical simulation. In

other words, in addition to the measurements of velocity,

pressure and turbulent stress in the flow region, initial

and boundary conditions must be carefully measured and

documented. Since in this study the emphasis is placed on

the turbulent flow past axisymmetric body that a brief

review of experimental work pertaining to the flow past

axisnnmetric body with or without angle of attack is given.
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Richmond [4] (1957) was probably the first to study the

turbulent flow on a circular cylinder. He measured the

velocity profile along the surface of a slender circular

cylinder at several subsonic and hypersonic speeds. He

obtained the law of the wall for the axisymmetric boundary

layer by using Cole's streamline hypothesis. Later Yasuhara

[5] (1959) measured a 20 mm diameter brass pipe, 1750 mm

6long with ogive-nose at Reynolds 1.2 - 1.8xlO 6 . Willmarth

and Young [6] (1970) measured the boundary layer development

for air flowing on a steel tube of 40 ft long and 3 in.

diameter at 200 ft/sec free stream speed. In these

experiments, although the velocity profile and pressure

along the cylinder were measured, no turbulent quantities

were measured.

Other experimental studies on flow over an axisymmetric

body without angle of attack with measured turbulent

quantities are shown in the table 1. They are Chevray [71

(1967), Patel, Nakayama and Damian [8] (1974), Patel and Lee

[91 (1977), Huang, Santelli and Belt [101 (1978), and Hung,

Groves and Belt [111 (1980). Chevray's experiment was the

first attempt to measure turbulence stress in the wake. In

his experiment a small separation was observed ahead of the

tail. The data provided detailed information far into the

wake. This experiment was recommended as a test case at the

1980-81 Stanford Conference on Complex Turbulent Flows but,
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to date, it has not been successfully predicted by any

method. The remaining four experiments are quite well known

and had been used extensively as test cases. None of these

experimental studies involved separation, and all provided

mean-flow and turbulence data in the stern boundary layer.

The measurements were confined near the body therefore, the

data did not provide sufficient information far into the

wake. All of the above studies are restricted to

axisymmetric flow i.e., without angle of attack.

Ramaprian, Patel and Choi [12] (1981) measured three

dimensional flow past an inclined cylinder body. in this

study only velocity profiles and pressure along the cylinder

body were measured and no turbulent quantities were given.

Baek [131 (1984) continued the previous experiment and

concentrated in his work on the measurements of turbulent

cuantities. The other available sources of turbulent data

pertaining to inclined cylinder is the experiments made by

Meier et al. [141 (1984) at DEVLR in Gottingen, West

Germany. However, all of these three dimunsional turbulence

data are measured only on the body between the region

0.2<x/L<0.9, where L is the body length, x=0 is the leading

edge of the body and x=L is the tail of the body. No

measurements involving the separation flc4 or inside the

wake are yet available.
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1.2.2 Numerical Approach

The primary difficulty in obtaining numerical solution

of the three dimensional turbulent flow is that the

governing Navier-Stokes and turbulent transport equations

are non-linear and elliptic with respect to space variables.

The numerical solution of the three dimensional flow problem

must be found simultaneously in all three spatial

directions. Generally speaking, the computer systems

available in the academy or industry are still not large

enough to store all the values associated with large number

of discretized nodes and variables that are required in

three dimensional flow calculation. Thus, to solve the

three dimensional turbulent flow problem by using truely

elliptic treatment is an impractical proposition at the

present time. The computer storage requirements and the

computational effort can be greatly reduced by the use of

approximate equations whose applicability lies somewhere

between that of the fully elliptic Navier-Stokes equations

and the classical parabolic boundary layer equations. There

are two different approaches in deriving the approximate

equations. The first one is to simplify the Navier-Stokes

equations by discarding certain terms and the second is to

modify the boundary layer equations by introducing

additional terms. Both approaches lead to the same

equations. These intermediate equations representing an
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improvement over the classical boundary layer approximations

and have been used by many authors [15]. In solving these

approximate equations the integral as well as differential

methods have been proposed. Generally, the integral method

needs additional empricism to predict the crossflow across

the boundary layer and this empricism varies from one

problem to the other. A more general solution can be

obtained if the differential solutions are solved

numerically. Many available three dimensional solutions for

the external flows problems are based on boundary layer

equations rather than the Navier-Stokes equations. This

approach has the major shortcoming of not being able to

predict the flow separation. In order to develop a

prediction scheme that is capable of predicting separation

flow one must consider the Navier-Stokes equations. Here

only the differential methods based on the Navier-Stokes

equations are reviewed. Among the works based on simplified

Navier-Stokes equations known as the partially-parabolic

equations is perhaps the most popular one to date uz:d in

the three dimensional flow problem. The partially-parabolic

approximations were first introduced 1-y Patankar, Pratap and

Spalding [16,17] (1972), to describe internal flows in a

curved tube where the predominant flow direction is along

the tube axis. The diffusion term is neglected in the

approximation. Although there is no recirculation in the
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flow, significant pressure effects, unlike boundary layer

assumption, propagate upstream. By neglecting the diffusion

term in the axial direction the governing equation become

parabolic in the axial direction for the velocity variables.

It should be remarked that the pressure variable is governed

by an elliptic equation which can be shown if the velocity

variables in the continuity equation are expressed in

pressure variable. Nevertheless, the numerical solution can

be obtained by marching the solution from the upstream to

the downstream instead of solving the whole velocity field

that is required in the elliptic case. The approximation

still enables one to compute a wide class of three

dimensional flows of practical interest other than that of

boundary layer flows.

Table 2 summarizes some numerical works using a

partially parabolic approach on three dimensional external

turbulent flow. They are Abdelmeguid, Markatos and Spalding

[18] (1978), Muraoka [19] (1980), Huang and Chang [20]

(1985), Chen and Patel [21,22] (1985). Similar to the

published applications in internal flows (16,171, these

studies used essentially the same numerical scheme based on

the work of Patankar and Spalding et al. (23], and the k-e

turbulence model with specified wall functions for flow

variable near the wall boundary. Some good success of

numerical predictions is obtained in [20,21,22]. However,
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three dimensional flows that can be described by the

approximated partially-parabolic equations are limited to

those flows having no flow separation. In the present study

the numerical solution is derived, in addition to the above

flows, for prediction of separation flows. In order to

achieve the prediction capability of separation flows,

instead of neglecting the diffusion term in the direction of

the predominant flow direction as in the partially-parabolic

approximation, in this study the diffusion term is kept and

cast into the source term, hence the fully elliptic

governing equations are retained. The approximation is made

only numerically to evaluate the longitudial diffusion term

from the previous iteration. This approximation called the

"1semi-elliptic approximation" has an advantage that the

fully elliptic solution is kept in the whole computational

domain and that the computational effect and storage equals

to that of the partially-parobolic approach. More details

of the semi-elliptic solution procedure and numerical

analysis will be explained later in chapter III.

1.3 Selection Of Methods And Models

As mentioned before, the numerical predictions of three

dimensional turbulent flow are complicated and sometimes

unreliable. These difficulties are not just with the

geometry treatment, coordinates and numerical method
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adopted, but also in the turbulence models used to relate

the Reynolds stresses to the mean flow. Therefore, in order

to solve a complex three dimensional turbulent flow one

must, in addition to an appropriate coordinate system and an

accurate numerical method, have a turbulence model that is

valid for three dimensional flow including flow separation.

The selection of coordinate system, numerical method and

turbulence model are outlined in the following sections.

1.3.1 Coordinate System

The simple and familiar coordinate systems that are

usually used in the early numerical approach are Cartesian,

Cylindrical and Spherical coordinates. However, it is

obvious that these coordinate systems are appropriate only

for the problem geometry having the coordinate lines as the

boundaries. Consequently, the numerical solution based on

the standard coordinate systems has difficulty in specifying

the non-slip boundary conditions on the surface of arbitrary

shaped bodies. In the present study the body-fitted

coordinate system, such that the surface of the body is one

member of a family of the coordinate surfaces, is used to

avoid this difficulty.

The ideal body fitted coordinate system is the

analytic, orthogonal curvilinear coordinate system that

traces the problem boundary and satisfies the requirements
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of orthogonality in three dimensional space. In this system,

the coordinate surfaces normal to the body must intersect

the body surface in its lines of principal curvature. Thus,

to find this coordinate system for a body of any given shape

it is necessary to obtain the lines of curvature of the body

surface, which can be mathematically derived as shown in the

paper published by Miloh and Patel [24]. Unfortunately, the

use of the lines of principal curvature to form the

analytical body fitted coordinate system is not very

convenient since the determination of these lines of

principle curvature is rather complicated. Moreover, for an

arbitrary shaped body the curvature of these lines may be

quite large on some part of the body so that the numerical

evaluation of coordinate value reguires great care to attend

sufficient accuracy.

To rectify the problem, many numerically-generated

coordinate systems have been tried in the past decade.

investigators have constructed curvilinear meshes to span

the whole physical region and some others have even tried

different modifications of conformal transformation

procedures [25]. The real breakthrough came from the

elliptic-transformation procedure proposed by Thompson et

al. [261. In this method, one of the coordinate lines or

surfaces is matched with the body identically and another

with some outer boundaries, and internal points of the
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physical region are automatically generated on the computer

by the solution of an elliptic system of partial

differential equations. In contrast to a conformal mapping

prccedure, which is limited to bodies in two dimensions, the

Thompson's procedure can be extended to three dimensional

problems. The numerically-generated body fitted coordinates

is not only proved to be mathematically sound, but also has

the capacity of contracting the coordinate lines to a point

or along some specified lines and surface in the physical

region. Generally, the contraction of the grid lines to the

surface of of body is required for obtaining more accurate

results while solving the flow problem which has large

gradient and rapid change of variables near the body.

Therefore, in this study the body-fitted coordinate system

based on Thompson [26] is used to generate the grid

distribution in the computational domain. It should be

remarked here that the use of the body-fitted coordinate

systems which enables us to solve the flow past a body with

irregular body shape has some disadvantages. The first is

that many cross derivative terms are added to the governing

equations after the transformation from the physical

coordinates to the body-fitted coordinates. Therefore one

must solve more complex governing equations in the

body-fitted coordinates. The second is that numerical error

due to difference approximation in those transformation
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functions relating the physical and body-fitted coordinates

may decrease the accuracy of numerical solution. Third, the

departure of the body-fitted coordinates from orthogonality

may create additional difficulties and numerical error

during the computation.

1.3.2 Numerical Method

Depending on how the algebraic representation of the

differential equation is derived the numerical method may be

classified as finite difference, finite volume, finite

element or finite analytic. In the finite difference method

[27] the discrete algebraic equation is obtained by

Taylor-series expansion of differential te.ms while the

finite volume method [231 derived the algebraic equation by

formulating the conservation principle in a finite control

volume without taking the limits to the infinitesimal

volume. In the finite element nmothod [28], the variational

formulations and the method of weighted residuals are often

used to derive an intergal form before an algebraic equation

relating the nodal values in the element is obtained. The

finite analytic method presented by Chen et al. [29-37]

invokes another means of deriving the algebraic equations.

Unlike the finite difference, finite volume or finite

element method, the discretized algebraic equation is

obtained from the analytic solution for each local element.
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Yinite element method which is used very successfully

in the solid mechanics was first introduced to the fluid

problem in the late of sixties. And the first conference on

finite element in fluid mechanics was held in 1974 at

Swansea [28]. During the last two decades the number of the

applications of the finite element procedure for various

areas of fluid mechanics had been increased. However the

majority of applications of finite element in fluid

mechanics occur in the slow viscous flow, wave phenomena and

fluid-structure interaction. But for high Reynolds number

or turbulent flow and external flow the finite element

solutions are scarce. This is partly due to the fact that

at high Reynolds number the finite element treatment of the

convective term is often inadequate and the finite element

Enlution can become unstable and inaccurate. Since in the

Tresent study the high Reynolds number external turbulent

flows are going to be solved, then the finite element

approach is not a suita'.e numerical method for this study.

The finite diffetrnce method is perhaps the most used

numerical method in solving fluid flow. Various forms of

finite difference methods had been used to solve fluid

problems for a long time, and many successful solutions have

been obtained. However there are still several difficulties

in obtaining finite difference numerical solution. The first

is the numerical instability in solving the system of
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algebraic equations that approximate the governing partial

differential equations. The second is numerical error

associated with the numerical method known as numerical or

false diffusion which in some situations can become so

severe as to completely overshadow the physical turbulent or

viscous diffusion. The instability of the finite difference

solution basically arises from the improper finite

difference approximation of the original governing

differential equation. If the original governing

differential equation is well posed the numerical solution

of the properly approximated finite difference equation must

be stable. However the proper and accurate finite

difference equation for the Navier-Stokes equation is not

easy to derive. On the other hand it is known (27] that the

finite difference equation based on the central difference

approximation for the Navier-Stokes equations is unstable

when the element Reynolds number is greater than two. To

partially overcome the instability of the finite difference

solution of Navier-Stokes equation, the upwind scheme was

introduced [38] to preserve the proper characteristic of the

original partial differential equation that is present. The

upwind scheme uses some special formula to shift the weight

of the difference scheme or nodal influence on the element

to the points where the flow pass. However, if the

formulation of upwind scheme is improperly implimented, the
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scheme may produce large numerical diffusion even though the

solution is stable.

Unlike the finite difference method, the finite

analytic method invokes the analytic solution of the

governing equation in the local element in formulating the

algebraic representation of the governing partial

differential equation. The finite analytic method produces a

stable solution because the analytic solution of a well

posed problem is stable. Further more the finite analytic

solution has the ability of automatically upwinding shift of

the weight of the coefficients that are associated with the

analytic algebraic equation. The finite analytic solution

thereby minimizes the false numerical diffusion while

providing a stable solution. The finite analytic method has

been applied successfully in solving the vortex shedding,

recirculation flow, free convection flow and laminar and

turbulent flow at high Reynolds number (21,22,29-371. From

these published results the finite analytic solutions were

shown to be indeed stable and accurate. Consequently the

finite analytic method is adopted in this study.

1.3.3 Turbulence Model

Equations for describing the fluid motions, known as

the Navier-Stokes equations, have been postulated and

derived for over a century. However, it is difficult to
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solve these equations for both laminar and turbulent flows

mainly due to the nonlinearlity of the equations. For

turbulent flows, the difficulty is even more formidable to

overcome because the turbulent fluid motion is irregular,

random, time dependent and three dimensional. However, in

most engineering applications, the detailed analysis of

instantaneous turbulent motion is not necessary and the

gross-parameters like mean velocity, average pressure and

wall shear stress are often sufficient for engineering

analysis and design.

In studying the turbulent flow 0. Reynolds [39]

proposed an averaging technique by assuming that the

variable 0* at any instant of time to consist of the mean

quantity 0, an averaged value of 0* during the long time

period T, i.e.

T dt

and a fluctuating part 0'. Hence,

= + 0' The time averaging process when applied

to the Navier-Stokes equations, creats six additional

unknowns uiu. These unknowns, although called Reynolds

stress, are created from the convective or non-linear terms

of the Navier-Stokes equations. Instead of time average a

more general average, ensemble average, can be used to

derive turbulent Navier-Stokes equations. In the ensemble
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average, the averaged value 0 is now the average of many

repeated same experiments or IF

where N is the total number of the experiments, and 0' is

the deviation of the instantaneous value 0* from that of the

ensemble averaged value 0. The advantage of considering

ensemble average is that the process of ensemble average may

be applied to unsteady turbulent flows, preserving the time

dependence in the average value which the original

Reynolds average can not do.

Many turbulence models have been proposed to evaluate

the unknown Reynolds stress. All models have them coupled to

the mean quantities through either algebraic or differential

equations. Some are based on empirical relation and others

on postulations.

In 1877, Boussinesq [40] proposed the concept of eddy

viscosity which assumes that, in analogy to the viscous

stresses in laminar flows, turbulent stresses are

proportional to the mean velocity gradients. For general

flow situations, it is expressed as
au. 3u. 2

- = Vt( - +- ) - 2sij k

Here v, is the turbulent or eddy viscosity which, unlike

molecular viscosity, v, is not a fluid property but depends

on the state of turbulence. k represents the kinetic energy

of the fluctuating motion or uiui/2. Boussinesa did not
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provide a general model for vt" In 1925, Prandtl [41]

proposed a turbulence model called the 'mixing length'

model. This model created a relation for the eddy viscosity,

as a function of a length scale L characterizing the size of

turbulent eddies and a suitable turbulent velocity scale, V.

Since vt has the dimension of length squared over time,

Prandtl proposed v t a VL. Both the turbulent velocity

scale, V, and the mixing length scale, L, could be

reasonably approximated for many flows. However for each

flow empirical constants were needed to prescribe a length

scale. The flows that are most successfully modelled by the

mixing lengt odel are of thin shear flows such as boundary

layer, jets, wake, mixing layer flows and pipe flows. The

constants of the mixing length model were obtained by

fitting the calculated results to experimental data of a

particular flow under study. These mixing length model

constants were found [42] to vary often from one flow to

another. Consequently, the mixing length turbulence model is

successful only in predicting turbulent flows in similar

geometry and flow conditions but lacks the universality and

predictability when the turbulent flow and geometry are

different.

To overcome the lack of predictability and generality,

several more complex models were developed during the 1940's

and 1950's which employed differential transport equations
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for the turbulent quantities. However, these equations could

not be solved directly as there were mathematical

difficulties involved and numerical techniques and fast

computers were not available. Alternatively, the governing

partial differential equations for turbulent flows were

often solved by integral method which reduced the governing

partial differential equations to ordinary differential

equations. These integral methods assumed some shape of

mean profile and used some empirical relations for global

behavior of turbulence. They lacked flexibility since the

assumed profile must be approximately the same in the flow

field and could not be applied for lifferent flows.

Advances in computational facilities and numerical

methods during the late 1960's and 1970's led to the use of

more advanced models which solve complete partial

differential equations for both mean flow and turbulent

quantities. One of these models which solves the

differential equation for the turbulent kinetic energy, k or

ui u /2, is called the one-equation model as opposed to the

zero-equation model proposed by Boussinesq or Prandtl where

no differential equations are solved for turbulent

quantities. With the kinetic energy known, the Boussineq's

eddy viscosity can be written as
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where C is an empirical constant, k represents a turbulent

velocity scale where k is solved from the modelled governing

equation of the turbulent kinetic energy, and L the length

scale is a varible which is obtained from simple empirical

relations similar to those for the mixing layer. The one

equation model was found [42] useful only in predicting thin

shear flow since in many complex flows it is difficult to

specify the length scale empirically. The logical extension

of the turbulence modelling is that the length scale be

obtained from a differential transport equation.

Models which solve differential equations for both

turbulent velocity scale or turbulent kinetic energy k, and

length sacle or alternatively the dissipation rate of

turbulent kinetic energy f are known as

two-equation models. The most popular one is the one

suggested by Jones and Launder [43] which has k1 .5/L instead

of L. The term k 15/L has physical significance as it has

the same dimension as, e, the dissipation rate of turbulent

kinetic energy. Hence this model is usually called k-s

turbulence model. The conventional k-& turbulence model

which only uses k and e to characterize the turbulent

velocity ( ,W ), length ( k1 .5/E ) and time ( k/e ) scale

will be called one-scale k-e turbulence model in this study.

It was found that one-scale k-e turbulence model can predict

acceptable mean flow variables when flow geometry is not too
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complex. It also can predict a fair result for the turbulent

transport properties. However, the one-scale k-s turbulence

model was found to be unsatisfactory in predicting the

result for two dimensional and axisymmetric jets unless the

turbulence constants which calibrated with experimental data

are altered. In order to improve the prediction capability

of turbulence model a two-scale k-s turbulence model was

proposed recently by Chen and Singh [44]. This model

employs the concept of two different scales in

characterizing the turbulent scales. One scale which is

based on k and c for the large energy containing eddies

(1=k 1 "5 , v= k, t=k/c) is used for modelling turbulent

diffusion and other turbulent production phenomena and the

other which is based on Kolmogrov's scale [451 s and v for

3 0.75the small eddies in the dissipation range (1=(v /s)

0.25 0.5v=(vE) , t=(v/C) ) to model destruction of dissipation

of turbulent kinetic energy and other turbulent dissipation

phenomena. Based on the two-scale concept the E equation is

remodeled. It is found 1441 that the two-scale k-e

turbulence model can predict many turbulent free shear flows

and some recirculation flows without altering the turbulent

constants including the turbulent two dimensional and

axisymmetric jets and turbulent wakes and mixing phenomena.

During the early stage of this study the two-scale k-s

turbulence model was tested for the boundary layer flow and
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found that the FANS-3DEF with the turbulent constants of the

two-scale k-E model often encounter numerical instability.

It is found that the numerical instability started when the

dissipation rate of the turbulent kinetic energy, e, is

larger than the production of turbulent kinetic energy.

Therefore it is reasoned that the turbulent constants Ck'

C , C 1 and C 2 used in the two-scale turbulence model

require further investigation. In the present study the

one-scale k-c model is choosen since the one-scale k-c model

in the present form was known to be stable in predicting the

turbulent external flow although the model required further

improvement in modeling.

1.4 Scope Of The Study

This study is undertaken to develop a prediction method

capable of analyzing both laminar and turbulent flows past a

finite or semi infinite two dimensional or axisymmetric body

with and without an angle of attack. In chapter II, the

partial differential equations governing the flow situation

considered in the present study are described. The

different turbulence models and the treatment of the

boundary conditions near the wall are also discussed. In

chapter III, the derivation of finite analytic formulation

on the body-fitted coordinates, the formulation of pressure

equation on a control volume and the description of
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numerical algorithm used in this study are presented. From

chapters IV to chapter VI the prediction of the laminar and

turbulent flow past two dimensional and axisymmetric bodies

with and without angle of attack are given and discussed.

In chapter VII, the conclusions of the present study are

summarized and the recommendations for the future work are

proposed.

The brief formulation for calculating the two

dimensional finite analytic coefficients are given in

appendix A. In appendix B, the brief introduction of the

computer program FANS-3DEF (Finite Analytic Numerical

Solution for Three Dimensional External Flow) and sample

output on the interactive screen are outlined, and the

complete program of FANS-3DEF is listed.
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CHAPTER II

MATHEMATICAL FORMULATION

In this chapter a general mathematical formulation for

predicting laminar and turbulent flow past a two dimensional

and axisymmetric body with or without an angle of attack is

introduced. The general governing equations for three

dimensional turbulent flow are first formulated in Cartesian

coordinates. The turbulence model based on the second order

correlation for the Reynolds transport equation is then

considered. The general features of boundary conditions are

also stated to complete the mathematical formulation.

Therefore, simple geometries like a flat plate or a

cylindrical tube can be treated as a special case of the

general formulation. All governing equations and boundary

conditions are then transformed and rewritten in the

body-fitted coordinate systems.

2.1 Governing Equations

Figure 1 depicts the whole computational domain to be

considered in this study and a general geometry of a body

which is subjected to an incoming flow U0 with an angle of

attack a. The body geometry can be thought to simulate an
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airborne object in air, a ground vehicle on the road or a

submerged marine ship in the sea. For the total body domain

the body which has a characteristic length of L is located

in the center of the computational domain. The tip of the

body is located at a distance LI downstream of the inlet

boundary, the body center is located at a distance LF from

the side boundary, and the rear end of the body is kept at a

distanGe L from the downstream boundary. If a small

computational domain is desired a partial body domain can

also be considered as shown in figure l(b).

For a three dimensional turbulent flow problem, the

ensemble averaged incompressible Navier-Stokes equations in

Cartesian tensor form are

au. (1)-= 0
i

au.i au. 1 ap au. au.U. i 1 + v _ + 1) uu 3 (2)

9T ax. ax. ax ax.i

where uiu. are turbulent Reynolds stresses. When the flow

is laminar the Reynolds stresses are set equal to zero.

Equations (1) and (2) are 4 independent equations governing

4 unknowns, U, V, W, P, and providing existence of

solutions. Unlike laminar flow, if the flow is turbulent,

equations (1) and (2) have 4 equations but with 10 unknowns.

They are U, V, W, P, uu, w, ww, uv, uw, and vw. Clearly,

the closure of the turbulent problem requires additional
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information between the Reynolds stresses and the mean flow

variables. The closure of turbulent flow equation can be

done by the introduction of turbulence models for the

Reynolds stresses, uiuj, which is discussed in the next

section.

2.2 Turbulence Model

In order to solve turbulent flow problems governed by

Eqs. (1) and (2), the Reynolds stresses, u., must be

known. In general, the exact equation for turbulent

quantities, u iu, can be derived from Navier-Stokes

equations. However, in these turbulent transport equations

there exist additional unknown correlations other than =u
I. j

Therefore, a turbulence model must be established to close

the problem. The turbulence model may be classified

according to how the Reynolds stresses that appear in the

ensemble averaged Navier-Stokes equations are modelled.

Generally, the more the number of differential transport

equations are solved the more complete the turbulence model

becomes. However, the effort in analyzing large numbers of

differential equations will also increase. As mentioned in

chapter I, the current trend in turbulent modelling is to

model the Reynolds stresses by transport equations for the

second order correlation. In the past ten years, the two

equation k-c turbulence model has become the most popular

model in the turbulent flow calculation.
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In the k-e turbulence model the turbulent kinetic
YU75au.

energy k (=ui/2) and its dissipation rate C ( = .. ) areax. ax.
solved from two modelled differential transport equations.

The Reynolds stressesuiu. is then a function of k, e and

other known mean velocity quantity. Typically, the two

equation k-e turbulence model contains five empirical

constants which are determined from some basic experimental

configurations such as grid turbulence, homogeneous shear

flow and boundary layer flow [42]. Although more effort is

required in analyzing the two equation k-s turbulence model

than in other simpler models such as the mixing length model

proposed by Prandtl [41), it is found (46] that the k-c

model or more generally the second order closure model with

its empirical constants are less problem dependent.

Therefore, some hope for predictability and universality of

the turbulence model is established although the model still

require further investigation and improvement.

In the present study the conventional one-scale k-s

turbulence model, known as the standard k-s turbulence

model, by Launder et al. [461 is considered. in the k-s

turbulence model the Reynolds stresses -ui--. can be modelediJ

either approximating the differential Reynolds stresses

transport equation into an algebraic form or by an algebraic

equation based on Boussinesq's assumption which relating

Reynolds stresses to the gradients of mean velocities as
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Here v is the eddy viscosity and based on the dimensional

analysis of (k,e) we have

aU. au.

t ax~ ~jk

where C is an empirical constant (=0.09-0.128), k is the
turbulent kinetic energy per unit mass (k=uii./2), and e is

the dissipation rate of k ( =u/2 ). In the present

study generalized Boussinesq's equation (3) is adopted.

In addition to algebraic Reynolds stresses equation

(3), two differential transport equations, namely, the

turbulent kinetic energy and the rate of dissipation of

turbulent kinetic energy are needed to close the problem. In

this study the turbulent kinetic energy ,k, and its

dissipation function are solved from following two modelled

equations [46].

Dk _ k 2  ak aU.
) (4)

E k2 3k au. 1

Here t in Eq. (5) is the characteristic turbulent time scale

associated with the destruction of c. If t is determined

based on k and E or t=k/E then the turbulence model is the

conventional one-scale k-e turbulence model. The model

constants C , Ck' C C, C l and C 2 in the one-scale k-c
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turbulence model can be determined from several basic

experiments, namely isotropic grid turbulence, homogeneous

shear flow, and boundary layer flow. The model constants

suggested by Launder et al. [461 are:

= 0.0 09, 009 c = 0.07, C = 1.44, = 1.92

With the introduction of above turbulence model, the

problem for solving turbulent flow is closed. A unique

solution of equations (1) to (5) can be obtained for U, V,

W, P, uiu., k and e if the boundary conditions for U, V, W,

P, k and e are properly specified.

2.3 Boundary Conditions

In addition to the governing equations (1) through (5),

the complete specification of external flow past a body

requires an adequate prescription of boundary conditions.

This means that the flow conditions must be specified at the

inlet and outlet planes and at the lateral boundaries of the

flow domain of interest (see figure 1). it should be noted

that the boundary location may be placed arbitrarily with

respect to the solid body by assigning different values of

LI, LF and L for the computational domain.

(1) Inlet plane: The inlet plane is located at L_ distance

upstream (Fig. l(a)) or downstream (Fig. 1(b)) from the tip
of the body. If LI is placed far upstream from the tip of

the body then the uniform velocity profile with or without
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angle of attack is specified. In this study a constant

ambient pressure, zero ambient turbulent kinetic energy k

and its dissipation rate E are assigned at the inlet plane.

If inlet plane is placed at LI distance downstream of the

tip of the body then the distribution of the velocity

components (U,V,W), pressure P and the turbulence quantities

(k,c) are prescribed at this plane either from detailed

experimental measurements, boundary-layer calculation, or

from simple flat-plate correlations.

(2) Outlet plane: Since this study includes the flow

phenomena inside the wake region the outlet plane is always

chosen to be far downstream of rhe body where the second

derivatives of all variables are set eacual to zero. This

implies that the effect of diffusion from the outlet plane

to the upstream locations are negligible.

(3) Lateral boundaries: There are three types, namely:

walls, planes of symmetry and free stream boundaries.

(i) Wall boundaries: The wall of the body can be plane,

cylinder or arbitrary cross section. For laminar flow, the

numerical solutions are carried out upto the wall where the

usual no-slip conditions, U=V=W=O, are imposed. For

turbulent flows, since the turbulence model can not be

employed in the viscous sublayer region, an alternative

method should be used instead of applying no-slip conditions

directly. in this study the two-node wall function is used
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to avoid the use of the low Reynold number turbulence model

or a large number of grid points to resolve the large

gradients in the near-wall region. The basic idea of the

two-node wall function is the numerical solution from t'.

wall to the first two nodal points near the wall and is

replaced by a semi-analytic solution obtained from the

turbulent inner layer equation for the near-wall region

namely-the log-law equation (47]. In doing so, the first

two computational nodal points are placed at nondimensional
+ + +

distance y , y away from the wall. Here the values of y
+ +

and y+ should be arranged between 12 to 200 and y is

defined as u Y
y -

where U is the friction velocity or ('V'-p) with w as

total wall shear stress, Y is the distance away from the

wall. If U, U2 are respectively the resultant velocities

parallel to the wall at first two nodal points as shown in

figure 2, then wall boundary conditions can be specified

through the log-law equation by the following steps.

(1) Using an initially assumed or update velocity U2

1'hrough log-law equation to obtain U

(2) Using U which just obtained from step (1) through log

-law equation to obtain velocity U1 .

(3) U1 is then used as the boundary condition for turbulent

flow calculation.
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Figure 2. Two-Node Wall Function

In this study a two dimensional log-law euqtion for U

velocity component based on fully developed or parallel flow

assumption is used. It is [45]

U 1+ +
U_= Zn (E y) 12 < y < 200 (6)

with Karman constant K=0.42 and integration constant E=9.

The corresponding turbulent kinetic energy k and its

dissipation rate c at the first node are given [471 as

U2  u3

k= )T T
1 c- Ky1

Here C =0.09 is determined empirically (421 and C =0.128 if

the value is obtained from the algebraic reynolds stress

model (47].

It should be mentioned that the normal velocity

componenent is taken to be zero at the first nodal point

from the wall. This may not be the case when the flow

separates near this node. At present there is no known wall
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function for flow near the separation. Thus the general

practice is to use the same wall function, Eqs (6) and (7),

even for the flow involved separation. Numerically the

point of separation is unlikely to occur aU one numerical

node exactly. In other words tw or U at those numerical

nodes even close to the separation will have non zero

values. Therefore the U1 velocity at the first node y+ will

have a value, either positive or negative depending on the

direction of Tw* The positive value denotes the point

before the separation while the negative value denotes the

point behind the separation. In the region where the flow

near the separation zone, either before or behind the

separation the wall functions (6) and (7) for U1 may still

be approximately used since the flow vector is properly

oriented and since the U1 velocity at y is small while near

the separation. Although the use of wall function based on

parallel flow assumption for the nodes near the separation

is questionable, but this is currently done in just about

every turbulent prediction calculations using a wall

function. The weak justification of such a practice is that

the number of nodes that are near the separation is far less

than the total number of nodes where the wall functions (6)

and (7) are applicable. Thus the error caused by the above

practice may be confined only near the separation point. In

the actual test from many calculatios it seems to bear out
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that the separation phenomena can be reasonably predicted

with this practice.

(ii) Symmetric planes: In some flow problems the symmetric

condition may be used. For example, the flow past a

symmetric body with no angle of attack. If no vortex

shedding is expected in the axisymmetric flow the symmetric

condition may be imposed on the line or plane of symmetry so

that a smaller computational domain can be used to save

computer time and storage. The velocity components which

are normal to the line or plane of symmetry are set equal to

zero, and there are no fluxes of any variable across

symmetric planes.

(iii) Free stream boundaries: In figure 1 it is shown that

the free stream boundaries were set at L0 distance away from

the axis of the body. L0 is set far enough as numerically

and computationally possible to avoid any unrealistic

representation. The normal derivative of all vailables

along the free stream boundary are set to be zero.

After specifying the boundary conditions along the

boundary the mathematical description of the problem is

complete. Since the exact mathematical solution can not be

obtained, the numerical analysis of the problem is

considered and discussed in the next chapter.

For the convenience of the numerical analysis the

governing equations (1) to (5) are made dimensionless and

summarized below
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au. =0 (1)'
ax.

au u u. aa u- + U . a u- 1) = p -+ 3 a u +_ _ a u-I)a u( 2
at jax ax. Re ax. xj xi  ax. ij

k, i 2 (3) 

+k*. ak* a k* ak*++  u ) G- (4)'

DE(* +E ~ z a (C 1G C C e2*) ( ,) 5)t l) uT

au k*G !u ' - t* = -
1 jax i

Where the variables are made dimensionless with the body

length L and approaching velocity U0 as the references. They

are U. x.1 - k

p u.-7=
pUpUL 0 uiu=0~

V' 00 UV1 rO4 u!u -- 47

There are five turbulence constants C Ck ' C , C 1 and C 2

that must be specified. They are

S= 0.09, Ck
= 0.09, CE = 0.07, CEI = 1.44, C 2 = 1.92
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CHAPTER III

NUMERICAL ANALYSIS

In the following sections the basic idea and principle

of the numerical techniques for grid generation (body-fitted

coordinate system), the numerical approach (FA numerical

method) and the derivation of the pressure equation for

modified SIMPLER algorithm are discussed.

3.1 Body-Fitted Coordinates

In order to develop a prediction scheme for 4 three

dimensional flow past an arbitrary two dimensional or

axisymmetric body, the body-fitted coordinate system

proposed by Thompson et al. [26] is used in this study.

The basic idea of body-fitted coordinate system is to

generate a curvilinear coordinate system as shown in figure

3 which has coordinate surfaces coincided with all the

boundaries of a general multiply-connected body including

the boundaries formed by solid walls and external

boundaries. Thus, on the transformed domain, the numerical

solution of the governing ecguations may be obtained on a

fixed parallelepiped domain with a uniform mesh size, In

this way no interpolation of the boundary variable is
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required regardless of the shape of the physical boundaries

or the spacing of the curvilinear surfaces in the physical

domain.

These body-fitted coordinates (4, n, ) can be

generated from the solution of three partial differential

equations with Dirichlet boundary conditions, to provide the

contour of 4(x,y,z), n(x,y,z) and (x,y,z) on the physical

plane-(x,y,z). The partial differential equations are

V2g = F1, Vzn = F2, v? 2 F3 (8)

Here V2 is Laplacian operator and Fl, F2 and F3 are control

functions which are used to concentrate the grid lines to

the desired region.

When the flow problem with Eqs. (1) through (5) in

(x,y,z) physical plane are transformed by Eq. (8) into the

(4, Y, ) transformed plane, the computational domain will

become a simple rectangular domain which is shown in figure

3. Therefore it is more convenient to perform numerical

calculation in uniform cubic grid in the transformed domain

(4, T, ). It should be mentioned that in this study the

coordinate on the transformed domain for coavenince is taken

to coincide with the axial direction, x, in the physical

domain. In order to solve Eqs. (1) through (5) in (t, q, 4)

coordinate system it is more convenient first to inverse Eq.

(8) into a form of x(4, n, 4), y(&, n, ) and z(4, n, 4) so
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that the contour of , Q and can be accurately identified

on the physical coordinate (x,y,z).

If M is the Jacobian of the transformation from (x,y,z)

coordinates to ( coordinates then

x y z
M = nx ny nz

4x .Cy Cz

We further assume that the inverse transformation exists and

is continuous. For this transformation, the Jacobian J is
x x x

J= y y riyC
z z z

so that MJ=l.

Using the relationship between these two Jacobians, Eq.

(8) can be inversely rewritten as

a1x 2x nn x CC +2a12 x +2 1 x +2a x n
+j2 (Flx +F2x n+F3xC ) = 0

a11Y -+ 22Y n+c33y C+2 1 2Y, +2a 1 3y +2 23 y ;

+J2 (Fly +F2y +F3yC) = 0 (9)
a 11z +a 2 z nn+a 3z,+2a 1 z gn+2a 1 z +2ai 2n 3 1 n 1 23 z TI

,J' (Flz 9 +F2z +F3z ) = 0

3
where a. = Z kiSkj 1 i,j 4 3k=l



45

is the transformation coefficient and

B1 = Yz-yz, 01 = Yz,-yz , 13 Y~z-yYz

B21 = xznxnz ,  2 =xz- 23n n ~22 xz-zJa2 x

With suitable boundary conditions for the computational

domain, Eq. (9) can then be solved by any stable numerical

method to produce the coordinate relations between the

physical and transformed domain. The detail of numerical

procedures to obtain the body-fitted coordinates is further

discussed in chapter IV and V.

After calculating the coordinate relationships, the

governing equations (1) through (5) in the physical domain

must also be transformed to the body-fitted coordinate

system. The dimensionless continuity equation (1) in the

transformed coordinate system becomes

(J( U+Y v+ z w)} + J( u+-Y v+ w) } n + ( J( xuyv+ zw)} = 0 (10)

x xn x

J= Y Yn Yz zn z

where J is the Jacobian and the subscripts x, y, z, ... etc.

mean the derivative with respect to x, y, z, ... etc.. It
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should be remarked that only the independent variables in

the physical domain (x,y,z) are transformed, however the

dependent variables u, v and w are not transformed since the

problem can be solved on the transformed coordinates without

the transformation of u, v and w. The momentum and

turbulent transport equations (2), (4) and (5) can also be

rewritten as

a + b + c + d = e + f* + g + h+i (i)

where 0 can be u, v, w, k and e . The coefficients a4 , b4 ,

...... etc. in Eq. (11) respectively the coefficient for u,

v, w, k and c. They are listed in table 3. Again only the

independent variables x, y and z are transformed to the

body-fitted coordinates. The velocity components u, v and w

are still the velocity components in the Cartesian x, y and

z direction.

3.2 FA Formulation

The basic idea of FA method proposed by Chen et al.

(29-37], is the incorporation of local analytic solution in

the numerical solution of partial differential equations. In

the finite analytic method, the whole region of the problem

is divided into many small elements in which the governing

equation is solved analytically. An algebraic equation which

approximates the governing eequation is then obtained when

the analytic solution is evaluated in an interior node of
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Vt)A 1-!A ( 1tA3 #82c. 15B3c~
C c cc C ccC)

0Rei-? 1 7 't .V# where 7 + i u w

v ietR' - (.!),n a i~o u .w~for one-scale modei

at Rei.Rc - 7(-.)Vc a - ok (for k). a - o, fo c 7

At - 7C*Y1. A2 In Yn. A3 - VC*'c. 81 - VE7. e2 - Tn'tc,. 83 - vE.9c

JJ #'l #E z z ,z 0~ c*1c2

TLable 3

The Coefficients Of Momentum~ And
Turbulent Transport Equations



48

the element for numerical solution. The principle and

procedures in obtaining these FA solutions are illustrated

in detail in many published papers by Chen et al. [29-37].

Here we derive the finite analytic (FA) solution for a three

dimensional unsteady flow. Detail of the FA coefficients

which are used in this study are given in Appendix A.

Mathematically Eq. (11) shown in the last section is a

fully three dimensional elliptic partial differential

equation in space. An accurate and complete finite analytic

numerical solution for Eq. (11) can be derived [34] based on

the principle of the FA method to obtain an finite analytic

algebraic equation based on 27-node FA element as shown in

figure 4(a). However the finite analytic solution based on

the 27-node element requires large storage and at the

present it is beyond the computer capacity that is available

for the user. In order that the problem of three

dimensional flow can be solved with the limited facilities,

the unsteady three dimensional elliptic partial differential

equation (11) is solved by a hybrid finite analytic-finite

difference method as follows. Eq. (11) is first cast into

Eq. (12) where the derivatives of dependent variables with

respect to time t and the axial direction are shifted into

the source term so as shown in Eq. (12).

c + +d - f + s (12)
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h h+ 3A + b% + a t

In the hybrid finite analytic and finite difference method

the terms in the source term of Eq. (12) 0, and t are

approximately expressed by the finite difference such that

Ot by the impl:>it or backward difference, & central

difference and 0 by the upwind difference, or

t+l t

-t= )At

D- 
-P 2

P U (if b O)

D P(if b < )

Allspace derivatives O, 0 are evaluated from the previous

time step.

If we introduce the coordinate-stretching functions

T* 77 /g

Eq. (12) is reduced to the standard two dimensional

convective transp.ort equation described in Chen & Chen

(34,37], i.e.,

+ *= 2A%0, + 2Bn , - s*

with

dB= 
c

2/g 2,/f
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for a local element with dimensions

g = 1

T= =

This hybrid FA-FD formulation gives the li-point algebraic

solution of Eq. (12) for three dimensional time dependent

flow for an element as shown in figure 4(b) as

8 bh[ (e¢ 2 )  + (e +C 3 b) U+h +i ]i-l + a-1ti

P- =1+4 (Clb +2e + a __)

At

Here if b > 0, C1 = 1, C2 = 0, C3 = 1

ifb < 0, C1 = -1, C2 =-1, C3 =0

Figure 4(b) shows the relation between each of the 11 nodes.

In Eq. (13) the superscript t-I denotes the previous time

step, and the term with the superscript i-I means the value

of previous iteration. On the same time step ¢U and ¢D are

the values of node p at the upstream and downstream of the

coordinate and At is the time increment. The expressions of

these FA coefficients Cnb, C are listed in Appendix A.

Physically, the above formulation preserves the three

dimensional ellipticity and still allows the recirculation

to exist. In Eq. (13) the calculation sweeps iteratively
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along the direction. It should be remarked that since the

numerical solution in the t direction is approximated by

finite difference with only one upstream and one downstream

node the prediction of the separation or the vortex

formation in the direction can only be regarded

approximately. Therefore if one expects a flow problem

which has strong recirculation in all three directions, then

it is suggested that dense nodes must be arranged in the

axial direction or small spacing in the axial direction.

3.3 Pressure Earuation

To complete the numerical solution, in addition to

solving the finite analytic algebraic equations, i.e., Eq.

(13), for variables u, v, w, k and c, one more equation is

needed for solving the unknown p. There are several ways to

solve the pressure variable. For example, Roach (27] solved

the pressure varible from the Poisson equation which is

derived by taking the divergence of the momentum equation.

In this approach, a velocity correction term is incorporated

in the Poisson equation where velocity is corrected to

satisfy the continuity equation. In the other methods,

Patankar and Spalding et al. [23] proposed to use the

continuity equation for the pressure variable. The basic

idea of their approach is to express the velocity variable

in the continuity equation in terms of pressure variables.
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The equation for the pressure variables is obtained when the

algebraic expressions for the velocity from the momentum

equation are substituted into the continuity equation which

is expressed either in a finite difference or finite volume

expression. In the numerical procedure, the pressure

variable is then updated in each numerical calculation such

that the velocity components respectively solved from the

momentum equation are made to satisfy the conservation of

mass. Depending on the approximations made in updating

pressure, different governing equations for pressure may be

obtained. Among them, the pressure-update-Patankar (PUP)

scheme [48] combined with Pantankar-Spalding p' equation (or

called SIMPLER algorithm) gives the best result. Here p' is

known as the pressure correction and defined as the

difference between the true or exact pressure field and that

of the approximate or incorrect pressure field. In the PUP

scheme, instead of updating pressure gradually from the

pressure correction p', a pseudovelocity, ui, obtained by

omitting the pressure gradient term in the momentum equation

is introduced so that the pressure field can be obtained

from a guessed velcoity field. The general procedure of

SIMPLER (Semi-Implicit Method for Pressure-Linked Equations

Revised) algorithm is adopted and modified in this study.

Details of the derivation of pressure equation and the

pressure correction eqation are provided in the following

sections.
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Figure 5 shows a typical control volume (shaded area)

that is used to derive the pressure equation based on mass

conservation applied to the shaded element in the present

study. It should be noted that the shaded element for the

velocity variables has a smaller control volume

(A=AI=A=0.5) in the transformed domain than that for the

pressure variable. All the velocity components u, v and w

are specified at the surface nodes e, w, n, s, u and d of

the shaded control volume and are assumed known and stored.

Then the pressure p is assigned at the surface nodes of

unshaded control volume (A4=n=A =I) i.e., E, W, N, S, U and

D. In order to replace the velocity variables in continuity

equation Eq. (10) by pressure variable, we first decompose

the actual velocity field (u, v, w) in the momentum

equations Eq. (13) into two parts. They are

u=a+DuP, v= +DP y w= +Dwp z (14)

Re -p Re Cpv Re
D ,D - , D --- -

u u v v w w

E=glCnb~nb { (e +C2 e
) D + (e +C 3 b ) u +i ] i-+ 6 t 1D D

PP

for a, 0, Q

where D = 1 + C ( -+ Clb + 2e)P P 6t 1
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Here all the notations have been described in Eq. (13). In

Eq. (14) Lu, v, w are called pseudovelocities equal to the

values that the velocities would have without the pressure

contribution. Then substitution of Eq. (14) into the

continuity equation Eq. (10) written in the pressure control

volume i.e., the shaded control volume in figure 5, one

obtains

(V)d - (N)u + (V)n - (Vn)S + (V)e - (VC)w = 0  (15)

where the subscripts d, u, n, s, e and w denote downstream,

upstream, north, south, east and west side of the shaded

area. And

1' -+ ~ -nn c
V Cp i i r (16)

where

V = J( ia+ 0I O+D lp'1P

Vn=Jnx ily 'nz OlpE23rn)
V = J( x+D 1+3p+D1 23Pr )

D12 = D ux n x +DVyY+Dw z n z
D 1 = u x +D y y+ w gz z
D 23 = DUXx +Dvny y+Dwn z Cz

C = (D f+D f+D )
uxx vy wz

D z)

C = J(D u 2+D gZ+D r,2
ux vy wz)

cc= J(D rC2+D ri2+Du x v y w Z)
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Here C, C c are the mean pressure-velocity linkage

coefficients obtainable from the transformed momentum

equation, and variables V , V, V and v, V are the

velocities and pseudovelocities in the body fitted

coordinates along the , and 4 directions. Similarly P P,

and P, respectively are the pressure gradients in the

transformed domain. Using central difference for these

pressure gradients, one may rewrite Eq. (15) and obtain the

pressure equation as

appp = aDPD+ atpa+ ap+ aNPN+ aBpE+ aw S (17)

where
aD (C )d' au = (C)u, an (C)n'

as : (C)s' aE = (C)e aw = (C )W

ap= a oa + +aS + a E+ '

DS (V )d- (V )u + (V )n (V )s + (V)e -(V )w

aD/ as . .... etc. are the coefficients of pressure equation

(17).

In deriving the pressure equation Eq. (17) a proper

choice of grid system is very important. There are two

commonly used grid systems in the numerical calculation. One

is the staggered grid system which distributes the variables

at different nodes, the other is the regular grid system

which solves all varia.bles at the same node. In the
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following sections these two different grid systems will be

investigated and discussed.

3.4 Staggered Grid System

Figure 6 is the general view of the staggered grid

system [49]. If the dashed lines represent the control

volume faces, the pressure and scalar variables such as k

and are stored at the center of the control volume, while

the velocity components are stored at midway between these

nodes denoted with arrow "€" for v component and "-" for u

component. Here the velocity components are perpendicular

to the control surfaces or in the direction of the

coordinate lines.

In this study all equations are transformed and solved

on the transformed domain (t, n, ;), where the coordinate

lines , n, ; in general are curvilinear and non-orthogonal

in the physical (x,y,z) domain. The velocity components u, v

and w that are defined in the x, y and z direction are

neither perpendicular to the control surfaces nor in the

direction of the coordinate lines 4, n and 4. Therefore the

velocities in the , n, 4 directions. must be projected

from the velocity components u, v, w defined in the x, y and

z directions. Consequently examining the source term of

pressure equation Eq. (17), one finds a total of eighteen

velocity components are needed, three velocity variables in
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each of the six surfaces, in each small control volume as

shown in figure 5. The projection of u, v, w velocities in

the x, y and z coordinates to the 4, n and coordinates

certainly provides numerical error either from interpolation

or difference approximation. However, in the staggered grid

system as shown in figure 6 the velocity component u at node

points d and u, velocity component v at node points n and s,

and velocity component w at node points e and w had been

solved from the momentum equation or Eq. (13), thus six of

eighteen velocity components, namely, ud, uu, vn/ vs, we and

ww can be obtained directly from the surfaces. It is,

therefore, only to approximate the remaining twelve by

interpolation or difference approximation.

One way to reduce the numerical error is to reduce the

use of interpolation or difference approximation. This can

be achieved by letting one of the transformed coordinate

lines, say coordinate to be just a function of x only. In

this way the velocity component u is perpendicular to the

n-4 section, no other velocity components are needed in 4

direction. In other words the velocity component u in the x

direction is identical to that in the & direction.

Therefore in the source term of Eq. (17) only eight velocity

components are still unknown on the n-4 section and require

interpolation. The coordinate arrangement of letting

4=4(x) is reasonable since in the present investigation of
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the flow past an axisymmetric body most of the experimental

measurements are made along the section normal to the x axis

of the body, that is on the y-z or n-4 plane. Further more

if the flow past the body is predominately along the x

direction then the magnitude of the velocities v and w are

in general smaller than that of the u velocity. Therefore, a

simple linear interpolation can be used here to evaluate

these values of v and w components from the velocity field

known at the previous time step or iteration without causing

too much error. In summary, under the present arrangement

the source term of pressure equation Eq. (17) on the

staggered grid system only needs the following eight

approximations.

i i u 4 4v 4 4u,1
* 4 Z Ub' e 4m vb' Uw EflJ un ' vw lv

U 4u =41{ 1 w
n 4Wb' n :u nb , us:1 Ws T

Where nb denotes the known neighbor nodes surrounding the

unknown surface node e, w, n and s.

In order to impliment the arrangement of a staggered

grid in computer programing it requires not only a large

computer storage but also tedious work. As an alternative

the regular grid system which solves all variables at the

same node maybe used in the present computation. It is

discussed in the next section.
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3.5 Regular Grid System

Figure 7 shows a typical control volume in the regular

grid system. Since all variables u, v, w, p, k and e are

stored and calculated at the same node in the unit control

volume there are no velocity components at the surfaces of

the small control volume shown as the shaded area in figure

7 for the pressure equation Eq. (17). It is, therefore,

necessary to approximate all velocity components by

interpolations. The interpolations are

_V) kV ( (V u fwe (o]

-~~ -D-(g

(Va = = +(
c = 2[cv)E-+-v )], cv = c . '

(Cn) n = (C)N+()p] ' (CI) = ( C
.! .~(CN-i~1 1C~

(C)e !(C)E+(C)p] (C) w  1[ (C)(C

where all the notations have been described in Eq. (15).

Although the regular grid system may commit

interpolation error, the use of the regular grid system when

compared with the staggered grid system can save
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computational time and storage. Therefore in the present

study the regular grid system is used for laminar flow over

a finite flat plate with or without angle of attack.

3.6 Pressure Correction Equation

The governing equations formulated in chapter 2 are

Eqs. (1) to (5). These equations are recasted into Eqs.

(10) and (11) in the transformed domain. We are thus

required to solve Eq. (11) for u, v, w, k and e and Eq. (10)

for p. The corresponding algebraic equationE for Eqs (11)

and (10) are Eqs. (13) and (17). ThM system of these

nonlinear equations are solved iteratively in the present

study. In this section we derive a scheme to ensure that

the iterative procedure leads to a converged solution.

Before we derive the pressure correction equation it should

be noted that either with staggered grid or regular grid

systems when both the momentum and continuity equations Eqs.

(13) and (17) are exactly satisfied the value of DS on the

right hand side of pressure equation Eq. (17) will be zero.

However during the iterations because momentum and mass are

not conserved in the volume element there exists some error

in u, v, w and therefore DS in Eq. (17) is nonzero. The

pressure correction equation is derived to improve the

convergence of the solution. The following are the

derivation &nd steps considered in this study for solving

Eqs. (13) and (17) iteratively.
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During iterations we first compute the velocity field

from Eq. (13) with a guessed pressure field p*. With the

guessed pressure field p* given, one can solve the momentum

equation Eq. (13) directly and obtain the guessed velocity

field u*. At the beginning since p* is not a correct

solution so that ut do not satisfy the continuity equation.

Then one may assume the velocity correction uL which when

added-to ut will satisfy the continuity equation Eq. (10).

Thus substituting uL (=ut+u!) into continuity equation Eq.

(10), one obtains

[J( U + V'+E w')] + [J(n u, + ryV, w')] n

+ [J(yU'+y'+Czw')]) = -ERR (18)

Y z E y z r)

ERR= ( 1Jxu+~v+ U*+1  y + JTxuVy*+ T W*)

Since there are three velocity corrections (u', v', w') in

one equation, it is impossible to solve Eq. (18) directly.

Alternatively, one may assumes that p is the correct

pressure field to produce correct velocity u. then the

correct pressure p may be written as the sum of the pressure

correction p' and the inaccurate pressure p* or p=p*+p'.

Substituting both velocity and pressure expressions into ho

term of the momentum equation Eq. (13), one obtains the
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equations for velocity correction uL and pressure correction

p'. They are 8C

U' = +C__ +bUP s' +DP' (19)
DDu u ux (9

p Dp

8o nb nb + Cp t+ wzw+-s, +

w wDVD pD

If the first two terms of equation (19) were retained, they

would have to be expressed in terms of the pressure

corrections and the velocity corrections at the neighbors of

uY. These neighbors would, in turn, bring their neighbors,

and so on. Ultimately, the velocity correction formula would

involve the pressure correction at all grid points in the

calculation domain, and the resulting pressure correction

equation would become unmanageable. Therefore in the

present study the first two terms of equation (19) will be

neglected. Eq.(19) is simplized to

U' = D pl, v' = D D. w'= wz' = Dw Y (20)

The omission of the first two terms enables us to cast the

relation between velocity correction and pressure correction

in a much simpler form. The omission of the first two terms

in Eq (19) can be justified since if p' is zero u will be

zero too which give the right asymptotic behavior for

convergence In fact the converged solution should not be
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influenced by any approximations made in correction

equations during iterations. In other words, all

formulations of the correction equations should give the

same final solution if the formulation leads to a converged

solution. However the rate of convergence of the solution

will depend on the particular formulation of the correction

equations used. If a too simplistic formulation is used,

divergence may result.

From the above formulation it is clear that if the

pressure correction p' can be solved then the guessed

velocity ut can be approximately corrected by the velocity

correction u to satisfy the continuity equation Eq. (10).

To derive an equation for the pressure correction p', the

same procedure from Eq. (14) to Eq. (17) can be followed by

dividing the velocity field u. into guessed velocity u* and
i

velocity correction u!' which is expressed by Eq. (20), i.e.

u=u*+D UP', v=v*+D VP, w=w*+D P' Substituting these

expressions into the continuity equation Eq. (10), one had

the pressure correction equation which is similar to the

pressure equation Eq.(17).

app; = aDPD aUP+ aSpS+ ap aEp + ap+ DS' (21)

Here aD/ au, .... etc. are as the same as Eq. (17) and DS'

is same as DS in Eq. (17) except that the values of i ,^

a , and p* in the DS are replaced by u*, v*, w*, and p'
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After using pressure correction p' to correct the

velocity field to satisfy continuity equation, the next step

is to update the pressure field by solving pressure equation

Eq. (17) with the velocity ui which had just been corrected.

Although the velocity field (ui=ut+u') had been corrected to

satisfy continuity equation they may not satisfy momentum

equation unless the velocity correction u! are zero, i.e.

u.=ut and u* satisfied the momentum equation already.
I. L L.

Therefore, in order to have the solutions of p and ui that

both satisfy the momentum and continuity equations

simultaneously, we need an iteration procedure to ensure the

convergence of the solution. From Eq. (20), it shows that

if the pressure correction p' is zero then the convergent

solutions of p and uL will satisfy both the momentum and

continuity equqtions simultaneously. Thus, the convergent

criterion in this study is based on the value of the

pressure correction p' that tends to be zero. Generally, if

the value of -essure cc.. ztion p' is smaller than one

percent of value of pressure p the solution is considered as

a convergent solution.

3.7 Algorithm

Accuracy and efficiency are two major considerations in

designing the algorithm of a numerical program. In this

study a modification to SIMPLER algorithm [231 is made so
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that it is more efficient in computational time and storage

and more accurate in compucational results. The overall

numerical procedure for a three dimensional case used in

this study may be summarized as follows.

1. Start the inlet (or present) station with the guessed

pressure p* and velocity distribution uk.*

2. Calculate FA coefficients from Eq. (12) with the

guessed velocity ut or best velcoty available u. then
L, 1

solve starred-velocity ut from Eq. (13) with the

guessed pressure p*.

3. Calculate pressure correction p' from Eq. (21) with

the starred-velocity ut in DS'.

4. Calculate velocity correction u' from Eq. (20) with

the pressure correction p'.

5. Obtain the correct velocity ul by combining the

starred-velocity ut and the velocity correction u!

for the present iteration.

6. Calculate the pseudovelocity ui as defined in Eq.

(14) with the correct velocity u..

7. If it is turbulent flow solve k and e from Eq. (13)

with the correct velocity u..

8. Repeat from step 2 to step 7 until the last station

was reached. This repeatition is called the inner

loop.
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9. Calculate pressure field p from Eq. (17) with the

pseudovelocity . in the whole computational domain1

based on the correct velocity u.. The resulting

pressure field is considered as the updated pressure

p*.

10. Start from the inlet station in step 1 with the

update pressure field p and correct velocity ui.

This part is called the outer loop.

11. Stop if the steady state criterion is achievbed, or

the time t exceeds the maximum time period assigned.

It should be remarked here that the line by line

tridiagonal s':heme is adopted to solve pressure equation Eq.

(17) and pressure correction equation, Eq. (20), while the

modified strongly implici. MSI procedure [501, which uses

lower and upper triangle matrices to solve 9-point

difference scheme at the same time, is adopted to solve Eq.

(13) for other variables u, v, w, k and E.

3.8 FANS-3DEF Program

In the present study a computer program called

FANS-3DEF is developed. FANS-3DEF (Finite Analytic

Numerical Solution of Three Dimensional External Flow)

consists of a preprocessor and a main solver. This program

includes options for (1) two or three dimensional flow, (2)

staggered or regular grid system, (3) incompressible laminar
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or turbulent flow and (4) two types of turbulence model. It

is compiled by FORTRAN 77 compiler, and has been implemented

and tested on PRIME 750 at the University of Iowa. In this

section a brief introduction of this program is given. The

detailed discussion of the whole program, the flow chart of

main program, I/O system and two examples of how to control

I/O system will be given in appendix B.

The main structure of a general program should contain

(1) data input module (preprocessor) (2) analysis and

solution (solver) (3) output module (postprocessor). This

is illustrated in the following figure.
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Data Input Module
(Preprocessor)

L
Analysis and Solution
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Output Module
(Postprocessor)

Stop I

Figure 8. Simplified
Schematic Of A General Program

In the present FANS-3DEF program the output module

(postprocessor) is not included. This is partly because at

the present the graphic package is highly hardware orinted

and partly because there are many professional graphic

packages readily available. For example, at the University

of Iowa a graphic package called 'GCS' is available and can

be adopted as the output module.

In the FANS-3DEF program before the solver can be

activated to solve the problem, sufficient information must

be transmitted by the user to the data input module

(preprocessor). This input system is described in detail in

appendix B. put is completed then may initiate the problem
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the main program of FANS-3DEF. The computer program

FANS-3DEF has been employed to calculate a variety of

two-dimensional, axisymmetric and three-dimensional flows.

In the next three chapters some representative examples and

solutions are given to illustrate the capability of the

numerical method used in this study. Suggestions for future

applications are also given.
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CHAPTER IV

TWO DIMENSIONAL FLOW OVER
A FINITE FLAT PLATE

In this chapter the flow over a finite flat plate is

considered. This is an important and fundamental external

flow involving the development of the boundary layer flow on

the plate and the evolution of the u.ke behind the plate.

Although the geometry is simple in this case, and Cartesian

coordinates can be used to solve the flow directly in the

physical plane, the body-fit I coordinates in the FANS-3DEF

(Finite Analytic Numerical Solution of Three Dimensional

External Flow) are still used in order to verify the

technique and program of the grid-generation. The numerical

solution of this case - a provide a useful test of the

numerical method and the modified SIMPLER solution procedure

for computing pressure and velocities during the iteration

and a verification of turbulence models. In the following

sections the solutions for both laminar and turbulent flows

over a finit flat plate are given. The solution of laminar

flow is first examined to verify the numerical algorithm and

numerical scheme used in the FANS-3DEF. The solution of

turbulent flow is then considered. The turbulent solution
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may be used to examine the predictability of the turbulence

models.

4.1 Numerical Grid System

Figure 9 shows the computational domain of the finite

flat plate. If the Cartesian coordinate (x,y) in the

physical plane is chosen with distances x and y normalized

by the plate length L, then x=0 and 1 correspond to the

leading and trailing edges respectively, and y is the normal

distance to the plate. Since the solution of variables u,

v, w, k and c vary rapidly in the neighborhood of the

leading and trailing edges than other places, more grids are

needed around these two regions. A desired grid

distribution can be arranged by stretching and condensing

the grids along the x, y coordinates in the physical plane.

In this study a nonuniform rectangular grid is generated

using the body-fitted coordinate technique as described in

chapter III. With x=x(4), y=y(n), Eq. (9) is simplified to

a x+ J'2Flx = 0
(22)

S+j2F2yn = 0cz22y "f

where

= 2 a = 
2  J =

11. Yn 22 = n
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If the control functions F1 and F2 are prescribed a priori,

then Eq. (22) can be solved for the coordinate variables

(x,y) as a function of the uniform body fitted coordinstes

(Qv). In analysing Eq. (22) one may choose the control

functions F1 and E2 to remain constant within each numerical

cell, thus Eq. (22) is solved analytically with x(l,O)=xD,

x(-l,0)=xU , y(O, 1)=yN and y(O,-l)=yS -

eax u + e-ax

e + ea

-b (23)
eyS +e YN

y = b
e +e -b

where J2FI J2F2
2a 11 2a22

The subscript P, D, U, N and S denote the node at center,

downstream, upstream, north and south of the numerical cell

as shown in figure 10. Therefore for every nodal location

there is one equation (23) to govern the transformation.

For the computational domain as shown in figure 9 there is a

set of simultaneous algebraic equations of Eq. (23) which

can be solved easily by the tridiagonal algorithm if the

appropriate boundary conditions for the computational domain

and the flat plate are provided.
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(0,1)

(0,-i)U(- 1. 0 7 -(11 o T"

Figure 10. The Numerical Cell

In this study the distribution of a andy-b used to

generate the grid nodes along the - and -directions: was th6

one suggested by Chen and Patel [22]. They are

-Al 0 < zI
1

Al Sin( rz1 ) < Z 4 2
a=

A2 Sin(7r z2 0-- < z2 , .

-A2 Z- 3_22

2 2-

where -i-2 +

1 1 ' z2 = 221+1

i and 2 correspond to the leading and trailing edges-

respectively, and Al, A2 and A3 are positive constaits-which

can be selected to yield the desired grid, con-centratio

around x=0, 1 and y=0.
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4.2 Laminar Flow Without Angle Of
Attack

To compare the results of this study with those shown

by Chen and Patel [221, same values of Al, A2 and A3 are

given. They are A1=0.3, A2=0.2, A3=O.4 and gi=19 at x=O,

=49 at x=l, n=1 at y=O and n=10 at y=0.2196. Thus, a

65xi0 mesh was used to cover the physical region that

extends from a distance 1.385L upstream of the leading edge

to 3.488L downstream of the trailing edge, and 0.2196L

normal to the plate, with the grid concentrated in the

neighborhood of the leading and trailing edges and the

plate. Figure 9 shows the numerical grid in the whole

computational domain.

In order to compare with some previous studies

[22,51,521, the Reynolds number Re=lO 5 is chosen for the

calculation of laminar flow over the flat plate without

angle of attack. In this study the regular grid system

discussed in section 3.5 is used and the incompressible

laminar Navier-Stokes equations Eqs. (1) and (2) with u.=O1J

are solved. The uniform velocity with zero pressure was

specified at the upstream station x=-1.385L. Symmetric

boundary condition at y=0 and free stream boundary condition

outside the computational domain at y=O.2196L are prescribed

as discussed in chapter II. The FANS-3DEF is then used to

solve this problem in which Eqs. (1) and (2) are expressed
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in the algebraic form on the body-fitted coordinates as Eqs.

(13) and (17). The solutions for Eqs. (13) and (17) are

obtained with the time marching procedure. Since this is a

steady state flow problem a large time increment can be

used, here At=1 is used.

Figure 11 shows the history of the dimensionless

pressure distribution (p=(p-Pbient)/PU2) before the plate,

on the-plate and along the wake centerline calculated at

different time steps. The flow starts with an initially zero

pressure throughout and uniform velocity u=l, v=O. It is

seen that the solution reaches the steady state first around

the leading edge in 10 time steps, while the flow in the

wake area is still in the transient change and becomes

steady after 30 time steps. Figure 12 compares the pressure

distribution around the trailing edge predicted by the

FANS-3DEF with other previous studies. It is seen that the

present analysis predicts a pressure distribution between

that calculated by Chen and Patel 1221 also that of

Saint-Victor and Cousteix [51], and that calculated by Rubin

and Reddy [52]. It should be remarked that the pre.reit

solution is obtained from the elliptic solution by

specifying the upstream condition at x=-1.385L with uniform

free stream, and the downstream condition at x=4.488L with

vanishing second derivatives. The previous studies

[22,51,52] were based on partially parabolic solution
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specifying the upstream condition on the flat plate behind

the leading edge. Rubin and Reddy used the triple-deck

solutions and obtained the solution with the Blasius profile

imposed at a large distance upstream of the trailing edge on

the plate (x=O.IL), whereas the other two methods [22] and

[51] specified the initial conditions on the plate at x=0.5L

with Blasius solution. Chen and Patel [22] had investigated

the solution with the initial conditions specified closer to

the leading edge (typically x=O.18L) and found that the

pressure distribution along the flat plate will be lower and

hence closer to the present solution. They also commented

on the influence of the location of the outer boundary of

the solution domain on the upstream pressure distribution.

In the present study the Navier-Stokes equations are solved

by FANS-3DEF. The pressure distribution around the leading

edge is predicted and shown that the peak value of the

pressure at the leading edge is about 0.156 which is not a

negligible value. This is in contrary to the boundary layer

approximation that assumes the pressure is uniform even at

the leading edge. The prediction of non zero pressure at

the leading edge is physically sound, since the flow is

decelerated from a uniform velocity distribution before

reaching the plate to zero velocity on the plate surface.

The pressure at the leading edge is thus expected to

increase from this velocity deceleration. Once the flow
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past the leading edge, the magnitude of velocity

deceleration is then gradully reduced. Consequently the

pressure drops to almost that of the free stream value

again.

The wall skin coefficient (CT=/eTWpU2") shown in

figjure 13 indicates that there is a feed back from the

downstream since the skin friction is increased near the

trailing edge. Physically this is due to flow near the

trailing edge and is influenced by the acceleration of the

flow in the wake because the flow is no longer hold to the

no-slip zero velocity at the center line. When the flow at

the center line is accelerated, the velocity gradient normal

to the plate near the trailing edge is increased and hence

the skin friction. At Re=lO 5 it seems that the flow from

x=O.8L to the trailing edge are affected by the wake flow.

The prediction of skin friction by the FANS-3DEF in the

trailing edge region is in good agreement with that

predicted by other methods. From the present result it also

shows that the Blasius solution may be specified in the

region O.4<x/L<0.8 of a flat plate to predict the wall skin

coefficient in the trailing edge. Figure 13 also shows that

in the leading edge region the present analysis of the

Navier-Stokes ecruations shows that the Blasius solution

based on the boundary layer equation predicts higher value

of wall skin friction. Figure 14 shows the velocity



85

4 I 
I. 

I

4 0 "o\ ; 0\1

g 0

-3

I'

V 0
41 9-i cz U

I ' - I x

- 0

• . 40. •I_

,I .rn ..

r-

Ii

- of, CJA,' a. C En

Ci I~ 4I.C.4 -.

w D Wi K)H ~ I (V w UI

- -- 0

En ,k'

If/I
-1

I:,

~ '- (a



86

LO

Ln

x I U)

41'

04 I)

>1
r4O -4

P1 -H- U)

La I . - I-'

ciU) Z .q C I (aI

04 U (J Z~ M 
-4

0 4 )

-P

4-'

E1-4

*r

011.



87

variation along the wake centerline. Here the present

solutions agree well with that predicted by Saint-Victor and

Cousteix [511. When compared to the present solution one

finds that the analysis of Chen and Patel [221 predicted a

higher velocities and that of Rubin and Reddy [52] predicted

smaller velocities.

From the above comparisons one observes that with

different numerical approaches, initial conditions and

computational domain the solution to the same problem may be

different although all solutions are qualitatively similar.

The FANS-3DEF program shows here that it is capable of

solving the complete laminar flow past a finite flat plate

from the upstream of the plate to the wake region.

4.3 Laminar Flow With Angle Of Attack

Although the solutions for the flow past a flat plate

without angle of attack are available the solution for the

flow with an angle of attack is scarce if not available.

This is primarily because when there is an angle of attack

the flow may be separated and shedded and the problem

becomes unsteady and is governed by the Navier-Stokes

equations and not the parobolized equation or boundary layer

equation. In the present study since the FANS-3DEF solves

the Navier-Stokes equation the flow over a flat plate with

angle of attack may be solved. Since the symmetric
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condition is no longer applied for laminar flow over a flat

plate with an angle of attack the computational domain are

redefined with extended boundaries both in the x and y

directions as shown in figure 15. The same numerical grid

generation technique used in the previous section was again

employed but with A1=0.3, A2=0.2, A3=0.2 and e =19 at x=O,

C2=49 at x=l, q=I at y=0 and n=19 at y=+1.5 for both upper

and lower domains. Thus, a 67x37 mesh was used to cover the

physical region that extends from a distance 1.385L upstream

of the leading edge to 8.762L downstream of the trailing

edge, and 1.5L normal to the plate on both upper and lower

boundaries.

In this study the regular grid system with

Navier-Stokes equations are solved again by the FANS-3DEF

for two different angles of attack, namely a= 5 and 10 at

4Reynolds number Re=10 The inclined uniform velocities u,

v (u=U0 cos(a), v=U0 sin(a)) and zero pressure were specified

at upstream and both upper and lower free stream boundaries.

Since the outlet plane is located at 7.762L downstream of

the trailing edge which is far downstream from the plate,

the second derivatives of all the variables at this plane

are approximately set equal to zero. The problem then is

solved on the FANS-3DEF program with the time marching

procedure, since the separation and unsteady flow phenomena

is expected for the flow at incidence, a smaller time
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increment At=O.l is used here. The initial guess of the

velocities in the whole computational domain are the

uniformly inclined velocity. A total of 30 time steps were

calculated. Calculation for each time step approximately

consumes 60 seconds CPU time on PRIME 750.

4.3.1 5 Degree Angle Of Attack

Figure 16(a) shows the instantaneous streamline

distribution around the flat plate at 5 degree angle of

attack at time t=3 after the calculation. At this instance

a small separation at the leading edk on the upside plate

can be seen in figure 16(b), where the y coordinate normal

to the plate is greatly stretched in order to visualize the

separation zone. It should be remarked that the flow at a 5

degree angle of attack does not show shedding. in other

words the separation at the leading edge is a stationary

separation zone. Werie [53] experimentally showed the

existence of the stationary separation at a small angle of

attack and the shedding of separation flow at a large angle

Of attack. Figure 17(a) shows the experimental study of

werle [53] who used a very thin flat plate (t=0.02L) at

Reynolds number 10 for 2.5 degree angle of attack. In this

figure a much larger separation zone than that predicted by

the present study for a=5 was seen at the leading edge over

the upper surface of the plate. it should be kept in mind
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that in the present study a zero thickness is assumed while

in the expermental study a two percent thickness of flat

plate with sharpened leading edge is used. The sharpened

edge tends to promote separation and make the separation

zone bigger.

Figure 18 shows the convergence history of the pressure

distribution on both the upside and downside of the plate at

a 5 degree angle of attack. Since at this angle of attack

the separation zone is still small and no shedding phenomena

is seen the pressure distribution is stationary on both

sides of the plate. The solution converges on the downside

of the plate in 10 time steps and on the upside of the plate

in 15 time steps. The pressue value on the windward or

downside of the plate is positive while it is negative on

the leeward or upperside of the plate. The maximum and

minimum pressure distribution occurs at the leading edge of

the plate. The maximum of p=0.48 on the windward and the

minimum of p=-0.74 on the leeward. The absolute value of

pressure on both sides continues to decrease from the

leading edge to the trailing edge where the same pressure

value p=-O.02 is found. No experimental data of pressure

for the flow past a very thin flat plate at angle of attack

is available. Figure 19 [541 shows the pressure

distribution on the NACA 0012 airfoil at 4 degree of angle

attack. NACA 0012 airfoil is a symmetric airfoil but has a
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(a) A Flat Plate(2 Per Cent Thick)At Re=lO4

With 2.5 Degree Angle Of Attack

(b) A Flat Plate (2 Per
Cent ThiVM_-
At Re=10
With 20 Degree Ang!
Of Attack

Figure 17. The Visualization of an
Tnclined Flat Plate at Different Angle

of Attack



94

maximum thickness of 12 percent of the cord. Comparing the

predicted result and experiment data of NACA 0012 airfoil,

one sees that the present analysis predicted a similar

solution for pressure distribution on both sides of the flat

plate to that on the NACA 0012 airfoil.

4.3.2 10 Degree Angle Of Attack

In order to investigate the flow past a flat plate with

a larger angle of attack so that the flow is shedded from

the separation, the angle of attack is increased from 5 to

10 degree. At this angle of attack the same computational

domain, grid space, time increatment and initial and

boundary conditions used in the previous section for 5

degree angle of attack are adopted here. Figures 20 and 21

show a series of changes of streamline distribution and

velocity vectors around the flat plate from time t=2 to t=6.

The dimensionless t is defined by t=TUo/L. Where T is the

dimensional time, U0 , the free stream velocity and L the

length of the plate. From figure 20(a) and 21(a) one sees

that at time t=2 a large separation bubble which covers 0.8L

of the upper surface is formed. From t=3 to t=5 these

figures reveal that while the separation bubble is being

pushed down toward the trailing edge of the plate a new

separation bubble is created at the leading edge and grows

in size. At time t=6 the first separation bubble is
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completely washed away behind the plate and the second new

separation bubble has grown to a size such that the pressure

in front of the bubble is larger than that behind and

consequently the bubble begins to move and the shedding

process repeats. A complete period is then achieved. The

shedding Strouhal number, S, from this shedding is found to

approximately 0.2. The Strouhal number is defined as S=nL/U0

where n is frequency, U0 and L are reference velocity and

length.

In this chapter the calculation of flow past a flat

plate is used to test the capability of the FANS-3DEF

numerical algorithm and numerical method. It is found that

the FANS-3DEF can predict laminar flow with or without angle

of attack with reasonable accuracy. If a more accurate

result of the flow phenomena is desired more fine grids and

smaller time step should be used.

Figure 22 shows the corresponding pressure distribution

on the both upper and lower sides of the plate at different

times. One sees that the pressure distribution on the

downside of the plate is almost constant at each different

time step but the pressure on the upside of the plate varies

rapidly even at two close time steps revealing the occurence

of vortex shedding. In table 7 the value of pressure on

each different station at different time step is shown. It

shows that the pressure in front of the separation zone is
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large and only next to the pressure at the leading edge.

The pressure difference created arround the separation zone

is then responsible for moving the separation zone

downstream and producing shedding. The feed back of shedding

phenomena on the upper plate also promotes the change of

maximum and minimum values on the leading edge at different

time steps.

4.4 Modelling Of Laminar-

Turbulent Transition

Before using the numerical method to solve a complete

solution of high Reynolds number flow over a finite flat

plate, a brief review of how the flow changes from the

laminar to turbulent is needed. Figure 23(a) is a sketch of

flow evolution from the leading edge of a flat plate at zero

angle of incidence. It shows that between laminar and

turbulent flow, there exists a small region called the the

transition zone. Figure 23(b) shows the corresponding

coefficient of skin friction around the transition zone, It

can be seen that in the transition zone there is a sud-en

increase of skin friction and increase in the boundary layer

thickness from laminar flow to turbulent flow. At present

only a small and initial portion of the transition zone is

amenable to a theoretical analysis. The analysis and

theoretical treatment of the complete transition flow are
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still unavailable. Numerically Cebeci and Smith [551 and

Granville [56] had proposed some correlation functions for

predicting transition flow but they are all based on the

boundary layer assumption. Since there exists this kind of

difficulty and inability in predicting the transition zone,

then many previous numerical studies [19,20,22] for

turbulent flow past a plate or bodies were made only for the

region where the flow is turbulent. In the present study an

attempt is made to create a simple numerical model for

predicting the transition.

In devising a numerical model for the transition zone

the question is how the numerical treatment can be done to

connect the laminar flow and turbulent flow so that the

location of transition can be approximatel predicted and the

overall behavior of the skin friction Cf(2%/pUo2 ) on the

plate can also be predicted. In other words since the

actual length of the transition zone is not clearly defined

no attempt is made to numerically predict the transition

length. As mentioned in section 2.3, once the flow becomes

turbulent we shall, instead of applying no-slip conditions

on the surface, use the two-node log-law equation to

approximate the near wall solution up - the first node from

the wall. While in the laminar flow the computational

domain is numerically extended to the wall. The numerical

model for transition then requires a criteria to indicate
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when the flow is turbulent so that turbulent wall function

is used. The following is the process to identify the

location when the flow chang from laminar to turbulent.

As shown in figure 24(a) the flow over a surface which

can be a flat plate or a curved surface without an abrupt

change in the curvatures is considered. When the local

Reynolds number is sufficiently large on the surface the

flow may go through transition from laminar to turbulent in

the flow domain between x0 and xL. Here let's assume the

transition from laminar motion to turbulent motion occures

at two close computational nodes denoted by x1 and xt and

the tangential velocities at these two locations are uI and

ut. The subscript 1 means the laminar flow while the

subscript t means the turbulent flow. In reality the

transition will normally take a larger distance, before the

laminar motion becomes a completely three dimensional,

irregular unsteady and rotational flow of turbulent motion.

A more realistic model of transition will be discussed

later. Before we continue, some assumptions about the flow

around the transition zone are made as (1) the velocity near

the wall along the surface continues to decrease whether the

flow is laminar or turbulent (2) the flow starts with

laminar flow at the leading edge and continues to be laminar

until the point of turbulent flow is defined (3) after this

point the fully turbulent flow is considered. Under these
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assumptions a comparison between the two close tangential

velocities at same normal distance y p to the wall is made.

Since in this study the log-law formulation is use6 for the

turbulent calculation, therefore y must the value between

12 and 200. In this study we choose y 0 0.0006 and find that

it satisfies the requirement for Re=2.48xlO6 on the whole

plate. As shown in figure 24(b) if ul(x2,Yp) is larger than

ut(x3 ,Yp) then the turbulent velocity at (x3,Yp) is replaced

by the laminar velocity and the comparison moves downstream

by one node, or between u1 (x31yp) and ut(x4 ,Y ). If

ul(x 2 ,yp) is less than ut(x31Yp) then the turbulent is

assumed to occure at (x3 ,yp) and the comparison moves

upstream by one node, or between u(Xl,Yp) and ut(x21 Yp).

Repeat the same process until ul(x2 ,yp) is less than

ut(x3,Yp) and ut(x2 ,Yp) is less than uj(X,Yp) then the

location (x2 ,yp) is the starting point of transition.

As mentioned before, in reality the transition occurs

in a larger spacing than between two computational nodes.

To remedy the drastic transition of the solution from a

laminar to turbulent flow in the present study the solution

in the laminar region from the leading edge to the location

of the transition is not solved by the laminar Navier-Stokes

equations but by turbulent Navier-Stokes equation with a

reduced eddy viscosity. The reduced eddy viscosity at a

given location or node in this region is set equal to a 80%



110

of the eddy viscosity of the downstream node. In other words

the value of the eddy viscosity from the starting point of

turbulent flow to the leading edge is set equal to 80% of

the downstream value or vt(xt l,Yp)=0.8 vt(xtYp),I

vt(xt_2,Yy)=0.8 Vt(Xt_lYp) etc., where xt is the location

of transition to turbulent flow.

4.5 Turbulent Flow Without Angle Of

Attack

The grid distribution for the calculations of the

turbulent flow over the flat plate without angle of attack

was again generated by the body-fitted coordinate

transformation given in the previous section but with

A1=0.3, A2=0.12, A3=0.25, and &=1 at x=-1.0619, &=19 at x=0,

&=55 at x=l, &=82 at x=8.1406, q=l at y=O and n=15 at y=1.O.

The grid distribution for turbulent flow calculation in the

y direction is different from that for laminar flow

calculation. This is because the turbulent flow near the

plate differs from the laminar flow and the implimentation

of the wall function for the numerical calculation requires
+

that the first two nodes from the wall must be within 12< 
y

<200. Thus a total of 82x15 grid nodes is used for solving

high Reynolds number flow over the flat plate without angle

of attack. A partial view of grid distribution is shown in

figure 25. Ramaprian, Patel and Sastry [571 measured the

turbulent flow over a streamline body at Reynolds number
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Re=2.48x!O 6. In order to compare the present calculation

with the above experiment data, the Reynolds number

Re=2.48x10 6 is chosen in this study. The same boundary

conditions as described in the laminar flow calculation in

the previous section, section 5.2, are used here again. The

FANS-3DEF program with one-scale k-c turbulence model on the

staggered grid system was solved by using time step ht=l.

The total marching steps are 100.

Figure 26 shows the convergence history of the wall

skin coefficient C f(2,r /pUO ) on the plate. It can be seen

that after 30 time steps the wall skin coefficient hardly

changes any more. A jump from C f=0.0012 to Cf=0.00455 occurs

around x/L=0.108 which is equal to a local Reynolds number

about 2.6x105 . In other words the transition was predicted

5to take place at x/L=0.108 or Rex=2.6xlO while H.

Schlitting [58] had predicted it was 5xlO5 in his

theoretical study. This indicates that the proposed model

for numerical prediction of transition from laminar to

turbulent motion is applicable to the flow over the flat

plate. The convergence history of centerline velocity along

the wake is shown in figure 27.

A comparison with the experimental data published by

Ramparian, Patel and Sastry [571, shows that the present

result has a slower velocity recovery in the wake

centerline. The convergence history of the dimensionless
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pressure distribution for the entire region including

upstream of the plate and wake region is shown in figure 28.

A small rise of pressure or p=0.00165 is predicted at the

leading edge. A better result of pressure distribution at

the leading edge can be obtained by increasing the grid

nodes near the plate. The slight underprediction of

centerline velocity in the wakes region may be due to the

use of two-node wall function on the wall and coarse grids.

To improve the prediction more grids are needed especially

at the centerline both before the plate and after the plate.

In order to achieve a dense grid distribution at the region

very close to the wall the concentration factor A3 is

changed from 0.25 to 0.2835 and a total of 19 grid nodes

along the y direction are used. The partial view of the new

grid distribution is shown in figure 29. The computation of

the flow is repeated on the FANS-3DEF program.

Comparing the grid distribution between 15 grid nodes

and 19 grid nodes, one finds that the four additive grid

nodes are created inside the original first node of 15 grid

nodes distribution. In other words, the first node near the

wall in 15 grid nodes distribution becomes the fifth node in

the 19 grid nodes distribution. Since the log-law wall

function is still used for the turbulent flow calculation

and must be applied between 12< y+ <200, the computational

domain for the 19 grid nodes is rearranged as shown in the

following figure.
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The velocity component u, kinetic energy k and its

dissipation rate t inside the fifth node which involving the

use the wall function are evaluated based on the log-law

formulation or

u =1 ZEy+ 12 +
-n(E 12 < y < 200U K

T

U + +-- =--= Y < 12U Y
T

U2 Y U3  U y
k = n C T + T n

I/C Y5 ' K n V

Here Yn means the normal distance at the nth node, so that

Y5 is the normal distance at the fifth node.

Figure 31 shows the convergence history of the

dimensionless pressure distribution before the plate, on the

plate and along the wake centerline. One sees that the

pressure distribution at the leading edge is now p=0.055 in

the 19 nodes grid distribution, while it is only 0.00165
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when 15 nodes were used in the computation. Also a much

smooth pressure distribution is obtained in figure 31 when

compared to that in figure 29. Figure 32 gives an

exergarate pressure distribution along the centerline of the

plate. It shows a slight fluctuation close to the leading

edge. This is perhaps affected by the velocity change from

the laminar flow to the turbulent flow. The starting point

of turbulent is predicted at x/L=0.067 or local Reynolds

number Rex=l.68x105 as shown in figure 33. During the

transition the skin friction Cf jumps from 0.0015 to 0.0047.

Examining one point of the skin friction Cf measured by

Ramaprine, Patel and Sastry [571 around the trailing edge,

it shows a little difference between the experimental data

and the present result. The convergence history of

centerline velocity along the wake is shown in figure 34.

Again it is compared with the experimental data published by

Ramaprine, Patel and Sastry [57). It shows that the

prediction based on 19 grid nodes along the y direction now

gives good agreement result at far wake. This also can be

checked from figure 35(a) to 35(g) at different cross

section. Figure 36(a) to 36(f) show the kinetic energy

profile at different cross section. The comparison between

the experimental data and the predicted result shows that

the distribution profiles are very similar to each other.

Slightly lower values under the experimental data are

predicted by the present result.
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From the above predictions, one can see that the

numerical model of transition for the turbulent flow over

the flat plate without angle of attack is able to predict a

good result when compared to the experimental data.

Therefore, this transition model is used for the flow with

angle of attack in the next section.

4.6 Turbulent Flow With Angle Of Attack

In this section the turbulent flow past a finite flat

plate with two angles of attack, namely, a=5 and 10 both at

Reynolds number Re=2.48xlO 6 are solved. Since the symmetric

condition is no longer applied for this case, the

computational domain needs to be redefined with extended

boundaries in the y direction as shown in figure 37. The

same numerical grid generation constants Al, A2 and A3 used

in the last section for 19 grid nodes are used here again

but with the outer boundary in the y direction extended to

y=+3 at n=2 1. Thus a 82x4I mesh was used to cover the

physical region that extends from a distance 1.0619L

upstream of the leading edge to 8.1406L downstream of the

trailing edge and 3L distance normal to the plate on both

upper and lower boundaries. The same boundary conditions

used in section 5.3 for the laminar flow with angle of

attack over the flat plate are used here again. The same

numerical modeling used in the last section for the
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determination of transition from laminar to turbulent flow

is used for the present calculation on both upper and lower

sides. The FANS-3DEF program with time step At=O.l and

total 100 time steps for both 5 and 10 degree angles of

attack are solved.

4.6.1 5 Degree Angle Of Attack

Figure 38 shows the streamline distribution around the

flat plate at 5 degree angle of attack. At this high

Reynolds number flow Re=2.48x106 no separation zone at the

leading edge on the upper side of the plate is found. It

should be remarked that the same problem at Re=10 solved in

section 4.3.1, shows a small separation zone at the leading

edge on the upper side of the plate. This can be explained

because when the Reynolds number is increased at this small

angle of attack the length of the separation zone is

decreased until it disappears completely.

The convergence history of the pressure distribution on

both the upper and lower sides of the plate is shown in

figure 39. It shows that the pressure distribution is

monotonically convergent about 30 time steps on the lower

side and 40 time steps on the upper side of the plate. The

pressure value on the lower side of the plate starts from a

maximum pressure p=0.24 at the leading edge drops to p=-0.16

at the trailing edge, while the pressure value on the upper
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side of the plate starts from a minimum pressure p=-0.198

increases to p=0.055 7 at the trailing edge. A comparison of

the pressure distribution given in figure 39 for turbulent

flow Re=2.48xlO 6 and that shown in figure 18 for the laminar

4flow Re=10 , shows that there is a mark difference between

these two flows in the pressure drop at the trailing edge. A

larger pressure difference between the lower side and upper

side is observed at the trailing edge of the plate for

6
turbulcnt flow at Re=2.48xlO , or p=0.0557 on the upper side

and p=-0.16 on the lower side, while it is almost the same

4value p=-O.02 for the laminar flow Re=10. The difference

in turbulent and laminar flows can also be seen in the

streamline distributions given in figures 16 and 38. Figure

16 for laminar flow Re=10 4 shows that the zero streamline

has a 5 degree angle of attack to the plate and leaves the

plate at 5 degree too, while figure 40 for turbulent flow

Re=2.48xlO 6 shows that the zero streamline has a 5 degree

angle of attack to the plate and leaves the plate almost at

90 degrees then decreases sharply and becomes 5 degrees

1ga.n in the far wake. With the carefully e':amination there

iz a small separation around the trailing edge at

6Re=2.48xlO with a 5 degree angle of attack. Figure 40

shows the convergence history of the skin coefficient

Cf(2 r /pUo0), while using the same numerical modeling of :he

transition zone for both the upper and lower sides of the
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plate. The starting point of turbulent flow is predicted at

x/L=0.067 on the lower side of the plate and at x/L=0.165 on

the upper side of the plate. The skin coefficient Cf on the

lower side starts a sharp drop at the leading edge and then

jumps from 0.00155 at x/L=0.067 to 0.004341 at x/L=0.108

where the flow becomes fully turbulent and Cf gradually

decreases till close to the trailing edge. Then there is a

sudden increase in Cf at the trailing edge to a value

0.004316. The skin coefficient Cf on the upper side of the

plate also drops sharply from the leading edge to 0.001 at

x/L=0.067 then decreases slowly to 0.00922 at x/L=0.165.

From x/L=0.238 where the flow becomes fully turbulent to the

trailing edge the friction coefficient Cf gradually

decreases, with no sudden increase around the trailing edge

is found. The different behavior of the skin coefficient at

the trailing edge on both the upper and lower sides of the

plate can also be explained from the behavior of the

streamline pattern shown in figure 38. In figure 38 one

observed that the upper zero streamline is almost 90 degrees

when it leaves the upper trailing plate into the wake while

the zero streamline on the lower side converges to the

trailing edge parallel to the plate.
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4.6.2 10 Degree Angle Of Attack

Figures 41 to 45 give the solution of a 10 degree angle

of attack for Re=2.48xlO 6. The flow patterns shown in figure

41 to 45 have many similarities with the flow patterns for 5

degree angle of attack shown in figures 37 to 40. However

there are some differences. The following are some

different points which require explanation. At this high

angle of attack a=10 one finds that a very small separation

exists at the leading edge, also a strong separation around

the trailing edge on the upper side of the plate is found as

shown in figure 41. Like the flow with a 5 degree angle of

attack, figure 42 shows the pressure distribution at the

trailing edge of the plate has a large pressure difference

between the upper and lower sides of the plate. The

pressure distribution on both the upper and lower sides of

the plate is similar to that of the 5 degree angle of attack

except that the magnitude is higher for the 10 degree angle

of attack. The convergence for a 10 degree angle of attack

is slower as shown in figure 43. The convergence history of

the skin coefficient given in figure 44, shows that the

solution is convergent after 80 time steps. Figure 45 also

shows a sudden decrease of skin coefficient at x/L=0.68 in

the fully turbulent flow on the upper side of the plate.

This sudden decrease may correspond to the strong separation

on the upper side of the plate as shown in figure 41.
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From the solutions presented in the last section and in

this section, one may conclude that the proposed criteria

for predicting the transition provide a reasonable and

accurate solution. Also the FANS-3DEF is a stable program

and can predict good results for the case of zero incidence

and reasonable sol tions for the flows with angle of attack.

This application is further extended to the flow over an

inclined axisymmetric body in chapter 6.
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CHAPTER V

FLOW PAST AXISYMMETRIC BODY
WITHOUT ANGLE OF ATTACK

In the last chapter the FA numerical solution for

laminar and turbulent flows over a finite flat plate with

and without an angle of attack had been solved by the

FANS-3DEF program. Therefore the FANS-3DEF code is verified

at least for prediction of flows past a finite flat plate at

varied angles of attack using the body-fitted coordinate

transformation and FA method in solving turbulent

Navier-Stokes equations with the k-c turbulence model. In

this chapter the turbulent flows past more complicated

axisymmetric bodies for which detailed experimental data are

available are predicted by the FANS-3DEF. Two bodies were

chosen because of their importance in ship hydrodynamic

study and availability of experimental data. The first

geometry is known as "Afterbody 1" used by Huang et al. rI0]

who provide detailed measurements of velocity, pressure and

turbulent quantities arround the rear part of the body. The

second geometry is "F-57 body" used by Lee 191 in his study

of turbulent flow past the body. The geometries of these

two bodies are shown in figure 46. These body shapes are
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described by an analytic equation and detailed measurements.

In this chapter the k-c turbulence model is used to obtain

the numerical results and a comparison is made with the

experimental data.

5.1 Numerical Grid System

In the FANS-3DEF program, the body fitted coordinate

system is again used to generate the grid nodes for

axisymmetric bodies. To minimize the possible approximation

error in the pressure equation Eq. (17) as described in

section 3.3, the staggered grid system where the constant

stations is a sole function of the x coordinate or = (X)

is used in this study. Under this arrangement, Eq. (9) can

then be rewritten in the cylindrical polar coordinates as

+j 2 (FlX0) = (24)

a r +a 22r + 2a 2r + J2 (Flr +F2r ) =

where
al1 = r2 (x2+r 2 ), a2  = 2 (x"+r)

12 = -r2 (X x n +r r.) J = r(x.r n-x r..)

The control function El is therefore determined by the

desired distribution of the axial station or

Fl=-(alix &)/(J2x). With Fl specified, equation (24)

yields the distribution of Doints in the radial direction,

r(&,I). To obtain the desired grid distributon in the r

direction, the control "unction F2 must be prescribed, . z

the control functon F2 Is set ecua2 to
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1
F2 = + f2( ,n)rrn

then Eq. (23) can be rewritten as

a 11r + a2 + 2a 1 2rl + J
2 (Fir +f2r ) = 0

which is equivalent to the two-dimensional body fitted

coordinates for the Cartesian coordinates (x,y) as given in

Eq. (22) with the control functions F1 and f2. In other

words, the same grid distribution can be generated in both

the cylindrical and Cartesian coordinates if the control

function F2 is replaced by f2 in the cylindrical

formulation.

In this chapter the FANS-3DEF progrm is used to solve

the flow over a more complicated axisymmetric body with the

k-c turbulence model. Since the experimental measurements

of Huang et al. [10] on "Afterbody 1" ani Lee [91 on the

"F-57 body" provide data only at the rear part of body to

the wake, the computational domain is chosen from the half

part of the body to the far wake. As the body shape and

computational domain are different from the flat plate

problem the distribution of control factor a ( a = -

(J2F1)/(2alj) ) as shown in Eq. (23) for generation of the

grid nodes along the direction is chosen as

-Al 0.25 <, z 0.5

a A1 Sin(-.z 1 ) 0.5 < z 1 (25)

A2 Sin(7z I ) 1 z I  b

-A2 >b
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where Z=

2 corresponds to the trailing edge, the constant b (>1) is

the grid number to be affected by the concentration at the

near wake region and Al and A2 are positive constants for

condenosing the grid nodes to the trailing edge. For

"Afterbody 1" AI=0.05, A2=0.2, b=1.2 and 2=40 at x=1.0 are

used. For "F-57 body" AI=0.01, A2=0.2, b=l.l and t2=40 at

x=1.0 are used. Here the grid nodes along the body near the

trailing edge and in the near wake region are assigned. To

concentrate the grid nodes at the inlet plane, the same

concentration values obtained around the trailing edge are

used and assigned them to the nodes at the inlet plane. In

this study it is set as:

a(I) = -a(N 2+I-5) 1 I 5

a(I) = -a(10-I) 6 I 9

where the number shown in the bracket is the grid number

along the direction, I=l is inlet plane and N2=40 is the

trailing edge of the body. In this study f2 is also defined

as Fa(n) <

f 2(,) = Fc(4,n) ga < b

SFb() > b
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where Fa and Fb are given by the user or deterimed by the

node distribution at the initial, =, and final stations,

&=n, as

a

Fa = - a 2 =1

Fb = - a n22 r

and Fc is obtained by a linear combination of Fa and Fb or

Fc(,rn) = F(b- )Fa(n)+( - a)Fb(n)l / (Eb- a)

In this study 4a=1 5 , &b=42 , Fa=0.2 and Fb=O.15 are given for

the prediction of flows past the two bodies.

5.2 Afterbody 1

As shown in figure 46(a) the total length of the

Afterbody 1, L, is 3.066m and the maximum diameter of the

parallel middle body is 27.94cm. The experimental

investigation was conducted by Huang et al. [10] in the wind

tunnel of the DTNSRDC anechoic flow facility. The common

forebody and a portion of the parallel middle body were

constructed with wood. The afterbody and the remaining

portions of the parallel middle body were constructed with

molded fiberglass. The wind tunnel was a 2.44m by 2.44m

closed jet test section, followed by a 7.16m by 7.16m open
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jet test section. In this experiment the velocity of the

wind tunnel was held constant at 30.48 m/sec therefore the

Reynolds number based on the maximum diameter or Re=6.6xlO
6

was obtained.

Since in this experiment the velocity profile and

turbulent shear stress are measured from x/L=0.706 to

x/L=l.182 (in the open jet test section), where x is

measured along the axis of the body from the body nose and L

is the body length, the prediction of flow was made for the

latter half of the body. The calculations for Afterbody 1

were performed with 56 stations in the domain

0.364<x/L<6.58. A partial view of the body-fitted

coordinates is shown in figure 47. 19 grid nodes were used

between the body surface and the external boundary which

varies from r/L=0.68 to 0.72. Here r is the radial distance

from the body axis. The use of coordinate-stretching

functions Fl in the longitudinal direction and F2 in the

radial direction ensure that the grid points are closely

spaced inside the region of large velocity gradient and near

the stern.

The numerical calculation is confined to the domain

from x=O.364L at the middle part of the body to the wake

region x=6.58L. Since the FANS-3DEF program solves elliptic

partial differential equations Eq. (12) the boundary

conditions at the boundary of the computational domain must
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be given. Afterbody 1 as shown in figure 46 (a) has a long

section of middle body (from x/L=1.64 to x/L=0.6064) which

is a slender circular cylinder with constant radius

r/L=0.0456, therefore it seems reasonable to assume constant

ambient pressure, i.e. p=0 as the pressure profile at the

upstream boundary condition at x/L=0.364 and use one-seventh

power formulation for turbulent velocity. The turbulent

profil-es for k and at this upstream condition (x=0.364L)

are specified too.

u(y)=(y/S).1 4 3 for y < 6

u(y)=l for y > 6

k=.002 (1-y/6)

= y , C1=.09, K=.42

Here 6 is the dimensionless boundary layer thickness and is

assumed as 0.004 in this study.

The FANS-3DEF program with the k-E turbulence model was

solved with t=l. The total marching steps are 40. Figure

48 shows the convergence history of the dimensionless

pressure field, defined by (P-P ambient)/pU, on the body

surface and along the wake centerline.

It is seen that the solution converges monotonically and the

converged solution is obtained after 10 time steps. The
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The typical computational time for each time step on the

PRIME 750 is 16 cpu seconds. Since Afterbody 1 has a long

section of constant radius (from x/L=0.164 to x/L=0.6064)

before a gradual reduction of radius from r/L=0.0456 to zero

radius at the trailing edge, the pressure begins to change

from the location x/L=0.6064 and the behavior like the flow

over the trailing edge of the flat plate. As the radius of

"Afterbody ]" along the axis decreases gradually from

r/L=0.0456 at x/L=0.6064 to zero at x/L=l, the pressure is

gradually increased due to the deceleration of the flow.

Then the pressure along the center line of the wake has to

recover the ambient pressure in the far wake. The predicted

solution for pressure in figure 48 is in fairly good
agreement with the data of Huang et al. [10). In the wake

the pressure along the wake centerline (x/L>l.0) decays

somewhat faster than the experimental data in the near wake

and becomes slightly negative before gradually recovering to

the zero ambient pressure in the far wake. The detailed

pressure variations in the radial direction is shown in

figure 49, with the pressure as a function of the normal

distance from surface (r-ro), where r0 is the local radius

of the body.

Here again the agreement with the available

experimental data is quite good, considering the

difficulties in measuring pressure in such an enviroment. It
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is seen that zero ambient pressure is recovered when the

radius distance is beyond r=0.35L from the body surface

r=r O. Here r0 =0.0456L between x/L=0.164 to 0.6064 and

r0<0.0456 between x/L=0.6064 to 1.

Figures 50 and 51 show the detailed comparisons between

calculated and experimental profile of the axial velocity

(u), radial velocity (v) and kinetic energy k at different

stations. Here u and v are dimensionless x and r velocity

components normalized by U0 and k the dimensionless kinetic

energy normalized by U0. It is seen that the boundary layer

thickness and half-width of the wake are correctly

predicted. The axial (u) and radial (v) components of

velocity in the rear end of the body and near wake region

are also in good agreement with the corresponding data. The

predicted turbulent kinetic-energy k shown in figure 51

gives a somewhat larger value in the wall region near the

tail (x/L>0.96), where the boundary layer becomes thick.

The larger values are predicted for the mean velocity, hence

the velocity gradient in the wall region of the thick

boundary layer are presumably related to the over-estimation

of the eddy-viscosity by the k-s turbulence model.

Figure 52 shows that the predicted wall-shear velocity

U or (T /p) is slightly larger than the data especially

the last 5 percent of the body length. All these differences

maybe due to the use of the simple wall functions, Eqs (6)
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and (7), at the tail of the body where the curvature changes

sharply. In the future investigation the simple two-node

log-law wall function used in FANS-3DEF may require

modification in ozder to provide a real similation of flow

over a surface where the large curvature occurs.

5.3 F-57 Body

As shown in figure 46 (b) the total length, L, of E-57

body is 1.219m (4ft). The coordinates of this body are given

by

For Q<x<x m  (fore-body)

= (-1.1723a +0.7088a +1.0993a +0.3642a) 0 5  26(a)

m
For x m -x<L (pointed aft-body)

r0_ 0.5r = (-0.11996b -2.58278b +3.52544b +0.1773b) 26(b)r

where a=x/x M, b=L-x/L-x m/ x is the axial distance measured

from the nose, r0 is the local radius, xm (=0.4446L) is the

axial location of maximum radius rm (=0.117L), and L is the

total length of the body. In the experiments the main body

of the model was made of seasoned wood but metal nose- and

tail-pieces, 5.08cm and 12.70cm in length, respectively,

were used to provide accuracy and durability. The

experiments were performed by Lee [9) in the large wind
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tunnel of the Iowa Institute of Hydraulic Research. The

working section of the tunnel is 7.3m long with a

cross-section in the form of a 1.5m octagon provided by

throating a 3.7m square approach section. In this

experiment the v3locity of wind tunnel was held constant at

15.24 m/s (50 fps), where a Reynolds number of Re=l 2x!O
6

was obtained. The model was mounted in the wind tunnel by

means of eight 0.84mm diameter steel wires in tension at

x/L=0.475, and the major measurements were conducted only

from x/L=0.601 to x/L=2.472.

Like Afterbody 1, the staggered grid system with the

k-c model is used in the FANS-3DEF program for the

calculations of flow past F-57 body. There are 56 stations

in the axial direction between 0.364<x/L<6.580 and 19 grid

points between the body surface and the external boundary

r/L=1.35. The partial viw of grid distributions is shown in

figure 53. The same coordinate-stretching functions and

upstream condition as for Afterbody 1 were used again in

this case. The principal results of the calculations for

F-57 body are shown in figures 54 through 58.

Figure 54 shows the convergence history of the pressure

on the body surface and along the centerline of the wake.

Unlike the Afterbody 1 the F-57 body does not have a

constant radius at the middle part of the body, instead the

F-57 borly continuously increases radius from the leading
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edge with Eq. 26(a) to the maximum radius at x/L=0.4446 then

continuously decreases with Eq. 26(b) to the trailing edge.

Thus the minimum pressure occurs at the location where the

radius is maximum (r/L=O.117,x/L=O.4446). The pressure

smoothly recovers at the trailing edge and drops again to

the ambient pressure in the wake region. The converged

solution as shown in figure 54 is obtained in less than 20

time steps and is in excellent agreement with the

experimental data except at the tail of the body and near

wake where the predicted values are slightly lower than the

date Before a comparison is made between the calculated

and experimental profile in the radial direction at

different stations, it should be remarked that the F-57

experimental data were measured along the direction normal

to the body surface while the numerical calculations were

solved along the direction normal to the axis of the body.

Since it is not easy to transfer results in either way

without avoiding any error and since the curvature of body

surface does not change sharply except at the region very

close to the tail. in this study both the experimental data

and numerical solution are kept in their orginal directions.

Figures 55, 56 and 57 show the detailed comparisons between

the calculated and experimental profile of pressure, axial

velocity (u), radial velocity (v) and kinetic energy k at

each different station. Overall the predictions are in good
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agreement with experimental data except that the axial

velocities along the center line of the wake are higher.

This is again due to use of simple wall function along the

body surface, and simple initial condition at the upstream

station. Unlike Afterbody 1 the surface of F-57 body

continuously changes its shape, therefore it is more

difficult in specifying the initial condition for the

computational domain. In the next chapter the prediction of

flow past the whole axisymmetric body will be considered.

In this situation the specification of the initial condition

at upstream of the body may become simple and accurate.
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CHAPTER VI

FLOW PAST AXISYMMETRIC BODY
WITH ANGLES OF ATTACK

In this chapter the FANS-3DEF program that includes all

numerical methods described before is used to predict flow

past an inclined axisymmetric body. The prediction of

turbulent flow past an axisymmetric body is conducted for

the whole axisymmetric body including (1) the approaching

flow, (2) the flow past the body from the leading to

trailing edge and (3) the wake region. The calculation was

first made for the flow corresponding to the experiments of

Yasuhara [5]. The experiment was conducted on a 20 mm

diameter brass pipe that was 1750 mm long with a 100 mm long

ogive-nose as shown in figure 59(a).

This model was placed at zero degree angle of attack in

a wind tunnel that has a velocity range from about 8 m/s to

35 m/s. The ogive-nose extends 100 mm from the base of the

cylinder. The brass pipe was clamped by a supporting device

at the rear end and the model was supported by a cantilever

beam. The pressure distribution was measured by a Pito tube

with 0.2mm x l.Omm hole. For wind velocities up to 20.3 m/s

or Reynolds number based on the length of cylinder,
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Figure 59(a). The Geometry of Ogive-wose
Cylinder Used In The Experiment

Figure 59(b). The Geometry of Ogive-Nose
Cylinder Used In This Study
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Therefore, the computational domain is -1.02<x/L<8.146,

0<(r-r0 )/L<0.85 where r0 is the radius of cylinder changes

along the axis of the cylinder body. A nonuniform grid,

with 82 points in the x direction and 19 points in the r

direction was used. A partial view of the grid distribution

is shown in figure 60. The computation was done by marching

in time with a time step At=0.1. The initial guess of

uniform velocity and zero pressure were used. The total

time steps of 100 were used when a steady solution was

predicted.

The same numerical model of transition used for the

flat plate is used here again. Figure 61 shows the

convergence history of the skin coefficient Cf on the

cylinder body. The predicted transition is near x/L=0.06 or

5local Reynolds number Re =2.22xi05. It is obvious that thex

numerical modelling of transition predicts that the

transition to occur at x/L=0.06, the intersection point of

the ogive-nose curve and the straight cylinder. Physically

the flow on the ogive-nose cone is constantly accelerated

between O<x/L<0.06 because of the increase in body radius

from the leading edge to the straight cylinder. Therefore

the u velocity inside the boundary layer was predicted to

increase until the flow reaches the intersection point of

the ogive-nose and the straight cylinder. The velocity on

the straight cylinder then begins to decelerate due to the
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Figure 61. Convergenlce Hjistory of Skin
Coefficient onl the Ogive-Nose cylinder With

Trans3itionl Model
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disappearence of the pressure gradient on the straight

cylinder and the constant resistance of the viscous flow.

The prediction of transtion based on the criteria discussed

in section 5.4 to occur at Re =2.22xi05 seems to predictx

much earlier transition than that indicated by Yasuhara [5]

6of Re =1.2-1.8xi0 . Yasuhara [5] determined the transitionx

by examining the measured velocity profiles at four stations

namely x/L=0.143, 0.286, 0.429, 0.572 and reported that the

transition may start between Re x=1.2-1.8xl06 . The numerical

modelling of transition proposed for the flat plate thus

required further modification.

The above computation is repeated with the exception

that the transition is set at x/L=0.37 or Rex =1.37x106 as

given by Yasuhara [5]. The predicted skin coefficient for

this case with experimentally determined transition and that

predicted with built-in transition criteria are given in

figure 62 for comparison. It shows that the skin

coefficien't on the ogive-nose cylinder based on transition

model did not have dip in the distribution when the flow

changes from laminar to turbulent flowr. The predicted skin

coefficient with the transition point fixed at x/L=0.37

shows a dip at the skin coefficient arcund the end of the

ogive-nose or x/L=0.06 even the flow is laminar at this

region. As shown in figure 62 both calculations give

approximately the same maximum skin friction coefficient of
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about 0.023 and the same value in the turbulent flow from

x/L=0.5 to 1. The comparison of the predicted pressure

distribution on the cylinder body with the experimental data

[5] was shown in figure 63.

It shows that the predicted surface pressure based on

the transition model under prediction but gives the same

trend with the experiment. The predicted surface pressure

with experimentally determined transition point seems to

match closely to the experimental data. In general both

calculations predict that the pressure rises as the flow

approaches the nose and then drops to a minimum before

recovering to a constant value before it reaches the tail
edge where the pressuze increases before the flow past the

tail. The physical explanation is that as the flow

approaches the ogive-nose it decelerates and the pressure

begins to rise. Once the fluid is on the ogive-nose it

begins to accelerate as the pressure starts to drop sharply

and reaches the minimum pressure around the end of nose (or

the start of the straight cylinder). The flow begins to

decelerate after it reaches the end of the ogive-nose. Once

the fluid is on the straight cylinder surface the pressure

quickly recovers to a level which is almost that of the free

stream pressure. This is because the fluid is no longer

accelerated zLorg the straight surface of the cylinder and

the pressure variation across the boundary layer on the
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straight cylinder is negligible. When the flow enters the

rear region x/L>0.5 where the flow is decelerated due to

decrease in the diameter of the cylinder. The pressure on

the surface rises again so that the sum of velocity head and

pressure head is approximately conserved. When the flow

leaves the body to beco... wake, the flow along the axial

direction is then accelerated from zero velocity at the

nonslip surface to some velocity. This acceleration causes

the pressure momenterly to drop but recoves to the free

stream pressure soon after the acceleration is reduced.

Yasuhara (5] remarked that his experimental data are not

accurate after x/L=0.6 because his model was clamped by a

supporting device at its rear end, and the model was hanged

from above by a cantilever beam. Therefore pressure

variation near the trailing edge which was predicted by the

present method can not be compared with Yasuhara's data.

However the predicted pressure distribution shown in figure

63 is qualitatively similar to those predicted by inviscid

theory or experimrntaly obtained by Ramaprian, Patel and

Choi (12] for flow past a body with hemispheroid at the rear

end.

The predicted longitudial velocity based on the

experimentally determined transition at x/L=0.37 shown in

figure 64 is quite the same as that measured by Yasuhara

[5]. Cebeci [59] solved the same flow past the slender



185

cylinder by the boundary layer equations using two-layer

mixing length model, and also found that there is a good

agreement between the prediction and measured velocity

profiles of Yasuhara. It should be remarked that the use of

boundary layer equations can not predict the pressure

distribution since the boundary layer approximation assumes

that the pressure is given by the free stream flow.

Therefore, in Ceb~ci [59] calculation the experimental data

of pressure distribution was used as inputs. However in the

present FANS-3DEF calculation the pressure distribution and

velocity components are predicted simultaneously and no

experimental data of pressure distribution or assumed

potential flow solution are required as a priori. Figure 65

shows the development of the x-component velocity u from

upstream to the wake region. It should be mentioned that

the y coordinate in figure 65 is streched about nine times

over the axial scale in order to visualize the velocity

distribution near the body. It is seen that the boundary

layers grew symmetrically along the axial direction and

merged at the rear end to form wake.

6.2 Flow Past Inclined Ogive Cylinder

Once the FANS-3DEF program was verified with the

experiment for the flow past the axisymmetric body without

angle of attack, the flow past the ogival cylinder for
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angles of attack at 5, 10 and 15 degrees are predicted.

This is a complex three dimensional flow calculation since

the flow is no longer a symmetric one and three dimensional

variables and grids in the x, r and 8 directions are

reauired. Since the computational space for each user is

limited at the University of Iowa, relative coarse grid

spaces are used here. The whole comouational domain are

-0.65<x/L<8.55, O<(r-r0 )/L<0.850. Figure 66 is the partial

view of the whole computatonal domain. There are 62 points

in the x direction (axial direction), 19 points in the r

direction (radial direction) and 9 points in the 8 direction

(azimuthal direction). It should be mentioned that the

relative coarse grid spaces are used only to illustrate the

capabilities and stabilities of the FANS-3DEF program. More

accurate solutions can be achieved when the grid spaces are

allowed to be refined. The upstream and boundary conditions

for t-he x and r component velocity u, v were reset as

u=U0 COS(a) and v=UoSN(a). The angle of attack a was varied

from 5, 10 to 15 degrees. The Reynolds number Re=3.7x!O is

used.

The transition model for the flat plate is not quite

adecuate for the flow past an ogive-nose cylinder as solved

in the last section. One can not pre-predict the real

transition point at different position around the azimuthal

direczion when the ogive-nose cylinder is subjected to an
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angle of attck. Therefore in this study, we approximately

assume that the turbulent flow starts at X/L = 0.4 or local

Reynold number is 14.8xi0.

Figure 67 - 69 show the predicted skin coefficent V at

three generators (0 = 0', 90', and 1800) with respect to the

angle of attack a = 5, 10 and 15 degrees. All these three

figures show the following common features. First the

values of skin coefficient at 0 = 0' are increased sharply

at the front part of ogive-nose; then droo to a very small

value at the end of the ogive-nose or X/L = 0.06. After X/L

= 0.06, the skin coefficients increases sharply again till

X/L = 0.1. Beyond it, the skin coefficients varies slower

till the end of the cylinder. For 8 = 90' the skin

coefficient p increase slowly and then a a big drop .>curs

at X/L=0.06. After that, there is no too much change till

X/L=0.28. At X/L=0.4, the flow is assumed to be turbulent

flow and the skin coefficients consequently have an obvious

jump. The skin coefficient then decrease slightly

downstream. For 9 = 1800, which is the rearward of the

cylinder, the trend of skin coefficent is almost the same as

that at 0 = 900, except that the variation is smaller and

smoother.

Figures. 70 to 72 show the corresponding pressure

distribution at three generators, namely 8=0 o (windward

side; solid line), 90' (dotted line) and 1800 (leet:ard side,
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dashed-dot line), with respect to the angle of attack a=5,

10 and 15 degrees. All these three figures show the

following common features. First, the pressure at the

upstream location of the ogive-nose unlike the case of zero

angle attack, first decreases along the axis before it

reaches the nose. This is due to the fact that the flow is

accelerated along the axial line when there is an angle

attack so that the flow on the axial no longer like that of

the case of zero angle attack where the flow slows down as

it approaches the stagnation point at the nose tip. In other

words when there is an angle of attack the stagnation point

is no longer on the axial line and the flow along the axial

line never needs to decelerate and instead it accelerates.

Consequently the pressure decreases. Second, the increase

of pressure in the nose region on the windward side (0=0o)

is the largest because of the existence of stagnation region

on its plane and the increase of pressure in the leeward

side (8=180') is the smallest with the tangential side

(8=900) in the middle. Third, the greater the angle attack

the larger is the spread in pressure difference from

windward side to the leewardside.

Figures. 73 to 75 depict the variation of the x

component velocity ,u, on the plane of 8=0 and 180 at

different angles of attack. It is found as expected that the

boundary thickness is thinner on the windward side (8=00)
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than that on the leeward side (0=180'). No boundary

separationE are predicted for 5, 10 and 15 degrees of angle

attack. This is partly due to a small angle of attack and

partly due to moderate curvature of the ogive-no3e shape at

the front end and hemispheroid body at the rear end. It is

seen that the wake flow is unsymmetrical when the-e is an

angle of attack and it shows the location of the maximum

defect in the u velocity in the wake region is not on the

axial line. As the degree of angle of attack increases, the

location of the maximum defect moves mtre to the leeward

side. Figures. 76 to 78 show the variation of the r

component velocitr ,v, at different angles of attack. Here

the positive value denotes that the flow in the positive r

direction or the radial direction. It is seen there the v

component velocity on the leeward side in general is small

except near the body where the fluid merged after it passes

the body from the windward side.
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CHAPTER VII

CONCLUSION AND SUGGESTION

In this study a user int.ractive numerical program

called FANS-3DEF (Finite Analytic Numerical Solution of

Three Dimensional External Flow) is developed. This program

which is based on the finite analyc;ic method on the

body-fitted coordinate system with modified SIMPLER

algorithm was used to prcdict compressible laminar and

turbulent flows past the finite flat plate and axisymmetric

bodies with or without angles of attck. Some examples of

flow prediction where the experimental data are available

are presented to demonstrate the accuracy arid validity of

the FANS-3DEF program.

The major contributions of the present work are:

1. Derivation of Finite Analytic solution for unsteady

three dimensional laminar and turbulent flows on the

body-fitted coordinate system.

2. Calculation of a computational domain includes the

entire geometry from the approaching flow to the wake

region.

3. Development of FANS-3DEF program and Its

appIi ca tions.
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4. Investigation of complex vortex shedding behind a

flat plate and complex flow past axisymmetric bodies.

5. A simple numerical model for transition zone is

developed and tested on the flat plate so that the

prediction of a flow may be calculated for the entire

plate from the approaching flow to the wake region.

All calculations presented here were performed on a

Prime 750 minicomputer at the CAELAB of the University of

Iowa with computing times of less than half hour for the two

dimensional and axisymmetric cases, and of the order of two

hours for the flat plate with vortex shedding and flow past

axisymmetric body with angles of attack. It should,

therefore, be rasonable to use the FANS-3DEF program for

practical applications.

While the overall predicted results are shown to be in

good agreement with experimental data or reasonable when the

experimental data are unavailable there are still several

aspects about the numerical methods and turbulence and

transition models in the FANS-3DEF that can be further

developed and improved. The following suggestions are

submitted for further study.

1. The application of the numerical model of transition

zone: the numerical model of transition zone

presented here is developed based on the simple

physical phenomena on the flat plate, therefore it
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needs more study and tests before it can be

completely applied to other geometries of bodies or

the flow problem involving the strong curvature.

2. The sensitivity of the solution to the turbulence

model: the validity of the one-scale k-E turbulence

model for more complex flow problems has not been

verified. The two-scale k-E turbulence model which

has strong physical support can be considered in the

further study. The two-node wall function based on

the fully developed flow assumption in general is not

applicable to flow with separation. Thus a wall

function that is valid for the turbulent flow with

separation should be developed if complex separation

flows are to be predicted.

3. The use of a grid system for the pressure equation:

the regular grid system which has some advantages in

saving computer time and storage requires further

study to become competiable with the staggered grid

system in accuracy and stability.

4. The programing of FANS-3DEF: the FANS-3DEF program

is a research code, it needs more testing and

modification to become a general program.
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APPENDIX A

THE TWO DIMENSIONAL FA COEFFICIENTS
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In this appendix a general finite analytic algebraic

representation of two dimensional convective transport

equations is briefly outlined. We consid-r a two

dimensional convective transport equation in a given finite

analytic element shown in Fig. A-I. The equation is

D t + 2AOx + 2B~y = Oxx + Oyy + f  (A -1)

Where D, A, B and f are constants in a given FA element

such as those shown in Eq. (12). In order to solve Eq.

(A-i) in a given element, one must specify boundary and
initial conditions for the element. Among the possible

solution forms of Eq. (A-i) are a constant, an exponential

and a linear function. A conatant, an exponential and a

linear function then are used to describe the boundary

function of the local element. For example the northern

boundary function of a element as shown in figure A-i can be

approximated by
2Ax

N(x) = aN(e - 1) + box + CN  (A-2)

in term of the three nodal values on the northern boundary
the coefficients aN, b and cN are

a. E + ON-q - 2 ,NC

4 sinh 2Ah

bN = 2h,0NE - NW - coth Ah (ONE +  W - 2 C)}
2h'

CN= NC
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similary, the boundary conditions for south, east and west

side can be approximated as follow:

2Ax
Os(x) as(e -1) + bsx + CS

2BY
OE(Y) - aE(e -1.) + bEY + CE

2By
$w(Y) aw(e -1) + bWy + CW

where as , bs cs ...... etc. are expressed in terms of nodal

values on each boundary in a way similary to that for a N' bN

and cN. The FA solution of Eq. (A-i) can be derived

directly from uniform grid mesh as shown in figure A-1.

Details of the derivation and related discussion can be

found in Ref. (311. When the FA solution is evaluated at

node p the FA formulation or uniform grid mesh can be

written as: 1 np -- C r Cnb~nb + CPfp +
I + DCp nb=l At6t

(A-3)

where 0 and n-1 means the value evalued at the nth and

(n-l)th time step respectively. For uniform grid mesh, the

FA coefficients are:

S" e8k e
2

8kc
C (COSh. Bk )P" CNC " c

Ah ZAC

Ah .k

cSW K 4oshIAICoshBk) A'P

S
2
AhC- e- 2(Ah#Bk)CsW

* h Tanh(Ahl I k Tanh(Bk3i1 p1 )
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One may use one of the following series to evaluate P A and

PB in the above expression. They are:

(A) = -(-l)m Xm h
E2 = m= 1 {(Ah) 2 + (mh) 2 ) 2 cosh(m k)

P A = 4E2 Ah Cosh(Ah) Cosh(Bk) Coth(Ah)

= + Bh Coth(Bk) (PA-)

B Ak Coth(Ah) A

U M (A 2 + B2 2 '2)

Um  = (A2  + B2  + _A. 2

(B) E2  -(-i) k

m=l {(Bk) 2 + ( Xmk) 2 ) 2 cosh(ij'mh)

PB = 4E Bk Cosh(Ah) Cosh(Bk) Coth(Bk)

Ak Coth(Ah) (PB-1)PA + Bh Coth(Bk) B

S(2m - 1)Tr
2h

= (2m - l)ir
2k

Although both series should provided same PA and PB values,

it is however more convenient to use E2 over E2' series if

the first term of E2 series is less than that of E2' series

and vice versa.

In the present study the problem is solved on the

transformed domain, and the general two demensional FA

equation on the transformed domain can be written as
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D~t + 2A4 + 2B 0 =
Dt + M +2B E4 + F n + f (A-4)

Here if E and F are equal to one then Eq. (A-4) is reduced

to Eq. (A-i). However, in general E and F are positive

values and not equal to one. Therefore in order to cast Eq.

(A-4) into Eq. (A-i), one can introduce the

coordinate-stretching functions.

=- , n*

Then Eq. (A-4) can be reduced to the same form as Eq. (A-i)

as

D t + 2A* , + 2B*, = , + *n* + f

with

A A B

and a local element with dimensions

1 An,*k= h= r 7F-

Thus one will obtain the same FA formular as shown in Eq.

(A-3). For non-uniform grid, the FA solution becomes:

1 8 n-i DBp
=p CpE Bnbtnb + Bpfp + -- , n - 1 )

G + - nb=l
At (A-5)

where
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*G - 1-(2-3s.)CWC -(Z-t-E)CSC -(2-s-3) (2-t-T)c SW
BNE CNE +(S-])CNW + (t1')CSE + (3-1) (t1)CSW
BNW = IC + ;(t-l)Csw

BSE , tECS + 7E(SI)CSW

B = T E W
BEC -CEC + (S41)CWC + (2-t-t )CSE + (s-1) (2-t-Z)CSW
Bwc = S Cw + 5(2-tE_)CSW

BNC- CNC + (t-4 )CSC + (2-ss)CNW + (t-1)(23S)CSW

BSC - E CS +t(2-S-'9CSW
Bp =Cp

where C's are FA coefficients of uniform grid space and

h(e 2 :+e 2 E - 2)hp

h,,(e 2 Eh _ 1) + hE(e -2hW - 1)

h, ( 2hN+ e- 2 BhN - 2) h

h,(e2 BhN - 1) +- h,(e - - ) - t

The above relations between B's and C's coefficients

are derived from interpolation of nodal values for uniform

grid between nodal value of non-uniform grid with

interpolating function of a.exp(x)+bx-c.
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APPENDIX B

THE FANS-3DEF PROGRAMI
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B.1 Main Program

The main program of FANS-3DEF is essentially written to

solve the unsteady three dimensional turbulent

incompressible flow governed by continuity equation, Eq.

(1), momentum equation, Eq. (2), and turbulent transport

equation, Eqs. (3) to (5), based on one or two scale k-e

turbulence model. These equations, Eqs.(1) to (5), are

transformed to the body-fitted coordinate system based on

Poisson equation Eq. (8). Thus Eq. (1) is expressed in Eq.

(10) and Eq. (2) combines with Eqs. (3), (4) and (5) are

expressed in a general form given in Eq. (11). Numerically

the finite analytic formulation converts Eqs. (10) and (11)

into algebraic equations. They are Eq. (11) into Eq. (13)

and Eq. (10) into the pressure equation (17). In summary

the main program of FANS-3DEF is written to obtain solution

of Eq. (1) to (5) based on their algebraic equations given

by Eqs. (13) and (17).

The numerical procedure for solving Eqs. (13) and (17)

is programmed based on the modified SIMPLER algorithm

introduced in the section 3.7 of the last chapter. The

computer programs are written such that there are many

independent subroutines which can be called to the main
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program to execute some specified function. In this way

these independent subroutines can be mk. ified by the user

and some new subroutines can be added by user as desired.

In table 5 and table 6 the computational procedure and

structure the main program of FANS-3DEF are illustrated.

Table 5 shows the flow chart of the main program and table 6

shows the relationship between each subroutine. In the

following the functions of each subroutine in the main

program are described in the alphabetical order.

(1) CHECK(N)

This is a check and change subroutine. It check

if it is required to update boundary conditions

either along with symmetric line or at the center

line of wake. The N in the bracket denotes as

1 for velocity component u, 2 for velocity component

v, 3 for velocity component w, 4 for pressure, 5

for kinetic energy and 6 for dissipation rate.

(2) COEF

COEF solves FA coefficients, based on Eq. (12).

(3) EQCOE

EQCOE calculates the coefficients of governing

equation Eq. (12). The coefficient a , b ..
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Table 5 (B-1) The Flow Chart of Main
Program of' FANS-3DEF
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are listed in table 3.

(4) HVEL

Hvel evaluates the pseudovelocity (ui, in Eq. (14))

(5) MSI

MSI stands for Modified Strongly Implicit method

(see Ref. 50). The subroutine solves the system of

9-point FA algebraic equations.

(6) PRESS(N)

PRESS(N) solves pressure equations given in Eqs. (17)

and (21). N=l refers to pressure variable in thp

whole domain and N=2 for pressure correction at each

cross scetion given in Eq. (21).

(7) SOLVE

SOLVE is a solution subroutine using either MSI

or tridiagonal method.

(8) STKD

STKD solves the turbulent transport equations for

kinetic energy k and its dissipation rate e.

(9) SVEL

SVEL solves the starred velocity (u*).
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(10) TRIDAG

TRIDAG stands for tridiagonal metric solver. It

solves a set of algebraic equation have a tridiagonal

matrix. The subroutine can be execute either in the

row or column direction in the flow.

(11) UPDATE(N)

UPDATE(N) updates the outlet boundary conditions.

N=I to 3 for velocity components, 4 for pressure

and 5, 6 for k and

(12) VELCOR

VELCOR solves the correction velocity (u'). which is

defined in the section 'Pressure Equation' Eq. (20).

(13) WALLFN

WALLFN is a subroutine to specify the values for

u, v, w, k and s for the first computational node

from the wall if the flow is turbulent. The wall

functions are specified in Eqs. (7) and (8).
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B.2 I/O System

FANS-3DEF has a very flexible I/O system. The input

operations can be read from a data file or interactively

from the terminal. If the user uses interactive session, all

input data once installed will be saved in a data file named

FANSINPUT automatically. This is useful because, if the

computed result is not satisfied or the user wants to revise

a portion of data, he/she mnay do so in the data file and

then run the program without needing to type the whole input

data again. The output result is always stored in the

output files but the user has options to print the result

after nth iteration and to choose the three types of output

file. The "n" specified in the output result means that an

output result is printed at the end of every n iterations.

A list of the commands, options and variables which

control the I/O system are given below.

COMMANDS:

(1) RDFILE

This command executes FANS-3DEF from the data

file named FANS INPUT directly.

(2) RDINT

This command reads input data from the

interactive terminal aind stores them in the
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file named FANS INPUT automatically.

(3) CHECK

This command displays the information selected

by the user.

(4) RUN

This command executes the main program to solve

the problem.

(5) STOP

This command is used to stop the computation

and tc be out of the program FANS-3DEF.

in the command RDINT, there are some built options.

Their functions and selections are:

Options Selections
(1) GRID -- STAggered or REGular grid system.
(2) DIMN -- 2D, AXIsymmetric or 3D dimension.
(3) LORT -- LAMinar or TURbulent flow.
(5) TUMS -- ONE or TWO scale k-e turbulence model.
(6) INIT -- UNIform or UPDate initial guess.
(7) FORM -- TY!, TY2 or TY3 output files.
(8) END -- To leave RDINT.

in FANS-3DEF the codes for the options and selections

to be used are the ones shown in bold characters. For

example, in selecting the grid system, the option is GRID.

in this option, the selection of staggered grid system is
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STA and the selection of regular grid system is REG. Thus

one should type either GRID STA or GRID REG for staggered or

regular grid system.

The size or length of variables must be given after

choosing the option DIMN, INIT and FORM.

(a) The variables after the option DIMN are:

Variables Meaning
(1) IMAX -- The maximun node number in the ( ) direction.
(2) JMAX -- The maximun node number in the (TI) direction.
(3) KMAX -- The maximun node number in the (4) direction.
(4) ITER -- The total iteration numbers allowed.
(5) RE -- Reynolds number.
(6) DT -- Time increatment or At in Eq. (13).

(b) The variables after the option INIT are:

Var _;les Meaning
(1) UI -- The u velocity component of incoming flow.
(2) VI -- The v velocity component of incoming flow.

(c) The variables after the option FORM are:

Variables Meaning

(1) IT -- The output result is printed at each IT
iteration.

FANS-3DEF recognizes free format inputs. The user can

type variables with real or integer number but no character.

To distinguish many variables in the same line, the user

should use a space or a comma between two variables. The

structure of I/O system is shown in table 7.

The easiest way for the user to become familiar with

the FANS-3DEF program is to illustrate i/O system with some

examples. 'n the following sections both interactive
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i RUN
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Table 7 (B-3) The Structure of 1/O system
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session and data file reading will be introduced to explain

how to input desired data into the FANS-3DEIE' program.

B.3 Interactive Session

After compiling FANS-3DEF program by I:ORTRAN 7'/

compiler, the user can then run the program. In PRIME

sysytem SEG command was used to run a compiled program.

Here we present the print-out which was actually shown on

the screen between the two symbols *-*. Where n is

the number of 1, 2, 3 ..... used to distinguish the

different print-out. The explanation of the print-out is

given in the parentheses.

SEG FANS-3DEF

(A welcome message and commands will come out as)

******************************** *********+*****

* WELCOME TO USE RESEARCH CODE *

* AN S- 3 DE *

* Version.1 1986 *

* -If you have any comments or suggestions *
* please inform *

* C.J. CHEN (2216EB)
* UNIVERSITY OF IOWA *

* IOWA CITY, IOWA 52242 *
*** ** k* * *** * * * * i** ** * * * * *** * - ' 34 4 1- A I J-

Specify the fo]lowinq commands:
(RDFILE), RDINT, CHECK, RUN, STOP
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Command is >
-- *--*--2

(If the interactive session is ur;cd, the user shIould type

RDINT and the screen will show)

-- *--*--3

Command is > RDINT
Specify the following options:

-- DIMN (2D, AXI, 3D)
-- GRID (STA, REG)
-- LORT (LAM, TUR)
-- INIT (UNI, UPD)
-- FORM (TYI, TY2, TY3)
-- END To leave RDINT

Option is >
-- *--*--3

(There are six options to be chosen and no particular order

is set. Thus the user can choose any option except the last

option END, because if the option END is chosen the 1/0

system will return from the option level back to the orginal

command level. The following are explanations of these

options from DIfIN to END. If the user chooses 2D or AXI for

DIMN, then the user types DIMN 2D or DI.N AXI. The terminal

will respond)

-- *--*--a
Option is > DIMN 2D
TYPE VALUES FOR It1fAX,JMAX,ITER,RE,DT
THEY ARE >

(or)

Option is > DIMN AXI
TYPE VALUES FOR IF1AX,Jt-1AX, ITER,RE,DT
THEY ARE >
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(For 2D or axisymmetric flow, FANS-3DEF solves the fully

elliptic equation on the XY cross section automatically.

Thus one only has to specify variables such as IMAX, JMAX,

ITER, RE and DT. For example the user may choose IMAX=20,

JMAX=20, ITER=30, RE=100000 and DT=O.1, then the user can

type as)

THEY ARE > 20., 20 30. 100000,0.1

(Since FANS-3DEF recognizes free format inputs, the user

can type real or integer numbers for either real or integer

variables. The user doesn't have to worry about whether

variables are integer or real, the FANS-3DEF can recognize

them. In order to distinguish one variable from the other,

the user needs to use either a space or a comma between the

variables. Now if the user chooses 3D for DIMN then the

user should type DIMN 3D. The FANS-3DEF program will

respond)

Option is > DIMN 3D
TYPE VALUES FOR IMAX,JMAX,KMAX,ITER,RE,DT
THEY ARE >
-- *--*--6

(Here the user needs one more variable KMAX if three

dimensional problem is considered. After the user specifies

all variables more messages will come on the terminal)

-- *--*--7
THEY ARE > 20/ 20, 20, 30, 100000., 0.1
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(After specifying the option DIMN, the user may go for the

option GRID. In this option there are two selections .STA

(staggered grid system) and REG (regular grid system)).

-- *--*--8

Option is > GRID STA

(or)

Option is > GRID REG

(Next option is LORT (laminar or turbulent). If one chooses

LAM for laminar flow, then)

Option is > LORT LAM

Option is >

(Here no other selections or messages will be shown.

However when the user chooses TUR for turbulent flow then)

--*--*--i0

Option is > LORT TUR
Please type ONE for one-scale or TWO for two-scale k-E

turbulence model
IT IS >--*--*--i0

(Here we can type ONE or TWO for one or two scale

turbulence model. Although the two-scale k-c turbulence

model was not tested in this study, the option for this

model is provided here for further expansion and study.)
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The next option is initial guess INIT. In this option

there are two selections. One is UNI for uniform

distribution, the other is UPD which uses the previous

result as initial guess. The message and variables of each

selection are)

--*--*--II
Option is > INIT UPD

Please make sure you have a data file called GUESS.

(or)

Option is > INIT UNI
Now the velocity components are uniform and
other variables are zero in the whole domain.
Please type the values for velocity components
of incoming flow, that is: UI, VI.
THEY ARE >

(Here the user may need a hand calculator to find out the

values of UI and VI. For example, if angle of attack =5

then Ui=0.9961947, VI=0.0871557.)

The next option is to choose the type of output files.

There are three types TY!, TY2 and TY3. The format of each

output file will be listed and explained in the next

section. If the user chooses TY3 then)

Option is > FORM TY3
Type number of iterations per output
IT IS >
--*--*--12

(So the user needs to specify the number of iteration at

which the output of computed result is made. After having
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specified all desired data, then user can use the option END

to return to the orginal command level. They are)

--*--*--13

Option is > END

Specify the following commands:
(RDFILE), RDINT, CHECK, RUN, STOP

Command is >
--*--*--13

(The user is returned to the command level. The user can

use command CHECK to find out whether the desired data had

been read correctly or not)

--*--*--I4
Command is > CHECK

************ *** ******** **** *** ***** *********** ***

* The FANS-3DEF program will run under the following *

* conditions: *

* -- DIMN is:3D *
* -- GRID is:STA *
* -- LORT is:TUR *
* -- TUMS is:TWO *
* -- INIT is:UNI *
, ** UI=0.9961947 VI=0.0871557 *
* -FORm is:TY3 *
* ** at 5 iteration *
* IMAX=20 JMAX=20 KYAX=20 ITER=30 *

* RE= 0.!000e+05 DT=  O.1000E+O0 *
********* ***** *********************** ******************

Specify the following commands:

(RDFILE), RDINT, CHECK, RUN, STOP

Command is >
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(If the user finds some input data in which changes are

needed, he/she may use command RDINT again and give the

desired data. These new data will replace the original

data. If all the desired data are correct and input data

files (PHYSBODY, GUESS) are ready, then the user may use

command RUN to call subroutine SOLVER to solve the problem.

So far, only the correct typing was used as an example.

Suppose the user has made some typing errors. FANS-3DEF

will return a warning message immediately and the user may

retype it. For example)

(in command level)

Command is > CHECC
**INVALID COMMAND, CHECK MANUAL!

Specify the following commands:

(RDFILE), RDINT, CHECK, RUN, S:IP

Command is >

(or in option level)

Option is > LOT
**INVALID OPTION, CHECK MANUAL!

Option is >
--*--*--15

(If the user forgets typing selection after the option,

then FANS-3DEF will give the message and the user can add

those selections immediately. For example)

Option is > LORT
NEED SELECTIONS 1 THROUGH I
SELS:
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(Here "1 THROUGH 1" means need selections from selection 1

to selection 1. Since for LORT there is only one selection

so we can just type LAM or TUR.

If user wants to leave the FANS-3DEF program, he/she

can do so by typing command STOP then a good-bye message

will come out. It is)

--*--*--171

Command is > STOP

* BYE NO&,: ! ' *

* -- Thank you for using FANS-3DEF *
******************** ********** ******************

B.4 Reading from Data File

in this section the same data file FANSINPUT which is

created by the interactive session is used as an example.

Before using this data file, the user must add command

RDFILE at the first line of the file and corrects some

errors that were made during the creation of the data fie!

FANSINPUT. The following is an example of the correct list

of FANSINPUT.

RDFILE
RDINT
DIMN 3D
20 20 20 30 O.!OOOE+05 O.!OOOE O0

CORD BOD
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LORT TUR
TWO
FORM TY3

5
END
CHECK
RUN
STOP

Then, run the program FANS-3DEF as before.

SEG FANS-3DEF

(A welcome message and commands will come out as)

* WELCOME TO USE RESEARCH CODE *

* FANS-3DEF *

* Version- 1986 *

* -If you have any comments or suggestions *
* please inform *

* C.J. CHEN (2216EB) *
* UNIVERSITY OF IOWA *
* IOWA CITY, IOWA 52242 *

Specify the following commands:
(RDFILE), RDINT, CHECK, RUN, STOP

Command is >

(Now type command RDFiLE and on a terminal it appears as)

Option is > RDFILE
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Do you want to see the procedure on the terminal(Y/N)
Answer is >

(If the user already has the general idea of the whole

procedure, he/she may use N (no) to save time. In this case

the FANS-3DEE only provides information of the total input

data and the good-bye message when the program is finished.

They are)

Answer is > N

*The FANS-3DEF program will run under the following*
conditions:*

* -DIMN is:3D *

* -GRID is:STA
* -LORT is:TUR*
* -TUMS is:TWO*

! - NIT ais:UNI
* ** UI=O.9961947 VI=O.0871557*
* -FORm is:TY3*
*** at 5 iteration*
I ImM= 20 JIYAX=2 0 MD'AX= 20 ITER=30*

* RE= 0.1000e+05 DT= 0.1000E+00

(It" the subroutine SOLVER is executed completely, then
good-bye message will come out.)

* BYE NOW *

* -- Thank you for using FANS-3DEF*

OK,

~the user still desires to see the whole procedure on

the screen *.-e may choose Y (yes) instead of N (no) at the

last cuest-lon.
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B.5 Format Of Input Data File

There are two kinds of input data files in the

FANS-3DEF program. One is the data file named PHiYSBODY for

coordinate relationships, the other is the data file named

GUESS for initial guess of the variables ui, p, k and e.

Since these two input data fL"iles must be read immediately

after the command RUN is executed, the user has to create

these two data files before running the program and has to

make sure that they have the same format as shown in the

following. Otherwise, a I/O error message will Le shown on

the screen and the program FANS-3DEF will be forced out of

the running mode by PRIME computer.

B.5.1 PHYSBODY

The format of data file PHYSBODY for 2D and

axiLsymmetric flows are:

READ( ,2) (NX( I ,) , 11,2A) ,~,M
READ(, 2)((X( I,j), I=1,IMAX),J=1,JMAX)

RED( ,2) ( (E2( J),=l, IAX), J1, JMX)

0 OR:1AT(lX,6110)
2 FOR1KAT(lX,6El2.4)

Here th-e -first stat:ement NBOSE is the integer number

between I to T-,AX,. The use- needs to specif:y two different

oosizicns under NBOSE, one :or tne leading edge and thne
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other for the trailing edge. NBOSE(l) is the nodal point

denoting the leading edge of the body, NBOSE(2) is the nodal

point denoting the trailing edge of the body. The second

and~t thr saement- X and Y are the cartesian coordinates

for 2D body shape or the cylindrical coordinates for

axi symmetric body shape. F1 and F2 are the control

functions given in Eq. (8).

Then the format of PHYSBODY for 3D body shape are:

READ(,l) (NBOSE(I),I=1,2)
RE-AD( ,2) (((X( I,j,K) ,I=l, IM-AX) ,J=l,JMAX) ,K=1,KMAX)

RE-AD(,2) (((Y(I, J,K), I =1,IMAX),J=1,JMAX),K=1,K4AX)
READ(,2) ( ( (Z(T,J, K) ,I =1,IMAX) ,J=l, JINAX) ,K=l,MAX)

READ(,2)( ((F3 (I, J,K), I=1, IMAX) ,J=l, JMAX) ,K=l, KMAX)
1 FORMAT(1X,6110)
2 FORMAT(lX,6EI2.4)

For 3D body the meaning of each variable is the same as

2D flow and two more READ statements for the third

coordinate Z and control function '1,3 are added.

B.5.2 GUESS

The user h,-as two options for INIT (initial guess), one

4s UNT (unifrorm initial guess) and the other is UPD (updatz

in:::al c-uess). TI the user chooses UN! then the EANIS-3DEF

prcaranm wi-ll assume that initial velocity comnonenets are

un.r-r and other variables i.e. p, k and E are zero in- the
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whole domain. If UPD was chosen, then the user has to

prepare a data file GUESS according to following format.

The format of GUESS are

READ(,1) UI, VI
READ(,2)(((U(I,J,K),I=1,IMAX),J=I,JMAX),K=I,KMAX)
READ(,2)(((V(I,J,K),I=i,IMAX),J=l,JMAX),K=1,KMAX)
READ( ,2)(( (W( I,J,K),I=1, IMAX),J=1, JMAX), K=I, KMAX)
READ(,2) ( ( (PR( I, J,K), 1=1, IMAX), J=1, JMAX), K=1, KMAX)
READ(,2)(((TK(I,J,K),I=1,IMAX),J=1,JMAX),K=I,KMAX)
READ(,2) (((TD(I,J,K),I=I,IMAX),J=I,JMAX),K=1,KMAX)

1 FORMAT(IX,6110)
2 FORMAT(IX,6E!2.4)

Here UI, VI are the velocity components of the incoming

flow, and U, V, W, PR, TK, TD are the three velocity

components, pressure, turbulent kinetic energy k and its

dissipation rate c. For laminar flow, thQ user may just

specify the turbulent kinetic energy TK and its dissipation

rate TD all are zero. For 2D or AXI flow, the user may just

think KMAX=1 and W velocity component is zero everywhere.

B.6 Format Of Output Files

There are three options, TYI, TY2 and TY3 for the user

to choose. TYI creates a file called 'RESULT.1'. The

format of RESULT.1 is the same as the input data file GUESS.

The reason for creating the output file RE.SULT.1 to be the

same format as the input file GUESS is so that later

RESULT.I can be used as the initial guess for other similar
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problems, or when the selected iteration number ITER is not

large enough to obtain a converget solution. Since RESULT.1

is designed for computer reading, it may not be a good

output format for users to read. The second option TY2

creates a file called 'RESULT.2' which has a readable

format. They are

* ** ** ** * ** ** k* ** ** ** * ** ** ** ** ** * ** ** * **** ** * *** ** * ** ** *

DO 10 I=I,IMAX
.;RITE(,3) IT, I, X(I)
WRITE(,4)
DO 9 K=1,KMAX
WRITE(,S) K
DO 8 J=1,JMAX
WRITE(,6) U(I,J,K),V(I,J,K),W(I,J,K),

TK(I,J,K),TD(I,J,K),PR(I,J,K)
8 CONTINUE
9 CONTINUE

10 CONTINUE
3 FORMAT(//3X,'NO. OF ITERATION=',I3,4X,'STATION=',

13,4X,'X=',F7.4)
4 FORMAT(//4X,'U VEL',7X,'V VEL',7X,'W VEL',6X,

'TURB KE',SX,'TURB DISP',2X,' PRESS '//)
5 FORMAT(SX,'AT K= ',13)
6 FORMAT(IX,6EI2.4)

******************************************** ***********

The third choice of the output format is TY3 which provides

both 'RESULT.1' and 'RESULT.2' fo, computer and user's

reading.

B.7 Program Listing
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C

C
C .... INTERACTIVE PROGRAM (I/O SYSTEM) OF FANS-3DEF
C
C .... PROGRAMMED BY WIJ-SUN CHENG
C .... MAY, 1985
C

C
IMPLICIT REAL*8 (A-H,O-Z)
CHARACTER*10 COW, ARG(5), CMANDS(10)
CHARACTER*10 OPTION(1O), OPT
CHARACTER* 10 BLANKS
CHARACTER*1O GRID, DIMN, LORT, INIT, TUMS, FORM, YON
CHARACTER*80 LINE
CHARACTER BLANK
INTEGER F, CRT
LOGICAL HELP, ASK
COMMON/COEF1/ IMAX,JMAX,K AX
COMMON/COEF2/ RE,DT,IPRINT,ITER,CNLIJ,AK,E
COMMON/COFF3/ NA23,NSR,LOT,NTS,INI ,.\TY
COMMON/COEF4/ UI ,VI ,M1,M2,M3
COMIION/UVW8/ Cl ,C2 ,CK,CD
DATA BLANK/' '/, BLANKS/'
DATA C.HANDS(1) /'RDFILE ',CMANDS(2) /'RDINT I
$ CMANDS(3) /'CHECK 'I
S CMANDS(4) /'RUN ',CMAND)S(5) /'STOP '
DATA OPTION(1) /'DI.MN ',OPTION(2) /'GRID 'I
$ OPTION(3) /'LORT ',OPTION(4) /'INIT t I
$ OPTION(5) .'FORM ',OPTION(6) /'END

C
C. .... PRINT WELCOME MESSAGE
C

CALL LEAD
C

CRT= 1
RET=O.
PN=O.

OPEN(UNITh-8, FILE='FANS INPUT')
C

5 IF(PN .LT. 5) THEN
PRINT *, '
PRIN'T *,'Specify the following commands:'
PRINT *,'(RDFILE), RDINT, CHECK, RUN, STOP'
PRINT *

PRIINT 'Command is >
EN'D Ii'

C
C .... INITIALIZE 'LINE' AND 'COtl' TO ALL BLANKS
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C
F=1
DO 6 I=1,80

6 LINE(I:I)=BLANK
COM=BLANKS

C
READ(CRT, 1000) LINE
IF(RET .LT. 5.) WRITE(8,1000) LINE

C
C .... GET THE FIRST WORD FROM THE LINE (WHICH IS COMMAND)
C

CALL PARSE(LINE, COM, F, LENGTH)
C
C .... IGNORE AN ALL BLANK LINE
C

IF (LENGTH .EQ. 0) GO TO 5
C
C .... FIND OUT COM.MAND AND EXECUTE IT
C
C.... COMMAND 1, READ FROM DATA FILE
C

IF(COM(1:LENGTH) .EQ. CMANDS(1)(1:LENGTH)) THEN
CRT=8
RET=9.

C
PRINT *, 'Do you want to see the procedure on the termin

1 PRINT *, ' Answer is >
READ(1,1000) YON
IF(YON(1:1) .EQ. 'Y') THEN

PN=O.
ELSE IF(YON(1:1) .EQ. 'N') THEN

PN=9.
ELSE

PRINT ., Please use Y or N
GO TO 1

END IF

GO TO 5
C
C .... COMMAND 2, READ FROM INTERACTIVE TERMINAL
C

ELSE IF(COMI 1:LENGTH) .EQ. CMANDS(2)(l:LENGTH)) THEN
20 IF(PN .LT. 5) THEN

PRINT *'
PRINT * 'Specify the following options:'
PRINT ' -- DIN (2D, AXI, 3D)'
PRINT * -- GRID (STA, REG)'
PRINT * -- LORT (LAM, TUR)'
PRINT * -- INIT (UNI, UPD)'
PRINT * -- FORM (TYl, TY2, TY3)'
PRINT * -- END To leave RDINT'
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C
C

F 1
IF(PN .LT. 5) THEN
PRINT *, ''

PRINT *,'Option is >
END IF

C
C .... INITIALIZE 'LINE' AND 'OPT' TO ALL BLANKS
C

DO 16 I=1,80
16 LINE(I:I)=BLANX

DO 17 I=1,5
17 ARG(I)=BLANKS

OPT=BLANK(S
C

R.EAD(CRT,1000) LINE
IF(RET .LT. 5.) WRITE(8,1000) LINE

C
C .... GET THE FIRST WORD FROM THE LINE (WHICH IS OPTION)
C

CALL PARSE(LINE, OPT, F, LENGTH)
C
C .... FIND OUT OPTION AND EXECLTE IT
C
C .... OPTION 1, SPECIFY DIMENSION
C

IF(OPT(1:LENGTH) .EQ. OPTION(l)(1:LENGTH)) THEN
CALL ARGCHK(LIN E, ARG, 1, F, HELP)
IF(HELP) GO TO 20
DIM N=BLANKS
D I)N=ARG ( 1)
IF(DIMfN(1:2) .EQ. '2D' .OR. DIMN(1:3) .EQ. 'AXI')
NA23=1
IF(DI"N(1:2) -EQ. '2D') NA23=2
IF(PN .LT. 5) THEN
PRINT *,'TYPE VALLES FOR I.MAX,j-t1AX,ITER,RE,DT'
PRINT *,'They are >
END IF
READ(CRT,*) AIMkAX,AJMA-X,AITER,RE,DT
IMAX=AIMAX
JIAX.=AJMAX
IIAX3
ITER=AITER
IF(RET.LT.5) WRITE(8,2500)1IMAX,JMAX, ITE"R,RE,DT

ELSE IF(DIMN(1.2) EQ '3D') THEN
IF(PN .LT. 5) THEN
PRI.NT 'TYPE V'ALU7ES FOR !MXJAYKATER RE
PRINT , They are >
END IF
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READ(CRT,*r) AIMX,AJMAX,AKM,AIT.ER,R.,DT
IMAX=AIMAX
J.hAX=AJMAX
KMAX=AKMAX
ITER=AITER
IF(RET.LT.5) WRITE(8,2000)IMAX,JMAX,KIAX.,ITER,,RE

ELSE
WRITE(1,3000)

END IF
C
C .... OPTION 2, SPECIFY GRID SYSTEM
C

ELSE IF(OPT(1:LENGTH) .EQ. OPTION(2)(1:LENGTi)) THEN'
CALL ARGCHX(LIN"E, ARG, 1, F, HELP)
IF(HELP) GO TO 20
GRID=BLANKS
GRID=ARG( 1)

C
IF(GRID(l:3) .EQ. 'STA') THEN

IF(PN .LT. 5) THEN
PRINT *,'Using staggered grid system
END IF

ELSE IF(GRID(l:3) .EQ. 'R.EG') THEN
IF(PN .LT. 5) THEN
PRINT *,'Using regular grid system t

ENrD IF
ELSE
VRITE0l,3000)

END IF
C
C .... OPTION 3, CHECK LAMINAR OR TURBULENCE
C

ELSE IF(OPT(1:LENGTH) .EQ. OPTION(3)(1:LENGTHi)) THEN
CALL ARGCH(LINE, ARG, 1, F, HELP)
IF (ELP) GO TO 20
LORT=BLANKS
LORT=ARG( 1)

C
iF(LORT(l:3) .EQ. 'LAM') THEN

LOT 1
GO TO 20

ELSE IF(LORT(1:3) .EQ. 'TUR') THEN
L0T=2
IF(PN .LT. 5) THEN
PRINT Please type ONE for one-scale or TWO

PRINT cwto-scale turbulence model'
PRINT , It is >
END IF
READ(CRT, 1000) TCU1S
IF(RET .LT. 5) WRITE(8,1000) TUMS

C
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C.... NEAR WALL COEFFICIENTS
C.

CNU=O. 09DO
AK=O. 41DO
E=9.DO

C
C .... TURBULENCE SCALE
C

IF(TUMIS(1:3) .EQ. 'ONE') THEN
NTS=l
CK=1.DO
CD=1.3DO
CI=l .44DO
C2=1.92D0

ELSE IF(TUYIS(1:3) .EQ. 'TWO') THEN
NTS=2
CK=.DO
CD=0.04SDO
DRE=l.DO/DSQRT(RE)
CI=17.5DO*DRE
C2=18.9D0*DRE

END IF
ELSE
WRITEi (,3000)

END IF
C
C .... OPTION 4, SPECIFY INITIAL GUESS
C

ELSE IF(OPT(l:LENGTH) .EQ. OPTION(4)(l:LENGT1H)) THEN
CALL ARGCHK(LINE, ARG, 1, F, HELP)
IF(HELP) GO TO 20
ILNIT=BLANKS
INIT=ARG(1)

IF(INIT(l:3) .EQ. 'UNI') THEN
INI=l
IF(PN .LT. 5) THEN
PRIN'T * ' Now the velocity components are uniform
PRINT *, ' other variables are zero in the whole d
PRINT*, ' Please type the values for velocity com
PRINT *, ' of incoming flow, that is: U1, VI.'

PRIN'T , 'They are >
READ(CRT,*) UI, VI
IF(RZT.LT.5) WRITE(8,1500) CI, VI
END IF

ELSE IF(TNIT(l:3) .EQ. 'UPD') TEN
INI=2

IPN .LT. 5) THEN
PRINT *, Please make sure you have a data file C
PRINT *, GUESS.'
END IF
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ELSE
WRITE(1 ,3000)

END IF
C
C.... OPTION 5, SPECIFY OUTPUT FILES
C

ELSE IF(OPT(1:LENGTH) .EQ. OPTION(5)(l:LENGTH)) THEN
CALL ARGCH K(LINE, ARG, 1, F, HELP)
IF(I{ELP) GO TO 20
FORMB LANK S
FORN=ARG( 1)

C
IF(FOR.M(1:3) .EQ. 'TYl') THEN

NTY=L
GO TO 57

E.LSE IF(FORM(1:3) .EQ. -TY2') THEN
NTY=2
GO TO 57

ELSE IF(FORII(1:3) -EQ. 'TY3') THEN
.NTY=3
GO TO 57

ELSE
WRITE (1, 3000)
GO TO 20

END I F
57 IF(PN -LT. 5) THEN

PRINT *, Type number of iterations per output'
PRINT *,'It is >
END IF
READ(CRT,*) AIT
IT=AIT
IPRI\7=IT
IF(RET .LT. 5) WRITE(8,2000) IT

C
C .... OPTION 6, LEAVE RDINT
C

ELSE IF(OPT(1:LENGT H) .EQ. OPTION(6)(l:LENG-r{)) THEN
GO TO 5

ELSE
PRINT *,'**I.NVALID OPTION, CHECK MIANUAL!'

END I F
C

GO TO 20
C
C
C.. MM.AN'D 3, CHECK IY;FOR.ATION
C

ELSE !F(COM(l:LE-NGi1H) .EQ. CMA.NDS(3)(l:LENGTH)) THEN
PRINT *, '
PRINT , FANS-3DEF w~i run under z.ae following cond
PRINT,
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PRINT * -- GRID is:', GRID
PRINT * -- LORT is:', LORT
PRINT ' -- TL.MS is:', TUMS

PRINT * -- INIT is:', INIT
PRINT * ' UI=', UI, ' Vi=', Vi
PRINT * -- FORM is:', FORM
PRINT , ' at',IT,' irration'
PRINT 4000, IMAX,JMAX,OCAX,ITER,RE,DT

C
C .... COMMAND1) 4, CALL MAIN PROGRAM
C

ELSE IF(COM(!:LENGTH) .EQ. CMANDS(4)(I:LENGTH)) THEN
IF(NA23 .EQ. 2) THEN
CALL MAIN2D
ELSE
CALL MAIN3D
END IF

C
C .... COMMAND 5, STOP IE PROGRAM
C

ELSE IF(COM(1:LENGTII) .EQ. CMANDS(5)(I:LENGTH)) THEN
PRINT *,
PRINT * BYE NOW ,!

PRIT *,
PRINT *, -- Thank you for using FANS-3DEF
PRINT *

PRINT *

CLOSE (8)
CALL EXIT

C
ELSE

PRINT * ' **IN'VALID COMMAND, CHECK MAINUAL!'
C

END IF
C

GO TO 5
C
C
1000 FORM.AT(A)
1500 FORIAT(6F8.4)
2000 FORMAT(4I3,2E12.4)
2500 FOR.MAT(313,2E12.4)
3000 FORMAT(3X, ' **INVAID ARGUMENT, CHECK MANUAL!')
4,000 FORMAT(3X,' IMAX=' , 3,3X, 'JMAX=' , 13,3X,'K-UkX=' 13,3X,"'TE

5 /3X, ',RE=' --EI2.-,. 3X, 'DT=' ,Ei2.:,

EN'D
C

C.. SUBROLTINE LEAD
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C
C**.*. .. .. .. .. x..* * * ,* 9. *.-. ** *_ .,. ,.-.,* * *.. ..-..

C
SUBROUTINE LEAD
CHARACTER*60 B(17)
INTEGER IB(1)='
B(2)='

B(3)=' ..
B()='* WELCOME TO USE RESEARCH CODE *
B(5)=' *
B(6)='* F A N S - 3 D E F *
B(7)='* *
B(8)='* Version.1 1986 *
3( *
B(1O)= ' * If you have any comments or suggestions *
B(11)= ' * please inform *

B(12)=' *
B(13) = ' * Prof. C.J. CHEN (2216EB) *
B(14)= ' * The University Of Iowa *
B(15)= ' * Iowa City, Iowa 52242 *
B(16) = ' * (319) 353-4473 *

C
DO 10 I=1,17
PRINT 100, B(I)

10 C 0N7 INU
C

100 FOPNAT (A)
RETLRN
END

C

C
C .... SUBROUTINE ARGC}{K
C

C
C.... CHECKS TO SEE IF NUNBER OF ARGUMENTS SPECIFIED IS EQUAL
C .... TO 'N',4ARG'. IF NOT, THE USER IS PROMPTED FOR NECESSARY
C .... ARGUMENTS. IF ANY OF THE ARGUMENTS IS 'HELP', THE HELP
C .... FLAG IS RE1URNED 'TRUE'. 'NXTCOL' IS TE LOCATION IN
C. ... 'LIN E' WHERE SEARCH FOR TIE ARGUMENTS BEGINS.
C
C

SUBROUTINE ARGCH (LINE. ARG, NU.1ARG, NXTCOL, HELP)
IMP-CIT REAL*8 (A-H, O-Z)
INT-.GER CRT, \=TCOL, START, NARG
CHARACTER- (80) LiNE
CHARACTER*I0 ARGU 10), BLANKS
LOGICAL HELP
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DATA CRT/i/
DATA BLANKS/' '/

C
NARG=1
HELP=.FALSE.

C
C

100 START=NARG
C
C .... GET THE NEXT ARGUMENT
C

DO 110 I=START, NU NARG
CALL PARSE(LINE, ARG(I), NrXTCOL, LENGTH)
IF(LENGTH .EQ. 0) GO TO 120
IF(ARG(I) (1:4) .EQ. 'HELP') HELP=.TRUE.
NARG=NARG+1

110 CONTINUE
C
C .... RETURN BECAUSE ALL ARGUMENTS ARE SPECIFIED
C

RETURN
C
C .... REACH HERE IF SOME ARGUMENTS ARE MISSING
C

120 IF (HELP) RETLRN
C
C

WRITE(CRT,2000) NARG, .rUMARG
2000 FOR.M.AT(' NEED SELECTIONS ',12,' THROUGH ',12)

PRINT *, Selections

C
C

READ(CRT, 1000) LINE
1000 FOR.'AT(A80)

NXTCOL=

GO TO 100
C

END
C

C .... SUBROTINE PARSE
C

C
C .... PARSES E 'LINE' .I.\ RETURNS NE%- 'WORD' WHICH 1S 'LENG

C .... LONG. IF THE WORD IS LONGER -ILN 'MAXLEN' CHARACTERS THE
C.... EXTRA CHARACTERS ARE IGNORED.
C

SUBROLTINE PARSE "LINE, WORD, N.KTlCOL, LENGTH)
IMPLICIT REAL 8 ,A-H.O-Z)
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PARAMETER (MAXLEN=10)
CHARACTER *(*) LINE
CHARACTER *(*) WORD
CHARACTER BLANK, COMMA
LOGICAL FIRST
DATA BLANK/' '/, COMMA/','/

C
C

LENGTH=O
I ST=NXTCO'
FIRST-.TRUE.

C
DO 90 I=1,MAXLEN

WORD(I: I)=BLANK
9 0 C ONT INUJE

C
C

DO 100 I=IST,LEN(LINE)
N"ATCO0L= I

C
IF(LINE(I:I) .EQ. BLANK -OR. LINE(I:I) .EQ. COMMIA)TE
i. NOT. FIRST) RETURN
GO TO 100

ELSE
FI±RST=.FALSE.
IF ,(LENGTHl .LT. MAXLEN) THEN
LENGTH=LENGTH+ 1
WORD (LENGTH: LENGT{)=LINrE(1: 1)

END IF
END IF

10 0 COINT INUE
C

RE 7LRN
EN

C

C
C. .... SUBROUTINE IAIN2D

ri

C .... MAIN2D IS USED TO SOLVE 2D FLAT PLAT PROBLEM
C .... lsITH ANGLE OF A17ACK

SUBROTI=NE MAIN
IMPL!IT REAL*8 (A-H.O-Z)

STWNSERD BLOCK: AIN
cOMMONCOEF' ZE.JE kE

IF(iN E-2) ARE. ADT. I .PR INT. O )CNUU. AKKEE
COMMONCOE.FIRST. RLOT N75,INITIAL N"F

(MONCOEF U .I. V TE!NM2.M3
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DIMENSION UL(99), UTL(99), TAUW(99), N72(2)
COMMON/BOll UBO(82,44)
COMM-ON/B02/ VBO(82 ,44)
COMMON/B03/ PRBO(82 ,44)
COMMON/B04/ TKBO(82 ,44)
COMMON/BO5/ TDBO(82,44)

OPEN(6,FILE='DATA. IN')
NNX=IE- 1
NNY=JE - 1
REARE
DT=ADT
N B1I=,I1
NB3=M2
NB2=M3
I1=49
RET=RE/DT
NT2(1)=NB2
NqT2(2)=NB2
JE2=JE4-2
JE3=JE+3

C--- CALL BFC TO CALCULATE BODY-FITI'ED COORDINATE

CALL BFC

ABC0. 33206
DO 35 I=NBl+1,NB3
.X=X (I1, 2)
RrEX=DSQRT(RE*XX)
UTL(I )=DSQRT(ABC/ REX)

35 CONTINUE
DO 33 1=19,29

33 UL(I)=1.O*UI
UL(30)=0.9994*Tj[
UL(31)=0.9852*JI
UL(32)=0.9250*UI
UL(33)=O .8200*UI
UL(34)=0. 7050*UI
UL(35)=0.6027*UI
UL(36)=0.5275*UI
UL(37)=0.4862*Ul

C
IF( INITIAL .EQ. 1 ) THEN
DO 20 11!,IE
DO 20 J=1,44

UBO(I ,J)=U1
VBO(1 ,J)=VI
I FC(I .GE. NB 1 .A.01. .LE .NB3). AND.

S k'J.EQ.2.OR.J.E-Q.JE2)) THEN
UBOCI ,J)=0.
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VBO(I ,J)=0.
END IF
PRBO(I ,J)=0.DO
TKBO(I ,J)=1 .D-9
TDBO(I ,J)=1.D-9

20 CONTINUE
ELSE
PRINT *, 'READ GUESS'
OPE-N(1O,FILE='GUE-SSP' ,STATUTS-'OLD')
OPEN(11,FILE='GUESSU' ,STATUS='OLD')
OPEN(12,FILE='GU'ESSV' ,STATUS='OLD')
OPEN(14,FILE='GU'ESSKD' ,STATUS='OLD')
READ (10,2400) ((PR(I,J),I=1,IE ,J=2,JE )
READ (11,2400) ( U(I,J),I=1,IE ),J2,JE )
READ (12,2400) ( V(I,J),I=1,IE ),J=2,JE )
READ(14,2400) (CTKCI,J),I=1,IE), J=2,JE- )
READ(14,2400) (CTD(I,J),I=1,IE), J=2,JE )
GLOSE( 10)
CLOSE (11)
CLOSEC 12)
CLOSE(C14)

END I F

DO 60 I=1,IE
DO 60 J=2,JE
DU(I ,J)0O.0
DV(I,Ji)=O.O
DS(I,J)0O.O
DSTI(I,J)0O.0
PP(I ,J)=0.0

60 C ONT-INUE

PRINT *, 'BEGIN'
OPEN(7 ,FILE='RESULT')
OPE-N(5 ,.rLE='E-PST')
OPEN(iS ,FILE='DATAP')
OPEN(16,FILE='DATAU')
OPEN(17,FITLE='DATAV')
OPENC(18, FILE='DATAKD')
OPEN(19 ,FILE='DAT.AEV')
OPrENC2O,FILE='DATA..ADD')
IT17C=0
IT.CI=0
I D0

C.... ITE-R.ATION\ LOOP

J1'i=8
il.i\J!!1- 1
DO 999 TT=1,i7ER
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!TC=ITC+l
ITC1=ITC1+1
DO 888 IBO=1,2
IF(IBO.EQ.1) THEN
DO 235 I=1,IE
DO 234 J=2,JE
U(I ,J)=UBO(I ,J)
V(I ,J)=-VBO(I ,J)
PR(I ,J)=PRBO(I ,J)
TX(T J)=TKBO(I,J)
TD(' ,J)=TDBO(I,J)

234 CONTINUE
U(I,1)=UBO(I,JE3)
V(I,1)=-VBO(I,JE3)
PR(I,1)=PRBO(I,JE3)
TK(I,1)=TKBO(I,JE3)
TD(I,1)=TDBO(I,JE3)

235 CONTINUE
DO 236 I=1,IE

236 V(I,JE)=-VI
DO 237 J=1,JE
V(NNX,J)=-VI

237 V(IE,J)=-VI
ELSE
DO 345 I=1,IE
DO 344 J'2,JTE
JJ=J+JE
U(I ,J)=UBO(I ,JJ)
V(I ,J)=VBO(I ,JJ)
PR(I ,J)=PRBO(I ,JJ)
TX(I ,J)=TKBO(I )JJ)
TD(I ,J)=TDBO(I ,JJ)

344 CONTINUE
U(I,1)=UBO(I ,3)
V(I ,1)=VBO(I ,3)
PR( ,'1)=PRBO(I,3)

TK(I ,1)=TKBO(I,3)
TD(I ,1)=TDBO(I ,3)

345 CONTINUE
DO 346 1=1,IE

346 V(I, 7)=VI
DO 347 J1I,JE
V(NNX ,J)=V1

347 V(IE,J)=VI
END IF
DO 456 I=1,IE
DO 436 J=',JE
RU(I ,J)=U(I,J)
RV (I,J)=V(I ,J)
RR(7.,J)=TK(I ,J)
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456 RTD(I,J)=TD(I,J)

NB2=NT2 (IBO)
DO 10 I=I,IE
JB(I)=JMM
IF(I.LT.NB2.OR.I.GT.NB3+1) JB(I)=3

10 CONTINUE

DO 30 I=NB2,IE
DO 30 J=2,JE
IF(TD(I,J).LT.1.D-9) TD(I,J)=I.D-9
EV(I,J)=TK(I,J)*TK(I,J)/TD(I,J)*CNU

30 CONTINUE
CALL CHECK(EV,6,IE,JE)
DO 50 I=NB2,IE
DO 50 J=5,JE
IF(EV(I,J-1).LE.EV(I,J-2) .AND. EV(I,J-1).LT.EV(I,J))
$EV(I,J)=EV(I,J-I)

50 CONTINUE
DO 90 I=NB2-1,1,-1
DO 90 J=2,JE
TK(I,J)=TK(I+1,J)*0.8
TD(I,J)=TD(I+1,J)*0.8
EV(I,J)=EV(I+1,J)*0.8

90 CONTINUE

C CALL BFC(IBO)

C *
C * MODIFIED SIMPLER ALGORITHM
C >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

C--- CALCULATE THE MOMENN TUM EQUATIONS

CALL SVEL

C--- CALCULATE THE PRESSURE CORRECTION

CALL PRESS(2)

C--- COMPUTE THE PSEUDO-VELOCITY FIELD

CALL HVEL

C--- CALCULATE THE PRESSURE FIELD

CALL PRESS( 1 )

C--- CALCULATE TURBULENT VARIABLES

CALL STkD
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C--- END OF ONE SWEEP

WRITE(1,2500) NB2
WRITE(S,2500) NB2
IF(IT .GT. 2) THEN
IF(U(NB2,JMN) .LT. UL(NB2+1)) NB2=NB2+1
IF(U(NB2,JMN) .GT. U(NB2-1,JMN)) NB2=NB2-1
END IF

C
C RESULTS
C >>>>>>>>>>>>>>>>>>>>>>>>>>>

WRITE(7,4111) IT
4111 FORIIAT(/5X,'NO. OF ITERATION =',15,5X,'PRZ.. DIS.')

WRITE(7,2400) (PR(I,2),I=1,IE)
WRITE(7 ,4112)

4112 FORMAT(/5X,'SKIN-FRICTION COEFFICIENT '
DO 4222 I=NB1+1,NB3
IF(I.LT.NB2) THEN
UT=UTrL(I)*J(I ,MN)/UL(I)
ELSE
UT=UTA (I)
END IF
TAUW(I)=2.*UT*,UT

4222 CONTINUE
WRITE(7,2400) (TAUW(I),I=NB1+1,NB3)
WRITE(7 ,4113)

4113 FORIIAT(/5X, 'CENTERLINE VELOCITY-)
WRITE(7,2400) (U(I,2),I=NB3+1,IE)

550 IF(ITC1 .EQ. IPPINT) THEN

PRINT *, 'WRITE RESULT'

DO 123 I=15,70
C IF(I.GT.30.AND.I.LT.45) GO TO 123

WRITE(7,2000) IT, I, X(1,2)
WRITE(7 ,2100)
DO 110 J=2,JE
WRITE(7,2400) U(I,J),V(I,J),PR(I,J),TK(I,J),TD(I,T) EV(I

110 CONTINUE
123 COINTINUE

C .... WRITE SHEAR STRESS, M1tIENTUM THICKNESS, REYOLND)S STRESS

DO 120 11I,NNX
UVOS(I ,2)0O.O
UVOS(I ,JE)=O.0
THAT(I)=0.0
DO 120 J=3,NNY
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TT1=1(I)DSJ(I ,J)-UIJ*~ ~)*YIj-~~-)
TD12=B22(I ,J)/DSJ(I ,J)

UVOS(I,J)=EV(I ,J)*((TJ(I,J+1).U(I,J))*rn22

120 CONTINUE

WRITE(20,2400) (UTA(I),I=1,NNX)
WRITE(20,2400) (THAT(I), I=1,NNX)
WRITE(20,2400) ((UVOS(I)J),I=2,NNX),J=2,JE)

END IF

IF(ITC.EQ.IPRINT) THEN
WRITE(15,2300) IT
WRITE(16,2300) IT
WRITE(17,2300) IT
WRITE(18,2300) IT
WRITE(19,2300) IT
WRITE(15 ,2400) ((PR(I ,J),I=1, IE) ,J=2,JE)
WRITE(16,2400) ((U(I,J),I=1,IE),J=2,JE)
WRITE(17,2400) ((V(I,J),I=1,IE),J=2,JE)
WTRITE(18,2400) ((TK(I,J),I=1,IE),J=2,JE)
WRITE(18,2400) ((TD(I,J),I=1,IE),J=2,JE)
WRITE(19,2400) ((EV(I,J),I=1,IE),J=2,JE)

IF (ID.EQ.1) GO TO 500

END IF

EPSU=O.O
EPSV=0.0
EPSP=0.0
EPTK=O.
EPTD=O.
EPDS=0.0
DO 150 11I,IE
DO 150 J=2,JE
EPS2=RU(I ,J)-U(I ,J)
IF(DABS(EPS2) .GT.DABS(EPSU)) THEN
EPSU=EPS2
Nu= I
Mu=J
END IF
EPSI=RV(I ,J)-V(I ,J)
IF(DABS(EPS2) .GT.DABS(EPSV)) THEN
EPSV=EPS2
NVI
WVj

END IF
EPS2=RPR(I ,J)-PR(I ,J)



IF(DABS(EPS2) .GT.DABS(EPSP)) THEN 247

EPSP=EPS2
NP=I
MP=J
END IF
IF(DABS(DST(I,J)).GT.EPDS) THEN
EPDS=DABS(DST(I ,J))
NDT=I
MDT=J
END IF
IF(I.LT.NB2) GO TO 150
EPS2=RTK(I ,J) -TK(I ,J)
IF(DABS(EPS2) .GT.DABS(EPTX)) THEN
EPTK=EPS2
NK=I
MK=J
END IF
EPS2=RTD(I ,J)-TD(I ,J)
IF(DABS(EPS2) .GT.DABS(EPTD)) THEN
EPTD=EPS2
ND=I
KD=J
END IF

150 CONTINUE

WRITE(1,1100) EPSU,NU,r4U, IT
WRITE(5,1100) EPSU,NU,IIU,IT
WRITE(1,1200) EPSV, NV, MV
WRITE(5,1200) EPSV,NV,MV
WRITE(1,1300) EPSP,NP,?IP
WRITE(5,1300) EPSP,NP,MP
WRITE(1,1400) EPTK,NK,.4K
WRITE(5,1400) EPTK,NK,M-I(
WRITE(1,1500) EPTD,ND4IMD
WRITEr(5,1500) EPTD,ND,MD
WRITE(1,1600) EPDS, NDT, MDT
WRITE(5,1600) EPDS, NDT, MDT

IF(DABS(EPSU) .LT.EPST.AND.DABS(EPSV).LT.EPST.AnD.DABS(EP
+.LT.EPST) THEN

ITC=IPRI\,T
ID 1
GO TO 330
END IF
T2 ( IBO)=NB2
IF(IBO.EQ.1) T1HEN
DO 788 I=1,TE
DO 788 J=1,JTE
UBO(I,J)=U(i ,J)
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VBO(I ,J)=-V(I ,J)
PRBO(I ,J)=PR(I ,J)
TKBO(I ,J)=TK(I ,J)
TDBO(I ,J)=TD(I ,J)

788 CONTINUE
ELSE
DO 799 I=1,IE
DO 799 J=1,JE
JJ=J+JE
UBO(I,JJ)=U(I,J)
VBO(I ,JJ)=V(I ,J)
PRBO(I ,JJ)=PR(I ,J)
TKBO(I,JJ)=TK(I,J)
TDBO(I ,JJ)=TD(I ,J)

799 CONTINUE
END IF

888 CONTINUE
IF(ITC.EQ. IPRINT) ITC=O
IF(ITC1.EQ. IPRINT) ITC1=O
DO 899 I=1,IE
IF(I.GE.NB1.AND.I.LE.NB3) GO TO 899
UU=.5*(UBO(I ,3)+UBO(I ,JE3))
VV=.5*(VBO(I,3)+VBO(I,JE3))
P.M=.5*(PRBO(I,3)+PRBO(I ,JE3))
TKA=..5*(TKBO(I ,3)+TKBO(I ,JE3))
TDA=.5*(TDBO(I,3)+TDBO(I ,JE3))
UBO(I ,2)tUU
VBO(I ,2)=VV
PRBO(I ,2)=P.M
TKBO(I ,2)=TKA
TDBO(I ,2)=TDA
tJBO(I ,JE2)=UU
VBO(I ,JE2)=VV
PRBO(I ,JE2)=PMi
TKBO(I ,JE2)=TKA
TDBO(I ,JE2)=TDA

899 C 0N T I NUE

999 CONTINUE

CLOSE (6)
CLOSE (7 )
CLOSE(S)
CLOSE (15)
CLOSE( 16)
CLOSE(17)
CLOSE(18)
CLOSE( 19)
CLOSE (20)

C--- END OF PROGRAM



249

C
C FORMAT

1000 FORMAT(2X,'RE=',E!0.5,' DT=',F1O.5,' IE=t ,I3,' JE=',13,
$ITER=

t ,I3,' III=',I3,' II=',13,/,'NB1=',13,' NB3=',I3,
$ISCAE=

t ,I3,' !NITIALt-,I3,) EPST=',F1O.5)

1100 FORMAT(/3X,'EPSU-.',F1O.5,' I=',IS,t J=',15,5X,'IT-',I5
1200 FORMAT(3X,'EPSV=t ,F14.5,' I=',I5,'J=',I5)
1300 FOR11AT(3X,'EPSP=',FI0.5,t  I=',15,'J=',I5)
1400 FORMAT(3X,tEPTK=',F1O.5,' I=',15,'J=',15)
1500 FORMAT(3X,'EPTD=,F1O.5,t  I=t,I5,'J=',I5)
1600 FORMAT(3X,'DT= ',F1O.5,' I=',15,'J=',15)
2000 FORMAT(10X,t NO. OF ITERATION=',13,4X,'STATION=',13,

s 4X, 'X=', F10.5)
2100 FORMAT(5X,'U VEL', 8X,'V VEL',8X,'PRESSURE',5X,'TK',

S 8X,'TD',14X,'EVt )
2300 FORMAT(24X, 13)
2400 FORM.AT(6E13.4)
2500 FORMAT('START POINT OF TURBULENT FLOW ---',15)

500 RETURN
END

C
C ...... BLOCK-HAIN
C

C. ... BLOCK.MAIN IS THE COMM1ON BLOCK USED IN THE 2D
C .... FLAT PLATE PROBLEM

COM.MON/CORi! X(82,22), Y(82,22)
COMMON/COR2/ B11(82,22), B12(82,22)
COM,%ON/COR3/ B21(82,22), B22(82,22)
COMMON/COR4/ F1(82,22), F2(82,22), DSJ(82,22)

COMMON/VEL1/ U(82,22), V(82,22)
COMMlON/VEL2/ US(82,22), VS(82,22)
COMMO\N/VEL3/ C'H(82,22), V'1(82,22)

CO-M%1ON/PREl/ PR(82,22), PP(82,22)
COMYION/PRE2/ AN(82,22), AS(82,22), AEC82,22), AW(82,22)
COMMON/PRE3/ AP(82,22), DS(82,22), DST(82,22)

COMMON/COEl!l EB(82,22), EC(82,22), EE(82,22), E-F(82,22)
COMMON/COE2/ EH(82 ,22)
COmINCN/COE3/ SU(82,22), SV(82,22), SK(82,22), SD(82,22)

COT',CN/FA.E;' ZS(82,22), ZN(82,22), ZW(82.22), ZE(82,22)
COMNCN!FAE2/ ZSW(82,22), ZSE(S2,22), Z\W(82,22), ZNE(82,
COT1C\,7AE3 ZC(S,22), DU;(82.22), DV(82.22)
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COMMON/CALl/ RE, DT, RET
COMMON/CAL2/ JB(82), NBI, NB2, NB3, NNX, NNY

COMMON/TUBi! TX(82,22), TD(82,22), EV(82,22)
COMIION/TUB2/ CK, CD, Cl, C2, GNU, AK, E, ISCALE

COMMON/ADD1/ RU(82,22), RV(82,22), RPR(82,22)
COMMON/ADD2/ RTK(82,22), RTD(82,22)
COMMON/STEP! IT, FT(82,22)
COMMON/DATA! THAT(82), UVOS(82,22), UTA(82)

C. i***

C * SUBROUTINE BFC IS TO GENERATE THE BODY-FITTED*
C * COORDINATE SYSTEM ON FLAT PLATE FOR TURBULENT FLOW*

C >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> >>>>

SUBROUTINE BFC
IMPLICIT REAL*8 (A-H,O-Z)

SINSERT BLOCK.MAIN
COMMON/COEF4/ UI, VI, NX1,NX2,NX3
REAL*8 AX(99), BY(99)
REAL*8 AA(99),BB(99),CC(99),DD(99),A(99),
s DX(99),DY(99),XXI(99),YET(99)

ABCD=3 .ODO
?RINT*,'*** BFC **

IHAX=82
JMAX=22
NX 1 =19
NX2=55
,N"0=2 2
DX(.NX1)=O .0
DX(NX2)=1 .0
DX(N;A3)=1 .0
DY(2)=O.DO
DY(JMAX)=ABCD
A1=-0.3
A2=-0. 12
B=0.2835

I'M.AM= IMAX - 1

P1=3. 141S92653589793D0
EPS=1.D-12

C .... Y-DIRECTION

EBG=DEXP(B)
rEBR= . DO/EBG
?SN=EBG+EBR
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EB2=EBG*EBG
EB2R=1 .DO/EB2
PPSN=2.DO*B/ (EB2-EB2R)

DO 10 J=3,JMAN
AA(J)=-EBG
BB(J)=PSN
CC(J)=-EBR

10 DD(J)0O.DO

DD(3)=DD(3) -AA(3)*DY(2)
DD(JIIAI)=DD(JMAM) -CC (JMAII)*DY (JMAX)

CALL TRIDAG(3,JIAI,AA,BB,CC,DD,DY)

DY (1) =-DY (3)

C .... YET

DO 40 J=2,JMAM
40 YET(J)=PPSN*(DY(J+1)-DY(J-1))

YET(2)=. 5D0*(DY(3)-DY(l))
YET(1)=YET(3)
YET (JMAX )=YET (JMAM )*YET (JMAM) /YET (JIIAMI-1)

DO 45 J=1,JMAX
BY (j)=PPSN
DO 45 I,IM~AX
Y(I ,J)=DY(J)

45 C ONT I NUE

C .... X-DIRECTION
C

AX1=NXI-1.
AX2=2. *NX 1 -I
AX3=NX2 -AX2

C
DO 50 I=1,IHAX
Zl1= (I -1) /AX 1
Z2=(I-AX2)/AX3

C
IF(Zl .LE. 0.3) THEN
A (I)=A 1
ELSE IF(Z1 .GT. 0.3 .AND. Zi .LE. '.)THEN

ELSE MFZ2 .LE. 1.3) THEN
PIZ=Pl*Z2
A( I)A2*.DSIN(PIZ)
ELSE IFZ 3T, 1.3) TE
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A(I)=-A2
END IF

C
50 CONTINUE

C
DO 60 I=2,IMAI
AA(I)=-DEXP(A(I))
CC(I)=1./AA(I)
BB(I)=-(AA(I)+CC(I))

60 DD(I)=0.D0
C

N2=NX2-1
C

DD(N1)=DD(I'\1) -AA(,N1)*DX(NX1)
DD(,N2)=DD(N2) -CC(N2)*DX(NTX2)

C
CALL TRIDAG(Nl,N2.AA,BB,CC,DD,DX)

C
DO 72 I=.NX1,2,-:

72 CONTINUE
C

DO 74 I=NX2,IMAI

74 CONTINUE
C
C .... LxXI

DO 80 I=2, I.NAH
IF(DABS(A(I)) .LT. EPS) THEN
EA=.5D0
ELSE
7EA2=AA(I)*AA(I)
EA2R=1 ./EA2
EA=2.*A(I)/(7EA2-EA2R)
EN'D I F
AX(I)=EA

80 CONTINUE

'CC!(1) =VXX(2) *XXI (2) /XXI (3)
\N:I (I IAX) =XXI1 ( IMANY-) XX I (I HAM) /XXI (IMAM - 1)
AX (1)=AX(2)
AX ( IHAX) =AX ( IMAIM

DO 85 I1l,I M
-.=

DO 85 J=1,JMAX
X(I, J)=DX(II)

85 CONTINUE
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DO 90 I=1,IMAX
DO 90 J=2,JMAX
DSJ(I ,J)=XXI(I)*YET(J)
B 11(1,J)=YET(J)

B21(I,J)0O.O

F2(I ,J)=-2.*B/YET(J)/YEI(J)
90 CONTINUE

DO 106 I=1,NNX+1
DO 106 J1I,NNY+1
K=I
X(I ,J)=X(K,J)
Y(I ,J)=Y(K,J)
Bl1(I ,J)=Bl(K,J)
B12(I ,J)=Bl2(K,J)
B21(I ,J)=B21(K,J)
B22(I ,j)B22(K,J)
F1(I ,J)=Fl(K,J)
F2(I ,j)F2(K,J)
AX(I)=AX(K)
DSJ(I ,J)=DSJ(K,J)

106 CONTINUE

OPEN(30,FILE='OUITFP')
WRITE(30,2400) (X(I,2),I11,NNX+1)
WRITE(30,2400) (Y(1,J),J=2,NNY+1)

2400 FORMAT(6E13.4)
CLOSE (30)

RETURN
E ND

C
C * SUBROUTINE EQCOE IS TO CALCULATE THE COEFFICIENTS
C * OF GOVERNING EQUATIONS
C >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

SUBROUTINE EQCOE (M)

IMPLICIT REAL*8 (A-H,O-Z)

S INSERT BLOCK.MIN

TF(M .EQ. 2) THEN

C .... Y MOMENTUIM1 EQUATION

DO 100 I=2,NNX
IP11l+1
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DO 100 J=JB (I), NNY

Vii (B11(IJ)/DSJ(I,J)+B11(IM1,J)/DSJ(IM1,J))*O.5
V12 =(B12(I,J)/DSJ(I,J)+B12(IM1,J)/DSJ(IM1,J))*O.5
V22 =(B22(I ,J)/DSJ(I ,J)+B22(IM1,J)/DSJ(IM1 ,J))*0.5
V21 =(B21(I,J)/DSJ(I,J)+B21(IM1,J)/DSJ(IM1,J))*O.5
EVV=O 5*(EV(I ,J)+EV(IM1,J))
RiEV= 1.0/(1.0/RE+EVV)
EVDYO025*(EV(I1,JP1)-EV(IM1,JM1)+EV(I,JP1)-EV(I ,JM1))
EVDX=EV(I ,J)-EV(Ii11,J)
EVDX1=(EVDX*V1 1+EVDY*V21)
EVDY1=(EVDX*Vl2+EVDY*V22)

UTV=0. 25*(U(I,JP1)+U(I,J)+U(IUI1,JP1)+U(IM1,J))
EB(I,J)=REV*(Vll*(UV-EVDXI)+Vl2*(V(I,J)-2.*EVDY1))
S-(F1(I ,J)+F1(IM1,J))*0.5
EC(I,J)=REV*(V21*(UV-EVDX1)+V22*(V(I,J)-2.*EVDY1))

EE(I ,J)=(V11*Vl1+V12*Vl2)
EF(I ,i)=(V21*V21+V22*V22)
EH(I ,J)=REV/DT

TKDX=TK(I,J)-TK(IMI,J)
TKDOY1=2../3. *(TKDX*Vl2+TKDY*V22)
UDX=0.5*(U(I,JP1)-U(IM1 ,JP1)+U(I ,J) -t(IM1 ,J))
UDY=0.5*(U(IMI,JP1)-U(I!11,J)+U(I ,JP1)-U(I,J))
UDY 14fl3X*V 1 2+U)DY..V22
V'DXDY=O.25*(V(IP1 ,JP1)-V(IP1,JI)+V(IM1,J1I)-V(IYI1,JP1))
SOR=2 *(V1 1*V21+.V12*V22).'WVDXDY

PRJ=PR(I ,JP1)-PRCI ,J)
SV(I ,i)=S0R+REV*(-PRI*V12-PRJ*V22-TKDY1+EV,,DX1*UD)Y1)

100 CONTINUE

ELSE IF( M .EQ. 1 ) THEN

C ... X MOMENTU-1 EQUATION

DO 200 1I2,N\NX
7pl=I+i
1 11=1 -1
DO 200 J=JB(l), NNY

JP1=i+1
pf I=i- I
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U11=(B11(I,J)/DSJ(I ,J)+Bl1(I,JMI)/DSJ(I,JM1))*O.5
U12=(Bl2(I,J)/DSJ(I ,J)+B12(I,JII1)/DSJ(I,JM1))*O.S
U22=(B22(I ,J)/DSJ(I ,J)+B22(I ,JM1)/DSJ(I,JM1))*O. 5

EVV=O.5*(EV(I ,J)+EV(I ,JM1))
REU=1.O/(1 ./RE+EVV)
EVDY=EV(I,J)-EV(I,JI1)
EVDX= . 25*(EV(IP1 ,J)-EV(IM1 ,J)+EV(IP1 ,JM1)-EV(IM1,JM1))
EVDXI=(EVDX*U1 1+EVDY*U21)
EVDY 1= (EVDX*Ul12+EVDY*U22)

VU=0.25*(V(I ,J)+V(I,JN1l)+V(IP1,J)+V(IP,JI1))
EB(I,J)=REU*(V11*CU(I,J)-2.*EVDXI)+Ul2*(VU-EVDYl))

EC(I,J)=REU*(U21*(U(I,J)-2.*EVDXI)+U22*(VU-EVDYl))

EE(I ,J)=(U11*Ull+U12*U12)
EF(I ,J)=(U21*U21+U22*U22)
EH(I ,J)=REU/DT

TKDY=TK(I,J)-TK(I ,JII1)

TKDX1=2./3 .*(TKDX*U11+TKDY*U21)

VDX1=VDX*U1 1+VDY*U21

PRJ=O.25*(PR(IP1,JP1)-PR(IP1,JM1)+PR(I,JP1)-PR(I ,JN11))
IF(J.EQ.3) PRJ=O.5*(PR(IP1,4)+?R(I ,4) -PR(IP1,3)-PR(I ,3))
PRI=PR(IP1 ,J)-PR(I ,J)
IF(J .EQ. 3)f THEN

PRj= O.25*(PR(I,JP1)-PR(I,J)+PR(IP1,JP1)-PR(IP1,J))
END IF
S0R=2.*(Uli*U2l+Cl2*U22)*UDXDY
SII,J)=SOR+REU*( -PRYJ21 -PRI*U1 1-TKDX1+EVDY1*VDX1)

&+RE-U/DT-*U(I ,J)

200 CONTINUE

-TLSE IF( M .EQ. 4 .OR. .9 -EQ. 5 THEN

C..TI AND TD EQUATION

DO 300 T=NB2,NNX

0O 300 j=JB(!).NNY

.JMI=J-l
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Tll=B11(I ,J)/DSJ(I ,J)
T12=Bl2(I ,J)/DSJ(I ,J)
T22=B22(I ,J)/DSJ(I,J)
T21=B21(I ,J)/DSJ(I ,J)

EVDXO0.5*(EV(IP1,J)-EV(IM1 ,J))
EVDY=O.5*(EV(I ,JP1)-EV(I ,JM1))
EVDX1=(EVDX*T1 1+EVDY*T21)
EVDY1=(EVDX*T2 1+EVDY*T22)

IDY=U(I,JPI)-U(I,J)

LTDX1=4JDX*T1 1+IJDY*T2 1
UDY14JX*T 12+UDY*T22
VDY=.25*(V(I ,JP1)-V(I ,Ji11)+V(IP,JP1)-V(IP1,JII1))
%9DX=V (I P1, J) -V (I ,J)
VDX 1=VDX*T1 1+VDY*T2 1
VDY 1=VDX*T1 2+;VDY*T22
GG=EV(I,J)*.(2.*(DX1*UDX1+DY*VDY1j+(DY+VDX1)*(U'DYi-+V

IF(M .EQ. 5) THEN
SG=CD

ELSE IF(M .EQ. 4) THEN
SG=CK

END I F
RErD=I ./(1./R.E+EV(I ,J)/SG)

UC=O.5*(U(I ,JP1)+U(I ,J))
VC=O.5*(V(I ,J)+VCI?1,J))
E-B(I,J)=RED*((UC-EVDX/SG)*Tll+(VC-EVD9Y1/SG)*Ti2l)-F1(T,j
E-CCI ,)=RED*((UC-'EV DX1/SG)*T21+(VC-rEVD9Y1/SG)*T22)-F2(I,J
EE(I ,J)=Tl1*Tlli+T12*T12
ECI ,J)=T21*T21+T'-2T22

iF(M .EQ.4) THEN

SOR=2.* (Ti 1*T2 1-Tl2*T22 )*TKDX(y
SK(i,J)=SOR-;RErD*(GG)+RE D/DT*TK<(I ,J)
E-HCI,J)=TD(f ,J)*RED/TK(I ,J)+RED/D7
ELSE IF( M. EQ.3) TMEN

SOR=2 .*(Tl11*T21+T1',2*Ti22)*TDDKXY
IF (iJSCALE.EQ.1) THEN
TSCAL=TD(I ,J)/TK(I ,J)
ELSE lIF(ISCALE.EQ.2) TfEN
TS-CAL=DSQRTJTD(TI T))

ELSE
?RIYT*, '-R-ROR IN SELEC'!TON OF TBLETSCATE1! I
END I-
SD( I ., J=SOR-;C1*RED -GGU*-SCAL-+RLD, OrTI ,J)
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EH(I ,J)=C2*RED*TSCAL+RErD/DT
END IF

300 CONTINUE

END IF

RETURN

END

C ...... . , * * * * * * * * * * . * * *

C *SUBROUTINE HVEL IS TO CALCULATE THE PSEUDOVELOCITY
C >> >>> >>> >> >> > >> >>>>> >>>>>>

SUBROUTINE HVEL
IMPLICIT REAL*8 (A-H,O-Z)

S INSERT BLOCK.hAIN

PRiNT*,I*** I-vEII **

IE =NNX+1
JE =NNY+1

C.... CORRECT THE VELOCITY BY PRESSURE CORRECTION

DO 10 I=2,NNX
!I=I+1

DO 10 J=JB(I),NNY
JP1=J+1

V(I,J)=VS(I,J)-DV(I,J)*(PP(I ,JP1)-PP(I,J))

10 CONTINUE

CALL WALLFN
CALL CHECK(U,1,IE,JE)
CALL CHECK(V,2,IE,JE)

C .... PSEUDOVELOCITY OF V

CALL EQCOE (2)
CALL COEF(2)
DO 150 I=2,.\\.X

IP1=I+1

DO 150 J=JB(I),NNiY
JP1~J+1
,eM!=J- 1
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REV=EH(I ,J)*DT
V22=(B22(I,J)/DSJ(I ,j)+B22(IM1,J)/DSJ (IMJ J))/2.
V1S=SV(I,J)+REV*V22*(PR(I ,JP1)-PR(I,J))
DV(I,J) = ZC(I,J) * REV
\TH(I ,J)=V(IP1 ,J)*ZE(I ,J)+V(IP1 ,JP1)*ZNE(I ,J)
& +V(IP1,JM1)*ZSE(I,J)+V(I,JM1)*ZS(I,J)
& +V(IM1,JII1)*ZSW(I,J)+V(IM1,j)*ZW(I,J)
& +V(IM1,JP1'*ZNW(I,J)+V(I,JP1)*ZN(I,J)+ZC(I,J)*VHS

150 CONTINUE

C ..... PSEUDOVELOCITY OF U

CALL EQCOE (1)
CALL COEF(l)

DO 100 1 = 2, NNX
IP1=I+1
IMI1I-1

DO 100 J = JB(I), NNY

REU=EH(I ,J)*DT
UHS=SU(I ,J)+REU*Ull*(PR(IP1,J)-PR(I ,J))
DU(I,J) = ZC (I,J) * REU
UNH(I ,J)=U(IP1 ,J)*ZE(I ,J)+U(IP1 ,JP1)*ZNE(I ,J)
& +U(IP1,JM1)*ZSE(I,J)+U(I,JM1)*ZS(I,J)
& +U(Th1,Jm1)*ZSW(I,J)+U(Im1,J)*ZW(I,J)
& +U(IM11,JP1)*ZNW(I,J)+U(I,JPI)*ZN(I,j)+ZC(I,J)*JHS

100 CONTINUE

C ... SET THE BOUNDARY DATA

DO 200 1 = 1, IE
VH(Z,JE ) =V(I ,JE)
UII(I,JE ) = L(I,JE)
i=JB(I)-1
Ull (I,Ji)=U:(I, J)
VH(I ,j)=V(I ,J)

200 CONTI NUET

C ... ALONG THE 1=1 -- THE INLET LINE

DO 300 J = 1, JE
VH(li) =V(1,J)
UH(1,J) = U(1,J)
7H(lE ,J)=U(IE ,J)

VH(IE ,J)=V(IE ,J)
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300 CONTINUE

RETURN4
END

C
C *SUBRCIUTINE SVEL IS TO SOLVE THE VELOCITY
C >> >>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> >>>

SUBROUTrINE SVEL
IMPLICIT REAL*8 (A-H, O-Z)

$ INSERT BLOCK. MAIN

PRINT-, '*** SVEL **

IE=NNX+ 1
JE=NNY+ 1
DO 20 I=l,NNX+l
DO 20 J=2,N\.Y+1
US(I,J)=U(I,J)
VS(I ,J)=V(I ,J)

20 CONTINUE

C .... U VELOCITY

CALL EQCOE( 1)
CALL COEF(1)

DO 100 I =2 ,%NX
DO 100 J = JB(I), N'NY

DU(I ,J)=ZC(I ,J)*EH(I ,J)*DT
100 CONTINUE

CALL SOLVE(US,FT,1,2,IE,JE)
CALL CHECK(US,1,IE,JE)

C .... V VELOCITY

CALL EQCOE( 2
CALL COEF(2)

DO 130 1=2,NNX
DO 150 J~jB(I).NNY

150 -ONTINUE

CALL SOLVE-(%*S.,,2.I-),E,JE)
CALL I CHC 2 j, )
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RETURN
END

C
C SUBROUTINE PRESS IS USED TO SOLVE 1. PRESSURE
C * 2. PRESSURE CORECTION

SUBROUflINE PRESS (NC)
IMPLICIT REAL*8 (A-H,O-Z)

$INSERT BLOCK.MAIN
DIMENSION AA(99),BB(99),CC(99),DD(99),T(99)

PRINT',, ' ::PRESS NC =',NC

IE =NNX+l
JE = NNY+1
JMN=JB(NB3+1) -1

DO 20 J=2,JE
DU(IE,J)=DU(N TX,J)
DV(IE,J)=DV(NNX,J)
DU(1,J)=DU(2,J)
DV(1 ,J)=DV(2,J)

20 C ONTI!NU E

DO 30 11I,IE
J=JB(I)-l

DV(I ,J)=DV(I ,JP1)
DU(I ,JE)=DU(I ,NNY)
DV(I ,JE)=DV(I ,NNY)

30 C ONTIN UE

DO 210 I=2, NrNX
DO 210 J=JB(I), NNY
.M !=I- I

JMIl=J- I
Pll=(B11(I,J)/DSJ(I,J)+B1(Il,JM1)/DSJ(I,JI1))/2.
DU(I ,j)=P11*DU(I ,J)
?2.=(B22(I ,J)/DSJ(I,J)+B22(IY11,j)/DSJ(IM1,J))/2.
DV(I ,J)=P22*DV(I ,J)

210 CONTINUEt

DO 100 1=2 ,NNX
iP11l+1
SM 1= I- I
DO 100 ;-=JB(l) NNY
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AE(I,J)=(Y(I ,J)-Y(I ,JM1))*DU(I ,J)

AP(I ,J)=AE(I ,J)+AW(I ,J)+AN(I ,J)+AS(I ,J)
100 CONTINUE

DO 175 J=3,NNY
AP(NNXJ)=AP(NNX,J)-AE(NNX,J)
AP(2,J)=AP(2 ,J)-AW(2,J)
AE(NNX,J)=O.
AW (2,J)=0.

175 CONTINUE

DO 117 I=2,NNX
J=JB (I)
AP(I ,J)=AP(I ,J)-AS(I ,J)
AS(I,J)=0.0

117 CO0NT INUE

DO 234 J=3,JN
AP(NB3+2,J)=AP(NB3+2,J)-AW(NB3+2 ,J)
AW(NB3+2,J)=0.0

234 CONTINUE
C .... FORM THlE SOURCE TERM OF PRESSURE CORRECTION EQUATION

IF(NC .EQ. 2) THEN
DO 343 J=3,JMN
VS(NB3+1 ,J)=V(NB3+1 ,J)
US(NB3+1 ,J)=U(NB3+1 ,J)

343 CONTINUE

DO 52 1=2,NWX

IM1=I
DO -j=JB(I), P

S(IJ(Y(I,)Y(I1,JM1))*US(I,J)

S +(X(I,3)-X(Im1,J))*VS(I,J)
$ -(X(I,JM1)-X(Im1,3m1))lrVS(,JM1)
DST(I ,J)=DS(I ,J)

32 CONTINUE

DO 62 I=1,IE
DO 62 J=l,J-E
FT(I ,J)=O.O

62 CONTIN\,UE
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ELSE IF(NC .EQ. 1) THEN

DO 456 J=3,JN
EJH(NB3+1 ,J)=U(NB3+1 ,j)
V1I(NB3+1 ,J)=V(NB3+1 ,J)

436 CONTINUE
DO 150 I=2,NNX
IP1-I+1
I1'1=I-1
DO 150 J=JB(I), NNY
JP1=J+1
J111=J-1

DS(I ,J)=(Y(I ,J)-Y(I ,JM1))*UH(I,J)
S -(Y(IM11,J)-Y(IM'1,JMI))*UH(IM1,J)
$ +(X(I,J)-X(I1,J))*'VH(I,J)
$ -(X(I,JM1)-X(IX1,J11))*V{(I,JM1)

150 CONTINUE

DO 270 J=1,JE
DO 270 I=1,IE
FT(I ,J)=PR(I ,J)

270 CONTINUE

END IF

C... SOLVE THE EQUATION DOMAIN BY USING TRIDIAGONAL METHOD

ITP=50
FAC=0. 1
EPS=1.D-7

DO 400 1P1I,ITP
S0R=0.

DO 300 I=2 ,NNX
IF(I.EQ.NB2) GO TO 300
I?11I+1
M>1=1-1I
JJB(I)

DO 320 J=JJ,NN"Y
jP1=J+1
.jM1J- 1
AA(J)=-AS(I ,J)
BB(J)=AP(I ,J)
CC(J)=-AN(I ,J)
DD(J)=AE(I,J)*FT(IPI,J)+AW(I,J)*FT(IM11,J)-DS(I,J)

320 CONTINUE
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DD(JJ)=DD(JJ) -AA(JJ)*FT(I ,JJ-1)
DD(NNY)=DD(NNY).CC(NNY)*FT(I ,JE)
CALL TRIDAG(JJ,NNY,AA,BB,CC,DD,T)

DO 340 J=JJ,NNY
ST =FT(I,J)-T(J)
IF(DABS(SOR) .LT. DABS(ST)) SOR=ST
FT(I ,J)=T(J)

340 CONTINUE

300 CONTINUE
DO 310 J=1,NNY

C IF(NC.EQ.1)FT(NB3+2,J)=0.5*(FT(NB3+1,J)+FT(NB3+3,J))
310 FT(NB2,J)=0.5*(FT(NB2-1,J)+FT(NB2+1,J))

IF(DABS(SOR) .LT. EPS) GO TO 345

400 CONTINUE

345 RITE(6,900) NC, IP, SOR

CALL CIECK(FT,3,IE,JE)

IF(NC .EQ. 1) THEN
DO 500 1=1,IE
DO 500 J=2,JE
PR(I,J)=(l. -FAC) *PR(I,J)+ FAC*FT(I,J)

500 CONTINUE

ELSE IF(NC -EQ. 2) THEN
DO 550 1=1,'E
DO 550 J=2,JE
PP(I ,J)=FT(I ,J)

550 CONTINUE
END IF

900 FORNIAT(I10,E12.4)

RETURN
E ND

C
C *SUBROMTNE COEF IS USED TO CALCULATE THE FA COEFFICIENTrS
C >>>>>>>>>>>>>>>>>>>>>>>>>>>>>

SUBROUTINE COEF( NC )
IM1PLICIT REAL*8(A-H,O-Z)

SINSERT BLOCK2IAIN
DIMENSION CF(3,3)
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P1=3. 141592653589793D0
,MAX=6
EPE=1.D-5
ClW=1.DO
EM4AX=20 .DO

IJI=2
IF(NC .GE. 4) IJ1=NB2
DO 200 I=IJ1,NNX
DO 200 J=JB(I),NNYN

AR=EB(I,J)/2.DO
BR=EC(I,J)/2.DO
ER=DSQRT(EE(I ,J))
FR=DSQRT(EF(I ,J))
IF ( FR .LT. 1.D-23) PRINT--, 'ERROR IN COEF, FR=O.

HX=1./ER
HY= 1./FR
AR=AR/ER
BR=BR/F:R

IF (DABS (AR) .LT.EPE)AR=DSIGN(EPE,AR)
IF(DABS(BR) .LT.EPE)BR=DSIGN(EPE,BR)

C CHECK TlM SIZES OF T11E GRIDS IF IT AGREES WITH THE ASSUM
C DIRECTIONS IN THE DERIVATION, AND IF IT DOES NOT CHANGE
C SEE PAGE 53. OF DR. H.C CHEN DISSERTION.

ER2=ER*ER
FR2=FR*FR
AB2=AR*AR+BR -BR
-ji= R, !D
AKW=AR*HY
BH=BR*X
BK=BR*HY
DAHDABS (All)
DBDK=DABS (BK)
.I2=AH*AH
BK2-BK*BK

JMO0
T'7(DAH.GT.ErIAX) 0l=1
IF(DBK.GT.EMAX) JMi=2

GO TO (1,2,3,'+), M

1 EA0 H=DE-XP(AH)
E?.BK=DEXP (BK)
7EAHII .i7EPAH
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EPBKI= . /EPBK
COSHA=0.5* (EPAH+EPAHI)
COSHB=0.5* (EPBK+EPBKI)
COTHA=2.*COSHA/ (EPAH-EPAHI)
COTHB=2 . COSHB/ (EPBK-EPBKI)
AKCTHA=AKW*COTHA
BHCTHB=BH*COTHB
PWR=1.
IF(HX .GT. HY) GO TO 11
EX2=0.
DO 10 II=1,MAX

ZA2=ZA*ZA
PWR=- PWR
DABK=DSQRT(AB2+ZA2*ER2 )*jHY
IF(DABK .GT. 100.) GO TO 9
AB=DEXP (DABK)

10 EX2=EX2-PWR*ZA/((AB+1./AB)*(AH2+ZA2)*(AH2+ZA2))
9 PA=8.*HCTACSH*OH*X

PB=1.+BHCTHB/AKCT1A*(PA-1.)
CF(2,2)=0.5*HX/(AR*COTHA)*(l. -PA)
GO TO 100

11 EY2=O.
DO 12 II11,MAX
ZA=(II-0.5)*PI
ZA2=ZA*ZA
PWR=-PWR
DABH=DSQRT (AB2+ZA2*ER2 )*HX
IF(DABH.GL. 100.) GO TO 19
AB=DEXP (DABH)

12 EY2=EY2-PWR*ZA/((AB+1./AB)*(BK2+ZA2)*(BK2+ZA2))
19 PB=8 .*BK.*COI"HB*COSHA*COSHB*EY2

PA=1 .+AKCTHA/BHCTHB*(PB- 1.)
CF(2,2)=O.5*HY/(BR*GOTHB)*C1. -PB)
GO TO 100

2 EPBK=DEXP(BK)
EPBKII. /EPBK
COSHB0. 5* (EPBK+EPBKI)
COTHB=2.*COSHB/(EPBK-PEPBKI)
COTHA=DSIGN(C1W ,AR)
AKCTHAA.kW*COTHqA
BHCTHB=BH*COTHuB
PWR 1.
IF(IAKCTlHA.L7.BHCT-hB) GO TO 22

DO 20 ti=1,MAX

ZA2=ZAZA
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PWR-PWR
PZ=PWR*ZA/ ((AH2+ZA2)*(AH2+ZUA2))
FX2=FX2-PZ
DABK=DSQRT (AB2+ZA2*ER2 )'-HY
AB1l.
IF(DABK.GT. 100.) GO TO 20
EPABK=DEXP (DABK)
AB=1.-COSHB/ (EPABK+ . /EPABK)

20 EX2=EX2-PZ*AB
PA1. -EX2/FX2
PB=1.+BHCTI{B/AKCTHA*(PA-1.)
CF(2,2)=0.5*HY/(BR*COTHB).(1. -PB)
GO TO 100

22 EY2=0.
DO 23 II-1,MAX
ZA=(II-O 3)*PI
ZA2=ZA.'ZA
PWR=-PWR
DABI[=DAH-DSQRT(B. A2*-R2) *IX
IF(DABS(DABH).GT.10tc : GO TO 29
AB=DEXP (DAB H)

23 EY2=EY2-PWR*ZA*AB/ ((BK2+ZA2)*(BK2+ZA2))
29 PB=4. *BK*COTHB*COSHB*EY2

PA=1.+.kKCTHA/BHCTHB*(PB-1.)
CF(2,2)=O.5*HY./(BR*COTHB)*(1. -PB)
GO TO 100

3 EPAH=DEXP(AH)
EP.AHfI=. /EPAH
COSHA0.5* (EPAH+EPAHI)
COTHA2 .*COSHA/ (EPAH-EP.AHI)
COTiB=DS IGN(CIW, BR)
AKCTHAA.KW*COTHA
BHCTHB=BH*COTHB
PWR=1 I.
IF(AKCTiHA.GT.BHCTHB) GO TO 32
EY2=0.
FY2=0.
DO 30 !II1,MUX

ZA2=ZA*ZA
PWR- PWR
PZ=PWR"ZA/ ((BK2+ZA2)*(BK2+ZA2))
FY2=FY2 -PZ

DABH=DSQRT(AB2+ZA2*FPR2 )*a
AB~l.
!F(DABH.GT. 100.) GO TO 30
EPABH=DEXP(DABH)
ABL. -COSHA/ (EPABH+ . /EPABH)

30 7EY2'=EY2-PZ*AB
P3=l. -7Y2/FY2
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PA=1.+AKCTHA/BI{CTHB*(PB- 1.)
CF(2,2)=O.5*HY/(BR*COTHiB)*(1. -PB)
GO TO 100

32 EX2=0.
DO 33 II=1,MIAX
ZA=(II-0.5)*PI
ZA2=ZA*ZA
P'6R= -PWR
DABK=DBK-DSQRT (AB2+ZA2*ER2 )*IIY
IF(DABS(DABK) .GT. 100.) GO TO 39
AB=DEXP (DABK)

33 EX2=EX2-PWR*ZA*AB/ ((AH2-iZA2)*(AH2+ZA2))
39 PA=4.*AJH*COTrHA*COSHA*EX2

PB=1.+BHCTHB/AKCTHA*(PA-1.)
CF(2,2)=O.5*HY/(BR*COTHB)*(1. -PB)
GO TO 100

4 DAK=DABS(AKW)
DBH=DABS (BH)
COTHA=DSIGN(C1W ,AR)
COTHB=DSIGN(ClW ,BR)
IF(DAK.LT.DBH) GO TO 41
PA=O.
PB=1. -DBH/DAK
CF(2 ,2)=O .5*H/ (AR*COTHA)
GO TO 100

41 PB=0.
PA=1. -DAK/DBH
CF(2,2)=0.5*'HY/(BR*COT{B)

100 QI. -PA-PB
TANHA=1./COTHiA
TANHB1l. /CO
BEO0.5*(1. -TANrA)

B=.5*(1. .+TANIA)
BN=0.5*N1.-TANHB)
BS=0.5*(l.+TANHB)
CF(1, 1)=BW*BS*Q
CF(3, 1)=BE*BS*Q
CF (1,3 )=BW*BN*Q
CF(3 ,3)=BE*BN*Q
CF(2, 1)=BS*PA
CF(2 ,3)=BN*PA
CF(1,2)=BW*PB
GF(3 ,2)=BE.'PB

C
CFC=C-F(2 ,2)

CFP=1 . iCFC*EH( I,J)
ZC(I ,J)CFCICFP
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C .... FINAL FA COEFFICIENTS ON TRANSFORMED DOMAIN

ZS(I,J)=CF(2, 1)/CFP
ZN(I ,J)=CF(2,3)/CFP
ZW(I ,J)=CF(1 ,2)ICFP
ZE(I ,J)=CF(3,2)/CFP
ZSW(I,J)=CF(1,1)/CFP
ZSE(I ,J)=CF(3, 1)/CFP
ZNW(I,J)=CF(1,3)/CFP
ZNE(I ,J)=C-F(3,3)/CFP

200 CONTINUE

RETURN

END

C U . 44..44. 4.. . .. 0 AJ4 .. 4 . 4.. U .... 4

C *SUBROUTINE SOLVE IS USED TO SOLVE STARED VELOCITY
C >>>>>>>>>>>>>>>>>>>>>>>>>>>

SUBROUTINE SOLVE(HT,FZ,NC,ISI, IX,IY)
IMPLICIT REAL*8 (A-H, O-Z)

SINSERT BLOCK.MAIN
DIHJENSION FZ(IX,IY) ,HT(IX,IY)
REAL*8 AA(99),BB(99),CC(99),DD(99),T(99)

IENN.lX%+ 1
jE.qNNY + 1
DO 900 1M=11O
E?SR=O.O

DO 100 i=ISi,NN\&X

DO 200 j=JJ, NWY
JTP1=J+.

AA(j)=-ZS(I ,J)
BB(j)=1.
CC(j)=-ZN(I ,J)

S +ZE(i,JHT PJ)+ZW(IJ)*HT(DI11,JP)+ZEIJ
S 4- C7:H)*T(I pl1jJP1)+ZS\(I,J)*HT(IEY1 ,JP1)1Z)N~t-(I1 ,J

200 CON!LT NUE
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DD(JJ)=ED.(JJ)-AA(JJ)*HT(I ,JJ-1)
DD(NNY)=DD(,Ny)-CC(NNY)*HT(I ,JE)
CALL TRIDAG(JJ,NNY,AA,BB,CC,DD,T)
IF(I.LT.NB1.OR.I.GT.NB3+1) CALL UPDATE(HT,I,NC,IX,IY)

DO 50 J=JJ,NNY
EPS2=DABS (HT(I ,J) -T(J))
IF (EPS2.GT. EPSR) EPSR=EPS2

50 HT(I,J)=T(J)

100 CONT I NUE

IF(EPSR.LT.1.OD-7) GO TO 20

900 CONTINUE

20 WRITE(6,1000) NC, IM,EPSR
1000 FORMAT('SOLVE NC=', 15, 'ITERAT.= ',110,' EPSR=&,E12.4

RETURN
E ND

C
C SUIROUTINTE CHECK IS TO UPDATE BOUNDARY VALUES
C >>>>>>>>>>>>>>>>>>>>>>>>>>>>

SUBROUTINE CHECK CGG ,NC ,IX, IY)
IMPLICIT REAL*8 (A-H, O-Z)

S INSERT BLZ -K.A:AIN
DIMENSION GG-( X, IY)

IE=NNX+1
jE=NNY+ 1
DO 100 I=2,NX
CALL UPDATE(GG,TI,NC,IX,IY)

100 CONTINUE

IF(NC .EQ. 1) T14EN

DO 110 J1l,jTE
IF(GG(NNX,J) .LT. GG(NNX-1,J)) THEN
GG(NfNX,j)=GG(NNA-1 ,jy*.O1
GG(IE,j) =GG(NNX-1,Jy*l.0O2
ELSE
DI=X (IZ, j) -X(N.N7, j
D2=X(NNX;,j)-X(NNX- i .3)
DX1=(D1-LD2) D2

G G(I j)=G G NN X , J)D X -G G( N X1 ,J [,X 2
END 1.7

tF(GCEi) GT1-.0) GG(EE-,J)1=LO
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110 CONTINUE

ELSE IF(NC .EQ. 2) THEN

GG(TE,J)=GG(NNX,J)

210 CON71NUE

ELSE IF(NC -EQ. 3) THEN

DO 360 J=1,JE
GG(IE ,J)=GG(NNX,J)

360 CONTINUE

ELSE IF(NC .GE. 4 )THEN

DO 410 J=1,JE-
GG(IE ,J)=GG(NNCX,J)

~1- C ONT INU E

END

C
C SUBROUTINE UPDATE IS TO UPDATE BOUNDARY VALUES

C >>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>) >>>>>>>>

SUBROUTINE UPDATLE(GG,I ,N\C, IX, IY)
IMPLICIT PREAL*8 (A-H, O-Z)

S INSERT BLOCK .MAIN
DIMENSION GG(IX,IY)

TE=NNX-1
JE=NNY+ 1
jjr=JB(i)-1
jjl=J-i-I
3JJ2=JJ+2
IF(NC .EQ. 1) -MEN

IF(I .GE. NB1 .AND. I .LE. NB3) RETURN
IF(T.EQ.NB3+1) THEN
D5=(Y(I ,JJ2')+YkI ,Jj1))*O.5

D3=(DY( fl**2(Tj)*.

C GI.. uGG-. .3)
DC-CG( .JJii-GG%(,2)
0 30 i=3,jj
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D32=(D3-Y(I ,2))**2
C GG(I,J)=GG(I,JJI)-(GG(I,JJ2)-GG(I,JJ1))*(D42-D32)/(D52-D

GG(I ,J)=GG(I ,2)+DG*D32/D42
50 CONTINUE

END IF
C D4=(Y(I,4)+Y(I,3))*0.5
C D3=(Y(I,3)+Y(I,2))*O.5
C D32=(D3-Y(I,2))**2
C D42=(D4-Y(I,2))**2
C GG(I,2)=(GG(I,3)*D42-GG(I,4)*D32)/(D42-D32)
C IF(IT .LT. 5) THEN
C DO 10 J=3,10
C J1=J+1
C DO 20 JM=J1,JE
C 20 IF(GG(I,J) .GT. GG(I,JM)) GG(I,J)=GG(I,JI)
C 10 CONTINUE
C END IF

ELSE IF(NC .EQ. 2) THIEN

GG(I,JE)=GG(I,NNY)
IF(I.GE.NB2.AND.I.LE.NB3) THEN
DO 60 J=3,JJ-1

60 GG(I,J)=GG(I,JJ)*Y(I,J)/Y(T,JJ)
C GG(I,JJ)=0.

END IF
IF(I.EQ.NB3+1) THEN
DO 70 J=3,JJ

70 GG(I,J)=GG(I,JJ1)*Y(I,J)/Y(I,JJ1)
END IF

ELSE IF(NC .EQ. 3) THEN

GG(I,JE)0O.
IuM1=I-1

D4=(Y(I,JJ1)+Y(I,JJ)+Y(IM1,JJ1)+Y(IMI,JJ))*o.25
D5=(Y(I ,JJ2)+Y(I ,JJ1)+Y(IM11,JJ2)+Y(IMI1,JJI))*0.25
D52=D5 -D2
D42=D4-D2
IF(I.GE.NB2.AND.I.LE.NB3) THEN
DO 80 J=3,JJ

D53=D5-D3
D43=D4-D3
GG(I ,J)=(D53*GG(I ,JJI)-D43*GG(I,JJ2))/(DS3-D43)

80 CONTINUE
GG(I ,2)=(D52.'GG(I ,JJI)-D42*GG( I,.Tj2) )I(D52-D42)
ELSE
D32=D52*'D52
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D42=D42*D42
IF(I.EQ.NB3+1) THEN
DO 90 J=3,JJ

C D3=(Y(I,J)+Y(I,J-1)+Y(IM1,J)+Y(IM1,J-1))*0.25
C D32=(D3-D2)**2
C GG(I,J)=GG(I ,JJ1)-(GG(I,JJ2)-GG(I ,JJ1))*(D42-D32)/(D52-D

GG(I ,J)=O.5*(GG(I+1 ,J)+GG(I-1 ,i))
90 CONTINUE

END IF
IF(I.GE.NBl.ALND.I.LT.NB2) THEN
D3=(Y(I ,3)+Y(I ,2)+Y(IM1,3)+Y(IM1 ,2))*O.25
D4=(Y(I,4)+Y(I ,3)+Y(IM1,4)+Y(IM1,3))*Q.25
D32=(D3-D2)**2
D42=(D4-D2)**2
GG(I ,2)=(D42*GG(I ,3)-D32*GG(I ,4))/(D42-D32)
END IF
END IF

ELSE IF(NC .GE. 4 ) TH-EN

IF(I.LE.NB3) RETURN
D42=Y(I ,JJ1)*Y(I ,.JJ1)
DS2=Y(I ,Jj2)*Y(I ,JJ2)
IF(I.EQ.NB3+1) THEN
DO 100 J=3,JJ

GG(I,J)=GG(I,JJ1)-(GG(I,JJ2)-GG(I,JJ1))*(D42-D32)/(D52-D
100 CONT INUE

END IF
C D32=Y(I,3)*Y(I,3)
C D42=Y(I,4)*Y(I,4)
C GG(I,2)=(D42*GG(I,3)-D32*GG(I,4))/(D42-D32)

END IF

RETURN

END

C ***.*
C *SUBROUTINE IS USED TO SOLVE 1. TURBULENT7 KINETIC ENERGY
C *2. DISSIPATION RATE
C >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> >

SUBROUTINE STI)
IMPLICIT REAL*8(A-H,O-Z)

SINSERT BLOCK.MAIN

E EN.\X+ I
jE=NNY+ 1

C .... SOLVE K EQUATION
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CALL EQCOE( 4)
CALL COEF (4)

DO 10 I=NB2,NNX
DO 10 J=JB(I),NNY
FT(I,J)=ZC(I ,J)*SK(I ,J)

10 CONTINUE

CALL SOLVEtTK,FT,4,NB2,IE,JE)
CALL CHECK'kTK,4,IE,JE)

DO 60 I=NB2,IE
DO 60 J=2,JE
IF(TK(I,J).LT.1.D-9) TK(I,J)=1.D-9

60 CONTINUE

C .... SOLVE DISSIPATION EQUATION

CALL EQCOE(5)

CALL COEF (5)

DO 20 I=NB2,NNX

DO 20 J=JB(I),NNt'Y

20 CONTINUE

CALL SOLVE(TD,FT,5,NB2,IE,JE)
CALL CHECK(TD,3,IE,JE)

C DO 30 I=NB2,IE
C DO 30 J=2,JE
C IF(TD(I,J).LT.l.D-9) TD(I,J)=l.D-9
C EV(I,J)=TK(I,J)*TK(I,J)/TD(I,J)*CNU
C30 CONTINUE
C CALL CHECK(EV,6,IE,JE)
C DO 3O I=NB2,IE
C DO 5O J=5,JE
C IF(EV(I,J-1).LE.EV(I,J-2) .AND. EV(I,J-1).LT.EV(I,J))
C SEV(I,J)=EV(I,J-1)
C30 CONTINUE
C DO 90 1=NB2-1,1,-1
C DO 90 J=3,JE
C TK(I,J)=TK(I+1,J)*0.8

C TD(I,J)=TD(TI,J).8
C EV(I.J)=EV(I-;-l,J)*0.8
C 90 CONTlINUE

RETURN
END



C SUBROUTINE WALLFN IS USED TO DEFINE THE BOUNDAUY CONDITI

C YD2: DISTANCE OF THE FIRST NODE
C YD3: DISTANCE OF THlE SECOND NODE
C U3: VELOCITY OF SECOND NODE
C U2: FIRST NODE
C RKAR: RECIPROCAL OF KARMAN CONSTANT
C E LOG LAW CONSTANT E
C RE REYONDS NUMBER
o SHSQR: SH1EAR STRESS AT FIRST TWO

SUBROUTINE WALLFN

IMPLICIT REAL 8 (A-H,O-Z)

SINSERT BLOCK.HAIN

DO 900 I=NB2,NB3
"JJB(I)
J' JJ-l
U3=U(I ,JJ)

YTD=DABS(Y(I ,J-M1))

ARG=RE*E*YD3
SIEARO. 1
AVEL=DABS (U3)

RKAR=1. ./AK

DO 10 IH=1, 100

ARS H=ARG-S HEAR

DENl-M=RKAR,-(lI.+DLOG(ARSH))

SHNEW=( RKAR*SHfEAR+AVEL) /DEN UM

DIFF=DABS (SH.NEW-SHEAR)
SHEAR=SHNEW
IF( DIFF.LE.l.D-7) GO TO 20

10 CONTINU7E
20 SIGN=U3/AVEL

SHSQR=SHEAR
DO 30 J=JI,3,-l

YT2'-DABS(Y(I ,J))
ARG=RE*E~vD2 *SHSQR
S HEAR=SHSQR*SHSQR

'T%(I ,J)=SHEAR/DSQRTL(CNU)*YT2/YTD
7D( ,.f=RKAR:SHEAR".SHSQR/YT2
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YPLUS=ARG/ E

IF(YPLIUS.GT.20.) THEN
UCIJ)PJR&JR*DLOG (ARG)*SHSQR*SIGN
ELSE
YD4=DABS(O.5*(%Y(I,J+1)+Y(I,J))-Y(I,2))
U(I ,J)=U(I ,J+1)*YD2/YD4
END IF

30 CONTINUE

UTA(I)=SHSQR
V(I,JM1l)=V(I,JJ)*U(I ,JM1)/U3

900 CONTINUE

RETURZN
END

C

C SUBROUTINE TRIDAG TO SOLVE ALGEBRAIC EQUATIONS
C SIMULTANEOUSLY FOR EACH ROW OR COLOJM

C
C

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(99),B(99),C(99),D(99),V(99),BETA(99),GAII(9
BETA(IF)=B(IF)
GAMMtA (I F)=D (IF) /BETA ( IF)
1FF 1=1F+ 1
D0 1 I=IFPI,L
BETA(I)=B(I)-A(I)*C(I-1)/BETA(I-1)

1 GAMMA(I)=(D(I)-A(I)*GAMM4A(I-1))/BETA(I)
V (L) =GAlMNA (L)
LASThL -Il'
DO 2 K=1,LAST
I=L-K

2 V(I)=GAM'-iA(I)-C(I)*V(Ib.1)/BETA(I)
RETURN
E ND

C.... SUBROUTINE HAIN3D
C

C .. MAILN3D IS USED TO ARRANGE THE COMMON SPACE
C . OR FLOWS PAST AN AXISYM.METRIC BODY WITH
C .... OR WITHOUT AN.'GLE OF ATTACK. THE MAXIMUM SPACE
C..., CAN BE INCREASED OR DECREASED DEPENDING ON
C .... THE PROBLEM.
C
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SUBROUTINE ?lAIN3D
IMPLICIT REAL*8 (A-H, O-Z)
COMMON M(2000000)
COM'MON/NUM'BER/Nl,N2,N3,N4,N5,N6,N7,N8,N9,N 10,

$ Nll,Nl2,N13,,N14,,N1S,N6,N17,N18,Nl9,N20,
$ ~N21,N22,N'23,N24,N25,N26..N27,N28,N29,N\30,

$ N31 ,N32 ,N33 ,N34,N35, N36,N37,N38,N39,N40,
s ~ N41,N42,N43,N.44,N43,N46,N47,N48,N49,N50,

s \151,N52,N53,N54,N55 ,N56,N57,.N58,N59,N60,
s N61,,N62,N463,N64,N65,N66,N67,N68,N69,N70,
s N71, N72,N73,N74,N75,N76,N77 ,N78,N79,N80,
s N81,N82,N83,N84,N85,N86,N87,N88,N89,N90,
s N91,N92,N93,N94,N95,N96,Nq97,N98,N99,Nl00,
$ N101,Nl02,NlO3,N104,NlO5,NlO6,NlO7,NlO8
COMMON/COEFl/ IE ,JE ,KE
DATA IPR/2/

C
MAXI=2000000
I 1iE*JE*KE~irR
I2')JE*KE*IPR
13=IE*KE*IPR
14=1E*TPR
I3=KE*IPR

N2N1+I 1
N3N2L1 1
N4=.N3+1 1
N5 =N44- 1
N6N5+I 1
N7=N6+I 1
N8=N7- 11
N9=N8+I11
NIO=N9+11.

Nll3=:;12+I 1
N14=*N13+11

N16=N13+I- 1
N!7=N!6+13
N'8=N1 7+13
N19=Nl8+13
N20=N19+13
N21=N20+I3
N22=N2!4-I3

N23=N2 -^,-3

NZ6=NZ23-13

NZ2=N2>--!2
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N29=N28+I2
N30=N29+I2
N3 1=N30+I2
N32=N31+I2
N33=N32+12
N34=N33+I2
N35=N34+t 2
N36=N35+I2
N37=N36+I2
N38=N37+I2
N39=N38+I2
N40=N39+I2
N41=N40+I2
N42=N41+I2
N43=N42+12
N44=N43+12
N45=N44+12
N46=N45+I2
N47=N46+I 2
N48=N47+I2
N49=N48+I2
N5O4N49+I2
N5 1N50+I2
.N52=N31+I2
N53=.\52+I2
N54=N53+I2
N55=N54+I2
N56=N53+12
N57=N56+12
N58=N57+I2
N59=N58+I2
N60=N59+I2
N6 1N60+I 2
N62=N61+12
N63=N62+12
N64=.N63+12
N65=N64+12
N66=N65+12
N67=N66+12
N68=N67+12
N69= N68+12
N70=N69+12
,N71=N70+12
N72N'7 1+I2
N73=\'*72+12
N74=N73'-12
N7'5 - 74+12

N76=N75+12
N77N>,7+12
N78=N77+112
N7n -N76--t2
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tN80=N79+I2
MS l=.N80+I 2
N82=N8 1+12
N83=N82+I2
N84=N83+12
N85=N84+I 2
;,1-6=N85+12
N87=N86+I2
N88=N8 7+12
N89=NS8+I2
N90=N89+I2
N9 1N90+I2
N92=N9 1+12
N94=N93+12
N93=N92+I2
N9;=N,94+ 12
N9,6N95+I2
N97=N96+I2
N98=N97/+I2
N99=N98+I2
NIOO=N99+TL2
N101=N100+12
N102=N1O1+14

N0 3=N10 2+T4
N104=N03+-I4
Ni05N044,1!T
N!06=1,105+13
N!07=NT.06+I3
N108=N07-15
N109=Nl08+I5

IF(N109 .GE. %MAXI) TIEN
PRINT 10, MAXI, N109

'11.AX=MAXI/ IPR
NN=N1091 IPR
CALL ZERO('!,N 1AX,NN)
CALL MESH(WN101),M(N13),4(N4),-M(N02) M(Nl5),.M(Nl08),

$ E , TE,KE-)
CALL STAG3D(M~(N) M(N2) M(N3) -'N4%,MNI5),
s M(N6),M.(N7),M(N8),M(N9),M'(N'iO),
S -1011) ,M(*Nl2) M (NI3) XMNl-'% %!'N!5%

s M(N21) M(N22) ,\.231,MXN2ZOMN25),
s M(N26) M(N27) M(N28)M(.\29).M(N30),
S Y!(N31) M('N32) ,M(N33) ,M(N34) -l(N35),
5 M (N36)" .M 7 M (N38) , M(N39) M (N40),
S M "-4 i .M(N42) M MU 3) , M (N"~) .".(N45)
S M iN46 M,(N477 .'IM-8) M (N49,M (N50) ,
S 'I IM 1 .M2 .M(N5 ") .M(NS 5 ' 11(N5 5)
5 XiN56',M(N57) M(N38) XIN59), McN60)
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M(NILO1),.M(N102),M(Nl03),M(N10O4),M(NI05),
M(N1O6),M(N107),M(N1O8),I--E,.F,KE)

END IF

10 FORIIAT(' WARLNING*** INSUFFICIENT STORAGE ,/5,
1MAXIMUM = ',110,5X,'PRACTICAL I , 10)

RETURN
END

C
C SUBRCUTINE MESH IS USED TO READ COORDINATES
C
C

SUBROUTINE MESH(XP,YP,ZP,F1 ,F2,F3, I,JP1 ,KPI)
IMPLICIT REAL*8 A-H,O-Z)
DIMENSION YP(IP1,JP1,KP1)
DIMENSION ZP(IP1,JP1,KPI)
DIMENSION F2(IPl,JP1,KP')
DIMENSION XP(IP1),rF1(Il-,F3(KP1)
COMMON/COEF4/ UI, VI, .11, M42, M3

OPEN(UNIT=11 ,FILE='PHYSBODY')
READ(11,2005) Ml,M2,M3
READ(i11,2006) (XP(I) ,I=1 ,IPi)
READ(11,2006)(F1(I) ,I=1,IPl)
READC11,2006)(YP(1,J,1) 1,J=1,JP1)
READ(11,2006) (,1)
CLOSE( Li)

2005 FORNAT(6i10)

C00 FOR'!AT(5EI4.7)

F3(K)=O.
DO 421 j=1,j?1
DO '&21 I=L,1?1

YP(I,J,K)=YP(1,J, 1)
F2(I,J,K)=F2(1,1, 1)

421 CONTINUE
422 CONTINUE

RETURN
END
SUBROUTrINE ZERO (V , NMA-X, NN)
IMPLICIT REAL*8(A-HiO-Z)
DIMENSION V(NMAX)
DO 10 '--= ,NN

R ETUR N
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C * *
C.... SUBROUTINE STAG3D)

C-

C .... STAG3D1 IS USED TO SOLVE 3D FLOWS PAST AN AXISYMMETRIC
C .... BODY WITH STAGGER GRID SYSTEM.
C

SUBROUT1INE STAG3D(UO,VO,WO,AKEO,ADSO,ZUT,PR,PP,DH,
S BCU,BCV,BCW,YP,ZP,F2,DPDYU,DPDYW,
S DPDZU,DPDZV,YP2,YP3,YP4,VSF,WSF,UTAUA,
s BD,BU,BV,BW,DS,US,VS,WS,
S UHP,UHFVH,WH,UB,UP,UF,VB,VP,VF,WB,WP,
S AKEB,.UKEP,ADSP,FU2GW,DF,
s CU,CV,CW,CUY,CWmY,CUZ,CVZ,XP,F1,UL,UTL,
S TAUW,-TAU,YPP,F3,IPi,JP1,KPl)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION UO(IP1,JP1,KPI)
DIMENSION VO(IP1,JP1,KP1)
DIMENSION WO(IP1,JP1,KPI)
DIMENSION AKEO(IPI,JP1,KPI)
DIMENSION kDSO(IP!,jPl,KPl)
DIMENS -ION ZLUT(IPI,JPI,KP1)
DIMENSION PR(IP1,JPI,KPI)
DIMENSION PP(IP1,JP1,KPI)
DIMENSION DH(IP1,JPI,KPl)
DIMENSION BCU(IP1,JP1,KPl)
DIMENSION BCV(IPI,JP1,K?1)
DIMENSION BCW(IPI,JP1,KPl)
DIMENSION YP(IPi,JP1,KP1)
DIMENSION ZP(IP1,JP1,KPl)
DIMENSION F2(IP1,JPl,KPIl)
DIMENSION DPDYU(IP1,KPl),DPDYW(IPI,KPI,,DPDZU(IP1,KPI),
S DPDZV(IP1,KP1),YP2(IP1,KPI),YP3(IP1,KPI),YP4(
S VSF(IPLI,KPl),WSF(IPl,KPI),UTAUA(IPI,KPI)
DIMENSION BD(jPI,KPl),BU(JPL,KPl),BV(JPl,KPI),BW(jPl,KP
S DS(i?1L,KP1),GG(JPI,KPI)
DIMENSION US(JPLKPl),VS(JP1,KPI),WS(JPI ,KPl),
S UHPCJPL.,KP1),UHF(JP1,K?I),VH(JPIKPI,,WH(JPI,
S UB(JP1.%'?1),UP(JPI,KP).tLT(JPI,KP1),
s VB(JP!.,Ki),V?(JPI.,KP1),VT(JPI.KPI),
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$ WB(JP1,KP1),WP(JP1,KP1),WF(JP1,KPl)

DIMENSION FU(JP1,KP1),GW(JP1,KPl),DF(JP1,KP1),
$ AKEB(JP1,KPI),AKEP(JP1,KPI),ADSP(IJP1,KPI)
DIMENSION CU(jPI,KP1),CV(JP1,KP1),CW(JP1,KP1),

$ CUY(JP1,KPl),CWY(JP1,KF1),CUZ(JP1,KPl),CVZ(JP
DIMENSION XP(IP1),F1(IP1),UL(1TP),rTL(IPI),
$ ~TAUWV(K?1),UTAU(KP1),YPP(KPl),F3(KP1)

DIMENSION AA(99),BB(99),GC(99),DD(99),T(99)
COMMION 11(l)
COMON'/NTJMBER/Nl,N2,N3,N4,NS,N6,N7 ,N8,,N9,N1O,

$ Nll,N12,N13,.Nl4,N1S,N16,Nl7,N'18,N19,N.20,
$ N21,N22,N23 ,N24 ,N25,N26,N27,N28,N29,N30,

$ N31.N32,N33,N34,N35,N36,N37,N38,N39,N40,
$ N41,N42,N43,.464,N45,N46,N47,N48,N49,N50,
s N51,N52,N53,N54,N55,N56,N57 ,N58 ,N59,N60,
S N61,N62,N63,N64,N63,N66,N67,N68,N69,N70,
s N71,N72,N73,N74,N7S,N76,N77,N78,N79,N80,
S N81,.N82,N83,N84,N85,,N86,N87,N88,N89,N90,
s N91 ,N92,N93,N94,N95,N96,N97,N98,N99,N100,
S N101,Nl02,Nl03,N104,N'LO5,IN106,Nl07,,N108
COMM ON/COEF2/RE,TAU, IPRINT, ITERT,CD,AK,E
COMM.%ON/COEF3/NA23 ,NSR,LOT,NTS, INI ,NTY
COMMON/COEF4/UI ,VI ,%1,M42,N 3
GOLMMON/UVW1/I!IAX,JMAX,KMAX,JPP,KPP,JA,JII1,IK1KM

KPP=KP 1
I MAX=1 -10-1I
JMIAX=JP I- 1
KHLX=KP1- 1
CD2=DSQRT (CD)
CD4=DSQRT(CD2)
CD3CrD4*CD4*CD4
CD21=1 ./CD2

REtI=1./RE
TAUi=1 ./TAU
OPEN(UNIT=6, FILE='OUPTl')
WRITE(6, 1232)RETAU

1232 FOR'IAT(//SX,'RE =',FIO.l,5X,tTAU =',F6 .3!/)
WRITE(6,2005)(XP(fl ,11',IP1)

M21=M2-1I
M23=M2-3
Y131=M3-i
KM 1=2

F7(NA23 . EQ.IN' THEN

:TRA=3
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ITPP=2
EPE0O .000 1
ABCD=O .06
JOPTh3

C---- INITIAL PROFILES AT INLET STATION
IF(INI .EQ. 1) THEN
DO 935 K=1,KP1
DO 935 J=1,JPI
VIV=ZP(1,J,K)

UC' 1, J,K)U1
VO(1I,J,K)=VIV-DSIN(VIV)
WO(i ,J,K)=VI*DCOS(VIW)

935 CONTINUE
ELSE
OPEN(UNIT=11 ,FILE='GUESS')
END IF
I PR0O
CALL ULUTL(M1(N101),MC(N1O3),MI(N104),RE., !?1,M1)M21,ABCD)
DO 237 K=1,KP1

237 UTAUAQI31 ,K)=ABCD
C- -- - RETURN POINT OF GLOBAL SWEEPS

DO 4000 IT=1,ITERT
PRINT 2300, .43

2500 FOR.MAT( ' STARTING POINT OF TU:RBuLENT- FLOW AT -- ' 5I)
IPR=IPR+l
DO 38 .j=l,JP1
DO 38 K=1,KP1
EHP (j, K)=UI

38 CONTINUE
C---- RETUN POINT OF MLARCHING PROCESS FOR
C---- CONVECTIVE TRANSPORT EQUATIONS

DO 3000 1=2,T'A.X
jA=2
IF-(I.GE.M43) JA=JOPT
SA.M I=i A - 1
IF(IT.EQ.1) THEN
DO 103 I=l,I?1
DO 103 K1I,KP1
YP2(I ,K)=YP(I,1I,K)**2+Z-Y?(I ,JAM1 ,K)**-2?.*YP.(I ,,K*PI
s *DCOS(ZP(I,JA.'11,K)..ZP(I,1,K))
YP3(I,K)=YPCI,1.K)**2+YVP(I,JA,K)**2-)2j:.Yp(I,,)ypIJ

s *DCOS(ZP(I,jA,K)-ZP(I,1,K))
YP4(I ,K)=YPCI ,1 ,K)**2+-'YP(I ,JA4-i ,K)**2-2.*Y.P(I , ,KYYVP(i,
S *DCOS(Z?(I,jA+1,K)..ZP(Il,K)

103 CONTINUE
DO 1202 j31,P
DO 1202o K=1,KPI
U0(I,J.K)=U0(i-1,J.K)
VOCI,i'.K)=VOt(E-1,J,K)
WO , J.K) =;o ( 1-1.K)
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AKEO(I ,J,K)=AKEO(I-1,J,K)
ADSO(I ,J,K)=ADSO(I-1,J,K)
UO(I+1,J,K)=UO(I ,J,K)
VO(I+1,J,K)=VO(I,J,K)
WO(I+1,J,K)=WO(I,J,K)
AKEO(I+1,J,K)=AKEO(I ,J,K)
ADSO(I+1,J,K)=ADSO(I ,J,K)

1202 CONTINUE
IF(I .EQ. Ml) THEN
DO 1203 K=1,KP1
UO (Ml, 1,K) =0
VO(M,1,K)=O.
WO(M1, 1,K)=0.

1203 CONTINUE
END IF
END IF

C---- DEFINE THE BODY VISCOSITY DISTRIBUTION
IF(I .GE. M3) THEN
DO 149 K=2,KMAX
DO 149 J1I,JP1

149 ZUT(I,J,K)=CD*AKEO(I,J,K)*AKEO(I,J,K)/ADSO(I,j,K)
DO 150 K=2,KMAX
DO 150 J=4,JP1
IF(ZUT(I,J-1,K).LE.ZUT(I,J-2,K).AND.ZUTr(I,J-1,K).LT.
S ZUT(I,J,K)) ZUT(I,J,K)=ZUTr(I,J-1,K)

150 CONTINUE
DO 143 J=1,JP1
ZU-T(I ,J, l)=ZUT(I ,J,KNII)

143 ZLT(I,J,KP1)=ZUT(I,J,KM1)
IF(IT.EQ.1) THEN
DO 198 J=1,JP1
DO 198 K=1,KP1

198 ZLUT(I+1,J,K)=ZUT(I,J,K)
EN'D I F
END IF
IF(IT.GT.1.AN D.I.LT.M3) THEN
DO 189 J=1,JP1
DO 189 K=1,KP1
AKEO(I ,J,K)=AKEO(II,J,K)*O.8
ADSO(I ,J,K)=ADS0(i-41,j,K)*O.8

189 ZUT(I,j,K)=ZbT(I+1,J,K)".0.3
END IF

C---- RESET THE SECTION VARIABLES
DO 190 K=1,KP1
DO 190 J=1,JP1
UB(J,K)=UO(I+1,J,K)

CF (2 ) =UO ( I-, , K)

VP(J,K)=VO(i ,J,K)
VF(J,K)=VO' t-1,J,K)
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WB(J,K)=WO(I+1,J,K)
WP(J,K)=WO(I ,J,K)
WF (J, K) =WO (I-i, J ,K)
AKEB(J,K)=AKEO(I+1 ,J,K)
AKEP(J,K)=AKEO(I,J,K)
ADSP(J,K)=ADSO(I,J,K)

190 CONTINUE
C---- FA COEFFICIENTS OF MOHENTUM EQUATIONS

GALL FAUVW(M(NlO1),,M(Nl02),M(N51),M'(N52),M(N53),M(N26),
IP1,JP1,KP1,NA23,REI,TAUI)

DO 900 ITA=1,ITERA
IF(I.GE.M3.AND.I.LT.M2) THEN

C---- BOUNDARY CONDITIONS: WALL FUNCTION
XXI=XP(I+1)-XP(I)
DO 135 K=2,KIAX

IF(NA23 .EQ. 2) R=1.

YXI=YP(I+1, 1,K)-YP(I, 1,K)

S+=0*YP(I1,2,K)-YP(I1,1,K)

S+YP(I , ,K+)-YP(, 1,K))

YZT=.S5RNP(I+1,,K)-ZP(I+1,1,K-)

S+ZP(I,2,K)-ZP(I , ,K))
RZZT=0.25*R*(ZP(I+1 , 1,K+1) -ZP(I+1, 1,K-1)

S+ZPD(I , ,K+1)-ZP(I,1,K-1))
Bi1=YZT*-RZZT-YZT-,'RZET
B 12=YZT','RZXI -YXI*RZZT
B 13=Y'.IRZET-YET,,'RZXI
B22=.UI*RZZT
B23=-XXI".RZET
B32=-\XXI.YZT
B 33=X I* YET
G, 1= XI, XXI+YXI*vXIRZXI*RZXI
G22=YET*YET+RZET".RZET
G33=YZT,,'YZT+RZZT*RZZT
G 12=Y.XI*YET+RZXI*RZET
G1I3=YXI*YZT+RZXI*RZZT
G23=YETI'YZT+RZET*RZZT
G=-Gl1*G22*G33+2."-Gl2*G13*G23-G23*G23*Gll-

SG 13*G13*G22 -G 12*G 12 G33
GI=1./G
AI1=GI*(G22*G33-G23*'G23)
A22=GI*(Gll"G33-G13*G13)
A33=GI*(G1 1..G22-Gl2*G12)
A12=Gl*(G13*G23-G12*G33)
A!=~:G2G2-lG2
A23=GIr(G12**G13-G23--:Gl 1)
AJI=0S:QRT(GI)
DG11=DSQRT(G1 1)
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DG33=DSQRT(G33)
COSA=DABS (B22*YET+B32*RZET) /DSQRT(G22*G*A22)

IF(I.GE.M23.OR.IT.LT.5) GRADPQO.
U3=UP(JA ,K)
V3=O.25*(VP(JAM1 ,K)+VB(JAI1 ,K)
$+VP(JA,K)+VB (JA,K))
W3=O.25*(WP(JA,K-1)+WB(JA,K-1)
+WP(JA,K)+WB(JA,K))
Q3=4SQRT (U3*U3+V3*V3+W3*W3)
Q3XI=AJI*DG1 1*Bl1 *U3
Q3ZT=AJI*DG33* (B 13*U3+B23*V3+B33*W3)
UTAU(K)=UTAUA(I ,K)
IF(IT.EQ.1) UTAU(K)=UTAUA(I-1,K)
DO 555 IJK=1,50
DPR=GRADP/ (RE*UTAU(K)*UTAU(K)*U'TAU(K))
DPR=DMAX1 (DPR ,EPE)
DTAUO05*P
SQRT3=DSQRT(1. +DTAUI*.RE*UTAU(K)*DSQRT(YP3 (I ,K) )*COSA)
UTAUN=Q3/((DLOG(4.*(SQRT3-1.)/(SQRT3+1.)/DTAU)
S+2.*SQRT3-2. )/AK+5 .45+3.7*DPR)
IF(DABS(UTAUN-UTAU(K)).LT.1.OD-5) GO TO 556
UTAU (K)=UTAUN

555 CONTINUE
556 TAUW(K)=2.*UTAV(K)*UTAU(K)

YPP(K)=RE*UTAU(K)*DSQRT(YP2(I ,K) )*COSA
SQRT2=DSQRT( 1. +DTAU*YPP(K))
Q2=UTAU(K)*((DLOG(4.*(SQRT2-1.)/(SQRT2+1.)/DTAU)
S+2.*SQRT2-2. )/AK+5.45+3.7*DPR)
UTAUK=O .5*(UTAUA(I-1 ,K)+UTrAU(K))
AKEP(JAN1 ,K)=UTrAUK*UTAUK*CD2I
ADSP(JAI1 ,K)=UTrAUK*UTAUK*UTAUX/ (AK*DSQRT(YP2(I ,K) )*COSA)
Q2XI=Q3XI*Q2/Q3
Q2 ZTQ3 ZT-,Q2 /Q3
UP(JAMI,K)=Q2XI*XXI/DG11
VSF(I ,K)=Q2XI*YXI/DG11+Q2ZT*YZT/DG33
WSF(I ,K)=Q2XI*RZXI/DG11+Q2ZT*RZZT/DG33

155 C ONT INUE
DO 151 K=2,R=A
UTAUA(I ,K)=UTAU(K)
V2=O.5*(VSF(I ,K)+VSF(I-1,K))
HN=O.5*(YP4(I ,K)-YP2(I ,K))
HS=O.5*(YP3(I,K)-YP2(I ,K))
VP(JAN1 ,K)=(HN*V2+HS*VO(I ,3,K))/(HiN+HS)
IF(K .EQ. KMAX) GO TO 151
WP(JA,1i1,K)=0.25*(WSF(I,K)+WSF(I-1,K)+WSF(I,K+1)+WSF(I,K+

151 CONTINUE
UP(JAMI1, 1)=UP(JAH1 ,KlfiM)
UP(JA1,KPI)=UP(JA,11 ,K~!1)
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WP(JA41, 1)=-WP(JAM1 ,2)
WP(JAM1, ,KMX)=-WP (JAM 1,K"11)
AKEP (JAM 1, 1) =AKEP (JAM 1,KMaM)
AKEP(JAM1 ,KPl)=AKEP(JAM1 ,KMl)
A.DSP(JAM1, 1)=ADSP(JAMl,KMM)
ADSP(JA41 ,KPl)=ADSP(JAI1 ,KM1)
END IF
DO 304 K=1,KP1
DO 304 J=1,JPI
US (JK)=UP (JK)
VS (J, K) =VP (J, K)
WS(J,K)=WP(J,K)

304 CONTINUE
C---- CALCULATE THE STAR VELOCITY FIELD

CALL FASVEL(PR,M(Nl6) ,M(N17) ,M(N18) ,M(N19) ,M(N26) ,M(N54)
M(N55),Ml(N56),M(N57),M(N58),M(N59),M(N60),

S M (N3 2) M (N3 3), M (N34) , M(N4 1) M (N2 7 ),M(N2 8),
$ M ~~(N29) , M(N3 0) , M(N5 3) M (N3 1),
$ iP1,JP1,KPI,NA23)

C---- CALCULATE THE PRESSURE-CORRECTION FIELD
179 DO 797 J=1,JP1

DO 797 K=1,KP1
PP(I-1,J,K)=0.
PP(I ,J,K)=0.

797 PP(I+1,J,K)=0.
DO 798 ITER=1,ITPP
CALL PRESU(PP,Ml(N31),M!(NlO),M ,(Nl1),MI(N12),0,IP1,JP1,KP1)
DO 796 J=IJP1
PP (I ,J,I) =P P( I , J,K)

796 PP(I,J,KP1)=PP(I,J,KI1)
798 CONTI.NUE

C---- CORRECT VELOCITY FIELD BY PP
CALL FAVELCOR(PP,M(N40) ,M'(N43) ,M(N46) ,M(N32) ,M(N33) ,M(N3
s Ml(N54) ,M(N55),,M(N56) ,f(,N29) ,M'(N20) ,M(N21),
$ IP1,JP1,KP1,NA23)

900 CONTINUE
C---- CALCULATE THE PSEUDO-VELOCITY FIELD

CALLT FAHVEL(Of(N3 5), M(N3 6),M11(N3 7) ,"I(N38,M (N43), It(N2 6),.'1
s Ml(N58),M4(N59),M(N60),M(N16),M(N17),M(Nl8),M(N19),
S M(N27),tkl(N28),MI(N29),41(N30),M(N53),

$ IPI,JPI,KPI,NA23)
IF(I .GE. 113) THEN

C --- - CALCULATE THE TURBULENT QUANTITIES
CALL FAUW(M(Nl01),(NO2),(N1),M(N52),1(N53),M1(N26),
S IPI,JP1,KP1,0,REI,TAUI)
END IF

C ---- UPDATE TRANSPORT QUANTITIES AT UPSTREA.M STATION
DO 679 K=1,KP1
DO 679 J=1,JP1
CO ( i ,K) =(ki, K)
k"O(I ,j,K)=VP(j,K)
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WO(I,J,K)=WP(J,K)
AXEO(I ,J,K)=AKEP(J,K)

679 ADSO(I,J,K)=ADSP(J,K)
IF(I.EQ.IMAX) THEN
DO 373 K=1,KP1
DO 373 J=1,JP1
UO(IP1,J,K)=UO(IIAX,J,K)
VO(IP1 ,J,K)=VO(IMAX,J,K)
WO(IP1,J,K)=WO(IMAX,J,K)

AKEO(IP1 ,JK)=AKEO(IMAX,J,K)
ADSO(IPI,J,K)=ADSO(IMAX,J,K)
ZUT(IP1,J,K)ZUT(IMIAX,J,K)

373 CONTINUE
END IF
IF(IPR .EQ. IPRINT) THEN
WRITE(6,2)IT,I,XP(I) ,TAU

2 FORM1AT(//5X,tNO. OF ITERt.TION =',13,5X,'STATION',I3
$,SX,'X ='F7.4,5X,'TAU =',F6.3)
IF(I.LT.M.OR.I.GE-212) GO TO 2222
DO 2098 K=2,KMAX

2098 WRITE(6,2099) K,YPP(K),UTAU(K),TAUW(K)
2099 FORMAT(5X,'K=',I5,5X,'YPLUS=',E12.4,5X,'UTAU=',E12.4,5X,

S'TAUjW=' ,E12.4)
2.222 WRITE(6,3001)
3001 FORMAT(/5X,'VELOCITY U='//)

DO 3002 K=2,KN'-AX
3002 WRITE(6,2007) (UP(J,K),J=1,JPI)

WRITE(6,3003)
3003 FORM'-AT(/5X,'VELOCITY V='//)

DO 3004 K=2,KIIAX
3004 WRITE(6,2007) (VP(J,K),J=1,JP1)
C WRITE(6,3005)
C 3005 FO%%lAT(/5X,'VELOCITY W='//)
C DO 3006 K=2,IQIAX
C 3006 WRITE(6,2007) (WP(J,K),J=1,JP1)

VRITE(6,3007)
3007 FORNlAT(/5X,'TLRBULENT KINETIC ENERGY='//)

DO 3008 K=2,K4AX
3008 WRITE(6,2007) (AKEP(J,K),J=1,JP1)

WRITE(6,3009)
3009 FORMAT(/5X, 'TURBULENT DISSIPATION='//)

DO 3010 K=2,IQAX
3010 WRITE(6,2007) (ADSP(J,K),J=1,JP1)

WRITE(6,3011)
3011 FOR.'AT(/X,'PRESSU RE '/

DO 3012 K=2,KM-AX
3012 WRITE(6,2007) (PR(I,J,K),J=1,JPI)
C WRITE(6,3013)
C 3013 FORMAT(/5, Y!ASS SOURCE '/
C DO 3014 K=2,K MAX
C 3014 RITE(6,2007) (DS(J,K),J=1,JPI)
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WRITE(6,3015)
3015 FORHAT(/SX,'EDDY VISCOSITY /I

DO 3016 K=2,KMAX
3016 WRITE(6,2007) (ZUT(I,J,K),J--1,JP1)

END IF
3000 CONTINUE
2007 FORHAT(6E12.4)

IF(IPR .EQ. IPRINT) IPR=0
C---- UPDATE THE PRESSURE FIELD

CALL FAPRESS(PR,PP,M(N9),M(N31),M(N20),M(N21),M(N22),M'(N
$ 1P1,JPI,KPI,JOPT)

WRITE(6,4111) IT,M3
4111 FORIIAT(/5X,'NO. OF ITERATION =',I5,5X,'M3 =',3)

WRITE(6 ,4110)
4110 FOR.MAT(/5X,'PRESSURE DISTRIBUTION ALONG THE WALL')

DO 4009 K=2,KIAX
WRITE(6,2005) (PR(I,!,K),I=1,IP1)

4009 CONTINUE
WRITE(6 ,4112)

4112 FORIAT(/5X, 'SKIN-FRICTION COEFFICIENT')
DO 4221 K=2,KMAX
DO 4222 I=M1,M21
IF(I .LT. 43) THEN
UIT=UTL(I)':UO(I ,2 ,K)/UL(I)
ELISE
LT=UTAUA(I ,K)
EXD I F
TAUW(I)=2.*UT*UT

4222 CONT INUZ
WRITE(6,2005) (TAbW(I),I=M11,M121)

'4221 CONTINUE
WRITE(6 ,4113)

4113 FOR.4AT(/5X, 'CENTERLINE VELOCITY')
DO 4140 K=2,KMAX

I.F(IT .GT. 2) THEN
IF(UO(M13,2,K) .LT.UL(M3+1)) ',13=.M3+1
IF-(UO(M13,2,K).GT.iiO(M31,2,K)) M13=.3-1
END IF
'SFCI1-1,K)=VO(-M1-1 ,2,K)

140 CONTINUE
4000 CONTINUE

MFIT .LT. ITERT+9) GO TO 9999
DO 3001 I=1,IP1
DO 5001 J=1,JPI
DO 5001 K=1,tKP1

3001 WRITE(6,2005) UO(I,J,K),VO(I,J,K),WO(I,J,K),AKEO(I,J,K)
S ,ADSO(I ,J,K) ,?R(I ,J,K)

2005 FORMAT(6E12.4)
9999 CLOSE (11)

CLOSE (6)
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CALL EXIT
END

C
C .... SUBROUTINE ULUTL
C

SUBROUJTINE ULUTL(XP,UL,EYTL,RE,IP1,Mi,M21,ABCD)
IMPLICIT REAL*8(A-H,O-Z)

C
ABCO .33206
DO 35 I=M1,M21
XX1=0.5*(XP(I)+XF'(I±1))
REX=DSQRT (R*Y.U)

35 UTrL(I)=DSQRT(ABC/REX)
DO 33 I=19,29

33 UL(I)=1.Q
UL(f30)=O .9994
UL-(31)=0.9852
UL(32)=0.92510
UL(33)=0.8200
UL(34)=0.7050
UL(35)=0.6027
UL(36)=0 .3273
UL(37)=0.4862
ABCDO . 06
RETURMN
END

C
C .... SUBROUTINE FAUVW
C

SUBROUTINE FAUVW(XP,F1,FU,GW.DF,GG,
s IPI,JPl,KI,NA22:,RESI,TAUI)
IPLICIT Rt:AL*8(A-H,O-Z)

CO'clMON M'(1),
COMMON/UVW1/IMX.j,'IX,K."lAX,jPP,KPP,JA,JA1,I,R11,4Nt
COMMION/CVWL/A1,A2,A3,4,-.UC,VV,WW
COMIION/UW3/REFF,ZUJTP,ZCiXL ,ZUTET.Z t .-fT-,.PXl,FY2,FZ3
COMMON/NW7IR,XXI, YXI, YET, Y7-7hRZk' .ET,i ZZT
CONN'-ON/UVW8/C1 ,C2 ,CEFFI(.CEFFD
COMMON/NU IBER/N1 ,N2 ,N3 ,N4 ,N5 ,N6 ,N7 ,N8 ,N9,N1O,
s Nl1,N12,N13,Nl' ,15,Nl6,N17,Nl8,N19,N,20,
S 'NZ1 ,N22 ,N23 ,N24 ,N23 ,N26 ,N27 ,N2 8 N29 ,N30,
s N31,N32,N33,\34,N35,N36,N37.N38,N39,N4O,
S \' N'4L ,.,,.3 ,N.4,N45,N46 ,N47 ,N48 ,N49 ,N50,
s \51.N 52 ,N53 ,N34 ,N55.N56,N'37,N58,N59,N60,

s 6 .N62 .N6 .N64 ,N63 ,N66 ,M67 ,N68 ,N69 ,N70,
S N7 1 N72 ,N73 .N7-.,'N75 N76 ,N77,N78 ,N79,N80,
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N81,N82,N133,N84,N85,N86,87,,88,N ,9,N90,
N91,N92,N\93,N94,N95 ,N96,N97,N198,N99,N100,
N1O1,NlO2,N\1O3,N1O4,N\11O,N1O6,N107,NlO8

DIMENSION F"U(JP1,KPl).k3W(JP1,KPl) -.i(JP1 ,KPI) ,GG(iPl,KP1
xp(IP1),F1(IPI)

C
C- --- FA MOMENTUM EQUATION
C

IF(NA23 .NE. 0) THEN
Mm=1

C- --- X-MOMENTUM

A1=2.
A2=1.
A3=1.
A4=1.

CALL FACST(M(N1) ,M1,13, .4CNl- ) , 1(N15) ,M (?1O3) ,M(N6)
$ M(N39),Nl(N40),M(N4!),M(N4),M-(N43) ,,M(N44),
$ M(N45),M(N46),Ml(N47),M.(N48),H-(N49),M(N50),

$ ~M(,Nl00),M(Nbi.),1(tN62),M4(N63),M\(N64),M(N65),
$ MI(N66),M'(N67),M\(N68),M(N69),M(1:70),M(N71),
$ MI(N72),.'1(N73),\M(N28),M(N27),M4(N\54),M(N57),
s M(N59),MI(N1O),
s IP1,JPI,KPI,M.M,NA23,REI',TAUI)

MM=2
C- - -- Y-mOM'ENTULM

A2=2.
IX.:=FI(I)
CALL FACST(\M(NZ.'!(N13),M\(N4),I(N15),"1(N1O8),M(N6),
S M(N30.),.M(N40),Ml(N41),:1(N42),xM(N43),M(N44),
5 M(N45),M(N46),iCN\47),M(N48,x( 1449),M(N50),
S m(NlOO),M(N74),M(N75),.4(N76) ,Ml(N77),M(N!S),
$ M(N79),M4(N80),M(N81),.1(-N82),M'(N83),M(N84),
s 11'N85),Ml(N86),FU,M(N29),.\(N55),M(N60),
s M(N59),MCNl1j,
$ IP1,JP1,KP1,M!1I,NA23,REI,TAUI)
IF(NA23 .EQ. 3) THEN
MM=3

C---- Z-mOff.NTUJM
A2=1.
A3=2.
CALL FACST(M(N3),M(N13),M(N14),.M(Nl5),M(NO8),MI(N6),
S M(N39), I(N40),M(N41),M(N42),.M(N4'3),M(N44),
S i(N45), I(N46),M(N47),M(N48),Mi(N49),M(N50),
S M(NOO')41(N87),M(N88),M(N89),M(N90),M(N91),
S Ml(N92),1\(N93),\(N94),(N9),M1cN96), 1(N97),
s MI(N98),M(N99) G;W,XlN30) .l(N56),M(N58,
S M(N59),1(N12),
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IP1,jP1,KPl,M'M,NA23,REI,TAUI)
END IF

C---- CALCUTfE THE MASS SOURCE AND PRESSURE GRADIENTS
C

DO 500 J=JA.JWA
DO) 500 K=2,KIAX
DF(J)K)=FU(J,K)-FU(J-1,K)+GW(j,K)-GW(J,K-l)

500 CON'r1NUE
C

ELSE
C---- TURBULENT EQUATION

ITUVW=2
EO 697 K=1,K?±
DO 697 J=1,jP!

697 GG(j,K)0O.
M=4

C--- - K-EQUATION

Fx1=Fl(i)
Al-l.
A2=1.
A231=.
A4=CEFFK
CAL T FACST(.M(N4),Ml(N13),.M(N14),M4(N15),M,(N108),M(N6),

3 .N(N39) ,M(N40) ,I(LN41) ,M(N42) ,Ml(N43) ,,M(N44),
s M(N45) ,M(N46) ,M'(N47) ,M(N48) ,M(N49) ,M(N50),
s M(NIOO),M (N87),M(N88),'M(N89),M(N90),Ml(N9l),
s M(N92) ,M(N93) ,M(N94),,M(N95) ,.'(N96),ll(N97),
s M(N98),M(N99),GW,M(N30),4( N56),M(N58),
s M(NS- ,,M(N12),
s IPI, -PI,KPI,MML%,NA23,REI,TAUI)

CALL SVEL(Ml(N49) ,GG,MA(N4) ,Ml(N87) ,M(N88) ,M(N89) ,M(N9')'
s .N(N92) ,M(N93) ,M(N94) .\l(N95) ,.\(N96) ,\l(N9-) lk\49~

S M(N99), 1(N20,M-(N.)lj-,\M(N22),Ml(N29),
S Il,JPI,KPI, I-MVW, 1,3, 1)
.I1=5

C--D-EQUATION
A4=CEFFD
CALL FACST(M(N5) ,YI(N13) ,M(Nl4) , (Nl5) ,\(Nl08) ,YI(N6),
S M(N39) ,M(N40) ,M(N41) ,M(N42) ,M(N43) ,M(N44),

M(N45),M-(N46),YI(N4'7),Ml(N48),Mf(N49),1'(NSo),

S MI(N92) ,M(N93) ,M(N94) ,M(N95) ,Mt(N96) ,M(N97),
s M (N98) , M (N99 N , GW, M(N30) , M(.456) , M(N58),
S YI(N59 ),M(N12),

TI PI, KP1, MM, NA23, RE I .TAU-I)
CALL SV'EL(It(NSO),CG,Ml(N3),M(fN87), M(N88),YI(N89),M (N9O),M(
S M(N92), M(\93) M(.\94),M(N0,5),M(N96) M(N97),'-(N9
S M(N99) ,'(N20) *M(N.'l) MY(N22) ,M(N29),

S 1, 4? KLECW 3, 1)
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END IF
RETURN
END

C

C .... SUBROUTINE FASVEL

c

SUBROUTINE FASVEL(PR,DPDYU,DPDVYW,DPDZU,DPDZV,GG,CU,CV,CW
$ ~CUY,CWY,CUZ,CVZ,US,VS,WS,UF,BD,BU,BV,

s BW,DF,T)S,IPI,jPI,KP1,NA23)
IMPLICIT REAL*3(A-H,O-Z)
CO'MMON M(l)
COtM-MON/UVW1/ INX,JMA.X,lKNAX,JPP,KPPFjA, JAM!, I,K111,KmM
COMIMON/NUMBER/Ni ,N2 ,N3 ,N4 ,N ,.N6 ,N7 ,,N8 ,N9 ,N1O,
s N11,N12,N13,N14+,N1S,N16,\N17,Nl8,N19,N'20,
s N21 ,N22,N23,N24,N25,N26,N27,N23,N29,N30,
$ N31,N32,N33,N34,Y3-5,N36,N437,N38,N39 ,N40,
s N41,N42,N43,N44,N45,N46,N47,N48,N49,N50,
S N51,N52,N53,N54,N55,N56,N57,N58,N59,N60,
s N6!,N62-,N63,N64,N65,N%66,N67,N68,N69,N7O,
s N71,N,2,N73 :-4,N75,N76,N477,N78,N479,N180,
$ N81 ,N82 ,N8,,N84,N85,N86,N187,N88,N189,N90,
$ N91,N9-,N93,N94,N93,N96,N97,1498,N99,NlOO,
s N1Oi,NlU-2,Nl03,N'104,N1OS,N106,N107,N108
DIMENSION PR(IP1,JPI,KP1)
DIMENSION DPDYU(jP1,KPI),DPDYW(jP1,KP1),DPDZU(JPI,KPI)
DIMENSION DPDZV(JP1,KPl),GG(JPI,KPI),CUI 'JP1,KPI),CV(JP1,
DIMENSION C-W(JP1,K,01),CU:Y(JP1,KPl),Cuz(Thp,Kp1),Cvz(jp1,
DIMENSION CWY(JP1,KP1),US(JPI,KP1),VS(JPi.KP1),WS(JP1,KP
DIMENSION UF(JP1,KP1),DS(JPI,KPI),BD(JPI,KP1),DF(JP1,KPi
DIMENSION BU(JPI,KPI),BV(JP1,KP1),BW(JPI.,KPl)

C

DO 688 j~jA,JMAX
DO 688 K=2 ,1AX
DPDY'U(j,K)=O. 25*(PR(I ,J+1,K)+PR(yi-'d ,J+1 ,K)

S -PR(I,J-l,K)-PR(14-1,J-1,K))
DPDYW(J,K)=O.25*(PRCI,J+1,K)+PR(I ,J+IK+1--)

S -PR(I,J-1.,K)-PR(I,J-1,K+1))
DPDZU(lj,K)=O. 2S"-PR(I ,J,K-i)-I-PR(I±1 l,J,K4-1)
S -PR(I,J,K-I)-PR(I+1,J,K-1))

688 DPDZV(J-,K)=Q.25*(PR(I,J+1,K-Li)+PR(I,J,K+i)
S -PR(I,Ji-1,K-1)-PR(I,J,K-1))

C
C--- - CALCULATE ntE LONGITUDIAL VELOCI TY FIFTJ)

DO 330 K=2,KMAX
DO 330 -J.JMAX

330 ( ~PYU3,~U( ,)DDU K
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CALL SVEL(US,GG,M(N1),M(N61),M(N62),M(N63),M~(N64),M(N65)

M(N66),.Ml(N67),M(N68),M(N69),M(N70),M(N71),M(N7
$ M(N73),M(N20),M(N21),M(N22),M(N29),
y IP1,JP1,KPI,ITUVW, 1,1, 1)

C
C--- - CALCULATE THE RADIAL VELOCITY FIELD
C

DO 430 K=2,KIIAX
DO 430 J=JA,JI4AX

430 GG(J,K)=CV(J,K)*(PR(I,J+1,K)-PR(I,J,K))+
$C1Z (J,fl*DPDZV(J,K)
CALL SVEL(VS,GG,M%(N2),M(N74),M(N75),M(N76),M(N77),M(N78)

$ t(N79),M(N80),M(N81),M(N82),M(N83),Ii(N84),M(N8
$ MN(N86),M(N20),M(N21),M4(N22),,M(N29),
S IP1,JPI,KPI,ITUVV,1,2,3)

C
C- - -- CALCULATE THE CIRCUMFERENTIAL VELOCITY FIELD
C

IF(NA23 .EQ. 3) THEN
DO 530 J=jA,JIIAX
DO 330 K=2,KM1

530 GG(J,K)=CW(J,K)*(PR(I,J,K+1)-PR(I,J,K))+
SCWY(J ,K)*DPDYW(J ,K)
CALL SVEL(WS,GGU,M(N3),M(N87),M(N88),M(N89),M(N90),M(N91)
S M(N92),M(N93),M(N94),M(N95),M(N96),M(N97),.1(N9
S M(N99),Ml(N20),M%(N21),M(N22),M(N29),
S IP1,JPI,KPl,ITU'vl,2,3,3)

C
5O 380 J=2,JIAX
DO 380 K=2,iLNAX

380 DS(J,K)=BO(J,K)*US(J,K) -BU(j,K)*U7F(J,K)+
SBV(J,K)*VS(j,K)-BV(J-1,K)*VS(J-1,K)+BW(J,K)*
SWS(J,K)-BW(J,K-1)*WS(J,K-1) LDF(J-,K)
END I F

1000 FORHAT(110)
2000 FORMAT(6E12.4)

RETURN

C*
C
C. ... SUBROUTINTE FAVELCOR
C

SUBROUTINE FAVELCOR(PP,UP,VP,WP,US,VS,WS,CU,CV,CWBV,
s Y2,Y3,Y4,T-P1,JPl,KPl,NA23)
IMPLICIT REAL*8(A-H,O-Z)
COMMON/COEF4/ UT ,VI M Y1 1
COMMON/UVWI/ IMAX,J-MAX. KMAX,JPP,PP,JA,J I1,KM1,K1MM
DIMENSION PP(iTJLPI

DIMENSION UpUjpl,K<P1),VP(jp1,KP!),WP(JP1,KPI)
DIMENSION CS(J-PI,'K?1),VS(JPI,KPI),VS(JPIdPI)
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DIMENSION CU(JPI,KP1),CV(JP1,KP1)J,CW(JPI,KP1),BV(JP1,KP1
DIMENSION Y2(IP1,KP1),Y3(I,KP1),Y4(IP1,KP1)

C
C ---- CORRECT THE IIMPERFECT VELOCITY FIELD TO SATISFY
C ---- THE EQUATION OF CONTINUITY
C

DO 879 K=2,KMAX
DO 800 J=JA,JMAX

800 UP(J,K)=US(J,K)-CU(J,K)*(PP(I4-1,J,K)-PP(I,J,K))
IF(I.LT.M.OR.I.GE.M2) THEN
U4P(JAM1 ,K)=((Yt-4(I ,K)-Y2(I ,K))*UP(JA,K)-
S(Y3(I ,K)-Y2(I ,K))*UP(JA+1 ,K))/(Y4(I ,K)-Y3(I ,K))
IF(JAM1 GE. 2) THEN
JA±,'IJAMIi1 - 1
DO 700 J=1,JA'IM

700 UP(j,K)=UP(JAM.1,K)
END IF
END IF

879 CONTINUE
DO 801 J1!,JP1
UP (J, 1) =UP (J,K0MM)

801 UP(J,KP1)=UP(J,K11)
DO 810 K=2,KIAX
DO 811 J=JA,JI!AX

811 VP(J,K)=VS(J,K)-CV(J,K)*(PP(I,J+I,K)-PP(I,J,K))
810 VP(JPI,K)=VP(jMAX,K)*BV(jMiAX,K)/BV' JPI,K)

DO 812 J=1,JP1
VP(J, 1)=VP(J,KM1)

812 VP(i,KP1)=VP(j,,M1)
IF(NA23 -EQ. 3) THEN
DO 821 K=2,,"1
DO 821 J~jA.J)P1

821 W?(J,K)=WS(J,K)-CW(J,K)*(PP(I,J,K+1)-PP(I,J,K))
DO 822 i=l',JPI
WP(J, 1)=-WP(J,2)

822 WGj,: 1AX)=-WP(J,.Rl1)
END IF
RETURN
END

C

C .... SUBROUTINE FAJMVL

SUBROUTINE FAHiVEL(UN? ,LHT,VH,WH1,VP,GG,CEJY,CIY7,CUZ,CVZ,
s D?DYUL,DPDYW,DPDZU,DPDZV,DH,BD,BU,BV,BW
S YPL~jPl,KP1.NA23)

"IMPLICIT REAL*8(A -H,O-Z)
CMON MCI)
C'OMNON1,,/NUM BER/N1'N,N,N4.,N5.N6,N7 ,N8 ,N9 ,NlO,

S Nll,N12.N,3,N14,NI5 ,NI6,Nl7 ,Nl8,Nl9 ,N20,
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$ N2 1, N22, N23, N24, N25, N26,N27, N28, N29,N30,
$ ~N31,N32,N33,N434,N35,N\36,N37,N38,N439,N40,

N41,N42,N43,N44,N45,N46,N47,N48,N49,N50,
$ ~N51,NS2,N53,N54,N355,N56,N57,N58,N59,N60,

$ N61,N62,.N63,,N64,N65,N66,N67,N68,N69,N70,
$ N71,N72,N73,N74,N75,N76,N77,N78,N79,N80,

$ ~ N81,N82,N83,N84,N85,N'86,N87,N88,N89,N90,
S N91,N92,N93,N94,N95,N96,N97,N98,N99,N100,
$ N1O1,N102,N103,N104,N1OS,N106,N10I7,N108

T
COMMON/UWI/ IAX,JMAX,KMAX, JPP,KPP,JA, JAM 1, 1, KM1,KlfM
DIMENSION DH(IP1,JP1,KP1)
DIMENSION tHP(JP1,KPl),UW(JP1,KPl),VH(JPI,KPI),WI{(JP1,K
DIMENSION GG(JPl,KP1),CUY(JP1,KPl),CW Y(JP1,KP1),CUZ(JP1,
DIMENSION CVZ(JP1,KPl),DPDYU(JPI,KPI),DPDYW(JPI,KPl)
DIMENSIO'N DPDZV(JP1,KP1),BD(jP1,KPI),DF(JP1,KP1),DPDZUV(J
DIMENSION BU(JPI,KPl),BV(JP1,KP1),BW(JPI,KP1),VP(JP1,KP1

C
C ---- CALCULATE TIE PSEUDO-VELOCITY FIELD AND THE
C ---- ASSOCIATED MzSS SOURCE
C

DO 671 K=2,KI1AX
DO 671 j=2,JhAX

671 UWf(J,K)=UHfP(J,K)
DO 672 K=2,ICIAX
DO 672 J=JA,J.MAX

672 GG(J,K)=CUY(J,K)*DPDYU(J,K)
S+CUZ J,K)*DPDZU(J,K)
CALL HVEL(liP,GG,M(N1)p,M(N40),M(N61),M'(N62),M(N63),M(N64

$ !1(N65) ,M(N66) ,M(N67) ,M(N68) ,M(N69) ,M'(N70) ,M(,N7
S M(N72),41(N73),
S IP1,JP1,KP1,l)
DO 673 K=2,KMAX
DO 673 J=JA,,JN-AX

673 GG(j,K)=C-VZ(J,K)*DPDZV(J,K)
CALL HVEtll(VH,GG,M(N2),M(N43),M(N74-),MI(N73!),M(N76),M(N77)
s M(N78),M'(N79),M4(N80),M(N81),M(N82),M'(N83),-M(N8
S M(N85),M1(N86),
$ IPI,JP1,KP1,l)

DO 674 K=2,.v,4AX
674 VHI(,K)=VP(1,K)

IF(NA23 NE. 3) GO TO 1234
DO 676 i(=2,KM1
DO 676 j=JAJIAX

676 GG(J,K)=CWY(J,K)*DPDYW(J,K)
CALL HVELL( ,11,GG,M(N3) ,Y1CN46) ,M(N87) ,M(N88) ,!1(N89) ,M'(N90)
s M(N91),MCN92),M(N93),M(N94),M(N95),M(N96),M(N9
s M(N98),M(N99),
S IPI,jPI,KPI,2)
DO 677 j=JA,JMAXK
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677 W(J,KM.AX)=-WH(J,KM1)
1234 DO 680 J=JA,JMAX

DO 680 K=2,KMAX
680 DH(I,J,K)=BD(J,K)*UHPJ,K)-BJ(J,K)*UtF(J,K)

S+BV(j,K)*VH(J,K) -BV(J-1,K)*VH(J-1 ,K)
S+BW(J,K)*WH(J,K)-BW(J,K-1)*WH(j,K- 1)+;DF(J,K)

RSTURN
END

C
C..*.. SUBROUTINE FAPRESS
C

SUBROUTINE FrAPRESS(PR,PP,DH,DS,Y2SQ,Y3SQ,Y4SQ,XP,IP1,jP1
s ,JOPT)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON M~l)
COMMON'10N1BER/N1 ,N2 ,N3 ,\NL ,N5,N6,Ni7,IN8,N\9,NIO,
S N11,N12,N13,N414,N15 ,N16 ,N17,N18,N19,N'20,
s N21,N22,N23,N24,N\25,N26,N27,N28,N29,N30,
s N31,N32,.N33,N\34,.N35,N36,N37 ,N38 ,N39 ,N40,
S N41,N42,N43,N44,.N45,N46,N47,N48,N49,N50,
s N5l,N52,.N53,N\54,,N5N6,N57,N58,N59,N60,
S N61,N62,N63,N64,N65,N66,N67,N68,N469,N70,
S N71,N72,N73 ,N74,N75 ,N76 ,177 ,.'78,N79,N80,
s N81,N82,N83,N184,N\85,N86,N-87,N88,N\89,N90,
S N91,N92,N93,N.\94,N95 ,-N96 ,N97 ,N98,IN99,Nl00,
S 4101,Nl02,.N103,N104,N\105,Nl06,N107,Nl08

C': '/COEF4/:I ,VI ,M1 ,M12 ,M3
CO': 4/UvW1/I'LX,.ThAX,KMALX,jPP,KPP,JA,jAkMI,I,KM1l,%M
DT"MIZ.iON PR(I?1.iPl,KP1)
-DIMIENSION PP(IP1,JP1,K?1)

DIMENSION DH(IPl1 JP-i,KPI)
DIMENSION Y2SQ(IP1,KP1),Y.3SQCIPI,KPI),Y'4SQ(I?1,K?1)
DTIENSION DS(J?1,KPI),X?(IPi)

C
RFz?=0. 3
ITERP= 15
X1=X?(M3) -XP(M13-1)
X2=X? M3-;4)-:(P(M3)
D0 16c0 11l,IP1
DO 1660 J=1,jP1
DO 1660 K=1,KPI

1660 ?P(I,i,K)=PR(I,J,K)
DO 3999 TERG=1,ITELRP
DO 661 II=2,IIAX

-k=2
I(.GE. M3) jA=JOPT

;AMNi=JA- 1
77(T EQ.X3 .OR. E.EQ.(M2-1)) TH1EN
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DO 662 K=1,KP1
DO 662 J1I,JP1

662 PR(I,J,K)=(X1*PR(I+1,J,K)+X2*PR(I-1,J,K))/(Xl+X2)
ELSE
DO 666 K=1,KP1
DO 666 J=1,JP1

666 DS(J,K)=DH(I,J,K)
CALL PRESU(PR,DS,M(Nl0),M(Nl1),M -(Nl2),1,IPI,JPI,KP1)
DO 660 J=1,JP1
PR(I,J, 1)=PR(I ,J,KMM)

660 PR(I,J,KPI)=PR(I,J,KII)
END IF

661 CONTINUE
DO 664 I=2,IMAX
JA=2
IF(I .GE. M3) JA=JOPT
JAMl=JA- 1
DO 663 K=1,KPI
PR(I ,JAM1 ,K)=( (Y4SQ(I ,K)-Y2SQ(I ,K))*PR(I ,JA,K)-

66 3SONIUE 2QIK)PRIJ+,)/YSQIK-3QIK
664 CONTINUE

D6 ON401INUEP
DO 4001 J=1,JP1

4001 PR(IP1,J,K)=PR(IMAX,J,K)
3999 CONTINUE

DO 4003 I=M2,IP1
DO 4004 K=1,KP1
DO 4004 J=1,JP1

4004 PR(I,J,K)=PP(I,J,K)+RFP*(PR(I,J,K)-PP(I,J,K))
4003 CONTINUjE

END IF
RETURN
END

C
C. .... SUBROUTINE FACST
C

C

SUBROUTINE FACST(PHI,YP,ZP,F-2,F3,ZUT,UB,UP,UF,
$ VB,VP,VF,WB,WP,WTF,AKEB,AKEP,ADSP,
$ GE,D1,El,Hl,SU,

$ UMM,UIIN,UMP,UNM,UNN,UNP,UPM,UPN,UPP,
$ XX,YY,AA,BB,CC,DD,II,JJ,KK,I%,NA23,REI,T
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION YP(II,JJ,KK)
DIM'ENSION ZP(II,JJ,KK)
DIMENSION F2(II,JJ,KK),F3(KK)
DIMENSION ZL-T(II,JJ,KK)
DIMENSION PHI(II,JJ,KK)
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DIMENSION UB(JJ,KK),UP(JJ,KK),UF(JJ,KK)
DIMENSION.VB(JJ,KK),VP(JJ,KK),VF(JJ,KK)
DIMENSION WB(JJ,KK),WP(JJ,KK),WF(JJ,KK)
DIMENSION AKEB(JJ,KK),AKEP(JJ,KK),ADSP(JJ,KK)
DIMENSION D1(JJ,KK),E1(JJ,KK),SU(JJ,KK),H1(JJ,KK)
DIMENSION UMM(JJ,KK) ,UMN(JJ,KK),UMP(JJ,KK)
DIMENSION UNMf(JJ,KK),UNN(JJ,KK),UNP(JJ,KK)
DIMENSION UPMi(JJ,KK),UPN(JJ,KK),UPP(JJ,KK)
DIMENSION GE(JJ,KK),OC(JJ,KK),YY(JJ,KK)
DIMENSION AA(JJ,KK),BB(JJ,KK),CC(JJ,KK)
DIMENSION DD(II,JJ,KK)
COMION/UW/IAX,IIAX,KMAX,JPP,KPP,JA,JAM1,I ,KMP,KMI
COMMON/UVW2/A1 ,A2,A3 ,A4,UU,VV,WW
COMM ON/UVW3/REFF,ZUTP,ZUTXI ,ZUTET,ZUTZT,FX1,FY2,FZ3
COMMON/UVW4/AR ,BR, DR ,ER, FR, GR
COMM ON/UVW5/G11,G22,G33,A11,A22,A33,G,AJI
CONIMON/UVW6/Bll,B12.Bl3,B22,B23,B32,B33,SG
COMM OLN/UVV7/R,XXI,YXI,YET,YZT,RZXI,RZET,RZZT
C=?,lON/COEF7/ CF(3 ,3)

C
FACT=1.
IF(,M .GE. 4) FACT=30.
I?1=I+i
Im1=I-1
DO 200 K=2,KNllAX
IF(M.EQ.3.AND.K.EQ.K HAX) RETURN
FZ3=F3 (K)
KP1=K+1
KMI=K- 1
IF(M.EQ.3) FZ3=0.5*(F3(K)+F3(KPl))
DO 190 J=JAM1,JMAX
IF(J.EQ.JAM .ND. M.NE.2) GO TO 190
JpJ.=J+1
J11i=J -1
IF(M.EQ. 1) THEN

C --- - CALCULATE THE FINITE-ANALYTIC COEFFICIENTS AND
C ---- SOURCE FUNCTION FOR LONGITUDINAL MOMENTUM EQUATION

FY2=O.5*(F2(I ,J,K)+F2(IP1,J,K))
R=0.5*(YP(I,J,K)+YP(IP1,J,K))
vYXI=YP(IP1,J,K) -YP(T JK
YET=O. 25*(YP(IP1 ,JP1 ,K)-YP(IP1 ,JM1 ,K)
S±YP(I ,JPI,K)-YP(I,JM1,K))
YZT=O.25*(YP(IP1 ,J,KPI)-YP(IPi ,J,KN11)

S+YP(I ,J,KPl)-YP(I,J,KM11))
ZXI=ZP(IP1,J,K)-ZP(I,J,K)
ZET=O 25"-(ZP(IP1 ,JP1 ,K) -ZP(IPI ,JM1 4<)
S+ZP(I ,JPI ,K)-ZP(I ,JM,11,K))
ZZT=0.25*'(ZP(IP1,J,KPl)-ZP(IP1,J,KM\1)

ZLTP=O.5*(ZUT-(IP1,J,K>-ZUT(I ,JK))
ZUTXI=ZUT(IP1,J,K)-ZLT(Ij1,K)
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ZUTET=O 25* (ZUT(IP1,JP1 ,K) -ZUT(IP1 ,JM1i,K)

ZUTZThO 25*(ZUT(IP1 ,J,KP1) -ZUT(IP1 ,J ,niC)
$+ZUT(I,J,KPI)-ZUT(I,J,Kii1))
UU=UP(J,K)
VV=O.25*(VP(JI,K)+VB(JI,K)
$+VP(J,K)+VB(J,K))
WW=O.25*(WP(J,KI11)+WB(J,KN1)
$+WP(J,K)+WB(J,K))
ELSE IF(M.EQ.2) THEN

C- ---- CALCULATE THE FINITE-ANALYTIC COEFFICIENTS AND
C- - --- SOURCE FUNCTION FOR RADIAL MOMENTUM EQUATION

FY2O0.5*(F2(I ,JP1,K)+F2(I ,J,K))
R=O.5*(YP(I ,JP1,K)+YP(I ,J,K))
YXI0. 25*(YP(IP1,JP1,K) -YP(IM1 ,JP1,K)
$+YP(IP1,J,K)-YP(IM1,J,K))
YET=YP(I ,JP1 ,K) -YP(I ,J,K)
YZT=Q.25*(YP(I ,JP1,KP1)-YP(I ,JP ,KM1)

$+YP(I,J,KP1)-YP(I ,J,KiI1))
ZXI=O.25*(ZP(IP1 ,JF1,K)-ZP(IM1,JP1,K)
$+ZP(IP1,J,K)-ZP(ItM1,J,K))
ZET=ZP(I ,JP1,K)-ZP(I ,J,K)
ZZTQ0.25*(ZP(I ,JPI.,KP1)-ZP(I ,JP1,KN1)
$+ZP(I ,J,KPl)-ZP(I ,J,KII1))
ZUTP=O S*(ZUT(I ,JP1 ,K)-IZUT(I ,J,K))
ZUTXI=O 25*(ZUT(IP1 ,JP1 ,K) -ZUT(IM1 ,JP1 ,K)
S+ZUT(IP1 ,J,K)-ZUT(IM1,J,K))
ZUTET=ZbUT(I ,JP1 ,K) -ZUT(I ,J,K)
ZUTZT=O. 237*(ZU(I,JP1,KPl) -ZUT (I, JP1,1011)
S+ZT(I, J, KPI) -ZUT (I, J, &-,1))
UU=O 25*(U F(J,K)+UF(JP1 ,K)
S+UP(J,K)+UP(JP1 ,K))
VV=VP(J,K)
WW=0.253 (WP(J,KM1)+WP(JP1 ,KM1)
S+WP(J,K)+WP(JP1 ,K))
ELSE IF(M.EQ.3) THEN

C ---- CALCULATE THE FINITE-ANALYTIC COEFFICIENTS AND
C --- - SOURCE FUNCTION FOR CIRCUMFERENTIAL MOHENTUM EQUATION

FY2=O.5*(F2(I,J,K)+F2(I ,J,KP1))
R=Q.5*(YP(I ,J,KP14+YP(I ,J,K))
YX1=0.25*(YP(IP1 ,J,KPl)-YP(IM1 ,J,KPl)
S+YP(I?1 ,J,K)-YP(IM1,J,K))

S+YP(I,JP1,K)-YP(I ,JM1,K))
YZTLYP(I ,J,KP1)-YP(I,J,K)
ZXI=0.2S*(ZP(IP1,J,KPI.)-ZP(IM1,J,KPL)
S-;P(:?1,J,K)-zP(IM1j,JK))

ZETO.25*(,K)ZP(lJM,KP))Z~,N1K

ZZT=.* J T ,.p I -ZP( I,JK)
UT= -5~(2UTEJ<Pf+ZU7(t,J,K))
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ZTTxI=O.25*(ZUT(IP1,J,KPI)-ZUT(IM1 ,J,KP1)
$+ZUT(IP1,J,K) -ZUTr(IM1,J,K))
ZUTET-0 .25*(ZUT(I ,JPI,KPl) -ZUT(I ,JM1,KPl)
$4.ZU(I ,JP1 ,K) -ZUT(I ,JM1 ,K))
ZUTZT=ZtJT(I,J,KPI)-ZUT(I ,J,K)
UU=O.25*(UF(J,KP1)+UF(J,K)
S+UP(J,KPI)+UP(J,K))
VV=O.25*(VP(JM1,KPI)+VP(JN1 ,K)
S+VP(J,KP1)+VP(J,K))
WW=WP(J,K)
ELSE IF(M.GE.4) THEN

C- - --- CALCULATE THE FINITE-ANALYTIC COEFFICIENTS AND
C ---- SOURCE FUNCTIONS FOR TURBULENCE QUANTITIES

FY2=F2(I ,J,K)
R=YP(I ,J,K)

YZT=O.5*(YP(IF,J,K)-YP(IM,J,Kl))

ZET=O.5*(ZP(I,JP1,K)-ZP(I,JM1,K))

ZUT=ZUT(I J,JOIM,,

ZET=.*(ZUTP1-P(,J1, ZI ,JM1 ,K))
ZZT=.5*(Z(I ,J,KP)-Z T(I,J,KM))

ZUU=.5*(U(J,)+P(J,K))ZTI1,,)

VVO .5*(VP(JI,K)+VP(J ,K))
WW=O.5*(WP(J,KM1)+4P(J,K))
END I F

C
IF(NA23 .EQ. 2) R=1.
RZXI=R*ZXI
RZET=R* ZET
RZZT=R*ZZT
REFF=1 / (REI+ZUTP)
CALL EQCOE(PHI,UB,UP,UF,VB,VP,VF,WB,WP,WF,AKEB,
s AKEP,ADSP,GE,II,JJ,IG(,M,I,J,K,NA23)
DDD=DABS (DR)
D1(J,K)=DR
El (J ,K)A4*REFF*TAUI*FACT
Hl (3, K) GR
SU(J,K)=SG
IF(J .EQ. JAIl) GO TO 180
CALL COEF

UY(,K)=CF(2, 1)

UNN,(J, K) =CF (2, 2)
LNP(J,K)=CF(2,3)
UPM(J,K)=CF(3, 1)
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UPP (JK) =CF (3,3)
D=AJI*REFF*UNN(J,K)/(1.+(DDD+2*H1(J,K)+E1(J,K))*UNN(J,K)

180 IF(M.EQ.1) THEN
XX (J, K) =YY (J ,K)
YY(J,K)=Bll
AA(J,K)=D*Bl1
BB (J,K)=D*Bl2
CC(J ,K)=D*Bl3
ELSE IF(M.EQ.2) THEN
XX(J,K)=B12*tJU+B32*WW
YY(J,K)=B22
IF(J .EQ. JAMJAMI) GO TO 190
AA(J,K)=D*B22
BB(J,K)=D*B23
ELSE IF(M.EQ.3) THEN
XX(J, K)=B 13*UU+-B23*VV
YY(J,K)=B33
AA(J,K)=D*B33
BB (3,K)=D*B32
ELSE
GO TO 190
END IF
DD(I ,J,K)=YY(J,K)*AA(J,K)

190 CONTINUE
IF(M.EQ.2) YY(JPP,K)=(1.5*YP(I ,JPP,K)-O.5*YP(I,JMAXK))*

200 C ONT IN
rF(I.EQ.2 .ND. MI.EQ.1) THEN
DO 201 J=1,JPP
DO 201 K=1,KPP
DD(1 ,J,K)=DD(2,J,K)

201 X.X(J,K)=Y-Y(J,K)
END IF
IF(M.EQ.3) THEN
DO 202 J=1,JPP
YY(J, ,MAX) =YY (J, RKIP)
YY(J, 1)=YY(J,2)
AA(J, 1)=AA(J,2)
AA(J,NAX)=A(J,0cP)
DD (I, J,1) =DD (I , ., 2)
DD(I ,J,KNAX)=DD(I ,J,KMP)
XX (J, 1)=-U.(J, 2)
xx (j ,KIMA) =-XX (J ,IOIP)

202 C ONTI NUE
END IF
RETURN

CSUBROUTINE EQCOE: THE COEFFICIENTS OF F,% EQUATION
C
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SUBROUTINE EQC-OE(PHI,UB,UP,UF,VB,VP,VF,WB,WP,WF,

AKEB,AKEP,ADSP,GE,
II,JJ,KK,,M,I,J,K,NA23)

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION PHI(II,JJ,KK)
DIMENSION UB(JJ,KK),UP(JJ,KK),UF(JJ,KK)
DIMENSION VB(JJ,KK),VP(JJ,KK),VF(JJ,K()
DIENSION WB(JJ,KK),WP(JJ,KK),WF(JJ,KK)
DIMENSION AKEB(JJ,KK),AKEP(JJ,KK),ADSP(JJ,KK)
DIMENSION GE(JJ,KK)
COMIION/UVW2/A1 ,A2,A3,A4,UU,VV,WW
CON.MON/U-VW3/REFF, ZUTP , ZUI ,ZUTET, ZUTZT ,FXl ,FY2 ,FZ3
COMMON/UVW4/ARBRDRERFRGR
COLMMON/UVW5/Gl1,G22,G33 ,AIl ,A22 ,A33 ,G,AJI
COMON/UVW6/BI1,Bl2,Bl3,B22,B23,B32,B33,SG
COMMON/UVW7/R,C(XI,YXI,YET,YZT,RZXI,RZET,RZZT
COMMON/UV8/C1 ,C2 ,CEFFK,CEFFD

C
B 11=YET*RZZT-YZT*.RZET
B12=YZT*RZXI-vYXI*RZZT
B 13=YXI*RZET-Y"ElT*RZXI
B22=XXI*RZZT
B23=-XXI*RZET
B32=-)CXI*YZT
B33=X2XI*YET
Gi 1=VXI*XX14IYX1*YXI+RZXI*RZXI
G2 2=YET-YET+RZET'.RZET
G2 3=YZT*YZT.+RZZT*RZZT
Gi 2=Y.XI*YET+RZXI*RZET
G 13=YXI*YZT+RZ:(I*RZZT
G23=YET* YZT+RZEr*RZZT
G=Gl1*G22*G33+2 .*G12*G13*G23-G23*G23*GI1-
SGI3*G13*G22-Gl2*G12*G33
GI=1./G
A11=GI*(G22*G33-G23*G23)
A22=GI*(Gll 1rG33-Gl3*G 13)
A33=GI*(Gl1*G22-Gl2*Gl2)
A12=GI*(Gl3*G23-Gl2*G33)
A13=GI*(G12*G23-Gl3*G22)
A23=GI-*(Gl2*Gl3-G23*G11)
AJI=DSQRT(GI)
FX=-2.*Al1*FX1
FY=-2.*A22*FY2
IF(NA23 .-NE. 2) FY=FY+1./R/YET
FZ=-2.*A33*FZ3
ZUt:il=AJI* (B 1 1*ZUMM I+B 12*ZL-TET+B 13*ZLTZT)
ZLT2=AJI* (B22*ZLTET.B 23*ZLTZT)
ZLTJ-=Aji* (B32*ZLTrET4.B33*ZUTZT)
AP1=A4*L%-AI*ZLT1
AP2=A4*VV -A2*ZLT2
AP 3=A4*WW -A3*ZL73



AR= .5*(R.EFF*AJI*(Bl3*'API+B23*AP2+30
$H33*AP3) -FZ)
BRO . 5*(REFF*AJI*(B 12*AP1+B22*AP2+
$B32*AP3) -FY)
DR=REFF*AJI*B 1 1API1-FX
ER=DSQRT(A331)
FR=DSQRT (A22)
GR=A11

S+PHI(I,J-1,K-1)-PHI(I,J+1,K-1)-PHI(I,J-1,K+1))
IF(M .EQ. 1) THEN
DKXI=AKEB(J,K) -AKEP(J,K-,
DKB.T=O.25*(AKEP(J-41,K)+AKEB(J+1,K)-AKEP(J-1,K)

S-AKEB(J-1 ,K))
DKZT=0.25*(AKEP(J,K+1)+ AKEB(J,K+1)-AKEP(J,K-1)

S-AKEB(J,K-1))
DVXI=0.5*(VB(J,K)+VB(J-1,K)-VP(J,K)-VP(J-1,K))
DV'ET=0.5*(kVB(J,K)+VP(J,K)-VB(J-1,K)-VP(J-1,K))
DVZT=O.125*(VB(J,K+1)+VB(J-1,K+1)+VP(J,K+1)

$+VP(J-1,K+1) -VB(J,K-1)-VB(J-1,K+1)-VP(J,K-1)
s-VP(J-1,K+1))
DWXI=0.5*(WB(J,K)+WB(J,K-1)-WP(J,K)-WP(J,K-1))
DWET=0. 12S*(WB(J+1,K)+WB(J+1,K-1)+WP(J+1,K)
S+WP(J+1,K-1)-WB(J-1,K)-WB(i-1,K-1)-WP(J-1,K)
S-WP(J-1,K-1))
DWZT=0 .3*(WB(J,K)+WP(J,K)-WB(J,K-1)-WP(J,K-1))
DKX=AJVI (Bl1 *DKI+B 12*DKET+B 13*DKZT)
DVX=AJ'I*(B11*DVXI+B12*DVET+B 13*DVZT)
DW'X=AJI* (B 1 *DWXI+B 12*DWET+B 13*DWZT)
SG=SS+REFF*( 2./3 .*DKX-ZU'T2*DVX-ZUT3*DWX)
ELSE IF(1 .EQ. 2) THEN
DKET=-AKEP(J+1 ,K)-AKEP(J,K)
DKZT=0 .25*(AKEP(J+1 ,K+1)+AKEP(J,K+1)-AKEP(J+1,K-1)
S-AKEP(JK-1))
DUET=0.S*(UP(J-I1,K)+UTF(J+1,K)-UP(J,K)-UF(J,K))
DUZT=0. 125*(UP(J+1 ,K+1)+UP(J,K+1)+UTF(J+1,K+l)
S+UF(J,K+1.)-UP(J±1,K-1)-UP(J,K-1)-U-F(J+1,K-1)
$-UF(J,K-1))
DWET=0.S*(WP(J+1,K)-WP(J,K)+WP(J+1,K-1)-WP(J,K-1))
DWZT=0.5*(WP(J,K)+WP(J+I,K)-WP(J,K-1)-WP(JI1,K-1))
DKY=AJI* (B22*DKET+B23*DKZT)
DUY=AJI* (B22*DTJET+B23*DUZT)
DWY=AJI*( B22*DWELT+B23*DWZT)
DWZ=AJI* (B23*DWET+B33*DWZT)
SG=SS+REFF* (2.13. *DKY -ZUT 1*D-Y - ZUT3*DWY)
IF(NA23 ..NE. 2) SG=SG+REFF*(ZbUT3*WW/R-

S'wW*WW/R)-./R*DWZ+VV/R/R
ELSE MMC .EQ. 3) TH(EN
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DKETO-.25*(AuP(J1,K+1)-AKEP(J-1,K -')+AKEP(J+1,K)
$-AKEP(J-1,K))

DKZT=.AKP (J, K+l) -AKEP (J, K)
DUET=-0.125*(UB(J+,K)+JB(J+1,K-1)+UP(J-1,K)

S-UP(J-1,K-1))
DUZT=0.5*(UP(J,K+1)+UTF(J,K+1)-UP(J,K)-YF(J,K))
DVE-T=0.5*(VP(J,K+1)-VP(J-i.,K+1)+VP(J,K) -VP (J-1,K))

DKZ=JI* (2*DK+33*DKZT) V~,KI)VPJ,
DKZ=AJI* (B32*DrJET+B33*DKZT)
DVZ=AJI* (B32*DVIET+B33*DVZT)

SG=SS+REFF*(2 ./3.*DKZ+I#V*VV/R-ZUT1*DUZ-ZUT2*(DVZ-
SWW/R) -ZUT3*2 .*VV/R) -2. /R*DVZ+WW/R/R
ELSE IF(M .EQ. 4) THEN
DEJXI=UP(J,K) -UT-(J,K)
DUET=0.25*(UP,J+1,K)+UF(J+,K)-UP(J-1,K)-1Th(J-1,K))
DUZT=0.25*(UP(J,K+1)+UTF(J,K+1)-UP(J,K-1)-U-F(JK-1))
DVXI=O.5*(VP('J1,K)+VP(J-1 ,K)-VF(J,K)-VF(J-1,K))
DVET=VP(J,K)-V?(J-1 ,K)

DWXI=0.5*(WP(J,K)+WP(J,K-1)-WF(J,K)-WF(J,K-1))
DWETO . 2S*(WP(J+I ,K)+WP(J+1 ,K-1) -WP(J-1 ,K) -WP(J-1 ,K-1))
DWZT=WP(J,K)-WP(J,K-1)
DUX=AJI*(B1 1*DtJXI+B 12*DUET+B13*DUZT)
DVX=AJI* (Bl1 1DVXI+B 12*DVET+B 13*DVZT)
DWX=AJI* (B]. *DWXI+B 12*DWET+B 13*DWZT)
DUY=AJI* (B22*DUET-B23*DUZT)
DVY=AJI* (B22*DVE-t+B23*DVZT)
DWY=AJI* (B22*DWET+B23*DWZT)
DUZ=AJI* (B32*DUE-T+B33*DUZT)
DVZ=AJI* (B32*DVET+1B33*DVZT)
DWZ=AJI* (B32*DWET+B33*DWZT)
GE (J ,K)=Z1'TP* (2 .*DUX*DUX+2 . DVY*DVY+2 . DWZ*DWZ

S+( DUZ+DWX)*2+ (DVXv+DUY)**2-+(DVZ+DW-Y)**2)
IF(NA23 NE. 2) GE(J ,K)=G.E(J ,K)+ZUTrP*(2.*(DWZ+VV/R)**2--
S2.*W*W DZ+V-VR- 2-DZDY*2
SG=SS-GEFFK*REFF*(GE(i,K)-ADSP(J ,K))
ELSE IF(I .EQ. 5) THEN
SG=SS-CEFFD*REFF*(C1*GE(J,K)*AkDSP(J ,K) -
SC2*ADSP(J,K)*ADSP(J,K) )/AKEP(J,K)

END IF
RETURN
END

C 6 A.....*

C SUBROUTINE SVEL IS USED TO SOLVE FA ALGEBRAIC EQUATION,1
C
C

SUBROUTINE S LUGUOD,1HU
S n N UMMCM, I P , ,unX,N, N P ,
s UPM,UPN,UPP,Y2,Y3,Y'+BV,
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IMPICT REAL*8(A-H,O-Z)

DIMENSION UO(II,jj,K)
DIMENSION ES(JJ,KK) ,GG(jJ,KY)
DIMENSION Dl(Ji,IC4K),El(JJ,KK),H1(JJ,KK),SU(jJ,KK:)
DIMlENSION UMM(jJ,KK),UI'(jJ,KK),UMP(JJ,KK)
DIMENSION UNM (J3,KK) ,UNN(JJ, KQUNPJW, KK)
DIMENSION UP!.(.JJ,.K),UPN J, K)Lipp ( T ,.U
DIMENSION BV(JJKK),Y2(II,KK),Y3(II,KK),Y4(II,K.)'
DIMENSION AA(99),BB(99),CC(99),DD(99),T(k99)
COMIlON/UVW/i4IAX, j-,AX, M, JP1, KP1, JA, JAM1, 1,KM1, KM
CONMON/COEF4/ UI ,VI ,M1 ,M2 ,M3

C
C .... CALCULATE THE LONGITUDIAL VELOCITY FIELD
C

DO 303 ITE-R=1,ITULVW
DO 330 K=2,K'IAX
IF(M.EQ.2 .AND. K.EQ.KMAX) GO TO 330
DO 320 J=JA,JMHAX
DDD=DABS(DI(J ,K))
UU=UO(I-I ,i,K)
IF(DI(:J,K).LT.O.) UL'40(I+1,J,K)
AAf T)=-C_4(,
BB(J)=i.+(DDD+2*H1(J,K)+E1(jK))kUNN(J,K)
CC(J)=-UP.N(J ,K)

320 DD(J)=UNP(J,K)*US(j,K+1)+UNM(J.K :US~kj ,K-1)
S+UPP(J ,K)*US(J+1 ,K+1)+UPMI(J,K)*U (J+1 ,K-1)
S+UMP(J,K)I*S(j-'1,K.fl+LTM(J,K):.US(J-1,K-1)
S +UNT(K) - (DDD*UC+;E 1(T ,K)*UO( I,JK)-SU(J,K)

S-BB(J)*GG(J,K)
DD(JA)=DD(JA)-AA(JA)*US(JAMI1,K)
DD(JMAX)=D(JMiAX) -CC k TIAIX) *US(UP 1, K)
CALL TRIDAG(JA,JIIAX,AA,BB,CC,DD,T)
DO 310 J=iA,JMIAX

310 CS(J,K)=TI(J)
330 C ONI NU E

DO 333 K=2,LWiX
IF(L .EQ. 1) THEN
US(JP1 ,K)=iI
ELSE IF(L -EQ. 2) THEN
US(JP1.,K)=US(J AX,K)*BV(Jm-aX,K)/BV(jP1 ,K)
ELSE IF(L -EQ. 3) THEN
US(JP1 ,K)=US(JM,K)
ENrD IF

333 CO0N\IN1UE
:F(.LTM1 OR. 1.GE.M2) THEN

00 33Z. K=-, KIAX
F(N .EQ. 1) TIHEN
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$ *US(JA+i,K))/(Y4(I,K)-Y3(I,K))
ELSE IF(N .EQ. 2) THEN

ELSE IF(N .EQ. 3) THEN

END IF
34CONTINUE

END IF
IF(M .EQ. 1) THEN
DO 331 J1 , JP1
US (J, 1)=Us (J, MM)

331 VS(J,KP1)=US(J,KM1j)
ELSE IF(1 .EQ. 2) THEN
DO 337 J=1,JPI
US(J, 1)=-'VS(J,2)

332 U;S(J,KIAX)=-US(%'J,KM1)
END IF

303 CONTINU-E
RETURN
END

CCALCULATE THE PSEUDO-VELOCITY FIELD

SUBROUTINE ITVEL(UH,GG,U0,UP,D1,El,Hl1,SU,
$ UM!1,UMN,UIP,UNM,UNN,UNOP,

S UPM,UPN,UPP,II,JJ,KK,M)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION UO(II,Jj,KK)
DIMENSION UP(JJ,KK),UT(JJKK),SU(JJ,KK)
DIYENSION GG(JJ,KK).Dl(JJ,Ka),El(JJ,KK),H1(JJKK',
DIMiENSION UM(JJ, K) '.iAN(JJ, KK) , UMP (jJ,KK)
DIMENSION UNIM(JJ, KK ,UNN(JJ, KK) , UNP (JJ, KK)
DIMENSION UPM'(JJ,L-K) ,UPNq(JJ,KK) ,UPP(JJ,KX)
COXYON/U1l~/'irMAX,JMAXQIA,JPI ,KP1 ,JA,JAM1 , I ,KM1 ,Kml

C
DO 672 Kr-2,MA?
IF(4.7rq.2 AM),. K.EQ.K.MAX) RETURN
DO 672 JJ,1.
DDD=DABS(Dl(J ,K))
UU=UO(I-1,J,K)
IF(D1(J,K) LhT. 0.) (U=UO(1+1,J,K)

672 Uli(J,K)=(Ur.1N(J,K)*UP(JT-1,K)+UPN(J,K)*UP(J4I,K)
S+UNP(J,K)*UP(J,K+1)+UN1;M(J,K)*UP(J,K- 1)
S+UPP(J,K)*CP(J+1,K+1)+UPLI(jK)*UP(J+1,K-1)
S+UM-.P(J,K)*UP(J-1 ,K+1)+UMMi(J,K)=LiP(J-1 ,K-1)
S-U\N(j,K)*(DDD*CU+H1(J,K)*(UO(1-1,J,K)+UO(1+1,J,K))

IRETURN
END
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C
C SBOTN RSUEEUTO
C S B O T N R S U E E U T O
C

C URUIVEPEUPDSCCC,,1JK
SUBROUTN RESU*(PH,BCBVBC,,,JK
DIMELICITN REL(IH,O)
DIMENSION PH(IJJ,KK)
DIMENSION DHS(IIJJ,KK)
DIMENSION BCU(II,JJ,KK)
DIMENSION BCV(II,JJ,KC)
DIMENSION BC(II),JJKX),C9)D()T9
DIMENON AWIIA(99,BB(99),(99,DD(99,T(99),,K1,
DOM6ON/UW1/IMAXJIXKAPP JA1 ,MM
DO 655 J=J,JAX
DO 6JJABC(,JAXK
AA(J)=-BCV(I-1,J,K)*BC(,K)CVIJ1)
B+BC( JCU(I-1 ,J,K+BCI ,J,K) V I J 1 K
S+C( JK)±C(IJ,J,-)BW()J
CC D(J)=-BCV(I ,J,K)*(1,,)BUI1JKP11,',)

660DDJ)C(I,J,K)*P(IK+1,)+BU(I,K)*P(I,K-)DJ,K)

DD(JA)=DD(JA)-AA(JA)*P(I ,JAM1,K)
DD(JMAX)=DD(JMAX)-CC(JMAX)*P(I ,JP1,K)
CALL TRIDAG(JA,JNA.X,AA,BB,CC,DD,T)
DO 671 J=JAJM.AX

671 P(I,J,K)=T(J)
653 CONTINUE

RETURN
END

C
C ... .. .. ... .

C SUBROUTIN"E COEF IS USED TO CALCULATE THlE FA COEFFICIEN TS

C
SUBRO(7TINrE COEF
IMPLICIT REAL*8(A-H,O-Z)

C
COMIION/COEF7/CF(3 ,3)

COIMON/b-VW4/AR,BR,DR,ER,FR,GR
DATA %MAX,E.MAX,C1,EPE,PI /12,20.,1.,1.D-5,3.1415926535897

C
C

HX=1./ER
HY=1./FR
AR=AR/ER
BR=BR/FR
ITF(DABS(AkR).LT .E-PE)AR=DSIGN(EPE,AR)
IF(DABS(BR).LT.E-PE)BR=DSIGN(EPE,BR)
ER2=ER -ER
F7R2=FR*FR
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AB2=AR*AR+BR*BR
AI{=AR*HX
AK=AR*1IY
BH=BR*HX
BK=BR*HY
DAHf=DABS (AH)
DBK=DABS (BK)
AH2=AH*AI
BK2=BK*BK

C
IM1=O

IF(DAH.GT.EXMAX) IM1l
IF(DBK. GT. EMAX) JM=2
MIT=IM+JM+1
GO TO (1,2,3,4), MT

C
1 EPAH=DEXP(AH)
EPBK=DEXP(BK)
EAHi=1 . /EPAH
EPBKI=1 ./EPBK
COSHA=O .5* (EPAH4-EP.AHI)
COSHB=O .5* (EPBK+EPBKI)
COTHA=2 .*COSHA/ (EPAH-EPAHI)
GOTHB=2 .*COSHBI (EPBK-EPBKI)
AKCTHA=AK*COTHA
BHCTHB=BH*COTHB
PWR=1.
IF(}X .GT. HY) GO TO 11
EX2=0.
DO 10 II11, M
ZA=(II0.5)*PI
ZA2=ZA*ZA
PWR= -PWR
OABK=OSQRT(AB2+ZA2*ER2 )*1{Y
IF(DABK .GT. 100.) GO TO 9
AB=DEXP (DARK)

10 EX2=EX2-PWR*ZA/((AB+1 ./AB)*(AH2+ZA2)*(AH2+ZA2))
9 PA=8 .*AH*COTHA*COSWA.COSHB*EX2

PB=1 .+BHCTHB/AKCTHA*(PA-1.)
CF(2,2)=0.5*ffX/(AR*COTHA)*(1. -PA)
GO TO 100

11 EY2=O.
DO 12 1 I=1,MAX
ZA=(EI-0.5)*'PI
ZA2?=ZA*ZA
PVR= -PWR
DABH=DSQRT(AB'4+ZA2*-FR2 )*HX
i.(OABH.GT. 100.) GO TO 19
AB=OEXP(DABH)
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12 EY2=EY2-PWR*ZA/((AB+1. /AB )*(BK2+ZA2)*(BK2+ZA2))
19 PB=8 .*BK*COTHB*COSHA*COSHB*EY2

PA1I.+AKCTHA/BHCTHB*(PB-1.)
CF(2,2)=0.5*HY/(BR*COT{B):(l. -PB)
GO TO 100

C
2 EPBK=DEXP(BK)
EPBKI1. /EPBK
COSHB=0.5* (EPBK+EPBKI)
COTHB=2 . COSHB/ (EPBK-EPBKI)
COTHA=DSIGN(C1 ,AR)
AKCTHA=AK*COTHA
BHCTHB=BH*COTHB
PW'R= 1.
IF(AKGTHA.LT.BHCTHB) GO TO 22
EX2=0.
FX2=0.
DO 20 11=1,MAX

ZA2=ZA*ZA
PWR=-PWR
PZ=PWR*ZA/ ((AH2+ZA2)*(AH2+ZA2))
FX2=FX2 -PZ

DABK=DSQRT(AB2+ZA2*ER2 )*HY
ABl.
IF(DABK.GT. 100.) GO TO Z0
EPABK=DEXP(DABK)
ABI. -COSHB/ (EPABK+1 ./IEPABK)

20 EX2=EX2-PZ*AB
PA1. -EX2/FX2
PB=1 .+BHCTHB/AKCTHA*(PA- 1..)
CF(2,2)=0.51{Y/(BR*COTHB)*(l. -PB)
GO TO 100

22 EY.2=O.
DO 23 1,A

ZA2=ZA*ZA
PWR= - PWRZ
DABH=DAH-DSQRT(AB2+ZA2*FR2 )*HX
IF(DABS(DABH).GT. 100.) GO TO 29
AB=DEXP (DABH)

23 EY2=EY2-PWnR*ZA*AB/ ((BK2+ZA2)-.*(BK2+ZA2))
29 PB=4. *BK*COTHB*COSHB*EY2

PA=. .+AKCTHA/BHCTHB*(PB- 1.)
CF(2,2)=0.5.'HY/(BR*COTHB)*(1. -PB)
GO TO 100

C
I E-PAH=DE7P(AH)

EPAHI=1. /EPAkH
'COSHA=0.5-~( E?.AH+EPAH I)
COTI{A=2 . *C0SHA/ (7PAH-EPAHI)
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COTHB=DSIGN(C1 ,BR)
AKCTHA=AK*COTIA
BHCTHB=BH,'COTHB
PWR=l.
IF(AKCTI{A.GT.BHCTHB) GO TO 32
EY2=0.
FY2=0.
DO 30 II=1,MvAX
ZA=(II-O 5)*PI
ZA2=ZA-ZA
PWR-PWR
PZ=PWR*ZA/(C(BK2+ZA2)*(BK2+ZA2))
FY2=FY2 -PZ
DABI{=DSQRT CAB 2+ZA2*FR2 ) *H
ABIl.
IF(DABH.GT. 100.) GO TO 30
EPABH=DEXP (DABH)
AB=1.-COSHA! (EPABH+1 ./EPABH)

30 EY2=EY2-PZ*AB
PB=1. -7Y2/FY2
PA1 . +AI(CTHA/Bi{CTHB*(PB- 1.)
CF(2,2)=0.5*H./(BR"COTHB)*(1. -PB)
GO TO 100

32 EX2=0.
DO 33 II=1,,IAX

ZA2=ZA*ZA
P 'R=- PWR
DABK=DBK-DSQR(AB2+iZA2*ER2 )*liY
IF(DABS(DABK).GT.100.) GO TO 39
AB=DEXP (DABK)

33 E-X2=EX2-PW"R*ZA-AB/ C (AH2+ZA2)*(AH2+ZA2))
39 PA=4. *AH*COThA*COSHA-EX2

PB=1 . 4BHCTHB/AKCThA* (PA-i.)
CF(2,2)=0.5*HY./(BR*COTHB)*C1. -PB)
GO TO 100

C
4 DAK=DABS(AK)

DBH=DABS (BR)
COTHA=DSIG',N(CI ,AR)
COTI{B=DSIGN(C1 ,BR)
IF(DAK.LT.DBH) GO TO 41
PA=O.
PB=1.-DBH/DAK
CF(2 ,2)=C. 5*IX/ CAR*COTHA)
GO TO 100

C
41 ?B0O.

?A1. -DAK/DBI{
CF(2 ,2)=0. 5*HXI (BR*COTHB)

C
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100 QI. -PA-PB
TANIA=1. /COTHA
TANHB=1./COTHB
BE=0.5*(l.-TANHA)
BW=0.5*(1.+TANHA)
BNO0.5*(l.-TANHB)
BS=0.5*(j .+TANHB)
CF(1, 1)=BW*BS*Q
CF( 1, 3)=BEBS*Q
CF(3, 1)=BW*BN*Q
CF(3 ,3)=BE*BN*Q
CF(1 ,2)=BS*PA
CF(3 ,2)=BN*PA
CF(2, 1)=BW*PB
CF(2 ,3)=BE*PB

C
RETURN
END

C

C SUBROUTINE TRIDAG TO SOLVE ALGEBRAIC EQUATIONS
C SIMULTANEOUSLY FOR EACH ROW OR COLOUM

ch*

C
C

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
IMPLICIT REAL*8(A-H,O-Z)
DIMIENSION A(99),B(99),C(99),D(99),V(99),BETA(99),GAH4A(9
BETA(IF)=B(IF)

IFP1=!F+1
DO 1 I=IFP1,L

1 GAMMA(I)=(D(I)A(I)*GA4A(I-1))/BETA(I)
V(L)=GAMIA(L)
LAST=L- IF
DO 2 K=1,LAST
I=L-K

2 V(I)=GA MA(I)-C(I)*V(I+1)/BETA(I)
RETURN
END

C ...... .. .... . ... .**** ~*****~***.**
C
C .... THIS PROGRAM 13 USED TO GEN'ERATE THE BODY-FITTED
C .... COORDINATES ON THE AFTERBODYI
C

IMPLICIT REAL*8 (A-H,O-Z)
COMMON/GEOl! XP(62),YP(62,20,4)
COtON/GEO2/ ZP(62 .20,4)
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COMMON/BODY2/ Fl(62),F2(62,20),F3(4),GE(20,4)
DIMENSION AA(90),BB(90),CC(90),DD(90),T(90)
DIMENSION FA(20), FB(20)

C
IMAX=62
JMAX=2O
KIM= I
I,1iAHIMAX-1I
JMAM=JMAX- 1
KZIAIIKnAX- 1
EPE=1.D-5
A=- .05
A2=0.2
NA=15
NB=42
NX15s
NX2=40
SX3=40

C
PI=3. 141592653589793D0
EPS=1.D-12

C
C .... X-DIRECTION
C

AX3=NX3
C

DO 50 I=10,IM.AX
Zl-I/AX3

C
IF(Z1 .LE. 0.5) F1(I)=Al
IF(Z1 .GT. 0.5 .AND. Zi .LE. 1.)GO TO 20
IF(Z1 .GT. 1. .AND. Zi .LE. 1.2) GO TO 30
IF(Zl .GT. 1.2) F1(I)=A2
GO TO 50

20 PIZ=PI*Z1
FL (I )=A1*DSIN(PIZ)
GO TO 50

30 PIZ=PI*Zl
Fl (I)=-A2*DSIN(PIZ)

5O CONTINUE
C

DO 55 1=1,5
55 Fl(I)=-Fl(NX2+I-5)

DO 56 1=5,9
56 F1(I)=-F1(10-1)

C
DO 60 1IJMAM
AA(I)=-DEXP(F1(l))
CC(I)=l./AA(I)
BB(I)=-(AA(I)+CC(I))

60 DD(!)=O.DO
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C

XP(NX1)=0.4446D0
XP(NX2)=1 .DO
Nl=NX1+1
N2=NX2-1

DD(N1)=DD(N1) -AA(Nl)*XP(NX1)
DD(N2)=DD(N2) -CC (N2)*XP(N"X2)

C
CALL TRIDAG(Nl,N2,AA,BB,CC,DD,T)

C
DO 70 I=N1,N2

70 XP(I)=-T(I)
C

DO 72 I=NX1,2,-1

72 CONTINUE
C

DO 74 I=NX2,IMAM

74 CONTINUE
C
C .... Y-DIR.ECTION
C
C .... READ THE BODY SURFACE FROM THE MEBASUREMENTS
C

OPEN(UNIT=S ,FILE=' AFTERBODY1t )
READ(5,300)(YP(I,1,1) ,I=1,IMAX)
CLOSE(S)

C
DO 150 I=1,IMAX
YP(I,JMAX,1)=1.0

150 C ONT INUE
C

DO 160 J=3,JMAM
FB(J)=O. 15
FA(J)=O. 20

160 CONTINUE
FB(2)=-O. 15
FB(3)=O.
FA (2) =- . 20
PA (3) =0.

C
DO 10 J=2,JMAM
EB=DEXP(FA(J))
EBRI. .DO/EB
PSN=EB+EBR
EB2=EB*EB
EB2R= . /EB2
PPSN=2 .*B/ (EB2-EB2R)

C



AA(J)=-EB 314

BE (J)=PSN
CC(J)=-EBR

10 DD(J)=O.DO
C

DO 170 1=1,IMAX
DD(2)=-AA(2)*YP(I, 1,1)
DD(JM1AM)=-GC(JMA11y*YP(I ,JIIAX, 1)

C
CALL TRIDAG(2,JMA!?,AA,BB,CC,DD,T)

C
DO 379 J=2,JIAM

379 YP(I,J,1)=T(J)
170 CO.NTINUE

C
DO 1000 ITY=1,250
sOS=O.
DO 200 I=2,IMAM
DO 210 J=2,JM1A,

YX.I=.5*(YP(I11,J, 1)-YP(I-1,J, 1))
YET=.S*(YP(I ,J+1, 1)-YP(I ,J-1, 1))
AJI=XXI*YET
G11=(YET"*2)/AJI/AJI
G2?2=(XXI**2+Y.XI**2) /AJI/AJI
G12=-YXI*YET/AJI/AJI
IF(I .LT. NA)THEN
F2(I ,J)=FA(J)
ELSE IF(I .GT. NB) THEN
F2(I ,J)=FB(J)
ELSE

END IF

B=F2(I ,J)
IF(DABS(B) .LT. EPE) B=DSIGN(EPE,B)
EPA=DEXP(A)
EPB=DEXP (B)
EPAI=1./EPA
EPBI1 /EPB
COSHA=. *(EPA+EPAI)
COSHB=. 5*(EPB+EPBI)
CSCHA=2./ (EPA-EPAI)
CSCHB=2. /(EPB-EPBI)
COTHA=C-OSHA*CSCHA
C=rHB=COSHB:C SCUB
AB=G22*B*CSCHB
AA(J)=-AB*'EPB
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BE (J)=2 *(G11*A*COTHA+G22*B*COTHB)
CC (J)=-AB*EPBI

$ YP(I+1,J-1,1))+Gll*A-CSCHA*(EPA*YP(I-1,J,l)
$ +EPAI*YP(I+1,J,1))

210 CONTINUE
DD(2)=DD(2)-AA(2)*YP(I,1,1)
DD(JMAM)=DD(JMAI) -CC(JMAM)*YP(I ,JMAX, 1)
CALL TRIDAG(2,JMAII,AA,BB,CC,DD,T)
DO 220 J=2,JMAN
YT=-T(J)-YP(I ,J, 1)
IF(DABS(SOS) .LT. DABS(YT)) SOS=YT

220 YP(I,J,1)=1.8*T(J)-0.8*YP(I,J,1)
200 CONTINUE

C
IF(DABS(SOS) .LT. 0.00001) GO TO 999
DO 666 J=2,JIAM
YP(IvM,J, 1)=YP(IMAX-1,J, l)-YP(IVAX-1, 1, 1)+YP(IAX, 1, 1)

666 CONTINUE
C

WRITE(1,222) ITY, SOS
1000 CONTINUE
C

999 DO 533 1=1,IMAX
P2(1, 1)=0.
P2(1 ,JH-AX)=P2(I ,JAi~iA)

555 C ONT INUE
C

DO 444 J=1,JMAX
F2(1,J)=F2(2,J)
F2 (IMA, J)=F2 (IMM, J)

444 CONTINUE
C
C

OPEN(UNIT=6 ,FILE=' PHYSBODY-)
WRITE(6,300)(XP(I) ,I=1,IMAX)
WRITE (6,300) (Fl (I), I=1, IMX)
DO 330 J=1,19
WRITE(6,300)(YP(I,J,1) ,I=1,1IAX)
WRITE(6,300)(F2(I,J) ,I=1,IMAX)

550 CONTINUE
CLOSE (6 )

300 FORMAT(5E14.7)
700 FORMAT(lX,6Il0)
222 FORMAT(110,E12.4)

CALL EXIT
END

C

C SUBROMTNE TRIDAG TO SOLVE ALGEBRAIC EQUATIONS
C SIMULTANEOU;SLY FOR EACH ROW OR COLOUN



SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(90),B(90),C(90),D(90),V(90),BETA(90),GAMMA(9
BETA(IF)=B(IF)
GAM,11A(IF)=D(IF)/BETA(IF)
IFPI=IF+1
DO 1 I=IFP1,L

1 GAMMA(I)=(D(I)-A(I)*GAMMA(I-1))/BETA(I)
V(L)=GAIIA(L)
LAST=L-IF
DO 2 K=1,LAST
I=L-K

2 V(I)=GAkfi,A(I)-C(I)*V(I+1)/BETA(I)
RETURN
END

C
C .... THIS PROGRAM1 IS USED TO GENERATE THE BODY-FITTED
C .... COORDINATES ON THE F-57 BODY
C

IPLICIT REAL*8 (A-H,O-Z)
COMIION/GEOl/ XP(62),YP(62,20,4)
COMMON/GEO2/ ZP(62,20,4)
COM.MON/BODY2/ Fl(62),F2(62,20),F3(4),GE(20,4)
DI'MNSION AA(90) ,BB(90) ,CC(90) ,DD(90) ,T(90)
DIMEENSION FA(20), FB(20)

C
I"IAX=62
JHAX=20
0_4_X =
1 MAM =IMAX - 1
.hAI=JiI.AX - 1
Kl1AMK~iX-
EPE= . D-5
A=- .01
A2=0.2
NA=15
.NB=42
NX 1=5
S'X2=40
\'X3=40

C
OPE.N(LUNIT=6, FILE='PHYSBODY-)
91=3. 141592653589793D0
EPS=I.D-12

C
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C .... X-DIRECTION
C

AX3=NX3
C

DO 50 I=10,IKAX
Z11I/AX3

C
IF(Zl .LE. 0.5) Fl(I)=A1
IF(Z1 .GT. 0.5 .AND. Zi .LE. 1.)GO TO 20
IF(Z1 .GT. 1. .AND. Zi .LE. 1.1) GO TO 30
IF(Z1 .GT. 1.1) F1(I)=A2
GO TO 50

20 PIZ=PI*Z1
F1(I)=A1*DSIN(PIZ)
GO TO 50

30 PIZ=PI*Z1
Fl (I)=-A2*DSIN(PIZ)

50 CONTINUE
C

DO 55 I=1,5
55 Fl(I)=-F1Q4,X2+I-5)

DO 56 I=5,9
56 F1(I)=-F1(10-I)

C
DO 60 I=2, IMAM
AA(I)=-DEXP(Fl(I))
CC(I)=l./AA(I)
BB(I)=-(AA(I)+CC(I))

60 DD(I)0O.DO
C

XP(NX1)=0.4446D0
XPCN.X2)=l.DO
N l=.Nx 1+1
N2=NX2- 1

DD(N1)=DD(Nl) -AA(Nl)*XP(NX1)
DD(,N2)=DD(N2) -CC(N2)*XP(-NX2)

C
CALL TRIDAG(N1,N2,AA,BB,CC,DD,T)

C
DO 70 I=N1,N2

70 XP(I)-T(I)
C

DO 72 I= 4X1,2,-l

72 CONT I NUE
C

DO 74 1=NX2, IMAIM
XP(1+i)=-(XP(I)*BB(I)+XP(I-1)*AA(l))/CC(I)

74 2O'NTT\UE
C
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C.... Y-DIRECTION
C

A1=0 .0112135D0
A2=0.076 1289D0
A3=0.1104047DO
A4=-O. 4107083D0
B2=0. 007868094D0
B3=O. 281687965Db
B4=-O.37 1566458D0
B5=-0 .031072748D0

c
C

DO 100I1I4A
1Pl=I+1
Im1=I-1
IF(XP(I) .LT. 0.DC .OR. XP(I) .GT. 1.DO) GO TO 110
IM(P(I)GE.0. -AND. XP(I).LE.0.4446) GO TO 120
IF(XP(I).GT.0.4446 .AND. XP(I).LE.1.) GO TO 130

110 YP(I,1,1)=O.DO
GO TO 100

120 P=XP(I)
YP(I,1,1)=DSQRT(C((A4*P+A3)*P+A2)*P+A1)*P)
GO TO 100

130 P1I-XP(I)
YP(1,1, 1)=DSQRT((((B5*P+B4)*P+B3)*P+B2)*P*P)

100 C ONT I NUE
C

DO 150 I11, I=X
YP(I ,J.HX,1)=2.0

150 CONUE
C

DO 160 J=3,J4M
FB(J)=0. 15
FA(J)=0.20

160 CONTINUE
FB(2)=-0.15
FB(3)=0.
FA(2)=-0 .20
FA(3)0O.

C
DO 10 J=2,J"M
EB=DEXP(FA(J))
FI3R= . DO/EB
PSN=EB+EBR
EB2=EB"EB
EB2R= . /EB2
PPSN=!2iB/CEB2-EB2R)

C
AA(J)=-EB
BB (J)=PSN
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CC (J)=-EBR

10 DD(J)=O.DO
C

DO 170 I=1,IMAX
DD(2),=-AA(2)*YP(I, 1,1)
DD(JMAM)=-CC(JMA1)*YP(I ,JIIAX, 1)

C
GALL TRIDAG(2,JMAM,AA,BB,CC,DD,T)

C
DO 379 J=2,JMA9

379 YP(I,J,1)=T(J)
170 CONTIN1UE

C
DO 1000 ITY=1,250
sOS=O.
DO 200 1=2, IM
DO 210 J=2,JRM

.XET=O.
YXI=.5*(YP(I+1,J, 1)-YP(I-1 4,1))
YET=.5*(YP(I ,J+1,1)-YP(I,J-1, 1))
AJI=XXI*Y.ET
GII=(YiET--2) /AJI/AJI
G22=(XI*2+YTXI**2) /AJI7/AJI
G12=-YXI*YET/AJI /AJI
IF(I .LT. NA)THEN
F2(1 ,J)=FA(J)
ELSE lF(I .GT. NB) TEN
F2(i ,J)=FB(i)
ELSE

END IF

B=F2(I ,J)
IF(DABS(B) .LT. EPE) B=DSIGN(EPE,B)
EPA=DEXP (A)
EPB=DEXP (B)
EPAI=1 /EPA
EPBI=1. /EPB
COSHA-. 5* (EPA+EPAI)
COSHB=.5*(EPB+EPBI)
CSCI{A=2.f(EPA-EPAI)
CSCHB=2./I(EPB-EPBI)
COT}{A=COS}{A*CSCHA
CO7HB=COSHB*CSCHB
AB=G22*B*CSCHB
AA(J)=-AB*EPB
BB(J)=2.*(G1 1*A*COTH A+G22*B*COTHB)
CC(J)=-AB*PEPBI
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DD(J)=.5*G12*(YP(I+1,J+1,1)+YP(I-1,J-1,1>-.YDI(11J+1,1)

-YP(I.1,J-1,1))+Gll*A*CSCHA*(EPA*YP(I-1,J,l)
4EPAI*Yr(I+1,J,1))

210 CONTINUE
DD(2)=DD(2)-AA(2)*YP(I ,1,1)
DD(JMA)=DD(JMAM)-CC(JMAi4)*YP(t,J1AX, 1)
CALL TRIDAG(2,J14AM AA,BB,CC,DD,T)
DO 220 J=2,JM~AI1
YT=T(J' -YP(I ,J, 1)
IF(DABS(SOS) .LT. DABS(YT)) SOS=YT

220 YP(I,J,1)=1.8*T(J)-O.8*YP(I,J,1)
200 CONTINUE

C
IF(DABS(SOS) .LT. 0.00001) GO TO 999
DO 666 J-2,JMAM
YP(IMAX,J, 1)=YP(IZ4AX-1,J, 1)-YP(IAVX-1, 1, 1)+YP(IMA, 1, 1)

666 CONTINUE
C

WRITE(1,222) ITY, SOS
1000 CONT T.,'E

C
DO 555 I11,IMAX
F2(I,1)=0.
F2(I ,JWiA)=F2(I ,JI4AM)

555 CONTINUE
C

DO 444 J=1,JMAX
F2(1,J)=F2(2,J)
F2(IMAX,J)=F2(IMAMl,J)

444 CONTINUE
C
C

999 ;,RITE(6,700) ILAX, JIAX

DO 530 J=1,19

550 CONTINUE
CLOSE (6)

300 FORMAT(5E14.7)
700 FORMAT(lX,6110)
222 FORtAT(I10,E12.4)

CALL EXIT
E\D

C

CSUBROL71TINE TRIDAG TO SOLVE ALGEBRAIC EQUATIONS
C SIUTA.NEOUSLY FOR EACH ROW OR COLOUJI

C
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C

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
IMPLICIT REAL*8(A-H,O-Z)
DIMIENSION A(90),B(90),C(9O),D(90),V(90),BETA(90),GAMM(9
BETA(IF)=B(IFr)
GAMMA(IF)=D(IF)/BETA(IF)
IFP1=IF+I
DO 1 I=IFP1,L

1 GAI1 A(I)=(D(I)-A(I)*GAMMA(I-1))/BETA(I)
V (L) =GAitIA(L)
LAST=L-IF
DO 2 K=1,LAST
I=L-K

2 V(I)=GAtIMA(I) -C(I)*V(I+1)/BETA(I)
RETURN
END

C
C .... THIS PROGRAM IS USED TO GENERATE THE BODY-FITTED
C .... COORDINATES ON THE OGIVE-NOSE BODY
C

IMPLICIT REAL*8 (A-H,O-Z)
COMON/GEO1/ XP(671),YP(67,20,9)
CO.MON/GEO2/ ZP(67,20,9)
COMON/BODY2/ Fl(67),F2(67,9)I,F3(9),GE(20,91)
DIMENSION AA(90) ,BB(90) ,CC(90) ,DD(90) ,T(90)
DIMENSION FA(20), FB(20)

C
C

IMkX=6 2
,IAX=20

EPE=1.D-5
Al1-. 3
A2=-.2
IAIO0
4B=42
XX1=12
.%X 2=4 0
\X3=25

C
OPEN(UNIT1=6, FILE='?HYSBODY-)

P1=3. 141392633589793D0
E?:S=1.D-12
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C
C .... X-DIRECTION
C

AX1=NX1-1.
AX2=2.*NX1-1.
AX3=NX2 -AX2

C
DO 50 I=1,IMAX
Zl=(I-1)/AX1
Z2=(I-AX2)/AX3

C
IF(Zl .LE. 0.5) THEN
F 1(1)=Al
ELSE IF(Z1 .GT. 0.5 .AND. ZI .LE. 2.)THEN
pIZ=PI*z1
Fl(I)=A1*DSIN(PIZ)
ELSE IF(Z2 .LE. 1.5) THEN
PIZ=PI.*Z2
F1(I)=A2*DSIN(PIZ)
ELSE IF(Z2 .GT. 1.5) THEN
Fl(I)=-A2
ENl D I F

C
50 CONTINUTE

C
DO 60 T=2, PM
AA(I)=-DEXP(FI(I))
CC(I)=l./AA(I)
BB(I)=-(A-A(I)+CC(I))

60 DD(I)=0.DO
C

XP(N*Xl)=0 .DO
XP(\NX2)=1 .DO

N 2N 11

C
DD(N1)=DD(NI) -AACN1)*XP(NX1)
DD(N2)=DD(N2) -CC (N2)*XP (NX2)

C
CALL TRIDAG(N1,N2,AA,BB,CC,DD,T)

C
DO 70 1=Nl,N2

70 KP(I)-T(I)

DO 72 INrX1 ,2, -1

72 CONTINUEl-

00 7 4 1 IP2,tM

74 CONTINUE\
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C.... Z-DIRECTION
c

DO 421 K=1,KMAX
F3(K)=O.
DO 421 J=1l,JMAX
DO 421 I=l, IMlAX

421 ZP(I,J,K)=(K-5.)*PI/6.
C
C.... Y-DIRECTION
C

ALO-.5D0
BL=O0.006D0
XL=-0.5D0

DO 100 1=1,IMAX

1N11I-1
IF(P(I .LT. 0.DO .OR. XP(I) .GT. 1.DO) THEN
YP(I,1, 1)=O.DO
ELSE IF (XP(I) .GE. O.DO .AND. XP(I) .LE. 0.O6DO) THEN
YP(I,1, 1)O. IDO*XP(I)
ELSE IF (XP(I) .GT. 0.06D0 .AND. XP(I) .LE. O.5D0) THEN
YP(I,1, 1)=0.006D0
ELSE IF (XPCI) .GT. 0.SDO -AND. XP(I) .LE. 1.DO) THEN
IF(XP(I) .GT. O.9999DO) XP(I)=0.99999D0
XXL=-XP(I)-XL
YP(I, 1, 1):-BL-DSQRT(l1.DO-(XXL/AL)*-2)
IF(XP(I) .GE. 0.9999D0) XP(I)=l.DO
END IF

100 CONTINUE

DO 150 K14lKAX
DO 150 1=1,IMA1-X
YP(I,1,K)=YP(I,1,1)
YP(I ,JMALX,K)=1.5

150 C ONTI!N UE

DO 123 K,-2,&%MA
C FA(lc)=O . 26+(XK1Al-K)**2/ 1000.
C FB(K)=O.26+(k-M-K)**2/1000.

FA(K)=O .2835
FB(K)=O .2835

123 CONTINUE
FA(1)=FA(3)
FBC1)=FB(3)
- A(CKMAX)=FA(CK.X-AN -1)

DO 10 K=1,101AX
ZB=OEv(FA(Kl)



EBR1 lDO/EB32
PSN=EB+EBR
EB2=EB*EB
EB2R1 l/EB2
PPSN=2.*B/ (EBZ"-EB2R)

C
DO 40 J=2,JMAM
AA (J )=-EB
BB (J)=PSN
CC (J)=-EBR

40 DD(J)0O.DO
C

DO 170 I=1,ILAX
DD(2)=-AA(2)*Y-P(I, I,K)
DD(JMA1)=-CC(J4A1)*YP(I ,JMAX,K)

C
CALL TRIDAG(2,J,%AN,AA,BB,CCJDDJT)

C
DO 379 J=2,JMII

379 YP(I,J,K)=-T(J)
170 CONTINUE
10 CONTINUE

C
DO 1000 ITY=1,500
sOs=O.
DO 190 K=2,iKiIM
C=F3 (K)
DO 200 1=2,DIAM
IF(I .LT. NA)TrrtN
F2C1 ,K)=FA(K)
ELSE IF(I .G-. NB) THEN
72CI ,K)=FB (K)
ELSE

END IF

B=F2(I ,K)
IF(DABS(B) .LT. EPE) B=DSIGN(EPEB)
EA=-DEXP (A)
EPB=DEXP (B)
EPC=DEXP (C)
EPAI=1 /EPA
EPBI=1./EPB
EPCI=1 /EPC
COSHA=.5"* (E?A+EPAZ)
COSHB=. *(7EB+7EPBI)
COSHC=.5*(7PC4EP.7CT)
CSCI{A=*2. : (E?.A-EPAX-)
CSCHB=2. I(E?,B-rEPBI)

C %CSCHC=2./(E-PC-Ci)
COTHA=COSHA*CSC.A
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COTHB=COSHB*CSCHB

C COTHC=COSHC*CSCHC
DO 210 J=2,JM

YZT-.S*(YP(I ,J,K+1)-YP(I ,J,K-1))
ZXI-O.
ZET=O.

Al 1=XOI*XXI+YXI*YXI+ZXI*ZXI
A22=YET"YET+ZETI'.ZET
A33=YZI*YZT+Z'ZZT
A12=YXI*YET+ZXI*ZET
A13=YXI*YZT+ZXI*ZZT
A23=YET* YZT+ZEV-ZZT
G=All*A22*A33+2.*A12*A13*A23-A23*A23*A11-
$A13*Al3*A22-AI2*A12*A33
GI=1./G
Gll=GI* (A22*A33-A23*A23)
G22=GI*(Al1*A33-A13*A13)
G33=GI*(A11*A22-A12*Al2)
G12=GI*r(A13*A23-A12*A33)
G13=GI*(Al2*A23-A13*A22)
G23=GI* (A12*A13 -A23*A1 1)
AB=G22*B*CSCHB
AA(J)=-AB*EPB
BB (J)=2.*(G11*A*COTHA+G22*B*COTHB+G33)
CC (J)=-AB*EPBI

S -YP(I+1,J-1,K) )+Gl1*A*CSCHA*(EPA*YP(I-1,J,K)
$ +EPAI*YP(I+1,J,K))+G33*(EPC*YP(I,J,K-1)
S 4+EPCI*YP(I,J,K+1))+O.5*(Gl3*(YP(I+,J,KI1)
s +YP(I-1,J,K-1)-YP(I+1,J,K-1)-YP(I-1,J,K+l))
$ +G23*(YP(I,J+1,K+1)+YP(I,J-1,K-1)-YP(I,J+1,K-1)
$ -YP(I,J-1,K+1)))

210 CONTNUE
DD(2)=DD(2)-AA(2)*YP(I, 1,K)
DD(J11AM)=DD(J'1M)-CC(JM)*YP(I ,JIIAX,K)
CALL TRIDAG(2,JMA&4,AA,BB,CC,DD,T)
DO 220 J=2JMAM
YT-T(J)-YP(I ,J,K)
IF(DABS(SOS) .LT. DABS(YT)) SOS=YT

220 YP(I,J,K)=1.8*T(J)-0.8*YP(I,J,K)
200 CONTINUE

Y2YP(2,fl-IAX,K)-YP(2, 1,K)
DO 666 J=2,JA.4-1
YP(1.,J,K)=(YP(2,J,K) .YP(2,1,K))*Yl/Y2+YP(1, 1,K)

666 CONTINUE
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190 CONTINUE
C

DO 478 I=2,IMAX
DO 478 J=2,JMAM

478 YP(I,J,K MAX )=YP(I,J,KMAI-1)
C

IF(DABS(SOS) .LT. 0.00001) GO TO 999
C

WRITE(1,222) ITY, SOS
1000 CONTINUE

C
DO 444 K=2,KMAII
F2( 1,K)=FA(K)
F2 (IMAX,K)=FB (K)

444 CONTINUE
DO 555 I=1,IMAX
F2(I ,1)=F2(I ,3)
F2 (I, ,N)=F2 (I, RIMI-1)

555 CONTINUE
C

999 WRITE(6,300)(XP(I),I=1,IMAX)
DO 540 K=1,KMAX
DO 540 J=1,19

540 WRITE(6,300) (YP(I,J,K),I=1,IMAX)
WRITE(6,300) (F1(I),!=1,I,%AX)
DO 550 K=1,IK1AX

530 WRITE(6,300) (F2(I,K),1=1,IAX)
CLOSE (6 )

300 FORMAT(514.7)
700 FORMAT (1X, 6110)
222 FORMAT(Il0,E12.4)

CALL EXIT
END)

C

C SUBROUTINE TRIDAG TO SOLVE ALGEBRAIC EQUATIONS
C SIMULTANEOUSLY FOR EACH ROW OR COLOUM

C

SUBROUTINE TRIDAG(IF,L,A,B,,C,D,V)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(90),B(90),C(90),D(90),V(90),BETA(90),GAIIA(9
BETA(IF)=B(IF)
GAMMA( IF)=D(IF)/BETA(IF)
1FF 11F+l
DO 1 I=IFP1,L
BETA(I)=B(I) -A(I)*C(I-1)/BETA( I-I)

1 GA.'4A(I)=(D(I)-A(I)*GAtItA(I-1))/BETA(I)
V(L)=GAM-MA(L)
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LAST=L- IF
DO 2 K=1,LAST
I=L-K

2 V(I)=GAMMA(I)-C(I)*V(I+1)/BETA(I)
RETURN
END
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