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1. INTRODUCTION

The microburst surface divergence detecticn algorithm is a central component of the
automated processing performed by the Terminal Doppler Weather Radar TDWR) system.
This algorithm is responsible for processing the radar velocity measurements taken near the
earth’s surface to identify the strong divergent outflow characteristic of microburst
vindshear hazards. The divergence algorithm has been under development and evaluation
at Lincoln Laboratory since 1983 and will be the primary algorithm component of the
production TDWR systems to be deployed by the Federal Aviation Administration (FAA) in
the early 1990’s.

The divergence algorithm makes use of a complex set of pattern matching and validation
test criteria to locate microburst outflow signatures and to filter cut false alarms from
various data contamination sources. These divergence signature detections are then merged
with additional algorithm features detected at higher altitudes and subjected to adaptive
strength and persistence tests to arrive at final microburst alerts to system users. While the
complete microburst algorithm operating in the TDWR consists of more than a dozen
distinct algorithmic components, the divergence algorithm is primarily responsible for the
detection of most microbursts.

The development and evaluation of the divergence algorithm has been based on extensive
measurements of microbursts from the TDWR testbed radar system under operational
conditions, and the algorithm has demonstrated a very high probability of detection (POD)
for strong microburst outflows. The detection and false-alarm performance of the
divergence algorithm (and the complete microburst detection algorithm) were first formally
assessed in an operational test and evaluation of the TDWR conducted in 1988 at Denver,
CO. Subsequent operational evaluations performed in Kansas City (1989) and Orlando
(1990) have provided insight into the algorithm and system performance in a variety of
meteorological and geographical environments.

This report describes the detailed operation of the divergence detection algorithm, its
coupling to the remainder of the TDWR microburst algorithm, and the rationale for the
various algorithmic components in the procedure. The performance of the divergence
algorithm is illustrated in detail on an important microburst event from July i1, 1988
(Denver) and is statistically evaluated using a set of three active days from the 1988
measurement program.

1.1. Description of the TDWR System Testbed

The TDWR testbed systemn has been developed and operated by Lincoln Laboratory to
assist in the evaluation of radar and algorithm designs for the TDWR production system
being procured by the FAA. The testbed provides a functional emulation of the
performance-critical aspects of the TDWR and has been used to collect a very large
database of operational measurements in variety of geographical and meteorological
environments. The basic TDWR system consists of a doppler weather radar, a data
processing subsystem and a set of user displays (Figure 1), all of which are present in the
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Figure 1: Block diagram of basic TDWR system components. The radar and
digital processing subsystems (RDA and RPG) are located at the TDWR site, t;pi-
cally 15 km from the airport complex. The display subsystem is located within the
airport ATC facility.

testbed system. The weather radar is a coherent pulsed-doppler system with a mechanically
steered pencil beam. The TDWR production system wili operate at C-band with a 0.5°
antenna beamwidth. The testbed system was originally constructed at S-band with a 1.0°
beamwidth (used in the Denver and Kansas City measurement programs in 1988 and 1989,
respectively), but was modified to operate at the TDWR wavelength and beamwidth prior to
the 1990 measurement program at Orlando.

The signal processing and basic data-editing operations are performed in the Radar Data

Acquisition (RDA) subsystem. The RDA uses both sensitivity-time contro! (STC) and
instantaneous automatic gain control (AGC) circuits to provide the wide dynamic range
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necessary to prevent saturaiion on short-range clutter targets and heavy precipitation. A
high-pass clutter filter 1s applied to the received signal to remove stationary ground clutter,
with clutte: breakthrough removed using a map of persistent ground clutter residue values.
The radar pulse repetition frequency (PRF) is dynamically selected, based on the location of
distant weather cells, to minimize the possibility for range aliasing of these distant echoes.
Aliasing of the velocity measurements is resolved by a combination of radar waveform and
data analysis techniques. Additional data processing is performed in the RDA to remove
isolated moving clutter targets (e.g., aivplanes and ground vehicles) and to calibrate the
received intensity and velocity measurements into meteorological units.

The meteorological algorithm processing functions of the TDWR are performed in the
Radar Products Generator (RPG) module. This subsystem implem ts the algorithms used
to detect microbursts, gust fronts and significant storm regions vhich are subsequently
communicated to air traffic conirnl users through the display system. Air traffic controllers
are then respunsible for relaying the windshear alerts tc pilots over voice radio channels.
The product algorithms which execute in the RPG are illustrated in Figure 2.

The TDWR radar is typically sited about 15 km away from the center of the airport
complex to be protected, and it operates in a repetitive stepped-elevation scanning mode to
make measurements of the reflectivity and velecity of weather systems around and above
the airport complex. The scanning strategy represents a complex set of tradeoffs between
the needs of the various weather processing algorithms but is required to provide an update
of the surface velocity measurements over the airport complex at least once per rinute.

The nominal scan strategy used by the TDWR is illustrated in Figure 3, which shows the
elevation angle as a function of time {or the scain sequence. At each new elevation angle the
antenna scans through an azimuthal sector covering the airport complex. For most airports,
this sector will be no larger than 105° in extent. Some of the scans in the sequence are
full-circle scans to allow for the observation of gust fronts and storm cells over the entire
airport region.

1.2. TDWR Microburst Algorithm Structure

The complete microburst detection algorithm for TDWR is made up of a number of
smaller algorithm modules, as illustrated in Figure 4. The divergence regions algorithm
module, operating on the velocity measurements from the surface radar scans, is the
primary component of the algorithm and is responsible for the majority of the microburst
detections. The remaining modules are used to identify storm features at higher altitudes in
the storm cells (reflectivity, rotation, convergence and divergence aloft) and to use these
storm structures to enhance the detection performance of the surface divergence algorithm.
These features aloft serve primarily to reduce the thresholds required of the divergence
detection function, allowing weaker divergence regions to be accepted in the presence of
confirming features aloft [Campbel!l and Merritt, 1988}. This approach allows microbursts
to be detected and warnings to be issued earlier in their lifetime (hence providing more
advance warning to pilots) without incurring a significant increase in false alarms. The
number of false alarms is also reduced by requiring significant storms cells aloft before
issuing a microburst alarm. This test for reflectivity aloft is opticnally selected as a
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Figure 2: Block diagram of mexeorological algorithm processing performed in
the RPG. Base data from the RDA is supplied to the Microburst, Gust Front and
Precipitation algorithr. 5. Storm Movement and Wind Shift predictions are based
on the precipitation and gust front algcrithm outputs, respectively.

site-adaptable parameter for use in those meteorological environments where microbursts
are reliably associated with storm cell downdrafts.

1.3. Data Quality Control in TDWR

The velocity measurements made by the TDWR may suffer from contamination in a
number of ways. There are three primary sources of measurement contamination: (a)
interference from ground and moving clutter targets, (b) natural chaotic variations in the
windfield and (c) measurement and statistica! estimator errors. The TDWR system design
attempts to minimize the effects of both measurement errors and clutter interference
through the use of an optimized data acquisition strategy and a series of clutter editir.z and
decontamination algorithms. No explicit processing is applied to the base TDWR
measurements to reduce the natural spatial fluctuations of the windfield, which are not
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Figure 3: Antenna elevation—angle sequence used for the TDWR operational

test and evaluation in 1988. The first scan in the sequence is a full-circle scan at
an elevution of 0.6°. This scan is used jointly by the gust front and microburst
algorithms. A second full-circle scan at an elevation of 1° is used by the gust
front algorithm alone. The microburst algorithm further requires surface scans at
one~minute intervals. These scans cover a 120° sector over the airport at an ele-
vation angle of 0.4°. The PRF selection algorithm requires a long-range, low~PRF
Sull—circle scan. The remaining scans are used by the microburst features aloft
algorithms.

properly considered as “noise,” though they may act to obscure the desired signatures in the
data.

Stationary ground clutter (from hills, trees, buildings, etc.) is one of the dominant sources
of data contamination in TDWR, and a number of powerful techniques are included in the
system design to mitigate these effects [Evans and Turnbull, 1989]. A high-pass filtering
operation is used to remove the bulk of the signal power near zero velocity, aliowing
unbiased velocity measurements to be made in all but severely contaminated regions. A
time-averaged map of the clutter residue is also used to flag individual resolution cells
which are still contaminated after the linear filtering stage. These filtering and editing steps
leave very few velocity samples contaminated by stationary clutter, although isolated points
may have been flagged as unusable by the editor.

Moving clutter targets such as birds, airplanes and automobiles will not be removed by
the high-pass clutter filter or by the time-averaged clutter map (although major highways
which consistently cause interference may optionaliy be mapped out). The TDWR includes a
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Figure 4: Block diagram of the TDWR microburst detection algorithm. The
basic feature extraction modules (on the left) process the base radar measure-
ments to identify two-dimensional regions of shear and precipitation. The middle
row of modules group these two—dimensional regions vertically to form complex
structures. Spatial and temporal association rules are used in the final alarm gen-
eration modules on the right to produce high-reliability alerts.

point-target rejection filter which attempts to identify these spatially small interference
samples and flag them as invalid.

The velocity estimation process is stochastic and therefore includes a statistical variance
dependent on the radar received signal power relative to noise and the width of the actual
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velocity power spectrum in the resoluticn cell. The TDWR radar parameters and scanning
dwell time have been chosen so as to provide a maximum velocity estimate variance of
roughly 1 m/s over the range of signal power and spectrum width of primary concern. The
velocity estimation process is also vulnerable to Nyquist aliasing, which is addressed
through a dual-PRF scan strategy and a sophisticated data processing algorithm to place
measurements into the proper Nyquist velocity interval.

Range aliasing may also cause contamination of the velocity field when distant storms are
aliased into the airport coverage region. The TDWR includes an adaptive algorithm which
identifies the location of distant storms and chooses the PRF values which minimize
contamination of measurements in the critical airport coverage regions. Additional data
editing is performed to invalidate those resclution cells which are contaminated by
multiple~trip returns.

The careful seleciion of radar parameters, scanning strategy and signal/data processing
techniques has provided the TDWR with a considerable ability to reject the major sources of
interference and to maintain a moderate level of estimator variance. As a result, the base
velocity measurements provided by the TDWR to the divergence detection algorithm may
generally be regarded as “clean” with respect to these sources of error.

1.4. Operational Measurement and Evaluation Programs

The TDWR testbed radar system has been the primary data source for the development
and evaluation of the TDWR algorithm suite and for the operational evaluation of the system
by ATC users [Tuinbull et al., 1989]. The testbed system was initially deployed in Memphis,
TN and was fully operational in 1985. Measurement and evaluation programs have been
conducted annually since 1985 in a number of geographical and meteorological
environments, as listed in Table 1. The radar measurements of microbursts obtained during
these field programs have been integral to the development of the microburst algorithm and
have served as the basis for evaluating the algorithm performance.

Table 1:
Field measurement and evaluation programs conducted with the TDWR testbed
radar system*.

Products Delivered
Year Location to ATC users?
1985 Memphis, TN No
1986 Huntsville, AL No
1987 Denver, CO No
1988 Denver, CO Yes
1989 Kansas City, MO Yes
1990 Orlando, FLL Yes

*Radar measurements of microbursts and other significant weather events were re-
corded during each program and used for algorithm development and refinement. Op-
erationa! evaluations have been conducted annually since 1988, in which TDWR prod-
ucts were provided live (in real time) to air traffic users.
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The field program in Denver during 1988 marked the first live demonstration of the
TDWR system to on-duty air traffic controllers and pilots and was conducted as a formal
Operational Test and Evaluation (OT&E) of the TDWR system. Based on the success of this
OT&E, the FAA has awarded the production contract for 47 TDWR systems, which will
begin operational deployment in the early 1990’s. Additional operational demonstrations
conducted with the testbed have further validated its effectiveness in various meteorological,
ground clutter and air traffic environments [Evans, 1990].

During each measurement and evaluation program, the testbed system is routinely
operated each afternoon and scans using the operational scan strategy appropriate to the
specific airport being protected. The microburst, gust front and precipitation products are
computed in real-time and provided to ATC users and pilots. Lozal controllers in the tower
are provided with alphanumeric displays indicating microburst and/or gust front windshear
alarms over the active runway and arrival/departure corridors. These alerts are read directly
over voice radio channels to pilots on approach or departure. The tower supervisor and
TRACON controllers are provided with a color geographical situation display (GSD),
indicating the location and extent of microbursts, gust fronts and storm precipitation
regions. Gust front forecast locations, tased on propagating the observed gust front motion
into the future, are also provided on the GSD.

During the measurement programs all base radar observations are routinely recorded,
and all TDWR system alarms and products are archived for subsequent analysis. Human
observers monitor the weather situation and visuaily monitor the radar measurements for
microbursts. Detailed logs are kept by the real-time observers to note the presence of
microbursts for post-mission analysis.

A number of support sensors are typically deployed along with the TDWR testbed radar,
including surface mesoscale network, instrumentation recordings of the airport low-level
windshear alerts system (LLWAS) sensors, and a second doppler radar operated by the
University of North Dakota. These support sensors provide verification of the windshear
events observed by the TDWR testbed radar and allow detailed off-line analysis of selected
weather events, including dual-doppler windfield analysis for microburst outflow studies.

1.5. Organization of the Remainder of the Report

Chapter 2 presents a conceptual overview of the microburst detection process using a
conceptual model for a microburst outflow to examine important aspects of the detection
problem. The divergence algorithm is described in detail in Chapter 3, and the formal
documentation of the algorithm, as documented for the TDWR system specification, is given
in Appendix 3. Chapter 4 illustrates the behavior of the divergence algorithm on a strong
microburst from July 11, 1988 which has been the subject of considerable study by the
windshear community. The algorithm is seen to perform fairly well on this microburst,
although considerable variations in the exact detected region are seen from one scan to the
next. To provide a statistical summary of the algorithm performance, the detection and
false-alarm probabilities for a number of cases are presented in Chapter 5 and are
compared with the corresponding quantities which have been determined for the complete
microburst detection algorithm.




These scoring statistics are based solely on single-doppler radar observations, and the
impact of microburst asymmetry on these performance metrics is considered in Chapter 6.
The conclusion here is that asymmetry can substantially reduce the effective performance of
the microburst algorithm and that improved detection rates for events with weak signatures
is needed. Chapter 7 examines some possible alternative divergence algorithms based on
computational methods (rather than complex decision tests) to improve the performance of
the detection process. The results obtained in limited testing on these alternative techniques
indicate promise and suggest avenues for further examination as summarized in Chapter 8.




2. CONCEPTUAL MODEL FOR THE DETECTION PROCESS

Many of the basic concepts employed by the TDWR divergence dctection algorithm may
be examined in the context of a simple idealized microburst outflow model. The analysis
below considers the case of a radially symmetric outflow from a pure divergent source as
shown in Figure 5. The radar-measured velocity signature for this type of outflow is
computed, and the basic size and strength properties of the signature are determined as a
function of microburst size, strength and distance from the radar.

2.1. Microburst Windfield Model

The velocity field for the pure divergent source model is circularly symmetric, and the
windspeed at a distance r¢ from the center of the outflow is described by the profile Vin(re)
and is always directed radially outwards. The exact form of this velocity profile is not critical
to the observations to be rade in this section, and there are several profiles which have been
used in previous studies. The basic assumption made regarding this velocity profile is that
the windspeed increases monotonically from the outflow center to some peak speed and then
decays back towards zero at further ranges. The peak windspeed along the velocity profile is
denoted as Vp, and the range (from the outflow center) at which this peak occurs is labelled

Rm.

To obtain quantitative results, a specific velocity profile must be chosen for analysis. A
commonly-used profile is the sinusoidal model where the outflow signature is modelled as a
half-cycle of a sinusoid. This model was used to examine detection algorithm performance
for the ASR-9 system in a report by Noyes, 1990. This report presented comparisons
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Figure 5: Conceptual microburst outflow model. (a) Windfield is circularly sym-
metric, with winds directed radially outward. (b) Wind speed profile as a function
of distance from the center. Speed increases linearly to a maximum value then
drops off at a rate of 1/r2.
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between the model winds and actual measured signatures, showing good agreement. This
sinusoidal model was also used to examine aircraft performance measures in [Elmore,
1989]. The second model form was described in [Hjelmfelt, 1988] and models the outflow
winds as linearly increasing from the outfiow center then dropping off as the square of the
distance to the center. This model was obtained by comparing the proitiles from several
microbursts with the profile from a laboratory modei of a wall jet. Figure 6 shows the
normalized velocity profiles examined by Hjelmfelt, along with the wal! et profile. For both
the wall jet and the observed microbursts, the windspeed increases linearly from the center
to some maximum windspeed Vp (at range Ry, from the center) and then drops off rapidly

back to zero. The wall jet drops off at r'l, but the observed microburst profiles drop off

more rapidly, roughly proportional to r2,

The sinusoid and r™? models are compared in Figure 7 at two different spatial scales.
These examples show that the sinusoid model provides a smoother transition at the velocity
peaks and a more abrupt distinction between the edge of the outflow and the ambient wind.
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Figure 6: Microburst windspeed profiles from eight microbursts. Speeds are nor-
malized to maximum speed and ranges are normalized to the range at which the
maximum speed occurs. The solid line is the mean observed microburst profile
while the heavy line is the profile for laboratory wall jet models. The wall jet
model drops off at a rate of 1ir; the observed profiles drop off at a rate of ap-
proximately 1/r2. Taken from [Hjeimfelt, 1988]
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Figure 7: Comparison between sinusoid and R-squared models for two different
size microbursts. The top plot shows a large, weak microburst with a 10 m/s veloc-
ity change over 4 km distance. The lower plot is a very small, strong microburst
with a 14 m/s change over 0.72 km. These two examples represent the extremes of
the size and strength domains for the detection process.

The r'? mode! has very sharp discontinuities at the peaks but a more gradual and extended
transition at the edges of the event.

To understand the behavior of the different smoothing methods, their effects will be
considered on modelled microbursts at both small and large spatial scales. A very smalil, yet
strong, microburst is shown in Figure 8. This profile was obtained from a very severe
microburst which occurred on July 11, 1988 during the TDWR Operational Test and
Evaluation (OT&E). This profile is from the first radar surface scan on which the microburst
was visible. The figure shows the microburst has an initial strength of roughly 14 my/s, but
across a distance of less than 750 meters. This combination of strength and small size is
quite unusual and probably represents a good lower bound on the detection requirements for
microbursts. Although this event is unusual, it is also very important; several aircraft
actually penetrated this microburst, and the timely warnings produced by the TDWR testbed
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Figure 8: Comparison between measured profile of a small microburst and the
profile generated by the windfield model. Microburst event is from July 11, 1988
at 22:04:01 (297.5° azimuth angle).

may well have prevented a disaster {Schlickenmaier, 1989]. Also shown in Figure 8 is the
R-squared microburst model which best matches the measured velocity profile. The model
fits the data quite well from ranges 10 km to 13 km, particularly along the strong shear
portion. At further ranges the microburst signature is complicated by the presence of an
adjacent thunderstorm outflow (extending from 14 km to roughly 18 km) not included in the
microburst model. The close match between the R-squared model and the forward edge and
shear region of this event lend considerable credence to the use of this model for
investigating microbursts during their earliest stages of development. The sinusoidal model
is perhaps more appropriate for describing more mature microbursts as described in
[Noyes, 1990].
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The Hjelmfelt model will be used for the analysis in this chapter, so the radial profile
function is given by:

Vo (e} = Ve < for r. <R, (1)

I
=
=)
3

The locus of peints at which the windspeed is at its maximum value (a circle of radius
Rm) is typically considered to be the “outline” of the microburst region. The doppler
velocities measured by a radar will consist of only the component of the horizontal outflow
wind in the direction of the radar beam. For a radar located at distance Dy, from the center
of the outflow, the radial velocity at a range r and angle 6 (between the radar beam and the
outflow center) may be expressed as:

V.r8) = V(K (2)

where:

r --D,, cos(§) (3)

K =
\/D,, 24+r2—2rD,, cos(d)

(4)

re = \/Dn24+r2-2rD, cos(d)

An example of the radar signature obtained from this model is shown in Figure 9. The
culor image shows the radial velocity field (in meters per second) for a model outflow at
range 12 km, with a 1.5 km radius and maximum windspeed of 15 m/s. This figure also
shows a plot of the radial velocity profiles along several radials through the outflow. These
profiles show a) the sharp shear pattern when the radial intersects the outflow region and b)
the gradually reduced shear signature as the viewing angle moves further away from the
outflow center.

The geal of the TDWR divergence detection process is to identify the shear region on each
radial of measurements extending from negative peak to positive peak. Each radial
intersecting the shear region results in a single shear “segment” being detected; the
collection of shear segments for a sample microburst mode! is depicted in Figure 10. The
divergence algorithm then groups these segments together to form an outline of the detected
shear region. Each shear segment identified by the divergence algorithm is characterized by
a length and a strength (the difference in velocity across the segment). Thresholds on the
length and strength values are used to discard false segments, and a minimum number of
segments will be required in a group to detect a shear region.
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Figure 9 Radial velocity ficld for a model nmicroburst (a) Radial velocities in
meters per sccond for microburst at range 12 km, radius 1 5 km, and peak
windspeed of 15 m/s. (b) Profiles along radials through the outflow.
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Figure 10: Shear segments detecied for model microburst. Segments are
grouped together based on range overlap and azimuth proximity to form a two-di-
mensional region outlining the microburst outflow.

The length and strength of the shear segments found for an outflow will vary with the
radius of the outflow, the distance to the outflow center, the strength of the outflow, and the
angle between the radar viewing direction and the center of the outflow. These variations are
important to the proper selection of thresholds for the detection algorithm and may be
examined in the context of this simple outflow model. For a radial which passes through the
outline of the microburst, the peak radial velocities will be observed at the intersection of the
radar radial and the microburst outline. The velocity difference across this shear segment
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and its length are:

D 1

AV = 2V. [1_ [-Rl-]Zsinz(G)r (5)
1

D 1 (6)
AR = 2R, [1_ [kﬂ-rsmz(a)]z

The length and strength of the segments are both reduced by the same factor as the
viewing angle from the outflow center increases. This reduction factor is plotted in
Figure 11 for a microburst of 2 ki diameter at several angle offsets.

Fractional reduction

o = b L B L o O > 0

1

Distance to center of outflow (km)

Figure 11: Reduction in shear segments length and strength when radar viewing
angle is not centered on the outflow center. Microburst radius is I km.
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The validation tests for shear segments and shear regions require each region to contain
at least Nt segments and require each segment to be at least R km long and have a velocity
differential of at least V1 m/s. Under these constraints, the conditions for detection are:

vr Bl
D,

S R )

e

where:

N
gnmx = _'2'T— degrees (9)

These two conditions simply express the requirement that the threshoids be met on each
of the Nt segments obtained as the radar scans across the outline of the event. The selection
of a maximum offset angle (corresponding to the weakest of the segments) is chosen,
assuming a 1° azimuthal sampling interval, and is based on the worst-case alignment of the
outflow center with the specific azimuth sample angles. The nominal parameter values
selected for the TDWR divergence algorithm are:

Vp = Smis (10)
R, = 0.95 km (1
Nt = 2 segments (12)

These parameter values were determined by examining a large nurnber of cases and
computing the performance statistics for each of several parameter value combinations. The
number of false alarms generated by the TDWR divergence algorithm (described in detail in
the next chapter) is very sensitive to the values cf the above parameters. Decreasing any of
these parameter values (in order to detect sr-aller or weaker microbursts) wiil result in a
corresponding increase in the number of faise alarms. The choice of these parameters was
based on data cases observed in the Denver, CO area and may not be optimal for other
geographic locations. The TDWR allows these parameters to be tuncd for optimum
performance at each installation, prov'Jing some degree of flexibility to match the
variations in microburst characteristics across the country.
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Given these nominal parameter values, the detection criteria of (7) - (9) are essentially
identical and simplify to:

D, < 33R, (13)

Hence, these parameter values allow detection of a 1 km radius microburst out to a range
of roughly 33 km. This capability closely matches the minimum detection requirements set
forth for the TDWR microburst algorithm.

2.2. Shear Region Extension Outside Outflow Boundary

For a simple microburst outflow, such as that described by the conceptual model above,
the obvious “boundary” for the event is the circle corresponding to the peak outfiow
windspeed. This boundary, however, does not indicate the extent of the shear region which
would be encountered by aircraft flying near the event.

For an aircraft penetration of the event which passes on a straight line through the
outflow center, the circular outline accurately represents the extent of the shear region
which would be encountered by the aircraft. A penetration along such a path results in
maximum exposure to the divergent shear, and (if the shear is strong relative to the
response capability of the aircraft) the peak-to-peak windspeed change across the event is
indicative of the airspeed loss which the aircraft might experience. For an encounter path
which passes through the outline but not through the center, the outline still indicates the
extent of the shear region, but the total windspeed changes is less than that for a path
directly through the outflow center. This aspect of the microburst outflow penetrations is
generally understood in the TDWR community, and the system alert strategy and user
training information attempt to account for the variability in perceived sirength, depending
on penetration path.

An observation (originally from [Campbell, 1990]) which is less well recognized is that
paths near, but outside, the conventional “outline” of the microburst aiso contain divergent
shear, albeit at a significantly reduced strength. Referring to Figure 12, it is anpare=t that so
long as the winds on the periphery of the outline are radially dire~ted, the longitudinal
windspeed component along a straight path will change sign (indicating shear) at the point
of closest approach to the microburst outline. The strength of this shear will clearly depend
on the strength of the microburst, the rate of decay of the windspeed outside the event
outline, and the distance between the path and the outline.

Since the divergence detection algorithm operates by finding shear segments aleng
radials from the radar, the set of segments detected for a perfectly circular and symmetric
microburst will not form a circle. The segments shown in Figure 10 illustrate this condition.
Hence, for circulur outflows, the shear region detected by the divergence algorithm will be
elongated in the cross-range dimension and will accurately represent the locations of shear
which would be experienced by aircraft flying in the direction of the radar viewing angle.

An important consequence of this observation is that aircraft flying perpendicular to the
radar viewing angle at ranges just short of or just beyond the extent of the detected shear
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Flight path

Figurc 12: For a flight path outside the microburst outline, the longitudinal com-
ponent of the wind will change from a headwind to a tailwind (divergent shear)
as long as the winds are radially directed from the outflow center. Strength of the
shear will depend on the actual rate of decay of the winds outside the event.

segments may experience significant windshear. The aspect-dependent nature of the
longitudinal shear within an outflow region therefore causes “blind spots” in the
radar-measured shear region, even in perfectly symmetric outflows. This factor should be
taken into consideration in the interpretation of the TDWR outputs (i.e., detected boundaries
may underestimate or overestimate the extent of the shear reyion depending on viewing
angle relative to flightpath) and in the development of future detection and/or display
algorithms.

2.3. Detectioa Issues for Realistic Signatures

This conceptual model is useful for understanding the basic geometry of microburst
outflows, but it is a gross simplification of the actual signatures obtained from radar
measurements. The radar images in Figure 13 are typical for an isolated microburst in the
Denver, CO area. The top image in this figure is the reflectivity measurement, in units of
dBz, and the lower image is the radial component of the horizontal wind velocity in m/s. The
radar is located off the lower right corner of the image, as indicated by the range rings
(spaced every 5 km) and azimuth lines. The white overlay near the center of the image
represents the runways at Denver’s Stapleton airport, where these measurements were
obtained. This microburst has a peak windspeed of roughly 13 m/s and a radius of 3 km. The
velocity field for the conceptual model using the same parameters s compared to the actual
measurements in Figure 14. This comparison clearly demonstrates the noisy background
accompanying actual signatures and the departure of the actual shear profiles from the
simple symmetric model form.

The divergence algorithm, described in the following chapter, foilows the basic
conceptual approach of locating shear segments within the outflow region and clustering
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them together based on proximity in range and azimuth. However, to provide robust
performance in the presence of background noise and interference and to detect distorted
and non-symmetric shear regions, the algorithm includes a number of complex tests used to
distinguish true shear regions from other similar signatures.
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3. DESCRIPTION OF TDWR DIVERGENCE ALGORITHM

3.1. Algorithm Specification for TDWR

The divergence algorithm is formally described for TDWR using an English-like
procedural language known as Algorithm Enunciation Language (AEL). The complete
formal algorithm description is presented in ATC-145. All numerical values used in the
algorithm description are configured as site~adaptable parameters, meaning that they may
be adjusted for optimum system performance at each TDWR radar site. The description of
the algorithm provided here wili use many of the same names as the AEL description,
particularly in reference to site-adaptable thresholds.

3.2. Inputs and Outputs

The input to the divergence algorithm is the radial velocity data field for a single-radar tilt
(a radar scan in azimuth at a constant elevation angle). The velocity field contains the radial
velocity measurement at each range gate for a set of azimuths. The TDWR provides radials
spaced at 1° intervals in azimuth. The velocity measurements used by the algorithm are
assumed to have been preprocessed by a variety of data quality checks to remove the effects
of ground clutter residue, point target interference, velocity aliasing, and low signal power,
as required by the TDWR specification. Any input velocity values found to be contaminated
by these quality checks are tagged as invalid by these data quality filters. The algorithm
makes explicit reference to the handling of points with invalid velocity values.

The algorithm generates two sets of information as output for each tilt: a set of shear
segments and a set of shear regions. The segments are the primitive one~-dimensional
portions of each radial found to contain divergent shear. The regions are two-dimensional
areas formed by clustering the segments which meet all the thresholding criteria. Each
segment is described by an azimuth angle, start and stop range, and velocity difference
across the segment. Each region is described by a large number of characteristics,
particularly the bounding box (minimum and maximum X and Y coordinates bounding the
region) and maximum velocity differential found within the region.

The divergence regions are used by the subsequent microburst algorithm stages (which
apply time continuity and strength constraints in conjuriction with features aloft) to form
microburst alarm regions. For these algorithm stages the region extent is described solely by
the bounding box and centroid information. The shear segments are used again in the final
stage of the algorithm where microburst shapes are computed for each alarm. These shapes
are based on the actual locations of shear segments in the region(s) rather than on the more
limited bounding box information.

3.3. Site Adaptable Parameters

The algorithm makes use of numerous threshoids and test criteria which may be adjusted
at individual radar sites to provide optimum performance. These numerical thresholds are
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documented as site-adaptable parameters and are the primary mechanism for tuning the
performance of the algorithm to adapt to different site characteristics. The full set of
site—adaptable parameters is listed in the AEL document, along with a table of nominal
values used during testing.

3.4. Shear Segment Identification

The first stage of the divergence feature extraction algorithm is the identification of
one-dimensional shear segments along individual radials of velocity measurements. Each
segment is meant to identify a portion of the radial which contains velocity measurements
exhibiting a generally increasing trend with range (i.e., which have a positive divergence).

The segment detection process operates on one radial at a time and sequentially
examines each range gate along the radial. For each range gate examined, the algorithm
forms an observation “window” consisting of the NUMBER(Window) gates which follow the
current window. Various tests are applied to the velocity values in the window to determine
whether a shear segment should be started (or terminated) at the current range gate. The
window length is selected based on the range gate spacing of the radar, to correspond to
roughly 0.5 kilometers distance. This window size was chosen experimentally to balance the
need for locating small shear segments with the desire to filter out the small-scale
fluctuations of the velocity measurements. The concept of the shear segment search window
is illustrated in Figure 15.

10
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Figure 15:  Example of the segment search window. The window consists of
NUMBER (Window) range samples, starting at the current sample. The pattern of
velocity measurements in the window determines if a segment is to be started or
terminated. The window marked “A” is an example of a valid segment starting
condition, while window “B” is the corresponding termination point.




As the window is moved out in range, a segment is started at the current gate when the
velocity values in the window meet the following criteria:

i) All velocity values in the window are valid and

i) Allvelocity values in the window are greater than the velocity value in
the current gate, and

i) The first NUMBER(Rise) velocities in the window form a monotonically
increasing sequence

These conditions amount to a strict requirement for an increasing trend of velocities to
begin a segment. Once a segment has been started, the window is moved out further in range
until the following segment termination criteria are met:

i) The total number of velocity values in the window, which are either
invalid or less than or equal to the velocity value in the current gate,
exceeds NUMBER(Bad), or

i) The velocity difference between the current gate and the vaiue at that
point with the smaliest velocity greater than that at the current gate
exceeds THRESHOLD(Min Pos).

The first of these conditions corresponds to a situation where the velocity values are
either too noisy (and hence flagged as invalid) to continue a segment or else they display a
flat or decreasing trend. The second condition indicates that an unrealisticaliy large shear
exists in the window (which might be caused by velocity aliasing, for example) and the
segment should not be continued, as it would likely contzin erroneously large velocity
differences.

This sliding-window approach to locating the segment endpoint has two salient
characteristics. First, by examining several sequential data points, it allows small--scale
(one- or two-gate) perturbations in the velocity measurements to be skipped over in the
search process. Second, it makes no a priori assumptions about the magnitude of the shear;
the only requirement for a segment tc be continued is that the values in the window be
generally increasing - by any amount. Since the size and strength of microburst outflows
span a considerable range, this shear-independent aspect of the segment location process is
useful. However, it also makes the algorithm quite sensitive to very small changes in the
velocity field and allows very weak segments to be detected. The segment validation
threshold tests described below are used to remove weak segments found in this process.

The segment start and stop tests compare the value in the current gate to the remaining
values to determine if an increasing trend is present. If such a trend is present, the window is
moved forward. The choice of which sample point to use for the next “current gate” is
important since the velocity values along a shear segment are typically not perfectly
monotonic. If the next sample point chosen as the “current point” is too large (relative to the
average trend of the other values in the window), then the next window (using the new
starting point) may not exhibit an increasing trend and may cause the segment to be
terminated earlv. For this reason, the next “current gate” is chosen as a balance between
moving up the trend rapidly to perform as few tests as possible (by choosing a large value)
and climbing slowly to prevent stopping at a local spike (by choosing a small value). To
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obtain this balance, all points in the window (which are greater than the starting point) are
considered, and the one with the smallest positive increase is identified. All the points are
again considered, and the first point encountered whose increase is both positive and less
than or equal to THRESHOLD(Next Sample) (1.5) times greater than the smallest positive
increase is chosen to be the next starting point. Hence, the starting point will move forward
slowly, skipping over any peints which would represent a relatively large step up the trend.

3.5. Segment Validaticn

The segment detection process is extremely sensitive, as it incorporates no absolute
length requirements and no absolute strength requirements for the increasing trends it
detects. On a typical velocity field with no significant microburst windshear present, a large
number of candidate segments will be identified. Therefore, candidate segments must be
subjected to a variety of validation tests to reject as many as possible of those segments
which do not correspond to microburst events.

The validation process is rather complex and involves an iterative cycle of segment
testing and trimming, which are described in Figure 16. On each cycle, basic tests are
applied to determine if the segment should be rejected. A segment will be rejected if (a) itis
too short, (b) if it has too small a velocity difference across it, (c) if it has too few valid
velocity points, or (d) if it does not have a consistent increasing trend along its length. In
addition, the endpoints of the segment may be trimmed back te ensure that (a) the endpoints
are local extrema, (b) that they do not deviate too far from the local median, and (c) that the
slope of the segment near the endpoints is adequate. The trimming of the endpoints will
generally shorten the segment on each cycle, and the other validation tests will be repeated.

The basic length and strength tests will reject the majority of those segments which do not
correspond to actual microburst shears. The threshold values used in these tests must be
chosen carefully to balance the rejection of faise segments with the detection of desired
ones. The nominal thresholds used in current operational testing (0.95 km minimum length
and 5 m/s minimum velocity difference) have been adjusted heuristically, based on several
years of operational experience, to allow the detection of outflows in their earliest stages;
when they are both small and weak. The probability of detection for weak microbursts (10 -
15 m/s) appears to be quite sensitive to the choice of these length and strength threshold
values.

The slope trimming test in the validation loop is designed to serve two roles. First, it
shortens true shear segments which may have “tails” of weak shear. Segments of this type
tnay be formed at the edges of outflow regions, as shown in the conceptual model profiles of
Figure 9. The second role for the slope trimming is to reject altogether those segments
which comprise entirely of weak shear. Such segments, if sufficiently long, could pass the
basic length and strength tests but do not represent actual aircraft hazards. By trimming
these segments back repeatedly, they will eventually be rejected by the basic length test. The
thresholds used in the slope trimming tests correspond to a shear of 2.5 m/s per km, which
has conventionally been used by the TDWR community as the minimum hazardous shear
level for aircraft operations [Mahoney, et al., 1989].
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Repeat until segment is accepted or rejected:

If the segment length exceeds THRESHOLD(Slope Test Min
Length), then trim the start and end points back (towards center
of segment) until the velocity differerice over NUMBER( Slope
Test ) range gates (0.5 km distance) at both ends of the
segment is at least THRESHOLD( Slope Test Difference ) (1.25
m/s).

Trim the start and end points back (i.e., towards the center of the
segment) until each is a local extrema.

Reject the modified segment if either: (a) its new length is less
than THRESHOLD( Min Div Seg Len ) (0.85 km) or (b) the new
velocity difference across the segment is less than
THRESHOLD( Min Div Seg Vel ) (5 m/s) or (c) the fraction of the
sample volumes in the segment which are either marked invalid
or have velocity values below or above the starting or ending
velocity values, respectively, exceeds THRESHOLD( Fraction
Bad ) (0.125).

Reject the modified sec 3nt if the block mean velocity value,
averaged over NUMBER( wiope Test ) sample volumes (0.5 km),
is not strictly monotonically increasing along the length of the
segment.

Check the start and end points to verify that each is within
THRESHOLD( Median Difference ) (5 m/s) of the local median
velocity vaiue computed over NUMBER( Local Median ) range
samples (1 km). If both points meet this criteria, accept the
segment. Otherwise, trim each point not meeting the criteria
back one gate, and repeat the validation loop.

Figure 16:  Shear segment validation test procedure

3.6. Azimuthal Association

Those segments which survive these vaiidation tests are then associated across radar
azimuths to form two-dimensional regions of shear. Any two segments which overlap in
range by at least THRESHOLD(Min Overlap) (nominally 0.0 km) and are within
THRESHOLD(Angular) (2.0 degrees) in azimuth are joined together into the same region.
This association process continues until all segments have been grouped into regions. These
aggregates are now thresholded based on their total area, number of segments, ard
maximum segment strength. The total area for a region is computed as the sum of the areas
of the shear segments in the region. Regions with total area less than THRESHOLD(Total
Div Area), fewer than THRESHOLD(Min Div Segments) segments, or having a maxirmum
velocity differential (across the strongest segment in the region) less than
THRESHOLD(Max Div Diff) are discarded. The result of these clustering and thresholding
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proresses is a set of “significant” regions of divergent shear, which are the final output of
the divergence regions algorithm.

3.7. Alarm Generation in the Complete Microburst Algorithm

The divergence regions detected by the algorithm are used as the primary input to the
remainder of the microburst detection aigorithm. Storm features from upper elevation
angles (e.g., reflectivity regions, convergence, rotation, and divergence features) are used to
identify significant structures in the storm cells which may be used to increase the
confidence in the existence of a windshear event. The basic temporal continuity and outflow
strength requirements needed to generate an alarm, based on the detection of a divergence
regicn, are relaxed by the presence of structures aloft. The various algorithms and decision
processes involved in the detection of features aloft, and in the generation of final alarm
regions, is quite complex and will rot be described here. A summary of the use of features
aloft may be fourd in [Campbell, 1989], while a complete description of the algorithms is
presented in [Camipbell and Merritt, 1988].

The output from the complete detection algorithm is a set of finai alarm regions. These
alarm regions are essentially a validated subset of the initial set of divergence regions,
possibly merged based on spatial proximity and features aloft. Each alarm region has an
associated set of shear segments, obtained from the divergence region(s) on which the alarm
region is based.

3.8. Shape Generation and Hazard Level Estimation

The alarm regions are processed by a “shape” determination stage, which fits a smooth
outline to the set of shear segments which make up each alarm region. The shape is
constrained to be a rectangle with semi-circular ends, referred to as a “bandaid” shape.
Parameters define the maximum size and ellipticity of the shapes, and an alarm region may
be brokern up into multiple smaller shapes to satisfy these constraints. The shape generation
algorithm is described in [F.W. Wilson, et al., 1991].

The alarm strength associated with each bandaid shape produced is determined by the
collection of shear segments which were used to produce the shape. If the alarm region is
described by a single bandaid region, then all segments for the alarm region are used in
determining the strength. If the alarm is subdivided into multiple bandaids, each bandaid is
associated with a subdivided set of segments, each of which is used to arrive at the strength
value. For each shape, the strength value is taken as a percentile of the set of velocity
differentials across the segments associated with the shape.
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4. ALGORITHM CASE STUDY FOR JULY 11, 1988

A strong microburst occurred on the afternoon of 11 July 1988 during the TDWR
operational testing period at Denver’s Stapleton airport. This microburst was particularly
strong, reaching @ maximum velocity difference of roughly 40 m/s, and was located along an
active approach path for Stapleton airport. Several aircraft encountered the microburst and
experienced serious difficulties; one aircraft came within 50 ft of the ground before
recovering. Because of the strength and operational exposure of this microburst, it has been
studied extensively by the aviation meteorology community [Schlickenmaier, 1989]. A
portion of the time history of this microburst outflow, as observed with the FL~2 radar, is
presented below, alorig with the performance of the divergence detection algorithm on this
case.

4.1. Minute~-by-~Minute Observations cf Microburst Develor:nent

The radar images shown in Figure 17 depict the radar reflzctivity and velocity measured
by FL-2 at time 22:04:01 on 11 July 1988. At this time, a inumber of moderate-refiectivity
storm cells were present in the vicinity of Stapleton airr;ort. Roughly seven microbursts had
already been observed on this day, and another 12 microbursts were to occur in the next two
hours. The close-up image in Figure 18 shows ar: existing microburst south and east cf the
airport area (7 km range, 300° azimuth), and a cell with a weak divergent outflow just
touching the southern extent of the airport runway complex. The maximum surface
reflectivity for this storm cell is 30-35 Bz, and a sma!l weak divergent cutflow is present.
The overlays on this image indicate the divergence segments (in white) and divergence
regions (in red) which have passed the respective threshold tests. The approximate outline
of the microburst outflows are drawn in green, based on a careful visual examination of the
reflectivity and velocity measurements of both the FL.-2 and UND radars.

At this time, the outflow from the storm cell is somewhat disorganized and rather weak.
The strongest shear is located at a range of 12 - 14 km at azimuth angle 298°, but it extends
across too small a distance for the algorithm to detect it. The algorithm does detect six shear
segments on the southern edge of the cell, which result in a divergence region being
identified.

The next sequential radar scan at the surface was taken about one minute later, at time
22:05:04, and is shown in Figure 19. The region of positive velocities has filled in somewhat
now, and the velocity values are slightly stronger, as are the negative velocities. The shear
region along the 300° azimuth line has enlarged slightly, allowing the algorithm to detect the
shear region there. Note that the center portion of the outflow, where the segments were
detected on the previous scan, has weakened and shifted so that no segments are detected
there. A few weak segments were detected at the far southern tip of the outflow but were not
sufficiently large (in area) for a divergence region detection.

At 22:06:01, the outflow has increased both in size ai:d strength, with a distinct visual
signature of well-defined positive and negative velocity regions (Figure 20). The shear
region is detected with a number of segments, although some radials are missed and some
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Figure 17:  Precipitation and winds at start of case study for 11 July 1988.
These radar images show scatrered storms to the west of Stapleton airport, with a
small microburst cell deveioping just off the east end of the east—west rinvays.




Figure 18: Close-up image of radar measurements at start of case study
(22:04.01) on 11 July 1988. Divergence segments are shown in white, divergence
regions (n red and ground truth regions in green
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Figure 19: Radar measurements from 11 July 198§ at 22:05:04.
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Figure 20:  Radar measurements from 11 July 1988 at 22:06:01.
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of the segments are shorter than the extent of the apparent shear. The region formed by
these segments, however, covers the actual shear area quite well.

One minute later (22:06:58), the outflow shown in Figure 21 has again grown and is now
well detected by the divergence algorithm. The strongest portion of the outflow is seen at
abeut 300° azimuth, and the segments accurately cover the extent of this shear. A smiall,
weak outflow has developed to the southwest of the airport microburst, and the shear
segments from this secondary event have been merged into the region for the airport
microburst. The segment merge criteria determined adequate overlap between the segments
from the two events, and hence the regions were combined. This example illustrates the
sensitivity of the segment association rules used to determine the extent of the divergence
region. This exarnple shows the possible negative consequences from the use of strictly local
decisions about segment overlap in the algorithm for growing the shear region. Also, note a
weak region of divergence on the northern tip of the airport microburst where three weak
segments were detected. The velocity differential across these segments is roughly 9 m/s.

On the next surface scan, at 22:08:03, the measurements shown in Figure 22 indicate an
extremely rapid growth in the surface outflow on the northern tip of the previous divergence
region. The weak 9 m/s outflow from the previous scan has grown to a peak value of 25 m/s,
and the area of the outflow has increased considerably as well. This dramatic increase in the
outflow strength and extent is the result of the impact of a descending reflectivity core, and
the associated downdraft, with the surface. Comparison of the reflectivity images for these
two times indicates a significant expansion and increase in reflectivity at the surface which
coincides with the large growth of the outflow.

At time 22:09:00 (Figure 23), the southern portion of the outflow region has weakened
and begun to break up while the northern portion continues to expand and intensify. The
strong outflow to the east of the east-west runways is well detected by the divergence
algorithm, and the remainder of the outflow region resuits in two smaller divergence regions
being identified. While the divergence algorithm has done a rather good job of identifying
this very strong outflow region, the segment detection criteria have resulted in a segment
being broken in the strongest region of the outflow. The velocity profile through the
microburst center is shown in Figure 24, along with the segments found by the algorithm.
The slight plateau in the velccity profile along the radial at azimuth 306.5° caused the shear
segment to be broken into two pieces. Since no logic is present within the divergence
algorithm to join such segments after they have been broken, the net loss across the shear
region at this azimuth is underestimated by a factor of two. Fortunately, the adjacent
azimuths have the same strength outflow, so this error on one radial does not result in an
overall error in the estimated strength of the region. If this segment-splitting error had
occurred on more radials, the maximum strength of the region could have been severely
underestimated. This underestimation of the shear region strength could potentially result in
the region not being detected as a microburst if the final strength were belew the required
threshold level. Once a region has been detected as a microburst, however, the shape
generation algorithm will join any segments on the same azimuth and sum the strengths to
compensate for this segment-splitting effect.

The continuing growth and expansicn of the microburst outflow is seen in the next two
radar scans, at times 22:10:03 (Figure 25) and 22:11:00 (Figure 26). The windfields in

_47 -



Figure 21

Radar measurements from 11 July 1988 at 22:06:58.
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Frgure 22. Radar measurements from 11 July 1988 ar 22:08:03.




Figure 23: Radar measurements from 11 July 1988 ar 22:09:00.
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Figure 24:  Velocity measuremeis at three azimuth angles through strongest
portion of airport microburst at 22:09:00. Shear segments detected by algorithm are
overiayed, indicating the segment at azimuth 306.5° is broken.

these two observations show the increasing windspeeds in the positive and negative radial
velocity regions of the main outflow along with the weakening of the older outflow located
justat the end of the east-west runway. The outflow from the main microburst is also seen to
be colliding with the expanding outflow from the large micrcburst to the southeast of the
runway complex, giving a very sharp convergence line at the boundary between the two
outflows. The strong portion of the main outflow is completely detected by the divergence
algorithm on these two scans, although the two microbursts in the airport vicinity are
detected as a single, large divergence region.

4.2. Summary of Algorithm Performance for 11 July 1988 Event

The divergence algorithm was successful in detecting this microburst throughout its
hazardous lifetime. A divergence region was created by the algorithm at the initial impact of
the microburst and for each of the subsequent radar scans. Despite this good performance at
the region-finding level, it is evident that the algorithm was much less successful when the
individual shear segments are considered. On many of the radar scans, the aigorithm did not
find shear segments in regions of significant shear. Also, many (weak) shear segments were
found in areas outside of the region of hazard.

The plots in Figure 27 compare the regions detected by the algorithm with the areas
determined (by manual analysis) to be the region of significant shear. On each scan after
22:04 (the airport microburst began ac 22:05) the hazardous region was almost completely
enclosed by the detected divergence region, but the number of regions generated by the
algorithm varies from scan to scan. This scan-to-scan variation in the clustering of
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Figure 25+ Radar measurements from 11 July 1983 at 22-10:03.
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Figure 26: Rudar measurements from 11 July 1988 ar 22:11:00
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Figure 27:  Summary of the detected regions for the 11 July 1988 study case.
Regions are indicated by rectangles; ground truth is represented by stippled outline.
While the microburst region is detected on each scan, the number of regions de-
tected changes from scan to scan.
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segments is a reflection of both (a) the inability to reliably detect all the shear segments in
the hazardous region and (b) the crude nature of the clustering algorithm used to form the
regions.

Although the algorithm sometimes fails to identify all of the shear segments in the target
region, the detection statistics described in the following section indicate that the clustering
process is usually sufficient to detect these shear regions. The large variability in the size
and number of regions detected is undesircable from an operational user interface
standpoint; therefore, the time association and shape generation components of the
complete microburst algorithm were designed, in part, to compensate for this characteristic
of the divergence algorithm.
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5. ALGORITHM PERFORMANCE STATISTICS

5.1. Analysis of Divergence Detection Algorithm Performance

The divergence algorithm was applied to a large sample of radar measurements from
three selected days in the 1988 experiment to obtain a statistically meaningful estimate of its
detection and false—-alarm performance. These days were selected because of the large
number of microbursts which occurred during the data collection on those days. While the
detailed comparison described here is limited to these few days cf data, experience from the
real-time observation of the algorithm performance {over a period of many months) verifies
that the statistics developed from these days seem to be typical of the algorithm operation.

For each day selected for the analysis, a thorough subjective examination of the radar
reflectivity and velocity measurements was conducted by experienced radar analysts to
determine the location and strength of all actual microbursts. This ground truth information
was then compared to the algorithm-generated detections to compute the number of hits,
misses and false alarms. In each case, the entire data sample for the day was used in the
analysis to avoid any possible biases associated with selecting particular time periods for
study.

The majority of the ground truth information developed for this evaluation was based on
the measurements made by the TDWR testbed radar. In some cases, data from additional
sensors (the surface mesonet and a second doppler radar operated by the University of
North Dakota) were available for corroboration. This support data has been used only in
exceptional situations where the algorithm comparison to the data from a single radar
windfield appeared to indicate a problem. The use of data from a single~doppler radar for
evaluating algorithm performance has been supplemented by several studies comparing the
radar-observed microburst events with those sensed by the surface mesonet [DiStefano,
1988], [DiStefano and Clark, 1990]. These comparisons have indicated that very few
microbursts are unobserved by the radar, and hence the single-radar-based ground truth
method is fairly accurate.

The basic criterion used in the ground truth analysis to define a microburst is the
presence of a wind speed difference of at least 10 m/s over a distance of no more than 4 km.
Note that the velocity difference may extend beyond the 4 km scale, so long as the required
10 m/s difference exists within some 4 km sub-region. A microburst is considered “ended”
when the velocity difference (over a 4 km scale) drops (and remains) below 10 m/s for a
period of at least two minutes. For each such microburst observed on a radar scan, a
polygonal outline is recorded, along with the strength (total velocity differential) of the
outflow.

The performance of the algorithm is characterized here using the common probability of
detection (POD) and probability of false alarm (PFA) statistics, defined as follows:
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POD = Number of detected events
Number of events

Number of false aiarms
{ Number of correct alarms + Number of false alarms)

PFA =

For this analysis, an event is defined as a single observation of an actual microburst by
the radar on a low-elevation angle scan. Each actual microburst is typically observed on
several sequential scans, and hence represents several events. Only those microbursts which
fall within a 30 km radius of the radar were considered in this scoring. Since the microburst
phenomena and the algorithm output are both two-dimensional regions, some criteria are
required to define a “detection.” For the evaluation conc:icted here, an event is considered
detected by the algorithm if the region produced by the algorithm overlapped the actual
{ground truth) microburst region by any amount. A region produced by the algorithm was
considered to be a false alarm if it did not overlap a ground truth region.

To provide an operationally realistic evaluation of the algorithm, certain alarms which
would be strictly classified as “false alarms” are tallied separately. Declarations which
overlap actual events which appear on radar scans within two minutes (before or after the
current scan) are not considered false alarms, but are counted as “early” or “late,”
respectively.

The results of the comparison between the algorithm detections and the ground truth for
the three studied days are presented in graphical form in Appendix 1 and summarized in
Table 2. This table lists the number of microburst observations on each of the case days and
the number of those observations hit and mussed by the algorithm. The detection
performance is seen to vary across the three days, with an aggregate POD of just over 90
percent. The tabie also shows the number of false alarms generated by the algorithm, which
is consistently high (roughly 30 percent of all detected regions are false). The detection
performance is shown as a function of outflow strength in Figure 28. This figure indicates
that detection performance improves rapidly with microburst strength over the range of 10

‘Table 2.
Perforinance Resuits for the Divergence Regions Algo-
rithm. Based on comparison to ground truth information
from Denver, 1988 Cases

June 10 June 21 June 25 Total
Number of hits 158 217 196 571
Numbrr of misses 28 10 5 43
Number of false aiarms 55 85 111 254
Probability of detection 0.85 0.96 0.98 0.93
Probability of false clarm 0.26 0.28 0.37 0.31
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Fioure 28: Probability of detection for divergence regions as a function of outflow
si-ength. The probability of detecting all events with strength above a certain level
is shcwn here, as a function of the strength level, for each of the case days, and in
totcl.

to 15 m/s, and that microbursts with strengths above 15 m/s are detected at least 98 percent
of the time.

5.2. Relationship tv the Complete Microburst Algorithm

The performance of the complete TDWR microburst algorithm has been evaluaied
against a very large set of microburst observations using the same methodology described
above. The results of this performance evaluation, from both the 1988 and 1989
measurement programs, are shown in Table 3, adapted from [Evans, 1990]. The detection
performance for the complete algorithm is 0.90 in Denver and 0.96 in Kansas City,
compared to the 0.93 value obtained for the divergence algorithm alone in Denver. These
values are very comparable, given the day-to-day variation in observed pesformance. Note
that the evaluation from Denver 1988 data presented in Table 3 includes the three case days
for which tr'e divergence algorithm was evaluated, plus two additional days of data.

The detection performance of the complete microburst algorithm is dominated by the
divergence algorithm, hence the similarity in performance measurements. The temporal
continuity test in the complete algorithm, which requiires a divergence region to be detected
at least twice in a row, dramatically reduces the false~alarm rate. The PFA for the complete
algorithm is in the 0.05 - 0.07 range, whereas the divergence algorithm alone generatcs
false alarms nearly 3C percent of the time. The second factor which reduces the likelihood of
false alarm in the complete algorithm is the strength threshold, which requires 1 divergence
region to have a strength of at lcast 10 m/s (in the absence of features aloft) before an alarm
will be issued. The POD and PFA values for the divergence aigorithm alone were based on
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Table 3.
Performance Analysis for the Complete TDWR Microburst Algorithm.

Denver (1988) Kansas City (1989)
POD (strength > 10 m/s) .90 .96
POD (strength > 15 m/s) 97 .99
PFA .05 .07

*Based on comparison to ground truth information, from the Denver {1988) and
Kansas City (1989) measurement programs. Adapted from [Evans, 1950].

the strength threshoids used for region detection, which require only a 5 m/s strength. This
strerigth thresholding helps eliminate many falce alarms but alsc removes correct
detections. The complete algorithm will reduce the strength threshold and relax the time
continuity requirement when features aloft are detected in combination with a surface
divergence region. This adaptive threshold adjustment is particularly useful in detecting
microbursts in their earliest stages of development while still keeping the false-alarm rate at
an acceptable level.

5.3. Interpretation of the Truth-Overlap Performance Statistics

The ground truth information used for the above scoring process is the result of
considerable examination of a large number of data fields, and is likely to contain many
small inaccuracies and perhaps some significant mistakes or omissions. The comparison
process, which simply requires some overlap between the truth region and the
algorithm-generated region, is very tolerant of sn all inaccuracies. The comparison method
used in the evaluation of the divergence algorithm was performed manually, and “marginal”
situations were subjectively resclved. It is unlikely that the small inazcuracies which are
inherent in this form of ground truth data have any noticeable impact on the final
performance statistics. The performance values which have been reported for the complete
TDWR microburst algorithin are typically based on a ground truth comparison performed in
an automated fashicn, where “marginal” cases are handled according to strict overlap or
proximity rules which ofter: fail to characterize a complex situation properly. These
statistics may be more sensitive to small variations in the ground truth outlines.

This lack of sensitivity to the details of the ground truth outlines is also an indication of a
deficiency in the performance metric itself. Since any degree of overlap between an alarm
and a truth region is scored as a perfect detection, there is no accounting for the degrer of
accuracy in the detection process. This lack of accuracy evalua‘icn also applies to the
strength information provided by the algorithm, which is not considered at ali by the
conventional scoring methods. These methods are very useful guides to the gross ability of
the algorithm to detect hazards; if the overlap scoring metric produces a low probability of
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detection, then there is clearly a problem with the performance of the system. Likewise, a
high false-alarm rate by this metric is generally indicative of a problem. The use of a
truth-overlap scoring method is an appropriate technique for monitoring overall system
performance and for the identification of anomalous performance requiring investigation.

The truth-overlap scoring approach, however, is not fuliy adequate for the evaluation of
finer details of the algorithm performance and is not an appropriate metric for comparing
alternative algorithm implementations or parameter settings. In addition, the overlap-based
scoring figures should not be interpreted as representing the system performance as would
be perceived by air traffic controllers or pilots using the system. The perceptions of these
operational users will be strongly influenced by the detailed correspondence between the
actual winds experienced by particular aircraft and the alerts provided by the system.

5.4. An Objective Path-Based Performance Metric

A new performance evaluation method is proposed here to attempt to provide a much
more refined evaluation of the correspondence between the algorithm output and the actual
windfieid. This new approach examines the longitudinal winds along each of a number of
straight line segments (representing potential aircraft flight paths), computes a measure of
the divergent wind shear present along that path, and compares that value to any algorithm
regions intercepted by the path. To obtain the longitudinal winds along the paths, a
dual-doppler analysis must be performed. This evaluation technique is therefore
appropriate only for thost measurement periods where adequate coverage from a second
doppler radar is available. The requirement to perform this dual-doppler analysis also
increases the computer processing cost of this method (relative to the truth outline scoring
approach) but reduces the need for manua! expert analysis to obtain the ground truth
regions.

This path-based approach offers the ability to fully capture the complex nature of the
windfield hazard and evaluate the appropriateness of the detected region in a manner which
directly relates to the perception of operational users of the system.

The selection of path segments t¢ be used in the analysis allows it to be tailored to a
number of circumstances. To obtain a large statistical sample, hundreds of paths may be
used covering the entire area where dual-doppler measurements are available.
Alternatively, a small number of paths over a specific area can be used to focus on
performance for a specific event or ;unway area. Path orientations may be restricted to
match actual approach and departure corridors around an airport, or paths may be oriented
in all directions to assess different aspects of the viewing angle dependence of the event
strength.

While the path-based approach would seem to provide a much more refined evaluation
of algorithm performance, it does not consider a number of significant aspects of the system
operation. First, the path-based approach evaluates the degree of match between the
current winds and the current algoritnm outputs. It would not easily accommodate the
evaluation of the timeliness of detections (i.e., how early in the microburst lifetime was the
event detected) and it does not easily handle the discounting of alerts which immediately
precede or follow actual hazards in time. The path-based approzch does not embody any
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concept of an individual microburst event, since all performance is viewed relative to the
winds along specific paths.

The performance statistics which would be obtained from this sort of path-based
evaluation would not be easily compared to values derived using the more common
truth-overlap approach. The path-based approach should be considered as just one of
(perhaps) several performance metrics useful for evaluating different aspects of the TDWR
microburst algorithm behavior. It is most appropriate for examining the detailed
performance of the hazard-estimation or area-delimiting aspects of the system and is less
appropriate as a general-purpose performance metric. Scoring approaches based on
microburst outlines, as used in previous years, are probably more appropriate for many
other performance evaluation applications.

5.5. Description of the Path-Based Scoring Method

The path-based approach uses a mesh of simulated flightpaths, spread across the entire
dual-doppler analysis area, for computing the performance measures. A typical
configuration mighi use paths which are 6 km long (roughly the length of the microburst
alert area around a runway), spaced 1 km apart in the X and Y dimensions, and rotated in
30° increments. This arrangement would result in roughly 5400 paths covering the analysis

area.

Each of these paths would be intersected with any microburst alarms generated by the
algorithm to determine the algorithm-generated strength. In the case of multiple alerts
intersecting the path, the largest value would be selected. An estimated windspeed loss
estimate is then calculated for each path, based on the dual-doppler windfield. This loss
estimaie is then associated with the path for use in evaluating the algorithm performance.

Each path in the analysis area may now be categorized as a hit (botir alarm and loss
estimates above 10 m/s), miss (loss > 10 with no alarm), false warning (alarm but loss < 10) or
a null path (no alarm and loss < 10). The usual detection and false warning probabilities may
then be calculated from the total number of hit, miss, and false warning paths. The
terminology “false warning” is used here to distinguish between a warning generated in the
presence of shear (although the shear is below the hazardous strength level} and a genuine
false alarm generated in the absence of any true windshear. The path-based scoring method
does not provide any distinction between these two different types of false cutputs, and the
new terminology is employed to emphasize this point.

Note that these statistics are best interpreted something like: “POD = the probability that
a pilot encountering a microburst in the analysis area would receive a warning.” There is no
concept of microburst event or observation in this method; it makes no statement about the
number of microbursts present, raach less how many of them are detected.

The loss estimate for a pata is based on the integrated, thresholded shear of the
longitudinal wind. The steps involved in the computation are:

1) The windfield is used o calculate the longitudinal windspeed along the path, from
which a shear profile is computed (using simple point-to-point differencing).
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2) The shear profile is then threshoided against a nominal shear value (initially
suggested to be 2.5 m/s per km) and set to zero where the shear values do not
exceed the threshold.

3) The thresholded shear profile is then numerically integrated to obtain a windspeed
loss estimate across the path.

The loss estirnate described above is intended to represent (albeit crudely) the loss which
might be experienced by a pilot when flying along the path. While the calculation is quite
simplistic, it has three important characteristics. First, it provides at least some sort of
location—- and direction-sensitive hazard estimate (not true of region outlines). Second, it
meets the desired criteria that the hazard estimate is monotonically increasing as a specific
path is extended (not true of simple endpoint-to-endpoint velocity differences). Third, it
does not include contributions from shear levels which are weak enough to be compensated
for by nominal manual or automatic flight control inputs during landing or takeoff
operations. ‘

This last criteria is quite significant and has been an issue of some concern to the aviation
weather community. Studies of aircraft performance in windshear have focused on the total
energy loss rate (sometimes called “F-factor”) experienced by an aircraft during microburst
penetration. This energy loss includes contributions from two sources: (a) the divergence of
the longitudinal winds along the flight path (roughly corresponding to the horizontal
divergence measured by a radar) and (b) the downdraft winds along the flightpath. Aircraft
control svstems are capable of stabilizing aircraft flight profiles in the presence of F-factors
up to son.e aircraft-specific limit, and windshears below this magnitude should not result in
“microburst” alerts. The loss estimate described above is a form of estimate of the
integrated F-factor along the flight path, although it includes only the horizontal component
of the windshear impact. Only shears above a certain threshold are included in this
integration in an attempt to match the response characteristics of an aircraft more closely.

While the loss estimate used here is at best a very crude indicator of actual hazard level to
an aircraft, it attempts to be a more faithful representation than those metrics {e.g.,
maximum velocity differential) used in previous evaluations. Further study in the
relationship between F-factor and aircraft performance (and the relationship between
longitudinal shear and downdraft strength) should provide insight into how this loss estimate
may be improved.

5.6. Example of Path~Based Scoring Applied to July 11, 1988 Case

The behavior of the path-based scoring approach can best be understood through a few
examples of its application to an actual microburst case. The July 11, 1588 microburst
described in Chapter 4 is used here to examine the different aspects of this scoring method.

With the path-based scoring approach, the set of paths may be chosen to focus attention
on a specific area of operation. The color plots in Figure 29, Figure 30, Figure 31,
Figure 32 and Figure 33 show the “true” and “dstected” path strengths over the east-west
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BB/ 11 22:8L:58 ¢

Figure 29:  Path-hased scoring results for July 11, 1988 microburst at 22:06:58.
Upper image shows east—-west component of the dual-doppler windfield; lewer image
shows radar-measured velecity field. Runway clert boxes, microburst alarms and
scoring paths are overlaic.
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Figure 30: Path-based scoring ecample for 22:08:03.
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Path--based scoring example for 22:09:00.
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Figure 32: Fath-based scoring example for 22:10-03.
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Figure 33: Path--bused scorimg example for 22:11:00




runway, which was actually in use for approaches at the time of the microburst. A 10-by~10
grid of paths was used for this example, with each path 4 km long and spaced every 800
meters in the east-west direction and every 200 meters in the north-south direction. All
paths are in the same direction, oriented along the runway. In each figure, the upper image
shows the U component of the reconstructed dual-doppler windfield (the component of the
horizontal wind field in the east-west direction, with winds to the east being positive) and
the lower image shows the radar-measured surface velocity field. The airport runways and
alert boxes are indicated in the white overlay on each figure. The alert boxes are obtained by
drawing a rectangle around each runway, with a 1 nmi buffer on each side of the runway and
a 3 nmi buffer on the approach and departure ends of the runway. The path set used in this
example is chosen to fill the arrival alert box for the runway which was active at the time of
the microburst.

The paths used for scoring are also shown on the color plots, color coded by their
strength. The paths shown on the upper image correspond to the “true” strength determined
from the dual-doppler windfield along the path. The paths in the lower image correspond to
the “detected” strength, determined by the strength of the strongest microburst alarm which
the path intersects. The color codes for the paths are shown in Table 4. The lower image
also has the microburst alarms (and ccrresponding shear segments) overlaid in red.

The tabulated results for this scoring example are listed in Table 5. The table lists the
number of valid paths for each tilt time (the number of paths for which the dual-doppler
windfield data was valid along the path), the number of paths considered hazardous (true
strength greater than 10 m/s), the total number of paths for which microburst alarms were
issued (alarm strength greater than 10 m/s) and the number of hazardous paths which were
also alarmed. The POD and PFW statistics are computed for each tilt and totalled for the
entire case. For these five radar scans, only five paths which were considered hazardous
were not alarmed by the algorithm (all on the first scan at 22:06:58). The resulting POD is 98
percent. However, 130 of the 372 paths for which alarms were generated were not in fact
hazardous, yielding a PFW of 35 percent.

Table 4.
Color scale used to indicate strength of scoring paths.
Color Strength (m/s)
White 10 - 14
Grey 15 - 19
Yellow 20 - 24
Orange 25 - 29
Green 30 - 34
Red 35 and above




Table 5.
Path-based scoring results for east-west runway case.

Tilt time: 07/11/88 22:06:58 Elevation 0.300000
Number of valid paths 85
Number of hazards 20 Hit 15 POD 75.0
Numbe:r of alarms 45 False 30 PFW 66.7
Tilt time: 07/11/88 22:08:03 Elevation 0.300000
Number ¢f valid paths 84
Number of hazards 45 Hit 45 POD 100.0
Number of alarms 79 False 34 PFW 43.0
Tilt time: 07/11/88 22:09:00 {.levation 0.500000 4
Number of valid paths 82
Number of hazards 55 Hit 55 POD 100.0
Number of alarms 82 False 27 PFW 32.9
Tilt time: 07/11/88 22:10:03 Elevation 0.300000
Nuzber of valid paths 85
Number of hazards 62 “iit 62 POD 100.0
Number of alarms 85 false 23 PFW 27.1
ilt tire. 07, ../88 22:11:00 3levation 0.3000N0
Number of valid paths 81

s Timber of hazards 65 Hit 65 POD 100.0
sumser of alarms 81 False 16 PFW 19.8
MISSION STATS:
Yumber of valid paths 417 Number of tilts 5
Number of hazards 24T Hit 242 POD 88.0
Number of alarms 372 False 130 PFW 34.9

In this case it is clear that pilots arriving from the east onto this runway would have been
adequately warned of the m.croburst hazards which were present. Many of the paths for
which alarms wers generater! did not actually penetrate significant shear, but this high false
warning value is an expe ‘=d consequence of the path-based scoring approach. The g
variation in the microburst suength across the runway alert region cannot be represented by
the microburst alarm (whica has a single strength value for its entire area), and some
intersecting paths will receive strength values higher than those which would actually be
encountered.

The same case may also be scored from the perspective of aircraft approaching from the
south, landing on the north-south runway. During this mic. oburst on July 11, aircraft were
not using this secondary approach pattern, but this exam ple will illustrate the variety of
evaluations possible with the path-based approach. For this second example, 2 10-by-10
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grid of paths was again used, but the paths were aligned with the north-south runways and
spaced every 200 meters in the east-west directions and every 600 meters in the north—south
direction. The true and alarmed paths for one scan from this case are shown in Figure 34,
illustrating only a small number of actual hazard paths on the eastern edge of the path set.
The detected shear region extends across the full width of the alert region for this runway,
and many of the paths are thus alerted. The scoring summary for this case is shown in
Table 6, indicating a very high probability of false warning rate (85 percent). This result is
the corsequence of the aspect-dependence of the microburst strength and the single
strength value used for the alarm. The longitudinal shear for paths along the north-south
runway are quite small, while the shears are somewhat stronger in the direction of the radar.
The angle between the runway direction and the radar viewing angle is quite significant
(over 45°) in this region. Also, the strength value for the alarm in this region is the
maximum strength of all segments in the alarm, which extends far to the east of the runway
alert box. It is likely that the alarmed strength for the north-south paths is actually based on
shear segments located by the algorithm in a region well outside of the north-south alert box
but is applied to the entire alarm area.

As a final example of the path-based scoring method, a set of paths in all directions was
used for this case. The path set used this time was a 20-by-20 grid of 4-km-long paths,
spaced every 300 meters in both directions. Nine paths are used at each grid point, spaced
20° apart in orientation angle. The resulting path strengths for one radar scan is shown in
Figure 35. The dual-doppler--based path strengths shown in the upper image of this figure
illustrate the aspect dependence of the outflow strength. The strongest paths are located in
the east-west direction, and very few strong paths are found in the north-south direction.
The summary scoring statistics for this version are listed in Table 7, showing a high POD
(92 percent) and a PFW just over 60 percent.
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Table 6.
Path~-based scoring results for north-south runway case.

Tilt time:

Number of
Number of
Number of

Tilt time:

Number of
Number of
Number of

Tilt time:

Number of
Number of
Number of

Tilt time:

Number of
Number of
Number of

Tilt time:

Number of
Number of
Number of

07/11/88 22:08:538

valid paths 97
hazards 5
alarms 47
07/11/88 22:08:03

valid paihs 100
hazards 12
alarms 39
07,11/88 22:09:00

valid paths 100

hazards 8

alarms 39
07/11/88 22:10:03

valid paths 100
hezards 4
alarus 0

07/11/88 22:11:00

MISSION STATS:

Number of
Number of
Number of

valid paths 29
hazards 6
alarms 68
valid paths 496
hazards 33
alarms 193

Elevation 0.300000

POD
PFW

Hit 5
False 42

Elevation 0.300000

Hit
False

12
27

POD
PFW

Elevation 0.500000

Hit 6
False 33

POD
PFW

Elevation 0.300000

Hit 4]
False 0

POD
PFW

Elevation 0.300000

Hit 6
False 62

POD
PFW

Number of tilts
Hit 29
False 164

POD
PFW

100.
89.

100.
69.

100.
84.

100.
91.

87.
85.

o

@




Figure 35 Scoring with parhs in many directions, jor the radar scan at
22:10-03




‘ Table 7.
Path-based scoring results for the multi-directional case.

Tilt time: 07/11/88 22:06:58 Elevation 0.300000

Number of valid paths 3428
Number of hazards 705 Hit 679 POD 86.3
Number of alarms 2240 False 1561 PFW 69.7

Tilt time: 07,/11/88 22:08:03 Elevation 0.300000

Number of velid paths 3530
Number of hazards 964 Hit, 2912 POD 94.6
Number of alarms 1956 False 1044 PFW 53.4

Tilt time: 07/11/88 22:09:00 Elevation 0.500000

Number of valid paths 3592
Number of hazards 795 Hit 768 POD 96.6
Number of alarms 2105 False 1337 PFW 63.5

Tilt time: 07/11/88 22:10:03 Elevation 9.300000

Number of valid paths 3493

Number of hazards 815 Hit 646 POD 79.3
Number of alarms 1391 False 745 PFW §3.6
Tilt time: 07/11/88 22:11:00 Elevation 0.300000

Number of valid paths 3416

Number of hazards 946 Hit 892 POD 64.3
Number of alarms 2560 False 1668 PFW 65.2
MISSION STATS:

Number of valid paths 17457 Number of tilts 5
Number of hazards 4225 Hit 3897 POD 92.2
Number of alarms 10252 False 6355 PFW 62.0
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6. IMPACT OF ASYMMETRY ON TDWR PERFORMANCE

The outflow region of a microburst is often asymmetric in the sense that the airspeed loss
encountered by an aircraft (or the velccity difference measured by a radar) will be stronger
in some directions than in others. Ay a result, TDWR measurements of microburst strength
(which are obtained from measursments in a single viewing direction) may not match the
strength encountered by an aircraft whose flight path is not directly aligned with the radar
viewing direction. At most airport locations it will be impossibie to site a single TDOWR radar
to view along all the commonly used flight paths. The possibility that a (single radar) TDWR
might significantly underestimate the actual hazard posed by an asymmetric microburst was
first presented by [Wilson, et al., 1984] and has been the motivation for several subsequent
studies. The characterization of microburst asymmetry and it’s impact on operational
systems has teen the topic of several studies, including [Eilts, 1988] and [Hailowell, 1990].
In the study by Hallowell, roughly 88 radar scans through microbursts of various strengths
and sizes were examined and the detailed distributions of microburst strength vs. viewing
angle were computec. The results of the Hallowell swd, indicate that microbursts are
typicully asymmetric, with an average ratio of maximum strength to minimum strength of
1.9. The collection of microbursts used for this study were all obtained from measurements
made in Denver, CO, and the resulting analysis provided in this chapter should be
considered specific to the Denver (and high plains) meteorological environment. Ongoing
studies of asymmetry characteristics in otner geographical locales will be necessary to
determine the applicability of these resulis to a broader range of environments.

Several studies have been conducted to assess the detection capability of the TDWR
microvurst algorithm ([Campbell, 1989] and [Evans, 1990]). A consistent result among
these studies is a strong dependence of POD on the measur=d strength of the microburst
outflow. An example of this sensitivity, taken from the study of performance in Denver
during 1988, is shown in Figure 36.

Since the probability of detecting a microburst (with 2 TDWR) is quite sensitive to the
(measured) microburst strength, the variation of strength with viewing angle may have a
significant effect on the TDWR performance.

This variation in apparent microburst strength with viewing angle reduces the ability of
the TDWR to detect those microbursts which exhibit significant asymmetry. While the
TDWR system will detect microbursts with observed velocity differentials above 15 m/s with
a high probability, the detection probability will be significantly reduced if the observed
strength is significantly reduced.

€.1. Statistical Model for Microburst Asymmetry

The quantitative effect of asymmetry on the probability of detection may be assessed by a
careful examination of the statistical reduction in observed microburst strength resulting
from viewing angle dependence. The performance analysis presented here is based cn the
following assumptions:
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Figure 36: Probability of detecting all divergence regions above a certain strength
level. The aggregate detection rate drops as the minimum included strength drops,
indicating poorer detection rates for weaker strengths. Detection rates at the left of
the plot indicate aggregate POD over all events for each category. Performance
analysis from Denver, 1988 cases.

1) The observed strength of a microburst as a function of viewing angle may be
modeled as an ellipse, i.e.:

»,-—

(14)

R(,0) = [(az—l)sin2(0)+1]

where: o = ratio of max/min strength
0@ = viewing angle relative to direction of maximum strength
R = ratio of observed strength to maximum strength

2) The statistical distribution of the ratio of maximum to minimum strength for a
microburst (over all strengths ranges) may be modeled as a single Rayleigh
distribution, i.e.:

o1 ]l
— Im 15
po@ = H | (15)
m
where: m = mean ratio value
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The validity of these two assumptions, for the Denver cases studied here, will be
demonstrated below using the asymmetry data obtained by Hallowell. First, the use of these
assurnptions to model observed strength distributions will be addressed.

If microbursts were always observed from the worst-case direction, i.e., along the
viewing direction with the minimum strength, then the observed strength would be scaled
down from the true strength by a factor equal to the asymmetry ratio for that event. Using
the assumed Rayleigh distribution for the asymmetry ratios, Figure 37 shows the cumulative
distribution of attenuation (defined to be the ratio of observed strength to true maximum
strength) which would be experienced in this worst-case condition. The curve labelled
“Worst case viewing angle” shows the probability that the ratio of the measured strength
(minimum strength) to the maximum strength is at least as large as the corresponding
ordinate value. This curve corresponds to a Rayleigh mean parameter m = 2.0 and indicates
that median value for the attenuation factor is 0.35.
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Figure 37: Cumulative probability distribution for attenuation factor. Two cases are
shown: a worst case, assuming the radar is always viewing from the minimum
strength direction, and a realistic case where the viewing direction is uniformly dis-
tributed.




Since the radar viewing angle is assumed to be randomly oriented with respect to the
direction of maximum outflow strength (as indicated by the Hallowell study), this
worst-case viewing direction case is unrealistic. If the viewing angle is assumed to be
uniformly distributed and the strength is assumed to be an elliptical function of the viewing
angle (as in Equation 1), the attenuation factor distribution is somewhat improved as shown
by the curve labelled “All viewing angles” in Figure 37. For this more realistic case, the
median attenuation factor is now 0.52.

The cumulative distribution for the attenuation factor is a very powerful tool that allows
the distribution for the observed strength to be computed if the maximum strength is known.
The observational study by Hallowell examined a number of microburst cases using
dual-doppler radar measurements and ccmputed the microburst strength at each of 18
viewing directions for each event. Using these cbservations, the distributions of both
observed and maximum microburst strengths may be computed, as shown in Figure 38. The
“Maximum” curve corresponds to the cumulative probability distribution of the rmaximum
strength of an event, while the “Observed” curve depicts the cumulative probability
distribution for the observed strength (over all angles and events).

Using the attenuation distribution from Figure 37 (using all viewing angles) and the
distribution for maximum event strengths from Figure 38, the distribution for observed
strengths may be predicted. This predicted distribution is also shown in Figure 38 and is
seen to match the actual observed distribution extremely well. This excellent match between
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Figure 38: Cumulative distributions for observed microburst strengths in Denver
cases (over all viewing angles) compared with the distribution predicted from the
asymmetry model and the distribution of maximum velocities.




the actual and predicted strength distributions indicates that the asymmetry model employed
{combining the elliptical strength variation with viewing angle and the Rayleigh distribution
of asymmetry ratios) accurately predicts the natural relationship between the maximum
event strength and the observed strengths from all angles.

6.2. Detection Performance vs Maximum Qutflow Strength

Having validated the attenuation ‘listribution model, it may now be used to examine the
impact of asymmetry on TDWR d. tection performance. The probability of microburst
detection is shown in Figure 39 as a functic+ of radar—observed microburst strength, based
on the performance analysis report~d in [Can bell, Merritt and DiStefano, 1988]. To depict
the effects of asyrimetry, the performance as 4 function of actual maximum strength (as
opposed to observed strengt) is plotted on Figure 59 as well. The detection rate for each
maximum strength value is computed by integrating the detection rat over all possible
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Figure 39: Pr bability of microburst detection (based <1 Denver, 1988 cases) as a
function of (.., radar-observed strength and (b) as a function of maximum strength
in any direct.on.




atrenuated (observed) strengths, in proportion to the probability distribution from
Figure 38.

The TDWR performance evaluations reported to date suggest that all microbursts with
strengths above 15 m/s were detected with a probabirity of at least 90 percent. Based on the
modelled distribution of attenuation from asymmetry, the revised performance curves
suggest that the 90-percent-detection level is not obtained until microburst maximum
strengths reach about 24 m/s.

It is important to bear in mind that this analysis of the impact of asymmetry is rather
sensitive to the asymmetry characteristics obtained in the Hallowell study, whick were
limited to experience in the Denver area. Likewise, the detection performance curve used in
Figure 39 is specific to Denver. Field programs in Huntsville, AL and Orlando, FL kave
indicated that the detection performance of the divergence algorithm may be worse in
Cenver than in other metzorological regions; hence, asymmetry impact estimates based cn
the Denver performance curves may be overly pessimistic.

If th= divergence detection algorithm were improved so as to detect a larger fraction of
the weaker microburst events, the detection of stronger asymmetric microbursts would also
improve (since these stronger events are sometimes viewed by the radar as being weaker,
anid hernce poorly detected). The plots in Figure 40 illustrate the improvement in POD which
could be obtained if the divergence algorithm POD vs radar-observed strength (shown in
Figure 39) were improved to yield perfect detection for all events with radar-observed
strengths of (a) 10 m/s and above and (b) 7 m/s and above. As shown in the figure, these
improvements in the detection of weaker events would significantly improve the detection of
microbursts with maximum strengths of all levels.

6.3. Comparison Using Runway-Oriented Microburst Strengths

The analysis in the preceding section examined the probability of detection for
microbursts as a function of the maximum strength of the outflow in any direction. Since the
raduar viewing airection is randomly oriented relativc to the direction of this maximum
strength, the effect of asymmetry is to reduce the detection performance of the system. The
iraplicit assumption in this analysis is that the classification of a microburst as “hazardous”
or “not hazardous” is to be based on the maximum strength of the event in any direction.

Since the hazard of interest to the TDWR system is that posed to an aircraft on final
approach or takeoff, it is also relevant to consider the microburst strength in the direction of
the aircraft flight (since the most significant shear which contributes to the aircrafi hazard at
low altitude® is the shear of the longitudinal wind along the flightpath). The aircraft
flightpath is also randomly oriented with respect to the direction of the maximum outflow
strength, If the radar were always sited so as to measure the winds directly along the
flightpath, then the radar-observed winds would match the aircraft-experienced winds and
the detection performance would be the same from either perspective. However, since it will
generally not be possible to site the TDWR radars to view aleng all flightpaths at an airport,
the runway-oriented and radar-oriented viewing directions will typically be different.

* The microburst downdraft velocity, which is proportional to both components of
the horizontal shear, decreases to zero near the ground [Targ and Bowles, 1988].
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Figure 40: Probability of microburst detection as a function of maximum strength. The
bottom curve indicates performance using baseline TDWR divergence algorithm detection
performance vs radar-observed strength (jrom Denver, 1988 cases). The remaining two
curves indicate improvements obtained by assuming the divergence algorithm has perfect
detection for cven:is of 10 ml/s and above and for 7 mis and above, respectively.

If the microburst maximum strength direction is randomly oriented with respect to both
the radar and the rui. -ay directions, then the radar- and runway-oriented strengths will be
different (for asymmetric microbursts), but will have a zero mean difference. Half of the
time the radar-oriented strengwh wi!l be larger than that along the runway, and half of the
time the radar-oriented strength will be less than that along the runway. If the “hazardous”
vs “not hazardous” criteria is determined relative to the runway-oriented strength (i.e., that
experienced by the aircraft), then the impact of asymmetry will quite different than that
computed in the previous section.

The curves in Figure 41 iliustrate the distribution of microburst strengths which would be
measured by a radar at each of several redar/runway separation angles. For each of these
curves, the runway--oriented strength is assumed to be 15 m/s; the orientation of the
microburst raaximum strength is assumed to be uniformly distributed and the asymmetry
ratio is assumed to be Rayleigh distributed as in the previous section. Regardless of the
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Figure 41: Probability density for radar-oriented microburst strength for a runway-
oriented strengih of 15 m/s and several separation angles. [Note: Discontinuous end-
point for the 45-degree curve (at 39 m/s) represents cumulative probability density
for all strengths of 39 mis and greater.} :

angle between the radar viewing direction and the runway, the mean radar-measured
strength is always 15 m/s. While the mean radar-measured strength is always 15 m/s, the
distribution of radar-measured strengths varies strongly with separation angle. As the
separation angle increases, the distribution tends to breaden in width and the peak moves
towards lower strengths. Since the probability of detection drops off very rapidly (faster than
linear) with decreasing radar-measured strength, the cfiective POD, as a function of
runway-oriented strength, will also decrease with increasing scparation angle. This effect is
demonstrated in Figure 42, which plots the POD as a function ~f runway-oriented strength
for each of several radar-runway separation angles. The POD curves in this figure were
obtained by computing the distribution of radar-oriented strengths for each runway strength
level (as in Figure 41) and computing the aggregate POD using the radar--oriented POD
statistics (which appear in Figure 42 as the zero-degree scparation angle case). The POD
curve drops significantly (for strengths atove 10 m/s) as the separation angle increases
beyond about 15°. Notice that for runway-oriented strengths below 10 m/s, the POD
increases with separation angle. This increase in detection rate results from the fact that the
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way, and is simply the radar-based POD curve.

radar-oriented strength exceeds the runway--oriented strength hialf of the time, so that some
events which are weak in the runway direction are sensed with a larger strength (and are
hence better detected) in the radar direction.

Given the POD as a function of runway-oriented strength, it is possible to compute an
aggregate detection rate using an observed distribution of microburst strengths. The
observed distribution of radar-oriented strengths should be identical to the distribution of
runway-oriented strengths if the microburst orientation is uniformly distributed. The
distribution used here is taken from the Denver radar-mesonet comparison study by
[DiStefano and Clark, 1990] and is shown for reference in Figure 43. The aggregate PCD is
simply the convoiution of the POD vs strength (as in Figure 42) with the distribution of event
strengths. This aggregate POD is shown as a function of separation angle in Figure 44. This
figure aiso illustrates the effect on total } OD of an increase in detection of weak outflow
events. As in the previous section, two e.amples of performance improvement are
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Figure 43: Observed probability density for radar-oriented microburst strengths
Jor Denver, adapted from [DiStefano and Clark, 1990].

considered: (a) perfect detection for all events of strength 10 m/s and above and (b) perfect
detection for all events of strength 7 m/s and above.

The performance impact of asymmetry is ciearly more pronounced on those events with a
weaker outflow strength. The detection performance statistics computed above are based on
the goal of detecting all microbursts with strength above 10 m/s, as stated in the TDWR
Systems Requirements Statement. The current operational goals of the TDWR are to
provide informational warnings to pilots for outflows with strengths above 10 and beiow 15
m/s, and to begin providing hazard alerts for outflows of strengths 15 m/s and greater. If the
performance impact is assessed relative to the 15 m/s alert threshold a somewhat reduced
asymmetry penalty is found. The distribution of radar-oriented event strengths shown
Figure 45 was obtained from the observed distribution from Denver (as in Figure 43), but
renormalized to include only those events above 15 m/s strength. The aggregate POD
resulting from this distribution is shown in Figure 46. As would be expected, the aggregate
POD over these stronger events is considerably higher than that for all events above 10 m/s,
at all radar-runway separation angles. In general the aggregate POD for events above 15 im/s
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strength (from Denver, 1988 cases). The remaining ¢two curves indicate improve-
ments obtained b assuming divergence algorithm has perfect detection for events of
10 mis and above and for 7 mis and above, respectively.

is roughly 10 percent greater than the aggregate POD for events above 10 m/s, independent
of the separation angle.

These total POD curves indicate the substantial effect which asymmetry can have on the
overall performance of the TDWR system and the extent to which proper radar siting
(relative to primary aircraft approach and departure paths) can reduce the performance
loss. For radars viewing directly aleng flightpaths, asymmetry does not reduce the ability of
the TDWIXX to detect windshears which prescent strong shears along th:¢ ~ircraft path. As the
separation angle between the radar and the runway increases, the overali POD drops off
nearly linearly until the separation angle approaches 50¢. At this separation angle, the
overall POD may be decreased by nearly 20 percent (assuming Denver-based divergence
detection performance and probability distribution of event strengths above 10 m/s).
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Figure 45: Observed probability density for radar-oriented microburst sirengths,
including only those events above 15 ml/s.

Increases in the radar-runway separation angle beyond roughly 50° resuit in small
additional losses in detection capability.

6.4. Limitations to Asymmetry Impact Analysis

The asymmetry impact analyses presented in this chapter have attempted to reflect the
substantial body of information available or botk the measured detection performance cf
the TDWR microburst algorithm (relative to radar-measured microburst strength) and the
characteristics of microburst asymmetry. The results of these analyses suggest that
asymmetry can seriously degrade the ability of the TDWR to detect microbursts which are
strong along runways when the sepaiation angle betwcen the runway and the radar viewing
direction exceeds 10-20°.

While this analysis appears to be qualitatively correct (i.e., that asymmetry will reduce
the detection capability of the TDWR and that small radar-runway separation angles
minimize the degradation), it relies heavily on several observed statistics to provide the
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Figure 46: Aggregate probability of detection for all microbursts with strengths 15
mis and above along the runway, @s a function of radar-runway separation angle.

quantitative results obtained. The microburst asymmetry characteristics used for this
analysis were obtained from an in-depth examination of duai-doppler radar observations
from Denver microbursts. Similar asymmetry characteristics are not yet available from
other meteorological regimes, casting doubt on the applicability of these quantitative results
to the country-wide average performarce. Likewise, the baseline detection performance (as
a function of radar-measured strength) was based on Denver, 1988 performance results.
The detection performance of the microburst algorithm was worse in Denver than in other
test sites(see [Evans, 1990]), particularly in the detection of weak outflows. The net impact
of asymmetry has been shown to depend strongly on the ability of the divergence algorithm
to detect weak cutflows, and the Denver results thus present a near worst-case assessment

of asymmetry impact.
One additional caveat on the asymmetry analysis bears on the assumption that the
divergence detection performance is soiely a function of the observed outflow strength. It is

possible that the ability of the divergence algorithm to detect an outflow depends not only on
the radar-measured strength, but also on the maximum strength of the event as well. For
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example, the - ~tion rate for events of maximum strength 12 m/s, with the maximum
aligned with wdar viewing direction, may be different from the detection rate for
stronger event: . - aligned with the radar angle but which have a radar-measured strength
of the same 12 m/s. Any such dependence on maximum event strength could not be
identified frc~ existing performance analysis methods and could significantly reduce the
impact of asymmetry on overall performance.

Additional investigation will be required to validate and refine the analysis of asymmetry
impact presented here. First, since the performance of the TDWR is known to vary with the
meteorological characteristics of the environment, the asymmetry characteristics and
resulting impact analysis will need to be repeated for each different environment. Clearly,
those regions which experience relatively fewer asymmetric events, or fewer weak outflow
events, will be impacted less by asymmetry. Second, the correlation batween detection
performance and maximum outflow strength (in any direction) must be investigated to
determine if the projected performance degradation resulting from weaker measured
outflow strengths is as severe as suggested here.
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7. COMPUTATIONAL ALGORITHM ALTERNATIVES

7.1. Motivations for Improvements to the Baseline TDWR Divergence Algorithm

This  pter examines some alternative concepts for the divergence detection algorithm.
These cuncepts are proposed to address several perceived deficiencies in the existing
basehine algorithm (discussed below). The concepts presented in this chapter are oriented
towards the computation of shear estimates as a basic element of the detection process as
opposed to the existing pattern-based method in the baseline algorithm. The specific
algorithms described in this chapter have been applied to very small samples of data for
exploratory purposes but have nct yet been subjected to any significant performance
analysis evaluation.

The most serious deficiency of the current divergence algorithm is its poor detection
performan<e on weak outflows. The detection rate for microburst signatures with strengths
less than 15 m/s is roughly 0.75, compared to the near perfect detection rate for outflows
greater than 20 m/s. Outflows of weak strength are of limited operational concern, and the
reduced detection capability in this strength range has generally not been viewed as a serious
threat. Unfortunately, the asymmetric nature of the microburst outflows can cause a
potentially hazardous event to appear weak when viewed from a direction other than the
operational flight path. The analysis in Chapter 6 indicates that a2 substantial number of the
weak events being missed by the current microburst algorithm are probably of significant
strength when penetrated from a different direction. This asymmetry effect results in the
effective TDWR detection probability dropping by as much as 20 percent for micrcbursts
with worst-case strengths above 20 m/s.

A modest improvement in the ability to detect weaker {measured) outflows would
significantly reduce the likelihood that a hazardous, asymmetric microburst would go
undetected by the TDWR. Such an improvement would also benefit the timeliness of the
system in detecting microbursts in their carliest stages of development. For these reasons,
improvements in the detection of outflows with weak signatures would appear to be
warranted.

A second difficulty with the current algorithm is the selection of thresholds and
parameters which optimize performance for a given environment. This tuning process is
difficult to perform because of the complex interactions between the many parameters and
because of the sensitive dependence of the performance on the parameter values. The
behavior of the algorithm is often difficuit to judge intuitively, and proper tuning thus
requires considerable experimental parameter adjustments and evaluations. A more
straightforward algorithm, with fewer (and less critical) parameters, would be considerably
easier to adjust to the environments in meteoroiogically different regions of the country.

The shape estimation component of the TDWR algorithm includes complex logic aimed
at smoothing the outlines of the microburst alarms without losing a significant fraction of
the hazard area. This logic is needed, in part, because the existing algorithm tends to
generate segments which are very irregular within the detected region. The lack of spatial
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continuity in the segment deiection process does not provide any smoothing influence to
attempt to form a consistent boundary for the detected region; each segment is located
independently, then associated together based on overlap. A detection algorithm which took
more explicit advantage of the two-dimensional spatial continuity of the outflow could
potentially improve both detection performance (from the added information) and provide
more regular outline shapes.

The existing algorithm also fails tc exploit the temporal continuity of the microburst
outflow and does not use the detected region information frorn the previous scan to aid in the
detection process on the current scan. Although the final microburst alarm generation
process does u.e time association to reduce false alarms, this information is not fully used in
the initial shear detection process. Use of previous history could allow for a more reliable
detection of shear regions and could also reduce the erratic changes in detected size and
shape from scan to scan.

Finally, the current algorithm does not explicitly consider the actual shear strength within
the detected region. The logic tests used in the shear segment location process will identify
consistently increasing velocity trends of any magnitude; only the segment endpoint
trimming tests include any explicit requirement on the shear magnitude. These trimming
tests ensure that segment endpoints exhibit at least a minimum shear level but do ensure
that this shear level persists across the entire segment. This weak requirement on the shear
level can result in segments being detected which do not actually correspond to significant
shear signatures and can result in strength estimates which are inappropriate. A more direct
and explicit dependence on the radial shear magnitude would provide a more sensible
linkage to the actual aviation hazard factor.

The following sections of this chapter introduce the basic concept of a computational
detection algorithm and present an analysis of the performance of a basic algorithm against
idealized model outflow signatures. While these idealized signatures give some intuitive
understanding of the tradeoffs involved in the computational approach, the remaining
sections describe the additional complexities involved when applying these techniques to
actual radar measurements and outline more sophisticated algorithm components for
dealing with these real-world problems.

7.2. Computational Approaches to Shear Detection

Computaticnal approaches to the detection of divergence regions may provide simpler
algorithms with performance equal to or better than that obtained with the current TDWR
algorithm. The term “computational algorithm” here refers to an algorithm based primarily
on the numerical estimation of the radial shear as the basis for the detection of a shear
region. The baseline TDWR algorithm does not explicitly calculate a shear, but rather uses
logical tests within thie search window to ensure that velocity mcasurements are generally
increasing with range. The logic-based algorithm used in the TDWR incorporates a number
of tests designed to reduce noise effects and handle various observed characteristics of the
velocity measurements. These faciors are handled in a fairly implicit manner, making the
algorithm difficult to describe, difficult to understand, and difficult to adjust to new
environments. The hope for a more coriputational-based algorithm is to provide a
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technique whiich is more easily desciibed in common mathematical language and which has
more easily vnderstocd behavior.

One computational approach to ricroburst detection was investigated by [Noyes, 1990]
for use in the ASR~-9 windshear detection context where it was determined to perform as
well (or better) than the baseline TDWR algorithm. The divergence detection problem in the
ASR-9 context is very similar to that in TDWR, with two priraary differences. First, the
ASR-$ velocity measurernents are typically much noisier than those obtained by the TDWR.
TDWR velocity measurements generally have a standard deviation no greater inan 1 m/s,
whereas ASR-9 velocity estimates may have noise levels up to 3 m/s | Weber, 198¢ . Second,
the ASR-9 makes a new velocity measurement scan at the surface every 4.¢ 3econds
corapared to the once-per-minute surface updates obtained with TDWR. The algorithm
described by [Noyes, 1990] takes advantage of this high update rate of the ASR-9 (¢ rac e
the number of noise-induced false alarms. This form of temporal filtering would probaily
not be fruitful in the TDWR because of the 60-second update rate. The discussion below
extends the analysis presented by Noyes, with an emphasis on the TDWR appiicaticn and
preseniing a new method (appropriate to the TDWR update rate) for exploiting the temporal
continuity of microbursts.

The basic structure of the computational detect:on algorithm is shown in Figure 47. in
this approach, the raw velocity measurements are first processed by a spatial Filter. This
filtering step is designed to reduce the noise level preseit in the signal to avoid false alarms
from the shear estimation stage. For this analysis, three filter types have been considered:
(a) no filtering, (b) mean filtering and (c) median filtering. The filtered velocity
measurements are then used to estimate the shear of the radial velocity. Two common
techniques for estimating this derivative are considered nere: the finite difference approach
and the least-squares fit method. For both the shear estimation and filtering stages (when
filtering is employed) a spatial window size must be selected. The selection of this window
size Is a key factor to thie algorithm design. A simple analysis of the noise sensitivity of the
two shear estimators, as a function of window size, is presented in Appendix 2. The
simulation tests described below examine this sensitivity using more realistic signal models.

Once the shear estimates have been computed, they must be thresholded against a
selected shear level to produce “raw” point shear detections. A map of these point shear

Raw Soatial st She o
Velocity ~ ——3m I?'?tua 3 E't‘leart - 'I'h'il'bia-‘rld - F_«,fgm(:pt e
Measurements nter stimate resho Yormation

—— s o s e S

Figure 47: Basic structure of a simple computational detection algorithm. Velocity
measurements are used to esumate radial shear, which is then thresholded against
a fixed siear level. Contiguous segments above the threshold are identified as
shear segments, which are validated using an integrated loss threshold.
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detections could conceivably be used as a final display product, but further filtering is
generally desired to reduce false alarms. In addition, these point detections should be
clustered into two-dimensional shear regions for compatibility with the use of features aloft
in the TDWR microburst algorithm. This clustering process is also necessary for the
generation of a sensible estimate of the total strength of the microburst shear region.

The clustering method employed in the algorithm by [Noyes, 1990] used a
two~dimensional region growing approach, common to many image processing
applications. For compatibility with the existing structure of the TDWR divergence
algorithm, the approach used here first locates linear segments of shear (by simply
identifying contiguous gates above the shear thresho!d) along each radial. These shear
segments are then ciustered in azimuth in tiue same manner as in the baseline TDWR
algorithm: those segments which overlap in range and are close in azimuth cre joined into
the same region.

The strength for each shear segment is computed as the sum of the point shear estimates
along the segment, multiplied by the gate spacing. to produce a velocity value. This su~agth
value is slightly different from that used in orevious algorithms; both the TDWR and ASR-9
algorithms define the strength for a segment as the difterence between the velocity
measurements at the ending and starting points of the segment. The definition chosen here
is designed tc (1) be more consistent with the shear-based orientation of the computational
algorithm, (2) provide a useful metric to indicate the inherent ability of the aigorithm 10
detect the full shear signature, and (3) provide a more realistic estimate of the actual hazard
level present.

7.3. Performance of Basic Computaticnal Algorithm on Idealized Signatures

This simple computational algorithm performs quite well when applied to idealized
microburst signatures. even in the presence of substantial levels of white roise. The three
model microburst profiles shown in Figure 48 were processed by the above zizorithm to
determine the probability of detection and false alarm. The first case represer: a strong,
clezr microburst signature (modelled by a sinusoid) with a 30 m/s velocity change over
3 km. Reliable detection of this signature should be possible, 2ven in the presence of strong
interference. The sccond case represents a small, yet strong, microburst to test the ability to
detect severe microbursts in their earliest stages of development. This event has a 14 m/s
velocity differential over 0.72 km, using the r-2 model described in Chliapter 2. The third
profile is a sinusoid with a 12 m/s differential over 4 km, gspresenting a marginally weak
microburst.

Each of these profiles was contaminated with a white noise signal having a standard
deviation of 1 m/s. The computational algorithm was applied, and the statistics for detection
and false alarm were tallied over several hundred noise realizations. The probability of
detection was computed as the average (over the noise realizations) fraction of the gates in
the true shear region which were detected as being in a segment. The true shear region was
that region of the model profile which had a shear level above 2.5 m/s per km. The
probability of false alarm was computed as the average fraction of the remaining gates
which were flagged by the algorithm as being in a shear segment. An & lditional statistic was
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computed for each trial, that being the sum of the strengths for all segments which
overlapped some part of the true shear region. This statistic is significant in that it quantifies
the degree to which the actual shear signature was attenuated by the smoothing and shear
estimation process.

These average statistics were computed for eacl combination of smoothing filter and
shear estimator, at each of several spatial window sizes as listed in Table 8. The results of
these simulations are summarized in Figure 49, Figure 50 and Figure 51 for the strong,
weak and small shear models, respectively (a complete tabulation of the performance
statistics is presented in Appendix 3). Each of these figures plots the prot ability of detection
(gate by gate) versus the average detected strength of the shear region for each of 110
variations in filter algorithm, filter width, shear algorithm and shear algorithm width. False
w'arm rates in all cases were below two percent. This low false-alarm rate (compared to that
reported by [Noyes, 19901) is the result of the segment formation process which requires
several consecutive gates to be abgve threshold and to form an integrated loss of at least 5
m/s. The false-alarm rates reported in [Noves, 1990] were point shear threshold crossings
prior to the segment formaticn (or region growing) stage of processing.

The strong shear profile is detected at least 80 percent of the time by all the algorithm
variations, with most producing strength values between 27 and 29 m/s. The weak profile,
however, shows a wide range of detection performance depending cn the combination of
spatial window sizes used. The strength detected is directly proportional to the percent of the
shear gates detected, with most ot the better combinations yielding an 80 - 90 percent
probability of detection u:d a strength of 9 ~ 10 m/s. The behavior on the small shear
signature is more complex, showing two branches in the scatter of points. About half of the
parameter combinations result in poor detection rates, with strengths between 5 and 6 m/s.
The strength detected in these cases appears to be independent of the detection rate. The

Table 8.
Filter algorithm, filter width, shear algorithm and shear
width combinations used for performance simulations

Filter algorithm Widths (gates)

Nuli N/A
Mean 3,5,7,9,11
Median 3,5,7,9,11

Shear algorithm Widths (gates)

Finite Difference 3,5,7,9,11

Least Squares 3,5,7,9,11
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Figure 51: Detection performance scattergram for “small” shear profile.

other half of the combinations provide a wide range of detected strengths (from 5.5 to
12 m/s), with detection rates between .75 and .95. For these higher performance
combinations, a tradeoff is required between average detected strength and probability of
detection; the higher the detection rate, the lower the tota! detected strength.

While these results indicate that fairly good performance can be obtained by choosing the
proper parameter combination for each of the three shear profiles, no single combination of
window sizes and filter/shear algorithms provides optimal performance across all three
profiles. Since the strong shear case is detected well by most combinations, the tradeoff
between performance on the small profile and that on the weak profile is most pronounced.
The scattergram in Figure 52 compares the average detected strengths for these two profiles
for each algorithm variation. This comparison clearly indicates that detecting a substantial
portion of the total strength for either signature profile requires that the detection of the
other profile suffer a substantial loss in detected strength.
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Figure 52: Comparison of average detected strength for the weak and the small
shear profiles, for each of the filter/shear algorithm and window size variations.

7.4. Basic Computational Algorithm Applied to Measured Data

While the use of idealized microburst models can provide some insight into the
performance of the algorithm, it is equally important to examine its operation on actual
weather measurements. The basic ccmputational algorithm described above was applied to
a radar scan from the July 11, 1988 case described in Chapter 4. This version of the
algorithm employed no smoothing filter and used a finite difference shear estimator over a
five gate window. Segments were clustered using a 0.5 km range overlap requirement and
clusters were required to have at least three segments and a total area of at least 1.0 square
km. The shear segments and clusters obtained on the radar scan from time 22:09:00 are
shown, along with the ground truth outline for this scan, in Figure 53. The shear segments
shown in this figure cover the true shear region reasonably well but also display a number of
false segments. Based on the model resuits fiuin the previcus section, only one to two
percent of the gates outside of the shear region should be falsely alarmed, which is roughly
equivalent to five to six range gates of false alarm per radial of measurements. The
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segments shown in Figure 53 appear to have a slightly higher false-alarm rate than the
model results would predict. This observation suggests that a substantia! fraction of the false
alarms which occur with measured data fields are caused by natural variations in the true
windfield and are not solely the result of spatially uncorrelated noise added during the
sensing process.

When comipared to the performance of the baseline TDWR algorithm on this same case
(see Figure 23), it is evident that the basic computational algorithm has failed to detect a
substantial portion of the outflow event near the runway (at the area centered at 11 km range
and 306° azimuth). The shear signature in this region is rather noisy, as illustrated in the
velocity profile of Figure 54. Between 10 and 12 km range, the velocity measurements in

Radial velocity (m/s)

Figure 54: Velocity profiles for microburst region near runways on July 11, 1988
at 22:09:00. Varability in shcar signature between 10 — 12 km range results in
basic shear detection algorithm failure.

this area exhibit both positive and negative variations in range. While the overall trend is an
increase in range (i.e., a divergence), the trend is not sufficiently consistent to allow the
five—gate shear estimator to reliably detect shear above the threshold level. Since the basic
algorithm requires consecutive range gates to have shear estimates above threshold (i.e., a
segment is terminated at the first non—detected gate). these fluctuations result in gaps in the
detected shear region.

The variability of this shear signature from range gate to range gate is not uncommon and
is indicative of the complexity of realistic shear signatures. The baseline TDWR algorithm
was able to overcome this variability as a result of the decision criteria used to identify the
end of a segment. The failure of the basic computational algorithm in this case suggests the
need for a more sophisticated shear estimation and/or thresholding algorithm.
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7.5. Use cf Temporal Feedback to Improve Detection

The basic computational algorithm thresholds each point shear estimate against a fixed
threshold level to make the initial determination whether or not that point is in a shear region
or a non-shear region. This simple thresholding approach is very sensitive to the noise
content of the shear estimate and is prone to both false alarms and missed shear detections
(as illustrated in the example above). Simple thresholding makes no use of the substantial
spatial and temporal continuity present in the signature of an actual windshear event. To
take better advantage of this continuity, a new technique has been examined for classifying
sample points into shear or non-shear regions. This approach relies heav:ly on the temporal
history of the local shear estimates to adapt the shear threshold level for the current range
sample, introducing a hysteresis effect.

In the temporal feedback technique, a classification map is maintained for each surface
radar scan, and the classification thresholds used on the current tilt are adaptively chosen
based on the local classification results from the previous tilt. This approach requires the
identification of a compact region of strong shear to initiate the detection of a region but
then reduces the shear threshold and expands the area to ensure detection on subsequent
scans.

7.5.1. Data Editing and Shear Estimation

A data flow diagram for the processing used by this technique is shown in Figure 55. To
reduce the likelihood of missing small shear regions, no initial smoothing filter is used. A
simple filter is employed, however, to remove isnlated patches of valid velocity
measurements in regions generally flagged as invalid. Such isolated patches may be caused
by ground clutter breakthrough or point target interference and have been observed to cause
false shear regions to be detected. The “isolated patches” filter simply examirnes the data
values in a rectangular range-azimuth window about the current range gate and counts the
number of valid velocity measurements in the window. If too few data points in the window
are marked as valid (by the base data quality algorithms), then the current point is made
invalid. This filter does not alter valid data values but simply deletes small isolated regions
of valid measurements. The same filtering process is applied to the shear estimates
immediately after they are computed from the edited velocity field. In both passes of the
filter, a window of three radials by five gates is examined, and at least 10 of the 15 data
points in the window must be valid to prevent the center point from being marked invalid.
The shear estimation is performed using a finite-difference estimator over a five-gate
window in range.

7.5.2. Shear Classification

The classification process takes as input two fields: the estimated shear values
surrounding the current range sample and the the classification map from the previous
surface radar scan. The output from the process is a new classification map, where each
range gate has been classified into one of the four categories: “divergence,” “convergence,”
“stable” or “unknown.”
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Figure 55: Overview of the stages in the computationaul divergence algorithm.

The decision procedure used to perform the classi’ tion at each point begins by
examining the classification map from the previous scan. A window (of three radials by five
gates) about the current point is scanned, and the number of samples in each of the four
categories in computed. The category with the most number of samples is termed the
“majority vote” for the previous scan and is used as an initial estimate of the classification at
this point for the current scan. This initial estimate may be modified by the shear estimates
computed for the current scan if there is sufficient evidence (using the rules to be described
next) that the local “state” has changed.

The second step in the classification process is to examine the shear values in this same
three radial by five gate wndow about the current point and to *hreshold the shear estimates
into seven discrete levels as illustrated in Figure 56. The totai number of sample points in
the window whose shear values fall into each of these seven levels is then counted and used
to decide if the initial classificaticn estimate is to be modified. The rules which determine
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Figure 56: Quantization of shear values into seven levels. Three basic threshold
parameters are applied to both positive and negative shear amplitudes, end the
number of values for each region are tallied. The nominal values used for the
three thresholds are 5, 3 and 2 mis per km, respectively.

the state transitions are detailed in Table 9. This table indicates the sequence of tests
applied, based on the initial classification estimate, to determine if a new classification
should be assigned.

The initial state for each cell in the classification map (set at system initialization time) is
UNSNOWN. From Table 9 it can be seen that the state will remain UNKNOWN urtil such
time as at least 8 of the 15 values in the window become “valid,” at which point the cell will
be classified as STABLE. Transitions from STABLE to either DIVERGENCE or
CONVERGENCE may then take place if a substantial number (at least seven) of strorg
shear values of the appropriate sign are found, with no more than two strong values of the
opposite sign in the window. Using the decision strategy indicated in the table, a transition
directly from UNKNOWN 1o DIVERGENCE or CONVERGENCE is also possible under
these same conditions. These rules require substantial evidence of a shear region {or a cell
ever to be classified as DIVERGEMCE (or CMNVERGENCE), starting from the initial
UNKNOWN state. Once in the DIVERGENCE state, however, the conditions for remaining
in that state are much more liberzal. As long as at least four of the 15 peints in the window are
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Table 9.
Rules used to update initial classification estimates
based on current shear estimate statistics

Initial Zstimate Is changed to When these conditions are met*
UNKNOWN DIVERGENCE Level #1 count > 7; Level #7 count < 2
CONVERGENCE Level #7 count > 7; I.evel #1 count < 2
STABLE Number valid > 8
UNKNOWN otherwise
STABLE DIVERGENCE Level #1 count > §; Level #7 count < 2
CONVERGENCE Level #7 count > 5; Level #1 count < 2
STABLE Number valid > 8
UNKNOWN otherwise
DIVERGENCE DIVERGENCE Total level #1 + #2 + #3 counts > 4
CONVERGENCE Total level #6 + #7 counts > §
STABLE Number valid > 8
UNKNOWN otherwise
CONVERGENCE | CONVERGENCE Total level #5 + #6 + #7 counts > 4
DIVERGENCE Total level #1 + #2 counts > 5
STABLE Number valid > 8
UNKNOWN otherwise

*Rules are applied in the order listed for each initial estimate category, and the
first transition with a satisfied condition is applied.

above the lowest magnitude threshold, then a cell previously classified as DIVERGENCE
will retain that classification. This hysteresis effect attempts to prevent a region from being
missed, once it has been detected originally, without suffering the false-alarm penalty
associated with low initial detection thresholds.

7.5.3. In-Class Averaging

Once each range sample has been classified as UNKNOWN, STABLE, DIVERGENCE or
CONVERGENCE, the shear field is spatially averaged. This averaging is intended to smooth
the shear field so that the next stage, computing loss estimates and shear segment
boundaries, will provice spatially consistent results. The averaging is also intended to
remove some of the noise content of the shear estimates. To prevent attenuation of the shear
magnitudes, however, this spatial averaging is done only among data values in the same
classification category. At each range gate, all of the surrounding shear values (in the three
radial by five gate window) which have the same classification as the center point are
averaged. This “in-class” averaging technique prevents the shear values inside the shear
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region from being biased by values outside the shear region, while still reducing the variauce
of the shear estimates and imparting spatial continuity to the shear field.

7.5.4. Shear Integration and Segment Formation

Once each point has beer ciassified and the shear field has been spatially smocthed, the
loss segment module is used to locate radial segments »f loss. The basic loss segment
process simply walks out along each radial in range, integrating each consecutive run of
significant shear values. The shear values are multiplied by ihe range gate spacing at each
point to convert to equivalent loss. Each run of consecutive points classified as significant
shear result in a loss segment, subject to length and strength thresholding. Those loss
segments which pass the nominal threshoids are then used in the same manner as in the
current TDWR algorithm; they are azimuthally associated to form regions and passed on to
the remainder of the microburst detection algorithm.

7.6. Temporal Classificaticn Performance on July 11, 1988 Case

The computational aigorithm, as described above, was applied to the July 11, 1988
microburst case discussed in Chapter 4. The plot shown in Figure 57 illustrates the
divergence segments and resulting regions formed by the algorithm, overlaid with the
microburst truth region (stippled area) for the first scan of the example, at 22:04:01. The
shear classification map is initialized to UNKNOWN at all cells prior to this scan, so the
algorithm will have reduced sensitivity for the first few scans. These results should be
compared with the baseline algorithm outputs shown in Figure 18. The computational
algorithm clearly generates far fewer segments on this scan, partly because of the greater
smoothing performed by the computational algorithm and partly because the classification
map initialization.

The computational algorithm results for the next scan (at 22:05:04) is shown in
Figure 58, with two regions of shear detected near the airport. Compared to the detections
from the baseline algorithm (Figure 19) we see the computational aigorithm not only
produces far fewer extraneous shear segments but also produces much more compact and
consistent shear segments in these two regions. Figure 59 shows the results for the scan at
22:06:01, where the airport microburst is well detected by the computational algorithm. The
baseline algorithm also detected this event but with fewer, more scattered shear segments
(Figure 20). The next four scans, shown in Figure 60, Figure 61, Figure 62 and Figure 63,
respectively, illustrate the ability of the computational algorithm to detect the shear region
effectively. The shear segments produced by the computational algerithm cover the tr."
shear region quite well, include very few missed segments in the interior of the region, a
display considerable spatial continuity in the segment endpoint locations. In the final scan ¢
the example (Figure 64) the computational algorithm splits the microburst into three
detected regions based on the lack of overlap between the detected segments.

This example illustrates the ability of the computational algorithm to detect a particularly
important microburst. The example also shows that the temporal filtering provided by the
classification map may help smooth the shear detections generated by the algorithm and
allow the shear region to be detected with a more complete set of segments than could be
obtained from the baseline algorithm.
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Figure 57: Computational algorithm results for 11 July 1988 case at radar tcan
time 22:04:01.

This one example does not provide much insight into the statistical POD and PFA
performance of the algorithm; these peiformance metrics would require a much more
comprehensive evaluation against a rather large set of caces. Using the simple hit/miss
scoring criteria which has typically been applied to the microburst detection algorithm, it
may be difficult to measure substantial differences between the baseline and computational
aigorithms. More detailed scoring methods, such as the path-based technique from
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Figure 58: Computational algorithm results for 11 July 1988 case at radar scan
time 22:05:04.

Chapter 5, may be necessary to properly evaluate the tradeoffs between these two classes of
detection algorithm.

7.7. Additional Concepts Wortk Exploring

The classification algorithm described above exploits the temporal continuity of outflow
events to improve the detection process, but it makes rather weak use of the spatial
continuity of the outflow signature. One possible approach for extracting more information
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Figure 59: Computational algorithm results for 11 July 1988 case at radar scan
time 22:06:01.

from the spatial distribution of shear would be to correlate the velocity field with a
microburst outflow template to form a coefficient of match. This approach has been
explored for the detection of rotation regions within the downdraft of microburst storm cells
[Stillson, 1989]. A correlation coefficient might be very useful in the shear classification
process, i.e., tc determine if a point shear value should be included in a divergence region or
not. This factor could be integrated with the temporal threshold adjustmeni to achieve an
improved region definition.
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Figure 60: Computational algorithm results for 11 July 1988 case at radar scan
timg 22:06:58.

The analysis of filtering methods presented in this chapter concluded that smoothing
filters can significantly attenuate the detected strength of small microbursts and hence are
quite costly in terms of performance degradation. The benefits of the smoothing, however,
include an improved ability to detect weaker, extended shear regions. The detection of these
regions is quite important, given the possible effects of microburst asymmetry. Adaptive
filtering methods may exist which couid provide a better tradeoff between attenuation and
smoothing than the simple filters studied here. An example of one candidate filter is that
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Figure 61: Computational algorithm results for 11 July 1988 case at radar scan
time 22:08:03.

described by [Saint-Marc and Medioni, 1988]. This filter performs an iterative smoothing
operation where the smoothing effect is regulated by the local derivative of the signal being
smoothed. The result of this adaptation is the partitioning of the signai into piecewise
constant sections, without smoothing out the sharp transitions between sections. If this
algorithm were applied to the raw shear field, prior to shear classification, it may reduce
unwanted variations without significantly disturbing the strong shear sections. Operation of
the filter requires the choice of two parameters: a spatial scale parameter and the number of

- 129 -




Figure 62: Computational aigorithm results for 11 Juiy 1988 case at radar scan
time 22:09:00.

iterations to perform. These two parameters allow the spatial resolution and the degree of
smoothing to be chosen independently; the mean and median filters do not have this
desirable property. An experimental implementation of this approach showed mixed
results: on some signatures the filter performed extremely well, but it occasionally produced
very anomalous results. It appears that the choice of parameters has a substantial impact on
the performance of the filter, and that the variance of the smoothed shear field (from cne
noise realization to the next) is quite high. Refined variations on this adaptive scheme may
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Figure 63: Computational algorithm resulis for 11 July 1988 case at radar scan
time 22:10:03.

well be quite successful at improving the detectability of shear regions, but the
computational cost of this technique would appear to be quite high.

A final technique which may warrant study is the “direction of gradient” technique,
described in [Zhou et al., 1986]; In this approach, the radial velocity field is used to compute
a vector gradient field, and the direction of the gradient vector is computed at each point.
Experience in other imags processing applications has indicated that the gradient direction
field is often more consistent than the gradient magnitude field and that detection of a
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Figure 64: Computational algorithm results jor 11 July 1988 case at radar scan
time 22:11:00.

divergent region might be more reliable from this information. The fact that the radar
measurement of the windfield only obtains the radial component could potentially defeat the
benefit of the gradient direction approach, but the use of a spatially extended,
strength-independent quantity could provide improved detection capability, particularly for
weak or asymmetric events.
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7.8. Summary of Computational Alternatives

This chapter has intreduced a number of alternative concepts for the basic detection of
shear segments using computational techniques tied to the estimation of a shear field. The
use of a very simple shear estimation and thresholding approack was shown to be too
sensitive to the variability present in realistic signatures, and more sophisticated shear
thresholding techniques were discussed. The primary goal of any alternative algorithm
apprcaches should focus on exploiting the spatial and temporal continuity present in the
outflow signatures. The use of shear-based computational methods is most attractive
because of the strong relationship between shear and the actual aircraft hazard level, and
care should be taken in the basic shear segment detection stage to preserve this
hazard-related information and allow for the accurate delineation of the hazard extent in
subsequent algorithm processing stages.

The techniques discussed here are no more than exploratory algorithm concepts and have
not yet been subjecied to any form of quantitative performance evaluation. To adequately
evaluate the performance differences between the baseline TDWR algorithm and the ciass
of computational algorithms described in this chapter, the path-based scoring technique of
Chapter 5 would be required. Simple hit/miss scoring methods, as used in previous
algorithm performance analyses, wculd not be adequate to distinguish the operational
differences between these algorithms. Such an evaluation requires a significant number of
high-quality dual-doppler data cases and a major commitment of both computer and
analyst resources.
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8. SUMMARY

The divergence outflow algorithm is the primary component of the TDWR microburst
detection system and is responsible for identifying surface divergence regions based on the
radar velocity measurements. This algorithrn is the result of several years of deveiopment
and evaluation, based extensively on actual testbed radar systemm measurements.

The divergence algorithm operates as one component in a chai:: of processing stages,
preceded by data quality pre—processors and followed by sophisticated feature integration
and validation stages. Each stage in this chain has a significant effect on the performance of
the overall system, but the ability to detect a microburst outflow is determined largely by the
detection rate of the divergence algorithm studied here. Performance of this algorithm has
been evaluated using a large sample of measurements from the Denver, 1988 field
measurement program, where algorithm detections were compared to ground truth
informavion to computc both probability of detection and faise alarm. Ground truth
information was obtained by a careful manual analysis of the radar velocity and reflectivity
measurements to locate actual microburst regions. This performance analysis indicated a
POD of roughly 90 percent for all microbursts with a radar-measured strength of 10 m/s or
greater. The POD increases rapidly with increasing microburst sirength with 98 percent of
the microbursts with radar-measured strengths of i5 m/s or greater detected.

The PFA of the divergence algorithm was approximately 30 percent for this evaluation
data set, but this alarm ra’e is reduced substantially by the subsequent processing stages of
the overall microburst system. Evaluations of the overall system, using a similar
methodology and data set, resulted in an overall system PFA of five to seven percent. These
performance figures meet the minimum requiremer.ts of the TDWR System Requirements
Statement and have been used to validate the TDWR system design for the purposes of
system procurement and deployment.

While the demonstrated performance of the divergence detection algorithm is adequate
for meeting the basic system requirements there are several considerations which indicate
that improvements to the performance of this algorithm should be sought. Chief among
these issues is the impact of microburst outflow asymmetry on detection performance.

The asymmetric nature of the microburst outflow can result in a radar-measured strength
which is significantly different from that along the runway direction (i.e., that which affects
the safety of aircraft flight). Since the detection rate of the divergence algorithm drops off
rapidly as the radar-oriented strength falls below about 12 m/s, it is quite possibie for a
microburst which is strong in another direction to be poorly detected as observed by the
radar. The performance impact of asymmetry as a function of radar viewing angle relative
to runway directicn has been examined using observed microburst asymmetry distributions
and algorithm detection statistics. For microbursts with a runway-oriented strength above
15 mv/s, the basic detection performance results (POD of 98 percent) apply if the radar is
sited so as to view directly along the runway. As the radar viewing angle is rotated relative to
the runway direction, the radar-oriented strengths no longer match the runway-oriented
strengths because of outflow asymmetry. While the average difference between the radar
and runway strengths is zero (because exactly half of the time the radar strength is greater
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than the runway strength and half of the time the runway strength is greater than the radar
strength), the highly nonlinear change in detection probability with strength results in a net
decrease in POD. For a radar viewing angle rotated 45° from the runway ot entation the
POD (for runway strengths of 15 m/s or greater) drops to 83 percent. This decrease in
performance is largely influenced by the divergence algorithm detection rate for weak
radar-measured strengths. If the divergence algorithm were improved to provide near-100
percent probability of detection for outflows with radar-measured strengths above 7 m/s,
then the system POD (over all events with runway-oriented strengths of 15 m/s or more)
would increase to 95 percent.

These quantitative results are strongly dependent on both the asymmetry observations
and microburst algorithm performance statistics derived from the Denver demonsc-ations.
Qualitatively, however, these results do indicate that significant improvements in the ability
to detect the weak (measured) outflows would result in a substantial increase in safety
provided by the system.

Alternative detection algorithm concepts have been briefly expiored, with the goais of
simplifying the logical structure of the detection algorithm and improving the detection
performance. The computational techniques described are based heavily on the
computation of a radial shear estimate and make aggressive use of the temporal and spatial
continuity of the outflow signature. The limited number of cases used for the exploration of
these algorithm techniques are not adequate for quantifying the performance of the
computational approach but do suggest that a more comprenensive performance evaluation
for this class of algorithm is warranted. Such an evaluation wouid require the application of
the technique to a larger set of test cases and wouid also require the use of detailed
performance analysis techniques (such as the path-based scoring approach) to adequately
measure the performance improvements obtained.

The studies presented in this report provide an important insight for the development of
future, more advanced detection aigorithms, namely: that the primary challenge in the
detection process is the discrimination and classification of weak outfiows in complex
surface windfields, not the detection of simple idealized signatures in a uniform rnoise
background. Simulation studies using an idealized conceptual model have demonstrated
that even weak shear signatures can be reiiably detected in the presence of realistic noise
levels by even the most basic detection algorithms. Actual windfield measurements present
a much more complex environment, where muiltiple interacting outflows of assorted
strengths and spatial scales are a common occurrence. In these complex cases the
performance of a detection algerithm is dominated by its ability to accurately identify the
extent of the various shear regions and to appropriately characterize their strengths.
Frequently, an objective definition of the “correct” result is hard to provide in these cases,
even if the exact, true windfield is known. In these complex scenarios it may be possible to
estimate the flight performance loss for a particular path, given the detailed aircraft state
vector and pilot response to the shear. Attempts to define hazard regions without knowledge
of these detailed aircraft parameters is often an ill-defined problem and the detection
performance of a divergence algorithm may well be iimited by fundamental ambiguities in
the definition of what the output of a “perfect” detection algorithm should be. Any eiforts to
improve detection performance beyond that obtained by the current baseline TDWR
divergence algorithm should confront the existing ambiguity in what constitutes the
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“correct” answer in these complex windfield scenarios as a primary focus. Meaningful
evaluations of performance improvements can only be obtained with far more sophisticated
definitions of “hazard” than those used in the past. The path-based windfield scoring
methods discussed in this report suggest a possible direction for an evaluation metric.
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AGC
ASP-9
ATC
FAA
FL-2
GSD
LLWAS

NCAR
OT&E
PFA
POD
PRF

RPG

SNR

STC
TDWR
TRACON

10. LIST OF ABBREVIATIONS

Aigorithm Enunciation Language
Automatic Gain Control

Air Surveillance Radar

Air Traffic Control

Federal Aviation Administration

FAA / Lincoln Laboratory testbed radar system
Geographicai Situation Display

Low Level Windshear Alert System
Massachusetts institute of Technology
National Center for Atmospheric Research
Operational Test and Evaluation
Probability of False Alarm

Probability of Detection

Pulse Repetition Frequency

Radar Data Acquisition

Radar Products Generator

Signal to Neise Ratio

Sensitivity Time Control

Terminal Doppler Weather Radar
Terminal Radar Conuol

University of North Dakota
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APPENDIX 1.
PERFORMANCE DATA FOR 1988 SCORING

This appendix illustrates the minute-by-minute results of the scoring «nalysis conducted
using the three microburst days from the 1988 operational demonstration in Denver, CO.
The figures shown below are indexed by time on the horizontal axis, labelied on the bottom
in UTC. Each page contains three sections, correspondin,, to the three case days: June 10,
June 21 and June 25, 1988 (top to bottom, respectively).

Each microburst event present in the ground truth database is depicted for each minute it
was observed by the radar. The strength of the microburst is plotted at each minute interval,
and the strength value is enclosed in a box if the event was considered eligibie for scoring on
that minute. A microburst may be ineligible if it is too close to the radar (within 6 km), too
far from the radar (outside 30 km), too weak (below 10 m/s) or if it lies outside the
azimuthal edge of the TDWR sector scanning rezion. Each microburst has a symbclic name
(e.g., “MBS5”) which i3 shown to the left of the first observation of the event. If a microburst
was detected by the divergence region algorithm, the box for the event is filied with a
stippled paitern; otherwise, the box is left empty. No indication is made for false alarms in
this appeadix.

This graphical summary of the ground truth and detection performance concisely
presents both the temporal distribution of the actual microburst events and the detection
performance of the algorithm. A quick scan of the appendix will verify that indeed the
algorithm detects a very large percentage of the events, and most of the misses are for weak
events.
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APPENDIX 2.
NOISE SENSITIVITY OF SHEAR ESTIMATION ALGORITHMS

The goal of the shear estimation calculation is to compute an estimate of the rate of
change of radial velocity with range at each sample point in range. The radar-measured
radial velocity field has several types of noise contributions, all of which will be amplified by
the differentiation process. To reduce the impact of this noise contribution, the shear
estimate must be computed over some spatial window in a manner which provides a
low-variance estimate without significantly attenuating the small-scale shears.

To put the shear estimation problem in perspective, consider that the minimum shear
threshold of interest is roughly 2.5 m/s per km, which corresponds to a gate-to-gate velocity
difference of 0.3 m/s (for TDWR range gate spacing of 125 m). The TDWR specification
allows the velocity sample estimator variance for typical microburst measurements (8 dB
SNR and 4 m/s spectrum width) to be as large as 1 m/s. Clearly the shears for weaker
microbursts generate gate—to-gate differences which are sma!l compared to the inherent
signal noise level, and must therefore be observed over a larger spatial extent.

The two shear estimation techniques considered here are the finite difference approach
and the least squares approach. Both techniques model the velocity measurements as a
linearly-varyirg function, and estimate the slope of the line at each point. The finite
difference apprcach simply computes the average rate of change over some fixed distance
(AV/AR) while the least squares approach computes the slope of the best-fit line over some
fixed distance. The least squares approach was evaluated for use in the ASR-9 windshear
detection application by [Noyes, 1990].

The finite difference shear estimate, computed over a distance of 2k gates, is defined as:

Vin+k)-V(n-k) (16)

Sd“,(n) = 5k AR

where V(n) is the radial velocity value {m/s) at gate n and AR = is the spacing between
range gates (km). The least-squares shear estimate, applied uver a radius of k gates, is

defined as:
k

2 iV +i)
S;,.;, (n) = ‘—'i;-———_ (17)
$ i2AR

§ =
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An important observation regarding these apparently unrelated approaches is that the
finite difference estimator can be used as a basis for the ieast squares operator, as follows:

k k
Sea) = BV [E—]| = Difvasd-ve-n)l—o=— (18)
- S j%R | = 233j%AR
j—k =
= Wh—\ Vin4i)=V(n—-i) ;% (19)
i‘::{ 2i0R &
L] .9 20
= Esd.;(n)[‘_} (20)
il K

This relationship gives some insight into the performance of the two estimators: the least
squares estimate is largely the same as the finite difference estimator, but has the finite
difference shear estimates at smaller scales averaged in as well.

If the velocity signature being processed is a perfect linear ramp (no noise) then the above
two estimators will produce the same result, being the true siope of the ramp. The response
of the two estimators to various forms of noise is different, and the responses of the two
estimators to various forms of noise are very relevant to the optimum choice of estimator.
Since both estimators are linear shift-invariant operators, the noise and true signal inputs
may be considered separately, and the composite response will be the sum of the responses
to the signal and noise inputs.

The two noise types considered here are white noise (uncorrelated from gate to gate) and
impulse noise (a single large spike at one gate). The white noise input is representative of
velocity errors resulting from estimator uncertainty, and would be most significant at low
signal-to-noise ratios. The impulse noise type is typical of data contamination effects from
point target or clutter interference.

For a zero-mean white noise input (with variance 02) both estimators will produce
zero-mean outputs with variances:

\’ R)~V(n-k 2¢2 o> 21
var(Syy) = var( (n+2;AR(n )) = 4k2:.R2 = SR°ARE (21)
k , it (22)
var(S“.h) = Evar(Sd_k) 'T_T
il *
- (23)
28R %k
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The leasi~squares estiinator therefore has a lower variance than the finite difference
estimator, with the ratic:

R = var(Sg 4) (k4 1)(2k +1)
02 _

) oar (Sla,h) - 6k (24)

When considerirg the response to impulse noise, the total time-integrated output power
is a reasonable metric for comparing performance. For a unit impulse input, the integrated
cutput powers for the two estimators are:

h h ~2 * \2
Ub,k = ES[?J,(E) = E(_éll_)z(_";_)2 = ] L - 'h];_ (25)

S i}

1 (29)

hence

0

Usk (B +1)(2k +1)
Bu = g = 3k @7)

in this case, the least-squares estimator is again seen to provide better rejection of the
impulse noise compared to the finite difference estimator. The relative performance against
these two noise sources for the estimators at various window half-sizes is shown in
Table 10. For any given window size, the least-squares shear estimator provides significant
noise reduction compared to the finite difference estimator for both noiss input types.

Table 10: Comparison of Shear Estimator Re-
spoases to White and Impulse Noise Inputs

k RU'Z RU
2 1.25} 2.50
3 1.56} 3.11
4 1.881 3.75
S 2.20] 4.40
6 2.171 4.33
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APPENDIX 3.

SIMULATION RESULT TABLES FOR FILTER AND SHEAR

ALGORITHM TRADEOFF STUDY

This appendix lists the numerical results of several simulation runs of the basic
computational shear detection algorithm against each of three idealized microburst shear
signatures, as described in Chapter 2. A list is provided for each signature type, indicating
the following quantities:

1)
2)
3)
4)
5)
6)
7
8)
9)
10)

Filter algorithm name

Filter window size (in range gates)

Shear algorithm name

Shear window width (in range gates)

Test signal standard deviation (always 1.00 m/s)
Total POD for test

Segment POD

Total PFA

Raw PFA

Average loss for segments overlapping true region
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“Easy” sinusoid signature

Total velocity difference = 30 m/s

1 2 3 4 5 6 7 8 9 10
nefilt 0O fd 1 1.060 0.81 1.00 ©.00 0.27 27.72
mean 1 fd 1 1.00 0.96 1.00 0.01 0.15 29.49
median 1 fd 1 1.00 0.88 1.00 0.00 0.19 28.49
mean 2 fd 1 1.00 0.98 1.00 0.04 0.07 29.17
median 2 fa 1 1.00 0.89 1.00 0.00 0.12 28.30
mean 3 fd 1 1.00 0.99 1.00 0.01 0.03 28.61
median 3 fd 1 1.0 0.89 1.00 0.60 0.08 27.81
mean 4 fd 1 1.00 0.99 1.00 0.01 0.03 27.92
median 4 fd 1 1.00 0.87 1.00 0.00 0.07 27.30
mean § fd 1 1.00 1.00 1.00 0.00 0.03 27.07
median 5 fd 1 1.00 0.85 1.00 0.00 0.05 26.80
nofilt 0 fd 2 1.00 0.95 1.00 0.01 0.17 29.21
mean 1 fd 2 1.00 0.98 1.00 0.01 0.06 29.29
mec.ian 1 fd 2 1.00 0.97 1.00 0.01 0.11 29.30
mean 2 fd 2 1.00 0.99 1.00 0.01 0.03 28.87
median 2 fd 2 1.00 0.97 1.00 0.01 0.07 28.89
mean 3 fd 2 1.00 1.00 1.00 0.01 0.01 28.32
median 3 fd 2 1.00 0.96 1.00 0.00 0.03 28.39
mean 4 fd 2 1.00 1.00 1.00 0.00 0.01 27.63
median 4 fd 2 1.00 0.94 1.00 0.00 0.02 27.79
mean 5 fd 2 1.00 1.00 1.00 0.00 0.02 26.79
median 5 fd 2 1.00 0.92 i.00 0.00 ©0.02 27.186
nofiit 0O fd 3 1.00 0.97 1.00 0.01 0.09 28.91
mean 1 fd 3 1.00 0.99 1.00 0.01 0.02 28.79
median 1 fd 3 1.00 0.98 1.00 0.01 0.04 28.81
mean 2 fd 3 1.00 1.¢0 *1.00 0.01 0.01 28.41
median 2 fd 3 1.00 0.98 1.00 0.01 ©.02 28.48
mean 3 fd 3 1.00 1.00 1.00 0.00 0.01 27.89
median 3 fd 3 1.00 0.98 1.00 0.00 0.01 28.09
mean 4 fd 3 1.00 1.00 1.00 0.00 0.01 27.20
median 4 fd 3 1.00 0.97 1.00 0.00 0.01 27.61
mean 5 fd 3 1.00 1.00 1.00 0.00 0.00 26.37
median 5 fd 3 1.00 0.95 1.00 0.00 0.01 27.05
nofilt ¢ fd 4 1.00 0.98 1.00 0.01 0.03 28.33
mean 1 fd 4 1.00 1.00 1.00 0.01 0.01 28.16
median 1 fd 4 1.00 0.99 1.00 0.01 0.01 28.20
mean 2 fd 4 1.00 1.00 11.00 0.00 0.00 27.79
median 2 fd 4 1.00 0.99 1.00 0.01 0.01 27.92
mean 3 fd 4 1.00 1.00 1.00 ©.00 0.00 27.28
median 3 fd 4 1.00 0.99 1.00 0.00 0.01 27.860
mean 4 fd 4 1.00 1.00 1.00 0.00 0.00 26.81
median 4 fd 4 1.00 0.98 1.00 0.00 0.00 27.23
mean £ fd 4 1.00 1.00 1.00 0.00 0.00 25.81
median § fd 4 1.00 0.98 1.00 0.00 0.00 26.8C
nofilt O fd 5 1.00 0.99 1.00 0.01 0.01 27.57
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“Weak” sinusoid signature

Total velocity difference = 10 m/s

1 2 3 4 5 6 7 8 9 10
nofilt O fd 1 1.00 0.05 0.18 0.00 0.29 5.82
mean 1 fd 1 1.00 0.21 0.50 0.00 0.15 h.47
median 1 fd 1 1.00 0.09 0.26 0.00 0.20 5.97
mean 2 fd 1 1.00 0.41 0.75 0.00 0.07 T7.26
median 2 fd 1 1.00 0.12 0.32 0.00 0.12 6.19
mean 3 fd 1 1.00 ° 0.65 0.95 0.00 0.04 8.55
median 3 fd 1 1.00 0.13 0.32 0.00 0.09 6.38
mean 4 fd 1 1.00 0.74 0.99 0.00 0.03 8.84
median 4 fd 1 1.00 0.15 0.33 0.00 0.07 6.45
mzan 5 fd 1 1.00 0.80 1.00 0.00 0.03 9.15
median 5 fd 1 1.00 0.14 0.33 0.00 0.06 6.39
nofilt O fd 2 1.00 0.13 0,24 0.00 0.17 6.20
mean 1 fd 2 1.00 0.46 0.81 0.00 0.06 7.69
median 1 fd 2 1.00 0.30 0.62 0.00 0.11 7.01
mean 2 fd 2 1.00 0.70 0.96 0.0GC 0.03 8.98
median 2 fd 2 1.00 0.42 0.75 0.00 0.07 7.80
mean 3 fd 2 1.00 0.83 1.00 0.00 0.02 ©.69
median 3 fd 2 1.00 0.48 0.82 0.00 0.04 7.64
mear. 4 fd 2 1.00 0.85 1.00 0.00 0.01 0.68
median 4 fd 2 1.00 0.48 0.83 0.00 0.03 7.50
mean 5 fd 2 1.00 0.86 1.00 0.00 0.02 9.54
median 5 fd 2 1.00 0.47 0.82 0.00 0.03 v.39
nofilt O fd 3 1.00 0.25 0.52 0.00 0.09 6.68
mean 1 fd 3 1.00 0.73 0.98 0.00 0.02 9.04
median 1 fd 3 1.00 0.53 0.88 0.00 0.05 7.87
mean 2 fd 3 1.00 0.82 1.00 0.00 0.01 9.687
median 2 fd 3 1.00 0.67 0.97 0.00 0.03 8.58
mean 3 fd 3 1.00 .86 1.00 0.00 0.01 .85
median 3 £d 3 1.0 0.72 0.98 0.00 0.02 8.81
mean 4 fd 3 1.00 O.87 1.00 0.00 0.01 9.69
median 4 fd 3 1.00 0.73 0.99 0.00 0.01 8.80
mean 5 fd 3 1.00 0.87 1.00 0.00 0.00 9.50
median 5 fd 3 1.00 0.72 0.99 0.00 0.01 8.59
nofilt O fd 4 1.00 0.44 0.78 0.00 0.04 7.24
mean 1 fd 4 1.00 0.81 1.00 0.00 0.01 9.49
median 1 fd 4 1.00 0.70 0.97 0.00 0.02 8.78
mean 2 fd 4 1.00 0.86 1.00 0.00 0.00 9.78
median 2 fd 4 1.00 0.79 0.99 0.00 0.01 9.34
mean 3 fd 4 1.00 0.87 1.00 0.00 0.0GC 9.73
median 3 fd 4 1.00 0.81 1.00 0.00 0.01 9.43
mean 4 fd 4 1.00 0.88 1.00 0.00 0.00 9.58
median 4 fd 4 1.00 C.81 1.00 0.00 0.00 9.27
mean 5 fd 4 1.00 0.87 1.00 0.00 0.00 9.34
median 3 fd 4 1.00 0.80 1.00 0.00 0.00 9.08
nofilt O fd 5 1.00 0.57 0.91 0.00 0.01 7.€8
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“Streng’ model signature

Total velocity difference = 14 m/s

1 2 3 4 5 6 7 8 9 10
nofilt O fd 1 1.060 0.77 1.00 0.00 0.31 11.93
mean 1 fd 1 1.00 0.75 1.00 0.00 0.17 9.98
median 1 fd 1 1.00 0.76 1.00 0.00 0.21 9.87
nean 2 fd 1 1.00 0.80 1.00 0.00 0.G6 7.94
nedian 2 fd 1 1.00 0.66 1.00 0.00 0.13 T.60
mean 3 fd 1 1.00 0.91 1.00 0.00 0.03 6.41
median 3 fd 1 1.00 0.47 0.80 0.00 0.09 6.12
mean 4 fd 1 1.00 6.69 0.69 0.00 0.02 5.51
median 4 fd 1 1.00 0.16 0.28 0.00 0.07 5.56
mean 5 fd 1 1.00 0.10 0.10 0.00 0.04 5.24
median 5 fd 1 1.00 0.02 0.03 0.00 0.06 5.28
nofilt O fd 2 1.00 0.78 1.00 0.00 0.19 9.20
mean 1 . fd 2 1.00 0.76 1.00 0.00 0.06 8.48
median 1 fd 2 1.00 0.79 1.00 0.00 0.12 8.25
mean 2 fd 2 1.00 0.81 1.00 0.00 0.02 7.25
median 2 fd 2 1.00 0.79 1.00 0.00 0.07 7.10
mean 3 fd 2 1.00 0.94 0.99 0.00 C.01 6.06
median 3 fd 2 1.00 0.63 0.79 0.00 0.03 6.07
mean 4 fd 2 1.00 0.42 0.42 0.00 0.01 5.36
median 4 fd 2 1.00 0.1 0.25 0.00 0.02 5.59
mean 5 fd 2 1.00 0.02 0.02 0.00 0.03 5.06
median 5 fd 2 1.00 0.02 0.02 0.00 0.02 5.29
nofilt O fd 3 1.00 0.85 1.00 0.00 0.09 7.29
mean 1 fd 3 1.00 0.86 1.00 0.00 0.01 6.89
wedian 1 fd 3 1.00 0.86 1.00 0.00 0.04 6.70
mean 2 fd 3 1.00 0.90 1.00 0.00 0.00 6.30
median 2 fd 3 1.00 0.81 0.93 0.00 0.02 6.10
mean 3 fd 3 1.00 0.85 0.86 0.00 0.00 5.57
median 3 fd 3 1.00 0.51 0.57 0.00 0.01 5.85
mean 4 fd 3 1.00 0.11 0.11 0.00 ¢.01 §5.21
median 4 fda 3 1.00 0.15 0.16 0.00 0.01 5.48
mean 5 fd 3 1.00 0.00 0.00 0.00 0.01 0.00
median 5 fd 3 1.00 0.01 0.01 0.00 0.01 5.28
nofilt O fd 4 1.00 0.89 0.94 0.00 0.03 5.96
mean 1 fd 4 1.00 0.981 0.91 0.00 0.00 5.74
median 1 fd 4 1.00 0.75 0.78 0.00 0.01 5.73
mean 2 fd 4 1.00 0.69 0.69 0.00 0.00 5.43
median 2 fd 4 1.00 0.49 0.50 0.00 0.00 5.53
mean 3 fd 4 1.00 0.12 0.12 0.00 0.00 5.21
median 3 fd 4 1.00 0.19 0.19 0.0C 0.00 5.34
mean 4 fd 4 1.00 0.00 0.00 0.00 0.00 0.00
median 4 fd 4 1.00 0.05 0.05 0.00 0.00 5.28
mean 5 fd 4 1.00 0.00 0.00 0.00 0.00 0.00
median 5 fa 4 1.00 0.00 0.00 0.00 0.00 5.21
nofilt O fd 5 1.00 0.34 0.34 0.00 0.01 5.40
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