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Abstract

~ . e

This tesearch invdstigates the parallelization of existing serial programs in computa-
tional electromagnetfcs for use in a parallel environment. Existing algorithms for calculat-
ing the radar crossisection of an object are covered, and a ray-tracing code is chosen for
implementation on a parallel machine. Current parallel architectures are introduced and
a suitable parallel machine is selected for the implementation of the chosen ray tracing
algorithm. The standai | techniques for the parallelization of serial code are discussed,
including load balancing and decomposition considerations,and appropriate methods for
the parallelization effort are selected. A load balancing algorithm is modified to increase
the efficiency of the application, and a high level design of the structure of the serial pro-
gram is presented. A detailed design of the modifications for the parallel implementation
is also included, with both the high level and the detailed design specified in a high level
design language called UNITY. The correctness of the design is proven using UNITY and
standard logic operations. The theoretical and empirical results show that it is possible to
achieve an efficient parallel application of a serial computational electromagnetic program
where the characteristics of the algorithm and the target architecture critically influence

the development of such an implementation.

ix




Parallelizing Serial Code for a
Distributed Processing Environment
with an Application to

High Frequency Electromagnetic Scattering

I. Problem Descriplion

1.1  Background

This chapter introduces the basic concepts that are used in this thesis investigation.
Radar and its uses are discussed, and some of the methods for simulating the effects of
radar are introduced: ray tracing and matrix modeling. The general thrust of this rescarch

is explained and a quick summary of the current knowledge is presented.

1.1.1  Fundamentals of Radar Shortly after World War II began, British scientists
developed a method for tracking flying aircraft using electromagnetic waves. This method
was called radar which stands for radio detection and manging {16). Later, additional
abilities were added including the tracking of ships, land based vehicles, and even terrain
mapping and avoidance. This tracking ability was refined to the point where the data
generated from a high precision radar set could be used to guide a missile or an anti-aircraft
battery to destroy the target. Radar helps both friend and foe to follow the muvements of
airplanes, ships, and ground vehicles. It can also aid in the destruction of a target. The
casc with which a radar site tracks an object is directly relaied to the radar cross-section
(RCS) of that object. Military agencies and manufacturers are therefore concerned abont

the RCS of the items they construct and maintain.

A radar cross-section is a pattern of reflected and diffracted electromagnetic (EM)
waves which emanate from a given area or object that is illuminated by a transmitting
antenna. Figure 1 shows that when radar waves from a transmitter encounter a target,
these waves scatter in all directions. The object or area that scatters the incident energy is
called the “scene”, and a scene is szid to be illuminated when energy from a transmitting
antenna encounters that scene. When incident EM waves strike a scene, some of these waves

are reflected by parts of the scene geometry, while others are diffracted by other details in
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Figure 1. Reflecting electromagnetic energy off an object

the scene. The incident EM waves can also undergo both reflection and diffraction before
leaving the area. Some of the reflected and diffracted radar waves may be detected by a
receiving antenna and analyzed for information about the illuminated scene. A receiving
antenna may be located at any angle away from the scene relative to the transmitter, so
the response of the scene at all angles is necessary when analyzing a design or existing
object. The returned EM energy that is picked up by a receiving antenna is only a part of
the total pattern of scattered EM energy associated with an RCS and is known as a radar
echo. Figure 2 shows an example of an RCS for a B-26 aircraft of World War 2 vintagc.
This figure shows the relative power that a receiving antenna would detect if it were to be

placed at the azimuth angle indicated in a polar coordinate system relative to the object
itself.

1.1.2 Calculating a Radar Cross Section Early in the history of electronic comput-
ers, researchers proposed using them in the field of image synthesis to create a simulated
view of an object or set of objects called a scene (11). This approach was called “ray-
tracing”. Unfortunately, the techniques designed for this purpose were computationally
intensive, and the computers of that day were not powerful enough to solve the problems
in a reasonable amount of time. For this reason, little work was done in this field until the
1980’s. Most work in image synthesis has been in the realm of optical renderings of a scene

from a single viewpoint. By changing the frequency of the incident energy, ray-tracing can




Figure 2. Experimentally measured RCS of the B-26 as a function of azimuth angle




be used to generate an electromagnetic image of a scene. By changing the viewpoint {rom

one location to multiple locations, a simulated radar cross section can be computed.

Another method for calculating the EM ficlds that result from an interaction between
an object and an incident field uses vector matrix models to calculate the initial surface
currents that are generated by incident EM waves. These current values are then trans-

formed into another set of matrices, and these matrices are used to calculate a resultant

EM field based on linear equation structures.

The United States Air Force is currently conducting research into methods which
would permit computers to more efficiently calculate the radar cross-section of a complex
object. The application of this research is supported by two different areas of EM scattering
simulation. The first area is concerned with the radar observability of friendly aircraft
and vehicles, and the other area in EM scattering simulation lies in the realm of target
recognition. Researchers in the first area are concerned with the RCS of their own designs.
When planning new designs or modifications to an existing vehicle, they want to know
the radar cross-section of the resulting design before going into production. Efforts in the

second area seek to identify possibly hostile targets based in part on empirical data.

1.1.3 Techniques for finding an RCS One method for determining the RCS of an
object involves building a scale model of a proposed design. This scale model can then
be placed in a simulated environment, and measurements can be taken at all angles as
EM waves are transmitted at the model. Measurements can also be made using a full-size
example of a vehicle on an electromagnetic range or in the field. Models take time to build
and are not always an accurate reproduction of the final design. Field measurements, on
the other hand, can be expensive or extremely difficult to achieve with accurate results.
Both of these methods require some time to gather the necessary data. Another way to
generate an RCS is to calculate the EM field that would result if an incident EM field of
known intensity were to encounter an object. With an accurate mathematical model of
the object, the theoretical result can be calculated. This becomes the method of choice
when field measurements are costly, difficult, or impossible, and computational facilities

are effective and efficient.

In the 1930’s, advancements in the field of computer architecture resulted in the
creation of parallel computers (10). These newer computers have many processors linked
together. Traditional computers have only one central processing unit and have the speed

of light as a physical limitation on their processing power (11). This limitation arises from




the fact that an electrical impulse travels at the speed of light, and all transactions within
a computer take the form of electrical signals transmitted on wires or traces. If the speed
of transmission is limited by the speed of light, then a limited number of operations can
take place within a given period of time given that different components are physically
separate from one another. Although an individual processor in a parallel machine usually
has less processing power than a CPU of a large-scale traditional computer, because a
parallel machine can have many of these processors, the total computing power of the
parallel computer can exceed that of the traditional computer by a large margin. However,
because of the recent advent of parallel computers and the difficulty of the conversion

process, relatively few programs have been converted to run on these architectures.

Today, there are many specific algorithms for calculating the EM field that results
when an object or group of objects are in the path of an incident wave. These methods can
be divided into two groups: matrix algorithms, and ray tracing approaches. Each of these
algorithms has its individual strengths and weaknesses which are discussed in Chapter 2.
Many of these algorithms have been implemented on serial machines, and the design of a

parallel implementation can initially use the serial program’s structure.

Different methods exist for converting serial programs to a parallel architecture, and
these methods also apply to new code generation. As is the case for converting existing
code, when generating new programs, care must be taken to ensure that an appropriate
method is chosen. Often the “optimal” solution is a combination of two or inore methods.
Some of these methods involve the way the input data is handled, and others are con-
cerned with the division of labor. These methods include domain decomposition, control
decomposition, static load balancing, and dynamic loac balancing. These techniques are

discussed in Chapter 2.

1.2 Problem Stalement

In order to achieve the goal of an “accurate” simulated RCS, an efficient method
for predicting the radar scattering from an object is required. For any but the simplest
of problems, current implementations take several hours to compute the RCS of a typ-
ical scene (18). This particular research evaluates existing programs in computational
electromagnetics with a goal of determining the “best” one for a high frequency (8 Gllz
< f < 20 Gllz) application. Factors to consider in the choice of an RCS algorithm are the

feasibility of optimizing an existing program to improve its performance and the effort re-

quired to convert that software to run on a parallel machine. Various parallel architectures




are examined in order to find a machine that matches well with the proposed algorithm,
so that an efficient implementation is possible. Methods for converting existing parallel
code to parallel applications are analyzed, and an “optimal™ match between the chosen
program, architecture, and conversion method is determined. Finally, the resulting appli-
cation is evaluated for accuracy and efficiency, and the results are compared with other

parallelization efforts of different algorithms.

1.3  Summary of Current Knowledge

In order to calculate a simulated RCS, the optical image synthesis model is modi-
fied to allow a range of viewpoints and incorporate the effects of diffraction. Opticai image
synthesis sets pixels (picture elements) of a simulated viewscreen to an intensity and color
value. This represents a simulated view of a scene from a single viewpoint. Since an RCS is
normally concerned with a few discrete frequencies (lying far below the visible spectrum),
color has no meaning. An RCS contains information about the relative intensity (power)
of the EM energy radiated in all directions away from the scene as a function of the relatie
angle. An RCS is typically measured in terms of area (square feet) and is two-dimensional
in nature. In order to meet the need of computational solutions for determing the RCS of
a scene, the scientific community has created several programs which calculate a simulated

RCS, and they are divided into two groups: matrix models and ray tracing models.

Matrix oriented algorithms approach the problem by modeling either the structure
itself, or the space surrounding the scene in matrix form. Matrix operations are performed
to solve the resulting expressions, and the results are presented in matrix form. These
results give the electric and magnetic field strengths in a rectangular coordinate system.
The total field strength (or power) can be calculated from these fields and represents the
intensity. This data can be converted into polar form to give an angle for later analysis.
Some matrix oriented algorithms are Method of Moments (MOM) (7), Finite Difference -
Time Domain (FD-TD) (15), and Conjugate Gradient (CG) (2).

Ray tracing algorithms calculate discrete paths from one point in space to another,
checking for reflections and other interactions with the objects in the scene. An example
of this type of processing assumes a point in space, and a direction of travel called a “ray”.
The scene geometry is modeled mathematically, and the theoretical ray path (defined by
the initial point and direction) may or may not intersect one or more of the objects in the
scene. If an object in the scene intersects the calculated ray path, that ray ends, and a new

ray is generated based on the characteristics of the interfering object. This new ray has a




direction and starting point different from that of the original ray, but is dircctly related
to that ray through the interaction with the object. Processing of related rays ends when
the last ray of the seties exits the scene geometry completely. Its information (intensity,
and direction) are then stored for later use. Some ray tracing programs in computational
electromagnetics are SRIM (L1), JET (1), and the Numerical Electromagnetic Code -
Basic Scattering Code (NEC-BSC) (13).

Computer programs in general can be divided into categories according to their
structure. This dividing value is called the grain of the algorithm (9). Algorithms with a
large amount of interaction among data iterus are said to have a fine grain, while algorithms
with little or no dependencies between the individual data items are said to have a coarse

grain (10). Other characteristics of programs are their complexity (order-of) and size (6).

In the area of parallel computers, several architectures are in widespread use. Shared
memory architectures have many processors which all access the same set of memory, each
taking its turn if .onflicts arise. In distributed memory machines, cach processor has its
own dedicated set of memory which it alone can access. SIMD (single instruction, multiple
data) machines have a single control element which sends instructions to all the processors,
all of which execute the same instruction at any given time (10). The Connection Machine,
designed by Thinking Machines Inc., is an example of a SIMD architectus- , while the Cray
Y-MP, from Cray Research, is an example of a shared memory structure. Hypercubes
such as the Ncube/2 (from NCUBE) and the Intel iPSC/860 are examples of distributed
memory architecture. The Connection Machine has a very large number of relatively slow
processors, and works well with a fine grain application. The Cray Y-MP also works well
with fine-grain applications, but does so with a small numbe: of super fast processors The
Ncube/2 can have up to 8192 processors, while the iPSC/860 may have up to 128 processors
and both generally work best with coarse-grain applications. Each of these machines has
approximately the same processing power (within an order of magnitude of cach other) and
can be thought of as general purpose machines. A new arrival on the parallel computer
scene is the Intel Paragon XP/S, and its prototype, the Delta machine, currently at the
Jet Propulsion Laboratory in California. The Paragon XP can have up to 2,000 processors

and has a processing speed of up to 300 GFLOPS (3).

1.4  Assumplions

It is assumed that the target architecture has a compiler which can efficiently

convert the chosen program from source code into object and machine code. In fact, this




requirement is a major factor in the selection of an algorithm and targe. machine. It is
also necessary that sufficient tire be available on the target machine for the conversion
process including initial analysis, design, code modifications, testing, debugging, and the
gathering of performance u..ia once the conversion is complete. It is hoped that access can
be gained to the largest possible model of the target machine in order to gather as much

data as possible.

1.5 Scope

The investigations of this thesis effort concentrate on the optimization and par-
allelization of an algorithm or program that can calculate the RCS of a scene. Previous
work in the area of parallelization of computational eleciromagnetics is reviewed. If a par-
ticular serial program or algorithm has the capability to perform more than a simuiated
RCS, those additional capabilities will be left as is, with no conversion performed. The
actual method of calculating the results will also be left as is, with no improvement in the

accuracy of the results attempted.

1.6 Slandards

During any modification of an existing program, an especially during optimiza-
tion, it is very important that all asp.cts of the original functionality of that program
be preserved unless the researcher wishes to improve on the existing functionality. Side
effects of optimization that degrade accuracy or usefulness should be avoided at all costs.
At all points, modifications to the chosen algorithm or program should be benchmarked
against the original code to ensure that the accuracy and functionality of the program « ¢
retained. Any improvements in either area should be carefully documented, and discrep-
ancies noted. During the optimization and :erversion efforts, cuirent software engineering
techniques should be employed to help ensure that ** onginal fu.-tionality is preserved

and improved with documentation provided.

1.7 Summary

This chapter has covered the need for research in the area of reducing the time
required to calculate a simulated Radar Cross Section of a group of objects. The next

chapter covers previous work that is relevant to the subject and scope of this thesis research.




II. Previons Research anu Background

2.1 Introduction

The field of :mage synthesis has ¢ v+ ., .d a great deal since its inception in the
late 60’s (8). Initially, research in image ', 1 vas confined to the visual spectrum, ren-
dering views of a group of objects calle..  :en- - 4 visualization that could be displayed
on a monitor. Recently, a new branch of ima . synthesis has evolved: electromagnetic im-
age synthesis, or the calculation of radar r-.ss-sections (RCS). Many different methods
for calculating the RCS of an object have b+ developed, several of which are mentioned
in Chapter 1. These techniquer e cuite s.ricl in ther approach and a review of these

methods is required in order to provide the .ecessary guidance for this investigation.

Similarly, a review of availabic parallel architectures is needed in order to choose
the “best” machine for this work. Factors to be considered are the grain of the machine,
its applicability to the chosen algorithm or program, and availabililty of access to that
machine. Techniques for parallelizing programs and algoritl.uns are covered so that the
best possible choice can be made for the co:version to a parallel in.plementation on the

tacget machine.

2.2 Algorihms and Progre-as for Calculating an RCS

Two general approaches have been developed for calculating an RCS: matrix ori-
ented, and ray tracing algorithms. Th.ee matrix oriented algorithms that are in current
use are Finite Difference Time Domain (FDTD), Method of Monents (MOM), and Con-
jugate Gradient CG). Examples of ray tracing programs are SRIM, JET, and NE-BSC.

The following paragraphs discuss these wechniques and their characteristics.

2.2.1 Finite Difference - Time Domain The FDTD algorithm seeks 2 solution
to Maxwell’s equations by tracking the evolution of scattered fields in timc. As described
by Patterson et al. (14),

An incident electromagnelic wave propagales inlo a volume of space gridded
as a 3-dimensional lattice conlaining a conducting or dialectric siruciure. The
wave’s interactions with the scatlering object are then observed. First the elec-
tric field quantities are calculated. Next, using the newly oblained electric field
quantities, the magnetic field quantities are updated. Then, using the ncwly
calculated magnetic fields, the electrir jreld values are updaled.

-




The process iterates until the difference between successive intensity values is less
then a specified atucunt (a steady state is reached). The 3-dimensional lattice is divided
into individual cells. The values for the electric and magnetic fields arc stored in matrices
which can then be manipulated to produce the interniediate answer: and 2ventually, the
final answer. Perlik and Opsahl (15) describe FDTD as one of the most robust electro-
magnetic scaitering codes available today. What they mcan is that the res: its are very
accurate and applicable to a wide varicty of situations. Appendix C contain. « more thor-
oug! .xplanation of this method. A more complete discussion of FD-TD may b2 found in

Appundix C, taken frora a MS thesis by J. Raley Marek (12).

2.2.2 Method of Moments Method of Moments (MOM) i another name for the
Numerical Electromagnetic Code (NEC 2), which should not be confused with the Numer-
ical Electromagnetic Code - Basic Scattering Code (NEC-BSC). The NEC-2 approach was
developed at Lawrence Livermore National Lo boratory and uses an intcgral representation
for the electric field of a volume (V) curreat distribution to model thin structures using

wire segments:
7 ~J7 T( =
B =21 7®-6@Fmyav (1)
47k Jyv
The magnetic field is represente ™ by an integral of the suiface current aiizibution Js.
~ 1 -
N GE = | (F) x Vg (F,7) dA’ (2)
iy S

An object of interest can be represented by using a number of surface “patlches™ which,
wkon joined together, would form the desired shape. Iigur2 3 shows such a model using
wir.: segments. Each patch has its own equation for describing the electric and magnetic
fields that are associated with it. Whey all the equations have been defined, their coefli-
cients can be placed in a matrix, and all the equations can be simultaneously solved using

standard matria manipulations. The system of linear equations can be written as

(AN F) = (E] (3)
where

[A] is & dense matrix called the “interaction matrix”,

10




[F] is a vector of uinkrown basis function amplitudes, and

[E] is a vector of the excitation at the center of the wires and/or patches.

From the solution of the amplitudes of the basis functions, one can determine the near-

and far-field quantities (14). A more detailed description of these equations may be found

in (7).

Figure 3. Typical wire-frame model of an object

2.2.83 Conjugate Gradient The Conjugate Gradient (CG) algorithm achieves a non-
linear solution time by using the matrix manipulations of inversion and multiplication
to arrive at an answer in a finite number of steps, always less than the number of un-
knowns. Tor electromagnetics, the resulting equations usually involve convolutions over
the unknown current density. The Fast Fourier Tiansform (¢ FI') can efficiently evaluate
convolution integrals without requiring cumbersome intezrations. Including FFT's with
the conjugate gradient approach achieves greater accuracy and speed (2). In the CG-FF'T
algorithm, the object is divided into sections, and equations for the electric and magnetic

fields are derived. The number of unknowns in a particular case is chosen according to a

11
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criterion that includes both spatial and frequency domains as well as the requirements of

linearity in the convolutions (2).

The general form for this equation is

A [J-] = (4)

while a general form of such an integral is

B0 =7 T () + [ T()-T(r-7Ddv (5)

The coefficients for these equations are then placed into matrices, and the matrices are
then manipulated through FI'T operations as well as the standard matrix manipulations.

These equations are described further in (2).

2.2.4 Ewvaluation of Matriz Methods A major computational problem of these ma-
trix methods lies in the fact that they all rely on matrices and matrix manipulations to
compute the final answer. The dimension of the matrices used is proportional to the fre-
quency of the incident EM energy and the overall size of the object(s) in the scene. As
the frequency of the EM energy increases, so does the dimension of the matrices. Like-
wise, as the volume of the scene increases, the dimension of these matrices also increases
further (2). The overall size of a matrix is proportional to the square of its dimension, and
normal matrix operations (such as inversion or a matrix multiply) perform a number of
operations proportional to the cube of the matrix’ dimension (17). For example, assuming
that the dimension of the matrices is linearly proportional to the frequency, and holding
the size of the object constant, if the frequency of the electromagnetic energy increases by
a factor of four, this means that the required matrices must increase by a factor of six-
teen and the number of operations increases by a fector of 64. Therefore, lower frequency
applications can expect an execution time that is faster than that of a high frequency
application. To illustrate, the critical section of an application at 8 Gllz would require
64 times as many calculations as that same critical section with an application at 2 GIIZ.
The critical section is defined as that area of the code that actually does the numerical
calculations. This section does not comprise the entire program, but uses up most of the

total execution time. Other areas of the program, such as 1/0O, require a fairly constant

amount of time.
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2.2.5 Ray Tracing Algorithms The solution time for ray tracing algorithms is not
dependent on the frequency of the electromagnetic energy being simulated. Ray tracing
algorithms calculate a result based on hypothetical paths that may be drawn (or traced)
from a source of energy to a receiver. Ray tracing had its origins in the late 1960s, and
calculates the paths for a number of rays. Traditional ray-tracing algorithms calculate
the paths for a large number of rays, sometimes exceeding one million in number. For
this reason, ray tracing was not seriously developed until faster, more poweiful computers
were developed to handle the enormous amount of calculations involved (8). Ray tracing
algorithms may be divided into two different classes: observer-viewplane ray tracing, and

source-destination ray tracing.

2.2.6 Traditional Ray Tracing This thesis refers to the traditional ray-tracing ap-
proach as “observer-viewplane” ray-tracing. Observer-viewplane ray tracing has four basic
components: a source, an observer (or receiver), a viewplane, and a set of objects called a
scene. The source, the observer, the viewplane, and all objects in the scene have a distinct
position which is defined in a reference coordinat . system. Rectangular, cylindrical, and
spherical coordinate systems may be used for various applications. Figure  illustrates how

this is done.

. Sh
Light Source adow Ray

Viewplane E: Intersection

Point

Primary Ra

Observer
Figure 4. Traditional ray tracing approach
The viewplane is divided into a number of “pixels”, and the total number of pixels

corresponds to the number of rays which are to be generated. For typical applications, the

number of pixels (and thus the number of rays) is very high, usually in excess of 100,000.




The accuracy or size of the image is determined by the number of rays calculated. The

‘higher the number, the greater one or both of these values may be.

To trace a ray, calculation begins with the observer, and rays are traced (drawn)
from that_point , through an individual pixel of the viewplane, to the scene. Upon arriving
at the scene, each ray is processed to see if its path intersects any of the objects of the
scene. If an intersection occurs, a new ray is generated with a new direction according
to the interaction parameters (angle of incidence and slope of the object at the point of
intersection). Each interaction either increases (if the object is a source) or decreases
(all other objects) the intensity associated with that ray. If the ray has not encountered a
source, eventually the intensity associated with that ray will be low enough to be considered
zero. Therefore, after a predetermined number of interactions, processing may cease for
that ray since its intensity information is no longer useful. Once a ray has been completely
processed, the pixel associated with that ray will have its color and intensity set according
to the interactions that the corresponding ray experienced. Carter (8) gives a very good
description of this process and shows how such a ray tracing algorithm could be applied

in optical image synthesis.

Gustafson, e al.(11) used SRIM, a traditional ray-tracing EM image synthesis pro-
gram, to perform some measurements in parallelization of large programs. In terms of
computational complexity, Gustafson’s group (11) states that the algorithmic cost (or
complexity) of a observer-viewplane approach is proportional to the number of rays fired,
the number of reflections allowed, and the number of objects in the scene (since each object
in the scene must be checked for further interactions after each intersection). Carter (8)
introduces a technique to traditional ray-tracing which reduces the number of objects that
are examined for possible intersections, and thus, the complexity of the best observer-
viewplane approach is O(logn - m - b) where = is the number of objects, m is the number
of rays, and b is the number of reflections allowed. The number of rays can be as high as
one million, with the number of reflections reaching up to 20, and the number of objects
can be more than 1000 for this type of ray tracing. Because its foundation lies in optical
image synthesis, observer-viewplane ray tracing deals only with reflections from objects
without accounting for any other contributions to the result. For optical applications, this
produces the effect of very sharp shadows. This effect is not realistic, but in order to

make it more realistic, much more effort would have to be expended to somehow model

the complex interactions that take place at the edges of the objects in the scene (8).




2.2.7 Diffraction Typical rad..r frequencies in RCS problems are much lower than
the visual spectrum, and the strength of the contributions from edge and corner interactions
is inversely proportional to the frequency of the incident energy. This means that for RCS
applications, these interactions have a much more pronounced effect on the final result
than jn optical synthesis. SRIM makes no allowance for corner and edge interactions and
also produces a result that is valid for only one direction. These factors make it inadequate

for RCS calculations.

The intcractions that take place at corners and edges are commonly referred to as
“diffraction”. Diffraction occurs when a wave of energy strikes the edge or corner of
an object. When this happens, the electromagnetic energy doesn’t simply stop at the
edge of the object. In other words, no clear shadows result. In cffect, the edge of the
object acts as a weak source, and a new wave of energy radiates out from that edge. The
effects of diffraction are directly proportional to the wavelength of the incident energy.
Since wavelength is inversely proportional to the frequency, as the frequency increases, the
strength of the diffracted energy grows weaker (19). In the visible spectrum (visual light
is electromagnetic energy at very high frequencies) the effects of diffraction are so weak
that there is only a minimal contribution. This effect, on the other hand, can be quite

pronounced at frequencies typically used by radars (2 - 16 Gllz).

The only contribution from diffraction in a observer-viewplane approach is when a
gencrated ray strikes an object exactly on its edge. How such a ray is treated determines
how well diffraction is handied. In optical ray tracing, that ray either carries on as if no
reflection had taken place, or reflects normally. Reflections are handled by generating a
new ray with a new starting point and a new direction. The direction of the new ray
is determined from the angle the old ray made with the intersecting object. Thus, in
optical ray tracing, diffraction has no contribution. In order to accurately account for
the effects of diffraction, a observer-viewplane approach would have to treat cach edge
and corner of each object as a potential source, and generate m more rays whenever a
ray struck an object near an edge. This complicates the computations considerably, and
the algorithmic cost (or complexity) becomes O(m’ - b - logn) where ¢ is the number of
consecutive diffractions that are allowed. Since the results of diffraction are weaker than
reflections, ¢ would be much smaller than b. In traditional observer-view plane ray-tracing,
this approach has never been implemented since the value of m” is tremen lously large.

For example, if ¢ = 2, and m = 200,000, the resulting value is 20 billion!
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2.2.8 Source-Destination Ray Tracing EM image synthesis algorithms that use the
traditional observer-viewplane ray-tracing method are based on the optical versions that
preceded them and do not treat the effects of diffraction accurately. A source-destination
algorithm addresses the effects of diffraction by changing the method of generating the
rays. Instead of calculating ray paths, and then checking to see if a given ray intersects an
object, the object-based approach begins with an object and checks to see if a ray can be
traced from the source to the receiver (observer) after interacting with that object. This
eliminates the need to generate a large number of rays, and each object can be treated
for all possible interactions, including diffraction. Multiple interactions are handled by
treating each object as a new source, and checking with all other objects for interactions

that would result in a path in the desired direction.

Marhefka uses the source-destination ray tracing approach for his implementation
of the Numerical Electromagnetic Code - Basic Scattering Code (NEC-BSC). NEC-BSC
was developed for applications specific to the proposed space station, and has found use
in the United States Navy (13). NEC-BSC achieves some very good results with a serial
implementation of the source-destination algorithm, having been validated to -20dB. A
waakness of NEC-BSC lies in the the time required for execution. This weakness arises
from the computational complexity of the source-destination ray tracing algorithm. Since
every possible combination of objects and types of interaction are treated separately, the
algorithmic cost is high, O(n?). If the number of interactions, b, is high enough, the exe-
cution time grows tremendously. For this rcason, Marhefka implemented interactions with
a maximum of three reflections and two diffractions. Also, within this subset, intera.tions
that provided a very weak contribution were left out. In addition t» the computational
complexity of the source - destination algorithm, preliminary analysis of NEC-BSC has
shown that it is largely inefficient in its calculations. Many values are recalculated several

times instead of being saved for later use.

2.3 Pquipment

The target computer architecture for this work is the Intel iPSC series hyper-
cubes. An iPSC hypercube can have anywhere from 8 to 128 processors (nodes), with the
actual number of nodes present in any one machine being equal to a power of two (2"). In

order to accomodate the different configurations possible, the final product is written in

such a way that the program may be run on any number of nodes.




2.8.1 Computer Hardware Since their introduction, traditional computers have
been following a trend of increasing computational speed and power. Many rescarchers
now believe that this trend will slow down and the computational speed of a traditiounal
single processor will approach a maximum. This maximum is related to the speed of light,
and once approached, the speed and power of an individual processor will not be able to
increase further (10). As a traditional processor approaches this maximum, its cost grows
dramatically, and today’s top processors (such as the CRAY) command premium prices on
the open market. Parallel computers, which use many processors, can achieve computa-
tional speeds much higher than this maximum through combining the speed and power of
many processors. Furthermore, since the individual processors need not be top-of-the-line,
the overall cost of a parallel computer can be much cheaper than that of the super-fast

traditional processor.

An example of the advantage a parallel architecture has over a traditional computer
can be drawn form a comparison of the NCUBE/ten and the CRAY Y-MP (11). The
NCUBE/ten has 1,024 processors, each of which is based on the architecture of the VAX
11/780. The CRAY has eight processors which represent the state of the art in processing
speed. A ray-tracing application was run on both machines with the CRAY executing
the program slightly faster than the NCUBE/ten (105 sec vs 124 sec). The same problem
when run on a VAX 11/780 took over 35,000 seconds to execute; thus, the speedup available
through either machine over the older traditional computer (the VAX) is obvious. Since
an NCUBE/ten costs only $1.5 million (compared to $30 million for a CRAY Y-MP ), this
illustrates the cost-effectiveness of parallel computers. The conclusion is that very similar

execution times can be achieved at a considerably lower cost.

The term hypercube means that the computer has 2" processors, and each processor
is connected directly to n other processors. The furthest distance from one processor to
another is also n, thus allowing a large number of processors to be connected in an efficient
manner. The NCUBE/2 is the next model (after the NCUBI/ten) of parallel computer
produced by Ncube, and like its predecessor, uses a hypercube interconnect to link the
processors together. The NCUBE/2 can have up to 8,192 processors, and has a theoretical
performance of 4 GFLOPS!.

Another example of a hypercube architecture is the Intel iPSC/860. This parallel

computer can have up to 128 processors and has a theoretical maximum performance of

Yone GFLOP denctos the ability to perform one billion floating point operations per second
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7.5 GI'LOPS. Each processor, an Intel 1860, is a RISC chip operating with a clock speed of
40 MIIz and is rated at 60 MFLOPS peak. Recent work has experimentally measured the
bandwidth and latency of the iPSC/860 when sending messages between the nodes (21). In
addtition, Intel has recently announced a new parallel machine based on the i860 micropro-
cessor (also used by the iPSC/860) called the Paragon XP/S computer. This new machine
has a peak power of 150 GFLOPS and uses a mesh interconnect instead of a hypercube.
Applications which run on the iPSC/860 are expected to run on the new machine with only
minimal conversion work required. Intel has also developed an efficient message-passing
network that connects the processors together. This network allows messages to proceed
to a distant destination without interrupting any of the other processors that lie between
the sender and the receiver (5). Currently, the Target Recognition Branch of the Avionics
Directorate at Wright Laboratory, Wright-Patterson AFB, OII has an eight node model of
the iPSC/860 which is employed in this research.

2.3.2 Parallelization Techniques Some of these techniques are domain (data) de-

composition, control decomposition, static load balancing, and dynamic load balancing.

2.3.2.1 Dala Decomposition In many programs, the individual items of
data to be processed have, by design, a built in independence, which would allow separate
items of data to be processed simultaneously with no side effects which might arise if data
dependencies were present. For example, consider a loop in a section of serial code where
the results of the data processed in each pass are not dependent on carlier calculations or
comparisons from previous passes through the loop. An application with this sort of inde-
pendence would be a ray tracer. The handling of each ray is completely independent of the
results of other rays. Thus, each ray can then be calculated in parallel, or simultaneously
with all other rays. A simple data decomposition would divide the iterations among the
available processors, assigning N/n rays to each processor where N is the number of rays
(typically very large), and n is the number of processors. This kind of implementation is
called data decomposition. Since each node operates on separate items of data, every node
must be able to completely process each item of data, and thus, a complele set of the code

to be executed must be loaded onto each node.

2.3.2.2 Control Decomposilion Sometimes, data dependencies do not al-
low partitioning the data set among the processors since such a decomposition would result

in prohibitive cemmunication costs. In such cases it may be more advantageous to divide




up the various tasks among the processors. In other words, assign the task modules in

the program to the various processors. This kind of decomposition is similar to a task
scheduling problem, and care must be taken to assign the modules in an efficient manner.
Communication would be required to pass parameters back and forth, but this cost is
normally less than that of a data decomposition of the same problem. This type of im-
plementation is called a control decomposition, and each node has a unique set of code to
be executed. One case of control decomposition is task scheduling on multiple processors;
each node has a unique set of code (its current task), and executes that program. In more
involved cases, the tasks become interrelated modules of the same program, and additional

communication is required. This additional communication, however, is normally only a

moderate amount.

2.3.2.3 Combinations Sometimes it is useful to use both control and data
decompositions for a particular application. Such a scheme would have several groups of
processors assigned to unique tasks, with the data divided among the groups as well. Thus,
for example, a pipelining effect could be realized: each processor in the first group would
begin working on its corresponding first item of data; when done, it would then pass along
an intermediate result to a corresponding processor in the next group of processors for
further work and then begin working on the next item of data. Each processor in each
successive stage would process the intermediate results sent to it, and send its result on.
The final group of processors would then store the final result. Such an approach was used
by Gustafson et al (11) at Sandia National Laboratories with a ray tracing package (SRIM
2.2Q). This approach is also useful when the entire program to be executed is too large
for the available memory on a single node. By dividing up the modules, the executable
code given to each processor is less. The data are also still divided among the first group
allowing the software engineer to take full advantage of the parallelism in a particular

application.

2.3.2.4 Load Balancing When converting a serial program to run in a
distributed memory environment, a major objective is to have some way to balance the ex-
ecution time among the processors thus minimizing idle time. Theoretically, each processor
should do exactly the same amount of work in order to achieve maximum efficiency and
the best possible speedup. In other words, the work load needs to be balanced among the
active processors. Static load balancing is a technique where the programmer hard codes

the division of labor among the nodes, specifying exactly what cach node will do before
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the program is executed. Dynamic load balancing occurs when the program itself divides

up the work according to heuristics that have been written into the balancing routine.

2.3.2.5 Static Load Balancing When a software engineer uses static load
balancing, in order to efficiently partition the work, some prior knowledge of the complexity
of the data set is required in order to make a good estimate. A simple scheme for static
load balancing (when the data is handled in a loop from 1 to N) is to let each node do
x = N/n items of data; each node handling the items from iz to iz + z (i representing
the current node number) in the data set where n is the number of nodes. This approach
may not yield an efficient implementation, however, if some of the data items require more
processing than others. Another approach used in some ray tracing programs, for example,
is to have each node iterate through the euntire data set with an increment equal to the
number of nodes. Thus each node would process data items i, n+1, 2n 44, 3n +14, ... ,
N — n + 1. This approach attempts to compensate for an unequal amount of processing
by assuming that neighboring items have a similar amount of complexity associated with
their computation. By assigning neighboring items to different processors, those items
with more complexity are spread out among the available processors, and similarly the less

complex items are also spread out evenly among the nodes.

2.3.2.6 Dynamic Load Balancing Dynamic load balancing occurs as the
program is running and can compensate for diflering levels of complexity throughout the
data set. One type of dynamic load balancing divides the available nodes into two groups
by purpose: master and slave nodes, also known as controller and worker nodes. Each
worker node receives a relatively small data set to operate on, and when done, it then
notifies its ccatroller node that it is ready to operate on another set of data. Ilere, the
generic term “set of data” can be thought of as either individual data items, or possikly even
separate tasks that are to be executed. The master (or controller) node then determines the
contents of the next set of data that the requesting slave (or worker) node should execute,
and forwards that information to the requesting node. This process repeats itself until the
global data set has been entirely processed. With a centralized list, one master controller
maintains the global data set and distributes the work among the worker nodes. One
controller, however, can only manage a finite number of nodes before the communications
from its worker nodes begin to cause a bottleneck. When this happens, the controller is
unable to respond quickly to a worker node’s request, and overall performance suffers as

the slave nodes wait for the next set of data. The actual number of worker nodes that a
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manager node can efficiently handle is dependent on the grain size of the target machine
-and the average amount of time spent processing each set of vata. If the number of nodes
available becomes large enough to become a problem, then an intermediate level of worker
nodes can be used under the master node. Alternately, a number of controller nodes can
maintain a “distributed list”, with each controller node sending out data sets from ite
portion of the overall list. If a controller node exhausts its local list, it can ask one of its
neighboring controllers for more work. Once all the local lists have been com,..eted, the

program then terminates.

2.3.2.7 ELfficient Dynamic Load Balancing Normally, dynamic load bal-
ancing has some overhead associated with implementing the heuristics and message pass-
ing. This overhead arises when the requesting node waits for a response from its controller.
Here, the sending node is idle, awaiting the next item of work. Once the return message
arrives, the sending node continues on, processing the data items in the new set. If the
items of work can be subdivided into recognizable data items, some of this idle time can
be eliminated or “hidden” in the overall execution time. Such a division would allow the
worker node to send a request for more work before it actually finishes its current set.
The request would travel to the appropriate controller, and that controller would send the
next item of work to the requesting worker node. While all this is occurring, the worker
node is finishing its current set of data, and does not wait for the next item of work upon
completion. If, for example, a ray tracer program divides the work into groups of four rays
per “item”, When the worker node has completed three of those rays, it can then send a
request for more work. While the worker processes the last ray, the controller receives the
message, determines the next group of rays to be processed, and sends a message back to
the requesting node. For greatest efficiency, the time required to process one data item (in
an item of work) must be greater than the total time between sending the request and the
arrival of the next item of work. Otherwise, more data items must be included in a group,
and the request must be sent before the penultimate data item. A balance between the
round trip message time and the processing time must be reached such that the message

time is less than the processing time in order to achieve the best possible efficiency.

2.3.3 Lzamples of Parallel Implementations Suhr improved the execution time of
NEC-BSC by parallelizing the existing serial code using a static load balancing technique
with a domain (or data) decomposition. In this work, for some simple test cases, he

demonstrated that gains are possible. Ile measured an improvement over the VAX 11/780
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of about 6.1 for one node (18). Unfortunately, he was unable to achieve good time efficiency

with a limited number of nodes.

Gustafson and Co. were able to show that a dynamically load-balanced ar plication
of SRIM allowed them to achieve near-linear sp2edup in the execution time. Speedup is the
ratio of the execution time (on a traditional computer) for the best serial implementation
of an algorithm to the execution time for n processors in a parallel machine. Ideally, this
value should equal n showing 100% efficitncy (18). Often this is not the case, because
overhead expenses associated with the unique features of a parallel computer add to the
execution time of the program. This decreases the speedup to something less than n. The
work of Suhr (18), and Carter (8), in their work with the Intel iPSC/2, also reflects this

phenomenon.

2.4 Conclusion

If accurate calculations of a high frequency RCS are to be accomplished in a cost-
effective manner, an efficient, accurate algorithm needs to be developed for a cost-effective
computer. Matrix oriented algorithms such as FDTD, MOM, and CG become very time
consuming when the frequency of the incident EM energy increases. Additionally, observer-
viewplane ray tracers such as SRIM are inadequate because of the single viewpoint and
the inability to handle the effects of diffraction. NEC-BSC performs the serial calculation
of an RCS with good accuracy and is an exceilent candidate for optimization because of
its many inefficiencies. Parallelization should result in the greatest gains in execution time

and is the primary focus of this thesis effort.

Recently, four researchers using an Intel iPSC/860 hypercube won an award for
price/performance results with calculations in superconductor structure (4). This shows
that cost-effective computing is possible with parallel computers. This was only achieved
after a great deal of work in optimizing an existing program and converting it to run
on the parallel machine. The Intel iPSC/860 was chosen as the target machine for this
work because of its potential for performance, and availability. Another consideration was
the relationship of the iPSC/860 to the new Paragon parallel computer which should be
available in the near future. Since the next generation uses the same type of processor,
and the differences between the architectures will be largely transparent to the user, any
program that executes on the iPSC/860 should execute on the new machine, providing a

great deal of power to the user.
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Because the iPSC/860 is a coarse grain machue, a data decomposition is chosen
for the implementation which should provide the bast possible division of labor among
the available processors. A control decomposition would probably be too voarse for the
iPSC/860, and an uneven work load could easily re..!t. Additionally, a dynamic load
balancing technique is implemented since it offers the greatest possibility for even load
balancing under all conditions. Exactly how to decompose NEC-BSC onto the target

machine is determined in Chapters 3 and 4 as the structure of NEC-BSC is examined.

2.4.1  Software Development Environment, Tools and Techniques The development
of the “windowing” environment for workstations has given the software engineer a very
effective tool for all stages of an applications development. By logging into the target
machine with multiple v.indows, several activities can be done concurrently. for example,
while an update to the baseline is being compiled (sometimes a lengthy process) in one
window, results from a pievious version can be analyzed. During long execution times
(while gathering data) in one window, an analysis of any previous data can be typed
into a document. Also, if errors should be detected during execution in one window, a
search for the code that caused the error can be performed in another window, keeping the
symptoms of the error in view without the need to print out error listings. Consequently,
a workstation with the windowing environment is chosen for use in the development of the

application. The workstation used was the Sun Sparcstation 2 using Openwindows.

2.4.2 Summary This chapter covers previous work in electromagnetic image syn-
thesis, detailing efforts in matrix and ray-tracing models. Candidate computer architec-
tures for a parallelization of a chosen algorithm are put forth, and techiques for paral-

lelization are explored. The next chapter initiates the implementation process, analyzing

a serial implementation of the chosen algorithm, and presents a high-level design.




III.  Analysis and High Level Design

3.1 Introduction

The analysis and design of a parallel implementation of NEC-BSC is the objective of
this rescarch. Accordingly, the code is first analyzed using software engincering techniques,

and its structure is then modeled with UNITY, a high level design language. Inherent

parallelism in the structure of NEC-BSC is identified, and a parallel high-level design is

presented.

3.2 The Numerical Electromagnetic Code -~ Basic Scattering Code

MEC-BSC is a large (> 20,006 lines of code) program that calculates the electromag-
netic energy radiated outward from a target scene. The radiated energy can be computed
for alarge number of parameters, and the output czn be in several forms, including near and
far zone results as well as the electric and magnetic field strengths received by an antenna,
or radiated outward in any given direction. The program can iteratively step through any
given series of angles with a large selection of orientations available. Angles are based on
a spherical coordinate system and coordinates represent volumetric and circular angles.
The far zone results of NEC-BSC take the form of a radar cross section. Therefore, this
research focuses on the far zone fu..~tionality of NEC-BSC, and all parallelization efforts
concentrated on converting the far zone code to run on the iPSC/860. Other features of
NEC-BSC such as near zone results and antenna effects were not converted and currently

do not execute in the parallel implementation.

3.8 Analyzing the Code

In order to efficiently parallelize an existing application, the software engineer must
be familiar with the structure of that program. Modules and interconnectivity can signif-

icantly influence a parallel design.

8.8.1 Structural analysis of NEC-BSC Design recovery techniques of software en-
gineering allow a software engineer to recover the structure of an existing program. The
User’s Manual for NEC-BSC provides a high level structure chart showing the main de-

tails of NEC-BSC’s structure (13). Figure 5 shows this initial high level structure with

nested loops depicted by successive indentations. For a far zone single source application
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with only one frequency, the initial high level structure reduces t.: Lat shown in Figure 6.
The block depicted in Figures 5 .nd 6 as Calculate Fields can be further expanded to
show more detail. Figure 7 shows this result, depicting the various calculations that are

performed.

The structure depicted in Figure 6 shows one inefficiency: calculating the same real

angle 2 multiple of times. This structure recalculates the real angle corresponding to the
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current loop index once for each UTD term! (which has a earlier loop construct). Since this
calculation is done with a subroutine call, for 1,000 rays, this results in multiple subroutine
calls that are completely unnecessary. Moving the pattern cut loop outside the UTD term
loop would result in a savings in subroutine calls approximately equal to the number of

UTD terms times the number of rays.

Further in-depth analysis shows that each individual UTD term has its own subrou-
tine for the calculation of any appropriate field strength contribution. In order to call the
correct subroutine, a very large IF-THEN-ELSE IF structure inside the Calculate Fields
block determines what the current UTD term is and calls the appropriate subioutine. Due
to the limitations of time, this structure can not be consolidated or optimized for better

performance.

Structural analysis reveals another factor which would limit an attempt to improve
the efliciency of NEC-BSC. This factor involves the coupling of the program’s modules.
Most of the modules in NEC-BSC are very tightly coupled and have a loose coherency. The
tight coupling arises from the fact that the subroutines of NEC-BSC have a large number
of parameters and also access numerous global variables stored in COMMON blocks. Such
tight coupling greatly hinders any restructuring or improvements, because of the danger
of side-effects (a statement executed locally affecting values that are used elsewhere jn the

program).

Using the high-level structure provided by the User’s Manual and analyzing the
code itself, a good picture of NEC-BSC’s top level structure results. In order to use
this information, this structure must be modeled in a way that shows its characteristics
clearly. Chandy and Misra propose a high level design language that can be used to
model both parallel and serial programs (9). This high level language is called UNITY,
and once an algorithm has been correctly modeled, many details of its structure can be
illustrated. Iere, the high level organization of NEC-BSC is set out and from the high
level design, a parallel implementation can casily be derived. The advantage of describing
a serial program in UNITY is that any parallelism that already exists within the structure
of a serial program can be casily identified once the UNITY design has been completed.
After analyzing the UNITY program, and the inherent parallelism of the application has

been identified, a detailed design can be constructed that builds on these parallelisms, and

Ya UTD term refers to a unique sequence of objects and interaction types. Reflection and diffraction are
the two possible interactions, and each may occur any number of times in any sequence in a UTD term.
NEG-BSC uses only 20 terms in its loop.




maximizes the gains that can be achieved through parallelism. Additional features map
the high level design to the individual machine for which the application is intended. This

mapping is called a low-level design and is discussed in Chapter 4.

3.2.2 Serial Design The far zone portion of NEC-BSC is now modeled in UNITY.
This design incorporates the far zone functionality of NEC-BSC, assuming one stationary
source and no antennas. This removes much extraneous detail pertaining tc the other

functions of NEC-BSC that would clutter the design here.

Program Serial NEC-BSC
Declare
phi, theta : Integer {for use as loop indices}
UTD._num, objnum : Integer {for use as loop indices}
{A function for calculating partial field strength in a given direction}
Function Partial Strength (phi, theta, objonum, UTD.mum) return Complex
i, j, k, 1 : Integer {Iteration index variables }
pair : array (1 .. 3) of Real {for 3D coordinates }
object : Record{contains the essential information about one plate}
corners : Integer
corner_pts : array (1 .. corners) of pair
end record
num_objects, num_terms : Integer
{Start and stop points for the volumetric and circular loops}
begin_vol_point : integer
end_vol_point : integer

begin_circ_poirt : integer
end_circ_point : integer




{Procedure to read the data in form disk and initialize key variables}
Procedure Cread (num.objects, vol.points, circ.points)
{Variable which will hold the final results}
field strength : array (1 .. vol_points, 1 .. circ_points) of complex
Initially
{Initialize the field strength and the number of UTD terms}

num-.terms = 20

(¥ i: begin_vol.point < i < end.vol_point ::
(¥ j : begin_circ.point < j < end_circ_point ::
field_strength (i, j) = 0.0))

Assign
{Calculate each partial contribution and sum with other calculations}

(Vi : begin_vol_point < i < end_vol_point ::
(V j : begincirc_point < j < end._circ.point z:
(Vk:0<k < circ_points ::
(vV1:0 <1< num_objects ::
field_strength (i, k) := field_strength (i, k) +
Partial Strength (i, k. j. D))})

End {Serial NEC-BSC}

In the serial design of NEC-BSC, the variable “UTD.num™ holds an integer value
that corresponds to the current UI'D term. A UTD term is a unique interaction sequence
that objects in the scene apply to an incident ray. Examples of UTD terms are single
reflection, single diffraction, double reflection, diffraction-reflection. triple reflection, etc.
The number of possible UTD terms is represented by the variable “num_terms™. The
variable “objnum” holds an integer corresponding to the number of the current object
under ¢ nsideration. The function “Partial Strength™ takes as parameters the current
final angles (in a spherical coordinate system), the current object number, and the current
UTD term. This function is part of NEC-BSC, and its inner functions are not modeled

at this level. Given the input parameters, the Partial Strength function calculates the

29




contribution of the current UTD term to the total ficld strength in the current direction.
Since there are 16 different UTD terms, the contribution of each term must be summed to
arrive at the total field strength in a given direction. The procedure “Cread” reads in the
input parameters from a file stored on disk. The field strength is calculated using complex

values (a real part and an imaginary part) and stored in the array “field_strength”.

3.3.8 Parallel Design As can be seen from the UNITY design of the serial version of
NEC-BSC, a high degree of parallelism exists in the progran structure. Several possibilities
exist for division of labor among multiple processors. Each of the iterations could be
partitioned among the processors of a parallel machine. Some combination of loop values
could also be distributed. Using this serial design, a parallel high level design can be

drafted to illustrate some of the design decisions at this level. The parallel version of the

high level design shows the inherent parallelisms within NEC-BSC cven more cleatly. In
this listing, only the differences f. >m the serial version are shown. The parallel version
essenti ' adds the control and decision features which allow statements to execute in

f parallel.

Program Parallel NEC-BSC

Declare

{ same as serial version with the following addition: }
{Variable for controlling the calculation of the field strength}
element_done : array (1 .. vol_points, 1 .. circ_points, 1 .. 20, 1 .. num.objects) of Boolean

Tnitially

{ same as serial version with the following addition: }
{initialize the controlling variable}

(Vi: 0< i< vol_points ::
(Vj:0<j< circ.points ::
(Vk:0 <k < num-terms ::
(V1:0< < num-objects ::
element._done (i, j, k, 1) = false)}))
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Assign

set each corresponding element in the controlling variable as each
g g
{contribution to the partial strenght is calculated}

l(Vi: 0 < i< volpoints ::
I(Vj:0<j< num_terms ::
IV k: 0 < k < circ_points ::
j(V1: 0 <1< numoobjects ::
field strength (i, k) := field_strength (i, k) + Partial Strength (i, k. j, 1) ||
element.done (i, k, j, 1) := true
if not element_done (i, k, j, 1)))})

End {Parallel NEC-BSC}
Fixed Point

FP=(Vi: 0<1ix volpoints ::
(Vj:0<j< circpoints ::
(Vk: 0< k< num_terms ::
(V1:0 <1< num-objects ::
element.done (i, j, k, 1) = true)}))

One aspect of UNITY is that all statements in an “Assign” block execute in parallel
and each statement executes infinitely often. lere, however, only one calculation per
unique combination of parameters is wanted. Accordingly, the parallel version of the
UNITY design introduces a new variable called elemeni.done. Initially, all the elements
of this array are set to “false”, and the partial strength contribution of a unique set of
parameters is only be added to the sum if its corresponding element in element.done is false.
Once the calculation has been accomplished, the corresponding element in element.done

is set to true. This guarantees that each unique contribution is calculated exactly once,

even though the statement executes infinitely often.

In the parallel design, all the variables of the serial version a.e used. Therefore,
only the additional variable is shown in the parallel design listing. Similarities in the

initialization of these variables are also left out of the parallel version.

An important part of a UNITY parallel design is to show that the program terminates
in an orderly fashion by including a final condition called a fixed point (FP) (9). If the FP
evaluates to be true, then the program is guaranteed to terminate. This constitutes a proof

of correctness for the parallel features of the UNITY design. This proof does not guarantee
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the functionality of the parallel program, merely that it terminates in an orderly fashion.
The functionality of the program is dependent on the equations used when performing the

calculations, not the parallelization of the program.

3.8.4 Proof of correctness In UNITY, each statement executes infinitely ofien, so
in order to prevent the same ray from being calculated multiple times, a new variable was
introduced into the parallel version to indicate whether a particular ray had been processed
or not. This variable, element.done, is a four-dimensional array with each dimension
corresponding to one of the nested iterations in the parallel program. Initially, each of the
elements of the array is set to false, and when a ray has been processed, its corresponding
element in element.done will be set to true. In order to guard against multiple calculations
of the same ray due to the same statement being executed more than once, a guard is
placed on the processing statement. If, at any earlier point, that ray had already been
processed, the guard prevents a second calculation. Since each combination of values for the
nested iterations is guaranteed to be processed at least once, each element in the variable
element_done is set to true. This guarantees that the fixed point stopping condition is met,

and the program terminates normally.

3.4 Conclusions

Each of the levels of the nested iteration have the potential for parallelization. The
volumetric and circular loops have the potential for covering a wide range of values, up
to 1801 discrete angles from 0 to 360 degrees. These values could be partitioned widely
in a fine grain machine. The UTD terms and objects are few in number and could be
distributed among the processors of a coarse grain architecture. The detailed decision of
how and what to parallelize is discussed in Chapter 4. As can be seen, there are at least
four parameters (volumetric points, circular points, UTD terms, and objects) which could
be partitioned among available processors if a data decomposition were to be used. A
contro] decomposition, on the other hand, would require a different sort of analysis than
is done here. Such a decomposition would need to analyze the interconnectivity of the

separate modules of the program to determine the best way to partition them among the

available processors.




3.5 Summary

This chapter presents an initial analysis of NEC-BSC and details the high level
structure of the program using a high-level design language called UNITY. Possibilitics for
parallelization are identified, and a high-level parallel design is shown. The next chapter
builds on this work, introducing a detailed, or low-level design, also using UNITY. This low
level design has more detail about the eventual implemetation, and implements decisions

made during the design process.
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IV. Detailed Design

4.1 Introduction

The process of converting an existing high-level design into executable code can be
accomplished in a variety of ways. A technique is selected and the high-level design pre-
sented in Chapter 3 is refined and expanded into a detailed design, incorporating features

of the target architecture in the process.

4.2 Decomposition Technique

Based on the analysis in Chapter 2, a data decomposition technique was chosen to
be implemented in the parallelization effort. In order to create a detailed design, however,
more analysis of the existing program is required. This is necessary because the object
chosen for decomposition should fit the proposed uses for the parallel implementation. This
investigation focuses on suitability of the various possibilities for decomposition identified
in the high level design. These possibilities are the volumetric angles, the circular angles,
the UTD terms, and the objects in the scene geometry. An analysis of the most commonly
used features of NEC-BSC reveals that most of the time, the volumetric angle data, is
not varied, reducing that iteration to one pass. Therefore, a partitioning of that level of
the nested iterations is not possible. Further analysis shows that the calculation of the
partial contribution due to the separate UTD terms varies greatly in their execution time
for the same angles. The UTD terms are also relatively small in number (only six for flat
plates up to a maximum of twenty), giving no possibility for scalability to large numbers
of processors. The objects themselves are a possibility, but an investigation of that avenue
indicates that a great deal of interaction occurs between the different objects, so a full
decomposition results in a great deal of communication. For a coarse grain architecture,
this means an unacceptably low efficiency. The circular angles (the final possibility), are
well suited to data decomposition. Most of the time, the input data requests a full 360
degree scan for the circular angles with varying amounts of precision within the scan. The
actual number of discrete angles usually varied between 360 and 1800. With 1800 discrete

angles, the actual difference between successive angles could be as small as 0.2 degrees.

4.8  Decomposition Object

Another important factor in determining how to approach a detailed design is the

target machine for which the application is intended. In this case, the Intel iPSC/860 is
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chosen as the target machine, and its characteristics then influenced the choice for decom-
position. In fact, this is why the objects in the scene are not chosen for distribution among
the processors. Previous work used the iPSC/2 to implement a static load balanced version
of NEC-BSC (18). The Intel iPSC/2 and iPSC/860 are coarse-grain parallel processors
with the number of processors equal to a power of two. With a latency of 75 useconds per
message, and a transmission rate of 2.88 Mbytes per second (compared to a peak rate of
40 MFLOPS) (21), an application on the iPSC/860 should avoid Jarge numbers of mes-
sages. Ior this reason, a full decomposition of the objects would not be efficient. This
leaves either a partial decomposition of the objects or the circular angles. The number of
objects that NEC-BSC can handle is currently limited to 36 (13). This places a limit on
the number of processors over which the problem can be partitioned. The circular angles
are then left as the best candidate for decomposition across the processors since results for
individual angles may be computed independently of other angles. Thus, the processors
do not need to communicate among one another while the program is running. The only

communications required are the gathering of output data, and the distribution of the

work.

4.4 Load Balancing

Once the method of decomposition and the term to be decomposed have been chosen,
another factor needs to be considered: load balancing. Even though a fairly equal number
of angles can be distributed to the available processors, there is a possibility that some
groups of angles take longer than others when calculating the radiated electromagnetic
power. It is not desirable for the processors to have execution timnes that are imbalanced,
since the entire application doesn’t terminate until the last processor has finished. In order
to reduce the execution time as much as possible, the individual processors should all finish
at approximately the same time. If one processor finishes significantly later than the other
processors, those other processors are idie while they wait for the last one to finish. Idle
time results in reduced efficiency, since more time is being taken to produce the same
results. Earlier work in parallelizing NECBSC used a static load balancing scheme for

distributing the work load (18), and this work concentrates on a dynamic load balancing

algorithm.

Dynamic load balancing techniques separate the available nodes into two types:
worker (or slave) nodes and controller (or master) nodes. Each worker node is given

an initial set of data, and when it finishes this set of data, it notifies its controller that
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it is ready for another set of data. The controller maintains a list of all the work that is
to be accomplished and sends out new data sets to the workers as requested until all the
work has been exhausted. The controller then tells the worker nodes to shut down (20).
Dynamic load balancing works well when the work to be azcomplished has a wide vari-
ation in complexity (9). If succeeding data items do not have similar execution times,
then a statically load balanced application would suffer in some cases from an imbalance
in the work load. Dynamic load balancing secks to alleviate this situation by introducing
a controller to monitor the status of the job and allocate more work to nodes that would

otherwise finish sooner than others.

The design of this basic dynamic load balancing algorithm is fairly simple, but in
order to optimize the performance and reduce the overhead associated with dynamic load
balancing, some features of the target system must be taken into account. UNITY, a high
level design language provides an excellent way to specify such a design so that it can be
used in many different parallel environments. Section 2.3.2.6 explains the execution of a

dynamic load balancing algorithm and lists alternatives for implementation.

4.6 UNITY Design

4.5.1  Controller

Program Dynamic_Balancer
Declare
Procedure Parallel NECBSC; (begin_circ_point, end_circ.point)
{Variables for parallel implementation}
processor : Integer
curr.circ.point : Integer
data : File
{variable for holding the values for the next data set to be sent out}
temp._begin_point : Integer

temp-end.point : Integer
step.size : Integer

AUM_Processors : Integer




Tnitially

Cread (begin_circ.point, end._circ_point)
curr.circ_point = begin_circ_point

Always

temp.begin_point = curr_circ.point
temp-end._point = temp_begin_point 4 step.size

Assign
{Assign the next data set to the appropriate processor}
I{V curr_circ_point : 0 < curr-circ_point < end_circ_point - step_size ::
([begin_circ_pointyyecessor := temp-begin_point||
end circ.pointyrocessor = temp_end.point||
curr-circ.point := temp-end_point + 1))

[{] begin_circ_pointy,ocessor := temp-begin_point||
end_circ_pointprecessor = end-circ_point||
curr_circ.point := temp_-end_point + 1

if temp_end_point > end_circ.point A currcirc.point < end_circ_point)

(V processor : 0 < processor < NUM._Processors ::
[begin_circ_pointyyocessor := 0]
Jend_circ_pointyrocessor := 0)

End {Dynamic Load Balancer}
Fixed Point

FP = curr_circ_point > end_circ.point

Iere, the subscripts denote individual instantiations of the indicated procedure on
cach ard every node. The procedure Parallel NLCBSC is therefore the application pro-
gram as adapted to the target hardware. Temporary start and stop points are set up for
use by the controller. When the program is invoked, the local variables begin.circ_point
and end._circ_point are set to the current temporary values. These temporary values are
simultaneously set to the next vaiues in the data set. When the data set is exhausted; the

local values are set to zero.




The load balancing routine mounts above the main program, and essentially calls the
main program on each node, giving it a new start and stop point each time it is invoked.

In other words, it acts as a supervisor, controlling the execution of the program itself.

4.5.2  Main Program Changes Another necessary change when implementing a dy-
namic load balancing technique is to modify the main program to cause it to send a message
to the controller when it has finished its current set of data. The parallel program now

looks like this (only the changes have been listed):

Program Paralle]l NECBSC;

Declare
{Declares the dynamic balancing program and a necessary function}
Procedure Dynamic_Load-Balancer (processor)
Function Nodenum() Return Integer
{variables required for local processing and message passing}
my.number : Integer
temp P : Boolean

Initially
temp IFP = false
Always

my_number = nodenum()
{Declare the point at which a message should be sent}
temp.FP = (Vi: 0 <i < vol_points ::
Vj:0< )< circpoints ::
Vk:0<k<20::
V1:0 <1< numobjects ::
clement_done (i, j, k, 1) = true)

Assign

{Send a message if the criterion for signalling has been met}
processor = my._number f temp_FP

Fixed Point

P = temp_I'P A begin_circ_point = 0
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The main algorithm (for the worker nodes) signals the dynamic load balancer when
it finishes its current set of data. When Temp.FP evaluates to true, this message is sent
by setting the variable “processor™ to the node number that is sending the request. After
invoking Dynamic_Balancer, it waits until signaled by the controller to begin processing a

new set of data.

The actual algorithm implemented signals the load balancing routine when all but
one of the rays in the data set has been processed. This allows the calculations to continue
while the message travels to the controller. The details aad benefits of this modified

dynamic balancing technique are discussed in section 2.3.2.7.

Appendix A gives some examples of actual code that is developed using this dynamic
load balancing techniques. The essentials of both the controller and the node programs

are shown.

4.6 Summary

This chapter discusses the detailed design decisions that affect the shape of the
implemented program. The reasons for choosing a data decomposed, dynamically load
balanced approach are given, and UNITY is used to show how those decisions and the
charactersistics of the target machine molded the high-level design izto an implementable

low-level design. The next chapter discusses the results of this design and the conversion

of design into implementation, giving timing results for serial, and parallel versions of
NEC-BSC.




V. Performance Analysis and Results

5.1 Introduction

The results of the performance evaluations on both serial and parallel versions of
NEC-BSC are covered. The serial code is executed and the timing figures are presented
for analysis. Timing values for a previous parallel version of NEC-BSC are also shown.
These values are the result of executing the previous parallel version with new, more
complex data sets. Finally, the execution times for the dynamically balanced version of

NEC-BSC are presented and compared with both the serial and previous parallel versions.

5.2 Performance Analysis of Serial NEC-BSC

In order to establish a reference from which the parallelization results can be judged,
evaluations of the execution time for the serial version of NEC-BSC are required. Such
measurements can also give an idea as to which area of a program uses the most CPU
time. Such data is useful to a software engineer who wishes to improve the efficiency of
a serial program through optimization of existing code. In such cases, the target machine
is usually another serial machine, often the same one initially used to execute the code.

NEC-BSC, fortunately, has been validated by independant researchers as to computational

accuracy.

One tool which can be used to analyze the performance of existing code is called
FORGE and is provided with the iPSC/2 and iPSC/860 hypercubes. FORGE also has a
limited automatic parallelization ability. Suhr tried to use FORGE to provide some data on
NEC-BSC's performance and gain insight into the process of parallelization of serial code.
Unfortunately, FORGE did not recognize variables that used the COMPLEX data type.
These variables are used by NEC-BSC to calculate and store the value of the field strengths,
and FORGE’s inability to handle these variables rendered it useless (18). NEC-BSC was
then ported to a VAX minicomputer, and the Performance and Coverage Analyzer (PCA),
provided as a part of the VAX toolset, was used to gather data on the performance of
the original serial version. Parts of a sample output file created by NEC-BSC is included
in Appendix B for reference. The results shown in Table 1 illustrate that for simple
example problems, one subroutine, PLAINT, used up most of the time. Since 2 normal

application would involve much more complex scene compositions than the first example,

more example data sets were created, each more complex than the previous. These more




complex data sets increased the number of plates by multiples of cight. Table 2 shows
that the percentage of time devoted to the PLAINT subroutine increased dramatically as
the complexity of the target geometry increased. For the most complex data set, PLAINT

was called over one million times!

Table 1. Division of effort for a sample data file

Subroutine Name LData, Count ] Percent

PLAINT 6,528 38.2
RPLDPL 2,642 15.5
DPFTWD 1,531 9.0
PDLRPL 1,302 7.6
FLRD 947 5.5
DIFPLT 777 4.6
FLDR 738 4.3
SOURCP 440 2.6
SOURCE 321 1.9
REFBP 299 1.8
IMAGE 212 1.2
FLD 167 1.0
all others 1,166 6.8
Total 17,070 100.0

Table 2. Percentage of time spent in the PLAINT subroutine

PLAINT Percentage

Number of plates 8 16| 24
Percentage 38.2 1 49.1|57.1

Performance analysis revealed that the PLAINT subroutine is the workhorse of NEC-
BSC, using up most of the execution time with calculations of intersection coordinates.
Analyzing the subroutine itself to determine its complexity showed this value to be propor-
tional to the number of objects, or O(n), because it checks for a possible intersection with
every other object. The intersection algorithm assumes that each object in turn extends
to infinity in every direction, calculates an intersection point on the infinite object, and
then determines if that intersection point lies within the bounds of the finite object. If
the intersection point does not lie within the bounds of the finite object, then there is no

intersection, and processing continues. If an intersection does occur, then processing for




that object stops, since the ray cannot propagate freely in the desired direction. Since
some of the UTD terms have a complexity of O(n?), the overall complexity of NEC-BSC
is O(n*), where n refers to the number of objects. For more detail on the functionality of
NEC-BSC, see Appendix A.

5.3 Parallelization with Dynamic Load Balancing

The earlier work of Scott Suhr used a static load balancing technique to partition the
work among the processors. In his work, he was limited to a small number of sample input
files which were relatively simple in nature, not being truly representative of an actual
problem. By analyzing the structure of the input data files, it was possible to construct
more complex examples that would be more indicative of the true performance of NEC-BSC
in both serial and parallel environments. These new input files, with a greater complexity
than the originals, are then used in subsequent runs of the statically load balanced version
of NEC-BSC in order to gather data on its efficiency as the complexity of the problem
jncreased. The number of nodes used during these runs is also increased to investigate
the effects of further scaling. Table 3 shows how the increased complexity and scaling
affected the overall efficiency of the program. In the best case, efficiency increased from
23% to 80% as the number of plates increased to 32 when scaled to eight processors and

still showed good efficiency (67%) when run with sixteen processors.

Table 3. Static Load Balancing Efficiency versus number of nodes (iPSC/860)

Num Nodes | Elapsed Time (msec) | Efficiency Speedup

1 1,035,545 100.00 1.00
2 531,373 97.44 1.95
4 280,112 92.42 3.70
S 159,945 80.93 6.47
16 96,011 67.41 10.79
32 —0 e —
64 —0 — —_

A modification of the standard dynamic load balancing technique introduces the
ability to “hide” some of the time spent in communication as the nodes request more data,
and the host responds. This method makes use of an ability inherent to the iPSC/series
hypercubes. This ability arises from the way the messages are handled. The operating
system that controls the operation of the nodes allows for three types of messages: syn-

chronous (csend, crecv), asynchronous (isend, irecv), and interrupt generating messages
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(hsend, hrecv). Any type of send can be processed by any type of receive command, so a

send-receive pair need not be of the same type.

Furthermore, for the “csend” command, two different message protocols are used (21).
If the message is less than 100 bytes in length, the message is sent along with the neces-
sary header information to the receiving node. If sufficient buffer space is available for that
message, an acknowledgement is sent back to the receiving node. Once the send'ng node
has received the acknowledgement, it continues on with its computations. If the message
is longer than 100 bytes, only the header information is sent initially, and the sending node
waits until a path has been established, and the receiving node returns an initial acknowl-
edgement. The sending node then proceceds to send the body of the message. Once the
body of the message has been sent, the sending node continues with its normal execution.
Before it can resume this normal operation, the sending node must wait until the message
has been completely received. In this situation, the receiving node does not send the ac-
knowledgement until it has executed a receive instruction of some type. This means that
the sending node could wait while the receiving node executes some calculations, resulting

in idle time.

The proposed modification to the normal dynamic load balancing technique is based
on the fact that the recciving node need only notify the controller that it requires more data.
Since this requires only the node number of the requester, a short message accomplishes this
function. Such a short message could be sent before the node finishes processing the current
data set. As the message travels to the controller, the requesting node finishes processing
its current set of data. Meanwhile, the controller receives the request, determines the next
set of data for that node, and sends the next set to the requesting node. By the time
the requesting node completes its current data set, the next data set is already stored
in a local buffer, and it can begin processing that next data set without waiting for any
communications. This approach is implemented with four rays in each data set, allowing
the worker nodes to request the next data set after three of the four rays have oeen

processed.

Throughout the code development stage, standard software project management
techniques are used. The dynamic load balancing is implemented incrementally, and con-
figuration management is used to ensure that the changes do not become chaotic. This
allows a quick recovery if an attempt does not succeed. The configuration management of
this project is accomplished by establishing a baseline version of the program and working

from that basis. Once a modification is shown to be correct in its function, a new haseline
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is established. Even though there was only one person working on this project, because
of the size of the code (> 20,000 lines of code), all work had to be carefully coordinated

to minimize thrashing. The use of these techniques saved many hours of scarching for
problems!

The dynamically balanced version of NEC-BSC also shows good efficiency when
scaled over eight processors. Table 4 shows its performance as a function of the number
of processors, scaling up to as many as 64 processors. It is also important to note that
although the overhead associated with dynamic load balancing tends to increase the overall
execution time, an increase in the execution times of the nodes a'so tends to counterbalance
this effect. It is disappointing to note that the dynamically _alanced version of NEC-BSC
is significantly slower than the statically balanced version. This difference in exccution
time is a mystery since the increased message traflic cannot account for this. In the most
complex example, the dynamically balanced version sends exactly 188 more short messages
than the statically load balanced version. At less than 75 microscconds per message (21),
this amounts to a total time of approximately fifteen milliseconds, yet the execution times
differ by as much as fifty seconds! Since both versions collect the data in much the same
way and use the same method to calculate the necessary field values, the cause for this
large discrepancy is unknown, and every attempt to explain it has been unsuccessful. It
is also important to note that these timing values include the time required to gather
the output data to the host and write the results out to disk. If those output times are
removed, the actual time spent by the nodes in calculation and communication shows even

more efficiency, and the effects of the internal message passing could also be measured

accurately.

Table 4. Dynamic Load Balancing Efficiency versus number of nodes (iPSC/860)

Num Nodes | Elapsed Time (msec) | Efficiency Speedup

1 2,363,036 | 100.00 1.00
2 1,210,133 97.63 1.95
4 632,812 93.35 3.73
8 340,853 86.66 6.93

16 199,694 73.96 |  11.83

32 130,300 56.67 |  18.14

64 100,767 36.64 |  23.45

A possible expla :ation for the increase in execution time involves the possibility that

large numbers of messages can causs the system to bog down if all the messages cannot
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be handled quickly enough. This phenomenon is known as “bottlenecking™ and occurs
when messages build up in the receiving queue of a node (10). To see if this is indeed
the case, some tests were performed on one node, measuring the execution time for the
same data set, but varying the number of rays calculated. Table 5 shows that the actual
time to calculate a single ray is about 1.6 seconds. The elapsed times are adjusted to
account for the time spent sending the final output data to the host so that only the
time spent calculating the paths of the rays is be used. The round trip consists of a
short message (four bytes in length) from a node to the host requesting more data, and
another short message (eight bytes in length) from the host to the requesting node that
contains the next data set to be calculatea. A four byte message requires less than 75
microseconds to arrive (assuming no contention), while an eight byte message takes about
77 microseconds (21). Excluding the time required to calculate the values for the next data
set (considered inconsequential: less than ten integer operations on a 40 MHz clock) (4),
the total time for the round trip is about 150 microseconds. With 6.4 seconds between
each request, then, ideally, more than 42,000 messages can be processed in each six second
period. If the time at which a message is sent is a normally distributed randoia variable,
the effects of bottlenecking would not become significant until the number of messages
approached 50% of the theoretical maximum (with one message per node). Therefore, for
this application, over 20,000 nodes could be handled by one controller. This means that
bottleneching even with 64 nodes cannot be the cause of the increased execution tin.e, and

this idiosynchracy remains a mystery.

Table 5. Execution Time for One Ray (iPSC/860)

Num Rays Message Size E]apsed fime (msec) Adjusted Time (msec)

5 160 10,521.3 10,521.07
1440 46,080 2,325,603.0 2,325,585.28
Average 1613.285

5.4 Summary

This chapter details the results of this thesis effort. The performance of the serial
version of NEC-BSC is evaluated, and previous work in parallelizing the program is an-

alyzed on the basis of its performance. The dynamic load balancing technique chosen in

Chapter 4 is impl.mented and the results compared with the other two versions. In terms




of execution time, the results are disappointing when compared to the statically balanced
version, but the overall improvement over the serial version is excellent. The reason for
the difference in execution time is addresses as an area for future work. The next chapter

discusses the conclusions of this thesis investigation and makes recommendations for future
work.




VI. Conclusions and Recommendations

6.1 Introduction

This chapter contains the conclusions and realizations reached through this thesis
effort. The results of the parallelization effort are discussed, and future possibilities for

work are presented.

6.2 Conclusions

It is both possible and profitable to convert existing serial programs to a parallel
application if the resulting product is to be used on a regular basis. The resulting savings
in execution time can rapidly recoup the time spent in development. For example, if
NEC-BSC is to be regularly used with data sets of 32 objects, Table 4 shows a savings of
approximately 38 minutes per run (over one node) on a 64 node machine. This translates
into a savings of about 160 minutes (per run) versus a VAX 11/780. This savings is
also just over 37 minutes for 32 nodes (versus one node) or 159 minutes versus the VAX
11/780. If the program is executed twice a day (on a 32 object data set), then a savings
of one hour per day (versus one node or five hours versus a VAX 11/780) can be realized.
This translates into five hours a week, or twenty hours a month (or 25 hours a week
and 100 hours a month versus the VAX 11/780). Within a short time, the development
effort can be recouped, and productivity will increase. Although the execution time on 64
nodes experienced a dramatic decrease in efficiency (compared to the execution time on
32 nodes), with even more complex data sets, this efficiency rises. This trend is supported
by the data indicating that the amount of calculation performed by the program increases
greatly as the complexity of the number of objects in the target gcometry increases. More
calculations means that the ratio of the calculations performed to communications sent and
received increases. Since the grain of the iPSC/860 remains constant, more calculations

per communication increases the efficiency of the application.

6.3 Recommendations

NEC-BSC itself could benefit greatly from a thorough examination with standard
software engineering techniques. The modules of the program are both tightly coupled
and have loose cohesion. The efficiency of the program itself could be increased greatly

if a project were undertaken to improve the code. Such an examination would require

~
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more than one person, and every engineer would need to be familiar with the theories of
electric and magnetic fields as they are propagated through space. Another area for work
would be to convert the source code from FORTRAN to another language that supports
dynamic allocation of memory. FORTRAN wastes large amounts of space when the full
range of a program’s capabilities are not used. Using a computer language such as C
or Ada would allow memory to be used more efficiently. Additionally, the capabilities of
NEC-BSC need to be expanded. The program is currently limited to 36 objects, and 1801
rays. Although the number of rays is probably sufficient for good accuracy, complex objects
cannot be accurately modeled with a small number of objects, and today’s computers have
the necessary memory available to expand these limits. Assuming 512 bytes of storage
for each object, 2,000 objects could be stored in 1M of memory. The 1800 possible rays
would take up only 100K of memory, so a machine with 2Mbytes or more of memory could
easily handle complex scenes modeled with a large number of primitive objects. Computer
languages such as C or Ada also manage available memory much better than FORTRAN,

and this efficiency could be used when converting NEC-BSC to one of these languages.

Another area for work lies in increasing the number of UTD terms that are handled.
The currently supported terms handle up to three reflections and two diffractions. A higher
number of reflections would be desirable, and could be achieved with no loss of efficiency if a
new algorithm were developed to take advantage of the available memory, using it to reduce
redundant calculations. A possible approach to this would be to compare a simple value
(calculated for each UTD term and object) with a desired value. If the calculated values
are stored in a large matrix, then they can be easily referenced, instead of recalculating

intersection points.

A strong possibility for future work involves re-engineering the problem based on the
functionality of NEC-BSC. If done with a parallel environment in mind, the resulting ap-
plication could be considerably more efficient than previous parallelization efforts. During
such work, UNITY would be a strong asset in designing the program, allowing the appli-
cation to be tailored to the architectural characteristics of the target machine. One reason
that such an approach would be successful is that NEC-BSC was originally written for a
small-memory model architecture. Today’s machines all possess a great deal more mem-
ory than previous versions, and in order to make use of the large memory sizes currently
available, it may be necessary to completely rewrite the main sections of the program. The

smaller subroutines which perform basic scientific calculations could probably be brought

over unchanged (18).




NEC-BSC could also be ported to a different computer architecture to investigate
the effects that a different machine structure would have on efficiency. It is possible that a
different decomposition for a different target machine could result in better results. Con-
versely, it is also possible that a different architecture would not be as efficient. Possibilities
for such a conversion are the Connection Machine, and the iWARP project. Both these
machines are fire-grain architectures (10), and a distribution of the objects across these
machines is certainly possible without a great loss of efficiency. The characteristics of the
Connection Machine and the iWARP project differ from those of the iPSC/860, and a
conversion to either of these machines could take advantage of their strengths. The new
Intel machine, the Paragon, although based on the same microprocessor as the iPSC/860,

features greatly improved communications, reducing its grain size. This factor could also

increase the efficiency of an application such as NEC-BSC.




Appendix A. NEC-BSC

A.1  Introduction

This appendix gives a brief description of the functionality of NEC-BSC and some

samples of the parallel code that allowed the program to run on the iPSC/860 hypercube.

A.2  FPunctlions

NEC-BSC provides the ability to calculate the simulated radar cross-section (RCS)
of an object when incident electromagnetic energy encounters that object. NEC-BSC also
allows the researcher to calculate the strength of the simulated electric and magnetic fields
at any point within the three-dimensional reference coordinate system of the object. The
effects of antennas and dipoles are accurately represented, and objects may be made of var-
ious types of materials including perfectly conducting metallic, transparent thin dialectric,
or a dialectric covered surface. An object may be composed of multiple sections, each of a
fundamental type. Fundamental types include flat plates and cylinders (including elliptical
cylinders), and provision is made for a ground plane. Supported functions include far and
near zone patterns and back or bistatic scattering. Parameters that influence the calcu-
lations include number of sources, number of receivers, prescnce of antennas, and varying
frequencies. The program is written in FORTRAN 77, and comprises approximately 20,000
lines of code, including comments. Figures 8 and 9 show a simple scene geometry from the
top and side views, and Figure 10 shows the output from NEC-BSC for the scene shown

in Figures 8 and 9.

A.3  Samples of the Parallel Code

The full source code may be found in the ~pwork/necbsc/dyn_bsc subdirectory on
mbvsrm.mbvlab.wpafb.af.mil. The first example is from the host program and contains

the declarations and code necessary to control the node programs.

A.3.1 Sampies of the dynamic load balancer

Program run_bscnode
cce

¢--- Define variables for use as message types
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Figure 8. Top view of a sample scene geometry

integer WORK_TYPE, RAY_TYPE
integer NEW_DATA (2), NEW_SIZE
integer NEXT

Initialization of the message size variable

WORK_TYPE = 222
RAY_TYPE = 333
NEW_SIZE = 8

Initialization of the starting point for the dynamic
balancing

NEW_DATA (1) = NUM_NODES * 4 + 1
NEW_DATA (2) = NEW_DATA (1) + 3
NEXT = NEW_DATA (2) + 1

Check for a smaller data set than the nodes can process

if (NEW_DATA (1).GT.NPN) then
write (*, *) ’Input data too small for the current cube

2 size. Please try a’

urite (*, *) ’smaller cube or a larger data set’

STOP
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Figure 9. Side view of a sample scene geometry

end if
c--- Check for less than four rays in the next data set

if (NEXT.GT.NPN) NEXT = 0
if (NEW_DATA (2).GT.NPN) NEW_DATA (2) = NPN

c-~- If there is a current set of rays to be processed, proceed
1190 if (NEW_DATA (2).GT.0) then

c¢-=- Receive a request for more data from a node and send out the
cm=- next set to be processed

call crecv (WORK_TYPE, NODE_NUM, INT_SIZE)
call csend (RAY_TYPE, NEW_DATA, NEW_SIZE, NODE_NUM, 0)

c--- Calculate the next set of data for processing. If finished,
cm-- set the next ray to O, so the nodes upon receipt of
c-=- a zero wWill stop processing.

if (NEXT.GT.0) then
NEW_DATA (1) = NEXT
if (NEXT + 4.GT.NPN) then
NEW_DATA (2) = NPN
NEXT = 0
else
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Figure 10. Far zone results for the sample scene geometry

NEW_DATA.(2) = NEXT + 3
NEXT = NEW_DATA (2) + 1

end if

else

if (NEW_DATA (1).GT.0) then
NEW_DATA.(1) =0

else
if (NEW_DATA (2).GT.0) then

NEW_DATA (2) = 0

end if
end if
end if
c--- Return to the top of the loop for another pass
goto 1190
end if
c¢--- Tell the remaining nodes to stop processing
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if (NUM_NODES.GT.1) then
do 444 I = 1, NUM_NODES
if (I.NE.NODE_NUM + 1) then
call csend (RAY_TYPE, NEW_DATA, NEW_SIZE, I - 1, 0)
end if
444 continue
end if




A.3.2 Samples of the node program This section contains excerpts from the node
program. These excerpts contain the declarations and code necessary to allow the node

program to communicate with the host program, sending requests for more work, and

processing the next data set after it arrives.

PROGR.. . NECBSC

Citt NEC-BSC Version 3.2  ( Updated 26-0CT-89 )

ci1 iPSC mod # : 4.0 ( Updated 2 May 91)

ctit iPSC mod # : 5.0 ( Updated 15 Aug 91 )

c--- variables for saving the output data in a different
c--- format

COMPLEX CT1(NOX),ET1(3,NOX),HT1(3,N0X)
integer RAYS(1801)

¢--- Add the necessary declarations to allow variable
c--- stop and start points for the pattern point loop

integer START_POINT, NUM_LOOPS
c--- Message passing variables

integer WORK_TYPE, RAY_TYPE
c--- Message passing variables

integer NEW_DATA(2), NEW_SIZE

c--- Add an integer counter to count the number of rays that
c--- were processed

integer RAY_COUNT

c--- Change 3: Initialize the message passing variables

HORK_TYPE = 222
RAY_TYPE = 333




c--- Change 4: Initialize the message passing variables

NEW_SIZE = 8
¢--~ Change 9: 1Initialize the ray counter
RAY_COUNT = 0
cti
c!!! 3. MAIN COMPUTATION SECTION
cit!
Ct!t Loop thru volumetric pattern points.
DO 1190 IIV=1,NPV
c--- Initialize the loop variables
START_POINT = MY_NODE * 4 + 1
NPNP = START_POINT + 3
c---  Start the pattern point loop
DO 1100 IIC = START_POINT, NPNP
II=IIC
c--- Change 3: Send message to host requesting more data

if (NPNP - START_POINT.EQ.3) then
if (IIC.EQ.START_POINT + 2) then
call csend (WORK_TYPE, MY_KNODE, INT_SIZE, MY_HOST, 81)
end if
else
if (START_POINT.EQ.NPHP) then
call csend (WORK_TYPE, MY_NODE, INT_SIZE, MY_HOST, 81)
else
if (IIC.EQ.NPHP - 1) then
call csend(WORK_TYPE, MY_NODE, INT_SIZE,
2 HY_HOST, 81)




end if
end if
end if

c--- Add a counter to determine exactly how many rays were processed

RAY_COUNT = RAY_COUNT + 1

c--- Ending place for the pattern point loop
1100 CORTINUE
c--- Receive the next set of poiints from the host

call crecv (RAY_TYPE, NEW_DATA, HEW_SIZE)
START_POINT = NEW_DATA (1)
NPNP = NEW_DATA (2)

if (START_POINT.GT.O0) goto 1180
HPNP = RAY_COUNT

C!t! End of volumetric pattern loop.
1190 CONTINUE

END

W
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Appendix B. Sample output of NEC-BSC

B.1  Sample timing information from NEC-BSC

Following is a sample of the information printed to the screen during execution of
the parall- i version of NEC-BSC. The individual node timings as weli as the time required
to gather the data from the nodes and write the results to disk are given. Tinally, the
total execution time is listed. During each run of parallel NEC-BSC, the number of nodes
assigned does not change. Each new run displays how many nodes are being used, and the

corresponding times for that run.

Running NEC-BSC:
Number of nodes attached: 64
Input Filename = "ex6gl.inp"

Elapsed Time:

Node Total Time (msec)

0 65288

1 68037

2 65365

3 63961

61 63704

62 63986

63 68287
Output elapsed time (node 0, msec): 18356
Host CPU time required for startup: 0
Host CPU time required for output: 22820
Total Host CPU time required: 32640

Approx. total elapsed time required: 100767
(max node + Startup + Output)
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Running NEC-BSC:
Number of nodes attached: 32
Input Filename = "ex6gtl.inp"

Elapsed Time:

Node Total Time (msec)

0 97,717

1 97,167

2 98,330

3 97,119

29 98,265

30 97,984

31 98,070
Output elapsed time (node 0, msec): 17,795
Host CPU time required for startup: 0
Host CPU time required for output: 22,460
Total Host CPU time required: 32,100
Approx. total elapsed time required: 130,300

(max node + Startup + Output)

Running NEC-BSC:
Number of nodes attached: 2
Input Filename = "ex6gl.inp"
Elapsed Time:
Ncde Total Time (msec)

0 1,169,889




1 1,175,933

Output elapsed time (node 0, msec): 11,399
Host CPU time required for startup: 0
Host CPU time required for output: 24,830
Total Host CPU time required: 34,220

Approx. total elapsed time required: 1,210,133
(max node + Startup + Output)

Running NEC-BSC:
Number of nodes attached: 1
Input Filename = "ex6gl.inp"

Elapsed Time:

Node Total Time (msec)
0 2,327,646
Dutput elapsed time (node 0, msec): 10,177
Host CPU time required for startup: 0
Host CPU time required for output: 25,700
Total Host CPU time required: 35,400

Approx. total elapsed time required: 2,363,036
(max node + Startup + Output)




B.2  Sample program output

Tollowing are portions of an output file produced by NEC-BSC for the input file
exGgl.inp. The essential data of the input file is repeated, and then the electric field
strength values for each of the specified angles is given. After the electric field strength

values come the total field strength values computed by the program.

stk ok ok okok ok skokkok ko stk kokok kool ok sk skok skokoskstok ok s ikl s ook kool ok ok kol stk ok ko ok skokok ok o
NEC-BSC 3.2i5.0, 12 Aug 91

The Ohio State University
Electroscience Laboratory
1320 Kinnear Rd.
Columbus, Ohio 43212

Written by Ronald J. Marhefka

Modified for the Intel iPSC/2 & iPSC/860 by
Paul R Work, Scott Suhr and

Dr Gary B. Lamont

Air Force Institute of Technology

AFIT/ENG

Wright Patterson AFB, OH 45433-6583

¥ % K X X K K X ¥ K K K ¥ ¥ K X ¥
FH ¥ K K K K X XK K K X X K K X ¥ ¥

sk sk ok 3k sk sk ok ok ok e ok sk o sk ok sk sk ok sk ok sk ok e sk sk sk ok sk ke ok ok ¢ Sk sk st sk sk ok o ke e sk kol sk sk sk s ok sk sk sk ok S ko sk ok st ook sk e sk ok sk
Sk sfe ok o Sk e sk ok sk ok sk ok sk ok sk sk sk sk sk sk sk ok sk ek sk ok ok s sk sk ok o sk sk ke e ok s sk sk sk ook sk ok ok ok ok e ok sk sk s ko ok ok sk ko ok sk ok ok sk kok ok k ok

CE: TWO EIGHT SIDED BOXES TEST, EACH WITH EIGHT OUTLYING PLATES
EX 6D1.

* X ¥ ¥ ¥
* K K K ¥

ekt ok s okok sk ok ok ok 3K ok ok ok ok ok koK ok ok ok ke ok skok ok ok sk ok ok ok ok sk sk okok o ok sk ok ok Rk sk ok sk ook ok ok ok o e ok ok sk ok
stk ok ook sk ok ot kok sk ook ke sk sk ok ok ok sk ok sk ok ok ok sk ook ekt ok s ok sk kol o ok ok sk o sk ko sk ook ok sk sk ok o skok

Us:

SOURCE LENGTH HS AND WIDTH HAWS ARE ASSUMED TO BE IN WAVELENGTHS

* ¥ X K X ¥
* K X K ¥ ¥

3 sk sk ok s ok ok sk s sk ok sk sk Ok ok ok ok ok ok ok ok ok S skok stk sk sk skesie ko sk sk ok sk sk sk sk sk sk ok sk sk st stk sk ok ok ok ok s ok ok sk sk ok ok ok ok sk ok ok sk sk
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3k ok o ok ok ok ok ok ok ok ok sk sk ok ok sk ok ok ok sk ok sk sk sk sk sk koo ok sk sk sk sk ke sk sk ke sk ook ok sk sk ok sk ok sk sk sk sk s sk ok ok stk ok sk ko kokokok ok

FR:

FREQUENCY=  9.940 GIGAHERTZ

WAVELENGTH=  0.030160 METERS

¥ X K K X X ¥ ®
* K K X K ¥ KX ¥

ok ok ok ok sk ok ok ok sk sk ok sk ok ok sk ko ok ok sk ok sk sk sk ook ok Sk kst sk sk sk sk ok ok ok ok sk Skeok sk ok sk ok sk ok ok sk kot sk ok ok Aok sk ok ok ok ok sk sk sk sk ok ok
ok sk o sk ok ok Sk oK ok ok sk ks K ok ok ok sk ok sk sk sk ok ok sk skt sk ok s skosk ok sk sk ok ok s ke sk sk sk ok sk ok sk ok sk ok sk ko ok sk ok ok sk sk sk ok sk ok sk ok ok

PF:

PATTERN AXES ARE AS FOLLOWS:
VPC(1,1)= 1.00000 VPC(1,2)= 0.00000 VPC(1,3)= 0.00000
VPC(2,1)= 0.00000 VPC(2,2)= 1.00000 VPC(2,3)= 0.00000
VPC(3,1)= 0.00000 VPC(3,2)= 0.00000 VPC(3,3)= 1.00000
PHI IS BEING VARIED WITH THETA=  90.00000

START= 0.00000 STEP= 0.50000 NUMBER= 721

¥ K W K XK K K K K K K X X ¥ X ¥

K K X K K K X X X X X X X X ¥
.

ok ok ok sk ook ok ok sk ok ok sk sk ok ok Ok sk sk sk kol sk sk ke sk sk ko ok sk sk skok sk sk ok skok sk ok okokok o sk ok sk ek ok ok sk ok sk sleskok sk stk sk sk sk skok sk ok
sk ke ok ke sk ok ok ok sk stk sk sk sk ok sk sk sk ok ok sk e skeske sk s sk sfe s e ok ok ke ok sk sk sk sk ok sk sk ke sk sk st sk s sk sk ke sk o sk sk ok ok ok sk e ok sk sk sk sk ok skok 3K

SG:

THIS IS SOURCE NO. 1 IN THIS COMPUTATION.

THIS IS AN ELECTRIC SOURCE OF TYPE -2

SOURCE LENGTH=  0.50000 AND WIDTd= 0.00000 WAVELENGTHS

SOURCE LENGTH=  0.01508 AND WIDTH=  0.00000 METERS

¥ O ¥ X K K K X ¥ ¥ X X ¥
X ¥ K ¥ X K X X X X X ¥ X




* THE SOURCE WEIGHT HAS MAGNITUDE= 1.00000 AND PHASE=  0.00000  *
* *
* *
*  SOURCE# INPUT LOCATION IN METERS ACTUAL LOCATION IN METERS
K mmmemmm e e e *
* *
* i -20.120, 0.000, 0.000 -20.120, 0.000, 0.000 *
* *
* *
* THE FOLLOWING SOURCE ALIGNMENT IS USED: *
* *
*  VXSS(1,1, 1)= 1.00000 VXSS(1,2, 1)= 0.00000 VXSS(i,3, 1)= 0.0000 *
* *
*  VXSS(2,1, 1)= 0.00000 VXSS(2,2, 1)= 1.00000 VXSS(2,3, 1)= 0.0000 *
* *
*  VXSS(3,1, 1)= 0.00000 VXSS(3,2, 1)= 0.00000 VXSS(3,3, 1)= 1.0000 *
* *

e sk ok sk ko ok ok ok ok ok ok sk ok o ok o e sk sk ok ok ok sk ok ok ok ok S e ok e sk 3k oK 2K sk sk e ok sk sk ok sk ok sk sk sk ok ok ok ok sk sk ok sk ok ok ko o ok sk ok skokok sk sk sk ok

ok ok sk ko ok ok Kok K SRk Kook sk skokok ok sk sk sk sk stk sk skokok sk sk sk sk sk ke sk skl skoke sk sk ok sk ok sk skeok sk skeok sk sk ok sk sk sk ok ok ok skokok ok ok

* *
* PG: FRONT *
* *
* *
* THIS IS PLATE NO. 1 IN THIS SIMULATION. *
* *
* *
* METAL PLATE USED IN THIS SIMULATION *
* *
* PLATE# CORNER# LOCATION IN METERS ACTUAL LOCATION IN METERS *
¥ mm—mmm mm e e e *
* *
* 1 1 0.122, 0.102, -0.100 0.122, 0.102, -0.100 *
* *
* 1 2 0.122, 0.102, 0.100 0.122, 0.102, 0.100 *
* *
* 1 3 0.122, -0.102, 0.100 0.122, -0.102, 0.100 *
* *
* 1 4 0.122, -0.102, -0.100 0.122, -0.102, -0.100 *
* *

stk ok ok sk ok o sk skookok sksk o sk ke ke sk ook skl ok ke s ok e sk sk sk sk sk s o sk s ok sk s s s ok o ok st s ok s ke s ke o ok o o sk sk ok ok o ok ok
stk s sk sl st ke ok sk sk ok st o ok sk sk sk sk sk o s ke sk o sk ok ok st ok o s sk sk sk sk sk sk s s R S ok sk sk sk ok ok ok o ok ke ok ok sk 8 ok sk ok ok ok

* *
* PG: FAR FRONT *
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* *
X *
* THIS IS PLATE NO. 2 IN THIS SIMULATION. *
* *
* ¥
* METAL PLATE USED IN THIS SIMULATION *
* *¥
* PLATE# CORNER# LOCATION IN METERS  ACTUAL LOCATION IN METERS *
L I e *
* *
* 2 1 2.122, 0.102, -0.100 2.122, 0.102, -0.100 *
* *
2 2 2.122, 0.102, 0.100 2.122, 0.102, 0.100 *
* ¥
* 2 3 2.122, -0.102, 0.100 2.122, -0.102, 0.100 *
* *
¥ 2 4 2.122, -0.102, -0.100 2.122, -0.102, -0.100 *
% *

ek sk sk ok skokokok ok okok ok ok ok ok ok ok sk sk ok ok ok skok sk sk ok ok sk sk sk ok skokook ook sk ok ok ok ok e s ok o ok ok sk sk o sk ok ok sk ok sk sk ok sk ok ok ok sk skokok sk ok

eskok ok ok ok sk ke sk sk ok sk sk ok ok sk sk ok sk e sk sk st sk sk sk ok sk sk sk sk st ok sk ok sk ket ook ok sk sk ok s sk sk ok sk sk ok sk ok ok ok ke ok sk e ok sk ok o sk sk sk sk ok skeok sk ok ok

* *
* PG: FRONT BOX 2 *
* *
* *
* THIS IS PLATE NO. 3 IN THIS SIMULATION. *
* *
* *
* METAL PLATE USED IN THIS SIMULATION *
* *
* PLATE# CORNER# LOCATION IN METERS ACTUAL LOCATION IN METERS ¥
K mmmmmm e e e *
* *
* 3 1 10.122, 0.102, -0.100 10.122, 0.102, -0.100 *
* *
* 3 2 10.122, 0.102, 0.100 10.122, 0.102, 0.100 *
* *
* 3 3 10.122, -0.102, 0.100 10.122, -0.102, 0.100 *
* *
* 3 4 10.122, -0.102, -0.100 10.122, -0.102, -0.100 *
* *

ok ok ok o ok ok ok ok ok ok sk sk sk sk ke ke sk sk ke sk sk sk ook S sk sk sk e sk s e sk kst s sk ke e ok sk ok ok skl o ke ke ok sk sk sk ok s ok sk sk ok e sk ok sk slskeok sk 3k




ook ok ok sk ke ok sk ok ok sk ok sk skok ok ok ok ok ok ok sk skok sk sk ok sk ki sk sk sk ok ok sk ok Sk ok ok ok ok sk sk ok ok sk ook ok ok ok ok ok ok ok sk ok ok ok ok sk ok sk stk sk ok

PG: FAR BOTTOM BOX 2

THIS IS PLATE NO. 32 IN THIS SIMULATION.

METAL PLATE USED IN THIS SIMULATION

* ¥ X KX X X ¥ X ¥ ¥

PLATE# CORNER# LOCATION IN METERS ACTUAL LOCATION IN METERS

*

¥ ¥ K K K K K X X X X X ¥ X X K XK K X X ¥ X ¥ ¥

*
* 32 i 10.000, 0.171, -2.100 10.000, 0.171, -2.100
%
* 32 2 10.122, 0.102, -2.100 10.122, 0.102, -2.100
*
* 32 3 10.122, -0.102, -2.100 10.122, -~0.102, -2.100
*
* 32 4 10.000, -0.171, -2.100 10.000, -0.171, -2.100
*
* 32 5 9.878, -0.102, -2.100 9.878, -0.102, -2.100
*
* 32 6 9.878, 0.102, -2.100 9.878, 0.102, -2.100
*

stk sk ok o sk ke e ok s ok sk s ek ok sk ook ok ok ke sk s ok sk sk sk ok s sk sk ek s ok sk sk e b sk o sk ke sk sk sk sk ok ok sk ok ok s ok ok ok ok o ok ok sk ok ok sk ok ok ok

THE FAR ZONE ELECTRIC FIELD

THE FIELDS ARE REFERENCED TO THE PATTERN COORDINATE SYSTEM

E~THETA
THETA PHI MAGNITUDE PHASE DB
90.00 0.00 2.1319E+01 42.52 =-2.20
90.00 0.50 5.7678E+01 59.92 6.45
90.00 1.00 5.3923E+01 87.97 5.86
90.00 1.50 5.8013E+01 134.44 6.50
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90.00 358.50 5.8006E+01 134.45 6.50

90.00 359.00 5.3926E+01 87.96 5.86
90.00 359.50 5.7659E+01 59.92 6.44
90.00 360.00 2.2964E+01 44.18 -1.55

ek sk ok ok ook ok ok sk e ok ok Sk sk ok o sk sk s ke ok ok okl sk ok ok sk Kok ok Sk ok sk sk e sk ok ke ok ok sk ok sk ok sk ok ok skosk e sk ok sk keokokok ok sk skok sk ok ok

TOTAL RADIATION INTENSITY IN DB

THE FIELDS ARE REFERENCED TO THE PATTERN COORDINATE SYSTEM

THETA PHI MAJOR MINOR  TOTAL AXIAL RATIO TILT ANG SENSE
90.00 0.00 -2.20 -100.00 -2.20 0.00000 0.00 LIN
90.00 0.50 6.45 -92.89 6.45 0.00001 0.00 RT
90.00 1.00 5.86 -100.00 5.86 0.00000 0.00 LIN
90.00 1.50 6.50 -100.00 6.50 0.00000 0.00 LIN
90.00 358.50 6.50 -100.00 6.50 0.00000 0.00 LIN
90.00 359.00 5.86 -100.00 5.86 0.00000 0.00 LIN
90.00 359.50 6.44 -87.83 6.44 0.00002 0.00 LFT
90.00 360.00 -1.56 -100.00 -1.55 0.00001 0.00 LIN
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Appendix C. The FDTD Algorithm

General

The Finite Difference Time Domain method is a discretization of the
Maxwell Equations in differential form (curl equations). Starting with Maxwell’s

equations:

VxH=e9Z 46 E ©)
ot
VxE =—u%’f.-omH (7

where p is the magnetic permeability, ¢ is the dielectric permittivity, o, is the total
equivalent conductivity giving rise to electric dissipative currents, and o,, is the
corresponding parameter giving rise to magnetic dissipative currents. All

parameters are real. These equations are separated according to their vector

components into a scalar form:

(8

9

(10)

(11)

(12)

(13)




(5K) oy

Figure 11 -- Yee Cell

The FDTD method uses centered differences which are based on the

following first-order approximations to the derivative:

F(i+5_;, j,k,t)—F(i-s_;j,k,t)

OFG,j,kst) + O(5x2) (14)
ox dx
- - At - At
FGi,j e, t+55) TG j, ket - 5L
Wbty g Tk  Oe2) (15)
o At

The derivatives in space and time in Maxwell’s equations are replaced by these

centered differences. Evaluation of the values of E and H fields are offset in space
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by one half intervals as shown in Figure 11. Notice that the H field values are
defined as entering the cell and the E field values are defined along the three
orthogonal edges nearest to the origin (indexes i,j,k are positive valued) and, in

this study,

5=5x=8y=52 (16)

E and H are also offset in time by one half intervals. The FDTD method solves
alternately for £ and H as time is incremented in one half time steps. The

individual equations are as follows:

1- Ue(i"'l/-’-»j;k)
2N e 2EEVah ) g 1
1+ Ge(l' +1/-’-1]: k)
2e(t+V4,j, k)
L A 1
EATER | ol dR)

HE i, s e, k) -HE K414, 7, )
ok,
S oy 5, )

(17

_ O lij+a )
N 1
e(i,j+Yo, k)5 1 O (1, +'4, k)
2¢e(z,7+v%, k)

HAG, oo o) - 4G 4o, -5
%
+HE i s )-HE K414, 4, )

(18)
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L Ok, e+14)
. A 1
e(Z,7, k+12)d 1+ 0 (i.J, k+%)
2¢(i,j,k+'5)

e, les ) -H G e+ )
xK
B G e k) -H G4 )

(19)

1. Onlin Vo

Hnﬂé(i’ j+a, ke +Y/2)= 20(,j+Ve k+%) T-]Tl—'/-’ i+, h+Vs
) ’ 1+ Ol 7+, ko)At * (Q.j+Ve,k+'2)

2n(i,j+Ya,k+'2)

. . At . 1 (20)
WET TR | O Vo kP /BE

2n(i,j+V%, k+V5)
EJG.j+Ya,k+1)-E ) G,j+Ya, k)
B (G, k) ~E,(G,j+1,k+A)

Xk

1 Omli+ x4

H g j hosvy= ZREALRDR) gnti s ; pag
y ’ 1+Gm(i+l/2aj>k+%)At Y g -
ORG5 r )

Ot * 1 (21)
Wi+, 7,k+142)5 14 O i+, ], k+'2)0t

2R +%,], e+ 5)
Ei+1,j,k+A)-E G, j,k+')
*
+E [G+Yaj, k) ~E (i+Vh,j k+1)

L L B

AR P P




1 Om(E+e,j 4, k)
Hn+% i-l-l/, .4"/’}‘:): 2},1(i+’/2,j+’/2,k) FI""'/’.’ i+l/, '+l/’]‘
- %]tV oG TR (+Ya,j+Ya, k)
NG +V%, j+Vo, k)
. At . 1
MEo + k)5 | OpisVejeihy k)
2u(i +V2,j+Va, k)
E i+ Vo j+1,k)~E [ (i+Vh,),)

*

+Ey"(i, J+Vo, k) —E;(i+1,j+’/z,k)

(22)

where § is the lattice spacing increment, At is the time step increment. In order to

guarantee stability, the choice of time step and spacing increments should satisfy

the following:
-1
UnaxXAt < _1_+_i_+.i 2 (23)
5x2 5y2 522
or, in our case,
A< 5 (24)
‘/gvmax

where v_ .. is the maximum phase velocity withi:. the computational domain. As
presented, these equations can handle isotropic, irhomogeneous, -0ssy magnetic

and lossy dieleccric materials.

Note that these equations can all be represented in the foliowing form (see
Figure 12):

. 7
Duall "DHG[?_ l (25)

Field,ox=Fieldy ., *K1+K2+ +Dualz-Dualy |
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Dual 4

Dual ,

Dual
Hah Field ,e,, Field _,

5/2

Dual,

Figure 12 -- Modified Field Names

where

1297 k)

K1G,j, k)=—28ba k) (26)
1. el k)
EERAD)
., At 1
K2(.j, k)= *
k) = 0T @7)
2¢(i,7,k)

for equations (12)-(14) and
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_ om(i,j: k)

K1G,j,k)=—2R0), k) (28)
1+ Opni,J, k)
2nG,j,k)
iy At 1
K2@i,j,k)= *
=T A (29)
2n(@,j,k)

for equations (15)-(17), and Dual is the dual of the field being calculated. This
simplified form leads to a straightforward method to compute these fields in

hardware.

Radiation Boundary Conditions

Another computational problem area of the FDTD method is the radiation
boundary condition that must be satisfied at all six faces of the volume. It arises
from the fact that the fields are supposedly in an unbounded space, yet researchers
lack the computational power and time to even approximate this environment.
Therefore, the cell lattice is truncated along planes close to the subject of study and
a radiation boundary condition is imposed. Thic .ondition attempts to determine
values for the fields lying on the external boundary, since there are no fields
external to these with which to calculate them using the standard cell equations.
Although not nearly as computationally intense as the O(n®) FDTD cell equations
problem, the calculation time for these exterior points increases as O(n?), wher-. n
is the linear dimension of the problem space. In large problem.s, this may account

for a significant amount of time.
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Many researchers using the FDTD method employ the second-order Mur

radiation boundary equation, which, for the x=0 face, is:

EPN0,7,k+8)=-EL N (L,),k+14)
#EBE N e+ B0, k1)

cAL+

25 Non s Ny -
s +{E, (0,7, k+2)+E (1,],k+'4)}

(cAt)?
25(cAt+5)

0,741, k+V)-2+E. (0,7, k+14) (30)
+E 0,j-Lk+Va)+  E]/(1,j+1,k+%)
-2+E (1,7,k+5) + E](1,j-1,k+%)
' +E (0,5, k+ 1) -2+E,(0,],k+%)
+EM0,j,k-Y0) + E](Lj,k+1%)
-2+E'(Lj,k+8) + E[(1,j,k-Y2)

A total of sixteen additions and seven multiplications are required to generate this
boundary value. (The leading terms of each multiply turn out to be constant.)

Combining terms to decrease the number of floating-point operations gives:

E"0,7,k+18)==E" (1), k)

cAt-5 *1o - “1n -
cAt+8*{E: (Lj,k+)+E] (0,5, e+12))

252 -deAt? Ny - N,y -
+—CW*{E2 0,j,k+2)+E (1), k+"4)}
(cAt)?
28(cAt+8) i
E,(0,7+1,k+Y4)+E, (0,5 ~1,k+%5)
+B (1,41, kYo E M(1,5-1,k+14)
*
+E 0,7, b+ VA*EN0,j,k-Y5)
B (Lj,k+ VAWE,'(1,5,k=Y5)

+

3

(81)
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The results from this equation are based (in part) on the field values at cells to the

left and right, and directly above and below the cell in question.

Simplifying further, the following expression is obtained:

EN0,5, ke v8)=-EL N (1,,ke+1)
sKIXEM (L), b+ 8)+EL 0,7, k+ 1)
+K2ME (0,5, k+VA)+E ' (1,j,k+2))

[ 20,41,k +)+EN0,j-1,k+)] (32)

+E ) (Lj+1,k+V5)+E }(1,j-1,k+Ys)

+E(0,j,k+ 1%4)+E 0,5, k- V%)

_+E;‘(1, Jk+ VA)+E ' (1,5,k~V5)

+K3*

where

Ki= cAt-d (33)
cAt+d
2 2
Ko=20""4cAt (34)
cAL+d
__leat? (35)
25(cAt+5)

This expression now contains only twelve additions and three multiplications. It
was decided that this equation could be implemented in hardware as well, so that
at the conclusion of this study, the groundwork would be laid for a complete, single

board FDTD computational engine capable of generating all cell and boundary field

values.




10.

11.

12.

13.

14.

16.

Bibliography

. Andersh, Dennis J. Time and Frequency Domain Evaluation of Asymptotic Mcthods

for Computing the Electromagnetic Scatlering from Jet Engines. MS thesis, Air Force
Institute of Technology, December 1991.

. Barkeshli, Kasra and John L. Volakis. “A Vector-Concurrent Application of a Con-

jugate Gradient FI'T' Algorithm to Electromagnetic Radiation and Scattering Prob-
lems,” IFEE Transactions on Magnetics, 2892-2894 (July 1989).

. Bernhardt, Mike, et al. “Paragon Supercomputer/IS-446.” Intel Announces the

Paragon XP/S Supcrcomputer; Parallel Architecture Scalable to TeraFLOPS, Novem-
ber 1991.

. Bernhardt, Mike, et al. “1990 Gordon Bell Prize/IS-436.” 1990 Gordon Bell Prize

Awarded to Scientists Using Intel iPSC/860 Parallel Supercomputer.

. Bomans, Luc and Dirk Roose. “Benchmarking the iPSC/2 llypercube Multiproces-

sor,” Concurrency (September 1989).

. Booch, Grady. Software Engineering with Ada. Menlo Park, CA: Ben-

jamin/Cummings Publishing Comp. Inc., 1987.

. Calalo, R. H., et al. “Hypercube Parallel Architecture Applied to Electromagnetic

Scattering Analysis,” IEEE Transactions on Magnetics, 2898-2900 (July 1989).

. Carter, Michael B. Ray Tracing Complex Scencs on a Multiple-Instruction Stream

Multiple-Data Stream Concurrent Computer. MS thesis, Oklahoma State University,
1989.

. Chandy, K. Mani and Jayadev Misra. Parallel Program Design. Reading, MA: Addi-

son - Wesley Publishing Comp., 1989.

DeCeg-ma, Angel J.  Purallel Processing Architectures and VLSI Hardware. Engle-
wee  Cliffs NJ: Pre ‘¢n Hall, 1989.

Gustafson, John L. and others. “A Radar Simulation Program for a 1024-Processor
Hypercube.” Proceedings of Supercomputing. 1989.

Marek, J. Raley. An Investigation of « Design for a Finite - Difference Time Domain
(FDTD) Accelerator. MS thesis, Air Force Institute of Technology, December 1991.

Marhefka, Ronald J. Numerical Electromagnelic Code - Basic Scallering Code User'’s
Manual. Ohio State University Electroscience Laboratory.

Patterson, Jean E. and others. “Parallel Computation Applied to Electromagnetic
Scattering and Radiation Analysis,” Electomagnetics, 21-39 (1989).

5. Perlik, Andrew T, et al. “Predicting Scattering of Electromagnetic Fields Using FD-

TD on a Connection Machine,” IEEE Transactions on Magnetics, 2910-2912 (July
1989).

Reintjes, J. Francis and Godfrey T. Coate. Principles of Radar. New York: McGraw
1Iill Book Company, 1952.




17.

18.

19.

20.

21.

Strang, Gilbert. Linear Algebra and its Applications. Orlando F'L: Harcourt Brace
Jovanovich Inc., 1988.

Suhr, Scott. High Frequency Scattering Codce in a Distributed Processing Environment.
MS thesis, Air Force Institute of Technology, 1991.

Tipler, Paul A. Physics. New York: Worth Publishers Inc., 1976.

Work, Paul R and Gary B. Lamont. “Efficient Parallelization of Serial Programs
for the Intel iPSC/2 and iPSC/860 llypercubes.” Proceedings of the International
Conference of the Intel Supercomputer User’s Group. October 1991.

Work, Paul R, et al. “New Computational and Communications Results on the Intel
iPSC/860 with the Intel System Software Release 3.3.” Proceedings of the Interna-
tional Conference of the Intel Supercomputer User’s Group. October 1991.

-1
~1




Vita

Paul R Work was born on the 20'* of November 1958 in Tyler, Texas. Ile graduated
from Denton Sr High School in Denton, Texas in May 1976 and began attending Brigha.a
Young University in Provo, Utah. Ile interrupted his studies to serve as a full-time mis-
sionary for the Church of Jesus Christ of Latter - Day Saints in Northern Germany in
1978. In 1982, he enlisted in the United States Air Force, and received training in the
maintenance and repair of electronic countermeasures equipment and the associated test
stations. Stationed initially at RAF Upper Heyford in England, he met and married his
wife there. In 1987, he was selected for the Airman Education and Commisioning Program
(AECP), and began studying at the University of Missouri-Rolla (UMR) in January 1988.
Ile graduated from UMR summa cum laude in May 1990, and after attending the Air Force
Officer Training School in the summer of 1990, he received a commission from the USAT
as a second lieutenant on October 1, 1990. His current interests lie in Computer Engineer-
ing, dealing with the hardware/software interface, and in performance improvements for

existing programs.

Permanent address: 8710 Christygate Lane
Huber Heights, OII 45424




