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This Abstract

This (in, vstigates the parallelization of existing serial programs in comnputa-

tional electromagne cs for use in a parallel environment. Existing algorithms for calculat-

ing,, the radarcrs section of an object are covered, and a rayr-tacing code is chosen for

implementation on a parallel mnachine. Current parallel architectures are introduced and

a suitable parallel machine is selected for the implementation of the chosen ray tracing

algorithm. The standai I techniques for the parallelization of serial code are discussed,

including load balancing and decompobition considcrations,and appropriate muethodb for

the parallelization effort are selected. A load balancing algoritlIn is modified to increase

the efficiency of the application, and a high level design of the structure of the serial pro-

gram is presented. A detailed design of the modifications for the parallel implementation

is also included, with both the high level and the detailed design specified in a high level

design language called UNITY. The correctness of the design is proven using UNITY and

standard logic operations. The theoretical and empirical results show that it is possible to

achieve an efficient parallel application of a serial computational electromagnetic program

where the characteristics of the algorithm and the target architecture critically influence

the development of such an implementation.

ix



Parallelizing Serial Code for a

Distributed Processing Environment

with an Application to

High Frequency Electromagnetic Scattering

L Problem Description

1.1 Background

This chapter introduces the basic concepts that are used in this thesis investigation.

Radar and its uses are discussed, and some of the methods for simulating the effects of

radar are introduced: ray tracing and matrix modeling. The general thrust of this research

is explained and a quick summary of the current knowledge is presented.

1.1.1 Fundamentals of Radar Shortly after World War II began, British scientists

developed a method for tracking flying aircraft using electromagnetic waves. This method

was called radar which stands for radio detection and ranging (16). Later, additional

abilities were added including the tracking of ships, land based vehicles- and even terrain

mapl)ing and avoidance. This tracking ability was refined to the point where the data.
generated from a high precision radar set could be used to guide a missile or an anti-aircraft

battery to destroy the target. Radar helps both friend and foe to follow the m,,vements of

airplanes, ships, and ground vehicles. It can also aid in the destruction of a target. The

ease with which a radar site tracks an object is directly related to the radar cross-section

(RCS) of that object. Military agencies and manufacturers are therefore concerned about

the RCS of the items they construct and maintain.

A radar cross-section is a pattern of reflected and diffracted electromagnetic (EM)

waves which emanate from a given area or object that is illuminated by a transmitting

antenna. Figure 1 shows that when radar wes from a transmitter encounter a target,

these waves scatter in all directions. The object or area that scatters the incident energy is

called the "scene", and a scene is said to be illuminated when energy from a transmitting

antenna encounters that scene. When incident EM waves strike a-scene, some of these waves

are reflected by parts of the scene geometry, while others are diffracted by other details in



Figure 1. Reflecting electromagnetic energy off an object

the scene. The incident EM waves can also undergo both reflection and diffraction before

leaving the area. Some of the reflected and diffracted radar waves may be detected by a

receiving antenna and analyzed for information about the illuminated scene. A receiving

antenna may be located at any angle away from the scene relative to the transmitter, so

the response of the scene at all angles is necessary when analyzing a design or existing

object. The returned EM energy that is picked up by a receiving antenna is only a part of

the total pattern of scattered EM energy associated with an RCS and is known as a radar

echo. Figure 2 shows an example of an RCS for a B-26 aircraft of World War 2 vintage.

This figure shows the relative power that a receiving antenna would detect if it were to be

placed at the azimuth angle indicated in a polar coordinate system relative to the object

itself.

1.1.2 Calculating a Radar Cross Section Early in the history of electronic comput-

ers, researchers proposed using them in the field of image synthesis to create a simulated

view of an object or set of objects called a scene (11). This approach was called "ray-

tracing". Unfortunately, the techniques designed for this purpose were computationally

intensive, and the computers of that day were not powerful enough to solve the problems

in a reasonable amount of time. For this reason, little work was done in this field until the

1980's. Most work in image synthesis has been in the realm of optical renderings of a scene

from a single viewpoint. By changing the frequency of the incident energy, ray-tracing can

2
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be used to generate an electromagnetic image of a scelie. By changing the viewpoint from

one location to multiple locations, a simulated radar cross section can be computed.

Another method for calculating the EM fields that result from an interaction between

an object and an incident field uses vector matrix models to calculate the initial surface

currents that are generated by incident EM waves. These current values are then trans-

formed into another set of matrices, and these matrices are used to calculate a resultant

EM field based on linear equation structures.

The United States Air Force is currently conducting research into methods which

would permit computers to more efficiently calculate the radar cross-section of a complex

object. The application of this research is supported by two different areas of EM scattering

simulation. The first area is concerned with the radar observability of friendly aircraft

and vehicles, and the other area in EM scattering simulation lies in the realm of target

recognition. Researchers in the first area are concerned with the RCS of their own designs.

When planning new designs or modifications to an existing vehicle, they want to know

the radar cross-section of the resulting design before going into production. Efforts in the

second area seek to identify possibly hostile targets based in part on empirical data.

1.1.3 Techniques for finding an RCS One method for determining the RCS of an

object involves building a scale model of a proposed design. This scale model can then

be placed in a simulated environment, and measurements can be taken at all angles as

EM waves are transmitted at the model. Measurements can also be made using a full-size

example of a vehicle on an electromagnetic range or in the field. Models take time to build

and are not always an accurate reproduction of the final design. Field measurements, on

the other hand, can be expensive or extremely difficult to achieve with accurate results.

Both of these methods require some time to gather the necessary data. Another way to

generate an RCS is to calculate the EM field that would result if an incident EM field of

known intensity were to encounter an object. With an accurate mathematical model of

the object, the theoretical result can be calculated. This becomes the method of choice

when field measurements are costly, difficult, or impossible, and computational facilities

are effective and efficient.

In the 1980's, advancements in the field of computer architecture resulted in the

creation of parallel computers (10). These newer computers have many processors linked

together. Traditional computers hae only one central processing unit and have the speed

of light as a physical limitation on their processing power (11). This limitation arises from
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the fact that an electrical impulse travels at the speed of light, and all transactions within

a computer take the form of electrical signals transmitted on wires or traces. If the speed

of transmission is limited by the speed of light, then a limited number of operations can

tak,' place within a given period of time given that different components are physically

separate from one another. Although an individual processor in a parallel machine usually

has less processing power than a CPU of a large-scale traditional computer, because a

parallel machine can have many of these processors, the total computing power of the

parallel computer can exceed that of the traditional computer by a large margin. However,

because of the recent advent of parallel computers and the difficulty of the conversion

process, relatively few programs have been converted to run on these architectures.

Today, there aie many specific algorithms for calculating the EM field that results

when an object or group of objects are in the path of an incident wave. Those methods can

be divided into two groups: matrix algorithms, and ray tracing approaches. Each of these

algorithms has its individual strengths and weaknesses which are discussed in Chapter 2.

Many of these algorithms have been implemented on serial machines, and the design of a

parallel implementation can initially use the serial program's structure.

Different methods exist for converting serial programs to a parallel architecture, and

these methods also apply to new code generation. As is the case for converting existing

code, when generating new programs, care must be taken to ensure that an appropriate

method is chosen. Often the "opt;mal" solution is a combination of two or more methods.

Some of these methods involve the way the input data is handled, and others are con-

cerned with the division of labor. These methods include domain decomposition, control

decomposition, static load balancing, and dynamic load balancing. These techniques are

discussed in Chapter 2.

1.2 Problem Statement

In order to achieve the goal of an "accurate" simulated RCS, an efficient method

for predicting the radar scattering from an object is required. For any but the simplest

of problems, current implementations take several hours to compute the RCS of a typ-

ical scene (18). This particular research evaluates existing programs in computational

electromagnetics with a goal of determining the "best" one for a high frequency (8 GlIz

< f < 20 GIIz) application. Factors to consider in the choice of an RCS algorithm are the

feasibility of optimizing an existing programn to improve its performance and the effort re-

quired to convert that software to run on a parallel inachine. Various parallel architectures



are examined in order to find a machine that matches well with the proposed algorithm,

so that an efficient implementation is possible. Methods for converting existing parallel

code to parallel applications are analyzed, and an "optimal" match between the chosen

prograin, architecture, and conversion method is determined. Finally, the resulting appli-

cation is evaluated for accuracy and efficiency, and the results are compared with other

parallelization efforts of different algorithms.

1.3 Summary of Current Knowledge

In order to calculate a simulated RCS, the optical image synthesis model is modi-

fied to allow a range of viewpoints and incorporate the effects of diffraction. Optical image

synthesis sets pixels (picture elements) of a simulated viewscreen to an intensity and color

value. This represents a simulated view of a scene from a single viewpoint. Since an RCS is

normally concerned with a few discrete frequencies (lying far below the visible spectrum),

color has no meaning. An RCS contains information about the relative intensity (power)

of the EM energy radiated in all directions away from the scene as a function of the relative

angle. An RCS is typically measured in terms of area (square feet) and is two-dimensional

in nature. In order to meet the need of computational solutions for determing the RCS of

a scene, the scientific community has created several programs which calculate a simulated

RCS, and they are divided into two groups: matrix models and ray tracing models.

Matrix oriented algorithms approach the problem by modeling either the structure

itself, or the space surrounding the scene in matrix form. Matrix operations are performed

to solve the resulting expressions, and the results are presented in matrix form. These

results give the electric and magnetic field strengths in a rectangular coordinate system.

The total field strength (or power) can be calculated from these fields and represents the

intensity. This data can be converted into polar form to give an angle for later analysis.

Some matrix oriented algorithms are Method of Moments (MOM) (7), 1Finite Difference -

Time Domain (FD-TD) (15), and Conjugate Gradient (CG) (2).

Ray tracing algorithms calculate discrete paths from one point in space to another,

checking for reflections and other interactions with the objects in the scene. An example

of this type of processing assumes a point in space, and a direction of travel called a "ray".

The scene geometry is modeled mathematically, and the theoretical ray path (defined by

the initial point and direction) may or may not intersect one or more of the objects in the

scene. If an object in the scene intersects the calculated ray path, that ray ends, and a new

ray is generated based on the characteristics of the interfering object. This new ray has a

6



direction and starting point different from that of the original ray, but is directly ielated

to that ray through the interaction with the object. Processing of related rays end when

the last ray of the seiies exits the scene geometry completely. Its information (intersity,

and direction) are then stored for later use. Some ray tracing programs in computational

electromagnetics are SRIM (11), JET (1), and the Numerical Electromagnetic Code -

Basic Scattering Code (NEC-BSC) (13).

Computer programs in general can be divided into categories according to their

structure. This dividing value is called the grain of the algorithm (9). Algorithms with a

large amount of interaction among data items are said to have a fine grain, while algorithms

with little or no dependencies between the individual data items are said to have a coarse

grain (10). Other characteristics of programs are their complexity (order-of) and size (6).

In the area of parallel computers, several architectures are in widespread use. Shared

memory architectures have many proccssors which all access the same bet of memory, each

taking its turn if ,-)nflicts arise. In distributed memory machines, each processor has its

own dedicated set of memory which it alone can access. SIMD (single instruction, multiple

data) machines have a single control element which sends instructions to all the processors,

all of which execute the same instruction at any given time (10). The Connection Machine,

designed by Thinking Machines Inc., is an example of a SIMD architectui,, while the Cray

Y-MP, from Cray Research, is an example of a shared memory structure. Hypercubes

such as the Ncube/2 (from NCUBE) and the Intel iPSC/860 are examples of distributed

memory architecture. The Connection Machine has a veiy large niunbr of relatively slow

processors, and works well with a fine grain application. The Cray Y-MP also works well

with fine-grain applications, but does so with a small numbe, of super fast processors The

Ncube/2 can have up to 8192 processors, while the iPSC/860 may have up to 128 processors

and both generally work best with coarse-grain applications. Each of these machines has

approximately the same processing power (within an order of magnitude of each other) and

can be thought of as general purpose machines. A neNu arrival on the parallel computer

scene is the Intel Paragon XP/S, and its prototype, the Delta machine, currently at the

Jet Propulsion Laboratory in California. The Paragon XP can have up to 2,000 processors

and has a processing speed of up to 300 GFLOPS (3).

1.4 Assumptions

It is assumed that the target architecture has a compiler which can efficiently

convert the chosen program from source code into object and machine code. In fact, this

7



requirement iL a major factor in the selection of an algorithm and targeL machine. It is

also necessmly that sufficient time be available on the target mailhine for the conversion

process including initial analysis, design, code modifications, testing, debugging, and the

gathering of performance J.La once the conversion is complete. It is hoped that access can

be gained to the largest possible model of the target machine in order to gather as much

data as possible.

1.5 Scope

The investigations of this thesis effort concentrate on the optimization and par-

allelization of an algorithm or program that can calculate the RCS of a scene. Previous

Nork in the area of parallelization of computational elec romagnetics is reviewed. If a par-

ticular serial program or algorithm has the capability to perform more than a simulated

RCS, those additional capabilities will be left as is, with no conversion performed. The

:tctual method of calculating the results will also be left as is, with no improvement in the

accuracy of the results attempted.

1.6 Standards

During any modification of an existing program, aii especially during optimiza-

tion, it is very important that all asp.cts of the original functionality of that program

be preserved unless the researcher wishes to improve on the existing functionality. Side

effects of optimization that degrade accuracy or usefulness should be avoided at all costs.

At all points, modifications to the chosen algorithm or program should be benchmarked

against the original code to ensure that the accuracy and functionality of the program .

retained. Any improvements in either area should be carefully documented, and discrep-

ancies noted. During the optimization and : rcrbion effortb, cuirent software engineering

techniques should be employed to help ensure that -" original fuwh.ionality is pr'-served

and improved with documentation )rovided.

1.7 Suimmary

This chapter has covered the need for research in the area of reducing the time

required to calculate a simulated Radar Cross Section of a group of objects. The next

chapter covers previous work ; hat is relevant to the subject and scope of this thesis research.

8



II. Previons Research ana Background

2.1 Introduction

The field of :mage synthesis has e A a great deal since its inception in the

late 60's (8). Initially, research in image 2.as confined to the visual spectrum, ren-

dering views of a group of objects ca!L., c1- I, . visuali zat:on that could be displayed

on a monitor. Recently, a new branch of iu1 .. synthesis has evolved: elcatromagnetic im-

age synthesis, or the calculation of radar r(j ss- ections (RCS). Many different methods

for calculating the RCS of an object have b. develoted, several of which are mentioned

;n Chapter 1. These technique. *e cuite .,ri(.J in the, r approach and a review of these

methods is required in order to provide the ;.ccessary guidance for this investigation.

Similarly, a review of availabv- parallel ar(.hitectur(-s is needed in order to choose
the "best" machine for this work. Factors to be considered re the grain of the machine,

its applicability to the chosen algorithm or program, and availabililty of access to that

machine. Techniques for parallelizing programs and algorithims are covered so that the

best possible choice can be made for the coversion to a parallel iplementation on the

target machine.

2.2 Algorihms and Progrv-'.s for Calculating an RCS

Two general approaches have been developed for calculating an RCS: matrix ori-

ented, and ray tradng algorithms. Thlee matrix oriented algorithms that are in current

use are Finite Difference Time Domain (FDTD), Method of Moments (MOM), and Con-

jugate Gradient CG). Examples of ray tracing programs are SRIM, JET, and NEC-BSC.

The following paragraphs discuss these Lechniques and their characteristics.

2.2.1 Finite Difference - Time Domain The FDTD algorithm seeks a solution

to Maxwell's equations by tracking, the cvolution of scattered fields in time. As described

by Patterson et al. (14),

An incident electromagnetic wave propagates into a volume of space gridded
as a 3-dimensional lattice containing a conducting or dialectric stru-.ture. T'c
wave's interactions with the scattering object are then observed. First the elec-
tric field quantities are calculatcd. Next, using the newly obtained electric field
quantities, the magnetic field quantities are updated. Then, using the newly
calculated magnetic fields, the electrir Jeld values are updated.

9



Tie process ieiates until the difference between successive intensity values is less

th,.n a specified aiLount (a steady state is reached). The 3-dicnsional lattice is divided

into individual cells. The values for the electric aihd magnetic fields arc stored in matrices

which can then bc manipulated to produce the intermediate anlswe. ,nk .Ientually, the

final answer. Perlik aind Opsahli (15) describe FDTD as one of the most robust electro-

magnetic scattering codes available today. What they mean is that the resi its are very

accurate and applicable to a wide varicty of situations. Appendix C contain. a more thor-

oug! .xplanation of this method. A more complete discussion of FD-TD may b. found in

App,.ndix C, taken froit a MSi ;hesis by J. Raley Marek (12).

2.2.2 Method of Mowent ,  Method of Moments (MOM) i: another name for the

Numerical Electromagnetic Code (NEC 2), which should not be confused N\ith the Numer-

ical Electromagnetic Code - Basic Scattering Code (NEC-BSC). The NEC-2 approach was
developed at Lawrence Li ermnore National Lboratory and uses an integral representation

for the electric field of a volume (V) curreat distribution to model thin structures using

wire segments:

z~ (F F) . Vf

The magnetic field is represente" by an integral of the su face current ci_ ribution Js.

f[7S( 1S iJ (i') x V 'g (, -)' dA' (2)

A ,, object of interest can be represented by using a number of surface "patches" which,

wLk:,_ joined together, would form the desired shape. Figur- 3 shows such a model using

wir., qgments. Each patch has its own equation for describing the electric and magnetic

fields that are associated with it. WcY' all the equations have been defined, their coeffi-

cients can be placed in a matrix, and all the equations can be simultaneously solved using

standard matrix manipulations. The system of linear equa.tions call be written as

[A] [IF] =, [E] (3)

where

[A] is a dense matrix called the "interaction matrix",

10



[F] is a vector of kuniown basis function amplitudes, and

[E] is a vector of the excitation at the center of the wires and/or patches.

From the solution of the amplitudes of the basis functions, one can determine the near-

and far-field quantities (14). A more dletailed description of these equations may be found

in (7).

Figure 3. Typical wire-frame model of an object

2.2.3 Conjugate Gradient The Conjugate Gradient (CG) algorithm achieves a non-

linear solution time by using the matrix manipulations of inversion and multiplication

to arrive at an answer in a finite number of steps, always less than the number of un-

knowns. For electromagnetics, the resulting equations usually involve convolutions over

the unknown current density. The Fast Fourier linsform (iFr) can efficiently evaluate

convolution integrals without requiring cumbersome inte.rations. Including FFT's with

the conjugate gradient approach achieves greater accuracy and speed (2). In the CG-FFT

algorithm, the object is divided into sections, and equations for the electric and magnetic

fields are derived. The number of unknowns in a particular case is chosen according to a
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criteriol. that includes both spatial and frequency domains as well as the requirements of

linearity in the convolutions (2).

The general form for this equation is

A [J1] =?(4)

while a general form of such an integral is

(r) = (• + jF , T(F') I(i7- F'I)dv' (5)

The coefficients for these equations are then placed into matrices, and the matrices are

then manipulated through FFT operations as well as the standard matrix manipulations.

These equations are described further in (2).

2.2.4 Evaluation of Matrix Methods A major computational problem of these ma-

trix methods lies in the fact that they all rely on matrices and matrix manipulations to

compute the final answer. The dimension of the matrices used is proportional to the fre-

quency of the incident EM energy and the overall size of the object(s) in the scene. As

the frequency of the EM energy increases, so does the dimension of the matrices. Like-

wise, as the volume of the scene increases, the dimension of these matrices also increases

further (2). The overa!.l size of a matrix is proportional to the square of its dimension, and

normal matrix operations (such as inversion or a matrix multiply) perform a, number of

operations proportional to the cube of the matrix' dimension (17). For example, assuming

that the dimension of the matrices is linearly proportional to the frequency, and holding

the size of the object constant, if the frequency of the electromagnetic energy increases by

a factor of four, this means that the required matrices must increase by a factor of six-

teen and the number of operations increases by a factor of 6.1. Therefore, lower frequency

applications can expect an execution time that is faster than that of a high frequency

application. To illustrate, the critical section of an application at 8 GIz would require

64 times as many calculations as that same critical section with an application at 2 GIIZ.

The critical section is defined as that area of the code that actually does the numerical

calculations. This section does not comprise the entire program, but uses up most of the

total execution time. Other areas of the program, such as I/0, require a fairly constant

amount of time.
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2.2.5 Ray Tracing Algorithms The solution time for ray tracing algorithms is not

dependent on the frequency of the electromagnetic energy being simulated. Ray tracing

algorithms calculate a result based on hypothetical paths that may be drawn (or traced)

from a source of energy to a receiver. Ray tracing had its origins in the late 1960s, and

calculates the paths for a number of rays. Traditional ray-tracing algorithms calculate

the paths for a large number of rays, sometimes exceeding one million in number. For

this reason, ray tracing was not seriously developed until faster, more powemful computers

were developed to handle the enormous amount of calculations involved (8). Ray tracing

algorithms may be divided into two different classes: observer-viewplane ray tracing, and

source-destination ray tracing.

2.2.6 Traditional Ray Tracing This thesis refers to the traditional ray-tracing ap-

proach as "observer-viewplane" ray-tracing. Observer-viewplane ray tracing has four basic

components: a source, an observer (or receiver), a viewplane, and a set of objects called a

scene. The source, the observer, the viewplane, and all objects in the scene have a distinct

position which is defined in a reference coordinat- bystem. Rectangular, cylindrical, and

spherical coordinate systems may be used for various applications. Figure 4 illustrates how

this is done.

Light Source Ray
Scene ,:-

Viewplane Intersectionr I~:!...:!: Point

Pimary Ray ii~i

Observer

Figure 4. Traditional ray tracing approach

The viewplane is divided into a number of "pixels", and the total number of pixels

corresponds to the number of rays which are to be generated. For typical applications, the

number of pixels (and thus the number of rays) is very high, usually in excess of 100,000.
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The accuracy or size of the image is determined by the number of rays calculated. The

-higher the number, the greater one or both of these values may be.

To trace a ray, calculation begins with the observer, and rays are traced (drawn)

from that-point , through an individual pixel of the viewplane, to the scene. Upon arriving

at the scene, each ray is processed to see if its path intersects any of the objects of the

scene. If an intersection occurs, a new ray is generated with a new direction according

to the interaction parameters (angle of incidence and slope of the object at the point of

intersection). Each interaction either increases (if the object is a source) or decreases
(all other objects) the intensity associated with that ray. If the ray has not encountered a

source, eventually the intensity associated with that ray will be low enough to be considered

zero. Therefore, after a predetermined number of interactions, processing may cease for

that ray since its intensity information is no longer useful. Once a ray has been completely

processed, the pixel associated with that ray will have its color and intensity set according

to the interactions that the corresponding ray experienced. Carter (8) gives a very good

description of this process and shows how such a ray tracing algorithm could be applied

in optical image synthesis.

Gustafson, c; al.(11) used SRIM, a traditional ray-tracing EM image synthesis pro-

gram, to perform some measurements in parallelization of large programs. In terms of

computational complexity, Gustafson's group (11) states that the algorithmic cost (or

complexity) of a observer-viewplane approach is proportional to the number of rays fired,

the number of reflections allowed, and the number of objects in the scene (since eacch object

in the scene must be checked for further interactions after each intersection). Carter (8)

introduces a technique to traditional ray-tracing which reduces the number of objects that

are examined for possible intersections, and thus, the complexity of the best observer-

viewplane approach is O(log - M. b) where n is the number of objects, m is the number

of rays, and b is the number of reflections allowed. The number of rays can be as high as

one million, with the number of reflections reaching up to 20, and the number of objects

can be more than 1000 for this type of ray tracing. Because its foundation lies in optical

image synthesis, observer-viewplane ray tracing deals only with reflections from objects

without accounting for any other contributions to the result. For optical applications, this

produces the effect of very sharp shadows. This effect is not realistic, but in order to

make it more realistic, much more effort would have to be expended to somehow model

the complex interactions that take place at the edges of the objects in the scene (8).
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2.2.7 Diffraction Typical rad..r frequencies in RCS problems are much lower than

the visual spectrum, and the strength of the contributions from edge and corner interactions

is inversely proportional to the frequency of the incident energy. This means that for RCS

applications, these interactions have a much more pronounced effect on the final result

than in optical synthesis. SIAM mikes no allowance for corner and edge interactions and

also produces a result that is valid for only one direction. These factors make it inadequate

for RCS calculations.

The interactions that take place at corners and edges are commonly referred to as

"diffraction". Diffraction occurs when a wave of energy strikes the edge or corner of

an object. When this happens, the electromagnetic energy doesn't simply stop at the

edge of the object. In other words, no clear shadows result. In effect, the edge of the

object acts as a weak source, and a new wave of energy radiates out from that edge. The

effects of diffraction are directly proportional to the wavelength of the incident energy.

Since wavelength is inversely proportional to the frequency, as the frequency increases, the

strength of the diffracted energy grows weaker (19). In the visible spectrum (visual light

is electromagnetic energy at very high frequencies) the effects of diffraction are so weak

that there is only a minimal contribution. This effect, on the other hand, can be quite

pronounced at frequencies typically used by radars (2 - 16 GJlz).

The only contribution from diffraction in a, observer-viewplane approach is when a

generated ray strikes an object exactly on its edge. How such a ray is treated determines

how well diffraction is handled. In optical ray tracing, that ray either carries on as if no

reflection had taken place, or reflects normally. Reflections are handled by generating a

new ray with a new starting point and a new direction. The direction of the new ray

is determined from the angle the old ray made with the intersecting object. Thus, in

optical ray tracng, diffraction has no contribution. In order to accurately account for

the effects of diffraction, a observer.viewplane approach would have to treat each edge

and corner of each object as a potential source. and generate in more rays wheneer a

ray struck an object near an edge. This complicates the computations considerably, and

the algorithmic cost (or complexity) becomes O(m. b . log r) where c is the number of

consecutive diffractions that are allowed. Since the results of diffraction are weaker than

reflections, c would be much smaller than b. In traditional observer viewplane ray-tracing,

this approach has never been implemented since the value of mn is tremen !obsly large.

For example, if c = 2. and m = 200,000, the resulting value is 20 billion!
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2.2.8 Source-Destination Ray Tracing EM image synthesis algorithms that tse the

traditional observer-viewplane ray-tracing method are based on the optical versions that

preceded them and do not treat the effects of diffraction accurately. A source-destination

algorithm addresses the effects of diffraction by changing the method of generating the

rays. Instead of calculating iy paths, and then checking to see if a given ray intersects an

object, the object-based approach begins with an object and checks to see if a ray can be

traced from the source to the receiver (observer) after interacting with that object. This

eliminates the need to generate a large number of rays, and each object can be treated

for all possible interactions, including diffraction. Multiple interactions are handled by

treating each object as a new source, and checking with all other objects for interactions

that would result in a path in the desired direction.

Marhefka uses the source-destination ray tracing approach for his implementation

of the Numerical Electromagnetic Code - Basic Scattering Code (NEC-BSC). NEC-BSC

was developed for applications specific to the proposed space station, and has found use

in the United States Navy (13). NEC-BSC achieves some very good results with a serial

implementation of the source-destination algorithm, having been validated to -20dB. A

weakness of NEC-BSC lies in the the time required for execution. This weakness arises

from the computational complexity of the source-destination ray tracing algorithm. Since

every possible combination of objects and types of interaction are treated separately, the

algorithmic cost is high, 0(n'). If the number of interactions, b, is high enough, the exe-

cution time grows tremendously. For this reason, Marhefka implemented interactions with

a maximum of three reflections and two diffractions. Also, within this subset, inter-.tions

that provided a very weak contribution were left out. In addition t') the computational

complexity of the source - destination algorithm, preliminary analysis of NEC-BSC has

shown that it is largely inefficient in its calculations. Many values are recalculated several

times instead of being saved for later use.

2.3 Equipment

The target computer architecture for this work is the Intel iPSC series hyper-

cubes. An iPSC hypercube can have anywhere from 8 to 128 processors (nodes), with the

actual number of nodes present in any one machine being equal to a power of two (2n). In

order to accomodate the different configurations posible, the final product is written in

such a way that the program may be run on any number of nodes.
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2.3.1 Computer Hardware Since their introduction, traditional computers have

been following a trend of increasing computational speed and power. Many researchers

now believe that this trend will slow down and the computational speed of a traditional

single processor will approach a maximum. This maximum is related to the speed of light,

and once approached, the speed and power of an individual processor will not be able to

increase further (10). As a traditional processor approaches this maximum, its cost grows

dramatically, and today's top processors (such as the CRAY) command premium prices on

the open market. Parallel computers, which use many processors, can achieve computa-

tional speeds much higher than this maximum through combining the speed and power of

many processors. Furthermore, since the individual processors need not be top-of-the-line,

the overall cost of a parallel computer can be much cheaper than that of the super-fast

traditional processor.

An example of the advantage a parallel architecture has over a traditional computer

can be drawn form a comparison of the NCUBE/ten and the CRAY Y-MP (11). The

NCUBE/ten has 1,024 processors, each of which is based on the architecture of the VAX

11/780. The CRAY has eight processors which represent the state of the art in processing

speed. A ray-tracing application was run on both machines with the CRAY executilig

the program slightly faster than the NCUBE/ten (105 sec vs 124 sec). The same problem

when run on a VAX 11/780 took over 35,000 seconds to execute; thus, the speedup available

through either machine over the older traditional computer (the VAX) is obvious. Since

an NCUBE/ten costs only $1.5 million (compared to $30 million for a CRAY Y-MP ), this

illustrates the cost-effectiveness of parallel computers. The conclusion is that very similar

execution times can be achieved at a considerably lower cost.

The term hypercube means that the computer has 2" processors, and each processor

is connected directly to n other processors. The furthest distance from one processor to

another is also n, thus allowing a large number of processors to be connected in an efficient

manner. The NCUBE/2 is the next model (after the NCUBE/ten) of parallel computer

produced by Ncube, and like its predecessor, uses a hypercube interconnect to link the

processors together. The NCUBE/2 can have up to 8,192 processors, and has a theoretical

performance of 4 GFLOPS1 .

Another example of a hypercube architecture is the Intel iPSC/860. This parallel

computer can have up to 128 processors and has a theoretical maximum performance of

lonc GFLOP den'o-s the ability to perform one billion floating point operations per second
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7.5 GFLOPS. Each processor, an Intel i860, is a RISC chip operating with a clock speed of

40 Mltz and is rated at 60 MFLOPS peak. Recent work has experimentally measured the

bandwidth and latency of the iPSC/860 when sending messages between the nodes (21). In

addtition, Intel has recently announced a new parallel machine based on the i860 micropro-

cessor (also used by the iPSC/860) called the Paragon XP/S computer. This new machine

has a peak power of 150 GFLOPS and uses a mesh interconnect instead of a hypercube.

Applications which run on the iPSC/860 are expected to run on the new machine with only

minimal conversion work required. Intel has also developed an efficient message-passing

network that connects the processors together. This network allows messages to proceed

to a distant destination without interrupting any of the other processors that lie between

the sender and the receiver (5). Currently, the Target Recognition Branch of the Avionics

Directorate at Wright Laboratory, Wright-Patterson AFB, Ol1 has an eight node model of

the iPSC/860 which is employed in this research.

2.3.2 Parallelization Techniques Some of these techniques are domain (data) de-

composition, control decomposition, static load balancing, and dynamic load balancing.

2.3.2.1 Data Decomposition In many programs, the individual items of

data to be processed hove, by design, a built in independence, which would allow separate

items of data to be processed simultaneously with no side effects which might arise if data

dependencies were present. For example, consider a loop in a section of serial code where

the results of the data processed in each pass are not dependent on earlier calculations or

comparisons from previous passes through the loop. An application with this sort of inde-

pendence would be a ray tracer. The handling of each ray is completely independent of the

results of other rays. Thus, each ray can then be calculated in parallel, or simultaneously

with all other rays. A simple data decomposition would divide the iterations among the

available processors, assigning N/n rays to each processor where N is the number of ray.

(typically very large), and n is the number of processors. This kind of implementation is

called data decomposition. Since each node operates on separate items of data, every node

must be able to completely process each item of data, and thus, a complete set of the code

to be executed must be loaded onto each node.

2.3.2.2 Control Decomposition Sometimes, data dependencies do not al-

low partitioning the data set among the processors since such a decomposition would result

in prohibitive communication costs. In such cases it may be more advantageous to divide
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up the various tasks among the processors. In other words, assign the task modules in

the program to the various processors. This kind of decomposition is similar to a task

scheduling problem, and care must be taken to assign the modules in an efficient maniicr.

Communication would be required to pass parameters back and forth, but this cost is

normally less than that of a data decomposition of the same problem. This type of im-

plementation is called a control decomposition, and each node has a unique set of code to

be executed. One case of control decomposition is task scheduling on multiple processors;

each node has a unique set of code (its current task), and executes that program. In more

involved cases, the tasks become interrelated modules of the same program, and additional

communication is required. This additional communication, however, is normally only a

moderate amount.

2.3.2.3 Combinations Sometimes it is useful to use both control and data

decompositions for a particular application. Such a scheme would have several groups of

processors assigned to unique tasks, with the data divided among the groups as well. Thus,

for example, a pipelining effect could be realized: each processor in the first group would

begin working on its corresponding 1irst item of data; when done, it would then pass along

an intermediate result to a corresponding processor in the next group of processors for

further work and then begin working on the next item of data. Each processor in each

successive stage would process the intermediate results sent to it, and send its result on.

The final group of processors would then store the final result. Such an approach was used

by Gustafsou et al (11) at Sandia National Laboratories with a ray tracing package (SRIM

2.2Q). This approach is also useful when the entire program to be executed is too large

for the available memory on a single node. By dividing up the modules, the executable

code given to each processor is less. The data are also still divided among the first group

allowing the software engineer to take full advantage of the parallelism in a particular

application.

2.3.2.4 Load Balancing When converting a serial program to run in a

distributed memory environment, a major objective is to have some way to balance the ex-

ecution time among the processors thus minimizing idle time. Theoretically, each processor

should do exactly the same amount of work in order to achieve maximum efficiency and

the best possible speedup. In other wordi, the work load needs to be balanced among the

active processors. Static load balancing is a technique where the programmer hard codes

the division of labor among the nodes, specifying exactly what each node will do before
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the program is executed. Dynamic load balancing occurs when the program itself divides

up the work according to heuristics that have been written into the balancing routine.

2.3.2.5 Static Load Balancing When a software engineer uses static load

balancing, in order to efficiently partition the work, some prior knuwledge of the complexity

of the data set is required in order to make a good estimate. A simple scheme for static

load balancing (when the data is handled in a loop from 1 to N) is to let each node do
x = N/n items of data; each node handling the items from ix to ix + x (i representing

the current node number) in the data set where n is the number of nodes. This approach

may not yield an efficient implementation, however, if some of the data items require more

processing than others. Another approach used in some ray tracing programs, for example,

is to have each node iterate through the entire data set with an increment equal to the

number of nodes. Thus each node would process data items i, n + i, 2n + i, 3n + i,

N - n + i. This approach attempts to compensate for an unequal amount of processing

by assuming that neighboring items have a similar amount of complexity associated with

their computation. By assigning neighboring items to different processors, those items

with more complexity are spread out among the available processors, and similarly the less

complex items are also spread out evenly among the nodes.

2.3.2.6 Dynamic Load Balancing Dynamic load balancing occurs as the

program is running and can compensate for differing levels of complexity throughout the

data set. One type of dynamic load balancing divides the available nodes into two groups

by purpose: master and slave nodes, also known as controller and worker nodes. Each

worker node receives a relatively small data set to operate on, and when done, it then

notifies its ccntroller node that it is ready to operate on another set of data. Here, the

generic term "set of data" can be thought of as either individual data items, or possiLly even

separate tasks that are to be executed. The master (or controller) node then determines the

contents of the next set of data that the requesting slave (or worker) node should execute,

and forwards that information to the requesting node. This process repeats itself until the
global data set has been entirely processed. With a centralized list, one master controller

maintains the global data set and distributes the work among the worker nodes. One

controller, however, can only manage a finite number of nodes before the communications

from its worker nodes begin to cause a bottleneck. When this happens, the controller is

unable to respond quickly to a worker node's request, and overall performance suffers as

the slave nodes wait for the next set of data. The actual number of worker nodes that a
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manager node can efficiently handle is dependent on the grain size of the target machine

-and the average amount of time spent processing each set of Uata. If the number of nodes

available becomes large enough to become a problem, then an intermediate level of worker

nodes can be used under the master node. Alternately, a number of controller nodes can

maintain a "distributed list", with each controller node sending out data sets from it,

portion of the overall list. If a controller node exhausts its local list, it can ask one of its

neighboring controllers for more work. Once all the local lists have been comi..eted, the

program then terminates.

2.3.2.7 Efficient Dynamic Load Balancing Normally, dynamic load bal-

ancing has some overhead associated with implementing the heuristics and message pass-

ing. This overhead arises when the requesting node waits for a response from its controller.

Here, the sending node is idle, awaiting the next item of work. Once the return message

arrives, the sending node continues on, processing the data items in the new set. If the

items of work can be subdivided into recognizable data items, some of this idle time can

be eliminated or "hidden" in the overall execution time. Such a division would allow the

worker node to send a request for more work before it actually finishes its current set.

The request would travel to the appropriate controller, and that controller would send the

next item of work to the requesting worker node. While all this is occurring, the worker

node is finishing its current set of data, and does not wait for the next item of work upon

completion. If, for example, a ray tracer program divides the work into groups of four rays

per "item", When the worker node has completed three of those rays, it can then send a

request for more work. While the worker processes the last ray, the controller receives the

message, determines the next group of rays to be processed, and sends a message back to

the requesting node. For greatest efficiency, the time required to process one data item (in

an item of work) must be greater than the total time between sending the request and the

arrival of the next item of work. Otherwise, more data items must be included in a group,

and the request must be sent before the penultimate data item. A balance between the

round trip message time and the processing time must be reached such that the message

time is less than the processing time in order to achieve the best possible efficiency.

2.3.3 Examples of Parallel Implementations Suhr improved the execution time of

NEC-BSC by parallelizing the existing serial code using a static load balancing techniquc

with a domain (or data) decomposition. In this work, for some simple test cases, lie

demonstrated that gains are possible. He measured an improvement over the VAX 11/780
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of about 6.1 for one node (18). Unfortunately, he was unable to achieve good time efficiency

with a limited number of nodes.

Gustafson and Co. were able to show that a dynamically load-balanced a- plication

of SRIM allowed them to achieve near-linear speedup in the execution time. Speedup is the

ratio of the execution time (on a traditional computer) for the best serial implementation

of an algorithm to the execution time for n processors in a parallel machine. Ideally, this

value should equal n showing 100% efficicncy (18). Often this is not the case, because

overhead expenses associated with the unique features of a parallel computer add to the

execution time of the program. This decreases the speedup to something less than n. The

work of Suhr (18), and Carter (8), in their work with the Intel iPSC/2, also reflects this

phenomenon.

2.4 Conclusion

If accurate calculations of a high frequency RCS are to be accomplished in a cost-

effective manner, an efficient, accurate algorithm needs to be developed for a cost-effective

computer. Matrix oriented algorithms such as FDTD, MOM, and CG become very time

consuming when th,, frequency of the incident EM energy increases. Additionally, observer-

viewplane ray tracers such as SRIM are inadequate because of the single viewpoint and

the inability to handle the effects of diffraction. NEC-BSC performs the serial calculation

of an RCS with good accuracy and is an excellent candidate for optimization because of

its many inefficiencies. Parallelization should result in the -greatest gains in execution time

and is the primary focus of this thesis effort.

Recently, four researchers using an Intel iPSC/860 hypercube won an award for

price/performance results with calculations in superconductor structure (4). This shows

that cost-effective computing is possible with parallel computers. This was only achieved

after a great deal of work in optimizing an existing program and converting it to run

on the parallel machine. The Intel iPSC/860 was chosen as the target machine for this

work because of its potential for performance, and availability. Another consideration was

the relationship of the iPSC/860 to the new Paragon parallel computer which should be

available in the near future. Since the next generation uses the same type of processor,

and the differences between the architectures will be largely transparent to the user, any

program that executes on the iPSC/860 should execute on the new machine, providing a

great deal of power to the user.
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Because the iPSC/860 is a coarse grain machnie, a data decomposition is chosen

for the implementation which should provide the be!st possible division of labor among

the available processors. A control decomposition %kokii(l probably be too ,coarse for the

iPSC/860, and an uneven work load could easily reo,!t. Additionally, a dynamic load

balancing technique is implemented since it offers the greatest possibility for even load

balancing under all conditions. Exactly how to decompose NEC-BSC onto the target

machine is determined in Chapters 3 and 4 as the structure of NEC-BSC is examined.

2.4.1 Software Development Environment, Tools and Techniques The development

of the "windowing" environment for workstations has given the software engineer a very

effective tool for all stagcs of an applications development. By logging into the target

machine with multiple ;itdows, several activities can be done concurrently. for example,

while an update to the babeldne is being compiled (sometimes a lengthy process) in one

window, results from a pievious version can be analyzed. During long execution times

(while gathering data) in one window, an analysis of any previous data can be typed

into a document. Also, if errors should be detected during execution in one window, a

search for the code that caused the error cali be performed in another window, keeping the

symptoms of the error in view without the need to print out error listings. Consequently,

a workstation with the windowing environment is chosen for use in the development of the

application. The workstation used was the Sun Sparcstation 2 using Openwindows.

2.4.2 Summary This chapter covers previous work in electromagnetic image syn-

thesis, detailing efforts in matrix and ray-tracing models. Candidate computer architec-

tures for a parallelization of a chosen algorithm are put forth, and techiques for paral-

lelization are explored. The next chapter initiates the implementation process, analyzing

a serial implementation of the chosen algorithm, and presents a high-level design.
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III. Analysis and Iigh Level Design

3.1 Introduction

The analysis and design of a parallel implementation of NEC-BSC is the objective of

this research. Accordingly, the code is first analyzed using software enginecring techniques,

and its structure is then modeled with UNITY, a high level design language. Inherent

parallelism in the structure of NEC-BSC is -identified, and a parallel high-level design is

presented.

3.2 The Numerical Electromagnetic Code - Basic Scattering Code

"NrC-BSC is a large (> 20,006 lines of code) program that calculates the electromag-

netic energy radiated outward from a target scene. The radiated energy can be computed

for a large number of parameters, and the output can be in several forms, including near and

far zone results as well as the electric and magnetic field strengths received by an antenna,

or radiated outward in any given direction. The program can iteratively step through any

given series of angles with a large selection of orientations available. Angles are based on

a spherical coordinate system and coordinates represent volumetric and circular angles.

The far zone results of NEC-BSC take the form of a radar cross section. Therefore, this

research focuses on the far zone fu,.-tionality of NEC-BSC, and all parallelization efforts

concentrated on converting the far zone code to run on the iPSC/860. Other features of

NEC-BSC such as near zone results and antenna effects were not converted and currently

do not execute in the parallel implementation.

3.3 Analyzing the Code

In order to efficiently parallelize an existing application, the software engineer must

be familiar with the structure of that program. Modules ,nd interconnectivity can signif-

icantly influence a parallel design.

3 .3.1 Structural analysis of NEC-BSC Design recovery techniques of software en-

gineering allow a software engineer to recover the structure of an existing program. The

User's Manual for NEC-BSC provides a high level structure chart showing the main de-

tails of NEC-BSC's structure (13). Figure 5 shows this initial high level structure with

nested loops depicted by successive indentations. For a far zone single source application
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Initialize Data]

Read Commands

[Define Fixed Geometry

Loop: Volumetric Angles

Loop: UTD Terms

Loop: Fixed Sources

Define Geometry Bounds

Loop: Pattern Cuts

Loop: Moving Sources]

Loop: Receivers

Loop: Frequencies

Calculate Fields

]Sum Field Components

IEndTos

Output Results,

LReturn for More Commands I

Figit-e 5. Block Diagram of NECBSC Version 3

with only one frequency, the initial high level structure reduces t.i Iat shown in Figure 6.

The block depicted in Figures 5 .nd 6 as Calculate Fields can be further expanded to

show more detail. Figure 7 shows this result, depicting the various calculations that are

performed.

The structure depicted in Figure 6 shows one inefficiency: calculating the same real

angle a multiple of times. This structure recalculates the real angle correbponding to the
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Initialize Data

Mead Com s

Define Fixed Geometry:

Loop: UTD Terms

Define Geometry Bounds

Loop: Pattern Cuts

Calculate Fields]

Sum Field Components

End Loops

Output Results]

Return for More Commands

Figure 6. Far Zone Block Diagram of NECBSC Version 3

[Loop: Pattern Cutsl

I Calculate Real Angle

Calculate Fields

Loop: Objects

Calculate Ray Path

Check for ShadowingI

Calculate Field Str. Contribution

Add Contr. to SubtotalI

End Loops

Figure 7. Structure of Calculate Fields
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current loop index once for each UTD term' (which has a earlier loop construct). Since this

calculation is done with a subroutine call, for 1,000 rays, this results in multiple subroutine

calls that are completely unnecessary. Moving the pattern cut loop outside the UTD tei in

loop would result in a savings in subroutine calls approximately equal to the number of

UTD terms times the number of rays.

Further in-depth analysis shows that each individual UTD term has its own subrou-

tine for the calculation of any appropriate field strength contribution. In order to call the

correct subroutine, a very large IF-TIIEN-ELSE IF structure inside the Calculate Fields

block determines what the current UTD term is and calls the appropriate subioutine. Due

to the limitations of time, this structure can not be consolidated or optimized for better

performance.

Structural analysis reveals another factor which would limit an attempt to improve

the efficiency of NEC-BSC. This factor involves the coupling of the program's modules.

Most of the modules in NEC-BSC are very tightly coupled and have a loose coherency. The

tight coupling arises from the fact that the subroutines of NEC-BSC have a large number

of parameters and also access numerous global variables stored in COMMON blocks. Such

tight coupling greatly hinders any restructuring or improvements, because of time danger

of side-effects (a statement executed locally affecting values that are used elsewhere in tile

program).

Using the high-level structure provided by the User's Manual and analyzing tile

code itself, a good picture of NEC-BSC's top level structure results. In order to use

this information, this structure must be modeled in a way that shows its characteristics

clearly. Chandy and Misra propose a high level design language that can be used to

model both parallel and serial programs (9). This high level language is called UNITY,

and once an algorithm has been correctly modeled, many details of its structure can be

illustrated. Here, the high level organization of NEC-BSC is set out and from tile high

level design, a parallel implementation can easily be derived. The advantage of describing

a serial program in UNITY is that any parallelism that already exists within the structure

of a serial program can be easily identified once the UNITY design has been completed.

After analyzing the UNITY program, and the inherent parallelism of the application has

been identified, a detailed design can be constructed that builds on these parallelisms, and

tma UTD term refers to a unique sequence of objects and intcraction types. Reflection and diffraction arc

the two possible interactions, and each may occur any number of times in any sequence in a UTD term.
NEC-BSC uses only 20 terms in its loop.
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maximizes the gains that can be achieved through parallelisni. Aditional features inap

the high level design to the individual machine for which the application is intended. This

mapping is called a low-level design and is discussed in Chapter 4.

3-9?.2 Serial Design The far zone p)ortion of INEC-BSC is now modeled in UNITY.

This 4esign incorporates the far zone functionality of NEC-BSC, assuming one stationary

source and no antennas. This removes inuch extraneous detail p)ertaining tc the other

functions of NEC-BSC that would clutter the design here.

Program Serial NEC-B SC

Declare

phii, theta :Integer {for use as ioop indlices)
UTD-num, obj..num :Integer {for use as loop indices}

{A function for calculating partial field strength in a. given direction}

Function Partial-Strength (phii, theta, obj-jium, UTD-liuin) return Complex

i, j, k, I :Integer Iteration index variables }

pair :array (1 .. .3) of Real {for 3D coordlinates}

object :Record~contains the essential information about one plate}
corners :Integer
corner-pts :array (1 .. corners) of pair

end record

nun-objects, nunm-errns Integer

(Start and stop points for the volunietric and circular loops}

begin..vol-point : integer
end-.vol-point :integer
begin -circpoi nt : integer
end-circ-point :integer
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{ Procedure to read the data in form disk and initialize key variables}

Procedure Cread (nunkobjects, vol-poinits, circ-points)

{Vrariable which will hold the final results}

field-strengtli array (1 .. vol-points, 1I. circ-points) of Complex

Initially

{Initialize the field strength and the number of U'TD term1s}

numnierins =20

(V i: beginsol-point < i < end.voI-Point:
(Vj :begin-circ..point < j < end.circ..point:

fiehldstrength (i, j) = 0.0))

Assign

{Calculate each partial contribution and sum with other calculations}

(V i :beginvol-point < i < end-.vol-point::
(Vj begin-.circ..point < j <5end-circ-point:

(V k :0 < k < circ..points ::
(V 1 : 0 < 1 < num-objects:

field-.strength (i, k) := field..strength (i, k)+

End { Serial NT3C-BSC}

In the serial design of INEC-BSC, the variable "UTD..numn" holds an integer valdue

that corresponds to the current UTD term. A UTD term is a unique interaction sequence

that objects in the scene apply to an incident ray. Examples of UTD term,-. are single

reflection, single diffraction, double reflection, (liffraction-reflection. triple reflection, etc.

The number of possinle LTTD ternms is represented by the variable "nuumerms'. Thle

variable '*obj-num" holds an integer corresponding to the number or the current object

under c nsideration. The function TartialStrength"' takes as parameters the current

final angles (in a spherical coordlinate svstem-1), the current object number. andl the current

UTD term. This function is part of NEC-BSC,. and its inner runctions are not modeled

at this level. Given the input parameters. the PartialStrength function calculates thle
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contribution of the current UTD term to the total field strength in the current direction.

Since there are 16 different UTD terms, the contribution of each term must be summed to

arrive at the total field strength in a given direction. The procedure "Cread" reads in the

input parameters from a file stored on disk. The field strength is calculated using complex

values (a real part and an imaginary part) and stored in the array "field-strength".

3.3.3 Parallel Design As can be seen from the UNITY design of the serial version of

NEC-BSC, a high degree of parallelism exists in the program structure. Several possibilities

exist for division of labor among multiple processors. Each of the iterations could be

partitioned among the processors of a parallel machine. Some combination of loop values

could also be distributed. Using this serial design, a parallel high level design can be

drafted to illustrate some of the design decisions at this level. The parallel version of the

high level design shows the inherent parallelisms within NEC-BSC even more clearly. In

this listing, only the differences f. )m the serial version are shown. The parallel version

essenti ' adds the control and decision features which allow statements to execute in

parallel.

Program Parallel NEC-BSC

Declare

{ same as serial version with the following addition: )
{Variable for controlling the calculation of the field strength)

elementdone : array (1 .. vol.points, I .. circ-points, 1 .. 20, 1 .. num-objects) of Boolean

Initially

{ same as serial version with the following addition: )
{initialize the controlling variable)

(V i : 0 < i < vol-points ::
(V j : 0 < j < circpoints

(V k : 0 < k < num-terms
(V 1 : 0 < I < num-objects

element-done (i, j, k, 1) = false))))
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Assign

{set each corresponding element in the controlling variable as each)
{contribution to the partial strenght is calculated)

6(Vi : 0 < i < vol-points ::
D(V j : 0 < j < num-terms

G(V k : 0 < k < circ-points
O(V 1: 0 < 1 < num-objects

field.strength (i, k) := field.strength (i, k) + Partial.Strength (i, k. j, 1)11
element-done (i, k, j, 1) := true

if not element-done (i, k, j, 1)))))

End {Parallel NEC-BSC}

Fixed Point

FP - (V i : 0 < i < vol-points::
(V j : 0 < j < circ-poifits

(V k : 0 < k < num.terms::
(V 1 : 0 <1 < num-objects

element-done .i, j, R, 1) = true)))

One aspect of UNITY is that all statements in an "Assign" block execute in parallel

and each statement executes infinitely often. Here, however, only one calculation per

unique combination of parameters is wanted. Accordingly, the parallel version of the

UNITY design introduces a new variable called elemcnt-done. Initially, all the elements

of this array are set to "false", and the partial strength contribution of a unique set of
parameters is only be added to the sum if its corresponding element in cemrent-done is false.

Once the calculation has been accomplished, the corresponding element in elcmcnt-done

is set to true. This guarantees that each unique contribution is calculated exactly once,

even though the statement executes infinitely often.

In the parallel design, all the variables of the serial version a.-e used. Therefore,

only the additional variable is shown in the parallel design listing. Similarities in the

initialization of these variabh.- are also left out of the parallel version.

An important part of a UNITY parallel design is to show that the program terminates

in an orderly fashion by including a final condition called a fixed point (FP) (9). If the FP

evaluates to be true, then the program is guaranteed to terminate. This constitutes a proof

of correctness for the parallel features of the UNITY design. This proof does not guarantee
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the functionality of the parallel program, merely that it terminates in an orderly fashion.

The functionality of the program is dependent on the equations used when pcrforming the

calculations, not the parallelization of the program.

3.3.4 Proof of correctness In UNITY, each statement executes infinitely often, so

in order to prevent the same ray from being calculated multiple times, a new variable was

introduced into the parallel version to indicate whether a particular ray had been processed

or not. This variable, element-done, is a four-dimensional array with each dimension

corresponding to one of the nested iterations in the parallel program. Initially, each of the

elements of the array is set to false, and when a ray has been processed, its corresponding

element in element-done will be set to true. In order to guard against multiple calculations

of the same ray due to the same statement being executed more than once, a guard is

placed on the processing statement. If, at any earlier point, that ray had already been

processed, the guard prevents a second calculation. Since each combination of values for the

nested iterations is guaranteed to be processed at least once, each element in the variable

element-done is set to true. This guarantees that the fixed point stopping condition is met,

and the program terminates normally.

3.4 Conclusions

Each of the levels of the nested iteration have the potential for parallelization. The

volumetric and circular loops have the potential for covering a wide range of values, up

to 1801 discrete angles from 0 to 360 degrees. These values could be partitioned widely

in a fine grain machine. The UTD terms and objects are few in number and could be

distributed among the processors of a coarse grain architecture. The detailed decision of

how and what to parallelize is discussed in Chapter 4. As can be seen, there are at least

four parameters (volumetric points, circular points, UTD terms, and objects) which could

be partitioned among available processors if a data decomposition were to be used. A

control decomposition, on the other hand, would require a different sort of analysis than

is done here. Such a decomposition would need to analyze the interconnectivity of the

separate modules of the program to determine the best way to partition them among the

available processors.
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3.5 Summary

This chapter presents an initial analysis of NEC-BSC and details the high level

structure of the program using a high-level design language called UNITY. Possibilitics for

parallelization are identified, and a high-level parallel design is shown. The next chapter

builds on this work, introducing a detailed, or low-level design, also using UNITY. This low

level design has more detail about the eventual implemetation, and implements decisions

made during the design process.

33



IV. Detailed Design

4.1 Introduction

The process of converting an existing high-level design into executable code call be

accomplished in a variety of ways. A technique is selected and the high-level design pre-

sented in Chapter 3 is refined and expanded into a detailed design, incorporating features

of the target architecture in the process.

4.2 Decomposition Technique

Based on the analysis in Chapter 2, a data decomposition technique was chosen to

be implemented in the parallelization effort. In order to create a detailed design, however,

more analysis of the existing program is required. This is necessary because the object

chosen for decomposition should fit the proposed uses for the parallel implementation. This

investigation focuses on suitability of the various possibilities for decomposition identified

in the high level design. These possibilities are the volumetric angles, the circular angles,

the UTD terms, and the objects in the scene geometry. An analysis of the most commonly

used features of NEC-BSC reveals that most of the time, the volumetric angle data is

not varied, reducing that iteration to one pass. Therefore, a partitioning of that level of

the nested iterations is not possible. Further analysis shows that the calculation of the

partial contribution due to the separate UTD terms varies greatly in their execution time

for the same angles. The UTD terms are also relatively small in number (only six for flat

plates ip to a maximum of twenty), giving no possibility for scalability to large numbers

of processors. The objects themselves are a possibility, but an investigation of that avenue

indicates that a great deal of interaction occurs between the different objects, so a full

decomposition results in a great deal of communication. For a coarse grain architecture,

this means an unacceptably low efficiency. The circular angles (tile final possibility), are

well suited to data decomposition. Most of the time, the input data requests a full 360

degree scan for the circular angles with varying amounts of precision within the scan. The

actual number of discrete angles usually varied between 360 and 1800. With 1800 discrete

angles, the actual difference between successive angles could be as small as 0.2 degrees.

4.3 Decomposition Object

Another important factor in determining how to approach a detailed design is the

target machine for which the application is intended. In this case, the Intel iPSC/860 is
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chosen as the target machine, and its characteristics then influenced the choice for decom-

position. In fact, this is why the objects in the scene are not chosen for distribution among

the processors. Previous work used the iPSC/2 to implement a static load balanced version

of NEC-BSC (18). The Intel iPSC/2 and iPSC/860 are coarse-grain parallel processors

with the number of processors equal to a power of two. With a latency of 75 ptseconds per

message, and a transmission rate of 2.88 Mbytes per second (compared to a peak rate of

40 MFLOPS) (21), an application on the iPSC/860 should avoid large numbers of mes-

sages. For this reason, a full decomposition of the objects would not be efficient. This

leaves either a partial decomposition of the objects or the circular angles. The number of

objects that NEC-BSC can handle is currently limited to 36 (13). This places a limit on

the number of processors over which the problem can be partitioned. The circular angles

are then left as the best candidate for decomposition across the processors since results for

individual angles may be computed independently of other angles. Thus, the processors

do not need to communicate among one another while the program is running. The only

communications required are the gathering of output data, and the distribution of the

work.

4.4 Load Balancing

Once the method of decomposition and the term to be decomposed have been chosen,

another factor needs to be considered: load balancing. Even though a fairly equal number

of angles can be distributed to the available processors, there is a possibility that some

groups of angles take longer than others when calculating the radiated electromagnetic

power. It is not desirable for the processors to have execution times that are imbalanced,

since the entire application doesn't terminate until the last processor has finished. In order

to reduce the execution time as much as possible, the individual processors should all finish

at approximately the same time. If one processor finishes significantly later than the other

processors, those other processors are i('e while they wait for the last one to finish. Idle

time results in reduced efficiency, since more time is being taken to produce the same

results. Earlier work in para~elizing NECBSC used a static load balancii.g scheme for

distributing the work load (18), and this work concentrates on a dynamic lod balancing

algorithm.

Dynamic load balancing techniques separate the available nodes into two types:

worker (or slave) nodes and controller (or master) nodes. Each worker node is given

an initial set of data, and when it finishes this set of data, it notifies its controller that
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it is ready for another set of data. The controller maintains a list of all the work that is

to be accomplished and sends out new data sets to the workers as requested until all the

work has been exhausted. The controller then tells the worker nodes to shut down (20).

Dynamic load balancing works well when the work to be azcomplished has a wide vari-

ation in complexity (9). If succeeding data items do not have similar execution times,

then a statically load balanced application would suffer in some cases from an imbalance

in the work load. Dynamic load balancing seeks to alleviate this situation by introducing

a controller to monitor the status of the job and allocate more work to nodes that would

otherwise finish sooner than others.

The design of this basic dynamic load balancing algorithm is fairly simple, but in

order to optimize the performance and reduce the overhead associated with dynamic load

balancing, some features of the target system must be taken into account. UNITY, a high

level design language provides an excellent way to specify such a design so that it can be

used in many different parallel environments. Section 2.3.2.6 explains the execution of a

dynamic load balancing algorithm and lists alternatives for implementation.

4.5 UNITY Design

4f.5.1 Controller

Program Dynamic-Balancer

Declare

Procedure Parallel\.NECBSCi (begin-circ-point, end-circpoint)

{Variables for parallel implementation}
processor : Integer
curr-circ-point : Integer
data: File

(variable for holding the values for the next data set to be sent out}

temp-begin-point : Integer
temp-end..point : Integer
step.size : Integer

num-proces.ors : Integer
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-nitially

Cread (begin-circ-point, end-circ-point)
curr-circ-point =begin-circ-point

Always

temp-begin-point = curr-circ-point
temp-end-point = ternp.begin-point + step-.size

Assign
{ Assign the next data set to the appropriate processor)

0 (V curr-circ-point :0 < curr-circ-point < end-circ-point - step-.size
(obegin-.circ-pointpr.....sor temp-begii-pointl

end-circpointprocessor =teinp-end..pointj I
curr-circ.point temp-end-point + 1))

(0begin..circ-pointprocessor temp-begin-pointil
end-.circ-pointprocessor :=endcirc-pointj I
curr..circ-point temp-end-point + 1

=if temp..end-point > end-circ-point A curr-circ.point < end-circ-point)

(V processor :0 < processor < nun-processors
B begin.circ.pointpro e.. or := 011

end~circ~pOintpro,,,sor 0)

End {Dynamic Load Balancer}

Fixed Point

FP curr..circpoint > end-circ-point

Here, the subscripts denote individual instantiations of the indicated procedure on

each ard every node. The procedure ParallelNECBSC is therefore thle application pro-

gram as adapted to the target hardware. Temporary start and stop points are set up for

use by the controller. When the program is invoked, the local variables beginlcirc-point

and end-circ-point are set to the current temporary values. These temporary values are

simultaneously set to tlhe next val ues in the dlata set. When the data set is exhausted, the

local values are set to zero.
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The load balancing routine mounts above the main program, and essentially calls the

main program on each node, giving it a new start and stop point each time it is invoked.

In other words, it acts as a supervisor, controlling the execution of the program itself.

4.5.2 Main Program Changes Another necessary change when implementing a dy-

namic load balancing technique is to modify the main program to cause it to send a message

to the controller when it has finished its current set of data. The parallel prograrm now

looks like this (only the changes have been listed):

Program ParallelNECBSCi

Declare
{Declares the dynamic balancing program and a necessary function}
Procedure DynalnicLoadBalancer (processor)
Function Nodenum( Return Integer

{variables required for local processing and message passing}
my-number : Integer
tempFP : Boolean

Initially

tempFP = false

Always

my-number = nodenum 0
{Declare the point at which a message should be snt}

temprFP = (V i : 0 < i < vol-points::
Vj : 0 < j < circ-points

V k : 0 < k < 20
V I : 0 < I < numnobjects

element-done (i, j, k, 1) = true)
Assign

{Send a message if the criterion for signalling has been met}
processor = my-nmber if temp_FP

Fixed Point

FP - tempFP A begin-circ-point = 0
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The main algorithm (for the worker nodes) signals the dynamic load balancer when

it finishes its current set of data. When Tenip_FP evaluates to true, this message is sent

by setting the variable "processor" to the node number that is sending the request. After

invoking DynamiciBalancer, it waits until signaled b3 the controller to begin processing a

new set of data.

The actual algorithm implemented signals the load balancing routine when all but

one of the rays in the data set has been processed. This allows the calculations to continue

while the message travels to the controller. The details and benefits of this modified

dynamic balancing technique are discussed in section 2.3.2.7.

Appendix A gives some examples of actual code that is developed using this dynamic

load balancing techniques. The essentials of both the controller and the node programs

are shown.

4.6 Summary

This chapter discusses the detailed design decisions that affect the shape of the

implemented program. The reasons for choosing a data decomposed, dynamically load

balanced approach are given, and UNITY is used to show how those decisions and the

claractersistics of the target machine molded the high-level design ito an implementable

low-level design. The next chapter discusses the results of this design and the conversion

of design into implementation, giving timing results for serial, and parallel versions of

NEC-BSC.
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V. Performance Analysis and Results

5.1 Introduction

The results of the performance evaluations on both serial and parallel versions of

NEC-BSC are covered. The serial code is executed and the timing figures are presented

for analysis. Timing values for a previous parallel version of NEC-BSC are also shown.

These values are the result of executing the previous parallel version with new, more

complex data sets. Finally, the execution times for the dynamically balanced version of

NEC-BSC are presented and compared with both the serial and previous parallel versions.

5.2 Performance Analysis of Serial NEC-BSC

In order to establish a reference from which the parallelization results can be judged,

evaluations of the execution time for the serial version of NEC-BSC are required. Such

measurements can also give an idea as to which area of a program uses the most CPU

time. Such data is useful to a software engineer who wishes to improve the efficiency of

a serial program through optimization of existing code. In such cases, the target machine

is usually another serial machine, often the same one initially used to execute the code.

NEC-BSC, fortunately, has been validated by independant researchers as to computational

accuracy.

One tool which can be used to analyze the performance of existing code is called

FORGE and is provided with the iPSC/2 and iPSC/860 hypercubes. FORGE also has a

limited automatic parallelization ability. Suhr tried to use FORGE to provide some data on

NEC-BSC's performance and gain insight into the process of parallelization of serial code.

Unfortunately, FORGE did not recognize variables that used the COMPLEX data type.

These variables are used by NEC-BSC to calculate and store the value of the field strengths,

and FORGE's inability to handle these variables rendered it useless (18). NEC-BSC was

then ported to a VAX minicomputer, and the Performance and Coverage Analyzer (PCA),

provided as a part of the VAX toolset, was used to gather data on the performance of

the original serial version. Parts of a sample output file created by NEC-BSC is included

in Appendix B for reference. The results shown in Table 1 illustrate that for simple

example problems, one subroutine, PLAINT, used up most of the time. Since a normal

application would involve much more complex scene compositions than the first example,

more example data sets were created, each more complex than the previous. These more
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complex data sets increased the number of plates by multiples of eight. Table 2 shows

that the percentage of time devoted to the PLAINT subroutine increased dramatically as

the complexity of the target geometry increased. For the most complex data set, PLAINT

was called over one million times!

Table 1. Division of effort for a sample data file

Subroutine Name [ Data Count Percent

PLAINT 6,528 38.2
RPLDPL 2,642 15.5
DPFTWD 1,531 9.0
PDLRPL 1,302 7.6
FLRD 947 5.5
DIFPLT 777 4.6
FLDR 738 4.3
SOURCP 440 2.6
SOURCE 321 1.9
REFBP 299 1.8
IMAGE 212 1.2
FLD 167 1.0
all others 1,166 6.8

Total 17,070 100.0

Table 2. Percentage of time spent in the PLAINT subroutine

PLAINT Percentage

Number of plates 8 16 124
Percentage 38.2 49.1 57.1

Performance analysis revealed that the PLAINT subroutine is the workhorse of NEC-

BSC, using up most of the execution time with calculations of intersection coordinates.

Analyzing the subroutine itself to determine its complexity showed this value to be propor-

tional to the number of objects, or 0(n), because it checks for a possible intersection with

every other object. The intersection algorithm assumes that each object in turn extends

to infinity in every direction, calculates an intersection point on the infinite object, and

then determines if that intersection point lies within the bounds of the finite object. If

the intersection point does not lie within the bounds of the finite object, then there is no

intersection, and processing continues. If an intersection does occur, then processing for
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that object stops, since the ray cannot propagate freely in the desired direction. Since

some of the UTD terms have a complexity of 0(n3 ), the overall complexity of NEC-BSC

is 0(n 4 ), where n refers to the number of objects. For more detail on the functionality of

NEC-BSC, see Appendix A.

5.3 Parallelization with Dynamic Load Balancing

The earlier work of Scott Suhr used a static load balancing technique to partition the

work among the processors. In his work, he was limited to a small number of sample input

files which were relatively simple in nature, not being truly representative of an actual

problem. By analyzing the structure of the input data files, it was possible to construct

more complex examples that would be more indicati ve of the true performance of NEC-BSC

in both serial and parallel environments. These new input files, with a greater complexity

than the originals, are then used in subsequent runs of the statically load balanced version

of NEC-BSC in order to gather data on its efficiency as the complexity of the problem

increased. The number of nodes used during these runs is also increased to investigate

the effects of further scaling. Table 3 shows how the increased complexity and scaling

affected the overall efficiency of the program. In the best case, efficiency increased from

23% to 80% as the number of plates increased to 32 when scaled to eight processors and

still showed good efficiency (67%) when run with sixteen processors.

Table 3. Static Load Balancing Efficiency versus number of nodes (iPSC/860)

Num Nodes Elapsed Time (msec) Efficiency Speedup

1 1,035,545 100.00 1.00
2 531,373 97.44 1.95
4 280,112 92.42 3.70
8 159,945 80.93 6.47

16 96,011 67.41 10.79
32 -0 - --
64 -0

A modification of the standard dynamic load balancing technique introduces the
ability to "hide" some of the time spent in communication as the nodes request more data,

and the host responds. This method makes use of an ability inherent to the iPSC/series

hypercubes. This ability arises from the way the messages are handled. The operating

system that controls the operation of the nodes allows for three types of messages: syn-

chronous (csend, crecv), asynchronous (isend, irecv), and interrupt generating messages
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(hsend, hrecv). Any type of send can be processed by any type of receive cominand, so a

send-receive pair need not be of the same type.

Furthermore, for the "csend" command, two different message protocols are used (21).

If the message is less than 100 bytes in length, the message is sent along with tile neces-

sary header information to the receiving node. If sufficient buffer space is available for that

message, an acknowledgenient is sent back to the receiving node. Once the bending node

has received the acknowledgement, it continues on with its computations. If tile message

is longer than 100 bytes, only tie header information is sent initially, and the sending node

waits until a path has been established, and the receiving node returnl, an initial acknowl-

edgement. The sending node then proceeds to send the body of the message. Once the

body of the message has been sent, tihe sending node continues with its normal execution.

Before it can resume this normal operation, the sending node must wait until the message

has been completely received. In this situation, the receiving node does not send the ac-

knowledgement until it has executed a receive instruction of some type. This meais that

the sending node could wait while the receiving node executes some calculations, resulting

in idle time.

The proposed modification to the normal dynamic load balancing technique, is based

on the fact that the receiving node need only notify the controller that it requires more data.

Since this requires only the node number of the requester, a short message accomplishes this

function. Such a sL.ort message could be sent before the node finishes processing the current

data set. As the message tra-vels to the controller, the requesting node finishes processing

its current set of data. Meanwhile, the controller receives the request, determines the next

set of data for that node, and sends tile next set to the requesting node. By the time

the requesting node completes its current data set. the next data, set is already stored

in a local buffer, and it can begin processing that next data set without waiting for any

communications. This approach is implemented %,ith four rays in each data set, allowing

tme worker nodes to request the next data. set after three of tile four rays have ocen

processed.

Throughout the code development stage, standard software project management

techniques are used. Time dynamic load balancing is implemented incrementally, and con-

figuration management is used to ensure that tle changes do not become chaotic. This

allows a quick recovery if an attempt does not succeed. The configuration management of

this project is accomplished by establishing & baseline %ersion of the program and working

from that basis. Once a modification is shown to be correct in its function, a new baseline
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is established. Even though there was only one person working on this project, because

of the size of the code (> 20,000 lines of code), all work had to be carefully coordi, ated

to minimize thrashing. The use of these techniques saved many hours of searching for

problems!

The dynamically balanced version of NEC-BSC also shows good efficiency when

scaled over eight processors. Table 4 shows its performance as a function of the number

of processors, scaling up to as many as 64 processors. It is also important to note that

although the overhead associated with dynamic load balancing tends to increase the overall

execution time, an increase in the execution times of the nodes Also tends to Lounterbalance

this effect. It is disappointing to note that the dynamically >.alanced version of NEC-BSC

is significantly slower than the statically balanced version. This difference in execution

time is a mystery since the increased message traffic cannot account for this. In the most

complex example, the dynamically balanced version sends exactly 188 more short messages

than the statically load balanced version. At less than 75 microseconds per message (21),

this amounts to a total time of approximately fifteen milliseconds, yet the execution times

differ by as much as fifty seconds! Since both versions collect the data in much the same

way and use the same method to calculate the necessary field values, the cause for this

large discrepancy is unknown, and every attempt to explain it has been unsuccessful. It

is also important to note that these timing values include the time required to gather

the output data to the host and write the results out to disk. If those output times are

removed, the actual time spent by the nodes in calculation and communication shows even

more efficiency, and the effects of the internal message passing could also be measurd

accurately.

Table 4. Dynamic Load Balancing Efficiency versus number of nodes (iPSC/860)

Num Nodes Elapsed Time (msec) Efficiency Speedup

1 2,363,036 100.00 1.00
2 1,210,133 97.63 1.95
4 632,812 93.35 3.73
8 340,853 86.66 6.93

16 199,694 73.96 11.83
32 130,300 56.67 18.14
64 100,767 36.64 23.45

A possible expla .ation for the increase in execution time involves the possibility that

large numbers of messages can causr the system to bog down if all the messages cannot
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be handled quickly enough. This phenomenon is known as "bottlenecking" and occurs

when messages build up in the receiving queue of a node (10). To see if this is indeed

the case, some tests were performed on one node, measuring the execution time for the

same data set, but varying the number of rays calculated. Table 5 shows that the actual

time to calculate a single ray is about 1.6 seconds. The elapsed times are adjusted to

account for the time spent sending the final output data to the host so that only the

time spent calculating the paths of the rays is be used. The round trip consists of a

short message (four bytes in length) from a node to the host requesting more data, and

another short message (eight bytes in length) from the host to the requesting node that

contains the next data set to be calculateu. A four byte message requires less than 75

microseconds to arrive (assuming no contention), while an eight byte message takes about

77 microseconds (21). Excluding the time required to calculate the values for the next data

set (considert.d inconsequential: less than ten integer operations on a 40 MHz clock) (4),

the total time for the round trip is about 150 microseconds. With 6.4 seconds between

each request, then, ideally, more than 42,000 messages can be processed in each six second

period. If the time at which a message is sent is a normally distributed random variable,

the effectb of bottlenecking would not become significant until the number of messages

approachl 50% of the theoretical maximum (with one message per node). Therefore, for

this application, over 20,000 nodes could be handled by one controller. This means that

bottlenecking even with 64 nodes cannot be the cause of the increased execution tin.e, and

this idiosynchracy remains a mystery.

Table 5. Execution Time for One Ray (iPSC/860)

Num Rays Message Size Elapsed 'ime (msec) Adjusted Time (msec)
160 10,521.3 10,521.07

1440 46,080 2,325,603.0 2,325,585.28

Average 1613.285

5.4 Summary

This chapter details the results of this thesis effort. The performance of the serial

version of NEC-BSC is evaluated, and previous work ii, parallelizing the program is an-

alyzed on the basis of its performance. The dynamic load balancing technique chosen in

Chapter 4 is implemented and the results compared with the other two versions. In terms
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of execution time, the results are disappointing when compared to the statically balanced

version, but the overall improvement over the serial version is excellent. The reason for

the difference in execution time is addresses as an area for future work. The next chapter

discusses the conclusions of this thesis investigation and makes recommendations for future

work.
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VI. Conclusions and Recommendations

6.1 Introduction

This chapter contains the conclusions and realizations reached through this thesis

effort. The results of the parallelization effort are discussed, and future possibilities for

work are presented.

6.2 Conclusions

It is both possible and profitable to convert existing serial programs to a parallel

application if the resulting product is to be used on a regular basis. The resulting savings

in execution time can rapidly recoup the time spent in development. For example, if

NEC-BSC is to be regularly used with data sets of 32 objects, Table 4 shows a savings of

approximately 38 minutes per run (over one node) on a 64 node machine. This translates

into a savings of about 160 minutes (per run) versus a VAX 11/780. This savings is

also just over 37 minutes for 32 nodes (versus one node) or 159 minutes versus the VAX

11/780. If the program is executed twice a day (on a 32 object data set), then a savings

of one hour per day (versus one node or five hours versus a VAX 11/780) can be realized.

This translates into five hours a week, or twenty hours a month (or 25 hours a week

and 100 hours a month versus the VAX 11/780). Within a short time, the development

effort can be recouped, and productivity will increase. Although the execution time on 64

nodes experienced a dramatic decrease in efficiency (compared to the execution time on

32 nodes), with even more complex data sets, this efficiency rises. This trend is supported

by the data indicating that the amount of calculation performed by the program increases

greatly as the complexity of the number of objects in the target geometry increases. More

calculations means that the ratio of the calculations performed to communications sent and

received increases. Since the grain of the iPSC/860 remains constant, more calculations

per communication increases the efficiency of the application.

6.3 Recommendations

NEC-BSC itself could benefit greatly from a thorough examination with standard

software engineering techniques. The modules of the program are both tightly coupled

and have loose cohesion. The efficiency of the program itself could be increased greatly

if a project were undertaken to improve the code. Such an examination would require
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more than one person, and every engineer would need to be familiar with tile theories of

electric and magnetic fields as they are propagated through space. Another area for work

would be to convert the source code from FORTRAN to another language that supports

dynamic allocation of memory. FORTRAN wastes large amounts of space when the full

range of a program's capabilities are not used. Using a computer language such as C

or Ada would allow memory to be used more efficiently. Additionally, the capabilities of

NEC-BSC need to be expanded. The program is currently limited to 36 objects, and 1801

rays. Although the number of rays is probably sufficient for good accuracy, complex objects

cannot be accurately modeled with a small number of objects, and today's computers have

the necessary mncmory available to expand these limits. Assuming 512 bytes of storage

for each object, 2,000 objects could be stored in 1M of memory. The 1800 possible rays

would take up only 100K of memory, so a machine with 2Mbytes or more of memory could

easily handle complex scenes modeled with a large number of primitive objects. Computer

languages such as C or Ada also manage available memory much better than FORTRAN,

and this efficiency could be used when converting NEC-BSC to one of these languages.

Another area for work lies in increasing the number of UTD terms that are handled.

The currently supported terms handle up to three reflections and two diffractions. A higher

number of reflections would be desirable, and could be achieved with no loss of efficiency if a

new algorithm were developed to take advantage of the available memory, using it to reduce

redundant calculations. A possible approach to this would be to compare a simple value

(calculated for each UTD term and object) with a desired value. If the calculated values

are stored in a large matrix, then they can be easily referenced, instead of recalculating

intersection points.

A strong possibility for future work involves re-engineering the problem based on the

functionality of NEC-BSC. If done with a parallel environment in mind, the resulting ap-

plication could be considerably more efficient than previous parallelizatiul efforts. During

such work, UNITY would be a strong asset in designing the program, allowing the appli-

cation to be tailored to the architectural characteristics of the target machine. One reason

that such an approach would be successful is that NEC-BSC was originally written for a

small-memory model architecture. Today's machines all possess a great deal more memr-

ory than previous versions, and in order to make use of the large memory sizes currently

available, it may be necessary to completely rewrite the main sections of the program. The

smaller subroutines which perform basic scientific calculations could probably be brought

over unchanged (18).
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NEC-BSC could also be ported to a different computer architecture to investigate

the effects that a different machine structure would have on efficiency. It is possible that a

different decomposition for a different target machine could result in better results. Con-

versely, it is also possible that a different architecture would not be as efficient. Possibilities

for such a conversion are the Connection Machine, and the iWARP project. Both these

machines are fine-grain architectures (10), and a distribution of the objects across these

machines is certainly possible without a great loss of efficiency. The characteristics of the

Connection Machine and the iWARP project differ from those of the iPSC/860, and a

conversion to either of these machines could take advantage of their strengths. The new

Intel machine, the Paragon, although based on the same microprocessor as the iPSC/860,

features greatly improved communications, reducing its grain size. This factor could also

increase the efficiency of an application such as NEC-BSC.
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Appendix A. tNEC-BSC

A.1 Introduction

This appendix gives a brief description of the functionality of NEC-BSC and some

samples of the parallel code that allowed the program to run on the iPSC/860 hypercube.

A.2 Functions

NEC-BSC provides the ability to calculate the simulated radar cross-section (RCS)

of an object when incident electromagnetic energy encounters that object. NEC-BSC also

allows the researcher to calculate the strength of the simulated electric and magnetic fields

at any point within the three-dimensional reference coordinate system of the object. The

effects of antennas and dipoles are accurately represented, and objects may be made of var-

ious types of materials including perfectly conducting metallic, transparent thin dialectric,

or a dialectric covered surface. An object may be composed of multiple sections, each of a

fundamental type. Fundamental types include flat plates and cylinders (including elliptical

cylinders), and provision is made for a ground plane. Supported functions include far and

near zone patterns and back or bistatic scattering. Parameters that influence the calcu-

lations include number of sources, number of receivers, presucnce of antennas, and varying

frequencies. The program is written in FOITRAN 77, and comprises approximately 20,000

lines of code, including comments. Figures 8 and 9 show a simple scene geometry from the

top and side views, and Figure 10 shows the output from NEC-BSC for the scene shown

in Figures 8 and 9.

A.3 Samples of the Parallel Code

The full source code may be found in the ~pwork/necbsc/dyn-bsc subdirectory on

mbvsrm.mbvlab.wpafb.af.mil. The first example is from the host program and contains

the declarations and code necessary to control the node programs.

A.3.1 Sampies of the dynamic load balancer

Program run-bscnode
ccc

c--- Define variables for use as message types
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SOURCE

TOP VIEW

Figure 8. Top view of a. sample scene geometry

integer WORK-TYPE, RAY-TYPE

integer NEW-DATA (2), NEWSIZE
integer NEXT

c--- Initialization of the message size variable

WORK-TYPE = 222

RAY-TYPE = 333
NEW-SIZE = 8

c--- Initialization of the starting point for the dynamic
c--- balancing

NEW-DATA (1) = NUMNODES * 4 + 1

NEW-DATA (2) = NEW-DATA (1) + 3

NEXT = NEW-DATA (2) + I

c--- Check for a smaller data set than the nodes can process

if (NEW-DATA (1).GT.NPN) then
write (*, *) 'Input data too small for the current cube

2 size. Please try a'
write (*, *) 'smaller cube or a larger data set'

STOP
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SOURCE.

SIDE VIEW

Figure 9. Side view of a sample scene geometry

end if

c--- Check for less than four rays in the next data set

if (NEXT.GT.NPN) NEXT = 0
if (NEW-DATA (2).GT.NPN) NEW-DATA (2) = NPN

c--- If there is a current set of rays to be processed, proceed

1190 if (NEW-DATA (2).GT.0) then

c--- Receive a request for more data from a node and send out the
c--- next set to be processed

call crecv (WORK-TYPE, NODENUM, INTSIZE)
call csend (RAY-TYPE, NEW-DATA, NEW-SIZE, NODENUM, 0)

c--- Calculate the next set of data for processing. If finished,
c--- set the next ray to 0, so the nodes upon receipt of
c--- a zero will stop processing.

if (NEXT.GT.0) then
NEW-DATA (1) = NEXT
if (NEXT + 4.GT.NPN) then

NEW-DATA (2) = NPN
NEXT = 0

else
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Figure 10. Far zone results for the sample scene geometry

NEW-DATA.(2) = NEXT + 3
NEXT = NEW-DATA (2) + 1.

end if
else
if (NEW-.DATA (1).GT.0) then

NEW-.DATA.(1) = 0
else
it (NEW-.DATA (2).GT.0) then

NEW-.DATA (2) = 0
end if

end if
end if

c--- Return to the top of the loop for another pass

goto 1190
end if

c--- Tell the remaining nodes to stop processing
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if (NUM-NODES.GT.1) then

do 444 1 1, NUM..NODES

if (I.NE.NODE-NUM + 1) then
call csend (RAY-TYPE, NEW-DATA, NEW-SIZE, 1 1, 0)

end if

444 continue

end if



A.3.2 Samples of the node program This section contains excerpts from the node

program. These excerpts contain the declarations and code necessary to allow the node

program to communicate with the host program, sending requests for more work, and

processing the next data set after it arrives.

PROGR,.: NECBSC

C!!! NEC-BSC Version 3.2 ( Updated 26-OCT-89 )
C!!! iPSC mod # 4.0 ( Updated 2 May 91 )
C!!! iPSC mod #: 5.0 ( Updated 15 Aug 91 )

c--- variables for saving the output data in a different
c --- format

COMPLEX CT1(NOX),ET1(3,NOX),HT1(3,NOX)
integer RAYS(1801)

c--- Add the necessary declarations to allow variable
c--- stop and start points for the pattern point loop

integer START-POINT, NUMLOOPS

c--- Message passing variables

integer WORK-TYPE, RAY-TYPE

c--- Message passing variables

integer NEWDATA(2), NEW-SIZE

c--- Add an integer counter to count the number of rays that
c --- were processed

integer RAY-COUNT

c--- Change 3: Initialize the message passing variables

WORK-TYPE = 222
RAY-TYPE = 333
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c--- Change 4: Initialize the message passing variables

NEW-SIZE = 8

c--- Change 9: Initialize the ray counter

RAY-COUNT = 0

C!!!

C!!! 3. MAIN COMPUTATION SECTION

C!!!
C!!! Loop thru volumetric pattern points.

DO 1190 IIV=1,NPV

c--- Initialize the loop variables

START-POINT = MY-NODE * 4 + 1
NPNP = START-POINT + 3

c--- Start the pattern point loop

DO 1100 IIC = START-POINT, NPNP

II=IIC

c--- Change 3: Send message to host requesting more data

if (NPNP - STARTPOINT.EQ.3) then

if (IIC.EQ.STARTPOINT + 2) then
call csend (WORK-TYPE, MY-NODE, INTSIZE, MY-HOST, 81)

end if

else

if (STARTPOINT.EQ.NPNP) then
call csend (WORK-TYPE, MY-NODE, INTSIZE, MY-HOST, 81)

else
if (IIC.EQ.NPNP - 1) then

call csend(WORKTYPE, MY-NODE, INTSIZE,
2 MY-HOST, 81)
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end if
end if

end if

c--- Add a counter to determine exactly how many rays were processed

RAY-COUNT = RAY-COUNT + 1

c--- Ending place for the pattern point loop

1100 CONTINUE

c--- Receive the next set of poiints from the host

call crecv (RAY-TYPE, NEW-DATA, NEW-SIZE)
START-POINT = NEW-DATA (1)

NPNP = NEW-DATA (2)

if (STARTPOINT.GT.O) goto 1180

N1PNP = RAY-COUNT

C!!! End of volumetric pattern loop.
1190 CONTINUE

END



Appendix B. Sample output of NEC-BSC

B.1 Sample timing information from NEC-BSC

Following is a sample of the information printed to the screen during execution of

the parall 1 version of NEC-BSC. The individual node timings as well as the time required

to gather the data from the nodes and write the results to disk are given. Finally, the

total execution time is listed. During each run of parallel NEC-BSC, the number of nodes

assigned does not change. Each new run displays how many nodes are being used, and the

corresponding times for that run.

Running NEC-BSC:

Number of nodes attached: 64

Input Filename = "ex6gl.inp"

Elapsed Time:

Node Total Time (msec)

0 65288
1 68037
2 65355
3 63951

61. 63704
62 63986
63 68287

Output elapsed time (node 0, msec): 18356

Host CPU time required for startup: 0
Host CPU time required tor output: 22820

Total Host CPU time required: 32640
Approx. total elapsed time required: 100767

(max node + Startup + Output)
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Running NEC-BSC:

Number of nodes attached: 32

Input Filename = "ex6gl.inp"

Elapsed Time:

Node Total Time (msec)

0 97,777
1 97,167

2 98,330
3 97,119

29 98,265
30 97,984

31 98,070

Output elapsed time (node 0, msec): 17,795

Host CPU time required for startup: 0
Host CPU time required for output: 22,460

Total Host CPU time required: 32,100
Approx. total elapsed time required: 130,300

(max node + Startup + Output)

Running NEC-BSC:

Number of nodes attached: 2

Input Filename = "ex6gl.inp"

Elapsed Time:

Ncde Total Time (msec)

0 1,169,889
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1 1,175,933

Output elapsed time (node 0, msec): 11,399

Host CPU time required for startup: 0
Host CPU time required for output: 24,830

Total Host CPU time required: 34,220
Approx. total elapsed time required: 1,210,133

(max node + Startup + Output)

Running NEC-BSC:

Number of nodes attached: 1

Input Filename = "ex6gl.inp"

Elapsed Time:

Node Total Time (msec)

0 2,327,646

Output elapsed time (node 0, msec): 10,177

Host CPU time required for startup: 0
Host CPU time required for output: 25,700

Total Host CPU time required: 35,400
Approx. total elapsed time required: 2,363,036

(max node + Startup + Output)
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B.2 Sample program output

Following are portions of an output file produced by NEC-BSC for the input file

exGgl.inp. The essential data of the input file is repeated, and then the electric field

strength values for each of the specified angles is given. After the electric field strength

values come the total field strength values computed by the program.

* NEC-BSC 3.2i5.0, 12 Aug 91 *

* The Ohio State University *
* Electroscience Laboratory *
* 1320 Kinnear Rd. *

* Columbus, Ohio 43212 *

* Written by Ronald J. Marhefka *

* Modified for the Intel iPSC/2 & iPSC/860 by *

* Paul R Work, Scott Suhr and *

* Dr Gary B. Lamont *
* Air Force Institute of Technology *

* AFIT/ENG *
* Wright Patterson AFB, OH 45433-6583 *

, CE: TWO EIGHT SIDED BOXES TEST, EACH WITH EIGHT OUTLYING PLATES *
* EX 6D1. *
* *

* *

* US: *

* SOURCE LENGTH HS AND WIDTH HAWS ARE ASSUMED TO BE IN WAVELENGTHS *
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* FR: *

* FREQUENCY= 9.940 GIGAHERTZ *

* WAVELENGTH= 0.030160 METERS *

* PF: •

* PATTERN AXES ARE AS FOLLOWS: *

* VPC(1,)= 1.00000 VPC(1,2)= 0.00000 VPC(*,3)= 0.00000

* VPC(2,1)= 0.00000 VPC(2,2)= 1.00000 VPC(2,3)= 0.00000 *

* VPC(3,1)= 0.00000 VPC(3,2)= 0.00000 VPC(3,3)= 1.00000 *

* PHI IS BEING VARIED WITH THETA= 90.00000 •

* START= 0.00000 STEP= 0.50000 NUMBER= 721 *

* *** * *** ** ** *** * ** **** ****** * ** ** ** * ** * * ** ** *****. ***** * *** * ** * * *,**,

* SG: •

* THIS IS SOURCE NO. 1 IN THIS COMPUTATION. *

* THIS IS AN ELECTRIC SOURCE OF TYPE -2 *

* SOURCE LENGTH= 0.50000 AND WIDTH= 0.00000 WAVELENGTHS *

* SOURCE LENGTH= 0.01508 AND WIDTH= 0.00000 METERS *
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* THE SOURCE WEIGHT HAS MAGNITUDE= 1.00000 AND PHASE= 0.00000 •

* SOURCE# INPUT LOCATION IN METERS ACTUAL LOCATION IN METERS *
*-------------------------- -------------------------- --------------------------- *

* 1 -20.120, 0.000, 0.000 -20.120, 0.000, 0.000 *

* THE FOLLOWING SOURCE ALIGNMENT IS USED: *

* VXSS(1,1, 1)= 1.00000 VXSS(1,2, 1) 0.00000 VXSS(1,3, 1)= 0.0000*

* VXSS(2,1, 1)= 0.00000 VXSS(2,2, 1)= 1.00000 VXSS(2,3, 1)= 0.0000 *

* VXSS(3,1, 1)= 0.00000 VXSS(3,2, 1)= 0.00000 VXSS(3,3, 1)= 1.0000 *

* PG: FRONT *

* THIS IS PLATE NO. 1 IN THIS SIMULATION. *

* METAL PLATE USED IN THIS SIMULATION *

* PLATE# CORNER# LOCATION IN METERS ACTUAL LOCATION IN METERS *

-------------------------- ------- --------------------- ------------------------- *

* 1 0.122, 0.102, -0.100 0.122, 0.102, -0.00 *

* 1 2 0.122, 0.102, 0.100 0.122, 0.102, 0.100 *

* 1 3 0.122, -0.102, 0.100 0.122, -0.102, 0.00 *

* 1 4 0.122, -0.102, -0.100 0.122, -0.102, -0.100 *

*PG: FAR FRONT*
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* THIS IS PLATE NO. 2 IN THIS SIMULATION. *

* METAL PLATE USED IN THIS SIMULATION

PLATE# CORNER# LOCATION IN METERS ACTUAL LOCATION IN METERS

*------------------------- ------- --------------------- -------------------------- *

* 2 1 2.122, 0.102, -0.100 2.122, 0.102, -0.100 *

* 2 2 2.122, 0.102, 0.100 2.122, 0.102, 0.100 *

* 2 3 2.122, -0.102, 0.100 2.122, -0.102, 0.100 *

* 2 4 2.122, -0.102, -0.100 2.122, -0.102, -0.10 *

*PG: FRONT BOX 2*

* THIS IS PLATE NO. 3 IN THIS SIMULATION.*

* METAL PLATE USED IN THIS SIMULATION*

*PLATE# CORNER# LOCATION IN METERS ACTUAL LOCATION IN METERS *

* 3 1 10.122, 0.102, -0.100 10.122, 0.102, -0.100 *

* 3 2 10.122, 0.102, 0.100 10.122, 0.102, 0.100 *

* 3 3 10.122, -0.102, 0.100 10.122, -0.102, 0.100 *

* 3 4 10.122, -0.102, -0.100 10.122, -0.102, -0.100 *
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* PG: FAR BOTTOM BOX 2 *

* THIS IS PLATE NO. 32 IN THIS SIMULATION. *

* METAL PLATE USED IN THIS SIMULATION *

* PLATE# CORNER# LOCATION IN METERS ACTUAL LOCATION IN METERS *

*------------------------- ------- ---------------------- ------------------------- *

* 32 1 10.000, 0.171, -2.100 10.000, 0.171, -2.100 *

*32 2 10.122, 0.102, -2.100 10.122, 0.102, -2.100 *

* 32 3 10.122, -0.102, -2.100 10.122, -0.102, -2.100 *

* 32 4 10.000, -0.171, -2.100 10.000, -0.171, -2.100 *

* 32 5 9.878, -0.102, -2.100 9.878, -0.102, -2.100 *

* 32 6 9.878, 0.102, -2.100 9.878, 0.102, -2.100 *

THE FAR ZONE ELECTRIC FIELD

THE FIELDS ARE REFERENCED TO THE PATTERN COORDINATE SYSTEM

E-THETA
THETA PHI MAGNITUDE PHASE DB

90.00 0.00 2.1319E+01 42.52 -2.20

90.00 0.50 5.7678E+01 59.92 6.45
90.00 1.00 5.3923E+01 87.97 5.86

90.00 1.50 5.8013E+01 134.44 6.50
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90.00 358.50 5.8006E+01 134.45 6.50
90.00 359.00 5.3926E+01 87.96 5.86
90.00 359.50 5.7659E+01 59.92 6.44
90.00 360.00 2.2964E+01 44.18 -1.55

TOTAL RADIATION INTENSITY IN DB

THE FIELDS ARE REFERENCED TO THE PATTERN COORDINATE SYSTEM

THETA PHI MAJOR MINOR TOTAL AXIAL RATIO TILT ANG SENSE

90.00 0.00 -2.20 -100.00 -2.20 0.00000 0.00 LIN
90.00 0.50 6.45 -92.89 6.45 0.00001 0.00 RT
90.00 1.00 5.86 -100.00 5.86 0.00000 0.00 LIN
90.00 1.50 6.50 -100.00 6.50 0.00000 0.00 LIN

90.00 358.50 6.50 -100.00 6.50 0.00000 0.00 LIN
90.00 359.00 5.86 -100.00 5.86 0.00000 0.00 LIN
90.00 359.50 6.44 -87.83 6.44 0.00002 0.00 LFT
90.00 360.00 -1.55 -100.00 -1.55 0.00001 0.00 LIN
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Appendix C. The FDTD Algorithm

General

The Finite Difference Time Domain method is a discretization of the

Maxwell Equations in differential form (curl equations). Starting with Maxwell's

equations:

VxH=e aE +oeE (6)
at

VxE=-- -T1--.-H (7)
at

where i1 is the magnetic permeability, , is the dielectric permittivity, o is the total

equivalent conductivity giving rise to electric dissipative currents, and o, is the

corresponding parameter giving rise to magnetic dissipative currents. All

parameters are real. These equations are separated according to their vector

components into a scalar form:

aHz aX aEx (8)

ay az at
DH , DH z  V ( 9

az ax at

aly xax aE 
(-~E3 yy= f[_o,_, (10)axat

aEz aE Y aix (11)

aEXaEX a Hl
az~ax at Y
a# -wy H z (13)
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Figure 11 -- Yee Cell

The FDTD method uses centered differences which are based on the

following first-order approximations to the derivative:

5~ Xjk )-,( Sx k
DF(ij,k,t0 - 2 2 + O(&X2 ) (4

aJx 8,:

DF(ij, k,t).- 2 -2 + O(At 2 ) (5
at At

'The derivatives in space and time in Maxwell's equations are replaced by these

centered differences. Evaluation of the values of E and H fields are offset in space
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by one half intervals as shown in Figure 11. Notice that the H field values are

defined as entering the cell and the E field values are defined along the three

orthogonal edges nearest to the origin (indexes ij,k are positive valued) and, in

this study,

8=5x=3y=5z (16)

E and H are also offset in time by one half intervals. The FDTD method solves

alternately for E and H as time is incremented in one half time steps. The

individual equations are as follows:

1 Q (i+(Jk)

n+ • + "1j k) 2a(i+ /,j,k) ,n, 1..",s1 (i+1 ,j,k)

21(i+12,j,k )

+ At .* 1 (17)
'(i+ jk), 1+ O i + '2j , k)

z (i + /2,j +/,k)-Hn (i +'1,j-1/," )un+1/.2 n~lh12

[+Y (i +/2 , k -2)-H; (i +1/, k + 1/2)

0- jij +,2,k) )
E n+ (,j+'12,k)= 2 F(ij +1/, k )X "" (i'" " k•

1+ G(i j+12,k)

2e(i,j+2,k)

+ At 1(18)
J(ij0/2,k)8 + e(i'j+'2,k)

2e(ij+/2,k)

Hx" ( i6j+/,k+V)-Hn (ij V,k-1/2)
+H n+ 1/2 U-1/2 + 1/2 k) H+1/2 +!12 +! 1/,k
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E~ (jI~ )=1 o(ij, k+1/)+J~ ~~~2(i,j,kt.2= 2 i k+ 1/), ;?(ij,k~i/lZ" Ge(ijA+ ) 2
2 s(i j, le +'/2)

At 119
sijk +/2)8 (e(ij, k+/2) (912E(ij, I +2)

n i+/2 k+/2
(H;+ 4+/) (i+j+'I+ 1)-H i-2tk12

n11/
2H," (ij1/,+ 12-." i+/,k+ )2

(Y *i j1 /,k+12

p (ij 2 +1/21/) m ij+ , ) t( 0+1
22p~ijj+'2, k+2h

[ E(iuj12,k+ /)5 .- L(ij+1, k +)

Om2piij'hj2k+'')At

2 i(iI 1'/2)j~ Z
n *i +1 t+12

y (i,k+'2A 1) miVAkt)t(11++

F E.(i+1,j, k/2)riik' ]
At 

(21+12j 1+2 8 G i+2j 4+2A
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1- Om(i +/'J+1/'k)

H(i +2,j+/2,k)= 2p(i+'/2,j+ /,k) n-'A(i+V/,j+,/2,1)

1+ (Y,,(i+ ,2j+ 1,k)
2p(i+'/2,j+ /,k)
1+++ At •1(22)

B(i +l/'j +/2'k)58 1+ 0.m(i +'2,j +/2,k)

2p(i+1A,j+1/,k)
,[ ZEn(i+/2J+1'k)-E(i ' ij k]

where 5 is the lattice spacing increment, At is the time step increment. In order to

guarantee stability, the choice of time step and spacing increments should satisfy

the following:

V XAt< (f+ +~ -2 (23)
max- & 2 ) Y 2 82,

or, in our case,

5
At < (24)

F3 vMax

where vM x is the maximum phase velocity withi,, the computational domain. As

presented, these equations can handle isotropic, irnhomogeneous, :ossy magnetic

and lossy diele(cric materials.

Note that these equations can all be represented in the following form (see

Figure 12):

Fieldn=rf ieldrev *f(1 +K9*[ Dual1 -Dual 2 1 (25)
i F Dual 3-Dua!4j
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Dual4
Dual 2

Dual 1  2 Field prev, Field next

Dual3
Figure 12 -- Modified Field Names

where

1- Oe~jjj, k
2si~k8 (ij,k) (27)

2s-(ij,k)

for equation-z (12)-(14) and
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C- M~i'j'k)

Kl(iQ, k)= 21,(iQ,k) (28)o, (ij,k)

2p(i,j, k)

K2(i,j,k)= At 1
p(i,j,k)5 a m(ijk) (29)

2p(i,j, k)

for equations (15)-(17), and Dual is the dual of the field being calculated. This

simplified form leads to a straightforward method to compute these fields in

hardware.

Radiation Boundary Conditions

Another computational problem area of the FDTD method is the radiation

boundary condition that must be satisfied at all six faces of the volume. It arises

from the fact that the fields are supposedly in an unbounded space, yet researchers

lack the computational power and time to even approximate this environment.

Therefore, the cell lattice is truncated along planes close to the subject of study and

a radiation boundary condition is imposed. Thi- -ondition attempts to determine

values for the fields lying on the external boundary, since there are no fields

external to these with which to calculate them using the standard cell equations.

Although not nearly as computationally intense as the O(n 3) FDTD cell equations

problem, the calculation time for these exterior points increases as O(n 2), wher-. n

is the linear dimension of the problem space. In large problems, this may account

for a significant amount of time.
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Many researchers using the FDTD method employ the secondl-order Mur

radiation boundary equation, which, for the x=O face, is:

E 2 cnt (Eh (,~)Ejj,k+1/2)l

z z+
cAt+-5

(cAt) 2

Ez'(o,+1k+)2*E (Oj,k+vl (30)

22E
1 1,~+) + E(,j_1, k +/

+E n(0,j, k-'1 /) -2 *E j(0,j,k +'/2)

2)+ E 2,jk+')

A total of sixteen additions and seven multiplications are required to generate this

boundary value. (The leading terms of each multiply turn out to be constant.)

Combining terms to decrease the number of floating-point operations gives:

E n+1 (Ok12=_n-i(,~+2

" cAt-8 *[En + (1j,k+/2)+E z,(Oj,k + 1/))

252 -4CAt 2 *En(Q,/2-*l)+ n*E(,j, k-'-h)
cAt+8 5 Oj )

+(cAt) 2  (31)
2(cAt+8)

E* +E:(0,j, k+1/2)+En(1j-1,k+ /)

z jlk+ 1 )+E 1(,k - )

+En(1,jk+ 1/2) +E "(1,j, k - /)
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The results from this equation are based (in part) on the field values at cells to the

left and right, and directly above and below the cell in question.

Simplifying further, the following expression is obtained:

Ez"+ ( O,j,k +1/)---En- 1(1,j,k +'1)

+K1 *(E" +(1,j, k +'/2)+En-l(0j,k+!/2)}

+gz*{f 2(o,j,k+)+En(1j,k+ )}

E n (O,j+ 1,k+2)+E zn(O,j-1, k+ ) (32)

+3* +En(Oik + 11/2)+En(O,j, k -'/2)
+EznO~j~+ l2)+E, n(O,j,/A

+E "(1,j, k* )+ E tz(, 2)

where

K1 = cAt -5 (33)
cAt +5

K2= 25 2-4cAt 2  (34)
cAt +8

K3=. (cAt)2  (35)28(cAt+8)

This expression now contains only twelve additions and three multiplications. It

was decided that this equation could be implemented in hardware as well, so that

at the conclusion of this study, the groundwork would be laid for a complete, single

board FDTD computational engine capable of generating all cell and boundary field

values.
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