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AFIT/GE/ENG/91D-23

Abstract

This thesis investigates the use of Gabor filters and a radial basis function
(RBF) network for segmentation of high resolution (1 foot by 1 foot) synthetic
aperture radar (SAR) imagery. Processing involved correlation belween the SAR
imagery and Gabor functions. Two methods for selecting the optimal Gabor filters
are presented. This research used complex Gabor functions and operated on single
polarization HH complex Jata. Following the selection of the proper Gabor filters,
correlation coefficients for each image were calculated and used as features for the
RBF network. Prqvided are results demonstrating how Gabor processing and a RBY
network provide image segmentation.
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GABOR SEGMENTATION OF HIGH RESOLUTION
SYNTHETIC APERTURE RADAR IMAGERY

L. Introduction

1.1 General

Research in pattern recognition at the Air Force Institute of Technology (AFIT)
has been working toward building an autonomous target recoguizer (ATR). The
eventual goal is to incorporate this ATR in a missile capable to autonomously locate

and destroy a hostile target located within the missile’s field of view.

To date, many techniques have been developed which provide a limited solution
to the problem of object or texture recognition by machines. Complete machine
recognition remains an unsolved problem. There currently exist machines capable
of limited recognition within a controlled environment. These exist in supermarkets
and industrial produciion lines. The environment for these machines ofien control

noise, object scale, orientation, and position so the features are easier Lo extract.

The development of a target recognizer is much more complex. These machines
will typically be housed in small spaces such as missiles, aircraft or spacecraft. In
addition, the environment will no longer be controllable thereby creating a whole
new set of processing problems. There will be conditions of extreme noise and

temperature along with limitations imposed by the processing speed of the computer
and the algorithms used.

The ability of a target recognizer to be able to pull out cultural items, such as
targets, requires obtaining good sensor data. Assuming that high quality scasor data
is available, then the three steps in the target recognition process are segmentation,
feature extraction and classification (12). Segmentation places a label on each pixel
in an image and locates blobs of interest. Feature extraction computes a number of
features for each blob detected by segmentation. Classification assigas a label to an
input feature vector generated. This research will focus in on the first step of the

target recognition process.




1.2 Background

Previous work by Captain Albert L’Homme (6) used Gabor functions and
an Artificial Neural Network (ANN) to segment Synthetic Apeiiure Radar (SAR)
imagery. His approach correlated the image with a set of nine Gabor filters in
the frequency domain. He then used the coefficients of the Gabor filters as input
vectors to train a Radial Basis Function (RBT) to segment SAR images. The success
rate he achieved in segmenting was better than 80%. lowever, his work had a
few limitations. First, only a limiled set Gabor filters was used. Seccond, only
the magnitudes of the SAR data was used, therefore, all phase information was
lost. TFinally, only a singie polarization, horizontal-horizontal (HH), of the four

polarizations of data available was used. Any information contained in the other
polarizations was lost.

1.8 SAR Imagery

The data used for this research was collected using a high resolution SAR
sensor. The data has been provided by the Massachusettls Institute of Technology
Lincoln Labs and was collected during testing of the Advanced Detection Targel
Sensor (ADTS). The data has a resolution of 1 foot in azimuth and 1 foot range
and is stored in complex format (in-phase and quadrature). The imagery is of a
New England farm area and consists of trees, fields, shadow, and cultural features
(farmhouse, barn, etc,). A later set of data collected from the same area will also be
used. This later data has been processed by a polarimetric white filter in order to

reduce the amount of speckle in the imagery. A description of the filtering process
can be found in (8).

It should be clarified that the shadow regions which appear in the imagery
were created by regions of no return and not as a result of the ambient sunlight. A
sample of the SAR imagery is shown in Figure 1.

1.4 Problem Statement

There does not currently exist a robust computer method for segmenting high
resolution SAR imagery.

1.5 Research Objeclives

This thesis will:
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Figure 1. Sample ADTS SAR Imagery: Mission 85, Frames 27-30




o Search for an optimal set of Gabor functions associated with regions of trees,

fields, shadows, and culture through the use of histogramming and Fourier
techniques.

¢ Use the correlation coefficients from the optimal Gabor filters as inputs to an
ANN which will segment the SAR imagery.

1.6 Definitions

Segmentation is the process of dividing up a scene based on the image structure
to identify objects of interest from background regions.

Pattern recognition is the process of determining the correct identity of the
objects of interest segmented from an image.

Radial basis functions are a type of feedforward neural network that compute
by using neurons with local receptive fields. These neurons encode the inputs by
computing the closeness of the input to the center of their respective receptive fields.

(16:11- 133)

Correlation is a measure of similarity between two objects.

1.7 Scope

The major focus of this research will investigate which combinations of Gabor
filters will provide the best ANN input feature set in order to segment SAR imagery
into regions of trees, ficld, shadow, and culture.

1.8 General Approach

Initially, the work to be performed will include some 256 different variations of
the Gabor function used to process the complex SAR imagery. Next will be selection
of the optimal Gabor filters. Two methods for selecting the optimal filters will be
examined. The first method selects the optimal filters based upon the filters with
largest coefficient for a particular region type (trees, grass and shadow). The second
method, suggested by Bovik (2:63), will perform a Fast Fourier Transform (FFT) on
selected regions of the image and select the Gabor filters whose frequency response
matches with the two strongest peaks in the image power spectrum. The coefficients
from the selected filters will in turn be used as vectors to input into an ANN for the
purpose of training the ANN to segment other SAR imagery.




1.9 Overview

Chapter II presents a review of current literature applicable to Gabor filtering

and radial basis functions as related to segmentation of high resolution SAR imagery.

Chapter III presents methodology used for this rescarch. Provided is a descrip-
tion of Gabor functions, techniques for determining the optimal Gabor functions, and

a description of the ANN used for image segmentation.
Chapter IV discusses the results and analysis of this research.

Chapter V presents conclusions and recommendations for further research.

(&4




II. Literature Review

2.1 Introduction

This chapter reviews literature found useful for application of Gabor filtering
and radial basis functions. The intent is to find techniques, within this literature,
which can be used for segmenting high resclution SAR imagery. In addition, the
literature will be used to show the validity of using Gabor filters and radial basis

functions combined as a method for segmenting SAR imagery.

2.2 Gabor Filters

2.2.1 Biological Motivation Work by Jones and Palmer (5), Daugman (4),
and Porat and Zeevi (10) has shown that the two-dimensional Gabor functions accu-
rately fit the receptive field profile for simple cells in the striate cortex of mammalian
vision systems. As an illustration of the closeness to which the Gabor functions
match the meat, in Figure 2, the top row of graphs are the measured receptive fields
of simple cells in the striate cortex of cats. The second row of graphs gives the best
fit Gabor functions. Finally, the bottom row of graphs show the difference between
the measured data and the calculated Gabor functions. Notice there is very little
difference between the two sets of graphs, and what difference there is, appears to

be random noise.

Gabor functions are simply a Gaussian envelupe modulated by a complex si-
nusoid of the form given below.

G(z,y) = exp-f-[(z-ro)zaz+(y-yo)2ﬁ2] exp—%yl(uo(x—xo)+vo(y-yo)] 1)

Where: z,,y, are position shifts.
U,, U, are modulation parameters and determine the orientation of the
function as: ©, = arctan($).
a, 5 are scale parameters for the Gaussian envelope in the x and y

directions, respectively.




Figure 2.

g

Comparison of 2-D Simple Cell Receptive Fields to Gabor Functions (5).
The first row shows the measured two-dimensional response in simple
cells of the cat visual cortex. The second row shows a set of "best fit”
Gabor functions. The third row shows the residual error between the
Gabor functions and the measured responses.




Bovik (2), Daugman (3), Lu (7), have used Gabor functions to process difle:-
ent types of imagery and have found the Gabor filters able to distinguish between

textures in an image. Bovik stated,

The Gabor implementation effectively unifies the solution of the con-
flicting problems of determining local textural structures (features, tex-
ture boundaries) and identifying ti.e spatial extent of textures contribut-
ing significant spectral information ... (2:71)

2.2.2 Gabor Usage Daugman made use of a complete set of Gabor filters to
use for image segmentation. The fillers were based on a window size of 32 x 32
pixels, but could be generalized to any window size. In addition, the windows used
were overlapping windows rather thau independent windows as used in the previous

effort of L‘'Homme. The general equation for these Gabor filters is (3:1176):

G(z,y) = exp(=ma?[(z = mM)? 4 (y — nN)?) - exp(—?wj[r;% + s%]) (2)

Where: M, N - window dimensions
a® - Gaussian scale constant
m,n - inlegers indicating location of window
r,s - integer, increments of spatial frequency in the range

(=M/2 - 1,M/2) and (—N/2 — 1, N/?2) respectively

The Gaussian space constant, o, determinc. e roll-off of the Gaussian enve-
lope. In this case a is set such that the value of the Gaussian envelope is 1/e¢ at £9

pixels for a 32 pixel window size.

The frequency and rotaiir of the filters is determined by r,5,M and N as
follows:

f: = 3 (3)




S

fy = < (4)

N
Fo= \Z+]; (5)
0 = arcte’f,/fz) (6)

Where: f; = frequency in the x diruciinz
fy = frequency in the y direction
I’ = frequency of the filter
© = rotation of the filter

Daugman has also suggested a neural nebwork to solve the problem of the non-

orthogonality of Gabor functions w' a used as a basis rel. A description of the

- network-and its operation is given in Appendix A.

Several efforts al AFIT have concentrated i the area of Gabor segmentation
and filtering of both Infrared (JR) and SAR imagery. Work «ccomplished by Kevin
Ayer (1) involved Gabor filtering of Forward-Looking Infrared (FLIR} imagery. Ayer
was «ble to successfully pick out targets, tanks, trucks, and jeeps, irom the back-
ground. Ayer’s work was done via computer whi'e similar v.ork was done oplically
by Christopi... Veronin (15). With correct selection of filters, Veronin was able to
pick out the targets from the background as well. In addition, Veronin was able tc
optically reproduce Bovik’s texture discrimination. The latest work done with Ga-

bor filters for segmenting SAR imagery was done by Alberl L'Homme as mentioned
in Section 1.2.

Since Gabor functions, are biclogically motivated and have proven useful to
discriminate textures, thesc functions may be the way to front-end process imagery.
Since the human brain has a throughput rate of ouly about 50 bits/sec (9), a large
reduction in the amount of input datz hzs to be accomplished in order for the brain
to accomplish the task of recognition. Gabor processing of imagery does reduce the
amount of data input and appears to provide a useful set of features for an image
segmentation algorithm.

2.8 Radial Basis Functions

A Radial Basis Function network (RBF) is an ANN used to classify supervised

data. Instead of cach neuron firing as the rconll of a lincar or nonlinear function of it’s




input, they each h>ve an associated Gaussian receptivefield The locaiion and spread
of each receptive ficld are controlled by two parameters, the mean and the standard
deviation respectively. The are two methods avail.ble within Zahiniak’s code (17:4-
3) tu set the mean of the Gaussiau receptive field. The first metu «l is 1 move the
centers of the Gaussians to the Jocations of clusters of the dala (class average) in
the feature space and adjust the spread of the Gausstan to include co-lo-ted data
of the same oulput class. The second method is to set the mean of the Gaussians
to de . points in the input data. In addition, Zahirniak’s code (17:4-4) als> allows
sever .1 methods to calculace the spread, o, of the Gaussian rcceptive field. The
three methods aie scale sigma according to class interference, . .igma according to
P-neighbor distance, and cet -*gma to a constant. For this res..:rch, centering the
Gaussians at class averages and scaliug sigma according to class interference will be
used. An example of a two-layer RBF is shown in Figure 3. The nodes of the output
layer computc a linear combination of out uts from the hidden layer nodes. This

makes the output mapping for any single input pattern

L
Ym = Z WYt
=1

and the outpul from the .dden layer nodes, y; is

K (zp—wi)?
—[Ek;l_zk_z?‘gi)-]

y=e

Where: z = k** component of the input patiern vector
wyy = k** component of the weight vector

ok = the spread in the &* direction.

The mean of the Gaussian receptive field for 2 RBF node is determined by its
input weights. Since the weights letermine a vector in the feature space, this vector
locates the mean of the Gaussian in the feature space. The variance of the Gaussian
function controls how widely spread the function is; the larger the variance, the more
widely spread out it is the function within the feature space.

Daniel Zahirniak used RBF's to identify a radar by its transmitting charac-

teristics (17). In addition, he also described the use of a RBF network for pattcrn

10




Inputs Gaussian Function  Linear Function

Figure 3. Two Layer Radial Basis Function {17:3-14)

recognition (18). L'Homme used a RBF to learn the features which best identify
trees, grass, shadow, and culture. Work by Priddy (1?) makes use of a RBT to
segment Gabor filtered IR imagery. With such a large amount of experience and
knowledge of RBFs at AFIT, it will be the ANN used tor scgmentation of the SAR
imagery. Since there is no apriori knowledge of which Gabor coefficients match with

a particular image feaiure, it is hoped that a RBF can be used to learn the correct,
combinations of coefficients.

2.4 Summary

In this chapter, the biological connection of the Gabor function and its ad-
vantages in texture discrimination for various type of nnagery were discussed. In
addition, the successful use of a RBF as a segmenter for a range of imagery in

previnus work was covered.

With these tools that have shown promise {o aid in segmenting imagery, a

more robust method “or segmenting SAR imagery should be attainable.

11




III. Methodology

This chapter will cover the methodologies used to segment the high resolution
SAR imagery. First, the preprocessing done to each SAR image will be shown.
Second, will be a description of the sliding window and Gabor functions used. Third,
the method of computing the optimal Gabor coeflicients will be explained. Fourth,
the implementation and training of a RBF {o select the proper classification of the

input data will be covered. Finally, image segmentation will be discussed.

3.1 SAR Image Preprocessing

Each SAR image 1s composed of four frames of dimension 512 x 2048 pixels
" resulting in an image size of 2048 x 2048 pixels. These frames contained low return
areas on both the left and right side of the image due to roll-off of the main beam
of the radar as can be seen in the dark areas in Figure 1. The radar was calibrated
for the center of the main beam which corresponds to the center of the image. Thus,

the center 1024 pixels from each frame were used for this research.

In an attempt to normalize the data from different missions, each reduced (512
x 1024) frame was Fourier transformed via an FFT, the DC component was set to
zero, and the frame was inverse transformed.

8.2 Gabor Filter Generation

The initial set of Gabor filters used will be those based upon filters suggested
by Daugman as mentioned in Section 2.2.2. These form a complete set of Gabor
filters for a window size of 32 x 32 pixels. Using the same Equation 2, a complete set
of Gabor filters for a window size of 16 x 16 pixels will be generated. In the case of

a 32 pixel window size, this will result in 256 filters. In the other case of a 16 pixel
window, the result will be 64 filters.

3.3 Gabor Cocflicient Calculation

The Gabor coefficients for the SAR imagery will be computed by correlating a
set of complex Gabor filiers with the complex SAR image. The correlation will be

performed in the space domain through the use of a sliding window. The window

12




size will be varied from a starting size of 32 x 32 pixels to a size of 16 x 16 pixels.
The window will start in the upper left-hand corner with its center placed at the
same location in the image as in the window. For example, for a window size of 32
x 32 pixels the starting location would be at pixel location (16,16) on the image.
This also corresponds to the center of the window which is at (16,16). The window
will the be moved across the image in steps of § the window size both horizontally
and vertically. At each location, the Gabor filter will be correlated with the image
yielding a sel of correlation coefficient.

3.4 Gabor Filter Selection

Two methods will be used to find the optimal set of Gabor filters for use in
the training of the RBF. The first method suggested by Bovik (2:63) is to compute
the power spectrum of the image and sclect the two highest peaks and select the
Gabor filter associated with that location in the spatial frequency domain. The
second method involves histogramming of the Gabor filter coefficients. Coefficients
will be calculated for windows containing only a known region of trees, grass, and
shadow. For cach window the three filters having the largest magnitude coefficient
will be tallied. After all the windows have been processed, the final counts will be
histogrammed. The filters having the largest number of occurrences will then be
used as the set of filters to process entire SAR images with.

3.5 RBF Training

The radial basis function to be used will be implemented using the neural
network software developed by Zahirniak (17). The software allows the user to
choose the entire architecture of the network and select from among several training
methods for establishing the network weights.

The number of cluster centers will be varied in order to find the optimal num-
ber. The limitation to this RBF is that the number of training vectors is limited to
200. This limitation is imposcd by the size of the matrix inversion routine imple-
mented by Zahirniak.

All input data will be statistically normalized. This procedure involves calcu-
lating the mean and standard deviation for cach feature of the input vector. The

data for cach feature is then normalized according to a Gaussian distribution as
follows.

13
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Where: & = the 5 feature of the the j* input vector
p; = the mean of the 7** feature

o; = the standard deviation of the :** feature.

To optimize the training of the RBF, regions of images containing only trees,
grass, shadow, or culture will be selected. The Gabor coefficients for cach of these
regions will be used as training veclors. Several sets of training data will be created
and several variations of the RBF will be used. The initial variation of the RBI" to

be used will be initially placing a node (Gaussian receptive field centers) at the class
average.

Once the “best” RBF has been selected, the remaining SAR imagery will be
processed through the network and the resulting outputs will be used to scgment

the images for con.parison to the hand segmented images.

3.6 Image Segmentalion

Image segmentation will be accomplished by assigning a unique grayscale value
to each of the classes of data (trees, shadow, grass, and culture). Reading in the out-
put from the RBF, the image will be drawn by shading each pixel to the appropriate
grayscale value. A copy of the original hand segmented image will be compared to

the computer generaled image to find any errors present.

3.7 Summary

In this chapter the methodology for segmenting SAR imagery was covered.
Specifically the methods for calculating the Gabor coefficients, training and using a

RBF for segmenting, and image segmenting were discussed.




IV. Results

This chapter will address the SAR imagery used, the results obtained from the
two lechniques used to find the optimal Gabor filters, training the RBF, the RBF
segmentation of entire SAR frames, and image reconstruction.

4.1 SAR Imagery

The SAR imagery used for this research came from two different ADTS mis-
sions.

o Mission 85 Pass 5 Stockbridge, New York.

¢ Mission 938 Pass 3 Portage Lake, Maine.

Below is given a description and a log-scaled image of each framec used for this
research.

4.1.1 M85F27 This image contains a large region of trees running through
the center of the image with areas of field along either side of the trees. Note the
small area of scattered trees in the bottom left hand corner and the shadow region

to the righi of the large center tree region.

4.1.2 M85F28 This image also contains a large region of trees through the

center of the image with a small area of field to the left of the trees and an area of
shadow to the right of the trees.

1.3 AME5F30 This image contains mostly fields with a small line of trees
£=4 -
running down the right side of the image. A small road runs down the left side of

the image. In addition, a calibration array of eight corner refleciors is present at the
center of the image.

4.1.4 MI3F07 This frame contains nearly all trees with a small arca of field
in the upper left hand corner of the image.
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Figure 5. Mission 85, Frame 28, HIH Polarization
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4.1.5 MY8IF08 This image contains regions of tree, field, water, and road.
There is a small pond located in the lower left hand corner of the image with a road
running diagonally through the image from the same corner. The right hand side

of the image con.ains a region of trees. In addition, there are two corner reflectors
located just off the left side of the road.

4.1.6 M98F09 This is the only image that contains any cultural features.
The center of the image contains several farm buildings, a house, sheds, a garage,
and several vehicles. There is a road and a small pond located in the lower right
hand corner. The rest of the image is composed of fields.

4.1.7 MI9SF10 This image contains another array of five corner reflectors
located in what appears to be a mowed or plowed field. Notice the difference in

contrast between the field where the cotner reflectors are located and the surrounding
field areas.

4.2 Correlation Coefficient Calculation

The correlation of the complex SAR image with the set of complex Gabor filters

was performed by the program correlate.c. This program performed a correlation by
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Figure 11. Mission 98, Irame 10, HH Polarization

moving a sliding window of the size specified by the user over the image. Each Gabor
filter was then multiplied point-by-point with the image at that window location.
The result was a set complex coefficients representing the value of the correlation of
each filter with the image at that window location.

4.8 Gabor Filter Selection Using Fourier Technique

Several sections of trees, grass, shadow, and culture were clipped from frames
in Mission 85 and Mission 98. Within the IChoros image processing software (14), a
Fast Fourier Transform (FFT) and the power spectrum were calculated for 32 x 32
and 16 x 16 pixel subsections of these sections. Using the thresholding routine within
Khoros, the power spectrum was thicsholded until ouly two components remained.
Examples of the power spectrums for trees, grass, and shadows can be found in
figures 12, 13, and 14 respectively. It should be noted that the magnitude of the
power spectrum for shadow regions is extremely low by comparison that of trees
and grass. This trend was observed across all data analyzed. After computing
the dominant spectrum components, it was discovered that both trecs and grass

had nearly the same dominant spectrum components and that the spectrums were
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Table 1. Table showing the dominant power spectral components for 32 x 32 and
16 x 16 pixel regions of trees, grass and shadow. Total region sizes used
were 256x256 pixels for trees and grass and 128x128 pixels for shadow.
The components shown are common to both sets of mission data.

[ class | freq (cvc/window) | Rot (degrees) |
trees 1.000 0 90 180 -90
1.414 45 180 -45 -135
2.236 116 -63
grass 1.000 0 90 180 -90
1.414 45 180 -45 -135
2.236 116 -63

scattered at low frequencies. A partial list of the components found is shown in

Table 1.

4.4 Histogramming Technique

Initially the sections of trees, grass, and shadows clipped from the original
images were correlated with a set of 256 filters of window size 32 x 32 pixels. The
correlation was performed by the correlate.c program which is listed in Appendix C.1.
Another program, maxval.c read in the file containing the coefficient values and
calculated for each window the three filters with the largest coefficients. A running

count of the three largest filters was kept and the results stored in a file.

The results of histogramming the coefficients for a 32 x 32 window size for
regions of trees, grass, and shadow are shown in Figures 15-17, respectively. Iiven
though the filters used extended to frequencies above twelve cycles/window, there
was no place in the in any of the regions of tiecs, grass, or shadow where frequencies
above twelve cycles/window dominated. In each case, the histogram showed that

the dominant frequencies were those below six cycles/window.

At this point, the equation which generated the Gabor filters was modified to
allow a scaling of the frequencies used. Recall that in Equation 5 the terms (5, &)
controlled the frequency of a filter. The new modification changed these terms to
(%7, 7%) where k is an integer scaling factor. By increasing the scale factor and
allowing 7, s, M, N to remain the same, the frequency of any filler would be reduced.
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Figure 12. Typical Power Spectrum of 16 x 16 Window of Tree Region
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Figure 13. Typical Power Spectrum of 16 x 16 Window of Grass Region
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Power Spectrum of Region of Shadow
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Figure 14. Typical Power Spectrum of 16 x 16 Window of Shadow Region
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Table 2. Selected Filters for Image Processing

Freq (cyc/window) |  Rotation (deg) ||
0.000 0
1.000 0 90 130 -90
1.414 -45 -135
2.000 0 180
2.236 -27 -153
3.000 0

The scaling factor used was four. Thus, the maximum frequency for the 256 Gabor
filters was 5.65 cycles/window rather than 22.63 cycles/window.

The new set of filters was correlated with the sections of trees, grass, and

shadow. A new histogram of the coeflicients was generated. The new histograms,
shown in Figure 18 and

Figure 19, and Figure 20 revealed that there were no dominant filters to be
found at this window size and resolution. Therefore, the window size was reduced
to 16 x 16 pixels in order to obtain better resolution.

Using the insight gained from the Fourier analysis and the 32 pixel filters,
the new filters were generated by changing M and N in equation 2 to 16 and a
scale factor of two was used in order to keep the maximum frequency less than six
cycles/window. Results from the histogram of the coeflicients from this set of filters
showed dominant frequencies. The histograms for this set of filiers are shown in
Figure 21, Figure 22, and Figure 23.

From the initial set of 64 filters, 12 filters were selected to use as inputs io 1 .e
RBF. The filters used are listed below in Table 2. These filters corresponded to the
filters which responded best to cach of the region types.

4.5 RBF Training

The options used with the RBF were to center the nodes at class averages and
to train the weights by matrix inversion. The interference threshold for the nodes
was set at 0.4. This implics that if a node of another class responded with a value
larger than 0.4 that the RBF needs to continue to train.
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original filter frequencies
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Histogram showing the number of times a filter, with the given fre-
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dow in a 256 x 256 pixel region of trees. Scale factor of two applied to
original filter frequencies.
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The RBT was trained using cross—validation technique. In other words, initially
data from Mission 85 was used as training data while Mission 98 data was used as
test data. Next, the process was reversed and Mission 98 data was used for training
and Mission 85 data was used for testing. In each case, 50 vectors for cvery class
of data were used for both training and testing. The training and testing vectors
were sampled from a large number of vectors available. Specifically, there were 2018
vectors for trees and grass regions and 496 vectors for shadow regions. The program
pickval.c allowed sampling of these data files starting at any location and sampling at
any integer interval. The training and test data were statistically normalized using

the program norm.c. The normalization process was to aid the RBF in generalizing.

4.6 Training Results

The RBT was trained and tested 50 times using various combinations of train-
ing and test data. In every case, the RBT was able to achieve 97 to 100 percent
accuracy classifying the training data correctly. Ilowever, depending upon the test
data presented, the classification accuracy of the test data was as high as 93 per-

cent and as low as 65 percent. Average accuracy for test data classification was
81 percent.

4.7 Segmentation Resulls

The first test image was Mission 98, Pass 3, Frame 07 (M9SP3F07) shown in
Figure 8. The hand segmented version of this same frame is shown in Figure 2.4. The
hand segmented version showed two regions only in the image, grass in the upper
lefthand corner and trees throughout the rest of the image. The RBT segmented
version of this frame is shown in Figure 25. It appeared that the RBF segmented

version was finding more detailed features than originally expected.

Other RBF segmented images can be found in Appendix B. Overall, it was
not possible to compare the RBF scgmented images to the hand segmented images.
In each case, the RBI segmentation was more detailed than the hand segmented
version. The hand segmented versions of the frames were gencrated based upon the
assumption that the best that could be accomplished was to find macro features in
the imagery and not detailed features.

It is apparent from the RBI segmentced imagery that the transition regions

between trees and shadows is often misclassified as regions of grass. This apparent
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weakness could be explained by the fact that all of the filters used to process the

SAR imagery were of low fiequency. The lack of high frequency information makes
it difficult to find edges.

It appeared that the discrepancy in the accuracy of the ability of the RBF to
classify the test data correctly could be explained Ly the fact that the regions of
trees in the Mission 98 data contained areas of shadow. In addition, after examining
the previous work of L'Homme, it was discovered that the data from Mission 93
contained higher radar return values for areas of trees and grass than did Mission
85. This could also be a source of error.

One other segmented image of particular interest is Mission 98, Frame 10 shown
in Figure 26. This image contains regions of grass with an.array of corner reflectors
in it. When the photograph of this area was examined, the field in which the corner
reflectors were placed turned out to be a plowed field. After segmentation, the
plowed field was segmented as a region of shadow rather than a region of grass. The
grayscales used in this segmented image are different from all others shown in this
research. The correct interpretation of the grayscales is the darker grey regions'are
grass, light grey regions are shadow, black regions are trees, and the white regions
are corner reflectors. It should be noted that even though the RBTF network was not
trained to identify corner reflectors, the output of the network was all zeros when
a region containing coraer reflectors was being processed. This indicated that the

input vectors for corner reflectors were very distant in the feature space from any of
the class nodes.

In all other images with corner reflectors in them, the RBF output file was
modified. The zeros that marked the location of corner reflectors were changed to

match the grayscale of the type of region surrounding the reflector.

4.8 Median Filtering

In order to “clean up”® the segmented imagery, some images were median fil-
tered. As can be scen in Figure 25, there are small patches of grass regions within
the region of trees. Each of these small patches are of size § x 8 pixels and correspond
to a single output value of the RBF network. In order to remove these small patches
a 5 x § pixel median filter was used on the RBF nctwork output file. The median

filtering was performed within the Khoros image processing softwarc. An example
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Figure 26. Mission 98, Frame 10 RBF Segmented

of the resulting image is shown in Figure 27 using the previous image from Misssion
98, Frame 07 as shown in Figure 25. Any other segmented image that was median

filtered is noted in the figure caption.




Figure 27. Mission 98, Frame 07 RBF Segmented, 5 X 5 Median Filter
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V. Conclusions and Recommendations

5.1 Introduction

This research investigated the use of Gabor filters to segment high resolution
SAR imagery. The aim was to find a set of Gabor filters which could be used to
locate regions of trees, grass, and shadow using the complex representation of the

SAR image. In particular, the following questions were answered during this work.

e Can the Fourier technique suggested by Bovik help to select the correct com-

bination of filters to use for segmenting regions of trees, grass, and shadow?
e Can Histogramming techniques perform the same task?

o Can a RBY network learn the correct combination of filters to generalize to a

full SAR image?

The Fourier technique showed that naturally occurring regions, in these SAR
images, responded best to frequencies below 4 cycles per window (16 and 32 pixels).
In addition, this analysis also showed that the phase of naturally occurring regions
is widely scattered. In general, however, this technique did not work to isolate the
correct Gabor filters to use. The cases which Bovik used were images with only one
or two dominant textures in them. It appcars that this technique is not uscful for

cases involving regions with more than two easily seen textures in them.

Histogramming was able to isolatc a set of Gabor filters to use once the window
size was reduced to 16 pixels. The Gabor filters isolated were all of low frequency
(less than 4 cycles per window). Essentially, this technique found the bandpasses of

frequencies that regions of trees, grass, and shadows responded to best.

The RBTF network achieved testing accuracies as high as 93 percent and aver-
aged 81 percent correct. However, due to the problem of normalization, the RBF
network was not able to generalize well to entire images.

5.2 Further Rescarch

Below are listed suggestions for further research.




To allow consistent scaling across images, use another type of normalization.

One suggested method would be a local normalization within each window.

Find another technique for selection of the Gabor filters.

Continue to use overlapping windows of other sizes such as § by 8 or 4 by 4.

The overlapping windows appear to be able to find greater detail in the SAR
imagery than do independent windows.

Continue to use the RBF network. If the normalization problem is solved, the

RBYF should provide good segmentation across images.

Try adding other polarizations to the Gabor processing as features for the RBI
network.




Appendix A. The Gabor Representation

The only difficulty in working with the Gabor functions is that while the func-
tions do form a complete basis sct onto which to map an image, they are not or-
thogonal. This implies that when attempting to find the set of coefficients that
appropriately map the image onto the Gabor functions, the inner product terms
[9:(2,9) - g;(,y]) belween filters arc non-zero. Recent literature by Daugman (3)
has shown that the efficient way to find the Gabor representation of an image is
through use of an artificial neural net (ANN). The ANN used contained three layers.
The first layer was made up of a set of fixed weights assigned as the value of the
Gabor functions. The second layers contains a set of adjustable weights that are used
to multiply the output of the neurons in the first layer. The third layer is again made
up of a set of fixed weights assigned as the value of the Gabor functions. The layer of
adjustable weights, upon completion of learning, were the complex coefficients that
represented the projection of the image onto the Gabor functions. These coefficients
are the optimal coefficients in the sense of the minimal mean -squared-error. A more

detailed proof of this mean- squared-error minimization is given below.

Computing of the Gabor coefficients will be accomplished by implementing the
ANN suggested by Daugman (3) and shown below in Figure 28.

Using the Gabor functions as the set of basis functions to represent an image
poses a difficult problem. Although the Gabor functions comprisc a complete set of
functions, that is, they can represent any function, they are not orthogonal. This
means that the solution for the coefficients, a,,, cannot be computed by the simple
integration of the original image with the complex conjugate of the ith basis function
é(x,y). Starting from an image I(z,y) represented as a sum of projection cocfficients

times a set of basis functions, each image pixel is computed as follows:

H(z,y) =3 aidi(z,y)
i=1

a; = /w I(z,y)d;(x,y) dzdy — 3 /m I(z,y)di(z,y)di(z, y) dady

- j=1 i
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Figure 28. Three Layer Net for Finding Optimal Cocfficients(3:1171)




where: I(z,y) - original image
H(z,y) - reconstructed image
a, - expansion coeflicients

éu(2,y) - basis function

Now had the original basis functions been orthogonal, all the terms in the
solution for the a, coefficient containing the form ¢;(z,y)é,(z,y) would be equal to
zero. But, because the set of Gabor functions is not orthogonal and because we only
wish to use a subset of the Gabor functions, the best that can be accomplished is
an optimal fit. The particular optimization criterion used by Daugman is that of

minimizing the squared norm of the difference vector:

E =" I('L,y) - ]'I(m)y) ”2

where: H(z,y) = ik, wédifz,y] and

¢:]z,y] are the elementary Gabor functions.

In order to minimize the norm, the partial derivative with respect to each of

the coefficients must equal zero. Substituting for H and computing the derivative
yields:

or
82- B —22[1 z,9)$(2,v)] +2Z[Z axdr(z,y)

z,y k=1

The result is a set of n equations of the form:

}:I z,y)di(z,y) = Z[o (z,1 Za;,qh z,9))]

Daugman points out that these equations could be solved with matrix manip-
i ] !

alation, but the number of calculations necessary would be imimense. He also points

out that the error suiface is quadratic in each «,. Since neural nets can be used to

minimize an error functivn, he proposes his net as a solution to this problem.

44




The net sets up the error surface as the squared norm of the difference between
the original image and the current approximation. He then uses gradient descent to
find the minimum of the error surface. Examining Figure 28, the first layer of the
net yields the product of each of the elementary Gabor functions ¢,[x,y] with the
original image (i.e. the Gabored image). The third layer of the net yields the inner
product of each elementary function with the linear combination of all the functions
(i.e. the reconstruction from the Gabor coefficients). Finally, the second layer is the
layer used to calculate the coefficients. Initially, the sccond layer is set equal to the
product of each Gabor function with the iimage. Then, by using gradient descent, the

coefficients of the second layer are adjusted according to the following relationship:
ai = a; + 4
Where: Az' = Em,y(qj}i[m) y]I["La y]) - Er,y[¢5(22=1 a’kél;[xa y])]

Or in other words, the difference between the product of the Gabor function with
the original image and the Gabor function with the reconstructed image. The net is

allowed to iterate until the adjustments, A;, equal zero.

Put simply, the first layer computes the correlation of the image with the basis
set. These coefficients are then used to reconstruct a new image ¥ plardr(z,y)]- The
third layer correlates the reconstructed image with the basis set. The result of the
third layer correlation is compared to the correlation from the first layer and the
adjustment to the coeflicients is made. When the adjustment to cach coefficient,
A,, is zero, the iteration process is terminated and the coefficients are read from
the weights of the second laifer. Overall, the function of the net is to calculate the
amount of correction necessary to account for the non-zero inner products of each of

the functions with all other functions &s a result of the non-orthogonality of Gabo-
functions.

The initial implementation of the Gabor filters was as given in Daugman. The
Gaussian envelope was supported on a 32 X 32 window with the 1/e point set at
9 pixels and tapered to a value of 0.05 at the windows edge where the value was

truncated to zero. These 32 X 32 windows were moved across the image in steps of

one-half the wit.dow size. So for the case of a 32 X 32 window the step size was 16
pixels.




Implementation of the network was done, but it failed to converge as described.
Several modifications were made to the network and it still would not converge. The
initial test of the Lenna image resulted in the network diverging rapidly while trying

to find the optimal coefficients. Tests with other images did exactly the same thing.

It was later learned from a graduate student from University of Tennessce (13)
that he had experienced the same problem while trying to implement Daugman’s
network. His fix had been to usc only real images and the real (cosine) portion of
the Gabor filters. In addition, his first estimale of the a, cocflicients had been the

largest pixel value in the window of interest.
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Appendix B. Other RBF Segmentation Results

Figure 29. Mission 85, Frame 27, RBF Segmentation, 5 x 5 Median Filter
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Appendix C. Program Listings

C.1 correlate.c

/* Program: coxrrelate.c
/*
/* Author: Michael Hazlett

/* Purpose: Correlates an image with the given set of filters.

_ #include <stdio.h>
#include <math.h>

#define TRUE 1

#define FALSE O

#define SQR(a) ((a)*(a))

#define SQR2(a) ((double) ((a)*(a)))

void main()

{

float  **matrix(), *vector();
void fourn(), free_vector(), free_matrix();

FILE *fp, *gp, *hp;

int numdim = 2, sign = 1, wsize, isize[2], size[2];
int hwin, vwin, nwin, win;

int Xy, xsize, ysize, 1, xr, xi;

int ireal, nfilt;

int winr, wini, winnum, filt;

int row, col;

int h, i, j, k, x, y, M, N;
char gfile[60], cfile[60], ifile[60], cfile2[60], stypel[2];

*/
*/
*/
*/

char itypel2], dtypel2], dname[50], rmode[3], yn[2], cname[S];

float #*xal, **ximage, **gabor, **temp, *norms;
double minval = 0.0000100;

strcpy(rmode, "r");




printf("\nName of image file : ");
scanf("}s", ifile);

printf("\nIs the image [Rleal or [Clomplex : ");
scanf("}s", itype);
if (! (stremp(itype, "R")) || !(strcmp(itype, "r"))) {
printf("\nAre the numbers [Flloat or [IInteger : ");
scanf ("}s", dtype);
}
else {
printf("\nIs the file stored in [A]SCII or [IJnternal format?
. u);
scanf ("}s", stype);

if (! (stremp(stype, "I")) || t(strcmp(itype, "i™))) {
strcpy(rmode,"rb");
}
}

printf("\nSixe of image vertically (pixels) : ");
scanf("}d", &isize[0]);

printf("\nSize of image horizontally (pixels) : ");
scanf("/d", &isize[1]);

printf("\nWindow size of Gabor functions (pixels) : ");
scanf("%d", &wsize);

printf ("\nNumber of filters : ");
scanf("%d", &nfilt);

printf("\nDirectory where filter files at : ");
scanf(")s", dname);

printf("\nName of coefficient file to create : ");
scanf("/s", cfile);

[ Fmm e e e e %/
/* Initialize arrays and other variables ¥/
[ e e */

M = wsize / 2;
xsize = isize[1] + M+1;
ysize = isize[0] + M+1;




hwin isizef[1] / M;

vwin = isizel[0] / M;

nwin = hwin % vwin;

image = matrix(i, ysize, 1, 2#%xsize);
ai = matrix(1, nfilt, 1, 2*nwin);
gabor = matrix(l, wsize, 1, 24usize);
norms = vector(l, nwin);
FE L e S LT */
/* Open the image file */
P L LR */

if ((fp = fopen(ifile, "r"))==NULL) {
printf("Error opening file Ys", ifile);

exit(1);
}
R e E L L L LD x/
/* Read in the image file data */
[Homm e e %/

/* Data stored is only real numbers */
if (! (stremp(itype, "r")) || !(stremp(itype, "R"))) {
/* Real numbers, data values are integers */
if (Y (stremp(dtype, "i")) || !(stremp(dtype, "I"))) {
for(i=1; i <= ysize; i++) {
for(j=1; j <= xsize; j++) {
xr = 2%j-1;
xi = xr+i;
if(i > M/2 4% i <= ysize-M/2-1 &&
j > M/2 && j <= xsize-M/2-1) {

fscanf (fp, "%d\n", gireal);

image[il [xr] = (float)ireal;
image[i][xi] = 0.0;

}

else {
image[i] [xxr] = 0.0;
image[i][xi] = 0.0;

}




}
/* Real numbers, data values are float */

else {

for(i=1; i <= ysize; i++) {
for(j=1; j <= xsize; j++) {

xr = 2%j-1;

xi=xr + 1;

if(i > M/2 &% i <= ysize-M/2-1 &&
j > M/2 && j <= xsize-M/2-1) {
fscanf (fp, "/f\n", &image[il[xr]);
image[i][xi] = 0.0;

}
else {
imagef[i][xr] = 0.0;
image[i] [xi] = 0.0;
}

}
/* Data is stored as complex pairs */

else {
/* Complex pairs are stored in ASCII format */

if (! (stremp(stype, TOMEE ! (stremp(stype, "2"))) {

for(i=1; i <= ysize; i++) {
for(j=1; j <= xsize; j++) {
xr = 2%j-1;
Xxi=xr + 1;
if(i > M/2 && i <= ysize-M/2-1 &&
j > M/2 &% j <= xsize-M/2-1) {
fscanf(fp, "/f %f\n", &imagel[il [xr],
gimage[il [xi]);
}
else {
image[il [xr] = 0.0;




imagel[i] [xi] = 0.0;
}

}

/* Complex pairs are stored in INTERNAL format */

else {
temp = matrix(1, isizel[0], 1, 2*isize[1]);

for(i=1; i <= isizel0]; i++) {
fread(temp[i], sizeof(float), 2*isize[1], fp);
}

for(i=1; i <= ysize; i++) {
for(j=1; j <= xsize; j++) {

xr = 2%j-1;

xi =xr + 1;

if{i > M/2 && i <= ysize-M/2-1 &&
j > M/2 && j <= xsize-M/2-1) {
k = 2x(j-M/2) - 1;
1=k + 1;
image[i] [xx] = temp[i-M/2] [k];
imagel[i] [xi] = temp[i-M/2][1];

}

else {
image[i] [xx]
image[i] [xil]

0.0;
0.0;

}
¥

free_matrix(temp, 1, isize[0], 1, 2xisize[1]);

b
}

fclose(£p);




for(j=1; j <= nfilt; j++) {

a1[j1[2%i-1] = 0.0;
ai[jl[2#i] = 0.0;
}
{ }
L e e e e e */
/* Loop through all of the Gabor filters */
J e Rt xf

for(i=1; i <= nfilt; i++) {
sprintf(gfile, "Ys)s’03d", dname, “gabor", i);
if ((gp = fopen(gfile, "r"))==NULL) {
printf("Error opening file s", gfile);
exit(1);
}

printf ("\nGabor filter #)d", i);

e e kit %/
/* Read in the Gabor file */
R e e LT e e T %/

for(j=1; j <= wsize; j++) {
for(k=1; k <= wsize; k++) {
xr = 2xk~1;
xi=xxr +1;

fscanf(gp, "Af %f\n", &gabor([j]ixr]l, &gabor[jllxil);
}
}

fclose(gp);

for(j=1; j <= vwin; j++) {
for(k=1; k <= hwin; k++) {
win = 2x((j-1)*hwin + k)-1;
for(y=1; y <= wsize; y++) {

row = (j-1)x(wsize/2)+y;
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for(x=1; x <= wsize; x++) {
col = (2x(k-1)#(wsize/2))+2*x-1;

ai[i][win] += image[row] [col] * gabor([y][2#x-1] -
image[row] [col+1] * -gabor([y][2xx];

ai[i] [win+#1] += image([row] [col+i] * gabor([y][2*x-1]
+ image[row] [col] * -gabor[y][2*x];

(o)

/* Store the original coefficients in the file. */
/* Store by window # then filter #. Normalize */
/* coefficients to area under Gabor. */

if ((hp = fopen(cfile, "w"))==NULL) {
printf(“Error opening file s", cfile);
exit(1);

}

fprintf(hp, "id %d %d 4d %d 7d\n", nfilt, wsize, hwin, vwin,
isize[0],isize[1]);

for(i=1; i <= nwin; i++) {
for(j=1; j <= nfilt; j++) {
if (fabs((double)ai[jl[2#i-1]) < minval) ai[j][2*i-1] = 0.0;
if (fabs((double)ai[jl[2#i]) < minval) ai[j][2#i] = 0.0;
fprintf(hp, "%d %d Ye Z%e\n",i, j, at[jll2xi-1], at(jll[2%xil);

}

fprintf(hp, "\n");
}
fclose(hp);

printf("\nFinished computing a1 coefficients\n");

}

4]
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C.2 rebuild.c

J e T e %/
/* Program rebuild.c ' */
/* */
/* Author: Michael Hazlett */
/* Purpose: Creates an image from a file containing */
/% coefficient values */
J R it e ettt T */

#include <stdio.h>
#include <math.h>

void main()

{
float **matrix();
int *ivector();
FILE *fp, *gp;
int wsize, isize[2]}, xsize, ysize, win, fi, £2;
int hwin, vwin, nwin, xpos, ypos;
int nfilt, xstart, ystart, w, *filt, £f;
int i, j, k, x, ¥;
char gfile[60], cfile[32], ifile[32], gname[50], yn[2];
char dname[30] ;
float *¥gabor, **image, *¥*ai;
printf("Name of coefficient file : ");

scanf("%s", cfile);

printf("\nName of image file to create : ");
scanf ("%s", ifile);

printf("\nDirectory where Gabor files at : ");
scanf("/s", dname);

if ((fp=fopen(cfile, "r"))==NULL) {
printf("\nExrror opening s\n", cfile);




exit(1);

}
[ Ko e x/
/* Read in reconstruction info x/
P T e x/

fscanf(fp, "4d /d %d %d %d Yd", &nfilt, &wsize, &hwin, &vwin,
&isize[0], &isize[1]);

R e L L R s */
/* Initialize arrays and other variables #*/
J e ittt */
nwin = hwin * vwin;

ysize = isize[0]+wsize/2+1;
xsize = 2%(isize[1]+usize/2+1);

filt = ivector(i, nfilt);

image = matrix(1, ysize, 1, xsize);
gabor = matrix(1, wsize, 1, 2xwsize);

ai = matrix(i, nfilt, 1, 2%nwin);

sprintf(gname, "Js/s", dname, “gabor");

£ L L E */
/* Zero the image array */
J £ e e e T L */

for(i=1; i<s ysize; i++) {
for(j=1; j<=xsize; j++) {
image[i] [j] = 0.0;

}
}
J S bttt et */
/* Initialize filter selection array to all filters */
J 4 R e L L L %/
for(i=1; i<=nfilt; i++) {

filtfi] = i:
}
Y D e LD P E R */
/* Read in the coefficients %/
R e e e L x/

for(i=1; i <= nwin; i++) {
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for(j=1; j <= nfilt; j++) {
fscanf(fp, "%d %d 4f Uf\n", &w, &f, &ailj]l[2xi-1],
&ailjl[2%i]);
}
fscanf (fp, "\n");
}

fclose(fp);

printf ("\nRebuild the image from selected filter(s)? (y/n)
scanf ("}s", yn);

if (! (stremp(yn, “y")) |l !(stremp(yn, "Y"))) {
i=1;
wvhile(f &% i <= nfilt) {

printf("\nFilter # (0 to stop) : ");
Scanf("'/.d" s &f) ;

filt[i] = £;
4+
¥

}
i=1;
J et e L LT Lty */
/* Loop through all of the Selected filters */
F 4 e x/

while(filt[i] && i <= nfilt) {
f = filt[il;
sprintf(gfile, "Ys,03d", gname, f);

if ((gp = fopen(gfile, "r"))==NULL) {
printf ("Error opening file Js", gfile);

exit(1);
¥
R L L TR L L Ly */
/* Read in the Gabor file */
e e el %/

for(j=1; j <= wsize; j++) {
for(k=1; k <= wsize; k++) {

fscanf (gp, "hf Af\n", &gabor([jl[2+k-1], &gabor[j] [2+k]);

60

: ||);




}
}
fclose(gp);

/* Multiply each of the coefficient by the Gabor at each */
/* location and sum the result to reconstruct the image. */
for(j=1; j <= vwin; j++) {
for(k=1; k <= hwin; k++) {
win = 2%((j-1)*hwin + k)-1;
for(y=1; y <= wsize; y++) {
ypos = (j-1)*(wsize/2)+y;
for(x=1; x <= wsize; x++) {
xpos = (2% (k-1)*(wsize/2))+2*x~-1;
image[ypos] [xpos] += ailf][win] * gabor[y][2xx-1]
' - ai[f][win+1] * gabor[y] [2*x];

imagelypos] [xpos+1] += ai[f][win+1] * gabor[y] [2*x-1]
+ ailf][win]  * gabor[y] [2*x];

}
}
¥

}

it+;
}
[ e e e e %/
/* Write the reconstructed image array to a file %/
[ e e e e */

if ((fp=fopen(ifile, "w"))==NULL) {
printf("Error opening %s\n", ifile);
exit(1);

}

ystart = (wsize/4) + 1;

xstart = (wsize/4) + 1;

for(i=ystart; i <= ystart+isize[0]-1; i++) {
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for(j=xstart; j <= xstart+isizel[1]-1; j++) {
fprintf(fp, "If Uf\n", image[il[2%j-1], image[i][2%j1);
}

fclose(fp);
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