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Preface

This thesis examines the problem of wave propagation in a randomly inhomogeneous

medium from the standpoint of Feynman integration. Also known as path integration or

functional integration, Feynman integration oftentimes presents the uninitiated reader with

conceptual difficulties; therefore, this thesis was written with a tutorial style in mind. Moreover,

there are numerous appendices and far greater detail and verboseness in the main chapters than

would normally be considered necessary in a thesis; however, it is hoped that excessive verbosity

will be an asset in this case.

Kyle Hunter

..I



Table of Contents

Page

Abstract. .. .. ... ... ... ... .... ... ... ... ... ... ...... viii

I. Introduction to the Problem. .. .. ... ... ... ... .... ....... 1-1

The Overview. .. .. .. ... ... ... ... .... ... ...... 1-1

The Problem .. .. .. .. ... ... ... ... ... ... ... .... 1-2

The Research Questions. .. .. ... ... ... ... ... ...... 1-2

The Research Assumptions. .. .. .. .. ... .... ... ...... 1-2

The Scope .. .. .. ... ... ... ... ... ... ... ........ 1-4

The Research Methodology. .. .. .. .. ... ... .... ....... 1-4

The Research Benefits. .. .. ... ... ... ... ... ... .... 1-5

II. Literature Review. .. .. ... ... . ... ... .... ... ...... 2-1

Justification .. .. .. ... ... ... ... ... ... ... ...... 2-1

Parabolic Equation. .. .. .. ... ... ... .... ... ...... 2-2

Method of Geometrical Optics .. .. .. .. ... ... .... ..... 2-4

Method of Smooth Perturbations .. .. .. ... ... ... ...... 2-5

Method of Markov Approximations. .. .. .. ... ... ... .... 2-6

Computer Modeling .. .. .. .. ... ... ... ... ... ...... 2-7

Fuanctional Integration. .. .. ... ... ... ... ... ... .... 2-8

A Justification from Fourier Optics .. .. .. ... ... .... 2-8

Weak, Strong and Saturated Regimes. .. .. .. ... ..... 2-12

Regions of Applicability .. .. .. .. .. ... .... ... ... ... 2-12

Summary .. .. .. .. ... ... ... ... ... ... ... ...... 2-14

iv



Page

III. Feynman Integration applied to Optical Wave Propagation in a Randomly

Inhomogeneous Medium ......... .............................. 3-1

Introduction ................................. ..... 3-1

Parabolic Equation and Schridinger Wave Equation Similarity. . 3-2

Derivation of the Feynman Integral Solution of the Stochastic Parabolic

Equation ......... ................................ 3-3

The Feynman Integral Solution in the Limit ............ 3-6

Green's Function Path Integral ...................... 3-8

Orthogonal Function Expansion .................... 3-13

Approximation of the Green's Function Path Integral . . . 3-14

Fourth Statistical Moment ....... ...................... 3-16

The Fourth Moment for a Point Source ............... 3-26

IV. Conclusions, Contributions and Recommendations ................. 4-1

Research Questions Answered ....... .................... 4-1

Contributions ......... ............................. 4-2

Recommendations ........ ........................... 4-2

Appendix A. Parabolic Wave Equation ...... ................... A-1

Appendix B. Method of Smooth Perturbations ..... ............... B-1

Asymptotic Expansion ........ ........................ B-1

The Rytov Method ........ .......................... B-2

Appendix C. Method of Markov Approximations ................... C-1

Appendix D. The Feynman Integral Schr6dinger wave Equation Relationship D-1

Introduction ......... .............................. D-1

The Classical Trajectory ....... ....................... D-1

The Principle of Least Action ....... .................... D-2

V



Page

Wave Functions. .. .. .. ... ... ... ... ... .... ..... D-4

The Wave Function K. .. .. .. .. ... ... .. ... ... .... D-5

Derivation of the Schr~dinger Wave Equation................ D-6

Appendix E. Solution of the Helmholtz Equation .. .. .. ... ... ..... E-1

The Solution to the Deterministic Helmholtz Equation ...... E-1

The Solution to the Stochastic Helmholtz Equation .. .. .. ..... E-2

Appendix F. Variational methods .. .. ... ... ... ... ... ...... F-1

Functions and Functionals. .. .. .. ... ... ... .... ..... F-1

Function Differentiation. .. .. .. .. ... ... ... ... ...... F-2

Functional or Variational Differentiation. .. .. .. .... ....... F-2

Combined Function and Variational Differentiation .. .. .. ..... F-3

Function and Functional Expansions. .. .. ... ... ... ..... F-4

Functional or Variational Taylor Series .. .. .. ... ... ...... F-4

Appendix G. Important terms. .. .. ... .... ... ... ... ...... G-1

Bibliography .. .. .. ... ... ... ... ... ... .... ... ... ..... BIB-i

Vita. .. .. .. ... ... ... ... .... ... ... ... ... ... ... .. VITA-i

vi



List of Figures

Figure Page

2.1. Single interval propagation ........ ......................... 2-9

2.2. Double interval propagation ........ ........................ 2-10

2.3. Multiple interval propagation ....... ........................ 2-11

2.4. Scintillation Index ........ .............................. 2-13

3.1. The four source or measurement points form a parallelogram ....... .... 3-25

D.1. The subdivision of a trajectory ....... ....................... D-2

D.2. A path with and without a slight perturbation ................... D-3

D.3. The subdivision of a trajectory ....... ....................... D-5

D.4. The approximation of a trajectory by a polygonal function .......... D-6

G.1. First Fresnel zone ......... .............................. G-2

G.2. Sequential evolution of a general path ...... ................... G-6

vii



AFIT/GE/ENG/91D

Abstract

The problem of calculating the scintillation index of an atmospherically propagating

spherical wave is examined. The fourth statistical moment of the complex field is obtained by

using Feynman (path) integral techniques applied to the stochastic parabolic equation. The

general trajectory of each Feynman integral is approximated by a truncated Fourier-sine series

and the infinite-fold integration of the Feynman integral is reduced to a three-fold Riemann

integral which is shown to match results derived under different assumptions.
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WAVE PROPAGATION IN A RANDOMLY INHOMOGENEOUS MEDIUM - A

STUDY OF THE PROBLEM

L Introduction to the Problem

The Overview

W ve p:,pagation ir a randomly inhomogeneous medium, for example monochromatic

light propagating in the atmosphere results in changes in both the phase and the amplitude of the

propagating wave. If the fluctuations of the amplitude and phase are weak, then it is possible to

describe the characteristics of the amplitude and phase using perturbation techniques. In this

case, the observed changes of the phase of the wave in an observation plane, some distance from

the wave's origin, will be small. The region over which an observation plane may be placed, and

still facilitate the measurement of small phase fluctuations, is known variously as the weak

fluctuation regime, the perturbational regime, or the asymptotic regime. Moreover, as the

propagation distance increases or the strength of the random inhomogeneities increases, the

intensity changes in the observation plane of the propagating wave will increase. For sufficiently

strong random inhomogeneities in the atmosphere, the intensity variations will attain an

extremum and the scintillation index, the normalized intensity variance, may exceed unity. If the

scintillation index exceeds unity, then the propagation distance or region over which scintillation

index does so is known as the strong fluctuation regime. Finally, if the propagation distance is

increased further still or the random inhomogeneities become stronger yet, then the intensity

fluctuations will begin to decrease and asymptotically saturate at a fixed level. This region of

asymnptotic saturation is known as the saturation regime. Wave propagation in random media are

characterized by the medium's statistical characteristics. This implies that various statistics, and

particular moments must be obtained. These can be found by averaging over stochastic complex

wave functions obtained by Feynman (path) integration.
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The Problem

Functional integration, by its vary nature, requires multiple integrations over a continuum

of elements of a function space. There is presently a method to approximate a functional integral,

and therefore the integration continuum, by using a finite subset of an infinite orthogonal function

expansion to approximate the functional integrand. The resulting approximation can then be

numerically integrated to obtain the necessary complex amplitude. The accuracy of some of the

initial subsets, a finite number of terms from a Fourier series, looks ver, promising. The

application of these techniqes to the proplem of wave propagation in a randomly inhomogeneous

medium is a fairly recent development and not all of the ramifications are at present fully known

or understood.

The Research Questions

During the course of research for this thesis, it desired to obtain the answers to some

relevant questions.

1. Using only one sinusoid, the first term in a Fourier-sine series, what accuracy does it

provide when used to approximate functional integration?

2. What is the computational complexity of this approximation?

3. Does the characteristics of this approximation dictate the use of a particular numerical

integration scheme?

These questions are obviously not all inclusive. In fact, it will be necessary to drastically

reduce the potential research extent in order to obtain any meaningful results. This will be done

by making certain assumptions.

The Research Assumptions

As it will be explained in greater depth in Chapter 2, all propagating electromagnetic

waves must satisfy the wave equation which is derived from Maxwell's equations. However, this

derived equation is a second order in space, second order in time, partial differential equation. If

the situation is further compounded by requiring propagation in a randomly inhomogeneous
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medium, then the wave equation becomes a second order stochastic partial differential equation.

By making several prudent, realistic assumptions, it is possible to simplify the solution to the

wave equation, a Feynman integral, into a solution that is less complicated. In order to make this

simplification, it will be necessary to make the following assumptions:

I. The parabolic approximation to the stochastic Helmholtz equation holds.

2. The propagating wave is monochromatic.

3. The wavelength of the wave's carrier is in the optical regime.

4. The characteristic size of the random inhomogeneities of the propagation medium greatly

exceeds the wavelength of the carrier.

5. The velocity of light will greatly exceed the maximum velocity of the fluctuations which

implies nonrelativistic motion.

6. Near field effects are not relevant as they are small and we will consider propagation

distances which exceed the characteristic length of the near field.

7. Although the Feynman integral methods was borrowed from quantum mechanics, quantum

mechanical effects are assumed to be inconsequential in all limiting cases of the functional

integrals.

Assumption 1, the parabolic approximation, will require that back scattering effects as

well as large scattering angles from the mean direction of propagation, be ignored. As it is shown

in Appendix A, this necessitates that the complex amplitude of a propagating wave vary slowly as

compared to the mean wavelength of the carrier.

Assumption 2 does not excessively limit the applicability of the results of this thesis; it is

possible to decompose a general propagating wave into its spatial Fourier components and then

consider each spatial frequency separately; however, this thesis will not cover such an analysis.

Assumption 3 will allow effects of wave depolarization due to the random

inhomogeneities to be ignored because the depolarization will be small.

Assumption 4 is realistic as the size of the inhomogeneities in Earth's atmosphere ranges

from several millimeters, the inner scale, to about a hundred meters, the outer scale.
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Assumption 5 requires a physically realizable propagation medium such as the earth's

atmosphere. Notice this assumption might not be valid for optical wave propagation in a

turbulent plasma.

Assumption 6 states that the near field effects may be ignored. The Huygens-Fresnel

principle provides a rigorous solution to the parabolic wave equation for positive propagation

distances which exceed the near field regime. This will be covered in more detail in Chapter 3.

Assumption 7 requires the consideration of only classical, that is, non-quantum

mechanical phenomena.

The Scope

This thesis will investigate the problem of wave propagation in random media and some

of the equations that will be generated by this investigation. Additionally, an accleration

technique which can be used to solve the final resulting equation will be provided.

The Research Methodology

The numerical integration of continuous functions is a field of study in itself. The

integrand functions, which will be considered in this thesis, are highly oscillatory; therefore,

many of the more favored numerical integration schemes, such as Gaussian quadrature, will not

achieve acceptable accuracy. Thus, in general, one finds that for many currently available

numerical integration routines that:

1. The proposed numerical integration scheme may not converge within the prescribed

number of iterations.

2. The proposed numerical integration scheme may not converge at all. Some integration

schemes recursively subdivide every interval and compare the results of each subdivision.

If the solution series, which is generated by comparing the integral over an interval with all

the recursive integrals of that interval, is bounded, but fails to converge, or worse yet,

diverges to infinity, then the solution and the associated method of solution are useless.

3. The proposed numerical integration scheme rapidly converges to an incorrect solution. This

is possible if each subdivision matches some pathological characteristic of the integrand.
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The Research Benefits

A.; this thesis is directed primarily towards a study of the problem of analyzing wave

propagation in a randomly inhomogeneous medium, the benefits of this research will primarily be

to enable the reader of this thesis to better understand the problem and its characteristics. That is,

by casting a physical problem into an equivalent mathematical form, it is possible to obtain a

deeper understanding of said problem. The Feynman integral method will provide an intuitively

pleasing way to analyze the problem; therefore, it will allow the reader to obtain greater insight

into the problem of wave propagation in a randomly inhomogeneous medium. This basic

understanding of a difficult problem is, and should always be, a goal of basic theoretical research

into said problem.

The next chapter contains a literature review of wave propagation analysis using

Feynman integration, as well as other currently favored analysis methods.
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II. Literature Review

Justification

Imagine a shinny penny on the bottom of a clear, dark-bottomed swimming pool on a

calm day. Standing on the edge of the pool, one can easily see that penny. If you toss in a rock,

the penny's image will dance about, and it may even disappear entirely. The atmosphere is

obviously not that swimming pool, however both the hypothetical pool and the atmosphere

randomly distort optical images by distorting propagating optical waves. That is, the propagating

optical wave is distorted randomly in both phase and in amplitude by the medium in which it is

propagating. It is natural to inquire as to characteristics of the propagating optical wave. It is the

characteristics of an atmospherically contaminated propagating optical wave with which this

thesis will be concerned.

The atmosphere is, as a first approximation, a chunk of air with varying densities

generated by thermal heating from the sun. Large sections of air warm, rise, and eventually break

into smaller sections. The smaller sections disperse into even smaller air pockets. These air

pockets can range in size from a few millimeters, the inner scale, to several hundred meters, the

outer scale (17:388,390). It is the motion of the air pockets, along with their varying relative

indices of refraction, that cause the randomization of the amplitudes and phases of

atmospherically propagating optical waves. Because the atmosphere introduces these

randomizations into propagating optical waves, the characteristics of the optical waves, their

amplitude and phase, are unpredictable. Therefore, it is the statistical characteristics of the

propagating optical waves which must be considered. Moreover, the method by which the optical

wave's statistics are obtained will be dictated by the fluctuating statistical characteristics of the

medium, and the distance through which the optical wave has propagated. There are several

mathematical methods which can be used to either calculate or approximate the statistical

characteristics of an optical wave propagating through a randomly inhomogeneous medium, such

as the atmosphere. These mathematical methods will, in turn, have conditions under which they

are applicable.

The choice of the particular mathematical analysis method is often complicated by the

fact that the characteristics of the optical wave can influence the choice of the mathematical
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method used to analyze them. In order to gain a more thorough understanding of the especially

powerful approach of functional integration, it is necessary to be familiar with some of the other

methods which are currently mentioned in the literature along with their regions of applicability

and any constraints to their use. To do this, it will be necessary to start at the beginning with the

wave equation.

In free space, a propagating monochromatic optical wave must obey the wave equation:

(2 2 _10 ) U(r,t)=O (2.1)

whereU(r, t) is the optical field, a function of space and time, V2 - + a r the

position vector (x, y, z), c is the speed of light, t is time. A closed solution of Eq. 2.1 is, except

for trivial or highly symmetric cases, extremely difficult, if not impossible, to obtain. Therefore,

numerical solutions to Eq. 2.1 must be obtained. However, the solution of Eq. 2.1 requires a

global approach. That is, the solution must be obtained in all volumes of interest, subject to all

the boundary conditions simultaneously (23:1). It is possible to reduce the computational

complexity of Eq. 2.1 by considering a reduced class of problems. By considering cases with

negligible backscatter and small propagation angles about the mean direction of propagation, Eq

2.1 will be simplified. This simplification, which results in a new equation, is often called the

parabolic approximation to the wave equation. These characteristics of this simplified equation

will be explored in the next section.

Parabolic Equation

The derivation of the parabolic approximation to the wave equation for an optical wave

propagating in the z direction can be found in Appendix A. It is shown in Appendix A that

Eq. 2.1 may be reduced to

(2jl- + V + k2  (p, z))u(p, z) = 0 (2.2)

where u(p, z) is the complex amplitude of the optical wave, V2 - + ' Jis/'-, j is 2

and A is the carrier wavelength, c (p, z) is the fluctuating component of the medium's dielectric
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permeability, p = (x, y), namely p is in the plane transverse to the mean direction of propagation,

Z.

The simplification of Eq. 2.1 to Eq. 2.2 is a direct result of considering the propagation of

the optical wave in small angles about the mean direction of propagation. The small angle

simplification which results in Eq. 2.2 has been known under various names. Some of these

names include: "small angle approximation", "paraxial approximation", "the standard parabolic

approximation" (14:838), and the randomly occurring implied "usual approximation" , where the

article's author assumes a certain level of reader sophistication (2:516). The reason for this

interest in small angles about the mean propagation direction is that some random

inhomogeneous media, under certain conditions, exhibit only small wave field scattering angles.

Therefore, the wave equation may be reduced to the parabolic wave equation. However, this

small angle restriction is more fundamentally a necessary condition to maintain the validity of the

approximation of Eq. 2.1 by Eq. 2.2. Specifically, the backscatter of the optical wave, or

acoustical wave for that matter, is considered to be negligible (10:895). The interested reader will

find Appendix A has further details.

The parabolic approximation to the wave equation is an active area of research for

numerous authors including (29:212), (10:894), (8:171), (7:1224), (6:38-3), (12:297), and

(13:1355). Furthermore, authors in other fields including acoustics and quantum mechanics are

also extremely interested in this equation because of the existence of equations which are

functionally similar to Eq 2.2. In acoustics, the propagation of sound in the ocean is modeled as

an inhomogeneous second order partial differential equation (23:6). Therefore, the general

solution to Eq 2.2 and the acoustics problem will be similar. In quantum mechanics, the motion

of elementary particles in a conservative field is modeled by an inhomogeneous partial

differential equation known as the Schrtdinger wave equation (29:225), (16:48). This equation is

equivalent to the parabolic approximation to the wave equation and therefore general solutions

will be similar to both equations. It is indeed fortunate that these diverse fields possesses similar

equations, because the solution obtained in one field of study may be used in the other research

fields, subject to the appropriate boundary conditions (29:225,226), (23:7,8,18,19). There is a

plethora of different names for Eq. 2.2 in the current literature. Eq. 2.2 is also known as the

parabolic approximation to the stochastic Helmholtz equation, the parabolic approximation to the
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wave equation (14:838), reduced scalar Helmholtz equation (12:297), complex heat equation

(7:1224), diffusion equation (16:49).

As it was stated earlier, Eq. 2.1 usually doesn't posses a closed-form solution, and the

random effects of the atmosphere necessitate the study of statistical characteristics, rather than,

the deterministic characteristics of the optical wave. However, by considering Eq. 2.2 and the

statistics of the atmosphere (more generally the medium in which propagation occurs), it is

possible to apply different mathematical techniques to the solution of Eq. 2.2. The next sections

will consider the various mathematical methods.

Method of Geometrical Optics

The method of geometrical optics is the lowest approximation to the wave field

amplitude in a random inhomogeneous medium. In this multiple scattering method, the accuracy

of the solution increases with decreasing wavelength (10:894). Furthermore, the range of validity

for geometric optics can be large (25:2). Additionally, the method facilitates the analysis of

multiple effects, including refraction, and is the basis for the method of smooth perturbations and

the Markov approximation method (25:2).

Geometrical optics, the method with which most individuals are familiar, is the method

whereby optical fields are modeled by straight line or ray constructions. This method is the

simplest of the analytical methods used to obtain a solution to the problem of wave propagation

in a randomly inhomogeneous medium. The simplicity is achieved by ignoring diffractional

effects. The simplicity is attained when the umbra and penumbra of shadows are determined by

the geometry of transparent, translucent, and opaque objects in the propagation medium. Because

of this simplicity, the geometric optics method can't predict the effects of diffraction nor can it

take them into account. Thus, simplicity is traded for accuracy; "The method is simple in that,

unlike the method of smooth perturbations and Markov approximation, it does not take into

consideration diffraction effects, and therefore is not as versatile as the other two methods"

(25:1). However, the method has certain advantages over other methods. Specifically,

geometrical optics permits multiple effect modeling and the modeling of effects that are more

difficult to describe using other methods. Additionally, certain propagation effects will continue

to maintain validity beyond the geometrical optics (validity) regime (25:2). The elimination of
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diffractional effects may be justified under certain geometries; however, when diffraction must be

considered, the method of smooth perturbations provides a possibly better solution framework.

Method of Smooth Perturbations

This single scattering method is one of the older methods still being used to solve Eq. 2.2.

This method, also known as either Rytow's method, or the asymptotic method in the current

literature, uses first order perturbation methods on the logarithm of the optical wave's complex

amplitude to compute an approximate solution to Eq. 2.2. This method may be used whenever

the scintillation index, the normalized intensity variance of the optical wave, is small, and

diffractional effects must be included (10:894), (14:2111). Thus, whenever the scintillation index,

2= 2- )2 (2.3)

where (.) denotes ensemble averaging, is less than 0.3, it is generally agreed that the method of

smooth perturbations is applicable. Appendix B contains a more complete discussion of the

method for the interested reader. The accuracy of the smooth perturbation method has been called

into question by some authors (2:516). However, an asymptotic solution approach, a variation of

the method of smooth perturbations, used to solve Eq. 2.2 in the case of strong intensity

fluctuations has become available recently (15:2111). Additionally, other methods including

functional integration methods have shown the Rytov method to be quite accurate under certain

constraints. These constraints are complex and depend upon both the size of the root-mean-square

phase fluctuations and the ratio of the longitudinal scale size of the inhomogeneities to the extent

of the Fresnel zone of the optical wave (10:895,896). The solution of Eq. 2.2 by the method of

smooth perturbations is still a stochastic quantity as the solution depends upon the statistical

characteristics of the random medium. It is from this solution that the statistical quantities of

interest are calculated. It is possible to bypass the solution of Eq. 2.2 entirely and calculate the

statistical quantities directly. This method will be explored in the following section.
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Method of Markov Approximations

The method of Markov approximations facilitates the determination of closed partial

differential equations for the statistical quantities of the optical wave field. The derivation of

these statistical moment equations eliminates the necessity of explicitly solving Eq. 2.2. As

shown in Appendix C, the statistical equations are obtained by approximating the optical wave

propagation in the inhomogeneous random medium as a Markov process (29:213), (25:79). The

method of Markov approximation is according to (7:1234) and (8:171) a more accurate method to

solve Eq. 2.2 than the method of smooth perturbations. In order for the method of Markov

approximations to be applicable to a propagation problem, it is necessary that,

1. The characteristics of the wave field are dependent only upon the section of the medium

through which the wave has already propagated.

2. The longitudinal correlation radius of Z is small compared to the characteristic length of

the changes in u(p, z) (the complex amplitude) in the z direction (25:79).

The first condition is actually impossible for the general situation of optical wave

propagation in a random medium such as the atmosphere. Atmospherically propagating waves

will be backscattered to a small degree. These backscattered waves will interact later with

forward propagating waves and therefore, the forward propagating wave will be dependent upon

the characteristics of the medium through which it has not yet encountered. Therefore, a direct

implication of the first requirement necessitates the consideration of solutions for Eq. 2.2 as

opposed to Eq. 2.1 (28:5.11).

The second requirement simply means that the correlation function

B.(z, z') = (-f (p, z) Z (p, z')) is non-zero over an interval which is small compared to the

characteristic length of changes in the complex amplitude, u(p, z), of the optical wave in the

mean direction of propagation. This in turn requires that "longitudinal correlation radius of f be

the smallest dimension in the problem" (29:215). When this holds,

BE(z, z') = (Z (p, z) Z (p, z')) can be approximated by a scaled Dirac delta distribution, in

which case f- is said to be delta correlated. Clearly one advantage, which is often exploited in the

literature, is the ability to extend the integration range of a function with small support, such as a

Dirac delta function, from a finite to an infinite integration range. This expansion in the
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integration range allows the approximation of certain correlation functions as Fourier Transforms

of power spectral densities (29:218).

If the previous two necessary conditions are approximately satisfied, then the Markov

approximation method may be applied to situations where the scintillation index exceeds unity.

That is, when the method of smooth perturbations fails to hold, namely, strong intensity

fluctuations (10:894). The accuracy of the resulting equations of the statistical moments will be

dependent to the degree that the above two assumptions are satisfied. Finally, just as the method

of Markov approximations eliminated the need to explicitly solve for the solution to Eq. 2.2, the

application of numerical modeling methods and modern computer hardware has, in some

circumstances, eliminated the need to even consider the statistics of the solution.

Computer Modeling

The application of Fast Fourier Transform algorithms, finite element methods and

multi-gigaflop performance levels in modern computing hardware has allowed the computer

modeling of many random medium propagation problems. It is possible to numerically solve

Eq. 2.1 over all locations in a given volume simultaneously using modern hardware and software.

However, even with today's most powerful computing systems, it is Eq. 2.2 rather than Eq. 2.1

which is modeled. In one method, the statistical equations for the optical wave are obtained in

integral form and the method of Monte Carlo integration is applied to the equations (2:517). A

different method obtains solutions which are allowed to propagate. The solutions to Eq. 2.2 can

be obtained relatively easily for arbitrarily thin volumes transverse to the mean propagation

direction. These solutions are then propagated to adjacent thin parallel volumes sequentially just

as the actual optical wave would propagate through the medium using known laws for optical

propagation (15:2111). However, computer simulation, though a powerful tool, has

disadvantages over the previously mentioned analytical methods. Simulations, as accurate as

they can be, often conceal fundamentally important mechanisms in the propagation of optical

waves. Additionally, aliasing, the contamination of lower frequency components by higher

frequency components, is often an ignored problem when modeling continuous phenomena using

discrete data on computers. Presently there is great interest in one especially powerful method

from the field of quantum mechanics which can be used to model and solve Eq. 2.2 in a form
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suitable for numerical or asymptotic analysis methods (6:38-1). This method, known as

functional integration, is investigated in the next section.

Functional Integration

Richard Feynman, in his doctoral dissertation in 1942, proposed a novel solution to the

Schrddinger wave equation, as shown in Appendix D. His solution allowed the number of

integrations in a finite-fold integral to diverge to infinity (16:48), (12:298), (29:227), (23:4).

Feynman's technique spurred the investigations of others into the area of research which later

came to be known as "integration in a function space" (16:48). Feynman's original integral

solution of the Schrbdinger wave equation came to be known as a Feynman integral, although it

was determined that this integral was simply a special case of a Wiener integral (5:127). The

study of Wiener integrals, also known today as path integrals, began with the work of N. Wiener

in the 1920's (16:48). Because of the functional similarity of the parabolic equation to the

Schr6dinger wave equation. the functional integration appriach can be used to solve the parabolic

equation Eq. 2.2. Moreover, it has been shown that the functional integration approach can be

applied to the wave equation Eq. 2.1 itself (6:38-3). It is the method of functional integration

applied to the parabolic equation with which this thesis will be primarily concerned.

A Justification from Fourier Optics This section will give an intuitive, nonrigorous

justification of the functional integral technique to solve the parabolic equation, Eq. 2.4 in a

homogeneous medium (-e (p, z) = 0). The solution for the more general case of an

inhomogeneous medium will be found in chapter 3. The solution to Eq. 2.4

(2jk~z + VM)u(p, z) = 0 (2.4)

is given by
U(PZ) = k exp(jkz) ft jklp -p,12uu~~) Iexp 2z I u(p',0O)d2p' (2.5)

27rjz if 2z /

where u(p, z) is the complex amplitude of the optical wave at the z = z plane, u(p, 0) is the

complex amplitude of the incident optical wave at the z = 0 plane, p = p(x, y) is a
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two-dimensional position vector in the = z plane, p' = p(x', y') is a two-dimensional position

vector in the z = 0 plane, j = vfC-T, k = 2 and A is the optical carrier wavelength.

Eq. 2.5 is a solution which is valid for all positive values of z. If one considers the

geometry in Fig. 2.1, then it is easy to see that if the complex amplitude of a propagating optical

wave is known at the z = 0 plane, then it can be obtained at the z = z plane using Eq. 2.5.

Furthermore, Eq. 2.5 must hold for all values of z' where 0 < z' < z.

Y1  X Y x

P Observation
point

P1  GP-P
G'eral

source point
Zl 0t z= z

Figure 2.1. Single interval propagation

Because Eq. 2.5 holds for all values of z' such that 0 < z' < z, it holds for z' - . This simply

means that in order to be able to observe an optical wave at the z = z observation plane, it was

necessary to be able to observe it at some intermediate location along the path of propagation. So,

the optical wave will propagate from the image plane to the observation plane at z' = '. Then,

the optical wave will propagate from this object plane to the observation plane at z' = z. Thus,

referring to Fig. 2.2 equation Eq. 2.5 can be applied to the separate domains: 0 < z' < and

<ZI < Z.

Therefore, Eq. 2.5 can be applied to each of the half-length sections and a four fold integral is
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Y2 X2  Y X1  X

P2

P-P _p

p1

z2=0 zi =z/2 z=z

Figure 2.2. Double interval propagation

obtained

u(p, z) = exp(jkz) (2k )2 JJ exp (2k(p - p12 + 1p2 -',,O)d2pd2p2

(2.6)

whcre the region of integration is R2 x R2. It ic possible to see the emergence of a path. The

complex amplitude at the point (x, y) is determined by the concatenated rays or path

(p, - p), (p2 - pl). It is possible to continue to divide the original interval into three sections,

four sections and so on. For the case of an arbitrary number of sections, the geometry is shown in

Fig. 2.3.

As the number of intervals becomes large, the length of each interval tends toward zero.

Thus, the finite-fold integral becomes a functional integral or path integral in the limit as the size

of each interval vanishes. The path in this case being any possible ray trajectory p, 1, ..., P,

from the furthest observation plane backward to the original object plane. The intermediate

planes each alternately act as object and observation planes and in the limit, the set of polygonal

paths so generated will almost span the set of all possible continuous paths from the original

object plane to the final observation plane uniformly. Formally, the solution to the parabolic
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z

zn Z2  Z1  Zo

Figure 2.3. Multiple interval propagation

equation is given i, Eq. 2.7

u(p,z) = lim exp(jkz) -... exp 2z IP,--P,-l 2 
-u(po,0) d2pm

m=i m=O

(2.7)

where the integration region is limn,._,R 2 " . Of course for free space, its easy to show that the

preceding path integral is fully equivalent to the Green's function from the Huygens-Fresnel

integral. As it was stated earlier, the previous path integral derivation showed, in a non-rigorous

way, the applicability of the functional integral approach. It could be argued that the

Huygens-Fresnel formula would give the correct results over a single propagation interval

without the need to resort to the recursive subdivisions that the functional integration method

encompassed. This is true; however, the previous example was for a deterministic, homogeneous

medium. In the case of a randomly inhomogeneous medium, the functional integral approach to

solving the parabolic equation, parallels t.,e heuristic method of considering thin slabs of the

medium to be approximated as phase screens. This idea will be expanded further in the following

chapter.

Up until now, the term complex amplitude has been used extensively to describe the
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strength of the propagating optical wave. However, neither intensity detectors, photographic film

nor most optically dependent biological organisms can see complex amplitudes. All three "see'

intensities. Therefore, it is necessary to complicate matters by considering not only the complex

amplitude of a propagating wave and all of its statistical characteristics, but also the product of

the complex amplitude and its complex conjugate and the associated statistical characteristics of

the intensity. Because the statistical characteristics of the randomly inhomogeneous medium will

further complicate matters, it is therefore necessary to consider the strength of the fluctuations in

the randomly inhomogeneous medium.

Weak, Strong and Saturated Regimes It has been shown that for a Gaussian random

phase screen /32 has the characteristics as shown in Fig. 2.4 for an incident unity amplitude plane

wave (15:2111), (25:74). From this figure there are three regions which are of interest. The first

is the region in which the value of /32 increases from zero to one, the weak fluctuation regime.

The second region, if it exists, is the region in which/32 is greater than one, the strong fluctuation

regime. The final region, if it exists is where/32 is asymptotically decreasing to one, the

saturation regime.

The functional integration approach to solving the parabolic equation in a randomly

inhomogeneous medium is an especially powerful one as the method can be applied to all three

regions of intensity fluctuations, the weak, the strong and the saturated. This is an especially

useful characteristic as it is possible to compare the results from the other mathematical methods

to the results from the Feynman integration method.

Regions of Applicability

This section will simply provide a tabular listing of the applicability constraints of the

various methods previously listed.
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Scintillation
Index

Strong medium fluctuationsP2

1.0

Weak medium fluctuations
0.3
0 Distance from source

Weak Strong
fluctuation fluctuation
regime regime Saturated

regime

Figure 2.4. Scintillation Index
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Method Regimes Advantages Disadvantages
solution is valid

Geometrical Optics Non- Very simple Diffractional effects
diffraction method ignored

Method of Smooth Weak Relatively simple Limited to weak
perturbations method fluctuations
Markov Approximation Weak and Eliminates the Unrealistic assumptions

Strong need to solve the possible
parabolic equation

Computer Modeling All Eliminates the need Underlying mechanisms
to calculate statistics are obscured

Possible aliasing

Feynman Integration All Accurate Infinite-fold integrals

_ and intuitive difficult to analyze

Table 2.1. Characteristics between various solution methods.

Summary

This chapter has provided a current literature review. This review included several of the

techniques used to solve the problem of wave propagation in a randomly inhomogeneous medium.

The next chapter will explore the characteristics of path integration as applied the this problem.
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111. Feynman Integration applied to Optical Wave Propagation in a Randomly

Inhomogeneous Medium

Introduction

This chapter follows an unpublished paper by Dr. J. Gozani, Dr. V. Tatarskii and Dr. V.

Zavarontnyi (19:1). Therefore, in order to help the reader, who might become hopelessly lost in

the succeeding sections, a brief overview of the theoretical development will be provided. This

chapter will present a development of path integration applied to wave propagation in a randomly

inhomogeneous medium so that the scintillation index, the normalized intensity variance, for a

spherical wave may be calculated. This will be accomplished in three parts.

First, the existence of the path integral solution will be briefly mentioned by

demonstrating the similarity between the Schr6dinger wave equation, which has a path integral

solution, and the parabolic equation, with which this thesis is concerned.

Second, in order to understand the development of the Green's function path integral for

the fourth statistical moment of the field, a two-fold path integral solution to the two-fold

stochastic parabolic wave equation will be developed. This development will be accomplished by

applying the Huygens-Fresnel integral solution for wave propagation in a deterministic

homogeneous medium to thin sections of the randomly inhomogeneous propagation medium. It

will be shown that as the number of sections over which the Huygens-Fresnel integral is applied

increases, the resulting solution will become more accurate. In the limit as the number of sections

becomes unbounded, the resulting solution will become a path integral with stochastic

components. A similar development will yield a Green's function path integral with stochastic

components. It will be possible to separate the resulting solution into two factors. The first factor

will represent the effects of a completely deterministic homogeneous propagation medium and

the second factor will represent the effects of the stochastic deviations of the propagation medium

about its mean characteristics. Then, each path in the path integral will be approximated by a

truncated Fourier-sine series using a Taylor-functional series expansion.

Third, using the preceding development of the two-fold path integral for the field as a

guide, the fourth statistical moment of the field will be calculated. The stochastic components of

the resulting eight-fold Green's function path integral will be averaged over the ensemble of all
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paths from the source point to the observation point. After the averaging is performed, the

resulting equation will be manipulated in a manner similar to the two-fold path integral up to and

including the approximation of every trajectory by a truncated Fourier-sine series. Then the

truncated Fourier-sine series will next be approximated by the first term in the series. This

approximation will allow the eight-fold path integral to be approximated by an ordinary

three-fold Riemann integral which has appeared in a similar form in the current literature.

Lastly, as it is the scintillation index, namely the normalized intensity variance, which is

ultimately desired, it behooves the reader to keep this ultimate goal in mind during the succeeding

derivations.

Parabolic Equation and Schrodinger Wave Equation Similarity

As presented in Appendix D, the solution of the Schrbdinger wave equation may be cast

into a "sequential Wiener integral with an imaginary variance term, namely a Feynman integral

(16:55)." The one-dimensional Schrdinger wave equation has the form,

.+ V(xt) 4b(X,t) =0 (3.1)2m ax2  h

where b(x, t) is a wave function, V(x, t) is a potential energy function, and m,j andli are

constants (see Appendix D). Following a derivation similar to that used to derive the

one-dimensional Schrdinger wave equation solution, it is possible to show that there is a

corresponding two-dimensional Feynman integral solution to the two-dimensional Schrdinger

wave equation. The two-dimensional Schrtdinger wave equation has the form,

( i 2 + j\PI 0) O(P, 0t) 0 (3.2)

where 0(p, t) is a two-dimensional wave function, V(p, t) is a two-dimensional potential energy

function, V2 = 82 ' and p= (x, y). Recall the form of the parabolic equation,

(2jki-. + + k (p,z)) u(p, z) = 0 (3.3)
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where C (p, z) is the fluctuating part of the medium's dielectric permeability and u(p, z) is the

complex amplitude of the propagating wave. Dividing both sides by 2jk results in,

z 2-k 7 2 j f7 (z) u(p'z) = 0' 34

It is easy to see the similarity between Eq. 3.2 and Eq. 3.4. Because of this similarity, it is possible

to cast the solution of Eq. 3.4 into a Feynman integral (6:38-3). Interestingly enough, it is possible

to obtain the solution to the stochastic Helmholtz equation, without the parabolic approximation

constraints, as a multi-dimensional Feynman integral (6:38-3); however, this thesis will not

investigate that topic other than to mention it so that the interested reader may pursue it further.

Following a derivation similar to the one in the chapter 2 subsection "A justification from

Fourier optics", it is possible to solve the stochastic parabolic equation using Feynman

integration directly. Therefore, it is possible to obtain a solution to the problem of wave

propagation in a randomly inhomogeneous medium by either noting the similarity between the

Schr6dinger wave equation and the parabolic equation or by a direct derivation using the notion

of an infinite number of phase screen equivalent propagation regions. The heuristic derivation of

such a direct solution follows in the next section.

Derivation of the Feynman Integral Solution of the Stochastic Parabolic Equation

This section will present a non-rigorous derivation of the solution to the stochastic ('e 0)

parabolic equation using Feynman integration. This derivation will establish the earlier claim of

an intuitively pleasing solution. The interested reader can find a more mathematically rigorous

derivation of the relationship between the stochastic parabolic equation and its Feynman integral

solution in (29:227,228), or (7:1225-1227). Moreover, there is a derivation and sohition of a

related acoustical stochastic parabolic equation available in the literature (23:6-12). Lastly, there

exists an extensive reference table which relates quantum mechanical functionals to acoustical

functionals which appear in Feynman integral solutions to the Schr6dinger wave equation and

acoustical parabolic equation respectively (23:19). As it was stated in chapter 2, the functional

similarities of the equations in acoustics, quantum mechanics and optical wave propagation has

lead to similar general solutions. Therefore, it is important to consider the techniques and results
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from other research fields for novel methods to obtain solutions to wave propagation in a random

medium. This is why the work in other research fields has been brought to the reader's attention.

Beginning with Eq. 3.5 which is derived in Appendix E, the complex amplitude, u(p, z),

of an initially unit amplitude plane wave propagating in the z direction, for a relatively short

distance through the randomly inhomogeneous medium, is given approximately by,
k~"z (L le _ 1) k,,, -(,,Z)

UV )=j2irz ! exp 2zl 2 C'2 x - ' pz)dp (3.5)

where p" is a vector representing the observation or measurement location in the observation

plane, p'is a vector representing a point-source location in the image plane, z is the propagation

distance. Implicit in the previous equation was the assumption that Z (p, z) was changing slowly

across a small propagation distance z. As the distance between the image plane and observation

plane decreases, the above approximation will become more accurate. A closer examination of

the above equation will yield an interesting interpretation. The effects of the inhomogeneous

medium on the propagating unit amplitude plane wave may be duplicated by an equivalent

idealized random phase screen placed before a homogeneous medium, so long as the propagation

distance is sufficiently small (29:228). The actual dimensions of "sufficiently small" will be

explained later. An idealized phase screen is a mathematical construction which has the physical

properties of vanishingly small (differential) thickness, and a transmittance characteristic which

changes only the phase, and not the amplitude, of an incident optical wave. Thus, all the effects

of the randomly inhomogeneous medium may be modeled as having been induced by an

equivalent random phase screen. Therefore, by recognizing this interpretation, Eq. 3.5 may be

rewritten with the phase screen interpretation as,

u(p", z) jr-- J exp ( exp ( I(,z - pr12) d2p (3.6)

Phase screen or
random phase plane wave

We can rewrite this equation in another form by first noting that for a thin slab of the propagation

medium we have

fpW, Z) S f (W, ) (3.7)
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as we've assumed that -c varies slowly in the z direction. This being the case, we can write

"#---J ', 0) exp - p112 d2p' (3.8)

where exp (.L -C (p', z)) = u(p', 0). Furthermore, if a subdivision process, similar to the one

applied in chapter 2 to the problem of propagation in a homogeneous medium, is applied to this

randomly inhomogeneous medium (Eq. 3.5), we will obtain a "sequential Wiener integral with

imaginary variance parameter" (5:127). This is another way of saying a Feynman integral will

result as a solution. This solution is written formally as,

u(p", z) = lim u(p, z) = (3.9)n-oon nI. )n
lim (±p _ \M -ff1

nim (j2-z) k z . 1 Pr-PmlhI

exp ( 2z 1 (PM, n) u(poO) r1 d
m=O m=O

where p" has been defined as lim-,.. pn and a more general boundary condition u(po, 0) has

been included.

By interpreting the previous infinite-fold integral as it was done for Eq. 3.5, then it

becomes clear that the effects of a randomly inhomogeneous medium on a propagating plane

wave will be indistinguishable from the effects of an equivalent (though infinite) set of ideal

random phase screens. Additionally, it was assumed that C could be approximated as being

nearly constant across the propagation distance and as the propagation subdivision width

decreases and eventually becomes a differential in thickness, the approximate solution, which

corresponds to an infinite number of small propagation regions, becomes an exact solution.

Therefore, unlike the case of an homogeneous medium, it is necessary to let the number of

subdivisions and therefore the number of equivalent phase screens become unbounded to obtain

an exact solution. Thus, it is seen that the complex amplitude of an optical wave propagating in

an inhomogeneous medium is represented as a two-dimensional Feynman integral. This integral

is, as we have seen, is the limiting case of replacing the random inhomogeneous medium by one

containing a set of uniformly spaced random phase screens and allowing the number of phase
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screens to become unbounded.

The Feynman Integral Solution in the Limit We can make an additional interpretation

concerning Eq. 3.9. This interpretation will result in a functional integral form which has

appeared in the literature (5:135), (22:1264), (1:37), (21:8), (29:228), (23:11). By considering

Eq. 3.9 it follows that the functional integrand,

exp ( .- Ij jxkz E C(3.10)
x ,2z m=I-- exp 2n m=O(P

may be rearranged to yield,

expL 1P --Pm- Z) exp2 (L ,__0  (pmImz) z  (3.11)

Now, consider the following interpretation of the above expression. Eq. 3.11 is a functional of the

n + 1 variables p0, p, ... P,. Equivalently, it is possible to consider Eq. 3.11 as a functional of a

differentiable parametric function p(r) where r is a continuous parameter evaluated at discrete

locations,

PO, P1, P2, P,} = {P(r)I=O,T=L, r=2*..., r=(n-) ,1=z} (3.12)

That is, p(r) is a continuous variable of a continuous parameter r sampled at the evenly spaced

points -T = 0, T = L,T = 2L " -.. In the limit as n becomes unbounded in Eq. 3.11, the finite,

discrete sampling of the functional p(-) will become effectively continuous. The astute reader

will immediately disagree as to the sampling being continuous as, for example, there will be no

sampling at any of the irrational numbers due to the limiting process described above. That is

true; however, because any irrational number may be approximated as closely as desired by a

convergent sequence of rational numbers, p(r) will be sampled effectively everywhere.

Now consider a simple substitution of br for I. into Eq. 3.11. This will yield a more

apparent result from elementary calculus,

exp 6- exp - o(p, rr (3.13
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To begin, consider the first exponential factor in the previous equation. It follows that

exp2 Pi-r=l - ( ,p(1 o"dp(r) 12l
6 -- --- (3.14)

Therefore, in the limit as n becomes unbounded it follows that,

expjk 1P - -- d2 z =:*exp (Lkjz dp(T) 1 7) (.5

=r 
2d T )( . 5

Moreover, the second exponential factor in Eq. 3.13, may be manipulated in a similar fashion.

Therefore, in the limit as n becomes unbounded it follows that,

exp '7 (pm,?f) ==exp e (p(r),r)dr (3.16)

Therefore, the entire functional integrand may be written as,

exp z (d - exp( c (p(r),r)dr) (3.17)

where r is the limiting continuous variable p. Therefore, it is possible to write Eq. 3.9 formally as,

u(p, z) /J D 2 [p(r)] exp ( o d, dr) exp 2 0 c (p(r), r)dr) (3.18)

where D2 [p(r)] = limn,,_ -'2kn -,= d2pm. This is one of the formal forms for the

Feynman integral solution that is often found in the literature. It should be noted that when we

have a deterministic medium, c= 0 and the preceding integral will reduce to Eq. 2.7. The reader

should be aware that similar to the Riemann integral where the integration variable is simply a

dummy variable, p(r) is similarly a dummy integration variable. Therefore, Eq. 3.18 is fully

equivalent to

u(o z) -Jf D 2 [x] exp ( o dr d) exp (- C (x,r)dr (3.19)
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where x = x(r) and T is the limiting continuous variable.

The preceding formal equation, it must be understood is only that, formal. It has been

found that the Feynman integral does not possess a countably additive measure (26:8). Therefore,

it would be more accurate if the preceding equation was rewritten as

u(p,z)= expah o 7  dr) exp 4-Z e (x, r)dr (3.20)
paths (kf

where "paths" means add all the contributions from all paths.

Green's Function Path Integral Following the derivation of the preceding equation, it is

possible to show that the Green's function for propagation in a randomly inhomogeneous medium

is given by

G(p",z;p',0) = exp JN foI dT exp f (x(),r)dr}
J (0)=P' 22

(3.21)

where each trajectory [x] begins at p' when r = 0 and ends at p" when 'r = z, the overdot

indicates differentiation with respect to r and each trajectory was the limiting case of a polygonal

curve. The tal complex field amplitude at an observation point due to several point sources or to

a continuum of point sources in a source plane some distance away is then given by

u(p", z) = JJ G(p", z; p', O)u(p', 0)d 2p' (3.22)

which is simply a superposition integral with a Green's function integrand. Let the trajectory

x(r) be decomposed into two components, 7(r) and X ( r). The first component, Y(-) is the

straight line connecting a given source point, p' with the observation point p". The equation of

this line is simply

(r) = (P" P')r + p (3.23)

where r E [0, z]. The second component. x (-) is simply the difference between x(r) and Y(r),
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that is, the fluctuating component. Therefore, a given trajectory x(r) may be written as

X(r) = 7(r,+ X (r) (3.24)

It is important to notice that the fluctuating component X (r) vanishes at the boundaries r = 0

and T = z. It is important to notice that the strait line component corresponds to a completely

deterministic propagation medium and the fluctuating component corresponds to the stochastic

deviations of the propagation medium about its mean characteristics. Applying this trajectory

decomposition to every trajectory in the Green's function in Eq. 3.21, we obtain

G(p",z;p,O) = f/; ) [] (3.25)

exp{ j [. (I ')+ 2 X(7-) (I.)]dT}

exp{ j c (7(r) +- ('r),T) dr}

2 0 pt

where we have used

i = i(r).i(r) (3.26)

= (-~r) + X(r) (7). +X(-

= I (r)t2 + IX(r 12 + 2:(r). (

(I + I-(r)l2 + 2 (P - '

Let's consider the first exponential term in the path integral above.
(L 1,-,)1 + (,p -p1 2 PP - dr/

exp( f° [(r,+
2  + 2X(r) ')]dr (3.27)

We can simplify this equation by first noting

exp (k fjz (Ip" PI)2 d) exp )-p1 (3.28)
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and second noting that

exp ( 10Z (r) (P/z P) dr) = exp ( -). (-))lo = exp(0) = 1 (3.29)

The integral in the preceding exponential vanishes duc to the boundary conditions on (r). We

can now write the Green's function path integral as

G(p", z;p!,O0) =exp (2z~ 7..j J(0)=O D [X] (3.30)

exp j X(r) I+ C (Y()+ (r),r)dr

For free space (f= 0), the Green's function is known to be

k fjk
Go(p", z; p', 0) = --- exp 11 jIV -p 12 (3.31)

where the subscript 0 is used to denote free space. Therefore, we can write the Green's function

for a general medium as

G(p", z; p', 0) = Go(p", z; p', O)F(z) (3.32)

where

j21rz (Z)=O r 1 2
F (z) = -k ) DO;Li exp X. + Z (Y(Tr1 -~-X (-), T~d-T (3.33)

We will be interested in the statistical characteristics of F(z) because Go(p", z; p', 0) is

completely deterministic.

As an aside, the astute reader will immediately realize that the free space Greens function

will supply a normalizing condition on the path integral of Eq. 3.30. Specifically, when the

propagation medium is free space, we have f = 0. Therefore, it follows that for free space

oo(W",z;P,0) = exp (Lki_ 12,) = JL2 [x]exp{IJoz I(T) } (3.34)
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which further implies that

2 jk 1z I (r) 

JL(-)=O D) = -
(3.35)J(0)=O jz

Before we begin the next section, it will prove enlightening to verify that the Green's

function path integral will, at least for the case of free space, reduce to the regular Green's

function which is derivable from the Huygens-Fresnel integral. Additionally, it is hoped that this

derivation will help convince the reader that the paraxial approximation upon which the

Huygens-Fresnel integral is based and the paraxial approximation upon which the Feynman

integral is based are equivalent. To begin, we know that the Green's function for the

Huygens-Fresnel integral is given by

k
GHF(p", z, p', O) = - exp (L' [p" _ p'12)  (3.36)

j27rz 2

where the HF subscript will be used to denote the "Huygens-Fresnel" Green's function. Now,

we will form the sequence of approximations to the Green's function and then show that each

approximation is in fact equal to every other approximation. Specifically, consider the case where

there is one subdivision for the trajectories. In this case, let po be a general location vector in the

source plane and p1 be a general location vector in the measurement plane. As shown in chapter

2, we have for the complex field amplitude,

U(pI, Z) = k JJ u(po, 0) exp (Lk p,- Po2) d 2po (3.37)

By using the property of the Green's function,

u(p", z) = Jf G(p", z, p', 0)u(p', O)d 2p' (3.38)

we see that the resulting Green's function is equal to GHF. Now consider a propagation region

with two subdivisions. In this case let p0 be as before a location vector in the source plane.

Additionally, let p2 replace p, as a location vector in the measurement plane. Lastly, let P now

represent a general location point which is midway along the propagation medium between po
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and p2. In this case, the complex field amplitude in !he measurement plane which will be

dependent upon the complex field amplitude at the intermediate (p1) plane will be

k__ jk 2
U(P 2 ,Z) = /2 u(po,0)exp ( k -p. - P.-1 2) d2pld 2po (3.39)

it follows that the Green's function may be written as

G(p 2, z, po, 0) = ( 2A2)2 JJexp (_ k (IP2 , 12 + 1P, _ P012)) dp, (3.40)
(2r2 f 2z/2

Now, consider the factor

IP2 - PiI2 + IP, - POI 2  (3.41)

which may be rewritten as

2 - 2 +'P) + IP - pol 2  (3.42)

When the preceding factor is substituted into Eq. 3.40, we obtain

G(p 2, z, po, 0) = (- k ) 2 exp (L I-p2po12) (3.43)

J/exp - (p2+ Po) 12) d

which is a gaussian integral. Such an integral is easily evaluated and yields

G~p2,z, Io /) (jk
G(p2 z,po, -)= exp (-IP2 - Po12 = GHF(P2, Z, PO, O) (3.44)

j2i7rz 2z

the free space Green's function. Lastly, it is relatively simple, though extremely tedious, to show
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that for N subdivisions, the Green's function

G(pN, z, PO, O) = (j 2 /N) (3.45)

J.-fexp f i d2pm

can also be simplified so that

G(PN, z, PO, O) = GHF(PN, z, PO, 0) (3.46)

Therefore, because the choice of N was arbitrary, we can take the limit as N becomes unbounded

and we conclude that

G( Z; p,O0) = exp " 11 ; D [x]exp 2 (r dr (3.47)

therefore,
x(o)=o " k I 1;(r) I'

DLO= D[x expj X] x r (3.48)

and so we conclude that the Green's function from the Huygens-Fresnel integral and the Green's

function from the Feynman integral are equal for free space.

Orthogonal Function Expansion It is known that if a function satisfies certain

requirements, then it possible to expand it over an infinite orthogonal function set. The choice of

the orthogonal functions and therefore, whether the set is countable or not, is usually chosen to

simplify the problem at hand. For our problem, we will choose a Fourier-sine series as the

orthogonal function set. This set will be used to perform an expansion of the fluctuating part of

each trajectory in the Green's function path integral.

Let the fluctuating part of the trajectory x (r) be expanded in a Fourier-sine series as
-p

X (r) = xnO.(r) (3.49)
n=1
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where

1 2 (n~rT\(3))(-T) T ~sin (.0@()=n~r V

and xn ER 2 . The use of the above Fourier-sine series results in the simplification

exp j (r) dr = exp 2 IxI2} (3.51)
exp 0 (r)I In=1

as the cross terms, all being orthogonal, will integrate to zero.

Approximation of the Green's Function Path Integral In this section, we will use a finite

truncation of the Fourier-sine series to obtain an approximate value of G(p", z; p, 0). Consider

the path integral

I(z) =D 2[x] exp X + Lk e (7(r+, r)dr-- 3 (3.52)
117 (0) = 0 2n=l 1

where

XN (r) = Xjj znn(r) (3.53)
n=l

We seek to find a finite value of N such that . (r) can be replaced by ZN (r) in Eq. 3.52. This

is not a simple problem as the choice of N will be dictated by several factors including the

statistics of Z. This problem not withstanding, we may make some simplifications to Eq. 3.52.

Let us begin with the integral term in the exponent of the path integrand in Eq. 3.52

0E (T(r) + X (r), rT)dr (3.54)

It is seen that -C is a functional of the functions 7 and -N. Therefore, by following the method

given in Appendix F for expanding an integral of a functional in a variational Taylor series we get

for the zeroth variational term

o0 I (Y(3r)+ 1N (r),r)dr (3.55)
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while the first variational term is

1j ( 0) (!(r)+ N (r),r)dr (3.56)

- " XN(r)

and the second variational term is

oI (r) (r) 02 " ( ,(r)+ N ()r)d. (3.57)
0 N19( N

where

X (r) = X-O-() (3.58)
n=N+l

Higher order terms are similarly defined as the interested reader will find in Appendix F. Similar

to the more familiar Taylor series in which the value of a function at a fixed point is approximated

by the first term of the series, it is possible to approximate Eq. 3.54 by the first term of its

variational series given by Eq. 3.55. Additionally the other exponential factor in the path

integrand of Eq. 3.52 may be simply truncated after N terms. Doing so results in

ffrN(Z)=O N ' 2k z
IN(Z) = JJ.N(O)=O D [N]exp 1 2. n= 2 + f0 ((r)+ N (r),r)dr (3.59)

This result will be used in the next section where this thesis will be concerned with the fourth

statistical moment of the complex amplitude of a propagating optical wave. The ultimate

accuracy of these approximations will be determined by comparing the predictions of these

approximations for scintillation index with reality. Before we investigate the fourth statistical

moment of the field, it should be noted that the previous equation is the result of making two

different, though related types of approximations. The first approximation was made by assuming

every trajectory of the Feynman integral could be approximated by a truncated Fourier-sine

series. The second approximation was made by assuming that the difference between the C

functional of the original trajectory and the c functional of the approximate trajectory was

sufficiently small so that the former could be approximated by the later. In other words, the

approximation by the first term in the variational Taylor series was sufficiently accurate.
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Fourth Statistical Moment

The fourth statistical moment of the field, which gives the intensity variance of the

propagating optical wave, will be investigated in this section. The other moments of major

interest, the first and second, can be obtained in a manner similar to that which will be used to

obtain the fourth moments. Therefore, this thesis will consider only the derivation of the fourth

moment of the field. The derivation of the fourth statistical moment of the field will culminate in

the calculation of the scintillation index for a point source. Thus, the general fourth statistical

moment will be obtained and then the four independent points in the general fourth moment

equation will be merged into a single point. This is the ultimate goal of which the reader must be

mindful during the reading of the succeeding sections.

It is reasonable to wonder why the general fourth moment equation is obtained and then

the four independent points replaced with a single point rather than begin with a single point in

the first place. After all, the point source scintillation index or normalized intensity variance, is

ultimately desired. The necessity of doing so for the extended medium parallels the necessity of

doing so for a phase screen. The closed differential equation which describes the fourth statistical

moment for the phase screen case is dependent upon the second partial derivatives of the four

independent points. Is is only after the appropriate equations have been solved that in the limit,

the four points are allowed approach each other and ultimately be replaced by a single point

(25:22).

As we have already seen, the field at an observation point may be written in terms of all

point source contributions in the object plane. Specifically this was a superposition integral of the

Green's function of the problem. Therefore, the fourth moment of the field may be written as

r4 = (U (p', z)U*(p2, z)U (p, z)U*(p", z)) (3.60)

where (.) denotes ensemble averaging. Assuming the mean direction of propagation is the z

direction, we have for the field

U(p, z) = u(p, z) exp(jkz) (3.61)
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Using this substitution we obtain

r 4 (p', A, 0, A, z) = (u(p', z)u*(p, z)u(A, z)u*(p4", z)) (3.62)

This may be written in terms of the appropriate Green's functions and superposition integrals

resulting in

r4(p',p'2 ,p,p,z) = (3.63)

ifJJJf (G(0'' ;P ' )G( ,0 )G(p3, z;W, O)G*(pz 4 )

u(,O)u*~(A, O)u(p'3, )u* (p'4, )d2 p'd2p 2 d 3d

Let the statistical moment of the Green's functions be denoted as

G<4> = G<4> (A', 02, A, N", Z; WI, W2, 3,4 = (3.64)

(G(0p1', z; I, o)a" (p , z; #2, 0)G(#3", z; p!3, 0)a" (p4, z; p4, 0))

Each of the Green's functions in the above ensemble average may be written in terms of the

appropriate path integral which results in the fourth-order path integral

G <4> Z = P' f 2 z2(z)
-
P' /X3 1 Z 3(42 z 1 z4(z) -

p4 D 2 [,l]D 2[ 2 ]D 2 [X3]D 2 [x 4] (3.65)A<4 J z(0)= " JX(0)=P2 f o JZ4(0)=4

eXp I{L' fi -pI T 1X2(T) 12+ X3(T) 12- IX(T)12) dr}

(exp{k jZ k (X I(),7) - 7 (X2 (r),T) + 7 (X3 (T),T) - C (X4 (r),T) dr}

If for the moment, let us consider the stochastic quantity E

E = (exp 2 { fo C (X,(r), r)- 7 (X2(r), r)+ C (x3(r),fr)- (x(r),r)dr} (3.66)

Let us assume that the Markov approximation, as described more fully in Appendix C holds for

e. Let us also assume that e is a zero mean gaussian random field. Then the above ensemble
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average may be simplified. Specifically, we assume a correlation function of the form

B,(p - ,z - z') = ( (p, z) Z (', zI)) = A(p - p')6(z - z') (3.67)

where 6(.) is the Dirac delta distribution. Therefore, we assume that C is a gaussian

delta-correlated random field as in (29:214). The gaussian assumption is a good assumption as

the effects of each small section of the randomly inhomogeneous medium can be modeled as an

independent identically distributed random variable. The assumption of delta correlation is a

reasonable first approximation as it implicitly assumes no backscattering effects. These

assumptions allow the simplification of the statistical quantity E

E = exp 8 ([ (- (icr), r)- ' (X2(T),r)+ ' (x3(T),T)- ' (X4(T), )])

(3.68)

Expanding terms, integrating and taking averages, results in

E = exp {-4 j F[x, (T), x 2 (r), x3 (7-), X4(r), rdr (3.69)

where

F[xI (r), X2(r), x3(r), X4 r), r] = 4A(0)- (3.70)

A(xI(r) - X2(T)) + A(zI(r) - X3(T)) -

A(xI(r) -- z 4 (r)) - A(X 2 (r) - X3 (T)) +

A(X 2 (r) - X4(T)) - A(X 3 (r) - X4(T))

and

A(0) - A(p) = 2fJ(I - cos(k • p))I€(k, O)d2k (3.71)

where 4b,(k, 0) is the two-dimensional power spectral density of the the fluctuations in e.

Furthermorc. for a pure Kolmogorov law

A(O) - A(p) = 1.46C21PI (3.72)
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under the Markov approximation (29:219). Returning to the fourth order path integral we have,

G<>-- J/:()=P JJ()=p. JJz3(o)--4' J1 Z4()=P34'

D 2[X I]D 2[X 2]D 2 [X3]D 2 [x 4]

exp {- - I 1(')12 -12(0)1 + 1i3(r)12 - 1i4(r)I2dr}

-irk 2 rz
exp V 4 Jo F[x1(), X2 (), X3(0, X4 0, Tldrj

Examination of the previous equation will reveal that the first exponential term which is

independent of the fluctuations of the medium represents a pure diffraction factor. This would be

the only factor if propagation were occurring in free space. The second exponential factor

represents combined effects of both diffraction and refraction. This term is the scattering function

of the fourth moment along trajectories influenced by refraction and diffraction. Furthermore, for

short distances, such as the differential width of a phase screen, the diffractional effects of the pure

diffractional factor dominate the diffraction-refraction factor. For longer propagation distances,

this will in general no longer be true; however, it is not correct to state that at long propagation

distances the combination diffraction-refraction (scattering) term will dominate the pure

diffraction term, but rather that the pure diffractional factor will not necessarily dominate (18:1).

The previous equation which represents the statistical effects of a propagation medium on

four beams, may be simplified by the following variable substitution

4R(r) = Xj(T) + X2(AT) + X3 (r) + X4 (r) (3.74)

p(T) = X 1 (T) - X2(T) + X 3 (") - X 4 (T)

2rI(r) = X(ir) + x2 (r) - X3 (r) - X4(T)

2r2(r) = X1(r) - X2M() - X3 (r) + x4 (r)

These 4 substitutions result in

p, (,)12- 1±2(T)12 + 1P3(r)l2 - 1i4(r)12 = 2A(r). / (r) + 2Y', (r) -i2(r) (3.75)
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and

F[x, (r), x 2(r), X3(r), x4(r), r] = F[ri (r), r 2(r), p(r), r] - (3.76)

A(rl (T) + p(T)) + A(ri (r) - ip(r)) +

A(r 2(r) + 2p(r)) + A(r 2(r) - 2P(r)) +

A(r I (T) + r2(T)) - A(ri (T) - r2(T))

It is seen that the scattering factor will be independent of R(T) under the preceding variable

transformation. At the present stage of development, the Green's function is

= JJ JJ JJ [[= D [R]D [p]D [ri]D [r2] (3.77)G<4 R(Jpo)=R' p(Jo)=p' Jr,(o)=1 J Jr2(o)=r

expjk o Rr) (r) + T1(r). i2(r) - 7r-F[ri (r), r2(r), p(r), ]dr

As it was done previously, consider the trajectories R(r) and p(r) as strait lines

connecting source and observation points with some deviation superimposed upon them. Then

we can make the following substitutions

R(r) = R(r)+ R (r) (3.78)

( ) (R"- ')l
z

p(r) = T(r)+ P (r)

T(r) = (#-#

where R" = R(r)j,.=, = R(r)1., 0 , and so fourth. Using these substitutions, it follows

directly that
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exp, {Ick ]0 R(r) - A,(r)dr} 1 (3.79)

exp I R_ (PP - P) ) exp {Ik 0 P(r)d-r}

as the cross terms will integrate to zero. Furthermore, the remaining integral may be integrated

by parts which results in

exp{jk joR(r).P(r)drl=exp{-Jkfo R (r). P(r)dr} (3.80)

The Green's function now takes the form

G<4>= exp I jk (R" - k) .(p" - pI) (3.81)

J(z)=R JP(Z)=P Jr(z)=ri' Jjr (z)=rD2 2 [2 []22

a~o)= D o) p Jr,(o)=[ J Jr2(o)

exp {-jk fo R (-). p(r) - :l (") r2(r)dr} exp {N o F[ri (r),r 2(),P (r) +p(r)Jdr}

A path integral simplifying formula referred to as the "delta functional" property of path integrals

exists which can be used to further simplify the preceding path integral (9:22). This path integral

relation is given by

JJ D[x(z)]D[y(z) exp-ikJfx(z).- (g(z) - f (z))dz} F[y(z)] = 2F~~)

(3.82)

where x(z), y(z), f(z), and g(z) are vector valued functions and

(z) = f(z) (3.83)

and where g(z) satisfies the boundary conditions for y(z). Using this simplification formula, the
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Green's function for the fourth moment becomes

G<4> "- ( - ) exp R ( - ).(p -V)} (3.84)27z z"-
rlo)=r" r2C o-IJ1 () = r Ifr2(Z)=r2' 2D 2[rIlD 2[r2] exp {jk j0 i1I(r) - if2 ()dr}I

{-rk2 [/ F[ri (r), r 2 (1),'(T)]dT }exp -'-4 fo0

G<4> is seen to be independent of the value of(5(r). Because of this independence, the final value

of G<4> will not change irrespective of the value of ;5(r). Therefore it makes sense to assign it a

value which will simplify our calculations. For reasons which will soon become apparent, we

will set p(r) equal to zero. This being the case, it follows that the Green's function becomes

G<4> k 2 exp {)k (PP-')} (3.85)

ffiz r~ l ff2Z=ri D 2 [rIJD 2[J zj [Z f(r) - i2 (r)drl

I r(o)=,- iJV(o)=-,T )

exp { -rk 4 F10 1~2 ()]r

where the abbreviation F[r, (r), r 2(r)] = F[rI (r), r 2(r), 0] has been used. At this point, we

recall that the Green's function was composed of the effects from 4 independent point sources or

beams. Now, we see that the Green's function has been manipulated into a form that is equivalent

to a Green's function with two beams. Therefore, the Green's function now represents two

effective point sources or beams.

Now consider the decomposition of the two trajectories r, (T) and r2(r). The

decomposition will parallel the previous decompositions for R(r-) and p(r). Specifically, let

r (r) =I T (T)+ rI (") (3.86)

12(r) = ?2(r)+ 2 (0)
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where

and r' - r(r)1, 0, r" = r(r)IZ, and so fourth. Additionally, let

00

rj (T) = E x-OS(r) (3.88)
n=1

r2 (T) = E Yn On(T)

n=1

where x, and yn are the ordered pair Fourier-sine series coefficients and

-on (r) = - V- - ( nr (3.89)
nir V 0 ~z)

are the orthogonal functions on [0, z]. The previously mentioned substitutions for rI (r) and r2(r)

will result in

," (r) - = (3.90){ r~ -r)+ __2 F , n (rz) }{(r2 - r2) + 12 , (n~~)

By taking the dot product and integrating from 0 to z in the preceding equation, one will obtain a

simplification of Eq. 3.85 resulting in

G<4 > = (,)2 exp -(R" - (') -p')} (3.91)

exp (r"' - r ' )- D(2 []D

E{ ' Y - rk2 f"F[r. (r)+ X,0 (r),T2(r)+ Y. (r),;('-)]dr}

n=132
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where

N

XN (-) = X.N,,(7r) (3.92)
n=1

N

Y N (T) = :Y On y'(T)
n=1

and where Xn, Yn ER2.

Previously we noted that G<4> is independent of the value of ;(r), and we choose a

convenient value for it, namely zero. We now wish to examine the consequence of such a

decision. Recall
("' P') T + p' (3.93)

where

= - P2 + 3 - A (3.94)

Let's consider the explicit evaluation of the the preceding two equations for two specific values of

r. When r = Owe have

P1 - 2 = P - P3 (3.95)

and when r = z it follows that

P7 - Pd2 = - P (3.96)

Recall from dementary vector analysis, two vectors (directed line segments) are equai if and only

if they are parallel. The location of the two vectors is irrelevant. Therefore, the choice of

p(r) = 0 implies that the vector p' - p2 must be parallel to p - p3 just as p'' - p2' must be parallel

to W4 - p. The first equality states that a quadrilateral with the source points p,, #2, W, # at

each of its vertices is in fact a parallelogram. The same holds for the four observation points W',
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2!, pq, p4'. Fig. 3.1 illustrates this more clearly. This geometry of source and observation points

will not create any problems for our derivations as in the limit, the sides of the parallelogram will

become infinitesimally small and !he four poir .; will be merged into a single one (24:56).

Pl ,P4

/P"-P P4- /P3

P2 P3

Figure 3.1. The four source or measurement points form a parallelogram.

It would appear that the equation for the fourth statistical moment is hopelessly

complicated with the infinite number of integrations contained in the Feynman integral.

However, as in the case of the single path integral, we will approximate the infinite number of

integrations inherent in the four-fold two-dimensional Feynman integral with a finite number (in

reality 3) of ordinary Riemann integrals. The validity of this approximation may be verified

either by mathematically rigorous means (which is the ideal method) or by comparing the

predictions of the modified equations with reality (which is what this thesis will do). As our

derivations now exist, the path integral ff D2 [x] is the integratiop over all sinusoids of the form

given by Eq. 3.89. The approximation of the path integral by a finite number of functions will

result in a finite number of ordinary Riemarx. integrations.

As the interested reader will find in Appendix F, it is possible to expand the functional

ozF [-r)+ X (r) + 72(T), y. (7)]dr (3.97)

in a two-dimensional variational Taylor series. It therefore follows from Appendix F that the
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zeroth variation of the above equation for N terms is given by

j F[r(r)+ :N (T),?'-(T)+ YN (r)]dr (3.98)

higher order variational terms will be defined similar to the one-dimensional case. As already

stated, the accuracy of our approximation will be validated by the accuracy with which the results

predict reality. Moreover, the task of actually evaluating the resulting integrations must be

addressed. As it was stated previously and as it will be repeated here, we have made two

approximations. The first approximation was made by assuming every trajectory of the Feynman

integral could be approximated by a truncated Fourier-sine series. The second approximation was

made by assuming that the difference between the 7c functional of the original trajectory and the e

functional of the approximate trajectory was sufficiently small so that the former could be

approximated by the later. In other words, the approximation by the first term in the variational

Taylor series was sufficiently accurate. The case of N = 1 will be investigated in the next section.

The Fourth Moment for a Point Source In this section we are now ready to consider the

case of a point source and a single observation point. In order to simplify the derivations, we will

assume that both the sourcc point and observation point lie along the z axis (7-(r) = 72(r) = 0).

Additionally, we will consider the case of only one sinusoid for the approximation and therefore

the symbol^ will be placed over a variable indicate its two-dimensional nature. Finally, the

turbulence will be modeled as a p*--e Kolmogorov law. Therefore, the fourth statistical moment

apart from a constant becomes

= K(z) f 2 ffR2 d2id 2  exp{ 4 - rjF[.i,(r), l,0(r)1dr (3.99)

where 1 = (XI, X2), = (yl, y2), O(r) = b(r) and

F[O(r), O (r)]= 1.46C 2 (21i1 / 3 + 21i1 513 + p - 915/ 3 + p + 15/ 3) 5/3(7") (3.100)
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and

K(z) =(!)ep-R).("-p)+('-r).( -(3.101)

Performing the integration in T yields

G<4> = K(z) ffR2 ffR2 dx dyldx 2dy2 exp {j(x 1y, + X2Y2)} (3.102)

ep 1.46V2k76 r2(4/3) C2Z 1 1/ 6 p2(152)1/6 + 2(112)5/6 - (14 -_ 12)/6 + (pl + 12) 5 / 6 ) j

where r(.) is the Gamma function. The previous equation was written in a form to facilitate the

substitution of polar coordinates. By making the substitutions

I = (x1, X2) = (r, cos(0 1), ri sin(01)) (3.103)

j = (yi, y2) = (r2 cos(02), r 2 sin(02))

Eq. 3.102 becomes

K(z)G<4> = ffo dO, ffo dO2 ffo rdri Ifo r2dr2 exp{jrr 2cos(A1 - 0) 104)

exp {C(z) (2r/ 3 + 2r/ 3) }
exp{JC(z) ((r2 + r 2 -2r Ir2 COS(01 - 02) - (r 2+ r 2+2r Ir2 COS(01 -02)))

where

C(z) = - 46v~k/ 6r 2(4/3) C~z11/ 6  (3.105)

The substitution of

= 01-02 (3.106)

' = 02
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will permit 0' to be integrated by inspection, resulting in

G< 4> -2 k) 2 21r f2' do f r, dr, 00 r 2dr2 exp {jrl r2 cos(O) } (3.107)

exp {C(z) (2r'/ + 2r 1/3 )1}

exp {C(z)I((r + r2 - 2rlr2 cos(I))6 -(r2 +r 2 + 2rlr2 cos())5/6) }

Further simplifications are possible by considering the integration of 0 on [0, ir/2] instead of

[0, 27r] and recognizing the symmetry of G<4> along the line r, = r2. These substitutions will

now be performed one at a time. First, the integration range will be divided in half. Specifically,

the integrand of the previous triple integral may be considered as a function of cos(0) only.

Additionally, the previously mentioned integracid is an even function in cos(o). Then we may

write

f o 27r 7r 2j f(cos(o))do = f(cos(o))do + J f(cos()))do (3.108)

= 0 f(cos(o))dO + 0 f(cos(o + 7r))do

= 0 f(cos(o))dO + j f(- cos(o))do

= 2 f(cos(o))do

A similar series of simplifications may be made which will result in the integration range of 0

being reduced by half again. This second reduction in the integration region will cause the factor

exp(jrlr2 cos()) to be replaced with 2cos(rlr 2 cos(o)). Therefore, it follows that

G<4> = 8wrK(z) o /2do  rldrl r 2dr2 cos (rIr 2cos(0)) (3.109)

exp {C(z) (2r/' 3 + 2r5/1 - (r2 + r2 - 2rlr 2 cos(O)) 5 /6 - (r2 + r2 + 2r r 2 cos(o))5/6) }

The final simplification will be to reduce the integration region 0 < r, < oo, 0 < r, < oo with

0 < r2 _ r, < oo. Thus, we have arrived at the final integral form
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G<4> =6 IK(z) /2d- r1dr 1 A r 2 dr2 cos (rir2 cos(M)) (3.110)

exp {C )(2 + 2r 2- (r + r - 2ri r2 C0 ))/- i +(r2 + 2 orl r2COS())1/6)}

One of the final substitutions which may be made concerns the function C(z). The Rytov

solution for the relative intensity fluctuations is given by (25:103)

p2 
- 0.307CEk/ 6z11/6  (3.111)

We notice that the units of C, are meters - 1/ 3, the units of k is meters- ' and z is simply meters.

Therefore, if we make the substitution

C(z) = -0.619,0 2  (3.112)

the analysis of Eq. 3.110 may be performed under dimensionless conditions.

Eq. 3.110 is a highly oscillatory integral and because of this property, special techniques

must be used to try to evaluate it. The naive method, also known as the brute force method, is to

simply perform the triple integral indicated above. The final integral over r1 may be evaluated by

considering a sequence of partial integrations for larger and larger values of rl. In the limit as r,

tends to infinity, it is hoped that the partial contributions to the total integral tend to zero.

However, in this case, hope does not mirror reality and for a finite precision machine convergence

is nearly impossible to attain. In order to accelerate the convergence we can replace the integrand

with a function which converges to zero much more rapidly (18:1). Specifically, we can subtract

the value of the integrand for very large values of r, and then add it back again later. With an

abuse of the lim,,oo notation, we will want to consider
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Therefore, consider the case where lim,. .o. This equivalent to the case where jxj --+ oo in

Eq. 3.103. Therefore, as r1 tends to infinity, Eq. 3.110 is fully equivalent to Eq. 3.102 which is

shown below for convenience.

G<4> = K(z) f2 ffR2 d2id 2 eXP{ i(XyI + X2y2)} (3.114)

exp f{-0.619#02 (2( p12)s/6 + 2( I 12)1/6 _ (p~ _ if 2)5/6 + (p~ + p12)5/6)

In the limit as x tends to infinity and y remains unchanged, the integrand of Eq. 3.114

exp {-0.619,32 (2(Ip12)5/6 + 2(I 1 2)5/6_ (p' - )12)/6 + (' + /1)4/6)} (3.115)

may be rewritten as

exp {i(XIYI + X2Y2) - 0.619,32 (2( p12)5/6 + 2(Ig12)5/6 - (1I2)5/6 + (12)5/6)} (3.116)

which simplifies to

exp {j(xIy1 +X2Y2)- 0.619/3 (2)15/ 3)} (3.117)

Therefore, we will be interested in the following integration

L(30) = fkR2 ffR2 dxldyjdx2 dy2 exp {j(x 1 y1 + x2y2) - 0.619/ 2 (21y'/3)} (3.118)

Which is equivalent to the integration

L( 2 ) =ff f 2 dxdydx2 dY2 exp {ji(x IY + X2 y 2 ) - 1.2383o2 (y 2 + Y225/6)} (3.119)

The integrations with respect to x, and yi may be performed first where

00 exp(jxlyl)dxl = 27rb(y) (3.120)
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resulting in

L(fl2 ) = 27r ff2 dx2dy2 f dylt(yl) exp{jX2Y2} (3.121)

exp 1- 1.238,802 (y' + 2) (5/6)}1 =

27r ffR2 dX2dy2 exp{x2y 2 } exp (-1.238,0g (Y2) (5/6)}

The integrations on x2 and Y2 may be similarly performed yielding

L(0 2 ) - 47r2 (3.122)

Therefore, it follows that we will be interested in the evaluation of

161rK(z) ff12do 1o0 r1dr forl r2dr2 cos (r r2cos(O)) (3.123)

[exp -0.6196 2 (2r5/ 3 + 2r5/3 - (r2 + r2 - 2rr2cos(0)) 5/ 6 - (r2 + r2 + 2r r2 cos(k))5/6) }-
exp -. 23882r5/ 3}] + 41r 2 K(z)

The preceding integral is the final form which may be numerically integrated, although

we will not explicitly do so as we could not obtain a convergent solution for all positive values of

/32. In particular, rapid convergence for values of /32 > 10.0 was obtained using Gauss-Kronrod

integration. The corresponding value of z the propagation distance is given by simply solving

0.307C2k 7/ 6 zll/6 = 02 > 10.0 (3.124)

which results in

z > (32.57C 2k- 7 / 6)6 /11  (3.125)

Therefore, given a particular optical wavelength, and a value of C, = C" which is altitude

dependent, we can obtain a minimum propagation range for which a numerical solution to

Eq. 3.110 will rapidly converge.

An equation for the scintillation index very similar to Eq. 3.110 which was derived under
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a different set of assumptions has been numerically integrated by Beran and Whitman (3:2140).

Therefore, the result of performing the operations of Eq. 3.123 will yield a function of 0 2 which

will closely match the scintillation index derived by Beran and Whitman. Their calculated

scintillation index was shown to be accurate to the theoretical scintillation index within ten

percent. Therefore, we expect a similar magnitude in error for Eq. 3.123 in its predictions of the

scintillation index. The scintillation index from Eq. 3.123 is qualitatively very similar to the

scintillation index for strong medium fluctuations which appears in Fig. 2.4.

This chapter has examined a small aspect of the problem of wave propagation in a

randomly inhomogeneous medium. The next chapter will examine some of the consequences of

this examination.
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IV Conclusions, Contributions and Recommendations

Research Questions Answered

During the course of research for this thesis, it was desired to obtain the answers to some

relevant questions which are repeated from Chapter 1 for convenience.

1. Of the presently known subsets which have any practical usefulness, what accuracy do they

provide when used to help approximate functional integration?

2. What is the computational complexity of these subsets?

3. Do the characteristics of the function subsets used to approximate the functional integrand

dictate the use of a particular numerical integration scheme?

This thesis investigated the approximation of an arbitrary continuous trajectory with a truncated

Fourier-sine series of only one sinusoid; therefore, the answers to the above three questions will

have to be accepted with such an understanding. Specifically,

1. The accuracy of a single sinusoid is estimated to be on the order of ten percent error

between the predicted scintillation index and the theoretical scintillation index for a point

source based upon the results of Beran and Whitman (3:2140). This estimation of the error

comes from the comparison of the three-fold integral obtained from the Feynman integral

used in this thesis to obtain the fourth moment of the field and the similar three-fold

integral examined by Beran and Whitman. They obtained an error of about ten percent in

their research and its reasonable to assume the error in this thesis is on the same order of

magnitude.

2. The computational complexity of this particular approximating function (a single sinusoid)

was extremely high. Initial computational runs on a Cray -YMP using Gauss-KrouWod

adaptive integration schemes often did not converge in under one hour. Higher values of /00

did not converge at all. The results of Beran and Whitman were obtained by heuristically

choosing particular integration regions and examining the limit of the resulting sequence of

partial sums. They reported acceptable convergence times which we could not duplicate.

However, their results were accepted as valid.
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3. Based upon the experience gained in writing this thesis and the results reported by Beran

and Whitman, it would seem that the analysis of the integration scheme is extremely

important. Apparently, the integration region must be subdivided so that the available

integration schemes, for example Gauss-Kronrod, will achieve acceptable convergence in a

reasonable time. The exact nature of the subdivided integration regions is presently very

poorly understood.

Contributions

Using the present sinusoidal approximation to the path integrand and the presently

implemented numerical integration scheme to calculate Eq. 3.110, we see that are some

limitations as to what size of a propagation distance will yield a convergent numerical solution.

Specifically, as of the time of the writing of this thesis, the limitation is given by

z > 6.68C'2/1 k- 7/11  (4.1)

meaning that values of z larger than this will yield a convergent solution. As an example, using a

measured C2 at 12497 meters (above sea level) of 5.0 10- 14 (meter- 2/ 3 ) and an optical

wavelength of 7000 angstroms (red light), we find a convergent solution for z > 4550 meters

(27:71).

Recommendations

In order to obtain a better understanding of the method of path integration to find the

scintillation index, it is recommended that the nature of the highly oscillatory integrand used in

the Eq. 3.123 be better understood. Specifically, the necessary integration scheme and region

over which such a scheme is applied must be rigorously understood. Additionally, a single

sinusoid as an approximation to a general trajectory is clearly not a good approximation. It is

possible that there exist other orthonormal function sets which could be used to make the

necessary approximations (perhaps wavelets). Lastly, though this work was directed at gaining a

better understanding of the problem from the path integral standpoint, there may be important

future applications which can be derived from the work contained herein. Therefore, this
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direction of research should, if possible, continue to receive support.
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Appendix A. Parabolic Wave Equation

As a convenience to the reader, this appendix has been provided. This appendix will

follow the method used in (29:211-212) for the development of the parabolic wave equation.

Starting from Maxwells' equations and considering a non-conducting, charge-free medium with a

unity magnetic permeability, and a slowly temporally varying dielectric permeability

e(r, t) = e(p, z), Maxwell's equations can be written

E = I_ OH(A.1)ct

1 at(E)

V xH - (A.2)

v(EE) = 0 (A.3)

where E is the electric field strength, H is the magnetic field strength, r = (x, y, z) is a position

vector, V is the gradient operator, e is the dielectric permeability of the medium, and c is the

speed of light.

In the atmosphere, the dielectric permeability is very slowly changing, therefore,

c(r, t) = e(p, z). Thus, letting the varying portion of e be expressed as,

f (p, z) = , z) - (€(p, z)) (A.4)
f (p, Z) = p z))(A4

or by neglecting the explicit (p, z) dependence

-,,_= __-___ (A.5)

where (.) denotes ensemble averaging. If the reasonable requirement that the atmosphere exhibits

non-relativistic characteristics,
(mv-) <I I, (A.6)

C
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where v is the characteristic velocity of atmospheric turbulent inhomogeneities, and c is the

velocity of light is made then it follows that,

(V 2 + k2)E = -k' C E - V(EV %) (A.7)

It can be shown that the last term in the above equation can be neglected for large-scale

inhomogeneities: lo > A. This being the case, a stochastic wave equation which holds for any

component of the electric field intensity E results,

(V 2 + k2 )E = -k 2  E (A.8)

Thus,

V72 E +k 2(l+ _C)E = 0 (A.9)

for any component x, y, or z. The above equation is known as the stochastic Helmholtz equation.

A rigorous derivation of the parabolic approximation to the wave equation can be found in

(25:38-44). However, for this synopsis, a more intuitive and simplistic derivation will be used.

This derivation will parallel the method presented in (28:5.11). An optical wave propagating in

the z direction, may be written as,

U(x, y, z, t) = u(x, y, z) cos(kz - wt) (A. 10)

where U(x, y, z, t) is the optical field at the point (x, y, z) and the time t, u(x, y, z) is the

real-valued amplitude of the wave at the point (x, y, z), k =2 and A is the carrier wavelenth,

and w is the angular frequency of the carrier. By considering U to be the real part of an analytic

signal, U., it follows that,

U(x, y, z) = R{ U. (x, y, z) exp(jkz) exp(-jwt)} (A. 11)

where R(.) = ((.) + (.)*), and (.)* means complex conjugation. By considering a

monochromatic optical wave and the variation in time to be implicit, it is possible to write the last
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equation as,

U(x, y, z) = R{ U0 (x, y,, z) exp(jkz)} = R{u(p, z) exp(jkz)} (A. 12)

where u(p, z) now represents the complex amplitude of t'e optical wave, and p = (x, y).

Henceforth, without loss of generality, this thesis will consider monochromatic disturbances

(waves) which propagate in approximately the z direction. Suppose u(p, z) changes little on the

scale of A. Then it follows that the change in u(p, z), which is represented by bu(p, z), will be

much smaller than the magnitude of u(p, z). In other words

Ibu(p, Z) I << 1u(P Z) I (A. 13)

Next, consider the incremental change in u(p, z) along an incremental change in z,

6u(p, z) = Ou(p,Z) X bz (A.14)
az

Now, because it has been assumed that u(p, z) varies slowly with respect to the carrier frequency

in the z direction, consider 6z : A in which case,

Ou(p,z) O z(p,z)xz z~ -x0-- "× A (A.15)

Thus, it follows that,
I u(p, z)IA

«I < u(p,z)I (A.16)Oz

This results in,
I9u(p,z)[ 1

auz) < I Mu p , Z) I < kuMp' Z) lI (A. 17)

Following a similar line of reasoning, a similar result for "U(PZ) follows,

8Z2  I I IOz

The substitution of equations A.16, A.17 and A.18 into equation A.9 results in the simplified
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scalar-stochastic parabolic wave equation,

(2jk+ + + k (p,z)) u(p, z) = 0. (A.19)

where V - It is important to notice that equation A.19 is a first order partial

differential equation in z, so there will be only one boundary condition in z.
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Appendix B. Method of Smooth Perturbations

Asymptotic Expansion

This appendix is incuded as a convenience to the reader who may not be fully aware of

the method of smooth perturbations, also known as Rytov's method. The derivations in this

appendix will closely follow those found in (25:46-50).

A rigorous derivation of the parabolic equation would exclude the effects of

backscattering for a wave propagating in an inhomogeneous medium. Therefore, Eq. A.19 holds

for small angles about the mean propagation path. The problem with equation A. 19 is that, except

in the most trivial of cases, it is not solvable in closed form. Therefore, the method of smooth

perturbations, also known as Rytov's method is applied. This method will approximate the actual

solution by using the first term of an asymptotic series expansion. Consider an equation of the

form,
f (X, 0 = 0. (B. 1)

where is a small-valued parameter. One method to solve the above equation is to assume a

solution of the form,
00

f(x, ) = cifi(x) (B.2)
i=O

where { f, (x) } 0 is a sequence of (possibly unbounded) functions. The solution to B.2 is

obtained by equating similar magnitudes or powers of 6. For example, suppose it is desired to

solve the equation

exp(x 2 ) = cos(x + 6) (B.3)

for small values of . By inspection, when 6 is zero then the solution is simply, x = 0; however,

we might also be interested in solutions in x for small non-zero values of 6. By expanding the

exponential and sinusoidal terms into their respective Maclurian series in the above equation we

have
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+ -X- 2 +4- + X- .. • (B.4)

( 2 + 2g + 2 + X4 + 4x 3 + 6X2 t2 + 4X3 + t4

2! - 4!

We can obtain a solution by equating similar powers in t. For example, the first few simultaneous

equations will be obtained by equating terms in t0 t' and t2

x
2  X

4

1 = - +

2 2x 4x3=2  -2-+ 4-."'
2! 4!

4  -1 6X2

-2! 2! T 2!+-!

It is easy to see that the first of the preceding tlrce equations will result in the equality

1 = cos(X) (B.5)

which immediately implies x = 2nir for n = - - 2, - 1,0, 1, 2... Each equality based upon

the next higher power in t will further reduce the allowed set of possible solutions. It is entirely

possible that there will not be a solution. This can be seen to occur if every possible solution is

elirinated by a succeding equation. It is this type of solution technique upon which the Rytov

method is based.

The Rytov Method

The complex amplitude, u(p, z) of a propagating wave may be rewriten in polar form,

u(p,z) = Aoexp [InA (p,z) + jSp, z)] = Ao exp(X + jS) = Ao exp[-t(p, z)] (B.6)I At

where At is the amplitude of an initially uniform plane wave propagating into the random

inhomogeneous medium (25:48). If the substitution A0 exp[D(p, z)] = u(p, z) is made into
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equation A.19 one will obtain the equation:

2jk04 + t + (v.±L) 2 + k2 7 (p,z) = 0 (B.7)

This equation is less difficult to solve than equation A.19 as the fluctuating term ' as an additive

term and not a multiplicitive factor. As stated in (25:48), equation B.7 is solved by assuming an

asymptotic solution of the form P = tI + 412 + .... Additionally, the scale size of 4P is assumed

to be on the order of (a,)P. Thus, 1PI> I D21 > I 3 ... and equation B.7 can be recast into a

collection of recursive, though linear equations. The set of equations was generated by grouping

terms with the same relative magnitude. Terms which are on the size of or, (or,) 2 , (a,)3) and so

on, are collected into related equations, where o, is the standard deviation of the medium's

dielectric permeability e.

+ 2 _ k2

2jk- +" - k ' (p, Z) (B.8)
19Z

2jk- + V2 4 2 -(VTI) 2  (B.9)

2 9 + 17 3 = -2 V± 4b, x V17 2 (B.10)

Thus, equation B.8 is of size or,, equation B.9 is of size (Or) 2 and equation B.10 is of size (or,) 3

(25:48). What usually happens in the method of smooth perturbations is that 1 is approximated

by only the first term. Thus, 4' = 4Ps. In order for this approximation to be reasonable, it is

necessary for 1I421 to be zmall. This will happen if (V±(1)2 is small. Equation B.9 will have a

solution in 4D2 of the form:

t2 (P, z) = K(p - p', z - z')(V_74 )2d2pfdz' (B. 11)

where the Green's function for the problem, K is given by

-1 [.jklp- p'121 (B.12)

47r(z- z') I 2(z - z')

If (V±( b 1)2 is small, then 4'2 in equation B. 11 will be small and the approximation 4' - 41 will

B-3



be accurate. The magnitude of (V_±(.Ipl) 2 necessary for the above approximation to hold has

been found to be (V±((pIl) 2 < k2 0,. If this holds then (V±_(4I1) 2 being small implies transverse

variations in 4P must be relatively small and therefore t must be relatively smooth in the

transverse plane. This is why this method is known as the method of smooth perturbations.

If Rytov's method is applied to the case of an initially unit amplitude plane wave striking

a phase screen, then it has been shown that the phase variance of the resulting wave is given by

, 0.3C2 zV (B.13)

where C2 is the structure constant of the medium's dielectric permeability, k = 2 and A is the

carrier wavelength, z is the propagation distance from the phase screen to the measurement plane.

One should immediately notice the nearly linear dependence in k and nearly quadratic

dependence in z for the parameter /302. The parameter 302 will prove to be very useful in allowing

the path integrals to be expressed in a dimensionless form.
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Appendix C. Method of Markov Approximations

This appendix has been provided as a convenience to the reader and draws heavily from

(29:215-217). It will provide a more detailed examination of the Markov approximation method.

Beginning with the parabohc wave equation and following the method in (25:85-86) one has

a 2 2(,Z)~,Z
(2jk~- + V1. + k pz)spz (C. 1)

Now we must recall the two conditions which must be satisfied.

First, u(p, z) must be statistically independent of the effects of the random

inhomogenities for any location z' > z in the direction of propagation (no backscattering effects).

Second, the longitudional correlation radius of -C (p, z)) must be less than the

characteristic time of changes in u(p, z). This means that u(p, z) can't resolve the individual

effects of the fluctuations in c (p, z). With these assumptions, the procedure is to consider two

terms of equation C. 1 and apply the identity:

+ f(p, z)) v(p. z) = exp (- f (p, )d) [exp (z f(p, )t) v(p, z)] (C.2)

Therefore,

(2jk- + k2 " (pz)) v(p,z)=

2jk ex[ - p,) exp xp - = (p )0 ~, (C.3)

Thus, we have:

2jk [exp (I::L jz (p,)d 4 )] f( [exp (1oz -k C (p, )d)v(p, z)] V2 v(p, z)

(C.4)

Rearranging the factors yields

- 2jk '9 [exp ( j k (p, )d )v(p,z)] = [exp ( j o' (p, viv(p,z)(C.5)
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Next, integrating from 0 to z yields

-2jk [exp (j -Jk' (p, v(p, z)]- 2jkv(p,O)= (C.6)

fo exp - foZ (p,')d4 v2 v(p,z,)l dz '

Continuing,

fjz -jk i.

exp (10 - 2-  (P, )v(p, z)= (C.7)

-v(P,0) + 2k 10 1exp ( oz  p, V2 v(p, z')] dz'

Solving for v(p, z) yields,

v(p,z) = [-exp(Z (,)d]v(p,O)+ [--exp(oZ-k (p, )d )]

[foe~p-j fz°(P',d W v (p ,' z ' ) d z ] 2 o (C.8)

Now, the last two integrals in the above equation may be combined to yield,

v(p, z) = exp (j f (p, 0) v(p, 0)+ (C.9)

2- J~exp ( (p,04 V2 v(p,z')dz'

Now, the expectation of both sides is taken,

(v(p, z)) = (C.l0)

([exp ( jk f (p,04d)] V (p,0) ) +

( 1J exp (,L 'I v(pz')dz'

Consider the second term in the last equation. Its expectation may be simplified by noting that the

factor f, 4 f (p, )d is dependant only on values of z for z > z', while the factor v2v(p, z') is
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dependent only on values of z for z < z'. Therefore, the two factors are statistically independent

except on a set of measure zero. So, the expectation operation may be simplified,

( f [z k2 .- p d ]v~,)+(.I

(v(p,z)) \ ( exp ( 2j (M)) v(P'O))+ (C.11)

2-k 0- -Tex (l-zk (,, ) 2v(p, zl)) dz'

If the statistics of C (p, ) are known then, equation C.1 1 is a closed equation for the mean of the

field amplitude. For example, the statistics of f (p, ) might be gaussian. If this is the case, a

closed partial differential equation for the mean of v(p, z) can be obtained (25:87). Higher order

moments of v(p, z) may be obtained by generalizating the above method (25:88) and this will be

done shortly.

By performing steps similar to those already demonstrated it is possible to derive a closed

equation for an arbitrary statistical moment. In particular if

r.,m(z) =r,,(pj, p, ,Pn ,' ... I M, = (C.12)

(u(pI, z)U(P2, z) ... U(pn, z)U*(pi, z)u*(,,, Z) ... U*(p, z))

and

Qn. (Z) = Qn,,n(PI, P2, I " , A P1 02 ", Pm, Z) = (C. 13)

C(P, Z)+ Z (P2, ) +...+ (+, )- 7  (p2,)-...- (, Z)

then as shown in (29:216), it follows that

2jkrn,m(z) - 2jkr(O) (exp { j2 Q(x)dx}) + (C.14)

1Z exp {!LkjQ(x)dx}) (v2 +"" + V2 V'2 V'2) rm(x)dx = 0

where 7/ = - This is a closed partial differential equation for an arbitrary statistical moment

of the complex amplitude. If a further assumption is made about 7, namely that 4 has a Gaussian

C-3



distribution and is delta correlated, specifically

( (p, z) (P2, z2)) = A(p, - p2)6(zi - z2) (C.15)

then as shown in (29:217) it follows that

a ( 2  '2 '2 Jk ,2jk r,, . ) + (v .. + V . - ki ... F .. ., )+- ,.,m ) = 0

(C.16)

where

Fn,m = Fn,m(pi,P2,.. ,P-,P,pn,2,1 ) = (C.17)
n n n m m m

E EA(p - pb)- 2 ZZ A(pa. -p'b)+ EZ A(' - W6)
a=lb=i a=ib=i a-ib=i

The assumption that c is Gaussian distributed follows from the law of large numbers which states

that the sum of independent and identically distributed random variables tends to a Gaussian

distribution. The assumption of delta correlation is a good approximation if the correlation radius

of e is small. The solution for r 4 (z, PI, P2, P3, p4) can be obtained for a phase screen of thickness

(bz) and is found to be

r4= (P 2iPPZ 4u fA ~ ,0 (C.18)fik 4(II2-I2 ,1 P

ex p z + 3 2 _ IP4 - p411}

exp r,-2 (2D pW - p!2) - 2D (p; - 3) + 2D (WI - W4) + 2D(p! - p!))

exp 8-k- (2D(p - p4) + 2D(p3 - p4)) d2 p, 2 #d 2 2

where D(x) = A(0) - A(x). For an initially totally coherent plane wave, r4 (p, f p3, A, 0) =

1. A final simplification may be peffomed by using the substitutions

P - P = rl (C.19)

P -P4 =,-

C-4



p - p 3 --'r 3I I

PI + P2 = 2

P1 - P2 = PI

A - P4 = P2

and integrating over r and r3 results in

r 4 (ZP1,P2) (. ) expLk (ri - PO - (r2  P2 ). Frr} d2rld2r2

(C.20)

where F(rj, r2) = 2D(rj) + 2D(r 2 ) - 2D(r - r2 ) - 2D(r, + r 2 ). The preceding result gives

the fourth statistical moment at a distance z behind a phase screen of thickness 6z for an initially

totally coherent plane wave. It is possible to consider Eq. C.20 another way. Examination of

Eq. C.20 reveals the integration of a function over the entire plane. The integrand of Eq. C.20

may therefore be considered to be, apart from a constant, a Green's function which describes the

fourth statistical moment of a point source. This Green's function has the form

G<4>(p, P2, P3, P4) = (C.21)
ex { ") ( 2 ) ) k2 5z }

exp j---k(pI _ P3)" (P2 _ P4) Z- [2D(p1 ) + 2D(p2) - D(p - P2) - D(p + P2)]z 4

It will be found to be useful to compare the preceding Green's function with a functionally similar

path integral. This is done in chapter 3.
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Appendix D. The Feynman Integral Schr'dinger wave Equation Relationship

Introduction

This appendix, which draws directly from (11:26-78) is included to help the reader

understand the origin of the Feynman integral. This appendix will closely follow the original

method of deriving the Schr6dinger wave equation from its Feynman integral solution. There are

several reasons for including this appendix, namely:

1. To provide the reader of this thesis with the methodology used in some of the quantum

mechanics related literature. This is justifiable because as previously noted, many of the

methods and solutions of quantum mechanics have been used to solve wave propagation

problems.

2. To provide an alternative example of the relationship between a parabolic equation, the

Schr6dinger wave equation, (a first order in time, second order in space partial differential

equation) and a Feynxan integral.

3. To provide some additional justification to use the functional integral approach to solve

related problems.

The Classical Trajectory

In the everyday experiences of people, the effects of the kicisenberg uncertainty principle

can largely be ignored. That is, the kinematics of common objects, cars, horses, books, all obey

Newton's laws of motion. The expected path or trajectory that a moving object will follow is

called the classical path (11:26). In the quantum mechanical world, the Heisenberg uncertainty

principle states that possibilities other than the classical or expected trajectory are possible. Fig.

shows some of these paths. So, according to the Heisenberg uncertainty principle, it is possible

for a car spontaneously decay or for a horse to fly to the moon. Of course this is obviously not

how we have come to expect cars and horses to behave and therefore the probability of such

occurances is vanishingly small. Thus, the classi,;al trajectory is in the quantum mechanical

world, simply the trajectory with the greatest probability of occuring. It turns out that there is a

D-1



functional defined on all the possible trajectories which exhibits an extremum for the classical

trajectory. This is the Action functional.

Possible trajectory

- Classical trajectory

Figure D. 1. The subdivision of a trajectory

The Principle of Least Action

Consider a particle initially at (Xa, ya, za) at the time t, which travels, in a continuous

fashion, to (Xb, Yb, zb) at the time tb and obeys Newton's laws of motion. The continuous path is

therefore be described as the continuous parametric function (x(t), y(t), z(t)). The action

functional of the particle along the path (x(t), y(t), z(t)) is defined as,

Slz, Y,] = (Ek - Ep) dt= L (dt ' dt ' dt ,X(t),y(t),z(t),t) dt (D.1)

where S[x, y, z] is the action functional along the path (x(t), y(t), z(t)),

Ek = -T + + (tj)) is thekinetic energy, Ep = V(x(t),y(t),z(t),t)isthe

potential energy, L(- 2 , -dz -5, x(t), y(t), z(t), t) is the difference between the Newtonian

kinetic and potential energies. The action functional for different trajectories can either be similar

or different. In the case of the classical trajectory, the action functional will be an extremum. This

means that for a slight perturbation, 6 of the classical path, there should be no difference in the

action to the first order in 6. Thus, if (bx, by, 6z) is a slight perturbation of the classical path
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which matches the classical path at the end points, as shown in Figthen this implies,

S[X(t) + 6x(t), y(t) + 6y(t), z(t) + 6z(t)] - S[x(t), y(t), z(t)] = 0 (D.2)

Classical path
Path perturbation

Figure D.2. A path with and without a slight perturbation

It is possible to expand S[x(t) + 6x(t), y(t) + 6y(t), z(t) + 6z(t)] in a Taylor series about

(x(t), y(t), z(t)) which means that L can be expanded to first order as,

Ldx(t) + dx(t) dy(t) + dy(t) dz(t) +dz(t)

di di di di dt di'

X(t) + 6x(t), V(t) + by(t), z(t) + 6z(t), t)

= L(i + 6±, y + 4y, i + 6i, x + bx, y + by, z + 6z, t)

L(i, y, i, x, y, z) + (D.3)

6" U OL OL + L OL
TX TX -5 Y + (i+ z-

where the over-dot represents partial differentiation with respect to t,second and higher order

terms in 6(.) and 6(.) have been dropped. Now, the action functional of the perturbed path is

written,

S[X + x, y + y, z + 6z] =

,L (c, /, i, x,y, z, t)dt + [ t 6,_, . L + bxOIL' dt +i & ' b O OL

"L L zOL

i:' ( + +6 Y) d-+ ( + b di (DA)
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it then follows that,

6S = S[x + 6x, y + by, z + 6z] - S[x, y, z] (D.5)

d 8L - 9L) 6X ( d L ) - O ) b d OL) - M 6Z di

Additionally, it is necessary that bx = 6y = 6z = 0 at the trajectory endpoints ta and tb. Thus, in

order that eS = 0 to first order in 6x, by, 6z, it is sufficient that,

( d (DL aL)~ d a)_O)=( d L) _ L)o D6

which is seen to be the classical lagrangian of the Newtonian particle. The notion of a trajectory

or path can be more generalized as it will be shown in a later section.

Wave Functions

Nothing in the quantum mechanical world, as already noted, is certain. Therefore highly

probable, probable, possible, improbable and highly improbable events all have associated

probabilities. A wave function is a function which describes these probabilities. Written as

4O(x, t), its magnitude squared gives the probability of a certain event at the location x at the time

t. That is, if O(x, t) is the wave function associated with an event A, then the probability of event

A is

IV)(x, t)12  (D.7)

here x is the one-dimensional space variable. It is easy to extend x into three dimensions

(x, y, z). Given an event, there are several possible paths or trajectories. Each possible path or

trajectory has an associated probability of occurance which in turn is described by a wave

function. If there are two sequential events, event A followet oy event B, then there is composite

wave function to describe the z.mposite event AB. Furthermore, there is -n important relation

between the individual wave functions for the individual events A and B and given by,

Vb(Xb, tC J 0 (xb, tb, x., ta)b(x., t.)dxa (D.8)
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where K(xb, tb, Xa, ta) is another wave function which will be described in the next section.

The Wave Function K

The wave function K(x 2, t2, X, ti), which appeared in the previous section is an integral

over paths. It is given by,
1' (j )L'\dxtddx2 .,_____l(D9

K(b,a) = lim- I ... exp S[b, a]dx I (D.9)
E-oA I J AAA A

where A = (2z ) and c and xi are shown in the following figure, and the dependence of K on

ta and tb is understood.

xi x+I j!

Xb

xa -- t1ime

Xb th -- -

t a " lb
a

Figure D.3. The subdivision of a trajectory

Often one finds in the current literature the approximation of continuous trajectories or paths by

piecewise linear approximations as shown in Fig29:226). These approximating functions, which

are also called polygonal functions, are used to simplify the limiting process in Eq. D.9. It is

important to note that given aty continuous curve in R 2, it is possible to approximate it as closely

as desired with a polygonal functiun. That is, given a continuous curve in R2, there is a sequence

of polygonal functions which converges to the given continuous curve and infact, the

convergence is uniform. We now have all the necessary tools to derive the Schrtdinger wave

equation. This will be done i, the following section.
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i xi+
1

xb

Xa / - / " Po y goM i approx i a tio

a ... bI tb
ta

Figure D.4. The approximation of a trajectory by a polygonal function

Derivation of the Schrodinger Wave Equation

The one dimensional version of the Schridinger wave equation will now be derived. As

previously discussed, the derivation of this equation will help reinforce the readers understanding

of the relationship between a partial differential equation and its path integral solution. Beginning

with Eq. D.8, for a Newtonian particle at position z. at time t,, and position xb at time t,,, where

x. and Xb are points on the continuous trajectory x. Let Itb - tI = c' which is very small then,

(Xb, tb) = J K(xb, tb, Xa, tb) 0 (Xa, t)dx. kD. 10)

For values of c' small enough, that is, smaller than f, the path integral in Eq. D.9 will

reduce to a regular integral,

K(XbX.) S f exp (C'kS[Xb, a]) dxa (D. 11)

For small c' the time derivitive of the continuous trajectory x with respect to t may be written,

x='lim (xb- X) lim (b- Xa) = (Xb--Xa) (D. 12)

Additionally, for small values of f', Xb is close to x,, and therefore, with error on the order of c'
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that is O(c'), xb - - L(i, x, t) = L(Ek;iL "a,, t). Therefore,

$[bZa L( b-xa Xb + Xa
S'XbX=L( el a 2 ,t) (D.13)

Therefore. the substitution of Eq. D. 13, Eq. D. 11 and Ixb - xa I= r- into Eq. D. 10, will result in

Eq. D.14,

(Xb, t+E')= / exp [E' L r a + (xa +r)et)]O(xa+t)dxa (D.14)

The Lagrangian for a Newtonian particle traveling on a one dimensional trajectory is

given by Eq. D.15

L(ix, t) = -- i + V(x, t) (D. 15)

Thus, making this substitution into Eq. D.14 results in Eq. D.16,

(Xb, t + f') -exp I + V(Xa + 0 ) I(Xa, t)dXa (D. 16)

This may be simplified to,

Vb(Xb, t + 4') = - exp (incjr2 ) exp (- V(Xa + -, t) i(Xa, t)dx, (D. 17)

The first exponential term in the integrand in Eq. D. 17 is highly oscillatory. Moreover,

the contrabutions will be vanishingly small for large values of r. Consider values of T such that

I varies by at most one radian then,

__ r (D.18)

X - m

Therefore, values of r such that Eq. D.18 holds will give a non-zero contribution to Eq. D.17.

A function f(x, t) which is continuous in all differential orders may be expanded in a
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Taylor series about the temporal point t' as,

[(d n tI)n

f(Xte) f(Xt)J(t (D.19)
n=O t=t

By considering the Taylor expansion of the wave function O(Xb, t + e') about the point t, it may

be approximated to first order in ' as,

a
V)(Xb, t) = 40(zb, t) + -9(b(xt, t + f')e' (D.20)

Similarly, exp (i V(Xo + , t)) may be expanded in a Taylor series to first order in c' as,

exp ( -V(Xa + 't - 1 + -'V(Xa + ",t) (D.21)

Lastly, '(Xb, t) may be expanded in a Taylor series about Xa to first order in c' which by Eql. D.18

means to second order in r as,

¢P(Xb, 0) -- 0 (X., 0) + 'r 5 + 'r 2 (D.22)
O~b

The previous approximations may now be used in Eq. D.17 to yield,

( 1+ - '(xb, t) = (D.23)J_ 1 (jn&2'\ [1 _ __ [F a 2 a2 ]00 1 exp \ j r i f I-h V ( X ., 0) 1 + ¢T " a +  T22" - J Ob(X b, t)d r

This equation can be simplified by noting that,

/_ 0 1 fjmr2

0 1 exp \-L2,/rdr=O (D.24)

and that,
00 1 exp T2d= (D.25)

A /I m
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By equating terms in Eq. D.23 of order e'° Eq. D.26 results,

_-0 exp O ld/ (Xb, t)dr (D.26)

This will hold if A OF By using the simplifications affored by Eq. D.24 and Eq. D.25

with the value for A, the differential equation of Eq. D.27 results,

(1 + O)')(Xb,t) = (I - ) ( + (Xb,) (D.27)

By using some simple algebra and remembering that E'T 2 is of order f'2 and can be dropped,

Schrdingers wave equation results,

_= (Xt) t) (D.28)

where Xb has been replaced with x. Examination of the above partial differential equation reveals

that it is a first order in time, second order in space equation. Although it is not elementary, it is

possible to follow the above steps by considering the space variable to be two dimensional. In

that case, it will be possible to demonstrate a relationship between the two dimensional

Schr~dinger wave equation and its two dimensional Feynman integral solution. Lastly, by

allowing the temporal variable to be replaced with a one dimensional space variable which is

transverse to the other two space variables, it is possible to convert the two dimensional

Schr'Sdinger wave equation into an equivalent parabolic wave equation which will have an

associated Feynman integral solution.
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Appendix E. Solution of the Helmholtz Equation

This appendix is included as an aide to the reader who may wish to briefly review the Helmholtz

equation and some of its characteristics.

The Solution to the Deterministic Helmholtz Equation

This section will give a solution of the deterministic Helmholtz equation under the condition of a

slowly varying complex amplitude in the z direction. That is, the assumptions for the parabolic

approximation hold. In this case, the solution to the Helmholtz equation Eq. E. 1 with a unity

boundary condition,

(V2 + k2)u(p, z) = 0 (E.I)

where u(p, z) is the complex amplitude of the optical wave after a propagation distance of z, k is

T and A is the carrier wavelength, p = (x, y), namely p is in the plane transverse to the mean

direction of propagation, z. A solution is given by a superposition integral of the form,

u(p, z) = J G(p, p', z)u(p', O)d2p' (E.2)

where G(p, p', z) is a Greens fiu;&, :on which satisfies the equation

(V2 + k2)G(p, W, z) = ,(p - p') (E.3)

where N(p - p') is the Dirac delta distribution is giv:n by (4:378), (25:56),

-1 o ( exp(jk lpp- P12 + z2 I-IP'Z =- d~p (E.4)

where u(p, z) is the complex amplitude of the optical wave after a propagation distance of z, k is

and A is the carrier wavelength, p = (x, y), namely p is in the measurement or observation

plane transverse to the mean direction of propagation, z, p' = (x', y'), namely p is in the object

plane, z = 0, expk I'P- "I2+ z2 is the Greens function, E is the region where u(p, 0) isV Ip-p'Plz 2

non-vanishing.
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If Eq. E.4 is considered for values of z such that z >> A and z >> IP - p112, then the solution to the

Helmholtz equation Eq. E.l may be approximated by,

U(PZ) = exp(jkz) ILexp (jL1P W12) d2  (E.5)

Eq. E.5 is known as the Huygens-Fresnel integral.

Interestingly enough, Eq. E.5 is the solution to the parabolic approximation to the deterministic

Helmholtz equation Eq. E.6,
(2jka- + V2)u(p,z) = 0 (E.6)

where u(p, z) is the complex amplitude of the optical wave after a propagation distance of z,

2=2 02
V-L '. + "T, j = v/ " Thus, the solution to the parabolic equation requires the

consideration of small angles about the mean direction of propagation which is the same as

requiring that u(p, z) vary slowly in the mean propagation direction, z. But, this simply means

that u(p, z) has a narrow spatial spectrum for the z spatial frequency. The effects of the medium

have been implicitly ignored. However, the inclusion of the random process c(p, z) will not

appreciably complicate the solution to the Helmholtz equation previously derive.

The Solution to the Stochastic Helmholtz Equation

The stochastic Helmholtz equation has already been derived in Appendix A from Maxwell's

electromagnetic field equations. It was found to be,

(V 2 + k2(l+ (p,z)))u(p,z) = 0 (E.7)

If the solultion to Eq. E.7 is considered for the region such that the Fresnel approximation holds

then, the solution will take the form,

k Z= k u(p,z)exp (L ,12)exp (kz (pz))d2p' (E.8)
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where the approximation,

'V/[p - /  2 +2 ""(1--2( + )p- f'2  z P-p112 (E.9)
_iP i U 2  2z2  + z + 2z

has been made. Additionally, in this approximation is the implicit assumption that f (p, z) is

relatively constant over a small increment in the z direction. Thus, the above approximation will

become more accurate as the incremental change in z is small.
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Appendix F. Variational methods

Functions and Functionals

This appendix which closely follows (24) is included as an aide to the reader who may

not be fully conversant in functional or variational differentiation. The terms rule, function,

mapping are all synonymous in this appendix, as ate the terms variational differentiation and

functional differentiation. In addition, a great amount of mathematical rigor has been sacrificed

for both increased readability and decreased length. If this loss of rigor causes excessive concern,

then you are advised to refer to a good book on functional and variational principles.

Recall that the simplistic idea of a function is a mapping or rule from one set to another.

Fot example, the function given by y = 2Z looks innocent enough. However, if we assume x is

only defined on the set of integers { 1,2,33, 44}, then y may only take on the values {2, 4,66,88).

Therefore the domain of the function (the allowed values of x) and the range of the function (the

allowed values of y) are also extremely important in the total idea of the function. Taking the

simplification of the idea of a function still further, we could consider a function to be a machine.

We send numbers into the machine and other numbers come out. The types of numbers we can

send into the machine is constrained by the function's domain. The numbers the machine will

return are constrained by both the domain and the range. Similar to the idea a function is the idea

of a functional. A functional is a rule or mapping that is defined on some set of functions (the

domain) and which returns real numbers (the range). A functional might be defined by the rule

which returns I for all continuous functions and 0 for all discontinuous functions. Another

example of a functional is the area under a continuous curve. This similarity between functions

and functionals has some interesting implications. Therefore, a functional is also a machine;

however, the functional machine has functions as its input and real n-ubers as its output.
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Function Differentiation

The derivative of a function f at a point x is given by

d -(x) lim f(x + Ax)-f(x) (F.I)dx AM-0 AX

whenever the limit exists. For example the derivative of x3 at the point 1 is given by

d =3 (l) lim (x+Ax) 3 - 3  (F.2)

dx AX-.o Ax 1X=1

Expanding, cancelling, and evaluating the resulting terms results in the expected result 3.

An example of a function without a derivative is the mapping is the general polygonal function

which is used to define a trajectory in its limit (see appendix D). On the trajectory where two

straight lines join, the function describing the trajectory will not be differentiable. The single

exception is the case when both lines have the same slope. Thus, we can see from this example

that in the limit as the number of subdivisions of the propagation interval tends to infinity, the

trajectories, will for the most part be everywhere continuous; however, except for the strait line

connecting source and receiver, not one of the trajectories will be differentiable at every point in

the propagation interval. By the very construction of the trajectories as the limiting case of all

polygonal curves connecting source point to observation point, one finds the set of points where

the trajectory function to be nondifferentiable to be countably infinite.

Functional or Variational Differentiation

There are several definitions of functional or variational differentiation including the

GAteaux variation and the Frtchet variation; however, we shall use the following definition

(24:22)
= [U] lim f[u + bu] - f[u] (F.3)

bu[xo] [ zI-O,maxl6ul-0 fA, 6u(x)dx

where 6u, a small variation or deviation in u, is nonzero only over a small region Ax about the

point x0 and provided that the limit exists for all possible small variations 6u of u and

contractions of Ax. Although this definition appears to be imposing, it is not appreciably any
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more difficult to use than the definition function differentiation with which we are more familiar.

Furthermore, an example of functional differentiation would follow the first example of function

differentiation which appeared in the previous section and therefore will be omitted.

Combined Function and Variational Differentiation

This section contains some rules which will be used later in this thesis. These are rules

for the variational differentiation of functionals and functions of functionals. They are given

without proof nor derivation. Again, the interested reader is urged to consult rigorous treatment

elsewhere.

Rule 1
6 (af[u] + bg[u]) = a f[u] + b --u(

6u(x) U(X) 6U(X)

where a and b are independent of u(x).

Rule 2
ub df bG[u](F5

)f(Gfu) - d x - (F.5)
6U(X) dG(Uj 6U(X)

where f is a function and G is a functional.

Rule 3
b-u(y) = 6(x - y) (F.6)

where u(x) is a function, 6(x - y) is the Dirac delta distribution with argument (x - y).

Rule 4
6 d d 6

6u(x)dx u (y ) = dx 6u(x)u(Y) = 6'(x - y) (F.7)

where 6'(x - y) is the first derivative of the Dirac delta distribution with argument x-y.

Rule 5
6u(x) f(y)u(y)dy = f(x) (F.8)

where f(x) is a function.
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Function and Functional Erpansions

A function at a fixed point may be expanded in a power series about another fixed point.

That is f(x) may be expanded about the point y as

N (x _~l~f)y

f (y) + N(X n( + RN (F.9)

where f(1) denotes the nth derivative of the function f, RN is the remainder after N terms. If the

value of RN tends to 0 as N tends to infinity, the above power series expansion is known as a

Taylor series. It is implicit that the function f and its derivatives are defined at y. In operator

form, the Taylor series would appear formally as

f(x)=exp{(x-Y)+ }f(Y) (F.10)

The equivalence of Eq. F.9 and Eq. F 10 can be seen by applying the usual expansion for exp(x).

Functional or Variational Taylor Series

A functional may be similarly expanded in a variational series. The variational series

analog to a Taylor series is more complicated as one would expect. Specifically, a variational

Taylor series expansion of the functional F with argument which is a function u when expanded

about the function v takes the form

F[u] = F[v + (F.1l)

I J(u(x') - v(x')) 6 F[v]dx +

1 U (X') - V(X'))(U(X") - V(X11)) 62F[v] dx'dx"+

I3 f I J (u(X') - v(x'))(u(x") - v(X"))(U(X") - v(X..)

63F[v] z"d" RN

tv(x')6v v(x")-4
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As in the case of the function Taylor series, if the size of the term RN tends to zero as N tends to

infinity, the above functional series is known as a variational Taylor series. Size, in the case of

this thesis, will be defined as the maximum of the magnitude of RN. For example, suppose we

have the functional F[x] = x 3 where x is any function from the collection C[o,1], where C[011 is

the collection of all continuous functions defined on the closed interval [0, 11. Clearly, the

functions sin(x) and cos(x) are members of C[o,1]. Therefore, the expansion of F[sin(x)] about

F[cos(x)] is given formally by

F[sin(x)] = F[cos(x)]+ (F. 12)

. J(sin(x') - cos(x')) 6F[cos(x)]d ,
' +

T scos(x')]

f (sin(x') - cos(x'))(sin(x") - cos(x")) 6 6 cos(x") dx'dx" +

1 JJ J(sin(x') - cos(x'))(sin(x") - cos(x"))(sin(x')- cos(x'))
3F[cos(x)] dx'dx"dx" +.

6 cos(x')b cos(x")b cos(X"')

The application of rules 1 through 5 will result in

F[sin(x)] = F[cos(x)]+ (F.13)

1 J 3(sin(x') - cos(X')) cos2 (X')6(X - x')dx' +

1 JJf6(sin(x') - cos(x'))(sin(x") - cos(x"))cos(x')

6(x - x')b(x' - x")dx'dx" +

1 fJJ 6(sin(x') - cos(x'))(sin(x") - cos(x"))(sin(x')- cos(x"))

b(x - x')b(x' - x")b(x" - x:)dxdx"dx" +..

Simplifying this equation results in
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F[sin(x)] = cos3 (X) +3 COS 2 (X) (sin(x) - cos(x))+ (F 141/

3 cos(x) (sin(x) _-COS(X)) 2 + (sin(x) - COS(X)) 3 = sin3 (X)

a tautology, which should not be surprising.
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Appendix G. Important terms

Action functional along a path - Given the trajectory (also called the path) of a Newtonian

particle, the action functional S[x 2, X1] is defined as,

S[X2, x1 ] = L(i, x, t)dt (G. 1)

where xl is the initial location of the Newtonian particle at time ti, X2 is the final location

of the Newtonian particle at time t 2, L(i, x, t) is the classical Lagrangian of the particle,

The notion of an Action functional can be generalized beyond that of a Newtonian particle,

by appropriately generalizing the Lagrangian of the particle.

Feynman integral - An integral over a function space. The measure of the integral is implicitly

that of Richard Feymnan's original construction. It is formally written as,

00 OO *Q n-1

K[x2, X1] = lim f f " A-nexp S[12, 1 X [ dxm (G.2)
C-0o r J-m=1

n-I terms

where x, is the initial location along the continuous trajectory, S[x2 , x1 ] is the action
functional, A is defined as = - Planks constant divided by 2r e = is a time

subdivision.

It should be noted that the Feynman integral, unlike the sequential Wiener integral with a

real variance parameter, does not possess a countable measure and therefore is not

rigorously defined. However, this lack of rigor has not created any difficulties with the

application of Feynman integrals to practical problems, it simply means that the

mathematically rigorous rules governing integration in a function space are incomplete at

present.

Fraunhofer approximation - A more restrictive approximation than the Fresnel approximation

such that the Fresnel approximation may be approximated as a Fourier transform of the

optical disturbance.

Fresnel approximation - An approximation of the Huygens-Fresnel integral for small angles
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about the mean direction of propagation and sufficient distance from the optical disturbance

such that the following approximation holds,

exp(jkz) (exp(Ip- p zI) dp exp(jkz) Jkexp (L -P112) dp'
j\ 1P -p'z P" - j,\z 2

where p - p,z = (p- p')2 + z2, lp - p, = (p_ p) 2, z is the distance form the

source of the optical disturbance to the observation point, the integration region is

implicitly R 2.

Fresnel zone - A circular region, in a plane transverse to a point source along the mean direction

of propagation. The radius of the (first) Fresnel zone is approximated as v/ , where z is

the distance from the point source to the transverse plane and A is the carrier wavelength. It

originated from the location of the first destructive interference zone and from analysis of

weak propagation medium fluctuations. See the figure below.

y

x

Point source

m .

radius of first Fresnel zone

Figure G. 1. First Fresnel zone

Function space - A collection of functions which is closed under (usually) addition and

multiplication and has the appropriate identity elements and element inverses.

Functional - A mapping from a function space into the real numbers. An example of a
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functional is the the mapping,

X[f] = _ if f(x) is differentiable at 0 ()

0 otherwise

Another example is the mapping of the area under all real-valued bounded continuous

functions defined on [0, 11 into R. In this case, the functional A[f] could be defined as,

A[f] = f (T)dr (G.5)

Functional integral - Integration of a functional over a given function space. See Feynman

integral and Wiener integral.

Green's function - A point source solution to an associated operator equation. For example,

given L[u(x)] = f(x), the associated Green's function, G(x; ) when substituted for u(x)

will yield: L[G(x; )] = b(x - ) where, 6(x - ) is the dirac delta distribution. For wave

propagation, the Green's function is the spherical wave given by e .

Helmholtz equation - A reduced form of the wave equation. This equation takes the form,

(V 2 + k 2 n2 (r, w))u(r, w) = f(r) (G.6)

where V 2 is the three-dimensional Laplacian operator, u(r, w) is a (possibly complex)

wave amplitude, n(r, w) is the index of refraction, r is a 3-dimensional position vector, k is

2T and A is the carrier wavelength, w = ck is a fixed carrier angular frequency, c is the

speed of light, f(r) represents wave sources in the medium.

Inhomogeneity - A region of a medium, such as the atmosphere, which exhibits uniform

conditions locally. These conditions may be slightly to vastly different from the local

conditions only a short distance away.

Markov approximation - An approximation where a stochastic differential equation may be

approximated as a markov process. This approximation enables the derivation of closed

differential equations for the statistical moments of the independent variable of the original

differential equation.
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Markov process - An independent increment random or stochastic process which is conditionally

dependent only on the most recent interval. That is, the conditional distribution of all past

behavior intervals of the markov process is dependent only on the most recent interval.

Maxwell's equations - A set of electromagnetic field equations which describes the interaction

and propagation of static and dynamic electric and magnetic fields as well as

electromagnetic fields.

Measure - Rule by which differential contributions to an integral are weighted and added. It

must be explicitly given, or in the case of Riemann integration implicitly given.

Method of smooth perturbations - A method used to obtain the complex wave amplitude in the

parabolic equation. It is restricted to weak intensity fluctuations with the normalized

intensity less than 0.3. See also Rytov's method.

Parabolic approximation of the wave equation - Also known as the parabolic equation - An

approximation to the Helmholtz equation which results from restricting the class of

admissible solutions to functions which vary slowly (with respect to the carrier frequency)

in the mean direction of propagation. This simplification replaces the 3-dimensional

Laplacian operator in the Helmholtz equation with a simpler 2-dimensional Laplacian

operator in the transverse plane and a first derivative in the original mean direction of

propagation.

Path integral - A functional integral. This integral is taken as the limit of a multidimensional

integral which "samples" functional integrand at a finite number of locations. The limiting

process allows the number of samples to become unbounded.

Perturbation methods - A mathematical method of solving equations which equates similar

orders of magnitude in a small perturbation or deviation in the original equation. The

equating of similar orders of magnitude in the perturbation term, allows the investigation of

zeroth, first, second, and so on, order changes in the perturbation.

Polygonal curve - A piecewise linear continuous curve. Such a curve, in general, is not

differentiable at each location where two consecutive line segments intersect. For example,

in Fig. G the derivative fails to exist for the top most polygonal curve at locations a, b, c

and d. Let {, }II denote the sequence composed of sets of points where the polygonal
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curve is recursively subdivided. Referring again to Fig. G let S, = {a, b, c, d},

S2 = {e,f,g,h,i,j,k},S 3 = {l,m, n,o,p,q,r,s, t,u, v, w, x}, and

S4 = {A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y}. Wesee

that by construction S C S2 C S3 C 54. We see that in the limit as n becomes unbounded,

S, will in general be a continuous curve which is not differentiable at any rational number.

In other words, the curve represented by lim,- Sn will differentiable everywhere except

on a set of measure zero. Such a limiting curve represents the general differential

contribution to the Feynman (path) integral just as the differential contribution

f (x + dx)dx does to the Riemann integral f f (x)dx.

Quantum mechanics - Statistical study of kinematics of objects at the Fermi size (10-13 cm).

Objects which greatly exceed this distance exhibit classical kinematics.

Rytov's approximation - Asymptotic expansion of the complex amplitude of the optical wave

that maintains only the first term.

Rytov's Method - Also known as the method of smooth perturbations.

Scale size - Also known as: characteristic size, most commonly occurring size, representative

size, expected size. In inhomogeneous mediums, the scale size refers to the size of the

random inhomogeneities.

Scintillation - Observed intensity variations in an optical wave due to random constructive and

destructive interference effects.

Scintillation Index - A normalization of the intensity variations. The scintillation index is

denoted by /32 and is defined as the ratio of the intensity variance to the mean intensity

squared.

Strong intensity fluctuations - A condition in which the scintillation index exceeds 1.

Saturated Regime - Sub-region of the strong fluctuation regime where the scintillation index is

asymptotically decreasing to 1. This region is characterized by the almost totally

incoherent intensity contributions from incoming optical waves.

Scalar wave equation - A second order in time second order in space partial differential equation
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of the form,

o 0T(x, t) = "y- 'i (x, t) (G.7)

where T(x, t) is the wave amplitude (possibly complex), c is a constant, x is the space

variable, t is the time variable.

Stochastic scalar wave equation - A scalar valued wave equation augmented with

non-deterministic parameters.

Stochastic wave equation - A vector valued wave equation augmented with non-deterministic

parameters.

Taylor series - A power series expansion of a continuously differentiable function.

Weak intensity fluctuations - No firm definition exhists; however, the generally accepted

defination is when the intensity variance normalized by the mean intensity squared is less

than 1.

Wiener integral or sequential Wiener integral - A functional integral defined over Wiener

measure.
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