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AbstractJ1
A simple form of consistency relations between generalized forces and displacements

for systems exhibiting power-law behavior is presented. The later discussion focuses

on certain details regarding applications of the relations to nonlinear fracture mechan-

ics, emphasizing the finite element analysis of a single edge-cracked strip subjected to

remote tension under plane strain conditions.
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Introduction

.- Within the last decade there has been observed a serious computational effort to-

wards obtaining numerical solutions to problems of nonlinear fracture mechanics. The

handbook formatted reference (Kumar et al., 1981, gives extensive tabulations of im-

portant parameters (J-integral, CTOD, etc.) for various configurations, loadings and

material behaviors, which makes it useful for engineering analysis, and the review of

prior work in the field permits its use it as a good starting point for further research.

The later work of Shih and Needleman (1984) exposes some quantitative discrepancies \

between the two results. These discrepancies cause confusion and implicitly raise the

legitimate question: 'Who is right?'. The purpose of this work is to help to resolve the

matter of quality of reported data.

There are three parts in this paper. The first one focuses on the derivation of

consistency relations between generalized forces and displacements in fairly general

types of nonlinear systems, including the class of traction prescribed boundary-value

problems for power-law isotropic materials, exhibiting in pure tension stress-strain

behavior

IEO (O

where eo and ao are reference strain and stress values, and n is a material exponent

varying from one for the linear material to infinity for the rigid plastic material.

The second section discusses some specific features of solutions for fracture me-

chanics configurations, stressing both the validity of the application of the consistency

relations in principle and their potential use in the detection of errors.

The paper in concluded with a numerical example to which the consistency con-

ditions are applied - the single edge-cracked strip subjected to remote tension under
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plane strain conditions. The results are compared against the data reported by Kumar

et al. (1981) and Shih and Needleman (1984).

Throughout the paper we use boldface letters for vectors, matrices and tensors.

Dot stands for an appropriate inner product. All computations reported herein have

been performed using the ABAQUS finite element program on a DATA GENERAL

MV-i0000 computer.

Consistency Relations

Let us consider some body loaded by a set of generalized forces Q. The set of

generalized displacements is taken as derivable from the constitutive potential F, which

depends on the overall geometry, material properties and the forces:

=61 F (2)

We confine our attention to the class of potentials which are both convex and homo-

geneous functions of Q degree (n + 1):

F (aQ, + (1 - a) Q2) < aF (Q,) + (1 - a) F (Q2 ), (3)

a- Q  (n 1) F. (4)

In equation (3) it is understood that Qi,Q2 are arbitrary sets of generalized forces

and 0 _ a < 1. In the relation (4), we adopt Euler's Theorem on homogeneous

functions as a definition. One of the important properties of convex functions is the

positive semidefiniteness of the Hessian matrix r (tangent compliance in the force-

displacement framework):

r 82 F (5)
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The inner product of r with Q 0 Q leads to an important conclusion that the potential

functions F defined above are nonnegative.

The alternative definition of a homogeneous function allows us to reduce the effective

number of independent variables by one; the most general representation serving our

purposes is:

F(Q) = f(x) [r(Q)] +1, (6)

where f(x) is a nonnegative function of the reduced set x, which dimension is one

less than that of Q, and r(Q) is an arbitrarily defined norm in the Q-space. The key

point of the forthcoming derivation is that the generalized displacements in equation

(2) are the partial derivatives of the same function and, therefore, should be related.

We limit our demonstration to the case of two generalized forces. The extension to

a multidimensional set is transparent and will not be considered here. In this case

equation (6) may be reduced to

1 Q2

Straightforward differentiation leads to the following expressions for q and r:

q- =(n+)f-zfD) 71' (8)

r = ((n + 1)nf - 2nzf' + X2f" ymmetri Q"-)nf' - :f" ) n + 1V(9

where prime denotes differentiation with respect to z. To enforce positive semidef-

initeness of r we require both r 22 and determinant of r to be nonnegative, which

gives

" 'O, (10)
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ff f n f2 > 0. (11)

But since the function f(z) is nonnegative, condition (11) is sufficient to guarantee

positive semidefiniteness.

Introduction of an auxilary function y, in a way a conjugate of z, and given by

q2 f(12)
q, (n + 1)f - zf"

permits the rewriting of condition (11) in a simpler form:

y'> 0. (13)

Now, instead of considering the related pair of functions f(z) and f'(z) to describe

the generalized displacements, we can use the pair f(z) and y(z) related via (12). If

values of f(z) and y(z) are given at some point, say z = zo, f(xo) = fo, y(zo) = yo,

then integration of (12) leads to

f(z) = foezp (n +1 ) f y(t)d (14)
Js: 1 + ty(t)/

But for any value of z > Zo with zo < t < z we may write the following inequality

1+yo I+ty(t) - 1 +ty(Z)'

which, after the integration, gives us the main result of this section:

I + zXS < < I+ZY(Z) (16)

1 + o - - I +o(Z)

It is important to mention that (11) and (13) are equivalent only if q, > 0 for all

the points within the interval [ZO, zJ, which implicitly imposes conditions on both z 0

and z.
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Application to Fracture Mechanics

A broad class of problems of fracture mechanics can be described by a generic

problem - one is given a configuration containing a crack, loaded by forces Q, and is

asked to determine the value of the J-integral (Rice, 1968) to characterize the local

fields (Hutchinson, 1968, Rice and Rosengren, 1968) and q - displacements, at the

remote distances, due to the introduction of the crack,

q-- q! - q, (17)

where qt and qA stand for generalized displacements in two auxilary problems. The

first one is a prescribed traction boundary-value problem for the given configuration.

The second one is identical, but there is no crack.

The constitutive potential F(Q) becomes equal to the difference in the complemen-

tary energies of the auxilary problems:

F(Q)- n +I v(ETE .T&) V, (18)

where T and E stand for the stress and strain tensors, respectively.

The connection between this class of problems and the one described in the first

section is obvious but, nevertheless, there are some important details to be considered

both due to the necessity to perform numerical analysis and the special features of the

fracture mechanics problems per se.

At first, we would like to address the matter of possible loss of homogeneous struc-

ture of F(Q). In principle, the linearity of equilibrium, compatibility equations, and

boundary conditions, combined with the constitutive law, requires an analytical solu-

tion to the problem to be homogeneous. But if we have to model an incompressible
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material and, therefore, employ a penalty procedure in numerical analysis, we can en-

counter deviations from homogeneity. The simplest way to introduce a penalty is by

linear relations between isotropic components of the stress and strain tensors:

trT = Koo trE. (19)3e0

We argue, hueristically at best, that as K tends to infinity, the influence of the hy-

drostatic stress diminishes, and material response tends toward incompressibility. An

attempt to conserve homogeneity by using a power-law penalty may easily lead to

numerical problems as we operate with large numbers. Therefore, we can claim that

degree of compressibility and deviation from the homogeneous structure are implicitly

related, and in the limiting case of a large K, material tends towards both homoge-

neous and incompressible response. The straightforward application of (16) may be of

use in detecting errors in interpretation of penalty term for sophisticated variational

formulations combining both regular displacement based and hybrid (displacement and

pressure) formulations of the finite element method, as implemented, for example, in

ABAQUS. Later on we present a numerical example of this relation.

The question of convexity is especially interesting for the fracture mechanics prob-

lems. The difficulty here is that there is no single boundary-value problem which may

be directly analyzed to determine F(Q), but rather two auxilary problems. Convexity

of each problem is guaranteed by the monotonicity of the stress-strain curve or, more

precisely, by the convexity of the strain energy density function (Marsden and Hughes,

1983). The function F is nonnegative (Rice, 1968), but is not necessarily convex. The

straightforward mathematical example is F(Q1 , Q2) = IQIQ 21 I -L.

In order to demonstrate the posible lois of convexity in a physical problem, we

address the case of a penny-shaped crack embedded in an infinite isotropic power-law
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matrix subjected to axisymmetric remote loading, characterized by the axial and radial

stresses Qi and Q2, respectively. We consider three materials which can be generated

from (1) as tensorial extensions. The first one is the incompressible material given by

2 0 s (20)E 2 a o 'a

3S. S) (21)

where S is the stress deviator and we take n = 3. The second material is linear elastic

(n=l) with Young's modulus E = a0/e0 and Poisson's ratio v. The last case is an

isotropic, power-law material, compressible material, which constitutive equations are

derived from (20),(21) by substitution of the tensor T itself for the stress deviator

S. The values of 00,e0 and P are not important as they are appearing as constant

multipliers.

The first example is treated in detail by He and Hutchinson (1981), (1983); for the

case Q, > 0, Qi > Q2. The suggested functional fit to the numerical solution is given

by

F(Q) = 4aaeoa + . (QI a aQ1) 2  (22)

where a is the crack radius. The above expression gives us concave F(Q), which can

be seen directly from deriving the Hessian matrix. The formula is derived from a

perturbation technique, agrees well with numerical solutions providing z < 0.6, and

for larger x it fails to give an accurate estimate (He and Hutchinson, 1983). The finite

element analysis of the problem, which we have conducted, shows that at approximately

the same point (z f .6) the complete numerical solution gains convexity; therefore, we

may conclude that there is conditional convexity in this case.
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The well-known solution (Sneddon, 1964) for the isotropic linear material coincides

with (22) for n =1 and v -- 1, and is given by

F(Q) = 8(1 - ,)aQ2. (23)

This expression gives only one non-zero component, r., of the Hessian matrix, which,

of course, retains positive semidefiniteness, but relations (16) degenerate to triviality.

By performing a finite element analysis we find that the third material gives us an

unconditionally convex potential, and the main result of the first section is of use.

In the above examples we have encountered thr, a possible situations for two-dimensional

Q-space; namely, relations (16) are relevant at some points in the domain, they are

relevant throughout Q-space, or they can not be applied at all. The heuristic conclu-

sion may be drawn if we consider the dimensions of the Q-space of the two auxilary

and the main problem for all three materials. In the first example the solution of the

problem without the crack depends only on the applied equivalent Mises stress a. If

we introduce a new set of generalized forces, namely

Q = 3 2QQ2 = Q -Q2, (24)
Q'1= 3

where the first equation of (24) defines applied hydrostatic pressure and the second

the equivalent Mise stres,then the dimension of Q'-space is one in the context of

the problem without the crack. The main and the other auxilary problem, on the

other hand, exhibit two-dimensional load space. It is clear from (23) that an analogous

situation occurs with the linear elastic material, except that the main problem is the

one which has the reduced space. The potential due to the introduction of he crack

does depend on the single force Q1, but, by superposition, is independent of Q2. Only

for the last example is there a truly two-dimensional Q-space for all three problems.
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It is clear that in the first two c::amples, there exists some set Q, which essentially

forms the null-space of F(Q) for the main or the auxilary problem. Obviously, it is

hydrostatic pressure for the incompressible material and stressing parallel to the crack

plane for the main problem in the linear case. The loosely defined induction is, that

in order to employ (16), all three problems must have the two-dimensional Q-space. A

more rigorous statement would, perhaps, require the definition of F on the complcment

of the null-space.

The concluflon is hueristic but, nevertheless, seems to rehabilitate the 'misbehavior'

of the otherwise mathematically 'loyil' equations.

It is important to note that this conclusion does not put any question marks on

the substantial body of theoretical and computational effort (Budiansky et al. 1981,

Rafalsky, 1985) in terms of the derivations and the implementation of a variational

principle for determination of F directly, because here we deal only with the generalized

force space of boundary tractions, rather than with a function space of Ritz procedure.

To conclude this section we would like to mention the possibility of including the

J-integral into a gradient structure analogous to (2), which leads to the correlation

between near and far fields and, of course, to another group of consistency relations.

The procedure that was initially suggested by Parks et al. (1983) and later was applied

by Shih and Needleman (1984), is essentially based on finite difference approximation

of the gradient scheme for planar and axysimmetric problems.

Numerical Example

A single edge-cracked strip, Figure 1, subjected to a remote loading under plane

strain conditions is considered. The dimensions are:

a : I0, b = 20, L = 60.
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The constitutive behavior is modeled by (19)-(21) with numerical values of material

constants:

00=1, Co=1, K--106, n=5.

The values of co and co do not correspond to any real material, but as long as we

are able to scale solutions, the idea of operating with more computationally convenient

numbers is rather helpful. The finite element discretization is given in Figure 2. The

plane strain eight-node hybrid element with nine integration points and a bi-linear

interpolation for pressure is employed.

The remote forces per unit thickness are tensile load N = 20 and varying positive

bending moment M, tending to close the crack. We are interested in the pure tension

solution and apply bending only for the purpose of simulation of conditions (16). The

generalized forces are identified as Q, := N, Q2 := M/b with corresponding pair of

generalized displacements q, := 6 and q2 := Ob. It is understood that the generalized

displacements refer to the contribution due to the crack, as discussed in the previous

section.

The potential F(Q) and the J-integral are taken in convenient dimensional forms

F(Q) = -uooeob'f (z) N (25)

J = aocobh(z) (' N )" (26)

The results of the computations are given in Table 1. We conclude that the current

analysis gives results close to those of Shih and Needleman (1984) for the values of

the rotation and the J-integral; the displacement is somewhere between the earlier

reported data. It is worth mentioning that the main point of discrepancy between the

previous data is in the near field quantities; therefore, our results rather support the

data reported by Shih and Needleman (1984).
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The next part of our analysis is concerned with the simulation of data for relations

(16). It is obvious that in this example problem, consistency relations can be of impor-

tance. But on the other hand, if values of z and zo are sufficiently close we expect the

interference of the numerical noise in the tabulated data to be substantial; therefore,

we have to decide on a minimum value, x,., such that for all z - o -2 z, .. ,,, consistency

relations give us reasonable conclusions.

We adopt a very simplified estimate. The difference between bounding terms in

(15) at the pure tension limit z0 = 0 is (z - zo)(y - yo), and this should remain positive

in the most unfavorable case. As we have four kinematical data entries in the above

formula, then we require

y1- yo 4 eq, (27)

where eq is the relative error in q. From the homogeneity and dimensional considera-

tions we can take:

eq = neR, (28)

where CR is the relative error in nodal reaction force in the virtual work sense, and in

the analysis with the ABAQUS program, the maximum value of this error has been

set at 10- 4 . In expression (28), we have neglected a dimensionless constant multiplier

expected to be of order unity. Relations (27),(28) form the implicit conditions on Z,,x.

The results of computations are given in Table 2 and give z,,, - 8.10-1, which is

in a fair agreement with conditions (27),(28) which give the value of , - 3.10 - 4.

Therefore, we may claim that our data is probably acceptable.

The section is concluded by the consideration of the penalty term as a possibility

for the loss of homogeneity. In this set of computations we take K varying from 1 to

10, keeping the rast of the material constants to be the same.
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The results of Table 3 show that the maximum difference for various K > 100, in

x,,,, J-integral and q, only appears in the fourth digit. These results suggest that one

might be able to use moderate values of the penalty K. There are clear advantages

to such a procedure, because the computations converge more rapidly and there is less

chance to encounter numerical difficulties. For small values of K (below 100) the most

sensitive parameter turns out to be Z,,, though the physical quantities remain within

an acceptable variation.
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Reference f y h

[1] 83.90 -2.393 309.9
[2] 113.1 -2.430 407.4

current 99.00 -2.677 390.2

Table 1. Pure Tension Data, n = 5, K = 106, a/b = 1/2.

z f y Lower Intermediate Upper
Bound Value Bound

.0000 99.039237 -2.677448 - - -

.0001 98.881223 -2.676500 1.000268 1.000266 1.000268
.0002 98.720673 -2.675612 1.000535 1.000537 1.000536
.0003 98.564139 -2.674622 1.000803 1.000802 1.000804
.0004 98.405337 -2.673701 1.001071 1.001071 1.001072
.0005 98.247815 -2.672751 1.001338 1.001338 1.001341
.0006 98.090018 -2.671816 1.001606 1.001606 1.001609
.0007 97.929625 -2.670958 1.001873 1.001880 1.001878
.0008 97.776636 -2.669905 1.002140 1.002141 1.002147
.0009 97.618779 -2.668991 1.002408 1.002411 1.002416
.0010 97.461915 -2.668057 1.002675 1.002679 1.002685

Table 2. Combined Loading Data, K = 106,n = 5,a/b = 1/2. t

logK h f y z,,,
0 393.7 101.8 -2.644 .0060
1 390.5 99.30 -2.674 .0012
2 390.3 99.05 -2.676 .0008
4 390.2 99.05 -2.677 .0008
6 390.2 99.04 -2.677 .0008

Table 3. Pure Tension Data for Variable Penalty Term, z = 0, n = 5, a/b = 1/2.

t In the upper block of the table, relations (16) are not valid, in the next block

they should be valid according to (27),(28), and in the last part relations (16) are

unconditionally valid.
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Figure 1. Sinigle Edge-Cracked Strip



Figure 2. Finite Element Mesh


