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SECTION 1

INTRODUCTION

Although the number of investigations into the inverse

electromagnetic scattering problem has been limited in comparison

with the amount of total research completed in diffraction

theory, a synthesis method [1, 2] was developed in an extension

of the research to reduce radiation losses from surface waves

during propagation around bends of the surface [3, 4]. The

synthesis method determines the impedance boundary conditions for

a physical structure produced from the specification of a desired

scattering pattern [5, 6] and has been applied successfully to

solving the inverse (i.e. synthesis) electromagnetic scattering

problem [7, 8, 9, 10]. Further research provided constraints on

the specifications of the scattered field to insure solvability

of the inverse diffraction problem (11]. This present study will

investigate the possibility of additional constraints on the

physical realizability of an scatterer subjected to an incident

field to produce a desired scattering pattern.

In the following section a complete derivation of the

synthesis method for determining the surface impedance

distribution on an scatterer resulting from a required scattering

pattern occurs in order to validate its application to inverse

electromagnetic scattering problems. This surface impedance



synthesis technique includes the determination of a family of

zolutions for a representative profile of the scatterer for a

desired scattering pattern as well as the calculation of the

surface impedance for a particular profile. The energy balance

relationship is shown to be fundamental not only to the technique

itself but also to restrictions on the technique in solving

inverse diffraction problems. Because the mathematical

formulation involves approximating a desired shape with

fictitious sources that directly influence the scattered field,

both single and multiple source configurations will be developed.

The representation of the scattered field requires an appropriate

selection of the amplitude factor as well as the order of the

Hankel function of the second kind so that the azimuthal power

flow dominates the radial power flow but does not become too

reactive.

In order to implement the technique easily and to allow

flexibility in its application, the calculation of the power flow

lines for determining possible surface profiles of the scatterer

and for displaying various closed contours is essential. The

example in the last section shows the tremendous flexibility in

the development of an scatterer and in the possible application

of other constraints such as material properties.
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SECTION 2

SURFACE IMPEDANCE SYNTHESIS TECHNIQUE

The surface impedance synthesis technique essentially

involves two major steps. First, with the specification of a

desired scattering pattern, the power flow lines are generated

for a general scatterer characterized by required shape features

as width and length. If such scatterers exist to produce the

desired scattering pattern, a family of closed power contours

will result and represent possible surface profiles of the

scatterer. Next, the surface impedance distribution is

determined for a particular surface profile. Although an

interdependence exists between the impedance boundary conditions

and the surface profile, the technique allows for flexibility in

potential designs in both surface impedance and structural

variations.

For a generalized, two-dimensional case that is homogenous

along the z axis, i.e. the partial derivative with respect to z

is zero, let a plane wave, incident upon an arbitrarily shaped

scatterer containing no energy sources, be represented as u'(p,o)

= e -jcos* where u'(p,o) can be either the electric or magnetic

field. The total electromagnetic field consists of the sum of

the incident and scattered fields taking the form

u(pO) = u'(p,') + u(p)(1)

The power flow lines of the Poynting vector for the total

electromagnetic field will be coincident with the power flow
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lines of the Poynting vector for the incident field at large

distances from the scatterer. However, at distances approaching

the surface of the scatterer, the structure of the power flow

lines becomes more complex. Surfaces passing through the power

flow lines do not exhibit a flux of active energy and, therefore,

have only a reactive impedance. All source-free profiles having

a purely reactive surface impedance will satisfy the following

relation for the conservation of power or Poynting Theorem:

Re j S • ds = 0 (2)

where the complex Poynting vector S equals 1/2 E x H" and ds is

the outward unit normal of the surface. However, the surface

profile must also enclose all singularities of the scattered

field to be physically realizable. Satisfying the condition for

conservation of power does not alone ensure physical

realizability of the closure condition.

Further investigation into the specification of the

scattered field provides an additional constraint which will

allow the conservation of power to be the sufficient condition

required to ensure closure of the power flow lines. Although the

scattered field in both the direct and inverse diffraction

problems in two-dimensional cases can be expressed as a series of

outgoing cylindrical traveling waves, the scattered field in the

latter can be represented by a finite number of terms whose

complex coefficients must be determined in order to produce the

specified scattering pattern. The outgoing cylindrical traveling

waves are represented by the Hankel function of the second kind
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and order u for a eJWl time dependency. These waves are

attenuated by the factor p4 as the real argument increases to

infinity and, thus, satisfy the radiation condition.

H,,"'(kp) = [2/(lrkp)]' e jk
j ju+' as kp - a (3)

Let the scattered field be expressed in a standing wave

representation with respect to the angle 0 as a single term as

us(p,o) = ( Aucosup + Bsinvo ) H,72)(kp) e'a (4)

where A, and B, are complex amplitudes and 0 is the initial

phase. Because the scattered field has a dependence in angle 0

which must be periodic and single valued, the order u must be an

integer. If the relative phase between the complex amplitudes is

not an integer multiple of 2r, the conservation of power relation

becomes a sufficient condition for the closure of the power flow

lines. Furthermore, if the complex amplitudes have equal

magnitudes and a relative phase difference of (2n+l) r/2, the

scattered field can then be expressed as

u 5 (p,o) = Cve jL Hv(Z)(kp) ela (5)

which reduces in the far field to the form

u'(p,0) = CvejV eJa [2/(wkp)]I e"JkD jU (6)

This traveling wave representation with respect to the angle 0

produces a family of closed contours about the singularities of

the scattered field in the near field; whereas, the standing wave

representation produces both closed and open power flow lines.
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If, for instance, a physical surface coincided with any of the

family .-r the closed power flow lines, the power is predominately

azimuthal.

In applying the surface impedance synthesis technique to

inverse diffraction problems, the scattered field must also

satisfy the structure of the desired scattering pattern in the

far field. From this requirement the scattered field may be

represented as

u' (p,p) = AF(P)el" C2/(7rkp)] e- kp jl (7)

where A is an amplitude factor, F(O) is the normalized complex

scattering pattern, and 0 is the initial phase. This normalized

complex scattering pattern is further expanded into amplitude and

phase components as

F(O) = F(O)e"'(*)-*(°)' (8)

where F(O) is the normalized amplitude scattering pattern and

[( ) - o(O)] is the normalized phase scattering pattern.

If the scatterer is represented as a single fictitious

source, the complex coefficient C0 is easily calculated by

comparing equations (6) and (7). However, if a configuration

using multiple fictitious sources represents the scatterer, the

scattered field must be expressed in the form

ejUnn '2)

u'(p,P) = Z C, e HU (kp,) el0
n-1 n n (9 )

where N is the number of sources. For an increased number or
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nonlinear orientation of the sources, the mathematical

formulation becomes more complicated. With the implementation of

the Gram-Schmidt process (Appendix) £12], the complex

coefficients are determined for these cases.

After a closed power flow contour has been chosen as a

possible surface profile for the scatterer, the surface impedance

distribution is determined by calculating the ratio of the

tangential components of the electric and magnetic fields.

2.1 AMPLITUDE FACTOR LIMITATIONS

The amplitude factor A cannot be chosen arbitrarily and must

be selected judicously in order to provide a realizable solution

to the inverse diffraction problem. The constraints on the

amplitude factor are determined by using the Poynting Theorem

modified to allow for the possibility that the scatterer also has

absorption characteristics. Thus,

Re j S • ds + P' = 0 (10)

where PA is the total power absorbed. The complex power includes

the total power scattered pS, the power P'S due to the interaction

between the incident and scattered fields, and the intrinsic

power P1 of the incident field, so that

Ref S * ds=pS pS + p (1)

It can be shown that the real part of the complex Poynting vector

may be expressed in terms of the total field u(p,o) in the form

Re S = -q Im u'(A, )Vu(p, )] (12)
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where the constant q accounts for the type of electromagnetic

wave and the properties of the medium.

1

-- for TE waves
2we

q=
1

- for TM wavr- (13)2wg

Substitution for the complex Poynting vector in terms of the

total field into the Poynting Theorem yields

- q Im ,o ) p do + P= 0
ap (14)

Assuming that no sources are enclosed by the surface of

integration, expanding the Poynting Theorem expression with the

components of the total field, and evaluating each resulting term

in the far field, simplifies equation (10) to the form

pS + pS + pA = 0  (15)

S 2qA 2 2 2 d
where pS F (o)do

ir 0 (16)

and P'5 = q Im {4ju'(p,0)[2/(7rkp)]- e Jk } j-

(17)

The optical theorem is then obvious by the rearrangement of

terms and the division of the total powers by the magnitude of

the incident field's Poynting vector,

8



O + aA = - - m 4ju5 (p,O) [2/(iTkp)] " eJko j' (.8)
km

where a. and a. represent the total scattering cross section and

total absorption cross section, respectively.

Evaluation of the scattered field produced by the scatterer

due to a field incident upon it from the 7 direction relative to

a body-centered coordinate system yields the following expression

for the forward scattering direction in the far field

us(p,0) = AF(0)eja[2/(irkp)] +" e"- k
p j + (19)

For the forward scattering direction 0=0, the normalized complex

scattering pattern reduces to the normalized amplitude scattering

pattern, F(Q) = F(0). Thus, the scattered field becomes

u'(p,0) = AF(0)e" [2/(7rkp) ]+' e_ ' j+' (20)

Substituting into the Poynting Theorem for the total scattered

power and the total interaction power produces a quadratic

equation in A. Solving for the amplitude factor results in the

expression

-F(O)coso ± IF2(O)cos - 2q F(0)d]

A=

F2 (o) do
Jo (21)

By applying the Poynting Theorem with the inclusion of
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absorption to the solution of inverse diffraction problems,

constraints have been developed for the specification of the

amplitude factor for a desired scattering pattern. The amplitude

factor cannot be specified arbitrarily but is dependent upon the

normalized amplitude scattering pattern in the forward scattering

direction F(O), the total power absorbed pA, and the initial

phase 3. However, the amplitude factor is not dependent upon the

phase of the desired scattering pattern.

In order to understand more fully the constraints on the

amplitude factor, the following discussion developes the criteria

required for the appropriate selection of the amplitude factor.

The criteria applies to all inverse diffraction problems in that

it is independent upon the desired scattering pattern specified.

First, the bounds on the amplitude factor will be determined.

Then, the effects of the total power scattered and total power

absorbed as well as the initial phase will be explained.

From the expression for the amplitude factor, the minimum

and maximum constraints that bound its values are easily observed

to occur whenever there is no total power absorbed. Then, the

minimum value of the amplitude factor is determined by taking the

positive sign preceding the radical. However, this value

obviously becomes zero which represents the trivial case where no

scatterer even exists. Similarly, the maximum value of the

amplitude factor is determined by taking the negative sign

preceding the radical. Thus, for no total power absorbed the

amplitude factor has the form

10



-2rF(O) Cos3
A =

f0F2 (0) do (22)

Although the absolute maximum value is strongly dependent upon

the desired scattering pattern characteristics, the relative

maximum value applicable to all inverse diffraction problems is

only dependent upon the initial phase. Because the amplitude

factor must be positive, the initial phase must be within the

range of r/2 to 3r/2 such that its cosine is negative.

Therefore, the relative maximum value of the amplitude factor

occurs whenever the initial phase equals r.

2rF(O)

(23)

Observation of the general expression for the amplitude

factor also shows that the maximum value allowable for the total

power absorbed is determined by the radicand in equation (21).

So,

A 2i'q F2(0)pm =

JIF2 (0) do 24. (24)

The amplitude factor under the conditions of maximum total power

absorbed and initial phase of r then has the form

11



7rF(0) A.

F o F 2 do

(25)

Now that some fundamental terms and constraints have been

established, the general expression for the amplitude factor may

be manipulated to yield

irF(0) -OB_ oZ Z()d
A= 

2

226

F - 7rF 2 O)I:2()d (26)

where several quantities can be easily recognized. Using

equations (24) and (25), the amplitude factor then takes the form

A = AFA. [ -cosP ± fcos 2p _ pA/p A 1  (27)

In order to continue to investigate the selection criteria

for the amplitude factor in the generalized sense, two additional

factors must be introduced. First, because the total power

absorbed is bounded, it may be represented as

pA = _ p.. for 05 7 5 1 (28)

Second, the total power absorbed to the total power scattered can

be represented as

PA = a pS (29)

12



which results in the following upon substitution for the power

quantities

a = 7 A X 2

A (30)

However, the ratio of the terms related to the amplitude factor

is dependent upon the ratio of the total power absorbed to the

maximum total power absorbed.

-va=

-cos' ± Icos p - ] (

Likewise, this expression may be rearranged to solve for the

ratio of the total power absorbed to the maximum total power

absorbed in terms of the ratio of the total power absorbed to the

total power scattered as well as the initial phase.

4a cos

(1+a) 2 (32)

With the establishment of these ratios, the selection

criteria for the amplitude factor follows a straight forward, yet

flexible procedure. The interdependence of the ratio of the

total power absorbed to the maximum total power absorbed, the

ratio of the total power absorbed to the total power scattered,

and the initial phase is shown in the three-dimensional plot in

figure 1. The maximum total power absorbed is achieved whenever

the initial phase is r and the total power absorbed equals the

13



total power scattered. Furthermore, as the total power absorbed

is reduced from its maximum, the ratio of the total power

absorbed to the total power scattered can become large for any

valid initial phase. Basically figure 2 is a contour plot of

figure 1 for levels chosen arbitrarily as 0.2, 0.4, 0.6, and 0.8

for the ratio of the total power absorbed to the maximum total

power absorbed. The sections of the contours that are not solid

represent values that were calculated with the negative sign

preceding the radical. As an example, if the desired ratio of

the total power absorbed to the total power scattered is 3.0, as

the ratio of the total power absorbed to the maximum total power

absorbed becomes smaller, the initial phase can assume a greater

range of values. However, in this case the 0.8 ratio of the

total power absorbed to the maximum total power absorbed would

not achieve the desired ratio of 3.0 regardless of the initial

phase. Furthermore, if the ratio of the total power absorbed to

the maximum total power absorbed is limited to a maximum value,

the initial phase would differ from r by a greater amount.

Likewise, if the properties of the surface limit the initial

phase that could be imposed onto the surface, the ratio of the

total power absorbed to the maximum total power absorbed is also

bounded.

After the three terms - the ratio of the total power

absorbed to the total power scattered, the ratio of the total

power absorbed to the maximum total power absorbed, and the

initial phase - have been specifically determined or at least

bounded, the amplitude factor can easily be determined. In

14



figure 3, the amplitude factor normalized by the amplitude factor

at which the total power absorbed is a maximum is shown as a

function of the initial phase for arbitrarily selected values of

the ratio of the total power absorbed to the maximum total power

absorbed. If a range of values for the ratio of the total power

absorbed to the maximum total power absorbed is given for a

specific initial phase, the possible values for the amplitude

factor will be bounded. Likewise, if a range of values for the

initial phase is given for a specific ratio of the total power

absorbed to the maximum total power absorbed, the amplitude

factor will again be bounded. Therefore, the amplitude factor

can not be arbitrarily specified. In summary, even though the

amplitude factor is directly dependent upon the normalized

amplitude of the scattering pattern in the forward scattering

direction, the total power absorbed, and the initial phase, the

selection criteria for the amplitude factor is more easily

understood whenever the power ratio terms are introduced and is

then applicable to all inverse diffraction problems.

2.2 HANKEL FUNCTION ORDER LIMITATIONS

The surface impedance synthesis technique requires that the

order of the Hankel function, used in representing the behavior

of the scattered field, must be an integer to insure the solution

to be single valued for its 0 dependence. Otherwise, the order

can be arbitrarily selected. However, any physical limitations,

e.g. the desired size of the scatterer, must also be considered.

These limitations would inherently be different for each problem.

15



In order for the desired scattering pattern to result from a

plane wave incident upon an scatterer generated by the surface

impedance synthesis technique, the radiation loss due to the

implementation of the surface impedance onto the surface profile

must be minimized. The ratio of the radial component to the

azimuthal component of the power flux density can be expressed in

the form

Re Sr 2

Re S,, TuJ. 2 (kp) + N" 2 (kp)] (33)

where J, (kp) and N,(kp) are the Bessel and Neumann functions,

respectively, which form the Hankel function HU,27(kp). Because

of the inversely proportional relationship, as the magnitude and

order of the Hankel function increases, the ratio decreases.

Moreover, as the argument of the Hankel function decreases

relative to its order, i.e. kp < u, the absolute value of the

Neumann function increases greatly. A similar but weaker

constraint on the argument restricts its maximum value to the

first, positive zero of the Neumann function, i.e. kp < yv.1 .

Therpfore, the appropriate selection of the order determines the

maximum radius for which the azimuthal component dominates the

radial component making the radiation loss insignificant. As the

order of the Hankel function increases, the radius of the region

where the power flow lines-are closed also increases. Although

the availability of a greater number of possible solutions would

16



then seem to exist for larger orders, the energy stored near the

surface of the scatterer increases as the radius decreases.

Therefore, the use of higher orders of the Hankel function is

primarily to accommodate the requirement for a greater

geometrical cross section of the scatterer.

17



SECTION 3

EXAMPLE

As a simplified example, assume that the surface profile of

an scatterer and its associated surface impedance distribution

must be determined for the desired scattering pattern

characterized by the far-field, normalized amplitude and phase

patterns for a right circular cylinder having a 0.2 wavelength

radius and its longitudinal axis along the z direction. The

scatterer is assumed to have no absorption characteristics and an

initial phase of r. The analytical procedure follows two

distinct steps. First, the family of closed power flow lines has

to be generated to represent the possible solutions for the

surface profile. Second, the surface impedance distribution

along the selected surface profile must then be determined.

Although previous research discussed a method to produce

possible surface profiles first by generating equal phase

surfaces and then by generating surfaces perpendicular to them to

produce the power flow lines, this method has not been used

because it seemed too cumbersome in its approach and allowed for

the possible introduction of error by the additional set of

calculations. A more straight forward approach was adopted

whereby the real part of the complex Poynting vector was

calculated for each point of a grid whose center represented the

origin of the body-centered coordinate system for the scatterer.

From the x-y grid with the power values, both two-dimensional and

three-dimensional representations of the power flow lines can be

18



generated.

Without any physical limitations required in the example,

the scatterer would be initially represented by a single

fictitious source. Likewise, the Hankel function used in

representing the behavior of the scattered field was assumed to

be the first order. The three-dimensional plot of the power

magnitude for a square grid of 1.2 wavelengths in figure 4 shows

the near symmetry of the problem. Because the power magnitude

increases greatly as the radius of the scatterer approaches zero,

the maximum power magnitude was limited to 800 to allow the

structure at the lower power magnitude levels to be observed.

Moreover, the influence of the phase of the desired scattering

pattern is not readily apparent until the two-dimensional contour

plot is observed in figure 5 for arbitrarily chosen power

magnitude levels. Using the first positive zero of the order of

the Neumann function to limit the maximum radius of the region of

possible solutions, the closed power flow lines within 0.35

wavelengths represent possible surface profiles where radiation

loss is insignificant. The normalized surface impedance

distributions for the power magnitude levels of 100,200,300,400,

and 500 are shown in figure 6. As the surface profile decreases,

the power magnitude level increases, and the magnitude of the

surface impedance required to produce the desired scattering

pattern increases. This situation is strongly similar to the

reduction of an antenna's aperture and the occurrence of

superdirectivity.
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SECTION 4

CONCLUSIONS

The surface impedance synthesis technique has been

successfully applied to solving inverse electromagnetic

scattering problems. Equally important, the technique provides

insight into limitations on possible solutions. For instance,

the amplitude factor of the scattered field cannot be arbitrarily

specified but is dependent upon the normalized amplitude

scattering pattern in the forward scattering direction, the' total

power absorbed, and the initial phase. Similarly, an

interdependence exists between the ratio of the total power

absorbed to the maximum total power absorbed, the ratio of the

total power absorbed to the total power scattered, and the

initial phase.

The synthesis technique has the flexibility to be applied to

simple or complex scatterers of various sizes. For any given

situation, as the size of the scatterer is reduced, the magnitude

of the surface impedance distribution on the surface profile

increases. Hence, the analogy to the reduction of an antenna's

aperture implies a superdirectivity concept for scatterers.
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THE APPENDIX

The Gram-Schmidt process was used to calculate the complex

coefficients used in the expansion of the scattered field

represented by the original source functions. The process

generates a set of orthonormal functions from the original source

functions. The desired function used is the product of the

amplitude factor and the normalized complex scattering pattern.

Actual data or a functional form would be available for the

desired function.

In general terms, it can be represented as an infinite

summation of the original source functions as

fd()= k~ u.(U)n-1

where cn are complex coefficients and u,(O) are the original

source functions. The estimate of the desired functions depends

upon the number of sources used to model the scattered field from

the scatterer.

NS
f.0)= E C1, U.,~n1

where C, are complex coefficients and NS is the number of

sources. Therefore, the desired function can be approximated by

its estimate in the form

NS

fd(2 fk Uk7
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where Uk(O) are the orthonormal functions . The functional

notation showing the angular dependence will be omitted at this

point for simplicity.

Let a set of orthogonal functions be expressed in terms of

the original source functions and its associated orthonormal

functions.

U1 '= u, and U, = Ul ' / d ,

U2 '= U2 + a21U1 and U2  U2 '/d 2

with < U2 ', U1 > = 0

U3 '= U3 + a 32U2 + a31U1 and U3 = U3'/d 3

with < U3 ' , U2 > = 0 and < U3 ',U 1 > = 0
k-iUk' = uk + E IakjUj and Uk = Uk'/dk

wit U1 + k  U Uk '

wih< , Uk-, > = 0, ... ,< , U, > = 0

where the angular brackets represent the inner product such that

< f,g > = fb f(0)g*()do

a

and dk represents the magnitude of the function Uk' such that

dk < Uk '  >%

The coefficients of the orthonormal funcitons must be determined

so that the appropriate inner products between the orthogonal and

orthonormal functions are zero. Using the inner product

relationship again in order to calculate the akj coefficient
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through the akCk.1) value results in the expressions

I k-i
<U , Ui > = < [Uk + E akj U, Ui >

j-

with < Uk,' U1 > = 0 for i = 1, ... , k-1

k-i

0 = < Uk, Ui > + < E akj Uj , Ui >j.1

k-1
0 = < Uk, U i > + Z akj < Uj, Ui >

J.1

but < U, Ui > = 6ji

because of the properties of orthonormality so that

k-I
E akj 6j = - < Uk , Uj >
j.1

ak = - < Uk, Ui >

Therefore, the set of orthogonal functions can be generated from

I k-1
Uk = Uk + E akj Ui

and the set of orthonormal functions from

k-1
Uk = uk + E akj Ui

where akJ - - < Uk, Uj >

If each orthonormal function is represented in the form

U= Zbj u
Li
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then the set of orthonormal functions can be expressed in terms

of the original source functions as

k-1 .

Uk uk + E akj bt Ut /dk

Expanding this expression and combining appropriate coefficients

yields
k

Uk E bk. u.
n-1

k-i akj
where bk. = - in

J dkd

Now, recall the estimate of the desired function

PSfd E .fk Uk
4 Uk

Before substituting for the set of orthonormal functions, the fk

coefficients will be determined again by applying the inner

product.

H'S

< fd, Ui > = < E fk Uk, Uj >

u
< ,Uj >= I fk 6 kj" fdI Uj k-I

fi = < fd, Uj >

Then, the estimate of the desired function becomes

PS
fi = E fk Uk
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rk

NS k

HS PS
fd = E E fn bk ukk-1 n-k

resulting in the simplication

NS

fd En Ck Uk
n-k

NS
where c k =EY fn bnk

n-k

and the set of complex coefficients for

f, = E C. U.
n-i

easily has a one-to-one correspondence, i.e. C, = cn. Thus, all

coefficients required for the expansion of the estimate of the

desired function in terms of the original source functions can be

determined by implementing the Gram-Schmidt process.
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