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SECTION 1

INTRODUCTION

Although the number of investigations into the inverse
electromagnetic scattering problem has been limited in comparison
with the amount of total research completed in diffraction'
theory, a synthesis methed [1, 2] was developed in an extension
of the research to reduce radiation losses from surface waves
during propagation around bends of the surface [3, 4]. The
synthesis method determines the impedance boundary conditions for
a physical structure produced from the specification of a desired
scattering pattern (5, 6] and has been applied successfully to
solving the inverse (i.e. synthesis) electromagnetic scattering
problem (7, 8, 9, 10]. Further research provided constraints on
the specifications of the scattered field to insure solvability
of the inverse diffraction problem ([(11]. This present study will
investigate the possibility of additional constraints on the
physical realizability of an scatterer subjected to an incident
field to produce a desired scattering pattern.

In the following section a complete derivation of the
synthesis method for determining the surface impedance
distribution on an scatterer resulting from a required scattering
pattern occurs in order to validate its application to inverse

electromagnetic scattering problems. This surface impedance




synthesis technique includes the determination of a family of
colutions for a representative profile of the scatterer for a
desired scattering pattern as well as the calculation of the
surface impedance for a particular profile. The energy balance
relationship is shown to be fundamental not only to the technique
itself but also to restrictions on the technique in solving
inverse diffraction problems. Because the mathematical
formulation involves approximating a desired shape with
fictitious sources that directly influence the scattered field,
both single and multiple source configurations will be developed.
The representation of the scattered field requires an appropriate
selection of the amplitude factor as well as the order of the
Hankel function of the second kind so that the azimuthal power
flow dominates the radial power flow but does not become too
reactive.

In order to implement the technique easily and to allow
flexibility in its application, the calculation of the power flow
lines for determining possible surface profiles of the scatterer
and for displaying various closed contours is essential. The
example in the last section shows the tremendous flexibility in
the development of an scatterer and in the possible application

of other constraints such as material properties.




SECTION 2

SURFACE IMPEDANCE SYNTHESIS TECHNIQUE

The surface impedance synthesis technique essentially
involves two major steps. First, with the specification of a
desired scattering pattern, the power flow lines are generated
for a general scatterer characterized by required shape features
as width and length. If such scatterers exist to produce the
desired scattering pattern, a family of closed power contours
will result and represent possible surface profiles of the
scatterer. Next, the surface impedance distribution is
determined for a particular surface profile. Although an
interdependence exists between the impedance boundary conditions
and the surface profile, the technique allows for flexibility in
potential designs in both surface impedance and structural
variations.

For a generalized, two-dimensional case that is homogenous
along the z axis, i.e. the partial derivative with respect to z
is zero, let a plane wave, incident upon an arbitrarily shaped
scatterer containing no energy sources, be represented as u'(,,¢)
= e %% yhere u!(p,¢) can be either the electric or magnetic
field. The total electromagnetic field consists of the sum of

the incident and scattered fields taking the form

u(pe,®) = u'(p,0) + u'(p,9) (1)

The power flow lines of the Poynting vector for the total

electromagnetic field will be coincident with the power flow




lines of the Poynting vector for the incident field at large
distances from the scatterer. However, at distances approaching
the surface of the scatterer, the structure of the power flow
lines becomes more complex. Surfaces passing through the power
flow lines do not exhibit a flux of active energy and, therefore,
have only a reactive impedance. All source-free profiles having
a purely reactive surface impedance will satisfy the following

relation fecr the conservation of power or Poynting Theorem:
Re § 8 » ds = 0 (2)

where the complex Poynting vector 8 equals 1/2 E x H' and ds is
the outward unit normal of the surface. However, the surface
profile must also enclose all singularities of the scattered
field to be physically realizable. Satisfying the condition for
conservation of power does not alone ensure physical
realizability of the closure condition.

Further investigation into the specification of the
scattered field provides an additional constraint which will
allow the conservation of power to be the sufficient condition
required to ensure closure of the power flow lines. Although the
scattered field in both the direct and inverse diffraction
problems in two-dimensional cases can be expressed as a series of
outgoing cylindrical traveling waves, the scattered field in the
latter can be represented by a finite number of terms whose
complex coefficients must be determined in order to produce the
specified scattering pattern. The outgoing cylindrical traveling

waves are represented by the Hankel function of the second kind




and order v for a e’ time dependency. These waves are

L]

attenuated by the factor p ' as the real argument increases to

infinity and, thus, satisfy the radiation condition.
H,? (ke) = (2/(1kp)]* e "™ as kp ~ @ (3)

Let the scattered field be expressed in a standing wave

representation with respect to the angle ¢ as a single term as
u*(s,¢) = ( Acosve + Bsinve ) H,('?(kp) e (4)

where A, and B, are complex amplitudes and § is the initial

phase. Because the scattered field has a dependence in angle ¢
which must be periodic and single valued, the order v must be an
integer. If the relative phase between the complex amplitudes is
not an integer multiple of 2x, the conservation of power relation
becomes a sufficient condition for the closure of the power flow
lines. Furthermore, if the complex amplitudes have equal
magnitudes and a relative phase difference of (2n+l1) m/2, the

scattered field can then be expressed as

u'(p,0) = Ce H, P (k) eF (5)
which reduces in the far field to the form

u'(p,0) = Ce’ & [2/(7kp) )" e 3T (6)

This traveling wave representation with respect to the angle ¢
produces a family of closed contours about the singularities of
the scattered field in the near field; whereas, the standing wave

representation produces both closed and open power flow lines.




If, for instance, a physical surface coincided with any of the
family -r the closed power flow lines, the power is predominately
azimuthal.

In applying the surface impedance synthesis technique to
inverse diffraction problems, the scattered field must also
satisfy the structure of the desired scattering pattern in the
far field. From this requirement the scattered field may be

represented as
u'(p,0) = AP(¢)e®® (2/(mko)]* e 3™ (7)

where A is an amplitude factor, F(¢) is the normalized complex
scattering pattern, and 8 is the initial phase. This normalized
complex scattering pattern is further expanded into amplitude and

phase components as
P(¢) - F(¢)le‘(¢)"(0)l (8)

where F(¢) is the normalized amplitude scattering pattern and
(v(¢®) - ¥(0)] is the normalized phase scattering pattern.

If the scatterer is represented as a single fictitious
source, the complex coefficient C, is easily calculated by
comparing equations (6) and (7). However, if a configuration
using multiple fictitious sources represents the scatterer, the

scattered field must be expressed in the form

s _ N jUnOn (2) ;0
u(p,9) = C, e H, (kpn) e
nel n n (9)

where N is the number of sources. For an increased number or




nonlinear orientation of the sources, the mathematical
formulation becomes more complicated. With the implementation of
the Gram-Schmidt process (Appendix) [12), the complex
coefficients are determined for these cases.

After a closed power flow contour has been chosen as a
possible surface profile for the scatterer, the surface impedance
distribution is determined by calculating the ratio of the

tangential components of the electric and magnetic fields.

2.1 AMPLITUDE FACTOR LIMITATIONS

The amplitude factor A cannot be chosen arbitrarily and must
be selected judicously in order to provide a realizable solution
to the inverse diffraction problem. The constraints on the
amplitude factor are determined by using the Poynting Theorem
modified to allow for the possibility that the scatterer also has

absorption characteristics. Thus,
Re § 8 -ds + P =0 (10)

where P* is the total power absorbed. The complex power includes
the total power scattered P°, the power P due to the interaction
between the incident and scattered fields, and the intrinsic

power P’ of the incident field, so that
Re § 8 - ds = P° + P + p! . (11)

It can be shown that the real part of the complex Poynting vector

may be expressed in terms of the total field u(p,¢) in the form

Re 8 = -q Im{u'(p,9)%u(sr,d)] (12)




where the constant q accounts for the type of electromagnetic

wave and the properties of the medium.

1
-_— for TE waves
2weE
q = 9
1
— for TM wave_ (13)
L 2wl

Substitution for the complex Poynting vector in terms of the

total field into the Poynting Thecrem yields

2". du(p,9)
- qInm u'(p,¢) —— p dp + P =0
0 dp (14)
Assuming that no sources are enclosed by the surface of
integration, expanding the Poynting Theorem expression with the
components of the total field, and evaluating each resulting term

in the far field, simplifies equation (10) to the form

PP+ P + P = 0 (15)
quz =
where PP = — F2(¢)de
g 0 (16)
and P® = q Im {4ju’<p,0)[2/(7rkp)l"' e’ J""}
(17)

The optical theorem is then obvious by the rearrangement of
terms and the division of the total powers by the magnitude of

the incident field's Poynting vector,




1
g, + gy =- — Im {4ju’<p,0)[2/(nkp)1"' e’ j'*} (18)
k
where o, and o, represent the total scattering cross section and
total absorption cross section, respectively.
Evaluation of the scattered field produced by the scatterer
due to a field incident upon it from the 7 direction relative to

a body-centered coordinate system yields the following expression

for the forward scattering direction in the far field
u*(p,0) = AF(0)e’’[2/(nkp)]™ e 3 (19)

For the forward scattering direction ¢=0, the normalized complex
scattering pattern reduces to the normalized amplitude scattering

pattern, F(0) = F(0). Thus, the scattered field becomes
u(p,0) = AF(0)e™® [2/(mkp) )™ e % 3™ (20)

Substituting into the Poynting Theorem for the total scattered
power and the total interaction power produces a quadratic

equation in A. Solving for the amplitude factor results in the

expression
J P ™
® |-F(0)cosg * |F*(0)cos’8 - 27q JF2(¢)d¢
A= ’
n
J F?(¢)do
) (21)

By applying the Poynting Theorem with the inclusion of




absorption to the solution of inverse diffraction problems,
constraints have been developed for the specification of the
amplitude factor for a desired scattering pattern. The amplitude
factor cannot be specified arbitrarily but is dependent upon the
normalized amplitude scattering pattern in the forward scattering
direction F(0), the total power absorbed P*, and the initial
phase 8. However, the amplitude factor is not dependent upon the
phase of the desired scattering pattern.

In order to understand more fully the constraints on the
amplitude factor, the following discussion developes the criteria
required for the appropriate selection of the amplitude factor.
The criteria applies to all inverse diffraction problems in that
it is independent upon the desired scattering pattern specified.
First, the bounds on the amplitude factor will be determined.
Then, the effects of the total power scattered and total power
absorbed as well as the initial phase will be explained.

From the expression for the amplitude factor, the minimum
and maximum constraints that bound its values are easily observed
to occur whenever there is no total power absorbed. Then, the
minimum value of the amplitude factor is determined by taking the
positive sign preceding the radical. However, this value
obviously becomes zero which represents the trivial case where no
scatterer even exists. Similarly, the maximum value of the
amplitude factor is determined by taking the negative sign

preceding the radical. Thus, for no total power absorbed the

amplitude factor has the form




-27F(0) cosp

2
J F?(¢)de
0 . (22)
Although the absolute maximum value is strongly dependent upon
the desired scattering pattern characteristics, the relative
maximum value applicable to all inverse diffraction problems is
only derendent upon the initial phase. Because the amplitude
factor must be positive, the initial phase must be within the
range of m/2 to 3m/2 such that its cosine is negative.
Therefore, the relative maximum value of the amplitude factor
occurs whenever the initial phase equals .
2TF(0)
Apax = ——
[ F*(¢)d¢
0 . (23)
Observation of the general expression for the amplitude
factor also shows that the maximum value allowable for the total

power absorbed is determined by the radicand in equation (21).

So,
»  27mq F?(0)
Pa =
J F2(¢)de
0 . (24)

The amplitude factor under the conditions of maximum total power

absorbed and initial phase of v then has the form

11




TF(0) Anex

e —— . -
= =

bl 2
[ F?(¢)de

0

Ao

(23)

Now that some fundamental terms and constraints have been
established, the general expression for the amplitude factor may

be manipulated to yield

PA 2n
TF(0) -cosf * |cos’f -~ ——m— J F2(¢)de
A= —— 2nqF?(0) J,

2x
J F?(¢)de (26)

0

where several quantities can be easily recognized. Using

equations (24) and (25), the amplitude factor then takes the form

A=A

{ -cosf * Jcoszﬁ - PP,
(27)

In order to continue to investigate the selection criteria
for the amplitude factor in the generalized sense, two additional
factors must be introduced. First, because the total power

absorbed is bounded, it may be represented as
P =y P\, for 0< y < 1 (28)

Second, the total power absorbed to the total power scattered can

be represented as

P* = a P° (29)




which results in the followirng upon substitution for the power

quantities

2
a

- l Poax
= -7
A

. (30)

However, the ratio of the terms related to the amplitude factor
is dependent upon the ratio of the total power absorbed to the

maximum total power absorbed.

¥

—— 1 2
-cosf * Jcoszﬁ - v ]
. (31)
Likewise, this expression may be rearranged to solve for the
ratio of the total power absorbed to the maximum total power
absorbed in terms of the ratio of the total power absorbed to the

total power scattered as well as the initial phase.

4a cos’g

T (1+a)? . (32)
With the establishment of these ratios, the selection

criteria for the amplitude factor follows a straight forward, yet
flexible procedure. The interdependence of the ratio of the
total power absorbed to the maximum total power absorbed, the
ratio of the total power absorbed to the total power scattered,
and the initial phase is shown in the three-dimensional plot in
figure 1. The maximum total power absorbed is achieved whenever

the initial phase is r and the total power absorbed equals the

13




total power scattered. Furthermore, as the total power absorbed
is reduced from its maximum, the ratio of the total power
absorbed to the total power scattered can become large for any
valid initial phase. Basically figure 2 is a contour plot of
figure 1 for levels chosen arbitrarily as 0.2, 0.4, 0.6, and 0.8
for the ratio of the total power absorbed to the maximum total
power absorbed. The sections of the contours that are not solid
represent values that were calculated with the negative sign
preceding the radical. As an example, if the desired ratio of
the total power absorbed to the total power scattered is 3.0, as
the ratio of the total power absorbed to the maximum total power
absorbed becomes smaller, the initial phase can assume a greater
range of values. However, in this case the 0.8 ratio of the
total power absorbed to the maximum total power absorbed would
not achieve the desired ratio of 3.0 regardless of the initial
phase. Furthermore, if the ratio of the total power absorbed to
the maximum total power absorbed is limited to a maximum value,
the initial phase would differ from 7 by a greater amount.
Likewise, if the properties of the surface limit the initial
phase that could be imposed onto the surface, the ratio of the
total power absorbed to the maximum total power absorbed is also
bounded.

After the three terms - the ratio of the total power
absorbed to the total power scattered, the ratio of the total
power absorbed to the maximum total power absorbed, and the
initial phase - have been specifically determined or at least

bounded, the amplitude factor can easily be determined. 1In

14




figure 3, the amplitude factor normalized by the amplitude factor
at which the total power absorbed is a maximum is shown as a
function of the initial phase for arbitrarily selected values of
the ratio of the total power absorbed to the maximum total power
absorbed. If a range of values for the ratio of the total power
absorbed to the maximum total power absorbed is given for a
specific initial phase, the possible values for the amplitude
factor will be bounded. Likewise, if a range of values for the
initial phase is given for a specific ratio of the total power
absorbed to the maximum total power absorbed, the amplitude
factor will again be bounded. Therefore, the amplitude factor
can not be arbitrarily specified. In summary, even though the
amplitude factor is directly dependent upon the normalized
amplitude of the scattering pattern in the forward scattering
direction, the total power absorbed, and the initial phase, the
selection criteria for the amplitude factor is more easily
understood whenever the power ratio terms are introduced and is

then applicable to all inverse diffraction problems.

2.2 HANKEL FUNCTION ORDER LIMITATIONS

The surface impedance synthesis technique requires that the
order of the Hankel function, used in representing the behavior
of the scattered field, must be an integer to insure the solution
to be single valued for its ¢ dependence. Otherwise, the order
can be arbitrarily selected. However, any physical limitations,
e.g. the desired size of the scatterer, must also be considered.

These limitations would inherently be different for each problem.

15




In order for the desired scattering pattern to result from a
plane wave incident upon an scatterer generated by the surface
impedance synthesis technique, the radiation loss due to the
implementation of the surface impedance onto the surface profile
must be minimized. The ratio of the radial component to the
azimuthal component of the power flux density can be expressed in

the form

Re S, 2

Re S, Tu(3,0(ke) + NJS(kp)] (33)

where J, (kp) and N,(kp) are the Bessel and Neumann functions,
respectively, which form the Hankel function H,*’(kp). Because
of the inversely proportional relationship, as the magnitude and
order of the Hankel function increases, the ratio decreases.
Moreover, as the argument of the Hankel function decreases
relative to its order, i.e. kp < v, the absolute value of the
Neumann function increases greatly. A similar but weaker
constraint on the argument restricts its maximum value to the
first, positive zero of the Neumann function, i.e. kp < vy, ;.
Therefore, the appropriate selection of the order determines the
maximum radius for which the azimuthal component dominates the
radial component making the radiation loss insignificant. As the
order of the Hankel function increases, the radius of the region
where the power flow lines-are closed also increases. Although

the availability of a greater number of possible solutions would




then seem to exist for larger orders, the energy stored near the
surface of the scatterer increases as the radius decreases.
Therefore, the use of higher orders of the Hankel function is
primarily to accommodate the requirement for a greater

geometrical cross section of the scatterer.
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SECTION 3

EXAMPLE

As a simplified example, assume that the surface profile of
an scatterer and its associated surface impedance cdistribution
must be determined for the desired scattering pattern
characterized by the far-field, normalized amplitude and phase
patterns for a right circular cylinder having a 0.2 wavelength
radius and its longitudinal axis along the z direction. The
scatterer is assumed to have no absorption characteristics and an
initial phase of . The analytical procedure follows two
distinct steps. First, the family of closed power flow lines has
to be generated to represent the possible solutions for the
surface profile. Second, the surface impedance distribution
along the selected surface profile must then be determined.

Although previous research discussed a method to produce
possible surface profiles first by generating equal phase
surfaces and then by generating surfaces perpendicular to them to
produce the power flow lines, this method has not been used
because it seemed too cumbersome in its approach and allowed for
the possible introduction of error by the additional set of
calculations. A more straight forward approach was adopted
whereby the real part of the complex Poynting vector was
calculated for each point of a grid whose center represented the
origin of the body-centered coordinate system for the scatterer.
From the x-y grid with the power values, both two-dimensional and

three-dimensional representations of the power flow lines can be

18
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generated.

Without any physical limitations required in the example,
the scatterer would be initially represented by a single
fictitious source. Likewise, the Hankel function used in
representing the behavior of the scattered field was assumed to
be the first order. The three-dimensional plot of the power
magnitude for a square grid of 1.2 wavelengths in figure 4 shows
the near symmetry of the problem. Because the power magnitude
increases greatly as the radius of the scatterer approaches zero,
the maximum power magnitude was limited to 800 to allow the
structure at the lower power magnitude levels to be observed.
Moreover, the influence of the phase of the desired scattering
pattern is not readily apparent until the two-dimensional contour
plot is observed in figure 5 for arbitrarily chosen power
magnitude levels. Using the first positive zero of the order of
the Neumann function to limit the maximum radius of the region of
possible solutions, the closed power flow lines within 0.35
wavelengths represent possible surface profiles where radiation
loss is insignificant. The normalized surface impedance
distributions for the power magnitude levels of 100,200,300,400,
and 500 are shown in figure 6. As the surface profile decreases,
the power magnitude level increases, and the magnitude of the
surface impedance required to produce the desired scattering
pattern increases. This situation is strongly similar to the
reduction of an antenna's aperture and the occurrence of

superdirectivity.
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SECTION 4

CONCLUSIONS

The surface impedance synthesis technique has been
successfully applied to solving inverse electromagnetic
scattering problems. Equally important, the technique provides
insight into limitations on possible solutions. For instance,
the amplitude factor of the scattered field cannot be arbitrarily
specified but is dependent upon the normalized amplitude
scattering pattern in the forward scattering direction, the total
power absorbed, and the initial phase. Similarly, an
interdependence exists between the ratio of the total power
absorbed to the maximum total power absorbed, the ratio of the
total power absorbed to the total power scattered, and the
initial phase.

The synthesis technique has the flexibility to be applied to
simple or complex scatterers of various sizes. For any given
situation, as the size of the scatterer is reduced, the magnitude
of the surface impedance distribution on the surface profile
increases. Hence, the analogy to the reduction of an antenna's

aperture implies a superdirectivity concept for scatterers.
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THE APPENDIX

The Gram-Schmidt process was used to calculate the complex
coefficients used in the expansion of the scattered field
represented by the original source functions. The process
generates a set of orthonormal functions from the original source
functions. The desired function used is the product of the
amplitude factor and the normalized complex scattering pattern.
Actual data or a functional form would be available for the
desired function.

In general terms, it can be represented as an infinite

summation of the original source functions as

f (o) = ;j_lcn u, (@)

where c, are complex coefficients and u,(¢) are the original
source functions. The estimate of the desired functions depends
upon the number of sources used to model the scattered field from

the scatterer.
NS
£,(¢) = £ Co U, (9)
where C, are complex coefficients and NS is the number of

sources. Therefore, the desired function can be approximated by

its estimate in the form

NS
£4(8) = T £ Ur(9)
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where U,(¢) are the orthonormal functions . The functional
notation showing the angular dependence will be omitted at this
point for simplicity.

Let a set of orthogonal functions be expressed in terms of
the original source functions and its associated orthonormal

functions.
Ul = u1 and Ul = Ul’/dl

U,’= u, + a,U, and U, = U,’ /4,

with < U,’, U, > =0

Us'= u;, + a5,U; + ayU; and U, = U,'/q,
with < U,’,U, > =0 and < U,’,U, > = 0

k-1
U = u, + £ a,U, and U, = U’ /4,
J-
With<uk’, Uk-1>=0, eee 4¥< Uk’l U1>=0
where the angular brackets represent the inner product such that

b
< £,9 > = I £f(0)g (¢)deo

and d, represents the magnitude of the function U,’ such that
4= < u', u' >*

The coefficients of the orthonormal funcitons must be determined
so that the appropriate inner products between the orthogonal and
orthonormal functions are zero. Using the inner product

relationship again in order to calculate the a,; coefficient
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through the a;,;.;, value results in the expressions

k-1
< Uk': U > =< [y + 33_13&,1 U1, U, >

’

with < U, U >=0 fori=1, ..., k-1

k-1
0 = < u,, Ui>+<§:_1auuj, U, >

k-1

but < Uj' Ui > = 631

because of the properties of orthonormality so that

k-1

2 a, 6§, = =< u U, >
j-lk‘, ji i ¥/ i

ay = - <y, U >
Therefore, the set of orthogonal functions can be generated from

' k-1
U =y + _i:laIKJ U,
J-

and the set of orthonormal functions from

k-1
Uk = uk + gz_la“ Uj

where Qy = = <y, U >
If each orthonormal function is represented in the form

J
U, = 2 b, u
3 o1 3¢ e
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then the set of orthonormal functions can be expressed in terms

of the original source functions as

k-1

3
U = U + £ agy Z by U | /d

Expanding this expression and combining appropriate coefficients

yields
k
U = nz_lbkn Un
h L
wnere =
bkn Jon dkdn dn

Now, recall the estimate of the desired function

NS
£, = glfkth

Before substituting for the set of orthonormal functions, the f,
coefficients will be determined again by applying the inner

product.

NS
< fdl Uj > = < kz-xfk Uk' Uj >
NS
< fdl UJ > = 2:-1fk 6kj

fj =<fdl UJ>
Then, the estimate of the desired function becomes

NS
£,% 2 £, U

30




NS k
fa% I 6 I b W,

NS NS
o= E, I fbu

resulting in the simplication

NS
fs ® Z ¢ u
n=k

where Cy

i
™
w
(o}
=}
o
i‘r

and the set of complex coefficients for

NS
f. =L G u,
n=l
easily has a one-to-one correspondence, i.e. C, = c,. Thus, all
coefficients required for the expansion of the estimate of the
desired function in terms of the original source functions can be

determined by implementing the Gram-Schmidt process.

K}




REFERENCES

Yerokhin, G.A. and Kocherzhevskiy, V.G., "Solvability of
Certain Inverse Diffraction Problems", Izvestiya Vysshikh

Uchebnykh Zavedenii Radiofjzika, Vol. 21, No. 7, pp. 1019-
27, July 1978.

Yerokhin, G.A. and Gofman, V.G., "Synthesis of an
Inhomogeneity Approximating to a Given Form with Low

Perturbation", Izvestjya Vysshikh Uchebnykh Zavedenni
Radiofizika, Vol. 24, No. 2, pp. 179-87, February 1981.

Yerokhin, G.A. and Kocherzhevskiy, V.G., "External Bend of
an Open Waveguide with Low Radiation Losses", Radjotekhnika
i Elektronika, Vol. 18, No. 4, pp. 695-702, April 1973.

Yerokhin, G.A., Kocherzhevskiy, V.G. and Gofman, V.G.,
"Bends in Surface-Wave Lines", Radiotekhnika, Vol. 29, No.
2, pp. 29-36, January 1975.

Yerokhin, G.A. and Kocherzhevskiy, V.G., "Solution of the
Inverse Diffraction Theory Problem by the Method of
Synthesis of the Impedance Boundary Conditions",

Radjotekhnjka i Elektronika, Vol. 19, No. 1, pp. 30-36,
January 1974.

Yerokhin, G.A. and Kocherzhevskiy, V.G., "Inverse
Electrodynamic Scattering Problems and the General
Properties of the Field of Passive Scatterers",

Radjotekhnika i Elektronika, Vol. 24, No. 2, pp. 272-27s6,
February 1979.

Yerokhin, G.A. and Kocherzhevskiy, V.G., "Antenna-Waveguide
Techniques and Radio-Wave Propagation", Radiotekhnika, Vol.
33, No. 11, pp. 91-92, November 1978.

Yerokhin, G.A. and Ryvlina, A.A., "A Method of Calculating
Obstacles with a Small Scattering Cross Section in the Field

of a Plane Wave", Radiotekhnika, Vol. 35, No. 7, pp. 80-82,
July 1980.

32




10.

11.

12.

Yerokhin, G.A. and Kocherzhevskiy, V.G., "A Mixed Inverse
Electrodynamics Diffraction Problem for a Doubly-Connected

Scatterer", Radiotekhnika i Elektronika, Vol. 26, No. 5, pp.

912-919, May 1981.

Yerokhin, G.A., "Maximum Achievable Ratio Between Absorbed

and Scattered Power", Radijotekhnika i Elektronika, Vol. 28,

No. 7, pp. 1268-1274, July 1983.
Yerokhin, G.A., "Method of Designing Receiving Antennas with
Specified Scatter Parameters", Radiotekhnika i Elektronika,

Vol. 31, No. 1, pp. 70-77, January 1986.

Butkov, E., "Mathematical Physics", Addison-Wesley
Publishing Co., p. 447, 1968.

33




