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ABSTRACT

This thesis describes the testing of a prototype of a satellite computer

communications controller, based on the 80C86 microprocessor, which is to

be placed on the Petite Amateur Navy Satellite (PANSAT) for launch in

1993 on a two year mission. First, the background of the justification for

PANSAT is described. PANSAT will serve primarily as an inexpensive

store-and-forward orbiting "mailbox", and secondarily it will serve as a

teaching and learning vehicle for NPS faculty and students. Then there

are reviews of the requirements and design concepts involved in the

initial paper design by a previous thesis student. A reliability analysis

is done, validating the reliability of the design. Finally, concepts

considered in the wire-wrapped prototype construction are explained,

followed by an extensive description of initial circuit testing and

development of various machine language circuit test programs.
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I. INTRODUCTION

This thesis builds upon a principal previous thesis [Ref.

1]. That previous author's purpose was to derive an initial

design for a small, inexpensive, reliable, on-board,

satellite communications controller for the Petite Amateur

Navy Satellite (PANSAT). Hence, much of the form and content

of this introduction comes from that author's thesis.

A. PURPOSE AND SCOPE OF THESIS

The purpose of this effort was to verify the utility and

validity of the cited paper design of the on-board processor

for the Petite Amateur Navy Satellite (PANSAT). The

establishment of the processor requirements and the processor

design were the subjects of that previous thesis (Ref. 1].

The requirement was to design and build a small, inexpensive,

and reliable computer controller with enough memory and

capability to act as a store-and-forward "mailbox" for

amateur packet-radio messages using the AX.25 protocol. In

addition, of course, the controller had to be able to

withstand the extremes of radiation, heat, and cold in outer

space. The design was a challenging task.

This current thesis is a continuation of only a portion

of the required steps towards implementation of the actual

flight-ready processor based on the initial design. This
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effort concentrated on the building of a wire-wrapped

breadboard prototype and the incremental testing of the

hardware using relatively simple machine language programs.

These programs were written to incrementally test some of the

basic operations which will be required of the controller in

its final flight-ready form. Correct operation of all the

system's components within the system has been verified.

A 100 MHz dual-trace oscilloscope was the tool used to

test for the presence of predicted signals. As the hardware

and software of the system incrementally grew in complexity,

it became increasingly difficult to verify correct circuit

operation with just the oscilloscope, e.g., see the

discussion of the third incremental test of the interrupt

controller. Was the problem with the oscilloscope not being

able to lock on the increasingly longer period, less stable

signal, or was the problem with the program's complexity

exceeding the circuit's capabilities? A better monitoring

system will have to be constructed to carry on from this

point. This possible (unlikely) circuit failure could

indicate the necessity of some sort of redesign, assuming no

flaws in the components or the prototype construction itself.

Once a keyboard, monitor, and assembler/compiler are

constructed for the system, the next step will be to find out

if the system is in fact operating at the edge of its design

parameters, and if so, what can be done about it.
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B. PANSAT BACKGROUND

The Petite Amateur Navy Satellite (PANSAT) is a small,

simple, and inexpensive satellite currently being designed at

the Naval Postgraduate School. It is a precursor to the NPS

ORION satellite project.

1. PANSAT Concept

PANSAT is intended to be a space-based communications

experiment that provides students with hands-on experience in

satellite design and operations. It will accomplish three

objectives. First, it will serve as an educational tool for

NPS officer students, offering them experience in satellite

design and operations. Second, it will provide world-wide

digital communications using spread spectrum in the amateur

band. Third, it will serve as a low-cost, space-based

platform for small experiments. [Ref. 2:p. 2]

Additionally, it is an important milestone in

achieving for the Space Systems Academic group its ultimate

goal of producing the ORION satellite [Ref. 3]. It is a

simpler and less capable satellite than ORION. Because

PANSAT is less than half of ORION's size and is not attitude

stabilized it can be produced for a fraction of the cost of

the final version of ORION. Simplicity will help minimize

the risks inherent in a first design. Simplicity will also

result in reduced cost [Ref. 1:p. 1]. A tentative launch

date has been set for 1993 [Ref. 4].
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2. Mission and Objectives

The primary mission of PANSAT is to conduct a space-

based communications experiment which will provide students

with experience in design and operation of such a system.

The desired implementation is a store-and-forward message

system. In effect, the satellite would be a (delayed)

transponder or mailbox. This woul allow an authorized user

to send a message to the satellite while the satellite was

overhead. At a later time, another authorized user could

retrieve the message. Outdated or retrieved messages could

be (and would eventually have to be) deleted [Ref. 1:pp. 1-

2].

In addition, several secondary missions are being

considered if volumes and weights permit. These would

probably require various analog or digital sensors which

would amass various data, e.g., solar cell efficiency or

degradation data. This telemetry data could then be

periodically collected on-board by the computer and stored as

messages. Various programs could be loaded into the

satellite processor from the ground, and then tested. This

could give NPS students, and others, experience in writing

software for satellite control or experiments. One could

also write monitor programs to monitor memory errors over

time, or to mcnitor power usage by memory and processor

components over time. This would allow students to evaluate

the effects on memory circuits and/or semiconductor
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components of exposure to increased radiation and a harsh

environment [Ref. 1:p. 2).

3. PANSAT Design

The following are the working design constraints that

impact on the processor system design.

a. Orbit

The first PANSAT is planned for launch from the

space shuttle in a Get Away Special (GAS) canister or

expendable launch vehicle. This constrains the satellite to

a typical low earth orbit of approximately 480 km inclined at

28.5 degrees [Ref. 5:p. 2]. The actual orbit will depend on

shuttle parameters of the particular mission that launches

the PANSAT. Typical orbits have a 90 minute period. The

orbit will also determine specific communication

opportunities with the satellite. A typical orbit will

provide only two or three, greater than ten-minute

communications windows per day at the latitude of NPS for any

particular ground station [Ref. 6:pp. 7-10].

b. Size

The Get Away Special canister size limits the

physical size of the satellite. If a regular size canister

is used, this limits satellite size to approximately 19

inches in diameter. Working within these limits, an

octagonal cross section design is planned to maximize solar

collector area. (See Figure 1.) The satellite volume

reserved for the processor and its memory is also shown in
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Dipole Antennas

Solar Panels (17)
with 256 sqcm area

Communications
Transceiver

Experiment Payload *

Battery Box

Power Control Electronics

Structure is an
Aluminum Frame, Computer Subsystem
Modular in design

Cylindrical Structure Support
Baseplate Panel 1116 in. thick aluminum 6061 -T6

PANSAT diameter is approximately 19"
Figure 1. Pansat Size and Structure [Ref. 5]

the figure.

c. Stabilization

The PANSAT will not be stabilized and will not have

any station keeping ability. This means that the processor

does not require the capability to monitor any attitude

sensors or perform any stabilization calculations. Another
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advantage to the lack of stabilization in relation to the

processor is the potential to leaven the effect of solar

heating on the daylight portion of the orbit which

constitutes 61.20% of the total equatorial orbit based on

strictly line of sight calculaticis with an earth radius of6.4 x los

meters and a satellite elevation of 480 kilometers. (See

Figure 2, on the next page.) Refraction due to the

atmosphere will undoubtedly extend that percentage somewhat.

Lack of stabilization will dictate the use of an

omnidirectional antenna(s) which will have a negative effect

on the signal-to-noise ratio and on the communications power

budget. These problems will be primary concerns of the

communications and power supply designers.

d. Communications

The radio communications link with the PANSAT is

currently planned to have a 437.25 MHz center frequency with

a 960 kHz bandwidth. It will utilize the AX.25 amateur

packet-radio communications protocol in half-duplex mode at

1200 bps [Ref. 5:p 3]. The reason for the low 1200 bps data

rate is two-fold. First, a low data rate will conserve power

on the satellite because less bandwidth is required. Second,

it will reduce the probability of bit error thereby possibly

making forward error correction (FEC) and its attendant

hardware and/or software less important and possibly not

required.
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((2 x 21.53) + 180)/360 x 100 = 63.29% in sunlight

Sunlight--> SOW- PANSAT

46 .04 x 10's m (6.4 x 106 + 480 X 10 3 ) M

EARTHe = 21.530

Figure 2. Portion of Orbit in Sunlight

The AX.25 protocol utilizes automatic repeat

request (ARQ) at the frame level for error correction. With

too high a bit error rate (BER) due to a high data

transmission rate this could be too time consuming. But with

only a 10 minute or less communications window there is a

tradeoff with the desire to keep the data transmission rate
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low to reduce the BER and the need to get all the data

transmitted during the short window. There is room here for

further data transmission rate optimization studies which is

primarily dependent on the signal-to-noise (S/N) ratio of the

PANSAT/ground antenna/transmitter/receiver system and its

chosen modulation method. [Ref. 7:p. 28)

The current communications subsystem design

forecasts a bit error rate of Io-s [Ref. 6:p. 19). This is

a probability of one character being incorrect every 2.6

pages. (A page is assumed to be 60 x 80 = 4800 bytes = 38400

bits.) Since there will be a maximum amount of available RAM

for telemetry/messages of about 800 kilobytes, it will take

about 800 kilobytes/1200 sec. = 90 minutes to completely load

or unload the RAM. But any message of a page or less (about

4800 bytes) will only take about 4 seconds or less to

transmit or receive. Most messages will surely be on the

order of a page or less.

e. Power

The satellite will be powered by an array of 15

volt solar cells mounted on the exterior. These will charge

two 10.5 volt lead-acid batteries in parallel. The batteries

each consist of five 2.1 volt, 5 ampere-hour cells. The

batteries are required, of course, for the eclipsed portions

of the orbit. A breadboard version of the power system has

been designed and constructed. The nominal power

requirements of the PANSAT are not yet known because not all
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the systems have been designed and/or built but the

breadboarded power system design estimated that 11.0 watts

average power will be required, of which the processor's

share is 2.6 watts 100% of the time. [Ref. 8]

f. Durability

The satellite will be subjected to high vibration

during launch and orbital injection. The overall root mean

squared vibration level is 12.9 g's for 40 seconds [Ref. 9:p.

57]. The processor must be able to withstand these stresses

without failure.

g. Lifetime

The processor must be able to function properly

during the satellite's design lifetime of one and one half

years. The design should be such that system failure can be

avoided. If a fault occurs, the design should minimize the

impact on the mission by redundancy (appropriate to the

relative simplicity of the satellite) or by allowing the

processor to work around the fault. [Ref. 1:p. 6]

C. PANSAT COMPUTER FUNCTIONS

The following functions are to be performed by the

processor:

1. Communications

The satellite will act as an orbital store-and-

forward message service. The satellite will be capable of

receiving messages via a communications link, storing the

10



messages, and transmitting them upon request. There should

be a way for the processor to transmit a list of its current

messages, upon request. Also, messages will have to be

periodically erased to free up memory space.

2. Telemetry

The processor may store telemetry data from on-board

sensors and the satellite will transmit the data upon

request.

3. Housekeeping

The processor must manage housekeeping functions in

support of the mission functions. These housekeeping

functions could include, but are not limited to:

a. Power management and monitoring of power supply

voltage, battery charging current, and battery current draw.

b. Generation and formatting of status messages.

c. Reception, decoding, and execution of commands

from the ground control station.

d. On-board fault detection and recovery. (Message

fault detection and recovery is a function of the AX.25

protocol.)

e. Ability to update or change programming.

4. Transmitter Control

A major concern for getting the PANSAT design

approved for launch is demonstrating positive control over

the transmitter. If the satellite has a malfunction, there

must still exist means to secure the transmitter from the

11



ground station. Legally, telecommand capability is

necessary: "...to turn off a malfunctioning transmitter

that might conceivably cause harmful interference to

important radio services worldwide." [Ref. 10:p. 12-2]

Transmitter control will be a joint responsibility

between the processor and the communications subsystem.

During normal operation, the processor will turn the

transmitter on and off, but if the processor fails during

transmission, the communications subsystem must have a way to

secure the transmitter. If the receiver and/or the serial

communications controller and/or the processor or software

fail with the transmitter keyed on so that the receiver has

no way to secure the transmitter, a watchdog countdown timer

is provided with the processor to time out and reset the

processor, thereby securing the transmitter. Then, if the

fault is not correctable, either from the ground or on the

satellite, the transmitter is left turned off. Figure 3, on

the next page, is the overall computer system diagram. It

clearly shows the implementation of a watchdog timer to

effect positive transmitter control.

D. DESIGN CONSTRAINTS AND CONSIDERATIONS

Other microprocessors or microcontrollers available in a

low power, radiation hardened version could have been used

for the initial design, e.g., the 8085, Z80, MC68000, 8096

(microcontroller), and others, but the 80C86 is a good choice

12
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because it is probably better known, with commonly available

compilers, assemblers, and software. Most of the following

items were considered in the paper design of the processor

system in the predecessor's thesis [Ref. 1].

1. Commonality

The processor should be similar to one commonly

available. This will simplify program development and allow

increased educational benefits. Program development is

simplified by the larger number of software packages (i.e.,

compilers and assemblers) available for a common processor.

It is very desirable that the processor have high level

language compilers available to allow programming the

processor in C or an equivalent language. The educational

benefit is enhanced by allowing students to develop a program

on a ground-based computer. Once debugged and verified a

program can be uploaded and tested on an actual satellite.

The 80C86 microprocessor fits this consideration nicely.

2. Upward Compatibility

The PANSAT processor should be one which can be

easily expanded to meet the greater demands of ORION. The

80C86 is a less powerful member of the Intel 80x86 family of

microprocessors. A more powerful processor, e.g., the 80386,

could be substituted for the 8086 with increased speed,

memory addressing capability, and multi-processor

configuration capability, without the need for much

modification of existing software or support tools which will

14



have been developed and debugged for use in the PANSAT

program.

3. Reliability

Reliability is one of the most important, if not the

most important consideration in the design of a satellite-

borne computer system because on-station satellite repair is

so expensive. Computer system reliability is a function of

design simplicity, operational requirements, the environment

and its effect on durability, individual component

reliability, and error detection and/or correction

capability. Error detection and correction capability is a

tradeoff with simplicity of design. The harsh effects of the

space environment can be mollified by the use of radiation

hardened parts, shielding, thermal control, and (for launch)

shock absorbing and vibration dampening mounts. For the

design of this simple system one can ensure component

reliability by using less than state-of-the-art parts from a

reputable company, such parts being well understood and

tested with a reliability track record. This again argues

for the use of a system based on a common processor like the

80C86 with its attendant memory and commonly used peripheral

support chips.

The reference cited below lists some things a

designer can incorporate into a spacecraft system to increase

its reliability (only that portion of the list applying to

the computer subsystem is shown):

15



* Data communications

* Digital error detection and correction
techniques

Command and Control
* Hardware testing of parity, illegal

instruction, memory addresses
* Sanity checks
* Memory checksums
• Task completion timed
* Watchdog timers
* Memory write protection
* Reassemble and reload memory to map

around the memory failures [Ref. 11:p.
342]

Some, or all of these could be used in the final

design. The watchdog timer is already incorporated in the

design.

4. Estimate of System Reliability [Ref. 12:p. 669-674]

To keep the system simple, there is minimal redundant

circuitry. Partial protection from software failure is taken

care of by the watchdog timer. The only accommodation to

redundancy may be in the inclusion of a duplicate bootstrap

EPROM. Will this system, as it stands, be reliable enough?

As stated earlier, per diem and travel expenses are

prohibitively costly for repairmen to do maintenance on a

small, inexpensive low-earth orbit satellite such as PANSAT.

However, it is possible and very easy to get a ballpark

figure for the overall system reliability to assure oneself

that the computer system will be reliable enough. The cited

reference explains that reliability, as a function of time,

R(t), is simply the probability that the system still works

16



correctly at time t. The way this function could be derived

is to build lots of systems and then plot the number of

systems still working against time, t. Typically, the

resulting graph will be an exponentially decreasing curve.

See Figure 4.

R() Figure 84
100- Typical reliability function for a

0.78 . .......°.6 ......... i.......
0.14 . ..... ...... i ................. ......... ..... .......

0.
0 3 6 9 12 15 1 21 24 months

Figure 4. Typical System Reliability Function [Ref. 12]

However, it is impractical and expensive to derive

the value for the failure rate by actually building many

systems and testing them over a long period of real time.

Instead, one takes the reliability information from the

specification sheets for the system's individual components.

Then one derives the overall system reliability from that

information, using a simple mathematical model, to be

described below.

Typically, reliability information for electronic

components are available from the manufacturer in the form of

a failure rate per unit time. This failure rate is usually
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expressed by the Greek letter 1. This I is determined by

the manufacturer as follows:

S= number of chip failures
number of chips tested, number of hours tested

Therefore, the reliability of a component can be expressed as

R(t)-elt. (2)

Because the failure rates for electronic components are

generally very small, these failure rates are often expressed

in a scaled unit called a FIT where

1 FIT - 1 failure/lO 9 hours. (3)

These component failure rates are usually not

constant, however. They typically display a bathtub shaped

curve when plotted against time. See the figure (Figure 5)

on the next page.

The high failure rates during the infant mortality

portion of the curve are usually eliminated by the

manufacturer's burn-in procedure. If a component is going to

fail due to improper or borderline manufacture, the defect

should reveal itself early on. The manufacturer only ships

those components which have survived this initial testing

period. Most components never make it to the wear-out stage.

The systems containing them typically become obsolete or
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Figure 8-5
The "bathtub curve" for
electronic-component failure
rates.

Failure __-- Infant Wear-out
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Figure 5. "Bathtub Curve"[R.12

their physical structure or housing wears out first and the

system is discarded. For example, how many people own PCs or

VCRs which are more than ten years old? The PANSAT computer

system only has to last for up to two years.

There are several factors which can influence the

baseline failure rate of components in a real system during

its working life. Some of them include temperature,

humidity, shock, vibration, radiation, and power cycling.

For terrestrial components, temperature is usually the most

significant of these factors. The failure rate approximately

doubles for every 10c rise in temperature. This is good

news for the PANSAT computer, since it will be operating in
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the cold environment of space. However, this advantage must

be balanced with the lack of convection cooling to get rid of

internally generated heat due to the lack of air.

With known component failure rates from the

manufacturer, one can calculate the overall system rate by

simply adding the individual component failure rates. This

assumes all components are necessary for the system to work,

the failure rates are independent of each other, and the

failure rate of the component interconnections is minimal.

Specific failure rates are not readily available for

specific components. However, failure rates of certain

batches or runs of a particular manufacturing process are

available for some of the radiation hardened parts (Ref.

13:pp. 14-16--14-20]. For other non-radiation hardened

parts, such as the serial communications controller (SCC) or

the SRAMs, one can make a rough estimate using Wakerly's text

[Ref. 12:p. 6741. The EPROMs, SCC, and SRAMs will be treated

as LSI parts. A FIT of 250 will be used for them. For the

remaining chips, a FIT of 50 should be conservative enough.

Finally, a FIT of 15 will be used for the 50 or so resistors,

capacitors, and the crystal. One can calculate the tentative

failure rate for the prototype PANSAT computer system, A.,

as follows:
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a,- (9 x250) + (15x50) + (50 x15) -

3750 failures/109 hours . (4)

The mean time between failures is 1/Ay&, or about 30 years.

5. Radiation Hardening

Another advantage of using an 80C86 based system,

alluded to above, is that almost all the required parts are

available in a radiation hardened version. This greatly

increases the system reliability (as well as the expense).

The low earth orbit that PANSAT will occupy does not strictly

require the use of radiation hardened components [Ref. 14:pp.

34,80]. However, reliability vis-&-vis solar and extrasolar

radiation (and manmade nuclear EMP) is enhanced by the use of

radiation hardened parts. If money is no object they can be

used with this design.

6. Environment

Consideration of the space environment impacted the

design primarily in the selection of components which were

available in a radiation hardened version.

a. Launch

Launching parameters had no direct influence on

the design.

b. Orbit

The orbit has not been determined. But the use

of radiation hardened parts will almost certainly gain a

reliability advantage regardless of the final orbital
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parameters. This again argued for the use of the 80C86 or

any other processor available in a radiation hardened

version. The orbit also has a direct effect on the frequency

and limits of temperature extremes. Because PANSAT is small

and inexpensive, the only thermal stabilization will come

from the satellite structure design and subsystems placement,

and possibly reflective or absorptive coatings. The

processor and support chips are available which will operate

reliably in the range of approximately -55C to +1250C.

7. Power

Available power on a satellite is limited. Static

power consumption was a consideration in choosing the 8086,

because it is available in a CMOS version, the 80C86. CMOS

consumes much less quiescent power, although dynamic power

consumption is a linear function of operating frequency.

8. Communications Protocol

The tentative communications protocol to be used is

the AX.25 amateur packet-radio link-layer protocol. This

protocol follows, in principle, the CCITT X.25 protocol, with

the exception of an extended address field and the addition

of an Unnumbered Information (UI) frame. It was designed to

be a mechanism for the reliable transport of data between two

signaling terminals, in this case between a satellite and a

ground station. [Ref. 15:p. 1]

a. Error Detection

Both the sender and receiver calculate a frame-
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check sequence to make sure a frame was not corrupted by the

medium. In addition, there are several link-layer errors

which are recoverable without terminating the connection due

to things like the I frame information field being too long,

or the reception of a frame with an invalid Send Sequence

Number (N(S)).

b. Error Correction

The protocol handles communications errors by

retransmission. Errors due to transients in the medium or

the hardware can be fixed this way. A permanent hardware

fault in a ground station, once detected by the protocol, can

be fixed. There are limited options for error correction if

a hardware fault occurs on the satellite. Hardware

redundancy with automatic switching upon error detection, or

switching commanded from the ground are options, but to keep

the design simple hardware redundancy and error correction

have been forgone. The emphasis has been placed on hardware

reliability, negating the requirement for (hardware) error

correction.

E. PREVIOUS FLIGHT DESIGNS

At least three other satellites have been launched with

successful missions similar enough to that of PANSAT to

provide useful information and insights. Taken together,

they show that amateur packet radio store-and-forward message
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service with the AX.25 communications protocol is feasible.

It can be done because it has been done before.

1. UoSAT-2

The UoSAT-2 was designed to investigate the technical

feasibility of store-and-forward communications via

inexpensive satellites. It was launched in 1985 into an 800

kilometer polar orbit and it was designed to operate for more

than three years. It utilized a NSC-800 processor running at

0.9 MHz. The communications link operated at 1200 bps, using

a custom message protocol (MSG2). The kernel implementing

the protocol was written in Z-80 assembler code and occupied

2.5 kilobytes of error detection and correction protected

(EDAC) 12 bit wide RAM. This satellite was the first

civilian demonstration of an operational store-and-forward

communication system. Its on-board EDAC hardware provided

invaluable data on the frequency of hard and soft radiation

induced errors. It found that about 6 single-event upsets

(SEUs) per day would occur in a 1 megabyte commercial grade

CMOS memory in that orbit. Of course, the SEU rate depends

on: [Ref. 16)

* Memory device manufacturing technique
(radiation hardening)

* Device geometry
* Shielding
* Satellite orbit
* Satellite attitude
* Solar activity
* Geomagnetic activity
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2. UoSAT-D

The UoSAT-D was a packet communications experiment

that built on UoSAT-2. It implemented the AX.25 packet radio

protocol operating at 9600 bps in full duplex mode. It

utilized an 80C186 processor running at 8 MHz. It mission

was to support amateur packet-radio communications using low

earth orbit satellites and to study the orbital radiation

environment and its effects on semiconductors. [Ref. 17]

3. FO-12

The FO-12 was the first Japanese amateur satellite,

launched in August of 1986,to serve as a store-and-forward

digital mailbox. It implemented the AX.25 protocol with four

uplink channels and one downlink channel, all operating at

1200 bps. No ROM was used. Only DRAM was used. Initial

program load was accomplished via hard-wired logic. The FO-12

also used a NSC800 processor. [Ref. 18]
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II. ORIGINAL DESIGN CHOICES/PROTOTYPE CHANGES

Changes have been made to the original design primarily

for three reasons--expense, advance in the state of the art,

and expediency. For the prototype, military standard or

commercial grade were substituted because they are

functionally equivalent and much less expensive. The wire-

wrapped breadboard and flight model components may also have

to be changed in response to changing mission requirements.

A. PROCESSOR SELECTED

The prototype uses an 80C86 microprocessor, commercial

grade, instead of the 80C86RH radiation hardened version

because they are functionally equivalent and the 80C86 is

much less expensive. This expense was the main reason for

chip substitution for all the other chips, with the exception

of the Zilog serial communications controller (SCC). See

below.

B. PROCESSOR MODE

The prototype stayed with minimum mode instead of maximum

mode because this is still a small stand alone system.

C. BUS DEMULTIPLEZXING

The wire-wrapped prototype still used the 54HC573 octal

D-type address latches and the 54HC245 octal tri-state data
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bus transceivers because there was no need to change them.

They are available in radiation hardened versions and are

fast enough to operate at 5 MHz.

D. CLOCK AND PERIPHERALS

1. Analog to Digital Converter

The A/D converter is not implemented, but it would be

straightforward to implement once the telemetry/sensor

requirements are determined.

2. Parallel Port

For the same reason, the parallel port is not

implemented.

3. HDLC

The CMOS 85C30 was substituted for the "TTL only"

8273 HDLC because the anticipated orbit was changed to a

lower one and radiation hardening was determined to be not as

critical. The 8273 was not available in a CMOS version at

the time of the original design. The TTL 8273's radiation

immunity was traded for the reduction in power consumption by

using the CMOS 85C30 serial communications controller.

4. Timer

The 82C54 programmable interval timer is still used.

Its primary function is to serve as the transmitter control

watchdog timer. For some of the testing, a functionally

equivalent subset, the 82C53, was substituted.
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5. Interrupt Controller

The 82C59 programmable interrupt controller is still

used.

6. I/O Device Chip Selection

The 54HC138 3-line to 8-line decoder/multiplexer is

still used. However, the address selectors were changed to

A7 through A10, instead of A3 through AS, for added

flexibility [Ref. 19].

7. Clock

The 82C85 static clock controller/generator and the

74C161 synchronous binary counter are still used.

8. I/O Device Timing

There has been no significant change.

9. Reset

The 82C54 still acts as the watchdog countdown timer.

If the processor is operating properly, the wat&dc!g timer

will be reset before it has a chance to time out and reset

the processor. However, in the original design, if the timer

timed out, a flip-flop would switch to an identical ROM and

the system would reinitialize. This would provide for the

correction of a hard fault in the first ROM. In the interest

of expediency, the actual flip-flop and extra ROM was not

built. It would be easy enough to include it in the flight

model, however.

10. Miscellaneous changes

A reset switch has been added to the prototype for an
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on-board reset capability and an LM7805C 5 volt voltage

regulator chip have been added to the board between the

external power and the rest of the board. Also, an MC1488

line driver chip and an MC1489A line receiver chip have been

added to the board for conversion of the RS-232C voltages of

+4 volts and -3 volts to the CMOS logic voltages of 0 and +5

volts, respectively. The RS-232C connection should be used

to download program code or test messages during the next

phase of the board's testing.

E. MEMORY SYSTEM

1. (E)PROM

The original design used two 2k x 8 bit PROMs in

tandem. The breadboard prototype uses two 128k x 8 bit

TMS27CO10 PROMs in tandem. This is certainly more than is

required for the on-board operating system, or at least the

boot-strap kernel, but it made the construction symmetrical

and gives plenty of room for experimentation.

2. Vital RAM

The wire-wrapped prototype doesn't have a vital

memory section. The actual size of protected memory required

can not be determined without a firmer idea of how much

telemetry or other vital data will be required. One could go

back to using the current 128k x 8 PROM memory space and

splitting it into a much smaller actual PROM portion with the

balance of the 128 k x 8 space being taken up with radiation
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hardened/shielded redundant SRAM. Perhaps this address space

could be occupied by special 12 bit EDAC memory as in the

UoSAT-2.

3. Bulk RAM

The original design used 32k x 8 bit SRAM chips with

extra 54HC138 multiplexers and 54HC32 OR gates for

addressing. Due to rapid advances in the state-of-the-art,

128k x 8 bit memory chips were available for the wire-wrapped

prototype, dividing the RAM memory chip count by four and

eliminating the need for five 138 decoders and eight 32 hex

OR gate chips.

F. LOGIC DEVICE FAMILY SELECTION

1. CMOS v. TTL

The original design was done with CMOS instead of TTL

because, as can be seen in Figure 6 on the next page [Ref.

20:p. 569], all the CMOS logic families use less power than

their TTL counterparts and most CMOS families are fast enough

to operate at 5 MHz (With the exception of the C family.)

In addition to reliability, low power consumption is a

primary goal in the design of satellite circuits. The

following three differences dictated the use of CMOS versus

TTL components in the design. Factors which determined the

particular family of CMOS selected are also discussed.

a. Speed

As stated, for the breadboard prototype, CMOS was
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Figure 6. CMOS v. TTL Relative Power Consumption & Speed
[Ref. 20]

used because at 5 MHz CMOS dissipates less power than TTL

although many TTL families are as fast or faster. But this

is not a high speed design. The CMOS HC family was

specifically selected for the design, instead of the C family

because "...The speed range of CMOS goes from about 2 MHz

(4000B/74C at 5V) to about 100MHz (for AC/ACT)." [Ref. 20:p.

486) Because the processor is only being driven at 5 MHz, or

less, speed considerations argue for the use of CMOS HC

family parts or faster. The 82CXX family of parts, used

because of the ease of conversion to a nearly totally

radiation hardened circuit, all operate to at least 5 MHz or

better.
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b. Power

One disadvantage of CMOS is that, as the

operating frequency increases, so does the power dissipation.

Even so, the total power dissipated at 5 MHz will still be

well below that of TTL. [Ref. 20:p. 487] Figure 7 shows this

clearly.

10- F. AS

LS

10 ALS

1 HC(TJ

74C AC(T)

0.1 -.

0001

00001
100 1k 1Ok I00k 1M 1OM lOOM

frequency Hz)

Figure 8.18. Gate power dissipation versus
frequcncy.

Figure 7. CMOS Power Dissipation v. Frequency [Ref. 20]

c. Noise immunity

CMOS has slightly better noise immunity than TTL,

for most circuit configurations. HC and AC family CMOS have

the best noise immunity of all the CMOS families. [Ref. 20:p.

569]
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2. Compatibility

Any CMOS family, operating at 5 volts, is compatible

with any other CMOS family [Ref. 20:p. 569]. It is probably

best to have all the parts of a circuit be of the same

family, which is the HC family in this case.

3. MIL-SPECS

Finally, for the parts other than 82CXX, the 54HCXX

versions should be used for the final flight version of the

circuit. The 54 prefix means that the component meets more

rigorous temperature and reliability standards than the

commercial grade series, 74. For example, a 54 series

component will be able to operate in a temperature range of

-556C to +1258C, and can withstand + or - 10% power supply

variations whereas a 74 series component can oilly operate

from OC to 700C and can only withstand + or - 5% power supply

variations [Ref. 21:pp. 244,247]. That extra temperature

margin, especially, could be important in the harsh

environment of space. (Some schematic components are

designated as 74 series.)
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III. WIRE-WRAP CONSTRUCTION AND TESTING

A. BOARD LAYOUT

The layout of the board with its components is shown in

Figure 8 on the next page. One can see that the chips are as

close together as possible, consistent with having enough

room to install filter caps and/or current limiting or pull

up resistors if or when needed. An attempt was also made to

arrange the components so as to minimize wire lengths while

taking into account the required circuit interconnections.

1. Wire Size(s)

The wire size used was AWG 30. One of the

references, however [Ref. 21:p. 119), recommended that AWG 20

be used for all IC power and ground lines. Unfortunately,

the wire wrap tool is designed for AWG 30. One solution

would be to make double runs of the AWG 30 wire to simulate

AWG 20. However, all the chips drew so little current that

voltage drop was not a problem. The wall power supply

current meter never read more than about 80 milliamps.

2. Heat Dissipation

With CMOS, heat dissipation is not really much of a

concern. On the prototype board the chips have stayed cool

to the touch, even during extended periods of testing.

3. Component Placement to Minimize Wire Length

The components were not just arbitrarily placed on
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the wire-wrapped board. The components were placed so as to

minimize wire lengths. Some of the reasons for minimizing

wire lengths are described below.

a. Stray capacitance

Stray capacitance's effect on a digital circuit

is to act as an AC load. An AC load is undesirable because

it can slow down transition times. There are at least three

things which can cause stray capacitance in a digital

circuit:

* Output circuits--typically several pF
* Input circuits--typically from 2 to 15 pF
* The wiring that connects outputs to other

inputs--typically 1 pF per inch, or more.
[Ref. 12:p. 74J

The first and second items are inherent to the

I.C. packages themselves. The only factor which the wire-

wrap circuit builder has control over is the length of the

wiring. Fortunately, the circuit is only being driven at 5

MHz, but even so, a conscious effort was made to minimize

wire length. Rise-times on any of the tested signals were

not observed to be a problem. There were, however,

significant voltage spikes on many rising and falling signal

edges.

b. Signal Degradation and Power Drop

Standard wire-wrap size wire, 30 AWG, was used.

This seemed to be at odds with the reference [Ref. 21:p. 119]

which recommended at least 20 AWG or larger for all logic IC

power and return lines. (Although this reference is
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presumably more concerned with higher speed circuits.) Wires

with a smaller cross-section are more prone to noise pickup

and power drop per unit length. However, because CMOS was

used with a low current draw and the computer could fit all

on one board in a 5" by 8" area, the 30 AWG wire seemed to

work. Double wire runs were started on some of the power and

ground lines, to increase the effective AWG, but the effort

was abandoned when initial testing seemed to indicate that

noise and voltage drop were not a problem.

c. Propagation Delay

Another reason one should try to keep the wires

as short as possible is to minimize the effects of

propagation delay. Too much propagation delay could have a

deleterious effect on the circuit. Such things as clock skew

or missed "gates" or "windows" could cause circuit

malfunction if one or more lines are particularly long

compared to others. [Ref. 22:p. 119)

4. Filter Capacitors

In accordance with the Logic Designer's Manual [Ref.

22:pp. 117-118], a 10 microfarad capacitor was placed in

parallel with a 0.01 microfarad capacitor across the incoming

5 volts from the wall power supply. A filter capacitor is

used to help reduce noise. This is recommended whenever

power supply lines run an "appreciable" distance to a board.

However, an LM7805 5 Volt voltage regulator was later added

to the board negating the requirement. Strictly speaking,
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these capacitors are only recommended for circuits operating

above 10 MHz anyway. However, with the fast switching times

of the HC chips, harmonics may be generated which may be

partially shunted by these two capacitors. It shouldn't hurt

to leave them on the board. Additionally, a 0.1 microfarad

bypass capacitor was placed across the power and ground

connection of each chip. The reference recommends a value of

1 to 10 microfarads, but the experienced Space Systems

electronics technician [Ref. 23] recommended the 0.1

microfarad capacitors be used instead.

B. CMOS POTENTIAL PROBLEMS/CONSIDERATIONS

1. Unused Inputs

One slight disadvantage of CMOS versus TTL is the

requirement to tie all unused CMOS inputs high or low, as

appropriate, even for unused gate sections in the same

package. With TTL, one can ignore unused sections of a

single chip, as well as unused input lines within a

particular circuit on a chip. This is not true with CMOS.

If one leaves any input line unconnected, the input level

could float up to the logic threshold. This could result in

both MOS output transistors conducting, resulting in

excessive current draw. [Ref. 20:p. 580)

Refer to Figure 9 [Ref. 20:p. 485] on the next page,

which is a standard CMOS AND gate. Suppose, for example,

inputs A and B were unused but not tied off. One can see
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that if both of these inputs floated high enough to bias Q3

and Q4 on, but not high enough to bias Q1 and Q2 of f, the

resulting current flow through the low resistance path from

+Vdd to ground could be excessive. This could cause latch-up

(described below) resulting in temporary or permanent damage

to the part.

2. Latch-up

"All CMOS devices are instrinsically susceptible to

latch-up, which occurs when internal parasitic silicon-

controlled rectifiers (SCRs), structures that are inherent in

CMOS integrated circuits, are triggered on." [Ref. 21:p.57]

The three small figures directly below (Figure 10) help to
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explain the inherent problem of CMOS latch-up.

The small figures show the simplified SCR structure

inherent in all CMOS devices, the effective cross-coupled

transistor operation of the junctions during latch-up, and a

simple circuit model of the two "transistors" involved.

Normally, gate 1 and gate 2 will be at the same potential.

But suppose a large positive voltage is placed across the

anode and the cathode of the SCR structure on Q1. The process

of latch-up can be described as follows: If enough leakage

current can flow from Ql's anode to its cathode, thereby

biasing Q2 on, then more current will be on gate 1, biasing

Q1 on even more. This is a runaway situation which rapidly

leads to saturation. (Ref. 24:pp. 2-112--2-113]

However, latch-up should not be a problem anymore

with the current production methods used to manufacture the

40



54HCxxxx parts [Ref. 24:p. 2-112]. The latch-up problem has

been eliminated with the Harris radiation hardened parts as

well [Ref. 25:p. 2-11). These are the most likely components

to be used in the final design.

3. Pull up Resistors

Pull ups (or pull downs) are only required if one is

driving a CMOS input with a device that has an open state

[Ref. 20:p. 579]. Pull downs can be used for CMOS but they

are not effective for TTL. For CMOS, noise immunity is the

same with either pull ups or pull downs and there is no

current draw through the resistor for either choice when the

driving device is open.

There is no need for pull ups in this design. The

only three state devices used in this design are the 513

octal latches and the 245 octal transceivers. The 573s are

permanently enabled and any device driven by the 245s has a

chip select signal. For example, in between data enable

assertions, the outputs of the 245s are in a high impedance

state. This is not a problem because none of the devices

driven by this input, e.g., the interrupt controller or the

SRAMs, will be chip selected at this time. Therefore, one

will not load the devices with unpredictable data and no pull

ups are required.

4. Fan out

Because all the components are CMOS (with the

exception of the RS-232 drivers, to be used for testing,
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which are NMOS), fan out should not be a problem with the

design, with the possible exception of the read signal. The

read signal is the worst case. Any of the outputs should be

able to easily drive at least 10 other inputs [Ref. 20:p.

487]. The read signal goes to the eight memory chips, the

timer, the interrupt controller, and the SCC, for a total fan

out of 11. This should still be acceptable.

5. Fast Rise-times and Harmonics

These are a concern with the newer CMOS logic

families [Ref. 21:p. 5] such as HC used in this design. The

fast rise-times have two major deleterious effects: Faster

rise-times generate higher harmonic frequencies, and faster

rise-times result in greater transient voltage swings.

The bandwidth of the interconnection network on a

wire-wrap board will limit the amplitude of the higher

frequency components and the inductance will result in

transient voltage spikes. This was observed on the signal

traces in the lab and already mentioned above. The data bus

signals, especially, which are interconnected with many more

wires than most other signals, clearly showed variations in

voltage levels. Also, voltage spikes of about 0.75 volts (or

more) were observed on the system clock, for example. These

problems were minimized by paying attention to the component

layout, where the shorter all the interconnecting wires were,

the better, as recommended in the reference [Ref. 21:p. 84].
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C. INCREMENTAL TESTING

1. Clock and Clock Frequency Divider

First all unused inputs to the 82C85 and the 54HC161

were checked to make sure that they were tied either high or

low. Then they were plugged into their respective chip

holders and power was applied to the board. The 82C85 was

putting out a 5MHz, zero to five volts clock on pin 2. The

161 was putting out a 0.3125 MHz clock (5MHz divided by 16)

on pin 11 . The clocks had noise of approximately 0.75 volts

peak-to-peak centered around either the zero or five volt

reference level. See Figure 11 on the next page.

2. CPU, EPROM, Latches, and Data Transceivers

After verifying that the 82C85 was putting out an

acceptable clock, the next step was to verify that the CPU

and EPROM, with their integral latches and data transceivers,

were at least nominally functioning. This was done by hand

coding the simplest program possible (five bytes) and burning

it into the EPROMs. (Appendix A has the 8086 machine

language code and the program code is in Appendix B.) The

EPROMs come from the manufacturer initially "programmed" with

128K bytes of ""s, or "FF"s. (Programming or burning the

EPROM changes appropriate bits to "0"s.) The program is

simply one statement--an unconditional jump to itself.

A 100 MHz oscilloscope was used to verify that the

EPROM chip select signal (CS*) was being asserted at the same

time as the CPU read signal (RD*) on pins 22 and 24,
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respectively, of the EPROM. Also, the address and data lines

on the 573 address latches and the 245 data transceivers were

checked to verify that all but A3 through Al stayed high and

that the lb data bits changed appropriately to reflect the

date transfer of "OOEA", "FF00", and "(FF)FF". The relevant

parts of the board for this CPU loop test are shown on the

next two pages in Figures 12 and 13.

3. Memory

Next, to do an initial verification test of SRAM, a

25 byte hand coded machine language program was burned into

the EPROMs for testing. (See Appendix C.) The program would

jump to the start of a routine. The routine would set up the

data segment register for a segment located in memory. Then

a memory location (byte) would be loaded with the arbitrary

number "05". Then there is a NOP (no operation) in the code.

Then the same memory location is read and the value there

(should be "05") is loaded into the DL register. Finally,

the routine jumps to the initial jump command and the program

repeats.

As above, an oscilloscope was used to verify that the

address and data lines were what was expected, as well as

verifying that the 2 chip select signal assertions and the

read and write signal assertions happened at the right times

with respect to each other. They did.

Figure 14 follows Figures 12 and 13. It shows the

complete memory schematic used for this and subsequent tests.
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4. The Need for a Monitor

But now there were 15 reads and 1 write per program

"cycle." It was becoming difficult to unambiguously verify

correct circuit operation. It was becoming evident that a

better way to monitor circuit operation than sticking an

oscilloscope probe on various chip pins would need to be

found. Also, the capacitance of the oscilloscope probe,

itself, has the potential to change the circuit parameters

(for HC CMOS, at least) just enough to make a circuit work

which otherwise would not, or vice versa [Ref. 20:p. 575].

In fact, this phenomenon was observed in the lab.

Often, the oscilloscope would indicate the circuit was not

operating properly and would have to be reset, as one went

about the circuit with the probe checking inputs or outputs

on various pins. However, if the probe(s) was (were) clamped

onto the circuit and a correct oscilloscope trace was

obtained, the trace would remain unchanged for two hours or

more. This was observed several times.

This also argues for a more reliable and less

invasive means of monitoring the circuit performance. So the

next goal, after completion of the complete incremental

system check out, should be to set the board up with an RS-

232C connector. Then the board could be hooked to a CRT

monitor. The Space Systems technician had a monitor program

available, written in assembly, which would allow the target

board to be hooked up to a PC host. If this monitor program
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and hardware were installed, then one could write assembly,

or higher level compiled programs, which could then be

downloaded to the target RAM. This would eliminate the

requirement for the tedious bother of machine language level

hand coding and burning oi the EPROMS.

But the monitor program requires extensive

modification for application to the board's particular

components and configuration. This has been left for the

student(s) who will follow on. There was not enough time to

sidetrack into the extensive set up of the complete

monitoring system.

5. Timer

Before testing the timer directly a short program was

written to test the M/IO* selection circuitry. This was done

by running a program which would run a continuous loop which

would select the unused pin number 10 (Y5 on the schematic)

on the 54HC138 decoder with an appropriate OUT statement.

(Register DX already having been loaded and register AL being

all don't cares in this case.) (See Appendix D.) A periodic

high pulse was observed when the 10 command OUT was executed

and pin number 10 on the 138 10 decoder was periodically

selected. Figure 15 on the next page shows the pertinent

circuitry.

Now that the M/IO* selection circuitry was shown to

be working, the next step was to write a simple test program

for direct testing of the 82C54 programmable interface timer.
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Counter 2, Mode 3, was selected with an initial count of

four. This should have resulted in a square wave on the OUT2

output with a period of four 82C54 clocks. That is what was

observed. (See Appendix E.)

6. Interrupt controller

Originally, this was to be the final portion of the

piecemeal testing of the hardware components. It was also

the most difficult. Initially, a program was written to

test both the 8259 and the SCC at the same time. The timer

was used in Mode 0 to provide a periodic interrupt signal.

(In Mode 0, the timer stays low until it times out; then it

goes high.) Part of the interrupt service routine (ISR) was

to reset the timer as well as read a previously stored

character from memory and write it to the SCC which would put

the character out at 9600 baud.

But this turned out to be too ambitious for one

program (i.e.,it would not work), so the program was split

into parts. Thus, the SCC was left out of its holder and the

program would just put out the stored character to the SCC

port address. It was hoped that the data's periodic presence

on the SCC chip holder data pins would be observable. This

would verify proper operation of everything except the SCC

itself.

The SCC could be tested separately, without using the

timer or the interrupt controller, by having the CPU poll the

SCC until its transmit buffer was empty and it would then be
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ready to accept another character from the CPU. Then, after

all the components were verified as functioning correctly,

they could all be tested as a complete system much more

effectively after implementing the suggested monitor program

with the RS-232C protocol.

This test of just the timer and the interrupt

controller could not be made to work, either. It appeared as

though the timer was not being reset, because OUT2 stayed

high and the CPU was cycling through low memory. Evidently,

the CPU was putting the return address on the stack and then

it was being immediately interrupted again, whereupon it

again put the return address on the stack, and so on. The

act of cycling through low memory indicated that the stack

segment and the stack pointer had not been initialized.

But even so, the program still should have worked.

The return address would just be located at 00000, OFFFF,

OFFFE, and OFFFD.

So the interrupt controller testing program was again

broken into smaller parts with the first part being a test of

the timer, alone, in Mode 0. (See Appendix F.) This first

incremental program was finally made to work, but only after

discovering that the 8254 data sheet's functional description

was wrong.

But first, it was thought that it might be a problem

with the timer taking too long to go low after being reset.

Since the 8259 is clocked 8 times faster than the timer and
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the CPU is clocked 16 times faster than the timer, perhaps

the 8259 reset was happening too quickly upon the heels of

the timer reset? This is why there are delay loops between

the timer reset and the 8259 reset. After the real problem

was discovered, it was realized the delay loops are almost

certainly not necessary, but it doesn't hurt to have them

there to remove all doubt.

The first increment of the 8259 testing program shows

what was later realized to be probably the main or only

reason why the original program did not work. The data sheet

on the 8254 timer is wrong. The data sheet says that once

the timer times out in Mode 0, one needs only to reload the

control word (CW) or reload the count and the timer will

resume counting. Evidently, one needs to reload both the CW

and the initial count for the counter to resume counting.

The timer stayed high if one reloaded the CW, only. When one

ran the program which resets both the CW and the initial

count, suddenly the address and data lines and the timing

relationships were all as expected. Figure 16 on the next

page shows the circuit for the testing of the 82C54 (or

82C53) countdown timer.

The second increment of the interrupt controller

testing used the timer in Mode 0 to provide the periodic

interrupt. (See Appendix G.) OUT2 is used as a signal to the

8259 on IR3 that there is an interrupt to be serviced. The

8259 alerts the CPU with the INT line. The CPU replies with
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INTA* and the 8259 gives the CPU the address of where to look

for the address of the interrupt service routine (ISR). (The

ISR address and the ISR itself must have first been loaded

into memory.) The ISR just resets the timer. One must be

careful not to enable interrupts until the timer actually

goes low again. Otherwise, the CPU will keep interrupting

itself and the ISR to reset the timer will never be executed

and OUT2 will stay high (causing interrupt upon interrupt)

and the CPU will cycle through memory doing nothing but

continually putting the return address on the stack, as

already discussed above. (See Figure 17, next page.)

Also for the reasons already discussed above, it was

very difficult to verify proper circuit operation for this

increment. The only way to verify the circuit now was to

trigger a trace on the oscilloscope with something like one

of the ISR SRAM chip selects and check to see if the cycle

time was what would be expected if the program were operating

properly. Sometimes the reset button had to be pressed

several times to get a steady trace with the correct cycle

time. It was not clear, though, if the instability was an

artifact of improper circuit operation or of a problem with

the scope triggering mechanism.

Finally a steady trace was obtained from the chip

select signal on the stack segment low byte SRAM (memory

locations 40000 to 7FFFF). On the 0.02 msec per division

scale, the cycle was 8.5 divisions long. This is 0.00017
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seconds per cycle. Since the counter is loaded with 2Fh (=

47d), it should take 47d x 1/(5 MHz/16) = 0.0001504 seconds

to complete. But of course, there is overhead time in

reinitializing the counter when it times out. The return

address has to be placed on the stack and the vector address

of the ISR has to be loaded. Then the DS and DI registers

have to be initialized. Finally, the CW and the initial

count can be written to the timer and the timer will count

down for 0.001504 seconds again. This accounts for the

difference of the 98 or so CPU clock cycles between 0.000154

seconds and 0.00017 seconds.

Figure 18 (Page 60) is a copy of a Polaroid picture

of the oscilloscope trace of chip select on the 40000-7FFFF,

low byte memory SRAM. It shows the previously mentioned edge

spikes very clearly. It also shows one cycle of a repeating

pattern. There are 12 chip selects per cycle. This is

expected. If one looks at the ISR code in the appendix which

is run from memory location 40000h to 4001Dh, one will see

there are 12 separate reads of code (a word at a time)

between op code executions, i.e.:

BA 06 1
02 BO
(BA 06 02)-->LOAD DX with 0206
BO EE 2
(BO BO) ----- >Load AL with BO
(EE) -------->Write AL to counter 2
BA 04 3
02 B8
(BA 02 04)-->LOAD DX with 0204
2F 00 4
(B8 2F 00)-->Load AX with 002F
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EF BO 5
(EF) -------- >Write to counter 2 with 002F
08 48 6
(BO 08) ----- >Load AL with 8
(4e) ------- >Decrement AX
3C 00 7
(3C 00) ----- >Compare AL with 0
EB 49 8
(EB 49) ----- >Jump back 7 to code 48
74 02 9
(74 02) ----- >Jump to next code if AL = 0
BA 00 10
01 BO
(BA 00 01)-->Load DX with 0100
20 EE 11
(BO 20) ----- >Load AL with 20
(EE) -------- >Write AL to 8259
CF FB 12
(FB) -------- >Enable interrupts
(CF) -------- >Return from ISR

These 12 separate reads correspond to the 12 chip selects

shown in the figure. (Probably not in this order.) This

gives an example of the kind of procedure(s) followed to

verify proper circuit operation.

Finally, for the third increment, a program was again

written to repetitively output a stored cbaracter directly to

the SCC. (See Appendix H.) This program was tried and it

could not be made to work. The circuit, or the oscilloscope

triggering, was just too unstable. Perhaps the program was

incorrect (not likely because only a very small new part was

added), or perhaps it was a function of some kind of

performance margin being exceeded with respect to the SRAM

memory. This problem would take too much time to solve

without more advanced monitoring tools. The implementation

of the host and target monitor system already mentioned
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Figure 18. Interrupt Controller Test--Increment 2

should settle the issue. However, the interrupt controller

was already shown to work, so a program was written to test

just the SCC by itself to complete the hardware verification.

7. Serial Communications Controller (SCC)

The last program, to test the SCC, is shown in

Appendix I. The CPU sends a character to the SCC's transmit

buffer and the SCC is (or should be) programmed to put the

character out at 9600 baud. For the first part of the

program, the SCC is initialized to transmit the character at

9600 baud. Then, after the CPU reads the character from

memory and loads it into the SCC's transmit buffer, the CPU

keeps polling the SCC until it finds the SCC transmit buffer
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empty. When the CPU finds the buffer empty, it sends the SCC

the same character from memory again and the process repeats.

One should detect a single character stream from the

SCC at 9600 baud. A CRT was procured to hook up to the RS-

232 port so the character could possibly be seen on the CRT

screen. It was not clear from the data sheets available on

the 85C30 SCC in the component catalog [Ref. 26] exactly how

to set all the bits in the various control registe- -. The

program in the appendix could not be made to work. (A Zilog

technical representative was contacted and he explained it

was very difficult to program the SCC with only the component

description in the component catalog. He said he would be

mailing the proper information. [Ref. 27])

Then the error was discovered. The final "EE" in the

write registers initialization sequence had been

inadvertently left off, so of course the baud rate generator

was not enabled. This was corrected, and then one could see

the serial data out pin going high and low at some changing

frequency. One could only get a flash of the pulse as is

periodically traversed the oscilloscope screen. This

inability to lock on the signal is most likely caused by the

character being put out at slightly different times on each

pass. The CPU is so fast in executing the Tx buffer empty

check loop that an inconsistent number of loops is probably

performed each time before the next character is fetched and

loaded in the SCC transmit buffer. Figures 19 and 20 on the
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last two pages, in conjunction with Figure 14, constitute the

entire computer system in schematic form.

All the components of the system have been shown to

work as expected. The oscilloscope has been used to verify

correct circuit operation for the complete system.
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IV. RECOMMENDATIONS FOR FURTHER WORK

A. WRITE A CHARACTER TO THE CRT

This should be the next step, to verify the capability of

correct operation of the SCC within the circuit. The program

in Appendix I should give the next person to continue with

this open ended project a good base with which to begin.

The following recommended actions are not necessarily in

temporal or priority order. However, implementation of this

CRT step will be instrumental in the next recommended step.

B. INSTALL HOST-TO-TARGET MONITOR PROGRAM

This will make the job of writing test programs much

easier. An assembler or compiler can be used and the program

code can be loaded directly to SRAM or into a file which can

then be more quickly burned into the EPROM. An assembler

could have been used for the present effort, but it was felt

that the programs at this level were simple enough that the

extra time it would have taken to implement an assembler

could be better spent in coding the short programs directly.

C. WRITE OPERATING SYSTEM BOOTSTRAP KERNEL

This assumes that the operating system and application

programs should be capable of being loaded from the ground.

It is possible, though not likely, that a decision could be
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made that all programs will reside in ROM. If so, then SRAM

will be used only for messages (and possibly telemetry data).

D. IMPLEMENT AX.25 PROTOCOL

Whether the AX.25 protocol resides in ROM or SRAM, its

programming and validation will be an extensive project.

There will probably have to be close coordination with the

person overseeing the PANSAT communications subsystem at that

time.

E. IMPLEMENT RESET

Experience in the laboratory has shown that this is one

of the most important required external commands. If the

computer system gets hit by a cosmic ray in the wrong place,

or otherwise locks up or goes into an invalid state, there

must be a way to force the system back to a known state.

Hence the need for reset.

F. IDENTIFY OTHER REQUIREMENTS AND BEGIN HARDWARE OR
SOFTWARE MODIFICATIONS

A partial list of other possible required tasks on the

road to a fully functional flight-ready communications

controller and processor are:

Identify and implement any other required
external commands
Identify and incorporate need, if any, for
backup batteries
Identify any time critical housekeeping tasks

• Identify need for A/D converter and/or parallel
port
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APPENDIX B

INITIAL CIRCUIT TEST PROGRAM

The program continuously jumps to itself at starting
address FFFFOh.

8086 LO HI
ADDR BYTE BYTE

EPROM EPROM
ADDR ADDR

FFFF4 FF IFFFA ;Jmp to FFFFO
FFFF3 FF 1FFF9
FFFF2 00 1FFF9
FFFF1 00 1FFF8
FFFFO EA 1FFF8 ; < --- (Pwr on rst imp)
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APPENDIX C

INIT IAL MEMORY TEST PROGRAM

Program continuously writes the arbitrary number "5" to
arbitrary SRAM memory location BFFFO.

8086 LO HI
ADDR BYTE BYTE

EPROM EPROM
ADDR ADDR

FFFF4 FF 1FFFA ;Jmp to FFFDC
FFFF3 FD 1FFF9
FFFF2 00 1FFF9
FFFF1 OC 1FFF8
FFFFO EA 1FFF8 ;<---(Pwr on rat jmp)
FFFEF FF 1FFF7 ;Jmp to FFFFO
FFFEE FF 1FFF7
FFFED 00 1FFF6
FFFEC 00 1FFF6
FFFEB EA 1FFF5...;
FFFEA 14 1FFF5 ;Mov B fm M[BFFFOJ to DL

; register
FFFE9 8A 1FFF4...;
FFFEB 90 lFFF4 ;NOP
FFFE7 05 1FFF3 ;Mov B immed #05 to

;M(BFFFO J
FFFE6 04 1FFF3 ;(M(BFF~x4 + 0 = BFFFOJ)
FFFES C6 1FFF2_;.
FFFE4 00 1FFF2 ;Mov W immed #0000 to SI

; register
FFFE3 00 1FFF1
FFFE2 BE lFFF1___
FFFE. DE 1FFFO ;Mov W SI reg to DS seg

; register
FFFEO 8E 1FFFO __

FFFDF BF 1FFEF ;kMov W immed #BFFF to SI
; register

FFFDE FF 1FFEF
FFFDD C6 1FFEE
FFFDC C7 1FFEE___
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APPENDIX D

MEMORY/IO TEST PROGRAM

Program to verify that the CPU asserts 10* of the X/10*
signal when writing to a variable port--in this case pin 10
(Y5) on the 10 chip select Decoder. It was written because
the program to load the 82C53 (cheap prototype replacement
for the 82C54) with a control word (Mode 3) and an initial
count (04) didn't appear to be working. To eliminate the
M/IO* select circuitry as the culprit, this program tests to
make sure 10* is asserted when OUT writes to a variable port.
The proper chip select line is asserted.

8086 LO HI
ADDR BYTE BYTE

EPROM EPROM
ADDR ADDR

FFFF4 FF 1FFFA ;Jmp to FFFE8
FFFF3 FO 1FFF9
FFFF2 00 1FFF9
FFFF1 E8 1FFF8
FFFFO EA 1FFF8 ___ --- (Pwr on rst imp)
FFFEF EE 1FFF7 ;OUT to [port DX] with

;(AL)
FFFEE FF 1FFF7 ;Load AL with #FF
FFFED Co 1FFF6
FFFEC C6 1FFF6 __ ;
FFFEB 02 1FFF5 ;Load DX with #0280 (Port

;" 511)
FFFEA 80 1FFF5 ;A11A10A9A8A7A6A5A4A3A2A1A0
FFFE9 C2 1FFF4 ; X 0 1 0 1 X X X X 0 0 X

m I

2 8 0
FFFE8 C7 1FFF4

Line Y5 is asserted, as expected, when 10* of N/10* is
asserted.
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APPENDIX E

INITIAL 82C54 TIMER TEST PROGRAM

The program loads the 82C54 (or '53) timer (counter 2)
with a control word (byte) indicating mode 3 (square wave
generator) with a period loaded as an initial count, in this
case "4". The timer's cycle, therefore, is 1/4 of the input
clock's, or 1/4 of 0.3125 MHz =78.125 kHz.

8086 LO HI
ADDR BYTE BYTE

EPROM EPROM
ADDR ADDR

FFFF4 FF 1FFFA ;Jmp to FFFDB
FFFF3 FO 1FFF9
FFFF2 00 1FFF9
FFFF1 DB 1FFF8
FFFFO EA 1FFF8 < '--- (Pwr on rst jmp)
FFFEF FF 1FFF7 ;Jmp to FFFEB-->

;Continuous loop--
FFFEE FO 1FFF7 ;timer set
FFFED 00 1FFF6 ;(Jmp to FFFDB-keep

;setting the timer,
FFFEC EB (DB) 1FFF6 ;over and over)
FFFEB EA 1FFF5__
FFFEA EE 1FFF5 ;OUT to [DX port) with

;(AL=04)--port addr
;is Y4 (Timer)
;Load cntr 2 with init
count

FFFE9 02 1FFF4 ;Load DX with #027C*
FFFE8 7C 1FFF4 ;A11A1OA9A8A7A6A5A4A3A2A1AO
FFFE7 C2 1FFF3 ;X 0O1 00 X XX X10X

2 7 C
;Port Y4, load into cntr
;2 mnit value (in AL)

FFFE6 C7 1FFF3___
FFFE5 04 1FFF2 ;Load AL with #04*
FFFE4 CO 1FFF2 ;(Initial counter value)
FFFE3 C6 1FFF1__
FFFE2 EE 1FFF1 ;OUT to [DX port) with

;(AL = 96)--Control word
;(AL) selects cntr 2,

-;Mode 3
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FFFE1 96 1FFFO ;Load AL with #96*
FFFEO CO 1FFFO ,Cntr 2, LSB, Mode3,

;Binary cnt
FFFDF C6 1FFEF_.;
FFFDE 02 1FFEF ;Load DX with #027E*
FFFDD 7E iFFEE ; Al1A1OA9ABA7A6A5A4A3A2A1AO
FFFDC C2 iFFEE ,0 0O1 00 XX XX 11 X

2 7 E
;Port Y4 (Timer), write
,cntrl "word" (to come

FFFDB C7 1FFED ;from AL)

26 bytes

*The 2 byte opcode loads of DX (C7 C2) and AL (C6 CO) can be

replaced by the 1 byte opcodes BA and BO, respectively.
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APPENDIX F

INTRPT CNTRLR TEST PROGRAM: INCREMENT 1

This program only tests the 8254 timer in mode 0 as a
prelude to the full-blown interrupt controller test program
(iteration 3).

First, it was verified that the timer could be programmed
to time out and go high while the CPU was doing a loop for a
certain number of iterations. The address and data lines and
the timing relationships were as expected.

The data sheet on the 8254 timer is wrong. It said that
once the timer times out in Mode 0, one needs only to reload
the CW or reload the count and the timer will resume
counting. Evidently, one needs to reload both the CW and the
initial count, as in this program, for the counter to resume
counting.

The code is read from bottom to top.

8086 LO HI
ADDR BYTE BYTE

EPROM EPROM
ADDR ADDR

FFFF4 FF 1FFFA ;Jmp to FFFCA
FFFF3 FO 1FFF9
FFFF2 00 1FFF9
FFFF1 CA 1FFF8
FFFFO EA 1FFF8 __ <---(Pwr on rst jmp)

FFFEF FF 1FFF7 ;Jmp to FFFD6
FFFEE FO 1FFF7 ;(Reset timer after AX
FFFED 00 1FFF6 ;counts down from 127d)
FFFEC D6 1FFF6
FFFEB EA 1FFF5_ ;
FFFEA EE 1FFF5 ;Write init cnt (02) to
FFFE9 02 1FFF4 ;timer; Load AL with init
FFFE8 BO 1FFF4 ;count = 02
FFFE7 02 iFFF3 ;Move #0204 to DX reg
FFFE6 04 1FFF3 ;Cntr 2 is to be loaded
FFFE5 BA 1FFF2 ;with initial count
FFFE4 EE 1FFF2 _ Write cntrl W (90) to

;timer
FFFE3 90 1FFF1 ;Load AL with CW = 90
FFFE2 BO 1FFF1 __ ;(Mode 0, LSB, cntr 2)
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FFFE1 02 1FFFO ;Move #0206 to DX
; register

FFFEO 06 1FFFO ;The CW in AL is to be
FFFDF BA 1FFEF ;written to the cntr 2 CW

-;register
FFFDE F9 1FFEF ;Else, Short Jump to

;FFFD8 to decrement
FFFDD EB 1FFEE _;AX again (F9 = -7d)
FFFDC 02 1FFEE ;If AX =0, jump 2
FFFDB 74 2.FFED_ ;addresses, to FFFDF
FFFDA 00 1FFED ;CMP AX with 0
FFFD9 3C FE _
FFFD8 48 iFFEC ;Decrement AX
FFFD7 7F IFFEB ;Load AX with 127d
FFFD6 BO 1FFEB___

;OUT initial count to
FFFD5 EE lFFEA._ ;counter 2
FFFD4 02 1FFEA ;Load initial count of 2
FFFD3 BO 1FFE9 ;into AL
FFFD2 02 1FFE9 ;Load DX with #0204 for
FFFDl 04 lFFE8 ;timer initial count
FFFDO BA lFFE8 ;(from AL to be loaded)
FFFCF EE 1FFE7?_ ;OUT the CW to the timer
FFFCE 90 1FFE7 ;Load the CW for Mode 0,
FFFCD BO 1FFE6 ;LSB, counter 2 into AL
FFFCC 02 lFFE6 ;Ld DX with #0206 for
FFFCB 06 1FFE5 ;selecting timter, write
FFFCA BA 1FFE5 ;CW (with CW in AL)

43 bytes
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APPENDIX G

INTRPT CNTRLR TEST PROGRAM: INCREMENT 2

In step one, it was verified that the timer could be
programmed to run in Mode 0. When OUT2 on the 8254 went
high it stayed high until the timer was reset. The timer was
reset only after the CPU looped for a large number of
iterations. When the CPU was done, it reset the timer and
the process was continually repeated.

In this iteration, when the timer times out, OUT2 is used
as a signal to the 8259 on IR3 that there is an interrupt to
be serviced. The 8259 alerts the CPU with the INT line. The
CPU replies with INTA* and the 8259 gives the CPU the address
of where to look for the address of the interrupt service
routine (ISR). (The ISR address and the ISR itself have to
have been first loaded into memory.) The ISR just resets the
timer.

The code is read from bottom to top.

8086 LO HI
ADDR BYTE BYTE

EPROM EPROM
ADDR ADDR

FFFF4 FF 1FFFA ;Jmp to FFF61
FFFF3 FO 1FFF9
FFFF2 00 1FFF9
FFFF1 61 1FFF8
FFFFO EA 1FFF8 -, <---(Pwr on rst imp)

FFFEF FF 1FFF7 ;Jmp to FFFEB
FFFEE F0 1FFF7 ;The CPU stays here until
FFFED 00 1FFF6 ;it's interrupted
FFFEC EB 1FFF6
FFFEB EA 1FFF5_ ;

FFFEA FB 1FFF5 __ ;Enable interrupts

Load the interrupt service routine. The ISR resets the timer
and clears the highest priority ISR bit in the 8259 (there is
only one in this case). Because the 8259 runs at 2.5 MHz and
the timer only runs at .3125 MHz, there is a little delay
loop to make sure the timer has gone low after being reset
before the ISR bit is reset and interrupts are again enabled.
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The delay loop is almost certainly not required, but it
doesn't hurt to have it.

FFFE9 CF 1FFF4 ;Code CF-->return from
FFFE8 FB 1FFF4 ;ISR; Code FB-->Enable
FFFE7 05 1FFF3 ;interrupts
FFFE6 C7 1FFF3 __ ;
FFFE5 47 1FFF2-1;
FFFE4 47 1FFF2
FFFE3 EE 1FFF1 ;Code EE-->OUT to reset

;ISR bit
FFFE2 20 1FFF1 ;Code BO 20-->Load AL

;with 20 ("20" for OCW2
FFFE1 05 1FFFO ;will reset highest
FFFEO C7 1FFFO . ;priority ISR bit)
FFFDF 47 IFFEF_ ;
FFFDE 47 1FFEF
FFFDD BO 1FFEE ;Code BA 00 01-->Load DX
FFFDC 01 IFFEE ;with addr to write OCW2
FFFDB 05 IFFED ;to 8259 to reset ISR bit
FFFDA C7 1FFED ;for IR3; (OUT2 has had

;plenty of time to go low
;because AX counted down

FFFD9 47 1FFEC .;from 8)
FFFD8 47 1FFEC
FFFD7 00 IFFEB
FFFD6 BA 1FFEB
FFFD5 05 1FFEA
FFFD4 C7 1FFEA
FFFD3 47 IFFEg_0
FFFD2 47 1FFE9
FFFD1 F9 1FFE8 ;Code EB 49-->Jump back 7
FFFDO EB 1FFE8 ;counts to opcode 48 to
FFFCF 05 1FFE7 ;decrement AX again
FFFCE C7 1FFE7 __ ;
FFFCD 47 1FFE6-;
FFFCC 47 1FFE6 __ ;
FFFCB 02 1FFE5 ;Code 74 02-->If AX was 0
FFFCA 74 1FFE5 ;then jump forward 2
FFFC9 05 1FFE4 ;counts to BA opcode;
FFFC8 C7 1FFE4 . ;else, go to next opcode:
FFFC7 47 1FFE3 ;EB
FFFC6 47 1FFE3 __ ;
FFFC5 00 1FFE2 ;Code 3C 00-->CMP AX with
FFFC4 3C 1FFE2 ;0
FFFC3 05 1FFE1
FFFC2 C7 IFFE1 __ ;
FFFC1 47 1FFEO__
FFFCO 47 1FFEO
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FFFBF 48 1FFDF ;Code BO 08--Load AL with
FFFBE 08 1FFDF ;8
FFFBD 05 1FFDE ;Code 48-->Decrement AX
FFFBC C7 1FFDE
FFFBB 47 1FFDD_____;
FFFBA 47 1FFDD __ ;
FFFB9 BO 1FFDC ;Code EF-->OUT with
FFFB8 EF 1FFDC ;initial count to
FFFB7 05 1FFDB ;cntr 2
FFFB6 C7 1FFDB __ ,
FFFB5 47 IFFDA
FFFB4 47 1FFDA __ ;
FFFB3 00 1FFD9 ;Code B8 2F 00-->load AX
FFFB2 2F 1FFD9 ;with 00 2F as initial
FFFB1 05 1FFD8 ;count
FFFBO C7 1FFD8
FFFAF 47 1FFDT-;
FFFAE 47 1FFD7
FFFAD B8 1FFD6 ;Code BA 04 02-->Load DX
FFFAC 02 1FFD6 ;with addr to load the
FFFAB 05 1FFD5 ;cntr 2 with the initial
FFFAA C7 1FFD5 ;word size count (from

- ;AX)
FFFA9 47 IFFD4.
FFFA8 47 1FFD4
FFFA7 04 1FFD3
FFFA6 BA 1FFD3
FFFA5 05 1FFD2
FFFA4 C7 1FFD2
FFFA3 47 1FFDI ;DI = 5
FFFA2 47 1FFD1 __ ;
FFFA1 EE 1FFDO ;Code BO BO-->load AL
FFFA-) BO 1FFDC ;with cntr 2 CW, Mode 0,
FFFiF 05 1FFCF ;word size initial count
FFF9E C7 1FFCF ;Code EE-->WR the CW BO

;to AL)
FFF9D 47 1FFCE ;DI = 4
FFF9C 47 1FFCE
FFF9B BO 1FFCD ;Move code "02 BO" to

;M[DS + DI]
FFF9A 02 1FFCD = M[40002]
FFF99 05 1FFCC ;Code "BA 06 02"-->Load
FFF98 C7 1FFCC ;DX with addr where to ld

- ;AL cntr 2 CW
FFF97 47 1FFCB _ ;Increment DI-->DI = 2
FFF96 47 1FFCB ;Increment DI-->DI = 1
FFF95 06 1FFCA ;Move code "BA 06" to [DS
FFF94 BA 1FFCA ;+ DI = M[4000(0)]
FFF93 05 1FFC9
FFF92 C7 1FFC9 __ ;
FFF91 00 1FFC8 ;Move 00 00 TO DI reg
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FFF90 00 1FFC8
FFF8F BF 1FFC7__ ;
FFF8E D8 1FFC7 ;Move (AX) to DS reg
FFF8D 8E 1FFC6_ ;
FFF8C 40 1FFC6 ;Load AX with 40 00
FFF8B 00 1FFC5
FFF8A B8 1FFC5 ;

Load the address of the ISR in the location for external
interrupt number 3 (0008C to 0008F) and initialize the stack
segment and the stack pointer.

FFF89 FF 1FFC4 ;Move FF FF to SP
FFF88 FF 1FFC4
FFF87 BC 1FFC3_ ;
FFF86 DO 1FFC3 ;Move (AX) to SS reg
FFF85 8E 1FFC2_ ;
FFF84 50 1FFC2 ;Load AX with 50 00
FFF83 00 1FFC1
FFF82 B8 1FFC1 __ ;
FFF81 40 1FFCO ;Move 40 00 to EA =
FFF80 00 1FFCO ;[DS + DI] = [0 + 8E]
FFF7F 05 1FFBF ;(CS = 4000(0), IP =
FFF7E C7 1FFBF __ ;0000; ISR addr loaded)
FFF7D 00 1FFBE ;Move 00 8E to DI reg
FFF7C 8E 1FFBE
FFF7B BF 1FFBD__ ;
FFF7A 00 1FFBD ;Move 00 00 to EA =
FFF79 00 1FFBC ;[DS + DI] = [0 + 8C]
FFF78 05 1FFBC ;(IP for ISR = 0000)
FFF77 C7 1FFBB._ ;
FFF76 00 1FFBB ;Move 00 8C to DI reg
FFF75 8C 1FFBA ;(ISR addr will be at
FFF74 BF 1FFBA ;0008C through 0008F)
FFF73 D8 1FFB9 ;Move AX to DS register
FFF72 8E 1FFB9
FFF71 00 1FFB8 ;Load AX with 00 00
FFF70 00 1FFB8
FFF6F B8 1FFB7T .;

Initialize the 82C54 timer for counter 2, Mode 0, with an
initial count of FF FF. This should be plenty of time for
the ISR add-ess and the ISR itself above to be completely
loaded before the timer times out.

FFF6E EF 1FFB7 ;LSB, then MSB to cntr 2
FFF6D FF 1FFB6 ;Load initial count, FF
FFF6C FF 1FFB6 ;FF, into AX
FFF6B B8 1FFB__;
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FFF6A 02 1FFB5 ;Load DX with address for
FFF69 04 1FFB4 ;cntr 2 initial count (to
FFF68 BA 1FFB4 ___;come from AX)
FFF67 EE 1FFB3 _;CW to cntr 2
FFF66 BO 1FFB3 ;Load CW in AL = BO
FFF65 BO 1FFB2 ;(Mode 0,16 bit cnt,

-;cntr 2)
FFF63 02 1FFB2 ;Load DX with "addrebs"
FFF62 06 1FFB1 ;for counter 2 CW (to
FFF61 BA 1FFBl ___;come from AL)

148 bytes
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APPENDIX H

INTRPT CNTRLR TEST PROGRAM: INCREMENT 3

(Correct operation of this program could not be
validated.)

In this iteration, as in the second iteration, when the
timer times out, OUT2 is used as a signal to the 8259 on IR3
that there is an interrupt to be serviced. The 8259 alerts
the CPU with the INT line. The CPU replies with INTA* and
the 8259 gives the CPU the address of where to look for the
address of the interrupt service routine (ISR). (The ISR
address and the ISR itself have to have been first loaded
into memory.)

The difference of this iteration is that the ISR first
puts out the byte, previously stored at memory location
40000, to the serial communications controller (SCC). Next,
the ISR resets the timer, loops for a short while to give the
timer more than enough time to go low, and then resets the
8259. When the timer times out, the ISR is run again. One
sees the letter "All on the SCC data pins every 79, 8254 clock
cycles. Each 8254 clock cycle takes 16 system or CPU clock
cycles (5MHz) to complete. Thus, one sees the "A"
approximately every 79 x 16 x 200 nanoseconds = 252.8
microseconds. Actually, it takes a little bit longer than
this due to the overhead time required to reset the timer.

The code is read from bottom to top.

8086 LO HI
ADDR BYTE BYTE

EPROM EPROM
ADDR ADDR

FFFF4 FF 1FFFA ;Jmp to FFF30
FFFF3 FO 1FFF9
FFFF2 00 1FFF9
FFFF1 30 1FFF8
FFFFO EA 1FFF8 __ <--- (Pwr on rst imp)

FFFEF FF 1FFF7 ;Jmp to FFFEB
FFFEE FO 1FFF7 ;The CPU stays here until
FFFED 00 1FFF6 ;it's interrupted
FFFEC EB 1FFF6
FFFEB EA 1FFF5_ ;

FFFEA FB 1FFF5 ;Enable interrupts
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Load the interrupt service routine. The ISR first puts out
the byte f rom memory location 40000 to the SCC. Then it
resets the timer and clears the highest priority ISR bit in
the 8259 (there is only one in this case). Because the 8259
runs at 2.5 MHz and the timer only runs at .3125 M4Hz, there
is a little delay loop to make sure the timer has gone low
after being reset before the ISR bit is reset and interrupts
are again enabled. The delay loop is almost certainly not
required, but it doesn't hurt to have it.

FFFE9 CF 1FFF4 ;Code CF-->return from
;ISR

FFFE8 FB 1FFF4 ;Code FB-->Enable
FFFE7 05 1FFF3 ;interrupts
FFFE6 C7 1FFF3
FFFE5 47 1FFF2____
FFFE4 47 1FFF2
FFFE3 EE 1FFF1 ;Code EE-->OUT to reset

;ISR bit
FFFE2 20 1FFF1 ;Code BO 20-->Load AL
FFFE1 05 1FFFO ;with 20 ("20" for OCW2
FFFEO C7 1FFFO ;will reset highest

, priority ISE bit)
FFFDF 47 FE _
FFFDE 47 1FFEF___
FFFDD BO 1FF'EE ;Code BA 00 O1-->Load DX
FFFDC 01 1FFEE ;with addr to write OCW2
FFFDB 05 1FFED ;to 8259 to reset ISR bit
FFFDA C7 1FFED ;for 1R3; (OUT2 has had

;plenty of time to go low
;because AX counted down
~from 8)

FFFD9 47 1FFEC__
FFFD8 47 1FFEC
FFFD7 00 iFFEB
FFFD6 BA 1FFEB
FFFD5 05 1FFEA
FFFD4 C7 1FFEA -

FFFD3 47 1F9 ,
FFFD2 47 1FFE9
FFFD1 F9 1FFE8 ;Code EB 49-->Jump back 7
FFFDO EB 1FFE8 ;counts to opcode 48 to
FFFCF 05 1FFE7 ;decrement AX again
FFFC-E C7 1FFE7
FFFCD 47 1FFE6-.;
FFFCC 47 1FFE6
FFFCB 02 1FFE5 ;Code 74 02-->If AX was 0
FFFCA 74 1FFE5 ;then jump forward 2
FFFC9 05 1FFE4 ;counts to BA opcode;
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FFFC7 47 1FFE3__
FFFC6 47 1FFE3___
FFFC5 00 1FFE2 ;Code 3C 00-->CMP AX with
FFFC4 3C 1FFE2 ;
FFFC3 05 1FFEl
FFFC2 C7 1FFE1 __

FFFCI 47 IFFEO.,-
FFFCO 47 lFFEO___
FFFBF 48 1FFDF ;Code BO 08--Load AX with
FFFBE 08 1FFDF ;
FFFBD 05 1FFDE ;Code 48-->Decrement AX
FFFBC C7 1FFDE___
FFFBB 47 FD _
FFFBA 47 1FFDD
FFFB9 BO 1FFDC ;Code EF-->OUT with
FFFB8 EF 1FFDC ;initial count to
FFFB7 05 1FFDB ;cntr 2
FFFB6 C7 1FFDB___
FFFB5 47 1FFDA._;
FFFB4 47 1FFDA
FFFB3 00 1FFD9 ;Code B8 2F 00-->load AX
FFFB2 4F 1FFD9 ;with 00 4F as initial
FFFB1 05 1FFD8 ;count
FFFBO C7 1FFD8___
FFFAF 47 lFFD7....
FFFAE 47 1FFD7___
FFFAD B8 1FFD6 ;Code BA 04 02-->Load DX
FFFAC 02 1FFD6 ;with addr to-load the
FFFAB 05 lFFD5 ;cntr 2 with the initial
FFFAA C7 lFFD5 ;word size count (from

- ;AX)
FFFA9 47 1FFD4___
FFFA8 47 lFFD4___
FFFA7 04 1FFD3
FFFA6 BA 1FFD3
FFFA5 05 lFFD2
FFFA4 C7 1FFD2
FFFA3 47 FD -
FFFA2 47 1FFD1___
FFFA1 EE 1FFDO ;Code BO BO-->load AL
FFFAO BO 1FFDO ;with cntr 2 CW, Mode 0,
FFF9F 05 1FFCF ;word size initial count
FFF9E C7 1FFCF ;Code EE-->WR the CW BO

;to AL)
FFF9D 47 1FFCE___
FFF9C 47 1FFCE___
FFF9B BO 1FFCD ;Code BA 06 02-->Load DX
FFF9A 02 1FFCD ;with addr for cntr 2 CW
FFF99 05 1FFC'-C ;(from AL)
FFF98 C7 1FFCC___
FFF97 47 lFFCB____
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FFF96 47 1FFCB __ ;
FFF95 06 1FFCA ;
FFF94 BA 1FFCA
FFF93 05 1FFC9
FFF92 C7 1FFC9
FFF91 47 1FFC8_ ;
FFF90 47 1FFC8 __ ;
FFF8F EE 1FFC7 ;Code BA 02 00-->
FFF8E 00 1FFC7 ;Load DX with 0200--
FFF8D 05 1FFC6 ;"addr" of the SCC port
FFF8C C7 1FFC6 ;Code EE-->(AL) to SCC
FFF8B 47 1FFC5 ;
FFF8A 47 1FFC5
FFF89 02 1FFC4
FFF88 BA 1FFC4
FFF87 05 1FFC3
FFF86 C7 1FFC3
FFF85 47 1FFC2 ;
FFF84 47 1FFC2
FFF83 05 1FFC1 ;Code 8A 05-->
FFF82 8A 1FFC1 ;Move "A" at M[40000J
FFF81 05 1FFCO ;to AL register
FFF80 C7 1FFCO __ ;
FFF7F 47 1FFBF ;
FFF7E 47 IFFBF
FFF7D 00 IFFBE ;Code BF 00 00-->
FFF7C 00 1FFBE ;Load DI with 0000
?FF7B 05 1FFBD
FFF7A C7 IFFBD __ ;
FFF79 47 1FFBC_ ;
FFF78 47 1FFBC __ ;
FFF77 BF 1FFBB ;Move D8 BF to 40005
FFF76 D8 1FFBB ;Code 8E D8-->Move (AX)
FFF75 05 1FFBA ;to DS register
FFF74 C7 1FFBA __ ;
FFF73 47 1FFB9 ;Inc DI
FFF72 47 1FFB9 __ ;Inc DI
FFF71 8E 1FFB8 ;Move code "40 8E" to
FFF70 40 1FFB8 ;M[40003];
FFF6F 05 1FFB7 ;Code B8 00 40-->Load
FFF6E C7 1FFB7 __ ;AX with 4000
FFF6D 47 1FFB6 ;Inc DI-->DI = 3
FFF6C 47 1FFB6 __ ;Inc DI-->DI = 2
FFF6B 00 1FFB5 ;Move code "B8 00" to
FFF6A B8 1FFB5 ;M[4000x4 + 11 = 40001
FFF69 05 1FFB4
FFF68 C7 1FFB4
FFF67 00 1FFB3 ;Move 00 01 TO DI reg
FFF66 01 1FFB3
FFF65 BF 1FFB2 ;
FFF64 D8 1FFBF ;Move (AX) to DS reg
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FFF63 8E 1FFB1 .;
FFF62 40 1FFB1 ;Load AX with 40 00
FFF61 00 1FFBO
FFF60 B8 1FFBO -

Load the address of the ISR in the location for external
interrupt number 3 (0008C to 0008F) and initialize the stack
segment and the stack pointer.

FFF5F FF 1FFAF ;Move FF FF to SP
FFF5E FF 1FFAF
FFF5D BC 1FFAE__;
FFF5C DO 1FFAE ;Move (AX) to SS reg
FFF5B 8E IFFAD_____;
FFF5A 50 1FFAD ;Load AX with 50 00
FFF59 00 IFFAC
FFF58 B8 1FFAC __ ;
FFF57 40 IFFAB ;Move 40 00 to EA =
FFF56 00 1FFAB ;[DSx4 + DI] = [0 + 8E]
FFF55 05 1FFAA ;(CS = 4000(0), IP =
FFF54 C7 1FFAA ;0001; ISR addr loaded)
FFF53 00 1FFA9 ;Move 00 8E to DI reg
FFF52 8E 1FFA9
FFF51 BF 1FFA8._ ;
FFF50 00 1FFA8 ;Move 01 00 to EA =
FFF4F 01 IFFA7 ;CDSx4 + DI] = [Q - :e]
FFF4E 05 1FFA7 ;(IP for ISR = 0001)
FFF4D C7 1FFA6_ ;
FFF4C 00 1FFA6 ;Move 00 8C to DI reg
FFF4B 8C 1FFA5 ;(ISR addr will be at
FFF4A BF 1FFA5 ;0008C through 0008F)
FFF49 D8 1FFA4 ;Move AX to DS register
FFF48 8E 1FFA4 ;
FFF47 00 1FFA3 ;Load AX with 00 00
FFF46 00 1FFA3
FFF45 B8 1FFA2-;

Initialize the 82C54 timer for counter 2, Mode 0, with an
initial count of FF FF. This should be plenty of time for
the ISR address and the ISR itself above to be completely
loaded before the timer times out the first time.

FFF44 EF 1FFA2 . ;LSB, then MSB to cntr 2
FFF43 FF 1FFA1 ;Load initial count, FF
FFF42 FF 1FFA1 ;FF, into AX
FFF41 B8 1FFAO_ ;
FFF40 02 1FFAO ;Load DX with address for
FFF3F 04 1FF9F ;cntr 2 initial count (to

85



FFF3E BA 1FF9F ____;come from AX)
FFF3D EE 1FF9E. ;CW to cntr 2
FFF3C B 1FF9E ;Load CW in AL = BO
FFF3B BO 1FF9D ;(Mode 0,16 bit cnt,

__;cntr 2)
FFF3A 02 1FF9D ;Load DX with "address"
FFF39 06 1FF9C ;for counter 2 CW (to
FFF38 BA 1FF9C ;come from AL)

Load the character "A" into memory location [40000].

FFF37 C1 1FF9B ;Write "A" to [DSx4 + DI
FFF36 05 1FF9B ;= 40000] ("A" =
FFF35 C6 1FF9A _;11000001)
FFF34 D8 1FF9A ;Move AX to DS
FFF33 8E 1FF99 ;
FFF32 40 1FF99 ;Move #4000 to AX
FFF31 00 1FF98
FFF30 B8 1FF98

197 bytes

86



APPENDIX I

SERIAL COMMUNICATIONS CONTROLLER TEST PGM

First, memory is loaded with the arbitrary character "A."
Then the SCC is initialized. The CPU then goes into a loop
where it puts out the "A" from memory to the SCC Tx buffer
and checks to see if the Tx buffer is empty. It keeps
polling the Tx buffer until it is empty. Then the CPU
fetches the "A" from memory again and the process repeats.
For this test, the timer and the 8259 are not used.

The code is read from bottom to top.

8086 LO HI
ADDR BYTE BYTE

EPROM EPROM
ADDR ADDR

FFFF4 FF 1FFFA ;Jmp to FFFA5
FFFF3 FO 1FFF9 ;to begin program
FFFF2 00 1FFF9
FFFF1 A5 1FFF8
FFFFO EA 1FFF8 __; <---(Pwr on-rst imp)

FFFEF FF 1FFF7 ;Jmp to read character
FFFEE FO 1FFF7 ;from memory again
FFFED 00 1FFF6 ;(Tx buffer empty)
FFFEC CD 1FFF6
FFFEB EA 1FFF5 ;
FFFEA FF 1FFF5 ;Jump to read RRO again;
FFFE9 FO 1FFF4 ;Tx buffer not yet empty
FFFE8 00 (CD) 1FFF4 ;(CD-->Put out the char
FFFE7 DB 1FFF3 ;from memory, anyway)
FFFE6 EA 1FFF3 __ ;
FFFE5 05 1FFF2 ;If Tx buffer empty, skip
FFFE4 74 1FFF2 __ ;next JMP statement
FFFE3 44 1FFF1 ;Compare AL with #44
FFFE2 3C 1FFF1 __ ;AL = 44 if Tx empty
FFFE1 EC 1FFFO ;Read byte in RRO-->(AL)
FFFEO EE 1FFFO ;Tell WRO what reg to

- ;read
FFFDF 00 1FFEF ;Load AL with 00->The reg
FFFDE BO 1FFEF __ ;to be read is RRO
FFFDD 00 1FFEE ;Load DX for SCC CS* and
FFFDC 00 1FFEE ;to read (or write) a CW
FFFDB BA 1FFED_____
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The character at [40000) is put out to the SCC to be
automatically transmitted at 9600 baud.

FFFDA EE 1FFED ;OUT the data ("A") to
- ;the SCC

FFFD9 00 1FFEC ;Load #0002 into DX for
FFFD8 02 1FFEC ;SCC CS* and indicating
FFFD7 BA 1FFEB ;data to come instead of

-;CW
FFFD6 05 1FFEB ;Move the "A" at [40000]
FFFD5 8A 1FFEA_ ;to AL
FFFD4 00 1FFEA ;Load DI with 00 00
FFFD3 00 1FFE9
FFFD2 BF 1FFE9
FFFD1 D8 1FFE8 ;Move AX to DS reg
FFFDO 8E 1FFE8 ;
FFFCF 00 1FFE7 ;Move #4000 to AX
FFFCE 40 1FFE7
FFFCD B8 1FFE6_ ;

The following code intitializes the SCC registers for the
proper baud rate and protocols.

FFFCC EE 1FFE6
FFFCB 03 1FFE5 ;Enable baud rate gen
FFFCA BO 1FFE5 _ ;
FFFC9 EE 1FFE4 ;
FFFC8 OE 1FFE4 ;WR14
FFFC7 BO 1FFE3
FFFC6 EE 1FFE3
FFFC5 06 1FFE2 ;TC = 06
FFFC4 BO 1FFE2
FFFC3 EE 1FFE1_ ;
FFFC2 OC 1FFE1 ;WR12
FFFC1 BO 1FFEO_ ;
FFFCO EE 1FFEO
FFFBF 16 1FFDF ;TRxC will have baud
FFFBE BO 1FFDF ;rate out
FFFBD EE 1FFDE_ ;
FFFBC OB 1FFDE ;WR11
FFFBB DO 1FFDD ;
FFFBA EE 1FFDD __ ;Write WR5 with (AL)
FFFB9 68 1FFDC ;Load AL with 68
FFFB8 BO 1FFDC __ ;8 bits/char

;Tell WRO that WR5 is
FFFB7 EE 1FFDB_;next
FFFB6 05 1FFDB ;Load AL with 05
FFFB5 BO 1FFDA_____;
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FFFB4 EE 1FFDA __ ;Write WR4 with 4C (fm
FFFB3 4C 1FFD9 ;AL); Load AL with 4C-
FFFB2 BO 1FFD9 __ ;x16 Mode,2 stop bits
FFFB1 EE 1FFD8 ;Load WRO with 04 (fm AL)
FFFBO 04 1FFD8 ;Load AL with 04--will
FFFAF BO IFFD7_ ;write Write Reg 4 (WR4)
FFFAE 00 1FFD7 ;Load DX for CS* of the
FFFAD 00 1FFD6 ;SCC to write a control
FFFAC BA 1FFD6 ;word (CW) to Write Reg 0

;to tell the SCC which
;register CW will be

-_;written next

Load the character "A" into memory location [40000].

FFFAB C1 1FFD5 ;Write "A" to [DS + DI
FFFAA 05 1FFD5 ;40000]
FFFA9 C6 1FFD4__
FFFA8 D8 1FFD4 ;Move AX to DS
FFFA7 8E 1FFD3_ ;
FFFA6 40 1FFD3 ;Move #4000 to AX
FFFA5 00 1FFD2
FFFA4 B8 1FFD2 __ ;

81 bytes
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APPENDIX J

LIST OF COMPONENTS

2 AM27CO1?---128K x 8 bit EPROM
8 MSM8128S-12--128K x 8 bit SRAM
3 CD54HC573F3A--Address latch (Octal D type latch)
2 CD54HC245F3--Data transceiver (Octal tni-state)
3 CD54138F3A--3 to 8 Decoder
1 MC74HC32N--quad 2 input OR gate
1 Z85C30--SCC serial communications controller
1 MDB2C59A-5/B--Programmable interrupt controller
1 MD80C86-2/B--16 bit microprocessor
1 MD82C85/B--Static clock controller/generator
1 Xtal CTS MP150 15.O000-15 MHz crystal (Have also used

4.0 MHz xtal)
1 MC780SC-- 5 volt voltage regulator
1 MH54HC161J/883C--Synchronous binary counter with

asynchronous clear
1 M82C53-5--Programmable interval timer
1 MC1488--quad line driver (+, - 9v)
1 MC1489A--quad line receiver(+5v)

1 82C55--programmable Peripheral interface

1 DB 25 P RS-232 connector
Pin 2-Trans data Tx output
Pin 3-Rcv data Rx input
Pin 7-Sig Gnd Gnd common

1 SPDT Pushbutton switch
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