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Preface

The purpose of this study is to investigate the complexities of generating optimally miniraum
schedules for war gaming and VHDL simulations using a parallel computer upon which the simula-
tions are executed. These types of simulations generally exhibit arbitrary characteristics including
feedback resulting in their classification as N P-hard problems. Additionally, simulation tasks can
execute repeatedly. Therefore, exponential time requirements exist in attempting to find an optimal
solution where the assignment of simulation tasks to prosessors results in minimal execution time.
The general characteristics of simulation systems are analyzed to reduce the cxtreme combinatoric
’explosion’ of the search process. Several methods arc presented for minimizing the search space
and time requirements using an i{PSC/2 hypercube. The implementation is developed using the

Ada programming language providing rapid prototyping of the design and ease of maintenance.

In analyzing, the complexities of the scheduling problem, the two types of simulation applica-
tions considered, and the run-time environment of the iPSC/2 hypercube, several people provided
immeasurable assistance. I'm deeply indebted to my thesis advisor, Dr Gary B. Lamont for his
continued patience and guidance. His encouragement and advise throughout my researcu was in-
struruental in obtaining viable results. I also wish to taank my thesis committee members, Maj
Christensen and Dr Hartrum for their insight into simulation applications and characteristics which
guided me torwards meaningful and useful solutions to present simulation efforts. Also, without
the help of Mr Rick Norris, the system administrator for the parallel processing cluster, validation
of my parallel design would not have been possible. Finally, I wish to thank iy loving family for
their love and understanding during those long, sleepiess nights and weekends v hen I was diligently

working,.

Andrew E. McNear
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Abstract

The objective of this investigation is to design, analyze, and validate the generation of optimal
schedules for iterative parallel task systems with feedback constraints. The specific applications are
large-scale VHDL circuit simulations and war gaming simulations which are designed to operate
on message passing, parallel computers such as the Intel family of hypercubes. By creating opti-
mal run-time schedules where the schedule length is optimally minimum, the maximum speed-up
achievable given the characteristics of a simulation system can be achieved. Such improved perfor-
mance in simulation execution times can greatly improve the return rate of information provided

by such simulations resulting in 1< * ‘ned development costs of future computer/electronic systems.

Optimal schedule generation of precedence-constrained task systems including iterative feed-
back systems such as VHDL or war gaming simulations for execution on a parallel computer is
known to be N P-hard in all but the most trivial cases. Consequently, large search spaces must
be explored at a considerable time expense even for the most powerful single processor comput-
ers. Efficiently parallelizing such problems takes full advantage of present computer technology
to achieve a significant reduction in this time requirement. Unfortunately, generating optimal
schedules requires implicit examination of all possible solutions. This coupled with the extreme
combinatoric 'explosion’ of possible task assignments to processors creates an exponential search
space prohibitive on any computer for search algorithms which maintain more than one branch of
the search graph at any one time. This work develops various parallel modified backtracking (MBT)
search algorithms for execution on an iP.SC/2 hypercube that bound the space requirements and
produce an optimally minimum schedule with linear speed-up. Although the logical search space
remains exponential, the physical memory space required for the search process remains within the

physical memory constraints of the computer.

To validate the parallel MBT search algorithm developed, various feedback task simulation
systems are scheduled for execution on an iPSC/2 hypercube. The search time, size of the enumer-
ated search space, and communications overhead required to ensure efficient machine utilization
during the parallel search process are analyzed. The various applications indicate appreciable

improvement in performance using this method.




Improved Task Scheduling

for Parallel Simulations

1. Introduction

1.1 Molivalion for Parallel Processing

Computer architecture has evolved greatly over the last decade with the proliferation of
parallel computer research and development efforts. [he driving force behind such investments
being the potential speed-up of solving complex and computationally intensive problems such as
wave mechanics, fluid dynamics, and structural analysis [16}, Very Large Scale Integration (VLSI)
circuit simulations [23] [9], and real-time assignment based problems within the Strategic Defense
Initiative (SDI) research area [18]. The potential speed-up using a parallel, von-Neumann based

computer can be defined as follows [11):

T,
Sp = F:, (1.1)

where T} is the execution time for the best serial algorithm on a single processor, and T, is the exe-
cution time for a parallel algorithm using P processors. Thus, if a sequential algorithm to simulate
a VLSI circuit through 10 seconds of activity tal s 120 minutes to complete when implemented on
a single processor, applying the same simulation using an effective parallel algorithm on a parallel
computer with 120 processors would theoretically take 1 minute! Unfortunately, it was suggested
by Amdahl that for a program with serial work fraction s, the maximum parallel speed-up obtain-
able is bounded by 1/s. Therefore, if a given program contains a 5% serial work fraction, then the
largest achievable speed-up is 20 regardless of the number of processors used. If P is the number
of processors, s is the amount of time spent by a serial processor on serial parts of a program, and
1~ s is the amount of time spent by a serial processor on parts of a program that can be done in

parallel, then Amdahl’s law gives the parallel processing time

T, = sT) + (l;s)T, (1.2)
resulting in the speed-up
P
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Thus, the limp_.oo Sp = 1/s. The derivative of this equation with respect to s reveals a very

interesting property for small s.

W A P-D (14)
Jim = -P*41 (1.5)
TE-0

As figure 1.1 shows, the degenerative speed-up curve has a slope of —P2 as s — 0, and S, quickly
drops off for small increases in s — a very undesirable characteristics when attempting to speed-up
a program’s performance on a parallel machine. Fortunately, parallel applications tend to scale
with the available computing power; i.e., given more computing power as with a parallel computer,
the applications are expanded (more data items, for example) to utilize the available hardware
resources. For instance, doubling the number of processors allows doubling the number of data
variables to ensure comparable utilization of the physical system. Also, the time for program
‘loading, serial bottlenecks, and I/O that make up the s component of an application do not scale

with problem size.

This idea of scaled speed-up leads to the definition of an effective parallel algorithm as one
in which limp_.c 5(n) = 0 where s(n) is the fraction of the sequential algorithm that must be run
sequentially (not parallelizable) and is dependent upon the problem size n. Thus, the speed-up of

an effective parallel algorithm when applied to large problems has a limit which is defined as linear
speed-up [13:5):

- P
7T -1 v

"llngosp = p (1.7)

When considering the inverse of Amdahl’s paradigm, the attractiveness of this reasoning becomes
apparent. Rather than ask how fast a given serial program would run on a parallel processor, we
ask how long a given parallel program would have taken to run on a serial processor. Using the
variables as before, a uniprocessor requires time s + (1 — s)P to complete a program where the

second term represents the serialized parallel time. This leads to the scaled speed-up equation

s+(1-s)P
s+(1~5)
P+(1-P)s (1.8)

Sscaled
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Figure 1.1. Comparative speed-up of Amdahl’s law and problem scaling for P = 128.

As figure 1.1 shows, the advantages of such reasoning become apparent. The degenerative speed-up
curve now has a linear slope of 1 — P, a significant improvement in performance. Thus, when
speed-up is measured by scaling the problem size, the serial fraction s tends to shrink resulting in

much better parallel performance than is implied by Amdahl’s paradigm [16].

1.2 Parallel Applications

The need for fast problem solvers is quite apparent. Weather prediction results are useless
if the time to produce the prediction is greater than the time for the actual event to occur; i.e.,
the event predicted to occur in the future has already occurred. The same is true in SDI research
involving real-time assignment strategies of weapons to targets. The general assignment problem
can be stated as the problem of assigning N resources to M consumers subject to some minimiza-
tion or maximization constraint [23]. Therefore, the assignment problem within SDI involves the
assignment of weapons to incoming targets such as ballistic missiles in such a way that the maxi-
mum number of targets with the potential for the greatest amount of damage are destroyed using
the minimum amount of weapons. A solution to this problem is equally useless if the time taken
to produce the solution is longer than the time for the incoming missiles to reach their points of

destruction.

The development of VLSI circuits is very complex with many intermediate steps between
design conception and production circuits. Prior to circuit simulation abilities, various stages of
development required laboratory fabrication and testing — a very tedious, expensive, and time
consuming process. With the advent of computer simulation languages such as the Very High

Speed Integrated Circuit (VHSIC) Hardware Description Language, or VHDL, circuit behaviors

1-3




can now be modeled on a computer, thus vastly decreasing the turnaround time from design to
production. Unfortunately, VHDL simulations for current applications take a disproportionate
amount of coinputer time when compared to the size of the circuit being modeled. When a parallel
computer is used, the mapping strategy of assigning specific VHDL tasks to processors can have a

significant impact on the simulation time.

Simulation efficiency is defined as the ratio of time of circuit behavior modeled, Ty;y,, and the

time to model the circuit, Tyyy, for that ammount of simulation time.
Esim = — (1.9)

As Table 1.1 indicates, a circuit simulation of an 8-bit adder requiring 32 VHDL tasks on an Intel
iPSC/2 hypercube computer with eight processors results in a simulation efficiency of 0.006% when
using the ’level8’ optimal static scheduling strategy, and 0.001% when using an unbalanced static
scheduling strategy which approximates the results of a single processor simulation {38:5-4]. The
computer architecture, simulation task dependencies, and the scheduling algorithm effectiveness

both play crucial roles in determining speed-up of a particular parallel simulation.

Table 1.1. Run-time performance comparison of an 8-bit VHDL simulation

Simulated Time, Tyip

8-node mappings || 1000 nsec | 8000 nsec | 16000 nsec | 32000 nsec | 64000 nscc
Run Time, Trun

level8 18 sec 126 sec 252 sec 509 sec 1108 sec
unbalanced8 79 sec 573 sec 1147 sec 2272 sec 4404 sec

1.3 The Task Scheduling Problem

Task scheduling in the context of this research is the problem of assigning n precedence-
constrained tasks to m processors where n > m such that the overall execution time is op-
timally minimal. The task systems considered are iterative feedback systems where feedback
precedence-constraints can exist between multiple executions of the tasks. Unfortunately, static
and dynamic iterative task scheduling lack any definitive optimization for parallel machine effi-

ciency [38].

1.8.1 Static versus Dynamic Iteralive Task Systems A static iterative task system isone in

which assignment of the tasks to the processors of a parallel computer remain unchanged during




the execution of the tasks. In dynami- iterative task systems however, the structure of the task
system changes during the execution process requiring an adjustment of the task schedule in order
to maintain required performance. Figure 1.2 represents this difference. Initially, the static task
system consists of two tasks in which each task executes twice. An optimal schedule results in a
schedule which completes in three time units. This optimal schedule and the mapping of specific
tasks to specific processors is determined prior to execution of the task system. In the dynamic
system however, upon execution of the schzdule, the first iteration of T'1 generates the requirement
for a new, previously unconsidered task, T'3, to execute. Therefore, to ensure an optimal schedule is
maintained, the scheduling algorithm must gain control of computer resources at time ¢, to generate
the new optimal schedule shown. The task system is then directed to follow this new schedule to

ensure optimal performance until such time that the system again changes.

1.8.2 Parallel Simulation Implementation Consideraiions When examined from an archi-
tectural point-of-view, several factors must be considered in attempting to achieve effective parallel

performance for simulation systems:

¢ Load balancing of computations
¢ Comununications overhead between processors

o Mapping strategy

Load balancing refers to the even distribution of the workload among the available processors.
The communications overhead between processors refers to the associated time cost of having tasks
which must communicate assigned to different processors. The communications time between
tasks on a single processor is usually much smaller; however, due to system loading and operating
system control, task intraprocessor communication could be greater. The mapping strategy refers
to the way in which individual simulation tasks are assigned to processors. As previously shown in

Table 1.1, such strategies can have a significant effect on the simulation efficiency.

In general, the mapping strategy determines run-time load balancing and communications
overhead. For instance, if a system of equal execution time (EET) tasks is mapped onto a 1024
processor system where 80% of the tasks are assigned to 10% of the processors, an unbalanced con-
dition of processor utilization occurs. If howeve:. the tasks exhibil a strong preceden-e-constraint
relationship, such load unbalancing may be unavoidable within the domain of that task system; 1.¢.,
the maximum achievable scheduling parallelization produces poor machine utilization. Also, task
systems with a strong precedence relationship requiring much communication among tasks may

suffer significant communications overhead if many of the tasks which communicate don't reside

-
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on the same processor. This coudition can be a result of the scheduling process if interprocessor

communications aren’t considered when tasks are assigned to processors.

1.8.8 Task Assignment Strategi, . >vder to optimally map a task system onto a perallel
computer, the solution space of all p>»=1+ .-popings must be examined. One approach is the greedy
method: a polynomial-time teck:: {3 dus 1l o generate a solution quickly. In this method, the
mapping solution is generated step-by-ct. -~ vased on a set of candidates, « selection function, and an
objective function. However, optimal re. iits aren’t guaranteed except in some restricted cases [8].
If more informed search techniques are .: . , optim1l solutions can be guaranteed. Such techniques
are in the class of *best-firs” ~lgorithms w.., .n genera e cptimal solutions using admissible heuristic
information [31]. Unfortunately, many equire a prohibitive amount of physical system: memory

bases on the scheduling probler size.

1.4 Assumplions

Before definitive optimization uf static and dynamic iterative task scheduling can occur, the

task system being examined must be defined. As a minimum, the following must be known [8):

¢ The number of tasks within the simulation system.

¢ The execution tirnes for each task.

o The task precedence-constraint relationships including feedback.
o The number of processors being scheduled.

o The number of execution iterations required to be scheduled.

e The type of system under consideration; t.e., static vs dynamic.

Several theorems are presented in this document which represent formal descriptions of task
scheduling properties based on task system characteristics. These theorem are offered without

proof. The mathematical development presented, graphical explanations, and theorem simplicity

should be sufficient.

1.5 Scope

The primary objective of this investigation is to design, analyze, and validate effective map-
ping algorithms which generate optimally minimum schedules in terms of overall execution times

on a parallel computer. The order of investigation in terms of problem complexity proceeds as

follows:




1. The task -ystem contains no feedback loops, no iteratio. s, and all tasks have equal execution

time (EET) requirements.
2. Iterations are permitted.
3. The system contains variable exzcution time (VET) tasks.

4. Feedback is permitted.

Using informed search techniyues, mapping strategies for assigning tasks to processors in
an optimal manner are i1 iemented. These strategies derive an o. timally minimum schedule of
static ilerative task systems for execution on a message passing ps «llel computer using the same
computer. The characteristi- of the simulation system are utilizeu to reduce the implicit search

space and find an optimal solution in minimum time.

1.6 Approach

This research analyzes scheduling algorithms which generate optimal mappings of tasks to
processors. These algorithms range from those applied to polynomial-time scheduling problems to
N P-complete scheduling problems [8, 38], i.e., the solution space grows exponentially at best with
the number of tasks to schedule. Such algorithms include the depth-first, brzedth-first, backiracking,
and besl-first search methods. The ’best’ algorithm in terms of search #Ticiency is implemented
on an iPSC/2 hypercube using the Ada programming language. Ada is chosen to investigate its
utility on a parallel machine. Software engineering principles of modular design, strong intramodule
conesion and loose intermodule coupling are used to ensure a functionally sound implementation.
Functional design techniques are used to transform the developed algorithm into an operation pro-
gram. The resulting search performance given a range of task systems is analyzed for speed-up
performance and scheduling efficiency. The programming code used to develop the parallel im-
plemenuation is modified to improve the search process and generate optimal schedules more effi-
ciently; i.e., local bounding iuwrmation is made global and load balancing among the processors

is performad. The resulting algorithm strategy is validated using generic and VHDL task system

simulations.

1.7 Summary

This chapter discusses the advantages of parallel processing in producing solutions to romplex
problems much faster than with conventional computers. Although Amdalh’s law appears to place

a barrier on the potential speed-up which can be obtained when using a parallel machine, such sersal
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limitations approach zero when the problem size is scaled to fully utilize the available processing
power of the parallel machine. Also, when using a parallel machine to execute VHDL simulations,
the mapping of tasks to processors is crucial to the run-time performance. Therefore, generating
optimal schedules whose schedule lengths are optimally minimum is essential in achieving the
minimum run-time performance of the simulations. The scope of investigation presented starts
with a simple task system and procec 's to the most complex VHDL simulation systems presently
designed for parallel implementation; i.c., VET iterative systems with feedback. The approach
to designing an eflective parallel algorithm for solving these complex problems analyzes many
well-know search techniques for developing the ’best’ serial algarithm. This serial algorithm is then
parallelized for optimal search performance o produce optimally minimum parallel schedules of

VHDL simulations for execution on a parallel, message passing machine.

1.8 Thesis Overview

Chapter 2 is a backgrouna investigation of the generalized scheduling problem. The schedul-
ing environment, policies, and goals are discussed to reflect the diverse nature of this problem. The
theory of N P-completeness is introduced to show the complexity of scheduling a VET iterative
task system. Also, many existing algorithms, their chazac:eristics, and the multiple instruction,
multiple data (MIMD) parallel architecture are discussed. Chapter 3 is the high level design of the
algorithmic solution to the scheduling problems reflecied in parallel simulations. The design issues
such as machine memory limitations and search time performance are analyzed to determine the
'best’ approach for implementation. In Chapter 4, thc characteristics of simulation systems and
three parallel search implementations are presented to identify the most efficient parallel imple-
mentation. Use of the Ada programming language is shown to be beneficial for this "high-level’
problem using the structure design methodology. Chapter 5 discusses simulation applications and
the pcrformar;ce of the developed parallel algorithms in solving such parallel simulations. Chapter 6
reveals some important cenclusions based on emperical analysis of the simulations used to validate

the parallel algorithms.




II. Background

2.1 Introduction

An understanding of the iterative task scheduling problem, N P-completeness of the general-
ized scheduling problem, and parallel computer architectures and scheduling algorithms is essential
to the completion of this research [2] [8] [14] [15] [18] [20] [21] [24] [35] [37] [39] [38]. Each subject
area has been extensively explored by other authors, and many references are available. However,
the focus of this chapter is to conduct a review of the reference material which is most applicable

to the specific problem of iterative feedback task scheduling in a parallel environment.

The chapter is divided into five additional sections. Section 2.2 is an introduction of the gen-
eral task scheduling problem with its diverse nature. Section 2.3 discusses the environment, the poli-
cies, and the goals of scheduling. Section 2.4 is an introduction to the theory of N P-completeness

: followed by a description of the N P-complete nature of certain task scheduling problems. Sec-
: tion 2.5 discusses the multiple instruction/multiple data (MIMD) architecture and some of the
many scheduling algorithms and their characteristics under dynan:ic and static task systems. Sec-
tion 2.6 is a summary of this chapter’s contents. Within the text of this research discussion, task

and process shall have the same meaning, as well as, concurrent and parallel.

2.2 Task Scheduling

2.2.1 The Tusk System Defined A general task system can be defined using F, <, [n;], wj
as follows [8:5]):

1. F=Ti,...,T, is a set of tasks to be executed.

2. < is an (irreflexive) partial order defined on F which specifies operational precedence con-

straints, i.e., T; < Tj signifies that T; must be completed before T; can begin.

3. [n;] is an mXn matrix of execution times, where ;; > 0 is the time required to execute T},

1< j< n,onprocessor P;,1<j<m.

4. The weights w;, 1 < i < n, are considered deferral costs, i.c., the cost of finishing T; at time

t. Such a cost is simply w;t.

When task iterations are included, the set F can be viewed as containing sets of tasks T}, .. ., '1i’

T}, ..., T8, ..., T},..., ¢ where i represents the task iterations.




Graphical methods are employed to make understanding of such relationships clear [7]. The
partial order < is conveniently represented as a directed, acyclic graph (or dag) with no transitive
arcs. The notation T;/7; is used for labeling vertices of the dag where T} refers to a specific task
and 7; refers to the task execution time as described above. Figure 2.1 is an example of important

characteristics of a task system which exhibits the following notation and properties:
1. Acyclic.
2. No transitive edges: (T1,76) would be such an edge.

3. T1,T», and T3 are initial vertices; Ty, and T} are terminal vertices.

4. Ty is a successor of Ty, T», T3, T4, Ts but an immediate successor of only Ty, and Ts; T5 is a

predecessor of 1%, T3, Ty, and T}, but an immediate predecessor of only T%, and T.

The critical path of a vertex T is defined as the sum of the execution times associated with the
vertices in a path from T to a terminal vertex such that this sum is maximal. Table 2.1 shows the

critical paths and their values for Figure 2.1.

Table 2.1. Critical path execution lengths from each vertex T.

(T | Critical Paths | Path Execution Lengths |

1 | T1,T4,T7,T9 8
2 | 12,15,T8,T10 10
3 | 73,75,18,T10 9
4 | T4,T7,T9 7
5 | 75,718,710 8
6 | 76,79 3
7 | 77,19 5
8 | 78,710 7
9 | T9 2
10 | T10 1

2.2.2 Herative Task Scheduling Figure 2.1 is an example of a single execution, non- periodic
task system. Each task is executed only once. When all tasks have completed execution, the task
system has completed with no more task exccutions occurring. For an iterative task schedule,
however, each task executes numerous times while maintaining the precedence-constraint relation-
ship throughout each execution cycle. Figure 2.2 shows how such a task system can be viewed

using graph theory as before. When feedback is added between iterations as shown in Figure 2.3,

the resulting iterative relationship changes. The precedence-constraint relationships must remain




T1/1

Figure 2.1. A dag representation of a task system
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Figure 2.2. Representation of an iterative task system for 2 iterations.




intact which causes the graphical iterative representation to be adjusted as indicated in Figure 2.4.
Although transient arcs can be introduced as Figure 2.4 shows (T'1’ can be reach directly from T'1
or through T'2), they can be ignored since the feedback arc always introduces a new critical path
from the task constrained by feedback (T'1 in this case). For Figure 2.4, T'1' must now wait until
T2 has completed regardless of when T'1 completes. Therefore, the constraint between T'1 and T'1’
can effectively be ignored during the schedule generation process. The following theorems describe

this change in the transitive closure of the orizinal directed graph:

Theorem 2.2.1 Given a simulation system, the in'roduction of feedback dependencies removes
from consideration all ilerative dependencies of the task sending feedback information, the task

receiving feedback information, and all tasks on all paths between these two.

Theorem 2.2,2 Given a simulation system, the introduction of feedback does not increase the

number of dependency arcs, < feedbackS~no feedback -

Feedback constraint
—_—

Figure 2.3. A task system with feedback.

Adding feedback to a given simulation structure can effectively reduce the number of schedul-

ing paths through the iterative task graph.




Transitive Arc

Figure 2.4. Representation of an iterative task system for 2 iterations with feedback.




2.2.3 Performance Measures Defining the requirements for the performance evaluation of
parallel systems is essential [29]. Without firm understanding of specific requirements and the
means to properly examine performance, much of the extracted performance evaluation data is
useless. Two principle measures of schedule performance are the schedule length or mazimum
finish (or flow) time [8:9):

w(S) = max (£(5)) (2.1)

and the mean weighted finishing (or flow) time

1 n
a(s) = ~ Z; w;i fi(S) (2.2)
where f,(S) represents the finish time for schedule S. For the general scheduling problems, therefore,

efficient algorithms need to be found for the minimization of these quantities over all schedules S.

Performance measures for an iterative schedule where each task eaecutes multiple times in-
clude an additional metric, latency. Latency is defined as the time between successive iterations
of a given task [38:2-9]. For the iterative scheduling problems, therefore, efficient algorithms need
to be found for the minimization of latency where multiple tasks are involved. The level strategy,
which assigns tasks based on the longest chain of unscheduled tasks (critical path), forms a kernel

for the iterative scheduling algorithm [39)].

2.3 A Tazonomy of Scheduling

(6] In order to fully understand the realm of task scheduling, the presentation of a taxonomy
of scheduling problems is in order . The general scheduling problem can be viewed as consisting of

three main components:

1. Consumers(s).
2. Resource(s).

3. Policy.

Understanding the functioning of a scheduler can best be done by observing the effect it has on its
environment. In this case, one can observe how the policy affects thie resources and the consumers.
Such a relationship is shown in Figure 2.5. Figure 2.6 shows the structure of the hierarchical portion
of the taxonomy of scheduling. A discussion of the relatior.ship between the items at each level

appropriate to the nature of iterative task scheduling follows:
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Scheduler

Consumers Resources

Policy

Figure 2.5. Scheduling system

o Local Versus Global Local scheduling involves the assignment of tasks to the time-slices of a
single processor system. Global scheduling is the problem of deciding where to execute the
tasks on a multi-processor system. In this case, a separate task scheduler is required to make

these decisions rather than relying on the operating system of the single processor system.

o Static Versus Dynamic Static scheduling incorporates a priori knowledge of the task system
to be scheduled. Assignments of specific tasks to specific processors are made prior to system
execution. Dynamic scheduling, however, involves the more realistic assumption that very
little a priori knowledge exits about the resource needs of a task prior to execution. In

this case, it is the responsibility of the run-time system scheduler to make the appropriate

decisions.

o Distributed Versus Non-Distributed The concern in this comparison is with the logical author-
ity of the decision making process. Should the decision making authority under global dy-
namic scheduling reside with a single processor (physically non-distributed), or be distributed

among the processors (physically distributed)?

e Cooperalive Versus Non-Cooperative In a cooperative system, the processors cooperate be-
tween one-another in making scheduling decision. Each processor has the responsibility to
carry out its own portion of the scheduling task, but with all processors working toward a
common system-wide goal. In the non-cooperative case, the individual processors operate au-
tonomously making scheduling decisions independent of the actions of the other processors.

Such decisions are made regardless of the effects on the rest of the system.
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¢ Optimal Versus Sub-Optimal Many specific optimal tas'. scheduling problems have been shown
to be N P-complete [8:20-21]. The dynamic iterative task scheduling problem being an exten-
sion of many of these problems exhibits the same characteristic. Therefore, optimal solutions
(solutions which produce the best performance possible under a specific performance defini-
tion) are usually unfeasible in a run-time environment since the solution search time may be
prohibitively costly. Sub-optimal solutions, however, may be produced wit' at significantly

degrading the system such that the cost of reduced performance is acceptable.

e Approzimate Versus Heuristic An approximate solution is concerned with searching the solu-
tion space until a ’good’ one is found instead of searching the entire solution space to find the
optimal solution. Such a strategy is often referred to as the greedy approach. The time saving
to generate this good solution can make it an acceptable solution (schedule). Unfortunately,
determination of a good solution may not be insignificant, and the validity of this approach
must be carefully analyzed. The heuristic solution, however, uses a priori knowledge concern-
ing process and system loading characteristics to reduce the search space. Heuristic schedulers

make use of special parameters which affect the system in indirect ways.

Policy decisions play a crucial role in the task scheduling mechanism. In the iterative dynamic
task scheduling problem, the policy of adaptive solutions must be considered. An adaptive solution
to the scheduling problem is one in which the algorithms and parameters used to implement the
scheduling policy change dynamically according to previous and current behavior of the system
in response to previous decisions made by the scheduling system. The importance applied to
the various parameters can vary from time to time depending if the scheduler believes certain
parameters are providing information which is inconsistent with the rest of the inputs or are not
providing any information regarding the change in system state in relation to the values of the

others parameters being observed.

Load balancing is another important policy for multi-processor systems. The basic idea is
to attempt to distribute the workload cvenly among the available processors. The processors
act together in order to redistribute some tasks from heavily loaded processors to lightly loaded
processors. This policy relies on the assumption that the information at each processor is very
accurate in order to prevent tasks from being endlessly circulated about between processors thus

reducing overall system progress.

The policy of bidding is used in cooperative scheduling environments and involves ali proces-
sors within the system. In this case, when a processor has a task awaiting execution, it announces

the existence of this task and then reccives b1ds from the other processors. Varied information can
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be passed between processors to make the scheduling decision, and each processor maintains full

autonomy.

Another classification of scheduling mechanisms is the probabilistic scheduiing policy. Since
the solution space for an optimal scheduie can be very large, such a policy uses probability distri-
bution information of the solution space to select a scheduie. An important attribute can also be
used to bias the random choosing process leading to a schedule better than one chosen entirely at

random.

The nature of iterative task scheduling is complex and involves many strategies in obtaining a
solution. These strategies all have unique characteristics which can be exploited for each scheduling
problem. The determination of which policy to implement can be aided by an understanding of

the environment in which the task system will be operating.

2.4 NP-completeness in Task Scheduling

Many of the problems known and studied have solutions which can be found within two
classes of computing times using the ’best’ algorithms. The solution time for the first group of
problems is bounded by a polynomial-time function; i.e., there exists a polynomial p(n) such that
the algorithm can solve any instance of size n in O(p(n)) time. The second class of problems is
those whose ’best’ algorithms are nonpolynomial. Such problems are in the class N P-complete

which can be defined by letting = be a problem of size n as follows [1:272}):

1. No sequential algorithm with polynomial running time is known for solving = and, further-

more, it is not known whether such an algorithm exists.

2. All known sequential algorithms for solving # have exponential running time and it is not

known whether this is optimal.
3. If a solution to = is given, it can be verified in polynomial time.
4. If a sequential polynomial time algorithm is found for solving m, it can be used to solve all

N P-complete problems in polynomial time.

Unfortunately, efficient algorithms which produce optimal schedules and require only polynomial

time are known only for a few task scheduling cases:

1. Scheduling on an anbitrary number of identical processors of an EET task system whose

precedence-constraints form an in-forest or an out-forest (anti-forest) [8:54-59).
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2. Scheduling of an arbitrary unit time task system on twe identical processors [8:60-68).

3. Scheduling on an arbitrary number of identica! processors of an EET task system whosc

incomparability graph is chordal [30].

This suggests that hy restricting the precedence-constraints of a task system to certain subclasses
which make the corresponding parallel programs more structured, other polynomial time algorithms
may exist. However, as shown in [27], these subclasses exhibit the same complexity as scheduling
EET task systems with arbitrary precedence constraints; i.e., they are NP-complete. A more

thorough list of scheduling complexities can be found in [8:20-21].

In general, for a system of n independent tasks and  processors, there are m"™ possible
assignments of tasks to processors. If an optimal solution which minimizes the schedule length
is desired, and the task system isn’t structured as in one of the restricted cases above, then an
extensive search process must be conducted. The classification of the iterative task scheduling
problem is dependent upon the parameters used in the task system. As Table 2.2 indicates, the
problem is N P-complete for variable execution time when the goal of minimum latency is desired
[38:2-8). Therefore, to solve the iterative scheduling problem for an optimally minimum schedule

length results in exponential time requirements making the search prohibitively costly.

Table 2.2. Categories of iterative schedules for multiprocessors

Type Parameters Goal Comments
iterative || n tasks minimum latency | O(n®) if equal execution time
M Processors N P-complete if variable execution time
execution time I;
|
iterative || n tasks min # processors | N P-complete
m Processors
execution time [;
<

2.5 Scheduling Algorithms and MIMD Machines

The MIMD machine is a very powerful parallel processing computer with a wide variety of
computer applications such as image processing and computer vision, artificial intelligence, oper-
ations research, robot arm control, and real-time high-speed simulations of dynamic systems to
name just a few [20:1023-1029] [17]. Typically there are far fewer processors than elements to
be processed, and so some natural aggregation of elements is required for partitioning the work-

load among the processors. For image processing, a spatial collection of clements or pixel data
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is appropriate, whereas an aggregate of tasks which model the physical system is appropriate for
computer simulations. Both the shared memory and the distributed memory versions offer distinct
advantages when applications are tuned for the particular architecture. Those machines sharing a
common memory are referred to as multiprocessors ( or tightly coupled machines) while those with
an interconnection network are known as multicomputers (or loosely coupled machines). The shared
memory machine doesn’t suffer from the inherent communication delays of it’s distributed mem-
ory counterpart; however, the application must deal with memory contention issues. The shared
memory architecture has the advantage of easily accessible global data making it a powerful system
when much communication is required between the processors within an application. However, the
architecture is limited in its scalability due to bus contention issues. One such application known
as Parallel Dynamic Interaction (PDI) [32] takes advantage of this architecture by maintaining
Limited global state informatior which all working processors routinely consult in order to make
decisions in solving three N P-hard problems: flow-shop scheduling, job-shop scheduling, and ver-
tex cover. Another application under process sciieduling proposes a scheduling policy, deliberate
random level-order scheduling with time slicing, and an implementation mechanism such that all
processors can perform resource management in parallel and no central tables of resources need be

accessed by processors running the resource management code [21].

Applications designed for the distributed memory MIMD computer must compensate for the
increased communications costs between processors for effective machine utilization. Therefore,
such applications must ensure the ratio of communications time to calculation time is kept small;
t.e., 1;‘.:-:? <« 1. This implies coarse-grain applications are best suited to such an architecture where

this relationship is inherent within the control or data decomposition of the problem domain.

Many applications have been developed to examine the pros and cons of the loosely coopled
machine. A comparison of three parallel A search techniques: a Shared-List (centralized-list) al-
gorithm which shares the search space among the processors, a Static Disiribution algorithm which
distributes the search space once to all processors (distributed list without load balancing), and the
Continuous Diffusion algorithm where the search space is continuocusly redistributed demonstrat :s
the inherent characteristics of this architecture. The results indicate that the Continuous Diffusion
algerithm outperforms the others on the message passing architecture [12). Also, comparison of the
parallelized assignment problem using branch-and-bound techniques with load balancing suppcrts
the distributed-list approach (similar to continous diffusion) versus the shared-list approach when
considering scalability, speed-up performance, a:d machine utilization efficiency [23]. Although
asynchronous algorithms are difficult to design, evaluate, and implement, the concerns of parallel
task scheduling such as assigning processes to processors in order to maximize system performance

can be thoroughly addressed using the coarse-grain message passing architecture.
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Within distributed computing, the central problem of task scheduling is motivated by issues
such as load balancing, parallel algorithm requirements, algorithm-architecture matching, and uti-
lization of resources [15]. Various algorithms have been developed to schedule task systems in stztic
and dynamic environments each with unique policies and goals. Within the dynamic world, the
goal of achieving flexibility through the dynamic scheduling of tasks in a distributed and adaptive
manner has resulted in many such algorithms. K. Ramamritham and J. Stankovic describe (a) a
locally executed guarantee algorithm for periodic and non-periodic tasks, which determines whether
or not a task can be guaranteed to meet its real-time requirements, (b) a network-wide bidding
algorithm suited to real-time constraints, {(c) the criteria for preempting and executing a task so
that it still meets its deadline, and (d) schemes for including different types of overheads, such
as scheduling and communication overheads [35). The algorithm was later extended to take into
account precedence-constraints with cpu time being the only system resource explicitly taken into
account. J. A. Stankovic and I. S. Sidhu describe a sophisticated and adaptive bidding algorithm for
decentralized process scheduling in computer networks [41]. The algorithm is sophisticated because
it attempts to match processes to processors based on many factors including process resource re-
quirements, special resource needs, process priority, precedence constra:nts, the need for clustering
and distributed groups (opposite of a cluster), specific features of heterogeneous hosts, and various
other process and network characteristics. J. A. Stankovic also describes an appii ation of Bayesian
Decision Theory to the decemuialired control of job scheduling [40]. n this paper, he presents a
heuristic for the effective cooperation of multiple decentralized components of a job scheduling
function. The heuristi: he uses has an especially useful feature in that 1t can dynamically adapt
to the quality of the state information being processed. S. Sahni develops other good heuristics to
schedule tasks on computers that have multiple pipelined of multiple asynchronous processors [37).
C. Price analyzes softw re allocation models for distributed computir.g systems giving complexity
results that describe the theoretical difficulty of obtaining exact ind approximate solutions [34). He
examines an iterative transform, clustering, and banded Q heusisuc algorithms and their relative
performance against an optimal objective function. R. A. Beard and G. B. Lamont examine algo-
rithm parallelism and performance improvements for the Set Covering Problem on a loosely coupled
distributed parallel processor using coarse grain/static allocation, fine grain/dynamic allocation,
and dynamic load balancing [3]. Another algorithm employed on a partitioned multiprocessor
(PM) is the Two-Tier Scheduler (TTS) [14). The PM has a shared global bus and nonshared local
memories which allows local scheduling to amortize the cost of loading processes in local memory,
and global scheduling to migrate processes for load balancing. This algorithm takes advantage of
this particular architecture by adjusting a tunable time quantum so the average process completes

cexecution on the processor on which it is first sheduled, and only relatively long lived processes are
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rescheduled globally. A simple load balancing scheme for task allocation in shared memory parallel
machines is described in [36]. The load balancing activity which ensures maximum utilization of
available processing power is simple and distributed: whenever a processor accesses its local work
pile of tasks, it performs a balancing operation with probability inversely proportional to the size
of its workpile. When a balancing operation is performed, the work pile of a random processor is

exa:nined and tasks are exchanged so as to equalize the size of the two piles.

Classical task scheduling theory addresses only task sequencing. However, in [33], individual
task parallelism is used such that applying more parallel processing power to the task allows it
to execute faster. This theoretical analysis of generalized multiprocessor scheduling uses optimal
control theory to solve the task scheduling optimization problem. All tasks are assumed to be
dynamically partitionable, and the number of processors is treated as a continous variable per-
mitting the application of the powerful techniques of continuous optimization to solve what would
otherwize be a discrete problem. War gaming simulations can benefit from dynamic partitioning
since the work load of the individual tasks during the simulation change due to the dynamics of

activity levels within a battle field environment.

The task scheduling problem exhibits the same functional characteristics as the assignment
problem: the assignment of processes to processors in order to optimize a system performance
characteristic. When time critical, real-time operations are concerned, the search for optimal
solutions can be too costly; i.e., an optimal scheduling solution can be obtained only after some
operational deadline. Such critical constraints can be found in research for the Strategic Defense
Initiative. In (18], optimal and near optimal assignment algorithms using the technique of Marginal
Assignment Potentials are coded and tested on a parallel processing system. The algorithms are
iterative and interruptable, allowing assignment parameters to be updated and/or new targets

added without having to restart the algorithm.

In static task scheduling, the application is relieved from the time constraints of dynamic
scheduling; i.e., previous scheduling decisions don’t change during program execution. Unfor-
tunately, many variables still must be considered in order to generate solutions whose schedule
length is minimal. Many heuristic algorithms have been written to solve this problem. The
Earliest Ready Task (ERT) algorithm considers communication delays between any pair of dis-
tinct processcrs and generates a makespan (schedule length) M which always sastifies M <
(2 - #)M’ + Ceomm, Where M’ is the optimal makespan without considering communication
delay, Ccomm is the maximum communication delay in one chain, and m is the number of pro-
cessors being scheduled [24]. When a set of n partially ordered tasks are given, the time com-

plexity of this algorithm is O(mn®). A Join Lalest Predecessor algorithm produces an optimal
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schedule in linear time when there are enough processors to run all available tasks, and com-
munication delays are no longer than the shortest task processing time [2]. Another algorithm
which schedules tasks onto a partitionable mesh connected system (PMCS) uses a layer-by-layer
partitioning strategy and a longest processing time first scheduling policy to generate the mesh
size and the task assignment schedule [25]. The PMCS is a special VLSI device which must be
attached to the host computer, and the host computer manages the PMCS. The algorithm ac-
cepts jobs in which their mesh requirements are known a priori. Two very powerful algorithms
proposed in [19] solve very large scale problems of a few hundred tasks without regard to inter-
processor communication delays. The critical path/most immediate successors first (CP/MISF) is
an improved version of the CP-method or the highest levels first with estimated times (HLFET)
method. The depth first/implicil heuristic search (DF/IHS) scheduling algorithm markedly re-
duces space complexity and average computation time by combining a lower bound function and

the branch-and-bound method with CP/MISF.

2.6 Summary

This chapter has focused on the iterative task scheduling problem, the inherent intractibility
or N P-completeness of these problems, and the MIMD architecture upon which such problems can
be effectively solved. Also discussed are the need for effective process schedules to make efficient
use of these parallel machines, and many dynamic and static sheduling algorithms for ensuring
machine utilization efficiency. The task scheduling problem is defined using graph theory as an
acyclic directed graph. The iterative extension introduces transitive arcs which can be ignored
from a scheduling point-of-view since the feedback constraints introduce new critical paths. Various
system parameters are discussed to describe symbolically the iterative task system. The task system
is then expanded to include periodic task execution requirements. A taxonomy of scheduling is also
presented to show the diverse nature of task scheduling with the many policies upon which iterative
scheduling can be based. The intractibility of the iterative task scheduling problem is also examined.
Since the problem is generally N P-complete except when certain uniquely structured task systems
are considered, the time requirement to generate and optimal solution is exponential. Therefore,
the search for an optimal solution must consider this cost burden to determine the viability of such
an approach. The MIMD computer architecture upon which such applications are well suited is
also discussed. Various algorithms for scheduling static and dynamic task systems are reviewed,
each unique in their policy drivers and the domain of performance criteria. Such algorithms are the
basis for continued research in iterative task scheduling on MIMD computers. Since the objective of

this research is the optimal solution of N P-complete iterative task scheduling, the greedy methods
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(sub-optimal) and the probabilistic methods are not considered beyond their introduction in this

chapter.




III. Scheduling Algorithm Design

3.1 Introduction

The generalized scheduling problern consisting of arbitrary precedence-constraints and vari-
able execution time (VET) tasks is N P-complete as previously discussed. When tasks are allowed
to iterate; i.e., each task is permitted to repeat exccution i times, the solution space and time
requirements increase dramatically if each task iteration is treated as a different task. The imple-
mentation of an efficient search algorithm to find and optimal solution which minimizes the schedule
length for a distributed system on a parallel machine can result in near linear time speed-up mak-
ing this an attractive approach in solving such a computationaly intensive problem. This rapter
examines the algorithm design issues of generating such an optimal schedule using an Intel iPSC/2
hypercube. The scheduling policies and methods are discussed to give insight into the difficult
nature of generating optimal schedules of a task system in a parallel environment. An optimal

collection of the techniques completes the discussion.

3.2 Sequential Scarch Methods

In searching for solutions to given problems, search graphs are generally formed which contain
the search st .tes explored at any point in time. A graph is normally produced because search states
are often reached along more than one path from the initial state. However, maintaining a scarch
graph structure can require a prohibitive amount of physical memory and slow the search process
as well. One aiternative is to create a search tree rather than a search graph where the control
structure of the evolving search process creates a collection of scarch states connected in a manner
much like the branches on a tree. The size of this structure can be kepi within acceptable limits.
Although this method creates the potential for evaluation of duplicate search paths, the diminished
search performance may be acceptable. In the context of this discussion, search state and scarch

node are synonymous.

Many well known scarch techniques exist for obtaining solutions to optimization problems
{31):

1. Depth-first ~ This strategy expands the nodes in order of increasing depth within the search
tree. Each node chosen for exploration has all of its successors generated before one of these
successors is chosen for future exploration. Once a suistion is found, the search process is
terminated. This technique works well when solutions are plentiful and equally desirable.

When they are not, the search process can spend a considerable amount of time on fruitless

-1




branches of the search tree. This strategy also must retain in storage the portion of the search

graph that it is currently exploring.

. Backtracking - This strategy is a version of depth-first search that applies the last-in-first-out
policy to node generation instead of node expansion. When a node is selected for exploration,
only one of its successors is generated, and unless it is found to be a solution or a dead end, it’s
again submitted for exploration. If the node meets some stopping criteria, the search process
backtracks to the closest unexpanded ancestor; i.e., an ancestor still having ungenerated
successors. This policy doesn’t suffer from any extensive storage requirements since only the

current search path is retained.

. Hillclimbing - This strategy repeatedly expands a node, inspects its newly generated succes-
sors, and chooses the best among these successors while retaining no further reference to the
father or siblings within the search tree. This approach must retain in storage the current

portion of the search grap 1 only until the best successor is chosen.

-. Breadth-first — Unlike depth-first search which considers for future expansion only the nodes
generated on the previous expansion, this strategy considers all successors at all levels within
the search. tree for possible exploration. This strategy guarantees to find the shallowest
possible solution; however, the search process must retain in storage the entire portion of the

search graph that it explores.

. Best-first - The promise of a search node n is estimated numerically by an heuristic evaluation
function f(n) which may depend on the description of n, the description of the goal, the
information gathered by the search up to this point, and on any extra knowledge about the
problem domain. The node with the lowest f(n) is chosen for expansion. If two paths within
the search tree lead to the same search node, the node with the higher f(n) is discarded. This
strategy also has the potential drawback in that the the search process must retain in storage

the entire portion of the search graph that it explores.

. Branch-and-bound - As the name implies, this strategy consists of two components: a branch-
ing process and a bounding process. The branching process always expands the search node
most likely to be on the path to the desired solution. The bounding process eliminates from
consideration those search nodes that can’t lead to either a feasible solution or a solution
better than one already found. An heuristic evaluation function is used for both purposes.
Ideally, the search space is intelligently confined so that a minimal portion of the search graph

must be retained in storage and the search process proceeds directly torwards a solution of

the desired quality.




7. A* - This is a specialized best-first algorithm in whicl. the heuristic evaluation function f(n)
is defined as the sum of two components: g(n) which the actual cost of the current search
node, and h(n) which is an estimate of the cost from the current search state to a goal
state. With this additive evaluation function and delayed termination to prevent premature
halting of the solution process when the first solution is found, this algorithm is guaranteed
to find the optimal solution provided the heuristic evaluation function h(n) is admissible; i.e.,
h(n) < h*(n) Vn, where h*(n) represents the actual additional cost to a solution from the
present search state. In other words, h(n) is admissible if it never overestimates the actual

cost to the goal.

8. IDA* [22] - Depth-first iterative-deepening is a stategy which compensates for the space
requirements of breath-first search and the time requirements of depth-first search. The
algorithm proceeds iteratively in a depth first search, cutting off a branch when its total cost
(g+h) exceeds a given threshold. This threshold starts as the estimate of the cost of the initial
state, and increases for each iteration of the algorithm. At each iteration, the threshold used

for the next iteration is the minimum cost of all values that exceeded the current threshold.

3.8 Scheduling Combinatorics

The search time for the generalized scheduling problem is exponential. At each point in
the scheduling process, all possible combinations of task assignments must be implicitly generated
in order to find the optimal solution. Figure 3.1 shows the scheduling combinations which exist
given the intermediate schedule shown. At time i3, both processors and three tasks are ready
for scheduling. Therefore, three different combinations exist which must be generated for possible
exploration. In general, given n ready tasks and m available processors, there are ,Cy, combinations

of assignments to processors just for one expansion of a search node.

n!

nCm ml(n —m)! (3.1)

This unfortunate consequence of the generalized scheduling problem leads to the generation of
a number of successors which can exceed storage capabilities for all but the backtracking method
described above. For instance, given a relatively small task system of less than 100 tasks to schedule
onto 16 processors, if at one point in the search process, a search node is chosen for exploration
which contains 50 ready tasks and 10 ready processors, 1.03 x 1010 possible successors can be

generated. This space requirement for moving just one level down in the search tree is prohibitive

on any machine.




P1: T1
P2: T2
Time: 0 1
a) Intermediate schedule
P1: T1|T3 T1{T3 T1 T4
P2: T2| T4 T2|T5 T2|T5
Time: 0 1 2 3 0 1 2 0 1 2 3

b) New schedule combinations

Figure 3.1. Scheduling combinations of a precedence-constrained task system.




When task iterations are considered, their treatment in the scheduling process can increase
the number of combinations of each search node expansion. For instance, if the all-iterations-first
decision strategy for scheduling is maintained where once a scheduling decision for a task is made,
all of that task’s iterations are consecutively scheduled on the same processor at that time [38],
then the problem reverts in numerical complexity to the single iteration problem. However, if
each iteration is treated as a different task, then the number of successor combinations of any
intermediate schedule in the search tree can be significantly larger. Figure 3.2 shows a simple
task system where each task must execute twice. If the all-iterations-first decision strategy for
scheduling is maintained, the search process generates only one successor (which happens to be the
optimal solution in this case) from the intermediate search state shown. However, as Figure 3.3
indicates, if each iteration of a task is treated separately, then the search process must implicitly
generate three successors of the intermediate search state to ensure an optimal solution is found.
Therefore, treatment of an iterative task system in this manner has the effect of viewing a new task
system with a number of tasks equal to the original number of tasks multiplied by the number of

iterations thereby compounding the problem of limited storage capabilities.

3.4 Task Assignments

The method by which tasks are assigned to processors is important in minimizing the search
space and maintaining the search process on an optimal path. Since the focus of this research
is in generating optimal solutions, the generation of all possible task assignments must implicitly
occur. As shown in Section 3.3, the number of combinations of task assignments which must be
implicitly e.plored can be prohibitive. However, if prudent selection of tasks is made, the number
of combinations can be reduced significantly in some cases. A simple method for assigning ready

tasks to ready processors is known as List scheduling. List scheduling is defined as follows:

o Whenever a processor becomes available, the list of tasks is scanned from left to right. The

first unexecuted ready task encountered in the scan is assigned to the processor.

Unfortunately, many list scheduling anomalies exist [8:165-194] which can lengthen the sched-
ule produced when (1) tasks are removed, (2) task execution times are all equally reduced, (3)
precedence-constraints are weakened and, (4) the number of processors is increased. These anoma-
lies can introduce serious doubt into the validity of an optimal schedule even when it is produced
using a search algorithm such as A* which guarantees an optimal solution provided the additive
evaluation function is admissible. The problem is not with the search algorithm itself, but with the

list scheduling method by which the search states are created. As shown in Figure 3.4, removing
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P1: T1 T1

P2: T2 T2

Time: 0 1 2

a) Intermediate schedule where all iterations of
1 and T2 are assigned at to.

P1: T1 TV | T3 T3’

P2: T2 T2

Time: 0 1 2 3 4

b} New schedule combination where all iterations of
3 are assigned at t,.

Figure 3.2. Search node expansion results for the all-iterations-first decision strategy.




P1: T1

P2: T2

Time: 0 1

a) Intermediate schedule

P1: T1 TV T1 TV T1 | T3
P2: T2 T2 T2 T3 T2 | T2
Time: 0 1 2 0 1 2 0 1 2

b) New schedule combinations

Figure 3.3. Search node expansion results when tasks iterations are treated separately.




a task from the system actually increases the schedule length. The search process is dopmed from
the start even with a guaranteed optimal search technique since the generation of the first search

state under the list scheduling method will assign T} to P, and T; to P, at {¢ as shown.

It is easy to note in the previous example of a task system reduced by one task that if T is
forced to wait until 77 has completed, the A* search technique using an underlying list scheduling
algorithm will produce an optimal schedule. To compensate for the list scheduling anomalies when
variable execution time tasks are considered, fictitious tasks which correspond to idle processors
must be introduced. These idle tasks together with the ready tasks are then assigned to the
processors as before. The length of these idle tasks must be min(7;)iz1..n,.o4, Where nreqqy is the
number of ready tasks being assigned. Let m be the number of processors being scheduled, and
Mg, be the number of available processors at a certain stage in the scheduling process. Then, the

number of idle tasks nig. to be considered for assignment is [19]

Nidle = Mgy —1 for mgy=m

Nidle = Mgy for 1<mg, <m

Thus, the number of scheduling combinations generated at each expansion of a search node is given
by

Nbranch = (n readytn ldle)Cn’ov

This shows that the number of successor search nodes created from a given search node can change
dramatically if the guarantee of an optimal solution is to remain valid under list scheduling. Taking
the previous example of 50 ready tasks and 10 available processors of a possible 16, an implicit
generation of §9Cjo or more than 7+ 1019 successors is required. This is a seven-fold increase in the
previous requirement. However, such compensation is only required for task systems with variable
execution requirements. As shown in Figure 3.5, changing the exccution times of each task so they

are identical produces the same flow time when T2 is removed.

3.5 Parallel Search Methods

Parallel machines play an important role in solving combinatoric problems which grow ex-
ponentialy in space and time with the number of data items considered. Although physical limits

exists as 12 the size of such machines in terms of the number of processors they can have, they still
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(a) |
P1: T1 T4 T3 |
P2: T2 T5 T6
Time: O 2 5 8
(b)
P1: T1 T3 T6
P2: T5 T4
Time: 0 2 3 5 6 9
(c)

Figure 3.4. A list scheduling anomaly. (a) F, <. (b) An optimal list schedule for F, <. (c) An
optimal list schedule for 7 — {13}, < —{(T2, T4)}.




(2)

P1: T1 T4 T3
P2: T2 T5 T6
Time: 0 2 4 6

(b)

Pi: T1 T3 T6
P2: T5 T4
Time: 0 2 4 6

()

Figure 3.5. List scheduling anomaly disappears when task execution times are equal.




offer great improvements in complex problem solving abilities. Unfortunately, as the solution space
of these combinatoric problems grows exponentially, the number of processors built into existing
parallel computers grows linearly. Therefore, cfficient algorithms are necessary to effectively utilize
the processing power of these machines if the actual time requirements to achieve a solution are to

be acceptable.

When considering the design of an efficient parallel algorithm, a determination of data versus
control decomposition must be made. When decomposing a problem to be solved on a parallel
computer under control decomposition, identifying and distributing unique control aspects of an
algorithm allow each processor or unique collection of processors to perform different and essential
functions in the execution of the algorithm. These processors work together on different aspects
of the problem in trying to achieve improved performance over a single processor system. An
example of control decomposition is a 15,000 line Fortran program which computes the electronic
structure of high-temperature superconductors and other composite materials developed to run
on a 128-node iPSC/860 parallel supercomputer [4]. Alternately, data decomposition refers to
the distribution of unique data items to all the processors. Each processor performs the same
calulations on their unique sets of data. An example of data decomposition is the processing of
pixel data in image processing where each processor is given a unique portion of the data set [17].
The data sets are all then processed in the same manner to produce the desired transformation.
In parallel search techniques, the centralized-list approach is an example of control decomposition

while the distributed-list approach reflects data decomposition of the problem domain.

In the algorithmic search process, data decomposition is the proper choice for machine scala-
bility and efficient utilization [23] [12]. The limited number of different control functions within any
of the sequential search techniques previously discussed prohibits control decomposition. A search
graph contains numerous and identically structured elements which must all be processed in the
same manner. Therefore, the distribution of portions cf the search graph to different processors
is the logical choice torwards achieving improved performance over the single processor system.
However, without the processors having global knowledge of the local search graphs at each step in
the generation of search nodes, the global search graph degenerates into a combination graph/tree

where the branches of the trec are the local search graphs.

Many parallel search techniques exists for solving complex and data intensive optimization
problems such as searching for optimal solutions to N P-complete problems. When implimentedon a
message-passing architecture such as the iPSC/2, the method by which the algorithm coordinates

the search activity is crucial if considerable performance improvements over a single processor

system are to be realized:




¢ Centralized-list ~ This algorithm maintains a central list of the search space currently awaiting
exploration. One processors acts as the manager distributing search states to the other
processors for expansion. After a predeterminded number of expansions, all the processors
send back their search states currently awaiting exploration to the central manager which
places them on a priority queue. The m best search states are then redistributed to the other
processors for further exploration. The process repeats until the entire search space has been
exhausted. The algorithm suffers from the bottle-neck effect when the working processors all
try to send their search states to the central manager at the same time. When the machine is
scaled up in size (more processors), this effect becomes more pronounced reducing the overall

utilization efficiency [12].

o Distributed-list ~ This algorithm eliminates the bottle-neck effect of centralized-list by dis-
tributing a portion of the search graph to each processor at the start of the search process.
The processors all search independently until the entire search space is exhausted. The algo-
rithm suffers from poor load balancing since the initial distribution of search space may be

uneven.

¢ Continuous-diffusion [12]- This algorithm continously redistributes the search space among all
the processors. After each processor expands a certain number of nodes, they each exchange
their best search nodes with their nearest neighbors. This allows near-optimal search nodes
to continually move from the current global and local minima to processors that don’t have
optimal nodes. Load balancing is assured, and machine utilization is maximized. However,
exchange frequency must be ’tuned’ for the undertaken problem since excessive exchange

communications can increase the search time.

o Distributed-list with Load Balancing — This algorithm has the advantage of the distributed list
approach with the policy of load balancing to maximize machine utilization efficiency. This
approach moves portions of the search graph upon request from processors with available

work to those that are idle.

3.6 Optimal Collection of Techniques

The guiding factor in calculating an optimal solution to the iterative task scheduling problem
is the combinatoric explosion of each search state expansion. For relatively small task systems where
the number of potential search states awaiting exploration is not excessive, an informed search
technique such as A® is very appropriate. Parallelizing this approach with the continuous diffusion

technique produces the best combination of methods maximizing search efficiency. Unfortunately,




this method isn’t scalable since machine storage capabilities can quickly be exceeded. The A*
search technique is very good at keeping the search process focused toward an optimal solution
while expanding the fewest search nodes of the serial methods previously described; however, it
can’t compensate for the combinatoric explosion in the generation of successor search nodes since

each successor must be explicitly generated and maintained in system memory.

The only technique which doesn’t suffer from this limitation is the backtracking method
described in Section 3.2 where multiple successor nodes are implicitly generated. For efficient
operation, the algorithm is modified to include an evaluation function as in A* with branch-and-
bound decision criteria. The search technique is adapted to the distributed-list with load balancing
method with the addition of interprocessor communications of upper bound information which
emulates the continous-diffusion approach. This parallel modified backtracking (MBT) algorithm
incorporates an early global termination check into the search process which checks the solutions
against the initial lower bound flow time. If the search node is found to have a flow time which
equals the initial lower bound, all processors are halted and the solution is reported. If the initial
lower bound isn’t met, but the searchnode is a solution and its flow time is better than any other
solution previously found, this upper bound value is broadcast to all working processors to aid in
the bounding process and reduce the enumerated search space. Once all processors have exhausted
their search, the best global solution obtained is reported as the optimal solution. As figure 3.6
shows, the initial lower bound is based on the larger of the iterative task system’s critical path, and
[Z‘f;—kﬂ] where k is the number of iterations, 7; the execution cost of task T}, n is the number of
tasks, and m is the number of processors to be scheduled. Under no circumstances can a solution
with a shorter schedule exist [38:4-28]. When feedback arcs are introduced, the initial lower bound
can grow larger introducing more idle processor time given the same initial scheduling conditions.

This result is shown in Figure 3.7.

3.7 Parallel Communications

When designing an application to run on a coarse grain parallel computer such as the iPSC/2

hypercube, two parameters are particularly important in characterizing machine performance:

® tcqic — The time required to perform a floating point calculation.

® teomm — The time taken to communicate a single byte between two nodes.




PL: T1 TV T3| T3

P2: T2 T2’

Time: 0 1 2 3 4

(43}

a) Optimal schedule length = critical path

P1: T1 T} T3 T3’

P2: T2 T2

Time: 0 1 2 3 4

b) Optimal schedule length when <=0

Figure 3.6. Lower bounds on the schedule flow time.




P1: T1 T3 | TP T3
P2: T2 T2
Time: 0 1 2 3 4 5 6

a) Optimal schedule length = critical path

P1: Ti1 T'| T3 T3’

P2: T2 T2

Time: 0 1 2 3 4

b) Optimal schedule length when <=0

Figure 3.7. Lower bounds on the schedule flow time when feedback is introduced.




A relation which describes the granularity of  parallel machine and an application is the fractional

communications overhead:

t
fo = :omm (3'2)
cale
Ideally, f. is very small so that the full computing power of the parallel computer can be realized.
Any time spent in communications resulting in idle processing time constitutes a penalty on the

overall performance.

The iPSC/2 hypercube is a coarse grain machine due to its message passing interprocessor
communications topology. Therefore, f. is relatively large. In fact, given the communications
throughput of 2.8 Mbits/sec, and a 80386 processor capable of 1 MFLOPS, the fractional com-
munications cverhead, f, is 35% considering th: time to transmit one byte of information versus
the time to perform one floating point calculation. The actual cost of communications and the
effects of the underlying hypercube architecture is best understood when a normalized curve of
fe is analyzed [28]. As shown in Figure 3.8, the cost of communications is highest when message
sizes are small; i.e., the number of floating point operations needed to equate to the time spent in
transmitting a small message is high. This doesn’t mean that large messages are desirable though.
In fact, infrequent and small messages provide the best performance for a given application by

allowing the processors to spend very little time idle.

3.8 Summary

This chapter focuses directly on the scheduling process itself. Many of the serial search tech-
niques for finding solutions to optimations problems are described to reveal some of their inherent
limitations when dealing with potentially large search spaces. The backtracking method has the ad-
vantage of the implicit generation of multiple successor search states requifing a very limited storage
capability, while the IDA* method combined minimum storage requirem~nts with the guarantee of
achieving an optimal solution given an admissible heuristic evaluation function. The combinatorics
of the generalized scheduling problem are discussed to show the vast size of Lhe potential search
space and the prohibitive storage requirements for relatively small scheduling problems. The list
schednling method by which ready tasks are assigned to ready processors is examined to show
the anomalies which can prevent the generation of an optimal schedule even though an A* search
technique, which gnarantees an optimal solution provided h(n) < h*(n), is used. Unfortunately,

the solution to combat the anomaly aggravates the combinztoric explosion problem by introducing
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Figure 3.8. Normalized communications overhead of an iPSC/2 hypercube.

fictitious tasks to create idle processor times in the schedule generation process. Several paral-
lel search techniques are also discussed to show the manner in which a data decomposed search
problem can be solved on a parallel computer. Based on the search methods and implementation
techniques for parallelizing the search process, the best combination of methods is presented. This
parallel MBT algorithm uses a distributed-list with load balancing technique to maximize search
efficiency providing the ’best’ combination for obtaining a near linear speed-up of the search process
on a parallel, message passing architecture while not exceeding the physical storage limits of the
computer. Also, the communication characteristics of a coarse-grain computer such as the iPSC/2
hypercube is shown to require application decomposition to result in computationally intensive
sub-problems with minimal communications to maximize the machine’s processing potential, thus,

keeping overall processing times minimal and machine utilization efficiency high.
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IV. Low-Level Design/Analysis/Implementation

4.1 Introductior

The underlying search technique by which an optimal schedule is obtained determines the
success or failure of such an enterprise. Machine memory capacity and search time must be con-
sidered because of physical limitations of hardware and human patience. This chapter examines
the requirement for a modified backtracking (MBT) search technique and its characteristics. Also
studied are the data characteristics of simulation programs whose optimal execution schedule for
a message passing architecture such as the iPSC/2 is desired. Whether or not the task system
contains forward precedence constraints, feedback precedence constraints, or equal task execution
times can significantly effect the search processor. Based on a priori analysis of a task system’s
characteristics, several methods of generating schedules are conjectured to produce optimal sched-
ules in the most efficient manner. Three parallel techniques for distributing the search effort using
the distributed-list approach are discussed to reveal unique characteristics of the search tree in
generating optimal schedules. The use of Ada in the development of programs for validating these

schemes is also shown to be beneficial using the structured design methodology.

4.2 Backtracking Search Variations

As described in Chapter 3, the backtracking (BT) search technique requires the least storage
requirements of any search technique since only search nodes on the current search path need to
be maintained. Since all the search nodes generated are discarded except those on the current
search path, the search control structure evolves as a tree instead of a graph. When the algorithm
includes delayed termination where the entire search tree is explored, an optimal solution can be
obtained [31]. When bounding information is included in the search process, the search tree can be
trimmed to reduce the number of search nodes, and thus, the search time. The current best solution
value obtained throughout the search process is used to bound the global search tree and reduce
the number of search nodes which must be generated and evaluated. When heuristic information
(decision rules) is included in the search process, even more search nodes can be eliminated from
the search tree (branch-and-bound) providing a greater reduction in search time. This modified
backtracking process can significantly reduce the size of the search space as shown in Figure 4.1.
Part (a) represents the complete enumer. tion of the search space. Part (b) shows how using the
current best solution value can reduce the search space by reducing the number of search nodes

which must be generated. Part (c) shows how the search space can be reduced in size even further

when heuristic information is used.




(a) (b) ()

Figure 4.1. Schematic representation of three BT strategies.

4.2.1 Combination Trees When analyzing a balanced, non-uniform combination tree where
the branching factor at each level of the tree can be different as shown in Figure 4.2, the number

of states which exist can readily be found using the following equation:

L-1 i

Statesirar = 1+(D [ 0S5) (4.1)

i=1j=1

where L is the number of levels in the tree. Adding 1 to the total accounts for the first state at the

top of the tree. Note that this expression reduces to the familiar expression

Statesotal bfL -1 (4.2)

when the branching factor at each level is the same.

An upper bound for the size of the search space (total number of states), is easily found when
relaxing the precedence-constraints of a task graph. Initially, there are ,C,;, ways of assigning the
first set of tasks to processors. To ensure all solutions are obtained for VET task systems, the
remaining sets of assignments must consider permutations. Therefore, there are (n_pm)FPm ways of
assigning the second set of tasks to processors, (n-2m)Pm Ways of assigning the third set of tasks
to processors, etc... The last set of task assignments must consider the case where the number of

remaining tasks is less than the number of processors. In this case, the problem instance can be

viewed as assigning processors to the remaining tasks. Therefore, the total number of states which
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exist within the search space is found by setting the branching factor equal to the permutations of

each task assignment set:

Theorem 4.2.1 Statesiorar = 14+( f‘;ll Hj-=0 bf;) wherebf; = nCp forj =0 and (n=(i~1)r)Pm
forj>0. For nMODm # 0, bfr_y = (m)Pn-(L-2)m)

When the task system contains EET tasks, the permutation term can be reduced to combinations.
Also, if nMODm # 0, then the final term = 1:

Theorem 4.2.2 Statesyoia = l+(2f’=’11 ;=1 bf;) where bf; = nCp, forj =0 and (n=(j-1)m)Crm

for i >0. For nMODm #0, bfy_y =1

Unfortunately, the total number of search states is still rather large. When considering
precedence-constraint task systems, the total number of search states is reduce since not all assign-
ments are valid; however, the exact number of total search states for each task system is unique to
that system and highly dependent upon its precedence-constraint structure. Therefore, the number
of potential assignment combinations for each level when used as the branching factor overestimates
the number of combinations since precedence-constraint relationships restrict many combinations
from being realized; i.e., the combination tree becomes narrower and deeper as shown in Figure 4.3.
Also, when compensation for the list scheduling anomalies is applied to the scheduling process, the
combination tree becomes unbalanced. This results from an uneven distribution of tasks within
each level of the combination tree due to the idle processor times introduced as shown in Fig-
ure 4.4. Therefore, to ensure a true upper bound is obtained, the n terms of Theorum 4.2.1 must

be increased as outlined in Chapter 3.

4.2.2 Search Tree Pruning Better understanding of the effects of search tree pruning is
found when Figures 4.5 and 4.6 are examined. This iterative task system contains only five tasks of
equal execution time. Two iterations of each task are required to be scheduled onto two processors.
A complete expansion of the search tree produces 10,225 search nodes when idle processor states
are forced which compensates for the list scheduling anomaly! When upper and lower bound values
are used, the enumerated search tree is dramatically reduced to 65 search nodes. The upper bound
value is simply the current best solution value throughout the search, and the lower bound value is
the initial calculation of the larger of two values: [E-%;LE] where k is the number of iterations,
7; the execution cost of task T;, n is the number of tasks, and m is the number of processors to be
scheduled, and the critical path value of the initial task graph including iterations. When heuristic

information is used as well, the enumerated search tree is further reduced to 10 scarch nodes (the
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numbers above the search nodes in Figure 4.6 represent the order in which the search nodes are
generated). The additive evaluation function f(n), where f(n) = g(n)+ h(n), is calculated for each
intermediate search state in the same manner as the initial lower bound value is calculated. For
this particular task system, an improvement of four orders of magnitude is realized between fully

enumerating the search tree and using heuristic information to reduce the search space.

Figure 4.5. Iterative task system

4.2.3 Modified Backiracking Algorithm Implementation of the modified backtracking algo-
rithm requires simple data structure management of a stack using a linked list structur~ since the
stack size is predicated on the task system characteristics. This stack is commonly refered to as the

OPEN list [31]. The algorithm Al for conducting the modified backtracking search is as follows:

1. Calculate lower bound.




GOAL
g=5

IP_15,2 <— Lower Bound!

g = schedule cost
g._.?GAL Ipzlo,z R = set of ready tasks
mg, = number of available processors
= additive cost value (g + h)
IP = index pointer for task
combination assignment of successor

Figure 4.6. Explicit enumeration scarch tree (control structure) for MBT secarch.




2. Set upper bound = oo.

3. Generate initial search state and put it on OPEN.
4. Examine topmost node from OPEN.

5. If OPEN is empty, exit.

6. If the heuristic evaluation function f(n) > upper bound remove search node from open and

go to step 4; otherwise continue.

7. Generate a new successor of the search node and update the combination sequence of ready

tasks for future successor generations.
8. If no more generations are possible, remove search node frorn OPEN.

9. If sucessor is a goal, update upper bound and maintain solution (if necessary); otherwise,

discard it.
10. If solution cost of goal = lower bound, exit.
11. If not a solution, calculate branching and heuristic data of successor.

12. If not a solution and f(n) < upper bound, place on top of OPEN; otherwise, discard it.

13. Go to step 4.

4.2.4 Backtracking Search Implementation As shown in Figure 4.5, an iterative task system
can easily be depicted using a graphical representation of a system where all tasks execute only once
(multiple executions of the same task are treated as different tasks). This unfolding of an iterative
system allows critical path data to be calculated from each and every task regardless of the system
structure. The Floyd-Warshall algorithm with time and space bound @(na) is used to calculate
the critical path. Although there exists O(n?) algorithms for calculating longest path values from
a single source such as Dijkstra’s algorithm [10:527], and the Beliman-Ford algorithm [10:532], the
critical path from every node must be calculated increasing the complexity to ©(n3). The code
for the Floyd-Warshall algorithm is tight with no elaborate data structures, and so the constant
hidden in the 0-notation is small. This critical path data can then be used to help find the best
lower bound from each intermediate schedule. However, the one drawback to unfolding an iterative
system into unique tasks for these calculations is the large matrix data structure representing path
costs between adjacent tasks which results. The bounding expression above becomes O(n * i)%)
where i is the number of iterations required. For example, a task system with 20 tasks and 10
iterations requires an unfolded cost matrix of 200.X200 in size for the above algorithms. Should

this space requirement become prohibitive, a depth first recursive procedure may be necessary!
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In Figure 4.6, search state information is maintained within each search node in order to
generate successor search nodes when necessary. When each successor search node is initially
created and found not to be a solution, a list of ready tasks and ready processors is calculated
for the next schedule point where at least one task and one processor are ready. This successor is
created by assigning a combination of ready tasks to ready processors. The actual tasks which are
assigned wlen a successor search node is generated is determined by the set of combination index
pointers, IP. This set is then updated to identify the next combination of tasks to assign if an when
it becomes necessary to generate another successor. For example, given three ready processors
and two ready tasks, the set of combination IPs is {(12),(13),(23)}. Search node 8 represents the
assignment of ready tasks in the set R of search node 2 when the combination IPs of search node 2
have been updated to the pair (13). The real cost, g, of each intermediate schedule is determined
from the processor with the longest schedule; 1.e., the maximum finish or flow time as described in

Chapter 1.

g(n) = max(w(lh ))i:l. P (43)

where p is the number of processors to schedule, p; is the processor, and w is the flow time.
The heuristic value, h(n), is calculated as the new lower bound from the current intermediate
schedule. Finding a lower bound as close to the upper bound is essential in limiting the search
space. Therefore, both bin packing and critical path information are used to aid this process (8}
[20] [26].

Theorem 4.2.3 Given an ilerative task system of arbitrary precedence and variable execution time
tasks, the minimum schedule length can be no less than max([zk,:ll'-]), Critical Path, Current
Schedule Length) where n is the number of tasks (including iterations) awaiting scheduling, m is

the number of processors being scheduled, and 7, is the excculion time requirement for task T, [38].

Applying this theorem to the scheduling process provides lower bound values for all non-
solution schedules in the search tree. For example, at an intermediate schedule, all the remaining
task execution units are summed. Those processors whose schedule lengths are smaller than the
schedule flow time are made to be equal by subtracting the difference from this total. The remaining
value is then divided by the number of processors with the result rounded up to the nearest
integer. This value becomes h;. Also, critical path data from the last task assigned on cach

processor is applied to that processor’s flow timme to determine a maximum flow time for the schedule.

The largest difference between cach processors’s new flow time estimate and g(n) for the actual




intermediate schedule becomes k3. The larger of these two values then becomes h(n).

hy = I'Z?=1 7i = 3 F 1 (@(P)mas ~ “’(Pi))-l

~ (4.4)
hy = max(w(p;) + cp(pi))i=1.p — 9(n) (4.5)

and
h(n) = max(hy,hs) (4.6)

where h(n) > 0, n is the number of scheduled tasks, 7; is the execution costs of each unscheduled
task, and cp is the critical path. The actual flow time and the heuristic value are then added to

produce a lower bound for the intermediate schedule (the additive evaluation function).

f(n) = g(n)+h(n) (4.7)

An example of these calculations for the task system in Figure 4.7 with the intermediate schedule

shown results in

hy = max(4+2,2+2)-4

such that

fn) = 6

4.8 Scheduling State Combinatorics

Any simulation system which can be developed into unique control (task) entities can be
represented using a task graph. The search process must implicitly generate all combinations of
scarch states for all ready tasks at each scheduling point to ensure an optimal schedule is found.
The sensitivity of the relationship between the number of ready tasks and the number of ready

processcrs in generating search nodes is fully appreciated when a combination curve is examined.
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Figure 4.7. Intermediate schedule for lower bound calculations




For example, the largest number of combinations which can be taken from a given number occurs
when half the number is taken at a time. Figure 4.8 shows the bell shaped curve which represents
this characteristic of numsiical combinations. When 20 items are taken 10 at a time, 184,756
combinations exist. Therefore. if 20 tasks are ready to be scheduled, increasing the number of
ave!iible processors from 1 up to 10 dramatically increases the number of search nodes the search
process must implicitly generate, while increasing the nuinber of available processors from 10 up
to 20 dramatically reduces this number. In fact, the combination gradient is greatest between 7 &

8 (12 & 13) where number of combinations increases (decreases) by 48,450 for this example. This

Number of
combinations Combination Curve
200000 T T T T T T T T T

180000
160000 -
140000
120000 f-
100000
80000 -
60000
40000 +
20000

00—

Items taken m at a time

Figure 4.8. Combination curve for 20

dramatic change in the implicit generation of search space based on the availability of one more or

one less nrocessor at a scheduling point can greatly affect the search time.

4.4 Characteristics of Simulation Systems

4.4.1 Sensitivity Analysis Three important characteristics of simulation systems are (1)
forward precedence constraints, (2) feedback precedence constraints, and (3) the difference in task
execution times. Modifying a simulation graph by removing or increasing the number of task
dependencies, adding feedback depcendencies, or modeling a system with equal execution time tasks
can all have a significant effect on the size of the explored search space. Figure 4.9 shows a task

system with seven EET tasks which must each execute twice when scheduled onto two processor.
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Figure 4.9. Simulation task system.




As Table 4.1 reveals, the size of the enumerated search space varies significantly when these
parameters are modified by doubling the execution times for the even numbered tasks, removing a
constraint arc from T'1 to T4, or adding a feedback constraint arc from T'7 to T1. All search trees

generated assume a modified backtracking process with list scheduling compensation.

Table 4.1. Sensitivity analysis of a simulation system’s execution constraints

Search Nodes || Lower Optimal Feedback Equal Execution | Relaxed Constraint
Generated Bound | Schedule Cost | < 4-{(7'7,T1)} ! Times (EET) < —{(T1,T4)}
8 7 8 X
21370 7 8 X X
7988 7 10 X X
17 10 11
50590 10 11 X
502 10 12 X

4-4.2  Minimizalion of Scheduling Combinatorics In an iterative EET task system regardless
of feedback contraints, the maximum number of tasks available for execution at any one time is the
number of tasks in the original system (iterations not included). As shown in Figure 4.10, given

enough iterations, each level of the task system can eventually be combined with every other level

for scheduling.
Theorem 4.4.1 In EET task systems, for i = 1 — 00,maxnyeady = n.

For an EET task system containing n tasks, scheduling at least n processors reduces the uumber of

combinations for each assignment to 1. Therefore, if there are enough processors at each scheduling

point to schedule all ready tasks, the task system can be optimally schedule within v discrete step

where 7 is the maximum depth of the search tree; i.c., the number of tasks in the initial critical

path including iterations.

Theorem 4.4.2 In EET {ask systems, for m > n, the optimal solution can be found i v steps

where v is the number of tasks on the crilical path of the initial lask graph including iterations.

For Figure 4.10, an optimal schedule can be found in six scheduling steps. However, the breadth
of the schedule may be such that many tasks which communicate don’t physically reside on the

same processor. If interprocessor communication costs are considered, such an optimal mapping

may not prove to be optimal upon execution of the simulation.




Fignr 4. 9. Iterative EET task scheduling example for max ny.qqy = n.




4.6 Scheduling Process

The process of making a scheduling decision at each level in the search tree requires knowledge
of the free tasks (tasks whose constraints have been relaxed due to completion of parent tasks),
and the free processors. The scheduling point must be determined by scanning the free times of
the processors in a non-decreasing order until based on the scheduling relationship of the tasks
scheduled, at least one task is free. In simulation terminology, this equates to the next-event time.
As indicated in Figure 4.11, the next valid scheduling point is at time 3 since task 2 constrains the

second interation of itself and the first iteration of task 3 until it completes.

The following algorithm A2 defines this process:

1. Sort list of processor_ready.times.

2. Scan list of processor_ready.times until ready_time t, where ¢ represents the earliest instance

at least one task is now unconstrained.
3. List assign first combination of ready tasks to ready processors.

4. Update combination index pointer (IP) for next assignment.

4.6 Sequential Search

The underlying search techniques for generating optimal schedules for simulation task systems
vary depending upon whether feedback among the tasks exits, task execution times are identical,
task iterations can be scheduled all at once, and task migration among the paiallel processors
is permiitted. As Table 4.2 indicates, seven methods can be imployed in generating an optimal
schedule based on this criteria. Each method takes advantage of the characteristics of the task
system to produce the smallest search tree possible, and thus, produce an optimal schedule in an

efficient manner.

‘Table 4.2. Sequential search methods

[ Method || Feedback | Execution Times | Iterations | Task Migration ||

i No Equal Together No
2 No Variable Separate No
3 No Variable Separate Yes
4 Yes Equal Separate No
5 Yes Equal Separate Yes
6 Yes Variable Separate No
7 Yes Variable Separate Yes




~ :
~ ~
~ ~
~ \\
\\ ~
~ ~
~ ~
~
\\ \\
\a ~ H
~ .! .
~
~
~
~
-~
~
~
~
~
| .H

Processor Ready Times: 15,13

P1: | T1 TY

Ready Tasks at ¢,: none

Po: T2 Ready Tasks at t3: 73,72

Assignment Combinations: 1
Time: 0 1 2 3

|

Valid Scheduling Point

Figure 4.11. Scheduling point decision.




Search method 1 reduces the number of scheduling points and the :cheduling combinations
which must be implicitly generated. Since systems being modeled with EET tasks don’t require
compensation for the Lst scheduling anomalies, this all-iterations-first strategy reduces the original
complexity of the problem making the relative time costs for obtaining a solution minimal. As
shown in Figure 4.12, a three task system can quickly be scheduled onto two processors in four
steps (scheduling points) using the all-iterati~ns-first strategy in comparison to six steps when each

task iteration is treated as a unique task for scheduling purposes.

Search methods 2 and 3 compare the effects of allowing task migration on the scheduling
process for variable execution time tasks. Preventing task migration reduces the complexity of ex-
ercising the simulation, but it can cause the search tree to be larger in depth and produce schedules
whose flow time is greater than schedules with task migration. Interprocessor communication cost
at run-time aren’t considered in order to speed the schedule generation process and reduce the
search space to a size determined by combinations of task assignments at each scheduling point

versus permutations.

Search methods 4 and 5 compare the effects of allowing task migration on the scheduling
process for equal execution time tasks when feedback constraints exist. Feedback constraints gen-
erally increase schedule flow times by introducing processor idle times caused by a feedback focal
point. Also, feedback precludes the use of the all-iterations-firststrategy even though the simulation

system contains only EET tasks.

Search methods 6 and 7 compare the effects of allowing task migration on the scheduling
process for variable execution time tasks when feedback constraints exist. The performance results

are conjectured to be identical to method 2 & 3 above.

4.7 Parallel Search

Optimal schedules for implementation of simulation systems on a parallel, message passing
machine such as the iPSC/2 require implicit search within a potentially large space. The modified
backtracking algorithm attempts to reduce this space as much as possible; however, real improve-
ment on search time can only be acheived if the search tree is parsed into smaller sections where
simultaneous searching of these sections can occur. Such is the intent of parallelizing the sequential

search process.

Three parallel techniques are explored to identify the most cfficient method. As Table 4.3
indicates, each method differs from the other based on upper bound communications and load

balancing activities. All three methods use a distributed-list approach for machine scalability.
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Figure 4.12.  Scheduling simplification for EET task systems sithout feedback. (a) Task system
requiring three iterations. (b) Each iteration assigned separately. (c) All iterations
assigned together (all-ilcrations-first strategy).
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Such an approach doesn’t suffer from the bottleneck effect of the centralized list approach when

many processors are assigned to the search process [12].

Table 4.3. Parallel search methods

Method || Data Upper Bound Load Balancing
Decomposition | Communications
1 distributed list
2 distributed list | X
3 distributed list | X X

In all parallel search methods, each physical processor starts by generating search nodes in a
modified breadth-first manner; i.e., only the p most search nodes at the top of the search tree are
generated where p is the number of physical processors being used to find an optimal schedule. At
this point, each process keeps the search node whose position on the OPEN list corresponds to its
node number and discards the rest. For instance, if there are eight processors available, the initial
modified breadth-first search conducted on each processor will produce an OPEN list containing
eight search nodes on each processor P. P1 will keep the 1°*! search node, P2 will keep the 274, P3
the 3", etc ... The modified backtracking search is then initiated and proceeds until an optimal

solution is found.

In parallel search method 1, once each processor has an initial search node to work from, all
physical processors procecd in their search unzvated until all processors run out of search space
to explore. This is conjectured to produce an ineflicient search where additional search space is
unneccessarily explored and machine utilization is poor due to load imbalancing. In parallel search
method 2, local upper bound infermation is passed on to the other working processors to aid in the
global pruning process of the local search trees. This is conjectured to reduce the explored search
space but with little or no improvement in machine utilization efficiency. In parallel search method
3, load imbalancing is corrected with on-demand movement of search nodes to idle processors. This
method is conjectured to greatly ‘mproving machine utilization efficiency an produce an optimal
schedule in the minimum amount of time. All three parallel search methods require an exhaustive
search, but with upper bound communications and load balancing activities, the global search tree

enumerated should be a fraction of the search tree enumerated when such activities don’t occur.

Since the search process is exhaustive, all working processors must implicitly explore their
associated initial search space under methods 1 & 2 before an optimal solution can be assertained.

, in method 3, loa i 2 ach processor’s initial search space to change whe
However, in method 3, load balancing causes each processor’s initial search s to change when

load balancing requests are satisfied. Such requests are satisfied by sending the search node highest




in the search tree to the requesting processor. This attempts to amortize the cost of satisfying the
load balancing request by ensuring as much potential search space as possible is provided to the
requesting processor. A counter is then initialized so that a specified number of search expansions
occur before another load balancing request is satisfied by the same processor. This number is
determined to be the worst case depth of the local search tree n* 4, where n is the number of tasks,
and 7 is the number of iterations regardless of the actual task system structure. This worst case
value ensures that the processor has an opportunity to find at least one solution prior to again
losing data to a load balancing request. Such a threshold reduces load balance thrashing between
the processors and provides the global search process the potential for a new upper bound value
within the threshold limit. For example, Figure 4.13 shows a simple simulation system with three
EET tasks. Each task must execute for three iterations. When scheduling this system onto three
processors, nine scheduling decisions must be made to find a complete schedule when the feedback
constraint is assumed (Figure 4.13, part (b)), whereas only five scheduling decisions must be made
when feedback isn’t assumed (Figure 4.13, part (¢)). Each scheduling decision represents a new
level in the search tree for this example. Thus, if the structure of the actual task system results in
a maximum search tree depth of five, at least one new solution value is guaranteed the opportunity
to be discovered. Due to heuristic pruning though, actually realizing a new solution may not occur.
The actual maximum depth of the search tree isn’t considered since the primary objective of the
threshold value is to delay satisfying load balancing requests until at least one new solution is given

the opportunity to be found.

During the load balancing process, when a processor identifics an empty local OPEN list, it
makes a request to its nearest logical neighbor. Should the requesting processor receive a negative
reply, it then makes the same request to the logical neighbor of the processor which denied the
request. This request proceeds in a spoke fashion as shown in Figure 4.14 until either it is satisfied
by another processor, or all processors have been polled. Such a strategy is simple to implement
and doesn’t suffer from excessive communication costs. The summation of links traversed in com-
munications with all processors in a logical order is no different than when communications proceed
in a physical order based on increasing path lengths expanding out from the starting processor.
Figure 4.15 shows the processor interconncction topology for a hypercube with eight processors.
As Table 4.4 shows, the total number of links traversed for both methods is the same. Although
the intermediate sums may favor the later communications order as indicated by the link totals
through the third load balancing request, the communication latency for an iPSC/2 varies by at

most 10% between any two processors [13.441], 1.c., the added communications latency is relatively

insignificant considering the simplicity of the implementation.
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Figure 4.13. (a) Simulation task system. (b) Iterative graph for < +{(7'3,7'1)}. (c) Iterative
graph without feedback.
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Figure 4.14. Parallel load balancing and termination communication structure.
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Figure 4.15. Interconnection topology for a hypercube with 8 processors.

Table 4.4. Communication path lengths for the hypercube interconnection topology starting from

processor 0.
i Logical Order Increasing Path Length Order
Destination | Links | Accumulative || Destination | Links | Accumulative
" Processor Link Totals Processor Link Totals
1 1 1 1 1 1
2 1 2 2 1 2
3 2 4 4 1 3
4 1 5 3 2 5
5 2 7 5 2 7
6 2 9 6 2 9
7 3 12 7 3 12




If the case arises wherein all processors have been polled and all have denied the load balancing
request, a termination check message is initiated in the same ring order. Each processor will receive
the termination check message and pass it on to their logical neighbor unless they are still working;
i.e., their OPEN list isn’t empty. Each termination check message is uniquely identified by the
processor 1D which initiated the message. If a processor receives a terminatien check message with
the same ID as itself, the message has successfully traversed the ring network indicating all other
processors are idle too, at which point it broadcasts a terminate message so the processor network
can synchronize, collect performance data, and identify the optimal solution. Figure 4.14 represents

this termination sequence initiated by processor PO for an 8 processor configuration.

The algorithms for the three parallel versions identified in Table 4.3 are all slight moditica-
tions of the MBT algorithm to account for load distribution, load balancing, and communications

requirements. Each algorithm executes the same initialization as follows:

1. Calculate lower bound.
2. Set upper bound = oo.

3. Generate P search states and keep P; search state on OPEN.

When each algorithm exits on all processors, global data collection routines are invoked to obtain
the global optimal solution from among all the local optimal solutions, aleng with performance
data for analysis of the search process. The following algorithm PAl executed on each processor

describes parallel method 1:

1. Examine topmost node from OPEN.

2. If OPEN is empty, cxecute global minimum to determine global optitnum solutien from all

local ¢, timum solutions, then exit.

3. If the heuristic evaluation function 7(n) > upper bound remove search node from open and

go to step 1; otherwise continue.

4. Generate a new sucesssor of the search node and update the combination sequerce of ready

tasks for future successor generations.

5. If no more generations are pe -sible, remove search node from GPEN

<

. If successor is a goal, update upper bound and maintain solution {if nacessaryl: otherwise,

discard it.

-]

if solution cost of goal = lower hound, exit.




8.

9.

10.

If not a solution, calculate branching and heuristic data of successor.

If not a solution and f(n) < upper bound, place on top of OPEN; othervise, discard it.

Go to step 1.

Note that this algorithm is the same as the M'3,' algorithm described in Section 4.2.3. The

following algorithm PA2 executed on each processor describes method 2 with the upper bound

communications requirement:

10.

11.

. Examine topmost node from OPEN.

. If OPEN is empty, execute global minimum to determine global optimum solution from all

local optimum solutions, then exit.

. If the heuristic evaluation functicn f(n) > upper bound remove search node from open and

go to step 1; otherwise continue.

. Generate a new successor of the search node and update the combination sequence of ready

tasks for future successor generations.

. If no more generations are possible, remove search node from OPEN.

. If successor is a goal, update upper bound, maintain solution, and broadcast new upper bound

value to other processors (if necessary); vtherwise, discard it.

. If solution cost of goal = lowei bound, exit.
. If not a solution, calculate branching and heuristic data of successor.

. If not a solution and f(n) < upper bound, place on top of OPEN; otherwise, discard it.

Poll for upper bound message and update local upper bound value when received (if neces-

sary).

Go to step 1.

Note the simple additions of broadcasting upper bound data to the other processors and polling

for these messages. Since method 3 incorporates load balancing to improve machine utilization

efficiency, processors must wait after their OPEN lists become empty until the proper termination

sequence has successfully completed. This causes the MBT algorithm to grow considerably in

complexity as defined by algorithm P.A3 below:

1.

Examine topmost node from OPEN.




10.

11.

12.

13.

14

15.

4.8

this

. If OPEN is empty, send work request to another processor and go to step 10.

. If the heuristic evaluation function f(n) > upper bound remove search node from open and

go to step 1; otherwise continue.

. Generate a new successor of the search node and update the combination sequence of ready

tasks for future successor geuerations.

. If no more generations are possible, remove search node from OPEN.

. If successor is a goal, update upper bound, maintain solution, and broadcast new upper bound

value to other processors (if necessary); otherwise, discard it.

. If solution cost of goal = lower boun., exit.
. If not a solution, calculate branching and heuristic data of successor.

. If not a solution and f(n) < upper bound, place on top of OPEN; otherwise, discard it.

Poll for termination check message and pass it on to next processor if OPEN list is empty. If

termination check message originated from this processor, broadcast terminate message and

exit.
Poll for upper bound message and update local upper bound value when received (if neces-
sary).

Poll for work reply message. If positive, place search node on OPEN and go to Step 1. If
negative and all processors have responded, initiate termination check message and go to step

10; otherwise, go to step 2.

Poll for work request message. Send search node to requester if load balance threshold is

exceeded; otherwise, send negative reply message.
Poll for terminate message. If received, exit.

Go to step 1.

Software Development using Ada

Developing a software program to exercise and evaluate the algorithmic ideas contained within

research is a complex task. However, using the functional design methodology and coding the

modules in Ada which has considerable expressive puwer reduced the potential effort considerably

[8]. This provided greater time for analyzing the search process and performance efficiency of the

iPSC/2 hypercube running the parallel search algorithms.
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4.8.1 Functional Design Tunctional design decomposition involves considering a system as
a set of interacting functional units. Since the most important design quality attribute is main-
tainability, maximizing cohesion in a software component and minimizing the coupling between
software components is essential in achieving that goal. Although the software developed during
this research may be relatively short-lived, these attributes of a good functional design are very
valuable in rapidly developing operational code and making the necessary modifications for the
various types of scheduling methods requiring investigation. Once all the procedural operations are
developed, orchestrating their activities to perform the modified backtracking algorithm as defined

in this chapter is a simple niatter.

4.8.2 The Ada Languege Many languages satisfy a collection of requiren. :nts:

o Structure Constructs.

Strong Typing.

Relative and absolute precision specifications.
¢ Information hiding and data abstraction.

¢ Concurrent processing,.

Exception handling.

Generic definitions.

¢ Machine-dependent facilities.

However, Ada brings all these elements together in a single language uniting them into one co-
herent model making program application development comparatively less complex. Structured
constructs, strong typing, and information hiding and data abstraction are key elements fully
taken advantage of in the development of the parallel search programs. Such attributes allow
early detection of many programming errors at compile time versus spending many hours debug-
ging semi-operational code. Code maintenance is also simplified due to the structured constructs

allowing code modifications well after initial development to be relatively easy.

Within the development environment of the iPSC/2, the Ada constructs for managing the
interprocessor communications are very similar to the two other programming languages available
for this machine, C and Fortran. However, a firm understanding of the comniunications hardware

is necessary to ensure that the programmer is in control, and not the hypercube!
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4.9 Summary

This chapter focuses on the MBT search technique and its algorithmic implementation. Since
the maximum number of search nodes which must be maintained during the search process at any
one ti*ac is the maximum depth of the search tree, this method alleviaies the problem of machine
storage limitations in practical applications. The MBT search enumerates a n:uch smaller search
tree than the standard backtracking method with delayed termination resulting in reduced search
times. This results from the use of heuristic, lower bound, and upper bound information. The
actual number of search nodes created for Figure 4.5 are shown to be reduced by a factor of over
10,000 when the MBT method is compared against the standard BT method with deiayed termi-
nation. Unfortunately, sensitivity analysis of system data reveals the poorly behaved scheduling
combinatorics where minor modifications of the system cause wide variations in the number of
search nodes explicitly generated by the MBT method. A priori analysis of the simulation task
system is also shown to be an important factor in determining how an optimal schedule is built.
Task execution times, iteration groupings, and task migration allowances are important character-
istics of simulation systems in producing optimal schedules in the most efficient manner. Three
parallel techniques are described for implementing the MBT search algorithm on an iPSC/2 hy-
percube with the Ada programming language. Methods 2 & 3 build on method 1 and increasingly
traded simplicity for machine efficiency to improve the potential speed-up of the search process.
The use of Ada in developing programs to exercise the parallel MBT algorithms on the hypercube
was very beneficial in rapidly developing operational code. The structured design approach fit well
with the algorithmic description of the MBT method allowing the operational programs to be well

structured and easily maintainable.
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V. Simulation Applications/Search Performance Results

5.1 Introduction

Task systems for simulations vary significantly based on what is being simulated. In war
gaming simulations, task execution costs vary from one task to another, tasks repeat execution,
and feedback constraints exist. The logical partitioning of activities for such simulations creates
tasks which simulate actual organizations within a military unit from the headquarters down to
the field units which must carry out the orders and provide battle status information (feedback)
to the commanders. In VHDL circuits, feedback of circuit information is often used for control
of circuit activity. However, many circuits can be implemented on parallel computers without
feedback. An example of such a circuit is an 8-bit adder which adds numerous pairs of numbers in
a pipelined manner. Although each task executes many times, no information is passed back to any
parent tasks. Also, the task execution costs can often he assumed identical due to the simplicity
and commonality of the tasks. Therefore, when searching for an cptimal schedule for such task
systems, such information is useful in reducing the search time as outlined in Chapter 4. When
the system is actually implemented on a parallel computer, task migration must also be addressed.
If the difference in communication costs between tasks on different processors and tasks on the
same processor are negligible, task migrations can be allowed in the scheduling process further
minimizing the schedule length. Since the most difficult scheduling problems to solve are those
classified as N P-complete, the iterative scheduling problem with variable execution time tasks and

feedback constraints is examined for search time performance on an iPSC/2 hypercube.

5.2 Task Labeling

Task labeling is the process of assigning task numbers to the tasks. The task numbering
convention chosen is such that arcs between tasks labeled in increasing order represent feedforward
dependencies while arcs between tasks labeled in decreasing order represent feedback dependencies.
This labeling scheme is necessary to identify which tasks precede others in the adjacency matrix
for the schedule generation process when feedback is considered. The feedback information is
maintained in the lower triangle of the adjacency matrix with the upper triangle maintaining the

feedforward information.

5.8 Testing Methodology

Validation of the parallel MBT algorithm requires experimental analysis of the run-time

output to ensure the algorithm is free from errors and complies with its requirements in its im-




plementation form. The requirements are to generate optimal schedules for iterative task systems
with arbitrary precedence-constraints (feedback included), and variable task execution times using
parallel techniques to improve the search time. Since the scheduling combinatorics exhibit great
sensitivity to these task system parameters as described in chapter 4, the uniqueness of each con-
ceivable example in its search space and time values prohibits meaningful comparison among them.
A true validation of algorithm performance is made by varying the parallel run-time parameters
using the same input data. The run-time parameters adjusted for validation of the parallel MBT al-
gorithm are the number of processors used in the search process and interprocessor communications

and load balancing activities.

5.4 Generic Simulation

Figure 5.1 represents a computer simulation known as the car wash [42]. This is essentially
a queueing problem designed to analyze computer performance based on task partitioning and

assignment to a varying number of processors. To validate parallel search methods 1 through

@) ()
W

Figure 5.1. Computer simulation of a car wash.




3 for maximum performance, the car wash simulation for three iterations is scheduled onto two
processors of the iPSC/2 hypercube using the same computer. As indicated in Table 5.1, the
best search time and load balancing is achieved using parallel search method 3 (i represents the

average run-time for the processors, and o is the standard deviation of those run-times). When the

Table 5.1. Search time performance using 8 processors to schedule 2.

Method || p (sec) | o (sec) | Search Nodes | Upper Bound | Load Balancing | Load Balancing
Created Messages Requests Satisfied
1 167.0 | 85.00 71,972 0 0 0
44.4 15.20 18,909 6 0 0
3 44.2 0.03 18,870 6 405 121

number of processors used to create the optimal schedule for two processors is varied, the search

performance results further support parallel search method 3 as the *best’ method when considering

search space and time.

Table 5.2. Search time petformance using 4 processors to schedule 2.

Method || p (sec) | o (sec) | Search Nodes | Upper Bound | Load Balancing | Load Balancing
Created Messages Requests Satisfied
1 188.0 61.80 41,524 0 0 0
85.0 20.00 18,647 3 0 0
3 86.0 0.02 18,648 3 83 28
Table 5.3. Search time performance using 2 processors to schedule 2.
Method |[ u (sec) | ¢ (sec) | Search Nodes | Upper Bound | Load Balancing | Load Balancing
Created Messages Requests Satisfied
[ 1 188.0 | 37.40 20,731 0 0 0
I 1232 .| 27.80 13,541 3 0 0
E 1245 | 0.04 13,539 3 28 7

Parallel machine efficiency is defined as the ratio of parallel speed-up to the number of pro-

cessors used:

Sp
, gl
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Table 5.4. Search time performance using 1 processor to schedule 2.

" Method ¢ || 4 (sec) | o (sec) | Search Nodes | Upper Bound | Load Balancing | Load Balancing

Created Messages Requests Satisfied

T 1t [ 326] - | 18147 | 0 | 0 [ 0

|

8Methods 2 & 3 don’t apply

where S, is the speed-up obtained and P is the number of processors. Table 5.5 shows the ¢ values

for the car wash schedule generation results.

Table 5.5. ¢ values for car wash schedule generation.

Processors P || Search Nodes | T, (sec) | T, (sec) | Sp | € (%)
Created

2 13,539 124.5 329.6 | 264] 1.32

4 18,648 86.0 329.6 | 3.83| 0.96

8 18,870 44.2 329.6 | 746 | 0.93

As indicated in Table 5.5, maximum parallel efficiency occurs when two processors are used in
the search process. In fact, the efficiency is greater than 1 resulting in a speed-up for two processors
greater than linear. Also, the parallel efficiency decreases when more processors are added to solve
the problem. Since the ultimate goal of using a parallel computer is to reduce the run-time by
at least a linear factor in proportion to the number of processors used, these results at first are

disturbing. However, due to the nature of the search process, this is expected!

When applying 2 search process using data decomposition techniques, the overall run-time of
the process isn’t the only indication of algorithm performance. Another indicator is the enumerated
search space actually explored. In this case, using only two processors resulted in the least <earch
space explored to obtain the optimal solution. In fact, the increasing order of ¢ is directly related
to the number of search nodes created as Tables 5.1-5.3 indicate. In general, using more processors
reduces parallel machine efficiency slightly due to the potential for duplication of search efforts
caused by lack of global knowledge by the processors at each step in the search node generation

process. However, significant speed-up of the secarch process can still be obtained.

Another performance metric for the parallel MBT algorithm is the number of search nodes

generated per processor for a given problem per unit time.

secarch_nodes_crecaled

Pxp




where 8 = the number of nodes generated per processor per second. Given the data in Tables 5.1-5.3

for parallel method 3, 8 = 54.25 with o = 0.6 for the four samples used.

5.5 VHDL Simulations

Using VHDL on a parallel machine to simulate VLSI circuits is very important in reducing the
time spent on circuit design and analysis. Scheduling VHDL tasks onto a parallel computer in an
optimal sequence ensures a minimum simulation run-time for a given analysis requirement. VHDL
circuits designed for implementation on an {PSC/2 hypercube [9] are used as source data for the
’best’ parallel search algorithm, parallel method 3. One circuit is a carry-lookahead adder which has
30 VET tasks each requiring 4 iterations. A search time limit of 600 seconds was set to evaluate the
search performance. Unfortunately, an optimal solution couldn’t be found within this time limit.
Since general simulation problems are N P-hard with exponential search time requirements, such
limitations are necessary to prevent excessive delays in aquiring data while providing the ’best’
solution within the desired time limit. As indicated in Table 5.6, the search limit of 600 seconds
is reached when attempting to schedule the simulation onto 8 :ocessors using an n dimension
hypercube where n varies from 0 to 3. Although the schedule length of 68 is only within 21% of the
lower bound for all runs, no guarantee is made that the lower bound can be achieved given enough
time. In fact, the solution reported may be the optimal solution given the precedence-constraint
relationship of the simulation system. Unfortunately, this can only be guaranteed if the search
process is given the time to explore all viable scheduling possibilities; i.e., the process terminates

on its own. When the input data is changed to schedule 4 processors instead of 8, the 600 second

Table 5.6. Search performance to schedule a carry-lookahead adder onto 8 processors.

Processors Search Lower | Schedule | Search Nodes | 8 | pg | o
Used Time (sec) | Bound | Length Generated
8§ || 600 54 68 181,900 | 37.9
T | 93,214 38.8
2 I 48,163 40.1
T |l 26,828 [ 44.7 | 40.3 | 2.6

time limit is again reached, but now the solution reported is within 7% of the theoretical optimal
value as shown in Table 5.7. Again, the realization of this theoretical value may not exist due to

the precedence-constraint relationship of the simulation system.

Another VHDL circuit used for scarch performance analysis is a 4-bit VIIDL adder circuit

which consists of 20 VET tasks each requiring 4 iterations. Using parallel method 3 and limiting
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Table 5.7. Search performance to schedule a carry-lookahead adder onto 4 processors.

Processors Search Lower | Schedule | Scarch Nodes | 8 | up | op
Used Time (sec) | Bound | Length Generated
8 600 108 116 229,682 47.8
4 114,690 47.8
2 57,258 477
1 28,761 479 | 47.8 | 0.07

the search time to 600 seconds again provided the results shown in Table 5.8. When the input
data is changed to schedule 4 processors instead of 8, the lower bound solution is immediately
found as shown in Tat!-5.9. This optimal assignment establishes and optimal schedule length with
the minimum number ¢' processors. When interprocessor communication costs are considered, this
schedule can outperfoim the 8 processor schedule as reported by [9] even though the schedule length
is longer. The large difference between the costs of context switching for intraprocessor commu-
nications and sending messages accross the processor interconnection network for interprocessors
communications benefit the seemingly inferior schedule. In general, an optimal mapping for a sim-
ulation system which minimizes the schedule lengths and the number of processors may perform
better in the simulation run-time environment when interprocessor communications are realized.
Comparing the reported schedule lengths with the lower bound values can guide the evaluation of

these results.

The B values for the VHDL simulations further show algorithin sensitivity to the simulation
characteristics and not the run-time parameters when the rate of search node gencration per pro-
cessor, f3, is examined. In Tables 5.6-5.9, the mean 8 value may vary from simulation to simulation,
but the standard deviation for these values is extremely low indicating a strong correlation to the
individual simulation systems. The variation from data set to data set can be attributed to the im-
plementation characteristics in making the actual task assignments and the combinatorics involved.

Assigning a greater number of tasks at each search node generation point takes slightly more time

Table 5.8. Search performance to schedule a 4-bit adder onto 8 processors.

Processors Search Lower | Schedule | Search Nodes | 8 | pup | op
| Used Time (sec) | Bound | Length Generated

8 | 600 14 16 241,537 | 50.3

T | 118,875 [ 495

7|l 59,659 [ 49.7

| 29,748  [49.6 | 49.8 | 0.3




Table 5.9. Search performance to schedule a 4-bit adder onto 4 processors.

Processors Search Lower | Schedule | Search Nodes | S us | os
Used Time (sec) | Bound | Length Generated
8 1 28 28 361 45.1

| 4 | 190 475

|2 99 49.5
1 50 50 |{48.01} 19

in this implementation reducing the search node generation rate per processor when comparing

simulation systems which vary only in the number of processor upon which they are scheduled.

Prior to invoking the search process to find an optimal assignment of simulation tasks to
processors, an estimate of the worst-case run-time can be helptul in understanding the complexity
of the scheduling problem and setting an acceptable search time limit. Calculating the upper bound
values for the size of the search space as described in Chapter 4 and executing short scheduling runs
to extract a representable B va'-e for the given data, a worst-case search time can be calculated.
For example, if 10 million possib! earch states exists, and the search node generation rate for the
given data is 50 nodes/sec/processor, then applying 1024 processors to the problem can bound the
search time at 195 seconds. If only 128 processors are used, the search time limit increases to 1,563

seconds or 26 minutes!

5.6 Summary

Individual task systems are poorly behaved in relation to one another. Minor changes in their
structure given the same number of tasks can result in vast changes in the size of the search space
which must be implicitly explored to find an optimally minimum schedule. Therefore, validation of
run-time performance for the parallel MBT algorithm requires analysis of scheduling performance
when run-time parameters are modifi.d. Varying the number of processors, adding upper bound
communications, and incorporating Inad balancing activities among the working processor shows
a significant change in overall performance. Applying more available processors to the search pro-
cess, adding upper bound communications between the processors, and performing load balancing
to maximize machine utilization provides ncar lincar speed-up in the scarch process. Although
parallel efficiency drops off slightly when more processors are added to the scarch process. the de-
sired improvement in scarch time is realized. Unfortunately, given the combinatorics of optimally
scheduling simulation systems, the necessary parallel search time may be to costly. To determine

a worst-case search time cost, the scheduling process can be executed for a short. time to obtain a




search node generation rate for the particular data set. This rate can then be used along with the
number of available proccessors and the upper bound on the number of search states to determine
the worst-case time allowance to find the optimal soluti_on. If such times are determined to be un-
acceptable, then the scheduling process can be executed for a shorter period of time providing the
"best’ solution for that given time. Also, the number of processors being scheduled can greatly affect
the search time such that an optimal mapping may exist which minimizes the number of proces-
sors, the resulting search time, and the simulation run-time given the realization of interprocessor

communication costs.




VI. Conclusions and Recommendations

6.1 Conclusion

The generalized scheduling problem with variable execution time (VET) tasks and feedback
constraints is most difficult to solve. This problem, known to be N P-hard, requires exponential
search time to solve when an optimal solution is desired. Unfortunately, computer memory lim-
itations can easily be exceeded with such combinatoric search problems requiring a specialized
approach to search space exploration. The MBT algorithm satisfies this requirement by maintain-
ing search data only for the current branch of the scarch tree presently under investigation. The
search process develops as a search tree and not a search graph since previously explored search
states aren’t maintained in order to conserve memory. Unfortunately, this results in the poten-
tial for multiple evaluations of the same search path — a necessary trade-off. When the algorithm
is par~llelized using a distributed-list earch process with upper bound communications and load

balancing activities, near linear speed-up is achieved.

The characteristics of the simulation system being scheduled onto a parallel, message passing
computer play an important role in determining how the schiedule generation process evolves. When
the simulation system contains equal execution time (EET) tasks without feedback, list scheduling
without anomaly competsation using the all-iterations-first strategy produces an optimal schedule
within the minimum amount of search space and search time. With VET tasks and feedback, very
large search spaces must be implicitly explored. Unfortunately, a priori analysis of the precedence-
constraints can’t produce a 'better’ upper bound on the size of the total search space when compared
to an independent task system. These systems cause the generaiion of unbalanced search trees and
contain data specific combinatoric values at each stage of the assignment process. Also, the MBT
algorithm can evaluate duplicate seacch paths further compounding the problam. The best upper
bound on the search space remains an expression describing a non-uniform combination tree whose
branch factor at each level of the tree is a combinatoric expression for EET task systems, and
grows into a permutation expression for VET task systems. Unfortunately, the upper bound on
the search space can’t be reduced based upon the actual precedence-constraint characteristics of

the simulation system being investigated.

Given a particular simulation system for scheduling, short trial runs can be executed to deter-
mine the node generation rate per processor of the parallel MBT algorithm on a given architecture.
tsing this valuc with the upper bound on the number of search states in the search space and the
number of available processors, the worst-case execution time to find an optimal solution can be

calculated. Based on this information, a prudent choice of an actual run-time limit can be imposad.




Should the process icrtninate when the time limit expires, the solution reported can’t be guaranteed
as the ontimal solution. However, siven the precedence-contraints of the simulation system, the

solution may be optimal without certainty.

The validation process of the parallel MBT algorithm shows near linear speed-up for a generic
iterative simulation with variable execution time tasks and feedback. The scnsitive nature of the
size of the search space when minor changes in the simulation structure/execution time require-
ments are made prohibits algorithm performance analysis based on variations of the input data.
Validation of run-time performance for the parallel MBT algorithm requires analysis of scheduling
performance when the run-time parameters are modified. Applying more available processors to
the search process, adding upper bound communications between the processors, and performing
load balancing to maximize machine utilization provides near linear speed-up in the search process.
Also, the number of processors being scheduled can significantly affect not only the scarch time, but
the simulation executinn time as well. If the number of processors chosen for scheduling can result
in a mapping of tasks to processors such that the schedule length is theoretically misimum based
on bin packing and critical path analysis, and the search process finds such a schedule, the search
process terminates immediately. No guarantee can be made as to where within the search space
such a solution exists, but if found, the remaining search space can be ignored. Given the upper
bound search state values for relatively small simulation systems, the time taken to check for such
a solution is well worth the investment. Also, a schedule length which is longer thar a schedule
produced for a larger number of processors, may prove to perform better than the shorter sched-
ule when the simulation system is executed given considerations for interprocessor communication

costs.

In an iterative EET task system regardless of feedback contraints, the maximum number
of tasks available for exccution at any one time is the number of tasks in the original system
(iterations not included). Therefore, if the number of processors is > the number of original tasks,
the task system can be optimally scheduled in 7 discrete step where + is the maximum depth
of the scarch tree; i.c., the number of tasks in the critical path including iterations. With at
least as many available processors as ready tasks at each point in the scheduling process, only one
scheduling combination can exist for cach assignment. This results in an optimal schedule being
prodiuced in optimal time. However, the bieadth of the schedule may be such that many tasks
which communicate don’t physically reside on the same processor. If interprocessor commmunication

costs are again considered, such an optimal mapping may not prove to be optimal at simulation

run-time.
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An underlying assumption throughout this research has been that the number of task iter-
ations is known prior to scheduling. This provides a boundary condition on the total number of
possible search states since the MBT algorithm treats each task iteration as a new task; e.g., a 10
task system requiring 10 iterations is logically treated as a 100 task system requiring 1 iteration
for general simulation problems. Such a condition is necessary to ensure that a scheduling solution
does exits. If the number of iterations were undefined or infinite, the algorithm would never run out
of ready tasks to be scheduled and the process would continue infinitely. This doesn’t apply when
EET task systems are considered without feedback where the all-iterations-first scheduling decicion
strategy reduces the number of logical tasks to the original amount regardless of the number of

iterations: e.g., a 10 task system requiring 10 iterations is still treated logically as a 10 task system.

This type of approach to iterative scheduling allows informed decisions to be made as to
designing the task system structure, their communication and migration provisions, and the result-
ing assignment to the processors given the characteristics of the target machine. The number of
iterations chosen for scheduling is largely independent of the actual number at run-time, especially
with large and complex war gamming/VHDL simulations. Attempting to schedule a large number
of iterations with the logical transform used by the parallel MBT algorithm can easily result in
search time requirements for optimal solutions which exceed the life expectancy of the computer
working on the problem. However, applying the scheduling algorithm incrementally to more and
more task iterations may reveal scheduling patterns which identify the ’best’ mapping of tasks to

processors when considerations for task communication costs are made.

The Ada programming language proved to be beneficial in rapidly developing operational code
for validating the search process. The developed algorithms mapped very easily into the structured
design methodology of software development. Although code parallelization was difficult to validate
on the iPSC/2 hypercube due to the limited parallel debugging environment, the additional code
necessary for parallelization was minor. Initial serial code development of the MBT search algorithm
using a Sun Sparc Station 2 and compiling on a Sun 4/490 minicomputer using Verdix Ada 6.0
was instrumental in the rapid code development obtained. The compilation time of the Sun 4/490
operating at 24 MIPS is approximately 24 times faster than the i{PSC/2 SRM. Therefore, many
small modifications to the initially developed code could be repeatedly made very quickly to validate

the serial search process.

6.2 Recommendalions

Scheduling computer simulations onto a coarse-grain computer such as the iPSC/2 hypercube

requires consideration of interprocessor and intraprocessor communication costs. When a task must
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send a message to another task residing on the same processor, the message must be posted and
the operating system must block the task and provide cpu time to the receiving task before the
message can be received. Also, when a task must send a message to another task residing on a
different processor, not only will time be spent in transmitting the message to the other processor,
but the same ’process-swapping’ cost may be incurred as well. These factors can have a significant

affect on the run-time performance of the simulation.

The results of this investigation show that data decomposition of the search process using a
parallel, message passing computer can achieve near linear speed-up in the time required to generate
an optimally minimum schedule for execution on the same computer. Unfortunately, interprocessor
and intraprocessor communication costs are assumed to be negligible causing no consequence of
allowing task migrations which further minimize schedule lengths. Also, the largest parallel machine
used to validate the search process contained only eight processors. Therefore, several expansions

of this research are viable:

1. Consider interprocessor communication costs in developing optimally minimum schedules.
Under the list scheduling approach, permutations of assignment possibilities must now be
considered greatly increasing the search space for an optimal solution. If sub-optimal solution
are acceptable, heuristic methods could be incorporated into the schedule generation process

to help reduce the search space should it become prohibitively larger.

2. Consider applicability of task migrations; can this be effectively implemented on a hypercube
such that the implementation costs don’t exceed the schedule cost when task migration isn’t
allowed? If the overhead involved in migrating tasks or invoking copies of tasks on different
processors based on current loading conditions of the parallel computer exceeds the cost of the
excessive interprocessor communications, then such an approach may not be viable. However,
if the simulation system can be designed so that the tasks are coarse-grain in nature in relation

to their intertask communication costs, this approach may prove very fruitful.

3. Modify the implementation code to the C programming language for portability onto larger
hypercubes such as iPSC/860 or the iPSC/Paragon supercomputer for more thorough anal-

ysis of parallelized performance and speed-up capabilities.

4. Modify the implementation code to run on a shared memory architecture such as the Connec-
tion Machine. This approach may reduce the communications cost associated with distributed

memory architectures providing greater spead-up potential.

Parallel simulations take full advantage of current computer technology in acquiring design

data for future computer/electronic systems. Utilizing the computing power of such machines
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requires careful and deliberate mappings of the simulation systems onto the available processors in
order to minimize the overall execution time of the simulation through many iterations. Without
optimal mappings of simulation tasks onto processors, much time can be wasted in obtaining the
desired data. Simulating battle field scenarios prior to actual conflicts can not only guide the
development and deployment of weapon systems, but save the lives of many combatants challenged
t. defend their country in the face of an aggressive and hostile force. Also, the development of VLSI
circuits using the hardware description language VHDL, and the exercising of these simulations on
large, parallel computers is an important tool in bringing functionally sound circuits to life in' the

minimum amount of time.
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Appendix A. Code Structure

A.1 Siructure Chart

The MBT algorithm was developed using the structured design methodology. In that en-

deavor, the following structure chart describes the implemented modules and their relationships to

one another.

Produce
Schedule
node nod
e
- s / schedule
node data

l e Set Genenate Cenento Get Genenate

Figure A.1. Structure chart for MBT search software.

A.2 Funclional Programming

Simulation systems exhibit characteristics which can be used to change the schedule genera-
tion process by reducing the search time. The difference exists in the manner in which successor
search nodes are generated. For example, under the all-iterations-first strategy, when a task is
assigned to a processor, all iterations can be assigned at once. Therefore, two separate Ada pack-
ages were developed. The first package contains all the procedures for maintaining the OPEN

list and producing the results. The second package contains the procedures for generating the




-successor search nodes. The procedures within this package vary depending upon what type of
simulation system is being scheduled. These packages are then included into the main proccdure

which performs the parallei MBT algorithm steps.

The developed code was documented using the following documentation standards for each

procedure and function:

e Date

e Procedure/Function name
o Description

e Algorithm

o Modules called

e Order-of analysis

e History




Appendix B. User Manual

B.1 Input Data Formal

Executing the parallel MBT search program on the iPSC/2 can be done with the user

interactively entering the description of the iterative task system or by building the data file prior

to execution. The input data file consists of the number of tasks, iterations, and processors to
be scheduled, the adjacency matrix, and the set of task execution costs. Each data item must be

separated by a blank line with an input order as follows:

1. number of tasks
2. number of iterations

3. number of processors-to be scheduled

4. adjacency matrix

5. task costs

The following input datu example reflests the scheduling recuirement for the simulation system

shown in Figure B.1.

7 <== Number of Tasks
2 <== Number of Iterations
2 <== Kumber of Processors

0001000 == Adjacency Matrix
0001000
0000100
0000010
0000011
0000000
0000000

2315342 <== Task Costs

(commentary information can be added here!)

Data files can be easily built by using the interactive mode of the program. Upon completion
of data input, the user is prompted to either write the data to disk or immediately begin the search.

The following script is an example of this procedure which builds the data file shown:
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Figure B.i. A ge::eric simulation system.

Enter input filename or <CR> for manual entrxy:
Enter number of tasks in the graph ==> 3

Enter number of task iterations to schedule ==> 3

Enter number of processors to schedule ==> 3

Enter execution cost of task 1 ==> 2

- Enter number of arcs for task 1 (1-100) ==> 1
Arc 1 of task 1 goes to task ==> 2

Enter execution cost of task 2 ==> 2

Enter number of arcs for task 2 (1-100) ==> 1
Arc 1 of 1:8k 2 goes to task ==> 3

Enter execution cost of task 3 ==> 4

Enter number ¢! arcs for task 3 (1-100) ==> 0

Save user input to disk [Y/N]? y
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Saving input to ’task_in.dat’

Enter the name of your output file (default is task.dat) => new_out.dat

The resulting data file *task-in.dat’ saved to disk follows the input data format:

3 <== Number of Tasks
3 <== Number of Iterations
3 <== Rumber of Processors

010 <== Adjacency Matrix
001 !
000

224 <== Task Costs

B.2 Parallel Execution

To invoke the parallel MBT search program, at least one node of the iPSC/2 hypercube must
be allocated. At the system prompt, type ’host’ to invoke the process. Since three versions of the
parallel search process were developed to determine the method which best utilized tlie available
processing power and obtained the most speed-up, the user must specify which node program the
’host’ program will load and run. The three node programs are (1) nodebts1, (2) nodebts2, and (3)
nodebts3. Node program nodebtsl performs parallel search method 1, nodebts2 performs parallel
search method 2, and no-lebts3, the *best’ program, performs parallel search method 3 as cuthned

in chapter 4. A script example of the process tc load and run parallel search method 3 follows:

Enter node filename to load: nodebts3
loading nodebts3 program onto 8 processors

RREKEREERRRREDRKEEEERESEERBEREBRERRRERRREKER R EREREREK

* The Parallel MBT Task Scheduler *
REXFEFERRRERERRERRRRERKARKAREKRREERKER AR R LR RRERRKEEE

Enter input filename or <CR> for manual entry: task_in65.dat

Enter the name of your output file (default is task.dat) => test_out.dat
Enter search time limit in seconds: 1800

Working!!!

B-3




If only 1 processor is allocated when the search program is invoked, the ’host’ program auto-
matically loads nodebts1 onto the processor because using only one node requires no interprocessor

communications.

B.8 Oulput Data Format

The present implementation of the parallel MBT search algorithm produces the following

output given the simulation system of Figure B.1:

Node File: nodebts3
Adjacency Matrix:

AU WN -

# Task Dependencies in Graph : 6
Task Costs:
1 2 3 45 67

---------------------

2 315 3 4 2

Critical Path Values:
(row = iteration, column = task starting point
1 2 3 4 5 6 7
1:1617 12 14 1
2:1112 8 9

~N =
»

Number of Iterations = 2
Number of processors to schedule = 2
Number of processors used in the search process = 8
# search nodes created: 626
# search nodes requested for load balancing: 8
# search nodes sent to satisfy a load balancing request: 5
# bounding msgs: 1
lower bound: 20 Time Units
node run times (sec):
1.48
1.43
1.53

1.47




1.47

1.45

1.43

1.42
Optimal Schedule:
P1|P2| Time

1] 3| 1
1] 2| 2
1] 2| 3
: 1] 2| 4
31 4} 5
51 4| 6
5 4| 7
5] 4| 8
2| 4| 9

24 6l 10
2} 6l 11
4] 6l 12
: 4 6l 13
4| sl 14
4] 5l 15
4| 5l 16
61 71 17
6l 71 18
6l 71 19
6l 71 20

With Cost : 20 Time Units
Parallel Search Time: 10 Seconds
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