
AD-A243 721

~OF

DTL
DEC 301991

~t~ :'t h.: :e~ll anproved
foiE public ~: ~2cdzk;its

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio



AFIT/GCS/ENG/91D-14

D~TIC ...
E LECTE 
DEC30 

1991L D

Improved Task Scheduling

for Parallel Simulations

THESIS

Andrew E. McNear

Captain, USAF

AFIT/GCS/ENG/91D-14

91-18'991
1 J 1 I V 1I I!!I I

Approved for public release; distribution unlimited

91 1224 028



AFIT/GCS/ENG/91D-14

Improved Task Scheduling

for Parallel Simulations

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering ,

LAZC.,3

A V

December, 1991 -- ~ .- I

-

Approved for public release; di'strib~ution unlimited



I Fo'rm Avorovr-d
REPORT DOCUMENTATION PAGE O'4O8

PubI en3r b ,Un- 11 s ... ... , f~I

1.AENCY USE ONLY (Leav-e blank) 2. REPORT DATE3REOTYP NDASCVRD

I Deebr19 tatrsTei

?mproved Task Scheduling for Parallel Simulations

6. AUTHOR(S)

!Andrew E. McNear, Gapt, USAF

7. PERFORMING ORGANIZATION NJAME(S) AND ADDRESS(ES) 8ERFRIGOAIZTN
'REPORT NUMBER

IAir Force Institute of Technology, WPAFB OIl 45433-6583
AFIT/GCS/ENG/91D-14

;9. SPONSORINGrMONITORING AGENCY NAME(S) AND ADORE SS(ES) 10 SPONSORWNG MONITORING

ILt Col John Toole
!DA RPA
13701 N. Fairfax Dr
';Arlington, VA 22203

p11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION:, AVAILABILITY STATEMENT 12b DISTRIBUTION COD'

iApproved for puiblic release; distribution unlimited

1 13. APSTRACT WMaxmrnanQWwords i

-The ob~jective of this invcstigation is to design, analyze, and validate the generation of optimial schedules for
Simulation systems. Imp~rovedl performance in simulation execution times can greatly improve the return rate of
information p)rovided by such simulations resulting in reduced dcvelopmient .ustb of fiurem computer/electronic
systems. Optimal schedulc generation of precedence- constrai ned task systems including iterative feedback ss
tems such as VHDL or war gaming simulations for execution on a parallel cornputci is known to be NP-hard.

'Efficiently parallelizing such problems takes full advantage of present compu)Iter tecliiology to achieve a signif-
;icant redluction in thc search timre required. Unfortunately, the extreme couibinatoric ecxplosion' of possiblc
Jtask assignments to p~rocessors creates an exponential suarch space Iprolibitivu on any comp~uter for 5s',arcli algo-
rithms which maintain more than one branch of the search graph at any one time. This work deveclops various
parallel modified backtracking (NIBT) search algorithms for execution on an iPSC/2 hypcrcuhe that bound
the space requirements and produce aii optimally inininimui schedule with liear speed-up. 'I -e parallel MNBT

,search algorithm is validated using various feedback task simrulation systems whlich arm scheduled for execution
on an iPSC/2 hypercubc. The search time, size of the cininnerated search space, and conimunications overhead
required to ensure efficient machine utkilization during the p~arallel search process are analy zed. T'le various
applications indicate ap~preciable improvement in p~erformnce using this method.

14. SUBjiCT TERMS -~(- AF

multiproce.ror scheduling, parallel simulation, iterative task scheduling -X

17 EURT IFCATICDN 1 8i SU'I CU R I T Y C.~:- 2J I
OF REPQ:- l OF :HIuS ~. .

UNCL~ASSIFIED 'UNCLASSIFI[ED 43NCLASSIF*'EDl 11i -

NSN 7540-0','80 y)



GENERAL INS I RUCTION;- FOR COMPL ETING SF 298

Te Report-Documentation Page (RDF; 't% used in announcing evid cataliginj repu s. it is important
i at--this information be consistent vwith dthe rest of the report, particularly the co 2~r and il ae

-1nstrucions for filling in each block of toe form follow It .s rnport, nt to stay withi; the lines to Meet
optical scanning requirements.

Block I0. Agiency Use Only (Leave blank). Slock '2a. Distriotion/Ava~abi ly Statement
Denotes pubFc availability or limittions. Cite any

Biock-2. Report Date. full publicaticni date I
including day, month, and year, if available (e g, 1 aviablt to ,ri plc ne di.~aMustcitmtleastheyeor special mqark-ngs.:1 all c.pizais 'e.g.

iajI NOFORN. REL, ITAR).

Block 3. Type of Report and Dates Covered.DD- eDoD20.4"itrbto
State whether report is interim. final, etc. if
applicable, enter inclusive report dates (e.g. 10 Docuements o Tcnia
Jun 87 -30 Jun 88).IDouet. I DOE - See authorities
Block 4. Title and Subtitle. A title is taken from j NASA -See Handbook NHB 22W02.
the part of the report that provides the mrost I NTIS - L e a v biak.
meaningful and complete information. When a I
report-is prepared in mrore than one volume, IBlock 12b. Distribution Code-
repeat the primnary title, add volume numbet, and
indude subti le for the specific volume. On
classified documents enter tbe title classification j DO Levbln.

n paenthses.DOE -Enter DOE distribution categories
I from the Standard Distribution for

Block S. Fundling Numbers. To0 include contract IUnclassified Scientific and Technical
andF-grant numb~ers, may I icluie program Rprs
element number(-,), project number(s), task I AS I~ebak
number's) -and work unit number(s). Use the I NTIS - Leave b! -ian
following labe!,:

C-Contract PR - Project fBlock 13. Abstract include a bif Mxiu
G Grant TA -Task i200 words) factual summry ofThems

PE -Progr--m VVU - Work Unit Isignificant infor~m -- on contained in the reort.

ElementL Accession No.
-Block 6. A'%uthr(s1. Nam c(s) of persont's) Block 14. Subiect-Terms- Keywvords or phrases

respnsiie-fr witin th reprtperfrmig Iidentifying major subjects in the report.
the-research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). IBlock 15. NumberofPaaes. Enter the total

Block 7. Performirng Orcianization Name(sl an d nmefpgs
Address~es). Self-pAna. g

Block 1'. Price Code. Enter appropriate pre
Block 8. Performinq -Organization Report code (NTIS only)

A-lumber-Znterthe unique alphanumretic reort
number(s) assigned by the organization Bok 7-1.~~~lsgain ef
performing the report. 'epaaoyEtrU eui lsiiaina

Block 9. 'Sponso-ngi/Monitoring Agency Nar.( accoroan Ie with U _S. Secuvri ty Re gu iati ons (~e
and Address(es). Self-explanatory. , iCL4I -'ED) Iftfr otiscasfe

infuma~onstarn classification on the too and
Block 10 bo-om Of the pacie

Report Number. (if known)

Block 11. SupolienErary Notes. Enter Bloci'203 'm -ita- ofi src Th-_ mnu~t
information noticlucied elsewhere such as. comple'ed to -assirzn a ;0n11:4o o' o ti

Prepared in co-opration with-., Trans- of To atac -. i' beu $'(Same
published in.... 11hen are.pOntis revse,!nicude s rt -1 An~er c- -Y%- is!r -

a statement whether the newo report supersedes In e~~- dr .5 * ,C, j

or supplements the older report. iassu'---= ; Z h,



Preface

The purpose of this study is to investigate the complexities of generating optimally minii.mm

schedules for war gaming and VHDL simulations using a parallel computer upon which the simula-

tions are executed. These types of simulations generally exhibit arbitrary characteristics including

feedback resulting in their classification as NP-hard problems. Additionally, simulation tasks can

execute repeatedly. Therefore, exponential time requirements exist in attempting to find an optimal

solution where the assignment of simulation tasks to proc,ssors results in minimal execution time.

The general characteristics of simulation systems are analyzed to reduce the txtreme combinatoric

'explosion' of the search process. Several methods arc presented for minimizing the search space

and time requirements using an iPSC/2 hypercube. The implementation is developed using the

Ada programming language providing rapid prototyping of the design and ease of maintenance.

In analyzinb, the complexities of the scheduling problem, the two types of simulation applica-

tions considered, and the run-time environment of the iPSC/2 hypercube, several people provided

immeasurable assistance. I'm deeply indebted to my thesis advisor, Dr Gary B. Lamont for his

continued patience and guidance. His encouragement and advise throughout my researci, was in-

strumental in obtaining viable results. I also wish to taank my thesis committee members, Maj

Christensen and Dr flartrum for their insight into simix!ation applications and characterist;cs which

guided me torwards meaningful and useful solutions to present simulation efforts. Also, without

the help of Mr Rick Norris, the system administrator for the parallel processing cluster, validalion

of my parallel design would not have been possible. Finally, I wish to thank my loving family for

their love and understanding during those long, sleepless nights and weekends v, hen I was diligently

working.

Andrew E. McNear



Table of Contents

Page

Preface .............................................

Table of Contents ......... ....................................... iii

List of Figures .......... ......................................... vi

List of Tables .......... .......................................... viii

Abstract ...................................................... ix

I. Introduction...... ........................................... 1-1

1.1 Motivation for Parallel Processing ....... .................... 1-1

1.2 Parallel Applications ....... ............................ 1-3

1.3 The Task Scheduling Problem ............................. 1-4

1.3.1 Static versus Dynamic Iterative Task Systems ......... .... 1-4

1.3.2 Parallel Simulation Implemer.',ation Considerations ...... .... 1-5

1.3.3 Task Assignment Strategy ...... .................... 1-7

1.4 Assumptions ........ ................................ 1-7

1.5 Scope ......... .................................... 1-7

1.6 Approach ......... .................................. 1-8

1.7 Summary ......... .................................. 1-8

1.8 Thesis Overview ........ .............................. 1-9

II. Background ......... ....................................... 2-1

2.1 Introduction ........ ................................ 2-1

2.2 Task Scheduling ........ .............................. 2-1

2.2.1 The Task System Defined .......................... 2-1

2.2.2 Iterative Tasl- Scheduling ...... .................... 2-2

iii



Page

2.2.3 Performance Measures .. .. .. .. .. ... ... ... ...... 2-7

2.3 A Taxonomy of Scheduling. .. .. .. ... .. ... ... ... ...... 2-7

2.4 NP-completeness in Task Scheduling,.. .. .. .. .. .. .. .. ... ... 2-11

2.5 Scheduling Algorithms and MIMD) Machines. .. .. .. ... ... ... 2-12

2.6 Summary. .. .. .. .. ... ... ... ... ... ... .. ... ..... 2-16

111. Scheduling Algorithm Design. .. .. .. ... .. ... ... ... ... ... ..... 3-1

3.1 Introduction .. .. .. ... .. ... ... ... ... ... ... ....... 3-1

3.2 Sequential Search Methods. .. .. .. ... ... .. ... ... ...... 3-1

3.3 Scheduling Combinatorics. .. .. .. .. ... ... .. ... ... ..... 3-3

3.4 Task Assignments. .. .. .. ... ... ... .. ... ... ... ..... 3-5

3.5 Parallel Search Methods. .. .. .. .. ... .. ... ... ... ...... 3-8

3.6 Optimal Collection of Techniques. .. .. .. .. .. ... ... ... ... 3-12

3.7 Parallel Communications. .. .. .. ... ... .. ... ... ... ... 3-13

3.8 Summary. .. .. .. .. ... ... ... ... ... ... .. ... ..... 3-16

IV. Low-Level Design/Analysis/Implementation .. .. .. .. .. ... ... ... ..... 4-1

4.1 Introduction. .. .. .. ... ... ... ... ... .. ... ... ..... 4-1

4.2 Backtrarking Search Variations .. .. .. .. .. ... ... ... ....... 4-1

4.2.1 Combination T1rees .. .. .. .. .. ... ... ... ... ..... 4-2

4.2.2 Search Tree Pruning .. .. .. .. .. ... ... ... ... .... '-4

4.2.3 Modified Backtracking Algorithm. .. .. .. .. .. ... ..... 4-7

4.2.4 Backtracking Search Implementation. .. .. .. .. .. ...... 4-9

4.3 Scheduling State Combinatorics .. .. .. .. .. .. ... ... ... ... 4-11

4.4 Characteristics of Simiulation Systems .. .. .. .. ... ... ... ... 4-13

4.4.1 Sensitivity Anatysis .. .. .. .. ... ... ..... ...... '-13

4.4.2 Minimization of Sc~heduling Combinatorics .. .. .. .. .. ... 4-15

4.5 Scheduling Process. .. .. .. .. ... ... .. ... ... ... ...... 4-17

iv



Page

4.6 Sequential Search. .. .. .. .. .. .. .. .. ... .. ... .. ...... 4-17

4.7 Parallel Search. .. .. .. .. .. .. ... .. ... .. ... .. ...... 4-19

4.8 Software Development using Ada .. .. .. .. .. .. .. .. ... .... 4-28

4.8.1 Functional Design. .. .. .. .. .. .. ... .. ... .. ... 4-29

4.8.2 The Ada Language .. .. .. .. .. .. .. .. ... .. ...... 4-29

4.9 Summary .. .. .. .. .. .. .. ... .. ... .. ... .. ... .... 4-30

V. Simulation Applications/Search ~rformance Results. .. .. .. .. .. .. .. ... 5-1

5.1 Introduction. .. .. .. .. .. ... .. ... .. ... .. .... ... 5-1

5.2 Task Labeling .. .. .. .. .. .. .. .. .. ... .. ... .. ... ... 5-1

5.3 Testing Methodology. .. .. .. .. .. .. .. .. ... .. ... .. ... 5-1

5.4 Generic Simulation. .. .. .. .. .. .. .. .. ... .. ... .. ..... 5-2

5.5 VHDL Simulations. .. .. .. .. .. .. .. .. ... .. ... .. ..... 5-5

5.6 Summary. .. .. .. .. .. .. ... .. .. ... .. ... .. ... ... 5-7

VI. Conclusions and Recommendations. .. .. .. .. .. .. .. ... .. ... .. ... 6-1

6.1 Conclusion .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... 6-i

6.2 Recommendations. .. .. .. .. .. .. ... .. ... .. ... .. ... 6-3

Appendix A. Code Structure. .. .. .. .. .. .. .. .. ... .. ... .. ... ... A-1

A.1 Structure Chart .. .. .. .. .. .. ... .. ... .. ... .. ...... A-1

A.2 Functional Programming .. .. .. .. .. .. ... .. ... .. ...... A-1

Appendix 13. User Manual .. .. .. .. .. .. .. ... .. ... .. ... .. ...... B-1

B.1 Input Data Format .. .. .. .. .. .. .. .. ... .. ... .. ...... B-i

B.2 Parallel Execution .. .. .. .. .. .. ... .. ... .. .. ... ..... B-3

13.3 Output Data Format .. .. .. .. .. .. .. .. ... .. .. ... ..... B-4

Vita. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .. ... .. ... VITA-i

Bibliography. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .. ... ... BIB-1

v



List of Figures

Figure Page

1.1. Comparative speed-up of Amdahl's law and problem scaling for P = 128. 1-3

1.2. Task system structure changing under dynamic influences ................. 1-6

2.1. A dag representation of a task system ............................. 2-3

2.2. Representation of an iterative task system for 2 iterations ................. 2-4

2.3. A task system with feedback .................................... 2-5

2.4. Representation of an iterative task system for 2 iterations with feedback..... 2-6

2.5. Scheduling system ......................................... 2-8

2.6. Task scheduling characteristics .................................. 2-9

3.1. Scheduling combinations of a precedence-constrained task system ......... .... 3-4

3.2. Search node expansion results for the all-iterations-first decision strategy..... 3-6

3.3. Search node expansion results when tasks iterations are treated separately ... 3-7

3.4. A list scheduling anomaly ..................................... 3-9

3.5. List scheduling anomaly disappears when task execution times are equal..... 3-10

3.6. Lower bounds on the schedule flow time ............................ 3-14

3.7. Lower bounds on the schedule flow time when feedback is introduced ....... .. 3-15

3.8. Normalized communications overhead of an iPSC/2 hypercube .......... ... 3-17

4.1. Schematic representation of tlhree BT strategies ........................ 4-2

4.2. Non-uniform combination tree ................................... 4-3

4.3. Combination tree without list scheduling anomaly compensation ......... .... 4-5

4.4. Combination tree with list scheduling anomaly compensation ........... .... 4-6

4.5. Iterative task system ...... ................................. 4-7

4.6. Explicit enumeration search tree (control structure) for MBT search ....... .... 4-8

4.7. Intermediate schedule for Iover bound calculations ..................... 4-12

vi



Figure Page

4.8. Combination curve for 20 .................................... 4-13

4.9. Simulation task system ....................................... 4-14

4.10. Iterative EET task scheduling example for maxnready = n .................. 4-16

4.11. Scheduling point decision ...................................... 4-18

4.12. Scheduling simplification for ETl' task systems without feedback ......... ... 4-20

4.13. Scheduling decisions with feedback ............................... 4-23

4.14. Parallel load balancing and termination communication structure ......... ... 4-24

4.15. Interconnection topology for a hypercube with 8 processors ............. ... 4-25

5.1. Computer simulation of a car wash ................................ 5-2

AJ. Structure chart for MBT search software ............................ A-1

B.1. A generic simulation system .................................... B-2

vii



List of Tables

Tabie Page

1.1. Run-time performance comparison of an 8-bit VIIDL simulation ............ . 1-4

2.1. Critical path execution lengths from each vertex T ..................... 2-2

2.2. Categories of iterative schedules for multiprocessors ..................... 2-12

4.1. Sensitivity analysis of a simulation system's execution constraints ........... 4-15

4.2. Sequential search methods ........ .............................. 4-17

4.3. Parallel search methods ........ ................................ 4-21

4.4. Communication path lengths for the hypercube interconnection topology . . . . 4-25

5.1. Search time performance using 8 processors to schedule 2 ................... 5-3

5.2. Search time performance using 4 processors to schedule 2 ................... 5-3

5.3. Search time performance using 2 processors to schedule 2 ................... 5-3

5.4. Search time performance using I processor to schedule 2 ................... 5-4

5.5. c values for car wash schedule generation ............................. 5-4

5.6. Search performance to schedule a carry-lookahead adder onto 8 processors. . 5-5

5.7. Search performance to schedule a carry-lookahead adder onto 4 processors . . . 5-6

5.8. Search performance to schedule a 4-bit adder onto 8 processors .............. 5-6

5.9. Search performance to schedule a 4-bit adder onto 4 processors ............ 7

Viii



AFIT/GCS/ENG/GCS91D-14

Abstract

The objective of this investigation is to design, analyze, and validate the generation of optimal

schedules for iterative parallel task systems with feedback constraints. The specific applications are

large-scale VHDL circuit simulations and war gaming simulations which are designed to operate

on message passing, parallel computers such as the Intel family of hypercubes. By creating opti-

mal run-time schedules where the schedule length is optimally minimum, the maximum speed-up

achievable given the characteristics of a simulation system can be achieved. Such improved perfor-

mance in simulation execution times can greatly improve the return rate of information provided

by such simulations resulting in rc - ed development costs of future computer/electronic systems.

Optimal schedule generation of precedence-constrained task systems including iterative feed-

back systems such as VHDL or war gaming simulations for execution on a parallel computer is

known to be NP-hard in all but the most trivial cases. Consequently, large search spaces must

be explored at a considerable time expense even for the most powerful single processor comput-

ers. Efficiently parallelizing such problems takes full advantage of present computer technology

to achieve a significant reduction in this time requirement. Unfortunately, generating optimal

schedules requires implicit examination of all possible solutions. This coupled with the extreme

combinatoric 'explosion' of possible task assignments to processors creates an exponential search

space prohibitive on any computer for search algorithms which maintain more than one branch of

the search graph at any one time. This work develops various parallel modified backtrackirng (MBT)

search algorithms for execution on an iPSC/2 hypercube that bound the space requirements and

produce an optimally minimum schedule with linear speed-up. Although the logical search space

remains exponential, the physical memory space required for the search process remains within the

physical memory constraints of the computer.

To validate the parallel MBT search algorithm developed, various feedback task simulation

systems are scheduled for execution on an iPSC/2 hypercube. The search time, size of the enumer-

ated search space, and communications overhead required to ensure efficient machine utilization

during the parallel search process are analyzed. The various applications indicate appreciable

improvement in performance using this method.

ix



Improved Task Scheduling

for Parallel Simulations

L Introduction

1.1 Motivation for Parallel Processing

Computer architecture has evolved greatly over the last decade with the proliferation of

parallel computer research and development efforts. rhe driving force behind such investments

being the potential speed-up of solving complex and computationally intensive problems such as

wave mechanics, fluid dynamics, and structural analysis [161, Very Large Scale Integration (VLSI)

circuit simulations [23] [9], and real-time assignment based problems within the Strategic Defense

Initiative (SDI) research area [18]. The potential speed-up using a parallel, von-Neumann based

computer can be defined as follows [11]:

T1 sp = (1.1)

where T is the execution time for the best serial algorithm on a single processor, and T is the exe-

cution time for a parallel algorithm using P processors. Thus, if a sequential algorithm to simulate

a VLSI circuit through 10 seconds of activity tal .-s 120 minutes to complete when implemented on

a single processor, applying the same simulation using an effective parallel algorithm on a parallel

computer with 120 processors would theoretically take 1 minute! Unfortunately, it was suggested

by Amdahl that for a program with serial work fraction s, the maximum parallel speed-up obtain-

able is bounded by 1/s. Therefore, if a given program contains a 5% serial work fraction, then the

largest achievable speed-up is 20 regardless of the number of processors used. If P is the number

of processors, s is the amount of time spent by a serial processor on serial parts of a program, and

1 - s is the amount of time spent by a serial processor on parts of a program that can be done in

parallel, then Amdahl's law gives the parallel processing time

TP = sT, + ' Tj (1.2)
P

resulting in the speed-up
PSp 1 + (P - 1)s (1.3)

1-I



Thus, the limp.-.,, Sp = 1/s. The derivative of this equation with respect to s reveals a very

interesting property for small s.

dSp _ _p + 1
ds (1 + (P -1)s) 2  (1.4)

lim = _p2 +l (1.5)

As figure 1.1 shows, the degenerative speed-up curve has a slope of _p2 as s -- 0, and Sp quickly

drops off for small increases in s - a very undesirable characteristics when attempting to speed-up

a program's performance on a parallel machine. Fortunately, parallel applications tend to scale

with the available computing power; i.e., given more computing power as with a parallel computer,

the applications are expanded (more data items, for example) to utilize the available hardware

resources. For instance, doubling the number of processors allows doubling the number of data

variables to ensure comparable utilization of the physical system. Also, the time for program

loading, serial bottlenecks, and 1/0 that make up the s component of an application do not scale

with problem size.

This idea of scaled speed-up leads to the definition of an effective parallel algorithm as one

in which limn-o s(n) = 0 where s(n) is the fraction of the sequential algorithm that must be run

sequentially (not parallelizable) and is dependent upon the problem size n. Thus, the speed-up of

an effective parallel algorithm when applied to large problems has a limit which is defined as linear

speed-up [13:5]:

SP=P (1.6)
I + (p- 1)s(n)

lim SP = p (1.7)
n -oO

When considering the inverse of Amdahl's paradigm, the attractiveness of this reasoning becomes

apparent. Rather than ask how fast a given serial program would run on a parallel processor, we

ask how long a given parallel program would have taken to run on a serial processor. Using the

variables as before, a uniprocessor requires time s + (1 - s)P to complete a program where the

second term represents the serialized parallel time. This leads to the scaled speed-up equation

S + (1 - s)P
Scaed = S+(1-S)s+(l1-s)

= P+(1-P)s (1.8)

1-2



Fixed-Sized Model Scaled-Sized Model

120 120

100 P/(l+(P-l)s) 100 P+(l-P)s

80 J 80

o60 i 60

U) 40 U) 40

20 20
0 0 p p

0.010.02 0.03 0.04 0.01 0.02 0.03 0.04
Serial Fraction, s Serial Fraction, s

Figure 1.1. Comparative speed-up of Amdahl's law and problem scaling for P = 128.

As figure 1.1 shows, the advantages of such reasoning become apparent. The degenerative speed-up

curve now has a linear slope of 1 - P, a significant improvement in performance. Thus, when

speed-up is measured by scaling the problem size, the serial fraction s tends to shrink resulting in

much better parallel performance than is implied by Amdahl's paradigm [16].

1.2 Parallel Applications

The need for fast problem solvers is quite apparent. Weather prediction results are useless

if the time to produce the prediction is greater than the time for the actual event to occur; i.e.,

the event predicted to occur in the future has already occurred. The same is true in SDI research

involving real-time assignment strategies of weapons to targets. The general assignment problem

can be stated as the problem of assigning N resources to M consumers subject to some minimiza-

tion or maximization constraint [23]. Therefore, the assignment problem within SDI involves the

assignment of weapons to incoming targets such as ballistic missiles in such a way that the maxi-

mum number of targets with the potential for the greatest amount of damage are destroyed using

the minimum amount of weapons. A solution to this problem is equally useless if the time taken

to produce the solution is longer than the time for the incoming missiles to reach their points of

destruction.

The development of VLSI circuits is very complex with many intermediate steps between

design conception and production circuits. Prior to circuit simulation abilities, various stages of

development required laboratory fabrication and testing - a very tedious, expensive, and time

consuming process. With the advent of computer simulation languages such as the Very Iligh

Speed Integrated Circuit (VtlSIC) Hardware Description Language, or VIIDL, circuit behaviors

1-3



can now be modeled on a computer, thus vastly decreasing the turnaround time from design to

production. Unfortunately, VHDL simulations for current applications take a disproportionate

amount of computer time when compared to the size of the circuit being modeled. When a parallel

computer is used, the mapping strategy of assigning specific VHDL tasks to processors can have a

significant impact on the simulation time.

Simulation efficiency is defined as the ratio of time of circuit behavior modeled, Tsim, and the

time to model the circuit, Trun, for that amount of simulation time.

-Sim - (1.9)

As Table 1.1 indicates, a circuit simulation of an 8-bit adder requiring 32 VHDL tasks on an Intel

iPSC/2 hypercube computer with eight processors results in a simulation efficiency of 0.006% when

using the 'level8' optimal static scheduling strategy, and 0.001% when using an unbalanced static

scheduling strategy which approximates the results of a single processor simulation [38:5-41. The

computer architecture, simulation task dependencies, and the scheduling algorithm effectiveness

both play crucial roles in determining speed-up of a particular parallel simulation.

Table 1.1. Run-time performance comparison of an 8-bit VHDL simulation

I Simulated Time, TSim
8-node mappings 1000 nsec 8000 nsec 16000 nsec 32000 nsec 64000 nscc

Run Time, Tru,
level8 18 sec 126 sec 252 sec 509 sec 1108 see
unbalanced8 ] 79 sec 573 sec 1147 sec 2272 sec 4404 sec

1.3 The Task Scheduling Problem

Task scheduling in the context of this research is the problem of assigning n precedence-

constrained tasks to m processors where n > m such that the overall execution time is op-

timally minimal. The task systems considered are iterative feedback systems where feedback

precedence-constraints can exist between multiple executions of the tasks. Unfortunately, static

and dynamic iterative task scheduling lack any definitive optimization for parallel machine effi-

ciency [38].

1.3.1 Static versus Dynamic Iterative Task Systems A static iterative task system is one in

which assignment of the tasks to the processors of a parallel computer remain unchanged during

1-4



the execution of the tasks. In dynamic iterative task systems however, the structure of the task

system changes during the execution process requiring an adjustment of the task schedule in order

to maintain required performance. Figure 1.2 represents this difference. Initially, the static task

system consists of two tasks in which each task executes twice. An optimal schedule results in a

schedule which completes in three time units. This optimal schedule and the mapping of specific

tasks to specific processors is determined prior to execution of the task system. In the dynamic

system however, upon execution of the sch.dule, the first iteration of T1 generates the requirement

for a ne'v, previously unconsidered task, T3, to execute. Therefore, to ensure an optimal schedule is

maintained, the scheduling algorithm must gain control of computer resources at time t1 to generate

the new optimal schedule shown. The task system is then directed to follow this new schedule to

ensure optimal performance until such time that the system again changes.

1.3.2 Parallel Simulation Implementation Considerations When examined from an archi-

tectural point-of-view, several factors must be considered in attempting to achieve effective parallel

performance for simulation systems:

" Load balancing of computations

" Communications overhead between processors

" Mapping strategy

Load balancing refers to the even distribution of the workload among the available processors.

The communications overhead between processors refers to the associated time cost of having tasks

which must communicate assigned to different procetsors. The communications time between

tasks on a single processor is usually much smaller; however, due to s.stem loading and operating

system control, task intraprocessor communication could be greater. The mapping strategy refers

to the way in which individual simulation tasks are assigned to processors. As previously shown in

Table 1.1, such strategies can have a significant effect on the simulation efficiency.

In general, the mapping strategy determines run-time load balancing and communications

overhead. For instance, if a system of equal execution time (EET) tasks is mapped onto a 1024

processor system where 80% of the tasks are assigned to 10% of the processors, an unbalanced con-

dition of processor utilization occurs. If howeve;. the tasks exhibit a strong precedent:e-constraint

relationship, such load unbalancing may be unavoidable within the domain of that task system; i.e.,

the maximum achievable scheduling parallelization produces poor machine utilization. Also, task

systems with a strong precedence relationship requiring much communication among tasks ma)y

suffer significant communications overhead if many of the tasks which communicate don't reside

1-5



Ti/1 Ti/'I

T21T2/1 T3/1 TI'/l

T2'/1 T2'/I T3'/1

p1: Ti Ti' Ti Ti T3 T3'

p2: T2 T2' T2 T2'

Time: 0 1 2 3 0 1 2 3 4

- initial constraints

--- -- > iterative c,rx~,,aints

Ti/i = task number/execution time
TV' = second iteration of Ti

Figure 1.2. Task system structure changing under dynamic influences.

1-6



on the same processor. This coudition can be a r.esult of the scheduling process if interprocessor

communications aren't considered when tasks are assigned to processors.

1.3.3 Task Assignment Strateg , r;der to optimally map a task system onto a parallel

computer, the solution space of all p -"{; ,:-,!ppings must be examined. One approach is the greedy

method: a polynomial-time ter ; -. . ' o generate a solution quickly. In this method, the

mapping solution is generated step-by- .t," oased on a set of candidates, % selection function, and an

objective function. However, optimal r. iits aren't guaranteed except in some restricted cases [8].

If more informed search techniques are , optimil solutions can be guaranteed. Such techniques

are in the class of 'best-fire' lgorihnm w.., n genera e optimal solutions using admissible heuristic

information [31]. Unfortunately, many equire a prohibitive amount of physical systeir memory

bases on the scheduling problem size.

1.4 Assumptions

Before definitive optimization of static and dynamic iterative task scheduling can occur, the
task system being examined must be defined. As a minimum, the following must be known [8]:

* The number of tasks within the simulation system.

The execution times for each task.

9 The task precedence-constraint relationships including feedback.

* The number of processors being scheduled.

* The number of execution iterations required to be scheduled.

* The type of system under consideration; i.e., static vs dynamic.

Several theorems are presented in this document which represent formal descriptions of task

scheduling properties based on task system characteristics. These theorem are offered without

proof. The mathematical development presented, graphical explanations, and theorem simplicity

should be sufficient.

1.5 Scope

The primary objective of this investigation is to design, analyze, and validate effective map-

ping algorithms which generate optimally minimum schedules in terms of overall execution times

on a parallel computer. The order of investigation in terms of problem complexity proceeds as

follows:

1-7



1. The task .:ystem contains no feedback loops, no iteratio. s, and all tasks have equal execution

time (EET) requirement,;.

2. Iterations are permitted.

3. The system contains variable execution time (VET) tasks.

4. Feedback is permitted.

Using informed search techniques, mapping strategies for assigning tasks to processors in

a, optimal manner are ir,. emented. These strategies derive an o. ritually minimum schedule of

static iterative task systems for execution on a message passing p ,,lel computer using the same

computer. The characteristi-.. of the simulation system are utilizea to reduce the implicit search

space and find an optimal solution in minimum time.

1.6 Approach

This research analyzes scheduling algorithms which generate optimal mappings of tasks to

processors. These algorithms range from those applied to polynomial-time scheduling problems to

NP-complete scheduling problems [8, 38], i.e., the solution space grows exponentially at best with

the number of tasks to schedule. Such algorithms include the depth-first, breadth-first, backtracking,

and best-first search methods. The 'best' algorithm in terms of search eaciency is implemented

on an iPSC/2 hypercube using the Ada programming language. Ada is chosen t. investigate its

utility on a parallel machine. Software engineering principles of modular design, strong intramodule

cohesion and loose intermodule coupling are used to ensure a functionally sound implementation.

Functional design techniques are used to transform the developed algorithm into an operation pro-

gram. The resulting search performance given a range of task systems is analyzed for speed-up

performance and scheduling efficiency. The programming code used to develop the parallel im-

plementation is modified to improve the search process and generate optimal schedules more effi-

ciently; i.e., local bounding ,hkrniation is made global and load balancing among the processois

is performed. The resulting algorithm strategy is validated using generic and VHDL task system

simulations.

1.7 Summary

This chapter discusses the advantages of parallel processing in producing solutions to romnlex

problems much faster than with conventional computers. Although Amdalh's law appars to place

a barrier on the potential speed-up which can be obtained when using a parallel machine, such serial

1-S



limitations approach zero when the problem size is scaled to fully utilize the available processing

power of the parallel machine. Also, when using a parallel machine to execute VHDL simulations,

the mapping of tasks to processors is crucial to the run-time performance. Therefore, generating

optimal schedules whose schedule lengths are optimally minimum is essential in achieving the

minimum run-time performance of the simulations. The scope of investigation presented starts

with a simple task system and procet Is to the most complex VHDL simulation systems presently

designed for parallel implementation; i.e., VET iterative systems with feedback. The approach

to designing an effective parallel algorithm for solving these complex problems analyzes many

well-know search techniques for developing the 'best' serial alg)rithm. This serial algorithm is then

parallelized for optimal search performance io produce optimally minimum parallel schedules of

VHDL simulations for execution on a parallel, message passing machine.

1.8 Thesis Overview

Chapter 2 is a backgrouna investigation of the generalized scheduling problem. The schedul-

ing environment, policies, and goals are discussed to reflect the diverse nature of this problem. The

theory of NP-completeness is introduced to show the complexity of scheduling a VET iterative

task system. Also, many existing algorithms, their cha:ac~eristics, and the multiple instruction,

multiple data (MIMD) parallel architecture are discussed. Chapter 3 is the high level design of the

algorithmic solution to the scheduling problems reflected in parallel simulations. The design issues

such as machine memory limitations and search time performance are analyzed to determine the

'best' approach for implementation. In Chapter 4, thc characteristics of simulation systems and

three parallel search implementations are presented to identify the most efficient parallel imple-

mentation. Use of the Ada programming language is shown to be beneficial for this 'high-level'

problem using the structure design methodology. Chapter 5 d:scusses simulation applications and

the performance of the developed parallel algorithms in solving such parallel simulations. Chapter 6

reveals some important conclusions based on emperical analysis of the simulations used to validate

the parallel algorithms.

1-9



II. Background

2.1 Introduction

An understanding of the iterative task scheduling problem, NP-completeness of the general-

ized scheduling problem, and parallel computer architectures and scheduling algorithms is essential

to the completion of this research [2] [8] [14] [15] [18] [20] [21] [24] [35] [37] [39] [38]. Each subject

area has been extensively explored by other authors, and many references are available. However,

the focus of this chapter is to conduct a review of the reference material which is most applicable

to the specific problem of iterative feedback task scheduling in a parallel environment.

The chapter is divided into five additional sections. Section 2.2 is an introduction of the gen-

eral task scheduling problem with its diverse nature. Section 2.3 discusses the environment, the poli-

cies, and the goals of scheduling. Section 2.4 is an introduction to the theory of NP-completeness

followed by a description of the NP-complete nature of certain task scheduling problems. Sec-

tion 2.5 discusses the multiple instruction/multiple data (MIMD) architecture and some of the

many scheduling algorithms and their characteristics under dynam.;c and static task systems. Sec-

tion 2.6 is a summary of this chapter's contents. Within the text of this research discussion, task

and process shall have the same meaning, as well as, concurrent and parallel.

2.2 Task Scheduling

2.2.1 The Task System Defined A general task system can be defined using F, -4, [ 1ij], Wj

as follows [8:5]:

1. F = T1,..., T is a set of tasks to be executed.

2. -4 is an (irreflexive) partial order defined on Y which specifies operational precedence con-

straints, i.e., T -< T signifies that Ti must be completed before Tj can begin.

3. [rij] is an mXn matrix of execution times, where rij > 0 is the time required to execute T,

I < j _ n, on processor Pi,1 < j < m.

4. The weights wi, 1 < i < n, are considered deferral costs, i.e., the cost of finishing Ti at time

t. Such a cost is simply wit.

When task iterations are included, the set Y can be viewed as containing sets of tasks Ti,.... ,

T2,., T2, .. , T,..., T, where i represents the task iterations.

2-1



Graphical methods are employed to make understanding of such relationships clear [7]. The

partial order -< is conveniently represented as a directed, acyclic graph (or dag) with no transitive

arcs. The notation T/ri is used for labeling vertices of the dag where Ti refers to a specific task

and ri refers to the task execution time as described above. Figure 2.1 is an example of important

characteristics of a task system which exhibits the following notation and properties:

1. Acyclic.

2. No transitive edges: (T , T6) would be such an edge.

3. T1, T2, and T3 are initial vertices; T9 , and TIO are terminal vertices.

4. T7 is a successor of TI, T2, T3, T4, Ts but an immediate successor of only T4 , and T; Ts is a

predecessor of T7, T3, T, and TI0, but an immediate predecessor of only T7, and T.

The critical path of a vertex T is defined as the sum of the execution times associated with the

vertices in a path from T to a terminal vertex such that this sum is maximal. Table 2.1 shows the

critical paths and their values for Figure 2.1.

Table 2.1. Critical path execution lengths from each vertex T.

T Critical Paths Path Execution Lengths0

1 T1,T4,T7,T9 8
2 T2,T5,T8,T1O 10
3 T3,T5,T8,TIO 9
4 T4, T7, T9 7
5 T5, T8, T10 8
6 T6, T9 3
7 T7, T9 5
8 T8,7T10 7
9 T9 2
10 T10 1

2.2.2 Iterative Task Scheduling Figure 2.1 is an example of a single execution, non- periodic

task system. Each task is executed only once. When all tasks have completed execution, the task

system has completed with no more task executions occurring. For an iterative task schedule,

however, each task executes numerous times while maintaining the precedence-constraint relation-

ship throughout each execution cycle. Figure 2.2 shows how such a task system can be viewed

using graph theory as before. When feedback is added between iterations as shown in Figure 2.3,

the resulting iterative relationship changes. The precedence-constraint relationships must remain

2-2



Figure 2.1. A dag reprmsntation of a task system

2-3J



Ti/i ts ubreeuintm

T4/2i



intact which causes the graphical iterative representation to be adjusted as indicated in Figure 2.4.

Although transient arcs can be introduced as Figure 2.4 shows (Ti can be reach directly from T1

or through T2), they can be ignored since the feedback arc always introduces a new critical path

from the task constrained by feedback (T1 in this case). For Figure 2.4, Ti must now wait until

T2 has completed regardless of when T1 completes. Therefore, the constraint between TI and TV'

can effectively be ignored during the schedule generation process. The following theorems describe

this change in the transitive closure of the ori3inal directed graph:

Theorem 2.2.1 Given a simulation system, the introduction of feedback dependencies removes

from consideration all iterative dependencies of the task sending feedback information, the task

receiving feedback information, and all tasks on all paths between these two.

Theorem 2.2.2 Given a simulation system, the introduction of feedback does not increase the

number of dependency arcs, "feedback <no feedback

Feedback constraint

Figure 2.3. A task system with feedback.

Adding feedback to a given simulation structure can effectively reduce the number of schedul-

ing paths through the iterative task graph.

2-5



Tl/l Transitive Arc

Figure 2.4. Representation of an iterative task system for 2 iterations with feedback.

2-6



2.2.3 Performance Measures Defining the requirements for the performance evaluation of

parallel systems is essential [29]. Without firm understanding of specific requirements and the

means to properly examine performance, much of the extracted performance evaluation data is

useless. Two principle measures of schedule performance are the schedule length or maximum

finish (or flow) time [8:9]:

w(S) = max<_{f(S)} (2.1)

and the mean weighted finishing (or flow) time

U(S) = n wifi(S) (2.2)
i=1

where f, (S) represents the finish time for schedule S. For the general scheduling problems, therefore,

efficient algorithms need to be found for the minimization of these quantities over all schedules S.

Performance measures for an iterative schedule where each task executes multiple times in-

clude an additional metric, latency. Latency is defined as the time between successive iterations

of a given task [38:2-9]. For the iterative scheduling problems, therefore, efficient algorithms need

to be found for the minimization of latency where multiple tasks are involved. The level strategy,

which assigns tasks based on the longest chain of unscheduled tasks (critical path), forms a kernel

for the iterative scheduling algorithm [39].

2.3 A Taxonomy of Scheduling

[6] In order to fully understand the realm of task scheduling, the presentation of a taxonomy

of scheduling problems is in order . The general scheduling problem can be viewed as consisting of

three main components:

1. Consumers(s).

2. Resource(s).

3. Policy.

Understanding the functioning of a scheduler can best be done by observing the effect it has on its

environment. In this case, one can observe how the policy affects the resources and the consumers.

Such a relationship is shown in Figure 2.5. Figure 2.6 shows the structure of the hierarchical portion

of the taxonomy of scheduling. A discussion of the relatior.ship between the items at each level

appropriate to the nature of iterative task scheduling follows:

2-7



Scheduler

Consumers Policy Resources

Figure 2.5. Scheduling system

* Local Versus Global Local scheduling involves the assignment of tasks to the time-slices of a

single processor system. Global scheduling is the problem of deciding where to execute the

tasks on a multi-processor system. In this case, a separate task scheduler is required to make

these decisions rather than relying on the operating system of the single processor system.

" Static Versus Dynamic Static scheduling incorporates a priori knowledge of the task system

to be scheduled. Assignments of specific tasks to specific processors are made prior to system

execution. Dynamic scheduling, however, involves the more realistic assumption that very

little a priori knowledge exits about the resource needs of a task prior to execution. In

this case, it is the responsibility of the run-time system scheduler to make the appropriate

decisions.

" Distributed Versus Non-Distributed The concern in this comparison is with the logical author-

ity of the decision making process. Should the decision making authority under global dy-

namic scheduling reside with a single processor (physically non-distributed), or be distributed

among the processors (physically distributed)?

" Cooperative Versus Non-Cooperative In a cooperative system, the processors cooperate be-

tween one-another in making scheduling decision. Each processor has the responsibility to

carry out its own portion of the scheduling task, but with all processors working toward a

common system-wide goal. In the non-cooperative case, the individual processors operate au-

tonomously making scheduling decisions independent of the actions of the other processors.

Such decisions are made regardless of the effects on the rest of the system.

2-8



local global

static dynamic

optimal sub-optimal physically physically
distributed non-distributed

approximate heuristic cooperative non-cooperative

optimal sub-optimal

approximate heuristic

enumerative math. pgmg.

graph theory queuing theory

Figure 2.6. Task scheduling characteristics

2-9



" Optimal Versus Sub-Optimal Many specific optimal tas'. scheduling problems have been shown

to be NP-complete [8:20-21]. The dynamic iterative task scheduling problem being an exten-

sion of many of these problems exhibits the same characteristic. Therefore, optimal solutions

(solutions which produce the best performance possible under a specific performance defini-

tion) are usually unfeasible in a run-time environment since the solution search time may be

prohibitively costly. Sub-optimal solutions, however, may be produced wit' 'it significantly

degrading the system such that the cost of reduced performance is acceptable.

* Approximate Versus Heuristic An approximate solution is concerned with searching the solu-

tion space until a 'good' one is found instead of searching the entire solution space to find the

optimal solution. Such a strategy is often referred to as the greedy approach. The time saving

to generate this good solution can make it an acceptable solution (schedule). Unfortunately,

determination of a good solution may not be insignificant, and the validity of this approach

must be carefully analyzed. The heuristic solution, however, uses a priori knowledge concern-

ing process and system loading characteristics to reduce the search space. Heuristic schedulers

make use of special parameters which affect the system in indirect ways.

Policy decisions play a crucial role in the task scheduling mechanism. In the iterative dynamic

task scheduling problem, the policy of adaptive solutions must be considered. An adaptive solution

to the scheduling problem is one in which the algorithms and parameters used to implement the

scheduling policy change dynamically according to previous and current behavior of the system

in response to previous decisions made by the scheduling system. The importance applied to

the various parameters can vary from time to time depending if the scheduler believes certain

parameters are providing information which is inconsistent with the rest of the inputs or are not

providing any information regarding the change in system state in relation to the values of tile

others parameters being observed.

Load balancing is another important policy for multi-processor systems. The basic idea is

to attempt to distribute the workload evenly among the available processors. The processors

act together in order to redistribute some tasks from heavily loaded processors to lightly loaded

processors. This policy relies on the assumption that the information at each processor is very

accurate in order to prevent tasks from being endlessly circulated about between processors thus

reducing overall system progress.

The policy of bidding is used in cooperative scheduling environments and involves all proces-

sors within the system. In this case, when a processor has a task awaiting execution, it announces

tile existence of this task and then receives bids from the other processors. Varied information can

2-10



be passed between processors to make the scheduling decision, and each processor maintains full

autonomy.

Another classification of scheduling mechanisms is the probabilistic scheduling policy. Since

the solution space for an optimal schedule can be very large, such a policy uses probability distri-

bution information of the solution space to select a scheduje. An important attribute can also be

used to bias the random choosing process leading to a schedule better than one chosen entirely at

random.

The nature of iterative task scheduling is complex and involves many strategies in obtaining a

solution. These strategies all have unique characteristics which can be exploited for each scheduling

problem. The determination of which policy to implement can be aided by an understanding of

the environment in which the task system will be operating.

2.4 NP-completeness in Task Scheduling

Many of the problems known and studied have solutions which can be found within two

classes of computing times using the 'best' algorithms. The solution time for the first group of

problems is bounded by a polynomial-time function; i.e., there exists a polynomial p(n) such that

the algorithm can solve any instance of size n in O(p(n)) time. The second class of problems is

those whose 'best' algorithms are nonpolynomial. Such problems are in the class NP-complete

which can be defined by letting 7r be a problem of size n as follows [1:272]:

1. No sequential algorithm with polynomial running time is known for solving 7r and, further-

more, it is not known whether such an algorithm exists.

2. All known sequential algorithms for solving ir have exponential running time and it is not

known whether this is optimal.

3. If a solution to 7r is given, it can be verified in polynomial time.

4. If a sequential polynomial time algorithm is found for solving 7r, it can be used to solve all

NP-complete problems in polynomial time.

Unfortunately, efficient algorithms which produce optimal schedules and require only polynomial

time are known only for a few task scheduling cases:

1. Scheduling on an anbitrary number of identical processors of an EET task system whose

precedence-constraints form an in-forest or an out-forest (anti-forest) [8:54-59].

2-11



2. Scheduling of an arbitrary unit time task system on two identical processors [8:60-68].

3. Scheduling on an arbitrary number of identica! processors of an EET task system whose

incomparability graph is chordal [30].

This suggests that by restricting the precedence-constraints of a task system to certain subclasses

which make the corresponding parallel programs more structured, other polynomial time algorithms

may exist. However, as shown in [27], these subclasses exhibit the same complexity as scheduling

EET task systems with arbitrary precedence constraints; i.e., they are NP-complete. A more

thorough list of scheduling complexities can be found in [8:20-21].

In general, for a system of n independent tasks and m processors, there are mn possible

assignments of tasks to processors. If an optimal solution which minimizes the schedule length

is desired, and the task system isn't structured as in one of the restricted cases above, then an

extensive search process must be conducted. The classification of the iterative task scheduling

problem is dependenit upon the parameters used in the task system. As Table 2.2 indicates, the

problem is NP-complete for variable execution time when the goal of minimum latency is desired

[38:2-8]. Therefore, to solve the iterative scheduling problem for an optimally minimum schedule

length results in exponential time requirements making the search prohibitively costly.

Table 2.2. Categories of iterative schedules for multiprocessors

Type Parameters Goal Comments
iterative n tasks minimum latency 0(n 3 ) if equal execution time

m processors NP-complete if variable execution time
execution time li

iterative n tasks min # processors NP-complete
m processors
execution time li

2.5 Scheduling Algorithms and MIMD Machines

The MIMD machine is a very powerful parallel processing computer with a wide variety of

computer applications such as image processing and computer vision, artificial intelligence, oper-

ations research, robot arm control, and real-time high-speed simulations of dynamic systems to

name just a few [20:1023-10291 (17]. Typically there are far fewer processors than elements to

be processed, and so some natural aggregation of elements is required for partitioning the work-

load among the processors. For image processing, a spatial collection of elements or pixel data

2-12



is appropriate, whereas an aggregate of tasks which model the physical system is appropriate for

computer simulations. Both the shared memory and the distributed memory versions offer distinct

advantages when applications are tuned for the particular architecture. Those machines sharing a

common memory are referred to as multiprocessors ( or tightly coupled machines) while those with

an interconnection network are known as multicomputers (or loosely coupled machines). The shared

memory machine doesn't suffer from the inherent communication delays of it's distributed mem-

ory counterpart; however, the application must deal with memory contention issues. The shared

memory architecture has the advantage of easily accessible global data making it a powerful system

when much communication is required between the processors within an application. However, the

architecture is limited in its scalability due to bus contention issues. One such application known

as Parallel Dynamic Interaction (PDI) [32] takes advantage of this architecture by maintaining

linited global state information which all working processors routinely consult in order to make

decisions in solving three NP-hard problems: flow-shop scheduling, job-shop scheduling, and ver-

tex cover. Another application under process scheduling proposes a scheduling policy, deliberate

random level-order scheduling with time slicing, and an implementation mechanism such that all

processors can perform resource management in parallel and no central tables of resources need be

accessed by processors running the resource management code [21].

Applications designed for the distributed memory MIMD computer must compensate for tile

increased communications costs between processors for effective machine utilization. Therefore,

such applications must ensure tit -atio of communications time to calculation time is kept small;

i.e., T1._. < 1. This implies coarse-grain applications are best suited to such an architecture whereTC.1C

this relationship is inherent within the control or data decomposition of the problem domain.

Many applications have been developed to examine the pros and cons of the loosely coopled

machine. A comparison of three parallel A* search techniques: a Shared-List (centralized-list) al-

gorithm which shares the search space among the processors, a Static Distribution algorithm which

distributes the search space once to all processors (distributed list without load balancing), and the

Continuous Diffusion algorithm where the search space is continuously redistributed demonstratzs

the inherent characteristics of this architecture. The results indicate that the Continuoub Diffusi.n

algvrithm outperforms the others on the message passing architecture [12]. Also, comparison of the

parallelized assignment problem using branch-and-bound techniques with load balancing suppcrts

the distributed-list approach (similar to continous diffusion) versus the shared-list approach when

considering scalability, speed-up performance, a:.d machine utilization efficiency [23]. Although

asynchronous algorithms are diflicult to design, evaluate, and implement, the concerns of parallel

task scheduling such as assigning processes to processors in order to maximize system performance

can be thoroughly addressed using the coarse-grain message passing architecture.

2-13



Within distributed computing, the central problem of task scheduling is motivated by issues

such as load balancing, parallel algorithm requirements, algorithm-architecture matching, and uti-

lization of resources [15]. Various algorithms have been developed to schedule task systems in stz.tic

and dynamic environments each with unique policies and goals. Within the dynamic world, the

goal of achieving flexibility through the dynamic scheduling of tasks in a distributed and adaptive

manner has resulted in many such algorithms. K. Ramamritham and 3. Stankovic describe (a) a

locally executed guarantee algorithm for periodic and non-periodic tasks, which determines whether

or not a task can be guaranteed to meet its real-time requirements, (b) a network-wide bidding

algorithm suited to real-time constraints, (c) the criteria for preempting and executing a task so

that it still meets its deadline, and (d) schemes for including different types of overheads, such

as scheduling and communication overheads [35]. The algorithm was later extended to take into

account precedence-constraints with cpu time being the only system resource explicitly taken into

account. J. A. Stankovic and I. S. Sidhu describe a sophisticated and adaptive bidding algorithm for

decentralized process scheduling in computer networks [41]. The algorithm is sophisticated because

it attempts to match processes to processors based on many factors including process resource re-

quirements, special resource needs, process priority, precedence constra:nts, the need for clustering

and distributed groups (opposite of a cluster), specific features of heterogeneous hosts, and various

other process and network characteristics. J. A. Stankovic also describes an app'i ation of Bayesian

Decision Theory to the decentra!;?ed control of job scheduling [40]. !n this paper, he presents a

heuristic for the effective cooperation of multiple decentralized components of a job scheduling

function. The heuristi= he uses has an especially useful feature in that it can dynamically adapt

to the quality of the state information being processed. S. Sahni develops other good heuristics to

schedulh taskF on compiteis that have multiple pipelined of multiple asynchronous processors [37].

C. Price analyzes so'tw ,re allocation models for distributed computirg systems giving complexity

results that describe the theoretical difficulty of obtaining exact md approximate solutions [34]. lie

examines an iterative transform, clustering, and banded Q heuristic algorithms and their relative

performance against an optimal objective function. R. A. Beard and G. B. Lamont examine algo-

rithm parallelism and performance improvements for the Set Covering Problem on a loosely coupled

distributed parallel processor using coarse grain/static allocation, fine grain/dynamic allocation,

and dynamic load balancing [3]. Another algorithm employed on a partitioned multiprocessor

(PM) is the Two-Tier Scheduler (TTS) [14]. The PM has a shared global bus and nonshared local

memories which allows local scheduling to amortize the cost of loading processes in local memory,

and global scheduling to migrate processes for load balancing. This algorithm takes advantage of

this particular architc-ture by adjusting a tunable time quantum so the average process completes

execution on the processor on which it is first sheduled, an(l only relatively long lived processes are

2-14



rescheduled globally. A simple load balancing scheme for task allocation in shared memory parallel

machines is described in [36]. The load balancing activity which ensures maximum utilization of

available processing power is simple and distributed: whenever a processor accesses its local work

pile of tasks, it performs a balancing operation with probability inversely proportional to the size

of its workpile. When a balancing operation is performed, the work pile of a random processor is

examined and tasks are exchanged so as to equalize the size of the two piles.

Classical task scheduling theory addresses only task sequencing. However, in [33], individual

task parallelism is used such that applying more parallel processing power to the task allows it

to execute faster. This theoretical analysis of generalized multiprocessor scheduling uses optimal

control theory to solve the task scheduling optimization problem. All tasks are assumed to be

dynamically partitionable, and the number of processors is treated as a continous variable per-

mitting the application of the powerful techniques of continuous optimization to solve what would

otherwize be a discrete problem. War gaming simulations can benefit from dynamic partitioning

since the work load of the individual tasks during the simulation change due to the dynamics of

activity levels within a battle field environment.

The task scheduling problem exhibits the same functional characteristics as the assignment

problem: the assignment of proce:ses to processors in order to optimize a system performance

characteristic. When time critical, real-time operations are concerned, the search for optimal

solutions can be too costly; i.e., an optimal scheduling solution can be obtained only after some

operational deadline. Such critical constraints can be found in research for the Strategic Defense

Initiative. In [18], optimal and near optimal assignment algorithms using the technique of Marginal

Assignment Potentials are coded and tested on a parallel processing system. The algorithms are

iterative and interruptable, allowing assignment parameters to be updated and/or new targets

added without having to restart the algorithm.

In static task scheduling, the application is relieved from the time constraints of dynamic

scheduling; i.e., previous scheduling decisions don't change during program execution. Unfor-

tunately, many variables still must be considered in order to generate solutions whose schedule

length is minimal. Many heuristic algorithms have been written to solve this problem. The

Earliest Ready Task (ERT) algorithm considers communication delays between any pair of dis-

tinct processcrs and generates a makespan (schedule length) M which always sastifies M <

(2 - -)M' + Ccomr, where M' is the optimal makespan without considering communication

delay, Ccomm is the maximum communication delay in one chain, and m is the number of pro-

cessors being scheduled [24]. When a set of n partially ordered tasks are given: the time com-

plexity of this algorithm is O(rnn2 ). A Join Latest Predecessor algorithm produces an optimal

2-15



schedule in linear time when there are enough processors to run all available tasks, and com-

munication delays are no longer than the shortest task processing time [2]. Another algorithm

which schedules tasks onto a partitionable mesh connected system (PMCS) uses a layer-by-layer

partitioning strategy and a longest processing time first scheduling policy to generate the mesh

size and the task assignment schedule [25]. The PMCS is a special VLSI device which must be

attached to the host computer, and the host computer manages the PMCS. The algorithm ac-

cepts jobs in which their mesh requirements are known a priori. Two very powerful algorithms

proposed in [19] solve very large scale problems of a few hundred tasks without regard to inter-

processor communication delays. The critical path/most immediate successors first (CP/MISF) is

an improved version of the CP-method or the highest levels first with estimated times (LILFET)

method. The depth first/implicit heuristic search (DF/IttS) scheduling algorithm markedly re-

duces space complexity and average computation time by combining a lower bound function and

the branch-and-bound method with CP/MISF.

2.6 Summary

This chapter has focused on the iterative task scheduling problem, the inherent intractibility

or NP-completeness of these problems, and the MIMD architecture upon which such problems can

be effectively solved. Also discussed are the need for effective process schedules to make efficient

use of these parallel machines, and many dynamic and static sheduling algorithms for ensuring

machine utilization efficiency. The task scheduling problem is defined using graph theory as an

acyclic directed graph. The iterative extension introduces transitive arcs which can be ignored

from a scheduling point-of-view since the feedback constraints introduce new critical paths. Various

system parameters are discussed to describe symbolically the iterative task system. The task system

is then expanded to include periodic task execution requirements. A taxonomy of scheduling is also

presented to show the diverse nature of task scheduling with the many policies upon which iterative

scheduling can be based. The intractibility of the iterative task scheduling problem is also examined.

Since the problem is generally NP-complete except when certain uniquely structured task systems

are considered, the time requirement to generate and optimal solution is exponential. Therefore,

the search for an optimal solution must consider this cost burden to determine the viability of such

an approach. The MIMD computer architecture upon which such applications are well suited is

also discussed. Various algorithms for scheduling static and dynamic task systems are reviewed,

each unique in their policy drivers and the domain of performance criteria. Such algorithms are the

basis for continued research in iterative task scheduling onI MIMD computers. Since the objcctive of

this research !i the optimal solution of NP-complete iterative task scheduling, the greedy methods

2-16



(sub-optimal) and the probabilistic methods are not considered beyond their introduction in this

chapter.

2-17



III. Scheduling Algorithm Design

3.1 Introduction

The generalized scheduling problem consisting of arbitrary precedence-constraints and vari-

able execution time (VET) tasks is NP-complete as previously discussed. When tasks are allowed

to iterate; i.e., each task is permitted to repeat execution i times, the solution space and time

requirements increase dramatically if each task iteration is treated as a different task. The imple-

mentation of an efficient search algorithm to find and optimal solution which minimizes the schedule

length for a distributed system on a parallel machine can result in near linear time speed-up mak-

ing this an attractive approach in solving such a computationaly intensive problem. This ,apter

examines the algorithm design issues of generating such an optimal schedule using an Intel iPSC/2

hypercube. The scheduling policies and methods are di-cussed to give insight into the difficult

nature of generating optimal schedules of a task system in a parallel environment. An optimal

collection of the techniques completes the diszussion.

3.2 Sequential Search Methods

In searchingfor solutions to given problems, search graphs are generally formed which contain

the search sf tes explored at any point in time. A graph is normally produced because search states

are often reached along more than one path from the initial state. However, maintaining a search

graph structure can require a prohibitive amount of physical memory and slow the search process

as well. One aiternative is to create a search tree rather than a search graph where the control

structure of the evolving search process creates a collection of search states connected in a manner

much like the branches on a tree. The size of this structure can be kep. within acceptable limits.

Although this method creates the potential for evaluation of duplicate search paths, the diminished

search performance may be acceptable. In the context of this discussion, search state and search

node are synonymous.

Many well known search techniques exist for obtaining solutions to optimization problems

(31):

1. Depth-first - This strategy expands the nodes in order of increasing depth within the seard

tree. Each node chosen for exploration has all of its successors generated before one of these

successors is chosen for future exploration. Once a : ,Lstion is found, the search proces is

terminated. This technique works well when solutions are plentiful and equally desirable.

When they are not, the search process can spend a considerable amount of time on fruitles

3-1



branches of the search tree. This strategy also must retain in storage the portion of the search

graph that it is currently exploring.

2. Backtracking - This strategy is a version of depth-first search that applies the last-in-first-out

policy to node generation instead of node expansion. When a node is selected for exploration,

only one of its successors is generated, and unless it is found to be a solution or a dead end, it's

again submitted for exploration. If the node meets some stopping criteria, the search process

backtracks to the closest unexpanded ancestor; i.e., an ancestor still having ungenerated

successors. This policy doesn't suffer from any extensive storage requirements since only the

current search path is retained.

3. Hillclimbing - This strategy repeatedly expands a node, inspects its newly generated succes-

sors, and chooses the best among these successors while retaining no further reference to the

father or siblings within the search tree. This approach must retain in storage the current

portion of the search grap i only until the best successor is chosen.

Breadth-first - Unlike depth-first search which considers for future expansion only the nodes

generated on the previous expansion, this strategy considers all successors at all levels within

the search, tree for possible exploration. This strategy guarantees to find the shallowest

possible solution; however, the search process must retain in storage the entire portion of the

search graph that it explores.

5. Best-first - The promise of a search node n is estimated numerically by an heuristic evaluation

function f(n) which may depend on the description of n, the description of the goal, the

information gathered by the search up to this point, and on any extra knowledge about the

problem domain. The node with the lowest f(n) is chosen for expansion. If two paths within

the search tree lead to the same search node, the node with the higher! (n) is discarded. This

strategy also has the potential drawback in that the the search process must retain in storage

the entire portion of the search graph that it explores.

6. Branch-and-bound - As the name implies, this strategy consists of two components: a branch-

ing process and a bounding process. The branching process always expands the search node

most likely to be on the path to the desired solution. The bounding process eliminates from

consideration those search nodes that can't lead to either a feasible solution or a solution

bette, than one already found. An heuristic evaluation function is used for both purposes.

Ideally, the search space is intelligently confined so that a minimal portion of the search graph

must be retained in storage and the search process proceeds directly torwards a solution of

the desited quality.

3-2



7. A* - This is a specialized best-first algorithm in whicl. the heuristic evaluation function f(n)

is defined as the sum of two components: g(n) which the actual cost of the current search

node, and h(n) which is an estimate of the cost from the current search state to a goal

state. With this additive evaluation function and delayed termination to prevent premature

halting of the solution process when the first solution is found, this algorithm is guaranteed

to find the optimal solution provided the heuristic evaluation function h(n) is admissible; i.e.,

h(n) < h*(n) Vn, where h*(n) represents the actual additional cost to a solution from the

present search state. In other words, h(n) is admissible if it never overestimates the actual

cost to the goal.

8. IDA* [22] - Depth-first iterative-deepening is a stategy which compensates for the space

requirements of breath-first search and the time requirements of depth-first search. The

algorithm proceeds iteratively in a depth first search, cutting off a branch when its total cost

(g+h) exceeds a given threshold. This threshold starts as the estimate of the cost of the initial

state, and increases for each iterat;on of the algorithm. At each iteration. the threshold used

for the next iteration is the minimum cost of all values that exceeded the current threshold.

3.3 Scheduling Combinatorics

The search time for the generalized scheduling problem is exponential. At each point in

the scheduling process, all possible combinations of task assignments must be implicitly generated

in order to find the optimal solution. Figure 3.1 shows the scheduling combinations which exist

given the intermediate schedule shown. At time t2 , both processors and three tasks are ready

for scheduling. Therefore, three different combinations exist which must be generated for possible

exploration. In general, given n ready tasks and m available processors, there are nC,,m combinations

of assignments to processors just for one expansion of a search node.

,Cm m!(n- (3.1)

This unfortunate consequence of the generalized scheduling problem leads to the generation of

a number of successors which can exceed storage capabilities for all but the backtracking method

described above. For instance, given a relatively small task system of less than 100 tasks to schedule

onto 16 processors, if at one point in the search process, a search node is chosen for exploration

which contains 50 ready tasks and 10 ready processors, 1.03 * 1010 possible successors can be

generated. This space requirement for moving just one level down in the search tree is prohibitive

on any machine.

3-3



Ti/i T2/1

PI:

P2:

Time: 0 1

a) Intermediate schedule

P1: Ti T3 TI1II 3 T T
P2: T23 JL [4T2T5T2J5

Time: 0 1 2 3 0 1 2 0 1 2 3

b) New schedule combinations

Figure 3.1. Scheduling combinations of a precedence-constrained task system.

3-4



When task iterations are considered, their treatment in the scheduling process can increase

the number of combinations of each search node expansion. For instance, if the all-dterations-first

decision strategy for scheduling is maintained where once a scheduling decision for a task is made,

all of that task's iterations are consecutively scheduled on the same processor at that time [38],

then the problem reverts in numerical complexity to the single iteration problem. However, if

each iteration is treated as a different task, then the number of successor combinations of any

intermediate schedule in the search tree can be significantly larger. Figure 3.2 shows a simple

task system where each task must execute twice. If the all-iterations-first decision strategy for

scheduling is maintained, the search process generates only one successor (which happens to be the

optimal solution in this case) from the intermediate search state shown. However, as Figure 3.3

indicates, if each iteration of a task is treated separately, then the search process must implicitly

generate three successors of the intermediate search state to ensure an optimal solution is found.

Therefore, treatment of an iterative task system in this manner has the effect of viewing a new task

system with a number of tasks equal to the original number of tasks multiplied by the number of

iterations thereby compounding the problem of limited storage capabilities.

3.4 Task Assignments

The method by which tasks are assigned to processors is important in minimizing the search

space and maintaining the search process on an optimal path. Since the focus of this research

is in generating optimal solutions, the generation of all possible task assignments must implicitly

occur. As shown in Section 3.3, the number of combinations of task assignments which must be

implicitly ecplored can be prohibitive. However, if prudent selection of tasks is made, the number

of combinations can be reduced significantly in some cases. A simple method for assigning ready

tasks to ready processors is known as List scheduling. List scheduling is defined as follows:

9 Whenever a processor becomes available, the list of tasks is scanned from left to right. The

first unexecuted ready task encountered in the scan is assigned to the processor.

Unfortunately, many list scheduling anomalies exist [8:165-194] which can lengthen the sched-

ule produced when (1) tasks are removed, (2) task execution times are all equally reduced, (3)

precedence-constraints are weakened and, (4) the number of processors is increased. These anoma-

lies can introduce serious doubt into the validity of an optimal schedule even when it is produced

using a search algorithm such as A* which guarantees an optimal solution provided the additive

evaluation function is admissible. The problem is not with the search algorithm itself, but with the

list scheduling method by which the search states are created. As shown in Figure 3.4, removing

3-5



T1/i T2/2

T3/1 T1'/1 T2'/2

PI: T1 TIV

P2: T2 T2'

Time: 0 1 2

Intermediate schedule where all iterations ofIand T2 are assigned at to.

Pl: T1 TV' T3 T3'

P2: T2 IT2'I I

Time: 0 1 2 3 4

VNew schedule combination where all iterations of
3are assigned at t2.

Figure 3.2. Search node expansion results for the all-iterations-first decision strategy.

3-6



Ti/i T2/2

T3/1 T1'/1 T2'/2

T3'/

Pl: T1

P2: T2

Time: 0-

a) Itermdiat schdul

3-



a task from the system actually increases the schedule length. The search process is doomed from

the start even with a guaranteed optimal search technique since the generation of the first search

state under the list scheduling method will assign T1 to P1 and T5 to P2 at to as shown.

It is easy to note in the previous example of a task system reduced by one task that if T5 is

forced to wait until T1 has completed, the A* search technique using an underlying list scheduling

algorithm will produce an optimal schedule. To compensate for the list scheduling anomalies when

variable execution time tasks are considered, fictitious tasks which correspond to idle processors

must be introduced. These idle tasks together with the ready tasks are then assigned to the

processors as before. The length of these idle tasks must be min(rj)i=..,,,,, where nready is the

number of ready tasks being assigned. Let m be the number of processors being scheduled, and

ma, be the number of available processors at a certain stage in the scheduling process. Then, the

number of idle tasks nidle to be considered for assignment is [19]

nidle - iay -= 1 for may = M

nidte = ma, for 1 <mma, <M

Thus, the number of scheduling combinations generated at each expansion of a search node is given

by

nbranch = (n,.dy+n ile)CmIl,

This shows that the number of successor search nodes created from a given search node can change

dramatically if the guarantee of an optimal solution is to remain valid under list scheduling. Taking

the previous example of 50 ready tasks and 10 available processors of a possible 16, an implicit

generation of 60C10 or more than 7 * 1010 successors is required. This is a seven-fold increase in the

previous requirement. However, such compensation is only required for task systems with variable

execution requirements. As shown in Figure 3.5, changing the execution times of each task so they

are identical produces the same flow time when T2 is removed.

3.5 Parallel Search Methods

Paralel machines play an important role in solving combinatoric problems which grow ex-

ponential) in space and time with the number of data items considered. Although physical limits

exists w, to the size of such machines in terms of the number of proccssors they can have, they still

3-8



(a)

P1: Ti T4 T3

P2: T2 T5 T6

Time: 0 2 5 8

(b)

P1: Ti T3 T6

P2: T5 T4

Time: 0 2 3 5 6 9

(C)

Figure 3.4. A list scheduling anomaly. (a) Y, -.4. (b) An optimal list schedule for Y, -.4. (c) An
optimal list schedule for F -{T2 ), -.< -{((T 2, 74)).

3-9



(a)

P1: T1 T4 T3

P2: T2 T5 T6

Time: 0 2 4 6
(b)

P1: Ti T3 T6

P2: T5 T4

Time: 0 2 it 6

(C)

Figure 3.5. List scheduling anomaly disappears when task execution times arc equal.

3-10



offer great improvements in complex problem solving abilities. Unfortunately, as the solution space

of these combinatoric problems grows exponentially, the number of processors built into existing

parallel computers grows linearly. Therefore, efficient algorithms are necessary to effectively utilize

the processing power of these machines if the actual time requirements to achieve a solution are to

be acceptable.

When considering the design of an efficient parallel algorithm, a determination of data versus

control decomposition must be made. When decomposing a problem to be solved on a parallel

computer under control decomposition, identifying and distributing unique control aspects of an

algorithm allow each processor or unique collection of processors to perform different and essential

functions in the execution of the algorithm. These processors work together on different aspects

of the problem in trying to achieve improved performance over a single processor system. An

example of control decomposition is a 15,000 line Fortran program which computes the electronic

structure of high-temperature superconductors and other composite materials developed to run

on a 128-node iPSC/860 parallel supercomputer [4]. Alternately, data decomposition refers to

the distribution of unique data items to all the processors. Each processor performs the same

calulations on their unique sets of data. An example of data decomposition is the processing of

pixel data in image processing where each processor is given a unique portion of the data set [17].

The data sets are all then processed in the same manner to produce the desired transformation.

In parallel search techniques, the centralized-list approach is an example of control decomposition

while the distributed-list approach reflects data decomposition of the problem domain.

In the algorithmic search process, data decomposition is the proper choice for machine scala-

bility and efficient utilization [23] [12]. The limited number of different control functions within any

of the sequential search techniques previously discussed prohibits control decomposition. A search

graph contains numerous and identically structured elements which must all be processed in the

same manner. Therefore, the distribution of portions of the search graph to different processors

is the logical choice torwards achieving improved performance over the single processor system.

However, without the processors having global knowledge of the local search graphs at each step in

the generation of search nodes, the global search graph degenerates into a combination graph/tree

where the branches of the tree are the local search graphs.

Many parallel search techniques exists for solving complex and data intensive optimization

problems such as searching for optimal solutions to NP-complete problems. When implimented on a

message-passing architecture such as the iPSC/2, the method by which the algorithm coordinates

the search activity is crucial if considerable performance improvements over a single processor

system are to be realized:

.1- I!



a Centralized-list - This algorithm maintains a central list of the search space currently awaiting

exploration. One processors acts as the manager distributing search states to the other

processors for expansion. After a predeterminded number of expansions, all the processors

send back their search states currently awaiting exploration to the central manager which

places them on a priority queue. The m best search states are then redistributed to the other

processors for further exploration. The process repeats until the entire search space has been

exhausted. The algorithm suffers from the bottle-neck effect when the working processors all

try to send their search states to the central manager at the same time. When the machine is

scaled up in size (more processors), this effect becomes more pronounced reducing the overall

utilization efficiency [12].

* Distributed-list - This algorithm eliminates the bottle-neck effect of centralized-list by dis-

tributing a portion of the search graph to each processor at the start of the search process.

The processors all search independently until the entire search space is exhausted. The algo-

rithm suffers from poor load balancing since the initial distribution of search space may be

uneven.

Continuous-diffusion [12]- This algorithm continously redistributes the search space among all

the processors. After each processor expands a certain number of nodes, they each exchange

their best search nodes with their nearest neighbors. This allows near-optimal search nodes

to continually move from the current global and local minima to processors that don't have

optimal nodes. Load balancing is assured, and machine utilization is maximized. However,

exchange frequency must be 'tuned' for the undertaken problem since excessive exchange

communications can increase the search time.

Distributed-list with Load Balancing - This algorithm has the advantage of the distributed list

approach with the policy of load balancing to maximize machine utilization efficiency. This

approach moves portions of the search graph upon request from processors with available

work to those that are idle.

3.6 Optimal Collection of Techniques

The guiding factor in calculating an optimal solution to the iterative task scheduling problem

is the combinatoric explosion of each search state expansion. For relatively small task systems where

the number of potential search states awaiting exploration is not excessive, an informed search

technique such as A' is very appropriate. Parallelizing this approach with the continuous diffusion

technique produces the best combination of methods maximizing search efficiency. Unfortunately,

3-12



this method isn't scalable since machine storage capabilities can quickly be exceeded. The A*

search technique is very good at keeping the search process focused toward an optimal solution

while expanding the fewest search nodes of the serial methods previously described; however, it

can't compensate for the combinatoric explosion in the generation of successor search nodes since

each successor must be explicitly generated and maintained in system memory.

The only technique which doesn't suffer from this limitation is the backtracking method

described in Section 3.2 where multiple successor nodes are implicitly generated. For efficient

operation, the algorithm is modified to include an evaluation function as in A* with branch-and-

bound decision criteria. The search technique is adapted to the distributed-list with load balancing

method with the addition of interprocessor communications of upper bound information which

emulates the continous-diffusion approach. This parallel modified backtracking (MBT) algorithm

incorporates an early global termination check into the search process which checks the solutions

against the initial lower bound flow time. If the search node is found to have a flow time which

equals the initial lower bound, all processors are halted and the solution is reported. If the initial

lower bound isn't met, but the searchnode is a solution and its flow time is better than any other

solution previously found, this upper bound value is broadcast to all working processors to aid in

the bounding process and reduce the enumerated search space. Once all processors have exhausted

their search, the best global solution obtained is reported as the optimal solution. As figure 3.6

shows, the initial lower bound is based on the larger of the iterative task system's critical path, and

r ] where k is the number of iterations, ri the execution cost of task Ti, n is the number of

tasks, and rn is the number of processors to be scheduled. Under no circumstances can a solution

with a shorter schedule exist [38:4-28]. When feedback arcs are introduced, the initial lower bound

can grow larger introducing more idle processor time given the same initial scheduling conditions.

This result is shown in Figure 3.7.

3.7 Parallel Commnunications

When designing an application to run on a coarse grain parallel computer such as the iPSC/2

hypercube, two parameters are particularly important in characterizing machine performance:

* t cal, - The time required to perform a floating point calculation.

" tcomnl - The time taken to communicate a single byte between two nodes.

3- 13



T1/i T2/2

T3/1 T1'/1 T2'/2

T3'/1

Ph: Ti Ti' T3 T3'

P2: T2 T2'

Time: 0 1 2 3 4 5

a) Optimal schedule length = critical path

P1: Ti Ti' T3 T3'

P2: T2 T2'

Time: 0 1 2 3 4

b) Optimal schedule length when -<= 0

Figure 3.6. Lower bounds on the schedule~ flow time.



T1/i T2/2

T3/1

PI: T1 T3 TI'

P2: T2 T2'

Time: 0 1 2 3 '1 5 6

a) Optimal schedule length = critical path

PI: TI Ti' T3 T3'

P2: T2 T2.

Time: 0 1 2 3 1

b) Optimal schedule length when -<= 0

Figure 3.7. Lower bounds on flic schedule flow time when fecdback is introduced.

3-15



A relation which describes the granularity of a parallel machine and an application is the fractional

communications overhead:

S= tComm (3.2)t calc

Ideally, f, is very small so that the full computing power of the parallel computer can be realized.

Any time spent in communications resulting in idle processing time constitutes a penalty on the

overall performance.

The iPSC/2 hypercube is a coarse grain machine due to its message passing interprocessor

communications topology. Therefore, f/ is relatively large. In fact, given the communications

throughput of 2.8 Mbits/sec, and a 80386 processor capable of 1 MFLOPS, the fractional com-

munications cverhead, fe, is 35% considering t.- time to transmit one byte of information versus

the time to perform one floating point calculation. The actual cost of communications and the

effects of the underlying hypercube architecture is best understood when a normalized curve of

f, is analyzed [28]. As shown in Figure 3.8, the cost of communications is highest when message

sizes are small; i.e., the number of floating point operations needed to equate to the time spent in

transmitting a small message is high. This doesn't mean that large messages are desirable though.

In fact, infrequent and small messages provide the best performance for a given application by

allowing the processors to spend very little time idle.

3.8 Summary

This chapter focuses directly on the scheduling process itself. Many of the serial search tech-

niques for finding solutions to optimations problems are described to reveal some of their inherent

limitations when dealing with potentially large search spaces. The backtracking method has the ad-

vantage of the implicit generation of multiple successor search states requiring a very limited storage

capability, while the IDA* method combined minimum storage requiremonts with the guarantee of

achieving an optimal solution given an admissible heuristic evaluation function. The combinatorics

of the generalized scheduling problem are discussed to show the vast size of !,he potential search

space and the prohibitive storage requirements for relatively small scheduling problems. The list

scheduling method by which ready tasks are assigned to ready processors is examined to show

the anomalies which can prevent the generation of an optimal schedule even though an A* search

technique, which giiarantees an optimal solution provided h(n) <_ h*(n), is used. Unfortunately,

the solution to combat the anomaly aggravates the combinatoric explosion problem by introducing

3-16



= 1

100 el

10

1 
-

0.1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Nbytes

Figure 3.8. Normalized communications overhead of an iPSC/2 hypercube.

fictitious tasks to create idle processor times in the schedule generation process. Several paral-

lel search techniques are also discussed to show the manner in which a data decomposed search

problem can be solved on a parallel computer. Based on the search methods and implementation

techniques for parallelizing the search process, the best combination of methods is presented. This

parallel MBT algorithm uses a distributed-list with load balancing technique to maximize search

efficiency providing the 'best' combination for obtaining a near linear speed-up of the search process

on a parallel, message passing architecture while not exceeding the physical storage limits of the

computer. Also, the communication characteristics of a coarse-grain computer such as the iPSC/2

hypercube is shown to require application decomposition to result in computationally intensive

sub-problems with minimal communications to maximize the machine's processing potenti d, thus,

keeping overall processing times minimal and machine utilization efficiency high.

3-17



IV. Low-Level Design/Analysis/Implementation

4.1 Introductiot.

The underlying search technique by which an optimal schedule is obtained determines the

success or failure of such an enterprise. Machine memory capacity and search time must be con-

sidered because of physical limitations of hardware and human patience. This chapter examines

the requirement for a modified backtracking (MBT) search technique and its characteristics. Also

studied are the data characteristics of simulation programs whose optimal execution schedule for

a message passing architecture such as the iPSC/2 is desired. Whether or not the task system

contains forward precedence constraints, feedback precedence constraints, or equal task execution

times can significantly effect the search processor. Based on a priori analysis of a task system's

characteristics, several methods of generating schedules are conjectured to produce optimal sched-

ules in the most efficient manner. Three parallel techniques for distributing the search effort using

the distributed-list approach are discussed to reveal unique characteristics of the search tree in

generating optimal schedules. The use of Ada in the development of programs for validating these

schemes is also shown to be beneficial using the structured design methodology.

4.2 Backtracking Search Variations

As described in Chapter 3, the backtracking (BT) search technique requires the least storage

requirements of any search technique since only search nodes on the current search path need to

be maintained. Since all the search nodes generated are discarded except those on the current

search path, the search control structure evolves as a tree instead of a graph. When the algorithm

includes delayed termination where the entire search tree is explored, an optimal solution can be

obtained [31]. When bounding information is included in the search process, the search tree can be

trimmed to reduce the number of search nodes, and thus, the search time. The current best solution

value obtained throughout the search process is used to bound the global search tree and reduce

the number of search nodes which must be generated and evaluated. When heuristic information

(decision rules) is included in the search process, even more search nodes can be eliminated from

the search tree (branch-and-bound) providing a greater reduction in search time. This modified

backtracking process can significantly reduce the size of the search space as shown in Figure 4.1.

Part (a) represents the complete enumer, 'ion of the search space. Part (b) shows how using the

current best solution value can reduce the search space by reducing the number of search nodes

which must be generated. Part (c) shows how the search space can be reduced in size even further

when heuristic information is used.

4-1



A I/ I/ln1

(a) (b) (c)

Figure 4.1. Schematic representation of three BT strategies.

4.2.1 Combination Trees When analyzing a balanced, non-uniform combination tree where

the branching factor at each level of the tree can be different as shown in Figure 4.2, the number

of states which exist can readily be found using the following equation:

L-1 iStateSt,oto = 1+ I Ibf ) (4.1)
i=1 j=1

where L is tile number of levels in tihe tree. Adding I to the total accounts for the first state at the

top of the tree. Note that this expression reduces to the familiar expression

Statesto~tj bf L _ 1 (4.2)

when the branching factor at each level is the same.

Ani upper bound for the size of the search space (total number of states), is easily found when

relaxing the preceden ce- cons train ts of a task graph. Initially, there are ,C,, ways of assigning the

first set of tasks to processors. To ensure all solutions are obtained for VET task systems, the

remaining sets of assignments must consider permutations. Therefore, there are (n-,n)T, Ways Of

assigning tthe second set of tasks to processors, (n-2,n)P'n ways of assigning tihe third set of tasks

to processors, etc..... The last set of task assignments must consider the case where tile number of

remaining tasks is less than the number of procesoors. In this case, the problem instance can be

viewed as assigning processors to the remaining tasks. Therefore, the total number of states which

4-2



bf 2= 3=L

States,,,,,, = 1 + bf.1 + bf1  bf2 + bf1  bf2 * bf3

Figure 4.2. Non-uniform combination tree.

4-3



exist within the search space is found by setting the branching factor equal to the permutations of

each task assignment set:

Theorem 4.2.1 Statestotai = 1+ ( i- lj=o bf1 ) where bfj = nC, fori = 0 and (,-(j-l)rm)P

for j > 0. For nMODm 6 0, bfL-l = (m)P(n-.(L-2)m)

When the task system contains EET tasks, the permutation term can be reduced to combinations.

Also, if nMODm 5 0, then the final term = 1:

Theorem 4.2.2 Statestot.1 = 1+(E~l l>=l bfj) where bfj = ,C.n forj = 0 and (n-(j-l)m)Cm

for j > 0. For nMODm 4 0, bfL-l =1

Unfortunately, the total number of search states is still rather large. When considering

precedence-constraint task systems, the total number of search states is reduce since not all assign-

ments are valid; however, the exact number of total search states for each task system is unique to

that system and highly dependent upon its precedence-constraint structure. Therefore, the number

of potential assignment combinations for each level when used as the branching factor overestimates

the number of combinations since precedence-constraint relationships restrict many combinations

from being realized; i.e., the combination tree becomes narrower and deeper as shown in Figure 4.3.

Also, when compensation for the list scheduling anomalies is applied to the scheduling process, the

combination tree becomes unbalanced. This results from an uneven distribution of tasks within

each level of the combination tree due to the idle processor times introduced as shown in Fig-

ure 4.4. Therefore, to ensure a true upper bound is obtained, the n terms of Theorum 4.2.1 must

be increased as outlined in Chapter 3.

4.2.2 Search Tree Pruning Better understanding of the effects of search tree pruning is

found when Figures 4.5 and 4.6 are examined. This iterative task system contains only five tasks of

equal execution time. Two iterations of each task are required to be scheduled onto two processors.

A complete expansion of the search tree produces 10,225 search nodes when idle processor states

are forced which compensates for the list scheduling anomaly! When upper and lower bound values

are used, the enumerated search tree is dramatically reduced to 65 search nodes. The upper bound

value is simply the current best solution value throughout the search, and the lower bound value is

the initial calculation of the larger of two values: ' where k is the number of iterations,

ri the execution cost of task Ti, n is the number of tasks, and m is the number of processors to be

scheduled, and the critical path value of the initial task graph including iterations. When heuristic

information is used as well, the enumerated search tree is further reduced to 10 search nodes (the

4-4



start

Ti/i T2/1

1 2

T3/ 1

3 1' 3 2' 1'2)
(a)

Task 1 2' 1'
assignments

3' 3 3'

(b)

Figure 4.3. (a) Task system. (b) Combination tree of task assignments for 2 iterations without
list scheduling anomaly compensation.

4-5



T1/i T2/1

T3/ 1

(a)

start
Task
assignments

unbalanced!

12 1020

3 1' 3 2' 2' 012

(b)

Figure 4.4. (a) Task system. (b) Combination tree of task assignments for 2 iterations with list
scheduling anomaly compensation ('0' represents idle processors).

4-6



numbers above the search nodes in Figure 4.6 represent the order in which the search nodes are

generated). The additive evaluation function f(n), where f(n) = g(n) + h(n), is calculated for each

intermediate search state in the same manner as the initial lower bound value is calculated. For

this particular task system, an improvement of four orders of magnitude is realized between fully

enumerating the search tree and using heuristic information to reduce the search space.

Ti/i T2/1

T3/1 T1'/1 T2'/1

T4/1 T5/1 T'/ I

Figure 4.5. Iterative task system

4s.2.3 Modified Backtracking Algorithni Implementation of the modified backtracking algo-

rithm requires simple data structure management of a stack using a linked list structur- since thc

stack size is predicated on the task system characteristics. This stack is commonly refcrcd to as the

OPEN list [31). The algorithm Al for conducting the modified backtracking search is ;Ls follows:

1. Calcuflate lower bound.

,1-7



g=O
R=1,2,0 0
May = 2
f=5

3
2

g=1 1

ff=5

R=3140 12 0=,,501
Mau = 2 IP=1,2 Mau = 2 IP=1,2
f=6 f=5

g=3 g=3
R=3,4,)0 30R=375,0O2

Mau = 2 IP=1,2 May = 2 IP=1,2
f=6 f=5

f=6f5

ga=6 IP=1,2 9.=5 sePo=rad7tsk

May = number of available processors
f = additive cost value (g + hi)
IP = index pointer for task
combination assignment of successor

Figure 4.6. Explicit enumeration search tree (control structure) for MBT search.

4-8



2. Set upper bound = oo.

3. Generate initial search state and put it on OPEN.

4. Examine topmost node from OPEN.

5. If OPEN is empty, exit.

6. If the heuristic evaluation function f(n) upper bound remove search node from open and

go to step 4; otherwise continue.

7. Generate a new successor of the search node and update the combination sequence of ready

tasks for future successor generations.

8. If no more generations are possible, remove search node from OPEN.

9. If sucessor is a goal, update upper bound and maintain solution (if necessary); otherwise,

discard it.

10. If solution cost of goal = lower bound, exit.

11. If not a solution, calculate branching and heuristic data of successor.

12. If not a solution and f(n) < upper bound, place on top of OPEN; otherwise, discard it.

13. Go to step 4.

4.2.4 Backtracking Search Implementation As shown in Figure 4.5, an iterative task system

can easily be depicted using a graphical representation of a system where all tasks execute only once

(multiple executions of the same task are treated as different tasks). This unfolding of an iterative

system allows critical path data to be calculated from each and every task regardless of the system

structure. The Floyd-Warshall algorithm with time and space bound 0(n3) is used to calculate

the critical path. Although there exists 0(n 2) algorithms for calculating longest path values from

a single source such as Dijkstra's algorithm [10:527], and the Bellman-Ford algorithm [10:532], the

critical path from every node must be calculated increasing the complexity to 0(n3 ). The code

for the Floyd-Warshall algorithm is tight with no elaborate data structures, and so the constant

hidden in the 0-notation is small. This critical path data can then be used to help find the best

lower bound from each intermediate schedule. However, the one drawback to unfolding an iterative

system into unique tasks for these calculations is the large matrix data structure representing path

costs between adjacent tasks which results. The bounding expression above becomes 0(n * i)3 )

where i is the number of iterations required. For example, a task system with 20 tasks and 10

iterations requires an unfolded cost matrix of 200X200 in size for the above algorithms. Should

this space requirement become prohibitive, a depth first recursive procedure may be necessary!

.1-9



In Figure 4.6, search state information is maintained within each search node in order to

generate successor search nodes when necessary. When each successor search node is initially

created and found not to be a solution, a list of ready tasks and ready processors is calculated

for the next schedule point where at least one task and one processor are ready. This successor is

created by assigning a combination of ready tasks to ready processors. The actual tasks which are

assigned wi -n a successor search node is generated is determined by the set of combination index

pointers, IP. This set is then updated to identify the next combination of tasks to assign if an when

it becomes necessary to generate another successor. For example, given three ready processors

and two ready tasks, the set of combination IPs is {(12), (13), (23)). Search node 8 represents the

assignment of ready tasks in the set Rt of search node 2 when the combination IPs of search node 2

have been updated to the pair (13). The real cost, g, of each intermediate schedule is determined

from the processor with the longest schedule; i.e., the maximum finish or flow time as described in

Chapter 1.

g(n) = max(w(p,))i=1 .p (4.3)

where p is the number of processors to schedule, pi is the processor, and w is tile flow time.

The heuristic value, h(n), is calculated as the new lower bound from the current intermediate

schedule. Finding a lower bound as close to the upper bound is essential in limiting the search

space. Therefore, both bin packing and critical path information are used to aid this process [8]

[20] [26].

Theorem 4.2.3 Given an iterative task system of arbitrary precedence and variable execution time

tasks, the minimnm schedule length can be no less than max([z.LL]), Critical Path, Current

Schedule Length) where n is the number of tasks (including iterations) awaiting scheduling, n is

the number of processors being scheduled, and r, is the exccutton tine requirement for task T1, [38].

Applying this theorem to the scheduling process provides lower bound values for all non-

solution schedules in the search tree. For example, at an intermediate schedule, all the remaining

task execution units are summed. Those processors whose schedule lengths are smaller than the

schedule flow time are made to be equal by subtracting the difference from this total. The remaining

value is then divided by the number of processors with the result rounded up to the nearest

integer. This value becomes hI. Also, critical path data from the last task assigned on each

processor is applied to that processor's flow time to determine a maxiinumi flow time for the schedule.

The largest difference between each processors's new flow time estimate and g(n) for the actual

4-10



intermediate schedule becomes h2. The larger of these two values then becomes h(n).

hi = r i=1 Ti - EI (W(P)maz - W(P)) 1  (44)
In

h2  = max(w(pi) + Cp(Pi))j=1..p - g(n) (4.5)

and

h(n) = max(hi,h 2) (4.6)

where h(n) > 0, n is the number of scheduled tasks, ri is the execution costs of each unscheduled

task, and cp is the critical path. The actual flow time and the heuristic value are then added to

produce a lower bound for the intermediate schedule (the additive evaluation function).

f(n) = g(n)+h(n) (4.7)

An example of these calculations for the task system in Figure 4.7 with the intermediate schedule

shown results in

hl = r 6-21
2

h2  = max(4+2,2+2)-4

such that

f(n) =- 6

4.3 Scheduling State Combinatorics

Any simulation system which can be developed into unique control (task) entities can be

represented using a task graph. The search process must implicitly generate all combinations of

search states for all ready tasks at each scheduling point to ensure an optimal schedule is found.

The sensitivity of the relationship between the number of ready lasks and the number of ready

processcrs in generating search nodes is fully appreciated when a combination curve is exanlhed.

.1-11



P1: T2
P2: T3

Time: 0 1 2

Figure 4.7. Intermediate schedule for lower bound calculations

.1-12



For example, the largest number of combinations which can be taken from a given number occurs

when half the number is taken at a time. Figure 4.8 shows the bell shaped curve which represents

this characteristic of numeical combinptions. When 20 items are taken 10 at a time, 184,756

combinations exist. Therefore. if 20 tasks are ready to be scheduled, increasing the number of

ave., %ble processors from 1 up to 10 dramatically increases the number of search nodes the search

process must implicitly generate, while increasing the number of available processors from 10 up

to 20 dramatically reduces this number. In fact, the combination gradient is greatest between 7 &

8 (12 & 13) where number of combinations increases (decreases) by 48,450 for this example. This

Number of
combinations Combination Curve

200000 I I i

180000

160000

140000

120000

100000

80000

60000
40000 2oCm = "

20000

0 A
0 2 4 6 8 10 12 14 16 18 20

Items taken m at a time

Figure 4.8. Combination curve for 20

dramatic change in the implicit generation of search space based on the availability of one more or

one less rprocessor at a scheduling point can greatly affect the search time.

4.4 Characteristics of Simulation Systems

4.4.1 Sensitivity Analysis Three important characteristics of simulation systems are (1)

forward precedence constraints, (2) feedback precedence constraints, and (3) the difference in task

execution times. Modifying a simulation graph by removing or increasing the number of task

dependencies, adding feedback dependencies, or modeling a system with equal execution time tasks

can all have a significant effect on the size of the explored search space. Figure 4.9 shows a task

system with seven EET tasks which must each execute twice when scheduled onto two processor.

4-13



Figure 4.9. Simulation task system.

4-14



As Table 4.1 reveals, the size of the enumerated search space varies significantly when these

parameters are modified by doubling the execution times for the even numbered tasks, removing a

constraint arc from T1 to T4, or adding a feedback constraint arc from T7 to Ti. All search trees

generated assume a modified backtracking process with list scheduling compensation.

Table 4.1. Sensitivity analysis of a simulation system's execution constraints

Search Nodes Lower Optimal Feedback Equal Execution Relaxed Constraint
Generated Bound Schedule Cost -< +{(T7,T1)} Times (EET) -< -{(T1,T4)}

8 7 8 X
21370 7 8 X X
7988 7 30 X X

17 10 11
50590 10 11 X

502 10 12 X

4.4.2 Minimization of Scheduling Combinatorics In an iterative EET task system regardless

of feedback contraints, the maximum number of tasks available for execution at any one time is the

number of tasks in the original system (iterations not included). As shown in Figure 4.10, given

enough iterations, each level of the task system can eventually be combined with every other level

for scheduling.

Theorem 4.4.1 In EET task systems, for i = 1 - oo, max nready = n.

For an EET task system containing n tasks, scheduling at least n processors reduces the uumber of

combinations for each assignment to 1. Therefore, if there are enough processors at each scheduling

point to schedule all ready tasks, the task system can be optimally schedule within -y discrete step

where 7 is the maximum depth of the search tree; i.e., the number of tasks in the initial critical

path including iterations.

Theorem 4.4.2 In EET task systems, for m > n, the optimal solution can be found ti - steps

where y is the number of tasks on the critical path of the initial task graph including iterations.

For Figure 4.10, an optimal schedule can be found in six scheduling steps. However, the breadth

of the schedule may be such that many tasks which communicate don't physically reside on the

same processor. If interprocessor communication costs are considered, such an optimal mapping

may not prove to be optimal upon execution of the simulation.

4-15



Ti

T2 Ti'

T3 T2' Ti" M ax arlady n

T3' T2" Ti"'

TTV'

Figiir -.i. Iterative EE T task scheduling example for max nrad =.

41-16



4.5 Scheduling Process

The process of making a scheduling decision at each level in the search tree requires knowledge

of the free tasks (tasks whose constraints have been relaxed due to completion of parent tasks),

and the free processors. The scheduling point must be determined by scanning the free times of

the processors in a non-decreasing order until based on the scheduling relationship of the tasks

scheduled, at least one task is free. In simulation terminology, this equates to the next-event time.

As indicated in Figure 4.11, the next valid scheduling point is at time 3 since task 2 constrains the

second interation of itself and the first iteration of task 3 until it completes.

The following algorithm A2 defines this process:

1. Sort list of processor-ready-times.

2. Scan list of processor-ready-times until ready-time t, where t represents the earliest instance

at least one task is now unconstrained.

3. List assign first combination of ready tasks to ready processors.

4. Update combination index pointer (IP) for next assignment.

4.6 Sequential Search

The underlying search techniques for generating optimal schedules for simulation task systems

vary depending upon whether feedback among the tasks exits, task execution times are identical,

task iterations can be scheduled all at once, and task migration among the palallel processors

is permitted. As Table 4.2 indicates, seven methods can be imployed in generating an optimal

schedule based on this criteria. Each method takes advantage of the characteristics of the task

system to produce the smallest search tree possible, and thus, produce an optimal schedule in an

efficient manner.

Table 4.2. Sequential search methods

Method Feedback Execution Times Iterations Task Migration

I No Equal Together No
2 No Variable Separate No
3 No Variable Separate Yes
4 Yes Equal Separate No
5 Yes Equal Separate Yes
6 Yes Variable Separate No
7 Yes Variable Separate Yes

4.17



T1/i T2

Ready Tasks at t2: none

P2:~~ T2ady Tasks at t3: T3,T2'

Assignment Combinations: 1

Time: 0 1 2 3

Valid Scheduling Point

Figure 4.11. Scheduling point decision.

4 Is



Search method 1 reduces the number of scheduling points and the -,cheduling combinations

which must be implicitiy generated. Since systems being modeled with EET tasks don't require

compensation for the lst scheduling anomalies, this all-iterations-first strategy reduces the original

complexity of the problem making the relative time costs for obtaining a solution minimal. As

shown in Figure 4.12, a three task system can quickly be scheduled onto two processors in four

steps (scheduling points) using the all-iterati-ns-first strategy in comparison to six steps when each

task iteration is treated as a unique task for scheduling purposes.

Search methods 2 and 3 compare the effects of allowing task migration on the scheduling

process for variable execution time tasks. Preventing task migration reduces the complexity of ex-

ercising the simulation, but it can cause the search tree to be larger in depth and produce schedules

whose flow time is greater than schedules with task migration. Interprocessor communication cost

at run-time aren't considered in order to speed the schedule generation process and reduce the

search space to a size determined by combinations of task assignments at each scheduling point

versus permutations.

Search methods 4 and 5 compare the effects of allowing task migration on the scheduling

process for equal execution time tasks when feedback constraints exist. Feedback constraints gen-

erally increase schedule flow times by introducing processor idle times caused by a feedback focal

point. Also, feedback precludes the use of the all-iterations-first strategy even though the simulation

system contains only EET tasks.

Search methods 6 and 7 compare the effects of allowing task migration on the scheduling

process for variable execution time tasks when feedback constraints exist. The performance results

are conjectured to be identical to method 2 & 3 above.

4.7 Parallel Search

Optimal schedules for implementation of simulation s ystems on a parallel, message passing

machine such as the iPSC/2 require implicit search within a potentially large space. The modified

backtracking algorithm attempts to reduce this space as much as possible; however, real improve-

ment on search time can only be acheived if the search tree is parsed into smaller sections where

simultaneous searching of these sections can occur. Such is the intent of parallelizing the sequential

search process.

Three parallel techniques are explored to identify the most efficient method. As Table 4.3

indicates, each method liffers from the other based on upper bound communications and load

balancing activities. All three methods use a distributed-list approach for machine scalahility.

• -19



(a)

P1: Ti TI' Ti" T3 T3' T3"

P2: T2 T2' T2"

Time: 0 1 2 3 4 5 6Schduln 30,° t t t t t t
points

(b)

PI: Ti Ti' Ti" T3 T3' T3"

P2: T2 T2' T2"

Time: 0 1 2 3 4 5 6

Scheduling t t t t
points

(c)

Figure 4.12. Scheduling simplification for EET task systems without feedback. (a) Task system
requiring three iterations. (b) Each iteration assigned separately. (c) All iterations
assigned together (all-icrations-first strategy).

4-20



Such an approach doesn't suffer from the bottleneck effect of the centralized list approach when

many processors are assigned to the search process [12].

Table 4.3. Parallel search methods
Method Data Upper Bound Load Balancing

Decomposition Communications

1 distributed list
2 distributed list X
3 distributed list X X

In all parallel search methods, each physical processor starts by generating search nodes in a

modified breadth-first manner; i.e., only the p most search nodes at the top of the search tree are

generated where p is the number of physical processors being used to find an optimal schedule. At

this point, each process keeps the search node whose position on the OPEN list corresponds to its

node number and discards the rest. For instance, if there are eight processors available, the initial

modified breadth-first search conducted on each processor will produce an OPEN list containing

eight search nodes on each processor P. P1 will keep the 1" search node, P2 will keep the 2nd, P3

the 3 rd, etc ... The modified backtracking search is then initiated and proceeds until an optimal

solution is found.

In parallel search method 1, once each processor has an initial search node to work from, all

physical processors proceed in their search unz.oated until all processors run out of search space

to explore. This is conjectured to produce an inefliciet search where additional search space is

unneccessarily explored and machine utilization is poor due to load imbalancing. In parallel search

method 2, local upper bound information is passed on to the other working processors to aid in the

global pruning process of the local search trees. This is conjectured to reduce the explored search

space but with little or no improvement in machine utilization efficiency. In parallel search method

3, load imbalancing is corrected with on-demand movement of search nods to idle processors. This

method is conjectured to greatly "mproving machine utilization efficiency an produce an optimal

schedule in the minimum amount of time. All three parallel search methods require an exhaustive

search, but with upper bound communications and load balancing activities, the global search tree

enumerated should be a fraction of the search tree enumerated when such activities don't occur.

Since the search process is exhaustive, all working processors must implicitly explore their

associated initial search space under methods 1 & 2 before an optimal solution can be assertained.

lowever, in method 3, load balancing causes each processor's initial search space to change when

load balancing requests are satisfied. Such requests are satisfied by sending the search node highest

*1-21



in the search tree to the requesting processor. This attempts to amortize the cost of satisfying the

load balancing request by ensuring as much potential search space as possible is provided to the

requesting processor. A counter is then initialized so that a specified number of search expansions

occur before another load balancing request is satisfied by the same processor. This number is

determined to be the worst case depth of the local search tree n * i, where n is the number of tasks,

and i is the number of iterations regardless of the actual task system structure. This worst case

value ensures that the processor has an opportunity to find at least one solution prior to again

losing data to a load balancing request. Such a threshold reduces load balance thrashing between

the processors and provides the global search process the potential for a new upper bound value

within the threshold limit. For example, Figure 4.13 shows a simple simulation system with three

EET tasks. Each task must execute for three iterations. When scheduling this system onto three

processors, nine scheduling decisions must be made to find a complete schedule when the feedback

constraint is assumed (Figure 4.13, part (b)), whereas only five scheduling decisions must be made

when feedback isn't assumed (Figure 4.13, part (c)). Each scheduling decision represents a new

level in the search tree for this example. Thus, if the structure of the actual task system results in

a maximum search tree depth of five, at least one new solution value is guaranteed the opportunity

to be discovered. Due to heuristic pruning though, actually realizing a new solution may not occur.

The actual maximum depth of the search tree isn't considered since the primary objective of the

threshold value is to delay satisfying load balancing requests until at least one new solution is given

the opportunity to be found.

During the load balancing process, when a processor identifies an empty local OPEN list, it

makes a request to its nearest logical neighbor. Should the requesting processor receive a negative

reply, it then makes the same request to the logical neighbor of the processor which denied the

request. This request proceeds in a spoke fashion as shown in Figure 4.14 until either it is satisfied

by another processor, or all processors have been polled. Such a strategy is simple to implement

and doesn't suffer from excessive communication costs. The summation of links traversed in com-

munications with all processors in a logical order is no different than when communications proceed

in a physical order based on increasing path lengths expanding out from the starting processor.

Figure 4.15 shows the processor interconnection topology for a hypercube with eight processors.

As Table 4.4 shows, the total number of links traversed for both methods is the same. Although

the intermediate sums may favor the later communications order as indicated by the link totals

through the third load balancing request, the communication latency for an iPSC/2 varies by at

most 10% between any two processors [13.441], i.e., the added communications latency is relatively

insignificant considering the simplicity of the implementation.

.1-22



0b (

T2 (a)

9 Ti
T2'

T2 Ti'

.- 3T3T2' TV"

T3' T2V

T27'

TT37

(b) (C)

Figure 4.13. (a) Simulation task systemn. (b) Iterative graph for -<+((7T3,7T1)). (c) Iterative
graph without feedback.

.1-23



Request ,'Reply

% %6

POP

_____________ Termination check message sequence

>. Load balancing request message sequence

Figure 4.14. Parallel load balancing and termination cormmnication strtichirc.

.1-2.1



P6 P7

P5

PO1

Figure 4.15. Interconnection topology for a hypercube with 8 processors.

Table 4.4. Communication path lengths for the hypercubc interconnection topology starting from
processor 0.

Logical Order Increasing Path Length Order
SDestination Links Accumulative HDestination ILinks Accumulative

Processor Link Totals Processor Link Totals
1 1 1 1 1 i'* 1

2 1 2 2 I 2
3 2 4 4 1 3
4 1 5 3 21 5
5 2 7 5 2 1 7
6 2 9 6 21 9
7 3 12 7 31 12

.4-25



If the case arises wherein all processors have been polled and all have denied tile load balancing

request, a termination check message is initiated in the same ring order. Each processor will receive

the termination check message and pass it on to their logical neighbor unless they are still working;

i.e., their OPEN list isn't empty. Each termination check message is uniquely identified by tile

processor ID which initiated the message. If a processor receives a termination check message with

the same ID as itself, the message has successfully traversed the ring network indicating all other

processors are idle too, at which point it broadcasts a terminate message so the processor network

can synchronize, collect performance data, and identify the optimal solution. Figure 4.14 represents

this termination sequence initiated by processor P0 for an 8 processor configuration.

The algorithms for the three parallel versions identified in Table 4.3 are all slight modilica-

tions of the MBT algorithm to account for load distribution, load balancing, and communications

requirements. Each algorithm executes the same initialization as follows:

1. Calculate lower bound.

2. Set upper bound = oo.

3. Generate P search states and keep P search state on OPEN.

When each algorithm exits on all processors, global data collection routines are invoked to obtain

the global optimal solution from among all the local optimal solutions, along with performance

data for analysis of the search process. The following algorithm PAl executed on each processor

describes parallel method I:

1. Examine topmost node from OPEN.

2. If OPEN is empty, execute global minimum to determine global optimum solution from all

local o, timum solutions, then exit.

3. If the heuristic evaluation function .'(n) > upper bound remove search node from open and

go to step 1; otherwise continue.

4. Generate a new succ:ssor of the search node and update tile combinationl S.e 1McI:Ce of ready

tasks for future successor generations.

4. If no more generations are pr -sible, remove -,arch node from OPEN

6. If successor is a goal, update uNper bound and maintain so !tion (if .tlary). otherwi:se.

discard it.

7 if solution cost of goal = lower hound. exit.

1!. 21



8. If not a solution, calculate branching and heuristic data of successor.

9. If not a solution and f(n) < upper bound, place on top of OPEN; other'vise, discard it.

10. Go to step 1.

Note that this algorithm is the same as the M'3 ' algorithm described in Section 4.2.3. The

following algorithm PA2 executed on each processo describes method 2 with the upper bound

communications requirement:

1. Examine topmost node from OPEN.

2. If OPEN is empty, execute global minimum to determine global optimum solution from all

local optimum solutions, then exit.

3. If the heuristic evaluation function f(n) > upper bound remove search node from open and

go to step 1; otherwise continue.

4. Generate a new successor of the search node and update the combination sequence of ready

tasks for future successor generations.

5. If no more generations are possible, remove search node from OPEN.

6. If successor is a goal, update upper bound, maintain solution, and broadcast new upper bound

value to other processors (if necessary); utherwise, discard it.

7. If solution cost of goal = lowei bound, exit.

8. If not a solution, calculate branching and heuristic data of successor.

9. If not a solution and f(n) < upper bound, place on top of OPEN; otherwise, discard it.

10. Poll for upper bound message and update local upper bound value when received (if neces-

sary).

11. Go to step 1.

Note the simple additions of broadcasting upper bound data to the other processors and polling

for these messages. Since method 3 incorporates load balancing to improve machine utilization

tfficiency, processors must wait after their OPEN lists become empty until the proper termination

sequence has successfu!ly completed. This causes the MBT algorithm to grow considerably in

complexity as defined by algorithm PA3 below:

1. Examine topmost node from OPEN.

4-27



2. If OPEN is empty, send work request to another processor and go to step 10.

3. If the heuristic evaluation function f(n) > upper bound remove search node from open and

go to step 1; otherwise continue.

4. Generate a new successor of the search node and update the combination sequence of ready

tasks for future successor generations.

5. If no more generations are possible, remove search node from OPEN.

6. If successor is a goal, update upper bound, maintain solution, and broadcast new upper bound

value to other processors (if necessary); otherwise, discard it.

7. If solution cost of goal = lower bound, exit.

8. If not a solution, calculate branching and heuristic data of successor.

9. If not a solution and f(n) < upper bound, place on top of OPEN; otherwise, discard it.

10. Poll for termination check message and pass it on to next processor if OPEN list is empty. If

termination check message originated from this processor, broadcast terminate message and

exit.

11. Poll for upper bound message and update local upper bound value when received (if neces-

sary).

12. Poll for work reply message. If positive, place search node on OPEN and go to Step 1. If

negative and all processors have responded, initiafe termination check message and go to step

10; otherwise, go to step 2.

13. Poll for work request message. Send search node to requester if load balance threshold is

exceeded; otherwise, send negative reply message.

14 Poll for terminate message. If received, exit.

15. Go to step 1.

4.8 Software Development using Ada

Developing a software program to exercise and evaluate the algor~thmic ideas contained within

this research is a complex task. However, using the functional design methodology and coding the

modules in Ada which has considerable expressive puwer reduced the potential effort considerably

[5]. This provided greater time for analyzing the search process and performance efficiency of the

iPSC/2 hypercube running the parallel search algorithms.

4-28



4.8.1 Functional Design Functional design decomposition involves considering a system as

a set of interacting functional units. Since the most important design quality attribute is main-

tainability, maximizing cohesion in a software component and minimizing the coupling between

software components is essential in achieving that goal. Although the software developed during

this research may be relatively short-lived, these attributes of a good functional design are very

valuable in rapidly developing operational code and making the necessary modifications for the

various types of scheduling methods requiring investigation. Once all the procedural operations are

developed, orchestrating their activities to perform the modified backtracking algorithm as defined

in this chapter is a simple matter.

4.8.2 The Ada Language Many languages satisfy a collection of requirei, 'nts:

* Structure Constructs.

" Strong Typing.

* Relative and absolute precision specifications.

" Information hiding and data abstraction.

" Concurrent processing.

" Exception handling.

* Generic definitions.

" Machine-dependent facilities.

However, Ada brings all these elements together in a single language uniting them into one co-

herent model making program application development comparatively less complex. Structured

constructs, strong typing, and information hiding and data abstraction are key elements fully

taken advantage of in the development of the parallel search programs. Such attributes allow

early detection of many programming errors at compile time versus spending many hours debug-

ging semi-operational code. Code maintenance is also simplified due to the structured constructs

allowing code modifications well after initial development to be relatively easy.

Within the development environment of the iPSC/2, the Ada constructs for managing the

interprocessor communications are very similar to the two other programming languages available

for this rrachine, C and Fortran. lowever, a firm understanding of the communications hardware

is necessary to ensure that the programmer is in control, and not the hypercube!

4-29



4.9 Summary

This chapter focuses on the MBT search technique and its algorithmic implementation. Since

the maximum number of search nodes which must be maintained during the search process at any

one ti..!c is the maximum depth of the search tree, this method alleviaLes thc problem of machine

storage limitations in practical applications. The MBT search enumerates a nuch smaller search

tree than the standard backtracking method with delayed termination resulting iri reduced search

times. This results from the use of heuristic, lower bound, and upper bound information. The

actual number of search nodes created for Figure 4.5 are shown to be reduced by a factor of over

10,000 when the MBT method is compared against the standard BT method with deiaved termi-

nation. Unfortunately, sensitivity analysis of system data reveals the poorly behaved scheduling

combinatorics where minor modifications of the system cause wide variations in the number of

search nodes explicitly generated by the MBT method. A priori analysis of the simulation task

system is also shown to be an important factor in determining how an optimal schedule is built.

Task execution times, iteration groupings, and task migration allowances are important character-

istics of simulation systems in producing optimal schedules in the most efficient manner. Three

parallel techniques are described for implementing the MBT search algorithm on an iPSC/2 hy-

percube with the Ada programming language. Methods 2 & 3 build on method 1 and increasingly

traded simplicity for machine efficiency to improve the potential speed-up of the search process.

The use of Ada in developing programs to exercise the parallel MBT algorithms on the hypercube

was very beneficial in rapidly developing operational code. The structured design approach fit well

with the algorithmic description of the MT method allowing the operational programs to be well

structured and easily maintainable.

4-30



V. Simulation Applications/Search Performance Results

5.1 Introduction

Task systems for simulations vary significantly based on what is being simulated. In war

gaming simulations, task execution costs vary from one task to another, tasks repeat execution,

and feedback constraints exist. The logical partitioning of activities for such simulations creates

tasks which simulate actual organizations within a military unit from the headquarters down to

the field units which must carry out the orders and provide battle status information (feedback)

to the commanders. In VHDL circuits, feedback of circuit information is often used for control

of circuit activity. However, many circuits can be implemented on parallel computers without

feedback. An example of such a circuit is an 8-bit adder which adds numerous pairs of numbers in

a pipelined manner. Although each task executes many times, no information is passed back to any

parent tasks. Also, the task execution costs can often be assumed identical due to the simplicity

and commonality of the tasks. Therefore, when searching for an optimal schedule for such task

systems, such information is useful in reducing the search time as outlined in Chapter 4. When

the system is actually implemented on a parallel computer, task migration must also be addressed.

If the difference in communication costs between tasks on different processors and tasks on the

same processor are negligible, task migrations can be allowed in the scheduling process further

minimizing the schedule length. Since the most difficult scheduling problems to solve are those

classified as NP-complete, the iterative scheduling problem with variable execution time tasks and

feedback constraints is examined for search time performance on an iPSC/2 hypercube.

5.2 Task Labeling

Task labeling is the process of assigning task numbers to the tasks. The task numbering

convention chosen is such that arcs between tasks labeled in increasing order represent feedforward

dependencies while arcs between tasks labeled in decreasing order represent feedback dependencies.

This labeling scheme is necessary to identify which tasks precede others in the adjacency matrix

for the schedule generation process when feedback is considered. The feedback information is

maintained in the lower triangle of the adjacency matrix with the upper triangle maintaining the

feedforward information.

5.3 Testing Methodology

Validation of the parallel MBT algorithm requires experimental analysis of the run-time

output to ensure tile algorithm is free from errors and complies with its requirements in its im-

5-1



plementation form. The requirements are to generate optimal schedules for iterative task systems

with arbitrary precedence-constraints (feedback included), and variable task execution times using

parallel techniques to improve the search time. Since the scheduling combinatorics exhibit great

sensitivity to these task system parameters as described in chapter 4, the uniqueness of each con-

ceivable example in its search space and time values prohibits meaningful comparison among them.

A true validation of algorithm performance is made by varying the parallel run-time parameters

using the same input data. The run-time parameters adjusted for validation of the parallel MBT al-

gorithm are the number of processors used in the search process and interprocessor communications

and load balancing activities.

5.4 Generic Simulation

Figure 5.1 represents a computer simulation known as the car wash [42]. This is essentially

a queueing problem designed to analyze computer performance based on task partitioning and

assignment to a varying number of processors. To validate parallel search methods 1 through

T1/2 T2/2 T3/2

T4/1 T5/1 T6/1 T7/1

T8/3

Figure 5.1. Computer simulation of a car wash.

5-2



3 for maximum performance, the car wash simulation for three iterations is scheduled onto two

processors of the iPSC/2 hypercube using the same computer. As indicated in Table 5.1, the

best search time and load balancing is achieved using parallel search method 3 (p represents the

average run-time for the processors, and a is the standard deviation of those run-times). When the

Table 5.1. Search time performance using 8 processors to schedule 2.

M ethod j__(sec) a _(sec) Search Nodes UpperBound Load Balancing Load Balancing
11 1 1 Created Messages Requests Satisfied

1 167.0 85.00 71,972 0 0 0
2 44.4 15.20 18,909 6 0 03 44.2 0.03 18,870 6 405 121 D

number of processors used to create the optimal schedule for two processors is varied, the search

performance results further support parallel search method 3 as the 'best' method when considering

search space and time.

Table 5.2. Search time performance using 4 processors to schedule 2.

M ethod u (sec) o (sec) Se ar ch N odes Upper Bound Load Balancing Load Balancing

1 188.0 61.80 41,524 0 0 0
2 85.0 20.00 18,647 3 0 0
3 86.0 0.02 18,648 3 83 28

Table 5.3. Search time performance using 2 processors to schedule 2.

Method a (sec) g (sec) Search Nodes Upper Bound Load Balancing Load Balancing
.. ... 1 1 Created M.hlessages Requests Satisfiedl

1 188.0 37.40 T 20,731 0 0 0
2 123.2 .27.80 13,541 3 0 0
3 124.5 0.04 13,539 3 28 7

Parallel machine efficiency is defined as the ratio of parallel speed-up to the number of pro-

cessors used:

( -.1

5-3



Table 5.4. Search time performance using 1 processor to schedule 2.

Methoda pi (sec) uo (sec) Search Nodes Upper Bound Load Balancing Load Balancing
I I I I Created Messages Requests Satisfied

1 329.6 - 18,147 0 0 0

aMethods 2 & 3 don't apply

where Sp is the speed-up obtained and P is the number of processors. Table 5.5 shows the C values

for the car wash schedule generation results.

Table 5.5. e values for car wash schedule generation.

Processors P Search Nodes T (see) T, (see) Sp e (%)
Created

2 13,539 124.5 329.6 2.64 1.32
4 18,648 86.0 329.6 3.83 0.96
8 18,870 44.2 329.6 7.46 0.93

As indicated in Table 5.5, maximum parallel efficiency occurs when two processors are used in

the search process. In fact, the efficiency is greater than 1 resulting in a speed-up for two processors

greater than linear. Also, the parallel efficiency decreases when more processors are added to solve

the problem. Since the ultimate goal of using a parallel computer is to reduce the run-time by

at least a linear factor in proportion to the number of processors used, these results at first are

disturbing. However, due to the nature of the search process, this is expected!

When applying - search process using data decomposition techniques, the overall run-time of

the process isn't the only indication of algorithm performance. Another indicator is the enumerated

search space actually explored. In this case, using only two processors resulted in the least earch

space explored to obtain the optimal solution. In fact, the increasing order of e is directly related

to the number of search nodes created as Tables 5.1-5.3 indicate. In general, using more processors

reduces parallel machine efficiency slightly due to the potential for duplication of search efforts

caused by lack of global knowledge by the processors at each step in the search node generation

process. However, significant speed-up of the search process can still be obtained.

Another performance metric for the parallel MBT algorithm is the number of search nodes

generated per processor for a given problem per unit time.

searchnodcs.crcated (5.2)

P*/L

5.4



where/3 = the number of nodes generated per processor per second. Given the data in Tables 5.1-5.3

for parallel method 3, 13 = 54.25 with o = 0.6 for the four samples used.

5.5 VHDL Simulations

Using VHDL on a parallel machine to simulate VLSI circuits is very important in reducing the

time spent on circuit design and analysis. Scheduling VIhDL tasks onto a parallel computer in an

optimal sequence ensures a minimum simulation run-time for a given analysis requirement. VHDL

circuits designed for implementation on an iPSC/2 hypercube [9] are used as source data for the

'best' parallel search algorithm, parallel method 3. One circuit is a carry-lookahead adder which has

30 VET tasks each requiring 4 iterations. A search time limit of 600 seconds was set to evaluate the

search performance. Unfortunately, an optimal solution couldn't be found within this time limit.

Since general simulation problems are NP-hard with exponential search time requirements, such

limitations are necessary to prevent excessive delays in aquiring data while providing the 'best'

solution within the desired time limit. As indicated in Table 5.6, the search limit of 600 seconds

is reached when attempting to schedule the simulation onto 8 "ocessors using an n dimension

hypercube where n varies from 0 to 3. Although the schedule length of 68 is only within 21% of the

lower bound for all runs, no guarantee is made that the lower bound can be achieved given enough

time. In fact, the solution reported may be the optimal solution given the precedence-constraint

relationship of the simulation system. Unfortunately, this can only be guaranteed if the search

process is given the time to explore all viable scheduling possibilities; i.e., the process terminates

on its own. When the input data is changed to schedule 4 processors instead of 8, the 600 second

Table 5.6. Search performance to schedule a carry-lookahead adder onto 8 processors.

Processors Search Lower Schedule JSearch Nodes 11, IMa
Used Time (sec) Bound j Length Generated

8 600 54 68 181,900 37.9
4 93,214 38.8
2 48,163 40.1

1 26,828 44.7 40.3 2.6

time limit is again reached, but now the solution reported is within 7% of the theoretical optimal

value as shown in 'rable 5.7. Again, the realization of this theoretical value may not exist due to

the precedence-constraint relationship of the simulation system.

Another VIIDL circuit used for search performance analysis is a 4-bit VIIDI, adder circuit

which consists of 20 VET tasks each requiring 4 iterations. Using parallel method 3 and limiting

.5-5



Table 5.7. Search performance to schedule a carry-lookahead adder onto 4 processors.

Prcsos Search Lower Schedule Search Nodes fi ' I
Used Time (sec) Bound Length Generated

8 600 108 116 229,682 47.8
4 114,690 47.8
2 57,258 47.71 28,761 47.9 47.8 0.07

the search time to 600 seconds again provided the results shown in Table 5.8. When the input

data is changed to schedule 4 processors instead of 8, the lower bound solution is immediately

found as shown in Tat! -5.9. This optimal assignment establishes and optimal schedule length with

the minimum number c, processors. When interprocessor communication costs are considered, this

schedule can outperfoi-n the 8 processor schedule as reported by [9] even though the schedule length

is longer. The large difference between the costs of context switching for intraprocessor commu-

nications and sending messages accross the processor interconnection network for interprocessors

communications benefit the seemingly inferior schedule. In general, an optimal mapping for a sim-

ulation system which minimizes the schedule lengths and the number of processors may perform

better in the simulation run-time environment when interprocessor communications are realized.

Comparing the reported schedule lengths with the lower bound values can guide the evaluation of

these results.

The )3 values for the VtlDL simulations further show algorithm sensitivity to the simulation

characteristics and not the run-time parameters when the rate of search node generation per pro-

cessor, fl, is examined. In Tables 5.6-5.9, the mean /6 value may vary from simulation to simulation,

but the standard deviation for these values is extremely low indicating a strong correlation to the

individual simulation systems. The variation from data set to data set can be attributed to the im-

plementation characteristics in making the actual task assignments and the combinatorics involved.

Assigning a greater number of tasks at each search node generation point takes slightly more time

Table 5.8. Search performance to schedule a 4-bit adder onto 8 processors.

I Processors Search Lower Schedule Search Nodes 1/1 io 1 oo I
Used Time (sec) Bound Length Generated

8 600 14 16 241,537 50.34 118,875 49.5

2 59,659 19.7
1 29,718 49.6 49.8 0.3

5-6



Table 5.9. Search performance to schedule a 4-bit adder onto 4 processors.

Processors Search Lower 1 Schedule Search Nodes I I up I
Used Time (sec) Bound Length Generated
8 1 28 28 361 45.1
4 190 47.5

2 99 49.5
1 50 50 48.0 1.9

in this implementation reducing the search node generation rate per processor when comparing

simulation systems which vary only in the number of processor upon which they are scheduled.

Prior to invoking the search process to find an optimal assignment of simulation tasks to

processors, an estimate of the worst-case run-time can be helpful in understanding the complexity

of the scheduling problem and setting an acceptable search time limit. Calculating the upper bound

values for the size of the search space as described in Chapter 4 and executing short scheduling runs

to extract a representable P va",e for the given data, a worst-case search time can be calculated.

For example, if 10 million possib: earch states exists, and the search node generation rate for the

given data is 50 nodes/sec/processor, then applying 1024 processors to the problem can bound the

search time at 195 seconds. If only 128 processors are used, the search time limit increases to 1,563

seconds or 26 minutes!

5.6 Summary

Individual task systems are poorly behaved in relation to one another. Minor changes in their

structure given the same number of tasks can result in vast changes in the size of the search space

which must be implicitly explored to find an optimally minimum schedule. Therefore, validation of

run-time performance for the parallel MBT algorithm requires analysis of scheduling performance

when run-time parameters are modifi-d. Varying the number of processors, adding upper bound

communications, and incorporating load balancing activities among the working processor shows

a significant change in overall performance. Applying more available processors to the search pro-

cess, adding upper bound communications between the processors, and performing load balancing

to maximize machine utilization provides near linear speed-up in the search process. Although

parallel efficiency drops off slightly when more processors are added to the search process. the de-

sired improvement in search time is realized. Unfortunately, given the combinatorics of optimally

scheduling simulation systems, the necessary parallel search time may be to costly. To determine

a worst-case search time cost, the scheduling process can bc executed for a short time to obtain a

5)-7



search node generation rate for the particular data set. This rate can then be used along with the

number of available proccessors and the upper bound on the number of search states to determine

the worst-case time allowance to find the optimal solution. If such times are determined to be un-

acceptable, then the scheduling process can be executed for a shorter period of time providing the

'best' solution for that given time. Also, the number of processors being scheduled can greatly affect

the search time such that an optimal mapping may exist which minimizes the number of proces-

sors, the resulting search time, and the simulation run-time given the realization of interprocessor

communication costs.



VL Conclusions and Recommendations

6.1 Conclusion

The generalized scheduling problem with variable execution time (VET) tasks and feedback

constraints is most difficult to solve. This problem, known to be NP-hard, requires exponential

search time to solve when an optimal solution is desired. Unfortunately, computer memory lim-

itations can easily be exceeded with such combinatoric search problems requiring a specialized

approach to search space exploration. The MBT algorithm satisfies this requirement by maintain-

ing search data only for the current branch of the starch tree presently under investigation. The

search process develops as a search tree and not a search graph since previously explored search

states aren't maintained in order to conserve memory. Unfortunately, this results in the poten-

tial for multiple evaluations of the same search path - a necessary trade-off. When the algorithm

is parmllelized using a distributed-list Learch process with upper bound communications and load

balancing activities, near linear speed-up is achieved.

The characteristics of the simulation system being scheduled onto a parallel, message passing

computer play an important role in determining how the tchedule generation process evolves. When

the simulation system contains equal execution time (EET) tasks without feedback, list scheduling

without anomaly compenasation using the all-iterations-jirst strategy produces an optimal schedule

within the minimum amount of search space and search time. With VET tasks and feedback, very

large search spaces must be implicitly explored. Unfortunately, a przori analysis of the precedence-

constraints can't produce a 'better' tipper bound on the size of the total search space when compared

to an independent task system. These systems cause the generation of unbalanced search trees and

contain data specific combinatoric values at each stage of the assignment process. Also, tile MBT

algorithm can evaluate duplicate sea'ch paths further compounding the problem. The best upper

bound on !l.e search space remains an expression describing a non-uniform combination tree whose

branch factor at each level of the tree is a combinatoric expression for EET task systems, and

grows into a permutation expression for VET task syrtems. Unfortunately, the tipper bound on

the search space can't be reduced based upon the actual precedence-constraint characteristics of

the simulation system being investigated.

Given a particular simulation system for scheduling, short trial runs can he executed to deter-

mine the node generation rate per processor of the parallel MBTl' algorithm on a given architect tire.

Using this value with the tipper bound ont the number of search states in the search space and the

number of available processors. the worst-case execution time to find an optimal solution can be

calculated. Based on this information, a prtidett, choice of an acttal run-time limit call be imposed.

1. 1



Should the process terminate when the time limit expires, the solution reported can't be guaranteed

aq the )Dtimal solution. However, ,iven the precedence-contraints of the simulation system, the

solutio. may be optimal without certainty.

The validation process of the parallel MBT algorithm shows near linear speed-up for a generic

iterative simulation with variable execution time tasks and feedback. The sensitive nature of the

size of tile search space when minor changes in the simulation structure/execution time require-

ments are made prohibits algorithm performance analysis based on variations of the input data.

Validation of run-time performance for the parallel MBT algorithm requires analysis of scheduling

performance when the run-time parameters are modified. Applying more available processors to

the search process, adding upper bound communications between the processors, and performing

load balancing to maximize machine utilization provides near linear speed-up in the search process.

Also, the number of processors being scheduled can significantly affect not only the search time, but

the simulation execution time as well. If the number of processors chosen for scheduling can result

in a mapping of tasks to processors such that the schedule length is theoretically minimum based

on bin packing and critical path analysis, and tile search process finds such a schedule, the search

process terminates immediately. No guarantee can be made as to where within the search space

such a solution exists, but if found, the remaining search space can be ignored. Given the upper

bound search state values for relatively small simulation systems, the time taken to check for such

a solution is well worth the investment. Also, a schedule length which is longer than a schedule

produced for a larger number of processors, may prove to perform better than the shorter sched-

ule when the simulation system is executed given considerations for interprocessor communication

costs.

In an iterative EET task system regardless of feedback contraints, the maximum number

of tasks available for execution at any one time is the number of tasks in the original system

(iterations not included). Therefore, if the number of processors is > the number of original tasks,

the task system can be optimally scheduled in -y discrete step where -. is the maximum depth

of the search tree; i.e., the number of tasks in the critical path including iterations. With at

least as many available processors as ready tasks at each point in the scheduling process, only one

scheduling combination can exist for each assignment. This results in an optimal schedule being

produced in optimal time. Ilowever, the bieadth of the schedule may be such that many tasks

which communicate don't physically reside on the same processor. If interprocessor communication

costs are again considered, such an optimal mapping may not prove to be optimal at simulation

run-t;mne.

6-2



An underlying assumption throughout this research has been that the number of task iter-

ations is known prior to scheduling. This provides a boundary condition on the total number of

possible search states since the MBT algorithm treats each task iteration as a new task; e.g., a 10

task system requiring 10 iterations is logically treated as a 100 task system requiring 1 iteration

for general simulation problems. Such a condition is necessary to ensure that a scheduling solution

does exits. If the number of itermtions were undefined or infinite, the algorithm would never run out

of ready tasks to be scheduled and the process would continue infinitely. This doesn't apply when

EET task systens are considered without feedback where the all-iterations-first scheduling decicion

strategy reduces the number of logical tasks to the original amount regardless of the number of

iterations: e.g., a 10 task system requiring 10 iterations is still treated logically as a 10 task system.

This type of approach to iterative scheduling allows informed decisions to be made as to

designing the task system structure, their communication and migration provisions, and the result-

ing assignment to the processors given the characteristics of the target machine. The number of

iterations chosen for scheduling is largely independent of the actual number at run-time, especially

with large and complex war gamming/VIDL simulations. Attempting to schedule a large number

of iterations with the logical transform used by the parallel MBT algorithm can easily result in

search time requirements for optimal solutions which exceed the life expectancy of the computer

working on the problem. However, applying the scheduling algorithm incrementally to more and

more task iterations may reveal scheduling patterns which identify the 'best' mapping of tasks to

processors when considerations for task communication costs are made.

The Ada programming language proved to be beneficial in rapidly developing operational code

for validating the search process. The developed algorithms mapped very easily into the structured

design methodology of software development. Although code parallelization was difficult to validate

on the iPSC/2 hypercube due to the limited parallel debugging environment, the additional code

necessary for parallelization was minor. Initial serial code development of the MBT search algorithm

using a Sun Sparc Station 2 and compiling on a Sun 4/490 minicomputer using Verdix Ada 6.0

was instrumental in the rapid code devclopment obtained. The compilation time of the Sun 4/490

operating at 24 MIPS is approximately 24 times faster than the iPSC/2 SRM. Therefore, many

small modifications to the initially developed code could be repeatedly made very quickly to validate

the serial search process.

6.2 Recommendations

Scheduling computer simulations onto a coarse-grain computer such as the iPSC/2 hypercube

requires consideration of interprocessor and intraprocessor communication costs. Whce, a task must

6-3



send a message to another task residing on the samc processor, the message must be posted and

the operating system must block the task and provide cpu time to the receiving task before the

message can be received. Also, when a task must send a message to another task residing on a

different processor, not only will time be spent in transmitting the message to the other processor,

but the same 'process-swapping' cost may be incurred as well. These factors can have a significant

affect on the run-time performance of the simulation.

The results of this investigation show that data decomposition of the search process using a

parallel, message passing computer can achieve near linear speed-up in the time required to generate

an optimally minimum schedule for execution on the same computer. Unfortunately, interprocessor

and intraprocessor communication costs are assumed to be negligible causing no consequence of

allowing task migrations which further minimize schedule lengths. Also, the largest parallel machine

used to validate the search process contained only eight processors. Therefore, several expansions

of this research are viable:

1. Consider interprocessor communication costs in developing optimally minimum schedules.

Under the list scheduling approach, permutations of assignment possibilities must now be

considered greatly increasing the search space for an optimal solution. If sub-optimal solution

are acceptable, heuristic methods could be incorporated into the schedule generation process

to help reduce the search space should it become prohibitively larger.

2. Consider applicability of task migrations; can this be effectively implemented on a hypercube

such that the implementation costs don't exceed the schedule cost when task migration isn't

allowed? If the overhead involved in migrating tasks or invoking copies of tasks on different

processors based on current loading conditions of the parallel computer exceeds the cost of the

excessive interprocessor communications, then such an approach may not be viable. However,

if the simulation system can be designed so that the tasks are coarbe-grain in nature in relation

to their intertask communication costs, this approach may prove very fruitful.

3. Modify the implementation code to the C programming language for portability onto larger

hypercubes such as iPSC/860 or the iPSC/Paragon supercomputer for more thorough anal-

ysis of parallelized performance and speed-up capabilities.

4. Modify the implementation code to run on a shared memory architecture such as the Connec-

tion Machine. This approach may reduce the communications cost associated with distributed

memory architectures providing greater spead-up potential.

Parallel simulations take full advantage of current computer technology in acquiring design

data for future computer/electronic systems. Utilizing the computing power of such machines

6-4



requires careful and deliberate mappings of the simulation systems onto the available processors in

order to minimize the overall execution time of the simulation through many iterations. Without

optimal mappings of simulation tasks onto processors, much time can be wasted in obtaining the

desired data. Simulating battle field scenarios prior to actual conflicts can not only guide the

developmtnt and deployment of weapon systems, but save the lives of many combatants challenged

U. defend their country in the face of an aggressive and hostile force. Also, the development of VLSI

circuits using the hardware description language VHDL, and the exercising of these simulations on

large, parallel computers is an important tool in bringing functionally sound circuits to life in the

minimum amount of time.

6-5



Appendix A. Code Structure

A.1 Structure Chart

The MBT algorithm was developed using the structured design methodology. In that en-

deavor, the following structure chart describes the implemented modules and their relationships to

one another.

Sched Sllation a'

Figure A.1. Structure chart for MBT search software.

A.n Fnctional Programming

Simulation systems exhibit characteristics which can be used to change the schedule genera-

tion process by reducing the search time. The difference exists in the manner in which successor
search nodes are generated. For example, under the all-iterations-first strategy, when a task is

assigned to a processor, all iterations can be assigned at once. Therefore, two separate Ada pack-

ages were developed. The first package contains all the procedures for maintaining the OPEN

list and producing the results. The second package contains tie procedures for generating the

A-1



-successor search nodes. The procedures within this package vary depending upon what type of

simulation system is being scheduled. These packages are then included into the main proc,'dure

which performs the parallei MBT algorithm steps.

The developed code was documented using the following documentation standards for each

procedure and function:

9 Date

o Procedure/Function name

* Description

o Algorithm

o Modules called

o Order-of analysis

o History

A-2



Appendix B. User Manual

B.1 Input Data Format

Executing the parallel MBT search program on the iPSC/2 can be done with the user

interactively entering the description of the iterative task system or by building the data file prior

to execution. The input data file consists of the number of tasks, iterations, and processors to

be scheduled, the adjacency matrix, and the set of task execution costs. Each data item must be

separated by a blank line with an input order as follows:

1. number of tasks

2. number of iterations

3. number of processors to be scheduled

4. adjacency matrix

5. task costs

The following input data, example reflects the scheduling requirement for the simulation system

shown in Figure B.1.

7 <== lumber of Tasks

2 <== Number of Iterations

2 <== Rumber of Processors

0001000 <== Adjacency Matrix
0001000
0000100
0000010
0000011
0000000
0000000

2315342 <== Task Costs

(commentary information can be added here!)

Data files can be easily built by using the interactive mode of the program. Upon completion

of data input, the user is prompted to either write the data to disk or immediately begin the search.

The following script is an example of this procedure which builds the data file shown:

B-1



O1/ T2/3 T3/1

Figure B.i. A ge::eric simulation system.

Enter input filename or <CR> for manual entry:
Enter number of tasks in the graph ==> 3

Enter number of task iterations to schedule ==> 3

Enter number of processors to schedule ==> 3

Enter execution cost of task 1 ==> 2

Enter number of arcs for task 1 (1-100) ==> 1

Arc 1 of task 1 goes to task ==> 2

Enter execution cost of task 2 ==> 2

Enter number of arcs for task 2 (1-100) ==> 1

Arc 1 of tI.sk 2 goes to task ==> 3

Enter execution cost of task 3 ==> 4

Enter number 2 arcs for task 3 (1-100) ==> 0

Save user input to disk [Y/N)? y

B-2



Saving input to 'task.in.dat'

Enter the name of your output file (default is task.dat) => new_out.dat

The resulting data file 'task-in.dat' saved to disk follows the input data format:

3 <== Number of Tasks

3 <== Number of Iterations

3 <= Number of Processors

010 <== Adjacency Matrix
001
000

224 <- Task Costs

B.2 Parallel Execution

To invoke the parallel MBT search program, at least one node of the iPSC/2 hypercube must

be allocated. At the system prompt, type 'host' to invoke the process. Since three versions of the

parallel search process were developed to determine the method which best utilized te available

processing power and obtained the most speed-up, the user must specify which node program the

'host' program will load and run. The three node programs are (1) nodebtsl, (2) nodebts2, and (3)

nodebts3. Node program nodebtsl performs parallel search method 1, nodebts2 performs parallel

search method 2, and ao'lebts3, the 'best' program, performs parallel search method 3 as outlined

in chapter 4. A script example of the process to load and run parallel search method 3 follows:

Enter node filename to load: nodebts3
loading nodebts3 program onto 8 processors

* The Parallel MBT Task Scheduler *

Enter input filename or <CR> for manual entry: task-in65.dat

Enter the name of your output file (default is task.dat) => testout.dat
Enter search time limit in seconds: 1800

Workitig!!!

B-3



If only 1 processor is allocated when the search program is invoked, the 'host' program auto-

matically loads nodebtsl onto the processor because using only one node requires no interprocessor

communications.

B.3 Output Data Format

The present implementation of the parallel MBT search algorithm produces the following

output given the simulation system of Figure B.1:

lode File: nodebts3
Adjacency Matrix:

1 2 3 4 5 6 7

1: 0 0 0 1 0 0 0
2: 0 0 0 1 0 0 0
3: 0 0 0 0 1 0 0
4: 0 0 0 0 0 1 0
5: 0 0 0 0 0 1 1
6: 0 0 0 0 0 0 0
7: 0 0 0 0 0 0 0

# Task Dependencies in Graph 6

Task Costs:
1 2 3 4 5 6 7

......... o..........

2 3 1 5 3 4 2

Critical Path Values:
(row = iteration, column = task starting point

1 2 3 4 5 6 7

1 : 16 17 12 14 11 8 4
2 : 11 12 8 9 7 4 2

Number of Iterations = 2
lumber of processors to schedule = 2
Number of processors used in the search process = 8
# search nodes created: 626
# search nodes requested for load balancing: 8
# search nodes sent to satisfy a load balancing request: 5
# bounding msgs: 1
lower bound: 20 Time Units
node run times (sec):

1.48
1.43
1.53
1.47

13-4



1.47
1.45
1.43
1.42

Optimal Schedule:
P1I IP 2 Time

if 31 1
11 21 2
11 21 3
11 21 4
31 41 5
61 41 6
SI 41 7
61 41 8
21 41 9
21 61 10
21 61 11
41 61 12
41 61 13
41 51 14
41 61 15
41 S1 16
61 71 17
61 71 18
61 71 19
61 71 20

With Cost 20 Time Units
Parallel Search Time: 10 Seconds

B-5



B1-6



Bibliography

1. Aki, Selim G. The Design and Analysis of Parallel Algorithms. New Jersey: Prentice-Hall,
Inc., 1989.

2. Anger, Frank D. et al. "Scheduling with Sufficient Loosely Coupled Processors," Journal of
Parallel and Distributed Computing, 9:87-92 (1990).

3. Beard, R. A. and Gary B. Lamont. "Determination of Algorithm Parallelism in NP-Complete
Problems for Distributed Architectures." Proceedings of the Fifth Distributed Memory Com-
puting ConferenceI. 42-51. April 1990.

4. Bernhardt, Mike et al. "1990 Gordan Bell Prize/IS-436." 1990 Gordon Bell Prize awarded to
scientists using Intel iPSC/860 parallel supercomputer.

5. Booch, Grady. Software Components with Ada. Menlo Park, CA: The Benjamin/Cummings
Publishing Company, Inc., 1987.

6. Casavant, Thomas L. and Jon G. Kuhl. "A Taxonomy of Scheduling in General-Purpose Dis-
tributed Computing Systems," IEEE Transactions on Software Engineering, 14(2) (February
1988).

7. Christofides, Nicos. Graph Theory, An Algorithmic Approach. London: Academic Press, 1975.

8. Coffman, Edward G. et al. Computer & Job/Shop Scheduling Theory. New York: Wiley &
Sons, Inc., 1976.

9. Comeau, Ron. Transforming VHDL Circuit Designs for Parallel Simulation. MS thesis,
AFIT/GCS/ENG/91D-09, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1991.

10. Cormen, Thomas H. et al. Introduction to Algorithms. New York: McGraw-Hill Book Com-
pany, 1991.

11. Corporation, Intel. Parallel Program Primer. Intel Corporation.

12. Cvetanovic, Z. and C. Nofsinger. "Parallel Astar Search on Message-Passing Architectures,"
Hawaii International Conference on System Sciences, 82-90 (1990).

.3. DeCegama, Angel L. The Technology of Parallel Processing. New Jersey: Prentice-Hall, Inc.,
1989.

14. Gait, Jason. "Scheduling and Process Migiatiun in Partitioned Multiprocessors," Journal of
Parallel and Distributed Computing, 8:274-279 (1990).

15. Gendreau, Thomas B. "Scheduling in Distributed Systems." Proceedings from the Second
Workshop on Large-Grained Parallelism. 34-36. November 1987.

16. Gustafson, John L. et.al. "Development of Parallel Methods for a 1024-Processor Hypercube,"
SIAM Journal of Science and Statistical Computing, 9(4):609-638 (July 1988).

17. Hayes, John P. and Trevor Mudge. "Hypercube Supercomputers," Proceedings of the IEEE,
77(12):1829-1841 (1989).

18. HUBB systems, Inc. Computing Strategies for SDI Battle Management Command, Control,
and Communtcations Assignment Algorithms. Final Report, Huntsville, AL: HUBB Systems,
Inc., January 1988 (AD-B121 838).

19. Kasahara, Hironori and Seinosuke Narita. "Practical Multiprocessor Scheduling Algorithms for
Efficient Parallel Processing," IEEE Transactions on Computers, 11 (c-33):1023-1029 (Novem-
ber 1984).

BIB-I



20. Kasahara, Hironori and Seinosuke Narita. "An Approach to Supercomputing using Multipro-
cessor Scheduling Algorithms." Proceedings of the First International Conference on Super-
computing Systems. December 1985.

21. Klappholz, David and Ilaeng-Chul Park. "Parallel Process Scheduling for a Tightly-Coupled
MIMD Machine." Proceedings of the 1984 International Conference on Parallel Processing.
315-321. August 1984.

22. Korf, Richard E. "Depth-First Iterative-Deepening: An Optimal Admissible Tree Search,"
Artificial Intelligence, 27:97-109 (1985).

23. Lamont, Gary B. et. al. Compendium of Parallel Programs. Electrical Engineering Depart-
ment, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1990.
parallel program implementations.

24. Lee, Chung-Yee et al. "Multiprocessor Scheduling with Interprocessor Communication De-
lays," Operations Research Letters, 7(3):141-147 (June 98).

25. Li, Keqin and Kam Hoi Cheng. "Static Job Scheduling in Partitional Mesh Connected Sys-
tems," Journal of Parallel and Distributed Computing, 10:152-159 (1990).

26. Liu, Joseph W.H. Computational Models and Task Scheduling for Parallel Sparse Cholesky
Factorization. Final Report, Oak Ridge, TN: Oak Ridge National Laboratory, October 1987
(AD-A187 038).

27. Mayr, Ernst. Well Structure Parallel Programs are not Easier to Schedule. Technical Report,
Department of Computer Science, Stanford University CA: Stanford University, September
1981 (AD-A113 400).

28. McNear, Andrew E. and Guy R. Booth. "The Mesh Connection Network and iPSC/2 Per-
formance Analysis using Ada." CSCE656 Project, March 1991.

29. Molloy, Michael K. "Requirements for the Performance Evaluation of Parallel Systems." Pro-
ceedings from the Second Workshop on Large-Grained Parallelism. 63-65. November 1987.

30. Papadimitriou, C. and M. Yannakakis. "Schedulir laterval-Ordered Tasks," SIAM Journal
of Computing, 8:405-409 (1979).

31. Pearl, Judea. Heuristics, Intelligent Search Strategies for Computer Problem Solving. New
York: Addison-Wesley Publishing Company, 1985.

32. Pramanick, Ira and Jon G. Kuhl. "Study of an Inherently Parallel Heuristic Technique."
Proceedings of the International Conference on Parallel ProcessingIII. 95-99. August 1991.

33. Prasanna, Srinivasa G. and Bruce R. Musicus. "Generalised Multiprocess Scheduling Using
Optimal Control." 3rd Annual ACM Symposium on Parallel Algorithms and ArchZtectures.
216-228. New York NY: ACM Press, July 1991.

34. Price, Camille, C. and S. Krishnaprasad. "software Allocation Models for Distributed Com-
puting Systems." The 4th International Conference on Distributed Computing Systems. 40-48.
1984.

35. Ramamritham, Krithivasan and John A. Stankovic. "Dynamic Task Scheduling in Distributed
Hard Real-Time Systems." The 4th International Conference on Distributed Computing Sys-
tems. 96-107. 1984.

36. Rudolph, Larry et al. "A Simple Load Balancing Scheme for Task Allocation in Parallel
Machines." 3rd Annual ACM Symposium on Parallel Algorithms and Architectures. 237-245.
New York NY: ACM Press, July 1991.

37. Sahni, Sartaj. "Scheduling Multipipeline and Multiprocessor Computers." Proceedings of the
1984 International Conference on Parallel Processing. 333-337. August 1984.

BIB-2



38. Sartor, JoAnn M. Optimal Iterative Task Scheduling for Parallel Simulations. MS thesis,
AFIT/GCS/ENG/91M-03, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, March 1991.

39. Sartor, JoAnn M. et al. "Mapping Precedence-Constrained Simulation Tasks for a Parallel
Environment." Proceedings of the Sixth Distributed Memory Computing Conference. 2-10.
May 1991.

40. Stankovic, John A. "An Application of Bayesian Decision Theory to Decentralized Control of
Job Scheduling," IEEE Transactions on Computers, C-34(2):117-130 (February 1985).

41. Stankovic, John A. and Inderjit S. Sidhu. "Adaptive Bidding Algorithm for Processes, Clus-
ters and Distributed Groups." The th International Conference on Distributed Computing
Systems. 49-59. 1984.

42. Taylor, Paul J. Requirements Analysis for a Hardware, Discrete-Event, Szmulation Engine
Accelerator. MS thesis, AFIT/GCE/ENG/91D-11, School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB 011, December 1991.

BIB-3


