AD-A243 712 @
LTI — 3 ’

ey

This doc_umem has been opproved
fqr public rolauze ond sale, its
— distribution is unlimited,

o DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio




)

AFIT/GL/ENG/91D-34 u

ANALYSIS OF VISUAL ILLUSIONS
USING
MULTIRESOLUTION WAVELET DECOMPOSITION
BASED MODELS

THESIS

John S. Laing
Captain, USAF

AFIT/GE/ENG/91D-34

—

! Tﬁgllccuxnnxxt has been oppleved
for public release and =sale; its

i distribution is unlimited.

Approved for public release; distribution unlimited

81-18997 092
QT 91 1224




AFIT/GE/ENG/91D-34

ANALYSIS OF VISUAL ILLUSIONS
USING
MULTIRESOLUTION WAVELET DECOMPOSITION
BASED MODELS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University

In Partial Fulfillment of the

Requirements for the Degree of T o
HER e N o Te 1
Master of Science in Electrical Engineering {1357 2 0™ ™ ofr—rn
Foann ' h
{ L C et :“:
John S. Laing, B.S.E.E., M.B.A. P L
¢ " - - -
Captain, USAT A
i G:.’. o s _’
!:s'\ ) : .’"J".—-*'
December, 1991 Pt i
ln
Al
e e ]

Approved for public release; distribution unlimited




Acknowledgments

My thesis committee and others deserve thanks for their enthusiasm and technical
assistance. First, I want to thank my vhesis acvisor, Maj Steve Rogers, for his guidance and
uplifting support. Much thanks is due to Dr. Matthew Kabrisky, a committee member, for
sharing his broad wealth of knowledge, experience, and wisdom in Biology and Engineering.
As committee members, Capt Dennis Ruck and Dr. Mark Oxley, helped make this thesis the
success I feel it is by providing technical reviews at each iteration of the document. Others
that have taken a great deal of interest in our work and provided invaluable brainstorming
stimulation are Capt Greg Warhola, Dr. Dennis Quinn, and Dr. Bruce Suter. These
professors were instrumental in developing my understanding of the theory and application
of Wavelet mathematics. Also deserving of thanks are Lt Col Phil Amburn, Capt John
Brunderman, and Capt Greg Tarr for their unselfish assistance with the development of
the graphics software that was necessary for demonstrating and researching the temporal
effects of the analysis. A special thanks goes to my partner in developing the wavelet based

application software that is the basis of this work, Capt Steve Smiley.

Finally, and most importantly, my deepest and most sincere thanks goes to my fiancée,
Leslie Bohler, whose patience and gentle support has given me the confidence to pursue this

degree successfully.

John S. Laing




Table of Contents

Page

Ackaowledgments. . . . . . .. L i1
Table of Contents . . . . . . . . . . . . . . . e iii
List of Figures . . . . . . . . e ix
Abstract . . . . . . . e e xii
L. Introduction . . . . . . . .. e 1
1.1 Background . . . .. ... ... 1

1.2 Problem . .. .. .. . . .. 1

1.3 Assumptions. . . . . . . . . ... 2

T4 Scope . v v v it e e e e e 2

1.5 Standards . . .. .. .. .. . . ... 3

1.6 Approach/Methodology . . .. ... ... ... ... ... ..... 3

1.7 Conclusion . . . . . . . . . . . . 4

I1. Literature Review . . . . . . . . . . . . ... 5
2.1 Imtroduction . . . . . . . . . ... .. ... 5

2.2 Fourier Anmalysis. . . . . . . . .. .. ... ... 5

23 Gabor Analysis . . . ... ... ... L 8

24 Conclusion. . . . . . . .. . ... 11

1.  Theory of Wavelet Analysis . . . . . .. .. ... ... ... ... . ...... 12
3.1 Introduction . . .. . ... ... ... ... ... 12

3.2 Notation . . . . . . . . . e 14

i




IV.

V.

3.3
3.4
3.5
3.6
3.7
3.8
3.9

The Continuous Wavelet Transform . . . . . . ... ... ... ...

The Wavelet Transform with Discrete Wavelets . . . . . ... ...

Multiresolution Analysis . . . . . .. ... ... ... ... .....

Multiresolution with Projections. . . . . . . ... ... ... ....

Mult.resolution with Filters . . . . . . .. . . . . .. ... .....

Two Dimensional (2D) Wavelet Transform . . . ... .. ... ...

Conclusicn

................................

Multiresolution Analysis Algorithms. . . . . . ... ... ... .. .......

4.1

Introduction . . . . . . .. ... ...

4.2 Multiresolution with Approximations . . . . . .. ... ... ....

4.4

4.2.1 'V space, W space, and Haar basis. . ............

4.2.2 Haar Transform Program . . . .. .. ... .........

4.2.3 An Example Decomposition . . . .. ... ... ......

424 Histograming . .. ... ... .. ... ... ... .....
425 Thresholding . ... ... ... ... ... ..., .. ..
4.3 Multiresolution with Filters . . . . . . .. .. .. .. ... .....

4.3.1 Multiresolution Decomposition. . . . .. .. .. ... ...

4.3.2 Two Dimensional Multiresolution Decomposition . . . . .

4.3.3 Multiresolution Reconstruction . .. .. ... ... ....

4.3.4 Two Dimensional Multiresolution Reconstruction . . . . .

4.3.5 Fine Points Of The Implementation of the Algorithm . . .

43.6 Dxamples . .. .... ... . .. ... ...

Conclusion

Preliminary Results .

1

5.
3.

3

[§]

($1]

Review of Multiresolution Wavelet Decomposition . . . . .. . . ..

Methodology . . .. .. .. ... .. ... ... ...

Conclusion

................................

v

15

18
20

21
24
27

31




Page

VI. Buildinga World Model . . . . . .. .. .. ... ... L. ... 87
6.1 Methodology . . ... ... ... . ... .. L L. ST

6.2 Conclusion. . . . . .. . .. ... e 90

VII. A Spatiai-Temporal Model . . . . .. .. ... ... ... ......... .. 96
7.1 Methodology . . ... ... .. ... ... 96

7.2 Conclusion. . . . . . . .. . e 100

VIII. A Boundary Contour Model . . . .. .. ... ... ... ............. 106
8.1 Methodology . . ... .. ... ... 106

8.2 Conclusions . . . .. ... .. ... 108

IX. Conclusions/Recommendations . . ... ... ... ... ............ 113
9.1 Introduction . .. ... ... .. ... ... ... ... 113

9.2 Prelimimary Results . . . . ... . ... ... .. ... ....... 113

9.3 Buildinga World Model . . . .. ... ... .. ... ... .. 114

9.4 A Spatial-Temporal Model . . . . .. .. ... ............ 114

9.5 A Boundary Contour Model . . . .. ... ... ........... 115

9.6 Recommendations. . . .. ... ... ... .. .. .......... 116

Appendix A. Multiresolution Analysis Using Projections . . . . . . . . ... ... 117
A.l1 System Description of the WAVE Program . . . .. ... ... ... 117

A.2 Haar Wavelet Analysis Software . . . . . ... ... ... ... ... 118

A2 Listing of MAIN-WAVE.C . . .. ... .. ... ... ... 118

A2.2 Listingof LOADIMAGE.C. . ... ... ... ....... 120

A.23 Listing of PHI.GEN.HAAR.C . . ... ... ... ..... 121

A.24 Listing of INNERPROD.C . .. .. ... ... ... ... 122

A.2.5 Listing of V.PROJECTION.C . . . . ... ... ... ... 123

A.2.6 Listing of W PROJECTION.C' . ... ... ........ 125




A27 Listingof JSMACROS.H. . . .. .. .. ... ... .. 126

A28 Listingof MACROSH . ... .. .. .. ... .. .. .. 126

A.29 Listing of STEWMATHH ... ... .. ... ... .. 126
A.2.10 Listing of MAKEFILE . . . ... .. ... ......... 126
Appendix B. Multiresolution Analysis Using Filters . . . . .. .. .. ... ... 127
B.1 2D System Description . . . . . ... ... ... .. 127
B.2 2D Multiresolution Wavelet Analysis Soitware . . .. .. ... ... 129
B.2.1 Listing of MAIN-WAVE.C . . .. .. .. ... ....... 129

B.2.2 Listingof LOADIMAGE.C. . .. .. .. .. ... ... .. 131

B.2.3 Listing of DECOMPOSE.C ... ... ... ........ 132

B.2.4 Listing of RECONSTRUCT.C . . .. .. .. ... ..... 136

B.2.5 Listingof FILTERS.C ... ... ... ... ........ 140

B.2.6 Listing of CONVOLVE.C ... ... ........ .. .. 146

B.2.7 Listing of RECONVOLVEC . . . . ... .. ... ..... 148

B.2.§8 Listingof SPCONVLV.C . . . . . .. ... ... .. .... 152

B.2.9 Listingof NRUTILC. . ... ... ... .. ... .... 154
B.2.10 Listing of JSMACROS.H . . . .. .. ... ... .. .... 154
B.2.11 Listing of STEWMATH.H . . . ... . .......... 154
B.2.12 Listingof MAKEFILE . . . ... ... ... .. ... ... 154

B.3 ID System Description . . . . . ... ... .. .. ... ... ... 155
B.4 1D Multiresolution Wavelet Analysis Software . . . . ... ... .. 157
B.4.1 Listing of MAIN-WAVEL.C ... ... ... ... ... .. 157

B.4.2 Listing of LOADSIGNAL.C . ... ... ... .... ... 159

B.4.3 Listing of DECOMPOSEL.C . . . .. .. ... .. ..... 160

B.4.4 Listing of RECONSTRUCTL.C . .. ... ... ...... 163

B4.5 Listingof FILTERS.C . . .. ... .. ... ........ 167

B.4.6 Listingof CONVOLVEL.C . . .. ... ... ... ... .. 167

Vi




B.4.7 Listing of RECONVOLVEL.C . . .. .. ... . ...... 169

B.4.8 Listing of SPCONVLV.C . . . . . .. .. ... ... .... 170

B.4.9 Listingof NRUTIL.C. . .. ... ... ... ........ 170
B.4.10 Listing of JSMACROS.H . . . . . .. ... ... ... ... 171
B.4.11 Listing of STEWMATHH . . .. ... ... ........ 171
B.4.12 Listing of MAKEFILE . .. ... .. ... ......... 171
Appendix C. Software to Build a World Model . . . . . .. ... ... ...... 172
C.1 System Description of the FBUILD Program . . . . . .. .. .. .. 172
C.2 FBUILD Program Software . . ... ................. 173
C.2.1 Listingof FBUILD.C . . . . .. ... ... ... ...... 173

C.22 Listingof FUTIL.C . . . .. ... .. ... ... ...... 178

C.23 Listingof NRTUIL.C . . . . . . ... ... . ........ 180

C.24 Listingof SPLINE.C . . .. ... ... ... ........ 180

C.25 Listingof SPLINT.C . . .. ... .. .. .......... 181

C.2.6 Listingof SPLIN2.C . ... ... .. .. .......... 181

C2.7 Listingof JSSMACROS.H . . . ... ... .......... i81

C.28 Listingof STEWMATHH . ... ... .. ... ..... 181

C.29 Listingof MAKEFILE . .. ... ... ... .. ...... 181
Appendix D. Software for the Spatial-Temporal Model . . . . . . ... . .... 183
D.1 Systm Description . . . ... .. .. ... ... .. ... ... 183
D.2 Spatial-Temporai Analysis Software . . . . ... ... ... .. .. 185
D.2.1 Listingof KANMOV.C . . . ... .. .. ......... 185

D.22 Listingof KANGEN.C . . . .. ... . ... ... ... 188

D.23 Listingof VBUILD.C. . . . ... ... .. ... ...... 190

D.24 Listingof SPLITID.C . ... ... ... ......... 192

D.2.5 Listing of Modified WAVE! Modules . . . ... ... ... 194

Vil




D.2.6 Listingof RBUILD.C. . .. .. ... ... ..........

D.2.7 Listingof TB"UR.C .. .. .. ... ... .. ........

Appendix E. Software for the Boundary Contour Model . . . .. ... ... ...
E.l1 Systm Description . . .. .. .. ... ... L.

E.2 Boundary Contour Model Analysis Software . . . . ... ... ...

E.2.1 Listingof LENROW.C . .. .. .. .. ... ........

£.2.2 Listingof LENCOL.C ... ... ... .. .........

Appendix F. Software for Utilities . . . . . .. .. .. .. ... ... .......
F.1 Description of Utilities . . . . .. .. ... ... .. .. .......

i".2 Spatial-Temporal Analysis Software . . . . . .. .. .. .......

F.2.1 Listingof JSMACROS.C . . .. .. ... ... .......

2.2 Listingof MACROS.C . .. .. .. ... ... .......

F.2.3 Listing of STEWMATH.C . . ... ... ... ... ...

F.2.4 Listing of Modified WAVE] Modules . . ... ... .. ..

F.25 Listingof BYTE2ASCILC . . . .. ... ... .......

F.2.6 Listingof DAUB.C . .. .. ... ... ... .........

F.2.7 Listingof EPSVIEW.C. .. ... ... ..........

F.2.8 Listingof EXPAND.C . ... ... ... ... ........

F.2.9 Listing of MATRIXTOASCIL.C . . . . ... ... .. ...

F.2.10 Listingof NRUTIL.C . . .. .. .. ... .. .. .. ...

F.2.11 Listing of THRESHOLD.C:. . . . .. ... ... ... ...

Bibliography . . . . .. .. L

vill




List of Figures

Figure Page
1.  Typical Contrast Sensitivity Function [14:136] . . . . . . ... ... ... ... 6
2. Ginsburg’s 2D Low Pass Filter Based on the Contrast Sensitivity Function

(14:141] oo e e T
3. Results of Using Ginsburg’s Contrast Sensitivity Based Filter [14:225] . . . . . S
4.  The Recptive Field Profile and the Gabor Function [9:1174} . . .. ... ... 9
5. Low Pass Filter Created with Narrowly-Tuned Gabors [32:37] . .. ... ... 10
6. Oberndorf’s Result Using Gabor Filtering 32:37) . . . . . ... ... ..... 10
7. A Typical Mother Wavelet . . . .. .. ... ... ... ... ........ 16
8. Time/Frequency Window Localization Lattice [T:41}] . . ... ... ... ... 18
9. A Rectangular Scaling Function Dyadically Scaled . . ... ... . ... ... 22
10. A Haar Mother Wavelet Function Dyadically Scaled . . . ... .. ... ... 25
11. Typical Scaling Function and its Fourier Transform [28:677] . . . . ... ... 28
12. Typical Wavelet Function and its Fourier Transform [28:677) . . . . . . . ... 29
13. Orientation of Wavelet Decomposition Filters in the Fourier Domain {10:65] . 31
14. Dataflow Diagram of the Wavelet Decomposition Program. First Level . . . . 36
15. Dataflow Diagram of the Wavelet Decomposition Program, Second Level . . . 37
16. Projectionof Lennaonto Vo . . . . . . . .. .. ... L. ... 38
17. Projectionof Lennaonto Vy . . . . . . ... .. ... ... ... ... ... 39
18. Projectionof Lennaonto V5 . . . . . .. ... L L. 40
19. Projectionof Lennaonto V3 . . . . . . . ... ... ... .. ... 41
20. Projectionof Lennaonto V5 . . . . . . ... ... ... 42
21. Projectionof Lennaonto V5 . . . . . . ... ... oL 43
22. Projectionof Lennaonto Vg . . . . . . ... 14
23. Projectionof Lennaonto Wy . . . . . .o o oL 16




Figure
24.

25.

Projection of Lennaonto Wo . . . . .. .. .. oL L0 oLl
Projection of Lennaonto W3 . . .. .. .. .. .. ... ... . L.
Proiection of Lennaonto W, . . .. .. .. ... .o L.
Projectionof Lennaonto Ws . . . . . . .. .. .o Lol
Projection of Lennaonto W . . . . . . ... ... Lo oL
Histograms of Lenna’s Original Image and V] through V; Projections . . . . .

Histograms of Lenna’s W), W,, and W3 Projections with the Number of Pixels

Logged . . . . . . . e
Lenna’s W; Projection Thresholded . . . .. ... ... . ... ... .....
Lenna’s W, Projection Thresholded . . . . . . .. ... ... ... ......
Lenna’s W3 Projection Thresholded . . . . . . ... . ... ... ......
One Dimensional Multiresolution Decomposition {28:681} . . . . . . ... ...
Response and Filter Functions Based on Cubic Spline Wavelet . . . . . . . ..
One Dimensional Multiresolution Reconstruction {28:682) . . ... ... ...
Two Dimensional Multiresolutior Decomposition [28:685) . .. .. ... ...
Two Dimensional Multiresolution Reconstruction {28:686] . . . . . ... ...
Wrap Around Order for the Convlv.c Procedure . . . . . . . .. .. ... ...
Original Image of Boxes (Reduced 58%) . . . . . .. .. .. ... .... ...
Horizontal Multiresolution Detail Coefficients of Boxes (Reduced 25%) . . . .
Vertical Multiresolution Detail Cocfficients of Boxes {Reduced 25%) . . . . . .
Angular Multiresolution Detail Coefficients of Boxes (Reduced 25%) . . . . .
Coarsest Approximation of Boxes Used for Reconstruction (Reduced 25%) . .
Frequency Support of Detail Signals Of The Cubic Spline Wavelet . . . . . ..
Original Image of Lenna (Reduced 2%) . . . . .. . ... ... . ...
Reconstructed Image of Lenna Using the Spline Wavelet {Reduced 2%) . . . .

Multiresolution Decomposition/Reconstruction Approximations of Lenna Us-

ing the Cubic Spline Wavelet (Actual Size) . . . .. ... ... ... ...

Horizontal Multiresolution Detail Coefficients of Lenna (Reduced 25%) .

Page




Figure
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

Pége
Vertical Multiresolution Detail Cocliicients of Lenna (Reduced 25%) . . . . . 78
Angular Multiresolution Detail Coefficients of Lenna (Reduced 25%) . . . . . 79

Coarsest Approximation of Lenna Needed for Reconstruction (Reduced 25%) 79

Kanisza Triangle Illusion . . .. ... ... ... ... ... .. ... ... 83
Relative Spatial-Frequency Range ol Each Level of Approximation . ... .. 84
The Kanisza Triangle Approximated at Level Four . . . .. .. .. ... ... 85
Relative Acuity of Vision Curve [39:441) . . . . . .. .. ... ... .. ... 88
Artificial Relative Acuity of Vision for Model . . . . . .. ... .. ... ... 88
Multiresolution Fixation Map . . . . . . . . .. ... .. . ... . . 89
Data Flow of the fbuild Progi..m for a 512x512 Input Image . . . . . . . ... 91
Composite Representation Including 34 Fixation Points . . .. .. ... ... 92

One Myopic Fixation on the Lower Left Packman of the Kanisza Triangle . . 93

Composite Respresentation Using 15 Fixation Points . . . . . . .. ... ... 95
Flow Diagram of the Spatial-Temporal Blurring System . . .. ... .. ... 97
Frames of Moving Kanisza Triangle lllusion . . . . . .. .. .. ... .. ... 98
Frames of Kanisza Triangle Using Level I Decomposition in Time . . . . . . . 101
Frames of Kanisza Triangle Using Level 2 Decomposition in Time . . . . . . . 102
Frames of Kanisza Triangle Using Level 3 Decomposition in Time . . . . . .. 103
Frames of Kanisza Triangle Using Level 4 in Space and Level 3 in Time . .. 104
Data Flow of the Boundary Contour Model . . . . . ... ... .. ... ... 106
Lateral Excitation Network of Equation 72 . . . . . .. .. ... ... ... .. 107

Output of Boundary Contour Model Using Only Level 4 Detail Coefficients . 109
Oberndorf’s Results Using a Gabor Low Pass Filter (32) . . .. .. ... ... 110

Output of Boundary Contour Model Using Levels 1-4 Detail Coefficients . . . 111

Xi




AFIT/GE/ENG/91D-34

Abstract

This thesis provides alternatives to the explanation that spatial filtering is responsible
for the percept.on of illusory contours in the Kanisza Triangle illusion. Specifically, we use
a Multiresolution Wavelet Decomposition to divide an image into spatial-frequency bands
that are used as inputs to three biologically motivated models. The thesis includes a brief
tutorial of Wavelet theory and an in-depth explanation of our implementation of recently
published algorithms for Multiresolution Wavelet Analysis. The first model is based on
the saccadic movements of the human eye. It demonstrates the importance of the high
spatial-frequency content of an image in the formulation of the illusion. The second model
is based on the serial architecture of the data transmission channel between the retina and
the visual cortex of the brain. It demonstrates the importance of low temporal-frequency
characteristics of the build-up of the visual world model. The third model considers only
the high spatial-frequency content of the image. It consists of lateral excitation networks

that serve to simulate the local high spatial-frequency energy interactions that contribute to

illusory contours.

Xii




ANALYSIS OF VISUAL ILLUSIONS
USING
MULTIRESOLUTION WAVELET DECOMPOSITION
BASED MODELS

1. Introduction

1.1 Background

By today’s computer standards, the individual processing elements of the human brain
process information extremely slowly, yet its capabilities as a whole far outpace even the
fastest supercomputers. The secret of its success has eluded researchers for decades. Some-
how the brain manages to reduce vast amounts of environmental data, discarding unimpor-
tant details. This concept was best expressed by the poet William Blake when he wrote,
“If the doors of perception were cleansed everything would appear to man as it is, infinite.”
Perception creates in the brain a model of the world using only a small part of the infinity of
information contained in reality. But, sometimes the lack of a complete picture causes ambi-
guities which the brain perceives incorrectly. One such misperception is visual illusion. The
hope is that by studying the brain’s failures we can gain better insight into its function. To

this end, we seek the best mathematical model for the visual system that explains illusions.

1.2 Problem

This paper proposes a thesis in which three models of the human visual system are
based on a relatively new mathematical theory, Wavelets. The models are specifically de-
signed to study spatial and spatial/temporal visual illusions. The thesis develops the algo-

rithms and software necessary tc decompose two dimensional images of visual illusions in




terms of wavelet bases. The thesis research includes experiments involving manipn'ations of
the decomposed image based on current knowledge and conjecture of possible human visual
system processing. Included in the evaluation of the resulting images is a comparison with

previous work in this area.

1.3  Assumptions

The assumption on which this thesis depends is theoretical in nature. We assume that
human cerebral processing includes some type of spatial frequency and spatial orientation
selectivity. The choice of wavelet analysis as the method of decomposition is based on this
assumption. In fact, the purpose of proposing a wavelet model of the visual system is to test
this assumption through the evaluation of visual illusions with that model. The assumption
of frequency and orientation selectivity in the brain is motivated by a deeper assumption that
the observed behavior of the visual cortex of the cat and the monkey discussed in Chapter

II is a good indication cf the behavior of the human visual cortex.

1.4 Scope

This effort is limited to the following:

A description of the mathematical theory of Wavelzat Analysis.

A description of the proposed visual models based on Wavelet Decomposition, modifi-

cation of the decomposed illusions, and Wavelet Reconstruction.

An analysis of the results produced by processing various static illusions with the model

and comparison with previous work in the area of visual illusions.

The software source code used to implement the models along with adequate docu-

mentation.

It is not the charter of this thesis to attempt to completely explain visual illusions. Such

an explanation would require philosophical and psychological examination. This type of

(o™}




examination is left to experts in those realms. The thesis is limited to a study of visual

illusions based solely on engineering analysis.

1.5 Standards

All software written for this thesis is in the ANSI standard C programming language.
All source code employs structured programming techniques such that the code may be
easily modified and maintained by future research efforts. The code is compileable on any
computer system that possesses an ANSI standard C compiler. We use standard image
processing techniques to modify the decomposed images. A further explanation of these

techniques may be found in an image processing text such as the one by Gonzalez [15].

1.6 Approach/Methodology

First, this thesis provides a written description of Wavelet Analysis. This description
contains the information necessary for a reader with a background in Electrical Engineering
to comprehend the mathematical basis for the proposed model. Next, research focuses on
the development of the software that performs the first part of the processing required, that
of Multiresolution Wavelet Decomposition of two dimensional images and one dimensional
signals. This software is based on an algorithm developed by Mallat [28]. The bulk of the
effort and the heart of the research lies in the development and use of the proposed models
to discover the appropriate modifications of the decomposed image necessary to explain the
illusion. This task is the original effort of the thesis and requires considerable experimenta-
tion. The evaluation criteria for these modifications is comparison with the original illusion.
Finally, the thesis provides documentation of the results and a complete description of the
models. It includes an evaluation of the results as evidence of the correctness of the models

as possible engineering explanations of visual illusions.




1.7 Conclusion

The body of this thesis is logically divided to take the reader smoothly from background
to supporting theory to application. Chapter II is a review of the works of Ginsburg and
Oberndorf investigating low spatial-frequency contributions to visual perception. Chanters
III and IV provide the theory of Wavelet Analysis and its application in Multiresolution
Analysis respectively. These two chapters represent a collaborative effort with Steven Smiley.
The same material can be found in the corresponding chapters of his masters thesis, “Image
Segmentation Using Affine Wavelets” [41]. Next, Chapter V compares the low spatial-
frequency approximation provided by the Multiresolution Wavelet Decomposition to the
results of Ginsburg and Oberndorf [14, 32]. Chapters VI, VII, and VIII each present the
methodology and results of the three models used to fuither analyze the Kanisza Triangle
illusion in terms of spatial and temporal-frequency characteristics. Finally, Chapter IX

summarizes the results and makes recommendations for future research.




II. Literature Review

2.1 Introduction

A model which shows promise in suggesting a type of processing that may occur in
the brain is based on a relatively new mothematical theory, wavelets. Though others have
mathematically explored illusions [19, 30, 25], this paper addresses two approaches which
establish a relevant background for future research using wavelet analysis, Fourier and Gabor
filtering. In two parts, it examines Ginsburg’s research with Fourier analysis [14] and Obern-
dor{’s research with Gabor analysis [32]. Each of these sections includes a brief discussion of

the advances in the field of physiology which led these researchers in their choice of analysis.

2.2 Fourier Analysis

Ginsburg’s use of Fourier filtering, grew out of a need to reduce the vast amount of
data presented to the sensors of the human visual system. The eyes use over 110,000,000
rods and about 6,000,000 cones to see objects at 100 brightness levels and about 50 different
colors [14:10]. He attempted to find the appropriate range of physical properties that would
satisfactorily model reality. He chose filtering as a means of excluding what he considered
the redundant details of a scene. Since this was an early attempt at explaining human
perception in terms of a physical process, it was necessary to use a scientificaly accepted

and understood method ot filtering. Feurier filtering provided such a tool.

The concept of a Fourier filter is quite simpi... All the objects that make up an image
can be characterized in terms of their spatial fiequency. Larger objects have a low spatial-
frequency while small objects 1nd fine details have a high spatial-frequency. A Fourier filter
can exclude any unwanted or unneeded range of spatial-frequencies in much the same way
that we tune a radio or televisic. to a specific channel or frequency. Filters can also alter

the spatial-frequency content of images.




500

.01
100

Contiast 20 Contrast
Sensitivity

10 |

050 1 1 5 10 50
Spat’ .- Frequency {c/deg)

Figure 1. Typical Contrast Sensitivity Function [14:136]

To find which spatial-frequencies to eaclude and which ic eep, Ginsburg turned to
known biological data about the contrast scnsitivity of the visual system. As it turns out,
the human eye has a range of spatial frequencies, bandwidth, for which it needs less contrast
to discern objects than spaiiii frequencies outside of tlat range. Mostly, it is the low
frequency characteristics, the form and shape of objects, that need the least illumination for
discernment. To test this, turn down the contrast knob on a television and note that the
finer details are the first to drop out of view. Figure 1 illustrates the characteristic shape of
the contrast sensitivity curve as a function of spatial-frequency. This graph illustrates the
range of spatial-freauencies to which the visual system is the most sensitive or which require

the least contrast to discern.

Ginsburg fashioned a filter with a spatial frequency bandwidth that approximates the
contrast sensitivity of the visual system (Figure 2). He reasoned that visual illusion is a
consequence of filtering oul. certain high frequency details about «hierts 2t one or more
stages of processing between the eyes and the visual cortex of the brain. The high frequency

and low frequency information may then b» transmitted independently to the perception




Figure 2. Ginsburg’s 2D Low Pass Filter Based on the Contrast Sensitivity Function
[14:141]

forming areas of the brain where they are rccombined creating the awareness of a coherent
scene. Ginsburg’s thesis is that the visual system’s form and shape recognizer, which uses
the lower frequency information of an image, carries more weight in perception than the
visual system’s edge detector, which uses only high frequency information. Figure 3 [14:225]
is a filtered version of the well . .own Kanizsa triangle next to the unfiltered original. The
edges of the illusory triangle in the original image are even more strong!, suggested in the
filtered image. Also, the blurring effect in the filtered image is stronger outside of the illusory
triangle matching the tendency to perceive the interior of the original triangle to be da! .:

than the surrounding area.

‘Vhile addressing only part of the misperception that leads to a visual illusion, Gins-
burg’s work lends credence to the viery of the brain as an information processor that can he
modeled mathematically. It is not clear, however, what other filtering or processing occurs
to create the illusion as we see it. For example, how does the relative proximity and orien-
tation of the objects in the image effect the illusion? By Ginsburg’s own admission, further

research is required [14:66).

-1




P R

PRty A ot Aaitedense, v "

Unfiltered — Filtered

Figure 3. Results of Using Ginsburg’s Contrast Sensitivity Based Filter [14:225]

2.8 Gabor Analysis

Ginsburg was not alone in his search for an explanation of visual illusion by means
of filtering. In the same vear that Ginsburg's dissertation was published, 1978, Ozawa
indeperdently duplicated Ginsburg’s results {33]. The next break caine in 1987 when new
biologically measured data became available. Jones end Palmer gathered data from the
visual cortex of a cat [24]. They demonstrated that the impulse response of the visual
cortex, an early level of information processing done in the brain, closely resembles a two
dimensional Gabor fiiter 11, 12]. Figurc 4 shows the impulse response map of simples cells
in the visual cortex of a cat as measured by Jones and Falmer, and the best-fitting two
dimensional Gabor functions. The figure also shows how well the Gabor functions model the

cells by demonstrating that the difference is nothing more than background noise.

The Jones and Palmer results have led to a host of image processing experiments which
use (zabor filters to model the visual system. In 1990, Gberndorf, a masters student at the
Air Yorce Institvte of Technology, tested the Gabor theoy on visual illusions {32]. Inspired
by the notion that columnar groupings of cells in the visual cortex share a frequency response

[24, 21, 23], he propo-2d a Gabor filter tuned to 1.32 octaves to model the processing cffect

8




DiMerence

Figure 4. The Recptive Field Profile and the Gabor Function [9:1174]

of each grouping of simple cells [32:36]. When Oberndorf summed these filters, the total
effect exhibited the characteristics of the contrast sensitivity data that inspired Ginsburg.
Figure 5 is a plot of the low pass filter made from a summation of narrowly tuned Gabor
filters. The small ripples in the top of the filter correspond to each of the peaks of the
individual Gabor filters. The results of using this filter on the Kanizsa triangle is shown
in Figure 6. The energy difference between the illusory triangle and its surrounding area
is even more distinguishable than in Ginsburg’s results (Figure 3). This improvement is a

strong indication that the Gabor analysis is a step in the right direction.

The basis for this success lics in the ability of the Gabor analysis to discriminate a
range of frequencies at a particular location. The Fourier filter, on the other hand, can
only be applied to the entire scene. Therefore, if the desire is to isolate certain frequency
characteristics by location, cell groupings, then the Gabor is a good choice. Going beyvond
Oberndorf’s work, it might also be useful to isolate the local dircctional characteristics,

orientation, in the image. Mallat shows that this is not only possible but desirable in many

9




Figure 5. Low Pass Filter Created with Narrowly-Tuned Gabors [32:37]

Figure 6. Oberndorf’s Result Using Gabor Filtering [32:37]

10




engineering applications [27]. He alsu shows that with wavelet analysis the Gabor filter can be
made orientation as well as frequency selective. In wavelet analysis, the Gabor filter retains
its location and orientation selectivity and gains a dilation parameter. This parameter is
used to isolate the desired spatial-frequency characteristics in certain locations in the image.
With this tool, it may be possible to isolate and emphasize the illusory contours of the image.
So, the next logical step in research of visual illusions, started by Ginsburg and carried on

by Oberndorf, is to analyze various iilusions with wavelets.

2.4 Conclusion

A better understanding of visual illusions promises to provide insight into the process-
ing taking place in the visual cortex of the brain. Ginsburg advanced this effort by applying
Fourier filtering techniques to some visual illusions including the Kanizsa triangle. His re-
sults indicate that there may be some preattentive processing occuring in the visual system
that separates the lcw frequency characteristics and enhances them with respect to the high
frequency character.stics. Thus, the perception forming areas of the brain receive biased
data. Oberndorf took this idca a step farther by applying the property of location sensi-
tivity inherent in Gabor filtering. Each individual Gabor was made to emulate a columnar
grouping of simple cells in the visual cortex as suggested by Jones and Palmer. Oberndorf’s
results indicate the approach is basically sound. The next logical step is to apply the Gabor
filters in varving dilations and orientations. This can be done by extending the Gabor into
a class of mathematical functions called wavelets. These functions are the filters that will
determine the combination of frequencies and orientations that causc the illusion to appear.
If the analysis is successful, it will form the basis of a mathematical modcl of the visual

system.

11




III. Theory of Wavelet Analysis

This chapter was co-authored with Steven Smiley and exists in his thesis in duplicate

[41].

3.1 Introduction

Signal analysis seeks to discover the information content of signals needed for appli-
cations such as pattern recognition and signal coding. One approach is to transform a
mathematical representation of the signal into a domain of interest. A simple exampleis a
coordinate transformation which maps a function, such as a circle, from Cartesian coordi-
nates to polar coordinates. A circle represenicd by z? + 32 = r? in Cartesian space is now
more easily expressed by p = r in polar space. The coordinates x and y or p and 0 provide

alternate representations of the circle.

Another example of this kind of transform analysis is the Fourier series expansion. If

f(z) is a continuous function on the interval [-Z.Z] and f(-%) = f(%),

nics
f(a)=3 e 7 (1)
n
where j2 = ~1, and n is an integer. The Fourier series expansion of a function requires the
generation of cocfficients, c,.
l % —-—3naTT 5
o= [ ) F (2)

These coefficients are the amplitude and phase of cach member of the Fourier series basis
set needed to reconstruct the original function. In continuous form, Equation 2 becomes the

Fourier Transform.
+o0

F&)= [ jlare e (3)

-




It maps one dimensional signals from the time domain to the frequency domain and can be
extended to map two dimensional images from the space domain to the spatial-frequency
domain. From another point of view, the transform projects the original signal or image
onto tie space spanned by the exponential basis set, {/?™"%|n is an integer}, for all integers

n. In this paper we will denoie this set with the symbol L,.

Unfortunately, the Fourier Transform representation gives no information as to the
location of the frequency characteristics in the original signal. This is due to the fact that the
basis set £, has infinite support. Therefore, any abrupt changes in the time domain require
contributions from the entire frequency domain. The Fourier Transform might indicate that
high frequencies are present in the signal, but it does not indicate where in time that range
of frequencies are significant. In images, edges or lines are areas of high spatial frequency. A
Fourier Transform of an image with edges would provide evidence of high spatial frequencies
but would not indicate where in the image the edges could be found. Finding the location of
unique spectral characteristics can be extremely useful as a feature set in applications such

as pattern recognition and signal coding [9, 29].

Therefore, we need an extra variable in the target or transform domain. In other words,
we need a transformation that maps a signal to the time/frequency domain or an image to
the space/spatial-frequency domain. The Windowed Fourier Transform (WF7T) is such an

transformation.
400

Wy (w,7) = / W(t = )e~i f(1)dt (4)
—co
where w(e) is the window function. This transformation uses the window to localize the
analysis of time and frequency on the signal. However, because the window size is fixed, no
sharper resolution in time can be provided. Due to the uncertainty principle, it is impossible
for this basis set to have arbitrarily high resolution in both time and frequency [8, 40]. Even
the Gabor Transform, a WFT whose Gaussian shaped window gives the best compromise,

still falls prey to the uncertainty principle. Additionally, because the window width is fixed

sharp discontinuities in the time signal are spread across many Fourier coeflicients.




One answer to the time/frequency resolution problem is the Wavelet Trausform®. It
allows variations in the size of the window effectively trading resolution in time for resolution
in frequency. The collection of its coefficients, similar to the Fourier Transform, is a projec-
tion of the original signal or image onto the space spanned by its basis set. The waelet basis
set is made up of vari. tions in the translation and dilation of a mother wavelet fu n<iion just

as the {E,,} is made up of variations in the frequency of the complex exponential function.

This chapter provides the basics for understanding wavelet analysis. It presents the
Wavelet Transforms of both continuous and discrete signals. We discuss Multiresolution
Wavelet Analysis both in terms of successive projections onto a wavelet basis set and succes-
sive lowpass and bandpass filtering in the Fourier domain. Finally, we address the extension

of Multiresolution Wavelet Analysis to two dimensions.

3.2 Notation

The following notation will be used throughout this document.

Z denotes the set of integers.

R denotes the set of real numbers.

R* denotes the set of positive real numbers.

L?(R) denotes the space of measurable, square integrable, one dimensional, real-valued

functions f(z), such that

L ePde < o0 (5)

—CO

Y Another approach to the time/frequency resolution problem is that of Time-Frequency Distributions
(10, 4)

14




L?(R?) denotes the space of measurable, squate integrable, real-valued, two dimen-

sional functions f(x,y), such that

[ [ 1) Pdady < o0 (6)

For f,g € L?(R) the inner product of f with g is defined as

(f.90= [ ole)i(e)ds (7

-00

For f,g € L?(R) the convolution of f with g is defined as

+00

o) = [ Fledgle - a)da ®

For f,g € L?(R) the correlation of f with g is defined as
+00
[Fegl@) = [ fla)gla - 2)da )
o P, denotes the projection operator on L#(R) such that for any f € L*(R)

Pf=3 (f,¢n)¢n (10)

where {¢,} is a complete basis set and n € Z.?

3.8 The Continuous Wavelel Transform

The basis functions in wavelet analysis, {14}, are derived from a single function called
the mother wavelet, ¥(x). It acts as the window in the Wavelet Transform whose size is

varied by the dilation parameter, « € R*. Like the Windowed Fourier Transform, it has a

2The relationship of this basis set ¢,, to the mother wavelet ¢/(2) is discussed in Section 3.6 of this chapter.

15




translation parameter, b € R.

o) = 7= (1)
The 7’; term normalizes the energy of each basis function. Figure 7 shows dilated and
translated versions of a mother wavelet.® The function in the middleis the prototype function
where b = 0 and a = 1. The function to the right is translated by b = 15 and dilated by

3- And finally, the function to the left is translated by b = —20 and dilated by a = 2. All

such possible dilations and translations of the mother wavelet, gb({:—”) make up the elements

of the set {tqs}.

b=—20,a =2 =0a=1 b=15a=1

Figure 7. A Typical Mother Wavelet

This basis set provides narrow windows for small a isolating discontinuities in time
that are spread over a broad range of frequencies and wide windows for large « that have

better frequency resolution. The Continuous Wavelet Transform for a real mother wavelet

1 is [10:7)

Wy ab———/ F@)y(E )dqaeR“beR (12)

3Laplacian of the Gaussian 9(z) = 27~ ¥(1 ~ xz)e'izz.
73

16




With this transform, a wavelet coefficient is obtained for each dilation and translatiou of the

mother wavelet.

If the Fourier Transform of the mother wavelet, ¥(z), denoted by ¥(w), satisfies the

condition that

+oo
c=/0 10 (w) [/ jwldw < 0o (13)

which requires that ¥(0) =0 4, an inversion transform exists and is given by [10:§]

= / e / (0w (e, b)dadb (14)

The wavelet transform pair given in Equations 12 and 14 are analogous to the Fourier

Transform pair of Equations 1 and 3. As the dilation parameter a varies, the window width
of function ¥(252) varies. Since small values of a correspond to small window widths, a
varies inversely with the frequency detectable within the window. Therefore, the wavelet
transform isolates time discontinuities or abrupt changes in time at the expense of low
frequency resolution at high frequencies. In many applications, the important information
content of the signal is contained in the quick transitions of the signal in time. For this

reason, the Wavelet Transform can he quite useful.

Because the windows overlap when the parameters («,b) are varied continuously, the
Wavelet Transform is highly redundant. Therefore, it is possible to evaluate it with a discrete
set of basis functions in much the same way that the Fourier expansion of Equation 1 repre-
sents a signal with a set of discrete exponentials. The time/frequency plane evaluating grids
are shown 1 Figure 8 for uniform time-frequency sampling associated with the Windowed
Fourier Transform and the nonuniform sampling of the Wavelet Transform. Each dot in the
lattice indicates the localization in the time/frequency plane of one resolution cell, showing
the center of the time window and corresponding bandpass filter. In this figure, we can see

that the fixed window widths of the Windowed Fourier Transform have a fixed resolution in

1The w in the denominator of Equation 13 requires that ¥(w) vanishes as w approaches zero.

17




Window Fourier Transform Wavelet Transform

Figure 8. Time/Frequency Window Localization Lattice [7:41]

time and frequency; whereas, the variable window widths of the Wavelet Transform provide
variable resolution in time and frequency. The clustering of grid dots at the origin along the

a—l

axis of the Wavelet Transform time/frequency lattice indicate the low time resolution
or localization of low frequencies; whereas, the denseness of grid dots parallel to the shift
axis, b, at high frequencies (large a™') indicates the higher time resolution or localization of

higher frequencies.

3.4 The Wavelet Transform with Discrete Wavelcts

It 1s sometimes convenient to use a mother wavelet whose discrete translations and
dilations form an orthonormal basis [5]. For this case, the discretized basis set {2} where

m,n € Z is defined as

m

¥o(2) = a"F(a™"a - nf) (15)

18




where @ > 1 and 3 > 0 [10:11]. In this chapter, we use the dyadic interval defined to be

a =2 and # =1. For the dyadic case, Equation 15 becomes

Pr(z) =222 "z —n) (16)

Using this form of the mother wavelet in Equation 12 yields the Wavelet Transform with a

discrete wavelet basis.

Wiim,n)=2% [ (2™ ~n)f(a)ds (17)

-0

To check this, consider the Fourier Expansion given in Equation 1. We can represent any

function, f € L?(R) as
= chd)n(a:) (18)

where 1, is the n" element of an orthonormal basis for L?(R). Equation 18 can also be
thought of as the recoastruction of f(z) from its coefficients {c, } in terms of the orthonormal
basis {¥,}. The inner product, ¢, = (f, %), gives the coefficient of the n* term in the
basis. Just as any vector r in three dimensional Euclidian space can be expanded in a set
of mutually orthogonal unit vectors z,y, and z in the form r = a1z + a2y + a3z, we can
expand any function f € L?(R) in a set of mutually orthogonal unit vectors {¢,} in the
form f =3, catbn. If we multiply both sides of Equation 18 by any term %,, for m € Z and

integrate, we get
L (@)@ = e [ dule)m(a)da (19)

But, because of the orthonormality of the set {1,} we know that

/ " (@) n(2)dz = Sy (20)

-0

where 6, is the Kronecker’s symbol, and is defined as 0 if m # n and 1 if m = n. Thercfore,

all the terms in the summation of Equation 19 are zero except the one in which n = m.

19




Thus,
[ febmiz)de = cn -

is the integral form we need to find the coefficient of the m* basis element, ¢,. Written
aaother way, Equation 21 becomes a continuous transfurm with an orthonormal basis that
maps f(z) — Tf(m).

Tym) = [ f(@)pmiz)ds (22)
Now, we can insert the orthonormal wavelet basis set {¢%} of Equation 16 into Equation 22
and get the Wavelet Transform of Equation 17. To reconstruct the original signal, we perform

a generalized Fourier series expansion (see Equation 18) with the coefficients obtained with

Equation 17 and our basis sct {7}, }.
flw) =223 Wilm,n)p(a);, (23)

The next hurdle in wavelet analysis is to determine the most appropriate mother
wavelet for a specific application. Presently, the appropriateness of a specific mother wavelet
is determined experimentally. We first try to match the characteristic shape of the mother
wavelet with the characteristics of the function under analysis. For a more complete discus-

sion of this issue, see Fastman [10].

3.5 Multiresolution Analysis

In section 3.3, The Continuous Wavelet Transform, we said that the Wavelet Trans-
form uses a variable length window to examine the function. Increasing window lengths
correspond to successively coarser scales or resolutions (in time or space) of the function.
Therefore, wavelet analysis is sometimes referred to as multiresolution analysis. In this sec-
tion, we will describe each resolution level as the projection of the function onto the basis

set made up of all shifts of a scaling function (not a wavelet) at a fixed dilation or scale.




Multiresolution analysis represents a signal as i series of successive projections, cach of which
approximates the original signal at a different level of resolution (2, 36]. Here, ‘level’ cor-
responds to a particular dilation of the scaling function. A more intuitive view is that of
successive low pass filtering of the signal with filters of narrower and narrower bandwidth
representing the signal with less and less detaii The filter is related to, and can be derived

from, the scaling function. Both views will be discussed in the following subsections.

3.6 Multiresolution with Frojections

The projection operator Pf projects a function f onto a basis set {4, } (see Section
1.2, Notation). Fo: mathematical convenience we consider a scaling function ¢(x) whose
translations and dilations form an orthonormal bsis. This is possible according to Stephane

Mallat’s Theorem 1 which states:

Let (V.,),ez be a multiresolution approximation of L?(R). There exists a unique
function ¢(z) € L*(R), called a scaling function, such that if we set ¢, (x) =
2¢(¥z) for j € Z, (the dilaticn of ¢(x) by 27), then

(V275 ¢os( — 2771) ) nez (24)

is an orthonormal basis of V,

[28:676]; see [28:690] for proof. In Mallat’s theorem, V,, is a vector subspace of L*(R) whose
basis set is the scaling function ¢{x). In being consistent with our earlier notation, wlere
Mallat uses j to denote level or scale we use the integer m and the integer n to denote shift.
One propert; of Mallat’s set, {¢2 }, is that each element is identical in shape to every o.her
element bul differs in height by a power of two and differs in relevant width by a powor of
two. This is known as the dyadic case. Figure 9 shows a rectangular scaling function dilated

three times. With an orthonormal scaling function dilated and translated dyadically, we can

use Mallat’s discrete projection operator




level m-3 m—3
8

level m-2 2 ks

4 4

¢:x-l
141
level m-1 m=1 4
ks \
Py
2 2 2 2
|
141
oot
level m ot 8
¢n+4
m
n+5
n
g Wy
i g
1 1 1 1 1 1 i i
r

Figure 9. A Rectangular Scaling Function Dyadically Scaled

(25)

Aamfle)= (2—"1 D AL Gam(e = 27"n))gom(z - 2""n))
meZz

ne7,

which generates an approximation of the original function at a level of resolution 2™. The

set of inner products

{(f Gy (@ — 277 ")) }m.nez (26)




characterizes an approximation of f at scale m. In Mallat’s terminology, A,m projects
f € L?(R) onto the subspace Vom. For notational convenience, we now drop the subscript
2 and rewrite ¥, for Vom. The family of subspaces V;, created by successively coarser

approximations of L?(R) has the property that
- C ‘/m—2 C V;n-l C ‘/m C 1/m.«lv-l C ‘/m+2 c--- (27)

That is, each resolution approximation of L#(R) is contained in (is a subset of) the next
higher resolution approximation. Because a physical sampling device samples at a finite
rate, any signal, f, is represented at its finest level of resolution by A,,_ f. For reference, we

choose m, = 0. Then for a finite number of resolutions, A, we have
Vo) C Vo9 C---C Vo C W (28)

Since A f € Vi, each approximation of coarser resolution A,,_,f can be derived from its

parent projection of finer resolution A,,f.

The difference between two adjacent scales, m and m — 1, given by

Dm—l,[ = Amf— Am—lf (29)

is called the detail signal at scale m — 1. It contains the details in the signal f that are lost
during the projection from level m to level m — 1. The detail signal, D,,_, f, is the result of
projecting f onto the basis set of a vector space, Op,;, which is orthogonal to V,.;, with

the projection operator D, _,. Analogous to the projection Equation 25, this operator is




escribed in terms o asis set® ¥ which ns the space O,,.
described in t f a basis set® b7 which spans tl 0)

Dnf(x) = (‘> S (f, am(s = 27" n)ham(z 2~’"n)) (30)
meZ

n€zZ

Equation 30 generates the difference bet veen approximations. It is characterized by the st

of inner products

{{f,d2m(e = 27"n))}mnez (31)

This is just Equation 17 written as an inner product. Thus, the mother wavelet, ¥(z),
generates a basis set, {¢7}, of the vector space O,,. Figure 10 shows an example of a
mother wavelet dilated and translated dyadically. It follows from Equation 29 that the sum

of all the detail signals and the coarsest approximation equals the original signal.

f()=Daf+...4+ Dy f + Acqm-n)f (32)

Equation 32 is the Wavelet Decomposition of f(z).

3.7 Multiresolution with Filters

An alternate view of the multiresolution approximations is that of filtering the image
with a set of low pass filters with successively narrower bandwidth. The inner products of

Equation 26 are convolutions evaluated at the point 27™n (see section 3.2, Notation).

Foo

(fydam(e —27™n)) = /oo f(x)pam(x —27™n)dz = [(f * dom(—0)}(27""n) (33)

An alternative approach uses correlations where the argument of ¢ is reversed (see

section 3.2, Notation).

SHere, ¢{(r) is the particular mother wavelet associated with the scaling function, ¢(z) used in Equation
25. Some researchers derive the ¢ given a #, and others derive the ¥ given a ¢ [7]. In this thesis. we use
previously derived ¢,1: pairs [28] [6].




/ 't} ”

level m-2

2

1!);1’] -1 ] (§ 17[);;;*;!1

level ni-1

4

8 : 2 8 3 /
(8 9 Pt 5 bt? S il
W(x)

level m

S

4 4 q 4
T
—_—

Figure 10. A Haar Mother Wavelet Function Dyadically Scaled

+00

(fodanlo =27n)) = [ [(@)ém(2 0 =)o = [(f * am(@)(> 1) (30)

Convolution and correlation are interchangeable. We choose convolution for cousistency with

current wavelet literature. Of course every good electrical engineer recognizes convolution

as multiplication in the Fourier domain

[ * g)(z) & Flw)G(w) (35)

[A)
(4]




where I and G are the Fourier Transforms of f and ¢ respectively. The Foutier Transform,
®(w), of the scaling function, ¢(x), is a low pass filter with a specific bandwidth. 1 e Fourier
Transform of each successively wider scaling function (dilated by a power of 2) will also be
a low pass filter, but with a bandwidth smaller than that of the previous scale or level. This
operation of succes :ive low pass filtering produces “smoothed” versions or app -oximations of
the original signal. Each version contains less information or detail than its predecessor. In
the case of images, each approximation is “blurred” by the amount of high spatial-frequency
information that is filtered out. Finally, the lowest or coarsest level approximation occurs

when all frequencies have been filtered out and only the dc component of the signal r+ :ains.

In multiresolution analysis, we are primarily concerned with the information contained
in the difference between levels of resolution. In the case of filters, the difference between two
lowpass filters whose bandwidths vary by a power of two is a bandpass filter with a bandwidth
of one octave. This bandpass filter is provided by the Fourier Transform, ¥{w), of the wavelet
function, ¥(x). We can express the inner products of Equation 31 as the convolution of the

signal with the wavelet function evaluated at 27™n as we did in Equation 33.

(fitham(® — 27" n)) = [f * Fom(—0)}(27"n) (36)

Figure 11 shows a typical scaling function, ¢(x), and the corresponding low pass filter, d(f),
its Fourier Transform. Here f denotes frequency measured in Hertz, not the function f used
previously. Iigure 12 shows the wavelet function, ¥(x), which corresponds to the scaling
function of Figure 11. It also shows the bandpass filter. W( f). the Fourier Transform of w(x).
These filters.W(f) and $(f) correspond to the same level of resolution or scale. Superpo-
sitioning them, creates the lowpass filter of the next higher level of resolution. Similarly,
adding the next bandpass filter will create the next lowpass filter and so on. Therefore,
any signal ¢. image can be decomposed into a sct of signals or images cach containing a
one octave bandwidth of the original signal or image. In t}is manner. we can construct a

bank of bandpass filters from a mother wavelet for the purpose of wavelet decomposition.

26




Furthermore, if we choose ot mother wavelet to be orthonormal, the resulting bandpass
filters will completely cover the frequency plane such that the information content of each
signal or image in the decomposition is unique. A major advantage to the filtering approach
as opposed to the projection approach is the decrease in computational time complexity of
the decomposition process. Us ng a Fast Fourier Transform (FFT), the scale and wavel.t
coefficients are computed in O(nlog(n)) time. Alternately, using spatial convolution when
the size of the filter functions are much smaller than the length of the signal O(n) time is

required, where n is the number of samples in the signal.

3.8 Two Dimensional (2D) Wuvelet Transform

The Wavelet Transform can Le extended from one dimension (1D) to n dimensions,
n > 1. For ..age processing, we need a 2D Wavelet Transform to map images from the space
domain to the space/spatial-frequency domain. Mallat’s Theorem 1 is valid for L?(R?) and
there exists a scaling function ®(z,y) whose dilations and translations are an orthonormal
basis for L?(R?) [27:682]. The symbol @ is used here for consistency with referenced material
and should not be confused with the Fourier Transform of ¢ denoted previously with this
symbol. The ®(z,y) can be a separable or a inseparable function. We will discuss the

separable case in which ®(x,y) is written as a product of two identical 1D scaling functions.

O(z,y) = ¢(z)9(y) (37)

For the separable .ase, the multiresolution projection approximations of the image «t level

m can be obtained from the following set of inner products

Amf(:c> .7/) = (2—”) Z Z (fv ¢m(. - 2_'”711)(""1:(. - 2—’n712)>¢m(3: - Q-mnl)¢m(y - 2_,"714-_5))
mez

2 na€Z
(38)

[
-~




#(x)
T
05 +
0+ V\/\} \/\/\f
1 A| l
-5 0 5 X
. (@)
9(w)
1 m
68 +
08 p
04
02 +
0 e ———— |,
-10 rt o;t 0
(b) i

Figure 11. Typical Scaling Function and its Fourier Transform {28:677]




wix)

0.5 &

-0.5

(a)
W(w) '

08 [

0.8

0.4

\RARSS B

02

4 U

1 . " 1 e " )
“0-2K X 0 T 21 10
(b)

Figure 12. Typical Wavelet Function and its Fourier Transform [28:677]




Here we use the same m and n in both z and y since we dilate and shift equally in both
dimensions. However, in the more general case z and y could be shifted and dilated inde-

pendently.

We obtain the detail image just as in the 1D case in Equation 31. The detailed image
at resolution m is equal to the orthogonal projection of the 2D function on the orthonurmal
complement, O, of V,,. The orthonormal basis of O,, is composed of the three wavelet basis
functions ¥l(z,y), ¥*(z,y), ¥3(z,y) which we construct from the 1D scaling function, ¢,
and its corresponding wavelet, ¥ [28:683]. The symbol ¥ is used here for consistency with
referenced material and should not be confused with the Fourier Transform of ¢ denoted

previously with this symbol.

U1 (2,9) = $m(z)Pm(y) (39)
V2(2,9) = () dm () (40)
2 (2,9) = ¥m(z)¥m(y) (41)

There is one detail projection for each of the three wavelet bases. Applying Equation 31 to
each yields [28:684]

D, f(z,9) = (2"" S Y U (0 =27y, 0 - 27 0y)) Wk (2 — 27y, y — 2-'"n2)>
meZ

N1E€EZna2€2
(42)
DZ f(z,y) = (2’”’ Z Z (f,Vin(0=2""n1,0 =270,V 03 (2 — 27"y, y — 2“'"712)>
n€EZn1€2 meZ
(43)
D3, f(z,9) = (2 Y S Win(e = 27 e = 27 o)) U (& — 27 myy - 27 mg)
ni1€7n262 meZ
(44)

The image can then be completely represented at any level of resolution m — 1 by summing
Anf and Di f for i = 1,2,3. Figure 13 shows an approximation of the locations of the
corresponding lowpass and bandpass filters for the 2D wavelet decomposition in the 2D
frequency domain. This figure demonstrates the spatial orientation of each bandpass filter.

The filter formed by ¥!(w,,w,) is oriented horizontaily, ¥?{w,,w,) vertically, and ¥3(w,,w,)

30




diagonally. In many image processing applications it is desirable to obtain a representation
which is not only a space/spatial-frequency representation but also is sensitive to specific
orientations. Although Mallat generates three orientations as represented by the three detail
signals of Equations 42 through 44, recent work by Cohen and Schlenker at AT&T Bell

Laboratories suggest more are possible [3].

B
D3, f D), f D}, f
AGa K |D3f | AbS | DRI
D,/ | Duf  |D3S
A

Figure 13. Orientation of Wavelet Decomposition Filters in the Fourier Domain [10:65]

3.9 Conclusion

The predominate tool in signal analysis for the past three decades has been the Win-
dowed Fourier Transform. It provides a representation of signals in the time/frequency
domain. However, this transform uses a constant size window: thus, it provides only a fixed
resolution of the location of the frequency characteristics of a signal in the time domain. A

new engineering tool, the Wavelet Transform, provides an alternative by using multiple sized

31




windows effectively trading resolution in time for resolution in frequency for applications in

which localization of frequency characteristics in time is more important for high frequencies.




IV. Multiresolution Analysis Algorithms

4.1 Introduction

This chapter discusses two different approaches to using wavelets in multiresolution
analysis. It is the result of a combined effort with Steven Smiley and exists in duplicate in
his thesis [41]. The first approach uses the scaling function ¢(z) associated with a mother
wavelet ¥(z) to decompose an image into successive V;, and W, space projections where
Vi and W, are vector spaces in L?(R) (see Chapter III) and are orthogonal compliments
of each other in the next larger space Vj41'. The second approach uses a set of quadrature
mirror filters H and G constructed from a mother wavelet and its associated scaling function
to decompose a signal or image into sets of coefficients. These coefficients characterize
the V and W space projections. Following the discussion of each approach, we include

implementation examples in support of the theoretical explanations.

4.2 Multiresolution with Approzimations

This section discusses our implementation of multiresolution decomposition using the
Haar wavelet bases. First it defines the Haar function as an orthogonal wavelet basis suitable
for multiresolution decomposition. Then, it explains our implementation of decomposition.

Finally, we provide an example decomposition using our decomposition program.

4.2.1 'V space, W space, and Haar basis. In one dimension, the Haar mother wavelet

is defined as follows:

<<l (45)

0 otherwise

'In this chapter, the symbol W,, replaces the symbol Oy, used in Chapter 11, Section 3.3.

33




The one dimensional scaling function that corresponds to the Haar mother wavelet is defined

as follows:

#(z) = 1 f0<e<1 (46)

0 otherwise

The two dimensional scaling function, ©(z,y), is the product of ¢(z) and ¢(y), where ®(z, y)
is a two dimensional rectangular function. In general, ® is scaled by an amount proportional
to the length of its interval of support, I, where its values are non-zero. In the dyadic case,

the length of the interval of support is given by
{|Ir?1| = 2m}m.n€Z (47)

for the shift n and the level m. We use the convention that level 0 is the finest resolution
level. This means that the projection in the V4 space represents the image at its original

sample density. In this case, the shift interval for the ¢ and ¥ functions is
71 =1 (48)

which is equal to the sample size of the image, one pixel. The scale factor is, therefore, -\/%
Now, we can write an expression for the one dimensional ¢ with the proper scale factor as

follows

—+ ifzel®
f(e)y=4 VE TR (49)

0 otherwise

From Equation 49, we build a two dimensional scaling function with the product mentioned

above as follows

27m zyyely
@7 (x,y) = ’ (50)

0 otherwise

Therefore, our convention allows us to easily derive the size of ¢ in terms of its interval
of support from 2™™, where m is the level of resolution. As mentioned above, the finest

resolution level corresponds to n: = 0 and is contained in the vector space V5. The maximum

34




resolution level is also easily found. This is done by finding log,(/N) where N is the size of
the NxN image under analysis. For example, if the image is 512x512, the largest ¢ that
will fit completely on the image is 512x512. Since the size of ¢ is related to the level by
2-™_ we find m by taking log,(/V). In this example, that would be log,(512) = 9. Therefore,
all contributing levels of ,esolution range from zero to nine, where level zero is the finest
resolution and level nine is the coarsest. Though level zero is exactly the original image, we

will continue to consider it for programming convenience.

The projection on the vector space V;, of the image f(z,y) or the approximation of

the image at the m!* level of resolution is characterized by the set of coefficients, {c* } where

o =<Pr f> (51)
Then, the projection is given by
Anf(z,y) = cn@r(z.y) (52)

Given that the orthogonal complement in V,,_; of the vector space V;, is W,,, which means
that W,, = V,,_; — V,,, we can find the projection of the image onto the vector space W,
from Equation 29. It is possible to calculate the wavelet coefficients, d, that characterize

the projection into the orthogonal vector space W, in a manner similar to Equation 51 using

dp = (Y7, f) (53)

where W{x,y) = ¢*(x)"(y) But this is not necessary since we can find the projections D(m)

more directly from Equation 29

4.2.2 Haar Transform Program The data flow diagram in Figures 14 and 15 shows
the operation of the Wavelet Decomposition program, wave. This program, is written in the

ANSI standard C programming language. It reads in an image from an ASCII file and writes




its output to ASCII files; the @ coefficient<, the projections in V space, and the projections

in W space. The number of files produced is determined by the size of the input image to

WAVELET DECOMPOSITION
PROGRAM
I PHI
IMAGES COEFFICIENTS
ANALYZER PROJECTIONS
MENU W SPACE
INTERFACE PROJECTIONS

Figure 14. Dataflow Diagram of the Wavelet Decomposition Program, First Level

be decomposed. For example, the image of Lenna shown in Figure 16 has a resolution of
480x512 pixels. Therefore, ten files each will be produced for the ® coefficients, the 17 space
projections, and the W space projections. The & coefficients are calculated by taking the
inner product of the appropriate level ® and the image, Equation 51. The projections of the
input image onto the V space are found by multiplying the ¢ basis by the ¢ coefficients,
Equation 52. Then, the projections in the W’ space are found from the diffcrence of V space
projections at adjacent levels, Equation 30. The source code for the wave program is made

up of ten files. They are provided in their entirety in Appendix A.2.

4.2.83 An Ezample Decomposition We subjected a 480x512 sampled image of Lenna

to the Haar transform program and printed her projections in the V" spaces and the W

36




spaces for resolution levels one throngh nine according to the convention established above

(See Figure 17 through 28).

The W space projections are made viewable by adding 255 to

WAVELET DECOMPOSITION
PROGRAM

LOAD
IMAGE

INNER

PRODUCT PHI

COEFFICIENTS

—

IMAGES

\Y — 5 VSPACE

PROJECTION PROJECTIONS
PHI
GENERATOR
CREATE

W W SPACE

MENU , PROJECTIONS
INTERFACE PROJECTION

CREATE

Figure 15. Dataflow Diagram of the Wavelet Decomposition Program, Second Level

their gray scale values and dividing the sum by two. This process centered the values about

128 instead of zero. The low energy contained in the W space projections is as expected,

since it represents only that part of the image which correlates to the 32 of the corresponding

level. In other words, only small amounts of the whole image lic in the scale bandwidth of




T
s %

57 ,;4/,/
77

1

A
d.;.

2 7
L
2 % A
i

7,
R 7 ,fs%

U G
%

7 :

a,

fr
s
- ot

Figure 16.

Projection of Lenna onto 1

38




AJ.
ﬂf».n....

.,m,w.u N

24 ‘.n,_«co..;fn RS

L
R

f%%f.//%%x/
T

,
S
e

N
=

39

Figure 17. Projection of Lenna onto ¥}




oo

; r//.?»,&u X

tion of Lenna onto 15

jec

gure 18. Pro

10




7

Ere

Figure 19. Projection of Lenna onto 13

41




Lo
s ol
i -?‘:\‘sy

z:
5
AT g
. ::\:'- Sy,

;‘ga."e_ oy :m

7
7

23
S

Figure 20. Projection of Lenna onto V




XX,

S

a onto

jon of Lenn

ject

Pro

21.

Figure

43




=

k
TR
o

3

Figure 22. Projection of Lenna onto Vj

44




the corresponding scale of ¥ at that level of resolution. The projeciion onto Wy =V, — W,
space showed only the high frequency information, changes that occurred within the Haar
interval of support or a 2x2 pixel area. This is seen in Figures 23 through 28 in which
six projections onto the W spaces are shown. On the other hand, the V space projections
get progressively blurrier with larger m, corresponding to coarser le 'els of resolution. They
represent all frequencies of the image from the dc component, Vo, to the current level. All
V space projections of coarser resolution are contained in a V space projection of finer

resolution, smaller m (See Figure 17 through 22).

4.2.4 Histograming To view the histogram of grey scale values of the projected im-
ages, the Khoros signal and image processing system developed at the University of New
Mexico [37]. Figures 29 and 30 show the resulting histograms of the original Lenna image
and the first three levels of the V and W projections.  These results show how the V
space projections contain a wide variety of grey scale levels compared to the W projections.
Therefore, the W space projections would be a good choice of representation from which to

code and compress the original image.

4.2.5 Thresholding The histograms discussed above provide a good measure of the
grey scale values that are important to the information content of the image. For example,
the histogram of the W} projection shown in Figure 23 shows that most of the information
content of the image, the essence of Lenna, is contained in a relatively small number of pixels
in a small range of grey scale values to either side of grey scale value 128. To isolate this
information from the vast amount of data required to represent the entire 512x512 image,
we developed a routine called threshold to eliminate or zero out the large number of pixels
in the grey scale range around the value 128. Our routine also binarizes the remaining grey
scale values. If a grey scale value falls within the thresholding window. it is set to white
or 255, and if a grey scale value is outside the threshold window, it is set to black or 0.
Figures 31, 32, and 33 shows the results of exccuting the threshold program on the first three

levels of W space projections.  These figures demonstrate the edge detection capability

45




Figure 23. Projection of Lenna onto W)

46




tion of Lenna onto W,

24. Projec

gure

47




f Lenna onto W;

ion o
48

25. Project

igure

F



Figure 26. Projection of Lenna onto W,




Figure 27. Projection of Lenna onto W




,
o
S

%

AN %%4’%?}”%
A
o . ,”

»

Figure 28. Projection of Lenna onto W

[ |




Histogram of Lenna HIstogram of Lenna V1 Prolectlon

Number of Pixets (10e4)

Number of Pixels (10e4)

-
[ ) [ 4
5 8-
o—l :
8
~,
N
g ] o°
s 1 .o
o oF
5
@ -
= s
L4
o fag g
eg
o L
- - 0%
° —
L9
30
8 Ew
" 3% -
° z9°
o
8 g
° | P L I 1 ° | | | | 1 1
0.000 0.050 0.100 0.180 0.200 0.235 ©0.010 0.433 0.857 1.280 _1.703 _2.127 2.680
Grey Scale (10e3) Grey Scale (10e2)
« Histogrom of Lenno V2 Prolection Histogram of Lenno V3 Prolection
.- g -
" 3
o
L]
0
< ]
o 8 -
an
» -
- 38 .
" X
o -
“ o
. ~&-
" ow
o
[ 8
- | o
s 0
° €
] p
38
.
.
°
°
g
° | I T T T ] ° T ] T ] ]
Q.010 ©0.433 0.857 1.280 _1.703 _3.127 2.350 0.01 0.8 1.01 1.1 2.01 2.88
Grey Scale (10e2) Grey Scale (10e2)

Figure 29. Histograms of Lenna’s Original Image and V) through V5 Projections

¥,
(8]




s Histogrom of lLennac W1 Proljectlion o Histogrom of Lennao W2 Prolectlion
» -
[ ]
8 ] 28
e [T
X X
- -
ao ae
8~ 3 -
>~ . -~
o® o®
. [N
[-d o
HE 38 -
Ee Ee
3 J
Zz r4
o [
g - g -
~ o
°
8- I I | ] 1 8 | I 1 ] 1
%.000 0.080 0.100 0.180 0.200 0.288 %.000 0.030 0.100 0.1%0 0.200 0.233
Grey Scale (10e3) Grey Scacle (10e3)
s Histogrom of Lenno W3 Prsojectlion
._
e
o
"l
Py
X
m§_
»o.'
Lo
03
28
E*
p]
r4
[]
8.._
~
[+
8 Ll
. ¥ 1 1 1 I
%.000 0.030 0,100 0.130 ©.200 0.333
Crey Scole (10e3)

Figure 30. Histograms of Lenna’s Wy, 115, and W3 Projections with the Number of Pixels
Logged




n

<«

LAt

i
.

. « N

R U

. > .
RPN P Abenet ool M
grien ATl AR el

. ’ ..v“.. .
ot sl .\m

oy oo

P .
i o

F o e i e TP,

LA IR S L E TR X 3.71__“-%31.’".1.».,.&.&...:%}? et
. B
." . . . .

* . « . . et .. . .

Thresholded

ojection

)Pl‘

35

LSnna s

31. 1

“igure !




Figure 32. Lenna’s W, Projection Thresholded




Figure 33. Lenna’s W; Projection Thresholded

56




of a Multiresolution Wavelet Decomposition. These images were produced by chosing to
eliminate all grey scale values between 131 and 125. The threshold routine, whose source
code is listed in the Appendix F.2, allows the user to select the upper and lower bounds of

grey scale values for thresholding.

4.8  Multiresolution with Filters

This section briefly reviews Mallat’s multiresolution approximation algorithm [28:677].
It also expands on selected areas of his paper that are vague or incorrect. Because the theory
of multiresolution analysis is covered in Chapter 1I of this thesis, we begin here with the
specifics of Mallat’s algorithm. The specific equations referenced in this section are taken

directly from Mallat‘s paper [28].

4.8.1 Multiresolution Decomposition In Mallat’s Equation (10) [28:677), he gives the
“orthogonal projection” of a signal f(z) onto a scale space, V, of an arbitrary level of

resolution, 27 for j € Z as

+o0

Apf(z) =277 3 (f,¢u(e —277n))¢y(z — 277n),Vf € L*(R) (54)

n=—~cgo

Then in Equation (11) [28:677], he adds a superscript d to his notation indicating that the
inner product of this equation is a “discrete approximation” of f(z) at the given level of

resolution. Mallat’s Equation (11) is just that inner product.

AS T = {{f,du(8 = 270)) }nez (55)

The discrete set of inner products in Equation 55 is the set of scaling function coefficients
previously given in this thesis in Equation 51 as ¢, where n corresponds to Mallat’s n and
m corresponds to his 7. From this point on in his paper, Mallat refers to this sct of inner
products as “the image™. While his explanation is easy to miss, it is true that he treats

a discretely sampled signal or image as being equivalent to these coefficicnts at the finest

[l
-l




level of resolution without ever taking the inner product. In other words, he considers the
sampling process of the original analog signal or image to be an approximation of that signal
or image at the finest level of resolution, sample density, allowable by the sampling device
(ie. digitizer or scanner). He treats this set of samples as equivalent to the scaling function
coefficients at the finest level «f resolution, ; = 0. We have adopted his convention, but
‘nclude here a brief explanation that considers the digitally sampled signal or image as the
projection of the original analog signal or image onto the scale space, V,;, where j = 0 as
the finest level of resolution corresponding to the sample density of our input data. This
approach would add two steps to Mallat’s algorithm — one at the beginning to perform the
inner product with ¢ (z — n) and one at the end to perform the discrete sum that projects
the reconstructed scaling function coefficients onto the scale space at level j = 0. Performing

the inner product of Equation 55 via convolution the level j = 0 scale coefficients are

Aff = {(f * $1(=#))(n)}nez (56)

for one dimension and

ALf = {(f * di(=0) * $1(=9))(n,m) }nmez (57)

for two dimensions. Obtaining the scale space projection from these coefficients at the end of
reconstruction is just as straight forward if we think of ¢(x) as a discretely sampled function
with %k samples. For illustration, replace the continuous variable z with the discrete variable

k. Then, inserting Equation 56 into projection Equation 54 yields
Aif(k)= 3 (A{)()i(k ~n) (58)

n=-—=0co

which is the rectangle apuro.mation of the Riemann integral of the convolution

(ATN)(n) * 1(n))(k) (59)




Using Fquation 59 as the final step in our multiresolution reconstrnciion program, we obtain
the discrete multiresolution approximation of the original signal. The two dimensional form
of Equation 59 using the discrete variables k and [ in place of the continuous variables z and
y respectively is

A1 f(k,1) = ((ASf)(n,m) * da(n) * $1(m))(k, ) (60)

Because these extra steps add no additional accuracy to Mallat’s multiresolution analysis
algorithm, we omit them as he did. However, their explanation provides a clearer transition
from the theory discussed earlier in this thesis to the implementation described in this

chapter.

In his Equation (15) [28:677], Mallat introduces the “discrete filler”, H, “whose impulse
response is given by”, h(n). In this thesis, we will refer to h(n) as a response function and
refer to H as a filter. Mallat shows in the one dimensional case that the set of scale coefficients
A, f at resolution level j can be found by convolving the response function k(n) with the
set of scale coefficients A%,,, f at the previous level of resolution j + 1 and evaluating the

result at even values of the argument n. Our interpretation of his Equation (16) [28:678] is

AL f = {(A%u f* B)(2n)}jnez (61)

where h(n) = h(—n). After this point, Mallat frequently uses the upper and lower case ‘H’
interchangeably even though the operation clearly calls for a space domain convolution, not
a convolution in the frequency domain. Equation 61 describes the decomposition of a set
of scale coefficients at level j + 1 into the set of scale coefficients at the next coarser level
of resolution j. The detail that is lost in the multiresolution transformation is described by
the wavelet coeflicients which are in Mallat’s notation D,, f. These coefficients are found by
way of a similar multiresolution transform using another filter, G, whose 1esponse function

is g(n). This transform is given by Mallat’s equation (28) [28:681] and is interpreted as

Dy f = {(A%+1f * §)(2n)}jnkez (62)




where §(n) = g(—n). The filters G and H have the following relationship [28:681]

g(n) = (-1)""h(1~n) (63)

Notice that the h(n) and g(n) are reflected about n = 0 and shifted relative to each other.
Even though the convolution operation occurs for all shifts, it is very important to maintain
the relative shift of g(n) with respect to h(n). In other words, these response functions must
be defined to have a relative offset of one, as shown in Equation 63, for whatever convolution

routine is used.

Now, armed with a set of response functions, h(n) and g(n), Equations 61 and 62
can be implemented iteratively to decompose the scale coefficients of a signal at the finest
level of resolution into the scale coefficients and detail coefficients at each level of resolution.
Because the number of scale coeflicients diminishes by a power of two at each iteration, the
extent of this decomposition is limited by the size of the response functions. For example, a
signal, f(z), with 128 discrete samples decomposed with response functions, A(n) and g(n),
that have 11 samples each can produce scale and detail coefficients, A%, f and D,, f, for four
levels of resolution. At the fourth level, the scale coefficient contains only eight elements

which is not enough to meaningfully convolve with the eleven element response functions.

The response function h(n) and its lowpass filter H that correspond to the cubic spline
mother wavelet of Figure 12 are shown in Figure 35. Using Equation 63, we derived the
response function g(n) from h(n). It is plotted along with its highpass filter G in Figure 35.
From these plots, it is apparent that H is a low pass filter which smooths the signal and G
is a high pass filter which captures the details lost in the smoothing process. The algorithm

given by Equations 61 and 62 is diagramed in Figure 34 which is redrawn from [28:681].

4.8.2 Two Dimensional Multiresolution Decomposition The two dimensional case is
a natural extension from one dimension. Equations 38, 42, 43, and 44 give the scale and
detail coefficients. These correspond to Mallat’s Equations (39) through (40) (28:684]. Our

interpretation of these equations when the response functions A(n) and g(n) are incorporated

60




is as follows:

> §(n) 2n > Dy f
Aduf h(n) > 20 |——> ALf
2n : Keep every other sample
&(n) : Convolve with response function Z(n)
where Z(n) = z(-n)

Figure 34. One Dimensional Multiresolution Decomposition [28:681]

A% S = (A% f)(k,1) % h(E) * h(1))(2n, 2m) (64)
DS = (A% [)(k, 1) % (k) * §(1))(2n, 2m) (65)
Df = (Afn F)(k, 1) % §(k) * h(1))(2n, 2m) (66)
D3, f = (A1 )k, 1) * §(K) * §(1))(2n, 2m) (67)

for j,k,l,m,n € Z where f(x,y) € L?>(R?)). The scale coefficients, A% f, become succes-
sively smoother versions of themselves and the details that are lost in smoothing are captured
in the three sets of detail coefficients, D;, f, ,D2,f, and D3, f. Each of these scts of detail

coefficients represents an orientation as shown in Figure 13.

In Equations 64 through 67, scparate discrete variables k and [ are used to emphasize

that the response functions h{(n) and g{n) opcrate on rows and columns independently. This
9 p 3

61




- o FFT of h(n)
: 8
: (] 2
S c
o
g
o
°
e
[\]
2 DD A2
6 -0
~ [
C o]
~/ A ad
£ bt ]
]
* o
o °
8
° o
8
Oo 0o °
[JDDDDD DDDDDD °
H 0O O °
IS = = 8
° ] =] bl | R ° 1 I | ] |
¢ o s 10 1 22 %.000 0.0%0 0. 100 0.180 0.200 0.233
n Cycles/Signal (10e3)
N g FFT of g(n)
a7 4 T
°
[ ]
] »
» 2
* — °
[ ]
0 o
f\a -
°
G s
<o -9
L] A A 0 -
° o
hapapdd, B SUN-V.YV .
n A A 3 -
[ -
8| [
. "
? 5 -
°
»
H o
] T =T 1 8 T T T T T ]
? (] S 10 3 22 °°.°° 0.04 0.08 0.3 0.7 0.21% ©0.2%
n Cyciles/Signal (10e3)

Figure 35. Response and Filter Functions Based on Cubic Spline Wavelet




emphasis plays an impo: iant role in understanding the mistake in Mallat’s Figure 12 [28:685]
which diagrams the two dimensional decomposition algorithm. There is an inconsistency
between the text and the figure that we resolve in the following manner. First, we correct

in boldface the text in paragraph A, first subparagraph, fifth sentence to read

We first convolve the cols of A%, f with a one-dimensional filter, retain ev-
ery other row, conlvolve the rows of the resulting signals with another one-
dimensional filter and retain every other column.

ALf ——>{ h(n)

(X111

*2 —> Ag;-}-l

Dof —sf g(n) >

N

z(n) |: Convolve with response function z(n) @ : Add point by point

: Insert one zero after each sample ¥2 | : Multiply by 2

(X1

Figure 36. One Dimensional Multiresolution Reconstruction [28:682]

Next we correct his Figure 12 exchanging the words ‘columns’ and ‘rows’ at the top of the di-
agram. To understand why these corrections are necessary, consider the independent nature
of the one dimensional convolutions performed on rows and columns. In the decomposition
process, the rows/columns and respective h(n)/g(n) convolution pairs must be the same as in

the reconstruction process. In other words, the reconstruction and decomposition processes

63




must be mirrors of each other. Figure 37 diagrams the algorithm given by the pyramidal
transforms of Equations 64 through 67. Figure 37 is Mallat’s Figure 12 [28:685] redrawn and

corrected.

TOWS

columns > §(n) > 2n |=Dif

h(n) > 2n [=D5f

-‘&gﬂﬂf"——9

> §(n) > 2n =D5f

> ﬁ(n) on |=ALS
m : Keep every other sample
z(n) : Convolve with response function Z(n)
where Z(n) = 2(—n)

Figure 37. Two Dimensional Multiresolution Decomposition [28:685)

4.3.8  Multircsolution Reconstruction In his Equation (32) [28:682], Mallat shows that

the scale coefficients at any level j + 1 can be reconstructed from the scale and detail coefli-

64




cients from vhe adjacent level j. Our interpretation of this equation is

SR
™o o

Ad f = 2((A% f)( )*/}(k))( n) +2((Dx f)(3) * 9(k))(n) (68)

This equation is implemented by inserting zeroes between each ~ample of A4, f and D, f and
convolving the results with h(n) and g(n) respectively. Finally, the convolution results are
added point by point. The factor of two comes from the way Mallat normalizes his response
function and is not necessary if implementing a Daubechies response function as given in [7].
Figure 36 diagrams the algorithm of Equ.ation 68. This figure is redrawn from Figure 7 in
[28:682].

4.3.4 Two Dimensional Multiresolution Reconstruction The reconstruction of a func-
tion f(z,y) € L¥(R?) from the coefficients obtained by using Equations 64 through 67 is a
natural extension of the one dimensional reconstruction. We apply the same notation ex-
tended to two dimensions. Again, we use the discrete variables k and [ for row and column
operations respectively. It is important for the rows/columns and h(n)/g(n) reconstruction
convolution pairs to match the decomposition convolution pairs. In other words, the recon-
struction must be a mirror of the decomposition. This point is illustrated in Equation 69.

For the two dimensional case, the reconstruction equation is:

A f = A((AD N5 5) % hE) (1)), m) +
(D} 1) )+ h(K)» o), ) +
(D3 (5, 5) » o(k) # hD)(m,m) +
(D315 5) * o(k) » g (D), m) (69)

where n,m € Z.




A row of zeroes is inserted between each row before the columns of each coefficient set

is convolved with the designated response function. Then, a column of zeroes is inserted

between each column before the rows are convolved with the designated response function.

Finally the convolution results are added. Again the factor, this time four, is for normaliza-

tion of the i(n) for the cubic spline as derived by Mallat and is not necessary if implementing

Daubechies h(n)’s [7]. Figure 38 diagrams equation 69. This figure is adapted from Figure

13 in [28:686].

columns
n
> 2
| %4
L — ASuf

: Convolve with response function z(n) @ : Add point by point

rows
DLf > 9(n) — %
g(n)
DLif = h(n) 3
Dyf = g(n) 3
h(n)
ALl h(n) > 2
zin)
3 : Insert one zero after each sample

+4

: Multiply by 4

Figure 38. Two Dimensional Multiresolution Reconstruction [28:636]




At any level of resolution, the scale or detail cocficients can be projected onto the scale
or detail spaces respectively by using the general form of Equations 59 and 60 given here in

Equation 70 for the one dimensional case and in Equation 71 for the two dimensional case.
Ap f = ((A%)(n) * 6.,(n))(k) (70)

Ay f = ((A3)(n,m) * $a(n) * $os(m))(k, 1) (71)

4.8.5 Fine Points Of The Implementation of the Algorithm This section will address
some of the more subtle problems which we encountered in the implementation of the mul-

tiresolution algorithm. Readers interested in implementing this algorithm, take heed.

4.8.5.1 Missing Coefficients in the Reconstruction The Multiresolution Algo-
rithm promises an exact reconstruction can be accomplished from the retained coefficients
of the decomposition process. The number of coeflicients of the approximation Agj f plus
the number of coefficients of the detail D, f should be equal to the number of samples of
the original signal or image. Since we generate the coefficients with the shift, multiply, and
sum process, there are always more coefficients than he original number of sampizs. The
number of resulting coefficients is equal to the number of samples of the original signal plus
the number of elements in the filter. We discard the least important coeflicients, those that
border the image or signal. This rcsults in an inexact reconstructicn of the border or edge
of the signal. This can be a significant problem since the decomposition process results in
an increasingly smaller number of coefficients. Thus, a border error at the fifth level with
respect to two coefficients will result in a reconstruction error spread over 64 samples of the
original signal. Mallat suggests the border problem can be reduced by making the origi-
nal signal symmetric with regard to the first and last sample or in the 2D case make the
image symmetric with respect to the horizontal and vertical borders[28:651]. This process
eliminates the border problem completely if the filter is symmetric and the reconstruction is

accomplished with the same assumed border symmetry as in the decomposition. If the filter




is asymmetric the problem may only be alleviated by padding the image with enough extra

elements to retain the extra convolution coefficients.

4.8.5.2 Convolution Methods There are two main methods of accomplishing
convolution. The first is to calculate the so called “convolution sum™ using a shift multiply
and sum routine. The second is to take the Fourier Transfcrm of the two functions, multiply
them point by point, and take the inverse Fourier Transform. The first method is normally
considered slower. It has a time complexity of O(N?) assuming that the functions to be
convolved are the same size. The Fourier Transform method used with the Fast Fourier
Transform (FFT) has a time complexity of O(NlogN). In the multiresolution algorithm, the
filters used are normally a fraction of the size of the signal or image of interest. This enables us
to reduce the time complexity of the shift multiply and sum routine to approximately O(N).
Therefore, we have chosen the shift, multiply, and sum method. However, our investigation
of the Fourier Transform method revealed some interesting points of the application at hand,

which we include for the benefit of the reader in the following section.

4.3.5.83 Numerical Recipies in C Convolution Routine The convolution routine
in Numerical Recipies in C is a function called conule. The interface to this function requires
the response function have an odd number of values m and be stored in aa array in “wrap
around order”. Wrap around order as shown in Figurz 39 requires those clements of the
response function greater than or equal to zero on the discrete time (sample) axis to reside
in that order in the first positions in the input response array, “respns”. Those response
elements less than zero on the discrete tim. (sample) axis must be stored in the same order
in the last positions in the response array. If the same variable name is used more than once
to hold the response array input to ~onvlv, it must be reset cach timne the procednre is called.
This is due to the fact that the respunse array is altered cach time convh is caiied. While
these are firc points in the use of the convolution routine. they musi be exactiy followed for

successful convolutions using Numerical Recipies in C.

s
T,




Original Filter Function

Sample Order -12 -4 0 4 8 12
Array Order 1 5 9 13 17 21 25 29

Filter In Wrap Arouw.:d Order

N — \s\—/w V\/
Sample Order 0 4 8 12 -12 -

Array Order 1 5] 9 13 17 21 25 29

Figure 39. Wrap Arcund Order for the Convlv.c Procedure

4.8.5.4 Problems Encountered Using the Khoros System All of the images used
in the decomposition analysis were composed of integer grey scale values between 0 and 255.
They exist in a floating point format to obtain the needed accuracy in the decomposition
and reconstruction algorithm. We visually evaluate the resulus of the reconstruction with the
Khoros image processing system provided by the University of New Mexico [37]. The first
reconstructed images viewed in this system appeared to be much darker than the original
image. After analyzing the resulting floating point values of the reconstructed image we
discovered that zero gray scale values in the original image corresponded to small negative

values in the reconstructed image. Inherent in the Khoros display system is a normalization

69




process which compresses the dynamic range of the 1est of the inage to accommodate the
negative numbers. To produce a more visually acceptable reconstruction, we set all values

less than zero to zero and greater than 255 to 255.

4.3.6 Ezamples The Multiresolution Decomposition decomposes an image into a
lower resolution approximation and three detail signals. This process is iterated to ob-
tain successively lower, coarser, resolution approximations and details. This section along
with the following diagrams will demonstrate this process and provide additional insight into

the frequency content of these approximation and detail signals.

Figures 41-43 show the detail coefficients from a decomposition of an original image
made up of two rectangular boxes. We chose this image for its pristine vertical and hor-
izontal high frequency content, edges. These detail signals are thresholded and binarized
using our threshold program discussed previously. These figures illustrate the edge detection
capability of multiresolution wavelet analysis and the orientation selectivity of the different
detail signals. The magnitude of the Fast Fourier Transform of the wavelet detail coefficients
in Figure 45, demonstrates how well this orientation selectivity is accomplished. The orig-
inal image, two rectangular boxes, is also shown in the figure. These plots illustrate how
the frequency content of each detail signal is localized 'n terms of orientation. The D, f
coefficients contain the horizontal high frequency information, the D, f coefficients contain
the vertical high spatial-frequency information, and the D3, f coefficients contain the higher
angular frequency information of the original image. In this figure, we arbitrarily chose
level j = —4 fu. documentation convenience. All levels of resolution are shown to have this

orientation selective characteristic as diagramed in Figure 13.

Figures 46-52 illustrate the main facets of the multiresolution decomposition and 1econ-
struction process. The original image, 512x512 Lenna, is given in Figure 46 fo1 a comparison
with the various resuits of multiresolution process. Figure 47 is the reconstrucied Lenna from
a 5 level decomposition. The successively coarser approximations A‘é} of Lenna are shown

in Figurc 48 on the left side of the page. Notice the reduction in size as a result of the down




sampling from the original Lenna Figurc 46 (level 0) to the first approximation (level 1) in
the upper left corner of Figure 48. The right side of Figure 48 from top to bottom shows
the series of reconstructed approximation AgJ of Lenna. The final reconstruction (level 0)
is found in Figure 47. The coarsest approximation of Lenna, a 16x16 image, is found in the
center of Figure 48. This level 5 approximation along with the detail coefficients found in
Figures 49-52 are used to accomplish the reconstruction. Note that these coefficients have

been thresholded to make the orientation specific frequency content viewable.

Figure 40. Original Image of Boxes (Reduced 58%)

4.4 Conclusion

This chapter evaluates two methods of multiresolution analysis. It demonstrates only
the decoiposition capability of the projection method, although reconstruction is possible.
Basically, the VV and W space projections at some arbitrary coarse level of decomposition
ar¢ added point by point. The result is then added to the W space projections at the
next finer level of resolution. This process is iterated until the finest level approximation is

reached resulting in the final reconstruction. We elected not to pursue this technique due to

71




L1}
..

Figure 41. Horizontal Multiresolution Detail Coefficients of Boxes (Reduced 25%)

Figure 42. Vertical Multiresolution Detail Coeflicients of Boxes (Reduced 25%)

72




Figure 43. Angular Multiresolution Detail Coeflicients of Boxes (Reduced 25%)

Figure 44. Coarsest Approximation of Boxes Used for Reconstruction (Reduced 25%)




Mag of FFT of 4.d1 of White Boxes

sss.884

804.302

“.302

C10Ow3)

Mog of FFT of 4.d2 of White Boxes

|

M

b
‘w Q;'!"Asi%i%}éé:'

‘ RN

I ISRk
;ﬁs?@»‘! 'M ’;"\ ’y “ R0,
il

\\ B
)
A | lﬁ
N S ‘W’ '& tl'
ANV 0
‘\42?:\{"'02\':3_;‘?' /\

QR /)

\3* ANV
el
L~ ’ X\ A\

’

Figure 45. Frequency Support of Detail Signals Of The Cubic Spline Wavelet




arens P

NECE TN
N
ke b B

To)

2

[Tl

I~

inal Image of Lenna (Reduced

o
(=]

16. Or

Zi

40

Figure

SRR
SN
o
3B

R
R




Figure 47. Reconstructed Image of Lenna Using the Spline Wavelet (Reduced 2%)

76




”//0,

"
v Mﬂmf
.....Nv// RN
J..NW”/MJ/ ..f/./

3

B
N

R
Ny

oy
%

o
0

23
et
i

S2e
SRR

NS

.MMM b

[13
o

sin

s of Lenna {

tion

xXima

n Appro

1Q

/Reconstructi

tion

>COMpOos]

Multiresolution D¢

-
<

Figure 4

the Cubic Spline Wavelet (Actual Size)

i~
T~




—
sl

Figure 49. Horizontal Multiresolution Detail Coefficients of Lenna (Reduced 25%)

L ||




Figure 51. Angular Multiresolution Detail Coefficients of Lenna (Reduced 25%)

§

Figure 52. Coarsest Approximation of Lenna Needed for Reconstruction (Reduced 25%)




the computational overhead ascociated with the projection of every sct of the decompose:d
coefficients onto the V and W spaces for addition. Instead, we chose to implement the recon-
struction with the second method of multiresolution analysis described in this chapter, using
Quadrature Mirror Filters (QMF). In this method, the sets of scale and wavelet coefficients
get logarithmically smaller with -oarser levels of resolution. Moreover, the algorithm does
not require that the coefficients be projected at each level of resolution. For these reasons,

we use the QMF method as the tool for analyzing the data in this thesis.




V. Preliminary Results

With the Multiresolution Wavelet Decomposition at our disposal, we have a tool with
which we can analyze an image in a way similar to the works of Ginsburg [14] and Oberndorf

[32]. That analysis is the subject of this chapter.

5.1 Review of Multiresolution Wavelet Decomposition

The multiresolution decomposition system breaks the input image out into bands of
information each consisting of one octave of spatial frequency on a logarithmic scale. Each
band is further decomposed into three sets of wavelet coefficients representing horizontal,
vertical, and angula: orientations (See Figure 13). The decomposition also produces a set
of scaling coefficients for each level of resolution that represents the information contained
in all of the lower frequency bands below that level. These scaling coefficients form an
approximation of the original input image at successively coarser resolution for lower and
lower frequency bands. Each of these coefficients can also be described as the result of
subtracting a band of information at all orientations from the scale coefficients that represent
one octave finer resolution. Due to the down sampling involved with the decomposition
process, the number of subbands or the depth of the decomposition is limited by the size
or the interval of support of the filter A{n). For example, using a filter with an interval of
support of 23, » 512x512 sampled input image can be decomposed into five levels ¢f resolution
where the fifth level of decomposition consists of three sets of wavelet coefficients and one
set of scale coefficients each containing 16x16 values. Since the size of the rows and columns
is greater than the size of the filter, no further decomposition would be meaningful. The
reconstruction reverses the process combining the coarsest level scale coefficients with all

band information to rebuild the original image.




5.2 Methodology

In the Kanisza Triangle illusion, two anomalies vccur: 1. Hliusory contours seem to ap-
pear forming the distinct impression of a .riangle and 2. The relative intensity within the area
bounded by the illusory contours appears exaggerated reiative to the background intensity
of the image [38]. Both Ginsburg and Oberndorf addressed these effects by means of lowpass
filtering the image. “It is the energy differences between the various areas (“physical intensity
distribution”[13:65]) of the anomaly which suggest how data is being forwarded to the ar-
eas of the brain where concept formulation (i.e. object recognition} is taking place.”{32:34].
Since the wavelet approximations (scale coefficients) are successively lowpass filtered ver-
sions of the original image, it is appropriate to compare one of these approximations to their
results. To figure out which approximation contains the proper freguency range, we must
characterize the levels of resolution in terms of the spatiai-frequencies they contain. In our
analysis, the dimension of the original image is 512x512 pixels (sce Figure 53). Thus, the
sample rate is 312 pixels per object in both the horizontal and vertical diiections. Therefore,
due tc the Nyquist criteria, the highest spatial-frequency detectable in this representation
is 256 cycles per object. The process of down sampling by two at cach level of the decom-
position produces successively coarser approximations of the original image such that the
highest spatial-frequency detectable is reduced by one octave on a log scale (reduced by a
power of 2j. Figure 54 shows the maximum spatial-frequency contained in cach level of

approximation.

For comparison with Ginsburgs results, Oberndorf chose a lowpass filter containing
spatial-frequencies out to 16 cycles/object {32:36]. From the table in Figure 51, we can sce
that 16 cycles per object corresponds to the fourth approximation. But. this approximation
contains 32x32 samples which looks relatively sharp at that level. Therefore, we need to
cxpand it to the scale of the original image (512x512) for comparison. The program expd
performs this function {sec Appendix F.2 for source listing). Given an inpus filename and
the cxpansion factor. this program expands the image using a two dimensional cubie spline

interpolation [35:104]. The results of performing this expansion on the fevel four approxima-

s




Iigure 53. Kanisza Triangle Illusion

83




Level | Detail Coefficients | Scale Coefficients
cycles/object cycles/object
1 128 - 256 0-128
2 64 - 128 0-64
3 32 - 64 0-32
4 16 - 32 0-16
5 8-16 0-8
6 4-8 0-4
7 2-4 0-2
8 1-2 0-1

Figure 54. Relative Spatial-Frequency Range of Each Level of Approximation

tion of the original Kanisza of Figure 53, is depicted in figure 55. While the energy is spread
out from the objects in the original image, it does not spread out more in a direction away

from the illusory figure as in Oberndorf’s results (reproduced in figure 6).

5.8 Conclusion

This comparison leads to the conclusion that Oberndorf’s Gabor Lowpass filter pos-
sesses characteristics not found in the filtering process of the Multiresolution Wavelet De-
composition. Along this line of reasoning, an obvious difference between the Gabor filtering
and the decomposition filtering is the ringing associated with the sharp cutoff of the Gabor
filter. It might be this ringing which spreads the energy to help define the illusory contours
and the apparent contrast in sensitivity. If this is true, it suggests the spatial filtering process
of the brain is also characterized by ringing. On the other hand, it may be that the spatial
filtering alone is not enough to cause the perception of the illusion. Rather, it might be that
spatial filtering is combined with some other cerebral processing. After all, experimentation

has uncovered the functions of only small parts of the cerebral complex.

In the remainder of the thesis, we process the scale coefficients in three biologically
motivated ways to analyze the Kanisza Triangle illusion. The first method uses the principle

of the saccadic fixation of the human eye. It builds individual frames of the field of view in

84




Figure 55. The Kanisza Triangle Approximated at Level Four
85




which each {rame represents a single saccadic fixation. In the second iethod, we perform a
one dimensional Multiresolution Wavelet Decomposition in the time domain in which each
set of coefficients generated from the two dimensional decomposition is sampled in time.
We use this method to include temporal processing. Finally, the last method uses the scale
coefficients s inputs to a Boundary Contour System Model. We usc this last method to

investigate the local interaction of high spatial-frequency energy.

86




VI, Building a World Model

The next three chapters each present a unique model of some part of the Hunan Visual
System and the corresponding analysis of visnal illusions using that model. In this <. pter,
we present the first of the three, a model of the human retina, and the resuits of using the
Kanisza Triangle as the input image (see Figure 53). The major component and heart of all
three systems is the Multiresolution Wavelet Decomposition which we described in detail in
previous chapters. Here, we explain its application as a front end to the model of the human

retina.

6.1 Methodology

The human retina contains a random arrangement of photoreceptors called rods and
cones. Here, we will consider only the cones for their use in high acuity vision. The density of
cones on the retina is higher in the center than at the edges. This distribution of cells has been
characterized by an 1894 experiment [39:441] and is redrawn in Figure 56. The figure shows
how density distribution causes the receptive field of the retina to sample a stimuius image
with high acuity or resolution at the center and progressively lower resolution toward the
perephery. We use the different levels of scale coefficients from the Multiresolution Wavelet
Decomposition to simulate this resolution distribution. The retina based model constructs
an image with high resolution only in the center and successively coarser resolution toward
the perephery by strategically placing the scale coefficients of the appropriate resolution.
Figure 58 shows how each set of coefficients is located on the coustructed image emulating
a single fixation of the retina at the center of the image. The program fbuild builds the
individual frames. A flow diagram for an example input of four levels of resolution is shown
in Figure 59. The source code for fouild is contained in Appendix C.2. To create this figure,
we first decomposed the Kanisza Triangle with the Multiresolution Wavelet Decomposition
program wave2 (see Chapter IV). Then, to simulate a single fixation of the retina, fouild

performs three basic functions: 1. It extracts the appropriate subsct of coeflicients from the

87




1.0
0.9 A
0.8

0.7
0.6
0.5

0.4
0.3

0.2 N

0.1 g "~

- ~

0.05 -
55° 50° 45° 40° 35° 30° 25° 20° 15° 10° 5° 0° 5° 10°15° 20° 25° 30° 35°40° 45°50°

"_—_’-—-"-

1

Figure 56. Relative Acuity of Vision Curve [39:441]

pixels
168 §6 cycles/objest
256 64 32 ||44 l 32 64 256 ‘}level
1.0 5 { 1l 1 : Los
T 56 -
0.9 11
0.8 i
HE 0
0.7 1l —L
0.6 it
0.5 M ~ 1282
1 ]
04 WK 1
0.3 e
J . —
0.2 s 64 72
N 32
0.1 = b i ‘1(. J3
0.05 |—r—t—t—t——— ==+ Se=h L L L L L 1> 34
3%
50° 45° 40° 35° 30°25° 20° 15° 10° 5° 0° 5° 10°15° 20° 25° 30° 35°40° 45°50° ©

Figure 57. Artificial Relative Acuity of Vision for Model

-

88




Figure 58. Multiresolution Fixation Map

scale coefficients at each level of resolution, 2. It expands each extraction to the scale of the
original image using a two dimensional cubic spline interpolation [35:104], and 3. It places
the expanded exserts in the proper location in the constructed simulation. Figure 57 shows
the artificial relative acuity emulated with this method. The piecewise constant shape of
this curve causes the blocky appearance in Figure 60. We translate degrees of the perceptive
field in Figure 56 to the sample space of the 512x512 sampled image by choosing the viewing
distance to be 3.18 inches. Therefore, one degree of visual angle is equivalent to four pixels
across the image. While the density distribution of Figure 57 is not an exact match with
that of Figure 56, it provides roughly the same exponential shape. The myopic view of the
image provided by Figure 61 demonstrates the first step in building a perceptual model of

the image in which the entire picture seems to be in focus. The composite high resolution

39

-



model is due to the saccadic movements of the human eye in which the eye fixates on one
highlight of the visual field after another in rapid successica [20:821]. With each movement,

‘1e photoreceptoss sample the visual field forming a series of myopic frames similar to the
one shown in Figure 61. Figure 61 is an example of the output of this program. Because
the brain supresses inputs from th » visual field during the saccades, the observer is unaware
of the movement. The effect of this biological process is to create the perception of a high

resolution “motion picture” of the field of vision.

We emulate this perceptual model with a series of these myopic frames assuming that
the brain provides a short-term memory to maintain a certain number of these frames which
compose the world model a. a perceptual instant in time. Therefore, we have chosen a finite
u.mber of frames to represent the composite image. Figure 60 shows a composite set of
frames which have been combined in one image for static presentation. For simplicity, we
do not incorporate other normally imperceptable eye movements such as 1. The “continuous
tremor” at 30 to 80 cycles per second due to successive muscular contractions which serves
to increase the overail resolution of the visual perception, 2. The “slow drift” of the eyes, and
3. The “fiicking” movements that recenter the point of fixation in the receptive field after
the “slow drift” has taken place [20:820]. To limit the total number of fixations or frames
in our composite image, we consider that the eye needs only fixate where the high spatial
frequency information is located in the stimulus image'. Therefore, a manually generated
set of fixations locations based on the locations of most likley high spatial frequency energy
contribution to the precept are used to generate a series of frames with the fbuild program.

If all the frames are taken together, the result is a composite image as in Figure 60.

6.2 Conclusion

The observation that led to this approach is that the illusion does not appear when the

viewer forces fixation at one point in the image; thus, eliminating the sar cades of the eve.

YThis principle has been used by Mallat and others for image cuding and compression applications.
[27, 26, 1, 42)




Af 32x32 512xi2_

64x64 "
A¢ extract 8x8

A

x4

128x128

exiract

256x256 X i
Ad B x25 extract 16x16 insert
A 512x512 [ oviract 8x8 .>//;;;;;;;\\ 8x8 insert
x1
V512512
frame

Figure 59. Data I'low of the fbuild Program for a 512x512 Input Image




2'!\:\}: .

2

£
»
i’

N

R
R

Figure 60. Composite Representation Including 34 Fixation Points




o S Bk it T .
E kg
. &

G gy

Figure 61. One Myopic Fixation on the Lower Left Packman of the Kanisza Triangle




This suggests that the saccadic movement is necessary fou the formulation of th illusion.
Compared to the previous results of Figure 53, the low spatial-frequency spreading in Figure
60 is found now only in the areas not replaced by high resolution information. While this
does not discount the importance of the “ringing” in the Ginsburg and Oberndorf results.
-t does emphasize the necessity of incorporating the saccadic movement as a contributor
to the perceptual formulation of the illusion. Moreover, the failure of the Ginsburg and
Oberndorf resulis to cause the suggestive contours to appear distinctly, leads us to conclude
that high spatial-frequency energy local to the contours is required for the perception. In-
deed, our frame built model illustrates how the quality of the illusion is enhanced by adding
high spatiai-frequency information along the suggestive contours. The reader may wonder
how many fixation points are necessary to produce an illusion of “good quality™. Figure
62 illustrates the dramatic effect of using only 15 different fixation points along the sug-
gestive contours. We believe these results demonstrate the correctness of considering the
high spatial-frequency information local to the contours, which is the goal of our Boundary
Contour Model described in Chapter VIII. An additional implication is that if the location
and rate of fixation is controllable, it may be possible to eliminate the illusion by drawing
the attention of the viewer away from the illusory contours. To test this hypothesis, one
would need to build a version of the composite image using fixation points that are outside
the locality of the contributory objects. The result would be overwriting morc of the low
spatial-frequency spreading in cffect balancing the encrgy spread. But the number of fixa-
tion points required to produce this effect must be deterinined. The number would depend
in some way on how many points can be “remembered” by the concept forming arcas of
the brain which is beyond the scope of this thesis. However, considering visual information
transmission from the sensing device. retina. to the brain to be a serial process, we can think
of the perceptual model as one built up over time. This brings us to the temporal aspect of
perception which we explore by first considering cach fixation as a frame in time. So as not
to incorporate too many variables at once. the next chapter considers spatial filtering and

temporal filtering dropping the fixation phenomenon.

94




Figure 62. Composite Respresentation Using 15 Fixation Points

95




VII. A Spatial-Temporal Model

The second method of analysis is designed specifically for spatial-temporal illusions
in which the human percept of temporally and spatially discrete stimulation is continuous
motion. A popular example of this type of illusion is the “Phi Phenomenon” in which a small
dot is illuminated in one location in the perceptive field for a period of time [31:108]. Then,
after a specified delay, the dot is again illuminated but in a different location in the perceptive
field. If the product of the delay between illuminations and the distance between the two lo-
cations is small enough, the dot will appear to move « .atinuously between the two locations.
The distance limit can be characterized by a range or bandwidth of spatial-frequencies and
the delay can be characterized by a range or bandwidth of temporal-frequencies. Therefore,
there exists some fundamental spatial-temporal bandwidth product limit above which the
illusion is perceived. The two dimensional Multiresolution Wavelet Decomposition explained
in Chapter IIl, demonstrated in Chapter IV, and used in Chapters V and VI provides the
needed spatial-frequency channels to analyze this illusion and a one dimensional version
of this tool provides the temporal-frequency channels. With this composite three dimen-
sional method of channel decomposition, we can coatrol the spatial-temporal bandwidth of

a displayed image.

For consistency with the two dimensional analysis of Chapters V and VI, the specific
illusion used here is an animated version of the Kanisza Triangle devised for this thesis.
Figure 64 shows discrete variations of the original Kanisza Triangle. When animated with
the kanmov program as frames of a motion picture, the suggestive contours appear to displace

continuously (see Appendix .2 for source listing).

7.1 Methodology

Marr recognized that edges in space occur in all octaves of spatial-frequency since the
represent discontinuity in space [30]. Lewis and Knowles took this idea one step further

implementing it in the time dimension, “Motion or change between frames produces ‘edges’

96




in time” [26:397]. In the same way that filtering our high spatial-frequencies “blurs” an
image in space, filtering out high temporal-frequencies “blurs” motion across time. The
Multiresolution Wavelet Decomposition approach to performing this “time blurring” con-
stitutes decomposing each pixel’s one dimensional time signal (one sample per frame) into
successively coarser approximations. Rebui'ding the frames from a coarser time approxima-
tion has the effect of smoothing out the perceived motion emulating or aiding the perception

of continuous motion from discretely changing frames.

Figure 64 shows frames 2, 5, 9, 13, 17, 21, 25, 29, and 32 of the 32 frames used in this

analysis. In the interest of computational time complexity we use a 256x256 sampled version

m ‘ frame .signal

vector

vector

wbuild

signal
BLURRED FRAMES€S——

Figure 63. Flow Diagram of the Spatial-Temporal Blurring System

of the original Kanisza Triangle. Each frame is altered such that the illusory contours appear
to bend deforming the suggestive triangle. The data flow diagram in rigure 63 shows the
individual steps in the three dimensional spatial-temporal decomposition. The process circles

represent individual programs, whose source code is listed in Appendix D.2. First, the wave2

97







program described in Chapter IV decomposes cach frame into several levels of multiresolution
approximation. Next, the vbuild program reduces the potential number of one dimensional
time signals by finding all the pixels which change in value over the 32 frames. The output
of this program is a set of vectors which identify these pixels. These vectors are used by
the stripld program to build a one dimensicnal signal for each of the pixels that change.
Then the wavel program performs a Multiresolution Wavelet Decomposition on each signal.
Finally, the rbuild program rebuilds the frames given the vectors from the vbuild program and
a selected combination of spatially decomposed frames and temporally decomposed signals
output from the wave2 and wavel programs respectively. The wavel program used here is
a modified version of the wavel program described in Chapter IV. The original source code
is listed in Appendix B.4 and the modified portions are listed in Appendix D.2. The rbuild
program expands the time decomposed time signals to the original 32 samples using a cubic

spline interpolation [35:104].

For consistency with the 2D Wavelet decompositions used in Chapters V and VI, we use
the cubic spline wavelet for spatial decomposition. However, in the time domain, due to its
size (32 samples), the filters corresponding to the cubic spline wavelet would limit us to only
one meaningful level of resolution in the decomposition. Therefore, for the decomposition
in time, we use a Daubechies 2 wavelet whose corresponding filters have four values each.
These choices allow decomposition to three levels of resolution in time and four levels of
resolution in space. Thus, there are 20 possible combinations of spatial-temporally blurred
sets of frames, levels zero through four in space and zero through three in time. Figure 65
shows the nine frames of Figure 64 using the original frames in space and the first level
approximation in time. Figure 66 shows the same frames with the original frames in space
and the second level approximation in time. Figure 67 shows the original frames in space
with the third level in time. Finally, Figure 68 represents the saine frames from the fourth
level approximation in space and the third level approximation in time. In this last result, the

fourth level spatial approximation of each frame is expanded to a 256x256 sample scale with

99




the czpd program (see Appendix F.2 for source listing). Figure 68 represents the expanded

frames for comparison to other figures.

For the purposc of viewing the effects of “time blurring” dynamically, we animated

each set of 32 frames on a Silicon Graphics workstation with the tblur program.

7.2 Conclusion

The original motivation for performing this analysis was to see if the static illusion
persisted when the speed of animation was such that the eye did not have time to saccade
enough points on the image to produce the illusion. Assuming the time between saccades
to be approximately 100 msec [20], and that only one fixation per object in the image is
necessary to form the illusory contours, then since there are seven objects in the image, 700
msec would be required to produce the illusion on each frame. Therefore, using the Silicon
Graphics workstation with a frame update rate of approximately 20 frames per second, there
is not enough time for the eye to saccade and fixate seven times. But, the animation produced
the illusory triangle distinctly suggesting that more than judiciovsly placed high spatial-
frequency processing provided by fixations and overall low spatial-frequency processing is at

work to produce the illusion.

In keeping with our charter of investigating the contributions of various frequency
specific processing, consider the temporal-frequency infurmation i. the series of frames of an
animated scene. The brain may process this information in such a way as to suppress high
temporal-frequencies in effect smoothing the motion to give the eye more time to fixate and
saccade around the scene. Figures 65 through 67 show the effects of progressively reducing
the high temporal-frequency content of the scene. The range of spatial variation is somewhat
reduced. It might be that this reduction in spatial variation allows the brain more time to
process the spatial-frequency information requited to produce the illusion. All in all, one
observation is consistent across spatial and temporal processing - that is that less high
frequency information is required to form the illusory contours. While low spatial-frequency

information is required of the entire image to provide the overall form, high spatial-frequency

100




Time

1igle Using Level 1 Decomposition in

Trai

of Kauisza

Figure 65. I'rames

101




L

prosibion i Lne

Triangle Using Level 2 Decom

Figure 66. Frames of Kanisza

102




o™

e

ﬁ\‘

e

&“\

| @/’
d < D

e
PUEN

®

3 < I

> < I

¥y <

P <

Figure 67. Frames of Kanisza Triangle Using Level 3 Decomposition in Tim-

103




2%

. BRI
s |
YO e

. .‘/’--f/'/".-l)/f .
5 A . o R
o, B ;i

Ay ke .
i P, |

[T

Figure 63.

Frames of Kanisza Triangle Using Level 4 in Space and Level 3 in Time

1044




information is only necessary iu specific locations of contributory energy around the iiluv.y
contours. In much the same way that low temporal-frequency information is required to give
the general perception of motion, high temporal-frequency information is required to sharpen
that perception. Furthermore, there may be a fundamental trade-off between resolution in

time and resolution in space tat determines the space/time bandwidth product envelo,e

within which the illusion is perceived [34].




VIII. A Boundary Contour Model

To investigate the importance of high spatial-frequency processing to the perception
of illusory contours, we developed a boundary contour n.odel. This model is a simplified
version of the first stage of the Grossberg’s Boundary Contour System (BCS) [18, 16, 17].
The model described here is designed only to demonstrate the contribution of the multi-
orientation, high spatial-frequency output from the Multiresolution Wavelet Decomposition

to the perception of illusory contours.

8.1 Methodology

The Boundary Contour Model (BCM) uses as input the detail wavelet coefficients
provided by the wave2 program which performs a Multiresolution Wavelet Decomposition
(see Chapter IV). The BCM as illustrated in Figure 69 performs a one dimensional lateral

excitation on either the rows or columns of these coefficients. The purpose of this network is

IMAGES

wave?
(decomposition)

wave?
(reconstruction)

[
BOUNDARY ENHANCED
IMAGES

Figure 69. Data Flow of the Boundary Contour Model




to spread the energy along the dimension of excitation. The wavelet coefficients provided by
the Mallat Multiresolution Wavelet Decomposition isolate the energy content of each spatial-
frequency band or level of resolution in one of three spatial orientations: horizontal, vertical,
and angular. We perform lateral excitation along the horizontal direction to spread the
horizontal wavelet coefficients in the horizontal din'ension of the two dimensional coefficient
array. Likewise, the energy of the vertical wavelet coefficients are spread vertically and the
energy of the angular coefficients are spread in both dimensions, vertically and horizontally.
The lateral excitation process is performed in such a way as to maintain the total energy of
each set of wavelet coefficients at a given orientation and level of resolution. This is necessary
to ensure accurate reconstruction in the final step. Equation 72 gives the one dimensional
lateral excitation algorithm performed by the lenrow and the lencol programs which operate

on rows and columns respectively.

i = ( Z PJisp + Zo-p]ﬁp) —( Z 2+ Zz_p)*] (72)

p=-P p=~-P p=1
for ¢, p € Z, where w, is the output value of the i** input coefficient, J,, after lateral excitation,
and P is the maximum extent of the excitation window in both the positive and negative

directions from J,. The first term enclosed in parentheses is the surrounding receptive field

o'"ooooo' O

'Ix'—P Jz-’.’ J! 1 -Ii II-H Jx+2 'Ii+l'

Figure 70. Lateral Excitation Network of Equation 72

of the i** cell. The second term is the center of the receptive field and constitutes the

107




anmount of the ** input cell, J,, that subtracts from the i** output cell, w,. Software source
code for these programs is listed in Appendix E.2. The third and final step in the BCM
is to reconstruct the image with the wave2 program using the affected wavelet cocflicients.
This was done by simply substituting the output of the lateral excitation networks for the
Jecomposed wavelet coefficients hzfore selecting the reconst -uction option from the main

menu of the wave?2 program.

8.2 Conclusions

Figure T1 shows the resulting reconstruction of the Kanisza Triangle in which only the
fourth level detail wavelet coefficients are affected by lateral excitation. Figure 73 suows the
same figure in which all levels of detail wavelet coefficients are affected by lateral excitation
from level one through level four. These resu'ts are satisfying and surprising. They are
satisfying because the energy tends to spread in such a way as to aid the outline of the
illusory triangle and they are surprising because the appearance of the energy spread so

closely resembles Oberndorf’s results (see Figure 72).

The goal of this analysis is to test the hypothesis that specific spatial-frequency chan-
nels, within a specific orientation, may contain spatial receptive fields that together determine
the response of a single spatial element centered in that field. The result of such a response
network would be a new set of orientation specific, spatial-frequency specific response >le-
ments whose energy is determined by the weighted sum of their respective receptive field. If
this is true, it would go a long way in explaining the perception of illusory contours which iie
between or in line with two or more regions of like vrientation. Consider, for example, the
base of the illusory Kanisza Triangle (see Figure 53). This contour is oriented horizontally
and lies in line with the horizontal edges of the contributing objects. It may be that the
perception forming area of the brain receives signals in the location and orientation of this

contour stimulated by the high spatial frequency energy of the edges whose orientation is

horizontal.




ooy re skecnep seess

e

-
P o - PP, .
ey T IR - TN yy D aR Ty Y - R ey

BTN

pr N e,

Figure 71. Output of Boundary Contour Model Using Only Level 4 Detail Coefficients

109




Figure 72. Oberndorf’s Results Using a Gabor Low Pass Filter [32]

Biological experiments performed on the visual cortex of the cat and monkey revealed
at least two distinct catagories of cells, simple cells and complex cells [23, 22]. In these exper-
iments, microelectrodes measured the impulse response of the respective cells. Simple cells
were found to respond only to visual stimulus within a specific spatial-frequency band and
orientation and complex cells were found to be orientation independent suggesting that each
complex cell has a receptive field of simple cells that themselves respond to a specified band
of spatial-frequencies and orientaticns. One explanation is that an intermediate layer exists
between these simple and complex cells. One that responds to specific spatial-frequencies
and orientations in the desired locations. Another explanation is that the perception form-
ing areas of the brain or, some intermediate stage which may re<ide in another location in
the cortex receives as input a receptive field of simple cells. Since so little is known of the

interconnections of the brain, it is not unreasnnable to make these hypotheses.

The wavelet detail coefficients provide the required spatial-frequency and orientation
selectivity to simulate simple cell response. Considering the type of network connections
known to be possible in the cortex, we apply a lateral excitation network to these coeflicients
and reconstruct the original image using the excited values. The results shown in Figure
71 strongly suggest illusory perception is aided by such a network. Taking the excitation

process to all bande simultaneousiy as shown in Figure 73 only degrades the suggestion of

110




SThn e s Ansesiar
PRATIET e 9

ke

v, L

: ;
Pt A : . : ; . )
T T At J AR S A SO YU S centtrn e vvens sppee o aipes s Sueps waen §wirdints <o 0+ St g ar ) s,

Figure 73. Output of Boundary Contour Model Using Levels 1-4 Detail Coefficients

111




N ¢ & ¢

the contours through the distortion of the high spatial-frequency characteristics needed to
terminate the contours. In our results, only the excitation of the lowest frequency band,
shown in Figure 71, maintains the edges of the contributory objects distinctly. To obtain
this result, the level four detail coefficients were excited and used in the reconstruction.
This level corresponds to a spatic l-bandwidth of 16 to 32 cycles per object (see Figure 54).
This spatial-bandwidth corresponds to highest frequencies passed by both Gisburg’s [14] and
Oberndorf’s {32] low pass filters.

The Boundary Contour Model described in this chapter, while extremely simple, is
much like the first stage of the Grossberg Boundary Contour System (BCS), “Competi-
tion I, On-Center-Off-Surround Interaction within Each Orientation” [18:169]. In the BCS,
Grossberg includes two more major stages and some refinements. The second stage is “Com-
petition II, Push-Pull Opponent Processes Between Orientation at Each Position” and the
third stage is “Oriented Cooperation: Statistical Gates” [18:169-170]. While the BCM pro-
posed lere is not iterative nor does it incorporate a feedback loop as does the BCS, it does
demonstrate the edge enhancing potential of performing lateral excitation within a local
receptive field in a specific spatial-frequency and orientation bandwidth. Furthermore, this
work is the first of its kind to display the output of a contour enhancing model that still pro-
vides the complete range of spatial-frequencies in an algorithmically sound manner, Wavelet
Multiresolution Reconstruction. As a matter of fact, the wavelet coefficients may prove to be

a good input souce for the BCS taking the place of Grossberg’s oval dipole receptive fields.

112




IX. Conclusions/Recommendations

9.1 Introduction

By investigating possible human perceptual processing of the Kanisza Triangle illusion,
this thesis provides some insight into the workings of the human visual system. Ginsburg
investigated low spatial-frequency biasing in visual perception formulation. Oberndorf went
a step farther with his application of the location sensitivity inherent in Gabor filtering. His
results support Ginsburg’s thesis that low spatial-frequency information is important in the
perception of illusory contours. In this thesis, we further explore frequency contributions to
percepts by considering high spatial-frequencies as well as low spatial-frequencies and then
incorporating temporal-frequencies. Due to a characteristic of the Wavelet Transform to
effectively trade resolution in time or space for resolution in temporal-frequency or spatial-
frequency respectively, we use a Multiresolution Wavelet Decomposition in the place of Gabor
filtering. The results of this decomposition are approximations and detail coefficients that
represent the spatial and temporal bands of frequency information which provide input into

our biologically motivated models of visual system processing.

9.2 Preliminary Results

Before implementing our three visual system models, we stop to compare our low
spatial-frequency representation of the image output from the Multiresolution Wavelet De-
composition as a coarse approximation of the original image with the results of Ginsburg and
Oberndorf. This comparison leads to the conclusion that Oberndorf’s Gabor Lowpass filter
possesses characteristics not found in the filtering process of the Multiresolution Wavelet
Decomposition. The primary difference between the Fourier and Gabor filtering and the
decomposition filtering is the ringing associated with the sharp cutoff of the Ideal Fourier
and Gabor filters. This ringing seems to be the cause of the energy spread observed in their
results. If the ringing indeed aids the percept, it suggests the spatial filtering process of the

brain is also characterized by 1 uging. On the other hand, it may be that some cerebral

113




processing in addition to spatial filtering is requited to cause illusory percepts. It is like'y
that the results of spatial-frequency processing is fused with some other cerebral process-
ing (e.g. temporal-frequency processing). After all, there is much unknown in the current

understanding of the processing that takes place in the cerebral complex.

9.3 Building a World Model

We use the multiresolution approximations as input to a model of the visual system
based on the known operation of saccadic eye movements and retinal processing. The obser-
vation that led to this approach is that thg illusion seems to break up when the viewer forces
fixation at one point in the image; thus, eliminating the saccadic movements of the eye. Since
retinal fixation between saccades is necessary for the retina to process high spatial-frequency
information from the field of vision, this observation suggests that high spatial-frequency
information is somehow critical in the perception of the illusory contours. Compared to the
previous results of Figure 55, the low spatial-frequency spreading in Figure 60 is found now
only in the areas not replaced by high resolution information. While this does not discount
the importance of the “ringing” in the Ginsburg and Oberndorf results, it does emphasize
the necessity of incorporating the high spatial-frequency bands in the analysis of the illusion.
This frame-built model illustrates how the quality of the illusion is enhanced by adding high

spatial-frequency information in selected locations along the suggestive contours.

Two areas of investigation naturally follow from the above observations: 1. Whether
manipulation of high spatial-frequency information helps to enhance or diminish the illusion,
and 2. Whether the temporal-frequency information across the frames of the world model
contributes to or is necessary to produce the illusion. Therefore, we developed a spatial-

temporal model and a boundary contour model.

9.4 A Spatial-Temporal Model

Considering the temporal-frequency information across a series of frames in an ani-

mated scene, we perform a Multiresolution Wavelet Decomposition in the time dimension

114




and then use the coarse approximatiuns of the time signals of each pixel in the set of frames
to rebuild a version of the frames that is “blurred in time”. The brain may process temporal-
frequency information in such a way as to suppress high temporal-frequencies smoothing the
motion giving the eye more time to fixate enough locations around the scene to produce the
illusion. This suggests that the Gin.burg proposal of low spatial-frequency biasing applies
to temporal-frequency as well. The question is how fast can the motion be before there is
not enough time to process high spatial-frequencies. Obviously, the slower the motion the
more spatial processing can take place. If relatively more spatial processing is necessary to
produce the illusion, more high temporai-frequencies must be filtered out. Therefore, each
illusion depending on its relative spatial complexity has a fundamental space-time bandwidth

envelope in which it is perceived.

9.5 A Boundary Contour Model

The Boundary Contour Model takes a closer look at the possible contributions of the
spatial-frequency components of a scene to the perception of illusory contours. 1t demon-
strates the potential of using the wavelet detail coefficients as input to the Grossberg Bound-
ary Contour System (BCS). It simualates a non-iterative version of the first stage of the BCS,
Off-Center-Off-Surround network within each orientation. The results show the same kind
of energy spread found in Oberndorf’s results but for a totally different reason. In Figure 71
the energy spread is caused by a lateral excitation network in which the receptive fields lies
within specified localities, spatial-frequency bandwidth, and orientations; whereas, Obern-
dorf’s energy spread is caused by the ringing characteristic of a highly tuned low-pass filter.
The ocurrence of lateral excitation networks in the central nervous system is well known.
Therefore, it presents 2 more plausible explanation of energy spreading than does ringing
which is not easily characterized. But, the most gratifying aspect of the result of Figure
71 is that it provides all spatial-frequency components found in the original image in effect

fusing the suggestive contour data on top of a distinctly recognizable figure.




9.6 Recommendations

This thesis lays the ground work for a whole new realm of study — that of spatial/temporal-
frequency processing in the human cerebral complex. The next logical step in this area would
be to implement Grossberg’s Boundary Contour Sys.em with the detail coeflicients output
from the Multiresolution Wavelet Decomposition [18]. Such a composite boundary find-
ing system could be implemented in a highly paralle! architecture. Its output would be
extremely useful in object segmentation applications in which incomplete boundaries are
segmented from background textures. The Wavelet based BCS would “connect the dots”

and give distinct form to objects of interest [41].

In this thesis, the tcinporal-frequencies are processed in much the same way as the
spatial-frequency processing of earlier work [14, 32]. This new comparison of the time domain
to the space domain suggests that there exist contours across space and time. It may be
possible using the BCS to isolate and characterize such contours. This thesis provides the

tools to do just that.

The whole field of spatial-temporal image processing is basically untouched for ap-
plications in pattern recognition, texture segmentation, and feature extraction. The spa-
tial/temporal models proposed here are applicable and will provide a method of improving

feature sets used in these application areas by bluring in space and time.

116




A.l

10.

Appendix A. Multiresolution Analysis Using Projections

System Description of the WAVE Program

The following is a list of functions which comprise the wave progran::

. main_wave.c - The main driver program for wave.

loadimage.c - A routine to load the include image from an ascii data file.

phi_gen_haar.c - A routine that builds a new ® for each level of the decomposition.

. inner_prod.c- A routine to perform the inner product and obtains the ® coefficients.

It generates one file for each level of decomposition with the suffix .phicoef..

v_projection.c- A routine that finds the projection of the include image on the space
Vim where m is the current level of decomposition. It generates one file for each level

of decomposition with the suffix .v_project..

w_projection.c - A routine ihat finds the projection of the include image onto the
space W,, orthogonal to the V,, space where m is the current level of decompostion.

It generates one file for each le¢ -el of decomposition with the suffix .w_project..

makefile - A makefile that is used to compile and link the source code to make an

executable file.

jsmacros.h- An include file that contains macros we found useful in our programming
environment. This file must be present in the directory where compilation takes place

(See Appendix F.1 for listing).

. macros.h- An include file that we borrowed from G. Tarr. It contains addition macros

used throughout our code. It also must be present in the directory where the compi-

lation takes place (See Appendix F.1 for listing).

stewmath.h - An include file containing some math routines specific to our program.

It must be present in the directory where complilation takes place (See Appendix F.2

for listing).




Typing “make” at the command prompt in any directory with all of the above files present
will create the appropriate object code and an executable file called wave that may be exe-

cuted by typing “wawne” at the coitnmand prompt.

A.2 Haar Wavelet Analysis Software
A.2.1 Listing of MAIN-WAVE.C

P L L T L Lt T T T e L e P P S e e e T2 74
JH Rk R AR Ak g ok ARk KRR AR R AR KK R ARk Aok Ak Rk Rk kK [
VAL WAVELET ANALYZER MAIN PROGRAM DRIVER **/
S AR A A A AR AR A o Ao ok ok kR R KRR AR AR KR AR AR KRRk Kk kok ke kok [
P Y T T T T T T R T e P R R R e e e Rt 2T

/t DATE: 09 April 91 */
/* */
/* VERSION: 1.0 */
/* */
/* NAME: main-wave.c */
/* */
/* DESCRIPTION: This program performs a multiresolution wavelet analysis */
/* of an input image with a wavelet from its internal library chosen */
/* interactively by the user. It handles the menu interface with the */
/* user and drives the subroutines that take inputs, analyzes, and */
/* produces output. Currently only the Haar Wavelet is availabie for this */
/* program. */
/* */
;* FILES READ: NONE *;
LA *
/* FILES WRITTEN: NONE *;
¢ *
/* HEADERS USED: <stdio.h>, "macros.h", "jsmacros.h" */
/* */
/* CALLING PROGRAMS: NONE */
/* */
/* PROGRAMS CALLED: imageload.c, innerprod.c, phi_gen_haar.z, */
/* phi_gn_pl.c, vproj.c, wprej.c */
/* */
/* AUTHOR: Steve Smiley zzd J. Stewart Laing */
/* */
/* HISTORY: Initial Version; adapted from phivi.c and haazvi.c */
/* */

/#**#***#**********##**#******t#*t#*%t‘*#t###tt***"#*t#t*1‘4#*“*#**##**##**/
/*******#****t****#*****#‘:‘***##**‘*tt#"3t#*‘t*ttt*##**#***t*t*t#*‘t‘t##t*#**/

JREEEERRERERELERREEERS KA K% [
/* DECLARATION SECTION =/

[HEERERLEREERREERENRERR SRR ]

#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"

#include "stewmath.h”
int_array loadimage();
float_array phi_gen_haar();
int_array inner_prod();
int_array v_projection();
int_array w_projection();
[EEERBREREEREREXRRRSuN NN/

118




/* MAIN PROGRAM BODY */
[ RRk Ak kR Rk ok kok kK kkxk [

void main(argc, argv)
int argc;
char *argv[];

LTI T PR LR Y

/* initialize variables */
[k kAol ok kol ok ok ok f

int i, wavelet_type, level, maxlevel;
int_array image, phi_coef, v_image, lastv_image, w_image;
float_array phi;

char filename[64], load;
L e T e T
/* load image to be analyzed */

P R L e L e L il Y

if(argec 1= 4 && arge != 1){
printf("Usage: wave <filename> <# of Rows> <# of Cols>\n");
exit(0);

image = loadimage(filename, argc, argv);
maxlevel = LOG2(image.ROW);

/************************************/
/* This section performs the wavelet*/
/* analysis on the image according */
/* to the value of wavelet_type. */
/****************#*******************/

loopi(maxlevel){
[EEEEERRXAEXEEEEEEAEREEREXERRERERKKRR [
/* generate phi for haar */

[HEREEERERAREREERRKEEERKAREKRAERRR KRR ]
phi = phi_gen_haar(i);
printf("\n Level %d phi generated.\n", i);

/*t*#*************t***###t**t*#t*#**t##****t#*t#t**/
/* perform inner product to get phi coeficients =»/
/***t#*******#t**t******t#**#***t**#*#*t*#t********/

hi_coef = inner_prod(image, phi, i, filename);

P P ge, p
printf("\n I have created and strored the Level %d", i);
printf(" inner_product coeficients.\n");

/***#**‘***#‘*****‘***#*******‘**#*/
/* generate V space projections */
/******‘******#*t*“*******‘*******/

lastv_image = v_image;
v_image = v_projection(image, phi, phi_coef, i, filename);
printf("\n I have created and stored the Level %d", i);
printf(" V projection.\n", level);
[REEREEREERRERERARRRRERARRR KRR SRR A%/

/* generate ¥ space projections =/
/#**t#*‘##**‘*****‘**###t#**#ﬁ##*#*/

if (i == 1) w_image = w_projection(image, v_image, i, filename);
if (i > 1) w_.image = w_projection(lastv_image, v_image, i,
filename);

{* THE END #*/

119

. ..~ S e




A.2.2 Listing of LOADIMAGE.C

/**#************************************************************************/
/**************************************************************************#/
/3%% WAVELET ANALYZER LOADIMAGE ROUTINE *x /
/*********************************************************************#*****/
/******************#**********************************************#*********l

/* DATE: 10 April 91 */
/x */
/> VERSION: 1.0 */
/* */
/* NAME: loadimage.c */
/* */

/* DESCRIPTION: This routine loads an image into an array whose name is */
/* specified by the user interactively. It is intended to be used as a */

;* subroutine for the WAVELET ANALYZER PROGRAM. *;
* *
/* FILES READ: One file specified by the user. */
/* */
;* FILES WRITTEN: NONE *;
* *
/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h" */
/* */
;* CALLING PROGRAMS: main-wave.c *;
* *
/* PROGRAMS CALLED: NONE */
/* */
/* AUTHOR: Steve Smiley and J. Stewart Laing */
/* */
/* HISTORY: Initial Version */
/* */

/*******#****##*#******#**##*#******************##**********************t**#/
/#*****************#****#*******#*****##*#****t##**#*********t*****#*#******/

[HERERRRREAERRERE AR RN XA [

/* DECLARATION SECTION #/
[ERERREREERRERREREREERERERE [

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"

VAR LI EE R 2 S T L e Y

/+* FUECTION BODY */
[ERERRREREAERRREERERRERRRE [

int_array loadimage(infilename, argc, argv)
char *infilename[64];
int argce;
char  *argv([];

[EEERARREREERERRRKREEREEE [
/* initialize variables */
[HFRREREREREERRERERRRRER [

int i, i
FILE *infile;
int_array image;
/**##‘**#*****#*##****‘#‘*##t#t*#t*"*“*‘*tﬁ*/
/* cxreate array to hold the incoming image #/
/*#t**3#**#*t***t***t#*t*#tt#**t**‘*‘t*'*t*t.#/
if(arge == 1){
printf("\n\n\n Input the size of the image (ROW COLUMN):>");
scanf("/d %d", &image.ROW, &image.COL);
printf(" \n\n Input filename of image to be analyzed:>");
scanf("Ys", infilename);




else {
sprintf(infilename, "%s", argv[il);
sscanf (argv(2], "%d", &image.ROW);
sscanf(argv([3], "%d", &image.COL);
}

CREATE_MATRIX_ROW(image.array, image.ROW, int);
CREATE_MATRIX_COL(image.avray, image.ROW, image.COL, int);

/*************************************/
/* load jmage to be analyzed */
/*************************************/

OPEN_FILE (infile, infilename, "The wavelet analyzer");
loopij(image.ROW, image.COL){
fscanf(infile,"’d", &image.arrayl[il[j1);

printf("\n ** The image %s has been loaded for processing. **\n\n\n",
infilename) ;
return image;

A.2.3 Listing of PHI.GEN.HAAR.C

/*******#*********t**t******#**#**tt**t****t*****t**t#****#****t#*##***#**t#/
/**********************#***t*##t#***4****#*tttt*#*#*t**tt*#**t#*###*t#t*tttt/
[ex WAVELET ANALYZER ROUTINE TO GENERATE THE PHI FOR HAAR *x/
/*******t*tt*#*t**t*t#**t#*t#***t*tt**tt*******tt*ttt***ttt*tttt#*t**#t*t#*#/
/t*******t*t*****#t*****t#**t*tt#**t**ttt*t*#t#tt**t***tt##t#tttt#t*****tttt/

/* DATE: 11 April 91 */
/* */
/* VERSION: 1.0 */
/% */
/* NAME: phi_gen_haar.c */
/* */

/+* DESCRIPTION: This routine generates the phi function for a particular */
/* level of resolution. It is represented as an array whose size depends »*/

/* on the level requested by the calling function. */
/% A
/* FILES READ: NONE */
/* */
/* FILES WRITTEN: NONE */
/% */
/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h" */
/* */
;* CALLING PROGRAMS: main-wave.c */

* ~/
;* PROGRAMS CALLED: NONE s/

x 7
/* AUTHOR: Steve Smiley and J. Stewart Laing «/
/* 74
/* HISTORY: Initial Version */
/* */

PA L R Ty T T I LT Ty
AT 2 Y s e e T Ty

JREAREERRRERRRRRREREERRENR ]

/* DECLARATION SECTION »/

JEREERREEESEREARRERAEREER RS

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "jsmacros.h”

[HERRRRERRARERARRERR RS A%/

/* FUNCTION BODY »/

[HExkessakebnirherihrnn/

121




float_array phi_gen_haar{level)
int level;

VA II T TS P LS 22222 1% V4

/% initialize variables */
[Frrxrssseensreasesnnsns/

int i,j, phisize;

float_array phi,;
[HRFAREEREREXSESSERARERAR RS S ARXXXER SRS SRR RS R% [
/% create array to hold phi =/
[EERSEEERRREEERAXERRERR AR RS ERRR SR AR SRR RARNRAR [
phisize = 1;

for(i=0; i < level; ++i) phisize »*= 2;

phi.ROW = phisize;

phi.COL = phisize;
CREATE_MATRIX_ROW(phi.array, phi.ROW, float);
CREATE_MATRIX_COL(phi.array, phi.ROW, phi.COL, float);

[arssssennnssss/
/* build phi =/

VL2212 TP 2y

loopij(phi.ROW,phi.COL) pki.array[i]l[j] = 1.0/(float)phisize;
return phi;

A.2.4 Listing of INNER_PROD.C

/"ttt*‘**'."'#t‘#tt*8't33“‘3#‘*33“““00“.*““"tttttt‘tt't‘.“‘.‘..‘t/

JEEEEREEEEERRRARRERRSERESRERRE s sesssesssnns/
/**x  ROUTINE TO PERFORM IKNER PRODUCT FOR VAVELET AIALYZBR *ssss/
/“‘.tt.'##*tt"#tt“.“.“‘tt‘l‘vv s&% L2 2 vv.“““‘.“‘tt‘““.“‘t/
/*'tt“t‘t#tttttt“#‘t#tttt.t’t.‘t‘.#“tt‘.‘tt‘#..t“tttt‘tC‘tttttlAt“ttt“/
/* DATE: 11 April 91 s/
/* s/
/* VERSION: 1.0 s/
/* s/
/* XNAME: inner_prod.c s/
/* s/
/# DESCRIPTION: This routine performs the inner product between the phi s/
/+* and the image at any valid level as requested by the caller. */
;* It is intended as a subroutine for the WAVELET ANALYZER PROGRAM. 0;
* L 4
/* FILES READ: NONE. s/
/* =/
/* FILES WRITTEN: 4 file will be generated each time the s/
/* routine is called. The name of the file will depend on the input s/
/* image filename, the type of wavelet usad, and the level of resolution. s/
/* of
/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h", o/
/* <string.h> s/
/* s/
;* CALLING PROGRAMS: main-wave.c o;
* *
/* PROGRAMS CALLED: KOKE +/
/e o/
/* AUTHOR- Steve Smiley and J. Stewart Laing o/
/* s/
/* HKISTORY: Initial Version s/
/* o/

/".3“‘.“.#""tt‘.‘.‘....‘C‘.t...‘...‘.“‘..t.‘......Ot..‘.‘......‘...’..,
/".““.““.‘.‘...".......t...'..‘.....‘....‘..“.“O‘....C...’.‘...."../

/osssnsssssnsesernseosses/




/* DECLARATION SECTION */
[k ko ko kdok ok & kok ok ok /

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"

#include <string.h>

[ Rk ksokok ok Aok kkokokok sk ok ok ok okok /

/* FUNCTION BODY */
[ Rk S Rk okkokok ko kkok /

int_array inner_prod(image, phi, level, filename)
int_array image;
float_array phi;

int level;
p char filename[64];
int i, j, phisize;
int_array phi_coef;
FILE *outfile;
char coeffile[64];
float product;

/o ok ko o ok ok ok AR ko ok Ao o ok ok ok kKoo o ok ok
/* create a matrix to hold the phi coeficients */
/AR A s o kK ok AR KK o K KR Aok ok o oo ko Aok KoKk kK [

phisize = 1;

for(i=0" i < level; ++i) phisize *= 2;

phi_coe* .iOW = image.ROW/phisize;

vhi_coef.COL = image.COL/phisize;

CREATE_MATRIX_ROW(phi_coef.array, phi_coef.ROW, int);
CREATE_MATRIX_COL(phi_coef.array, phi_coef.ROW, phi_coef.COL, int);
/*printf("\nphi_coef matrix sucessfully created.\n");*/

[ REAAARAAAAA AR AR AR AR A KA AR KA AR KRR KK

/* perform inner product <image, phi> to get coeficients */
T T S e PP T TP L P Py

(P

non

loopij(image.ROW, image.COL){
product = phi.arrayl[i)phisizel] [j%phisize] * (float)image.array[i][j];
phi_coef.array[i/phisize] [j/phisize] += (int)product;

[k Aok ARk o K KA K AOK K Kok R Rk oKk ok ko /
/% write the phi coeficient array out to a file */
[ AR AR A AR A AR A AR A KA A KK A AR A Ko/

sprintf(coeffile, "s.phicoef.%d", filename, level);
CREATE_FILE(outfile, coeffile, "WAVELET ANALYZER")
loopij(phi_coef .ROW,phi_coef.COL)

fprintf(outfile, "%d\n", phi_coef.arrayl[il{jl);

printf("\n The level %d phi_coeficients have been stored in a file",Klevel);
printf (" called: %s\n", coeffile);
return phi_coef;

A.2.5 Listing of V.PROJECTION.C

[ A AR AR AR AR K A ARk ok KRR ko ok ok ok Rk ok kR KoKk ok ok Aok ok ok ok ok /
/Ao sk ok K oKk o R Sk KKK KR Ko K oK kKR Rk ok o Rk Kok o ko sk ok sk ok
/**+  ROUTINE TO PERFORM THE V_PROJECTION FOR WAVELET ANALYZER *rAh]
/R AAAA AR A A A A A AR A AR AR FOK Ao K AR KoK o KA KK KoK K K ok oo o ok /
/AN A A A AA A RO AR oK KR K AR Ko K S KKK ok ok o R kAR ek [
/* DATE: 15 April 91 */

123




/% */
/* VERSION: 1.0 */
/% */
/% NAME: v_projection.c */
/% x/
/* DESCRIPTION: This routine performs the inner product between the phi */
/* and phi coeficient of the image at any valid level as requested by */
/* the caller. */
5* It is intended as a subroutine for the WAVELET ANALYZER PROGRAM. *;
* *
/* FILES READ: NONE. */
/* */
/* FILES WRITTEN: A file will be generated each time the routine is */
/* routine is called. The name of the file will depend on the input */
/* mage filename, the type of wavelet used, and the level of resolution. */
/% */
/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacreos.h", */
/* <string.h> */
/* */
5* CALLING PROGRAMS: main-wave.c *;
* *
/* PROGRAMS CALLED: NONE */
/* */
/* AUTHOR: Steve Smiley and J. Stewart Laing */
/* */
/* HISTORY: Initial Version */
/* */

/***************************************************************************/
/2303 ook ke ke s e e ok ok ok ke sk ok sk o ok ok ok o ok ook ok oK ok ok ok v =k ok ok o okl ok ok ok ok o ok o ok ok ok ok ok ok ok ok koK ok ok ok /

J xRk kR dok K Rk kok kb ok k [

/* DECLARATION SECTION */
[ ARk ok Aok ok ok ek ook ok ok ok ok /

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"

#include <string.h>

#include <math.h>

/R kR kR kR ok kok [

/* FUNCTION BODY */

[k ko ok ok ok Aok ok Kk ok ok ok [

int_array v_projection(image, phi, phi_coef, level, filename)
int_array image, phi_coef;
float_array phi;
char filename[64];

int_array v_image;
int i, j, phisize;
FILE *outfile;
char vprojfile[64];
v_image.ROW = image.ROW;
v_image.COL = image.COL;
CREATE_MATRIX_ROW(v_image.array, v_image.ROW, int);
CREATE_MATRIX_COL(v_image.array, v_image.ROW, v_image.COL, int);
phisize = (int)pow(2.0, (double)level);
printf("The phisize is %d\n", phisize);
sprintf(vprojfile, "¥s.v_project.’d", filename, level);
CREATE_FILE(outfile, vprojfile, "WAVELET ANALYZER")
loopij(v_image.ROW,v_image.COL){
v_image.array{i}[j] = (int)((phi.array[i¥phisizel[j%phisize])*
((float)phi_coef.array[i/phisize] [j/phisize]));

124




fprintf(outfile,"%d\n", v_image.array[il[jl);

J R Aok kR AR oAk KKK KR sk ok kK ok ok
/* write the v projection array out to a file */
[AFEAEAAAAA AR A A AR AR AR AR AR A AR Ak kKR AR KAk [

printf("\n The level %d V projections have been stored in a file",level);
printf(" called: ¥s\n", vprojfile);
return v_image;

3
A.2.6 Listing of W.PROJECTION.C

[ ARk sk Aok ook sk kR Kok ok sk ok KRR ok oKk sk ok KK ok kK sk kK ok o sk ok ok ok ok ok
3Kk ook ko ok ok oo ok ok o sk o o ok o ks o e sk sk R oK o ARk o sk sk ok Ak e ok o Ok AOK R ok K ok /
/**%  ROUTINE TO PERFORM THE W_PROJECTION FOR WAVELET ANALYZER *ksokk
AR A A R oA AR A oK ok ok KR AR ok o Ao o K o KoK Ao KK oK K Ao K ok A KK AR ok A o ARk ok
/Ao sk sk sok sk s oo ko ok Aok ok oKk Kok ok Ak ARk Kk ok Aok ok Ak ok Aok KoKk R kAR Kk ok Kok

/* DATE: 15 April 91 */
/* */
/* VERSION: 1.0 */
/% */
/* NAME: w_projection.c */
/* */
/* DESCRIPTION: This routine calculates the W space projections by */
/* performing a point for point subtraction with the two adjacent V space */
/* projections. */
/* */
/* FILES READ: NONE. */
/* */
/% FILES WRITTEN: A file will be generated each time the routine is */
/* routine is called. The name of the file will depend on the input */
/* 1image filename, the type of wavelet used, and the level of resolution. */
/* */
/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h", */
/* <string.h> */
/* */
;* CALLING PROGRAMS: main-wave.c *5
* *
/* PROGRAMS CALLED:  NONE */
/* */
/* AUTHOR: Steve Smiley and J. Stewart Laing */
/ x/
/* HISTORY: Initial Version */
/* */

[ AR ook o o s oo Aok o KRR ok KKK A o Ko o AR A KKKk o kKo o oK ok sk ok ok ok
/AR ook o Ak kR ko R kK ok sk Kok KRR Rk ok KR kR KR sk ok ok Rk ok ok ok k

[ sk ok ok ook ok ok ok ok ok ok ok ok okok ok f

/* DECLARATION SECTION =*/
[HAER R R KRRk KRRk KRRk [

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"

#include <string.h>
#include <math.h>

[ ek ek o ok ok Kok Kok ok ok K ok ok ok ok /

/* FUNCTION BODY */
/AR KRR AR KR ARk kK

int_array w_projection(lastv_image, v_image, level, filename)
int_array lastv_image, v_image;
int level;




. char filename[64];
int_array w_image;

int i, j, phisize;
FILE *outfile;

char vprojfile[64];

w_image.ROW = v_image.ROW;
w_image.COL = v_image.COL;
CREATE_MATRIX_ROW(w_image.array, w_image.ROW, int);
CREATE_MATRIX_COL(w_image.array, v_image.ROW, w_image.COL, int);
sprintf(wprojfile, "%s.w_project.%d", filename, level);
CREATE_FILE(outfile, wprojfile, "WAVELET ANALYZER")
loopij(w_image.ROW,w_image.COL){

v_image.array[i][j] = lastv_image.array[il[j] - v_image.array{il [3];
/* w_image.array[i] [j] += 255;

w_image.array[i]l[j] /= 2;*/
[ ARk Rk Rk ook ok ok kR sk kR ok ok kR ARk Kok

/* write the w projection array out to a file */
[ 3Rk ok ok ok Aok Rk ok ok Aokl Rk Aok Rk ok ok okok Kok ok /

fprintf(outfile,"’d\n", w_image.array[i][jl);

printf(*\n The level %d W projections have been stored in a file'",level);
printf(" called: %s\n", wprojfile);
return w_image;

A.2.7 Listing of JSMACROS.H (See Appendix F.1)
A.2.8 Listing of MACROS.H (See Appendix F.1)
A.2.9 Listing of STEWMATH.H (See Appendix F.1)

A.2.10 Listing of MAKEFILE

it Makefile routine for the WAVE program by Laing and Smiley.

0BJS = main-wave.o loadimage.o phi_gen_haar.o inner_prod.o \
v_projection.o w_projection.o

wave: $(0BJS)
Qecho "linking ..."

cc $(0B3S) -o wave -1m

main~wave.o: main-wave.c
¢c -¢ main-wave.c

loadimage.o: loadimage.c
cc -c loadimage.c

phi_gen_haar.o: phi_gen_haar.c
cc -c phi_gen_haar.c

inner_prod.o: inner_prod.c
c¢ —c inner_prod.c

v_projection.o: v_projection.c
cc -c v_projection.c

w_projection.o: w_projection.c
cc —¢ w_projection.c

126




B.1

10.

11.

Appendix B. Multiresolution Analysis Using Filters

2D System Descripiion

The following is a list of funztions which comprise the wave2 program.

. main_wave.c - The main driver program for wave.

. loadimage.c - A routine to load the input image from an ascii data file.
. decompose.c - A routine that controls the decomposition.

. reconstruct.c - A routine that controls the reconstruction.

. filters.c- A routine that provides the coeflicient values of the A(n) and g(n) response

functions.
convolve.c - A routine that controls the convolutions for decomposition.
reconvolve.c - A routine that controls the convolutions for reconstruction.

spconvlv.c - A routine that performs the spatial convolutions.

. makefile - A makefile that is used to compile and link the source code to make an

executable file.

jsmacros.h- An include file that contains macros we found useful in our programming
environment. This file must be present in the directory where compilation takes place

(See Appendix F.2 for listing).

stewmath.h - An include file containing some math routines specific to our program.
It must be present in the directory where complilation takes place (See Appendix F.2

for listing).

nrutil.c - Source code that contains utility macros for dynamic memory allocation

(See Appendix .2 for listing).




Typing “make” at the command prompt in any directory with all of the above files present
will create the appropriate object code and an executable file called wave?2 that may be

executed by typing “wave2” at the command prompt.

The intended input to the program is a 2D image in raw ascii format in which each
sample of the image is stored in a file, one number per line. For example, an image that is
512x512 samples will consist of 262,144 lines each with one decimal integer number repre-
senting the grey scale value of that sample. The grey scale values range from 0 to 255. The
output of the program are ascii files representing the scale and detail wavelet coefficients in
floating point format. For an in depth explanation of the these coefficients and the algo-
rithm, see the author’s theses. The algorithm implemented in this program is taken from a
paper by Stephan Mallat. The paper is referenced in the author’s theses. Be aware that we
found some printing mistakes in the paper which are addressed in our theses. The program
was developed on Sun sparcstation 2’s. But, it should compile on any system with an ansi
standard C compiler. To compile the program, type “make” at the command prompt with
the default directory set to the current directory. Object files will then be created and linked
into an executable file called wave2. Then to run the program, type “wave2” at the com-
mand prompt. A menu should appear first with four choices. If not done at the command
line entry into the program, a file must be loaded from the current directory before either
decomposition or reconstruction can be executed. Once a file is loaded the Decomposition
can be selected. Then the Reconstruction can be selected. The Reconstruction portion de-
pends on files generated by the Decomposition portion. But, it is not necessary to run the
Decomposition during the same session as the Reconstruction as long as the Decompostion
was run in a prior session and the files still reside in the current directory. An alternate way
to start the program is to type “wave2” followed by the name of the inpu. file and its size.
The size of the input file must be a power of two and is defined to be the length along one
dimension of the sampled image. At this time the largest file used is a 512 by 512 sampled

image. It is possible to specify the path to an input file that is not in the current directory

128




either relative to the current directory or absolutecly from the root. However, if this is done,

the output files will be sent to that same directory. The proper usage of wave?2 is as follows:
command prompt: wave2 [infilename] [size]

The infilename and size are optional but if the infilename is given its size along one
dimension of the square power of two sampled image must be given as well. Also, only one

file may be input in any one session.

This fact is not obvious from the program menu, so be aware. If you try to select the
Load image option from the main menu after you have already loaded a file, the result has not
been fully characterized. In other words, we haven’t tried to figure out what would happen.

This menu option is provided as an alternative to specifying the file on the command line.

The filters available are presently limited to some of the Daubechies wavelets and the
Cubic Spline wavelet. But, it is a simple process to add new filters to the filters.c program
in the same fasion as those already included. To generate the H and G filters, see our theses

for references.

B.2 2D Multiresolution Wavelet Analysis Software
B.2.1 Listing of MAIN-WAVE.C

£ P P PP T TP T 2 ¥4
P T T T T L L T 2T )
VELL WAVELET ANALYZER MAIN PROGRAM DRIVER xx/
T T P T T T L P R LT T e Ty
P T T L P ST T I e Y4
/* DATE: 09 April 91, 18 June 91

VERSION: 2.0
NAME: main-wave.c

DESCRIPTION: This program performs a multiresolution wavelet analysis
of an input image with a wavelet from its internal library chosen
interactively by the user. It handles the menu interface with the

user and drives the subroutines that take input, analyze, and produce
output. The the wavelet decompositicn algorithm is a pyramid algorithm
proposed by Stephan Mallat in A Theory for Multiresolution Signal
Decomposition: The Wavelet Representation published in IEEE Trans.

on Pattern Anal. and Machine Intel. July 89. The algorithm uses a pair
of mirror filters derived from the scaling function, phi(x). The user
may enter tke intended input image file from the command line following
the calling command ’'wave’ or the user may wait to be prompted for

the input file name and size after starting the program with the same
command. In any case, additional images may be entered for processing
by selecting the appropriate option from the program’s main menu.

FILES READ: NONE (A subroutine reads the input files.)

129




*/

FILES WRITTEN: NONE (Subroutines write out the saved data in files.)
HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h"

CALLING PROGRAMS:  NONE

PROGRAMS CALLED: imageload.c, reconstruct.c, deccmpose.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version; adapted from phivi.c and haarvi.c
Version 2.0 was a rewrite to change the basic algorithm from the using
inner products to using the Mallat algorithm referenced above.

/***************************************************************************/
/************#**************************************************************/

[ Ak ok ok kR ok Ak ok ok ok ok ok kA ok

/* DECLARATION SECTION =/
[HFRRAEAART AR KRR Kk [

#include <stdio.h>
#include "jsmacros.h"

#include "stewmath.h"

int_array loadimage();
void reconstruct();
void decompose();

JHEkkdo Rk k kR k ok kokk [

/*

MAIN PROGRAM BODY */

[ RERR Rk kR ko k kK [

void main(argc, argv)

int arge;
char *argv(];

[HFERERERRAREERREARRRRRAR ]

./* initialize variables */
JAkkkkkkk Rk kR kR kkkk ]

int

selection;

int_array image, *imagepointer = &image;
char filename[64];
[ Rk kR R Rk dok R Xk Rk Kok [

/*

load image to be analyzed */

A T T S L)

if(arge != 3 && argc !'= 1){

printf("Usage: wave <filename> <# of Rows> <# of Cols>\n");
;xit(o);

if(arge == 3){

image = loadimage(filename, argc, argv);
/*printf("returned from loadimage"); fflush(stdout);*/
}

do {

/***********************3#***#*#*##**/
/* display menu */
/*******************#*#****t*#*****t*/

print£("\n\n MAIN MENU\n\n");

printf(" 1 = Load a new image from disk.\n");
printf(" 2 = Perform Wavelet Decomposition.\n");
printf(" 3 = Perform Wavelet Reconstruction.\n");
printf (" 4 = Exit Program.\n\n");

printf(” Enter an integer (1-4):");
scanf("%d", &selection);

130




if (selection == 4) break; /* Quit program */

arg: = 1;
if (selection == 1) image = loadimage(filename, argc, argv);
else if (selection == 2) decompose(imagepointer, filename);

else if (selection == 3) reconstruct(imagepointer,
filename);

else {
trintf(" \n\n Just enter an integer from 1 to 4 and");
printf("press return. \n");

} while (selection != 4);
{* THE END */

B.2.2 Listing of LOADIMAGE.C

/***********************************************************t***************/
/***************************************************************************/

[xxx WAVELET ANALYZER LOADIMAGE ROUTINE *x/
[ ARk ok Rk R AR AR R R A kR R KRR KRR KRRk KRR R Rk Kk kK Kk [
[ AR AR AR AR AR A AR AR R A kR Ak kA oR R R R R ok Rk kA kR Aok ok [

/* DATE: 10 April 91
VERSION: 1.1
NAME: Jloadimage.c

DESCRIPTION: This routine loads an image into an array whese name is
specified by the user interactively. I+ is intended to be used as a
subroutine for the wave2 program.

FILES READ: One file specified by the user.
FILES WRITTEN: NONE

HEADERS USED: <stdio.h>, "jsmacros.h”
CALLING PROGRAMS: main-wave.c

PROGRAMS CALLED: NONE

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Version 1.1 was changed to accept square matrices
only.
*/
/***t*********t**********************#******t*t*************#*t#***t****#*#*/
/******t**#t************#**###****#*t*******t*****#**t#**ttt#**#*t***#***#**/

JEEEEREERREREEXEERRERREAER [
/* DECLARATION SECTION x/

[REEEERREREREREERRR KRR RRR [
#include <stdio.h>

#include "jsmacros.h"
int **ximatrix();
void free_imatrix();

[HRERERLEERERREERRRAKRAK RS [

/* FUNCTION BODY */
[ERhmrkakk kiR ekhxkhnsk/

int_array loadimage(infilename, argc, argv)
char  *infilename[64];
int argc;
char *argv[]l;

JEREEERERREREREDRRREK R LR [
/* initialize variables */




[k Aok ok kR ok Kok Rk [

int i,Jj;
FILE *infile;
int_array image;
/***************#*****************************/
/* create array to hold the incoming image */
JFREETRERRERREERE R AR R AR kK% [
if(arge == 1){
printf("\n\n Input filename of image tc be analyzea:");
scanf("/s", infilename);
printf("\n\n Input the number of Rows in the square matrix");
printf("\n data file. (The number must a power of 2):");
scanf("%d", &image.ROW);
image.COL = image.ROW;

}

else {
sprintf(infilename, "Ys", argv[1]);
sscanf(argv[2], "/d", &image.ROW);
image.COL = image.ROW;

image.array = imatrix(1, image.ROW, 1, image.COL);

JEEREEERRKEEKREEEKEAKERRE XA K EEKKAKKKK Rk [
/* load image to be analyzed */
JEEREEERRARRREERERAKTRERERRERRKKEER R Rk

OPEN_FILE (infile, infilename, "The wavelet analyzer");
loopij(image.ROW, image.COL)
fscanf(infile,"%d", &image.array[i+1]1[j+1]);
CLOSE_FILE (i, infilename, "The Wavelet analyzer", infile)
printf("\n ** The image %s has been loaded for processing. **\n\n\n",
infilename);
return image;

B.2.3 Listing of DECOMPOSE.C

A T T L L O T R T T 2 P P P P e 2 TP ST 24
/**********'*******************#*************#*********#********************/
e WAVELET DECOMPOSITION SUBROUTINE *x/
/*********************************t******‘*******#************#***#*********/
/***#**************#*‘**********#****************#**#*********************#*/
/* DATE: 19 June 91

VERSION: 1.0
NAME: decompose.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave". The algorithm used is discussed in
the description of the main driver module called "main-wave.c".

Data is passed by reference from the main driver module. The data is
in ascii format arranged in a square matrix whose dimensions are a
pover of 2. This requirement has not only made programming more
convenient but is required by thc¢ convolution routine from Numerical
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: Four coefficient files at each level of analysis.
The file names begin with the input image filename
and end with an extension of the form ".nXm" where
n is an integer that represents the level, X is one

of the letters ’c’ or ’d’ to represent phi

or psi coefficients respectively, and m is

132




an integer 1, 2, or 3 that represents the
orientation verticle, horizontal, or angular
repsectively.

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: main-wave.c

PROGRAMS CALLED: convolve.c, filters.c, nrutil.c
AUTHOR: Steve Smiley and J. Stewart Laing

/ HISTORY: Initi:l Version.

*

JRERETR AR AR AR KRR KA AR Aok Ak KRR AR KRR o Rk ok kA Rok Kook [
T g PP T P T T P P P P TR P R T L e

[ERRETRRREERREERRRRERRR AR [

/* DECLARATION SECTION =*/
[ FRRER ARk Rk kKR

#include <stdio.h>
#include "jsmacros.h"

void convolve();
void filters();
float *vector();
float skmatrix();
void free_vector();
void free_matxix();
int *ximatrix();

[HREEREEREERERRRRERERARN [

/* MAIN PROGRAM BODY =*/
JEEREEEEREREREARRRERERRK [

void decompose(imagepointer, infilename)
int_array *imagepointer;
char infilename([];

JRRrkkkrkkakRdkbrrrkhrrk/

/* declare variables  */
[ERRkrRaRkhkrk kR Rk hRkkn/

int i, j, k, maxlevel, wavelet_type;

float_vector h_of_n, h_of_nflipo, g_of_n, g_of_nflipo, phi, phiflipo;
float_vector phiflipc, *phiflipcpointer = &phiflipc;

float_vector #h_of_npointer = &h_of_n, *h_of_nflipopointer = &h_of_nflipo;
float_vector #*g_of_npointer = &g_of_n, *g_of_nflipopointer = &g_of_nflipo;
float_vector #*phipointer = &phi, *phiflipopointer = &phiflipo;
float_array c_coef, di_coef, d2_coef, d3_coef;

float_array *c_coefpointer= &c_coef,*dl_coefpointer= &di_coef;
float_array *d2_coefpointer= &d2_coef,*d3_coefpointer= &d3_coef;
float_array ‘temp, *temppointer = &temp;

FILE *outfile;

char filename[64], wave_code{64];

int_array nevimage, *newimagepointer = &newimage;
[ERREERERRREIREREERRERERS [

/* allocate memory x/

[EEEEERREERRRREREERRAREERE [

temp.ROW = imagepointer->ROW;

temp.COL = imagepointer->COL;

temp.array = matrix(i, temp.RO¥, 1, temp.COL);
loopij(temp.ROW,temp.COL) temp.array[i+1](j+1] = 0.0;
c_coef .ROW = imagepointer->ROW;

c_coef.COL = imagepointer->COL;

c_coef.array = matrix(1, c_coef.ROW, 1, c_coef.COL);
loopij(c_coef.ROW,c_coef.COL) c_coef.array[i+1][j+1] = 0.0;
di_coef.ROW = imagepointer->ROW;

di_coef.COL = imagepointer->COL;

133




di_coef.array = matrix(1, di_coef.ROW, 1, dl_coef.COL);

loopij(di_coef .ROW,d1_coef.COLY di_coef.array[i+1][j+1] = 0.0;
d2_coef .ROW = imagepointer~>ROW;

d2_coef.COL = imagepointex->COL;

d2_coef.array = matrix(1, d2_coef.ROW, 1, d2_coef.COL);
loopij(d2_coef .ROW,d2_coef.COL) d2_coef.arrayli+1][j+1] = 0.0;

d3_coef .ROW = imagepointer->ROW;

d3_coef.COL = imagepointer->COL;

d3_coef.array = matrix(1, d3_coef.ROW, 1, d3_coef.COL);
loopij(d3_coef.ROW,d3_coef.COL) d3_coef.arrayli+1]1[j+1] = 0.0;
newimage.ROW = imagepointer->ROW;

newimage.COL = imagepointer->COL;

nevimage.array = imatrix(1, newimage.ROW, 1, newimage.COL);
loopij(newimage.ROW,newimage.COL) newimage.array[i+1][j+1] = O;

Lh_cf_n.vector = vector(l,imagepointer->ROW*2);
loopi(imagepointer->ROW*2) h_of_n.vector[i+i] = 0.0;
g_of_n.vector = vector(1,imagepointer->ROW*2);
loopi(imagepointer->ROWx2) g_of_n.vector[i+1] = 0.0;
h_of_nflipo.vector = vector(1,imagepointer->ROW*2);
loopi(imagepointer~->RON*2) h_of_nflipo.vectorli+1] = 0.0;
g_of_nflipo.vector = vector(1,imagepointer->ROW*2};
loopi(imagepointer->ROW*2) g_of_nflipo.vector[i+1] = 0.0;
phi.vector = vector(1,2«imagepointer->ROW);
loopi(imagepointer->ROW*2) phi.vector[i+1i] = 0.0;
phiflipo.vector = vector(1,2*imagepointer—>ROW);
loopi(imagepointer->RON*2) phiflipo.vector[i+1] = 0.0;
phiflipc.vector = vector(1,2*imagepointer->ROW);
loopi(imagepointer->ROW*2) phiflipc.vector[i+1]l = 0.0;

P T I PR L T e S 2 LY

/* display menu x/
[EEEEERRRERERRERRREER SRR AR R AR RAR [

printf("\n\n DECOMPOSITION MENU\n\n");

printf(" 1 = Piece-wise Constant.(N/A)\n");
printf(" 2 = Piece-wise Linear.(N/A)\n");
printf(" 3 = Daubechies N=2.\n");
printf(" 4 = Daubechies N=3.\n");

printf (" 5§ = Daubechies N=4.\n");
printf(" 6 = Daubéchies N=5.\n");
printf(" 7 = Daubechies N=6.\n");
printf(" 8 = Daubechies N=7.\n");
printf(" 9 = Daubechies N=8.\n");
printf(" 10 = Daubechies K=9.\n");
printf(" 11 = Daubechies N=10.\n");
printf(" 12 = Splines.\n");

printf(" 13 = Morlet.(N/AX\n");

printf("\n Enter an integer 1-13: ");
scanf ("%d", &wavelet_type);
/* error handling for invalid input */

if (wavelet_type < 3 || wavelet_type > 13) {
printf("\nYou have chosen an Invalid Wavelet type or");
printf("\nthis type is not currently available.");
} /* end if »/

else {
/#********#************t*#*#**#****************/
/* Set wave_code for use in output filenames. */
P s e R e Ll

if (wavelet_type == 3) sprintf(wave_code, "db2");

134




it (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type

4) sprinti(wave_code, "db3");
5) sprintf(wave_code, "db4");
6) sprintf(wave_code, "db5");
7) sprintf(wave_code, "db6");
8) sprintf(wave_code, "db7");
sprintf(wave_code, "db8");
10) sprintf(wave_code, "db9");
if (wavelet_type 11) sprintf(wave_code, "db0");
if (wavelet_type 12) sprintf(wave_code, "spl");
P T T Y

/* Generate Phi and Filters */
/****************************/

[ T T T 1 A T 1

||

nmu uwwmwnunnaonn
]
~

filters (wavelet_type,h_of_npointer,g_of_npointer,phipointer);
flipo(phipointer, phiflipopointer);
h_of_nflipopointer = h_of_npointer;
g.of_nflipopointer = g_of_npointer;

loopij(imagepointer->ROW, imagepointer->COL)
temppointer->array[i+1][j+1] = (float)imagepointer->array[i+1][j+1];

/*************************************** RERERERR KRk KKk Kk kkkkk ****/
/* Call convolution routine and save the coefficient arrays for */
/* each level of analysis. */
/****************************************************************/

maxlevel = LOG2(imagepointer->ROW); /* Calculate the highest level */

k=1;

loopk(maxlevel){

if (temp.ROW >= h_of_n.length){ /* image has to be bigger than filter */
printf ("\nPerforming convolution with filters, level");

printf("/d...", k+1);
convolve(temppointer, h_of_nflipopointer, g_of_nflipopointer,
c_coefpointer, di_coefpointer,d2_coefpointer,d3_coefpointer);

sprintf(filename, "%s.%d.c.%s", infilename, k+1, wave_code);
CREATE_FILE(outfile, filename, "The Wavelet Analyzexr")
loopij(c_coef.ROW,c_coef.COL)
fprintf(outfile, "%f\n", c_coef.arrayli+1](j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, "%s.%d.d1.%s", infilename, k+1,wave_code);
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopij(di_coef .ROW,d1_coef.COL)

fprintf(outfile, "%f\n", di_coef.array[i+1][j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, "%s.%d.d2.%s", infilename, k+1,wave_code);
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopij(d2_coef.ROW,d2_coef.COL)

fprintf(outfile, "Yf\n", d2_coef.array[i+1]1[j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, "%s.%d.d3.%s", infilename, k+1,wave_code);
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopij(d3_coef.ROW,d3_coef.COL)

fprintf(outfile, "%f\n", d3_coef.arrayli+1][j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

temp.ROW = c_coef.ROW;
temp.COL = c_coef.COL;
loopij(temp.ROW,temp.COL) temp.axray[i+1] [j+1]l=c_coef.array{i+1][j+1];
} /* end if »/
} /* end loop */
} /* end else */




/* free memory */

free_ matrix(temp.array, 1, temp.RO¥, 1, temp.COL);
free_matrix(c_coef.array, 1, c_coef.RO¥, 1, temp.COL);
free_matrix(di_coef.array, 1, di1_coef.ROW, 1, di_coef.COL);
free_matrix(d2_coef.array, 1, d2_coef.ROW, 1, d2_coef.COL);
free_matrix(d3_coef.array, 1, d3_coef.ROW, 1, d3_coef.COL);
free_vector(h_of_n.vector,1,imagepointer->ROW»2);
free_vector(g _of_n.vector,1,imagepointer->RON*2);
free_vector(phi.vector,1,imagepointer—>ROWs2);
free_vector(phiflipo.vector,1, imagepointer->R0O¥*2);
free_vector(phiflipc.vector,1, imagepointer->ROuW*2);

{* THE END */

B.2.4 Listing of RECONSTRUCT.C

/****‘*****t*‘*tt‘#tt#tt*"’#**t#t*t##“3‘##t‘t*‘t‘t‘ttttt#“#tt“tt#tt‘t‘“/
/t#******t###*t‘#*tt*‘t‘t‘*t#tt‘#‘t‘tt#*#t‘*t‘t#‘tttt3““#‘.‘3!*#“‘#.‘#‘#‘/

[rx% WAVELET RECONSTRUCTION SUBROUTINE s/
PRI I 22t e P s P S P S P R e e P T P P R P 2 Y4

/*#*ttt*#*ttt*#t*‘tt*#*t‘t‘*#**.tttt“‘#‘#t*‘#t#““ttttt‘ttttt.‘tt'tt.ttt“/

/* DATE: 2 July 91
VERSION: 2.0 (uses spconvlv)
NAME: recoastruct.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave2". The algorithm used is discussed in
the description of the main driver module called "main-wave.c”.

It controls the portion of the program that recomstructs a previously
decomposed image using Mallat’s multiresolution algorithm referenced
in the description of the calling program, "main-wave.c".

FILES READ: Four coefficient files at each level of analysis.
The file names begin with the input image filename

and end with an extension of the form “.nXm" where
n is an integer that represents the level, X is one of

the letters ’c’ or ’d’ to represent phi or psi coef-
ficients respectively, and m is an integer 1, 2, or 3
that represents the orientation verticle, horizontal,
or angular repsectively.

FILES WRITTEN: One file with the extension ".rec".

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: main-wave.c

PROGRAMS CALLED: filters.c, reconvolve.c, nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing
‘/HISTORY: Initial Version.

/‘*"‘.“t‘#.*#t#"““t“‘t‘#““‘t‘t.“““OO‘.".".".“...O“.“..‘..‘0/
/*#t‘...‘t#“"*“.‘”t“ttt“.‘t“'.t‘t".“‘t..“t..‘..“‘.“..O...t'.‘.‘./

Jesxssnsessrsnsrssassssens/
/* DECLARATION SECTION =/

JEERsrsrrsnsssenssssenenns/

#include <stdio.h>
#include "jsmacros.h"

void filters();
void reconvolve();
float svector();
float ssmatrix();
void free_vector()
void free_matrix()

136




int *ximatrix();
void free_imatrix();

[ Aok kR ok ko ok Kok ok ok ok ok ok /

/* MAIN PROGRAM BODY */
[/ At sk sk ook sk ok ok ok ok ok ok ok /

void reconstruct(imagepointer,infilename)
int_array *imagepointer;
char infilename(];

[ ARk kkok ok ok ok sk ok ok kR ok [

/* declare variables */
I e YTy

int i, j, k, 1, maxlevel, wavelet_type;

float_vector h_of_n, h_of_nflipo, h_of_nflipc, g_of_n;
float_vector g_of_nflipo, g_of_nflipc, phi, phiflipc;
float_vector #*h_of_npointer = &h_of_n, *g_of_npointer = &g_of_n;
float_vector *h_of_nflipopointer = &h_of_nflipo;

float_vector *g_of_nflipopointer = &g_of_nflipo;

float_vector #*h_of_nflipcpointer = &h_of_nflipc;

float_vector *g_of_nflipcpointer = &g_of_nflipc;

float_vector #*phipointer = &phi, *phiflipcpointer = &phiflipc;
float_array c_coef, di_coef, d2_coef, d3_coef;

float_array *c_coefpointer= &c_coef,*d1_coefpointer= &di_coef;
float_array *d2_coefpointer= &d2_coef,*d3_coerpointer= &d3_coef;
float_array temp, *temppointer = &temp;

int_array newimage, *newimagepoini:er = ~newimage;
FILE *outfile, *infile;

char filename[64], wave_code[64];

float holder([64];

JRER ARk AR Rk ok kK Kok [

/* allocate memory */

[/ Aok ook oo o o e ok e ok ok ok ok

temp.ROW = imagepointer->ROW;

temp.COL = imagepointer->COL;

temp.array = matrix(1, temp.ROW, 1, temp.COL);
loopij(temp.ROW,temp.COL) temp.arrayl{i+1][j+1] = 0.0;
newimage.ROW = imagepointer->ROW;

newimage.COL = imagepointer->COL;

newimage.array = imatrix(1, newimage.ROW, 1, newimage.COL);
loopij(newimage.ROW,newimage.COL) newimage.array[i+1][j+1] = 0.0;
¢_coef .ROW = imagepointer->ROVW;

c_coef.COL = imagepointer->COL;

c_coef.array = matrix(1, c_coef.ROW, 1, c_coef.COL);
loopij(c_coef.ROW,c_coef.COL) c_coef.array[i+11[j+1] = 0.0;
dl_coef.ROW = imagepointer->ROW;

di_coef.COL = imagepointer->COL;

di_coef.array = matrix(i, di_coef.ROW, 1, di_coef.COL);
loopij(di_coef.ROW,di_coef.COL) di_coef.array[1+1][3+1] = 0.0;
d2_coef.ROW = imagepcinter->ROV;

d2_coef.COL = imagepointer->COL;

d2_coef.array = matrix(i, d2_coef.ROW, 1, d2_coef.COL);
loopij(d2_coef .ROW,d2_coef.COL) d2_coef.array[i+1][j+1]
d3_coef .ROW = imagepointer->ROW;

d3_coef.COL = imagepointer->COL;

d3_coef.array = matrix(1, d3_coef.ROW, 1, d3_coef.COL);
loopi;(d3_coef.ROW,d3_coef.COL) d3_coef.arrayli+1][j+1} = 0.0;

h_of_n.vector = vector(!,imagepointer->ROW*2);
loopi(imagepointer->ROW*2) h_of_n.vector[i+1] = 0.0;
g-of_n.vector = vector(!,imagepointer->ROWx2);

loopi (imagepointer->ROW*2) g_of_n.vector[i+1] = 0.0;
phi.vector = vector(1,2ximagepointer->ROW);

0.0;

137




loopi(imagepointer->ROW*2) phi.vector[i+1] = 0.0;
phiflipc.vector = vector(1,2*imagepointer->ROW) ;
loopi(imagepointer->ROW*2) phiflipc.vector[i+1] = 0.0;
h_of_nflipo.vector = vector(l,imagepointer->ROW*2);
loopi(imagepointer->ROW*2) h_of_nflipo.vector[i+1] = 0.0;
g-of_nflipo.vector = vector(1,imagepointer->ROW*2);
loopi(imagepointer->ROW*2) g_of_nflipo.vector[i+1] = 0.0;
h_of_nflipc.vector = vector(1,imagepointer->ROW*2);
locpi(imagepointer~>ROW*2) h_of_nflipc.vector[i+1] = 0.0;
g.of_nflipc.vector = vactor(l,imagepointer->ROW*2);
loopi(imagepointer->ROW*2) g_of_nflipc.vector[i+1] = 0.0;
JRFA R AR AR AR AR AR ARk KRR KRRk [

/* display menu */

/233K o o oo e o o o ok ko o ok ok ook ok 3k ok ok ok ok ko ok ok ok ok /

printf("\n\n RECONSTRUCTION MENU\n\n");

printf(" 1 = Piece~wise Constant.(N/A)\n");
printf(" 2 = Piece~wise Linear.(N/A)\n");
printf(" 3 = Daubechies N=2.\n");
printf(" 4 = Daubechies N=3.\n");

printf (" 5§ = Daubechies N=4.\n");
printf(" 6 = Daubechies N=5.\n");

printf (" 7 = Daubechies N=6.\n");
printf(" 8 = Daubechies N=7.\n");
printf(" 9 = Daubechies N=8.\n");
printf(" 10 = Daubechies N=9.\n");
printf(" 11 = Daubechies N=10.\n");
printf (" 12 = Splines.\n");

printf(" 13 = Morlet.(N/A)\n");

printf(" Enter an integer (1-13):");
scanf("/", &wavelet_type);

if(wavelet_type < 1 || wavelet_type > 13 ){
printf("\nYou have chosen an invalid wavelet or");
printf("\nit is not currently available.");

}
else {

S AT KA A A AR AR A AR ARk Ak
/* Set value of wave_code for input filename */
[ HEE AR RF AR AR A AR AR A AR Ak [

3) sprintf(wave_code, "db2");

4) sprintf(wave_code, "db3");

5) sprintf(wave_code, "b4");

6) sprintf(wave_code, "dbS");

sprintf(wave_code, "db6");

8) sprintf(wave_code, "db7");

9) sprintf(wave_code, "db8");

10) sprintf(wave_code, "db9");
if (wavelet_type 11) sprintf(wave_code, "db0");
if (wavelet_type 12) sprintf(wave_code, "spl");
JHFR AR AR AR AR AR RR A KKKk [

/* Generate Phi and Filters */
[ RF ROk kR Kok ok ok oKk Aok ok ok /

if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type

nnnoununnunan
nannonnununn
-J
~

filters(wavelet_type,h_of_npointer,g_of_npointer,phipointer);

KRR AR AR R R AR R K KRR 2k
/* flip the filters */
ey

loopij(h_of_npointer->length)

138




holder [h_of_npointer->length +1 -jl= h_of_npointer->vector[jl;
loop1j(h_of_npointer->length)

h_of_npointer->vector[j] = holder[j];
looplj(g_of_npointer->length)

holder[g_of_npointer->length +1 -jl= g_of_npointer->vector[j];
looplj(g_of_npointer->length)

g_of_npointer->vector[j] = holder[j];

h_of_nflipcpointer= h_of_npointer;
g-of_nflipcpointer= g_of_npointer;

/HRRRAAAA AR KA FAAA AR AR AAIAA AR AR AR AR R A ARk Rk Kok /
/* Call reconvolution routine to reconstruct from coarsest phi */
/* coefficients and all of the psi coefficients. */
AR AAAAAA AR AAAAAAA AN AAAAA AR AR A AR kKoK AR K

maxlevel = LOG2(imagepointer->ROW);/*Calculate the highest levelx/

temp.ROW = 1; temp.COL = 1;

do { /* make sure image is bigger than filter #/
temp.ROW *=2;
temp.COL *=2;
--maxlevel;
} while (temp.ROW < h_of_n.length/2);

c_coef .ROW = tenp.ROW; c_coef.COL = temp.COL;

di_coef.ROW = temp.ROW; dil_coef.COL = temp.COL;
d2_coef .ROW = temp.ROW; d2_coef.COL = temp.COL;
d3_coef.ROW = temp.ROW; d3_coef.COL = temp.COL;
l=1;

for(k=maxlevel;k>0;--k){
/* for(k=maxlevel;k==maxlevel;--k){ */
if(1 == 1){
sprintf(filename, "¥s.%d.c.%s", infilename, k,wave_code);
OPEN_FILE(infile, filename, "The Wavelet Analyzer")
loopij{(c_coer ROW,c_coef.COL)
fscanf(infile, "%f\n", &c_coef.array[i+1][j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", infile)
1=20;
} /* end if */
else {
c.coef .ROW = temp.ROW;
c¢_coef.COL = temp.COL;
loopij(c_coef.ROW,c_coef.COL) c_coef.array[i+1][j+1] =
temp.array[i+1] [j+1];
} /* end else x/
sprintf(filename, "%s.%d.d1.%s", infilename, k,wave_code);
OPEN_FILE(infile, filename, "The Wavelet Analyzer")
loopij(di_coef .ROW,d1_coef.COL)
fscanf(infile, "%f\n", &d1_coef.arrayl[i+1]{j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", infile)

sprintf(filename, "%s.%d.d2.%s", infilename, k,wave_code);
OPEN_FILE(infile, filename, "The Wavelet Analyzer")
loopij(d2_ccef .ROW,d2_coef,COL)

fscanf(infile, "4f\n", &d2_coef.arrayl[i+1][j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", infile)

sprantf(filename, "%s.%d.d3.%s" infilename, k,wave_code);
OPEN_FILE(infile, filename, "The Wavelet Analyzer")
loopaj(d3_coef .ROW,d3_coef.COL)

fscanf(infile, "4f\n", &d3_coef.arrayl[i+1][j+1]);
CLOSE_FILE(1, filename, "The Wavelet Analyzer", infile)

139




printf("\nPerforming reconvolution with filters, level Y%d...", k);
reconvolve(temppointer, h_of_nflipcpointer, g_of_nflipcpcinter,
c_coefpointer, di_coefpointer, d2_coefpointer,
d3_coefpointer);

if(wavelet_type == 12)
loopij(temp.ROW,temp.COL) temp.array[i+1][j+1] *= 4;

sprintf(filename, "%s.%d.c.%s.rec", infilename,k-1,wave_code);
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopij(temp.ROW,temp.COL)

fprintf(outfile, "%f\n", temp.array[i+1][j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

} /* end loop */
} /* end else */
/* free memory */

free_matrix(temp.array, 1, temp.ROW, 1, temp.COL);
free_imatrix(nevimage.array, 1, newimage.ROW, 1, newimage.COL);
free_matrix(c_coef.array, 1, c_coef.ROW, 1, c_coef.COL);
free_matrix(di_coef.array, 1, di_coef.ROW, 1, di_coef.COL);
free_matrix(d2_coef.array, 1, d2_coef.ROW, 1, d2_coef.COL);
free_matrix(d3_coef.array, 1, d3_coef.ROW, 1, d3_coef.COL);

{* THE END */

B.2.5 Listing of FILTERS.C

[k sk ok ook ok sk ok ook KK Sk oo AR AR oK o o o A R Ao o o Kok R AR Kok ook sk Ak kK
/Ao ok oK o oo o Kook o o A o koK Kok Ao oo ok ok e o ok ok o oK ook s sk ek sk ok ok A o ko sk ok /

/%% WAVELET H&G FILTER SUBROUTINE *k [
L T s e L e s

JHAk Rk ook Kok A kb ko ook Rk Rk ok Rk ok Ak Rk [
/* DATE: 20 June 91

VERSION: 2.0
NAME: filters.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave2". The algorithm used is discussed in
the descraption of the main driver module called "main-wave.c.

This routine provides the caller with the discrete points of a pair of
response functions previously derived and hard coded corresponding to
the type of wavelet desired. Also, the scaling function,

phi(x) is provided for the purpose of generating the phi

coefficients at level zero.

FILES READ: NONE

FILES WRITTEN: (Passed by reference back to the caller.)
HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: decompose.c, nrutil.c

PROGRAMS CALLED: NONE

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Version 2 altered filters.c for spatial convolution from the
/Fourier convolution used in version 1.
*
/A ook Aok o ook ok ko ok sk sk ok Kok sk ook ok K ok ok ok ok Ak ok sk ook ol skl o K Kk o ok ok ek ok ok Kok ok ok Kk ok ok kb ok /
/***************************************************************************/
/AR AR Aok ok Aok Kk ok ok ok [ ’

/¥ DECLARATION SECTION */
/R Ak ok ok ok Rk kK KKk [

#include <stdio.h>

140




#include "jsmacros.h"

JAA Rk kR ok kS ok kokkok /

/* MAIN PROGRAM BODY */
[k sk ok ok o sk ok ok okokok ok /

void filters (wavelet_type,h_of_npointer,g_of_npointer,phipointer)

int wavelet_type;

float_vector *h_of_npointer, *g_of_npointer, *phipointer;
}******************************************************************x***/
/* The response functions of the H and G filters are evaluated at the */
/* negative of the argument. i.e. g(n)=g(-n) and h(n)=h(-n) */
[ Rk ko sk ok kok kR ok ok kR ok sk kbR ok kKR kKR ok ok sk Ak kR
if (wavelet_type == 1){
printf ("\nThis selection not currently available.");

if (wavelet_type == 2){
printf ("\nThis selection not currently available.");

}
if (wavelet_type == 3){

h_of_npointer->vector[4]
h_of_npointer->vector[5]
h_of_npointer->vector[6]
h_of_npointer->vector[7]

.482962; /* h(0)*/
.836516; /* h(1)*/
.224143; /* h(2)*/
-.129409; /* h(3)*/

h_of_npointer->vector[1] = 0.0; /* h(-3)*/
h_of_npointer->vector[2] = 0.0; /* h(-2)*/
h_of_npointer->vector[3] = 0.0; /* h(-1)*/

h_of_npointer->length = 7

g-of_npointer->vector(4]
g-of_npointer->vector[5]

.836516; /* g(0)*/
~-.482962; /* g(1)*/

g_of_npointer->vector[6] 0.0; /* g(2)*/
g_of_npointer->vector[7] 0.0; /* g(3)*/
g_of_npointer->vector[1] 0.0; /% g(-3)*/

g_of_npointer->vector[2]
g_of_npointer->vector[3]
g.of_npointer->length

phipointer->vectorii]
phipointer->vector[2]

.129409; /* g(-2)%/
.224143; /* g(~1)*/

0.032348658; /* phi(0)*/
1.302557547; /% phi(1)*/

phipointer->vector[3] = -0.334912635; /* phi(2)*/
phipointer->vector[4] = 0.0000000001; /* phi(3)*/
phipointer->vector[5] = 0.0000000001; /% phi(-3)*/
phipointer->vector[6] = 0.0000000001; /* phi(-2)*/
phipointer->vector[7] = 0.0000000001; /* phi(-1)*/

phipointer->length = 7;

(vavelet_type == 4){

h_of_npointer->vector[6]
h_of_npointer->vector[7]
h_of_npointer->vector[8]
h_of_npointer->vector([9]
h_of_npointer->vector[10]
h_of_npointer->vector[11]

0.332670553; /* h(0)*/
0.806891509; /* h(1)*/
0.459877502; /* h(2)*/
-0.135011020; /* h(3)*/
-0.085441274; /* h(4)*/
0.035226292; /* h(5)*/

h_of_npointer->vector[1] = 0.0; /* h(-5)*/
h_of_npointer->vector[2] = 0.0; /* h(-4)x/
h_of_npointer->vector[3] = 0.0; /* h(-3)*/
h_of_npointer->vector[4] = 0.0; /* h(-2)*/
h_of_npointer->vector[5] = 0.0; /* h(-1)*/

h_of_npointer->length = 1

g_of_npointer->vector[5]
g-of_npointer->vector (7]

806891509; /* g(0)*/

1
0.
0.332670553; /* g(1)*/

141




g-of_npointer->vector[8]
g-of_npointer->vector[9]
g.of_npointer->vector[10]
g_of_npointer->vector[11]
g..of_npointer->vector[1]
g.of_npointer->vector[2]
g-of_npointexr->vector{3]
g.of_npointer->vector[4]
g._of_npointer->vector[5]

0.0; /* g(2)%/

0.0; /* g(3)x/

0.0; /* g(4)x/

0.0; /* g(5)x/

0.0; /% g(~5)%/
0.459877502; /* g(-4)*/
-0.135011020; /* g(-3)*/
-0.085441274; /* g(-2)*/
0.035226292; /* g(-1)*/

g-of_npointer->length = 11;

phipointer->vector[1] = 0.001129175;
phipointer->vector[2]
phipointer->vector[3]

/* phi(0)*/
1.285632059; /* phi{1)*/
~-0.386241412; /* phi(2)*/

if

phipointer->vector[4] = 0.095244687; /* phi(3)*/
phipointer->vector[5] = 0.004229018; /* phi(4)*/
phipointer->vector[6] = 0.000000001; /* phi(5)*/
phipointer->vector[7] = 0.0000000001; /* phi(-5)*/
phipointer->vector[8] = 0.0000000001; /* phi(-4)*/

phipointer->vector[9] = 0.
phipointer->vector[10] =
phipointer->vector[11] =

phipointer->length = 11;

(vavelet_type == 5){

h_of_npointer->vector[8]
h_of_npointer->vector[9]
h_of_npointer->vector[10]
h_of_npointer->vector[11]
h_of_npointer->vector [12]
h_of_npointer->vector([13]
h_of_npointer->vector[14]
h_of_npeinter->vector[15]

0000000001; /* phi(-3)*/
0.0000000001; /* phi(-2)*/
0.0000000001; /* phi(-1)*/

= 0.230377813; /* h(0)*/

= 0.714846571; /* h(1)*/

0.630880768; /* h(2)*/
-0.027983769; /* h(3)*/
-0.187034812; /* h(4)*/
0.030841382; /* h(5)*/
0.032883012; /* h(6)*/
-0.010597402; /* h(7)*/

h_of_npointer->vector[1] = 0.0; /* h(- 7)*/
h_of_npointer->vector[2] = 0.0; /* h(-6)*/
h_of_npointer->vector[3] = 0.0;./* h(-5)*/
h_of_npointer->vector[4] = 0.0; /* h(-4)*/
h_of_npointer->vector[5] = 0.0; /* h(-3)*/
h_of_npointer->vector[6] = 0.0; /* h(-2)*/
h_of_npointer->vector[7] = 0.0; /* h(-1)*/
h_of_npointer->length = 15;

g-of_npointer->vector[8]
g-of_npointer->vector[9]

0.714846571; /* g(0)*/
0.230377813; /* g(1)*/

g-of_npointer->vector{10] = 0.0; /* g(2)*/
g-of_npointer->vector[11] = 0.0; /* g(3)*/
g_of_npointer->vector[12] = 0.0; /* g(4)*/
g-of_npointer->vector[13] = 0.0; /* g(5)*/
g_of_npointer->vector[14] = 0.0; /* g(6)*/
g-of_npointer->vector[15] = 0. 0; /x g(7)*/

g_of_npointer->vector[1]
g_of_npointer->vector[2]
g_of_npointer->vector[3]
g_of_npointer->vector[4]
g-of_npointer->vector(5]
g.of_npointer->vector[6]
g_of_npointer->vector(7]

g-of_npointer->length =

phipointer->vector[1]
phipointer->vector[2]
phipointer->vector(3]

0.
1.

0.0; /* g( T)*/
-0.010597402; /* g(-6)*/
0.032883012; /* g(~5)*/
0.030841382; /* g(-4)*/
-0.187034812; /* g(-3)*/
-0.027983769; /* g(-2)*/
0.630880768; /* g(~1)*/
15;

000041362; /* phi(C)=*/
010495941; /* phi(1)#*/
0.039093761; /* phi(2)*/

142




phipointer->vector[4]
phipointer->vector[5]
phipointer->vector(6]
phipointer->vector([7]
phipointer->vector[8]
phipointer->vectoxr[9]

0.041834300; /* phi(3)*/
-0.012011135; /* phi(4)*/
-0.001294973; /* phi(5)*/
0.000021869; /* phi(6)*/
0.000000001; /* phi(7)*/
0.0000000001; /#* phi(~7)*/

phipointer->vector[10] = 0.0000000001; /* phi(-6)*/
phipointer->vector[11] = 0.0000000001; /* phi(-5)*/
phipointer->vector[12] = 0.C000000001; /* phi(-4)*/
phipointer->vector[13] = 0.0000000001; /* phi(-3)*/
phipointer->vector[14] = 0.0000000001; /* phi(-2)*/
phipointer->vector[15] = 0.0000000001; /* phi(-1)*/

phipointer->length = 15;

if (wavelet_type 6){
printf("\nThis selection not

currently available.");

}

if (wavelet_type == 7){
h_of_npointer->vector[12]
h_of_npointer->vector[13]
h_of_npointer->vector[14]
h_of_npointer->vector[15]
h_of_npointer->vector[16]
h_of_npointer->vector[17]
h_of_npointer->vector[18]
h_of_npointer->vector[19]
h_of_npointer->vector[20]
h_of_npointer->vector[21]
h_of_npointer->vector[22]
h_of_npointer->vector[23]

0.111540743; /%
0.494623890; /*
0.751133908; /* h(2)*/
0.315250352; /#* h(3)=*/
-0.226264694; /* h(4)x/
-0.129766868; /* h(5)*/
0.097501606; /* h(8)*/
0.027522866; /* h(7)*/
-0.031582039; /* h(8)*/
0.000553842; /* h(9)*/
0.004777257; /* h(10)*/
-0. 001077301 /* h(11)*/

h(0)*/
h(1)*/

h_of_npointer->vector{i] = 0.0; /* h(- 11)*/
h_of_npointer->vector[2] = 0.0; /* h(-10)*/
h_of_npointer->vector[3] = 0.0; /* h(-9)*/
h_of_npointer->vector[4] = 0.0; /* h(-8)*/
h_of_npointer->vector{5] = 0.0; /* h(-7)*/
h_of_npointer->vector[6] = 0.0; /* h(-6)+/
h_of_npointer->vectorf{7] = 0.0; /% h(~-5)*/
h_of_npointer->vector[8] = 0.0; /* h(-4)*/
h_of_npointer->vector[9] = 0. 0; /* h(-3)*/
h_of_npointer->vector[10] 0.0; /* h(-2)*/

non

h_of_npointer->vector[11]
h_of_npointer->length = 23

0.0; /* h(-1)*/

g-of_npointer->vector[12] = -0.494623890; /* g(0)*/

g_of_npointer->vector[13] = 0.115407434; /* g(1)*/
g-of_npointer->vector[14] = 0.0; /* g(2)*/
g.of_npointer->vector(15] = 0.0; /* g(3)*/
g.of_npointer->vector{16] = 0.0; /* g(4)*/
g_of_npointer->vector[17] = 0.0; /* g(s)*/
g-of_npointer->vector[18] = 0.0; /* g(6)*/
g_of_npointer->vector[19] = 0.0; /* g(7)+/
g_of_npointer->vector[20] = 0.0; /* g(8)*/
g_of_npointer->vector[21] = 0.0; /* g(9)*/
g-of_npointer->vector[22] = 0.0; /* g(10)*/
g-of_npointer->vector[23] = 0.0; /* g(11)*/

g_of_npointer->vector[1] = 0.0; /* g( 11)x/

g_of_npointer->vector(2]
g_of_npointer->vector(3]
g-of_npointer->vector(4]
g-of_npointer->vector (5]
g_of_npointer->vector(6]

0.001077301; /* g(-10)*/
0.004777257; /» g(-9)*/

-0.000553842; /* g(-8)*/
-0.031582039; /* g(-7)*/
-0.027522866; /* g(-6)*/

143




g_of_npointer->vector[7]
g_of_npointer->vector[8]
g_of_npointer->vector[9]
g-of_npointer->vector[10]
g_of_npointer->vector[11]

0.097501606; /* g(-5)*/
0.129756868; /* g(-4)*/
~0.226264694; /* g(-3)*/
-0.315250352; /* g(-2)*/
0.751133908; /* g(-1)*/

g.of_npointer->length = 23;

phipointer->vector[1]
phipointer->vector[2]
phipointer->vector[3]
phipointer->vector[4]
phipointer->vector[5]
phipointer->vector[6]
phipointer->vector([7]
phipointer->vector (8]
phipointer->vector[9]
phipointer->vector[10]

LL I L T S T 1/ I [ I /|

0.000018901; /* phi(0)*/
0.474401220; /* phi(1)*/
0.807783651; /* phi(2)*/
~0.376153951; /* phi(3)*/
0.137747794; /* phi(4)*/
~0.024343102; /* phi(5)*/
-0.003162779; /* phi(6)*/
0.001579497; /* phi(7)*/
0.000017680; /* phi(8)*/
-0.000001908; /* phi(9)*/

phipointer->vector[11] = 0.000000002; /* phi(10)*/
phipointer->vector[12] = 0.000000001; /#* phi(i1)*/
phipointer->vector[13] = 0.0000000001; /* phi(-11)*/
phipointer->vector[14] = 0.0000000001; /* phi(-10)*/
phipointer->vector[15] = 0.0000000001; /* phi(~9)#*/
phipointer->vector[16] = 0.0000000001; /* phi(-8)*/
phipointer->vector[17] = 0.0000000001; /* phi(-7)#*/
phipointer->vector[18] = 0.0000000001; /* phi(-6)*/
phipointer->vector[19] = 0.0000000001; /* phi(-5)*/
phipointer->vector[20] = 0.0000000001; /* phi(-4)*/
phipointer->vector[21] = 0.0000000001; /* phi(-3)*/
phipointer->vector[22] = 0.0000000001; /# phi(-2)#*/
phipointer->vector[23] = 0.0000000001; /* phi(-1)%/
phipointer->leagth = 23;

}
if (wavelet_type == 8){
printf("\nThis selection not

");

currently available.

}
if (wavelet_type == 9){
printf("\nThis selection not

");

currently available.

}

if (wavelet_type == 10){
printf("\nThis selection not
1

");

currently available.

if (wavelet_type == 11){
printf("\nThis selection not

"),

currently available.

if (wavelet_type == 12){

h_of__npointer->vector[13]
h_of_npointer->vector[14]
h_of_npointer->vector[15]
h_of_npointer->vector [16)]
h_of_npointer->vector[17]
h_of_npointer->vector[18]
h_of_npointex->vector[19]
h_of_npointer->vector [20]
h_of_npointer->vector[21]
h_of_npointer->vector[22]
h_of_npointer->vector [23]
h_of_npointer->vector [24]
h_of_npointer->vector [25]
h_of_npointer->vector[1]
h_of_npointer->vector[2]
h_of_npointer->vector[3]

0.542; /* h(0)*/
0.307; /* h(1)x/
-0.035; /* h(2)%/
-0.078; /* h(3)*/
0.023; /* h(4)x/
0.030; /* h(5)*/
-0.012; /* h(6)*/
-0.013; /#* h(7)*/
0.006; /* h(8)*/
0.006; /* h(9)*/
-0.003; /* h(10)*/
-0.002; /* h(11i)*/
0.0; /* h(12)*/
0.0; /x h(-12)%/
~-0.002; /* h(-11)*/
-0.003; /% h(-10)*/

o NN n o

144




h_of_npointer->vector[4]
h_of_npointer->vector([5]
h_of_npointer->vector[6]
h_of_npointer->vector[7]
h_of_npointer->vector[8]
h_of_npointer—>vector[9]
h_of_npointer->vector[10
h_of_npointer->vector[11
h_of_npointer->vector[12

]
]
]

h_of_npointer->length = 2

g-of_npointer->vector[13]
g-of_npointer->vector[14]
g-of_npointer->vector[15]
g-of_npointer->vector[16]
g.of_npointer->vector[17]
g-of_npointer->vector[18]
g-of_npointer->vector[19]
g-of_npointer->vector[20]
g-of _npointer->vector[21]
g.of_npointer->vector[22]
g_of_npointer->vector[23]
g-of_npointer->vector[24]
g-of_npointer->vector [25]
g-of_npointer->vector[1]
g-of_npointer->vector[2]
g_of_npointer->vector[3]
g-of_npointer->vector[4]
g-of_npointer->vector (5]
g-of_npointer->vector[6]
g-of_npointer->vector[7]
g_of_npointer->vector[8]
g_of_npointer->vector[9]
g-of_npointer->vector[10]
g_of_npointer->vector[11]
g.of_npointer->vector[12]
g-of_npointer->length

phipointer->vector[1]
phipointer->vector[2]
phipointer->vector [3]
phipointer->vector[4]
phipointer->vector(5]
phipointer->vector[6]
phipointer->vector(7]
phipointer->vector (8]
phipointer->vector [9]
phipointer->vector [10]
phipointer->vector(11]
phipointer->vector [12]
phipointer->vector[13]
phipointer->vector[14]
phipointer->vector[15]
phipointer->vector[16]
phipointer->vector[17]
phipointer->vector[18]
phipointer->vector [19]
phipointer->vector [20]
phipointer->vector[21]
phipointer->vector[22]
phipointer->vector (23]

0.006; /*
0.006; /#*
-0.013; /*
-0.012; /*
0.030; /* h(-5)*/
0.023; /* h(-4)*/
-0.078; /* h(-3)*/
-0.035; /* h(-2)*/

0.307; /* h(-1 %/

h(-9)+/
h(-8)«/
h(-7)*/
h(-6)*/

5;

-0.307; /* g(0)*/
0.542; /* g(1)*/
-0.307; /* g(2)*/
-0.035; /* g(3)*/
0.078; /* g(4)*/
0.023; /* g(5)*/
-0.030; /* g(6)*/
-0.012; /% g(7)*/
0.013; /* g(8)*/
0.006; /* g(9)*/
-0.006; /* g(10)*/
-0.003; /* g(i1)*/
0.002; /* g(12)*/
0.0; /* g(-12)*/
0.0; /* g(-11)*/
0.002; /* g(-10)*/
-0.003; /* g(-9)*/
-0.006; /* g(~8)x/
0.006; /% g(-7)*/
0.013; /* g(-6)*/
-0.012; /% g(-5)*/
-0.030; /* g(-4)*/
0.023; /* g(-3)*/
0.078; /* g(-2)*/
-0.035; /* g(-1)*/

25;

0.5385; /* phi(0)*/
-0.2106; /* phi(1)%/

0.04319; /* phi(2)x/
0.01334; /* phi(3)*/
0.00738; /* phi(4)*/
-0.00324; /* phi(5)x*/
0.00030; /* phi(6)*/
~0.00012; /* phi(7)*/

0.00001; /* phi(8)*/

0.0000000001; /#* phi(9)*/
0.000000001; /* phi(10)*/
0.000000001; /* phi(11)*/
0.0000000001; /* phi(-11)#/
0.0000000001; /# phi(-10)*/
0.0000000001; /* phi(-9)*/
0.00001; /* phi(-8)#*/
-0.00012; /* phi(-7)=*/
0.00030; /* phi(-6)*/
-0.00324; /* phi(-5)*/
0.00738; /* phi(-4)#*/
0.01334; /#* phi(~3)*/
0.04319; /* phi(-2)*/
~0.02106; /* phi(-1)*/

145




phipointer->length = 23;

if (wavelet_type == 13){
printf("\nThis selection not currently available.");

3
if (wavelet_type > 13 || wavelet_type < 1)
printf("\nYou have chosen an invalid selection.");

/* THE END */

B.2.6 Listing of CONVOLVE.C

/***************************************************************************/
/**************************#************************************************/

J*%x WAVELET CONVOLUTION SUBROUTINE **/
/***************************************************************************/
/*****************************************************************#***#*****/

/* DATE: 19 June 91
VERSION: 1.0
NAME: convolve.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave”. The algorithm used is discussed in
the description of the main driver module called "main-wave.c".

Data is passed by reference from the decomposition subroutine. Data is
in ASCII format arranged in a square matrix whose dimensions are a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)
FILES WRITTEN: (Passed by reference back to the caller.)
HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: decompose.c, nrutil.c

PROGRAMS CALLED: needs nr library, libnr.a

AUTHOR: Steve Smiley and J. Stewart Laing

/HISTDRY: Initial Version.

*
/*****#*********************************************************************/
/**********#****t***********************************************************/

[REEEEEREARRRRRERRRARE R [

/* DECLARATION SECTION =*/
/R Rk Rk kA ok kokok ok kkok Kok /

#include <stdio.h>
#include "jsmacros.h"

float *vector();
float **matrix();

void free_vector();
void free_vector();
void  spconvlv();

[EREERRERR AR RRK KKK KKKk [

/* MAIN PROGRAM BODY =*/
[ FE AR Rk koK Kk kK k[

void convolve (datainpointer, h_of_npointer ,g_of_npointer, c_coefpointer,
di_coefpointer, d2_coefpointer, d3_coefpointer)
float_array *datainpointer;
float_vector *h_of_npointer, *g_of_npointer;

float_array *c_coefpointer,*di_coefpointer,*d2_coefpointer,*d3_coefpointer;

{

146




/R koo ROk Rk Kk

/* declare variables */
] xRk kR Rk kR ko & [

int i, j;

float_vector rowin,rowout,colin,colout,response;
float_array temp;

FILE *outfile;

char filename[64];

[k kokk kR koK [

/% allocate memory */
ey

temp.array = matrix(1, datainpointer->ROW, 1, datainpointer->COL);
loopij(datainpointer->ROW,datainpointer->COL) temp.arrayl[i+1][j+1] = 0.0;
rowin.vector = vector(1,2*datainpointer->COL);
loopi(2*datainpointer->COL) rowin.vector[i+1] = 0.0;
rowout.vector = vector(1l,4xdatainpointer->COL);
loopi(datainpointer->COL#4) rowout.vector[i+1] = 0.0;

colin.vector = vector(l,2*datainpointexr->ROW);
loopi(2*datainpointer->ROW) colin.vector[i+i] = 0.0;

colout.vector = vector(1,4*datainpointer->ROW);
loopi(datainpointer->R0OW*4) colout.vector[i+i] = 0.0;
response.vector = vector(1,2*datainpointer->ROW);
loopi(datainpointer->ROW*2) response.vector[i+1] = 0.0;
rowin.length = 2*datainpointer->COL;

colin.length = 2#datainpointexr->ROW;

[k AR KRR [

/* perform convolution */

[ Aok Aok ke ok ok ok ok ok ko ok ok ok ko ok [

printf("\nConvovling rows with h(-n)...");
loopi(datainpointer~>ROW){ /* convolve rows with h(-n) */
loopj(datainpointer->ROW*2){
response.vector[j+1] = h_of_npointer->vector[j+1];

}
loopj(datainpointer->COL) rowin.vector[j+1] = datainpointer->arrayli+1][j+1];
spconvlv(rowin.vector ,rowin.length,response.vector ,h_of_npointer->length,1,
rowout.vector);
loopj(datainpointer->COL/2) temp.array[i+i][j+1] = rowout.vector[2*(j+1)];
} /* downsample by selectiny even cols */

printf("\nConvovling cols with h(-n)...");
loopi(datainpointer->COL/2}{ /* convolve cols with h(-n) »/
loopj(datainpointer->ROW*2)
response.vector[j+1] = h_of_npointer->vector[j+1];
loopj(datainpointer->ROW) colin.vector(j+1] = temp.array[j+1][i+1];
spconvlv(colin.vector,colin.length,response.vector,h_of_npointer->length,1,
colout.vector);
loopj(datainpointexr->ROW/2) c_coefpointer->array[j+11[1+1] = colout.vector[2x(j+1)];
} /* downsample by selecting even rows */

printf("\nConvovling cols with g(-n)...");
loopi(datainpointer->COL/2){ /* convolve cols with g(-n) */
loopj(datainpointer->ROW*2)
response.vector[j+1] = g_of_npointer->vector[j+1];
loopj(datainpointer->ROW) colin.vector[j+1] = temp.array(j+1][i+1];
spconvlv(colin.vector,colin.length,response.vector,g_of_npointer->length,1,
colout.vector);




loopj(datainpointer->ROW/2) d1_coefpointer->array[j+11[i+1] = colout.vector[2+(j+1)];
}

printf ("\nConvovling rows with g(-n)...");
loopi(datainpointer->ROW){ /* convolve rows with g(-n) */

loopj(datainpointer->ROWs2)
response.vector[j+1] = g_of_npointer->vector([j+1];
loopj (datainpointer->COL) rowin.vector[j+1] = datainpointer->arrayli+1][j+1];
spcenvlv(rowin.vector,rowin.length,response.vector,g_of _npoirter—>length,1,
rowout.vector);
loopj(datainpointex->COL/2) temp.arrayl[i+1][j+1] = rowout.vector[2*(j+1)];
}

printf ("\nConvovling cols with h(-n)...");
loopi(datainpointer->C0OL/2){ /* convolve cols with h(-n) */

loopj(datainpointex->ROW*2)
response.vector [j+1] = h_of_npointer->vector[j+1];
loopj(datainpointer->ROW) colin.vector[j+1] = temp.array[j+1][i+1];
spconvlv(colin.vector,colin.length,response.vector,h_of_npointer->length,1,
colout.vector);
loopj(datainpointer->ROW/2) d2_coefpointer->array[j+1][i+1] = colout.vector[2+(j+1)];
}

printf("\nConvovling cols with g(-n)...");
loopi(datainpointer->COL/2){ /* convolve cols with g(-n) */

loopj(datainpointer~->ROW*2)
response.vector [j+1] = g_of_npointer->vector[j+1];
loopj(datainpointer->ROW) colin.vector[j+1] = temp.array[j+1][i+1];
spconvlv(colin.vector,colin.length,response.vector,g_of_npointer—>length,1,
colout.vector);
loopj(datainpointer->ROW/2) d3_coefpointer->array[j+1][i+1] = colout.vector[2*(j+1)];
}

/* reset row and col indeces. */

c_coefpointer->ROW = datainpointer->ROW/2;
c_coefpointer->COL = datainpointer->COL/2;

di_coefpointer->ROW
d1_coefpointer->COL
d2_coefpointer->ROW
d2_coefpointer->COL
d3_coefpointer->ROW
d3_coefpointer->COL

datainpointer->ROW/2;
datainpointer->COL/2;
datainpointer->ROW/2;
datainpointer~>COL/2;
datainpointer->ROW/2;
datainpointer->COL/2;

/* free memory */

free_matrix(temp.array, 1, datainpointer->ROW, 1,
datainpointer->COL);

free_vector (rowin.vector,1,2*datainpointer->ROW);
free_vector (rowout.vector,i,4*datainpointexr->ROW);
free_vector (colin.vector,1,2*datainpointer->ROW);
free_vector (colout.vector,1,4*datainpointexr->ROW);
free_vector (response.vector,1,2*datainpointer->ROU);

4* THE END */

B.2.7 Listing of RECONVOLVE.C

/#***********#t**#**t#***********#***t*#*#**1*#*tt#**##***#**ttt#*t**ttt###t/

148




/**************************************************************************4/

[/ ¥x* WAVELET RECONVOLUTION SUBRUUTINE xx/
J R ARk AR R Ao n A ok R Ao A AR oK AR KKK AR Ak kR KR ok Rk Ok R KAk k KRk o

/***************************************************************************/
/* DATE: 2 July 91

VERSION: 1.0
NAME: reconvolve.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing prograu called "wave2". The algorithm used is referenced in
the description of the main driver module called "main-wave.c.

Data is passed by reference from the reconstruction subroutine. Data is
in ascii format arranged in a square matrix whose dimensions are a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numeric
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)
FILES WRITTEN: NONE (Passed by reference back to the caller.
HEADERS USED: <stdio.h>, "jsmacros.h"
CALLING PROGRAMS: reconstruct.c
PROGRAMS CALLED: NONE
AUTHOR: Steve Smiley and J. Stewart Laing

*/HISTORY: Initial Version.

L T T T L T Ty T D A Y T L1 74
£ T T T I T T I T T T Ty

[ R Rk kR kR ok [

/* DECLARATION SECTION x*/
[REEEREREREREAEERRKEKRRERE [

#include <stdio.h>
#include "jsmacros.h"

float *vector();
float **matrix();
void free_vector();
void free_matrix();

[REERRERERERRERRRRRRERRSE [

/* MAIN PROGRAM BODY =*/
[HERRERERRERRKERREARKRNE [

void reconvolve(dataoutpointer,h_of_npointer,g_of_npointer,c_coefpointer,
di_coefpointer, d2_coefpointer, d3_coefpointer)
float_array *dataoutpointer;
float_vector *h_of_npointer, *g_of_npointer;
float_array =*c_coefpointer,*di_coefpointer,*d2_coefpointer,*d3_coefpointer;

[RERERREERERRRAKEKERERER K]
/* declare variables x/

JHREREERRAER R R RERR LA R K[

int i, 3;

float_vector rowin,rowout,colin,colout, response;
float_array temp,templ,temp2,temp3,temp4;

char filename(64];

FILE soutfile;

VALIITTIZIEE TSN LTS LY

/* allocate memory */
[EREEEERRREESRERRERNR ]

temp.ROW = c_coefpointer->ROW*2;

temp.COL = c_coefpointer->COL*2;

temp.array = matrix(1, temp.ROW, 1, temp.COL);
loopij(temp.RO¥,temp.COL) temp.array(i+1](j+1] = 0.0;

149




templ .ROW = c_coefpointer->ROW*2;
temp1.COL = c_coefpointer->COL*2;
templ.array = matrix(1, tempi.ROW, 1, temp1.COL);

loopij(templ.ROW,temp1.COL) templ.array[i+1][(j+1] = 0.0;
temp2.ROW = c_coefpointer->ROW*2;

temp2.COL = c_coefpointer->COL*2;

temp2.array = matrix(1, temp2.ROW, 1, temp2.COL);
loopij(temp2.ROW,temp2.COL) temp2.arrayl[i+1][j+1] = 0.0;
temp3.ROW = c_coefpointer—>ROWs2;

temp3.COL = c_coefpointer—>COL*2;

temp3.array = matrix(1, temp3.ROW, 1, temp3.COL);
loopij(temp3.ROW,temp3.COL) temp3.arrayli+1](j+1] = 0.0;
temp4.ROW = c_coefpointer->ROW»2;

temp4.COL = c_coefpointer—->COL#2;

temp4.array = matrix(1, temp4.ROW, 1, temp4.COL);
loopij(temp4.ROW,temp4.COL) temp4.arrayli+1][j+1] = 0.0;

rowin.vector = vector(i,temp.ROW*2);
loopi(temp.ROK*2) rowin.vector[i+1] = 0.0;
rowout.vector = vector(1,temp.ROW*4);
loopi(temp.ROW#4) rowout.vector[i+1] = 0.0;
colin.vector = vector(1,temp.COL*2);
loopi(temp.COL+2) colin.vector{i+i] = 0.0;
colout.vector = vector(1,4*temp.COL);
loopi(temp.COL#4) colout.vector[i+1] = 0.0;
response.vector = vector(1,temp.COL#2);
loopi(temp.COL#2) response.vector[i+1] = 0.0;
rowin.length = 4*c_coefpointer->COL;
colin.length = 4+*c_coefpointer->ROW;
dataoutpointer->ROW = c_coefpointer->ROW*2;
dataoutpointer->COL = c_coefpointer->COL*2;
PRI 2222 BT bl L P P e Y

/* perform convolution */
P T I T T YT Y)

printf("\nConvovling cols of c_coef with h(n)...");
loopi(c_coefpointer->COL){
loopj(c_coefpointer->ROW)
colin.vector[2+(j+1)] = c_coefpointer->array(j+1][i+1];
loopj(colin.length)
response.vector [j+1]=h_of_npointer->vector[j+1];
spconvlv(colin.vector,colin.length,response.vector,
h_of_npointer->length,1,colout.vector);
loopj(c_coefpointer->ROKs2)
tempi.array{j+1][i+1] = colout.vector[j+1];
} /* zeros are added between each row before convolution */

printf("\nCoavovling cols of di_coef with g(n)...");
loopi(di_coefpointer->COL){
loopj(di_coefpointer->RO¥) colin.vector[2¢(j+1)] =
d1_coefpointer->array[j+1](i+1];
loopj(colin.length)
response.vector[j+1]=g_of_npointer->vector[j+1];
spconvlv(colin.vector,colin.length,response.vector.
g_of_npointer->1ength,1.colout.vector);
loopj(di_coefpointer->RO¥s2) temp2.array[j+1][i+i) = colout.vector[j+i];
} /* zeros are added between each rou before convolution ¢/

printf("\nConvovling cols of d2_coef with h(n)...");
loopi(d2_coefpointer->COL){
loopj(d2_coefpointer->RO¥) colin.vector{2¢(j+1)] =
d2_coefpointer->array{j+1](i+1];
loopj(colin.length)



response.vector [j+1]=h_of__npointer->vector[j+1];
spconvlv(colin.vector,col’n.length,response.vector,

h_of_npointer->1ength,1,colout.vector);
loopj(d2_coefpointer->ROW*2)

temp3.array[j+1] [i+1] = colout.vectexr[j+1];
} /* zeros are added between each row before convolution */

printf ("\nConvovling cols of d3_coef with g(n)...");
loopi(d3_coefpointer->COL){
loopj(d3_coefpointer->ROW. colin.vector[2*(j+1)] =
d3_c-.¢ fpointer->array[j+1] [i+1];
loopj(colin.length)
response.vector [j+1]=g_of_npointer->vector[j+1];
spconvlv(colin.vector,colin.length,response.vector,
g_of_npointer->length,1,colout.vector);
loopj(d3_coefpointer->ROW*2)
temp4.array[j+1] [i+1] = colout.vector[j+1];
} /* zeros are added between eack row before convolution */

/* Add temp arrays for col convolutions */

1oopij(temp ROW, temp.COL)

temp.array{i+1][j+1] = templ.array[i+1]1[j+1] + temp2.array[i+1][j+1];
loopij(templ.ROW, tempi.COL)

tewpl.array[i+1][j+1] = temp3.array[i+1][j+1] +

temp4.array[i+1] [j+1];

/* sprintf(filename, "temp");

CREATE_FILE(outfile, filename, "The Wavelet Analyzer")

loopi(dataoutpointer->R0OW/2)

fprintf(outfile, "%f\n", temp.array[i+1][128]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, “tempi);
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopi(dataoutpointer~>ROW/2)

fprintf(outfile, "%f\n", templ.array[i+1][128]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile) */

printf("\nConvovling rows with h(n)...");

loopi(dataoutpointer->ROW){
loopj(dataoutpointer->COL/2) rowin.vector[2*(j+1)] = temp.arrayl[i+1][j+1];
loopj(rowin.length) response.vector[j+1]=h_of_npointer->vector[j+1];
spconvlv(rowin.vector,rowin.length,response.vector,

h_of_npointer->length,1,rowout.vector);

loopj(dataoutpointer->ROW) temp2.array(i+1][j+1] = rowout.vector[j+1l;
} /* zeros are added between each col before convolution */

printf ("\nConvovling rows with g(n)...");

loopi(dataoutpcinter->ROW){
loopj(dataoutpointer->COL/2) rowin.vector[2*(j+1)] = templ.arrayl[i+1][j+1];
loopj(colin.length) response.vector[j+1]=g_of_npointer->vector[j+1];
spconvlv(rowln.vector,rowin.length,response.vector,

g.of_npointer->length,1,rowount.vector);

loopj(dataoutpointer->RON) temp3.array[i+1][j+1] = rowout.vectoxr[j+1];
} /* zeros are added between each row before convolution */

/* sprintf(filename, "temp2");
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopi(dataoutpointer->ROW)

fprintf(outfile, "%f\n", temp2.arrayl[i+1][128]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, "temp3");

CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopi(datacutpointer->ROW)




fprintf(outfile, "%f\n", temp3.arrayf{i+1][128]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outiile) */

/* Add temp arrays to get resulting dataout */

loopij(dataoutpointer->ROW,dataoutpeinter~>C0OL)
dataoutpointer->array[i+1]1[j+1] = temp2.array[i+1]1[j+1] +
temp3.arrayl[i+1][j+1];
/* sprintf(filename, "dataout");
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopi(dataoutpointer->ROW)
fprintf(outfile, "%f\n", dataoutpointer->array[i+1][128]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile) */

/*loopij(datacutpointer->ROW,dataoutpointer->COL)
printi ("dataoutpointer->array[%dl [Udl=%f\n",i+1,j+1,
dataoutpointer->array[i+1] [j+1]);%/

/* reset row and col indeces. */

di_coefpointer->ROW = dataoutpointer->ROW;
d1_coefpointer->COL = dataoutpointer->COL;
d2_coefpointer->ROW = dataoutpointer->ROW;
d2_coefpointer->COL = dataoutpointer->COL;
d3_coefpointer->ROW = dataoutpointer->ROW;
d3_coefpointer->COL = dataoutpointer->COL;

/* free memory */

free_matrix(temp.array, 1, c_coefpointer->ROW*2, 1,c_coefpointer->COL);
free_matrix(templ.array, 1, c_coefpointer->ROW*2, 1,c_coefpointer->COL);
free_matrix(temp2.array, 1, c_coefpointer->ROW*2, 1,c_coefpointer->COL);
free_matrix(temp3.array, 1, c_coefpointer->ROW¥2, 1,c_coefpointer->COL);
free_matrix(temp4.array, 1, c_coefpointer->ROW*2, 1,c_coefpointer->COL);
free_vector(rowin.vector, 1, 4*dataoutpointer->COL);
free_vector(rowout.vector, 1, 8*dataoutpointer->COL);
free_vector(colin.vector, 1, 4*dataoutpoiny er->COL);
free_vector(colout.vector, 1, 8*dataoutpointer->COL);

3

B.2.8 Listing of SPCONVLV.C

7R AR Ao o AR KK R ok ok ok ok Kok ok ok ok KR KK A KK KKk ok R ok ok ok sk ko ok ok ok ok ok ok
[ Aok A ook o ok oo ok Sk OK A Ak Ao ok K ok o sk ok Aok ok ok ok Ak ok ook ok koK ko ok /

YALLS WAVELET SPACIAL CONVOLUTION SUBROUTINE *x/
JHF R Rk Aok kR R R R AR OR R R KRR R R kR Rk Rk Aok Ak Rk ko
L R T T T L R —
/* DATE: 26 July 91

VERSION: 1.0
NAME: spconvlv.c

DESCRIPTION: This subroutine will do a convolution of two time
signals in the time domain by means of a shift-multiply-sum method.

This program intended use is to replace the convlv() subroutine
now being used in the wavelet convolve.c and reconvolve.c portions
of the wave2 pr~gram.

FILES READ: NONE (Passed by reference from the caller.)
FILES WRITTEN: (Passed by reference back to the caller.)
HEADERS USED: <stdio.h>", "jsmacros.h"

CALLING PROGRAMS: decompose.c

PROGRAMS CALLED: nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing

152




/HISTORY: Initial Version.
*

/3o e sk ok o ok s s sk o ok o ok sk ok ok SRR R ok K o o KoK K K o ook o Kok o ok ok ok ok K sk Kok K Kok koK f
7Rl ook o A KK o R R KKK Rk oK oK Kok o R K R ks ok ok ok sk ok kiR ook ok ok Aok ek ok ok ok /

[ FRAk Rk Rk ok o ko ok ok

/* DECLARATION SECTION =/
J Rk sk ok oKk Kok ok ok ok sk ok ok /

#include <gtdio.h>
#include "jsmacros.h”

float *vector();
void free_vector();
void free_vector();

[ F Aok sk skokok ok sk kok ok kR Kok /

/* MAIN PROGRAM BODY =%/
/o sk ook e ok ook ok ok ok ok ok o ok ok ok ok /

void spconvlv (input, input_length, filter, filter_length ,dumby,output)
float *input, *output, *filter;
int input_length, filter_length, dumby;

{

/Ao sk ks sk ok ok ok ok /

/* declare variables */

[ Aok dkok ok sk ok ok ok kokkokk ok ok [/

int i) j;

float *temp, *temp2;

/e ke ek e o ok ok sk ks ko ok ok ok /

/* allocate memory */
/R R R AR AR AR AR K [

CREATE_FLOAT_VECTOR(temp,1,2%input_length);
loopii(2+*input_length) temp[i] = 0.0;
CREATE_FLOAT_VECTOR(temp2,1,2*input_length);
loopli(2*input_length) temp2[i] = 0.0;

[ RF AR AR A AR AR AR RAAK KA A AAKK K [

./* diagnostic print statements */
/33K s ok ok oo s ok ok ok o ok e sk ook ko ok sk sk ok ok ke ok f

/* printf("\n filter length is %d", filter_length);

printf("\n input length is %d", input_length); */
loopii(2+*input_length)
output[i] = 0.0;

[ FRRkok ok kR kR k ok ok Rk ke kk [

/* load first level coefficients */
/03 ok o o ok ok e ok o ok ok ko ok ok ok ok ok ok ok ok ok ok K KoKk /

loopli(input_length/2)}{
temp[i + filter_length -1] = input[i];

/*printf("\n i= %d, templi + filter_length/2] = %f", i, temp[i + filter_length/2]); */
}

/*****************************************************/
/* £ill in both ends of vector with flip of image */
P T R P L T L P T T 2 L L2 T4
loopti(filter_length ~1){
temp[filter_length - 1] = temp[filter_length + 1];
temp[filter_%ength -1 + input_length/2 + i] = temp[filter_length -1 + input_length/2 - 1];

/A ok ok e ko ok ok ok koo ok o ko ok ok ok ok ok ok ok ok k

153




/* convolution of signal */
[FEFREAEFF AR AR A AR AR AR A KR [

loopii(input_length/2 + filtexr_length -1){
looplj(filter_length)
temp2[i] += templi+j-1]*filter[jl;
3

/A ko ok ook ok sk ok sk ek ke R A koK ok sk ok ok ok ok kR Rk ok ok /
/* load proper convolution coefficients */
[ AR e R R ok o o ook ok e sk sk s ok ok ek ok ol ke Ak ok ok ok ok ok ok sk ok sk ok /

loop1i(input_length/2)
output[i] = temp2[filter_length/2 + il;

free_vector(temp,1,2*input_length);
free_vector(temp2,1,2*input_leugth);

/* printf("\n i = %d,output=%f",i, output[il); */
}

B.2.9 Listing of NRUTIL.C (See Appendix F.2) [35]
B.2.10 Listing of JSMACROS.H (See Appendix F.2)
B.2.11 Listing of STEWMATH.H (See Appendix F.2)

B.2.12 Listing of MAKEFILE

# Makefile routine for the wave2 program by Laing and Smiley.

DEFLAGS = -g

0BJS = main-wave.o loadimage.o filters.o convolve.o spconvlv.o\
decompose.o reconstruct.o reconvolve.o nrutil.o

spwave2: $(0BJS)
Qecho "linking ..."
cc $(0BIS) ~o wave2 $(DEFLAGS) -1m

main-wave.o: main-wave.c
cc —-c¢ $(DEFLAGS) main-wave.c

loadimage.o: loadimage.c
cc ~¢ $(DEFLAGS) loadimage.c

filters.o: filters.c
cc -c $(DEFLAGS) filters.c

spconvlv.o: spconvlv.c
cc -c $(DEFLAGS) spconvlv.c

convolve.o: convolve.c
cc —c $(DEFLAGS) convolve.c

reconvolve.o: reconvolve.c
cc -¢ $(DEFLAGS) reconvolve.c

decompose.o: decompose.c
cc ~c $(DEFLAGS) decompvs.: -

resonstruct.o: reconstradt.c
cc -¢ $(DEFLAGS) reconstruct.c

nrutil.0: nrutil.c
cc -c¢ $(DEFLAGS) nrutil.c

154




B.3

«:P-

10.

11.

1D System Description

The following is a list of functions which comprise the wavel program.

. main_wavel.c - The main driver program for wave.

loadsignal.c- A routine to load the input signal irom an ascii data file.
decomposel.c - A routine that controls the decomposition.
reconstructil.c - A routine that controls the reconstruction.

filters.c- A routine that provides the coefficient values of the h(n) and g(n) response

functions (See Appendix B.2 for listing).
convolvel.c - A routine that controls the convolutions for decomposition.
reconvolvel.c - A routine that controls the convolutions for reconstruction.

spconvlv.c - A routine that performs the spatial convolutions (See Appendix B.2 for

listing).

. makefile - A makefile that is used to compile and link the source code to make an

executable file.

jsmacros.h- An include file that contains macros we found useful in our programming
environment. This file must be present in the directory where compilation takes place

(See Appendix F.2 for listing).

stewmath.h - An include file containing some math routines specific to our program.
It must be present in the directory where complilation takes place (See Appendix F.2

for listing).

nrutil.c - Source code that contains utility macros for dynamic memory allocation

(See Appendix F.2 for listing).

Typing “make” at the command prompt in any directory with all of the above files present

will create the appropriate object code and an executable file called wave! that may be




executed by typing “wavel” at the command prompt.

The intended input to the program is a 1D signal in raw ascii format in which each
sample of the signal is stored in a file, one number per line. For example, a signal that is
512 samples will consist of 512 lines each with one decimal intcger number representing the
value of that sample. The output of the program are ascii files representing the scale and
detail wavelet coeflicients in floating point format. For an in depth explanation of the these
coefficients and the algorithm, see the author’s theses. The algorithm implemented in this
program is taken from a paper by Stephan Mallat. The paper is referenced in the author’s
theses. Be aware that we found some printing mistakes in the paper which are addressed
in our theses. The program was developed on Sun sparcstation 2’s. But, it should compile
on any system with an ansi standard C compiler. To compile the program, type “make”
at the command prompt with the default directory set to the current directory. Object
files will then be created and linked into an executable file called “wave!”. Then to run
the program, type “wavel” at the command prompt. A menu should appear first with four
choices. If not done at the command line entry into the program, a file must be loaded from
the current directory before either decomposition or reconstruction can be executed. Once a
file is loaded the Decomposition can be selected. Then the Reconstruction can be selected.
The Reconstruction portion depends on files generated by the Decomposition portion. But,
it is not necessary to run the Decomposition during the same session as the Reconstruction
as long as the Decompostion was run in a prior session and the files still reside in the current
directory. An alternate way to start the program is to type “wavcI” followed by the name
of the input file and its size. The size of the input file must be a power of two. At this time
the largest file used is a 512 sampled signal. It is possible to specify the path to an input
file that is not in the current directory either relative to the current directory or absolutely
from the root. However, if this is done, the output files will be sent to that same directory.

The usage of wavel is as follows:

command prompt: wavel [infilename] [size]

156




The infilename and size are optional but if the infilename is given its size along one
dimension of the power of two sampled signal must be given as well. Also, only oune file may

be input in any one session.

This fact is not obvious from the program menu, so be aware. If you try to select the
Load signal option from the main menu after you have already loaded a file, tlie result has not
been fully characterized. In other words, w. haven’t tried to figure out what would happen.

This menu option is provided as an alternative to specifying the file on the command line.

The filters available are presently limited to the some of the Daubechies wavelets and
the Cubic Spline wavelet. But it is a simple process to add new filters to the filters.c program
in the same fasion as those already included. To generate the H and G filters, see our theses

for references.

B.4 1D Multiresolution Wavelet Analysis Software
B.4.1 Listing of MAIN-WAVE1.C

/***************************************************************************/
/***************************************************************************/

/xEx WAVELET ANALYZER MAIN PROGRAM DRIVER *x/
P e L e e Y

JHRR Rk ok Rk ks ok Rk Rk ko ok kA ook sk ok ARk ok ok ok Kok ko kA ok ok ok ok o ok ok /
/¥ DATE: 09 April 91, 18 June 91, 16 August 91

VERSION: 3.0
NAME: main-wavel.c

DESCRIPTION: This program performs a multiresolution wavelet analysis
of an input signal with a wavelet from its internal library chosen
interactively by the user. It handles the menu interface with the

user and drives the subroutines that take input, analyze, produce
output. The the wavelet decomposition algorithm is a pyramid algorithm
proposed by Stephan Mallat in "A Theory for Multiresolution Signal
Decomposition: The Wavelet Representation", published in IEEE Trams.
on Pattern Anal. and Machine Intel. July 89. The algorithm uses a pair
of mirror filters derived from the scaling function, phi(x). The user
may enter the intended input signal file from the command line following
the calling command ’wavel’ or the user may wait to be prompted for
the input file name and size after starting the program with the same
command .

FILES READ: NONE (A subroutine reads the input files.)

FILES WRITTEN: NONE (Subroutines write out the saved data in files.)
HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: signalload.c, reconstructl.c, decomposel.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version; adapted from phivi.c and haarvi.c

157




Version 2.0 was a rewrite to change the basic algorithm from using

inner products to using the Mallat algorithm referenced above.

Version 3.0 adapted the two dimensional program for one

dimensional signals.
*/
/***************************************************************************/
A e L S e L It 2L

/A ARk A KRR ARk

/* DECLARATION SECTION */
A I P TR P T L

#include <stdio.h>
#include "jsmacros.h"
#include "stewmath.h"

int_vector  loadsignal();
void reconstruct();
void decompose() ;

P e LY

/* MAIN PROGRAM BODY */
JATT I 21 TE R PR T T Y

void main(arge, argv)
int argc;
char *axrgv[];
/oK skeok ok ok ok ok ok ok kK ok ko ok ok ok f

/* initialize variables */
//F Ak ok Ak ok ok ok ok koK ok kR ok ok /

int selection;

int_vector signal, *signalpointer = &signal;
char filename[64] ;

[ ARk ok ok KRk sk kR Kk ok ok ok ok kR Rk f

/* load image to be analyzed */

[FRRAEAAA KA AA AR A K AAR KA AR AKRERTHK [

if(arge !'= 3 && argec !'= 1){
printf("Usage: wavel <filename> <# of Samples>\n");
;xit(o);

if(arge == 3){
signal = loadsignal(filename, argc, argv);
/*printi("returned from loadimage”); fflush(stdout);*/

do {

/R AR KKK ok kKKK ok ok ok kR kR Ak ok f
/* display menu */
[ R AR ARk KRR KR KAk ARk Aok ok [

printf("\n\n MAIN MENU\n\n");

printf (" 1 = Load a new signal from disk.\n");
printf(" 2 = Perform Wavelet Decomposition.\n");
printf(" 3 = Perform Wavelet Reconstruction.\n");
printf(" 4 = Exit Program.\n\n");

printf(" Enter an integer (1-4):");
scanf ("%d", &selection);

if (selection == 4) break; /* Quit program */

arge = 1;

if (selection == 1) signal = loadsignal(filename, argc, argv);
else if (selection == 2) decompose(signalpointer, filename);
else if (selection == 3) reconstruct(signalpointer,

158




filename);

else {
printf (" \n\n Just enter an integer from i to 4 and");
printf("press return. \n");

} while (selection i= 4);
{* THE END */

B.J.2 Listing of LOADSIGNAL.C

[ AR AR Ao AR AR A AR A AR AR R kKo K ARk Kok AR K Kok kR Aok kK k
Ao RS o kA Aok Ak o A Ao o o ok Aok o o ok A oKk A A KK o R AR ok ko ok oKk f

[H%x WAVELET ANALYZER LOADIMAGE ROUTINE **/
/***************************************************************************/
/At oo s ook ok o ook e o sk sk ook o ook ok ok koK Aok R Aok ok Ao ook kAR R ok KRR Rk ok ok ok ok /
/* DATE: 10 April 91, 16 August 91

VERSION: 2.0
NAME: 1loadsignal.c

DESCRIPTION: This routine loads an signal into an vector whose name is
specified by the user interactively. It is intended to be used as a
subroutine for the wavel program.

FILES READ: One file specified by the user.

FILES WRITTEN: NONE

HEADERS USED: <stdio.h>, <stdlib.h>, "jsmacros.h"

CALLING PROGRAMS: main-wavel.c

PROGRAMS CALLED: nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Version 1.1 was changed to accept square matrices

only.

Version 2.0 changed the two dimensional program to

accept only one dimensional signals. The new

gﬁgcutable is called wavel vs wave2 for tha old
*/ ’
/***************************************************************************/
/*************t*************************************************************/

JHRRE AT [

/* DECLARATION SECTION =/
[HREERREE ARk EREEERRERRKEK [

#include <stdio.h>
#include "jsmacros.h"
int *ivector();
void free_ivector();

HEFARETA AR AR R kKRR k[

/* FUNCTION BODY */
[REREREREA KT KR EREE KR KKK K]

int_vector loadsignal(infilename, argc, argv)
char *infilename[64];
int arge;
char *argv([];

[REERREERRREREEARRARKERER [
/* initialize variables */
JHEERRRRERFRRRRE KRR IR KR [
int i,j;

FILE *infile;

159




int_vector signal;

[ Aok Aok ok R o KK oKk ok Kok ok &Rk koK ok sk kR ok ok ok /

/* create vector to hold the incoming signal */

[ AR A A AR A Aok AR A A AR AOR Ak R ARk ok [

if (argc == 1){
printf("\n\n Input filename of singal to be analyzed:");
scanf("%s", infilename);
printf("\n\n Input the number of Samples in the signal");
printf("\n data fiie. (The number must a power of 2):");
scanf(")d", &signal.length,;

}
else {
sprintf(infilename, "Ys", argv[1]);
sscanf (argv[2], "/d", &signal.length);
}

signal.vector = ivector(i, signal.length);

i L s e T Y
/* load signal to be analyzed */
J ARk ok ok ok ok ko Aok R oKk ok Kok ok ok

OPEN_FILE (infile, infilename, "The wavelet analyzer");
loopii(signal.length)
fscanf(infile,"%d", &signal.vector[il);
CLOSE_FILE (i, infilename, "The Wavelet analyzer", infile)
printf("\n ** The signal ’%s has been loaded for processing. **\n\n\n",
infilename);
return signal;

B.4.8 Listing of DECOMPOSE1.C

/********************************#******************************************/
/***************************************************************************/

[*%% WAVELET DECOMPOSITION SUBROUTINE **/
[ AR AAAAAAAAA A A AR A A AR AR A AR R AR AR A AR A AR A A KRRk [
i it L R S T P T P PP e e Y
/* DATE: 19 June 91, 16 August 91

VERSION: 2.0
NAME: decomposel.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called 'wavel'. The algorithm used is discussed in
the description of the main driver module called "main-wavel.c".
Data is passed by reference from the main driver module. The data is
in ascii format arranged in a vector whose dimension is a

power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: Two coefficient files at each level of analysis.
The file names begin with the input signal filename

and end with an extension of the form ".nX" where
n is an integer that represents the level, X is one

of the letters ’c’ or ’d’ to represent phi
or psi coefficients respectively.

HEADERS USED:  <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: main-wavel.c

PROGRAMS CALLED: convolvel.c, filters.c, nrutil.c
AUTHOR: Steve Smiley and J. Stewart Laing

160




HISTORY: Initial Version. . .
Version 2.0 no longer uses the Fourier domain filtering. Now

only spatial convolution is done. Alsc, this version was

adapted from the two dimensional version 1.0.
*/
/***************************************************************************/
AR Ao ook S Koo K K S R S oK S kKRS K KK AR o Rk o ok o ok o o s ok sk ok o o ok ok ok K okok [

[/ Aok sk o ok ok o ook o ko ok koK o o ok /

/* DECLARATION SECTION */
JAFRRRIA ARk Kk ok Kk ok Kk [

#include <stdio.h>
#include "jsmacros.h"

void convolve();
void filters();
float *vector();
void free_vector();
int *ivector();

/Ao sk ok ok sk ok ook ook Aok ok sk Aokok ok [

/* MAIN PROGRAM BODY #/
[ AR ok dok ok sk ok ok Rk kK [

void decompose(signalpointer, infilename)
int_vector *signalpointer;
char infilename(];

[ Ak ko ok ek ok ok ok ook ok Kok ok k /

/* declare variables */

[ AR ARk Rk ok Aok ok Rk k&

int i, j, k, maxlevel, wavelet_type;

float_vector h_of_n, h_of_nflipo, g_of_n, g_of_nflipo, phi, phiflipo;
float_vector phiflipc, *phiflipcpointer = &phiflipc;

float_vector *h_of_npointer = &h_of_n, *h_of_nflipopointer = &h_of_nflipo;
float_vector #*g_of_npointer = &g_of_n, *g_of_nflipopointer = &g_of_nflipo;
float_vector *phipointer = &phi, *phiflipopointer = &phiflipo;
float_vector c_coef, d_coef;

float_vector *c_coefpointer= &c_coef,*d_coefpointer= &d_coef;
float_vector temp, *temppointer = &temp;

FILE *outfile;

char filename[64], wave_code[64];

int_vector newsignal, *newsignalpointer = &newsignal;

[ ARk kK kR kR Rk % [

/* allocate memory */

[k ok ko ok ok ok koK ok kok Aok K Kk ok [

temp.length = signalpointer->length;

temp.vector = vector(1, temp.length);
loopii(temp.length) .emp.vector[i] = 0.0;

c_coef.length = signalpointer~>length;

c_coef.vector = vector(1, c_coef.length);
loopii(c_coef.length) c_coef.vector{i] = 0.0;
d_coef.length = signalpointer->length;

d_coef.vector = vector(1, d_coef.length);
loopli(d_coef.length) d_coef.vector[i] = 0.0;
newsignal.length = signalpointer->length;
newsignal.vector = ivector(1, newsignal.length);
loopli(newsignal.length) newsignal.vector[i] = 0;
h_of_n.vector = vector(1,signalpointer->length*2);
loopii(signalpointer->length*2) h_of_n.vector[i} = 0.0;
g_of_n.vector = vector(1,signalpointer->length*2);
loopii(signalpointer->length*2) g_of_n.vector(i] = 0.0;
h_of_nflipo.vector = vector(1,signalpointer->length*2);
loopii(signalpointer->length*2) h_of_nflipo.vector[i] = 0.0;
g_of_nflipo.vector = vector(1,signalpointer->length#*2);

161




loopili(signalpointer->length*2) g_of_nflipo.vector(i] = 0.0;
phi.vector = vector(1,2*signalpointer->length);
loopli(signalpointer->length#2) phi.vector[i] = 0.0;
phiflipo vector = vector(1,2*signalpointer->length);
loopii(signalpointer->length*2) phiflipo.vector[i] = 0.0;
phiflipc.vector = vector(1,2*signalpointer->length);
loopii(signalpointer->length*2) phiflipc.vector[i] = 0.0;
[HAAAA R AR AR ATAAAAKAAA AR AAAAAA KA [

/* display menu */

[k kKA Ak Aok kKR kR kokok ok Kok kK Kk [

printf("\n\n DECOMPOSITION MENU\n\n");

printf(" 1 = Piece-wise Constant.(N/A)\n");
printf(" 2 = Piece-wise Linear.(N/A)\n");
printf (" 3 = Daubechies N=2.\n");
print£(" 4 = Daubechies N=3.\n");
printf(" 5 = Daubechies N=4.\n");
printf(" 6 = Daubechies N=5.\n");

printf (" 7 = Daubechies N=6.\n");
printf(" 8 = Daubechies N=7.\n");
printf(" 9 = Daubechies N=8.\n");
printf(" 10 = Daubechies N=9.\n");

printf (" 11 = Daubechies N=10.\n");
printf (" 12 = Splines.\n");

printf(" 13 = Morlet.(N/A)\n");
printf("\n Enter an integer 1-13: ");

scanf ("%d", &wavelet_type);
/* error handling for invalid input */

if {wavelet_type < 3 || wavelet_type > 13) {
printf("\nYou have chosen an Invalid Wavelet type or");
printf("\nthis type is not currently available.");
} /% end if */

else

e s e LY
/* Set wave_code for use in output filenames. */
P L e Ty

3) sprintf(wave_code, "db2");
4) sprintf(wave_code, "db3");
5) sprintf(wave_code, "db4");
6) sprintf(wave_code, "db5");
7) sprintf(wave_code, "db6");
8) sprintf(wave_code, "db7");
9) sprintf(wave_code, "dbg");
10) sprintf(wave_code, "db9");
if (wavelet_type 11) sprintf(wave_code, "db0");
if (wavelet_type 12) sprintf(wave_code, "spl™);
[REERRKARRFRL KRRKKEREEERERR RS [

/* Generate Phi and Filters */
/****************************/

if (wavelet_type
if (wavelet_type
if (vavelet_type
if (wavelet:type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type

n i nnounnnan

filters (wavelet_type,h_oi_npointer,g_of_npointer,phipointer);
flipo(phipointex, phiflipopointer);

h_of_nflipopointer = h_of_npointer;
g-of_nflipopointer = g_of_npointer;

loopii(signalpointer->length)
temppointer->vector[i] = (float)signalpointer->vector[i];

/#***#***********.***#**‘*###***4’##t*#tt*##*t*#tt**#t#****‘#t*t##/

162




/* Call convolution routine and save the coefficient vectors for */
/* each level of analysis. x/
/***************************************************************#/

maxlevel = LOG2(signalpointer->length); /# Calculate the highest level */

k=1;

loopk(maxlevel){

if (temp.length >= h_of_n.length){ /* signal has to be bigger than filter */
printf ("\nPerforming convolution with filters, level");

printf("%d...", k+1);
convolve(temppointer, h_of_nflipopointer, g_of_nflipopointer,
c_coefpointer, d_coefpointer);

sprintf(filename, "%s.%d.c.%s", infilename, k+1, wave_code);
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopli(c_coef.length) fprintf(outfile,"’%f\n",c_coef.vector[i]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, "¥s.%d.d.%s", infilename, k+i,wave_code);
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loop1i(d_coef.length)fprintf(outfile,"%f\n",d_coef.vector[i]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer”, outfile)

temp.length = c_coef.length;
loopli(temp.length) temp.vector[il] = c_coef.vector[il;
} /* end if */
} /* end loop */
} /* end else */

/* free memory */

free_vector(temp.vector, 1, temp.length);
free_vector(c_coef.vector, 1, c_coef.length);
free_vector(d_coef.vector, 1, d_coef.length);
free_vector(h_of_n.vector,1,signalpointer->length*2);
free_vector(g_of_n.vector,1,signalpointer->length#*2);
free_vector(phi.vector,1,signalpointer->length*2);
free_vector(phiflipo.vector,1,signalpointer->length#*2);
free_vector(phiflipc.vector,1,signalpointer->length*2);

{* THE END */

B.4.4 Listing of RECONSTRUCT!1.C

/********************#**‘****#*#****'*****#'*****.***‘*#*‘******ﬁ#‘tt###**'#/
/***********‘**************#‘********#***#*‘****#*“****“*******‘**#*t**‘**l
Ja%x WAVELET RECONSTRUCTION SUBROUTINE .y
/***************t**********‘****#*********“*‘##**‘t’t#**#*#******“******#‘/
/********#**‘******‘***‘**‘***‘****#‘*****#‘******‘.*’**‘t**‘#**‘**‘***#*"t/
/* DATE: 2 July 91, 16 August 91

VERSIO¥N: 3.0
NAME: reconstructi.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is discussed in
the description of the main driver module called "main-wavel.c.

It controls the portion of the program that reconstructs a previously
decomposed signal using Mallat’s multiresolution algorithm referenced
in the description of the calling program, "main-wavel.c".

FILES READ: Four coefficient files at each level of analysis.
The file names begin with the input signal filename

and end with an extension of the form ".nX" where
n is an integer that represents the level, X is one of

the letters ’c’ or ’d’ to represent phi or psi coef-
ficients respectively.

163




FILES WRITTEN: One file with the extension ".rec".

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: main-wavel.c

PROGRAMS CALLED: filters.c, reconvolvel.c, spconvlv.c, nrutil.c
AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version
Version 2.0 is adapted to use the spatial correlat:ion and not

tae Fourier convolution.
Version 3.0 adapted the two dimensional program to handle only

1 dimensional signals. The command is wavel vs wave2.

*/

/**#**************#*#*‘*t#*###t*##t*#ttt#t*ttt*‘#t *t*t*t*ttt‘t‘tt“#‘tttt#tt/
/***t‘***t#t**t**tt#*#*#tt**‘**#*t#tt#t*‘*tttttt#tt‘ttttt#ttttttt‘t‘t‘ttt‘#t/

[ERRRERRRERRESERRRRRERRRER [

/* DECLARATION SECTION =/

P T I T T I Y 2 Y

#include <stdio.h>
#include "jsmacros.h"

void filters();
void reconvolve();
float *vector();
void free_vector();
int sivector();
void free_ivector();

[EEXEREERERERIBERRERARRE ]

/* MAIN PROGRAM BODY =*/

JEEEEREEEREEEEEEEERE SRR [

void reconstruct(signalpointer,infilename)
int_vector *signalpointer;
char infilename[];

VA2 21T 222 212t T2 22222274

/#* declare variables */
/Eraskrssnrxsrsanssesasss/

int i, 3, k, 1, maxlevel, wavelet_type;

float_vector h_of_n, h_of_nflipo, h_of_nflipc, g_of_n;
flcat_vector g_of_nflipo, g_of_nflipc, phi, phiflipc;
float_vector =h_of_npointer = &h_of_n, *g_of _npointer = &g_of_n;
float_vector sh_of_nflipopointer = &h_of_nflipo;

float_vector =*g_of_nflipopointer = &g_of_nflipo;

float_vector +*h_of_nrflipcpointer = &h_of_nflipc;

float_vector *g_of_nflipcpointer = &g_of_aflipc;

float_vector *phipointer = &phi, sphiflipcpointer = &phiflipc;
float_vector c_coef, d_coef;

float_vector *c_coafpointer= &c_coef,*d_ccefpointer= &d_coef;
float_vector temp, *temppointer = &temp;

int_vector newsignal, *newsignalpointer = &newsignal;
FILE soutfile, s*infile;

char filename[64], wave_code[64];

float holder[64];

JEesrserssnssrahnsssnsesnn/

/# allocate memory */

AT IR R A ST T P PP TS V4

temp.length = signalpointer->length;
temp.vector = vector(1, temp.length);
loopii(tenp.length) temp.vector(i] = 0.9;
newsignal.length = signalpointer->length;
newsignal.vector = ivector(!, newsignal.length};

104




locpiilaewsignal.le.gth) newsignal.vector[i] = 0.0;
c_coef.length = signalpointer->length;
c.coef.vector = vector(1l, c_coef.length);
loopti(z_coef.length) c_coef.vector[i] = 0.0;
d_coef.length = signalpointer->length;
d_coef.vector = vector(l, d_coef.length);
loopii(d_coef.length) d_coef.vector[i] = 0.0;

h_of_n.vector = vector(1l,signalpointer->length*2);
loopii(signalpointer->length*2) h_oZ_n.vector[i] = 0.0;
g.of_n.vector = vector(l,signalpointer->length#");
loonli(signalpointer->length*2) g_of_n.vector[i) = 0.0;
phi.vector = vector(l,2+signalpointer~>length);
loopli(signalpointer->length*2) phi.vector[i] = 0.0;
phiflipc.vector = vector(1,2*signalpointer~>length);
loopli{signalpointer->length*2) phiflipc.vector[i]l = 0.0;
h_of_nflipo.vector = vector(l,signalpointer->length#*2);
loopli(signalpointer->length*2) h_of_nflipo.vector[i] = 0.0;
g-of_nflipo.vect.r = vector(1,signalpointer->length*2);
loopli(signalpointer->length*2) g_of_nflipe.vector[i] = 0.0;
h_of_nflipc.vector = vector(l,signalpointer->length*2);
loopli(signalpointer->length*2) h_of_nflipc.vector{il = 0.0;
g.of_nflipc.vector = vector(1,signalpointer->length+2);
loopli(signalpointer->length*2) g_of_nflipc.vector[i] = 0.0;
JHRRdk Rk kKKK R KRR KA KRR

/* display menu */

[ Rk kR R IOR KR ARk Kk ok [

printf("\n\n RECONSTRUCTION MENU\n\n");

printf(" 1 = Piece-wise Constant.(N/A)\n");
printf(" 2 = Piece-wise Linear.(N/A)\n");
printf(" 3 = Daubechies N=2.\n");
printf(" 4 = Daubechies N=3.\n");
printf(" 5 = Daubechies N=4.\n");
printf(" 6 = Daubechies N=5.\n");

printf (" 7 = Daubechies N=6.\n");
printf(" 8 = Daubechies N=7.\n");
printf(" 9 = Daubechies N=§.\n");
printf(" 10 = Daubechies N=9.\n");
printf(" 11 = Daubechies N=10.\n");
printf(" 12 = Splines.\n");

printf" 13 = Morlet.(N/A)\n");

printf{" Enter a1 integer (1-13):");
scanf ("/d", &wavelet_type);

if(wavelet_type < 1 || wavelet_type > 13 ){
printf("\nYou have chosen an invalid wavelet or");
printf{"\nit is aot currently available.");

}
else {

/************************#**4*****************/
/* Set value of wave_code for input filename */
/*************************#*******************/

3) sprintf(wave_code, "db2");
4) sprintf(wave_code, "db3");
§) sprintf(wave_code, "db4");
sprintf(wave_code, "dbs");
7) sprintf(wave_code, "db6");
8) sprintf(wave_code, "db7");
8) sprintf(wave_code, "dbg");
10) sprintf(wave_code, "db9");

if (wavelet_type
if {wavelet_tvype
if {wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type

N noun un
woHuarunnin
(2]
~

165




if (wavelet_type == 11) sprintf(wave_code, "db0");
if (wavelet_type == 12) sprintf(wave_code, "spl");
[k ok ok ok ok ok ks ok kskok ok ok

/* Generate Phi and Filters */
/****************************/

filters(vwavelet_type,h_of _npointer,g_of_npointer,phipointer);

/R ok o ok ok sk ok o kok ok ok sk sk ok ok ok ks ok ok sk K ok Kok ook o Kok oK ko /

/*

flip the filters */

/s ok ok ok sk ok ok ok ok koK sk sk ok ok ok sk ok ok ok ok ok ok

loopij(h_of_npointer->length)

holder[h_of_npointer->length +1 -jl= h_of_npointer->vector[j]l;
loopij(h_of_npointer->length)

h_of_npointer->vector [j] = holder[j];
loopij(g_of_npointer->length)

holder[g_of_npointer->length +1 -j]l= g_of_npointer->vector(j];
loop1j(g_of_npointer->length)

g_of_npointer->vector{j] = holder[jJ;

h_of_nflipcpointer= h_of_npointer;
g-of_nflipcpointer= g_of_npointer;

do

c.
d_
1

/AR A A A AR K o ook ok Kok ok ks ko R o ok ok ok Aok koK o sk R Aok R K ok Kok
/* Call reconvolution routine to recomstruct from coarsest phi */
/* coefficients and all of the psi coefficients. */
/A Ao o oA A ROK K S AR KA K o ok Ao Sk ko o ko Aok kR K ok Kok ok

maxlevel = LOG2(signalpointer->length);/*Calculate the highest level*/

temp.length = 1;

{ /* make sure signal is bigger than filter */
temp.length *=2;

--maxlevel;

} while (temp.length < h_of_n.length/2);

coef.length = temp.length;
coef.length = temp.length;
= 1;

for(k=maxlevel;§zo;—-k){

if(l ==
sprintf(filename, "%s.%d.c.%s", infilename, k,wave_code);
OPEN_FILE(infile, filename, "The Wavelet Analyzer")
loopli(c_coef.length)
fscanf(infile, "¥%f\n", &c_coef.vector[i]);

CLOSE_FILE(i, filename, "The Wavelet Analyzer", infile)

] =0;
} /* end if */
else
c_coef.length = temp.length;
loopli(c_coef.length) c_coef.vector[i] = temp.vector[i];

} /* end else */

sprintf(filename, "Y%s.%d.d.%s", infilename, k,wave_code);
OPEN_FILE(infile, filename, "The Wavelet Analyzer")
loopii(d_coef.length)

fscanf(infile, "%f\n", &d_coef.vector(il);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", infile)

printf("\nPerforming reconvolution with filters, level %d...", k)
reconvolve(temppointer, h_of nflipcpointer, g_of_nflipcpointer,

c_coefpointer, d_coefpointer);

if(wavelet_type == 12)

166




loopli(temp.length) temp.vector[i] *= 2;

sprintf(filzname, "/s.%d.c.%s.rec", infilename,k~1,wave_code);
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopii(temp.length)
fprintf(outfile, "%f\n", temp.vector[il);
CLO.C._FILE(i, filename, "The Wavelet Analyzer", outfile)
} /* end loop */
} /* end else */

/* free memory */

free_vector(temp.vector, 1, temp.length);
free_ivector(newsignal.vector, 1, newsignal.length);
free_vector(c_coef.vector, 1, c_coef.length);
free_vector(d_coef.vector, 1, d_coef.length);

{* THE ERD */

B.4.5 Listing of FILTERS.C (See Appendix B.2)

B.4.6 Listing of CONVOLVEL.C

[ AR A AR Aok KK Ao A K o Ao ook Aok AR AR oK o o ok oK KoK R Kok o ok kR Rk kK
/R sk ok ok ok o ok o ok Kok o ok K sk ok K ok Kok sk ook K Ko ok o sk ok ok ok ok ok

VAL WAVELET CONVOLUTION SUBROUTINE r*/
AR AR AR A KRR KKK KA AR AR AR A AR A KK KKK Koo A KR AR KK/
[ AR AR AR oo Aok K S ook o KK ok o ok o Ao ok ko R Kk kKl o o ok ok K o o o ok oo o koK ok ok ok ok ok ok [
/* DATE: 19 June 91, 16 August 91

VERSION: 2.0
NAME: convolvel.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel”". The algorithm used is discussed in
the description of the main driver module called "main-wavel.c'".

Data is passed by reference from the decomposition subroutine. Data is
in ascii format arranged in a vector whose dimension is a

power of 2. This requirement has not only made programming more
convenient but is required by the convolution routire from Numerical
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)
FILES WRITTEN: (Passed by reference back to the caller.)
HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: decomposel.c

PROGRAMS CALLED: spconvlv.c, nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version

Version 2.0 was adapted from the two dimensional version 1.0

to handle one dimensional signals. It does not use the Fouraer

space filtering indicated above.
«/
/******a ********************************************************************/
/***************************************************************************/

/AR A A A KR AR Kk [

/* DECLARATION SECTIOF x*/
[ KRRk Rk kA ok Rk kK Kk Ak Rk [

#include <stdio.h>
#include "jsmacros.h"

float *vector();
void free_vector();

167




void speonviv();

/K ok ok ok ok ok ok sk ok o ok ok okok ok f

/* MAIN PROGRAM BODY */
[ Rk kokok ek ko ko okok ok k /

void convolve(datainpointer, h_of_npointer ,g_of_npointer, c_coefpointer,
d_coefpointer)
float_vector *datainpointer;
float_vector *h_of _npointer, *g_of_npointer;
float_vector *c_coefpointer,*d_coefpointer;

{
D L L Ty
/* declare variables x/

/A% ke ok ke ok ke ok ok ook sk oo ok ok ok ok f

int i, j;

float_vector vectin,vectout,response;
float_vector temp;

FILE *outfile;

char filename[64];

/oK o ok ok o ok ok ok Aok ok ok ok
/* allocate memory */
[k ok kK ok Rk [

temp.vector = vector(1, datainpointer->length);
loopii(datainpointer->length) temp.vector[i] = 0.0;
vectin.vector = vector(1,2+datainpointer->length);
loopli(2*datainpointer->length) vectin.vector[i] = 0.0;
vectout.vector = vector(1,4*datainpointer->length);
loopili(datainpointer->length*4) vectout.vector[i] = 0.0;
response.vector = vector(1,2*datainpointer->length);
loopli(datainpointer->length*2) response.vector[il = 0.0;
vectin.length = 2*datainpointer->length;

[REA KK AR AR A AT AA AR A AR [

/* perform convolution */
[k ko ok ok ok koK ok ok okok Kok ok /

printf("\nConvovling signal with h(-n)...");
looplj(datainpointer—->length*2)

response.vector[j] = h_of_npointer->vecter[j];
looplj(datainpointer->length)

vectin.vector[j] = datainpointer->vector(jl;
spconvlv(vectin.vector,vectin.length,response.vector,

h_of_npointer—>1ength,1,vectout.vector);
loopij(datainpointer->length/2)

c.coefpointer->vector[j] = vectout.vector[2+j];

/* downsample by selectiny even cols */

printf("\nConvovling signal with g(-n)...");
loopij(datainpointer->length*2)
response.vector[j] = g_of_npointer->vector([j];

looplj(datainpointer—->length)

vectin.vector[j] = datainpointer->vector(j];
spconvlv(vectin.vector,vectin.length,response.vector,

g_of_npointer->1ength,1,vectout.vector);
loopij(datainpointer->length/2)

d_cc sfpointer->vector[j] = vectout.vector[2%j];

/* reset signal indeces. */

c_coefpointer->length = datainpointer->length/2;
d_coefpointer->length = datainpointer->length/2;

/* free memory */

168




free_vector(temp.vector, 1, datainpointer->length);
free_vector (vectin.vector,1,2xdatainpointer->length);
free_vector (vectout.vector,1,4*data1npointer->length);
free_vector (response.vector,1,2*datainpointer->length);

4* THE END */

B.4.7 Listing of RECONVOLVE1.C

/***************************************************************************/
/***************************************************************************/

[k WAVELET RECONVOLUTION SUBROUTINE *% /[
ARk Aok Aok ok oK Aok Aok Ao Kok ok Aok ok ok sk koo Ak ok ok ok sk ook ok ook sk ok ook sk ok s ko ok ok ok

/333 3o o o s ok ook s sk ke oo o ok sk o o o ok o ks sk s ok ook ook ol ok ke o ke ook ek e o o ok o ok o ok o kol sk ko ok ok ok ok o sk ok ok /
/* DATE: 2 July 91, 16 August 91

VERSION: 2.0
NAME: reconvolvel.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is referenced in
the description of the main driver module called "main-wavel.c".

Data is passed by reference from the reconstruction subroutine. Data is
in ascii format arranged in a vector whose dimension is a

power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numeric
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: NONE (Passed by reference back to the caller.

HEADERS USED:  <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: reconstructl.c

PROGRAMS CALLED: spconvlv.c, nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version. .

Version 2.0 adapted from 1.0 allows only one dimensional

signals to be decomposed. It does not use Fourier filtering.
*/
[k kR k ks« KRk kKRRt kR ok ok kAR R Aok AR ok KAk ek ok koK [
[RRkkdkkkkok ks edkokokokkdkokdoky o3 dkskokokok Aok Ak oK A ok Aok o o o o e ok o ko o o ko ok ok ok o o Kk ok ok ok /

/A o ok ook A ok oKk ok ok Kok ok Kk kR Ko K

/* DECLARATION SECTION =/
[ ARk dokok Rk Rk kok ok ok ok ok ok [

#include <stdio.h>
#include "jsmacros.h”
float *vector();
void  free_vector();

[ AR AR A KA kKK [

/* MAIN PROGRAM BODY */
VEZITIET TSI FT FEE Ty

void reconvolve(dataoutpointer,h_of_npointer,g_of_npointer,
c_coefpointer,d_coefpointer)
float_vector *dataoutpointer;
float_vector *h_of_npointer, *g_of_npointer;
float_vector *c_coefpointer,*d_coefpointer;

{
/A ko ook e K ok ok e ko ok ok /
/* declare variables */

[ AR AR AR AR R KKKk [

int i, j;

169




e

float_vector vectin,vectout, response;
float_vector temp,templ;

char filename[64] ;

FILE *outfile;

J R A Ak kAR kK kKo f

/* allocate memory */

[ RRA ARk Rk kA kokok Kok [

temp.length = c_coefpointer->length#*2;
temp.v:ctor = vector(l, temp.length);
loopti(temp.length) temp.vector[i]l = 0.0;
templ.length = c_coefpointer->length*2;
vempl.vector = vector(1, templ.length);
loopli(templ.length) templ.vector[i] = 0.0;
vectin.vector = vector(1,temp.length*2);
loopii(temp.length*2) vectin.vector[i] = 0.0;
vectout.vector = vector(1l,4*temp.length);
loopli(temp.length*4) vectout.vectorfi] = 0.0;
response.vector = vector(i,temp.length*2);
loopli(temp.length*2) response.vector[i] = 0.0;
vectin.length = 4*c_coefpointer->length;
dataoutpointer->length = c_coefpointer->length*2;

/HFARR I RA KA ARk AR KAk [
/* perform convolution */
[FFR R AR Ak KRR kA K [

printf(“\nConvovling c_coef with h(n)...");

looptj(c_coefpointer->length) vectin.vector[2xj] = c_coefpointer->vector[j];

loopij(vectin.length) response.vector[jl=h_of_npointer->vector[j];

spconvlv(vectin.vector,vectin.length,response.vector,
h_of_npointer->length,1,vectout.vector);

loopij(c_coefpointer->length*2) temp.vector[j] = vectout.vector(j];

/* zeros were added between each row before convolution */

printf("\nConvovling d_coef with g(n)...");

looplj(d_coefpointer->length) vectin.vector[2+j] = d_coefpointer->vector[j];

loopij(vectin.length) response.vector[jl=g_of_npointer->vector(jl;

spconvlv(vectin.vector,vectin.length,response.vector,
g.of_npointer->length,1,vectout.vector); ‘

looplj(d_coefpointer->length*2) templ.vector[j] = vectout.vector[jl;

/* zeros are added between each row before convolutivu */

/* Add temp vectors */

loopii(dataoutpointer->length)
dataoutpointer->vector[i] = temp.vector[i] + tempi.vector(i];

/* reset vector indeces. */
d_coefpointer->length = dataoutpointer->length;
/* free memory */

free_vector(temp.vector, 1, c_coefpointer->length*2);
free_vector(templ.vector, 1, c_coefpointer->length*2);
free_vector(vectin.vector, 1, 4*dataoutpointer->length);
free_vector(vectout.vector, 1, 8*dataoutpointer->length);

3

B.4.8 Listing of SPCONVLV.C (Sce Appendix B.2)

B.4.9 Listing of NRUTIL.C (See Appendix F.2) [35]




B.4.10 Listing of JSMACROS.H (See Appendix F.2)
B.4.11 Listing of STEWMATH.H (See Appendix F.2)

B.4.12 Listing of MAKEFILE

# Makefile routine for the wavel program by Laing and Smiley.
DEFLAGS = -g

0BJS = main-wavel.o loadsignal.o filters.o convolvel.o spconvlv.o\
decomposel.o reconstructl.o reconvolvel.o nrutil.o

spwave2: $(0BJS)

Q@echo "linking ..."

cc $(0BJS) -o wavel $(DEFLAGS) -1m

main-wavel.o: main-wavel.c

cc -c $(DEFLAGS) main-wavel.c

loadsignal.o: loadsignal.c

cc -c¢ $(DEFLAGS) loadsignal.c

filters.o: filters.c

cc -c $(DEFLAGS) filters.c

spconvlv.o: spconvlv.c

cc -c $(DEFLAGS) spconvlv.c

convolvel.o: convolvel.c
cc -¢ $(DEFLAGS) convolvel.c

reconvolvel.o: reconvolvel.c
cc ~-c¢ $(DEFLAGS) reconvolvel.c

decomposei.o: decomposel.c
cc -c¢ $(DEFLAGS) decomposel.c

resonstructl.o: reconstructi.c
cc ~¢ $(DEFLAGS) reconstructi.c

nrutil.0: nrutil.c
cc -¢ $(DEFLAGS) nrutil.c




Appendix C. Software to Build a World Model

C.1 System Description of the FBUILD Program

This program requires as input the output of the “wave” program. When running
the “wave2” program, any available wavelet may be used. However, the filenames of the
approximation images required as input to the “fbuild” program must have the wavelet code
suffix stripped off before running the the “fbuild” program. In the case of the anlaysis of
Chapter VI of the author’s thesis, we used the cubic spline wavelet in the “wave2” program.

[4

Therefore, the “.spl” had to be removed from the end of each of the approximation files

whose names were “wkanisza.512.1.c.spl” through “wkanisza.512.4.c.spl”.

Three parameters are adjustable before compile time: 1. The level or depth that
“fbuild” uses to build the frames, 2. The window size in pixels that "fbuild” uses to de-
termine the spatial extent of information taken from each level for each fixation point, and
3. the number of fixation points used to build the composite image. These parameters may

be changed in the declaration section of the fbuild.c file in the #define statements.
To run the program, type at the command line the following:
command prompt: fbuild <filename> <size>

The filename and its size are optional entries on the command line. If not used, ™ foudld”

will prompt the user for these items.

The “fbuild” program was written for the masters thesis of J. Stewart Laing. It was
used in the evaluation executed in Chapter VI of that thesis for the Air Force Institute of
Technology. The author has no intention of maintaining this program or enhancing it in any

way.

The foliowing is a list of functions which comprise the wave program:

1. fbuild.c - The main program for fbuild.

2. futil.c - Utility functions written specifically for the fbuild program.

172




3. nrutil.c - Utiltity functions Numerical Rccipies in C (See Appendix I 2 for listing)

[35]. decomposition.

4. spline.c- A routine from it Numerical Recipies in C used in the cubic spline expansion
135].
5. splint.c - A routine from Numerical Recipies in C used to perform cubic spline

interpolations [35].

6. splin2.c - A routine from Numerical Recipies in C used in two dimensional cubic

spline interpolations [35].

=-J

. makefile - A makefile that is used to compile and link the source code to make an

executable file.

8. jsmacros.h- An include file that contains macros we found useful in our programming
environment. This file must be present in the directory where compilation takes place

(See Appendix F.2 for listing).

9. stewmath.h - An include file containing some math routines specific to our program.
It must be present in the directory where complilation takes place (See Appendix F.2

for listing).

Typing “make” at the command prompt in any directory with all of the above files present
wij! create the appropriate object code and an executable file called fbuzld that inay be exe-

cuted by typing “fbuild” at the command prompt.

C.2 FBUILD Program Software
C.2.1 Listing of FBUILD.C

/************t********t*##*#******tt*t**********#*#******#*****‘**t******t#*/
/#**ﬁ**#**‘t**t##***##*#*#*‘**tt**tttt***##**#**##t##tt*****tt#***t**t#t*#*t/
/3%* FRAME BUILDER MAIN PROGRAM DRIVER xx/
/******###***tt*****t#*#*******#**t‘t*#**#‘*t##*t*****t#t***##t*ttt*t#*t*ttt/
/*******#"*t*#***#***‘**##*#ttt**#t*#*t*##***#**t##t***#******#*‘t#tt*#**i**/

/* DATE: 14 Aug 91
VERSION: 1.0




NAME: <£build.c

DESCRI®TION: This program builds frames for a model of the hum.n visual
system based on the characteristic of the human eye to scan and fixate

to build a world model for use in the brain. The program uses as input
data the approximation images from a wavelet multiresolution decompostion.
In begins with the approximation at a given level of resolution and builds
a frame based on given fixation coordinates in the original image.

FILES READ: approximation images as generated by the wave2
progran with the wavelet type suffix stripped off.

FILES WRITTEN: The output file is one frame with the suffix .frm

HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h",
<math.h>

CALLING PROGRAMS: NONE
PROGRAMS CALLED: futil.c, nrutil.c
AUTHOR: J. Stewart Laing
HISTORY: Initial Version.

*/
/************************i¥*%***********************************************[
/*************************a’#***********************************************/

[ Rk A A KkR K kKK KRk [

/* DJECLARATION SECTION =
YA 2 2R 2T PP SIS ST TS I

#include <stdio.h>
#include "jsmacros.h"

#include “steumﬁgh.h"

#include <math.

#define WIDTH 4
#define DEPTH 4
#define FRAMES 15

void extract();

void expandi();

void insert();

float **matrix();
void free_matrix();
float *vector();

int *ivector();
void free_vector();
void free_ivector();

JAERERERERRERRRRREKERARK [

/* MAIN PROGRAM BODY =/
/********t**ttt*t***t**t/

void main(argc, argv)
int argc;
char *argv(];

JHxsenshsrihersbrssirrsnn/

/* declare variables */
[HEXEERRKKAREREXSRERR R KR [

int i,j,k,l,m, fwidth, depth, x, y, *X, *Y, row, col, offset;
char infilename[64), filename[64];

float_array a, di, 42, d3, d, exp, frame;

FILE *infile, *outfile;

float **sub, ceil;

/t*ttttt*###*t##tt#t**#t*###**tttttttt/

/* load image to be analyzed */

/t‘*t#****tt*t##t#**#**i*ttt**‘**ttt#t/

if(arge != 3 && arge != 1){
printf("Usage: fbuild <filename> <N for NxN array of original image>\n");
exit(0);
X




if(arge == 1){
printf("\n\n\n Input the size of the image (N for NxN array):");
scanf ("%d", &frame.ROW);
printf(" \n\n Input filename of image to be histogramed:>"); fflush(stdout);
scanf("Ys", infilename);

else {
sprintf(infilename, "%s", argv[1]);
sscanf(argv[2], "%d", &frame.ROW);

[ Ak ok Aok Kk Rk ok Kk f
/* Allocate Memory */
[ %Rk Ak ok ok ok Kk ok ok ok ok

fwidth = WIDTH;

depth = DEPTH;

exp.ROW = fwidth*(int) (pow(2.0,(doudble)depth));
a.ROW = 2+frame.ROVW;

a.COL = a.ROW;

a.array = matrix(1, a.ROW, 1, a.COL);

loopiij(a.ROW,a.COL) a.array[il[j] = 0.0;

frame .ROW *= 2;

frame.COL = frame.ROW;

frame.array = matrix(1, frame.ROW, 1, frame.COL);
loopiij(frame.ROW,frame.COL) frame.array[i][j] = 0.0;
exp.COL = exp.ROW;

exp.array = matrix(1, exp.ROW, 1, exp.COL);
loopiij(exp.ROW,exp.COL) exp.arrav[il[j] = 0.0;
sub = matrix(1, 2*fwidth, 1, 2*fgic -);
loopiij(2*fwidth,2*fwidth) sublil{ . = 0.0;
/*d.ROW = frame.ROW/(int) (pow(2.0,(double)depth));
d.COL = d.ROW;

d.array = matrix(1, 4.ROW, 1, d.COL);
loop1ij(d.ROW, d.COL) d.array(il(j] = 0.0;
d1.ROW = frame.ROW/(int)(pou(2.0, (double)depth));
d1.COL = d.ROW;

di.array = matrix(1, d1.ROW, 1, d1.COL);
loop1ij(d1.ROW, d1.COL) di.array[il[j] = 0.0;
d2.ROW = frame.ROW/(int)(pow(2.0, (double)depth));
d2.COL = d2.ROW;

d2.array = matrix(1, d2.ROW, 1, d2.COL);
loop1ij(d2.ROW, d2.COL) d2.array[il(j] = 0.0;
d3.ROW = frame.ROW/(int)(pou(2.0,(double)depth));
d3.COL = d3.ROW;

d3.array = matrix(1, 43.ROW, 1, d3.COL);
loop1ij(d3.ROW, d3.COL) d3.arrayl[i][j]l = 0.0;%/
/***************#****#********#**#***#*t**/

/* prompt user for fixation coordinate: */
/***#**********************’**#*******#*#‘/

/* printf("\n\n Input the number of soordinates in memory:");
scanf("%d",&1);

X = ivector(i, 1);
Y = ivector(i, 1);

loop1i(l) {
printf£("\n\n Input col coordinate X/d:",i);
scanf("%d", &X[il);col = X[i];
printf("\n\n Input row cocrdinate Yid:",i);
;canf("%d", &Y[il);xow = Y[i];

n

*/
1=FRAMES;




X = ivector(1l, 1); Y = ivector(i, 1);

sprintf(filename, "col15.x");

OPEN_FILE(infile, filename, "The Frame Builder")
loop1i(1l) fscanf(infile, "%d\n", &X[il);
CLOSE_FILE(i, filename, "The Frame Builder", infile)

sprintf(filename, "row15.y");

OPEN_FILE(infile, filename, "The Frame Builder")
loop1i(1l) fscanf(infile, "%d\n", &Y[il);
CLOSE_FILE(i, filename, "The Fr.me Buildexr", infile)

[HFERRREERRRERAS A RERRRERER R AR SRR AR R AR AR K]
/* pronjt user for fixation threshold */
£ TR e e ey

/* printf("\n\n Input the threshoid for fixation(float):");
scanf ("%f",&ceil) ;*/

/* set size of arrays for reading */

a.ROW = (frame.ROW/2)/(int)(pow(2.0,(double)depth));
a.CoL a.ROW;
offset = frame.ROW/4;

/* read in coarsest approximation and details */

/#*printf("\nreading...\n");fflush(stdout);

sprintf(filename, "%s.%d.c", infilename, depth);
OPEN_FILE(infile, filename, "The Frame Builder")
loopiij(a.ROW,a.COL) fscanf(infile, "%f\n", &a.array[i]l[j]);
CLOSE_FILE(i, filename, "The Frame Builder", infile)*/

/#*printf("\nreading...\n");fflush(stdout);

sprintf(filename, "¥%s.%d.d1", infilename, depth);
OPEN_FILE(infile, filename, "The Frame Builder")
loopiij(a.ROW,a.COL) fscanf(infile, "%f\n", &d1.array(il(j]);
CLOSE_FILE(i, filename, "The Frame Builder", infile)

printf("\nreading...\n");fflush(stdout);

sprintf(filename, "¥%s.%d.dZ", infilename, depth);
OPEN_FILE(infile, filename, "The Frame Builder")
loopiij(a.ROW,a.COL) fscanf(infile, "%f\n", &d2.array[il(j]);
CLOSE_FILE(i, filename, "The Frame Builder", infile)

printf("\nreading...\r");fflush(stdout);
sprintf(filesame, "%s.%d.d3", infilename, depth);
OPEN_FILE(infile, filename, "The Frame Builder")
loopiij(a.ROW,a.COL) fscanf(infile, "%f\n", &d3.array[il(j]);
CLOSE_FILE(i, filename, "The Frame Builder", infile)s*/
/* find fixation vectors */
/*X = ivectoxr(1, d.COL*d.ROW);
Y = ivector(1, d.ROW+*d.COL);
1=0;
loop1ij(d.ROW, d.COL){
d.array[il(j] = d1.array[il[j]+d2.array(il [j]+d3.array[i](j];
if(d.array[i1[j] > ceil) {
if( i< 31) && (j<31)){

14+;

X{1) = i;printf("\nX[%d)=%d",1,Xx[1]) ;fflush(stdout);
Y[1] = j;printf("\nY{%d)=%d",1,Y[1]) ;fflush(stdout);
}

}*/
printf("\nThere are %d fixation points", 1);fflush(stdout);
/* expand coarsest approx to form Lackground of frame =/

176




/*printf("\nexpanding...\n");fflush(stdout);
expandi(a.array, a.ROW, frame.ROW, frame.array);*/

/* read in already expanded approximation of coarsest approx
to form background of frames. */

printf("\nreading...\n");fflush(stdout);
sprintf(filename, "¥s.%d.c.exp", infilename, depth);
OPEN_FILE(infile, filename, "The Frame Builder")
looplij(frame.ROW/2,frame.COL/2)

fscaaf(infile, "Jf\n", &frame.array[itoffset] [j+offset]);
CLOSE_FILE(i, filename, "The Frame Builder", infile)

/* begin iteration */
for(k=depth-1;k>=0;k--){
/* read in next approx. */

printf("\nreading...\n");fflush(stdout);
a.ROW »= 2; a.COL *= 2;
sprintf(filename, "%s.%d.c", infilename, k);
OPEN_FILE(infile, filename, "The Frame Builder’)
loop1ij(a.ROW,a.COL)

fscanf(infile, "%f\n", &a.array[itoffset][j+offset]);
CLOSE_FILE(i, filename, "The Frame Builder", infile)

loopim(1){
/* extract area of approx. */

printf("\nextracting...\n");fflush(stdout);
((X[m}/(fwidth*2))*(fwidth*2))+(fwidth);
((Y{m]/(fwidth*2))*(fwidth*2))+(fuidth);
(x~1)/(int) (pow (2.0, (double)k))+1;
(y-2,/(int) (pow(2.0, (double)k))+1;
-= (fwidth-1);

~= (fwidth-1);
/* X[m] = 2&(X[m]-1)+1;

, Yim] = 2#(Y[ml-1)+1;

*

X XX

extract(a.array, fwidths2, x+offset, y+offset, sub);
/* expand to scale of frame */

printf(*\nexpanding...\n");fflush(stdout);

exp.ROW = fwidth»2*(frame.ROW/2)/a.ROVW;

exp.COL = exp.ROW;
printf("\narea=Ydx%d",exp.ROW¥, exp.COL) ; fflush(stdout);
printf("\nvector=id",m) ; fflush(stdout);

expandl{sub, fuidth*2, exp.ROW, exp.array);

/* overurite new approx onto frame */

printf("\ninserting...\n");fflush(stdout);
x = (int)(pow{2.0,(double)k))*(x-1)+1;
y = (int)(pow(2.0,(double)k))*(y-1)+1;
insert(exp.array, exp.RO¥, xtoffset, y+offset,
frame.array);
}/* end m loop*/

/* recenter coordinates */

/*  loopili(1){

X[i) += fwidth/2;
Y[i] += fwidth/2;
}*//* end i loop */

}/* end k loop =/

/* urite frame to a file =/

1T




printf("\nwriting...\n");fflush{stdout);
sprintf(filename, "%s.frm.%d%d"”, infilename, row, col);
CREATE_FILE(outfile, filename, "The Frame Buildexr")
looplij(frame.ROW/2,frame.COL/2)

fprintf(outiile, "%f\n", frame.ar:ay[i+offset][j+offset]);
CLOSE_F1uE{i, filename, "The Frame Builder", outfile)

/* free memory */

exp.ROW = fwidth#*(int)(pow(2.0, (d»uble)depth));
a.ROW = frame.ROW;

a.COL = a.ROW;

exp.COL = exp.ROW;
free_matrix(a.array,1,a.ROW,1,a.COL);
free_matrix(exp.array,1,exp.ROW,1,exp.COL);
free_matrix(frame.array,1,frame.ROW,1,frame.COL);
free_matrix(sub,1,2*fwidth,1,2*fwidth);

{* THE END =*/

C.2.2 Listing of FUTIL.C

/*********#*#***#***##***t*****t*t#*t*t*****##*t*‘**##t**t*t*tt###*t*ttt**t#/

[ *%x FRAME BUILDER UTILITY SUBROUTINE **/
AL T L e 2 R e s

/**#*#*******************#*****#t*t*#*t*****‘*tt¥‘t**###t*tt#*t#t$ttt#*ttttt/

/* DATE: 14 Aug 91
VERSION: 1.0
NAME: futil.c
DESCRIPTION: This program provides the utilities for cubic

spline interpolation based expansion of the images used int
the fbuild program.

FILES READ: NONE
FILES WRITTEN: NONE

HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h",
<math.h>

CALLING PROGRAMS: fbuild.c
PROGRAMS CALLED: nrutil.c, spline.c, splint.c, splin2.c
AUTHOR: J. Stewart Laing

./ HISTORY: Initial Version.

/***********#‘**‘t#t#tttttt*‘*‘#‘t##**##’*ﬂ*ttlt*ttt#.t‘t‘tt’#ttt#‘t‘t‘tttttl
/#*t#*##t*‘tt#‘****tt#t'#tt#*tt#t‘ttttttttt‘t.tttt#t#"“‘t‘t"#ttt"’tt".t/

#include <math.h>
#include "jsmacros.h"

#tinclude <stdio.h>
float **matrix();
float s*vector();
void free_vector();
void free_matrix();

void extract(in, window, X, Y, out)
float **in, **out;
int X, Y, window;

int 1i,j;
for{i=Y; i<Y+uwindow; i++)

for(j=X; j<X+uindow; j++) outli-Y+1}[j-Xx+1] = in{il[j];
3




void expand(in, small, big, out)
float **in, **out;
int small, big;

{

int 1,j,k,1, factor;

factor = big/small;
loopiij(small,small)
loopikl(factor,factor) out[factor*(i-1)+k] [factor*(j-1)+1] = in[a][j];

X

void insert(in, window, X, Y, out)
float **in, **out;
int window, X, Y;

int i,3;
for(i=Y; i<Y+window; i++)

for(j=X; j<X+window; j++) out[il[j] = inl[i-Y+1][j-X+11;
}

_void expand0(in, small, big, out)
int small, big;
float **in, **out;

int i,j,k,1, factor;
float *tab, **yp;
void splin2(), spline();
tab = vector(l, small);
yp = matrix(i, small, 1, small);
factor = big/small;
loopli(small) tab[i] = factor*i;
loopii(small) spline(tab, in[i], small, 1.0e30, 1.0e30, yp[il);
loopiij(small,small)
loopkl(factor, factor)
splin2(tab,tab,in,yp,small,small, (float) (factor*i-k),
(float) (factor*j-1),&out [factor*i-k] [factor*j-11);

free_vector(tab, 1, small);
free_matrix(yp, 1, small, 1, small);

3

void expand2(in, small, out)
int small;
float #*in, **out;

int i,j,k,1, factor;
float **yp, *tmp, *ptmp, *tab;
void spline(), splint();

yp = matrix(1, small, 1, small);
tab = vector(l, small);
tmp = vector(1l, small);
ptmp = vector(1, small);
loopii(small) tab[i] = 2%i;
loopii(small) spline(tab, in[i], small, 1.0e30, 1.0e30, yp[il);
looplij(small, small){
out{2*i] [2+j] = in[i][j];
splint(tab, in[i], yp[il, small, (float)(2%j-1), &out[2*i][2%j-1]);

loopiij(small, small*2){

179




loopik(small) tmplk] = out[2*k]([j];

spline(tab, tmp, small, 1.0e30, 1.0e30, ptmp);

splint(tab, tmp, ptmp, small, (float)(2*i-1), &ort[2*i-1][j]);
}

free_matrix(yp, 1, small, 1, small);
free_vector(tmp, 1, small);
free_vector(ptmp, 1, small);
free_vector(tab, 1, small);

}

void expandi(in, small, big, out)
int small, big;
float #**in, **¥out;

int i,j,k,1, factor, index;
float **tmp;

if(small==big) loopiij(small,small) out[i][jl=in[i][jI;
else {

tmp = matrix(1,big,1,big);

factor = big/small;

index = (int) (log((double)factor)/log(2.0));

looplij(small,small) tmp[i][j] = in[i][j];
loopli(index){
expand2(tmp, small, out);
small *= 2;
loopikl(small, small) tmp[k][1] = out[k][1];
}

free_matrix(tmp, 1, big, 1, big);
}

C.2.3 Listing of NRTUIL.C (See Appendix F.2)

C.2.4 Listing of SPLINE.C

void spline(x,y,n,ypl,ypn,y2)
float x[1,y[],yp1,ypn,y20];
int n;

int i,k;
float p,qn,sig,un,*u,*vector();
void free_vector();

u=vector(i,n-1);

if (yp1 > 0.99e30)

y2[1]=u[1]1=0.0;

else {

y2[1] = -0.5;
;[1]=(3.0/(x[23~x[1]))*((y[2]-y[1])/(x[2]-x[1])-yp1);

for (i=2;i<=n-1;i++) {

sig=(x[il-x[i~-1])/(x[i+1]~x[i-1]);

p=sig*y2[i-1]+2.0;

y2[il=(sig-1.0)/p;

ulil=(y[i+1]-y[i])/(x[i+11-x[1]) - (y[il-y[i-1])/(x[i]-x[i-1]);
ulil=(6.0*uli)/(x[i+1]-x[i-1])-sig*uli-11)/p;

}
if (ypn > 0.99e30)

gn=un=0.0;
else {

180




qn=0.5;
un=(3.0/(x[n)-xn-11))*(ypn-(y(nl-yn-11)/(x[n]-x[n-1]));

}
y2[n]l=(un-qn*uln~1])/(qn*y2[n-11+1.0);
for (k=n-1;k>=1;k--)
y2[k]=y2[k]*y2[k+1]+ulk];
free_vector(u,i,n-1);

C.2.5 Listing of SPLINT.C

void splint{xa,ya,y2a,n,x,y)
float xal],yall,y2all,x,*y;
int n;

{

int klo,khi,k;

float h,b,a;

void nrerror();
klo=1;

khi=n;

while (khi-klo > 1) {
k=(khi+klo) >> 1;

if (xalk] > x) khi=k;
else klo=k;

h=xa[khil-xa[klo];

if (h == 0.0) nrerror("Bad XA input to routine SPLINT");
a=(xa[khi)-x)/h; |
b=(x~xa{klo])/h; !
*xy=a*ya[klo]+b*yalkhil+((a*a*a-a)*y2alklo]+(b*b*b-b)*y2alkhi] )*(h*h)/6.0;

}

C.2.6 Listing of SPLIN2.C

void splin2(xia,x2a,ya,y2a,m,n,x1,x2,y)
float x1a[],x2al],**ya,**y2a,x1,x2,*y;
int m,n;

int j;
Iloat *ytmp,*vytmp,*vector();
void spline(),splint(),free_vector();

ytmp=vector(1,n);

yytmp=vector(1,n);

for (j=1;j<=m;j++)
splint(x2a,yalj],y2alj],n,x2,&yytmp[jl);
spline(xia,yytmp,m,1.0e30,1.0e30,ytmp);
splint(xia,yytmp,ytmp,m,x1,y);
free_vector(yytmp,1,n);
free_vector{(ytmp,1,n);

}
C.2.7 Listing of JSMACROS.I (See Appendix F.2)
C.2.8 Listing of STEWMATH.H (sce Appendix F.2)
C.2.9 Listing of MAKEFILE

# Makefile routine for the Frame Builder by Laing and Smiley.

181




DEFLAGS = -g
0BJS = fbuild.o futil.o nrutil.o splin2.o splire.o splint.o

fbuild: $(0BJS)
Qecho "linking ..."

cc $(0BJS) -o fbuild $(DEFLAGS) -1m

fbuild.o: fbui
cc ~c $(DEFLAGS) fbulld c
futil.o: futi

cc -¢c $(DEFLAGS) futil.c

nrutil.o: nrutil.c
cc ~-c $(DEFLAGS) nrutil.c

splin2.o0: splin2.c
cc —c $(DEFLAGES) splin2.c
spline.o: spline.c
cc —¢ $(DEFLAGES) spline.c
splint.o: splint.c
¢c —¢ $(DEFLAGES) splint.c




D.1

Appendix D. Software for the Spatial- Temporal Model

System Description

The following programs are used in the spatial-temporal analysis of Chapter VII:

. kangen - A program used to generate the frames used in the analysis.

wave? - The Multiresolution Wavelet Decomposition and Reconstruction program for

two dimensional images (See Appendix B.1).

vbuild - A program used to reduce the total number of time signals that are processes

by the wavel program.

. stripld - A program that srips the one dimensional time signals designated by the

vbuild program for processing by the wavel program.

wavel - The Multiresolution Wavelet Decomposition and Reconsruction program for

one dimensional signals modified for use in the analysis of Chapter VII (See Appendix

B.2).

rhuild - A program used to rebuild the frames based on the output of the wavel

program.

tblur - A program used to animate the output of the rbuild program for demonstration.

The “kangen” program and the “tblur” program run on a Silicon Graphics workstation.

The others run on any sytem with an ANSI C compiler. The “wave2” is described in Chapter
IV and listed in Appendix B. Listed in this appendix are the “vbuild”, “strip1d”, “rbuild”,
and those modules of the “wavel” program that were modified from those in Appendix B

for the spatial-temporal analysis.

The “kangen” program is used to create the files that contain the individual frames of

the scene to be analyzed. To 1un this program, type the following on the command line:

183




command prompt: kangen

The parameters are hard coded and must be set before the program is compiled. Each
output file from this program is then run through the “wave2” program separately to generate
the desired level of resolution to be used in the analysis. Whatever level of resolution is used
the output files must be xpanded to the sample scale of the original “kangen” output before

proceeding. The “expd” program may be used for this purpose (see Appendix F.2 for listing).

The output of the “wave2” program is used as input to the “vbuild”, “stripld”, and
“rbuild” programs. Two parameters are adjustable in these programs: 1. The number of
frames in the scene to be analyzed, and 2. The number of vectors found by the “vbuild”
program. Of these three, the “vbuid” program must be run first to generate the locations of
the pixels that will be used as the one dimensional time signals. To run this program type

on the commard line the following:
command prompt: vbuild <filename> <size>

The filename and its size are optional parameters. If they are not entered on the
command line, “vbuild” will prompt the user for them. The filename is a common first
part of all the {rame files that are asctually read individually. For example, the filerame
“frame” would signal the “vbuild” to look for files named framex.asc wliere the x is the
frame number starting at 1 and increasing by one up to the value of FRAMES set in the
declaration section with the #define statement. The output of the “vbuild” program are the
files strip.x and strip.y. These files are read in by the “stripld”, “rbuild”, and the modified

“wavel” programs.

Next, the stripld program is run by typing the foliowing command at the command

prompt:
command prompt: stripld <filename> <size>

Treatment of arguments is the same as for the “vbuild™ program above. The output of

the “stripld”™ program is a file that contains the one dimensional time signals used as input

184

-




for the modified version of the “wavel” program. To rur the "wavel” program, type the

following on the command line:
command prompt: wavel <filename> <size>

Treatment of arguments is the same as for the “vbuild” program above. The output
of the “wavel” program are files that contain the multiresolution approximations of the
time signals. One of these files is used as input to the “rbuild” program specified by in the
source code of the “rbuild” program. To run the “rbuild” program type the following on the

command line:
command prompt: rbuild <filename> <size>

Treatment of the arguments is the same as for the “vbuild” program described above.
The output of the “rbuild” program represents the 3D Multiresolution Wavelet Decomposi-
tion of the the original set of frames. The output are files that can be animated with the

“tblur” program.

The “tblur” program generates an animation of successive frames of a scene. To run

the program, simply type the following on the command line:
command prompt: tblur

All parameters indluding the name and size of the files that contain the frames are

hard coded in the “tblur” program and must be properly set before compilation.

D.2 Spatial-Temporal Analysis Software
D.2.1 Listing of KANMOV.C

P L T N LT I TV

VALl BREATHING KANISZA TRIANGLE PROGRAX vy
P T T T L L T P P P T e e Y4

/* DATE: 3 Sept 91
VERSION: 1.0
NAME: kanmov.c

DESCRIPTION: This program generates a "breathing" Kanisza Triangle
illusion on the Silicon Graphics computers. There may be some code
which is specific to the 4D series computers. To run the program just
type <kanmov> at the command prompt. Pressing the down arrow will cause
the motion to appear faster. Continued depressions will eventually slow
the animation to a stop and then speed up again. Pressing the up arrow

185




*/

causes the opposite effect. Pressing the right arrow increases the minimum
closure of the packmen up to the maximum angle defined in the code.
Pressing the left arrow decreases the minimum

closure of the packmen until it reaches 0 degrees.

TYLES READ: NONE

FILES WRITTEN: Frames may be output in a binary format by pressing
the spacebar at any time. The files are named "framex.bin".
where x stands for the number of frames saved up to that
point since the program was started.

EEADERS USED: <stdio.h> <device.h> <gl.h>

CALLING PROGRAMS: NOKE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing (with help from John Brunderman and Greg Tarr)
HISTORY: Initial Version.

/********#***#*************#*******#***************************************#/

#include <device.h>
#include <gl.h>

#include <stdio.h>

#define ANGLEINC 10

#defin.. SETX 258

#defin: SETY 256

#define XORG 200

#define YORG 200

main()
int i, j, k=0, speed = 10, total=50, sign=1, base1=300;
int base2=1500, base3= -900, X=0, Y=1, maxangle=544,
int minangle=0;
long twin, radius, aradius, xsize, ysize, center([2];
short val;
unsigned short *image;
long key, t1[2], t2[2], t3[2], c1[2], c2{2], <3[2];
FILE *outfile;
char filename[64];

image = (unsigned short *)calloc(SETX#SETY, sizeof(unsigned short));
prefposition(XORG, XORG+SETX-1, YORG, YORG+SETY-1);

twin = winopen('"Kanisza");

doublebuffer();

geonfig();

getsize(&xsize, &ysize);

radius = .1*xsize;

aradius = .31#*xsize;

center[X] = xsize/2.0;

center[Y] = ysize/2.0 + .04xysize;

c1[X] = center[X] - .28*xsize;
c1(Y] = center[¥] - .16xysize;
c2[X] = center[X] + .28%*xsize;
c2[Y] = center[Y] - .16*ysize;
c3[X] = center[¥];

c3[Y] = center[Y] + .32xysize;
t1[XJ = center[X] - .28#*xsize;
t1[Y] = center[Y] + .16*ysize;
t2(X] = center[X] + .28*xsize;
t2[Y] = center[Y] + .16*ysize;
t3[X] = center[X];

t3[Y] = center[Y] ~ .32*ysize;
linewidth(5);




e

qdevice(UPARROWKEY) ;
qdevice (DOWNARROWKEY) ;
qdevice (LEFTARROWKEY) ;
qdevice (RIGHTARROWKEY) ;
qdevice(ESCKEY);
gdevice(SPACEKEY);

while (TRUE) {
while (!qtest()) {
total+=sign*speed;

/* do drawing *x/

colox (WHITE);

clear();

color(BLACK);
circfi((int)c1[X3,(int)ciY], (int)radius);
circfi((int)c2[X],(int)cZ[Y], (int)radius);
circfi((int)c3{X], (int)c3[Y], (int)ra us);
bgnclosedline();

v2i(t1);

v2i(t2);

v2i(t3);

endclosedline();

color(WHITE);

arcfi((int)c1[X], (int)c1[Y], (int)aradius, basel - total,
basel + total);

arcfi((int)c2[Xx], (int)c2[Y],{int)aradius, base2 - total,
base2 + total);

arcfi((int)c3{X], (int)c3[Y], (int)aradius, base3 - total,
base3 + total);

if((total > maxangle) || (total < minangle)) sign = -sign;

swapbuffers();
}

/* get keyhoard input */
val = 1;

while (val) {
key = qread(&val);
if((key!=UPARROWKEY) && (key!=DOWNARROWKEY) && (key!=ESCKEY)
&& (key != LEFTARROWKEY) && (key != RIGHTARROWKEY)
&& (key != SPACEKEY))
val = 0;

}
/* act on keyboard input */

switch (key) {
case UPARROWKEY:
speed++; /*speed += 17;%/

break;
case DOWNARROWKEY:
speed--;
break;
case LEFTARROWKEY:
minangle —= ANGLEINC;
if (minangle < 0) minangle = 0;
break;
case RIGHTARROWKEY:
minangle += ANGLEINC;
if (minangle > maxangle) minangle = maxangle;
break;
case ESCKEY:
gexit();
break;
case SPACEKEY:
rectread(0, 0, SETX-1, SETY-1, image);

187




k++;

sprintf(filename, "frame¥d.bin", k);

outfile = fopen(filename, "w");

if(outfile == NULL)
pzintf("Brror openring /s as inp - file", filename);

else
for(i=0; i<SETX#SETY; i++) if(image[i]!=0) image[i]=255;
furite(image, sizeof(unsigned short), (SETX*SETY), outfile);
fclose(outfile);

}
break;
} /% end switch */

} /* end while(TRUE) */
} /% THE END */

D.2.2 Listing of KANGEN.C

/*************************#*************************************************/

/**x BREATHING KANISZA TRIANGLE PROGRAM **x/
e s L P e e e e P R I 2 s T P e e 2 )

/* DATE: 3 Sept 91
VERSION: 1.0
NAME: kanisza.c

DESCRIPTION: This program generates a "breathing" Kanisza Triangle
illusion on the Silicon Graphics computers. There may be some code

which is specific to the 4D series computers. To run the program just

type <kanisza> at the command prompt. Pressing the down arrow will cause
the motion to appear faster. Continued depressions will eventually slow
the animation to a stop and then speed up again. Pressing the up arrow
causes the opposite effect. Pressing the right arrow increases the minimum
closure of the packmen up to the maximum angle defined in the code.

Press 'ng the left arrow decreases the minimum

closure of the packmen until it reaches O degrees.

FILES READ: NONE
FILES WRITTEN: Frames may be output in a binary format by pressing

the spacebar at any time. The files are named "framex.bin".

where x stands for the number of frames saied up to that
point since the program was started.

HEADERS USED: <stdio.h> <device.h> <gl.h>
CALLING PROGRAMS: NONE
PROGRAMS CALLED: NONE

AUTAOR: J. Stewart Laing (with help from John Brunderman and Greg larr)

/ HISTORY: Initial Version.

*
/**t#*t#*‘*##**##*ttt#tt#*ttt***#****t#'*!*###*t**t##*######ttt###t#t#*‘*‘#*/
#include <device.h>

#include <gl.h>

#include <stdio.h>

#define ANGLEINC 10
TX 256

#define SE

#define SETY 256

#define XORG 200

#define YORG 200

main()

{
int i, j, k=0, speed = 10, total=50, sign=1, basel=300;
int base2 1500, base3= ~900, X=0, Y=1, maxangle=544;
int minangle=0;




long twin, radius, aradius, xsize, ysize, center([2];
short val;

unsigned short *image;

long key, t1[2], t2[2], t3[2], c1[2], c2[2}, c3[2];
FILE *outfile;

char filename[64];

image = (unsigned short *)calloc(SETX*SETY, sizeof(unsigned short));
prefposition(XORG, XORG+SETX-1, YORG, YORG+SETY-1);

twin = winopen("Kanisza");

doublebuffer();

geonfig();

getsize(&xsize, kysize);

radius = .1*xsize;

aradius = .31#*xsize;

center[X] = xsize/2.0;

center[Y] = ysize/2.0 + .Cixysize;

c1[X]) = center[X] - .28#xsize;
c1[Y] = center[Y] - _16%ysize;
c2[X] = center[X] + .28*xsize;
c2[Y] = center[Y] - _16*ysize;
¢3[X] = center[x];

c3[Y] = center[Y] + .32xysize;
t1[X] = center[X] ~ .28xxsize;
ti[Y] = centerfY] + .16sysize;
t2[X] = center[X] + .2B¢xsize;
t2[Y] = center[Y] + .16%ysize;
t3[Xx] = center[X];

t3[Y] = center[Y] - .32sysize;
linewidth(5);
qdevice(UPARROWKEY);

qdevice (DOWNARROWKEY) ;
qdevice (LEFTARROWKEY) ;
qdevice (RIGHTARROWKEY) ;
qgdevice(ESCKEY);
qdevice(SPACEKEY);

while (TRUE) {
while (!qtest()) {
total+=sign*speed;

/* do drawing */

coloxr (WHITE);

clear();

color(BLACK);
circfi((int)c1[X], (int)ec1[Y], (int)radius);
circfi((int)c2[X], (int)c2[Y], (int)radius);
cirefi((int)e3[X], (int)c3LY], (int)radius);
bgnclosedline();

v2i(t1);

v2i(t2);

v2i(t3);

endclosedline();

color(WHITE);

arcfi((int)c1{X],(int)cilY], (int)aradius, basel - total,
basel + total);

arcfi((int)c2(¥], (int)c2(Y¥],(int)aradius, base2 ~ total,
base2 + total);

arcfi((int)e3[x], (int)c3[Y],(int)aradius, base3 - total,
base3 + total);

if((total > maxangle) !| (total < minangle)) sign = -sign;

189




swapbuffers();
speed = 0;

/* get keyboard input =/
val = 1;

while (val) {
key = qread(&val);
if ((key!=UPARROWKEY) && (key!=DOWNARROWEEY) &k (key!=ESCKEY)
&% (key != LEFTARROWKEY) && (key != RIGHTARROWKLY)
&t (key '= SPACEKEY))
val = 0;

/* act on keyboard input */

switch (key) {
case UPARROWKEY:
/*speed++;*/ speed += 17;

break;
case DOHIARROHKEY

case LEFTARROWK
minangle -= AIGLEIIC

if (minangle < 0) minangle = 0;
break;

case RIGHTARROWKEY:
minangle += ANGLEINC;

if (minangle > maxangle) minangle = maxangle;
break;
case ESCKEY:
gexit();
break;
case SPACEKEY:
rectread(0, 0, SETX-1, SETY-1, image);
k++;
sprintf(filename, "“frame’d.bin", k);
outfile = fopen(filename, "w"};
if(outfile == NULL)
printf("Error opening %s as input file"”, filename);
else{
for(i=0; i<SETX+SETY; i++) if(image[i]!=0) image([i]=255;
furite(image, sizeof(unsigned short), (SETXsSETY), outfile);
fclose(nutfile);

break;
} /* end switch =/
} /» end while(TRUE) =/
} /+« THE ERD =/

D.2.3 Listing of VBUILD.C

/#‘t‘t.t*tt‘“t“tt“#.t“‘t.‘.‘t‘t“..‘t...““t‘.‘.“O“tt.“".‘.tt‘.‘t.‘/

Vi BREATHING KAKISZA TRIANGLE PROGRAM s/

/#*#t“"""tt“.#“‘“"““t..‘t“‘....‘.‘.“‘t...‘.‘O“l‘.“....t.‘.“'./
/* DATE: 3 Sept 91

VERSION: 1.0

NAME: vbuild.c

DESCRIPTIOK: This program generates two files that
represent the x and y coordinates of pixels in the input
image that will be processes with the wavel program.

FILES READ: Input file name given on command line or program

190




prompt.

FILES WRITTEN: Two files named striy.x and strip.y.
HEADERS USED: <stdio.h> <math.h> "jsmacros.h"
CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing

./ HISTORY: Initial Version.
[ Rk ok ok ok ok ok sk ok koo ok ok sk kb ok ko ok ok sk sk kol ok Rk ok ok ok /
#include <stdio.h>

#include "jsmacros.h"
#include <math.h>

#define FRAMES 32

#define THRESH 128.0

int **imatrix();

void free_imatrix();

float *vector();

int  *ivector();

void free_vector();

void free_ivector();

float **matrix();

void free_matrix();

void main(argc, argv)
int argc;
char *argv([]l;

int i,j,k,1, *X, *Y, size, **temp;
char infilenamel[64]), filename[64];
FILE =*infile, *outfile;

float **in;

/* load parameters */

if(argec 1= 3 & argc != 1){
printi("Usage: fbuild <filename> <N for NxN array of original image>\n");
exit(0);

}

if(arge == 1){
printf("\n\n\n Input the size of the image (N for NxN array):");
scanf("%d", &size);
printf(" \n\n Input filename of image to be histogramed:>");
fflush(stdout);
scanf("%s", infilename);

}

else {
sprintf(infilename, "%s", argv[1]);
sscanf(argv[2], "%d", &size);

}

/* allocate memory */

in = matrix(1, size, 1, size);

temp = imatrix(i, size, 1, size);

looplii(size, size) temp[il[j] = O;

X = ivector(1l, size*size);

Y = ivector(1, size*size);

/* load approximations and accumulate high spots */

loopik (FRAMES){
sprintf(filename, "%s%d.asc", infilename, k);
OPEN_FILE(infile, filename, "The Vector Builder")
looplij(size, size){

191




fscanf(infiie, "4f\n", &inlil{j]);
if(in{i][3J< THRESH){
if(temp[i] [j1==0) temp[il([jl=1;
if(temp[il [j1==1) temp[i][jl=1;
if(temp[i] [j]1==2) templi][j]1=3;
if(templi] (j1==3) templ[i][j]=3;

else{
if(temp[i) [j1==0) temp[il[jl=2;
if(templ1][jl==1) templi][j]1=3;
if(temp[i] [j1==2) temp(i][jl=2;
if(temp[i] [j]==3) temp[il[j]=3;

}

} /* end ij loop */

CLOSE_FILE(i, filename, "The Vector Builder", infile)
}/* end k loop */
/* build vectors */
1=0;
loopiij(size, size){

if(templi] [j]1==3){

1++;
Xf1] = j;
Y[1] = 1i;

} /% end if */

} /% end ij loop */
/* output vectors */
sprintf(filename, "strip.x");
CREATE_FILE(outfile, filename, "The Vector Builder")
loopli(l) fprintf(outfile, "%d\n", X[il);
CLOSE_FILE(i, filename, "The Vector Builder", outfile)
sprintf(filename, "strip.y");
CREATE_FILE(outfile, filename, "The Vector Builder")
loop1i(l) fprintf(outfile, "%d\n", Y[il);
CLOSE_FILE(i, filename, "The Vecter Builder", outfile)
free_matrix(in, 1, size, 1, size);
free_imatrix(temp, 1, size, 1, size);

} /* THE END */

D.2.4 Listing of SPLIT1D.C

/***************************************************************************/

[H®x% BREATHING KANISZA TRIANGLE PROGRAM *x/
/A4 Ao sk o ook o Rk o 3 Kok KoKk Aol Ak 3o oo ko ok sk ok ok ok ok ok ok Ko K Kok oK o o Kook o o sk ok ok ko ok K Kok /

/* DATE: 3 Sept 91
VERSION: 1.0
NAME: stripid.c

DESCRIPTION: This program strips off the one dimensional
time signals based on the coordinates provided by the input
files strip.x and strip.y generated by the vbuild program.
All signals are output in a signal file in which each signal
is a rcw of a 2D matrix stored in that file.

FILES READ: Input file name given on command line or program
prompt. Files strip.x and strip.y are read in
automatically.

FILES WRITTEN: One file with the suffix .tsig is written
which holds each one dimensional time signal in a row.

HEADERS USED: <stdio.h> <math.h> "jsmacros.h"

192




CALLING PROGRAMS: NONE
PROGRAMS CALLED: NONE
AUTHOR: J. Stewart Laing
/ HISTORY: Initial Version.
*
JFF Rk ok Aok R Aok ok ok ok ok ok sk ok Kook Aok sk ok ok ok KRk sk ok Rk ok AR ok Rk Rk sk ok Kk okok Kk ok /
#include <std10 h>
#include "jsmacros.h"
#include <math.h>
#define VECTORS 7189
#define FRAMES
int **imatrix();
void free_imatrix();
float *vector();
int *ivector();
void free_vector();
void free_ivector();
void main(argc, argv)
int argc;
char *argv(];

int i,3,k,1, *X, *Y, size;

float *in;

char infilename[64], filename[64];
FILE =*infile, *outfile;

/* load parameters */

if(arge !'= 3 &% arge != 1){
printf("Usage: stripid <filename> <N for NxN array of original image>\n");
exit(0);

}

if(arge == 1){
printf("\n\n\n Input the size of the image (N for NxN array):");
scanf("%d", &size);
printf(" \n\n Input filename of image to be histogramed:>");
fflush(stdout);
scanf("%s", infilename);

else {
sprintf (infilename, "%s", argv[il);
sscanf (argv[2], "/d", &size);

}

/* allocate memory */

in = vector(1, sizexsize*FRAMES);
X = ivector(1, VECTORS);

Y = ivector(1i, VECTORS);

/* load strip locations */

sprintf(filename, "strip.x");

OPEN_FILE(infile, filename, "The Signal Stripper")
loop1i(VECTORS) fscanf(infile, "Vd\n", &Xx[il);
CLOSE_FILE(i, filename, "The Signal Stripper", infile)
sprintf(filename, "strip.y");

OPEN_FILE(infile, filename, "The Signal Stripper")
loopli(VECTORS) fscanf(infile, "¥%d\n", &Y[il);
CLOSE_FILE(i, filename, "The Signal Stripper", infile)
/* load frames */

loop1l(FRAMES){

193




sprintf(filename, "Ys%d.asc", infilename, 1);
OPEN_FILE(infile, fil:name, "The Signal Stripper")
loopli(sizexsize) fscanf(infile, "Af\n", &in{(1-1)*sizexsize+i]);
CLOSE_FILE(i, filename, "The Signal Stripper", infile)

} /* end 1 loop */

/* begin stripping */

sprintf(filename, "%s.tsig", infilename);
CREATE_FILE(outfile, filename, "The Signal Stripper")
loopik1(VECTORS, FRAMES)

fprintf(outfile, "%f\n", in[(1-1)*size*size+Y[k]*size+X[k]]);
CLOSE_FILE(i,filename, "The Signal Stripper", outfile)

/* free memory */

free_vector(in, 1, size*size*FRAMES);
free_ivector(X, 1, VECTORS);
free_ivector(Y, 1, VECTORS);

} /* THE END */
D.2.5 Listing of Modified WAVE1 Modules

D.2.5.1 Listing of MAIN-WAVELD.C

[/ oo Aok oo ook o ksl ok sk ok s sk ook ok oK ok ok sk ok sk ook ok sk kol okok o o ks sk ko sk ok R ook ok sk Kok /
[ ARk koK ok ok o o sk sk e kR ok Ak e ok sk ok ok ek o ok sk sk ok ok ok sk o ok ke sk ko o ok sk sk ok o ek sk ok ok ok /

Y£1T: WAVELET ANALYZER MAIN PROGRAM DRIVER **/
7Aook ok ok ok ko ok s ok o s ok o o ok ok ok ok o ok sk o ok sk akok sk ok okakok sk ok sk ok ok ok siok sk s ok kolok ok kb ok ko /
[ AR AR ARk ARk KRR Rk sk ARk K ok sk ok K kR ok R ok sk Rok ko ok ook ok /

/* DATE: 09 April 91, 18 June 91, 16 August 91, 5 Sept 91
VERSION: 3.1

NAME: main-wvave.c

DESCRIPTION: This program performs a multiresolution wavelet analysis
of an input signal with a wavelet from its internal library chosen
interactively by the user. It handles the menu interface with the

user and drives the subroutines that take input, analyze, produce
output. Thé wavelet decomposition algorithm is a pyramid algorithm
proposed by Stephan Mallat in "A Theory for Multiresolution Signal
Decomposition: The Wavelet Representation", published in IEEE Trams.
on Pattern Anal. and Machine Intel. July 89. The algorithm uses a pair
of mirror filters derived from the scaling function, phi(x). The user
may enter the intended input signal file from the command line following
the calling command ’wavel’ or the user may wait to be prompted for

the input file name and size after starting the program with the same
command.

FILES READ: NONE (A subroutine reads the input files.)

FILES WRITTEN: NONE (Subroutines write out the saved data in files.)
HEADERS USED: <stdio.h>, "jsmacros.h”, "stewmath.h"

CALLING PROGRAMS:  NONE

PROGRAMS CALLED: signalload.c, reconstructi.c, decomposel.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version; adapted from phivl.c and haarvi.c

Vorsaon 2.0 was a rewrite to change the basic algorithm from the using
anner products to using the Mallat algorithm referenced above.

Version 3.0 adapted the two dimensional program to one

dimensional signals.

Version 3.1 modified the wavel program to process the output

of the splitid program which is one file whose contents is a

2D in which each row is a 1D time signal. In this version

194




all menus are bypassed and only the approximation

coefficients are actually written out to files.
*/
/3R kA kAR ok ek ook ok sk sk kAo koK sk Kok Aok Rk ko ok Aok ok ok okok ok ook ok ok ok okok ok /
A g s e L e E T L ey

[ Rk kK ko ok ok ok ok skokok ok ok ko ok ok [

/* DECLARATION SECTION */
[ ¥Rk ok ok ok kR Rk

#include <stdio.h>
#include "jcmacros.h”

#include "stewmath.h"

#define VECTORS 3490
#define FRAMES 32

int_vector  loadsignal();

void reconstruct();
void decompose() ;
float *xmatrix();
void free_matrix();

[ ARtk ok ko ok /

/* MAIN PROGRAM BODY */
[ dokdk ko ok ok Rk ok kokk [

void main(argc, argv)
int argc;
char *argv[];

[ Aok kK koK kA Ak ok ok ok kA ok kekok /
/* initialize variables */
[ 3ok ko Rk ok sk ok ok kK ok ok /

int i,j,k,1, selection;

float **signal;

char filename[64];

FILE *infile;

[ A Rk Ao Aok KR oKk KRk Rk kK Kok ok f
/* load image to be analyzed */

[ RREF AR Aok kK AOR R Rk oRok ok KRk R sk kR Rk [

if(arge '= 3 && arge != 1){
printf("Usage: wavel <filename> <# of Samples>\n"};
exit(0);

/* load time signal locations */
signal = matrix(1, VECTORS, 1, FRAMES);
/* load signal */

sprintf(filename, "%s.tsig", argv[1l);
OPEN_FILE(infile, filename, "wavei");
loop1kl(VECTORS, FRAMES)

fscanf (infile, "%f\n", &signal.vector[k][1]);
CLOSE_FILE(i, filename, "wavel', infile)

/* do decomposition */

decompose(signal, filename);

/* free memory */

free_matrix(signal, 1, VECTORS, 1, FRAMES);
} /* THE END */

D.2.5.2 Listing of DECOMPOSELD.C

/***************************************************************************/

195




[ Rk ko ok Ok kR kR ok ok ol kK sk ok ok 8k ko ok A ok ok sk Kk sk kR ok sk f
[ Ak WAVELET DECOMPOSITION SUBROUTINE *% /
Rk ok ook koo oK Sk o s ok oKk Ko ok koo oK ok A ok o K Ao o Rk kR ks koo ok ok
koo sk ko ok e o o Kok o s ks ol A AR K A Sk Ak ok kR R kR ok [
/* DATE: 19 June 91, 16 August 91, 5 Sept 91

VERSION: 2.1
NAME: decomposel.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is discussed in
the description of the main driver module called "main-wavel.c'".
Data is passed by reference from the main driver module. The data is
in ascii format arranged in a vector whose dimension is a

power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: Two coefficient files at each level of analysis.
The file names begin with the input signal filename

and end with an extension of the form ".pX" where
n is an integer that represents the level, X is one

of the letters ’'C’ or ’D’ to represent phi
or psi coefficients respectively.

HEADERS USED:  <stdio.h>, "jsmacroes.h"

CALLING PROGRAMS: main-wavel.c

PROGRAMS CALLED: convolvel.c, filters.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version.

Version 2.0 nolonger uses the Fourier domain filtering. Now
only spactial convolution is dome. Also, this version was

adapted from the two dimensional version 1.0.

Version 2.1 is modiried to work with_version 3.1 of
main-wavel.c. This version specifically processes multiple

iD time signals as provided by the stripid.c program.
*/
/3R ok ok ok ok ook Rk ok sk sk kR Ak kR kAR Sk kR Aok Rk ok skokokkk f
/3K ok ok koo ok sk ok ok dokskok sk ok ok ok Aok ok ok ok Sk skoR ook ok ok ok ok ok kb ok sk ok okkokok /

[k Rk Rk kR Rk Rk [

/* DECLARATION SECTION =*/
/ Akoke sk ok e ok e sk ko ok sk o ook o ko ok skok /

#include <stdio.h>
#include "jsmacros.h"

#define VECTORS 3490
#define [FRAMES

void convolve();
void fiiterc{);
float xvector();
void free_vector();
int *ivector();
void free_ivector();
float *kmatrix();
void free_matrix();

[ Atk Aok Aok kA ok Rk [

/* MAIN PROGRAM BODY */
[ FFREAAAAR KA KR AAAK KKK [

void decompose(signal, infilename)
float **signal;
char infilenamel[];

[ R AR AR AR ARk

196




/* declare variables */
[k ok ok sk ok o o ok oo ok ok ok ok ok ok ok ok ok f

int i, j, k, maxlevel, wavelet_type;

float_vector h_of_n, h_of_nflipo, g_of.r, g_of_nflipo, phi, phiflipo;
float_vector phiflipc, *phiflipcpointer = &phiflipc;

float_vector *h_of_npointer = &h_of_n, *h_of_nflipopointer = &h_of_nflipo;
float_vector =g.of _npointer = &g_of_n, *g_of_nflipopointer = &g _of _nilivo;
float_vector *phipointer = &phi, *phiflipopointer = &phiflipo;
float_vector c_coef, d_coef;

float_vector  *c_coefpointer= &c_coef,*d_coefpointer= &d_coef;

float **temp;

FILE *outfilelic, *outfile2c, *outfile3dc, *outfileld, *outfile2d;
FILE *outfiledd;
char filename[64], wave_code[64];

/3o oh ek s ok koo ok ok ok ok sk ok ok ok k ok /
/* allocate memory */
[k ok ok ok ok ok o ook ok ok ok ok Aok ok /

temp = matrix(1, VECTORS, 1, FRAMES);
c_coef.length = FRAMES;

c_coef.veccor = vector(1l, c_coef.length);
loopli(c_coef.length) c_coef.vector[i] = 0.0;
d_coef.length = FRAMES;

d_coef.vector = vector(1, d,coef.length);
loopii(d_coef.length) d_coef.vectorli] = 0.0;
h_of_n.vector = vector(1,FRAMES*2);
loop1i(FRAMES*2) h_of_n.vector[i] = 0.0;
g_of_n.vector = vector(1,FRAMES*2);
loop1li{FRA*MES*2) g_of_n.vector[i] = 0.0;
h_of_nflipo.vector = vector(1,FRAMES*2);
loopii(FRAMES*2) h_of_nflipo.vector[i] = 0.0;
g_of_nflipo.vector = vector(1,FRAMES*2);
loopli(FRAMES*2) g_of_nflipo.vector[i] = 0.0;
phi.vector = vector(1,2*FRAMES);
loop1i(FRAMES*2) phi.vector[i] = 0.0;
phiflipo.vector = vector(1,2+¥FRAMES);
loopii(FRAMES*2) phiflipo.vector[i] = 0.0;
phiflipc.vector = vector(1,2*FRAMES);
loop1i(FRAMES*2) phiflipc.vector[i] = 0.0;
[k ok ok ok ok ok ok Rk ok sk kR ok

/* display menu */

[ Rk ks ok kA ok ok R ARk kR Rk kR Rk

/*
print£("\n\n DECOMPOSITION MENU\n\n");

printf (" 1 = Piece-wis¢ Constant.(¥/A)\n");
printf (" 2 = Piece~wise Linear.(N/A)\..";
printf(" 3 = Daubechies N=2.\n");

printf (" 4 = Daubechies N=3.\n");
printf(" 5 = Daubechies N=4.\n");

printf (" 6 = Daubechies ¥=5.\n");

printf (" 7 = Daubechies N=6.\n");
printf(" 8 = Daubechies N=7.\n");

printf (" 9 = Daubechies N=§.\n");
printf(" 10 = Daubechies N=9.\n");
printf(" 11 = Daubechies N=10.\n");
printf (" 12 = Splines.\n");

printf(" 13 = Morlet.(N/&)\n");

printf("\n Enter an integer 1-13: ");

scanf ("/d", &wavelet_type);
*/
wavelet_type = 3;

197




/* error handling for invalid input */

if (wavelet_type < 3 || wavelet_type » 13) {
printf("\nYou have chosen an Invalid Wavelet type or");
printf("\nthis type is not currently available.™);
} /* end if */

else {
JHR kKRR AR AR AR AR R | Kk /
/* Set wave_code for use in output filer.w -, -/

JRERk ok ok ok ok ok kR ko Rk kR L Kt - g o)

if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type

3) sprintf(wave cce-+, TR

4) rprintf(wave_cuic, "L
5) sprintf(wave_code, ‘¢.4");
6) sprintf(wave_code, db5");
sprintf(wave_code, - db6");
8) sprintf(wave_code, '+ "iy;
9) sprintf(wave_code. "Ja8");
10) sprintf/~ave_coae, «o9");
if (wavelet_type 11) sprintf.wave_code, "d>0");
if (wavelet_type 12) sprintf(wave_code, "spl");

[ ARk kA Aok Ak KAk Ak kKA ok ok kok /

/* Generate Phi and Filters */
/R dkokok kR ok Aok ok okk ok Rk Kok Kok [

nmon o nnuein
(U (I LI I Y I L I 1]
~
~’

filcers (wavelet_type,h_of_npointer,g_of_npoiuter,phipointer);
flipo(phipointer, phiflipopointer);
h_of_nflipopointer = h_of_npointer;
g-oi_nflipopointer = g_of_npointer;

/* open files */

sprin*f(filename, "%s.%d.c.%s", infilename, 1, wave_code);
CREATE_FILE(outfileic, filename, "The Wavelet Analyzer")
sprintf(filename, "%s.%d.c.%s", infilename, 2, wave_code};
CREATE_FILE(zutfile2c, filename, "The Wavelet Analyzer')
sprintf(filename, "%s.%d.c.%:", infilename, 3, wave_code);
CREATE_FILE(outfile3c, filen.uue, "The Wavelet Analyzer",

/*  sprintf(filename, "¥s.%d.d.%s", infilename, 1,wave_code);
CREATE_FILE(outfileid, filename, "The Wavelet Analyzer")
sprintf(filename, "%s.%d.d.%s", infilename, 2,wave_code);
CREATE_FILE(outfile2d, filename, "The Wavelet Analyzer")
sprintf(filename, "%s.%d.d.%s", infilename, 3,wave_code);
CREATE_FILE(outfile3d, filename, "The Wavelet Anzlyzer")

*

/ A T T L T e e ey 2 2T T Y.
/* Call convolution routine and save the coefficient vectors Yor */

/* each level of analysis. */
R T e S P P T P T T e T Y
loopik(3){

loop1j(VECTORS){

convolve(temp(jl, h_ef_nflipopointer, g_of_nflipopointer,
c_coefpointer, d_coefpointer);
loop1i(c_coef.length) temp{jl[i] = c_coef.vector[il;

switch (k){

case 1:
loop1ij(VECTORS, c_coef.length)
fprintf(outfilelc,"%f\n", t-mp[il [j1);

se 2:
loop1ij(VECTORS, c_coef.length)
fprintf(outfile2c,"’f\n",temp{i] [j]);

ase 3:
loop1ij(VECTORS, c_coef.length)

ca

c

198




/*

fprintf(outfile3c,"%f\n", temp[il [j1);

T
} /* end k loop ¥/

CLOSE_FILE(i, filenawe, "The Wavelet Analyzer", outfileic)
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile2c)
CLOSE_FILE(i, filename, "The Wavelet Analyzer", vutfile3c)

CLOST_FILE(i, filename, "The Wavelet Analyzer', outfileid)
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfilezad)
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile3d)

*/
} /* end else */
/* free memory */

free_matrir‘temp, 1, VECTORS, 1, FRAMES);
free_vectc. .c_coef.vector, 1, c. ccef.length);
tree_vectoi (¢_coef.vector, 1, d_ccef.length);
free_vector(h_of_n.vector,1,FRAMES*2);
frre_vector(g_of_n.vector,1,FRAMES*2);
free_vector(phi.vector,1,FRAMES#2):
free_vector(phiflipo.vector,1,FRAMES*2);
free_vector(phiflipc.vector,1,FRAMES*2);

{* THE END */

D.2.6 Listing of RBUILD.C

AR AR AAAAAAAAAAAKH . A AAAARA A KA A AR A A AR A A A AR A A A A A KA A AR A A ARk [

e REBUILD PROGRAM xxx/
[ AR ERA AR AR A Kook kA A A A ARk Aok Kk ok Aok A Aok o ok Rk Aok ok kK ok Ak kR ok ok ok ok [

/*

*/

DATE: 3 Sept 91
VERSION: 1.0
NAME: rbuild.c

DESCRIPTION: This program rebu.lds the frames of the scene

that is under analysis from the output of the wavel
program.

FILES READ: Input file name given on command line or program
prompt. The files strip.x and strip.y generated by the
vbuild program are the coordinates that tell the program
where to place the 1D time signals back in the frames.

FILES WRITTEN: A new set of frames with suffix .comb.
HEADZERS USED:  <stdio.h> <math.h> "jsmacros.h"
CALLI~G PROGRAMS:  NONE

PROGRAM3 CALLFD: NONE

AUTHOR: J. Stewart Laing

HISTORY: Initial Version.

[ AR R A A A AA AR A AR A AR A A AT AR AR AR ARARAAA A AR AAE R AR A AA N KAk A KK KRRk [

#include <stdio.h>
#include "jsmacros.h”

#include <math.h>

#define VECTORS 3490
#define FRAMES 32

#define LEVEL

flcat **matrix();
void free_matrix()};
float =*vector();

int

*ivector();

void free_vector();

199




void free_ivector();
int  **imatrix();
void free_imatrix();
void main(argc, argv)
int argc;
char *argv(];

int i,j,k,1, *X, *Y, size, n;
char infilerame[64], filename[64];
FILE *infile, *outfile;

float *in, **temp;

void expd();

/* load parameters */

if(arge != 3 && argec = 1){
printf("Usage: fbuild <filename> <N for NxN array of original image>\n");
exit(0);

}
if(arge == 1){
printf("\n\n\n Input the size of the image (N for NxN array):");
scanf("%d", &size);
printf(" \n\n Input filename o’ signals:");
fflush(stdout);
scanf("%s", infilename); printt("\n"":

}

else { .
sprintf(infilename, "%s", argv{1l);
sscanf (argv[2], "Ud", &size);

} )
/* allocate memory */

X = ivector(1, VECTORS);

Y = ivector(1, VECTORS);

in = vector(1, size*size*FRAMES);
temp = matrix(1, VECTORS, 1, FRAMES);

/% load strip locations */

sprintf(filename, "strip.x");

OPEN_FILE(infile, filename, "The Signal Stripper")
loop1i(VECTORS) fscanf(infile, "%d\n", &X[il);
CLOSE_FILE(i, filename, "The Signal Stripper", infile)

sprintf(filename, "strip.y");

OPEN_FILE(infile, filename, "The Signal Stripper")
loopii(VECTORS) fscanf(infile, "%d\n", &Y{il);
CLGSE_FILE(i, filename, "The Signal Stripper", infile)

/* load frames */

loop11(FRAMES){
sprintf(filename, "Ys’d.asc", infilename, 1);
OPEN_FILE(infile, filename, "The Signal Rebuilder")
loopli(size*size) fscanf(infile, "%f\n", &in[(1-1)#*size*size+i]);
CLOSE_FILE(i, filename, "The Signal Rebuilder™, inf:le)

} /* end 1 loop */

/* load signals */

n = FRAMES/(int)pow(2.0, (double)LEVEL);
sprintf(filename, "/s.tsig.%d.c.db2", infilename, LEVEZL);
OPEN_FILE(infile, filename, "The Signal Rebuilder")
loop1k1(VECTORS, n)

fscanf(infile, "%f\n", &templkl[1]);
CLOSE_FILE(i,filenan:, "The Signal Rebuilder",infile)

200




/* rebuild frames */

loop1i(LEVEL){
expd(temp, VECTORS, n);
n *= 2;

1
loopikl(VECTORS, FRAMES)
in{(1-1)*sizexsize+Y[k]*size+X[k]] = temp[k][1];

/* output frames */

loop11(FRAMES){
sprintf(filename, "¥s%d.asc.comb.3.5.db2", infilename, 1);
CREATE_FILE(outfile, filename, "The Signal Rebuilder")
loopli(size*size) fprintf(outfile, "%f\n", in[(1-1)*size*size+il);
CLOSE_FILE(i, filename, "The Signal Rebuilder”, outfile)

}

free_ivector(X, 1, VECTORS);
free_ivector(Y, 1, VECTORS);
free_vector(in, 1, size*size*FRAMES);
free_matrix(temp, 1, VECTORS, 1, FRAMES);

} /* THE END %/
void expd(in, rows, cols)

{

int rows, cols;
float **in;

int 1,3;
float *yp, *tmp, *tab;

.void spline(); splint();

yp = vector(l, cols);
tab = vector(i, cols);
tmp = vector(1l, 2xcols);
loopli(cols) tablil = (float)(2#i);
loopli(rous){
spline(tab, in[i], cols, 1.0e30, 1.0e30, yp);
loop1j(cols){
tmp[2#j] = in[i][§];
splint(tab, in[il, yp, cols, (float)(2+j-1), &tmpl[2%j-1]);

}
loop1j(2*cols) in[il[j] = tmp[j];

free_vector(yp, 1, cols);
free_vector(tab, 1, cols);
free_vector(tmp, 1, 2*cols);

} /* THE END */

D.2.7 Listing of TBLUR.C

/*****#**************#**#****t***********##****t*****t##t***#******#********/

[*xx ANIMATION PRCGRAM FOR A SET OF FRAMES IN A SCENE *x%/
P Y e L T e e e T2 Y

/* DATE: 3 Sept 91

VERSION: 1.0
NAME: tblur.c

DESCRIPTION: This program animates the frames of a scene
on the Silicon Graphics computers. There may be some code
which is specific to the 4D series computers. To run the program
just type tblur at the command prompt. Pressing the escape

201




*/

key will halt the program.

FILES READ: The frames of the scene to be animated.

FILES WRITTEN: NONE

HEADERS USED: <stdio.h> <device.h> <gl.h>

CALLING PRUGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing (with help from John Brunderman and Greg Tarr)
HISTORY: Initial Versaon.

/*******************************************#*#****************#************/
#include <device.h>
#include <gl.h>

#include <stdio.h>
#define SETX 256

#define SETY 256
#define XORG 200
#define YORG 200
#define FRAMES 32

main()

int i)j»k;l;

long twin, key;

unsigned short *image, **buffer;
short wval;

char filename[64];

FILE #infile;

prefposition(XORG, XORG+SETX-1, YORG, YORG4+SETY-1);
twin = winopen("Kanisza");

doublebuffex();

geonfig();

/* read frames into buffer =/

buffer = (Colorindex **)calloc(FRAMES, sizeof(Colorindex *));
for(i=0; i<FRAMES; i++)
buffer[i] = (Colorindex *)calloc(SETX*SETY, sizeof(Colorindex));

for(i=1; i<=FRAMES; i++){

sprintf(filename, "frame’d.bin.comb", i);

infile = fopen(filexnzme, "r");

if(infile == NULL){

printf("Exror opening %s as input file\n", filename);

gexit();
else{

fread(buffer[i-1], sizeof(unsigned short), (SETX*SETY), infile);

fclose(infile);

for(j=0;j<SETX*SETY;j++) if (buffer[i-1][jl'=0) buffer[i-1][j]=7;
}
/* annimate new frames %/
qgdevice(ESCKEY);

vhile (TRUE) {
while (!qtest()) {

for(i=0; i<FRAMES; i++){

recturite(0, 0, SETX-1, SETY-1, buffer[i]);
swapbuffers();

}

for(i=FRAMES-1; i>0; i--){
recturite(0, 0, SETX-1, SETY-1, buffer[il);
swvapbuffers();

}

o
=
(3]




}

/* get keyboard input */
val = 1;

ghile (val) {

key = gread(&val);
if(key!=ESCKEY) val = 0;

/* act on keyboard input */

switch (key) {

case ESCKEY:
gexit();
vreak;

}

}
}




Appendix E. Software jor the Boundary Contour mModel

E.1 System Description

The following programs are used in the boundary contour analysis of Chapter VIII:

1. wave2 - The Multiresolution Wavelet Decomposition and Reconstruction program for

two dimensional images (See Appendix B.1).

2. lenrow - A program used to perform a lateral excitation along the rows of a two

dimensional array of wavelet detail coefficients.

3. lencol - A program used to perform a lateral excitation along the columns of a two

dimensional array of wavelet detail coefficient-.

In the analysis of Chapter VIII, we use the lenrow program to spread horizontal energy
along the rows of the d1 and d3 wavelet detail coefficients (see explanation i Chapter III

and VI). To run this program, type the following on the command line:
command prompt: lenrow <filename> <size>

The arguements are optional. If not entered on the command line, the program will

prompt the user for them interactivley.

Similar to the lenrow program the lencol program performs a lateral excitation along
the columns intended for the dl and d3 wavelet detain coefficients. To run this program,

tvpe the following at the command prompt:
command prompt: lencol <filename> <size>

The arguements are optional. If not entered on the command line, the program will

prompt the user for them interactivley.

The output of both programs is a file the same size as the input file whose name is
made up of the input file name with a .1len suffix added. Data is stored in ASCII format as

discussed previously.

204




E.2 Boundary Contour Model Analysis Software
E.2.1 Listing of LENROW.C

/***************************************************************************/
/***************************************************************************/

/%% LATERAL EXCITATION ALONG ROWS

*%x/

/A sk koo oo ok Aok o sk ok o ok Jook ook ok ook ke ok ok koo o o ok ok o ok ok sk ok Rk ok ke K ok o ok ek ok ok ok /
[ AR koK ok ok AR K oo ok sk o o ok ook e ok o o ok o sk ok ok sk ok o ok ok ok sk ok o ook ok ks ok ok ok

/* DATE: 27 Sept 91
VERSION: 1.0
NAME: 1lenrow.c

DESCRIPTION: This program performs a lateril excitation
along the rows a the input ASCII data file. The extent of

the receptive field is determined by #dsfine P. This program
is intended to be part of a Boundary Contour Model devised

for the author’s masters thesis.

FILES READ: wavelet detail images as genterated by the wave2

program.

FILES WRITTEN: The output file has the name of the input
file with the suffix .len added.

HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h",
<math.h>

CALLING PROGRAMS: NONE
PROGRAMS CALLED: NONE
AUTHOR: J. Stewart Laing

./ HISTORY: Initial Version.

[ Aok sk koo kAo ok ok o sk o ko ok ko oo ok ksl sk sk ok ook ok ok ok o sk o o s sk ok ok kol ok sk ok ook ok sk ok ok ok ok ok /
/s Aok ook ok ook ok ok sk e ok o ok sk ok ok ko ok ok ke o o Aok o ok oo o ook ko sk ko ok ok ok ok ok ok ok /

[k kAR Kok sk KAk Ak kR ok ok

/* DECLARATION SECTION =*/
[ AR Aok kR Kk Kk KRk Kok ok

#include <stdlib.h>
#include <stdio.h>

#include "jsmacros.h"
#include <math.h>
#define F -1.0

/*#define P 6%/
#define POS 1

#idefine NEG O

[k kR ok Rk dokkok ok

/* FUNCTION BODY */
[ ARk kKR ok ok Aok K KKk Kk [

float **matrix();
void free_matrix();
int  **kimatrix();
void free_imatrix();

void main(argc, argv)
int arge;
char *argv[l;

JRER Rk k kA kKK [
/* initialize variables */
[ ERRk ok kok ok ok koK ko [

int i,j,k,p, extent, *xflag, P;
FILE *infile, *outfile;
float_array input, output;

char infilename[64], latfile[64];
float latfactor = 0.0, influence;

205




/*

*/

J Aok ok sk sk ok ok ok ok ok ke ke ok ok ok /
/* test parameters */
/Ao ko kKo ok ok ko ok ok ok ok ok /

if(arge != 4 && argec != 1){
printf("Usage: threshold <filename> <size>\n");
exit(0);

etk ks ok ok o Kok ok sk sk ko kRl R Kok Kk ok ok Aok Rk ok ok /
/* prompt for parameters if not input */
[ Ak ko ok ok Aok ok ok ok dkokokdek ok kKol sk dokok /

if(arge == 1){
printf ("\n\n\n Input the size of the input N for NxN:");
scanf("%d", &input.ROW);
printf(" \n\n What is the input filename?:"); fflush(stdout);
scanf("%s", infilename);
printf("\n Input the lateral extent of receptive field:");fflush(stdout);
} scanf("%d", &P);
[k sk ok Aok kR Rk Kok koK Kk
/* use parameters given on command line */
[RAkk Rk ko sk ok kR Rk kK Rk ok

else {
sprintf(infilename, "%s", argv[i]);
sscanf(argv[2], "%d", &input.ROW);
sscanf (argv[3], "4d", &P);

input.COL = input.ROW;

input.array = matrix(1, input.ROW+2#P, 1, input.COL+2%P);
loopiij(input.ROW+2+P,input.COL+2*P) input.array[il[j] = 0.0;
output.ROW = input.ROW;

output.COL = input.COL;

output.array = matrix(1, output.ROW+2+P, 1, output.COL+2%P);
loop1ij(output.ROW+2+P,output.COL+2*P) output.array[il[j] = 0.0;
flag = imatrix(1, input.ROW, 1, input.COL);
loopiij(input.ROW, input.COL) flag[il[j] = 1;

/3 koo ok sk s ok ok ok ook ok ok sk ok ok ok ok Kok ok f

/* open input file and read in data */

JRER Rk Rk kR ok kR R kR ok Kok [

printf("\nreading data file...\n"); fflush(stdout);
OPEN_FILE (infile, infilename, "The latnet”)
loopiij(input.ROW, input.COL)

fscanf(infile, "%f\n", &input.array[i+P][j+P]);
CLOSE_FILE(i, infilename, "The latnet", infile)

/Ao ook kR ok ARk KRR KRk ok [
/* prompt user for latnet factor */
[ Rk ok ok K ok ok ok ok sok AR ok ok ok ok sk ok bk ok /

printf(" \n\n Input latnet factor(float):");
scanf("/f", &latfactor);
printf("\n\n Input latnet extent(integer):");
scanf("%d", &extent);

[kt okt AR ok ok ARk ko sk ook ok ok ks kK kR ok ok ok ok /
/* This part actually performs the lateral excitation. */
JRF Rk R ok ok ok kR R KRk R Aok kAR Rk ko [

printf ("\nperforming lateral excitation...\n"); fflush(stdout);
for(i=1+P; i<=input.ROW+P; i++)
for(j=14P; j<=inp ° COL+P; j++){

206




output.array(i][j] = input.array(il[j] - input.array[il[jl;
if(output.arrayl[i][j]==0.0) flagli-P]{j-P] = POS;

else flagli-P][j-P] = NEG;

input.array[il [j] = (float)fabs((double)input.arrayl[i][j]);

}
for(p= -P; p<= -1; p++)
latfactor += (float)pow(2.0, (double)p);
for(p=1; p<=P; p++)
latfactor += (float)pow(2.0, ~(double)p);
for(i=1+P; i<=output,iOW+P; i++)
for(j=14P; j<=output.COL+P; j++){
output.array[i]J[j] = latfactor * input.array[il[j];
for(p= -P; p<= -1; p++)
output.array[i] [j]-=input.array[i] [j+p]l*(float)pow (2.0, (double)p);
for(p=1; p<=P; p++)
output.array[il [j]l-=input.array[i]} [j+p]*(float)pow(2.0,-(double)p);
output.array[i][j] *= F;

}
for(i=1+P; i<=output.ROW+P; it++)
for(j=1+P; j<=output.COL+P; j++)
if(flag[i-P] [j-P]==NEG) output.array[i][j] = -output.array[i][jl;
/2R ok s ok ook o ok ok ok ok ok ok s sk keok ko sk skok sk ok ok koK ok ok ok /

/* Create file and output data.*/
/2R e ook sk ook ok o o ok sk ok ok ook ook ok ok ok ok ok ok ok /

printf("\nwriting output data file...\n"); fflush(stdout);
sprintf(latfile, "¥%s.len", infilename);
CREATE_FILE(outfile, latfile, "The Thresholder")
loopiij(output.ROW,output.COL)

fprintf(outfile, "%f\n", output.array[i+P][j+P]);
CLOSE_FILE(i, latfile, "The latnet",outfile)

JRRRE R A AR AR AR AR AR KRR ARk AR KRRk
/* Tell the user where the output file is located. */
JHFAAEEAAAAA AR AFAAAAAAA AR AR AR AAAKAAAAAAAAAAKAKAKA AN [

printf("\nCreated new file called: ’%s\n\n", latfile);

free_matrix(input.array,i,input.ROW+2%P,1,input.COL+2*P);
free_matrix(output.array,1,output.ROW+2%P,1,output.COL+2%P);
free_imatrix(flag, 1, input.ROW, i, input.COL);

} /* THE END */

E.2.2 Listing of LENCOL.C

[ Rk okok Aok ok ok ok ok sk ok Aokl R ok oksk ok ok ok ok ok sk ok Ak skoRoR sk Aok e ok ek ks ok ok ok ok ok /
[ AR AR A A A AR KA AR ARk Aok Ak ok Ak sk ok AR ARk n Rk ARk KRR KoKk kK ok
. LATERAL EXCITATION ALONG COLUMNS oy
/AR Ak ok ok o ok Kok oo ok s ko R AR AR Aok ok kKRR Kk Rk kR ok ok ok kK ok
/AR AR AR ARk Aok AR Aok o R A K o ok R KR KoK ok o Ak KK Ak AR KRk ok o R Kk ok
/* DATE: 27T Sept 91

VERSION: 1.0
NAME: 1lencol.c

DESCRIPTION: This program performs a lateral excitation
along the cols a the input ASCII data file. The extent of
the receptive field is determined by #define P. This program
is intended to be part of a Boundary Contour Model devised
for the author’s masters thesis.

FILES READ: wavelet detail images as genterated by the wave2
program.

FILES WRITTEN: The output file has the name of the input
file with the suffix .len added.

207




HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h",
<math.h>

CALLING PROGRAMS:  NONE
PROGRAMS CALLED: NONE
AUTHOR: J. Stewart Laing

/ HISTORY: Initial Version.

*

[ Rk kR Rk ok kR ok ek ko ok ook ok sk ook ok ok ok ok Kk Ak sk ok sk ek ok ok Kok /
/o ko ok ok sk ok sk ok sk ko sk ok o kR ok Kok ook ok oo ok ok sk ok sk ko ok ok ok sk sk ok sk ok ok ok sk ok ok sk Kk skt ok ko /

[FERE Rk ok ok kR kKoK KRk [

/* DECLARATION SECTION */
e e T T T Y

#include <stdlib.h>
#include <stdio.h>

#include "jsmacros.h"
#include <math.h>
#define F -1.0
/*#define P 6%/

#define Pgs 1
#define NEG O

/¥R kR ook /

/* FUNCTION BODY */
[FERERRRR Rk kR Rk dokk [

float **matrix();
void free_matrix();
int  **imatrix();
void free_imatrix();

void main(argc, argv)
int argc;
char *argv([];

/% ok ks ek ok ok ok ek ko ok kK ok ko ok [

/* initialize variables */
L e rm———

int i,j,k,p, extent, **flag, P;
FILE *infile, *outfile;
float_array input, output;

char infilename[64}, latfile[64];
float latfactor = 0.0, influence;
/A sk ok kokokdok ok kb Kook k /

/* test parameters */

JFEokkkkokok ok Rk ok kdkok ok ok f

if(argc !'= 4 && arge != 1){
printf("Usage: threshold <filename> <size>\n");
exit(0);

JFFR ARk Rk ok ok oKk ok ok ook Rk ok Rk ok kokok /
/* prompt for parameters if not input */
[k kR Kk ok oK Kok koRoR Rk ok Kok ok [

if(arge == 1){
print£("\n\n\n Input the size of the input N for NxN:");
scanf ("%d", &input.ROW);
printf(" \n\n What is the input filename?:"); fflush(stdout);
scanf("%s", infilename);
printf("\n Input the lateral extent of receptive field:");fflush(stdout);
y scanf ("Yd", &P);

/******************************************/

208




/* use parameters given on command line */
JAAAA AR AR A AR A AR FAAAA AR A KA AR [

else {
sprintf(infilename, "%s", argv[1]);
sscanf (argv[2], "%d", &input.ROW);
) sscanf (argv[3], "%d", &P);
input.COL = input.ROW;
.input.array = matrix(1, input.RIW+2*P, 1, input.COL+2#*P);
loop1ij (input.ROW+2*P,input.COL+2*P) input.array(i][j] = 0.0;
output .ROW = input.ROW;
output.COL = input.COL;
output.array = matrix(i, output.ROW+2*P, 1, output.COL+2%P);
looplij(output.ROW+2*P,output.COL+2#P) output.array[i][j] = 0.0;
flag = imatrix(1, input.ROW, 1, input.COL);
looplij(input.ROW, input.COL) flagl[i][j] = 1;
JHFAF A A A AR AR ARk Aok Aok ok
/* open input file and read in data */
[ AR R ARk ok kR ok ok ok Rk kK [

printf("\nreading data file...\n"); fflush(stdout);
OPEN_FILE (infile, infilename, "The latnet")
loopiij(input.ROW, input.COL)

fscanf(infile, "%f\n", &input.array[i+P][j+P]);
CLOSE_FILE(i, infilename, "The latnet', infile)

/Ao Kok sk o Aok Aok kK Rk Kk Rk f
/* prompt user for latnet factor */
[FFR Rk Kk ok kol sk ko skok sk ook /

/* printf(" \n\n Input latnet factor(float):");
scanf("%f", &latfactor);
printf("“\n\n Input latnet extent(integer):");
scanf ("%d", Zextent);

[ ok s Aok sk ook ok ok Aok sk ok kR ook ook sk ok ek sk Aok ook ok ok ok ok ok /
/* This part actually performs the lateral excitation. */
[ AR AR AK AR AR AR KA A KA A A A A A AR AR AN KKK [

printf("\nperforming lateral excitation...\n"); fflush(stdout);
for(i=1+P; i<=input.ROW+P; i++)
for(j=1+P; j<=input.COL+P; j++){
output.arraylil [j] = input.array[il[j] - input.array[il(j];
if (output.arraylil [j1==0.0) flagli-P][j-P] = POS;
else flagli-P]J[j-P] = NEG;
input.array[i]l[j] = (float)fabs((double)input.array[il[j]);

}
for(p= -P; p<= ~1; p++)
latfactexr += (float)pow(2.0,(double)p);
for(p=1; p<=P; pt+)
latfactor += (float)pow(2.0, -(double)p);
for(i=1+P; i<=output.ROW+P; i++)
for(j=1+P; j<=output.COL+P; j++){
output.array[i]l [j] = latfactor * input.array[il[j];
for(p= -P; p<= -1; p++)
output.array[i] [j]-=input.array[i+p] [j1*(float)pow (2.0, (double)p);
for(p=1; p<=P; p++)
output.array[i] [j]-=input.array[i+p] [j1*(float)pow(2.0,-(double)p);
output.array[i] [j] *= F;

3
for(i=1+P; i<=output.ROW+P; i++)
for(j=1+P; j<=output.COL+P; j++)
if(flagli-P3 [j-P]==NEG) output.array[il[j] = -output.array[i][j];

209




[k oo ok ook K Kok ok ok ok ok ok ok kK Aok ok ok ok
/* Create file and output data.*/
/Ao ok ok ok sk ok ok KoKk ok ok ok ok o ok ok Kok ok

printf("\nwriting output data file...\n"); fflush(stdout);
sprintf(latfile, "%s.len", infilename);
CREATE_FILE(outfile, latfile, "The Thresholder")
loopiij(output.ROW,o0atput.COL)

fprintf(outfile, "/f\n", output.array[i+P][j+P]);
CLOSE_FILE(i, latfile, "The latnet",outfile)
[ AR AR R AR kR AR KR KRRk ok ok ok e dkok /

/* Tell the user where the output file is located. */
J e L T T

printf("\nCreated new file called: %s\n\n", latfile);

free_matrix(input.array,i,input.ROW+2%P,1,input.COL+2*P);
free_matrix(output.array,i,output .ROW+2%P,1,output.COL+2*P);
free_imatrix(flag, i, input.ROW, 1, input.COL);

} /* THE END »/




Appendix F. Software for Utilities

F.1 Description of Utilities

The following is a list of the software utiiit'es used in this thesis. It includes header
files and subroutines that are found in much of the software listed in earlier appendices and

command line programs that filter individual files.

1. jsmacros.h- A header file containing macros used widely in the software written for

this thesis.

2. macros.h - A header file containing some macros used early on in the software of this

thesis.

3. stewmath.h - A header file containing an integer math routine to take the base 2

logarithm of an integer number.

4. ascii2byte.c- A program that converts an ascii data file to a binary data file. Data
is read in as integer decimal with the fscanf function and converted to unsigned short
written out with the fread function. The ascii file must be integers ranging from 0 to

1023 with each number on a separate row of the data file.

5. asift.c - A program that converts an input file of float ASCII values, one per line,
to integer ASCII values, one per line. The values are clipped at a minimum value of
0 and a maximum of 255. After conversion and before clipping, the absolute value of

each number is taken.

N

6. byte2ascii.c - A program that converts an input file from binary format in which
an array of numbers is stored successively as unsigned short to ASCII format in which

the output is made up of one number per line of decimal integers.

7. daub.c - A program used to gencrate g(n), (), and ¥(z) given an h(n). All h(n)
values are hard coded and must be cntered before compilation. Other input is inter-

active.

211




10.

11.

12.

F.2

epsview.c - A program that converts an input file from ASCII format in which each

line holds an integer number to hex with an Ecapsuiated PostScript header.

expand.c - A program that performe a square exparsion on a square array of ASCII
values. The input values can be integer or float and the output values are float. The

expansion is via a “Bi-cubic Spline Interpolation™ [35].

matrixtoascii.c- A program that converts a Khoros ASCII output to a file that has

one integer per line [37]. This program strips off the matrix coordinates of the values.

nrutil.c - A set of utilities provided by Numuverical Recipies in C used in this thesis

mostly for dynamic memory allocation [35)].

threshold.c - A program that thresholds an ingput file of ASCII values eliminating a
user specified window of miniinum and maximum vaiues. All values inside the window
are set to 255 and all values outside the window are set to 0. This creates a black and

white binary representation of the input file.

Spatial-Temporal Analysis Software
F.2.1 Listing of JSMACROS.C

[ ARk ok ok R Aok ok kR skok ok ok ok Aok ok ok A Aok R Rl ok ok ok ok %

Convenient Macros for WAVE program

3o ok Aok o o o ok ok ok o K ok o Ak ok ok Ak ok ok Aok ok Aok ok ok sk ok ok b ok ok bk k
/*** MACROS **x/

#define CREATE_MATRIX_ROW(A,B,C) A = (C #*)calloc(B, sizeof(C *))
#define DELETE_MATRIX_ROW(A,C) free((C *) A)

#define CLOSE_FILE(A,B,C,D) if((A=fclose(D)) == EOF) { \

printf(strcat(C,":file may already be closed - %s.\n"),B); }

#define CREATE_MATRIX_COL(A,B,C,D) for(i=0; i<B; ++i) A[i] = (D *) \

calloc(C, sizeof(D)})

#define DELETE_MATRIX_COL(A,B,D} for(i=0; i<B; ++i) free((D *) A[i])

#define CREATE_VECTOR(A,B,C) A = (C *)calloc(B, sizeof(C))
#define DELETE_VECTOR(A) free(A)

#define loop1i(A) for(i=1;i<=A;i++)
#define loopij(A) for(j=1;j<=A;j++)
#define loop1l(A) for(l=1;1<=A;1++)
#define loopik(A) for(k=1;k<=A;k++)
#define loop1ij(A,B) for(i=1;i<=A;i++) for(j=1;j<=B;j++)
#define loopikl(A,B) for(k=1;k<=A;k++) for(1=1;1<=B;1++)

#define CREATE_FLOAT_VECTOR(A,B,C) A = vector(B,C)

212




#define CREATE_INT_VECTOR(A,B,C) A = ivec

tor(B,C)

#define CREATE_DOUBLE_VECTOR(A,B,C) A = dvector(B,C)

#define CREATE_FLOAT_MATRIX(A,B,C,D,E) A
#define CREATE_INT_MATRIX(A,B,C,D,E) A =
#define CREATE_DOUBLE_MATRIX(A,B,C,D,E) A

strust int_array {
int **array;
int ROW, COL;
typedef struct int_array int_array;
struct float_array {
float **array;
int ROW, COL;
i
typedef struct float_array float_array;
struct phi_array {
float **crrxay;

int ROW, COL;
int inturvals;

H
typedef struct phi_array phi_array;

struct float_vector {
float *vector;
int length;

typedef struct float_vector float_vector;

F.2.2 Listing of MACROS.C

= matrix(B,C,D,E)
imatrix(B,C,D,E)
= dmatrix(B,C,D,E)

P L L I T L]

Convenient Macros for Perceptron Package by Capt Greg Tarx
*****************************************************/

/*%x MACROS #*#*/

#ifdef LED
#define REAL_FMT "Yg"

#else

#define REAL_FMT "%lg"
#endif

#ifdef NEXT

#undef REAL_FMT

#define REAL_FMT "J1f"
#endif

#define Boolean int
#idefine False
#define True

/** Dominant Sensor Definitions #*/
#define SINGLE O

#define FLIR 1

#define RNG 2

/** Mask Definitions #*/
#define OFF 0.0
#define ON 1.0

char junk_response[256] ;

#define fskip_line(A) fgets(junk_response, 256, A)

#define skip_line gets(junk_response)




#define rloopi(A) for(i=(A)-1;i>=0;i~-)

#define rloopj(A) for(j=(4)-1;3>=0;j--)

#define rloopk(A) for(k=(A)-1;k>=0;k--)

#define rloopl(A) for(1=(A)-1;1>=0;1--)

#deiine rloopm(A) for(m=(A)-1;m>=0;m--)

#define rloopn(A) for(n=(A)-1;1>=0;n--)

#define rloopp(4) for(p=(A)-1;p>=0;p--)

#define rloopij(A,B) for(i=(A)-1;i>=0;i--) foxr(j=(B)-1;3j>=0;j--)

#define loopi(A) for(i=0;i<A;i++)

#define loopj(A) for(j=0;j<A;j++)

#define loopk(A) for(k=0;k<A;k++)

#define l1oopl(A) for(1=0;1<A;1++)

#define loopm(A) for(m=0;m<A;m++)

#define loopn(A) for(n=0;n<A;n++)

#define loopp(A) for(p=0;p<A;p++)

#define loopij(A,B) for(i=0;i<A;i++) for(j=0;j<B;j++)

#define loopkl(A,B) for(k=0;k<A;k++) for(1=0;1<B;1++)

#define MALLOC(A,B,C,D) if((&=(C *)malloc((B)*sizeof(C)))==NULL) { \
fprint£(stderr, strcat(D,": insufficient memory\n") ); \
exit(-1); }

#define CREATE_FILE(A,B,C) if((A=fupen(B,“w")) == NULL) { \

printf(strcat(C,”: can’t open for writing - %s.\n"),B); \
exit (-1); }

#define OPEN_FILE(A,B,C) if((A=fopen(B,"r")) == NULL) { \

prirtf(strcat(C,": can’t open for reading - %s.\n"),B); \
exit (-1); }

#define idx(X,J,¥) (X)*(N)+(J)

/** A1l of these are dependent on the definition of "“layer® *+/

#define MAX_INPUTS 50
#define MAX_NODES 50
#define MAX_H1_NODES 50
#define MAX_H2_NODES 50
#d~f-ne MAX_OUTPUTS 50
#dc “ne MAX_VECTORS 1007

#de....ie WTS_TYPE_MSF 2 /* new weigh:r file */
#deZine WTS_TYPE_1 1 /* new weights file ¥/
#d.<ine WTS_TYPE_O O /* old weights file */

#define TRAIN 0

#define TEST 1
#define THREE_LAYER 2
#define TWO_LAYER 2

F.2.9 Listing of STEWMATH.C

/* This is a collection of functions for Convenience */

JEEREEREKEXR
LOG2 takes the log base two of an integer and returns an integer.
kkphkxkrhxtk/

int  L0G2(x)
int x;

int y = 0;
while {(x/2 > 0){
x /= 2;
yi+;

return y;

214




/* The following is not used in WAVE */

void flipo(inv.ctorpointer,outvectorpointer)
float_vector *invectorpointer, *outvectorpointer;

i .
int i;
int map;

outvectorpointer->length = invectorpointer->length;
outvectorpointer->vector[1] = invectorpointer->vector[1i];
map = invectorpointer->length - 2;
loopi(invectorpointer->length - 1){
outvectorpointer->vector[i+2] = invectorpointer->vector[i+2+map];
map ~= 2;
}
}

void flipc(invectorpointer,outvectorpointer)
float_vector xinvectorpointer, *outvectorpointer;
{

int i;

loopi(invectorpointer->length/2 + 1)
outvectorpointer~>vector[invectorpointer->length/2 +1 - i] =
invectorpointer—>vector[i+1];

outvectorpointer->length = invectorpointer->length;

}
F.2.4 Listing of Modified WAVE1 Modules

F.2.4.1 Listing of ASCII2BYTE.C

L T T R T R R S e ey
T L L L R T T T T ey
[ anx ASCII to BYTE CONVERTER *x/
/***************************************************************************/
L L T e T P e e e
/* DATE: 3 Sept 91

VERSION: 1.0
NAME: ascii2byte.c

DESCRIPTION: This routine converts an image from ascii

in which each pixel’s gray scale value (0 to 255) is stored
on one row of the file to byte format in which the grey
scale values are logically stored in consecutive bytes in
the file.

FILES READ: One file specified by the user.

FILES WRITTEN: One file specified by the user.

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: 1uses nrutil.c from Numerical Recipies
AUTHOR: J. Stewart Laing

/ HISTORY: Initial Version
*

/**####‘**#t***#*********#****t##*#********#************tt#**###*t*#*t**###*/
/*****t******tt***#********#*#*t**t*********##*#t#*****t#t**t*#*##tt**#*##**/

/* DECLARATION SECTION =/
#include <stdio.h>

#include *jsmacros.h"
int *ximatrix();
void free_imatrix();

SV
s
(1}




/* FUNCTION BODY *f
void main(argc, argv)

int arge;

char #argv([];

{
/#* initialize variables #*/
int i,j, rows, cols;
FILE *infile, *outfile;
char infilename[64], filenme[64], outfilename[64];

unsigned amount;
unsigned short *image;

/* parse command line */

switch (arge){

case 1:

printf("Input filename:");
scanf("%s", infilename);
printf(*\nOutput filename:");
scanf("%s", outfilename);
printf(“\n# of ROWS:");
scanf ("%d", &rows);
printf("\n# of COLS:");
scanf("%d", &cols);
gri:;f("\n");

reak;

case 2:

" sprintf(infilename, "%s", argv[i]);
sprintf(outfilename, "%s.bin", infilename);
printf("\n# of ROWS:");
scanf("%d", &rows);
printi(;\n# of CO%S:");
scanf("%d", &cols);
grix;;f ( ll\nlt) ;

reak;

case 3:

sprintf(infilename, "“%s", argv[1]);
sprintf(outfilename, "%s", argvi2]);
printf("\n# of ROWS:");
scanf("%d", &rows);
printf(;\n# of CO%S:");
scanf("/d", &cols);
printf("\n");
break;

case 5:

sprintf(infilename, "¥%s", argvlil);
sprintf(outfilename, "%s", argv{2]);
sscanf(argvi3], "%d", &rows);
sscanf(argv[4], "%d", &cols);
break;

default:
printf("Usage: ascii2byte [infilename] [outfilenamel");
printf (" [# of rows] [# of cols]\n");
printf("Note: arguments are optional; but, position is");
printf(" critical.\n");
exit (0);

}

image = (unsigned short *)calloc(rows*cols, sizeof(unsigned short));
/* read ascii format =*/

/* printf("reading...\n"); fflush(stdout); =»/
OPEN_FILE (infile, infilename, "The ascii2byte Converter");
for(i=0;i<rous*cols;i++) fscanf(infile, "%hu\n", &imagefil);

216




CLOSE_FILE (i, infilename, "The ascii2byte Converter”, infile)
/* wurite byte format /

/* printf("writing...\n"); fflush(stdout); =/

CREATE_FILE(outfile, outfilename, "The ascii2byte Converter")
amount = fwrite(image, sizeof(unsigued short), rows*cols, outfile);
CLOSE_FILE(:, filename, "The ascii2byte Converter", outfile)

/* free memory */
free(image):
}/* THE FAD «/

F.2.4.2 Listing of ASIFT.C

/****************************************************************#**********/
/*******************#**********************#***#***********#****************/

VAL FLOAT TO INTEGER CLIP AND SIFT PROGRAM **/
A T e e et e 1Y)

P L T T e I T T T I T T T T P T T Ty
/* DATE: 3 Sept 91

VERSION: 1.0
NAME: asift.c

DESCRIPTION: This program converts the numbers from an input file in which
each number is on a separate line from float to integer. This process also
takes the absolute value and clips the values to stay between a minimum
value of 0 and a maximum value of 255.

FILES READ: One file specified by the user.
FILES WRITTEN: One file specified by the user.

HEADERS USED: <stdio.h>, "jsmacros.h" , "macros.h", "steumath.h",
<math.h>

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing and Steve Smiley
./ HISTORY: Initial Version
/****#***********#*****t#****t#*****************##******t#**#***#****#t**#*t/
VA LI T2 22 T R L e R e P eI 2 e P T L I TR TS 22 4

[HEREERERRERERRRREAERRR AR ]

/* DECLARATION SECTION =*/
[HEERRRKERERREREERRRRRR R XK ]

#include <stdio.h>
#include 'macros.h"
#include "jsmacros.h"

#include "stewmath.h"
#include <math.h>
[HRERERRERERRRRRREKRERREE ]

/* MAIN PROGRAM BODY =/
[ERREFERRRRERRERRRKERRES [

void main(argc, argv)
int argc;
char *argv(];

[EEEREREEREERERERERRERE XK [

/* initialize variables */

[EERRRRREIRAARERERREERESS ]

float_array basis, coef, proj, temp;

int i, j, k, 1, level, size, shift=1, newi, newj,newint;
char basisfile[64], coeffile(64];

o
s
-1




FILE *infilel, *infile2, soutfile;

[REEEEXEEERXEEEERKERE AR ]
/% test parameters */
[AREEERREEREEERR AR ERERES [

if(argec !'= 4 && argc !'= 1){
printf("Usage: threshold <filename> <# of rows> <# of Cols>\n");
exit(0);

[AXEEERERERREXRRSRREARRLRRRAR ]

/* PROMPT USER */
[FEEEEERRERSERERRRERERREERR KR [

if(arge == 1){
printf("\n Enter the name of the coefficient file>>");
scanf ("%s", coeffile);

printf("\n Enter the size of the NXN coefficent array>>");
;canf("%d", &coef .ROW) ;

else{
sprintf(coeffile, "%s”, argv[1il);
sscanf(argv[2], "/d", &coef.ROW);
sscanf(argv[3], "/d", &coef.COL);
}

/**“*t*******““#*#‘*#‘*#‘****‘**“‘*/
/* create a matrix to hold thke image */
/*#******#‘***‘*‘***'*t*#***#“*"*‘#t‘/

coef.COL = coef.ROW;

CREATE_MATRIX_ROW(coef.array, coef.ROW, float);
CREATE_MATRIX_COL(coef.array, coef.ROW, coef.COL, float);
yA 1T 22222222 222222t 222ty

/* open input file */

/*t##tt##tt#tt‘*tt*t#t't#/

OPEN_FILE (infilei, coeffile, "The projection program");
loopij(coef ROW, coef_ COL)
fscanf(infilel,"%f", &coef.array{il[jl);
CLOSE_FILE (i, coeffile, "The projection program ", infilel)
printf("\n »* The image /s has been loaded for processing. **\n\n\n",
coeffile);

P et e e e e Y

/* OUTPUT PROJECTION */

£ e e T P P T Y

CREATE_FILE(outfile, "sifted”, “The Projection Program")
loopij(coef .ROW, coef.COL){

newint = abs((int)(coef.array[il(jl));
if (newint > 255) newint = 255;

if (newint < 0) newint = O;
fprintf(outfile,"’d\n", newint);

}

printf("The f.ojection file has been completed\n");

F.2.5 Listing of BYTE2ASCIL.C

/#"#‘tt"‘#‘##t‘t“"‘t*t.‘..“t..“‘.tt‘.‘.t......t"..“......0.‘..‘."../

[ 2]
—
o]




JRER AR AR AR AR AR KA kR A KR KR AR AR KRR KRR A KK K KRRk K /
] ¥%% BYTE to ASCII CONVERTER *x/
SRR AR AR R AR AR KRR RO KRR KRRk KRR KKk R Kk /
JRE kAR AR ARk kR R R Rk R R KRR R KKK AR K KRR K
/* DATE: 3 Sept 91

VERSION: 1.0
NAME: byte2ascii.c

DESCRIPTION: This routine converts an image from byte
format in which the gray scall values (0 to 255) are
logically stored in consecutive bytes in the file to ascii

format in which each pixel’s grey scale value (0 to 255) is
stored on one row of the file.

FILES READ: One file specified by the user.

FILES WRITTEN: One file specified by the user.

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: uses nxutil.c from Numerical Recipies
AUTHOR: J. Stewart Laing

/ HISTORY: Initial Version

*

/s ok ok ksl ok sk ko o ook o ok ok ok ok o ok e K sk ok o o ok K Aok ok o KRR K o ok kS o S ok ok ok ok
[Tk ok A ok ok Aok K o e s o Ak o Ak o ok o ok ok Ak Aok ok ok A K ok ok R KK ok R Rk kR [

/* DECLARATION SECTION */
#include < *.io.h>

#include ¥ ,.macros.h"

int *kimatrix();

void free_imatrix();

/% FUNCTION BODY */

void main(argc, argv)
int arge;
char *argv[];

{
/* initialize variables */
int i,j, rows, cols;
FILE *infile, *outfile;
char infilename[64], filename[64], outfilename[64];

unsigned amount;
unsigned short *image;

/* parse command line */

switch (arge){
case 1:
printf("Input filename:");
scanf("%s", infilename);
printf("\nOutput filename:");
scanf("%s", outfilename);
printf("\n# of ROWS:");
scanf ("%d", &rows);
printf("\n# of COLS:");
scanf ("%d", &cols);
printf("\n");
brxeak;
case 2:
sprintf(infilename, "%s", argv{il);
sprintf (outfilename, "/s.asc”, infilename);
printf("\n# of ROWS:");
scanf ("%4d", &rows);
printf("\n# of COLS:");




scanf("%d", &cols);
printf("\n");
break;

case 3:

sprintf(infilename, "%s", argv[1]);
sprintf(outfilename, "%s", argv[2]);
printf("\n# of ROWS:");
scanf(""%d", &rows);
printf ("\n# of COLS:");
scanf ("*%d", &cols);
printf("\n");
break;

case 5:

sprintf(infilename, "%s", argv[1]);
sprintf(outfilename, "Ys", argv[2]);
sscanf (argv[3], "%d", &rows);
sscanf(argv[4], "/d", &cols);
break;

default:
printf("Usage: byte2ascii [infilename] [outfilenamel");
printf(" [# of rows] [# of cols]\n");
printf("Note: arguments are optional; but, position is");
printf(" critical.\n");
exit(0);

image = (unsigned short *)calloc(rows*cols, sizeof(unsigned short));
/* read byte format */

/* printf("reading...\n"); fflush(stdout); =*/

OPEN_FILE (infile, infilename, "The byte2ascii Converter");

amount = fread(image, sizeof(unsigned short), rows*cols, infile);
CLOSE_FILE (i, infilename, "The byte2ascii Converter", infile)

/* write ascii format */
/* printf("writing...\n"); fflush(stdout); =*/
CREATE_FILE(outfile, outfilename, "The byte2ascii Converter")

loopi(rows*cols) fprintf(outfile, "%hu\n", imagelil);
CLOSE_FILE(i, filename, "The ascii2byte Converter", outfile)

/* free memory */
free(image);
}/* THE END */

F.2.6 Listing of DAUB.C

/***************************************************************************/
/***************************************************************************/
k% WAVELET GENERATOR PROGRAM *x/
/******************************************************************** ﬁ******/
/***************************************************************************/
/* DATE: 3 Sept 91

VERSION: 1.0

NAME: daub.c

DESCRIPTION: This program generates the g(n), phi(x), and psi(x) from
a given h(n). The values of the h(n) are hard coded and must be set

before compilation. Depth of recursion and type of wavelet are chosen
by the user interactively.

FILES READ: NONE
FILES WRITTEN: one file each for g(n), phi(x), and psi(x)
HEADERS USED: <stdio.h>, "jsmacros.h" , "macros.h"

220




CALLING PROGRAMS:  NONE
PROGRAMS CALLED: NONE
AUTHOR: J. Stewart Laing and Steve Smiley

/ HISTORY: Initial Version

*

koo Aok o o ok ook o Sk AR R o ok ok R ook A Aok K Kok R A KRRk Ak o ko R K R o ok
7ok sk o o ook ok oK oKk o K o o ok ok o s ok ok ok o ok ok sk ko s sk ok ks ok ok sk ok ok e ok Aok ko ok ok [

#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"

float H(N,n)

int N,n;

if(N == 2){
if(n == 0) return .4829629131;
if(n == 1) return .8365163037;
if(n == 2) return .2241438680;
if(n == 3) return -.1294095226;
ilse return 0.0;

if(N == 3){
if(n == 0) return .3326705530;
if(n == 1) return .8068915093;
if(n == 2) return .4598775021;
if(n == 3) return -.1350110200;
if(n == 4) return -.0854412739;
if(n == 5) return .0352262919;
ilse return 0.0;

if(N == 4){
if(n == 0) return .2303778133;
if(n == 1) return .7148465706;
if(n == 2) return .6308807679;
if(n == 3) return -.0279837694;
if(n == 4) return -.1870348117;
if(n == 5) return .0308413818;
if(n == 6) return .0328830117;
if(n == 7) return -.0105974018;
ilse return 0.0;

if(N == 5){
if(n == 0) return .1601023980;
if(n == 1) return .6038292698;
if(n == 2) return .7243085284;
if(n == 3) return .1384281459;
if(n == 4) return -.2422948871;
if(n == B) return -.0322448696;
if(n == 6) return .0775714938;
if(n == 7) return -.0062414902;
if(n == 8) return -.0125807520;
if(n == 9) return .0033357253;
§lse return 0.0;

if(N == 6)
if(n == 0) return .115407434;
if(n == 1) return .4946238904;
if(n == 2) return .7511339080;
if(n == 3) return .3152503517;
if(n == 4) return -.2262646940;
if(n == 5) return -.1297668676;
if(n == 6) return .0975016056;
if(n == 7) return .0275228655;
if(n == 8) return -.0315820393;
if(n == 9) return .0005538422;

[S%}
[
—




if(n == 10) return .0047772575;

if(n 11) return -.0010773011;
ilse return 0.0;

if(N ==7) {
if(n == Q@) return .0778520541;
if(n == 1) return .3965393195;
if(n == 2) return .7291320908;
if(n == 3) return .4697822874;
if(n == 4) return -.1439060039;
if(n == 5) return ~-.2240361850;
if(n == 6) return .0713092193;
if(n == 7) return .0806126092;
if(n == 8) return ~-.0380299369;
if(n == 9) return -.0165745416;
if(n == 10) return .0125509986;
if(n == 11) return .0004295780;
if(n == 12) return -.0018016407;
if(n == 13) return .0003537138;
ilse return 0.0;

if(N == 8) {
if(n == 0) return .0544158422;
if(n == 1) return .3128715909;
if(n == 2) return .6756307363;
if(n == 3) return .5853546837;
if(n == 4) return -.0158291053;
if(n == 5) return -.2840155430;
if(n == 6) return .0004724856;
if(n == 7) return .1287474266;
if(n == 8) return -.0173693010;
if(n == 9) return -.0440882539;
if(n == 10) return .0139810279;
if(n == 11) return .0087460940;
if(n == 12) return -.0048703530;
if(n == 13) return -.0003917404;
if(n == 14) return .0006754494;
if(n == 15) return -.0001174768;
ilse return 0.0;

if(N == 9) {
if(n == 0) return .0380779474;
if(n == 1) return .2438346746;
if(n == 2) return .6048231237;
if(n == 3) return .6572880781;
if(n == 4) return .1331973858;
if(n == 5) return -.2932737833;
if(n == 6) return -.0968407832;
if(n == 7) return .1485407493;
if(n == 8) return .0307256815;
if(n == 9) return -.0676328291;
if{n == 10) return .0002509471;
if(n == 11) return .0223616621;
if(n == 12) return -.0047232048;
if(n == 13) return -.0042815037;
if(n == 14) return .0018476469;
if(n == 15) return .0002303858;
if(n == 16) return -.0002519632;
if(n == 17) return .0000393473;
;lse return 0.0;

if(N == 10) {
if(n == 0) return .0266700579;
if(n == 1) return .1881768001;
if(n == 2) return .5272011889;
if(n == 3) return .6884590395;

222




if(n == 4) return .2811723437;
if(n == 5) return -.2498464243;
if(n == 6) return -.1959462744;
if(n == 7) return .1273693403;
if(n == 8) return .0930573646;
if(n == 9) return -.0713941472;
if(n =='10) return -.0294575368;
if(n == 11) return .0332126741;
if(n == 12) return .0036065536;
if(n == 13) return -.0107331755;
if(n == 14) return .0013953517;
if(n == 15) return .0019924053;
if(n == 16) return -.0006858567;
if(n == 17) return -.0001164669;
if(n == 18) return .0000935887;
if(n == 19) return -.0000132642;
else return 0.0;
else {

printf("\nError: Invalid choice of N");fflush(stdout);
return 0.0;

}

float G(N,n)
int N,n;

int i,sign=1;
for(i=1;i<=abs(1-n);i++) sign *= -1;
return (sign*H(N,1-n));

float new(N,1,x)
int N,1,x;

int n;
float temp = 0.0;
if (1 <= 0){

if (x == 0) return 1.0;
else return 0.0;

}

else {
for (n=0;n<=2*N-1;++n) temp += H(N,n) * new(N, 1-1, 2%x-n);
return (1.414212562xtemp);

}
3

void main()

int i,1,N,j;

float temp,temp_sum=0.0;
FILE *outfile;

char filename(64];

printf("\nInput N corresponding to the desired Daubeshies");
printf(" Wavelet: ");

scanf ("/d", &N);

printf("\nInput depth of recursion 1 = ");

scanf ("/d", &1);

printf("\nWorking...");

sprintf(filename, "daub’d.phi", N);

CREATE_FILE(outfile, filename, "The Daub routine")

for(i=0; i<=(2*N-1); ++i) fprintf(outfile, "%.9f\n",new(N,1,i));
CLOSE_FILE(i, filename, "The Daub routine", outfile);
sprintf(filename,"daub%d.h", N);

CREATE_FILE(outfile, filename, "The Daub routine’)

223




for(i=0; i<=2%N-1; ++i) fprintf(outfile, "%.9f\n" ,H(N,1));
CLOSE_FILE(i, filename, "The Danb routine", outfile);

sprintf(filename,"daubld.g", N);

CREATE_FILE(outfile, filename, "The Daub routine")
for(i=1; i>=2-2*N; --i) fprintf(outfile, "%.9f\n",G(N,i));
CLOSE_FILE(i, filename, "The Daub routine", outfile);
printf("\n");

sprintf (filename,"daub%d.psi", N);
CREATE_FILE(outfile, filename, ' The Daub routine")
printf("psi interval of support is %d Y%d\n",(1-((2%N)-1))/2,(1+((2%N)~1))/2);
for(j=(1-((2*N)-1))/2; j<=(1+((2*N)-1))/2; ++j){
temp_sum =0.0;
for(i=1; i>=2-(2*N); --i){
temp_sum ;= G(N,i)*new(N,1,((2%j)-1));

fprintf(outfile, "%.9f\n",1.414212562*temp_sum);

CLOSE_FILE(i, filename, "The Daub routine'", outfile);
printf("\n");
}

F.2.7 Listing of EPSVIEW.C

[ ARk Ak KAk Aok R R ARk ok R KRR AR oK Aok Rk Aok ok kAR Rk Ak R kR K Rk ok [
[ ARk Aok ok ok ok ko sk ok sk ok sk kR KKk ok sk ok R AR sk ok Rk kR Rk ok kR R R R Aok
/*xx * ROUTINE TO VIEW IMAGES FOR WAVELET ANALYZER *kkkk [
J Aok ko Kok ok o ok kAR A Aok ook Ak Aok Aok kR Ak sk ok Ak ok Aok ARk Aok ok ko ks ksl ok ok ok
/A ok o s o o ook o ok ok Kook o o kK o o sk ook o ok Aok ook ok A R Ak ok R ok ok ok ok KKk /

/* DATE: 15 April 91 */
/* */
/* VERSION: 1.0 */
/* */
~/* NAME: epsview.c */
/* */
/* DESCRIPTION: This routine performs the inner product between the phi */
/* and phi coeficient of the image at any valid level as requested by */
/* the caller. */
;* It is intended as a subroutine for the WAVELET ANALYZER PROGRAM. *5
* *
/* FILES READ: NONE. */
/* */
/* FILES WRITTEN: A file will be generated each time the routine is */
/* routine is called. The name of the file will depend on the input */
/* image filename, the type of wavelet used, and the level of resolution. */
/* */
/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h", */
/* <string.h> */
/* */
5* CALLING PROGRAMS: main-wave.c *5
* *
/* PROGRAMS CALLED: NONE */
/* */
/* AUTHOR: Steve Smiley and J. Stewart Laing */
/* x/
/* HISTORY: Initial Version */
/* =/

/AR A A AR K o A A KK R K K R A K A K Aok oo AR AR AOR K AR AR ok ok ok ke [
P T T T T T T P YT T T T T Y4

/% Aok o ok ook ok ok ok ook ok ok ok ok ok ok ok f

/* DECLARATION SECTION =/
[FFRRRtk kAR kR kKA [

#include <stdlib.h>

224




#include <stdio.h>
#include "macros.h"
#include "jsmacros.a"

#include <string.h>
#include <math.h>

e P L L L P

/* FUNCTION BODY */
[RERRERR R dRARARA ARk K k[

/*imageview(image)
int-array image,

{x/

int i, j

FILE *fopen(), *infile, *outfile;
char infilename[64], viewfile[64], psfile[64];
int_array image;
void main(argc, argv)
int argc;
char *argvl(];

if(arge != 4 && argc != 1){
printf("Usage: hist <filename> <# of rows> <# of Cols>\n");
exit(0);

if(arge == 1){
printf(" \n\n Input filename of image to be viewed:>"); fflush(stdout);
scanf("%s", infilename);
printf("\n\n Input the size of the image (ROW COLUMN):>");
scanf("%d %d", &image.ROW, &image.COL);

}

else{
sprintf(infilename, "%s", argv[1]);
sscanf(argv([2], "/d", &image.ROW);
sscanf(argv[3], "%d", &image.COL);

CREATE_MATRIX_ROW(image.array, image.ROW, int);
CREATE_MATRIX_COL(image.array, image.ROW, image.COL, int);

OPEN_FILE(infile, infilename, "epsview.c")
loopij(image.ROW, image.COL){
fscanf(infile, "%3u\n", &image.arrayl[il[j]);
}

sprintf(psfile, "/s.eps", infilename);
CREATE_FILE(outfile, psfile, "epsview.c")

fprintf(outfile,"’)!PS-Adobe-2.0 EPSF~1.2\n");
fprintf(outfile, "%’ BoundingBox: 0 0 %d %d \n", image.ROW, image.COL);
fprintf(outfile,"%%\Creator: Imageview by Laing & Smiley\n");
fprintf(outfile,"%%4%iTitle: %s.eps\n", infilename);
fprintf(outfile," /i EndComments\n");
fprintf(outfile,"gsave\n");
fprintf(outfile,”/picstr %d string def\n",image.ROW);
fprintf(outfile,"0 0 translate\n");
fprintf(outfile,"’d %d scale\n",image.ROW, image.COL);
fprintf(outfile,"%d %d 8 [%d 0 0 %d 0 0]\n", image.ROW, image.COL, image.ROW, image.COL);
fprintf(outfile,”{ currentfile picstr readhexstring pop}\n");
fprintf(outfile,"image\n"};
loopij(image.ROW, iwage.COL){
if(image.arrayfi] [j] <= 15) fprintf(outfile, "O%x\n", image.array[il[j]l);
if(image.array[il [j] > 15) fprintf(outfile,"%2x\n", image.array[il[jl);

(3]
[}
<t




fprintf(outfile,"showpage");

[RRAAARRRAEER AR F AR AR KRR TR AR AR [
/* call the showpage from unix */
T T e e T Y

printf("\nl have created a postscript file called: %s\n\n", psfile);
fflush(stdout);

/*sprintf(viewfile, "csh -c pageview
/tmp_mnt/home/scgraph/en/ge/ssmiley/thesis/C-code/Develop/heximage.ps\n");
printf("%s", viewfile); fflush(stdout);

system(viewfile); */

}
F.2.8 Listing of EXPAND.C

[RRAR AR AR AR R AR AR AR AR KA AR AR KA AR AR Aok kR kKRR AR KRR AR kK )
T g T T T TP Py

/*H% ARRAY EXPADER PROGRAM %/
/***********************************************************************#***/
/*********************************#****************************#t***********/

/* DATE: 3 Sept 91
VERSION: 1.0
NAME: expand.c

DESCRIPTION: This program expands a square power of 2 size array
by a factor specified interactively by the user. It uses a "bi-cubic
spline interpolation routine from Numerical Recipies in C.

FILES READ: One file specified by the user.
FILES WRITTEN: One file specified by the user.
HEADERS USED: <stdio.h>, "jsmacros.h" , <math.h>
CALLING PROGRAMS: NONE
PROGRAMS CALLED: uses nrutil.c from Numerical Recipies
AUTHOR: J. Stewart Laing

./ HISTORY: Initial Version

[ Rk AR AR KRRk kR Ak Rk ok ok Rk AR Aok ok kA [
JHERRRERE R AT R AR IR K KA KRR KRR AR kR kR Aok kR ok [

#include <math.h>
#include "jsmacros.h"

#include <stdio.h>

float **matrix();
float *vectox();
void free_vectacs();
void free_matrix();

void main(argc, argv)
int argc;
char *argv(];

JHRERRREERREREER SR RER AR [
/* initialize variables */
JERREERERRRERRRRKEEERR SRR ]

int i,j, factor;

FILE *infile, *outfile;

float_array in, out;

char infilename[64], expandfile[64];

[ S
[8%]
N




void expand0(), expandi(), expand2();

[k ok kR Rk kR k[
/* test parameters */
[ FREEA AR R KA A AR K AR K KAk [

if(arge != 3 && argc != 1){
printf("Usage: threshold <filename> <N for NxN>\n");
exit(0);

PAd il ol el il R e T R S T Y
/* prompt for parameters if not input */
PAL et L R L L L e T T M T Y

if(arge == 1){
print£("\n\n\n Input the size of the square in (ROW/COLUMN):");
scanf("%d", &in.ROW);
printf(" \n\n Input filename of in to be expanded:"); fflush(stdout);
scanf("%s", infilename);

J Ay e e e ey
/* use parameters given on command line */
[ R KRR AARREAA AR AR AR AN AR [

else {
sprintf(infilename, "¥%s", argv[1]);
sscanf (argv[2], "%d", &in.ROW);

in.COL = in.ROW;
JHFREFRRE R KRRk kdokk Aok kR [

/* prompt user for expansion factor */
Y e e L T T T 74

printf(" \n\n Input expansion factor:");
scanf ("/d", &factor);

P P P Y4

/* create a matrix to hold the in #*/

PR A L Ll P eI e PR e R R P Y
out.ROW = in.ROWxfactor;

out.COL = out.ROW;

in.array = matrix(1, in.ROW, 1, in.COL);
out.array = matrix(i, out.ROW, 1, out.COL);

[HEREAE AR AR RREE SRR R [
/* open input file */
JHEARREERRERA AR RS RRRR TR AR [

OPEN_FILE (infile, infilename, "The Expander");

loop1ij(in.ROW, 1n.COL) fscanf(infile, "%f\n", &in.array[il[j]l);
CLOSE_FILE(i, iniilename, "The Expander™, infile)
/***************t************/

/* call expansion routines */
[HERREERKAKERTRERREEREK N E RN [

expandi(in.array, in.ROW, out.ROW, out.array);

/******#******t******************#*****#*****t**/
/* Create file and output the expanded array. #*/
/t**#*********#*#**#**#****#********#****#******/

sprintf(expandfile, "Js.exp", infilename);

CREATE_FILE(outfile, expandfile, "The Expander");

loopiij(out.ROW, out.COL) fprintf(outfile, "%f\n", out.array[i]J[j]);
CLOSE_FILE(i, expandfile, "The Expander", outfile)

/******#**#******#******************#*#***t##***#****/
/* Tell the user where the output file is located. */

(8]
o
-1




printf("\nI have expanded %s by a factor of %d and saved it in %s:\n\n",
infilename, factor, expandfile);

{* THE END */

void expandO(in, small, big, out)
int small, big;
float **in, **out;

int i,j,k,1, factor;
float *tab, *#*yp;
void splin2(), spline();

tab = vector(i, small);
yp = matrix(1, small, 1, small);

factor = big/small;
loopli(small) tab[i] = factor*i;
loopli(small) spline(tab, in[i), small, 1.0e30, 1.0e30, yp[il);
loopiij(small,small)
loopkl(factor, factrr)
splin2(tab,t2b, iu,yp,small,small, (float) (factor*i-k),
(float) (factor*j-1),&out [factor*i~-k] [factox*j-1]);

free_vector(tab, 1, small);
free_matrix(yp, 1, small, 1, smallj;

}

void expand2(in, small, out)
int small;
float **in, #**out;

int i,j,k,1, factor;
float **yp, *tmp, *ptmp, *tab;
void spline(), splint();

yp = matrix(1, small, 1, small);
tab = vector(1, small);
tmp = vector(1, small);
ptmp = vector(1, small);

loopili(small) tabli] = 2*i;
loopli(small) spline(tab, in[i], small, 1.0e30, 1.0e30, yp[il);
loopiij(small, swall){

out[2*il [2%3j] = in[i1[j];

splint(tab, in[i], yp[i], small, (float)(2*j-1), &out[2*i][2#j-1]);

loopiij(small, small*2){
loopik(small) tmp[k] = out[2+#k][j];
spline(tab, tmp, small, 1.0e30, 1.Ce30, ptmp);
splint(tab, tmp, ptmp, small, (float)(2#i-1), &out[2*i-1][j]);
}

free_matrix(yp, 1, small, 1, small);
free_vector(tmp, 1, small);
free_vector(ptmp, 1, small);
free_vector(tab, 1, small);

3

void expandi(in, small, big, out)
int small, big;
float **in, **out;

int i,j,k,1, factor, index;
float, **tmp;




tmp = matrix(1,big,1,big);
factor = big/small;
index = (int)(log((double)factor)/log(2.0));

looplij(small,small) tmp[il[j] = in[il[j];
loopii(index){
expand2(tmp, small, out);
small *= 2;
loopikl(small, small) tmp[k][1] = out[k][1];
}

free_matrix(tmp, 1, big, 1, big);
}

F.2.9 Listing of MATRIXTOASCII.C

P L P P T S T T R R L T Y
AR TR AR AR AA A AR AR AR AR AR KAk Kok AR R Ak Kk R KR AR R ok Ak Kokok kK koK ko [
[ HEx KHOROS ASCII STRIPPER **/
T T P PP TP e e T P TP e P 2y
[ ERERAAAAAAAA A AR R AR A A AR AR AR A AR KA A AA AN R A AAR A AR RA AR KKK AR [
/* DATE: 3 Sept 91

VERSION: 1.0
NAME: matrixtoascii.c

DESCRIPTION: This program strips the matrix coordinates frca an ASCII
file output by the Khoros image processing system.
FILES READ: One file specified by the user.

FILES WRITTEN: One file with the suffix .ascii added.

HEADERS USED: <stdio.h>, "jsmacros.h", <stdlib.h>, <string.h>,
<math.h>, 'macros.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: Steve Smiley

HISTORY: Initial Version
;4******#*******t*********************************#*****tt******************/
L g L s T L L e F T Y

[k ok kkk kR kokk k[

/* DECLARATION SECTION */
Y e L e L L Y

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"

#include <string.h>
#include <math.h>

main()

FILE =*infile, *outfile;

char infilename[64], psfile[64], element[24], num[20];
int i, j, holdi, hold2;

int_array image;

printf(" \n\n Input filename of image to be cleaned:>");
scanf("%s", infilename);
print£("\n\n Input the size of the image (ROW COLUMN):>");
scanf("%d %d", &image.ROW, &image.COL);




CREATE_HATRIX_RGN(image.array, image.ROW, int);
CREATE_MATRIX_CNL(image.array, image.ROW, image.COL, int);

OPEN_FILE(infile, infilename, "matrixtoascii.c")

while(*element != ’#’) fscanf(infile, "%c", element);

loopij(image.ROW, image.COL){
fscanf(infile, "Y%c'", element);

while(*element != ’=’) fscanf(infile, *%c", element);
fscanf(infile, "%3d", &image.array[il(jl);
}

sprintf(psfile, "/s.ascii", infilename);
CREATE_FILE(outfile, psfile, "matrix.c")
loopij(image.ROW, image.COL){
fprintf(outfile, "%d\n", image.array[il[jl);

3

F.2.10 Listing of NRUTIL.C

#include <malloc.h>
#include <stdio.h>

void nrerror(error_text)
char error_text[];

void exit();

fprintf(stderr,"Numerical Recipes run-time error...\n");
fprintf(stderr,”’s\n",error_text);
fprintf(stderr,”...now exiting to system...\n");
;xit(i);

float *vector(nl,nh)
int nl,nh;

float =*v;

v=(float *)malloc((unsigned) (nh-nl+1)ssizeof(float));
if (!v) nrerror("allocation failure in vector()");
return v-nl;

int *ivector(nl,nh)
int nl,nh;
int *v;

v=(int *)malloc((unsigned) (nh-nl+1)*sizeof(int));
if (1v) nrerror("allocation failure in ivector()");
return v-nl;

double *dvector(nl,nh)
%nt nl,nh;
double *v;

v=(double *)malloc((unsigned) (nh-nl+1)*sizeof(double));

if ('v) nrerror("allocation failure in dvector()");
return v-nl;




float **matrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

int i;

float **m;

m=(float **) malloc((unsigned) (nrh-nrl+i)*sizeof(float*));
if (!m)lnrerror("allocation failure 1 in matrix()");

m -= rrl;

for(i=nrl;i<=nrh;i++) {

m{il=(float *) malloc((unsigned) (nch-ncl+i)*sizeof(float));

if (tm[i]) nrerror("allocation failure 2 in matrix()");
m[i] -= ncl;

return m;

double **dmatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

int i;

double **m;

m=(double **) malloc((unsigned) (nrh-nrl+1i)*sizeof(double*));
if (tm) nrerror("allocation failure 1 in dmatrix()");

m -= nrl;

for(i=nrl;i<=nrh;i++) {

m{il=(double *) malloc((unsigned) (nch-ncl+ij*sizeof(double));

if (tm[i)) nrerror("allocation failure 2 in dmatrix()");
mfi]l -= ncl;

return m;

int #+*imatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

int i,**m;

m=(int **)malloc((unsigned) (nrh-nrl+i)#*sizeof(int#*));
if ('m) nrerror("allocation failure 1 in imatrix()");

m -= nrl;

for(i=nrl;i<=nrh;i++) {

m[il=(int *)malloc((unsigned) (nch-ncl+1)*sizeof(int));
if ('m[i]) nrerror("allocation failure 2 in imatrix()");
mli] -= ncl;

return m;

float **submatrix(a,oldrl,oldrh,oldcl,oldch,newrl,newcl)
float *x*3a;
int oldrl,oldrh,oldcl,oldch,newrl,newcys;

int 1,j;
float *xm;

m=(float **) malloc((unsigned) (oldrh-oldrl+1)*sizeof(float#*));

if (im) nrerror("allocation failure in submatrix(}");
m —-= newrl;

for(i=oldrl, j=newrl;i<=oldrh;i++,j++) m[jl=alil+oldcl-newcl;
return m;




void free_vector(v,nl,nh)
float *v;
int nl,nh;

{
iree((char*) (v+nl));

void free_ivector(v,nl,nh)
int *v,nl,nh;

{
§ree((char*) (v4nl));

void free_dvector(v,nl,nh)
double =*v;
int nl,nh;

{
free((char*) {vinl));

void free_matrix(m,nrl,nrh,ncl,nch)
float **m;
int nrl,nrh,ncl,nch;

int 1i;

for(i=nrh;i>=nrl;i--) free({char*) (m[i}+ncl));
free((char*) (m+nrl));

void free_dmatrix(m,nrl,nrh,ncl,nch)
double *#m;
int nrl,nrh,ncl,nch;

int i;

for(i=nxh;i>=nrl;i--) free((chars) (m[i}+ncl));
free((chars) (m+nrl));

void free_imatrix(m,nrl,nrh,ncl,nch)
int #*m;
int nrl,nrh,ncl,nch;

int i;
for{i=nrh;i>=nrl;i--) free((char*) (m[i]+ncl));
free((char*) (m+nrl));

void free_submatrix(b,nrl,nrh,ncl,nch)
float =xb;
int nrl,nrh,ncl,nch;

{
§ree((char*) (b+nrl));

float #**convert_matrix(a,nrl,nrh,ncl,nch)
float *a;
int nrl,nrh,ncl,nch;

int i,j,nrow,ncol;

float »**m;

nrowv=nrh-nrl+i;

ncol=nch-ncl+i;

m = (float *#*} malloc((unsigned) (nrow)*sizeof(floats));

if ('m) nrerror("allocation failure in convexrs_matrix()");
m -= nrl;

o
C~
to




for(i=0, j=nrl;i<=nrow-1;i++,j++) m[jl=atncol*i-ncl;
return m;

void free_convert_matrix(b,nrl,nrh,ncl,nch)
float **b;
int nrl,nrh,ncl,nch;

{
§ree((char*) (bnrl));

F.2.11 Listing of THRESHOLD.C

/R ok ok ok kAR Rk KR AR AR R KRRk ok
SRR ok ko ok kR Rk ARk ok R KRR R R AR KKk Rk Kok /
/¥xx THRESHOLDER 4/
R R T Ty e L Lttt T
R L T T T T e e T T Lt L Lt LT
/* DATE: 3 Sept 91

VERSION: 1.0
NAME: threshold.c

DESCRIPTION: This program thresholds an array ~f values. A window is
chosen interactively by the user. All values .n.:de the window are set
to 255 (white) and all values outside the threshold are set to 0 (black).

FILES READ: One file specified by the ucer.
FILES WRITTEN: One file with the suffix .thresh added.
HEADERS USED: <stdio.h>, '"jsmacros.h", <stdlib.h>, "macros.h"
CALLING PROGRAMS: NONE
PROGRAMS CALLED: NONE
AUTHOR: J. Stewart Laing and Steve Smiley
./ HISTORY: Initial Version

/AR A A K AR Aok oo o ook Aok o ok oo Ko o ok A KK K ok A o ok ook A ok o Kok ek ok ok ok ok ok ok /
7R Ao kK o ook ok ok ok ook o o ko o sk o koo o o o sk ok s ok o Ko o ok ok o Ok Kok o ok ok sk ok ok ook kK /

/e A ek ok ok e sk ok ook sk ok ok ok ok ok ok

/* DECLARATION SECTION =*/
/3 e ook ok ok o ok ok ok o ok ok ok skok ok ok ok /

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "3smacros.h"
JRAER ARk Rk ok kR Kok ok

/* FUNCTION BODY */
[ ARk ok ok Aok sk ok ok Kk Rk koK f

vor! main(argc, argv)
int argc;
char *argv([];

[k ko ok ok kK KRk KKKk

/* initialize variables */

/AR ok ok kA ok R KoKk [

int i,j;

FILE *infile, *outfile;

int_axray image;

int upthresh, downthresh;

char infilename[64], threshfile[64];

/e ok ok o ok ok ok ook A ok ok Kok ok f
/* test parameters */




[k ok ok kR Aok Rk ok ok /

if(arge != 4 && arge != 1){
printf("Usage: threshold <filename> <# of rows> <# of Cols>\n");
exit(0);

/% ek ook ok ok o o ok ok ok ok KK o Kok R ok ok ok ok kK ko f
/* prompt for parameters if not input */
[ etk ok sk oo o ok ok ok ook sk ok ok sk sk ok ok ok ok ok okok ke k ok /

if(arge == 1){
print£("\n\n\n Input the size of the image (ROW COLUMN):>");
scanf("%d %d", &image.ROW, &image.COL);
printf(® \n\n Input filename of image to be histogramed:>"); fflush(stdout);
scanf("%s", infilename);

[ R AR AAIA AR AR AR A AR AR KA AAA A K [
/* use parameters given on command line */
[HRHRA KA AAARAAAAAAAAAKIR I A AR A A A A AR AR AAAK AR |

else {
sprintf(infilename, "%s", argv[1]);
sscanf (argv([2], "%d", &image.ROW);
sscanf (argv([3], "%d", &image.COL);
}

/0 ok ok e ok o ok ok o ok ok ok sk koo ok sk ke ok o skok sk sk ok ok /
/* create a matrix to hold the image */
/7 ok koo ok 3k ok o ook ok ok ok koK ok ok ok ok ok ke sk ok sk ok ok ok /

CREATE_MATRIX_ROW(image.array, image.ROW, int);
CREATE_MATRIX_COL(image.array, image.ROW, image.COL, int);

[ RRRARAAAAARKAAAIAKAAKA A |
/* open input file */
[ RAARREEAAAAAAAARAR AR A RAK |

OPEN_FILE (infile, infilename, "The thresholder")

JHFHRAE A Ak Rk AR R AR AR A ok K Rk R ARk ok [
/* prompt user for upper and lower threshold values */
e e e e e T 2 7

print£(" \n\n Input upper threshold:>");
scanf("%d", &upthresh);

printf(" \n\n Input lower threshold:>");
scanf ("%d", &downthresh);

1 AR A A A A A A A KA A A AAAA AT AHK KA K S kAR AR oK K ook
/* Create file to output the thresholded array for use.*/
T AR AR AR AR AR A KK Aok K KK KRR Rk

sprintf(threshfile, "Y%s.thresh", infilename);
CREATE_FILE(outfile, threshfile, "The Thresholder")

/********************************************************/
/* This part actually inputs the file, thresholds the */
/* grey scale values, and writes out either a 255 for */
/* white if it is between the up and down thresh values*/

/* and a 0 if it is outside this window. */
/********************************************************/

loopij(image.ROW, image.COL){
fscanf(infile, "%d\nr", &image.arrayl[i][jl);
if((image.array[i][j] >= downthresh) &%
(image.arrayli] [j1 <= upthresh)) image.array{il[j] = 255;
else image.array[il{j] = 0;
fprintf(outfile, "%d\n", image.arrayl[il(jl);

234




FFERFAAAAAAAARAAAA AR AAA KK AAAAK K AR KKK Aok o Kook

/* Tell the user where the output file is located. */

[ HHFEARAAAA AR AA AR A AR R A AR KKK AR A KA Kok oK/

printf("\n Thresholded and binarized image created and saved in: %s\n\n", threshfile);
{* THE END %/




10.

11.

13.

14.

Bibliography

. Antonini, M. and others. “Image Coding Using Vector Quantization in the Wavelet

Transform Domain.” Proceedings of IEEE International Conference in ASSP. 2297-
2300. 1990.

Burt, Peter J. and Edward H. Adelson. “The Laplacian Pyramid as a Compact Image
Code,” IEEE Transactions on Communications, COM-31(4):532-540 (April 1983).

Cohen, A. and J. M. Schlenker. “Compactly Supported Bidimensional Wavelet Bases
with Hexagonal Symmetry.” AT&T Bell Laboratories, Preprint, 1991.

Cohen, I. “Time-Frequency Distributions - A Review,” Proceedings of the IEEE (July
1989).

Combes, J. and others. Time-Frequency Methods and Phase Space (2 Edition), 21-37.
Berlin: Springer-Verlag, 1989.

Daubechies, Ingrid. “Orthonormal Bases of Compactly Supported Wavelets,” Commu-
nications on Pure and Applied Mathematics, 41:909-996 (1988).

Daubechies, Ingrid. “Orthonormal Bases of Wavelets with Finite Support - Connection
with Discrete Filters.” AT&T Bell Laboratories, Preprint, 1990.

. Daugman, John G. “Uncertainty Relation for Resolution in Space, Spatial Frequency,

and Orientation Optimized by Two-Dimensional Visual Cortical Filters,” Journal of
Optical Society of America, 1160-1169 (July 1985).

Daugman, John G. “Complete Discrete 2-D Gabor Transforms by Neural Networks for
Image Analysis and Compression,” IEEE Transactions on Acoustics Speech and Signal
Processing, 36(7):1169-1179 (July 1988).

Fastman, Inc. The Wavelet Handbook. Technical Report, Defence Advanced Research
Projects Agency, 1991 (AD-B151 677).

Gabor, D. “Theory of communication,” The Journal of the Institution of Electrical
Engineers, 93:429-457 (1946).

. Gabor, D. “New Possibilities in Speech Transmission,” The Journal of the Institution

of Electrical Engineers, 94:369-390 (1947).

Ginsburg, A. “Specifying relevant spatial information for image evaluation and display
design: An explanation of how we see certain objects,” Proceedings of the Society of
Information Display, 21:219-227 (1987).

Ginsburg, Arthur. Visual Information Processing Based on Spatial Filters Constreined
by Biological Data. Technical Report AMRL-TR-78-129, Volumes I and II, Aerospace
Medical Research Laboratory, December 1978.

236




15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

21.

28.

30.
31.

Gonzalez, Rafael C. and Paul Wintz. Digital Image Processing (2 Edition). Mas-
sachusetts: Addison-Wesley Publishing C.mpany, Inc., 1987.

Grossberg, Stephen. Mathematical Psychology and Psychophysiology. Philadelphia:
American Mathematical Society, 1980.

Grossberg, Stephen. Neural Networks and Natural Intelligence. Cambridge, Mas-
sachusetts: MIT Press, 1988.

Grossberg, Stephen and Ennio Mingolla. “Nerual Dynamics of Perceptual Grouping,”
Perception and Psychophysics, 38(2):141-171 (1985).

Grossberg, Stephen and Ennio Mingolla. “The Role of Illusory Contours in Visual
Segmentation.” The Perception of lllusory Contours edited by Susan Petry and Glenn E.
Meyer, chapter 12, 116-125, Springer-Verlag, 1987.

Guyton, Arthur. Teztbook of Medical Physiology. Philadelphia: W. B. Saunders Com-
pany, 1976.

Hubel, D. and T. Wiesel. “Receptive fields, binocular interaction and functional archi-
tecture in the cat’s visual cortex,” Journal of Physiology, 160:106-154 (1962).

Hubel, David H. “The Visual Cortex of The Brain,” Scientific American, 209(5):54-62
(November 1963).

Hubel, David H. and Torsten N. Wiesel. “Brain Mechanisms of Vision,” Scientific
American, 241(3):150-162 (September 1979).

Jones, Judson P. and Larry A. Palmer. “An Evaluation of the Two-Dimensional Gabor
Filter Model of Simple Receptive Fields in Cat Striate Cortex,” Journal of Neurophys-
iology, 58(6):1233-1258 (December 1987).

Jr., Thomas G. Stockham. “Image Processing in the Context of a Visual Model,”
Proceedings of the IEEE, 60(7):828-842 (July 1972).

Lewis, A. S.; G. Knowles. “Video Compression using 3D Wavelet Transforms,” Elec-
tronic Letters, 26(6):396-398 (March 1990).

Mallat, Stephane G. “Multifrequency Channel Decompositions of Images And Wavelet
Models,” ASSP, 87(12):2091-2109 (December 1989).

Mallat, Stephane G. “A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

11(7):674-693 (July 1989).

. Mallat, Stephane G. “Zero-Crossings of a Wavelet Transform,” IEEE Transactions on

Information Theory, 37(4):1019-1033 (July 1991).
Marr, David. Vision. New York: Ireeman, 1982.

Norman, Ralph. Contmporary Theory and Fesearch in Visual Perception. New York:
Holt, Rinehart and Winston, Inc, 1968.




32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

Oberndaf, Richard A. Analysis of Visual lllusions Using Gabor Filters. MS thesis,
AFIT/G/ENG/90D-47, Air Force Institute of Technology, 1990.

Ozawa, Kazumasa. “Simulation of the Optical IHlusions Using a Spatial Filter,” Pattern
Recognition, 1:237-242 (1978).

Parker, Donald E. and others. “Illusory Displacement of a Moving Trace with Respect
to the Grid During Oscilloscope Motion,” Perception and Psychophisics, 21(5):439-444
(1977).

Press, William H. and others. Numerical Recipes in C, The Art of Scientific Computing.
Cambridge University Press, 1988.

Ranganath, Surendra. “Image Filtering Using Multiresolution Representations,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(5):426-440 (May 1991).

Rasure, John and Danielle Argiro. Khoros Users Manual. Cambridge University Press,
1988.

Resnikoff, Howard L. The Illusion of Reality. New York: Springer-Verlag, 1989.

Ruch, T. C. and J. F. Fulton. Medical Physiology and Biophysics. Philadelphia: W. B.
Saunders Company, 1960.

Shapiro, H. S. and others. “Uncertainty Principles for Basis in L?(R).” Prometheus
Inc., Preprint, 1991.

Smiley, Steven E.  Image Segmentation Using Affine Wavelets.  MS thesis,
AFIT/GE/ENG/91D-50, Air Force Institute of Technology, 1991.

Uz, K. Metin and others. “Interpolative Multiresolution Coding of Advanced Television
with Compatible Subchannels,” IEEE Transactions on Circuits and Systems for Video
Technology, 1(1):86-99 (March 1991).

238




REPORT DOCUMENTATION PAGE

Form Approved

Puplic reporting Zurden for this (Ghiect.on 3¢ ntormat.on 5 3UMAtec 1o sverage | hour per response, .Aciuding the time fOF reviewing iNstructicns, searching existing data sources
gatherirg and mantaiming the 2ata nesced, and (ompieting 4nd reviewing the (Sliection of information  Send comments re
collection of iN1QrMALION, .NAUCING sugGestions for reduung this Jurcen G NMashington Headgquarters 5ervices, Directorate for .nformation Qperations and Reports, 1215 setferson
Davis :ghway, Suite 1204, Ariington, «+A 22202-4302. 3nd 10 the Office of Management and Budger, Paperaork Reduction Project (0704-0188), Washington, OC 20503,

arding this burden estimate or any gther aspect of thyy

OM8 No. 0704-0188 1
|
|

1. AGENCY USE ONLY {Leave olank) PORT. DATIEQQI

ecember

€r's

3. Pﬁfasg'l’ JY AND DATES COVERED

4. TITLE AND SUBTITLE

ANALYSIS OF VISUAL ILLUSIONS USING MULTIRESOLUTION
WAVELET DECOMPOSITION BASED MODELS

8. AURHORSY aing, Captain, USAF

5. FUNDING NUMBERS |

7. PERFORMING ORGANIZAT!CN NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT N
AFIT/GEfENG/QlD 34

9. SPONSORING . MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING ' MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

123 A QBT8P P bt PGS Tt MB N ion unlimited

12b. DISTRIBUTION CODE

_; ﬂﬂ“ﬁfe&s‘”ﬁwﬁaﬁwgfﬁﬂnm to the explanation that spatial filtering is responsible for the perception of :
illusory contours in the Kanisza Triangle illusion. Specifically, we use a Multiresolution Waveiet Decomposition !
to divide an image into spatial-frequency bands that are used as inputs to three biologically motivated models. |
The thesis includes a brief tutorial of Wavelet theory and an in-depth explanation of our implementation of
recently published algorithms for Multiresolution Wavelet Analysis. The first model is based on the saccadic
movements of the human eye. It demonstrates the importance of the high spatial-frequency content of an image
in the formulation of the illusion. The second model is based on the serial architecture of the data transmission
channel between the reiina and the visual cortex of the brain. It demonstrates the importance of low temporal-
frequency characteristics of the build-up of the visual world model. The third model considers only the high
spatial-frequency content of the image. It consists of lateral excitation networks that serve to simulate the local
high spatial-frequency energy interactions that contribute to illusory contours. /—

1. Wamf{s“ﬁf"itlrmlutxon Analysis, Human Visual System, World Model

15. MYQIBER OF PAGES

16. PRICE CODE

17. SECURIY CLASSIFICATION
Ui RiTdd

18. SECURITY CLASSIFICATION

Ve lEsiffeE

19. SECURITY CLASSIFICATION

UREIARIRRACT

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500

Standard Form 298 (Rev 2.89)
Prescribed by ANSI Std 139-18
298.102




