
AD-A243 712

DTIC

This dOctiment has been Opproved
for public ro c~z nd c . t
distribution uulirnifod.

DEPARTWENT1F THE AIR FORCE
ARUNIVERSITY

AIR FORCE INSTITUTE OF TECHNO'L3GY

Wright-Patterson Air Forct Base, Ohio

AFIT/(-,E/ENG/91D-34

DT .C

ANALYSIS OF VISUAL ILLUSIONS
USING

MULTIRESOLUTION WAVELET DECOMPOSITION
BASED MODELS

THESIS
John S. Laing

Captain, USAF

AFIT/GE/ENG/91D-34

This dccuinnnt has been apinoved
ibr pubikc release nud ';ale; its
disib io is nlimid

Approved for public release; distribution unlimited

91-18997 gl 1224 022
IL _i___]lll~lIlllllllll

AFIT/GE/ENG/91D-34

ANALYSIS OF VISUAL ILLUSIONS

USING

MULTIRESOLUTION WAVELET DECOMPOSITION

BASED MODELS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering ..

John S. Laing, B.S.E.E., M.B.A. "" *. 7 7
Captain, USAF

"""i' -1 ."%

December, 1991

Approved for public release; distribution unlimited

Acknowledgments

My thesis committee and others deserve thanks for their enthusiasm and technical

assistance. First, I want to thank my Lhesis a('visor, Maj Steve Rogers, for his guidance and

uplifting support. Much thanks is due to Dr. Matthew Kabrisky, a committee member, for

sharing his broad wealth of knowledge, experience, and wisdom in Biology and Engineering.

As committee members, Capt Dennis Ruck and Dr. Mark Oxley, helped make this thesis the

success I feel it is by providing technical reviews at each iteration of the document. Others

that have taken a great deal of interest in our work and provided invaluable brainstorming

stimulation are Capt Greg Warhola, Dr. Dennis Quinn, and Dr. Bruce Suter. These

professors were instrumental in developing my understanding of the theory and application

of Wavelet mathematics. Also deserving of thanks are Lt Col Phil Amburn, Capt John

Brunderman, and Capt Greg Tarr for their unselfish assistance with the development of

the graphics software that was necessary for demonstrating and researching the temporal

effects of the analysis. A special thanks goes to my partner in developing the wavelct based

application software that is the basis of this work, Capt Steve Smiley.

Finally, and most importantly, my deepest and most sincere thanks goes to my fianc(c,

Leslie Bohler, whose patience and gentle support has given me the confidence to pursue this

degree successfully.

•John S. Laing

1i

Table of Conterts

Page

Ack.iowledgments......

Table of Contents......

List of Figures

Abstract

1. Introduction...... 1

1.1 Background..... 1

1.2 Problem.....

1.3 Assumptions. 2

1.4 Scope.

1.5 Standards. 3

1.6 Approach /Methodology. 3

1.7 Conclusion 4

II. Literature Review. 5

2.1 Introduction. 5

2.2 Fourier Analysis 5

2.3 Gabor Analysis.

2.4 Conclusion 11

III. Theory of Wavelet Analysis. 12

3.1 Introduction 12

3.2 Notation. 14

Page

3.3 The Continuous Wavelet Transform 15

3.4 The Wavelet Transform with Discrete Wavelets 18

3.5 Multiresolution Analysis 20

3.6 Multiresolution with Projections 21

3.7 Multrresolution with Filters 24

3.8 Two Dimensional (2D) Wavelet Transform 27

3.9 Conclusicn 31

IV. Multiresolution Analysis Algorithms 33

4.1 Introduction 33

4.2 Multiresolution with ApproximationS. 33

4.2.1 V space, W space, and Haar basis 33

4.2.2 Haar Transform Program 35

4.2.3 An Example Decomposition 36

4.2.4 Histograming 45

4.2.5 Thresholding 45

4.3 Multiresolution with Filters 57

4.3.1 Multiresolution Decomposition 57

4.3.2 Two Dimensional Multiresolution Decomposition 60

4.3.3 Multiresolution Reconstruction 64

4.3.4 Two Dimensional Multiresolution Reconstruction 65

4.3.5 Fine Points Of The Implementation of the Algorithm . G 7

4.3.6 Examples 70

4.4 Conclusion 71

V. Preliminary Results 81

5.1 Review of Multiresolution Wavelet Decomposition 81

5.2 Methodology 82

5.3 Conclusion 84

iv

Page

\VI. Building a World Model 87

6.1 Mvethodlology..................................... 87

6.2 Conclusion 9

VII. A S pati a;-Temporal Model 96

7.1 Methodology 96

7.2 Conclusion. 10

VIII. A Boundary Contour Model 106

8.1 Methodology. 106

8.2 Conclusions 108

IX. Conclusions/ Recommend ati ons 113

9.1 Introduction 113

9.2 Preliminary Results 113

9.3 Building, a World Model. 114

9.4 A Spatial-Temporal Model. 114

9.5 A Boundary Contour Model 115

9.6 Recommendations. 116

Appendix A. Multiresolution Analysis Using Projections 117

A-1 System Description of the WAVE Program. 117

A.2 Haar Wavelet Analysis.Softwvare. 118

A.2.1 Listing of MAIN-W-*AVE.C 118

A-2.2 Listing of LOADIMAGE.C 120

A.2.3 Listing of PHlCE-GN-IAAR. 121

A .2 A Listing of INNER-PROD.C 1229

A .2.5 Listing of V-PROJECTION.C. 23

A.2.6 Listing of W..PRO.JECTION.C.. 12

Pag-e

A.2.7 Listing of JSMACROS. 126

A.2.8 Listing of MACROS-.H. 126

A.2.9 Listing of STEWMATH.H 126

A.2-10 Listing of MAI(EFILE. 126

Appendix B. Multiresolution Analysis Using Filters 127

B. 1 2D System Description. 127

B.2 2D Multiresolution Wavelet Analysis Software. 129

B.2.1 Listing of MAIN-WAVE.C 129

B-2.2 Jsting of LOADIMACE.C 131

B.2.3 Listing of DECOMPOSE.C. 132

B.2.4 Listing of RECONSTRUCTC 136

B.2.5 Listing of FILTERS.C. 140

B-2.6 Listing- of CON VOLVE.C. 146

B.2.7 Listing of RECONVOLVE C 148

B.2.8 Listing of SPCONVLV.C. 152

B-2.9 Listing of NRUTIL.C. 154

B-2.10 Listing of .JSMACROS.JH. 154

B-2.11 Listizig of STEWMATH.H 154

B.2.12 Listing of MAI{EFILE 1

B.3 ID System Description. 155

BA4 ID Multiresolution W-avelet Analysis Software. 157

B.I Listing or MAIN-WAVEI.C..... 57

B.4.2 Listing of LOADSIGNAL.C. 1.59

BA..3 Listing of DECOMPPOSE.C 160

B-4.4 Listing of RECONSTRUiCTIC 163

B.4.5 Listing of FIL'1'RS.C. 167

B.4.6 Listing of CON VOL'EI... 167

vi

Pitae

B.4.7 Listitig of 1{ECONVOLVE.C 69

B.4.8 Listing of SPCONVL\'.C. 170

B.4.9 Listing of NRUTIL.C 170

B.4.10 Listing of JSMACROS.H. 171-

B.4.11 Listing, of STEWMATH.H 171

B.4.12 Listing of MAKEFILE. 171

Appendix C. Software to Build a World Model. 172

CA System Description of the FBUILD Program. 172

C.2 FBUILD Program Software 173

C.2.1 Listing of FBUILD.C 173

C.2.2 Listing of FUTIL.C. 178

C.2.3 Listing of NRTUIL.C 80

C.2.4 Listing of SPLIN.C 80

C.2.5 Listing of SPLINT.C 181

C.2.6 Listing of SPLIN.C 181

C.2-7 Listing of JSMACROS.H1.. 181

C.2-8 Listing of STEWM.ATH.H. 181

C.2.9 Listing of MAI{EFILE. 181

Appendix D. Software for the Spatial-Temporal Model 183

D. I Systm Description.. 183

D.2 Spatial-Temnporai Analysis Software 185

13.2.1 Listing of KANMOV.C:.. 185

D.2.2 ListIng of KANGEN.C. 188

D.2.3 Listing of VBUILD.C 190

D.2.4 Listing of SPLITID.C. 192

D).2.5 Listing of Moclified WAVE! Modules. 194

vii

Page

D.2.6 Listing of RBUILD.C. 199

D.2.7 Listing of TBT UR.C 201

Appendix E. Software for the Boundary Contour Model. 204

E.1I Systm Description 204

E.2 Boundary Contour Model Analysis Software 20.5

E.2.1 Listing of LENROW.C 20.5

E.2.2 Listing of LENCOLC 207

Appendix F. Software for Utilities 211

F.1 Description of Utilities. 211

F.2 Spatial-Temporal Analysis Software 212

F.2.1 Listing of JSM-ACROSC 212

F.2.2 Listing of MACROS.C 213

F.2.3 Listing of STEWMATH.C 214

F.2.4 Listing of Modified WNAVEI Modules. 215

F.2.5 Listing of BYTE2ASCII.C 218

F.2.6 Listing of DAUBC 220

F.2.7 Listing of EPSVIEW.C 224

F.2.8 Listing of EXPANDC 226

F.2.9 Listing of MATRIXTOASCII.C 229

F.2.10 Listing of NRUTIL.C. 230

F.2.1] Listing of THRESHOLD.(. 2:33

Bibliography 236

Vita 239

vii i

7

List of Figures

Figure Page

1. Typical Contrast Sensitivity Function [14:136] 6

2. Ginsburg's 2D Low Pass Filter Based on the Contrast Sensitivity Function

[14:141] 7

3. Results of Using Ginsburg's Contrast Sensitivity Based Filter [14:225] 8

4. The Recptive Field Profile and the Gabor Function [9:1174]. 9

5. Low Pass Filter Created with Narrowly-Tuned Gabors [32:37] 10

6. Oberndorf's Result Using Gabor Filtering [32:37] 10

7. A Typical Mother Wavelet 16

8. Time/Frequency Window Localization Lattice [7:41] IS

9. A Rectangular Scaling Function Dyadically Scaled 22

10. A Haar Mother Wavelet Function Dyadically Scaled 25

11. Typical Scaling Function and its Fourier Transform [28:677] 28

12. Typical Wavelet Function and its Fourier Transform [28:677j 29

13. Orientation of Wavelet Decomposition Filters in thc Fourier Domain [10:65] 31

14. Dataflow Diagram of the Wavelet Decomposition Program. First Level ... 36

15. Dataflow Diagram of the Wavelet Decomposition Program, Second Level . 37

16. Projection of Lenna onto Vo. 38

17. Projection of Lenna onto I/ 39

18. Projection of Lenna onto 1.. 40

19. Projection of Lenna onto I -

20. Projection of Lenna onto 1"... 42

21. Projection of Lenna onto I...43
22. Projection of Lenna onto 1' 14

23. Projection of .enia onto 1 '16

ix

Figure Page

24. Project.ioit of Lenna onto 1.112 .. . 7

25. Projection of Lenna onto IV4 48

26. Proiection of Lenna onto 141 19

27. Projection of Lenna onto 54's. 50

28. Projection of Lenna onto 14'"r 51

29. Histograms of Lenna's Original Image and V, through 1' Projections 52

30. Histograms of Lenna's 1,1', I42, and W3 Projections with the Number of Pixels

Logged 53

31. Lenna's 1 , Projection Thresholded 54

32. Lenna's 1,1" Projection Thresholded 55

33. Lenna's 1+'3 Projection Thresholded 56

34. One Dimensional Multiresolution Decomposition 28:6S1J 61

35. Response and Filter Functions Based on Cubic Spline Wavelet 62
36. One Dimensional Multiresolution Reconstruction '28:6821 63

37. Two Dimensional Multiresolution Decomposition [23:6851 64

38. Two Dimensional Multiresolution Reconstruction [2S:686] 66

39. Wrap Around Order for the Convlv.c Procedure 69

40. Original Image of Boxes (Reduced 58%) 71

41. fHorizontal Multiresolution Detail Coefficients of Boxes (Reduced 2%) .. 72

42. Vertical -Nultiresolution Detail Coefficients of Boxes (keduced 925%) 72

43. Angular Multiresolution Detail Coefficients of Boxes (Reduced 25%) 73

414. Coarsest Approximation of Boxes Used for Reconstruction (Reduced 25%) 73

45. Frequency Support of Detail Signals Of The Cubic Spline Wavelet 7.

16. Original Image of Lenna (Reduced 2%) 5

47. Reconstructed Image of Lenna Using the Spline Wavelet 'Reduced 2W) ... 76

4I8. Multiresolution Decomposition/Reconstrlzction Ap!)roxim:ations of Lenna l.Us-

ing the Cubic Spline Wavelet (Actual Size) 77

19. Horizontal Multiresolution Detail Coefficients l.enna (Reduced 25-)7

x

Figure Page

50. Vertical Multiresolution Detail Coefficients of Lenna (Reduced 25%) 78

51. Angular Multiresolution Detail Coefficients of Lenna (Reduced 25%) 79

52. Coarsest Approximation of Lenna Needed for Reconstruction (Reduced 25%) 79

53. Kanisza Triangle Illusion 83

54. Relative Spatial-Frequency Range of Each Level of Approximation 84

55. The Kanisza Triangle Approximated at Level Four 85

56. Relative Acuity of Vision Curve [39:441]. 88

57. Artificial Relative Acuity of Vision for Model 88

58. Multiresolution Fixation Map 89

59. Data Flow of the fbuild Progi,.n for a 512x512 Input Image 91

60. Composite Representation Including 34 Fixation Points 92

61. One Myopic Fixation on the Lower Left Packman of the Kanisza Triangle . . 93

62. Composite Respresentation Using 15 Fixation Points 95

63. Flow Diagram of the Spatial-Temporal Blurring System 97

64. Frames of Moving Kanisza Triangle Illusion 98

65. Frames of Kanisza Triangle Using Level I Decomposition in Time 101

66. Frames of Kanisza Triangle Using Level 2 Decomposition in Time 102

67. Frames of Kanisza Triangle Using Level 3 Decomposition in Time 103

68. Frames of Kanisza Triangle Using Level 4 in Space and Level 3 in Time . . . 104

69. Data Flow of the Boundary ConrtouL' Model 106

70. Lateral Excitation Network of Equation 72 107

71. Output of Boundary Contour Model Using Only Level 4 Detail Coefficients 109

72. Oberndorf's Results Using a. Gabor Low Pass Filter [32] 110

73. Output of Boundary Contour Model Using Levels 1-4 Detail Coefficients . . .

xi

AFIT/GE/ENG/91D-34

Abstract

This thesis provides alternatives to the explanation that spatial filtering is responsible

for the perception of illusory contours in the Kanisza Triangle illusion. Specifically, we use

a Multiresolution Wavelet Decomposition to divide an image into spatial-frequency bands

that are used as inputs to three biologically motivated models. The thesis includes a brief

tutorial of Wavelet theory and an in-depth explanation of our implementation of recently

published algorithms for Multiresolution Wavelet Analysis. The first model is based on

the saccadic movements of the human eye. It demonstrates the importance of the high

spatial-frequency content of an image in the formulation of the illusion. The second model

is based on the serial architecture of the data transmission channel between the retina and

the visual cortex of the brain. It demonstrates the importance of low temporal-frequency

characteristics of the build-up of the visual world model. The third model considers only

the high spatial-frequency content of the image. It consists of lateral excitation networks

that serve to simulate the local high spatial-frequency energy interactions that contribute to

illusory contours.

xii

ANALYSIS OF VISUAL ILLUSIONS

USING

MULTIRESOLUTION WAVELET DECOMPOSITION

BASED MODELS

I. Introduction

1.1 Background

By today's computer standards, the individual processing elements of the human brain

process information extremely slowly, yet its capabilities as a whole far outpace even the

fastest supercomputers. The secret of its success has eluded researchers for decades. Some-

how the brain manages to reduce vast amounts of environmental data, discarding unimpor-

tant details. This concept was best expressed by the poet William Blake when he wrote,

"If the doors of perception were cleansed everything would appear to man as it is, infinite."

Perception creates in the brain a model of the world using only a small part of the infinity of

information contained in reality. But, sometimes the lack of a complete picture causes ambi-

guities which the brain perceives incorrectly. One such misperception is visual illusion. The

hope is that by studying the brain's failures we can gain better insight into its function. To

this end, we seek the best mathematical model for the visual system that explains illusions.

1.2 Problem

This paper proposes a thesis in which three models of the human visual system are

based on a relatively new mathematical theory, Wavelets. The models are specifically de-

signed to study spatial and spatial/temporal visual illusions. The thesis develops the algo-

rithms and software necessary tc decompose two dimens'onal images of visual illusions in

terms of wavelet bases. The thesis research includes experiments involving manipnImttions of

the decomposed image based on current knowledge and conjecture of possible human visual

system processing. Included in the evaluation of the resulting images is a comparison with

previous work in this area.

1.3 Assumptions

The assumption on which this thesis depends is theoretical in nature. We assume that

human cerebral processing includes some type of spatial frequency and spatial orientation

selectivity. The choice of wavelet analysis as the method of decomposition is based on this

assumption. In fact, the purpose of proposing a wavelet model of the visual system is to test

this assumption through the evaluation of visual illusions with that model. The assumption

of frequency and orientation selectivity in the brain is motivated by a deeper assumption that

the observed behavior of the visual cortex of the cat and the monkey discussed in Chapter

II is a good indication cf the behavior of the human visual cortex.

1.4 Scope

This effort is limited to the following:

" A description of the mathematical theory of Wavelet Analysis.

" A description of the proposed visual models based on Wavelet Decomposition, modifi-

cation of the decomposed illusions, and Wavelet Reconstruction.

" An analysis of the results produced by processing varioub static illusions with the model

and comparison with previous work in the area of visual illusions.

" The software source code used to implement the modcls along with adequate docu-

mentation.

It is not the charter of this thesis to attempt to completely explain visual illusions. Such

an explanation would require philosophical and psychological examiiiation. This type of

examination is left to experts in those realms. The thesis is limited to a study of visual

illusions based solely on engineering analysis.

1.5 Standards

All software written for this thesis is in the ANSI standard C programming language.

All source code employs structured programming techniques such that the code may be

easily modified and maintained by future research efforts. The code is compileable on any

computer system that possesses an ANSI standard C compiler. We use standard image

processing techniques to modify the decomposed images. A further explanation of these

techniques may be found in an image processing text such as the one by Gonzalez [15].

1.6 Approach/Methodology

First, this thesis provides a written description of Wavelet Analysis. This description

contains the information necessary for a reader with a background in Electrical Engineering

to comprehend the mathematical basis for the proposed mode. Next, research focuses on

the development of the software that performs the first part of the processing required, that

of Multiresolution Wavelet Decomposition of two dimensional images and one dimensional

signals. This software is based on an algorithm developed by Mallat [28]. The bulk of the

effort and the heart of the research lies in the development and use of the proposed models

to discover the appropriate modifications of the decomposed image necessary to explain the

illusion. This task is the original effort of the thesis and requires considerable experimenta-

tion. The evaluation criteria for these modifications is comparison with the original illusion.

Finally, the thesis provides documentation of the results and a complete description of the

models. It includes an evaluation of the results as evidence of the correctness of the models

as possible engineering explanations of visual illusions.

3

1.7 Conclusion

The body of this thesis is logically divided to take the reader smoothly from background

to supporting theory to application. Chapter II is a review of the works of Ginsburg and

Oberndorf investigating low spatial-frequency contributions to visual perception. Chapters

III and IV provide the theory of VAavelet Analysis and its application in Multiresolution

Analysis respectively. These two chapters represent a collaboratix u effort with Steven Smi!ey.

The same material can be found in the corresponding chapters of his masters thesis, image

Segmentation Using Affine Wavelets" [41]. Next, Chapter V compares the low spatial-

frequency approximation provided by the Multiresolution Wavelet Decomposition to the

results of Ginsburg and Oberndorf [14, 32]. Chapters VI, VII, and VIII each present the

methodology and results of the three models used to futher analyze the Kanisza Triangle

illusion in terms of spatial and temporal-frequency characteristics. Finally, Chapter IX

summarizes the results and makes recommendations for future research.

4

I. Literature Review

2.1 Introduction

A model which shows promise in suggesting a type ol processing that may ocur in

the brain is based on a relatively new mathematical theory, wavelets. Though others have

mathematically explored illusions [19, 30, 25], this paper addre:ses two approaches which

establish a relevant background for future research using wavelet analysis, Fourier and Gabor

filtering. In two parts, it examines Ginsburg's research with Fourier analysis [14] and Obern-

dorf's research with Gabor analysis [32]. Each of these sections includes a brief discussion of

the advances in the field of physiology which led these researchers in their choice of analysis.

2.2 Fourier Analysis

Ginsburg's use of Fourier filtering, grew out of a need to reduce the vast amount of

data presented to the sensors of the human v!3ual system. The eyes use over 110,000,000

rods and about 6,000,000 cones to see objects at 100 brightness levels and about 50 different

colors [14:10]. He attempted to find the appropriate range of physical properties that would

satisfactorily model reality. He chose filtering as a means of excluding what he considered

the redundant details of a scene. Since this was an early attempt at explaining human

perception in terms of a physical process, it was necessary to use a scientificaly accepted

and understood method of filtering. Fourier filtering provided such a tool.

The concept of a Fourier filter is quite simpi.. All the objects that make up an image

can be characterized in terms of their spatial fi 'quency. Larger objects have a low spatial-

frequency while small objects .aid fine details have a high spatial-frequency. A Fourier filter

can exclude any unwanted or unneeded range of spatial-frequencies in much the same way

that we tune a radio or televisic,, to a specifi, channel o:r frequency. Filters can also alter

the spatial-frequency content, of images.

5

500

.01

100

Cont ast 50
Conti at 50Contrast

Sensitivity .1
101

5

11

.05 .1 1 5 10 50

Spat' Frequency (c/deg)

Figure 1. Typical Contrast Sensitivity Fu~nction [14:136]

To find which spatial-frequencies to e.,clude and which to 'eep, Ginsburg turned to

known biological data about the contrast scnsitivity of the visual system. As it turns out,

the human eye, has a range of spatial frequencies, bandwidth, for which it needs less contrast

to discern objects than spai..', frequencies outside of tLat range. Mostly, it is the low

frequency characteristics, the form and shape of objects, that need the least illumination for

discernment. To test this, turn down the contrast knob on a television and note that the

finer details are the first to drop out of view. Figure 1 illustrates the characteristic shape of

the contrast sensitivity curve as a function of spatia!-frequency. This graph illustrates the

range of spatial-frequencies to which thc visual system is the most sensitive or which require

the least contrast to discern.

Ginsburg fashioned a filter with a spatial frequency bandwidth that approximates the

contrast sensitivity of the visual 4ystem (Figure 2). He reasoned that visual illusion is a

consequence of filtering out. certain high frequency details about 0,j,-ts at one or more

stages of processing between the eyes and the visual cortex of the brain. The high frequency

and low frequency information ma, then hi- transmitted independently to the perception

6

.10

- 0
-10

-230

Figure 2. Ginsburg's 2D Low Pass Filter Based on the Contrast 3ensitivity Function
[14:141]

forming areas of the brain whcre they are recombined creating the awareness of a coherent

scene. Ginsburg's thesis is that the visual system's form and shape recognizer, which uses

Lhe lower frequency information of an image, carries more weight in perception than the

visual system's edge detector, which uses only high frequency information. Figure 3 [14:225]

is a filtered version of the well .own Kanizsa triangle next to the unfiltered original. The

edges of the illusory triangle in the original image are even more strong, 3uggested in the

filtered image. Also, the blurring effect in the filtered image is stronger outside of the illusory

triangle matching the tendency to perceive the interior of the original triangle to be dat' .,

than the surrounding area.

' Vhile addressing only part of the misperception that leads to a visual illusion, Gins-

burg's work lends creden,e to the vi,,v of the brain as an information processor that can I,e

modeled mathematically. It is not clear, however, what other- filtering or processing occurs

to create the illusion as we see it. For example, how does the relative proximity and orien-

tation of the objects in the image effect the illusion? By Ginsburg's own admission, further

research is required [14:66].

7

Unfiltered Filtered

Figure 3. Results of Using Oiinsburg's Contrast Sensitivity Based Filter [14:2251

2.3 Gabor Analysis

Ginsburg was not alone in his search for an explanation of visual illusion by means

of filtering. In the same year that Ginsburg's dissertation was published, 1978, Ozawa

indeperdently duplicated Ginsburg's results j331. The next break came in 1987 when new

biologically measured data became available. Jones a.nd Palmer gathered data from the

visual cortex of a cat [24]. They demonstrated that the impulse response of the visual

cortex, an early level of information processing done in the brain, closely resembles a two

dimensional Gabor filter [11, 12]. Figurc 4 shows the impulse response map of simples cells

in the visual cortex of a cat as measured by Jones and Palmer, and the best-fitting two

dimensional Gabor functions. The figure also shows how well the Gabor functions model the

cells by demonstrating that the difference is nothing more than background noise.

The Jones and Palmer results have led to a host of image processing experiments which

use Gabor filters to model the visual system. In 1990, Oberndorf, a masters student at the

Air Force Institrt, of Technology, tested the Gabor theo y on visual illusion. [32]. Inspired

by the notion that columnar groupings of cells in the visual cortcx share a frequency response

[24, 21, 23], he propo.ecd a Gabor filter tuned to 1.32 octaves to model the processing effect

8

20 Reepegjy Field

2D Go f Function

Difference

Figure 4. The Recptive Field Profile and the Gabor Function [9:1174]

of each grouping of simple cells [32:36]. When Oberndorf summed these filters, the total

effect exhibited the characteristics of the contrast sensitivity data that inspired Ginsburg.

Figure 5 is a plot of the low pass filter made from a summation of narrowly tuned Gabor

filters. The small ripples in the top of the filter correspond to each of the peaks of the

individual Gabor filters. The results of using this filter ol the Kanizsa triangle is shown

in Figure 6. The energy difference between the illusory triangle and its surrounding area

is even more distinguishable than in Ginsburg's results (Figure 3). This improvement is a

strong indication that the Gabor analysis is a step in the right direction.

Ihe basis for this success lies in the ability of the Gabor analysis to discriminate a

range of frequencies at a particular location. Tile Fourier filter, on tle other hand, can

only be applied to the entire scene. Therefore, if the desire is to isolate certain frequency

characteristics by location, cell groupings, then the Gabor is a good choice. Going beyond

Oberndorf's work, it might also be useful to isolate the local directional characteristics,

orientation, in the image. Mallat, shows that this is not only possible but desirable in many

9

Figure .5. Low Pass Filter Created with Narrowly-Tuned Gabors [32:37]

Figure 6. Oberndorf's Result Using G;abor Filtering [32:37]

10

engineering applications 127]. le alo shows that with wavelet analybis the Gabor filter call be

made orientation as well as frequency selective. In wavelet analysis, the Gabor filter retains

its location and orientation selectivity and gains a dilation parameter. This parameter is

used to isolate the desired spatial-frequency characteristics in certain locations in the image.

With this tool, it may be possible to isolate and emphasize the illusory contours of the image.

So, the next logical step in research of visual illusions, started by Ginsburg and carried ol

by Oberndorf, is to analyze various illusions with wavelets.

2.4 Conclusion

A better understanding of visual illusions promises to provide insight into the process-

ing taking place in the visual cortex of the brain. Ginsburg advanced this effort by applying

Fourier filtering techniques to some visual illusions including the Kanizsa triangle. His re-

suits indicate that there may be some preattentive processing occuring in the visual system

that separates the Iow frequency characteristics and enhances them with respect to the high

frequency character. Aics. Thus, the perception forming areas of the brain receive biased

data. Oberndorf took this idea a step farther by applying the property of location sensi-

tivity inherent in Gabor filtering. Each individual Gabor was made to emulate a columnar

grouping of simple cells in the visual cortex as suggested by Jones and Palmer. Oberndorf's

results indicate the approach is basically sound. The next logical step is to apply the Gabor

filters in varying dilations and orientations. This can be done by extending the Gabor into

a class of mathematical functions called wavelets. These functions are tihe filters that will

determine the combination of frequencies and orientations that cau.se the illusion to appear.

If the analysis is successful, it will form the basis of a mathematical model of the visual

system.

11

III. Theory of Wavelet Analysis

This chapter was co-authored with Steven Smiley and exists in his thesis in duplicate

[41].

3.1 Introduction

Signal analysis seeks to discove," the information content of signals needed for appli-

cations such as pattern recognition and signal coding. One approach is to transform a

mathematical representation of the signal into a domain of interest. A simple example is a

coordinate transformation which maps a function, such as a circle, from Cartesian coordi-

nates to polar coordinates. A circle represento d by x2 + y2 = r 2 in Cartesian space is now

more easily expressed by p = r in polar space. The coordinates x and y or p and 0 provide

alternate representations of the circle.

Another example of this kind of transform analysis is the Fourier series expansion. If

f(x) is a continuous function on the interval 1-] and f(-1) =

f''? (1)

f: ']an)f-=Z=c(c)

where j 2 = - I, and n is an integer. The Fourier series expansion of a function requires the

generation of coefficients, C.-

= _ f(X)C T dx (2)

These coefficients are the amplitude and phase of each renmber of the Fourier series basis

set needed to reconstruct the original function. In continuous form, Equation 2 becomes the

Fourier Transform.

F(,) = f(.)c- ':"zdx (3)

12

It maps one dimensional signals from the time domaiTt to the frequency domain and can be

extended to map two dimensional images from the space domain to the spatial-frequency

domain. From another point of view, the transform projects the original signal or image

onto the space spanned by the exponential basis set, {ei 2 ""fln is an integer}, for all integers

n. In this paper we will denote this set with the symbol E.

Unfortunately, the Fourier Transform representation gives no information as to the

location of the frequency characteristics in the original signal. This is due to the fact that the

basis set E, has infinite support. Therefore, any abrupt changes in the time domain require

contributions from the entire frequency domain. The Fourier Transform might indicate that

high frequencies are present in the signal, but it does not indicate where in time that range

of frequencies are significant. In images, edges or lines are areas of high spatial frequency. A

Fourier Transform of an image with edges would provide evidence of high spatial frequencies

but would not indicate where in the image the edges could be found. Finding the location of

unique spectral characteristics can be extremely useful as a feature set in applications such

as pattern recognition and signal coding [9, 29].

Therefore, we need an extra variable in the target or transform domain. In other words,

we need a transformation that maps a signal to the time/frequeincy domain or an image to

the space/spatial-frequency domain. The Windowed Fourier Transform (WFT) is such an

transformation.

4Ff (w, 7-) +0 f w(t - 7)e-j".f(t)dt (4)

where w(.) is the window function. This transformation uses the window to localize the

analysis of time and frequency on the signal. However, because the window size is fixed, no

sharper resolution in time can be provided. Due to the uncertainty principle, it is impossible

for this basis set to have arbitrarily high resolution in both time and frequency [8, 401. Even

the Gabor Transform, a WFT whose Gaussian shaped window gives the best compromise,

still falls prey to the uncertainty principle. Additionally, because the window width is fixed

sharp discontinuities in the time signal are spread across many Fourier coefficients.

13

One answer to die time/frequency resolution problem is the Wavelet Transform'. It

allows variations in the size of the window effectively trading resolution in time for resolution

in frequency. The collection of its coefficients, similar to the Fourier Transform, is a projec-

tion of the original signal or image onto the space spanned by its basis set. The wavelet basis

set is made up of vari, tions in the translation and dilation of a mother wavelet fL notion just

as the {E,,} is made up of variations in the frequency of the complex exponential function.

This chapter provides the basics for understanding wavelet analysis. It presents the

Wavelet Transforms of both continuous and discrete signals. We discuss Multiresolution

Wavelet Analysis both in terms of successive projections onto a wavelet basis set and succes-

sive lowpass and bandpass filtering in the Fourier domain. Finally, we address the extension

of Multiresolution Wavelet Analysis to two dimensions.

3.2 Notation

The following notation will be used throughout this document.

" Z denotes the set of integers.

" R denotes the set of real numbers.

" R+ denotes the set of positive real numbers.

* L 2 (R) denotes the space of measurable, square integrable, one dimensional, real-valued

functions .f(x), such that

L I(f:)) 2dx < (5)

1Another approach to the time/frequency resolution problem is that of Time-Frequency Djtribut.ions
[10, '1]

14

* L2 (R2) denotes the space of measurable, squate integrable, real-valued, two dimen-

sional functions f(x,y), such that

FJo f(xoy)2dxdy <Co (6)

* For f,g E L2 (R) the inner product of f with g is defined as

(fg) 0 g(x)f(x)dx (7)

* For f,g E L2 (R) the convolution of f with g is defined as

(f * g](x) -- f(a)g(x - a)da (8)

* For f,g E L2 (R) the correlation of f with g is defined as

[f *g](x) = f(c)g(a - x)de (9)

* P, denotes the projection operator on L 2(R) such that for any f E L 2(R)

Pf = Z(f, 0,,)0en (10)

where {0n} is a complete basis set and n E Z. 2

.9.3 The Continuous Wavelet Transform

The basis functions in wavelet analysis, {kab}, are derived from a single function called

the mother wavelet, V,(x). It acts as the window in the Wavelet Transform whose size is

varied by the dilation parameter, a E R+. Like the Windowed Fourier Transform, it has a

2The relationship of this basis set 0,, to the mother wavelet ,(x) is discussed in Section 3.6 of this chapter.

15

translation parameter, b E R. I (x - b
?Ob(X) =7 = -)

The ' term normalizes the energy of each basis function. Figure 7 shows dilated and

translated versions of a mother wavelet.3 The function in the middle is the prototype function

where b = 0 and a = 1. The function to the right is translated by b = 15 and dilated by

a=2. And finally, the function to the left is translated by b = -20 and dilated by a = 2. All

such possible dilations and translations of the mother wavelet, 0(-) make up the elements

of the set {4ab}.

-30 -2 -10 10 20 30

b=-20, a=2 b= ,a=1 b=15, a=1

Figure 7. A Typical Mother Wavelet

This basis set provides narrow windows for small a isolating discontinuities in time

that are spread over a broad range of frequencies and wide windows for largc a that have

better frequency resolution. The Continuous Wavelet Transform for a real mother wavelet

/ is [10:7] 1 +_ oo x- b
lf (a, b) = \ 10 f(x)i('-a-)dxa E R+,bE R (12)

3 Laplacian of the Gaussian V(x) = , - 4(1 -x 2)e-
2.

16

With this transform, a w't.relet coefficient is obtained for each dilation and translation of the

mother wavelet.

If the Fourier Transform of the mother wavelet, 4)(x), denoted by T1(w), satisfies the

condition that

c= +00II'(w)12/wdw < oo (13)

which requires that kP(O) = 0 ', an inversion transform exists and is given by [10:8]

f(X) = c- 1 +o +o -b dadb (14)S IIo w(-)wf(a,b) a2
aJ-0 0 Jo V(a)"f a

The wavelet transform pair given in Equations 12 and 14 are analogous to the Fourier

Transform pair of Equations 1 and 3. As the dilation parameter a varies, the window width

of function O(xab) varies. Since small values of a correspond to small window widths, a

varies inversely with the frequency detectable within the window. Therefore, the wavelet

transform isolates time discontinuities or abrupt changes in time at the expense of low

frequency resolution at high frequencies. In many applications, the important information

content of the signal is contained in the quick transitions of the signal in time. For this

reason, the Wavelet Transform can be quite useful.

Because the windows overlap when the parameters (a, b) are varied continuously, the

Wavelet Transform is highly redundant. Therefore, it is possible to evaluate it with a discrete

set of basis functions in much the same way that the Fourier expansion of Equation 1 repre-

sents a. signal with a set of discrete exponentials. The time/frequency plane evaluating grids

are shown in Figure 8 for uniform time-frequency sampling associated with the Windowed

Fourier Transform and the nonuniform sampling of the Wavelet Transform. Each clot in the

lattice indicates the localization in the time/frequency plane of one resolution cell, showing

the center of the time window and corresponding bandpass filter. In this figure, we can see

that the fixed window widths of the Windowed Fourier Trapsform have a fixed resolution in

4The w in the denominator of Equation 13 requires that (w) vanishes as w approaches zero.

17

j a-1

7. b

Window Fourier Transform Wavelet Transform

Figure 8. Time/Frequency Window Localization Lattice [7:41]

time and frequency; whereas, the variable window widths of the Wavelet Transform provide

variable resolution in time and frequency. The clustering of grid dots at the origin along the

a-1 axis of the Wavelet Transform time/frequency lattice indicate the low time resolution

or localization of low frequencies; whereas, the denseness of grid dots parallel to the shift

axis, b, at high frequencies (large a- ') indicates the higher time resolution or localization of

higher frequencies.

3.4 The Wavelet Transform with Discrete Wavelets

It is sometimes convenient to use a mother wavelet whose discrete translations and

dilations form an orthonormal basis [5]. For this case, the discretized basis setf1P.") where

m, n E Z is defined as

....tm : ni (15)

1s

where a > 1 and /3 > 0 [10:11]. In this chapter, we use the dyadic interval defined to be

a = 2 and/3 = 1. For the dyadic case, Equation 15 becomes

?,'(x) = 2-2-b(2-mx - n) (16)

Using this form of the mother wavelet in Equation 12 yields the Wavelet Transform with a

discrete wavelet basis.

r+00
Wj(m,n) = 2-2 0(2-m x - n)f(x)dx (17)

To check this, consider the Fourier Expansion given in Equation 1. We can represent any

function, f E L2 (R) as

f(x) = Zcn b,(x) (18)
n

where V,,, is the n ' '" element of an orthonormal basis for L 2(R). Equation 18 can also be

thought of as the recostruction of f(x) from its coefficients {c,,} in terms of the orthonormal

basis {',,}. The inner product, c, = (f,4V,,), gives the coefficient of the n1h term in the

basis. Just as any vector r in three dimensional Euclidian space can be expanded in a set

of mutually orthogonal unit vectors x,y, and z in the form r = aix + a2y + a3z, we can

expand any function f E L2 (R) in a set of mutually orthogonal unit vectors {k,,} in the

form f = F,, c,,?P,,. If we multiply both sides of Equation 18 by any term ih,, for 7n e Z and

integrate, we get

Pm(X)f(x)dx = () c,, ,(x)?k,,b(x)dx (19)
CKo n c

But, because of the orthonormality of the set {i,,} we know that,

0OJ /,,,(x)vl,,(x)dx = (20)

where , is the Kronecker's symbol, and is defined as 0 if m n and I if mn - n. Therefore,

all the terms in the summation of Equation 19 are zero except the one in which n. = in.

19

Thus,

j. f(x)b,,I(x)dx = c,m (21)
d-CO

is the integral form we need to find the coefficient of the mth bas.is element, c,,. Written

a.lother way, Equation 21 becomes a continuous transfurm with an orthonormal basis that

maps f(x) --+ Tj(7z).

Tj(7n) = L f(X)?m(x)dx (22)

Now, we can insert the orthonormal wavelet basis set {*'} of Equation 16 into Equation 22

and get the Wavelet Transform of Equation 17. To reconstr uct the original signal, we perform

a generalized Fourier series expansion (see Equation 18) with the coefficients obtained with

Equation 17 and our basis set {p}.

f(x) = Z -W(m,n)k(x)71 (23)
m n

The next hurdle in wavelet analysis is to determine the most appropriate mother

wavelet for a specific application. Presently, the appropriateness of a specific mother wavelet

is determined experimentally. We first try to match the characteristic shape of the mother

wavelet with the characteristics of the function under analysis. For a more complete discus-

sion of this issue, see Fastman [10].

3.5 Multiresolution Analysis

In section 3.3, The Continuous Wavelet Transform, we said that the Wavelet Trans-

form uses a variable length window to examine the function. Increasing window lengths

correspond to successively coarser scales or resolutions (in time or space) of the function.

Therefore, wavelet analysis is sometimes referred to ,as multiresolution analysis. In this sec-

tion, we will describe each resolution level as the projection of the function onto the basis

set made up of all shifts of a scaling function (not a wavelet) at a fixed dilation or scale.

20

Multiresolution analysis represents a signal as a series of successive projections, each of which

approximates the original signal at a different level of resolution [2, 361. Here, 'level' cor-

responds to a particular dilation of the scaling function. A more intuitive view is that of

successive low pass filtering of the signal with filters of narrower and narrower bandwidth

representing the signal with less and less detai' The filter is related to, and can be derived

from, the scaling function. Both views will be discussed in the following subsections.

3.6 Multiresolution with Frojections

The projection operator Pf projects a function f onto a basis set {,} (see Section

1.2, Notation). Foi mathematical convenience we consider a scaling function 6(x) whoze

translations and dilations form an orthonormal b..sis. This is possible according to Stephane

Mallat's Theorem 1 which states:

Let (V ,),Ez be a multiresolution approximation of L2(R). There exists a unique
function 6(x) E L2(R), called a scaling function, such that if we set €2,(x) =

2¢b(2jx) for j E Z, (the dilatic- of 3(x) by 2j), then

(V2-_j2,(x - 2-jn))-Ez (24)

is an orthonormal basis of V 21

[28:676]; see [28:690] for proof. In Mallat's theorem, V21 is a vector subspace of L2(R) whose

basis set is the scaling function 6(r). In being consistent with our earlier notation, w].ere

Mallat uses j to denote level or scale we use the integer m and the integer 71 to denote shift.

One propert, of Mallat's set, { }, is that each element is identical in shape to every o.her

element but differs in height by a power of two and differs in relevant width by a powe!r of

two. This is known as the dyadic case. Figure 9 shows a rectangular scaling finction dilated

three times. With an orthonormal scaling function dilated and translated dyadically, we call

use Mallat's discrete projection operator

21

level m-3 onm- 3 1

8

level m-2 l,2, 2 ..- 2

4 4

level M- 1 ,4,",- n
¢On + 2

- m-1

2 2 2 2

,n+2
nl

level In -,n+3

On+4S

1 1 1 1 1 1

Figure 9. A Rectangular Scaling Function Dyadically Scaled

A 2rf(x) (2 Z E(f, 62m(* -2"n))6 2'-(x - 2-71n)) (25)
n -Z) E Z

which generates an approximation of the original function at a level of resolution 2
' . The

set of inner products

I{U 02 ;(- 2" 7)) .. ,Ez (26)

9'

characterizes an approximation of f at scale m. In Mallat's terminology, A2,, projects

f E L2(R) onto the subspace V2.. For notational convenience, we now drop the subscript

2 and rewrite I' for 1/2.. The family of subspaces I/ created by successively coarser

approximations of L2 (R) has the property that

-C I/-2 C 1 7,- C 17 C V1,+1 C 11.+2 C (27)

That is, each resolution approximation of L2 (R) is contained in (is a subset of) the next

higher resolution approximation. Because a physical sampling device samples at a finite

rate, any signal, f, is represented at its finest level of resolution by A,,of. For reference, we

choose mo = 0. Then for a finite number of resolutions, III, we have

I/-(M-1) C V1.-(M-2) C"" C I-L C 10 (28)

Since Amf E I/, each approximation of coarser resolution A.-If can be derived from its

parent projection of finer resolution A,,f.

The difference between two adjacent scales, m and rn - 1, given by

Dill-if = Anf - A,_l.f (29)

is called the detail signal at scale 7 - 1. It contains the details in the signal f that are lost.

during the projection from level 77 to level m - 1. The detail signal, D,,,-If, is the result of

projecting f onto the basis set of a vector space, O,,-J, which is orthogonal to 1',_-. with

the projection operator D,,,-,. Analogous to the projection Equation 25, this operator is

23

described in terms of a basis set s i,4J, which spans the space 0m.

Dmf (x) - 1 kf, (- 2-n)) , 2 1-(x - 2-n) (30)
nEZ)mEZ

Equation 30 generates the difference bet veen approximations. It is characterized by the s-t

of inner products

{ (f, b2 m,(* - 2 -n))}m,EZ (31)

This is just Equation 17 written as an inner product. Thus, the mother wavelet, 4'(x),

generates a basis set, {7k}, of the vector space 0,,,. Figure 10 shows an example of a

mother wavelet dilated and translated dyadically. It follows from Equation 29 that the suni

of all the detail signals and the coarsest approximation equals the original signal.

f(x) = D_,f + ... + D-(u-,)f + A-(m-,)f (32)

Equation 32 is the Wavelet Decomposition of f(x).

3.7 Multiresolution with Filters

An alternate view of the multiresolution approximations is that of filtering the image

with a set of low pass filters with successively narrower bandwidth. The inner)roducts of

Equation 26 are convolutions evaluated at the point 2-n (see section 3.2, Notation).

(1, (. - 2-,,n)) = f f(.),,,(.- 2-"'n)dx = [(f . 2'.(- (2-",) (33)
(f~~~~~ ~~ -- 02-(n) 311 X

An alternative approach uses correlations where the argument of 45 is reversed (see

section 3.2, Notation).

sllere, 4,(r) is the particular mother wavelet associated with the scaling function, o(x) used in Equation
25. Some researchers derive the 0 given a 0, and others derive the 4, given a 0 [7]. In this thesis. we use
previously derived ,,' pairs [28] [6].

24

level m-2 1 72

16 ,

level rn-I

.4 VI(X

level mf

4 4
x

Figure 10. A Haar Mother Wavelet Function Dyadically Scaled

(f, 62,n(- 2-"n)) = j f(x)0 2 (2-'n - x)dx = 1(1* 02,-(X)](' "") (34)

Convolution and correlation are interchangeable. We choose convolution for coisistency with

current wavelet literature. Of course every good electrical engineer recognizes convolution

as multiplication in the Fourier domain

[f * g](x) - F(u,)G(w) (35)

25

where F and G art the Fourier Transforms of f and 9 respectively. The Foutier Transform,

(I(w), of the scaling function, 6(x), is a low pass filter with a specific band%% idth. 'I iie Fourier

Transform of each successively wider scaling function (dilated by a power of 2) will also be

a low pass filter, but with a bandwidth smaller than that of the previous scale or level. This

operation of succes :ive low pass filtering produces "smoothed" versions or app -oximations of

the original signal. Each version contains less information or detail than its predecessor. In

the case of images, each approximation is "blurred" by the amount of high spatial-frequency

information that is filtered out. Finally, the lowest or coarsest level approximation occurs

when all frequencies have been filtered out and only the dc component of the signal re- ains.

In multiresolution analysis, we are primarily concerned with the information contained

in the difference between levels of resolution. In the case of filters, the difference between two

lowpass filters whose bandwidths vary by a power of two is a bandpass filter with a bandwidth

of one octave. This bandpass filter is provided by the Fourier Transform, 41'(w), of the wavelet

function, t,(x). We can express the inner products of Equation 31 as the convolution of the

signal with the wavelet function evaluated at 2-'n as we did in Equation 33.

(f, 0b2,("- 2-'n)) = [f * V2-,(-o)](2-' n) (36)

Figure 1I shows a typical scaling function, 6(x), and the corresponding low pass filter, 'l(f),

its Fourier Transform. Here f denotes frequency measured in Hertz, not the function f used

previously. Figure 12 shows the wavelet function. ?,(x), which corresponds to the scaling

function of Figure 11. It also shows the bandpass filter. 'P(f), the Fourier Transforin of ti(x).

These filters.fI(f) and 4)(f) correspond to the same level of resolution or scale. Superpo-

sitioning them., creates the lowpass filter of the next higher level of resolution. Similarly.

adding the next bandpass filter will create the next lowpass filter and so on. Therefore.

any signal c. image can be decomposed into a set of signals or images each containing a

one octave bandwidth of the original signal or image. in t0 is manner, we call construct a

bank of bandpass filters from a mother wavelet for the purpose of wavelet decomposition.

26

Furthermore, if we choose out mother wavelet to be orthonormal, the resulting bandpabs

filters will completely cover the frequency plane such that the information content of each

signal or image in the decomposition is unique. A major advantage to the filtering approach

as opposed to the projection approach is the decrease in computational time complexity of

the decomposition process. Us ng a Fast Fourier Transform (FFT), the scale and wavel,'t

coefficients are computed in O(nlog(n)) time. Alternately, using spatial convolution when

the size of the filter functions are much smaller than the length of the signal O(n) time is

required, where n is the number of samples in the signal.

3.8 Two Dimensional (2D) Wavelet Transform

The Wavelet Transform can be extended from one dimension (ID) to n dimensions,

n > 1. Foi .iage processing, we need a 2D Wavelet Transform to map images from the space

domain to the space/spatial-frequency domain. Mallat's Theorem 1 is valid for L2(R2) and

there exists a scaling function 4)(x, y) whose dilations and translations are an orthonormal

basis for L2(R2) [27:682]. The symbol 4) is used here for consistency with referenced material

and should not be confused with the Fourier Transform of 0 denoted previously with this

symbol. The 4)(x,y) can be a separable or a inseparable function. We will discuss the

separable case in which 4) (x, y) is written as a product of two identical 1D scaling functions.

D(x,y) = (x)(y) (37)

For the separable ,ase, the multiresolution projection approximations of the inage at level

m can be obtained from the following set of inner products

AnJf(x, y) = 2-111 2-"(f'??~. -2'n)?(x- - 2-'lO ...)m(y - 2?ln.,))
•'Z,) 2EZ " EZ

(38)

27

0.4

0

()

Figure 11. Typical Scaling Function and its Fourier Transform [28:677]

28

0.8

0

-0.2

-00

(a)

0.29

Here we use the same m and n in both x and y since we dilate and shift equally in both

dimensions. However, in the more general case x and y could be shifted and dilated inde-

pendently.

We obtain the detail image just as in the 1D case in Equation 31. The detailed image

at resolution m is equal to the orthogonal projection of the 2D function on the orthonormal

complement, 0 ,, of Vm. The orthonormal basis of 0 ,,, is composed of the three wavelet basis

functions 'y¢(x,y), q12(x'y), T3(x,y) which we construct from the 1D scaling function, €,

and its corresponding wavelet, 4 [28:683]. The symbol T is used here for consistency with

referenced material and should not be confused with the Fourier Transform of V) denoted

previously with this symbol.

P(xy) = 0. (X))OM (y) (39)

T 2 (x,y) = (x)OMr(y) (40)

T'3 (x, Y) OM M(xmy) (41)

There is one detail projection for each of the three wavelet bases. Applying Equation 31 to

each yields [28:684]

Df(x,y)= (2- >1 > (f, .(- 2-n 1 ,. - 2-mnn))kg,,(x- 2-'n 1 ,y- 2-inn2))
UiEZ n2 EZ 2EZ

(42)

D~fX~y= (2-rn Z: Z(f, P2- 2-m n1 ,. - 2-mfl2))T'm(x-- ni,,, Y -2-'71 2))
\ niEZ 112EZ mEZ

(43)

D,,f(x,y)= (2-"' -3 -.f, 3,(.- 2-'n 1 ,.- 2-'n 2))4I,,(x- 2-n,,y- 2-mn2))
"iIE7,11EZ "'EZ

(44)

The image can then be completely reprebented at any level of resolution m - 1 by bumming

Amf and D',f for i = 1,2,3. Figure 13 shows an approximation of the locations of the

corresponding lowpass and bandpass filters for the 2D wavelet dccomposition in the 2D

frequency domain. This figure demonstrates the spatial orientation of each bandpass filter.

The filter formed by AP l(w.,w,) is oriented horizontally, VJ2(W, vertically, and V (w,.Lo)

30

diagonally. In many image processing applications it is desirable to obtain a representation

which is not only a space/spatial-frequency representation but also is sensitive to specific

orientations. Although Mallat generates three orientations as represented by the three detail

signals of Equations 42 through 44, recent work by Cohen and Schlenker at AT&T Bell

Laboratories s-iggest more are possible [3].

D2,f

Ad D2,f Ad, f D 2f

D2,f D2,f D2,f

Figure 13. Orientation of Wavelet Decomposition Filters in the Fourier Domain [10:65]

3.9 Conclusion

The predominate tool in signal analysis for the past three decades has been the Win-

dowed Fourier Transform. It provides a representation of signals in the time/frequency

domain. However, this transform uses a constant size window; thus, it piovides only a fixed

resolution of the location of the frequency characteristics of a signal in the time domain. A

new engineering tool, the Wavelet Transform, provides an alternative by using multiple sized

31

windows effectively trading resolution in time for resolution in frequency for applications in

which localization of frequency characteristics in time is more important for high frequencies.

32

IV. Multiresolution Analysis Algorithms

4.1 Introduction

This chapter discusses two different approaches to using wavelets in multiresolution

analysis. It is the result of a combined effort with Steven Smiley and exists in duplicate in

his thesis [41]. The first approach uses the scaling function O(x) associated with a mother

wavelet O(x) to decompose an image into successive V,, and Wm space projections where

Vm and W,, are vector spaces in L 2(R) (see Chapter III) and are orthogonal compliments

of each other in the next larger space Vm+,1 . The second approach uses a set of quadrature

mirror filters H and G constructed from a mother wavelet and its associated scaling function

to decompose a signal or image into sets of coefficients. These coefficients characterize

the V and W space projections. Following the discussion of each approach, we include

implementation examples in support of the theoretical explanations.

4.2 Multiresolution with Approximations

This section discusses our implementation of multiresolution decomposition using the

Haar wavelet bases. First it defines the Haar function as an orthogonal wavelet basis suitable

for multiresolution decomposition. Then, it explains our implementation.of decomposition.

Finally, we provide an example decomposition using our decomposition program.

4.2.1 V space, W space, and Haar basis. In one dimension, the Haar mother wavelet

is defined as follows:

21 ifO x<l

OW() -1 if _ <X<1(45)

0 otherwise

'In this chapter, the symbol Wm replaces the symbol 0,, used in Chapter II, Section 3.3.

33

The one dimensional scaling function f hat corresponds to the Haar mother wavelet is defined

as follows:
W 1 if - (46)

0 otherwise

The two dimensional scaling function, .'(x, y), is the product of O(x) and 0(y), where (D(x, y)

is a two dimensional rectangular function. In general, 41 is scaled by an amount proportional

to the length of its interval of support, I, where its values are non-zero. In the dyadic case,

the length of the interval of support is given by

I = 2"},,EZ (47)

for the shift n and the level m. We use the convention that level 0 is the finest resolution

level. This means that the projection in the V space represents the image at its original

sample density. In this case, the shift intervai for the 0 and .k functions is

[I = 1 (48)

which is equal to the sample size of the image, one pixel. The scale factor is, therefore, '
v2--.

Now, we can write an expression for the one dimensional 0 with the proper scale factor as

follows
€ (x) = if x E 1,n,(49

fIn (49)
0 otherwise

From Equation 49, we build a two dimensional scaling function with the product mentioned

above as follows {2-" x,yEI,"

4),(.y) = (50)
0 otherwise

Therefore, our convention allows us to easily derive the size of € in terms of its interval

of support from 2 -' , where m is the level of resolution. As mentioned above, the finest

resolution level corresponds to n. = 0 and is contained in the vector space 1o. The maximum

34

resolution level is also easily found. This is done by finding log 2(N) where N is the size of

the NxN image under analysis. For example, if the image is 512x512, the largest (D that

will fit completely on the image is 512x512. Since the size of 4) is related to the level by

2- M, we find m by taking log2(N). In this example, that would be 1og 2(512) = 9. Therefore,

all contributing levels of esolution range from zero to nine, where level zero is th" finest

resolution and level nine is the coarsest. Though level zero is exactly the original image, we

will continue to consider it for programming convenience.

The projection on the vector space Vm of the image f(x, y) or the approximation of

the image at the mlh level of resolution is characterized by the set of coefficients, {c } xv here

c, =< 4),f> (51)

Then, the projection is given by

A,f(x,y) = . 4 '(x,y) (52)
n

Given that the orthogonal complement in Vmi of the vector space I/ is Wi, which means

that I-'l, = V,,,_ - 1,,, we can find the projection of the image onto the vector space 4,,,

from Equation 29. It is possible to calculate the wavelet coefficients, d',, that characterize
the projection into the orthogonal vector space 14" in a manner similar to Equation 51 using

d" = (qlnf) (53)

where %P(x, y) = ,-(x),'(y) But this is not necessary since we can find the projections Dj(m)

more directly from Equation 29

4.2.2 Haar 7Thansfo,'m Program The data flow diagram in Figures 14 and 15 shows

the operation of the Wavelet Decomposition program, wave. This program, is written in the

ANSI standard C programming language. It reads in an image from an ASCII file and writes

.35

its output to ASCII files; the I coefficient, the projections in V space, and the projections

in W space. The number of files produced is determined by the size of the input image to

WAVELET DECOMPOSITION

PROGRAM

a PHI
IMAGES COEFFICIENTS

WAVELET V SPACE
APROJECTIONS

MENU IW SPACE
INTERFACE] PROJECTIONS

Figure 14. Dataflow Diagram of the Wavelet Decomposition Program, First Level

be decomposed. For example, the image of Lernna shown in Figure 16 has a resolution of

480x512 pixels. Therefore, ten files each will be produced for the 4I coefficients, the I" space

projections, and the W space projections. The 4) coefficients are calculated by taking the

inner product of the appropriate level I and the image, Equation 51. The projections of the

input image onto the V space are found by multiplying the D basis by the 4) coefficients.

Equation 52. Then, the projections in the 14, space are found from the diffcrence of V space

projections at adjacent levels, Equation 30. The source code for the wave program is made

up of ten files. They are provided in their entirety in Appendix A.2.

4.2.3 An Example Decomposition We subjected a 480x512 sampled image of Lenna

to the Haar transform program and printed her projections in the I" spaces and the IF

36

spaces for resolution levels one thro,,gh nine according to the convention established above

(See Figure 17 through 28). The W space projections are made viewable by adding 255 to

WAVELET DECOMPOSITION

PROGRAM

LOAD INNER

IMAGE PRODUCT PHI
COEFFICIENTS

IMAGES

CREATE

V _ V SPACE

PROJECTION PROJECTIONS

PHI

GENERATOR

W wW SPACE
MENU PRJCTO PROJECTIONS

INTERFACE

Figure 15. Dataflow Diagram of the Wavelet Decomposition Program, Second Level

their gray scale values and dividing the sum by two. This process centered the values about

128 instead of zero. The low energy contained in the W space projections is as expected,

since it represents only that part of the image which correlates to the y of the corresponding

level. In other words, only small amounts of the whole image lie in the scale bandwidth of

37

Figure 16. Projection of Lenna onto V0

3S

Figure 17. Projection of Lenna onto 1/1

Figuire 1S. Projection of Lentia onto, V

.10

Figure 19. Projection of Lenna onto 1,,3

41

Figure 20. Projection of Lenna onto 11"4

42

Figure 21. Projection of Lenna onto V

43

Figure 22. Projection of Lenna onto 1/(

44

the corresponding scale of ?k at that level of resolution. The projecLion onto I 1 = -- V

space showed only the high frequency information, changes that occurred within the Haar

interval of support or a 2x2 pixel area. This is seen in Figures 23 through 28 in which

six projections onto the W spaces are shown. On the othcr hand, the V space projections

get progressively blurrier with larger m, corresponding to coarser le 'els of resolution. They

represent all frequencies of the image from the cdc component, V, to the current level. All

V space projections of coarser resolution are contained in a V space projection of finer

resolution, smaller m (See Figure 17 through 22).

4.2.4 Histograming To view the histogram of grey scale values of the projected im-

ages, the Khoros signal and image processing system developed at the University of New

Mexico [37]. Figures 29 and 30 show the resulting histograms of the original Lenna image

and the first three levels of the V and W projections. These results show how the V

space projections contain a wide variety of grey scale levels compared to the W projections.

Therefore, the W space projections would be a good choice of representation from which to

code and compress the original image.

4.2.5 Thresholding The histograms discussed above provide a good measure of the

grey scale values that are important to the information content of the image. For example,

the histogram of the W projection shown in Figure 23 shows that most of the information

content of the image, the essence of Lenna, is contained in a relatively small number of pixels

in a small range of grey scale values to either side of grey scale value 128. To isolate this

information from the vast amount of data required to represent the entire 512x512 image,

we developed a routine called threshold to eliminate or zero out the large number of pixels

in the grey scale range around the value 128. Our routine also binarizes the remaining grey

scale values. If a grey scalc value falls within the thresholding window, it is set to white

or 255, and if a grey scale value is outside the threshold window, it is set to black or 0.

Figures 31, 32, and 33 shows the results of executing the thi', hold progranl on the first three

levels of IV space projections. These figures demonstrate the edge detection capability

45

Figure 23. Projection of Lenna onto 17

4 6

Figure 24. Projection of Lenna onto W42

417

Figure 25. Projection of Lenna onto 1413

48

Figure 26. Projection of Lenna onto 147,

49

Figure 27. Projection of Leimna onto 1,

.50

Figure 28. Projection of Lentin onto M14 3

Histogram at Lenna *HIstogram of Lonna V1 Projection

0

0
t0

.0 .0

SS

6

-A

-0.

0. IL-
0

LL

0;*

L Eu

00 38

.0 Z0

00

00.000 0.033 0.7 1.00 0 1 0 3 . 2 2.2550 00.010 0.45 0 8 1. 1 0 1. 03 2.12 2.550
G re y SC ale (10.3) Grey Scale (10o2)

Fiu 9 Histogram s of Len' Orgia Promatgo Htgamd oV throug V' Projectionl
4 0

-. 52

Histogram of Lenno Wi Projection Histogram of Lenno W2 Projection

o 0

x x

8 z

00

00

0.000 0.080 0.00 0.10 0.200 o.3s 0o.000 0.050 0. 100 0.150 0.200 0.25
Grey Scale (10o3) Grey Scale (1003)

, His togrofi of Lenna W3 Projection

0

0
g

*8

x

(Lo
0

3.

z
0

8-

0

0.000 0.050 0.100 0.150 0.200 0.25
Grey Scale (10o3)

Figure 30. flistograms of Lenna's 1', IV , and W13 Projections with the Number of Pixels
Logged

53

'44

.. iI-

-'
- :j-cfly

544

I ~Iw

~ .:~ .. \, .' '

%.%.

Up.

Figure 32. Lenna's 1¥2 Projection Thresholded

55

i 4,,.I u .

,"mm ..

rm ** 1L a i

, a
i,. . ."".

0f 0

won

US0

r.' . =u=

Figure 33. Lenna's 1W3 Projection Thresholded

56

of a Multiresolution Wavelet Decomposition. These images were produced by chosing to

eliminate all grey scale values between 131 and 125. The threshold routine, whose source

code is listed in the Appendix F.2, allows the user to select the upper and lower bounds of

grey scale values for thresholding.

4.3 Multiresolution with Filters

This section briefly reviews Mallat's multiresolution approximation algorithm [28:677].

It also expands on selected areas of his paper that are vague or incorrect. Because the theory

of multiresolution analysis is covered in Chapter II of this thesis, we begin here with the

specifics of Mallat's algorithm. The specific equations referenced in this section are taken

directly from Mallat's paper [28].

4.3.1 Multiresolution Decomposition In Mallat's Equation (10) [28:677], he gives the

"orthogonal projection" of a signal f(x) onto a scale space, V, of an arbitrary level of

resolution, 2i for j E Z as

+00

Avf(x) = 2-1 Z (f,02)(* - 2-in)) 2.,(x - 2-1n),Vf E L2 (R) (54)

Then in Equation (11) [28:677], he adds a superscript d to his notation indicating that the

inner product of this equation is a "discrete approximation" of f(x) at the given level of

resolution. Mallat's Equation (11) is just that inner product.

Ad

A 2Jf= {(f,0(2 - 2-n))}flIz (55)

The discrete set of inner productb in Equation 55 is the set of scaling function coefficients

previously given in this thesis in Equation 51 as c" where n corresponds to Mallat's ni and

m corresponds to his j. From this point on in his paper, Mallat refers to this set of inner

products as "the image". While his explanation is easy to miss, it is true that lie treats

a discretely sampled signal or image as being equivalent to these coefficients at, the finest

.57

level of resolution without evet taking the inner product. In other words, he considers the

sampling process of the. original analog signal or image to be an approximation of that signal

or image at the finest level of resolution, sample density, allowable by the sampling device

(ie. digitizer or scanner). He treats this set of samples as equivalent to the scaling function

coefficients at the finest level t f resolution, j = 0. We have adopted his convention, bit

'nclude here a brief explanation that considers the digitally sampled signal or image as the

projection of the original analog signal or image onto the scale space, V2., where j = 0 as

the finest level of resolution corresponding to the sample density of our input data. This

approach would add two steps to Mallat's algorithm - one at the beginning to perform the

inner product with 020 (x - n) and one at the end to perform the discrete sum that 1rojects

the reconstructed scaling function coefficients onto the scale space at level j = 0. Performing

the inner product of Equation 55 via convolution the level j = 0 scale coefficients are

A'f = {(f * q5(-.))(n)},lEZ (56)

for one dimension and

Adf= {(f * €1(-)* €1(-.))(n, m)),,-Ez (57)

for two dimensions. Obtaining the scale space projection from these coefficients at the end of

reconstruction is just as straight forward if we think of O(x) as a discretely sampled function

with k samples. For illustration, replace the continuous variable x with the discrete variable

k. Then, inserting Equation 56 into projection Equation 54 yields

00

A,.f(k)= > (Adf)(n)0 1(k- n) (58)

which is the rectangle apuromation of the Riemnann integral of the convolution

((A .f)(n) * q$(n))(k) (59)

58

Using Fquation 59 as the final step in our multiresolution reconstrlction program, we obtain

the discrete multiresolution approximation of the original signal. The two dimensional form

of Equation 59 using the discrete variables k and I in place of the continuous variables x and

y respectively is

A,f(k,l) = ((A df)(n,m) • q,(n) * €b(m))(k,) (60)

Because these extra steps add no additional accuracy to Mallat's multiresolution analysis

algorithm, we omit them as he did. However, their explanation provides a clearer transition

from the theory discussed earlier in this thesis to the implementation described in this

chapter.

In his Equation (15) [28:677], Mallat introduces the "discrete filter", H, "whose impulse

response is given by", h(n). In this thesis, we will refer to h(n) as a response function and

refer to H as a filter. Mallat shows in the one dimensional case that the set of scale coefficients

A, f at resolution level j can be found by convolving the response function h(n) with the

set of scale coefficients A2+ 1 f at the previous level of resolution j + 1 and evaluating the

result at even values of the argument n. Our interpretation of his Equation (16) [28:678] is

) f = {(A d+f (61)
2~3 2(A+1 f * h)(2n)}j,.rz (1

where h(n) = h(-n). After this point, Mallat frequently uses the upper and lower case 'H'

interchangeably even though the operation clearly calls for a space domain convolution, not

a convolution in the frequency domain. Equation 61 describes the decomposition of a set

of scale coefficients at level j + 1 into the set of scale coefficients at the next coarser level

of resolution j. The detail that is lost in the multiresolution transformation is described by

the wavelet coefficients which are in Mallat's notation D 2 ,f. These coefficients are found by

way of a similar multiresolution transform using another filter, G, whose iesponse function

is g(n). This transform is given by Mallat's equation (28) [28:6811 and is interpreted as

D2 If = {(A',+f *.0)(2n)}Ij,,,kEz (62)

59

where (n) = g(-n). The filters G and H have the following relationship [28:681]

g(n) = (-1)-n h(1 - n) (63)

Notice that the h(n) and g(n) are refl(.cted about n = 0 and shifted relative to each other.

Even though the convolution operation occurs for all shifts, it is very important to maintain

the relative shift of g(n) with respect to h(n). In other words, these response functions must

be defined to have a relative offset of one, as shown in Equation 63, for whatever convolution

routine is used.

Now, armed with a set of response functions, h(n) and g(n), Equations 61 and 62

can be implemented iteratively to decompose the scale coefficients of a signal at the finest

level of resolution into the scale coefficients and detail coefficients at each level of resolution.

Because the number of scale coefficients diminishes by a power of two at each iteration, the

extent of this decomposition is limited by the size of the response functions. For example, a

signal, f(x), with 128 discrete samples decomposed with response functions, h(n) and g(n),

that have i1 samples each can produce scale and detail coefficients, A' f and D 2 1f, for four

levels of resolution. At the fourth level, the scale coefficient contains only eight elements

which is not enough to meaningfully convolve with the eleven element response functions.

The response function h(n) and its lowpass filter H that correspond to the cubic spline

mother wavelet of Figure 12 are shown in Figure 35. Using Equation 63, we derived the

response function g(n) from h(n). It is plotted along with its highpass filter G in Figure 35.

From these plots, it is apparent that H is a low pass filter which smooths the signal and G

is a high pass filter which captures the details lost in the smoothing process. The algorithm

given by Equations 61 and 62 is diagramed in Figure 34 which is redrawn from [28:681].

4.3.2 Two Dimensional Multiresolution Decomposition The two dimensional case is

a natural extension from one dimension. Equations 38, 42, 43, and 44 give the scale and

detail coefficients. These correspond to Mallat's Equations (39) through (40) [28:684]. Our

interpretation of these equations when the response functions h(n) and g(n) are incorporated

60

is as follows:

2n D2f

23+hf a[(n)30 2n A2,f

Y n : Keep every other sample

Convolve with response function i(n)
where (n) = x(-n)

Figure 34. One Dimensional Multircsolution Decomposition [28:681]

A2,f = (Ad,+, f)(k,l) * h(k) * h(l))(2n,2m) (64)

2Df = (g ,+1f)(k,1) * h(k) * §(1))(2n, 2m) (65)

D2,f = (A21,+ f)(k, 1) * (k) * i(l))(2n, 2m) (66)

D3,f = (A ,+, f)(k, 1) * § (k) * (l))(2n, 2m) (67)

for j,k,l,m,rn E Z where f(x,y) E L2(R 2)). The scale coefficients, Af, become succes-

sively smoother versions of themselves and the details that are lost in smoothing are captured

in the three sets of detail coefficients, D1,f,, Df, and D',f. Each of these sets of detail

coefficients represents an orientation as shown in Figure 13.

In Equations 64 through 67, separate discrete variables k and I are used to emphasize

that the response functio:is h(n) and g(n) operate on rows and columns independently. This

61

a I'FT of h(n)

0 0

0

00

c 0
00 0

o .- 0

C 0

0

* 00

00 00

o 03

I 1 0B I I1
0 5 10 Is 22 60.000 0.00 0.100 0.150 0.200 0.259

FTT of g(n)

0

00

00

m 0

2* 0

.0

C- 0

0
0 5 0 1 22 0.0 0.. 0.9 013 .17 .21 0.2

r, ccless~gol (000

Figre 5. esons an Fite Fuctins asd o Cuic plne avee0

a6

emphasis plays an impot ant role in understanding the mistake in Mallat's Figure 12 [28:685]

which diagrams the two dimensional decomposition algorithm. There is an inconsistency

between the text and the figure that we resolve in the following manner. First, we correct

in boldface the text in paragraph A, first subparagraph, fifth sentence to read

We first convolve the cols of A'2.+If with a one-dimensional filter, retain ev-
ery other row, conlvolve the rows of the resulting signals with another one-
dimensional filter and retain every other column.

D,,f g(n)a
2

Convolve with response function x(n) Add point by point

7 Insert one zero after each sample : Multiply by 2

Figure 36. One Dimensional Multiresolution Reconstruction [28:682]

Next we correct his Figure 12 exchanging the words 'columns' and 'rows' at the top of the di-

agram. To understand why these corrections are necessary, consider the independent nature

of the one dimensional convolutions performed on rows anrd columns. In the decomposition

process, the rows/colunins and respective h(,)/g(n) convolution pairs must be the same as in

the reconstruction process. In other words, the reconstruction and decoinpositioI proces.es

63

must be mirrors of each other. Figure 37 diagrams the allgorithm given by the pyramidal

transforms of Equations 64 through 67. Figure 37 is Mallat's Figure 12 [28:685] redrawn and

corrected.

rows
columns - 2nj- (n) ' 2 -- D2, f

(n) 2 n

h(n) D2; f

Z n Keep every other sample

Convolve with response function f(n)

where i(n) = x(-n)

Figure 37. Two Dimensional Multiresolution Decomposition [28:685]

4.3.3 Mullircsohution Recolstruction In his Equation (32) [28:682], MaIIallt shows that

the scale coefficients at any level j + I can be reconstructed friom the scale and detail coeffi-

64

cients from bhe adjacent level j. Our interpretation of this equation is

d d) f)(k) k

A2+ f=*(A h(k))(n) +2((D2vf)(-) * g(k))(n) (68)

This equation is implemented by inserting zeroes between each -ample of A d, f and D 2,f and

convolving the results with h(n) and g(n) respectively. Finally, the convolution results are

added point by point. The factor of two comes from the way Mallat normalizes his response

function and is not necessary if implementing a Daubechies response function as given in [7].

Figure 36 diagrams the algorithm of Equation 68. This figure is redrawn from Figure 7 in

[28:682].

4.3.4 Two Dimensional Multiresolution Reconstruction The reconstruction of a func-

tion f(x, y) E L2 (R2) from the coefficients obtained by using Equations 64 through 67 is a

natural extension of the one dimensional reconstruction. We apply the same notation ex-

tended to two dimensions. Again, we use the discrete variables k and I for row and column

operations respectively. It is important for the rows/columns and h(n)/g(n) reconstruction

convolution pairs to match the decomposition convolution pairs. In other words, the recon-

struction must be a mirror of the decomposition. This point is illustrated in Equation 69.

For the two dimensional case, the reconstruction equation is:

A 2 ,+ f = 4((A df)(,) , h(k) h(l)(n,r,) +

4((D, f)(5,) • h(k) h .(l))(,, ,v,) +

k 14((D'if)(5. -) * g(k) * (l))(rt. m

4((Df)(..) * g(k) * g(l))(u,) (69)

where 71, 7n E Z.

65

A row of zeroes is inserted between each row before the columns of each coefficient set

is convolved with the designated response function. Then, a column of zeroes is inserted

between each column before the rows are convolved with the designated response function.

Finally the convolution results are added. Again the factor, this time four, is for normaliza-

tion of the h(n) for the cubic spline a; derived by Mallat and is not necessary if implementing

Daubechies h(n)'s [7]. Figure 38 diagrams equation 69. This figure is adapted from Figure

13 in [28:686].

rows

*D3, f g(n) a ou n

D+, .g~n) 2

*A2, f h(n) ;- a

DConolve, vit response funion x(n) Add poin by point

Z [Insert one zero after each sample :Multiply by ,4

Figure 38. Two lDimensional M ultiresol ution Reconstruction 128:6861

66

At any level of resolution, the scale or detail rocfficients can be projected onto the scale

or detail spaces respectively by using the general form of Equations 59 and 60 given here in

Equation 70 for the one dimensional case and in Equation 71 for the two dimensional case.

A 2,f = ((A',)(n) • q.,(n))(k) (70)

A2 ,f = ((A',)(n,m) * 0 2,(n) * 0 2,(m))(k, 1) (71)

4.3.5 Fine Points Of The Implementation of the Algorithm This section will address

some of the more subtle problems which we encountered in the implementation of the mul-

tiresolution algorithm. Readers interested in implementing this algorithm, take heed.

4.3.5.1 Missing Coefficients in the Reconstruction The Multiresolution Algo-

rithm promises an exact reconstruction can be accomplished from the retained coefficients

of the decomposition process. The number of coefficients of the approximation A' f plus

the number of coefficients of the detail D 2Jf should be equal to the number of samples of

the original signal or image. Since we generate the coefficients with the shift, multiply, and

sum process, there are always more coefficients than he original number of samp'.:s. The

number of resulting coefficients is equal to the number of samples of the original signal plus

the number of elements in the filter. We discard the least important coefficients, those that

border the image or signal. This results in an inexact reconstruction cf the border or edge

of the signal. This can be a significant problem since the decomposition process results in

an increasingly smaller number of coefficients. Thus, a border error at thc fifth level with

respect to two coefficients will result in a reconstruction error spread over 61 samples of the

original signal. Mallat suggests the border problem can be reduced by making the origi-

nal signal symmetric with regard to the first. and last sample or in the 2D case make the

image symmetric with respect. to the horizontal and vertical borders[28:681]. This process

eliminates the border probcni completely if the filter is symmetric and the reconstruction is

accomplished with the sarne a.ssumed border symmctry as in the decomposition. If the filter

67

is asymmetric the problem may only be alleviated by p:adding the image with enough extra

elements to retain the extra convolution coefficients.

4.3.5.2 Convolution Methods There are two main methods of accomplishing

convolution. The first is to calculate the so calkd "convolution sum" using a shift multiply

and sum routine. The second is to take the Fourier Transfrrm of the two functions, multiply

them point by point, and take the inverse Fourier Transform. The first method is normally

considered slower. It has a time complexity of O(N2) assuming that the functions to be

convolved are the same size. The Fourier Transform method used with the Fast Fourier

Transform (FFT) has a time complexity of O(NlogN). In the multiresolution algorithm, the

filters used are normally a fraction of the size of the signal or image of interest. This enables us

to reduce the time complexity of the shift multiply and sum routine to approximately O(N).

Therefore, we have chosen the shift, multiply, and sum method. However, our investigation

of the Fourier Transform method revealed some interesting points of the application at hand,

which we include for the benefit of the reader in the following section.

4.3.5.3 Numerical Recipies in C Convolution Routine The convolution routine

in Numerical Recipies in C is a function called convlv. The interface to this function requires

the response function have an odd number of values in and be stored in aa array in "wrap

around order". WNrap around order as shown in Figure 39 requires those elements of the

response function greater than or equal to zero on th: discrete time (sample) -Lxs to reside

in that order in the first positions in the input response array -respns". Those response

elements less than zero on the discrete tim (sample) axis must be stored in the same order

in the last positions in the response array. If the same variable name is used more than once

to hold the response array input to -onviv, it must be reset each tiimc the lrediir: is called.

This is due to the fact that the resp ,nse array is altered eaclh Lime con'. 1 is caied. While

these are fire points in the use of the cnx.Ahltion routine. they rnums hc- xactly 1,1.1... fo.r

successful convolutions using Numerical Recipies in C.

Original Filter Function

Sample Order -12 4 4 8 12

Array Order 1 5 9 13 17 21 25 29

Filter In Wrap Arou.AI Order

Sample Order 0 4 8 12 -12 -

Array Order 1 5 9 13 17 21 25 29

Figure 39. Wrap Around Order for the Convlv.c Procedure

4 .3.5.-4 Problems Encountered Using the Khoros System All of the images used

in the decomposition analysis were composed of integer grey scale values between 0 and 255.

They exist in a floating point format to obtain the needed accuracy in the decomposition

and reconstruction algorithm. We visually evaluate the results of the reconstruction with the

Khoros image processing system provided by the University of New Mexico [37]. The first

reconstructed images viewed in this system appeared to be much darker than the original

image. After analyzing the resulting floating point values of the reconstructed image we

discovered dhat zero gray scale values in the original image corresponded to small Ilegative

values in the reconstructed image. Inherent in the Khoros display system is a normalization

69

process which compresses the dynamic range of the lest of the ilage to accommodate the

negative numbers. To produce a more visually acceptable reconstruction, we set all values

less than zero to zero and greater than 255 to 255.

4..6 Examples The Multiresolution Decomposition decomposes an image into a

lower resolution approximation and three detail signals. This process is iterated to ob-

tain successively lower, coarser, resolution approximations and details. This section along

with the following diagrams will demonstrate this process and provide additional insight into

the frequency content of these approximation and detail signals.

Figures 41-43 show the detail coefficients from a decomposition of an original image

made up of two rectangular boxes. We chose this image for its pristine vertical and hor-

izontal high frequency content, edges. These detail signals are thresholded and binarized

using our threshold program discussed previously. These figures illustrate the edge detcction

capability of multiresolution wavelet analysis and the orientation selectivity of the different

detail signals. The magnitude of the Fast Fourier Transform of the wavelet detail coefficients

in Figure 45, demonstrates how well this orientation selectivity is accomplished. The orig-

inal image, two rectangular boxes, is also shown in the figure. These plots illustrate how

the frequency content of each detail signal is localized :n terms of orientation. The D 1 f

coefficients contain the horizontal high frequency information, the D'jf coefficients contain

the vertical high spatial-frequency information, and the D',f coefficients contain the higher

angular frequency information of the original image. In this figure, we arbitrarily chose

level j = -4 fo. documentation convenience. All levels of resolution are shown to have this

orientation selective characteristic as diagramed in Figure 13.

Figures 46-52 illustrate the main facets of the multiresolution decomposition and lccon-

struction process. The original image, 512x512 Lenna, is given in Figure 46 foi a comparison

with the various results of multiresolution process. Figure ,17 is the reconstructed Lenna from

a 5 level decomposition. The successively coarser approximations A' of Lenna are shown

in Figure 48 on the left side of the page. Notice the reduction in size as a result of the down

70

sampling from the original Lenna Figure 46 (level 0) to the first approximation (level 1) in

the upper left corner of Figure 48. The right side of Figure 48 from top to bottom shows

the series of reconstructed approximation A' of Lenna. The final reconstruction (level 0)

is found in Figure 47. The coarsest approximation of Lenna, a 16x16 image, is found in the

center of Figure 48. This level 5 approximatio.a along with the detail coefficients found in

Figures 49-52 are used to accomplish the reconstruction. Note that these coefficients have

been thresholded to make the orientation specific frequency content viewable.

I

Figure 40. Original Image of Boxes (Reduced 58%)

4.4 Conclusion

This chapter evaluates two inethods of multiresolution analysis. It demonstrates only

the decoi.'position capability of the projection method, although reconstruction is possible.

Basically, the V and 14' space projections at some arbitrary coarse level of decomposition

are added point by point. The result is then added to the 14' space projections at the

next finer level of resolution. This process is iterated until the finest level approximation is

reached resulting in the final reconstruction. We elected not to pursue this technique due to

71

Figure 41. Horizontal Multiresolution Detail Coefficients of Boxes (Reduced 25%)

Figure 42. Vertical Multiresolution Detail Coefficiewts of Boxes (Reduced 25%)

72

4 41

F -- 1

Figure 44. Coarsest Approximation of Boxes Used for Reconstruction (Ileduced 25%)

73

Mog of FFT of A.dl of White Boxes Mog of FFT of 4.d2 of White Boxes

v 00

0p 0

Mog of FFT of 4.d3 of White Boxos

o0 -
o

O

oyc !e ./R*O ,.i r,

Figure 45. Frequency; Support of Detail Signals Of The Cubi1c Spline \W\N-xelet

741

Ugr 6 rgnlIae fLin icuc %

75j

FMgure 17. Reconstructed lmage of Lonnia Uzing the Spline Wavelet (Rediued 2%)

76

FOR

* VI'<

....

Figure~ ~ ~ ~ 48 Mtl rslutinD&okoiiotRcisritioiA poiain- o en *sl-

th Oibc SpieW vlt AtaAie

774

I~Q7
1- -

Figure 49. Horizontal Multiresolution Detail Coefficients of Lenna (Reduced 25%)

* ee

Figure .50. Vertical M-ultiresolution IDctail Coefficients of Leniiit (lIdced 2.))

78

psr

FRI

Fiue.5.CareA ppoimto ofLnaNee orR .osrc3n R~ie 5

* .v~**79

the computational overhead as-ociated with the projection of every set of the decompo.e',

coefficients onto the V and IV spaces for addition. Instead, we chose to implement the recon-

struction with the second method of multiresolution analysis described in this chapter, using

Quadrature Mirror Filters (QMF). In this method, the sets of scale and wavelet coefficients

get logarithmically smaller with "oarser levels of resolution. Moreover, the algorithm does

not requie that the coefficients be projected at each level of resolution. For these reasons,

we use the QMF method as the tool for analyzing the data in this thesis.

,so

V. Preliminary Results

With the Multiresolution Wavelet Decomposition at our disposal, we have a tool with

which we can tnalyze an image in a way similar to the works of Ginsburg [14] and Oberndorf

[32]. That analysis is the subject of this chapter.

5.1 Review of Multiresolution Wavelet Decomposition

The multiresolution decomposition system breaks the input image out into bands of

information each consisting of one octave of spatial frequency on a logarithmic scale. Each

band is further decomposed into three sets of wavelet coefficients representing horizontal,

vertical, and angulai orientations (See Figure 13). The decomposition also produces a set

of scaling coefficients for each level of resolution that represents the information contained

in all of the lower frequency bands below that level. These scaling coefficients form an

approximation of the original input image at successively coarser resolution for lower and

lower frequency bands. Each of these coefficients can also be described as the result of

subtracting a band of information at all orientations from the scale coefficients that represent

one octave finer resolution. Due to the down sampling involved with the decomposition

process, the number of subbands or the depth of the decomposition is limited by the size

or the interval of support of the filter h(n). For example, using a filter with an interval of

support of 23, ., 512x512 sampled input image can be decomposed into fi ,'e levels cr resolution

where the fifth level of decomposition consists of three sets of wavelet coefficients and one

set of scale coefficients each containing 16x16 values. Since the size of the rows and columns

is greater than the size of th(filter, no furtheli decomposition would be meaningful. The

reconstruction reverses the process combinihig the coarsest level scale coeflicient.s with all

band information to rebuild the original image.

8!

5.2 Methodology

In the Kanisza Triangle illusion, two anomalies occur: 1. Iliusury contour. seeim to ap-

pear forming the distinct impression of a oriangle and 2. The relative intensity within the area

bounded by the illusory contours appears exaggerated reiative to the background intensity

of the image [38]. Both Ginsburg and Oberndorf addressed these effects by mean: of lowpass

filtering the image. "It is the energy differences between the various areas ("physical intensity

distribution"[13:651) of the anomaly which suggest how data is being forwarded to the ar-

eas of the brain where concept formulation (i.e. object recognition) is taking place.-[32:3.1].

Since the wavelet approximations (scale coefficients) are successively lowpa.s, filtered ver-

sions of the original image, it is appropriate to compare one of these approx-imation., to their

results. To figure out which approximation contains the proper frequency ralge, we miust

characterize the levels of resolution in terms of the spatial-frequencies they contain. In our

analysis, the dimension of the original image is 512x512 pixels (see Figure 53). Thus, the

sample rate is 512 pixels per object in both the horizontal and vertical diiections. Therefore,

due to the Nyquist criteria, the highest spatial-frequency detectable in this representation

is 256 cycles per object. The process of down sampling by two at each level of tie decom-

position produces successively coarser approximations of the original image such that the

highest spatial-frequency detectable is reduced by one octave on a log scale (reduced by a

power of 2). Figure 5.1 shows the maximum spatial-frequency contained in each level of

approximation.

For comparison with Ginsburgs results. Oberndorf chose a lowpas., filter containing

spatial-frequencies out to 16 cycles/object [32:36]. From the table in Figure 5.1. we can see

that 16 cycles per object corresponds to the fourth approximation. But. this aplroximation

contains 32x32 samples which looks relatively sharp at that level. Therefore. we need to

expand it to the scale of the original image (512x512) for comparison. Th. prograni eipd

performs this function (see Appendix F.2 for source listing). (;iven an input filenamre and

the c-,pansion factor, this program expands the image using a two diin.eiisioi,d culi spline

interpolation [35:10,11. The results of performing this expansion on th(- level four approxima-

Figure 53. Ka.nisza Triangle Illusion

83

Level Detail Coefficients Scale Coefficients

cycles/object cycles/object

1 128- 256 0 - 128
2 64- 128 0- 64
3 32- 64 0- 32
4 16- 32 0- 16
5 8-16 0-8
6 4-8 0-4
7 2-4 0-2
8 1-2 0-1

Figure 54. Relative Spatial-Frequency Range of Each Level of Approximation

tion of the original Kanisza of Figure 53, is depicted in figure 55. While the energy is spread

out from the objects in the original image, it does not spread out more in a direction away

from the illusory figure as in Oberndorf's results (reproduced in figure 6).

5.3 Conclusion

This comparison leads to the conclusion that Oberndorf's Gabor Lowpass filter pos-

sesses characteristics not found in the filtering process of the Multiresolution Wavelet De-

composition. Along this line of reasoning, an obvious difference between the Gabor filtering

and the decomposition filtering is the ringing associated with the sharp cutoff of the Gabor

filter. It might be this ringing which spreads the energy to help define the illusory contours

and the apparent contrast in sensitivity. If this is true, it suggests the spatial filtering process

of the brain is also characterized by ringing. On the other hand, it may be that the spatial

filtering alone is not enough to cause the perception of the illusion. Rather, it might be that

spatial filtering is combined with some other cerebral processing. After all, experimentation

has uncovered the functions of only small parts of the cerebral complex.

In the remainder of the thesis, we process the scale coefficients in three biologically

motivated ways to analyze the Kanisza Triangle illusion. The first method uses the principle

of the saccadic fixation of the human eye. It builds individual frames of the field of view in

84

Figure 55. The K~anisza Triangle Approximated at Level Four

85

which eact frame represents a single saccadic fixation. In the second method, we perform a

one dimensional Multiresolution Wavelet Decomposition in the time domain in which each

set of coefficients generated from the two dimensional decomposition is sampled in time.

We use this method to include temporal processing. Finally, the last method uses the scale

coefficients is inputs to a Boundary Contour System Model. We uso this last method to

investigate the local interaction of high spatial-frequency energy.

86

VI. Building a World Model

The next three chapters each present a unique model of some part of the H u~nan Visual

System and the corresponding analysis of vis:ial illusions using that model. In this CI..pter,

we present the first of the three, a model of the human retina, and the results of using the

Kanisza Triangle as the input image (see Figure 53). The major component and heart of all

three systems is the Multiresolution Wavelet Decomposition which we described in detail in

previous chapters. Here, we explain its application as a front end to the model of the human

retina.

6.1 Methodology

The human retina contains a random arrangement of photoreceptors called rods and

cones. Here, we will consider only the cones for their use in high acuity vision. The density of

cones on the retina is higher in the center than at the edges. This distribution of cells has been

characterized by an 1894 experiment [39:441] and is redrawn in Figure 56. The figure shows

how density distribution causes the receptive field of the retina to sample a stimulus image

with high acuity or resolution at the center and progressively lower resolution toward the

perephery. We use the different levels of scale coefficients from the Multiresolut ion Wavelet

Decomposition to simulate this resolution distribution. The retina based model constructs

an image with high resolution only in the center and successively coarscr resolution toward

the perephery by strategically placing the scale coefficients of the appropriate resolution.

Figure 58 shows how each set, of coefficients is located on the constructed image emulating

a single fixation of the retina at the center of the image. The program fbuild builds the

individual frames. A flow diagram for an example input of four levels of resolution is shown

in Figure 59. The source code for fbuild is contained in Appendix C.2. To create this figure,

we first decomposed the Kanisza Triangle with the Multiresolution Wavelet Decomposition

program wave2 (see Chapter IV). Then, to simulate a single fixation of the retina, finld

performs three basic functions: 1. It extracts the appropriate subset, of coeffi(ients from the

87

1.0

0.9

0.8

0.7 _

0.6 _ --

0.5

0.4 -- - -
0.2-----------3-

0.1 _

0.05-0.05 77--1 -- -- -

550 500 450 400 350 300 250 200 150 100 50 00 50 100 150 200 250 300 350400 450500

Figure 56. Relative Acuity of Vision Curve [39:441]

pixels

16 16 cycles/obj ct

256 64 32 32 6 -1 256 * level

__ _ I I0.9 [,

0.8 ::
0.7 1

09 H J 25]

0.6
__ _ I I,

0.5 1 1128
'_- - - -r ~ -- 128:

0. __II 1 I-- i
0.4

'
64.0.3

0.2 1 64 __ 2

0. " L 32 -]3

0. _ -- --"------ --__

0.05F-_-
500 150400 35* 300 250 200 150 100 50 00 50 100 150 200 250 300 350400 45*500

Fligure 57. Artificial Relative Acuity of Vision for Model

88

Figure 58. Multiresolution Fixation Map

scale coefficients at each level of resolution, 2. It expands each extraction to thle scale of thle

original image using a two dimensional cubic spline interpolation 135:-.1 an,.Itpae

the expanded exserts in the proper location in thle constructed simulation. Figure 57 shows

thle artificial relative acuity emulated with this method. Thle piecewise constant shape of

this curve causes the blocky appearance in Figure 60. We translate degrees of the perceptive

field in Figure 56 to the sample space of the 512x512 sampled image by choosing the viewing

distance to be 3.18 inches. Therefore, one degree of visual angle is equivalent to four pixels

across the image. While the density (listribution of Figure 57 is niot ati exact match with

that of Figure 56, it provides roughly the same exponential shape. The myopic view of the

image provided by Figure 61 demon~trates the first step in building a perceptual model of

thle image in which the entire picture seems to be in focus. The composite high resolutionm

89

model is due to the saccadic movements of the human eye in which the eye fixates oil onp

highlight of the visual field after another in rapid successica [20:821]. With each movement,
"ie photoreceptois sample the visual field forming a series of myopic frames similar to the

one shown in Figure 61. Figure 61 is an example of the output of this program. Because

the brain supresses inputs from th, visual field during the saccades, the observer is unaware

of the movement. The effect of this biological process is to create the perception of a high

resolution "motion picture" of the field of vision.

We emulate this perceptual model with a series vf these myopic frames assuming that

the brain provides a short-term memory to maintain a certain number of these frames which

compose the world model a, a perceptual instant in time. Therefore, we have chosen a finite

a..mber of frames to represent the composite image. Figure 60 shows a composite set of

frames which have been combined in one image for static presentation. For simplicity, we

do not incorporate other normally imperceptable eye movements such as 1. The "continuous

tremor" at 30 to 80 cycles per second due to successive muscular contractions which serves

to increase the overail resolution of the visual perception, 2. The "slow drift" of the eyes, and

3. The "flicking" movements that recenter the point of fixation in the receptive field after

the "slow drift" has taken place [20:820]. To limit the total number of fixations or frames

in our composite image, we consider that the eye needs only fixate where the high spatial

frequency information is located in the stimulus image'. Therefore, a manually generated

set of fixations locations based on the locations of most likley high spatial frequency energy

contribution to the precept are used to generate a series of frames with the fbuild program.

If all the frames are taken together, the result is a composite image as in Figure 60.

6.2 Conclusion

The observation that led to this approach is that the illusion does not appear when the

viewer forces fixation at one point in the image; thus, eliminating the sa, cades of the eye.

'This principle has been used by Mallat and others for image coding and compression applications.
[27, 26, 1, 421

f90

A _____d_ 32x32 exad 512x512

A418x2 expand322

Ad 264x26 etat8 expand 6x64isr

2 extract

91

A

Figure 60. Composite Rtepresentation IncludIing 34 Fixation Points

92

A-W&

Figure 61. One MyIopic Fixation on the Lower Left Packrnan of the Kanisza Triangle

93

This suggests that the saccadic movement is necessary ft, the forinulatuii of th illusion.

Compared to the previous results of Figure 55.. the low spatial-frequency spreading in Figure

60 is found now only in the areas not repla,_ed by high resolution information. While this

does not discount the importance of the "ringing- in the Ginsburg and Oberndorf results.

t does emphasize the necessity of incorporating the sac adic movement as a contributor

to the perceptual formulation of the illusion. Moreover, the failure of the Ginsburg and

Oberndorf results to cause the suggestive contours to appear distinctly, leads us to conclude

that high spatial-frequency energy local to the contours is required for the perception. In-

deed, our frame built model illustrates how the quality of the illusion is enhanced by adding

high spatial-frequency information along the suggestive contours. The reader may wonder

how many fixation points are necessary to produce an illusion of "good quality". Figure

62 illustrates the dramatic effect of using only 15 different fixation points along the sug-

gestive contours. We believe these results demonstrate the correctness of considering the

high spatial-frequency information local to the contours, which is the goal of our Boundary

Contour Model described in Chapter VIII. An additional implication is that if the location

and rate of fixation is controllable, it may be possible to eliminate the illusion by drawing

the attention of the viewer away from the illusory contours. To test this hypothesis, one

would need to build a version of the composite image using fixation points that are outside

the locality of the contributory objects. The restuilt would be overwriting more of the low

spatial-frequency spreading in effect balancing the energy spread. But the number of fixa-

tion points required to produce this effect must be determined. The number would depend

in some way on how many points can be "remenmbered" by tile concept forming areas of

the brain which is beyond the scope of thiUs thesis. llouever. considering visual information

transmission from the sensing device. retina, to the brain to be a serial process. we can think

of the perceptual model as one built up over time. This bring.% us to the temporal aspect of

perception which we explore b% first considering each fixation as a frame in time. So as not

to incorporate too nany variables at once, the next dhapter consilers spatial filtering and

temporal filtering dropping the fixation phenomenon.

94

I ZA-

Figure 62. Composite Respresentation Using 15 Fixation Points

95

VII. A Spatial- Temporal Model

The second method of analysis is designed specifically for spatial-temporal illusions

in which the human percept of temporally and spatially discrete stimulation is continuous

motion. A popular example of this type of illusion is the "Phi Phenomenon" in which a small

dot is illuminated in one location in the perceptive field for a period of time [31:108]. Then,

after a specified delay, the dot is again illuminated but in a different location in the perceptive

field. If the product of the delay between illuminations and the distance between the two lo-

cations is small enough, the dot will appear to move . ntinuously between the two locations.

The distance limit can be characterized by a range or bandwidth of spatial-frequencies and

the delay can be characterized by a range or bandwidth of temporal-frequencies. Therefore,

there exists some fundamental spatial-temporal bandwidth product limit above which the

illusion is perceived. The two dimensional Multiresolution Wavelet Decomposition explained

in Chapter III, demonstrated in Chapter IV, and used in Chapters V and VI provides the

needed spatial-frequency channels to analyze this illusion and a one dimensional version

of this tool provides the temporal-frequency channels. With this composite three dimen-

sional method of channel decomposition, we can control the spatial-temporal bandwidth of

a displayed image.

For consistency with the two dimensional analysis of Chapters V and VI, the specific

illusion used here is an animated version of the Kanisza Triangle devised for this thesis.

Figure 64 shows discrete variations of the original Kanisza Triangle. When animated with

the kanmov program as frames of a motion picture, the suggestive contours appear to displace

continuously (see Appendix D.2 for source listing).

7.1 Methodology

Marr recognized that edges in space occur in all octaves of spatial-frequency since thp."

represent discontinuity in space [30]. Lewis and Knowles took this idea. one step further

implementing it in the time dimension, "Motion or change between frames produces 'edges'

96

in time" [26:397]. In the same way that filtering our high spatial-frequencies "blurs" an

image in space, filtering out high temporal-frequencies "blurs" motion across time. The

Multiresolution Wavelet Decomposition approach to performing this "time blurring" con-

stitutes decomposing each pixel's one dimensional time signal (one sample per frame) into

successively coarser approximations. Rebuilding the frames from a coarser time approxima-

tion has the effect of smoothing out the perceived motion emulating or aiding the perception

of continuous motion from discretely changing frames.

Figure 64 shows frames 2, 5, 9, 13, 17, 21, 25, 29, and 32 of the 32 frames used in this

analysis. In the interest of computational time complexity we use a 256x256 sampled version

FRAMES .2 frame spti ndanl
vector f

vbuildwave 1

BLURRED FRAMES- gnal

Figure 63. Flow Diagram of the Spatial-Temporal Blurring System

of the original Kanisza Triangle. Each frame is altered such that the illusory contours appear

to bend deforming the suggestive triangle. The data flow diagram in Figure 63 shows the

individual steps in the three dimensional spatial-temporal decomposition. The process circles

represent individual programs, whose source code is listed in Appendix D.2. First, the wave2

97

7 -7 7- 7 -

6V4 &V 4

Figure 64. Frames of Moving I'anisza Triangle Illusion

98

program described in Chapter IV decomposes each frame into several levels of multiresolution

approximation. Next, the vbuild program reduces the potential number of one dimensional

time signals by finding all the pixels which change in value over the 32 frames. The output

of this program is a set of vectors which identify these pixels. These vectors are used by

the stripld program to build a one dimensicnal signal for each of the pixels that change.

Then the wave1 program performs a Multiresolution Wavelet Decomposition on each signal.

Finally, the rbuild program rebuilds the frames given the vectors from the vbuild program and

a selected combination of spatially decomposed frames and temporally decomposed signals

output from the wave2 and wave1 programs respectively. The wavel program used here is

a modified version of the wavel program described in Chapter IV. The original source code

is listed in Appendix B.4 and the modified portions are listed in Appendix D.2. Tht, rbuild

program expands the time decomposed time signals to the original 32 samples using a cubic

spline interpolation [35:1041.

For consistency with the 2D Wavelet decompositions used in Chapters V and VI, we use

the cubic spline wavelet for spatial decomposition. However, in the time domain, due to its

size (32 samples), the filters corresponding to the cubic spline wavelet would limit us to only

one meaningful level of resolution in the decomposition. Therefore, for the decomposition

in time, we use a Daubechies 2 wavelet whose corresponding filters have four values each.

These choices allow decomposition to three levels of resolution in time and four levels of

resolution in space. Thus, there are 20 possible combinations of spatial-temporally blurred

sets of frames, levels zero through four in space and zero through three in time. Figure 65

shows the nine frames of Figure 64 using the original frames in space and the first level

approximation in time. Figure 66 shows the same frames with the original frames in space

and the second level approximation in time. Figure 67 shows the original frames in space

with the third level in time. Finally, Figure 68 represents the same frames from the fourth

level approximation in space and the third level approximation in time. In this last result, the

fourth level spatial approximation of each frame is epanded to a 256x256 sample scale with

99

the (xpd program (see Appendix F.2 for source listiitg). Figure 68 represents the expanded

frames for comparison to other figures.

For the purpose of viewing the effects of "time blurring" dynamically, we animated

each set of 32 frames on a Silicon Graphics workstation with the tblur program.

7.2 Conclusion

The original motivation for performing this analysis was to see if the static illusion

persisted when the speed of animation was such that the eye did not have time to saccade

enough points on the image to produce the illusion. Assuming the time between saccades

to be approximately 100 msec [20], and that only one fixation per object in the image is

necessary to form the illusory contours, then since there .are seven objects in the image, 700

msec would be reqruired to produce the illusion on each frame. Therefore, using the Silicon

Graphics workstation with a frame update rate of approximately 20 frames per second, there

is not enough time for the eye to saccade and fixate seven times. But, the animation produced

the illusory triangle distinctly suggesting that more than judiciorsjy placed high spatial-

frequency processing provided by fixations and overall low spatial-frequency processing is at

work to produce the illusion.

In keeping with our charter of investigating the contributions of various frequency

specific processing, consider the temporal-frequency information i, the series of frames of an

animated scene. The brain may process this information in such a way as to suppress high

temporal-frequencies in effect smoothing the motion to give the eye more time to fixate and

saccade around the scene. Figures 65 through 67 show the effects of progressively reducing

the high temporal-frequency content of the scene. The range of spatial variation is somewhat

reduced. It might be that this reduction in spatial variation allows the brain more time to

process the spatial-frequency information requited to produce the illusion. All in all, one

observation is consistent across spatial and temporal processing - that is that less high

frequency information is required to form the illusory contours. While low spatial-frequency

information is required of the entire image to piovide the ovem all form, high spatial-frequency

100

'7 77 177

777 7
6va V& ,v 41 &I v 41

A% A
V 7

Figure 65. Frames of Kanisza Triangle Using Level 1 Decomposition in Time

101

IL

77 , 7 77eve &v4 &v

' 7 .1.", .,4J

Figure 66. Frames of Kanisza Triangle Using Level 2 Decomposition U., T1ieC

102

Ont1.

_________________________ .,_____ ______ ,____________________

'vt ft,, Alv
.- . -7

".L

F;igure 67. Frames of Kanisza Triangle Using Level 3 Decomnposition in Tirn"

103

10

information is only necessary it, specific locations of contributory energy around the ilh!.,,,y

contours. In much the same way that low temporal-frequency informdtion is required to give

the general perception of motion, high temporal-frequency information is required to sharpen

that perception. Furthermore, there may be a fundamental trade-off between resolution in

time and resolution in space that determines the space/time bandwidth product envelo,'e

within which the illusion is perceived [34].

105

VIII. A Boundary Contour Model

To investigate the importance of high spatial-frequency processing to the perception

of illusory contours, we developed a boundary contour nodel. This model is a simplified

version of the first stage of the Grossberg's Boundary Contour System (BCS) [18, 16, 17].

The model described here is designed only to demonstrate the contribution of the multi-

orientation, high spatial-frequency output from the Multiresolution Wavelet Decomposition

to the perception of illusory contours.

8.1 Methodology

The Boundary Contour Model (BCM) uses as input the detail wavelet coefficients

provided by the wave2 program which performs a Multiresolution Wavelet Decomposition

(see Chapter IV). The BCM as illustrated in Figure 69 performs a one dimensional lateral

excitation on either the rows or columns of these coefficients. The purpose of this network is

IMAGES
~lenrozo

B1OUNDARY ENHIANCED

IMIAGES

Figure 69. Data Flow of the Boundary Contour Model

106

to spread the energy along the dimension of excitation. The wavelet coefficients provided by

the Mallat Multiresolution Wavelet Decomposition isolate the energy content of each spatial-

frequency band or level of resolution in one of three spatial orientations: horizontal, vertical,

and angular. We perform lateral excitation along the horizontal direction to spread the

horizontal wavelet coefficients in the horizontal din'ension of the two dimensional coefficient

array. Likewise, the energy of the vertical wavelet coefficients are spread vertically and the

energy of the angular coefficients are spread in both dimensions, vertically and horizontally.

The lateral excitation process is performed in such a way as to maintain the total energy of

each set of wavelet coefficients at a given orientation and level of resolution. This is necessary

to ensure accurate reconstruction in the final step. Equation 72 gives the one dimensional

lateral excitation algorithm performed by the lenrow and the lencol programs which operate

on rows and columns respectively.

-1 P -1 P
- (E 2PsJ+p + E 2-PJ,+p) - (2P + E 2-P)J, (72)

p=-P P=1 p=-P p=1

for i, p E Z, where w, is the output value of the Z"A input coefficient, J,, after lateral excitation,

and P is the maximum extent of the excitation window in both the positive and negative

directions from J,. The first term enclosed in parentheses is the surrounding receptive field

2-"

2-1 AS'-

0 0 0 000 0
•]i-P ji. Ji-1 .I .+ di+2 .i+,

Figure 70. Lateral Excitation Network of Equation 72

of the ith cell. The second term is the center of the receptive field and constitutes the

107

amount of the ith input cell, .1,, that subtracts from the t"' output cell, z',. Software source

code for these programs is listed in Appendix E.2. The third and final step in the BCM

is to reconstruct the image with the wave2 program using the affected wavelet coefficients.

This was done by simply substituting the output of the lateral excitation networks for the

detomposed wavelet coefficients before selecting the reconst uction option from the main

menu of the wave2 program.

8.2 Conclusions

Figure 71 shows the resulting reconstruction of the Kanisza Triangle in which only the

fourth level detail wavelet coefficients are affected by lateral excitation. Figure 73 ss:ows the

same figure in which all levels of detail wavelet coefficients are affected by lateral excitation

from level one through level four. These resu'ts are satisfying and surprising. They are

satisfying because the energy tends to spread in such a way as to aid the outline of the

illusory triangle and they are surprising because the appearance of the energy spread so

closely resembles Oberndorf's results (see Figure 72).

The goal of this analysis is to test the hypothesis that specific spatial-frequency chan-

nels, within a specific orientation, may contain spatial receptive fields that together determine

the response of a single spatial element centered in that field. The result of sutch a response

network would be a new set of orientation specific, spatial-frequency specific respons.. :e-

ments whose energy is determined by the weighted sum of their respective receptive field. If

this is true, it would go a long way in explaining the perception of illusor% contours which ie

between or in line with two or more regions of like orientation. Consider, for example, the

base of the illusory Kanisza Triangle (see Figure 53). This contour is oriented horizontally

and lies in line with the horizontal edges of the contributing objects. It mav be that the

perception forming area of the brain receives .signals in the I locat ion and orientation of this

contour stimulated b the high spatial frequenc% energ. of the edges whom- orientation is

horizontal.

10OS

'.Jr

'I

VOIILp

Fiue7.Otu4fBudr otu oelUigOl ee ealCefcet

'10

Figure 72. Oberndorf's Results Using a Gabor Low Pass Filter [32]

Biological experiments performed on the Asual cortex of the cat and monkey revealed

at least two distinct catagories of cells, simple cells and complex cells [23, 22]. In these exper-

iments, microelectrodes measured the impulse response of the respective cells. Simple cells

were found to respond only to visual stimulus within a specific spatial-frequency band and

orientation and complex cells were found to be orientation independent suggesting that each

complex cell has a receptive field of simple cells that themselves respond to a specified band

of spatial-frequencies and orientaticns. One explanation is that an intermediate layer exists

between these simple and complex cells. One that responds to specific spatial-frequencies

and orientations in the desired locations. Another explanation is that the perception form-

ing areas of the brain or, some intermediate stage which may recicle in another location in

the cortex receives as input a receptive field of simple cells. Since so little is known of the

interconnections of the brain, it is not unrea.'n able to make these hypotheses.

The wavelet detail coefficients provide the required spatial-frequency and orientation

selectivity to simulate simple cell response. Considering the type of network connections

known to be possible in the cortex, we apply a lateral excitation network to these coefficients

and reconstruct the original image using the excited values. The results shown in Figure

71 strongly suggest illusory perception is aided by such a network. Taking the excitation

process to all band- simultaneously as shown in Figure 73 only degrades the suggestion of

110

-, -, ------

'CCIA

Figure ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~' 734upto O~ayCnorMdlUigLvl - ealCefcet

Il

the contours through the distortion of the high spatial-frequency characteristics needed to

terminate the contours. In our results, only the excitation of the lowest frequency band,

shown in Figure 71, maintains the edges of the contributory objects distinctly. To obtain

this result, the level four detail coefficients were excited and used in the reconstruction.

This level corresponds to a spati, 1-bandwidth of 16 to 32 cycles per object (see Figure 54).

This spatial-bandwidth corresponds to highest frequencies passed by both Gisburg's [141 and

Oberndorf's [321 low pass filters.

The Boundary Contour Model described in this chapter, while extremely simple, is

much like the first stage of the Grossberg Boundary Contour System (BCS), "Competi-

tion I, On-Center-Off-Surround Interaction within Each Orientation" [18:169]. In the BCS,

Grossberg includes two more major stages and some refinements. The second stage is "Com-

petition II, Push-Pull Opponent Processes Between Orientation at Each Position" and the

third stage is "Oriented Cooperation: Statistical Gates" [18:169-170]. While the BCM pro-

posed here is not iterative nor does it incorporate a feedback loop as does the BCS, it does

demonstrate the edge enhancing potential of performing lateral excitation within a local

receptive field in a specific spatial-frequency and orientation bandwidth. Furthermore, this

work is the first of its kind to display the output of a contour enhancing model that still pro-

vides the complete range of spatial-frequencies in an algorithmically sound manner, Wavelet

Multiresolution Reconstruction. As a matter of fact, the wavelet coefficients may prove to be

a good input souce for the BCS taking the place of Grossberg's oval dipole receptive fields.

112

IX. Conclusions/Recommendations

9.1 Introduction

By investigating possible human perceptual processing of the Kanisza Triangle illusion,

this thesis provides some insight into the workings of the human visual system. Ginsburg

investigated low spatial-frequency biasing in visual perception formulation. Oberndorf went

a step farther with his application of the location sensitivity inherent in Gabor filtering. His

results support Ginsburg's thesis that low spatial-frequency information is important in the

perception of illusory contours. In this thesis, we further explore frequency contributions to

percepts by considering high spatial-frequencies as well as low spatial-frequencies and then

incorporating temporal-frequencies. Due to a characteristic of the Wavelet Transform to

effectively trade resolution in time or space for resolution in temporal-frequency or spatial-

frequency respectively, we use a Multiresolution Wavelet Decomposition in the place of Gabor

filtering. The results of this decomposition are approximations and detail coefficients that

represent the spatial and temporal bands of frequency information which provide input into

our biologically motivated models of visual system processing.

9.2 Preliminary Results

Before implementing our three visual system models, we stop to compare our low

spatial-frequency representation of the image output from the Multiresolution Wavelet De-

composition as a coarse approximation of the original image with the results of Ginsburg and

Oberndorf. This comparison leads to the conclusion that Oberndorf's Gabor Lowpass filter

possesses characteristics not found in the filtering process of the Multiresolution Wavelet

Decomposition. The primary difference between the Fourier and Gabor filtering and the

decomposition filtering is the ringing associated with the sharp cutoff of the Ideal Fourier

and Gabor filters. This ringing seems to be the cause of the energy spread observed in their

results. If the ringing indeed aids the percept, it suggests the spatial filtering process of the

brain is also characterized by iaging. On the other hand, it may be that some cerebral

113

processing in addition to spatial filtering is requited to cause illusory percepts. It is liktly

that the results of spatial-frequency processing is fused with some other cerebral process-

ing (e.g. temporal-frequency processing). After all, there is much unknown in the current

understanding of the processing that takes place in the cerebral complex.

9.3 Building a World Model

We use the multiresolution approximations as input to a model of the visual system

based on the known operation of saccadic eye movements and retinal processing. The obser-

vation that led to this approach is that the illusion seems to break up when the viewer forces

fixation at one point in the image; thus, eliminating the saccadic movements of the eye. Since

retinal fixation between saccades is necessary for the retina to process high spatial-frequency

information from the field of vision, this observation suggests that high spatial-frequency

information is somehow critical in the perception of the illusory contours. Compared to the

previous results of Figure 55, the low spatial-frequency spreading in Figure 60 is found now

only in the areas not replaced by high resolution information. While this does not discount

the importance of the "ringing" in the Ginsburg and Oberndorf results, it does emphasize

the necessity of incorporating the high spatial-frequency bands in the analysis of the illusion.

This frame-built model illustrates how the quality of the illusion is enhanced by adding high

spatial-frequency information in selected locations along the suggestive contours.

Two areas of investigation naturally follow from the above observations: 1. Whether

manipulation of high spatial-frequency information helps to enhance or diminish the illusion,

and 2. Whether the temporal-frequency information across the frames of the world model

contributes to or is necessary to produce the illusion. Therefore, we developed a spatial-

temporal model and a boundary contour model.

9.4 A Spatial- Temporal Model

Considering the temporal-frequency information across a series of frames in an ani-

mated scene, we perform a Multiresolution Wavelet Decomposition in the time dimension

114

and then use the coarse approximations of the time signals of each pixel in the set of frames

to rebuild a version of the frames that is "blurred in time". The brain may process temporal-

frequency information in such a way as to suppress high temporal-frequencies smoothing the

motion giving the eye more time to fixate enough locations around the scene to produce the

illusion. This suggests that the Gin, burg proposal of low spatial-frequency biasing applies

to temporal-frequency as well. The question is how fast can the motion be before there is

not enough time to process high spatial-frequencies. Obviously, the slower the motion the

more spatial processing can take place. If relatively more spatial processing is necessary to

produce the illusion, more high temporal-frequencies must be filtered out. Therefore, each

illusion depending on its relative spatial complexity has a fundamental space-time bandwidth

envelope in which it is perceived.

9.5 A Boundary Contour Model

The Boundary Contour Model takes a closer look at the possible contributions of the

spatial-frequency components of a scene to the perception of illusory contours. It demon-

strates the potential of using the wavelet detail coefficients as input to the Grossberg Bound-

ary Contour System (BCS). It simualates a non-iterative version of the first stage of the BCS,

Off-Center-Off-Surround network within each orientation. The results show the same kind

of energy spread found in Oberndorf's results but for a totally different reason. In Figure 71

the energy spread is caused by a lateral excitation network in which the receptive fields lies

within specified localities, spatial-frequency bandwidth, and orientations; whereas, Obern-

dorf's energy spread is caused by the ringing characteristic of a highly tuned low-pass filter.

The ocurrence of lateral excitation networks in the central nervous system is well known.

Therefore, it presents a more plausible explanation of energy spreading than does ringing

which is not easily characterized. But, the most gratifying aspect of the result of Figure

71 is that it provides all spatial-frequency components found in the original image in effect

fusing the suggestive contour data on top of a distinctly recognizable figure.

115

9.6 Recommendations

This thesis lays the ground work for a whole new realm of study - that of spatial/temporal-

frequency processing in the human cerbral complex. ",he next logical step in this area would

be to implement Grossberg's Boundary Contour Syb.em with the detail coefficients output

from the Multiresolution Wavelet Decomposition [181. Such a composite boundary find-

ing system could be implemented in a highly parallel architecture. Its output would be

extremely useful in object segmentation applications in which incomplete boundaries are

segmented from background textures. The Wavelet based BCS would "connect the dots"

and give distinct form to objects of interest [41].

In this thesis, the temporal-frequencies are processed in much the same way as the

spatial-frequency processing of earlier work [14, 32]. This new comparison of the time domain

to the space domain suggests that there exist contours across space and time. It may be

possible using the BCS to isolate and characterize such contours. This thesis provides the

tools to do just that.

The whole field of spatial-temporal image processing is basically untouched for ap-

plications in pattern recognition, texture segmentation, and feature extraction. The spa-

tial/temporal models proposed here are applicable and will provide a method of improving

feature sets used in these application areas by bluring in space and time.

116

Appendix A. Multiresolution Analysis bsing Projections

A.1 System Description of the WAVE Program

The following is a list of functions which comprise the wave program:

1. main-wave.c - The main driver program for wave.

2. loadimage.c - A routine to load the include image from an ascii data file.

3. phi.gen.haar.c - A routine that builds a new (.D for each level of the decomposition.

4. inner-prod. c - A routine to perform the inner product and obtains the 'D coefficients.

It gererates one file for each level of decomposition with the suffix .phicoef..

5. v.projection.c - A routine that finds the projection of the include image on the space

Vm where m is the current level of decomposition. It generates one file for each level

of decomposition with the suffix .v-project..

6. wprojection.c - A routine that finds the projection of the include image onto the

space Wm, orthogonal to the Vm space where m is the current level of decompostion.

It generates one file for each I(- el of decomposition with the suffix . w-proj ect..

7. makefile - A makefile that is used to compile and link the source code to make an

executable file.

8. j smacros.h- An include file that contains macros we found useful in our programming

environment. This file must be present in the directory where compilation takes place

(See Appendix F.1 for listing).

9. macros.h- An include file that we borrowed from G. Tarr. It contains addit ion macros

usecd throughout our code. It also must be present in the directory where the compi-

lation takes place (See Appendix F.1 for listing).

10. stewmath.h - An include file containing some math routines specific to om program.

It must be present, in the directory where complilation takes place (See Appendix F.2

for listing).

117

Typing "make" at the command prompt in any directorN with all of the above files present

will create the appropriate object code and an executable file called wave that may be exe-

cuted by typing "wave" at the command prompt.

A.2 Haar Wavelet Analysis Software

A.2.1 Listing of MAIN-WAVE.C

*I**

WAVELET ANALYZER MAIN PROGRAM DRIVER** **** ** ***** **** *** **** ***** ** ** ** ***** * *** *** *** ** ***** ***** ** **** *****

/* DATE: 09 April 91 */1* */
/* VERSION: 1.0 */1* *
/* NAME: main-wave.c1* */
/* DESCRIPTION: This program performs a multiresolution vavelet analysis */
/* of an input image with a wavelet from its internal library chosen */
/* interactively by the user. It handles the menu interface with the */
/* user and drives the subroutines that take inputs, analyzes, and
/* produces output. Currently only the Haar Wavelet ia available for this */
/* program. *//* */
"* FILES READ: NONE *// */

1* FILES WRITTEN: NONE */

/* HEADERS USED: <stdio.h>, 'macros.h", "jsmacros.h" */

/* CALLING PROGRAMS: NONE *1
/* */

/* PROGRAMS CALLED: imageload.c, innerprod.c. phigenhaar.c,
/* phi_1gn..-l.c, vproj.c, wpr3j.c */

/* AUTHOR: Steve Smile)1 J. Stewart Laing */
I* */

/* HISTORY: Initial Version; adapted from phivl.c and hax:vl.c */
1* */

/* DECLARATION SECTION */

#include <stdio.h>
#include "macros .h"
#include "jsmacros.h"
#include "stewmath.h"

intarray loadimageC);
float-array phigenhaaro;
int.array inner.prodo);
intarray vprojectiono;
int.array wprojectiono;

118

/* MAIN PROGRAM BODY */

void main(argc, argv)
int argc;
char *argv[];

{

/* initialize variables */

int i, wavelet-type, level, maxlevel;
int.array image, phi-coef, vjimage, lastv-image, w-image;
float-array phi;
char filename[64), load;

/* load image to be analyzed */

if(argc.= 4 fk argc != i){
printf("Usage: wave <filename> <# of Rows> <# of Cols>\n");
exit(O);}

image = loadimage(filename, argc, argv);
maxlevel = LOG2(image.ROW);

/* This section performs the wavelet*/
/* analysis on the image according *1
/* to the value of wavelet-type. */

loopi(maxlevel){

/* generate phi for haar */
/************************************I*

phi = phi-gen-haar(i);

printf("\n Level %d phi generated.\n", i);

/* perform inner product to get phi coeficients */

phi-coef = inner-prod(image, phi, i, filename);
printf("\n I have created and strored the Level %d", i);
printf(" inner-product coeficients.\n");

/* generate V space projections */

lastv-image = v-image;
vimage = v-projection(image, phi, phiscoef, i, filename);
printf("\n I have created and stored the Level %d", i);
printf(" V projectionAn", level);

/* generate W space projections */

if (i == 1) w.image = wprojection(image, vsimage, i, filename);
if (i > 1) w.image = wprojection(lastvimage, vimage, i,

filename);
}

/* THE END */

119

A.2.2 Listing of LOADIMAGE.C
/***************************************s***s~s***ss****sssssss*sss****/*

WAVELET ANALYZER LOADIMAGE ROUTINE

/* DATE: 10 April 91
I* *
/* VERSION: 1.0 */

/* NAME: loadimage.c ,/
/* */

/* DESCRIPTION: This routine loads an image into an array whose name is */
/* specified by the user interactively. It is intended to be used as a
/* subroutine for the WAVELET ANALYZER PROGRAM.

/* FILES READ: One file specified by the user. *1

/* FILES WRITTEN: NONE */

/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h" *1

/* CALLING PROGRAMS: main-wave.c */

/* PROGRAMS CALLED: NONE

/* AUTHOR: Steve Smiley and J. Stewart Laing *1I* *1
/* HISTORY: Initial Version */

/*s*sss****s*s**s***/*
/* DECLARATION SECTION s/
#includesss*ss*s*ss***s**

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"#include "jsmacros .h"

/* FUNCTION BODY */

int-array loadimage(infilename, argc, argv)
char *infilename[64);
int argc;
char *argvO;

{

[* initialize variables *[

int ij;
FILE *infile;
intarray image;
I******s************s**s**s***ssssss********
/* create array to hold the incoming image s//s****s****ss**********s*s**sssss***s*s*ssss*/

if(argc =
printf("\n\n\n Input the size of the image (ROW COLUMN):>");
scanf("%d 74", &image.ROW, timage.COL);
printf(" \n\n Input filename of image to be analyzed:>");
scanf("s", infilename);

}

120

else {
sprintf (infilename, "s", argv [1);
sscanf(argv[2J, "%d", &image.ROW);
sscanf (argv [3), "%d", &image.COL);

I
CREATEMATRIXROW(image.array, image.ROW, int);
CREATEMATRIXCOL(image.array, image.ROW, image.COL, int);

/* load image to be analyzed *1

OPEN-FILE (in!ile, infilename, "The wavelet analyzer");
loopij(image.ROW, image.CDL){

Iscani(infile, "%d", &image.arrayEi [j);

printf("\n ** The image %s has been loaded for processing. **\n\n\n",
in!ilename);

return image;

A.2.3 Listing of PHIGENHAAR.C

WAVELET ANALYZER ROUTINE TO GENERATE THE PHI FOR HAAR */

f* DATE: 11 April 91 *11, */'

/* VERSION: 1.0 */

/* NAME: phigen.haar.c */1* *
/* DESCRIPTION: This routine generates the phi function for a particular */
/* level of resolution. It is represented as an array whose size depends */
/* on the level requested by the calling function.
/* */
/* FILES READ: NONE *f* */'

/* FILES WRITTEN: NONE *f

/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h" *f

/* CALLING PROGRAMS: main-wave.c

/* PROGRAMS CALLED: NONE */
/, /
/* AUTHOR: Steve Smiley and J. Stewart Laing 1/
/* */
/* HISTORY: Initial Version *f
f* */

/* DECLARATION SECTION */

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"

/* FUNCTION BODY if

121

float-array phi-genhaar'(level)
int level;{

/* initialize variables *[

int ij, phisize;
floatarray phi;

/* create array to hold phi *[

phisize = 1;
for(i=O; i < level; ++i) phisize * 2;
phi.ROW = phisize;
phi.COL = phisize;
CREATEIATRIXROW(phi.array, phi.ROW, float);
CREATEMATRIXCOL(phi.array, phi.ROW, phi.COL, float);

/* build phi */

loopij (phi.ROW,phi.COL) phi.array[i][j] = 1.0/(float)phisize;
return phi;

I

A.-.4 Listing of INNERPROD.C

/*** ROUTINE TO PERFORM INNER PRODUCT FOR WAVELET ANALYZER*/************** ***** *tt**~**** ****************** ******************/

l* DATE: 11 April 91 *1
f* *1
/* VERSION: 1.0 */
f* *1
[* NAME: innerprod.c */

/* DESCRIPTION: This routine performs the inner product between the phi *f
/* and the image at any valid level as requested by the caller. *f
/* It is intended as a subroutine for the WAVELET ANALYZER PROGRAM. *f

/* FILES READ: NONE. */

/* FILES WRITTEN: A file will be generated each time the *1
/* routine is called. The name of the file will depend on the input */
/* image filename, the type of wavelet used, and the level of resolution. */

/* HEADERS USED: <stdio.h>. "macros.h", <stdlib.h>, "jlmacros.h", *1
/* <string.h> */
f* *1
/* CALLING PROGRAMS: main-wave.c si
ft *1
/* PROGRAMS CALLED: NONE *1

/* AUTHOR- Steve Smiley and J. Stewart Laing -/
I *I

f* HISTORY: Initial Version .1
I* "I

/* DECLARATION SECTION *

#include <stdlib. I>
#include <stdio~h
#include "1macros.1h
#include "jsmacros .h"
#include <string.h>

1* FUNCTION BODY

int-.array inner-.prod~image, phi, level, filename)
int..array image;
float-array phi;
int level;
char filenaxne[64);

int i, j, phisize;
int..array phi-coef;
FILE *outfile;
char coeffile[64J;
float product;

/* create a matrix to hold the phi coeficients *

phisize = 1;
for(i=0- i < level; ++i) phisize *= 2;
phi-coE, XW = image.ROW/phisize;
phi-.coef.COL =image.COL/phisize;
CREATE.YATRIX.ROW~phi-.coef.array, phicoef.ROW, int);
CREATE-ATRIX.COLphi-.coef .array, phi.coef .ROW, phi-coef .COL, int);
/*printfC"\nphi-.coef matrix sucessfully created.\n") ;*/

/* perform inner product <image, phi> to get coeficients *

loopij Cimage.ROW, image.COL){
product =phi .drray Ei%phisize) Ej'/phisizej * Cf loat)image. array Ci) j];
phi-.coef .array~i/phisize) Ej/phisizeI += Cint)product;

/* write the phi coeficient array out to a file *

sprintf~coeffile, "%s.phicoef.%d", filename, level);

CREATE-.FILE~outfile, coeffile, "WAVELET ANALYZER")

loopij (phi..coef .ROW, phi-coef .COL)
fprintf~outfile, "Yd\n", phicoef .array Ci][j]);

printfC"\n The level %d phi..coeficients have been stored in a file",level);
printf C" called: %s\n", coeffile);
return phi-.coef;

A .2.5 Listing of IL PIOJECTIO. C

/** ROUTINE TO PERFORM THE V-.PROJECTION FOR WAVELET ANALYZER

/* DATE: 15 April 91 *

123

1* VERSION: 1.0 *

/* NAME: v..projection.c

/* DESCRIPTION: This routine performs the inner product between the phi *
/* and phi coeficient of the image at any valid level as requested by
1* the caller.
/* It is intended as a subroutine for the WAVELET ANALYZER PROGRAM.

/* FILES READ: NONE. *

1* FILES WRITTEN: A file will be generated each time the routine is *
/* routine is called. The name of the file will depend on the input *
/* mage filename, the type of wavelet used, and the level of resolution. *

/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h", *
1* <string.h>

/* CALLING PROGRAMS: main-wave.c

/* PROGRAMS CALLED: NONE *

/* AUTHOR: Steve Smiley and J1. Stewart Laing

/* HISTORY: Initial Version

/* DECLARATION SECTION *

#include <stdlib .h>
#include <stdio .h
#include "macros.h"
#include "jsmacros .h"
#include <string.h
#include <math.h>

/* FUNCTION BODY *

int-.array v-.projection(image, phi, phi-coef, level, filename)
int-array image, phi-coef;
float-.array phi;
char filename E64);

int-array v-image;
int i, j, phisize;
FILE *outfile;
char vprojfile[64];
v-image.ROW =image.ROW;
v-.image.COL = image.COL;

CREATE-.MATRIX.ROW(vimage .array, v-image .ROW, int);
CREATE..MATRIX-OL(v-.image .axray, v-.image.ROW, vjimage .COL, int);

phisize = Cint)pow(2.0, (double)level);

printf ("The phisize is %d\n", phisize);

sprintf(vprojfile, "%/s .v.project .%d"1, filename, level);

CREATE-.FILE(outfile, vprojfile, "WAVELET ANALYZER")

loopij (v-.image.ROW,v-.image.COL){
v-image.array~i) EjJ = (int)((phi.array~i%phisize] Ej%phisizej)*
((float)phi..coef.array~i/phisize) Ej/phisize]));

124

fprintf(outfile,"%d\n", v.image.array[i][j]);}

/* write the v projection array out to a file */

printf("\n The level %d V projections have been stored in a file",level);
printf(" called: %s\n", vprojfile);
return v-image;}

A.2.6 Listing of WPROJECTION.C

I*** ROUTINE TO PERFORM THE WPROJECTION FOR WAVELET ANALYZER

/* DATE: 15 April 91
/* *
/* VERSION: 1.01* *
/* NAME: wprojection.c
/* *
/* DESCRIPTION: This routine calculates the W space projections by
/* performing a point for point subtraction with the two adjacent V space */
/* projections.

/* FILES READ: NONE.

/* FILES WRITTEN: A file will be generated each time the routine is */
/* routine is called. The name of the file will depend on the input */
/* image filename, the type of wavelet used, and the level of resolution. *1
/* *
/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h",
/* <string.h> *1/* *
/* CALLING PROGRAMS: main-wave.c/* *
/* PROGRAMS CALLED: NONE/* */
/* AUTHOR: Steve Smiley and J. Stewart Laing/* *
/* HISTORY: Initial Version1* *

***** *** ***** **** ****

/* DECLARATION SECTION */

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"
#include <string.h>
#include <math.h>

/* FUNCTION BODY

int-array w-projection(lastvsimage, v.image, level, filename)
int-array lastvjimage, vzimage;
int level;

125

char filename [64);

int..array w-image;
int i, j, phisize;
FILE *outfile;
char 16proj file [64];
w-.image.ROW = v-.image.ROW;
w-.image.COL = v-.image.COL;

CREATE-ATRIX-.ROW(w-jimage .array, w..image.ROW, int);
CREATE-MATRIX-COL(w-image.array, w-image .ROW, w..image. COL, int);
sprintf(wprojfile, "/.s.w-project.Yd", filename, level);
CREATE-.FILE(outfile, wprojfile, "WAVELET ANALYZER")

loopij Cw..image .ROW, w-mage.COL) {
w-.image. array Ei) [j] =lastv- mage. arrayEi) [j I - v..image. arrayCiJ Li);

w-image.arrayi][j) += 255;
w-.image. array Ei)[j] /= 2;*/

/* write the wi projection array out to a file *

fprinti(outfile,"%d\n1', w-image. array Li] EjJ);

printi("\n The level %d W projections have been stored in a file",level);
printf(" called: %s\n", wprojfile);
return w-.image;

A..}itn fJM COSH(e pedxF1

A.2.8 Listing of JMAROS.H (See Appendix F.1)

A.2.9 Listing of MACROS.H (See Appendix F)

A.2.10 Listing of MAKEFILE

ft Makefile routine for the WAVE program by Laing and Smiley.

OBJS = main-wave.o loadimage.o phi-gen.haar.o inner-.prod.o\
v-proj ection.o w-.proj ection.o

wave: $COBJS)
C~echo "linking ..

cc sCOBJS) -o uave -lm

main-way?. 0: main-wave. c
cc -c main-wave.c

loadimage. 0: load image. c
cc -c loadimage-c
phi-gen-haar.o: phi-gen-.haar. c
cc -c phi..gen-haar.c

inner-prod .0: inner-prod. c
cc -c inner-.prod.c

v-.proj ection.o: v-.proj ect ion. c
cc -c v..projection.c

w..projection.o: w-.projection. c
cc -c w-.projection.c

126

Appendix B. Multiresolution Analysis Using Filters

B. 1 2D System Descripiion

The following is a list of fun:ztions which comprise the wave2 program.

1. main-wave. c - The main driver program for wave.

2. loadimage. c - A routine to load the input image from an ascii data file.

3. decompose. c - A routine that controls the decomposition.

4. reconstruct. c - A routine that controls the reconstruction.

5. filters , c - A routine that provides the coefficient values of the h(n) and g(n) response

functions.

6. convolve. c - A routine that controls the convolutions for decomposition.

7. reconvolve. c - A routine that controls the convolutions for reconstruction.

8. spconvlv. c - A routine that performs the spatial convolutions.

9. makefile - A makefile that is used to compile and link the source code to make an

executable file.

10. jsmacros.h - An include file that contains macros we found useful in our programming

environment. This file must be present in the directory where compilation takes place

(See Appendix F.2 for listing).

11. stewmath.h - An include file containing some math routincs specific to our program.

It must be present in the directory where complilation takes place (See Appendix F.2

for listing).

12. nrutil.c - Source code that contains utility macros for dynamic memory allocation

(See Appendix F.2 for listing).

127

Typing "make" at the command prompt in any directory with all of the above files present

will create the appropriate object code and an executable file called wave2 that may be

executed by typing "wave2" at the command prompt.

The intended input to the program is a 2D image in raw ascii format in which each

sample of the image is stored in a file, one number per line. For example, an image that is

512x512 samples will consist of 262,144 lines each with one decimal integer number repre-

senting the grey scale value of that sample. The grey scale values range from 0 to 255. The

output of the program are ascii files representing the scale and detail wavelet coefficients in

floating point format. For an in depth explanation of the these coefficients and the algo-

rithm, see the author's theses. The algorithm implemented in this program is taken from a

paper by Stephan Mallat. The paper is referenced in the author's theses. Be aware that we

found some printing mistakes in the paper which are addressed in our theses. The program

was developed on Sun sparcstation 2's. But, it should compile on any system with an ansi

standard C compiler. To compile the program, type "make" at the command prompt with

the default directory set to the current directory. Object files will then be created and linked

into an executable file called wave2. Then to run the program, type "wave2' at the com-

mand prompt. A menu should appear first with four choices. If not done at the command

line entry into the program, a file must be loaded from the current directory before either

decomposition or reconstruction can be executed. Once a file is loaded the Decomposition

can be selected. Then the Reconstruction can be selected. The Reconstruction portion de-

pends on files generated by the Decomposition portion. But, it is not necessary to run the

Decomposition during the same session as the Reconstruction as long as the Decompostion

was run in a prior session and the files still reside in the current directory. An alternate way

to start the program is to type "wavcg" followed by the name of the inpu. file and its size.

The size of the input file must be a power of two and is defined to be the length along one

dimension of the sampled image. At this time the largest file used is a 512 by 512 sampled

image. It is possible to specify the path to an input file that is not in the current directory

128

either relative to the current directory or absoliitcly from the root. However, if this is done,

the output files will be sent to that same directory. The proper usage of wave2 is as follows:

command prompt: wave2 [infilename] [size]

The infilename and size are optionl but if the infilename is given its size along one

dimension of the square power of two sampled image must be given as well. Also, only one

file may be input in any one session.

This fact is not obvious from the program menu, so be aware. If you try to select the

Load image option from the main menu after you have already loaded a file, the result has not

been fully characterized. In other words, we haven't tried to figure out what would happen.

This menu option is provided as an alternative to specifying the file on the command line.

The filters available are presently limited to some of the Daubechies wavelets and the

Cubic Spline wavelet. But, it is a simple process to add new filters to the filters.c program

in the same fasion as those already included. To generate the H and G filters, see our theses

for references.

B.2 2D Multiresolution Wavelet Analysis Software

B.2.1 Listing of MAIN- WA VE. C

WAVELET ANALYZER MAIN PROGRAM DRIVER

/* DATE: 09 April 91, 18 June 91
VERSION: 2.0
NAME: main-wave.c
DESCRIPTION: This program performs a multiresolution wavelet analysis
of an input image with a wavelet from its internal library chosen
interactively by the user. It handles the menu interface with the
user and drives the subroutines that take input, analyze, and produce
output. The the wavelet decomposition algorithm is a pyramid algorithm
proposed by Stephan Mallat in A Theory for Multiresolution Signal
Decomposition: The Wavelet Representation published in IEEE Trans.
on Pattern Anal. and Machine Intel. July 89. The algorithm uses a pair
of mirror filters derived from the scaling function, phi(x). The user
may enter the intended input image file from the command line following
the calling command 'wave' or the user may wait to be prompted for
the input file name and size after starting the program with the same
command. In any case, additional images may be entered for processing
by selecting the appropriate option from the program's main menu.
FILES READ: NONE (A subroutine reads the input files.)

129

FILES WRITTEN: NONE (Subroutines write out the saved data in files.)

HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: imageload.c, reconstruct.c, decompose.c

AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Initial Version; adapted from phivl.c and haarvl.c
Version 2.0 was a rewrite to change the basic algorithm from the using
inner products to using the Mallat algorithm referenced above.

/**
/* DECLARATION SECTION */

#include <stdio.h>
#include "jsmacros.h"
#include "stewmath.h"

int-array loadimageC);
void reconstructC);
void decomposeo);

/* MAIN PROGRAM BODY *

void main(argc, argv)
int argc;
char *argvl;

/* initialize variables */

int selection;
intarray image, *imagepointer = ℑ
char filename [64);

/* load image to be analyzed */

if(argc != 3 f& argc != I){
printf("Usage: wave <filename> <0 of Rows> < of Cols>\n");
exit(O);
}

if(argc 3)f
image = loadimage(filename, argc, argv);
/*printf("returned from loadimage"); fflush(stdout);*/
}

do {
/**********************************/*

/* display menu

printf("\n\n MAIN MENU\n\n");
printf(" 1 = Load a new image from disk.\n");
printf(" 2 = Perform Wavelet Decomposition.\n");
printf(" 3 = Perform Wavelet Reconstruction.\n");
printf(" 4 = Exit Program.n\n");
printf(" Enter an integer (1-4):");

scanf(".d", kselection);

1 30

if (selection == 4) break; /* Quit progr *1
arg: = 1;

if (selection 1) image = loadimage(filename, argc, argv);

else if (selection == 2) decompose(imagepointer, filename);

else if (selection == 3) reconstruct(imagepointer,
filename);

else {
irintf(" \n\n Just enter an integer from 1 to 4 and");
printf("press return. \n");I

} while (selection != 4);
/* THE END */}

B.2.2 Listing of LOADIMAGE.C

WAVELET ANALYZER LOADIMAGE ROUTINE **/

/* DATE: 10 April 91

VERSION: 1.1

NAME: loadimage.c

DESCRIPTION: This routine loads an image into an array whose name is
specified by the user interactively. 't is intended to be used as a
subroutine for the wave2 program.

FILES READ: One file specified by the user.

FILES WRITTEN: NONE

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: main-wave.c

PROGRAMS CALLED: NONE

AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Version 1.1 was changed to accept square matrices

only.*/

/* DECLARATION SECTION */

#include <stdio.h>
#include "jsmacros.h"
int **imatrixo;
void free-imatrixo;

/* FUNCTION BODY */

int-array loadimage(infilename, argc, argv)
char *infilename [64];
int argc;
char *argvll;

/* initialize variables */

131

int ij;
FILE *infile;
int-array image;

/* create array to hold the incoming image */

if(argc == Of
printf("\n\n Input filename of image to be analyzeu:");
scanf("%s", infilename);
printf("\n\n Input the number of Rows in the square matrix");
printf("\n data file. (The number must a power of 2):");
scanf ("7d", #image. ROW);
image.COL = image.ROW;}

else {
sprintf(infilename, "s", argv [I));
sscanf (argv[2), "%d", &imiage.ROW);
image.COL = image.ROW;

image.array = imatrix(l, image.ROW, 1, image.COL);

/* load image to be analyzed

OPEN-FILE (infile, infilename, "The wavelet analyzer");
loopij(image.ROW, image.COL)

fscanf(infile,"d", kimage.array[i+1][j+1]);
CLOSE-FILE (i, infilename, "The Wavelet analyzer", infile)
printf("\n ** The image %s has been loaded for processing. **\n\n\n",

infilename);
return image;}

B.2.3 Listing of DECOMPOSE.C

/********** **/*

WAVELET DECOMPOSITION SUBROUTINE

/* DATE: 19 June 91
VERSION: 1.0

NAME: decompose.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave". The algorithm used is discussed in
the description of the main driver module called "main-wave.c".
Data is passed by reference from the main driver module. The data is
in ascii format arranged in a square matrix whose dimensions are a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: Four coefficient files at each level of analysis.
The file names begin with the input image filename
and end with an extension of the form ".nXm" where
n is an integer that represents the level, X is one

of the letters 'c' or 'd' to represent phi
or psi coefficients respectively, and m is

132

an integer 1, 2, or 3 that represents the
orientation verticle, horizontal, or angular
repsectively.

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: main-wave.c

PROGRAMS CALLED: convolve. c, filters. c, nrutil. c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Ifliti:tl Version.

/* DECLARATION SECTION *

#include <stdio.h>
#include "jsmacros .h"

void convolveo;
void filterso;
float *vectoro;
float **matrixo);
void free-.vectoro;
void free-matrixo;
mnt **imatrixo;

/* MAIN PROGRAM BODY *

void decompose~imagepointer, infilename)
int..array *imagepointer;
char infilenainelj;

/* declare variables *

mnt i, j, k, maxlevel, wavelet-.type;
float-.vector h..of-n, h..ot-nflipo, g-.o-n, g..of.nflipo, phi, phiflipo;
float-.vector phiflipc, *phiflipcpointer = &phiflipc;
float-.vector *h-.of-.npointer = h-.otn, *h..of-.nflipopointer =&h-.of..nflipo;
float-.vector *g..of..npointer = kg-.of..n, *g..of-.nflipopointer = &g..of..nflipo;
float-.vector *phipointer =&phi, *phiilipopointer = &phiflipo;
float-.array c-.coef, dl..coef, d2-.coef, d3-.coef;
float-.array *c..coefpointer= kc-.coef ,*dl..coefpointer= &dl..coef;
float-.array *d2-.coefpointer= &d2-.coef ,*d3..coefpointer= &d3-.coef;
float-.array temp, *temppointer = ftemp;
FILE *outfile;
char filename (64), wave-.code (64);
int..array newima~e, *newimagepointer = &newimage;

/* allocate memory *

temp.ROW = imagepointer->ROW;
temp.COL = imagepointer->COL;
temp.array = matrix~i, temp.ROW, 1, temp.COL);
loopij~temp.ROW,temp.COL) temp.arrayli+1] (+1) = 0.0;
c..coef.ROW =imagepointer->ROW;
c-.coef.COL = imagepointer->COL;
c-.coef.array =matrix~i, c..coef.ROW, 1, c..coef.COL);
loopij Cc-.coef .ROW,c-.coef .COL) c..coef .array~i+3) (j+iJ 0.0;
dl-.coef.ROW imagepointer->ROW;
dl..coef.COL =imagepointer->CDL;

1 3:3

d1..coef.array = matrix~l, dl..coef.ROW, 1, dl-.coef.COL);
loopijdl-.coef.ROW,d..coef.COLI dl..coef.array~i+1) [j+1] = 0.0;
d2-.coef.ROW =imagepointer->ROW;
d2-.coef.COL = imagepointer->COL;
d2-.coef.array = matrix~i, d2_.coef.ROW, 1, d2_soef.COL);
loopij(d2..coef .ROW,d2..coef.COL) d2..coef .array~i+1] Ej+1] = 0.0;
d3_coef.ROJ = imagepointer->ROW;
d3_.coef.COL = imagepointer->COL;
d3-.coef.array = matrix~l, d3-.coef.ROW, 1, d3-.coef.COL);
loopij (d3-.coef .ROIJ,d3-.coef.COL) d3-.coef.arrayti+1] Ej+l] = 0.0;
newimage.ROW =imagepointer->ROW;
newimage.COL = imagepointer->COL;
newimage.array = imatrix~l, newimage.ROW, 1, newimage.COL);
loopij (newimage .ROW,newimage .COL) newirnage .array [i+1) (j+1J 0;

I-AL-fn. vector = vector 0 , imagepointer->ROW*2);
loopi~imagepointer->ROW*2) h-.o-n. vector~i+lJ = 0.0;
g-.of-.n.vector =vector~l,imagepointer->ROW*2);
loopi(imagepointer->ROW*2) g-.of..n. vector [i+11 = 0.0;
h-.o-nflipo .vector =vector(1, imagepointer->ROW*2);
loopi(imagepointer->ROW*2) h..of..nlipo. vector Ei+1J = 0.0;
g-.o-nflipo .vector = vector(1, imagepointer->ROW*2) ;
loopi(imagepointer->ROW*2) g-.o nf lipo. vector [i+11 = 0.0;
phi.vector = vector(i ,2*imagepointer->ROW);
loopi(imagepointer->ROW*2) phi.vector~i+1) 0.0;
phiflipo.vector = vector(1,2*imagepointer->ROW);
loopi(imagepointer->ROW*2) phif lipo -vector [i+11 = 0.0;
phif-lipc .vector =vector(1,2*imagepointer->ROW);
loopi~imagepointer->ROW*2) phif lipc. vector Ei+1) 0.0;

/* display menu

printf("\n\n DECOMPOSITION MENU\n\n");
printf(" 1 = Piece-wise Constant.(N/A)\n");
printf(" 2 = Piece-wise Linear. (N/A)\n");
printf(" 3 = Daubechies N=2.n");
prinif C" 4 Daubechies N=3.\n") ;
printf C" 5 Daubechies N=4.\n");
printf(" 6 =Daubechies N=5.\n");
printf(" 7 =Daubechies N,:6.\n")
printf(" 8 =Daubechies N=7.\n");
printf(C" 9 =Daubechies N=8.n");
printf(" 10 = Daubechies N=9.\n");
printf C" 11 = Daubechies N=10.\n");
printf(" 12 = Splines.\n");
printf(" 13 = Morlet.(N/A)\n");
printfC"\n Enter an integer 1-13:)

scanf("/d", &wavelet-.type);

/* error handling for invalid input *

if (wavelet.type < 3 11 w avelet-.type > 13){
printfC"\nYou have chosen an Invalid Wavelet type or");
printf("\nthis type is not currently available.");
I /* end if *

else{

1* Set wave-.code for use in output filenames. *

if (wavelet-.type == 3) sprintf~wave-.code, db2");

134

if (wavelet-.type 4) sprinti(wave-.code, "'db3");
if (wavelet-.type ==5) sprint-"(wave.code, "ldb4");
if (wavelet-.type ==6) sprintf(wave..code, "ldbS");
if (wavelet-.type ==7) sprintf~ave-.code, "db6");
if (wavelet-.type ==8) sprintf~wave-.code, "ldb7"');
if (wavelet-.type 9) sprintf~wave.code, "ldb8"');
if (wavelet-.type ==10) sprintf(wave.code, "d09");
if (wavelet-.type ==11) sprintf~wave..code, "dbO");
if (wavelet-type ==12) sprintf~wave.code, "'spi");

1* Generate Phi and Filters *

filters (wavelet-.type,h..o-npointer,g-.of-npointer,phipointer);
flipo(phipointer, phiflipopointer);
h..of-.nflipopointer = h..of-npointer;
g-.o-nflipopointer = g-.o-npointer;

loopij (imagepointer->ROW, imagepointer->COL)
temppointer->array~i+1] [j+1J Cf loat)imagepointer->array Ei+i) Ej+l];

/* Call convolution routine and save the coefficient arrays for *
1* each level of analysis. *

maxievel = LOG2Cimagepointer->ROW); /* Calculate the highest level *
k=1;
loopk~maxlevel){

if (temp.ROW >= h..of-.n.length){ /* image has to be bigger than filter *
printf("\nPerforning convolution with filters, level");

printfC"/,d... 11, k+1);
convolve Ctemppointer, h-.of..nflipopointer, g..of..nflipopointer,
c-.coefpointer, dl-ointer,d2-c.oefpointer,d3-coefpointer);

sprintf(filename, "Us.%d.c.%s", infilename, k+I, wave-.code);
CREATE.FILE~outfile, filename, "The Wavelet Analyzer")
loopij (c-.coef .ROW ,c-.coef .CO.)

fprintf~outfile, "%f\n", c-.coef .array~i+1) (j+1));
CLOSE-.FILEU, filename, "The Wavelet Analyzer", outfile)

sprintf~filename, "%s .Yd.dl .%s", infilename, k+1 ,wave..code);
CREATE-j'ILE(outfile, filename, "The Wavelet Analyzer")
loopij (dl-.coef .ROW,dlcoef.COL)

fprintf(outfile, "%/f\n", dlcoef .array~i+1) [j+1));
CLOSE-.FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, ",s .%d.d2.%s", infilename, k+1 ,wave-.code);
CREATE..FILE(outfile, filename, "The Wavelet Analyzer")
loopij CdZ.coef.ROW,d2-.coef .COL)

fprintf~outfile, "'/f\n", d2-coef .array [i+1[j+I1);
CLOSE-.FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, "'/s.%d.d3.%/s", infilename, k+1 ,wave..code);
CREATEFILE(outfile, filename, "The Wavelet Analyzer")
loopij (d3-.coef .ROW,d3-.coef .COL)

fprintf(outfile, "'/fn", d3-.coef.array~i+1) Ej+ID;
CLOSE.FILEUi, filename, "The Wavelet Analyzer", outfile)
temp.ROW = c..coef.ROW;
temp.COL = c-.coef.COL;
loopij~temp.ROW,temp.COL) temp.array~i+1J [j+1J=c-.coef.array(i+1) Ej+iJ;

} * end if *
}/* end loop *

}/* end else *

1:35

/* free memory */

free..matrix(temp.array, 1, temp.ROW, 1, temp.COL);
free-matrix(c-coef.array, 1, ccoef.ROW, 1, temp.COL);
free-matrix(dl-coef.array, 1, dl-coef.ROW, 1, dlcoef.COL);
freematrix(d2_coef.array, 1, d2_coef.ROW, 1, d2_coef.COL);
free-matrix(d3_coef.array, 1, d3_coef.ROCW, 1, d3_coef.COL);
free-vector(h-of-n.vector,l,imagepointer->ROW*2);
free_vector(gofn.vector,l,imagepointer->ROW*2);
freevector(phi.vector,1,imagepointer->ROW*2);
freevector(phiflipo.vector,limagepointer->ROW*2);
freevector(phiflipc.vector,l,imagepointer->ROW*2);

/* THE END *f

B.2.4 Listing of RECONSTRUCT.C

WAVELET RECONSTRUCTION SUBROUTINE

/* DATE: 2 July 91

VERSION: 2.0 (uses spconvlv)

NAME: reconstruct.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave2". The algorithm used is discussed in
the description of the main driver module called "main-wave.c".
It controls the portion of the program that reconstructs a previously
decomposed image using Nallat's multiresolution algorithm referenced
in the description of the calling program, "main-wave.c".

FILES READ: Four coefficient files at each level of analysis.
The file names begin with the input image filename
and end with an extension of the form ".nXm" where
n is an integer that represents the level, X is one of
the letters 'c' or 'd' to represent phi or psi coef-
ficients respectively, and m is an integer 1, 2, or 3
that represents the orientation verticle, horizontal,
or angular repsectively.

FILES WRITTEN: One file with the extension ".rec".

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: main-wave.c

PROGRAMS CALLED: filters.c, reconvolve.c, nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version.
*I

*** ** **** ** ** * **.**

/* DECLARATION SECTION */

#include <stdio.h>
#include "jsmacros.h"

void filterso;
void reconvolve();
float *vectoro);
float **matrixo;
void freevectoro;
void free.matrixo);

136

int **jmatrixo;

void free..iratrixo;

/* MAIN PROGRAM BODY *

void reconstruct(imagepointer, infilename)
int..axray *imagepointer;
char infilenane];

/* declare variables *

int i, j, k, 1, maxievel, wavelet-type;
float-.vector h-.of-.n, h~of..nflipo, h..o-nflipc, g-.o-n;
float-.vector g..o-nflipo, g-.o-nflipc, phi, phiflipc;
float-.vector *h-of-.npointer = &h..o-n, *g-.o-npointer &-fn
float-.vector *h..ofnflipopointer = &b..of..nflipo;
float-.vector *g..ofnflipopointer = &g-.o-nflipo;
float-.vector *h..of..nflipcpointer = &h-.of-.nflipc;
float-.vector *g-.o-nflipcpointer = & -of-nflipc;
float-.vector *phipointer = &phi, *phiflipcpointer =&phiflipc;
float-.array c-.coef, dl-coef, d2..coef, d3..coef;
float-.array *c-coefpointer= &c-.coef ,*d1-.coe4-ointer= &dl-coef;
float-..array *d2-.coefpointer= &d2-.coef,*d3-..:.o.epointer= &d3.coef;
float-.array temp, *temppointer = ftemp;
int..array newimage, *newimagepoin"-:er =- nnewimage;
FILE *outfile, *infile;
char filename E64], wave-.codeE64);
float holder E64p;

/* allocate memory

temp.ROW =imagepointer->ROW;
temp.COL = imagepointer->COL;
temp.array = matrix(1, temp.ROW, 1, temp.COL);
loopij(temp.ROW,temp.COL) temp.array~i+1) Ej+1J 0.0;
newimage.ROW =imagepointer->ROW;
newimage.COL = imagepointer->COL;
newimage.array = imatrix~i, newimage.ROW, 1, newimage.COL);
loopij (newimage. ROW,newimage .COL) newimage .array £i+1] Ej+1) 0.0;
c-.coef.ROW = imagepointer->ROW;
c-.coef.COL = imagepointer->COL;
c-.coef.array = matrix~l, c-soef.ROW, 1, c-coef.COL);
loopij (c-coef .ROW,c-coef .COL) c-.coef .array~i+i) Ej+1] = 0.0;
di-.coef.ROW = imagepointer->ROW;
d1-coef.COL =imagepointer->COL;
di-.coef.array = iratrix(1, dl-.coef.ROW, 1, dl-coef.COL);
loopij(dl-coef.ROW,dl-.coef.COL) di-coef.array[i+1J Ej+1J 0.0;
12-.coef.ROW = imagepointer->ROW;
d2-.coef.COL = imagepointer->COL;
d2-.coef.array =matrix(l, d2-.coef.ROW, 1, d2-.coef.COL);
loopij(d2..coef.ROW,d2_coef.COL) d2_.coef.array~i+1J Ej+iJ 0.0;
d3-.coef.ROW =imagepointer->ROW;
d3-.coef.COL = imagepointer->COL;
d3-.coef.array =matrix(l, d3-.coef.ROW, 1, d3..coef.COL);
loopij(d3-.coef.ROW,d3_.coef.COL) d3_coe-f.array~i+1) Ej+1) 0.0;

h...cfn.vector = vector(1,imagepointer->ROW*2);
loopi(imagepointer->ROW*2) h-of..n.vector~i+i] 0.0;
g-.of..n.vector = vector(. .imagepointer->ROW*2);

loopi~imagepointer->ROW*2) g-.o-n. vector Ei+1) = 0.0;
phi.vector = vector(1 ,2*imagepointer->ROW);

137

loopi(imagepointer->ROW*2) phi.vector~i+13 0.0;
ph-flipc.vector = vector(1 ,2*imagepointer->ROW);
loopi(imagepointer->ROW*2) phiilipc .vector[i+iJ = 0.0;
h-.o-nflipo.vector = vector(, imagepointer->ROW*2);
loopi(imagepointer->ROW*2) h-of-nflipo.vector~i+1J = 0.0;
g-.of-.nflipo.vector =vector(1,imagepointer->ROW*2);
loopi(imagepointer->ROW*2) g-.o-nflipo .vector[i+13 0.0;
h-.of-.nflipc.vector =vector(i,imagepointer->ROW*2);
loc'pi(imagepointer->ROW*2) h-of-.nflipc .vector Ei+1] = 0.0;
g-.of-.nlipc.vector = vactor(1,imagepointer->ROW*2);
laopi(imagepointer->ROW*2) g-.of-.nflipc. vector Ei+1J = 0.0;

/* display menu *

printf("\n\n RECONSTRUCTION HENU\n\n");
printf(" I = Piece-wise Constant.(N/A)\n");
printf(" 2 =Piece-wise Linear.W~NA)\n");
printf("1 3 =Daubechies N=2.\n");
printf(" 4 = Daubechies N=3.\n");
printf(" 5 = Daubechies N=4.\n1);
printf C" 6 = Daubechies N=5.n") ;
printf(Il 7 =Daubechies N=6.n");
printf(" 8 = Daubechies N=7.\n') ;
printf(" 9 =Daubechies N=8.\n"l);
printf(" 10 =Daubechies N=9.n");
printf C" 11 = Daubechies N=10.\n");
printf(" 12 = Splines.\n");
printf(" 13 = Morlet.CN/A)\n");
printf(" Enter an integer (1-13):");

scanf("'/.t", &wavelet-type);

if(wavelet-.type < 1 11 wavelet-.type > 13)
printf("\nYou have chosen an invalid wavelet or");
printf("\nit is not currently available.");
I

else I

/* Set value of wave-code for input filename *

if (wavelet-.type ==3) sprintf(wave.code, "0b21);
if (wavelet-.type ==4) sprintf(wave-..ode, "db3");
if (wavelet-.type ==5) sprintf(wave-.code, "cb4");
if (wavelet-type ==6) sprintf~wave-code, "dbS");
if (wavelet-.type ==7) sprintf~wave-code, "db6");
if (wavelet-type ==8) sprintf(wave-code, "db7");
if (wavelet-.type ==9) sprintf(wave-.code, "ldb8"');
if (wavelet-.type ==10) sprintf(wave-.code, "ldb9");
if (wavelet-.type ==11) sprintf(wave-.code, "ldbO");
if (wavelet-.type =12) sprintf(wave.code, "spl");

1* Generate Phi and Filters *

filters(wavelettype,h-of..npointer ,g-.of-npointer ,phipointer);

flip the filters *

looplj (h-.of-npointer->length)

138

holder Eh-ofnpointer->length +1 -j>= h-of-npointer->vector [ji;
0Oc'lj (h-.o-npointer->length)
h-of-.npointer->vector[j) = holder j);

loopli (g.onpointer->length)
holder Eg..onpointer->length +1 -j>= g-ofnpointer->vectorj];

looplj Cg-.onpointer->length)
g-ofnpointer->vectorj holder j];

h-ofnflipcpointer= h-.o-npointer;
g..of.-nflipcpointer= g-.o-npointer;

/* Call reconvolution routine to reconstruct from coarsest phi *
/* coefficients and all of the psi coefficients. *

maxlevel = LOG2(imagepointer->ROW);/*Calculate the highest level*/

temp.ROW =1; temp.COL = 1;

do f /* make sure image is bigger than filter *
temp.ROW *=2;
temp.COL *=2;
--maxlevel;
I while (temp.ROW < h-of-n.length/2);

c-coef.ROW =ten~p.ROW; c-coef.COL =temp.COL;
dl-coef.ROW =temp.ROW; dl-.coef.COL = temp.COL;
d2...coef.ROW =temp.ROW; d2-.coef.COL = temp.COL;
d3-coef.ROW =temp.ROW; d3..coef.COL =temp.COL;
1 = 1;

for(k=maxlevel ;k>O ;--k) {
1* forCkmaxlevel ;k==maxlevel ;--k) {*

if(l == f
sprintf (filename, "%s.'/d.c.Ys", infilename, k,wave-.code);
OPEN-FILE(infile, filename, "The Wavelet Analyzer")
loopij (c-.coei RO,c-.coef.COL)

fscanf(infile, "Yf\n", &c..coef.array[i+1 j+1);
CLOSE-.FILE(i, filename, "The Wavelet Analyzer", infile)

1 =0;
I /* end if *

else f
c-coef.ROW = temp.ROW;
c-coef.COL =temp.COL;
loopij(c-coef.ROW,c-.coef.COL) c-coef.array~i+1J Ej+1J

temp.array~i+iJ Ej+1];
}/* end else */

sprintf(filename, "'/s.%d.d1.%s", infilename, k,wave-code);
OPEN-.FILE(infile, filename, "The Wavelet Analyzer")
loopij (dl..coef.ROW, d.coef.COL)

fscanf(infile, "%f\n", &dl..coef.array~i+1J [j+I1);
CLOSE-.FILE(i, filename, "The Wavelet Analyzer", infile)

sprintf(filename, "%/s.%/d.d2.%/s", infilename, k,wave-.code);
OPEN-.FILE(infile, filename, "The Wavelet Analyzer")
loopij Cd2-.coef .ROW,d2_coef.COL)

fscanf(infile, "'.f\n", &d2-soef.array[i+1[j+1));
CLOSE-FILE(i, filename, "The Wavelet Analyzer", infile)

sprintf(filename, "'/s.%d.d3.%s" infilename, k,wavecode);
OPEN-FILE(infile, filename, "The Wavelet Analyzer")
loopij (d3-.coef.ROW, d3-coef.COL)

fscanf(infile, "%f\n", &d3-coef.array~i+1Ej+1);
CLOSE-FILE(i, filename, "The Wavelet Analyzer", infile)

139

printf("\nPerforming reconvolution with filters, level %d...", k);
reconvolve(temppointer, h of-nflipcpointer, g-of-nflipcpointer,

c-coefpointer, dl-coefpointer, d2_coefpointer,
d3_coefpointer);

if(wavelet-type == 12)
loopij(temp.ROW,temp.COL) temp.array[i+13[j+1] *= 4;

sprintf(filename, "%s.%d.c.%s.rec", infilename,k-l,wavecode);
CREATEFILE(outfile, filename, "The Wavelet Analyzer")
loopij(temp.ROW,temp.COL)

fprintf(outfile, "%f\n", temp.array[i+1][j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

} /* end loop */

} /* end else */

/* free memory */

free_matrix(temp.array, 1, temp.ROW, 1, temp.COL);
free-imatrix(newimage.array, 1, newimage.ROW, 1, newimage.COL);
free-matrix(c-coef.array, 1, c-coef.ROW, 1, c coef.COL);
free-matrix(dl.coef.array, 1, dl-coef.ROW, 1, dlcoef.COL);
free-matrix(d2-coef.array, 1, d2_coef.ROW, 1, d2_coef.COL);
free-matrix(d3-coef.array, 1, d3_coef.ROW, 1, d3_coef.COL);

/* THE END *1
}

B.2.5 Listing of FILTERS.C

WAVELET H&G FILTER SUBROUTINE

/* DATE: 20 June 91
VERSION: 2.0

NAME: filters.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave2". The algorithm used is discussed in
the description of the main driver module called "main-wave.c.
This routine provides the caller with the discrete points of a pair of
response functions previously derived and hard coded corresponding to
the type of wavelet desired. Also, the scaling function,
phi(x) is provided for the purpose of generating the phi
coefficients at level zero.

FILES READ: NONE

FILES WRITTEN: (Passed by reference back to the caller.)

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: decompose.c, nrutil.c

PROGRAMS CALLED: NONE

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Version 2 altered filters.c for spatial convolution from the
Fourier convolution used in version 1.

/* DECLARATION SECTION *1

#include <stdio.h>

140

#include "j smacros .h

/* MAIN PROGRAM BODY *
void filters Cwavelet..type ,h-of..npointer ,g-.of.npointer,phipointer)

int wavelet-.type;
float-.vector *h-.of..npointer, *g..of-.npointer, *phipointer;

1* The response fuictions of the H and G filters are evaluated at the *
1* negative of the argument. i.e. g(n)=g(-n) and h(n)=h(-n) *

if (wavelet-.type == ~
printf("\nThis selection not currently available.");
I}
if (wavelet-.type ==2)
printf("\nThis selection not currently available.");

if (wavelet-.type =)
h-.of-npointer->vector[4) = .482962; 1* hCO)*/
h-of-.npointer->vector[5] = .836516; 1* h(1)*/
h-.of-npointer->vector[6] .224143; 1* h(2)*I
h-.of-npointer->vector[7) -.129409; 1* h(3)*/
h..of-.npointer->vector~l] 0.0; 1* h(-3)*/
h-.of-npointer->vector[2] = 0.0; 1* h(-2)*/
h-.of-npointer->vector[3j = 0.0; 1* h(-1)*I
h..of-.npointer->length = 7;

g-of-.npointer->vector[4J = .836516; /* g(0)*I
g..of-.npointer->vector ES) = - .482962; /* g~l)*/
g-.o-npointer->vector[6) = 0.0; 1* g(2)*I
g-of-.npointer->vector[7) = 0.0; /* gC3)*I
g-.of-npointer->vector~l] = 0.0; 1* g(-3)*/
g-.of-npointer->vector[2) = -.129409; 1* g(-2)*I
g-.o-npointer->vector[3) = - .224143; 1* gC-1)*I
g-.of-npointer->length = 7;
phipointer->vector[l] = 0.032348658; /* phi(0)*/
phipointer->vector[2) = 1.302557547; 1* phi(1)*/
phipointer->vector[3] -0.334912635; 1* phiC2)*/
phipointer->vector[4) = 0.0000000001; 1* phi(3)*/
phipointer->vector[S] =0.0000000001; 1* phi(-3)*I
phipointer->vector[6] = 0.0000000001; !* phi(-2)*I
phipointer->vectorE7J 0.0000000001; 1* phi(-1)*I
phipointer->length =7;

if (wavelet-.type =)
h-.of-npointer->vectorE6) 0.332670553; /* h(0)*/
h-.of-npointer->vector[7) 0.806891509; 1* h(l)*I
h-of-.npointer->vectorE8j 0.459877502; 1* hC2)*/
h-.of-npointer->vector(93 = -0.135011020; 1* h(3)*/
h-.of-npointer->vector[10] = -0.085441274; 1* h(4)*/
h.of npointer->vector [11) = 0.035226292; 1* hCS)*/
h-of-npointer->vector[1J 0.0; /* h(-S)*/
h-.of-npointer->vectorE2j 0.0; 1* h(-4)*/
h-of-npointer->vector[3J = 0.0; 1* h(-3)*I
h..of-.npointer->vector[4j 0.0; 1* h(-2)*I
h-.of-npointer->vector[S] 0.0; /* h(-1)*/
h-.of.npointer->length = 11;

g-of-.npointer->vector[S' 0.806891509; /* g(0)*/
g-of-.npointer->vectort7) = 0.332670553; /* g(1)*/

1,41

g-.of-npointer->vector[8) 0.0; /* g(2)*I
g-.of-npointer->vector[9) 0.0; /* gC3)*/
g-of-npointer->vector[lO] =0.0; 1* g(4)*I
g-.of-npointer->vector[11) 0.0; 1* gC5)*I
g-.o-npointer->vector[l) 0.0; /* g(-5)*/
g-.of.npointer->vector[2j 0.459877502; /* g(-4)*/
g-.o-npointer->vector[3] -0.135011020; /* g(-3)*I
g-.of-npointer->vector[4] -0.085441274; 1* g(-2)*I
g-.of-.npointer->vector[S] 0.035226292; /* gC-1)*I

g-.o-npointer->length 11;
phipointer->vectorl] = 0.001129175; 1* phi(O)*I
phipointer->vector[2) = 1.285632059; /* phi(1l)*/
phipointer->vectorE3J = -0.386241412; 1* phi(2)*I
phipointer->vectorE4] = 0.095244687; /* phi(3)*I
phipointer->vector[5] 0.004229018; /* phi(4)*/
phipointer->vector[6] = 0.000000001; 1* phi(5)*I
phipointer->vector[7] = 0.0000000001; 1* phi(-5)*/
phipointer->vector[8) = 0.0000000001; 1* phi(-4)*I
phipointer->vector[9] = 0.0000000001; 1* phiC-3)*I
phipointer->vector[lO] =0.0000000001; 1* phi(-2)*/
phipointer->vector[ll = 0.0000000001; 1* phiC-I)*/
phipointer->length = 11;

I
if (wavelet-.type

h-.of-npointer->vector[8J = 0.230377813; 1* h(0)*/
h.onpointer->vector[9) = 0.714846571; 1* h(l)*/
h-.o-npointer->vector[lo) = 0.630880768; /* h(2)*/
h-.of-npointer->vector[Ill = -0.027983769; 1* h(3)*I
h-.of-.npointer->vector[12] = -0.187034812; 1* h(4)*/
h-.of-npointer->vector[l3] = 0.030841382; /* h(S)*I
h-of-.npointer->vector[i4) = 0.032883012; 1* h(6)*/
h-.of-npointer->vector[lS] = -0.010597402; 1* h(7)*/
h..of-.npointer->vector~l] = 0.0; /* h(-7)*/
h-.of-npointer->vectorE2] = 0.0; /* h(-6)*/
h-.of-npointer->vector[3] = 0.0;./* h(-5)*/
h-.of-npointer->vectorE4j = 0.0; 1* h(-4)*/
h-.o-npointer->vector[53) 0.0; /* h(-3)*/
h-.of-npointer->vectorE6j = 0.0; 1* h(-2)*/
h-.o-npointer->vectorE7] = 0.0; 1* h(-1)*/

h-of-.npointer->length =15;

g-.of ..npointer->vector [8) 0.714846571; /* g(0)*I
g-of-.npointer->vector[9) = 0.230377813; /* g(1)*/
g..of-.npointer->vector(lO] = 0.0; 1* g(2)*I
g-.of-npointer->vector[Ill = 0.0; 1* g(3)*I
g-.of-npointer->vector[12] = 0.0; /* g(4)*I
g-.ot.npointer->vectorU13J 0.0; /* g(5)*I
g-.o-npointer->vector[l4j = 0.0; /* gC6)*/
g-.of-npointer->vector[15J = 0.0; 1* g(7)*/
g..otnpointer->vector[1 = 0.0; /* g(-7)*I
g..of..npoirTter->vector[2) = -0.010597402; 1* g(-6)*I
g-.of-npointer->vector(31 0.032883012; /* g(-5)*/
g-.o-npointer->vector[4) = 0.030841382; /* g(-4)*I
g-of-.npointer->vector[5) -0.187034812; /* g(-3)*/
g-.of-npointer->vector[6) -0.027983769; /* g(-2)*I
g-.of-.npointer->vector(7J 0.630880768; /* g(-1)*I

g-of-.npointer->length =15;
phipointer->vector[1) = 0.000041362; 1* phl(0)*/
phipointer->vector[2) = 1.010495941; 1* phi(1)*/
phipointer->vectorF3] -0.039093761; 1* phi(2)*I

I 42

phipointer->vectorE4) = 0.041834300; 1* phi(3)*I
phipointer->vector[S] = -0.012011135; 1* phiC4)*I
phipointer->vector[6) = -0.001294973; 1* phiC5)*/
phipointer->vectorE7] = 0.000021869; 1* phi(6)*I
phipointer->vectorE8] = 0.000000001; 1* phiC7)*/
phipointer->vector (9) = 0.0000000001; /* phi(-7)*I
phipointer->vector[lO] =0.0000000001; /* phiC-6)*I
phipointer->vector[11] = 0.0000000001; /* phiC.-5)*/
phipointer->vector[l2] = 0.0000000001; /* phiC-4)*I
phipointer->vector[13] = 0.0000000001; 1* phiC-3)*I
phipointer->vector (14) = 0.0000000001; /* phi(-2)*I
phipointer->vector[15] = 0.0000000001; 1* phiC-1)*I
phipointer->length = 15;

if (wavelet-.type ==6)
printf("\nThis selection not currently available.");

if (wavelet-.type =)
h-.of-npointer->vector[12) = 0.111540743; /* h(0)*/
h-.of-npointer->vector[13) = 0.494623890; 1* h(1)*I
h-.of-npointer->vector[l4] = 0.751133908; 1* h(2)*/
h-.of-npointer->vector[15) = 0.315250352; /* h(3)*I
h-.of.npointer->vector[l6) = -0.226264694; /* h(4)*I
h-.of-npointer->vector[17) -0.129766868; /* h(5)*I
h-.of-npointer->vector[18) 0.097501606; /* h(6)*I
h...ofnpointer->vector[l9] = 0.027522866; 1* h(7)*/
h-.of-npointer->vector[20o) -0.031582039; /* h(8)*I
h-.of-npointer->vector[21) = 0.000553842; /* h(9)*I
h-.of-npointer->vector[22] = 0.004777257; 1* h(10)*/
h...ofnpointer->vector[23] = -0.001077301; 1* h(11)*/
h-.of-npointer->vector[1) = 0.0; /* hC-11)*I
h-.o-npointer->vectorE2) = 0.0; /* h(-10)*/
h-.of-npointer->vectorE3) = 0.0; /* h(-9)*/
h-.of-npointer->vectorE4) = 0.0; /* h(-8)*f
h-.of-npointer->vector(5) 0.0; 1* h(-7)*I
h-.of-npointer->vector[6) = 0.0; 1* h(-6)*I
h-.o-npointer->vector[7) = 0.0; 1* h(-5)*I
h-.of-npointer->vectorE8) = 0.0; /* h(-4)*f
h-.of-npointer->vector[9) = 0.0; 1* h(-3)*/
h-.o-npointer->vector[lO] = 0.0; 1* h(-2)*/
h-of-.npointer->vector[ll) = 0.0; 1* h(-1)*/
h-.of-npointer->length = 23;

g-.of-npointer->vector[l2) = -0.494623890; 1* g(0)*/
g-.o-npointer->vector[l3) = 0.115407434; 1* g(1)*I
g-.of-npointer->vector[l4] = 0.0; 1* gC2)*I
g-.o-npointer->vector(15] = 0.0; /* gC3)*/
g-.of-npointer->vector[163 = 0.0; 1* g(4)*I
g-.of-npointer->vector(17) 0.0; /* g(5)*I
g-of-npointer->vector[183 = 0.0; 1* gC6)*I
g-.of.npointer->vector[l93 0.0; 1* g(7)*I
g..of-npointer->vectorE20o) 0.0; 1* gC8)*I
g-.o-npointer->vector[21] 0.0; 1* g(9)*I
g-.of-npointer->vectorE22) = 0.0; 1* g(10)*I
g-.of-npointer->vectorE23) = 0.0; 1* g(1i)*I
g-.of-npointer->vector(1) 0.0; /* gC-11)*I
g-.of-npointer->vector(2J 0.001077301; 1* g(-10)*I
g-.of-npointer->vector(3J 0.004777257; 1* g(-9)*/
g-.of-npointer->vector[4J = -0.000553842; /* g(-8)*I
g-.of-npointer->vector[S) = -0.031582039; /* g(-7)*I
g-.of-npointer->vector[6J -0.027522866; /* g(-6)*I

143

g-.o-npointer->vectorE7J 0.097501606; /* g(-5)*/
g..of-npointer->vector[8j 0.1297'36868; /* g(-4)*I
g-.of-npointer->vector[9] -0.226264694; /* g(-3)*I
g-.of-npointer->vector[lo) = -0.315250352; 1* g(-2)*/
g-.of-npointer->vector[113 0.751133908; 1* g(-1)*I

g..of.npointer->length =23;

phipointer->vector~iJ = 0.000018901; /* phi(0)*I
phipointer->vectorE2] = 0.474401220; 1* phi(l)*I
phipointer->vectorE3] = 0.8077836S1; 1* phiC2)*I
phipointer->vector[4) -0.376153951; 1* phiC3)*/
phipointer->vector[SJ = 0.137747794; 1* phi(4)*/
phipointer->vector[6J = -0.024343102; /* phiC5)*I
phipointer->vectorE7j -0.003162779; 1* phi(6)*I
phipointer->vector[8) = 0.001579497; 1* phi(7)*I
phipointer->vector [9) = 0.000017680; 1* phi(8)*I
phipointer->vector[loj = -0.000001908; 1* phiC9)*/
phipointer->vector[ll = 0.000000002; /* phi(10)*I
phipointer->vector[l2) = 0.000000001; 1* phi(11)*/
phipointer->vector[l3) = 0.0000000001; /* phiC-11)*/
phipointer->vector[l4] = 0.0000000001; /* phi(-10)*I
phipointer->vector[lS] = 0.0000000001; /* phiC-9)*I
phipointer->vectoir[l6] 0.0000000001; /* phiC-8)*I
phipointer->vector [17) = 0.0000000001; /* phiC-7)*/
phipointer->vector[18] = 0.0000000001; /* phi(-6)*I
phipointer->vector[l93 0.0000000001; /* phiC-5)*I
phipointer->vector[20oj 0.0000000001; /* phiC-4)*I
phipointer->vector[21J = 0.0000000001; 1* phi(-3)*I
phipointer->vectorE22) = 0.0000000001; /* phi(-2)*/
phipointer->vector[23J = 0.0000000001; /* phi(-1)*I

phipointer->e~igth = 23;

if (wavelet-type==8
printfC"\nThis selection not currently available.");

if (wavelet-.type =)
printf("\flThis selection not currently available.");
I.
if (wavelet-.type ==10)(
printf("\nThis selection not currently available.");

if (wavelet-.type==1(
printf("\nThis selection not currently available.");

if (wavelet-.type == 12A{
h-.of-npointer->vector[l3] = 0.542; /* h(0)*/
h-.of-npointer->vector[l4) = 0.307; 1* h~l)*I
h..of-.npointer->vector[16) = -0.035; 1* h(2)*/
h-.of-npointer->vector[16) -0.078; /* h(3)*/
h-.ofnpointer->vector[17J 0.023; 1* h(4)*I

h..-npointer->vector(l8' 0.030; /* h(S)*/
h-of..npointer->vector[l9) -0.012; /* h(6)*I
h-.of-npointer->vectorE20) = -0.013; 1* h(7)*I
h-of-.npointer->vector[21J = 0.006; 1* h(8)*I
h-of-.npointer->vector [22] 0.006; /* h(9)*/
h-.o-npointer->vectorE23) -0.003; 1* h(10)*I
h-of..npointer->vectorC24) -0.002; 1* h(11)*/
h..of-.npointer->vector[25] = 0.0; /* h(12)*I
h-.of-npointer->vector~l]) 0.0; /* h(-12)*/
h-.of-npointer->vector[2) = -0.002; 1* h(-11)*/
h-of-.npointer->vectorE3) -0.003; /* h(-10)*I

144

h-.of-npointer->vector[4] = 0.006; 1* h(-9)4/
h-of-.npointer->vector[S) = 0.006; 1* h(-8)*I
h-.o-npointer->vector[6) = -0.013; 1* h(-7)*/
h.onpointer->vector[7) = -0.012; /* h(-6)*I
h-.of-npointer->vector[8) = 0.030; /* h(-5)*I
h-.of-npointer->vectorE9) = 0.023; 1* h(-4)*I
h-.o-npointer->vector[10) = -0.078; 1* h(-3)*I
h-.o-npointer->vector(11) = -0.035; 1* h(-2)*I
h-.o-npainter->vector[12) = 0.307; 1* h(-11*I
h-.of..npointer->length = 25;

g-.o-npointer->vector[13] = -0.307; 1* g(0)*I
g-.o-npointer->vector[14) 0.542; 1* g(1)*/
g..otnpointer->vector[i1 = -0.307; /* gC2)*I
g-.of-npointer->vector[16) = -0.035; /* gC3)*I
g-.o-npointer->vector[17) = 0.078; 1* g(4)*/
g...atnpointer->vector(18] = 0.023; 1* g(5)*/
g-.o-npointer->vector[193 = -0.030; /* g(6)*/
g-.o-npointer->vector[20] = -0.012; /* g(7)*/
g-.of-npointer->vector[21] = 0.013; 1* g(8)*/
g-.of-npointer->vector[22] = 0.006; 1* g(9)*I
g-.of..npointer->vector[23) = -0.006; 1* g(10)*I
g-.ot.npointer->vector[24) = -0.003; /* g~i1)*I
g-.ot-npointer->vector (25) 0.002; 1* g(12)*I
g-.o-npointer->vector~l] 0.0; /* g(-12)*I
g-.o-npointer->vectorE2) = 0.0; /* g(-11)*I
g-.of-npointer->vector[3] = 0.002; 1* g(-10)*I
g-.of-npointer->vectorE4) = -0.003; 1* g(-9)*/

g..-npointer->vector'5s) -0.006; /* g(-8)*I
g-.ot.npointer->vector[6J = 0.006; 1* g(-7)*/
g-.o-npointer->vector[7] = 0.013; 1* g(-6)*/
g-.of-npointer->vector[8] = -0.012; 1* g(-5)*f
g..of.npointer->vectorE9) -0.030; 1* g(-4)*I
g-.of-npointer->vector[10) = 0.023; 1* g(-3)*I
g-.of-npointer->vector[Ill = 0.078; /* g(-2)*/
g-.o-npointer->vector[12] -0.035; /* g(-1)*I
g-.o-npointer->length = 25;

phipointer->vector[1J = 0.5385; 1* phi(0)*/
phipointer->vector[2J = -0.2106; 1* phi(1)*/
phipointer->vector[3) = 0.04319; 1* phiC2)*I
phipointer->vector[4) = 0.01334; /* phi(3)*/
phipointer->vector[5) = 0.00738; /* phi(4)*/
phipointer->vector[6) -0.00324; /* phi(5)*I
phipointer->vector[7] 0.00030; /* phi(6)*I
phipointer->vector(8] = -0.00012; 1* phiC7)*/
phipointer->vector[9] 0.00001; 1* phi(8)*/
phipointer->vector[10) = 0.0000000001; 1* phi(9)*I
phipointer->vector[11] 0.000000001; 1* phi(lO)*/
phipointer->vector[12) 0.000000001; 1* phi~ll)*I
phipointer->vector[13) 0.0000000001; 1* phiC-11)*/
phipointer->vector[14) 0.0000000001; /* phiC-10)*/
phipointer->vector[153 0.0000000001; 1* phi(-g)*/
phipointer->vector(16) 0.00001; /* phi(-8)*I
phipointer->vector(173 -0.00012; /* phi(-7)*/
phipointer->vector[ie) 0.00030; /* phi(-6)*/
phipointer->vector[19) -0.00324; 1* phiC-5)*I
phipointer->vector[20J 0.00738; 1* phi(-4)*I
phipointer->vectorL'dl 0.01334; /* phi(-3)*/
phipointer->vector[22] 0.04319; /* phi(-2)*I
phipointer->vector(23) -0.02106; 1* phi(-1)*/

I1 .5

phipointer->length = 23;

if (wavelet-type == 13){
printf("\nThis selection not currently available.");
}
if (wavelet-type > 13 I1 wavelet-type < 1)

printf("\nYou have chosen an invalid selection.");

/* THE END */

B.2.6 Listing of CONVOLVE.C

WAVELET CONVOLUTION SUBROUTINE

/* DATE: 19 June 91

VERSION: 1.0

NAME: convolve.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave". The algorithm used is discussed in
the description of the main driver module called "main-wave.c".
Data is passed by reference from the decomposition subroutine. Data is
in ASCII format arranged in a square matrix whose dimensions are a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: (Passed by reference back to the caller.)

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: decompose.c, nrutil.c

PROGRAMS CALLED: needs nr library, libnr.a

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version.*1

/* DECLARATION SECTION */

#include <stdio.h>
#include "jsmacros.h"

float *vectoro;
float **matrix(;
void free-vectoro;
void free-vectoro;
void spconvlvo;

/* MAIN PROGRAM BODY */

void convolve (datainpointer, h-of-npointer ,g-of-npointer, ccoefpointer,
dlcoefpointer, d2_coefpointer, d3_coefpointer)
float-array *datainpointer;
float-vector *hof-npointer, *g.of-npointer;
float-array *c-coefpointer,*dlcoefpointer,*d2_coefpointer,*d3_coefpointer;{

1,46

/* declare variables *

int i, j;
float-vector rowin ,rowout ,colin,colout,repne
float-.array temp;
FILE *outfile;
char filename E64);

ballocate memory *

temp. array = matrix(1, datainpointer->ROW, 1, datainpointer->COL);
loopij (datainpointer->RJW,datainpointer->COL) temp.array Ei+1] Ej+iJ 0.0;
rowin.vector = vector(1,2*datainpointer->COL);
loopi C2*datainpointer->COL) rowin .vector Ei+1] = 0.0;
rowout.vector = vector(i ,4*datainpointer->COL);
loopi(datainpointer->COL*4) rowout .vector~i+i) = 0.0;
colin.vector = vector(1,2*datainpointer->ROW);
loopiC2*datainpointer->RUW) colin.vector[i+1J = 0.0;
colout.vector =vector(i ,4*datainpointer->ROW);
loopi (datainpointer->ROW*4) colout .vector Ei+1 =) 0.0;
response.vector = vector(1,2*datainpointer->ROW);
loopi (datainpointer->ROW*2) response. vector Ei+1) = 0.0;
rowin. lengthi = 2*datainpointer->COL;
colin .length = 2*datainpointer->ROW;

/* perform convolution *

printf("\nConvovling rows with hC-n). ..)
loopi~datainpointer->ROW){ /* convolve rows with h(-n) *

loopi (datainpointer->ROW*2) {
response.vector~j+1) = h-.of-npointer->vector~j+l];

I
loopj (datainpointer->CaL) rowin. vector Ej+i) = datainpointer->array[i+1] Ej+1];
spconvlv~rowin.vector,rowin.length,response-vector ,h-.o-npointer->length, 1,

rowout.vector);
loopi (datainpointer->COL/2) temp. array [i+11 [j +13 = rowout . vector [2* (j+l));
I 1* downsample by selectiny even cols *

printf("\nConvovlfng cols with hC-n). .. ");

loopi~datainpointer->COL/2){ /* convolve cols with hC-n) *
loopi (datainpointer->ROW*2)

response.vector~j+1) = h-of-.npointer->vector~j+l];
loopj(datainpointer->ROW) colin.vector~j+1) = temp.array~j+1) Ei+1j;
spconvlv~colin.veto,colin.length,response. vector,h-of..npointer->length, 1,

colout.vector);
loopj(datainpointer->ROW/2) c-.coefpointer->array~j+1) E.+i) colout.vector[2*(j+1));
I /* downsample by selecting even rows *

printfC"\nConvovling cols with gC-n). . .1);

loopi(datainpointer->COL/2)f 1* convolve cols with g(-n) *
loopj Cdatainpointer->ROW*2)

response. vector Ej +1) = g-.ot-npointer->vector Cj+ 1];
loopi Cdatainpointer->ROW) colin. vector~j+1] temp.array~j+1) (i+1);
spconvlv~colin.vector ,colin .length,response. vector ,g-.ofnpointer->length, 1,

colout .vector);

147

Joopj (datainpointer->ROW/2) dl-coefpointer->array [j+1] Ei+1J coJlout. vector [2*C(j+1));
I

printfC"\nConvovling rows with g(-n)...");
loopi(datainpointer->ROW /* convolve rows with g(-n) *

loopj Cdatainpointer->ROW*2)
response.vector[j+1] = g-.of-npointer->vector~j+1);

loopj (datainpointer->COL) rowin.vector[j+1) datainpointer->array~i+1J Ej+1);
spctnvlv~rowin.vector,rowin.1ength,response.vector,g-of-npoixter->length, 1,

rowout .vector);
loopj (datainpointer->COL/2) temp. array Ei+1) [j+1J = rowout .vector[2*(j+1XI;
I

printf('\nConvovling cols with h(-n) ... I);
loopi(datainpointer->COL/2){ 1* convolve cols with h(-n) *

loopj (datainpointer->ROW*2)
response.vector~j+1] = h-.ot-npointer->vector~j+1);

loopj (datainpointer->ROW) colin. vectorEj +1] = temp. arrayEj +1) Ei+1);
spconvlv(colin.vector, colin.length,response-.vector ,h...ot.npointer->length, 1,

colout.vector);
loopj (datainpointer->ROW/2) d2.coefpointer->array[j+1] [i+1) colout .vector [2*(j+l));
I

printf("\nConvovling cols with g(-n)...");
loopi(datainpointer->COL/2){ 1* convolve cols with g(-n) *

loopj (datainpointer->ROW*2)
response.vector~j+1] g-.o-npointer->vector[j+1);

loopj (datainpointer->ROW) colin.vector~j+1) temp.array~j+1J Ei+1];
spconvlv~colin.vector,colin.length,response.vector,g..of-npointer->length 1,

colout .vector);

loopj (datainpointer->ROW/2) d3-coefpointer->array[j+1) [i+1) colout .vector[2*Cj+1XI;
I

/* reset row and col indeces. *
c-.coefpointer->RW = datainpointer->ROW/2;
c-coefpointer->COL = datainpointer->COL/2;
dl-coefpointer->ROW = datainpointer->RW/2;
dl-soefpointer->COL = datainpointer->COL/2;
d2-.coefpointer->ROW = datainpointer->ROW/2;
d2-.coefpointer->COL =datainpointer->COL/2;
d3-.coefpointer->RW = datainpointer->ROW/2;
d3..coefpointer->COL = datainpointer->COL/2;

1* free memory */
free-.matrix~temp.array, 1, datainpointer->ROW, 1,
datainpointer->COL);
free-vector (rowin.vector, 1,2*datainpointer->ROW);
free-vector (rowout-vector,1,4*datainpointer->ROW);
free-vector (colin.vector, 1,2*datainpointer->ROW);
free-.vector (colout.vector,1,4*datainpointer->ROW);
free-vyector (response.vector, 1,2*datainpointer->ROW);

/* THE END *

B.2. 7 Listing of 1?ECONVO(LVE. C

148I

WAVELET RECONVOLUTION SUBROUTINE

/* DATE: 2 July 91

VERSION: 1.0

NAME: reconvolve.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave2". The algorithm used is referenced in
the description of the main driver module called "main-wave.c.
Data is passed by reference from the reconstruction subroutine. Data is
in ascii format arranged in a square matrix whose dimensions are a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numeric
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: NONE (Passed by reference back to the caller.

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: reconstruct.c

PROGRAMS CALLED: NONE

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version.

/* DECLARATION SECTION */

#include <stdio.h>
#include "jsmacros.h"

float *vectorO;
float **matrixo);
void free.vectorC);
void freematrixo;

/* MAIN PROGRAM BODY *1

void reconvolve(daaoutpointer,h-of-npointer,gof-npointer,ccoefpointer,
d1.coefpointer, d2_coefpointer, d3_coefpointer)
float-array *dataoutpointer;
float-vector *h-ofnpointer, *gofnpointer;
float-array *c-coefpointer,*dlcoefpointer,*d2_coefpointer,*d3_coefpointer;

/* declare variables */

int i, j;
float-vector rowin,rovout,colincolout, response;
float-array temp,templ,temp2,temp3,temp4;
char filename[64];
FILE *outfile;

/* allocate memory */

temp.ROW = ccoefpointer->ROW*2;
temp.COL = c-coefpointer->COL*2;

temp.array = matrix(l, temp.ROW, 1, temp.COL);
loopij(temp.ROW,temp.COL) temp.array[i+1][j+1= 0.0;

1,49

tempI.RJW = c-.coefpointer->ROW*2;
tempI.COL = c-.coefpointer->COL*2;
templ.array = matrix~l, templ.ROW, 1, templ.COL);
loopij(templ.ROW,templ.COL) templ.array[i+1J (j+iJ = 0.0;
temp2.ROW = c-.coefpointer->ROW*2;
temp2.COL = c-.coefpointer->COL*2;
temp2.array = matrix(l. temp2.ROW, 1, temp2.COL);
loopij (temp2.ROU,temp2.C0L) temp2.array~i+1J [j+1J = 0.0;
temp3.ROW = c-.coefpointer->ROW*2;
temp3.COL = c-.coefpointer-;COL*2;
temp3.array =matrix~l, temp3.ROW, 1, temp3.COL);
loopij (temp3.ROW,temp3.COL) temp3.array~i+1) (j+iJ 0.0;
temp4.ROW = c-.coefpointer->ROW*2;
temp4.COL = c-.coefpointer->COL*2;
temp4.array = matrix(1, temp4.ROW, 1, temp4.COL);
loopij(temp4.ROW~temp4.COL) temp4.array~i+1)(jftl) = 0.0;
rowin.vector = vactorC1,temp.ROW*2);
loopi~temp.ROU*2) rowin.vector(i+1J = 0.0;
rowout.vector =vector(1,temp.ROW*4);
loopi(temp.ROW*4) rowout.vectorEi+1J = 0.0;
colin.vector = vector(1 ,teinp.COL*2);
loopi(tenip.COLe2) colin.vectorEi+1J 0.0;
colout.vector = vector(1,4*temp.CDL);
loopi(temp.COL*4) colout.vector(i+1J = 0.0;
response.vector = vector(1 ,teinp.COL*2);
loopi(temp.COL*2) response .vector~i+1J = 0.0;

rowin. length = 4*c-.coefpointer->COL;
coin .length = 4*c-.coefpointer->ROW;
dataoutpointer->ROW = c-.coefpointer->ROW*2;
dataoutpointer->COL = c-.coefpointer->COL*2;

/* perform convolution *

printf("\nConvovling cols of c-.coef with h(n). ..)
loopi (c-.coefpointer->COL) {

loopj Cc-.coefpointer->ROW)
coin. vector (2* (j +1) = c-.coefpointer->array (j+1J i+ 1);

loopj (colin. length)
response. vector~j+iJ h-.of-npointer->vector~ji~1J;

spconvlv(colin.vector,colin.length,response. vector,
h-.of-npointer->length, 1 *colout .vector);

loopj (c-.coefpointer->ROV.2)
tempi .array(j+1) ti+1J = colout .vector(j+iJ;

}/* zeros are added between each row before convolution *
printf("\nConvovling cols of dl-coef with g(n). ...)
loopiCdl-coefpointer->COL) {

loopj (dl..coefpointer->ROW) colin.vector[2'(j~l)J
dl-.coefpointer->array[-j+1J i+iJ;

loopj Ccolin.length)
response. vector~j+iJ =g-.of-npointer->vector~j+iJ;

spconvlv(colin.vector~colin. length,response.vector,
g..of-.npointer->length, 1,colout.vector);

loopj (dl..coefpointer->ROws2) temp2.array~j+1J (jel)= colout.vector~j+1J;
I /* zeros are added between each rou before convolution *

printf('\nConvovling cols of d2-.coef with h(n)...");
loopi(d2-.coefpointer->COL) {

loopj Cd2-.coefpointer->ROW) colin. vector(2e(je1)J
d2..coefpointer->array~j+1J jiil;

loopj (colin .length)

150

response. vector[j+iJ=h-of-npointer->vectorj+1];
spconvlv Ccoin. vector, col n. length, response. vector,

h-of-.npointer->length,1, colout .vector);
loopj (d2-coefpointer->ROW*2)

temp3.array~j+1) Ei+l1] colout.vectcr~j+l];
I /* zeros are added be~tween each row before convolution *

printf("\nConvovling cols of d3..coef with g(n). .. ");
loopi (d3..coefpointer->COL) {

loopj (d3-coefpointer->ROW: colin. vector E2*(j+1)J
d3-cc'ffpointer->arrayj+1J [i+i);

loopj (c..jiin .length)

response. vector Ej+1J g-of-npointer->vector Ej+1];
spconvlv(colin. vector, coin. length,response.vector,

g..of.npointer->length, 1,colout.vector);
loopj Cd3-.coefpointer->ROW*2)
temp4.array~j+1) [i1] = colout.vector[j+1J;

}/* zeros are added between each row before convolution *
/* Add temp arrays for col convolutions *

loopij(temp ROW, temp.COL)
temp.ai-ray[i+1) Ej+1) tempi. array [i+1) Ej+l) + temp2. array [i+1J Ej+1J;

loopij(templ .ROW, tempi .COL)
tempi. array Ei+1) Ej+1J temp3. array [i+1) Ej+1 +

temp4.array~i+1] [j+iJ;
/* sprintf(filename, "temp");
CREATEFILE(outfile, filename, "The Wavelet Analyzer")
loopi (dataoutpointer->ROW/2)

fprintf(outfile, "%f\n", temp. array [i+11 [128));
CLOSE.FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf (f ilename, "temp"l) ;
CREATE..FILE(outfile, filename, "The Wavelet Analyzer")
loopi Cdataoutpointer->ROW/2)

fprintf(outfile, "'hf\n", tempi. array [i+1) [128));
CLOSE-.FILE(i, filename, "The Wavelet Analyzer", outfile) *

printf("\nConvovling rows with h(n)...");
loopi (dataoutpo inter->ROW) {

loopj(dataoutpointer->COL/2) rowin.vector[2*(j+1)) = temp.array[i+1) [j+1J;
looj (rowin.length) response. vector[j+1>h-of-.nointer->vector[j+1);
spconvlv(rowin.vector,rowin. length,response.vector,

h-of-npointer->lpngth,l1,rowout .vector);
loopj (dataoutpointer->ROW) temp2. array [i4+1] j+l] = rowout .vector~j+ 1];
I 1* zeros are added between each col before convolution *

printfC"\nConvovling rows with g~n)...");
loopi (dataoutpc inter->ROW) {

loopj(dataoutpointer->COL/2) rowin.vector[2*(j+1)J templ.array[i+1) [j+1J;
loopj (coJlin. length) response. vector Ej+l] g-of-npointer->vector~j+l];
spconvlv Crowin. vector, rowin .length ,response. vector,

g-of..npointer->length,l1,rowout .vector);
loopj (dataoutpointer->ROW) temp3 .array [i+1] Ej+1J rowout .vector Ej+ 1);
I 1* zeros are added between each row before convolution *
/* sprintf(filename, "'temp2");
CREATE..FILE(outfile, filename, "The Wavelet Analyzer")
loopi (dataoutpointer->ROW)

fprintf(outfile, "'/f\n", temp2 . array [i+11 [128));
CLOSE-.FILE(i, filename, "The Wave.let Analyzer", outfile)

sprintf(filename, "ttemp3");
CREATEFILE(outfile, filename, "The Wavelet Analyzer")
loopi Cdatacutpointer->ROW)

151

fprintf(outfile, "%f\n", temp3.array~i-1][128]);
CLOSE.FILE(i, filename, "The Wai.elet Analyzer", out'file) *

/* Add temp arrays to get resulting dataout */
loopij (dataoutpointer->ROW ,dataoutpointer->COL)

dataoutpointer->array~i+1) Ej+13 = temp2.array~i+1) Ej+1] +
temp3. array [i+11 [j+1);

/* sprintf(filename, "dataout");
CREATE..FILE(outfile, filename, "The Wavelet Analyzer")
loopi (dataoutpointer->ROW)

fprintf(outfile, "%f\n", dataoutpointer->array[i+1J [128]);
CLOSE-FILE(i, filename, "The Wavelet Analyzer", outfile) *

/*loopij (dataoutpointer->ROW ,dataoutpointer->COL)
printi.("'dataoutpointer->arrayE%d] [%d] '/f\n" ,i+1 ,j+l,

dataoutpointer->array Ei+1) Ej+]) ; */
/* reset row and col indeces. */

dl-.coefpointer->ROW = dataoutpointer->ROW;
dl-.coefpointer->COL = dataoutpointer->COL;
d2-.coefpointer->ROW = dataoutpointer->ROW;
d2-.coefpointer->COL = dataoutpointer->COL;
d3-.coefpointer->ROW = dataoutpointer->ROW;
d3-.coefpointer->COL = dataoutpointer->COL;

1* free memory */
free..matrix(temp.array, 1, c-.coefpointer->ROW*2, 1, c.coefpointer->COL);
free..matrix(templ .array, 1, c-.coefpointer->ROW*2, 1 ,c..coefpointer->COL);
free..matrix(temp2.array, 1, c-.coefpointer->ROW*2, 1 ,c-.coefpointer->COL);
free-.matrix(temp3.array, 1, c-.coefpointer->ROW*2, 1 ,c-.coefpointer->COL);
free...matrix(temp4.array, 1, c...coefpointer->ROW*2, 1 ,c..coefpointer->COL);
free...vector(rowin.vector, 1, 4*dataoutpointer->COL);
free..vector(rowout.vector, 1, 8*dataoutpointer->COL);
free-.vector Ccoin. vector, 1, 4*dataoutpoini ar->COL);
free-.vector~colout.vector, 1, 8*dataoutpointer->COL);

B.2.8 Listing of SPOON VLV.O

WAVELET SPACIAL CONVOLUTION SUBROUTINE

1* DATE: 26 july 91

VERSION: 1.0

NAME: spconvlv.c

DESCRIPTION: This subroutine will do a convolution of two time
signals in the time domain by means of a shift-multiply-sum method.
This program intended use is to replace the convlv() subroutine
now being used in the wavelet convolve.c and reconvolve.c portions
of the wave2 prr-gram.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: (Passed by reference back to the caller.)

HEADERS USED: <stdio.h>", "jsmacros.h"

CALLING PROGRAMS: decompose.c

PROGRAMS CALLED: nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing

152

HISTORY: Initial Version.

/* DECLARATION SECTION *// **** ** ** * * ***** *** ****/

#include <stdio.h>
#include "jsmacros.h"

float *vectorO;
void free-vectoro;
void free-vectoro;

/* MAIN PROGRAM BODY */

void spconvlv (input, input-length, filter, filter-length ,dumby,output)

float *input, *output, *filter;
int input-length, filter-length, dumby;{

/* declare variables */

int i, j;
float *temp, *temp2;

/* allocate memory */

CREATEFLOATVECTOR(temp,1,2*inputIength);
loopli(2*input-length) temp[i] = 0.0;

CREATEFLOATVECTOR(temp2,1,2*inputlength);
loopli(2*input-length) temp2[i] = 0.0;

/ diagnostic print statements */

/* printf("\n filter length is 7d", filter-length);
printf("\n input length is 1d", input-length); */

loopli(2*input-length)
output[i] = 0.0;

/* load first level coefficients */

loopli(input-length/2){
temp[i + filter-length -1] = input[i];

/*printf("\n i= %d, temp[i + filter.length/2] = f", i, temp[i + filter-length/2]); *1
}

/* fill in both ends of vector with flip of image *//***/*
loopli(filter-length -1){
temp[filterlength - i] = temp[filter-length + 1];
temp[filterlength -1 + input-length/2 + i] = temp[filter.length -1 + input-length/2 - a];

153

/* convolution of signal *

loopli(input-length/2 + filter-.length -i){
loopljCf ilter-length)
temp2 Li] += temp[i+j-lJ*filter~jJ;

/* load proper convolution coefficients *

loopli (input ..length/2)
output~i) temp2[filter-length/2 + ;

free..vector(temp, 1,2*input-.length);
free..vector(temp2, 1,2*input.le::igth);

/* printfC"\n i = %~d,outputz%f",i, output~i)); *

B.2.9 Listing of NRUTIL.C (See Appendix F.2) [35]

B.2.10 Listing of JSMAOROS.H (See Appendix F.2)

B.2.11 Listing of STE WMA TH.H (See Appendix F.2)

B.2.12 Listing of MAKEFILE

Makefile routine for the wave2 program by Laing and Smiley.

DEFLAGS = -g

OBJS = main-wave.o loadimage.o filters.o convolve.o spconvlv.o\
decompose.o reconstruct .o reconvolve. o nrutil .o

spwave2: $(OBJS)
Cecho "linking ... "

cc $(OBJS) -o wave2 $(DEFLAGS) -lm

main-wave .o: main-wave. c
cc -c $(DEFLAGS) main-wave.c
loadimage .0: loadimage. c
cc -c $(DEFLAGS) loadimage.c

filters.o: filters.c
cc -c $(DEFLAGS) filters.c

spconvlv .o: spconvlv. c
cc -c $(DEFLAGS) spconvlv.c

convolve .0: convolve. c
cc -c $(DEFLAGS) convolve.c
reconvolve .o: reconvolve .c
cc -c $(DEFLAGS) reconvolve.c
decompose.o: decompose. c
cc -c $(DEFLAGS) decomposi
resonstruct .o: reconstr,!ct. c.
cc -c $(DEFLAGS) reconstruu;t.c
nrutil.O: nrutil.c
cc -c $(DEFLAGS) nrutil.c

154

B.3 ID System Description

The following is a list of functions which comprise the wavel program.

1. main-wavel. c - The main driver program for wave.

2. loadsignal. c - A routine to load the input signal from an ascii data file.

3. decomposel. c - A routine that controls the decomposition.

4. reconstructl.c - A routine that controls the reconstruction.

5. filters. c - A routine that provides the coefficient values of the h(n) and g(n) response

functions (See Appendix B.2 for listing).

6. convolvel.c - A routine that controls the convolutions for decomposition.

7. reconvolvel . c - A routine that controls the convolutions for reconstruction.

8. spconvlv. c - A routine that performs the spatial convolutions (See Appendix B.2 for

listing).

9. makefile - A makefile that is used to compile and link the source code to make an

executable file.

10. j smacros .h - An include file that contains macros we found useful in our programming

environment. This file must be present in the directory where compilation takes place

(See Appendix F.2 for listing).

11. stewmath.h - An include file containing some math routines specific to our program.

It must be present in the directory where complilation takes place (See Appendix F.2

for listing).

12. nrutil.c - Source code that contains utility macros for dynamic memory allocation

(See Appendix F.2 for listing).

Typing "make" at the command prompt in any directory with all of the above files present

will create the appropriate object, code and an executable file called wavcl that may be

155

executed by typing "wave1" at the command prompt.

The intended input to the program is a ID signal in raw ascii format in which each

sample of the signal is stored in a file, one number per line. For example, a signal that is

512 bamples will consist of 512 lines each with one decimal intcger number representing the

value of that sample. The output of the program are ascii files representing the scale and

detail wavelet coefficients in floating point format. For an in depth explanation of the these

coefficients and the algorithm, see the author's theses. The algorithm implemented in this

program is taken from a paper by Stephan Mallat. The paper is referenced in the author's

theses. Be aware that we found some printing mistakes in the paper which are addressed

in our theses. The program was developed on Sun sparcstation 2's. But, it should compile

on any system with an ansi standard C compiler. To compile the program, type "make"

at the command prompt with the default directory set to the current directory. Object

files will then be created and linked into an executable file called "wavel". Then to run

the program, type "wave1" at the command prompt. A menu should appear first with four

choices. If not done at the command line entry into the program, a file must be loaded from

the current directory before either decomposition or reconstruction can be executed. Once a

file is loaded the Decomposition can be selected. Then the Reconstruction can be selected.

The Reconstruction portion depends on files generated by the Decomposition portion. But,

it is not necessary to run the Decomposition during the same session as the Reconstruction

as long as the Decompostion was run in a prior session and the files still reside in the current

directory. An alternate way to start the program is to type "wavcl" followed by the name

of the input file and its size. The size of the input file must be a power of two. At this time

the largest file used is a 512 sampled signal. It is possible to specify the path to an input

file that is not in the current directory either relative to the current directory or absolutely

from the root. However, if this is (lone, the output files will be sent to that same directory.

The usage of wavel is as follows:

command prompt: wavel [infilename] [size]

156

The infilename and size are optional but if the infilename is given itb size along one

dimension of the power of two sampled signal must be given as well. Also, only one file may

be input in any one session.

This fact is not obvious from the program menu, so be aware. If you try to select the

Load signal option from the main menu after you have already loaded a file, the result has not

been fully characterized. In other words, w, haven't tried to figure out what would happen.

This menu option is provided as an alternative to specifying the file on the command line.

The filters available are presently limited to the some of the Daubechies wavelets and

the Cubic Spline wavelet. But it is a simple process to add new filters to the filters.c program

in the same fasion as those already included. To generate the H and G filters, see our theses

for references.

B.4 1D Multiresolution Wavelet Analysis Software
B.4.1 Listing of MAIN-WAVEJ.C

WAVELET ANALYZER MAIN PROGRAM DRIVER/***
/* DATE: 09 April 91, 18 June 91, 16 August 91

VERSION: 3.0

NAME: main-wavel.c

DESCRIPTION: This program performs a multiresolution wavelet analysis
of an input signal with a wavelet from its internal library chosen
interactively by the user. It handles the menu interface with the
user and drives the subroutines that take input, analyze, produce
output. The the wavelet decomposition algorithm is a pyramid algorithm
proposed by Stephan Mallat in "A Theory for Multiresolution Signal
Decomposition: The Wavelet Representation", published in IEEE Trans.
on Pattern Anal. and Machine Intel. July 89. The algorithm uses a pair
of mirror filters derived from the scaling function, phi(x). The user
may enter the intended input signal file from the command line following
the calling command 'wavel' or the user may wait to be prompted for
the input file name and size after starting the program with the same
command.

FILES READ: NONE (A subroutine reads the input files.)

FILES WRITTEN: NONE (Subroutines write out the saved data in files.)

HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: signalload. c, reconstruct 1. c, decompose 1. c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version; adapted from phivl.c and haarvl.c

157

Version 2.0 was a rewrite to change the basic algorithm from using
inner products to using the Mallat algorithm referenced above.
Version 3.0 adapted the two dimensional program for one
dimensional signals.

/* DECLARATION SECTION *

#include <stdio .h>
#include "j smacros .h
#include "stewmath.h"

int-vector loadsignalO);
void reconstruct 0;
void decomposeo);

/* MAIN PROGRAM BODY *

void main~argc, argv)
mnt argc;
char *argvE);

1* initialize variables *

mnt selection;
int-vector signal, *signalpointer =&signal;
char f il ename [64);

/* load image to be analyzed *

if(argc != 3 && argc !)

printf("Usage: wavel <filename> 0# of Samples>\n'9;
exit(0);
I

if(argc ==3)
signal = loadsignal~filename, argc, argv);
/*printf("returned from loadimage"); fflush(stdout) ; *

do{

/* display menu *

printfC"\n\n MAIN MENU\n\n");
printf(" 1 = Load a new signal from disk.\n");
printf(" 2 =Perform Wavelet Decomposition.\n");
printf(" 3 = Perform Wavelet Reconstruction.\nl);
printf(" 4 = Exit Program.\n\n");
printf(" Enter an integer (1-4):");

scanf('%d", &selection);

if (selection ==4) break; /* Quit program *
argc = 1;

if (selection ==1) signal =loadsignal(filenaie, argc, argv);

else if (selectioni= 2) decompose(signalpointer, filename);

else if (selection 3) reconstruct(signalpointer,

158

filename);

else {
printf(" \n\n Just enter an integer from 1 to 4 and");
printf("press return. \n");
}

} while (selection != 4);
/* THE END *1}

B.4.2 Listing of LOADSIGNAL.C

WAVELET ANALYZER LOADIMAGE ROUTINE

/* DATE: 10 April 91, 16 August 91

VERSION: 2.0
NAME: loadsignal.c

DESCRIPTION: This routine loads an signal into an vector whose name is
specified by the user interactively. It is intended to be used as a
subroutine for the wavel program.

FILES READ: One file specified by the user.

FILES WRITTEN: NONE

HEADERS USED: <stdio.h>, <stdlib.h>, "jsmacros.h"
CALLING PROGRAMS: main-wavel.c

PROGRAMS CALLED: nrutil.c

AUTHOR: Steve Smiley and 3. Stewart Laing

HISTORY: Version 1.1 was changed to accept square matrices
only.

Version 2.0 changed the two dimensional program to
accept only one dimensional signals. The new
executable is called wavel vs wave2 for the old
one.

/* DECLARATION SECTION */*** **** ** * *** ** **** *****

#include <stdio.h>
#include "jsmacros.h"

int *ivectoro);
void freeivectoro;

/* FUNCTION BODY */

int-vector loadsignal(infilename, argc, argv)
char *infilename[64j;
int argc;
char *argv[];{

/* initialize variables *1

int ij;
FILE *infile;

159

int-vector signal;

/* create vector to hold the incoming signal *//** *,,$ ***** ** ** $*** *** ** */

if(argc ==
printf("\n\n Input filename of singal to be analyzed:");
scanf("/s", infilename);
printf("\n\n Input the number of Samples in the signal");
printf("\n data file. (The number must a power of 2):");
scanf("/d", &signal.length);}

else {
sprintf(infilename, "1.s", argv[l]);
sscanf(argv[2j, "Yd", &signal.length);}

signal.vector = ivector(l, signal.length);

/* load signal to be analyzed *1

OPEN-FILE (infile, infilename, "The wavelet analyzer");
loopli(signal.length)

fscanf(infile,"Yd", &signal.vector[i]);
CLOSE-FILE (i, infilename, "The Wavelet analyzer", infile)
printf("\n ** The signal %s has been loaded for processing. **\n\n\n",

infilename);
return signal;

B.4.3 Listing of DECOMPOSE1.C

WAVELET DECOMPOSITION SUBROUTINE

/* DATE: 19 June 91, 16 August 91

VERSION: 2.0

NAME: decomposel.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is discussed in
the description of the main driver module called "main-wavel.c".
Data is passed by reference from the main driver module. The data is
in ascii format arranged in a vector whose dimension is a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipies in C: The Art of Scientific Computing.
FILES READ: NONE (Passed by reference from the caller.)
FILES WRITTEN: Two coefficient files at each level of analysis.

The file names begin with the input signal filename
and end with an extension of the form ".nX" where
n is an integer that represents the level, X is one

of the letters 'c' or 'd' to represent phi
or psi coefficients respectively.

HEADERS USED: <stdio.h>, "jsmacros.h"
CALLING PROGRAMS: main-wavel.c
PROGRAMS CALLED: convolvel.c, filters.c, nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing

160

HISTORY: Initial Version.
Version 2.0 no longer uses the Fourier domain filtering. Now
only spatial convolution is done. Also, this version was
adapted from the two dimensional version 1.0.

/* DECLARATION SECTION *

#include <stdio .h>
#include "j siacros .hl"
void convolveC);
void filtersC);
float *vectoro);
void free.vectoro;
int *ivectoro;

/* MAIN PROGRAM BODY *

void decompose (signalpointer, infilename)
int-.vector *signalpointer;
char inf ilenane [];

/* declare variables *

int i, j, k, maxlevel, wavelet-type;
float-.vector h-.o-n, h..of..nflipo, g-.of..n, g..of.nflipo, phi, phiflipo;
float-.vector phiflipc, *phiflipcpointer =&phiflipc;
float-vyector *h..of-.npointer = &h-.of...n, *h.-.of-nflipopointer = &h-.of..nflipo;
float-.vector *g..of-.npointer = g..of..n, *g-.of..nflipopointer = &g-.of..nflipo;
float-..vector *phipointer = &phi, *phiflipopointer =&phiflipo;
float-..vector c-.coef, d..coef;
float-vector *c..coefpointer= &c-.coef,*d..coefpointer= &d-coef;
float-vyector temp, *temppointer = temp;
FILE *outfile;
char filename[64), wave-code[j643;
int-.vector newsignal, *newsignalpointer =&newsignal;

1* allocate memory *

temp. length =signalpointer->length;
temp.vector = vector~i, temp.length);
loopii(temp.length) emp.vector~iJ = 0.0;
c-.coef .length = signalpointer->length;
c-.coef .vector = vectorC 1, c-.coef .length);

loopli(c-.coef.length) c..coef.vector~i] = 0.0;
d-.coef .length = signalpointer->length;
d-.coef.vector = vector~i, d-.coef.length);
loopli(d-coef.length) d&coef.vectori = 0.0;
news ignal length =signalpointer->length;
newsignal .vector =ivector~l, newsignal .length);
loopli~newsignal .length) newsignal vector(i) = 0;
h-.of-.n.vector = vectorC 1,signalpointer->length*2);
loopli(signalpointer->length*2) h..of..n.vector Li) = 0.0;
g..of-.n.vector = vector~i ,signalpointer->length*2);
loopii(signalpointer->length*2) g-of-.n. vector~i) = 0.0;
h-.of-.nflipo. vector = vector~i ,signalpointer->length*2);
loopli(signalpointer->length*2) h..of..nflipo .vector Li)= 0.0;
g..of..nflipo .vector = vector(1,signalpointer->length*2);

161

loopli(signalpointer->length*2) g-of-.nflipo.vector~ij = 0.0;
phi.vector = vector(1,2*signalpointer->length);
loopli(signalpointer->length*2) phi .vector[i] = 0.0;
phiflipo vector = vector(i ,2*signalpointer->length);
loopli~signalpointer->length*2) phiflipo.vector~i] = 0.0;
phiflipc.vector = vector(1 ,2*signalpointer->length);
loopli(signalpointer->length*2) phiflipc. vector Ei) 0.0;

/* display menu *

printf("\n\n DECOMPOSITION MENU\n\n");
printf(" 1 = Piece-wise Constant.CN/A)\n");
printf("1 2 =Piece-vise Linear.CN/A)\n");
printf("1 3 = Daubechies N=2.\n");
printf("1 4 = Daubechies N=3.\n") ;
printf(" 5 = Daubechies N=4.\n") ;
printf(" 6 =Daubecbies N=5.\n" ;
printf(" 7 = Daubechies N=6.\n");
printf(" 8 = Daubechies N=7.\nt);
printf(" 9 = Daubechies N=8.n");
printf(" 10 = Daubechies N=9.\n11);
printf(" 11 = Daubechies N=10.\n");
printf(C" 12 = Splines.\n");
printf C" 13 = Morlet.(N/A)\n");
printfC"\n Enter an integer 1-13: "1);

scanf("%d", &wavelet..type);
1* error handling for invalid input *

if (wavelet-type < 3 11I wavelet-.type > 13){
printfC"\nYou have chosen an Invalid Wavelet type or");
printf("\nthis type is not currently available.");
I 1* end if *

else{

/* Set wave-.code for use in output filenames. *

if (wavelet-.type ==3) sprintf (wave-code, "'db2"');
if (wavelet-.type ==4) sprintf~ave-.code, "db3"');
if (wavelet-.type =5) sprintf~wave-.code, "db4");
if (wavelet~type =6) sprintf(wave.code, "dbS");
if (wavelet-.type ==7) sprintf(wave.code, "db6");
if (wavelet-.type =8) sprintf(wave.code, "'dbl);
if (wavelet-.type ==9) sprintf(wave.code, "Idb8");
if (wavelet-.type =10) sprintf(wave-.code, I'db9");
if (wavelet-type =11) sprintf(wave-code, "dbO");
if (wavelet-type ==12) sprintf(wave-.code, "spi");

/* Generate Phi and Filters *

filters Cwavelet..type,h-.o-npointer,g-.of.npointer,phipointer);
flipo(phipointer, phiflipopointer);

h-.of-.nflipopointer = h..of..npointer;
g-.of-.nflipopointer = g..of-.npointer;

loopi i(signalpointer->Ienq'th)
teinppointer->vector[i) = (float)signalpoi.nter->vector~i];

16(2

/* Call convolution routine and save the coefficient vectors for *1
/* each level of analysis.

maxlevel = LOG2(signalpointer->length); /* Calculate the highest level */
k=1;
loopk(maxlevel){

if (temp.length >= h.ofn.length){ /* signal has to be bigger than filter */
printf("\nPerforming convolution with filters, level");

printf("%d...", k+1);
convolve(temppointer, h-of.nflipopointer, g-ofnflipopointer,
ccoefpointer, dcoefpointer);

sprintf(filename, "'s.'d.c.%s", infilename, k+1, wave-code);
CREATEFILE(outfile, filename, "The Wavelet Analyzer")
loopli(c-coef.length) fprintf(outfile,"%f\n",c-coef.vector[i]);
CLOSEFILE(i, filename, "The Wavelet Analyzer", outfile)
sprintf(filename, "'s.'d.d.'s", infilename, k+1,wavecode);
CREATEFILE(outfile, filename, "The Wavelet Analyzer")
loopli(d-coef.length)fprintf(outfile,"f\n",d-coef.vector~i]);
CLOSEFILE(i, filename, "The Wavelet Analyzer", outfile)
temp.length = ccoef.length;
loopli(temp.length) temp.vector[i] = c-coef.vector[i];

} /* end if */
} /* end loop */

} /* end else *1

/* free memory */
free.vector(temp.vector, 1, temp.length);
free.vector(c-coef.vector, 1, c.coef.length);
freevector(d-coef.vector, 1, dcoef.length);
freevector(hof-n.vector,l,signalpointer->length*2);
freevector(gofn.vector,l,signalpointer->length*2);
free-vector(phi.vector,l,signalpointer->length*2);
freevector(phiflipo.vector,l,signalpointer->length*2);
freevector(phiflipc.vector,l,signalpointer->length*2);

/* THE END */
}

B.4.4 Listing of RECONSTRUCTI.C

/***
WAVELET RECONSTRUCTION SUBROUTINE

/* DATE: 2 July 91, 16 August 91
VERSION: 3.0

NAME: reconstruct1.c

DESCRIPTI3N: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is discussed in
the description of the main driver module called "main-wavel.c.
It controls the portion of the program that reconstructs a previously
decomposed signal using Mallat's multiresolution algorithm referenced
in the description of the calling program, "main-wavel.c".

FILES READ: Four coefficient files at each level of analysis.
The file names begin with the input signal filename
and end with an extension of the form ".nX" where
n is an integer that represents the level, X is one of
the letters 'c' or 'd' to represent phi or psi coef-
ficients respectively.

163

FILES WRITTEN: One file with the extension ".rec*.

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: main-wavel.c

PROGRAMS CALLED: filters. c, reconvolvel .c, spconvlv .c, nrutil. c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version.
Version 2.0 is adapted to use the spatial correlat:.on and not
th~e Fourier convolution.
Version 3.0 adapted the two dimensional program to handle only
1 dimensional signals. The command is wavel vs wave2.

/* DECLARATION SECTION *

#include <stdio-h.
#include "j smacros .h

void filterso;
void reconvolveo;
float *vectoro;
void free~vectoro;
mnt *ivectorO);
void free-.ivectoro;

1* MAIN PROGRAM BODY *

void reconstruct (signaJlpointer~infilename)
int-.vector *signalpointer;
char inf ilename El;

/* declare variables *

int i. j, kc, 1, maxlevel, wavelet-.type;
float-.vector h-.o-n, h-.ot..nflipo, h..ofnflipc, g.of..n;

float-.vector gh.of.npone = &h...otn, i,g..of..poirte
float-.vector *h-of-.nipo ointer = th-f-. *gofnfpoi e g-fn
float-.vector *g..of-.nflipopointer = &g..of-.nflipo;

float-.vector *h-.o-rflipcpointer = kh..of..nflipc;
float-.vector *g-.of.nflipcpointer = kg-.o-nflipc;
float-vector *philointer = &phi, *phiflipcpointer =kphifli-pc;
float-vector c-.coef, d-.coef;
float-.vector *c-.coefpointer= kc-.coef,* d-coefpointer= kd-.coef;
float-vector temp. *temppointer = *temp;
int-vector newsignal, *newsignalpointer k newsignal;
FILE *outfile, *infile;
char filename E64J. wave-.code(643;
float holder[64J;

/* allocate memory

temp. length = signalpointer->length;
temp.vector = vector(1, temp.length);
loopli~temp.length) temp.vector~iJ 0.0;
newsignal. length =signalpointer->length;
newsignal .vector =ivector(1, newsignal .length);

loop 1i(iewsignal. le,,gth) news ignal. vector [i] = 0.0;
c-.coef .length = signalpointer->length;
c-coef.vector = vector(1, c-coef.length);
loopli('..coef length) c..coef vector [i) = 0.0;
d-.coef .length = signalpointer->length;
d-.coef.vector =vector(1, d~coef.length);
loopii(d.coef.length) d..coef.vector[i] = 0.0;

h-.of-.n.vector = vector(1 ,signalpointer->length*2);
loopli(si~nalpointer->length*2) h-.o-n.vector~i] =0.0;
g..o-n.vector = vector(l,signalpointer->length*n);
loopoli(signalpointer->length*2) g-.of-.n.vector~i = 0.0;
phi. vector = vector(1,2*signalpointer->length);
loopli (signalpointer->length*2) phi. vector Ii] = 0.0;
phiflipc.vector = vector(1 ,2*sigfnalpointer->length);
loopli'ksignalpointer->length*2) phi!lipc .,ector~i] = 0.0;
h-.of-.nflipo.vector = vector~l,signalpointer->length*2);
loopli(signalpointer->length*2) h..o-nflipo. vector Ci] = 0.0;
g-.of-.nflipo.vect...r = vector(l,signalpointer->length*2);
loopli(signalpointer->length*2) g-of-nflipo.vector~i) = 0.0;
h-.of-nflipc .vector = vector(1 ,signalpointer->length*2);
loopli(signalpointer->length*2) h-of-nflipc. vector~i.-- 0.0;
g-.o-nflipc.vector = vector~i ,signalpointer->length-A2);
loopli(signalpointer->length*2) g~oftnflipc .vector ri] = 0.0;

/* display menu *

printC("\n\n RECONSTRUCTION MENU\n\n");
printf(" 1 = Piece-wise Constant.(N/A)\n");
printf(" 2 =Piece-wise Linear.(N/A)\n");
printf(" 3 =Daubechies N=2.n");
printf(" 4 = Daubechies N=3.\n1);
printf C" 5 = Daubechies N=4.\n");
printf C" 6 = Daubechies N=5.n");
print! " 7 =Daubechies N=6.\n");
printf C" 8 = Daubechies N=7.\n");
printf C" 9 = Daubechies N=8.n");
printf(" 10 = Daubechies N=9.n");
printf(" 11 = Daubechies N=10.\n");
printf(" 12 = Splines.\n");
printf " 13 = Morlet.(N/A)\n");
printf(," Enter ai integer (1-13):");
scanf ("%d", &wavelet-.type);

if(wavelet.type < 1 11 wavelet-type > 13)
printf("\nYou have chosen an invalid wavelet or");
Drintf("\nit is .aot currently available.");

else{

/* Set value of wavb-.code for input filename *

if (wavelet-.type 3) sprintf(wave.code, lldb2"');
if iCwavelet-type ==4) sprintf(wave-.code, l"db3l);
if (wavelet-type = 5) sprintf(wave-.code, "db4");
if (wavelet-type 6) spri4ntf~wave-.code, %W's);
if (wavelet-type ~ 7) sprintf(wave.code, %W'6):
if (wavelet-.type 8) sprintf(wave-code, "ldb7");
if (wavelet-.type 9) sprintf(wave..code, lldb8"');
if (wavelet-type 10) spr intf (wave-code, %W'9);

165

if (wavelet-type 11 i) sprintf(wave.code, "ldbO"');

if (wavel~et-.type 12) sprintf(ave-.code, "spi");

/* Generate Phi and Filters *

filters (wavelet..type ,h-ot-npointer ,g-ofnpointer ,phipointer);

/* flip the filters *

looplj (h-.o-npointer->length)
holder Eh..of.npointer->length +1 -jI= h..of..npointer->vector j);

loopij (h..of..npointer->length)
h..of..npointer->vector~j] = holder j];

loopij (g..ofnpointer->length)
holder Eg-.of.npointer->length +1 -jJ = g-of..npointer->vector j];

looplj (g-.of..npointer->length)
g-of-.npointer->vector~jj holder j];

h-of..nflipcpointer= h..ofnpointer;
g-.of-.nflipcpointer= g-of-npointer;

1* Call reconvolution routine to reconstruct from coarsest Phi *
1* coefficients and all of the psi coefficients. *

maxlevel = LOG2(signalpointer->length);/*Calculate the highest level*/

temp.length = 1;

do f /* make sure signal is bigger than filter *
temp.length *=2;
--maxievel;
I while (temp.length < h-.of.n.leligth/2);

c..coef.length = temp.length;
d-.coef.length =temp.length;
1 = 1;
for(kmaxlevel ;k>O ;--k) {

if(l = ~
sprintf (filename, "'/s.%d.c.%s", infilename, k,wave.code);
OPEN..FILE(infile, filename, "The Wavelet Analyzer")
loopli(c..coef .length)

fscanf(infile, "'.f\n", &c..coef.vector~i));
CLOSE..ILEU, filename, "The Wavelet Analyzer", infile)

I = 0;
I 1* end if *

else f
c-.coef.length = temp.length;
loopli(c-coef.length) c.coef.vector[i) = temp.vector[i];

} * end else */
sprintf(filename, "'/s.',d.d.'/,s", infilenane, k,wave-.code);
OPEN-.FILE(infile, filename, "The Wavelet Analyzer")
loopli(d..coef .length)

fscanf (infile, "'/f\n", &d..coef vector Eu);
CLOSE.FILE(i, filename, "The Wavelet Analyzer", infile)
printfC"\nPerforming reconvolution with filters, level '/d...", k);
reconvolve~temppointer, h..of-nflipcpointer, g..of-.nflipcpointer,

c..coefpointer, d-.coefpointer);

if(wavelet-type == 12)

166

loopli(temp.length) temp.vector[i] *= 2;

sprintf(fi]3name, "%s.%d.c.%s.rec", infilename,k-l,wavecode);
CREATEFILE(outfile, filename, "The Wavelet Analyzer")
loopli(temp.length)

fprintf(outfile, "Y.f\n", temp.vector[i]);
CLO..._FILE(i, filename, "The Wavelet Analyzer", outfile)
} /* end loop */

} /* end else */

/* free memory */

free.vector(temp.vector, 1, temp.length);
free.ivector(newsignal.vector, 1, newsignal.length);
free-vector(c-coef.vector, 1, c-coef.length);
freevector(dcoef.vector, 1, d.coef.length);

/* THE END */
}

B.4.5 Listing of FILTERS.C (See Appendix B.2)

B.4.6 Listing of CONVOLVE1.C

WAVELET CONVOLUTION SUBROUTINE
/***
/* DATE: 19 June 91, 16 August 91
VERSION: 2.0

NAME: convolvel.c
DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is discussed in
the description of the main driver module called "main-wavel.c".
Data is passed by reference from the decomposition subroutine. Data is
in ascii format arranged in a vector whose dimension is a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: (Passed by reference back to the caller.)

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: decomposel.c

PROGRAMS CALLED: spconvlv.c, nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version.
Version 2.0 was adapted from the two dimensional version 1.0
to handle one dimensional signals. It does not use the Fourier
space filtering indicated above.

/* DECLARATION SECTION */

#include <stdio.h>
#include "jsmacros.h"

float *vectoro);
void free-vectoro;

167

void spconvlvo);

/* MAIN PROGRAM BODY *

void convolve(datainpointer, h..of..npointer g-of-npointer, c-.coefpointer,
d-.coefpointer)
float-.vector *datainpointer;
Iloat-.vector *hof-.npointer, *g-.o-npointer;
float-.vector *c-coefpointer,*d.coefpoint er;

/* declare variables *

int i, j;
float-vector vectin,vectout,response;
float-.vector temp;
FILE *outfile;
char filename [64);

/* allocate memory *

temp.vector = vector~l, datainpointer->length);
loopii(datainpointer->length) temp.vector~i) = 0.0;
vectin.vector = vector(i ,2*datainpointer->length);
loop 1i (2*dat ainpointer->l ength) vectin. vector [i] = 0.0;
vectout .vector = vector(i ,4*datainpointer->length);
loopli idatainpointer->length*4) vectout. vector [i] = 0.0;
response. vector = vector(i ,2*datainpointer->length);
lo0pi i(datainpointer->length*2) response. vector Li) = 0.0;

vectin. length =2*datainpointer->length;

/* perform convolution *

printf ('\nConvovling signal with hC-n). ..")
looplj (datainpointer->length*2)

response.vector~j] = h-of-npointer->vectcr~j];
looplj Cdatainpointer->length)

vectin.vector~j] = datainpointer->-;ector[j];
spconvlv(vectin. vector,vectin .length,response.vector,

h-.of-.npointer->length,l1, vectout. vector);
looplj (datainpointer->length/2)

c-.coefpointer->vector~j] vectout.vector[2*j];
/* downsample by selectiny even cols *

printf ("\nConvovling signal with gC-n) ...
looplj Cdatainpointer->length*2)

response.vector[jJ = g..of-npointer->vector[j];
looplj (datainpointer->length)

vectin-vector[jJ datainpointer->vectorlj);
spconvlv(vectin.vector,vectin.length,response.vector,

g-.of-npointer->length, 1,vectout .vector);
looplj (datainpointer->length/2)

d-.cc;fpointer->vector~j] vectout.vectorE2*j);

/* reset signal inde(.es. *
c-coefpointer->length =datainpointer->length/2;
d-.coefpointer->length = datainpointer->length/2;

/* free memory *

168

free-vector(temp.vector, 1, datainpointer->length);
free-vector (vectin.vector,1,2*datainpointer->length);
free-vector (vectout.vector,1,4*datainpointer->length);
free-vector (response.vector,1,2*datainpointer->length);

/* THE END */}

B.4.7 Listing of RECONVOLVE1.C

WAVELET RECONVOLUTION SUBROUTINE

/* DATE: 2 July 91, 16 August 91

VERSION: 2.0

NAME: reconvolvel.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is referenced in
the description of the main driver module called "main-wavel.c".
Data is passed by reference from the reconstruction subroutine. Data is
in ascii format arranged in a vector whose dimension is a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numeric
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: NONE (Passed by reference back to the caller.

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: reconstructl.c

PROGRAMS CALLED: spconvlv.c, nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Initial Version.
Version 2.0 adapted from 1.0 allows only one dimensional
signals to be decomposed. It does not use Fourier filtering.

/* DECLARATION SECTION */
******* * ***************

#include <stdio.h>
#include "jsmacros.h"

float *vectoro);
void free-vectorO;

/* MAIN PROGRAM BODY *1

void reconvolve(dataoutpointer,hof-npointer,g.ofnpointer,
c.coefpointer,d.coefpointer)
float-vector *dataoutpoanter;
float-vector *h-of-npointer, *g-oftnpointer;
float-vector *c-coefpointer,*d-coefpointer;{

/* declare variables *1
**************** * ******

int i, j;

169

float-vector vectin,vectout, response;
float-vector temp,templ;
char filename [64];
FILE *outfile;

/* allocate memory *

temp. length = c-coefpointer->length*2;
temp.vtctor = vector(l, temp.length);
loopii(temp.length) temp.vector~i) = 0.0;
temp . length = c-.coefpointer->length*2;
Lempl.vector = vector(l, templ.length);
loopli(templ.length) templ.vector[i] = 0.0;
vectin.vector = vector(1 ,temp.length*2);
loopii(temp.length*2) vectin.vector~i] =0.0;
vectout.vector = vector(1 ,4*temp.length);
loopli(temp.length*4) vectout.vector~i] = 0.0;
response.vector = vector(1,temp.length*2);
loopli(temp.length*2) response.vector[i) = 0.0;
vectin. length = 4*c-.coefpointer->length;
dataoutpointer->length =c-.coefpointer->length*2;

/* perform convolution *

printf("\nConvovling c-coef with h(n). .. ");
looplj Cc-coefpointer->length) vectin .vector [2*j] c-coefpointer->vector j];
looplj (vectin.length) response.vectorj=h-of-.npointer->vector[j];
spconvlv(vectin.vector,vectin.length,response.vector,

h-.of.npointer->length, 1, vectout .vector);
loopli (c-.coefpointer->length*2) temp.vector[j] = vectout.vector~j];
/* zeros were added between each row before convolution *
printfC"\nConvovling d-.coef with g(n). ... "1);

looplj Cd-.coefpointer->length) vectin .vector [2*jJ = d-.coefpointer->vector [j];
looplj (vectin.length) response.vector[j) =g-.of.npointer->vector[j];
spconvlv (vectin. vector, vectin .length ,response .co,

g-of-.npointer->length, 1, vectout .vector);
looplj(d-.coefpointer->length*2) templ.vector[j) = vectout.vector~j);
1* zeros are added between each row before convolutiuQt *
1* Add temp vectors */
loopli idataoutpointer->length)

dataoutpointer->vector[i) temp.vector[i] + templ.vector~i];

/* reset vector indeces. *
d-.coefpointer->length =dataoutpointer->length;

1* free memory *1
free-vector(temp.vector, 1, c-coefpointer->length*2);
free-vector~templ .vector, 1, c.coefpointer->length*2);
free-vector(vectin.vector, 1, 4*dataoutpointer->length);
free-.vector~vectout.vector, 1, 8*dataoutpointer->length);

B.)1.8 Listing of SPON LV. C (lice Appendix B.2)

B-4.9 Listing of NVRUTIL.C (See Appendix F'.2) 1351

170

B-~4.10 Listing of JSXA4ROS.II (See Appendix F.2)

B.4.11 Listing of STE W4MA TII.I (See Appendix F.2)

B..4.12 Listing of MAKEFILE

Makefile routine for the wavel program by Laing and Smiley.

DEFLAGS =-g

OBJS = main-wavel.o loadsignal.o filters.o convolvel.o spconvlv.o\
decomposel .o reconstruct l.o reconvolvel .0 nrutil .o

spwave2: $COB3S)
Cecho "linking ...
cc $COBJS) -o wavel $(DEFLAGS) -im

main-gavel .0: main-wavel1. c
cc -c $(DEFLAGS) main-wavel.c

loadsignal .0: loads ignal .c
cc -c $(DEFLAGS) loadsignal.c

filters.o: filters.c
cc -c $(DEFLAGS) filters.c

spconvlv.o: spconvlv.c
cc -c $CDEFLAGS) spconvlv.c

convolvel1.o: convolvel1. c
cc -c $(DEFLAGS) convolvel.c
reconvolvel .o: reconvolvel .c
cc -c $CDEFLAGS) reconvolvel.c
decompose 1.0: decompose1. c
cc -c $(DEFLAGS) decomposel.c

resonstructi .o: reconstructi1. c
cc -c $(DEFLAGS) reconstructl.c

nrutil.O: nrutil.c
cc -c $(DEFLAGS) nrutil.c

171

Appendix C. Software to Build a World Model

C.1 System Description of the FBUILD Program

This program requires as input the output of the "wave2" program. When running

the "wave2" program, any available wavelet may be used. However, the filenames of the

approximation images required as input to the "fbuild" program must have the wavelet code

suffix stripped off before running the the "fbuild" program. In the case of the anlaysis of

Chapter VI of the author's thesis, we used the cubic spline wavelet in the "wave2" program.

Therefore, the ".spl" had to be removed from the end of each of the approximation files

whose names were "wkanisza.512.1.c.spl" through "wkanisza.512.4.c.spl".

Three parameters are adjustable before compile time: 1. The level or depth that

"fbuild" uses to build the frames, 2. The window size in pixels that "fbuild" uses to de-

termine the spatial extent of information taken from each level for each fixation point, and

3. the number of fixation points used to build the composite image. These parameters may

be changed in the declaration section of the fbuild.c file in the #define statements.

To run the program, type at the command line the following:

command prompt: fbuild <filename> <size>

The filename and its size are optional entries on the command line. If not used, "fbudd

will prompt the user for these items.

The "fbuild" program was written for the masters thesis of J. Stewart Laing. It was

used in the evaluation executed in Chapter VI of that thebis for the Air Force Institute of

Technology. The atthor has no intention of maintaining this prograin or enhanicing it in tny

way.

The following is a list of functions which comprise the wave program:

1. fbuild.c - The main program for fbuild.

2. futil .c - Utility functions written specifically for the fbuild program.

172

3. nrutil.c - Iltiltity functions Numerical Rccipies in C (See Appendix F 2 for listing)

[35]. decomposition.

4. spline. c - A routine from it Numerical Recipies in C used in the cubic spline expansion

[35].

5. splint.c - A routine from Numerical Recipies in C used to perform cubic spline

interpolations [35].

6. splin2.c - A routine from Numerical Recipies in C used in two dimensional cubic

spline interpolations [35].

7. makefile - A makefile that is used to compile and link the source code to make an

executable file.

8. j smacros . h - An include file that contains macros we found useful in our programming

environment. This file must be present in the directory where compilation takes place

(See Appendix F.2 for listing).

9. stewrath.h - An include file containing some math routines specific to our program.

It must be present in the directory where complilation takes place (See Appendix F.2

for listing).

Typing "make" at the command prompt in any directory with all of the above files present

will create the appropriate object code and an executable file called fbuild that may be exe-

cuted by typing "fbuild" at the command prompt.

C.2 FBUILD Program Software

C.2.1 Listing of FBUILD.C

/***

FRAME BUILDER MAIN PROGRAM DRIVER

/* DATE: 14 Aug 91

VERSION: 1.0

173

NAME: fbuild.c

DESCRI'TION: This program builds frames for a model of the hum.n visual
system based on the characteristic of the human eye to scan and fixate
to build a world model for use in the brain. The program uses as input
data the approximation images from a wavelet multiresolution decompostion.
In begins with the approximation at a given level of resolution and builds
a frame based on given fixation coordinates in the original image.

FILES READ: approximation images as generated by the wave2
program with the wavelet type suffix stripped off.

FILES WRITTEN: The output file is one frame with the suffix .frm

HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h",
<math.h>

CALLING PROGRAMS: NONE

PROGRAMS CALLED: futil.c, nrutil.c

AUTHOR: J. Stewart Laing

HISTORY: Initial Version.*/
/***************************IC***
I************************-* **************************

/* DECLARATION SECTION *

#include <stdio.h>
#include "jsmacros.h"
#include "stewmath.h"
#include <math.h>
#define WIDTH 4
#define DEPTH 4
#define FRAMES 15

void extractO;
void expandi();
void inserto;
float **matrixo;
void free_matrixo);
float *vectorO;
int *ivectoro;
void free.vectoro;
void freeivectoro;

/* MAIN PROGRAM BODY *1

void main(argc, argv)
int argc;
char *argv[);

/* declare variables */

int i,j,k,l,m, fwidth, depth, x, y, *X, *Y, row, col, offset;
char infilename[64), filename[643;
float-array a, dl, d2, d3, d, exp, frame;
FILE *infile, *outfile;
float **sub, ceil;

/* load image to be analyzed *1

if(argc != 3 && argc != i){
printf("Usage: fbuild <filename> <N for NxN array of original image>\n");
exit(O);
}

1 74

if(argc ==)
printf("\n\n\n Input the size of the image (N for NxN array):");
scanf("%d", &frame.ROW);
printf(" \n\n Input filename of image to be histogramed:>"); fflush(stdout);
scanf("%s", infilename);

else f
sprintf(infilename, 11%s", argv[il);
sscanf(argv[2), "Ud", &frame.ROW);

1* Allocate Memory *

fwidth = WIDTH;
depth = DEPTH;
exp.ROW = fwidth*(int)(pow(2.0,(double)depth));
a.ROW = 2*frame.ROW;
a.COL = a.ROW;
a.array = matrix~l, a.ROW, 1, a.COL);
looplij(a.ROW,a.COL) a.array~i][j] = 0.0;
frame.ROW *=2;
frame.COL =frame.ROW;
fraine.array = matrix~i, frame.ROW, 1, frame.COL);
looplij(frame.ROW,frame.COL) frame.array~i]j] =j 0.0;
exp.COL = exp.ROW;
exp.array = matrix~i, exp.ROW, 1, exp.COL);
looplij~exp.ROW,exp.COL) exp.arrav[i][j] 0.0;
sub = matrix~l, 2*fvidth, 1, 2*fwit 1-;
looplij (2*fwjdth.2*fwidth) sub[iJ[= 0.0;
I*d.ROW = frame.ROW/Cint) Cpow(2.o, Cdouble)depth));
d.COL = d.ROW;
d.array = matrix(l, d.ROW, 1, d.COL);
looplij(d.ROW, d.COL) d.array~iJ[j] = 0.0;
dl.ROW = fraiue.ROW/(int)(powC2.0,(double)depth));
dl.COL = d.ROW;
dl.array = matrix(l, dl.ROW, 1, dl.COL);
looplij(dl.ROW, dl.COL) dl.array~i]Ej) 0.0;
d2.ROW = frame.ROW/(int)(powC2.0,Cdouble)depth));
d2.COL = d2.ROW;
d2.array = matrix(l, d2.ROW, 1, d2.COL);
loopiij~d2.ROW, d2.COL) d2.array~i][j) 0.0;
d3.ROW = frame.ROW/Cint)(poii(2.0,(double)depth));
d3.COL = d3.ROW;
d3.array = matrix(l, d3.ROW, 1, d3.COL);
looplij~d3.ROW, d3.COL) d3.array~iJ[j] = 0.0;*I

/* prompt user for fixation coordinate;

/*printfC"\n\n Input the number of -oordinates in memory:");
scaf ("7.d,&1);

X =ivector~l, 1);
Y = ivector~l, 1);

loopli(1) (
printf("\n\n Input col coordinate XY~d:",i);
scanf('%d", &X~iJ);col = i]
printf("\n\n Input row coordinate Y%d:",i);
scanf("%d', &Y~il);row = Y~i);

1=FRAMES;

175

X = ivector~i, 1); Y =ivector(i, 1);

sprintf (filename, "coll5.x"l);
OPEN.FILE~infile, filename, "The Frame Builder")
loopli~i) fscanf(infile, "7.dn", WXi]);
CLOSE-.FILE(i, filename, "The Frame Builder", infile)

sprintf(filename, "rowl5.y");
OPEN-.FILE(jnfile, filename, "The Frame Builder")
loopii(l) fscanf(infile. "Wdn", kYli));
CLOSE..FILE(i, filename, "The Fr~ane Builder", infile)

1* pron~t user for fixation threshold *

1*printf("\n\n Input the threshold for fixation(float):");
scanfC'/,f",&ceil) ;*/

1* set size of arrays for reading *
a-ROW = (frame.ROW/2)/(int)CpowC2.o,Cdouble)depth));
a.COL = a.ROW;
offset = frame.ROW/4;

/* read in coarsest approxim~ation and details *

/*printfC"\nreading.. .\n") ;fflush(stdout);
sprintf(filename, "%s .%d. c", infilename, depth);
OPEN-.FILE(infile, filename, "The Frame Builder")
looplij (a.ROW,a.COL) fscanf~infile, "%f\n", ka.array~i) EjJ);
CLOSE-.FILE(i, filename, "The Frame Builder", infile)*f

/*printf("\nreading.. .\n") ;fflush(stdout);
sprintf(filename, "'.s.'/d.dl", infilename, depth);
OPEN-.FILE(infile, filename, "The Frame Builder")
looplij (a.ROW,a.COL) fscanf(infile, "%/f\n", kdl .array~ij Ej));
CLOSE-.FILE(i, filename, "The Frame Builder", infile)

printf("\nreading. .. \n") ;fflush(stdout);
sprintf(filenane, "'1.% 'd.d2"', infilename, depth);
OPEI..FILE(infile, filename, "The Frame Builder")
looplij Ca.ROW,a.CaL) fscanf(infile, "%Afn", *d2.array~i1jDJ;
CLOSE-.FILE(i, filename, "The Frame Builder", infile)

printf("\nreading. .. .\n") ;fflush~stdout);
sprintf (filename, "'/s.'/d.d3", infilename, depth);
0PEN-.FILE~irifile, filename, "The Frame Builder")
looplij~a.ROW,a.COL) fscanf~infile, "Mfn", Md.array[iJ EjJ);
CLOSE-.FILE(i, filename, "The Frame Builder", infile)*/

/* find fixation vectors */
/X= ivector(l, d.COL*d.ROW);

Y =ivector~i, d.ROW*d.CaL);

1=0;
looplij~d.ROW, d.COL){

d.array~i]j j = dl .array~i) (jJ+d2.arrayliJ (jJ+d3.array~iJ Ej);
if~d.array[iJ[jJ > ceil){

ifC(i< 31) kk (j<31))(

X[13 i;printf("\nX[%d)=%d",l,X[1l);fflush~stdout);
Y[11 = j ;printf("\nY(/d)=%/d",l,Y[lJ) ;fflush~stdout);

printf("\nThere are %d fixation points", l);fflush(stdout);
/* expand coarsest approx to form 1background of frame *

176

/*printf("\nexpanding... \n") ;fflush~stdout);
expandl(a.array, a.ROW, frame.ROW, frame.array);*I

1* read in already expanded approximation of coarsest approx
to form background of frames. */

printf("\nreading. ..\n") ;fflush~stdout);
sprintf(filename, "7.s .%d. c. exp", infilename, depth);
OPEN-.FILE(infile, filename, "The Frame Builder")
looplij (frame. ROW/2,frame .COLI2)

fsca.if(infile, '/f\n", &frame.array~i+offsetJ [j+offset]);
CLOSE-FILE(i, filename, "The Frame Builder", infile)

/* begin iteration */

for~kdepth-1 ;k>0O;k--){

/* read in next approx. *

printf('\nreading.. .\n"l) ;fflush~stdout);
a.ROW *= 2; a.COL *= 2;
sprintf (filename, "%s.%d.c", infilename, k);
OPEN...FILE(infile, filename, "The Frame Builder")
looplij (a.ROW,a.COL)

fscanf(infile, "'hf\n", &a.array Ei+offsetJ Ej+offset]);
CLOSE..FILE(i, filename, "The Frame Builder", infile)

looplM(l){

/* extract area of approx. *
printfC"\nextracting... \n") ;fflush(stdout);
x = ((X~mJ/(fwidth*2))*(fwidth*2))+(fwidth);
y =((Y~mJ/(fvidth*2))*Cfwidth*2))-(fwi-dth);
x =(x-1)/(int)(pow(2.O,(double)k))+1;
y = (y-i!/Cint)(pow(2.O,Cdouble)k))+l;

x - (fwidth-1);

X(m) 2*(X~m)-l)+I;
Yrm) = 2*(Y[m)-l)+l;

extract(a.array, fwidth*2, x+offset, y+offset, sub);

/* expand to scale of frame */

printf("\nexpanding. . .\n") ;fflush(stdout');
exp. ROW = fwidth*2* (frame. ROW/2) Ia. ROW;
exp.COL = exp.ROW;
printfC"\narea=Ydx%d",.exp.ROW,exp.COL) ;ffltesh~stdout);
printfC"\nvector=%d" ,m) ;fflush(stdout);
expaldl (sub, fuidth*2, exp. ROW, exp.array);

/* overwrite new approx onto frame */

printfC"\ninserting. . .\n") ;fflush(stdout);
x = Cint)Cpov(%2.O,(double)k))*(x-l)+l;
y = int)(pov(2.O,(double)k))*(y-1)+1;
insert~exp.array, exp.ROW, x+offset, y+offset,

frame.array);

}/* end m loop*/

/* recenter coordinates *

/*loopli(l){
X~iJ += fwidth/2;
Y~iJ += fwidth/2;
}*If* end i loop *

}*end k loop */

/* write frame to a file *

177

printf("\nwriting .. .\n") ;fflushfstdout);
sprintf(filename, "%s .frm./.d%d", infilename, row, col);
CREATE-.FILE(outfile, filename, "The Frame Builder")
looplij (frame. ROW/2,frame. COL/2)

fprintf(outiile, "%f\n'. fraxne.ar--ay~i+offset) £j+offset]),;
CLOSE-.FIu.E'ki, filename, "The Frame Bui2der", outfile)

1* free memory *1
exp.I-:OW = fwidth*(int) Cpow(2.0, (diuble)depth));
a.ROW = frame.ROW;
a.COL = a.P.OW;
exp.COL = exp.ROW;
free-matrix(a.array,1 ,a.ROW, 1,a.COL);
free..matrix(exp.array A ,exp.ROW,1 ,exp.COL);
free-.matrix(frame.axray,l1,frame .ROW, 1,frame.COL);
free-.matrix(sub, 1,2*f width, 1,2*fwidth);

/* THE END *

C.2.2 Listing of FUTIL. C

FRAME BUILDER UTILITY SUBROUTINE

/4* DATE: 14 Aug 91

VERSION: 1.0

NAME: futil.c

DESCRIPTION: This program Provides the utilities f or cubic
spline interpolation based expanlsion of the images used mnt
the fbuild program.

FILES READ: NONE

FILES WRITTEN: NONE

HEADERS USED): <stdio .h>, "j smacros -h", "stewmath .h
<math.h>
CALLING PROGRAMS: fbuild.c
PROGRAMS CALLED: nrutil.c, spline.c, splint.c, splin2.c

AUTHOR: 3. Stewart Laing
HISTORY: Initial Version.

#incl~ude <math.h>
#include "jsmacros .h"
#include <stdio ->
float **matrixo;
float *vectoro;
void free-.vectoro);
void free-.matrixo;

void extract(in, window, X, Y, out)
float **n **out;
int X, Y, window;

mnt ij;
for(i=Y; i<Y+window; i++)

for(j=X; j<X+window; j++) outti-Y+zJj-.+1J in(iJ(jJ;

178

void expand(in, small, big, out)
float **in, **oat;
int small, big;

int i,j,k,l, factor;

factor =big/small;
loopiij (small ,small)

looplkl(factor ,factor) out Efactor*(i-1)+k) Efactor*(j-1)+lI in[i) [jJ;

I
void insert(in, window, X, Y, out)

float **in, **out;
mnt window, X, Y;

mnt ij;
for(i=Y; i<Y+window; i++)

for(j=X; j<X+window; j++) out~i]j Ej in~i-Y+i) Ej-X+1];

void expandO~in, small, big, out)
mnt small, big;
float **in, **out;

f
mnt i,j,k,l, factor;
float *tab, **yp;

tab =vector(1, small);

yp =matrix~i, small, 1, small);

factor = big/small;
loopii(small) tab~i] = factor*i;
loopii(small) spline(tab, in~i], small, 1.0e30, 1.0e30, yp~i));
loopiij (small ,small)

loopkl(factor, factor)
splin2(tab,tab,in,yp,small,small, (float)Cfactor*i-k),

(float) (factor*j-l) ,&out Efactor* i-k] Efactor*j-l]);

free..vector(tab, 1, small);
free..matrix~yp, 1, small, 1, small);

void expand2(in, small, out)
mnt small;
float **in, **out;

mnt i,j,k,l, factor;
float **yp, *tmp, *ptmp, *tab;
void splineo, splinto;

yp =matrix~i, small, 1, small);
tab vector(l, small);
tmp vector(l, small);
ptmp vector(1, small);

loopli(small) tab~i) = 2*i;
loopii(small) spline(tab, in~i], small, 1.0e30, 1.0e30, yp~i));
loopiij (small, small){

out E2*i) E2*j) in Ci] jJ;
splint(tab, in~i], yp~i], small, (float)(2*j-1), kout(2*i]E2*j-1]);
I

loopiij (small, small*2){

179

looplk(small) tmp~k] = out[2*k] Ci];
spline~tab, tmp, small, 1.0e30, l.0e30, ptmp);
splint~tab, tmp, ptmp, small, (float)(2*i-i), &o,,t[2*i-1[j Ci);
I

free-.matrix(yp, 1, small, 1, small);
free..vector(tmp, 1, small);
free-vector(ptmp, 1, small);
free-.vector~tab, 1, small);

I
void expandi~in, small, big, out)

int small, big;
float **in, **out;

int i,j,k,l, factor, index;
float **tmp;
if(smallbig) looplij (small,small) out Ci] Cjlin i] j);
else f

tmp = matrix(i,big,1,big);
factor =big/small;
index =(int) (log((double)factor)/log(2.0));

looplij(small,small) tmp~ij j] - ini] C];
loopli(index){

expand2(tmp, small, out);
small *= 2;
loopikl(small, small) tmp~k] Cl] = out~k] Cl];

free..matrix(tmp, 1, big, 1, big);

C.2.3 Listing of NRTUIL. C (See Appendix F.2)

0.2.4 Listing of SPLINE. C

void spline~x,y,n,ypi,ypn,y2)
float xC] ,yC] ,ypl,ypn,y2 C];
mnt n;
f
int i,k;
float P,qn,sig,un,*u,*vectorO;
void free-.vectoro;

u=vector(i,n-1);
if Cypi > 0.99e30)

Ci2 Elu Ell =0. .0;
else f
Y2C11 = -0.5;
u~i] =(3.0/(xC2]-x~i))*((y C2]-y~i])/(xC2]-x Ci])-ypi);
I
for (i=2;i<=n-i;i++){
sig=(x~i]-x~i-i])/(x~i+i]-x~i-l]);
psig*y2Ci-l]+2 .0;
y2[i>=(sig-i .0)/p;
uli]=(y~i+1] -y~i])/(xli+i)-xliJ) - (Yi]-y~i-i] /(x~i)-x~i-i]);
u i)=(6 . *u Ci]/(xli+1 -x i-i])-sig*u i-i))/p;
I
if (ypn > 0.99e30)
qnunO0.0;
else{

180

qn=O.5;
un=(3.O/(xn-x[n-i)))*(ypn-CyLnl-y~n-1J)/(x[n)-x~n-i]));

y2[n>=(un-qn*u[n-1))/(qn*y2[n-1]+1 .0);
for (kn-l;k>=l;k--)
y2 Ek)=y2 (IC)*y2 Ek+1) +u (IC;
free-.vector(u,l1,n-i);
I

0.2.5 Listing of SPLINT. C

void splint(xa,ya,y2a,n,x,y)
float xaEJ,ya[J,y2a[],x,*y;
jint n;

int klo,khi,k;
float h,b,a;
void nrerroro;

klo=l;
khin;
while (Ikhi-kia > 1){
k=(khi+klo) >> 1;
if (xa~k) > x) khi~k;
else klok;
I
hxa (khi) -xa (Ilo);
if (h ==0.0) nrerror("Bad XA input to routine SPLINT");
a=(xa~khi) -x)Ih;
b=(x-xa~klo))/h;
*ya*ya[klo)+b*ya~khi]+((a*a*a-a)*y2a~klo)+(b*b*b-b)*y2a~khi))*(h*h)16.0;

C.2.6 Listing of SPLIN2. C

void splin2(xia,x2a,ya,y2a,m,n~x1,x2,Y)
float xla[] ,x2a() ,**ya,**y2a,xi,x2,*y;
mnt m,n;
fmnt j;
float *ytmp,*,yytmp,*vectoro;
void splineo),splinto),free-.vectoroC;

ytmp=vector(1 ,n);
yytmpvector(1 ,n);
for (j1l;j<m;j++)
splint(x2a,ya~j) ,y2a~j) ,n,x2,&yytmp~jJ);
spline(xla,yytmp,m,l.0e30,1.0e30,ytmp);
splint~xia,yytmp,ytmp,m,xl ,y);
free-.vector~yytmp,l1,n);
free-.vector~ytmp,l1,n);

C.2.7 Listing of JSMA CR05.11 (See Appendix F.2)

0.2.8 Listing of STE WMA TH.H (see Appendix F.2)

C.2.9 Listing of MAKIEFILE

Makefile routine for the Frame Builder by Laing and Smiley.

181

DEFLAGS =-g
OBJS = fbuild.o futil.o nrutil.o splin2.o spline.o splint.o
fbuild: $(DBJS)
Mecho "linking
cc $(OBJS) -o Ibuild $(DEFLAGs) -lm
fbuild.o: fbuild. c
cc -c $(DEFLAGS) fbuild.c
futil.o: futil.c
cc -c $(DEFLAGS) futil.c
nrutil.o: nrutil. c
cc -c $(DEFLAGS) nrutil.c
splin2.o: splin2.c
cc -c $(DEFLAGES) splin2.c
spline.o: spline. c
cc -c $CDEFLAGES) spline.c
splint.o: splint.c
cc -c $(DEFLAGES) splint.c

182

Appendix D. Software for the Spatial- Temporal Model

D.1 System Description

The following programs are used in th" spatial-temporal analysis of Chapter VII:

1. kangen - A program used to generate the frames used in the analysis.

2. wave2 - The Multiresolution Wavelet Decomposition and Reconstruction program for

two dimensional images (See Appendix B.1).

3. vbuild - A program used to reduce the total number of time signals that are processes

by the wavel program.

4. stripld - A program that srips the one dimensional time signals designated by the

vbuild program for processing by the wave1 program.

5, wavel - The Multiresolution Wavelet Decomposition and Reconsruction program for

one dimensional signals modified for use in the analysis of Chapter VII (See Appendix

B.2).

6. rbuild - A program used to rebuild tihe frames based on the output of the wavel

program.

7. tblur - A program used to animate the output of the rbuild program for demonstration.

The "kangen" program and the "tblur" program run on a Silicon Graphics workstation.

The others run on any sytem with an ANSI C compiler. The "wave2" is described in Chapter

IV and listed in Appendix B. Listed in this appendix are the "vbuild", "stripld", "rbuild",

and those modules of the "wavel" program that were modified from those in Appendix B

for the spatial-temporal analysis.

The "kangen" program is used to create the files that contain the individual frames of

the scene to be analyzed. To tun this program, type the following on the command line:

183

command prompt: kangen

The parameters are hard coded and must be set before the program is compiled. Each

output file from this program is then run through the "wave2" program separately to generate

the desired level of resolution to be used in the analysis. Whatever level of resolution is used

the output files must be cxpanded to the sample scale of the original "kangen" output before

proceeding. The "expd" program may be used for this purpose (see Appendix F.2 for listing).

The output of the "wave2" program is used as input to the "vbuild", "stripid", and

"rbuild" programs. Two parameters are adjustable in these programs: 1. The number of

frames in the scene to be analyzed, and 2. The number of vectors found by the "vbuild"

program. Of these three, the "vbuid" program must be run first to generate the locations of

the pixels that will be used as the one dimensional time signals. To run this program type

on the command line the following:

command prompt: vbuild <filename> <size>

The filename and its size are optional parameters. If they are not entered on the

command line, "vbuild" will prompt the user for them. The filename is a common first

part of all the frame files that are asctually read individually. For example, the filel.ame

"frame" would signal the "vbuild" to look for files named framex.asc where the x is the

frame number starting at I and increasing by one up to the value of FRAMES set in the

declaration section with the #define statement. The output of the "vbuild" program are the

files strip.x and strip.y. These files are read in by the "stripld", "rbuild", and the modified

"wavel" programs.

Next, the stripld program is run by typing the foliowing command at the command

prompt:

command prompt: stripid <filename> <size>

Treatment of arguments is the same as for the "vbui!d" program above. The output of

the "stripid" program is a file that contain.5 the one dimensional time signals used as input

184

for the modified version of the "wavel" program. To rim the "wavel" program, type the

following on the command line:

command prompt: wavel <filename> <size>

Treatment of arguments is the same as for the "vbuild" program above. The output

of the "wavel" program are files that contain the multiresolution approximations of the

time signals. One of these files is used as input to the "rbuild" program specified by in the

source code of the "rbuild" program. To run the "rbuild" program type the following on the

command line:

command prompt: rbuild <filename> <size>

Treatment of the arguments is the same as for the "vbuild" program described above.

The output of the "rbuild" program represents the 3D Multiresolution Wavelet Decomposi-

tion of the the original set of frames. The output are files that can be animated with the

"tblur" program.

The "tblur" program generates an animation of successive frames of a scene. To run

the program, simply type the following on the command line:

command prompt: tblur

All parameters indluding the name and size of the files that contain the frames are

hard coded in the "tblur" program and must be properly set before compilation.

D.2 Spatial-Temporal Analysis Softare

D. 2.1 Listing of KA NMO V. C

BREATHING KANISZA TRIANGLE PROGRAM

/* DATE: 3 Sept 91
VERSION: 1.0

NAME: kanmov.c

DESCRIPTION: This program generates a "breathing" Kanisza Triangle
illusion on the slicon Graphics computers. There may be some code
which is specific to the 4D series computers. To run the program just
type <kanmov> at the command prompt. Pressing the down arrow will cause
the motion to appear faster. Continued depressions will eventually slov
the Pnimation to a stop and then speed up again. Pressing the up arrow

185

causes the opposite effect. Pressing the right arrow increases the minimum
closure of the packmen up to the maximum angle defined in the code.
Pressing the left arrow decreases the minimum
closure of the packmen until it reaches 0 degrees.

-YLES READ: NONE

FILES WRITTEN: Frames may be output in a binary format by pressing
the spacebar at any time. The files are named "framex.bin".
where x stands for the number of frames saved up to that
point since the program was started.

KEADERS USED: <stdio.h> <device.h> <gl.h>

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing (with help from John Brunderman and Greg Tarr)
HISTORY: Initial Version.*/

#include <device.h>
#include <gl.h>
#include <stdio.h>

#define ANGLEINC 10
#defin, SETX 255
#defin' SETY 256
#define XORG 200
#define YORG 200

main(){
int i, j, k=O, speed = 10, total-50, sign=1, basel=300;
int base2=1500, base3= -900, XO, Y=1, maxangle=544;
int minangle=O;
long twin, radius, aradius, xsize, ysize, center[2];
short val;
unsigned short *image;
long key, t1[2], t2[2], t3[2], c112], c212], c312];
FILE *outfile;
char filename [64);

image = (unsigned short *)calloc(SETX*SETY, sizeof(unsigned short));

prefposition(XORG, XORG+SETX-1, YORG, YORG+SETY-1);

twin = winopen("Kanisza");
doublebuffero;
gconfigo;

getsize(kxsize, &ysize);
radius = .1*xsize;
aradius = .31*xsize;
center[X] = xsize/2.0;
center[Y] = ysize/2.0 + .04*ysize;
c1[X] = center[X) - .28*xsize;
cl[Y] = center[Y] - .16*ysize;
c2[X] = center[X] + .28*xsize;
c2[Y] = center[Y] - .16*ysize;
c3[X] = center C!);
c3[Y] = center[Y] + .32*ysize;
tl[X] = center[X] - .28*xsize;
ti[Y] = center[Y] + .16*ysize;
t2EXJ = center[X) + .28*xsize;
t2EY] = centerEY] + .16*ysize;
t3[XJ = center[X];
t3EYI = centerEY] - .32*ysize;

linewidth(5);

i86

qdevice(UPARRJWKEY);
qdevice(DOWNARRaWKEY);

* qdevice(LEFTARROWKEY);
qdevice(RIGHTARROWKEY);
qdevice(ESCKEY);
qdevice(SPACEKEY);

while (TRUE) (
while Ckjtesto) f

total+=sign*speed;

1* do drawing *
color(WHITE);
clearo;
color(BLACK);
circfi((int)ci CX),(int)clCYJ ,(int)radius);
circfi((int)c2[XJ ,(int)cZE[Y),(int)radius);
circfi((int)c3EX) ,Cint)c3EY) ,(int)ra' us);
bgnclosedlineo;
v2i(tl);
v2i~t2);
v2i(t3);
endclosedlineo;

color(WHITE);
arcfi((int)ciEX) ,(int)cl[Y) ,(int)aradius, basel - total,

basel + total);
arcfi((int)c2[X) ,Cint)c2EYJ ,(int)aradius, base2 - total,

base2 + total);
a::cfi((int)c3[X) (int)c3[Y) ,(int)aradius, base3 - total,

base3 + total);
if C(total > maxangle) 11 (total < minangle)) sign = -sign;

swapbufferso;

/* get keyboard input *

val = 1;

while (val) f
key = qread(kval);
if((key!=UPARROWKEY) kk (key! DOUNARROWKEY) U& (key! ESCKEY)
kk (key !=LEFTARROWKEY) kk (key !=RIGHTARROWKEY)
&& (key !SPACEKEY))

val = 0;

/* act on keyboard input *
switch (key) (
case UPARROWKEY:
speed++; /*speed += 7*
break;

case DOWNARROWKEY:
speed--;
break;

case.LEFTARROWKEY:
minangle - ANGLEINC;
if (minangle < 0) minangle =0;
break;

case* RIGHTARROWKEY:
minangle += ANGL.EINC;
it (minangle > maxangle) minangle =maxangle;
break;

case ESCKEY:
gexit();
break;

case SPACEKEY:
rectread(O, 0, SETX-1. SETY-1, image);

187

k++;

sprintf(filename, "framed.bin", k);
outfile = fopen(filename, "w");
if(outfile == NULL)

printf("Error opening %s as inp'- file", filename);
else{

for(i=O; i<SETX*SETY; i++) if(image[i]!=O) image[i=255;
fwrite(image, sizeof(unsigned short),(SETX*SETY), outfile);
fclose(outfile);

}
break;

} /* end switch */

} /* end while(TRUE) */
} /* THE END *1

D.2.2 Listing of KANGEN.C

BREATHING KANISZA TRIANGLE PROGRAM

/* DATE: 3 Sept 91

VERSION: 1.0

NAME: kanisza.c

DESCRIPTION: This program generates a "breathing" Kanisza Triangle
illusion on the Silicon Graphics computers. There may be some code
which is specific to the 4D series computers. To run the program just
type <kanisza> at the command prompt. Pressing the down arrow will cause
the motion to appear faster. Continued depressions will eventually slow
the animation to a stop and then speed up again. Pressing the up arrow.
causes the opposite effect. Pressing the right arrow increases the minimum
closure of the packmen up to the maximum angle defined in the code.
Press'ng the left arrow decreases the minimum
closure of the packmen until it reaches 0 degrees.

FILES READ: NONE
FILES WRITTEN: Frames may be output in a binary format by pressing

the spacebar at any time. The files are named "framex.bin".
where x stands for the number of frames sated up to that
point since the program was started.

HEADERS USED: <stdio.h> <device.h> <gl.h>

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing (with help from John Brunderman and Greg rarr)

HISTORY: Initial Version.

#include <device.h>
#include <gl.h>
#include <stdio.h>

#define ANGLEINC 10
#define SETX 256
#define SETY 256
#define XORG 200
#define YORG 200

maino{

int i, j, k=O, speed = 10, total=50, sign=l, basel=300;
int base2 1500, base3= -900, X=O, Y=1, maxangle=544;
int minangle=O;

ISS

long twin, radius, aradius, xsize, ysize, center[2];
short val;
unsigned short *image;
long key, t1[2), t2[21, t3[2), cl[2), c2[23, c3[2];
FILE *outfjle;
char f ilename [64];

image = (unsigned short *)calloc(SETX*SETY, sizeof(unsigned short));

prefpositionXORG, XORG+SETX-1, YORG, YORG+SETY-1);

twin =winopenC"Kanisza");

doublebuffero;
gconfigo;
getsizeCkxsize, kysize);
radius .1*xsize;
aradius =.31*xsize;
center[X) = xsize/2.O;
center[Y] = ysizel2.O + .Cl*ysize;
clEX) = center[XJ - .28*xsize;
ciCY) centerEY) - .16*ysize;
c2EX) centerEX) + .28*xsize;
c2EY] = centerEY] - - 16*ysize;
c3[XJ = center CX);
c3[YJ = centertY) + .32*ysize;
ti[X) = centerEX) - .28*xsize;
ti[Y] = center[Y) + .16*ysize;
t2[XJ = centerEX) + .28*xsize;
t2EYJ = centerEY) + .16*ysize;
t3EX) = centerEX);
t3[Y1 = centerEY) - .32*ysize;

linewidth(S);

qdevice(UPARROWKEY);
qdevice(DOWNARRQWKEY);
qdevice(LEFTARROWKEY);
qdevice(RIGHTARROWKEY);
qdeviceCESC(EY);
qdevice(SPACEKEY);

while (TRUE) f
while (!qtesto) f

total+=sign*speed;

1* do drawing *
color (WHITE);
clearo;
color(BLACK);
circfi((int)ciEX) ,Cint)ciEY),Cint)radius);
circfiC(int)c2EX) ,(int)c2EY , (int)radius);
circfi((int)c3 CX) (int)c3EY , (int)radius);
bgnclosedlineo);
v2i(tl);
v2i(t2);
v2i(t3);
endclosedlineo;

color(WHITE);
arcfi((int)ciEXJ,(int)c1EY) ,Cint)aradius, basel - total,

basel + total);
arcfi((inr)c2EX) ,Cint)c2EY) ,(int)aradius, base2 - total,

base" + to~tal);
arcfi((int)e.3EXJ ,(int)c3EY) ,(int)aradius, base3 - total,

base3 +- total);
if((total > maxangle) 11 (total < minangle)) sign =-sign;

swapbufferso;
speed = 0;}

/* get keyboard input */

val = 1;

while (val) {
key = qread(kval);
if((key!=UPARROWKEY) kk (key!=DOWNARROWKEY) kk (key!=ESCKEY)
&k (key ! LEFTARRO9KEY) kk (key ! RIGHTARROWKLY)
kk (key ! SPACEKEY))

val = 0;}

/* act on keyboard input */

switch (key) {
case UPARROWKEY:
/*speed++;*/ speed += 17;
break;

case DOWNARROWKEY:
speed--;
break;

case LEFTARRORKEY:
minangle -= ANGLEINC;
if (minangle < 0) minangle 0;
break;

case RIGHTARROWKEY:
minangle += ANGLEIIC;
if (minangle > maxangle) minangle = maxangle;
break;

case ESCKEY:
gexito);
break;

case SPACEKEY:
rectread(O, 0, SETX-1, SETY-1, image);
k++;

sprintf (filename, "frameld .bin", k);
outfile = fopen(filename, "w");
if(outfile == NULL)

printf("Error opening %s as input file", filename);
else{

for(i=O; i<SETX*SETY; i++) if(image[i!=O) image[i]=255;
furite(image, sizeof(unsigned short),(SETX*SETY), outfile);
fclose(outfile);I

break;
} /* end switch */

} /* end while(TRUE) */
} /* THE END */

D.2.3 Listing of VBUILD.C

BREATHING KANISZA TRIANGLE PROGRAM

/* DATE: 3 Sept 91

VERSION: 1.0

NAME: vbuild.c

DESCRIPTION: This program generates two files that
represent the x and y coordinates of pixels in the input
image that vill be processes with the wavel program.

FILES READ: Input file name given on command line or program

190

prompt.

FILES WRITTEN: Two files named strir.x and strip.y.

HEADERS USED: <stdio.h> <math.h> "jsmacros.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing

HISTORY: Initial Version.

#include <stdio .1>
#include "jsmacros.h"
#include <math.h>
#define FRAMES 32
#define THRESH 128.0
int **imatrixo;
void free-.imatrixo;
float *vectoro;
int *ivectoro;
void free~vectoro;
void free-.ivectoro;
float **matrixo;
void free-.matrixo;

void main(argc, argv)
mnt argc;
char *argv[0;

mnt i,j,k,l, *X, *Y, size, **temp;
char infilenane [64), filename [64);
FILE *infile, *outfile;
float **in;

1* load parameters *

if(argc != 3 && argc 1=1)
printf("Usage: fbuild <filename> <N for NxN array of original image>\n");
exit(0);

I
if(argc ==1)4:

printf("\n\n\n Input the size of the image (N for NxN array):")
scanf("%/d", &size);
printf(" \n\n Input filename of image to be histogramed:>");
fflush~stdout);
scanf("%s", infilename);

else 4
sprintf (infilenane, "Us", argv [1));
sscanf(argvE2j, "17/d", &size);

/* allocate memory *
in =matrix~i, size, 1, size);
temp = imatrix~i, size, 1, size);
looplii(size, size) temp~iJ[j) = 0;
X = ivector~i, size*size);
Y = ivector(1, size*size);

1* load approximations and accumulate high spots *
looplk(FRAMES) {

sprintf(filenane, "'hs'Id.asc", infilename, kc);
OPEN.FILE(infile, filename, "The Vector Builder")
looplij(size, size){

191

fscanf(infiie, "/.f\n", &in[i] [j]);
if(in[i] [jJi< THRESH){

if(temp[i] [j]==O) temp[i] [j]=i;
if(temp[i] Ej]==) temp[i][j] =;
if(temp[i] Cj]==2) temp[i] [jJ=3;if (t emp [i] L'j]1==3) temp[i] [j]=3;

}
else{

if(temp[i [j]==0) temp[i] [j=2;
if(temp[.1[j] ==I) temp[i][j]=3;
if(temp[i [j]==2) temp[i] [j=2;
if(temp[i] [j]==3) temp[i] [j=3;}

} /* end ij loop */
CLOSEFILE(i, filename, "The Vector Builder", infile)

}/* end k loop */

/* build vectors */

1=0;
looplij(size, size){

if (temp[i] [j] ==3){i++;
XE1] = j;
YE]= i;

} /* end if */
} /* end ij loop */
/* output vectors */

sprintf(filename, "strip.x");
CREATEFILE(outfile, filename, "The Vector Builder")
loopli(l) fprintf(outfile, "'/d\n", Xi]);
CLOSEFILE(i, filename, "The Vector Builder", outfile)

sprintf (filename, "strip.y");
CREATEFILE(outfile, filename, "The Vector Builder")
loopli(l) fprintf(outfile, "'d\n", Y[i]);
CLOSEFILE(i, filename, "The Vecter Builder", o.-tfile)

free-matrix(in, 1, size, 1, size);
freeimatrix(temp, 1, size, 1, size);

} /* THE END */

D.2.4 Listing of SPLITID. C

BREATHING KANISZA TRIANGLE PROGRAM

/* DATE: 3 Sept 91

VERSION: 1.0

NAME: stripld.c
DESCRIPTION: This program strips off the one dimensional
time signals based on the coordinates provided by the input
files strip.x and strip:y generated by the vbuild program.
All signals are output in a signal file in which each signal
is a row of a 2D matrix stored in that file.

FILES READ: Input file name given on command line or program
prompt. Files strip.x and strip.y are read in
automatically.

FILES WRITTEN: One file with the suffix .tsig is written
which holds each one dimensional time signal in a row.

HEADERS USED: <stdio.h> <math.h> "jsmacros.h"

192

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing

HISTORY: Initial Version.

#include <stdio h>
#include "jsmacros .h"
#include <math.h>

#define VECTORS 7189
#define FRAMES 32
int **imatrixo;
void free-imatrixo;
float *vectoro;
mnt *ivectoro;
void free..yectoro;
void free-.ivectoro;

void main(argc, argv)
mnt argc;
char *argvE);

mnt i,j,k,l, *X, *Y, size;
float *in;
char infilename[64), filename E64J;
FILE *infile, *outfile;

/* load parameters */
if(argc !=3 && argc!=1
printf("Usage: stripid <filename> <N for NxN array of original image>\n");
exit(O);

if(argc =)
priittf("\n\n\n Input the size of the image (N for NxN array):");
scanf("%d", &size);
printf C" \n\n Input filename of image to be histogramed:>11);
fflush~stdout);
scanf("/s", infilename);

else{
sprintf(infilename, "Ws", argv[1J);
sscanf(argv[2), "U/", &size);

/* allocate memory *

in vector~l, size*size*FRAMES);
X =ivector(l, VECTORS);
Y =ivector~i, VECTORS);

/* load strip locations *
sprintf(filename, "1strip.x");
OPEN-.FILE~infile, filename, "The Signal Stripper")
loopliCVECTORS) fscanf~infile, '/d\n", &X~i));
CLOSE-FILEi, filename, "The Signal Stripper", infile)

sprintf(filename, "1strip.y");
OPEN-FILE(infile, filename, "The Signal Stripper")
loopliCVECTORS) fscanf(infile, '/d\n", &Y[i]);
CLOSE-FILE~i, filename, "The Signal Stripper", infile)

/* load frames *

loopll(FRAMES){

193

sprintf(filename, "%s/d.asc", infilename, 1);
OPENFILE(infile, filname, "The Signal Stripper")
loopli(size*size) fscanf(infile, "'/f\n", &in[(l-1)*size*size+i]);
CLOSE_FILE(i, filename, "The Signal Stripper", infile)

} /* end 1 loop */
/* begin stripping */
sprintf(filename, "%s.tsig", infilename);
CREATEFILE(outfile, filename, "The Signal Stripper")
loopikl(VECTORS, FRAMES)

fprintf(outfile, "%f\n", in[(l-1)*size*size+Y[k]*size+X[k]);
CLOSEFILE(i,filename, "The Signal Stripper", outfile)

/* free memory */
freevector(in, 1, size*size*FRAMES);
free.ivector(X, 1, VECTORS);
free-ivector(Y, 1, VECTORS);

} /* THE END */

D.2.5 Listing of Modified WAVE1 Modules

D.2.5.1 Listing of MAIN- WA VElD.C

WAVELET ANALYZER MAIN PROGRAM DRIVER

/* DATE: 09 April 91, 18 June 91, 16 August 91, 5 Sept 91

VERSION: 3.1

NAME: main-wave.c

DESCRIPTION: This program performs a multiresolution wavelet analysis
of an input signal with a wavelet from its internal library chosen
interactively by the user. It handles the menu interface with the
user and drives the subroutines that take input, analyze, produce
output. Th6 wavelet decomposition algorithm is a pyramid algorithm
proposed by Stephan Mallat in "A Theory for Multiresolution Signal
Decomposition: The Wavelet Representation", published in IEEE Trans.
on Pattern Anal. and Machine Intel. July 89. The algorithm useb a pair
of mirror filters derived from the scaling function, phi(x). The user
may enter the intended input signal file from the command line following
the calling command 'wavel' or the user may wait to be prompted for
the input file name and size after starting the program with the same
command.

FILES READ: NONE (A subroutine reads the input files.)

FILES WRITTEN: NONE (Subroutines write out the saved data in files.)

HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h"
CALLING PROGRAMS: NONE

PROGRAMS CALLED: signalload.c, reconstructl.c, decomposel.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version; adapted from phivl.c and haarvl.c
Vorsion 2.0 was a rewrite to change the basic algorithm from the using
inner products to using the Mallat algorithm referenced above.
Version 3.0 adapted the two dimensional program to one
dimensional signals.
Version 3.1 modified the wavel program to process the output
of the splitid program which is one file whose contents is a
2D in which each row is a ID time signal. In this version

194

all menus are bypassed and only the approximation
coefficients are actually written out to files.

/* DECLARATION SECTION */

#include <stdio.h>
#include "j macros.h"
#include "stewmath.h"

#define VECTORS 3490
#define FRAMES 32

int-vector loadsignal();
void reconstructo);
void decomposeo;
float **matrix();
void freematrixo;

/* MAIN PROGRAM BODY */

void main(argc, argv)
int argo;
char *argv[];{

/* initialize variables */

int i,j,k,l, selection;
float **signal;
char filename[641;
FILE *infile;

/* load image to be analyzed */

if(argc != 3 && argc != 1){
printf("Usage: wavel <filename> <# of Samples>\n");
exit(O);

}
/* load time signal locations */

signal = matrix(l, VECTORS, 1, FRAMES);

/* load signal */

sprintf(filename, "%s.tsig", argv[1);
OPENFILE(infile, filename, "wavel");
looplkl(VECTORS, FRAMES)

fscanf(infile, "%f\n", &signal.vector[k][1]);
CLOSEFILE(i, filename, "wavel", infile)

/* do decomposition */

decompose(signal, filename);

/* free memory */

freematrix(signal, 1, VECTORS, i, FRAMES);

} /* THE END */

D.2.5.2 Listing of DECOMPOSED. C

195

WAVELET DECOMPOSITION SUBROUTINE
/**/

/* DATE: 19 June 91, 16 August 91. 5 Sept 91

VERSION: 2.1

NAME: decomposel.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is discussed in
the description of the main driver module called "main-wavel.c".
Data is passed by reference from the main driver module. The data is
in ascii format arranged in a vector whose dimension is a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipies in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: Two coefficient files at each level of analysis.
The file names begin with the input signal filename
and end with an extension of the form ".nX" where
n is an integer that represents the level, X is one
of the letters 'C' or 'D' to represent phi
or psi coefficients respectively.

HEADERS USED: <stdio.h>, "jsmacros.h"
CALLING PROGRAMS: main-wavel.c

PROGRAMS CALLED: convolvel.c, filters.c

AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Initial Version.
Version 2.0 nolonger uses the Fourier domain filtering. Now
only spactial convolution is done. Also, this version was
adapted from the two dimensional version 1.0.
Version 2.1 is modified to work with version 3.1 of
main-wavel.c. This version specifically processes multiple
ID time signals as provided by the stripld.c program.*/

/************************/********************** ***

/* DECLARATION SECTION */

#include <stdio.h>
#include "jsmacros.h"

#define VECTORS 3490
#define FRAMES 32

void convolveo;
void filtert();
float *vectoro;
void free_vectoro;
int *ivectoro);
void free-ivector(;
float **matrixo;
void free.matrixo;

/* MAIN PROGRAM BODY *//** * ****** ** *********

void decompose(signal, infilename)
float **signal;
char infilename[];

{

196

1* declare variables *

int i, j, k, maxievel, wavelet-.type;
float-.vector h-of-.n, h..o-nflipo, g..of..., g..ot-nflipo, phi, phiflipo;
float-,.vector phiflipc, *phiflipcpointer =. &phiflipc;
float-.vector *h-.of...npointer = &h-.o-n, *h-.of-njflipopointer = &h-.ol..nflipo;
float-.vector i*g-of-.npointer = &g.of..n, *g..of-nflipopointer =&gof-nflivo;
fl~oat-..vector *phipointer = &phi, *phiflipopointer = &phiflipo;
float-.vector c-.coef, d-.coef;
float..vector *c-.coefpointer= &c..coef ,*d-.coefpointer= &d..coef;
float **temp;
FILE *outfileic, *outfile2c, *outfile3c, *outfileld, *outfile2d;
FILE *outfile3d;
char filename E64), wave-.code[64J;

1* allocate memory *

temp = matrix~i, VECTORS, 1, FRAMES);
c-.coef.length = FRAMES;
c-.coef.vecoor =vector~i, c-.coef.length);
loopli(c..coef .length) c..coef .vector [i] = 0.0;
d-.coef.length =FRi'MES;
d-.coef.vector =vector~l, d..coef.length);
loopii(d.coef .length) d-.coef .vector~i] =0.0;
h-ofo.n.vector =vector(I ,FRAMES*2);
loopii(FRAMES*2) h-.o-n.vector~i) 0.0;
g-.o-n.vector =vector(I ,FRAMES*2);
loopli(FP.AMES*2) g-.of-.n.vector~i) = 0.0;
h-.ot..nflipo.vector =vector(I ,FRAMES*2);
loopii(FRAMES*2) h..onflipo .vector~i) = 0.0;
g-.o-nflipo.vector = vector(l,FRAMES*2);
loopli(FRAMES*2) g.onflipo .vector Ei) = 0.0;
phi.vector =vector(1,2*FRAMES);
loopiCFRAMES*2) phi.vector~i] 0.0;
phiflipo.vector = vector(1 ,2*FRAMES);
loopii(FRAMES*2) phiflipo.vector[i] = 0.0;
phiflipc.vector =vector(1,2*FRAMES);
loopli(FRAMES*2) phiflipc.vector~ij 0.0;

1* display menu

printf("\n\n DECOMPOSITION MENU\n\n");
printf C" I = Piece-wise; Constant.(NA4)n');
printf(" 2 =Piece-2ise Linear.(NIA)\...1;'
printf C" 3 = Daubechies N=2.\n") ;
printf(" 4 = Daubechies N=3.\n1);
printf(" 5 = Daubechies N=4.\n"t);
printf(" 6 = Daubechies N=5.\n");
printf C" 7 = Daubechies N=6.\n");
printf C" 8 =Daubechies N=7.\n")
printf C" 9 = Daubechies N=8.\1'1);
printf C" 10 = Daubechies N=9.\n");
printf(" 11 = Daubechies N=10.\n");
printf(" 12 =Splines.\n");
printfC" 13 =Morlet.CN/A)\n");
printfC"\n Enter an integer 1-13:)

scanf("'hd", &wavelet..type);

wavelet-.type = 3;

'97

1* error handling for invalid input *

if (wavelet-.type < 3 11I wavelet-.type >' 13){
printf("\nYou have chosen an Invalid Wavelet type or");
printf("\nthis type is not currently available.");
I /* end if *

else{

1* Set wave-.code for use in output filen#):,.

if (wavelet-.type 3) sprintf (wav_cs -- ;'
if (wavelet-.type ==4) , printf (wave-c..., '.

if (wavelet-.type ==5) sprintf(wave-.code, \A)
if (wavelet-.type ==6) sprintf(wave..code, dbSI");
if (wavelet-.type ==7) sprintf(wave.code, d0611);
if (wavelet-..type ==8) sprintf(wave-code, i j

if (wavelet-.type ==9) sprintf(wave-.code. , 8)
if (wavelet-.type ==10) sprintf (--ae.cou, . '9
if (wavelet-.type ==11) sprintf kwave-.code, "'d,0");
if (wavelet-.type ==12) sprintfwave-.code, "spl");

/* Generate Phi and Filters *

filzers (wavelettype,h-of-npointer,g-.of-npoiLter,phipointer);
flipo~phipointer, phiflipopointer);

h-.o-nflipopointer = h-.o-npointer;
g-.o-nflipopointer =g-.o-npointer;

/* open files */

sprintf(filenaae, "I%s.%d.c.%s", infilenaie, 1, wave-.code);
CREATE..FILE(outfileic, filename, "The Wavele.t Analyzer")
sprintf(filename, "%s.%d.c.%s", infilename, 2, wave-.code);
CREATE-.FILE(cutfile2c, filename, "The Wavelet Analyzer")
sprintf(filename, "%s.%d. c.4;", infi:lename, 3, wave-.code);
CREATE-.FILE~outfile3c, filen.;:e, "The Wavelet Analyzer"',
/*sprintf (filename, "I%s .%d.d.%s"I, infileiname, 1 ,wave-.code);
CREATE..FILE(outfileld, filename, "The Wavelet Analyzer")
sprintf (filename, "%s.%d.d.%s"I, infi~ename, 2,wave-.code);
CREATE-.FILE (outf ile2d, filename, "The Wavelet Analyzer")
sprintf (filename, "%s.%d.d.%s", irfilename, 3,wave..code);
CREATE..FILE(outfile3d, filename, "The Wavelet Ana~lyzer")

/* Call convolution routine and save the coefficient vectors -or *1
/* each level of analysis. *

loopik(3){
looplj (VECTORS){

convolveternp~j), h..of..nfliopointer, g..o-nflipopointer,
c..coefpointer, d_..oefpointer);

loopli(c-.coef.length) -ernp~j][=i c-coef.vector~i];

switch (k){
case 1:

looplij (VECTORS, c-.coef .length)

case 2:
looplij (VECTORS, c..coef .length)

fprintf(outfile2c, "%f\n" ,temp~i][EjD;
case 3:

looplij (VECTORS, c..coef .length)

198

fprintf(outfile3c,"%f\n",tempEi]Ej);
}

} /* end k loop :!
-LOSEFILE(i, filena:,e, "The Wavelet Analyzer", outfileic)
CLOSEFILE(i, filename, "Th- Wavelet Analyzer", outfile2c)
CLOSEFILE(i, filename, "The Wavelet Analyzer", uutfile3c)

/* CLOSSFILE(i, filename, "The Wavelet Analyzer", outfileld)
CLOSEFILE(i, filename, "The Wavelet Analyzer", outfile2d)
CLOSEFILE(i, filename, "The Wavelet Analyzer", outfile3d)

} /* end else */
/* free memory */

free-matrir~temp, 1, VECTORS, 1, FRAMES);
freevectc. ,c-coef.vector, 1, c.ccef.length);
tree-vectoi-(ccoef.vector, 1, d_(,ef.length);
free-vector(h-of-n.vector,1,FRAMES*2);
frieevector(g-of-n.vector,1,FRAMES*2);
free.vector(phi.vector,1,FRAMES*2):
free-vector(phiflipo.vector,1,FRAMES*2);
free-vector(phiflipc.vector,1,FRAMES*2);

/* THE END */
}

D.2.6 Listing of RBUILD.C

/*********************- ***

REBUILD PROGRAM

/* DATE: 3 Sept 91

VERSION: 1.0

NAME: rbuild.c

DESCRIPTION: This progran, rebu.lds the frames of the scene
that is under analysis from the output of the wavel
program.

FILES READ: Input file name given on command line or program
prompt. The files strip.x and strip.y generated by the
vbuild program are the coordinates that tell the program
where to place the iD time signals back in the frames.

FIL-S WRITTEN- A new set of frames with suffix .comb.

HEADESt USED: <stdio.h> <math.h> "jsmacros.h"

CALLI;.G PROGRAMS: NONE

PROGRAS CALLED: NONE

AUTHOR: J. Stewart Laing

.HISTORY: Initial Version.*/

#include <stdio.h>
#include "jsmacros.h"
#include <math.h>

#define VECTORS 3490
#define FRAMES 32
#define LEVEL 3

float **matrixo;
void free-matrixo;
float *vectoro);
int *ivectoro);
void free-vectoro;

199

void free-.ivectoro;
int **imatrixo);
void free-.imatrixo;

void main(argc, argv)
int argc;
char *argv C);

mnt i,j,k,l, *X, *Y, size, n;
char iivfile'ame [64), filename [64);
FILE *infile, *outfile;
float *in, **temp;
void expdo;

/* load parameters *

if~argc != 3 kk argc if
printfC"Usage: f build <filename> <N for NxN array of original image>\n");
exit(O);

if(argc =)
printf("\n\n\n Input the size of the image (N for NxN array):");
scanf("%d", &size);
printf("1 \n\n Input filename o'~ signals:");
fflush(stdout);
scanf("%s", infilename); printt ("\n1%"

else f
sprintf(infilename, "', argvCE",);
sscanf(argv[2], "', &size);

/* allocate memory *

X =ivector(l, VECTORS);
Y = ivector~i, VECTORS);
in = vector(i, size*size*FRAMES);
temp =matrix~i, VECTORS, 1, FRAMES);

/* load strip locations *
sprintf(filename, "stxip.x");
OPENJILE~infile, filename, "The Signal Stripper")
loopiVECTORS) fscanf(infile, "%7d\n", &X~i));
CLOSE-FILE~i, filename, "The Signal Stripper", infile)

sprintf(filename, "1strip.y");
OPEN...ILE(infile, filename, "The Signal Stripper")
loopii(VECTORS) fscanf(infile, "'/d\n", &Y'LiJ);
CLOSE-.FILE(±, filename, "The Signal Stripper", infile)

/* load frames *

loopll(FRAMES){
sprintf(filename, "'/s'fd.asc", infilename, 1);
OPENJ.ILE~infile, filename, "The Signal Rebuilder")
loopli~size*size) fscanf~infile, "'/f\n", kin[Cl-1)*size*size+i]);
(,UJSE-.FILE(i, filename, "The Signal Rebuilder", inf,,e)

}/* end 1 loop *

1* load signals *
n = r-AMES/(int)pow(2.O, (double)LEVEL);
sprintf~filename, "'/s.tsig.%d.c.db2", infilename, LEVEL);
OPEN..FILE(infile, filename, "The Signal Rebuilder")
looplklCVECTORS, n)

fscanf(infile, "Mfn", &temp[k) El));
CLOSE.FILE(i,filenaiLA, "The Signal Rebuilder" ,infile)

200

/* rebuild frames *
loopliLEVEL) {

expd(temp, VECTORS, n);
S*2;

looplkl(VECTORS, FRAMES)
inI(l-i)*size*size+Y~k)*size+X~k)) temp~k) El];

/* output frames *
loopll(FRAMES) {

sprintf(filename, "%s%d. asc. comb. 3.,-.db2", infilename, 1);
CREATE-.FILE(outfile, filename, "The Signal Rebuilder")
loopli(size*size) fprintf(outfile, "%f\n", in[(l-1)*size*size+iJ);
CLOSE-.FILE(i, filename, "The Signal Rebuilder", outfile)

}reietrX,1 ETR)
free...ivector(X, 1, VECTORS);

free-.vector(in, 1, size*size*FRAMES);
free..matrix(temp, 1, VECTORS, 1, FRAMES);

/ * THE END */
void expd(in, rows, cols)

mnt rows, cols;
float **in;

mnt i,j;
float *yp, *tmp, *tab;
.void splineo; splinto;

yp vector~i, cols);
tab =vector(l, cols);
tmp =vector~i, 2*cols);

loopli~cols) tab~i) = (float)C2*i);
loopli(rows){

-spline~tab, in~i), cols, 1.0e00, 1.0e30, yp);
looplj Ccols){

tmp[2*jJ in~i) jJ;
splint(tab, mi)i, yp, cols, (float)C2*j-1), ktmp[2*j-1));

looplj(2*cols) inlijlj) = tmp~jJ;

free..vector(yp, 1, cols);
free..yector(tab, 1, cols);
free..yector(tmp, 1, 2*cols);

}/* THE END *

D.2. 7 Listinzg of TBL LI. C

ANIMATION PROGRAM FOR A SET OF FRAMES IN A SCENE

/* DATE: 3 Sept 91

VERSION: 1.0

NAME: tblur.c

DZSCRIPTION: This program animates the frames of a scene
on the Silicon Graphics computers. There may be some code
which is specific to the 4D series computers. To run the program
just type tblur at the command prompt. Pressing the escape

201

key will halt the program.

FILES READ: The frames of the scene to be animated.

FILES WRITTEN: NONE

HEADERS USED: <stdio.h> <device.h> <gl.h>

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing (with help from John Brunderman and Greg Tarr)

HISTORY: Initial Version.

#include <device.h
#include <gl.h>
#include <stdio.h>

#define SETX 256
#def ne SETY 256
#define XORG 200
#define YORG 200
#define FRAMES 32

main C

int i,j,k,l;
long twin, key;
unsigned short *image, **buffer;
short val;
char filename[64J;
FILE *infile;

prefposition(XORG, XORG+SETX-1 * YORG, YORG+SETY-1);
twin = winopen("Kanisza");
doublebuffero;
gconfigo;

1* read frames into buffer *
buff er = (Colorindex **)calloc(FRAMES, sizeofCColorindex *)
for(i=0; i<FRAMES; i++)

buffer~i) = (Colorindex *)callocCSETX*SETY, sizeof(Colorindex));

for~i=l; i<=FRAMES; i++)(
sprintf(filenane, "frame%d. bin. comb", i);
infile = f open (f iler,--=e, "r");
if(infile ==NULL){

printf ("Error opening %s as input file\n", filename);
gexito;

else(
fread(buffer~i-1), sizeof(unsigned short), CSETX*SETY), infile);
fclose(infile);
for(j=O;j<SETX*SETY;j++) if (buff er~i-1) CjJ '=0) buff er~i-1) [jJ=7;

1* annimate new frames *

qdevice(ESCKEY);

while (TRUE) f
while (!qtesto) f

forCP=O; i<FRAMES; i++){
rectwriteC0, 0, SETX-1, SETY-1, buff er~i));
swapbuffersoC;

I
for(i=FRAMES-1; i>0; i--){

rectwrite(0, 0, SETX-1, SETY-1, buffer~iJ);
swapbuferso;

202

1* get keyboard input *
val = 1;

while (val) f
key =qreadC&val);
if(key!=ESCKEY) val =0;

I
/* act on keyboard input *
switch (key){
case ESCKEY:

gexito;
break;

203

Appendix E. Software Jor the Boundary Contour Model

E.1 System Description

The following programs are used in the boundary contour analysis of Chapter VIII:

1. wave2 - The Multiresolution Wavelet Decomposition and Reconstruction program for

two dimensional images (See Appendix B.1).

2. lenrow - A program used to perform a lateral excitation along the rows of a two

dimensional array of wavelet detail coefficients.

3. lencol - A program used to perform a lateral excitation along the columns of a two

dimensional array of wavelet detail coefficientr.

In the analysis of Chapter VIII, we use the lenrow program to spread horizontal energy

along the rows of the dl and d3 wavelet detail coefficients (see explanation in Chapter III

and VI). To run this program, type the following on the command line:

command prompt: lenrow <filename> <size>

The arguements are optional. If not entered on the command line, the program will

prompt the user for them interactivley.

Similar to the lenrow program the lencol program performs a lateral excitation along

the columns intended for the dl and d3 wavelet detain coefficients. To run this program,

type the following at the command prompt:

command prompt: lencol <filename> <size>

The arguements are optional. If not entered on the command line, the program will

prompt the user for them interactivley.

The output of both programs is a file the same size as the input file whose name is

made up of the input file name with a .len suffix added. Data is stored in ASCII format as

discussed previously.

204

E.2 Bouadary Contour Model Analysis Software

E.2.1 Listing of LENROW C

LATERAL EXCITATION ALONG ROWS

/* DATE: 27 Sept 91

VERSION: 1.0

NAME: lenrow.c

DESCRIPTION: This program performs a laterUl excitation
along the rows a the input ASCII data file. The extent of
the receptive field is determined by #define P. This program
is intended to be part of a Boundary Contour Model devised
for the author's masters thesis.
FILES READ: wavelet detail images as genterated by the wave2
program.
FILES WRITTEN: The output file has the name of the input
file with the suffix .len added.

HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h",
<math.h>

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing

HISTORY: Initial Version.

/* DECLARATION SECTION */
******* ********* ****

#include <stdlib.h>#include <stdio .h>
#include "jsmacros.h"
#include <math.h>

#define F -1.0
/*#define P 6*/
#define POS 1
#define NEG 0

/* FUNCTION BODY

float **matrixo;
void free.matrixo;
int **imatrixo;
void free.imatrixo;

void main(argc, argv)
int argc;
char *argv[];{

/* initialize variables */

int i,j,k,p, extent, **flag, P;
FILE *infile, *outfile;
float-array input, output;
char infilename[64], latfile[64J;
float latfactor 0.0, influence;

205

/* test parameters *

if~argc != 4 ft argc 1A)
printf("Usage: threshold <filename> <size>\n");
exit(0);

/* prompt for parameters if not input *

if(argc == O
printf("\n\n\n Input the size of the input N for NxN:");
scanf C"%d", &input .ROW);
printf C" \n\n What is the input filename?:"1); fflush(stdout);
scanf("%s", infilename);
printf("\n Input the lateral extent of receptive field:");fflush(stdout);
scanf ("%d", UP);

/* use parameters given on command line *

else f
sprintf(infilename, "Ws", argv [1));
sscanf(argv [2), "Wd', &input.ROW);
sscanf(argv[3), "Ud", &P);

I
input.CDL = input.ROW;
input.array = matrix~i, input.ROW+2*P, 1, input.COL+2*P);
looplij (input .ROW+2*P,input .COL+2*P) input .array Ci) Ci = 0.0;
output.ROW = input.ROW;
output.COL =input.COL;
output.array = matrix~l, output.ROW+2*P, 1, output.COL+2*P);
looplij (output .ROW+2*P,output. COL+2*P) output. array Ci) Ci) 0.0;
flag =imatrix(1, input.ROW, 1, input.COL);
loopiij(input.ROW, input.COL) flag~i]) Ci= 1;

/* open input file and read in data *

printfC"\nreading data file... .\n"); fflush(stdout);
OPEN-.FILE (infile, infilename, "The latnet")
loopiij (input.O, input. COL)

fscanf(infile, "%ff\n", &input .array Ci+P) Cj+P));
CLcJSE-.FILE(i, infilename, "The latnet", infile)

1* prompt user for latnet factor *

1* printf(" \n\n Input latnet factor(float):");
scanf("%f", &latf actor);
printfC"\n\n Input latnet extent (integer):");
scanf("%d", &extent);

/* This part actually performs the lateral excitation. *

printf("\nperforming lateral excitation... .\n"); fflush(stdout);
for(i=1+P; i<=input.ROW+P; i++)

for(j=i+P; j<=inp COL+P; j++){

206

output. arrayCi) CjJ = input, array Ci) i) - input .arrayCi) EJJ;
if (output. array~i) Ci) =0.0) flag~i-P)jP) = P05;
else flag Ci-P) CJ-P) = NEG;
input, array Ci) i) = (float)fabsC (double) input, array Ci) Ci);

for(p= -P; p<= -1; p++)
latfactor += (float)pow(2.o,(double)p);

for(p=1; p<=P; p++)
latfactor += (float)pow(2.0, -Cdouble)p);

for(i+P; i<=output.40OW+P; i++)
for(jinl+P; j<=output.COL+P; j++){

output.array~i)CjJ = latfactor * input.array~i) Ci);
for(p= -P; p<= -1; p++)

output .arrayCi) Cj)-=input .array Ci) j+p)*(-float)pow(2. 0, (double)p);
for(p=1; p<=P; p++)

output.array~i) Cj)-=input.arrayi Cj+p)*(float)pow(2.0,-(double)p);
output. array [i)Cj] *= F;

for(i=1+P; i<=output.ROW+P; i++)
for(jI+P; i<=output.COL+P; j++)

if(flag~i-P) Cj-P)==NEG) output.array~i) Ci) = -output.arrayCi) Ci);

/* Create file and output data.*/

printf("\nwriting output data file.. .n"); fflush(stdout);
sprintf (latfile, "%s .len", infilename);
CREATEJFILE(outfile, latfile, "The Thresholder")
looplij (output .ROW,output .COL)

fprintf(outfile, "%f\n", output .array~i+P) CJ+P));
CLOSE.FILE(i, latfile, "The latnet",outfile)

/* Tell the user where the output file is located. *

printf("\nCreated new file called: %s\n\n", latfile);

free..matrix(input .array, ~input .ROW+2*P,1, input .COL+2*P);
free..matrix(output .array, 1,output .ROW+2*P, 1,output.COL+2*P);
free,,imatrix(flag, 1, input.ROW, 1, input.COL);

}/* THE END *

E.2.2 Listing of LENCOL.C

LATERAL EXCITATION ALONG COLUMNS

/* DATE: 27 Sept 91
VERSION: 1.0

NAME: lencol.c

DESCRIPTION: This program performs a lateral excitation
along the cols a the input ASCII data file. The extent of
the receptive field is determined by #define P. This program
is intended to be part of a Boundary Contour Model devised
for the author's masters thesis.

FILES READ: wavelet detail images as genterated by the wave2
program.
FILES WRITTEN: The output file has the name of the input
file with the suffix .len added.

207

HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h",
<math.h>

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing
HISTORY: Initial Version.*/

/* DECLARATION SECTION */

#include <stdlib.h>
#include <stdio.h>
#include "jsmacros.h"
#include <math.h>

#define F -1.0
/*#define P 6*/
#define POS 1
#define NEG 0

/* FUNCTION BODY

float **matrixo;
void free-matrix(;
int **imatrixo);
void free.imatrixo;

void main(argc, argv)
int argc;
char *argv [];{

/* initialize variables */

int ij,k,p, extent, **flag, P;
FILE *infile, *outfile;
float.array input, output;
char infilename[64), latfile[64);
float latfactor = 0.0, influence;

/* test parameters */

if(ar-gc != 4 &k argc != I){
printf("Usage: threshold <filename> <size>\n");
exit(O);}

/* prompt for parameters if not input */

if(argc == IX
printf("\n\n\n Input the size of the input N for NxN:");
scanf ("d", &input. ROW);
printf(" \n\n What is the input filename?:"); fflush(stdout);
scanf(",s", infilename);
printf("\n Input the lateral extent of receptive field:");fflush(stdout);
scanfC"'d", &P);

}

208

/* use parameters given on command line *

else f
sprintf (iilename, "Ys", argv [ii);
sscanf (argv E2), "U", &input .ROW);
sscanf (argv[3), "Ud", &P);

input.COL = input.ROW;
Anput.array =matrix~i, input.RIW+2*P, 1, input.COL+2*P);
looplij (input .ROW+2*P, input. COL+2*P) input .array Ei) C] = 0.0;
output.ROW = input.ROW;
output.COL =input.COL;
output.array = matrix~i, output.ROW+2*P, 1, output.COL+2*P);
loopiij (output .ROW+2*P,output.COL+2*P) output. array Ci) j] =0.0;
flag = imatrix~i, input.ROW, 1, input.COL);
looplij(input.ROW, input.COL) flag~iJ[j) 1;

/* open input file and read in data *

printf("\nreading data file... .\n"); fflush(stdout);
OPEN-.FILE (infile, infilename, "The latnet")
loopiij (input. ROW, input. COL)

fscanf(infile, "%f\n", &input. array [i+P] Ej+P]);
CLOSE-.FILE(i, infilenane, "The latnet", infile)

/* prompt user for latnet factor *

printf(" \n\n Input latnet factor(float):");
scanfQ'%f", &latfactor);
printf("\n\n Input latnet extent (integer):");
scanf("/d", &extent);

/* This part actually performs the lateral excitation. *

printf("\nperforming lateral excitation... .\n"); fflush~stdout);
for(i=1+P; i<=input.ROW+P; i++)

for(j=i+P; j<=input.COL+P; j++){
output.array~i) Cj)= input.array~i) Cj] - input.array[i) U);
if~output.array~i) [j)==O.0) flag[i-P) Cj-P] = P05;
else flag Ei-P) Ej-P) = NEG;
input.arrayCi) Ej) = (float)fabs((double)input.array Ci) Ci);

for(p= -P; p<= -1; p++)
lati actor 4= (float)powC2.0, (double)p);

for(p=i; p<=P; p++)
latf actor += (float)pow(2.0, -(double)p);

for(i=I+P; i<=output.ROW+P; i+i-)
for(j=1+P; j<=output.COL+P; j++){

output.arrayCi) Cj) = latfactor * input.array Ci)[j);
for~p= -P; p<= -1; p++)

output.array~i) Ei)-=input.array~i+p) Cj)*(float)pow(2.0,(double)p);
for(p=1; p<=P; p--i)

output.array Ci)Ej)-=input.array~i+p) Ej)*(float)pow(2.0,-(double)p);
output.array~i][j] *= F;

for(i1I+P; i<=output.ROWIP; i+i+)
for(j1I+P; j<=output.COL+P; j+i+)

if(flag~i-PJ Cj-P>=NEG) oul-put.array~i) Ej) = -output-array Ci) C);

209

I'* Create file and output data.*/

printf("\nwriting output data file... \n"); fflush~stdout);
sprintf (latfile, "%s .len", infilename);
CREATE-.FILE(outfile, latfile, "The Thresholder")
loopiij (output .ROW ,oatput .COL)

fprintf(outfile, "%/f\n", output .array Ei+P] j+PJ);
CLOSE-.FILE(i, latfile, "The latnet"l,outfile)

/* Tell the user where the output file is located. *

printf("\nCreated new file called: %/s\n\n", latfile);

free-matrix(input .array , 1,input.ROW+2*P,1, input .COL+2*P);
free..matrix(output .array, I,output .ROW+2*P,1, output. COL+2*P);
free..imatrix(f lag, 1, input.ROW, 1, input.COL);

} * THE END *

210

Appendix F. Software for Utilities

F. I Description of Utilities

The following is a list of the software utii:tes used in this thesis. It includes header

files and subroutines that are found in much of the software listed in earlier appendices and

command line programs that filter individual files.

1. jsmacros.h - A header file containing macros used widely in the software written for

this thesis.

2. macros.h - A header file containing some macros used early on in the software of this

thesis.

3. stewmath.h - A header file containing an integer math routine to take the base 2

logarithm of an integer number.

4. ascii2byie.c - A program that converts an ascii data file to a binary data file. Data

is read in as integer decimal with the fscanf function and converted to unsigned short

written out with the fread function. The ascii file must be integers ranging from 0 to

1023 with each number on a separate row of the data file.

5. asift.c - A program that converts an input file of float ASCII values, one per line,

to integer ASCII values, one per line. The values are clipped at a minimum value of

0 and a maximum of 255. After conversion and before clipping, the absolute value of

each number is taken.

6. byte2ascii.c - A program that converts an input file from binary format in which

an array of numbers is stored successively as unsigned short to ASCII format in which

the output is made up of one number per line of decimal integers.

7. daub.c - A program used to generate g(n), O(x), and 7h(x) given an h(n). All h(n)

values are hard coded and must be entered before compilation. Other input is inter-

active.

211

8. epsview.c - A program that converts aii input file from ASCII format in which each

line holds an integer number to hex with an Ecap.uiated PostScript header.

9. expand. c - A program that performs a square expansion on a square array of ASCII

values. The input values can be integer or float and the output values are float. The

expansion is via a "Bi-cubic Spline Interpolation" [35"}

10. matr4ixtoasci i . c - A program that converts a KhoroG ASCII output to a file that has

one integer per line [37]. This program strips off the matrix coordinates of the values.

11. nrutil . c - A set of utilities provided by Nurnverical JRecipies in C used in this thesis

mostly for dynamic memory allocation [35].

12. threshold. c - A program that thresholds an input file of ASCII values eliminating a

user specified window of miriiium and maximum values. All values inside the window

are set to 255 and all values outside the window are set to 0. This creates a black and

white binary representation of the input file.

F.2 Spatial- Temporal Analysis Software

F.2.1 Listing of JSMAGROS.C

Convenient Macros for WAVE program

/**MACROS **

#define CREATE..ATRIX..ROW(A,B,C) A = (C **)calloc(B, sizeof(C*)
#define DELETE..ATRIX..ROW(A,C) freeCCC *) A)

#define CLOSE-FILE(A.B,C,D) if((Afclose(D)) == EOF){\
printf(strcat(C,":file may already be closed -%s.\n"),B);}

#define CREATE-MATRIX-.COLCA,BC,D) for(i=O; i<B; ++i) Aji] (D *
calloc(C, sizeof CD))

#define DELETE.MATRIX.COL.(AB,D) for~i=O; i<B; ++i) free((D *)A~i])

#define CREATE-.VECTORCA,B,C) A =(C *)calloc(B, sizeof(C))
#define DELETE-VECTORCA) freeCA)

#define loopli(A) for(i~1;i<=A;i++)
#define loopljCA) for~jl;j<A;j++)
#define loopilCA) forl11;l<=A;1-'+)
#define looplk(A) for~k~1 ;k<=A;k++)
#define looplijCA,B) for~i=1;i<=A;i++) for~j~l;j<=B;j++)
#define looplklCA,B) for~kl;k<=A;k++) for(1=1;1<=B;1++)

#define CREATE-.FLOAT_.VECTOR(A ,B,C) A = vector(B ,C)

212

#define CREATEINTVECTOR(A,B,C) A = ivector(B,C)
#define CREATEDOUBLEVECTOR(A,B,C) A = dvector(B,C)

#define CREATEFLOATMATRIX(A,B,C,D,E) A = matrix(B,C,D,E)
#define CREATEINTMATRIX(A,B,C,D,E) A = imatrix(B,C,D,E)
#define CREATEDOUBLEMATRIX(A,B,C,D,E) A = dmatrix(B,C,D,E)

strust int-array {
int **array;
int ROW, COL;

typedef struct int-array int-array;

struct float-array {
float **array;
int ROW, COL;

typedef struct float-array float-array;

struct phi-array {
float **e-ray;
int ROW, COL;
int int.rvals;

typedef struct phi-array phi-array;

struct float-vector {
float *vector;
int length;};

typedef struct float-vector float-vector;

F.2.2 Listing of MACROS.C

Convenient Macros for Perceptron Package by Capt Greg Tarr

/*** MACROS ***/
#ifdef LEO
#define REALFMT '/g"
#else
#define REALFMT "%lg"
#endif
#ifdef NEXT
#undef REALFMT
#define REALFMT "7lf'"
#endif

#define Boolean int
#define False 0
#define True i

/** Dominant Sensor Definitions **/
#define SINGLE 0
#define FLIR 1
#define RNG 2

/** Mask Definitions **/
#define OFF 0.0
#define ON 1.0

char junk-response[256];

#define fskip.line(A) fgets(junk.response, 256, A)
#define skip-line gets(junk-response)

213

#d(-fine rloopiCA) for(ivCA)-l;i>=O;i--)
#define rloopjCA) for(jC(A)-l;j>=0;j--)
#define rloopk(A) for(k=(A)-1 ;k>=O;k--)
#define rloopl(A) for(1=(A)-1;l>=0;l--)
#de~ine rloopmCA) for~mC(A)-l;m>0O;m---)
#define rloopn(A) for(n=(A)-1 ;A>0;n--)
#define rloopp(A) for~p=(A)-l;p>=0;p--)
#define rloopij(A,B) for~i=(A)-1;i>=O;i--) for(jC(B)-1;j>0O;j--)
#define loopiCA) for(i0O;i<A;i++)
#define loopjCA) for~j=O;j<A;j++)
#define loopkCA) for(k0O;k<A;k++)
#define 2ooplCA) for(l=0;1<A;l++)
#define loopm(A) for~m=O;m<A;m++)
#define loopn(A) for(n=0;n<A;n++)
#define looppCA) for~p=O;p<A;p++)
#define loopij(A,B) for~i=O;i<A;i++) for(j0O;j<B;j++)
#define loopkl(A,B) for~k=O;k<A;k++) for(1=0;1<B;1++)
#define MALLOC(A,B,C,D) if(CAC(C *)malloc((B)*sizeof(C)))==NULL){\
fprintf(stderr, strcatCD,": inf.ufficient memory\n"))
exit(-i); I

#define CREATE-.FILE(A,B,C) ifCCAfupen(B,"w")) ==NULL){\
printf(strcatC, 0 : can't open for writing - %s.\n"),B);\

exit C-I); I
#define OPEN-FILE(A,B,C) if(CAzfopenCB,Ilr")) == NULL){\

prirntf(strcat(C,": can't open for reading - %s.\n"),B);\
exit (-I); I

#define idx(I,J,N) (I)*(N)+(J)

/** All of these are dependent on the definition of "layer" *
#define MAX-.INPUTS 50
#define MAX-.NODES 50
#define MAX-.H1..NODES 50
#define MAX-H2.JIODES 50
#drf~ne MAX-..OUTPUTS 50
#dc -ne MAX-VECTORS 1001y
#de....Le WTS..TYPEJISF 2 /* new weigLz,, file *
#dt..fine WTS..TYPEJ 1 I1* new weisrl't file *
#d.&'ine WTS-.TYPE-.0 0 /* old w!eiihts file *
#define TRtAIN 0
#define TEST I
#define THREE-.LAYER
#define TWO-LAYER 2

F.2.51 Listing of STE WMA TI.C

/* This is a collection of functions for Convenience *

LOG2 takes the log base two of an inte&er and returns an integer.

mnt LOG2(x)
mnt x;

f
mnt y = 0;

while (x/2 > 0)(
x /= 2;

I
return y;

2 14

/* The following is not used in WAVE */

void flipo(inv:.ctorpointer,outvectorpointer)
float-vector *invectorpointer, *outvectorpointer;

int i;
int map;
outvectorpointer->length = invectorpointer->length;
outvectorpointer->vector[l] = invectorpointer->vector[l];
map = invectorpointer->length - 2;
loopi(invectorpointer->length - 1){

outvectorpointer->vector[i+2] = invectorpointer->vector[i+2+map];
map -= 2;}

}

void flipc(invectorpointer,outvectorpointer)
float-vector *invectorpointer, *outvectorpointer;{

int i;
loopi(invectorpointer->length/2 + 1)

outvectorpointer->vector[invectorpointer->length/2 +1 - i] =
invectorpoinzer->vector[i+l);

outvectorpointer->length = invectorpointer->length;}

F.2.4 Listing of Modified WAVE1 Modules

F.2.4.1 Listing of ASCII2BYTE.C

ASCII to BYTE CONVERTER

/* DATE: 3 Sept 91

VERSION: 1.0

NAME: ascii2byte.c

DESCRIPTION: This routine converts an image from ascii
in which each pixel's gray scale value (0 to 255) is stored
on one row of the file to byte format in which the grey
scale values are logically stored in consecutive bytes in
the file.
FILES READ: One file specified by the user.

FILES WRITTEN: One file specified by the user.

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: uses nrutil.c from Numerical Recipies

AUTHOR: J. Stewart Laing

HISTORY: Initial Version

/* DECLARATION SECTION */
#include <stdio.h>
#include "jsmacros.h"

int **imatrixo;
void freeimatrixo;

215

/* FUNCTION BODY

void main(argc, argv)
int argc;
char *argv[];

/* initialize variables *
iflt ij, rows, cols;
FILE *infile, *outfile;
char infilenase [64), filenmje[64), outfilename[64);
unsigned amount;
unsigned short *image;

/* parse command line *
switch (argc){
case 1:

printf ("Input filename:");
scanfC"%s", infilename);
printf("\nOutput filename:");
scanf("/s", outfilename);
printfC"\n# of ROWS:");
scanfC"%d", &rows);
printf("\n# of COLS:");
scanf("%d", &cols);
printf("\n");
break;

case 2:
sprintf~infilename. 11%s", argv Ci));
sprintf(outfilenaie, "1%s .bin", infilename);
printf("\n# of ROWS:");
scanf("%d", &rows);
printf("\n# of COLS:");
scanf("%d", kcols);
printf("\n");
break;

case 3:
sprintf(infilename, "%s", argv Ci));
sprintf(outfilename, "'U.", argv[2J);
printf("\n# of ROWS:");
scanf("Yd", &rows);
printf("\n# of COLS:");
scanf("%Id", kcols);
printf("\n");
break;

case 5:
sprintf~infilename, "U. argv Ci);
sprintf(outfilename, "Ws", argv [2));
sscanf(argv[3), "Ud", &rows);
sscanf(argv [4), "Ud", &cols);
break;

default:
printf("Usage: ascii2byte [infilename) Coutfi lename)");
printf(" [# of rows] [# of cols)\n");
printf("Note: arguments are optional; but, position is");
printf C" critical.\n");
exitCO);

image = (unsigned short *)calloc~rows*cols, sizeof~unsigned short));

/* read ascii format */

/* printfC"reading..A.n"); fflush(stdout); *
OPEN-.FILE (infile, infilename, "The ascii2byte Converter");
forCP=O; i<rows*cols; i++) fscanf~infile, "%hu\n', &image~i));

216

CLOSE-FILE (i, infilename, "The ascii2byte Converter", infile)

/* write byte format I
/* printf("writing.. .\n"); fflush(stdout); *1
CREATEFILE(outfile, outfilename, "The ascii2byte Converter")
amount = fwrite(image, sizeof(unsigned short), rows*cols, outfile);
CLOSEFILE(i, filename, "The ascii2byte Converter", outfile)

/* free memory */

free(image):

}/* THE FND 41

F.2.4.2 Listing of ASIFT.C

FLOAT TO INTEGER CLIP AND SIFT PROGRAM **/
I***I*
/***
/* DATE: 3 Sept 91

VERSION: 1.0

NAME: asift.c

DESCRIPTION: This program converts the numbers from an input file in which
each number is on a separate line from float to integer. This process also
takes the absolute value and clips the values to stay between a minimum
value of 0 and a maximum value of 255.

FILES READ: One file specified by the user.

FILES WRITTEN: One file specified by the user.

HEADERS USED: <stdio.h>, "jsmacros.h" , "macros.h", "stewmath.h",
<math.h>

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing and Steve Smiley

HISTORY: Initial Version

/* DECLAKATION SECTION */

#include <stdio.h>
#include "macros-h"
#include "jsmacros.h"
#include "stewmath.h"
#include <math.h>

/* MAIN PROGRAM BODY */

void main(argc, argv)
int argc;
char *argv(];{

/* initialize variables */

float-array basis, coef, proj, temp;
int i, j, k, 1, level, size, shift=l, newi, newj,newint;
char basisfile[64J, coeffile[64);

217

FILE *infilel, *infile2, *outfile;

/* test parameters *

if(argc != 4 &1 argc !=I
printf("Usage: threshold <filename> 0# of rows> <# of Cols>\n");
exit(O);

PROMPT USER

if(argc 1)f

printf("\n Enter the name of the coefficient file ");
scanfC"%s", coeffile);
printf("\n Enter the size of the NXN coefficent array ");
scanf("/. kcoef.ROW);

else(
sprintf~coeffile, 'Is", argvtiJ);
sscanf (argv [2), "Wd', kcoef .ROW);
sscanf(argv £3), "U", tcoef .COL);

/* create a matrix to hold the image *

coef.COL = coef.ROW;
CREATE-(ATRIX-.ROW~coef .array, coef.-ROW, float);
CREATEIATRIX-COL(coef.array, coef .ROW, coef .COL, float);

/* open input file *

OPE-FILE Cinfilel, coeffile, "The projection program");
loopij (coef.ROW, coef .COL)

fscanf(infilel ,"YXf", &coef.array~iJjJ);
CLOSE-.FILE Ci, coeffile, "The projection program ", infilel)
printf("\n ** The image %s has been loaded for processing. **\n\n\n",

coeffile);

1* OUTPUT PROJECTION *

CREATE-.FILE(outfile, "sifted", "The Projection Program")

loopij (coef .ROW, coef .CL) {

newint = abs((int)(coef.array[i) [j)));
if (newint > 255) newint =255;
if (newint < 0) neuint =0;
fprintf(outfile,"/.d\n", newint);

printf ("The r .ojection file has been completed~n");

F.2.5 Listing of BYTE2ASG'IJC

21S

BYTE to ASCII CONVERTER

I* DATE: 3 Sept 91

VERSION: 1.0

NAME: byte2ascii.c

DESCRIPTION: This routine converts an image from byte
format in which the gray scall values (0 to 255) are
logically stored in consecutive bytes in the file to ascii
format in which each pixel's grey scale value (0 to 255) is
stored on one row of the file.
FILES READ: One file specified by the user.

FILES WRITTEN: One file specified by the user.

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: uses nrutil.c from Numerical Recipies

AUTHOR: J. Stewart Laing
HISTORY: Initial Version*/

/* DECLARATION SECTION *1
#include < .io.h>
#include ' .aimacros.h"
int **imatrixo;
void free.imatrixo;

/* FUNCTION BODY */
void main(argc, argv)

int argc;
char *argv [];{

/* initialize variables */
int ij, rows, cols;
FILE *infile, *outfile;
char infilename[64], filename[64], outfilename[64];
unsigned amount;
unsigned short *image;

/* parse command line */

switch (argc){
case 1:

printf("Input filename:");
scanf("%s", infilename);
printf("\nOutput filename:");
scanf("%s", outfilename);
printf("\n# of ROWS:");
scanf("%d", &rows);
printf("\n# of COLS:");
scanf("%d", &cols);
printf("\n");
break;

case 2:
sprintf(infilename, "1s", argv[1]);
sprintf(outfilename, "Y.s.asc", infilename);
printf("\n# of ROWS:");
scanf("d", &rows);
printf("\n# of COLS:");

219

scanf("%d", &cols);
printf ("\n");
break;

case 3:
sprintf(infilename, "Y.s", argv[1]);
sprintf outfilename, "s", argv[2]);
printf("\n# of ROWS:");
scanf("%d", &rows);
printf("\n# of COLS:");
scanf("%,d", &cols);
printf ("\n");
break;

case 5:
sprintf(infilename, "%,s", argvl]);
sprintf (outfilename, "%ss", argv [21);
sscanf(argv[3], "d", &rows);
sscanf(argv[4), "%d", &cols);
break;

default:
printf("Usage: byte2ascii [infilename) [outfilename)");
printf(" [# of rows] [# of cols)\n");
printf("Note: arguments are optional; but, position is");
printf(" critical.\n");
exit(O);}

image = (unsigned short *)calloc(rows*cols, sizeof(unsigned short));

/* read byte format */

/* printf("reading...\n"); fflush(stdout); */
OPEN-FILE (infile, infilename, "The byte2ascii Converter");
amount = fread(image, sizeof(unsigned short), rows*cols, infile);
CLOSE-FILE (i, infilename, "The byte2ascii Converter", infile)

/* write ascii format */

/* printf("writing...\n"); fflush(stdout); */
CREATEFILE(outfile, outfilename, "The byte2ascii Converter")
loopi(rows*cols) fprintf(outfile, "%hu\n", image[i]);
CLOSEFILE(i, filename, "The ascii2byte Converter", outfile)

/* free memory */

free(image);

}/* THE END */

F.2.6 Listing of DAUB.C

WAVELET GENERATOR PROGRAM
*** ******/

/* DATE: 3 Sept 91

VERSION: 1.0

NAME: daub.c

DESCRIPTION: This program generates the g(n), phi(x), and psi(x) from
a given h(n). The values of the h(n) are hard coded and must be set
before compilation. Depth of recursion and type of wavelet are chosen
by the user interactively.

FILES READ: NONE

FILES WRITTEN: one file each for g(n), phi(x), and psi(x)

HEADERS USED: <stdio.h>, "jsmacros.h" , "macros.h"

220

CALLING PROGRAMS: NONE
PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing and Steve Smiley
HISTORY: Initial Version

#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"

float H(Nn)
int N,n;{

if(N == 2){
if(n == 0) return .4829629131;
if(n 1) return .8365163037;
if(n 2) return .2241438680;
if(n == 3) return -.1294095226;
else return 0.0;}

if(N == 3){
if(n 0) return .3326705530;
if(n 1) return .8068915093;
if(n 2) return .4598775021;
if(n 3) return -.1350110200;
if(n == 4) return -.0854412739;
if(n 5) return .0352262919;
else return 0.0;I

if(N == 4){
if(n == 0) return .2303778133;
if(n == 1) return .7148465706;
if(n 2) return .6308807679;
if(n == 3) return -.0279837694;
if(n == 4) return -.1870348117;
if(n == 5) return .0308413818;
if(n == 6) return .0328830117;
if(n 7) return -.0105974018;
else return 0.0;
}

if(N == 5)f
if(n 0) return .1601023980;
if(n == 1) return .6038292698;
if(n 2) return .7243085284;
if(n 3) return .1384281459;
if(n 4) return -.2422948871;
if(n == 5) return -.0322448696;
if(n 6) return .0775714938;
if(n == 7) return -.0062414902;
if(n 8) return -.0125807520;
if(n == 9) return .0033357253;
else return 0.0;
}

if(N == 6) {
if(n 0) return .115407434;
if(n 1) return .4946238904;
if(n == 2) return .7511339080;
if(n == 3) return .3152503517;
if(n 4) return -.2262646940;
if(n 5) return -.1297668676;
if(n 6) return .0975016056;
if(n 7) return .0275228655;
if(n 8) return -.0315820393;
if(n 9) return .0005538422;

221

if(n 10) return .0047772575;
if(n 11) return -.0010773011;
else return 0.0;
}

if(N == 7) {
if(n == 0) return .0778520541;
if(n == 1) return .3965393195;
if(n == 2) return .7291320908;
if(n 3) return .4697822874;
if(n == 4) return -.1439060039;
if(n = 5) return -.2240361850;
if(n == 6) return .0713092193;
if(n == 7) return .0806126092;
if(n == 8) return -.0380299369;
if(n 9) return -.0165745416;
if(n 10) return .0125509986;
if(n == 11) return .0004295780;
if(n 12) return -.0018016407;
if(n == 13) return .0003537138;
else return 0.0;
}

if(N == 8) {
if(n 0) return .0544158422;
if(n == 1) return .3128715909;
if(n 2) return .6756307363;
if(n 3) return .5853546837;
if(n == 4) return -.0158291053;
if(n 5) return -.2840155430;
if(n == 6) return .0004724856;
if(n == 7) return .1287474266;
if(n == 8) return -.0173693010;
if(n == 9) return -.0440882539;
if(n 10) return .0139810279;
if(n == 11) return .0087460940;
if(n 12) return -.0048703530;
if(n 13) return -.0003917404;
if(n == 14) return .0006754494;
if(n == 15) return -.0001174768;
else return 0.0;}

if(N = 9) {
if(n == 0) return .0380779474;
if(n == 1) return .2438346746;
if(n == 2) return .6048231237;
if(n == 3) return .6572880781;
if(n == 4) return .1331973858;
if(n == 5) return -.2932737833;
if(n == 6) return -.0968407832;
if(n 7) return .1485407493;
if(n 8) return .0307256815;
if(n == 9) return -.0676328291;
if(n == 10) return .0002509471;
if(n == 11) return .0223616621;
if(n == 12) return -.0047232048;
if(n 13) return -.0042815037;
if(n == 14) return .0018476469;
if(n == 15) return .0002303858;
if(n == 16) return -.0002519632;
if(n == 17) return .0000393473;
else return 0.0;
}

if(N ==) {
if(n 0) return .0266700579;
if(n == 1) return .1881768001;
if(n 2) return .5272011889;
if(n == 3) return .6884590395;

222

if(n ==4) return .2811723437;
if Cn= 5) return - .2498464243;
if Cn ==6) return -. 1959462744;
if(n 7) return .1273693403;
if Cu 8) return .0930573646;
if(n 9) return -.0713941472;
if(n ==10) return - .0294675368;
if Cn= 10) return .0332126741;
if Cn ==12) return .0036065536;
if(n ==13) return - .0107331755;
if(n ==14) return .0013953517;
if(n ==15) return .0019924053;
if(n 16) return - .0006868567;
if(n 17) return - .0001164669;
if Cu 18) return .0000935887;
if Cn =19) return - .0000132642;
else return 0.0;
I

else{
printf("\nError: Invalid choice of N");fflush~stdout);
return 0.0;

float G(N,n)
mnt N,n;

int i,signl;
for(i=i;i<=abs(l-n);i++) sign *-1;

return (sign*H(N,1-n));

float new(N,l,x)
mnt N,l,x;

int n;
float temp = 0.0;

if (1 <= 0)(
if (x == 0) return 1.0;
else return 0.0;

else{
for (n=0;n<=2*N-1;++n) temp += H(N,n) *new(N, 1-1, 2*x-n);
return C1.414212562*temp);

void main()

mnt i,l,N,j;
float temp ,temp..sum0.0;
FILE *outfile;
char filename[64j;

printf("\nlnput N corresponding to the desired Daubeshies");
printf(" Wavelet:")
scanf("Yd". WN;
printf("\nlnput depth of recursion 1
scanf("/d", kl);
printf("\nWorking... 1');

sprintf(filename,"daub/.d.phi"l, N);
CREATE-FILE(outfile, filename, "The Daub routine")
for~i=a; i<=(2*N-1); ++i) fprintf(outfile, "%.9f\n",newCN,l,i));
CLOSE..YILE(i, filename, "The Daub routine", outfile);

sprintf(filename,"dauY.d.h", N);
CREATE-FILE(outfile, filename, "The Daub routine")

223

for(i=O; i<=2*N-1; ++i) fprintf(outfile, "%.9f\n",H(N,i));
CLOSEFILE(i, filename, "The Dalib routine", outfile);

sprintf(filename,"daub/.d.g", N);
CREATEFILE(outfile, filename, "The Daub routine")
for(i=1; i>=2-2*N; --i) fprintf(outfile, ".9f\n",G(N,i));
CLOSEFILE(i, filename, "The Daub routine", outfile);
printf("\n");

sprintf(filename,"daubAd.psi", N);
CREATEFILE(outfile, filename, 'The Daub routine")
printf ("psi interval of support is %d %d\n",(-((2N)-l))/2,(1+((2*N)-1))/2);
for(j=(i-((2*N)-l))/2; j<=(1+((2*N)-l))/2; ++j){

tempsum =0.0;
for(i=1; i>=2-(2*N); --i){
tempsum += G(N,i)*new(N,l,((2*j)-i));

}

fprintf(outfile, "%.9f\n",1.414212562temp.sum);}
CLOSEFILE(i, filename, "The Daub routine", outfile);
printf("\n");}

F.2.7 Listing of EPSVIEW.C

-ROUTINE TO VIEW IMAGES FOR WAVELET ANALYZER

/* DATE: 15 April 91 *//* */

/* VERSION: 1.0/* */
/* NAME: epsview.c */

/* DESCRIPTION: This routine performs the inner product between the phi */
/* and phi coeficient of the image at any valid level as requested by */
/* the caller. */
/* It is intended as a subroutine for the WAVELET ANALYZER PROGRAM. *//* */
/* FILES READ: NONE. *//* */
/* FILES WRITTEN: A file will be generated each time the routine is */
/* routine is called. The name of the file will depend on the input */
/* image filename, the type of wavelet used, and the level of resolution. *//* */
/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h", */

<string.h> */
/* */
/* CALLING PROGRAMS: main-wave.c *//* */
/* PROGRAMS CALLED: NONE */

/* AUTHOR: Steve Smiley and J. Stewart Laing
/* */
/* HISTORY: Initial Version

/* DECLARATION SECTION */

#include <stdlib.h>

224

#include <stdio.h>
#include "1macros. h"
#include "jsmacros.a"
#include <string.h>
#include <math.h>

/* FUNCTION BODY

I*imageview(image)
int-array image,

int i, j;
FILE *fopenO, *jnfjle, *outfjle;
char infilename [64), viewfile [64], psi ile [64];
int..array image;

void main(argc, argv)
int argc;
char *argvfl;

if(argc !=4 && argc != I){
printf("Usage: hist <filename> <# of rows> <# of Cols>\n");
exit(O);

if(argc =)
printi C" \n\n Input filename of image to be viewed:>"); fflush(stdout);
scanf("Ys", infilenane);
printf("\n\n Input the size of the image (ROW COLUMN):>");
scanf("%d '/d", &image .ROW, &image.COL);

else(
sprintf infilename, "Ws", argv Li]);
sscanf(argv[2], "UI~", &image.ROW);
sscanf(argv[3], "U", &image.COL);

CREATE-4ATRIX-.ROW(image .array, image .ROW, int);
CREATE-M.ATRIX-.COL(image.array, image .ROW, image. COL, int);
OPEN...FILE(infile, infilename, "epsview. c")

loopij (image. ROW, image. COL) {
fscani Cinfile, "%3u\n", &image .array Li] j]);

sprintf (psfile, "%7s .eps", infilename);
CREATE-.FILE(outfile, psi ile, "epsview. c")

fprintf~outfile ,"%% !PS-Adobe-2 .0 EPSF-i .2n)
fprintf(outfile,"/,%/.BoundingBox: 0 0 %d %d \n", image.ROW, image.COL);
fprintf(outfile,"=%%Creator: Imageview by Laing & Smiley\n");
fprintf(outfile ,"Y%'/.'Title: /s .eps\n", infilename);
fprintf (outi ile , "'%'/%EndComments\n");
fprintf (outi ile ,"gsave\n");
fprintf~outfile ,"/picstr 7.d string def\n" ,image .ROW);
fprintf(outfile,"0 0 translate\n");
fprintf(outfile,"%d Yd scale\n" ,image.ROW, image.COL);
f printf (outf ile, "%d 7.d 8 [7/d 0 0 %/d 0 0) \n", image.-ROW, image. COL, image. ROW, image. COL);
fprintf(outfile,"{ currentfie picstr readhexstring pop}\n");
fprintf~outfile ,'image\n"),;

loopij (image .ROW, image.COL){
if (image .array~ril Lj) <= 15) fprintf~outfile, "'/x\n", image. array Li) j));
if (image array [i) [j) > 1-5) fprintf~outfile,"%2x\n", image. array [i) j);

225

fprintf(outfil,"showpage");

/* call the showpage from unix */

printf("\nI have created a postscript file called: %s\n\n", psfile);
fflush(stdout);

/*sprintf(viewfile, "csh -c pageview
/tmpjmnt/home/scgraph/en/ge/ssmiley/thesis/C-code/Develop/heximage.ps\n");
printf("%s", viewfile); fflush(stdout);
system(viewfile); */

F.2.8 Listing of EXPAND.C

ARRAY EXPADER PROGRAM

/* DATE: 3 Sept 91
VERSION: 1.0

NAME: expand.c

DESCRIPTION: This program expands a square power of 2 size array
by a factor specified interactively by the user. It uses a "bi-cubic
spline interpolation routine from Numerical Recipies in C.

FILES READ: One file specified by the user.

FILES WRITTEN: One file specified by the user.

HEADERS USED: <stdio.h>, "jsmacros.h" , <math.h>

CALLING PROGRAMS: NONE

PROGRAMS CALLED: uses nrutil.c from Numerical Recipies

AUTHOR: J. Stewart Laing

HISTORY: Initial Version*1

#include <math.h>
#include "jsmacros.h"
#include <stdio.h>

float **matrixo;
float *vectorO;
void free-vectcoz);
void freematrixo);

void main(argc, argv)
int argc;
char *argv[];

{

/* initialize variables *1

int i,j, factor;
FILE *infile, *outfile;
float-array in, out;
char infilename[64, expandfile[64);

226

void expandOO), expandio), expand2O);

/* test parameters

if~argc != 3 kk argc != i){
printf("Usage: threshold <filename> <N for NxN>\n");
exit(O);

1* prompt for parameters if not input *

if(argc ==1f
printf("\n\n\n Input the size of the square in CROW/COLUN):");
scanf("%d", &in.ROW);
printf(" \n\n Input filename of in to be expanded:"); fflush(stdout);
scanf("/s", infilename);

/* use parameters given on command line *

else{
sprintf(infilename, '7.s"l, argv El));
sscanf(argvE2j, "U4", &in.ROW);

}
in.COL = in.ROW;

/* prompt user for expansion factor *

printf(" \n\n Input expansion factor:");
scanf("%d", &f actor);

/* create a matrix to hold the in *

out.ROW = in.ROW*factor;
out.COL = out.RaW;
in.array = matrix~i, in.ROW, 1, in.COL);
out.array = matrix~i, out.ROW, 1, out.CDL);

/* open input file

OPEN-.FILE (mufle, infilename, "The Expander");
looplij(in.ROW, xn.COL) fscanf(infile, "%f\n", &in.array~i) Li));
CLOSEJFILE(i, in-filename, "The Expander", infile)

/s call expansion routines *

expandl(in.array, in.ROW, out.ROW, out.anzay);

ft Create file and output the expanded amry. ~

sprintf(expandfile, "'As. exp", infilename);
CREATE..FILE~outfile, expandfile, "The Expander");
looplij Cout.ROW, out .COL) fprintf(outfile, "%f\n", out .arrayLi) jL);
CLOSE-.FILE(i, expandfile, "The Expander", outfile)

/* Tell the user where the output file is located. ~

227

printf("\nI have expanded %s by a factor of %Ad and saved it in %s:\n\n",
infilename, factor, expandfile);

/* THE END *

void expandO(in, small, big, out)
mnt small, big;
float **in, **out;

mnt i,j,k,l, factor;
float *tab, **yp;
void splin2O), splineo;

tab =vector(i, small);
yp = matrix(l, small, 1, small);

factor big/small;
loopli(small) tab~i] factor*i;
loopii(small) spline~tab, ini), small, I.0e30, 1.0e30, yp[i));
loopl1ij (small, small)

loopkl(factor, factr'r)
splin2(tab,tnb,iUL,yp,small,small,Cf lnat) (factor*i-k),

(float) (factor*j-l) ,&out [factorsi-ki [factor*j-l));

free..yector(tab, 1, small);
free-.matrix~yp, 1, small, 1, small.;

void expand2Cin, small, out)
mnt small;
float **in, **out;

f
mnt i,j,k,l, factor;
float **yp, *tmp, *ptmp, *tab;
void splineo, splinto;

yp matrix~i, small, 1, small);
tab =vector~l, small);
tmP vector~i, small);
ptmp vector(l, small);

loopli(small) tab~i) 2*i;
loopli(small) spline~tab, ini], small, I.0e30, 1.0e30, yp~ij);
loopiij (small, small){

out[2*i)E2*jJ = in~i]Ej);
splint(tab, mi),i] ypi), small, (float)(2*j-1), koutC2*i) E2*j-1));

looplij (small, small*2) {
looplk(small) tmp~k) out[2*k) Ci);
spline~tab, tmp, small, 1.0e30, 1.0e30, ptmp);
splint(tab, tmp, ptmp, small, (float)(2*i-1), &out[2*i-1lj Ci);
I

free-.matrix~yp, 1, small, 1, small);
free...vector(tmp, 1, small);
free..yector(ptmp, 1, small);
free~.vector(tab, 1, small);

I
void expandl~in, small, big, out)

mnt small, big;
float **in, **out;

f
mnt i,j,k,l, factor, index;
float **tmp;

228

tmp = matrix(1,big,lbig);
factor = big/small;
index = (int)(log((double)factor)/log(2.0));

looplij(small,small) tmp[i] [j] = in[i] [j];
loopli(index){

expand2(tmp, small, out);
small *= 2;
looplkl(small, small) tmp[k][l) = out[k][l];
}

freematrix(tmp, 1, big, 1, big);}

F.2.9 Listing of MATRIXTOASCII.C

KHOROS ASCII STRIPPER

/* DATE: 3 Sept 91

VERSION: 1.0

NAME: matrixtoascii.c

DESCRIPTION: This program strips the matrix coordinates froa an ASCII
file output by the Khoros image processing system.
FILES READ: One file specified by the user.

FILES WRITTEN: One file with the suffix .ascii added.

HEADERS USED: <stdio.h>, "jsmacros.h", <stdlib.h>, <string.h>,
<math.h>, "macros.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: Steve Smiley

HISTORY: Initial Version

/* DECLARATION SECTION */

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"
#include <string.h>
#include <math.h>

main(){

FILE *infile, *outfile;
char infilename[64), psfile[64), element[24), num[20];
int i, j, holdl, hold2;
intarray image;

printf(" \n\n Input filename of image to be cleaned:>");
scanf("%s", infilename);
printf("\n\n Input the size of the image (ROW COLUMN):>");
scanf("%d %d", &image.ROW, &image.COL);

229

CREATE-M.ATRIX.ROW (image .array, image. ROW, int);
CREATE-M.ATRIX-CnL~image. array, image. ROW, image. COL, int);

cPEN-FILE(infile, infilename, "matrixtoascii. c")

while(*element != '#') fscanf(infiie, 1'%c", element);

loopij (image.ROW, image.COL){
fscanf(infiie, "/"element);

while(*element = '1) fscanf(infile, "%Yc", element);
fscanf(infile, "7.3d", &image. array Ei]jJ);

sprintf(psfile, "'/s.ascii", infilename);
CREATE-.FILE(outfile, psfile, "matrix. c")

loopij (image.ROW, image.COL){
fprintf~outfile, "%d\n", image.array~i]j l]);

F.2.10 Listing of NRUTIL.C

#include <malloc .h
#include <stdio.h>

void nrerror (error-.text)
char error-.text[];

void exit();

fprintf(stderr,"Numerical Recipes run-time error ... n)
fprintf(stderr,"%s\n" ,error.text);
fprintf~stderr,".. .now exiting to system... .\n");
exit(l);
I

float *vector(nl ,nli)
mnt nl,nh;

float *v;

v=(float *)malloc((unsigned) (nh-nl+l)*sizeof(float));
if ('v) nrerror ("allocation failure in vectoro)");
return v-ni;

mnt *ivector(nl ,nh)
mnt nl,nh;

mnt *v;
v=(int *)malloc((unsigned) Cnh-nl+l)*sizeof(int));
if COv) nrerror("allocation failure in ivectoro");
return v-ni;

double *dvector(nl ,nh)
mnt nl,nb;

double *v;
v=(double *)malloc((unsigned) (nh-nl+1)*sizeof(double));
if (!v) nrerror("allocation failure in dvectoro");
return v-ni;

230

float **matrjx(nrl ,nrh,ncl,nch)
int nrl,nrh,ncl,nch;
f
int i;
float **in;

in(float **) inalloc((unsigned) (nrh-nrl+1)*sizeof(float*));
if Omi) nrerror("allocation failure I in matrixo");
in -~ -rl;

for(inrl ;i<=nrh; i++) f
mili=(-float *) inalloc((unsigned) (nch-ncl+i)*sizeof(float));
if C!mili) nrerror("allocation failure 2 in iatrixo");
mi]i - nci;
I
return in;
I
double **diatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

mnt i;
double **m;

in(double **) malloc((unsigned) (nrh-nrl+l)*sizeof(double*));
if Omi) nrerror("allocation failure 1 in diatrixo");
in - nrl;

for(inrl; i<=nrh; i++) f
mili(double *) ialloc((unsigned) (nch-ncl+1)*sizeof (double));
if Cili) nrerror("allocation failure 2 in dmatrixo)");
mi]i - ncl;

return in;

in t **iiatrix(nrl,nrh,ncl,nch)
mnt nrl,nrh,ncl,nch;
mnt i,**in;
in(int **)inallocC(unsigned) (nrh-nrl+l)*sizeof(int*));
if Omi) nrerror("'allocation failure 1 in iinatrixo)");
mn - nri;

for(inrl; i<=nrh; i+4-){
mili=(int *)inalloc((unsigned) (nch-ncl+l)*sizeof(int));
if (hn~iJ) nrerror('allocation failure 2 in iiatrixo");
min]i - ncl;

return mn;

float **submatrix(a,oldrl ,oldrh ,oldcl ,oldch ,newrl ,newcl)
float **a;
mnt oldrl,oldrh,oldcl,oldch,nerl,newcL;
mnt ij;
float **in;

m=(float **) ialloc(Cunsigned) Coldrh-oldrl+l)*sizeof(float*));
if Omi) rerror("allocation failure in subiatrix('");
mn - newrl;

for(i=oldrl,jnewrl; i<=oldrh; i++,j++) inja i)+oldcl-newcl;
return mn;

231

void fxee-.vector(v ,xl .nh)
float *v;
int nl,nh;

freeC (chax*) (v+nl));

void free-.ivector(v ,rl ,uh)
int *v,nl,nh;

free((char*) (v+nl));
I
void free-.dvector(v,nl~nh)
double *v;
int nl,nh;
f
free((char*) (v+nl));
I

void free-matrix(m,nrl ,nrh,ncl ,nch)
float **m;
mnt nrl,rirh,ncl,nch;

for(irirh; i>=nrl;i--) free((char*) (m~i)+ncl));
free((chax*) Cm+nrl));
I
void free~dmatrix(m,nrl ~nrh,ncl ,nch)
double **m;
int nrJ.,nrh,ncl,nch;

int i;
for(iPnrh; i>=nrl;i--) free((char*) (m~i)+ncl));
free((char*) Cm+nrl));
I
void free-.imatrix(ia,nrl ,nrh,ricl ,nch)
int **m;
int nrl,nrh,ncl,rich;

for(iPnrh; i>=nrl ;i--) freeC(char*) Cm~iJ+rpcl));
freeC (char*) Cm+nrl));
I

void free-.submatrix~b,nrl,nrh,ncl ,nch)
float **b;
int nrl,nrh,ncl,nch;

free((char*) (b+nrl));
I

float **convert-matrix(a,nrl ,nrh,ncl ,nch)
float *a;
int rrl,nrh,ncl,nch;

int i,j,nrow,ncol;
float **m;

rnrov~nrh-nrl+l;
ncol~nch-ncl+l;
m = (float **) mallocC(unsigned) Cnrow)*sizeof(float*));
if Om) nrerrorC"allocation failure in conver?...matrixo");
m - nrl;

239

for(i=O,j=nrl;i<=nrow-1;i++,j++) m[j]=a+ncol*i-ncl;
return m;}

void freeconvertmatrix(b,nrl,nrh,ncl,nch)
float **b;
int nrl,nrh,ncX,nch;{
free((char*) (b+nrl));}

F.2.11 Listing of THRESHOLD.C

THRESHOLDER

/* DATE: 3 Sept 91

VERSION: 1.0
NAME: threshold.c

DESCRIPTION: This program thresholds an array -f values. A window is
chosen interactively by the user. All values .n.±de the window are set
to 255 (white) and all values outside the threshold are set to 0 (black).
FILES READ: One file specified by the ucer.
FILES WRITTEN: One file with the suffix .thresh added.

HEADERS USED: <stdio.h>, "jsmacros.h", <stdlib.h>, "macros.h"
CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing and Steve Smiley

HISTORY: Initial Version*/
** ** * ** * ***** * *** * ****** ** * * ***** * **** * ***** ** * **** ** * * ** **** ** *** *** * ** * ****

/* DECLARATION SECTION */

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"
/* *** **** ** **** * ***** ** ***
/* FUNCTION BODY */

voi! main(argc, argv)
int argc;
char *argv[];

/* initialize variables */

int ij;
FILE *infile, *outfile;
intarray image;
int upthresh, downthresh;
char infilename[64), thrshfile[64);

/* test parameters */

233

if(argc 4 && argc != IX
printf("Usage: threshold <filename> <# of rows> <# of Cols>\n");
exit(O);}

/* prompt for parameters if not input */

if(argc == 1A
printf("\n\n\n Input the size of the image (ROW COLUMN):>");
scanf("%d %d", &image.ROW, &image.COL);
printf(" \n\n Input filename of image to be histogramed:>"); fflush(stdout);
scanf("%s", infilename);}

/* use parameters given on command line *//***** **************************************

else {
sprintf(infilename, "s", argvl]) ;
sscanf(argv[2], "d", &image.ROW);
sscanf(argv[3], "%d", &image.COL);}

/* create a matrix to hold the image */

CREATEMATRIXROW(image.array, image.ROW, int);
CREATEMATRIXCOL(image.array, image.ROW, image.COL, int);

/* open input file */

OPEN-FILE (infile, infilename, "The thresholder")

/* prompt user for upper and lower threshold values */

printf(" \n\n Input upper threshold:>");
scanf("%d", &upthresh);

printf(" \n\n Input lower threshold:>");
scanf("%d", &downthresh);

/* Create file to output the thresholded array for use.*/

sprintf(threshfile, "%s.thresh", infilename);
CREATEFILE(outfile, threshfile, "The Thresholder")

/* This part actually inputs the file, thresholds the *1
/* grey scale values, and writes out either a 255 for */
/* white if it is between the up and down thresh values*/
/* and a 0 if it is outside this window. *//**

loopij(image.ROW, image.COL){
fscanf(infile, "%d\n", &image.array[i [j]);
if((image.array[i] [j] >= downthresh) ft

(inage.array[i][j] <= upthresh)) image.array[i][j] 255;
else image.array[i][j] = 0;
fprintf(outfile, "%d\n", image.array[i][j));

}

234

/* Tell the user where the output file is located. *I

printf("\n Thresholded and binarized image created and saved in: %s\n\n", threshfile);

/* THE END */

235

Bibliography

1. Antonini, M. and others. "Image Coding Using Vector Quantization in the Wavelet
Transform Domain." Proceedings of IEEE International Conference in ASSP. 2297-
2300. 1990.

2. Burt, Peter J. and Edward H. Adelson. "The Laplacian Pyramid as a Compact Image
Code," IEEE Transactions on Communications, COM-31(4):532-540 (April 1983).

3. Cohen, A. and J. M. Schlenker. "Compactly Supported Bidimensional Wavelet Bases
with Hexagonal Symmetry." AT&T Bell Laboratories, Preprint, 1991.

4. Cohen, I. "Time-Frequency Distributions - A Review," Proceedings of the IEEE (July
1989).

5. Combes, J. and others. Time-Frequency Methods and Phase Space (2 Edition), 21-37.
Berlin: Springer-Verlag, 1989.

6. Daubechies, Ingrid. "Orthonormal Bases of Compactly Supported Wavelets," Commu-
nications on Pure and Applied Mathematics, 41:909-996 (1988).

7. Daubechies, Ingrid. "Orthonormal Bases of Wavelets with Finite Support - Connection
with Discrete Filters." AT&T Bell Laboratories, Preprint, 1990.

8. Daugman, John G. "Uncertainty Relation for Resolution in Space, Spatial Frequency,
and Orientation Optimized by Two-Dimensional Visual Cortical Filters," Journal of
Optical Society of America, 1160-1169 (July 1985).

9. Daugman, John G. "Complete Discrete 2-D Gabor Transforms by Neural Networks for

Image Analysis and Compression," IEEE Transactions on Acoustics Speech and Signal
Processing, 36(7):1169-1179 (July 1988).

10. Fastman, Inc. The Wavelet Handbook. Technical Report, Defence Advanced Research
Projects Agency, 1991 (AD-B151 677).

11. Gabor, D. "Theory of communication," The Journal of the Institution of Electrical
Engineers, 93:429-457 (1946).

12. Gabor, D. "New Possibilities in Speech Transmission," The Journal of the Institution
of Electrical Engineers, 94:369-390 (1947).

13. Ginsburg, A. "Specifying relevant spatial information for image evaluation and display
design: An explanation of how we see certain objects," Proceedings of the Society of
Information Display, 21:219-227 (1987).

14. Ginsburg, Arthur. Visual Information Processing Based oil Spatial Filters Constrained
by Biological Data. Technical Report AMRL-TR-78-129, Volumes I and II, Aerospace
Medical Research Laboratory, December 1978.

236

15. Gonzalez, Rafael C. and Paul Wintz. Digital I-mage Processing (2 Edition). Mas-
sachusetts: Addison-Wesley Publishing C(,mpany, Inc., 1987.

16. Grossberg, Stephen. Mathematical Psychology and Psychophysiology. Philadelphia:
American Mathematical Society, 1980.

17. Grossberg, Stephen. Neural Networks and Natural Intelligence. Cambridge, Mas-
sachusetts: MIT Press, 1988.

18. Grossberg, Stephen and Ennio Mingolla. "Nerual Dynamics of Perceptual Grouping,"
Perception and Psychophysics, 38(2):141-171 (1985).

19. Grossberg, Stephen and Ennio Mingolla. "The Role of Illusory Contours in Visual
Segmentation." The Perception of Illusory Contours edited by Susan Petry and Glenn E.
Meyer, chapter 12, 116-125, Springer-Verlag, 1987.

20. Guyton, Arthur. Textbook of Medical Physiology. Philadelphia: W. B. Saunders Com-
pany, 1976.

21. Hubel, D. and T. Wiesel. "Receptive fields, binocular interaction and functional archi-
tecture in the cat's visual cortex," Journal of Physiology, 160:106-154 (1962).

22. Hubel, David H. "The Visual Cortex of The Brain," Scientific American, 209(5):54-62
(November 1963).

23. Hubel, David H. and Torsten N. Wiesel. "Brain Mechanisms of Vision," Scientific
American, 241(3):150-162 (September 1979).

24. Jones, Judson P. and Larry A. Palmer. "An Evaluation of the Two-Dimensional Gabor
Filter Model of Simple Receptive Fields in Cat Striate Cortex," Journal of Neurophys-
iology, 58(6):1233-1258 (December 1987).

25. Jr., Thomas G. Stockham. "Image Processing in the Context of a Visual Model,"
Proceedings of the IEEE, 60(7):828-842 (July 1972).

26. Lewis, A. S., G. Knowles. "Video Compression using 3D Wavelet Transforms," Elec-
tronic Letters, 26(6):396-398 (March 1990j.

27. Mallat, Stephane G. "Multifrequency Channel Decompositions of Images And Wavelet
Models," ASSP, 37(12):2091-2109 (December 1989).

28. Mallat, Stephane G. "A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation," IEEE Tr-onsactions on Pattern Analysis and Machine Intelligence,
11(7):674-693 (July 1989).

29. Mallat, Stephane G. "Zero-Crossings of a Wavelet Transform," IEEE Transactions on
Information Theory, 37(4):1019-1033 (July 1991).

30. Marr, David. Vision. New York: Freeman, 1982.

31. Norman, Ralph. Contmporary Theory and Research in Isual Perception. New York:
Holt, Rinehart and Winston, Inc, 1968.

237

32. Oberndoif, Richard A. Analysis of Visual Illusions Using Gabor Filters. MS thesis,
AFIT/G./ENG/90D-47, Air Force Institute of Technology, 1990.

33. Ozawa, Kazumasa. "Simulation of the Optical Illusions Using a Spatial Filter," Pattern
Recognition, 1:237-242 (1978).

34. Parker, Donald E. and others. "Illusory Displacement of a Moving Trace with Respect
to the Grid During Oscilloscope Motion," Perception and Pbychoph7'sics, 21 (5):439-444
(1977).

35. Press, William H. and others. Numerical Recipes in C, The Art of Scientific Computing.
Cambridge University Press, 1988.

36. Ranganath, Surendra. "Image Filtering Using Multiresolution Representations," IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(5):426-440 (May 1991).

37. Rasure, John and Danielle Argiro. Khoros Users Manual. Cambridge University Press,
1988.

38. Resnikoff, Howard L. The Illusion of Reality. New York: Springer-\Verlag, 1989.

39. Ruch, T. C. and J. F. Fulton. Medical Physiology and Biophysics. Philadelphia: W. B.
Saunders Company, 1960.

40. Shapiro, H. S. and others. "Uncertainty Principles for Basis in L2(R)." Prometheus
Inc., Preprint, 1991.

41. Smiley, Steven E. Image Segmentation Using Affine Wavelets. MS thesis,
AFIT/GE/ENG/91D-50, Air Force Institute of Technology, 1991.

42. Uz, K. Metin and others. "Interpolative Multiresolution Coding of Advanced Television
with Compatible Subchannels," IEEE Transactions on Circuits and Systems for Video
Technology, i(1):86-99 (March 1991).

238

REPOT DCUMNTATON AGEForm Approved
REPOT DCUMETATON PGEOMB No. 0704-0188

Public reporting zrurden for this .;iecton ;f nlborrnat.,n strae : Average 1 6our Per resoonse. .flding the time for reviewing instructions. searchting existing data sources
gatherleg and maintaining theota needed2. and coimetninna reviewing thlive aion ot information Send comments regardinig this burden estimate or any other aspect of this
collection of iniormatron. .ictuoing suggestions for renu..ng this ourden :0 taShingtOn Hleadquarters ier~lces. Directorate~ formcormation operations and Reorts, 1215 jef-ferson
Davis ?i-ghway. iite 1204, Arlington. oA 22202-4302. anid to thve Ofie .)f Management and Budget. Paperwork Reduction Project (0704.0188). WVashington. DC 20503.

1. AGENCY USE ONLY (Leave olank) j2. fecemRTIP 9 3. Fff rT~Yl 0 DTE OEE

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
ANALYSIS OF VISUAL ILLUSIONS USING MULTIRESOLUTION
WAVELET DECOMPOSITION BASED MODELS

6. 'oiP 5Laing, Captain, USAF

7. PERFORMING ORGANIZAT-ON NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NU M7ER

AFIT/GENC/91D-34

9. SPONSORINGi MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, 'MONITORING
AGENCY REPORT NUMBER

S11. SUPPLEMENTARY NOTES

l 2 aAr8W~ff I0 "P WRa fe1ditqion unlimited 1 2b. DISTRIBUTION CODE

1 ' ~to the explanation that spatial filtering is responsible for the perception of
illusory contours in the Kanisza Triangle illusion. Specifically, we use a Multiresolution Wavt~iet Decomposition
to divide an image into spatial-frequency bands that are used as inputs to three biologically motivated models.
The thesis includes a brief tutorial of Wavelet theory and an in-depth explanation of our implementation of
recently published algorithms for Multiresolution Wavelet Analysis. The first model is based on the saccadic
movements of the human eye. It demonstrates the importance of the high spatial-frequency content of an image
in the formulation of the illusion. The second model is based on the serial architecture of the data transmission
channel between the retina and the visual cortex of the brain. It demonstrates the importance of low temporal-
frequency characteristics of the build-up of the visual world model. The third model considers only the high
spatial-frequency content of the image. It consists of lateral excitation networks that serve to simulate the local
high spatial-frequency energy interactions that contribute to illusory contours. I

M'efeultiresolution Analysis, Human Visual System, World Model 15. IVOBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

TfcfaL ClWf1F*E UR&IAACT UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Sid 139-18
298.102

