
AD-A243 706

DTIC'5 - 1-T-1991S D

This dlumnent bcs been a ppioved
aislbhcfl bee un1 rnied

AIR~11 l FOC itITT FTCNLG
WiPate on ArFreBsOiLsui:11td

AFIT/GCS/ENG/9 ID-19

DTIC
! ELECTE a

E.C 3 0 199SD

DESIGN OF STYLE-V --
A TRANSLATOR TO CONVERT STANDARD VHDL

INTO A STYLIZED FORM FOR
AUTOMATED MICROCODE GENERATION

THESIS

Dennis A. Rumbley, Captain, USAF

AFIT/GCS/ENG/91D- 19

S - . . - ,b e n l p ; , ,p r o v e dJ ¢, ic :hr , r cd :) c2Ie ; its

Approved for public release; distribution unlimited

91-18994 91 1224 023

AFIT/GCS/ENG/91D-19

DESIGN OF STYLE-V --

A TRANSLATOR TO CONVERT STANDARD VHDL

INTO A STYLIZED FORM FOR

AUTOMATED MICROCODE GENERATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Science

Dennis A. Rumbley, B.S., M.S.A.

Captain, USAF

December 1991

Approved for public release; distribution unlimited

Preface

The purpose of this thesis was to develop a translator

called Style-V to translate IEEE standard VHDL into a spe-

cially styled VHDL defined for the Integrated Design Automa-

tion System (IDAS). The two most difficult challenges of

the translation were type conversion and function mapping.

The remaining challenges were mostly textual conversions.

My original goal was to completely develop a translator

for most of standard VHDL. however, the number and types of

mappings required to fully implement this translator and the

amount of work required to analyze, design, and implement all

modules was very much more than I could finish in just one thesis

cycle. Therefore, I reduced the scope of the thesis to defining

the mappings, analyzing how to do the mappings, performing a

manual simulation of a representative subset of the map-

pings, and implementing one mapping.

I could not have completed this thesis without the support

of several people. Specifically, I thank Luis Concha, Russell

Milliron, Donald Blankenship, Curtis Winstead, Ronald Comeau, and

my advisor, Kim Kanzaki for sharing their technical expertise. I

also thank my committee members, Keith Jones and Mark Mehalic,

for sharing their time and advise. I thank my wife for her

constant support, especially in the final hours. Finally, I

thank God for giving me the ability and grace to complete this

effort.

Dennis A. Rumbley

ii

Table of Contents

Page

Preface .. ii

List of Figures .. vi

Abstract .. viii

I. Introduction 1.1

1.1 Background 1.1
1.2 Problem Statement 1.5
1.3 Research Objective 1.6
1.4 Overview of Current Knowledge 1.6
1.5 Assumptions 1.7
1.6 Methodology 1.9
1.7 Thesis Overview 1.11

II. Literature Review 2.1

2.0 Introduction 2.1
2.1 Translation Fundamentals 2.2

2.1.1 Analysis and Synthesis 2.2
2.1.2 Compatibility of Languages 2.3
2.1.3 Two Fundamental Approaches 2.4

2.2 Lexical Analysis 2.8
2.3 Parsing 2.9
2.4 Disambiguating Grammars 2.11
2.5 Examples of Existing Translator Systems 2.13

2.5.1 PasTran -- A Pascal to Ada Translator 2.14
2.5.2 PCC -- A Pascal to C Translator 2.15
2.5.3 Small Euclid to Pascal 2.17
2.5.4 Lisp to Fortran 2.21
2.5.5 Ada to Pascal and Pascal to Ada 2.23

2.6 Summary 2.25

III. Requirements Analysis 3.1

3.0 Introduction 3.1
3.1 Review of Methods 3.2
3.2 Method Chosen 3.5
3.3 Domain Analysis of Style-V 3.7
3.4 Problem Analysis 3.13

3.4.1 Stylized and Standard VHDL Compared . 3.13
3.4.1.1 Type Differences 3.14
3.4.1.2 Declaration Differences 3.20
3.4.1.3 Structural Differences 3.21

iii

Page

3.4.1.4 Statement Differences 3.23
3.4.1.5 Other Differences 3.24

3.4.2 Example Stylized Machine 3.25
3.4.3 Lessons Learned From Example 3.29
3.4.4 Stylized Limitations 3.30

3.5 Modern Structured Analysis 3.35
3.5.1 Style-V System Context 3.36
3.5.2 Style-V External Events 3.37
3.5.3 Style-V Event Behaviors 3.38

3.5.3.1 Type Conversion 3.39
3.5.3.2 CASE to IF Conversion 3.40
3.5.3.3 Build Machine Declarations . 3.41
3.5.3.4 Architecture Conversion 3.44
3.5.3.5 Remove Tests for Data Values 3.51
3.5.3.6 Map Procedures 3.53
3.5.3.7 Perform Complete Stylization 3.54

3.5.4 Leveling of Style-V DFDs 3.56
3.6 Review 3.64

IV. Demonstration of Concept 4.1

4.0 Introduction 4.1
4.1 Selection of Concepts 4.1
4.2 Manual Implementations 4.4

4.2.1 CASE Statement Conversion 4.5
4.2.2 Type Conversion 4.9
4.2.3 Architecture Conversion 4.19
4.2.4 Procedure Mapping 4.25

4.3 Lessons Learned From Examples 4.29
4.3.1 Lessons From CASE Conversion 4.30
4.3.2 Lessons From Type Conversion 4.30
4.3.3 Lessons From Architecture Conversion 4.32
4.3.4 Lessons From Procedure Mapping 4.33

4.4 Review 4.33

V. Results, Conclusions, and Recommendations 5.1

5.0 Introduction 5.1
5.1 Results 5.3
5.2 Conclusions and Recommendations 5.6
5.3 Epilog 5.9

Appendix A. Hayes CPU VHDL Design A.1

Appendix B: FPASP Design Code B.1

Appendix C: Stylized FPASP Design Code C.1

Appendix D: CASETOIF Conversion Module D.1

iv

Page

Bibliography... BIB.1

Vita... V.1

V

List of Figures

Figure Page

1-1. Ada to Microcode Compilation 1.4

2-1. PascAda Language Translation Mapping 2.24

3-1. Style-V Level One Concept Map 3.10

3-2. Decomposition of Translator Concept 3.10

3-3. Lexical Analyzer Concept Map 3.11

3-4. Syntactical Analyzer Concept Map 3.11

3-5. Semantic Analyzer Concept Map 3.12

3-6. Standard VHDL Mapped to JRS Style VHDL 3.15

3-7. FPASP Four-Level Logic Sample 3.16

3-8. Simple CPU as Presented by Hayes 3.27

3-9. Structural View of Hayes Model 3.28

3-10. Two "Functionally Equivalent" Procedures 3.33

3-11. Style-V System Context Diagram 3.36

3-12. Style-V External Event List 3.38

3-13. Type Conversion Data Flow Diagram 3.40

3-14. CASE to IF Conversion Data Flow Diagram 3.42

3-15. Create MACHINE DECLARATIONS DFD 3.44

3-16. Architecture Conversion Data Flow Diagram 3.51

3-17. Main Architecture Processes DFD 3.51

3-18. Conditional Test Validation DFD 3.53

3-19. Procedure Mapping Data Flow Diagram 3.55

3-20. Option for Complete Stylization of a Design 3.55

3-21. Type Conversion DFD -- LEVEL 2 3.57

vi

Figure Page

3-22. CASE toIF Conversion DFD -- Level 2 3.58

3-23. Create MACHINEDECLARATIONS DFD -- Level 2 3.59

3-24. Architecture Processing DFD -- Level 2 3.59

3-25. Validate Conditional Variables -- Level 2 3.60

3-26. Procedure Mapping DFD -- Level 2 3.61

4-1. General CASE Statement Structure 4.6

4-2. General IF Statement Structure 4.7

4-3. CASE to IF-THEN Example 4.8

4-4. FPASP General "and" Truth Table 4.14

4-5. Sample "Hard" Loop Translation 4.15

4-6. Simplified "and" Translation 4.16

4-7. "and" With BUSBIT Type 4.17

4-8. "and" With BUSBITVECTOR (I downto 0) Type 4.18

4-9. Architecture With Process Statements Converted . 4.23

4-10. Representation of New Architecture 4.25

4-11. New Architecture After Conversion 4.26

4-12. FPASP to IDAS Procedure Mapping Examples 4.28

4-13. FPASP to IDAS NonMappable Example 4.29

vii

AFIT/GCS/ENG/91D-19

Abstract

This thesis provides an analysis and preliminary design

of StyleV, a source-to-source computer language translator.

Style-V converts IEEE standard VHDL into a special style of

VHDL defined for a commercial tool, the Integrated Design

Automation System (IDAS). Thirteen mappings between stand-

ard VHDL and the IDAS subset were identified. The mappings

were analyzed using Domain Analysis and Modern Structured

Analysis techniques. Four processes covering several of the

mappings were completely analyzed. One mapping to convert

CASE statements to IF statements was implemented. Since the

IDAS restricts designs to bit logic, a method for represent-

ing multilevel logic with bit logic was devised. Unaccept-

able multiple process architectures were converted to multi-

ple single process architectures which are acceptable to

IDAS. The IDAS microcode generator does not recognize user-

defined procedures, I-it in one case, mapping user-defined

procedures to IDAS defined procedures was not possible. In

general, this problem amounts to showing two programs are

functionally equivalent. Exhaustive testing was ruled out

since proving two 32-bit adders are equivalent would take

over 11 billion years at 100 procedure runs per second. The

program equivalence problem was not solved by this thesis.

Useful results were obtained, though IDAS failed to work.

viii'\'

DESIGN OF STYLE-V --
A TRANSLATOR TO CONVERT STANDARD VHDL

INTO A STYLIZED FORM FOR
AUTOMATED MICROCODE GENERATION

I. Introduction

1.1 Background
The process of developing electronic components, espe-

cially very large scale integrated (VLSI) circuits, has

matured during the past decade. Designers used to plan out

a design, draw a schematic, and go to an electronics labora-

tory where they used wires and breadboards to implement a

prototype of the design. If the prototype worked, the

design could be finalized and readied for production.

Component prototyping was an especially error-prone and

costly activity.

Another factor which caused component prototyping to

become costly and error-prone was the evolution of electron-

ic hardware. When a designer could only get hundreds or

even a few thousand components on a single chip, an experi-

enced designer could manage the activity. Now that design-

ers can place hundreds of thousands of components on a chip,

the activity becomes complex and therefore error prone.

Obviously, the cost to produce a correct design also rises

1.1

with the complexity since more time is required to determine

the causes of deficiencies in the design.

A solution for the aforementioned problems has evolved.

With the advent of computer languages developed to enhance

the hardware design process, much of the error-prone and

costly work could be done by computer simulation. The

ability to simulate a design on a computer made it unneces-

sary for a designer to spend the considerable time and money

required to test a design with breadboard methods. Another

benefit was a reduction in the number of interactions be-

tween a designer and the fabricating activity to produce a

correct component.

Realizing the importance of the hardware description

languages and their utility for reducing errors and develop-

ment time and cost, the Department of Defense developed the

VHSIC (Very High Speed Integrated Circuit) Hardware Descrip-

tion Language (VHDL) as a standard for DoD digital electron-

ic hardware development efforts. VHDL provides any combina-

tion of behavioral, structural, or temporal views of digital

electronic design. The most significant reason VHDL was

more desirable than earlier hardware description languages

was its robust accounting for component and circuit timing

characteristics. Timing is a crucial factor in the physical

behavior of a circuit and accounting for timing during

development reduced design risk. As a result of the DoD

actions and a general need for standardization throughout

1.2

the hardware design community, the Institute of Electrical

and Electronics Engineers (IEEE) adopted VHDL as an industry

standard in December 1987. This standard VHDL has become

known as IEEE-1076 (Lipsett and others, 1989:2).

VHDL became popular in the industry, and many tools

were developed to work with VHDL to make the hardware

designer's job easier. These tools enhanced design capabil-

ities of designers by providing services such as design

analysis, timing analysis, design library management, and

even automated microcode generation. However, some of these

tools required a special interface, such as a specially

styled VHDL input for the JRS Research Laboratories, Incor-

porated Integrated Design Automation System (IDAS), which is

a software system that analyzes algorithms written in the

Ada language and produces microcode based on the Ada algo-

rithms for a hardware design (Software User's 1989:2).

To produce microcode, the IDAS converts a VHDL design

into a hardware description database (HDD) format stored in

the IDAS database. It also processes an application (or set

of applications) written in a subset of Ada through the IDAS

compilation system. The information from the hardware

description database and the Ada applications is used by the

IDAS compilation system to produce microcode for the system

described by the input VHDL code. A VHDL simulation envi-

ronment for testing the microcode is also generated. This

process is depicted in Figure 1-1.

1.3

-- - - - - - - - - - - - -- - - - - - - - - - - - - - -

I ADAI
I APPLICAIONS

VHDL ADA COMPILATION

DESCFUPnOIN

PROGRAM /VHlDL

TEST SIMULA-nON

RESTS__ .- ''

\ /

Figure 1-1. Ada to Microcode Compilation
(Integrated Design, 1988:4)

The IDAS claims to provide many benefits. First, a

hardware designer need not be concerned about optimizing the

microcode to control a hardware design, since the IDAS will

do that task. Second, since the microcode generated for a

design is optimized for a specific Ada program, the designer

can be confident the design works for a desired application

base. Third, the designer need not spend the considerable

amount of time required to manually generate the proper

microcode for any given hardware design. Finally, the

designer can test a given design with the IDAS generated and

optimized microcode to determine if the design is

1.4

satisfactory or if more design work is required. Thus, a

designer can save time and money while producing better

quality designs (Software User's 1989:4).

To use the IDAS system, a designer must produce a

specially styled VHDL input. The stylized VHDL is not

simply a change of format, but in reality is the use of a

subset of the VHDL language along with some restrictions on

typing and format. For instance, the VHDL "case statement"

is not supported in the stylized form (VHDL Style Guide

1989:11,13). However, conversion of a "case statement" to

an "if statement" provides a satisfactory solution. The

stylized VHDL also does not support sensitivity lists in

process statements, but it handles sensitivities by using a

required "wait statement" as the first statement of a proc-

ess (VHDL Style Guide 1989:12). These along with several

other restrictions make use of the stylized VHDL as a design

tool less desirable than use of the standard IEEE VHDL.

1.2 Problem Statement

The IDAS takes as input a highly stylized form of VHDL,

converts the VHDL into a Hardware Description Database

(HDD), and uses the HDD "in the Ada to Microcode Compiler

retargeting process" (VHDL Style Guide 1989:1) to produce

microcode for the hardware described by the VHDL. However,

VHDL programmers do not naturally produce stylized VHDL

code. The freeform IEEE standard VHDL code produced by

1.5

designers must then be translated. The translation process

consists of analyzing the standard VHDL code and translating

it into the subset of VHDL accepted by IDAS. Hand transla-

tions of even simple designs would undoubtedly result in

several iterations to ensure a correct translation. There-

fore, an automated system to translate standard freeform

VHDL into the stylized form is required to eliminate the

need for programmers to manually translate their designs.

1.3 Research Objective
This thesis has researched and analyzed an automated

tool to translate freeform VHDL code into JRS stylized VHDL

code acceptable for input to the IDAS. The automated tool

is called the Style-V Translator.

1.4 Overview of Current Knowledge
Since the focus of this research was to design a VHDL

translator, the direction of the literature search (Chapter

2) concentrated on computer language translation, compiler

theory, and related topics.

Much work has been done in the past thirty years in the

computer language translation field. The literature review

concentrated on articles and books which give insight into

semantic and syntactic translation methods and procedures.

Since many methods exist, the literature review helped

narrow the field to the methods best suited for the Style-V

hardware description language translator.

1.6

Most computer language translators translate one pro-

gramming language into another. Some translate between

dialects of the same language. In one case, a bidirectional

translator was built which could translate between two

programming languages.

The main lesson to learn from the existing translators

is the necessity for an intermediate form to use during

translation. An appropriate intermediate form consists of a

canonical representation which is general and extensive

enough to represent constructs available in the languages

being translated. A translator then need only be able to

translate from a source language into the canonical form and

from the canonical form to the target language.

For simple translations between dialects of a language,

the basic constructs of the general language may serve as

the canonical form. The translator needs to be capable of

translating high-level constructs into more general con-

structs of the same language. Also, some reformatting of

language sentence structure may be required.

1.5 Assumptions
Whenever a major research effort is undertaken, the

researcher must realistically project the expectations of

the research, including limitations on the final product.

This thesis is no different. The following assumptions

document the expected results of this thesis and the expect-

ed limitations.

1.7

Since VHDL is an extensive hardware description lan-

guage, describing levels of detail ranging from system level

to gate level, not enough time was available for this thesis

effort to develop a translator that completely translated

all VHDL capabilities. A more reasonable expectation was to

translate VHDL into the stylized form for designs down to

the component level. A component here is a collection of

gate-level primitives which form a component and perform a

register-transfer language function (for example, add).

This level of detail was sufficient for the IDAS which uses

the stylized VHDL. Additionally, the considerable complex-

ity of VHDL and the restricted nature of the subset compris-

ing the stylized VHDL caused the research to center on

demonstrating the feasibility for translating a freeform

input to the stylized version. Therefore, component level

translation of a simple CPU was the first goal of this

thesis followed by the translation of portions of the Float-

ing Point Application Specific Processor (FPASP) chip being

jointly developed by Rome Laboratory and the Air Force

Institute of Technology (AFIT). By completing these trans-

lations, enough synthesis of VHDL into the stylized subset

was accomplished to demonstrate concept feasibility. A

follow-on thesis effort will be required to complete the

STYLE-V Translator for all feasible mappings of VHDL con-

structs.

1.8

A second assumption was that JRS' IDAS would work

properly. The IDAS was a system developed for the DoD under

a Navy contract to JRS Research Laboratories, Incorporated.

Contact with agencies known to have used the IDAS indicated

certain parts of the IDAS work well; however, none of the

agencies contacted used the IDAS in the manner required for

this research.

Another assumption was that future releases of the JRS

IDAS system would continue to use the stylized format of

VHDL as described by JRS. If the style were changed during

this research effoit, the change would have had a major

impact. The research would have continued, but potentially

fewer features would have been implemented should such a

change have occurred.

1.6 Methodology
Thorough research was paramount to the successful

completion of this effort. Manual and automated literature

searches provided the basis for the design and implementa-

tion of the Style-V translator by providing references to

literature containing information regarding the most modern

techniques for development and implementation of translator

software systems.

After enough information was gathered through the

literature review, design followed. Design began with a

domain analysis of the problem. Experts on the IDAS system,

1.9

the hardware development process, and FPASP design were

interviewed.

Following domain analysis, requirements analysis pro-

duced what became the system specifications for Style-V.

The requirements analysis process consisted of creating a

context diagram of the proposed system. As the data flow

for the system was analyzed, the initial context diagram was

decomposed into lower levels of detail. The system analysis

methods described above were originally espoused by Yourdon

(Yourdon 1979 & 1989) and by Gane and Sarson (Gane and

Sarson 1979) and have been shown successful by many large-

scale software system implementations.

The next step was a functional demonstration of the

translation process. Manual desktop implementations of

portions of the Style-V system showed the feasibility of

automating certain parts of Style-V and the apparent infea-

sibility of automating other parts.

One process of Style-V was chosen for prototyping to

demonstrate a part of the translator which could be fully

automated. Though it was a rapid prototype, care was taken

to encapsulate the modules of the process. Properly encap-

sulated software modules hide their inner workings and

interact with the remainder of the system through well

defined interfaces. Since the implemented modules of the

Style-V translator were written in C, these interfaces took

the form of function calls. Thus, a change t thc internal

1.10

workings of a function is transparent to the rest of the

system. Therefore, changes or additions to the Style-V

Translator are localized and easily done.

1.7 Thesis Overview
Chapter 1 provides an introduction to the need for an

automated tool to translate standard VHDL into a stylized

format. The sections of this chapter cover pertinent back-

ground information, a problem statement, the research objec-

tive, an overview of current knowledge, some key assump-

tions, the general methodology used, and an overview of the

contents of the written thesis.

Chapter 2 reviews the literature pertinent to the

completion of this thesis effort. Many of the books and

articles read contained information crucial for the under-

standing and use of modern software development practices

and knowledge necessary to understand and develop Style-V.

Besides an introductory section, Chapter 2 includes sections

on translation fundamentals, lexical analysis, parsing,

grammar disambiguation, examples of translators, and a

summary section.

Chapter 3 documents the analysis of the Style-V trans-

lator. The sections provide an introduction to requirements

analysis, a review of available methods, a discussion of the

method chosen, the process of domain analysis for Style-V,

the system analysis for Style-V, and a review section.

1.11

Chapter 4 documents the manual desktop implementation

of the Style-V translator. The sections provide an intro-

duction, a discussion on the selection of the processes of

Style-V chosen for implementation, the description of the

implementations, a discussion of the lessons learned from

the desktop implementation process, and a review section.

Chapter 5 discusses the results, conclusions, and

recommendations resulting from this research effort.

Appendix A contains a simple VHDL hardware system

description used to demonstrate the concept of using JRS

IDAS procedures to produce a working machine.

Appendix B contains extracts from the Floating Point

Application Specific Processor (FPASP) used as a real world

example for translating standard VHDL into a stylized VHDL

subset. Since this appendix includes proprietary Air Force

design data, it is maintained in Volume II of this thesis

and distribution is limited. See the Appendix B tab of this

volume for more details.

Appendix C contains the results of applying Style-V

translations to the FPASP code sections of Appendix B.

Since this appendix includes proprietary Air Force design

data, it is maintained in Volume II of this thesis and

distribution is limited. See the Appendix C tab of this

volume for more details.

Appendix D contains the implemented modules of the

Style-V Translator.

1.12

II. Literature Review

2.0 Introduction
This literature review explores current literature on

topics critical to the successful completion of this thesis.

The topics covered concern issues related to translating

computer programs from one form to another.

Some of the articles deal with maintaining the meaning

of an input program for use in generating an output program.

Other articles deal with the various components of transla-

tion systems, specifically the lexical analyzer and parser.

The lexical analyzer, often called a scanner, reads an input

program and passes each token it recognizes to the parser.

The parsing process deals with comparing an input stream of

tokens against a language's grammar in such a way to deter-

mine the meaning indicated by the input (Allman, 1988:76).

To accomplish this task, the parser checks the syntactic

correctness of the input. Given the input if; syntactically

correct, the parser then uses semantic routines to either

generate an intermediate representation or generate the

final output of the translator. If an intermediate inter-

pretation is generated, a code generator produces the trans-

lated program (Fisher and LeBlanc, 1988:11-13,215-220; Aho

and Ullman, 1977:7,19,254).

2.1

2.1 Translation Fundamentals
Some aspects of language translation can be classified

as fundamental to the translation process. Any effort which

produces a translator must address the fundamental issues of

language translation. Style-V is no exception.

2.1.1 Analysis and Synthesis. Analysis and synthesis

are the two actions required for a translator to convert an

algorithm in a source language into a similar algorithm in a

target language. Analysis determines what actions are

ultimately required by the implementation in the target

language. Synthesis is the process of transforming the

source statements into direct execution or a target language

form (Calingaert, 1988:5).

Analysis occurs in three distinct stages. The first

stage is lexical analysis where words of the source language

are recognized by an examination of the characters found in

the input text. The second stage, syntactic analysis,

examines and determines the correctness of the structure of

the source language input. When the idea of grammar (the

proper association of symbols in a language) is incorporat-

ed, the syntactic analysis is known as parsing. The final

stage of analysis, semantic processing, entails associating

the semantic information (meaning) of the input tokens in

such a way that the meaning can be maintained in and trans-

formed to a new representation (intermediate code or the

target language) (Calingaert, 1988:5,235-6).

2.2

2.1.2 Compatibility of Languages. Commonalities and

differences of languages must be precisely defined if one

hopes to successfully translate between them. These defini-

tions are particularly important when translating between

dialects of the same language. Fortunately, techniques

which define parts of a language in terms of itself lessen

the definition effort (Krieg-Brckner, 1984:299).

Given two languages Alang and Blang, if the language

concepts of the sublanguages, Asublang (the sublanguage for

a language Alang) and Bsublang (the sublanguage for a lan-

guage Blang), correspond in a one-to-one manner, then Asub-

lang and Bsublang are said to be directly compatible.

Additionally, if the concepts of a language, Aotherlang (a

language other than Asublang or Bsublang), are mappable to

Asublang, then Aotherlang is said to be indirectly compati-

ble with Bsublang.

If Asublang is complete in the sense that all concepts

of Alang can be mapped into it, and Bsublang is complete in

the same respect with Blang, the Alang can be mapped to

Blang. A problem exists when concepts in the language Alang

cannot be mapped to Asublang, at which point Alang cannot be

fully mapped to Bsublang, and therefore the languages Alang

and Bling are said to be incompatible and translations

between them are not generally pczsible (Krieg-BrUckner,

1984:300).

2.3

If certain restrictions exist in one language, these

restrictions may require an "applicability condition" hold

for the other language being translated for a one-to-one

translation to be possible. Krieg-Brckner gave the example

of the for-loop variable in Ada and Pascal. If a direct

translation is to be obtained, the variable must not be

assigned values outside the loop body in both language

implementations (Krieg-BrUckner, 1984:303).

Another key point in having the ability to directly

translate between sublanguages is that the sublanguages must

have a certain level of expressive power. This expressive

power between sublanguages enables one sublanguage to ex-

press concepts contained in the other sublanguage (Krieg-

BrUckner, 1984:303).

The semantic mapping from Alang to Asublang can be

thought of as a homomorphism (they look similar) and the

equivalence of the semantics can be proven using the seman-

tic definitions of the languages. Asublang is a "subset"

language of Alang, and all Alang constructs can map to

Asublang constructs. The translation of Asublang to Bsub-

lang would be an isomorphism (they look different) using an

equivalent semantic definition kernel (Krieg-BrUckner,

1984:304).

2.1.3 Two Fundamental Approaches. The research for

this thesis effort determined that two fundamental approach-

es to program translation currently exist. The most common

2.4

approach is transliteration and refinement. An alternate

method is to use abstraction and reimplementation. The

remainder of this section describes these approaches and

provides their respective advantages and disadvantages.

The approach of transliteration and refinement is based

on a direct translation of statements in a source language

to semantically equivalent statements in a target language.

This is done by a translating statements in isolation from

the overall context of the program. The output can be in

the target language or a semantically similar intermediate

language. The refinement step applies "correctness preserv-

ing transformations" to the generated target code to improve

the quality of it (Waters, 1986:2).

Advantages of transliteration and refinement include a

divide and conquer approach, localized nature of the trans-

lations, and ease of constructing families of translators.

The transliteration step need not bt concerned with later

refinements -- the basic goal is to obtain a semantically

correct translation. Since transliteration takes a local-

ized approach to translation, the knowledge needed for

translation is easily determined since it need not consider

how special combinations of a target language might imple-

ment special combinations of the source language. Finally,

translators which use similar methods of either translitera-

tion or refinement can be easily adapted to similar lan-

guages (Waters, 1986:7).

2.5

Unfortunately, transliteration and refinement have some

disadvantages. One of the main disadvantages is that the

refinement process is complicated because the translitera-

tion is a localized translation which often results in

convoluted code in the target language. Additionally, it is

not always practical to translate one construct of a source

language into a construct of the target language. Some-

times, a source language contains a primitive which is not

supported in the target language and transliteration cannot

handle this problem. Finally, current translators suffer

from the problem of being able to straightforwardly trans-

late certain constructs most of the time, but on occasion

they incorrectly translate the constructs when the transla-

tion is difficult or impossible (Waters, 1986:8-9).

Translation can alternatively be done via abstraction

and reimplementation. The abstraction process first ana-

lyzes the program globally and uses this analysis to gain an

understanding of the algorithms in the source program. The

reimplementation process uses the knowledge of the source

program algorithms to implement equivalent algorithms in the

target language. Unlike transliteration, abstraction does

not require a knowledge of the target language when analyz-

ing the source language (Waters, 1986:10).

One of the advantages of abstraction and reimplementa-

tion over transliteration and refinement is the ability to

satisfy the subsidiary goals of language translation -- a

2.6

readable translation. This is a natural consequence of the

main goal of abstraction -- to simplify reimplementation. A

second advantage of abstraction and reimplementation is

ability to translate any possible translation task. Final-

ly, "translation via abstraction and reimplementation lends

itself to the construction of families of translators"

(Waters, 1986:16).

Some of the problems of abstraction and reimplementa-

tion include a lack of completeness, the practicality of

translation, and the complicated nature of the process.

When it is not practical to use abstraction and reimplemen-

tation, a translator could fall back to a process of trans-

literation in most cases since the problems of abstraction

and reimplementation are orthogonal to the problems of

transliteration and reimplementation -- in other words, when

it is not practical to use one method, the translation at

that point will usually be easier using the other method.

Since abstraction and reimplementation is significantly more

complicated than transliteration and reimplementation, when

transliteration is practical and little refinement is re-

quired, the method of choice is probably transliteration and

refinement (Waters, 1986:16).

Calingaert claims that "translation from one machine-

independent language to another is rarely feasible."(Caling-

aert, 1988:330). However, during this research effort,

2.7

several examples'of source-to-source translators were found.

A sampling of such translators are discussed in Section 2.5.

2.2 Lexical Analysis
Lexical analysis is the process of taking an input

string and converting it into a sequence of tokens. Normal-

ly, some other program will use the tokens produced by the

lexical analyzer for further processing (Fox, 1987:51).

Various methods exist to generate a lexical analyzer.

Some lexical analyzers are "hand-generated" by a programmer.

Hand-generated lexical analyzers can be very efficient but

can be difficult to construct. Other lexical analyzers are

generated using some type of lexical analyzer generating

program. Normally, a programmer can generate a lexical

analyzer much quicker and easier with an automated tool than

by hand generating techniques.

Numerous lexical analyzer generators exist. Probably

the most famous and most widely used lexical analyzer gener-

ator is the program called LEX written by Lesk in 1975

(Lesk, 1975). LEX considers an input string of characters

and compares them with the definitions of acceptable tokens.

The token definitions are in the form of regular expres-

sions.

LEX matches the longest possible token as it reads an

input string. Normally, tokens in the input string are

delimited by white space characters (blank or tab) or the

newline character. LEX identifies tokens by returning an

2.8

integer value through the function YYLEX and keeps the

string value of the token in the variable YYLVAL.

The capabilities of LEX exceed those of a simple lexi-

cal analyzer (Fox, 1987:53,55). When a token is recognized,

LEX provides a capability for a programmer to specify pro-

gramming language (usually C) statements to be executed for

each token that is recognized. The actions specified by the

programmer are in addition to LEX's identifying the token

and string value as stated above. The capability of execut-

ing programming statements upon recognition of tokens makes

LEX a powerful tool for lexical analysis and text process-

ing.

Besides LEX's power and flexibility, LEX is a readily

available resource at AFIT and on other systems used for

this thesis. Therefore, due to the availability and power

of LEX, it was seriously considered for use in the develop-

ment of STYLE-V.

2.3 Parsing
Computer languages are generated from Context-Free

Grammars (CFG). A CFG is a collection of terminal symbols

which represent the alphabet legal for a language, nontermi-

nal symbols which are derived by some combination of termi-

nal symbols, and a finite set of productions which are the

rules that define how nonterminal symbols are derived in

terms of terminal and nonterminal symbols (Cohen, 1986:247).

2.9

An analogy is to think of a program as a paragraph.

The computer language statements in the program are the

sentences of the paragraph. The identifiers and symbols in

the statements are the words of the sentences. Finally, the

characters composing the identifiers and symbols represent

the alphabet of the language.

The rules which determine if a "sentence" of a computer

language is correct are the syntax rules. The job of a

parser is to receive tokens (words) from the lexical analyz-

er and apply the syntax rules to the sentences formed by the

words to determine if the sentences are legal.

Semantic processing, on the other hand, deals with what

a given sentence (or even:program) means. Once a parser

determines a portion of the input is syntactically correct,

it can call semantic routines to assess the meaning of the

input.

Sideri (and others) discussed the use of attribute

grammars with no restrictions on the dependencies of the

attributes used for parsing. An attribute grammar is recog-

nized by the association of attributes to the nonterminal

symbols of a CFG, the "functions on the attributes, and

conditions over the attributes" (Sideri and others, 1989:91-

92).

Using attribute grammars, Sideri proposed a Semantical-

ly Driven Parsing method for context-free languages. An

attribute grammar is defined as a reduced CFG, a finite set

2.10

of attributes, the domains of the attributes, a set of

semantic rules, and a set of semantic conditions. The

semantic condition for each production is either satisfied

and a correct parse is realized, or the semantic rules

operating on the attributes violated a constraint on the

attributes, thus signifying an incorrect parse of a produc-

tion (Sideri and others, 1989:91).

The semantic assessment of the input strings is accom-

plished during the parsing of the input stream. With this

method, meaning is only assigned to semantically correct

input strings and any incorrect string is rejected, an

advantage over other methods that form and search parse

trees for all input strings. Also, attribute reevaluation

between multiple parse trees for the same input string is

avoided (Sideri and others, 1989:91).

2.4 Disambiguating Grammars
During syntactic analysis, the productions defined by a

grammar may lead to conflicting reductions. Normally, some

standard or default reduction is chosen over the other

conflicting reductions. Since a standard or default produc-

tion is reduced, the other productions are ignored. There-

fore, because conflicting reductions are present, the gram-

mar is ambiguous. An example of ambiguous productions is:

P - C

2.11

where the parser does not know whether to reduce P or reduce

Q (Ganapathi, 1989:25).

Ganapathi provides a solution to disambiguate the way

parsers reduce productions that only involves modification

of the parser driver, so Ganapathi's solution is applicable

to presently available off-the-shelf parser generators.

Using Ganapathi's method, disambiguating predicates can be

added and disambiguation is done dynamically (Ganapathi,

1989:25,29-30).

According to Ganapathi, a production may have many

predicates. However, at least one and only one predicate of

a production must evaluate to true and all other predicates

of the production must evaluate to false. (Ganapathi,

1989:25-26).

Ganapathi's method is reasonably simple to implement

and does not require rewriting the parser generator. When

implementing Ganapathi's method,

conflicting productions in the grammar are expanded
with distinct terminal symbols and an ? production is
introduced to invoke a predicate-routine and select a
production. (Ganapathi, 1989:29)

The following example shows the ease of implementing

Ganapathi's method. Given the ambiguous productions:

P1: A -- > C
P2: B -- > C

replace them by productions using look-ahead disambiguation.

Lookahead disambiguation is added by rewriting the ambiguous

productions with a new nonterminal and disambiguating

2.12

terminals at the end of the ambiguous portion of the produc-

tion. The new nonterminal is then formed into a production

and the disambiguation is triggered. The resulting produc-

tions are:

Pl: A -- > C V Ta
P2: B -- > C V Tb
P3: V -- > ? disambiguate(Ta,Tb)

The correct choice between Pl and P2 will occur when P3

reduces and the disambiguate predicate triggers. The predi-

cate reduces by considering the context or by using condi-

tions defined by the system developer (Ganapathi, 1989:30).

In the conclusion of the article, Ganapathi points out

two benefits of including semantic predicates as context

sensitive parts of the grammar. First, the inclusion of the

predicates "contributes to an overall gain in convenience"

for the grammar writer (Ganapathi, 1989:32). Finally,

"resolution by a linear ordering of predicates permits

incremental addition of productions in a grammar"

(Ganapathi, 1989:32).

2.5 Examples of Existing Translator Systems
As part of this research effort, a review of existing

language translators provided invaluable insight into poten-

tial methods for implementing Style-V. The purpose of this

section is to provide a review of the articles and books

researched for knowledge to complete this thesis.

2.13

2.5.1 PasTran -- A Pascal to Ada Translator. PasTran

is a translator developed for the purpose of translating

Pascal programs to the Ada programming language. Since

PasTran translates 95 percent of the standard Pascal lan-

guage, if the Pascal programs are in standard Pascal, the

conversion is virtually automatic and most required editing

is for esthetic reasons only (Owen, 1987:423,425).

The translator takes three passes to process a Pascal

program. The first pass analyzes the syntax of the Pascal

program. The second pass analyzes the semantics. The third

and final pass generates the translated Ada code (Owen,

1987:425).

During the translation process, PasTran generates error

messages and provides the user with the option of terminat-

ing the translation process or continuing. This allows a

user to let PasTran translate as much as possible automati-

cally. The user can then hand translate the portions Pas-

Tran could not understand. This option allows the transla-

tion of nonstandard Pascal and the few standard constructs

PasTran is unable to handle (Owen, 1987:425).

A final item of note about PasTran is it's ability to

handle constructs of Pascal for which no equivalent Ada

construct exists, specifically, the Pascal record WITH

clause. PasTran creates a new identifier and uses the Ada

dot notation to emulate the Pascal WITH construct.

2.14

2.5.2 PCC -- A Pascal to C Translator. PCC is a

Pascal to C translator written in the C programming language

for portability. It has been ported to several configura-

tions. PCC satisfies two main tasks. First, applications

written in standard Pascal which now need further features

added (features not available in Pascal) may be converted to

C which has the required language features. Second, with

PCC it is possible to port Pascal programs to a newly de-

veloped computer system which has a C compiler but not one

for Pascal (Bothe and others, 1989:60).

The requirements for PCC were derived from the two main

uses described above. Since the C programs generated by PCC

will be used for further program development, the trans-

formed C code must be comprehensible. Also, the generated C

programs must be efficient to maintain the efficiency of the

source Pascal programs. Some technology must exist to

handle the dialects of Pascal as many dialects exist with

extensions to the standard language, the most famous being

Turbo Pascal. Since the translator is being developed as a

translation tool, it must be portable. Finally, the trans-

lator must be efficient since not all Pascal programs run

through may be fully tested -- the case when PCC is used as

a development tool for new Pascal programs until a Pascal

compiler is available (Bothe and others, 1989:61).

Comprehensible C code is generated by PCC because the

PCC system follows four principles. The first principle PCC

2.15

observes is to preserve the structure of the original Pascal

program in the translated C program. The second principle

involves using rules for translating language constructs

that maintain comprehensibility. Third, identifiers from

the Pascal source should be analogous in the translated C

code. Fourth, and finally, Pascal comments must be trans-

lated to equivalent C comment statements (Bothe and others,

1989:62).

One feature of Pascal that makes abiding by the princi-

ple of maintaining original structure is the use of local

procedures or functions. Since C does not have this feature

(all functions are global), maintaining the functionality

will be possible but maintaining the original structure is

not (Bothe and others, 1989:62).

Improving the efficiency of a translation is sometimes

difficult depending on the optimization scheme chosen.

Sometimes complex optimization attempts achieve very little

real gain in efficiency. For PCC, it was decided to imple-

ment local optimizations, which are simple and obvious, and

leave further optimization to the discretion of the using

programmer (Bothe and others, 1989:62).

PCC uses a pipelined, four-pass design to perform

translations. One pass is for lexical and syntactic analy-

sis. Another pass analyzes the semantics of the Pascal

source. A third pass generates the C program. The final

pass is uses to beautify the output C program. Using this

2.16

architecture, PCC can translate extremely large programs

because it limits the size of each pass to 40 KBytes and the

symbol table is only maintained as long as the variables are

in a current scope -- like a one-pass compiler (Bothe and

others, 1989:63).

Three methods exist to handle dialects of Pascal. The

first is for the programmer to manually convert the source

program into standard Pascal which is accepted by PCC.

Second, a nonstandard Pascal program can be partly translat-

ed by PCC (about 90 percent) and the remainder done by hand.

Thirdly, the PCC itself may be modified to handle the non-

standard constructs of the dialect (Bothe and others,

1989:63-64).

Portability of PCC was maintained first by using the C

programming language and second by avoiding language fea-

tures not supported by some of the existing C compilers

(Bothe and others, 1989:64).

Deriving the requirements for PCC based on the uses of

translating systems provided insight into the need for

proper domain analysis prior to implementing a project.

This principle will be applied in Chapter 3 of this thesis.

2.5.3 Small Euclid to Pascal. The Small Euclid to

Pascal translator was developed to translate a medium size

application (an assembler). Understanding the application

and recoding it in Pascal would have been an error prone

activity. Developing the translator ensured a correct

2.17

translation and provided a tool for future use (Pintelas and

others, 1989:93).

Because it is easier to translate to a related lan-

guage, Pascal was chosen as the target language since Euclid

development was based on Pascal. Also, the popularity of

Pascal means more machines can process the resulting program

code (Pintelas and others, 1989:93).

To avoid portability problems, the translator was

written in C and designed to translate to a core of Pascal

(those features of Pascal available on all or most

machines). Due to this choice, some drawbacks were unavoid-

able. One drawback is the extended use of goto statements

in the translated code. Another drawback is that new logi-

cal variables are required in the target code. Further, the

descriptive Euclid identifiers must be somehow shortened to

a maximum of eight characters. Due to these drawbacks, the

translated code is not very readable or well structured.

However, since the goal of the translation process was to

produce compilable code and not so much for human interven-

tion, this is not too much of a problem. Should humans need

to use the output, a pretty printer program could improve

the Pascal text (Pintelas and others, 1989:93).

The translator expects semantically correct Small

Euclid programs. It does a complete syntax check, but not a

exhaustive semantic check on the source (Pintelas and oth-

ers, 1989:94).

2.18

One of the differences between Small Euclid and Pascal

which the translator must address is the declaration of

constants, variables, types, and procedures. In a Small

Euclid program, these may be declared in any order. Howev-

er, Pascal has a fixed order of declarations for a program

(Pintelas and others, 1989:94).

Another difference is the scoping of variables. In

Small Euclid, an import list is used to identify which

variables are visible to an internal procedure. Small

Euclid also provides a constant, type, variable, procedure,

or function to be declared as pervasive and then it does not

need to be included in an access list to be visible. In

Pascal, all variables in the scope of the procedure are

visible and are therefore equivalent to the Small Euclid

pervasive declarations (Pintelas and others, 1989:94).

Various statements of the two languages differ. The IF

statements are different. Pascal uses an IF-THEN-ELSE

structure where Small Euclid uses an IF-THEN-(ELSIF-THEN)-

ELSE-ENDIF structure. The loop constructs of Pascal are

replaced in Small Euclid with a more general loop statement.

Unlike Pascal, the Small Euclid CASE statement provides an

OTHERWISE clause (Pintelas and others, 1989:95).

Some of the other differences have to do with declara-

tions. In Pascal, local declarations come right after the

procedure header, but in Small Euclid they come after the

first BEGIN. Also, name equivalence is used for type check-

2.19

ing in Pascal (types of items are equal only if the type

name matches) whereas Small Euclid uses the harder to check

structural equivalence for types (types of items are equal

if they have the same structure and their description values

are equal) (Pintelas and others, 1989:95).

The translator was designed to perform the translation

in three passes. The first pass simply converted a multiple

file program into a single file for translation. The second

pass was used for textual processes such as the removal of

white space, removal of comments, and conversion of upper-

case characters to lower case characters. The translator

developers decided to remove comments because leaving them

in might be confusing as the resultant Pascal program was a

drastic change from the input Small Euclid code. The third

pass was the most significant and consisted of three basic

modules: the lexical analyzer, the symbol table, and the

syntax analyzer (Pintelas and others, 1989:98-99).

The tools LEX and YACC were used extensively and a

large number of action routines. The lexical analyzer's

basic job was to deliver tokens to the syntax analyzer.

Since assertion statements were turned into comments, the

lexical analyzer handled all assertion statements by deliv-

ering the comments to the current output file (Pintelas and

others, 1989:99).

The symbol table was needed for several important

reasons, some of which follow. Declaration names needed to

2.20

be transformed before being transferred to the Pascal output

file. Some new names had to be created due to the length

restrictions imposed by Pascal. Some structure had to store

all information regarding a name for use during the transla-

tion process. Finally, declaration names had to be collect-

ed before being sent to the Pascal output (Pintelas and

others, 1989:99).

The syntax analyzer initialized and managed the symbol

table task. It also called the lexical analyzer when tokens

were needed. It managed all temporary files. Finally, it

checked the input Small Euclid and output Pascal program for

syntactic correctness. Since the translator expected a

syntactically correct input Small Euclid program, it would

attempt translation until a syntax error was recognized and

then terminate (Pintelas and others, 1989:100).

The building of the Small Euclid to Pascal translator

was a significant effort that was eased by the use of LEX

and YACC tools. Yet, the project took ten man months and

produced over 3,000 lines of source code (Pintelas and

others, 1989:100).

2.5.4 Lisp to Fortran. TAMPR was a program transfor-

mation system written in applicative LISP which was trans-

lated into Fortran. The method used was to analyze the

required transformation and break it into smaller steps.

The idea is to preserve the correctness of the program

2.21

through a sequence of relatively small alterations (Boyle,

1984:291).

The first idea was to transform the LISP program to

Fortran in two stages. The first stage was to convert LISP

code to Recursive Fortran. The second stage would then

convert the Recursive Fortran into an executable form of

Fortran, either Fortran 66 or Fortran 77. In the final

design, about 20 levels of transformations were used (Boyle,

1984:292).

The first levels of the transformer converted the input

LISP into a form that could be translated into Fortran. The

last of these steps resulted in a form of LISP that had

nontrivial functions evaluated in the argument part of

lambda expressions. This form was then translatable into

Recursive Fortran statements with no more than one recursive

call. The latter steps involve recursion removal from the

Fortran code (Boyle, 1984:292,294).

An interesting benefit of using smali transformation

steps to translate programs is that intermediate results are

available for optimization. In this way, correct and

optimized code is used for each input to the next transfor-

mation step (Boyle, 1984:294-295).

The transformation of TAMPR from LISP into Fortran was

accomplished in a totally automated fashion (no manual

intervention), and the resultant Fortran program ran 25

percent faster than the original LISP program on the same

2.22

platform. This example showed that a practical approach to

synthesizing programs is to use program transformation

(Boyle, 1984:296-297).

2.5.5 Ada to Pascal and Pascal to Ada. A method of

translation was described that allows bidirectional transla-

tion between two languages. In the case of the article, Ada

and Pascal were used. The translation method used is to

define a subset of each language for which there exists a

direct translation into the subset of the other language.

PascalA and AdaP were defined and their semantic concepts

map to the other's in a simple one-to-one manner. In this

sense, PascalA and AdaP represent two equivalent forms of a

new language, PascAda (Albrecht and others, 1980:183-184).

Using the similar sublanguage approach, the sublan-

guages correspond in three ways. First, program semantics

are preserved. Second, the form and structure are pre-

served. Third, local transformations result (Albrecht and

others, 1980:184).

The first step of sublanguage definition is to define

an extended sublanguage of the original language for which

all constructs are mappable to the other original language.

Obviously, this extended sublanguage should be as rich as

possible. Then determine the mappings between this extended

sublanguage and the sublanguage which is the syntactic

equivalent of the other original language's sublanguage

2.23

(Albrecht and others, 1980:184). Figure 2-1 provides an

example to clarify this concept.

--/ -\

Pasca D PascalAE AdaPE C: Ada

PacaA -4 DW AdaP

--- /
Figure 2-1. PascAda Language Translation Mapping

(Albrecht and others, 1980:184)

Consider source-to-source translation between Pascal

and A.da depicted in Figure 2-1. Given that not all Pascal

constructs may map to Ada, the extended subset of Pascal

called PascalAE for which all constructs are mappable to Ada

is defined. Next, a similar extended subset for Ada called

AdaPE is defined. Now, these extended subset languages are

mappable to the sublanguages PascalA and AdaP (respectively)

which are easily translated between because they are the two

syntactic forms of the PascAda language (Albrecht and oth-

ers, 1980:184).

The structure of the PascAda system consists of seven

routines which provide eight logical units. Four units

translate the Pascal side and the other four units translate

the Ada side. The unit PascalToTree translates Pascal

source into a nonstandard PascalAE tree structure, producing

2.24

error messages if language constructs occur for which there

is not a PascalAE representation. The unit PascalAEToA does

a tree to tree transformation to convert PascalAE into

PascalA syntax. A unit called PascalACheck then ensures the

resultant tree contains only semantically correct PascalA

constructs, and if the tree is in a nonstandard form, it is

converted to a standard tree. The TreeToPascal unit pro-

duces Pascal code from a standard PascalA tree. Similarly

for Ada, the AdaToTree unit constructs a nonstandard tree

from Ada source code. The AdaPEToP unit uses a tree-to-tree

transformation to convert AdaPE constructs into AdaP syntax.

The AdaPCheck unit then checks that only semantically cor-

rect constructs are in the tree. Finally, the TreeToAda

unit uses a standard AdaP tree to produce Ada code (Albrecht

and others, 1980:188).

2.6 Summary
This chapter has reviewed the literature to provide a

basis of knowledge for further work toward development of

the Style-V translator. Section 2.1 covered the fundamen-

tals of computer language translation. Lexical analysis

which is part of every translation task was reviewed in

Section 2.2. The parsing task and current work on tech-

niques comprised Section 2.3. The need to ensure language

grammars are processed without ambiguity was covered in

Section 2.4, and methods were described for disambiguating a

2.25

grammar. Finally, Section 2.5 provided examples of transla-

tors which have been developed and described some of the

techniques used.

iihe information in this chapter provides the foundation

for the research to continue into the requirements defini-

tion phase for the Style-V translator -- the subject of

Chapter 3 of this thesis.

2.26

III. Requirements Analysis

3.0 Introduction
This chapter details the requirements analysis process

used to develop the Style-V translator for translating

standard IEEE VHDL into a specially styled VHDL.

To design a successful program, the developer must

understand the problem at hand. This requires a careful

study of all aspects of the problem -- analysis. The

Webster's II dictionary defines analysis as "separation of

an intellectual or substantial whole into its constituent

parts for individual study" (Webster's, 1984:104). In the

context of a computer system, the developer must define what

is to be done, by whom, when, and how.

For the purposes of this thesis, analysis is the proc-

ess of specifying the parts of the Style-V Translator sys-

tem, how they interact, and what they produce. The results

of analysis should completely specify the behavior of the

software system (Davis, 1990:7,17). The parts of the system

are then categorized as hardware, software, and peopleware.

Hardware consists of the computers and peripheral equipment

on which the software programs and data are processed. The

software component consists of programs and data needed to

provide the functionality desired of the system. Finally,

the peopleware component consists of the users of the sys-

tem.

3.1

This chapter will review the methods available for

conducting systems analysis, describe in detail the method

chosen, provide a domain analysis of the problem domain, use

the domain analysis results to analyze the Style-V system,

and end with a summary of the analysis effort.

3.1 Review of Methods
As with most development processes in computer science,

no one method of analysis has been adopted as the standard

best way. Instead, a plethora of methods exists, and a

developer must choose a method (or combination of methods)

that suits both the type of problem at hand and the

developer's personal preferences, since more than one method

may be equally valid.

All current methods of analysis can be classified as

either functional or object-oriented analysis. In function-

al analysis, the problem is analyzed to determine the func-

tions and data needed to solve it. Functional analysis

considers the functions and their associated data or control

flow. Object-oriented analysis takes a somewhat different

approach by determining the objects which exist in the

problem space (application domain). The services provided

by and required by the objects are identified. Also, the

attributes of objects and their relationships are identified

(Davis, 1990:46).

3.2

Several notations for analysis are common. Data flow

diagrams (DFD) were popular for problem solving even before

the time of computers, and they are quite applicable to

computaticnal problem solving. A DFD represents data flow

(by labeled directed arrows) between transformation centers

(represented by bubbles), and sources and destinations of

data called terminators (Davis, 1990:57).

In addition to DFDs, control flow diagrams (CFDs),

Mealy or Moore machine representations, process activation

tables, and requirements dictionaries are further analysis

tools and are quite helpful when analyzing real-time systems

(Davis, 1990:60-61).

A companion for DFDs is the data dictionary (DD). The

DD stores information on data items such as name, aliases,

descriptions, relations, values, data flows, and rtructure

definitions (Davis, 1990:62).

Another notation is the entity-relationship diagram.

Using this notation, a designer identifies the entities in

the problem placing them in rectangles. Relations are

identified in diamonds and placed between the entities on

the diagram. Entity attributes are noted in circles at-

tached to the entity's rectangle.

In the object oriented world, Peter Coad developed a

diagram that combines the advantages of DFDs and ER dia-

grams. His COAD objects contain attributes, suffered opera-

tions, and required operations. They also have two types of

3.3

structural relationships: classification and assembly.

Classification relations show a class (or type) of an object

(in-patient and out patient are of class patient). Assembly

relations show a "part-of" relation between objects (heart

and liver objects are parts of a person object) (Davis,

1990:63-69).

One technique used by analysts to gain an understanding

of a problem domain is Domain Analysis (DA). The general

class of problems in which the current problem of interest

is a part is analyzed. Then, the processes required by any

system which would operate in the problem domain are identi-

fied. Finally, the system is related to the inputs, out-

puts, and processes pertinent to the system. Section 3.3

provides an example of this process.

Davis describes eight methods of analysis (Davis,

1990:71-100). Each of the methods uses a combination from

the notations described in this section or possibly some

method specific notations. The eight methods Davis de-

scribed are:

1. Listing All Inputs and Outputs.

2. Listing Major Functions.

3. Structured Requirements Definition (SRD).

4. Structured Analysis and Design Technique (SADT).

5. Structured Analysis and System Specification

(SASS).

6. Modern Structured Analysis (MSA).

3.4

7. Problem Statement Language / Problem Statement

Analyzer (PSL/PSA)TM

8. Object-Oriented Problem Analysis (OOA).

3.2 Method Chosen

Domain Analysis (DA) and Modern Structured Analysis

(MSA), as defined by Ward and Mellor, were chosen for this

thesis effort. They provide a logical and straightforward

process for performing system analysis.

Domain analysis helps the analyst understand the class

of problems at hand by describing the parts of a system.

MSA uses the parts of the system defined in DA to solve a

particular problem -- in the case of this thesis it solves

the problem of translating standard VHDL into a subset.

Structured Analysis has been around for a long time.

Modern structured analysis has evolved from a great wealth

of experience and ideas. Davis provides a summary of two

methodologies, that of Ward and Mellor and that of Yourdon

(Davis, 1990:91).

Briefly, Ward and Mellor's method consists of four main

activities. The first step is to identify all terminators

to the system, the system, and all data flows; in other

words, define the system context. The second step is to

create a narrative event list which defines all external

events. Third, the behavior of each event is captured as a

single-bubble DFD. Finally, the fourth step is to

3.5

successively group (combine) the disjoint DFDs created in

step three into more abstract models.

Ward's advice for grouping DFDs consists of minimizing

interfaces, identifying control hierarchies, grouping common

responses, grouping processes based on their sharing of

data, grouping of common terminators, and grouping so ab-

stract groups logically have different names. Yourdon

suggests to simply group diagrams sharing common data and

group diagrams which can hide information in the system.

Yourdon's method of structured analysis is to define a

system as two models: behavioral and environmental; these

then define the essential model of.the system. The models

use DFDs, DDs, ERDs, and process specifications. The envi-

ronmental model consists of a statement of purpose for the

system, a context diagram that shows the system and objects

external to it and any interfaces, and a list of the events

of the system. The behavioral model consists of a complete

set of DFDs by Ward's method, entity-relationship diagrams

of all objects in the system and those with which the system

interacts, state transition diagrams for the control process

behavior, a data dictionary, and process specifications for

the lowest level processes.

Modern structured analysis does not require the use of

automated programs which are lequired by some of the other

methods and which may not be readily available. An automat-

ed tool to create DFDs and DDs and ensure their consistency

3.6

would be desirable, but any graphics package can suffice for

creating modern structured analysis drawings and any text

editor or word processor will suffice for creating related

documentation.

Another benefit of modern structured analysis is how

the results consist of well-defined functional entities.

These functional entities then form the foundation for the

functional design of a system.

Obviously, from the discussion thus far, the approach

to the development of Style-V is functional decomposition.

The original observation guiding this decision was that few

objects exist in the problem space -- mainly only input

files, the Style-V translator, and output files. In Section

3.3 the parts of a translator are defined. Most of the real

work (translation tasks) of the translator is done by one of

the parts. Therefore, since the largest part of the trans-

lator would be functionally defined, even in an object-

oriented approach, a functional approach to analysis was

deemed best.

3.3 Domain Analysis of Style-V

The analysis of Style-V is unlike many of the analysis

techniques described by Davis and reviewed in Section 3.2.

Most of the methods, including MSA, start by defining how an

organization is currently doing a task and then analyze the

task performance of parts of the organization. With

3.7

Style-V, no organization is currently doing the translation

work of Style-V; therefore, some other method was required

to provide a starting point for MSA. Domain analysis pro-

vides a way to gain a broad understanding of a problem and a

place to start the analysis process.

The translators reviewed in Chapter 2 provide a basis

for determining the generic components of a translator. By

analyzing how those translators work, it was determined that

a translator is made up of three general processes -- lexi-

cal, syntactic, and semantic. These processes operate on an

external input to produce an external output (input and

output files).

Lexical analysis is the process of determining the

tokens of an input file to pass to the syntactic or semantic

processes. Generally for programming languages, the tokens

are words, delimiters, and operators. In some cases, the

tokens may be entire strings (such as comments) if this

level of intelligence is coded into the lexical analyzer;

otherwise, syntactic and semantic routines process complex

tokens.

Syntactic analysis determines if a sequence of tokens

is grammatically correct. If a sequence of tokens is not

allowed by the rules of the source language, a correct

translation is highly unlikely and an error should be gener-

ated. Some translators do not include a syntactic analyzer

3.8

(or contain a very simple one) because the input is assumed

to be syntactically correct. This is the approach of

Style-V.

Style-V is not meant to replace a VHDL analyzer. The

input files to Style-V are assumed to be syntactically

correct VHDL, since translating an incorrect (untried) VHDL

description to a tool such as JRS' IDAS does not make sense.

It is easy to see the old computer science adage "garbage

in, garbage out" applies in this case.

Semantic processing analyzes the sequence of tokens of

a language to determine the meaning of the input. Meaning

can be on a statement-by-statement basis for some transla-

tion tasks. However, for other translation tasks, a more

global understanding of a set of statements is required for

a translator to be able to generate a correct translation.

The semantic process does most of the translation work.

Figure 3-1 provides the highest level pictorial view of

the concept of a translator system. It has one bubble

representing the translator system, one storage symbol for

input files, and one storage symbol for output files.

Figure 3-2 is a decomposition of the translator system into

its constituent parts: the lexical analyzer, the syntactic

analyzer, and the semantic analyzer. Figures 3-3, 3-4, and

3-5 are the conceptual descriptions of the three processes

of a translator system. Now that the domain is defined, the

next step is to analyze the problem into its constituent

3.9

parts. Then, the functions necessary to implement the

subpart can be defined and assigned to one of the translator

processes.

--

TRASLTO
j

STL-
IhWW cdmrI

DL SOM IXSii
-- - - - - - - - - -- - - - - - - - - -- - - - - - - - -

--- /

IPU RE-1 S Sty le-V L vel O OcePUTMa

/---
Fiur 3-.DcmoiinofTasao ocp

I3.1

-- - - - - - - - - -- - - - - - - - - -- - - - - - - - -

I IIIZ
SED SED

TOE TOEN
TO DEEMNS T

I IEA~i
INLM R

Figure 3-3. Lexical Analyzer Concept Map

--
TOE IUPI
STEA GESWIEIIE

TOKE
I IC*I

ANAYZE

DETRMNE

VALI
TOKEN

HA HA

ISEMANJTIC PAWES PARTS PASS THRU
ITOKENS TOEN

--- /
Figure 3-4. Syntactic Analyzer Concept Map

3.11

I TEMP

I /

FILE

DoanaayishssonthtlxclIsnatc n

seatcaayssaeesnta atIf rnlto

system. UTUTi

ly corcIHL tl- edntwryaotcekn

seCnSi
are the FIS i

READ RIES
m SEMANTIC

will Figue 3-5.ossbem ani analyzer ontep pomo

nANALYsE

sematicanalsisare ssetialparS rnlto

syste. Howver, ince he inutAtoStl- is Esnatcl

lyT KE co r c HL, S y e v n ed nt w r y b u h cing

syntax.gThe other funcntis lexiale anceati Manayss

searete bansis ore oweStyl-il prformf th translation

task. Any major function of Style-V that reads input and

produces output must perform lexical and semantic process-

ing. The way Style-V will do this is described in Section

3.5. However, before a description of how the translation

will be done is possible, an analysis of the problem to

3.12

determine what must be translated is required, and this is

the subject of Section 3.4.

3.4 Problem Analysis
A fundamental truth about program translation is that a

syntactically and semantically correct input must be trans-

lated into a syntactically and semantically correct output.

Since translation of standard VHDL into the subset defined

for the JRS IDAS tool has not been done, a careful defini-

tion of the differences between the subset and the standard

was imperative. Without knowing what is in the standard

which is not allowed in the subset, creating a translator to

consistently produce an output which contains only con-

structs allowed in the subset is impossible.

Section 3.4.1 provides a discussion of the differences

between standard VHDL and the JRS styled subset including a

possible mapping from the standard to the subset. Section

3.4.2 describes an example system coded in JRS styled VHDL

to gain an understanding of the requirements and limitations

of the subset. Section 3.4.3 is a discussion of the lessons

learned from the example system. Finally, Section 3.4.4 is

a discussion of the limitations imposed by using the subset

of VHDL defined by the JRS style.

3.4.1 Stylized and Standard VHDL Compared. The only

document which provides insight into what is allowed for the

JRS style of VHDL required for IDAS is the VHDL Style Guide

3.13

for Ada to Microcode Compiler Retargeting and VHDL Simula-

tion (VHDL Style, 1989). For each restricted construct, a

mapping from the standard to some construct or group of

constructs in the subset must be possible before translation

is possible. The remainder of this section describes the

restrictions imposed by JRS on VHDL written for the IDAS and

one or more possible mappings from standard VHDL. Figure 3-

6 provides an abbreviated description of the mappings any

successful translator must address.

3.4.1.1 Type Differences. A translator for

standard VHDL to a JRS style VHDL must address several type

conversion issues. The restrictions imposed by the JRS

style are quite severe. A careful review of the JRS Style

Guide resulted in documentation of the restrictions and

found that types in JRS styled VHDL are limited to the fol-

lowing (VHDL Style, 1989:4):

a. BIT -- a binary 0 or 1,

b. BITVECTOR -- a one-dimensional array of BIT,

c. ARRAY of BITVECTOR -- a one-dimensional array

of BITVECTOR,

d. STATUSTYPE -- a special enumerated type.

Since standard VHDL allows user defined types, such as

enumerated types to model multilevel logic, some mapping

from multilevel logic to the types BIT and BITVECTOR was

required.

3.14

This mapping was originally thought to be a trivial

matter of assigning the value '0' or 'I' to each of the enu-

merated type fields to derive a type compatible with the

type BIT. However, a careful study of a real-world design,

the Floating Point Application Specific Processor (FPASP),

which uses four-level logic showed that the arbitrary

---/ \

Standard or User Types ==> BIT Types

CASE Statements ==> IF Statements

Machine Specific ==> Machine*Specific
Declarations Scattered Declarations Packaged

Modes Buffer and Linkage ==> Mode INOUT

Allowed Types in Generics ==> INTEGER, TIME, FLOAT,
or STRING for Generics

Multiple Concurrent ==> Single PROCESS
Statement Architectures Statement Architectures

Guards and Sensitivity Lists ==> WAIT Statements

Tests for Data Values ==> No Tests for Data Values

Signal Assign Delay in ==> No Signal Assign Delay
Structural Architectures in Structural Arch.

WAIT as Signal Delay ==> Signal Assignment with
Method "AFTER" Clause for Delay

User Defined Procedures ==> IDAS Provided Procedures

Variables or Signals for ==> Special StatusType for
Tracking Status Tracking Status

Component Names and ==> Component Names and
Ports Can Differ w/ Entity Ports Must Match Entity

\ /
-- /

Figure 3-6. Standard VHDL Mapped to JRS Style VHDL

3.15

assigning of the value 'I' or '0' to the levels 'X' or 'Z'

would result in incorrect behavior of the procedures defined

for the design. Consider the segment of code from the FPASP

design in Figure 3-7. This code segment looked for illegal

values in the input early in the procedure and if found,

exited the procedure without further processing. A whole-

sale conversion of 'Z' and 'X' to either '0' or 'I' would

have caused this procedure to never execute the correct code

-- it would always exit at the example FOR loop.

/- ---

for I in ACOPY'RANGE loop

if (ACOPY(I) = 'Z') or (ACOPY(I) = 'X') then

return (i ns);

end if;

end loop;
I /
--- /

Figure 3-7. FPASP Four-Level Logic Sample

Another considered option was the conversion of the

bits of the four-level logic into two-bit bit vectors (one-

dimensional arrays) such that '0' = "00", i = "01", IV

"10", and 'Z' = "11". Then a four-level logic bit vector

such as "01XZ" would appear as " "00" "01" "10" "11" " -- an

array of bitvectors (a two-dimensional array of bit).

Unfortunately, the JRS MOVE procedures would only accept the

type DATA and DATAVECTOR which are subtypes of BIT and

3.16

BITVECTOR respectively (one-dimensional arrays) (VHDL

Style, 1989:29,50). The JRS MOVE procedure was critical to

the simulation of data moving through a design; therefore,

finding a data representation using JRS types and compatible

with the JRS MOVE procedure was imperative.

Given the JRS MOVE restriction, the answer was to

convert multilevel logic into multiple-bit single-level

logic. Then, JRS' MOVE procedure could move data around a

design. When it came time to process the data through

another JRS procedure, the data could be converted to

BITVECTOR logic (note: since only BIT logic is allowed for

JRS procedures, processing JRS procedures other than MOVE

requires conversion of the multibit four-level logic to

single-bit two-level logic, thus forcing 'X' and 'Z' to

either '0' or '1'). Upon exiting JRS procedures, the

BITVECTOR could be again converted to multibit four-level

logic where each bit is now "00" or "01". A manual review

of this method showed it practicable and a hand translation

of the extensive FPASP type definitions demonstrated its

feasibility.

A second type restrictions imposed by JRS was that

status of the model would be tracked using a special enumer-

ated type called a STATUSTYPE (VHDL Style, 1989:18-20).

This is a device independent representation of status

values. JRS IDAS provided functions to map between this

STATUSTYPE and a STATUSVECTOR which is a machine dependent

3.17

bit-vector used to track the status of a certain machine.

The problem is that most status tracking in real machine

designs is to use either bits or bit-vectors (in the logic

scheme of the design) to pass status values.

Therefore, a method was required to convert status

represented as bit or bitvector to STATUSTYPE required by

JRS IDAS procedures and back again to bit or bit vector for

movement through the design. Fortunately, the JRS IDAS

provision of the MAPSTATUS function to convert between

STATUSTYPE and STATUSVECTOR (which is a bit-vector repre-

sentation) provides the first step in solving this problem

(VHDL Style, 1989:18-20). It is then a simple matter to map

a field of the STATUSVECTOR to a value for a bit,

bitvector variable, or signal representing status in a de-

sign. Using MAPSTATUS, the other procedures for processing

types, and a simple procedure to convert STATUSVECTOR to a

variable or signal solves the status mapping problem.

However, a far greater problem is how to determine if a

variable, port, or signal represents a field dedicated to

tracking status. The analysis of this problem did not

reveal any automated way to accomplish this task. Using

standard VHDL, a designer can name variables, ports, and

signals with any legal identifier for the language and no

standard convention exists (for example, signal GEZRO :

DESIGNBIT; -- a status of greater than or equal to zero).

Given this fact, human intervention will be necessary to

3.18

determine which variables, ports, and signals represent

status in a design.

A third restriction on types has to do with the modes

allowed. The JRS style of VHDL does not allow the modes

BUFFER and LINKAGE (VHDL Style, 1989:8). After a careful

review of the modes BUFFER and LINKAGE in the VHDL Language

Reference Manual (IEEE Standard VHDL, 1988:4.10), the analy-

sis determined that the mode INOUT can be substituted for

modes BUFFER or LINKAGE. This may seem incorrect at first

since the mode INOUT allows more operations than the modes

BUFFER or LINKAGE. However, remember that the translation

is for syntactically and semantically correct VHDL input,

since Style-V expects an input of a design that works

through VHDL the way the designer intended. Therefore,

conversion to a more general mode for the purposes of input

to a special tool (in this case, JRS IDAS) should not cause

problems.

A fourth restriction on types is the limited number of

types allowed in GENERIC statements. JRS IDAS limits the

variables of generics to INTEGER, TIME, STRING, or FLOAT

types (VHDL Style, 1989:9). This disallows user defined

types or other VHDL defined types such as POSITIVE. The

translator must convert more restrictive VHDL types to a

more general, allowed type. One example would be to convert

any generic variable with a type POSITIVE to the type INTE-

GER. Another consideration is user defined types. If a

3.19

base type of the user defined type is one of the allowed

types or can be converted to one as explained above, change

the user-defined type tc that base type. Otherwise, if the

translator cannot convert a disallowed type to an allowed

type, manual intervention is required and redesign may be

necessary. An example of a case requiring manual interven-

tion is a type resolving to an enumerated type not allowed

by IDAS styled VHDL.

3.4.1.2 Declaration Differences. The length of

time required for one instruction fetch cycle must be de-

fined as a constant in the package MachineDeclarations with

the name CYCLELENGTH (VHDL Style, 1989:6). This "clock

cycle" is normally defined in the test bench for a design or

through a generic in the highest level architecture under

the test bench. The main issue is how to detect it for

definition in Machine Declarations -- no standard naming

convention exists for the clock period or cycle time.

Again, manual intervention is necessary to identify this

value, unless only one variable of type CLOCK is defined.

Another difference between standard VHDL and the JRS

IDAS styled VHDL is the definition of arrays of BITVECTOR

which are machine specific. These machine specific declara-

tions must be located in package MACHINEDECLARATIONS (VHDL

Style, 1989:6). Therefore, any declaration in any file of

the design which has a type that does not map to the type

definitions in the JRS IDAS provided package DATATYPES must

3.20

be moved to package MACHINEDECLARATIONS. This means pack-

age MACHINEDECLARATIONS must be included in a USE clause in

all files with packages, entities, or architectures which

use a type defined in MACHINEDECLARATIONS.

Additionally, all declarations of bus subtypes and

their associated resolution functions must be defined in

package MACHINEDECLARATIONS (VHDL Style, 1989:6). These

must be moved to MACHINEDECLARATIONS in the same manner as

described for moving machine specific data type definitions.

A fourth problem is that names used in components must

match the design entity for which they are defined. Addi-

tionally, component ports must be exactly the same as the

design entity ports (VHDL Style, 1989:22,24). In standard

VHDL, neither of these restrictions apply. To stylize

component ports, it will be necessary to maintain a table of

entity declarations with all port definitions. Then, when

processing component declarations, their port list can be

compared to the entity port list and adjustments made.

Ports of entities not used in components can be added to the

components with dummy variables or signals. The actual

design should still work if it worked before the transla-

tion.

3.4.1.3 Structural Differences. A major

difference between JRS IDAS styled VHDL and standard VHDL is

the limitation of only one concurrent statement (a process

statement) for any architecture (VHDL Style, 1989:11). At

3.21

first glance, this appears to be a monumental problem as

VHDL allows any combination of block and process statements

within an architecture to model parallel activities. Com-

bining all these concurrent statements into one process

would destroy the concurrent model. The answer lies in

creating several single-process architectures as subarchi-

tectures to a new upper level architecture (with the name of

the original multiprocess architecture) which instantiates

these new "component" architectures. This process is de-

scribed in detail in Section 3.5.3.4.

A second structural issue is the prohibition in JRS

IDAS styled VHDL for sensitivity lists for a process (VHDL

Style, 1989:12). Instead, when a block guard or process

sensitivity list is recognized, collect the information and

after the process BEGIN, insert a VHDL WAIT statement with

an UNTIL clause using the guard condition and an ON clause

using the signals of the sensitivity list. This effectively

causes the process to wait until the guard condition is true

and one of the inputs has changed before the process begins

-- just like a sensitivity list. The UNTIL clause will be

added to the WAIT statement for each process that was part

of the block.

Thirdly, the placement of the wait for a behavioral IF

is more restricted in JRS styled VHDL than in standard VHDL.

Any delay for the result of the behavior is modeled as an

AFTER clause in a signal assignment statement following the

3.22

behavioral IF (VHDL Style, 1989:14,16). When a WAIT state-

ment precedes an IF or CASE structure or a signal assignment

statement, if it is not the first WAIT of the process, then

the time should be saved and placed in an AFTER clause in

the appropriate signal assignment statements.

A final structural issue is that a structural architec-

ture statement part may include only component instantiation

statements and simple signal assignment statements without

delay. If delay is required, the behavior mu-t be modeled

by connecting the involved signals to a behavioral design

entity with a MOVE that has the required delay (VHDL Style,

1989:24).

3.4.1.4 Statement Differences. Several differ-

ences in the statement composition or format exist between

JRS IDAS style VHDL and standard VHDL. The first is the

fact that the behaviors of JRS styled VHDL are represented

in IF statements (VHDL Style, 1989:11,13). Standard VHDL

allows the more versatile CASE statement, so a CASE to IF

conversion is required. The mapping of CASE to IF state-

ments entails recognizing the CASE statement, identifying

the conditional variable, and processing the WHEN clauses

into the appropriate clauses of the IF-THEN-ELSIF-ELSE

structure.

A second statement difference between standard VHDL and

JRS styled VHDL concerns tests for value in the guard of a

behavioral IF statement. In JRS styled VHDL, the guard can

3.23

only contain tests for phases of the system clock and micro-

word fields, clock tests must come before microword tests,

and no test for the value of a data path are allowed (VHDL

Style, 1989:14). Since none of these restrictions apply in

standard VHDL, whenever an IF is encountered, the guard must

be analyzed and reorganized as needed. Also, since no test

of a data line is allowed, a startup input defining the name

of the control word and all clocks will be required for the

translator to be able to ensure no data path test is at-

tempted. If a data path test is attempted, the translator

could optionally print a warning message and continue proc-

essing, stop for manual intervention, or report an error and

terminate processing.

A final statement difference between standard VHDL and

JRS styled VHDL is the requirement for procedure parameters

of mode OUT or INOUT to be variables (VHDL Style, 1989:15).

If mode OUT or INOUT parameters are not variables, the

translator must insert variable declarations of the appro-

priate type in the process containing the procedure and use

them in the procedure call. Additionally, the procedure

call must be followed by a signal assignment statement for

each variable reassigning the value of the variable to the

appropriate signal.

3.4.1.5 Other Differences. Several differences

between JRS styled VHDL and the standard do not fit into any

of the aforementioned categories. On- concerns the JRS IDAS

3.24

code generator, since it does not recognize or understand

behaviors other than those provided with the IDAS (VHDL

Style, 1989:18). This means as many procedures as possible

of the input design should be converted to JRS IDAS proce-

dures. The implications of this requirement to convert any

given function of a design to an "equivalent" function in

another library will be covered in Section 3.4.4.

Another issue is the handling of tristate busses.

According to the JRS VHDL Style Guide, all devices driving a

tristate bus should be controlled by one field of the micro-

word (VHDL Style, 1989:25). However, if the type conversion

procedure described in Section 3.4.1.1 works as designed,

the procedures of the original design which operated on

tristate values could be converted and still operate as

before -- the only thing different would be the representa-

tion of the logic.

3.4.2 Example Stylized Machine. As the work for this

thesis began, a search was made for potential example sys-

tems to code in the stylized form. It was hoped that coding

an example system in the JRS styled VHDL would give insights

into possible translation difficulties.

The first design selected for conversion to JRS IDAS

style was a central processing unit (CPU) controller written

by Richard L. Miller as part of his AFIT thesis effort

(Miller, 1990). After a couple of weeks of trying to deter-

mine how the IDAS environment (including the styled VHDL,

3.25

the IDAS procedures, and the IDAS system) could model the

controller, a careful investigation revealed the CPU con-

troller was modeled as a state machine instead of a "real"

machine, and the CPU controller did not represent the mini-

mum system required for the IDAS to generate microcode.

After the CPU controller was ruled out, it was decided

the simple CPU described by Hayes would serve as the basis

for the IDAS example (Hayes, 1988:315). Hayes' CPU provided

all the components necessary for the IDAS to generate micro-

code. It consists of a control store, instruction register,

program counter, address register, memory, data register,

accumulator, and arithmetic logic unit.

The first attempt at the Hayes model was to design the

entities with ports that connected to all associated enti-

ties. This is a direct translation from the diagram (see

Figure 3-8) provided by Hayes (Hayes, 1988:315). However,

after coding the example in that fashion, it was determined

that the direct translation of the diagram was not a realis-

tic implementation.

After careful consideration, the model in Figure 3-8

was perceived to be a logical representation of the system.

A more accurate "physical" representation of the system was

needed to gain insight into the correct structure for the

VHDL code. Figure 3-9 provides this structural view of the

simple Hayes model.

3.26

I II Ir

CA C12

MAIN '"

M[
C7 C8 Ca I,\ /

C a Pb

A IO
C CU IT

(Hayes, 1988:315)

Early versions of the Hayes model did not properly

account for circuit timing characteristics. The first

version was the idealistic no-delay version. Then, delays

were added to the bus and in later versions to the compo-

nents.

Through version 4, the Hayes model was written using a

WAIT statement inside the behavioral IF statements contain-

ing IDAS procedure calls. During a review of the VHDL Style

Guide, it was discovered that this is not allowed. The

delay had to be moved to the signal assignment statements

after the procedure call. Hayes simple CPU version 5 is now

believed to be totally in the style required by the JRS

3.27

I II AC=OI

CONTRFOL
MEMORY UNIT ALU

I I

DATA II I

Figure 3-9. Structural View of Hayes Model

IDAS. Appendix A contains the final version of the stylized

Hayes CPU model, and Volume II contains a simulation listing

which is annotated with the machine instructions being

executed each cycle. (Note: Volume II is used to maintain

restricted access information and computer listin-s which

could not be formated for inclusion in Volume I).

Unfortunately, when the JRS IDAS was run to enter the

Hayes model, it would not take it. The nice graphical

interface written to enter VHDL designs, analyze them in the

IDAS database, enter Ada code to tune the generated micro-

code. and check the VHDL design into the microcode genera-

tion process did not work for checking in the Hayes units.

AaI tonally, a local IDAS expert was contacted (who in

turn contacted JRS) and manual procedures were attempted to

3.28

load the units in the system through a complicated sequence

of maneuvers, but to no avail. The portion of the IDAS re-

quired for this thesis did not work. This was a setback for

this thesis, for it was now not possible to test the conclu-

sions of the analysis against an actual tool. Yet, the

analysis provided valuable insight into the obstacles to

translating VHDL into a subset of VHDL.

3.4.3 Lessons Learned From Example. The lessons

learned from the Hayes example were probably lessened due to

the inability to run the design through the IDAS. Be that

as it may, some valuable ideas did come from the Hayes

modeling exercise.

It is possible to translate a physical design into a

JRS styled VHDL description using the JRS procedures and

gain a correct implementation -- an implementation that

gives correct results when run through a VHDL simulation.

The Hayes example therefore indicates that other designs

should work if translated to the JRS style.

During development and implementation of the Hayes CPU,

it was easy to use a perfectly allowable construct in VHDL,

but then learn it was not allowed by the JRS style. This

indicated a need for a detailed analysis and design of each

mapping needed to transform standard VHDL into the JRS

style. It also highlighted the need for an automated tool

to do the translating, since humans make errors when given

such a complex task.

3.29

Not much was learned regarding the translation of types

and functions since the Hayes model was originally built

using JRS' VHDL Style Guide. A more realistic system was

needed to test mappings for types and functions and to

verify the feasibility of mappings required by IDAS which

were not exercised during the Hayes implementation. The

system chosen for use during the remaining development of

Style-V was the Floating-Point Arithmetic Shift Processor

(FPASP). The FPASP was complex enough to test most of the

mappings required for standard VHDL to the JRS IDAS styled

subset.

3.4.4 Stylized Limitations. A great concern when

going from a design coded in a general language to a more

restricted form is the need to maintain all the functionali-

ty of the design. The IDAS will maintain functionality of

functions which map to IDAS provided functions. However,

since the IDAS allows user-defined functions which it does

not understand or use, it is not clear that design function-

ality is maintained -- apparently, functionality would be

lost in the conversion. Also, adding functions to the IDAS

is not a user option -- it requires a request to JRS which

entails an implementation waiting time, a possibility the

request would not be accepted, and most likely, a charge for

the service.

An additional concern of function mapping is how to do

it. Is it even possible to determine if two sections of

3.30

code are functionally equivalent? For an example of the

difficulty of this problem, consider the two simple proce-

dures in Figure 3-10.

The procedure George performs an ADD operation on two

32-bit bitvectors using AND and OR gates. The procedure

Brad also performs an ADD on two 32-bit bitvectors, but

Brad uses the more common XOR, AND, and OR combinations to

accomplish the ADD. Note that none of the variables of

either procedure have a name that matches the other proce-

dure -- just like the flexibility in a real programming

language. Without carefully analyzing the logic, it is

virtually impossible to map these "functionally equivalent"

procedures to one another.

A naive approach might be to test the code segments for

a given input or set of inputs, and this might work for a

small number (say N) examples. However, an implementation

that does this r Ks accepting a mapping that is incorrect

for input (N + Additionally, as more complexity is

encompassed in a design, the number of tests increases

dramatically. Consider our simple sample procedures of

Figure 3-10.

Given the two 32-bit inputs (each having 232 possible

values) and an additional input bit (which has two possible

values), the total number of possible inputs is

232 * 232 * 2 = 232+32+1 = 265 3.689 * 1019. A computer

processing 100 procedure runs per second would take about

3.31

11,697,742,263 years to test all possibilities.

Style-V's problem of mapping existing functions is

different than the problem of translating a function from

one language into another. The translators and methods

reviewed in Chapter 2 provide many examples of how a "trans-

lation" is done.

Two technologies currently exist to perform transla-

tions -- transliteration and refinement or abstraction and

reimplementation. Translations by transliteration and

refinement are usually line-by-line conversions of function-

ally well defined statements of one language into function-

ally well defined statements of a target language. Transla-

tions by abstraction and reimplementation involve mapping

the logic of an input program into formally defined layers

of abstraction and then by mapping the formally defined

abstraction into a program in the target language.

Unfortunately, Style-V needs to map nonatomic functions

(multiple statements with unique logic) for which meaning is

not known to specific nonatomic functions for which meaning

is known. Neither transliteration and refinement nor ab-

straction and reimplementation can solve this problem.

Since it is realistically impossible to ensure a completely

correct mapping automatically, Style-V requires human inter-

vention to perform this task.

3.32

/--

Procedure George (OPI, OP2 : in BITVECTOR;
CARRY IN : in BIT;
SUM : out BITVECTOR(31 downto 0);
CARRY OUT: out BIT);

variable LCLCRY, : BIT;
variable i : INTEGER := 0;
Begin -- George

LCL CRY := CARRY IN;
for i in 0 to 31 loop

SUM(i) := OP1(i) and OP2(i);
SUM(i) SUM(i) and LCL CRY;
if (((OPl(i) = '1') and (OP2(i) = '1'))

or ((OP1(i) = '1') and (LCL CRY = '1'))
or ((OP2(i) = '1') and (LCL_CRY = '1'))

I)
then LCL CRY := '1';
else LCL CRY := '0';

end if;
end loop;
CARRYOUT := LCLCRY;

End George;

Procedure Brad (IN1, IN2 : BIT VECTOR (31 downto 0);
IN3 : bit;
OUT1 : out Bit;
OUT2 : out BIT VECTOR (31 downto 0));

variable LC, LR, ZI, Z2 : BIT;
variable J : INTEGER;
begin

LC := IN3;
for J in 0 to 31 loop;

LR := IN1(J) xor IN2(J);
Zl : IN1(J) and IN2(J);
OUT2 := LR xor LC;
Z2 := LR and LC;
LC := Z or Z2;

end loop;
OUT1 := LC;

end Brad;
\ /
-- /
Figure 3-10. Two "Functionally Equivalent" Procedures

A later version of Style-V might consider using a

"partial testing" method to get a "first cut" mapping which

3.33

the user could run against representative input to "verify"

correctness. This would entail a fairly sophisticated

mechanism for taking VHDL procedures as input, determining

input for the procedures, processing input through them,

comparing the output to output generated by IDAS procedures

with the same number of input and output parameters, and

determining if a match occurred. If the automatic mappings

proved to be incorrect, the user could rerun the translator

with a switch set turning the automatic mapping function

off. This process alone might be a good thesis topic for

some future thesis effort.

Another limitation which may not allow the complete

functionality of an original design to be maintained in a

translation is the limited typing of JRS styled VHDL.

Apparently, the mapping of machine specific words from

multilevel logic to bit logic is possible and functionality

can be preserved (See Section 3.4.1.1). However, the map-

ping of types for GENERIC statements and the limited modes

available for types may limit functionality of a translated

design. Since translation to JRS IDAS styled VHDL requires

some types to be mapped to a more general type, it is not

clear if the same functionality will be maintained in all

cases, though it is expected the new design will suffice for

microcode generation purposes.

A limitation which has been solved by this thesis is

the modeling of multilevel logic. This can now be accom-

3.34

plished using the JRS styled BIT logic (See Section

3.4.1.1). An additional benefit is the limitation on tris-

tate busses stated in the JRS VHDL Style Guide need not be a

concern since multilevel logic can be modeled.

Though not necessarily a functionality concern, the

restriction of tracking status using the JRS defined

STATUSTYPE and STATUSVECTOR is a difficult translation

task. This research did not find an automated way to map

status variables or signals to JRS procedures and their

associated STATUS-TYPE without manual intervention or possi-

bly the need for some type of definition file in addition to

the VHDL code of the design.

3.5 Modern Structured Analysis
Modern structured analysis provides a method for

achieving a detailed specification of a problem. The speci-

fication is the most important part of a development effort,

for every action taken after the specification is directed

toward fulfilling the requirements documented in it.

Not only does modern structured analysis provide a

vehicle for providing well-stated and u n - biguous specifica-

tions, it also provides that information in a format that

facilitates modular, functional. design. Every major func-

tion is defined with its inputs and outputs during the

modern structured analysis process. The first stap in this

process is the definition of the system context.

3.35

3.5.1 Style-V Translator System Context. When build-

ing anything, including a software system, the first step

during problem analysis is to determine how the problem

relates to the world around it. For a translator, and

specifically for Style-V, the world represents the inputs it

expects and the outputs expected of it. Inputs can come

from external entities such as users or data stores, and

outputs can go to the same (Davis, 1990:91).

Figure 3-11 provides a level zero DFD (context diagram)

showing the system context for Style-V. This figure dis-

plays a user entity which inputs commands and responses to

the system, the input files coming from a data store con-

taining VHDL source files, status information and system

requests going back to the user, and output files going to a

data store. At this level of abstraction, this is the only

level of detail allowed.

- S y - S

3.36

I ILAT

I FLE FLEI

I~~M SOUO DL K

-- /
Figure 3-11. Style-V System Context Diagram

3.36

3.5.2 Style-V External Events. Once the system con-

text is defined and understood, the next step is to com-

pletely specify the external events affecting the system.

This specification takes the form of a narrative event list

(Davis, 1990:91). The narrative should cover all the ac-

tions necessary to translate VHDL files from a standard form

into a stylized form. Therefore, the External Event List

(EEL) should describe all the external actions necessary to

facilitate the mappings described by Section 3.4.1, Figure

3-6.

At first glance, it would seem that many actions would

be required to facilitate the thirteen mappings identified

in Figure 3-6. However, a careful look at the context

diagram shows that the only entities outside the Style-V

system that act upon it are the user entity and the input

files of VHDL source code.

Only one input from the user would tell the system to

partially or completely stylize a file, group of files, or

the entire design. Then, Style-V would request the file

from the VHDL source store and perform all the internal

actions necessary to stylize the file. Style-V would only

ask for more input if manual intervention was necessary or

if a recoverable error occurred. The user would then input

an appropriate response. With this overview, it is then

relatively easy to derive the event list for the process.

The event list is provided in Figure 3-12.

3.37

User requests to stylize a directory of files.

User requests to style TYPES for a file.

User requests CASE to IF statement conversion.

User requests to build MACHINE DECLARATIONS.

User requests architecture conversion for a file.

User requests processing of tests for data values.

User requests Procedure Mapping.

User responds to Style-V requests.

VHDL source data store provides needed files.

VHDL source data store accepts translated files.

(note: all Figure 3-6 mappings included above.)
\ /
-- /

Figure 3-12. Style-V External Event List

3.5.3 Style-V Event Behaviors. When deciding how each

external event affects a system, the analyst needs to deter-

mine which operations of a system affect other operations

within the system. With this knowledge, the analyst can

avoid proposing a course of action which will cause a con-

flict later in the development phase.

For the Style-V translation task, a review of the

external events and the expected output of each shows that

the actions required to stylize a VHDL file are orthogonal

-- each action can be performed independently of the other

actions and in any order, and the results will be the same.

3.38

Therefore, any of the processes required of the Style-V

translator can be done without concern for which other

Style-V processes have been done or will yet be done.

Identifying the external events may have been simple,

but specifying all the behaviors of the system in response

to those external events is not. This section contains an

explanation of the actions performed by Style-V in response

to external events. This explanation must be detailed

enough to facilitate the design phase in Chapter 4.

In Figure 3-12, the various external events were summa-

rized. The first event was a user's rEquest to stylize all

files in a directory. This operation entails a combination

of all the separate actions identified in Figure 3-12.

Therefore, a detailed description of this action will best

be given after each of the separate actions is explained.

3.5.3.1 Type Conversion. A major requirement for

stylizing a VHDL design is to convert the standard and user-

defined types to a type allowed by the JRS VHDL subset.

This involves scanning an input file for type declarations,

checking those declarations to determine if they are compat-

ible with types allowed in the VHDL subset, and converting

types that are not compatible. A first pass over the file

converts all types to a subset compatible types and the

result is written to an intermediate file. Generic clause

types are converted automatically unless no clear mapping

exists, and then the user is asked to identify an acceptable

3.39

type. All of these conversions are collected in a temporary

file. Since it is impossible to determine which types are

used for status tracking, the user is then asked to identify

which types are used to track status and a second pass over

the file converts those types to JRS IDAS StatusTypes. A

high level model of the type conversion process is provided

in Figure 3-13. A more detailed view will be described in

Section 3.5.4.

/---

USER _

I I

WHDL SOURCE VH SOURCE

\ I

Figure 3-13. Type Conversion Data Flow Diagram

3.5.3.2 CASE to IF Conversion. Since the JRS

IDAS style of VHDL does not permit the VHDL CASE statement,

Style-V must translate CASE statements to equivalent

IF statements. The method chosen to perform this task is

transliteration and reimplementation.

3.40

The translation process consists of several steps. The

first is to read an input file until the keyword CASE is

recognized, convert it to IF, and write it to the output

file. The second task is to read the conditional variable

and store it as a string for use in the IF, ELSIF, and ELSE

portions of the IF statement. The input file is read until

the value after the first WHEN is read, then the string is

written for the conditional variable, the symbol "=", and

the value to the output file. The next word is read from

the input which should be a "=>" symbol and the word THEN is

written to the output file. Now the WHEN clause body should

be read and passed through to the output file until the

keyword WHEN is recognized again. Then the word after WHEN

is read. If the word after WHEN is a value for the condi-

tional variable and not the keyword OTHERS, the phrase ELSIF

followed by the variable value is written to the output

file. If the keyword OTHERS was found, the phrase ELSE is

written to the output file. If an ELSIF phrase was written,

when the word "=>" is recognized the word THEN is written to

the output file, otherwise it is ignored. The WHEN clause

phrase is passed through until the key word phrase END CASE

is recognized. This process is represented by a high level

description in Figure 3-14. A more detailed view will be

descri-bed in Section 3.5.4.

3.5.3.3 Build Machine Declarations. The machine

specific declarations for a design must be located in a

3.41

SCONVBEr
\CASE TO IF/S2

VHDL SOURCE VF-DL SOURCE_

\ /

Figure 3-14. CASE to IF Conversion Data Flow Diagram

package called MACHINE-DECLARATIONS for a design specified

for the JRS IDAS. To successfully build this package, three

types of inf+ _mation must be collected and formed into the

package. The first piece consists of the CYCLE-LENGTH which

is the length of time for one instruction fetch cycle. The

second piece consists of the declarations of the machine

which use types other than those provided in the JRS

Data_Types package. The final piece consists of the decla-

rations representing buses and their corresponding resolu-

tion functions.

Since no standard notation exists for defining clock

cycles, the CYCLE-LENGTH may be difficult or even impossible

to determine from the raw input files. For this data item,

a query to the user is the method used by Style-V.

3.42

To successfully create MACHINEDECLARATIONS, the user

must provide a list of the file names wherein VHDL source is

located. This input could be a list of file names or possi-

bly a directory name if all files in the directory are to be

processed.

When processing machine declarations from different

files, Style-V must not duplicate the same type name from

different files. To facilitate this process, Style-V

creates a table of declarations for each file. These tables

are then compared to determine if a conflict would exist in

the new MACHINEDECLARATIONS package. Also, as each file is

processed, when USE clauses are encountered, the package

name for the package containing the USE clause is appended

to a list representing the package identified in the USE

clause. By tracking which packages use a package wherein

declarations are defined, if name changes due to conflicts

are required, the name changes can be properly propagated.

Style-V recognizes bus declarations by determining if a

resolution function is part of the declaration. This is

relatively easy to determine since the input is validated

VHDL code. Therefore, if a declaration has a multiword type

definition, it will be a bus type. The name of the resolu-

tion function will be extracted and used later when Style-V

collects all resolution functions in MACHINEDECLARATIONS.

The processing necessary to create MACHINEDECLARATIONS

requires multiple passes over the files. A final pass

3.43

removes all declarations from the files that were written to

package MACHINEDECLARATIONS. The high level view of the

process described above is pictorially described in Figure

3-15. A more detailed view will be described in Section

3.5.4.

/---

MACHINE
cLAA 0s

VHDSOURCEf VHDL SOURCE

\ /

Figure 3-15. Create MACHINE-DECLARATIONS DFD

3.5.3.4 Architecture Conversion. Since JRS IDAS

style VHDL does not allow multiple concurrent statements in

an architecture, architectures containing BLOCK statements

or multiple process statements must be converted into archi-

tectures with only one process statement. The overall

description of the requirement to convert standard VHDL

architectures into JRS single process architectures was

given in Section 3.4.1.3. When requesting architecture

3.44

conversion, the user must specify which file or files re-

quires conversion. The user can specify this by a file list

or a directory if all files in the directory are to be

processed.

For each file of the system, five steps are required to

convert multiprocess architectures (possibly including block

statements) into single-process architectures with no block

statements. The first step is to collect statements which

are not part of any block or process in the architecture and

put them in the statement part of a new high level architec-

ture which will encompass all the architectures formed by

the next three steps. The second step is to convert block

statements into process statements. The third step is to

create an entity for each of the processes formed from the

original architecture in step 2. The fourth step is to

create an architecture for each of the entities created in

step 3. Finally, the fifth step is to form the architec-

tures produced for each process into a higher level archi-

tecture with the same name as the original architecture. In

this way, only the internal composition has changed. The

functionality and external view of the architecture remains

the same. The remainder of this section discusses the

activities of each step. A real world example using the

FPASP design is provided in Chapter 4.

The activity of step 1 (collecting statements which are

not part of any PROCESS or BLOCK statement) is a simple

3.45

matter of collecting statements which occur outside any

BLOCK or PROCESS statement while parsing the architecture.

The new architecture will eventually consist of the original

entity description, an architecture which defines and in-

stantiates components for each of the subarchitectures

created in steps 2 through 4, and a statement part contain-

ing the statements collected which did not belong to any

block or process.

The activity of step 2 (turning a BLOCK statement into

a PROCESS statement) entails determining and storing the

guard of the BLOCK statement. The statement starting the

block is deleted. As the next lines are parsed, declara-

tions before the keyword BEGIN are found. If declarations

are found, they are kept in storage for future use. When

the keyword BEGIN is reached (the block's begin), it is

deleted. All statements are stored until a PROCESS state-

ment is found. Then, as each process is encountered, the

contents of any sensitivity list are stored. The keyword

PROCESS is maintained, but the sensitivity list is deleted.

Next, any declarations stored from the block is copied into

the process. Then, the declarations are parsed until the

process BEGIN is found. Next, a WAIT statement with an

UNTIL clause for the stored block guard and an ON clause for

the stored sensitivity list is inserted as the first state-

ment of the process. Next, any statements copied from the

BLOCK statement are placed into the PROCESS statement after

3.46

the wait. This process has not only "moved" the block to

the process, but has stylized the process entry. Now, the

process is parsed passing through all information until the

END PROCESS phrase has been passed through. These actions

are repeated for any additional processes (using their

sensitivity lists). When the END BLOCK phrase is found, it

is deleted.

The activity of step 3 (creating an entity for each

PROCESS statement) entails identifying the ports and aliases

for port portions used in the process, identifying any

generic clause items referenced in the process, and forming

the entity description for the process based on the collect-

ed information. To properly perform this task, the gener-

ics, ports, and aliases identified in the original entity

and architecture must be known. These can be collected in

lists during the initial parsing of the original entity and

architecture. Only those generics, ports, and aliases used

in the process need be included in the new entity for the

new process architecture. Later, when the subarchitectures

are combined under a new architecture with the original

name, the entity generics and ports will map to the appro-

priate ports or port portions of the original entity (which

stays intact during this entire transformation process).

The activity of step 4 (creating an architecture for

each new process statement and entity) is one of the easier

steps of the transformation process. The architecture

3.47

declaration is of the form "architecture BEHAVIOR of ENTITY-

NAME is," and it is followed by BEGIN which is followed by

the process and the architecture is completed with an "end

BEHAVIOR" clause after the process statement.

The activity of step 5 (creating a new higher level

architecture) consists of defining and instantiating compo-

nents of the new subarchitectures and connecting them to the

appropriate ports of the original entity using newly defined

signals. Since the JRS style of VHDL required components to

have the same name and the same ports as the entity for

which they are defined, this is a relatively easy task.

Entity AN ITEM with ports IN1_PORT, IN2_PORT, and OUT1 PORT

would be represented by component AN ITEM with ports

INIPORT, IN2_PORT, and OUTI_PORT. The component instance

will have a unique instance name and use the component name

(entity name) and a port map of the component (entity) ports

assigned to locally defined signals of the same type as the

component ports. The locally defined signals are easy to

create since one each is required for each of the original

entity ports (name and type come from stored record of

original entity ports). After all the components represent-

ing the new subarchitectures are instantiated, the new

architecture is complete.

A second task to make architectures correct for the JRS

IDAS system is to ensure structural architectures have no

delays associated with their signal assignments. If delay

3.48

is required, a behavioral architecture MOVE statement must

be used to model the wait. Version 1 of Style-V will not

provide synthesis of behavioral from structural or structur-

al from behavioral architectures; therefore, manual inter-

vention will be required to ascertain if a delay is abso-

lutely necessary. If the delay is needed, the Style-V will

return the file to the user foi modification.

A third process needed to ensure architectures are

stylized is to ensure component names and ports match exact-

ly with the entity defining the components. This was taken

care of for the components created for the new architec-

tures. However, other components which do not meet these

strict requirements may exist in other parts of the system.

Therefore, a process of Style-V will need to check the files

of the system for components which do not match their re-

spective entity.

Since one entity may define several components in

standard VHDL (all of which may have different names and

ports defined), three actions are required to ensure compo-

nents are properly defined. First, Style-V will make a copy

of the entity and its associated architecture with the name

of the component. Secondly, the ports of the component will

be adjusted to look exactly like the entity, even though not

all will be connected to "live" signals when the component

is wired into an architecture. Finally, Style-V adjusts

component instantiations to match their corresponding

3.49

declarations and assigns "dummy" signals to the ports not

used by the original component.

Finally, one task remains to ensure architectures are

in the style expected by the JRS IDAS. Any signal delay

that was modeled with a WAIT statement before a signal

assignment statement must be transformed into a signal

assignment with an AFTER clause and no preceding WAIT state-

ment. This requires one pass over the files with a small

lookahead buffer to see if a WAIT statement precedes a

signal assignment statement. Output from the buffer will go

directly to the output files.

When the four processes described above are complete,

(forming single-process architectures, removing delay from

structural architectures, aligning component to entity

mapping, and positioning wait in behavioral architectures)

the architectures of the design are in the form required by

the JRS IDAS. As with the main processes required for the

overall stylization of standard VHDL into the JRS form, the

subprocesses required to transform architectures into the

JRS form are orthogonal. None depend on the results of a

previous process and they can be performed in any order.

A high view of architecture processing is presented in

Figure 3-16, and a conceptual view of the four main process-

es necessary to complete architecture processing is present-

ed in Figure 3-17. More detail will be provided in Section

3.5.4.

3.50

USER

VH)L SOURCE VHDL SOURCE

Figure 3-16. Architecture Conversion Data Flow Diagram

REMOVE REVIEW I
DELAY FROM CORECT

,SIN GLE-PR OCES CO K O

Figure 3-17. Main Architecture Processes DFD

3.5.3.5 Validate Condition Tests. To satisfy the

JRS requirement that no tests for data values occur, Style-V

must check each IF statement clause to ensure no such tests

3.51

are being done. Style-V must identify the control word and

all aliases to it and all system clocks, since tests on

these values are allowed. As stated in an earlier section,

JRS specifically requires tests for a clock value to precede

tests for a control value.

Identifying the clock and control signals used in the

system iL. relatively easy, since a process can scan all

files and look for declarations with type clock and control

respectively. Also, any aliases that use fields of the

control variables are then easily identified.

Once the clock and control variables are identified,

the process need only parse all the files of the system

looking for IF statement conditional checks. When a condi-

tional check is found, it is checked to see if it contains

anything other than a test for one of the defined clock or

control variables. If it does, a warning is output to the

user that redesign of the package in the file must be accom-

plished. The user has the option to continue checking for

more data check violations or to abort the check at that

time.

Conversely, a successful run is one in which no data

type violations are found.. A "SUCCESS" message is printed

after each successful run. If a run was not successful, the

message printed after the run will list all packages and

files wherein violations occurred.

3.52

The validation of conditional tests Style-V process is

given in Figure 13-18. A more detailed view will be pre-

sented in Section 3.5.4.

/--

I Is o

CIONDmONAI

VH-DL SOURCE VHDL SOURCE

\ /

Figure 3-18. Conditional Test Validation DFD

3.5.3.6 Map Procedures. Probably the most diffi-

cult task faced by Style-V is the mapping of user defined

functions and procedures to JRS IDAS procedures. Section

3.4.4 contains an overview of this problem and provides and

example to show the complexity of the task. The term

"function" used in this section represents either functions

or procedures.

Based on the facts presented in Section 3.4.4, Style-V

uses an interactive session with the user to map functions

to JRS IDAS procedures. This requires the user to have thae

3.53

IDAS function declarations (and possibly even bodies) avail-

able for comparison with their user-defined functions.

The user has two main tasks. The first is to identify

the JRS IDAS procedures which map to their functions and

procedures. Second, if a function does not map to any

combination of IDAS functions, the user can either redesign

that function or tell Style-V to use the function anyway.

As noted in an earlier section, including functions not

defined by IDAS is allowed, but the microcode generator will

not use them. Finally, if a user defined function maps to a

combination of IDAS functions, the user will need to identi-

fy the order of processing and the parameter assignments.

Once the user has provided the procedure mappings,

Style-V comments out the existing user defined function or

procedure declarations and their respective bodies. Also,

all calls to the previous user defined procedures are con-

verted to calls to appropriate JRS IDAS functions. Finally,

a USE clause is added to each file of the design so the

calls to the JRS IDAS procedures will work.

The high level representation of the procedure mapping

process is represented in Figure 3-19. A more detailed

description is provided in Section 3.5.4.

3.5.3.7 Perform Complete Stylization. A complete

stylization entails performing all the processes described

in Sections 3.5.3.1 through 3.5.3.6. Figure 3-20 represents

this user option and is displayed to indicate no specific

3.54

order is required when performing the stylization process

due to the orthogonality of the processes.

--

IUSE

I IP
PROEDRE

I I

IHD SOREIHXSUC

-- - - - - - - - - -- - - - - - - - - -- - - - - - - - -
Fiur 3I9 rcdr apn aaFo iga

11 S

IZ DAT
I1E CAM AU

--- /
Figure 3-9. Oprnodre Cmpping Dtlato o Daramig

/----------------------------------

3.5.4 Leveling of Style-V DFDs. Now that the high

level DFDs for Style-V are defined, it is possible to decom-

pose each Style-V process, capturing the decomposition in a

lower level DFD. This method is backwards to Ward and

Mellor's method described by Davis where the lowest level

DFDs are described first (DAVIS, 1990:91). The reason is

that their method works with known tasks from an existing

system. Since Style-V does not yet exist, the top-down

approach of this thesis identifies the tasks of the system

by incremental decomposition and captures the results in

lower level DFDs.

The level 1 DFDs for the Style-V translator were pro-

vided in Section 3.5.3. This section provides the first

level of decomposition following level 1. The level 2

diagrams for Type Conversion, CASETOIF Conversion, Create

MACHINE DECLARATIONS, Architecture Conversion, Conditional

Test Validation, and Procedure Mapping are provided in this

section.

The level 2 DFD for type conversion is presented in

Figure 3-21. The lexical and semantic processing of the

type conversion process are more clearly visible at this

level. The ScanForDeclarations process scans for declara-

tion statements. When they are found they are passed to a

declaration converter process. All other input is passed to

an intermediate file. After the DeclarationConverter

processed declarations to the same intermediate file. Then,

3.56

when all of the declaration conversion is done, a

StatusType Converter process finishes the type conversion

process and writes the output files.

/---

generi daa

status declraion chalrace
type id CARTO

VH-DL SOURCE

dedlra-ti

STATUS-TYPE

I /

Figure 3-21. Type Conversion DFD -- LEVEL 2

The level 2 DFD for CASE To IF Conversion is provided

in Figure 3-22. The processes represented in this DFD were

described in Section 3.5.3.2. This DFD describes the data

flow and processes necessary to implement the behavior of

the CASE-To-IF Conversion DFD found in Figure 3-14. A

medium level of detail describing the actions necessary for

converting VHDL CASE statements to VHDL IF statements is

represented in the DFD of Figure 3-22.

3.57

FILE I

2.1

II I CHARACE

PARSER -

Figure 3-22. CASE to IF Conversion DFD -- Level 2

The level 2 DFD for collecting machine specific decla-

rations in package MACHINE-DECLARATIONS is provided in

Figure 3-23. This DFD shows the data flow and processes

necessary to implement the behavior of the process in the

Create MACHINE DECLARATIONS DFD of Figure 3-15. The proc-

esses for this level of detail were described in Section

3.5.3.3.

The level 2 DFD for architecture processing is provided

in Figure 3-24. This DFD shows the subprocess required to

process a standard VHDL architecture into a JRS IDAS styled

VHDL architecture.

The level 2 DFD for validating conditional variables is

provided in Figure 3-25. The processes necessary for check-

ing whether a control variable is a clock-type or

3.58

IO VV- /IIEI

LENG DECLARAIONS

COECTAA1N CHARADATA

Figre3-3.CreteMAHECLARATIONS DFDOLLLeelT

/---
igr 3-23. CraeMCIEDCAATOSID- ee

-- - - - - - - - - -- - - - - - - - - -- - - - - - - - -
IjE COMN RVE

FIL NAECOI

I~PRE DELAY1R CU~

I------------------------------------
WORD ORD HARA--TE

Fiur -2.ArhtetrePrcssnODDVELve

DELA3 FRO9

USERI

COTROL EPOR MSG
- -IAB L FINAL MSG

5.1

I DECI FOR THRCERI
CLOCK VHDL SOURC VALIDATE

I VAFABUES

I CHECK ClIL_TYPEV IORLTP A

Figure 3-25. Vaiidate Conditional Variables -- Level 2

controltype are identified, as well as the process that

reports to the user if an illegal conditional variable is

found.

The level 2 DFD for mapping procedures is provided in

Figure 3-26. This DFD shows the user interaction required

to perform mappings between JRS IDAS and user-defined proce-

dures. It also shows the process of updating the source

files once a mapping has been accomplished.

3.5.5 Style-V Data Dictionary. The data dictionary

(DD) for the Style-V system was built as the DFDs were

constructed. By doing this, the meaning of each term in the

context in which it was used was preserved. The DD gives

the item name and a description of the item.

Common notation and short English phrases are used for

item descriptions. The common notation consists of item or

3.60

I I

IDA N

I GHAAC1ERI

I FUNCTIONJ MAP UPDATEI

FUNCTION MAPPINGS6.

Figure 3-26. Procedure Mapping DFD -- Level 2

range identifiers and the use of option and repeat

operators. An example of a range identifier is a..z which stands

for the small alphabetic letters between a and z inclusive.

An example of a repeat operator is (a..z)l which represents

one or more small alphabetic letters. The optional operator

(1) is placed between items to signify that any of the items

in the optional group can be picked as the value of the

item. An example of optional definition is (a I b I 9B),

signifying that the item being defined is either the letter

a, the letter b, or the phrase 9B. Grouping is done inside

brackets which can be operated on by repeat notation, or

grouping can be accomplished by using a different item

defined elsewhere in the DD as part of the definition.

Recursive and circular definitions should only be used when

3.61

an item can go to a null string -- the definition must

represent a finite sequence of substitutions.

The following alphabetical listing is the DD for the

Style-V Translator:

architecture collection of statements forming a

VHDL architecture

ARCHITECTURES : (architecture)0

bit-type : type mark allowed in JRS styled VHDL

character . (a..zA..Z0..9)

component : a VHDL design item

COMPONENTS . (component)0

conditional . guard I sensitivity-list

CONDITIONALS : (conditional)0

confirm-flag : (Y I y I N I n)

count . integer

COUNTTOTAL . a data store to accumulate a total

declaration . (name,)0 (name) (decl tail)

decl name : name portion of a declaration

decl tail . portion of a VHDL declaration state

ment encompassed by ":" and h-",

ENTITIES . (entity)0

entity . a VHDL design unit

extension : (.) (extensiontail)

extension tail [(name) (extension)o JO

filename : (name) [extension]0

flag : (character)1

3.62

generictype a type designator in a generic clause

guard : conditional value for process control

heading . VHDL code of the form ARCHITECTURE

(BEHAVIORAL I STRUCTURAL) of

ARCHITECTURENAME

integer : (0..9)1

INTERMEDIATE a temporary store for process results

letter : (a..zA..Z)

name : (letter I number) (character)0

nondeclaration a group of words, not a declaration

number : (0..9)

ORIGENTITY : high-level architecture entity store

portlist : a list of entity port declarations

possibleconstant a word which may be a constant name

possibledeclaration : a word, possibly a declaration part

possiblevariable a word which may be a variable name

sensitivitylist signal values for process control

specialcharacter nonblank noncharacter single element

status functioncall : convert function for a status type

statustype_decl a declaration for a status variable

total : accumulated value of a data store

typemark : a declaration type designator

unmapped-generic type not mappable to JRS style

VHDL SOURCE : file storage of VHDL source code

word : [character I special character]i

WORDS : a group / store of zero or more words

3.63

The data dictionary described above provides a develop-

er with a frame of reference when designing the modules to

implement the behaviors identified during analysis. This

design phase is covered in the next chapter.

3.6 Review
The focus of Chapter 3 has been the analysis of the

requirements for the Style-V Translator to convert a stand-

ard VHDL design into a styled VHDL design acceptable to the

JRS IDAS system.

Section 3.1 provided a review of notations and methods

for analyzing a system. A possible notation is a data flow

diagram (DFD), data dictionary (DD), control flow diagram

(CFD), entity-relationship diagram (ERD), or some variant of

these. The analysis methods which use these notations are

Structured Requirements Definition, Structured Analysis and

Design Technique, Structured Analysis and System Specifica-

tion, Modern Structured Analysis, Problem Statement Language

/ Problem Statement Analyzer (PSL/PSA)TM, and Object-Orient-

ed Problem Analysis. Two other simpler analysis methods

used for small problems are the method of listing inputs and

outputs and the method of listing major functions.

Section 3.2 discussed the choice of Modern Structured

Analysis as the method for the analysis of Style-V. Basi-

cally, the translations and mappings done by Style-V are

functionally intensive, so a functional decomposition was

chosen.

3.64

Section 3.3 provided a starting place to consider the

functions of a translator system. The lexical, syntactic,

and semantic processes which compose a translation system

were described. Armed with the knowledge of the functional-

ity required of a translator and knowing that the input was

already syntactically correct, it was then possible to

ensure the main processes of Style-V provided lexical and

semantic processing capabilities. Each of the main Style-V

processes has a lexical function which reads input files and

forms tokens understandable to the remaining functions of

the process. The functions of the processes that do most of

the work of Style-V (like converting types) are semantic

functions as they modify the input files but in a way that

maintains the original meaning -- as much as possible.

Section 3.4 was a detailed look at the problem faced by

Style-V. The differences between the VHDL subset defined by

JRS and standard VHDL were compared. The differences could

be characterized as type, declaration, structural, state-

ment, and other. An example stylized machine was discussed

and lessons learned from the example were provided. Section

3.4 ended with a discussion of the limitations of the JRS

style of VHDL and the difficulties posed by these limita-

tions.

Finally, Section 3.5 was the Modern Structured Analysis

of the Style-V system. It started with a view of the system

context. Then, the external events affecting the system

3.65

were identified. Next, the Style-V processes which respond-

ed to the external events were documented at a high level of

abstraction. The next step was to decompose and level the

data flow diagrams into a more detailed representation of

the system. During this leveling process, the true magni-

tude of the Style-V creation task was realized and the

thesis was scoped to concentrate on four of the six main

processes of Style-V. During the creation of the data flow

diagrams, a data dictionary was produced to document the

data moving in the system.

Now that the Style-V Translator system has been ana-

lyzed, Chapter 4 will document the manual demonstrations of

the concepts described above. The processes of converting

VHDL CASE statements to IF statements, converting free-form

VHDL types into the more restricted JRS IDAS types, convert-

ing multiple process architectures into single process

architectures, and converting user-defined procedures into

JRS IDAS procedures will be demonstrated.

3.66

IV. Demonstration of Concept

4.0 Introduction
It is not possible to complete an implementation of

Style-V during one thesis cycle -- the problem is just too

large. Therefore, instead of following Chapter 3 with a

design chapter, Chapter 4 provides documentation of manual

implementations of some of the mappings required for Style-

V. The manual demonstrations show the feasibility of the

concepts derived during the analysis described in Chapter 3.

The implementation of other Style-V processes will use

similar techniques to those this chapter describes. Also,

this thesis effort has laid the ground work for any effort

which would further implement Style-V.

Section 4.1 discusses the selection of concepts for

manual implementation. Section 4.2 provides a description

of a manual implementation of the mappings using portions of

the VHDL design of a substantial integrated circuit now

being developed by the Air Force -- the FPASP. Section 4.3

discusses the lessons learned from the manual implementation

process. Finally, Section 4.4 provides a review of this

chapter.

4.1 Selection of Concepts
Four of the mappings were chosen for manual demonstra-

tion of the translation concepts for mapping standard VHDL

4.1

to the JRS subset. The concepts of CASE statement conver-

sion, type conversion, architecture conversion, and proce-

dure mapping were chosen as being representative of the

tasks of Style-V. Demonstration of these mappings shows the

unfeasibility of a fully automated implementation and demon-

strates that only a partially automated solution is

possible. The remainder of this section describes the ra-

tionale for choosing these mappings.

CASE statement conversion was chosen as one of the

tasks for manual implementation due to the prevalence of

CASE statements in VHDL designs. Conversion of CASE state-

ments also affects the implementation of behaviors as de-

scribed in the JRS Style Guide, since system behaviors are

to be captured in behavioral IF statements (VHDL Style,

1989:11,13). The conversion of CASE statements also repre-

sents a category of the translation tasks dealing with local

modifications of input files -- global knowledge of the

system is not required. Other mappings falling in this

"local look" category are converting modes BUFFER and LINK-

AGE to mode INOUT, using GUARD and SENSITIVITY LISTS to

build WAIT statements, moving signal delay to an AFTER

clause, and removing structural architecture signal delay.

Another mapping required to translate standard VHDL

into JRS styled VHDL is type conversion. JRS allowed types

are quite limited when compared with the rich type struc-

tures allowed by standard VHDL. The ability to map user-

4.2

defined types which use bit and bitvector logic is basical-

ly a direct translation to the JRS bit types. However, most

VHDL designs use multilevel logic when representing modern

integrated circuits. This multilevel logic is usually

represented by a base type which is an enumerated type

showing the representation of signal states. An example is

the use of the enumerated type ('0', '1', 'X', 'Z') to

represent the states zero, one, don't care, and high imped-

ance.

Successful mapping of these multilevel logic types to

JRS bit types represented quite a challenge. Tasks similar

to the type conversion task but not part of the FPASP manual

demonstration are generic clause conversion and status type

conversion.

Architectural conversion from multiple concurrent

statement architectures (those with block or multiple proc-

ess statements) to single process architectures is described

and the manual demonstration documented. The ability to

perform architecture conversion was dependent on having a

global view of an entire architecture and the entity which

defined the interfaces of the architecture. From these, new

lower level entities and architectures could be constructed.

The goal of architecture conversion was to maintain a system

view of the architecture which was the same as the original

architecture. To obtain this view, the multiple internal

processes had to be converted to single process

4.3

subarchitectures as components of a new architecture with

the same external view as the original. Since the problem

of mapping multiple concurrent statement architectures to

single process architectures deals with limited global

knowledge, it is somewhat similar to the problems of gather-

ing machine declarations into one file and matching compo-

nents to the entities they instantiate -- two problems not

chosen for manual implementation using the FPASP.

Procedure mapping was chosen due to the criticality of

the requirement to be able to map user-defined procedures to

JRS IDAS defined procedures. This thesis worked toward

developing a translator for the microcode generation portion

of the JRS IDAS. The microcode generator of the IDAS does

not recognize any user-defined procedures, but can only

generate microcode for behaviors modeled using JRS provided

procedures. Therefore, it is absolutely critical to map

user-defined functions and procedures to JRS provided proce-

dures. The ability to map functions required a high level

knowledge of the logic of the functions being mapped. Other

than the transformation of types, which is also included as

a manual implementation, no other mappings are similar to

the task of mapping procedure calls.

4.2 Manual Implementations

This section provides a detailed explanation of the

manual implementation of the four mappings described in

4.4

Section 4.1. Section 4.2.1 describes the CASE statement

conversion using the FPASP upper data path as an example.

Section 4.2.2 describes the type translations carried out on

the types of the FPASP. Section 4.2.3 describes the archi-

tecture conversion process using the same upper data path as

used for the CASE statement conversion. Finally, Section

4.2.4 describes the procedure mappings carried out using the

ALU functions description of the upper data path of the

FPASP.

4.2.1 CASE Statement Conversion. Since a VHDL CASE

statement is a more compact notation to perform the function

of an IF-THEN-ELSIF-ELSE structure, conversion of the CASE

statement to an IF statement is not difficult. All the

information to form the IF statements is readily available

in the CASE statement structure.

Consider the general form of the CASE statement in

Figure 4-1, and compare it with an equivalent IF statement

in Figure 4-2. The conditional variable (condvar) of the

CASE statement is compared against the conditional value

(condval) in the WHEN portions of the CASE statement to

determine which alternative is executed. Using an IF-THEN-

ELSIF-ELSE structure, the cond var is compared with the

cond val until it is equal and that determines which VHDL

statements are executed. Therefore, the only knowledge

required to translate from CASE to IF-THEN-ELSIF-ELSE struc-

ture consists of the conditional variable, the conditional

4.5

values, and the VHDL statements which are executed for a

given conditional value.

--

CASE cond var IS
WHEN cond vall => VHDL statements
WHEN cond val2 => VHDL statements
WHEN cond val3 => VHDL statements

WHEN cond valn => VHDL statements
WHEN others => VHDL statements

END CASE;
\ /
--- /

Figure 4-1. General CASE Statement Structure

The documentation provided by JRS on the style of VHDL

acceptable to IDAS did not clearly describe the allowed

structure for an IF statement. The approach of this thesis

was to convert CASE statements to the IF-THEN-ELSIF-ELSE

structure and run some translated code through the IDAS to

verify that was an acceptable structure. Should the IDAS

have rejected the IF-THEN-ELSIF-ELSE structure, it would

have been a simple matter to change the translator to

produce only IF-THEN statements as the translation of the

VHDL CASE statement. Since the portion of the IDAS required

for this thesis did not work, it was not possible to vali-

date the CASE to IF conversion hypothesis.

The process of generating only IF-THEN structures

instead of IF-THEN-ELSIF-ELSE structures would simply entail

4.6

IF cond var = cond vall THEN
VHDL statements

ELSIF cond var = cond val2 THEN
VHDL statements

ELSIF cond var = cond val3 THEN
VHDL statements

ELSIF cond var = cond valn THEN
VHDL statements

ELSE
VHDL statements

END IF;

--- I\ /
Figure 4-2. General IF Statement Structure

generating an END IF followed by an IF each time an ELSIF or

an ELSE would be generated. Following the IF, should a

conditional value be present, the condition of the IF would

check the equality of the cond var and the current cond val.

On the other hand, should no cond val be present (processing

the ELSE c.ause), the IF condition would be to check if the

condvar was not equal to any of the conditional values used

in the previous IF statements during the processing of the

current CASE statement. This means a simple list of the

conditional values must be maintained if CASE statements are

translated to IF-THEN statements only. See Figure 4-3 for a

simple example.

The CASE to IF-THEN-ELSIF-ELSE process was the only

Style-V process taken past the analysis and preliminary

4.7

CASE X IS
WHEN 1 => statements 1
WHEN 2 => statements 2
WHEN others => statements_3

END CASE;

IF (X = 1) THEN
statements_1

END IF;
IF (X = 2) THEN

statements 2
END IF;
IF not ((X = 1) or (X = 2)) THEN

statements_3
END IF;

--- /
Figure 4-3. CASE to IF-THEN Example

design phases to actual implementation. This module suc-

cessfully converted the CASE statements of the architectures

extracted from the upper data path of the FPASP design.

The CASE toIF module was run on the new architec.ures

UPPERREGISTERS, UPPERALUSHIFTER, FUNCTION-ROM, and LITER-

ALINSERTER which were created by the architecture conver-

sion process (described in Section 4.2.3). However, as

noted before, these conversions are orthogonal and the same

results would occur should the CASE to IF conversion be done

before the creation of new architectures.

Implementation of the CASE to IF module produced suc-

cessful results. Sample results from running it against

FPASP code comprise Section 1 of Appendix C. The CASE to IF

4.8

pseudo code, C code, and tests and results are located in

Appendix D.

4.2.2 Type Conversion. As described in Chapter 3,

type conversion posed several challenges. The JRS types are

limited to bit types -- those based on bit logic consisting

of l's and O's. This restriction does not allow types that

represent multilevel logic, such as the enumerated type

BUSBIT used by the FPASP to represent four-level logic.

The type BUSBIT uses '0' to represent zero, '' to repre-

sent one, 'X' to represent don't care, and 'Z' to represent

high impedance.

Package and package body FPASP4_2_TYPEDEF are included

in Appendix B and contain the type definitions for the FPASP

VHDL decription. This code was examined and an algorithm

devised to translate the four-level logic of the FPASP to a

two-level (bit) logic representation. The translated

FPASP4_2_TYPEDEF package specification and body are located

in Appendix C.

The first review of the declarations package

FPASP4_2_TYPEDEF revealed that most of the types were de-

fined with a base type of BUSBIT. As described above,

BUSBIT was an enumerated type ('X','0','l','Z'). Since

this type of enumerated type is not allowed in the JRS IDAS

style of VHDL, a conversion to a bit type was necessary.

Since only '0's and 'l's are allowed by the IDAS, the

first approach considered was to convert 'X' and 'Z' to

4.9

either '0' or '1'. The problem with this type of conversion

is that some of the functions defined for the FPASP depend

on the ability to model multilevel logic. A further discus-

sion of this problem is in Section 3.4.1.1 and a sample

section of procedure code that would always cause "incor-

rect" procedure execution was provided in Figure 3-7.

Since a simplistic conversion was not possible, another

method was necessary. The next step was to consider repre-

senting each bit of the BUSBIT type by a bit-vector of

length two. A '0' would be represented by the bit vector

"00", a '1' by "01", a 'X' by "10", and a 'Z' by "11". The

translation of any type with a base type of BUSBIT would

then entail using multilevel bit vectors. For example, the

BUSBITVECTOR "01XZ" would be represented as a vector of

bit vectors ("00","01","10","11"). This type of translation

may work for some tools; however, the JRS IDAS Move proce-

dure which is used to move data around a design can only

process bit-vectors -- no multidimensional bit vectors.

Knowing that the IDAS required data to be in the form

of bitvectors, the next logical step was to consider using

two bits to represent one logical bit. Using this approach,

a 0 would be represented by 00, a 1 by 01, a X by 10, and a

Z by 11. Then, the example BUSBITVECTOR "01XZ" would

become the BITVECTOR "00011011". This solution was suit-

able for the IDAS MOVE procedures. However, another concern

arose. The other IDAS procedures which would replace ALU-

4.10

type operations will use bit vectors from the system and

produce results from them, but these procedures expect true

two-level logic bit vectors, so a conversion function must

translate the two-level logic representation of four-level

logic into true two-level logic before entering any of the

ALU-type IDAS procedures and back again to four-level logic

represented in two-level logic after the procedures to

maintain compatibility with the rest of the FPASP chip.

To lessen the amount of "name" changing the translator

would do, the base type name was maintained and the new

representation for the type introduced. Since representing

the four-level logic elements as bit vectors would cause

IDAS Move problems, the BUSBIT type became ('0', '1') -- a

type compatible with type BIT. Should this have not been

acceptable to IDAS, changing the type BUSBIT to subtype

BUSBIT of BIT would have worked as an alternate option and

not affected the remaining translations.

Now, since each BUSBIT in the BUSBITVECTORS is

represented by two bits, the specified length of each

BUSBITVECTOR declaration must be doubled. For example,

BUSBITVECTOR(31 downto 0) would become BUSBITVECTOR(63

downto 0) and BUSBITVECTOR(1 to 7) would become

BUSBITVECTOR(1 to 14). In general, the new lower index

has the same value as the original lower index and the

formula for calculating the upper index is:

UpperIndex := High_Index + HighIndex - LowIndex + 1.

4.11

The decision on which index to change is determined by

the word between the indexes. If the word "downto" is

between the indexes, the left index is changed, otherwise

the right index is changed.

Another concern is constant declarations. Not only

does the index range need adjustment, but the literal repre-

senting the constant must be adjusted also. However, since

the logical bit of each true bit is simply a dcuble bit, the

replacement can be made by replacing each bit of a constant

literal with the corresponding double bit. For example, the

constant literal "ZZXX10" would become "111110100100".

From the above discussion, it is easy to see that only

local knowledge is required to change type declarations.

Once the base type is identified and changed, changing the

other declarations is simply a matter of text replacement or

index calculation and replacement. Changing procedure and

function declarations is done in the same way. However,

within procedure and function bodies, the calculations and

modifications are more difficult.

Not only do loop ranges need to be calculated in a

similar way to declaration ranges, but the assignment logic

inside a loop must account for assigning two bits instead of

one. For example, if a pretranslation assignment statement

was:

XX(I) := '1',

4.12

the new assignment statement would be:

XX(I*2 to 1*2+1) : "01",

or possibly:

XX(I*2+1 downto 1*2) : "01".

Also, the logic of the loop would need to be modified to

skip execution of the loop on every other pass because two

bits were processed on the previous pass. Figure 4-5 pro-

vides an example of the FPASP code and the modified loop

resulting from translation.

Another consideration evident from Figure 4-5 is how to

translate simple constructs into more complex constructs.

The calculation TEMP(I) := A(I) and B(I) of Figure 4-5 was

simple due to the definition of the "and" operator for two

single element BUSBITs. However, since the translation now

uses two-element BUSBITVECTORS to represent an actual bit,

the previous "and" function which performed an and of two

BUSBITs became one with two parameters of type

BUSBITVECTOR (1 downto 0) and a return type of

BUSBITVECTOR. However, this caused a compile error in the

VHDL analyzer due to an ambiguous overloading of this "and"

function with the more general "and" function with

BUSBITVECTOR parameters and return type.

The solution taken in the manual implementation was to

expand the more general "and" function to perform all calcu-

lations necessary to produce the "and" result. The truth

4.13

table from the FPASP design which had to be implemented for

the "and" operation is provided in figure 4-4.

/--

OPERAND 2 BIT

AND I X I Z 1 0 1 1

I I---------------------I
X IX X 0 X

I I--------------------I
OPERANDi BIT Z I X X 0 X

I I--------------------I
I 0 1 0 0 0 01

I I--------------------I
1 IX X 0 1I /I

\ /
-- /

Figure 4-4. FPASP General "and" Truth Table

Another approach which would be simpler to implement

for Style-V would be to rename the "and" function which had

parameters BUSBITVECTOR (1 downto 0) and to call the newly

named function from the now simplified translation of the

general "and" function. Figure 4-6 provides the more sim-

plified translation of the general "and" function, and

Figures 4-7 and 4-8 show the translation of the BUSBIT

function to the BUSBITVECTOR (I downto 0) function is

basically a one-for-one textual substitution -- an easy

translation.

4.14

I BEFORE

I function "and"(A, B :BUS_-BITVECTOR)I
I return BUS _BIT _VECTOR isI

I variable TEMP :BUSBITVECTOR(3l -downto 0);
I beginI
I for I in A'LOW to A'HIGH loop

ITEMP(I) :=A(I) and B(I);I
I end loop;

return TEMP(A'RANGE);I
I end "and";I

I AFTERI

I function "and" (A, B :BUS_-BIT_-VECTOR)I
I return BUS BIT VECTOR isI

I variable TEMP :BUSBITVECTOR(63 -downto 0);
I variable SKIP :BIT :=0'o;I

I beginI
I for I in A'HIGH-A'LOW downto, 0 loopI
I if SKIP = '0' thenI
I if (A(I downto I-1) = "00") orI
I (B(I downto I-1) = "00") thenI

I TEMP(I downto I-1) := "00";I
elsif (A(I downto I-1) = "111") or

I (A(I downto I-1) = "110") thenI
TEMP(I downto I-1) :="10";

I elsif (A(I downto I-1) = "01") andI
I (B(I downto I-1) = "01") thenI
I TEMP(I downto I-1) :="01";I

I else TEMP(I downto I-1) "10";on
I end if;I

SKIP '1';I
I elseI
I SKIP '0';

I end if;I
I end loop;
I return TEMP(A'high-A'low downto 0);I
I end "and";I

--- /
Figure 4-5. Sample "Hard" Loop Translation

4.15

I BEFOREI

I function "and"(A, B :BUSBIT_--VECTOR)I
Ireturn BU7S BIT VECTOR isI

I variable TEMP :BUSBITVECTOR(31 downto 0);I
I beginI
I for I in A'LOW to A'HIGH loop

TEMP(I) :=A(I) and B(I);I
end loop;

I return TEMP(A'RANGE);
end "and";I

-- I

I AFTERI

function "and"(A, B :BUS_-BITVECTOR)I
return BUS BIT VECTOR is

variable TEMP :BUS_-BITTVECTOR(63 -downto 0);I
Ivariable SKIP :BIT '0'/o;

I beginI
for I in A'HIGH-A'LOW downto 0 loopI

I if SKIP = '0' then
I TEMP(I downto I-1)

A(I downto I-1) and2 B(I downto I-1);I
I ~SKIP ''

I elseI
SKIP '0';I

I end if;
I end loop;
I return TEMP(A'high-A'low downto 0);I
I end "and";I

--- /
Figure 4-6. Simplified "and" Translation

4.16

BEFORE

function "and"(A, B : BUS BIT) return BUSBIT is
begin

case A is
when 'X' =>

if B = '0'
then -- 'and' is dependent on B.
return '0';

else -- Undefined.
return 'X';

end if;
when 'Z' =>

if B = '0'
then -- 'and' is dependent on B.
return '0';

else -- Undefined.
return 'X';

end if;
when '0' => return '0';

-- Doesn't matter what B is.
when 'I' => -- 'and' is dependent on B.

if B - 'Z'
then -- Undefined.

return 'X';
else

return B;
end if;

end case;
end "and";

--- /
Figure 4-7. "and" With BUSBIT Type

4.17

AFTER

function "and2"(A, B : BUSBITVECTOR(I downto 0))
return BUS BIT VECTOR is

begin
case A is
when "10" =>

if B = "00"
then -- 'and' is dependent on B.

return "00";
else -- Undefined.

return "10";
end if;

when "I1" =>
if B = "00"

then -- 'and' is dependent on B.
return "00";

else -- Undefined.
return "10";

end if;
when "00" => return "00";

-- Doesn't matter what B is.
when "01" => -- 'and' is dependent on B.

if B = "I"
then -- Undefined.

return "10";
else

return B;
end if;

end case;
end "and2";

\ /
--- /
Figure 4-8. "and" With BUSBITVECTOR (1 downto 0) Type

Some type of data structure which contained the origi-

nal declaration and the translated declaration would need to

exist to facilitate the renaming of a less general function

as described above. As the translator worked through a

file, it would not know a more general function was coming

which would have a type conflict with a newly translated

function. A table implemented as a linked list of two-field

4.18

records would serve this purpose. The link list would

provide quick order 1 time storage of new data, and since

the number of procedures would be relatively small for most

designs (n < 1000), the order n search time required to find

a less general function would not be significant. In fact,

since most "like named" functions generally occur in the

same vicinity of a design, and since the less general func-

tion is usually defined before the more general ones, the

search would be much less than n on average, though the

worst case would still be on the order of n.

In summary, the type conversion process required to

translate the FPASP with four-level BUSBIT representation

into bit logic required implementing a translation scheme to

use bit logic to represent four-level logic, translating all

declarations using the new representation, and translating

any functions or procedures operating on the types of the

system to use the new bit logic types. Some translations,

such as declaration ranges and literal values was straight

forward and consisted mainly of textual substitution. Other

translations, such as function logic (for example, loops),

was more difficult and required knowledge of how using two

bits to represent one actual bit affected the system.

4.2.3 Architecture Conversion. Besides type restric-

tions, another major restriction of JRS IDAS for VHDL de-

signs is the requirement to have only one process statement

for a behavioral architecture. In standard VHDL, a designer

4.19

can model any number of concurrent processes and blocks in

an architecture.

Section 3.4.1.3 discussed structural differences be-

tween JRS IDAS styled VHDL and standard VHDL, including a

discussion of architectural differences. A detailed discus-

sion of the algorithm for converting a multiple concurrent

statement architecture to multiple single process architec-

tures was given in Section 3.5.3.4. This section provides a

review of an implementation of the architecture conversion

algorithm on one entity and architecture of the FPASP.

The FPASP4_UDATAPATH entity and architecture were

chosen for decomposition because they presented most of the

translation challenges identified in the architecture con-

version algorithm. For the FPASP4_UDATAPATH entity, one

port had mode BUFFER, which is not an allowed mode for JRS

IDAS styled VHDL. The entity had a generic clause, but the

only type used in the generic clause was INTEGER, so no

translation was necessary for the generic types. Finally,

several BUS types were defined as entity ports.

Challenges represented by the FPASP4_UDATAPATH archi-

tecture were aliases of slices of entity ports, statements

outside of any process or block, and processes within

blocks. The successful manual conversion of this architec-

ture shows the feasibility of converting architectures in

general using the algorithm defined in this thesis. Refer

to Appendix B for the original FPASP4_UDATAPATH entity and

4.20

architecture descriptions and Appendix C for the translated

FPASP4_UDATAPATH entity and architectures.

The conversion pro less began by determining which

statements did not fall within any process or block. These

statements were set aside to be used in the final architec-

ture which instantiated all the subarchitectures created in

the next steps. These statements were saved to put in a

begin-end structure for the new FPASP4_UDATAPATH architec-

ture. This completed a first pass of the FPASP4_UDATAPATH

architecture.

The second conversion step was to convert the block

statements into process statements. Since each block con-

sisted of a process statement, this was a simple matter of

performing the following thirteen steps:

1. scanning for the block statement,

2. scanning the block guard (if any),

3. saving the guard for latter use,

4. removing the guard statement,

5. scanning for the process statement,

6. scanning the process sensitivity list (if any),

7. saving the sensitivity list for latter use,

8. removing the sensitivity list from the process

statement,

9. passing through any declarations,

10. scanning the "begin" for the process,

11. creating and inserting a WAIT statement for the

4.21

process with an UNTIL clause for the saved guard condi-

tions and an ON clause for the saved sensitivity list,

12. passing all information through until an "end

process" phrase was scanned,

13. finally, deleting the "end block" phrase which

followed the "end process" phrase.

The above processing would continue for the ramainder

of the FPASP4_UDATAPATH architecture. This processing

comprises the second pass through the FPASP4_UDATAPATH

architecture. The results of these second step actions

would be a sequence of process statements with a WAIT state-

ment with UNTIL or ON clauses as the first statement of the

process -- a requirement of JRS styled VHDL. Figure 4-9

provides an abbreviated representation of the results of

this process.

Once the block and process statements of the

FPASP4_UDATAPATH were converted to a sequence of process

statements with the JRS required WAIT statement, new enti-

ties for each process statement were created. The name of

each of these new entities could have been any legal name

allowed by VHDL which did not duplicate existing names in

the design, but using labels of block or process statements

of the original architecture made the printed output of the

translation easier to follow.

To form the ports of each entity, each process state-

ment was scanned to determine which ports (or aliases of

4.22

Architecture BEHAVIOR of FPASP4 UDATAPATH is

S--declarations
alias x:
alias y :...

I ... o

begin
UPPER REGISTERS: process
begin--

WAIT UNTIL guardl ON sensitivity listl;
[statements)

end process;
UPPERALUSHIFTER: process
begin -

WAIT UNTIL guard2 ON sensitivity list2
[statements)

end process;
UINSERT: process
begin

WAIT UNTIL guard3 ON sensitivity list3;
[statements)

end process;
FUNCTIONROM: process
begin

WAIT UNTIL guard4 ON sensitivity list4;
[statements)

end process;
end BEHAVIOR;

\ /
--- /

Figure 4-9. Architecture With Process Statements Converted

port slices) were used in the process. By using only these

to form the ports of the new entity, creation of unused

ports was avoided. The port and alias declarations of the

original entity and architecture were used to form the port

declarations for the new entity. The mode was also main-

tained from the original entity for each port declaration in

each new entity. An exception was the IDAS requirement to

convert mode BUFFER to mode INOUT for one of the ports.

4.23

Another consideration was the use of generics. If a

variable which matched a generic was found in a process

statement, a generic clause was created for the new entity

representing the process. In the FPASP implementation, only

one process used the generics defined by the original enti-

ty, so only the entity for that process contained a generic

clause.

After all entities representing the process statements

in the design were created, it was time to create the new

subarchitectures. This is an easy step at this point in the

translation process. The first action required to construct

each new architecture was to create the architecture header.

The architecture header consisted of the keyword "architec-

ture", followed by the architecture name (BEHAVIOR), fol-

lowed by the keyword "of", followed by the entity name,

followed by the keyword "is". The body of the architecture

was simply the keyword "begin" followed by the process

statement followed by the phrase "end BEHAVIOR;". A repre-

sentation of the new architecture is provided in Figure 4-

10.

Now that each process statement was converted into an

entity and architecture pair, the final step of architecture

conversion was to create the new FPASP4_UDATAPATH architec-

ture. Each new entity was represented by a component with

the same name as the entity and with the same port declara-

tions as the entity -- as required for JRS styled VHDL.

4.24

Architecture BEHAVIOR of UPPERREGISTERS is

begin

UPPER REGISTERS: process
begin--

WAIT UNTIL guardl ON sensitivity listl;
[statements)

end process;

end BEHAVIOR;

-- I\ /
Figure 4-10. Representation of New Architecture

Each component was then instantiated and the ports assigned

to the port or port slice of the original FPASP4_UDATAPATH

entity. Finally, the statements which were outside any

process statement of the original architecture were included

in a begin-end block. Figure 4-11 provides an outline

representation of the results of this process. Conversion

of the FPASP4_UDATAPATH architecture was now complete.

4.2.4 Procedure Mapping. As explained in Section

3.4.4 the task of mapping one procedure to another is quite

difficult. One way would be to use exhaustive testing, but

two problems hinder using this solution for Style-V. The

test driver for testing the procedures and comparing the

results does not exist and would require a major development

effort to produce. Secondly, given the facts described in

Section 3;4.4, even simple procedures could not be "fully"

tested in an acceptable amount of time.

4.25

Architecture BEHAVIOR of FPASP4_UDATAPATH is

component UPPERREGISTERS declaration

component ALUSHIFTER declaration

component LITERALINSERTER declaration

component FUNCTION ROM declaration

begin

component UPPERREGISTERS instantiation

component ALUSHIFTER instantiation

component LITERALINSERTER instantiation

component FUNCTIONROM instantiation

statements not included in any process

end BEHAVIOR;
\ /
--- /

Figure 4-11. New Architecture After Conversion

The process chosen for Style-V was manual intervention,

since no automated method seems possible at this time. The

remainder of this section describes how a sampling of FPASP

functions were mapped to JRS IDAS functions and describes a

case where a mapping was not possible.

The FPASP procedure MOVNUL had one input bus type and

one output bus type. This procedure mapped easily to the

IDAS MOVE procedure which could support these ports while

providing the same functionality. This same process was

used on six other functions with good success. Figure 4-12

provides the FPASP procedure declarations and the

4.26

declarations for the IDAS procedure to which they mapped for

three of the successful mappings. However, one FPASP proce-

dure could not be mapped to an IDAS procedure or combination

of IDAS procedures.

The FPASP procedure SR could not be mapped to any IDAS

procedure. The declaration of this "shift" function and the

"shift" functions provided by the JRS IDAS are provided in

Figure 4-13. The function SR accepts a word (ALUIN),

assigns the rightmost bit to an out bit (SHOUT), shifts the

remaining bits one bit to the right, and assigns an input

bit (SHIN) to the leftmost position of the word to form the

result (RESULT). None of the IDAS shift procedures provided

this capability.

The translation method of transliteration and refine-

ment will not work for procedure mapping since those methods

use only local knowledge to perform translations. Addition-

ally, the translation method of abstraction and reimplemen-

tation will probably fail to be capable of performing the

procedure mappings, since:

the key to the increase in abstraction ... is the
ability to recognize the net effects of a computation.
This in turn depends on the abstraction component
having a significant amount of knowledge about what
kinds of computations can be performed. (Waters,
1986:14)

The information provided by Waters indicates no current

technology (transliteration and reimplementation

orabstraction and reimplementation) provides a solution to

the problem of function mapping faced by StyleV.

4.27

-- - - - - - - - -- - - - - - - - -- - - - - - - - - - -

FPASP
MOVNUL (MOVIN :

in DR32_RESOLVE BUSBITVECTOR(31 downto 0);
RESULT :I

out DR32_RESOLVE BUSBITVECTOR(31 downto 0));

IDAS
MOVE (InPort : ii DataVector;

Out_ Port : out Data Vector;
Name : "MOVNUL");

--- I

FPASP
ORUL (LEFT,RIGHT :

in DR32_RESOLVE BUSBITVECTOR(31 downto 0);
RESULT
out DR32_RESOLVE BUSBITVECTOR(31 downto 0);

ZERO : out BUS BIT);

IDAS
LOGICAL-OR (In Portl : in DataVector;

In Port2 : in DataVector;
Out Port : out DataVector;
Status : out Status Type;
Name : "ORUL");

--- I

FPASP
ADCUL (LEFT,RIGHT :

in DR32_RESOLVE BUSBITVECTOR(31 downto 0);
CARRY IN : in BUS BIT;
RESULT

out DR32_RESOLVE BUSBITVECTOR(31 downto 0);
CARRY : out BUS BIT;
OVERFLOW : out BUS BIT;
SIGN : out BUS BIT;
ZERO : out BUS BIT;

IDAS
ADDC (In Portl : in Data Vector;

In Port2 : in Data Vector;
In Port3 : in Data;
Out Port : out Data Vector;
Status : out StatusType;
Name : "ADCUL");

-- /
Figure 4-12. FPASP to IDAS Procedure Mapping Examples

4.28

FPASP SHIFT RIGHT PROCEDURE

procedure SR (ALUIN : in DR32 RESOLVE
BUS BIT VECTOR (31 downto 0);

SH IN : in BUS BIT;
RESULT : out DR32 RESOLVE

BUS BIT VECTOR (31 downto 0);
SHOUT : BUSBIT);

--- I

JRS IDAS SHIFT RIGHT PROCEDURES

procedure SHIFTRIGHT 1
(In_Port : in Data Vector;
Out Port : out Data Vector;
Name in String);

--
procedure SHIFTRIGHT 1 BIT IN

(In_Port :-in DataVector;
In Bit : in Data;
Out Port : out Data Vector;
Name : in String);

procedure SHIFTRIGHT 1_ONEFILL
(InPort : in Data _Vector;
Out Port : out DataVector;
Name in String);

-- /
Figure 4-13. FPASP to IDAS NonMappable Example

4.3 Lessons Learned From Examples

The following sections provide a summary of the lessons

learned during the manual implementation of Style-V trans-

lations on the FPASP design. The difficulties experienced

during these implementations and the lessons learned from

them indicate care should be used when developing the re-

maining modules of Style-V. Lessons are also good for

4.29

insight into the types of processes necessary for developing

a successful translator.

4.3.1 Lessons From CASE Conversion. The main lesson

learned from the CASE to IF analysis and implementation was

that modifications which require only local knowledge in the

source code are algorithmically simple to design and imple-

ment. Little temporary storage and no complicated data

structures are required for processing translations similar

to CASE to IF conversion.

4.3.2 Lessons From Type Conversion. The main lesson

from the type conversion exercise was that a simple approach

is sometimes inappropriate, and it may be plain wrong. A

strong analysis should always be conducted to determine how

a course of action affects the entire system. In the case

of type conversion, it would have been wrong to simply

compress multilevel logic into bit logic by assigning the

values '0' or '1' to some other previously defined value. A

thorough analysis showed the best way was to represent each

actual bit with two logical bits.

Another translation lesson learned from type conversion

is that decisions early in a process affect design decisions

throughout the translation. For instance, the decision to

represent an actual multilevel logic bit by two bits of bit

logic required modification of the functions and procedures

which operated on types. Then, the modification of the type

functions led to other lessons.

4.30

One of the lessons was that range bounds and loop

ranges all needed adjusting, and the logic of loops had to

be changed to account for a two-bit representation of one

actual bit. This realization confirms that type conversion

is a major task in the translation effort. All functions

and procedures of a design must be tuned to handle the

changed types, otherwise the original procedures will fail

because of the new logical representation of data.

During the tuning of procedures, other conflicts may

occur. For overloaded procedures and functions, it may

happen that a less general function may have the same basic

types of parameters and return types as a more General

function with the same name. Since this is not allowed, a

data structure holding the previous and current declarations

of functions must be maintained. In this manner, any con-

flicting less general function may be renamed and retained

for use by the more general function. Calls from the system

to the function would now go to the more general function

for processing.

Finally, being restricted to using only JRS IDAS pro-

vided functions and procedures for ALU-type operations meant

a translation function had to precede and follow any call to

IDAS functions. This was due to the fact that the IDAS

functions were originally written to process data vectors

which are two-level logic representations of data. There-

fore, the four-level logic representations had to be

4.31

converted to two-level logic before the IDAS procedure and

back to four-level logic after the IDAS procedure. Any

logic levels other than '0' or '1' would be lost during this

process; however, that was not expected to be a problem as

data going through an ALU-type function should be stable at

values of '0's and 'l's.

4.3.3 Lessons From Architecture Conversion. The main

lesson of the architecture conversion exercise was to under-

stand a problem before looking at solution alternatives.

Sometimes an apparent simple solution may be simply wrong.

For the architecture conversion problem, the simplest and

first considered option was to combine all blocks and proc-

esses in an architecture into one big process statement.

However, careful analysis showed that this would destroy the

parallelism natural with the multiple processes and blocks.

The correct solution was then discovered which entailed

creating new subarchitectures for each process. By doing

this, the parallelism of the original blocks and processes

was maintained.

Another lesson was that using multiple passes for

certain types of processing problems makes the task easier

to complete. In the case of architecture conversion, one

pass was necessary to determine the declared ports and

aliases and to collect the statements which are outside any

process or block for later inclusion in the final architec-

ture. A second pass is used to create a sequence of process

4.32

statements with the JRS required WAIT statement. A third

pass creates an entity for each of the process statements.

The fourth pass creates the architecture for each process.

Finally, a fifth pass creates the new architecture which

replaces the original architecture.

4.3.4 Lessons From Procedure Mapping. Procedure mapping is

a difficult task. It requires an abstract, logical review of a

subject procedure and a detailed knowledge of the procedures

which are available to which it can be mapped. Only after

reasoning about the functions performed, can one hope to

successfully map the procedures.

Another lesson was that the procedures provided by IDAS are

a proper subset of the functions possible for a VHDL design --

not all functions are included in the subset. This causes great

problems when a nonmappable procedure is encountered during

a manual mapping process -- an indication that redesign is

required.

4.4 Review
This chapter has provided a demonstration of some of

the concepts of translating standard VHDL into the JRS IDAS

subset of VHDL. The manual implementations of CASE state-

ment conversion, type conversion, architecture conversion,

and procedure mapping were accomplished to demonstrate the

feasibility of building Style-V to translate standard VHDL

to the JRS subset. The lessons learned from these manual

implementations were also discussed. The important points

4.33

which this chapter points out are that some translations

like CASE statement and architecture conversion are easy,

some like type conversion are difficult, and yet others like

procedure mapping are presently impossible for an automated

system.

4.34

V. Results, Conclusions,
and Recommendations

5.0 Introduction
Chapter 1 of this thesis identified the need to trans-

late VHDL written in the IEEE standard language to a subset

of the VHDL language defined for a microcode generating

tool. After stating the problem, Chapter 1 described the

goals of the research effort -- to design a translator to

fulfill the need. Another key section of Chapter 1 was the

section discussing the assumptions about the translator,

research, and IDAS tool.

Unfortunately, one of the key assumptions stated in

Chapter 1 proved to be incorrect. The assumption was made

that the IDAS tool would accept stylized VHDL and an Ada

program and produce microcode for the VHDL design. However,

despite the efforts of local experts, including some calls

to the IDAS maker, JRS Research Laboratories, the IDAS would

not process the files created to test the concept of gener-

ating microcode. This meant that any translation could not

be tested against the IDAS tool. When this situation became

apparent, the focus of the research effort turned to per-

forming manual simulations to demonstrate the feasibility of

the concepts required for a successful translation.

5.1

Chapter 2 consisted of a literature review to determine

the current technologies for translating computer languages.

The essential activities of lexical analysis and parsing

were researched since any translator would need to perform

these functions. Also, several examples of translators were

reviewed.

Chapter 3 was a requirements analysis of the tianslator

system (called Style-V). This analysis consisted of a

domain analysis, language comparison, and Modern Structured

Analysis. Domain analysis determined what composed a trans-

lator system. Once the components of the translator were

identified, the analysis turned to the specific problem of

translating the standard VHDL into a subset.

A careful comparison of the standard VHDL to the styled

VHDL form was conducted. The results of the domain analysis

and the VHDL comparison formed the basis for Modern Struc-

tured Analysis.

Modern Structured Analysis was used to determine the

processes required in Style-V. The system context, external

events, and event behaviors were defined and analyzed to

determine "how" Style-V would perform the translation task.

Enough detail was achieved to successfully perform desktop

simulations of Style-V processes.

Chapter 4 documented the performance of the desktop

simulations to demonstrate the feasibility of producing the

Style-V translator. Not all processes were demonstrated,

5.2

but a representative subset of the processes provided enough

information to determine if a Style-V translator could be

fully automated. Chapter 4 also included the lessons

learned from the manual implementations.

This chapter provides a summary of the results of this

thesis effort, some conclusions based on the results, and

recommendations based on the conclusions. The original goal

of fully developing the Style-V translator was not realistic

and the scope of the thesis was adjusted. In the final

analysis, the problem of translating standard VHDL into the

subset required by JRS for the IDAS tool was too large to

complete in one thesis cycle. This thesis has produced an

analysis of the problem and demonstrated how some transla-

tion tasks can be automated and why others cannot.

5.1 Results
Once the decision was made to design Style-V, one of

the first efforts was to construct a simple example CPU to

verify advertised IDAS capabilities. A successful demon-

stration of the IDAS would show a design could be written in

the stylized form. It would also show the assumption that

the IDAS would work was correct. However, the result of

this effort showed the assumption was incorrect. Another

result was the VHDL code for the sample system. The VHDL

code for this system is included in Appendix A.

5.3

The next results of this research were those obtained

from the analysis process. The domain analysis of the

system provided an understanding of the parts composing any

translator system. The decomposition of the translator

system into its constituent parts is documented in Figures

3-1 through 3-5.

The comparison of IEEE standard VHDL to the stylized

form required by the IDAS tool resulted in a set of mappings

for the Style-V translator to satisfy. These mappings are

identified in Figure 3-6. It was during the evaluation of

these mappings that it became apparent that more than one

thesis cycle would be required to complete a Style-V design

and implementation.

After identifying the mappings required between stand-

ard and stylized VHDL, the Modern Structured Analysis of the

system resulted in a description of Style-V in sufficient

detail to complete the manual simulations. The products of

the analysis consisted of the level one and level two data

flow diagrams and a data dictionary for processes necessary

to translate all defined mappings. The data flow diagrams

and data dictionary are included Chapter 3.

During completion of the Chapter 3 processes, the

amount of time required to simulate all mappings was deemed

to be greater than the amount available. At that point, the

mappings CASEtoIF, Type Conversion, Architecture

5.4

Conversion, and Procedure Mapping were selected for manual

implementation.

The manual implementation of CASE statement conversion

resulted in a successful algorithm for converting CASE

statements to IF-THEN-ELSIF-ELSE statements or IF-THEN

statements. The CASE statement to IF statement mapping was

the only mapping chosen for full implementation. The proto-

type CASE toIF conversion module is included in Appendix D

of this thesis. However, since the IDAS did not perform as

expected, it was not possible to test if the output of the

module was acceptable or if further adjustments were re-

quired.

Architecture conversion was more challenging than CASE

statement conversion. Like the CASE statement conversion,

only one input file is manipulated at any one time. Howev-

er, several passes are required over this file to produce

subarchitectures. The results of the architecture conver-

sion manual implementation were an algorithm to accomplish

it, a new architecture at the same level in the system as

the original architecture, and four architectures one level

beneath the new architecture. The algorithm was provided in

Chapter 4 and the resulting architectures are in Appendix C.

Type conversion proved to be quite a challenge, even

for a manual implementation. One of the results of the

effort was the use of bit logic to represent multilevel

logic. Another result was a translated type definition

5.5

package for the Floating Point Application Specific Proces-

sor. The results of the translation of all the declarations

and over fifty functions and procedures in this type defini-

tion package processed successfully through VHDL analysis.

The final task completed for the demonstration of

concept effort was to attempt mapping procedures from the

Floating Point Application Specific Processor (FPASP) to the

IDAS. Eight of the FPASP processes were selected for map-

ping and seven mapped successfully. However, no mapping of

IDAS procedures was found to satisfy the requirements of one

FPASP procedure -- SR which shifted a bit out the right side

of a word and a bit in the left side. The potential for

this problem was identified in Sections 3.4.4 and 3.5.3.6,

and the manual implementation confirmed the analysis. The

manual implementation results are documented in Sections

4.2.4 and 4.3.4.

5.2 Conclusions and Recommendations
Regardless of the IDAS shortcomings, the design of the

simple CPU was successful. The design simulates well

through a VHDL system and may be useful in a course on VHDL

or as an example system for future research. Since the VHDL

code for the simple CPU runs in a VHDL system, a future

researcher need not repeat this work, saving many hours of

development effort.

When the IDAS failed to accept the simple CPU, a limi-

tation of the tool was manifested. This revelation alerted

5.6

the holders of the tool that portions of it need further

attention. They can now work with the vendor to have the

tool completed. Unfortunately, this was not possible during

this thesis effort.

The results of domain analysis provided a good founda-

tion for understanding the parts of a translator system and

how they interact. The techniques described in this thesis

can be used to perform a domain analysis on other systems.

Specifically, anyone beginning a research effort on transla-

tion systems need not repeat this work.

Modern Structured Analysis provided an appropriate

means for defining the Style-V translator. This research

adopted the view that translating languages is a functional

problem; therefore, a functional approach to the analysis

and design of the system was appropriate. The data flow

diagrams and data dictionary techniques used for defining

Style-V provide a good level of detail to facilitate further

design. The techniques used for Style-V are equally ap-

plicable to like tasks. Future research efforts should

consider using these same techniques.

CASE statement to IF statement conversion proved to be

relatively simple to accomplish. Since only local knowledge

was required to perform the translation (from the CASE

keyword to the END CASE phrase), complex data structures and

file manipulation was not required. In fact, only a single

pass over a file was required to perform CASE statement to

5.7

IF statement conversion. The methods used during the manual

and actual implementations of CASE statement conversion

would be appropriate for other "single-pass" type problems.

For architecture conversion, use of data structures is

required to successfully perform architecture conversion.

For this effort, linked lists would suffice since a small

number of elements would be in any one list. Adding items

to the linked list requires order one time. Since all items

in a list are usually used at the same time, it would take

order n time to retrieve all n items. Researchers should

study their problems and select the best data structures for

solving them.

Once the use of bit logic for multilevel logic was

determined, conversion of declarations and constants was

relatively simple -- it was basically a textual substitution

process. However, the conversion of functions (including

procedures) was quite a different matter. The logic of

internal loops had to be changed to properly manipulate the

multiple bit representations of single logical bits. There-

fore, loop indexes, assignment statement logic, and addition

of "skipthistime" logic was necessary. Also, type con-

flicts on previously compatible overloaded functions were

possible. These problems were difficult to solve by hand

and a full implementation of type conversion will require a

great deal of further analysis and design. This task alone

might warrant a future thesis effort.

5.8

The most difficult task of the Style-V was the mapping

of user defined procedures into IDAS provided procedures.

For cases when the functionality of each procedure is known

and a combination of IDAS procedures (possibly one) can

perform the user defined procedure's functionality, the

mapping is possible. However, since the IDAS procedures are

limited, it is not possible to map all possible procedures

to the IDAS procedures. This thesis provided one example of

a procedure which could not map to IDAS procedures.

In general, the automated mapping of procedures is a

"hard" task. This thesis has shown that exhaustive testing

is not a realistic answer to proving two procedures are

functionally equivalent. With some risk, equivalence class-

es could reduce the number of tests required to ascertain if

two procedures are functionally "equal" to one another.

However, a program which would take two procedures with

unrestricted numbers and types of parameters as input, which

would produce meaningful test data, and which would deter-

mine if the procedures are equal is also a "hard" task.

These tasks may be good thesis topics for those in the

Artificial Intelligence specialty.

5.3 Epilogue
The restrictions of the IDAS were numerous. Other

tools may force less serious restrictions. For those tools,

the methods described in this thesis may prove sufficient.

5.9

Appendix A. Hayes CPU VHDL Design

This appendix contains the VHDL code representing the

design of the simple CPU described by Hayes (Hayes,

1988:315). The design represented a simple model coded in

the style of VHDL required by the JRS IDAS tool. Besides

showing the potential for using JRS styled VHDL to create a

design, this code may be useful for a course on VHDL.

Future research efforts on VHDL translation may take advan-

tage of this code and save many hours of development effort.

Code Unit Page

Accumulator A.2

Address Register A.5

Arithmetic Logic Unit A.7

Clock A.10

Control Unit A.12

CPU A.15

Data Bus A.21

Data Register A.24

Instruction Register A.26

Machine Declarations A.28

Main Memory A.29

Memory Loader Package A.31

Program Counter A.33

Test Bench A.35

A.1

-- HAYES' CPU -- MODELED PROCEDURALLY IN VHDL

-- FILE: AC.VHD (ACCUMULATOR COMPONENT)

-- AFFECTS:

-- BY: DR.VHD (DATA REGISTER COMPONENT)

-- ALU.VHD (ARITHMETIC LOGIC UNIT COMPONENT)
- - CU.VHD (CONTROL SIGNALS)

-- CLOCK.VHD (CLOCK)

-- ON: ALU.VHD (ARITHMETIC LOGIC UNIT COMPONENT)

-- DR.VHD (DATA REGISTER COMPONENT)

-- PURPOSE: MODEL OF THE ACCUMULATOR OF THE SIMPLE CPU

-- DESCRIBED BY (HAYES 1988:315). THIS MODEL

- - COMBINED WITH MODELS OF THE OTHER COMPONENTS OF
-- HAYES' SIMPLE CPU WAS USED AS A TEST CASE FOR

-- USING THE JRS IDAS TO AUTOMATICALLY GENERATE MICRO-
- - CODE FOR THE DESIGNED HARDWARE.

-- AUTHOR: CAPT DENNIS A. RUMBLEY

- - AFIT/ENG

-- VERSION: 5

-- DATE: 4 SEP 91 (Ver 4)

-- 14 OCT 91 (Ver 5) Moved delay from behavioral IF stmts

and eliminated wire delay.

library UTIL;
use UTIL.DATATYPES.all;

use UTIL.BEHAVIORS;

use UTIL.BEHAVIORS.all;

entity ACCUMULATOR is

generic (REG-DELAY : time :- 5 ns ;
BUSDELAY : time :- 1 ns ;
WIREDELAY : time :- 1 ns ;
ALU DELAY : time :-7 ns) ;

port(DATAFMBUS : in DATAVECTOR(15 downto 0) ;
DATAFMALU : in DATAVECTOR(15 downto 0) ;
DATATOALU : out DATAVECTOR(15 downto 0) ;
DATATOBUS : out DATAVECTOR(15 downto 0) ;

C12 : in CONTROL
C6 : in CONTROL
C5 in CONTROL

C2 : in CONTROL
Cl : in CONTROL

CO : in CONTROL

A.2

CLK in CLOCK);

end ACCUMULATOR;

architecture BEHAVIOR of ACCUMULATOR is

begin -- architecture ACCUMULATOR(BEHAVIOR)

process
variable ACCONTENTS : datavector(15 downto 0);

begin

wait until CLK - 'i';

if C6 - 'I' then wait for REGDELAY + BUSDELAY;

end if;

if (CO - '1' or Cl - '1' or C2 - '1') then

behaviors.READ REGISTER
(reg -> AC CONTENTS

out_port -> ACCONTENTS

name -> "ACtoALU");

DATA TO ALU <- transport ACCONTENTS after REGDELAY;
--wait for REG-DELAY + WIREDELAY + BUSDELAY + WIRE DELAY

-- + ALUDELAY + WIREDELAY ;

wait for ALUDELAY + REGDELAY + BUSDELAY;

behaviors.WRITEREGISTER
(inport -> DATAFMALU

reg -> AC CONTENTS

name -> "ALUtoAC");

DATATOALU <- transport ACCONTENTS after REGDELAY;

end if;

if C5 - '1' then

behaviors.READ REGISTER
(reg -, AC CONTENTS

out port -> ACCONTENTS

name -> "ACtoDR");

DATATOBUS <- transport ACCONTENTS after REGDELAY;
elsif CLK - '1' and C5 - '0' then

DATATOBUS <- transport b"0000000000000000";
end if;

if C6 - '1' then
--wait for REG DELAY + WIREDELAY + BUSDELAY + WIREDELAY;

behaviors.WRITEREGISTER
(in_port -> DATAFMBUS
reg -> AC CONTENTS

name -> "ACfromDR");

DATATOALU <- transport ACCONTENTS after REGDELAY;
end if;

A.3

if CLK - 'I' and C12 II'I then
behaviors.SHIFTRIGHTLOGICAL_1

(in-port ->ACCONTENTS

out-Port ->ACCONTENTS

name -> "RSHIFTACFMALU")
DATATOALU <- transport ACCONTENTS after REGDELAY;

end if;

end process;

end BEHAVIOR;

A.4

-- HAYES' CPU -- MODELED PROCEDURALLY IN VHDL
...

-- FILE: AR.VHD (ADDRESS REGISTER COMPONENT)

-- AFFECTS:

-- BY: DR.VHD (DATA REGISTER COMPONENT)

-- PC.VHD (PROGRAM COUNTER COMPONENT)

-- CU.VHD (CONTROL SIGNALS)

-- CLOCK.VHD (CLOCK)

-- ON: MEMORY.VHD (MAIN MEMORY COMPONENT)

-- PURPOSE: MODEL OF THE ADDRESS REGISTER OF THE SIMPLE CPU
-- DESCRIBED BY (HAYES 1988:315). THIS MODEL
- - COMBINED WITH MODELS OF THE OTHER COMPONENTS OF
- - HAYES' SIMPLE CPU WAS USED AS A TEST CASE FOR

- - USING THE JRS IDAS TO AUTOMATICALLY GENERATE MICRO-

- - CODE FOR THE DESIGNED HARDWARE.

-- AUTHOR: CAPT DENNIS A. RUMBLEY
- - AFIT/ENG

- VERSION: 5

-- DATE: 4 SEP 91 (Ver 4)

-- 15 Oct 91 (Ver 5) Removed wire delay. Moved wait out
-- of behavioral IF statements. Incorporated delay

-- in signal assignment statements. Moved CLK test
-- to WAIT statement and removed it from the IFs.

library UTIL;

use UTIL.DATATYPES.all;
use JTIL.BEHAVIORS;

use UTIL.BEHAVIORS.alI;

entity ADDRESSREGISTER is

generic (REG-DELAY : time :- 5 ns;
BUSDELAY : time : 1 ns);

port(ADDR FM BUS : in DATAVECTOR(15 downto 0)
ADDRTOMEM : out ADDRESSVECTOR(15 downto 0)
CI0 : in CONTROL
C7 : in CONTROL

C4 : in CONTROL
C3 : in CONTROL
CLK : in CLOCK)

end ADDRESSREGISTER;

A.5

architecture BEHAVIOR of ADDRESSREGISTER is

begin -- architecture ADDRESSREG(BEHAVIOR)

process
variable ARCONTENTS address vector(15 downto 0)

begin
wait until CLK - '1';
wait for REG-DELAY + BUSDELAY

if C7 - '1' or C10 - '1' then
behaviors.WRITEREGISTER

(inport -> ADDR FMBUS

reg -> AR CONTENTS I

name -> "ADDR FM BUS");

ARCONTENTS :- AR CONTENTS and b"0001111111111111";

end if;

ADDRTOMEM <- transport ARCONTENTS;

end process;

end BEHAVIOR;

A.6

-- HAYES' CPU -- MODELED PROCEDURALLY IN VHDL

-- FILE: ALU.VHD (ARITHMETIC LOGIC UNIT COMPONENT)

-- AFFECTS:

-- BY: AC.VHD (ACCUMULATOR COMPONENT)

- - DR.VHD (DATA REGISTER COMPONENT)

-- CU.VHD (CONTROL SIGNALS)

-- CLOCK.VHD (CLOCK)

-- ON: AC.VHD (ACCUMULATOR COMPONENT)

-- SR.VHD (STkTUS REGISTER COMPONENT)

-- PURPOSE: MODEL OF THE ARITHMETIC LOGIC UNIT OF THE SIMPLE
-- CPU DESCRIBED BY (HAYES 1988:315). THIS MODEL

- - COMBINED WITH MODELS OF THE OTHER COMPONENTS OF
-- HAYES' SIMPLE CPU WAS USED AS A TEST CASE FOR
- - USING THE JRS IDAS TO AUTOMATICALLY GENERATE MICRO-
- - CODE FOR THE DESIGNED HARDWARE.

-- AUTHOR: CAPT DENNIS A. RUMBLEY
-- AFIT/ENG

-- VERSION: 5

-- DATE: 4 SEP 91 (Ver 4)

-- 15 OCT 91 (Ver 5) Eliminated wire delay. Moved test
-- for CLK - 'Il to WAIT statement from IF.

-- Moved wait from behavioral IF statements.
---.-.---------------

library UTIL;
use UTIL.DATATYPES.all;

use UTIL.BEHAVIORS;
use UTIL.BEHAVIORS.alI;

entity ARITHMETIC LOGIC UNIT is

generic (REG DELAY : time := 5 ns ;
BUSDELAY : time :- 1 ns ;

ALUDELAY : time :- 7 ns ;

CLKPERIOD : time : 100 ns
port' DATA FM AC in DATAVECTOR(15 downto 0) ;

DATAFMBUS : in DATAVECTOR(15 downto Cj ;
DATATOAC : out DATAVECTOR(15 downto 0)
ZEROSTAT : out STATUS
C2 : in CONTROL

Cl : in CONTROL

CO : in CONTROL

A.7

CLK in CLOCK

end ARITHMETICLOGICUNIT;

architecture BEHAVIOR of ARITHMETICLOGICUNIT is

begin -- architecture ARITHMETICLOGICUNIT(BEHAVIOR)

process

variable ADD16_RESULT datavector(15 downto 0);
variable ADD16_STATUS statustype;

variable AND16_RESULT datavector(15 downto 0);

variable AND16_STATUS status-type;
variable NOT16_RESULT data vector(15 downto 0);

variable NOT16_STATUS status-type;
variable IDLERESULT datavector(15 downto 0);
variable IDLESTATUS statustype;

begin

wait until CLK = '1';

wait for REG-DELAY + BUSDELAY;

if CO = 'I' then
-- "add" behavior
behaviors.ADD

(in_portl - DATA FM AC,
inport2 -> DATAFMBUS,

outport => ADD16_RESULT,
status - ADD16_STATUS,

name -> "ADD16");
DATATOAC <= transport ADD16_RESULT after ALUDELAY;

if ADD16_STATUS(zero) = one then

ZEROSTAT <= transport 'i' after ALUDELAY;
else

ZEROSTAT <- transport '0, after ALUDELAY;
end if;

end if;

if Cl = 'I' then
-- "and" behavior
behaviors.LOGICALAND

(inportl => DATk FM AC,

inport2 -> DATA FM BUS,
out_port => AND16_RESULT,

status -> AND16 STATUS,

name -> "AND16");

DATATOAC <- transport AND16_RESULT after ALUDELAY;

if ANDI6_STATUS(zero) - one then

ZEROSTAT <- transport 'I' after ALUDELAY;
else

ZEROSTAT <- transport '0, after ALUDELAY;

A.8

end if;

end if;

if C2 - 'I' then
-- "comp" behavior

behaviors.LOGICALNOT

(in_port -> DATA FM AC,
out-port -> NOT16_RESULT,

status -> NOT16 STATUS,

name - "NOT16");

DATA TO AC <- transport NOT16 RESULT after ALUDELAY;

if NOT16_STATUS(zero) - one then

ZEROSTAT <- transport 'I' after ALUDELAY;

else
ZEROSTAT <- transport '0' after ALU_DELAY;

end if;

end if;

if not (CO = 'I' or Cl - 'I' or C2 - 'i') then

-- idle state "behavior"

behaviors.MOVE
(inport -> DATA FM AC,

outport -> IDLERESULT,

status => IDLE STATUS,

name -> "ALU IDLE");

DATATOAC <- transport IDLERESULT after ALUDELAY;

if IDLESTATUS(zero) - one then

ZEROSTAT <- transport 'I' after ALUDELAY;

else
ZEROSTAT <- transport '0' after ALUDELAY;

end if;

end if;

end process;

end BEHAVIOR;

A.9

-- HAYES' CPU -- MODELED PROCEDURALLY IN VHDL

-- FILE: CLOCK.VHD (CLOCK COMPONENT)

-- AFFECTS:

-- BY: none

-- ON: AC.VHD (ACCUMULATOR COMPONENT)

-- ALU.VHD (ARITHMETIC LOGIC UNIT COMPONENT)

-- AR.VHD (ADDRESS REGISTER COMPONENT)

-- CU.VHD (CONTROL UNIT COMPONENT)

-- DR.VHD (DATA REGISTER COMPONENT)

-- IR.VHD (INSTRUCTION REGISTER COMPONENT)

-- PC.VHD (PROGRAM COUNTER COMPONENT)

-- MEMORY.VHD (MEMORY COMPONENT)

-- PURPOSE: MODEL OF THE SYSTEM CLOCK OF THE SIMPLE CPU

-- DESCRIBED BY (HAYES 1988:315). THIS MODEL

-- COMBINED WITH MODELS OF THE OTHER COMPONENTS OF
-- HAYES' SIMPLE CPU WAS USED AS A TEST CASE FOR

-- USING THE JRS IDAS TO AUTOMATICALLY GENERATE MICRO-

- - CODE FOR THE DESIGNED HARDWARE.

-- AUTHOR: CAPT DENNIS A. RUMBLEY

-- AFIT/ENG

-- DATE: 24 JULY 1991

library Util;

use Util.DATATYPES.all;
use Util.BEHAVIORS, Util.BEHAVIORS.all;

entity sys clock is

port
(ck : in clock;
sysclk : out clock);

end sys clock;

architecture BEHAVIOR of SYS-CLOCK is
begin

process
VARIABLE phaseOout_pulse : clock;
VARIABLE reset ck outpulse : clock;

begin
wait on ck;

if ck - '1' then

BEHAVIORS.pulse

(system-clock -> ck,

A.10

outypulse - phaseO -out_pulse,
Name -> "phaseO");

syscik <- transport phaseO-outpulse after 0 ns;
end if;
if ck - '0' then
BEHAVIORS .pulse

(system-clock -> ck,
out pulse => reset-ck-outpulse,
Name - "reset ck");

sysclk <- transport reset-ck-out_pulse after 0 ns;
end if;

end process;
end BEHAVIOR;

-- HAYES' CPU -- MODELED PROCEDURALLY IN VHDL

-- FILE: CU.VHD (CONTROL UNIT COMPONENT)

-- AFFECTS:

- - BY: IR.VHD (INSTRUCTION REGISTER COMPONENT)

- - SR.VHD (STATUS REGISTER COMPONENT)

-- CLOCK.VHD (CLOCK)

-- ON: CU.VHD (CONTROL SIGNALS)

-- PURPOSE: MODEL OF THE CONTROL UNIT OF THE SIMPLE CPU

-- DESCRIBED BY (HAYES 1988:315). THIS MODEL

- - COMBINED WITH MODELS OF THE OTHER COMPONENTS OF
-- HAYES' SIMPLE CPU WAS USED AS A TEST CASE FOR

-- USING THE JRS IDAS TO AUTOMATICALLY GENERATE MICRO-

-- CODE FOR THE DESIGNED HARDWARE.

-- AUTHOR: CAPT DENNIS A. RUMBLEY

-- AFIT/ENG

-- VERSION: 5

-- DATE: 4 SEP 91 (Ver 4)

-- 15 Oct 91 (Ver 5) Removed redundant CLK test from IFs.

library UTIL;

use UTIL.DATATYPES.all;

entity CONTROLUNIT is

generic (CUDELAY : time :- 15 ns

port(CUINSTR : in DATAVECTOR(15 downto 0)
ZSTAT_ IN : in STATUS ;

CONTRO,.S : out CONTROLVECTOR(12 downto 0)

CLK : in CLOCK)

end CONTROLUNIT ;

architecture BEHAVIOR of CONTROLUNIT is

begin -- architecture CONTROLUNIT(BEHAVIOR)

process
begin

wait until CLK - '0'-

A.12

-- PROCESS FETCH CYCLE

-- Process AR <- PC

CONTROLS <- transport b"0010000000000" after CU_DELAY;
wait until CLK'event and CLK = '0';
-- Process READ M

CONTROLS <- transport b"0000000001000" after CU_DELAY;
wait until CLK'event and CLK - '0';
-- Pr-cess PC <- PC + 1 and IR <- DR(OP)

CONTROLS <- transport b"0101000000000" after CUDELAY;
wait until CLK'event and CLK - '0';

-------------------------------------.-----...-----------

-- PROCESS EXECUTE CYCLE

-- Process LOAD Instruction

if CUINSTR(15 downto 13) - b"000" then

-- Process AR <- DR(ADR)

CONTROLS <- transport b"0000010000000" after CUDELAY;
wait until CLK'event and CLK - '0';
-- Process READ M

CONTROLS <- transport b"0000000001000" after CUDELAY;
wait until CLK'event and CLK - '0';

-- Process AC <- DR

CONTROLS <- transport b"0000001000000" after CU_DELAY;
end if;

--Process STORE Instruction

if rUINSTR(15 downto 13) - b"001" then

-- Process AR <- DR(ADR)

CONTROLS <- transport b"0000010000000" after CUDELAY;

wait until CLK'event and CLK - '0';

-- Process DR <- AC

CONTROLS <- transport b"0000000100000" after CUDELAY;
wait until CLK'event and CLK - '0';

-- Process WRITE M

CONTROLS <- transport b"0000000010000" after CU_DELAY;
end if;

-- Process ADD Instruction

if CUINSTR(15 downto 13) = b"010" then
-- Process AR <- DR(ADR)

CONTROLS <- transport b"0000010000000" after CUDELAY;
wait until CLK'event and CLK - '0';
-- Process READ M

CONTROLS <- transport b"0000000001000" after CUDELAY;
wait until CLK'event and CLK - '0';

-- Process AC <- AC + DR

CONTROLS <- transport b"OC0OOOOO00001" after CUDELAY;

A. 13

end if;

-- Process AND Instruction
if CUINSTR(15 downto 13) - b"011" then

-- Process AR <- DR(ADR)

CONTROLS <- transport b"0000010000000" after CUDELAY;
wait until CLK'event and CLK - '0';

-- Process READ M

CONTROLS <- transport b"0000000001000" after CUDELAY;

wait until CLK'event and CLK - '0';
-- Process AC <- AC /\ DR

CONTROLS <- transport b"0000000000010";

end if;

-- Process JUMP Instruction

if CUINSTR(15 downto 13) - b"100" then

CONTROLS <- transport b"0000100000000" after CUDELAY;
end if;

-- Process JUMPZ Instruction
if CUINSTR(15 downto 13) - b"101" and ZSTATIN - '1' then

CONTROLS <- transport b"0000100000000" after CUDELAY;
end if;

-- Process COMP Instruction
if CUINSTR(15 downto 13) - b"ll0" then

CONTROLS <- transport b"0000000000100" after CUDELAY;
end if;

-- Process RSHIFT Instruction

if CUINSTR(15 downto 13) - b"111" then

CONTROLS <= transport b"1000000000000" after CUDELAY;
end if;

end process;

end BEHAVIOR;

A. 14

-- HAYES' SIMPLE CPU INSTANTIATED ARCHITECTURE
..

-- FILE: CPU588_5.VHD (588 CPU INSTANTIATED ARCHITECTURE)

-- AFFECTS: COMPLETE HAYES' SIMPLE CPU (ALL COMPONENTS)

-- PURPOSE: PROVIDE A MECHANISM TO DEFINE THE SIGNALS AND
- - COMPONENTS EXISTING IN THE SIMPLE CPU DESIGN. THIS
- - ARCHITECTURE WAS USED TO DESCRIBE THE HAYES' SIMPLE CPU
-- (HAYES 1988:315).

-- AUTHOR: CAPT DENNIS A. RUMBLEY

- - AFIT/ENG

-- VERSION: 5

-- DATE: 24 Sep 91

-- revised 13 Oct 91 to use library HAYESCPU instead
- - of library PROC588.

-- 15 Oct 91 (Ver 5) Created a new higher level test bench.
...

library UTIL;
library HAYESVER5;
use UTIL.DATATYPES.all;

use UTIL.BEHAVIORS;

use UTIL.BEHAVIORS.all;

use HAYESVER5.MACHINEDECLARATIONS.all;

entity CPU588 is
port (SYS CLK : in CLOCK);

end CPU588;

architecture BEHAVIOR of CPU588 is

-- SIGNAL DECLARATIONS

signal CTRLBUS : CONTROLVECTOR(12 downto 0)
signal ALUsigAC : DATAVECTOR(15 downto 0) ;
signal ACsigALU : DATAVECTOR(15 downto 0) ;
signal ACsigBUS : DATA VECTOR(15 downto 0) ;
signal DRsigBUS : DATAVECTOR(15 downto 0) ;
signal MEMsigBUS : DATA VECTOR(15 downto 0) ;
signal PCsigBUS : ADDRESSVECTOR(15 downto 0) ;
signal BUSsig : DATAVECTOR(15 downto 0) ;
signal ARsigMEM : ADDRESSVECTOR(15 downto 0) ;
signal IRsigCU : ADDRESSVECTOR(15 downto 0) ;

A.15

signal CLOCKsig : CLOCK ;
signal CLKpulseIN : CLOCK ;
signal STATUSsig : STATUS

-- COMPONENT DECLARATIONS

component ACCUMULATOR
port (DATAFMBUS : in DATAVECTOR(15 downto 0) ;

DATAFMALU : in DATAVECTOR(15 downto 0) ;
DATATOALU : out DATAVECTOR(15 downto 0) ;

DATA TOBUS : out DATAVECTOR(15 downto 0) ;

C12 : in CONTROL
C6 : in CONTROL
C5 : in CONTROL

C2 : in CONTROL

Cl : in CONTROL
CO : in CONTROL

CLK : in CLOCK);
end component;

for all: ACCUMULATOR use entity
hayes-ver5.ACCUMULATOR(BEHAVIOR);

component ARITHMETIC LOGIC UNIT

port (DATAFMAC : in DATAVECTOR(15 downto 0) ;
DATAFMBUS : in DATAVECTOR(15 downto 0) ;

DATATOAC : out DATAVECTOR(15 downto 0)
ZEROSTAT : out STATUS
C2 : in CONTROL
Cl : in CONTROL
CO : in CONTROL
CLK : in CLOCK);

end component;

for all: ARITHMETICLOGICUNIT use entity
hayesver5.ARITHMETICLOGICUNIT(BEHAVIOR);

component ADDRESSREGISTER

port (ADDRFMBUS : in DATAVECTOR(15 downto 0)
ADDRTOMEM : out ADDRESSVECTOR(15 downto 0)
CIO : in CONTROL
C7 : in CONTROL

C4 : in CONTROL
C3 in CONTROL
CLK : in CLOCK);

end component;

for all: ADDRESSREGISTER use entity
hayesver5.ADDRESSREGISTER(BEHAVIOR);

A.16

component SYS-CLOCK

port (CK in CLOCK

SYSCLK : out CLOCK);
end component;

for all: SYSCLOCK use entity hayesver5.SYSCLOCK(BEHAVIOR);

component CONTROLUNIT
port (CU_INSTR : in ADDRESSVECTOR(15 downto 0)

ZSTATIN : in STATUS ;

CONTROLS : out CONTROLVECTOR(12 downto 0)
CLK : in CLOCK);

end component;

for all: CONTROLUNIT use entity

hayesver5.CONTROLUNIT(BEHAVIOR);

component DATABUS
port (DATA FM AC : in DATAVECTOR(15 downto 0) ;

DATAFM DR : in DATA VECTOR(15 downto 0) ;

DATAFMMEM : in DATAVECTOR(15 downto 0) ;

ADDRFMPC : in ADDRESS VECTOR(15 downto 0)
DATATOAC : out DATAVECTOR(15 downto 0) ;
DATATOALU out DATAVECTOR(15 downto 0) ;
DATATOAR : out DATAVECTOR(15 downto 0) ;
DATATODR : out DATAVECTOR(15 downto 0) ;
DATA TOIR : out DATAVECTOR(15 downto 0) ;

DATATOMEM : out DATAVECTOR(15 downto 0) ;
DATATOPC : out DATAVECTOR(15 downto 0) ;

CONTROLS : in CONTROLVECTOR(12 downto 0)
CLK : in CLOCK)

end component;

for all: DATABUS use entity hayes-ver5.DATABUS(BEHAVIOR);

component DATAREGISTER
port (DATA FMBUS : in DATAVECTOR(15 downto 0)

DATATOBUS : out DATA VECTOR(15 downto 0)
CIlI : in CONTROL

C8 : in CONTROL

C7 : in CONTROL

C6 : in CONTROL
C5 in CONTROL
C4 : in CONTROL
C3 : in CONTROL

Cl : in CONTROL
CO : in CONTROL

CLK : in CLOCK);
end component;

for all: DATAREGISTER use entity

A. 17

hayesver5.DATAREGISTER(BEHAVIOR);

component INSTRUCTIONREGISTER

port (DATAFMBUS : in DATAVECTOR(15 downto 0)

INSTTOCU out ADDRESSVECTOR(15 downto 0)
CIlI in CONTROL

CLK : in CLOCK);

end component;

for all: INSTRUCTIONREGISTER use entity

hayesver5.INSTRUCTIONREGISTER(BEHAVIOR);

component MAINMEMORY

port (DATAFMBUS : in DATAVECTOR(15 downto 0)

DATATOBUS : out DATAVECTOR(15 downto 0)
ADDRFM AR : in ADDRESSVECTOR(15 downto 0)

C4 : in CONTROL

C3 : in CONTROL

CLK : in CLOCK);
end component;

for all: MAINMEMORY use entity

hayesver5.MAINMEMORY(BEHAVIOR);

component PROGRAMCOUNTER

port (DATA FMBUS : in DATAVECTOR(15 downto 0)

ADDRTOBUS : out ADDRESSVECTOR(15 downto 0)

CIO : in CONTROL
C9 : in CONTROL

C8 : in CONTROL

CLK : in CLOCK);
end component;

for all: PROGRAMCOUNTER use entity

hayesver5.P RAMCOUNTER(BEHAVIOR);

begin -- architecture CPU588(BEHAVIOR)

-- COMPONENT CONFIGURATIONS

AC_588: ACCUMULATOR

port map (

DATAFMBUS -> BUSsig,
DATAFMALU -> ALUsigAC ,

DATATOALU -> ACsigALU ,

DATATOBUS -> ACsigBUS ,

C12 -> CTRLBUS(12)
C6 -> CTRLBUS(6) ,

A.18

C5S- CTRLBUS(5),

C2 ->CTRLBUS(2),

Cl ->CTRLBUS(l),

CO - CTRLBUS(O),

CLK ->CLOCKsig);

ALU_588: ARITHMETICLOGICUNIT
port map(

DATAPMAC ->ACsigALU,

DATAFMBUS ->BUSsigl

DATATOAC ->ALUsigAC,

ZEROSTAT ->STATUSsig,

C2 ->CTRL_-BUS(2)

Cl ->CTRLBUS(l)

CO ->CTRLBUS(O)

CLI(K CLOCKsig)

AR_588: ADDRESSREGISTER

port map(
ADDRPMBUS - BUSsig
ADDRTOMEM - ARsigMEM

CIO ->CTRL -BUS(10)

C7 ->CTRLBUS(7),

C4 ->CTRLBUS(4),

C3 ->CTRL_-BUS(3),

CLK >CLOCKsig)

CLK_588: SYS-CLOCK
port map(

CK -> CLKpulseIN

SYSCLK - CLOCKsig)

CU_588: CONTROLUNIT
port map(

CUINSTR - IRsigCU
ZSTATIN - STATUSsig

CONTROLS - CTRLBUS
CLK - CLOCKsig)

DB_588: DATABUS

port map(
DATAFMAC - ACsigBUS,
DATAFMDR - DRsigBUS,
DATAFMMEM ->MEMsigBUS

ADDRFMPC ->PCsigBUS

DATATOAC ->BUSsig,

DATATOALU ->BUSsig

DATATOAR ->BUSsig,

DATATODR ->BUSsig,

DATATOIR ->BUSsig,

DATATOMEM ->BUSsig

DATATOPC ->BUSsig,

A. 19

CONTROLS -> CTRLBUS,

CLK -> CLOCKsig

DR_588: DATAREGISTER
port map

DATAFMBUS ->BUSsig

DATATOBUS ->DRsigBUS

Cli - CTRL_-BUS(11)

C8 ->CTRLBUS(8),

C7 ->CTRLBUS(7),

C6 ->CTRLBUS(6) ,

CS =>CTRLBUS(5),

C4 ->CTRLBUS(4),

C3 ->CTRLBUS(3),

Cl ->CTRLBUS(1),

CO ->CTRLBUS(O),

CLX - CLOCKsig);

IR_588: INSTRUCTIONREGISTER
port map

DATAFMBUS ->BUSsig,

INSTTOCU ->IRsigCU,

Cli - CTRL_-BUS(ll)

CLX - CLOCKsig)

MEMORY_588: MAINMEMORY
port map(

DATAFMBUS -~BUSsig

DATATOBUS ->MEMsigBUS

ADDRFMAR ->ARsigMEM

C4 ->CTRLBUS(4),

C3 ->CTRLBUS(3),

CLK 'CLOCKsig)

PC_588: PROGRAMCOUNTER
port map(

DATAFMBUS ->BUSsig

ADDRTOBUS ->PCsigBUS

C10- CTRLBUS(1O)
C9 ->CTRLBUS(9),

C8 ->CTRLBUS(8),

CLK ->CLOCKsig)

process

begin
wait on SYS CLK;

CLKpulseIN <- transport SYSCLK;
end process;

end BEHAVIOR;

A.20

-- HAYES' CPU -- MODELED PROCEDURALLY IN VHDL
...

-- FILE: DB.VHD (DATA BUS COMPONENT)

-- AFFECTS:

-- BY: all components (except Control Unit, CU.VHD)

-- ON: all components (except Control Unit, CU.VHD)

-- PURPOSE: MODEL OF THE DATA BUS COMPONENT OF THE SIMPLE CPU

-- DESCRIBED BY (HAYES 1988:315). THIS MODEL

-- COMBINED WITH MODELS OF THE CTHER COMPONENTS OF

- - HAYES' SIMPLE CPU WAS USED AS A TEST CASE FOR

-- USINC THE JRS IDAS TO AUTOMATICALLY GENERATE MICRO-

-- CODE FOR THE DESIGNED HARDWARE.

-- AUTHOR: CAPT DENNIS A. RUMBLEY

-- AFIT/ENG

-- VERSION: 5

-- DATE: 4 SEP 91 (Ver 4)

-- 14 OCT 91 (Ver 5) Moved wait out of behavioral IF

statements and put signal asgnmt

delay in sig asgnmt statements.
...

library UTIL;
use UTIL.DATATYPES.all;

use UTIL.BEHAVIORS;

use UTIL.BEHAVIORS.all;

entity DATABUS is

generic (REG DELAY : time := 5 ns;

BUSDELAY : time : 1 ns;

MEM DELAY : time :- 10 ns);

port(DATA FM AC : in DATAVECTOR(15 downto 0) ;

DATAFMDR : in DATAVECTOR(15 downLo 0) ;

DATAFMMEM: in DATAVECTOR(15 downto 0) ;

ADDRFMPC : in ADDRESSVECTOR(15 downto 0)

DATATOAC : out DATAVECTOR(15 downto 0) ;

DATATOALU : out DATAVECTOR(15 downto 0) ;

DATATOAR : out DATA VECTOR(15 downto 0) ;

DATATODR : out DATAVECTOR(15 downto 0) ;

DATATOIR : out DATA VECTOR(15 downto 0) ;

DATATOMEM: out DATAVECTOR(15 downto 0) ;

DATATOPC : out DATAVECTOR(15 downto 0) ;

CONTROLS : in CONTROLVECTOR(12 downto 0)

CLK in CLOCK) ;

A.21

end DATABUS;

architecture BEHAVIOR of DATABUS is

begin -- architecture DATABUS(BEHAVIOR)

process
variable DBCONTENTS DATA VECTOR(15 downto 0)

begin
wait until CLK - '1'

if CONTROLS(3) - '1' then --ver5

wait for MEMDELAY;
else wait for REG-DELAY;

end if;

if CONTROLS(0) = Ill or CONTROLS(l) = '1' or

CONTROLS(4) - Il' or CONTROLS(6) = '1' or

CONTROLS(7) = 'll or CONTROLS(8) - '1' or
CONTROLS(11) = '1' then

behaviors.MOVE(
in_port => DATA_-FM_-DR
out__port -> DB_-CONTENTS

name -> "DR bus-to ALU"

end if;

if CONTROLS(3) - 'll then

behaviors.MOVE(
inport -> DATA_-FM_-MEM
out_port -> DB_-CONTENTS
name -> "MEM to BUS"

end if;

if CONTROLS(5) =''then

behaviors .MOVE (i ot-DT MA

out-port -> DBCONTENTS

name - "AC to BUS"

end if;

if CONTROLS(lO) = '1' then
behaviors.MOVE(

in-port -> ADDRFMPC

out_port -> DBCONTENTS

name -> "PC to BUS"

end if;

A.22

DATA TO DR <= transport DBCONTENTS after BUS-DELAY;

DATATOAR <= transport DBCONTENTS after BUSDELAY;

DATATOAC <= transport DBCONTENTS after BUSDELAY;
DATATOIR <= transport DBCONTENTS after BUSDELAY;

DATATOPC <= transport DBCONTENTS after BUSDELAY;

DATATOALU <= transport DBCONTENTS after BUSDELAY;

DATA TO MEM <= transport DBCONTENTS after BUS-DELAY;

end process;

end BEHAVIOR;

A.23

-- HAYES' CPU -- MODELED PROCEDURALLY IN VHDL

-- FILE: DR.VHD (DATA REGISTER COMPONENT)

-- AFFECTS:

-- BY: AC.VHD (ACCUMULATOR COMPONENT)

-- MEMORY.VHD (MAIN MEMORY COMPONENT)

-- CU.VHD (CONTROL SIGNALS)

-- CLOCK.VHD (CLOCK)

-- ON: MEMORY.VHD (MAIN MEMORY COMPONENT)

-- AR.VHD (ADDRESS REGISTER COMPONENT)

-- PURPOSE: MODEL OF THE DATA REGISTER OF THE SIMPLE CPU
-- DESCRIBED BY (HAYES 1988:315). THIS MODEL

-- COMBINED WITH MODELS OF THE OTHER COMPONENTS OF
- - HAYES' SIMPLE CPU WAS USED AS A TEST CASE FOR

- - USING THE JRS IDAS TO AUTOMATICALLY GENERATE MICRO-

-- CODE FOR THE DESIGNED HARDWARE.

-- AUTHOR: CAPT DENNIS A. RUMBLEY

-- AFIT/ENG

-- VERSION: 5

-- DATE: 4 SEP 91 (Ver 4)

-- 15 OCT 91 (Ver 5) Deleted wire delay. Moved wait from
-- behavioral IFs. Moved test for CLK = '1'

-- from IFs to first WAIT statement.

library UTIL;

use UTIL.DATATYPES.all;

use UTIL.BEHAVIORS;
use UTIL.BEHAVIORS.all;

entity DATAREGISTER is

generic (REG DELAY : time : 5 ns;

BUSDELAY time := 1 ns;
MEMDELAY : time : 10 ns

port(DATAFMBUS : in DATAVECTOR(15 downto 0)

DATATOBUS : out DATAVECTOR(15 downto 0)
CIlI : in CONTROL
C8 : in CONTROL
C7 : in CONTROL

C6 : in CONTROL

C5 : in CONTROL
C4 in CONTROL

C3 : in CONTROL

A.24

C1 in CONTROL
Co in CONTROL
CLK :in CLOCK)

end DATAREGISTER;

architecture BEHAVIOR of DATAREGISTER is

begin -- architecture DATAREGISTER(BEHAVIOR)

process
variable DR CONTENTS : DATA VECTOR(15 downto 0);

begin

wait until CLK - '1';
if C3 - 'I' then wait for MEMDELAY + BUSDELAY;
elsif C5 - 'I' then wait for REG-DELAY + BUSDELAY;

end if;

if (CO -'1' or Cl - 'I' or C4 '1' or
C6 - 'I' or C7 - 'I' or C8 - 'I' or Cll - '1') then

behaviors.READ REGISTER
out-port -> DRCONTENTS

reg -> DR CONTENTS

name -> "DRtoBUS");
DATA TO BUS <- transport DR CONTENTS after REGDELAY;

elsif CLK - 'I' and not (CO = 'i' or Cl - 'I' or C4 - 'I' or
C6 - 'I' or C7 - 'I' or C8 - 'I' or ClI - '1') then

DATATOBUS <- transport b"0000000000000000"

after REGDELAY;
end if;

if C3 - 'I' then
behaviors.WRITE REGISTER

(reg -> DRCONTENTS
in-port -> DATAFMBUS

rame -> "DRgetsMEM");
end if;

if C5 - 'I' then
behaviors.WRITE REGISTER

(reg -> DR CONTENTS

inport -> DATAFMBUS
name -> "DRgetsAC")

end if;

end process;

end BEHAVIOR;

A.25

-- HAYES' CPU -- MODELED PROCEDURALLY IN VHDL
...

-- FILE: IR.VHD (INSTRUCTION REGISTER COMPONENT)

-- AFFECTS:

-- BY: DR.VHD (DATA REGISTER COMPONENT)

-- CU.VHD (CONTROL SIGNALS)

-- CLOCK.VHD (CLOCK)

-- ON: CU.VHD (CONTROL UNIT COMPONENT)

-- PURPOSE: MODEL OF THE INSTRUCTION REGISTER OF THE SIMPLE

-- CPU DESCRIBED BY (HAYES 1988:315). THIS MODEL

-- COMBINED WITH MODELS OF THE OTHER COMFONENTS OF
- - HAYES' SIMPLE CPU WAS USED AS A TEST CASE FOR

- - USING THE JRS IDAS TO AUTOMATICALLY GENERATE MICRO-

-- CODE FOR THE DESIGNED HARDWARE.

-- AUTHOR: CAPT DENNIS A. RUMBLEY

- - AFIT/ENG

-- VERSION: 5

-- DATE: 4 SEP 91 (Ver 4)

-- 15 OCT 91 (Ver 5) Moved test for CLK - 'I' to WAIT
-- statement from IF statement. Eliminated
-- wire delay. Moved wait out of behavioral

- - IF statement.

library UTIL;

use UTIL.DATA TYPES.all;

use UTIL.BEHAVIORS;

use UTIL.BEHAVIORS.all;

entity INSTRUCTION REGISTER is

generic (REG DELAY : time :- 5 ns;

BUSDELAY : time : 1 ns);

port(DATAFMBUS : in DATAVECTOR(15 downto 0)

INSTTOCU : out ADDRESS VECTOR(15 downto 0)
C1l : in CONTROL
CLK : in CLOCK)

end INSTRUCTIONREGISTER;

architecture BEHAVIOR of INSTRUCTION-REGISTER is

A.26

begin - - architecture INSTRUCTIONPREGISTER(BEHAVIOR)

process
variable IRCONTENTS :DATAVECTOR(15 downto 0);

begin
wait until CLK - 1';

wait for REG-DELAY + BUSDELAY;

if Cli - '1' then

behaviors .WRITEREGISTER
(inport -> DATA_-FM_-BUS
reg => IRCONTENTS

name ->"IRgetsDR")
behaviors.READREGISTER

(reg - IRCONTENTS

out-Port -> IRCONTENTS

name -> "CUgetsIR");

INSTTOCU <= transport IR-CONTENTS after REGDELAY;
else INSTTOCU <= transport b"0000000000000000";

end if;

end process;

end BEHAVIOR;

A.27

- - MACHINE DECLARATIONS FOR HAYES' CPU
..

-- FILE: MACHDECL.VHD (MACHINE DECLARATION PACKAGE)

-- AFFECTS:

-- BY: none

-- ON: AC.VHD (ACCUMULATOR COMPONENT)

-- ALU.VHD (ARITHMETIC LOGIC UNIT COMPONENT)

-- AR.VHD (ADDRESS REGISTER COMPONENT)
- - DR.VHD (DATA REGISTER COMPONENT)

-- IR.VHD (INSTRUCTION REGISTER COMPONENT)

-- MEMORY.VHD (MAIN MEMORY COMPONENT)

-- PC.VHD (PROGRAM COUNTER COMPONENT)

-- PURPOSE: SUPPLY THE MACHINE DEPENDENT TYPE DECLARATIONS AND
- - ANY RESOLUTION FUNCTIONS NEEDED FOR THE SIMPLE CPU
-- DESCRIBED BY (HAYES 1988:315). HAYES' SIMPLE CPU
-- WAS USED AS A TEST CASE FOR USING THE JRS IDAS TO
- - AUTOMATICALLY GENERATE MICROCODE FOR THE DESIGNED

- - HARDWARE.

AUTHOR: CAPT DENNIS A. RUMBLEY
-- AFIT/ENG

-- VERSION: 5

-- DATE: 24 SEP 91 (Ver 4)

- - 15 OCT 91 (Ver 5) Moved memory initialization function to a
-- separate package since Package Machine Declara-
- - tions only 1) defines a constant cyclelength,

-- 2) defines machine specific bit vectors, and
- - 3) defines bus subtypes and their resolution

-- functions.

library UTIL;

use UTIL.DATATYPES.all;

package MACHINEDECLARATIONS is

constant CLKPERIOD : time :1 100 ns;

type CONTROL_12_DOWNTO_0_VECTOR is
array(integer range <>) of CONTROLVECTOR(12 downto 0);

end MACHINEDECLARATIONS;

A.28

-- HAYES' CPU -- MODELED PROCEDURALLY IN VHDL

-- FILE: MEMORY5.VHD (MAIN MEMORY COMPONENT)

-- AFFECTS:

-- BY: DR.VHD (DATA REGISTER COMPONENT)

-- AR.VHD (ADDRESS REGISTER COMPONENT)

-- CU.VHD (CONTROL SIGNALS)

-- ON: DR.VHD (DATA REGISTER COMPONENT)

-- PURPOSE: MODEL OF THE MEMORY PORTION OF THE SIMPLE CPU
-- DESCRIBED BY (HAYES 1988:315). THIS MODEL

- - COMBINED WITH MODELS OF THE OTHER COMPONENTS OF
-- HAYES' SIMPLE CPU WAS USED AS A TEST CASE FOR
-- USING THE JRS IDAS TO AUTOMATICALLY GENERATE MICRO-

- - CODE FOR THE DESIGNED HARDWARE.

-- AUTHOR: CAPT DENNIS A. RUMBLEY
-- AFIT/ENG

-- VERSION: 5

-- DATE: 4 SEP 91 Version 4
-- revised 24 SEP 91 to use -brary HAYESCPU instead
-- of library PROCSj8.

-- 14 Oct 91 Version 5: Moved delay from behavioral IF
-- statements. Eliminated wire delay.

-- moved test for CLK = 'I' to WAIT from IF.

-- Changed working library from HAYESCPU to

-- HAYES VER5.

library UTIL;

use UTIL.DATATYPES.all;

use UTIL.BEHAVIORS;

use UTIL.BEHAVIORS.all;

use UTIL.ATTRIBUTE DECLARATIONS.all;

library HAYES_VER5;

use hayes ver5.MACHINEDECLARATIONS;

use hayes ver5.MACHINEDECLARATIONS.all;
use hayes ver5.MEMORYLOADER;

use hayes ver5.MEMORYLOADER.all;

entity MAIN MEMORY is

generic (REG-DELAY : time : 5 ns;

BUS DELAY : time :- 1 ns;

MEMDELAY : time :- 10 ns);

port(DATAFMBUS : in DATAVECTOR(15 downto 0)

DATATOBUS : out DATAVECTOR(15 downto 0)

A.29

ADDRFMAR in ADDRESS VECTOR(15 downto 0)

C4 : in CONTROL
C3 in CONTROL

CLK : in CLOCK);

attribute STARTINGADDRESS of MAINMEMORY: entity is 0
attribute ENDINGADDRESS of MAINMEMORY: entity is 8192

end MAINMEMORY;

architecture BEHAVIOR of MAINMEMORY is

begin -- architecture MAINMEMORY(BEHAVIOR)

process
variable TEMPMEM : data_15_downto_0_vector(8192 downto 0);
variable MEMSPACE : data 15_downto_0_vector(8192 downto 0)

:= LOADMEMORY(TEMPMEM);
variable MEMCONTENTS : datavector(15 downto 0)

begin
wait until CLK = 'i';

if C4 - 'i' then wait for REGDELAY + BUSDELAY;

end if;

if C3 - 'I' then
behaviors.READ

(memory -> MEMSPACE
address port -> ADDR FM AR

data_port -> MEMCONTENTS

name => "READmem");
DATA TOBUS <- transport MEMCONTENTS after MEMDELAY;

elsif C3 - '0' then
DATATOBUS <- transport b"0000000000000000"

end if;

if C4 - 'I' then
behaviors.WRITE

(memory -> MEMSPACE

address-port -> ADDR FM AR
dataport -> DATA FM BUS
name -> "WRITEmem");

end if;

end process;

end BEHAVIOR;

A.30

-- MACHINE DECLARATIONS FOR HAYES' CPU

-- FILE: LOADMEM4.VHD (MEMORY LOADER PACKAGE)

-- AFFECTS:

-- BY: none

- - ON: MEMORY.VHD (MAIN MEMORY COMPONENT)

-- PURPOSE: LOAD THE INITIAL VALUES FOR THE MEMORY OF THE CPU
-- DESCRIBED BY (HAYES 1988:315). HAYES' SIMPLE CPU

-- WAS USED AS A TEST CASE FOR USING THE JRS IDAS TO
-- AUTOMATICALLY GENERATE MICROCODE FOR THE DESIGNED

-- HARDWARE.

-- AUTHOR: CAPT DENNIS A. RUMBLEY

- - AFIT/ENG

-- VERSION: 1 (SEPARATED FROM MACHDECL4.VHD TO STYLIZE THE

-- MACHINEDECLARATIONS PACKAGE FOR IDAS INPUT)

-- DATE: 23 SEP 91

library UTIL;
use UTIL.DATATYPES.all;

package MEMORYLOADER is

function LOADMEMORY (MEMSPACE : in DATA_15_DOWNTO_0_VECTOR)

return data_15_downto_0_vector;

end MEMORYLOADER;

package body MEMORYLOADER is

function LOADMEMORY (MEMSPACE : in DATA_15_DOWNTO_0_VECTOR)

return data_15_downto_0_vector is
variable MSPACE : data_15_downto_0 vector(MEMSPACE'range)

MEMSPACE;
begin

-- Initialize 8K Memory

for i in MSPACE'range loop

MSPACE(i) :- b"0000000000000000";

end loop;

-- LOAD AC with contents of location 100 (-4)

A.31

M _SPACE(0) b"0000000001100100";

M__SPACE(100) :b"0000000000000100";

-- ADD contents of location 101 (-2) to contents of AC (-4)

M _SPACE(1) :b"0100000001100101";

M__SPACE(l01) :b"0000000000000010";

- - STORE contents of AC in location 102 (should be =6)

M__SPACE(2) :- b"0010000001100110";

-- AND contents of AC (-6) with contents of location 103 (-2)

MSPACE(3) :b"0110000001100111";

M _SPACE(103) :b"0000000000000010";

-- STORE coihtents of AC in location 104

MSPACE(4) :=b t 001000000110100011;

-- JUMP to location 10

M_SPACE(5) :- b"1000000000001010";

-- LOAD AC with contents of location 7 (-0)

M _SPACE(10) :=b"0000000000000111";

- - JUMPZ to location 15

M _SPACE(il) :=b"1010000000001111";

- - COMP contents of AC

M _SPACE(15) :- b"1100000000000000";

-- STORE AC in location 105 (should - 2**16)

M _SPACE(16) :=b"0010000001101001";

- - RSHIFT contents of AC

MSPACE(17) :- b"1110000000000000";

-- STORE AC in location 106 (should - 2**15)

M_SPACE(18) :=b"0010000001101010";

return MSPACE;

end LOADMEMORY;

end MEMORYLOADER;

A.32

-- HAYES' CPU -- MODELED PROCEDURALLY IN VHDL

-- FILE: PC5.VHD (PROGRAM COUNTER COMPONENT)

-- AFFECTS:

-- BY: DR.VHD (DATA REGISTER COMPONENT)

-- CU.VHD (CONTROL SIGNALS)

-- CLOCK.VHD (CLOCK)

-- ON: AR.VHD (ADDRESS REGISTER COMPONENT)

-- PURPOSE: MODEL OF THE PROGRAM COUNTER OF THE SIMPLE CPU

-- DESCRIBED BY (HAYES 1988:315). THIS MODEL

-- COMBINED WITH MODELS OF THE OTHER COMPONENTS OF
-- HAYES' SIMPLE CPU WAS USED AS A TEST CASE FOR

-- USING THE JRS IDAS TO AUTOMATICALLY GENERATE MICRO-

- - CODE FOR THE DESIGNED HARDWARE.

-- AUTHOR: CAPT DENNIS A. RUMBLEY

-- AFIT/ENG

-- VERSION: 5

-- DATE: 4 SEP 91 (Ver 4)

-- 15 OCT 91 (Ver 5) Eliminated wire delay. Moved wait
-- from behavioral IF statements. Moved test

- - for CLK - 'I' to WAIT statement from IF.

library UTIL;

use UTIL.DATATYPES.all;

use UTIL.BEHAVIORS;
use UTIL.BEHAVIORS.all;

entity PROGRAMCOUNTER is

generic (REG-DELAY : time 5 ns;

BUS DELAY : time :- 1 ns);
port(DATAFMBUS in DATA VECTOR(15 downto 0)

ADDRTOBUS : out ADDRESSVECTOR(15 downto 0)
Cl0 : in CONTROL

C9 : in CONTROL
C8 in CONTROL
CLK in CLOCK)

end PROGRAMCOUNTER;

architecture BEHAVIOR of PROGRAMCOUNTER is

A.33

begin -- architecture PROGRAMCOUNTER(BEHAVIOR)

process
variable PCCONTENTS : addressvector(15 downto 0);

begin

wait until CLK - '1';
if C8 - 'I' then wait for REGDELAY + BUSDELAY;
end if;

if C8 - 'I' then
behaviors.WRITE REGISTER

(inport => DATAFMBUS

reg -> PC CONTENTS

name => "PCgetsDR");

end if;

if C9 - 'I' then
behaviors. INC

(inport => PCCONTENTS

out_port => PCCONTENTS

name -> "incPC");
end if;

if C10 - 'I' then
behaviors.READ REGISTER

(reg - PC CONTENTS

out-port -> PCCONTENTS

name => "PCtoAR");
ADDRTOBUS <- transport PCCONTENTS after REGDELAY;

else
ADDRTOBUS <- transport b"0000000000000000"

after REGDELAY;

end if;

end process;

end BEHAVIOR;

A.34

-- TEST BENCH for HAYES SIMPLE CPU

-- PURPOSE: Provide the test bench entity for the simple

-- CPU described by (Hayes 1988:315). The test bench
- - provides the clock and process duration processes for
-- control of this VHDL model. The test bench is not
-- and need not be JRS styled VHDL.

-- FILE: HAYESTEST.VHD

-- AUTHOR: Capt Dennis A. Rumbley

o- -AFIT Masters Student

-- AFIT/ENG GCS-91D

-- DATE: 15 OCT 91

-- VERSION: 0

library UTIL;
use UTIL.DataTypes.all;

library HAYESVER5;

use HAYESVER5.MACHINEDECLARATIONS.all;

entity HAYES CPU is
end HAYESCPU;

architecture TESTBENCH of HAYESCPU is

signal SYSCLOCKSIG : CLOCK;

component CPU588 COMP
port (SYS CLK : in CLOCK);

end component;

for all: CPU588_COMP use entity HAYESVER5.CPU588(BEHAVIOR);

begin -- architecture HAYESCPU(TESTBENCH)

CPU588: CPU588_COMP
port map (SYSCLK -, SYSCLOCKSIG);

make-clock: process

begin
SYSCLOCKSIG <- not SYSCLOCKSIG

after hayesver5.MACHINEDECLARATIONS.CLKPERIOD/2;

wait for hayes ver5.MACHINEDECLARATIONS.CLKPERIOD/2

end process ;

startstop: process

A.35

begin
wait for 7000 ns
assert false
report "End of Simulation"
severity error;

end process;

end TESTBENCH;

A.36

Appendix B
FPASP Design Code

The Floating Point Application Specific Processor

(FPASP) is a United States Air Force research and develop-

ment effort. The design is therefore proprietary to the

United States Air Force. The code of this appendix is part

of that design, and therefore must be restricted from dis-

tribution to the general public.

The FPASP code which would normally be found in this

appendix is maintained in Volume II of this thesis. The

controlling office for release of the FPASP information in

Volume II is:

Rome Laboratory

RL/OCTS

Griffiss AFB, NY

B.1

Appendix C
Stylized FPASP Design Code

The Floating Point Application Specific Processor

(FPASP) is a United States Air Force research and develop-

ment effort. The design is therefore proprietary to the

United States Air Force. The translated code of this appen-

dix used part of that design, and therefore must be re-

stricted from distribution to the general public.

The translated FPASP code which would normally be found

in this appendix is maintained in Volume II of this thesis.

The controlling office for release of the results of Style-V

translated FPASP code in Volume II is:

Rome Laboratory

RL/OCTS

Griffiss AFB, NY

C.1

Appendix D
CASE TO IF Conversion Module

This appendix contains the pseudo code and C code for

the CASETOIF conversion module of the Style-V translator

and some test results. Sample output is located in Section

1 of Appendix C.

SECTION TOPIC PAGE

1 Pseudo Code D.2

2 C Code D.7

3 Test Files and Results D.21

D.1

SECTION 1: PSEUDO CODE

/* Pseudo code for the CASE statement to IF statement conversion
function required for the STYLE-V translator. This module provides

one of the conversions necessary to convert IEEE standard VHDL into
the JRS stylized VHDL for input into the Integrated Design Automation

System.
...

It may be possible to implement the following functions using the LEX
tool.

*/

/*

* The following function processes an input file to the point where

* a CASE statement is found. Contzol is then passed to a special
* function designed to convert the CASE statement to an IF statement.

* Once the conversion of the CASE statement is complete, processing
* returns to this function. Each CASE statement is processed
* in this manner for the entire file. The resulting output file

* is named NCorigfilename to identify the changed file. Control
* then passes to the calling function. For example, this function

* will handle all statements represented as I! below and would call
* CONV CASE TO IF to handle the CASE statements. (Note: comments are
* passed through and do not affect the translation.)

* BEGIN FILE
* I!
* I!

* CA

* CASE
* $

* $S
* CASE
* $$
. $$
* END CASE
* $$
* END CASE
* HI
* I!
* CASE
. $$

* END CASE
* !H

* END FILE

D.
/*

D. 2

function CASETOIF CONV (infile)

open in file
create out file
movewhite space (infile, outfile)
read word (infile, theword)
while not eof in file

if the-word = "case" or "CASE"
then CONV CASETOIF
else write to file (outfile, theword)

end if
movewhitespace (in_file, out_file)
readword (infile, theword)

end while not eof in file

close in file
close out file

end CASETOIFCONV

function CONV CASE TO IF

- - "case " => "if "

write to file (outfile, "if ")

-- Pass conditional argument through

movewhite space (infile, outfile)
readword (infile, theword)
COND ARG := the-word
write to file (out_file, CONDARG)

-- Pass nothing through for "is "

movewhite space (in_file, outfile)
readword (in file, theword)
if the-word not= "is " or "IS "

then print error message
set global error flag
exit CONYCASETOIF

end if

-- "when " becomes "= "

move white-space (infile, out-file)
readword (infile, theword)
if the-word - "when " or "WHEN "

then write to file ("- ")

else print error message
set global error flag
exit CONVCASETOIF

end if

D.3

-- Pass conditional value through

move white space (infile, outfile)
readword (in_file, theword)
write to file (outfile, the-word)

-- "f> " becomes "then "

move white space (in_file, outfile)
read_word (in file, theword)
if the-word = "=> "

then write to file (outfile, "then ")
else print error message

set global error flag
exit CONVCASETOIF

end if

-- Process when clause statements to out file

prevword := the-word
(** needed to exit case processing **)

movewhitespace (in_file, outfile)
read word (infile, theword)
while the-word not- "when " or "WHEN "

if the-word not- "case" or "CASE"
then write to file (out_file, theword)
else if prevword - "end " or "END "

then exit CONV CASE TO IF
else CONVCASETOIF

end if
prevword := theword
movewhitespace (in_file, outfile)
readword (in file, theword)

end while the word not- "when " or "WHEN

-- Pass nothing when next "when " seen

loop (* process when statements until done *)
prevword :- theword

-- Check if next word is "others"

movewhite-space (infile, out-file)
readword (infile, the-word)
if the-word not- "others " or "OTHERS "

then write to file (out_file, "elsif ")
write to file (outfile, CONDARG)
write to file (out_file, " - ")

write to file (outfile, the_word)

-- --> " becomes "then "

D.4

movewhitespace (in file, out_file)
readword (infile, the word)
if the-word = "=> "

then write to file (out_file, "then ")
else print error message

set global error flag
exit CONVCASETOIF

end if
else write to file (outfile, "else "

movewhitespace (in file, out file)
readword (infile, the word)
if the-word not= "=> "

then print error message
set global error flag
exit CONVCASETOIF

end if
end if

-- Process when clause statements

prevword :- theword
movewhitespace (infile, outfile)
readword (infile, the-word)
while the word not= "when " or "WHEN "

if the-word not= "case" or "CASE"
then write to file (out_file, theword)
else if prevword = "end " or "END "

then exit CONV CASE TO IF
else CONVCASETOIF

end if
prevword := the-word
movewhitespace (in_file, out_file)
read_word (infile, theword)

end while the word not= "when " or "WHEN
end loop (* process when stmts until done *)

end CONVCASETOIF

function READWORD (infile, theword)
the-word :- ""
get_char (in file, thechar)
while the-char - "-"

(**check for comment**)

temp char :- thechar
get_char (in file, thechar)

if the-char -
then the-word :- the word +

while not end of line
get-char (in_file, thechar)
the-word :- the word+the char

end while

D.5

write-word (outfile, theword)
get char (in_file, thechar)

else the-word :- the-word + "-"

end if
end while

while not eof and the char not- blank or tab or new-line
the-word :- the word+the char
get char (in_file, thechar)

end while
the word :- the word+blank

end READWORD

function MOVEWHITE-SPACE (in_file, out-file)
getchar (in file, thechar)
while not eof and the char = blank or tab or new-line

put-char (outfile, the-char)
getchar (in_file, thechar)

end while
if eof (infile)

then terminate successfully
else (* move file pointer back one character *)
returnchar (infile, thechar)

end MOVEWHITESPACE

function WRITE TO FILE (out_file, the word)
writeword (outfile, theword)
move white space (in_file, out-file)

end WRITETOFILE

*/

D. 6

SECTION 2: C CODE

* ** * *** * ** * ** * ** ** ** ** ** **** ** * ****** * *** * *** ** * ** *** ** * ** *** ** *** * ** *

************************* C A S E T 0 I F *****************************

* PURPOSE: Copy an input file to an output file except that all case
* statements of the input file will be converted to equivalent

* if-elsif-else statements. This program will handle all files

* that match the following abstract model. Note that CASETOIF
* handles simple and nested case statements.

* BEGIN FILE
* !!
* !I

* CA
* CASE
. $$
* $$
* CASE
. $$

* END CASE
* $$
* END CASE

* 1
* !!
* CASE
. $$
. $$
* END CASE
* 11

* END FILE

*/ #include ****

#include <io.h>

#include <stdio.h>
#include <string.h>

/* GLOBAL VARIABLES */
int pgmsuccess - 1;
char *the-word -

* FUNCTION: FATAL CASEWORDERROR

* PURPOSE: Print error message for fatal error when an

D.7

* ir-orrect word for the context is found.
* ,%so, sets the global pgm_success flag to 0.

* CALLED BY: convcase to if

* CALLS: none

* PARAMETERS:

* errorword -- a character string which was
* the offending word.

* LOCAL VARIABLES:
* in str[132] : string used to load input param
* string. Used to limit the number of
* pointer strings because of overwrite
* problems when using pointer strings.

* GLOBAL VARIABLES;
* pgm_success -- used to show a condition has

* occurred which causes abnormal
* program termination.

* AUTHOR: Capt Dennis A. Rumbley

* AFIT Masters Student
* AFIT/ENG, GCS-91D

* DATE: 20 Sep 91

* VERSION: 1

*/
void fatalcaseword-error (char *error-word)

char in str[132] -

strcpy(in str, error-word);

puts
("*** Now entering FATALCASEWORDERROR function ***");

printf("\n\tWord other than %s", instr, " found ");

printf("in textual context of CASE statementl");
printf("\n\t***FATAL ERROR***");

printf("\n\n");
pgm_success - 0; /* abnormal terminate */
puts

("*** Now leaving FATALCASEWORDERROR function ***");

/* end fatal case word error */

* FUNCTION: READ WORD OR PASS (infile, out_file)

* PURPOSE: It gets the next word from the input file. A word

D.8

* starts with a letter or quote and can contain underscores.

* For this program READWORDORPASS also recognizes a

* special word "->". Any nonword or whitespace found is

* passed to the output file.
*

* CALLED BY: convcase to if

* case to if cony

* CALLS: none

* LOCAL VARIABLES:
* the char : a character var used to read a
* char-at-a-time from the input file.
* a word : a character array used to collect

* chars to form words from the input.

* index : the index for the a word char array.

* GLOBAL VARIABLES:

* the word : used to update the current word
* for use by the calling functions.

* AUTHOR: Capt Dennis A. Rumbley

* AFIT Masters Student
* AFIT/ENG, GCS-91D

* DATE: 20 Sep 91
.

* VERSION: 1

*/
void readword or pass (FILE *in-file, FILE *out-file)

/* variable declarations */

char the char - ' ';

char a word[132] "

int index - 0;

/* processing statements */
strcpy (theword, "");
thechar - fgetc (infile);

/* read characters until a valid character to start a word */
while (!feof (in file) &&

(thechar < 'A' I
(thechar > 'Z' && the-char < 'a') I
the char > 'z'))

/* return string literals */
if (the-char --
{

a word[index++] -

thechar - fgetc (in file);

D.9

while (thechar I= "')
{

a wordfindex++] - the char;
thechar = fgetc (in_file);

)

a_word[index = '"';

strcpy (theword, aword);
thechar - fgetc (infile);
break;

]
/* look for process comment state */

if (the-char =
{

the-char - fgetc (in_file);
if (thechar ==
{

fputs ("--" out file);

thechar = fgetc (in_file);
hile (!feof (in file)

&& the-char I- '\n')

fputc (the char, outfile);
thechar - fgetc (infile);

I
I

else fputc ('-', outfile);
I

/* look for becomes symbol state */
if (the-char --

the-char = fgetc (infile);
if (the-char ==
f

strcpy (aword, "=>");
thechar = fgetc (in_file);
break;

I

else fputc ('', out-file);
I

/* if not comment, becomes, or string lit pass */
if ((the-char != '-') && (the-char I= '1-') &&

(the-char I- '"'))

fputc (the_char, out file);
thechar - fgetc (in-file);

I

/* end while char not legal to start a word */

/* now process a regular word state */
while (Ifeof (infile) &&

((the char >= 'A' && the char <= 'Z') I
(the char >- 'a' && the-char <- 'z') II

D.IO

thechar --

a word(index++] = the char;
the-char - fgetc (in-file);

/* restore file to read-a-word state */
if (Ifeof (infile))

ungetc (thechar, in-file);

/* copy local value to global variable */
strcpy (theword, a-word);

I /* end readwordor_pass */

* FUNCTION: READCONDVALUE (INPUTFILE, OTHERSFLAG)

* PURPOSE: It gets the next word from the input file. A word
* starts with a letter or quote and can contain underscores.
* For this program READWORD OR PASS also recognizes a
* special word "=>". Any nonword or whitespace found is

* passed to the output file.

* LOCAL VARIABLES:
* a-char : a character var used to read a
* char-at-a-time from the input file.
* a word[132J : a character array used to collect
* chars to form words from the input.
* otherword[7) : a character array used to check
* if the input word was "others" or not.
* index : the index for the a-word char array.

* GLOBAL VARIABLES:
* the-word : used to update the current word
* for use by the calling functions.

* CALLED BY: convcase to if

* CALLS: none
*

* AUTHOR: Capt Dennis A. Rumbley

* AFIT Masters Student
* AFIT/ENG, GCS-91D

* DATE: 20 Sep 91

* VERSION: 1

*/
void read condvalue (FILE *in-file, char *others_found)

D.11

/* local variables */
char a char = '';
char aword[132] "
char otherword[7] =

int index - 0;

/* process statements */
a_char - fgetc (in_file);

/* strip whitespace from front of condition value */
while (Ifeof (in_file) && (a char == ' ' II

a-char -= '\t' II achar =- \n'))
a char - fgetc (in-file);

/* get condition value string */
while (Ifeof (infile) && a-char I =

'-')

/* the first symbol of "=>" */
I

a-word[index++] - a-char;
a_char - fgetc (infile);

I
if (Ifeof (in file)) ungetc (a-char, in file);
strcpy (theword, aword);

/* check if other found */
index = 0;
while (index <- 5)
I

otherword(index] = a word[index];
++index;

I
if (Istrcmpi (otherword, "others"))

strcpy (othersfound, "true");
else strcpy (others-found, "false");

) /* end read cond value */

* FUNCTION: CONV CASE TO IF

* PURPOSE: Converts case statements to if statements.
* When called, a word "case" has been read by
* the calling function. The case argument is read,
* "is" and "when" are passed thorough, and the first
* condition value is read. The if clause is now
* generated. The "->" symbol is read but nothing output.
* The "when clause" is now processed. All the words of
* the when clause are passed to the output file with the
* exception of the word "case" which if not preceded by

D.12

* "end" causes a recursive call to conv case to if.
* When the next "when" is seen, the condition value is
* read, and if not equal to "others" an elsif clause is
* generated and processed similarly to the if clause. If
* the condition value is "others" an else-clause is
* generated.

* PARAMETERS:

* in file : a pointer to the input file.
* outfile : a pointer to the output file)
*

* LOCAL VARIABLES:

* cond arg[132] : a string to hold the case argument
* cond value[132] : a string to hold the representation
* of the current value of the case argument during
* the conversion process.
* *others-found : a string pointer used to check if the
* word "others" has been found.
* prevword[132] : a string ptr used to track the word
* processed just before the current word during
* the converion process. Critical to recognize
* the "end case" phrase signaling the conversion
* is complete and only "if" needs to be written.

* GLOBAL VARIABLES:
* the-word : a string pointer used to contain the current
* word being processed during the convert process.

* FUNCTIONS CALLED:
* fatal case word-error (char *);
* read_word or pass (FILE *, FILE *);
* read cond value (FILE *, char *);
*

* CALLED BY: case to if conv
* conv case to if
*

* USE OF GOTO: The goto statement is used only to emulate the
* Ada-type EXIT statement. The C break statement only exits
* a loop, not necessarily a function. The use of goto is
* limited to goto EXIT CONV CASETOIF which is located at
* the end of the function.

* AUTHOR: Capt Dennis A. Rumbley
* AFIT Masters Student
* AFIT/ENG, GCS-91D

* DATE: 20 Sep 91
.

* VERSION: 1

*/

D.13

void convcase to if (FILE *in-file, FILE *out-file)

/* called functions
void fatalcase-worderror (char *);
void readword orpass (FILE *, FILE *);

void readcondvalue (FILE *, char *);
*/

/* variable declaration section */

char condarg[132] - "";
char cond value(132] .ti;

char *others found - "false";
char prevword[132] "";

/* function statements section */

/* begin building if clause */
readwordor_pass (in-file, out-file);
strcpy (cond-arg, the-word);

/* read IS'but pass nothing for it */
readword or pass (in file, outfile);
if (strcmpi (the word, "is")) /* theword f= "is" */

fatal case worderror (" IS ");
goto EXITCONVCASETOIF;

]

/* read WHEN but pass nothing for it */
readword orpass (infile, outfile);
if (strcmpi (the word, "when"))
/* the-word I- "when" */

C
fatal case word error ("WHEN");
goto EXITCONVCASETOIF;

I

/* read the conditional value for the if clause */
readcondvalue (in_file, othersfound);
strcpy (condvalue, theword);

/* read becomes symbol and pass THEN for it */
readword orpass (in_file, out_file);
if (strcmp (theword, "->")) /* theword I ->"
C

fatal case word-error ("->");
goto EXIT CONV CASE TO IF;

]

/* write if clause to output */
fputs ("if ", outfile);

D.14

fputs (cond arg, outfile);
fputs (" - ", out file);
fputs (condvalue, outfile);
fputs (" then ", outfile);

/* read if clause (when) body */
strcpy (prevword, theword);
readwordor pass (in file, out file);
while (strcmpi (theword, "when"))

/* the-word I= "when" */
f

if (strcmpi (the-word, "case"))
/* the-word I= "case" */

{
fputs (the-word, out-file);
strcpy (prevword, the-word);
read_word orpass (infile, out-file);

I
else if (Istrcmpi (prev word, "end"))

/* prey-word == "end" */
{

fputs ("if", out file);
goto EXITCONVCASETOIF;

I
else /* new case statement encountered */

convcase to if (infile, outfile);

* second when now seen. ready to process elsif
* or else clauses, can determine which when
* read cond value returns.
* ** * ************* *************** ********** ****

*/

do
{
readcondvalue (in_file, othersfound);
if (strcmpi (others_found, "true"))

/* others-found I- "true" */
(

strcpy (condvalue, theword);

/* read becomes symbol and pass THEN in the clause */
readword or pass (infile, outfile);
if (strcmp (theword, "-0"))

/* the-word I- ">" *
{

fatalcaseworderror
goto EXITCONVCASETOIF;

I

/* write elsif clause to output */
fputs ("elsif ", out-file);

D.15

fputs (cond arg, out_file);
fputs (" = ", out file);
fputs (condvalue, outfile);
fputs (" then ", out file);

/* read elsifclause (when) body */
strcpy (prev word, theword);
readwordor-pass (in file, outfile);

while (strcmpi (the_word, "when"))
/* the-word I= "when" */

if (strcmpi (theword, "case"))
/* the-word I- "case" */
{

fputs (the word, outfile);
strcpy (prev word, the_word);
readword or_pass (in-file, outfile);

I
else if (!strcmpi (prev word, "end"))

/* prevword == "end" */

fputs ("if", outfile);
strcpy (theword, "");
goto EXITCONVCASETOIF;

I
else /* new case stmt encountered */

convcase to if (infile, out-file);

I
else /* "others" was seen -- process else statement */
I

/* read becomes symbol and pass nothing for it */
readword or pass (infile, outfile);
if (strcmp (theword, "->"))

/* the word !- "=>" */
I

fatal case-word error (">");

goto EXITCONVCASETOIF;
I

/* write else clause to output */
fputs ("else ", out-file);

/* read else clause (when) body */

strcpy (prey word, theword);
readwordorypass (in-file, outfile);
while (strcmpi (the-word, "when"))

/* the-word I- "when" */
{

if (strcmpi (the word, "case"))
/* the-word I- "case" */

D

D. 16

fputs (theword, out_file);
strcpy (prevword, theword);

readword or pass (in-file, outfile);
I
else if (Istrcmpi (prev word, "end"))

/* prevword -- "end" */

fputs ("if", outfile);

strcpy (theword, "");
goto EXITCONVCASETOIF;

]
else /* new case stmnt encountered */

conv-case to if (in-file, outfile);
I

]
} while (Istrcmp (othersfound, "false"));

/* others found -- false */
EXITCONVCASETOIF: strcpy (othersfound, "false");

/* needed due to recursion */
/* end convcase to if */

* FUNCTION: CASE TO IFCONV (input_file, outputfile)

* PURPOSE: Reads an input file and passes words read to
* an output file until a word "case" is read. At
* that point, "case" is not passed to the output.
* Instead, conv case to if is called to convert the
* case statement to an if statement. Then control
* returns to this function.

* PARAMETERS:

* infile : a string value (the name of the input file)
* outfile : a string value (the name of the output file)
.

* LOCAL VARIABLES:

* in file : a string pointer used to identify the
* input file to function case to if conv.
* outfile : a string pointer used to identify the
* output file to function case to if conf.

* GLOBAL VARIABLES:
* pgm_success : an integer which if 0 tells that
* the program was not successful.
* the-word : a string pointer used to contain the current
* word being processed during the convert process.

* FUNCTIONS CALLED: cony case to if
* readword or pass

* CALLED BY: main

D.17

* AUTHOR: Capt Dennis A. Rumbley
* AFIT Masters Student
* AFIT/ENG, GCS-91D

* DATE: 20 Sep 91
.

* VERSION: 1

*/
void case to if conv (char *infile, char *outfile)
{

/* variable declarations section */

/* called functions declarations */
void convcase to if (FILE *, FILE *);
void read_word orpass (FILE *, FILE *);

*/

/* internal file identifiers */
FILE *infile;
FILE *out-file;

/* function statements section */

/* open files
*/

in-file - fopen (infile, "rt");
outfile - fopen (outfile, "wt");

/* move words and nonwords to output
until a case statement is encountered,
the end of the input file is reached,
or an abnormal condition causes unsuccessful
program termination.

readword orpass (infile, outfile);
while (Ifeof (in_file) && pgm_success -= 1)
{

/* function strcmp required to see if the word
is equal to a given string. If so, strcmp
returns a 0. Must not (1) strcmp to get a
"true" (1) reply when the stings are equal

*/

if /* the-word -- "case" */

(Istrcmpi (the-word, "case"))
convcase to if (in_file, out-file);

else
(

fputs (theword, out-file);

D.18

read_word or pass (in-file, outfile);
I

/* while leof(infile-handle) or pgm_success - 1 */

/* close files after processing
*/
fclose (in_file);
fclose (out_file);

I /* end CASE TO IF CONV */

* FUNCTION: MAIN

* PURPOSE: Driver routine for program to convert case
* statements in an input file to if statements
* in an output file.

* PARAMETERS:

* argc : an integer that tells how many arguments
* are on the command line (incl pgm name)
* argv[] : a string array of arguments on the cmd
* line. The number of these arguments is
* argc -1.

* LOCAL VARIABLES:
* in-file : a string pointer used to identify the
* input file to function case to if conv.
* out-file : a string pointer used to identify the
* output file to function case to if conf.

* GLOBAL VARIABLES:
* pgmsuccess : an integer which if 0 tells that
* the program was not successful.

* FUNCTIONS CALLED: case to if conv

* CALLED BY: none

* AUTHOR: Capt Dennis A. Rumbley
* AFIT Masters Student
* AFIT/ENG, GCS-91D

* DATE: 20 Sep 91

* VERSION: 1

*/

int main (int argc, char *argv[])

D

D. 19

/* variable declarations section */

char *in file -

char *out file = ..;

void case to if conv (char *, char *);
*/

/* program statements */
if (argc 1- 3)

puts ("****** ERROR: Wrong Number of Files on

Command Line ******\n");
puts (" *** Please enter the name of your input

file and a name\n");
puts (" *** for the output file. EX. casetoif

in fil outfil\n\n\n");
pgmsuccess - 0;

if (pgmsuccess -= 1)
I
in file = argv[l];

out file - argv[2];

puts ("Now converting CASE statements in file ");
puts (infile);
puts ("\nto IF statements in a file called ");
puts (outfile);
puts ("\n\n");
case to if cony (in_file, outfile);
puts ("*** Thank you for using CASETOIF.EXE ***\n\n\n");
I
if (pgmsuccess - 1)

return 0;
else
{

puts ("*** ABNORMAL PROGRAM RUN ***");

return 1;
I

/* end main */

D.20

SECTION 3: TEST FILES AND RESULTS

TEST 1

- - This is a file of comments and
- - should be passed straight through

-- case BOX of
- - when crackers => eatem;
- - when bolts => useem;
-- end case;

TEST 1 RESULTS

- - This is a file of comments and
-- should be passed straight through

-- case BOX of
- - when crackers => eatem;
- - when bolts => useem;
-- end case;

TEST 2

and
the
-- 7789
december
case
edit
tom
the folks at home
party
end case
bye

TEST 2 RESULTS

and
the
-- 7789

D.21

december

TEST 3

-- This file is to test if CASETOIF.EXE can process string
-- literals
-- that contain the keyword CASE without trying to process
-- a case statement
signal_1 <= "0010" after 10 ns;
write ("In case you didn't know, signal 1 is now '0010'.");
signal_2 <= signal_l after 50 ns;
case test is

when 1 => load memory;
when 2 => disable-chip;
when 3 => reset pgm counter;
when others => null;

end case;
write ("That is the end of the CASE file.");

TEST 3 RESULTS

-- This file is to test if CASETOIF.EXE can process string
-- literals
-- that contain the keyword CASE without trying to process
-- a case statement
signal 1 <= "0010" after 10 ns;
write ("In case you didn't know, signal_1 is now '0010'.");
signal 2 <= signall after 50 ns;

if test = 1 then load memory;
elsif test = 2 then disable chip;
elsif test = 3 then resetpgm-counter;
else null;

end if;
write ("That is the end of the CASE file.");

D.22

TEST 4

-- This file contains nested case statements to enable
-- testing
-- of the CONVERT CASE TO IF program (casetoif.exe) for
-- handling
-- nested cases.

case country is

when USA => say "Yea!";
when JAPAN => say "Aso!";
when USSR => case republic is

when RUSSIA => say "go Boris!";
when ESTONIA I LATVIA => say "Free at Last!";
when GEORGIA => say "Civil War!";
when otHeRs => say "go Capitalists!";
end case;
say "Communism never had a chance!!!";

when OtherS => say "Who Cares!!!";

end case;

say "Finished processing nested cases."

file end.

TEST 4 RESULTS

-- This file contains nested case statements to enable
-- testing of the CONVERT CASE TO IF program (casetoif.exe)
-- for handling nested cases.

if country = USA then say "Yea!";
elsif country = JAPAN then say "Aso!";
elsif country = USSR then

if republic = RUSSIA then say "go Boris!";
elsif republic = ESTONIA I LATVIA then say "Free

at Last!";
elsif republic = GEORGIA then say "Civil War!";
else say "go Capitalists!";

end if;
say "Communism never had a chance!!!";

else say "Who Cares!!!";

end if;

say "Finished processing nested cases."

file end.

D.23

(Note: May need to expand symbol "I" to "or condvar = " .

Will know more when run through IDAS. None of the FPASP

CASE statements contained this operator, so VHDL analysis

did not test for this case.)

TEST 5 was a run of the CASE toIF program against files of

the FPASP design. The results of this test are included in

Appendix C.

D.24

Bibliography

Aho, Alfred V. and Jeffrey D. Ullman. Principles of Compiler
Design. Reading MA: Addison-Wesley Publishing Company,
1977.

Albrecht, Paul F. and others. "Source-to-Source Translation:
Ada to Pascal and Pascal to Ada," Proceedings of the
ACM-SIGPLAN Symposium on the Ada Programming Language,
in SIGPLAN Notices, 15: 183-193 (November 1980).

Allman, E. "YACC Attack," UNIX Review, 6: 76-81 (September
1988).

Bothe, K. and others. "A Portable High-Speed PASCAL to C
Translator," SIGPLAN Notices, 24: 60-65 (September
1989).

Boyle, James M. "Lisp to Fortran -- Program Transformation
Applied," Proceedings of the NATO Advanced Research
Workshop on Program Transformation and Programming
Environments, in Program Transformation and Programming
Environments. edited by Peter Pepper. Berlin: Springer-
Verlag, 1984.

Calingaert, Peter. Program Translation Fundamentals: Methods
and Issues. Rockville MD: Computer Science Press,
Incorporated, 1988.

Cohen, Daniel I. A. Introduction to Computer Theory. New
York: John Wiley & Sons, Incorporated, 1986.

Davis, Alan M. Software Requirements: Analysis & Specifica-
tion. Englewood Cliffs NJ: Prentice-Hall, Incorporated,
1990.

Fisher, Charles N. and Richard J. LeBlanc, Jr. Crafting a
Compiler. Menlo Park CA: The Benjamin/Cummings Publish-
ing Company Incorporated, 1988.

Fox, David L. "Learning About LEX," Computer Language, 51-56
(February 1987).

Ganapathi, M. "Semantic Predicates in Parser Generators,"
Computer Languages, 14: 25-33 (June 1989).

BIB.1

Gane, Chris and Trish Sarson. Structured Systems Analysis:
Tools and Techniques. Englewood Cliffs NJ: Prentice-
Hall Incorporated, 1979.

Hayes, John P. Computer Architecture and Organization
(Second Edition). New York: McGraw-Hill, Incorporated,
1988.

Institute of Electrical and Electronics Engineers. IEEE
Standard VHDL Language Reference Manual. IEEE Standard
1076-1987. New York: The Institute of Electronics and
Electrical Engineers, Incorporated. 1988.

Integrated Design Automation System IDAS Product Description
Summary. JRS Research Laboratories Incorporated, Orange
CA, June 1988.

Krieg-BrUckner, Bernd. "Language Comparison and Source-to-
Source Translation," Proceedings of the NATO Advanced
Research Workshop on Program Transformation and
Programming Environments, in Program Transformation and
Programming Environments. edited by Peter Pepper.
Berlin: Springer-Verlag, 1984.

Lesk, M.E. Lex -- A Lexical Analyzer Generator, Computer
Science Technical Report No. 39. Murray Hill NJ: Bell
Laboratories, October 1975.

Lipsett, Roger and others. VHDL: Hardware Description and
Design. Kluwer Academic Publishers, 1989.

Miller, Capt Richard L. Specification and Equivalence
Verification of Sequential Circuits via VHDL. MS the-
sis, AFIT/GE/ENG/90D-41. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson
AFB OH, November 1990.

Owen, G. Scott. "Computer Assisted Pascal to Ada Program
Translation," in Empirical Foundations of Information
and Software Science IV: Empirical Methods of Evalua-
tion of Man-Machine Interfaces. edited by Pranas Zunde
and Jagdish C. Agrawal. New York: Plenum Press, 1987.

Pintelas, P.E. and others. "A Translator from Small Euclid
to Pascal," SIGPLAN Notices, 24: 93-101 (May 1989).

Sideri, M. and others. "Semantically Driven Parsing of
Context-free Languages." The Computer Journal, 32: 91-
93 (February 1989).

BIB.2

Software User's Manual for the Enhanced Automated
VHDL/Microcode Compiler Synthesis and Desiqn System
(AMSDS). Document Number SUM.0074-05. JRS Research
Laboratories Incorporated, Orange CA, 21 March 1989.

VHDL Style Guide for Ada To Microcode Compiler Retargeting
and VHDL Simulation. Document Number SUM.0086-01.
Contract N00039-87-C-0256. JRS Research Laboratories
Incorporated, Orange CA, 27 February 1989.

Waters, Richard C. "Program Translation Via Abstraction and
Reimplementation," AI Memo No. 949, December 1986.
Contracts DARPA N00014-85-K-0124 and NSF MCS-7912179.
Boston: Massachusetts Institute of Technology, December
1986 (AD-A185 845).

Webster's II New Riverside University Dictionary. Boston:
Houghton Mifflin Company, 1984.

Yourdon, Edward. Structured Design: Fundamentals of a
Disciplined of Computer Program and Systems Design.
Englewood Cliffs NJ: Prentice-Hall Incorporated, 1979.

---- Electronic Data Processing -- Structured Techniques
for System Analysis. Englewood Cliffs NJ: Prentice-
Hall Incorporated, 1989.

BIB.3

Form Appoved

REPORT DOCUMENTATION PAGE I OMB ov7d

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the ollection of information. Send comments regarding this burden estimate or any other aspet of thts
collection Of information. J n ttons for reducing this bureen. to Washington Headquarters Services. Directorate or information Operations and Reports. 1215 Jetferson

Davis Highway. Suite 1204. Arington othe Office of Management and Sudget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 1991 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Design of Style-V - A Translator to Convert Standard VHDL into
a Stylized Form for Automated Microcode Generation

6. AUTHOR(S)

Dennis A. Rumbley, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCS/ENG/9iD-19

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
Ths thesis provides an analysis and preliminary design of Style-V, a source-to-source computer language trans-
lator. Style-V converts IEEE standard VHDL into a special style of VHDL defined for a commercial tool, the
Integrated Design Automation System (IDAS). Thirteen mappings between stand- ard VHDL and the IDAS
subset were identified. The mappings were analyzed using Domain Analysis and Modern Structured Analysis
techniques. Four processes covering several of the mappings were completely analyzed. One mapping to convert
CASE statements to IF statements was implemented. Since the IDAS restricts designs to bit logic, a method
for represent- ing multilevel logic with bit logic was devised. Unaccept- able multiple process architectures were
converted to multi- ple single process architectures which are acceptable to IDAS. The IDAS microcode gen-
erator does not recognize user- defined procedures, but in one case, mapping user-defined procedures to IDAS
defined procedures was not possible. In general, this problem amounts to showing two programs are functionally
equivalent. Exhaustive testing was ruled out since proving two 32-bit adders are equivalent would take over 11
billion years at 100 procedure runs per second. The program equivalence problem was not solved by this thesis.
Useful results were obtained, though IDAS failed to work.

14. SUBICT TERMS 15. NUMBER OF PAGES
Language Translation, Programming Languages, Machine Translation, High Level 221

Languages, Computer Programs, Source-to-Source Translation 16. PRICE CODE

17. SECURITY CLASSIFICATION 1S. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01.210-1500 Standard Form 298 (Rev 2-89)
Prescribed by ANSi Stdl Z39-18
296-102

