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/ Abstract

<

This thesis discusses the application of variations of the ,Quantitati\'e,»l?é;ed-
back Technique to a control problem with unstable, non-minimun: phase pla..is.
The X-29A research aircraft is used as the bhasis for developing a sct of representa-
tive linearized aircraft dynamics models, which are modified to allow for the use of
differential canard control inputs for enhanced maneuverability at extreme angles of
attack. A specialized design approach is presented to develop frequency dependent
weighting matrices, and the shortcomings of traditional methods are discussed.

Four independent longitudinal compensators are developed by first designing
loop transmission functions. Discussion is provided that addresses the limitations
imposed on the designer by the numerous right half plane poles and zeros of the
effective plants. The optimal blending method i. applied in one case to achieve a
marginally stable system for a virtually impossible problem. Prefilters are designed
anc their effects on closed-loop time responses are discussed. The singular-G method
is used to improve the achievable stability charzcteristics of a multi-input multi-
output lateral-directional controller. The optimal blending method is then applied
to develop an optimal loop transmission function. Finally, the required steps for
completing the MIMO design are presented to aid future research efforts. :‘7
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DEVELOPMENT OF HIGH ANGLE OF ATTACK CONTPOL
LAWS FOR AN UNSTABL::, :«N-MINIMUM PHASE
AIRCRAFT USING “ALiA7T:ONS OF THE
QUANTITATIVE FEEiI! 3ACK TECHNIQUE

I Introduction
1.1 Introduction

This thesis investigates a proposed modification to t'ie flight control system of
the X-29A research aircraft. The X-29A (Figure 1.1) was designed for the expressed
purpose of demonstrating several advanced technologies. These techinologies combine
to give the aircraft a unique capability te fly in unusual attitudes [11]. Such a
capability hzs long been desired for modern fighter aircraft, to improve both mission
effectiveness and survivabilit;© As anticipated, the flight test program revealed some
expected problems in the aircraft’s handling qualities, while flying at high angles-of-
attack (AOA). The desire was to demonstrate improved aircraft mancuverability in
high AOA flight conditions by using differential canards.

From the start, it should be noted that due to the limited amount of differential
canard wind tunnel data, it is not expected that this effort will result in a flight-
worthy control system design. Further, since the model developed in this thesis is
based on such limited data, it is not expected that this model reflects the X-29's
actual performance. However, sufficient data is available to develop a representative
non-minimum phase aircraft model, and to synthesize a flight control system design.
Such a design at the very least, d=monstrates the potential performance of the pro-
posed modification, and the limitations of the design methodology in the presence
of non-minimum phase characteristics. In addition, this design provides a useful
starting point for a flight control system design capable of operating across a full
range of flight conditions. To perform a complete design would require a substantial
amount of additional wind tunnel testing to provide the necessary acroCynamic data
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A more complete set of

for all flight conditicns within the X-29 flight envelope.
aerodynamic data could also be used to verify or deny the models developed for this

resear<h.

=¥
[~
o
Y




Flight tests of the X-29A, overall, have been quite successful [24]. However, it
has been noted that the aircraft in its present configuration experiences a problem
while flying at high AOAs. The X-29 has flown and remained completely controllable
at relatively high AOAs (20 to 30 degrees). However, the aircraft was designed to
fly at extreme AOAs (in excess of 60 degrees) while still maintaining a reasvnably

high degree of maneuverability [3].

Flight test information obtained for the X-29 reveals the following problem.
While flying at extreme AOAs, the aircraft is controllable in the longitudinal axis
(pitching motions), bui it shows some undesirable tendencies in the lateral-directional
axes. These tendencies are wing rock about the voll axis and yaw oscillation about the
aircraft’s vertical axis. The undesirable motions can be controlled with the present
flight control system, but an exce:sive amount of the available control authority is
expended in so doing. It i desirable to onirol such unwanted motions while retain-
ing sufficient control authority to f 2rform additional commanded flight maneuvers
at these high AOAs. Other studies are being performed to address this problem,

such as vortex flow control through the use of bleed air ports in the aircraft’s nose

[5]-
1.2 Background

A review of pertinent government documents revealed that this problem was
predicted prior to the initiation of the X-29 fiight test program. Early wind tunnel
tests predicted noticeable wing rock at AOAs in excess of 20 degrees. Following
the initial wind tunnel tests, NASA's Langley Research Center conducted numerous
Arop tests of a 22-percent dynamically scaled replica of the X-29. This unpowered
model is equipped with fully functional control surfaces that can be operated by
a pilot through radio control [26). The model was carried by a helicopter to an
altitude of 6000 feet and released for its controlled descent. On repeated flights with
the AOA greater than 20 degrees, the model was diffi.'t to control and the wing
reck behavior eventually resulted in roll departure. The wing rock oscillations were

attrivuted to unfavorable roll damping [26].

The yaw instability was also predicted in the wind tunnel tests and noted
during the scale model drop tests [26). The primary cause of the yaw oscillation

is thought to be asym:etric vortex shedding off the aircraft’s nose [24]. The X-29
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was designed from the start to be a relatively low cost test bed aircraft whose sole
purpose was to demonstrate advanced technologies. Since only two were to be built
and cost was a concern, Grumman decided to use existing aircraft subsystems to the
maximum extent possible. Perhaps the most notable single example of this design
philosophy is the X-29's nose section. In fact, the entire aircraft forward of the
intakes is a slightly modified nose section of a Northrop F-5A fighter [10].

The F-5, an early 1960’s design fighter, was not designed for flight at high
AOAs. Consequently, it was not surprising when carly wind tunrel tests of the X-
29A revealed the existence of asymmetric vortices being shed from the nose at high
AOAs. A quick fiz solution was tried in an attempt to alleviate this problem. Small
fixed strakes were added to both sides of the nose to direct the airflow in predictable
symmetric fashion {10]. While this may have helped slightly, the problem still existed
at the more extreme AQAs.

During the flight test program, X-29A1 did not fly above 20 degrees AOA.
X-29A2 was to be the high AOA demonstrator. Aircraft number two differs from
aircraft number one in two primary ways. First, number two’s subtle change is a
modification to the flight control system gain scheduiing to make the control sur-
faces more effective at high AOAs. This was not a complete re-design of the flight
control system software, and thus only a limited improvement in handling qualities
was expected. The second, and more visible modification to aircraft number two
is the addition of a spin recovery parachute assembly at the base of the rudder.
This precautionary measure is frequently added to experimental test aircrafi for a
practical reason. Should the pilot lose control of the aircraft during flight testing, in
most instances he would not be forced to eject and lose the aircraft [21]. X-29A2 has
flown at AOAs over 60 degrees, and as expected, both wing rock and yvaw oscillations
occurred above 40 degrees AOA [24]. The aircraft was controllable, but the problem
was noted by the test pilots [21].

1.3 Problem Description

The specific problem addressed by this effort is the development of high AOA
flight control laws for a non-minimum phase aircraft. The control system is designed
to make the most effective use of the aircraft’s control surfaces. This project was
recommended by the Flight Dynamics Directorate of the Air Force Wright Labora-
tory (WL/FIMT), located at Wright-Patterson AFB, OH. FIMT proposed the use
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of differential inputs to the aircraft’s canards [3]. Canards are control surfaces that
perform a function similar to that of a conventional elevator. What distinguishes the
canard from a conventional elevator is the canard’s placement in front of the wing.
The current flight control system uses only symmetric inputs to the canards, thus
enabling them to control attitude only in the pitch axis.

Roll is controlled by differentially commanded flaperons on the wings, and vaw
is controlled primarily by the rudder {21]. FIMT hypothesizes that in addition to
performing their primary pitch control function, the canards could also be differen-
tially commanded to aid in both roll and yaw control [5]. While this idea seems
reasonable, to date, no in-depth design study has been performed to address this
proposed solution, due to program funding limitations. Consequently, FIMT asked
the Ai: Force Institute of Technology (AFIT) to investigate the idea.

The objective of this thesis is to develop high AOA flight control laws for
an unstable non-minimum phase aircraft. A secondary objective is to demonstrate
improved performance potential at high AOA fliznt conditions, by using differen-
tial canards. In order to accomplish these objectives, linearized aircraft dyvnamics
models based on such control capability are developed. Since no flight test data
involving differential canards is available, the models are developed based on the
limited amount of differential canard wind tunnel data available. Following this,
the next major task is to develop complex weighting matrices to distribute the con-
trol inputs in the appropriate relative weightings, and ensure maximum synergistic
cffectiveness from the control surfaces. Finally, the flight control system transfer
functions are developed and the time responses are evaluated with step inputs to
determine the systems’s performance potential.

1.4 Assumptions

As with any effort of this type, certain simplifying assumptions must be made to
make the project realizable. Such assumptions are necessary due to limitations in the
student’s level of knowledge, available man-hours, computer support, etc. However,
the assumptions made for this effort have been discussed at length with experienced
flight control specialists at AFIT and FIMT, and the assumptions discussed below
have been determined to be both reasonable and valid.

The first assumption is that the control system can be properly designed using
a linearized state space model to describe the aircraft’s dynamics. This is necessary
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because most control techniques are based on the mathematics of linear sysiem
theory. It is a generally accepted engineering practice to use linearized models to
describe a non-linear system, provided such a system is operated in a relatively
small linear range about the nominal operating condition. For the case of aircraft
dynamics, this assumption is reasonable when the aircraft is operated around the
specific flight conditions for which the linear model is developed. For example, a
specified speed and altitude may be chosen as a nominal operating point about
which to vary the AOA {or other parameter of interest). Once a nominal operating
point is defined, a linearized state space model of the aircraft dynamics may be
obtained using simulations, wind tunnel tests, or flight tests.

Other flight conditions can also be chosen as nominal operating points, with
cach nominal point yielding a different state space model. It should be noted that
some models are more sensitive to certain parameter variations than others. For
example, the effectiveness of control surfaces is highly dependent on the dynamic
pressure, which is greatest at high speed and low altitude. With the nominal point
based on high speed and low altitude, the aircraft response is very sensitive to the
slightest control surf: <e inputs. This sensitivity is drastically reduced when operating
at low speed and high altitude.

The next assumption is that the available wind tunnel data for differential
canard effects is sufficient. This assumption is necessary due to the lack of any
differential canard flight test data and the very limited number of wind tunnel test
runs that were made with the canards positioned differentially. FIMT provided
all the differential canard wind tunnel data that was generated from the NASA-
Langley tests, but due to limited funding to perform this effort, the data is not
representative of the full flight envelope. Further, the limited data has large jumps
in it, and therefore requires interpolation. The differential canard aerodynamic data
must be incorporated into the linearized state space models. This is discussed in
Chapter II. Specifically, this data contains the aerodynamic coefficients that result
from various differential canard settings on the X-29. Before a control system can
be effectively designed, these coefficients are needed to predict the aircraft motions

in response to various control surface configurations.

A third simplifying assumption is that the engine thrust is fixed at a set value
for each of the operating points. Thus, only the aerodynamic control surfaces are

used to control the aircraft motions. This is a reasonable assumption, even in the real
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test flight scenarios. Frequently, a test aircraft is flown in a specified flight condition
and then the pilot perturbs one or more of his available controls to determine specific

aspects of the aircraft handling qualities in response to the desired input(s).

A fourth assumption results from the choice of nominal operating condition. In
order to fly at extreme AOA with an acceptable wing loading, the aircraft must not
fly in the supersonic or transonic regions of the flight envelope. For this study. the
aircraft models are based on an airspeed of three-tenths Mach [9]. At this compara-
tively slow speed (approximately 310 feet/second), the atmospheric compress:bility
effects may be neglected.

In addition, the aircraft is assumed to be a rigid body, constant mass vehicle.
That is, stability and control effects resulting from structural flexing or consumption
of fuel are neglected. This aircraft, like most fighter aircraft, is small enough so that
structural flexing is minimal, and changes in mass due to fuel consumption are not

significant over the period of interest for each commanded maneuver.

1.5 Scope

This effort is limited to developing a set of control laws for a high AOA fiight
control system which implements differential commands to the aircraft’s canard con-
trol surfaces. The system design entails extensive use of computer aided design and
analysis programs. The result is a paper design consisting of detailed block diagrams
with pertinent parameters identified. Such block diagrams are typically used as a
blueprint for programming the flight control computers on modern aircraft. As dis-
cussed before, actual implementation of this design would not be practical due to
the limited aerodynamic data, but the methodology discussed in this thesis can be

applied to similar design problems.

The development begins with the modification of the linearized aircraft dy-
namics models to account for the aerodynamic effects due to the use of differential
canards. The next task is the development of the complex weighting matrices to
be used in the design process. Each weighting matrix ensures that when multiple
control surfaces are commanded to produce a desired aircraft respoase, they work
together in direction and phase. This is discussed at length in Chapter 1. The con-
troi system design is accomplished using variations of a control method known as the
Quantitative Feedback Technique (QFT). This is discussed in greater detail in the
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next section of this chapter. After the control laws are developed, they are combined
with the developed aircraft dynamics models to obtain system time responses by use
of computer simulations. Finally, the achieved results are analyzed and conclusions
are drawn.

This study demonstrates that it is possible to design a flight control system
for a non-minimum phase aircraft that utilizes canards in a differential manner to
control the aircraft at high AOAs. In addition, this thesis provides useful insight to
the application and limitations of using QFT for designing a flight control system
for any unstable, non-minimum phase aircraft. Chapter II discusses this further.

Finally, the research is performed entirely with resources available at AFIT
and FIMT. The principle design work is accomplished on AFIT’s Sun work-station
computers, and the principle design software package is Matrizx {19].

1.6 Design Method

There are several well proven methods currently used in designing multi-
variable flight control systems. As mentioned above, the method employed in this
thesis is known as the Quantitative Feedback Technique (QFT). This method has
been used for other flight control system designs, and is chosen for this project in
part because of QFT’s ability to account for parameter uncertainties in the sys-
tem design. It is determined that such a capability is especially important for this
project due to the limited amount of available wind tunnel data. In addition, the
Flight Dynamics Directorate has expressed an ongoing interest ir sponsoring flight
control work using QFT as the principle design method. An earlier AFIT thesis
discussed the application of QFT to the longitudinal channel of the X-29 flight con-
trol system. That particular study did not involve high AOA flight conditions or
differential canards [27). QFT is a frequency design technique that may be applied
to either analog (continuous time) or digital (discrete time) control systems. The
design for this effort is performed for an analog flight control system. The principle
objectives of this thesis are met by performing the design entirely in the continuous
time domain {23].

Before describing the design procedure used in this thesis, a brief discussion
of flight control dynamics may help to clarify the reasons for treating the overall
design as two separate design problems. Aircraft flight control systems are typically
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designed around two primary modes: longitudinal and lateral-directional. These
modes result from the partial decoupling of the basic aircraft dynamics equations of

motion. Detailed derivations and analyses of these equations are provided in several
references (2] [8] [20].

To briefly summarize, there are three force equations and three moment equa.-
tions. The longitudinal mode involves the pitching moment (M) about the lateral
axis and the two forces confined to the plane of symmetry: longitudinal force (X)
and vertical force (Z). The lateral-directional mode involves the side force (Y), and
the rolling (L) and yawing (N) moments about the longitudinal and vertical axes, re-
spectively. These two primary modes have been shown to be virtually decoupled for
conventional aircraft [2]. Examples where this is not true would be unconventional

aircraft such as lifting bodies and cruciform wing ruissiles.

The aircraft models developed in this thesis are based on the X-29A, which,
though unusual, is still considered a conventional aircraft, so its flight control systems
are divided into the two primary modes described above [3]. Consequently, the design
method used in this thesis treats the two modes independently.

The overall flight control system developed in this research is a three-by-three
system, with three inputs and three outputs. Three control variables are frequently
chosen when designing flight control systems [23]. QFT’s design methods are based
on a square system, so the number of inputs equals the number of outputs. A
four-by-four system could be designed, but would result in significant computational
difficulties when performing such operations as matrix inversion, and such a system
in most cases does not inherently perform any better than a properly dcsigned three-
by-three system. It should be noted, however, that choosing to use four or more

control variables may result in a more effective control system design.

In this design, the three outputs are fed back to the inputs in the conventional
manner. The control variables are chosen to be pitch rate (Q), roll rate (P), and yaw
rate (R). It should be noted that the nominal angular rates are denoted by capital
letters. The time-varying perturbations of these variables, to be used in the state
space models discussed in Chapter II, are denoted by lower case letters.

There are numerous other choices that can be used for the feedback control
variables, such as; pitch, roll, and yaw angles, AOA, sideslip angle, forces, or linear
combinations of such -tiables. The feedback variables chosen for this effort were
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recommended by FIMT [1]. It was recommended that feeding back any variables
containing force terms would not be ideal for this application since the aircraft speed
is relatively slow, and changes in linear forces would be quite small. However, feeding

back and controlling the angular rates is quite effective even for slow speeds.

It is recognized that this combination may not be the optimum choice of con-
trol variables when dealing with a non-minimum phase aircraft. However, for a
study such as this, with limited data for aircraft model development, the choice
is reasonable and all three control variables are directly accessible state variables.
Pitch rate is the only longitudinal control variable, so the longitudinal controller is a
SISO design. The remaining two control variables, roll rate and yaw rate, are in the

lateral-directional control mode and that controller is a two-by-two MIMO design.

Before the actual design process can commence, the appropriate linearized
aircraft dynamics models must be defined. In this case, existing aircraft models
are modified to account for the differential canard aerodynamic effects. The QFT
designs commence with the development of the complex weighting matrices. The
weighting matrices match-up, in correct proportions, the number of desired control
inputs with the larger number of control surfaces, and ensure that the control surfaces
are working in phase with each other. Following this, variations of QFT methods are
used to design the compensator and prefilter transfer functions for the longitudinal
and lateral-directional controllers. The particular variations used are known as the
optimal blending method and the singular-G compensation method. The unstable,
non-minimum phase characteristics of these aircraft models require the use of such
specialized design techniques.

Finally, due to extreme variations encountered in the aircraft dynamics at the
different flight conditions, a different set of control laws is developed for each AOA. A
single controller that can handle such extreme variations in plant parameters cannot
be readily designed with the chosen technique [15).

1.7 Organization

This thesis is presented in six chapters. Chapter II addresses the aircraft model
development by first briefly describing the X-29A, and then discussing how the lin-
earized state space models are developed and modified, based on limited amounts of
X-29 wind tunnei data. Next, Chapter III discusses the deveiopment of the complex
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weighting matrices. Due to the very unusual characteristics of the aircraft’s flight
dynamics, the weighting matrix development presents a significant challenge. Sev-
eral approaches are tried before the desired results are finally obtained. A specialized
shifting technique is finally used to obtain the desired results, and a brief explanation
of the reason for using such a technique is provided. The unsuccessful results are
also discussed briefly, to show why conventional compensation techniques did not
work well with this system.

The next two chapters describe the actual control system design procedures,
and discuss in detail the application of the specialized QFT design techniques men-
tioned earlier. The longitudinal flight control systems are discussed in Chapter IV,
and following an in-depth discussion of the design process, simulated responses to
a step input are shown and analyzed. Chapter V discusses the lateral-directional
(MIMO) controller design. Once again, due to the aircraft’s unstable, non-minimum
phase characteristics, numerous problems are encountered and specialized design
techniques are presented to handle them in an optimal fashion. A complete lateral-
directional controller is not designed, but the material covered in the chapter provides
useful information for design work involving such difficult to handle systems. Finally,

Chapter VI presents conclusions based on the results obtained, and recommendations

“for future research efforts.
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II. Development of Mathematical Aircraft Models
2.1 Introduction

This chapter discusses the development and modification of the mathematical
aircraft models used in this design. The X-29A technology demonstration aircraft is
the basis for these models. It is mentioned in Chapter I that due to the availability of
only limited amounts of wind tunnel data, the models developed here do not represent
the X-29’s actual performance. However, since the overall flight control configuration
used in this thesis is most like that of the X-29, it is useful to understand the effects
of some of that aircraft’s advanced technologies. Following a general overview of the

aircraft, the aerodynamic control surfaces are discussed in greater detail.

The second half of this chapter is devoted to the linearized aircraft model
equations. First, the state space model is discussed and the state variables are
defined. The initial aircraft dynamic model coefficients were obtained from the
Air Force Flight Dynamics Directorate (WL/FIMT). FIMT obtained the data from
the NASA Ames-Dryden Research Center, located at Edwards AFB, CA. These
original state space models are based on the use of symmetric canard positions. The
aircraft dynamics models are modified in this thesis to account for the aerodynamic
effects resulting from the use of differential canard positions. The modifications are
performed using wind tunnel data obtained from NASA’s Langley Research Center
in Hampton, VA.

Due to the limited amount of differential canard wind tunnel data, only four

flight conditions are chosen as nominal design points. Specificaily, four different

AOAs are selected for a single speed and altitude condition. It is recognized that
a single operating condition (speed and altitude) does not account for the effects of
changing dynamic pressure. However, demonstrating the development of high AOA
control laws utilizing differential canards is possible based on a few carefully selected
nominal design points. Design of a control system capable of operating across the
full flight envelope would require much more aerodynamic data and is well beyond

the scope of this effort.




2.2 Aircraft Description
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Figure 2.1. X-29A Advanced Aircraft Technologies [21]

Chapter I described the X-29A’s primary purpose; that of an advanced technol-
ogy demonstrator. Some of these unusual technologies are evident by looking at the
aircraft. Others, however, are not so obvious. The aircraft’s most striking feature is
the forward swept wing (FSW). As shown in Figure 2.1, the wing has a high degree
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of forward sweep, with the center of lift clearly aft of the aircraft’s midpoint. The
reasons for designing an aircraft with such an unusual planform may not be obvious.
The overriding reason is greatly increased aerodynamic efficiency. When com,.ared
with a conventional aft swept wing, the FSW results in drag reductions of at least
20 percent, and in the transonic speed range (0.8 to 1.2 Mach), this figure may be as
high as 45 percent. The benefits are clear; for a desired performance level, a fighter
using the FSW may be designed around a smaller, lighter, more fuel efficient power
plant.

Another key benefit of the FSW is the fact that the airflow is directed from
the wing tips toward the fuselage. This means that when the wing stalls (loss of lift

under extreme AOA), the ailerons remain effective for roll control. Aircraft with aft

" swept wings stall from the tips first, resulting in early loss of control. On the X-29A,

the stall initiates at the wing root. This aerodynamic characteristic, combined with
the use of close-coupled canards, enables the X-29A to fly and remain controllable at
AOAs greater than sixty degrees. Prolonged controlled flight at such extreme values
of AOA has been virtually impossible for conventional aircraft designs.

The close-coupled canards are another readily distinguishable feature of the
aircraft. The term close-coupled refers to the aerodynamic interactions that take

place between the canard and wing, due to their close proximity to each other.

-The principle function of the canards, that of primary pitch control surfaces, is

discussed in Chapter I. The canards also contribute substantially to the aerodynamic
efficiency of this aircraft. On a conventional aircraft with aft mounted stabilators, the
stabilator must actually provide a negative lift to counteract the downward pitching
moment caused by the center of gravity being forward of the center of lift. This is
shown in Figure 2.2.

On the X-29A, this downward pitching moment is counteracted by placing the
canards in front of the wing. This enables the canards to balance the aircraft by
providing a positive lift, thus working with the wing to provide lift for the aircraft.
Unfortunately, this benefit is not without penalty. With the canards contributing a
substantial portion of the total lift, the overall center of lift is well forward of the
center of gravity. This condition results in an aircraft that is inherently unstable in
the pitch axis. Indeed, the X-29A would be completely impossible to fly if it were
not for the highly advanced flight control system.
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Figure 2.2. Comparison Between Stabilator and Canard [21]

Due to the extreme importance of the flight control system, this aspect of the
aircraft is highly redundant. There are, in fact, three independent flight control
systems that work simultaneously. Each of these systems has both a primary dig- -
ital computer and an analog backup computer (with independent power supplies).
Further, should one of the systems fail, the other two systems would take over and
switch off the failed unit. In the extremely unlikely event of two systems failing,
the pilot would still be able to land the aircraft with one system operating. The
flight control system usually controls the longitudinal and lateral-directional modes
in what is termed the normal digital mode.

A backup mode termed the analog reversion mode is available to get the air-
craft safely home with very limited maneuvering capability. In addition, the normal
digital and analog reversion modes are each capable of operating in two flight control
configurations known as up and away and powered approach. These two configura-
tions differ in the gain scheduling applied to the various control surfaces.
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The flight control system is continuously updated by senscrs providing infor-
mation such as attitude, speed, air temperature, AOA, and side-slip angle. The
flight control system compares the actual parameters with the desired ones and min-
imizes the error by sending commands to all the control surfaces at a 40 Hertz rate.
This high speed control process occurs continuously just to maintain aircraft stabil-
ity. The flight control system also responds to pilot commands (stick, rudder, and
throttle inputs), and simultaneously sends the appropriate electronic control signals
to the control surface actuators to accomplish the commanded flight maneuver(s).
Since there is no mechanical connection between the pilot’s flight controls and the
aircraft’s control surfaces, the system is termed fly-by-wire.

QOne of the less obvious technologies is the use of advanced composite materials
in the construction of the wing. It is readily apparent that 2 wing with this radical
design would tend to twist excessively near the tips, especially under relatively high
loading conditions. Conventional materials are siinply not able to provide the re-
quired strength, while at the same time being sufficiently thin and light weight. The
composite material enabled the engineers to demonstrate another advanced tech-
nology; the thin supercritical wing section. This NASA developed design is only
one-third as thick as a conventional wing of comparable size. The aerodynamic
benefit is a softening of the transonic shock waves, and a significant reduction of
buffeting and drag in the transonic spced range.

Another unusual feature of the wing is the use of full span flaperons. The
unique feature noted here is that the flaperons are not conventional hinged control
surfaces. Rather, these surfaces actually bend the shape of the wing’s trailing edge
by altering the camber, or curvature. A feature of the flight control system known
as automatic camber control changes the symmetric position of the flaperons at the
40 Hertz rate to minimize drag for the current flight condition. The flaperons’ use
as pitch and roll control surfaces is discussed in the next section.

2.3 Control Surfaces

The longitudinal mode is controlled by three sets of control surfaces, as shown
in Figure 2.3. The principle pitch control surfaces are the canards. A noteworthy
feature of the canards is their extreme amount of travel. Capable of ranging from

+30 to -60 degrees, the canards can remain parallel to the relative wind for nearly all
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Figure 2.3. Pitch Control Surfaces [21]

achievable AUAs. Positive deflection is defined with the surface’s trailing edge down
"TED). With the present flight control system design, the canards kave essentially
. o »%fect on the lateral-directional inode.

In addition to tlie canards, the variable camber flaperons coatribute to pitch
control when driven symmetrically. The total range of flaperon travel is 35 degrees.
However, because of the varizb'e camber function, these surfaces are asymmetrically
limited to +25 and -10 degrees. Again, positive deflection is deiined with the control
surface TED. The flaperons contribute only a small amount of the total pitch control,
since they lie roughly along the lateral axis, and the moment x:r> is quite short.
Conversely, the small strakes near the exhaust nozzle contribute a substantial portion
of the total pitch control, because their moment arm is relatively long. Currently,
these surfaces are commanded to move a great deal in the powered approach mode
to help control pitch under low speed conditions, when the canards are less effective.
The strakes have a travel range of + 30 degrees, again with positive deflection of the
control surface defined with TED.

Lateral-directional control is currently provided by a combination of differen-
tially commanded flaperons and the rudder. The sign conventions for the differential
flaperons (acting like ailerons in this mode) and rudder are the same as for other
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aircraft; positive deflections result in right wing down and left turn, respectively
[21]. The focus of this thesis is to investigate the use of differential canards to aid
the differential flaperons and rudder in controlling the lateral-directional modes (roll
and yaw). The differential canard sign convention is chosen to be the same as that of
the differential flaperons, with positive deflection being defined with the left surface
TED. The control surface characteristics are summarized in Table 2.1.

Control Surface Position Limit | Rate Limit | Area
(deg) (deg/sec) | (ft?) "
Canard +30, -60 +100 37.0
Symmetric Flaperon +25, -10 £70 14.32
Differential Flaperon +17.5 +70 14.32
Rudder +30 +125 7.31
Strake +30 +30 5.21

Table 2.1. Control Surface Characteristics [3]

2.4 Actuator and Sensor Models

All of the control surfaces are controlled by electro-mechanical servo-actuators.
The actuators receive electrical signals from the flight control system and deflect
the control surfaces accordingly. Since the actuators are an integral part of any
aircraft flight control system, they must be mathematically modeled along with the
aircraft dynamics. The mathematical models may be in the form of either time
domain or frequency domain transfer functions. Manufacturers typically provide
frequency domain transfer functions for their actuators. Fourth order models of
these actuators are shown in Table 2.2. Note that the denominators have been
factored to show the first order exponential terms, and the second order oscillatory
terms. Also, the second order terms have been written in such a way to clearly show
the damping coefficient ({) and the natural frequency (w,). The standard form is
given by [s? + 2¢w, +w?].

For the most part, the actuators act like an exponential delay in the time do-
main, due to the effects of the dominant roots. Therefore, aircraft control surface

actuators are usually represented by first order approximations, in the frequency
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(0.885)(20.2)(71.4)%(144.9)
Canard (5+20.2)[s2+2(0.736)(71.4)5+(71.4)2](5+144.9)

(20.2)(71.4)%(144.9)

Symmetric Flaperon (5+20.2)[s2+2(0.736)(71.4)5+(71.4)3) (s+ 144.9)

Differential Flaperon
& (54.1)%(71.4)%

[5242(1.53)(54.1)s+(54.1)2)[s2+2(0.735)(71.4) s+ (: 1.4)7]
Rudder

(50)(100)(325)2
Strake (s+50)(s+100)[s2+2(0.7)(325)s+(325)?]

Table 2.2. Fourth Order Actuator Models (3]

domain. By using such approximations, the order of the overall control system is
decreased significantly. First order approximations are used in this thesis, and are
shown in Table 2.3. When comparing these approximations with the original fourth
order models in Table 2.2, the dominant roots are readily seen for the canard, sym-
metric flaperon, and strake. The dominant root at s = —20 for the differential
flaperon and rudder comes from factoring the first quadratic term in each denomi-
nator. In all cases, the non-dominant roots are sufficiently far away from the origin
to have a negligible effect on the response characteristics.

These approximations have been validated in a recent AFIT thesis by Captain
Tom Cox [6]. For one of his tasks, Capt Cox entered the aircraft dynamics models
with the current flight control system design into both Matrizy and SIMSTAR
computer simulations programs at AFIT. Capt Cox ran his simulations with the
fourth order actuator models and again with the first order approximations, and
noted that the results were virtually identical. Further, FIMT [9] notes that these
approximations are commonly used to model the control actuators for simulation
and design purposes.




it

Canard,

Symmetric Flaperon,
Differential Flaperon, sf_go
&

Rudder

Strake ng”o'

Table 2.3. First Order Actuator Models [3]

The feedback signals (pitch rate, roll rate, and yaw rate), are sensed by rate
gyros. The rate sensing gyros are modeled by second order transfer functions as
shown in Table 2.4. For the control system design in this thesis, the frequency range
of interest is roughly 0.1 to 100 rad/sec. Long term drift characteristics below 0.1
rad/sec are easily controlled by the autopilot, and frequencies above 100 rad/sec are
attenuated in the feedback system to avoid exciting structural modes. Further, the
effective bandwidth of the human pilot ranges from approximately 1 to 10 rad/sec.
The natural frequencies of the rate gyros are high enough so that their gain atten-
uation in the frequency range of interest is negligible. Therefore, the sensors are
modeled as unity gain functions for this design effort.

-Pitch Rate Gyro

& (137)
ST42(0.704)(137)s+(137)2
Yaw Rate Gyro

(157)?
Roll Rate Gyro | 5m76n (15752 (15772

—

Table 2.4. Sensor Models [3]




2.5 Linearized Aircraft Model Equations

The linearized aircraft dynamics models used in this effort are based on state
space models provided by FIMT. The original models were generated by NASA's
X-29A six-degree-of-freedom non-linear simulation program, and represented 2 wide
range of flight conditions. The models were provided in the form of A,B,C, and D
matrices. These matrices form the System matrix (S) shown in Equation 2.1. This
matrix contains all the coeflicients of the system’s differential equations written in
the standard state space form shown in Equations 2.2 and 2.3.

A B
S = cee - (2.1)
] C D
x(t) = Ax(t) + Bu(t) (2.2}
y{t) = Cx(t) + Du(t) {2.3)

Equation 2.2 is the state equation which relates the time rate of change of the
state vector to the control vector. Equation 2.3 is the oulput equation which relates
the system output vector to the state vector, and also the control vector when 2
feed-forward path is present in the control system. Figure 2.4 is the block diagram
representation of Equations 2.2 and 2.3.

The state vector x(t) contains all the variables needed to completely describe

- the system’s behavior. These variables are discussed in greater detail in the next

paragraph. The A matrix is known as the system dynamics matrix, and the B

matrix is known as the control matrix. Both relate the state variables to the input
vector u(t).

The output vector y(t) is determiaed by using the output matrix C to form
a linear combination of the state variables. The feed-forward matrix D is used to

relate outputs directly to inputs. For most flight controi systems, the D matrix
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u(t) B v, e ¢ AN v

Figure 2.4. Block Diagram Representation of State Space

is zero-v. . .ed, as is the case in this design. Finally, it should be noted that since
this design is based on linear time-invariant (LTI) analysis and design methods, the
elements of the systemn matrix are not time varying. This condition holds for small
perturbations about each nominal point, as discussed in Chapter I.

The models provided by NASA include a total of eight states; four longitudinal
and four lateral-directional. The longitudinal states are forward velocity [v(¢)], AOA
[a(?)], pitch rate [¢(f)], and pitch angle [6(t)]. Angle of attack is defined as the
angle between the aircraft’s longitudinal axis and the velocity vector as projected
onto the vertical plane of symmetry (defined by X and Z). Pitch angle is defined
with positive deflection corresponding to a nose up attitude relative to the local level
defined in inertial coordinates. Figure 2.5 pictorially defines these angles in relation
to the aircraft.

Having defined the state variables associated with the longitudinal mode, the
longitudinal state vector x;q, (t) is:

[ v (t) forward velocity (ft/sec)

alt angle of attack (de

Xion (£) = (2) g (deg) (2.4)
q(t) pitch rate (deg/sec)

| (1) | pitch angle (deg)
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Longitudinal
Axis

Horizontal

Velocity
Vector

Figure 2.5. Definition of a and

The four lateral-directional states are side slip angle [8(t)], roll rate [p(t)], yaw
rate [r(t)], and bank angle [¢(t)]. Positive bank angle is defined with the right wing
down relative to the local level coordinate frame, as shown in Figure 2.6. Side slip
angle is defined as the angle between the aircraft’s longitudinal axis and the velocity
vector as projected down onto the local level plane (defined by X and Y). Positive
side slip is sometimes referred to as having wind in the right ear. This is shown in
Figure 2.7.

Level

View From Rear \

Figure 2.6. Definition of ¢
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Longitudinal
Axis

Velocity
Vector

Looking Down

Figure 2.7. Definition of S

Xlat (t) is:

B (t) 1 side slip angle (deg)

Xiat (1) = P(t; roll rate (deg/sec)

(t
(

T yaw rate (deg/sec)
¢

-

t) bank angle (deg)

vector as initially defined is:

2-13

With the remaining state variables defined, the lateral-directional state vector

o
(o1}

The input vectors, like the state vectors above, are defined in the two pri-
mary flight control modes. The longitudinal input vector uy,n (t) originally provided
contains four elements corresponding to control perturbations. Three of these cor-
respond to small control surface deflections and the remaining element corresponds
to small variations in engine thrust. Specifically, the four elements of the original
input vector are symmetric canard [6, (t)], symmetric flaperon [d,s (¢)], strake flap
[6s¢r (2)], and engine thrust [8s (t)]. The next section discusses the modification of
the input vectors to incorporate difierential canard effects. The longitudinal input




[~ 1

8. (t) symmetric canard (deg)

) bs5 (2) symmetric flaperon (deg) (2.6)
Uion = 2
8str () strake flap (deg)

Sun (2) thrust (lbs)

The original lateral-directional input vector uyq; () contains only two elements.
These are differential flaperon [é4 (t)], and rudder [6, (t)]. Again, the modification
of this vector is discussed in the next section. The original lateral-directional input
vector is:

(2.7)

bas (2) differential flaperon (deg)
[} TPV (t) =

5, () rudder (deg)

Having defined the state and input vectors, the design analysis proceeds with
the examination of the complete state space models originally generated by the
NASA simulation. Although the original models were provided for a wide range of
flight conditions, only four nominal points are chosen for this design effort, due in
part to the limited amount of available differential canard wind tunnel data. The
wind tunne] data is based on a low speed and low altitude flight condition with
varying AOAs. For this design, one specific speed and altitude pair is chosen as
the nominal flight condition about which to vary the AOA. It was determined that a
representative flight control system can be designed using only four properly selected
nominal points. The four AOA values selected for this design are 20, 40, 50, and 60

degrees. The reasons for selecting these specific values are discussed in greater detail
in the next section.

The original longitudinal and lateral-directional A, B, C, and D matrices for
each of the four flight conditions are given in Appendix A. The state space models,
after being modified, are transformed into high order transfer functions known as

open-loop plants. The plants are the basis of the QFT design process to be described
in subsequent chapters.

Finally, the aircraft considered in this research is unstable and non-minimum
phase. These characteristics result from the system plants having poles and zeros in
the right half of the complex s-plane. The right-half-plane (RHP) poles cause the
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open loop system to be unstable, and the RHP zeros result in the non-minimum phase
characteristics (i.e. they add excess phase lag). The physical properties that result
in these mathematical characteristics are due to aerodynamic phenomena resulting
from such considerations as the relative placement of control surfaces, their relative
sizes, and the locations of rate sensing gyros. An in-depth aerodynamic study of
this aircraft is well beyond the scope of this thesis, but the principle reasons for the

longitudinal static instability were discussed previously.

The undesirable effects resulting from these mathematical characteristics are
discussed in detail in Chapters IV and V. However, it is useful to examine the
poles of the initial dynamics models, to verify the expected open loop instability
characteristics for each of the flight conditions. This is accomplished by obtaining
the eigenvalues (A) of each A matrix [8]. The task is performed using Matrizx and
the results are shown in Appendix B. The longitudinal mode’s eigenvalues for the
first flight condition (a = 20) are repeated here for discussion.

[ —0.0203 +0.12575 |
—0.0203 — 0.1257;
/\lon20 = ( .

0.7080 + 0.0000;

| —1.0302 4 0.00005 |

[S)
(vs]
~—

It is noted that one of the four poles is in the RHP, and thus causes the system
to be unstable. Complex poles in the RHP add oscillatory instability characteris-
tics, while an RHP pole on the real axis contributes a purely exponential form of
instability, as is the case here.

Using a similar analysis procedure for the remaining cases, it is noted that
the open loop dynamics become slightly more stable in the pitch axis as the AOA
increases. This is seen by the fact that the RHP poles, for the longitudinal cases,
approach the origin as the AOA increases and finally become left-half-plane (LHP
) poles for the 60 degree case. However, in the lateral-directional modes, the open
loop aircraft dynamics are clearly unstable for all four of the chosen flight conditions,
as evidenced by the RHP poles present in all cases. These results were shared with
FIMT and it was verified that the actual aircraft tends to behave in this manner [9).
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2.6 Modification of Aircraft Model Equations

This section discusses how the wind tunnel data generated by the NASA Lan-
gley Research Center is used to modify the linearized state space models to account
for the aerodynamic effects due to differential canard positions. The raw data is in
the form of coefficients of lift, drag, side force, and pitch, roll, and yaw moments.
These coefficients were obtained over a wide range of AOAs. The data was obtained
for a constant dynamic pressure. FIMT stated that the data is reasonably accurate
up to a speed of 0.5 Mach and an altitude of 30,000 feet, based on information pro-
vided by NASA. For this design study, FIMT recommended a single flight condition
of 0.3 Mach and 20,000 feet, to use as the nominal trim condition. This trim condi-
tion allows the AOA to vary up to sixty degrees without introducing concern over
excessive structural loading [9].

The first wind tunnel runs were made with symmetric canard settings of 0, -25,
and -40 degrees. Recall that positive canard deflection is defined with the trailing
edge down. The initial runs were followed by similar runs with the canards set at
4+ 20 degrees about the nominal symmetric deflections. This resulted in differential
values of -5 & -45, and -20 & -60 degrees, respectively.

The coeflicients obtained from each symmetric deflection run are subtracted
from the coefficients produced during the corresponding differential deflection run.
These results are then divided by the nominal differential amount of 20 degrees
to obtain the stability derivatives with respect to differential canard inputs. This
procedure was provided by the Air Force Flight Dynamics Laboratory [5]. While this
procedure is an accepted method used to obtain stability derivatives, it is recognized
that the expected accuracy of these results is quite limited. This is due primarily
to having only a single differential deflection, and the fact that this deflection is
perhaps unrealistically large for many flight maneuvers. It is likely that with such
large differential deflections one of the canards might be stalled (loss of lift resulting
from disrupted airflow) under certain flight conditions.

Appendix C lists the two symmetric and the two differential coefficient matri-
ces. Each matrix has six columns, corresponding to the aerodynamic coefficients,
and 13 rows, corresponding to AOAs ranging from zero to sixty degrees in five degree
increments. The side slip angle is zero for all cases. The order of the aerodynamic
coefficients as listed in the matrices is: lift (Cr), drag (Cp), pitching moment (Car),
side force (Cy ), yawing moment (Cy ), and rolling moment (C;). The general method
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used to obtain the stability derivatives is discussed in the previous paragraph. The
most efficient way to obtain the desired results is to subtract the appropriate sym-
metric coefficient matrix from its corresponding differential coefficient matrix and
divide the result by 20. Since there are two nominal symmetric deflections, this
results in two complete sets of stability derivatives from which the desired values are
chosen as discussed below. The matrix calculations are performed using Matrizy,

and the results are included in Appendix C.

As an example, in order to obtain the Cps stability derivative for 20 degrees
AOA, the symmetric value is subtracted from the differential value and divided
by 20. Referring to the first set of wind tunnel coefficients (based on 25 degree
symmetric defection), the symmetric value (-0.2023) is read from the (5,3) position
of the ‘sim25’ matrix. This is subtracted from the corresponding value (-0.2076)
from the ‘diff25’ matrix, and the result is divided by 20 to obtain the result shown
in the (5,3) position of the ‘stabder25’ matrix (-2.650E-4).

At this point the choice is made to use the four previously defined AOAs. Since
the focus of this thesis is to investigate controlled flight at extreme values of AOA, a
reasonable selection of nominal points includes 40, 50, and 60 degrees. In addition,
a moderate AOA value of 20 degrees is chosen to possibly demonstrate the potential
robustness of the QFT design process.

To minimize adverse effects resulting from extrapolating data, the 20 degree
AOA coeflicients are taken from the results based on 25 degree symmetric deflections
(i.e. row five of the first stability derivative matrix ‘stabder25’ shown in Appendix
C). Similarly, the three high AOA coefficient sets are taken from the matrix based
on 40 degree symmetric deflections (i.e. rows 9, 11, & 13 of the second stability
derivative matrix ‘stabder40’.) This is clarified by examining the 20 degree AOA
Cu stability derivative once again. Since the ideal (minimum drag) flight condition
is to have the canards positioned so that they are aligned with the relative wind, a
symmetric deflection of 25 degrees for an AOA of 20 degrees is reasonable. However,
a symmetric canard deflection of 40 degrees while flying at 20 degrees AOA would
result in a high drag configuration, and any results based on such extreme operating
conditions would not be expected to be reasonable. The result of this can be seen by
noting the calculated value in the (5,3) position of the ‘stabder40’ matrix (+7.350E-4)
and comparing this with the valuz previously obtained from the ‘stabder25’ matrix.
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Figure 2.8. Translation of Lift and Drag into Longitudinal Forces

Before modifying the B matrices, it is necessary to translate two of the six
aerodynamic coefficients for each of the chosen flight conditions. It is standard
practice to obtain lift and drag coefficients from wind tunnel test runs. However,
the aircraft dynamics equations that form the state space models are based on the
three orthogonal forces and three orthogonal moments defined in Section 1.6. Lift
and drag must therefore be translated into the X and Z forces. The translation is
required when the AOA is not zero, as shown in Figure 2.8. Simple trigonometric
calculations based on the figure are used to perform the translation. Equations 2.9
and 2.10 are the general equations and the values for the 20 degree case are calculated
from Equations 2.11 and 2.12.

Cz = ~Cpcos(a) — Cpsin(a) (2.9)

Cx = Cpsin(a) ~ Cp cos(a) (2.10)
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Czzo = (4.000E — 5) * cos(20) — (3.550E — 3) #sin(20) = —3.229E -3 (2.11)

Cxz = (—4.000E — 5) # sin(20) — (3.550E — 3) x cos(20) = —1.487E —3 (2.12)

Appendix D lists the four sets of stability derivatives obtained from the calcu-
lations performed in Appendix C. For each flight condition, the first two entries (Cr,
& Cp) are used to calculate the translated X and Z force stability derivatives, and
those results are also shown in the appendix. Finally, the four sets of differential
canard stability derivatives are listed in Table 2.5. These are now used to define the
modified state space models.

HAOA] Cx | Cz | ¢&uw | o | o | C ]
20 [[ -1.487D-03 | -3.229D-03 | -2.650D-04 | -5.250D-03 | 4.050D-04 | -2.305D-03
40 | 2.609D-03 | -2.255D-03 | 2.345D-03 | -6.420D-03 | -1.550D-04 | -1.530D-03
50 || 3.504D-04 | 4.490D-03 | -7.700D-04 | -3.675D-03 | 3.150D-04 | -2.145D-03
60 || 1.960D-03 | -5.305D-03 | -3.555D-03 | -3.290D-03 | 4.550D-04 | -1.125D-03

Table 2.5. Final Differential Canard Stability Derivatives

Now properly defined, the four sets of stability derivatives need to be incor-
porated into the B matrices, since the original control vectors do not contain any
terms accounting for differential canard effects. Following extensive discussions with
Dr Meir Pachter [22], the following approach is decided upon.

The original longitudinal control vector contained a term for delta thrust, which
related to the corresponding entries in the fourth column of the original B matrix.
However, for this simulation the thrust is assumed to be constant, so the original
fourth column entries in the B matrix are not needed. This means that the Jongitu-
dinal B matrix can retain its original dimensionality by replacing the fourth column
with the coefficients obtained using differential canard control inputs. The longitu-
dinal B matrix is then modified by deleting the fourth column, moving the second
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and third columns to the third and fourth column positions, and inserting the appro-
priate differential canard longitudinal stability derivatives into the second column.
The two longitudinal B matrices for the 20 degree flight condition are shown below.
The modified matrix is denoted with a tilde.

—-8.8250D - 02 -—-8.5710D-02 -—2.3390D - 02 1.0280D - 01
. -3.3100D - 04 -—3.4930D-04 -2.1030D-04 -=1.2020D - 04 .
Bion2o = (2.13)
1.2410D - 02 -=2.7310D—-03 -9.6810D—03 =9.0470D — 04
0.0000D + 00 0.0000D + 0C 0.0000D + 00 0.0000D + 00
( -8.8250D~02 -—-1.4872D-03 -8.5710D~-02 -2.3390D - 02
~ -3.3100D-04 -—-3.2292D —-03 -3.4930D—-04 -2.1030D — 04
Bionzo = (2.14)
1.2410D - 02 -—-2.6500D-04 -—2.7310D-03 -9.6810D ~ 03
0.0000D + 00 0.0000D + 00 0.0000D + 00 0.0000D + 00

In each case, the X force coeflicient is in the forward velocity equation, the Z
force coefficient is in the AOA equation, and the pitching moment coefficient is in
the pitch rate equation. The modification is required to match up the longitudinal

B matrix with the modified longitudinal control vector, which is defined below.

[ 6. (1) - symmetric canard (deg)
fion (1) = ac (1) differential canard (deg) (2.15)
ar () differential flaperon (deg)
8ser (2) strake flap (deg)

The dimensionality of the lateral-directional B matrix, and its corresponding
control vector, is increased by one. In this case, the lateral-directional stability
derivatives associated with the differential canard control inputs are augmented as a
third column in the lateral-directional B matrix. The original and modified lateral-

directional B matrices for the 20 degree flight condition are shown below.
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—-8.8650D - 05 2.0300D - 04
1.3280D - 01 1.0630D — 02

Bisizo = (2.16)
7.1400D -03 ~-9.8750D — 03

0.0000D+00  0.0000D + 00

—8.8650D — 05 2.0300D - 04 -5.2500D - 03
~ 1.3280D -~ 01 1.0630D—-02 -2.3050D - 03 .
Btz = (2.17)
7.1400D - 03 —9.8750D — 03 4.0500D — 04

0.0000D+00  0.0000D+00  0.0000D + 00

The side force coefficient is in the side slip angle equation, and the yaw and
roll moments are each in their corresponding rate equations. Finally, the modified

lateral-directional control vector is defined below.

T

das (1) differential flaperon (deg)
Uit (8) = | 6- (2) rudder (deg) (2.18)
b4 (1) differential canard (deg)

The modified B matrices for all four flight conditions are shown in Appendix
E. Finally, the original C matrix is modified in all cases to transmit only the de-
sired state variables, p(t), q(t), and r(t) to the system outputs. Since there is no
feed-forward path in this control system, the D matrices are all zero-valued. The

longitudinal and lateral-directional C matrices are shown in Equations 2.19 and 2.20.

0000)
0000
0010
000 0]
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(000 0]
0100
0010
(000 0]

Appendix F lists the final state space system matrices for all four flight con-
ditions. In each case, the S matrix is used to generate the open loop plant transfer
functions from the appropriate System Build files. The longitudinal and lateral-

directional S matrices for the 20 degree flight condition are given below.

Slon20 =

Columns i thru 6
-6.7320D-02 -1.9190D+01 -5.8320D-01 -3.2110D+01 -8.8250D-02 -1.4872D-03
-6.0200D-04 -1.4980D-01 9.9480D-01 -3.9770D-09 -3.3100D-04 -3.2292D-03
.9330D-04 .3440D-01 -1.4560D-01 ~-2.2720D-09
.0000D+00
.0000D+00 .0000D+00 .0000D+00

1.2410D-02 -2.6500D-04

0 0 0

0 0 0

.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0 0 0

0 0 0

.0000D+00 .0000D+00  1.0000D+00 .0000D+00 .0000D+00
.0000D+00  0.0000D+00
.0000D+00
.0000D+00 .0000D+00  1.0000D+00 .0000D+00

.0000D+00  0.0000D+00 .0000D+00

.0000D+00
.0000D+00

.0000D+00

4
0
0.0000D+00
0
0
0 .0000D+00

0 O O O O ~N

.Q000D+00

Columns 7 thru 8
-8.5710D-02 -2.3390D-02
-3.4930D-04 -2.1030D-04
-2.7310D-03 -9.6810D-03

0.0000D+00  0.0000D+00
0.0000D+00  0.0000D+00
0.0000D+00  0.0000D+00
0.0000D+00  0.0000D+00
0.0000D+00  0.0000D+00




SlatZO =

Columns i thru 6
-6.8010D-02 3.4030D-01 -9.3810D-01 9.7000D-02 -8.8650D-05 2.0300D-04
-1.8850D+01  1.4380D-02 1.2860D-01 1.4200D-06 1.3280D-01 1.0630D-02
1.0090D+00 -3.3750D-02 -1.3520D-02 4.3340D-07 7.1400D-03 -9,8750D-03
0.0000D+00 1.0000D+00 3.6400D-01 €.6800D-03 0.0000D+00  0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00  0.0000D+00  0.0000D+00
0.0000D+00 1.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00  1.0000D+00 0.0000D+00 ©0.0000D+00  0.0000D+00
0.0000D+00 0.0000D+0C  0.0000D+00  ©.0000D+00 0.0000D+00  0.0000D+00

Columns 7 thru 7
-5.2500D-03
-2.3050D-03
4.0500D-04
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

2.7 Summary

This chapter presents a brief overview of the X-29A technology demonstration
aircraft, since that aircraft is used as the basis for the aircraft models developed in
this design problem, and then provides an in-depth look at the control surfaces. The
reduced order actuator models are developed, and the models of the pertinent flight
control sensors are: discussed. The next section begins with a brief discussion of how
state space models are used to represent a system of linear differential equations in a
more convenient form. Following this, the initial linearized aircraft model equations

are described. The system state vectors are defined, and the system control vectors
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are presented in their original form. As an interim check, the system eigenvalues are

obtained and examined to verify the expected open-loop instability characteristics.

The final section of this chapter describes the modifications made to the original
state space models. The modifications are required to account for the aerodynamic
effects resulting from the use of differential canard positions. The control metrices
and input vectors are modified accordingly, and the output matrices are re-defined
to obtain the desired control variables for feedback. Finally, the open-loop system
matrices are presented. These state space models are used along with the actua-
tor models and weighting matrices to form the effective plant transfer functions in
subsequent chapters. Chapter III discusses the development of the control system

weighting matrices.

4
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III. Weighting Matrix Development
8.1 Introduction

This chapter discusses the development of the weighting matrices that augment
the open loop dynamics models. For each of the flight conditions, the weighting
matrix (A ) combines with the actuator matrix and the state space model to form
the effective plant (P.ss ), as shown in Figure 3.1. QFT design methods require
that the effective plant matrix be square (i.e. with the same number of inputs and
outputs) and be non-singular. These requirements are necessary for the matrix to be
invertible. The weighting matrix accomplishes the squaring operation at the front
end of the system, and distributes the commanded control inputs (three angular

rates) among the seven aerodynamic control surface inputs in the proper relative

weights.
Effective Plant
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Figure 3.1. Block Diagram of Flight Control System

The next section describes the principle function of the weighting matrix in
greater detail, and discusses the need to develop a frequency dependent weighting
matrix for this particular application. This is followed by a brief overview of the
techniques used to deveiop both constant and frequency dependent compensation
terms. Some unusual problems arise due to the unstable, non-minimum phase state
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space models discussed in the last chapter. As a result, special shifting methods are
required to obtain the desired open loop response characteristics from the frequency
dependent compensation terms.

Since a significant amount of effort was expended on unsuccessful methods to
develop lateral-directional compensation terms, a brief discussion of those methods is
included, along with results from one of the cases. Following this, the development
of the individual compensation terms (weighting matrix elements) for each of the
flight conditions is detailed in the pitch, roll, and yaw channels individually. The
voll and yaw channels are then combined, along with cross terms and appropriate
gains, to form the complete lateral-directional compensation matrices. Finally, the
longitudinal (SISO) and lateral-directional (MIMO) weighting matrices are listed,
along with a discussion of how they are incorporated into the effective plants.

3.2 Weighting Matrix Design Approach

The principle function of the weighting matrix is to distribute the desired con-
trol inputs among the appropriate control surfaces with specified relative weights.
The relative weights are based on such considerations as the aerodynamic effective-
ness of each control surface to perform a given flight maneuver at a particular flight
condition. This includes inverting control surface inputs as necessary due to the
sign conventions discussed in Chapter II. The weighting matrix ensures that the ap-
propriate control surfaces are all working together to achieve a commanded flight
maneuver. For most aircraft flight control systems, a simple weighting matrix with
constant elements is sufficient. This turns out to ke the case for the longitudina!
channel on this aircraft, as well. However, the lateral-directional controls possess
unusual response characteristics. In particular, the control surfaces used to control
roll and yaw operate out of phase with each other without appropriate compense-
tion. The required compensation involves frequency dependent terms, as well as
constant gain values. Further, the compensation terms are a function of the partic-
ular flight condition. As a result, different weighting matrices are required for each

flight condition considered in this design effort.

For the longitudinal channel, the compensation terms are developed by exam-
ining the uncompensated open-loop step responses, inverting the appropriate control
inputs, and including the desired relative gains for each. This is discussed in detail
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in the next section. Developing the frequency dependent compensation required for
the lateral-directional channels presents quite a problem, due to the unusual char-
acteristics of this aircraft. As before, the process begins with examination of the
uncompensated open-loop step responses. From thzse plots, it is clear that the con-
trol surfaces are working out of phase with each other, and without compensation,
would be inefficient in achieving a commanded flight maneuver.

The accepted technique for developing frequency dependent compensation terms
is to obtain the relative phase characteristics from a Bode phase plot, and then in-
clude poles and zeros as needed to adjust the phase plots until they are nearly the
same. With similar phase characteristics in the frequency domain, the time response
plots would normally be expected to show that the control surfaces are working to-
gether. Unfortunately, this is not the case with the initial design attempts used to
perform this task. This method is used to develop roll and yaw rate compensation
terms for all four flight conditions. In most of the cases, the composite time response
plots do not show the desired characteristics, even though the relative phase plots
are in close agreement in the frequency domain.

An alternative approach was suggested by Captain Paschall [23]. Since the end
goal for this task is to force the appropriate control surfaces to work together in re-
sponse to a commanded n- -neuver, he suggested that the uncompensated open-loop
time responses be analyzed for each case to determine what form of compensation
might bring the time domain plots together. Initially, this is attempted on the prob-
lematic yaw channels, whose time responses are sinusoidally unstable, as expected.
Since the sinusoids appear to lag or lead each other by a constant amount, Captain
Paschall suggested using the simple first order Padé approximation to compensate for
the relative time delay. This approximation uses a first order pole/zero combination
and is given as [2]:

(3.1)

This method results in fewer and sim, ler compensation terms, and does achieve
a partial improvement in the time response relationships. However, even after fine-
tuning the Padé compensation terms, the time response plots reveal that the control

surfaces are still not working together continuously, thus indicating that effective
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compensation involves more than simply accounting for the relative time delays.
Both this and the previous design method are discussed further, along with selected
results, in Section 3.3.

Professor Horowitz finally determined the probable reason for the two previous
techniques’ failures to yield the desired results. While one would normally expect
a good correlation between the time and frequency domain phase characteristics,
it should be remembered that such a correlation is based upon the transformation

between the two domains. That transformation is given by the LaPlace integral:
]
F(s) = / F(t) et dt (3.2)
()
s = 0+ jw (3.3)

For the definition to hold, the integral must exist (i.e. the solution is not o).
If f(t) contains a term e** (where a > 0), and o = 0, then the equation becomes:

F(jw) = /0 " eot gmivt gy (3.4)

The solution of this equation is infinite. In order for the integral to converge
to a finite solution, & must be chosen to be greater than a. Therefore, the integral
exists only for all o values to the right of a as shown in Figure 3.2.

Consequently, for the time and frequency domains to correlate, as desired for
phase compensation purposes, Professor Horowitz recommended shifting the roots
of the open-loop plants (state space models), so that all the poles are in the LHP.
Then, pole/zero compensation is added to improve the frequency domain phase
characteristics. After shifting back the compensated systems by the same amount
they were initially shifted, the time response plots are obtained and show the desired
results. As is seen in Sections 3.5 and 3.6, some degree of fine-tuning is necessary to
match the relative time responses sufficiently (i.e. the shifted Bode phase plots are
not all perfectly matched).
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Figure 3.2. S-plane Region of Convergence for LaPlace Integral

With the phase characteristics properly matched by the frequency dependent
compensation terms, the desired relative control surface weightings are included.
The weights are determined from a combination of open-loop time response analysis
and knowledge of the actual aircraft aerodynamic performance characteristics.

The overall weighting matrix for this control system distributes three control
inputs among seven control surfaces. However, the development is performed inde-
pendently for the longitudinal and lateral-directional control systems, as previously
discussed. Therefore, the longitudinal weighting matrix relates one control input
[a(t)] to four control surfaces. Similarly, the lateral-directional weighting matrix
relates the remaining two control inputs [p(t)] and [r(t)] to the three remaining con-
trol surfaces. This is clearly shown throughout the remainder of this chapter in the
appropriate block diagrams and open-loop response plots.




3.8 Unsuccessful Compensation Attempts

Before discussing the final weighting matrix compensation for each of the cases,
it would be useful to examine selected results of the two unsuccessful compensa-
tion methods. The purpose of this section is to show the failings of using conven-
tional methods (without shifting roots) to develop frequency dependent compensa-
tion terms for unstable plants. Section 3.2 briefly discussed the procedures used in
both of these methods. The 50 degree yaw rate case has been chosen to demon-
strate the ineffectiveness of these two methods. The uncompensated open-loop step
responses for this case are shown in Figure 3.3.

lll'lllllll

(I X T30 1%}

°Illllllllllllll

Time (sec)
Figure 3.3. Uncompensated Open-Loop Yaw Rate Step Responses (a = 50)

The original method involves compensating the Bode phase responses with
poles and zeros to align the plots as closely as possible. This is done without shifting
the RHP poles into the LHP. As shown in Figures 3.4 and 3.5, the frequency domain
compensation is quite successful in aligning the phase plots. However, as pointed
out in Section 3.2, the existence of the RHP poles causes the transformation integral
that relates the frequency and time domains to be non-convergent. Thus, there is no
guarantee that proper phase matching in the frequency domain will yield the desired
results in the time domain.
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The final system resulting from the frequency domain compensation is shown
in Figure 3.6. Finally, the resulting time domain responses shown in Figure 3.7
prove that good phase matching in the frequency domain is no guarantee that the
time domain responses will be matched to any acceptable degree for unstable, non-

minimum phase systems.

Axrcraft S0

Comp Actuator
bata
3218 20 del dif flp i
4.2 37 0.0 T+ 20
STATE P
Comrp Corp Actuator
del rudder
360 RTE 1 r——————————
3€+0.38 + 9 3+ 0.02 S + 20 SPACE
—{
Corp Comp Actuator
1 3. 0.02 del dif can
o - H _2'076' LA TR LN .
3+ 2.8 3440.43 + 10.5 s + B4
NS:4

Figure 3.6. Initial Yaw Rate Compensation Block Diagram (o = 30)

LI SN BB ML LI

[ XX FX-A-R Y B ]

-1

llltlllll[!ltllrlrl

2 :
3
- ' BF PR ETEE SR A I SRS AR SRS ST | PRI S S
[ 1 3 4 s 6 7 [ ]
Time (aec)

Figure 3.7. Initial Compensated Open-Loop Yaw Rate Step Responses (a = 50)
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The second method of phase compensation discussed in Section 3.2 is based
on directly compensating the time response plots. Referring to Figure 3.3, the goal
is to align the rudder and differential canard responses with the differential flaperon
response. The rudder response is roughly 180 degrees out of phase with that of the
differential flaperon. This is compensated with a negative gain value. The differential
canard response is compensated by adding the Padé approximation as shown in the
System Build block diagram (Figure 3.8). The determination of the relative weights
shown in the figure is discussed in Section 3.6, and is independent of the method of
phase compensation used.

Arcraft 50

Actuator

del dif fl oeta
e D
. STATE
Gain Actuator é
del rudder
~0. _Zﬂ!.a-
{> il SPACE
D
Gain Conpensator Actuator
- del dif can
0.8 ++ AR phs

NS:4

Figure 3.8. Padé Compensated Yaw Rate Block Diagram (a = 50)

This compensation method results in fewer terms (none of which is higher than
first order), and is far simpler to implement than the previously discussed frequency
domain method. Furthermore, the results, at least in this case, come much closer
to achieving the desired goal. However, examination of the compensated responses
in Figure 3.9 reveals that the control surfaces are only working together part of the
time. Note how the curves do not cross the axis simultaneously. Thus, there are
times when one response takes on a positive value while another takes on a negative
value. This appears to result from the drift characteristics noted earlier, indicating
that there is more than just a relative time delay involved. The Padé approximation
only shifts the phase of the sinusoid, but cannot compensate for a general positive
or negative drift characteristic.
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Figure 3.9. Padé Compensated Open-Loop Yaw Rate Step Responses (o = 50)

It is useful to refer to the non-ideal composite response plots of Figures 3.7 and
3.9 when examining the successfully compensated responses for this case shown in
Section 3.6. Both of the unsuccessful methods were used to develop compensation
terms for the roll and yaw channels for each of the flight conditions. In general, the
results are unacceptable, as shown in this one case.

3.4 Pitch Channel Compensation

For each of the flight conditions, development of the pitch channel compen-
sation begins with analysis of the uncompensated open-loop time response plots.
Throughout this task, the input is chosen to be a one degree step applied to the con-
trol surface of interest. In this section, the control input of interest is the pitch rate
[q(t)]. Plots are obtained of the pitch rate response for each of the control surface in-
puts; those being symmetric canards, differential canards, symmetric flaperons, and
strakes. Open-loop response plots indicate that differential canard positions have
some effect (in most cases relatively small) on the aircraft’s longitudinal dynamics.
However, when commanded differentially, the canards have a much greater effect on
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the lateral-directional modes, as would conventional ailerons. Since the most effec-
tive use of the canards as pitch control surfaces is obtained by commanding them
symmetrically, it is decided to give the differential canard inputs zero weighting in
the longitudinal control system. Thus, the only inputs used for controlling pitch rate
are the symmetric canards and flaps, and strakes.

The uncompensated open-loop pitch rate responses for the 20 degree AOA
flight condition are shown in Figure 3.10. Careful examination of the figure reveals
that the differential canard and symmetric flaperon responses are on top of ecach
other. Both have a much smaller effect on the overall response than the other two sets
of control surfaces. Also evident is the fact that the symmetric flaperons and strahes
require inverted inputs to make them work in phase with the symmetric canards.
This is expected based on analysis of the control surface sign conventions discussed in
Chapter IL. It is also noted that the open-loop responses are exponentially unstable.

This too is expected based on the RHP eigenvalue located on the real axis (Appendix
B).
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Figure 3.10. Uncompensated Open-Loop Pitch Rate Step Response (o = 20)
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The relative magnitudes chosen are roughly in proportion to those seen in the
uncompensated responses, with the exception of the differential canard input which
is given zero weighting. Normalizing the magnitudes, the symmetric canards are
chosen to take on half of the task of pitch rate control, with the strakes picking
up another 40 percent. The symmetric flaperons take care of the remaining ten
percent. The qua'itative analysis of the longitudinal controls presented in Section
2.3 mentions the fact that the flaperons lie roughly on the aircraft’s lateral axis,
and therefore have little effect on pitch control. Figure 3.11 is the Mairizy System
Build diagram of the open-loop pitch rate control system for the 20 degree AOA
flight condition. The weighting matrix compensation terms are shown preceding the
actuator models and the aircraft dynamics state space model.

Adrcraft 20

G
ain Actuator
del sym can vel
T F
Actuator
A del dif can STATE alphs
Gatn Actuator sPACE
£
T b . < .zn del sim flp _c-m
Cain Actuator
del str shets
— . s+ 53 NS:4 [

Figure 3.11. Pitch Rate Compensation Block Diagram (a = 20)

Finally, Figure 3.12 shows the resulting compensated open-loop pitch rate re-
sponses for this flight condition. Clearly, the control surfaces are shown working
together, and the relative magnitudes are in the desired proportions.

A similar procedure is used to develop the pitch rate compensation for the other
three flight conditions. The 40 degree AOA uncompensated open-loop responses are

shown in Figure 3.13. Again, the required sign changes are evident.
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The relative compensation gains are again normalized and based partially on
analysis of the uncompensated response plots. For this flight condition, the strakes
are noted to be slightly less effective than before, and their compensation gain is
adjusted accordingly, as shown in Figure 3.14. The compensated open-loop responses
for the 40 degree AOA flight condition are plotted in Figure 3.15, and show that the
centrol surfaces are working together in the correct proportions. Note that although
the compensation gain terms are normalized for each case, the magnitudes of the

responses do not necessarily add to one. For this task, only the relative magnitudes
are important.

sizesals 45

Aciuator

2n Zel sy= 2an K
3+ 2% N -

A del cif can SIATE 322508

¢r  fcel 3ir nets
[ h’ ooy
i 55:8

Figure 3.14. Pitch Rate Comp=nsation Block Diagram (a = 40}

The 50 degree AOA response plots lock virtually the same as those of the
previous flight condition. Again, a slight adjustment is made to the reiative com-
pensation gains, based on the analysis of the uncompensated response plots. Figures
3.16 through 3.18 pertain te this flight condition.
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Figure 3.15. Compensated Open-Loop Pitch Rate Step Response (a = 40)
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The uncompensated response plots for the sixty degree flight condition are
shown in Figure 3.19. Analysis of these plots indicates that the responses are highly
sinusoidal in nature with a very slowly decreasing magnitude. Again, based on
the eigenvalues listed in Appendix B, this is not surprising. For this condition, all
four open-loop state space eigenvalues are just inside the LHP, and are expected to
result in a stable system. Note that since the eigenvalues are so close to the jw
axis, the exponential decay time constant is extremely large, resulting in a very slow
decay to steady state. The differential canard effects are more noticeable for this
flight condition, but as previously discussed, this input is not commanded in the
longitudinal flight cont -ol system. The remaining three longitudinal control inputs
are used to control pitch rate, and are expected to have sufficient control authority

to counteract unwanted coupling effects from the lateral-directional channels.
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Figure 3.19. Uncompensated Open-Loop Pitch Rate Step Response (a = 60)

The relative gain compensation is determined as before, and the compensated
system block diagram is shown in Figure 3.20. The final step responses are shown
working together in Figure 3.21. The character of the open-loop responses is not
important; only the fact that all surfaces are either positive or negative valued at
the same time.
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3.5 Roll Channel Compensation

Although the roll and yaw channels are both in the lateral-directional control
mode, they are discussed separately for the purposes of developing the weighting
matrix. The compensation terms are developed independently for the two channels,
since each term is based on the relationship between a single control variable and a
single commanded control surface input. After all the individual compensation terms
are developed, the roll and yaw channels are combined with overall gain adjustments

to form the lateral-directional weighting matrices. This is discussed in Section 3.7.

As with the pitch channel, the roll channel compensation begins with analysis
of the uncompensated open-loop time response plots. The control variable is the
roll rate [p(t)], and the three control surface inputs are differential flaperons, rudder.
and differential canards. Examination of Figure 3.22 reveals the complexity of the
lateral-directional compensation problems. Note that the exponentiaily unstable
sinusoidal response plots are clearly out of phase with each other. In addition, the
individual response magnitudes are not centered about zero. Thus, it would appear
quite difficult to force the three responses to work together continuously.
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Figure 3.22. Uncompensated Open-Loop Roll Rate Step Responses {a = 20)
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The development of the 20 degree AOA roll rate compensation is now detailed
in a step-by-step manner. The first step is to generate the combined state space
model and obtain the roots of that system. These roots are those of the state
space dynamics model with the actuator transfer functions included. The roots are
obtained from System Build, and are listed in Table 3.1. Note that the numerator is

different for each control input, but all three share a common denominator.

[ roots(nl) [ roots(n2) | roots(n3) |  roots(d) |

0.0442 0.0443 0.0288 0.0058

-1.0 -1.0 -0.079 -0.3239
-0.0693+31.3782 -3.0 -1.0 -1.0

-3.0 -3.7614 -3.0 .1288+j2.7262

-20.0 41217 -20.0 -3.0

-20.0 -20.0 -20.0 -20.0

-20.0 42.9318 -20.0

-20.0

Table 3.1. Uncompensated Roll Rate System Roots (o = 20)

As discussed in Section 3.2, the phase compensation approach for such unstable
plants is to shift the roots by an amount sufficient to temporarily eliminate all RHP
poles. In this case, the roots are shifted to the left by subtracting 0.2 from the real
portion of each. Reference to Table 3.1 indicates that shifting the roots by 0.13 results
in a stable shifted system. The roots are shifted more than the minimum required
amount to provide a slightly greater stability margin, thus allowing for possible
roundoff or computational accuracy errors. The shifted roots, now representing a
stable system, are used to generate a composite Bode plot (Figure 3.23). Next.
pole/zero compensation terms are added as needed to match the three phase plots
as closely as possible with each other (Figure 3.24).

The general procedure for adding phase comnpensation is now described for this
particular case. Referring to Figure 3.23, the concern at this time is only with the
phase portion of the Bode plots. Beginning at the low frequency end, it is seen
that the second and third responses lag the first by 180 degrees. This is easily
compensated with a negative gain value on the second and third inputs.
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Next, the third input needs to be bent down to coincide with the second. This
is accomplished by adding a pole (giving phase lag) at w = 0.3 and a zero (giving
phase lead) at w = 40. By introducing phase lag at one frequency and cancelling that
amount with phase lead at a higher frequency, the phase plot is bent down slightly
without changing the steady state value. The specific values of the compensator
poles and zeros are obtained in an iterative fashion as required to achieve the desired
results.

The first response is somewhat more difficult to compensate. It is noted that
this response requires 180 degrees of additional phase lag in steady state. This can
be accomplished by adding a second order pair of poles. By using a second order
compensator, the ¢ and w, values can be adjusted in such a way to virtually eliminate
the hump centered around w = 2. In this case, it is found that using (s + 0.5s + 2)
for the compensator poles results in the desired response shape. Since the system
is shifted into the LHP, only LHP compensation elements are added. However,
when the system is shifted back to the original reference frame, in some cases the
compensator elements may become RHP elements.

The roots of the compensated shifted system are obtained and shifted back by
adding 0.2 to the real portion of each. The resulting compensated system roots are
listed in Table 3.2. Note that due to the compensation terms, the three transfer

functions no longer share a common denominator.

[ roots(nl) | roots(n2) | roots(n3) | roots(dl) | toots(d2) | roots (d3) |l

0.0442 0.0443 0.0288 0.0058 0.0058 0.0058

-1.0 -1.0 -0.079 -0.3239 -.3239 -.3239
-0.0693+31.3782 -3.0 -1.0 -1.0 -1.0 -1.0

-3.0 -3.7614 -3.0 .1288+£32.7262 | .1288:£j2.7262 | .1288+j2.7262

-20.0 4.1217 -20.0 -3.0 -3.0 -3.0

-20.0 -20.0 -20.0 -20.0 -20.0 -20.0

-20.0 42.9318 -20.0 -20.0 -20.0

-39.8 -20.0 -20.0 -20.0
-0.054)1.3919 0.1

Table 3.2. Compensated Roll Rate System Roots (a = 20)




The compensated system roots are convolved into polynomial transfer functions
and the step responses are obtained. After including necessary sign corrections, the
response plots are generated in a strip format without gain correction (Figure 3.23).
As acheck, the phase compensation terms are included into the System Build diagram
and a similar set of step response plots is obtained. These responses look like those
in Figure 3.25, but are generated directly from the System Build simulation. rather

than the derived transfer functions.
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Figure 3.25. Compensated Open-Loop Roll Rate Step Responses (a = 20)

The final step is to develop the relative gain terms. The responses shown in
Figure 3.25 are first individually normalized, and then multiplied by the desired
relative weighting factors. In this case, the differential flaperons and differential
canards each handle 40 percent of the task, and the rudder takes on the remaining
20 percent. Note that the rudder has limited effect on roll rate control, as is typical of
most aircraft. The block diagram of the final compensated system is shown in Figure
3.26. The final composite step responses reveal that all three control surfaces are
working together continuously, and in the desired relative proportions (Figure 3.27).
The effectiveness of this compensation technique is demonstrated by comparing the
compensated responses shown in Figure 3.27 with the uncompensated ones shown
in Figure 3.22.

3-23




Finally, to aid others who may need to accomplish similar phase compensation,
Appendix G describes a sample Matriz x executable file that may be used to perform
some of the steps discussed in this section. What is listed is not computer code:
simply a brief, commented list of standard commands. A general working knowledge
of Matrizx and System Build is assumed.

Aizcrafz 20

Gain

Compensator Actuator 5
eta
I > 3 del dif flp i
34+0.13 + 1.94 3 + 20
STATE 2
Gain Actuator D
>n del rudder
2.1 s » &0
SPACE
.f
Gain Compensator Actuator
del dif can
e —
s + El s ¢+ 20 | Phy
NS:4

Figure 3.26. Roll Rate Compensation Block Diagram (a = 20)
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Figure 3.27. Final Compensated Open-Loop Roll Rate Step Responses (a = 20)




The other flight conditions are handled in a similar manner. However. it is
useful to provide a brief discussion of each case, due to some of the differences
encountered. For instance, it is noted in Figure 3.28 that the uncompensated re-
sponses have a somewhat different appearance from those previously seen. Based un
the different aerodynamic characteristics of the higher AOA flight condition, this is
not surprising. Here the responses are shown to rapidly increase exponentially, and
again, the sinusoids are out of phase with each other. However, the responses for

this flight condition are at least relatively symmetric about zero.

The roots are shifted as before, and the necessary pole/zero compensation
terms are added to align the Bode phase plots (Figures 3.29 & 3.30). The roots of
the compensated system are shifted back and the strip plots are obtained to verify
the phase characteristics. The relative gains are obtained as before, except that the
desired relative weights are altered slightly (Figure 3.31). For this flight condition
(as well as the 50 and 60 degree cases), the rudder is only used to control 10 percent
of the commanded roll rate, with the other two surfaces handling 45 percent each.
The final compensation is shown in Figure 3.32, and the desired responses appear in
Figure 3.33. Finally, the compensated roll rate system roots for this flight condition
are listed in Table 3.3.
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Figure 3.28. Uncompensated Open-Loop Roll Rate Step Responses (a = -10)
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Figure 3.31. Compensated Open-Loop Roll Rate Step Responses (a = -10)

Aszcraft 42

Gain

Compensstor Actuater
1 eif ip (Seta
» " de i Sa
3%45.23 *» 1.6 IR L]
STATE 2
Gain Cozpensator Aczuazer ~
3 1 " del rudfer
- | —- 2
34-5.53 » 8.5 3 SPAZE
Gain Compensator Actuater
s3.2.18 - cel 8317 Zan
o 3 £
N5:4

Figure 3.32. Roll Rate Compensation Block Diagram (a = 40)
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i roots(nl) | roots(n2) [ roots(nd) |
0.1304 ~0.1325 0.0363 0
-0.0731451.2303 | 0.2767+;2.9412 01768 &
-20.0 -20.0 300 |

-20.0 -20.0 -20.0 i

-39.0 i

| 60.0083 1
I | i |
| roots(dl) | roots (d2) roots (d3) i
-0.0808=j0.1561 [ -0.0808+j0.1361 9 i
-0.1£j1.2610 | 0.25j2.9047 | -0.0808%0.1561 ||
0.7098+)3.0081 | 0.7698%j3.0081 | 0.7098%3.0081 j
-20.0 -20.0 -20.0 B

-20.0 -20.0 200 |l

-20.0 -20.0 200§

Table 3.3. Compensated Roll Rate System Roots (a = 40)




The 50 degree uncompensated roll rate responses are similar in form to those
obtained for the 40 degree case. Again, the sinusoids are out of phase with cach
othier, but symmetric about zero (Figure 3.34). The uncompensated Bod. plots are
shown in Figure 3.35. Initially, the compensation terms are added to match the
Bode phase plots precisely, as before. However, the phase response characteristics
shown in the strip response plots are not as close < desired. Since the relative tinie
responses are used as the criteria for developing effective compensation, the respouses
in Figure 3.37 have been optimized by fine-tuning the compensation parameters. This
is done at the expense of the frequency response phase characteristics (Figure 3.36)
by varying the ¢ and w, parameters while observing the strip responses so that the
plots are all positive and negative at the same time.

The same relative weightings are applied to this ¢ . .¢ as used for the 40 degree
flight condition. Figure 3.38 shows the compensated open-loop system, and the
compensated responses are shown in Figure 3.39. Table 3.4 lists the compensated
system roots for this case.
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Figure 3.34. Uncompensated Open-Loop Roll Rate Step Responses (a = 50)
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Figure 3.37. Compensated Open-Loop Roll Rate Step Responses (a = 50)
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Figure 3.38. Roll Rate Compensation Block Diagram (o = 50)
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Figure 3.39. Final Compensated Open-Loop Roll Rate Step Responses (a = 50)

[ roots(nl) | roots(n2) | roots(n3) |
0.1862 0.7720 0.1075
-0.1064£;0.9131 0.1956 -0.1628
-20.0 -0.7837 -20.0
-20.0 -20.0 -20.0
20.0 36.9255
| | | !
| roots(dl) | roots (d2) | roots (d3) |
-0.0180+j0.0977 | -0.0190;0.0977 | -0.0190+j0.0977
0.5 0.3668 0.7143}3.8832
0.714343.8832 | 0.714343.8832 20.0
-20.0 ~-13.6332 -20.0
-20.0 -20.0 -20.0
-20.0 -20.0
-29.0 -20.0

Table 3.4. Compensated Roll Rate System Roots (a = 50)
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The uncompensated 60 degree roll rate responses look quite different from any
of those previously encountered (Figure 3.40). There is very little exponential growth
of the sinusoids. This is not surprising when one examines the eigenvalues for this
case (Appendix B). The real portions of the RHP roots are very small in magnitude.
so the system is only slightly unstable, but highly oscillatory. The shifted Bode plots
(Figures 3.41 & 3.42) reveal that once again, the optimal design for the time response

characteristics results in a non-optimal set of phase plots in the frequency domaiu.

Close examination of the strip response plots in Figure 3.43 reveals that even
though the third plot appears quite different from the other two, the waves are all in
phase with each other and take on positive and negative values at the same times.
The same relative control surface weighting is used as before, aud tiie compensated
system is shown in Figure 3.44. The composite response plots in Figure 3.45 show

that the control surfaces are working together, and the compensated system roots
are listed in Table 3.5.
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Figure 3.40. Uncompensated Open-Loop Roll Rate Step Responses (a = 60)
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[ on del rudder
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Figure 3.44. Roll Rate Compensation Block Diagram (a = 60)
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Figure 3.45. Final Compensated Open-Loop Roll Rate Step Responses (a = 60)

[ roots(nl) | roots(n2) | roots(n3) ||
0.2287 0.6966 0.1221
-0.1290+;0.5965 0.2657 -0.2000
-20.0 -0.7122 -0.21
-20.0 -20.0 -20.0
-20.0 -20.0
34.9727

L 1 1 |

[ roots(dl) | roots (d2) | roots {d3) ||
0.0459 0.0459 0.0459
-0.1554 -0.1554 -0.1554
0.5500+j3.1524 | 0.3000+;3.1225 -1.0

0.0477+£j3.1259 | 0.0477%33.1259 | 0.04774j3.1259
-20.0 -20.0 -20.0
-20.0 -20.0 -20.0
-20.0 -20.0 -20.0

Table 3.5. Compensated Roll Rate System Roots (a = 60)
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3.6 Yaw Channel Compensation

The same techniques used for the roll channels are used to develop compen-
sation terms for the yaw channels. Beginning with the 20 degree flight condition.
Figure 3.46 reveals another interesting form of responses. In this case, the sinu-
soidal nature is barely distinguishable, but it is clear that the control surfaces are
not working together. The shifted Bode plots are shown in Figures 3.47 and 3..13.
Note that the kink in one of the Bode phase responses cannot be removed without
adversely affecting the phase at nearby frequencies. However, its effective variation

is minimized and made symmetric about the nominal value.

The strip response plots in Figure 3.49 show that the controls are always work-
ing together. Also, the relative phases of the sinusoids are aligned, although that
may not be absolutely necessary for these forms of responses, whose values are always
positive. Since the rudder is the primary yaw control surface up through moderately
high AOAs, it is chosen to handle 60 percent of the task for this flight condition. The
other surfaces equally divide the remaining 40 percent. The compensated system is
shown in Figure 3.50. Figure 3.51 shows the composite responses with the proper
relative weights, and the compensated system roots are listed in Table 3.6.
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Figure 3.46. Uncompensated Open-Loop Yaw Rate Step Responses (o = 20)
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3-38




INQ ~~0

TP ITIITTITIVITIY

06 - - -
o4 E H : ;/’—‘\\‘7 4///
o T E : /
i ok :
. ) : e
F af LS N SO N U
| I - _____—‘;’,,
P o Pt :
o1 E - SRRSO, UL SOOI TPV
o E __
o8 ¢ -
os E : e
¢ &E ——
i o
® =
.-&E i = 2o
NE A ;
oE
10
[ ]
4
2
[}
-2

©
-
[

3 4
Time (s0c)

Figure 3.49. Compensated Open- =p Yaw Rate Step Responses (a = 20)

Asizerafs_28
Gain Comgensator Actuator
1 d" 4] 'k...
3 2 de 13441
283 370,643 < 13.07 R ]
STATE >
Cain Co=pensator Actuazer
1 . - del rudder
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Sain Compensator Actuator
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Figure 3.50. Yaw Rate Compensation Block Diagram (a = 20)
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Figure 3.51

. Final Compensated Open-Loop Yaw Rate Step Responses (o = 20)
I roots(nl) | roots(n2) | roots(n3) |
-0.2743 -0.2762 0.2104

0.4338+33.5782 | 0.1068+)2.4659 -0.4700
-20.0 -20.0 -9.5000
-20.0 -20.0 13.1003
-20.0
-20.0
L l 1 |
[ roots(dl) | roots (d2) | roots (d3) ||
0.0058 0.0058 0.2000
-0.3239 -0.3239 0.0053
0.1288+j2.7262 ; 0.0000+£j2.3979 -0.3239
0.3200£j3.6011 | 0.1288+£)2.7262 | 0.1288+4)2.7262
| -20.0 -20.0 -20.0
-20.0 -20.0 -20.0
-20.0 -20.0 -20.0

‘able 3.6. Compensated Yaw Rate System Roots (a = 20)
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Figure 3.52 reveals an unusual set of response characteristics for the 10 degree
yaw case. The rudder response appears to behave roughly as it did in the last
case, and the differential cana:d response looks similar to those observed in the
40 and 50 degree roll channel cases. However, the differential flaperon response.
although generally an exponentially increasing sinusoid, appears to have a slight
drift, somewhat like that seen in the 20 degree yaw case.

After compensating the shifted Bode responses (Figures 3.53 & 3.54}, the strip
response plots are obtained and optimized, as before. The unusually high gains seen
in Figure 3.55 are normalized with the small gains shown in the system diagram
(Figure 3.56). The relative weights chosen for yaw rate control in the 40, 50. and 60
degree conditions all have the same values. The rudder loses most of its effectiveness
at such high AOAs due to aerodynamic effects. Therefore, the rudder is chosen to
handle only 20 percent of the task, and .he other two control surfaces take on the
remaining 80 percent in equal proportions. Finally, the composite response plets are
skown in Figure 3.57 and the system roots are listed in Table 3.7.
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Figure 3.52. Uncompensated Open-Loop Yaw Rate Step Responses (a = 1))
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Figure 3.55. Compensated Open-Loop Yaw Rate Step Responses (a = 40)
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Figure 3.56. Yaw Rate Compensation Block Diagram (a = 40)
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Figure 3.57. Final Compensated Open-Loop Yaw Rate Step Responses (a = 40)

[ roots(nl) | roots(n2) |  roots(n3) |
-0.0766 -0.0760 2.5933
0.4731+£j3.3759 | 0.7170+£j3.0272 0.0767
200 20.0 18,2664
20,0 20,0 200
; -20.0
| | i
| roots(dl) roots (d2) | roots (d3) |
~0.0808E]0.1561 | -0.0808:£]0.1561 | -0.0808:£]0.1561
0.7098:£j3.0081 | 0.7098£j3.0081 | 0.7098%;3.0081
5.2000£;3.9192 | 2.1000£3.8074 | 2.1000£;3.8074
-20.0 -20.0 -20.0
-20.0 -20.0 -20.0
-20.0 -20.0 -20.0

Table 3.7. Compensated Yaw Rate System Roots (a = 40)
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Figure 3.58 shows that the uncompensated yaw rate responses for the 50 de-
gree flight condition resemble those encountered in several previous cases. At first
glance, these responses appear almost identical to those of the 50 degree roll rate
case. However, unlike those respcnses, these are not symmetric about zero. This
characteristic preserts a significant problem when attempting to use the unsuccessful
compensation techniques discussed in Sections 3.2 and 3.3. Section 3.3 uses this case
to demonstrate the failings of those earlier methods in achieving the desired time
response characteristics.

The shifted Bode plots in Figures 3.59 and 3.60 are used to obtain the required
compensation needed to generate the strip response plots shown in Figure 3.61.
Using the previously defined relative weights, the gains are computed and shown in
the system diagram (Figure 3.62). It is interesting to note that the negative signs
are not required on the last two inputs as before. The net compensation is effective

as shown in Figure 3.63. The compensated system roots for this case are listed in
Table 3.8.
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Figure 3.58. Uncompensated Open-Loop Yaw Rate Step Responses (o = 50)
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Figure 3.60. Compensated Shifted Yaw Rate Frequency Response (a = 50)
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Figure 3.61. Compensated Open-Loop Yaw Rate Step Responses (a = 50)

Aircraft $e
Gain C tor Actuator
= - del dif f} oets
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Gain Compensator Actuator
Py i 20 del rudder
D . 2 SPACE
D
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. 1 del dif can
] st ree—
.b Ll 3428 4 17 3+ 20 g5t [ ohy

Figure 3.62. Yaw Rate Compensation Block Diagram (a = 50)
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Figure 3.63. Final Compensated Open-Loop Yaw Rate Step Responses (o = 50}

| roots(nl) | roots(n2) | roots(n3) |
-0.0184 -0.0173 0.0148
0.1683+)2.9641 5.4230 -5.29334j2.5594
200 7.0 20.0
-20.0 -20.0 -20.0
-20.0
[ [ 230596 | |
| | |
roots(dl) | roots (d2) | roots (d3) ||
-0.01904:30.0977 | -0.0190%30.0977 | -0.0190+30.0977
0.45004)3.1141 | 0.7143+j3.8832 | 0.7143133.8832
0.7143+)3.8832 -19.0 -1.0000+j4.0000
-20.0 -20.0 -20.0
-20.0 -20.0 -20.0
B -20.0 -20.0 -20.0

Table 3.8. Compensated Yaw Rate System Roots (a = 50)
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The final case is the 60 degree yaw rate compensation. Perhaps surprisingly, the
uncompensated responses shown in Figure 3.64 do not appear all that bad. Though
the relative phases of the sinusoids require some alignment, all three responses have
positive values for all time. However, the usual method of phase compensation in

—the shifted frequency domain is used once again to yield the desired strip response
plots (Figures 3.65 through 3.66). The sinall gains noted in the strip response plots
(Figure 3.67) are normalized with fairly large gain terms as shown in the system

and the compensated system roots are listed in Table 3.9.

One other point worth noting is the fact that some of the compensation terms

developed in the last two sections have poles or zeros in the RHP. Typically, one
would not desire to add RHP terms, since they introduce additional instability and
non-minimum phase characteristics. Horowitz points out that such characteristics
limit the benefits of feedback and make it extremely difficult to achieve reasonable
gain and phase margins [14]. These limitations are discussed further in Chapter
IV. The RHP compensation terms introduced here result from the inverse shifting
procedure. Since these uncompensated state space models already contained a large
number of RHP terms, the addition of a few more makes little difference.
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Figure 3.68. Yaw Rate Compensation Block Diagram (a = 60)




Figure 3.69. Final Compensated Open-Loop Yaw Rate Step Responses (a = 60)

- [ roots(nl) roots(n2) | roots(nd) |
[ 0.0146 0.0140 -0.0111

0.2038+j2.2783 | -0.7383+j4.9637 | -2.3667+j1.398S ||

ﬁ 0.0 20.0 200 |

=200 20,0 200 |

l|

roots(dl) | roots (d2) | roots (d3) ||
[ 00459 0.0459 0.0459

-0.1554 -0.1554 -0.1554
0.1000+j2.2716 | 0.0477+)3.1259 0.0477:!:j3.1259jj
0.0477+j3.1259 | -0.7000+j4.5826 | -2.7000j1.000 ||

-20.0 -20.0 200 ||
[ 200 200 200 |
200 200 200 |

Table 3,9. Compensated Yaw Rate System Roots (o = 60)




3.7 Combined Roll and Yaw Channel Compensation

The weighting matrix compensation terms are developed individually and the
individual transfer functions representing the effective plants are obtained from Sys-
tem Build. However, due to the inherent cross-coupling between the roll and yaw
channels, the individual lateral-directional effective plants for each case must be com-
binzd into a 2X2 MIMO effective plant. The relationship of the longitudinal (SISO)
and lateral-directional (MIMO) effective plants to the overall effective plant is shown
in Equations 3.5 and 3.6. The zero valued cross terms result from the assumption of

no cross-coupling between the two modes, as discussed in Chapter [.

[ Pyy(11) 0 0
0 : Ptfl(?'e?') P,_”('Z,:})
| 0 o Peyg(3,2) Peys(3,3)
P,”(Ion) 0
Pe!! o= ] sessseenss ses ssesvewvsn {3.6)
0 P,jf(lat)

The SISO longitudinal compensation is complete and requires no further dis-
cussion. However, the MIMO lateral-directional portion does require additional work
to complete the weighting matrix development. Since the lateral-directional mode
is treated as a completely separate 2X2 MIMO system, the individual elements are
numbered as shown in Equation 3.7.

(3.7}

Pess(lat) = [Pcl!(l,l) Pc!!(l,'Z)]

Ptlf(gs l) Pd'f(.zs 2)




P.ss(1,1) is the effective plant representing the relationship between a com-
manded roll rate input and roll rate output. P.ss(2,2) represents a similar relation-
ship between a commanded yaw rate input and vaw rate output. The cross terms
arise from the inherent coupling in the lateral-directional control modes. P.;;{1.2}
represents the relationship between a commanded yaw rate input and the resulting
roll rate output. Likewise, P.s/(2,1) represents the relationship between  com-
manded roll rate input and the resulting yaw rate output. The standard notation
is used for each effective plant, where the first number refers to the output and the
second number refers to the input. For this particular usage, the numbers one and

two refer to the roll rate and yaw rate, respectively.

The final gain adjustment for the lateral-directional compensation involves ad-
justing the gains for each of the effective plants across all four flight conditions. This
is done to minimize computational errors resulting from extreme variations in mag-
nitude. In the first case, P.ss(1,1) is generated from System Build and a composite
plot of the Bode magnitudes is obtained, representing the four flight conditions.

Next, a similar composite magnitude plot is obtained for the four P.;/{2.1}
systems. Finally, overall system gains are included for the 40, 50, and 60 deszree
conditions so that the four Bode magnitude plots for each effective plant are brought
within one or two orders of magnitude, across the frequency range of interest. The
same gain factors are used for P.ss(1,1) and Pss(2,1) at a given flight condition.
The reason for this is the fact that these two plants share a common input channel.
and thus common weighting matrix compensation terms. Figures 3.70 and 3.71 show
the magnitude plots before and after final gain adjustment.

A similar procedure is used to generate the final gain adjustments for the
P.4(1,2) and P(2,2) systems for all four flight conditions. The magnitude plots
before and after final gain adjustment are shown in Figure 3.72 and 3.73. Agrin, for
any one flight condition, the gain factors are the same for Pess(1,2) and P;:(2.2}.
However, there is no need to match the gains used in these cases with those used for
Fiss(1,1) and P.ss(2.1), since the input channels are different.

Finally, Appendix H shows the System Build block diagrams of each of the
effective plants for all four flight conditions after final gain adjustment. The overali
relative gains are shown on the diagrams. Note that cach of these block diagrams
represents an individual element of Equation 3.7 for a given flight condition.
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3.8 Final Weighting Matrices

The final weighting matrices are listed in this section. For each system. the
effective plant (see Figure 3.1) is obtained algebraically by post-multiplying the state
space dynamics model by the actuator and weighting matrices, respectively. How-
ever, with Matrizx System Build, the effective plants are already defined for each
flight condition (Section 3.4 for the longitudinal control modes and Sections 3.5
through 3.7 for the lateral-directional control modes). Even though the computer
performs the combining operation, it is useful to organize the compensation terms
into the actual weighting matrices to understand the input/output relationships. in
each case, the rows correspond to the state variables and the columns correspond to
the control inputs (see Sections 2.5 & 2.6).

The individual longitudinal weighting matrices are shown below. Note that the
non-zero entries appear ounly in row three (corresponding to the pitch rate). Also,
note that the differential canard input (column two) entries are zero. These matrix
elements are obtained from Figures 3.11, 3.14, 3.17, and 3.20.

(000 0 0
0 0 0 0
AlonZO = (38)
0.5 0 =01 —-04
000 0 0
[0 0 0 0
0 0 0 0
AIorui() = (39)
05 0 -0.15 -0.35
00 0 o0
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(00 0 o0 |
00 0 0
Aponso = (3.10)
0.6 0 —0.1 —0.3
00 0 0
(000 0 0 ]
00 0 0
Ajoneo = (3.11)
05 0 —02 —0.3
00 0 0

The frequency dependent lateral-directional weighting matrices are now shown.
In this case, the second row entries correspond to the roll rate and the third row
entries correspond to the yaw rate. The system diagrams provided in Appendix H
are used to obtain these weighting matrix elements.

0 0 0
7.3 - 0.25(s+-39.8)
A[ 20 = 5§+0.18+1-94 2'7 S+0-1 (3 1.-))
a —— 0 ~
28.5 —55 ~3(s+9.5)
$2-0.645+13.07 s245.75 $—0.2
0 0 0
0 0 0
2160 —2700 12.6(s+39)
2 2_
Altio = §240.25+1.8 §%2—0.55+8.5 s (3.13)
800 -=730 -4400
s2—4.45420.2 52—-4.254+19.6 s2-4.25+19.6
0 0 0
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0 0 0
5630 -1100 50
A _ | s%4+29.5s+14.5 s2+14s+5 4
lat50 = (31~)
15.5 5.7(s+7) 40
5%2—.954+9.9 s+19 $2425+17
0 0 0
0 0 0
2.25 —3.85 40
2__ 2-— [l
Alateo = §2—1.15410.24 $2—-0.654+9.84 s+1 (3.10)
2700 9000 15000
§2=0.2545.17 s%+4+1.454+21.49 s$245.45+8.29
i 0 0 0

Finally, as an example of how these matrices combine to form a single weighting
matrix for each flight condition, Equations 3.8 and 3.12 (representing the 20 degree
AOA condition) are combined in Equation 3.16. The resulting matrix has eight rows
(corresponding to the eight state variables) and seven columns (corresponding to
the seven control surface inputs). In this matrix, the third row corresponds to the
pitch rate and the sixth and seventh rows correspond to the roll rate and yaw rate,
respectively. If any other state variables had been chosen as control variables, their
corresponding rows in this matrix would have non-zero elements.

3.9 Summary

This chapter presents an in-depth look at the weighting matrix development.
It is clear that this is not a trivial task for an unstable, non-minimum phase problem
such as this. The chapter begins with a definition of the weighting matrix and
a discussion of how it is used to augment the state space and actuator matrices
to form the effective plant. This is followed with a discussion of why a frequency
dependent weighting matrix is required for the lateral-directional control modes.
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0 0 O 0 0 0 0
0 0 O 0 0 0 0
05 0 -0.1 -04 0 0 0
0 0 0 0 0 9 0
Ag = (3 1 6)
0 0 0 0 0 0 0
0C 0 0 opimm -—27 5P
0 0 0 0 52 —0.(?48;113.07 32;?75 _%:-({;.92.5)
] 0 0 0 0 0 0 0

The accepted design approach for frequency dependent weighting matrices is
discussed briefly. Following this is a description of two design methods which both
fail to achieve the desired results. A shifting method for handling the unstable roots
is presented and the likely reason for the earlier methods’ failings is discussed. A trief
look at selected results of the unsuccessfil compensation methods is also presented
to demonstrate the problem of correlating the time and frequency domains for such

“functions.

Using the shifting technique, the individual weighting matrix compensation
terms are developed in a step-by-step process for each of the primary channel- and
flight conditions. Open-loop step responses before and after compensation are in-
cluded and provide dramatic evidence of the need and effectiveness of the frequency
dependent compensation terms. The roll raic and yaw rate compensation terms
are then combined with System Build to form the lateral-directional {MIMO) effec-
. tive plants, and a final gain adjustment is performed. Finally, the actual weighting
matrices are shown individually for each flight condition and a combined system
weighting matrix is shown for one flight condition. The next two chapters use the

effective plants developed here as a basis for the control sysiem designs.
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IV. Longitudinal Control System Design
4.1 Introduction

This chapter discusses the individual control system designs for each of the
longitudinal cases. The X-29A uses a summation of pitch rate, normal acceleration,
and canard position as the longitudinal control variable for the normal digitul tlight
control system. The analog reversion system, however, uses only the pitch rate, as
does this design.

The primary design goal in each case is to achieve clored-loop stability. A
high degree of static instability causes control law designers to stress stability and
robustness over handling-qualities. Indeed, it has been stated that the primary task
of the X-29A longitudinal control system is to stabilize the aircraft [4]. The stability
of the system is assessed by the use of gain and phase ma-gins, as discussed later in
this chapter. Some basic QFT terms are now explained with the use of two simplified

diagrams.
R(s) Prefilter + Compensator Effective Y(s)
F(S) G(S) Plant >
- P.ss(s)

Figure 4.1. Basic QFT Standard Control Systém Notation

Figure 4.1 shows the simplified block diagram of a basic QFT SISO system,
such as the ones discussed in this chapter. The closed-loop control ratic is given
by Y(2)/R(s), where Y(s) is the LaPlace transform of the output and R(s) is the
LaPlace transform of the ihput. For e«ch case, the compensator G(s) is developed
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in this chapter. The prefilter F(s) , is desigued to achieve the desired closed-loop
performance characteristics, once the system is stabilized.

P R I S

R(s) Prciiiter + Loop T .asmission 5]
—._>‘ e
F(s) _Q Loe

=
o~

s
-

Figure 4.2. 3asic QFT Aiternate Control System Notation

Figure 4.2 shows the alternate notation for the same basic QFT SISG system.
Note that the loop transmission function L(s) is equal to the product of tiic com-
pensator and the effective plant. The QFT method is based on achieving a desired
loop transmission furiction and dividing the result by the effective plant to cbtain
the compensator transfer function. T-.c design is accomplished usiag Nichols charts
and Bode plots. For this reason, the transfer functions are expressed in terms of the
complex frequency as shown below.

L(jw)

Glaw) = Pess(jw)

(4.1)

Finally, a single compensator/prefilter design capable of controiling the system

for all four flight conditions is deemed impractical [15]. This is due primarily to the

wide variations of RHP poles and zeros in the effective plants. However, for the 20
and 40 degree cases, alternate designs are presenied and the relative merits «f ::ach
are discussed. The design of the loop transmission functions begins with an analysis
of the effective plants, as discussed in the next section.




4.2 Analysis of Effective Plants

The longitudinal effective plants are represented by ti:e block diagran.s in Fig-
ares 3.11, 3.14, 3.17, and 3.20. The aircraft dynamics models are represenie ! by the
siate space block in each diagram. In each case, the transfer function representing
the effective plant is the ratio between the pitch rate output of the state space bloc!.
and the simultaneous control input to the three control channels of interest. Noue
that the syster 's still termed SISO, since a single control input is applied, and then
distributed amcng the three control sut.aces of interest. Recall that the ¢ ifferer tial
canard channel is not commanded for the longitudinal control systems. ‘or clarity,
the effective plant transfer functions are l..t=d in this section, in both polyncmial and
factored forms. The polynomial forms are shown below. In each case, the numerator
is sixth crder and the denominator is eighth order.

Pcff (lon20) =

858 + 56.55% + 1320.45% 4 102235 + 2225.25% — 145
$3 + 110.457 + 4239.255 + 6944655 + 42172054 + 9737453 — 28176052 — 105 — 335 — 4728.2

Pess (tonso) =

.75% 4+ 53.85% + 1271.15* 4 993653 + 2497.€5% — 135.2s
58 4 110.657 + 4260.45% + 7028935 4 436460s% -+ 20386053 — 9911352 — 104 — 845 — 2104.6

Pess (tonsor =

986 + 64.7s5 + 1561.8s* + 12398s% - 2874.8s% — 336.3s
s34 110.7s7 + 4271.1s% + 707155 + 444000s* + 25957053 + 7434.15% + 40 — 24.45 — 50-L.9

pcf] (lon60) =

s% 4+ 71.95% + 1735.25% + 1372053 + 2526.45 — 609.8
s8 4 110.4s7 + 4241.25% + 6964955 + 42926054 + 21884053 + 44326052 + 13 — 4740s + 7145.7
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The roots of each effective plant, shown in Tables 4.1 through 4.4, are used
as the basis for designing the loop transmission functions. In each case, note that
the last four denominator roots result from the actuator transfer functions. All the

other roots result from the open-loop aircraft dynamics models. Each of the first

_three flight conditions has an unstable RHP pole. This is also pointed out in Section

2.5.

| roots(num20) | roots(den?o)j

0.0000 -0.0203+j0.1257
0.0061 0.7080
-0.2304 15502

-20.0000 -206.0000
-20.0000 -20.0000

-31.5489 -20.0000

-50.0000

Table 4.1. Roots of Longitudinal Effective Plant (a = 20)

[ roots(numd0) | roots(dend0) ||

i 0.0000 -0.0534:+j0.1193

i 0.0458 0.3756
-0.3076 -0.8200

}F -20.0000 -20.0000

[ -20.0000 -20.0000

| -32.4259 -20.0000

| -50.0000

fable 4.2. Ro:ts of Longitudinal Effective Plant (a = 10)




| roots(num50) | roots(den50) ||

0.0000 0.0785
0.0853 -.0377+j0.1528
-0.3280 -0.6490
-20.0000 -20.0000
-20.0000 -20.0000
-34.9758 -20.0000
-50.0000

Table 4.3. Roots of Longitudinal Effective Plant {a = 50)

[[ roots(num60) [ roots(den60) |
0.0000 0.067 |
0.1373 09586 |
-0.3318 -0.0193+;1.0103
20,0000 20,0000 3}
-20.0000 -20.0000 ||
-35.0064 -20.0000

50,0000 H

severely limited, as shown in the next section.

Table 4.4. Roots of Longitudinal Effective Plant {a = 60)

All four transfer functions have one zero at the origin and one RHP zero. The

RHP zeros add undesirable non-minimum phase characteristics in the form of excess
“phiase lag. Also, when an RHP pole and zero are near each other, this limits the
achievable gain margin. In the 50 degree case, it is noted that an RHP pole and

zero are virtually on top of each other. The achievable gain margin for this plant is




4.3 Design of Loop Transmission Functions

Section 4.1 mentioned that the compensator is designed by obtaining the de-
sired loop transmission function and dividing the result by the effective plant. Ob-
viously, one desirable goal is to achieve the desired stability with as simple a com-
pensator as possible. To minimize the number of compensator terms, L is designed

to contain some of the terms found in P.sy.

Starting with the 20 degree case, the loop transmission function is chosen to
contain a zero at 0.0061 and a pole at‘0.7080. Note that the effective plant has these
same roots (Table 4.1). For the determination of the compensator transfer function,
these terms effectively cancel out (Equation 4.1), thus reducing the number of terms
in G. It should be pointed out that one may not cancel out poles or zeros in the
RHP. This is because an exact cancellation can never be assured. Without an exact
cancellation, a closed-loop pole would remain in the RHP and the system would
be unstable. Such a cancellation has not occurred here. The effective cancellation
discussed above results from using two of the P.s; terms to form part of the loop

transmission function.

The next step is to determine the order of the loop transmission function.
Since the effective plant has an excess of two poles over zeros, the loop transmission
function must have at least this excess. To ensure the desired high-frequency char-
acteristics [L(0o)=0], it is decided that the loop transmission function should have
an excess of three poles over zeros. Therefore, in addition to the pole at 0.7080, the
denominator of L must contain a second order pair of poles and a single real pole.
The second order pair may be real or complex, and the values of ¢ and w, may be
arbitrarily chosen. For simplicity, ¢ is chosen to be unity. Using an iterative routine,
the values of w,, the additional real pole, and the overall gain are adjusted while

observing changes on the Nichols plot of the loop transmission function (Figure -1.3).




Figure 4.3. Nichols Plot - Pitch Rate Loop Transmission 1 (a = 20)

The design philosophy is to maximize the amount of loop transmission gain in
the mid-frequency range, while maintaining reasonable gain and phase margins. It is
known that in order to maximize the benefits of feedback, the loop transmission gain
must be made as great as possible [14]. Maximizing the benefits of feedback reduces
the sensitivity to disturbances [15]. There is a tradeoff, however. The amount of
allowable loop transmission gain is limited by the gain and phase margins. Referring
to Figure 4.3, if one increases the loop transmission gain (thus raising the entire plot),
the function wiil eventually cross the zero-dB/-180 degree 'point. If this occurs, the

- system becomes unstable [8].




Figure 4.4 is the Bode plot of the same function. The Nichols plot is the
primary design tool, but the Bode plot clearly shows the magnitude and phase
characteristics as a function of frequency. The units of gain and phase for both
types of plot are dBs and degrees, respectively. They have been omitted from the
plot labeling for neat appearance. The low-frequency portion of L {w = 0.0001}) has
a magnitude of approximately -13 dB and a phase of -180 degrees, which is easily
read off the Bode plots. This is also seen on the Nichols plot and the function moves
in a clockwise direction around the zero-dB/-180 degree point until finally falling off

to the desired steady state value of zero gain and -270 degrees of phase lag.

eac =3aag

—
Figure 4.4. Bode Plot - Pitch Rate Loop Transmission 1 (a = 20)

While the gain and phase margins can be read from either the Nichols or the
Bode plot, the Matrizx margin command easily provides the values to a greater
accuracy. In this case, the gain margin is +6.07 dB, and the phase margin is 19.3.
degrees. These are considered reasonable values for stability margins, based on past

cxperience in designing flight control systems [15].

18




A point worthy of mention is the effect of the non-minimum phase zero on
~ the feedback performance. In a minimum phase system (no RHP zeros), the loop
: transmission gain is typically rather flat until w reaches the desired roll-off frequency.
In this system, however, the non-minimum phase zero has resulted in a lowering of
the loop transmission gain in the low-frequency range (see Figure 4.4). The resulting
lack of feedback benefits in this range is acceptable because it permits reasonably

good feedback benefits in the more desirable mid frequency range [14].
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Figure 4.5. Bode Plot - Pitch Rate Closed Loop Transmission 1 (o = 20)

The design process results in an w, value of 60, the additional pole being placed
at -1, and an up front gain of 0.25. The final loop transmission function for this case
is given in Equation 4.2. The additional gain terms are required to offset the steady

state values of the individual poles and zeros.

(0.25)(0.7080)(3600)(s — 0.0061)
0.0061)(s — 0.7080)(s + 1)(s2 + 60s + 3600)

L20q(1) = (
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The closed-loop transmission function is given by Equation 4.3, and the result-
ing Bode plot is shown in Figure 4.5. This plot is to be modified by the prefilter
transfer function to optimize the time response, as discussed in the next section of

this chapter.

L
[ —— ‘.3
IL_].II (l )

Finally, the compensator transfer function is determined by use of Equation
4.1. In this case, Equation 4.2 is divided by the factored form of Py (ion20), Which
is given by the roots in Table 4.1 multiplied by the polynomial gain of 0.8. The

resulting compensator transfer function is shown below.

130, 570(s? + 0.0406s -+ 0.0162)(s -+ 1.0302)(s + 20)(s + 50)
s(s? + 60s + 2600)(s + 1)(s + .2304)(s + 31.5489)

Gaogq1) = (4.4)

An alternative design is now shown that results in a simpler compensator
transfer function. The loop transmission function is designed as before, except that
the second order pair of poles is now chosen to be the convolution of (s+20) and
(s+50). This results in an additional effective cancellation in the expression for
G. Also, an additional gain factor of 0.5 is used to achieve a desir-ble stability
margin. Matrizx gives the gain and phase margins as +12.59 dB and +37.35
degrees, respectively. The larger gain margin is required to ensure a reasonably high
phase margin. The alternate loop transmission func...n is given by Equation 4.5

and the simpler compensator transfer function is given by Equation 4.6.

(0.25)(0.5)(0.7080)(1000)(s — 0.0061)
0.0061)(s — 0.7080)(s + 1)(s? + 70s + 1000)

Laog2) = (
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18,135(s? 4+ 0.0406s + 0.0162)(s + 1.0302)
s(s + 1)(s + .2304)(s + 31.5489)

Gaog(2) = (4.6)

Figure 4.6 is the Nichols plot of the alternate loop transmission function and
the corresponding Bode plot is shown in Figure 4.7. Finally, the closed-loop trans-
mission function based on the alternative design is shown in Figure 4.8. Comparison
of Figures 4.4 and 4.7 shows that the alternate design has slightly less loop trans-
mission gain, which results in decreased feedback benefits. Also, the phase margin is
somewhat lower in the second design. However, the trade-offs are probably accept-

able, given the benefits of the reduced order compensator transfer function.
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The 40 degree loop transmission functions are designed just like the ones for
i:he 20 degree case. In genefal, the same qualitative analysis applies to these cases,
as well. The loop transmission gain is maximized in the mid-frequency range and the
stability margins are again reasonable, based on past experience in designing aircraft
flight control systems [15]. For the first design, the gain margin is +6.66 dB and the
phase margin is +44.59 degrees. Figure 4.9 is the Nichols plot of the function and
Figures 4.10 and 4.11 are the respective open and closed-loop Bode plots. Note that

frequency responses are very similar to those shown in the 20 degree case.
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Figure 4.9. Nichols Plot - Pitch Rate Loop Transmission 1 (o = 40)
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The initial design loop transmission function for this flight condition is given
by Equation 4.7, and after applying Equation 4.1, the resulting compensator transfer

function is given by Equation 4.8.

(0.5)(0.3756)(100)(s — 0.0458) V)
(0.0458)(s — 0.3756)(s + 1)(s2 + 10s + 100) (47

Liog) =

585(s? + 0.1068s + 0.0171)(s + 0.8200)(s + 20)(s + 50)
s(s2 + 10s.4 100)(s + 1)(s + .3076)(s + 32.4259)

Gaog(1) = (4.8)

Analogous to the twenty degree case, an alternate design is shown that takes
advantage of an additional effective cancellation to simplify the compensator. As
before, the second order pair of poles is designed to cancel out the (s+20) and
(s+50) terms. In this case, the additional real pole is located at -3, and the overall
gain is not adjusted. The resulting gain margin is +12.91 dB and the phase margin
is 7+33.05 degrees. As noted with the second design for the 20 degree case, excess

gain margin is required to ensure a reasonable phase margin.

Figure 4.12 is the Nichols plot of this loop transmission function, and the
corresponding open and closed-loop Bode plots are shown in Figures 4.13 and 1.1
Finally, the loop transmission function is given in Equation 4.9, and the resulting

simpler compensator transfer function is given in Equation 4.10.

4-15




- Rd 3 ]

Figure 4.12. Nichols Plot - Pitch Rate Loop Transmission 2 (a = 40)

(0.5)(0.3756)(1000)(s — 0.0458) (19)
~ (0.0458)(s ~ 0.3756)(s + 1)(s? + 705 + 1000) '

Laog2) =

5850(s2 + 0.1068s -+ 0.0171)(s + 0.8200)

Guoq(2) = s(s + 1)(s + .3076)(s + 32.4259)

(4.10)
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As mentioned previously, the 50 degree longitudinal case poses a significant
problem. Referring to Table 4.3, it is noted that the ratio of the RHP zero to pole
is only 1.0866. This extremely close proximity severely limits the achievable gain
margin. In fact, given the limitations of applying LTI design techniques to this
particular problem, it is shown that the system stability margins cannot be made
great enough to be practical. Nevertheless, the system can be made stable (though
just barely} by use of the optimal blending method. Optimal blending is one of

Professor Horowitz’ variations of the basic QFT methods. This method is discussed,

- but not applied, in Walke’s thesis [27].

The complete derivation of the optimal blending method is presented in a paper
entitled Design of Feedback Systems with Non-Minimum Phase Unstable Plants [12].
‘The discussion presented here is only a brief look at the application of the method

to this particular problem.

As before, the loop transmission function is designed to contain a pole at
0.0785 vl a zero at 0.0853, to effectively cancel with the corresponding terms in
the P, s. The optimal blending method derives its name from the fact that the
design is optimal with respect toward achieving an acceptable gain margin. The
optimality is measured by maximizing the ratio of allowabl: gains that result in a

stable closed-loop system.

The optimal condition results from a forced symmetry in the s-pianz. By bal-
ancing the RHP pole and zero with their equivalent LHP counterparts, a symmetry
about the jw axis is obtained. With increasing negative gain values, the poles mi-
grate to the jw axis and travel out to infinity, eventually coming back in on the real
axis to terminate on the zeros. The root locus depicting this situation is sketched
in Figure 4.15. Note that only the RHP poles and zeros of L are balanced by this
method. There is no need to balance the LHP poles and zeros since they do not

cause the closed-loop system to be unstable.
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Figure 4.15. Root Locus Sketch of Optimal Blending (Marginal Stability)

From this it is clear that for some range of gain values, the closed loop poles
are on the jw axis, thus making the system marginally stable. Taking this one step

further, if the symmetric axis is offset into the LHP by some o value, there is a range

-of gain values for which the system is completely stable. For this case, o is chosen to

be -1, and the resulting shifted root-locus is sketched in Figure 4.16. The upper limit
of o is limited by the fact that as the offset value is increased, the ratio of allowable
gains for a stable closed-loop system decreases. The lower limit may be any value
that places the line of symmetry comfortably within the LHP, and the ezact value is

somewhat arbitrary [15].

Thus, the optimal blending method has provided an LHP pole/zero pair to
ensure the stability of the closed-loop system. Finally, the minimum excess of two

poles over zeros is provided by the addition of a second order pair of poles. By
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placing the extra poles far off in the LHP (i.e. large w), the symmetry is not disturbed

significantly. With a value of w equal to 400, the 50 degree loop transmission function

is defined by Equation 4.11.

imaginary
-2.0853 -2.0785 i 0785 0853
(). X < ; XD
-1 ¢ origin real

s-plane

Figure 4.16. Root Locus Sketch of Shifted Optimal Blending (Stable)

~(1.0785)2(160, 000)(s — 0.0853)(s + 2.0853)
1.0853)%(s — 0.0875)(s + 2.0785)(s? + 400 + 160, 000)

Loy = ¢ (4.11)

The Nichols plot of this function is shown in Figure 4.17. Readily apparent is
the way the loop transmission function hooks around the zero dB/-180 degree point.
Figure 4.18 is a detail view of this region. The actual gain and phase margins are
+0.09 dB and +1.45 degrees, respectively. Clearly, such stability margins arc not

acceptable for a realizable system. However, it has been shown that the optimal
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Figure 4.17. Nichols Plot - Pitch Rate Loop Transmission (a = 50)
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The open and closed-loop Bode plots of the 50 degree loop transmission func-
tion are shown in Figures 4.19 and 4.20, respectively. The resulting compensator

transfer function is rather high order and is given by Equation 4.12.

~175,560(s + 2.0853)(s" + 0.0754s + 0.0248)(s + 0.649)(s + 20)(s + 50;
s(s + 2.0785)(s? + 1005 + 160, 000)(s + 0.3230)(s + 31.9759)

{-1.12

S
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(4.13)

is shown in Figure 4.21.
,000)

ion

(s +0.3318)(s + 35)

(s + 0.2586)(s + 20)(s + 10)(s + 5)(s2 + 2005 + 40

)

the resulting loop transmission function is

1373

.

453,630(s — 0

4.13. The Nichols plot of this funct
4,

on

.

Finally, the 60 degree loop transmission function is designed from the start
L60q

by Equat

cancel three zeros and two poles from the effective plant. With two additional real
given

to maximize the number of effective cancellations, so that a relatively low order
compensator may be realized. Referring to Table 4.4, it is decided to effectively

poles and another pair of complex poles,

T

e [
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60)
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It is clearly evident on the Nichols plot that this particular loop transmission
function has two cross-over frequencies. Horowitz points out that even moderate
feedback benefits require some loop transmission gain to be significantly greater than
one over some range of w [13]. In this case, L has been maximized as much as possible
in the mid-frequencies without diminishing the stability margins to unacceptable
values. Note that there are two regions of instability to avoid in this case (zero-
dB/-180 degrees and zero-dB/-540 degrees). Because of the large excess of poles
over zeros and the additional phase lag contributed by the RHP zero, this function
approaches -630 degrees of phase lag as w goes to infinity. The actual gain and phase
margins (based on the points closest to the instability regions) are +5.04 dB and
+41.56 degrees, respectively.

The corresponding open-loop Bode plot is shown in Figure 4.22. The two
cross-over frequencies are evident in this figure, and the cross-over frequencies are

easily read off the plot.
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Figure 4.22. Bode Plot - Pitch Rate Loop Transmission (o = 60)
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The Bode plot of the closed-loop transmission function is shown in Figure 4.23.

Note that this plot is quite similar to the closed-loop Bode plots obtained for the

other flight conditions. In all but the 50 degree condition, the closed-loop responses

approach -630 degrees of phase lag at w = oo regardless of the open-loop phase lag

- characteristics.
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Figure 4.23. Bode Plot - Pitch Rate Closed Loop Transmission (a = 60)

Finally, the compensator transfer function for the 60 degree flight condition is

given by Equation 4.14. Note the relative simplicity, due to the number of effective

cancellations.

4,453, 630(s + 0.0677)(s? + 0.0386s + 1.0211)(s + 50)

G60q =

(s 7 10)(s + 5)( + 2005 + 40, 000) (4.14)
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4.4 Prefilter Designs and Responses

This section discusses the prefilter designs and their effects on the system time
responses. Specifications are not provided for this academic design study. However,
it is desirable to work toward a realistic set of goals. Therefore, the appropriate
military specification for flying qualities is referenced to provide a desired response
characteristic. Without reproducing the detail of this entire specification, it is as-
sumed that the models developed here represent a fighter type aircraft flying in
category A. Based on these assumptions, the short period damping ratio ((,,) for
level 2 flying qualities may range from 0.25 to 2.00, according to the standard. For
this design, a median value of one is chosen for (,,. The short period natural fre-
quency (wsp) is also chosen to be a median value from the allowable range given in

the standard. For this design, a value of three radians/second is chosen for w;,.

With these values, the desired second order response is plotted with Matrizy,
and the values of rise time (t,) and settling time (t,) are found to be approximately
1.3 seconds and 1.95 seconds, respectively. With a damping ratio of one, there is no
overshoot. This type of response is often seen in control problems and experience has
shown that to achieve such a response, the Bode magnitude plot should be nearly

flat at zero dB up to a roll-off frequency of approximately one radian/second.

Beginning with the first loop transmission design for the 20 degree flight con-
dition, the closed-loop Bode plot is examined (Figure 4.5). It is noted that for the
mid-frequency range the magnitude is already zero-dB. Therefore, two portions of
the plot require adjusting. The low-frequency range needs to be raised to the zero dB
level and the magnitude needs to roll-off at around one radian/second. A pole/zero
pair handles the low-frequency portion, and once again the values are obtained iter-
atively by observing the Bode plot as the parameters are varied. The desired roll-off
is accomplished by adding a pole at s = —2. The prefilter for this condition is given
by Equation 4.15. Note that the steady state gain value of this prefilter is not unity,

as is typically the case for prefilter designs. This is because the steady state value of
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Tt is less than one due to the limitations discussed previously. As a result, for this
type of problem, the prefilter is used to compensate for the gain discrepancy in the
low-frequency (steady state) range. Finally, the compensated Bode plot is shown in

Figure 4.24.

1.875(s + 0.04)

Fgo-l = 4.15
(s + 0.0125)(s + 2) (4.15)
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Figure 4.24. Bode Plot - Pitch Rate Design 1 with Prefilter (a = 20)

It is known that the step response of a non-minimum phase system does not
directly approach the steady state value. Instead, the response first goes in the
opposite direction, before crossing the x-axis and then approaching the steady state
value. Further, the amount of time spent in the opposite direction is inversely
proportional to the magnitude of the RHP zero that caused the effect. In this case,
the non-minimum phase zero is at s = 0.0061. The associated time constant is
quite large so that the response does not cross the zero axis until approximately 120

seconds, and does not reach the steady state value until approximately 500 seconds.
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Using this fact to advantage, the region of negative response is used as the desired
transient control region. It is assumed that the slow decay in the opposite direction

can easily be controlled by the closed-loop flight control system.

Figures 4.25 through 4.27 are the time response plots of the first case. The same
response is plotted on three different time scales to show the effects just discussed. In
all cases the response is the pitch rate with the units of degrees/second. The desired
region of transient control has a slightly overdamped response with a rise time of
approximately 1.2 seconds and a settling time of just over two seconds. These figures

compare well with the desired response characteristics discussed above.

In the 20-second plot, the response can be seen falling off as it is heading for the
crossover and steady state value. On the 500-second plot, the response has reached
the steady state value and the crossover point is at approximately 120 seconds as
noted. The steady state value is negative one, since the region of reverse response
is chosen to be the transient control region. Thus, the response approaches positive
one degree/second in the region of interest. The sign of the steady state value can

easily be inverted by including a negative gain in the prefilter.
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Figure 4.25. Pitch Rate Step Response - Design 1 {5-sec} (a = 20)
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Figure 4.26. Pitch Rate Step Response - Design 1 {20-sec} (a = 20)
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Figure 4.27. Pitch Rate Step Response - Design 1 {500-sec} (a = 20)
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The design for the alternate 20 degree loop transmission function is performed
in an analogous manner. The closed-loop frequency response with prefilter is shown
in Figure 4.28. Again, the response is made relatively flat up to the roll-off frequency.

The prefilter for this condition is given by Equation 4.16.

1.768(s + 0.06)
(s + 0.0068)(s + 2)

on-z = (4.16)

Figures 4.29 through 4.31 are the corresponding time response plots for this
system. The critical parameters of transient region settling time, crossover time, and

steady state settling time are virtually the same as those seen in the last case.
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Figure 4.28. Bode Plot - Pitch Rate Design 2 with Prefilter (o = 20)
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Figure 4.30. Pitch Rate Step Response - Design 1 {20-sec} (a = 20)
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Figure 4.31. Pitch Rate Step Response - Design 1 {500-sec} (a = 20)

The design for the first 40 degree prefilter is based on an analysis of Figure
4.11. It is seen that the magnitude in the low-frequency range is already approx-

imately zero-dB. However, the roll-off frequency is a little too high (around eight

radians/second) and must be brought back to approximately one radian/second. By

developing the prefilter given by Equation 4.17, the desired frequency response is

obtained and shown in Figure 4.32.

1.180(s + 0.3)
(s+0.1)(s+2)

F40_1 = (417)

The corresponding time responses are shown in Figures 4.33 through 4.33.
The same general characteristics that are noted in the 20 degree cases are present
in this case. However, this system, with its non-minimum phase zero farther to
the right (s=0.0458), responds somewhat faster. Holding the magnitude of negative
direction response to one, the transient settling time is approximately three seconds,
with crossover and steady state settling times approximately 19 and 100 seconds,

respectively.
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Figure 4.35. Pitch Rate Step Response - Design 1 {500-sec} (a = 40)




As this is written, a problem is noted with the steady state value. Time does
not permit a re-design, but a brief analysis of how to handle this situation may he
useful for réference. While the steady state value should approach -1.0. it appears
to approach -1.9. This is most likely due to an error in the overall system gain.
which is used to cancel out the effects on the steady state value due to the poles
and zeros. Qualitatively, one would expect that simply reducing the overall gain
to correct this discrepancy would make the response somewhat slower. In addition.
the magnitude in the transient region would be less than one. A reasonable way to
handle this would be to increase the roll-off frequency by moving one of the prefiiter
poles slightly to the right (i.e. higher frequency). Alternatively, one could move the

prefilter zero slightly to the left (i.e. lower frequency).

The prefilter design for the second 40 degree loop transmission function is very
similar to the one obtained in the last case. The frequency response magnitude in
Figure 4.14 is again relatively flat up to a roll-off frequency of approximately 10

radians/second. The prefilter for this case is given by Equation 1.13.

1.161(s + 0.36)
(s +0.11)(s +2)

F40-2 -

(4.18)

The frequency response of the closed-loop system with prefilter is virtually
identical to the previous case, as shown by Figure 4.36. The corresponding time
responses (Figures 4.37 through 4.39) are also near duplicates of those seen in the
last case. The same problem with the steady state value is noted in these plots, so

a similar analysis and solution procedure could be used to correct the discrepancy.
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Figure 4.39. Pitch Rate Step Response - Design 2 {500-sec} (a = 40)
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The 50 degree case is discussed next. Recall that this flight condition resulted
in a design that is just barely stable, and in fact is not practical. However, it is still
useful to apply the prefilter design techniques to this case and analyze the results.
Analysis of Figure 4.20 reveals that the closed-loop frequency response magnitude
should be reduced to obtain the desired low-frequency value. Also, the initial roll-off
frequency is approximately 300 radians/second. It is found that a simple prefilter
pole with appropriate gain reduction results in the desired frequency response, as

shown in Figure 4.40. The prefilter developed for this case is given by Equation 4.19.

0.0099

301D (4.19)
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Figure 4.40. Bode Plot - Pitch Rate with Prefilter Design 1 (a = 50)
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The time response for this system is shown in Figure 4.41. In this case, it is
not reasonable to choose the region of negative response for the desired transient
response region. Due to the faster time constant from the RHP zero, this response
rather quickly reverses direction to approach the steady state value. The prefilter
design specified by Equation 4.19 results in the magnitude of the reverse response
being no greater than one. The zero crossing is at approximately eight seconds and

the final settling time is a rather slow 50 seconds.
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Figure 4.41. Pitch Rate Step Response - Prefilter Design 1 (o = 50)

This response is completely unacceptable, so an alternate prefilter design is
used to demonstrate an improved response. The prefilter design specified in Equation
4.20 results in a significantly faster time response. As before, the values of the
compensation parameters have been selected based on observations of the respounse

plots.
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0.708

m (4.20)

F50—2 =

The frequency response based on this design is shown in Figure 4.42. To speed
up the response, excess gain is allowed near w = 1. The time response plot based
on this design is shown in Figure 4.43. As is common in engineering designs, a
trade-off is involved. By allowing the value of the negative response to reach a value
of five, the crossover time is brought down to 3.5 seconds and the final settling
time is a greatly improved six seconds. Again, it should be stressed that this is not
an acceptable design, but the exercise has graphically demonstrated the effects of
different preﬁlfer designs on the system time response, based on a given closed loop

transmission function.
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Figure 4.42. Bode Plot - Pitch Rate with Prefilter Design 2 (a = 50)
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Figure 4.43. Pitch Rate Step Response - Prefilter Design 2 (o = 50)

Finally, for the 60 degree flight condition, the closed-loop response shown in
Figure 4.23 is analyzed. It is noted that a more complex prefilter is required, since the
response magnitude requires lowering only for frequencies below 0.1 radians/second.
Also, the initial roll-off frequency is over 200 radians/second. The prefilter design

specified in Equation 4.21 results in the frequency response shown in Figure 4.44.

_ 1.6574(s +0.05)
= (5 +0.3318)(s + 0.56)

Feo-1 (4.21)

The corresponding time response is shown in Figure 4.45. As with the 50 degree
case, the region of negative response cannot be used for the desired transient response
region. With a reverse region magnitude of one, the crossover time is approximately

five seconds and the settling time is a relatively slow 20 seconds.
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Like the 50 degree condition, it is now shown that an alternate prefilter design
can improve the system time response characteristics. The alternate design prefilter

for this flight condition is given by Equation 4.22.

3.5234(s + 0.042)
(s +0.3318)(s + 1)

Feo-2 =

The frequency response resulting from this design is shown in Figure 4.46. Note
that the roll-off frequency has been increased slightly. In this case, even using the
technique of optimizing the prefilter parameters while examining the time response,
the best that can be obtained is shown in Figure 4.47. This response is seen to be
only slightly faster than the one obtained with the first prefilter design for this flight

condition.
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Figure 4.46. Bode Plot - Pitch Rate with Prefilter Design 2 (a = 60)

4-44




18 T

1.5

R

W
/

| N
[ \\
-9
i
- \\:
.‘2 1 L } - 1 — - L L L L H 3 i L L : L L L 1 . § S 3 S 1
1] 2 4 [ ] 8 10 12 14 1. 18 20
Time (sec)

Figure 4.47. Pitch Rate Step Response - Prefilter Design 2 (a = 60)

Once again, the response reverses too quickly to allow using the reverse re-
sponse region. With this prefilter design, the negative response magnitude is ap-
proximately 1.5, and the crossover time has only been lowered to 4.5 seconds. The

settling time is approximately ten seconds with a slight overshoot.

It is also noted that for both of the 60 degree cases the desired response region,
after the crossover, has a negative magnitude. This is easily corrected with a negative
gain in the prefilter, but both of the 60 degree responses are too slow to be practical,
so as pointed out before, this problem is purely academic. The limitations imposed
by the non-minimum phase zeros force the designer to work with a response that
initially goes in a negative direction, thus making it virtually impossible to obtain

the exact response desired [15].

4-45




4.5 Summary

This chapter presents the design procedures for the longitudinal (SISO) pitch
rate controllers. After defining some key terms, the effective plants are shown for
each flight condition. In addition to listing the polynomial forms, the roots of each
effective plant are listed in tabular form for easy reference. Based on these roots. the
loop transmission functions for each flight condition are developed. These functions
are plotted on both Nichols and Bode charts to show the relative magnitude and
phase characteristics as a function of the frequency. The gain and phase margins are
listed in each case, and in all but the 50 degree flight condition, the stability margins

are reasonable,

An alternate loop transmission function is designed for the 20 and 40 degree
cases, to demonstrate some of the possible design trade-offs. The 50 degree case
presents some unusual problems and requires the use of the optimal blending method
to achieve stability. This system is made stable, but with unacceptably low stability
margins. Also discussed is the effect of non-minimum phase zeros on loop transmis-
sion gain, and why that gain must be maximized in the frequency range of interest.
The loop transmission function and the resulting compensator transfer function is

shown for each of the cases.

Finally, the design of the longitudinal prefilters is presented. The responses
are analyzed in detail and a novel idea is proposed to use the non-minimum phase
induced region of negative response as the desired transient control region. This is
reasonable for the extremely slow responses of the 20 and 40 degree cases. For the
50 and 60 degree cases, this is not a reasonable approach. However, for each of those
cases, an alternate prefilter design is presented to demonstrate how optimizing the
prefilter can improve the time response characteristics. Even though these designs are
not acceptable, this discussion presents several analytical design techniques that may
be useful in similar situations. Chapter V addresses the design issues surrounding

the lateral-directional (MIMO) flight control systems.
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V. Lateral-Directional Control System Design
5.1 Introduction

In this chapter, the lateral-directional control systems are examined in detail,
and variations of QFT are applied. The chapter begins with a look at the roots of
each effective plant. After pointing out some of the problems with these particular
unstable non-minimum phase plants, the Singular-G method is presented and used
to modify the plants. For each flight condition, the 2x2 MIMO plant is temporarily
converted into an equivalent SISO plant by use of a singular compensator. The goal
is to use the compensator elements to separate the RHP poles and zeros as much
as possible. This is done to expand the range of loop transmission gain that can be
used for the stable closed-loop system. The modified effective plants are listed in
factored form and the root-loci are shown to provide a graphic look at the relative
positions of the RHP poles and zeros.

Following this, the design process is carried on for one of the flight conditions.
The optimal blending method is applied to design a stable loop transmission function
for the chosen case. At this point, the loop transmission function is a SISO transfer
function, based on the SISO plant obtained from the Singular-G method. Next,
a procedure for determining the compensator transfer function is presented. Time
constraints, as well as limitations in the LTI techniques used, prevent completion of
the lateral-directional controller designs. However, the general procedure that can
be used to obtain the MIMO compensators and prefilters is discussed.

5.2 Analysis of Effective Plants

As with the longitudinal case, the lateral-directional effective plants are each
presented in factored form, to facilitate analysis of the system roots. Appendix H
shows the block diagram representation of each of the 16 lateral-directional effective
plants. Using the Matrizx linearization command lin, the systems transfer functions
are obtained. The factored results are listed in Tables 5.1 through 5.15.

In each case, the unstable poles and non-minimum phase zeros are readily ap-
parent. In a few of the cases, there is a zero far to the right of the origin. These

-
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particular non-minimum phase zeros are not a significant problem, since they con-
tribute minimal amounts of additional phase lag and they are not near any RHP
poles [15]. The real concern is with the RHP poles and zeros near the origin, and
in particular, those in close proximity to each other. This is discussed further in the

next section.

[[roots(num?20)-(1,1) [ roots(den20)-(1,1) |

0.0384 0.0058
-0.0919 -0.1000
-0.0577+j1.3866 -0.3239
-8.8395 -0.0500+£j1.3919
9.2676 0.1288+j2.7262
-20.0000 -20.0000
-20.0000 -20.0000
-20.0000

Table 5.1. Roots of Lateral-Directional P.ss (1,1) (a = 20)

[ roots(num?20)-(1,2) ] roots(den20)-(1,2) |

0.0367 0.0058
-0.9720 0.2000
0.1478+j1.5669 -0.3239
-3.0167 -0.0000+£j2.3979
3.0865+4.8059 0.1288+j2.7262
-20.0000 0.3200+3.6011
-20.0000 -20.0000
31.5050 -20.0000
-20.0000

Table 5.2. Roots of Lateral-Directional P,y (1,2) (o = 20)

C'n
(A




|| roots(num20)-(2,1) | roots(den20)-(2,1) |

-0.1937+j0.0661 0.0058
0.9568+j2.1320 -0.1000
-0.9451+)2.2835 -0.3239
-20.0000 -0.0500£;31.3919
-20.0000 0.1288+)2.7262
-20.0000
-20.0000
-20.0000

Table 5.3. Roots of Lateral-Directional P.ss (2,1) (a = 20)

| roots(num20)-(2,2) | roots(den20)-(2,2) ||

0.2023 0.0058
-0.3074 6.2000
0.0631+;2.4406 -0.3239
0.3459+)3.5946 -0.0000+j2.3979
-20.0000 0.1288+j2.7262
-20.0000 0.3200+;3.6011
-25.6236 -20.0000
28.8912 -20.0000
-20.0000

Table 5.4. Roots of Lateral-Directional P.ss (2,2) {a = 20)




[ roots(num40)-(1,1) | roots(dend0)-(1,1) |
|

-0.0453 0.0000 [
0.0603 -0.0808+j0.1561 ||
-0.0860£j1.2477 | -0.1000£j1.2610 |
0.2528+j2.9088 0.2500+j2.9047 Jd
|

|

-20.0000 0.7098£j3.0081
-20.0000 -20.0000
-65.1516 -20.0000
§5.9709 -20.0000 |

Table 5.5. Roots of Lateral-Directional Py (1,1) (a = 40)

|| roots(num40)-(1,2 J roots(den40) (12 1]

-0.0020+j0.1080 | -0.0808:£j0.1561

2.1000£j3.5974 | 0.7095)3.0081
2013£j3.94%6_ | 2.1000£j3.894 |
i# 13.9264 2.1000£j3.8971_|
-20.0000 2.2060£j3.9192_||
& -20.0000 200000 ||
[ 200000 |
L 200000 |

Table 5.6. Roots of Lateral-Directional Py (1,2) (o = 10)




Table 5.7. Roots of Lateral-Directional P.ss (2,1) (a = 40)

Table 5.8.

»

I roots(num40)-(2,1) | roots(den40)-(2,1)

0.0300 0.0000
-0.1800 -0.0808+j0.1561
-0.1200£j2.1700 | -0.1000+;1.2610
-0.7000£)3.1000 | 0.2500+2.9047
-20.0000 0.7008+;3.0081
~20.0000 -20.0000
60.0000 -20.0000
-115.2900 ~20.0000

|| roots(num40)-(2,2) | roots(dend0)-(2,2) ||

-0.5054 -0.0808+j0.1561
-0.2903+j1.4951 0.7098+;3.0081
2.1000+;3.8974 2.1000+£3.8974
2.1748+j309188 2.1000+j3.8974

-20.0000 2.20004£j3.9192

-20.0000 -20.0000

-5.3859E12 -20.0000
-20.0000

Roots of Lateral-Directional P.ss (2,2) (o = 40)




| roots(num50)-(1,1) | roots(den50)-(1,1) |

0.1686 -0.0190+j0.0977
-0.3493 -0.3668
-0.2167+0.5889 -0.5000

~14.4886 0.7143+)3.8832
~20.0000 -13.6332
~20.0000 -20.0000
~44.5601 ~20.0000
53.0418 ~20.0000
229.0000

Table 5.9. Roots of Lateral-Directional P.ss (1,1) (o = 50)

|| roots(num50)-(1,2) | roots(den50)-(1,2) ||

0.1443 -0.0190£j0.0977
-0.4062 0.4500Lj3.1141
0.11735)2.8344 | 0.7143%)3.8832
14312 -1.0000£4.0000
12.34454}5.6225 -19.0000
76311 ~20.0000
~20.0000 -20.0000
~20.0000 ~20.0000

Table 5.10. Roots of Lateral-Directional P.ss (1,2) (a = 50)




[ roots(num50)-(2,1) | roots(den50)-(2,1) |

-0.0163 -0.0190+£j0.0977
-0.3421 -0.3668
-0.354142.4034 -0.5000

-13.5556 0.71434j3.8832
-19.72484)29.2216 -13.6332
-20.0000 -20.0000
-20.0000 -20.0000
-20.0000
-29.0000

Table 5.11. Roots of Lateral-Directional P.s; (2,1) (o = 50)

| roots(num50)-(2,2) | roots(den50)-(2,2) ||

-0.0073 -0.0190+£j0.0977
0.3469+j3.0648 0.4500+)3.1141
-1.745744.0933 0.7143+)3.8832
-11.3331 -1.0000+j4.0000
12,7288 -19.0000
-20.0000 -20.0000
-20.0000 -20.0000
-24.3445 -20.0000
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Table 5.12. Roots of Lateral-Directional P.ss (2,2) (a




Table 5.13. Roots of Lateral-Directional P.s; (1,1) (o = 60)

Table 5.14. Roots of Lateral-Directional P.ss (1,2) (a = 60)

|| roots(num60)-(1,1) | roots(den60)-(1,1) |

0.1219 0.0459
- -0.1972 -0.1554
-0.2112 -1.0000

0.2868553.1245

0.047743.1259

0.5345+j3.1569

0.3000£3.1225

-20.0000 0.5500+j3.1524

-20.0000 -20.0000

35.0285 -20.0000
-20.0000

| roots(num60)-(1,2) | roots(den60)-(1,2) |

0.1485

0.0459

-0.2962

-0.1554

-0.0227+j1.8979

0.1000+4;2.2716

-1.9099+j4.7794

-2.7000+£j1.0000

18.4115 0.0477+4j3.1259
-20.0000 -0.7000+j4.5826
-20.0000 -20.0000

-20.0000
-20.0000




|| roots(num60)-(2,1) | roots(den60)-(2,1) |

-0.0113 0.0459
-0.1983 -0.1554
-2.3432+j1.4216 -1.0000

0.2873%j3.1215 | 0.0477£)3.1259
0.5385%;3.1607 | 0.3000%j3.1225

-20.0000 0.5500+)3.1524

-20.0000 -20.0000
-20.0000
-20.0000

Table 5.15. Roots of Lateral-Directional P.ss (2,1) (o = 60)

|| roots(num60)-(2,2) | roots(den60)-(2,2) ||

0.0048 0.0459
0.1432+j2.2750 -0.1554

-2.5675+j1.1827 0.1000+j2.2716
-0.7026+j4.6553 -2.7000+£)1.0000

-20.0000 0.0477%j3.1259
-20.0000 -0.70004:)4.5826
-3.0275E12 -20.0000
-20.0000
-20.0000

Table 5.16. Roots of Lateral-Directional P.ss (2,2) (a

= 60)




5.3 Singular-G Modification of Effective Plants

As previously mentioned, the RHP poles and zeros in close proximity to each
other limit the range of loop transmission gain that results in a stable closed-loop
system. In this section, each of the MIMO effective plants is transformed into an
effective SISO plant by use of a singular compensation matrix. The elements of
the compensation matrix are then used to separate the RHP poles and zeros of the
equivalent plant as much as possible. By separating the RHP poles and zeros. the
range of allowable gain for closed-loop stability is increased.

Figure 5.1 shows the general form of the singular-G compensator, and the
feedback paths from the MIMO effective plant. The next several equations are
used to derive the expression for the equivalent SISO plant. The expression for the
compensator matrix can be derived from the figure, and is given by Equation 5.1.
By post multiplying the effective plant by the compensator, the expression for the
forward gain, or equivalent loop transmission, is given by Equation 5.2.
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In general, the elements a, b, and ¢ may be either scalars or frequency depen-
dent functions. For this study, they are chosen to be scaiars. It is these elements that
are used to modify the effective plant. The common element (¥) is the compensator
transfer function and is determined in the usual manner by dividing the determined
loop transmission function by the effective plant.

The transfer function for the system shown in Figure 5.1 is given by:

PG _[1

76 = 1796 PC (5:3)

The stability of this system is determined by the poles of Equation 5.3, which
come from the determinant of [I 4+ PG ]. Substituting Equation 5.2 into the
expression [I + PG] results in Equation 5.4.

1 + \I’ (P(l.l) a4+ P(1.2) C) ‘I’ (P(l,l) ab + p“,z) bC)

[I+PG] = (5.4)
¥ (Peya+Peyc) 14T (Pe)ab+ Py be)

Taking the determinant of Equation 5.4 yields Equation 5.5.

Det[I+PG] = [14+ ¥ (Pu,1)a+ Pz c)+ (P ab+ Py be)
+ \I’z (P(l.l) a+ P(l,2) C)(P(z,l) a.b + P(z_z) bC)]
—[w? (Payab + P2y be)(P2,y a + Pag) ¢)) (5.3)

When the factors of the positive and negative ¥2 terms are multiplied out, they
are seen to be equal. Thus, the W? terms cancel out and the resulting determinant
expression is given by Equation 5.6.




Det[ I + PG] =14+ ] (P(l,l) a4 P(l'g) C) + ¥ (P(2,l) ab -+ P('z'g) bC) (56)

Defining ¥ as the compensator transfer function, the expression for the SISO
equivalent plant, here defined as (A), is obtained from Equation 5.6, and shown
explicitly in Equation 5.7. The usage of the word equivalent in this situation refers
to the stability characteristics only. Recall that the primary goal in this section is
to achieve stability over some range of gain values.

A= P(1'1) a4+ P(l'g) c+ P(z,l) ab + P(g'z) bc (57)

It is now desired to use a, b, and ¢ to modify the expression for the SISO
equivalent plant. Ideally, one would like to make the expression minimum phase (i.e.
no RHP zeros). In this situation, however, the best that can be done is to separate
the right half plane poles and zeros as much as possible, as discussed above [13].
Also, while performing the search, it is possible to move some of the RHP poles
and/or zeros into the LHP, with careful selection of the compensator parameters.
Even with a computer, this is a painstaking process requiring careful examination
of the root locus plot for each combination of the variable parameters. To reduce
the amount of searching to a manageable level, c is chosen to be unity. Thus, the
SISO equivalent plant is now a function of the compensator parameters a and b.
A commented listing of the Matrizx commands used to accomplish such a task is
shown in Appendix L.

Initially, large search patterns across positive and negative values are used and
the roots of the equation are examined. As trends point toward optimal scarch
regions, the patterns are successively narrowed until none of the RHP poles and
zeros are close to each other. Close in this sense is a relative term, with no sect
criteria available for use as a benchmark. For this task, the designer must visually
optimize the pole zero pattern by striking a blend between maximum separation
and minimum number of RHP poles and zeros. That is, in some cases, it may be
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desirable to sacrifice some amount of separation, if by so doing some of the RHP
poles and/or zeros can be forced into the LHP.

For the 20 degree case, the final values of a and b are determined to be -1
and +1, respectively. The root locus of the modified plant for this flight condition
is shown in Figure 5.2. Examination of the figure reveals that no effort has been
made to separate the left half plane poles and zeros. This is because they do not
result in unstable closed-loop system poles. However, the RHP poles all now have
a reasonable amount of separation. Again, there is no set criteria for determining

what is reasonable separation, other than to say that the system is improved.
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Figure 5.2. Root Locus of Modified Effective Plant (« = 20)

The roots of this modified plant are listed in table 5.17. Finally, it should be
remembered that the modified plant has only been temporarily converted from a
MIMO to a SISO plant as defined by Equation 5.6. The actual lateral-directional
plant is still a 2x2 MIMO system. The next section discusses this further.




|| roots(num-modplnt20) | roots(den-modplnt20) ||

-0.0335 0.0058
-0.0362+)0.1047 ~0.1000
-0.0313+;1.5069 -0.3239
-0.0169£)1.8413 -0.0500£1.3919
1.5161+4.8876 0.1288L}2.7262

-6.7782 ~20.0000

-20.0000 -20.0000

-20.0000 ~20.0000

34.2306 0.2000

0.0000%52.3979
0.3200+;3.6011

Table 5.17. Roots of Modified Lateral-Directional Effective Plant (o = 20)

Figure 5.3 shows the root locus for the modified 40 degree effective plant. The
optimal values of a and b for this case are found to be +13 and -13, respectively.
It is noted that there is a greater number of RHP poles and zeros in this case than
was seen in the 20 degree case. Close examination of Figure 5.3 reveals that two
pairs of RHP poles are extremely close to each other. This poses no problem, since
the system closed-loop poles migrate away from the open-loop poles and toward the
zeros. Also note that one pair of RHP poles migrates into the LHP. Table 5.18 lists
the roots of this equivalent plant.

The root locus of the 50 degree equivalent plant is shown in Figure 5.4. It is
interesting to note that this flight condition proved to be the most troublesome in the
longitudinal mode, but turns out to be the best of the lateral-directional cases. By
setting the value of a to -0.001 and b to -3.5, the equivalent plant has only four rigit
half plane poles and two RHP zeros. Further, it is noted that two of these poles
migrate into the stable LHP and the remaining RHP poles and zeros are widely
separated. The roots of this equivalent plant are listed in Table 5.19.
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Figure 5.3. Root Locus of Modified Effective Plant (o = 40)

[ roots(num-modplntd0) | roots(den-modplntd0) |

0.0286 0.0000
-0.2115 -0.0808+30.1561
-0.1785+)2.4879 -0.1000%£1.2610
1.7341£j3.4741 0.2500+£j2.9047
2.0896£3.4452 0.7098+;3.0081
0.9627+4.5355 ~20.0000
2.5424+£4.3558 ~20.0000
-15.2233 ~20.0000
~77.8939 2.1000%;3.8974

2.1000%;3.8974

2.2000+}3.9192

[V
Ut

Table 5.18. Roots of Modified Lateral-Directional Effective Plant (a = -10)
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Figure 5.4. Root Locus of Modified Effective Plant (o = 50)

|| roots(num-modplnt50) | roots(den-modplnt50) |

~-0.0569 -0.0190+j0.0977
-0.3769 -0.3668
-0.4623 -0.5000
1.9130 0.7143+3.8832
2.5237 -13.6332
-0.0100£2.8632 ~20.0000
-2.1180%;5.7859 ~30.0000
77142 ~30.0000
713.6449 -29.0000
~20.0000 0.45005;3.1141
720.0000 -1.0000%;4.0000
-29.9504 ~19.0000

Table 5.19. Roots of Modified Lateral-Directional Effective Plant (a = 50)
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The equivalent plant for the 60 degree flight condition is shown in Figure 5.5.
With the values of a and b chosen as +180 and -11, respectively, the RIIP roots are
separated as much as possible. By adjusting the two parameters while observing the
root locus plots, it is possible to pull two pairs of complex zeros into the stable LIIP.

Table 5.20 lists the roots of the modified effective plant for this flight condition.

Finally, it should be noted that this procedure worked fairly well in achieving
the desired objective in each case. However, it is possible that by varying the ¢
parameter, along with a and b, the results could have been better. Further, recall-
that the a, b, and ¢ parameters need not be scalars. By allowing these parameters
to be frequency dependent transfer functions, it may even be possible to stabilize
the effective plants, or at least make them minimum phase. However, such a deter-
mination would be extremely time consuming, even with a computer, and is beyond

the scope of this effort.
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Figure 5.5. Root Locus of Modified Effective Plant (a = 60)




|| roots(num-modpint60) [ roots(den-modpInt60) I

-0.0201 0.9459 B
x -0.5359 -0.1554
-0.10144j2.4721 -1.0000
| -0.0014+j2.6429 6.0477+j3.1259 ||
1.4473%j2.3231 0.3000+£j3.1225
| -2.6296j1.5661 0.5500+3.1524
| 1.0852+;2.887G -20.0000 I
-2.3487+j4.0988 -20.0000 i
I -29.0000 I
0.1000+;2.2716 ||
-2.70064j1.0000 ||
-0.7000%§4.5826 ||

Table 5.20. Roots of Modified Lateral-Directional Effective Plant (o = 60)

5.4 Application of Optimal Blending to One Case

The lateral-directional design procedure is now carried further for one of the
flight conditions. The 50 degree flight condition is chosen, since it's equivalent plant
has the least number of RHP poles and zeros. The optimal blendirz method is used
to obtain a loop transmission function which for a specified range of gzin can result
in a stable closed-loop system. Following this, the procedure to obtain the overall
compensator transfer function (¥) is presented. Finally, the general procedure for
designing the MIMO system, complete with prefilters, is discussed.

The design proceeds with a step-by-step method for developing an optimum
loop transmission function. The RHP polcs and zeros in the plant may no! be can-
celled due to the uncertainties in the exact val 2s. Thezefore, the ioop transmission
function must contain the RHP poles and zeros o! the effective plant (sce Table 3.191.
The optimal blending design procedure is based o1, only the RHP poles and zeres of
the effective plant, since the stable LHP roots are not a concern for stability. The

LHP roots may be cancelled with additional compensator terms, if desired.

5-18




The optimal blending method is now applied to this particular case. The
general procedure is derived in reference [12]. The numbers of RHP poles (¢,) and
zeros (§;) in the effeciive plant determine the order of the balanced loop transmission
function. Equations 5.8 and 5.9 are used to determine the number of compensator

poles (6,.) and zeros (§,.) required to ensure the necessary svmmetry.

bpe = 6, + 26, — 2 (5.8)

6ZC

26, + 6, — 2 (5.9)

In this case, with §, = 4 and é, = 2, the compensator must have six poles and
eight zeros. The balanced portion of the loop transmission function must contain ten
poles and ten zeros. Note that this is an improper transfer function, so additional
far off poles must be added later.

An optimal blending function {¢(s)] is now defined as one side of the balanced
portion of the loop transmission function. Thus, ¢(s) is a function with five zeros and
five poles. In this case, two zeros and four poles result from the effective plant. The
values of the remaining roots must be determined. The optimal blending function is
defined in Equation 5.10.

4(s) = (s - 1.9130)(s — 2.5237) (s° + As® + Bs + C) (5.10)
~ 1 (s-0.7143 £ 53.8832)(s — 0.4500 % j3.1141) (s+ D) -

I Proceeding with a design based on Equation 5.10 would result in a symmetric

function about the jw axis (i.e. marginal stability). To ensure stability, the ju axis
is offset into the left half plane by replacing s with v —2. The left side offset blending
function is given by Equation 5.11.




(v + 3.9130)(v + 4.5237) [(u3 + Av’* + Bv+C) (5.11)

¢(v) = [(v ¥ 2.7143  j2.8832)(v + 2.4500 £ 73.1141) (v + D)

Convolving the known roots from the effective plant yields Equation 3.12.

4(o) = (v? + 8.4367v + 17.7012) (v3 + Av? + Bv + C) (5.12)
= | (v* + 10.3286v° + 64.7469v7 + 195.2183v + 352.4153) (v+ D) '

The next step involves expanding the numerator and denominator into even

and odd monic polynomials, respectively. This is done in Equations 5.13 and 5.14.

on + Cnen = v° + (8.4367A+ B +17.7012)v® + (17.7012B + 8.4367C)v

(8.43678B + 17.7012A4 + C)v? {11.7012C) )

5.13
(8.4367 + A) (8.4367 + 4) (5-13)

+ (8.4367 + A) (v“ +
04 + cqeq = v° + (64.7469 4 10.3286D)v® + (352.4153 + 195.2183D)v

(195.2183 + 64.7469D)v? + (352.4153D) )
(10.3286 -+ D) (10.3286 + D) /

+ (10.3286 + D) (v‘* + (5.14)

Now the odd numerator and denominator coefficients are equated. Likewise,
the even numerator and denominator coefficients are equated. The resulting four

equations contain the four unknowns (Equations 5.15 through 5.18).
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8.4367TA + B + 17.7012 = 64.7469 + 10.3286D (5.13)

17.7012B + 8.4367C = 352.4153 + 195.2183D (5.16)

8.4367B + 17.7012A + C  195.2183 + 64.7469D
8.4367 + A B 10.3286 + D

17.7012C _ 352.4153D (5.15)
84367+ A ~ 10.3286 + D -

Since the last two equations are non-linear, the solution involves considerable
algebraic manipulation. Without reproducing all the steps, it should be noted that
the first variable isolated is D, which is the solution to a cubic equation. Engineering
judgement is required to select the most sensible root. In this case, one root is
negative, and another is very large. The third root, a small positive value, is the
sensible choice. After making this selection, the other coefficients are obtained by

solving the above cquations. The values are:

A = 42770 B = 25.1603
C = 20.7992 D = 13750

Factoring the cubic numerator roots, the shifted blending function is given by:

C'J t
[ ]
ot




4(0) = (v + 3.9130)(v + 4.5237) (v + 0.9449)(v + 1.6660 % j4.3359)
= | (v +2.7143 % j3.8832)(v + 2.4500 % j3.1141) (v + 1.3750)
(5.19)

The roots are now shifted back by adding two to the real portions of each.

resulting in:

(s) = (s 4 5.9130)(s + 6.5237) ] (s + 2.9449)(s + 3.6660 % j4.3859)
T [ (s +4.7143 & j3.8832)(s + 4.4500 £ 73.1141) (s + 3.3750)

Finally, the mirror image of ¢(s) about the chosen line of symmetry (s = —2)

is given by:

6()im = (s — 1.9130)(s — 2.5237) (s + 1.0051)(s + 0.3340 & j4.3859)
m (s —0.7143 - j3.8832)(s — 0.4500 = 73.1141) (s +0.6250)
(5.21)

Equations 5.20 and 5.21 are now combined into a single transfer function (the
symmetric loop transmission function) and plotted on a root locus, as shown in
Figure 5.6. The symmetry about s = —2 is readily apparent. It should be noted
that Equations 5.20 and 5.21 result in this root locus patte:n only for negative gain

values.

The reasc.. for plotting this function is to determine the range of loop transinis-
sion gain for which the closed-loop system is stable (i.e. no RHP closed-loop poles).
As the gain magnitude is increased, the system becomes stable at ' = —0.82 and

again goes unstable at K = —0.98. A reasonable choice for the loop transmission
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gain is the midpoint, K = —0.90. Close examination of Figure 5.6 reveals the loca-
tions of the closed-loop poles with this gain value. The closed-loop poles are denoted
by small stars on the plot. All ten closed-loop poles are in the LHP; two on the real
axis and eight on the s = —2 line of symmetry (two are just off the plot with the

selected scaling.
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Figure 5.6. Initial Optimal Blending Loop Transmission (a = 50)

As mentioned previously, additional poles are required to make the loop trans-
mission function a proper transfer function. The effective plant has an excess of two
poles over zeros, and that excess must be maintained. Three poles are added to the
loop transmission function to ensure that the compensator is also a proper transfer
function. The three LHP poles are added far off (s = —10000) so that the symmetry

near the origin is not disturbed greatly.




Even with such far off poles, it is seen in Figure 5.7 that the symmetric pattern
is disturbed somewhat. However, the closed-loop poles are still in the stable region
of the s-plane with the loop transmission gain set at —0.9. It is found that the
addition of the far off poles causes a slight degradation in the range of allowable gain
for stability. The range is now from K = —0.83 to K = —0.97; still centered about
K =-029.

Table 5.1 lists the roots of the equivalent loop transmission function with the
far off poles added. This technique results in achieving a stable loop transmission
function with at least some degree of gain insensitivity. Although the insensitivity is
rather low, this approach results in achieving the stability goal where conventional

methods would fail when applied to a problem such as this [15].

<~®o-aeg-—




|| roots(num30equiv) | roots(den50equiv) ||

-1.0551 -0.6250
1.9130 0.45004)3.1141
2.5237 -3.3750
-2.9449 0.7143+j3.8832

-0.3340+j4.3859 -4.4500+£j3.1141
-0.3660+;4.3859 -4.7143+3.8832

-5.9130 -10000
-6.5237 -10000
-10000

Table 5.21. Roots of Equivalent Loop Transmission Function (a = 50)

Lack of time prevents carrying this design any further. However, with the
equivalent loop transmission function defined, the compensator transfer function (¥)
may be obtained as before. Dividing the equivalent loop transmission function by the
equivalent effective plant (Equation 5.7) results in a fairly high order compensator.
Recall that the effective plant still has many LHP roots that are not addressed in
the above optimal blending procedure. The compensator transfer function could be

used to cancel out the LHP roots of the effective plant, if desired.

Although time constraints prevented completion of this design, the procedure
for transforming the system back to a MIMO system and designing the prefilter
matrix is discussed for reference and possible follow-on work. Figure 5.8 shows the
arrangement of the complete MIMO system, with the prefilter matrix [15]. Note
that the prefilter affects only the commanded input signals and the compensator
affects only the fed-back output states. The summation of these signals is the input
to the effective plant. At this point one might ask if the control surfaces would still
work together. The answer is yes. The weighting matrix terms that ensure this are

embedded in the effective plant, and the compensator will affect all plant inputs

equally.
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Figure 5.8. Singular-G Compensator with Prefilter {15

The inputs to the effective plant (u; and uy), are functions of the compensated
output states (y; and y;) and the filtered commanded inputs (r; and r;). Equation
5.22 express . this relation, and Equation 5.23 expresses the input/output relation
ship of the effective plant. These two equations are combined inte the closed-ioop

control ratio as given by Equation 5.24.

u=-Gy + Fr (5.22)




When the individual original P;; transfer functions (cach an element of a
2x2 matrix) are combined with the compensator transfer function (\f) in Equation
5.24, the 2x2 matrix of system transfer functions is obtained. Each element of
this matrix can then be equated to a desired transfer function and the elements
of the prefilter matrix can be obtained by algebraic methods. The desired transter
functions are typically developed by choosing dominant poles and zeros to obtain
the desired time response characteristics. The procedure is discussed in ref [§]. Also,
the cross coupling effects, represented by the off-diagonal elements in the transfer
function matrix, can be eliminated by proper selection of the prefilter terms. With

the prefilter matrix defined, the MIMO design is complete.

5.5 Summary

This chapter presents some specialized design techniques that are useful when
one is forced to work with unstable non-minimum phase plants. Several tasks are
defined and their importance is explained. After defining each of the individual
effective plants in factored form, the roots are analyzed. Specifically, the concern is
with right half plane poles and zeros that are in close proximity to each other. The
singular-G method is presented and used to modify the effective MIMO plants by
converting them to equivalent SISO plants (with respect to stability). Compensation
parameters are then used to separate the RHP poles and zeros as much as possible.
to maximize the range of loop transmission gain over which the closed-loop system

would be stable.

Then, for one flight condition the optimal blending method is used to develop
the balanced stable loop transmission function. A root locus plot is used to determine
the range of gain over which the closed-loop system would be stable, and an optimal
value is chosen. After adding the necessa‘xry far off poles, the loop transmission
function is again plotted on a root locus to verify that the system would still be

stable for the chosen gain value.
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Following this is a brief discussion of how to obtain the overall compensator
transfer function. Finally, the general procedure is discussed that would be required
to complete the MIMO design, with the appropriate prefilter matrix for ensuring the
desired system: time response characteristics. Chapter VI presents the conclusions

and recommendations for related efforts.




VI. Conclusions and Recommendations

6.1 Conclusions

This thesis discusses a variety of separate but related tasks pertaining to control
law development for an unstable, non-minimum phase aircraft. Variations of the
Quantitative Feedback Technique are discussed and applied to the design problem.
Although time did not permit the completion of the lateral-directional cuntrol system
designs, a substantial amount of material is presented that may be useful to flight
control engineers pursuing similar development efforts. This problem is considered
eztremely challenging [15], due to the large number of RHP poles and zeros in the
effective plants and the wide plant variations across the different flight conditions.

This research breaks new ground in several areas:

o Develops new aircraft models based on existing models that incorporate addi-
tional control capability.

o Develops frequency dependent compensation for multi-variable, unstable. non-
minimum phase open-loop dynamics models.

e Proposes using the non-minimum phase reverse response region as the transient
control region of interest when the non-minimum phase zeros are sufficiently
small.

e Presents the first combined application of optimal blending and the singular-G
method to a non-minimum phase, unstable MIMO plant.

The thesis starts by defining a problem experienced by the X-29A research
aircraft. While flying at extreme AOAs, the air.raft in its present configuration uses
most of its available control authority to control wing rock and yaw oscillations.
leaving little maneuvering capability. The use of differential canards is one proposed
solution. It is decided to investigate this idea by developing and modifyving exist-
ing aircraft dynamics models and developing flight control laws that incorporate the
additional control capability. Due to limited amounts of differential canard wind
tunnel data, the linearized aircraft models developed here only approrimate the per-

formance of the original aircraft. Development of aircraft modeis that represent the
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actual performance of the X-29A with differential canards would require substantial
additional wind tunnel testing, but a general procedure to develop such models is
presented in this thesis.

Four flight conditions with varying AOAs are chosen based on a speed of 0.3
Mach and an altitude of 20,000 feet. The four AOAs are 20, 40, 50, and 60 degrees.
The aircraft mod:| development begins by defining the control surface configura-
tions and their representative transfer functions. Next, after a brief description of
linearized aircraft models in general, the state vectors are defined. The control vec-
tors are modified to account for the differential canard effect: and the development
of the new control matrices is presented. The control variables are chosen to be
pitch rate, roll rate, and yaw rate. After re-defining the output matrices to specify
these state variables, the final linearized state space models are presented for the

four chosen flight conditions.

The weighting matrix development begins with a detailed look at the purpose of
a weighting matrix and a discussion of why the development is especially challenging
for this type of problem. Considerable time was expended on trying conventional
design techniques to develop the frequency dependent compensation required for the
lateral-directional channels. Due to the effects of unstable RHP poles. a root shifting
method is applied and found to yield acceptable results. With this method, frequency
dependent compensation terms are developed for each of the cases in the frequency
domain and then fine-tuned as necessary in the time domain. The resulting open-
loop step responses clearly show the desired results; that the control suriaces are all
working in phase with each other continuously. The results of this development are
perhaps best summarized by comparing the uncompensated epen-loop responses for
the 50 degree yaw case (Figure 3.3), with the unsuccessful compensated responses
(Figures 3.7 & 3.9), and the successful compe isated responscs (Figure 3.63).

Due to extreme variations in the effective plants, it is decided to design four
separate controllers for the longitudinal light control system. Following a brief
overview of QFT terms, the roots of the longitudinal effective plants arc analyzed
and the effects of RHP poles and zeros are discussed. The actual control design cen-
ters on developing optimal loop transmission functions that maximize the feedback
benefits over the frequency range of interest while maintaining acceptable gain and
phase margins for stability. The development uses Nichols and Bodc plots. since

cach has advantages over the other in terms of usefulness. In each case. the loop

6-2




transmission function is used to obtain the compensator functions. Following this.
the prefilter design process is discussed and it is shown how the prefilter is used
to modify the closed-loop system time response. Also shown is how an otherwise
undesirable non-minimum phase characteristic (the region of reverse response) may

be used to advantage in some situations, as is shown in Figures 4.25 through 1.27.

The lateral-directional designs commence with an analysis of the effective
plants. It is noted that due to the large number of RHP poles and zeros in close prox-
imity to each other the achievable stability margins are severely limited. In an effort
to improve this situation, the singular-G method is presented and used to transform
the effective MIMO plant into an equivalent (with respect to stability) SISO plant.
The form of the singular-G compensator is shown (Figure 5.1) and its parameters
are used to modify the equivalent SISO plant in such a way that the RHP poles and
zeros »re separated as much as possible. The resul:s are shown on root locus plots
for cl-~ny. Next, the optimal blending method is discussed in detail, and applied to
one casc to develop an optimal loop transmission function for the equivalest SISO
plant. The resulting function is shown to result in a stable closed-ioop system over a
specified range of gain (Figure 5.7). Although time constraints prevented completion
of the lateral-directiunal controllers, the remaining steps are discussed as an aid to
engineers interested in performing related design efforts.

Finally, one overall conclusion is worth mentioning. Throughout the effort,
Matrizyx (with SystemBuild) has proven to be an extremely effective computer
aided design and analysis package. Also, the Sun Sparc — I workstations, with
their multiple window capabilities and many useful features, have made both the
design and the write-up tasks considerably easier than they might have been on a
less capable system.

6.2 Recommendations

Several recommendations come to mind as this research is concluded. These
recommendations may be useful to anyone continuing this research or pursuing sim-
ilar development studies. While this thesis presents a great deal of information on
how to work with unstable, non-minimum phase plants, it is shown that the best

results obtained are only marginally acceptable for a practical design.

As alluded to earlier, the correct choice of control variables is critical for a

MIMO design problem such as this. By choosing the three angular rates as control

6-3




variables, the output matrix is quite simple, as these rates are direct state variables.
However, such a choice clearly results in effectiv- plants that have very undesirable
characteristics in wi¢ form of numerous RHP pole: and zeros in close proximity to
each other. With such limitations, the designer is limited in swhat he can do to
develop some sort of optimal control system. In this case, all that can be hoped for

is to achieve marginal stability [15].

It is interesting to note that the idea of re-defining a problem such as this is not
new. Ncrmal acceleration and pitch rate were originally defined by the manufacturer
as the two outputs to be independently controlled in the X-29A longitudinal flight
control system. The resulting effective plant had RHP poles and zeros so close to
each other that designers could achieve only very small stability margins, even with
scheduling. In that case, the problem was abandoned and different variables were
defined as outputs, for which the effective plant was minimum phase {13]. Thus. the
recommendation here is to carefully choose the control variables in such a way that

the open-loop plants are at least minimum-phase, even if unstable.

Another recommendation pertains to the lateral-directional control system de-
sign. The singular-G method is seen to be somewhat effective in improving the
effective plant characteristics by increasing the separation of RHP poles and zeros.
However, in this thesis, the choice is made to use only two of the singular-G parame-
ters and to constrain them to be scalars. Perhaps by using all three parameters and
allowing them to be frequency dependent terms, the singular-G method would result
in equivalent effective plants with desirable characteristics. Also, it is recommended
that after applying the singular-G compensation, the control surfaces be checked
once again to ensure that they are still working together as effectively as they were
before the compensation was added.

Finally, one over-riding recommendatior is to attack a problem such as this
with non-linear QFT theory, and allow for time-varying dynamics. The use of linear
time-invariant design techniques, while somewhat better proven and more easily
understood, limits the designer in unusual problems such as this {15]. Further. non-
linear mathematical aircraft models are likely to better approximate the aircraft’s
dynamics at high AOAs. A non-linear model of the basic X-29 zircraft has been
developed for the AFIT SIMSTAR computer by Captain Cox {6].

In closing, as an aid to related follow-on research efforts. the following addi-
tional references may be useful {7],[17].[18].{25].[28].
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Appendix A. Original State Space Matrices

This appendix lists the original state space matrices (both longitudinal and
lateral-directional) for each of the four flight conditions. These matrices were gener-

ated by the NASA Ames-Dryden non-linear simulation program and do not include

differential canard effecis.

Alon20 =

,B,lon20 =

—6.7320D — 02
—6.0200D — 04
4.9390D - 04
0.0000D + 00

[ _8.8250D — 02

—3.3100D — 04
1.2410D - 02
0.0000D + 00

~1.9190D + 01
—1.4980D - 01
7.3440D - 01
0.0000D + 00

~8.5710D — 02
=3.4930D — 04
—2.7310D — 03

0.0000D + 00

-5.8320D - 01
9.9480D - 01
-1.4560D - 01
1.0000D + Q0

—2.3390D - 02
—-2.1030D - 04
—9.6810D — 03

0.0000D + 00

~3.21100 + 01 |
~3.9770D — 09
~2.2720D — 09

0.0000D + 00 |

1.0280D — 01 |
~1.2020D — 04
—9.0470D — 04

0.0000D + 00 |

0.0000D + 00 |
0.0000D + 00

1.0000D + 00 0.0000D + 00 0.0000D + 00
0.0000D + 00 5.7300D 401 0.0000D + 00
0.0000D + 00 0.0000D +00 5.7300D 401  0.0000D + 00
0.0000D + 00 0.0000D 400 0.0000D +00  5.7300D + 01
6.7000D ~- 03 1.4100D 400 5.9590D — 02 -6.0660D — 04
| 6.7000D —03 1.4100D +00 5.9590D — 02 —6.0660D — 04 |

Cion2o =

[ 0.0000D +00 0.0000D +00 0.0000D +00 0.0000.0 + 00 |
0.0000D +00 0.0000D + 00 0.0000D + 00 0.0000D + 00
0.0000D +00 0.0000D + 00 0.0000D + 00 0.0000D + 00
0.0000D +00 0.0000D +00 0.0000D +00 0.0000.D -+ 00
3.4850D — 03 4.1870D — 03 2.3190D ~ 03 3.3150D — 05
| 3.4850D - 03 4.1870D — 03 2.5190D ~ 03 3.3150D — 05 |

Dlon20 =
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Alat20 =

~ Claro =

[ _6.8010D — 02
—1.8850D + 01

1.6090D + 00
0.0000D + 00

BlatZO =

5.7300D + 01
0.0000D + 00
0.0000D 4 00
0.0000D + 00
~1.0800D + 03
5.7800D + 01
7.3500D — 03

Diazo =

3.4030D - 01
1.4380D — 02
-3.3750D — 02
1.0000D + 00

—8.8650D — 05
1.3280D — 01
7.1400D — 03
0.0000D + 00

0.0000D + 00
5.7300D + 01
0.0000D + 00
0.0000D + 00
8.2390D — 01
—1.9340D + 00
—1.6550D — 02

0.0000D + 00
0.0000D + 00
0.0000D + 00
0.0000D + 00
7.6080D + 00
4.0910D — 01

| —5.5480D ~ 03

—9.3810D — 01
1.2860D — 01
—1.3520D — 02
3.6400D — 01

2.0300D — 04 |
1.0630D — 02
—9.8750D — 03

0.0000D + 00

0.0000D + 00
0.0000D + 00
5.7300D + 01
0.0000D + 00
7.3660D + 00

~17.7450D ~ 01
1.2130D — 02

0.0000D + 00 |
0.0000D + 00
0.0000D -+ 00
0.0000D + 00
6.0910D — 01
~5.6580D — 01

1.9680D ~ 03 |

9.7000D — 02 |
1.4200D — 06
4.3340D — 07
6.6800D — 03

0.0000D + 00 |
0.0000D + 00
0.0000D + 00
5.7300D + 01
8.1380D — 05
2.4830D — 05
~1.6670D — 03




Alon40 =

I

Blon40 =

Clon40 =

Dlon40 =

[ _1.8900D — 01
—6.6150D — 04

4.7760D — 04
0.0000D + 00

[ ~2.1920D — 01
—7.4030D — 04

1.4130D - 02
0.0000D + 00

[ 1.0000D + 00
0.0000.D + 00
0.0000D + 00
0.0000D + 00
9.9490D — 03

| 9.9490D — 03

[ 0.0000D + 00
0.0000D + 00
0.0000D + 00
0.0000D + 00
9.3380D — 03
| 9.3380D — 03

—-4.4710D + 01
—8.2400D - 02
3.0720D - 01
0.0000D + 00

—5.1610D — 02
3.4270D — 05
—2.9220D — 03
0.0000D + 00

0.0000D + 00
5.7300D + 01
0.0000D + 00
0.0000 + 00
1.5930D + 00
1.5930D + 00

0.0000D + 00
0.0000D + 00
0.0000D + 00
0.0000D + 00
8.8570D — 04
8.8570D — 04
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~1.0960D + 00
9.9580D — 01
—2.7990D - 01
1.0000D + 00

—5.1690D — 02
—2.0890D — 04
—8.6820D — 03

0.0000D + 00

0.0000D + 00
0.0000D + 00
5.7300D + 01
0.0000D + 00
6.6880.D -- 02
6.6880D — 02

0.0000D + 00
0.0000D + 00
0.0000D + 00
0.0000D + 00
2.9020D — 03
2.9020D - 03

~1.1400D — 03
—~1.1400D — 03 |

~3.2110D + 01 |
~1.2670D — 08
1.5050D — 07
0.0000D + 00 |

8.3780D — 02 |
~2.9500D — 04
~9.0290D — 04
0.0000D + 00

0.0000D + 00 |
0.0000D + 00
0.0000D + 00
5.7300D + 01

0.0000D + 00 |
0.0000.D + 00
0.0000D + 00
0.0000D -+ 00
3.2710D — 05
3.2710D — 05 |




[ 4.7370D - 02 6.3860D - 01
A = —1.4262D +01 1.3430D + 00
3.96100 — 01 6.3430D — 02
0.0000D +00 1.0000D + 00
[ —9.3770D — 05
By = | 23610002
2.5790D — 03
0.0000D + 00
5.7300D +01  0.0000D + 00
0.0000D +00  5.7300.D + 01
0.0000D +00  0.0000D -+ 00
Cuatsio = | 0.0000D +00  0.0000D + 00
~8.1720D +02  7.6960D + 01
2.2600D +01  3.6340D + 00
| 3.4950D —01 —9.0060D — 02

Dlauo =

[ 0.0000D + 00
0.0000 + 00
0.0000D + 00
0.0000D + 00
1.3530D + 00
1.4780D — 01

| ~1.7890D - 03
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~7.6430D — 01
~1.1530D + 00
—-1.7800D — 01

8.3910D - 01

3.63800 — 05 |
—4.3660D — 03
—3.3690D — 03

0.0000D +00

0.0000D + 00
0.0000D + 00
5.7300D + 01
0.0000D + 00
—6.6050D + 01
-1.0200D + 01
6.3870D — 02

0.0000D +00 |
0.0000D + 00
0.0000D -+ 00
0.0000D + 00
_2.5010D — 01
—1.9300D — 01

6.2030D — 04 |

7.9080D — 02 |

—1.0300D — 04
—2.4160D — 05

4.5550D — 02 |

0.00000 + 00 |
0.0000D + 00
0.0000D + 00
5.7300D + 01
~5.8990D — 03
~1.3340D — 03
~1.3570D — 03




Aonso

BlonSO

Clonsﬁ =

[ _2.5560D — 01

—6.4510D — 04
4.8980D — 04
0.0000D + 00

| _2.7550D — 01

—6.7650D — 04
1.8180D — 02
6.0000D + 00

[ 1.0000D 00
0.0000D + 00
0.0000D + 00

10.0000D + 00

—4.0360D + 01
8.9490D — 03
5.4140D — 02
0.0000D + 00

—-5.4060D — 02
1.0800D — 04
—3.2690D — 03
0.0000D + 00

0.0000D + 00
5.7300D + 01
0.0000D + 00
0.0000D + 00

—1.3060D + 00
9.96500 — 01
-3.9930D - 01
1.0000D + 00

—4.8730D — 02
—1.5410D - 04
-8.6100D - 03

0.0000D + 00

0.0000D + 00
0.0000D + 00
5.7300D + 01
0.0000D + 00

~3.2110D + 01
~4.8610D ~ 08
1.6800D ~ 06
0.0000D +00 |

7.0310D — 02 |
~2.6920D — 04
~9.0220D — 04
0.0000D + 00 |

0.0000D + 00 |
0.0000D + 00
0.0000D + 00
5.7300D + 01

1.1230D — 02
| 1.1230D — 02

1.0780D + 00
1.0780D + 00

7.1520D - 02
7.1520D - 02

~1.3580D — 03
~1.3580D — 03 |

0.0000D + 00 |
0.0000D + 00
0.0000D -+ 00
0.0000D + 00
3.2530D — 05
3.2530D — 05 |

[ 0.0000D + 00
0.0000D + 00
0.0000D + 00
0.0000D + 00
1.0090D — 02
| 1.0090D — 02

0.0000D + 00
0.0000D + 00
0.0000D + 00
0.0000D + 00
7.3700.) — 04
7.3700D — 04

0.0000D + 00
0.0000D + 00
0.0000D + 00
0.0000D + 00
2.4380D ~- 03
2.43800 — 03

Dionso =




1.1860D — 01
—2.1300D + 01
—1.0910D + 00

0.0000D + 00

AlatSO =

BlatSO =

5.7300D + 01
. _ 0.0000D + 00
0.0006D + 00
0.0000D + 00
—1.2200D + 03
—6.2480D + 01
9.7070D — 01

ClatSO =

Dlacso =

7.5760D — 01
1.1930D + 00
1.1400D - 01
1.0000D + 00

[ _9.3770D — 05

2.2790D - 02
2.5430D - 03
0.0000D + 00

0.0000D + 00
5.7300D + 01
0.0000D + 00
0.0000D + 00
6.8330D + 01
6.5310D + 00

-1.2790D - M

0.0000D + 00
0.0000D + 00
0.0000D + 00
0.0000D + 00
1.3060D + 00
1.4570D - 01

| ~1.7600D — 03
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—6.39600 - 01

1.2230D + 00
1.0400D — 02
1.1920D 4+ 00

3.2810D — 06 |
~1.1010D — 02
~6.6130D — 05

0.0000D + G0 |

0.0000D + 00
0.0000D + 00
5.7300D + 01
0.0000D + 00
7.0070D + 01
5.96100 — 01

—-8.3380D — 03

0.0000D + 00 |

0.00000 + 00
0.0000D + 00
0.0000D + 00

-6.3070D — 01
—3.7890D - 03
4.0140D ~ 04 |

6.6350D — 02 |
3.3230 — 05

—2.5620D — 05

6.8560.0 — 02 |

0.00600 + 00 |
0.00000 + 00
0.00000 + 00
5.7300D + 01
1.9040D — 03

—~1.4630D ~ 03
~1.1450D - 03 |




[ _2.9300D — 01 —2.7690D +01 —1.4770D +00 —3.2110D + 01 |
~5.6540D —04  9.5210D — 02  9.9730D — 01 —2.0250D — 08
4.7520D — 04 —1.0640D +00 —1.6620D — 01  7.0730D ~ 07
0.0000D +00  0.00000 +00  1.0000D +00  0.0000D -- 00

Aoneo =

[ _2.2010D — 01 —1.33800 — 61 —3.47700 ~02  5.4700D ~ 02 |
—2.3780D — 04 -2.7180D — 04 —7.3550D ~ 05 -3.0430D — 04
8.29800 — 03 --5.7350D — 03 —9.3570D ~ 03 —9.0160D ~ 04
0:0000D +00  0.0000D +00  0.0000D +00  0.0000D + 00 |

-BlonGO =

[ 1.0000D + 00 0.0060L +00 0.0000D +00  ©.0000D + 00 |

10.0000D +00 5.7300D +01 0.0000D +00  0.0000D + 00
0.0000D + 00 0.0000D +00 5.7300D +01  0.0000D + 00
0.0000D + 00 0.0000D +06 0.0900D + 08  5.7300D + 01
1.1200D — 02 5.5020D — 01 6.1940D — 02 ~1.5350D — 03

| 1.1290D — 02 5.5020D — 01 6.1940D — 02 —1.5350D — 03 |

Clon60 =

[ 0.0000D +00 0.0000D +00 0.0000D +00 0.0000D + 00 |
0.0000D + 00 0.00C0.D +00 0.0000D +00 0.00000) + 00
0.00000 +00 0.0000D +00 0.0000D +00 0.0000D -+ 00
0.0000D + 00 0.00000 400 0.0000D +00 0.0000D + 00
6.7670D — 03 5.1280D —03 1.6460D — 03 3.2380 — 05
| 6.7670D — 03 5.1280D — 03 1.64600 — 03 3.2350D — 05 |

Dignse =




[ 1.3450D - 01  8.6190D — 01 —4.9850D —01  5.16100 — 02 |
Ay = | L1630D+01 ~22140D—01  L64T0D +00  1.9310D - 04
~6.3660D — 01 —5.2130D — 02 —1.5140D — 03 —5.32500 — 03
0.0000D+00  1.0000D +00 1.7320D +00 743300 — 02
[ _9.3770D —05  1.2120D — 05 |
B o | 22100D-02 ~9.1430D -03
2.5130D — 03 3.2340D — 04
0.0000D 400 0.0000D + 00 |
5.7300D +01  0.0000D +00  0.0000D +00  0.0000D + 00 |
0.0000D +00  5.7300D +01  0.0000D +00  0.0000D -+ 00
0.0000D +00  0.0000D +00 5.7300D +01  0.0000D + 00
Citeo = | 0.0000D+00 0.0000D+00 0.0000D +00 5.7300D + 01
—6.6650D +02 —1.2600D +01  9.4350D 4+ 01  1.1060D — 02
—3.6470D +01 —2.9870D +00 —8.6720D —02 —3.05100 — 03
5.4660D —01 —3.2430D —02 —3.8710D —02 —8.9560D — 04
0.0000D +00  0.0000D + 00 |
0.00000 +00  0.0000D + 00
0.0000D +00  0.0000D + 00
Duwo = | 0.0000D +00  0.0000D + 00
1.2660D + 08 —5.2390D — 01
1.4400D ~ 01  1.8530D — 02
| ~1.73600 03 4.1050D — 04 |
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Appendix B. Open-Loop System Eigenvalues

This appendix lists the open-loop system Eigenvalues for each of the four flight
conditions. The Eigenvalues given in this appendix are obtained from the correspond-
ing A matrices listed in Appendix A. The positive Eigenvalues are unstable open-loop
right half plane poles. The complex conjugate pairs possess oscillatory characteris-
tics, while the purely real unstable roots have an exponential growth characteristic.
This can be seen in the uncompensated step 12sponse diagrams in Chapter III.

[ —0.0203 +0.12575 |

—0.0203 — 0.1257j
0.7080 + 0.0000;

| —1.0302 + 000005 |

Alou20 =

[ —0.0534 + 0.11937 |

—0.0534 — 0.1193;
0.3756 + 0.0000;

—~0.8200 + 0.0000; |

/\lmMO =

0.0785 + 0.00005 |
—0.0377 + 0.1528;
~0.0377 — 0.1528]
| —0.6490 + 0.0000; |

Altm.'v()
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0.1288 + 2.7262;

0.1288 — 2.7262; |

'\l¢t20 =
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AchM() =

[ ~0.0190 + 0.0977; |

—0.0190 — 0.0977;
0.7143 + 3.8832;
0.7143 — 3.8832] |

'\10150 =

0.0459 + 0.00005 |
~0.1554 + 0.00005
0.0477 + 3.1250;
0.0477 — 3.1259j

’\lutﬁo




Appendix C. Differential Canard Stability Derivatives

This appendix lists the matrices of symmetric canard coefficients, and differ-
ential canard coeflicients, each taken about nominal symmetric canard settings of
-25 and -40 degrees, respectively. Following this, the calculated stability derivative
matrices are listed, each preceded by its respective Matrizy command line.

In each of the matrices, the 13 rows correspond to the angle of attack (a) vary-
ing from zero to sixty degrees in five degree increments. The six columns correspond

to the coefficients of lift, drag, pitching moment, side force, yawing moment, and

rolling moment, respectively.

SIM25 =

CL cD CcM cY CN Cl ADA
4.9200D-01  1.3280D-0%f -6.9310D-01 3.9000D-03 1.1000D-03 -9.0000D-04 0
8.2300D-01 1.5980D-01 -5.1460D-01 -7.6000D-03 3.4000D-03 2.0000D-04 5
1.1429D+00 2.6080D-0f -3.7700D-01 -1.2800D-02 5.8000D-03 1.7200D-03 10
1.3452D+00 4.0180D-01 -2.8640D-01 -5.6000D-03 65.3000D-03 1.3000D-03 45
1.4423D+00 5,5790D-0%1 -2.0230D-01 -3.7000D-03 4,9000D-03 4,7000D-03 20
1.5829D+00  7.3880D-04 -1.1930D-01 4.1000D-03 5.7000D-03 3,7000D-03 25
1.6977D+00 9.4520D-01 -3.9800D-02 1.6000D-02 8.2000D-03 2.0000D-03 30
1.8673D+00 1.2308D+00 3.9200D-02 3.7200D-02 7.1000D-03 -3.0000D-04 35
1.9713D+00  1.5244D+00 1.0690D-01 2.6000D-02 €.0000D-04 -1.1000D-03 40
1.9774D+00 1.7967D+00 1.7250D-01 -1.1200D-02 3.0000D-04 -3.9000D-03 45
1.9065D+00  2.0442D+00 1.8510D-01 -5.0000D-04 §5.6000D-03 ~2,8000D-03 &0
1.7491D+00  2.2246D+00 1.8420D-01 2.0700D-02 1.8500D~02 -7.0000D-03 55
1.5072D0+00 2.3065D+00 1.4920D-01  1.5200D-02 9.1000D-03 -4.0000D-04 60




SIM40
CL
3.5240D-01
6.5630D-01
8.7640D-01
1.0526D+00
1.2245D+00
1.4137D+00
1.5258D+00
1.6222D+00
1.7680D+00
1.7943D+00
1.7644D+00
1.6573D+00
1.5108D.00

DIFF25
CL
5.3890D~01
7.7060D-01
1.0388D+00
1.2687D+00
1.4415D+00
1.6008D+00
1.7208D+00
1.7963D+00
1.8340D+00
1.8170D+00
1,7380D+00
1.5782D+00
1.4051D+00

N O OB e om0 N NN

NN - - R = s 00 Y -

cD

.4410D-01
.9650D-01
.5700D-01
.4210D-01
.7370D-01
.3830D-01
.2110D-01
.1320D+00
.4235D+00
.6511D+00
.8685D+00
.0337D+00
.1930D+00

CD

.6740D-01
.2950D-01
.2270D-01
.6430D-01
.2900D-01
.2080D-01
.0382D+00
.2676D+00
.5137D+00
.7461D+00
.9547D+00
.0936D+00
.2224D+00

CH
-7.5000D-01
-7.5620D~-01
~6.3300D-01
-4,6310D-01
-3.7440D-01
-3.0340D-01
-2.4730D~-01
-1.7530D~-01
-1.0290D-01
-1.6300D~-02

3.8700D-02
7.5100D-02
9.0300D-02

CM
~-5.4800D-01
-4.9040D-01
-3.9430D-01
~3.0300D~01
-2.0760D-01
-1.3710D-01
~8.3100D~-02
~-2.1700D-02

2.9200D0-02
7.6100D-02
1.1410C-01
1.0720D-01
6.6200D-02

cY
9.9000D-03
2.8000D-03
~1.0300D~02
-9.4000D-03
5.0000D~-03
7.2000D0-03
1.6600D-02
1.2800D-02
1.6000D-03
~1.5000D-02
8.2000D-03
1.2900D-02
2.1200D-02

cY
-4.2100D-02
~-6.5600D-02
~9.2400D-02
~1.0170D-01
-1.0870D-01
-1.0260D-01
~-6.0800D~-02
-5.15000-02
-9.5600D~02
-1.3170D-01
-8.6000D-02
~5.5400D-02
~7.9100D-02

CN
-2.0000D-04
1.1000D-03
1.8000D-03
2.8000D-03
3.5000D-03
5.5000D-03
6.3000D-03
1.2400D-02
7.1000D-03
7.5000D-03
6.8000D-03
8.7000D0-03
7.3000D-03

CN
-1.3800D~02
-1.0000D-02
-7.5000D-03

8.0000D-04
1.3000D-02
2.1800D-02
2.0900D~02
2.0800D-02
1.2500D0-02
2.1200D-02
2,.2300D-02
2.3500D-02
2.8900D-02

Cl

.6000D~-03
.9000D-03
.5000D-03
.2000D~-03
.8000D-03
.6000D-03
.3000"-03
.7000D-03
.1000D~-03
.9000D-03
.0000D-04
.2000D-03
.0000D-04

Cl

.5000D-03
.2900D-02
.4800D-02
.2400D-02
.1400D-02
.6600D-02
.0800D-02
.7000D~-02
.3500D-02
.9200D-02
.7300D~02
.7300D-02
.6000D-02

AQA

10
18
20
25
30
35
40
45
50
55
60

ADA

10
15
20
25
30
35
40
45
50
55
60




DIFF40
CcL
5.1290D-01
7.6870D-01
1.0628D+00
1.1942D+00
1.3467D+00
1.4547D+00
1.6839D+00
1.6891D+00
1.7768D+00
1.7414D+00
1,6758D+00
1.5616D+00
1.3978D+00

CD
1.9550D-01
2.4190D-01
3.4860D-01
4.9400D-01
6.7850D-01
8.3380D-01
1.0232D+00
1.2395D+00
1.4919D+00
1.6860D+00
1.8853D+00
2.0679D+00
2.1980D+00

CM
-5.7610D-01
~4.6270D-01
-3.9310D~-01
~3.6080D-01
-3.5970D-01
~2.96850D-01
-2.0200D-01
~1.2650D-01
-5.6000D-02
-~1.8200D-02

2.3300D-02
2.1500D-02
1.9200D-02

cY
-2.0900D-02
-4.7100D-02
-6.5700D-02
-6.5400D-02
~1.0120D-01
-1.0560D-01
~9.2800D~-02
-9.5500D-02
-1.2680D-01
-1.2830D-01
~6.5300D-02
-2.7000D-02
-4.4600D-02

CN
-1.0200D-02
~8.8000D-03
-5.2000D-03

2.0000D-04
1.7000D-03
4.6000D-03
3.3000D-03
3.2000D-03
4.0000D-03
1.3200D-02
1.3100D-02
6.3000D-03
1.6400D-02

Cl

.9000D-03
.4000D-03
.7100D-02
.2000D-02
.5600D~-02
.3400D-02
.5400D-02
.3300D-02
.7500D-02
.3200D-02
.2700D-02
.4600D-02
.2900D-02

ADA

10
15
20
25
30
35
40
45
50
§5
60




<> stabder25=(dif£25-sim25)/20

STABDER25
CL

2.3450D-03
~2.6250D-03
-5.2050D-03
=4,3250D-03
-4,0000D-05
8.8000D~04
1.1600D-03
-3,5600D-03
=6.8650D-03
~8.0200D-03
8,4250D-03

- -8.65450D-03

=5.1050D-03

cD
1.7300D-03
3.4850D-03
3.0950D-03
3.1250D-03
3.5550D~03
4.1000D~03
4.6500D-03
1.8400D-03
-5.3500D-04
=2.5300D-03
~4,4750D-03
~6.5500D-03

-4,2050D-03

CcM
7.2550D-03
1.2100D-03

-8.6500D-04
~8.3000D~-04
-2.€500D~-04
~8.9000D-04
~2.1650D-03
-3.0450D-03
-3.8850D-03
-4.8200D-03
~3.5500D-03
~3.8500D-03
~4.1500D-03

<> stabder40=(dif140-3im40)/20

STABDER40
CL

8.0250D~03
5.6200D-03
9.3200D-03
7.0800D-03
6.1100D-03
2.0500D-03
2.9050D-03

3.3450D-03

4.4000D-04
-2,6450D-03
-4.4250D-03
~4.7850D-03
~5.6500D-03

cD
-2.4300D~03
~2.7300D-03
-4.,2000D-04
2.5950D-03
5.2400D-03
4.7750D~03
5.1050D-03
5.3750D-03
3.4200D-03

1.7450D-03-

8.4000L -04
1.7100D-03
2.5000D-04

Ch
8.6950D-03
1.4675D-02
1.1996D-02
5.1150D-03
7.3500D-04
3.4500D-04
2.2650D-03
2.4400D-03
2.3450D-03

-1.4500D-04
~7.7000D-04
~2.6800D-03
~3.5550D0~03

cY
.3000D-03
.9000D-03
.9800D-03
.8050D-03
.2500D-03
.3350D-03
.8300D-03
.4360D-03
.0750D-03
.0250D-03
.2750D-03
.8060D-03
-4.71500-03

cY
-1.5400D~-03
~2.4950D-03
~2.7700D-03
~2.8000D-03
-5.3100D-03
~5.6400D~-03
-5.4700D-03
-5.4200D-03
~6.4200D0-03
~5.6650D-03
~3.6750D-03
-1,9950D-03
-3.2900D-03

CN

.4500D-04
.7000D-04
.6500D-04
.2500D-04
.0500D-04
.0500D-04
.3500D-04
.8500D-04
.9500D-04
.0450D~03
.3500D-04
.5000D-04
.9000D-04

CN

.0000D-04
.9500D-04
.5000D-04
.3000D-04
.0000D-05
.5000D-05
.5000D-04
.6000D-04
.5500D-04
.8500D-04
.1500D-04
.2000D-04
.5500D-04

Cl

.3000D-04
.5500D-04
.3260D-03
.6850D-03
.3050D-03
.5150D0-03
.1400D-03
.8350D-03
»1200D-03
.2650D-03
.7250D-03
.0150D-03
.8000D-04

Cl

.1500D-04
.1500D-04
.030¢D-03
.5400D-03
.6900D-03
.5900D-03
.6550D-03
.4800D-03
.5300D-03
.8550D-03
.1450D-03
.5200D-03
.1250D-03

ADA

10
15
20
25
30
35
40
45
50
55
60

ADA

10
15
20
25
30
35
40
45
50
55
60




Appendix D. Translation of Longitudinal Stability Derivatives

This appendix lists the differential canard stability derivatives obtained from
the calculations shown in Appendix C. The first two of the six derivatives in each
case are based on the coefficients of lift and drag. As shown in Figure 2.5, these
stability derivatives are now transformed into the Z and X force derivatives. The

Matrizx command lines are shown for each calculation, and are readily derived from

Figure 2.5.

STABDER20 =

~4.0000D-05

STABDER4O =

4.4000D-04

STABDERSO =

~4.4250D-03

STABDER60 =

-5.6500D-03

3.5550D-03

3.4200D-03

8.4000D-04

2.5000D-04

-2.6500D-04

2.3450D-03

~7.7000D-04

-3.5550D-03

-5.2500D-03

-6.4200D-03

~3.6750D-03

-3.2900D-03

D-1

4.0500D-04

-1.5500D-04

3.1500D-04

4.5500D-04

-2.3050D-03

-1.5300D-03

-2.1450D-03

-1.1250D~-03




<> // CZ=-CLcos(alpha)-CDsin(alpha)
<> // CX=CLsin(alpha)-CDcos(alpha)

<> €Z20=4.0000D-05%cos(20)~3.5550D~03*sin(20)
€220 =
-3.22920-03
<> €X20=-4.0000D-05*sin(20)-3.5550D-03*cos(20)
CX20 =
-1.4872D-03
<> CZ40=-4.4000D-04%cos (40)-3.4200D-03*sin(40)
€240 =
-2.2548D-03
<> CX40=4.4000D-04*sin(40)-3.4200D~03%cos (40)
CX40 =
2.6088D-03
<> CZ50=4.4250D-03*cos (50)-8.4000D-04*sin (50)
€Z50 =
4.4904D-03
<> CX50=~4.4250D-03*sin(50)~8.4000D~04*cos(50)
CX50 =
3.5044D-04
<> C€Z60=5.6500D-03*cos (60)-2.5000D-04*sin (60)
CZ60 =
-5.3049D-03
<> CX60=-5.6500D-03*sin(60)~2.5000D~04*cos(60)
CX60 =
1.9603D-03

D-2




Appendix E. Modified B Matrices

This appendix lists the modified B matrices, after the incorporation of the dif-
ferential canard wind tunnel data. The longitudinal and lateral-directional matrices

are shown for the all four flight conditions.

[ —8.8250D — 02 —1.4872D — 03 —8.5710D — 02 —2.3390D — 02 |

~3.3100D — 04 —3.2292D — 03 —3.4930D — 04 —2.103uD — 04
1.2410D — 02 —2.6500D — 04 —2.7310D — 03 —9.6810D — 03
0.0000D +00  0.0000D +00  0.0000D +00  0.0000D + 00 |

Blon20 =

[ —8.8650D — 05  2.0300D — 04 —5.2500D — 03 |

Blg = 1.3280D - 01  1.0630D — 02 -2.3050D -03
7.1400D — 03 —-9.8750D — 03  4.0500D — 04

0.0000D +00  0.0000D +00  0.00000 + 00 |

[ 2.1920D ~01  2.6088D — 03 —5.1610D — 02 —5.16901 — 02 |

~7.4030D — 04 —2.2548D — 03  3.4270D — 05 —2.0890D — 04
1.2410D — 02  2.3450D ~ 0% —2.9220D — 03 —8.6820D — 03
0.0000D +00  0.0000D +00  0.0000D +00  0.006¢: + 02 |

Blon40 =

L

[ —9.3770D — 05  3.6380D — 05 —6.4200D — 03 |
2.3610D — 02 —4.3660D — 03 —1.5300D — 03
2.5750D — 03 —3.3690D — 03 —1.5500D — 04
0.0000D +00  0.0000L +00  0.0000D + 90 |

- BlaMO =




[ —2.7550D 01 3.5044D — 04 —5.4060D — 02 ~—4.8730D — 02 |
B, o | ~0760D-04 44904D-03  10800D - - -1.5410D ~ 04

1.8180D — 02 —7.7000D ~ 04 ~3.2300 - > -2 5100D — 03
| 0.0000D +00  0.0000D +00  0.0000L + &  0.0000D + 00 |

| —9.3770D — 05  3.2810D — 06 —3.67.:0D — 03

B o | 22790D =02 ~11010D-02 214500 ~03
2.5430D — 03 —6.6130D — 05  3.1300D — 04

| 0.0000D +00  0.0000D +00  0.00007 + 00 |

[ —2.2010D - 01 1.9603D — 03 —1.3380D — 01 —3.4770D — 2 |
B = ~2.3780D — 04 --5.3049D —03 -2.7180D — 04 —7.3550D — 05

1.8180D — 02 -3.55500 — 03 ~—5.7350D — 03 —9.5570D — 03
0.0000D +00  0.0600D +00  0.0000 +00  0.00000 + 00 ]

[ _9.3770D — 05  1.2120D — 05 —3.2000D — 03 |
B o | 200D =02 ~9.1430D 03 ~11250D - 03

251300 — 03 3.2340D — 04  4.5500D — 04 |-
0.0000D +00  0.0000D +00  0.0000D + 00 |




Appendix F. Final State Space Models

This ‘ppendix lists the final state space models (8 matrices) for each of the
four flight conditions. These models have been modified to include differential canard
i aerodynamic effects. The reader is reminded that no changes have beeft made to the

A matrices.

F-1

Sien2o =
Columns 1 thru 6
-6.7320D-02 -<1.9190D+01 ~5.8320D-0:. -3.2110D+01 -8.8250D-02 -1.4872D-03
) -6.0200D0-04. -1.4980D-01 9.9480D-01 -3.9770D-09 -3.3100D-04 -3.2?920-05
" 4.9390D-04 7.3440D-C1 -1.4560D-01 -2.2720D-09 1.2410D-02 -2.6500D-C4
0.0000D+00 0.0000D+00 1.0000D+00 0.0000D+C 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.4000D+Ov  0.0000D+00 0.0000D+00
0.0000D+0C 0.0000D+00 0.0000D+GO  Q.0000D+G0 0.0000D+0C  0.0000D+00
© 0.0000D+00 0.0000D+00 1.00GOD+00 0.0000D+00 (€.0COOD+0Q  0.0000D+00
0.0000D+00 - 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 G.0000D+CC
Columns 7 thru 8
, -8.5710D-02 -2.3390D-0%
-3.4930D-04 -2.1030D-04
~2.7310D-03 -9.6810D-03
0.0000D+00  0.0000D+00
0.0000D+00 0.0000D+00
0.0000D+00 0.G000D+00
0.0000D+00 0.0000D+00
0.802ah+00  0.0000D+CO




Slut20 =

Columns
-6,8010D-02
-1.8850D+01

1.0090D+00
0.0000D+00
0.0000D+00
~ 0.0000D+00
0.0000D+00
0.0000D+00

Columns
-5.2500D-03
- -2.3050D-03
4.0500D0-04
0.00005+00
0.00000+00
0.0C00D+00
0.0000D+00
0.0000D+00

i thru

3.4030D-01
1.4380D-02
3.3750D-02
1.0000D+00
0.0000D+00
1.0000D+00
0.0000D+00
0.0000D+00

7 thru

6

-9.3810D-01
1.2860D-01
-1,3520D-02
3.6400D-01
0.0000D+00
0.0000D+00
1.0000D+00Q
0.9000D+00

0

O O O O O w

.7000D-02
.4200D-06
.3340D-07
.6800D- )%
.0000D+C¢*
.0000D+0C
.0000D+00
.0000D+00

.8650D~vs
1.3280D-01
7.1400D-03
0.7200D+00
C.0000D+00
G.0000D+00
0.0000D+00
0.0000D+00

.0300D-04
.0630D-02
.8750D-03
.0000D+00
.0000D+00
.0000D+C0O
.0000D+00
.0000D+00




Slon40 =

Columns 1 thru 8
~1.8900D-01 -4.4710D+01 -1.0960D+00 -3.2110D+01 -2.1920D-01 2.6088D-03
-6.6150D-04 -8.2400D-02 9.9580D-01 -1.2670D-08 -7.4030D-04 -2.2548D-03
4.7760D-04 3.0720D-01 -2.7990D-01 1.5050D-07 1.2410D-02 2.3450D-03
0.0000D+00 0.0000D+00 1.0000D+00 0.0000D+00 0.0000D+00  0.0000D+00
0.0000D+00  0.000GD+00  0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.C00OD+00 0.0000D+00 ©.0000D+00
0.0000D+00 0.0000D+00 1.0000D+00 ©0.0000D+00 ©.0000D+00 0.0000D+00
0.00C0OD+00  0.0000D+00 0.0000D+00 0.0000D+00 ©0.0000D+00  0.0000D+00
Columns 7 thru 8
-5.1610D-02 -5.1690D-02
3.4270D-05 -2.0890D-04
'=2.92200-03 -8.8820D-03
0.0000D+00  0.0000D+00
0.0000D+00 0.0000D+00
. 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00

F-3




SlaMO =

Columns 1 thru 6
4.7370D-02 6.3860D-01 ~-7.6430D-01 7.9080D-02 -9.3770D-05 3.6380D-05
-1.4260D+01  1.3430D+00 -1.1530D+00 =-1.0300D-04 2.3610D-02 -4.3660D-03
3.9610D-01  6.3430D-02 -1.7800D-01 -2.4160D-05 2.5790D-03 =-3.3690D-03
0.0000D+00  1.0000D+00 8.3910D-01 4.5550D-02 0.0000D+00  0.0000D+00
0.0000D+00  0.0000D+00  0.0000D+00 0.0000D+00  0.0000D+00  0.0000D+00
0.0000D+00  1.0000D+00 ©0.0000D+00 0.0000D+00  0.5000D+00  0.0C00D+00
0.0000D+00  0.0000D+00  1.0000D+00 0:.0000D+00  0.0000D+0C  0.0000D+00
0.0000D+00  0.0000D+00 ©0.0000D+00 0.0000D+00  0.0000D+00  0.0000D+00
Columns 7 thru 7
- -6.4200D-03
-1.5300D-03
-1.5500D-04
0.00000+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

F-4




i
i

EithO

Columns
<2.5560D-01
-6.4510D-04

4.8980D-04
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
§ 0.0000D+00

* Columns
-5.4060D-02
1.0800D-04
~3.2690D-03
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

——

1 thru 6
-4.0360D+01
8.9490D-03
5.4140D-02
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

7 thru 8
-4.8730D-02
~1.5410D-04
-8.6100D-03
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

~1.3060D+00
9.9650D-01
-3.9930D-01
1.0000D+00
0.0000D+00
0.0000D+00
1.0000D+00
0.0000D+00

~3.2110D+01
-4.8610D-08
1.6800D-06
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

~2.7550D-01
~6.7650D-04
1.8180D-02
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

3.5044D~-04
4.4904D-03
-7.7000D-04
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00




!Shnso =

Columns
1.1860D-01
-2.1300D+01
-1.0910D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

Columns
-3.6750D-03
-2.1450D-03

3.1500D~04
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

1 thru 6
7.5760D-01
1.1930D+00
1.1400D-01
1.0000D+00
0.0000D+00
1.0000D+00
0.0000D+00
0.0000D+00

7 thru 7

~6.3960D-01
1.2230D+00
1.0400D-02
1.1920D+00
0.0000D+00
0.0000D+20
1.0000D+00
0.0000D+00

6.6350D-02
3.3230D-05
-2.5620D-05
6.8560D-02
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

-9.3770D-05
2.2790D-02
2.5430D0-03
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

3.2810D-06
-1.1010D-02
~6.6130D-05
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
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Slon60 =

Columns
~2.9390D-01
~5.6540D-04

4.7520D-04
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

Columns
-1.3380D-01
-2,7180D-04
-5.7350D-03
0.0000D+00
0.0000D+00
0.0000D+00
0.,0000D+00
0.0000D+00

1 thru
-2,7690D+01
9.5210D-02
-1.0640D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

7 thru
-3.4770D--02
~-7.3550D-06
-9.6570D-03
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

~1.4770D+00
9.9730D-~01
-1.6620D-01
1.0000D+00
0.0000D+00
0.0000D+00
1.0000D+00
0.0000D+00

-3.2110D+01
-2.0250D-08

7.0730D-07
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

-2
-2

1
0
0
0
0
0

.2010D-01
.3780D-04
.8180D-02
.0000D+00
.0000D+00
.0000D+00
.0000D+00
.0000D+00

-3.
.0000D+00

0
0
0
0
0

.9603D-03
-5,

3049D-03
5550D-03

.0000D+00
.0000D+00
.0000D+00
.Q000D+00




Slat60 =

Columns
1.3450D-01
-1,1830D+01
-6.,3660D-01
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

Columns
-3.2900D-03
-1.1250D~-03

4.5500D-04
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

1 thru
8.6190D-01
-2.2140D~01
-5.2130D-02
1.0000D+00
0.0000D+00
1.0000D+00
0.0000D+00
0.0000D+00

7 thru

6
-4.9850D-01
1.6470D+00
.5140D-03
1.7320D+00
0.0000D+00
0.0000D+00
1.0000D+00

0.0000D+00

5.1610D-02
1.9310D-04
-5.3250D-056
7.4330D-02
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

~9.3770D-05

2.2100D-02
2.5130D~03
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00
0.0000D+00

o O O O O w

.2120D-05
.1430D-03
.2340D-04
.0000D+00
.0000D+00
.0000D+00
.0000D+00
.0000D+00




Appendix G. Matrixx Executable Files - Weighting Matrix

This appendix details three abbreviated Matrizx executable files that may be
useful in developing frequency sensitive compensation elements for a control system
such as this. This procedure is discussed in detail in Section 3.4. As stated in the
text, what follows is not software code. It is simply a commented listing of useful

Matrizy commands that may save the reader some time if he chooses to perform a
similar operation.

G.1 Development of Frequency Dependent Terms

diary(’rol20’)

// Executable file for shifting roots to eliminate right half plane
// poles for phase compensation.

// Generate the state space (S,NS) for each transfer function from
// system build.

// Include actuators.

// Generate Ni, N2, N3 , & D from each system build state space.

[n1,d])=tform(si,nsl1);
(n2,d]=tform(s2,ns2);
(n3,d]l=tform(s3,ns3);

// Obtain roots.

rni=roots(ni)
rn2=roots(n2)
rn3=roots(n3)
rd=roots(d)




// Shift roots.

srni=rni-.2

srn2=rn2-.2

srn3=rn3-.2

srd=rd-.2

// Obtain shifted transfer functions for use in Bode commands.
psrai=poly(srnil)

psrn2=poly(srn2)

psrn3=poly(srn3)

psrd=poly(srd)

// Generate uncompensated composite Bode plots.
[w,dbl,ph1]=bode(psrni,psrd,.001,100,400);
fw,db2,ph2]=bode(psrn2,psrd, .001,100,400);

[w,dbS,phSJ=bode(psrn3,psrd,.001,100,400);

plot(w, [db1,db2,db3],’ylab/Magnitude/x1ab/0Omega/upper/logx’)

plot(w, [ph1,ph2,ph3],’ylab/Phase/x1lab/Omega/title/Composite Bode ...
Plot of Uncompensated Shifted Transfer Functions <Roll 20>/lower/...

- logx/keep’)

hard (’p20uncomp’)

pause

G-2




// Iteratively run this portion of the program and fine-tune the
// neccessary compensation terms to achieve the desired composite
// Bode Phase plots.

// Read the final compensation terms from the highlighted section.

// 3k 3 ok 3 3k e ok e e 2 e 3 e ok ok e 3 3 3 e s ke ok o o ok e s o e ok e o o 3k s sk sk s e ook dk ok 3 ok ke A 3 ok ok k koK K ok ok ok Kok ok koK

nci=convolve(psrni, [2]);

nc2=convolve(psrn2, [-1]);

nc3=convolve(psrn3, [~1/40,-1]);

dci=convolve(psrd,[1,.5,2]);

dc2=convolve(psrd, [1]);

dc3=convolve(psrd,[1/.3,1]);

[/ ks kil ok ARk KRR R oK o o AR o K o Ao A ok o R R R R K o K o o
// Generate compensated composite Bode plots.

[w,db1,phi]l=bode(nci,dc1,.001,100,400);
pause

[w,db2,ph2]=bode(nc2,dc2,.001,100,400) ;

pause

[w,db3,ph3]=bode(nc3,dc3,.001,100,400) ;
pause '

G-3




plot(w, [db1,db2,db3],’ylab/Magnitude/xlab/Omega/upper/logx’)

plot(w, [ph1,ph2,ph3],’ylab/Phase/xlab/Omega/title/Composite Bode ...
g

Plot of Compensated Shifted Transfer Functions <Roll 20>/lower/...
logx/keep’)

hard (’p20comp’)
pause
// Obtain compensated roots in shifted domain.

rsnci=roots(nci);
rsnc2=roots(nc2);
rsnc3=roots(nc3) ;
rsdci=roots(dcl);
rsdc2=roots(dc2);
rsdc3=roots(de3);

// Shift jw axis back to original value.

;néi=rsnc1+.
ranc2=rsnc2+,
rnc3=rsnc3+.
rdci=rsdci+.
rdc2=rsdc2+.
-rde3=rsdc3+.

NN

// Obtain polynomial forms, and redfine them to be real.

pnci=poly(rnci);pnci=real(pnci);
pnc2=poly(rnc2);pnc2=real (pnc2);
pnc3=poly(rnc3) ;pnc3=real(pnc3);
-pdci=poly(xdcl) ;pdci=real(pdcl);




har&('respi’)

pdc2=poly(rdc2);pdc2=real (pdc2);

- pdc3=poly(rdc3) ;pdc3=real(pdc3);

/1 Generate step response data and plots.

[t,y1]l=step(pnci,pdci,8,200);
[t,y2]=step(pnc2,pdc2,8,200);
[t,y3]=step(pnc3,pdc3,8,200);

plot(t, [y1,y2,y3],’strip/ylab/Dif Flp|Rudder|Dif Can/xlab/Time ...
(sec)/title/Compensated Open Loop Step Responses <Roll 20>’)

pause

// Correct rudder and differential canards for sign conventions.

.{t,y2]=step(-pnc2,pdc2,8,200);

_ [t,y3]=step(~pnc3,pdc3,8,200);

plot(t, [y1,y2,y3],’strip/ylab/Dif Flp|Rudder|Dif Can/xlab/Time ...
(sec)/title/Compensated Open- Loop Step Responses with Sign ...
Corrections <Roll 20>’)

pause

hard(’p20resp2’)

diary(0)
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G.2 Verification of Phase Compensation

// Executable file for verifying lateral-directional phase
// compensation using system build.

// Obtain phase compensation terms from appropriate ’shift.mxx’

//files by comparing rnc* with rn* and rdc* with d for each case.

// Include phase compensation blocks into system build diagrams.

/7 Initially leave gains at unity, but include appropriate
// negative signs.

// Generate compensated state space (sc,nsc) for each

// transfer function.

1

' .jgim(’anallpcomp2o_1’);
[sic,ns1c]=1in(.001);

sim(’anal/pcomp20_2’) ;
[s2c,ns2¢]=1in(.001);

sim(’anal/pcomp20_3’);
[s3c,ns3c]=1in(.001);

_[/ Obtain phase compensated step response data and plot.
[t,y1c])=step(sic,nsic,8,200);

[t,y2c]=step(s2c,ns2¢,8,200);
[t,y3c]=step(s3c,ns3c,8,200);

G-6




plot(t, [ylc,y2¢c,y3c], strip/ylab/Dif Flp|Rudder|Dif Can/xlab/Time ...
(sec)/title/Phase Compensated Open Loop Step Responses <Roll 20>’)

pause

hard (’comip’)

************************#*********************J“*********************
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G.8 Inclusion of Gain Compensation

// Executable file for including gain compensation in the
// lateral-directional channels.

// Determine desired relative weights as discussed in the text.
// Dif Flp - 40Y

// Rudder - 20Y%
// Dif Can - 40Y%

// Multiply these perzentages by the gains required to normalize
// each of the responses to unity.

// Insert the resulting gzins into system build to obtain desired
// composite time response plots.

// Generate cow. r:ated state space (sc,nsc} from system build.

sim(’anal/pcomp20_1');
[sic,ns1c]=1in(.001);

sim(’anal/pcomp20_2’);
[s2¢,ns2c]=1in(.001);

sim(’anal/pcomp20_3');
[s3c,ns3c]l=1in(.001);

// Obtain gain and phase compensated step response data and plot.
[t,yic]=step(sic,nsic,8,200);

[t,y2c]=step(s2¢c,ns2¢c,8,200);
[t,y3c]=step(s3c,ns3c,8,200);

G-8




legend/Dif Flp|Rudder|Dif Can/title/Final Compensated ...
Open Loop Step Responses <Roll 20>’)

hard(’p20finalresp’)

pause

// (pcomp20.bd).

plot(t, [ylc,y2c,y3c], 'name/ylab/Responses/xlab/Time (sec)/...

// Generate system build hardcopy file of final compensated systen.
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Appendix H. Lateral-Directional Effective Plants

This appendix shows the System Build block diagrams of the lateral-directional
effective plants, including final gain compensation as discussed in Section 3.6
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Appendix I. Matrixx Executable Files - Singular-G

This appendix lists the Matrizy executable file that was used to iteratively
find the values of the a and b elements of the singular-G compensation matrix. The
goal was to separate, as much as possible, the right half plane poles and zeros of the
effective (SISO converted) lateral-directional plants. This procedure is discussed in
detail in Section 5.3. One again, this is not software code. It is only a listing of
comments and recommended command lines that may be useful to the reader.

// Singular-G-20.mxx

" // Executable file for finding the ’Singular G’ compensator

// coefficients for the lateral-directional controllers.

// Desire RHP zeros of i + G*Peff to be separated as much as
// possible from the RHP poles.

/]’ Peff = AxD2(N11+B#N21)+D1(N12+B*N22)

// P11

= N11/DD1

// P12 = N12/DD2
// P21 = N21/DD1

. /] P22 = N22/DD2

// D = common portion of denominators.
// D1,D2 = unique portions of denominators.
// A,B = coefficients allowed to vary.

load’~/thesis/lateral/lat20/1lat20.mat’

diary(’Sin~G20.dy’)

I-1




N11=PN20P;
N12=PN20PR;
N21=PN20RP;
N22=PN20R;

RNii=roots(Ni1)

RN12=roots(N12)
~ RN21=roots(N21)
RN22=roots(N22)

DEN11=PD20P;

DEN12=PD20PR;

- DEN21=PD20RP;

© DEN22=PD20R;

‘RDEN11=Roots(DEN11)

RDEN12=Roots(DEN12)

RDEN21=Roots (DEN21)

RDEN22=Roots (DEN22)

// Note that DEN11=DEN21 & DEN12=DEN22.

// Common portion of denominator is not used to find zeros.
// Compare RDEN11 & RDEN12 and cross out common roots.
// Convolve remaining roots of DENii to form D1i.
Dia=convolve([1,.05+1.3919%jay], [1,.05-1.3919%jay]);

Di=convolve(Dia,(1,.1])
- RDi=roots(D1)

I-2




// Convolve remaining roots of DEN12 to form D2.

D2a=convolve([1,2.3979%jay], [1,-2.3979%jay]);
D2b=convolve([1,-.32+3.6011*jay], [1,-.32-3.6011*jay]);
D2c=convolve(D2a,D2b);

D2=convolve(D2¢, [1,-.2])

RD2=roots(D2)

diary(0)

// Find combination of values for A & B that separate RHP
// zeros of Peff as much as possible from its RHP poles.

//***********************************************************

//diary(’modroots20’)

for a=-2:1:4;...

for b=-3:1:3;...

Peff=convolve(a*d2, (ni1+b*n21))+convolve(di, (n12+b*n22));...
R=roots(Peff);...

R,a,b,...

end,...

end

//diary(0)
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// Now plot root locus of effective plant <lat20>, and list
// roots of modified plant.

diary(’modroots20.list’)

a=-1
b=1

Peff=convolve(a*d2, (ni1+b*n21) )+convolve(dl, (n12+b*n22));
rtnumplnt20=roots(Peff)
// Add roots of two denominators, then remove dupliczted roots.
rtdenplnt20=RD1+RD2-d
;, : diary(0)
// Generate poly form for root locus command.
‘ pd=poly(rtdenplnt20);

k=rlocus(Peff,pd, ’xmax=5/xmin=-5/ymax=5/ymin=-5/. ..
title/Root Locus of Effective Plant <Lat 20> a=-1,b=1’)
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