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Abstract

This thesis discusses the application of variations of the lQuantitativeF ed-
back T'echnique to a control problem with unstable, non-minimui,. phase g la.,s.

The X-29A research aircraft is used as the basis for developing a st of representa-

tive linearized aircraft dynamics models, which are modified to allow for the use of

differential canard control inputs for enhanced maneuverability at extreme angles of

attack. A specialized design approach is presented to develop frequency deoendent

weighting matrices, and the shortcomings of traditional methods are discussed.

Four independent longitudinal compensators are developed by first designing

loop transmission functions. Discussion is provided that addresses the limitations

imposed on the designer by the numerous right half plane poles and zeros of the

effective plants. The optimal blending method i. applied in one case to achieve a

marginally stable system for a virtually impossible problem. Prefilters are designed

and their effects on closed-loop time responses are discussed. The singular-G method

is used to improve the achievable stability characteristics of a multi-input multi-

output lateral-directional controller. The optimal blending method is then applied

to develop an optimal loop transmission function. Finally, the required steps for

completing the MIMO design are presented to aid future research efforts. "

/
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DEVELOPMENT OF HIGH ANGLE OF ATTACK CONTROL

LAWS FOR AN UNSTABL-;,. ;CN-MINIMUM PHASE

AIRCRAFT US1IN(7 ",'AI.A..X_ IONS OF THE

QUANTITATIVE FEEPY. 3ACK TECHNIQUE

I. Introduction

1.1 Introduction

This thesis investigates a proposed modification to Cie flight control system of
the X-29A research aircraft. The X-29A (Figure 1.1) was designed for the expressed

purpose of demonstrating several advanced technologies. These technologies combine

to give the aircraft a unique capability to fly in unusual attitudes (11]. Such a

capability h-s long been desired for modern fighter aircraft, to improve both mission

effectiveness and survivabilil,-, As anticipated, the flight test program revealed some

expected problems in the aircraft's handling qualities, while flying at high angles-of-

attack (AOA). The desire was to demonstrate improved aircraft maneuverability in

high AOA flight conditions by using differential canards.

From the start, it should be noted that due to the limited amount of differential

canard wind tunnel data, it is not expected that this effort wiil result in a flight-

worthy control system design. Further, since the model developed in this thesis is

based on such limited data, it is not expected that this model reflects the X-29's

actual performance. However, sufficient data is available to develop a representative

non-minimum phase aircraft model, and to synthesize a flight control system design.

Stich a design at the very least, d.rnonstrates the potential performance of the pro-

posed modification, and the limitations of the design methodology in the presence

of non-minimum phase characteristics. In addition, this design providcs a useful

starting point for a flight control system design capable of operating across a full

range of flight conditions. To perform a complete design would require a substantial

amount of additional wind tunnel testing to provide the necessary acroiynamic data
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for all flight conditions within the X-29 flight envelope. . more complete set of

derodynamic data could also be used to verify or deny the models developed for this

research.

I- -rI ,

IL

Figure 1.1. X-29A Advanced Technology Demonstrator "N1
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Flight tests of the X-29A, overall, have been quite successful [2-4]. However, it
has been noted that the aircraft in its present configuration experiences a problem

while flying at high AOAs. The X-29 has flown and remained completely controllable
at relatively high AOAs (20 to 30 degrees). However, the aircraft was designed to
fly at extreme AOAs (in excess of 60 degrees) while still maintaining a rea-suiablv

high degree of maneuverability[ 5].

Flight test information obtained for tile X-29 reveals the following problem.
While flying at extreme AOAs, the aircraft is controllable in the longitudinal axis

(pitching motions), but it shows some undesirable tendencies in the lateral-directional
axes. These tendencies are wing rock about the x-oll axis and yaw oscillation about the

aircraft's vertical axis. The undesirable motions can be controlled with the present
flight control system, but an exce,.sive amount of the available control authority is

expended in so doing. It i ; desirable to -,;ntrol such unwanted motions while retain-

ing sufficient control authority to I-!rform additional commanded flight maneuvers
at these high AOAs. Other studies are being performed to address this problem,

such as vortex flow control through the use of bleed air ports in the aircraft's nose

[51.

1.2 Background

A review of pertinent government documents revealcd that this problem was
predicted prior to the initiation of the X-29 fHight test program. Early wind tunnel
tests predicted noticeable wing rock at AOAs in excess of 20 degrees. Following

the initial wind tunnel tests, NASA's Langley Research Center conducted numerous
dirop tests of a 22-percent dynamically scaled replica of the X-29. This unpowered

model is equipped with fully functional control surfaces that can be operated by
a pilot through radio control [26]. The model was carried by a helicopter to an
altitude of 6000 feet and released for its controlled descent. On repeated flights with
the AOA greater than 20 degrees, the model was difi,':2!t to control and the wing
rock behavior eventually resulted in roll departure. The wing rock oscillationh were

attributed to unfavorable roll damping [26].

The yaw instability was also predicted in the wind tunnel tests and noted
during the scale model drop tests [26]. The primary cause of tile yaw oscillation
is thought to be asymi';etric vortex shedding off the aircraft's nose (21J. The X-29
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was designed from the start to be a relatively low cost test bed aircraft whose sole

purpose was to demonstrate advanced technologies. Since only two were to be built
and cost was a concern, Grumman decided to use existing aircraft subsystems to tile

maximum extent possible. Perhaps the most notable single example of this design

philosophy is the X-29's nose section. In fact, the entire aircraft forward of the

intakes is a slightly modified nose section of a Northrop F-5A fighter [10].

The F-5, an early 1960's design fighter, was not designed for flight at high

AOAs. Consequently, it was not surprising when carly wind tunrel tests of the X-

29A revealed the existence of asymmetric vortices being shed from the nose at high

AOAs. A quick fix solution was tried in an attempt to alleviate this problem. Small

fixed strakes were added to both sides of the nose to direct the airflow in predictable

symmetric fashion [10]. While this may have helped slightly, the problem still existed

at the more extreme AOAs.

During the flight test program, X-29A1 did not fly above 20 degrees AOA.

X-29A2 was to be the high AOA demonstrator. Aircraft number two differs from

aircraft number one in two primary ways. First, number two's subtle change is a

modification to the flight control system gain scheduling to make the control sur-

faces more effective at high AOAs. This was not a complete re-design of tile flight

control system software, and thus only a limited improvement in handling qualities

was expected. The second, and more visible modification to aircraft number two

is the addition of a spin recovery parachute assembly at the base of the rudder.

This precautionary measure is frequently added to experimental test aircraft for a

practical reason. Should the pilot lose control of the aircraft during flight testing, in

most instances he would not be forced to eject and lose the aircraft [211. X-29A2 has

flown at AOAs over 60 degrees, and as expected. both wing rock and yaw oscillations

occurred above 40 degrees AOA [24]. The aircraft was controllable, but the problem

was noted by the test pilots [21].

1.3 Problem Description

The specific problem addressed by this effort is the development of high AOA

flight control laws for a non-minimum phase aircraft. The control system is designed

to make the most effective use of the aircraft's control surfaces. This project was

recommended by the Flight Dynamics Directorate of the Air Force Wright Labora-

tory (WL/FIMT), located at Wright-Patterson AFB, OH. FIYIT proposed the use
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of differential inputs to the aircraft's canards [.5]. Canards are control surfaces that
perform a function similar to that of a conventional elevator. Vhat distinguishes the
canard from a conventional elevator is the canard's placement in front of the wing.
The current flight control system uses only symmetric inputs to the canards, thus
enabling them to control attitude only in the pitch axis.

Roll is controlled by differentially commanded flaperons on the wings, and yaw
is controlled primarily by the rudder [21]. FIMT hypothesizes that in addition to
performing their primary pitch control function, the canards could also be differen-
tially commanded to aid in both roll and yaw control [5]. While this idea seems
reasonable, to date, no in-depth design study has been performed to address this
proposed solution, due to program funding limitations. Consequently, FIMT asked
the Ai. Force Institute of Technology (AFIT) to investigate the idea.

The objective of this thesis is to develop high AOA flight control laws for
an unstable non-minimum phase aircraft. A secondary objective is to demonstrate
improved performance potential at high AOA f-ig7tt conditions, by using differen-
tial canards. In order to accomplish these objectives, linearized aircraft dynamics

models based on such control capability are developed. Since no flight test data
involving differential canards is available, the models are developed based on the

limited amount of differential canard wind tunnel data available. Following this.
the next major task is to develop complex weighting matrices to distribute the con-
trol inputs in the appropriate relative weightings, and ensure maximum synergistic

effectiveness from the control surfaces. Finally, the flight control system transfer
functions are developed and the time responses are evaluated with step inputs to
determine the systems's performance potential.

1.4 Assumptions

As with any effort of this type, certain simplifying assumptions must be made to
make the project realizable. Such assumptions are necessary due to limitations in the
student's level of knowledge, available man-hours, computer support, etc. However,
the assumptions made for this effort have been discussed at length with experienced
flight control specialists at AFIT and FIMT, and the assumptions discussed below
have been determined to be both reasonable and valid.

The first assumption is that the control system can be properly designed using
a linearized state space model to describe the aircraft's dynamics. This is necessary
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because most control techniques are based on the mathematics of linear system
theory. It is a generally accepted engineering practice to use linearized models to

describe a non-linear system, provided such a system is operated in a relatively

small linear range about the nominal operating condition. For the case of aircraft
dynamics, this assumption is reasonable when the aircraft is operated around the

specific flight conditions for which the linear model is developed. For example, a

specified speed and altitude may be chosen as a nominal operating point about

which to vary the AOA (or other parameter of interest). Once a nominal operating

point is defined, a linearized state space model of the aircraft dynamics may be

obtained using simulations, wind tunnel tests, or flight tests.

Other flight conditions can also be chosen as nominal operating points, with
each nominal point yielding a different state space model. It should be noted that

some models are more sensitive to certain parameter variations than others. For

example, the effectiveness of control surfaces is highly dependent on the dynamic

pressure, which is greatest at high speed and low altitude. With the nominal point

based on high speed and low altitude, the aircraft response is very sensitive to the

slightest control surf; e inputs. This sensitivity is drastically reduced when operating

at low speed and high altitude.

The next assumption is that the available wind tunnel data for differential

canard effects is sufficient. This assumption is necessary due to the lack of any

differential canard flight test data and the very limited number of wind tunnel test

runs that were made with the canards positioned differentially. FIMT provided

all the differential canard wind tunnel data that was generated from the NASA-

Langley tests, but due to limited funding to perform this effort, the data is not

representative of the full flight envelope. Further, the limited data has large jumps

in it, and therefore requires interpolation. The differential canard aerodynamic data
must be incorporated into the linearized state space models. This is discussed in

Chapter II. Specifically, this data contains the aerodynamic coefficients that result

from various differential canard settings on the X-29. Before a control system can

be effectively designed, these coefficients are needed to predict the aircraft motions

in response to various control surface configurations.

A third simplifying assumption is that the engine thrust is fixed at a set value

for each of the operating points. Thus, only the aerodynamic control surfaces arc

used to control the aircraft motions. This is a reasonable assumption, even in the real
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test flight scenarios. Frequently. a test aircraft is flown in a specified flight condition
and then the pilot perturbs one or more of his available controls to determine specific

aspects of the aircraft handling qualities in response to the desired input(s).

A fourth assumption results from the choice of nominal operating condition. In
order to fly at extreme AOA with an acceptable wing loading, the aircraft must not
fly in the supersonic or transonic regions of the flight envelope. For this study. the
aircraft models are based on an airspeed of three-tenths Mach [9]. At this compara-
tively slow speed (approximately 310 feet/second). the atmospheric compressbility

effects may be neglected.

In addition, the aircraft is assumed to be a rigid body, constant mass vehicle.
That is, stability and control effects resulting from structural flexing or consumption
of fuel are neglected. This aircraft, like most fighter aircraft, is small enough so that
structural flexing is minimal, and changes in mass due to fuel consumption are not
significant over the period of interest for each commanded maneuver.

1.5 Scope

This effort is limited to developing a set of control laws for a high AOA flight,
control system which implements differential commands to the aircraft's canard con-
trol surfaces. The system design entails extensive use of computer aided design and
analysis programs. The result is a paper design consisting of detailed block diagrams

with pertinent parameters identified. Such block diagrams are typically used as a
blueprint for programming the flight control computers on modern aircraft. As dis-
cussed before, actual implementation of this design would not be practical due to
the limited aerodynamic data, but the methodology discussed in this thesis can be
applied to similar design problems.

The development begins with the modification of the linearized aircraft dy-
namics models to account for the aerodynamic effects due to the use of differential
canards. The next task is the development of the complex weighting matrices to
be used in the design process. Each weighting matrix ensures that when multiple
control surfaces are commanded to produce a desired aircraft response. they work
together in direction and phase. This is discussed at length in Chapter III. The con-

trol system design is accomplished using variations of a control method known as the
Quantitative Feedback Technique (QFT). This is discussed in greater detail in the
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next section of this chapter. After the control laws are developed, they are combined

with the developed aircraft dynamics models to obtain system time responses by use

of computer simulations. Finally, the achieved results are analyzed and conclusions

are drawn.

This study demonstrates that it is possible to design a flight control system
for a non-minimum phase aircraft that utilizes canards in a differential manner to

control the aircraft at high AOAs. In addition, this thesis provides useful insight to

the application and limitations of using QFT for designing a flight control system

for any unstable, non-minimum phase aircraft. Chapter II discusses this further.

Finally, the research is performed entirely with resources available at AFIT

and FIMT. The principle design work is accomplished on AFIT's Sun work-station

computers, and the principle design software package is Matrixx [19].

1.6 Design Method

There are several well proven methods currently used in designing multi-

variable flight control systems. As mentioned above, the method employed in this

thesis is known as the Quantitative Feedback Technique (QFT). This method has

been used for other flight control system designs, and is chosen for this project in

part because of QFT's ability to account for parameter uncertainties in the sys-

tem design. It is determined that such a capability is especially important for this

project due to the limited amount of available wind tunnel data. In addition, the

Flight Dynamics Directorate has expressed an ongoing interest ir sponsoring flight

control work using QFT as the principle design method. An earlier AFIT thesis

discussed the application of QFT to the longitudinal channel of the X-29 flight con-

trol system. That particular study did not involve high AOA flight conditions or

differential canards [27]. QFT is a frequency design technique that may be applied

to either analog (continuous time) or digital (discrete time) control systems. The

design for this effort is performed for an analog flight control system. The principle

objectives of this thesis are met by performing the design entirely in the continuous

time domain [23].

Before describing the design procedure used in this thesis, a brief discussion

of flight control dynamics may help to clarify the reasons for treating the overall

design as two separate design problems. Aircraft flight control systems are typically
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designed around two primary modes: longitudinal and lateral-directional. These

modes result from the partial decoupling of the basic aircraft dynamics equations of

motion. Detailed derivations and analyses of these equations are provided in several

references [2] [8] (201.

To briefly summarize, there are three force equations and three moment eqcua-

tions. The longitudinal mode involves the pitching moment (M) about the lateral

axis and the two forces confined to the plane of symmetry: longitudinal force (X)

and vertical force (Z). The lateral-directional mode involves the side force (Y), and

the rolling (L) and yawing (N) moments about the longitudinal and vertical axes, re-

spectively. These two primary modes have been shown to be virtually decoupled for

conventional aircraft [2]. Examples where this is not true would be unconventional

aircraft such as lifting bodies and cruciform wing missiles.

The aircraft models developed in this thesis are based on the X-29A, which,

though unusual, is still considered a conventional aircraft, so its flight control systems

are divided into the two primary modes described above [3]. Consequently, the design

method used in this thesis treats the two modes independently.

The overall flight control system developed in this research is a three-by-three

system, with three inputs and three outputs. Three control variables are frequently
chosen when designing flight control systems [23]. QFT's design methods are based

on a square system, so the number of inputs equals the number of outputs. A
four-by-four system could be designed, but would result in significant computational

difficulties when performing such operations as matrix inversion, and such a system

in most cases does not inherently perform any better than a properly d.signed three-

by-three system. It should be noted, however, that choosing to use four or more

control variables may result in a more effective control system design.

In this design, the three outputs are fed back to the inputs in the conventional

manner. The control variables are chosen to be pitch rate (Q), roll rate (P), and yaw

rate (R). It should be noted that the nominal angular rates are denoted by capital

letters. The time-varying perturbations of these variables, to be used in the state

space models discussed in Chapter II, are denoted by lower case letters.

There are numerous other choices that can be used for the feedback control
variables, such as; pitch, roll, and yaw angles, AOA, sideslip angle, forces, or linear

combinations of such -riables. The feedback variables chosen for this effort were
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recommended by FIMT (1]. It was recommended that feeding back any variables

containing force terms would not be ideal for this application since the aircraft speed

is relatively slow, and changes in linear forces would be quite small. However, feeding

back and controlling the angular rates is quite effective even for slow speeds.

It is recognized that this combination may not be the optimum choice of con-

trol variables when dealing with a non-minimum phase aircraft. However, for a

study such as this, with limited data for aircraft model development, the choice

is reasonable and all three control variables are directly accessible state variables.

Pitch rate is the only longitudinal control variable, so the longitudinal controller is a

SISO design. The remaining two control variables, roll rate and yaw rate, are in the

lateral-directional control mode and that controller is a two-by-two MIMO design.

Before the actual design process can commence, the appropriate linearized

aircraft dynamics models must be defined. In this case, existing aircraft models

are modified to account for the differential canard aerodynamic effects. The QFT

designs commence with the development of the complex weighting matrices. The

weighting matrices match-up, in correct proportions, the number of desired control

inputs with the larger number of control surfaces, and ensure that the control surfaces

are working in phase with each other. Following this, variations of QFT methods are

used to design the compensator and prefilter transfer functions for the longitudinal

and lateral-directional controllers. The particular variations used are known as the

optimal blending method and the singular-G compensation method. The unstable,

non-minimum phase characteristics of these aircraft models require the use of such

specialized design techniques.

Finally, due to extreme variations encountered in the aircraft dynamics at the

different flight conditions, a different set of control laws is developed for each AOA. A

single controller that can handle such extreme variations in plant parameters cannot

be readily designed with the chosen technique [!5].

1.7 Organization

This thesis is presented in six chapters. Chapter II addresses the aircraft model

development by first briefly describing the X-29A, and then discussing how the lin-

earized state space models are developed and modified, based on limited amounts of

X-29 wind tunnel data. Next, Chapter III discusses the deveiopment of the complex
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weighting matrices. Due to the very unusual characteristics of the aircraft's flight

dynamics, the weighting matrix development presents a significant challenge. Sev-

eral approaches are tried before the desired results are finally obtained. A specialized

shifting technique is finally used to obtain the desired results, and a brief explanation

of the reason for using such a technique is provided. The unsuccessful results are

also discussed briefly, to show why conventional compensation techniques did not

work well with this system.

The next two chapters describe the actual control system design procedures,

and discuss in detail the application of the specialized QFT design techniques men-

tioned earlier. The longitudinal flight control systems are discussed in Chapter IV,

and following an in-depth discussion of the design process, simulated responses to

a step input are shown and analyzed. Chapter V discusses the lateral-directional

(MIMO) controller design. Once again, due to the aircraft's unstable, non-minimum

phase characteristics, numerous problems are encountered and specialized design

techniques are presented to handle them in an optimal fashion. A complete lateral-

directional controller is not designed, but the material covered in the chapter provides

useful information for design work involving such difficult to handle systems. Finally,

Chapter VI presents conclusions based on the results obtained, and recommendations

'for future research efforts.
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II. Development of Mathematical Aircraft Models

2.1 Introduction

This chapter discusses the development and modification of the mathematical

aircraft models used in this design. The X-29A technology demonstration aircraft is

the basis for these models. It is mentioned in Chapter I that due to the availability of

only limited amounts of wind tunnel data, the models developed here do not represent

the X-29's actual performance. However, since the overall flight control configuration

used in this thesis is most like that of the X-29, it is useful to understand the effects
of some of that aircraft's advanced technologies. Following a general overview of the

aircraft, the aerodynamic control surfaces are discussed in greater detail.

The second half of this chapter is devoted to the linearized aircraft model
equations. First, the state space model is discussed and the state variables are

defined. The initial aircraft dynamic model coefficients were obtained from the

Air Force Flight Dynamics Directorate (WL/FIMT). FIMT obtained the data from

the NASA Ames-Dryden Research Center, located at Edwards AFB, CA. These

original state space models are based on the use of symmetric canard positions. The

aircraft dynamics models are modified in this thesis to account for the aerodynamic

effects resulting from the use of differential canard positions. The modifications are

performed using wind tunnel data obtained from NASA's Langley Research Center

in Hampton, VA.

Due to the limited amount of differential canard wind tunnel data, only four
flight conditions are chosen as nominal design points. Specifically, four different

AOAs are selected for a single speed and altitude condition. It is recognized that

a single operating condition (speed and altitude) does not account for the effects of
changing dynamic pressure. However, demonstrating the development of high AOA

control laws utilizing differential canards is possible based on a few carefully selected

nominal design points. Design of a control system capable of operating across the

full flight envelope would require much more aerodynamic data and is well beyond

the scope of this effort.
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2.2 Aircraft Description

Nose St'ake

Co~e Coupled Canard

Forward S*ept Wing

fthun supewcrcalAfol

Aeroelastcalfy Talored
Composae Wng Covet

Variable Camber

Strake FlaD

Figure 2.1. X-29A Advanced Aircraft Technologies [21]

Chapter I described the X-29A's primary purpose; that of an advanced technol-

ogy demonstrator. Some of these unusual technologies are evident by looking at the

aircraft. Others, however, are not so obvious. The aircraft's most striking feature is

the forward swept wing (FSW). As shown in Figure 2.1, the wing has a high degree
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of forward sweep, with the center of lift clearly aft of the aircraft's midpoint. The

reasons for designing an aircraft with such an unusual planform may not be obvious.

The overriding reason is greatly increased aerodynamic efficiency. When com1,ared

with a conventional aft swept wing, the FSW results in drag reductions of at least

20 percent, and in the transonic speed range (0.8 to 1.2 Mach), this figure may be as

high as 45 percent. The benefits are clear; for a desired performance level, a fighter

using the FSW may be designed around a smaller, lighter, more fuel efficient power

plant.

Another key benefit of the FSW is the fact that the airflov is directed from

the wing tips toward the fuselage. This means that when the wing stalls (loss of lift

under extreme AOA), the ailerons remain effective for roll control. Aircraft with aft

swept wings stall from the tips first, resulting in early loss of control. On the X-29A,

the stall initiates at the wing root. This aerodynamic characteristic, combined with

the use of close-coupled canards, enables the X-29A to fly and remain controllable at

AOAs greater than sixty degrees. Prolonged controlled flight at such extreme values

of AOA has been virtually impossible for conventional aircraft designs.

The close-coupled canards are another readily distinguishable feature of the

aircraft. The term close-coupled refers to the aerodynamic interactions that take

place between the canard and wing, due to their close proximity to each other.

-The principle function of the canards, that of primary pitch control surfaces, is

discussed in Chapter I. The canards also contribute substantially to the aerodynamic

efficiency of this aircraft. On a conventional aircraft with aft mounted stabilators, the

stabilator must actually provide a negative lift to counteract the downward pitching

moment caused by the center of gravity being forward of the center of lift. This is

shown in Figure 2.2.

On the X-29A, this downward pitching moment is counteracted by placing the

canards in front of the wing. This enables the canards to balance the aircraft by

providing a positive lift, thus working with the wing to provide lift for the aircraft.

Unfortunately, this benefit is not without penalty. With the canards contributing a

substantial portion of the total lift, the overall center of lift is well forward of tile

center of gravity. This condition results in an aircraft that is inherently unstable in

the pitch axis. Indeed, the X-29A would be completely impossible to fly if it were

not for the highly advanced flight control system.
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Conventional Aircraft

Formard Swept Winq X-29 with Canards

Figure 2.2. Comparison Between Stabilator and Canard [21]

Due to the extreme importance of the flight control system, this aspect of the

aircraft is highly redundant. There are, in fact, three independent flight control

systems that work simultaneously. Each of these systems has both a primary dig-

ital computer and an analog backup computer (with independent power supplies).

Further, should one of the systems fail, the other two systems would take over and

switch off the failed unit. In the extremely unlikely event of two systems failing,

the pilot would still be able to land the aircraft with one system operating. The

flight control system usually controls the longitudinal and lateral-directional modes

in what is termed the normal digital mode.

A backup mode termed the analog reversion mode is available to get the air-

craft safely home with very limited maneuvering capability. In addition, the normal

digital and analog reversion modes are each capable of operating in two flight control

configurations known as up and away and powered approach. These two configura-

tions differ in the gain scheduling applied to the various control surfaces.
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The flight control system is continuously updated by sensors providing infor-

mation such as attitude, speed, air temperature, AOA, and side-slip angle. The

flight control system compares the actual parameters with the desired ones and min-

imizes the error by sending commands to all the control surfaces at a 40 Hertz rate.

This high speed control process occurs continuously just to maintain aircraft stabil-

ity. The flight control system also responds to pilot commands (stick, rudder, and

throttle inputs), and simultaneously sends the appropriate electronic control signals

to tha control surface actuators to accomplish the commanded flight maneuver(s).

Since there is no mechanical connection between the pilot's flight controls and the

aircraft's control surfaces, the system is termed fly-by-wire.

One of the less obvious technologies is the use of advanced composite materials

in the construction of the wing. It is readily apparent that a wing with this radical

design would tend to twist excessively near the tips, especially under relatively high

loading conditions. Conventional materials are simply not able to provide the re-

quired strength, while at the same time being sufficiently thin and light weight. The

composite material enabled the engineers to demonstrate another advanced tech-

nology; the thin supercritical wing section. This NASA developed design is only

one-third as thick as a conventional wing of comparable size. The aerodynamic

benefit is a softening of the transonic shock waves, and a significant reduction of

buffeting and drag in the transonic spt-d range.

Another unusual feature of the wing is the use of full span flaperons. The

unique feature noted here is that the flaperons are not conventional hinged control

surfaces. Rather, these surfaces actually bend the shape of the wing's trailing edge

by altering the camber, or curvature. A feature of the flight control system known

as automatic camber control changes the symmetric position of the flaperons at the

40 Hertz rate to minimize drag for the current flight condition. The flaperons' use

as pitch and roll control surfaces is discussed in the next section.

2.3 Control Surfaces

The longitudinal mode is controlled by three sets of control surfaces, as shown

in Figure 2.3. The principle pitch control surfaces are the canards. A noteworthy

feature of the canards is their extreme amount of travel. Capable of ranging from

+30 to -60 degrees, the canards can remain parallel to the relative wind for nearly all
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Variable Camber

Strake Flap

Canard

Figure 2.3. Pitch Control Surfaces [21]

achievable AOAs. Positive deflection is defined with the surface's trailing edge down

'TED). With the present flight control system design, the canards have essentially
0 "fect on the -ateral-directional mode.

In addition to the canard., the variable camber flaperons coitribute to pitch

control when driven symmetrically. The total range of flaperon travel is 35 degrees.

However, because of the varib'e, camber function, these surfaces are asymmetrically

limited to +25 and -10 degrees. Again, positive deflection is deflned with the control

surface TED. The flaperons contribute only a small amount of the total pitch control,

since they lie roughly along the lateral axis, and the moment at .:' is quite short.

Conversely, the small strakes near the exhaust nozzle contribute a substantial portion

of the total pitch control, because their moment arm is relatively long. Currently,

these surfaces are commanded to move a great deal in the powered approach mode

to help control pitch under low speed conditions, when the canards are less effective.

The strakes have a travel range of ± 30 degrees, again with positive deflection of the

control surface defined with TED.

Lateral-directional control is currently provided by a combination of differen-

tially commanded flaperons and the rudder. The sign conventions for the differential

flaperons (acting like ailerons in this mode) and rudder are the same as for other

2.6



aircraft; positive deflections result in right wing down and left turn, respectively

[21]. The focus of this thesis is to investigate the use of differential canards to aid

the differential flaperons and rudder in controlling the lateral-directional modes (roll

and yaw). The differential canard sign convention is chosen to be the same as that of

the differential flaperons, with positive deflection being defined with the left surface

TED. The control surface characteristics are summarized in Table 2.1.

Control Surface Position Limit Rate Limit Area
(deg) (deg/sec) (ft2)

Canard +30, -60 ±100 37.0
Symmetric Flaperon +25, -10 ±70 14.32
Differential Flaperon ±17.5 ±70 14.32
Rudder ±30 ±125 7.31
Strake ±30 ±30 5.21

Table 2.1. Control Surface Characteristics [3]

2.4 Actuator and Sensor Models

All of the control surfaces are controlled by electro-mechanical servo-actuators.

The actuators receive electrical signals from the flight control system and deflect

the control surfaces accordingly. Since the actuators are an integral part of any

aircraft flight control system, they must be mathematically modeled along with the

aircraft dynamics. The mathematical models may be in the form of either time

domain or frequency domain transfer functions. Manufacturers typically provide

frequency domain transfer functions for their actuators. Fourth order models of

these actuators are shown in Table 2.2. Note that the denominators have been

factored to show the first order exponential terms, and the second order oscillatory

terms. Also, the second order terms have been written in such a way to clearly show

the damping coefficient (C) and the natural frequency (wa). The standard form is

given by [s2 + 2(w. + w.].

For the most part, the actuators act like an exponential delay in the time do-

main, due to the effects of the dominant roots. Therefore, aircraft control surface

actuators are usually represented by first order approximations, in the frequency
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(.885)(20.2)(71.4)2(144.9)
Canard (s+20.2)[s2+2(0.736)(71.4)s+(71.4) 2 (s+ 144.9)

Symmetric Flaperon (20.2)(71.4)2(144.9)
(s+20.2)[s 2+2(O.736)(71.4)s+(71.4) 2](s+144.9)

Differential Flaperon
(54.1)2(71.4)2

& [s2+2(l.53)(54.1)s+(54.1) 2][s2+2(O.735)(71.4)s+(71.4)2]

Rudder

(50)(100)(325)2
Strake (s+50)(S+100)[s 2+2(O.7)(325)s+(325) 2]

Table 2.2. Fourth Order Actuator Models [3]

domain. By using such approximations, the order of the overall control system is

decreased significantly. First order approximations are used in this thesis, and are

shown in Table 2.3. When comparing these approximations with the original fourth

order models in Table 2.2, the dominant roots are readily seen for the canard, sym-

metric flaperon, and strake. The dominant root at s = -20 for the differential

flaperon and rudder comes from factoring the first quadratic term in each denomi-

nator. In all cases, the non-dominant roots are sufficiently far away from the origin

to have a negligible effect on the response characteristics.

These approximations have been validated in a recent AFIT thesis by Captain

Tom Cox [6]. For one of his tasks, Capt Cox entered the aircraft dynamics models

with the current flight control system design into both Matrixx and SIMSTAR

computer simulations programs at AFIT. Capt Cox ran his simulations with the

fourth order actuator models and again with the first order approximations, and

noted that the results were virtually identical. Further, FIMT [91 notes that these

approximations are commonly used to model the control actuators for simulation

and design purposes.
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Canard,
Symmetric Flaperon,

20
Differential Flaperon, s+20&

Rudder

Strake 50
s+50

Table 2.3. First Order Actuator Models [31

The feedback signals (pitch rate, roll rate, and yaw rate), are sensed by rate

gyros. The rate sensing gyros are modeled by second order transfer functions as

shown in Table 2.4. For the control system design in this thesis, the frequency range

of interest is roughly 0.1 to 100 rad/sec. Long term drift characteristics below 0.1

rad/sec are easily controlled by the autopilot, and frequencies above 100 rad/sec are

attenuated in the feedback system to avoid exciting structural modes. Further, the

effective bandwidth of the human pilot ranges from approximately 1 to 10 rad/sec.

The natural frequencies of the rate gyros are high enough so that their gain atten-

uation in the frequency range of interest is negligible. Therefore, the sensors are

modeled as unity gain functions for this design effort.

Pitch Rate Gyro (137)2& s +2(0.704)(137)s+(137) 2

Yaw Rate Gyro

(157)2
Roll Rate Gyro $2+2(0.701)(157)s+(157)2

Table 2.4. Sensor Models [3]
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2.5 Linearized Aircraft Model Equations

The linearized aircraft dynamics models used in this effort are based on state
space models provided by FIMT. The original models were generated by NASA's

X-29A six-degree-of-freedom non-linear simulation program, and represented a wide

range of flight conditions. The models were provided in the form of A, B, C. and D

matrices. These matrices form the System matrix (S) shown in Equation 2.1. This

matrix contains all the coefficients of the system's differential equations written in
the standard state space form shown in Equations 2.2 and 2.3.

A B

S = ... ... ... (2.1)

LC D D

ik(t) = A x(t) + B u(t) (2.)

y(t) = Cx(t) + Du(t) (2.3)

Equation 2.2 is the state equation which relates the time rate of change of the

state vector to the control vector. Equation 2.3 is the output equation which relates

the system output vector to the state vector, and also the control vector when a

feed-forward path is present in the control system. Figure 2.4 is the block diagram

representation of Equations 2.2 and 2.3.

The state vector x(t) contains all the variables needed to completely describe
the system's behavior. These variables are discussed in greater detail in the next

paragraph. The A matrix is known as the system dynamics matrix, and the B

matrix is known as the control matrix. Both relate the state variables to the input

vector u(t).

The output vector y(t) is determined by using the output matrix C to form

a linear combination of the state variables. The feed-forward matrix D is used to

relate outputs directly to inputs. For most flight control systems, the D matrix

2-10



Figure 2.4. Block Diagram Representation of State Space

is zero-v. ed, as is the case in this design. Finally, it should be noted that since

this design is based on linear time-invariant (LTI) analysis and design methods, the

elements of the system matrix are not time varying. This condition holds for small

perturbations about each nominal point, as discussed in Chapter I.

The models provided by NASA include a total of eight states; four longitudinal

and four lateral-directional. The longitudinal states are forward velocity [v(t)], AOA

[a(t)], pitch rate [q(t)], and pitch angle [0(t)]. Angle of attack is defined as the

angle between the aircraft's longitudinal axis and the velocity vector as projected

onto the vertical plane of symmetry (defined by X and Z). Pitch angle is defined

with positive deflection corresponding to a nose up attitude relative to the local level

defined in inertial coordinates. Figure 2.5 pictorially defines these angles in relation

to the aircraft.

Having defined the state variables associated with the longitudinal mode, the

longitudinal state vector xl,,, (t) is:

v (t) forward velocity (ft/sec)

a (t) angle of attack (deg) (24)X t) =(.4

q (t) pitch rate (deg/sec)

0 (t) pitch angle (deg)
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Longitudinal
Axis

0 Horizontal

Velocity

Vector

Figure 2.5. Definition of a and 0

The four lateral-directional states are side slip angle [#(t)], roll rate [p(t)], yaw

rate [r(t)], and bank angle [¢(t)]. Positive bank angle is defined with the rigbt wing

down relative to the local level coordinate frame, as shown in Figure 2.6. Side slip

angle is defined as the angle between the aircraft's longitudinal axis and the velocity

vector as projected down onto the local level plane (defined by X and Y). Positive

side slip is sometimes referred to as having wind in the right ear. This is shown in

Figure 2.7.

Level

View From Rear

Figure 2.6. Definition of €
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Longitudinal
Axis

Velocity
Vector

Looking Down

Figure 2.7. Definition of'3

With the remaining state variables defined, the lateral-directional state vector

XIat (t) is:

fi (t) side slip angle (deg)

p (t) roll rate (deg/sec)
r (t) yaw rate (deg/sec)

0 (t) bank angle (deg)

The input vectors, like the state vectors above, are defined in the two pri-

mary flight control modes. The longitudinal input vector ul,, (t) originally provided

contains four elements corresponding to control perturbations. Three of these cor-

respond to small control surface deflections and the remaining element corresponds

to small variations in engine thrust. Specifically, the four elements of the original

input vector are symmetric canard [6, (t)], symmetric flaperon (6S (t)], strake flap

[6tr (t)], and engine thrust (8th (t)]. The next section discusses the modification of

the input vectors to incorporate diflerential canard effects. The longitudinal input

vector as initially defined is:
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Sc (t) symmetric canard (deg)

Un (t) 6= ! (t) symmetric flaperon (deg) (26)
6,t, (t) strake flap (deg)

6th (t) thrust (lbs)

The original lateral-directional input vector ulat (t) contains only two elements.

These are differential flaperon [Sdf (t)], and rudder [6 (t)]. Again, the modification

of this vector is discussed in the next section. The original lateral-directional input

vector is:

Ult) W 8df (t) differential flaperon (deg) (2.7)
b4 (t) rudder (deg)

Having defined the state and input vectors, the design analysis proceeds with

the examination of the complete state space models originally generated by the

NASA simulation. Although the original models were provided for a wide range of

flight conditions, only four nominal points are chosen for this design effort, due in

part to the limited amount of available differential canard wind tunnel data. The

wind tunnel data is based on a low speed and low altitude flight condition with

varying AOAs. For this design, one specific speed and altitude pair is chosen as

the nominal flight condition about which to vary the AOA. It was determined that a

representative flight control system can be designed using only four properly selected

nominal points. The four AOA values selected for this design are 20, 40, 50, and 60

degrees. The reasons for selecting these specific values are discussed in greater detail

in the next section.

The original longitudinal and lateral-directional A, B, C, and D matrices for

each of the four flight conditions are given in Appendix A. The state space models,

after being modified, are transformed into high order transfer functions known as

open-loop plants. The plants are the basis of the QFT design process to be described

in subsequent chapters.

Finally, the aircraft considered in this research is unstable and non-minimum

phase. These characteristics result from the system plants having poles and zeros in

the right half of the complex s-plane. The right-half-plane (RHP) poles cause the
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open loop system to be unstable, and the RHP zeros result in the non-minimum phase

characteristics (i.e. they add excess phase lag). The physical properties that result

in these mathematical characteristics are due to aerodynamic phenomena resulting

from such considerations as the relative placement of control surfaces, their relative

sizes, and the locations of rate sensing gyros. An in-depth aerodynamic study of

this aircraft is well beyond the scope of this thesis, but the principle reasons for the

longitudinal static instability were discussed previously.

The undesirable effects resulting from these mathematical characteristics are

discussed in detail in Chapters IV and V. However, it is useful to examine the

poles of the initial dynamics models, to verify the expected open loop instability

characteristics for each of the flight conditions. This is accomplished by obtaining

the eigenvalues (A) of each A matrix [8]. The task is performed using Matrixx and

the results are shown in Appendix B. The longitudinal mode's eigenvalues for the

first flight condition (a = 20) are repeated here for discussion.

-0.0203 + 0.1257"

Alo2 -0.0203 - 0.1257j (2.8)
0.7080 + 0.0000j

-1.0302 + 0.0000j

It is noted that one of the four poles is in the RHP, and thus causes the system

to be unstable. Complex poles in the RHP add oscillatory instability characteris-

tics, while an RHP pole on the real axis contributes a purely exponential form of

instability, as is the case here.

Using a similar analysis procedure for the remaining cases, it is noted that

the open loop dynamics become slightly more stable in the pitch axis as the AOA

increases. This is seen by the fact that the RHP poles, for the longitudinal cases,

approach the origin as the AOA increases and finally become left-half-plane (LIIP

) poles for the 60 degree case. However, in the lateral-directional modes, the open

loop aircraft dynamics are clearly unstable for all four of the chosen flight conditions,

as evidenced by the RHP poles present in all cases. These results were shared with

FIMT and it was verified that the actual aircraft tends to behave in this manner [9].
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2.6 Modification of Aircraft Model Equations

This section discusses how the wind tunnel data generated by the NASA Lan-

gley Research Center is used to modify the linearized state space models to account

for the aerodynamic effects due to differential canard positions. The raw data is in

the form of coefficients of lift, drag, side force, and pitch, roll, and yaw moments.

These coefficients were obtained over a wide range of AOAs. The data was obtained

for a constant dynamic pressure. FIMT stated that the data is reasonably accurate

up to a speed of 0.5 Mach and an altitude of 30,000 feet, based on information pro-

vided by NASA. For this design study, FIMT recommended a single flight condition

of 0.3 Mach and 20,000 feet, to use as the nominal trim condition. This trim condi-

tion allows the AOA to vary up to sixty degrees without introducing concern over

excessive structural loading [9].

The first wind tunnel runs were made with symmetric canard settings of 0, -25,
and -40 degrees. Recall that positive canard deflection is defined with the trailing

edge down. The initial runs were followed by similar runs with the canards set at

4- 20 degrees about the nominal symmetric deflections. This resulted in differential

values of -5 & -45, and -20 & -60 degrees, respectively.

The coefficients obtained from each symmetric deflection run are subtracted

from the coefficients produced during the corresponding differential deflection run.

These results are then divided by the nominal differential amount of 20 degrees

to obtain the stability derivatives with respect to differential canard inputs. This

procedure was provided by the Air Force Flight Dynamics Laboratory [5]. While this

procedure is an accepted method used to obtain stability derivatives, it is recognized

that the expected accuracy of these results is quite limited. This is due primarily

to having only a single differential deflection, and the fact that this deflection is

perhaps unrealistically large for many flight maneuvers. It is likely that with such

large differential deflections one of the canards might be stalled (loss of lift resulting

from disrupted airflow) under certain flight conditions.

Appendix C lists the two symmetric and the two differential coefficient matri-

ces. Each matrix has six columns, corresponding to the aerodynamic coefficients,

and 13 rows, corresponding to AOAs ranging from zero to sixty degrees in five degree

increments. The side slip angle is zero for all cases. The order of the aerodynamic

coefficients as listed in the matrices is: lift (CL), drag (CD), pitching moment (CAI),

side force (Cy), yawing moment (CN), and rolling moment (CI). The general method
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used to obtain the stability derivatives is discussed in the previous paragraph. The

most efficient way to obtain the desired results is to subtract the appropriate sym-

metric coefficient matrix from its corresponding differential coefficient matrix and

divide the result by 20. Since there are two nominal symmetric deflections, this

results in two complete sets of stability derivatives from which the desired values are

chosen as discussed below. The matrix calculations are performed using Afatrixx,

and the results are included in Appendix C.

As an example, in order to obtain the CM stability derivative for 20 degrees

AOA, the symmetric value is subtracted from the differential value and divided

by 20. Referring to the first set of wind tunnel coefficients (based on 25 degree

symmetric defection), the symmetric value (-0.2023) is read from the (5,3) position

of the 'sim25' matrix. This is subtracted from the corresponding value (-0.2076)

from the 'diff25' matrix, and the result is divided by 20 to obtain the result shown

in the (5,3) position of the 'stabder25' matrix (-2.650E-4).

At this point the choice is made to use the four previously defined AOAs. Since

the focus of this thesis is to investigate controlled flight at extreme values of AOA, a

reasonable selection of nominal points includes 40, 50, and 60 degrees. In addition,

a moderate AOA value of 20 degrees is chosen to possibly demonstrate the potential

robustness of the QFT design process.

To minimize adverse effects resulting from extrapolating data, the 20 degree

AOA coefficients are taken from the results based on 25 degree symmetric deflections

(i.e. row five of the first stability derivative matrix 'stabder25' shown in Appendix

C). Similarly, the three high AOA coefficient sets are taken from the matrix based

on 40 degree symmetric deflections (i.e. rows 9, 11, & 13 of the second stability

derivative matrix 'stabder40'.) This is clarified by examining the 20 degree AOA

CM stability derivative once again. Since the ideal (minimum drag) flight condition

is to have the canards positioned so that they are aligned with the relative wind, a

symmetric deflection of 25 degrees for an AOA of 20 degrees is reasonable. However,

a symmetric canard deflection of 40 degrees while flying at 20 degrees AOA would

result in a high drag configuration, and any results based on such extreme operating

conditions would not be expected to be reasonable. The result of this can be seen by

noting the calculated value in the (5,3) position of the 'stabder40' matrix (+7.350E-4)

and comparing this with the value previously obtained from the 'stabder25' matrix.
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Figure 2.8. Translation of Lift and Drag into Longitudinal Forces

Before modifying the B matrices, it is necessary to translate two of the six

aerodynamic coefficients for each of the chosen flight conditions. It is standard

practice to obtain lift and drag coefficients from wind tunnel test runs. However,

the aircraft dynamics equations that form the state space models are based on the

three orthogonal forces and three orthogonal moments defined in Section 1.6. Lift

and drag must therefore be translated into the X and Z forces. The translation is

required when the AOA is not zero, as shown in Figure 2.8. Simple trigonometric
calculations based on the figure are used to perform the translation. Equations 2.9
and 2.10 are the general equations and the values for the 20 degree case are calculated

from Equations 2.11 and 2.12.

CZ= -CL cos(a) - CD sin(a) (2.9)

Cx= CLsin(a) - CD cos(a) (2.10)
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Cz2o = (4.000E - 5) * cos(20) - (3.550E - 3) * sin(20) = -3.229E - 3 (2.11)

Cx 20 = (-4.OOOE - 5) * sin(20) - (3.550E - 3) * cos(20) = -1.487E - 3 (2.12)

Appendix D lists the four sets of stability derivatives obtained from the calcu-

lations performed in Appendix C. For each flight condition, the first two entries (CL

& CD) are used to calculate the translated X and Z force stability derivatives, and

those results are also shown in the appendix. Finally, the four sets of differential

canard stability derivatives are listed in Table 2.5. These are now used to define the

modified state space models.

AoA Cx CzC. C,
20 -1.487D-03 -3.229D-03 -2.650D-04 -5.250D-03 4.050D-04 -2.305D-03
40 2.609D-03 -2.255D-03 2.345D-03 -6.420D-03 -1.550D-04 -1.530D-03
50 3.504D-04 4.490D-03 -7.700D-04 -3.675D-03 3.150D-04 -2.145D-03
60 1.960D-03 -5.305D-03 -3.555D-03 -3.290D-03 4.550D-04 -1.125D-03

Table 2.5. Final Differential Canard Stability Derivatives

Now properly defined, the four sets of stability derivatives need to be incor-

porated into the B matrices, since the original control vectors do not contain any

terms accounting for differential canard effects. Following extensive discussions with

Dr Meir Pachter [22], the following approach is decided upon.

The original longitudinal control vector contained a term for delta thrust, which

related to the corresponding entries in the fourth column of the original B matrix.

However, for this simulation the thrust is assumed to be constant, so the original

fourth column entries in the B matrix are not needed. This means that the longitu-

dinal B matrix can retain its original dimensionality by replacing the fourth column
with the coefficients obtained using differential canard control inputs. The longitu-

dinal B matrix is then modified by deleting the fourth column, moving the second
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and third columns to the third and fourth column positions, and inserting the appro-

priate differential canard longitudinal stability derivatives into the second column.

The two longitudinal B matrices for the 20 degree flight condition are shown below.

The modified matrix is denoted with a tilde.

-8.8250D- 02 -8.5710D- 02 -2.3390D- 02 1.0280D - 01

Bin20 = -3.3100D- 04 -3.4930D- 04 -2.1030D- 04 -1.2020D - 04 (2.13)
1.2410D - 02 -2.7310D - 03 -9.6810D - 03 -9.0470D - 0.1

0.0000D + 00 0.0000D + 00 0.0000D + 00 0.0000D + 00

[ -8.8250D- 02 -1.4872D- 03 -8.5710D- 02 -2.3390D - 02
tlon2o -3.3100D - 04 -3.2292D - 03 -3.4930D - 04 -2.1030D - 04 (2.14)

1.2410D- 02 -2.6500D- 04 -2.7310D- 03 -9.6810D - 03

0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

In each case, the X force coefficient is in the forward velocity equation, the Z

force coefficient is in the AOA equation, and the pitching moment coefficient is in

the pitch rate equation. The modification is required to match up the longitudinal

B matrix with the modified longitudinal control vector, which is defined below.

6, (t) symmetric canard (deg)

M
5 dc (t) differential canard (deg)

6df (t) differential flaperon (deg)

b,,r (t) strake flap (deg)

The dimensionality of the lateral-directional B matrix, and its corresponding

control vector, is increased by one. In this case, the lateral-directional stability

derivatives associated with the differential canard control inputs are augmented as a

third column in the lateral-directional B matrix. The original and modified lateral-

directional B matrices for the 20 degree flight condition are shown below.
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-8.8650D - 05 2.0300D - 04

1.3280D - 01 1.0630D - 02Btto= (2.16)
7.1400D - 03 -9.8750D - 03

0.0000D + 00 0.0000D + 00

-8.8650D - 05 2.0300D - 04 -5.2500D - 03

lat2o 1.3280D- 01 1.0630D- 02 -2.3050D- 03B~at2O(2.17)
7.1400D - 03 -9.8750D - 03 4.0500D - 04

0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

The side force coefficient is in the side slip angle equation, and the yaw and

roll moments are each in their corresponding rate equations. Finally, the modified

lateral-directional control vector is defined below.

6df (t) differential flaperon (deg)

u1t, (t) b6' (t) rudder (deg) (2.18)

Scj (t) differential canard (deg)

The modified B matrices for all four flight conditions are shown in Appendix

E. Finally, the original C matrix is modified in all cases to transmit only the de-

sired state variables, p(t), q(t), and r(t) to the system outputs. Since there is no

feed-forward path in this control system, the D matrices are all zero-valued. The

longitudinal and lateral-directional C matrices are shown in Equations 2.19 and 2.20.

0 0 0 0

0 0 0 0C0o0 (2.19)

0 0 1 0

0 0 0 0
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Ciat 0 01 00 (2.20)
0 01 0

0 00 0

Appendix F lists the final state space system matrices for all four flight con-

ditions. In each case, the S matrix is used to generate the open ioop plant transfer

functions from the appropriate System Build files. The longitudinal and lateral-

directional S matrices for the 20 degree flight condition are given below.

Slon2O

Columns 1 thru 8

-6.7320,D-02 -1.9190D+01 -5.8320D-01 -3.21100+01 -8.82500-02 -1.4872D-03

-6.0200D-04 -1.4980D-0l 9.9480D-01 -3.97700-09 -3.3100D-04 -3.2292D-03

4.9390D-04 7.34400-01 -i .4560D-0i -2.27200-09 1.24100-02 -2. 6500D-04

0.00000+00 0.00000+00 1.00000+00 0.00000+00 0.OOOOD+00 0.00000+00

0.OOOOD+00 0.OOOOD+00 0.OOOOD+00 0.00000+00 0.00000+00 0.00000+00

0.00000+00 0.00000+00 0.00000+00 0.OOOOD+OO 0.OOOOD+00 0.00000+00

0.00000+00 0.00000+00 1.0000D+00 0.OOOOD+00O0.00000+00 0.00000+00

0.00000+00 0.00000+00 0.OOOOD+00 0.00000+00 0.00000+00 0.OOOOD+00

Columns 7 thni 8

-8. 5710D-02 -2.33900-02

-3.49300-04 -2. 1030D-04

-2.73100-03 -9. 6810D-03

0.OOOOD+00 0.00000+00

0.OOOOD+00 0.00000+00

0.00000+00 0.00000+00

0.00000+00 0.00000+00

0.OOOOD+00 0.00000+00
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Columns I thru 6

-6.8010D-02 3.4030D-01 -9.3810D-O1 9.7000D-02 -8.86S0D-05 2.0300D-04

-1.8850D+01 1.4380D-02 1.2860D-O1 1.4200D-06 1.3280D-01 1.0630D-02

1.0090D+00 -3.37S0D-02 -1.3520D-02 4.3340D-07 7.1400D-03 -9.8750D-03

O.OOOOD+00 1.OOOOD+OO 3.6400D-O1 6.6800D-03 0.000012+00 O.0000D+00

0.0000D+00 0.0000D+00 0.0000D+00 0.000012+00 0.000012+00 0.0000D+0O

0.000012+00 1.0000D2+00 0.000012+00 0.000012+00 O.OOOOD+00 0.000012+00

0.000012+00 0.OOOOD+00 1.0000D2+00 0.000012+00 0.OOOOD+00 0.000012+00

0.OOOOD+00O0.OOOOD+00 0.OOOOD+00 0.0000D+00 0.000012+00 O.OOOOD+00

Columns 7 thru 7

-5.25002-03

-2.305012-03

4.050012-04

0.000012+00

o .OOOOD+00

0.OOOOD+0O

0.000012+00

0.OOOOD+0O

2.7 Summary

This chapter presents a brief overview of the X-29A technology demonstration

aircraft, since that aircraft is used as the basis for the aircraft models developed in

this design problem, and then provides an in-depth look at the control surfaces. The

reduced order actuator models are developed, and the models of the pertinent flight

control sensors ari discussed. The next section begins with a brief discussion of how

state space models are used to represent a system of linear differential equations in a

more convenient form. Following this, the initial linearized aircraft model equations

are described. The system state vectors are defined, and the system control vectors
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are presented in their original form. As an interim check, the system eigenvalu:es are

obtained and examined to verify the expected open-loop instability characteristics.

The final section of this chapter describes the modifications made to the origi.al

state space models. The modifications are required to account for the aerodynamic

effects resulting from the use of differential canard positions. The control rna.rices

and input vectors are modified accordingly, and the output matrices are re-defined

to obtain the desired control variables for feedback. Finally, the open-loop system

matrices are presented. These state space models are used along with the actua-

tor models and weighting matrices to form the effective plant transfer functions in

subsequent chapters. Chapter III discusses the development of the control system

weighting matrices.
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III. Weighting Matrix Development

3.1 Introduction

This chapter discusses the development of the weighting matrices that augment

the open loop dynamics models. For each of the flight conditions, the weighting

matrix (A) combines with the actuator matrix and the state space model to form

the effective plant (Peff ), as shown in Figure 3.1. QFT design methods require

that the effective plant matrix be square (i.e. with the same number of inputs and

outputs) and be non-singular. These requirements are necessary for the matrix to be

invertible. The weighting matrix accomplishes the squaring operation at the front

end of the system, and distributes the commanded control inputs (three angular

rates) among the seven aerodynamic control surface inputs in the proper relative

weights.

Effective Plant
-------------------------------------- n

p 1

Theqnex st Weighting p Actuator State
Matrix Matrix Space

Figure 3.1. Block Diagram of Flight Control System

The next section describes the principle function of the weighting matrix in

great.er detail, and discusses the need to develop a frequency dependent weighting

matrix for this particular application. This is followed by a brief overview of the

techniques used to develop both constant and frequency dependent compensation

terms. Some unusual problems arise due to the unstable, non-minimum phase state
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space models discussed in the last chapter. As a result, special shifting methods are

required to obtain the desired open loop response characteristics from the frequency

dependent compensation terms.

Since a significant amount of effort was expended on unsuccessful methods to

develop lateral-directional compensation terms, a brief discussion of those methods is

included, along with results from one of the cases. Following this, the development

of the individual compensation terms (weighting matrix elements) for each of the

flight conditions is detailed in the pitch, roll, and yaw channels individually. The
roll and yaw channels are then combined, along with cross terms and appropriate

gains, to form the complete lateral-directional compensation matrices. Finally, the

longitudinal (SISO) and lateral-directional (MIMO) weighting matrices are listed,

along with a discussion of how they are incorporated into the effective plants.

3.2 Weighting Matrix Design Approach

The principle function of the weighting matrix is to distribute the desired con-

trol inputs among the appropriate control surfaces with specified relative weights.

The relative weights are based on such considerations as the aerodynamic effective-

ness of each control surface to perform a given flight maneuver at a particular flight

condition. This includes inverting control surface inputs as necessary due to the

sign conventions discussed in Chapter II. The weighting matrix ensures that the ap-

propriate control surfaces are all working together to achieve a commanded flight

maneuver. For most aircraft flight control systems, a simple weighting matrix with
constant elements is sufficient. This turns out to be the case for the longitudinal

channel on this aircraft, as well. However, the lateral-directional controls possess

unusual response characteristics. In particular, the control surfaces used to control

roll and yaw operate out of phase with each other without appropriate compens,-

tion. The required compensation involves frequency dependent terms, as well as

constant gain values. Further, the compensation terms are a function of the partic-

ular flight condition. As a result, different weighting matrices are required for each

flight condition considered in this design effort.

For the longitudinal channel, the compensation terms are developed by exam-

ining the uncompensated open-loop step responses, inverting the appropriate control

inputs, and including the desired relative gains for each. This is discussed in detail
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in the next section. Developing the frequency dependent compensation required for

the lateral-directional channels presents quite a problem, due to the unusual char-

acteristics of this aircraft. As before, the process begins with examination of the

uncompensated open-loop step responses. From these plots, it is clear that the con-

trol surfaces are working out of phase with each other, and without compensation,

would be inefficient in achieving a commanded flight maneuver.

The accepted technique for developing frequency dependent compensation term6

is to obtain the relative phase characteristics from a Bode phase plot, and then in-

clude poles and zeros as needed to adjust the phase plots until they are nearly the

same. With similar phase characteristics in the frequency domain, the time response

plots would normally be expected to show that the control surfaces are working to-

gether. Unfortunately, this is not the case with the initial design attempts used to

perform this task. This method is used to develop roll and yaw rate compensation

terms for all four flight conditions. In most of the cases, the composite time response

plots do not show the desired characteristics, even though the relative phase plots

are in close agreement in the frequency domain.

An alternative approach was suggested by Captain Paschall [23]. Since the end

goal for this task is to force the appropriate control surfaces to work together in re-

sponse to a commanded n- neuver, he suggested that the uncompensated open-loop

time responses be analyzed for each case to determine what form of compensation

might bring the time domain plots together. Initially, this is attempted on the prob-

lematic yaw channels, whose time responses are sinusoidally unstable, as expected.

Since the sinusoids appear to lag or lead each other by a constant amount, Captain

Paschall suggested using the simple first order Pad6 approximation to compensate for

the relative time delay. This approximation uses a first order pole/zero combination

and is given as [2]:

2

e - (3.1)

This method results in fewer and sirl ler compensation terms, and does achieve

a partial improvement in the time response relationships. However, even after fine-

tuning the Pad6 compensation terms, the time response plots reveal that the control

surfaces are still not working together continuously, thus indicating that effective
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compensation involves more than simply accounting for the relative time delays.

Both this and the previous design method are discussed further, along with selected

results, in Section 3.3.

Professor Horowitz finally determined the probable reason for the two previous

techniques' failures to yield the desired results. While one would normally expect

a good correlation between the time and frequency domain phase characteristics,

it should be remembered that such a correlation is based upon the transformation

between the two domains. That transformation is given by the LaPlace integral:

F(s) j f(t) e dt (3.2)

s = a+jw (3.3)

For the definition to hold, the integral must exist (i.e. the solution is not co).

If f(t) contains a term e t (where a > 0), and a = 0, then the equation becomes:

F(jw) = e' t e - j w' dt (3.4)

The solution of this equation is infinite. In order for the integral to converge

to a finite solution, o, must be chosen to be greater than a. Therefore, the integral

exists only for all o values to the right of a as shown in Figure 3.2.

Consequently, for the time and frequency domains to correlate, as desired for

phase compensation purposes, Professor Horowitz recommended shifting the roots

of the open-loop plants (state space models), so that all the poles are in the LHP.

Then, pole/zero compensation is added to improve the frequency domain phase

characteristics. After shifting back the compensated systems by the same amount

they were initially shifted, the time response plots are obtained and show the desired

results. As is seen in Sections 3.5 and 3.6, some degree of fine-tuning is necessary to

match the relative time responses sufficiently (i.e. the shifted Bode phase plots are

not all perfectly matched).
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imaginary

0

real

s-plane

Figure 3.2. S-plane Region of Convergence for LaPlace Integral

With the phase characteristics properly matched by the frequency dependent

compensation terms, the desired relative control surface weightings are included.

The weights are determined from a combination of open-loop time response analysis

and knowledge of the actual aircraft aerodynamic performance characteristics.

The overall weighting matrix for this control system distributes three control

inputs among seven control surfaces. However, the development is performed inde-

pendently for the longitudinal and lateral-directional control systems, as previously

discussed. Therefore, the longitudinal weighting matrix relates one control input

[q(t)] to four control surfaces. Similarly, the lateral-directional weighting matrix

relates the remaining two control inputs [p(t)] and [r(t)] to the three remaining con-
trol surfaces. This is clearly shown throughout the remainder of this chapter in the

appropriate block diagrams and open-loop response plots.
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3.3 Unsuccessful Compensation Attempts

Before discussing the final weighting matrix compensation for each of the cases,

it would be useful to examine selected results of the two unsuccessful comrpensa-

tion methods. The purpose of this section is to show the failings of using conven-

tional methods (without shifting roots) to develop frequency dependent compensa-

tion terms for unstable plants. Section 3.2 briefly discussed the procedures used in

both of these methods. The 50 degree yaw rate case has been chosen to demon-

strate the ineffectiveness of these two methods. The uncompensated open-loop step

responses for this case are shown in Figure 3.3.

.06

ON F

S............... R

.02 ........ / -

a* 0

02

0 1 2 3 4 3 6 7 8

Figure 3.3. Uncompensated Open-Loop Yaw Rate Step Responses (a 50)

The original method involves compensating the Bode phase responses with

poles and zeros to align the plots as closely as possible. This is done without shifting

the RHP poles into the LtHP. As shown in Figures 3.4 and 3.5, the frequency domain

compensation is quite successful in aligning the phase plots, However, as pointed

out in Section 3.2, the existence of the RHP poles causes the transformation integral

that relates the frequency and time domains to be non-convergent. Thus, there is no

guarantee that proper phase matching in the frequency domain will yield the desired

results in the time domain.
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The final system resulting from the frequency domain compensation is shown

in Figure 3.6. Finally, the resulting time domain responses shown in Figure 3.7

prove that good phase matching in the frequency domain is no guarantee that the

time domain responses will be matched to any acceptable degree for unstable, non-

minimum phase systems.

Aircraft 50
Comp Actuator bla

COMP Comp ActuatorSTE

Comp Comp Actuator

2 nn ...eldf a = h

Figure 3.6. Initial Yaw Rate Compensation Block Diagram (a =50)

3
2 ...............-.. . . . . .

....... -- I C

. . ...............R .. ..........

,, . : ..
p ., .. :
0

-2

-3

.4 , , 1 . . . I . . . . . I . . . . . I , , I . .

0 1 2 3 4 S 6 7 a
TV-e (as)

Figure 3.7. Initial Compensated Open-Loop Yaw Rate Step Responses (a = 50)
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The second method of phase compensation discussed in Section 3.2 is based
on directly compensating the time response plots. Referring to Figure 3.3, the goal

is to align the rudder and differential canard responses with the differential flaperon

response. The rudder response is roughly 180 degrees out of phase with that of the

differential flaperon. This is compensated with a negative gain value. The differential

canard response is compensated by adding the Pad6 approximation as shown iMi the

System Build block diagram (Figure 3.8). The determination of the relative weights

shown in the figure is discussed in Section 3.6, and is independent of the method of

phase compensation used.

AFl cra ft 50
Gain Actuator

eldi 
fl 

beta

Gain Actuator STATE I

: dl udder 
SPACE -E

Gain Compensator Actuator

04del dif can h

9 : 4 
r

Figure 3.8. Pad6 Compensated Yaw Rate Block Diagram (a 50)

This compensation method results in fewer terms (none of which is higher than

first order), and is far simpler to implement than the previously discussed frequency

domain method. Furthermore, the results, at least in this case, come much closer

to achieving the desired goal. However, examination of the compensated responses
in Figure 3.9 reveals that the control surfaces are only working together part of the

time. Note how the curves do not cross the axis simultaneously. Thus, there are
times when one response takes on a positive value while another takes on a negative

value. This appears to result from the drift characteristics noted earlier, indicating

that there is more than just a relative time delay involved. The Pad6 approximation

only shifts the phase of the sinusoid, but cannot compensate for a general positive

or negative drift characteristic.
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Figure 3.9. Pad6 Compensated Open-Loop Yaw Rate Step Responses (a = 50)

It is useful to refer to the non-ideal composite response plots of Figures 3.7 and
3.9 when examining the successfully compensated responses for this case shown in

Section 3.6. Both of the unsuccessful methods were used to develop compensation

terms for the roll and yaw channels for each of the flight conditions. In general, the

results are unacceptable, as shown in this one case.

3.4 Pitch Channel Compensation

For each of the flight conditions, development of the pitch channel compen-

sation begins with analysis of the uncompensated open-loop time response plots.

Throughout this task, the input is chosen to be a one degree step applied to the con-

trol surface of interest. In this section, the control input of interest is the pitch rate
[q(t)]. Plots are obtained of the pitch rate response for each of the control surface in-

puts; those being symmetric canards, differential canards, symmetric flaperons, and

strakes. Open-loop response plots indicate that differential canard positions have

some effect (in most cases relatively small) on the aircraft's longitudinal dynamics.

However, when commanded differentially, the canards have a much greater effect on
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the lateral-directional modes, as would conventional ailerons. Since the most effec-

tive use of the canards as pitch control surfaces is obtained by commanding them

symmetrically, it is decided to give the differential canard inputs zero weighting ii

the longitudinal control system. Thus, the only inputs used for controlling pitch rate

are the symmetric canards and flaps, and strakes.

The uncompensated open-loop pitch rate responses for the 20 degree AOA

flight condition are shown in Figure 3.10. Careful examination of the figure reveals

that the differential canard and symmetric flaperon responses are on top of each

other. Both have a much smaller effect on the overall response than the other two sets

of control surfaces. Also evident is the fact that the symmetric flaperons and strales

require inverted inputs to make them work in phase with the symmetric canards.

This is expected based on analysis of the control surface sign conventions discussed in

Chapter II. It is also noted that the open-loop responses are exponentially unstable.

This too is expected based on the RHP eigenvalue located on the real axis (Appendix

B).

2.S

Sym Can

2
................ ON Can

1.S ........... Sym. F-.

1 .5

A

Iak

-S

• 1 2 3S

-1.5 "
p%

-.5 ,.'.. -.
' 

... ! . . I . . I . ; I ,

0 1 2 3 4 5 6 7 S

TWm (m)

Figure 3.10. Uncompensated Open-Loop Pitch Rate Step Response (a = 20)
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The relative magnitudes chosen are roughly in proportion to those seen in the

uncompensated responses, with the exception of the differential canard input which

is given zero weighting. Normalizing the magnitudes, the symmetric canards are
chosen to take on half of the task of pitch rate control, with the strakes picking

up another 40 percent. The symmetric flaperons take care of the remainipg ten

percent. The qualtative analysis of the longitudinal controls presented in Section

2.3 mentions the fact that the flaperons lie roughly on the aircraft's lateral axis,
and therefore have little effect on pitch control. Figure 3.11 is the Ma trixx System

Build diagram of the open-loop pitch rate control system for the 20 degree AOA

flight condition. The weighting matrix compensation terms are shown preceding the
actuator models and the aircraft dynamics state space model.

Aircraft 20

Gan Actuator

Actuator

del dif can STATE alpha

Actuator 
SPACE

Gan Actuator

.1trMS:4

Figure 3.11. Pitch Rate Compensation Block Diagram (c = 20)

Finally, Figure 3.12 shows the resulting compensated open-loop pitch rate re-

sponses for this flight condition. Clearly, the control surfaces are shown working

together, and the relative magnitudes are in the desired proportions.

A similar procedure is used to develop the pitch rate compensation for the other

three flight conditions. The 40 degree AOA uncompensated open-loop responses are

shown in Figure 3.13. Again, the required sign changes are evident.
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Figure 3.13. Ucompensated Open-Loop Pitch Rate Step Response (a = 0)
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The relative compensation gains are again normalized and based partially on

analysis of the uncompensated response plots. For this flight condition, the strakes

are noted to be slightly less effective than before, and their compensation gain is

adjusted accordingly, as shown in Figure 3.14. The compensated open-loop responses

for the 40 degree AOA flight condition are plotted in Figure 3.15. and show that the

control surfaces are working together in the correct proportions. Note that although

the compensation gain terms are normalized for each case. the magnitudes of the

responses do not necessarily add to one. For this task, only the relative magnitudes

are important.

;-':c:a;, 40

de 2-- e

Acuator

6e! -r-*

Figure 3.14. Pitch Rate Comp nsation Block Diagram (a = 40)

The 50 degree AOA response plots look virtually the same as those of the
previous flight condition. Again, a slight adjustment is made to the rehtive coin-

pensation gains. based on the analysis of the uncoinpensated response plots. Fignres

3.16 through 3.18 pertain to this flight condition.
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Figure 3.15. Compensated Open-Loop Pitch Rate Step Response (a = 40)
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Figure 3.16. Uncompensated Open-Loop Pitch Rate Step Response (a =50)
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Figure 3.17. Pitch Rate Compensation Block Diagram (a 50)
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Figure 3.18. Compensated Open-Loop Pitch Rate Step Response (a =50)
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The uncompensated response plots for the sixty degree flight condition are

shown in Figure 3.19. Analysis of these plots indicates that the responses arc highly

sinusoidal in nature with a very slowly decreasing magnitude. Again, based oil

the eigenvalues listed in Appendix B, this is not surprising. For this condition, all

four open-loop state space eigenvalues are just inside the LHP, and are expected to

result in a stable system. Note that since the eigenvalues are so close to the j.

axis, the exponential decay time constant is extremely large, resulting in a very bluw

decay to steady state. The differential canard effects are more noticeable for this

flight condition, but as previously discussed, this input is not commanded in the

longitudinal flight cont-ol system. The remaining three longitudinal control inputs

are used to control pitch rate, and are expected to have sufficient control authority

to counteract unwanted coupling effects from the lateral-directional channels.
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Figure 3.19. Uncompensated Open-Loop Pitch Rate Step Response (a = 60)

The relative gain compensation is determined as before, and the compensated

system block diagram is shown in Figure 3.20. The final step responses are shown
working together in Figure 3.21. The character of the open-loop responses is not

important; only the fact that all surfaces are either positive or negative valued at

the same time.
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Figure 3.20. Pitch Rate Compensation Block Diagram (a~ 60)
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3.5 Roll Channel Compensation

Although the roll and yaw channels are both in the lateral-directional control
mode, they are discussed separately for the purposes of developing the weighting

matrix. The compensation terms are developed independently for the two cliannclb,

since each term is based on the relationship between a single control variable and a

single commanded control surface input. After all the individual compensation terms

are developed, the roll and yaw channels are combined with overall gain adjustments
to form the lateral-directional weighting matrices. This is discussed in Section 3.7.

As with the pitch channel, the roll channel compensation begins with analysis
of the uncompensated open-loop time response plots. The control variable is the

roll rate [p(t)], and the three control surface inputs are differential flaperons, rudder.

and differential canards. Examination of Figure 3.22 reveals the complexity of the

lateral-directional compensation problems. Note that the exponentiaily unstable

sinusoidal response plots are clearly out of phase with each other. In addition, the

individual response magnitudes are not centered about zero. Thus, it would appear

quite difficult to force the three responses to work together continuously.
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Figure 3.22. Uncompensated Open-Loop Roll Rate Step Responses (a = 20)
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The development of the 20 degree AOA roll rate compensation is now detailed

in a step-by-step manner. The first step is to generate the combined state space

model and obtain the roots of that system. These roots are those of the state

space dynamics model with the actuator transfer functions included. The roots are

obtained from System Build, and are listed in Table 3.1. Note that the numerator is

different for each control input, but all three share a common denominator.

I[ roots(nl) roots(n2) I roots(n3) roots(d)

0.0442 0.0443 0.0288 0.0058
-1.0 -1.0 -0.079 -0.3239

-0.0693±jl.3782 -3.0 -1.0 -1.0
-3.0 -3.7614 -3.0 .1288±j2.7262
-20.0 4.1217 -20.0 -3.0
-20.0 -20.0 -20.0 -20.0

-20.0 42.9318 -20.0
-20.0

Table 3.1. Uncompensated Roll Rate System Roots (a = 20)

As discussed in Section 3.2, the phase compensation approach for such unstable

plants is to shift the roots by an amount sufficient to temporarily eliminate all RHP

poles. In this case, the roots are shifted to the left by subtracting 0.2 from the real

portion of each. Reference to Table 3.1 indicates that shifting the roots by 0.13 results

in a stable shifted system. The roots are shifted more than the minimum required

amount to provide a slightly greater stability margin, thus allowing for possible

roundoff or computational accuracy errors. The shifted roots, now representing a

stable system, are used to generate a composite Bode plot (Figure 3.23). Next.

pole/zero compensation terms are added as needed to match the three phase plots

as closely as possible with each other (Figure 3.24).

The general procedure for adding phase compensation is now described for this

particular case. Referring to Figure 3.23, the concern at this time is only with the

phase portion of the Bode plots. Beginning at the low frequency end, it is seeli

that the second and third responses lag the first by 180 degrees. This is easily

compensated with a negative gain value on the second and third inputs.
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Next, the third input needs to be bent down to coincide with the second. This

is accomplished by adding a pole (giving phase lag) at w = 0.3 and a zero (giving

phase lead) at w = 40. By introducing phase lag at one frequency and cancelling that

amount with phase lead at a higher frequency, the phase plot is bent down slightly

without changing the steady state value. The specific values of the compensator

poles and zeros are obtained in an iterative fashion as required to achieve the desired

results.

The first response is somewhat more difficult to compensate. It is noted that
this response requires 180 degrees of additional phase lag in steady sttte. This can

be accomplished by adding a second order pair of poles. By using a second order

compensator, the C and w,, values can be adjusted in such a way to virtually eliminate

the hump centered around w = 2. In this case, it is found that using (s 2 + 0..5s + 2)

for the compensator poles results in the desired response shape. Since the system

is shifted into the LHP, only LHP compensation elements are added. However,

when the system is shifted back to the original reference frame, in some cases the

compensator elements may become RHP elements.

The roots of the compensated shifted system are obtained and shifted back by

adding 0.2 to the real portion of each. The resulting compensated system roots are

listed in Table 3.2. Note that due to the compensation terms, the three transfer

functions no longer share a common denominator.

roots(nl) roots(n2) roots(n3) roots(dl) roots (d2) roots (d3)
0.0442 0.0443 0.0288 0.0058 0.0058 0.00-58

-1.0 -1.0 -0.079 -0.3239 -. 3239 -.323.9
-0.0693-ji.3782 -3.0 -1.0 -1.0 -1.0 -1.0

-3.0 -3.7614 -3.0 .1288±j2.7262 .1288±j2.7262 .1288-Ej2.7262
-20.0 4.1217 -20.0 -3.0 -3.0 -3.0
-20.0 -20.0 -20.0 -20.0 -20.0 -20.0

-20.0 42.9318 -20.0 -20.0 -20.0
-39.8 -20.0 -20.0 -20.0-0.05-j 1.3919 -0.0

Table 3.2. Compensated Roll Rate System Roots (a = 20)

3-22



The compensated system roots are convolved into polynomial transfer functions

and the step responses are obtained. After including necessary sign corrections, the

response plots are generated in a strip format without gain correction (Figure 3.25).

As a check, the phase compensation terms are included into the System Build diagram

and a similar set of step response plots is obtained. These responses look like those

in Figure 3.25, but are generated directly from the System Build simulation. rather

than the derived transfer functions.

.025

.4 ____ - . 1

.02 ................ . ................. . ................. .................. 4- ................. ................... ...........................

A . 4
.0 .. ....... .. .... .. . .... . . ....... ......... .:.... . ...

P .005 : ...... .....".................- .................. ................. .:-................. .................. ........................... ... ....

.

20 . ..................

....... .............. .. ........ ................. ................. ............. ....... ........... ...... ........... I
.R. .. .. . ..... 

. .... .; 
. ....

- 10

Th~o (SM)

Figure 3.25. Compensated Open-Loop Roll Rate Step Responses (a =20)

The final step is to develop the relative gain terms. The responses shown in

Figure 3.25 are first individually normalized, and then multiplied by thle desired

relative weighting factors. In this case, the differential fiaperons and differential

canards each handle 40 percent of the task, and the rudder takes on the remaining

20 percent. Note that the rudder has limited effect on roll rate control, as is typical of

most aircraft. The block diagram of the final compensated system is shown in Figure

3.26. The final composite step responses reveal that all three control surfaces are

working together continuously, and in the desired relative proportions (Figure :3.27).

The effectiveness of this compensation technique is demonstrated by comparing thle

compensated responses shown in Figure 3.27 with the uncompensated ones showni

in Figure 3.22.
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Finally, to aid others who may need to accomplish similar phase compensation,

Appendix G describes a sample Matrixx executable file that may be used to perform

some of the steps discussed in this section. What is listed is not computer code:

simply a brief, commented list of standard commands. A general working knowledge

of Matrixx and System Build is assumed.

Gan Compenator Actuator beta

Gain ActuatorSTE

SPACE

Gain Compt nsator Actuator

Figure 3.26. Roll Rate Compensation Block Diagram (a =20)
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R .25

.06

0

0 1 2 3 4 3 4 7
4~w (c)

Figure 3.27. Final Compensated Open-Loop Roll Rate Step Responses (a = 20)
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The other flight conditions are handled in a similar manner. However. it ik

useful to provide a brief discussion of each case, due to some of the differences

encountered. For instance, it is noted in Figure 3.28 that the uncompensated re-

sponses have a somewhat different appearance from those previously seen. Based On

the different aerodynamic characteristics of the higher AOA flight condition, thib is

not surprising. Here the responses are shown to rapidly increase exponentially, and

again, the sinusoids are out of phase with each other. However, the responses for

this flight condition are at least relatively symmetric about zero.

The roots are shifted as before, and the necessary pole/zero compensation

terms are added to align the Bode phase plots (Figures 3.29 & 3.30). The roots of

the compensated system are shifted back and the strip plots are obtained to verify

the phase characteristics. The relative gains are obtained as before, except that the

desired relative weights are altered slightly (Figure 3.31). For this flight condition

(as well as the 50 and 60 degree cases), the rudder is only used to control 10 percent

of the commanded roll rate, with the other two surfaces handling 45 percent each.

The final compensation is shown in Figure 3.32, and the desired responses appear in

Figure 3.33. Finally, the compensated roll rate system roots for this flight condition

are listed in Table 3.3.
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onl Fip
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Figure 3.28. U'ncompensated Open-Loop Roll Rate Step Responses (n .10)

3-2.5



W i -si I I 3

3 I U L . .... . . ...... ... i.... ..I..................

U 4 .. .. ...... 3.. . . ....

n 
.......

.... ...... 3 ...1 . . ..

aT z s t 3 

I M I I I ill I I I:
33.. 23 .. lfl: : : s

-100
.001 .01 .1 1 10 100

Omega

10

-100 :--M-HI-t irr1r -~r-3:r-. -

* ..:33 ... 1 . ...... I .... ..

300 0 1 1 1it 10 10

Figure 3.29. Uncompensated Shifted Roll Rate Frequency Response (a, 40)

- .......... L~&. ..L.. .L .... Laa ... V . .3

U -40

3 ~ ~ ~ ~ ~ ~ . .3...3. 3. ......j....JI .. ...

I a ........... I. 3...... . . ....... ... . 4 Ar.

:33 is . :3 3
Ut

.140 ...

Am0 As1 1 t0 100

.100 ...e.L.& U ... ..L 4.J.&.4 .. ..... . ...................3

-250~ ~~~~~~~ . .-~r''n -~ ........4&&.. 4 .................. .3*

-30 .... * I 4...:*433..*.** **~*4* 3 . 4 4 44 ........ l..

i ;;I It

.01 0A. 10 too

Figure 3.30. Compensated Shifted Roll Rate Frequency Response (a = .10)

3-26



A

F 1 . ......... ...... . ........

0 
.....

.2
A

.2 -P

300W ............. ... ............. . . . .

30

400 - -

0 1 2 2 4 S 6 7 a
T-Pbu.(e

Figure 3.31. Compensated Open-Loop Roll Rate Step Responses (a -40)

Figue 332. ollRat GomcnstionBlok Dag-rram (a= 40

Gain ompesato Ac3-2to



0.30 0.32 033

S

roots(nl) roots (d2) I roots n3)

*0.130 0.3259 0.036 11

-0.09831--.203-081 0.27098±j3.942-008 1 0.768.008

-20.0 -20.0 . -20.0

-20.0 -2.091.0

Tale 3ro ompensate oll Rate Syte Roots (3 ....0)
-- 28

FigureT3.33. Fina CompensatedpnL Roll Rate Step R sponse = -i010

f~ oos~n) oot~n3- 3~



The 50 degree uncompensated roll rate responses are similar in form to those

obtained for the 40 degree case. Again, the sinusoids are out of phase with each

other, but symmetric about zero (Figure 3.34). The uncompensated Bodk. plots are

shown in Figure 3.35. Initially, the compensation terms are added to match the

Bode phase plots precisely, as before. However, the phase response characteristic,

shown in the strip response plots are not as close -t, desired. Since the relative tiuw,

responses are used as the criteria for developing effective compensation, the respu1 cs

in Figure 3.37 have been optimized by fine-tuning the compensation parameters. This

is done at the expense of the frequency response phase characteristics (Figure 3.36)

by varying the C and w,, parameters while observing the strip responses so that the

plots are all positive and negative at the same time.

The same relative weightings are applied to this c . e as used for the 40 degree

flight condition. Figure 3.38 shows the compensated open-loop system, and the

compensated responses are shown in Figure 3.39. Table 3.4 lists the compensated

system roots for this case.
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Figure 3.34. Uncompensated Open-Loop Roll Rate Step Responses (a = 50)
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Figure 3.39. Final Compensated Open-Loop Roll Rate Step Responses (c = 50)

roots(nl) roots(n2) roots(n3)

0.1862 0.7720 0.1075
-0.1064±jO.9131 0.1956 -0.1628

-20.0 -0.7837 -20.0
-20.0 -20.0 -20.0

20.0 36.9255

I roots(dl) roots (d2) roots (d3)

-0.0190±jO.0977 -0.0190±jO.0977 -0.0190±jO.0977
-0.5 -0.3668 0.7143+j3.8832

0.7143±j3.8832 0.7143±j3.8832 -20.0
-20.0 -13.6332 -20.0
-20.0 -20.0 -20.0
-20.0 -20.0
-29.0 -20.0

Table 3.4. Compensated Roll Rate System Roots (a = 50)
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The uDcompensated 60 degree roll rate responses look quite different from akv

of those previously encountered (Figure 3.40). There is very little exponential growth

of the sinusoids. This is not surprising when one examines the eigenvalucs for this

case (Appendix B). The real portions of the RHP roots are very small in magnitude.

so the system is only slightly unstable, but highly oscillatory. The shifted Bode plots

(Figures 3.41 & 3.42) reveal that once again, the optimal design for the time response

characteristics results in a non-optimal set of phase plots in the frequency domain.

Close examination of the strip response plots in Figure 3.43 reveals that even
though the third plot appears quite different from the other two, the waves are all in

phase with each other and take on positive and negative values at the same times.

The same relative control surface weighting is used as before, and the compensated
system is shown in Figure 3.44. The composite response plots in Figure 3.45 show

that the control surfaces are working together, and the compensated system roots

are listed in Table 3.5.
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Figure 3.40. Uncompensated Open-Loop Roll Rate Step Responses (a = 60)
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Figure 3.45. Final Compensated Open-Loop Roll Rate Step Responses (a 60),

Iroots(nl) roots(n2) roots(n3) I
0.2287 0.6966 J 0.1221

-0.1290±jO.5960- 0.2657 -0.2000
-20.0 -0.7122 -0.21
-20.0 -20.0 -20.0

1 -20.0 -20.0

_____________34.9727

rotul roots_____ (d2)______ roots (d3) 0
0.0459 0.0459 0.04-59
-0.1554 -0.1554 -0.1.5.54

0.5500±j3.1524 0.3000±j3.122.5 -1.0
0.0477±j3. 1259 0.0.,77±j3. 1259 0.0477±j3. I2.59

-20.0 -20.0 -20.0
-20.0 -20.0 -20.0
-20.0 -20.0 -20.0

Table 3.5. Compensated Roll Rate System Roots (cr = 60)
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3.6 Yaw Channel Compensation

The same techniques used for the roll channels are used to develop compcn-

sation terms for the yaw channels. Beginning with the 20 degree flight condition.

Figure 3.46 reveals another interesting form of responses. In this case, the sinu-

soidal nature is barely distinguishable, but it is clear that the control surfaces are

not working together. The shifted Bode plots are shown in Figures 3.47 and 3..48.

Note that the kink in one of the Bode phase responses cannot be removed without

adversely affecting the phase at nearby frequencies. However, its effective variation

is minimized and made symmetric about the nominal value.

The strip response plots in Figure 3.49 show that the controls are always work-

ing together. Also, the relative phases of the sinusoids are aligned, although that

may not be absolutely necessary for these forms of responses, whose values are alvays

positive. Since the rudder is the primary yaw control surface up through moderately

high AOAs, it is chosen to handle 60 percent of the task for this flight condition. The

other surfaces equally divide the remaining 40 percent. The compensated system is

shown in Figure 3.50. Figure 3.51 shows the composite responses with the proper

relative weights, and the compensated system roots are listed in Table 3.6.
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Figure 3.46. Uncompensated Open-Loop Yaw Rate Step Responses (a = 2(0)
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II roots(nl) roots(n2) { roots(n3)

0.4338±j3.5782 0.1068±j2.4659 r-0.47 00
-20.0 t -20.0 -9..5000
-20.0 -20.0 13.1003

1 -20.0
_________J____________ -20.0

~[ roots(dl) roots (d2) T roots (d3) ]
0.00581 0.0058 0.2000
-0.3239 -0.3239 1 0.0058

0.128±j2.7262 ' .0000±j2.3979 1 -0.3239
0.3200±j3.6011 0. 1288±j2.7262 0.1288±j2.7262

-20.0 -20.0 1 -20.0
-20.0 -20.0 -2.
-20.0 -20.0 -20.

Table 3.6. Compensated Yaw Rate System Roots (a = 20)
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Figure 3.52 reveals an unusual set of response characteristics for the -10 degree

yaw case. The rudder response appears to behave roughly as it did in the last

case, and the differential canard response looks similar to those observed ini the

40 and .50 degree roll channel cases. However, the differential flaperon "response.

although generally an exponentially increasing sinusoid, appears to have a slight

drift, somewhat like that seen in the 20 degree yaw case.

After compensating the shifted Bode responses (Figures 3.53 & 3.54), the strip

response plots are obtained and optimized, as before. The unusually high gains seenl

in Figure 3.55 are normalized with the small gains shown in the system diagram

(Figure 3.56). The relative weights chosen for yaw rate control in the 40, .50. and G0

degree conditions all have the same values. The rudder loses most of its effectiveness

at such high AOAs due to aerodynamic effects. Therefore, the rudder is chosenl to

handle only 20 percent of the task, and ,he other two control surfaces take on the

remaining 80 percent in equal proportions. Finally, the composite response plots are

shown in Figure 3.57 and the system roots are listed in Table 3.7.

.12

I. ONe F~p

.1

.o

0 4

s -o-..-
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11b* (a"0

Figure 3.52. Uncompensated Open-Loop Yaw Rate Step Responses (o = .0
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Figure 3.57. Final Compensated Open-Loop Yaw Rate Step Responses (a =40)

If roots(nl) [ roots(n2) [ roots(n3)
If -0.0766 -0.0760 2.5933

0.______________ 0.7170±j3.0272 0.0767
If -20.0 -20.0 -18.2664

-20.0 -20.0 -20.0
____ ____ ___ _ __ ___ ____ ___-20.0

If roots(dl) roots (d2) roots (d3)
-0.0808±j0.1561 -0.0808±jO.1561 -0.0808±jO.1561
0.7098±j3.0081 0.7098±j3.0081 0.7098±j3.0081
2.2000±j3.9192 2. 1000±j3.8974 2. 1000±j3.8974_

-20.0 -20.0 -20.0
-20.0 -20.0 -20.0
-20.0 -20.0 F -20.0

Table 3.7. Compensated Yaw Rate System Roots (a =40)
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Figure 3.58 shows that the uncompensated yaw rate responses for the 50 de-

gree flight condition resemble those encountered in several previous cases. At first

glance, these responses appear almost identical to those of the 50 degree roll rate
case. However, unlike those responses, these are not symmetric about zero. This

characteristic presevts a significant problem when attempting to use the unsuccessful

compensation techniques discussed in Sections 3.2 and 3.3. Section 3.3 uses this case

to demonstrate the failings of those earlier methods in achieving the desired time

response characteristics.

The shifted Bode plots in Figures 3.59 and 3.60 are used to obtain the required
compensation needed to generate the strip response plots shown in Figure 3.61.

Using the previously defined relative weights, the gains are computed and shown in
the system diagram (Figure 3.62). It is interesting to note that the negative signs

are not required on the last two inputs as before. The net compensation is effective

as shown in Figure 3.63. The compensated system roots for this case are listed in

Table 3.3.
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Figure 3.58. Uncompensated Open-Loop Yaw Rate Step Responses (c = .50)
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.3 
...... On Can

R
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0
0ke(60

Fiue36.FnlCmestdOe-Lo a aeSe epne a 5'

-2 .

11 roots(nl) [ roots (n2) Irot(3)

-0.0184FjO07 -0.01±O73 -0.0 148j007If0.4500±j2.1141 0.7142±332 05.7143±j3.8832
0.7143j3.883 -7.0 -2.0±j.000

-20.0 -20.0 -20.0
-2.0.0 -20.0 -20.0_____

010j. 097 -2010.097 -2010.097

Table 3.8. Compensated Yaw Rate System Roots (a = 50)
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The final case is the 60 degree yaw rate compensation. Perhaps surprisingly, the

uncompensated responses shown in Figure 3.64 do not appear all that bad. Though

the relative phases of the sinusoids require some alignment, all three responses ha e

p,.sitive values for all time. However, the usual method of phase compensation in

-- the shifted frequency domain is used once again to yield the desired strip response

plots (Figures 3.65 through 3.66). The small gains noted in the strip response plots

(Figure 3.67) are normalized with fairly large gain terms as shown in the system

diagram (Figure 3.68). The final compjensated responses are shown in Figure 3.69.

and the compensated system roots are listed in Table 3.9.

One other point worth noting is the fact that some of the compensation terms

developed in the last two sections have poles or zeros in the RHP. Typically, one

would not desire to add RHP terms, since they introduce additional instability and

non-minimum phase characteristics. Horowitz points out that such characteristics

limit the benefits of feedback and make it extremely difficult to achieve reasonable

gain and phase margins [14]. These limitations are discussed further in Chapter

IV. The RHP compensation terms introduced here result from the inverse shifting

procedure. Since these uncompensated state space models already contained a large

number of RHP terms, the addition of a few more makes little difference.

D0t Flo

....... onI can

.005

....... ...

O

0

oo4

Figure 3.64. Uncompensated Open-Loo~p Yaw Rate Step Responses (a 60)
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3.7 Combined Roll and Yaw Channel Compensation

The weighting matrix compensation terms are developed individually and the

individual transfer functions representing the effective plants are obtained from Sys-
tern Build. However, due to the inherent cross-coupling between the roll and yaw

channels, the individual lateral-directional effective plants for each case must be corn-
bined into a 2X2 MIMO effective plant. The relationship of the longitudinal (SISO)
and lateral-directional (MIMO) effective plants to the overall effective plant is shown

in Equations 3.5 and 3.6. The zero valued cross terms result from the assumption of
no cross-coupling between the two modes, as discussed in Chapter I.

P.f (1, 1) 0 0
......... ... ... ..... .........

P4 u =  (3-5)
0 Pj If(2,2) P, f(21, 3)

0 Pfif(3,2) Pqf(3,3)

Pij(lon) 0
P = ......... .. ........ (3.6)

0 : Pjj(lat)

The SISO longitudinal compensation is complete and requires no further dis-
cussion. However, the MIMO lateral-directional portion does require additional work
to complete the weighting matrix development. Since the lateral-directional niode
is treated as a completely separate 2X2 MIMO system, the individual elements are

numbered as shown in Equation 3.7.

P,f I(lat) = P, (1, 1) Pff (1, 2) ]i|7

P 4 1/(2. 1) P4 1 (2,2)
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Poll(1,1) is the effective plant representing the relationship between a com-

manded roll rate input and roll rate output. P: 1(2,2) represents a similar relation-

ship between a commanded yaw rate input and yaw rate output. The cross terms

arise from the inherent coupling in the lateral-directional control modes. P-.1(1.2)

represents the relationship between a commanded yaw rate input and the resulting

roll rate output. Likewise, Pc/l(2,1) represents the relationship between a cotn-

manded roll rate input and the resulting yaw rate output. The standard notation

is used for each effective plant, where the first number refers to the output and tEi,:

second number refers to the input. For this particular usage, the numbers one and

two refer to the roll rate and yaw rate, respectively.

The final gain adjustment for the lateral-directional compensation involves ad-

justing the gains for each of the effective plants across all four flight conditions. This

is done to minimize computational errors resulting from extreme variations in mag-

nitude. In the first case, Pff(l,l) is generated from Syistem Build and a composite

plot of the Bode magnitudes is obtained, representing the four flight conditions.

Next, a similar composite magnitude plot is obtained for the four P4 1,(2.1)

systems. Finally, overall system gains are included for the 40, 50, and 60 de-rev

conditions so that the four Bode magnitude plots for each effective plant are brought

within one or two orders of magnitude. across the frequency range of interest. The

same gain factors are used for Pe11(1,1) and P 11(2,1) at a given flight condition.

The reason for this is the fact that these two plants share a common input channel.

and thus common weighting matrix compensation terms. Figures 3.70 and 3.71 show
the magnitude plots before and after final gain adjustment.

A similar procedure is used to generate the final gain adjustments for the

P4 1l(1,2) and Pef1 (2,2) systems for all four flight conditions. The magnitude plots
before and after final gain adjustment are shown in Figure 3.72 and 3.73. Again. for

any one flight condition, the gain factors are the same for P 11 (,1.2) and Pqd22).

However, there is no need to match the gains used in these cases with those used for

P jj(1,1) and P 1 (21), since the input channels are different.

Finally, Appendix II shows the System Build block diagrams of each of the

effective plants for all four flight conditions after final gain adjustment. The overall

relative gains are shown on the diagrams. Note that each of these block diagrams

represents an individual element of Equation 3.7 for a given flight condition.
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3.8 Final Weighting Matrices

The final weighting matrices are listed in this section. For each system, the

effective plant (see Figure 3.1) is obtained algebraically by post-multiplying the state

space dynamics model by the actuator and weighting matrices, respectively. How-

ever, with Matrixx System Build, the effective plants are already defined for each

flight condition (Section 3.4 for the longitudinal control modes and Sections 13.5

through 3.7 for the lateral-directional control modes). Even though the computer

performs the combining operation, it is useful to organize the compensation terms

into the actual weighting matrices to understand the input/output relationships. in

each case, the rows correspond to the state variables and the columns correspond to

the control inputs (see Sections 2.5 & 2.6).

The individual longitudinal weighting matrices are shown below. Note that the

non-zero entries appear only in row three (corresponding to the pitch rate). Also,

note that the differential canard input (column two) entries are zero. These matrix

elements are obtained from Figures 3.11, 3.14, 3.17, and 3.20.

0 0 0 0

0 0 0 0
AIon2O - (3.8)

0.5 0 -0.1 -0.4

0 0 0 0

0 0 0 0

0 0 0 0
Alon4- (3.9)

0.5 0 -0.15 -0.35

0 0 0 0
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0 00 0

0 00 0
AlonSO 0.6 0 -0.1 -0.3 (.0

0 00 0

0 00 01

- 0.5 0 -0.2 -0.](311

The frequency dependent lateral-directional weighting matrices are now shown.

In this case, the second row entries correspond to the roll rate and the third row

entries correspond to the yaw rate. The system diagrams provided in Appendix H

are used to obtain these weighting matrix elements.

0 0 0
7.3-2.7 0.25(8+39.8)

s2+0.15+1.94 S+0.1
28.5 -55 -3(s+9.5) (.2

s-0.64s+13.07 's + 5-7 5 s-0.2

o o 0

o 0 0
2160 -2700 12.6(s+39)

Alat4 0  82+0.2s+1.6 52-0.5s+8.5 S (3.13)
800 -730 -4400

52-4.4s+20.2 s2-4.2s+19.6 S2-4.2s+19.6

0 00

3-58



0 0 0

5630 -1100 50sAt5 82 +29.5s+14.5 S2+14s+5 (3.14)
- 15.5 5.7(s+7) 40
s2-.s+9.9 s+19 s2+25+17

0 0 0

0 00

2.25 -3.85 40
-a0 __ 2-1.ls+10.24 S2-0.6s+9.84 s+1 (315)

2700 9000 15000
s2-0.2s+5.17 s2+1.4s+21.49 s2+5.4s+8.29

0 0 0

Finally, as an example of how these matrices combine to form a single weighting

matrix for each flight condition, Equations 3.8 and 3.12 (representing the 20 degree
AOA condition) are combined in Equation 3.16. The resulting matrix has eight rows
(corresponding to the eight state variables) and seven columns (corresponding to
the seven control surface inputs). In this matrix, the third row corresponds to the
pitch rate and the sixth and seventh rows correspond to the roll rate and yaw rate,
respectively. If any other state variables had been chosen as control variables, their

corresponding rows in this matrix would have non-zero elements.

3.9 Summary

This chapter presents an in-depth look at the weighting matrix development.
It is clear that this is not a trivial task for an unstable, non-minimum phase problem
such as this. The chapter begins with a definition of the weighting matrix and
a discussion of how it is used to augment the state space and actuator matrices
to form the effective plant. This is followed with a discussion of why a frequency
dependent weighting matrix is required for the lateral-directional control modes.
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0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.5 0 -0.1 -0.4 0 0 0

0 0 0 0 0 9 0
A 20 = (3.16)

0 0 0 0 0 0 0
0 0 0 0 7.3 -2.7 0.25(s+39.8)

32@0.18+1.94 $8+0.1

0 0 0 0 28.5 -55 -3(s+9.5)
32 -0,64s$+13.07 S2 +5.75 3-0.2

0 0 0 0 0 0 0

The accepted design approach for frequency dependent weighting matrices is

discussed briefly. Following this is a description of two design methods which both

fail to achieve the desired results. A shifting method for handling the unstable roots

is presented and the likely reason for the earlier methods' failings is discussed. A Erief

look at selected results of the unsuccessful compensation methods is also presented
to demonstrate the problem of correlating the time and frequency domains fol such

functions.

Using the shifting technique, the individual weighting matrix compensation
terms are developed in a step-by-step process for each of the prima'y channel, and

flight conditions. Open-loop step responses before and after compensation are in-

cluded and provide dramatic evidence of the need and effectiveness of the frequency

dependent compensation terms. The roll raLe and yaw rate compensation terms

are then combined with System Build to form the lateral-directional (MIMO) effec-

tive plants, and a-final gainadjustment is performed. Finally, the actual weighting

matrices are shown individually for each flight condition and a combined system
weighting matrix is shown for one flight condition. The next two chapters use the

effective plants developed here as a basis for the control sysLem de.igns.
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IV. Longitudinal Control System Design

4.1 Introduction

This chapter discusses the individual control system designs for each of the

longitudinal cases. The X-29A uses a summation of pitch rate, normal acceleration,

and canard position as the longitudinal control variable for the normal digital Ilight

control system. The analog reversion system, however, uses only the pitch rate, as

does this design.

The primary design goal in each case is to achieve clo.-ed-loop stability. A

high degree of static instability causes control law designers to stress stability and

robustness over handling-qualities. Indeed, it has been stated that the primary task

of the X-29A longitudinal control system is to stabilize the aircraft [4]. The stability

of the system is assessed by the use of gain and phase ma -gins, as discussed later in

this chapter. Some basic QFT terms are now explained wih the use of two simplified

diagrams.

Fs G-) Plant

Figure 4.1. Basic QFT Standard Control System Notation

Figure 4.1 shows the simplified block diagram of a basic QFT SISO system,

such as the ones discussed in this chapter. The closed-loop control ratio is given

by Y(s)/R(s), where Y(s) is the LaPlace fransform of the output and R(s) is the

LaPlace transform of the input. For each case, the compensator G(s) is developed
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in this chapter. The prefilter F(s) , is desigined to achieve the desired closed-loop

performance characteristics, once the system is stabilized.

R(s) Pr~cliter + Loop Tr .nsmission

F(s) "'

Figure 4.2. 3asic QFT Alternate Control System Notation

Figure 4.2 shows the alternate notation for the same basic QFT SISO system.

Note that the loop transmission function L(s) is equal to the product of the com-

pensator and the effective plant. The QFT method is based on achieving a desired

loop transmission fu.irtion and dividing the result by the effective plant to Cbtain
the compensator transfer function. ",. design is accomplished usiag Nichols charts

and Bode plots. For this reason, the transfer functions are expressed in terms of the

complex frequency as shown below.

G(jw) L(jw)
Peff (jw)

Finally, a single compensator/prefilter design capable of controlling the system
for all four flight conditions is deemed impractical [15]. This is due primarily to the

wide variations of RHP poles and zeros in the effective plants. However, for the 20

and 40 degree cases, alternate designs are presented and the relative merits (-I ::a h
are discussed. The design of the loop transmission functions begins with an analysis

of the effective plants, as discussed in the next section.
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4.2 Analysis of Effective Plants

The longitudinal effective plants are represented by the block diagrar;s in Fig-
ires 3.11, 3.14, 3.17. and 3.20. The aircraft dynamics models are represente I by the

:,ate space block in each diagram. In each case, the transfer function representing

the effective plant is the ratio between the pitch rate output of the state space b)oc0.

and the simultaneous control input to the three control channels of interest. Ncie

that the systerr *s still termed SISO, since a single control input is applied, and then

distributed amcng: the three control sr.aces of interest. Recall that the i- fferert;ai

canard channel is not commanded for the longitudinal control systems. or clarity,

the effective plant transfer functions are l;ted in this section, in both polyaomial and

factored forms. The polynomial forms are shown below. In each case, the numerator

is sixth crder and the denominator is eighth order.

Peff (1on2O) =

.856 + 56.5s + 1320.4s4 + 10223s 3 + 2225.2s2 - 14s
s8 + 11O.4s 7 + 4239.2s6 + 69446s s + 4217 20s 4 + 97374s 3 - 281760s - 105 - 33s - 4728.2

Peff (on4O) =

.7S6 + 5 3 .8ss + 1271.Is 4 + 9936s3 + 2497.6s 2 
- 135.2s

ss + 11O.6s 7 + 4260.4s6 + 70289s s + 436460s 4 + 203860s3 - 99113s2 - 10.1 - 84s - 2102.6

Pet1 (lonSOG =

.96 + 64.7s s + 1561.8S4 + 12398 3 + 2874.8S2 - 336.3s

s + 110.7S7 + 4271.106 + 7 0715s + 444000$4 + 259570s 3 + 7434.15- 2 + 40 - 24.4s - 504.9

Pefl (or.60) =

$6 + 71.9ss + 1735.2s 4 + 13720s3 + 2526.4A 2 - 609.8

s8 + 1lO.4s 7 + 4241.26 + 69649s s + 429260s 4 + 218840s + 4.13260 2 + 13 - 4710s + 7115.7
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The roots of each effective plant, shown in Tables 4.1 through 4.4, are used

as the basis for designing the loop transmission functions. In each case, note that

the last four denominator roots result from the actuator transfer functions. All tile

other roots result from the open-loop aircraft dynamics models. Each of the first

three flight conditions has an unstable RHP pole. This is also pointed out in Section

2.5.

roots(num20) 1 roots(den20)

0.0000 -0.0203±j0.1267
0.0061 0.7080
-0.2304 " '0
-20.0000 -20.0000
-20.0000 -20.0000
-31.5489 -20.0000

-50.0000

Table 4.1. Roots of Longitudinal Effective Plant (a = 20)

roots(num40) roots(den40)j

0.0000 -0.0534±jO.1193
0.0458 0.3756
-0.3076 -0.8200

-20.0000 -20.0000
-20.0000 -20.0000
-32.4259 -20.0000

-50.0000

I'sble 4.2. Roo;ts of Longitudinal Effective Plant (a = .10)

.1-i4



roots(num50) roots(den50)

0.0000 0.0785
0.0853 -.0377±jO.1528
-0.3280 -0.6490

-20.0000 -20.0000
-20.0000 -20.0000
-34.9758 -20.0000

-50.0000

Table 4.3. Roots of Longitudinal Effective Plant (a = .50)

II roots(num60) roots(den60)
0.0000 -0.0677
0.1373 -0.2586
-0.3318 -0.0193±jl.0103
-20.0000 -20.0000
-20.0000 -20.0000
-35.0064 -20.0000

-50.0000

Table 4.4. Roots of Longitudinal Effective Plant (a = 60)

All four transfer functions have one zero at the origin and one RHP zero. The

RHP zeros add undesirable non-minimum phase characteristics in the form of excess

phase lag. Also, when an RHP pole and zero are near each other, this limits the

achievable gain margin. In the 50 degree case, it is noted that an RHP pole and

... _zero are virtually on top of each other. The achievable gain margin for this plant is

severely limited, as shown in the next section.
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4.3 Design of Loop Transmission Functions

Section 4.1 mentioned that the compensator is designed by obtaining the de-

sired loop transmission function and dividing the result by the effective plant. Ob-

viously, one desirable goal is to achieve the desired stability with as simple a corn-

pensator as possible. To minimize the number of compensator terms, L is designed

to contain some of the terms found in Peff.

Starting with the 20 degree case, the loop transmission function is chosen to

contain a zero at 0.0061 and a pole at 0.7080. Note that the effective plant has these

same roots (Table 4.1). For the determination of the compensator transfer function.

these terms effectively cancel out (Equation 4.1), thus reducing the number of terms

in G. It should be pointed out that one may not cancel out poles or zeros in the

RHP. This is because an exact cancellation can never be as-ured. Without an exact

cancellation, a closed-loop pole would remain in the RHP and the system would

be unstable. Such a cancellation has not occurred here. The effective cancellation

discussed above results from using two of the Pfjj terms to form part of the loop

transmission function.

The next step is to determine the order of the loop transmission function.

Since the effective plant has an excess of two poles over zeros, the loop transmission

function must have at least this excess. To ensure the desired high-frequency char-

acteristics [L(oo)=0], it is decided that the loop transmission function should have

an excess of three poles over zeros. Therefore, in addition to the pole at 0.7080, the

denominator of L must contain a second order pair of poles and a single real pole.

The second order pair may be real or complex, and the values of (T and wn may be

arbitrarily chosen. For simplicity, C is chosen to be unity. Using an iterative routine,

the values of w,,, the additional real pole, and the overall gain are adjusted while

observing changes on the Nichols plot of the loop transmission function (Figure -1.3).
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Figure 4.3. Nichols Plot - Pitch Rate Loop Transmission 1 (o = 20)

The design philosophy is to maximize the amount of loop transmission gain In

the mid-frequency range, while maintaining reasonable gain and phase margins. It is

known that in order to maximize the benefits of feedback, the loop transmission train

must be made as great as possible [141. Maximizing the benefits of feedback reduces

the sensitivity to disturbances (151. There is a tradeoff, however. The amount of

allowable loop transmission gain is limited by the gain and phase margins. Referring

to Figure 4.3, if one increases the loop transmission gain (thus raising the entire plot),

the function wHil eventually cross the zero-dB/-180 degree point. If this occurs. the

system becomes unstable [8'.
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Figure 4.4 is the Bode plot of the same function. The Nichols plot is thle

primary design tool, but the Bode plot clearly shows the magnit udc and phase

characteristics as a function of frequency. The units of gain and phase for both

types of plot are dBs and degrees, respectiiely. They have been omitted from thle

plot labeling for neat appearance. The low-frequency portion of L (w = 0.0001) has

a magnitude of approximately -13 dB and a phase of -180 degrees, which is easily

read off the Bode plots. This is also seen or. the Nichols plot and the function moves

in a clockwise direction around the zero-dB/-180 degree point until finally falling off

to the desired steady state value of zero gain and -270 degrees of phase lag.,
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accuracy. In this case, the gain margin is +6.07 dB, and the phase margin is ;Al9.3'

degrees. These are considered reasonable values for stability mar-ins. based on past

experience in designing flight control systems [151.



A point worthy of mention is the effect of the non-minimum phase zero on

the feedback performance. In a minimum phase system (no RHP zeros), the loop

transmission gain is typically rather flat until w reaches the desired roll-off frequency.

In this system, however, the non-minimum phase zero has resulted in a lowering of

the loop transmission gain in the low-frequency range (see Figure 4.4). The resulting

lack of feedback benefits in this range is acceptable becduse it permits reasonably

good feedback benefits in the more desirable mid frequency range [14].
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The closed-loop transmission function is given by Equation 4.3, and the result-

ing Bode plot is shown in Figure 4.5. This plot is to be modified by the prefilter

transfer function to optimize the time response, as discussed in the next section of

this chapter.

LTL --- +L (4.3)

Finally, the compensator transfer function is determined by use of Equation

4.1. In this case, Equation 4.2 is divided by the factored form of Pei (fon2O), which

is given by the roots in Table 4.1 multiplied by the polynomial gain of 0.8. The

resulting compensator transfer function is shown below.

130,570(s 2 + 0.0406s + 0.0162)(s + 1.0302)(s + 20)(s + 50)
G20,(1) = s(s 2 + 60s + 3600)(s + 1)(s +.2304)(s + 31.5489)

An alternative design is now shown that results in a simpler compensator

transfer function. The loop transmission function is designed as before, except that

the second order pair of poles is now chosen to be the convolution of (s+20) and

(s+50). This results in an additional effective cancellation in the expression for

G. Also, an additional gain factor of 0.5 is used to achieve a desir-.ble stability

margin. Matrixx gives the gain and phase margins as +12.59 dB and +37.3.5

degrees, respectively. The larger gain margin is required to ensure a reasonably high

phase margin. The alternate loop transmission func'.. n is given by Equation 4.5

and the simpler compensator transfer function is given by Equation 4.6.

(0.25)(0.5)(0.7080)(1000)(s - 0.0061)
L~o() =(0.0061)(s - 0.7080)(s + 1)(S2 + 70s + 1000)
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18,135(s2 + 0.0406s ± 0.0162)(s + 1.0302)
G,0q(2) = s(s + 1)(s + .2304)(s + 31.5489)

Figure 4.6 is the Nichols plot of the alternate loop transmission function and

the corresponding Bode plot is shown in Figure 4.7. Finally, the closed-loop trans-

mission function based on the alternative design is shown in Figure 4.8. Comparison

of Figures 4.4 and 4.7 shows that the alternate design has slightly less loop trans-

mission gain, which results in decreased feedback benefits. Also, the phase margin is

somewhat lower in the second design. However, the trade-offs are probably accept-

able, given the benefits of the reduced order compensator transfer function.

20

-20 /7

I40 i

40 -

.100L-20 -210 -240 -2 -200 -160 *'10 .140 -120

Phom

Figure 4.6. Nichols Plot - Pitch Rate Loop Transmission 2 (a = 20)
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The 40 degree loop transmission functions are designed just like the ones for

the 20 degree case. In general, the same qualitative analysis applies to these cases,

as well. The loop transmission gain is maximized in the mid-frequency range and the

stability margins are again reasonable, based on past experience in designing aircraft

flight control systems [15]. For the first design, the gain margin is +6.66 dB and the

phase margin is +44.59 degrees. Figure 4.9 is the Nichols plot of the function and

Figures 4.10 and. 4.11 are the respective open and closed-loop Bode plots. Note that

frequency responses are very similar to those shown in the 20 degree case.

20
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140
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Figure 4.9. Nichols Plot - Pitch Rate Loop Transmission 1 (ce = 40)
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The initial design loop transmission function for this flight condition is given

by Equation 4.7, and after applying Equation 4.1, the resulting compensator transfer

function is given by Equation 4.8.

(0.5)(0.3756)(100)(.s - 0.0458) (4.7)
L4oq(I) = (0.0458)(s - 0.3756)(s + 1)(S 2 + JOS + 100)

585(s2 + 0.1068s + 0.0171)(s + 0.8200)(s + 20)(s + 50) (4.8)
S(S2 + 10s+ 100)(s + 1)(s + .3076)(s + 32.4259)

Analogous to the twenty degree case, an alternate design is shown that takes

advantage of an additional effective cancellation to simplify the compensator. As

before, the second order pair of poles is designed to cancel out the (s+20) and

(s+50) terms. In this case, the additional real pole is located at -3, and the overall

gain is not adjusted. The resulting gain margin is +12.91 dB and the phase margin

is +33.05 degrees. As noted with the second design for the 20 degree case, excess

gain margin is required to ensure a reasonable phase margin.

Figure 4.12 is the Nichols plot of this loop transmission function, and tile

corresponding open and closed-loop Bode plots are shown in Figures 4.13 and 4...

Finally, the loop transmission function is given in Equation 4.9, and the resulting

simpler compensator transfer function is given in Equation 4.10.
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As mentioned previously, the 50 degree longitudinal case poses a significant

problem. Referring to Table 4.3, it is noted that the ratio of the RH1P zero to pole

is only 1.0866. This extremely close proximity severely limits the achievable gain

margin. In fact, given the limitations of applying LTI design techniques to this

particular problem, it is shown that the system stability margins cannot be made

great enough to be practical. Nevertheless, the system can be made stable (thotugh

just barely) by use of the optimal blending method. Optimal blending is one of

Professor Horowitz' variations of the basic QFT methods. This method is discussed,

but not applied, in Walke's thesis [27].

The complete derivation of the optimal blending method is presented in a paper

entitled Design of Feedback Systems with Non-Minimum Phase Unstable Plants [12].

The discussion presented here is only a brief look at the application of the method

to this particular problem.

As before, the loop transmission function is designed to contain a pole at.

0.0785 ", a zero at 0.0853, to effectively c-4ncel with the corresponding terms in

the P, !. The optimal blending method derives its name from the fact that the

design is optimal with respect toward achieving an acceptable gain margin. The

optimality is measured by maximizing the ratio of allowable gains that result in a

stable closed-loop system.

The optimal condition results from a forced symmetry in the s-plane. By bal-

ancing the RHP pole and zero with their equivalent LHP counterparts, a symmetry

about the jw axis is obtained. With increasing negative gain values, the poles mi-

grate to the jw axis and travel out to infinity, eventually coming back in on tle real

axis to terminate on the zeros. The root locus depicting this situation is sketched

in Figure 4.15. Note that only the RHP poles and zeros of L are balanced by this

method. There is no need to balance the LHP poles and zeros since they do not

cause the closed-loop system to be unstable.
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imaginary

-.0853 -.0785 .0785 .0853-. X ... : X---
origin real

s-plane

Figure 4.15. Root Locus Sketch of Optimra! Blcndzig (Marginal Stability)

From this it is clear that for some range of gain values, the closed loop poles

are on the jw axis, thus making the system marginally stable. Taking this one step

further, if the symmetric axis is offset into the LHP by some a value, there is a range

-of gain values for which the system is completely stable. For this case, a is chosen to

be -1, and the resulting shifted root-locus is sketched in Figure 4.16. The upper limit

of a is limited by the fact that as the offset value is increased, the ratio of allowable

gains for a stable closed-loop system decreases. The lower limit may be any value

that places the line of symmetry comfortably within the LHP, and the exact value is

somewhat arbitrary (15].

Thus, the optimal blending method has provided an LHP pole/zero pair to

ensure the stability of the closed-loop system. Finally, the minimum excess of two

poles over zeros is provided by the addition of a second order pair of poles. By
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placing the extra poles far off in the LHP (i.e. large w), the symmetry is not disturbed

significantly. With a value of w equal to 400, the 50 degree loop transmission function

is defined by Equation 4.11.

imaginary

-2.0853 -2.0785 .0785 .0853
...-X __ _xX.- 0- -

-1 origin real

s-plane

Figure 4.16. Root Locus Sketch of Shifted Optimal Blending (Stable)

-(1.0785) 2 (160,000)(s - 0.0853)(s + 2.0853)
Lsoq = (1.0853)2(S - 0.0875)(s + 2.0785)(s 2 + 400s + 160,000) (1.1)

The Nichols plot of this function is shown in Figure 4.17. Readily apparent is

the way the loop transmission function hooks around the zero dB/-180 degree point.

Figure 4.18 is a detail view of this region. The actual gain and phase margins are

+0.09 dB and +1.45 degrees, respectively. Clearly, such stability margins are not

acceptable for a realizable system. How-ver, it has been shown that the optimal

4-20



blending method can result in a stable closed-loop system, even when based on a

virtually unworkable open-loop problem.

Horowitz points out that in actual practice, the problem could be re-defined

by using different combinations of control variables, that could result in a minimum

phase open-loop plant. An unstable minimum phase system does not limit the

designer by having RHP poles and zeros in close proximity to each other. Thus, it

becomes far easier to stabilize the system over a relatively wide range of gain values

J14]. An example of using different control variable combinations may be seen on

the X-29. That aircraft's normal digital longitudinal control system feeds back a

combination of pitch rate, normal acceleration, and canard position through several

stages of frequency dependent filters and gain functions [3].

-2 - , % \ . ,
% x " "\ "

4 / ' /.?...z~-i

G 4 • /-A
] j

.10 
' 

:__

7--
-1 --

-14 Ii;j ij u-
-Ii "U i .1 , .-.

!1 J. 1'.

440 42 0 0 -260 -240 -20 -200 -10 -IGO

Figure 4.17. Nichols Plot - Pitch Rate Loop Transmission ( r 50)

4-21



Is

1

o.5

-19l2 -1i4l.S -181 -103.S -Ise -IftIS .1719 -l ~ . 17-4 -1T7.S

Figure 4.18. Detailed Nichols Plot - Pitch Rate Loop Transmission (cr =.50)

The open and closed-loop Bode plot of the .50 degree loop transmission func-
tion are shown in Figures 4.19 and 4.20, respectively. The resulting compensator

tranfster function is rather high order and is given by Equation 4.12..

C0;--175,560(s + 2.0853)(6," + 0.0754s + 0.0248)(s + 0.649)(s + 201(s -+ -301
Gso - (s + 2.0785)(S 2 + 400s + 160, 000) (1 + 0.1280) (s + 3.t.97=5S)

0.121
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Finally, the 60 degree loop transmission function is designed from the start

to maximize the number of effective cancellations, so that a relatively low order

compensator may be realized. Referring to Table 4.4, it is decided to effectively

cancel three zeros and two poles from the effective plant. With two additional real

poles and another pair of complex poles, the resulting loop transmission function is

given by Equation 4.13. The Nichols plot of this function is shown in Figure 4.21.

= 4,453,630(s - 0.1373)(s + 0.3318)(s + 35) (4.13)
L6oq = (s + 0.2586)(s + 20)(s + 10)(s + 5)(s2 + 200s + 40,000)

30

2 -1

120

f ' .

, , .. , , } : , : , : , .' , , .

450. 00 .50 .0 .45 .40 .5 .30 .20 .20o .15o
Phase

Figure 4.21. Nichols Plot - Pitch Rate Loop Transmission (a = 60)
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It is clearly evident on the Nichols plot that this particular loop transmission

function has two cross-over frequencies. Horowitz points out that even moderate

feedback benefits require some loop transmission gain to be significantly greater than

one over some range of w [13]. In this case, L has been maximized as much as possible

in the mid-frequencies without diminishing the stability margins to unacceptable

values. Note that there are two regions of instability to avoid in this case (zero-

dB/-180 degrees and zero-dB/-540 degrees). Because of the large excess of poles

over zeros and the additional phase lag contributed by the RHP zero, this function

approaches -630 degrees of phase lag as w goes to infinity. The actual gain and phase

margins (based on the points closest to the instability regions) are +5.04 dB and

+41.56 degrees, respectively.

The corresponding open-loop Bode plot is shown in Figure 4.22. The two

cross-over frequencies are evident in this figure, and the cross-over frequencies are

easily read off the plot.
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The Bode plot of the closed-loop transmission function is shown in Figure 4.23.

Note that this- plot is quite similar to the closed-loop Bode plots obtained for the

other flight conditions. In all but the 50 degree condition, the closed-loop responses

approach -630 degrees of phase lag at w = oo, regardless of the open-loop phase lag

characteristics.
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Figure 4.23. Bode Plot - Pitch Rate Closed Loop Transmission (a =60)

Finally, the compensator transfer function for the 60 degree flight condition is

given by Equation 4.14. Note the relative simplicity, due to the number of effective

cancellations.

G6q=4, 453, 630(s + 0.0677)(S2 + 0.0386s + 1.0211)(s + 50) (.4
0 60q (S + 10)(S + 5)(S2 + 200s + 40, 000) (.4
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4.4 Prefilter Designs and Responses

This section discusses the prefilter designs and their effects on the system time

responses. Specifications are not provided for this academic design study. However,

it is desirable to work toward a realistic set of goals. Therefore, the appropriate

military specification for flying qualities is referenced to provide a desired response

characteristic. Without reproducing the detail of this entire specification, it is as-

sumed that the models developed here represent a fighter type aircraft flying in

category A. Based on these assumptions, the short period damping ratio ((,p) for

level 2 flying qualities may range from 0.25 to 2.00, according to the standard. For

this design, a median value of one is chosen for (,p. The short period natural fre-

quency (w,p) is also chosen to be a median value from the allowable range given in

the standard. For this design, a value of three radians/second is chosen for W,.

With these values, the desired second order response is plotted with Matrix.y,

and the values of rise time (t,) and settling time (t,) are found to be approximately

1.3 seconds and 1.95 seconds, respectively. With a damping ratio of one, there is no

overshoot. This type of response is often seen in control problems and experience has

shown that to achieve such a response, the Bode magnitude plot should be nearly

flat at zero dB up to a roll-off frequency of approximately one radian/second.

Beginning with the first loop transmission design for the 20 degree flight con-

dition, the closed-loop Bode plot is examined (Figure 4.5)'. It is noted that for the

mid-frequency range the magnitude is already zero-dB. Therefore, two portions of

the plot require adjusting. The low-frequency range needs to be raised to the zero dB

level and the magnitude needs to roll-off at around one radian/second. A pole/zero

pair handles the low-frequency portion, and once again the values are obtained iter-

atively by observing the Bode plot as the parameters are varied. The desired roll-off

is accomplished by adding a pole at s = -2. The prefilter for this condition is given

by Equation 4.15. Note that the steady state gain value of this prefilter is not unity,

as is typically the case for prefilter designs. This is because the steady state value of
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TL is less than one due to the limitations discussed previously. As a result, for this

type of problem, the prefilter is used to compensate for the gain discrepancy in the

low-frequency (steady state) range. Finally, the compensated Bode plot is shown in

Figure 4.24.

F20.. 1 = 1.875(s + 0.04) -(.5
(s + 0.0125)(s + 2) (.5
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Using this fact to advantage, the region of negative response is used as the desired

transient control region. It is assumed that the slow decay in the opposite direction

can easily be controlled by the closed-loop flight control system.

Figures 4.25 through 4.27 are the time response plots of the first case. The same

response is plotted on three different time scales to show the effects just discussed. In

all cases the response is the pitch rate with the units of degrees/second. The desired

region of transient control has a slightly overdamped response with a rise time of

approximately 1.2 seconds and a settling time of just over two seconds. These figures

compare well with the desired response characteristics discussed above.

In the 20-second plot, the response can be seen falling off as it is heading for the

crossover and steady state value. On the 500-second plot, the response has reached

the steady state value and the crossover point is at approximately 120 seconds as

noted. The steady state value is negative one, since the region of reverse response

is chosen to be the transient control region. Thus, the response approaches positive

one degree/second in the region of interest. The sign of the steady state value can

easily be inverted by including a negative gain in the prefilter.
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Figure 4.25. Pitch Rate Step Response - Design I1 {5-sec} (a = 20)
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The design for the alternate 20 degree ioop transmission function is perforn-cci

in an analogous manner. The closed-loop frequency response with prefilter is shown

in Figure 4.28. Again, the response is made relatively flat up to the roll-off frequency.

The prefilter for this condition is given by Equation 4.16.

F2 - 1.768(s_+_0.06)
F20... -(s + 0.0068)(s + 2) (.6

Figures 4.29 through 4.31 are the corresponding time response plots for this

system. The critical parameters of transient region settling time, crossover time, and

steady state settling time are virtually the same as those seen in the last case.
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Figure 4.31. Pitch Rate Step Response - Design 1 {500-sec} (a = 20)

The design for the first 40 degree prefilter is based on an analysis of Figure

4.11. It is seen that the magnitude in the low-frequency range is already approx-

imately zero-dB. However, the roll-off frequency is a little too high (around eight

radians/second) and must be brought back to approximately one radian/second. By

developing the prefilter given by Equation 4.17, the desired frequency response is

obtained and shown in Figure 4.32.

F40-1 = 1.180(s + 0.3) (4.17)
(s + 0.1)(s + 2)

The corresponding time responses are shown in Figures 4.33 through ,.35.

The same general characteristics that are noted in the 20 degree cases are present

in this case. However, this system, with its non-minimum phase zero farther to

the right (s=0.0458), responds somewhat faster. Holding the magnitude of negative

direction response to one, the transient settling time is approximately three seconds,

with crossover and steady state settling times approximately 19 and 100 seconds,

respectively.
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Figure 4.32. Bode Plot - Pitch Rate Design 1 with Prefilter (a =40)
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As this is written, a problem is noted with the steady state value. Time does

not permit a re-design, but a brief analysis of how to handle this situation may be

useful for reference. While the steady state value should approach -1.0. it appears

to approach -1.9. This is most likely due to an error in the overall system iwain.

which is used to cancel out the effects on the steady state value due to the poles

and zeros. Qualitatively, one would expect that simply reducing the overall gain

to correct this discrepancy would make the response somewhat slower. In addition.

the magnitude in the transient region would be less than one. A reasonable way to

handle this would be to increase the roll-off frequency by moving one of the prefilter

poles slightly to the right (i.e. higher frequency). Alternatively, one could move the

prefilter zero slightly to the left (i.e. lower frequency).

The prefilter design for the second 40 degree loop transmission function is very

similar to the one obtained in the last case. The frequency response magnitude in

Figure 4.14 is again relatively flat up to a roll-off frequency of approximately 10

radians/second. The prefilter for this case is given by Equation .. 18.

F40-2= 1.161(s + 0.36)
(s+0.11)(s +2) (.i.IS1

The frequency response of the closed-loop system with prefilter is virtually

identical to the previous case, as shown by Figure 4.36. The corresponding time

responses (Figures 4.37 through 4.39) are also near duplicates of those seen in the

last case. The same problem with the steady state value is noted in these plots. so

a similar analysis and solution procedure could be used to correct the discrepancy.
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The 50 degree case is discussed next. Recall that this flight condition resulted

in a design that is just barely stable, and in fact is not practical. However, it is still

useful to apply the prefilter design techniques to this case and analyze the results.

Analysis of Figure 4.20 reveals that the closed-loop frequency response magnitude

should be reduced to obtain the desired low-frequency value. Also, the initial roll-off

frequency is approximately 300 radians/second. It is found that a simple prefilter

pole with appropriate gain reduction results in the desired frequency response, as

shown in Figure 4.40. The prefilter developed for this case is given by Equation 4.19.

Fso-1 0.0099 (.9
(s+0.14) (.9

20
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Figure 4.40. Bode Plot - Pitch Rate with Prefilter Design 1 (ar = 50)
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The time response for this system is shown in Figure 4.41. In this case, it is

not reasonable to choose the region of negative response for the desired transient

response region. Due to the faster time constant from the RHP zero, this response

rather quickly reverses direction to approach the steady state value. The prefilter

design specified by Equation 4.19 results in the magnitude of the reverse response

being no greater than one. The zero crossing is at approximately eight seconds and

the final settling time is a rather slow 50 seconds.
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Figure 4.41. Pitch Rate Step Response - Prefilter Design 1 (a = 50)

This response is completely unacceptable, so an alternate prefilter design is

used to demonstrate an improved response. The prefilter design specified in Equation

4.20 results in a significantly faster time response. As before, the value!, of thle

compensation parameters have been selected based on observations of the response

plots.
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Fo- 0.708 (.0
02-(8+ 10) (.0

the frequency response based on this design is shown in Figure 4.42. To speed

up the response, excess gain is allowed near w = 1. The time response plot based

on this design is shown in Figure 4.43. As is common in engineering designs, a

trade-off is involved. By allowing the value of the negative response to reach a value

of five, the crossover time is brought down to 3.5 seconds and the final settling

= time is a greatly improved six seconds. Again, it should be stressed that this is not

an acceptable design, but the exercise has graphically demonstrated the effects of

different prefilter designs on the system time response, based on a given closed ioop

transmission function.
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Figure 4.43. Pitch Rate Step Response - Prefilter Design 2 (ce = 50)

Finally, for the 60 degree flight condition, the closed-loop response shown in

Figure 4.23 is analyzed. It is noted that a more complex prefilter is required, since the

response magnitude requires lowering only for frequencies below 0.1 radians/second.

Also, the initial roll-off frequency is over 200 radians/second. The prefilter design

specified in Equation 4.21 results in the frequency response shown in Figure 4.4..

fr, o-l 1.6574(s + 0.05) (4.21)
(s + 0.3318)(s + 0.56)

The corresponding time response is shown in Figure 4.45. As with the 50 degrec

case, the region of negative response cannot be used for the desired transient response

region. With a reverse region magnitude of one, the crossover time is approximatcly

five seconds and the settling time is a relatively slow 20 seconds.
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Like the 50 degree condition, it is now shown that an alternate prefilter design

can improve the system time response characteristics. The alternate design prefilter

for this flight condition is given by Equation 4.22.

F~o-2 =3.5234(s + 0.042) (.2
F60..2 =(s + 0.3318)(s + 1) (.2

The frequency response resulting from this design is shown in Figure 4.46. 'Note

that the roll-off frequency has been increased slightly. In this case, even using thle

technique of optimizing the prefilter parameters while examining the time responlse.

the best that can be obtained is shown in Figure 4.47. This response is seen to be

only slightly faster than the one obtained with the first prefilter design for this flighit

condition.
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Figure 4.47. Pitch Rate Step Response - Prefilter Design 2 (a = 60)

Once again, the response reverses too quickly to allow using the reverse re-

sponse region. With this prefilter design, the negative response magnitude is ap-

proximately 1.5, and the crossover time has only been lowered to 4.5 seconds. rile

settling time is approximately ten seconds with a slight overshoot.

It is also noted that for both of the 60 degree cases the desired response region,

after the crossover, has a negative magnitude. This is easily corrected with a negatiVe

gain in the prefilter, but both of the 60 degree responses are too slow to be practical,

so as pointed out before, this problem is purely academic. The limitations imposed

by the non-minimum phase zeros force the designer to work with a response that

initially goes in a negative direction, thus making it virtually impossible to obtain

the exact response desired [151.
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4.5 Summary

This chapter presents the design procedures for the longitudinal (SISO) pitch

rate controllers. After defining some key terms, the effective plants are shown for

each flight condition. In addition to listing the polynomial forms, the roots of each

effective plant are listed in tabular form for easy reference. Based on these rootb. tile

loop transmission functions for each flight condition are developed. These functions

are plotted on both Nichols and Bode charts to show the relative magnitude and

phase characteristics as a function of the frequency. The gain and phase margins are

listed in each case, and in all but the 50 degree flight condition, the stability margins

are reasonable.

An alternate loop transmission function is designed for the 20 and 40 degree

cases, to demonstrate some of the possible design trade-offs. The 50 degree case

presents some unusual problems and requires the use of the optimal blending method

to achieve stability. This system is made stable, but with unacceptably low stability

margins. Also discussed is the effect of non-minimum phase zeros on loop transmis-

sion gain, and why that gain must be maximized in the frequency range of interest.

The loop transmission function and the resulting compensator transfer function is

shown for each of the cases.

Finally, the design of the longitudinal prefilters is presented. The responses

are analyzed in detail and a novel idea is proposed to use the non-minimum phase

induced region of negative response as the desired transient control region. This is

reasonable for the extremely slow responses of the 20 and 40 degree cases. For the

50 and 60 degree cases, this is not a reasonable approach. However, for each of those

cases, an alternate prefilter design is presented to demonstrate how optimizing the

prefilter can improve the time response characteristics. Even though these designs arc

not acceptable, this discussion presents several analytical design techniques that may

be useful in similar situations. Chapter V addresses the design issues surrounding

the lateral-directional (MIMO) flight control systems.
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V. Lateral-Directional Control System Design

5.1 Introduction

In this chapter, the lateral-directional control systems are examined in detail,

and variations of QFT are applied. The chapter begins with a look at the roots of

each effective plant. After pointing out some of the problems with these particular

unstable non-minimum phase plants, the Singular-G method is presented and used

to modify the plants. For each flight condition, the 2x2 MIMO plant is temporarily

converted into an equivalent SISO plant by use of a singular compensator. The goal

is to use the compensator elements to separate the RHP poles and zeros as much

as possible. This is done to expand the range of loop transmission gain that can be

used for the stable closed-loop system. The modified effective plants are listed in

factored form and the root-loci are shown to provide a graphic look at the relative

positions of the RHP poles and zeros.

Following this, the design process is carried on for one of the flight conditions.

The optimal blending method is applied to design a stable loop transmission function

for the chosen case. At this point, the loop transmission function is a SISO transfer

function, based on the SISO plant obtained from the Singular-G method. Next,

a procedure for determining the compensator transfer function is presented. Time

constraints, as well as limitations in the LTI techniques used, prevent completion of

the lateral-directional controller designs. However, the general procedure that can

be used to obtain the MIMO compensators and prefilters is discussed.

5.2 Analysis of Effective Plants

As with the longitudinal case, the lateral-directional effective plants are each

presented in factored form, to facilitate analysis of the system roots. Appendix H

shows the block diagram representation of each of the 16 lateral-directional effective

plants. Using the Matrixx linearization command lin, the systems transfer functions

are obtained. The factored results are listed in Tables 5.1 through 5.15.

In each case, the unstable poles and non-minimum phase zeros are readily ap-

parent. In a few of the cases, there is a zero far to the right of the origin. These
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particular non-minimum phase zeros are not a significant problem, since they con-

tribute minimal amounts of additional phase lag and they are not near any RHP

poles [15]. The real concern is with the RHP poles and zeros near the origin, and

in particular, those in close proximity to each other. This is discussed further in the

next section.

roots(num20)-(1,1) roots(den20)-(1,1)

0.0384 0.0058

-0.0919 -0.1000

-0.0577±j 1.3866 -0.3239

-8.8395 -0.0500+j1.3919
9.2676 0.1288±j2.7262

-20.0000 -20.0000

-20.0000 -20.0000
-20.0000

Table 5.1. Roots of Lateral-Directional P~f! (1,1) (a = 20)

roots(num20)-(1,2) ( roots(den20)-(1,2)

0.0367 0.0058

-0.9720 0.2000

0.1478±j 1.5669 -0.3239
-3.0167 -0.0000±j2.3979

3.0865±j4.8059 0.1288±j2.7262

-20.0000 0.3200±j3.6011
-20.0000 -20.0000
31.5050 -20.0000

-20.0000

Table 5.2. Roots of Lateral-Directional Pet! (1.2) (a 20)
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[f roots(num20)-(2,1) roots(den20)-(2,1)

-0.1937:j0.0661 0.0058
0.9568±j2.1320 -0.1000
-0.9451±j2.2835 -0.3239

-20.0000 -0.0500±jl.3919
-20.0000 0.1288±j2.7262

-20.0000
-20.0000
-20.0000

Table 5.3. Roots of Lateral-Directional Pejj (2,1) (a = 20)

roots(num20)-(2,2) roots(den20)-(2,2)[[

0.2023 0.0058
-0.3074 0.2000

0.0631±j2.4406 -0.3239
0.3459±j3.5946 -0.0000±j2.3979

-20.0000 0.1288±j2.7262
-20.0000 0.3200±j3.6011
-25.6236 -20.0000
28.8912 -20.0000

F___ 1 -20.0000

Table 5.4. Roots of Lateral-Directional Pe1 ! (2,2) (a = 20)
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roots(num40)-(1,1) roots(den40)-(1,1)

-0.0453 0.0000
0.0603 -0.0808±jO.1561

-0.080±j 1.2477 -0.1000±:jl.2610
0.2528±j2.9088 0.2500±j2.9047

-20.0000 0.709e±j3.0081
-20.0000 -20.0000
-65.1516 -20.0000
85.9709 -20.0000

Table 5.5. Roots of Lateral-Directional Pjj (1,I) (a = 40)

roots(num40)-(1,2) roots(den40)-(1,2)

-0.0020±j0.1080 -0.0808±jO.1561 T
2 .100 0 ±j3.89 74  0.7098±j3.OOSl
2.2013±j3.9426 2.1000±j3.8974

13.9264 2.l000k±j3.8974
-20.0000 2.204-0±j3.9192
-20.0000 -20.0000

-20.0000
-*)0.0000

Table 5.6. Roots of Lateral-Directional P4t1 (1.2) (o -10)
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roots(num40)-(2,1) roots(den40)-(2,71) JJ
0.0300 0.0000
-0.1800 -0.0808±jO.1561

-0.1200±j2.1700 -0.1000:jl.2610
-0.7000±j3.1900 0.2500±j2.9047

-20.0000 0.70981j3.0081
-20.0000 -20.0000
60.0000 -20.0000

-115.2900 -20.0000

Table 5.7. Roots of Lateral-Directional Pf 1 (2,1) (a = 40)

Sroots(u40)-(2,2) roots(den40)-(2,2)
-o.5054 -0.0808±jO.1561

-0.2903±j1.4951 0.7098±j3.0081
2.1000±j3.8974 2.1000±j3.8974
2.1748±j309188 2.1000±j3.8974

-20.0000 2.2000±j3.9192
-20.0000 -20.0000

-5.3859E12 -20.0000
1 -20.0000

Table 5.8. Roots of Lateral-Directional Peff (2,2) (c = 40)
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Iroots (num50) -(1, 1) froots (den50) -(1, 1) I
0.1686 -0.0190±jO.0977
-0.3493 -0.3668

-0.2167±jO.5889 -0.5000
-14.4886 0.7143±j3.8832
-20.0000 -13.6332
-20.0000 -20.0000
-44.5691 -20.0000
53.0418 -20.0000
________________-29.0000

Table 5.9. Roots of Lateral- Directional P~f1 (1,1) (a =50)

Iroots (num50)- (1,2) roots (den50)- (1,2) J
0.1443 -0.0190±jO.0977
-0.4062 0.4500~j3.1141

0.1173±j2.8344 0.7143±j3.8832
4.4312 -1.0000±j4.0000

-2.3445±j5.6225 -19.0000
-7.6311 -20.0000
-20.0000 -20.0000
-20.0000 -20.0000

Table 5.10. Roots of Lateral- Directional P~ff (1,2) (a =50)
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Ij roots(num50)-(2,1) roots(den5O)-(2,1)
-0.0163 -0.0190±jO.0977
-0.3421 -0.3668

-0.3541±j2.4034 -0.5000
-13.5556 0.7143±j3.8832

-19.7248±j29.2216 -13.6332
-20.0000 -20.0000
-20.0000 -20.0000

-20.0000
-29.0000

Table 5.11. Roots of Lateral-Directional Pef1 (2,1) (a = 50)

IL roots(num50)-(2,2) roots(den50)-(2,2)0
-0.0073 -0.0190±jO.0977

0.3469±j3.0648 0.4500±j3.1141
-1.7457±j4.0933 0.7143±j3.8832

-11.3331 -1.0000±j4.0000
12.7288 -19.0000

-20.0000 -20.0000
-20.0000 -20.0000
-24.3445 -20.0000

Table 5.12. Roots of Lateral-Directional Peff (2,2) (a = 50)
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roots(num60)-(1,1) roots(den60)-(1,1) J
0.1219 0.0459
-0.1972 -0.1554
-0.2112 -1.0000

0.2868±j3.1245 0.0477±j3.1259
0.5345±j3.1569 0.3000±j3.1225

-20.0000 0.5500±j3.1524
-20.0000 -20.0000
35.0285 -20.0000

-20.0000

Table 5.13. Roots of Lateral-Directional Pef (1,1) (ce 60)

roots(num60)-(1,2) roots(den60)-(1,2)
0.1485 0.0459
-0.2962 -0.1554

-0.0227±j 1.8979 0.1000±j2.2716
-1.9099±j4.7794 -2.7000±j 1.0000

18.4115 0.0477±j3.1259
-20.0000 -0.70000j4.5826
-20.0000 -20.00000

-20.0000
-20.0000

Table 5.14. Roots of Lateral-Directional P 11 (1,2) (a = 60)
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roots(num60)-(2,1) roots(den60)-(2,1)]

-0.0113 0.0459
-0.1983 -0.1554

-2.3432±j 1.4216 -1.0000
0.2873±j3.1215 0.0477±j3.1259
0.5385±j3.1607 0.3000±j3.1225

-20.0000 0.5500±j3.1524
-20.0000 -20.0000

-20.0000
-20.0000

Table 5.15. Roots of Lateral-Directional Peff (2,1) (a = 60)

roots(num60)-(2,2) roots(den60)-(2,2) f
0.0048 0.0459

0.1432±j2.2750 -0.1554
-2.5675±j1.1827 0.1000±j2.2716
-0.7026±j4.6553 -2.7000±jl.0000

-20.0000 0.0477±j3.1259
-20.0000 -0.7000±j4.5826

-3.0275E12 -20.0000
-20.0000
-20.0000

Table 5.16. Roots of Lateral-Directional Peff (2,2) (ce = 60)
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5.3 Singular-G Modification of Effective Plants

As previously mentioned, the RHP poles and zeros in close proximity to each

other limit the range of loop transmission gain that results in a stable closed-loop

system. In this section, each of the MIMO effective plants is transformed into an

effective SISO plant by use of a singular compensation matrix. The elements of

the compensation matrix are then used to separate the RHP poles and zeros of the

equivalent plant as much as possible. By separating the RHP poles and zeros. tie

range of allowable gain for closed-loop stability is increased.

Figure 5.1 shows the general form of the singular-G compensator, and the

feedback paths from the MIMO effective plant. The next several equations are

used to derive the expression for the equivalent SISO plant. The expression for the

compensator matrix can be derived from the figure, and is given by Equation 5.1.

By post multiplying the effective plant by the compensator, the expression for the

forward gain, or equivalent loop transmission, is given by Equation 5.2.

-1

Compensator
f "1 Plant

' G

>b 2
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PG 41 a ba[ P(1,1) P(1,2)
c bc P(2,1 ) P(2,2)

In general, the elements a, b, and c may be either scalars or frequency depen-
dent functions. For this study, they are chosen to be scalars. It is these elements that
are used to modify the effective plant. The common element (T) is the compensator
transfer function and is determined in the usual manner by dividing the determined
loop transmission function by the effective plant.

The transfer function for the system shown in Figure 5.1 is given by:

PG [ i] PG (5.,3)I +PG i+ PGI

The stability of this system is determined by the poles of Equation .5.3, which
come from the determinant of [I + PG ]. Substituting Equation 5.2 into the
expression [I + PG] results in Equation 5.4.

[I+PG] 1 + T (P(,1 )a + P1,2) c) 1I (P(, 1) ab + P(, 2) bc)

%P (P(2 1,) a + P(2.) c) 1 + T (P(2,I) ab + P(2'2 ) bc)

Taking the determinant of Equation 5.4 yields Equation 5.5.

Det[ I + PG] = [1 + IF (P(i,i) a + P(1.2 ) c) + (P(2,1 ) ab + P(2,2) bc)

+ jp2 (P(oil) a + P(1,2) c)(P(2j) ab + P(2.2) bc)]
_[T2 (P(I,.) ab + P(1,2) bc)(P( 2,1) a + P( 22 ) c)] (5.5)

When the factors of the positive and negative 'p2 terms are multiplied out, they
are seen to be equal. Thus, the T2 terms cancel out and the resulting determinant
expression is given by Equation 5.6.
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Det[ I + PG ] = 1 + IF (P(1,) a + P(1, 2) c) + 1P (P(2,I) ab + P( 2,2) bc) (5.6)

Defining T as the compensator transfer function, the expression for the SISO
equivalent plant, here defined as (A), is obtained from Equation .5.6, and shown

explicitly in Equation 5.7. The usage of the word equivalent in this situation refers

to the stability characteristics only. Recall that the primary goal in this section is

to achieve stability over some range of gain values.

A = P(1j,) a + P(1,2) c + P(2.) ab + P(2,2 ) bc (5.7)

It is now desired to use a, b, and c to modify the expression for the SISO

equivalent plant. Ideally, one would like to make the expression minimum phase (i.e.

no RHP zeros). In this situation, however, the best that can be done is to separate

the right half plane poles and zeros as much as possible, as discussed above [15].
Also, while performing the search, it is possible to move some of the RHP poles

and/or zeros into the LHP, with careful selection of the compensator parameters.

Even with a computer, this is a painstaking process requiring careful examination

of the root locus plot for each combination of the variable parameters. To reduce

the amount of searching to a manageable level, c is chosen to be unity. Thus, the

SISO equivalent plant is now a function of the compensator parameters a and b.

A commented listing of the Matrixx commands used to accomplish such a task is

shown in Appendix I.

Initially, large search patterns across positive and negative values are used and
the roots of the equation are examined. As trends point toward optimal search

regions, the patterns are successively narrowed until none of the RHP poles and

zeros are close to each other. Close in this sense is a relative term, with no set

criteria available for use as a benchmark. For this task, the designer must visually

optimize the pole zero pattern by striking a blend between maximum separation

and minimum number of RHP poles and zeros. That is, in some cases, it may be
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desirable to sacrifice some amount of separation, if by so doing some of the RHP

poles and/or zeros can be forced into the LHP.

For the 20 degree case, the final values of a and b are determined to be -1

and +1, respectively. The root locus of the modified plant for this flight condition

is shown in Figure 5.2. Examination of the figure reveals that no effort has been

made to separate the left half plane poles and zeros. This is because they do not

result in unstable closed-loop system poles. However, the RHP poles all now have

a reasonable amount of separation. Again, there is no set criteria for determining

what is reasonable separation, other than to say that the system is improved.

"~~ V ./ -"--" 

0 2

I I -- / -Z -. " ''

-,. . ,K , • : -

I

I j  o ., . . . I.:!,

. , ... , < - . ' /
:.-:'"\ ... ,,, N .k J.

-4 / .4 2' 0 2/ ,4 ,

Figure 5.2. Root Locus of Modified Effective Plant (a = 20)

The roots of this modified plant are listed in table 5.17. Finally, it should be

remembered that the modified plant has only been temporarily converted from a

MIMO to a SISO plant as defined by Equation 5.6. The actual lateral-directional

plant is still a 2x2 MIMO system. The next section discusses this further.
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Sroots(num-modplnt2O) roots(den-modplnt20) t
-0.0335 0.0058

-0.0362±jO.1047 -0.1000
-0.0313±jl.5069 -0.3239
-0.0169±jl.8413 -0.0500±jl.3919
1.5161+j4.8876 0.1288±j2.7262

-6.7782 -20.0000
-20.0000 -20.0000
-20.0000 -20.0000
34.2306 0.2000

0.0000+j2.3979
0.3200±j3.6011

Table 5.17. Roots of Modified Lateral-Directional Effective Plant (a = 20)

Figure 5.3 shows the root locus for the modified 40 degree effective plant. The
optimal values of a and b for this case are found to be +13 and -13, respectively.

It is noted that there is a greater number of RHP poles and zeros in this case than
was seen in the 20 degree case. Close examination of Figure 5.3 reveals that two
pairs of RHP poles are extremely close to each other. This poses no problem, since
the system closed-loop poles migrate away from the open-loop poles and toward the

zeros. Also note that one pair of RHP poles migrates into the LHP. Table 5.18 lists

the roots of this equivalent plant.

The root locus of the 50 degree equivalent plant is shown in Figure 5.4. It is
interesting to note that this flight condition proved to be the most troublesome in the
longitudinal mode, but turns out to be the best of the lateral-directional cases. By
setting the value of a to -0.001 and b to -3.5, the equivalent plant has only four rigiht
half plane poles and two RHP zeros. Further, it is noted that two of these poles
migrate into the stable LHP and the remaining RHP poles and zeros are widely
separated. The roots of this equivalent plant are listed in Table 5.19.
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Figure 5.3. Root Locus of Modified Effective Plant (a =40)

[roots(num-modplnt40) [roots(den-modplnt40)

0.0286 0.0000 I
-0.21 15 -0.0808±jO.1561 U

-0.1785±j2.4879 -0.1000±jl.2610
1.734l+j3.4741 0.2500±j2.9047 i
2.0896±j3.4452 0.7098±j3.0081
0.9627±j4.5355 -20.0000
2.5424±j4.3558 -20.0000

-15.2233 -20.0000
-77.8939 2.1000±j3.8974

__________________ 2. 1000±j3.8974

2.2000±j3.9192

Table 5.18. Roots of Modified Lateral- D irectional Effective Plant (a -10)
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The equivalent plant for the 60 degree flight condition is shown in Figure 5.5.
With the values of a and b chosen as +180 and -11, respectively, the RIIP roots are
separated as much as possible. By adjusting the two parameters while observing the
root locus plots, it is possible to pull two pairs of complex zeros into the stable LII P.

Table 5.20 lists the roots of the modified effective plant for this flight condition.

Finally, it should be noted that this procedure worked fairly well in achieving
the desired objective in each case. However, it is possible that by varying the c
parameter, along with a and b, the results could have been better. Further, recall.

that the a, b, and c parameters need not be scalars. By allowing these parameters
to be frequency dependent transfer functions, it may even be possible to stabilize

the effective plants, or at least make them minimum phase. However, such a deter-

mination would be extremely time consuming, even with a computer, and is beyond

the scope of this effort.
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Figure 5.5. Root Locus of Modified Effective Plant (a = 60)

5-17



roots(num-modplnt60) 1'roots(den-modplnt60) 1-0.0201 0.0459

-0.5359 -0.1554
-0.1014±j2.4721 -1.0000
-0.0014±j2.6429 0.0477±j3.1259
1.4473±j2.3231 0.3000±j3.1225

-2.6296±j 1.5661 0.5500±j3.1524
1.0852±j2.8870 -20.0000

-2.3487±j4.0988 -20.0000
-29.0000

0.1000±j2.2716
-2.700G±j 1 .0000

-0.7000=j4.5826

Table 5.20. Roots of Modified Lateral-Directional Effective Plant (a = 60)

5.4 Application of Optimal Blending to One Case

The lateral-directional design procedure is now carried further for one of the
flight conditions. The 50 degree flight condition is chosen, since it's equivalent pla a
has the least number of RHP poles and zeros. The optimal blendirg method is use-d
to obtain a loop transmission function which for a specified range of gain can result
in a stable closed-loop system. Following this, the procedure to obtain the overall
compensator transfer function (*) is presented. Finally, the general procedure for
designing the MIMO system, complete with prefilters, is discussed.

The design proceeds with a step-by-step method for developing an optimusrw
loop transmission function. The RHP poles and zeros in the plant may no.' he can-
celled due to the uncertainties in the exact valt -s. Therefore. the loop Lransmission
function must contain the RHP poles and zeros o: the effective planL (see Table 5.; 9 .
The optimal blending design procedure is based rI. only the RHP poles and zeros of
the effective plant, since the stable LHP roots are not a concern for stability. 'he
LHP roots may be cancelled with additional comp-esator terms, if desired.
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The optimal blending method is now applied to this particular case. The
general procedure is derived in reference [12]. The numbers of RHP poles (6p) and

zeros (6,) in the effective plant determine the order of the balanced loop transi.isbion

function. Equations 5.8 and 5.9 are used to determine the number of comnpensatur

poles (6p) and zeros (6,,) required to ensure the necessary symmetry.

4, = 6p + 26, - 2 (5.8)

6zo = 28p + 6 - 2 (.5.9)

In this case, with 6p = 4 and 6, = 2, the compensator must have six poles and

eight zeros. The balanced portion of the loop transmission function must contain ten
poles and ten zeros. Note that this is an improper transfer function, so additional

far off poles must be added later.

An optimal blending function [O(s)] is now defined as one side of the balanced
portion of the loop transmission function. Thus, O(s) is a function with five zeros and

five poles. In this case, two zeros and four poles result from the effective plant. The
values of the remaining roots must be determined. The optimal blending function i1

defined in Equation 5.10.

¢(s) = (s-0.7143"j3.8832)( 0.4500 4-j3.1141)] [ (s + D) I

Proceeding with a design based on Equation 5.10 would result in a symmetric

function about the jw axis (i.e. marginal stability). To ensure stability, the j. axis

is offset iato the left half plane by replacing s with v - 2. The left side offset blendi ig

function is given by Equation 5.11.
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r\ (+ 3.9130)(v + 4.5237) (0 j3.+ Av 2 + Bv+ C)]0Mv = l(v+2.7143±j-.83)(+2.4500:±j3.1141)I I (V+D 5.1

Convolving the known roots from the effective plant yields Equation 5.12.

~(v) = r (V2 + 8.4367v + 17.7012) 1 [( 3 + AV2 +Bv. C)] (.2OM (v 4 + 10.3286v 3 + 64.7469v 2 + 19 5.2183v + 352.4153)J [ (v + D) j

The next step involves expanding the numerator and denominator into even

and odd monic polynomials, respectively. This is done in Equations 5.13 and 5.1-1.

on + Cnen = V
5 + (8.4367A + B + 17.7012)v 3 + (17.7012B + 8.4367C)v

+ (8.4367+ A) + (8.4367B+ 17.7012A+ C)v2 + (1.7012C) (513)
(8.4367 + A) (8.4367 + A))

Od + Cded = V5 + (64.7469+ 10.3286D)v 3 + (352.4153+ 195.2183D)v

+(10.3286+D) (V4 + (195.2183 + 64.7469D)v 2 + (3 5 2 .4 15 3 D) (5.1)
(10.3286+D) (10.3286+D)

Now the odd numerator and denominator coefficients are equated. Likevise,

the even numerator and denominator coefficients are equated. The resulting [om"

equations contain the four unknowns (Equations 5.15 through 5.18).
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8.4367A + B + 17.7012 = 64.7469 + 10.3286D (5.15)

17.7012B + 8.4367C = 352.4153 + 195.2183D (5.16)

8.4367B + 17.7012A + C 195.2183 + 64.7469D (5.17)
8.4367+ A 10.3286 + D

17.7012C 352.4153D

8.4367 + A 10.3286 D

Since the last two equations are non-linear, the solution involves considerable

algebraic manipulation. Without reproducing all the steps, it should be noted that

the first variable isolated is D, which is the solution to a cubic equation. Engineering

judgement is required to select the most sensible root. In this case, one root is

negative, and another is very large. The third root, a small positive value, is the

sensible choice. After making this selection, the other coefficients are obtained by

solving the above equations. The values are:

A = 4.2770 B 25.1603

C = 20.7992 D - 1.3750

Factoring the cubic numerator roots, the shifted blending function is given by:
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0 (v + 3.9130)(v + 4.5237) 1 r(v+O.9449)(v + 1.6660 ± j4.3859)]
¢(v) = [(v +2.7143 - j3.8832)(v + 2.4500 - j3.1141)] (v + 1.3750)

(5.19)

The roots are now shifted back by adding two to the real portions of each.

resulting in:

(s + 5.9130)(s + 6.5237) 1 +2.9449)(s + 3.6660 J4.3859)
O(s)- =(s--4.7143±j3.8832)(s+.4 ±j 3 .ll4l)j (+3.3I5J

(5.20)

Finally, the mirror image of O(s) about the chosen line of symmetry (s = -2)

is given by:

(s - 1.9130)(s - 2.5237) 1r (s + 1.005 1)(s + 0.3340 ± j4.3859)]
I (s - 0.7143 ± j3.8832)(s -045OO ±j3.l4l)j (s + 0.6250)

(5.21)

Equations 5.20 and 5.21 are now combined into a single transfer function (the

symmetric loop transmission function) and plotted on a root locus, as shown in

Figure 5.6. The symmetry about s = -2 is readily apparent. It should be noted

that Equations 5.20 and 5.21 result in this root locus patte:n only for negative gain

values.

The reasc., for plotting this function is to determine the range of loop traninims-

sion gain for which the closed-loop system is stable (i.e. no RHP closed-loop pole").

As the gain magnitude is increased, the system becomes stable at K = -0.82 and

again goes unstable at K = -0.98. A reasonable choice for the loop transnii:,b(,ri
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gain is the midpoint, K = -0.90. Close examination of Figure 5.6 reveals the loca-

tions of the closed-loop poles with this gain value. The closed-loop poles are denoted

by small stars on the plot. All ten closed-loop poles are in the LHP; two on the real

axis and eight on the s = -2 line of symmetry (two are just off the plot with th(.
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As mentioned 
previously, 

additional 
poles are required to make the loop trans-

mission function a proper transfer function. The effective plant has an exccss of two

poles over zeros, and that excess must be maintained. 
Three poles are added to tihe

loop transmission function to ensure that the compensator is also a proper transfer

function. The three LHP poles are added far off (s = -10000) so that the symmetry

near the origin is not disturbed greatly.
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Even with such far off poles, it is seen in Figure 5.7 that the symmetric pattcrn

is disturbed somewhat. However, the closed-loop poles are still in the stable region

of the s-plane with the loop transmission gain set at -0.9. It is found that the

addition of the far off poles causes a slight degradation in the range of allowable gain

for stability. The range is now from K = -0.83 to K = -0.97; still centered about

K = -0.9.

Table 5.1 lists the roots of the equivalent loop transmission function with thc

far off poles added. This technique results in achieving a stable loop transmission

function with at least some degree of gain insensitivity. Although the insensitivity is

rather low, this approach results in achieving the stability goal where conventional

methods would fail when applied to a problem such as this [15].
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Figure 5.7. Final Optimal Blending Loop Transmission (a = .50)
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roots(num50equiv) roots(den50equiv)

-1.0551 -0.6250
1.9130 0.4500±j3.1141
2.5237 -3.3750
-2.9449 0.7143±j3.8832

-0.3340±j4.3859 -4.4500±j3.1141
-0.3660±j4.3859 -4.7143±j3.8832

-5.9130 -10000
-6.5237 -10000

-10000

Table 5.21. Roots of Equivalent Loop Transmission Function (a = 50)

Lack of time prevents carrying this design any further. However, with the

equivalent loop transmission function defined, the compensator transfer function (11I)

may be obtained as before. Dividing tb equivalent loop transmission function by the

equivalent effective plant (Equation 5.7) results in a fairly high order compensator.

Recall that the effective plant still has many LHP roots that are not addressed in

the above optimal blending procedure. The compensator transfer function could be

used to cancel out the LHP roots of the effective plant, if desired.

Although time constraints prevented completion of this design, the procedure

for transforming the system back to a MIMO system and designing the prelilter

matrix is discussed for reference and possible follow-on work. Figure 5.8 shows the

arrangement of the complete MIMO system, with the prefilter matrix [15]. Note

that the prefilter affects only the commanded input signals and the compensator

affects only the fed-back output states. The summation of these signals is the input

to the effective plant. At this point one might ask if the control surfaces would still

work together. The answer is yes. The weighting matrix terms that ensure this arc

embedded in the effective plant, and the compensator will affect all plant inputs

equally.
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Figure 5.8. Singular-G Compensator with Prefilter (15]

The inputs to the effective plant (u, and u2), are functions of the compensated

output states (y, and Y2) and the filtered commanded inputs (r, and r2). Equation

5.22 express., this relation, and Equation 5.23 expresses the input/output relation

ship of the effective plant. These two equations are combined into the closed-loop

control ratio as given by Equation 5.24.

u = -Gy + Fr (5.221

y =Pu (5.23)

Y ] PF (5.'.1)
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When the individual original Pi transfer functions (each an element of it

2x2 matrix) are combined with the compensator transfer function (kP) in Equation

5.24, the 2x2 matrix of system transfer functions is obtained. Each element of

this matrix can then be equated to a desired transfer function and the elements

of the prefilter matrix can be obtained by algebraic methods. The desired transfer

functions are typically developed by choosing dominant poles and zeros to obtain

the desired time response characteristics. The procedure is discussed in ref [8]. Also,

the cross coupling effects, represented by the off-diagonal elements in the transfer

function matrix, can be eliminated by proper selection of the prefilter terms. With

the prefilter matrix defined, the MIMO design is complete.

5.5 Summary

This chapter presents some specialized design techniques that are useful when

one is forced to work with unstable non-minimum phase plants. Several tasks are

defined and their importance is explained. After defining each of the individual

effective plants in factored form, the roots are analyzed. Specifically, the concern is

with right half plane poles and zeros that are in close proximity to each other. The

singular-G method is presented and used to modify the effective MIMO plants by

converting them to equivalent SISO plants (with respect to stability). Compensation

parameters are then used to separate the RHP poles and zeros as much as possible.

to maximize the range of loop transmission gain over which the closed-loop system

would be stable.

Then, for one flight condition the optimal blending method is used to develop

the balanced stable loop transmission function. A root locus plot is used to determine

the range of gain over which the closed-loop system would be stable, and an optimal

value is chosen. After adding the necessary far off poles, the loop transmission

function is again plotted on a root locus to verify that the system would still be

stable for the chosen gain value.
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Following this is a brief discussion of how to obtain the overall compensator

transfer function. Finally, the general procedure is discussed that would be required

to complete the MIMO design, with the appropriate prefilter matrix for ensuring the

desired system time response characteristics. Chapter VI presents the conclusions

and recommendations for related efforts.
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VI. Conclusions and Recommendations

6.1 Conclusions

This thesis discusses a variety of separate but related tasks pertaining to control

law development for an unstable, non-minimum phase aircraft. Variations of the

Quantitative Feedback Technique are discussed and applied to the design problem.

Although time did not permit the completion of the lateral-directional cuntrol system

designs, a substantial amount of material is presented that may be useful to flight

control engineers pursuing similar development efforts. This problem is considered

extremely challenging [15], due to the large number of RHP poles and zeros in the

effective plants and the wide plant variations across the different flight conditions.

This research breaks new ground in several areas:

" Develops new aircraft models based on existing models that incorporate addi-
tional control capability.

* Develops frequency dependent compensation for multi-variable, unstable, non-
minimum phase open-loop dynamics models.

" Proposes using the non-minimum phase reverse response region as the transient
control region of interest when the non-minimum phase zeros are sufficiently
small.

* Presents the first combined application of optimal blending and the singular-G
method to a non-minimum phase, unstable MIMO plant.

The thesis starts by defining a problem experienced by the X-29A research

aircraft. While flying at extreme AOAs, the aircraft in its present configuration uses
most of its available control authority to control wing rock and yaw oscillations.

leaving little maneuvering capability. The use of differential canards is one proposed

solution. It is decided to investigate this idea by developing and modifying exist-

ing aircraft dynamics models and developing flight control laws that incorporate the
additional control capability. Due to limited amounts of differential canard wind

tunnel data, the linearized aircraft models developed here only approximate the per-

formance of the original aircraft. Development of aircraft models that represent the
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actual performance of the X-29A with differential canards would require substantial

additional wind tunnel testing, but a general procedure to develop such models is

presented in this thesis.

Four flight conditions with varying AOAs are chosen based on a speed of 0.3

Mach and an altitude of 20,000 feet. The four AOAs are 20, 40, 50, and 60 degrees.

The aircraft mod. I development begins by defining the control surface configura-

tions and their representative transfer functions. Next, after a brief description of

linearized aircraft models in general, the state vectors are defined. The control vec-

tors are modified to account for the differential canard effect- and the development

of the new control matrices is presented. The control variables are chosen to be

pitch rate, roll rate, and yaw rate. After re-defining the output matrices to specify
these state variables, the final linearized state space models are presented for tile

four chosen flight conditions.

The weighting matrix development begins with a detailed look at the purpose of

a weighting matrix and a discussion of why the development is especially challenging

for this type of problem. Considerable time was expended on trying conventional

design techniques to develop the frequency dependent compensation required for the

lateral-directional channels. Due to the effects of unstable RHP poles. a root shiftirg

method is applied and found to yield acceptable results. With this method, frequency
dependent compensation terms are developed for each of the cases in the frequency

domain and then fine-tuned as necessary in the time domain. The resulting open-

loop step responses clearly show the desired results; that the control surfaces are all

working in phase with each other continuously. The results of this development are

perhaps best summarized by comparing the uncompensated open-loop responseb fu,

the 50 degree yaw case (Figure 3.3), with the unsuccessful compensated responses

(Figures 3.7 & 3.9), and the successful compensated responses (Figure 3.63).

Due to extreme variations in the effective plants, it is decided to design four

separate controllers for the longitudinal 'light control system. Following a brief

overview of QFT terms, the roots of the longitudinal effective plants are analyzed

and the effects of RHP poles and zeros are discussed. The actual control design :cen-
ters on developing optimal loop transmission functions that maximize the feedback

benefits over the frequency range of interest while maintaining acceptable gain and

phase margins for stability. The development uses Nichols and Bode plots, since

each has advantages over the other in terms of usefulness. In each case. th,- !oop
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transmission function is used to obtain the compensator functions. Following this.
the prefilter design process is discussed and it is shown how the prefilter is :sed

to modify the closed-loop system time response. Also shown is how an otherwise

undesirable non-minimum phase characteristic (the region of reverse response) may

be used to advantage in some situations, as is shown in Figures 4.25 through -1.27.

The lateral-directional designs commence with an analysis of the effective

plants. It is noted that due to the large number of RHP poles and zeros in close prox-

imity to each other the achievable stability margins are severely limited. In an effort

to improve this situation, the singular-G method is presented aid used to transforn

the effective MIMO plant into an equivalent (with respect to stability) SISO plant.

The form of the singular-G compensator is shown (Figure 5.1) and its parameters

are used to modify the equivalent SISO plant in such a way that the RHP poles and

zeros ,re separated as much as possible. The resul:s are shown on root locus plots

for cl--]Li. Next, the optimal blending method is discussed in detail, and applied to

one casc to develop an optimal loop transmission function for the equivalent SISO

plant. The resulting function is shown to result in a stable closed-loop system over a

specified range of gain (Figure 5.7). Although time constraints prevented completion
of the lateral-directional controllers, the remaining steps are discussed as an aid to

engineers interested in performing related design efforts.

Finally, one overall conclusion is worth mentioning. Throughout the effort,

Matrixx (with SystemBuild) has proven to be an extremely effective computer

aided design and analysis package. Also, the Sun Sparc - II workstations, with

their multiple window capabilities and many useful features, have made both the

design and the write-up tasks considerably easier than they might have been on a

less capable system.

6.2 Recommendations

Several recommendations come to mind as this research is concluded. These
recommendations may be useful to anyone continuing this research or pursuing .im-

ilar development studies. While this thesis presents a great deal of information on

how to work with unstable, non-minimum phase plants, it is shown that the .1)ts

results obtained are only marginally acceptable for a practical design.

As alluded to earlier, the correct choice of control variables is critical for a

MIMO design problem such as this. By choosing the three angular rates as cont rol
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variables, the output matrix is quite simple, as these rates are direct state variables.

However, such a choice clearly results in effectiv; plants that have very undesirable

characteristics in ,i e form of numerous RHP pole: and zeros in close proximity to

each other. With such limitations, the designer is limited in what he call do to

develop some sort of optimal control system. In this case. all that can be hoped for

is to achieve marginal stability [15].

It is interesting to note that the idea of re-defining a problem such as this is not

new. Nermal acceleration and pitch rate were originally defined by the manufacturer

as the two outputs to be independently controlled in the X-29A longitudinal flight

control system. The resulting effective plant had RHP poles and zeros so close to

each other that designers could achieve only very small stability margins, even with

scheduling. In that case, the problem was abandoned and different variables were

defined as outputs, for which the effective plant was minimum phase [131. Thus. the

recommendation here is to carefully choose the control variables in such a- way that

the open-loop plants are at least minimum-phase, even if unstable.

Another recommendation pertains to the lateral-directional control system de-
sign. The singular-G method is seen to be somewhat effective in improving the

effective plant characteristics by increasing the separation of RHP poles and zeros.

However, in this thesis, the choice is made to use only two of the singular-G parame-

ters and to constrain them to be scalars. Perhaps by using all three parameters and

allowing them to be frequency dependent terms, the singular-G method would result

in equivalent effective plants with desirable characteristics. Also. it is recommended
that after applying the singular-G compensation, the control surfaces be checked

once again to ensure that they are still working together as effectively -s they were

before the compensation was added.

Finally, one over-riding recommendation is to attack a problem such as this
with non-linear QFT theory, and allow for time-varying dynamics. The use of linear

time-invariant design techniques, while somewhat better proven and more easily

understood, limits the designer in unusual problems such as this I15j. Further. nn-

linear mathematical aircraft models are likely to better approximate the aircraft'.

dynamics at high AOAs. A non-linear model of the basic X-29 aircraft has been

developed for the AFIT S1MST-IR computer by Captain Cox [61.

In closing, as an aid to related follow-on research efforts, the following addi-

tional references may be useful (7,[171.[181,[2.5j,[ 1.

6-4



Bibliography

1. Barfield, Finley, A., "Head Contol Engineer AFTI/F-16. Personal Interviews."
Flight Dynamics Directorate, Wright Labs, Wright-Patterson AFB, OH, De-
cember 1990 through December 1991.

2. Blakelock, John H. Automatic Control of Aircraft and Missiles (Second Edi-
tion). Wiley & Sons, 1991.

3. Bosworth, John T. Linearized Aerodynamic and Control Law Models of the X-
29A Airplane and Comparison with Flight Data. Technical Report, Edwards
AFB, CA: NASA Ames Research Center / Dryden Flight Research Facility,
September 1989.

4. Bosworth, John T. and Timothy H. Cox. A Design Procedure for the Handling
Qualities Optimization of the X-29A Aircraft. Technical Report, Edwards AFB,
CA: NASA Ames Research Center / Dryden Flight Research Facility.

5. Christian, Terry V., "Group Leader for Simulation Programs. Personal Inter-
views." Flight Dynamics Directorate, Wright Labs, Wright-Patterson AFB,
OH, December 1990 through December 1991.

6. Cox, Thomas J. Development of a High Fidelity Non-linear Simulation of the
X-29 Aircraft on the Simstar Computer. MS thesis, Air Force Institute of
Technology, Wright-Patterson AFB, OH, March 1991.

7. Crosby, Kenneth A. Quantitative Feedback Theory Application to Flight Control
System Design for the AFTI/F-16. MS thesis, Air Force Institute of Technol-
ogy, Wright-Patterson AFB, OH, December 1990.

8. D'Azzo, John J. and Constantine H. Houpis. Linear Control System Analysis
& Design -Conventional and Modern (Third Edition). McGraw-Hill, 1988.

9. Gillard, William, "Flight Control Systems Engineer. Personal Interviews." X-
29 Program Office, Wright Labs, Wright-Patterson AFB, OH, December 1990
through December 1991.

10. Gunston, Bill. Grumman X-29. Aeolus Publishing Limited, 1985.

11. Hicks, John W. and Neil W. Matheny. Preliminary Flight Assessment of the X-
29A Advanced Technology Demonstrator. Technical Report NASA TM-100407,
Edwards AFB, CA: NASA Ames Research Center / Dryden Flight Research
Facility, September 1987.

12. Horowitz, Isaac. "Design of Feedback Systems with Non-minimum Phase Unsta-
ble Plants," International Journal of Systems Sciences, 10:1025-1040 (Septem-
ber 1979).

13. Horowitz, Isaac. "Survey of Quantitative Feedback Theory," International Jour-
nal of Control, 53:255-291 (February 1991).

BIB-1



14. Horowitz, Isaac and Yin-Kuei Liao. "Limitations of Non-minimrum Phase Feed-
back Systems," International Journal of Control, 40:1003-1013 (May 1984).

15. Horowitz, Isaac M., "Personal Conversation and Correspondance." Distin-
guished Visiting Professor of Electrical Engineering, Air Force Institute of Tech-
nology, Wright-Patterson AFB, OH, May 1991 through December 1991.

16. Houpis, Constantine H., "Personal Conversation, Correspondance and Class
Notes." Professor of Electrical Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH, May 1990 through December 1991.

17. Houpis, Constantine H. Quantitative Feedback Theory (QFT)-Technique for
Designing Multivariable Control Systems. Technical Report AFWAL-TR-86-
3107, Wright-Patterson AFB, OH: Flight Dynamics Laboratory, January 1987.

18. Miller, Russel B. Multi-Input Multi-Output Flight Control System Design for
the YF-16 Using Non-Linear QFT and Pilot Compensation. MS thesis, Air
Force Institute of Technology, Wright-Patterson AFB, OH, December 1990.

19. Matrix. CAD/CAE Program, Integrated Systems Inc., Santa Clara, CA, 95054-
1215.

20. Nelson, Robert C. Flight Stability and Automatic Control. McGraw-Hill, 1989.

21. Pace, Steve. The Grumman X-29. Tab Books, 1991.

22. Pachter, Meir, "Personal Conversation, Correspondance and Class Notes." Dis-
tinguished Visiting Professor of Electrical Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, OH, January 1991 through December 1991.

23. Paschall, Randall N., "Personal Conversation, Correspondance and Class
Notes." Associate Professor of Electrical Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, OH, May 1990 through December 1991.

24. Pellicano, Paul and others. X-29 High Angle of Attack Flight Test Procedures,
Results, and Lessons Learned. Technical Report, Edwards AFB, CA: Grumman
Systems Division and Air Force Flight Test Center, 1990.

25. Phillips, William D. Frequency Sensitive QFT Weighting Matrix. MS thesis,
Air Force Institute of Technology, Wright-Patterson AFB, OH, December 1988.

26. Raney, David L. and James G. Batterson. Lateral Stability Analysis for the
X-29A Drop Model Using System Identification Methodology. Technical Report
NASA TM-4108, Hampton, VA: NASA Langley Research Center, 1989.

27. Walke, Jon G. Design of Longitudinal Flight Control System Using Singular-G
Method. MS thesis, Air Force Institute of Technology, Wright Patterson AFB,
OH, December 1983.

28. Wheaton, David G. Automatic Flight Control System Design for an Unmanned
Research Vehicle Using Discrete Quantitative Feedback Theory. MS thesis, Air
Force Institute of Technology, Wright-Patterson AFB, OH, December 1990.

BIB-2



Appendix A. Original State Space Matrices

This appendix lists the original state space matrices (both longitudinal and

lateral-directional) for each of the four flight conditions. These matrices were gener-

ated by the NASA Ames-Dryden non-linear simulation program and do not include

differential canard effects.

-6.7320D - 02 -1.9190D + 01 -5.8320D - 01 -3.2110D + 01

-6.0200D - 04 -1.4980D - 01 9.9480D - 01 -3.9770D - 09
Alon2

4.9390D - 04 '7.3440D - 01 -1.4560D - 01 -2.2720D - 09

0.OOOOD + 00 0.OOOOD + 00 1.OOOOD + 00 0.OOOOD + 00

-88250D - 02 -8.5710D - 02 -2.3390D - 02 1.0280D - 01

-3.0"100D - 04 -3.4930D - 04 -2.1030D - 04 -1.2020D - 04
=Bo2

1.2410D - 02 -2.7310D - 03 -96810D - 03 -9.0470D - 04

L0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

1.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 5.7300D + 01 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00 5.7300D + 01 0.OOOOD + 00
Cdon 20 =

0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 5.7300D + 01

6.7000D -03 1.4100D + 00 5.9590D - 02 -6.0660D - 04

L6.7000D -03 1.4100D + 00 5.9590D - 02 -6.0660D - 04j

0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

D~on20 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00I3.4850D - 03 4.1870D - 03 2.5190D - 03 3.3150D - 05

3.4850D - 03 4.1870D - 03 2.5190D - 03 3.3150D - 3.5
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-6.8010D - 02 3.4030D - 01 -9.3810D - 01 9.7000D - 02

-1.8850D + 01 1.4380D - 02 1.2860D - 01 1.4200D - 06
Alat2O "

1.0090D - 00 -3.3750D - 02 -1.3520D - 02 4.3340D - 07

0.0000D + 00 1.0000D + 00 3.6400D - 01 6.6800D - 03

-8.8650D - 05 2.0300D - 04

1.3280D - 01 1.0630D - 02
Blat2o -

7.1400D - 03 -9.8750D - 03

0.OOOOD + 00 0.OOOOD + 00

5.7300D + 01 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 5.7300D + 01 0.OOOOD + 00 0.OOOOD + 00

0.000D + 00 0.OOOOD + 00 5.7300D + 01 0.OOOOD + 00

Clt2o 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 5.7300D + 01

-1.0800D + 03 8.2390D - 01 7.3660D + 00 8.1380D - 05

5.7800D + 01 -1.9340D + 00 -7.7450D - 01 2.4830D - 05

7.3500D - 03 -1.6550D - 02 1.2130D - 02 -1.6670D - 03

0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00

Da12o= 0.0000D + 00 0.OOOOD + 00

7.6080D + 00 6.0910D - 01

4.0910D - 01 -5.6580D - 01

-5.5480D - 03 1.9680D - 03
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-1.8900D - 01 -4.4710D + 01 -1.0960D + 00 -3.2110D + 01

-6.6150D - 04 -8.2400D - 02 9.9580D - 01 -1.2670D - 08
Alon4O

4.7760D - 04 3.0720D - 01 -2.7990D - 01 1.5050D - 07

O.O000D + 00 O.O000D + 00 1.0000D + 00 0.0000D + 00

-2.1920D - 01 -5.1610D - 02 -5.1690D - 02 8.3780D - 02

-7.4030D - 04 3.4270D - 05 -2.0890D - 04 -2.2590D - 04
Blon40 =

1.4130D - 02 -2.9220D - 03 -8.6820D - 03 -9.0290D - 04

0000D + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

1.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 5.7300D + 01 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00 5.7300D + 01 0.OOOOD + 00
Clon40 -

0.0000D + 00 0.OOOOD + 00 0.OOOOD + 00 5.7300D + 01

9.9490D - 03 1.5930D + 00 6.6880D -- 02 -1.1400D - 03

9.9490D - 03 1.5930D + 00 6.6880D - 02 -1.1400D - 03

0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00
0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

9.3380D - 03 8.8570D - 04 2.9020D - 03 3.2710D - 05

9.3380D - 03 8.8570D - 04 2.9020D - 03 3.2710D - 05

A-3



4.7370D - 02 6.3860D - 01 -7.6430D - 01 7.9080D - 02

-1.4260D+01 1.3430D+00 -1.1530D +00 -1.0300D -04Alat4o "

3.9610D - 01 6.3430D- 02 -1.7800D - 01 -2.4160D - 0.5

0.0000D + 00 1.0000D + 00 8.3910D - 01 4.5550D - 02

-9.3770D - 05 3.6380D - 05

2.3610D - 02 -4.3660D - 03
Bat4o=

2.5790D - 03 -3.3690D - 03

0.OOOOD + 00 0.OOOOD + 00

5.7300D + 01 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 5.7300D + 01 0.OOOOD + 00 0.OOOOD + 00

0.0000D + 00 0.0000D + 00 5.7300D + 01 0.OOOOD + 00

Cat4o= 0.0000D + 00 0.OOOOD + 00 0.OOOOD + 00 5.7300D + 01

-8.1720D + 02 7.6960D + 01 -6.6050D + 01 -5.8990D - 03

2:2690D + 01 3.6340D + 00 -1.0200D + 01 -1.3840D - 03

3.4950D - 01 -9.0060D - 02 6.3870D - 02 -1.3570D - 03

0.OOOOD + 00 0.0000D + 00

0.OOOOD + 00 0.0000D + 00

0.0000D + 00 0.0000D + 00
Dt4o= 0.0000D + 00 0.0000D + 00

1.3530D + 00 -2.5010D - 01

1.4780D - 01 -1.9300D - 01

-1.7890D - 03 6.2030D - 04
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-2.5560D-01 -4.0360D + 01 -1.3060D + 00 -3.2110D + 01

-6.4510D - 04 8.9490D - 03 9.9650D - 01 -4.8610D - 08
AlonSO "

4.8980D - 04 5.4140D - 02 -3.9930D - 01 1.6800D - 06

O.OOOOD + 00 0.OOOOD + 00 1.0000D + 00 O.OOOOD + 00

-2.7550D - 01 -5.4060D - 02 -4.8730D - 02 7.0310D - 02

-6.7650D - 04 1.0800D - 04 -1.5410D - 04 -2.6920D - 04
Blonso =

1.8180D - 02 -3.2690D - 03 -8.6100D - 03 -9.0220D - 04

0.0000D + 00 0.OOOOD + 00 0.OOOOD + 00 O.OOOOD + 00

1.OOOOD-+ 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 5.7300D + 01 0.0000D + 00 O.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00 5.7300D + 01 0.OOOOD + 00

-O.O000D + 00 0.OOOOD + 00 0.OOOOD + 00 5.7300D + 01

1.1230D - 02 1.0780D + 00 7.1520D - 02 -1.3580D - 03

1.1230D - 02 1.0780D + 00 7.1520D - 02 -1.3580D - 03

0.OOOOD + 00 0.0000D + 00 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00 0.0000D + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

0.0000D + 00 0.OOOOD + 00 0.0000D + 00 0.OOOOD + 00

1.0090D - 02 7.3700.9 - 04 2.4380D - 03 3.2530D - 05

1.0090D - 02 7.3700D - 04 2.4380D - 03 3.2530D - 05

A-5



1.1860D - 01 7.5760D - 01 -6.3960D - 01 6.6350D - 02

At 5 0  -2.1300D + 01 1.1930D + 00 1.2230D + 00 3.3230D - 05

-1.C910D + 00 1.1400D - 01 1.0400D - 02 -2.5620D - 05

0.0000D + 00 1.0000D + 00 1.1920D + 00 6,8560D - 02

-9.3770D - 05 3.2810D - 06

2.2790D - 02 -1.1010D - 02
B/ato=

2.5430D - 03 -6.6130D - 05

0.OOOOD + 00 0.OOOOD + 00

5.7300D + 01 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 i
0.OOOOD + 00 5.7300D + 01 0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00 5.7300D + 01 O.OOOOD + 00

Ct5o= 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00 5.7300D + 01

-1.2200D + 03 6.8330D + 01 7.0070D + 01 1.9040D - 03

-6.2480D + 01 6.5310D + 00 5.9610D - 01 -1.4680D -03

9.7070D -01 -1.2790D - Pl -8.3380D -03 -1.1450D - 03

0.OOOOD + 00 0.OOOOD + 00

0.OOOOD + 00 0.OOOOD + 00

O.OOOOD + 00 O.OOOOD + 00

Dso= O.OOOOD + 00 O.OOOOD + 00

1.3060D + 00 -6.3070D - 01

1.4570D - 01 -3.7890D - 03

-1.7600D - 03 4.0140D - 04
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-2.9390D -01 -2.7690D + 01 -1.4770D + 00 -3.2110D + 01

-5.6540D - 04 9.5210D - 02 9.9730D - 01 -2.0250D - 08Alon~o =

4.7520D -- 04 -1.0640D + 00 -1.6620D - 01 7.0730D - 07

L 0.0000D + 00 0.0000D + 00 1.0000D + 00 0.0000D + 00

-2.2010D - 01 -1.3380D - 01 -3.47701 - 02 5.4700D - 02

-2.3780D - 04 -2.7180D - 04 -7.35501) 05 -3.0430D - 04
mBtor6o=

8.2980D - 03 --5.7350D - 03 -9.5570D - 03 -9.0160D - 04

0M0000D + 00 0.0000D + 00 0.0000D + 00 0.0000D + 00

r

1.0000D + 00 0.0000L + 00 0.0000D + 00 0.0000D + 00

0.0000D + 00 5.7300D + 01 0.0000D + 00 0.0000D + 00

0.0000D + 00 0.0000D + 00 5.7300D + 01 0.0000D + 00
Cton6o =

0.OOOOD + 00 0.0000D + 00 0.0000D + 00 5.7300D + 01

1.1290D - 02 5.5020D - 01 6.1940D - 02 -1.5350D - 03

1.1290D - 02 5.5020D - 01 6.1940D - 02 -1.5350D - 03

0.0000D + 00 O.O000D + 00 0.0000D + 00 0.0000D + 00

0.0000D + 00 0.00COD + 00 0.0000D + 00 0.OOOOD + 00

0.0000D + 00 0.OOOOD + 00 0.0000D + 00 0.OOOOD + 00

0.OOOOD + 00 0.0000D + 00 0.0000D + 00 0.OOOOD + 00

6.7670D - 03 5.1280D - 03 1.6460D - 03 3.2380D - 05

L 6.7670D - 03 5.1280D - 03 1.6.160D - 03 3.23S0D - 05
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1.3450D - 01 8.6190D - 01 -4.9850D - 01 5.1610D - 02

-1.1630D + 01 -2.2140D - 01 1.6470D + 00 1.9310D - 04

-6.3660D - 01 -5.2130D - 02 -1.5140D - 03 -5.3250D - 0.5
0.0000D + 00 1.0000D + 00 1.7320D + 00 7.4330D - 02

-9.3770D - 05 1.2120D - 05

2.2100D - 02 -9.1430D - 03
Bt6o =

2.5130D - 03 3.2340D - 04

0.OOOOD + 00 0.0000D + 00

5.7300D + 01 O.OOOOD + 00 0.0000D + 00 0.0000D + 00

0.0000D + 00 5.7300D + 01 0.0000D + 00 0.0000D + 00

0.0000D 1- 00 0.0000D + 00 5.7300D + 01 0.OOOOD + 00
C,. = 0.0000D + 00 0.0000D + 00 0.OOOOD + 00 5.7300D + 01

-6.6650D + 02 -1.2690D + 01 9.4350D + 01 1.1060D - 02

-3.6470D + 01 -2.9870D + 00 -8.6720D - 02 -3.0510D - 03

5.4660D - 01 -3.2430D - 02 -3.8710D - 02 -8.9560D - 04

0.0000D + 00 0.0000D + 00

0.OOOOD + 00 0.0000D + 00

0.0000D + 00 0.OOOOD + 00
Dt,6o 0.0000D + 00 }.0000D + 00

1.2660D + 00 -5.2390D - 01

1.4400D - 01 1.8530D - 02

-1.7360D -03 4.1050D - 04
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APPendix B. Open-Loop System Eigenvalues

This appendix lists the open-loop system Eigenvalues for each of the four flight

conditions. The Eigenvalues given in this appendix are obtained from the correspond-

ing A matrices listed in Appendix A. The positive Eigenvalues are unstable open-loop

right half plane poles. The complex conjugate pairs possess oscillatory characteris-

tics, while the purely real unstable roots have an exponential growth characteristic.

This can be seen in the uncompensated step iesponse diagrams in Chapter III.

-0.0203 + 0.1257j

Aton20 -0.0203 - 0.1257j

0.7080 + 0.0000j

-1.0302 + 0.0000j

-0.0534 + 0.1193j

-%1on40 -0-0534 - 0.1193j

0.3756 + 0.0000j

-08200 + 0.0000j

0.0785 + 0.0000j

-00377 + 0.1528j

-0.0377 - 0.1528j

L-0.6490 + 0.0000j

F-0-0677 + 0.0000j

-256+ 0.0000j
=1nG [ 0.0193 + 1.0103j

-00193 1 .0103j
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0.0058 + 0.0000j

- -03239 + 0.Ooooj
0. 1288 + 2.7262j

L0. 1288 - 2.7262ij

-00808 + 0.1561;

- -00808 - 0.1561j
0.7098 + 3.0081lj

0.7098 - 3-OO8ij

0.0190 + 0.0977j

- -00190 - 0-0977j

0.7143 + 3-8832j

0.7 143 - 3.8832j

0.0459 + 0.0000j1

= -0.1554 + 0.0000j
0.0477 + 3.1259j

0.0477 - 3-1259j
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Appendix C. Differential Canard Stability Derivatives

This appendix lists the matrices of symmetric canard coefficients, and differ-

ential canard coefficients, each taken about nominal symmetric canard settings of

-25 and -40 degrees, respectively. Following this, the calculated stability derivative

matrices are listed, each preceded by its respective Mctrixx command line.

In each of the matrices, the 13 rows correspond to the angle of attack (a) vary-

ing from zero to sixty degrees in five degree increments. The six columns correspond

to the coefficients of lift, drag, pitching moment, side force, yawing moment, and

rolling moment, respectively.

SIM25 -

CL CD CH CY CN C). AOA

4.9200D-01 1.3280D-01 -6.93i0D-0i 3.9000D-03 1.1000D-03 -9.OOOOD-04 0

8.2300D-Qi 1.5980D-O1 -5.i460D-O1 -7.6000D-03 3.4000D-03 2.OOOOD-04 5

1.1429D+00 2.6080D-01 -3.7700D-01 -1.2800D-02 5.8000D-03 1.7200D-03 10

1.3452D+00 4.0180D-01 -2.8640D-Oi -6.6000D-03 6.3000D-03 1.3000D-03 iS

1.4423D+00 5.5790D-01 -2.0230D-01 -3.7000D-03 4.900OD-03 4.7000D-03 20

1.5829D+00 7.3880D-01 -1.1930D-01 4.100OD-03 5.7000D-03 3.7000D-03 25

1.6977D+00 9.4520D-Oi -3.9800D-02 i.6000D-02 8.2000D-03 2.0000D-03 30

1.8673D+00 1.2308D+00 3.9200D-02 3.7200D-02 7.1000-03 -3.OOOOD-04 35

1.9713D+00 1.5244D+00 1.0690D-O1 2.6000D-02 6.0000D-04 -i.1000D-03 40

1.9774D+00 1.7967D+00 i.7250D-0i -1.1200D-02 3.OOOOD-04 -3.9000D-03 45

1.9066D+00 2.0442D+00 1.86iOD-01 -5.OOOOD-04 5.6000D-03 -2.8000D-03 50

1.7491D+00 2.2246D+00 1.8420D-01 2.0700D-02 i.8500D-02 -7.OOOOD-03 55

1 .5072D+00 2.3066D+00 1.4920D-01 1.5200D-02 9.iOOOD-03 -4.OOOOD-04 60
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SIM40

CL CD CM CY CN Cl AGA

3.5240D-Oi 2.4410D-01 -7.6OOOD-01 9.9000D-03 -2.OOOOD-04 -1.6000D-03 0

6.5630D-01 2.96S0D-O1 -7.5620D-01 2.8000D-03 i.1000D-03 3.9000D-03 5

8.7640D-Oi 3.5700D-Oi -6.3300D-01 -1.0300D-02 i.8OOOD-03 3.5000D-03 10

i.0526D+OO 4.4210D-01 -4.6310D-O1 -9.4000D-03 2.8000D-03 -1.2000D-03 is

1.2245D+00 5.7370D2-01 -3.7440D-01 5.000012-03 3.500012-03 -1.800012-03 20

1.4137D+00 7.3830D-O1 -3.034012-01 7.200012-03 5-BOOOD-03 -1.6000D-03 25

1.6258D2+00 9.211012-01 -2.473012-01 1.660012-02 6.300012-03 -2.3OO'-03 30

1.6222D+00 1.1320D2+00 -i.7530D-01 1.2900D-02 1.2400D-02 -3.700012-03 35

1.768012+00 1.4235D2+00 -1.0290D-01 1.600012-03 7.100012-03 3.100012-03 40

1.7943D2+00 1.6611D2+00 -1.630012-02 -l.SOOOD-02 7.SOOOD-03 3.900012-03 45

1.764412+00 1.868512+00 3.870012-02 8.200012-03 6.8000D-03 2.OOOOD-04 50

1.6573D+00 2.0337D2+00 7.5100D2-02 1.290012-02 8.700012-03 -4.2000D-03 55

1.5108D2.00 2.1930D+00 9.0300D-02 2.120012-02 7.3000D-03 -4.000012-04 60

DIFF26

CL CD CM CY CN Cl AOA

5.389012-01 1.6740D-01 -5.4800D-0l -4.2100D-02 -1.380012-02 -7.SOOOD-03 0

7.70S0D-01 2.295012-01 -4.904012-01 -6.560OD-02 -1.000012-02 -1.290012-02 5

1.0388D+00 3.227012-01 -3.9430D-01 -9.240012-02 -7.6000D2-03 -2.4800D-02 10

1,2587D2+00 4.6430D-01 -3.0300D-01 -1.0170D2-01 8.000012-04 -3. 2400D-02 15

1.44156D+00 6.290012-01 -2.0760D-0i -1.0870D-01 1.300012-02 -4.1400D-02 20

1.6005D2+00 8.2080D-0i. -11.3710D-01 -1.026012-01 2.1800D-02 -4.660012-02 25

1.7209D+00 1.0382D+00 -8.310012-02 -6.060012-02 2.090012-02 -4.080012-02 30

1.7963D2+00 1.2676D+00 -2.1700D-02 -5.150012-02 2.080012-02 -3.700012-02 35

1.834012+00 1.5137D+00 2.920012-02 -9.550012-02 1.250012-02 -2.3500D-02 40

1,8170D+00 1.746112+00 7.610012-02 -1.317012-01 2.120012-02 -2.9200D-02 45

1.7380D+00 1.954712+00 1.1410L-01 -8.600012-02 2.230012-02 -3.730012-02 50

1.578212+00 2.0936D+00 1.0720D2-01 -5.5400D-02 2.350012-02 -2.7300D-02 5&

1.405112+00 2.2224D+00 6.620012-02 -7.910012-02 2.890012-02 -1.6000D-02 60
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DIFF40

CL CD CM CY CN Cl AOA

S.1290D-01 1.9550D-Oi -5.7610D-01 -2.0900D-02 -1.0200D-02 -3.9000D-03 0

7.6870D-Oi 2.4i90D-01 -4.6270D-01 -4.7iOOD-02 -8.8000D-03 -4.4000D-03 5

1.0628D+00 3.4860D-01 -3.9310D-01 -6.6700D-02 -5.2000D-03 -1.7100D-02 10

1.1942D+00 4.9400D-01 -3.6080D-0i -6.5400D-02 2.OOOOD-04 -3.2000D-02 15

1.3467D+00 6.7850D-01 -3.5970D-01 -1.0120D-01 1.7000D-03 -3.5600D-02 20

i.4S47D+00 8.3380D-01 -2.96S0D-01 -1.056OD-01 4.6000D-03 -3.3400D-02 25

1.6839D+00 1.0232D+00 -. 0D-1-9.2800D-0 3.3000D-0 -3.5400D-0 30

1.6891D+00 1.2395D+00 -i.26S0D-01 -9.55OOD-02 3.2000D-03 -3.3300D-02 35

1.7768D+00 1.4919D+00 -5.6000D-02 -1.2680D-01 4.OOOOD-03 -2.7500D-02 40

1.7414D+00 1.6860D+00 -1.9200D-02 -1.2830D-01 1.3200D-02 -3.3200D-02 45

1.6769D+00 1.8863D+00 2.3300D-02 -6.5300D-02 i.3100D-02 -4.2700D-02 50

1.5616D+00 2.0679D+00 2.1500D-02 -2.7000D-02 6.3000D-03 -3.4600D-02 55

1.3978D+00 2.1980D+00 1.9200D-02 -4.4600D-02 1.6400D-02 -2.2900D-02 60
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<> stabder2S=(dift2S-sim25)/20

STABDER25

CL CD CM CY CN cl AQA

2.34500-03 1.7300D-03 7.25500-03 -2.3000D-03 -7.45000-04 -3.3000D-04 0

-2.6250D-03 3.48500-03 1.21000-03 -2.9000D-03 -6.70000-04 -6.55000-04 5

-5.20500-03 3.09500-03 -8.6500D-04 -3.98000-03 -6.65000-04 -1.3260D-03 10

-4.3250D-03 .2.125OD-03 -8.30000-04 -4.80500-03 -2.2500D-04 -1.68500-03 15

-4.00000-05 3.56B0D-03 -2.65000-04 -5.2500D-03 4-O500D-04 -2.30500-03 20

8.80000-04 4.10000-03 -8.9000D-04 -6.3350D-03 8.0500D-04 -2.51500-03 25

1.16000-03 4.65000-03 -2.16500-03 -3.8300D-03 6 3500D-04 -2.14000-03 30

-3.5500D-03 1.84000-03 -3.0450D-03 -4.43500-03 6.850CD-04 -1.83500-03 35

-6.8650D-03 -S.3500D-04 -3.88500-03 -6.0750D-03 5.9600D-04 -1.1200D-03 40

-8.02000-03 -2.5300-03 -4.82000-03 -6.0250D-03 1.04500-03 -1 .26500-03 45

-8.4250-03 -4.47500-03 -3.55000-03 -4.27500-03 8.35000-04 -1.72500-03 50

-8.54500-03 -6.55000-03 -3.85000-03 -3.80500-03 2.50000-04 -1.01500-03 55

-5.10500-03 -4.20500-03 -4.15000-03 -4.71500-03 9.90000-04 -7.80000-04 60

<> stabder40=Cdiff40-sim40)/20

STABDER40 z

CL CD CH CY CN Cl AOA

8.02500-03 -2.43000-03 8.69800-03 -1.54000-03 -5.00000-04 -1.15000-04 0

5.02000-03 -2.73000-03 1.46760-02 -2.49500-03 -4.95000-04 -4.15000-04 5

9.32000-03 -4.20000-04 1.1995D-02 -2.77000-03 -3.50000-04 -1.03000-03 10

7.08000-03 2.59500-03 5.11500-03 -2.80000-03 -1.30000-04 -1.54000-03 15

6.11000-03 5.24000-03 7.35000-04 -5.31000-03 -9.00000-05 -1.69000-03 20

2.05000-03 4.77500-03 3.45000-04 -5.64000-03 -4.50000-06 -1.59000-03 25

2.90500-03 5.10500-03 2.26500-03 -5.47000-03 -1.5000D-04 -1.65500-03 30

3.34500-03 5.37500-03 2.44000-03 -5.42000-03 -4.60000-04 -1.48000-03 35

4.40000-04 3.4200D-03 2.34500-03 -6.42000-03 -1.55000-04 -1.53000-03 40

-2.64500-03 1.74500-03- -1.45000-04 -5.66500-03 2.85000-04 -1.85500-03 45

-4.42500-03 8. 4000i.-04 -7.70000-04 -3.67500-03 3. 15000-04 -2. 14500-03 50

-4.78500-03 1.71000-03 -2.68000-03 -1.99500-03 -1.20000-04 -1.52000-03 55

-5.6500D-03 2.50000-04 -3.55500-03 -3.29000-03 4.5500D-04 -1.12500-03 60
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Appendix D. 'IRanslation of Longitudinal Stability Derivatives

This appendix lists the differential canard stability derivatives obtained from

the calculations shown in Appendix C. The first two of the six derivatives in each

case are based on the coefficients of lift and drag. As shown in Figure 2.5, these

stability derivatives are now transformed into the Z and X force derivatives. The

Matrixx command lines are shown for each calculation, and are readily derived from

Figure 2.5.

STABDER20

-4.OOOOD-O5 3.56SOD-03 -2.6500D-04 -5.2500D-03 4.0500D-04 -2.30S0D-03

STABDER40 =

4.4000D-04 3.4200D-03 2.3450D-03 -6.4200D-03 -1.5500D-04 -i.5300D-03

STABDERSO=

-4.4250D-03 8.4000D-04 -7.7000D-04 -3.6750D-03 3.ISOOD-04 -2.1450D-03

STABDER60

-5.6600D-03 2.5OOOD-04 -3.665OD-03 -3.2900D-03 4.55OOD-04 -1.12S0D-03
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< /CZ=-CLcos (alpha) -CDsin(alpha)

< ICX=CLsin (alpha) -CDcos (alpha)

<> CZ20=4. 0000D-05*cos (20) -3. 5550D-03*sin (20)

CZ20

-3.2292D-03

<> 0X20=-4. OOOOD-05*sin(20) -3. 5550D-03*cos (20)

CX20

-1.4872D-03

<> CZ40=-4 .4000D-04*cos (40) -3. 4200D-03*sin(40)

CZ40-

-2.2548D-03

<> CX4O=4 .4000D-04*sin (40) -3. 4200D-03*cos (40)

CX40

2.6088D-03

<> CZ5O=4.4250D-03*cos(50)-8.400D-04*sil(50)

CZ50

4.4904D-03

<> CX5O=-4.4250D-03*sin(50)-8 .4000D-04*cos(50)

cxs0

3. 5044D-04

<> CZ6O=5 .6500D-03*cos (60) -2. SOOOD-04* sin (60)

CZ60

-5.3049D-03

<> CX60-5 .6500D-03*sin(60)-2 . 500D-04*cos(60)

CX60

1.9603D-03
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Appendix E. Modified B Matrices

This appendix lists the modified B matrices, after the incorporation of the dif-

ferential canard wind tunnel data. The longitudinal and lateral-directional matrices

are shown for the all four flight conditions.

-8.8250D - 02 -1.4872D - 03 -8.5710D - 02 -2.3390D - 02

-3.3100D - 04 -3.2292D - 03 -3.4930D - 04 -2.1030D - 04

1.2410D - 02 -2.6500D - 04 -2.7310D - 03 -9.6810D - 03

0.0000D + 00 0.0000D + 00 0.OOOOD + 00 0.0000D + 00

-8.8650D - 05 2.0300D - 04 -5.2500D - 03

B tt2o = 1.3280D - 01 1.0630D - 02 -2.3050D - 03

7.1400D - 03 -9.8750D - 03 4.0500D - 04

O.OOOOD + 00 O.O000D + 00 O.O000D + 00

-2.1920D - 01 2.6088D - 03 -5.1610D - 02 -5.1690) - 02

-7.4030D - 04 -2.2548D -. 03 3.4270D - 05 -2.0890D - 04
Blon4° "

1.2410D - 02 2.3450D - 03 -2.9220D - 03 -8.6820D - 03

0.0000D + 00 0.OOOOD + 00 0.0000D + 00 0000()W , 00

-9.3770D - 05 3.6380D - 05 -6.4200!D - 03

BlatO 2.3610D - 02 -4.3660D - 03 -1.5300D - 03

2.5790D - 03 -3.3690D - 03 -1.5500D - 04

0.0000D + 00 0.0000!) + 00 0.0000D + 00
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-2.7550D - 01 3.5044D - 04 -5.4060D - 02 -4.8730D - 02

-6.7650D - 04 4.4904D - 03 1 0800D - .5410D - 04

1.8180D -02 -7.7000D -04 -3.200D ".. -3:1 00D -03

0.0000D + 00 0.0000D + 00 0.0000D -:. 0.0000D + 00

-9.3770D - 05 3.2810D - 06 -3.67.;0D - 03

Blat50o = 2.2790D - 02 -1.1010D - 02 -2.1450D - 03

2.5430D - 03 -6.6130D - 05 3.1500D - 04

L 0.0000D + 00 0.OOOOD + 00 0.0000 D + 00

-2.2010D - 01 1.9603D - 03 -1.3380D - 01 -3.4770D - ,)2

-2.3780D - 04 --5.3049D - 03 -2.7180D - 04 -7.3550D - 0.5

1.8180D - 02 -3.5550D - 03 -5.7350D - 03 -9.5570D - 03

0.0000D + 00 0.0000D + 00 0.0000D + 00 0.0000D + 00

-9.3770D - 05 1.2120D - 05 -3.2900D - 03

f3,at6o = 2.2100D - 02 -9.1430D - 03 -1.1250D - 03

2.5130D - 03 3.2340D - 04 4.5500D - 04

0.OOOOD + 00 0.0000D + 00 0.0000D + 00
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Appendix P. Final State Space Models

This *ppendix lists the final stz.te space nmodel, (S matrices) for each of tile

four flight conditions. These models have been modified to include differential canard

aerodynamic effects. The reader is reminded that no changps have beent made to the

A matrices.

SI&n20

Columns I thru 6

-6.73200-02 zl.9190D+01 -5.8320D-0a -3.2110D+01 -8.82500-02 -1.4872D-03

-6.02000-04- -1 .49B0D-01 9.94800-01 -3.9770D-09 -3.3100D-04 -3.2292D-03

4.93900-04 7.34400-Cl -1.45600-01 -2.2720DI-09 1 .2410D-02 -2.65000-04

0.00000+00 0.00000+00 1.0000D+00 0.0000D+C 0.00000+00 0.00000+00

O.0000D+00 0.00000+00 0.00000+00 O.CO0D+0u 0.0000D+00 O.OOOOD+00

0.00000+00 0.00000+00 0.00000+00 0.00000+00 0.00000+00 0.0000D'00

0.0000D+00 0.0000D+00 l.0000D+00 0.00000+00 0.00000+00 0.0000D+00

0.00000+00- 0.00000+00 0.00000+00 0.00000+00 0.OOOOD+00 0.00000+00

Coltimns 7 thru a

-8.57100-02 -2.3390D-02

-3.4930D-04 -2.10300-04

-2.73100-03 -9.66100-03

0.00000+00 0.00000+00

0.00000+00 0.OOOO0+00

0.00000+00 0.00000+00

0.00000+00 0.00000+00

4'01IWO 0. 000000
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Stat2O

Columns I thru 6

-6.80i0D-02 3.40300-01 -9.38100-01 9.70000-02 -8.8650D-uS 2.0300D-04

-1.850+01 1.4380D-0 1.2860D-0 1.4200D-0 1.3280D-0 1.0630D-0

1.090+0-3.37500-02 -1.3520D-02 4.3340D-0 7  7.40-03 -9.8750D-03

O.0000D+O0 1 .OOOOD+00 3.6400D-01 6.6800 1!% 0. C'?C0+00 0.0000D+00

0.00000+00 0.0000+600 0.OOOOD+00 0.00aD+OC 0;.00000+00 0.OOOOD+00

0.OOOOD+00 1.0000D+00 0.00000+00 0.00000+OC 0.00000+00 0.OOOOD+00

0.00000+00 O0.0O0OD+00 1.00000+00 0.00000+00 0.00000+00 0.OOOOD+00

0.OOOOD+00 0.OOOOD+00 0.O0000+00 0.OOOOD+00 0.00000+00 0.00000+00

Columns 7 thru 7

-5. 250OD-03

-2.30500-03

4.0500D-04

0.0000B~+0O

0.00000+00

0.0000+00

O.OOOOD+00

= O.OOOOD+00
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StIon4O

Columns 1 thru 6

-1.8900D-01 -4.4710D+01 -1.0960D+00 -3.2110D+01 -2.1920D-01 2.6088D-03

-6.6150D-04 -8.2400D-02 9.95800-01 -1.26700-08 -7.4030D-04 -2.25480-03

4.77600-04 3.0720D-01 -2.7990D-01 1.50500-07 1.24100-02 2.34500-03

0.OOOOD+00 0.OOOOD+00 1.OOOOD+00 0.OOOOD+00 0.OOOOD+00 0.00000+00

0.0000+0 000+00 0.OOOOD+00 0.OOOOD+00 0 .00000+00 0 .000 00O.OO+00

0.OOOOD+00 0.00000+00 0.00000+00 0.00000+00 0.00000+00 0.00000+00

0.OOOOD+00 0.00000+00 1.00000+00 0.00000+00 0.00000+00 0.00000+00

O.OOCOD+00 0.00000+00 0.00000+00 0.00000+00 0.00000+00 0.00000+00

Columns 7 thru 8

-5.16100-02 -5. 1690D-02

3.42700-05 -2.08900-04

-2.9220D-03 -8.68200-03

0. OOOOD+00 0. OOOOD+00

0. OOOOD+O0 0.00000+00

0.00000+00 0.00000+00

0.00000+00 0.00000+00

0.OOOOD+O0 0.00000+00
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= ~slat40

=Columns 1 thru 6

4.7370D-02 6.3860D-O1 -7.6430D-01 7.9080D-02 -9.37700-05 3.63800-05

-1.4260D+01 1.3430D+00 -1.1530D+00 -1.03000-04 2.36100-02 -4.3660D-03

3.9610D-01 6.34300-02 -1.78000-01 -2.4160D-05 2.57900-03 -3.3690D-03

0.OOOOD.O0 1.00000+00 8.3910D-O 4.5550D-0 0.00000+00 0.OOOOD+00

O.OOOOD+0O 0-0000D+00 0.OOOOD+00 0.0000+00 0.00000+00 0.0000D=00

0.00000+00 l.OOOOD+00 O.OOOOD+00 0.OOOOD+00 0.GO000+00 0.00000+00

0.OOOOD+00 0.OOOOD+06 1.0000D+00 0.00000+00 0.00000+00 0.OOOOD+00

0.00000+00 0.OOOOD+00 O.0000D+00 0.OOOOD+00 0.OOOOD+00 0.OOOOD+00

Columns 7 thru 7

-6.42000-03

-1.53000-03

-1. 5500D-04

0.00002'+00

0.0000D+00

0.OOOOD+00

O.OOOOD+0O

O.0000D+00

F-4



S'onSo

Columns 1 thru 6

-2.5560D-01 -4.0360D+01 -1.3060D+00 -3.2110D+01 -2.7550D-O1 3.5044D-04

-6.4510D-04 8.94900-03 9.96600-01 -4.86100-08 -6.7650D-04 4.4904D-03

4.89800-04 5.4140D-02 -3.99300-01 1.6800D-06 1.8180D-02 -7.7000D-04

0.0000D+O0O0.00000+00 1.OOOOD+00 0.OOOOD+0O O.OOOOD+00 0.OOOOD+00

O.OOOOD+O 00+00 O.OOOOD+00 0.OOOOD+00 O.OOOOD+ 0 0.OOOOD+0 O 00D0

0.OOOOD+O0O0.OOOOD+OO O.OOOOD+OO O.OOOOD+0O O.OOOOD.00 0.OOOOD+0

0.OOOOD+00 0.00000+00 1.OOOOD+00 O.OOOOD+00 0.00000+00 0.00000+00

O.OOOOD+00 0.OOOOD+00 O.OOOOD+OO O.OOOOD+00 0.00000+00 O.OOOOD+00

Columns 7 tbru 8

-5. 4060D-02 -4.87300-02

1. OSOOD-04 -1.54100-04

-3.2690D-03 -8.81000-03

O.OOOOD+00O .OOOOD+0O

O.OOOOD+O0O0.00000+00

0.00000+00 0. OOOOD+00

0.OOOOD+00 0.OOOOD+00

0.00000+00 0.00000+00
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slats0

Columns 1 thn 6

1. 1860D-01 7.5760D-O1 -6.3960D-0l 6.6350D-02 -9.3770D-05 3.28100-06

-2.1300D+01 1.1930D+00 1.2230D+00 3.32300-05 2.2790D-02 -1.10100-02

-1.0910D+00 1.1400D-01 1.0400D-02 -2.56200-05 2.54300-03 -6.61300-05

0.00000+00 1.OOOOD+00 1.1920D+00 6.8560D-02 0.0000D+00 0.00000+00

0.OOOOD+00 0.OOOOD+00O0.0000D.00 0.00000+00 0.00000+00 0.00000+00

O.OOOOD+00 1.OoOODO0 0OODO 0000+00 0.0000D+00 .OOD0 .OD00 .000O00

0.00000+00 0.OOOOD+00 1.OOOOD+00 0.00000+00 O.0000D+00 0.00000+00

0.OOOODe00 0.OOOOD+00 0.OOOOD+00 0.00000+00 0.OOOOD+00 O.OOOOD+00

Columns 7 thrii 7

-3. 67S0D-03

-2. 1450D-03

3. iSOOD-Ol

0. OOOOD+0O

0.OOOOD+00

0.00000+00

0.00000+00

0. OOOOD+00
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S10 n60

Columns 1 thru 6

-2.93900-01 -2.7690D+01 -1 .4770D+00 -3.2110D+01 -2.20100-01 1.9603D-03

-5.85400-04 9.52100-02 9.9730D-01 -2.02500-08 -2.37800-04 -6.3049D-03

4.75200-04 -1 .0640D+00 -1 .6620D-01 7.0730D-07 1.81800-02 -3.55500-03

0.OOOOD+00 0.OOOOD+00 1.0000D+00 0.00000+00 O.OOOOD+O0 0.00000+00

0.00000+00 0.00000+00 0.00000+00 0.OOOOD+00 0.OOOOD+O0 0.00000+00

0.00000+00 0.00000+00 0.00000+00 0.00000+00 0.00000+00 0.00000+00

0.OOOOD+O0 0.00000+00 1.OOOOD+00 0.00000+00 0.00000+00 0.OOOOD+OO

0.00000+00 0.00000+00 0.00000+00 0.00000+00 0.00000+00 0.00000+00

Columns 7 thriu 8

-1.33800-01 -3.4770D--02

-2.71800-04 -7.35500-05

-5.7350D-03 -9.55700-03

0.00000+00 0.00000+00

0.00000+00 0.00000+00

0.00000+00 0.00000+00

0.00000+00 0.00000+00

0.00000+00 0.00000+00
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Sat6O

Columns I thru 6

-3 0D 1 -.1 01 -4.9850D-O± 5. 1610D-02 -9 .3770D-05 1. 2120D-O3
-1.1630D+01 -2.2140D-O1 1.40+O 1.931012-04 2201-02 -9.1430D-03

-6.36612-01 -5.213012-02 -1.6140D2-03 -5.32012-05 2.513012-03 3.234012-04

0.000012+00 1.000012+00 1.7320D2+00 7.4330D2-02 0.OOOOD+00 0.OOOOD+0O

0.000012+00 0.000012+00 0.OOOOD+00 0.000012+00 0.OOOOD+00 0.000012+00

0.000012+00 1.000012+00 0.OOOOD+00 0.OOOOD+00 0.OOOOD+00 0.OOOOD+00

0.000012+00 0.000012+00 l.0000D+00 0.OOOOD+00 0,000012+00 0.000012+00

0.000012+00 0.000012+00 0.000012+00 0.OOOOD+00 0.000012+00 0.OOOOD+00

Columns 7 thru 7

-3.290012-03

-1.125012-03

4.55OOD-04

0.0000D00

0.OOOOD+00

0.000012+00

0.000012+00

0.000012+00

F-8



Appendix G. Matrixx Executable Files - Weighting Matrix

This appendix details three abbreviated Matrixx executable files that may be

useful in developing frequency sensitive compensation elements for a control system

such as this. This procedure is discussed in detail in Section 3.4. As stated in the

text, what follows is not software code. It is simply a commented listing of useful

Matrixx commands that may save the reader some time if he chooses to perform a

similar operation.

G.1 Development of Frequency Dependent Terms

diary( 'rol2O')

// Executable file for shifting roots to eliminate right half plane

// poles for phase compensation.

// Generate the state space (S,NS) for each transfer function from

// system build.

// Include actuators.

// Generate Ni, N2, N3 , & D from each system build state space.

[nl,d]=tform(sl,nsi);

En2 ,d] =tform(s2 ,ns2);

En3, dl =tform (s3,ns3);

// Obtain roots.

rnl=roots (nl)

rn2=roots (n2)

rn3=roots (n3)

rd=roots (d)
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1Shift roots.

srnl=rnl- .2

srn2=rn2- .2

srn3=rn3- .2

srdrd- .2

/Obtain shifted transfer functions for use in Bode commands.

psrnI=poly(srnI)

psrn2=poly(srn2)

psrn3=poly (srn3)

psrd=poly Card)

IGenerate uncompensated composite Bode plots.

[w,dbl,phl)=bode~psrnl,psrd,.001,100,400);

[w,db2,ph2)bode(psrn2,psrd, .001,100,400);

Ewj,db3,ph3>bode~psrn3,psrd, .001,100,400);

plot Cv, dbl ,db2,db3] , ylab/Magnitude/xlab/Omega/upper/logx 0

plot Cv, phi ,ph2 ,ph3) , ylab/Phase/xlab/Omega/title/Composite Bode..

Plot of Uncompensated Shifted Transfer Functions <Roll 20>/lower/..

logx/keep')

hard( 'p20uncomp')

pause
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// Iteratively run this portion of the program and fine-tune the

// neccessary compensation terms to achieve the desired composite

// Bode Phase plots.

// Read the final compensation terms from the highlighted section.

// *****************************************************************

ncl=convolve(psrnl, [2]);

nc2=convolve(psrn2,[-1));

nc3=convolve(psrn3,[-1/40,-1]);

dci=convolve(psrd,[1,.5,2]);

dc2=convolve(psrd,[l])

dc3=convolve(psrd,[1/.3,1]);

// *****************************************************************C

// Generate compensated composite Bode plots.

Lw,dbl,phl]=bode(ncl,dcl,.001,100,400);

pause

[w,db2,ph2=bode(nc2,dc2,.001,100-,400);

pause

[w,db3,ph3]=bode(nc3,dc3,.001,100,400);

pause
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plot (w, Eabi,db2 ,db3) , ylab/Magnitude/xlab/Omega/upper/logx')

plot (w, [phi ,ph2,ph3J , ylab/Phase/xlab/Omega/title/Composite Bode

Plot of Compensated Shifted Transfer Functions <Roll 20>/lower! ...

logx/keep')

hard( 'p20comp')

pause

IObtain compensated roots in shifted domain.

rsnciroots(ncl);

rsnc2=roots (nc2);

rsnc3=roots (nc3);

rsdcliroots (dcl);

rsdc2=roots(dc2);

rsdc3=roots(dc3);

IIShift j'w axis back to original value.

rncirsnci+ .2

rnc2=rsnc2+ .2

rnc3=rsnc3+ .2

rdcirsdcl+.2

rdc2=rsdc2+ .2

rdc3=rsdc3+ .2

IObtain polynomial forms, and redfine them to be real.

pnci=poly(rnci) ;pnci=real (pnci);

pnc2=poly(rnc2) ;pnc2=real(pnc2);

pnc3=poly(rnc3) ;pnc3=real(pnc3);

-pdcipoly(rdci) ;pdci=real(pdci);
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pdc2=poly(rdc2) ;pdc2=real (pdc2);

pdc3=poly(rdc3) ;pdc3=real(pdc3);

/Generate step response data and plots.

[t,yI1=step(pncl,pdcI,8,200);

[t,y2]=step(pnc2,pdc2,8,200);

Et, y3J=step (pnc3,pdc3 ,8,200);

plot Ct, Cyly2 ,y3] ,'strip/ylab/Dif Fip IRudder IDif Can/xlab/Time..
- (sec)/title/Compensated Open Loop Step Responses <Roll 20>')

pazuse

ha.rd('respl')

/Correct rudder and differential canards for sign conventions.

Ct,y2l=step(-pnc2,pdc2,8,200);

[t ,y3) =step(-pnc3 ,pdc3 .8, 200);

plot Ct, .yl ,y2,y3) ,'strip/ylab/Dif Flp IRudder IDif Can/xlab/Tiime ...

(sec)/title/Compensated Open- Loop Step Responses with Sign ...

Corrections <Roll 20>')

pause-

hard('p2Oresp2')

diaryCO)
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G.2 Verification of Phase Compensation

IfExecutable file for verifying lateral-directional phase

Icompensation using system build.

IObtain phasa compensation terms from appropriate 'shift.mxx'
//f iles by comparing rnc* with rn* and rdc* with d for each case.

1Include phase compensation blocks into system build diagrams.

/Initially leave gains at unity, but include appropriate
IInegative signs.

1Generate compensated state space (sc,nsc) for each
/transfer function.

[slc,nslc3=linC.O0i);

simC 'anal/pcomp2..2');

Cs2c,ns2c]=lin(.OO1);

sim(' anal/pcomp2..3');

[s3c,ns3c3zlinC00l);,

IObtain phase compensated step response data and plot.

E[tylcJstep(sic,nslc,8,200);

Et ,y2c1=step(s2c,ns2c,8,200);

Et ,y3c) =step (s3c ,ns3c ,8,200);
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plot Ct, Eylc,y2c,y3c) , strip/ylab/Dif Fip IRudder IDif Can/xlab/Time .

(sec)/title/Phase Compensated Open Loop Step Responses <Roll 20>')

pause

hard('coip')
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G. Iniclusion of Gain Compensation

// Executable file for including gain compensation in the

II lateral-directional channels.

// Determine desired relative weights as discussed in the text.

// Dif Flp - 40%

// Rudder - 20%

// Dif Can - 40%

// Multiply these percentages by the gains required to normalize
II each of the responses to unity.

II Insert the resulting gains into system build to obtain desired

// composite time response plots.

// Generate coz,,.r:ated state space (sc,nsc) from system build.

sim(lanal/pcomp20-l');

[slc,nslcJ=lin(.O01);

sim('anal/pcomp20_2');

[s2c,ns2c=lin(.001);

sim(' anal/pcomp20-3');

[s3c,ns3c]=lin(.001);

// Obtain gain and phase compensated step response data and plot.

[t,yicj=step(sic,nslc,8,200);

[t,y2c]=step(s2c,ns2c,8,200);

[t,y3c]=step(s3c,ns3c,8,200);
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plot t, [ylc ,y2c,y3c) , name/ylab/Responses/xlab/Time (sec)/ ...

legend/Dif FlplRudderlDif Can/title/Final Compensated ...

Open Loop Step Responses <Roll 20>')

hard( 'p2ofinalresp')

pause

/Generate system build hardcopy file of final compensated system.

//(pcomp20.bd).
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Appendix H. Lateral-Directional Effective Plants

This appendix shows the System Build block diagrams of the lateral-directional

effective plants, including final gain compensation as discussed in Section 3.6

Aircraft-20

Gain Compensator Actuator

7.3 -1320,l13 1.94

Gain Gain Actuator STA,

Gain Compensator Actuator

3 AQ NS 4 ph.

Figure H.1. Peff(1,1) Final Compensation Block Diagram (a = 20)

AH-iraft.40
Gain Compnao r Actuatr de i p

ag*0.2s # 1.6 3 2

Gain Gain Compensator Actuator TT

Gain Compensator Actuator
O.! dI dlf can S:

Figure H.2. Peff (1,1) Final Compensation Block Diagram (a = 40)
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A*.:c.-sf,-50

Gain Corpensator Actuator
ze'd

-2 del dif flo$6.3 0 F,2-29.5. 3 20

Gain Gain STATE
Compensator Actuator

F---' Id.1 rudder
a 20

SPAZE

Gain Actuator

del dif can

NS-.4

Figure H.3. Pff (1,1) Final Compensation Block Diagram (ct 50)

Aircraft 60

Gain Compensator Actuator 1d.1 dif f1p beta

s4-1. Is + 10.24 3

Gain Gain Compensator Actuator STA-.E

I -F del rudder7.7
3-0.6s + 9.04 3 - zu SAC--

Gain Compensator Actuator

1---Z-1del dif can

LLL!Li XS:4

Figure H.4. Pff (1,I) Final Compensation Block Diagram (a 60)
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A, :Craf- -2^

Gain Coal AL-tuator

1 dif fl.9 7.3

Ui

Gain Gain Actuator

2-ZU 
SA=-

r

Gain Compensator Actuator

1 J -v. Id*I dif can
a 20

%S,.4

Figure H.5. Pff (2,1) Final Compensation Block Diagram (cr 20)
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Figure 11.6. Pff (2, 1) Final Compensation Block Diagram (a .10)
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Aircraft-20

Gain Compensator Actuator
beta

28.5 1 -F----Id.1 dif fl,
3L-0.64a + 13.07J 3 - ZU

Gain Gain Compensator Actuator STATE D

-F-j6'jd.1 rudder
3 + ZU

SPACE
r

Gain Compensator Actuator

dif can
I,,d 3 + 20 phi

NS:4

Fit-ure H.9. Pq f (1,2) Final Compensation Block Diagram (a 20)

Aircraft-40
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r ---- F 1 -1 ,, del rudder
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Figure H.10. Pq f (1,2) Final Compensation Block Diagram (a 40)
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Aircraft-50

Gain Compensator Actuator 
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...................... .... ""- O .93+ 9. 9 3 + 20
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SPACE
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Figure H. 11. Pq f (1,2) Final Compensation Block Diagram (a 50)
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SPACE

r
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Figure H. 12. Pf f (1,2) Final Compensation Block Diagram (a 60)
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Aircraft-20

Gain Compensator Actuator
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beta

28.5 _20__Id.1 &f fl,
I 3z-0.643 + 13.07 3 + ;!U

Gain Gain Compensator Actuator STATE P
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Figure H.13. Pfi(2,2) Final Compensation Block Diagram (a 20)
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Figure H. 14. Pq f (2,2) Final Compensation Block Diagram (a 40)
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Aircraft 50

Gain Compensator Actuator

dif f1p
31 9.9 a + 20

Gain Gain Compensator Actuator P

F rudder-,cu
SPACE

Gain Compensator Actuator
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NS,.4

Figure H. 15. Pq f (2,2) Final Compensation Block Diagram (a 50)
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Figure H. 16. Pq f (2,2) Final Compensation Block Diagram (a 60)
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Appendix I. Matrixx Executable Files - Singular-G

This appendix lists the Matrixx executable file that was used to iteratively

find the values of the a and b elements of the singular-G compensation matrix. The

goal was to separate, as much as possible, the right half plane poles and zeros of the

effective (SISO converted) lateral-directional plants. This procedure is discussed in

detail in Section 5.3. One again, this is not software code. It is only a listing of

comments and recommended command lines that may be useful to the reader.

// Singular-G-20 .mxx

// Executable file for finding the 'Singular G' compensator

/1 coefficients for the lateral-directional controllers.

// Desire RHP zeros of I + G*Peff to be separated as much as
// possible from the RHP poles.

//' Peff A*D2(NIl+B*N21)+Dl(N12+B*N22)

I/ P11 = N11/DD1

// P12 = N12/DD2

II P21 = N21/DD1

II P22 = N22/DD2

// D = common portion of denominators.

// D1,D2 - unique portions of denominators.

I/ A,B = coefficients allowed to vary.

load' /thesis/lateral/lat20/lat2O .mat'

diary('Sin-G20.dy')
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Ni iPN2OP;

N12=PN2OPR;

N21=PN2ORP;

N22=PN2OR;

RN11=roots(N11)

RN12=roots (Nl2)

RN21=roots(N21)

RN22=roots(N22)

DENii=PD2OP;

-DEN12=PD2OPR;

DEN21=PD20RP;

DEN22=PD2OR;

:,RDENII=Roots (DENil)

RDEN12=Roots (DEN12)

RDEN2i=Roots (DEN2i)

RDEN22=Roots (DEN22)

INote that DENii=DEN21 & DEN12=DEN22.

ICommon portion of denominator is not used to find zeros.

/Compare RDENi1 & RDEN12 and cross out common roots.

IConvolve zemaining roots of DENlI to form Dl.

Dia--convolve([1, .05+i.3919*jay) l, .05-l.3919*jay]);

Dl-convolve(Dla, El, 1)

RDl=roots(Di)
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IConvolve remaining roots of DEN12 to form D2.

D2a--convolve([1,2.3979*jay , EI,-2.3979*jay));

D2bconvolve([,-.32+3.6011*jay,[1,-.32-3.6011*jay]);

D2cconvolve (D2a,D~)

D2=convolve(D2c, [1,-.21)

RD2=roots (D2)

diary (0)

IFind combination of values for A & B that separate RHP
/zeros of Peff as much as possible from its RHP poles.

//diary( 'modroots20')

for a--2:1:4; ...

for b--3:1:3; ...

Peffconvolve(a*d2, (nll+b*n21) )+convolve(dl, (n12+b*n22)); .

Rroots(Peff);..

R ,a,b, ...

end,...

end

/Idiary(0)
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INow plot root locus of effective plant <lat2O>, and list
Iroots of modified plant.

diary( 'modroots2O .list')

a--I

b= 1

Peffconvolve(a*d2, (nll+b*n2l) )+convolve(dl, (n12+b*n22));

rtnumplnt2O=roots (Peff)

IAdd roots of two denominators, then remove dupliceted roots.

rtdenplnt2O=RD 1+RD2-d

diaryCO)

IfGenerate poly form for root locus command.

pd=poly~rtdenplnt2O);

krlocus(Peff,pd, lxma=5/xin=-5/yax=5/ymin=-5/...

title/Root Locus of Effective Plant <Lat 20> a=-1,b1'l)
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