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Abstract

This thesis examines a remote sensing technique for measuring the atmospheric struc-

ture constant (C) as a function of altitude by performing spatial correlation of wave front

sensor measuremehf-3. Two point sources are used to irradiate two wave front sensors in

the aperture plane of an optical system. The geometric relationship between the sources

and the sensors gives rise to crossed optical paths. At the point where the paths cross,

the correlation value of the turbulence contrib, "ions will be at a peak. The correlation is

shown to be mathematically related to the structure constant in terms of an integral of C,;

multiplied by a path weighting function. It is shown that the path weighting function ran

be made to have the characteristics of a sampling function and the value of the structure

constant can be directly inferred from the correlation measurement. The vertical resolution

and signal-to-noise ratio are calculated for a sample case of two-layer turbulence.
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Sensing Refractive Turbuience Profiles Using Wave Front Slope Measurements

From Two Reference Sources

L Introduction

1.1 Atmospheric Turbulence

An electromagnetic wave traveling through the Earths' atmosphere is subject to a

phenomena known as atmospheric turbulence. Atmospheric turbulence, caused by differ-

ential heating of the Earths' surface by the sun, is characterized by random variations

in atmospheric temperature and pressure. An electromagnetic wave passing through tur-

bulence experiences a bending or distortion of the wave front shape. Optical systems

operating in the presence of the atmosphere are subject to the effects of the turbulence.

The distortion reduces the resolution the astronomer achieves when looking through a

telescope and disrupts optical communications. The familiar twinkling of starlight is an

example of the distortion caused by the atmosphere. The light waves are being bent as

they pass through the atmosphere to the Earth.

The efforts to mitigate the effect of atmospheric turbulence on optical systems

spawned a branch of optics known as adaptive optics. In adaptive optics, techniques

are employed to reverse the effects of the atmosphere on the optical wave (7). One com-

mon technique is to use a deformable mirror. A control system senses the deformation of

the incoming wave front and sends signals to the mirror. The mirror surface deforms to

a shape that is the inverse of the distortion. When the distorted wave hits the deformed

mirror, the distortion is nullified.

Inherent in the techniques of adaptie optics is the need to be able to characterize the

nature of the wave front distortion. To characterize the wave front distortion, it is necessary

to know how the turbulence is distributed along the optical path. A parameter known as

the atmospheric structure constant is commonly used as a measure of the strength of tile

turbulence. The structure constant is introduced in the following section.

1- t



1.2 Glwracter-ization of 'ir-bilcnce

The atmosphere may lbe thouight of as a randomn field. Thme pressure andl tempejra-

Lutre chiange as a function of position. Thmerefore. Lte pressure and tempJerature are nmon-

uniformly distributed along an optical p~ropagation path. In the theory of turbultentce. the

strength of the turbulence is characterized by Lte magnitude of the power spectral den

sity (psdl) of the index of refraction, n. This psd is designatedl as 4i,,((K) where Pi is the

wavenuniber vector.

The magnitude of +.,(Ai) is proportional to a p~aramneter known as Lte atmospheric

structure constant of the refradive indlex fluctuations. Th'le atnmosplheric struictuare conastant

is denoted as C,2, and is a function of position along the optical p~ath. Since Lte magnitude

of the psd is p~rop~ortiontal to C,2, Q~ is used as a measure of Lte strength of the turbulence.

1.3 Measurentent of C'

There have been numerous methods used] to measure C! (3. 10: 12, 1H. 17). Actually.

the use of the word measurement is a. misnoiner since the structure constant can iot be

dlirectly measured with any kind or instrumnict. The technique usedl to evaluate C;-, is to

measure a lparamneter of an optical systemn operating in thme presence of turbulence andl

extract Ltme value of C.2 from the ineasu red quantity. Fried (3) was one of thme first to apply

this approach b% perfurmniing apatial cross- currelittion of stellar:,cintillaiom measurements.

As wvith Fried's work, current techniques rely primarily on Ltme spatial or temp~oral cross

correlation p~rop~erties of Lte intensit.% of hie olwical field. rThs research will take a neu

ap~proach, based not on Lte intenisity of Ltme optical field. but on Lte correlation p~roperties

of the wave fronmt p~hase.

1.4 Approach

Co.sider two point souarces, dlenotedl p, atnd p,. which are separated by a distance

Apas shown in figure 1.1. Two wam~e front senisors are placed in the apertutre planeof the

optical system. Th'le geoncrit- relamtionmslmip betweetn the sourc-es 11nd Lite e fromam. Semsors

gives rise to ClOSsedl optical pat hs The lighlt trot each point source t ra~els adilrer(ntt

op~tical piath to the wave frot senlsors. At Ltme point ulnere the pala.% cross. Lte turbidenre

contributions frontm the two soul ces will be haigill correlaited. Thais correlatiion is exploited

to calculate C". A tree step) jrocesS s IS se ini thmis tLMesiS. It. is first shtownm that Ltme

structumre constant i.s related it) thme coraclation of thme ameasuareaments fromm Lteat t%% nA 'a~e



zI
Ap I-,

x x

Figure 1M1. Measurement Geometry

front sensors by

C, =(1.dz1Cz)W(-))

where C, is the correlation of wave front sensor measurement with wave front sensor

measurement 2. z' is a position along the vertical path. and r(Z') is a path weighting

-function. The next step proves that the weighting function can be shown to approximate

a D.-ac delta function under certain conditions. The siftin, property of the Dirdc delta

function may be used to evaluate C. from the relationship in equation 1.1. Finally. the

signal-to-noise ratio (SNR) of the correlation measurement is calculated to evaluate the

accuracv of the method.

1.5 Orerview

Chapter II reviews the ba groiind of atmospheric turbulence sensing as it applies to

this research. Chapter III eplains the nethodolcgy employed in this research. Chapter

IV is a presentation and analysis of the results. Chapter V contains conclusions and

recommendations for further study.
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I. Background

2.1 Introduction

This chapter examines the theory of atmospheric turbulence and reviews a method

used by Fried to calculate the strength of the turbulence. The crossed-beam method of

remote sensing, and its' application to this research, is discussed.

2.2 Theory

2.2.1 Atmospheric Turbulence The index of refraction, n, for a medium is the ratio

of the speed of light in a vacuum to that in the medium. In the Earth's atmosphere, n is

a function of pressure, temperature, and humidity. As such, it varies with height above

the Earth's surface and n may be expresb;d as a function of position. The variation of the

index of refraction is a random quantity. The atmosphere may be visualized as consisting

of randomly sized pockets of air called eddies. Typically, eddies range in size from a few

millimeters to tens of meters. Each eddie is at a different pressure and temperature and

thus has a different n. As an optical wave front propagates through the atmosphere, the

variation in n from eddie to eddie distorts the wave front.

Since the characteristics of the eddies are random, n is a temporal and spatial raindom

process. As a result, it is necessary to use statistical methods to describe the characteristics

of n. In atmospheric optics, it is common to characterize the second order statistics of

n using the structure function. Using angle brackets to denote the ensemble average, the

structure function is given by (8:526-527)

D.(i' =<j n(F+ FI) - n(F,) 1> (2.1)

where r is a position vector.

2.2.2 Power Spectral Density The power spectral density (psd) of the index of

refraction fluctuations, (D,(f), is a measure of the strength of the turbulence. As Goodman

states, (6:388) the psd may be regarded as a measure of the relative occurrence of eddies

with dimensions L --. I? is called the wavenumber vector and may be interpreted as

the number of eddies that occur in a unit length. As Tatarski shows (15:19-21), the psd

may be related to the structure function by

D( i- 2 [1 - cos(f( • r-)] ',(i?) d3
f( (2.2)

2-1



2.2.3 Kolmogoroff Spectrum In a classic paper on statistical theory (9), Kolmogo-

roff developed a theory of turbulence that has been used to model the effects of the atmo-

sphere. In this theory, the eddies are characterized by two size parameters; the outer scale

L, and the inner scale 1o. If the eddie size is between Lo and 1, (i.e. < K < the

turbulence is essentially isotropic and this region is known as the inertial subrange. Since

the turbulence is isotropic, C, is only a function of the magnitude of K and the spectrum

is expressed as (6:386-390)

d,,(K) = 0.033C, g = ' (2.3)

where K K ]. The quantity C2 is known as the structure constant of the refractive

index fluctuations and is used as a measure of the strer. 'a of the turbulence.

2.3 Evaluation of C

It is not possible to measure C2 directly, however, the evaluation of C2 as a function of

position has been widely studied. Both vertical and horizontal profiles have been obtained,

however, the vertical profile is of primary interest for celestial imaging. Figure 2.1, adapted

from tabular data in reference (1:2179), is a plot of a typical vertical profile of C, from 1

to 20 kilometers.

10-15 ' I -r

10-16

Ci(m )

10-18

1 - 8I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20
altitude(km)

Figure 2.1. C2 As A Function Of Altitude
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In 1968, Peskoff (13) p)ublished1 a mathematical b~asis for calculating C,-,. Ile pro-

posed gathering irradliance dlata fr'om optical scintillations and correlating the irradiance

measurements. The correlation value is usedl to extract C,2,. At the same time, Fried pro-

posedl a similar experimental implementation (3). 1riedls work is a goodl example of the

correlation method and is explained in the following section.

2.3.1 C'oirclation of lihradiancc M1cumnicnlli~s Fied p roposedl using two telescolpes,

each having a restricted field of view, to track scintillating stars and gather irradiance (data.

(3:16418). The intensities measured b~y the telescopes are dlenotedI ii(t) and i2(t) wvhere

t is time. The logarithmic amplitude, Q(1), is computed from the relationship

4l) In iit > (2.A)

where the angle brackets denote a time average. In turn, the spatial-temporal log ampllitude

covariance C,(p, T) is calculated[ from th~e log-amplitudes by

'Tatarski's work (15:110-113) contains an equation which relates C,(p. r) to C2 . Fried

applies this equation andl redluces the resultant integral 1.o thle following form:

Q (p) =: k~ dz PC (z F kp (2.6

In this exp~ression, F(L~) is a function that. represents a grouping of all the mathematical

terms that dlependl on 1. Trhis all ows C,2 ald z to standl alone in the integral. Fried

analytically solves the function 1( ) atid prov'ides at table of v'alutes. Using this table. the

mleasuredl C'i(p) is now related to the unk~nowvn '( by a linear integral equation.

The approach used by FRed has become soniewhatsantdard. .Measuitenmen s ate titade

of a lprolperty of an op~tical field an ite tnea.-u red quanitit ies ate ie'at e( tou C,'~ (uisutally b

an integral). The terms in Ihe equtilion ate groupledl into at separtate futdion to allow C'

to standl alone. The 5Cl)m tle fit ct ion is cal led a pathI weigh tinug futntctiotn antd~ relatesC'

to the mneasu red quaniitity.

2.3.2 The C'rosqcd-3corni AldIhod In 1.967, 1ister and lKrause (2) p~roposedl a tmethod

to extrct tudmlttletice values from invamhttentetis ~tm ade usintg c tossed laser beatits. 'no IWeit

2-3:



beams intersect at a right angle in a turbulent medium. At the point of intersection, there

is a related (correlated) fluctuation in both beams. Away from the intersection point,

the turbulence effects are uncorrelated and produce uncorrelated effects on the beams. If

the covariance is calculated, the uncorrelated effects yield a zero average value while the

correlated effects yield a non-zero average value. The correlation value at the intersection

is a function of the magnitude of the turbulence fluctuations at or near the intersection

point. The covariance values can be used to evaluate the strength of the turbulence. They

show the method produces accurate results for measuring turbulence in the shear layer of

a subsonic jet.

In 1974, Wang and his colleagues (17) applied the crossed beam theory to sense

horizontal wind and refractive turbulence profiles. They did not require the beams to be

perpendicular. Calculating the covariance function of intensity fluctuations of the crossed-

path signals, their development yields an expression very similar to equation 1.1. C' is

related to the covariance by an integral involving a weighting function. They plofile the

weighting functions for three different transmitter-receiver configurations.

2.4 Conclusion

Characterizing the strength of atmospheric turbulence by remote sensing has been

widely studied. The crossed-beam method is often used to measure a parameter of an

optical field. The measured values are related to the atmospheric structure constant, and

the structure constant serves as a measure of the strength of the turbulence. Much of the

I .. st work has concentrated on optical scintillation measurements w, ere the intensity of

the light is the quantity of interest. It is proposed that ciossed beams may be used to

obtain a measurement of wave front phase, rather than intensity, and the phase correlation

properties may be used to calculate C,. The next chapter presents the development of this

proposal.

2-4



III. Methodology

3.1 Intr-oduction

As discussed in the previous chapter, a primary method used to obtain vertical

profiles of C;' has been through the use of optical scintillation measurements. These mea-

surements utilize the intensity of the optical field. Insteadl of using intensity as the quantity

of interest, it is showvn in this chapter that measurements of wave front phase slop~e may

be used to obtain profiles of C,2.

Consider twvo point sources, located at points pi and P2, an(1 sep~aratedl by a vector

distance Ap, as shown in figure 3.1. Twvo wave front sensors, W1I(F) and W2 ~,are placed

z

APP

A x X

Figure 3.1. tMeasuremient Geomietry

in the ap~erture plane of the op~tical system. The wave front sensors are separated I)% the

vector distance Ax. Each sensor measures the slope of the (istorted wave front across a

finite area calledI a sidbaperturie. Each sensor is (hi% idle( into imolt ipIle so baperttireb, Vach of

wvhich prIovides a SlopeC Ieasulremlent.



It is common to normalize the aperture weighting functions (16:1771) so that ]
Jd 2: W w(g) =1(3.1)]

where n, in the case of figure 3.1, may be 1 or 2.

The point sources are at a height z, above the aperture plane and z' is a point along

the z axis. As can be seen from the figure, the geometric relationship between the sources

and the sensors gives rise to crossed optical paths. The light from each point source travels

a different optical path to the wave front sensor. At the point where the paths cross, the

turbulence contributions will be highly correlated. This correlation is exploited to calculateQI
This chapter contains mathematical derivations based on the correlation of wave front

phase slopes for the geometry of figure 3.1. The first derivation proves that the correlation

of wave front slopes, denoted C,, can be related to C, by the following equation.

= f dz' C(z') W(z') (3.2)

where z' is a position along the optical path and w(z') is a path weighting function. If w(z')

has the shape of a Dirac delta function (i.e. a sampling function), the sifting property may

be applied to equation 3.2 to directly relate C, to C2.

Following the derivation of equation 3.2, the expression for w(z') is simplified so that

it depends only on terms of the measurement geometry (Ax, Ap, z', etc.). This allows

w(z') to be plotted to examine the sampling characteristics. It is shown in Chapter 4 that

the path weighting function derived in this chapter does not possess an ideal sampling

shape. Therefore, a discussion is included in this chapter about a method to improve the

shape of w(z').

Finally, an expression for the signal-to-noise ratio of the correlation measurement is

derived. This is used to quantify the accuracy of the measurement technique.

3-2



3.2 Overview of Derivation

Since the derivation of equation 3.2 is rather involved, it is useful to first outline the

p~rocedure. The first step is to dlefine what is meant by the correlation of w.ave front slopes.

Trhe next step is to dlefine an expression which relates the slop~e signalb to the mieasuremnit

geomeptry of figure 3.1. This allows the correlation of thc wave front slopes to be directly

relatedl to the mneasu rcment geometry.

After the expression for the correlation of the wave fronit slopes is developed, the

ensemble average is taken. This is (lone because the slope signals are defined in terms of

the wave fr-ont phase of the optical wvave fronm each source, which is a random process.

Taking the ensemble average introduces the second order moment of the wave front phlase.

An cxpression in the literature relates the second order moment of the phlase to thc( p~hase

structure function. Recalling from Chapter 2 that the structure function is related to C1

the next step is to use an expression (also from the literature) to relate thme two quantities.

The resulting exp~ression will be an integral over z' that includes C,2, and~ sevrc.al other ternms.

The trsotlier than C,2 are groupe an alled wv-'z'). the p~ath weighting fun!ction.

The fimnal p~art of the derivation concentrates on thme path weighting function. By

assuming Kolmiogoroff statistics for the atmiosphert. zu(z') is reduLed to a. form wvhich is

only (depenldent upon known (quantities from the mi-asllreinent geonmetry. It is therefore

p~ossib~le to plot tv(z') to examine how closely it appi oximiates a sampling function.

3.3 Derivation of t/ie Pat/h l1ciglmling Function

This section contains the (derivationi of the path woightimmg function denoted as iv(:')

ill equation 3.2.

.. .1 Golr'elaiion of Slope- Signals Th.im C.,. step ;s ! o dofi ne lie correla tion as

where .sl and( ,;, are thme slope signals froin two indid~ ~ual %wmve fiont senisor 5ukmpertuies
sep~arat ed by A.i:. Rlecallinig the freometri of Figure 3.1. .sii thme slope nmeasurenment arisingr

from reference source 1, and ., is the slope ineasur'eint arising front referenice source 2.

For tie remainder of this dlevelopmneit, it. is assumed hait, each n~ave front sensor consibss

of onl1Y a single subapertnre and( Ile sepa~ra tioii betweeni the senisors is Axr.

3-3



The next step is to find an expre.;ion for the slo, 7 signal. Referring to tile literature,

(16:1771) the phase of the incoming wave is designated O,(i) where !is a two-dimensional

position vector and n refers to the source of the wave front. For the geometry of figure 3.1,

n may be 1 or 2. It is convenient to define a z-. miean phase (4:1914) related to on(:) by

) , -- , ' . ' 2 J (3.4)

The output of a wave front sensor is a noisy Leasurement of the average slope of €4(E)

over the aperture and is designated s,. The c.'. ' for s,, is

S. = J& ()I (3.5)

where Wn(;) is the aperture weightiL, function, ¢,(9) is the spatial gradient of the

phase on, in is a unit vector in the direction of sensitivity of the sensor, and an is the

slope measurement error. The measurement error is attributed to photon noise in the

detection process. Integration by parts yields

= -d2. [VWn(9) • dn] On() + an (3.6)

To simplify notatioi, let VWn(E) • d4 = W,3(.q) where Wn(E) is the gradient of W,(X-) in

the direction of the nth sensor. Rewrite:

Sn = -fd
2 1.1r.)4() & (3M)

Assuming the subaperture weighting functions are identical except for being shifted relative

to each other, it is possible to write W(9) = W(9) and W2 (M) = W(, - Zx) where IV(.)

is the subaperture weighting function. Using these representations and plugging equation

3.7 into equation 3.3,

C(A x) =(3.8)

ifd'2. Wo(q) 01p ) + al

2 { f V(., - X) q.2(:P) + a2
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After multiplying ao!d rcgrouping, C,;(aZ) becomes

C, (ax) = (3.9)

d! 2,-' 2'. ¢V,(.) 1,V-(J~~l2X) [01~5 (JA) 1sx~- ) 0)2(x)

F iX V"(P - , :x) ¢..,()

+ aa

3.3.2 Ensemble Average of C., As mentioned in the Overview equation 3.9 contains

randomi qulantities and it is therefore necessary to use statistical methods to rroceed with

the derivation. € is a. two dimensional random process. a is assumed to be a. zero mean

random variable independent of 0. Consider the ensemble average of C,(Ax), denoted

with the angle brackets:

(C, (Ax)) = (3.10)

(2i J i ) - A-x) (,'G.) Z()

+0

+0

Simplifying,

(c',(,S.)) = (3.11

]I-x d-.T Ii"(:71 w'Cx' - .)(€(i) V _(I!))

Consider the correlation of the noise functions, (o ll0.). i equIat ion 3.11. Recall Ihat o,

and n- are iioie fronm the uave front sensor nea-surements. In eqiuation 29 of referelxc

(16). Walhner expresses the correlation of slope leasrillmelent noises as

(o,Iok') = 2~ 52(n - n) (3.12,
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where n and n' designate the wave front sensor subapertures, U2 is the photon noise

density, and 6(n - n') is the Dirac delta function. Equation 3.12 indicates that for different

subapertures (i.e. n 5 n'), (0,,, = 0. For the geometry under consideration, the

subapertures do not coincide and the noise term is zero. Wallner also derives (16:1773-

1774) an expression for the second order moment of the phase, (0() 02()), in terms of

the phase structure function D12 :

1 D12(9, + g(E) + g(:P) - a (3.13)

where
D12 (.F, .) = ([¢() - ¢fQ')]2 ) (3.14)

and
g J '"2 W(?') D( , x') (3.15)

and

a dJ( (3.16)

Since W1(9) is an odd-symmetric function, the integratio. P over x? and a" ' yield a zero

value. Therefore, all terms in equation 3.13, exc'ept -!D 12  , :P), will go to zero.

Using equations 3.13 and 3.12 in equation 3.11, the correlation of the slope signals

may be written as

(C, (tx)) --- (3.17)

Jd, dx '( 'V3 (-'- x) [-,

To further simplify equation 3.17, it is necessary to have an expression for D 2(E,.P) that

is applicable to atmospheric turbulence and the geometry of figure 3.1. This is discussed

in the next section.

3-6



3.3.3 Patlh Weighting Function For slatially stationary, transverse isotrol)ic tur-

bulence for the two source geometry of figure 3.1, Lutomirski and Buser (11:2160) show

that the phase structure function may be expressed as

D1 ,2(.- .) = (3.18)

8T,2 k2 0f dz' dK Ki 'K), (KL,O,z')

x 11- J0 (K,](Sp)(--)+ (F-.P)(1 -  )

where 4,,,(K.±, K,z') is the spectral density of the index of refraction, Ap is the vector

separation of the optical sources, and x and v' specify two points in the aperture plane of

the optical system. The spectral density, 1,,, is a function of distance from the aperture

plane, z', and of wavenumber components j)erl)endicular (K'4 .) and parallel (K,) to tile z

axis. .10 is the zero-order Bessel function.

Following Welsh (18): assume the power sl)ectrum of the index of refiaction is sep-

arable in the perpendicular and parallel wavenumber components (K 1 , K.) and z'. This
yields

,),, (l., K z') = ,', (I', K.) C;-(z') (3.19)

Substituting equation 3.18 and 3.19 into equation 3.17 yields

(CAE.')) =: (3.20)

J k' / d z' I.l/+(i.) W 5 (x' -- A'x)

x-D";' +z d0' 1x'" "

To match the form of equation :1.2. this nuay be rewritten as

(C,(.x..)) = f , C.(z2 ,( .-... Ax,. Ap) (3.21)

where 1(z', z.,Ax.,Ap)is a path weighting function and is defilned as
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7 z,,,x, Ap) = (3.22)

J ,F 2fdp I'V-'(:i) W~p(5p - S)

x (-4, k dK. 4 ,:,(K.o)

x {1-Jo K0 (K+(,-. -+:() }

3.3.4 Evaluation of Path Weighling Function To further evaluate the path weight-

ing function, it is necessary to assume a form for ,,,. For atmospheric turbulence, Kol-

mogoroff (9:154) has shown that

S0.033K (3.23)

where K =1 K. + K, j. Using 3.23, the expression for the path weighting function may be

rewritten as

Iu(Z', X,x,,Ap) = (3.24)

-. rk2 J dz J ,.X'(.) WS¢.,- dx)

x dK -. 0.033K--

Employing the integral identity (15:269)

dx( - .,o)x-,' = {2P r(!-- ) sil (P (3.25)

where I < p < 3. and coml)ining terms,

,v(-'. z,, Ax.,-'S) = (3.26)

-,(O.033)r*k 2  (12:f J .i ' F i).'(:' - ,X)

x (Z ) + ([2- )-
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Simplifying,

w(Z', z, Ax, Ap) = (3.27)

1.46k 2 E .&x J dx' ) IW-(x' - X)

x I(Si,1 + (9 - .X90 - )

To evaluate equation 3.27, it is necessary to assume an expression for 1,V'( ). It is not

uncommon to see squar,. -mibapertures in a wave front sensor and the rectangle function is

commonly used to describe the tranomittance of such an aperture (5:67). Mathematically,

this implies that

S rect( (3.2S)

where the factor is necessary to achieve normalization to 1 (see equation 3.1). Taking

the derivative of equation 3.28 yields W'(57), as required.

In general, the derivative may be expressed using the delta function (5:63-66):

-)~ + 6(x - H) rect(.) (.9,,3( ,') = V,,G'(). d = [6(x,. + ). L ) et )'  (3.2.9)
L2 2 2 1

Implicit in this expression is the fact that the slope in the x direction is the quantity under

consideration (i.e. d is an x directed unit vector).

3.3.,.1 Evalualioll of :lbsolule Valm Quantity It, is convenient at this point

to evluate the absolute value quantity in equation 3.27. Representing the vectors by their

components in the & and d directions

A,= Ati + Ap), (p.:-0)

Ax = Ax:i + AY!, (3.31)

F = ar. + yj (3.32)

X',.' +I'y (3.33)

and substituting into equation 3.27 yields.
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f(X!X':!',A7:,l-yZ" z,) -- (3.3.)

(Ai + ,.p,,)-- + [xi + , (x'i + ) -

Simplifying,

Af x z ; z Y ,! I(. = A , Z' Z " , (3 .3 5 ).x.,+) =) 1 2- + f{, :- +,- y)l-ZJ

A 7, + .x - x'), - + Y

TYlvicailly: z, is much greater than z' over the range of interest. This is easily seen if tile

sources are laser guidestars. The guidestar altitude would be in the range of 90 to 100

kilometers. Recalling figure 2.1, the range of interest for tile turbulence is well below this

altitude. Therefore, - is much less than I and it is reasonable to use the approximation

(1 - j-) I and simplify:

('. A= (3.36)

A, 1, + x - A - + [A,-- + y - y')I"

3.3.5 Simplification of Path Weighting Funlion It is now losible to simplify ,le

path weighting fuiction in equation 3.27. Replacing the aperture fumnctions with their

mat hematical representations.

.:,. : ,ST. At') = (3.37)

L _ L)lret( 9 , x
Axx

I , L LA!
i )+ - ,Ix -. r- -) relt( "

where fx~x'.y'. Ap. Ap.z'.:,) is defined by ctuatioua 3.36. Employin w the siftin g

property of the Dirac delta function alloas tlhe intcgratixl. imer .1 114d x" i lue perforni"l

and the weighting function reduces to
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('z ,, ,Ap) = (3.38)
f y f v'+ AY

-1.46k 2L 4" dyj rect()T dy' rect( L_-2L L L

f(- 2 ,Ax- ,y,y,Ap,,,Ap ,z,z,) -
-L L

f(A Ax - ,y,y',Ap,Ap,z',z) +

f(-L) ,. + L , ) A,, ) +P., z,.

Let

g~y-y')=(3.39)

2 2L L

SAx- - y,,P ,Ap,,p,z',z)+

2 2'
L-L L

( ' , ,, ) ( -3.39)

A14kL', 2 e)(- )/ Y et( AN)AP ') (-'

-L L

AI(z',z,Sx,, p) I (3.40)

f y+ . - A-"

-1.46k 2 L4  d rect() Y ret(- L"- yu)

whyr dakindtenche of varible L, Ax y z ' and zv is drpe equ oation cnenwiene

WVz, z8),x, P) (3.41)

-1.46k L4  d dvtl y et( Y ~ '

Another change of variables results in
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W(z', z.,, ,p) = (3.42)

-1.46k L4Jdu g(u) Jdv' rect(Yy) rect(V LuA

Evaluating the integral over v' yields

z-,, x,) -1.46k 2 L- 3 J du g(u) tri( U + AY3.43)

where tri is the triangle function. Using equations 3.39 and 3.36 the weighting function

can be w7ritten

w(z', z, ,fx, p) = (3.44)

-1.46k 2J Jdu tri( L x

2 [(ApK _ AX) 2 + (Apr Z' + U)2

[(Apz A -L)2 +(APYZ+ U)2

_[(,p. z_ -Ax + L)2 + (A~p, Z + U)2

Without loss of generality, assume the apertures and point source geometry is such

that there is no offset in the y direction. This implies Ay and Apy are 0 and equation 3.44

simplifies to

w(z', z , , Ax, Ap) = (3.45)

-1.46k L3Jdu tri(-) x

2 [(Ap,- Ax)2 + u2

- [(Ar.' - Ax - L) 2 + U2]

- [(Ap - Ax + L)2 + u2
ZZ'

The quantity Ap4. . - Ax may be interpreted as the vector distance between the crossed

ray paths as a function of z' (see figure 3.1). Let p Ap - - AT and rewrite as
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1v(z, Z,AX, AP) =(3.46)

-1.46k L3Jdu tri() LX

{2[+u1 - [(p -L) 2 uJ [(p+L)2+?I]

Let 7t' = This allows the integral to become dimensionless and the integration may lbe

p~erformned from -1 to 1, regardless of the size of L. To simplify notation, the weighting

function is designated as wv(z') and is wvritten as:

w(Z') =(3.47)

-1.116k 2L~ (lit' tri(U) x

{2 [E)2 + /2] ( 1)2 1u12 [(E + )2+ 2]}

This is the final expression for the path wveighting function. The characteristics of this

function are examined in the next chapter.

S-4 Improvement of the Path Weighting Function

It is shown in the next chapter that the shape of the p~ath weighting function dlerivedI

in the previous section does not possess5 the characteristics of a sampling function. The lo'k

spatial frequencies% of the p)hase perturbations are causing a common tilt in both slope inca-

suremients. This effect showvs up as a. dc offset in the wveighting fuinction. The method used

to improve the shape of the p~ath weighting function is to combine the measuremnent.s for

different size apertures. This action should remove the common tilt complonent. Equtation

3.417 is use(l with (iffereal values of L to achieve tlhe dlesiredl result. Plots of the improved

wveighting function for this method are given in the niext, chapter.]

3.5 Signal-to-Jloise JRatio of the Correlatlion A'!eas5urement

In order to quantifv the usefuhiess of the techniques dleveloped in this resemrch. the

signal-to- noise ratio (SN II) of the correlation measurement C.. is calculaed. Iii genteral.

the SNR may be expressed as (20:170-171)
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where the quantity in the dlenomninator is recognized as the square root of the variance (i.e.

the standard deviation). The derivation of the variance is rather lengthy, however, the

procedure is very similar to that followed in the beginning of this chapter. For that reason,

the derivation of the exp~ression for the variance is summarized in the following section.

3.5.1 Derivation of the Variance The variance of C3, is given by the square of the

denominator of equation 3.47

VAR?=(~A) (C)) 2  (3.49)

Trhe second term on the right hand side of equation 3.49 is the square of the already

derived result given by equations 3.21 awl 3.47. The first term on the right hland side

is the ensemble average of the square of C,. To calculate this first term, C(luatio 1 3.9

is squared aud the ensemble average is taken. Squaring equation 3.9 yields 16 terms.

11owever, a is a zero mean randomn process and 12 terms go to zero when the ensemble

average is taken. Equation 3.49 may thus be written as:

VAR =(3.50)

x l4SF V(')l'(J x) YT)3 x"
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statistics are assumed since, for Gaussian processes, the fourth order moment may be

expressed as a combination of the first and second order moments (6:39). Using the

Gaussian assumption, the variance expression takes the following form:

VAR = (3.51)

2.13 k4 L -6  dz'dz" C,2(z')C(z Z")

x J du tri(-H) Jdv tri( .) f(it, v, z', z") + 2f2 (u, v, z', z")]
L

+1.46 k4 
U2 L -3  dz' C,2(z') Jdu tri( i 2f 3 (u, z')

+o L

[1.46 k2 L-3 j dz' C,2,(z') du tri(-U)f. (uz')]

The functions fi to f4 are similar in form to g of equation 3.39. Letting p equal Ap4-,

the functions are as follows.

fi(u,v,z',z") - (3.52)
4 [~p~)~ u2 *[(ap, )2 + 1)2]

-2 [(j P + L)- +u] [(Ap. 'p)2 +,

-2 (Ap, z) + L) ( - L) 2 + 2]

-2 Z(/p. )2 + [( A, +) 2 + V2

- (AP). Z ' )2 + 2 )2 + V2]-2 [( I+L 2 +] z ("x~ +

A A
+ (A4i+ )2 + U2] [(A\P.; Z- + V

+ [(Ap - L)2 + U2 (A,- + L)2 + v2

3-15



+ (Ar - L)2 + U2 [(Ap -l) vL

f 2 (u, v,z', z") = (3.53)

4X +(AP - ) 2  
[(Ap- AX)2 + V2]

-2 [Ap ~ - Ax-L) + u2] EA+--Ax)2+v2]2 [(Ap .,  Ax)2+u2] [Az"

Z F8

-2 (Ap -AU L)z A+u (+ 2)

-2 (,p-, - Ax)+u] [(Ap-A-L)2+2

+ - A + L)2 + 2 [(AP - A + L)2 + 2

+2 IAr. -,P,,z'-Ax + L)+ -)

+2 IAm ZSAx - L)2 + U2 I(A~L A X)2 +V2]

(ApZ' Ax-) 2 + - )2 +V2

f-(2 z,) z' (35x

2x [A )2 + U ] z 2+V

-' [2~ + U 2] +2 21]

[(p. -Ax- [(- Ax + L + v
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M4 U, ZT)= (3.55)

-[APA' - Ax - L)± ] ]
-[.PX Ax + + Lj

At this point, in order to get some simplified results, it is necessary to assume a form for

the turbulence. The assumption is made that the turbulence is confined to two layers.

This is represented by

C(Z) C; C~6(Z- ZI) + C;, b(Z -Z 2) (3.56)

Using this form for C,2, the sifting property of the delta function is employed to remove

the integrals over z' and z". The expression for the variance is now reduced to

VR(3.57)1
2.13k4CI 2 L~f du dv tri&(.)tri(4(, - ) I

jl I2 L L

x [f(u, v) +2f 2 (u, v)]

+2.92k 2 a2 C2 L-3f du tri( U)M3 U)

+2.92k 12uC 2 L-3 (li tri(-)f 4 (11)

[1.46kG L 3  du tri( -)fA(U)]

There are now six functions (f, to f.k) instead of four. This is because the existence of

twvo layers of turbulence causes the second and fourth integrals in equation 3.50 to each

split into two integrals, one involving C,2, and] one involving C,2, . The six functions are in
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terms of p, AP.p LL, P2 = V Lp, P3 = P - Ax, and P4 = p2 -Ax. They are

f,(u,V) = (3.58)

4 [p,++] [p,+ 2 +

-2 [p2 + v 2] [(p, - L) 2 + v 2]

-2 [p + u- [(pi± L)2 + V]2
-2 [(p - L)~2 + u2] + [p2 +2]

+ [(p, +L) 2 + u1] [(-i + L)+v 21

+ [(Pi + L)2 + u2] [(px- L) 2 + v21

+ [(p- L) 2 + u2] ~[(p, + L). + v2]

S[(p, - L) 2 + U2] [(P,- L)2 + 2

-[p- +)2 + U2] 2 [p + v2-[(p, -L) L )2 [P + V2]

-2 [p2 + U2 ],, [(P2- L)2 + 211 2

-2[ + u2 [( 2 L)2 + V2]
-2 [(p,-z + L 2] [ +v

± [(p2 + +,2 [(p+ L)2  + v21

+ [(P, + L)2 + u2J [p2 - L)2 + 21]

+ [(,, - L) 2 + 2] [(P2 + L) 2 + v2]

± [(p, - L) 2 + U2) [(P2 - L)2 +v-]

+4 [pl + u2I*' [p + 2]~

-2 [(p - L) + v

-2 [p + L[(P2 [(p + L) 2 + v2]

-2 [(,.,- L)2 + u 2 ] [p + v 2 )l1

+ [(P2 + L)2 + u-I] [(P2 + L)2 + vl-

+ [()2 + L) 2 + U2] [(Ps _ L) 2 + v.J

+ [(pi - L)2 +u21 [(p2 + L)2++-

+ [(p - L) 2 + U2] [(P2 - L)2 + V2 ]
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+4 [p2 + .i] [1; + V2] A

--2 [(P2 + L) 2 + ,121 [p2 -

-2 tP + 2] [(P- L) 2 + v2 ]
-2[p + i] [(p. + L)2 + ]

- 2 P2- L)- + ,-] [' +

+ [(-2  + L)1 + [(P] 2[(P + L)2 - + U2]

+ [(P2 + L) 2 + 1,2 1 [(p2 - L )2 + V21C

+ [(p2 - [)p+ - [(p+ 2 + L) 2 + V2] .

+ [(P2 -[.L) 2 + 1211] [(p L)2 + v2]

Tihe functi-n f 2 (u, v)has the same form as fi(u, v) except the p, is replaced by p3 and the

p-2 is replaced by p4. The remaining functions are

13 (U) = (3.59)

21 ,p + ,,2] - [(p, - L)- + ,,2] - [(pl + L)2 + ,2] 1

f 4(u) = fa(u) with p, replaced by P2.

f(u) = (3.60)

2 [p + u- - [(p3 - L)2 + u2j - [(p.$ + L)2 + ,,]

f(u) = f5(u) with Pa replaced by P4.

3.5.2 Reduction of the Variance Exprcssion In atmospheric optics, the at mospheric

coherence dianmeter, to, is a commonly encountered parameter. In a diffraction limited

system using a long exp~osure, tie resolution will increase %%ith aperture size. However,

the resolution will reach a limiting value beyonld which an increase in aperture size will

not affect. esolution. The limi'ing value is known as the a mospheri" cohercuce diameter

(6:429-,139). It is often thought of as a measure of how good the 'seeing" is at any given

time. To make the ex)ression for tire variance (and hence the SNRI) more meaningful. it

is helpful to relate it to 10 . Goodrm (6:131) pro ides an expression for r0 :

ro = 0.18 1 S .5 (3.61)
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Using the assumption of two-ayer turbulence, the integral expression in the denominator

may be replace by Cf , + C2,. Replacing A by 2 and factoring out an L from each of the

terms in the integrals, equation 3.57 may be written in terms ot difmensionless integrals as

follows:

VAR? = (3.62),1.98(LW~~~o) 21 .- +C L2 '/'

11.9(-) + dt' dv' tri(u')tri(v')
ro C ;, I I

[fi(u', v') + f.(u', v') + fA(', v')]

L- T 1 + I du tri(IL')f4(u')

L+C,, J .,
+6.92(I.)-I,--'" 1 + du'

-r4

- 43.6( )L- 1 +C du' tri(u')f(')

+346 )Sl- 2 1 + ! . d, tri(')f(,0,')

where f,, is the li.nensionless equivalent of f,,. This form is convenient in that C,2 and

,,.2 now only appear in a ra.;,io. It is not necessary to assume cxact. va!'is. only a ratio of

strengths at different altitudes in the two layer model.

3.5.3 SAR Equation The SNIH. may ilow be calculated using equations 3.17. 3.21,

and 3.62 in equation 3.48. As a. final siml)lification., let a' = aL. By using o' in equation

3.62. the factor L -2 is comnon to lhe numeralor an( denomimalor of the SNR and is

thereby eliminated. The equation for the SNI is
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SNR= (3.63)j

3.46 + d4 u' tri(u')f10(u')

+3.46 [1+Cl] j du' tri(u')f!.(v')+

11.98 r CI~+2 i [j dil' dv' tri(u')tri(v')J

(Ru'.V') + f2( .V') + A (u'A)

+6.92(-) r'2 [I + , v rfu)l('

~ [1 (u' tri(u')f4(u')

+-92 13'I6I+,-..1 J di l' trf(u')fr(e

+3.46 1+ - du' ruIf(L]2}

In the next chapter. some typ~ical values aire choseni for the geometry of figure 3.1 and

the SNR is examined as several parameters are allowedI to vary.

S. 6 c'oncl,.iOn

Thei correlation of wave front slop~e measureimcnts has beenl relatedl to C"2 by an

integral expression involving a path xkcightiiig functioni. The characteristics of thiis funiction

aire examiinedl ini t lie next. chap~ter. Also. a me~thIod to im prove the path % ciglituii function

was discussed andl ant expression to calculate tie signial-to-nioise ratio of the correlationi

ineasurcint. was dlerived. These are also exaniedI ini t lie next. chapter.
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IV. Findings and Results

j.1 Introduction

This chapter presents the findings and results of this thesis research. The character-

istics of the unmodified path weighting function are discussed first. It is shown that the

shape of the weighting function must be modified to give it the characteristics of a sampling

function. A method to improve the shape of the weighting function is presented, and the

resolution possible with the improved function is calculated. Finally, assuming the turbu-

lence is confined to two layers, the signal-to-noise ratio of the correlation measurement is

calculated for a sample case.

4.2 Characteristics of the Path Weighting Function

In Chapter 3, the path weighting function was seen to be defined by the equation

w(z') = (4.1)

-1.46k2L;-J du' tri(u') x

{2 [(E)2 + U12] *- -1)2 + ut2] (E + 1)2 + U12]}

where z' is point along the z axis, z, is the height of the reference sources, Ax is the

separation of the apertures, Ap is the separation of the reference sources, k = , L is the

dimension of the L x L apertures, and p = Ap - - Ax is the transverse separation of the

ray paths. Recall that if w(z') is to be useful as a sampling function, it should be at a

maximum at the intersection point of the ray paths. The function should decay rapidly to

zero away from the intersection point. A function exhibiting these characteristics could be

used as a sampling function.
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4.2.1 Unmodified Path Weighting Function Tile normalized path weighting func-

tion is plotted versus 2 in figure 4.1. The data points used to create this plot were generated

by the FORTRAN computer program NORMPATH contained in appendix A.1.
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Figure 4.1. Normalized Path Weighting Function

When 0 - , the ray paths are at a point of intersection and the function is at a
maximum. As . increases, the ray paths diverge and the function falls off. Since tile

L

expression for the path weighting function was made dimensionless, the curve in figure ,1.1

is the general shape for all values of L. For example, if L = im, the values on the horizontal

axis range from 0 to 100m. If L = 1cm, the values range from 0 to lm. A change in the

value of L is therefore seen to control the decay time of the curve. As evidenced by figure

4.1, the path weighting function does exhibit the general required sampling chara,.eristics.

It has a inaximum value at - 0 and falls off as . increases. Hiowever. the funictim, does

not fall off rapidly and never reaches a value of zero. The most rapid decay occurs when

L is smallest, but the function still does not approach zero quickly enough. Therefore.

the path weighting function must be modified to more closely approximate a sampling

function, as shown in the next section.
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4.2.2 Modified Path Weighting Function The method used to improve the shape ol

the path weighting function is to combine weighting functions generated by two apertures

of sizes L, and L2 . In particular, this should remove the common component of the

average tilt and yield a function with a sharp falloff. By subtracting a weighting function

generated by an aperture of size L, from that generated by an aperture of size L1, the

common low spatial frequency components are removed. These low frequency components

have a large correlation over large separations of the ray paths. The large correlation values

associated with these low frequency components are what caused the previous results to

be unacceptable. In effect, the subtraction is equivalent to a high pass filtering of the

weighting function. A plot of the modified path weighting function is contained in figure

4.2 for three ratios of t'. The data points used to create this plot were generated by the

FORTRAN computer program MODPWF contained in appendix A.2.
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Figure ,.2. Modified Path Wie!iting Function
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As with the normalized path weighting function plot, this method yields a family of

curves. The horizontal spread is controlled by the size of Ll and L2 . As Ll and L2 get

larger, the )pread increases. This is because the low fi'equency Conl)onentb are correlated

over a larger area. This action introduces a larger common tilt component. The rate of

falloff to zero is controlled by the ratio L. As the ratio approaches 1, w(fP) decays more

rapidly. Therefore, the best sampling characteristics are exhibited by a curve that has

small values for Ll and L 2 and a ratio that approaches 1. If Ll = lcm and L' = 2cm,

the horizontal axis in figure 4.2 is scaled from 0 to 1n. For a ratio of 0.9, it is seen that

the path weighting function goes to 0 when the transverse ray path sepa.ration is only 0.5

meters, which is very close to the intersection point. The plot shows that the modified

path weighting function exhibits excellent sampling characteristics. The function falls off

rapidly and stays at a zero value and could therefore be used to extract the value of C,

from the correlation value.

4.3 Res'" ion of the Path Weighting Function

It has been shown that the modified path weighting function can be used as a sam-

piing function. It now remains to determine the resolution of the function as it relates

to the measurement geometry. The width of the function w(z') may bc interpreted as a

measure of the vertical resolution. The narrower w(z') is, the more accurate will be the

value of C that is calculated from Co(Ax). This may be directly related to the sifting

property of the Dirac delta fuinction.

To measure the vertical resolution. the method used by \Velsh (18) is adopted. Recall

that
ZI

p= A -Ax (4.2)

At the intersection of the ray paths. p = 0 and the intersection altitud ? z0 is given

by
Zo = (,1.:I)

Apr
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Let a measure of the width of w(z') be given by the point p - p' where, for example,

p' is the e- ' point of w(R). Designate the altitude corresponding to this point as zp,.

Solving for zp,:

(p' + Ax) z, (4.4)
Ar.,

The width of w(z), with respect to z, is

A' Z(4.5)

Let 0 designate the angle between ray paths. As seen from figure 3.1, this is also the

angular separation of the point sources. 0 may be expressed as

0 = arctan 2z- (4.6)2 \2z, /

Solving for Ap,,,

Ap, = 2z, tan( 0 (4.7)

Using equation 4.7, equation 4.5 may be expressed as

Az P (4.8)2tan()
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As an example, referring to figure 4.2, for L1 = 1cm, L 2 - 2cm, and L= 0.5, it is

seen that the width of w(P-) is approximately p = 0.8m. Using this value for p', vertical

resolution is plotted as a function of 0 in figure 4.3.
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Figure 4.3. Vertical Resolution

The plot clearly shows that resolution is related to separation of the point sources.

For example, if 10 meter resolution is required, 0 must be approximately 0.4 degrees. In

general, resolution increases as source separation increases.
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4.4 Signal-lo-Noise Ratio of the Correlation Measurement

In order to quantify the usefulness of the methods presented in this thesis, the SNR

of the correlation measurement is calculated. The reader is referred to Chapter 3 for the

derivation and defining equations. It is important to note the SNR analysis is valid for the

case of tile unmodified path weighting function only. While this provides a good initial

look at tile l)roblem, the analysis should be extended in the future.

To evaluate the SNR for a typical case, it was necessary to choose values for several

parameters. The reader will recall that a'2 x (LX)- was a parameter in the SNR equation

that characterizes the noise in the process. This parameter will be allowed to vary to see

how noise effects the SNR. The structure constant ratio = 2.5 was used based on the
data in figure 2.1. Assuming the turbulence is confined to two layers, the peaks of the

curve at 1 and 10km are chosen. The approach 'ken is to divide the area under the curve

into two sections and assume it exists as delta functions at the peak values. The area

under the curve from 1 to 10km is calculated and assumed to exist as a delta function at

tkm. In the same fashion, tile area. from 10 to 20ki is calculated and assumed to exist as

a delta function at 20km. The resulting ratio is 2.5.

The reference sources are assumed to be laser guidestars at an altitude of z, = 100kin.

Guidestar separation, Ap., is 1kni. The data points used to create the plots in the following

subsections were generated by the FORTRAN computer program SNR in apl)endix A.3.
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4.4.1 SNR as a Function of Noise Welsh and Gardner (19:1919) provide an ex-

pression for the tilt measurement error (noise) as follows:

0 .8 6 7 , -, L > r 0  ( 4 .9 )

where 77 is a parameter nsed to account for imperfections in the detector array and N is

the total subaperture photon count. 77 = 1.5 is used as a typical value.

Using equation 4.9 and recalling a' = aL, it is possible to relate a2 to the photon

count for the values used in the sample case. The resulting equation is

N (0.86 -,)2

N 0 .,r i ) ( 4 .1 0 )

where the parameter a'2(-)3 has been introduced to coincide with the terms in the SNR

equation in Chapter 3. The photon count may now be related to the SNR using equation

4.10. This relationship is plotted in figure 4.4.
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Figure ,4.4. SN R as a Function of P0hoton Cout11
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The plot shows that a photon count of greater than 200 produces all SNR very close

to the noiseless value. Assuming that bright guidestars are used (i.e. created with sufficient

power), photon noise should not be a concern. The remainder of the SNR analysis will

therefore assume a noiseless system (i.e. a' = 0).

4.4.2 SNR (is a Function of Ray Path Separation In this subsection, the effect on

the SNR of changing the ray path separation is investigated. There are two ways to change

the path separation; by changing the separation of tile subapertures or by changing tile

separation of the point sources. In figure 4t.5, the subaperture separation, Ax, is allowed

to vary. Recall that z, is the height of the first turbulence layer, z. is the height of the

second turbulence layer, z, is the guidestar height, an(d Ap. is the gui(lestar separation.

The separation of ray paths is given by Ap, f' - Ax. Therefore, the two points of interest

on the plot are when Ax = Ap.:' and Ax = . These points correspond to a path

intersection point for each turbulence layer and occur at Ax = 10 and Ax = 100. In figure

4.6, the guidestar separation, Ap, is allowed to vary. The corresponding intersection points

for the turbulence layers are at Ap. = 100n and Ap = 1kni.
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Figure 4.5. SNR as a Function of Subaperture Separation
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As seen from the p~lots, the SNR reaches two maximum values. While the plots appear-

to be inl reverse order, it is important to realize that the SNR values are consistent between

the two plots. For examp~le, the vahuc of 0.259 at Ax = 10mn and Ap, = 1011 is consistent

b~etween the two plots. This lbecoines clear wvhen one considers what is hiappeningf when

either thle source or subaperture sep~aration is increased. Thle net effect is to change ray

patlt sep~aration, however, the change is initiatedl at opp~osite ends and( this causes thle p~lot.'

to appear reversedl.

T1'le differenlce inl thle height of the peaks in the turbulence layers may be directly

related to thle strength of the turbulence at the layers. Tme stronger turbulence is causing

a higher correlation value and~ hence a larger SNR. It may be assumed that it will be easier

to detect stronger turbulence values wvith this method.

The variation inl the p~lot of thle SNR indicates that different combinations of source

andI subaperture sep~arations yieIld different values of thle SNRH. Depending onl thle applica-

tion and(, physical limitations of an experiment (i.e. physical space available to change thle

separation of the %wave front sensors), one may adjust thle interrelationship for anl optimum

SNH.

4.4.3 Improvement of the SNJ? Thme SNR plots inl thle previous section (lid not

exceedl a value of 1. For thle method to be useful, it is necessary to consider how the SNR

may be increased. The reader will recall anl initial assumption inl Chapter :3 restricted

the nave front sensors to a single subaperture. If sensors vwith multiple subapertures are

lsedl. anl array of (orrelatiomi values will lbe obtained. rTis is (lone b~y lpairimg all po:sille

combinations of the subapertures. each pair being separated by A x. Using an array of ni

values should improve Lte SN H by a factor of ii. This action should raise thle SNR L.o a

level suitable for (let ion.

4..5 Oblairing a Vertical Profile

As was seen il the previous section, chanuginug Itle su baplwr nrc Ppai-atLion moves I he

path intersect ion poinit. vertically. TIhis feature ma% he exp~loitred to oblam a -'ert-ical p~rofile

of C' . If sensors w i tl nultiplle suba pert tres are iisedl. itis pob.sibl Hese mim di,(ifrer-entl 'alules

of. Nx. P~ai ring all possilhe conmbi nationis of su bape)i t ires separated b% all '~~ isof Ax will

restilt inl anl array of correlation values thtat corresp~ond~ to (differet intei sect on alm~i Iides.

These va Ilies may be exploited to extract the valute of (', ait the (Ii fer('i alt itumdes.
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4.6 Conclusion

It has been shown that, using the subtraction method, the path weighting function

can be modified to approximate a sampling function. C, can be directly related to Cn by

the modified function. The resolution plot indicates that source separation determines the

vertical resolution. As source separation increases, vertical resolution increases. The SNR

calculations for the sample case show that wave front sensors with multiple subapertures

will be necessary. If multiple values are obtained to raise the SNR, it will be possible to

extract the value of C' from the value of C,. Using multiple subapertures also allows one

to obtain a vertical profile.
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V. Conclusionfs and Recomnd f~atio ns

5.1 Overview

This chapter contains the conclusions dIrawn from this research. It also contains the

authors recommendlations for further study.

5.2 C'onclusions

This research has shown that the spatial correlation of wave front slopes may lbe uIsed

to calculate the value of the atmospheric structure constant. The correlation process yields

an integral expyr' -ion relating C,-, to the correlation value by means of a path weighting

function. It is possible to shape the weighting function into a sampling function and to

use the siftinig property of the sampling function to directly relate C' to the correlation

measurement.

It is difficult to compare the accurary of this method to other mnethods. Typically,

othermethds o calulatn are exp~erimentally implemented and the results of the
experiment are compared agaist knou auso ,.Ta a not been (lone yet with

this research. However, based on the samp~le SINIt calculation for two-layer turbulence, it is

anticip~atedl this method will yield accurate results. Full-scale modeling ,nd testing shiould

prove this assertion to be true.

5.3 JRecjmmendalions

The following suggfestions for further suilv are miade.

1. The SNRI analysis should be extendled beyond thle assumnpt ion that the turbulence

is confinedl to two layers. Increasing tlie nuumber of t urbunlent lasers will inore closel%

approximate a real-life situat-ion.

2. Thie SNII aikalysis shiould !,e (lone for t~he case of the modified l);th wcigluting function.

3. Using an accepted model for atmospheric t urbulence. this resear-ch met hod Should be

computer mnodeledl. '1le spatial corre-lation of wme fronit phlase Slopes Should be calculaited:J

for thme modleledl scenario and comnpared to lkno%%n iisults tW (eter~nle thme accu rac% of 1-16iS

met hod.

4. Tis met hod should be experiment alh% verified and the results shiould be compared to

those obtained by other measurement nuet hods.
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5.4 Summary

The spatial correlation of wave front slopes from two point sources theoretically yields

a value for C2. ExperimenLtal verification of the method will allow it to become another

tool to calculate the magnitude of atmospheric turbulence.
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Appendix A. Comnputer Programns

This appendix contains the FORTRAN comiputer code tisedl to obtain thle plots iii

Chapter 4 of this thesis. The code was written by thle auithor with the exception of QSliM,1,
TRAPZD, and INTEG2D. These were adapted fromn thle b)00k Numnerical Recipes: Thle Art

-of Scientific Computing by Williamn 11. Press. Brian P. Flannery, Said A. Teukolsky. and

Williamn T1. Vetterling published by Camnbridge University Press, New York, 1986, pages

110-130.

A .1 Programn NORMPA Ti

PROGRAM NORMPATH

* This program computes the values for the

* normalized path weighting function.

EXTER.NAL WTFUNC
COMMON IPARAMS/P ,L
REAL P ,PPRIME,L,NORM,STEP
INTEGER I

100 FORMAT (F1O.3)

OPEN(UNIT=10, NAME= 'PROGI .DAT', STATUS=' NEW')

* ED510

READ(5,100) LTE

P=0.

CALL QSIMP(WTFUNC,-1 ,1 is)
NORMwS*(L**(-1 ./3.))
DO 110 I=0,100

PPRIME=P/L

CALL QSIMP(WTFUNC,-1 ,1,S)

S=(S/NORM)*(L**(-1 .13.))
WRITE( 10, tOO) PPRIME ,S
P=P+STEP

110 CONTINUE

CLOSE(UNIT=1O)

STOP

END

REAL FUNCTION WTFUNC(X)
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COMMON /PARAMS/P,L
REAL P,L
WTFUNC=-(1.-ABS(X))*(
C 2.*(((PIL)**2.+(X)**2.)**(5.16.))-
C (((P/L)-l.)**2.+(X)**2.)**(5./6.)-
C
CC )
RETURN

END

SUBROUTINE TRAPZD(FUNC,A,B,S,N)
IF (N.EQ.1) THEN
S=0.5*(B-A),(FUNC(A)+FUNC(B))

IT=1
ELSE

TNM=IT
DEL=(B-A)/TNM
X=A+O.5*DEL
SUM=O.
DO 200 J=I,IT
SUM=SUM+FUNC(X)
X=X+DEL

200 CONTINUE

S=0.5*(S+(B-A)*SUM/TNM)
IT=2*IT

ENDIF

RETURN

END

SUBROUTINE QSIMP(FUNC,A,B,S)

PARAMETER (EPS=I.E-5, JMAX=20)
0ST=-i.E30
OS= -i.E30
DO 300 J=I,JMAX

CALL TRAPZD(FUNC,A,B,ST,J)
S=(4.*ST-OST)/3.
IF (ABS(S-OS).LT.EPS*ABS(OS)) RETURN
OS=S
OST=ST

300 CONTINUE

PAUSE 'Too many steps.'
END
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A-2 Program MODPIVF

PROGRAM MODPWF

* This program subtracts a weighting function
* for an aperture of size L2 from a weighting
* function for an aperture of size L1.
* The values are normalized for a maximum of 1.

EXTERNAL W-TFUNCL1 ,WTFUNCL2
COMMON IPARAMSIP,L1 ,L2,RATIO
REAL P,PPRIME,L,L1,L2,RATIO,NORMSTEP
INTEGER I

100 FORMAT CF10.3)
OPEN(UNIT=10, NAME='PROG1 .DAT', STATUS='NEW')

READ(,100) Li
READ(5,100) RATIO
READ(5,100) STEP
L2=L1/RATIO

DO 110 I=0,100
L=L1
CALL IQSIHP(WTFUNCL1,-1.,1. ,SA)

SA"SA*(Ll**(-1.13.))
L=L2
CALL QSIMP(W±4 jICL2,-1. ,1.,SB)

SB=SB*(L2**(-1 .13.))
S=SA-SB

IF (I .EQ. 0) THEN
NORM=S

ENDIF
SacS/NORM
PPRIME=-P/L1
WRITEC 10,100) PPRIME,S
P=P+STEP

110 CONTINUE

CLOSE(UNIT=1O)
STOP
END

REAL FUNCTION WTFUNCLI(X)

COMMON /PARAMS/P,L1 ,L2,RATIO
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REAL P,L1,L2,RATIO
WTFUNCLi=-(l.-ABS(X))*(

C ((P/Li+1)**2.+(X)**2.)**(5./6.)
C )
RETURN
END

REAL FUNCTION WTFUNCL2(X)
COMMON /PARAMS/P ,L1 ,L2 ,RATIO
REAL P,Li,L2,RATIO
WTFUNCL2=-.(i.-ABS(X))*(

C ((P/L2+1)**2.+(X)**2.)**(5./6.)
C )
RETURN
END

SUBROUTINE TRAPZD (FUNC ,A ,B,S ,N)
IF (N.EQ.1) THEN

S=o.5*(B-A)*(FUNC(A)+FUNC(B))
IT= 1

ELSE
TNM=IT
DEL=(B-A) /TNM
X=A+0.S*DEL

SUM=O.

DO 200 J=1,ITI
SUM=SUM4FUNC (X)
X=X+DEL

200 CONTINUE
S=0.5* (S+ (B-A) *SUM/TNM)
IT=2* IT A

ENDIF
RETURN
END

SUBROUTINE QSIMP (FUN , A, B, )
PARAMETER (EPS=1.E-5, JMAX=20)
OST=-1 .E30
OS= -I.E30
DO 300 J=1,JMAX
CALL TRAPZDkiUN%-,A,B,ST,J)

A



S=(4.*ST-OST)/3.
IF (ABS(S-OS) .LT.EPS*ABS(OS)) RETURN
aS=S
OST=ST

300 CONTINUE
PAUSE 'Too many steps.'
END
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A.03 Pi~oyiam SAT

PROGRAM SNR

* This program computes the mean and variance
* of the correlation of wave front phase slopes.

* It then calculates the signal-to-noise ratio
* from the relationship SNR=MEAN/SQRT(VAR).

EXENL*FUC1WFNATUC

EXTERNAL WTFUNCA1,WTFUNCA,WTFUNCB

EXTERNAL G,H
COMMON /PARAMS/P1 ,P2,P3,P4

COMMON/FLGS/ FLAG
REAL P1,P2,P3,P4

REAL SA,SB,SC,SD,SE,S

REAL CA,CB,CC,CD,CE

REAL L-RO,CN21.,DELTAX,DEL.YX ,NOIVAR

REAL MEAN,VAR,SNR

INTEGER I,FLAG

100 FORMAT (F1O.3)

OPEN(UNIT=1O, NAME= 'PROGi .DAT', STATUS=' NEW')

L-RO=10.

CN21=2.5

DELTAX= 10.

DEL-.PX= 1000.

PI=DELPX/110.
P2=DEL-PX/ 10.

P3=(Pl-DELTAX)

P4= (P2-DELTAX)

* NOIVAR=0.2

DO 110 I=0,100 -
CA=11.98*(1/(CN21+1/CN21))

CB=6.92*(L-.RO**(-5./3. ))*

C (1/(l+CN21))*NOIVAR

CC=6.92*(L-.R0**(-5./3. ))*

C (1/(1+1/0N21))*NOIVAR

CD=-3.46*(1'(1+CN2 1))
CE=-3.46*(l/(1+1/CN21))

FLAG=1

CALL INTEG2D(-1.,l.,S)

SA I=S
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FLAG=2
CALL INTEG2D(-1.,l.,S)
SA2=S
CALL QSIMP(WTFUNCB,-i. ,1.,SB)
CALL QSIMP(WTFUNCC,-1.,..,SC)
CALL QSIMP(WTFUNCD,-1. ,1.,SD)
CALL QSIMP(WTFUNCE,-1. ,1.,SE)
MEAN=ABS (CD*SD+CE*SE)
VAR=(CA* (SA1+SA2) ) +(CB*SB) +(CC*SC) +

C (NOIVAR**2.*L..RO**(-10./3.)-(MEAN**2.)
SNR=MEAN/SQRT (VAR)
WRITE(10,100) SNR

* Depending on the parameter being modified to see
* the effect on the SNR, code must be added here.
* For example, if the effect of noise on the SNR is
* the quantity of interest, NOIVAR=NOIVAR+1. may
* be used.

110 CONTINUE

CLOSE(UNIT=10)
STOP
END

SUBROUTINE INTEG2D(X1 ,X2,S)
EXTERNAL H
COMMON /PARAMS/P1 ,P2,P3,P4
REAL P1,P2,P3,P4
CALL QSIMPX(H,-1.,1.,S)
RETURN
END

REAL FUNCTION H(XX)
EXTERNAL G
COMMON/XY/X, Y
COMMON /PARAMS/P1 ,P2,P3,P4
REAL P1,P2,P3,P4
X=xx
CALL QSIMPY(G,-1.,1.,S)
H=S
RETURN
END

REAL FUNCTION G(YY)
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EXTERNAL WTFUNCAI,WTFUNCA2
COMMON/XY/X,Y
COMMON/PARAMS/Pi ,P2,P3,P4
COMMON/FLGS/ FLAG
INTEGER FLAG
REAL P1,P2,PS,P4
y=yy

IF (FLAG .EQ. 1) THEN
G=WTFUNCA1 (X ,Y)

ELSE
G=WTFUNCA2(X ,Y)

ENDIF
RETURN
END

REAL FUNCTION WTFUNCA1(X,Y)
COMMON /PARAMS/P1,P2,P3,P4
REAL P1,P2,P3,P4
WTFUNCA1=(1.-ABS(X))*(1.-ABS(Y))*(
C 4.*(Pi**2.+X**2.)**(S./6.)*
C (p1**2.+y**23)**(5./6.)+
C ((p1+i.)**2.+X**2.)**(S./6.)*
C ((P1+i.)**2.+y**2.)**(5./6.)+
C ((Pl1.)**2.+X**2.)**(S./6.)*
C- C(P1+i.)**2.+Y**2.)**(S./6.)+
C ((P1+1.)**2.+X**2.)**(S./6.)*
C ((p1-i.)**2.+y**2.)**(s./6.)+
C ((P1-1.)**2.+X**2.)**(S./6.)*
C ((Pi.)**2.+Y**2.)**(S./6.)-
C 2.*((P1+1.)**2.+X**2.)**(5./6.)*
C ((p1)**2.+y**2.)**(S./6.)-
C 2.*((Pl1.)**2.+X**2.)**(S./6.)*
C ((P1)**2.+y**2.)**(S./6.)-
C 2.*((P1)**2.+X**2.)**(S./6.)*
C ((P±-1.)**2.+Y**2.)**(S./6.)-
C 2.*((P1)**2.+X**2.)**(5./6.)*
C ((P1+i.)**2.+Y**2.)**(S./6.)+
C 4.*(P1**2.+X**2.)**(S./6.)*
C (P2**2.+Y**2.)**(S./6.)+
C (CP1+1.)**2.+X**2.)**(S./6.)*
C ((P2+1.)**2.+Y**2.)**(S./6.)+
C ((Pi-1.)**2.+X**2.)**(S./6.)*
C ((P2+1.)**2.+Y**2.)**(S./6.)+
C ((P±+i.)**2.+X**2.)**(S./.)-
C ((P2-i.)**2.+Y**2.)**(S./6.)+
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C ((P1.)**2.+X**2.)**(S./6.)*
C ((P2-1.)**2.+Y**2.)**(5./6.)-
C 2.*((P1+l.)**2.+X**2.)**(5./6.)*
C ((P2)**2.+Y**2.)**(5./6.)-
C 2.*((Pl-i.)**2.+X**2.)**(5./6.)*
C ((P2)**2.+Y**2.)**(5./6.)-
C 2.*((P1)**2.+X**2.)**(5./6.)*
C ((P2-1.)**2.+Y**2.)**(S./6.)-
C 2.*((Pl)**2.+X**2.)**(5./6.)*
C ((P2+1.)**2.+Y**2.)**(5./6.)+
C 4.*(P2**2.+X**2.)**(5./6.)*
C (Pl**2.+Y**2.)**(s./6.)+
C ((P2+1.)**2.+X**2.)**(5./6.)*
C ((Pl+l.)**2.+Y**2.)**(5./6.)+
C ((P2-1.)**2.+X**2.)**(5./6.)*
C ((Pl+1.)**2.+Y**2.)**(S.16.)+
C ((P2+1.)**2.+X**2.)**.5./6.)*
C ((Pl1.)**2.+Y**2.)**c(5./6.)+
C ((P2-1.)**2.+X**2.)**(5./6.)*
C ((P1-1.)**2.+Y**2.)**(s./6.)-
C 2.*((P2+1.)**2.+X**2.)**(5./6.)*
C ((P1)**2.+Y**2.)**(5./6.)-
C 2.*((P2-1.)**2.+X**2.)**(5./6.)*
C ((Pl)**2.+Y**2.)**(5./6.)-
C 2.*((P2)**2.+X**2.)**(5./6.)*
C (P-1.)**2.+Y**2.)**(5./6.)-
C 2.*((P2)**2.+X**2.)**(5./6.)*
C ((Pl+l.)**2.+Y**2.)**(s./6.)+
C 4.*(P2**2.+X**2.)**(S./6.)*
C (P2**2.+Y**2.)**(5./6.)+
C ((P2+1.)**2.+X**2.)**(5./6.)*
C ((P2+1.)**2.+Y**2.)**(5./6.)+
C ((P2-1.)**2.+X**2.)**(S./6.)*
C ((22+1.)**2.+Y**2.)**(5./6.)+
C ((P2+1.)**2.+X**2.)**(5./6.)*
C ((P2-1.)**2.+Y**2.)**(S./6.)+
C ((P2-1.)**2.+X**2.)**(5./6.)*
C ((P2-1.)**2.+Y**2.)**(5./6.)-
C 2.*((P2+I.)**2.+X**2.)**(S./6.)*
C ((P2)**2.+Y**2.)**(5.16.)-
C 2.*(CP2-1.)**2.+X**2.)**(5./6.)*
C ((P2)**2.+Y**2.)**(5./6.)-
C 2.*((P2)**2.+X**2.)**(5./6.)*
C ((P2-1.)**2.+Y**2.)**(5./6.)-
C 2.*((P2)**2.+X**2.)**(5./6.)*
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C ((P2+1.)**2.+Y**2.)**(S./6.)
C)
RETURN
END

REAL FUNCTION WTFUNCA2(X,Y)
COMMON /PARAMS/Pi ,P2 ,P3 ,P4
REAL P1,P2,P3,P4
WTFUNCA2=(1.-ABS(X))*(1.-ABS(Y))*2*(
C 4.*(p3**2.+X**2.)**(S./6.)*
C (P3**2.+y**2.)**(5./6.)+
C ((p3+I.)**2.+x**2.)**(s./6.)*
C ((p3+1,)**2.+y**2.)**(5./6.)+

C ((P3-i.)**2.+x**2.)**(S./6.)*
c (31**.Y*.*(.6)
C ((p3+1.)**2.+x**2.)**(s./e.)*
C ((P3-1.)**2.+Y**2.)**(S./e.)+
C ((p3-1.)**2.+X**2.)**(5./6.)*
C ((P3-1.)**2.+Y**2.)**(S./6.)-
C 2.*((P3+1.)**2.+X**2.)**(5./6.)*
C ((P3)**2.+Y**23)**(5./6.)-
C 2.*C(P3-1.)**2.+X**2.)**(S./6.)*
C ((P3)**2.+y**2.)**(s./6.)-
C 2.*((P3)**2.+X**2.)**(S./6.)*
C ((P3-1.)**2.+Y**2.)**(./6.)-
C 2.*((P3)**2.+X**2.)**CS./6.)*
C ((p3+i.)**2.+y**2.)**Cs./6.)+
C 4.*(P3**2.4X**2.)**(S./6.)*
C (P4**2.+y**2.)**(5./6.)+
C ((p3.1.)**2.+x**2.)**(5./6.)*
o ((P4+i.)**2.+Y**2.)**(S./63)+
C ((P3-1.)**2.+X**2.)**(S./6.)*
o ((p4+1.)**2.+y**2.)**Cs./e.)+
C ((p3+1.)**2.+x**2.)**(s./6.)*
C CCP4-i.)**2.+y**2.)**(S./6.)+
C ((P3-i.)**2.+X**2.)**(5./6.)*
C ((p4-1.)**2.+y**2.)**(S./6.)-
o 2.*((P3+1.)s*2.+X**2.)**(5./6.)*
C ((p4)**2.+y**2.)**(S./6.)-
C 2.*((P3-i.)**2.+X**2.)**(S./8.)*
C ((p4)**2.+y**2.)**(S./6.)-
C 2.*((P3)**2.+X**2.)**(5./6.)*
o ((p4-1.)**2.+Y**2.)**(s./6.)-
C 2.*((P3)**2.+X**2.)**(S./6.)*
C ((p4+1.)**2.+Y**2.)**(5.16.)+
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C 4.*(p4**2.+X**2.)**(5./6.)*
C (p3**2.+y**2.)**(S./63)+
C ((p4+1.)**2.+X**2.)**(5./6.)*
C ((p3+i.)**2.+Y**2.)**(S./6.)+
C ((P4-1.)**2.+X**2.)**(5./6.)*
C ((p3+1.)**2.+Y**2.)**(5.16.)+
C ((p4+1.)**2.+X**2.)**(S./6.)*
C ((P3-1.)**2.+Y**2.)**(5./6.)+
C ((P4-i.)**2.+X**2.)**(S./6.)*
o ((P3-1.)**2.+Y**2.)**(5./6.)-
o 2.*((P4+1.)**2.+X**2.)**(S./6.)*
C ((p3)**2.+y**2.)**(5./6.)-
o 2.*((P4-1.)**2.+X**2.)**(S./6.)*
o ((p3)**2.+Y**2.)**(5./6.)-
o 2.*((P4)**2.+X**2.)**(S./6.)*
o ((p3-1.)**2.+Y**2.)**(S./6.)-
o 2.*((P4)**2.+X**23)**(S./6.)*
o ((P3+1.)**2.+Y**2.)**(S./6.)+
o 4.*(P4**2.+X**2.)**(5./6.)*
o (p4**2.+y**2.)**(5./6.)+
o ((p4+i.)**2.+X**23)**(5./6.)*
o ((24+1.)**2.+Y**2.)**(S./6.)+
o (CP4-i.)**2.+X**2.)**(5./6.)*
o ((P4+i.)**2.+Y**2.)**(S.f6.)+
o ((p4+i.)**2.+X**2.)**(S./6.)*
o (Cp4-1.)**2.+Y**2.)**CS./6.)+
o C(p4-1.)**2,+X**2.)**CS./6.)*
o ((p4-i.)**2.+Y**2.)**(5./6.)-
o 2.*((P4+1.)**2.+X**2.)**(S./6.)*
o ((p4)**2.+y**23)**(S./6.)-
o 2.*((P4-1.)**2.+X**2.)**(S./6.)*
o ((p4)**2.+y**2.)**(S./63)-
o 2.*((P4)**2.+X**2.)**(%S./6.)*
o ((P4-1.)**2.+Y**2.)**(5./6.)-
o 2.*((P4)**2.+X**2.)**(S./6.)*
o (('P4+1.)**2.+Y**2.)**(S.16.)
o
RETURN
END

REAL FUNCTION WTFUNOB(X)
COMMON /PARAMS/PS, P2, P3, P4
REAL Pi,P2,P3,P4
WTFUNOB=-(..-ABS(X))*(
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C ( -1)*.X*.*(.6)
C ((P1+i.)**2.+X**2.)**(5./6.)
C)
RETURN
END

REAL FUNCTION WTFUNCC(X)
COMMON /PARAMS/Pi ,P2,P3,P4
REAL P1,P2,P3,P4
WTFUNCC=-(1 .-ABS(X))*(

C ((P2+1.)**2.+X**2.)**(5./6.)
C)
RETURN
END

REAL FUNCTION WTFUNCD(X)
COMMON /PARAMS/Pi,P2 ,P3 ,P4
REAL P1,P2,P3,P4
WTFUNCD=-(i .-ABS(X) )*(

C ((P3+i.)**2.+X**2.)**(5./6.)
C)
RETURN
END

REAL FUNCTION WTFUNCE(X)
COMMON /PARAMS/Pi ,P2 ,P3 ,P4
REAL Pl,P2,P3,P4
WTFUNCE=-(1 .-ABS(X))*(
C .(P)*.X*.*(.6)
C (41)*.X*.*(.6)
C ((P4+1.)**2.+X**2.)**(5./6.)
C)
RETURN
END

SUBROUTINE TRAPZD(FN,,BSN
IF (N.EQ.1) THEN

S=O .5*(B-A)*(FUNC(A)+FUNC(B))
1T 1

ELSE
TNM=IT
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DEL= (B-A) /TNM

X=A40.S*DEL

SUM=0.

DO 200 J=lIT

SUM=SUM+FUNC CX)

X=X+fDEL
200 CONTINUE

S=0 .5* (S+ (B-A) *SUM/TNM)

IT=2* IT
ENDIF

RETURN
END

SUBROUTINE QSIMP(FUNC ,A ,B,S)

PARAMETER (EPS=1.E-5, JMAX=20)

OST=-1 .E30
OS= -1.E30
DO 300 J=1,JMAX

CALL TRAPZD(FUNC,A,B,ST,J)
S=(4.*ST-OST)/3.

IF (ABS(S-OS) .LT.EPS*ABS(OS)) RETURN

05=S

OST=ST

300 CONTINUE

PAUSE 'Too many steps.'

END

SUBROUTINE TRAPZDX(FUNC,A,B ,S ,N)
IF (N.EQ.1) THEN
S=0.5*(B-A)*(FUNC(A)+FUNC(B))

IT= 1

ELSE
TNM=IT
DEL= (B-A) /TNM

X=A+0 . *DEL
SUM=0.

DO 200 J=1,IT

SUM=SUM+FUNC CX)

X=X+DEL
200 CONTINUE

S=0.5* (S+ (B-A) *SUMITNM)
IT=2*IT

ENDIF

RETURN

END
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SUBROUTINE QSIHPX('FUNC,A,B,S)

PARAMETER. CEPS=1.E-S, JMAX=20)

OST=-i .E30

0S= -1.E30

DO 300 J=1,JMAX
CALL TRAPZDX(FUNC,A,B,ST,J)
S=(4.*ST-OST)/3.

IF (ABS(S-OS) .LT.EPS-sABS(OS)) RETURN
OS=S

OST=ST
300 CONTINUE

PAUSE 'Too many steps.'
END

SUBROUTINE TRAPZDY(FUNC,A ,B ,S,N)

IF (N.EQ.1) THEN
S0 .s*(B-A)*(FUNC(A)+FUNC(B))

IT=1

ELSE
TNM=IT
DEL= (B-A) /TNM

X=A+0 .5*DEL

SUM=0.
DO 200 J=1,IT

SUM=SUH+FUNC CX)
X=X+DEL

200 CONTINUE
5=0 .S*(S+(B-A)*SUH/TNM)

IT=2*IT

ENDIF
RETURN

END

SUBROUTINE QSIMPY(FUNC,A,B,S)

PARAMETER (EPS=i.E-S, JMAX=20)

OST=-1 .E30

OS= -11E30

DO 300 J=1,JMAX
CALL TRAPZDY(FUNC,A,B,ST,3)
S=(4.*ST-OST)/3.

IF (ABS(S-OS) .LT.EPS*ABS(OS)) RETURN
05=S

OST=ST
300 CONTINUE
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PAUSE 'Too m~any steps.'
END
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