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Abstract

This thesis examines a remote sensing technique for measuring the atmospheric struc-
ture constant (C2) as a function of altitude by performing spatial correlation of wave front
sensor measuremen’s. Two point sources are used to irradiate two wave front sensors in
the aperture plane of an optical system. The geometric relationship between the sources
and the sensors gives rise to crossed optical paths. At the point where the paths cross,
the correlation value of the turbulence contribv¢ions will be at a peak. The correlation is
shown to be mathematically related to the structure constant in terms of an integral of C?
multiplied by a path weighting function. It is shown that the path weighting function ran
be made to have the characteristics of a sampling function and the value of the structure
constant can be directly inferred from the correlation measurement. The vertical resolution

and signal-to-noise ratio are calculated for a sample case of two-layer turbulence.
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Sensing Refractive Turbuience Profiles Using Wave Front Slope Measurements

From Two Reference Sources

1. Introduction

1.1 Atmospheric Turbulence

An electromagnetic wave traveling through the Earths’ atmosphere is subject to a
phenomena known as atmospheric turbulence. Atmospheric turbulence, caused by differ-
ential heating of the Earths’ surface by the sun, is characterized by random variations
in atmospheric temperature and pressure. An electromagnetic wave passing through tur-
bulence experiences a bending or distortion of the wave front shape. Optical systems
operating in the presence of the atmosphere are subject to the effects of the turbulence.
The distortion reduces the resolution the astronomer achieves when looking through a
telescope and disrupts optical communications. The familiar twinkling of starlight is an
example of the distortion caused by the atmosphere. The light waves are being bent as

they pass through the atmosphere to the Earth.

The efforts to mitigate the effect of atmospheric turbulence on optical systems
spawned a branch of optics known as adaptive optics. In adaptive optics, techniques
are employed to reverse the effects of the atmosphere on the optical wave (7). One com-
mon technique is to use a deformable mirror. A control system senses the deformation of
the incoming wave front and sends signals to the mirror. The mirror surface deforms to

a shape that is the inverse of the distortion. When the distorted wave hits the deformed
mirror, the distortion is nullified.

Inherent in the techniques of adaptive optics is the need to be able to characterize the
nature of the wave front distortion. To characterize the wave front distortion, it is necessary
to know how the turbulence is distributed along the optical path. A parameter known as
the atmospheric structure constant is commonly used as a measure of the strength of the

turbulence. The structure constant is introduced in the following section.

1-1
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1.2  Characlerization of Turbulence

The atmosphere may be thought of as a random field. The pressure and tempera-
ture change as a function of position. Therefore, the pressure and temperature are non-
uniformly distributed along an optical propagation path. In the theory of turbulence, the
strength of the turbulence is characterized by the magnitude of the power spectral den
sity (psd) of the index of refraction, n. This psd is designated as @, (/) where iV is the

wavenumber vector.

The magnitude of ¢,(/) is proportional to a parameter known as the atmospheric
structure constant of the refractive index fluctuations. The atmospheric structure constant
is denoted as C? and is a function of position along the optical path. Since the magnitude

of the psd is proportional to C?

C? is used as a measure of the strength of the turbulence.

1.3  Measurement of C?

There have been numerous methods used to measure C? (3, 10, 12, 14, 17). Actually,
the use of the word measurement is a misnomer since the structure constant can not be
directly measured with any kind of instrument. The technique used to cevaluate C7? is to
measure a parameter of an optical system operating in the presence of turbulence and
extract the value of C? from the measured quantity. Fried (3) was one of the first to apply
this approach by performing a spatial cross-correlation of stellar scintillation measurements.
As with Fried’s work, current techniques rely primarily on the spatial or temporal cross
correlation properties of the intensity of the optical field. This research will take a2 new

approach, based not on the intensity of the optical field, but on the correlation properties

of the wave front phase.

1.4 Approach

Cousider two point sources, denoted py and pa. which are separated by a distance
Ap as shown in figure 1.1. Two wanve front sensors are placed in the aperture plane of the
optical systemr. The geometric relationship between the sources and the wave front sensors
gives rise to crossed optical paths. The light from each point source travels a different
optical path to the wave front sensors. At the point where the patha cross. the turbulence
contributions from the two sunrces will be highly correlated. This correlation is exploited

to calculate CZ. A three step process is used in this thesis. It is first shown that the

structure constant is related 1o the correlation of the measurements from the two wave
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C, = / dz C3(') u(<) (L.1)

where C, is the correlation of wave front sensor measurement £ with wave front sensor

measurement 2, =’ is 2 position 2long the vertical path, and «(2’) is a path weighting
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function. The next step proves that the weighting functior can be shown to approximate
a Dirac delta function under certain conditions. The sifting property of the Dirac delta

function may be used to evaluate C2 from the relationship in equation 1.1. Finally, the

I

signal-tc-noise ratio (SNR) of the correlation measurement is calculated to evaluate the

R U IRA N E A

accuracy of the method.

1.5 Overview

Chapter I reviews the background of atmospheric turbulence sensing as it applies to
this rescarch. Chapter Il explains the methodolcgy employed in this research. Chapter
IV is a presentation and analysis of the results. Chapter ¥V contains conclusions and

reccmmendations for further study.
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II. Background

2.1 Introduction

This chapter examines the theory of atmospheric turbulence and reviews a method
used by Fried to calculate the strength of the turbulence. The crossed-beam method of

remote sensing, and its’ application to this research, is discussed.

2.2 Theory

2.2.1 Atmospheric Turbulence The index of refraction, n, for a medium is the ratio
of the speed of light in a vacuum to that in the medium. In the Earth’s atmosphere, n is
a function of pressure, temperature, and numidity. As such, it varies with height above
the Earth’s surface and n may be expresved as a function of position. The variation of the
index of refraction is a random quantity. The atmosphere may be visualized as consisting
of randomly sized pockets of air called eddies. Typically, eddies range in size from a few
millimeters to tens of meters. Each eddie is at a different pressure and temperature and
thus has a different n. As an optical wave front propagates through the atmosphere, the
variation in n from eddie to eddie distorts the wave front.

Since the characteristics of the eddies are random, n is a temporal and spatial random
process. As a result, it is necessary to use statistical methods to describe the characteristics
of n. In atmospheric optics, it is common to characterize the second order statistics of
n using the structure function. Using angle brackets to denote the ensemble average, the
structure function is given by (8:526-527)

D7) =<| n(i*+ 72) = n() |*> (2.1)
where 7 is a position vector.

2.2.2 Power Spectral Density The power spectral density (psd) of the index of
refraction fluctuations, &, (), is a measure of the strength of the turbulence. As Goodman
states, (6:388) the psd may be regarded as a measure of the relative occurrence of eddies
with dimensions L = '%%'—l K is called the wavenumber vector and may be interpreted as
the number of eddies that occur in a unit length. As Tatarski shows (15:19-21), the psd
may be related to the structure function by

Da(7) =2 / / /_2[1-cos(1?-f')] o, (B) PR (2.2)
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2.2.8 Kolmogoroff Spectrum In a classic paper on statistical theory (9), Kolmogo-
roff developed a theory of turbulence that has been used to model the effects of the atmo-
sphere. In this theory, the eddies are characterized by two size parameters; the outer scale
L, and the inner scale /,. If the eddie size is between L, and [, (i.e. i—’: <K< ‘",'T"), the
turbulence is essentially isotropic and this region is known as the inertial subrange. Since
the turbulence is isotropic, ®, is only a function of the magnitude of & and the spectrum
is expressed as (6:386-390)

8,(K)=0.033C> K (2.3)
where K =| K |. The quantity C? is known as the structure constant of the refractive

index fluctuations and is used as a measure of the strer . 2 of the turbulence.

2.8 Evaluation of C2

It is not possible to measure C? directly, however, the evaluation of C? as a function of
position has been widely studied. Both vertical and horizontal profiles have been obtained,
however, the vertical profile is of primary interest for celestial imaging. Figure 2.1, adapted

from tabular data in reference (1:2179), is a plot of a typical vertical profile of C? from 1
to 20 kilometers.

10-15 ¢ T T T 1 T T T T T
10-16 E
C3(m) ]
10-47 E 3
10-18 1 1 L 1 L I ] 1 t
0 2 4 6 8 10 12 14 16 18 20
altitude(km)

Figure 2.1. C2 As A Function Of Altitude
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In 1968, Peskoff (13) published a mathematical basis for calculating C2. He pro-
posed gathering irradiance data from optical scintillations and correlating the irradiance
measurements. The correlation value is used to extract C2. At the same time, Fried pro-
posed a similar experimental implementation (3). Fried’s work is a good example of the

correlation method and is explained in the following section.

2.3.1 Corrclation of Irradiancc Mcasurements Fried proposed using two telescopes,
each having a restricted field of view, to track scintillating stars and gather irradiance data
(3:416-418). The intensities measured by the telescopes are denoted #;(¢) and i,(t) where
t is time. The logarithmic amplitude, /,(1), is computed {from the relationship

1 ii(t)
0= [0
where the angle brackets denote a time average. In turn, the spatial-temporal log amplitude

covariance Ci(p,7) is calculated {rom the log-amplitudes by
Cilp. ) =< [L(t)= < 1y(t) >} Lt + 7)~ < L(1) >} > (2.5)

Tatarski’s work (15:110-113) contains an equation which relates Ci(p,7) to C?. Iried
applies this cquation and reduces the resultant integral to the following formn:

Lk ,
c,(p)=1.-z/0 dz 5 C3(2) 1-(-41’__- (2.6)

In this expression, 1“(51"—) is a function that represents a grouping of all the mathematical
p? ey s N . . 3

terms that depend on 51&- This allows C'? and z to stand alone in the integral. Fried

analytically solves the function F( 511—) and provides a table of values. Using this table, the

measured Cy(p) is now related to the unknown C3(z) by a linear integral equation.

The approach used by Fried has become somewhat standard. Measurements are made
of a property of an optical field and the measured quantities are 1elated to C? (usually by
an integral). ‘The terms in the equation are grouped into a separate function 1o allow (2
to stand alone. The separate function is called a path weighting function and relates C?

to the measured quantity.

2.8.2  The Crosscd-Beam Mcthod 1n 1967, Fisher and Krause (2) proposed a method

to extract turbulence values from measurements made using crossed laser beams. 1'wo laser
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beams intersect at a right angle in a turbulent medium. At the point of intersection, there
is a related (correlated) fluctuation in both beams. Away from the intersection point,
the turbulence effects are uncorrelated and produce uncorrelated effects on the beams. If
the covariance is calculated, the uncorrelated effects yield a zero average value while the
correlated effects yield a non-zero average value. The correlation value at the intersection
is a function of the magnitude of the turbulence fluctuations at or near the intersection
point. The covariance values can be used to evaluate the strength of the turbulence. They
show the method produces accurate results for measuring turbulence in the shear layer of

a subsonic jet.

In 1974, Wang and his colleagues (17) applied the crossed beam theory to sense
horizontal wind and refractive turbulence profiles. They did not require the beams to be
perpendicular. Calculating the covariance function of intensity fluctuations of the crossed-
path signals, their development yields an expression very similar to equation 1.1. C2 is
related to the covariance by an integral involving a weighting function. They piofile the

weighting functions for three different transmitter-receiver configurations.

2.4 Conclusion

Characterizing the strength of atmospheric turbulence by remote sensing has been
widely studied. The crossed-beam method is often used to measure a parameter of an
optical field. The measured values are related to the atmospheric structure constant, and
the structure constant serves as a measure of the strength of the turbulence. Much of the
} -5t work has concentrated on optical scintillation measurements wt ere the intensity of
the light is the quantity of interest. It is proposed that crossed beams may be used to
obtain a measurement of wave front phase, rather than intensity, and the phase correlation
properties may be used to calculate C2. The next chapter presents the development of this
proposal.
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III. Methodology

3.1 Introduction

As discussed in the previous chapter, a primary method used to obtain vertical
profiles of C2 has been through the use of optical scintillation measurements. These mea-
surements utilize the intensity of the optical field. Instead of using intensity as the quantity
of interest, it is shown in this chapter that measurements of wave front phase slope may

be used to obtain profiles of C2.

Consider two point sources, located at points p, and p», and separated by a vector

distance Ap, as shown in figure 3.1. Two wave front sensors, W,(%) and V,(&), are placed

n O ap ~- 2 P2 P
-
W, ('Z‘ ) —~ Wo(Z)
‘ Y] o

Figure 3.1. Measurement Geometry

in the aperture plane of the optical system. The wave front sensors are separated by the
vector distance Ax. Each sensor measures the slope of the distorted wave front across a

finite arca called a subaperture. Each sensor is divided into multiple subapertures, cach of

which provides a slope measurement.




It is common to normalize the aperture weighting functions (16:1771) so that
/ﬁfWM@:l (3.1)

where n, in the case of figure 3.1, may be 1 or 2.

The point sources are at a height 2, above the aperture plane and 2’ is a point along
the z axis. As can be seen from the figure, the geometric relationship between the sources
and the sensors gives rise to crossed optical paths. The light from each point source travels
a different optical path to the wave front sensor. At the point where the paths cross, the
turbulence contributions will be highly correlated. This correlation is exploited to calculate
C2.

This chapter contains mathematical derivations based on the correlation of wave front
phase slopes for the geometry of figure 3.1. The first derivation proves that the correlation

of wave front slopes, denoted C;, can be related to C? by the following equation.

Q:/W@@WW) (3.2)

where 2’ is a position along the optical path and w(2’) is a path weighting function. If w(z’)
has the shape of a Dirac delta function (i.e. a sampling function), the sifting property may
be applied to equation 3.2 to directly relate C, to C2.

Following the derivation of equation 3.2, the expression for w(z’) is simplified so that
it depends only on terms of the measurement geometry (Az, Ap, 2/, etc.). This allows
w(2') to be plotted to examine the sampling characteristics. 1t is shown in Chapter 4 that
the path weighting function derived in this chapter does not possess an ideal sampling
shape. Therefore, a discussion is included in this chapter about a method to improve the
shape of w(2').

Finally, an expression for the signal-to-noise ratio of the correlation measurement is

derived. This is used to quantify the accuracy of the measurement technique.

Ll e
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3.2 Overview o] Derivalion

Since the derivation of equation 3.2 is rather involved, it is useful to first outline the
procedure. The first step is to define what is meant by the correlation of wave front slopes.
The next step is to define an expression which relates the slope signals to the measurement
geometry of figure 3.1. This allows the correlation of the wave front slopes to be directly

related to the measurement geometry.

After the expression for the correlation of the wave front slopes is developed, the
ensemble average is taken. This is done because the slope signals are defined in terms of
the wave front phase of the optical wave from each source, which is a random process.
Taking the enseinble average introduces the second order moment of the wave front phase.
An cxpression in the literature relates the second order moment of the phase to the phase
structure function. Recalling from Chapter 2 that the structure function is related vo C2,
the next step is to use an expression (also from the literature) to relate the two quantities.
The resulting expression will be an integral over 2’ that includes C? and several other terms.

The terms other than C? are grouped and called wiz’), the path weighting function.

The final part of the derivation concentrates on the path weighting function. By
assuming Kolmogorofl statistics for the atmosphere, w(2’) is reduced to a form which is
only dependent uponr known quantities from the m:asurement geometry. It is therefore

possible to plot w(z') to examine how closely it appioximates a sampling function.

3.8 Derivation of the Path Weighting Function

This section contains the derivation of the path wrighting function denoted as w(=")

in equation 3.2.
3.3.1  Correlation of Slope Signals The fi,5t step is 1o define the correlation as
C'_‘(Ai.) = (51 -S'_r‘[ (3.3)

where s, and g, are the slope signals from two individual wave fiont sensor subapertuies
separated by Ax. Recalling the geometry of figure 3.1, s; is the slope measureinent arising
from reference source 1, and s, is the slope measerement arising from reference source 2.
For the remainder of this development, it is assumed that cach wave front sensor consists

of only a single subaperture and the separation between the sensors is Ax,




The next step is to find an expression for the slo, : signal. Referring to the literature,
(16:1771) the phase of the incoming wave is designated ¥,(Z) where Z is a two-dimensional
position vector and n refers to the source of the wave front. For the geometry of figure 3.1,

n may be 1 or 2. It is convenient to define a z-. mean phase (4:1914) related to ¥,(Z) by
Gu(Z) = Yuld) - [ ¢F 2 W, T) Po(ah) (34)

The output of a wave front sensor is a noisy * ieasurement of the average slope of ¢,(%)

over the aperture and is designated s,. Thke ¢ w'%ou for s, is
ba = / w & Wa(8) [V6a(@) - do] + 0 (3.5)

where W, (%) is the aperture weightiu function, V@.(Z) is the spatial gradient of the
phase ¢y, d, is a unit vector in the direction of sensitivity of the sensor, and a, is the
slope measurement error. The measurement error is attributed to photon noise in the

detection process. Integration by parts yields
sn = - / BF [VWa(E) - da] $a(F) + 2 (3.6)

To simplify »otation, let VW,(Z) - d, = W3(%) where W2(Z) is the gradient of W,(Z} in

the direction of the nt* sensor. Rewrite:
o = — / &5 W (E) ¢u(E) + an (3.7)

Assuming the subaperture weighting functions are identical except for being shifted relative
to each other, it is possible to write W (%) = W(Z) and VW,(Z) = W(F — Az) where W(Z)
is the subaperture weighting function. Using these representations and plugging equation

3.7 into equation 3.3,

C,(AT) = (3.8)
{/‘125 W*(Z) ¢:(£) + al}

X { [ w3 - ) 6a() + a-z}
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After muitiplying and regrouping, C,(Az) becomes

C.(Az) = (3.9)
/ &7 / E5 W (E) W& — 8a) [1(2) ol
+ / EE W (F) 61(F) s
+ / @25 W (& - K%) ¢o(#) o

+ ayan

l

(S
e
———

3.3.2  Ensemble Average of C, As mentioned in the Overview equation 3.9 contains
random quantities and it is therefore necessary to use statistical methods to r.roceed with
the derivation. ¢ is a two dimensional random process. « is assumed to be 2 zero mean
random variable independent of ¢. Consider the ensemble average of C,(Az), denoted

with the angle brackets:

] oz / EFWE) W - 55 ($:8) ()

+0
+{aaz)

Simplifving,

(C(Bz)) = (3.11)
/' *F / APzt W (F) W (a7~ Az)(d)(F) dhal )
+((.l‘|(l::)

Consider the correlation of the noise functions, (oyaa), in equation 3.11. Recall that a,
and a4 are noise from the wave front sensor measurements. In equation 29 of referet.ce

(16), Wallner expresses the correlation of slope ineasurement noises as

(ana,) =a® §(n~n') (3.12)
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where n and n' designate the wave front sensor subapertures, o2 is the photon noise
density, and §(n —n') is the Dirac delta function. Equation 3.12 indicates that for different
subapertures (i.e. n # n'), (ap&,) = 0. For the geometry under consideration, the
subapertures do not coincide and the noise term is zero. Wallner also derives (16:1773-
1774) an expression for the second order moment of the phase, (4 (%) é2(2")), in terms of

the phase structure function D,:

.- 1 - -
(¢1('17)¢2(3")) = —'é'Dm(!l_:', a') + 9(%) + g(m’) -a (3.13)
where
Di2(%,3") = ([$() - »(&)*) (3.14)
and
4(7) = % / 2.7 W (G D(F,37) (3.15)
and
a= %/dx-;I/dm-?ll‘fv'(x-;l)w(x-fll)D(x-;l’ x'fu) (3.16)

Since W*(Z) is an odd-symmetric function, the integratio: < over z” and 2™ yield a zero

value. Therefore, all terms in equation 3.13, exc:pt —%Dl;.{i:,:;'), will go to zero.

Using equations 3.13 and 3.12 in equation 3.11, the correlation of the slope signals
may be written as

Gy = (3.17)
/ 1*F / 23 W (&) W& ~ Ax) [-%Dn(”l @ )]

To further simplify equation 3.17, it is necessary to have an expression for D;a(Z, :z:"’) that
is applicable to atmospheric turbulence and the geometry of figure 3.1. This is discussed

in the next section.
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3.3.3 Palh Weighting Function Tor spatially stationary, transverse isotropic tur-
bulence for the two source geometry of figure 3.1, Lutomirski and Buser (11:2160) show

that the phase structure function may be expressed as

Dy o(F -2 = (3.18)
Sy O
8172132/ dz' / diKy Ky @,(I,,0,2")
0 0

X {1-J0 (m (Kp)(gn(f_n?)(l— —))}

where ®,,(K,,I;,2") is the spectral density of the index of refraction, Ap is the vector

separation of the optical sources, and x and &’ specify two points in the aperture plane of
the optical system. The spectral density, ®,,, is a function of distance from the aperture
plane, 2’, and of wavenumber components perpendicular (I';) and parallel (k) to the =

axis. Jy is the zero-order Bessel function.

Following Welsh (18), assume the power spectrum of the index of refraction is sep-
arable in the perpendicular and parallel wavenumber components (A'y, K.) and z’. This
yields

D, (Ky, K2y =@ (N, K.) C3(z) (3.19)

Substituting equation 3.18 and 3.19 into equation 3.17 vields
(Co(A7)) = (3.20)
/ PF [ W E) W - Si)
- . =g o .
x (~477k?) / dz' / diy Iy (KL 0)CE (=)
0 0

X {] - Jn (1\.J_

To match the form of equation 3.2. this may be rewritten as

(&P} (Z) 4+ (F = 7)1 - —)])}

(C',(:f:r)) = / dz' C3(2")y w2, Au, Ap) (3.21)
)

where w(2’, 2., Ax. Ap) is a path weighting function and is defined as




w(z', z,, Az, 5p) = (3.22)
/ &Pz ] Azt W*(£) W (2" — Ax)

X (=47 2k?) / ARy Ky @(K1,0)
0
B x{l—Jo (K_L

3.3.4 PEvaluation of Path Weighting Function ‘Lo further evaluate the path weight-

(47) (—) +(F =21 - ‘)D}

ing function, it is necessary to assume a form for ®/,. For atmospheric turbulence, Kol-

mogoroff (9:154) has shown that
& (K, K.) = 00335 (3.23)

where K =| K, + K, |. Using 3.23, the expression for the path weighting function may be

rewritten as

w(Z, 2, Az, Ap) = (3.24)
~tl7r21:2/(12.1',’ /(l"':;' W4 (&) W (2" - Ax)

oo -1
X / di, K 0.033K5
0

% {1 —-Ju (1\1

Employing the integral identity (15:269)

(89) (Z) 4+ (& ~ &)1 - —)D}

" -1
e 1.1° w(p—1
/ de(l = Jo)a™ P =7 2F [[‘(.7.)_’*.'._.)] sin 1) (3.25)
0 2 2
where 1 < p < 3, and combining terms,
w(z', 2., Az, Ap) = (3.26)

—4(0.033)7 %7 / *3 / APt W (F) Wit - Ax)

. 57 17!
X 7 [‘2§ l""(-lz);l-) sin(% ]

(i e - - 2




Simplifying,

w(z', z,, Az, Ap) = (3.27)
146k / L3 / 3 W (F) W (5 - &%)

b3
3

x| )+ -0 -5)

To evaluate equation 3.27, it is necessary to assume an expression for W?*(Z). It is not
uncommon to see squar.. subapertures in a wave front sensor and the rectangle function is
commonly used to describe the transmittance of such an aperture (5:67). Mathematically,
this implies that

W(z) = 217 rect(;) rect(%) (3.28)

where the factor # is necessary to achieve normalization to 1 (see equation 3.1). Taking

the derivative of equation 3.28 yields W*(Z), as required.

In general, the derivative may be expressed using the delta function (5:63-66):
; » »y o c 1 . L
W (£) = VW (Z)-d = ]—,_,[6(:1: + -]2-) - 8(z ~ 5)] rch(—zli) (3.29)

Implicit in this expression is the fact that the slope in the x direction is the quantity under

consideration (i.e. d is an x directed unit vector).

3.3.4.1 FEvaluation of Absolute Value Quantily It is convenient at this point
o evaluate the absolute value quantity in equation 3.27. Representing the vectors by their

components in the & and § directions

Ap=Api+ Ap,j. (3.30)
Ax = Az + Ayj, (3.31)
F=uod4yy (3.32)
=iy (3.33)

and substituting into equation 3.27 yields,

3-9




Sz« 9.9 . Ap.. Ap,. 2" 2) = (3.34}

ot ' i3
(Ap.E + Apd) = + ok + 95 - (2 + ¥'H)(1 - =)
Simplifving,

I(I: Il:’ :y,: Al’:: A”y:z'e :s) = (3'35)

L

{8nZ e =220 - P + 32+ -0 - 2P}

~3

Typically, z, is much greater than 2* over the range of interest. This is easily scen if the
sources are laser guidestars. The guidestar altitude would be in the range of 90 to 100
kilometers. Recalling figure 2.1, the range of interest for the turbulence is well below this
altitude. Therefore, ‘— is much less than 1 and it is reasonable to use the approximation

(1- :—') =~ 1 and simphf,\.

f(I: =, y. 9. Ap;, Apy, z, -‘-:) = {(3.36)

'.’ 'D -" FAS =4 %
{[Am% tr-2P+[dp=+y-y )i‘}

~3 Zx

3.3.5 Simplification of Path Weighting Funclion It is now possible to simplify the
path weighting function in equation 3.27. Replacing the aperture functions with their

mathematical representations,
w(s', - ;_\'};: a_{p) = (3.37)
..l.s{ﬁi:z-/(i:f .[d‘.‘l'} I(I: I', y. I,F'; AI’:‘-A”;Q E', -’-,j v
i ,' l'
{-,—,If(r + “) - &r ~ -}]n:ﬂ(g-}} X

{’,,ic‘(.r ~-Ar+ -} 8- Ar -~ —-}3 rect{ =7 ,_\yl}

where flz.x'.y. o' . Ap.. Ap,. 2" 2,) is defined by equation 3.36. Emploviag the sifting

property of the Dirac delta function allows the integrations over £ and 17 16 be performed

and the weighting function reduces to




w(z', 2,, Az, Ap) = (3.38)

—1.46k2L‘4/dy rect(%)/dy’ rect(g--—i-L—Ag) X

~-L L
f(_é"'aAw - '2',?/, y,, ApmApyaz,azs) -
-L L , ,
f(_z‘,Am + E’yay s Apsy Apy, 2 ) %s) =

L L
f(E,Am - E’y,y'a Ap;, Apy,z',z,) +

L L
f("z" Az + '2" Y, ylv AP;, Apy’ zla Z,)

Let

gy-9) = (3.39)
-L L
f(_2—’ Az - '2",'.‘/, yl) A]J,, Apy’z,,zs) -

- L
f(T) Az + _2" Y, y,’ Apmpr ZI’ZS) -

L L

f(5:82 = 54,9, Apey Apy, ', 2) +
L L , ,

f(E,Aw + 'z_ayay ,Apz,Apy;z aza)

where dependence of g on I, Ap,, Apy, 2/, and 2, is dropped for notational convenience.
Substituting 3.39 into 3.38 gives

w(2', 2y, Az, Ap) = (3.40)
l —
—1.46k'”’L‘4/dy rect(%)/dy’ rect(y—z—é}—y-) 9y - o)

By making the change of variables u =y~ 3 and v = yizy—' equation 3.40 can be rewritten
as

w(2, 2, Az, A-'p) = (3.41)

—1.46k2L‘4/du/dv rect(v 'Z E) rect(v - ELﬂ)g(u)

Another change of variables results in
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w(?, 2, Az, Ap) = (3.42)

—-1.46k*L™1 / du g(u) / dv' rect(%) rect(%—ég)

Evaluating the integral over ' yields

L

w(2', 2,, Az, Ap) = —1.46k* L3 / du g(u) tri( (3.43)
where tri is the triangle function. Using equations 3.39 and 3.36 the weighting function
can be written

w(2, 2,, Az, Ap) = (3.44)

~1.46k2L° / du tri(~ +LAy) X

2 2 4 2 8
2[(apZ - 80y + (A0, E +)
o . o \ §
- [@n.Z - 20 -2y + 2,2 +u¥]

o o 3
- [(Apzz— = Az+ L)+ (Apy -+ u)z]

Without loss of generality, assume the apertures and point source geometry is such

that there is no offset in the y direction. This implies Ay and Ap, are 0 and equation 3.44
simplifies to

w(?, 2z, Az, Ap) = (3.45)
~1.46k2L3 / du tri(%) X

1 &
2 [(Az)dé - Az)® + uz]
ianZ - ap—ry 4]’
(Ap,,.z Az - L)Y +u
3
_an - s ]t
(Ap,z Az + L) +u

The quantity Ap,f — Az may be interpreted as the vector distance between the crossed

ray paths as a function of 2’ (see figure 3.1). Let p = Apx% — Az and rewrite as
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w(z', z,, Dz, Ap) = (3.46)
—1.46k2L_3/(l?L tri(%) X

{207+ - (-2 + ) - [0+ L) + )}

Let v’ = 7. This allows the integral to become dimensionless and the integration may be
performed from —1 to 1, regardless of the size of L. To simplify notation, the weighting

function is designated as w(z’) and is written as:

w(zl) - (347)
L
—1.461:21}'_3'/ du’ tri(u') x
-1

{QB%Y+M1%—F%‘1f+W1%-k%+1f+uﬂ%}

This is the final expression for the path weighting function. The characteristics of this

function are examined in the next chapter.

3.4 Improvement of the Path Weighting Function

It is shown in the next chapter that the shape of the path weighting function derived
in the previous section does not possess the characteristics of a sampling function. The low
spatial frequencies of the phase perturbations are causing a common tilt in both slope mca-
surements. This effect shows up as a dc offset in the weighting function. The method used
to improve the shape of the path weighting function is to combine the measurements for
different size apertures. This action should remove the comimen tilt component. Equation
3.47 is used with different values of L to achieve the desired result. Plots of the improved

weighting function for this method are given in the next chapter.

3.5 Signal-lo-Noisc Ratio of the Correlation Measurement

In order to quantify the usefulness of the techniques developed in this research. the
signal-to-noise ratio (SNR) of the correlation measurement C, is calculated. In general.

the SNR may be expressed as (20:170-171)

(C(&2))

SNR= —— .
[(C2(Az)) - (C(Ax))2)*

(3.48)

B Bttt D ot L g

Ly

IR PO



where the quantity in the denominator is recognized as the square root of the variance (i.e.
the standard deviation). The derivation of the variance is rather lengthy, however, the
procedure is very similar to that followed in the beginning of this chapter. Yor that reason,

the derivation of the expression for the variance is summarized in the following section.

3.5.1 Derivation of the Variance The variance of C; is given by the square of the

denominator of equation 3.47
VAR = (C}(A%)) - (C,(A%))? (3.49)

The second term on the right hand side of equation 3.49 is the square of the already
derived result given by equations 3.21 and 3.47. The first term on the right hand side
is the ensemble average of the square of C,. To calculate this first term, equation 3.9
is squared and the ensemble average is taken. Squaring equation 3.9 yields 16 terms.
However, « is a zero mean random process and 12 terms go to zero when the ensemble

average is taken. Iiquation 3.49 may thus be written as:

VAR = (3.50)

/ / / / A’ &Pa’ P2 P

X "V’(f) "113(:1';7) ‘4"“(.’1,7’ - L\"’L) "I""(.'lt-"" 3 A-.'L)
X ($1(Z) da()s(27)a(™))

+ / / BPF 22" WH(E) W (') (61(F) dal2')) ey o)
+ / / P P W (g — M) W@ = Ax) { d3(a7)da(2™)){az as)
+{ay a1){as aa)

) [/ [ s e we) (¢|(i’)d)-.»(:'7))]
The reader will notice equation 3.50 is similar to equation 3.10. The fundamental difference

is the presence of the fourth order moment of the phase rather than the second order

moment. Calculation of the fourth order moment of the phasc is possible il Gaussian
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statistics are assumed since, for Gaussian processes, the fourth order moment may be
expressed as a combination of the first and second order moments (6:39). Using the

Gaussian assumption, the variance expression takes the following form:

VAR = (3.51)
2.13k* L~¢ /”f " dzdz" CE(Z)CE(2")
o Jo

X /du tri(%)/dv tri(%) [fi(u,v,2,2") + 2 fa(u, v, 2/, 2"))
+1.46 k* ¢® L3 / "y Ci(#') /du tri(%) 2f3(u,2')
0
+o*

- [1,4(; k2 -3 /0.-,. d?' CX(#) /du t:ri(%)f‘,('u,z’)]2

The functions f; to f; are similar in form to g of equation 3.39. Letting p equal Ap,-;-’f,

the functions are as follows.

fl(u, v, Z’, z”) = (3.52)
F3

z' 2 2 g 2" 2| ¢
4 [(Ap,;—) +u ] [(Apxz—) +v ]
3 £

| 2 2, 2 ¢ 29 | 2
-2 (A[)xz—-i-L) +u (AP::;‘) 4 v

ol

[ 2! 2 % 2" ) ',-.
-2 [(Ap.=)* + u'] [(Ap,— - L)* +v*
L 23 28 .

[ 2, 2] ® 2" o]
-2 (Apxz—)“ + u'] [(Ap:;— + L) 40

ol

2 )

r 2 R ) 3 2 )]
-2 [(Ap,— - L)’ +u ] [(Ap,——)' + v*
| Z. Zs i

s

ars,
S

al N 9 ~1 1
+ [(A]),-;- + L)+ v |[(Ape—+ L)* +°
3 E L “s E

Qfa
aa

o k [ " b
+ [(Apx—;— + L+ (Ap,z— ~ LY +v°
3 E L $ 4

"

+ [(Apx-f- - L+ (Apxz— + L)* + v*

Ma

M

3-15




£

+ [(Ap,-z— ~ L)+ u2] ) [(Ap,,.z— ~ L) 02] ’

$

f2(u1 v, zly z”) = (3.53)
2 ) ) 2 P R ) £
4 (Ap,z— - Az) +u (Ap,z— - Az)’ 4 v
3 S
r ! 3 " 1%
-2 (Ang- —- Az 4 L) + u"’] [(Apxz— - Az)® + o
=L 3 3 o
r ' 3 " 135
-2 (Ap,j— - Az)? 4+ uz] [(Apxz- — Az + L) +v°
- . % Z” : %
-2 (Ap,?— - Az - L) + u2] [(Ap,z— — Az)? +0?
L $ 3 o
o fianZ — Asy 22l [(An 2 — A I s?]
( P z) 4+ u (Ap,z Az - L)Y+
ot s L s J
[ Z 2, 9 By 2" 2, 2] ¢
+ (Ap,z——Aa:-}-L) +u (Ap,z——A:c+L) +v
5 3 e L 3 p
. o ) 2- 2r 2! ) 2- $
+ (A?xz—-Aw+L) +u (Ap,z——A:c—L) +v
2 BV | 2 S A |
+- (Apzz_ —A:B—L) +u (Apzz_"" Aw'*'L) +
L. 3 o L 3 o
. z/ R 2- 2 r oM ) 2- E
+ (Ap,;-—:A:c—L) +u (Ap,;—-—A:c—L) +v
- £ o L 3 - - -
fo(u,2) = (3.54)
2 ¢
2 [(./_&p,:-z—-)2 + uz]

- [(Ap,,.z~ -L)*+ u2] :

s
3

- [(Amj— +LY + uz]




1)

fa(u, )= (3.55) ]

/
2 [(Ap,z— - Az)? 4 'u2J

s

2 ¢
- [(Ap,_;- - Az — L)+ uz]

S

z &
- [('Ap,;— - Az + L) + uz]
8

At this point, in order to get some simplified results, it is necessary to assume a form for
the turbulence. The assumption is made that the turbulence is confined to two layers.
This is represented by

Ci(z) = C,::,é(z -2z)+ C,';’zé(z ) (3.56)

AL g e i L T b e ey et

Using this form for C2, the sifting property of the delta function is employed to remove

the integrals over 2’ and 2”. The expression for the variance is now reduced to

W L LT bl

VAR = (3.57)
2101¢2,¢2,17% [ [ dudo i(F)1ri(3)
X [fi(u, v) + 2f2(u, )

ANNAOE

+2.92k%0°C2 L~ / du tri(3) () :

+2.92k%0%C2 L7 [ du tri(%) fa(n)
+ot
- [1.46kQC,::XL'3/ du tri(%)fs(u)
-f‘-1.46k'“’C,',“'2L'3/ du tri(%)fc(u)] ’
There are now six functions (fy to fs) instead of four. This is because the existence of

two layers of turbulence causes the second and fourth integrals in equation 3.50 to each

split into two integrals, one involving C2 and one involving C72, . The six functions are in




terms of p;, = Ap,f_—f, P2 = Ap,?:, Pp3 = p — Az, and py = p» — Az. They are

= (3.58)
4[p+ v [pf +07°
2 (s + 27+ 407
=2 [p} + )% [(py - L) + )¢
—2[pi + uz]% [(pr + L)* + 1,2]%
~2[(py - LY + 4 ¥ [p2 + ¢
+[(on + L + 7% (o + L) +0%)
S+ L7 +aE [y - L7 +47)
i [(m = L) + u2]% ((py + L) + 02]%
+ oy = L2+ 7% [(py - D)2+ 07
+4 [p} + uz]% (02 + vzl%
-2{(p + L)’ + u"’]% 22+ 'v'“']%
-2 [p] + uz]% [(p - L)* + v2]%
-2 (p} + uZ]% [(p2+ L) + 1)2]%
~2[(p - L)* + “2]% 72 + 02]%
+{(p + LY + u2]% [(p2+ L) + v'“']%
+1 + 27 + ) (2 - L) + 07
+ (1= L +4*% (2 + L) + 0]
+Hon = 27 401 (o - 2 47}
+4 [p3 +0]F [p} + 07
~2[(p + L) + 0¥ [p2 4 03]
~2 [+ %)% [(py — LY? + 07
—2[p% + %)% [y + L +07)?
-2{(p.~ LY + uz]% [ + v"’]é
F e+ DY +F [(p + D)+
+a4 L7+ (- D o7}
+[(2 = LY +03]F [ + L) + 0]
+l2 = 27 4271 [0 = 2+ )7

3-18




+a [t + 07 [ 407

~-2[(p2+ L) + uz}% [p3 + v"’]%

=2 {p3 + “2]% ((p2 =~ L) + 1:2]"5E
2] [ 14
~2[(p2= LY +47)* [p}+7)°

+ 2+ L) +43F [(p2 4+ L)? + 07
+(p2+ L) + uz]% [(p2 = L) + v"']%
+(pe = LY+ ((p2+ 1) +07)F
+ (2 = LP + @)% [(p2 - L) + 07

The function fo(u,v) has the same form as f,{u,v) except the p, is replaced by p; and the

Pz is replaced by ps. The remaining functions are

f;}('ll,) = (3.59)
2[p 4 w?]* — [ = L) +42)% = [(py + L) + )

fa(w) = fa(u) with p; replaced by p..

= (3.60)
2[pi+ “2]% —[(ps= L) + 11"']§ = [(ps + L) + ":']%

Jo(u) = fs(u) with ps replaced by py.

3.5.2  Reduction of the Variance Fxpression In atmospheric optics, the atmospheric
coherence diameter, ry, is a commonly encountered parameter. In a diffraction limited
system using a long exposure, the resolution will increase with aperture size. However,
the resolution will reach a limiting value bevond which an increase in aperture size will
not affect 1esolution. The limiting value is known as the atmospheric coherence diameter
(6:429-439). It is often thought of as a measure of how good the ‘secing’ is at any given
time. To make the expression for the variance (and hence the SNR) more meaningful, it

is helpful to relate it to ry. Goodman (6:431) provides an expression for ry:

2
N2 :
Tg = O.]S-— T 3.(”
’ i [fo C;,-(.f)df} (3.60)
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Using the assumption of two-iayer turbulence, the integral expression in the denominator

may be replace by C2 + C?

7, na*

Replacing A by 2F and factoring out an L from each of the

_terms in the integrals, equation 3.57 may be written in terms of dimensionless integrals as

follows:
VAR = (3.62)
C’.l n
11. 98( )TL [C"l + ’] / / du’ dv' tri(u')eri(v')
[f-(u,v)+fé(1t',v)+fa(ﬂ V)]
” 1-1
L. s -2 Cn ! LN
+6.92(=)5L™%a% |14 22 / du tri(a) f4 (')
To i C,,, -1
L o]
+6'92(1'_)§L-202 14 = / du’ 5w fo(a')
Y na ] -1
+o*
c217' p
~- 3.4 16( ) L"’[ C’;"'} / du’ tri(w’) fg(u')
17y =1
L) -1 12
7 L o C- L . Y3 i
+3.ti6{.]_.)3],"' [J + —';"—} - / du’ trl(u')],(u’_)J
Ty C,'., ~1
where f! is the di.nensionless equivalent of f,. This form is convenient in that CZ and

C? now only appear in a rasio. It is not necessary to assume cxact valuzs, only a ratio of

strengths at different altitudes in the two Jayer model.

3.5.8 SNR Equation The SNI may now be calculated using equations 3.47. 3.21,
and 3.62 in equation 3.43. As a final simplification, let #' = o L. By using ¢’ in equation
3.62, the factor L=2 is common to the numerator and denominator of the SNR and is

thereby eliminated. The equation for the SNR is

T

ALl




SNR= (3.63)

c? RN
3.46 [l + C’;?] / du’ i) fg(w')
cz1™ p
+3.46 [1 + C';'] / du’ tria’) fi (o) 3 +
na -1
[C" "
11.98 lc,,‘ + == / / du’ dv' tri(u')tri(v")
i v') + oo v) + f3(w', ')
L-:E’-l"- C;-:---l ! SOANfIf T
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In the next chapter, some typical values are chosen for the geometry of figure 3.1 and

the SNR is examined as several parameters are allowed to vary.

3.6 Conclusion

The correlation of wave front slope measurements has been related to €2 by an
integral expression involving a path weighting function. The characteristics of this function
are examined in the next chapter. Alsu, & method to improve the path weighting function
was discussed and an expression to calculate the signal-to-noise ratio of the correlation

measurement. was derived. These are also examined in the next chapter.
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IV. Findings and Results

4.1 Introduction

This chapter presents the findings and results of this thesis research. The character-
istics of the unmodified path weighting function are discussed first. It is shown that the
shape of the weighting function must be modified to give it the characteristics of a sampling
function. A method to improve the shape of the weighting function is presented, and the
resolution possible with the improved function is calculated. Finally, assvming the turbu-
lence is confined to two layers, the signal-to-noise ratio of the correlation measurement is

calculated for a sample case.

4.2 Characteristics of the Path Weighting Function

In Chapter 3, the path weighting function was seen to be defined by the equation

w(?) = (4.1)
1
—146k2L% / du! tri(w) X
-1

{2 [(%)2 * ulz]% - [(% -1+ u”]% - [(% F17 + u,z] %}

where 2’ is point along the z axis, z, is the height of the reference sources, Az is the
separation of the apertures, Ap is the separation of the reference sources, k = 2%, L is the
dimension of the L X L apertures, and p = Ap,f% — Az is the transverse separation of the
ray paths. Recall that if w(2’) is to be useful as a sampling function, it should be at a
maximum at the intersection point of the ray paths. The function should decay rapidly to
zero away from the intersection point. A function exhibiting these characteristics could be

used as a sampling function.




4.2.1 Unmodified Path Weighting Function The normalized path weighting func-
tion is plotted versus £ in figure 4.1. The data points used to create this plot were generated
by the FORTRAN computer program NORMPATH contained in appendix A.1.
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Figure 4.1. Normalized Path Weighting Function

When % = 0, the ray paths are at a point of intersection and the function is at a
maximum. As £ increases, the ray paths diverge and the function falls off. Since the
expression for the path weighting function was made dimensionless, the curve in figure 4.1
is the general shape for all values of L. For example, if L = 1m, the values on the horizontal
axis range from 0 to 100m. If L = lem, the values range from 0 to 1m. A change in the
value of L is therefore scen to control the decay time of the curve. As evidenced by figure
4.1, the path weighting function does exhibit the general required sampling charar..enistics.
It has a maximum value at £ =0 and falls off as £ increases. However, the functiua does
not fall off rapidly and never reaches a value of zero. The most rapid decay occurs when
L is smallest, but the function still does not approach zero quickly enough. Thercfore,

the path weighting function must be modified to more closely approximate a sampling
function, as shown in the next section.
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4.2.2  Modified Path Weighting Function The method used to improve the shape os
the path weighting function is to combine weighting functions generated by two apertures
of sizes L; and L». In particular, this should remove the common component of the
average tilt and yield a function with a sharp falloff. By subtracting a weighting function
generated by an aperture of size L, from that generated by an aperture of size L, the
common low spatial frequency components are removed. These low frequency components
have a large correlation over large separations of the ray paths. The large correlation values
associated with these low frequency components are what caused the previous results to
be unacceptable. In effect, the subtraction is equivalent to a high pass filtering of the
weighting function. A plot of the modified path weighting function is contained in figure
4.2 for three ratios of %: The data points used to create this plot were generated by the

FORTRAN computer program MODPTF contained in appendix A.2.

Figure 4.2. Modified Path Weighting Function




As with the normalized path weighting function plot, this method yields a family of
curves. The horizontal spread is controlled by the size of L; and L,. As L; and L, get
larger, the spread increases. This is because the low frequency components are correlated
over a larger area. This action introdunces a larger common tilt component. The rate of
falloff to zero is controlled by the ratio Z? As the ratio approaches 1, w(f;) decays more
rapidly. Therefore, the best sampling characteristics are exhibited by a curve that has
small values for L, and Ly and a ratio that approaches 1. If L; = lem and Ly = 2em,
the horizontal axis in figure 4.2 is scaled from 0 to 1m. ¥or a ratio of 0.9, it is seen that
the path weighting function goes to 0 when the transverse ray path separation is only 0.5
meters, which is very close to the intersection point. The plot shows that the modified
path weighting function exhibits excellent sampling characteristics. The function falls off
rapidly and stays at a zero value and could thercfore be used te extract the value of C2

from the correlation vahie.

4.8 Resr  ion of the Path Weighting Function

It has been shown that the modified path weighting function can be used as a sam-
pling function. It now remains to determine the resolution of the function as it relates
to the measurement geometry. The width of the function w(z') may be interpreted as a
measure of the vertical resolution. The narrower w(z') is, the more accurate will be the
value of C? that is calculated from C',(A"x). This may be directly related to the sifting

property of the Dirac delta function.

To measure the vertical resolution. the method used by Welsh (18) is adopted. Recall
that

!

n= Ap,-?— - Az (4.2)

“x5

At the intersection of the ray paths. p = 0 and the intersection altituds 2, is given

by
Ax
- 4.3
o (4.3)

P




Let a measure of the width of w(z') be given by the point p = p’ where, for example,
p' is the e~! point of w(%). Designate the altitude corresponding to this point as z.

Solving for z,:

(p' + Az) 2,
Byt = T (44)

The width of w(z), with respect to z, is

Pz
Az =2y —2, = 4.5
FERTHER P (4.5)

Let 0 designate the angle between ray paths. As seen from figure 3.1, this is also the

angular separation of the point sources. § may be expressed as

6 Ap,)

5= arctan ( o (4.6)
Solving for Ap,,

Ap, = 2z, tavn(g—) (4.7)

Using equation 4.7, equation 4.5 may be expressed as

(4.8)




As an example, referring to figure 4.2, for L, = lem, L, = 2¢m, and %: = 0.5, it is
seen that the width of w(%) is approximately p = 0.8m. Using this value for p’, vertical

resolution is plotted as a function of @ in figure 4.3.
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Figure 4.3. Vertical Resolution

The plot clearly shows that resolution is related to separation of the point sources.
For example, if 10 meter resolution is required, § must be approximately 0.4 degrees. In

general, resolution increases as source separation increases.
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4.4 Signal-lo-Noise Ratio of the Correlation Measurement

In order to quantify the usefulness of the methods presented in this thesis, the SNRR
of the correlation measurement is calculated. The reader is referred to Chapter 3 for the
derivation and defining equations. It is important to note the SNR analysis is valid for the
case of the unmodified path weighting function only. While this provides a good initial

look at the problem, the analysis should be extended in the future.

To evaluate the SNR for a typical case, it was necessary to choose values for several

. =5 . . .
parameters. The reader will recall that o’ x (;’;) s was a parameter in the SNR equation
that characterizes the noise in the process. This parameter will be allowed to vary to see

2

how noise effects the SNR. The structure constant ratio g—gf = 2.5 was used based on the
data in figure 2.1. Assuming the turbulence is confined to two layers, the peaks of the
curve at 1 and 10km are chosen. The approach *.ken is to divide the area under the curve
into two sections and assume it exists as delta functions at the peak values. The area
under the curve from 1 to 10km is calculated and assumed to exist as a delta function at
Lkm. In the same fashion, the arca from 10 to 20km is calculated and assumed to exist as

a delta function at 20km. The resulting ratio is 2.5.

The reference sources are assumed to be laser guidestars at an altitude of z, = 100km.
Guidestar separation, Ap,, is 1km. The data points used to create the plots in the following

subsections were generated by the FORTRAN computer program SNR. in appendix A.3.




4.4.1 SNR as a Function of Noise Welsh and Gardner (19:1919) provide an ex-

pression for the tilt measurement error (noise) as follows:

0.867n
0= —

. L>r 4.9
1V'2"I'0 To ( )

where 7 is a parameter nsed to account for imperfections in the detector array and N is

the total subaperture photon count. n = 1.5 is used as a typical value.

Using equation 4.9 and recalling o’ = oL, it is possible to relate ¢'* to the photon

count for the values used in the sample case. The resulting equation is

.

N =(0.86';.'1))2
()3 o%E)F

ro

(4.10)

where the parameter a"*’(;"o—):33 has been introduced to coincide with the terms in the SNR
equation in Chapter 3. The photon count may now be related to the SNR using equation

4.10. This relationship is plotted in figure 4.4.
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Figure 4.4. SNR as a Function of Photon Count




The plot shows that a photon count of greater than 200 produces an SNR. very close
to the noiseless value. Assuming that bright guidestars are used (i.c. created with sufficient
power), photon noise should not be a concern. The remainder of the SNR analysis will

therefore assume a noiseless system (i.e. ¢’ = 0).

4.4.2 SNR as a Function of Ray Path Separation In this subsection, the effect on
the SNR of changing the ray path separation is investigated. There are two ways to change
the path separation; by changing the separation of the subapertures or by changing the
separation of the point sources. In figure 4.5, the subaperture separation, Az, is allowed
to vary. Recall that 2; is the height of the first turbulence layer, z, is the height of the
second turbulence layer, z, is the guidestar height, and Ap, is the guidestar separation.
The separation of ray paths is given by Ap,% — Azx. Therefore, the two points of interest
on the plot are when Az = Ap 2 and Az = Apz 3. These points correspond to a path
intersection point for each turbulence layer and occur at Az = 10 and Az = 100. In figure

4.6, the guidestar separation, Ap, is allowed to vary. The corresponding intersection points

for the turbulence layers are at Ap, = 100m and Ap, = 1km.
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Figure 4.5. SNR as a Function of Subaperture Separation
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Figure 4.6. SNR as a Function of Source Separation
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As seen from the plots, the SNR reaches two maximum values. While the plots appear
to be in reverse order, it is iinportant to realize that the SNR values are consistent between
the two plots. For example, the value of 0.259 at Az = 10m and Ap. = 1km is consistent
between the two plots. This becomes clear when one considers what is happening when
cither the source or subaperture separation is increased. The net effect is to change ray
path separation, however, the change is initiated at opposite ends and this causes the plots

to appear reversed.

The difference in the height of the peaks in the turbulence layers may be directly
related to the strength of the turbulence at the layers. The stronger turbulence is causing
a higher correlation value and hence a larger SNR. It may be assumed that it will be easier

to detect stronger turbulence values with this method.

The variation in the plot of the SNR indicates that different combinations of source
and subaperture separations yield different values of the SNR. Depending on the applica-
tion and physical limitations of an experiment (i.e. physical space available to change the

separation of the wave front sensors), one may adjust the interrelationship for an optimum
SNR.

4.4-3 Improvement of the SNR The SNR plots in the previous section did not
exceed a value of 1. For the method to be useful, it is necessary to consider how the SNR
may be increased. The reader will recall an initial assumption in Chapter 3 restricted
the wave front sensors to a single subaperture. If sensors with multiple subapertures are
used, an array of correlation values will be obtained. This is done by pairing all possible
combinations of the subapertures, each pair being separated by Mx. Using an array of n
values should improve the SNR by a factor of n. This action should raise the SNR to a

level suitable for detection.

4.5 Oblairing a Vertical Profile

As was seen in the previous section, changing the subaperture separation moves the
path intersection point vertically. This feature may be exploited to obtain a vertical profile
of C2. If sensors with multiple subapertures are used. it is possible use many different values
of Ax. Pairing all possible combinations of subapertures separated by all values of Ax will
result in an array of correlation values that correspond to different intersection altitudes.

These values may be exploited to extract the value of ("2 at the different altitudes.
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4.6  Conclusion

It has been shown that, using the subtraction method, the path weighting function
can be modified to approximate a sampling function. C, can be directly related to C? by
the modified function. The resolution plot indicates that source separation determines the
vertical resolution. As source separation increases, vertical resolution increases. The SNR
calculations for the sample case show that wave front sensors with multiple subapertures
will be necessary. If multiple values are obtained to raise the SNR, it will be possible to
extract the value of C2 from the value of C. Using multiple subapertures also allows one

to obtain a vertical profile.
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V. Conclusions and Recommendations

5.1 Querview

This chapter contains the conclusions drawn from this research. It also contains the

authors recommendations for further study.

5.2 Conclusions

This research has shown that the spatial correlation of wave front slopes may be used
to calculate the value of the atmospheric structure constant. The correlation process yields
an integral expr _sion relating C? to the correlation value by means of a path weighting
function. It is possible to shape the weighting function into a sampling function and to
use the sifting property of the sampling function to directly relate C? to the correlation

measurement.

It is difficult to compare the accuracy of this method to other methods. Typically,
other methods of calculating C2 are experimentally implemented and the results of the
experiment are compared against known values of C2. That has not been done yet with
this research. However, based on the sample SNR calculation for two-layer turbulence, it is
anticipated this method will yield accurate results. Full-scale modeling «nd testing should

prove this assertion to be true.

5.8 Recommendations

The following suggestions for further study are made.

1. The SNR analysis should be extended bevond the assumption that the turbulence
is confined to two layers. Increasing the number of turbulent layers will more closely
approximate a real-life situation.

2. The SNR. analysis should Le done for the case of the modified path weighting function.
3. Using an accepted model for atmospheric turbulence, this research method should be
computer modeled. The spatial correlation of wave front phase slopes should be calculated
for the modeled scenario and compared to known 1esults to determine the accuracy of this
method.

4. This method should be experimentally verified and the results should be compared to

thosc obtained by other measurement methods.
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5.4 Summary

The spatial correlation of wave front slopes from two point sources theoretically yields
a value for C2. Experimental verification of the method will allow it to become another

tool to calculate the magnitude of atmospheric turbulence.




Appendix A. Compuler Programs

This appendix contains the FORTRAN computer code used to obtain the plots in
Chapter 4 of this thesis. The code was written by the author with the exception of QSIMP,
TRAPZD, and INTEG2D. These were adapted from the book Numerical Recipes: The Art

_of Scientific Computing by William U. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling published by Cambridge University Press, New York, 1986, pages
110-130.

A.1  Program NORMPATH

L

PROGRAM NORMPATH

2Ll i

This program computes the values for the
normalized path weighting function.

3

* * ¥ *

EXTERNAL WTFUNC :
COMMON /PARAMS/P,L E
REAL P,PPRIME,L,NORM,STEP f
INTEGER I ;
100  FORMAT (F10.3) 7
OPEN(UNIT=10, NAME=PROG1.DAT’, STATUS=’HEW’)

* E
READ(S,100) L ]
READ(5,100) STEP 3
P=0. ;

* 1
CALL QSIMP(WTFUNC,-1,1,S) 3
NORM=S*(L**(-1./3.)) E
DO 110 I=0,100 ]

PPRIME=P/L 1

CALL QSIMP(WTFUNC,-1,1,S) E

S=(S/NORM) *(L*x(-1./3.)) :

WRITE(10,100) PPRIME,S :

P=P+STEP 3
110  CONTINUE :
3

CLOSE(UNIT=10)
STOP
END
kAR AR I A K AOK Ao 3K A K A OKOR KR K AR A A A A KK

REAL FUNCTION WTFUNC(X)

ALt
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COMMON /PARAMS/P,L
REAL P,L
WTFUNC=-(1.-ABS(X))*(

c 2.x(((P/L)**2,+(X)*%2,)**(5./6.))~
c (C(P/L)-1.)%%x2 +(X) %2, )% (5./6.)-
C (CCP/L)+1 . ) %%2 +(X) *%2 . ) %% (5./6.)
c )

RETURN

END

2 2 3 ok 2k ok o o 2 o ok o ok 2k sk 3k o 3k o o ok 2k o 2k sk ok ek ok 3k 2k o ke e ok ok ok ok ok sk ok A 3 ok ok o ok ok sk
SUBROUTINE TRAPZD(FUNC,A,B,S,N)
IF (N.EQ.1) THEN
S=0.5%(B~A)*(FUNC(A)+FUNC(B))
IT=1
ELSE
TNM=IT
DEL=(B-A)/TNM
X=A+0.5%DEL
SUM=0.
D0 200 J=1,IT
SUM=SUM+FUNC(X)
X=X+DEL
200 CONTINUE
S=0.5%(S+(B-A)*SUM/TNM)
IT=2+IT
ENDIF
RETURN
END
ke e e e ke 2 ok o e afe e e ok 8 e 3K sk 3 e ok o e ok ok o ol ke 3 o ok ko e o e 3l sk ok e ok ok oK ok o ok ok ek o
SUBROUTINE QSIMP(FUNC,A,B,S)
PARAMETER (EPS=1.E-5, JMAX=20)
0ST=-1.E30
6S= -1.E30
DO 300 J=1,JMAX
CALL TRAPZD(FUXC,A,B,ST,J)
S=(4.*ST-0ST}/3.
IF (ABS(S-0S).LT.EPS*ABS(0S)) RETURN
0S=5
0ST=ST
300 CONTINUE
PAUSE ’Too many steps.’
END
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100

110

A.2 Program MODPWF

PROGRAM MODPWF

This program subtracts a weighting function
for an aperture of size L2 from a weighting
function for an aperture of size LI.

The values are normalized for a maximum of 1.

EXTERNAL WTFUNCL1,WTFUNCL2

COMMON /PARAMS/P,L1,.2,RATIO

REAL P,PPRIME,L,L1,L2,RATIO,NORM,STEP
INTEGER I

FORMAT (F10.3)

OPEN(UNIT=10, NAME=’PROG1.DAT’, STATUS=’NEW’)

P=C.

READ(S,100) L1
READ(5,100) RATIO
READ(5,100) STEP
L2=L1/RATIO

D0 110 I=0,100
L=L1
CALL GQSIMP(WTFUNCL1,-1.,1.,SA)
SA=SA*(Li**x(-1./3.))
L=L2
CALL QSIMP(W:.JNCL2,~-1.,1.,5B)
SB=SB*(L2%*(-1./3.))
S=SA-SB
IF (I .EQ. 0) THEN
NORM=S
ENDIF
S=S/NORM
PPRIME=P/L1
WRITE(10,100) PPRIME,S
P=P+STEP
CONTINUE

CLOSE(UNIT=10)
STOP
END

LR P22 2 2222222 22 2222 222 222 2222222222 Rl i d

REAL FUNCTION WTFUNCL1(X)

COMMON /PARAMS/P,L1,L2,RATIO
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REAL P,L1,L2,RATIO
WTFUNCL1=-(1.-ABS(X))*(

c 2.%(((P/L1)**2 ,+(X) *x2 ,)xx(5./6.))-
C ((P/L1-1)%%2. . +(X)%%2.)%%(5./6.)~

c ((P/Li+1)#%2,+(X)*x2,)**(5./6.)

C )

RETURN

END

ok 3 ok ok o 2 ke sk o s ok ok ok e ok dke sk R o ok e 3k o e ok ok e o s e ok ok e ok sk ok sk ok sk sk ok sk e ke ok ok ok sk ok ok sk
REAL FUNCTION WIFUNCL2(X)
COMMON /PARAMS/P,L1,L2,RATIO
REAL P,L1,L2,RATIO
WTFUNCL2=~(1.-ABS(X))*(

C 2.%(((P/L2) ¥%2.+(X)*%2 )%k (5,/6.) )~
C ((P/L2-1)4*2 , +(X)*%2 ., ) %% (5./6.) -

C ((P/L2+1) *%x2 . +(X)*x2.)%*x(5./6.)

c )

RETURN

END

sk o ok 3 o 2k ok s e ok e o e 3k ok o 3k o s ok ok ok ak sk ok e o ok Sk ok ak ok ok sk ok sk sk ok ok sk ok ok o ok o Ak kK sk
SUBROUTINE TRAPZD(FUNC,A,B,S,N)
IF (N.EQ.1) THEN
S=0,5%(B-A)*(FUNC(A)+FUNC(B))
IT=1
ELSE
TNM=IT
DEL=(B-4)/TNM
X=A+0.5%DEL
SUM=0.
DO 200 J=1,IT
SUM=SUM+FUNC (X)
X=X+DEL
200 CONTINUE
S=0.5%(S+(B-A)*SUM/TNM)
IT=2%IT
ENDIF
RETURN
END
3 2 o ok Sk K ok ok ok b Ak 3 ok 3k K 3 3k 2k ok ok e ke 3k 3k 3k 3K ok ok ok sk sk 3k S 3k ok 3k ok A K sk ok ok ok ok ok %k ok ok %k
SUBROUTINE QSIMP(FUNC,A,B,S)
PARAMETER (EPS=1.E-5, JMAX=20)
0ST=-1.E30
0S= -1.E30
D0 300 J=1,JMAX
CALL TRAPZD{¥UNC,A,B,ST,J)

A4




S=(4.%ST-0ST)/3.
IF (ABS(S-0S).LT.EPS*ABS(0S)) RETURN
0S=s
0ST=ST
300 CONTINUE
PAUSE ’Too many steps.’
END
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A.3 Program SNR

L S B

100

PROGRAM SNR

This program computes the mean and variance
of the correlation of wave front phase slopes.
It then calculates the signal-to-noise ratio
from the relationship SNR=MEAN/SQRT(VAR).

EXTERNAL WTFUNCA1,WTFUNCA2,WTFUNCB
EXTERNAL WTFUNCC,WTFUNCD,WTFUNCE
EXTERNAL G,H

COMMON /PARAMS/P1,P2,P3,P4
COMMON/FLGS/FLAG

REAL P1,P2,P3,P4

REAL S4,SB,SC,SD,SE,S

REAL CA,CB,CC,CD,CE

REAL L_RO,CN21,DELTAX,DEL_PX,NOIVAR
REAL MEAN,VAR,SNR

INTEGER I,FLAG

FORMAT (F10.3)
OPEN(UNIT=10, NAME=’PROG1.DAT’, STATUS=’NEW’)

L_RO=10.
CN21=2.5
DELTAX=10.
DEL_PX=1000.
Pi=DEL_PX/100.
P2=DEL_PX/10.
P3=(P1-DELTAX)
P4=(P2-DELTAX)
NOIVAR=0.

DO 110 I=0,100
CA=11.98%(1/(CN21+1/CN21))
CB=6.92*(L_RO**(-5./3.))*

(1/(1+CN21) ) *NOIVAR
CC=6.92%(L_RO**(-5./3.))*

¢ (1/(1+1/CN21))#NOIVAR

CD=-3.46%(1/(1+CN21))
CE=-3.46%(1/(1+1/CN21))
FLAG=1
CALL INTEG2D(-1.,1.,S)
SA1=S

A6
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FLAG=2

CALL INTEG2D(-1.,1.,S)

SA2=S

CALL QSIMP(WTFUNCB,-1.

CALL QSIMP(WTFUNCC,-1.

CALL QSIMP(WTFUNCD,-1.

CALL QSIMP(WTFUNCE,-1.,

MEAN=ABS (CD*SD+CE*SE)

VAR=(CA* (SA1+SA2))+(CB*SB)+(CC*SC) +
(NOIVAR#%2,*%L_RO**(-10./3.)~(MEAN*%2,)

SNR=MEAN/SQRT(VAR)

WRITE(10,100) SNR

.,SB)
.,SC)
.,SD)
.,SE)

-
P

Depending on the parameter being modified to see
the effect on the SNR, code must be added here.
For example, if the effect of noise on the SNR is
the quantity of interest, NOIVAR=NOIVAR+1. may
be used.

CONTINUE

CLOSE(UNIT=10)
STOP
END

sk ke ok ke o ok ok e o e s o ok ke ek b sk s ok sk e e e e ke Sk sk sk ok e sk ok ok o ok ke ok e e ke ke e ok skeoke ke ok

SUBROUTINE INTEG2D(X1,X2,S)
EXTERNAL H

COMMON /PARAMS/P1,P2,P3,P4
REAL Pi,P2,P3,P4

CALL QSIMPX(H,-1.,1.,S)
RETURN

END

e e e o ok 2 e ke s ek sk ke ko sk e Sk s sk sk ok o e ok e sk sk ok ke s ke e ke s sk sk ok ok ks ok ok ok sk ok ok

REAL FUNCTION H(XX)
EXTERNAL G

COMMON/XY/X,Y

COMMON /PARAMS/P1,P2,P3,P4
REAL P1,P2,P3,P4

X=XX

CALL QSIMPY(G,-1.,1.,S)
H=S

RETURN

END

o ok sk ke ke ok o ok ok ok ol o ok e ke ke ke o ok o Sk sk ok e 3 ok ok ok e sk ok ko sk skl ok K ok ok ok o sk ok sk 3k

REAL FUNCTION G(YY)




EXTERNAL WTFUNCA1,WTFUNCA2
COMMON/XY/X,Y
COMMON/PARAMS/P1,P2,P3,P4
COMMON/FLGS/FLAG
INTEGER FLAG
REAL P1,P2,P3,P4
Y=YY
IF (FLAG .EQ. 1) THEN
G=WTFUNCA1(X,Y)
ELSE
G=WTFUNCA2(X,Y)
ENDIF
RETURN
END
Sk 3 ok o 2 ok ok 3k 3K ok ok 3 ok 3k 3 3k ok o s ok Dl ok 3k Sk ok S ok e 3k ke bk ke ok ok ok 2 ok ok sk ok ke oK e o e ok ok sk ok
REAL FUNCTION WTFUNCA1(X,Y)
COMMON /PARAMS/P1,P2,P3,P4
REAL P1,P2,P3,P4
WTFUNCA1=(1.-ABS(X))*(1.-ABS(Y))*(
4. %x(PLlak2 , +X*%2, ) %% (5,/6.)*
(P1xx2,4+Y*%x2,)*x(5./6.)+
((PL+1.)%*2, +X#*2 ) %% (5./6.) %
((P1+1.)%%2.+Y%%2,)%*(5./6.)+
((P1-1.) %2, +X#%2, )%k (5, /6. )%
((P1+1.)%x2, +Y**2 ) %% (5./6.)+
((P1+1.)%*2, +X*%2 ) **(5./6.)*
((P1-1.)*%2.+Y*%2 ) %% (5./6.)+
((P1=1.)%*2 4X*%2 ) **(5./6.)%
((P1-1.)%%2,+Y*%2,)*%(5./6.)~
2. ((P14+1.) %42, +X*%2, ) *%(5,/6.)*
((P1)**2,4Y%*x2.)*x(5./6.)~
2.%x((P1-1.)%%2 ,+X%%2,)%*(5./6.)%
((P1)*x2, +Y**x2, )*%(5./6.)~
2.%((P1)*%x2,+X4%k2, ) *%(5,/6. )%
((P1-1.)%%2,+Y**2 ) **x(5./6.)~
2.4 ((P1)*%2, +X**2,)*%(5./6.)*
((P1+1.)%%2, +Y%%k2 ) x%x(5./6.)+
4.k (PLk2 +X*x2, ) %% (5,/6.)*
(P2%*2,+Y*%x2,)*x(5./6.)+
((P1+41.) %42, +X*%2,)*%*(5,/6.)*
((P2+1.)*%%2, +Y*%%2,)*%*(5./6.)+
((P1-1.)%%2, +X#*x2 ) **(5./6.)*
((P2+1.)%%2 ,+Y*%2,)*x(5./6.)+
((P1+1.)%%2, +X#%2 ) *%x(5./6. )+
((P2-1.)*%*2,+Y%%2 )% (5,/6.)+
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((P1-1.)%%2. +X*%2,)*%x(5./6.)*
((P2-1.)*%2 . +Y*x2,) %% (5./6.)-
2.k ((P1+1.)%%2, +Xx*2. ) **(5. /6
((P2) %2, +Y**2 ) %% (5,/6.)~

2.%((P1-1.)%x2 ,+X*%2,)*x*(5,/6,

((P2) %2, +Y*x2.)*x(5./6.)~
2.k ((P1)**2, +X%*2 ) %% (5,/6.)%
((P2-1.)%%2,+Y**2, )*%(5./6.) -
2.x((P1)**2, +X**x2,)*x(5,/6.) %
((P2+1.)#%2 +Y*%2 ) x*(5./6.)+
4 . x(P2k*2 +Xkx2 )k (5./6.)*
(P1%x2,+Y+x2,)%*(5./6.)+
((P2+1.) %2, +X**2 ) %% (5,/6.) *
((P1+1.)*%x2,+Y*%2,)*%(5./6.)+
((P2-1.) %42 +X**%2 . )**(5./6.) *
((P1+1.)%%2 . +Y*%2 . )x%x(5./6.)+
((P2+1.)%%2 +X**2,)** (5, /6, ) *
((PL1-1.)%%2 +Yx%2 . )%4(5./6,)+
((P2-1.)%%2, +X*%2,)%%(5,/6.)*
((P1-1.)#%2 . +Y**2 . )%%(5./6.) -

2.x((P2+1.)%%x2 +Xx*2,)**(5, /6.

((P1)*%2.+Y%%x2,)*x(5,/6,) -

2.x((P2-1.)%x2 +X*x2,)x*x(5,/6,

((PL)**2 . +Y*%2,)**x(5./6.) -
2.%((P2)%*2 , +X%*2.)*%(5,/6, ) *
((P1=1.)%%2, +Y%%x2,)*%(5./6.)-
2.%((P2)**2, +Xx*2.)*%(5,/6.)*
((P1+1.)%%2 +Y*%x2,)%%(5./6,)+
4, % (P24%2  +Xx%x2 ) #*x(5./6.)*
(P2x*2.+Y¥%x2.)*x*x(5./6.)+
((P2+1.) %%2 , +X%%2 . )*%(5./6, ) *
((P2+1.)%%2 +Y**2,)%%(5./6.)+
((P2-1.)%*2,+X%*2.)%*(5,/6, ) *
((P2+1.)%%2 , +Y**2,)%%(5,/6, )+
((P2+1.)*%x2 +X**2,)**x(5,/6,)*
((P2~1.)%%2,+Y**2 . ) %% (5,./6.)+
((P2-1.)%%2,+X*%x2,)*x(5./6.) %
((P2~1.)**2,+Y%%x2,)**(5./6.)-

2.((P2+41.)%%2 , +X*x2 ) **x(5,/6.

((P2)%*2.+Y*%x2,)*x(5./6.) -

2.%x((P2-1.)%*%2 +X*%2 )%%x(5./6.

((P2)*%2.+Y*x2.)**(5./6.) -

2.%((P2)**2, +X**2,)*x(5,/6,)*
((P2-1.)%%2. +Y*%2,)%%(5./6.)-
2.4 ((P2)#%2 . +X*x*x2, ) %% (5, /6. ) *

L)k

) *

)x

)*

)%

)*




C
c

((P2+1.)%%2,+Y*%x2 ) **x(5,/6
)

RETURN

END

.)
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REAL FUNCTION WTFUNCA2(X,Y)

COMMON /PARAMS/P1,P2,P3,P4

REAL P1,P2,P3,P4
WTFUNCA2=(1.-ABS(X))*(1.-ABS(Y) )*2%(
4., %(P3%%2, +X*x2 ) *x(5./6,)*

OO0 0000000000000 aaaaaaaa

(P3**2.+Y%%2,)*%(5,./6.)+

((P3+1.)%%2, +X*x%2,) %% (5,/6.
((P3+1.)%%x2,+Y*%2 ) x*x(5./6.
((P3-1.)%%2, +X*%2,)*%(5./6.
((P3+1.)%%2,+Y**2,)%*(5./6.
((P3+1.)%%2, +X*%2 . ) %% (5./6.
((P3=1.)%%2, +Y%*2 ) **x(5./6.
((P3-1.)%%2, +X*x%2,)%%x(5./6.

((P3-1.)%%2,+Y*%2 )*%(5./6

2.%x((P3+1.)%%2 +X**x2, ) %% (5.

((P3)**2,+Y**2 ) x%(5./6.) -

2.%((P3-1.)%%k2, +X%x2, %% (5,

((P3)%*2,+Y*%x2,)%*(5./6.)~

2.x((P3)**2,+X**2,)**(5,/6.
((P3-1.)%*%2,+Y**2 )**x(5./6.
2.%((P3)%*2, +X**2, ) %% (5./6.

((P3+1.)%%2,+Y**2,)%*(5./6

)%
)+
) *
)+
DK
)+
)
-

)
)-
Yx

D+

4., % (P3%%x2, +X**x2,)*%(5,/6.)*

(P4x*2 ,+Y*x2 ) xx(5./6.)+

((P3+1.)%%2 ,+X*%x2 ) *%x(5./6
((P4+1.)*%2 ,+Y**2,)**(5./6
((P3-1.)%%2,+X*%2,)**(5./6
((Pa+1.)%x2, +Y**2, ) %% (5./6
((P3+1.)%%2 ,+X*%2.)**(5./6
((P4-1.)*%2 +Y*%2. )x*x(5./6
((P3=-1.)%*2 +X*%2 . )**(5./6
((P4-1.)*%2, +Y**2, ) **(5,/6
2. ((P3+1.)%%2, +X*%2, ) %% (5
((P4)**2 , +Y*%2 ) x*x(5./6.)~

2.%((P3-1.)%%2, +X%%x2, ) %% (5,

((P4)**2 . +Y**2 . )**(5./6.)~
2.%((P3)x%2, +Xx%x2 . )*%(5./6
((Pa-1.)*x2 . +Y*%2 ) *%(5./6
2.%((P3)#%2, +X**x2,)*%x(5./6
((P4+1.)*%2 +Y*x2,)**(5./6

L)k
D4
Dx
D+
JYx
D+
L) *

-

./6.

)%k
-
L)%
D+
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4. % (Pasx2 , +X**2, ) *x%(5./6.) %
(P3%*2,+Y*%2 . )¥*(5./6.)+
((P4+1 ) %2, +X*x*2 ) **(5./6.)*
((P3+1.)%%2,+Y4%x2 ) **(5,/6.)+
((P4-1.)%*2.+X**2 ) ¥*(5./6.)*
((P3+1.)#%2, +Y**2, ) %% (5,./6.)+
((P4+1.)*%2, +X%%2,)%*(5,/6.)*
((P3-1.)%%2,+Y%x2,)**(5,/6.)+
((P4-1.) %2, +Xx*2, ) **(5./6.)*
((P3-1.)%%2.+Yx*2, )% (5./6.)~
2, % ((P4+1.)%%2, +X**2 . )*x(5./6.)%
((P3)**2,+Y**2, )*x(5./6.)~
2.%((P4-1.)*x2, +X*%2,)%*(5./6. )%
((P3)**2,+Y**x2.)*%(5./6.)~
2. ((P4)**2,+X*%2.)*x(5./6.)*
((P3-1.)*%2.+Y%x2 )*%*(5./6.)~
2.k ((P4A)**2, +X*x2, )%k (5,/6.) %
((P3+1.)%%2,+Y**2 ) *x(5./6.)+
4, % (P4x*2 , +X*%2, ) xk (5. /6., )%
(P4**2.+Y**2,)*x(5./6.)+
((P4+1.,)%%2 , +X*x2 ) %*x(5,./6.)%
((P4+1.)%%2,+Y*x2 ) %% (5./6.)+
((P4-1.)%*2,+X*x*2, )**(5./6.)%
((P4+1.)*%2,+Y4*x2 ) ¥x(5./6.)+
((Pa+1.)*%2, +X#%2 ) **(5./6,)*
((P4-1.)%%2,+Y%*2,)*%%x(5./6.)}+
((P4-1.)*%2,+X*¥2 . )x%(5./6.)*
((P4~-1.)*%2 +Y*x2 )*x*x(5,/6.)-
2.%((P4+1. )2 +X#%2,)x%(5./6. )%
((P4)**2,+Y*%2,)**(5./6.)~
2.%((P4~1.)*2.+X%x2. ) kx(5./6.)*
((P4)*x2 . +Y**2 ,)**(5./6.)-
2. % ((PA)**2 ,+X*%2 ) x*{5,/6.)%
((P4-1.)*%2,+Y*x2,)*x(5./6.)~
2.%((PA)**2 , +X%%2, ) %% (5./6.)*
({P4+1.)%*2,+Y4*2 ) *x(5./6.)
)
RETURN
END
s o o 3k ok o sk ok o sk 3k 38 o o 3 S o s 24 o4 ok 3¢ o8 o sk ok e 3k o a sk ok o e o e sk ok o ok e Sk ke e ok o ok ke ek
REAL FUNCTION WTFUNCB(X)
COMMON /PARAMS/P3,P2,P3,P4
REAL P1,P2,P3,P4
WTFUNCB=-(1.-ABS(X))*(
c 2. % (P1*%x2. +X*k*2, ) *%(5./6.)-

OOOOOOOQOOOOOQOOOOOQOOOOOOOOQOQOOOOOO
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C ((P1-1.)%%2,+X%%2 )*x(5./6.)~
C ((P1+1.) %2, +X**2,)*%(5./6.)
c )
RETURN
END
sk ok 2 ok 2 25 2k o ok 2 3k 2k ok ok ok ok o ok sk o sk ok ok Ak ok ok K ok oK oK ok ok 3k ok ok o ok ok ok ke ok sk ok ok ok ok ok ok Kk ok ok
REAL FUNCTION WTFUNCC(X)
COMMON /PARAMS/P1,P2,P3,P4
REAL P1,P2,P3,P4
WTFUNCC=-(1.-ABS(X))*(

C 2.%(P2%%2, +X**2, ) *%(5,/6.) -
c ((P2-1.)%%2 +X*x2 )*x(5./6.)~
c ((P2+1.)%*%2 , +X*x2,)**(5./6.)
C )

RETURN

END

S e 3 2k 2 2 5k 2k 5k 3¢ 3 3 e ¢ ke ke e e o k¢ ke b e 2 ke 3k 3k kb Ak ok sk 3k ok A 7 b sk sk ok ok ok ke sk ok ok Ak ok ke ok
REAL FUNCTION WTFUNCD(X)
COMMON /PARAMS/P1,P2,P3,P4
REAL P1,P2,P3,P4
WTFUNCD=-(1.-ABS(X))*(

C 2.k ((P3)*%2,+X*%2,)*x(5./6.) -
C ((P3-1.)**2.+X*%2, )*%(5./6.)-
c ((P3+41.)%%2,+X*x2 ) **(5,/6.)
C )

RETURN

END

e koK skokokok ok solokskok ok ik Aokl ok ok kok ok kokok ok ok ok ok Rk
REAL FUNCTION WTFUNCE(X)
COMMON /PARAMS/P1,P2,P3,P4
REAL P1,P2,P3,P4
WTFUNCE=-(1.-ABS(X))*(

C 2% ((P4)**2 , +X*%2 . )*xx(5./6.)-
c ((P4~-1.)%%2 ,+X*¥2,.)*%(5./6.)~
C ((P4+1.)*%2.+X*%2.)*x(5./6.)
c )

RETURN

END

sk ke o 2k 2 2 2k ok sk ok 2 2k e 2k 2 2 S 3k ik ok ke 2k e 2k 2§ e sk D e 3 3k ke 2k s e ek bk e s o ke e e e e ke ok 2 ok
SUBROUTINE TRAPZD(FUNC,A,B,S,N)
IF (N.EQ.1) THEN
S=0.5%(B~A)*(FUNC(A)+FUNC(B))
1T=1
ELSE
TNM=IT
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DEL=(B-A) /TEM
X=A+0.5%DEL
SUM=0.
DO 200 J=1,IT
SUM=SUM+FUNC(X)
X=X+DEL
200 CONTINUE
S=0.5%(S+(B-A)*SUM/TNM)
IT=2%IT
ENDIF
RETURN
END
sk 3 3k ok ok k¢ 2k 5k 2k 3 k¢ 2 6 o 2k 3¢ ok 3 sk 3 3 3 ok S ok e sk 6 o ok e 2k Sk o ok 3K K 3 o 0 2k o o i ok ok ok ok ok ok Kk
SUBROUTINE QSIMP(FUNC,A,B,S)
PARAMETER (EPS=1.E-5, JMAX=20)
0ST=-1.E30
0S= -1.E30
DO 300 J=1,JMAX
CALL TRAPZD(FUNC,A,B,ST,J)
S=(4.%ST-0ST)/3.
IF (ABS(S-0S).LT.EPS*ABS(0S)) RETURN
0S8=S
0ST=ST
300 CONTINUE
PAUSE ’'Too many steps.’
END
e 2 o ok 38 3 e ke 3k 2 e 3k ofe 3k 2k 3 2k sk e ke ok sk 2 Ak ok s e s 3k ok e ok e e 2 e e o A ok ok 3K 8 3 ok ok ok
SUBROUTINE TRAPZDX(FUNC,A,B,S,N)
IF (N.EQ.1) THEN
S=0.5%(B-A)*(FUNC(A)+FUNC(B))
IT=1
ELSE
TNM=IT
DEL=(B-4) /TNM
X=A+0.5*DEL
SUM=0.
DO 200 J=1,IT
SUM=SUM+FUNC(X)
X=X+DEL
200 CONTINUE
S=0.5%(S+(B-A)*SUM/TNM)
IT=2*IT
ENDIF
RETURN
END
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SUBROUTINE QSIMPX{FUNC,4,B,S)
PARAMETER. (EPS=1.E-5, JMAX=20)
0ST=-1.E30
0S= -1.E30
DO 300 J=1,JMAX
CALL TRAPZDX(FUNC,A,B,ST,J)
S=(4.*ST-0ST)/3.
IF (ABS(S-0S).LT.EPS«ABS(0S)) RETURN
0S=S
0ST=ST
300 CONTINUE
PAUSE ’Too many steps.’
END
e 3k ok ok 3 e 2 dk e 3§ 3 3¢ 2k 2k 3K 3 3k 3k ok ok 3 ok S A 3k ke ok 3K o 3 e ok e ke o sk 3k K e A o 3 o ok Sk e ok ok ok ok ok
SUBROUTINE TRAPZDY(FUNC,A,B,S,N)
IF (N.EG.1) THEN
S=0.5%(B-A)*(FUNC(A)+FUNC(B))
1T=1
ELSE
TNM=IT
DEL=(B-A)/TNM
X=A+0.5*DEL
SUM=0.
DO 200 J=1,IT
SUM=SUM+FUNC (X)
=X+DEL
200 CONTINUE
S=0.5%(S+(B-A)*SUM/TNM)
IT=2%IT
ENDIF
RETURN
END
a5 3 3 2k 3k ok e e o a3k ke 3k ok ok e o 3k ok e o s 2 3¢ 2k ke o ke e e 3k 3k ok e o o sk ok sk o ke ok e o o e ok ek ke sk
SUBROUTINE QSIMPY(FUNC,A,B,S)
PARAMETER (EPS=1.E-5, JMAX=20)
0ST=-1.E30
0S= -1.E30
DO 300 J=1,JMAX
CALL TRAPZDY(FUNC,A,B,ST,J)
S=(4.%ST-0ST)/3.
IF (ABS(S-0S).LT.EPS*ABS(0S)) RETURN
0S8=8
0ST=ST
300 CONTINUE
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