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Abstract

This thesis investigates electromagnetic scattering from resistive strips and resistive-

loaded conducting strips using a rigorous UTD formulation. The UTD diffraction

coefficients are based on the Wiener-Hopf technique and Jones' method. Scattering

predictions are performed for constant resistive strips, constant resistive-loaded conducting

strips, tapered resistive strips, and tapered resistive-loaded conducting strips. All strip

geometries have a total width of 4),. Predictions are compared to MM and measurements to

determine the validity of the UTD prediction. Overall, there is good agreement. For TMz

polarization the only deviations that occur with MM are near edge-on when the degree of

the taper increases. For TEz polarization deviations with MM occur near edge-on for all

strip geometries except constant resistive strips. Comparisons with measurements are

better for TMz except for constant resistive strips. Limitations are explored for tapered

resistive strips and tapered resistive-loaded conducting strips based on edge-on scattering

levels for TMz polarization. From these limitations scattering characteristics of resistive-

loaded conducting strips are explored for TMz polarization. Constant loads decrease the

main lobe's scattering level more, but suffer from main lobe broadening. Tapered loads

have more significant reductions on sidelobe and edge-on scattering levels.

xi



A RIGOROUS UTD ANALYSIS OF ELECTROMAGNETIC SCATTERING

FROM RESISTIVE STRIPS AND RESISTIVE-LOADED

CONDUCTING STRIPS

I. Introduction

Background

Radar Cross Section. When an electromagnetic wave transmitted by a radar strikes

a complex target, such as an aircraft, energy is scattered in all directions. The energy

scattered in a particular direction determines the target's radar cross section (RCS) in that

direction. RCS is defined by the formula

0T = lim 47R2j j2  
(1.1)

where R is the range from the target to the radar, Es is the scattered electromagnetic field in

a given direction, and Ei is the incident electromagnetic field at the target. RCS is

independent of range since the scattered field varies as 1/R and the incident field's value is

taken at the target. RCS is dependent upon the target's electrical size, shape, and materials,

as well as the incident electromagnetic wave's frequency and polarization. Typically, the

scattered field used in the computation has the same polarization as the incident field even

though other polarizations may be scattered. This models a radar receiver/transmitter set-

up, i.e., the radar transmits a vertically polarized wave and receives the vertically polarized

portion of the scattered wave (VV) or the radar transmits and receives horizontally polarized

waves (HH). Sometimes, VH or HV is used in the computation.
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RCS Reduction. The goal in RCS reduction is to decrease the amount of energy

scattered by the target back to the radar receiver. Consequently, the target's RCS and

probability of detection are reduced. There are four ways to help reduce a target's RCS:

shaping, radar absorbing materials, passive cancellation (impedance loading), and active

cancellation (5:190-192).

Shaping a target to scatter the majority of the incident electromagnetic energy away

from the radar receiver will decrease the RCS. Typically, the radar threat is considered to

be in the forward sector of the aircraft; thus, shaping will be used to deflect the incident

electromagnetic wave to the side and/or back. A disadvantage of shaping is that the

aerodynamic performance of the aircraft may be degraded. Careful tradeoffs between

mission and probability of radar detection requirements must be considered when using

shaping to alter an aircraft's RCS.

Radar absorbing materials (RAM) and radar absorbing structure (RAS) reduce RCS

by converting some of the incident electromagnetic wave into heat so that it cannot be

scattered back to the radar receiver. Also, RAM and RAS may create multiple echoes of an

incident wave that cancel each other. RAM is added to an existing structure while RAS is a

structure that has been designed as a radar absorber. A disadvantage of RAM is that it is

bulky and may degrade the aerodynamic performance of the aircraft. The tradeoffs

mentioned in the shaping technique are applicable.

Passive cancellation or impedance loading decreases RCS by applying an

impedance load to a metallic surface or geometry. The application of these loads produces

new scattering centers that may destructively interfere with the original scattering pattern.

A disadvantage of impedance loading is that it is typically frequency dependent; thus, much

effort has been expended in designing impedance loads that are active over a range of

frequencies.
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Active cancellation is an RCS reduction technique that is much more complicated to

implement than any of the previous three. The aircraft must have a receiver/transmitter

setup that can sense the characteristics of an incoming electromagnetic wave, as well as

know the aircraft scattering characteristics. Then, the receiver/transmitter setup must

transmit a wave of proper amplitude and phase (at the correct timing) that cancels with the

aircraft's scattered wave. Although the basic characteristics of this technique are known, it

is difficult to put into practice with today's technology.

Resistive-Loaded Conducting Strips. Due to the complexity of aircraft structures,

simpler geometries must be explored to model the RCS reductions obtained with resistive

loading. Two-dimensional strips are a good starting geometry, because the scattering

characteristics of conducting strips have been accurately modeled and measured. In

addition, besides aircraft structures, this geometry could be extended for applying resistive

loading to antennas to create desirable scattering patterns. The two models used in this

thesis to predict scattering from resistive-loaded conducting strips are: moment method

(MM) and uniform theory of diffraction (UTD).

Prediction Models. MM is actually a term used for a numerical technique

used to solve general integral equations. An incident electromagnetic wave induces an

unknown current density on the surface of a target. An integral equation is developed

where the unknown current density is part of the integrand. MM is used to solve for the

unknown current density. Then, the scattered field, Es, is determined using a radiation

integral (1:670). MM is limited by the fact that it is used primarily for electrically small

targets. This is because the surface must be sampled up to ten times per wavelength to

obtain accurate predictions. For electrically large targets, this results in very large matrices

that increase computer run times significantly (5:57).

UTD is an accurate high frequency ray technique developed by Kouyoumjian and

Pathak (6). It combines geometric optics fields with edge diffractions to determine the total
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scattered electromagnetic field (1:743). Using asymptotic methods and the exact

eigenfunction solutions for a conducting wedge, Kouyoumjian and Pathak developed an

accurate high frequency solution for the edge diffractions from perfect electric conductors

(PECs). Advantages of UTD are that it is computationally efficient and yields accurate

results that compare well with measurements (1:744). A disadvantage is that most research

in this area has applied only to metallic bodies. More recently, Rojas (9) has used the

Wiener-Hopf technique to extend UTD to impedance materials.

Previous Research. Recent research has showed that resistive loading can

significantly reduce the scattering characteristics of conducting strips (2; 3). Haupt and

Liepa used MM to model a parabolically tapered resistive load that decreased the edge-on

scattering of a conducting strip by 15 dB (2:57). Heaton heuristically modified the UTD

diffraction coefficients for the case of resistive edges and junctions. It was discovered that

uniform resistive loads decreased sidelobe and edge-on scattering of conducting strips

relative to the main broadside lobe. Also, it was found that tapered impedance loads had a

more pronounced decrease on the sidelobe and edge-on scattering of conducting strips.

However, accurate prediction was limited from 40' to 600 from broadside incidence (3:6.2).

A rigorous UTD formulation was developed by Rojas (9), using Wiener-Hopf techniques,

for impedance discontinuities in a planar surface and for impedance edges on a half-plane.

This research was extended by Ly (7) to predict backscatter from uniform resistive strips

connected to a PEC half-plane. Up to third order diffractions were included in the

formulation, and predictions were found to compare very favorably to an independent MM

solution. Edge-on backscatter from a PEC half-plane was reduced 20 dB by introduction

of an exponential resistive taper (7:112). Further research by Rojas and Otero (10) used

Ly's formulation as the basis to synthesize a desired frequency response from resistive

strips attached to a PEC half-plane. The rigorous UTD solution for the scattered field was

used in a cost function that was minimized to determine the resistive strip values.
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Backscatter from a PEC half-plane was reduced more than 30 dB over a wide range of

incident angles by synthesizing a piecewise-constant seven section resistive transformer

(10:59).

Problem Statement

This thesis will continue the investigation into the scattering characteristics of

resistive strips and resistive-loaded conducting strips begun in (3), but will use the more

rigorous UTD formulation of Rojas and Ly. Limitations of the improved model will be

defined by comparing predictions to an independent MM formulation. The investigation of

the scattering characteristics of resistive-loaded conducting strips will place emphasis on

backscatter reduction.

Approach

The development of the rigorous UTD model is the topic of Chapter H. First,

generalized resistive boundary conditions are introduced that simplify the scattering

problem for application of the Wiener-Hopf technique. Second, the single order diffraction

coefficients derived from this technique are presented. Last, higher order diffractions used

in the model are defined.

Chapter III introduces the resistive strip and resistive-loaded conducting strip

geometry investigated in this thesis. Then, the theory presented in Chapter II is applied to

this particular geometry. The computer code of (10) is modified for the resistive strip and

resistive-loaded strip geometry, and backscatter predictions are presented. These

predictions are compared to MM predictions and measurements to ascertain the validity of

the UTD formulation. Finally, limitations of the UTD formulation are investigated.

Scattering characteristics of resistive-loaded conducting strips are contained in

Chapter IV. Various constant and tapered loads are investigated to determine the level of
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scattering reduction that can be expected for a conducting strip. Tradeoffs are conducted

between broadside, sidelobe, and edge-on scattering reductions based on the resistive load.

Last, Chapter V concludes the thesis by summarizing the research effort and

findings and by recommending further research possibilities.
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H. Theory

This chapter outlines the rigorous UTD formulation developed by Ly, Otero, and

Rojas (7; 10) for prediction of electromagnetic scattering from resistive junctions. First,

the general problem of electromagnetic scattering from the junction of two different

dielectric/ferrite half-plane slabs will be presented. Generalized impedance boundary

conditions will be reviewed that simplify the problem for application of Wiener-Hopf

techniques. The Wiener-Hopf technique and Jones' Method rigorously solve the scattering

problem. Second, appropriate simplifications to the general problem of two

dielectric/ferrite half-planes will be made for the more specific case of infinitely thin

resistive half-planes. The single order diffraction coefficients for the prediction of

electromagnetic scattering from a resistive junction are detailed. Last, higher order

diffractions of the UTD formulation are presented for more complicated planar strip

geometry. Double and triple order diffractions are listed for the case of a resistive strip

placed between two resistive half-planes. Also, double and triple order diffiactions are

defined for nonadjacent junctions in a multiple resistive strip geometry.

Scattering from the Junction of Dissimilar Dielectric Half-Plane Slabs

Before the more specific case of diffraction from resistive junctions can be outlined,

the more general problem should be explored. This general problem consists of two

different dielectric/ferrite half-plane slabs joined as shown in Figure 2.1. Each slab has a

unique relative permittivity, Er, relative permeability, Itr, and thickness, t. Both er and gtr

can be complex to account for lossy materials. The thickness is considered to be thin

enough so simplifications to the boundary conditions can be applied. Also, each slab is

infinite in the z-dimension; thus, the scattering problem is reduced to a two-dimensional

one. The half-plane slabs are illuminated by a plane wave that can either be transverse
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magnetic to the z-axis (TMz, E-Polarization) or transverse electric to the z-axis (TEz, H-

Polarization). The observation point is in the near-field. The first step in solving for the

junction diffraction is to replace the dielectric/ferrite half-planes with generalized impedance

boundary conditions (7:4).

48 ,, Incident Plane

N~q~fl%(TM z or TEa)
Observation (x,y)
Point

x
R r2 _r Eprl r

Observation (x,y) P
Point

/ / ,,$0,5 0,5<_x 0 _<€ _<5

Figure 2.1. Two-Part Dielectric/Ferrite Plane Geometry (7:2)

Generalized Impedance Boundary Conditions. Weinstein has shown that if a

partially transparent thin dielectric slab satisfies the condition

kf -I << 1 (2.1)
2

where k is the free space wavenumber, E is the slab permittivity, p is the slab permeability,

and t is the slab thickness; then, the effect of the dielectric slab can be replaced by

approximate "two-sided" boundary conditions. That is, both reflected and transmitted

waves are considered so boundary conditions can be applied at y = 0+ and y = 0- (12:301).
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Ly applied Weinstein's concept of impedance boundary conditions to the two-part

geometry shown in Figure 2.1. The boundary conditions were simplified by noting that

for the two-dimensional problem the fields had no z-dependence. The final boundary

conditions for TMz incidence and TEz incidence are presented in (7) and will not be

repeated here.

Wiener-Hopf Technique. Once the boundary conditions are defined, the scattered

field from the two-part geometry shown in Figure 2.1 can be determined using the Wiener-

Hopf technique. The Wiener-Hopf technique was introduced in 1931 to solve a special

type of integral equation. During World War II further work revealed that the technique

was well suited for problems involving diffraction from semi-infinite planes. Solutions to

these problems were formulated by both Schwinger and Copson by using Fourier integrals

to find complex variable equations. The complex variable equations were solved using

analytic continuation (8:vii). Rojas (9) used the Wiener-Hopf technique along with Jones'

method to solve for the diffraction from an impedance discontinuity and impedance edge

with oblique incidence. The Jones' method simplifies the Wiener-Hopf technique by

applying Fourier transforms directly to the problem before applying the boundary

conditions. After the boundary conditions are applied, the solution can be obtained by

asymptotically evaluating the inverse Fourier transform of the scattered field (7:21). The

asymptotic evaluation using steepest descent integration casts the solution in the UTD form.

The first step in using the Wiener-Hopf technique is to separate the scattering

problem posed in Figure 2.1 into two parts:

u(x,y) = uUp(x,y) + uP(x,y), V(x,y) (2.2)

where u(x,y) is the total field, uuP is the unperturbed field, and uP is the perturbed field for

any observation point. All the fields satisfy the two-dimensional Helmholtz equation. The

total field is the scattered field that results from the two-part geometry. The unperturbed
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field is the scattered field that would occur if just the right slab in Figure 2.1, with material

parameters of Er, and gtr, was occupying the full plane. The unperturbed field is found by

using the appropriate generalized impedance boundary conditions to derive reflection and

transmission coefficients for the incident field (7:17). The perturbed field is the

contribution to the total field by the impedance discontinuity that occurs by adding the left

slab with material parameters of e and tr2. The perturbed field incorporates the junction

diffraction as well as the change to the reflection and transmission coefficients for x < 0.

Because the perturbed field must satisfy different generalized impedance boundary

conditions at x > 0 and x < 0 caused by the change in material parameters, the Wiener-Hopf

technique is chosen for its applicability to planar two-part geometries (7:19).

The next step for the Wiener-Hopf technique is to apply Fourier transformations to

the perturbed field before applying the appropriate generalized impedance boundary

conditions (7:20), i.e.,

_PI

UP(s,y) = uP(x,y) ejsx dx = u+(sy) + iP(s,y) (2.3)

where

uP(s,y) = j7 uP(x,y)eJsx dx (2.4)

P(s,y)-- f uP(x,y) eJsx dx (2.5)

This is an application of Jones' Method (4) and leads to the solution of uP (x,y) by

applying appropriate generalized impedance boundary conditions to iP (s,y) and then

taking the inverse Fourier transform of O1P (s,y). Without going through the detailed

intermediate steps this results in (7:18,21,23,24):
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00 z 4Cos 0) Ae(s) ±o zAo(s)
uP(x,y) =- (sin 0 etifY e-jsxds, y O, IxI <- (2.6)

2ir fJ0 s - kcos <

where

e Cos =(sin vi + sin VI b) (I + sin v~a sin v~b cs 2 )
k - (sin yza+ sin ( + sin Viasi l b i C0S 2  (2.7

sinl Va,2a + sinl Vlb,2b I-Ul2sn=12 m (2.8)

) Pr. 1,21  TM z
sinl Vla,2a sin l vb.2b = r, 4, ~ (2.9)

~ 421,2 -1

si. (2.10)
-, TE -

,2 2

Ae(s) = G-is, v-) G...(s, i.b) G.(-kcos 0, v~a) GI(-kcos 0, V~b)

x G+(s, via) G+(s, Vlb) G+(-kcos 0, via) G+(-kcos 0, Vlb) (2.11)

As)= G-(s,4C2 ) G-I -k cos 0. 2) G+(s, Ci) G+(-k cos 0,Cl (2.12)
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G(s,v) is defined as:

G(s,v) = G+(s,v) G_(s,v)- k fi~ksinv(2.14)Pl+ ksin v

The factorization of G(s,v) is described in Appendix C of (7) and will not be repeated here.

The Wiener-Hopf integral outlined in Eqs (2.6) through (2.14) can't be solved by

conventional methods. Because of its complexity, an asymptotic evaluation using steepest

descent integration is required. This casts the solhtion into the UTD form first formulated

by Kouyoumjian and Pathak (6). Evaluation of the integral yields a surface wave field and

a diffracted field emanating from the junction of the dielectric/ferrite slabs. Along with the

geometric optics (GO) field derived from reflection and transmission coefficients, this

results in a total scattered field of

u(p,o)= uGO(p,o)+ usw(p,O) + u'4p,o), O<_ '<7r , -7ri <7r (2.15)

where u(p,o) is the total scattered field, UGO(p,o) is the GO field, uSw(p,o) is the surface

wave field, and ud(p,o) is the diffracted field (7:31). The diffracted field can be de~ined in

terms of UTD diffraction coefficients as follows (7:32):

U~p , 0) - ejkp [ De(oq, 0% " , V) )+ D°(0, 0%; 1,;'2)] (.6u'p~) ~ , ''' ' (2.16)

The UTD diffraction coefficients in Eq (2.16) are complicated and will not be repeated

here. These diffraction coefficients are the starting point for the case of scattering from the

jur -tion of resistive half-planes.

Scattering from the Junction of Resistive Half-Planes

The UTD diffraction coefficients outlined in the previous section can be simplified

for resistive materials. In Figure 2.1, the dielectric/ferrite slabs were assigned material
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parameters of rl,, I.-ri,2 , and tl,2 where both Eri,2 and grl,2 can be complex. If the

following conditions are satisfied, the dielectric/ferrite slabs are reduced to infinitely thin

resistive sheets (7:36):

tri,2=O

t4,2---0

t1.2*O -~ -~(2.17)lim J~r R 1,2

1,2--0 k 2 - 1)tl,2 Zo

where R1 ,2 are real resistances and Zo is the free space wave impedance. Under these

conditions the following simplifications can be applied to the two-part dielectric/ferrite

solution (7:36,37):

]sin d-400

Isin vj -4--, TMz (2.18)

sin Vb -"2O

sin l' 2R

zo

Isin vj -- TEz (2.19)

sin v -- 0

yielding a diffracted field of (7:38):

U 4p, fP_ (2.20)
ej' Do(0c';.j72) TEz

2.7



where (7:33,34,38,134):

De~oo; X e"4(sin 1 - sinM)gg yon

Co (-kpa-) F(-Ioa~)1
""X ~ '~ 2+o ,A)(' Ou A K2 (2.21)

(sin 0:!- sx

A 00 f 0

ffZ( 27r,' TMyl

X g+(Orv), 1) gRe v<n) sin v>inA0

2 l~ )2 r (2.25)
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~IIwwvv)2=
Cos V -cos- w(2.26)

I(w' v-) t dt (2.27)
l wv) = sin t

F(x)= 2jf-xejX e-t2 dt, -32f<rgx)<"' (2.28)

a- = 2cos2' (2.29)

Eqs (2.21) through (2.29) define the single-order UTD diffraction coefficients for resistive

junctions. Both E-Polarization and H-Polarization cases are defined for the case of plane

wave incidence and near-field observation point.

For far-zone observation points the diffraction coefficients can be simplified

further. As x -- -, in Eq (2.28), F(x) approaches one. F(x) is the standard transition

function introduced in (6) for UTD diffraction coefficients. Thus, for a far-zone

observation point, i.e., kp -> -c, the single diffraction coefficient for TMz reduces to:

DO, 0'; n,)2) - eJl4 (sin M - sin r) g+(+O,'A)gM0% ,1)

× g-(± , n) g(O', n) sin (± 0) sin ,

cos 0+ cos ' (2.30)

0: 0_5_7r

-Z:5_ 0___0

For the TEz case, sin (±O) is replaced by sin 0.
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Multiple Diffractions

For more complicated resistive strip geometries, multiple (higher order) diffractions

may contribute an important amount to the total scattered field. This contribution is more

significant if the diffracted field from one resistive junction is not ray-optical when it

illuminates a second resistive junction. The first geometry to examine where higher order

diffractions occur is presented in Figure 2.2. A resistive strip of length d is placed between

two resistive half-planes creating two junctions where multiple diffractions can occur.

Each resistive section is infinitely thin and has a unique resistance, R. Plane-wave

illumination is TMz or TEz with the observation point in the far-zone. The far-zone case is

chosen because of greater interest; in addition, the near-field multiple diffraction solution is

much more difficult to derive. Double and triple order diffractions between points QI and

Q2 in Figue 2.2 were derived for both top and bottom face propagation (7:40,41).

Incident Plane
Wave Observation _- oo
(TMz or TEz) Point

-00 +00
R2 QI R1  Q2 R3  x

O ! 0'! ir, -7r 5

Figure 2.2. Three-Part Resistive Plane Geometry (7:70)
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Examining Eq (2.30) reveals that the single diffraction coefficient is equal to zero

when the incident or observation angle is 0' or 1800. This is an artifact of the single

diffraction solution. Thus, due to the planar geometries considered, if one were to calculate

a multiple diffracted field by repeated application of the appropriate single diffraction

coefficient, an incorrect field value of zero would result. However, if the multiple

diffracted fields are calculated via the modified spectral ray method (MSRM) developed in

(11), this problem does not occur. Even if this artifact of the single diffraction solution did

not exist, repeated application of single diffraction coefficients would be invalid when the

diffracted field from one resistive junction is not ray-optical upon illuminating a second

junction. The MSRM was specifically developed to surmount this latter difficulty. Thus,

the MSRM was used in (7) for determination of all multiple diffracted fields. MSRM treats

the first diffraction on the second edge as an infinite sum of inhomogeneous plane waves.

This is accomplished by defining the first diffraction in terms of the steepest descent

integral that was used in the derivation of the single diffraction coefficient. In effect, the

exact single diffracted field in steepest descent integral form is used as the illuminating field

on the second junction and then the asymptotic evaluation occurs (7:45,47). MSRM

similarly solves the triple diffraction solution. Ly derives the double and triple diffraction

coefficients for the more general case of a dielectric/ferrite three-part geometry. Simplified

for resistive materials, the double and triple diffraction coefficients for TM, are (7:71,72):

D2(0, O X ,, ) -j ej' (sin 24-sin 1)(sin 21- sin ') sin (_)sin
7rk G'

x g2(0,),) g_(0, X) g(0,)S ay aT I -F(-kdal (2.31)
(a1 - a2)(a1 -a

I - F(-kda2) 1 -F(-kda 1 I O<_ <_r+ (a2_a,)(a2 -a 9 o (ar-a2)(ay-al ,J -<0<0
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- (' ~ rl4-e-,- (Sin X -sin 2)2 (sin X -sin ?)D3 1,72 7) (Trk d (i

x sin (±) Sin 0 g+(± A'n g+(oii) g(± 0) A

x g )(O, y) g2(O,,n) g 2(O, r) a F(-ka 2 ) - F(-kda
' -+ 'Y (a2 - a

x[ - F(-kda1) I -F(-2kd) I -F-kda ](2.32)

(al- 2 )(al-a T (2-al)(2-a (ay- 2)(ay-Ia)j'

{: O_<5_7r

-r<0<0

where

a, =2cos2O

ai 2

a2 =2cos2 (2.33)
2

ay= 2sin2 A-
2

2R 1,2 ,3  TM

sill )1,2,3 = (2.34)
2R 1,2 ,3  TEz

For the TEz case, sin (±) is replaced by sin 0 in Eqs (2.31) and (2.32).

The second strip geometry to consider is when RI in Figure 2.2 is replaced by

several resistive strips where higher order diffractions can occur between both adjacent and

non-adjacent junctions. The lengths and resistances of the strips may vary. Eqs (2.31) and

(2.32) can be used to calculate the double and triple diffractions between the adjacent

junctions. Otero and Rojas (10) used the same MSRM technique as Ly to define the double

and triple diffraction coefficients for points QI,2 and non-adjacent junctions. As Figure 2.3

shows, the only difference is that four different resistances must be considered in the

formulation rather than just three different resistances for the adjacent junction case. These
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diffraction coefficients are very similar to Eqs (2.31) and (2.32); thus, will not be repeated

here. Interested readers may consult (10) for more detail.

Incident Plane
Wave Observation -- oo
(TMz or TEz) Point

-00 +....... + O
R2 Q, RI R4  Q2  R3 x

O 49 ir7, -x __* xT

Figure 2.3. Four-Part Resistive Plane Geometry (10:11)
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III. Resistive Strips and Resistive-Loaded Conducting Strips

This chapter introduces the resistive strip and resistive-loaded conducting strip

geometries investigated in this thesis. Next, the theory presented in the previous chapter is

applied to these particular geometries. Verification of the rigorous UTD formulation is

accomplished by comparison to an independent MM code and measurements. Finally,

limitations of the rigorous UTD formulation are explored.

Geometry

The specific strip geometry is shown in Figure 3.1. A resistive strip or resistive-

loaded conducting strip of width, d, is assumed to be infinite in the z-dimension. The

observation point is collocated with the source in the far-zone (p = p' -- o, = 0'). The

angle 0 is defined as degrees from broadside and plots of scattering width will be presented

with 0 as the independent variable.

Source (TMz or TEz) and
Observation Point --- 0oo

Y

Id dI
Figure 3.1. Strip Geometry
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Four types of resistive strips and resistive-loaded conducting strips were examined

for this thesis effort. The four types were constant resistive strips, constant resistive-

loaded conducting strips, tapered resistive strips, and tapered resistive-loaded conducting

strips. Examples of the various strip resistances as a function of x, where x is in

wavelengths, are contained in Figure 3.2. All resistances, denoted by il, are normalized to

the free space wave impedance, Zo.

5 5

4- 4-

3- 3-

2- 2-

01 00- I 0- J

-2 -1 0 1 2 -2 -1 0 1 2
x (lambda) x (lambda)

a. Constant Resistive Strip, 11 = 1 b. Constant Resistive-Loaded
Conducting Strip, 1 = 1

5- 5-

4- 4-

3- 3-

2- 2-

1 1 -

0- 0-
-2 -1 0 1 2 -2 -1 0 1 2

x (lambda) x (lambda)

c. Tapered Resistive Strip, il = x2  d. Tapered Resistive-Loaded
Conducting Strip, rj = (IxI - 1)2

Figure 3.2. Normalized Resistances of Different Strip Geometries
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All types of strips investigated in this thesis were four wavelengths in width. This

width was chosen based on the amount of lobing that occurs. For larger widths, i.e.,

larger electrical width, increased lobing occurs that makes the analysis more difficult,

especially when comparing predictions to measurements. Also, Figure 3.2 shows that all

the strip resistances are modeled for symmetry around x = 0.

Application of ThoKy

In the previous chapter, single diffraction coefficients were defined for resistive

junctibns. Also, double and triple diffraction coefficients were defined for adjacent and

nonadjacent resistive junctions. The computer code of (10) uses these UTD diffraction

coefficients for predicting the far-zone scattering width of a PEC half-plane loaded with

constant resistive strips. The length and resistance of each strip could be entered through a

data file, and up to fifty strips could be input into the program. Also, the computer code

could synthesize the resistances for a set number of equal length strips attached to a PEC

half-plane based on a desired frequency response. Either TMz or TEz could be specified in

the input data file, as well as inclusion of multiple diffractions. As an example, Figure 3.3

shows the scattering width of a PEC half-plane and of a PEC half-plane loaded with two

0.354X resistive strips for TMz. The prediction for the loaded PEC half-plane includes

multiple diffractions. Note the non-symmetry inherent in the scattering pattern of the

loaded PEC half-plane, as well as the reduction in scattering width by the application of

resistive loads.

For the purposes of this thesis, the scattering prediction portion of the computer

code was modified for the strip geometries described in Figure 3.2. Since the resistances

are symmetrical on these geometries, the scattering patterns found will also be symmetrical,

as in the example shown in Figure 3.4. Thus, for subsequent plots, the scattering width

will be presented with 0 (degrees from broadside) varying from 0' to 900. Conducting

strips were modeled in the computer code by assigning them a low resistance; i.e.,
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0 45 90 135 180
20 -. , .. .. . .. . .. . . 20

0 -40

-60- • -- PC HALF-PLANE -6

/" - --. RESISTIVE LOADED

-0- -80

0 45 90 135 180

Phi (Degrees)

Figure 3.3. Scattering Prediction for a PEC Half-Plane and Loaded PEC Half-
Plane, 0.354X Loads, R1 = 1210l, R2 = 62492, TMz, Multiple Diffractions (10:37)

0 45 90 135 180

20- -20

S10- 10

0- 0

-20 -- -20

-30- , .. .. .. .- 30

0 45 90 135 180

Phi (Degrees)

Figure 3.4. Scattering Prediction for a 2 Conducting Strip with IX Constant
Resistive Loads, 11 = 2, TMz, Multiple Diffractions
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11 = 0.001. Resistive tapers were input into the computer code by modeling them as

discrete resistive strips, as shown in Figure 3.5. For this thesis, unless stated otherwise,

ten segments per wavelength were used for the taper modelling. To facilitate use of the

scattering prediction code, a program was developed to write the various strip geometries

shown in Figure 3.2 to the main program's input data file.

Actual Resistance

Modeled Resistance

0-I
0

x (lambda)

Figure 3.5. Resistive Taper, i = x2, Modeled With Discrete Resistive
Strips, Ten Segments Per Wavelength

Verification

The rigorous UTD formulation was verified by comparing scattering width

predictions to an independent MM code used in (2) and measurements conducted in the

AFIT RCS Measurement Chamber.

MM Comparison. Haupt (2) developed a MM code to predict scattering from the

strip geometries described in Figure 3.2. The incident field was related to the surface

current density on the strip as follows (2:12,13):
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HoejkxcOs~o = i7(x)Jz(x) + Jz(x')H )(kx - x' dx', TMz (3.1)

H sin ObejkxcOsPo = 17(x)Jx(x) + L 1 x,2)(_x - x'I) dx', TEz (3.2)

where Ho is the magnitude of the incident magnetic field, 0o is the source angle measured

from the positive x-axis, 17(x) is the strip resistance, and Jzx(x) are the unknown surface

current densities. The unknown surface current densities are solved using the MM

numerical technique for integral equations. Pulse basis functions and midpoint integration

routines are used in the MM code. The number of basis functions can be varied through a

data input file (2:16-26). Once the surface current densities are known the scattering width

is calculated as follows (2:40):

2

02D = k f J.(x')ejkx'cOs+o dx' , TM. (3.3)

4HO 2 24

O -- k -sin qoA. Jx(x')ekx'cooo dx' 2 TE. (3.4)
4HO2 I -d2

Comparisons to MM were made for constant resistive strips, constant resistive-

loaded conducting strips, tapered resistive strips, and tapered resistive-loaded conducting

strips. The rigorous UTD sulution includes multiple diffractions unless otherwise noted.

Constant Resistive Strips. Scattering width predictions for strips with

constant resistance are contained in Figures 3.6 through 3.13. In Figures 3.6 and 3.7,

predictions are made for a 4X conducting strip (1 = 0) for TMz and TEz, respectively.

Usually, the number of pulse basis functions used in the MM solution for accurate
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Figure 3.6. Scattering Prediction for a 4X Conducting Strip, TM,
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20- 20

to- r- -to

-10- -10
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-30 " ,,, - ,, --30
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Theta (Degrees from Broadside)

Figure 3.7. Scattering Prediction for a 4X Conducting Strip, TEz
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~10- -- 10
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Figure 3.8. Scattering Prediction for a 4X Constant Resistive Strip, Tj =0.5, TMz

0 30 60 90
20- I 20

UJTD

10- --MM10

-20- -0

0 30 60 90
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Figure 3.9. Scattering Prediction for a 4X Constant Resistive Strip, rj 1, TMz
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Figure 3.10. Scattering Prediction for a 4X Constant Resistive Strip, Tj =3, TMz
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Figure 3.11. Scattering Prediction for a 4X Constant Resistive Strip, il = 4, TM z
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Figure 3.12. Scattering Prediction for a 4X Constant Resistive Strip, Ti 1, TE,
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Figure 3.13. Scattering Prediction for a 4X Constant Resistive Strip, Tj = 3, TEz
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solutions is ten per wavelength; however, for conducting strips Haupt noted that more

pulse basis functions were required to obtain accurate results (2:25,26). Thus, the number

of pulse basis functions for the case of a conducting strip is chosen as 25 per wavelength.

All other MM predictions in this thesis use ten pulse basis functions per wavelength. As

Figures 3.6 shows, the UTD prediction for a 4X conducting strip with TMz incidence

compares almost exactly with the moment method prediction. The slightest deviation

occurs only towards edge-on and is approximately 0.2 dB. For the same conducting strip

with TEz incidence the UTD prediction again compares almost exactly to the moment

method solution as shown in Figure 3.7. The location of the peak of the traveling wave

lobe for TEz is predicted by (5:149) to be:

0 = 49.35 f-1 (3.5)

where 0 is measured from edge-on, A is the wavelength, and I is the width of the strip in

wavelengths. For a 4X conducting strip, the traveling wave lobe is calculated to be

approximately 250 from edge-on, or 65' from broadside. This agrees with both the UTD

and MM prediction. For constant resistive strips with TMz incidence, the UTD prediction

compares very favorably to the MM prediction. As the resistance increases no discernible

change in the comparison occurs. Towards edge-on, the difference between predictions in

Figures 3.8 through 3.11 is less than 1 dB. Figures 3.12 and 3.13 show the excellent

agreement between predictions for TEz incidence. Overall, as the resistance increases the

scattering patterns decrease as compared to a conducting strip for both polarizations. For

TMz, the sidelobes are not reduced relative to the main lobe, although the nulls deepen as

the resistance increases. In effect, the scattering pattern is scaled down by the increase in

resistance. For TEz, the sidelobes are reduced from the main lobe and the pattern's shape

changes.
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Constant Resistive-Loaded Conducting Strips. Figures 3.14 through 3.19

show the scattering width predictions for various constant resistive-loaded conducting

strips. All cases have a 2X conducting strip in the center with IX resistive loads on each

side. For TMz, Figures 3.14 ohrough 3.17 show the excellent agreement between the UTD

and MM predictions. As the resistive loads increase from 11 = 0.5 to 4, the differences in

predictions remain less than 1 dB towards edge-on. However, this slight difference starts

earlier then it did for the constant resistive strip cases. For TEz incidence, as Figures 3.18

and 3.19 indicate, the predictions compare very well except for a deviation towards edge-

on incidence. For this geometry, close to edge-on the MM solution predicts a smooth

decay towards zero. The UTD solution predicts the same thing; however, first it increases

a few dB and defines another small sidelobe before the scattering width drops to zero. This

may suggest that the multiple order diffractions being used in the UTD formulation (up to

third order) are not high enough to predict the scattering behavior close to edge-on for TEz
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-20 -•-20

-30. . ..-- 30
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Figure 3.14. Scattering Prediction for a 2X Conducting Strip with IX Constant
Resistive Loads, 1 = 0.5, TMz
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Figure 3.15. Scattering Prediction for a 2X Conducting Strip withi IX Constant
Resistive Loads, 11j 1.5, TMz
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Figure 3.16. Scattering Prediction for a 2X Conducting Strip with IX Constant
Resistive Loads, 71j = 2, TMz
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Figure 3.17. Scattering Prediction for a 2X Conducting Strip with IX Constant
Resistive Loads, il =4, TMz
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Figure 3.18. Scattering Prediction for a 2X Conducting Strip with IX Constant
Resistive Loads, il = 0.5, TEz
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Figure 3.19. Scattering Prediction for a 2X Conducting Strip with 1X Constant
Resistive Loads, 11 = 2, TEz

incidence. Thus, it appears that the accuracy of the formulation depends on the polarization

especially near grazing incidence. In any event, accuracy to within a few dB for the near

edge-on scattering width is not as important for TEz as it is for TMz polarization, since the

scattering width is approaching zero near edge-on in the TEz case.

Tapered Resistive Strips. Scattering predictions for a variety of 4X tapered

resistive strips are presented in Figures 3.20 through 3.25. The resistive tapers considered

here are Ixib, where b is an integer. The strip geometry is symmetrical as shown in Figure

3.2.c. As Figure 3.20 shows, the comparison between the UTD prediction and MM

prediction is very good up to about 60' from broadside for a taper of i1 = xi. From this

point on the difference between the predictions increases to about 3 dB at edge-on. As the

constant b increases, the edge-on difference increases also. In Figure 3.21, for an x2

resistive taper, the edge-on difference has increased to about 4.5 dB. For the resistive
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Figure 3.20. Scattering Prediction for a 4X Tapered Resistive Strip, i1 = lxl, TMz
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Figure 3.21. Scattering Prediction for a 4X Tapered Resistive Strip, il = x2, TMz
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Figure 3.22. Scattering Prediction for a 4X Tapered Resistive Strip, 11 = x13, TMz
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Figure 3.23. Scattering Prediction for a 4X Tapered Resistive Strip, il 0 x, TMz
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Figure 3.24. Scattering Prediction for a 4X Tapered Resistive Strip, 1] = x2, TEz
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Figure 3.25. Scattering Prediction for a 4X Tapered Resistive Strip, 11 = x4 , TEz
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tapers of Ix13 and x4 , shown in Figures 3.22 and 3.23, the edge-on difference has increased

to approximately 10 dB and 15 dB, respectively. Note, however, that the edge-on

scattering width is decreasing greatly as b increases. For angles close to edge-on, higher

order diffractions have an increasing contribution to the scattering pattern. Since the UTD

prediction only includes up to third order diffractions, some deviation is to be expected.

The deviation increases with b because the discrete strips that model the taper become more

discontinuous with each other. This increases the amount of interactions that can exist

between the discrete strips. For example, based on the modelling scheme shown in Figure

3.5, the Ixi resistive taper starts at i = 0.05 and ends at il = 1.95. The x4 resistive taper

starts at rI = 0.00000625 and ends at T1 = 14.46. For the x4 resistive taper, diffractions

higher than the third order may start contributing significantly to the scattering pattern

towards edge-on. Excellent agreement still occurs in Figures 3.20 through 3.23 to just past

600 from broadside. For the TEz cases shown in Figures 3.24 and 3.25 large variations

between the predictions occur close to edge-on. The UTD prediction comes back up

several dB before it goes to zero like the MM prediction. Also, as the polynomial increases

to degree four the predictions agree to only just past 30' from broadside. Again, the

discontinuities between the discrete resistive strips that model the tapers require higher

order diffractions than third order to model the edge-on scattering.

Tapered Resistive-Loaded Conducting Strips. Figures 3.26 through 3.31

show the scattering predictions for several tapered resistive-loaded conducting strips. Each

of the strips has a 2 conducting strip in the center with IlX tapered resistive loads. The

loads specified are (Ixi - 1)b, where b is an increasing integer. Since the loads are only IX

wide, ideally, the resistance at the ends of the strips is TI = 1 for all the different degrees of

polynomials. However, the shapes of the resistive tapers differ per the degree of the

polynomial as shown in Figure 3.32. Because of the discrete modelling, the last resistance

will vary per the degree of the polynomial. For ten segments per wavelength, the last
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Figure 3.26. Scattering Prediction for a 2X Conducting Strip with 1 Tapered
Resistive Loads, T1 = lxl - 1, TMz
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Figure 3.27. Scattering Prediction for a 2X Conducting Strip with 1 Tapered
Resistive Loads, il == (lxi - 1)2, TMz
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Figure 3.28. Scattering Prediction for a AX Conducting Strip with I X Tapered
Resistive Loads, 71 (l- 1)3, TMz
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Figure 3.29. Scattering Prediction for a 2X Conducting Strip with I X Tapered
Resistive Loads, Ti (l - 1)4, TMz
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Figure 3.30. Scattering Prediction for a 2?, Conducting Strip with I1x Tapered
Resistive Loads, 71 (Ixl - 1)2, TEz
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Figure 3.31. Scattering Prediction for a 2X Conducting Strip with IX Tapered
Resistive Loads, Ti = (Ixl - 1)4 , TEz
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resistive discrete strip is (0.95)b. The moment method code used the same discrete strip

modeling; thus, comparisons were valid. As Figures 3.26 through 3.29 indicate, for TMz

with b increasing from 1 to 4, the predictions agree almost perfectly to just past 600 from

broadside. Up to edge-on the difference is approximately 2 dB. Thus, even though the

discontinuities between the discrete resistive strips differ depending on the degree of the

polynomial, the multiple diffractions being used are sufficient to predict the scattering

pattern. For the TEz cases presented in Figures 3.30 and 3.31, differences between the

predictions start occurring sooner at about 450 from broadside. Note that the UTD

prediction in Figure 3.30 displays the same odd behavior near edge-on incidence as

described previously.
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Figure 3.32. Tapered Resistive-Loaded Conducting Strip Comparison,
b = 1,2,3,4
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Measurements. Measurements were conducted at the AFIT School of

Engineering's RCS measurement chamber. Measurements were performed on a

conducting strip, constant resistive strips, constant resistive-loaded conducting strips,

tapered resistive strips, and tapered resistive-loaded conducting strips. The chamber used

is a far-field measurement facility with separate receive and transmit horn antennas. The

antennas can be rotated for TMz (E) or TEz (H) polarization. Targets are set on an ogive

pedestal approximately 27 feet from the horn antennas. All strips measured were 4 in by 6

in (total); the illuminating frequency was 11.8 GHz. The frequency was set to this

particular number so one wavelength equaled 1 in. Thus, the strips were 4X wide and 6X

long. All loaded conducting strip" had a center conductor that was 2 in wide. Because the

scattering predictions were made for infinitely long strips that were 4X wide, the three-

dimensional RCS measured in the chamber had to be converted to two-dimensional

scattering width. This conversion is defined in (1:578) as:

a2D(dbm) = 3D(dbsm) A (3.6)
212

where A is the wavelength and 1 is the length of the strip. Substituting X = 1 in (0.0254 m)

and 1 = 6 in (0.1524 m) into Eq 3.6, converting c02D (dBm) to CF2D (dBX), and changing

the equation for dB values yields:

oAD(dBA) = e3D(dBsm)+ 13.33 (3.7)

Thus, measurements made in the chamber were converted to the same units as the

predictions for comparison in overlay plots.

Resistive Materials. Emerson and Cuming supplied two types of constant

resistive materiel used to construct various strips. Eccosorb SC 100 is a graphite

impregnated cloth with a specified surface resistance of 100 (,/sq. Eccosorb VF is a

3.24



flexible conductive plastic film available in several surface resistances. VF 10, VF 20, and

VF 30, with specified surface resistances of 377, 200, and 130 ivsq respectively, were

used. Sheldahl provided a 1 in wide tapered R-card. The surface resistance varies from 5

K/sq on one edge to 1500 ./sq on the other edge. The R-card was constructed by

Sheldahl by sputtering nichrome onto a Kapton substrate. It was used to construct a

tapered resistive-loaded conducting strip.

Waveguide measurements at 11.8 GHz revealed that the VF material exhibited

different resistances than specified. Heaton (3) discovered this while constructing strips

from the SC 100 and VF 10 material. The waveguide measurements were conducted on

the VF material using the procedures outlined in (3:5.2-5.4). The following table lists the

specified and measured resistive values, as well as the thicknesses of the SC and VF

materials used to construct the various strip geometries. The SC 100 measurement was

obtained from (3). Performing measurements on the Sheldahl taper was beyond the scope

of this thesis.

TABLE 3.1

MATERIAL PARAMETERS

TYPE SPECIFIED MEASURED THICKNESS
RESISTANCE RESISTANCE (mils)

(Q) (Qi)

SC 100 100 180 + 96.1j 10

VF 10 377 129 + 21.5j 10

VF 20 200 96.2 + 64.Oj 20

VF 30 130 77.4 + 104j 30
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As Table 3.1 indicates, both the SC and VF materials exhibit an imaginary resistive

component. Also, for the VF material the real part of the measured resistance decreases

from VF 10 to VF 30 as it does for the specified values. However, the imaginary part of

the measured resistance increases from VF 10 to VF 30 as the material gets thicker. The

computer code used to predict the scattered patterns was developed for just real resistances;

thus, a decision was made to use just the real part of the resistances in the comparison of

scattering predictions to measurements. Although, this approach discounted the imaginary

parts' contribution to the scattering patterns, it was found that using just the real part

resulted in excellent comparisons.

Target Preparation.

Each of the materials listed in Table 3.1 were used to construct 4 in by 6 in constant

resistive strips. Figures 3.33 through 3.38 show the remaining construction geometries for

constant resistive-loaded conducting strips, tapered resistive strips, and tapered resistive-

loaded conducting strips. As Figure 3.33 shows, for constant resistive-loaded conducting

strips, just the SC 100 and VF 10 were used. These were constructed by sandwiching a 4

in by 6 in resistive strip between two 2 in conducting strips. Figures 3.34 through 3.37

show how the three different kinds of VF material were used to construct tapered resistive

strips and tapered resistive-loaded conducting strips. Each successive discrete resistive

strip from the center had a larger resistance. The tapered resistive-loaded conducting strips

in Figures 3.36 and 3.37 were constructed by sandwiching a large piece of the innermost

resistive load between two 2 in by 6 in conducting strips. The Sheldahl taper was used to

construct a tapered resistive-loaded conducting strip as shown in Figure 3.38.

Flashbreaker tape, a low RCS material, was used to hold the materials in place for all

constructions.

Several styrofoam cut-off cone frustrum mounts were fabricated for the different

strip geometries. This shape was selected because it was symmetrical and the slant of the
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cone would reduce energy scattered back to the receiver antenna from the mount. Also,

this type of mount can be subtracted from the measurements as a separate target

background. As Figure 3.39 shows, the cut-off cones were sliced in half lengthwise so the

strip could be placed inside. Then, the two halves were held together with flashbreaker

tape and placed on a styrofoam base for rotation of the azimuth scan. For the 4 in by 6 in

conducting and VF 30 strips, a cut-off cone was fabricated with an equivalent cavity to

accommodate the thickness of the strips. The other constant resistive strips were thin

enough for a cut-off cone without any cavity. For the resistive-loaded conducting strips a

cut-off cone was used that had a 2 in by 6 in cavity to accommodate the thickness of the

center conductor. The tapered resistive strips used the cut-off cone without a cavity.

Target background subtraction was accomplished with a solid cut-off cone.

cut-of styrofoam cone

8" sliced in half

8"

10" centered strip

base joined halves

flashbreaker tape
on both sides

Figure 3.39. Styrofoam Mount Construction
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Table 3.2 summarizes the measurements to be presented. In the measurement

column CS stands for conducting strip, RS stands for constant resistive strip, TRS stands

for tapered resistive strip, LS stands for constant resistive-loaded conducting strip, and

TLS stands for tapered resistive-loaded conducting strip. E and H stands for E polarization

(TMz) and H polarization (TEz), respectively.

TABLE 3.2

MEASUREMENTS

RESISTIVE
MEASUREMENT CONDUCTING STRIP OR GEOMETRY FIGURE

STRIP WIDTH LOAD WIDTH (.) NUMBER
() ()

CSE 4 N/A 4 3.40

CSH 4 N/A 4 3.41

RS/SCIOOE N/A 4 4 3.42

RS/SC100H N/A 4 4 3.43

RS/VFIOE N/A 4 4 3.44

RS/VF1OH N/A 4 4 3.45

RS/VF20E N/A 4 4 3.46

RS/VF20H N/A 4 4 3.47

RS/VF30E N/A 4 4 3.48

RS/VF30H N/A 4 4 3.49
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LS/SC100E 2 1 SCloo/cs/scloo 3.50
1/2/1

LS/SCIOOH 2 1 sc100/cs/scIoo 3.51
1/2/1

LS/VF1OE 2 1 VF1O/CSIVF1O 3.52
1/2/1

LS/VFIOH 2 1 VFIO/CS/VFIO 3.53
1/2/1

TRSJVF1O/20E N/A 4 VF1O/VF20/VFIO 3.54
1/2/1

TRS/VF1O/20H N/A 4 VF1O/VF20/VF1O 3.55
1/2/1

TRSJVFIO/20/30E N/A 4 VF1O/VF20ONF30/VF20/VF1O 3.56
.67/.67/1.33/.67/.67

TRS/VFIO/20/30H N/A 4 VF1O/VF20/NF30/VF20/VFIO 3.57
.67/.67/1 .33/.67/.67

TLS/VF1O/20E 2 1 VF1O/VF20/CSJVF2O/VF1O 3.58
.5/.5/2/.5/.5

TLS/VF1O/20H 2 1 VF1O/VF2O/CS/VF2O/VF1O 3.59
.5/.5/2/.5/.5

VF 10/VF2O/VF30/CS
TLS/VFIO/20/30E 2 1 /VF30ONF20/VFIO 3.60

.33/.33/.33/2/.33/.33/.33

VFI1O/VF20/NF3O/CS
TLSIVFl10/20/30H 2 1 /VF3O/VF20/VF1O 3.61

.33/.33/.33/2/.33/.33/.33

TLS/SHEL/E 2 1 SHEL/CS/SHEL 3.62
1/2/1
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Constant Resistive Strips. Scattering width predictions of strips with

constant resistance are compared to measurements in Figures 3.40 through 3.49. Figures

3.40 and 3.41 show the excellent agreement between predictions and measurements for a

conducting strip (TI = 0) with TMz and TEz polarization, respectively. For TMz

polarization the only deviation that bears notice is at approximately 650. The measured

sidelobe is about 2 dB higher than the prediction. The edge-on scattering difference is just

above 0.5 dB. For TEz polarization, there are deviations between the lobing structure at

approximately 35' and 55' . These deviations could be due to interactions between the target

anid pedestal (3:5.14). Figures 3.42 and 3.43 show the comparison for the SC 100

material. For TMz polarization the entire prediction scattering pattern seems to between I

dB and 2 dB higher than the measurement. This could be due to just using the real part of

the resistance in the prediction and neglecting the imaginary part. As Table 3.1 shows, the

SC 100 material has a proportionally large imaginary component. Additionally, the offset
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Figure 3.40. Scattering Measurement and Prediction for a 4X Conducting Strip, TMz
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Figure 3.41. Scattering Measurement and Prediction for a 4, Conducting Strip, TEz
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Figure 3.42. Scattering Measurement and Prediction for a 4X Constant Resistive
Strip, SC 100, TMz
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Figure 3.43. Scattering Measurement and Prediction for a 4X Constant Resistive
Strip, SC 100, TEz
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Figure 3.44. Scattering Measurement and Prediction for a 4X Constant Resistive
Strip, VF 10, TMz
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Figure 3.46. Scattering Measurement and Prediction for a 4k Constant Resistive
Strip, VF 20, TMz
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Figure 3.47. Scattering Measurement and Prediction for a 4X Constant Resistive
Strip, VF 20, TEz
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Figure 3.48. Scattering Measurement and Prediction for a 4X Constant Resistive
Strip, VF 30, TMz
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Figure 3.49. Scattering Measurement and Prediction for a 4% Constant Resistive
Strip, VF 30, TEz

could be just an error in measurement, such as a slightly tilted target. Also, the original

measurement in the waveguide to determine the resistance of the material could be suspect.

Even with this offset the edge-on scattering difference is only 1.5 dB. For TEz polarization

the prediction compares very favorably to the measurement, which tends to support an

error in measurement for TMz polarization. Measurements of a VF 10 strip are contained in

Figures 3.44 and 3.45. The measured scattering pattern starts lagging the prediction at

about 300 for TMz polarization. Edge-on scattering difference is still small at 1.5 dB. In

Figure 3.45, for TEz polarization, excellent agreement exists out to 600; then, a 1 dB to 2

dB difference exists for the rest of the comparison. For the VF 20 strip, shown in Figures

3.46 and 3.47, excellent agreement occurs for both TMz and TEz polarization. A slight

deviation of the measurement in relation to the prediction starts at 450 for TMz polarization.

This doesn't affect the edge-on scattering difference of 0 dB. For both the VF 10 and VF

20 the TEz case compares slightly better than the TMz case. In Figures 3.48 and 3.49, the
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VF 30 strip exhibits an offset between the prediction and measurement for both TMz and

TEz polarization. The measurement is 1 dB to 2.5 dB higher than the prediction for TMz

polarization. This is a different offset than was encountered for the SC 100, where the

measurement was lower than the prediction. The edge-on difference is still only 1 dB. For

TEz polarization the measurement is 1 dB to 2 dB higher than the prediction to just past 55'.

For the rest of the comparison, the offset increases to 5 dB, then falls off again. These

offsets, since they are consistent from TMz to TEz polarization, suggest that the waveguide

measurement could be slightly off. A smaller resistance would have yielded better

comparison between the prediction and measurement.

Overall the comparisons between predictions and measurements for constant

resistive strips ranged from good to excellent. This was an important step to bridge since

these resistive materials were used to construct the rest of the strip geometries investigated

in this thesis.

Constant Resistive-Loaded Conducting Strips. Figures 3.50 through 3.53

contain the comparisons of predictions to measurements for constant resistive-loaded

conducting strips. Generally, the comparisons for TMz polarization are better than TEz

polarization. In Figure 3.50, the comparison for a constant resistive-loaded conducting

strip with SC 100 loads is presented for TMz polarization. The prediction is within 1 dB of

the measurement except in two regions: from 100 to 20 °and from 480 to 580. The edge-on

scattering difference comes back to almost zero. For TEz polarization, in Figure 3.51, the

first two measurement sidelobes are higher than the prediction. Starting at 420 the

measurement deviates from the prediction for the rest of the scan. Past 800 the UTD

prediction exhibits the same behavior as it did during the comparison of MM to UTD in the

previous section. The prediction comes up from 800 to 890 and then drops to zero at edge-

on. In Figure 3.52, the measurement for a constant resistive-loaded conducting strip using

VF 10 and TMz polarization compares well with the prediction. The difference is small up
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Figure 3.50. Scattering Measurement and Prediction for a 2k Conducting Strip
with IX Constant Resistive Loads, SC 100, TM,
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Figure 3.51. Scattering Measurement and Prediction for a 2k Conducting Strip
with IX Constant Resistive Loads, SC 100, TEz
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Figure 3.52. Scattering Measurement and Prediction for a 2X Conducting Strip
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Figure 3.53. Scattering Measurement and Prediction for a 2X Conducting Strip
with 1X Constant Resistive Loads, VF 10, TEz
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to 700. Towards edge-on the difference increases to 2.5 dB. For the same strip with TEz

polarization, Figure 3.53 shows that the difference is small up to 400. At 450 the

measurement is 5 dB higher than the prediction. Also, the measurement null is offset from

the prediction null. At edge-on the prediction rises and then drops to zero as mentioned

earlier.

Overall the comparisons between predictions and measurements for constant

resistive-loaded conducting strips ranged from fair to good. Generally, the TMz

polarization showed better agreement than the TEz polarization, especially near edge-on.

Tapered Resistive Strips. Figures 3.54 through 3.57 contain the

comparisons between predictions and measurements for tapered resistive strips.

Figures 3.54 and 3.55 show the measurements of a taper constructed from the VF 10 and

VF 20 material. Both TMz and TEz polarization show good comparisons between

predictions and measurements. Figure 3.54 shows very good agreement until just past 700

where the edge-on difference increases to only 2.5 dB. Figure 3.55 shows very good

agreement to 600 from broadside. In the region from 600 to 700 a deviation of up to 4 dB is

encountered. Figure 3.56 and 3.57 represent the taper constructed of VF 10, VF 20, and

VF 30 material for TMz and TEz polarization, respectively. These comparisons don't agree

as well as the previous two. For TMz polarization the prediction follows the measurement

generally well up to 600. Then a measurement null occurs that is not represented by the

prediction. Still, the edge-on difference is just over 2.5 dB. For TEz polarization the

prediction is relatively close to the prediction up to 380; then, falls off as compared to the

measurement.

Overall, for tapered resistive strips, the strip constructed of VF 10 and VF 20 had

measurements that compared better to predictions. For the strip constructed of VF 10, VF

20, and VF 30, TMz polarization had better comparison than TEz polarization.
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Figure 3.54. Scattering Measurement and Prediction for a 4X Tapered Resistive
Strip, VF 10 and VF 20, TMz
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Figure 3.55. Scattering Measurement and Prediction for a 4x Tapered Resistive
Strip, VF 10 and VF 20, TEz
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Figure 3.56. Scattering Measurement and Prediction for a 4X Tapered Resistive
Strip, VF 10, VF 20, and VF 30, TMz

0 30 60 90
20 - -------- I 20

~Measurement

~10- 10
10' 

UTD

0 0- 1o,10
-20- -20

-30- ............ -- 30

0 30 60 90

Theta (Degrees from Broadside)

Figure 3.57. Scattering Measurement and Prediction for a 4k Tapered Resistive
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TaPered Resistive-Loaded Conducting Strips. Figures 3.58 through 3.62

present the comparisons between measurements and predictions for tapered resistive-loaded

conducting strips. Two types were measured: tapers constructed from VF material and a

Sheldahl taper. Measurements for a loaded strip composed of VF 10 and VF 20 material

are contained in Figures 3.58 and 3.59. For TMz polarization, the prediction agrees within

3.5 dB for all the peaks. Edge-on difference is about 2 dB. For TEz polarization, the

comparison is better for the first four sidelobes, but then the prediction fails to represent the

next measurement sidelobe. Again, the UTD prediction rises slightly before dropping to

zero. Measurements for a loaded strip composed of VF 10, VF 20, and VF 30 material are

contained in Figures 3.60 and 3.61. Figure 3.60 shows the excellent agreement between

the prediction and measurement for TMz. Edge-on difference for this case is 0 dB. Figure

3.61 shows some differences for several sidelobes, with the maximum difference being 7.5

dB. The ever present rise and then drop towards edge-on is evident also for the prediction.
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Figure 3.58. Scattering Measurement and Prediction for a 2X Conducting Strip
with IX Tapered Resistive Loads, VF 10 and VF 20, TMz
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Figure 3.59. Scattering Measurement and Prediction for a 2X Conducting Strip
with IX Tapered Resistive Loads, VF 10 and VF 20, TEz
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Figure 3.60. Scattering Measurement and Prediction for a 2 Conducting Strip with
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Figure 3.61. Scattering Measurement and Prediction for a 2k Conducting Strip
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Figure 3.62. Scattering Measurement and Prediction for a 2k Conducting Strip
with IX Tapered Resistive Loads, Sheldahl, TMz
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Figure 3.62 presents the measurement using the 1 in Sheldahl taper to construct the loaded

strip. Differences between prediction and measurement are over 10 dB in some cases.

This is probably due to the lack of specified resistance values on the taper. Resistance

measurements were made for every 1/4 in on the taper, yielding five values. To model this

for the prediction, discrete linear steps were calculated between the measured values. It's

possible that the number of measured values was not enough to accurately predict the

scattering from the loaded strip. In any event, further measurements on the Sheldahl taper

were not made, although accurate knowledge of the Sheldahl resistance variation is highly

suspect as the cause for the poor agreement.

Limitations

As the verification of the rigorous UTD formulation indicates, the UTD predictions

overall compared very well to MM predictions and measurements. The only major

discrepancy that surfaced was the prediction of edge-on or close to edge-on scattering for

certain strip geometries. For TMz polarization this discrepancy was noted during

comparisons between UTD and MM predictions. Specifically, this surfaced during

comparisons for tapered resistive strips. Agreement between UTD and MM for edge-on

scattering level worsened when the degree of the polynomial describing the taper increased

For TEz polarization, an odd behavior towards edge-on was discovered for all strip

geometries except constant resistive strips. This suggests that inclusion of up to third order

diffractions handled the TMz case better than the TEz case. (The TEz case would require

more multiple diffractions for better accuracy in edge-on scattering predictions.) In any

event, for the reasons mentioned earlier, the edge-on scattering level for TMz polarization is

more significant than it is for TEz polarization. Thus, edge-on scattering levels for tapered

resistive strips and tapered resistive-loaded conducting strips were investigated further for

TMz polarization.
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Tarred Resistive Strip Edge-Oa Scattering. UTD predictions were compared to

MM predictions for varying degrees of taper. Specifically, the constants a and b were

varied for a 4X strip with a taper of alxlb. Figures 3.63 and 3.64 present plots that show

the edge-on scattering difference for various values of a and b. In Figure 3.63, b is varied

from 0.5 to 6 for values of a equal to 0.5, 1, and 2. Generally, as a and b increase the

edge-on difference increases also. The third-order diffractions in the UTD formulation are

not sufficient for the edge-on scattering prediction. The Ixl5 resistive taper does not seem to

follow the general trend in Figure 3.63. As Figure 3.65 shows, although the UTD

prediction doesn't agree towards edge-on the UTD sidelobe pattern rises at edge-on.

Figure 3.64 shows the differences when a is varied from 0.0625 to 16 for values of b equal

to 2, 3, and 4. Again, as a and b increase the edge-on difference increases for the same

reason. The interesting feature of this plot is that the differences for the 41xIb taper are very

close to each other. A reason for this was not evident. Also, for a = 16, the plot deviated

30-

-e-- a=.5

20 - a=r = --#-- a=2 .

0-
0.5 1 2 3 4 5 6

b

Figure 3.63. Edge-On Scattering Difference Between UTD and MM for an
aIxIb Tapered Resistive Strip versus b
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Figure 3.65. Scattering Prediction for a 4X Tapered Resistive Strip, rl -x15 , TMz
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from the trend in that the 16x2 taper had the largest difference. In any event, the edge-on

difference for a = 16 is very high for all three tapers considered.

Tapered Resistive-Loaded Conducting Strip Edge-On Scattering. For tapered

resistive-loaded conducting strips the same types of comparisons were made as for tapered

resistive strips. Figure 3.66 contains the comparisons where b is varied from 0.5 to 6 for

values of a equal to 0.5, 1, and 2. The major difference between this plot and the same plot

for tapered resistive strips is that the edge-on difference is much less across the board. The

reason for the decreased edge-on difference is because only I loads were considered;

thus, the maximum resistance at the end of the taper is the constant a. The other difference

is that for a = 2 the trace does not follow the general trend. In any case most of the points

are within the 4 dB level which shows good comparison. Figure 3.67 shows the

comparisons where a is varied and b is held constant at 2, 3, and 4.
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Figure 3.66. Edge-On Scattering Difference Between UTD and MM for an
a(IxI - I )b Tapered Resistive-Loaded Conducting Strip versus b
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Figure 3.67. Edge-On Scattering Difference Between UTD and MM for an
a(IxI - I)b Tapered Resistive-Loaded Conducting Strip versus a

Differences are within 4 dB to 5 dB except for values of a equal to 4 and 16. A general

trend of increasing difference occurs up to a = 4 where a crossover occurs for a = 16.

Overall, the plots indicate that the differences are much larger for a resistive tapered

strip because of the wider variance of resistance over the taper than for the tapered resistive-

loaded conducting strip. A general trend applicable to all the plots was not evident. For the

tapered resistive-loaded conducting strip, most of the tapers show good agreement with the

MM solution for edge-on scattering.
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IV. Scattering Characteristics of Resistive-Loaded Conducting Strips

This chapter explores the scattering characteristics of constant resistive-loaded

conducting strips and tapered resistive-loaded conducting strips with an emphasis on

scattering reduction. TMz polarization was selected for the investigation because the

rigorous UTD formulation compares better to the MM solution. Also, the edge-on

scattering level is more significant. All strips are a total of 4X wide with 2X center

conductors and IX loads, as shown in Figures 3.2.b and 3.2.d. Resistive tapers of a(IxI -

1)b are modeled with ten segments per wavelength, as presented in Figure 3.5. Limitations

in Chapter 3 indicated edge-on difference for tapered resistive-loaded conducting strips

increased to over 40 dB for the most extreme taper. Consequently, only those cases where

the edge-on difference was less than 5 dB were used in this investigation. UTD predictions

are presented in overlay charts with a 4X conducting strip to ascertain the level of scattering

reduction.

Constant Resistive-Loaded Conducting Strips

Figures 4.1 through 4.3 contain the scattering patterns for constant resistive-loaded

conducting strips. The load is varied from il = 0.5 to 4 to find its effect on the scattering

levels. Each plot has two scattering patterns that are compared to a conducting strip.

Successive plots increase rI. This approach made it easier to analyze the effect of the edge

loading. As Figure 4.1 indicates, an effect of edge-loading with rl = 0.5 is the main lobe

gets broader and its peak decreases by 3 dB compared to the conducting strip. Also, all but

sidelobes three and four decrease significantly and edge-on scattering decreases by 8.7 dB.

When Tr is increased to 1.5 the entire pattern gets broader. The main lobe's peak decreases

by 4 dB compared to the conducting strip while edge-on scattering decreases by 5 dB.

Thus, for increasing T1 broadside scattering is still going down; but, edge-on scattering is
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Figure 4.1. Scattering Predictions for 2X. Conducting Strips with 1X, Constant
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Figure 4.2. Scattering Predictions for 2 Conducting Strips with IX Constant
Resistive Loads and Conducting Strip Reference, rl = 2 and 4

4.2



0 30 60 90

20- -20

-0- ,i .. .. .C (2lm d) --0

10______ Cs 10

0 30 60 90
Theta (Degrees from Broadside)

Figure 4.3. Scattering Predictions for 2, Conducting Strips with 1. Constant
Resistive Loads and Conducting Strip References, 11 = 4

coming up. Figure 4.2 shows the effect on the scattering by increasing 11 to 2 and 4. The

same trend of broadening continues to occur. The main lobe's peak decreases by 4.4 dB

and 5 dB compared to the conducting strip and edge-on scattering decreases by 3.9 dB and

2.2 dB for 1 equi, . 2 and 4, respectively. The change of the scattering pattern with

increasing rl is reaching the limit of a 2X conducting strip as shown in Figure 4.3. This is

because as TI increases the resistive loads look more like free space. There seems to be an

optimum value of 1 around 0.5 for decreases in sidelobe and edge-on scattering levels.

Tapered Resistive-Loaded Conducting Strips. Eta = aIx- 1)

Investigating the trends in scattering from an a(Ixl - 1)b tapered load is more

involved than for constant loads, since many combinations of a and b can be used to

designate the taper. Two different routes were used to investigate trends for the tapered

loads. First, b was held constant and a was varied; then, a was held constant and b was
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varied. This resulted in many more plots than for the constant resistive-loaded case. Each

individual scattering pattern was repeated, but, in a different comparison. This allowed

conclusions to be made about the effects of changing the constants a and b.

Constant b. Varying a. Figures 4.4 through 4.11 present the changes in scattering

predictions when b was held constant and a was varied for a(Ix - I)b tapered resistive-

loaded conducting strips. The constant a varied from 1/4 to 2 for each pair of scattering

prediction plots. Two plots were used for each case to facilitate the analysis. Figures 4.4

and 4.5 present the case for b equal to 1. As Figure 4.4 indicates, for smaller values of a,

the scattering patterns have the general shape of the reference conducting strip, but with a

reduced level for the sidelobes. Even though the main lobe has not been reduced

significantly, the sidelobes are increasingly lower as 0 increases. The edge-on scattering is

reduced by 6.6 dB and 10.2 dB as compared to the conducting strip for 11 equal to 1/4 (lx -

1) and 1/2 (lxi - 1), respectively. As the constant a increases the scattering patterns start to

broaden and decrease further. Figure 4.5 shows how the edge-on scattering levels are

reduced even further as compared to the reference. Increasing the constant a to 1 and 2

result in edge-on scattering decreases of 14.4 dB and 20.1 dB, respectively as compared to

the conducting strip. Also, the main lobe's scattering level decreases slightly. The overall

scattering decrease presented in Figures 4.4 and 4.5 is much different from that presented

previously for the constant resistive-loaded conducting strips. This is because the resistive

taper has a smoother transition from the conductor to free space. The main lobe's

scattering level doesn't decrease as much as it does for constant resistive loads. But, as the

constant a increases, a greater decrease of the sidelobes and edge-on scattering levels exist.

The remaining Figures 4.6 through 4.11 exhibit the same general trend. As a increases, the

main lobe is affected slightly; but, the sidelobes and edge-on scattering levels decrease

significantly as compared to the conducting strip reference. As much as a 23.2 dB decrease

in edge-on scattering is encountered for the 2(Ix1 - 1)4 resistive taper.
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Figure 4.4. Scattering Predictions for 2% Conducting Strips with I X Tapered
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Figure 4.5. Scattering Predictions for 2X Conducting Strips with I X Tapered
Resistive Loads and Conducting Strip Reference, 1 = lxi - I and 2(lxl - 1)
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Figure 4.6. Scattering Predictions for 2?, Conducting Strips with I% Tapered
Resistive Loads and Conducting Strip Reference, Tj =1/4 (l - 1)2 and 1/2 (l - 1)2
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Figure 4.7. Scattering Predictions for 2X C'rnducting Strips with 1 x Tapered
Resistive Loads and Conducting Strip Reference, il = (l - 1)2 and 2(lxl - 1)2
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Figure 4.8. Scattering Predictions for 2X Conducting Strips with I X Tapered
Resistive Loads and Conducting Strip Reference, 1i = 1/4 (Ixl - 1)3 and 1/2 (Ixl - 1)3
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Figure 4.9. Scattering Predictions for 2X Conducting Strips with I X Tapered
Resistive Loads and Conducting Strip Reference, 11 = (l - 1)3 and 2(IxI - 1)3
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Figure 4. 10. Scattering Predictions for 2X Conducting Strips with I X Tapered
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Figure 4.11. Scattering Predictions for 2X Conducting Strips with 1 X Tapered
Resistive Loads and Conducting Strip Reference, Ti = (l - 1)4 and 2(lxi -14
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Constant a. Varying b. Figures 4.12 through 4.19 present the scattering patterns

when a is held constant and b is varied from 1 to 4. Generally, increasing the degree of the

taper for constant a didn't change the scattering patterns significantly. Typically, edge-on

scattering levels remained close to each other for each value of b. This is because with I X

wide loads, variation in the resistance over the taper is not as great as for the tapered

resistive strips. For larger values of the constant a, there were some noticeable changes in

the scattering patterns. What's interesting is that starting in Figures 4.16 and 4.17, it

becomes apparent that comparison of the sidelobe levels depends on the sector of the scan

considered. Figure 4.19 shows that the 2(IxI - 1)3 taper has lower sidelobe levels than the

2(IxI - 1)4 taper to about 400; then, has higher sidelobes for the rest of the scan.
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Figure 4.12. Scattering Predictions for 2X Conducting Strips with I X Tapered
Resistive Loads and Conducting Strip Reference, T" = 1/4 (Ixi - 1) and 1/4 (Ixi - 1)2
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Figure 4.14. Scattering Predictions for 2X Conducting Strips with 1 x Tapered
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Resistive Loads and Conducting Strip Reference, Ti 1/2 (l - 1)3 and 1/2 (l -14
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Figure 4.16. Scattering Predictions for 2X~ Conducting Strips with I X Tapered
Resistive Loads and Conducting Strip Reference, 11 lxi - I and (li - 1)2
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Figure 4.17. Scattering Predictions for 2X Conducting Strips with I x Tapered
Resistive Loads and Conducting Strip Reference, Tj = (l- 1)3 and (lxI - 4
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Figure 4.18. Scattering Predictions for 2X Conducting Strips with I X Tapered
Resistive Loads and Conducting Strip Reference, 1 = 2(IxI - 1) and 2(IxI - 1)2
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Figure 4.19. Scattering Predictions for 2X Conducting Strips with I Tapered
Resistive Loads and Conducting Strip Reference, 1 = 2(IxI - 1)3 and 2(IxI - 1)4

Overall, the tapered resistive-loaded conducting strips affected the level of scattering

reduction more than the constant resistive-loaded conducting strips. The constant resistive

loads were more effective at just reducing the main lobe's peak. Resistive tapers were

especially desirable in reducing sidelobe and edge-on scattering levels. The higher degree

tapers had larger decreases in edge-on scattering levels. This did not necessarily mean that

the higher degree tapers had the lowest overall sidelobe levels. This will be quantitatively

explored further in the next section.

Tradeoffs

To attempt to quantify these scattering behaviors five figures of merit were defined

for the resistive-loaded scattering patterns. These figures of merit were referenced to the

4X conducting strip. The first two figures of merit defime what effect the loading has on the

main lobe, i.e., the scattering level reduction of the main lobe and the amount of main lobe
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broadening. Next, the edge-cn scattering levels were referenced to the conducting strip.

The last two figures of merit were defined for the sidelobe scattering reductions. Since the

sidelobes for the tapered resistive-loaded conducting strips had the same general shape as

the conducting strip sidelobes, it was decided to average the peaks of the sidelobes over

two sectors. These two sectors were defined to be 00-30' and 30'-60'. Then, these

averages were referenced to the same sectors of a conducting strip. This technique was not

applied to the constant resistive-loaded strips because of the broadening that occurs. Also,

sidelobe control was already determined to be more effective with the tapered resistive

loads. Table 4-1 lists the figures of merit calculated for the predictions presented in the

previous section. References for the 4X conducting strip were: 19.9 dB main lobe, -8.1

dB edge-on, 2.7 dB 00-30' sidelobe average, and -8 dB 30'-60' sidelobe average.

TABLE 4.1

FIGURES OF MERIT FOR RESISTIVE-LOADED CONDUCTING STRIPS

RESISTIVE MAIN LOBE MAIN LOBE EDGE-ON SIDELOBE SIDELOBE
LOAD REDUCTION BROADENING REDUCTION REDUCTION REDUCTION

(dB) (degrees) (dB) 0--30 (dB) 30--60- (dB)

11=0.5 2.5 2.5 8.7 N/A N/A

11=1.5 4.1 7.5 5.0 N/A N/A

1=2 4.4 7.5 3.9 N/A N/A

i1=4 5.0 7.5 2.2 N/A N/A

q=1/4 (Ix-1) 0.8 1.0 6.6 4.3 4.3

T1=1/2 (Ix-1) 1.4 1.5 10.2 7.9 6.5
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TI=IxI-1 2.2 2.5 14.4 9.7 9.2

ql=2(Ix--1) 3.0 3.5 20.1 10.5 13.3

11=1/4 (Ix-1) 2  0.5 0.5 6.7 3.2 4.6

I,=1/2 (IxI--1) 2  1.0 1.0 10.7 5.7 7.3

=(Ix -- )2  1.5 1.5 15.1 10.3 10.5

ij=2(Ixl-1)2 2.2 2.5 21.7 11.0 12.9

q=1/4 (Ix--1) 3  0.4 0.5 6.8 2.5 4.7

1l=1/2 (xI-1) 3  0.7 1.0 11.0 4.2 7.6

-=(Ixl--1) 3  1.2 1.0 15.4 6.9 11.9

I=2(IxP-1) 3  1.7 2.0 22.2 11.7 18.4

11=1/4 (Ix-1)4  0.3 0.5 6.8 1.9 4.5

q=1/2 (IxI-1)4  0.6 0.5 11.3 3.2 7.5

=(jX -1)4  0.9 1.0 15.8 5.0 11.9

11=2(Ix-l)4  1.4 1.5 23.2 7.3 19.4

What's immediately apparent from Table 4.1 is that the constant loads reduce the main

lobe's peak more than the tapered loads. However, this is at the expense of the width of

the main lobe. As rI increases the width of the main lobe increases also. This is not a

desirable response for a scattering reduction design; however, if broadside incidence is

avoided reduced sidelobes and edge-on scattering levels become more important. The
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tapered loads provide this type of response. Figures 4.20 through 4.24 present the figures

of merit in a more visual manner. 'Ihe constant a is varied from 0.25 to 2 for values of b

from I to 4. As Figure 4.20 shows, the 2(Ixl-1) resistive taper causes the most reduction

of the main lobe's peak. Again, as in the constant resistive-loaded case, this broadens the

main lobe more than the other tapers as shown in Figure 4.21. The a(Ixl-1) 4 resistive taper

has the overall least broadening as compared to the other degrees of polynomial. Also,

Figure 4.22 indicates that the 2(Ixl-1) 4 taper has the best edge-on scattering reduction. This

doesn't necessarily make this taper the best choice for scattering reduction. Figures 4.23

and 4.24 display the changes in sidelobe comparison described earlier. Even though the

2(IxI-l) 4 taper is the best choice when considering the sidelobe reduction from 30'-60', it

has the least amount of sidelobe reduction in the 00-30' sector. Obviously, design

constraints must be defined before the optimum taper is selected. The amount and location

of scattering reduction ultimately define the optimum taper.

4.

• -- b=I

- b=2

2-

0-00

0
0.25 0.5 1 2

a

Figure 4.20. Main Lobe Scattering Reduction for a(Ixl-l)b Taper
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Figure 4.21. Main Lobe Broadening for a~lxI-1)b Taper
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Figure 4.22. Edge-On Reduction for a(Ixl-1)b Taper
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Figure 4.23. Sidelobe Reduction for a(IxI~)b Taper, 0'-30'
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Figure 4.24. Sidelobe Reduction for a(Ixi-1)b Taper, 30'-60'
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V. Conclusions

Summary and Findings

This thesis investigated electromagnetic scattering from resistive strips and

resistive-loaded conducting strips using a rigorous UTD formulation. The UTD diffraction

coefficients were derived in (7) using Wiener-Hopf techniques and Jones' Method.

Multiple diffractions were incorporated into the formulation using MSRM. Multiple

diffractions included double and triple diffractions between adjacent junctions and double

and triple diffractions between strip ends and non-adjacent junctions.

Computer code that incorporated these diffractions was developed in (10) for

resistive strips attached to a PEC half-plane. This code was modified for the symmetrical

strip geometry investigated in this thesis. Scattering predictions were performed for

constant resistive strips, constant resistive-loaded conducting strips, tapered resistive

strips, and tapered resistive-loaded conducting strips. Predictions were compared to MM

and measurements to determine the validity of the UTD formulation.

For UTD predictions with TMz polarization, no appreciable deviation from MM

existed for a conducting strip, constant resistive strips, and constant resistive-loaded

conducting strips. TEz polarization showed excellent comparisons for a conducting strip

and constant resistive strips. For constant resistive-loaded conducting strips, TEz

polarization exhioited deviation from the MM solution towards edge-on by rising a few dB

and then dropping to zero when the MM solution went smoothly to zero. For both tapered

resistive strips and tapered resistive-loaded conducting strips, UTD predictions for TMz

polarization compared well to MM until close to edge-on. Then, depending on the severity

of the taper, edge-on differences between the scattering predictions increased. This was

more apparent for the tapered resistive strips. TEz polarization introduced the same rise at

edge-on when MM went to zero for both the tapered resistive strips and the tapered
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resistive-loaded conducting strips. Generally, the scattering predictions for TMz

polarization compared better than the predictions for TEz polarization.

The comparisons between the UTD predictions and measurements for conducting

strips and constant resistive strips ranged from good to excellent for both polarizations.

For constant resistive-loaded conducting strips the comparisons ranged from fair to good.

Generally, for constant resistive-loaded conducting strips, the TMz polarization showed

better agreement than the TEz polarization, especially at edge-on incidence. For tapered

resistive strips and tapered resistive-loaded conducting strips, the agreement to

measurements ranged from fair to good. Again, TMz polarization showed better

agreement.

Limitations in the UTD predictions were explored for tapered resistive strips and

tapered resistive-loaded conducting strips based on edge-on TMz scattering level

comparisons with MM. It was discovered that resistive tapers had more of a tendency for

edge-on scattering deviation as compared to tapered resistive-loaded conducting strips.

This was because both strip geometries were the same length; thus, the tapered resistive

suip had more ,kid larger disontinuities between disciete strips than the loaded strip.

From these limitations it was decided to explore the scattering characteristics of TMz

polarization for constant resistive-loaded conducting strips and tapered resistive-loaded

conducting strips. Constant resistive-loaded conducting strips affected the main !obe's

scattering level more; but, suffered from main lobe broadening. Tapered loads resulted in

smaller broadening of the main lobe and significant reduction of sidelobe and edge-on

scattering levels. It was discovered that extreme tapers, i.e., rI = 2(Ix1 - 1)4, had better

reductions in edge-on scattering and sidelobe scattering from 30'-60'. Less extreme tapers,

such as 11 = 2(Ix1 - 1), 2(Ix1 - 1)2, and, 2(Ixl - 1)3 , had better reductions in sidelobe

scattering from 0-30'. Design constraints would be needed to select the optimum taper.
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Recommendations

Considering the deviations from MM for several cases of edge-on incidence, the

rigorous UTD formulation could be modified to include more multiple diffractions. This

would improve the edge-on predictions for TEz polarization with tapered and loaded

geometries. Also, the edge-on predictions for TMz polarization with more extreme tapers

would improve.

Another area to extend the research in this area would be to develop an optimization

routine for synthesis of discrete resistive loads for a synunetrical strip geometry. The

scattered field would be minimized at the desired points on a frequency response; then,

after setting the number of discrete strips desired, the optimization routine would synthesize

the required resistance values. Research has already been accomplished in this area for

discrete resistive loads attached to a PEC half-plane.

Last, the rigorous UTD formulation could be extended to a more complicated

geometry. A starting geometry might be a curved strip with a goal of modelling a parabolic

antenna. Resistive loading could be used to modify the antenna's scattering pattern.
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