
AD-A243 688

AFIT/GE/ENG/91D-54

Flace Recognition with the Karhunen-Loeve Transform

THESIS

Pedro Fermin Suarez
Captain, USAF

AFIT/GE/ENG/91D-54

Approved for Public Release; distribution unlimited

EA1E1E9E13

~Form Approved

0MW No 0704-0188REPORT DOCUMENTATION PAGE oI oo~4os

lt me 1991MstrsTes~~~~b .,. .. t . 91.~rDATES COVERiED

Face Recognition with the Karhunen-Lobve Transform

Pedro F. Suarez, Captain, USAF

..' ..

Air Force Institute of Technology, WPAFB OH 45433-6583 .' ; MAFIT/GE/ENG/91D-54

Craig Arndt - o' -

AL/CFHI
Wright-Patterson AFB OH 45433

Approved for public release; distribution unlimited

The major goal of this research was to investigate machine recognition of faces. The approach taken to achieve
this goal was to investigate the use of the Karhunen-Lo~ve Transform (KLT) by implementing flexible and
practical code. The KLT utilizes the eigenvectors of the covariance matrix as a basis set. Faces were projected
onto the eigenvectors, called eigenfaces, and the resulting projection coefficients were used as features. Face
recognition accuracies for the KLT coefficients were superior to Fourier based techniques. Additionally, this
thesis demonstrated the image compression and reconstruction capabilities of the KLT. This thesis also developed
the use of the KLT as a facial feature detector. The ability to differentiate between facial features provides a
computer communications interface for non-vocal people with cerebral palsy. Lastly, this thesis developed a
KLT based axis system for laser scanner data of human heads. The scanner data axis system provides the
anthropometric community a more precise method of fitting custom helmets.

-Y Face Recognition, Karhunen-Lovef Image Processing :-

Unclassified Unclassified 'Unciass'ifed UL

AFIT/GE/ENG/91D-54

Face Recognition with the Karhunen-Loeve Transform

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Masters Science in Electrical Engineering

~/

Pedro Fermin Suarez, B.S.E.E.

Captain, USAF

December, 1991 t3

Approved for Public Release; distribution unimited /

Acknowledgments

I would like to thank my committee Major Steve Rogers, Dr. Matthew Kabrisky,

and Captain Dennis Ruck for their guidance and insight. Thanks to my committee, the

weekly thesis meetings were not only the academic highlight of my week, but a valuable

exercise in technical problem solving. In addition, I would like to thank our sponsor Mr.

Craig Arndt from the Armstrong Lab.

I would like to thank Captain Greg Tarr and Captain Kevin Priddy for their valuable

assistance with just about everything. I want to thank my counterpart Captain Jim Goble

for his periodic sanity checks during our face recognition research. I also want to thank

Dan Zambon for keeping the computers going.

Lastly, I do want to thank all my Dayton friends, including Carrie, for their support

and assistance in getting me through the last year and a half.

Pedro Fermin Suarez

Table of Contents

Page

Acknowledgments.....

Table of Contents.....

List of Figures Vii

Abstract. x

I. Introduction. 1-1

General Issue 1-1

Background. 1-1

Problem Statement. 1-2

Research Objectives. 1-2

Research Questions. 1-2

Methodology 1-3

Standards. 1-3

Scope 1-3

Overview of Thesis 1-4

II. Background 2-1

Introduction. 2-1

Air Force Institute of Technology Autonomous Face Recog-

nition Machine.................................2-1

Profiles as Features............................. 2-3

Holistic Face Recognition......................... 2-3

Karhunen-Loive Transforms....................... 2-3

Eigenvalues 2-3

Page

Theory of the Karhunen-Lo~ve Transform 2-5

Turk/Pentland Eigenface...................... 2-9

KLT Approximation......................... 2-10

Neural Networks and Face Recognition............... 2-13

Conclusion................................... 2-15

IIMethodology.......................................3-1

General Issue..................................3-1

Code development...............................3-1

Introduction............................... 3-1

KLT software.............................. 3-1

Reconstruction of faces....................... 3-3

Euclidean Distance Classifier....................3-4

Preprocessing Faces with a Gaussian Window. . . . 3-5

Preprocessing Faces by Centering............... 3-6

Testing.................................. 3-7

KLT Reconstruction............................. 3-8

Small Population Reconstruction using the KLT.. 3-8

Large Population Reconstruction using the KLT.. 3-8

KLT and Recognition............................ 3-9

Introduction............................... 3-9

Single Person Verification..................... 3-9

Multi-person Recognition 3-10

Finding Faces in Face Space....................... 3-11

Karhunen-Lobve based Facial Feature Communicator for

the Non-vocal................................. 3-12

Karhunen-Lo-bve Axis System...................... 3-14

Laser Scan Data........................... 3-16

Conclusion................................... 3-18

iv

Page

IV. Results.. 4-1

Code Development and Testing...................... 4-1

KLT Reconstruction................................4-3

Small Population Reconstruction 4-3

Large Population Reconstruction 4-6

KLT and Recognition..............................4-11

Single Person Verification...................... 4-11

Multi-person Recognition...................... 4-11

Finding Faces in Face Space........................ 4-14

Karhunen-Loiwe based Facial Feature Communicator for

the Non-vocal...................................4-16

Karhunen-Lo~bve Axis System........................4-17

Conclusion..................................... 4-20

V. Conclusions... 5-1

Introduction.....................................5-1

Summary of Significant Results...................... 5-1

Conclusions..................................... 5-3

Future Areas of Research and Recommendation 5-4

General Summary................................5-4

Appendix A. Thesis Source Code............................A-i

kltransform2.c.................................. A-1

recon.c...A-6

find-.min.c.......................................A-12

gwind.c.. A-16

Ciate5.c..A-19

fftrunc.c.......................................A-27

noise.c...A-33

V

Page

angle... A-36

kl-med...................................... A-39

jacobi.c......................................A-45

eigart.c...................................... A-47

fourn.c...................................... A-48

nrutil.h...................................... A-50

Bibliography... BIB-i

Vita.. VITA-i1

AI

List of Figures

Figure Page

2.1. Harmon's profile with critical locations for feature extractions annotated.

(5:97) 2-4

2.2. Definition of ill image vector, z' , where the first pixel is zx1 and the last.

pixel is Z,2 .. 2-6

2.3. Definition of mean face, Kr,, where the first pixel of the mean face is the

average of the first pixel of all the training images 2-7

2.4. A simplified 2-D face space where ul and u2 are the eigenface basis set

and the known individuals are Ilk. (27:49) 2-10

2.5. On the left is the original image. On the right the Turk and Pentland

reconstructed image. (27:47) 2-13

2.6. After the above Cottrell autoassociator is trained, the autoassociator in-

put and hidden layers are used as the input to a second network which in

turn classifies the faces. 2-14

3.1. Block diagram for the C program kltransform2.c which find;, the eigen-

faces, i.e. KLT basis set, and the average face for a given training set.. 3-3

3.2. Block diagram for C program recon.c 3-5

3.3. An example of a face windowed with a Gaussian 3-6

3.4. The original scene of the little girl is on the left and the resulting occu-

lometer pattern is on the right. Note the concentration of scans on the

center of the face. (11) 3-7

3.5. a. A Gaussian window with parameters x mean=65, x variance=35, y

mean=55, and y variance=50. b. A Gaussian window with parameters x

mean=65, x variance=25, y mean=55, and y variance=30 3-8

3.6. FFT magnitude of a face with the first order 3 by 2 block 3-11

3.7. The two prototype images of the non-vocal subject. On the left is the

tongue out or 'yes'. On the right the mouth open or 'no' 3-12

3.8. The Gaussian window used on the images of the non-vocal subject. 3-13

vii

X igure Page

3.9. The process used to generate the KLT basis set from the prototype images

of the non-vocal subject 3-13

3.10. The process used to calculate the KLT coefficients and classify the images

as 'yes' or 'no 3-14

3.11. The two top test images are mouth open or 'no'. The two bottom test

images are tongue out or 'yes' 3-15

3.12. Two laser scans of the head. The top is the original 512 by 256 pixel

image, and the bottom is the shifted to axis system image 3-17

4.1. (a) The KLT training set of nine instantiations of same face with various

amounts of Gaussian noise (b) first eigenface of the nine images (c) second

eigenface (d) third eigenface 4-1

4.2. Mean squared error of reconstruction of Figure 4.3 a - c 4-2

4.3. (a) Reconstruction using one eigenface (b) using two eigenfaces (c) using

all nine eigenfaces 4-2

4.4. An example of a two dimensional eigenspace where all nine images are the

same face with various amounts of Gaussian noise. The first eigenface,

shown as a bold vector, represents most of the energy in the faces, and

the second eigenface accounts for the Gaussian perturbations.(7) . . . 4-3

4.5. The KLT process consists of first defining a training set, centering the

images with Clate5.c, windowing with gwind.c, centering once again, and

lastly performing the KLT with kl-transform2.c. The result is the average

face, eigenface, and eigenvalues (not shown). Note all source code is listed

in Appendix A 4-4

4.6. Reconstruction MSE of small population 4-5

4.7. Small population reconstruction using (a) original image; reconstruction

using (b) one eigenface (c) two eigenfaces (d) three eigenfaces (e) four

eigenfaces (f) five eigenfaces (g) six eigenfaces 4-5

4.8. Test 1: reconstruction with 20 eigenfaces of large population, 81 training

images 4-7

4.9. Test 2: reconstruction with 20 eigenfaces of large population, 81 training

images, and tight Gaussian window 4-7

viii

Figure Page

4.10. Test 3: Reconstruction with 20 eigenfaces of large population, 27 training

images, and only one image per subject 4-8

4.11. Test 4: Reconstruction with 20 eigenfaces of large population, 18 training

images, and a tight Gaussian window 4-9

4.12. Test 5: Reconstruction of non-Gaussian windowed images 4-9

4.13. Test 6: Reconstruction using 20 eigenfaces of subject not in the KLT

training set 4-10

4.14. Results of single person recognition versus number of eigenfaces for both

BPN and Euclidean distance classifiers 4-12

4.15. Results of multi-person recognition versus number of eigenfaces for 55

subjects where each subject is included in the KLT training set 4-13

4.16. Results of multi-person recognition versus number of eigenfaces for 55

subjects where only 40 of the subjects are included in the KLT training

set 4-13

4.17. Results of multi-person recognition versus number of FFT coefficients for

55 subjects 4-14

4.18. Comparison of multi-person recognition versus number of coefficients for

FFT, KLT using 55 training subjects, and KLT using 40 subjects . . . 4-15

4.19. An example of an eigenvector resulting from a training set consisting of

head scanner data 4-17

4.20. The top graph shows the projection of the shifted image into Karhunen-

Lo~ve space using only the first eigenvector. The bottom graph details the

peak location which indicates alignment between the shifted test image

and eigenvector 4-18

4.21. Projection of the shifted test image with one pixel resolution into Karhunen-

Lo~ve space using only the first eigenvector. The minimum represents the

correlation peak indicating alignment between test image and eigen im-

age 4-19

5.1. The Singstock eigentank used to recognize tanks 5-2

ix

AFIT/GE/ENG/91D-54

Abstract

The major goal of this research was to investigate machine recognition of faces. The

approach taken to achieve this goal was to investigate the use of the Karhunen-Lo ve Trans-

form (KLT) by implementing flexible and practical code. The KLT utilizes the eigenvectors

of the covaxiance matrix as a basis set. Faces were projected onto the eigenvectors, called

eigenfaces, and the resulting projection coefficients were used as features. Face recognition

accuracies for the KLT ;oefficients were superior to Fourier based techmques. Addition-

ally, this thesis demonstrated the image compression and reconstruction capabilities of the

KLT. This thesis also developed the use of the KLT as a facial feature detector. The abil-

ity to differentiate between facial features provides a computer communications interface

for non-vocal people with cerebral palsy. Lastly, this thesis developed a KLT based axis

system for laser scanner data of human heads. The scanner data axis system provides the

anthropometric community a more precise method of fitting custom helmets.

x

Face Recognition with the Karhunen-Lo-ve Transform

L Introduction

General Issue

Face recognition is an active area of research at the Air Force Institute of Technology

(AFIT). The AFIT interest in face recognition stems from the Department of Defense

(DoD) need to provide support for human security efforts. For example, by scanning the

faces of people entering a secure or restricted area, a face recognition system could be

used to control entry. Similar defense related applications of face recognition can easily be

found in antiterrrorism and antinarcotic operations. As an answer to the DoD need, AFIT

developed the Autonomous Face Recognition Machine (AFRM) which scans a room and

identifies all the faces in the room. Unfortunately, the AFRM has limited accuracy. In

order to improve the accuracy of machine based face recognition, this thesis investigates

the use of the Karhunen-Love Transform (KLT).

The following section provides the thesis background and justification. The third

section formally states the research problem. In support of the problem statement, the

following sections are presented: research objectives, research questions, methodology,

standards, and scope. The last section provides an overview of the thesis.

Background

The AFRM is the first working face recognition system developed at AFIT. Originally

completed in 1985 by Russel, subsequent additions were performed by Smith, Lambert,

Sander, and Robb (18, 21, 10, 19, 14). To recognize subjects, the AFRM windows the

face into six regions; the AFRM then performs a Discrete Fourier Transform (DFT) on

each window (10:3-33-3-36). The subject is recognized from a set of known images using

a minimum distance classification scheme (10:3-40). The performance of the AFRM, or

any other pattern recognition system, is primarily dependent on the features used for

1-1

classification. Depending on the test conditions, the AFRM accuracy can vary from 56%

to 90% (14:35-36). The poor accuracy of AFRM can be attributed to the use of Fourier

coefficients as features. In this instance, the Fourier coefficients are not an adequate feature

set for recognition. It has been shown that the KLT is an optimal transform based on

minimum mean square error of reconstruction and maximum entropy of the representation

(4:125). This thesis determines the optimality of the KLT feature set for face recognition.

Problem Statement

The primary problem is to recognize human faces. The key task associated with this

problem is determining a good set of features that would allow a machine to accurately

recognize human faces.

Research Objectives

The objective of this research is to investigate the optimality of the KLT. The sec-

ondary research objective is to develop an architecture and methodology for face recogni-

tion with the KLT.

Research Questions

The research completed for this thesis answers the following questions:

1. Can the KLT be implemented in a numerically practical manner?

2. Does the Karhunen-Lo~ve orthogonal transformation of the face provide a better

feature set for face recognition than traditional Fourier techniques?

3. What recognition accuracies can be expected from a Karhunen-Lo~ve basis set?

4. Does holistic face recognition, which utilizes the whole face as a feature, provide

better results than localized AFRM techniques?

5. Can a KLT based system be used as a computer communications interface for the

non-vocal?

6. Can the KLT be used as an axis system for the anthropometry community?

1-2

Methodology

As part of this thesis, face recognition software is developed on the Silicon Graphics

4D Personal Iris workstation. The system software, which is written in ANSI C, is devel-

oped using a modular design approach. The algorithms are sufficiently flexible to be used

on faces as well as any other image recognition problem, e.g. tanks, trucks, and jeeps.

This research investigates the KLT and develops software to implement the KLT

and Fourier Transform. This thesis also demonstrates the image coding and reconstruc-

tion capabilities of the KLT. Most importantly, the KLT coefficients will be used for face

recognition and the result will be compared to more traditional Fourier techniques. The

recognition will utilize an Euclidean distance or first nearest neighbor classifier. Lastly,

two additional applications of the KLT will be investigated. The first KLT application

investigates the abilities of the KLT to differentiate facial features which would permit the

KLT to be used as a facial feature communications interface for the non-vocal. The second

application investigates the correlation properties of the Karhunen-Lokve for use as an axis

system for the anthropometry community.

Standards

The most important performance criteria is classification accuracy which is the per-

centage of correct classifications out of the total number of inputs. The inputs consist of

both known and unknown subjects.

Scope

The focus of the thesis is feature selection and recognition. This thesis assumes that

the detection and segmentation phases of the recognition problem are adequately met by

the AFRM. The assumption is valid if the whole face is used as a feature and Lambert's

moving target indicator is used.

1-3

Overview of Thesis

This chapter provides a brief background and defines the problem, objectives, ques-

tions, methodology, standards, and scope of the research. Chapter 2 provides additional

background and a review of current research. The methodology used to solve the problem

is presented in Chapter 3. The results of the research are presented in Chapter 4. Chapter

5 summarizes the significant results and provides recommendations. Appendix A lists the

source code utilized for the thesis.

1-4

II. Background

Introduction

This chapter provides background and evaluates past and current research in the area

of face recognition. Early face recognition systems approached the face recognition problem

from an individual facial feature perspective, for example, the Fast Fourier Transform

(FFT) of the eyes or the distance between the eyes (14, 5). Those early systems suffered

from poor accuracy and segmentation. Recent research has approached face recognition

from a more holistic approach by using the whole face as a feature (27, 2).

This chapter begins with an evaluation of the Air Force Institute of Technology

(AFIT) Autonomous Face Recognition Machine (AFRM) (14). To emphasize that a good

face recognizer requires good features, L. D. Harmon's profile recognizer is evaluated (5).

Lastly, the chapter concludes with the evaluation of two more recent holistic face recogni-

tion techniques. At the Massachusetts Institute of Technology (MIT), Turk and Pentland

have developed an approach using a holistic Karhunen-Lo~ve Transform (KLT) (27). The

second approach is from the University of California at San Diego, where Cottrell has

developed a neural network based face recognition technique (2).

Air Force Institute of Technology Autonomous Face Recognition Machine

The design goal of the AFIT AFRM is to reliably recognize faces without human

intervention. Face recognition which is a relatively simple task for humans can not be

reliably accomplished by machines without a great deal of human intervention. The AFRM,

AFIT's first attempt at face recognition, began with Routh's Ph'd dissertation on the

Cortical Thought Theory (CTT). The CTT states that the brain uses the center of mass

calculation, or gestalt, of an image for identification and storage (16). With Routh's

theoretical work in place, the AFRM progressed from initial construction, by Russel, to

subsequent modifications by various AFIT students (14, 10).

The AFRM, which consists of a video camera and a computer, first acquires the

image. Acquiring the image consists of placing the subject in the field of view of the

camera. Segmentation, or locating the face in the image, is accomplished with one of

2-1

two algorithms. The Smith algorithm searches throughout the image for the brightness

'signature' of a face (14:4). For instance, the brightness signature of a face is the change

in brightness that occurs as the camera pans across the eyes. The second acquisition

algorithm uses a moving target indicator, also called a spatio-temporal filter, to segment

the moving pixels of the face from the stationary background (10:3-2). With acquisition

and segmentation complete, preprocessing must be accomplished to provide normalized

images for feature extraction and recognition.

AFRM preprocessing consists of brightness normalization, contrast enhancement,

and scaling. One of the most significant results of Lambert's work is the development

of a brightness normalization technique referred to as 'Lambertization' (10:E-2 - E-3).

'Lambertization' consists of scanning an image pixel by pixel and computing the local

average of a pixel and its neighbors. The localized average is subtracted from that pixel

and its neighbors. The resulting image is normalized with respect to local brightness. With

the image normalized, the AFRM begins feature extraction and recognition.

To extract features, a window is drawn around the face. The window is divided into

six sub-regions. A gestalt is calculated on each of the six sub-regions (10:2-25). A later

modification, successfully made by Robb, substitutes the low frequency Fourier coefficients

for the gestalt. This substitution is valid if you consider Mahler's animal cracker experi-

ment, which validated Kabrisky's theory that the low frequency Fourier coefficients are a

good model for the human visual recognition system (12, 6). The gestalt or Fourier coef-

ficients are then stored in the data base for all known subjects. With features extracted,

the remaining task is recognition and classification.

To recognize, the AFRM acquires and segments a test face until the gestalt or Fourier

coefficients are determined. The Euclidean distance between the test subject and every

subject in the data base is calculated. A minimum distance implies a match between the

test and data base subjects.

The performance of the AFRM can be best measured by Robb's results in 1989. Using

uncontrolled lighting and background, Robb's accuracy varied between 56% and 90% with

a test set of 50 subjects (14:35-36). Although the AFRM performance is satisfactory,

2-2

the accuracy is insufficient for many real applications. The following techniques seek to

dramatically improve recognition performance by finding a better set of features.

Profiles as Features

Can a set of features be found that permits accurate recognition of faces? In L.D.

Harmon's Machine Identification of Faces, this question is answered (5). Harmon utilizes

facial profiles as features for face recognition. Figure 2.1 exhibits the angles and distances

between landmarks used by Harmon as features. Using principal-component analysis, also

called eigen or covariance analysis, Harmon isolates 15 optimal features out of 38 features

(5:108). Harmon's recognition accuracy is on the order of 98-100%, with a population of

112 manually segmented subjects (5:104). Harmon's results prove that with good features,

an accurate face recognizer can be built. Harmon's work is being reevaluated by Hiroshi

Agawa as a means of coding three dimensional face images (1).

Holistic Face Recognition

The AFRM and Harmon's profile recognizer are traditional feature based systems.

Each part of the face is a feature, and as a result, a larger amount of measurement error is

introduced. In holistic face recognition, the whole face is a feature which in turn results in

less measurement error and improved recognition accuracy. For example, instead of using

interpupillary distance as a feature, holistic features would consist of the Fourier coefficients

of the entire face. There are two current techniques that implement holistic approaches to

face recognition. At MIT, Pentland and Turk generate orthogonal eigenfaces with the KLT

(27). At UCSD, Cottrell generates nonorthogonal basis functions with a neural network

(2).

Karhunen-Lobve Transforms

Eigenvalues. Eigenvalue analysis is a very powerful engineering tool. In image pro-

cessing, eigen analysis supports image coding and compression applications. Eigenvalues

2-3

3

11

11

2

Figure 2.1. Harmon's profile with critical locations for feature extractions annotated.
(5:97)

2-4

are the solution for A in the equation

CX9= 9A (2.1)

where Cx is a n2 by n2 matrix, 9 is an eigenvector, and A is a scalar called the eigenvalue

(9:345). The set of non-trivial solutions to the above equation are the eigenvalues which

are also referred to as the spectrum of Cx (9:346). Each eigenvalue has a corresponding

eigenvector, E. The eigenvalues are found from the solutions to the following determinant

Cx- Ai = 0 (2.2)

where I is the identity matrix (9:347). The resulting eigenvalues are used to calculate the

eigenvectors. As a by-product of the eigenvalue determination, the resulting eigenvectors

are orthogonal.

Theory of the Karhunen-Lobve Transform. The KLT is an orthogonal trans-

form similar to the Fourier Transform. Unlike Fourier, which has a basis set consisting of

sines and cosines, the KLT basis set consists of the eigenvectors of the covariance matrix.

The KLT is also guaranteed to provide the most efficient and accurate transformation by

minimizing mean square error (MSE) in reconstruction and maximizing entropy of the

representation.

The KLT can be calculated in the three basic steps. First, obtain the mean and

covariance function from the images. Second, calculate the eigenvalues for the centered

covariance matrix, where centered implies that the mean has been subtracted off the image.

For each eigenvalue, calculate the respective eigenvector and rearrange the n2 eigenvectors

into descending eigenvalue order. Select only the k largest eigenvalued eigenvectors out of

all n2 eigenvectors. This has the effect of greatly reducing the dimensionality of the pattern

recognition problem, i.e. simplifying an n2 problem to k, while minimizing MSE. The

resulting k eigenvectors are the new KLT basis set. Lastly, the image can be transformed

into the new basis set (3).

2-5

Before beginning the KLT explanation, a definition is in order. First, define the n

by n pixel image as a vector

X2

.To (2.3)

where z' is the vector describing the ilh image and z' is the first pixel of the thimage.

The construction of XS is shown in Figure 2.2. The mean vector, aiT., is calculated by

Figure 2.2. Definition of ith image vector, z', where the first pixel is z4 and the last pixel

is zX2.

averaging each pixel over all M faces in the training set

M

m6 = 1/M ZZs (2.4)
i=1

where M is the number of faces in the training set and X1 is the vector describing the i tl

face (4:123). The construction of Y6,, is shown in Figure 2.3.

2-6

XX
-xx

mx x

Figure 2.3. Definition of mean face, f.,, where the first pixel of the mean face is the
average of the first pixel of all the training images.

The covariance matrix, Cx, is calculated via

M

Cx = 1/M "(z - ri)(XI - if' ,)
T (2.5)

i=1

Cx results in an n2 by n2 matrix which has the general form of

XIZ S ... Y i1 n

Cx = 1/M (: (2.6)

2- 7Eo~lXi2X E l i2 X 2 i~ 'n2X Z2

2-7

where z' is the first pixel of the th image. If the mean image is subtracted off all of the

images, then

Iz 2 ... ziXn2

CX = 1/M (2.7)
-Eil n2l 'i-, M "M i i

I= n2 " "" --. ,i=1 "Xn2X 2

The covariance matrix represents the information content or relative change in each image.

By finding the covariance between the first pixel and every other pixel in the image, a

judgement can be made as to the amount of information in the first pixel. For example,

a pixel that does not change relative to other pixels provides little information, while

a pixel with high covariance provides more information. Finding the eigenvectors and

eigenvalues of the covariance matrix transforms the covariance matrix into an orthogonal

space. In effect, the relative pixel changes are mapped into an orthogonal space. To an

engineer, this orthogonal transformation represents an optimum distance between vectors

and minimum decision errors which is the ultimate pattern recognition goal. The last KLT

step of selecting the k highest valued eigenvectors creates a basis set with only the largest

variance eigenvectors.

The eigenvalue solution to the covariance matrix is an n2 simultaneous equation.

This fairly lengthy computation can be accomplished with an approximation which will be

demonstrated in a future section.

As previously mentioned, the resulting n2 eigenvalues and eigenvectors are rank or-

dered with the highest eigenvalued vector in row one. Generally, the number of eigenvectors

to be kept for reconstruction or recognition is determined using the MSE. The MSE be-

tween the reconstruction I and the original image, i, is

n2 k

MSE =EM -EM (2.8)
j=1

which simplifies to

MSE = q (2.9)
-K+

2-8

where A is the eigenvalue, n2 is the total number of eigenvalues, and k is the number

of eigenvectors used for reconstruction (4:125). Using the MSE, the k largest eigenvalued

eigenvectors are selected resulting in

ell e12 ... el2

U el e22 e2n2 (2.10)

eki ek2 ... e5 n2

where u is the truncated KLT matrix, ekn is the nt h value of the kth eigenvector, and

the rows represent the eigenvectors associated with the Ak eigenvalue (4:124). Each row

represents a single eigenface, and k basis functions define the space. In vector form, the

original image i is transformed by

Yk = utk(z- n.) k = 1...M (2.11)

where yik is the kth element of the projection vector, #, in KLT space, tr is the kth

eigenvector, i is the original image, and niT is the mean face (4:125). In KLT space,

represents an image in a coordinate system defined by the eigenvectors. To reconstruct

the image, multiply g by the inverse transformation, u- 1 = uT, and add the mean face

'ft
(t' 4 Tyk) + (2.12)

k=1

z is the reconstructed image, uj is the kth eigenface, yk is the k' KLT coefficient, K.,, is

the average face, and M is the number of images in the training set. With a theoretical

understanding of the KLT, an application by Turk and Pentland can be evaluated.

Turk/Pentland Eigenface. The Matthew A. Turk and Alex P. Pentland eigenface

is an attempt to recognize faces as a holistic entity (27:43). The Turk/Pentland approach

is heuristically simple. First, with the KLT, develop an optimal basis set for recognition

(27:45). With the basis set, transform the images and develop a data base with the known

subjects and their KLT coefficients.

2-9

To recognize an unknown subject, the test image is transformed into KLT space,

and the Euclidean distance of the KLT coefficients to each known subject is calculated. If

the minimum distance meets a certain threshold, the image is classified as known. If the

image does not meet the minimum distance criteria, the face is classified as unknown. For

example, Figure 2.4 shows a two dimensional, two eigenvectors (u1 , u2), face space. 0j

which falls into class fl, is classified as known. On the other hand, f which does not fall

into the circled region of a known class is classified as unknown. Lastly, f3 represents a

non-face (26:49) because it is relatively far from face space. This type of classification can

be readily implemented with a nearest neighbor classifier or with a more robust Adaptive

Resonance Theory (ART) Neural Network (15). With that explanation, a more analytical

evaluation of Turk and Pentland follows.

U1

2.1

...... : :: ace Space

U2

Figure 2.4. A simplified 2-D face space where ul and u2 are the eigenface basis set and
the known individuals are ftk. (27:49)

KLT Approximation. The KLT is numerically cumbersome. According to Turk,

the n 2 by n2 solution of the covariance matrix can be greatly simplified if the number of

points in the image space, i.e. n2 , is much greater than the M training faces (26:6). For

example, a training set of 40 subjects, each 128 by 128 pixels, would satisfy the condition

that M << n2, where M = 40 and n2 - 1282. The following technique is based on the

previous condition.

2-10

Turk and Pentland simplify the KLT by estimating Cx. First, if A is defined as the

matrix which contains each training face as a column

A=(11 2 ... OM) (2.13)

where ti is the 0h statistically centered training face. The first statistically centered

training face would equal the first face minus the mean face, 61 1 - r6,f. Typically, the

KLT is created by first calculating

Cx = AAT (2.14)

where the eigenvectors of Cx are determined using Equations 2.1 and 2.2. Substituting

AAT for Cx in Equation 2.2 yields

AAT = (2.15)

where A is the training matrix, AT is the transpose matrix, tr is the eigenvector, and A

is the eigenvalue. In effect, t4 represents a vector that when multiplied by the covariance

matrix, Cx = AAT, equals the same eigenvector scaled by A.

Now consider the eigenvectors of L = ATA, the resulting matrix is only M by M.

An eigen solution to ATA would result in

ATA4 = 4Z& (2.16)

where the eigenvectors of L are iF, and the eigenvalues are pi. If both sides are premultiplied

by A, the result, which is very reminiscent of the solution to Equation 2.15, is

AATAF = Atpi (2.17)

where the eigenvectors of AAT are A4 and the eigenvalues are pi. Now substitute Cx

for AAT

CxAF. = A js (2.18)

2-11

A4 and pi are the respective eigenvectors and eigenvalues of the covariance matrix Cx.

Therefore, finding e,, the eigenvectors of L, and multiplying e, by A results in trk, the

desired eigenvectors of Cx (26:7).

To summarize, first generate A with the training faces. Second, multiply AT and

A to get L. Next, find the eigenvalues and eigenvectors of L, and multiply the resulting

eigenvectors, e,, by A to get the desired eigenvectors, trk, of the original covariance matrix

M
Uk= t -kjj i= 1...M. (2.19)

j=1

where fi is the jth training face, vkj is the jth element of the kih eigenvector of L, and M is

the number of training faces. For instance, the first eigenface, tii, is a linear combination of

each element in the first eigenvector, tj, with its corresponding training face in A (26:6-7).

The matrix L has simplified the eigen analysis from n2 to M (27:7).

With the u transformation matrix, Turk transforms the image into face space with

the following transformation

W, = u(X - 6,) n = 1...k (2.20)

where x, is the image, nix, is the mean face, ti; is the nth eigenface, wn is the coefficient

of the nth eigenface, and k is the total number of truncated eigenfaces (27:46). The values

of w,, determine the location of the transformed image in multidimensional face space.

Lastly, Turk calculates the Euclidean distance to determine which face class is nearest the

unknown face

=j (2.21)

where ci is the distance to each known face class , fl is the unknown face class, and f%, is

the vector for the ijh known face class (27:47). Pentland first classifies an unknown face

as either face or not face, based upon ci being below a specified threshold. The minimum

ci determines class membership.

The Pentland and Turk system utilizes a Sun workstation. The working system

generates a seven dimensional eigenface face space. The recognition accuracy is 96% for a

2-12

population of 16 subjects (27:19). Figure 2.5 displays Pentland's reconstruction.

Figure 2.5. On the left is the original image. On the right the Turk and Pentland recon-
structed image. (27:47)

According to Pentland, the approach does have limitations. Pentland's KLT is seiisi-

tive to head size, which forces size normalization. A limitation in segmentation also exists

requiring Pentland and Turk to use a spatio-tempora filter similar to the moving target

indicator of the AFRM (27:52-53).

Neural Networks and Face Recognition

Garrison W. Cottrell, at UCSD, implements a neural network to recognize faces

(2). Cottrell's neural network is another holistic face recognition technique. Cottrell

first trains his neural network using a back propagation neural network configured as an

autoassociator, Figure 2.6 a. The input into the autoassociator is a 61 by 6.1 pixel image.

At the output, the autoassociator monitors the MSE between the input and the output.

The autoassociator iteratively adjusts the weights of the hidden layer nodes until the .ISC

is minimized. Minimizing MSE results in the input being reproduced at the output. Once

the MSE is minimizcd, training is complete. The outputs of the hidden nodes are fiatures

that are used for recognition by another neural network.

2-13

To recognize faces, the input layer and hidden layer of the autoassociator, Figure

2.6 b, are input into a backpropagation network (BPN). The BPN is trained to recognize

the nonorthogonal projections of each subject. If a test face which is input into the two

layer network, Figure 2.6 b, activates one of the outputs of the BPN, the test subject

is classified as known. If the test face does not activate a BPN output, the test image is

classified as unknown.

The limitations of Cottrell's network are similar to Pentland's. However, Cottrell's

neural network approach has one key advantage over the eigenface approach. The neural

network technique does not have the computational burden of the KLT (27:53). This

advantage is eliminated if the KLT is implemented on a neural network as demonstrated

by Tarr (24).

Reconstructed Output Image

yl y2 ... y64

16 hidden layer
units

xl x2 ... x64

Input 64 by 64 pixel Image

Figure 2.6. After the above Cottrell autoassociator is trained, the autoassociator input
and hidden layers are used as the input to a second network which in turn
classifies the faces.

2-14

Conclusion

This chapter evaluated AFIT's AFRM, Harmon's face profile research, Pentland and

Turk's eigenfaces, and Cottrell's autoassociator. All the research implies that the pri-

mary factor in recognition accuracy is feature selection. More recent research indicates

that holistic face recognition provides improved results over individual facial feature tech-

niques. With these considerations, this thesis win concentrate on exploiting holistic KLT

approaches to face recognition.

2-15

III. Methodology

General Issue

One of the objectives of this thesis is to evaluate the Karhunen-Lobve Transform

(KLT) as a possible basis set for face recognition. The evaluation of the KLT is divided

into three phases. The first phase consists of using the KLT with only one training image

presented multiple times. The purpose of the first phase is to simplify the problem in

order to evaluate the algorithmic implementation of the KLT in C. The second phase

consists of image reconstruction using both small and large population training sets. The

third phase utilizes the KLT for recognition and classification. As a by-product of the

three phases, an evaluation of finding or segmenting faces in KLT space will be performed.

Additionally, a facial feature communicator for the non-vocal and a KLT based axis system

will be implemented. Two additional KLT applications will be evaluated. Before the three

phases are presented, this chapter begins with an overview of the primary software routines

utilized for the thesis effort.

Code development

Introduction. The software written in ANSI C consists of three main algorithms.

The first algorithm, kl-transform2.c, calculates the KLT of the input training set. With the

eigenfaces generated by kLtransform2.c, the second algorithm, recon.c, calculates the KLT

coefficients and reconstructs the input image. The last algorithm, findain.c, classifies

the coefficients based on Euclidean distance. In addition to the previous routines, two

KLT preprocessing routines, gwind.c and Clate5.c, will be detailed. The software routine

gwind.c windows the images with a Gaussian. The second preprocessing routine, Cate5.c,

centers all the images relative to a reference. All software listings for this thesis can be

found in Appendix A.

KLT software. The primary function of the KLT program, kltransform2.c, is to

calculate the optimum basis set, or eigenvectors, and the average vector of a training set.

The training set used to create the eigenvectors defines the basis set, therefore a training

3-1

set of faces generates an optimum basis of eigenfaces. Note that the eigenfaces are only

optimum for images in the training set. As the images become less like the training images,

the optimality quickly disappears. This implies that a basis set of eigenfaces would only

be suitable for faces. If a KLT basis set is desired for tanks, for example, the training set

would have to be modified to include tanks. The resulting basis set would then provide

eigentanks. The routine kl-transform2.c is primarily used on faces in this thesis, but the

software can readily be implemented with any training set of images.

The KLT software is developed with two key references: Turk and Pentland's Eigen-

faces for Face Recognition and Gonzalez and Wintz Digital Image Processing (26, 4). The

C program kl-transform2.c which is documented in Appendix A is executed from the Unix

command line with

kl-transform trainingfile sizoofnimage numberoftrain

where trainingfile is the name of the file which lists the faces in the KLT training set,

sizeofimage is the total image size in pixels, and numberoftrain is the number of images in

the training set. The block diagram of kL-transform2.c is shown in Figure 3.1.

First, each training face has the average face subtracted off resulting in

A=(rI r2 l ... IrM) (3.1)

where A is the KLT training set matrix, rM is the Mth statistically centered image, and

M represents the total number of training images. To simplify the calculation of the

KLT, rather than calculating the eigenvectors of the covariance matrix C. = AAT, the

eigenvectors of L are found

L =ATA (3.2)

The Numerical Recipes in C routine jacobi.c finds the solution to Equation 2.2, where

L is substituted for C2, (13). A second Numerical Recipes in C routine eigsort.c sorts

t:ie eigenvectors generated by jacobi.c in decreasing eigenvalue order (13). Note that the

resulting eigenvectors from L are only of length M which is the size of the training set.

One additional step is required to arrive at the appropriate n2 length eigenvectors. This

3-2

is accomplished with Equation 2.19 to find uj the n2 length eigenvector. The outputs of

kltransform2.c are the average face, eigenfaces, and eigenvalues.

training faes

Input Generate L;
Matrix]

elgenvectors obl.c
u k

~Output

elgenvalues
avg..fce.dat

elgenface0l .dat

Figure 3.1. Block diagram for the C program kltransform2.c which finds the eigenfaces,
i.e. KLT basis set, and the average face for a given training set.

Reconstruction of faces. Thus far the eigenfaces and average face have been

calculated with the program kltransform2.c. This subsection explains the implementation

of the software routine recon.c. The program recon.c calculates the KLT coefficients of

the image, and with the eigenspace representation of the image, reconstructs the original

image.

The C program recon.c which is documented in Appendix A is invoked at the Unix

prompt as follows

recon inputizage nuwberinrecon sizeofimage

3-3

where inputimage.gra is the image to be reconstructed, inputimage.rec is the reconstruc-

tion, numberinrecon is the number of eigenfaces used in the reconstruction, and sizeofimage

is the total number of pixels in the input image. First, recon.c reads the input image, the

average face, and the eigenfaces needed for reconstruction. The image 9 is then projected

into the new eigen coordinate system. The new vector : is created by

Ak = uT(- n) k = 1... M (3.3)

where yk is the kth element or coefficient of the kth eigenface, t k is the kth eigenface, E is

the input image, ni_ is the average face, and M is the number of images in the training

set. The vector V is the projection of the input image into KLT space. These coefficients

are also features for recognition and classification. The reconstruction is the weighted sum

of the coefficients of - with the appropriate eigenface. In vector form
In

X (E urTyk) + vZ (3.4)

k=1

where I is the reconstructed image, u- is the kth eigenface, yk is the kth KLT coefficient,

rif is the average face, and M is the number of images in the training set. The outputs of

recon.c are the reconstructed image and the KLT coefficients.

Euclidean Distance Classifier. The previous two software routines provided an

eigenface basis set, generated KLT coefficients, and reconstructed an image from its KLT

coefficients. To actually recognize test from prototype faces, a classifier must be imple-

mented. In this thesis a Euclidean distance or first nearest neighbor (1-NN) classifier is

utilized. The routine find.min.c documented in Appendix A is executed from the Unix

command line with

f ind.min trainfile testfile #.train *-test #-f eatures

where trainfie is a file containing the prototype vectors, testfile is a file containing the test

vectors, #_train is the total number of prototype vectors, #_test is the total number of test

vectors, and #-features is the number of features in each vector. Each test and prototype

3-4

Image

Calculate

Weights eiIgnface.dat
k i 4avg face.dat

KLT coefficients to classifier
Reconstruct - --

reconstructed Image

Figure 3.2. Block diagram for C program recon.c

vector ends with a string or label identifying the vector class. The program findamin.c

statistically normalizes the test and prototype features. The normalized Euclidean dis-

tance from the test vector to each prototype vector is calculated. The minimum distance

from test to prototype implies that the test vector is of the same class as the prototype.

After program completion, find.min.c lists each test vector with the associated winning

prototype and distance. The probability of error of a Euclidean distance or 1-NN classifier

approximates a Bayesian classifier as the number of test and prototype vectors approaches

infinity (25:83). In practice, with more than twelve classes the 1-NN approximates the

Bayesian classifier.

Preprocessing Faces with a Gaussian Window. Applying a Gaussian window

to face images has several advantages. A Gaussian windowed face, Figure 3.3, has its center

accentuated and the outline of the face de-emphasized. From a recognition prospective,

de-emphasizing the outline of the head de-emphasizes hair and background and emphasizes

the center of the face. Both effects are desireable for recognition. From a similar biological

perspective, when humans recognize faces, the eyes spend more time at the center of the

face and less on the outline(1l). Figure 3.4 demonstrates a typical eye scan pattern of a

3-5

human examining a face. The eye scan pattern which is taken with an occulometer is in a

sense Gaussian with considerably more scans on the center of the face than on the outline.

An additional benefit of Gaussian windowing is that the centering of the images is focused

on the eyes instead of the outline of the head. In short, Gaussian windowing the face is

biologically motivated, provides more desirable recognition, and more desirable centering.

Figure 3.3. An example of a face windowed with a Gaussian.

The window is impiemented with the software routine gwind.c, see Appendix A.

The program takes an input image and multiplies each pixel by a corresponding pixel in

the Gaussian window, Figure 3.5. First the routine gwind.c prompts for the image size,

and the routine then prompts for the x mean, x variance, y mean, and y variance. The

center of the Gaussian window is defined by x mean and y mean while x variance and

y variance define the amount of change in the x and y direction. For example, Figure

3.5 demonstrates a Gaussian window with parameters: x mean=65, x variance=35, y

mean=55, y variance=50. The center of the 128 by 128 pixel Gaussian window is right 65

pixels and up 55 pixels, and the window variances define the tightness of the window. In

most instances, the mean values stay constant and the variances are varied.

Preprocessing Faces by Centering. The KLT is not shift invariant. In other

words, shifting a face in a scene provides different KLT coefficients. This undesirable

effect can be eliminated by centering the images relative to a reference. The centering

operation is performed by a simple routine Clate5, see Appendix A. The program does a

Fast Fourier Transform correlation of the input image and an already centered reference

face. The correlation indicates how much shift is necessary in x and y pixels to align the

3-6

Figure 3.4. The original scene of the little girl is on the left and the resulting occulometer
pattern is on the right. Note the concentration of scans on the center of the
face. (11)

input image with the reference. The routine then shifts the input image the appropriate

amount and stores the shifted image. Unless otherwise indicated, the program C~late5

does not implement energy normaliztion.

Testing. To test the code, a simple KLT problem is devised. The training set con-

sists of nine instantiations of a single face, with each face differing by the addition of various

amounts of Gaussian noise. Properly running software provides accurate reconstruction

and a rapidly decaying mean square error (MSE) plot. The results of this test are provided

in the next chapter.

3-7

(a) (b)

Figure 3.5. a. A Gaussian window with parameters x mean=65, x variance=35, y
mean=55, and y variance=50. b. A Gaussian window with parameters x
mean=65, x variance=25, y mean=55, and y variance=30.

KLT Reconstruction

Small Population Reconstruction using the KLT. The KLT is typically seen

in text books as an image compression technique (4). To evaluate the KLT, a test is set up

with a small population of six faces in the training set. The faces are recorded on video tape

and digitized using Snapshot, a NeXT application package. The input images, 320 by 480

pixels, are scaled to 256 by 256 pixels. To prevent blurred reconstructions, all the images

are centered. A Gaussian window is then applied which decreases the effects of hair line,

head size, and background on recognition. A second centering operation is performed to

concentrate centering on the center of the face , i.e. eyes. With all the images aligned, the

KLT is implemented with kltransform2.c. As previously outlined, kl-transform2.c creates

the average face and eigenfaces. After the eigenfaces and average face are calculated, any

of the six faces can be reconstructed with recon.c. The results of the reconstruction are

provided in the next chapter.

Large Population Reconstruction using the KLT. The reconstruction of im-

ages from large KLT populations seems to be a logical extension to the small population

test. The primary objective of the following tests is to evaluate the quality of reconstruction

with different size training sets and Gaussian windows.

The first test evaluates a training set of 27 subjects. Each subject has three different

instantiations for a total of 81 faces in the training set. The Gaussian window of Figure

3-8

3.5 a is applied. This test evaluates reconstruction of images in and out of the training set.

The second test evaluates the same training set as in test one but with a tighter

Gaussian window around the faces. The Gaussian window of Figure 3.5 b is applied. This

test evaluates the effects of different window sizes on reconstruction quality.

The third test evaluates 27 training faces with only one instantiation per test sub-

ject. The Gaussian window of Figure 3.5 a is applied. This test evaluates the effects on

reconstruction of using only one version of each training face.

The fourth test evaluates reconstruction with only 18 faces in the training set and the

Gaussian window of Figure 3.5 b is applied. This test evaluates training set size reduction

and image reconstruction quality.

The fifth test demonstrates the effects of not using Gaussian windowed images.

Lastly, the sixth test evaluates reconstruction of a subject not in the KLT training set.

The basic set-up, for all the tests is: develop the KLT, reconstruct faces, and, lastly,

heuristically evaluate the quality of the reconstruction for each test. The results of the

large population reconstruction are provided in Chapter 4.

KLT and Recognitioa

Introduction. Previous experiments evaluated the reconstruction capabilities of

the KLT, but the goal of this research is to develop a set of features for accurate face

recognition.

Single Person Verification. The first evaluation of the KLT recognition capability

consists of single person verification. For example, a subject enters a controlled access

facility and claims to be person A. The subject then enters into a terminal a personal

identification number (pin) code. At the same time a video camera takes a picture of

the face. The KLT coefficients of the image verifies if person A is truly person A, or an

impostor with the right pin.

This problem is evaluated as a two class problem with class one consisting of the test

subject A and class two consisting of every other person in the data base. A KLT with

3-9

18 different training images encodes the images. Using only the first five KLT coefficients,

a Backpropagation Network (BPN) with momentum classifies the data (22). Various ex-

periments are run varying the number of input features and hidden layer nodes. Lastly,

using the same test scenario and data, a Euclidean distance classifier measures recognition

accuracy. The results of single person verification are provided in Chapter 4.

Multi-person Recognition. Determining the identity of a subject from multiple

subjects is the multi-person recognition problem. The population of faces consists of fifty-

five subjects. Each subject is digitized into 128 by 128 pixel frame and is part of the

KLT training set. All the images are shifted, aligned, and windowed as in Figure 4.5.

Executing kl-transform2.c provides the average face, eigenfaces, and eigenvalues. With the

eigenfaces, the features can be extracted using recon.c.

Before the features are extracted, the six images are divided into test and prototype

sets. The test set consists of two images which will be compared to the remaining four

in the prototype set. The program recon.c extracts the features providing the KLT coef-

ficients of each image. With the KLT coefficients of both the test and prototype sets, a

Euclidean distance classifier, find.min.c, compares the test set to the prototype set. A min-

imum distance implies a match. The aforementioned multi-person test is performed again,

except only forty images are included in the KLT training set. The results of multi-person

recognition are provided in Chapter 4.

As a means of comparing the KLT to a more common technique, the low frequency

FFT magnitude coefficients are used for recognition. The FFT is energy normalized and

the zero frequency response (DC) is the center of the FFT. Since the FFT magnitude of

the face, Figure 3.6, is symmetric, only the top half of the FFT magnitude is utilized.

For example, a first order block of the FFT magnitude consists of a block with boundaries

defined by DC plus one coefficient to the right, left, and up. The first order block provides

six coefficients because the block is three by two.

3-10

Figure 3.6. FFT magnitude of a face with the first order 3 by 2 block

Finding Faces in Face Space

Finding a face in a scene is the first step in any pattern recognition system. The Air

Force Institute of Technology (AFIT) Autonomous Face Recognition Machine (AFRM),

implements a spatio temporal filter or moving target indicator to segment a face from the

overall scene. Segmention based on the KLT would segment on 'faceness' which would be

more desireable than segmentation based on motion. Two approachs will be evaluated.

The first segmentation approach will scan a scene. Each sub-image scanned will be

projected into face space. If the Euclidean distance of the KLT coefficients of the sub-

image is less than a certain threshold, a face is probably present. This approach is the

same approach taken by Pentland (27).

The second segmentation approach will take the FFT of the scene and of the eigen-

faces. An energy normalized correlation between the scene and eigenface is performed to

determine the location of the face in the scene. The results of both techniques are provided

in Chapter 4.

3-11

Karhunen-Lohve based Facial Feature Communicator for the Non-vocal

Many times a Masters thesis only serves to enhance academic understanding. In

this instance, however, an application of the Karhunen-Lobve may provide a child with

cerebral palsy a means of communicating with the outside world. The child has cerebral

palsy and is incapable of speaking. Although the child can not speak, she can manage

facial expressions. The following test evaluates the ability of the KLT eigenvectors or

eigen images to differentiate between two expressions. The first expression, tongue out, is

classified as a 'yes'. The second expression, mouth open, is classified as a 'no'.

Two 128 by 128 pixel images of the subject shown in Figure 3.7 are selected as

prototype images. The two prototype images are used as training images to generate the

Figure 3.7. The two prototype images of the non-vocal subject. On the left is the tongue
out or 'yes'. On the right the mouth open or 'no'.

KLT eigenvector basis set. The prototype images are first Gaussian windowed with Figure

3.8 to remove the effects of the background and enhance the mouth area. The images

are then aligned with Clate5.c a FFT based correlation algorithm. Finally, the KLT is

calculated with kldtransform2.c of Appendix A generating the average vector and the first

two eigenvectors. A block diagram of the aforementioned process is shown in Figure 3.9.

With the KLT basis, the next step consists of calculating the KLT coefficients. Figure

3.10 summarizes the following procedure. An input image is first Gaussian windowed with

Figure 3.10. The image is then aligned. The KLT coefficients are calculated with the

3-12

.....iii i~ i:.. .-. .. : iii~ ~i

Figure 3.8. The Gaussian window used on the images of the non-vocal subject.

Prototype Images

Gaussian Window Align Images KLTI

Eigenface
Average face

Figure 3.9. The process used to generate the KLT basis set from the prototype images
of the non-vocal subject.

3-13

routine from Appendix A recon.c. Calculating the KLT coefficients is done with Equation

3.3 and consists of subtracting off the mean from the input image and then taking the dot

product between the image and each of the two eigenvectors. The two KLT coefficients

are classified with the Appendix A routine find-min.c, a Euclidean distance classifier.

Before the test images of Figure 3.11 are classified, the prototype images are processed

through Figure 3.10 to determine the prototype KLT coefficients. With the prototype

KLT coefficients for the 'yes' and 'no' facial expressions, the test images can be projected

into Karhunen-Lobve space and classified with the NN classifier. The minimum distance

to a prototype determines if the input or test image is a 'yes' or 'no'. The results of this

test are presented in Chapter 4.

Eigenfaces

Test Images Average face

Gaussian Window -10 Align Images K.o [atureeract

KLT coefficients

S NN Classifier

Yes or No

Figure 3.10. The process used to calculate the KLT coefficients and classify the images
as 'yes' or 'no'.

Karhunen-Loive Axis System

The Karhunen-Lo~ve Transform (KLT) is typically utilized in image compression or

recognition applications. However, if the KLT is to be truly useful as a block transform,

it is essential to be able to correlate using the KLT. A sponsor of this research had a

3-14

Figure 3.11. The two top test images are mouth open or 'no'. The two bottom test
images are tongue out or 'yes'.

3-15

unique data set of human heads taken with a laser radar scanner. The scanner distance

measurements of the head are used to fit flight gear on pilots. The laser scanner provides

detailed measurements for all of the features of the face and head.

A current short coming of the laser scanner data collection is the lack of an axis

system. An axis system speeds the search of features by placing all the heads in the

same relative position. Like a map with a longitude and latitude coordinate system, the

axis system simplifies the task of finding different land marks on the head. Therefore,

searching for noses will always occur in the same general area of the axis system. The

following research demonstrates the use of Karhunen-Lobve eigenvectors or eigen images

as an axis system and compares the results to an equivalent Fourier based system.

Laser Scan Data The laser scan data of the head consists of distance measurements

of the head. The scanner goes around the head and collects the data. The training images

will define the basis set; therefore, selection of the training set should be representative of

the laser scan data. The data consists of a matrix which is 256 data points in the vertical

direction and 512 data points in the horizontal direction. The distance measurements are

converted from distance to gray scale using the routine kl.med.c which is documented in

Appendix A. The converted gray scale 512 by 256 pixel image is shown in Figure 3.12.

First a KLT training set of nine laser scanner head images is chosen at random to

represent the entire population. The training images are aligned manually to improve

the quality of the resulting eigen images. The KLT is calculated using the C program

kl-transform2.c which is listed in Appendix A. The routine kl-transform2.c provides the

Karhunen-Lo~ve eigenvectors and average vector.

With the basis set calculated, a non-training image. Figure 3.12 a, is selected and

shifted. After every shift, the projection into Karhunen-Lo~ve space is calculated using

only the first eigenvector. The projection is calculated with the Appendix A routine recon.c

which uses Equation 3.3 where ti is the first eigen image, :i is the shifted image, and

w, is the KL coefficient. The goal of the test is to demonstrate that a correlation peak

would exist when the test image is aligned with the eigenvector or eigen image. The

head scan image is shifted at 20 pixel increments, 300 pixels to the right and to the left.

3-16

i~i~i~ii~i~i~ii !! :i i~i

.............. !

a.i~~ii i '

: "~~~~~~~ ii~i~ i'

b.

Figure 3.12. Two laser scans of the head. The top is the original 512 by 256 pixel image,
and the bottom is the shifted to axis system image.

3-17

Simultaneously, the image is shifted at 10 pixel increments, 90 pixels up and down. Once

the peak is found, the test image is again shifted at one pixel increments to find a precise

peak.

As a means of comparison, the FFT correlation between the head scanner image and

the first eigen image is calculated. A correlation peak implies that the head scan is aligned

with the eigen image. The results of this test are presented in Chapter 4.

Conclusion

This chapter first presented various KLT and support algorithms developed for this

thesis. The chapter then presented the methodology used to investigate the reconstruction

of images using the KLT with both large and small population training sets. Thirdly, the

chapter provided the methodology used for face recognition using the KLT and FFT. The

last three sections presented the methodology used to investigate a face finder, a facial

feature communicator for the non-vocal, and a KLT based axis system. The results of the

methodology are presented in the next chapter.

3-18

IV. Results

Code Developtnizt and Testing

In order to test the two main algorithms, kl-transform2.c and recon.c, the following

test is devised. The first algorithm, kltransform2.c, performs the Karhunen-Lobve Trans-

form (KLT). The kLtransform2.c training set includes nine instantiations of the same face,

Figure 4.1 a. The nine faces differ only by the addition of various amounts of Gaussian

noise. After program execution, the resulting eigenfaces, Figure 4.1 b - d, demonstrate

that most of the information or energy is in the first eigenface. The mean square error

(a)

(b) (C) (d)

Figure 4.1. (a) The KLT training set of nine instantiations of same face with various
amounts of Gaussian noise (b) first eigenface of the nine images (c) second
eigenface (d) third eigenface

(MSE) plot of Figure 4.2 also indicates that a major part of the energy or information is

in the first eigenvector. Since all of the images are basically the same face perturbed by

Gaussian noise, it is reasonable to conclude that only one eigenface is needed to represent

4-1

all alne faces. This example confirms the operation of the code and more importantly pro-

vides insight into the KLT. The first eigenface represents most of the face energy whereas

the second and third eigenfaces represent the orthogonal projections of the changes in-

duced by the addition of Gaussian noise (7). Figure 4.4 demonstrates a two dimensional

eigenspace where it can be seen that most of the energy in the faces can be projected onto

the first eigenface and the changes introduced by the Gaussian noise can be taken into

account by the second orthogonal eigenface.

lC+08[, ,
"eigen_.val"-

le+07

e le.06

W
* 100000

10000
or

C
(U 1000

100

10-
1 2 3 4 5 6 7 8 9

Number of Eigenvectors

Figure 4.2. Mean squared error of reconstruction of Figure 4.3 a - c

(a) (b) (C)

Figure 4.3. (a) Reconstruction using one eigenface (b) using two eigenfaces (c) using all
nine eigenfaces

The second algorithm test of recon.c utilizes the eigenfaces from kltransform2.c. A

face is selected from the nine training faces and is provided as an input to recon.c. The

4-2

U I

Second Eigenface

vvectors

First Eigenface

U2

Figure 4.4. An example of a two dimensional eigenspace where all nine images are the
same face with various amounts of Gaussian noise. The first eigenface, shown
as a bold vector, represents most of the energy in the faces, and the second
eigenface accounts for the Gaussian perturbations.(7)

program recon.c generates the KLT coefficients and reconstructs the original image as

shown in Figure 4.3. As indicated earlier, the MSE plot of Figure 4.2 indicates that the

reconstruction should only need one eigenface. Figure 4.3 confirms that the reconstruction

is acceptable using only one eigenface.

KLT Reconstruction

Small Population Reconstruction. The test setup, Figure 4.5, consists of six

training faces, each scaled from a 320 by 480 image to 256 by 256 pixels. The program

C.late5.c of Appendix A aligns the images. A Gaussian window is applied with gwind.c

of Appendix A and a second alignment with CJate5.c concentrates on the eyes, nose,

and mouth of the images. As discussed in Chapter 2, the second alignment improves the

reconstruction and recognition performance. Using kltransform2.c, the KLT creates the

average face, eigenvalues, and six eigenfaces.

Figure 4.6 indicates 19% MSE reconstruction results when using three eigenfaces.

4-3

Training Fame

El

Figure 4.5. The KLT process consists of first defining a training set, centering the images
with Clate.c, windowing with gwind.c, centering once again, and lastly
performing the KLT with kltransform2.c. The result is the average face,
eigenface, and eigenvalues (not shown). Note all source code is listed in
Appendix A.

4-4

Mean Square Error

0.25,

0.2

0.15

0.11

0.05- Number of Eigenfaces

12 3 5 6

Figure 4.6. Reconstruction MSE of small population

(e)(f(g

Figure 4.7. Small population reconstruction using (a) original image; reconbtruction us-
ing (b) one eigenface (c) two eigenfaces (d) three eigenfaces (e) four elgenfaces
(f) five eigenfaces (g) six eigenfaces,

4-5

An image is first reconstructed using one eigenface, Figure 4.7 b, and the result has no

resemblance to the original of Figure 4.7 a. By the addition of the third eigenface, the

reconstruction of Figure 4.7 d appears acceptable. The addition of eigenfaces four through

six, Figure 4.7 e-g, adds very little to the quality of the reconstruction.

The KLT permits the reconstruction of any of the six faces using only three of the

eigenfaces. Representing an image by only three coefficients represents a dramatic com-

pression of approximately 21,000:1. In a communications sense, instead of transmitting 256

by 256 pixels, only three coefficients need to be transmitted provided that both sender and

receiver have copies of the first three eigenfaces and average face. However, this significant

compression is costly. First, the compression is limited to a small population of images,

six in th:s instance. Second, a significant amount of processing is necessary to determine

the eigenfaces. Additionally, both sender and receiver must have copies of the eigenfaces.

The pre and post processing impact would be less worrisome if the population could be

increased. Phase two of KLT reconstruction consists of larger population reconstruction

experiments.

Large Population Reconstruction. The first test evaluates a KLT training set of

three 128 by 128 pixel images per subject and a population of 27 subjects. The images are

Gaussian windowed with Figure 3.5 a which has the following parameters: x mean=65, x

variance=35, y mean=55, y variance=50. This test evaluates the size of the training set and

reconstruction quality of images in and out of the training set. The reconstruction, using

20 eigenfaces, is shown in Figure 4.8. The first column is the original image. The second

column is the reconstruction of a KLT training set image. The third column is an image of

the subject not in the KLT training set. The results indicate that the KLT reconstruction

for a large population is much worse than the small population reconstruction. Column

three indicates that the KLT can reconstruct images not in the training set provided the

subject is in the KLT training set.

The second test evaluates the effects of the Gaussian window on the reconstruction.

The window is tightened as in Figure 3.5 b to: x mean=65, x variance=25, y mean=55,

y variance=30. The resulting quality is unaffected by window changes, Figure 4.9.

4-6

Original Training Non-Training
Image Image Image

Figure 4.8. Test 1: reconstruction with 20 eigenfaces of large population, 81 training
images

Original Training Non-Training
Image Image Image

Figure 4.9. Test 2: reconstruction with 20 eigenfaces of large population, 81 training
images, and tight Gaussian window

4-7

The third test to improve reconstruction quality varies the amount of training faces

used per subject from three to one, for a total of twenty-seven pictures. The faces are

Gaussian windowed as in the first test with: x mean=65, x variance=35, y mean=55,

y variance=50. The results of Figure 4.10 are similar to those of the first test, but a

dose examination of the images reveals a marginal decrease in reconstruction quality. For

example, note the loss of detail around the eyes.

The fourth test, Figure 4.11, demonstrates the use of a smaller set of eighteen training

subjects with the following Gaussian window: x mean=65, x variance=25, y mean=55, y

variance=30. Once again, marginal decrease in reconstruction quality results.

Original Training Non-Training
Image Image Image

Figure 4.10. Test 3: Reconstruction with 20 "genfaces of large population, 27 training
images, and only one image per subject

The fifth test, Figure 4.12, demonstrates the effects of not using Gaussian windowed

images. Without a Gaussian window, the alignment of Ciate5.c performs poorly. A poor

alignment results in the blurred reconstruction seen in Figure 4.12. This test demonstrates

the importance of centering or aligning the images, and it proves the shift sensitivity of

the KLT.

4-8

Original Training Non-Training
Image Image Image

Figure 4.11. Test 4: Reconstruction with 20 eigenfaces of large population, 18 training
images, and a tight Gaussian window

Original Training Non-Training
Image Image Image

:~~~i : ii

Figure 4.12. Test 5: Reconstruction of non-Gaussian windowed images

4-9

The sixth test, Figure 4.13, demonstrates a reconstruction of a subject not in the

KLT training set. A training set of 81 images was used to create the KLT basis set. Note

that the reconstruction has no resemblance to the original image. This result is somewhat

disturbing because it indicates that the KLT did not generalize for reconstruction. In other

words, subjects not in the KLT training set can not be reconstructed.

Original Reconstruction
mage Non-Training Subject

Figure 4.13. Test 6: Reconstruction using 20 eigenfaces of subject not in the KLT training
set.

Overall, the best reconstruction appears to be that of test one, a large training set

with three images per subject in the KLT training set. In reality, the quality of all four

reconstructions is good and is extremely better than previous KLT image reconstruction of

faces (27). For the first test, which is the best reconstruction, the compression is 16384:20

or approximately 800:1 for 81 training images. This is a significant image compression

figure. The image compression comes at the cost of constrained population, reconstruction

quality, and computational overhead.

The reconstruction results are enlightening and valuable from an image processing

point of view, but the true goal of the research is face recognition. A transform that re-

constructs images very well does not necessarily make a good image recognition transform,

and vice versa. Therefore, the most important results of the research, face recognition and

classification, are to follow.

4-10

KLT and Recognition

Single Person Verification. Single person verification consists of recognizing a

persons identity. For instance, if a subject claims to be John Doe, does his face match

John Doe's? This problem is a two class problem. Class one consists of the KLT coefficients

of sixteen different subjects. Class two consists of the KLT coefficients of sixteen different

images of the test subject. A Backpropagation Neural Network (BPN) with two layers and

two hidden nodes trains to differentiate between the two classes. To test the classification

accuracy of the BPN, each training vector is held out once. The results, averaged over ten

trails and shown in Figure 4.14, demonstrate the accuracy versus the number of features.

Five KLT coefficients resulted in 92% recognition accuracy.

Using the same images, the single person verification problem is run again with a

Euclidean distance classifier. The results shown in Figure 4.14 illustrate the recognition

accuracy versus the number of features. Three KLT coefficients resulted in 93% recognition

accuracy.

Note that the probability of error of the Euclidean distance, also called Nearest

Neighbor (NN) classifier, approximates a Bayesian classifier as the number of test and

prototype vectors approaches infinity (25:83). Additionally, Ruck proves that the BPN

approximates a Bayesian classifier which indicates that both the BPN and NN classifiers

are Bayesian (17). The results of Figure 4.14 confirm this result.

Both tests indicate that for single person verification, a small number of coefficients

provides relatively accurate verification.

Multi-person Recognition. Using fifty-five video taped subjects, six 128 by 128

pixel frames of each person are taken. One frame of each subject is used in the KLT

training set.

Before feature extraction, the six images are divided into a test and prototype set.

The test set consist of two images which will be compared to the remaining four in the

prototype set. With the KLT coefficients of both the test and prototype sets provided by

4-11

95

90

S 85

80

C, 75 /

70 ,

65 "Euclidean classifier" -.-

"BPN classifier" -4---
60

55
12 3 4 5

Number of Coefficients

Figure 4.14. Results of single person recognition versus number of eigenfaces for both
BPN and Euclidean distance classifiers

the routine recon.c, a Euclidean distance classifier, find.min.c, is employed to compare the

test set to the prototype set. A minimum distance implies a match.

The multi-person test first varies the number of KLT coefficients. Figure 4.15

demonstrates the recognition accuracy versus the number of coefficients. Ninety-five per-

cent recognition accuracy is achieved with only sixteen coefficients. Interestingly enough,

increasing the number of coefficients actually decreases accuracy. This can be readily

explained by pointing out that the lower eigenvalued eigenvectors have less energy and

therefore these coefficients introduce more noise than information into the classification

(7).

A second test is performed on the same subjects. The test set-up is identical to

the previous test except forty images are used in the KLT training set. Figure 4.16

demonstrates the recognition accuracy versus the number of coefficients used. In this case,

ninety-four percent accuracy is achieved using sixteen coefficients.

Using the Fast Fourier Transform (FFT), the same set of Gaussian windowed images

4-12

94

I92

90

88

86

84

82
10 15 20 25 30

Number of Elgenvector Coefficients

Figure 4.15. Results of multi-person recognition versus number of eigenfaces for 55 sub-
jects where each subject is included in the KLT training set

96

94

I92
88

86

84 -A-

6 8 10 12 14 16 18 20
Number of Eigenvector Coefficients

Figure 4.16. Results of multi-person recognition versus number of eigenfaces for 55 sub-
jects where only 40 of the subjects are included in the KLT training set

4-13

are transformed, and the FFT coefficients are calculated. After Euclidean distance classi-

fication, recognition accuracy versus the number of FFT coefficients is determined, Figure

4.17.

100

95

90

~ 85

80

75

70

5 10 15 20 25 30 35 40 45
Number of FFT Coefficients

Figure 4.17. Results of multi-person recognition versus number of FFT coefficients for 55
subjects

A comparison of the KLT and FFT is shown in Figure 4.18. The KLT clearly out

performs the FFT for a lower number of coefficients. For example, the FFT needs 27

coefficients to reach 95% recognition accuracy where as the KLT only requires as few as

16 coefficients. The FFT recognition performance approaches the performance of the KLT

as the number of coefficients is increased.

Finding Faces in Face Space

Finding a face in a scene is the first step in any pattern recognition system. The

concept of using the KLT for segmentation is evaluated. The first segmentation approach

scans a scene. Each sub-image scanned is projected into face space. If the Euclidean

distance of the sub-image KLT coefficients is less than a certain threshold, a face is probably

4-14

100

95 ---------- - -

ff 90

85

75
"40subject KLT" -----

70 "55 subjects KLT" ---

6 8 10 12 14 16 18 20
Number of FFT Coefficients

Figure 4.18. Comparison of multi-person recognition versus number of coefficients for
FFT, KLT using 55 training subjects, and KLT using 40 subjects

present and the sub-image is segmented from the scene. The results of this experiment

indicate that faces can not be found using this technique. The technique is very sensitive

to head size and lighting. Worst of all, the technique is computationally impractical.

The second segmentation approach utilizes the FFT of the scene and of the eigenfaces.

A correlation is performed beween the scene and eigenfaces to determine the location of

the face in the scene. The results of this test indicate that faces can not be found with

this technique. A correlation peak does occur at the location in the scene corresponding

to the face, but the peak is not a global extrema and many peaks have to be tested before

a face is confirmed.

Although both of the previous techniques performed poorly because of size and light-

ing sensitivity, the AFRM moving target segmenter has been shown to perform over various

lighting and image size conditions (10). The AFRM uses motion to segment the image,

then the image is normalized for brightness and size. With AFRM preprocessing, the

image is properly normalized for a KLT based recognition system.

4-15

Another face segmentation technique demonstrated by Tarr, finds human eyes in a

scene using a neural network (23). This neural network based segmentation can also be

used instead of moving target segmentation. Tarr has also demonstrated a Karhunen-Love

Neural Network which implies that a totally neural based solution can implement many of

the techniques demonstrated in this thesis (24).

Karhunen-Lobve based Facial Feature Communicator for the Non-vocal

The test images are processed and classified as in Figure 3.10. The KLT coefficients

of the test images are compared to the KLT coefficients of previously processed prototypes.

The nearest neighbor classifier determines the class of the image, i.e. 'yes' or 'no'. The

system was able to determine 'yes' tongue out or 'no' mouth open with 100% classification

accuracy.

The test imposed several limitations on processing. First, the KLT is sensitive to

size. So a real system would have to fix the distance between the user and camera. The

second limitation is segmentation and alignment of images. This limitation can be solved

in an operational system by utilizing positive feedback. Simply indicate non-alignment to

the user and ignore all test images that do not fall within some KLT coefficient distance

threshold. A non-alignment can easily be indicated on a computer screen and when the

user is aligned properly the 'yes' or 'no' indications can be processed.

The KLT successfully determined 'yes' or 'no' in a small test set of four images. The

ability to differentiate between these simple expressions indicates that the KLT may be used

as a communications interface for the disabled. In other words, this concept can be used

by a disabled person to manipulate a computer menu system that controls other functions.

Similarly, the binary 'yes' or 'no' scheme can easily be coded into morse code permiting a

simple binary to text conversion. The methodology used here should be readily employable

at frame rate because the KLT coefficients are computed with only one subtraction and

two dot products between the input image and each of the two eigenvectors.

4-16

Karhunen-Lobve Axis System

The purpose of this test is to demonstrate correlation in Karhunen-Lo~ve space and

to develop an axis system or technique to align laser scanner head images. The first

eigenvector, Figure 4.19, is the basis vector with the greatest contrast or variance among all

the images. Therefore, an eigen based axis system takes into account the largest variances

in all of the training set population.

Figure 4.19. An example of an eigenvector resulting from a training set consisting of head
scanner data.

The graph of the projections is shown in Figure 4.20. The projections demonstrate

that as the image approaches the origin of the axis system, the projection value approaches

a peak. The peak corresponding to the axis center is global. After the extrema is found,

the image is shifted at one pixel increments to find the precise peak. The projections at

one pixel resolution about the axis origin are shown in Figure 4.21. The peak at (5,-32)

corresponds to a shift of the test image 5 to the right and 32 down.

To compare the result of the Karhunen-Love correlation with the FFT based cor-

relation, the same image is correlated with the first eigen image which was used in the

previous test. The FFT based correlation indicated a correlation peak at (5,-32). This is

in agreement with the results obtained by the previous Karhunen-Lo~ve approach.

4-17

0

12.5~~ 10105 .

7

-5. lO8

12.5 10 5 5 25 1. 0

of rectangular region

7-4. 10
7

12.5 10 7.• .5-.1

Figure 4.20. The top graph shows the projection of the shifted image into Karhunen-
Loire space using only the first eigenvector. The bottom graph details the
peak location which indicates alignment between the shifted test image and
eigenvector.

4-18

-9.75 10717

-9.8 10
7

-9.85 10"
7

-9.9 10

Figure 4.21. Projection of the shifted test image with one pixel resolution into Karhunen-
Love space using only the first eigenvector. The minimum represents the
correlation peak indicating alignment between test image and eigen image.

The results indicate that correlation can be performed with the Karhunen-Lo~ve

coefficients, and the coefficients can be used to align images. The similarity in the location

of the correlation peak with Fourier based correlation lends confidence to the result. Recall

that the first eigenvector represents an image with the greatest amount of variance or

information in its pixels. The eigenvector provides the best image to correlate against

because the eigenvector represents the largest variance or worst case change. In short,

the first eigenvector provides the best correlation with the largest population. This is the

justification for the use of the eigen images as a basis for an axis system. Further evaluation

needs to determine the robustness of an eigen based axis system over a larger population

of test images. The use of the eigen images with either an FFT or KLT based correlator

seems to be equivalent.

The significant results of this research are the demonstration of correlation in Karhunen-

Lo~ve space and its equivalence to traditional FFT correlation. Second, the use of eigen

images as a basis for an axis system represents a logical choice over traditional feature based

4-19

techniques, e.g. an axis system based on the planes traversing the nose and ears. Further

research will evaluate the results over a larger data set and evaluate the use of a conjugate

gradient approach to Karhunen-Lo*ve correlation techniques which would eliminate the

need for as many shifts to find the global extrema.

Conclusion

The most significant result of this chapter is the demonstration of the recognition

superiority of the KLT over the FFT or the AFRM feature based approach. With only

16 coefficients, the KLT provided 95% face recognition accuracy for a population of 55

subjects. The 40 subject test demonstrated KLT generalization for recognition. This is

significant because the poor reconstruction of non-training subjects, Figure 4.13, indicates

that for reconstruction purposes the KLT did not generalize. In short, this demonstrates

that the KLT is good for face recognition but not sufficiently adequate for reconstruction.

This chapter first presented the results of code testing and then presented the results

of the thesis. The chapter then presented the reconstruction results for both large and small

population training sets. Thirdly, the chapter provided results of face recognition using

the KLT and FFT. The last sections presented the results the KLT based face finder, the

facial feature communicator, and the Karhunen-Lo~ve axis system. The significant results

and conclusion are presented in the next chapter.

4-20

V. Conclusions

Introduction

The purpose of this thesis is to find good features for machine recognition of human

faces. This thesis investigated the Karhunen-Lo~ve Transform (KLT) and demonstrated

its performance. A summary of the significant results follows.

Summary of Significant Results

This thesis developed efficient KLT algorithms in ANSI C. The algorithms, which are

documented in Appendix A, implemented a Karhunen-Lo~ve approximation that simplified

the solution to a simultaneous equation from degree n2 to M. For example, for 128 by

128 pixel images in a KLT training set of 40 images, n2 = 16384 and M = 40. This

approximation which is only valid if n2 >> M greatly simplifies and hence speeds the

calculation of the KLT (27).

This thesis demonstrated the image coding and compression capabilities of the KLT.

Large and small populations of subjects were used in the KLT training set. For a small

population of six subjects, the reconstruction quality of the KLT encoded image was as

good as the original image. The KLT was able to compress a 256 by 256 pixel image into

three coefficients. This represents a compression of approximately 21,000:1. For a larger

population of 55 subjects, the reconstruction of the 128 by 128 encoded images was reason-

ably good with only twenty coefficients. This represents a compression of approximately

800:1. Both of these dramatic compressions come at the expense of a constrained subject

population and pre and post processing requirements.

The most significant achievement of this thesis is the dramatic face recognition ac-

curacies obtained using the KLT coefficients. The KLT coefficients provided 93% single

person verification with as little as three coefficients. For multi-person recognition, the

KLT coefficients achieved 95% accuracy with as little as 16 coefficients and a population

of 55 subjects. In comparison, the FFT with the same test data achieved 85% with 16

coefficients. These results are markedly improved over the inconsistent AFRM accuracy

which varied from 56% to 90% for a population of 50 subjects and 15 coefficients. The

5-1

KLT outperforms the FFT and the AFRM. The KLT is sensitive to changes in head size

and position, but the FFT based techniques also suffer from this problem.

This thesis demonstrated that a transform may be good for recognition but not

adequate for reconstruction. The Karhunen-Lo~ve Transform demonstrated very good

recognition accuracy for subjects out of the KLT training set. This is significant since the

KLT provided poor reconstructions of out of training set subjects.

Another significant result of this effort is that the software written for faces can also

be easily used for any other image recognition application. The software written for this

thesis was utilized by Singstock to recognize tanks, trucks, jeeps, and towers in forward

looking infrared imagery (20). Singstock developed eigentanks, eigentrucks, eigenjeeps,

and eigentowers as a basis set. The eigen images were successful in classifying tank, truck,

jeep, and tower. Figure 5.1 displays a Singstock eigentank.

..... '... i.. i.i.i.i.l.... I.I.:-

Figure 5.1. The Singstock egentank use.. to recognize tanks.

A related application to face recognition is facial expression recognition. A test

5-2

was conducted to differentiate facial expressions. The motivation behind the test was to

evaluate the possibility of developing a facial feature communications interface for a child

with cerebral palsy. The child is severely disabled and can not speak. The child does have

control of facial muscles, therefore differentation between tongue out and mouth open

provides a means of communication. The Karhu,.--Love system was able to determine

'yes' tongue out or 'no' mouth open with 100% classification acculc.:v.

The last related application is in the anthropometric community. The anthropometric

community needs an axis system for head laser scan data. The head laser scan data is

basically an unwrapped picture of the head. Before anthropometric data can be extracted,

the image must be centered to simplify the measurement process. This thesis evaluated

the use of a Karhunen-Lo~ve based axis system. The results indicate accurate placement

of laser scanner heads with the KLT axis system.

Conclusions

In conclusion, this thesis demonstrated superior face recognition using the KLT. The

KLT approximation implemented in this thesis has removed the computational burden

associated with Karhunen-Lo~ve. Also, note that the results using a simple first nearest

neighbor classifier were 95%. To attain even greater accuracy a more elaborate classification

scheme such as a neural network could be implemented. Additionally, a multiple look or

multiple frame collection of each subject would also improve the recognition accuracy above

95%.

The primary limitation of the Karhunen-Lo~ve is scale and position sensitivity. There

are two solutions to this problem. First, the AFRM segmenter sucessfully provides scale,

contrast, and lighting normalized images. Therefore, a Karhunen-Lo~ve based recognition

system could utilize the AFRM segmenter. A second approach is to transform the image

into a scale, position, and rotation invariant space as demonstrated by Kobel and Martin

(8).

Lastly, the software written for this thesis is flexible and the techniques developed

here have been applied to problems associated with tank recognition, anthropometry, and

5-3

communications for the severely disabled.

Future Areas of Research and Recommendation

The prime recommendation for future work would be to integrate the work done on

this thesis with the AFRM. This would take advantage of the AFRM camera and segmenter

and utilize the Karhunen-Lo~ve techniques developed here. Additionally, a fruitful area of

research would be to implement a total neural network approach to the face recognition

problem. Finally, the human face has a unique color signature and future research should

investigate the use of color cameras for segmentation and recognition.

General Summary

This chapter provided a summary of the significant results as well as recommen-

dations for future research. Chapter 1 provided background and defined the problem,

objectives, questions, methodology, standards, and scope of the research. Chapter 2 pro-

vided auditional background and a review of current research. The methodology used to

solve the problem was presented in Chapter 3. The results of the research were presented

in Chapter 4. Appendix A lists all the code utilized for this thesis.

5-4

Appendix A. Thesis Source Code

This appendix contains a listing of all code developed and or used for this thesis.

This code is presented as is, and no claims are made as to suitability for other applications.

Portions of this code are copyrighted by the Air Force Institute of Technology and by Pedro

F. Suarez. Such portions are indicated as such.

kltransform2.c

NAME: kL-trans forml1.c
INVOKED:
DATE: 24 June 1991
DESCRIPTION:

SUBRO UTINES CALLED:
FUTURE MODIFICATIONS/BUGS:

#include <stdio.h>
#include <math.h>
#include <string.h>

#define SQ(A) (A*A)

main(argc,argv)
int argc;
char *argvfl;
f
FILE *train, *facein, *fout;
FILE *face-.avg, *tempfile, *fevex, *feval;
int ij, N, k, M, nrot, atoioj;
float **matrix(), *vector(), **A, **A..±rans, **u, **L, **v, *average-face;
float *d, temp, *mag;
void free-vectoro, free-natrixo, eigsrto), jacobio, mat-col-mago;
char flename[8l], hjl;

if (argc # 4) {
printf("! !! The command line should be ! I\n\n kl..transf orm2 trainingf ile

size 1-in..train..set~nn");
exit(O);

A**********Set Up Files

if ((train = fopen(argv[l], "r")) == NULL)

A-1

printf("I can't open the training file");
exit(-1);

printi("!! Input total image SIZE(N):");
scanf("d", &N);
print f("\n '9;
print f("!!! Input the number of training faces (M):");
scan f("%d", &M);
print f("\n'9;

N=atoi(argv[2]);
M=atoi(argv[3]);

/* dynamically allocate memory *

A~trans = matrix(1,M,1,N);
A = matrix(1,N,,M);
averagelace = vector(l,N);
L = matrix(1,M,1,M);
d = vector(l,M);
v = matrix(1,M,1,M);
mag = vector(1, M);

/*** initalize matrix and vectors **
for(j= 1j5Mj++)

A-.transfj][i] =A[i] j]=average-face[i] =0.0;
I

for(k=1; k 5M; k++){

fscanif(train, "7Wsln" filename);
/ii**pintf("%s\n", filename); **

facein = fopen(filename, "Ir");

for(j=1j:5Nj++){
fscanf(facein,"%f \n1 ,&AU][kJ);

I
fclose(facein);

/**printf "Ofirst value of file %d =%1\n", k, A[1J[kJ); **

A-2

/**Normalizing Data by dividing by 255 **

I**** for(j=1j5Mj++)

Afi]j=A~i~fjJ/255;

/***********Calcul ate Average Face**********4

printf('!!! CALCULATE AVERAGE FACE\n)
fce..avg=fopen('avg-f ace. .dat", ,")
for(i=1;i 5N;i++){

temp=O.O;
for(j= 1 j:Mj++)

temp=temp+Ai]jJ;
averagelace[i]=temp/M;,
fprintf(face-avg,"%Xt\n", average..face[i]);

fdose(face..avg);

/*** print f("!!! SUBTRACTING OFF AVERAGE FACE \n"); **
for(j=lj:5Mj++)

for(i=1;i<N;i++){
A~i]Li]=A[i]I] -averagelface[i];

I

/**CREATING A TRANSPOSE **
printf('"! !! CREATING TRANSPOSE MATIX Wn');

for(j=j5Mj++)
for(i=1;i N;i++){

A-trans~fJi)=A[Qjj;

/**fout=fopen("1.dat","w");***/
printf("i!! Multiplying A trans and A to got L:\n');

for(i= 1;i M ;i++)
for(j=1a:5Mu++) I

temp=O.O;
for(k1l;k<N;k++){

A-3

temp=temp+Atrans[i]k*A[k]jJ;

/**fprintf(fout,"%A\n", temp);**/
L~i1U=temp;

/*print f("!!!f Writing Output \n"); **

/** print f("!!! L Matrix WRITTEN TO 12.DAT \n");
fcloee(fout);***q1

/*** ("111 FREE MATRIX A-.TRANS \n"); **

free-matrix(A~rans, 1, M, 1, N);

printf("M! doing jacobian of L \n"');

jacobi(L,M,d,v, &nrot);

/***printf("%d\n", nrot);**4l

/**print f("!!! doing eigsrt of v n;*l
eigsrt(d,v,M);

printf(I'M! Writing *igenvvalues \no');
feval=fopenIl igen..val",v)
for(j=lj 5Mj++) I

fprintf(feval,1f \no, Q~);

fclose(feval);

printf("I'M Writing sigenvectors \no');

fevex=fopen(1"eigen..vec11 V"")
for(i= 1;i M;i++){

for(j=1j!Mj++){
fprintf(fevex,1"XI\n"', vU][i]);

felose(fevex);

/*print f("!!! Initailizing Eigen face Matrix \n");*/
u = matrix(1,N,1,M);
for(k=1;k M; k++)

fbr(j=lj<N; j++)
uU][k]=O.O;

A

printf(" ... Calcualting eigenf ace \~)

for(k=l;k:5M; k++){
for(i=1;i<M; i++){

for(j=l1u5N; j++)
uU][k]=vli]Ik]*AUj]i]4-uD][k];

/*** finding magnitude of eigen face **
/** mat-col-mag(u, N, M, mag); ***/

printf("! Opening train. out f ile f or Eigenf aces\n;
templile =fopen(Iltrain, out", SiI);

h=48;
1=48;
strcpy(filename, Ileigenf ace");

for(k=1; k <M; k++){

if(1 #6 57) 1++;
else{

1=48;

fprintf(tempfile," en e)

fprintf(tempfile,"Xc~c" ,h,1);

fprintf(tempfile,"%s\n"," .dat");

fclose(tempfile);

printf("!!! Writing eigenf ace\n)

tempfile = fopen(I 'train. out", "Ir");

for(k=l; k<M; k++){

fscanf(tempfile, "Wsn", filename);

A-5

facein = fopen(filename, low");
/**printf("%s\n", filename);
/** printf(facein, "%An", magfkJ); **

forj= 1 j Nj++){
fprintf(facein,"Xf \no$, uDj][k];

fdose(facein);

fclose(tempfile);

/***printf("!!! FREEING A MATRIX\n)*4
free..matrix(A,1 ,N,1,M);

fremtiI ~ ,,,)

void mat-col-mag(u, N, M, mag)
float **u, magfl;
int N,M;
{float b;
int k, j;
double sqrt 0;

for(k=1; k<M; k++) I
b=O;
for(j=1; j:5N; j++)

b=u[k] * uUj][kJ + b;
maglk] = Bqrt((double) b);

reconxc

NAME: reconxc
INVOKED: reconstructs faces
DATE: 24 July 1991
DESCRIPTION:

SUBROUTINES CALLED:
FUTURE MODIFICATIONS/BUGS:

/**#include <device.h>*/
#include <stdio.h>
#include <math.h>
#include <string.h>

A-6

#define SQ(A) (A*A)
main(argc,argv)
int argc;
char *argvfl;
I
FILE *facel, *eigenin, *fout, *fweights, *fspectrum, *train;
FILE *face..avg;
int ij, N, k, M, atoio;
float *vectoro, **matrixo, *averagelace, max;
float i'd, temp, **u, *pedro, *reconface, *W, 41, tempanag, mag;
void free..vectoro;
void rescaleo;
void vec-nago;
double sqrto, fabso;
char filename[81], *strcpyo, infilenamef 81], outfilename[81], ext~lO], junk[81], ngfile[8 1];

if(argc 96 5)1
printf("!!! The comand, line should be !!!:\n\n recon inf ii. ngf ile imagesize

numb errecon~nn");
exit(O);

/*************ic*Set Up Files e***********
strcpy(ext, "1.gra"l);
strcpy(infilenamne,argv[l]);
strcat(infllename, ext);

strcpy(ext, ".rec");
strcpy(outfilename, argv[1]);
strcat(outfllename, ext);

if ((facel=fopen(infilename,"r"1)) == NULL){
printf("I can't open the input file");
exit(- 1);
I

if ((fout=fopen(outfllename,11v")) == NIJLL){
printf("I can't open the output file");
exit(- -1);
I

N =atoi(argv[3]);

M =atoi(argv[4]);

A-7

printf("!!! Input total image SIZE(N):");
scan f("%d", &N);
print f("\n");
print f("!!! In put the number of training faces to reconstruct from faces (M):");
scan f("%d", &M);
print f("\n");

/* dynamically allocate memory *

u = matrix(1,N, I'M);
pedro = vector(1, N);
average..ace = vector(1, N);
reconface = vector(1, N);
w =vector(1, M);
I =vector(1, N);

/**** initalize and vectors **
for0j=1; k~M; j++)

for(i=1;i<N;i++)
w~j]=u[i] U] =I[i] =pedro[i] =reconface[i]=average-face[i] =0.0;

/**** print f("!!! Opening and Reading Face to be Reconstructed:\ n)**/

foroj1<Nj++)
fscanf(facel ,"1f\n", &pedroUl);

fclose(face 1);

/* printf("!!! Opening and Reading Face Average Face (avglface.dat):\n)/

face..avg=fopen("avg-.f ace .dat", "r");
for(j= 1 j <Nj+ +)

fscanf(face..av, '%f W", &average-faceD]);

fdlose(face..avg);

/** printf("!!! Using %d eigen faces from file train.out:\n ",M);*/

train = fopen('train.out", "r");

for(= 1; ji5M; + +){I

fscanf(train, "%s\n", filename);

/*printf("%s\n", filename);*/

A-8

eigenin = fopen(filenaine, l"r");

for(i=1;i N;i++){
fscanf(eigenin,"Xf \n" ,&u[iI]jI);

fflose(eigenin);
/*print f("first value of file %d = %An", j, u[lj]);*/

fclose(train);

printf(--!!H SUBTRACTING OFF AVERAGE FACE \n");
for(i=1;i N;i++){

1[i]= pedro[i] - averagelace[i];

/* print f("!!! Calculating Weights based on %d eigenfaces\n", M);*/

for(j=1; i 5M; j++)
for(i=1; i<N; i++){

wrj] = u[i]D]* IDi]+ wuj];

fspectrum. = fopen(I spectrum. out", "all);

fweights = fopen(argv[2], "la");
for(i=1; i M; i++){

fprintf(fweights, "%f 11, w[i]);
fprintf(fspectrum, "%d %f\n"l, if w[i]);

fprintf(fweights, "%s\n", argv[1]);

fclose(fweights);
Hcose(fspectrum);

/*** Normalize weights by dividing by absolute max

max = 0;

for(i=1; i'ZM; i++){
/*** printf("%l\n",w[i]);**q1
if(fabs((double) w[i]) >max){

A-9

max= fabs((double) w[i]);

/**** FACE RECONSTRUCTION **/

printf('! !! Reconstructing from XiK f aces\n", M);

for(j=1; i M; j++)
for(i=1; i<N; i++)

reconface[iJ = wb] * u[ilj]+ reconface[i];

printf("H! Adding mean back on Reconstructing faces\n");
for(i=1; i<N; i++)

reconface[i] = reconface[i] + (average-face[iD);

rescale(reconface, N);

printfQ'!!! Writing Reconstructed Pedro \n)

for(j=1j:5Nj++){
fprintf(fout, "%4. Of \n", reconfacefj]);
/**fwrite(reconfaceDJ, sizeof(reconfaceb]), I,fout); **

fclose(fout);

void rescale(output, N)
float outputD;
int N;
f
jut NEW-MvfAX, NEW-.MIN, i, j, count;
float min, max;
NEW-.MAX = 255;
NEW-MIN =0;

A- 10

/*** print f("\n!!! FINDING MAXY!!!n\n"); ***/

/** Check for the max and min value in the data*/
min=oUtput[1];
max=output[1];
count=O;

for(j=1; i 5N; j++){

if(outputUj>max){
/*print f("%A\n", max);***/

max=outputuL];

if(oUtPutfj]<min){
min=outputub]

/*print f("%A~n", min); /

count++;

/*print f("\n SAMPLES = %d\n", count);
print f(" max = %f min = %f \n", max, min);*/

f*** Now translate data and write to output file

output[i] = ((output[i]-min)*(NEW-vIAX-NEW-vIIN)/(max-min) + NEW-.MIN);

/*printf("!!! All Done !!!\n\n");*/

void vec-mag(input, N, mag)
float inputU, *mag;
int N;
f{float b;
int i;
double sqrtO;

b = 0;

for(i=I; i<N; i++){
b =input[i] * input[i] + b;

A-11

b = sqrt((double) b);
/*** printf("mag for u = %An", b);
*mag = b
I

find-.minxc

* This program implements a First Nearest Neighbor Network.
Date: Aug 1991
Written By: Pedro F. Suarez
Invoked: find-.min trainifie testflle #Atrain #Atest #Jfeatures
where trainfle is a file containing the prototype vectors, testflle is a file containing the test
vectors, #Atrain number of training vectors in trainfle, #-test number of test vectors in
testfile, #-features in each vector*/

#include <device.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#deflne numberbiocks 300
#deflne knumber 4

#define SQ(A) (A*A)
main(argc,argv)
mnt argc;
char *argvfl;
I
FILE *ftest, *ftrain, *fout;
float distance, *average, *sd, temp, *vectorO, **matrixo, number-.correct;
int number-train, number-features, junk, temp2, number..test, j, i, min k, atoio;
double sqrt();

struct block
I
float **feature-vecl; /* container for feature vectors *
float *mean..vec;
char name[20]; /* container for name
float distance; /* contain distance between test and feature *

1;
struct block atest~numberblocks]; /a reserve test blocks *
struct block btrain[numberblocks]; /* reserve train blocks *

if(argc 96 6)f

printfQ'f!! The command line should be !!!:\n");

A- 12

printf(I"tind.min trainf ile testf ile #-train #-.test #.f eatures\n");
eit(O);

printf("I open f iles WI');

if ((ftrain=fopen(argv[1],I"r")) == NULL){
printf("I can't open the train file".);
eit(- 1);

if ((ftest=fopen(argv[2],"r")) == NULL){
printfQ'I can't open the test file");
exit(- 1);

printf(f ilea opened \n");
number..train=atoi(argv[3]);
numberieatures=atoi(argv[5j);
number..est= atoi(argv[4]);

printf(' initialize b block \n");
temp2 = number..trarn/knumber; /*
for(i=1; i~temp2; i++){

btrainiJ.feature-.vec = mat rix(1 ,knumber, 1, n umber-features);
btraini.mean.vec = vector~i, number-features);
btrainfiJ. distance = 0.0;

I
print f(" initialize a block \n");

for(i=1; iXnumber-test; i++){
atest[iJ.feature.vec=vector(1, number-feat ures);
atest/iJ. distance = 0.0;
I

print f(" create vector \n");

average=vector(1, number-features);
sd=vector(1, number-features);

print f(" init vector \n");

for(i=1;i~numberifeatures; i+#+)
average~iJ=sd[i]=0.0;

print f(" read in test vector \n");

for(i=l;i nurber~test;i+ +){

A.-13

for(j=1; j:number-featuresj++) I
fscanf(ftest, "%W", &temp);
atestfiJ.feature-.vecU]=temp;
I

Iscanf(ftest, "%s\n", atestfiJ.name);

print f(" read in train vector \n");

for(i=1; i ternp2; i+ +)

for(j=l; j:5number-featuresj++)

for(k=1; k~knumber; k++)

fscanf(ftrain, "Wf", &temp);
btrainfi.feature-.vecq,kJ=temp;

/* Note that the same name is used for all k training vectors per class. I did this because
we're only interested in making sure the right class wins, and my pathetic C skills ran out
at this point. */

fscanf(ftrain, 13%s\n1, btrain[i].name);

printf("I statistically normalize \n'9;

for0j=1; j<number-features; j++)
for(i=1; i~number-test; i++)

averageU]+=atest[i] .feature..vecbj/(numberiest + number-.train);

forUj=1; j:5temp2; j++)
for(i=1; i~number-train; i++)

for(k=1; k<knumber; k++)

averageUi] +=btrain[i] .feature-vecU,k]/(numberiest + number-.train);

forj= 1; j<numberleaturesj++)
for(i= 1;i:number~test;i++){

sdUjJ += (atest~i].feature-vecfjj - averagej])*(atest[i] .feature-vecb] -averageu]);

for(j=1; j:5temp~j++)
for(i=I1;i<numberArain;i++)

for(k=l; k~knumber; k++)
I

sdfj] + = (btrain[i] .feature-ecU,kI - averagej])*(btrainfiJ.feature.vecUj,kI - averageUjJ);

A- 14

I

for(j= 1 jnumber-Ieatures j++){
sdU] = sqrt((double) sdV]);
sdV] = ((double) 1/(number~est+number~train- 1)) *sd~jl;

fout=fopen('data-.noru. outt" I,'v")
for(j= 1; j~number-featuresj++)

fprintf(fout,"%f ",averageU]);

fprintf(fout,"average\n ");

for(j=1; j~number-featuresj++)
fprintf(fout,"Lf l",sdUj]);

fprintf(fout,'ud\n "1);

for(i=l; i~number~test; i++){
forj= 1; j~uumber-featuresj++){

if(sdUj1 # 0)
atest[ij .feature.vecUj]= (atestfi] .feature-vecUj] - averagej])/sduj];

else atest[i] .feature-vecUI = (atestji] .feature.vecUj] - averagejji);

fprintf(fout,"%U ",atestl].feature-vecb]);

fprintf(fout,"%s\n ll,atest[i].name);

for(i=1; i<numberArain; i++){
for(j= 1; j _number-featuresj++){

if(sdU]96 0)
btrain[i] .feature-vecojl= (btrain[i] .feature-ecfj] - averagej])/sdj;

else btrain[i] .feature-vecj] = (btrain[i] .feature-vecUj] - averageoj]);

fprintf(fout,"% I ,btraIn[i] .feature-vecUj]);
I

fprintf(fout,"%gs\n l',btrain[iI.name);

fclose(fout);

number.coffect0O;

for(k=l1;k<numberiest;k++){

for(i=1; i~number~train; i++)(

temp=0;

A- 15

for(j=1; j:5number..featuresj++) I
temp = (atest~k].feature-ecUj] - btraiun[i].feature-vecfj]) *(atest[k].feature-vecUjl -

btrain[i].feature..vectj]) + temp;
btrain[i].distance = sqrt ((double) temp);

temp = btrain[1].distance;
mini =1;

for(i=1; iKnumber.train; i++){
if(btrain[i].distance < temp){

temp = btrain[iI.dlistance;
min =i;

printf(Ilthe matching face is for %a is %a with distance of %f \n",
atest[k] .nanie,btrain[min] .name,btrain~min] .distance);

gwind.c

This routine takes an image by a guassian window.

written by: Pedro F. Suarez
29 July 91

#include <device.h>
#include <stdio.h>
#include <math.h>
#define pi 3.1416
#define SQ(a) a*a

main(argc,argv)
int argc;
char *argvD;

A-16

FILE *fin, *fout, *fo;
float **p, **w, **matrixotest, xmean, xvar, ymean, yvar, normal;
imt low, col;
imt i, j, k, count;
imt outval, tempi, temp-j;
float inval, max, min;
double expo;
void rescaleo;

if(argc # 3)1
printf("!!! The command line should be !!!k\n\n gausvind it ile outfile~nn");

exit (0)

if ((fln=fopen(argv[1,"r")) == NUJLL){
printf("II can't open the input file");
exit(- 1);

if ((fout=fopen(argv[2],"v")) == NUJLL){
printf("II can't open the output tile");
exit(- 1);

row = col. = 128;
xmean = 65;
xvar = 25;
ymean = 55;
yvar = 30;

printf("Input the number of rows and cols in Row Col :)
scan f("%d %d", &row, &col);

print f("%d %d\n", row, col);

printf("Input the guassian window xmean and xvariance :)
scan f("%f %r, kxmean, &xvar);
print f("%f %An", xmean, xvar);
printf("Input the guassian window ymean and yvariance :)
scanf("%f W", &ymean, kyvar);
printf("%f %f\n", ymean, yvar);

/*Allocate Memory for Arrays*/

printf("'Allocating Memory \n");

A-17

p = matrix(1, row, 1, col);

w = matrix(1, row, 1, COO);

printf(" reading image of %d row and %d col\n", row, col);

for(j=1; j:5row; j++)
for(i=l; i<-col; i++)

fscanf(fln, "%f \n",&p[ijUI]);

printf(l" Calcualting window \n");

normal = 1/(2 *pi *xvar *yvar);

for(i=1; i-<row; i++)
for(j=1; j:5col; j++){

w[i][j] =exp ((double) -0.5 *(SQ((i-xxnean)/xvar)+ SQ((j-ymean)/yvar)));
pAj]u] = P~I] * w[i]l;

/**printf("%d, %d, %6g\a", i, j, w[iffjJ);**/
I

rescale(p, row, col);
rescale(w, row, col);

for(j=1; k~row; j++)

fprintf(fout, "14.0Of\n "1, pliliji);

fo = fopen("wund.dat", "w")

for(j=1; j:5row; j++)

fclose(fo);
fcose(fout);
fdose(fin);
I
void rescale(output, row, col)
float **output;
int row, col;
f
int NEW-.MAX, NEW-MIN, i, j, count;
float mini, max;
NEW-MIAX = 255;
NEW-.MIN =0;

/**print f("\n!!! FINDING MAX !!!\n\n");*/

A- 18

/** Check for the max and min value in the data*/
min=max=output1][1];

count=O;

for(j=1; j:5row; j++)

if(output[ij] >max){
/** print f("%A\n", max);*/
max=outputliLj]

if(outputri]j] <min){
min=outputllU;
/*printf("%f\n", min);**/

count++;

/**print f("\n SAMPLES = %d\n", count);
print f(" max = %f min = %f \n", max, min); **

/** Now translate data and write to output file **
for(j=1; i:5row; j++)

outputi][j] = ((output[il]j1-min)*(NEW..MAX-NEW-MIN)/(max-min) + NEW-vIIN);

/**print f("!!! All Done !L'n\n");**/

C-lateS.c

NAME: CJate5.c
INVOKED: CJate5-i ima gel image2 out file
DATE: July 1991
DESCRIPTION: This program centers image2 on irnagel and places the centered

iinage2 in out file.
SUBROUTINES CALLED: Correlate(), maxjfindo, C-late3Q, shifto, rescale()
FUTURE MODIFICATIONS/BUGS: none

#include <stdio.h>
#include <math.h>
#define skip-line gets(junk)
#define IDX(a,b,c) (a)*(c)+(b)

A- 19

#define SQR(a) (a)*(a)
#define loopi(A) for(i=O;i<(A);i++)
#define loopj(A) for(j=Oj<(A);j++)
#define loopij(A,B) for (i=0; k<(A); i++)\
for (j=O; j<(B); j++);

float *vectorO;
void fourno;

/*** void doflipo; **
void Correlateo;
void max-flndo;
void Clate3O);
void shifto;
void rescaleo;

main(argc,argv)
int argc;
char *argva;
I
int x,y~ij, Row, Col,sub-zow, sub..col, downsample;
FILE *fout, *datjllel, *datjifle2, *outiie;
char fllename(81], in..string[811, junk[256];
float *xl, *x2, *vectoro, **matrixo, **imagel, **image2;
signed int location[3];

if (argc 04) {
printf("!! The command line should be !!\~n C-.late5..n imagei image2 outf ile

exit(O);

/cccccccccecccc.Set Up Files ccccccccccc4

if ((dat~iel =fopen(argv[11, 1'r")) == NULL) f
printf("I can't open the imagel file");
exit(-l1);

if ((dat-jile2 = fopen(argv[2], "or")) == NULL) f
printf("I can't open the output file");
exit(-');
I
if ((fout = fopen(argv[3J, low")) == NULL){
printf("I can't open the izage2 file");
exit(-l1);

/.ccecprintf("Input the number of rows and cols in Row Col :)
scan f("%d %d", &Row, &Col);

A-20

Row =128;

Col =128;

/* dynamically allocate memory *
imagel = matrix(0, Row-i, 0, Col-1);
image2 = matrix(0, Row-i, 0, CoI-1);

/* Initialize matrix **/
for(y=0; y<Row; y++)

for(x=0; x<Col; x++){
imageil[x][y]= image2[x][y] = 0.0;

I
/***read the training faces in as columns */

printfQ'!!! Opening and Reading Ref Face 1: \n';

for(y=0; y<Row; y++)
for(x=0; x<Col; x++){

ficanf(dat-filel, "%f\n" ,&imagel [x] [y]);
I

fclose(dat-ilel);

printfQ'U !! Opening and Reading Face to be Centered:\n I)

for(y=O; y<Row; y++)
for(x=0; x<Col; x++){

fscanf(dat-file2, "%f \n" ,&image2[x][yj);

fclose(datiie2);

******* START FACE CENTERING **/
downsaxnple = 1; /**downsample allows for faster centering by desampling the image

sub-.row =Row/downsample; /* down sample image for faster correlation*/

sub-col =Col/downsaxnple;

printf(I" mit vectors\n");

x1 = vector(0,2*sub-row*sub-.co-1);
x2 = vector(0,2*sub-row*sub-.col-1);

printf(' initialize vectors\n");

loopi(sub-row*sub.col){
xl[2*i] = xl[2*i+1J = 0.0;
x2[2*i] = x2[2*i+lI = 0.0;

/****************PUT MATRIX INTO VECTOR FOR FFT OPS ****

A-21

loopiksub-row){
loopj(sub-.col) (float) xl [2*(i*sub-.col+j)] imagel I(j*downsample)] [(i*downsample)];
loopj(sub..col) (float) x2[2*(i*sub-.col+j)J = image2U*downsample] [i*downsample];

/***C~ate3 return the amount of horizontal(i) or vertical(j) shift needed**/

Clate3(xl, x2, sub-.row, sub..col, location);

printf(' i location %d j location %d \n', location[O], location[1]);

/***Some Error Correction ***4/
if(location[OJ >(sub-.col/2)) location[O] =-(sub-.col - location[O]);
if(location[lJ >(sub-row/ 2)) locationji] =-(sub-row - location[1]);
if(locationO] <(sub-col/2)) location[O] =location[O];

if(location[1] <(sub..row/2)) location[1] location[1];

location[O] = location[O] * downsample;
location[l] = location[1] * downsample;

/***************** Actually Shift Image with shift *4

shift(image2, Row, Col, location);

/*s*********************Make 0 to 2.55 *******
rescale(image2, Row, Col);

for (y = 0; y < Row; y++)
for (x = 0; x < Col; x++)

fprintf(fout, 11%4. O\n ",image2[x] [y]);
/** cose(fout); ****/

printf(" END OF MAIN\n");

Subroutine CJate3
INVOKD: CJate3(xl, x2, Row, Col, location)
DATE- July 1991

FUTURE MODIFICATIONS/BUGS: none

void CJate3(xl, x2, Row, Col, location)
int Row, Col;
signed int locationo;
float xlo, x2fl;

FILE *out-file;
int n[21, i, j;

A-22

float *output, temp, **matrixo, **mat..output, *vectoro;

/*Allocate Memory for Arrays **/
/*** print f("Allocating Memory \n"); *4

output = vector(O,2*Row*Co-1);
mat-output = matrix(O, Row-i, 0, Col-i);

/** Assign Initial Array Values*/

n[0] = Col;

nil] = Row;

printf("Coellating\n");

Correlate(xl, x2, output, in, Row, Col);

printf(IStoring resultu\n");

/** Store The Magnitude Results*/
loopi(Row)

loopj(Col) I
temp=sqrt((double)SQR(output[2*(i*Col+j)]) +(double)SQR(output[2*(i*Col+j)± 1]));

/** temp=temp/sqrt((double)SQR(outputOj) +(double)SQR(ou tput[1J));* */
/*** fprintf(out-file," %4.2f\n", temp);**/
mat..outputUj][i] = (float) temp;

I
max-find(mat-.output, Row, Col, location);

/**fclose(out-file);**/

Subroutine Correlate
INVOKED: Correlate(inputl, input2, output, n, Row, Col)
DATE: July 1991

FUTURE MODIFICATIONS/RUGS: none

void Correlate(inputl, input2, output, n, Row, Cal)
float inputlIfl,input2o, outputfl;
int no, Row, Cal;

int i;
float *templ, *temp2;

tempi = vector(0,2*Row*Col-1);

A-23

temp2 = vector(0,2*Row*Col-1);

loopi(2*Row*Col){
templ[i] = inputl[i];
temp2[i] = input2[i];}
* Take Fourier Transform of Input Functions **/

fourn(templ-1, n-1, 2, 1);
fourn(temp2-1, n-i, 2, 1);

/** Conjugate One of The Fourier Transforms **/

loopi(Row*Col)
temp2[2*i+i] = -temp2[2*i+i];

/** Multiply Fourier Transforms Together **/

loopi(Row*Col){
/** Real Component **/
output[2,i] = templ[2*i]*temp2[2*i] - templ[2*i+l]*temp2[2*i+l];

/** Imaginary Component **/
output[2*i+l] = templ[2*i]*temp2[2*i+l] + temp2[2*iJ*templ[2*i+1];

/** Take Inverse Transform to obtain Correlation **/

fourn(output-1, n-1, 2, -1);

/** Rescale to get proper magnitude **/

loopi(2*Row*Col)
output[i] /= Row*Col;

The result of the correlation is that first element of the output
matrix is for zero shift, the next element for shift one to the right and
so on. This puts results into a format which humans can understand.

Free up the memory when finished **/

free-vector(templ,0,2*Row*Col- 1);
free._vector(temp2,0,2*Row*Col- 1);

} /******************** End of Correlate Routine *

A-24

Subroutine max-find finds maximum value in a matrix and returns location
INVOKED: max-find(mat..output, row, col, location)
DATE: July 1991

FUTURE MODIFICATIONS/BUGS: none

void max-find(mat output, row, col, location)
float **mat-output;
it row, col;

signed int locationU;
f
int i, j, count, tempi, tempj;
float max;

/***printf("\n!!! FINDING MAX !!T n\n ");**41

/** Check for the max and min value in the data*/

max=mat-output01lO];
count=O;

for(j=; j<row; j++)
for(i=O; i<col; i++){

if(mat-outputi]j] >max) f

max=mat-outputilu];
temp..i=i; temp..j=j;

count++;

location[O] =tempi; location[1] =temp..j;
if(location[O] >col) location jO]=O;
if(location[1]>row) location[1]=O;

print f("\n\n SAMPLES = %d\n", count);
print f(" max = %f \n", max);

print f("i location = %d j location = %d \n", location [0], location[lJ);

print f("\n!!! All Done !!.'\n\n");

void shift(image, Row, Col, location)
float **image;

A-25

int Row, Col;
signed jut locationaI;

NAME: shift
DESCRIPTION:- This routine takes a image shifts

jut **temp-image, ix,y, xshift, yshift, abso;
float **matrixo, **shifted-image;
jut n,k, new-.row, new..col;

xshift = location[0I;
yshift = location[l];
printf(" xshif t - %d yahif t - %d \n", xshift, yshift);

printf(" Allocating Kemory\n");

new-row= (jut) Row+ 2 * abs(yshift);
new-.col=(int) Col+ 2 * abs(xshift);
printf("%d %d %d Mdn", -abs(xshift), new-col, -abs(yshift), new-row);
shiftedimage = matrix(-abs(xshift), new-.col, -abs(yshift), new-row);

printf(" initialize matrix\n");

/*** initialize matrix ***/

for(y= - abs(yshift); y<new..row; y++)
for(x= - abs(xshift); x< new-.col; x++)

shiftedimage[x] [yI=127.0;

printf(0 shifting image\n");

for(y=0; y<Row; y++)
for(x=0; x<Col; x++){

shiftedimage[x+xshift~y+yshiftj image~x][y];
I

for (y = 0; y < Row; y++)
for (x = 0; x < Col; x++)

image[x] [y] =shiftedimage[x] [y];

NAME: rescale
DESCRIPTION: This routine takes a rescale an range to 0 to 255

A-26

void rescale(output, row, col)
float **output;
it row, col;
f
it NEW-MIAX, NEW-.MIN, i, j, count;

float min, max;
NEW-.MAX = 255;
NEW-MIN =0;

printf("\n!!! FINDING MAX !!!\n\ns);

/** Check for the max and min value in the data*/
min=max=outputO]I0];

count=O;

for(j=O; j<row; j++)
for(i=O; i<col; i++){

if(output [[i]>max){
/* print f("%A~n", max); *
max=outputilfj]

if(output [i]U] <min){
min=outputfijj'j;
/** print f("%A\n", min);**/

count++;

/*print f("\n SAMPLES = %d\n", count);
printf(" max = %f min = %f \n", max, min);**/

/*** Now translate data and write to output file **
for(j=O; j<row; j++)

for(i=O; i<col; i++){
output[i]U] = ((outputi U] -min)*(NEW..MAX -NEW-.MIN)/(max- min) + NEWIVIIN);

fftrunc.c

NAME: fTt-trunc.c
INVOKED: fft-trunc in file out file imsize order
DATE: June 1991

A-27

DESCRIPTION: This program takes the FFT of an image and if order is greater than
zero it provides the magnitude of the FFT upto order.
SUBROUTINES CALLED: truncate, fourn, doflip
FUTURE MODIFICATIONS/BUGS: Ugly code

#include <device.h>
#include <stdio.h>
#include <math.h>

#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

#define loopi(A) for(i=O;i<(A);i++)
#define loopj(A) for(j=Oj<(A);j++)
#define loopij(A,B) for (i=O; i<(A); i++)\
for (j0; j<(B); j++);
#define SQ(A) (A*A)

char outname[80];

subroutine: truncate

void truncate(data,size,order,out-data,name)
float dataolout-datafl;
int sizeorder;
char nanefl;

/*truncate an FFT to order desired **

FILE *fout;
int ij, p, row-.offset, col-offset, Row,Col;
float tempr;
Row=size;
Colksize;

P=O;
row-.offset = (int) Row/2-1;
col-offset = (it) Col/2;

/* print f("%s\n", name); *
printf("%f\n' ,data[8128]);
fout=fopen(outname, flai);

for0j=(-1*order)j:5Oj++)
f
for(i=(-1 *order) ;i~order;i++)

out..datajp] = data[(col-offset -i)+ ((row -offset -j)*Col)];
f'printf(fout,"%. 10f ,,out-.data[p]);

A-28

fprintf(fout, "Xs~n", name);

fprintf(fout,' \n');

fclose(fout);

subroutine:doflip - flips the fourn ift

void dofip(data,size)
float datafl;
jut size;
f
/*** convert fourn format to format normal humans can use

jut ij, row-.offset, col-offset, Row,Col;
float tempr;

Row=size;
Col=size;
row-.offset = (int) Row/2 * Col;
col-offset = (int) Col/2;

fbr(j=0j<(Row*Col/2)j+=Col)
for(i=O;i<zRow;i++) /* top half to botttom half swazp *

tempr = datati+j];
data[i+j] = dataji+j+row..offset];
data[i+j+row-.offset] = tempr;
I

foroj=O; j<((Row-1)*CoI)j+=Co1)
for(i=O; i<Col; i++) /* left half to right half swap *
I
tempr = data[i+jJ;
data[i+jI = data[i+j+col-offset];
data[i+j+col-offset] = tempr;

subroutine:fourn - Numerical Rec in C FFT routine

void fourn(data,nn,ndimisign)
float dataJ;

A-29

jut nna,ndimjisigu;

iut ilji2,i3,2revji3revjpljp2,ip3,fpljfp2;
iut ibit~idimklk2,unnprevnurem,utot;
float tempi,tempr;
double theta,wi,wpi,wpr,wr,wtemp;

ntot=1;
for (idim= 1;idim~ndim;idim++)

utot *= nn~idim];
nprev=1;
for (idim=ndim;idim1idim--){

n=nnlidim];
nrem=ntot/(n*nprev);
ipl=nprev < 1;
ip2=ipl*n;
ip3=ip2*nrem;
i2rev= 1;
for (i2=1;i2<ip2;i2+=ipl){

if (i2 < i2rev) f
for (il=i2;il~i2+ipl-2;il+=2){

for (i3=il;i3 ip3;i3+=ip2){
i3rev=i2rev+i3-i2;
SWAP(data[i3] ,data[i3rev]);
SWAP(datali3+ 1] ,data[i3rev+ 1]);

ibit=ip2 > 1;
while (!bit > ipi && i2rev > ibit){

i2rev -= ibit;
ibit > = 1;

i2rev += ibit;

ifpl=ipl;
while (ifpl < ip2){

ifp2=ifpl < 1;
theta=isign*6.2831853071 7959/Qifp2 ip 1);
wtemp=sin(O.5*theta);
wpr = -2.O*wtemp*wtemp;
wpi=sin(theta);
wr=1.O;
wi=O.O;
for (i3=1;i3<ifp1;i3+=ip1){

for (i1=i3;i1~i3+ip1-2;i1+=2){
for (i2=il;i2<ip3;i2+=ifp2){

kl=i2;
k2=kl+ifpl;
tempr=wr*data[k2]-wi*data[k2+ 1];
tempi=wr*data~k2+ 1]+wi*data[k2];

A-30

data[k2]=data[k1]-tempr;
data[k2+ 1]=data[kl+l1] -tempi;
datalki] += tempr;
data[kl+1] += tempi;

wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

ifpl=ifp2;

nprev *= n

MAIN

main(argc,argv)
int argc;
char *argvfl;

{ FILE Afn, *fout;
float *output,*input,*trunc-out;
float norm;
float *vectoro;
void *free-vectoro;
char name[30];
int ij, nn[1J, ndim, isign, new-order, order, image-.size;
if(argc #6 5)f

printf("!!! The command line should be !!H:\nn fft-.trunc infile outfile imsize
order WWIn);

exit(O);

image-size=atoi(argv[3]);

order=atoi(argv[4]);

sprintf(outname, 'Xs~d" ,"netfft ng' ,order);

1**************etup dynamic allocation*****************/
input = vector(O,2*image-size*image-size- 1);
output = vector(Ojimage..size*image-size- 1);

/******.********Set Up Files************4

A-31

if ((fin=fopen(argv[1,"1r")) == NULL){
printf("I can't open the input file");
exit(-l);
I

if ((fout=fopen(argv[2],,"v")) == NULL){
printf("I can't open the output file");
eit(- 1);
I

/**************Read File **********

loopi(2*image-size*imagesize- 1) /* initialize array to zero
input[i] = 0.0;

loopi(image..size*image.size-1) I* read data in the fourn format *
{/ see numerical recipes in c

fscanf(fin, "%f \n", &inputli*2]);

fclose(fin); /*close input file *

/* Initialization parameters for FFT *

nn[01=image.size; /* size of input JAW fourn()*
nn[1J=image-size;

ndim=2; /* two dim FFT *
isign=1; /* FFT */

fourn(input-1, nn-1, 2, 1);

/*********Find Fourier Magnitude *****4

j=O;
for(i=0;i<(2*image.size*image..size- 1); i+ =2)

output l]=sqrt((double) SQ(input~i]) +
(double) SQ(inputli+1]));

norm=output[0J; /* d.c component used for normalization

printf("%4 . Of \n",norm);

A-32

doftip(outputjimage.size); /i converts fourn format to human format *

loopi(image-size*image.size){
output[iJ= 1000*output [i] /norm;

fprintf(fout, "%f \n', outputi]);

/***normalize and write output of FFTin argv[2] file ***

/****truncate **************,***************
/* truncate takes ift (output) of size(image-.size) and truncates the FFT to*/
/* order specified plus d.c. the array is returned in trunc-out, the argv[2J*/
1* is used as a header when truncate writes the output in net ift .dat *

if(order #6 0){
new-.order =2*order+l;

trunc..out =vector(Ojimage..size*image-.size- 1);
truncate(outputjmage.size,order,trunc.out, argv[2]);

/*free..vector(trunc-out,O,image.size*image.size-1);*/

frevcoInu,,*maesz~mg-ie)
free..vector(intput,O2*magesize*imagesize- 1);

fdose(fout);

noisexc

#include <stdio.h>
#include <math.h>
#define MI 259200
#define IAl 7141

A-33

#define ICI 54773
#define RMl (1.0/Mi)
#define M2 134456
#define IA2 8121
#define 102 28411
#define RM2 (1.0/W2)
#define M3 243000
#define 1AM 4561
#define 103 51349

main(argc,argv)
int irgc;
char *argvfl;
I
FILE *dat-filel, *datiie2;
float gasdevo;
float xinval, outval;
it i,var, dum;

if (argc 5 5) {
printf("!!! The command line should be !!!:\n\n noise inimagel outimage seed

var\n\n");
exit(0);

printf("Input the reandom seed and var :"1);
scanf("Xd %d", &dum, &var);
dum = atoi(argv[3]);
var = atoi(argv[4]);

if ((dat-ilel = fopen(argvf 1], "1r")) == NULL)
f
printf("I can't open the imagel file");
exit(-1);

if ((dat-file2 = fopen(argv[2], "V')) == NULL)

printf("I can't open the output f ile");
exit(- 1);

while(fscanf(datjiel, "%f \n", &inval) 5$ EOF){

outval = inval + (var * (float) gasdev((int)&dumi));
fprintf(datAPl2, '14 . Of \n", outval);

A-34

float gasdev(idum)
int *idum;

static int iset=0;
static float gset;
float fac,r,vl,v2;
float ran1O;

if (iset == 0) 1
do I

vl=2.O*ranl(idum)- 1.0;
v2=2.O*ranl(idum)- 1.0;
r=vl *vl +v2*v2;

}while (r > 1.0);
fac=sqrt(-2.O*log(r)/r);
gset=vl*fac;
iset =1;
return v2*fac;

}else{I
iset=0;
return gset;

float ranl(idum)
int *idum;

static long ixljix2,ix;
static float r[98];
float temp;
static mnt iff=0;
int j;
void nrerroro;

if (*idum < 0 11 iff == 0){
iff=l1;
ixl=(IC1-(*idum)) % Ml;
ixl=(IA1*ixl+ICl) % Ml;
ix2=ixl % M2;
ixl=(IA1*ixl+IC1) % Ml;
ix3=ixl % M3;
for (j=1j 597j++) f

ixl=(IA1*ixl+ICl) % Ml;
ix2=(1A2*ix2+1C2) % M2;
rlj]=(ixl+ix2*RM2)*RMl;

*idum=l;

ixl=(IAl*ixl+IC1) % Ml;
ix2=(1A2*ix2+102) % M2;

A-35

ix3=(1A3*ix3+103) % M3;
j=1 + ((97*ix3)/M3);
if (j > 97 11ij < 1) nrerror("RAN1: This cannot happen."1);
temp=rUjI;
rjj]=(ixl+ix2*RM2)*RM1;
return temp;

#nndef M1
#undef IUl
#undef 1I1
#undef RM1
#undef M2
#undef IA2
#undef IC2
#undef RM2
#undef M3
#undef IM3
#undef 103

anglexc

NAME: anglexc
INVOKED: angle weightout file totalsize numberofvectors
DATE: 24 June 1991
DESCRIPTION: This program calculates the angles between eigen faces 1 - 8

SUBROUTINES CALLED: none
FUTURE MODIFICATIONS/BUGS: change file i/o method to be compatible with

reconxc

#include <stdio.h>
#include <math.h>
#define SQ(A) (A*A)
main(argc,argv)
int argc;
char *argvfl;
f
FILE *facel, *face2, *face3, *face4, *faceS, *face6, *facee7, *face8, *fout;
FILE *face-avg, *fevex, *feval;
int ij, N, k, M, nrot;
float **matrixo, *vectoro3, **A, **w, *mag;
float *d, temp;
void free-vectoro, freea-natrixo, eigsrto, jacobio;
double sqrto, acoso;
char atoio;

if(argc 0)

A-36

printf("!!! The command line should be !!U:\n\n angle weightoutfile totalsize
numberofvectorsull);

exit(O);

/************s**Set Up Files ***********~

if ((fout=fopen(argv[1],"v"I)) == NULL){
printf("II can't open the angle output file");
exit(- 1);
I

N =atoi(argv[21);
M =atoi(argv[31);

/. dynamically allocate memory *

A = matrix(1,?',l,M);
w = matrix (1,M, 1,M);
mag = vector(1, M);

/**** initalize matrix and vectors */

for(j= 1 j 5Mj++)
for(i=l1;i N;i++)

A[i]D]=0.0;

for(k=1; k<M; k++)
for(j=1; j<M; j++)

wUI[kI = mag[k] = 0.0;

/****** read the eigen faces in as columns */

printf("H! Opening and Reading EigenFace 1:\n "1);
face1=fopen(".eigenf acel. .dat", "r");
for(j=Ij 5Nj++){

ficanf(facel,"Xf \n" ,&AU][1]);

fclose(face 1);

printf("H !! Opening and Reading Eigenf ace 2:\n "1);
face2=fopen(" eigenlfaceO2 .dat", "Ir");
for(j=lj 5Nu++){

fscanf(face2, 11%f\n", &AVIt2]);

fclose(face2);

printf("! Opening and Reading Eigenf ace 3:\n");

A-37

face3=fopen(" eigenf ace03 .datl6 lrll);
for(j=1j Nj++){

fscanf(face3, "%f \n"l, &AU][31);

fclose(face3);

printf(-! ! ! Opening and Reading Eigenf ace 4:\n "1);
face4=fopen(I" eigenl aceO4 .dat ", sirs);
for(j=lj5Nj++){

facanf(face4, "%f \n", &AUJ[41);

I
fclose(face4);

printf("! ! ! Opening and Reading Eigenf ace S \n");
face5=fopen(" eigenfaceO5 .dat", "Ir");
for(j=l1j <Nj4-+){

fscanf(face5, "Xf \n", &AI] [5]);

I
fclose(face5);

printf("... Opening and Reading Eigenf ace 6: \n I');
face6=fopen(' eigenl ace6. .dat", 'Or");

for(j=1 u Nj++){
fscanf(face6, "%f \n", &ALI]16]);

I
fclose(face6);

printfCQ'! !! Opening and Reading Eigenf ace 7: \n"l);
face7=fopen("eigenfaceO7 .dat", 'Or");

foroj=lj!Nj++) f
fscanf(face7, "%f \n"l, &AUj1171);
I

fclose(face7);

printf(#! ! ! Opening and Reading Eigenf ace 8: \n")
face8=fopen(I cigenf aceOB8 .dat", "rig);
for(j=lj 5Nj++) f

f.Rcanf(face8, "%f n", &AUfj18);

I
fclose(face8);

A-38

printf("!! I Normalizing :\n 11);

/*** Normalizing Data by dividing by 255 **

for(j=1j 5Mj++)
for(i=10i<N;i++)

A~i]LjJ=A[i]LjJ/255;

printfQ(!!! Calculating magnitudes\n", M);
for(j=1; i 5M; i++){

magU] = A~iftjJ* A~i]b]+ magU];
magUj] = sqrt((double) magUj])
/** print f(" Waitlln");**e

printfQ'!! Calculate dot products \n", M);
for(k=1; k<M; k++){

for(j=1; J<M; j++)
for0i=1; i N; i++)

wUj][k] = Alilbi * A[i][k] + wU[jk];
I

printf('!! Calculate coo alpha \n", M);
for(k=I; k<M; k++)

for(j=1; i M; j++)
wU]I[k] = wUj][k]/(magjjj*mag[k]);

printf('H! Write cos alpha \n", M);

for(k=1; k M; k++)
for(j=1; j-<M; j++)
fprintf(fout,'"Angle in degrees between u~d and u~d is: 23. 2f\n1, j, k,57.2957*acos(

(double) wUI[k]));

fclose(fout);
printf("H! ALL DONE \n", M);

klzned

NAME: ffl-trunc.c
INVOKED: fft..trunc in file out file imsize order
DATE: June 1991
DESCRIPTION: This program takes the FFT of an image and if order is greater than
zero it provides the magnitude of the FFT upto order.
SUBROUTINES CALLED: truncate, fourn, doflip
FUTURE MODIFICATIONS/BUGS: Ugly code

A-39

#include <device.h>
#include <stdio.h>
#include <math.h>

#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

#define loopi(A) for(i=0;i<(A);i++)
#define loopj(A) for1j=j<(A)j++)
#define loopij(A,B) for (1=0; k<(A); i++)\
for (j=0; j<(B); j++);
#define SQ(A) (A*A)

char outname[80J;

subroutine: truncate

void truncate(data,size,orderout-Aata,name)
float datafl,out..datao;
int size,order;
char nameo;
I

/*truncate an FFT to order desired **

FILE *fout;
int ij, p, row-.offset, col-offset, Row,Col;
float tempr;
Row=size;
Col=size;

P=o;
row-.offset = (int) Row/2-1;
col-offset = (int) Col/2;

/* print f("%s\n", name); *

fout=fopen(outnamne, "lls);

for(j=(- 1*order)j<50j++)

for(i=(- 1*order);i~order;i++)
I
out-data~pJ = data[(col-offset-i)+((row..offset -j)*Col)I;
fprintf(fout,"%. lot ",out-.datalpl);

fprintf(fout, "%s\n', name);

A-40

fprintf(fout,"\n');

fclose(fout);

subroutine:doflip - flips the fourn ift

void doffip(data,size)
float datao;
int size;
f
/*** convert fourn. format to format normal humans can use

it ij, row-offset, col-offset, Row,Col;
float tempr;

Row=size;
Col=size;
row-.offset = (it) Row/2 * Col;
col-offset = (it) Col/2;

for(j=Oj<(Row*CoIf2)j+=CoI)
for(i=O;izRow;i++) /* top hall to botttom half swazp *
f
tempr = data[i+j];
data[i+jI = data~i+j+row-offsetI;
data[i+j+row-offset] = tempr;

for(j=O; j <((Row- 1)*Col)j+=Col)
for(i=O; i<Col; i++) /* left half to right half swap *
f
tempr = data[i+j];
data[i+j] = data[i+j+col-offset);
data[i+j+col-offset] = tempr;

subroutine:fourn - Numerical Rec in C FFT routine

void fourn(data,nn,ndimjisign)
float datao;
int nno,ndimjisign;

mnt ili2,i3i2revji3revipljp2,ip3,fpljifp2;
it ibitjidim,kl ,k2,n,nprev,nrem,ntot;

A-41

float tempi,tempr;
double theta,wi,wpi,wpr,wr,wtemp;

ntot= 1;
for (idim=1;idim<ndim;idim++)

ntot *= nn[idim];
nprev= 1;
for (idim=ndim;idim ;idim--){

n=nn[idim];
nrem=ntot/(n*nprev);
ipl=nprev < 1;
ip2=ipl*n;
ip3=ip2*nrem;
i2rev=1;
for (i2=1;i2<ip2;i2+=ip1){

if (i2 < i2rev) {
for (il=i2;il<i2+ipl-2;il+=2){

for (i3=i1;i3<ip3;i3+=ip2){
i3rev=i2rev+i3-i2;
SWAP(data[i3] ,data[i3rev]);
SWAP(data[i3+ 1] ,data[i3rev+ 1]);

ibit=ip2 > 1;
while (ibit > ipI && i2rev > ibit){

i2rev - = ibit;
ibit >= 1;

I
i2rev += ibit;

ifpl=ipl;
while (ifpl < ip2){

ifp2=ifpl < 1;
theta=isign*6.2831853071 7959/Qifp2/ipl);
wtemp=sin(O.5*theta);
wpr = -2.O*wtemp*wtemp;
wpi=sin(theta);
wr=1.O;
wi=O.O;
for (i3=1;i3:5ifp1;i3+=ip1) I

for (il=i3;il<i3+ipl-2;il+=2){
for (i2=iIi2<ip3i2+=ifp2){

kl~i2;
k2=kl+ifpl;
tempr=wr*data[k2]-wi*data[k2+ 11;
tempi=wr*datalk2+ 1]+wi*data[c2];
data.[k2]=data[kl] -tempr;
data[k2+ 1]=data[kl+ 1] -tempi;
data~klJ += tempr;
data~kl+1] += tempi;

A-42

wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

ifpl=ifp2;

nprev *= n;

MAIN

main(argc,argv)
iut argc;
char *argvo;

{FILE *fin, *fout;
float *output ,*input,*trunc-.out;
float norm;
float *vectorO;
void *free-vectorO;
char name[30];
int ij, nnfI], ndim, isign, new-order, order, image-.size;
if(argc #5)1

printf(... The command line should be !!H:\n\n fft..trunc inf ile outfile imsize
order WWIn~);

exit(O);
I

ixnage.size=atoi(argv[3j);

order=atoi(argv[4));

sprintf(outname, "1%s~d" ,"netfft ug" ,order);

/*****************.set up dynamic allocation*****************/
input = vector(O,2*image-size*image-size- 1);
output = vector(O,image-size*image..size- 1);

/***s***********Set Up Files ******i****q

if ((fin =fopen(argv[1],"r")) == NULL){
printf("I can't open the input file");
exit(-I);

A-43

if ((fout=fopen(argv[2],"1w")) == NULL){
printf("I can't open the output file");
exit(- 1);

/*************Read File **********

loopi(2*image.size*iniage..size-1) /* initialize array to zero
inputi] = 0.0;

loopi(image..size*image..size-1) /*read data in the fourn format *
{ /4 see numerical recipes in c

ficaffn M " nu~.2

fclose(fin); /eclose input file *

/* Initialization parameters for FFT *

n[]=image.size; /* size of iput IAW fourn()*
nnfi]=image.size;

ndim=2; /* two dim FFT *

fourn(input-1, nn-i, 2, 1);

/*********Find Fourier Magnitude
j=0;
for(i=0;i< (2*image..size*image..size- 1); i+=2)

outputuj]=sqrt((double) SQ(input[i]) +
(double) SQ(inputli+i]));

norm=output[0]; /* d.c component used for normalization **

printf("14. Of W",norm);

doflip(output~image-ize); fe converts fourn format to human format *
printf(X4 . 4f \n" ,output[8128]);

loopi(image.size*image-.size){
output[iI= 1000*output Iii/norm;

fprintf(fout, "%:f\n", outputli]);

/***normalize and write output of FFT in argv[2] file **~

/****truncate*****************************4

/* truncate takes ift(output) of size(image.size) and truncates the FFT to*f
/* order specified plus d.c. the array is returned in trunc.out, the argvj'2]*/
/* is used as a header when truncate writes the output in net ift .dat *

if(order 36 O)j
new-.order =2*order+1;

trunc-.out =vector(O~image-size*image..size- 1);
truncate(output image..size,order,trunc.out, argv[2]);

/*free..vector(trunc.out,O,image.size*image-size-1);*/

frevcoInu,,*maesz~mg-ie)
free-.vector(input,O2*mage.size*image.size- 1);

flose(fout);

I

jacobi.c

NAME: jacobi.c
DESCRIPTION: Numerical Redipies routine that finds eigen vectors and eigenvalues of a
matrix
SUBRO UTINES CALLED:
WRITTEN BY: Numerical Recipies in C

A-45

#include <math.h>

#define ROTATE(ajij,k1) g=a[i]{j];h=a[kI] ;ali]fj]=g-rs*(h+g*tau);\
a[k]Dl]~h+s*(g-h*tau);

void jacobi(a,n,d,v,nrot)
float **a,dfl,**v;
int u,*nrot;

int jjiqip i;
float tresh,thetavtau,t,sm,shllgvc*b,*z,*vectorO;
void nrerroro,free-.vectoro;

b=vector(l1,n);
z=vector(l,n);
for (ip=1;ip:5n;ip++) I

for (iq=1;iq~n;iq++) v~ip[iqiJ=O.O;
v~ip][ip]=1O;

for (ip=l;ip:Sn;ip++){
b[ip]=d(ipj=aip][ipj;
ZliP]=0.0;

*nrot=0;
for (i=l;i<50;i++){

sm=0.0;
for (ip=l;ip5n-1;ip++){

for (iq=ip+l;iq~n;iq++)
sm += fabs(atip][iq]);

if (sin == 0.0) f
free-vector(z,1 ,n);
free-vector(b,1 ,n);
return;

I
if (i < 4)

tresh=0.2*sm/(n*n);
else

tresh=0.0;
for (ip=l;ip5n-l;ip++) f

for (iq=ip+l;iq:5n;iq++){
g= l00.0*fabs(a~ipj[iqI);
if (i > 4 && fabs(d[ipl)+g ==fabs(d[IpJ)

&& fabs(d[iq])+g == fabs(d[iq]))
a[ip][iqj=0.0;

else if (fabs(a[ip][iq]) > tresh){
h=di, di]
if (fabs(h)+g fabs(h))

t=(aip][iaj)/h-
else{(

theta=0.5*h/(aip][iq]);

A-46

t= 1 .O/(fabs(theta)+sqrt(1 .O+theta*theta));
if (theta <O.0) t =-t

c=1.O/aqrt(1+t*t);
s=t*c;
tau=s/(1 .O+c);
h=t*a[ip][iqJ;
z[ip] -= h
z[iqj += h;
d[ip] ,-h
d[iq] += h;
ajip]IicjJ=O.O;
for (j=lj:5ip-lj++){

ROTATE(ajjipj~q)

for (j=ip+1.%5iq-1j++){
ROTATE(ajipjjjiq)

for iji=iq+lj:5nj++) f
AOTATE(ajpjjiqj)

for (j=ld~nj++){
ROTATE(vjjipjjq)

I

for (ip=lip:n5p++){
b~ip] += z[ip];
d[ip]=b[ip];
z[ip]=O.O;

nrerror("Too many iterations in routine JACOBI");

#undef ROTATE

eigsrt.c

NAME: eigsrt.c
DESCRIPTION: Numerical Recipies routine that sorts eigenvalues and vectors into decr-
reaaing order.
SUBROUTINES CALLED:
WRITTEN BY:- Numerical Recipies in C

void k-igsrt(d,v,n)

A-47

float do,**v;
int n;

int kjji;
float P;

for (i=l;i<n;i++){
p=d[k=i];
for (j=i+1j:5nj++)

if (dQ] p) p=dlk=j];
if (k 96 i){

d[kI=d[i];
d[iI=p;
for (j=1jnj++) I

p=Vfj][i];
vUl[il=vj[kI;
vUj][k]=p;

fourn.c

NAME: fourn.c
DESCRIPTION: Numerical Recipies multi dimensional FFT routine.
Requires a complex column vector as follows:
/real a(1)/
/complex &(I)/
/real a(2)/
/complex a(2)/
/etc/

SUBROUTINES CALLED:
WRITTEN BY:- Numerical Recipies in C

#include <math.h>

#deflne SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

void fourn(data,nn,ndimjisign)
float datao;
int nnfl,ndimisign;

int ii ,2,i3,2revi3revipl ,p2,ip3,fpljfp2;
int ibitjidim,kl k2,n,nprev,nrem,ntot;
float tempi,tempr;
double theta,wi,wpi,wpr,wr,wtemp;

A-48

ntot=1;
for (idim= 1;idim<ndim;idim++)

Mtot *= nn[idim];
nprev=1;
for (idim=ndim;idim ;idim--){

n=nn~idim];
nrem=ntot/(n*nprev);
ipl=nprev C 1;
ip2=ipl*n;
ip3=ip2*nrem;
i2rev= 1;
for (i2=1;i2<ip2;i2+=ip1){

if (i2 < iirev) I
for (il=i2;il_<i2+ipI-2;il+=2){

for (i3=i1;i3<ip3;i3+=ip2){
i3rev=i2rev+i3-i2;
SWAP(da t afi 3],da tai 3 rev]); 1)

ibit=ip2 > 1;
while (ibit > ipI && i2rev > ibit){

i2rev -= ibit;
ibit >= 1;

I
i2rev + = ibit;

ifp 1=ipl;
while (ifpl < ip2){

ifp2=ifpl < 1;
theta=isign*6.28318530717959/Qifp2/ipl);
wtemp=sin(0.5*theta);
wpr = -2.O*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi= 0.0;
for (i3=1;i3<ifpl;i3+=ipD {

for (iI=i3;i1<_i3+ip1-2;il+=2){
for (i2=ili2<ip3;i2+=ifp2) I

kl=i2;
k2=kl+ifpl;
tempr=wr*data~k2]-wi*datalk2+ 1];
tempi=wr*data[k2+ 1]+wi*datalk2];
data~k2]=data[kl] -tempr;
data[k2+ 1] =data~kl + 1]-tempi;
data[klJ += tempr;
data[kl+l] += tempi;

wr=(wtemp=wr)*wpr-wi*wpi+wr;

A-49

wi=wi*wpr+wtemp*wpi+wi;

ifpl=ifp2;

nprev *= ni;

#undef SWAP

nrutil.h

float *vectorO;
float **matrixo;
float **convert..matrixo;
double *dvectoro;
double **dmatrixo;
int *ivectorO;
int **imatrixo;
float **submatrixo;
void free-.vectorO;
void free-dvectoro;
void free-ivectoro;
void free-matrixo;
void free..dmatrixo;
void free-imatrixo;
void free-.submatrixo;
void free-convert matrixo;
void nrerroro;

A-50

Bibliography

1. Agawa, Hiroshi and others. "A Stereo-Based Approach to Face Modeling for the ATR
Virtual Space Conferencing System." In SPIE, Visual Communication and Image
Processing '90, Volume 1360, pages 1184-1197, 1990.

2. Fleming, Michael K. and Garrison W. Cottrell. "Categorization of Faces Using Un-
supervised Feature Extraction," IEEE International Joint Conference on Neural Net-
works, pages 65-70 (1990).

3. Fu, King Sun. Sequential Methods in Pattern Recognition. New York: Academic
Press, 1968.

4. Gonzalez, Rafael C. and Paul Wintz. Digital Image Processing (Second Edition).
Reading MA: Addison-Wesley Publishing Company, Inc., 1987.

5. Harmon, L.D. and others. "Machine Identification of Human Faces," Pattern Recog-
nition, 13:97-110 (1981).

6. Kabrisky, Matthew. A Proposed Model for Visual Information Processing. Urbans,
IL: University of Illinois Press, 1966.

7. Kabrisky, Matthew, et al. "Interpretation of the Karhunen-Lo ve Transform." Dis-
cussion, July 1991.

8. Kobel, William G. and Timothy Martin. Distortion-Invariant Pattern Recognition in
Non-Random Noise. MS thesis, AFIT/GE/ENG/86D-20. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, 1986.

9. Kreysig, Erwin. Advanced Engineering Mathematics (Fifth Edition). New York: John
Wiley and Sons, 1983.

10. Lambert, Laurence C. Evaluation and Enhancement of the AFIT Autonomous Face
Recognition Machine. MS thesis, AFIT/GE/ENG/87D-35. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1987.

11. Luria, Aleksander Romanovich. Higher Cortical Functions in Man. New York: Basic
Books, 1962.

12. Mahler, Frank A. "A Correlation of Human and Machine Pattern Discriminator." In
NAECON '70, pages 260-264, 1970.

13. Press, William H. and others. Numerical Recipes In C. Cambridge: Cambridge
University Press, 1988.

14. Robb, Barbara C. Autonoumous Face Recognition Machine Using a Fourier Feature
Set. MS thesis, AFIT/GE/ENG/89D-44. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1989.

15. Rogers, Steven K. An Introduction to Biological and Artificial Neural Networks. P.O.
Box 10, Bellingham Washington, 98227-0010: SPIE Press, 1991.

BIB-1

16. Routh, Richard L. Cortical Thought Theory: A Working Model of the Human Gestalt
Mechanism. PhD dissertation, School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB OH, December 1985.

17. Ruck, Dennis W. and others. "The Multilayer Perceptron as an Approximation to
a Bayes Optimal Discriminant Function," IEEE Transactions on Neural Networks,
1:296-298 (December 1990).

18. Russel, Robert L. Performance of a Working Face Recognition Machine Using Corti-
cal Thought Theory. MS thesis, AFIT/GE/ENG/85D-37. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1989.

19. Sander, David D. Enhanced Autonomous Face Recognition Machine. MS thesis,
AFIT/GE/ENG/89D-19. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1989.

20. Singstock, Brian D. Infrared Target Recognition. MS thesis, Air Force Institute of
Technology, Wright-Patterson Air Force Base, December 1991.

21. Smith, Edward J. Development of an Autonomous Face Recognition Machine. MS
thesis, AFIT/GE/ENG/86D-36. School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, December 1986.

22. Tarr, Gregory L. NeuralGraphics User's Guide. Defense Technical Information Center
(DTIC), 1989.

23. Tarr, Gregory L. "LANT Software." Unpublished software developed for Air Force
Institute of Technology, Wright-Patterson AFB OH, 1991.

24. Tarr, Gregory L. Multi-Layered Feedforward Neural Networks for Image Segmenta-
tion. PhD dissertation, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1991.

25. Tou, J. T. and R.C. Gonzalez. Pattern Recognition Principles. Reading, MA:
Addison-Wesley Publishing, 1974.

26. Turk, Matthew A. and Alex P. Pentland. "Eigenfaces for Recognition," Journal of
Cognitive Neuroscience, pages 1 - 28 (September 1990).

27. Turk, Matthew A. and Alex P. Pentland. "Recognition in Face Space," SPIE In-
telligent Robots and Computer Vision IX: Algorithm and Techniques, pages 43-54
(1990).

BIB-2

