A
-

- 5 umwn L ome o o= mee e ada TR e s R T T gy

AD-A243 687
G ARN _DTIC

AFIT/GCS/ENG/91D-17

Fvaluation of Scalar Value Estimation
Techniques For 3D Medical Imaging

THESIS

Rob W. Parrott
Captain, USAF

AFIT/GCS/ENG/91D-17

Approved for public release; distribution unlimited

1-19010
\\u‘!\\xl.\\mm\\\\mwm\m\um 91 1224

§% FLECTS g
N DEC2 7 1991 ; E

0006

=AY I e e et i e P A
Rt N -
| :

AR ——

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

gathering and m, g the data ded, and ¢

Pubhic reporting buraen for this coliection ot nformation is esumated 10 average | hour per response, inciuding the ume [of reviewing iNSTTUCIONS, searcmng existing data sources,
q 4nd reviewing the (oltectuion of information Send comments r
collection of information,” ncluaing suggestions for reguung this burden, 1o Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jetferson
Davis Highway, Swite 1204, Arhngton, & 222024302, and 1o the Otfice of Management and Budget, Paperwork Reduction Project (0704-0188), Wastington, DC 20503

arding this

Burden estimate or any other aspect of this

1. AGENCY USE ONLY (Leave blank)

b v e = im s T s T Spy

2. REPORT DATE
.December 1991

4. Master’s-Thesis

3. REPORT TYPE AND DATES COVERED :

IR THLE AND. SUBTHLE

Evaluation of Scalar Value Estimation
Techniques For 3D Medical Imaging

6. AUTHOR(S)
Rob W. Parrott, Capt, USAF

T S RINOING NI

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/91D-17

9. SPONSORING) MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING MONITORING
AGENCY REPCRT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

——

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Scalar value estimation in 3D medical imaging increases data resolution for enhanced renditions and corrects
inaccurate surface formations. Accurate estimations are vital because clinical assessment is often aided by
examination of 3D medical images. This thesis explores different estimation techniques and introduces the geo-
statistical estimation technique called kriging to the field of 3D imaging. Kriging theory claims to be the optimal
estimator — better than the standard deterministic methods commonly used. The techniques investigated are
linear interpolation, trilinear interpolation, tricubic interpolation, and kriging. This research investigates scalar
value estimation in the volume pre-processing operation of slice interpolztion and in a surface extraction method
called cell subdivision. Tricubic interpolation is shown to be most useful in artificially created volumes of
smooth functions. It is also shown to produce poor results in medical volumes and in slice interpolation. More
importantly, this research demonstrates that kriging subsumes the deterministic methods investigated and can
estimate much better than tricubic interpolation.

V\\

14. SUBJECT TERMS

7~ ¥TOMPUTER GRAPHICS, MEDICAL COMPUTER APPLICATIONS, INTERPO-

>

LATION, STATISTICS,MEDICAL IMAGING, KRIGING

15. NUMBER Uf *AGES

123
16. PRICE CODE

-

N EU——
17. SECURITY CLASSIFICATION }18. SECURITY CLASSIFICATION | 19.\ SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE F ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Pr%sc‘réged by ANSI St 239-18
298-

IR

AFIT/GCS/ENG/91D-17

Evaluation of Scalar Value Estimation Techniques For 3D Medical

Imaging

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University
In Partial Fulfillment of the R LT i’;#“‘
. K . ‘j:\f“‘; - et .,
Requirements for the Degree of T e !
. ™ ;
. . RO A
Master of Science in Computer Systems fotieevs L :
' Al cﬂt!(ﬁl“_ .
R
by T —
A o
! Claaile,, --._.__‘
s i
g‘t __"‘.-.hif.""_r(, ﬁ"(f:‘éd.-hi
Rob W. Parrott, B.S. in Computer Science ‘ e e
. v Piat Do bpdcial
Captain. USAF /P\ \

December. 1991

Approved for public release; distribution unlimited

Table of Contents

Page

Tableof Contents i
Listof Figures vii
List of Tables o e e e e e e e e xi
Acknowledgments L Lo xii
Abstract e e Xiii
L Introductiono 1-1
1.1 Background e e e e e e e : 1-2

1.2 Problem L o 1-5

13 Purpose0 oL 1-7

1.4 Approach 1-8

1.5 Overview e e e 1-9

II. 3D Medical Imaging 2-1
2.1 3D Data Representation e e 2-2

2.2 3D Medical Imaging Transformations 2-3

2.3 3D Medical Iinaging Methods e e 2-3

231 Contour Methods 2-6

2.3.2 VolumeMethods 2-6

2.3.3 SurfaceMethods 2-7

2.4 Chapter Summary 2-23

i

1. Kriging Theory .
3.1 Background e e
3.2 Kriging and Least Squares

3.3 Derivation of the Ordinary, Point Kriging Equations .

3.4 Kriging Categories and Types e

3.4.1 Kriging Categories

342 Kriging Types

3.5 Structural Analysis

3.6 Isotropy/Anisotropy

3.7 Chapter Summary

IV. Cell Subdivision and Slice Interpolation Implementation
4.1 Introduction e e e e e e e e

4.2 Overview of Cell Subdivision and 3D Surface Formation
4.3 Tricubic Interpolation e
4.4 Kriging Estimation e e e e

4.4.1 Overview of Kriging Technique

4.4.2 Global and Local Drift :

4.4.3 The Assumed Model Semivariogram

44.4 Neghborhood Size SR

4.4.5 Estimation Procedure. e

4.5 Slice Interpolation

V. Results L e
5.1 Artificial volume e e e e e e

5.1.1 Neighborhood size 64, subdivision factor = 4,

local drift assumption differs.

5.1.2 Neighborhood size 6. subdivision factors differ.

no local drift assumed.

Page

4-11
4-11
4-13
4-15

[

Page
5.1.3 Neighborhood size differs, Subdivision factor =

2, local drift assumption differs. 5-6

5.2 Medical image slice interpolation 5-12

5.2.1 Dogheart, CT. 5-12

522 Babyhead, MRI. 5-19

5.3 Medical volume cell interpolation surface extraction . . 5-19

5.4 Chapter summary e e e e e 5-22

VI. Recommendations and Conclusion e e 6-1
6.1 3D Imaging Recommendations. 6-1

6.2 Kriging Recommendations §-2

6.3 Conclusion 6-3

Appendix A. Vanilla Marching Cubes Data Flow Diagrams aud Pro-

gram Description o000 L A-1

A.1 Data Flow Diagrams e A-1

A.2 Program Description Language Statements A-1
A.2.1

parse command line {"Top Level” DFD, newline
Bubble 1)

A-6

A22
read header info ("Top Level” DFD. Bubble 2)

A-T

allocate memory storage (" Top Level” DI'D, Bub-

ble 3)

A-8

- o

| Page
A24
process slices ("Top Level” DFD, Bubble &,
A-8
A2.5
march between slices (" process slices” DFD, Bub-
ble 4.6)
A-10
A2.6
write box ("Top Level” DFD, Bubble 5)
A-12
AT
output geometry file ("Top Level” DFD, Bubble
6)
A-12
A.3 Data Dictionary For Data Flow Diagrims A-12
Appendix B. Vanilla Marching Cubes B-1
B.1 Introduction B-1
B.2 Background e e e e e B-2
B.3 The Main Steps in the Implementation B-5
B.4 Precalculated Table -7
B.5 Cell Edge Interpolation B-9
B.6 Normal Calculations e e e e e e e e B-12
. Fixes to Pubiic Domain Code B-13
B.8 Marching Cubes Qutput B-15

Appendix C. Cell Subdivision Implementation C1
C.1 Terminmology«« it C1
C.2 Purposes of Cell Subdivision e e C-1
C.3 Implementation Steps C-3
Appendix D. Disambiguation and Enhanced Surface Representation
by Cell Subdivision e e e e D-1
D.1 Background L. ... D-1
D2 Example, D-2
Appendix E. Binary Image Format to Utah RLE Format Conversion E-1

Appendix F. Changes to the Air Force Institute of Technology’s Gen-

eral Purpose Renderer F-1
Appendix G. Creating Artificial Volumes G-1
Appendix H. Trilinear Interpolation H-1
Bil;liography e e e e e e BIB-1
Vita . o o e VITA-1

Vi

List of Figures

Figure
2.1. Pictorial representation of a medical data volume
2.2. Pictorial Representation of 3D Medical Iinaging Transformations
2.3. Classification of 3D Medical Imaging Methods
2.4. Computational Cell
2.5. Ambiguous face - intersection point connection choices
2.6. First 5 cases of 15 cube vertex classifications and triangulations .
2.7. 5 more cases of 15 cube vertex classifications and triangulations .
2.8. Final 5 cases of 15 cube vertex classifications and triangulations .
2.9. Facial averaging example e e e e e .
3.1. Kriging Example e e e e
3.2. Table of Kriging Types (All three can estimate points or blocks) .
3.3. Globaland Local Drift
3.4. Example semivariograms for linear, spherical and exponentional
models
4.1. Computational cell (cube) marching between data slices
1.2. Subdivided Major Cell e e e .
4.3. Major cell centered within surrounding cube
4.4. Example of fitting points to a curved linein 2D
4.5. Drift model variogram Lo L L.
5.1. Vanilla marching cubes extraction of hyperboloid surface
5.2. Cell subdivision,factor 2. with trilinear interpolation estimating minor-

voxel values and marching cubes extraction of hyperboloid surface

frommini-slices e e e e e

vii

Page

o
o o

8]
v

19
(1]

. 2-10

3-18

Ed

Figure Page
5.3. Cell subdivision, factor 2, with t ‘cubic interpolation estimating

minor-voxel values and marching cubes extraction of hyperboloid

-]

surface from mini-slices 5-

5.4. Cell subdivision, factor 2, with kriging estimating minor-voxel val-
ues and marching cubes extraction of hyperboloid surface from mini-
slices. Kriging uses a neighborhood of 64 sample values and assumes
nolocaldrift. L 5-8

5.5. Subdivision factor 3. Upper left, vanilla marching cubes. Up-
per right, trilinear interpolation. Lower left, tricubic interpolation.
Lower right, kriging with 64 neighborhood, no drift 5-10

5.6. Suhdivision factor 4. Upper left, vanilla marching cubes. Up-
per right, trilinear interpolation. Lower left, tricubic interpolation.
Lower right, kriging with 64 neighborhood, nodrift 5-11

5.7. Subdivision factor 5. Upper left, vanilla marching cubes. Up-
per right, trilinear interpolation. Lower left, tricubic interpolation.
Lower right, kriging with 64 neighborhood, nodrift 5-12

5.8. Kriging neighborhoods. nh32. nh16x, nh16y and nh16z 5-13

5.9. Kriging estimation, subdivision factor 2, neighborhood 32. Upper
left, no drift. Upper right. local linear drift. Lower left, image dif-
ference of upper right from upper left. Lower right, image difference

of upper right image from f2tricubic2. 5-14

5.10. Kriging estimation, subdivision factor 2, neighborhood 16x. Upper
left, no drift. Upper right, local linear drift. Lower left. image dif-

ference of upper right from upper left. Lower right, image difference

Q
=
=
=
=
2
&
=
=
=
=
2
s
[e']
o=
o]
=3
—t
-
N
3
2
=
to
NT
—
R

5.11. Kriging estimation. subdivision factor 2. neighborhood 16y. Upper
left, no drift. Upper right. local linear drift. Lower left, image dif-
ference of upper right from upper left. Lower right, image difference
of upper right image from f2tricubic2. 5-16

o
ek
(]

2. Kriging estimation, subdivision factor 2, neighborhood 16z. Upper
left, no drift. Upper right. local linear drift. Lower left, image dif-
ference of upper right from upper left. Lower right, image difference

of upper right image from rilineat2., 5-17

Vit

Figure

5.13.

5.14.

5.15.

5.16.
5.17.
5.18.
5.19.
5.20.

Al
A2
A3
A4

B.1.
B.2.
B.3.

BA.

C.1.

¢.2.

Kriging estimation, subdivision factor 2, neighborhood 8. Upper
left, no drift. Upper right, local linear drift. Lower left, image dif-

ference of upper right from upper left. Lower right, image difference

of upper right image from f2trilinear2.
Dog heart CT medical image slice interpolation. Create new slice
between slices 41 and 42. Window titles depict type of estimation
perfformed.
Baby head, MRI medical image slice interpolation. Create new slice
between slices 32 and 33. Window titles depict type of estimation
performed.
Baby skin,iso-value 43, Vanilla Marching Cubes
Baby skin,iso-value 43, Cell Subdivision, Trilinear Interpolation .

Baby skin,iso-value 43, Cell Subdivision, Tricubic Interpolation
Baby skin,iso-value 43, Cell Subdivision, Kriging

Baby skin,Difference image between images produced by trilinear
interpolation and kriging Lo L.

Vanilla Marching Cubes Context Diagram
Vanilla Marching Cubes Top Level DFD
Vanilla Marching Cubes "process slices” DFD

Vanilla Marching Cubes "march between slices” DFD.

Computational cell (cube) marching between data slices

Example of cell mapping to a uniquecase

Correspondence of interpolation arrays to computational cells march-

ing between two slices e e e e e

Vanilla marching cubes example boundary cases in surface normal

estIMation . « e e e e e e e e e e e e e e e

Subdivided Major Cell

Computing subdivision points. Subdivision factor = 5 in all three

directions. L.

Page

5-18

5-25

A-2
A-3
A-d
A-5

1
o

Figure
D.1. Alternate polygonization forcase 6

D.2. Example of alternate surface representation caused by cell subdivi-

Table

5.1.

5.2.

5.3.
5.4,

List of Tables

Comparison of values estimated by trilinear and tricubic interpola-

tion and kriging (with a 64 neighborhood, no local drift)

Comparison of values estimated by different kriging forms for cell
interpolation surface extraction of a hyperboloid surface in an arti-

ficial volume f e et P
Comparison of dog heart CT estimated values. v e

Comparision of baby head MR] timated values

X

Page

5-5

Acknowledgments

My first and ultimate thanks go to my Lord and Saviour, Jesus Christ. Through
Him I found the strength and confidence to keep going when I thought 1 wasn’t ca-
pable. I thank God, His Holy Spirit, and His Son for being with me and my family.
With Them in our lives and Their eternal perspective in our hearts, we grew stronger
in our faith during this time. Thank you Lord for making this a learning and at times
an enjoyable experience for me and one that I will cherish for the rest of my life.

Special thanks go to my family. Thank you Verla for supporting me through
all the times I wasn’t with vou, especially weekends (I know, what's a weekend?).
I’'m very grateful for your strength and patience. slisty, Alex, and Wesley - I'm
sorry you had a part-time Dad for the last 18 months, but I'm back full-time and
we're a family once again!

I would like to thank my advisor. Col Martin Stytz, who gave me invaluable
support and guidance in the area of 3D medical imaging and technical writing. His
previous papers and dissertation greatly aided in my understanding of 3D medical
imaging. Thank you Col Stytz for your constant encouragement and positive outlook.

These qualities helped keep me motivated throughout the research.

Thanks also go to ("ol Phil Amburn and Maj David Robinson. who both pro-
vided me with crucial technical guidance. Thank you Col Amburn for first recom-
mending the use of marching cubes and kriging in this research. Thank you also for
your help with GPR, tricubic interpolation, and numerous other areas where vour
keen insight pushed me in the right direction. Thank you Maj Robinson for your
assistance in the area of kriging. With Your deep understanding of this complex
estimation technique, you helped me a great deal to see how it could be applied in
3D imaging.

Thanks go to Capt Chris Brodkin for sharing his kriging code with me. With-
out, this. my work would have been much more difficult.

Finally. I'd like to thank the fellow students who listened to me when I nceded
feedback. This act of kindness was a tremendous aid when code was seemingly
debug-proof or concepts just didn’t seem clear. Thanks for your comradeship - Pat
Rizzuto. Paiwy Brightbill. Don Duckett. and Wavne Mcgee.

Rob W. Parrott

X1

AFIT/GCS/ENG/91D-17

Abstract

Estimation has not received enough attention in 3D medical imaging. Estima-
tion is often done in 3D medical imaging to increase data resolution for enhanced
renditions. It is also used for correcting inaccurate surface formations in the well
known marching cubes algorithm. Accurate estimations are vital because clinical as-
sessment is often aided by examination of 3D medical images. This thesis introduces
the geo-statistical estimation technique called kriging to the field of 3D imaging.
Kriging theory claims to be the optimal estimator - better than the standard deter-

ministic methods commonly used.

This thesis explores four estimation techniques for use in 3D medical imaging.
The techniques are linear interpolation, trilinear interpolation, tricubic interpolation.
and kriging. The interpolation methods are standard estimation techniques used
in 3D imaging. The estimation techniques are used to estimate scalar values in
two primary areas. These are intra-cell scalar value estimation and the volume
pre-processing operation of slice interpolation. This research investigates intra-cell
scalar value estimation in a surface extraction method called cell subdivision. This
research also explores slice interpolation by estimating scalar values between existing
medical data slices. Slice interpolation is the operation of estimating logical slices
between existing ones. typically to increase data resolution to obtain a finer mesh

representation of a surface.

Tricubic interpolation is shown to be most useful in artificially created volumes
of smooth functions. It is also shown to produce poor results in medical volumes
and in slice interpolation. More importantly, this research demonstrates that kriging

subsumes the deterministic methods investigated and can estimate much better than

tricubic interpolation.

Evaluation of Scalar Value Estimation Techniques For 3D Medical

Imaging

1. Introduction

A twelve-year-old boy suffers from severe congenital defects in the sacrum,
lumbar spine, and acetabula (hip). The surgeon assigned to this case reviews both
two-dimensional (2D) and three-dimensional (3D) medical images of the boys pelvic
region. The 3D image is generated by a computer graphics program with input from
a series of 2D Computed Tomography slices (scans) of the patient’s pelvic region.
3D medical images provide views of internal organs, bones, tissues, muscles and
other body parts otherwise only seen after the human body has been invaded by
exploratory or therapeutic surgery. Because of the additional insight revealed by the
3D images, the surgeon decides not to perform surgery (45). In this case, 2D scans
alone do not provide enough information for the surgeon to make an accurate as-
sessment of the patient’s condition. Analysis of craniofacial abnormalities, radiation
treatment planning for cancer patients. analysis of pelvic deformities , and cardio-
pulmonary analysis are only a few of the areas 3D medical images have assisted

medical clinicians make vital decisions in patient management (45).

Because of the need to visualize volume (3D) data sets for analysis, computer
scientists have developed many different techniques for portraying this data. Meth-
ods exist to depict this three-dimensional data in 3D; however, the emphasis has
been to display the 3D data on a 2D screen (26) and (27). This research explores
a subset of the latter methods in the area of medical imaging, with an emphasis on

estirnation of scalar values.

To understand the exact problem considered and the purpose of this thesis
<ame background information must be presented first. Following the background,
the problem is discussed. This chapter ends by presenting the purpose of the thesis
followed by the research goals.

1-1

1.1 Background

Three dimensional data visualization encompasses all methods that render im-
ages from volume data sets. Medical imaging and scientific visualization are two
broad application areas under 3D data visualization. The need for accurate rep-
resentations of the physical volume separates medical imaging and many scientific
visualization areas from other 3D computer graphics techniques. The latter tech-
niques mostly attempt “... to form realistic images from scene descriptions which
may, or may not, have a physical counterpart” (41:2). Accuracy in medical images
is important because many clinical applications rely on the faithful representation

of the portions of the human body scanned and reproduced three-dimensionally.

3D medical imaging is composed of three high level processes : “data collection,
3D data display, and data analysis” (41:2). This work is concerned with 3D data
display - a computer graphics task. Data collection and data analysis are both

performed by end-user experts - radiologists and clinicians.

Data collection is defined by Stytz (41:2) as

... the radiologist’s arena, and deals with issues concerning the statistical
significance of collected data. patient dosage, medical imaging modality
operation, development of new techniques/modalities for gathering data,
and 2D image reconstruction.

The main data collection scanning technologies (or modalities) include Computed
Tomography (CT), Magnetic Resonance Imaging (MRI). Single Photon Emission
Computerized Tomography (SPECT). and Positron Emission Tomography (PET)
(41) and (39). The main purpose of each of these modalities is to sample data in
patient space and produce a series of 2I) images corresponding to some aspect of
the patient such as soft and bony tissue in the case of CT and MRI studies and
metabolic measurements in the case of PET and SPECT studies. CT and MRI
are used primarily for imaging anatomical structures. whereas SPECT and PET are
used mainly for biochemical imaging. For each modality. different properties of the
human body are imaged, but all produce a series of gray scale 2D images. Gray scale
means values range from 0 to 255 (8 bits per value). For the purposes of this thesis,

it is cnough to say the values correspond to some material property of the imaged

volume, such as density.

(T was the first modality, following the ad+~ut of X-ray technology, to provide
high quality 2D non-invasive images. The others tollowed soon thereafter to provide
images of equal (if net better) quality. Since this research deals with 3D data display,
reference Stytz for an overview of how each of these modalities are constructed and

how their operation influences image quality. (39).

These 2D images alone provide a certain level of non-invasive assistance, but
with these images the clinician must mentally build 3D objects of interest. This may
be very difficult, depending on the experience of the analyzer and the application

area. In one area of clinical study, according to Wojcik and Harris (45:197),

Mental integration of all of the images frequently obtained to evaluate
a complex skeletal problem (i.e., plain radiographs, polydirectional to-
mography. and MPCT [multiplanar CT)) is frequemly difficult even for
experienced radiologists and is even more difficult for less experienced
radiologists or nonradiologists {such as surgeons].

A four year study that assessed 3D imaging from CT scans at the Department of
Diagnostic Radiology, University of Manchester concluded that “3D imaging does
have a useful role to play in a number of specific clinical situatior.~ when used in

conjunction with CT and other radiological imaging methods™ (45:103-144).

The main challenge faced by 3D data display graphics researchers is how to
create clinically useful accurate 3D images quickly from the immeunse amount of in-
formation obtained from these imaging modalities. One modality can produce up to
35 mega-bytes of data for a single patient (41). This occurs hecar- e a typical study
consists of 12 to 100 or more slices (scans) of images with resolutions up to 512 X 512.
Following the development of CT in the early 1970's. many software algorithms were
created to produce 3D images from CT data. The methods conceptually combine the
2D CT data into a volume of information from which significant data is portraved.
Most other 3D visualization methods (such as scientists and engineers studying com-
putation fluid dynamics. molecular modelling o1 the earth sciences (36)) have their
roots in early medical imaging techniques (45:60). Thesc methods generally fall into

two main categories - volume and sturface methods.

Most 3D imaging researchers use the terms volume rendering and surface ren-

dering to classify rendering of volume (3D) data sets. Surface rendering methods

extract a surface or surface boundary from the volume data set and represent 1t using
some data siructure. Volume rendering directly processes voxels (volume elements),
assuming that each voxel is either vpaque or partially opaque. This classification
can be misleading in some cases. because it implies that surface rendering only ren-
ders surfaces and volume renderers only render volumes. Yet, surface renderers can
render volumes (multi-surfaces using opaque and transparent surfaces) as well as
just single surfaces. Also, volume renderers can display distinct surfaces much like
surface renderers by processing binary volumes (45). A binary votume is formed by
processing only those voxels forming part of a surface of interest. Then only the
the selected voxels are rendered. It is termed binary because voxels are classified as

contributing to a structure of interest (assigned a 1) or not (assigned a 0).

I prefer Farrell’s terminology (19) of surface unit based and volume unit based
approaches, that differentiates not by what the final image consists of, but rather by
the type of unit or “primitive image element” used in the visualization process. For
example, two-dimensional primitive image units, such as planar polygons or voxel
faces, are used in the surface unit based appr saches, whereas volume elements (vox-
els) is one type of three-dimensional primitiv: image uni{ used in volume unit based
approaches (see chapter two for a more con plete discussion of these approaches).
Hereafter in this document. the terminology : urface method and volume method cor-

responds to surface unit based and volume unit based approaches. respectively.

Surface and volume methods have their supporters in both the scientific and
medical communities. The choice of method depends ou the application and often on
the personal preference of the researcher. scicntist, engineer, radiologist. or clinician.
Many researchers (.e.g (47).(43), and (27)) have noted that a variety of approaches
used to render the same data set provide crucial clues to analyzing and undersiand-
ing the data, whereas only one approa. 1 might leave gaps 1n knowledge. In the case
of medical imaging. surface methods are good i displaying surfaces with definite
boundaries. such as bony tissue in the human body. Likewise, volume approaches
are superior to surface approaches for depir.iag fuzzy or amorphous volumes such
as diffused tumors and blood flow in arteries and veins (33), (16) and (45). Also,
surface methods allow for one of the most useful medical imaging applications -
interaciive manipulation of structures (45). One purpose of this task is surgery re-
hearsal. Surgery rehearsai is not very practical with images rendered via volume

methods because they tyvpically are too slow for interaction. Surface methods allow

1-4

real-time manipulation because they normally produce geometric primitives such «s
planar polygons. These geometric primitives ca. be used as input into fast hardware
or software based hidden surface removal and shading algorithms. However, if a new
surface is desired for rendering, the entire volume must be re-processed again. Vol-
ume methods require a Ligh computati-... ." ~ost for processing all the data elements
in the volume; however, the increaseit 2.~ ;-ay be less important than the need for
a diffused or fuzzy rendition of th- ; .a.

The third medical imaginrg procex: data analysis, involves obtaining “quan-
titative information about the structur: 'n tha scene” (45:57). Quantitative infor-
mation iucludes the average density of - area vithin the 3D image, the size of
certain anatomical structure. ucl as benes and biood vessels, or the volume of a
sub-region. Much of the desired analytic information can be acquired directly fror
the 2D slices. Measurements requ: 2d from 3D images are volumes, 3D distances, 3D
angle measurements, and “other less commonly used measurements... [such as] cen-
ter of mass, moment of inertia, and surface curvature.” Surface methods as well as
certain volume methods (which allow the concept of a stiucture) provide the ability
to perform all the 3D data analysis operstions (45:58).

Image accuracy is critical to the data rnalysis process. Inaccuraciesin an image
can adversely affect these measurements. possibly leadinyg to erroneous assessments

by the clmician.

1.2 Problem

Scalar value estimation is very commen in imany 3D imaging algorithms; how-

ever, little has been done to investigate different scalar value estimation tecl.niques.

The leve} of inaccuracy has not been deemed serious be.cause cost has been a
larger concern. As Herman and Liu noted in 1979, *... reduction in cost is essential;
computer time for the display will bave to be borne by the patient.” Cost is certainly
still an issue (45:224). Higher order deterministic functions such as quadratic or cu-
bic polynomials and statistical based estimation methods are more computationally
expensive than simple linear interpolation. Yet. the results obtained from using them
can greatly improve image accuracy and fidelity - thus improving clinical assessment
and quantitative analysis. Since work stations are becoming more p_.werlil, this issue
of cost wili ecome less of a problem; hence. a search for more accurate estimation

methods is necessary.

Accuracy in medical imaging is very important to the medical community.
Wojcik and Har.ic note, “the primary puryose of radiolcsists is to provide the most
accurate diagnosuc information possible within the capabilities of available imaging
mndalities” (45:196). This estimation problem ;nay cause serious 3] image errors in
two primary areas:

o The volume pre-processing operation of slice interpolation.

o Intra-cell scalar value estimation?.

‘Jdupa and Herman s.ate, “the interpolation problem in our opinion, has
received less attention than it deserves” (45:13). The interpol: .1on problem they are
referring to is tne process of determining new slices between exssting image slices to
form a cube shaped volume. Udupa and Herman discuss the primary methods of
interpolating new slices are neavest neighbor,linear interpolation of voxel values, and
trilinear interpolation. The nearest neighbior approach produces the worst results of
the three because it does no estimation. This approach simply assigns new voxel
values to the in.erpolated slices to the nearest original voxel. Trilinear performs
somewhat better than linear, but the variation in both cases is still assumed to
be linear when in fact it may not be. Udupa and Herman investigated one other
method they created for use i Dinary volumes. This method is termed shape based
interpolation. Voxels ave mapped from the binary volume to a secon. corresponding
array that holds distances from each voxel to the boundary. If the voxel in ti.c binary
volume was 1, the distance in the second corresponding array will be positive, else
negative. Linear, trilinear, or some other interpolation scheme is used to derive new
d-+tances in the second array. The newly interpolated distances are then mapped to a
ne'v binary volume consisting of new slices between existing ones. Positive distances
are w»signed a 1 in the binary volume, negative distances a 0. Hence. the boundary
of the structure of interest Hetwee . 3§ and 1 entries in the binary volume influences
the interpolation. The authors claim it provides more accurate quantitative analysis
and in their opinion leads to a better surface representation in surface methods.
However, this method will not work in volume methods unless the volume method

uses a binary volume.

YA cell is a logical cube with vertices formed by four voxels in one data slice and four voxels in
an adjacent slice.

1-6

Many 3D rendering algorithms (primarily surface methods) require cubic shaped
voxels (28), (44), (22), and (45). Voxels are volume elements, the 3D analog of pix-
els. Cube shaped voxels are termed cuberilles. Other rendering algorithms, including
volume methods such as (33:34) , interpolate new slices to improve image quality.
For example, assume a study consists of a series of 100 256 pixel X 256 pixel CT
images. To make this volume cubic in shape, new slices are created in between exist-
ing ones until there are 256 total shi3s. The extra 156 slices are usually determined
by linear interpolation of the sampled CT values between the original slices. The

problem with this method is the data may not vary linearly.

Intra-cell scalar values are estimated to improve image fidelity and correct pos-
sibly inaccurate surface renditions generatel by cell interpolation surface methods?.
Wilhelms and Gelder (50) have shown that the commonly used trilinear interpolation
estimation method does not e .timate values in artificially created volumes (versus
scanner generated) as accurately as = parametric cubic function. They demonstrated
that tricubic interpolation prod-ices better images than those produced by trilinear

interpolation.

The problems with linear, trilinear, and tricubic interpolations are that these
methods assume the variability of the data and ass' »; a neighborhood of sample
values that influence the estimation. However, variation is not necessarily linear or
cubic in nature and the number of sample values that should influence the estimation
can be different than the unchangeable number determined by these methods. As-
sumptions about the variation of the data and the ne*zhborhood of sample values can
possibly produce erroneous results in the estimation process. Instead of assuming a
variation, a geo-statistical process exists that can aid in determining the variation of
the data for the purpose of estimating new values. In this same process, the number
of sample values influencing the estimation can be modified to fit the variability of

the data. This process is termed kriging.

1.3 Purpose

The purpose of this research is to investigate the application of several esti-
1:ation technignes to estimating scalar values within computational cells and during

tne volume pre-processing operation of slice interpolation.

2Cell interpolation surface methods are described in chapter two.

-7

To accomplish the purpose of this thesis, four estimation techniques were im-
plemented. These are linear interpolation, trilinear interpolation, tricubic interpo-
lation, and kriging. This is the first time the geo-statistical estimation technique
called kriging has been applied in 3D medical imaging.

Kriging differs from the deterministic methods implemented® because it is a
statistical method. That is, kriging accounts for error. Not only is it a statistical
estimation multiple linear regression model, but it is a geo-statistical model as well.
A geo-statistic differs from a classical statistic by how the variables are treated in
the estimation process. A classical statistic views data as random. A geo-statistic
accounts for spatial inter-dependence of the variables used in the estimation. Kriging
has proven to be very successful in estimation applications in the geo-sciences. Since
medical data is spatially distributed and has regions in which sample values are highly

correlated (e.g., bone and tissue regions), this technique is applicable to medical data.

Kriging theory shows that kriging is the optimal estimator. It is optimal in a
statistical sense in that it minimizes estimation error variance and removes bias in
the estimation. This research demonstrates that this optimal estimator subsumes
the deterministic methods investigated and in some cases produces visually better

results.

1.4 Approach

The main goal of this research is to compare the results of different techniques
for estimating scalar values. Estimated values are used in two areas - within compu-
tational cells and for creating logical slices during slice interpolation. To accomplish

this goal, the following tasks were accomplished :

e A cell interpolation algorithm was implemented, including the capability of

subdividing cells for intra-cell scalar value estimation.

¢ Trilinear interpolation, tricubic interpolation. and kriging estimation functions

were implemented for comparison.

¢ Artificial volume data sets were built for comparing and contrasting methods.

3The deterministic methods are linear, trilinear. and tricubic interpolation. Determinism means
they do not account for any variation such as systematic error in sampling.

1.9

A rendering system was developed by modifving an existing one (to support
software engineering goal of re-usability) to display images for comparison.
3D Images were generated by extracting surfaces from both artificial volumes

and actual medical data sets by using trilinear interpolation, tricubic interpo-
lation and kriging estimation techniques.

2D Images were generated by estimating scalar values between two medical
image slices using linear interpolation, tricubic interpolation, and kriging esti-

mation techniques.

Values and images derived from the different estimation techniques were com-

pared.

Overview

The remainder of this document consists of the following chapters. Chapter

two provides an introduction to 3D medical imaging methods, focusing mainly on

surface methods. Chapter three describes kriging theory. Chapter four provides

implementation details of the algorithms developed during this effort. Chapter five

contains the images resulting from the research and a discussion of these results.

Chapter six consists of a section recommending future research following this effort

and a section with concluding remarks. The appendices provide further implemen-

tation details for the interested reader.

1-9

II. 3D Medical Imaging

This chapter discusses 3D medical imaging concepts, concentrating on the areas
most pertinent to this research. In particular, 3D data representation and 3D medical
imaging transformations are summarized, followed by a discussion of the major 3D
medical imaging methods - contour, surface and volume. Because they were used in
this research, surface methods are discussed in more detail than the other two areas.

More comprehensive backgrounds of 3D medical imaging concepts can be found in
(45), (19), and (41).

I chose to implement a cell interpolation surface method - based on the march-
ing cubes algorithm (34) (described later in this chapter) - because the subdivision
technique developed by Wilhelms and Gelder (50) provided me with an excellent

framework to explore kriging in the intra-cell estimation process.

Inaccuracies occur in the marching cubes algorithm because it can incorrectly
define the surface of interest in a volume. The algorithm assumes the original sam-
pled data is suffcient to represent the surface accurately, when in fact it may not
be. A correct rer. lering of the surface never occurs because surfaces are continuous
and we are sampling from this continuous domain. The best alternative would be
to sample finer, but with current scanning technology limitations. costs. and pa-
tient health, this is not always possible. Because obtaining a finer sampling can be
difficult and costly, Lorensen and Cline (8) and Wilhelms and Gelder (50) obtain
more accurate renditions by subdividing portions of the volume and estimating new
scalar values within the subdivided volume areas. given a surrounding neighborhood

of original sampled values.

Wilhelms and Gelaer (50) investigated two estimation methods ~ trilinear and
tricubic interpolation. In this thesis effort. 1 explore a statistical estimation func-
tion derived by a process called kriging. Kriging, according to Matheron. =is the
probabilistic process of obtaining the best linear unbiased estimator of an unknown
variable™ (25). If properly applied, kriging. in contrast to trilincar and tricubic. an-
alvzes the data prior to estimation to determine the actual variation of the data and

minimizes the estimation error variance. See chapter three for a detailed discussion

of kriging.

2.1 3D Data Representation

To understand how medical images are produced, one must first become famil-

iar with some of the basic concepts of 3D imaging from 3D data sets.

Most algorithms developed for rendering 3D data sets expect the data to be
regular shaped, or in a 3D lattice or grid format. A lattice or grid in this context
is best visualized as a framework of parallel planes in space, with data information
(such as material density) conceptually located at the intersection of the planes
or within the volume of space between planes. In many cases transformations are
applied to the discretized data to remove sampling noise, to alter the resolution of

the data. or to make an irregular data set regular (45:4-14).

3D medical data is regular because it is derived from conceptually stacking 2D
same resolution scans. e.g., from CT or MRI output. The third dimension is then

realized as the stack or slice number (see figure 2.1). Regular shaped data is popular

Y
YA
|
YA E Ay
i A awi
Yy // 7]/ P /_/ 7 /‘
P , - > x

/]

///

U

////

///

A

///

1 1A

A

AU

1V

slice 2 ,,///

. 11/ voxel

slice 1 l

Figure 2.1. Pictorial representation of a medical data volum-

because it can be easily mapped directly into a 3D array. Once in the array. data

"‘
te

is ordered for manipulation. One method of ordering is simply to view elements
in the array as volume elements, or voxels. Voxels are conceptually the equal-sized
parallelepipeds created by the intersections of three sets of parallel planes, each set
orthogonal to the other two. The voxel and cuberille data models have been widely

used in imaging agoritlms. The use of these data models is discussed in the section
titled 3D Medical Imaging Methods.

2.2 3D Medical Imaging Transformations

The 3D medical imaging transformations can be seen in figure figure 2.2,
adapted from (45). These are operations upon the data that transform it from
scanner output to a 3D graphics image projected onto a 2D screen. The medical
image data, input into scene space, are the 2D image slices output from scanners.
One scene transformation from scene space to scene space processes the input data
by filtering it to suppress noise or to determine tissue boundaries. Forming new
slices by estimating values between existing images is a common scene transforma-
tion (also called slice interpolation). Ancther scene transformation is a Volume Of
Interest (VOI) operation. A VOI operation pre-processes the scene data to include
only the data that contributes to a structure of interest. A structure of interest
might be a single organ or a portion of a volure, like the left hemisphere of a brain
study. Structure extraction is the step in the 3D medical imaging pipeline that gen-
erates some structure, such as a polygon mesh, from scene space into object space.
A VOI operation only encloses the structure of interest in scene space whereas struc-
ture extraction generates a separate data representation of the structure of interest.
Structures in object space are possibly transformed by geometr.. transformations
(rotations, translations, or scalings) into image space. Rendering (projective trans-
formations) transforms the image space structures into view space - the 2D computer
graphics screen. The final data transformation, analysis. acts on the 2D image to
provide parameters for analytic measurements, discussed as data analysis in chapter

one.

2.3 3D Medical Imaging Methods

3D medical imaging methods are typically divided into three main approaches:
contour, surface and volume. The techniques differ in the dimensionality of the

geometric data model used to create the image - 1D c¢ontours (1D units) for the

2-3

medical image

data
SCENE scene .
SPACE transformation
Structure
extraction
OBJECT structure
SPACE transformation
geometric
transformation
IMAGE geometric
SPACE .
transformation
projective
transformations
VIEW image
SPACE processing
analysis
PARAMETER
SPACE

Figure 2.2. Pictorial Representation of 3D Medical Imaging Transformations

contour approaches, 2D polygons (2D units) for the surface methods, and voxels and
computational cells (3D units) for the volume methods (See figure 2.3). Only those

3D Medical
Imaging Approaches
Contour Methods Surface Methods Volume Methods
(1D Units) (2D Units) (3D Units)
Tiling Surface
Tracking Cell Interpolation

Figure 2.3. Classification of 3D Medical Imaging Methods

medical imaging topics that most directly relate to my work are discussed in this
section. Rendering (projective transformations) is a major 3D imaging task, but is
not discussed at length here because this research emphasizes estimation of scalar
values in one form of “structure extraction” and the scene transformation opera-
tion of slice interpolation. (45) and (41) discuss the different 3D medical imaging
rendering processes.

All 3D medical imaging techniques assume scene space consists of a 3D array
of values (27). The 3D array is actually stacked slices of scanner generated data (see
figure 2.1) with inter- and intra-slice thicknesses. This format will remain following
any scene transformations.

Two processes that must be accomplished to perform structure extraction are
segmentation and boundary detection. Segmentation partitions object space into
objects of interest (which may or may not be surfaces) and the remaining volume.
Boundary detection or surface tracking are techniques that locate surface boundaries
(e.g., organs or bone) during image segmentation (40). These processes are referred
to in the discussion of surface methods, but are mentioned here because they are
done in both volume and surface methods.

2-5

The remainder of this section provides a very brief overview of the contour and
volume methods and discusses the surface methods in more detail. For a complete

discussion of these different approaches see (19) and (41).

2.3.1 Contour Methods The earliest approach to 3D visualization creates 1D
contours (1D units). contours represent the border of the object of interest. Herman
et al. (26) gives an excellent description of contours, along with a figure that clearly
depicts a common 1D unit-based rendered surface. A contour corresponds to the
surface border of the object on one particular 2D slice of the data. A contour is
usually drawn as an approximated curve. When the contour lines for all the slices
are rendered, the appearance of a 3D object surface is created. Contour lines are
extracted manually, automatically, interactively, or by a combination of the three

methods.

The obvious disadvantage of contours is the poor representation of the surface,
because the only information depicted is in the plane of the slice and within the
plane, only the surface boundary of the object. However, 1D unit-based images
are generated and rotated rapidly. Due to the latter fact, they have found wide

acceptance and use in the medical imaging community.

2.3.2 Volume Methods These techniques are volume oriented because they
use 3D volume units as display primitives. Volume techniques differ from surface
and contour methods by the amount of data that must be stored and processed
during image computation. Additionally, volume methods typically preserve data
continuity between surface boundaries, whereas surface and contour methods do

not.

Surface rendering algorithms assume data consists of objects with thin surfaces
in a volume of air (i.e., surfaces are easy to find, with little noise), whereas in reality
most objects have fuzzy (thick) borders and there is much more than just thin
air between surface boundaries. Volume methods preserve fuzzy borders and inter
surface material by avoiding simple classification schemes that assign binary values
to voxels indicating the voxel is in or out of the image to be rendered (33). The
phenomenon that a voxel may contain more than one scalar value is termed a partjal
volume artifact. Volume methods allow percentages of different scalar values as

well as color,attenuated light and /or transparency to be assigned to a single voxel

2.6

(16). Each voxel contributes to the final image based on these percentages, thus
reducing the effect of partial volume artifacts. The final color of a pixel becomes the
contribution of all voxel values lying along a ray’s line of sight or along a projection
path. Colors are weighted by transparencies and attenuation. Since every voxel
contributes to the final image in this way, volume methods capture transitional areas

between surface boundaries that might otherwise be missed by surface methods.

2.8.8 Surface Methods Surface methods attempt to reduce the volume of data
to surface boundaries by depicting these boundaries by common graphics primitives
such as polygons, patches, or points (2D units). Surface methods process a small
number of slices at a time, hence they had dominated imaging algorithms for many
years since computing power was not sufficient enough, until recently, to handle the
entire volume of data at once. These techniques consist of tiling, surface tracking

methods, and cell interpolation approaches.

Tiling

Tiling (tessellation) methods take as input contou.s created from any of the
contour approaches. The next step usually filters the contour data by smoothing or
re-sampling and then polyhedra such as triangles or quadrilaterals connect adjacent
contours. Smoothing is done to better approximate the curve nature of contours.
One heuristic-based method (42) uses B-splines to approximate a closer fitting con-
tour, so contour smoothing is unnecessary. The following paragraph descri’ s some

of the tiling techniques developed in the past.

Tiling methods fall into two general classes, optimal based and heuristic based.
The optimal based solutions (23) and (30) apply graph theoretic methods to derive
what the authors consider the optimal triangulation between two adjacent planar
contours. The major disadvantage of the optimal tiling methods is the long search
time required to find the best triangulation. However, the process is entirely auto-
matic. Since speed is an issue in medical imaging, many other methods were devel-
oped based on hueristics to achieve a faster tessellation, adding interactive assistance
if needed for ambiguous cases (5),(42), and (24).

One major advantage of tiling is that it produces conventional graphics geo-
metric primitives that can be rendered by applying standard reflection and shading
techniques. In addition. as with contour methods, rapid viewpoint changes are pos-
sible and the data size in the final imaged data set can be quite small compared to

the original volume of data.

Gross inaccuracies in an image can occur if contours are not well-formed with
respect to each other. For example, this can happen when more than one contour
is formed on a scan plane to represent a surface. The most well-known remedy
is interactive editing, although it is time consuming and still error-prone. Even
without interactive editing. automatic edge tracking to find the contours can be
too slow for most applications. Speed of contour formation is proportional to the
number of structures in the data set. Another major disadvantage is that tiling

based on contours results in loss of essential information because contours do not

contain enough gradient data to represent the actual surface.

Surface Tracking

Surface iracking methods generate a surface as a set of cuberille faces. Recall
from chapter one that a cuberille is a dissection of 3D space into equal size cubes by
three orthogonal sets of equally spaced parallel planes. This is a natural e.:tension
of the 2D space dissection forming quadrilles, or “square-shaped pixels” (4:34). The
output primitives are planar polygons formed by connected cube faces approximating
a surface of interest.

The first step usually accomplished in surface tracking methods is to modify
the volume to form cubes. This is done by interpolating values in the components
needed (19:327). For example, Artzy et al. (1:19), Artzy (2:6), Udupa (44:220-221)
linearly interpolated in one dimension so their input data would have an interslice
distance equal to the resolution of the original 2D slices. This works as long as the
resolution of the original 2D slices is square. If not, interpolation in two or three

dimensions might be necessary.

Prior to rendering the cube faces, two tasks must be accomplished. First, the
voxels must be segmented into those being in the object(s) of interest (1-voxels) or
out (0-voxels). This binary classification forms a 3D binary volume (45:49). Next,
the surface boundary(s) located between 1- and 0-voxels must be located and display
elements connected. The term surface tracking is derived from this process of locating

the surface boundary from a binary volume.

Artzy et al. (1) developed a surface tracking algorithm that reduces the chal-
lenge of finding connected voxels representing the surface boundary to a graph traver-
sal challenge. Voxels are first segmented using binary classification. Next, boundary
detection is accomplished. Nodes of a directed graph, G, then correspond to voxel
faces separating the object under interest from all else in the scene. The authors
prove that connected subgraphs of G correspond directly to surfaces of connected
components of the object. To find the surface boundary, a subgraph of a digraph is

traversed.

Cell Interpolation Approaches

Cell interpolation methods generate polygonal elements by analyzing compu-
tational cells. Recall from chapter one that a com,:utational cell is a parallelepiped
such that four cell vertices are voxels in one slice and the other four are voxels in an
adjacent slice - see figure 2.4. The major difference -etween these methods and the
cuberille methods is that the cell interpolation methods analyze how the data varies
between voxels to determine where the surface lies versus assuming only constant or
linear variation.

siice 2

oo -

Voxels forming cell vertices

Figure 2.4. Computational Cell

There are currently four types of cell interpolation approaches. These algo-
rithms are the marching cubes method developed by Lorenson and Cline (34). the soft
objects method by Wyvill and McPheeters (52), the “gradient-consistency heuris-
tics” by Wilhelms and Gelder (50). and the cell subdivision techniques also described
by Wilhelms and Gelder (50).

Each method follows a two step process. First, the volume of data is segmented

by classilving cach voxel as either 1 or 0 (or in the case of the soft objects method as

2-10

hot or cold). A voxel is ! if its scalar value is greater than an iso-value (threshold),
else it is assigned a 0. The second step is to determine if a cell has both 1 and 0
vertices and if so generate polygons within the cell to approxiinate the portion of the
iso-surface that passes through the cell. An iso-surface is formed by connecting all the
polygonal elements to form a 3D mesh, such that the surface inter:zcts approximately
the same (iso) scalar value or range throughout the sample data. Polygon vertices
(not to be confused with cell vertices) are determined by linearly interpolating 3D
coordinates between the 1- and 0-voxels of a cell. The coordinates are interpolated
to the iso-value. The four methods differ by how the polygons are formed within the

cells.

The term ambiguous cell must be defined before discussing the four cell in-
terpolation methods. A cell is termed ambiguous if more than one topology can be
chosen for it. A topology is the polygon formation within a cell. Durst (18) noticed
holes can result from the marching cubes algorithm described by Lorenson and Cline.
Holes can be caused by improperly forming polygons between two ambiguous cell
faces.

The term ambiguous cell was defined by Wilhelms and Gelder (50). An am-
biguous cell face is defined as “a cell face that contains a diagonally opposite pair
of positive vertices [1-voxels] and a diagonally opposite pair of negative vertices [0-
voxels]” (see figure 2.5, obtained from (50)). By looking at figures 2.6, 2.7, and

2.8, the reader can see that the a..biguous cases are 3, 6, 9, 12, 13, and 14.

Figure 2.5. Ambiguous face - intersection point connectioa choices

Marching Cubes

The marching cubes wiz>rithm was developed to alleviate the need of using

3

cubic voxels, i.e., 3D data * with reduced resolution in onc di.nension” (7:345).
Binary classification of cube vertices creates a total of 28 = 256 possible cell vertex
classifications. Ry analy :i..; the geometry of the different cases, the total number of
unique cases can be rediiced to only 15 (see figures 2.6, 2.7. and 2.8). The other
241 cases are reduced to the 15 by symmetry and approjriate rotations. Wilhelms
and Gelder (50) call this approach the major case table lookup method because a 256
element table must be pre-set to indicate the transformation of cases to the unique
15. The signs at the cell’s eight vertices are then used as an index into the major case
table. Once the appropriate classified cube case is determined, another pre-set table
entry indicates the triangle formation. The triangle formation is somewhat arbitrary
since intersection points (points approximating where the iso-surface intersects a cell
edge) can be connected in many different ways for most of the 15 cases. Only certain

connections make sense with most of the cases. However. there are six cases that can

cause serious inaccuracies if improperly connected (which is discussed in the next

section).

2-13

1
:]
: /
2 : 3 :
I]
1} 1
4 S, e o 5 l)— ------ -../
1 Case 1
Case 0
i
]
]
[¥ /
case 2
I
N
v
P . -
case J case 4

Figure 2.6. First 5 cases of 15 cube vertex classifications and triangulations

214

/.- Z %
z<\4 al

L o case 6

case 7

case 8

Figure 2.7. 5 more cases of 15 cube vertex classifications and triangulations

case 11

case 12

case 13

Figure 2.8. Final 5 cases of 15 cube vertex classifications and triangulations

2.16

T T TR TR e e T
v ¢ * oy

i

c
c c ¢
]
yd c
h : f
]
/ .
t
h
" c 1 h
case 6 case 6
_ Front facial average
Front facial average greater than threshold

less than threshold,

,] so connect hot vertices
don’t connect hot ver.ices

Figure 2.9. Facial averaging example

Soft Objects

Wyvill and McPheeter’s soft objects method is almost identical to the marching
cubes algorithm. The actual 3D scalar field is fabricated rather than obtained from
scanners, but the data representation is still a 3D regular data set. Key points are
specified to reduce the data set. Additional points are estimated as needed by a
cubic function that uses a radius of influence to determine the key points needed in
the estimation function. The most significant difference between this method and
marching cubes is that this method uses a dynamic. simple technique to polvgonize
an ambiguous cell.

The soft objects method forms polygon vertices on an ambiguous cell face by
analyzing the four cell face vertices. The method assumes the value at the center of
the face is approximated by averaging the four vertex values. Then, if the averaged
value is greater than the iso-value, the positive vertices are connected. For example,
see figure 2.9. 1. Jhis way, two cells sharing ambiguous faces are always consistently
polygonized ~ thus no holes result.

This facial averaging method provides only a rough estimate of center face
values. A different form of estimation may be required to obtain a more accurate
center value estimate. Even if the estimate is not very accurate, Wilhelms and Gelder
claim the facial averaging method guarantees continuity, i.e., no holes appear in the

image. This assertion is based on their facial plane principle :

If the method of disambiguation for ambiguous faces employs only values
in the plane of the face, and is invariant under rotations and mirror
images, then the isosurface as defined by topological polygons will be
continuous.

They refer to the (possibly nonplanar) polygon generated within a cell as a topo-
logical polygon because it specifies “the topology of the isosurface within the cell.”
This assertion makes intuitive sense because the same facial average is calculated for

shared cell faces. This results in shared vertices between cells for that face.

Gradient Consistency Hueristics

The gradient consistency hueristics were developed by Wilhelms and Gelder to
compute a better estimate of the center face value, assuming that simple averaging
does not estimate the center value accurately enough (50). The authors use these
methods to handle ambiguous cases in the same manner as facial averaging. The
authors use the gradients at the four face corners to obtain the center estimate.
Gradients indicate how rapidly the iso-surface is changing at a particular point.
The magnitude of the gradient is used as an approximation to the normal in the
shading calculations, therefore it is already computed at each voxel. The two gradient
consistency hueristics developed by the authors are the “center-pointing gradient”
and “quadratic fit.”

The center-pointing gradient is the gradient component of a cell vertex directed
towards the cell face center. This gradient is obtained as the dot product of the vertex
gradient with a unit vector in the direction from the vertex towards the ~enter of the
face. T'wo univariate quadratic functions are determined by the least squares error
method to estimate the center scalar value along both diagonals of the face. These
two estimates are then averaged to yield a final estimate. This estimate is then used

to determine the cell topology, as in the soft objects facial averaging method.

Two assumptions are made in this method. First. the center-pointing gradients
are assumed to approximate the derivatives at each corner. Second, the quadratic
functions are assumed to exactly fit the two endpoints. The gradient assumption is
tvpically used for determining the normals for shading as well. The second assump-
tion is made in many estimation methods to insure the estimation process returns

the correct value at known points.

This method only analyzes the face corner sample values, similar to the soft
objects method. It should choose the topology better than the soft objects method

onlv if the underlying scalar field function is quadratic along hoth face diagonals.

The quadratic fit method is similar to the center-pointing gradient method,
except here the center face value is estimated by a single bi-variate quadratic func-
tion. The least squares error fit uses all four face corner sample values to estimate
parameters of the function. This method chooses a more correct topology than the
center-pointing gradient if the underlving scalar field function is quadratic across the

entire face.

2-19

The gradient consistency heuristics make minor improvements to the soft ob-
jects method of resolving ambiguous cells. A disadvantage of the heuristics methods
is that they assume the scalar field function is locally quadratic. If wrong, this as-
sumption can generate inaccurate topologies within cells. The only way to know if
the topology is inaccurate is to know the local variation of the scalar value function.

However, obtaining this knowledge might be too computationally costly to be of any
benefit.

Cell Subdivision Techniques

Cell subdivision techniques are implemented for two primary reasons. The first
1s to increase image fidelity. The second is to resolve ambiguity of cells. Image fidelity
can be increased because the data resolution is increased. Cell subdivision is the same
method employed by Cline and Lorensen’s (8) dividing cubes algorithm. In dividing
cubes, cubes (cells) are divided until the resolution of point primitives is reached.
In cell subdivision, instead of subdividing cells to create point primitives, cells are
subdivided to create sub-cells. These sub-cells are then treated as the previous
original cells were, i.e., the iso-surface is represented within them by triangles. These
sub-cells are much smaller than the original ones, hence data resolution has increased.
Because of this increased data resolution, the surface can be approximated closer to
the actual surface by the smaller triangles. However, the quality of the final image
depends on how the scalar values are estimated at the sub-cell vertices. Therefore,
the significant challenge with any subdivision technique is how o estimate values at

the sub-cell vertices.

According to Wilhelms and Gelder, another way to resolve ambiguity in cell
cases is to create sub-cells within original cells and polygonize the sub-cells as in the
soft objects method. New cell vertex scalar values are estimated by a re-sampling
function. In Wilhelms and Gelder’s implementation, they subdivide each computa-
tionai cell and apply an estimation function to determine new scalar values at the
points derived from the subdivision. The two estimation functions they use are tri-
linear and tricubic. The major case table lookup method (marching cubes) is used
to process the sub-cells, and ambiguous cases are handled as in the facial averaging
technique. Tricubic is more computationally intensive than trilincar. but it produces
more accurate iinages for their artificially created volumes than any of the other cell
interpolation methods. linage quality improves hecause the tricubic method consid-
ers sample data in a large neighborhood (the surrounding 64 voxel values) and does
not assume linear variation. On the other hand, trilinear only analyzes the eight cell

vertex values and assumes a linear variation along each of the three axes,

Note that all nonempty! cells must be subdivided to ensure continuity between
faces. If not, one large undivided nonempty cell face may share a face with several

sub-cell faces.

Besides just resolving ambiguous cases, cell subdivision is also a good method
to use if a smoother looking image is desired. However, depending on the subdivision
size, the resulting number of polygons may be very large. A typical set of from 50 to
100 brain MRI or CT slices can result in over 500,000 polygons for certain iso-values.
Subdividing by a factor of just two could increase this to over two million polygons.
In this case it might be more beneficial to use Cline and Lorenseu’s Dividing Cubes
algorithm (8).

'Nonempty means that a elassification of the vertices derives unique cell case 0 in figure 2.6.
That is. a nonempty cell is one such that the surface s determined to not pass through i

Surface Methods Conclusion

Both the cuberille-based methods and the cell interpolation methods produce
images that appear to represent the surface of interest. However, the most important
issue is not appearance but rather the accuracy of the methods. An argument could
be made that the pre-processing step of creating cuberilles produces more accurate
results because of the increased resolution. However, new slices are normally created
by simple linear interpolation, whereas a higher order interpolation might be more
accurate. Also, once the cuberilles are formed, constant variation within cells is

assumed during surface formation.

Cell interpolation techniques using subdivision and estimation functions also
estimate new scalar values within the original computational cells and can easily
go beyond input pixel resolution by increasing the subdivision factor. In addition,
according to Upson and Keeler (46), the variability of the scalar values within cells
“..1s a more accurate representation of the real world and allows for smooth, con-
tinuous representations of even small datasets.” Cell interpolation methods assume
variability within cells to create new sub-cells. They also assume scalar value varia-
tion within the new sub-cells (although this latter variation is always linear - recall

the process of finding surface intersection points along cell edges).

An advantage shared by the cuberille-hased and the cell interpolation methods
is that they create a display list of polygons. This display list can be saved for fast

re-display at different viewpoints using traditional lighting and shading models.

A major disadvantage to the marching cubes cell interpolation algorithm is that
holes can appear in the rendered surface (18). Yet, with disambiguation methods
employed. the ambiguous cases are corrected to a certain degree. Cell subdivision
methods can also improve image quality as well as the accuracy of surface represen-
tation. Both image quality and accuracy of surface representation depend directly

on the accuracy of the estimation function.

2.4 Chapter Summary

3D medical imaging topics relating to this thesis were presented. Specifically.
this chapter first discussed the data representations used in 3D medical imaging.

Regular data grids are assumed by all 3D medical imaging methods because the

output from medical imaging modalities is regular. The two primary data models

223

include voxels and cuberilles. Next, the common 3D medical imaging transforma-
tions were summarized. The remainder of the chapter described the 3D medical
imaging methods - contour, volume and surface. Surface methods were covered in
great detail because surface methods were implemented to accomplish the purpose
of this thesis. The first primary surface method discussed is surface tracking. Since
these techniques use the cuberille data model, surface tracking methods usually es-
timate new slices between existing slices to form cuberilles. Although a surface
tracking method was not implemented in this research, the task of slice interpola-
tion was accomplished. Finully, cell interpolation surface methods were discussed.
These include the marching cubes algorithm. the soft objects method. the gradient

consistency heuristics, and the cell subdivision techniques.

The focus of the next chapter is to explain how an estimation function can be

derived based on the statistics of the underlying scalar field data.

III. Kriging Theory

Kriging is a geostatistical estimation method name« after a South African min-
ing engineer, D. G. Krige. The theory was developed for the purpose of estimating
ore reserves in mining. However, kriging can be used to estimate samples in any situ-
ation where estimates depend on nearby known samples based on spatial or temporal

position. Kriging is significant because it is the optimal linear estimator.

This chapter presents first the background and purpose of kriging, followed
by the derivation of the ordinary point kriging equations. After these equations are
derived, different kriging categories and types are summarized. Lastly, an overview
of structural analysis and isotropy is presented. The order of topics was chosen to
present the most common form of kriging first, and then building on this foundation,

to introduce other kriging methods.

3.1 Background

Krige developed the basic theory, but « French engineer named Georges Math-
eron and his colleagues developed the rigorous mathematical theory of kriging (35:602)
and (9:625). Prior to kriging. estimation methods used in geo-statistics made several
simplifying and usually invalid assumptions. The most erroneous assumption was
that variances between data samples is constant. This assumption made the other
estimation methods very error-prone. Krige pointed out that to get a more accurate
estimate, variances between the prospective blocks and the core samples must be
taken into account. Kriging is primarily used in situations where there is expected
to be some dependence between data measurements at different locations. Its use in

discovering deposits in various mining pursuits is well known and documented, see

(13:70-71).

Kriging is a process that derives a geo-statistic. Geo-statistics differ from
classical statistics in the variables used. Recall that a statistic is a function of random
variables. A geo-statistic is a funciion of regionalized variables. Random variables
model chaotic processes. Regionalized variables model spatially dependent natural
phenomena. According to Matheron (35). regionalized variables are characterized
by three qualities. The first is localization. Regionalized variables are localized

within a support. A support is the volume of a sample. consisting of geometric

31

size, shape, and orientation. In the geo-sciences, an example support is a drill core.
The second quality of regionalized variables is that they may exhibit continuity
within the region of a support. Statistical continuity means the sample values do
not deviate significantly from each other. Thus, they are not random in nature,
but show some kind of order. The third characteristic of regionalized variables is
anisotropies, discussed later in this chapter.

Kriging is a modified form of a multiple linear regression model with parame-
ters estimated by a technique similar to the method of least squares (37) and (15).
Kriging uses weighting functions based on distance to compute the desired data
value. The method operates on the assumption that data points closer to the target
should he weighted heavier in the estimation calculation than those further from the
new point. lor example, in figure 5.1 points 1,2, and 7 would be expected to have

more influence on the estimate than points 5 and 6. This weighting strategy has

OS
03

7

O
2
'e) ® Estimate

=0

‘;O

Figure 3.1. Kriging Example

proven to be very accurate in the ficld of geo-statistics. Davis sums up the goal of

kriging in the following sentences :

There are an infinity of other possible combinations of weights that could
be chosen, each of which will give a different estimate and a different
estimation error. There is, however, only one combination that will give
a minimum estimation error. It is this unique combination of weights
that kriging attempts to find.

The goal of kriging is to estimate an unknown value at a particular place
within a known neighborhood of points using a linear combination of computed
weights and known sample values. Optimal weights are determined by solving a
system of linear equations produced by two conditions placed on the kriging linear
combination. These constraints make the value derived from kriging the best linear
unbiased estimator (B.L.U.E.) (13). The constraints are:

e unbiasedness by setting the expected estimation error to zero i.e., removing

any “systematic error”

¢ minimum estimation error variance.

These conditions insure optimality and insure that “no other linear combina-
tion of the observations can vield estimates that have a smaller scatter around their
true values™ (14:385).

Why use a linear estimator versus a non-linear? According to Delfiner and
Dethomme. “The major difficulty with non-linear estimators is that they involve
parameters or characteristics that cannot be inferred from the data™ (15). Even if
the sampling function is locally non-linear. this is taken into account by the drift in

universal kriging. which is discussed later.

The basic purpose of kriging for this research is the same as that for the
estimation fuactions explored by Williclms and Gelder (50) - given a new point
within a neighborhood of known sample points and associated valucs. estimate a
value at the given point using a combination of known sample point values. The
kriging equation eslimates a value as a distance-weighted linear sum of known sample
points. The term lincar refers to just the linear sum. it does not indicate that the
data varies linearly. Kriging can model all forms of highet order data trends such
as quadratic and cubic. This capability is discussed in later sections. The next few
sections explore how kriging calculates data weights and show that the conditions
assumed about the data make kriging the optimal interpolator for data sets derived

from natural phenomena.

3-3

3.2 Kriging and Least Squares

Kriging primarily differs from least squares in the type of variables used in the
linear equation. The variables used in least squares are assumed to be independent
random variables, whereas those in kriging are regionalized variables. Recall from
a previous definition that regionalized variables model natural phenomena. These
types of variables assume the data is localized and exhibits continuity, whereas phe-
nomena modeled by random variables exhibit chaotic behavior. No simple methods
like least squares can be applied to such variables because no tractable deterministic
functions can be found that describe the complex variations in regionalized variables
(14). The next section discusses how the dependence of regionalized variables is
captured in the kriging linear regression model in the simplest kriging case.

3.3 Derivation of the Ordinary, Point Kriging Equations

My discussion of kriging begins with ordinary point kriging because the other
forms are modifications of this method (ordinary and point are defined in the next
section). The discussion begins by stating the goal of kriging. followed by an explana-
tion of the constraints on the kriging equation that produce a system of equations.
The system of equations are solved to vield the weights in the kriging equation.
The equations presented below were obtained from a number of different sources.
primarily (12). (14). (17). (9). (15). (13). (48). {11). (31), and (6).

In the following equation the goal is to estimate Z, the unknown value at the
known position p in the neighborhood of known points p, and known values Z;(p,).
n
Zm =3 wZ(p) Y
=1
The Z,’s are the regionalized variables with the parameter being an n-dimensional

point and the w,’s the weights. The weights are chosen to satisfy the following two

conditions that make 7 the B.L.U.E. :
o L(Z-7)=0 [2]
o E(Z - Z)* minimum (3]

»

where Z is the value being estimated at p and Z is the actual value at point p. The
estimation error. Z — 7. is a measure of the dissimilarity between the two variables

Zand 7. E(Z = 7} is the mean square error and F, is the expected value or mean.

31

Using the following equality from the definition of the variance, V, (37:89),
E(Z-22=V(Z-2Z)+|E(Z - 2)
[3] can be re-written as
o2 = V(Z - Z) minimum [4]
where o7 is the estimation or error variance. This is important because it points out
that even though condition |3] states minimum mean square error, it is equivalent

to minimum estimation error variance.

Next. the system of kriging equations are derived from conditions [2] and [4].
This system is similar to the set of simultaneous linear equations (normal equations)
produced in linear regression that are formed by setting the partial derivatives of the
unknown parameters to zero (21). Before the equations can be derived, the above

two conditions are expanded and changed into more quantifiable constraints.
Modifving condition [2] above is straightforward :
E(Z-2Z)=0
E(Z)-E(Z)=0
Then recalling [1], substitute into the above and get as an additional constraint

ES wiZ(pi)] - E(Z)=0
Zw.m(p;) -mi{p)=0
> w =1 [5]

where m() is the mean or first moment. Unbiasedness in the estimate is assured by

insuring that the weights sum to 1. (13-238)

The estimation error variance is ({6). (13). and (9))
ol = 'JZu', K(p..p) - K(p.p) - Z Zw,w,lx'(p,.p)) 6]
1 T
where K(m.n) is the covariance between point m and point n and p is the n-
dimensional point where the estimate is computed. Journel derives similar esti-
mation error variances (29), but this equation is considered the general unbiased

linear estimator derivable by expanding the variance of the linear combination of

regionalized variables in equation [4].

The covariance between the variables is modelled by a function called the semi-

variogram. ln most cases the semivariogram is unknown and must be determined

3-5

by a process called structural analysis. For the present. assume the semivarogram is
known and is represented as ¥(m,n) = 7mn. The semivariogram represents the av-
erage difference squared between the values at points m and n. The main parameter
used in semivariograms is the distance between points m and n. The semivari-
ogram models the dependency of data values based on how far apart they are from
each other. The spatial distribution of regionalized variables is accounted for in
the semivariogram. The semivariogram gives the correlation between san ple values
a geometric meaning rather than a probabilistic meaning. Structural analysis and
the semivariogram are discussed in more detail in a later section. As a result of

substituting the semivariogram in place of the covariance. |6} becomes :
2 _ - P n
g, = Zzwi'?m = %ipp — Z Z“t“’) frj (7]
: i)

Now that condition [4] is more quantifiable in terms of [7]. it must be minimized
to satisfy the minimum estimation variance constraint. Since there is a constraint
[5], n unknowns and n + 1 equations would result from minimizing this system.
Therefore a Lagrangian Multiplier is added to equalize the system. Minimization
is done by taking the partial derivatives with respect to the weights and the La-
grangian Multiplier and setting the resulting equations equal to zero. 1his vields

the following complete ordinary point kriging svstem:

n
Zwﬂu +7 =" (1=1....m) (8]
J=1

n
Zw, =]
1=1
The Methodology chapter will show these equations in expanded matrix form.

The system presented above is ordinary point kriging. Due 1o the constraints |2}
and [1]. this system will determine optimal weights to substitute back into equation
(1]. 7 is the B.L.U.E. because of the optimal weights. i.c.. no better linear estimate
can be derived. This system is only one of several tvpes of kriging possible. Other

types and their diflerences from this system are discussed next.

3.4 Nriging Calegories and Types

The kriging literature describes two broad categories of kriging and three types

of kriging. The categories differ based on estimation region. The t+-pes differ based

36

on assumptions about the sample data. Either of the two categories can be used in

any kriging type.

3.4.1 Kriging Categories The two categories of kriging are raint and block.
Point kriging was discussed in the preceding section. It is employ. when the goal

is to estimate a value at one particular point.

Block kriging estimates a value for a region instead of at a single point. There
are two block kriging methods. The first uses point kriging repetitively to estimate
several values within the block and then averages the results to get one value. The
second method derives a new set oi equations using a modified covariance function
of the K() terms in equation [6]. The second method involves computing a double
integral that evaluates the area of the block in question. The problem with the
second approach is finding an explicit analytic form for the integral; hence, the first
method is most often used for block kriging (11)".

3.4.2 Kriging Types There are three primary types of kriging discussed in
the literature - simple, ordinary and universal. These techniques differ in their
assumptions about the behavior of the expected values or means of the regionalized
variables FE(Z;) (15). see figure 3.2. Each of the three methods can be developed so

the final kriging system estimates points or blocks.

'Some authors combine point and block krigimg into one form in which the area integral reduces
to a point in the case of port knging (9:626)

Kriging Means of Regionalized Means of Regionalized
T%pe Variables are Known Variables are Constant

Simple Yes Not applicable

Ordinary No Yes

Universal No No

Figure 3.2. Table of Kriging Types (All three can estimate points or blocks)

Simple Kriging

This type of kriging, as the name suggests, is the simplest form of kriging
— even simpler than the above ordinary kriging system. However, this .nethod is
seldom employed. The method is termed “simple” because sample means at known
Jocations are assumed to be known prior to kriging. The means are stated as

E(Z)=mii=1,...,nand E(Z) =m,
where m; is the mean of the i’th regionalized variable and m_ is the mean of the
estimator regionalized variable.

This assumption modifies the kriging equations derived above because the un-
bias constraint changes. The ordinary equations derived abhove left out one variable
important to the simple kriging equations. This variable is called a shift parameter.
A (29). In ordinary kriging, A = 0. The shift parameter modifies the estimation as

n
Z=\+ Zw,Z,'(p,)
i=1
Now the unbias condition hecomes :
E(Z~2Z)= E(Z)- E(Z) = E(S_w.Z(p;) + A) — m,

Journel (29) shows that this unbias constraint changes the estimation equation to
n
Z=m,;+ Zw,'(Z, -m,)
i=1

This equation indicates that the unbiased estimator Z is determined as a linear

combination of the residuals, (Z, — m,).

This assumption also simplifies the minimum error variance condition [4]. In
essence, this form of kriging reduces to classic linear regression (29) and (12). Simple
Lriging is seldom used because the means of the regionalized variables are usually

unknown.

Ordinary Kriging

Unlike simple kriging, ordinary kriging assumes the mean of each regionalized
variable is unknown. Also unlike simple kriging, ordinary kriging assumes each mean
is the same. A constant mean is more commonly referred to as a stationary mean

(9:626). The ordinary system of equations were derived above to estimate points.

3-9

Universal Kriging or kriging with a Trend

Universal kriging also assumes unknown regionalized variable means; however,
it differs from ordinary kriging because it assumes the unknown sample means are
possibly different, or non-stationary. Sample means are also referred to as first-
order moments. Stationarity assumptions for the second-order moments can also
impact the type of kriging used (sec (9) and (11)), but will not be considered in
this effort. The term non-stationary also refers to drift or trend, indicating the
means of the regionalized variables differ from sample point to sample point within
a surrounding neighborhood of other sample points. There are two primary methods
of kriging in the presence of local drift — universal kriging and the method of intrinsic
random functions. According to Cressie (9), universal kriging, simply extended from
ordinary kriging, is most often used because the method of intrinsic random functions

is impractical to apply.

When using universal kriging, the first process becomes estimation of the re-
gionalized variable means at the sample points using a local neighborhood of known
sample values to detcrmine if the means are constant from sample point to sample
point. If data has global (1egional) drift, there appears to be a definite pattern or drift
in the sample values over a larger area, usually much larger than the neighborhood
size used in the kriging syvstem. If drift is local, it occurs within the neighborhood.
Figure 3.3, adapted from (14) and (13). shows regional drift as a line placed through
the data points.

If global drift exists. the regionalized variables are now viewed as being com-
posed of two parts - the drift and the residual. The drift of a regionalized variable is
its expected value (mean) at a point p, within a certain neighborhood. This experi-
mental or computed mean is called drift if it varies from point to point. The residual
is calculated by subracting the drift from the actual measurement. For example,
assume an experimental drift is calculated for every known point?. call it m(Z(p,))-

Then the residuals are calculated as

Y(p) = Z(p,) — m(Z(p.)).

2David shows that the experimental drift can be calculated by estimating the drift coefficients as
a linear cornbination of the available data. This is another multiple linear regression that typically
assumes simple unbiased estimation derived from a least-square method (13) The drift equation
is shown in the next paragraph.

3-10

Z(x)

Global Trend and Local Stationary Mean

T g WP e A e T
S -

Local Trend and Global Stationary Mean

Figure 3.3. Global and Local Drift

3-11

There are three primary steps in estimating points or blocks in the presence of a
global drift. First, the drifts are estimated at each point and residuals are computed.
Then, the residuals are used as stationary regionalized variables in a simple, ordinary
or universal kriging system (depending on the local means). Lastly, the estimates

derived by kriging the residuals are added back to the drifts to get the final estimate.

If local drift exists, then universal kriging is used (13:267). The ordinary point
kriging equations developed in the last section must be modified in the presence of
local drifts to yield the system of universal kriging equations. These modifications

are described below.

David (13) expresses the drift at point p as :

k
m(p) = E(Z(p)) =)_dif'(p) [9]
=0
Equation [9] is normally represented as a finite order polynomial in universal kriging.

The f'(p)’s are k 4+ 1 known functions, usuallv monomials, and the d;’s are the k + 1

unknown drift coefficients.

The kriging syvstem of equations change in the presence of drift because the un-
bias constraint changes. In ordinary kriging the unbias constraint forces the weights
to sum to | because the mean m(n) is constant, producing equation [5]. Now that
m(p) is no longer constant but takes into account drift from equation [9]. the unbias

constraint results in

E(Z-2)=0
EQ Zm) =Y. dif'(p) =0
: k
Y owif'(p) = f'(p) (I=0.1..... k) (10]

Notice the drift coefficients d; have dropped out of the constraint. Thus the
universal system is independent of the drift coefficients, but still insures unbiasedness.
Since this condition insures unbiasedness regardless of the unknown drift coefficients

d), the term universal is used to denote the system of equations that resuit.

This constraint (equation [10]) adds k+1 more equations to the minimum vari-
ance condition, thus k41 additional Lagrange Multipliers (3;) are needed (9).(15).and
(17). After the partial derivatives of the equations are taken with respect to the n

weights and the k41 Lagrangian Multipliers and set to zero. the resulting universal

kriging svstem is

n k
Y w, + Y_nf () = T (t=1,.,n) minimum estimation
1=1 =0

variance [11]

En:w,f’(p,) = f'(p) (I=0,1,...,k) non-bias [12J3

=1

There are several unknowns in this system of equations that must be esti-
mated. The unknowns in the universal system are the order k of the polynomial
fl(p), the drift coeflicients d;, and the size of the neighborhiood used to determine
the drift. These unknowns are determined during structural analysis. The drift co-
efficients d; can be found along with the weights in the kriging system (14:394) or
by a least-squares method (13:272). The order k is usually 1 or 2. If the means of
the regionalized variables are the same, k£ = 0 and equation [10] reduces to equation
[5], which is ordinary kriging. If the order is 1 this means the Oth order term or
the constant will be included as well as the first order terms. In two dimensions
this is the x and y terms. If kis 2, the Oth, 1st, and 2nd order terms are included
in the drift. The first order (k=1) polynomial associated with linear drift in the
neighborhood is : m(p) = do + dy Xy; + dy X2

and the second order polynomial associated with quadratic drift is :

m(p) = do + 1 X1, + doXoy + da X} + dy X1 X0 + ds X2,
where X, and X,, are the first and second coordinates of the i'th known 2D point
in the neighborhood (14:394). As stated earlier in this chapter, any order drift can
be modelled by kriging - simply modify k in equation [12]. If a polynomial drift is
not observed during structural analysis, other types of drifts can be easily modelled

as any type of function of the geometric coordinates.

3.5 Structural Analysis

Structural analysis is “the process of attempting to simultaneously find satis-
factory representations of the semivariogram and drift expression.” (14:245). This
process also determines the optimal neighborhood for the estimation. The neigh-
borhood is the sample values in the kriging linear sum that are all within a certain
distance of the estimated value. I term neighborhood size the number of sample

values in the kriging sum.

3Davis (14) and David (13) present the universal kriging equations m expanded matrix form.

3-13

The semivariogram, drift, and neighborhood all influence each other and char-
acterize the notion of localized continuity within a sample volume. The goal of
the process is to find a model semivariogram that models the spatial correlation of

sample values within a local zone of influence (neighborhood).

Structural analysis is usually performed prior to kriging. Prior to understand-

ing the process of structural analysis, the semivariogram must be defined.

Semivariogram Definition

The semivariogram is a graph and/or formula (14) that

represents the spatial variability of data ... can be thought of as an
average difference squared between data a given distance apart in a given
direction... [and] provides a quantitative value for the range of influence
of a sample in any direction (31).

The semivariogram is used in the kriging system of equations as an approx-
imation to the co-variance between sample values. The co-variance measures the
inter-dependence or correlation of random variable occurrences, whereas the semi-
variogram measures the spatial dependence of regionalized variable occurrences based

on the distance from cach other.

There are two major types of semivariograms used in kriging - experimental
and model. The experimental scmivariogram is used to estimate the variance of
differences in the sample data. The experimental semivariogram is an estimator of
the model semivariogram. Once an experimental semivariogram is computed. it is
compared to known model semivariograms to select the closest match. The reason
for using a model semivariogram is discussed in the section Models. The remainder

of this section will describe how the experimental semivariogram is derived.

The semivariogram 4(h) is often improperly called the variogram. It is termed

the semivariogram becanse it is half the variogram 2y(h) The variogram is:
29(h)y = earl Z(p, + B) = Z(p)) V., m+heN
where 29(h) is the variance between samples a distance of b apart {from each other

and N is the neighborhood of known sample points.

The semivariogram can be represented by a formula or a graph. Graphs de-
pict the distance h on the abscissa and the semivariogram (k) on the ordinate.
The experimental or sample semivariogram (graph) is computed and plo.ted from
the known sample points and values and is compared against known model semi-
variograms to determine the best fit (closest match). After a fit is made, model
parameters are estimated. The semivariogram used in equations [§] and [11] is a

model function, not experimental.

Davis states that the following equation can be used for estimating the semi-
variogram (experimental) for multiples of h when h is the same between data points

(in other words the data is regular) :

2
- [(.\'. =Xuitn)- Z-——(x,:x,_,,m]

The asterisk indicates this semivariogram is experimental or estimated from

the sample values. This expression takes into account drift in the inner second term

in the numerator,

E :(Xn—/\'.-}h) [14]

Equations [13] and [14] are in (14).

315

Process of Structural Analysis

The goal of structural analysis is to determine a model semivariogram. To find
this model semivariogram, an experimental semivariogram is first estimated from
the known data values and compared to known model semivariograms to find a close
match. However, before this is done, it must be determined if drift exists. The
drift expression and the experimental semivariogram change based on the size of the
neighborhood®. It would be best to estimate the semivariogram using the entire data
set. However, it is too costly and often does little good since a distance is usually
reached at which the affect of values on one another becomes neglible. Therefore,
a maximum distance for the neighborhood is assumed initially to determine drift
experimentally. This same distance is used in calculating the experimental semivar-

jogram.

In the case of ordinary kriging, no drift exists so the experimental semivari-
ogram caiculated from the orginal sample values is sufficient to determine the spatial
correlation of the samples. If drift exists, the situation is more complex because the

semivariogram is not rcliable statistically.

The model semivariogram must provide good statistical properties, like corre-
lation between sample points based on spatial relationships. However. estimating
the semivariogram of non-stationary regionalized variables may not have these kind
of properties. According to Davis. stationary variables (regionalized variables with
stationary means) force equation {14] to zero, which gives equation {13] a known
statistical property - “the difference between the variance and the spatial autoco-
variance for the same distance.” Normalizing the variables. i.e.. mean zero and
variance 1, provides an even better statistical property - the semivariogram becomes

the “mirror image of the autocorrelation function™ (14:242).

The main problem in the presence of global drift is that the experimental
semivariogram is not reliable statisticallv. Recall that drift can exist in two forms.
local and global. Local drift is accourted for in universal kriging. Therefore. the
main task of structural analysis in this case is to compute a reliable experimental
semivariogram in the case of global drift. Since stationary regionalized variables are

considered reliable and residuals are stationary. then the residuals can be used to

“The drift coefficients as well as the order of the drift polvnomial may differ.

compute the experimental semivariogram. To find the residuals, which are the drifts

subtracted from the actual values. equation [9] must be solved.

The weights in equation [9] are determined in two possible ways. First, they
can be estimated by the Lagrange Multipliers in the universal kriging system or they
can be separately estimated by a regression technique like least-squares (13). If a
kriging system is used, a known semivariogram can be assumed at the start (a “first
approximation™) to obtain estimates of the drift. If a least-squares approach is used,
a first- or second-order polynomial is fit to the sample data to obtain estimates of
the drift coefficients. In this case the d;'s in equation [9] are estimated as lincar
combinations of the data :

n

d; = Zw,—,Z(p,)

=1

After estimates of the drift are obtained, they are then removed from the actual
data to obtain residuals. The residuals are then used to estimate an experimental
semivariogram. The experimental semivariogram is then compared to known models.
If a poor fit results, the “first approximation” semivariogram, the neighborhood size.
and/or even the order k of the polynomial drift equation [12] can be modified to
obtain a closer fit. This recursive process is known as structural analysis. There is
a strong “interrelation between neighborhood size, drift. and semivariogram for the
residuals™ (14).

Once a model fit is obtained. a kriging svstem is used with the model semi-
variogram to obtain estimates from the residuals. To get the final kriged estimates.
the drift estimates are added to the estimates determined by kriging the residual

regionalized variables.

In summasx. the first step in structural analysis is to determine if global drift
exists in the data set. This requires calculating a drift or sample mean for every
sample value in the data set. If it exists. global drift must be removed by calculating
residuals and then computing the experimental semivariogram from these residuals.
Once a model semivariogram is chosen. values are estimated by kriging the residual
data set with this model semivariogram. These kriged values are then added back
to the drifts calculated at the beginning of the analysis. Or. if global dnift. does
not exist. the data itsell is used to determine the experimental semivariogram. If
global drift exists or it does not. local drift can be assumed because if local drift does
not exist. the local drift coefficients will just be zero. Global drift is not so easily

accounted for because it involves a much larger neighborhood of sample values.

3-17

Models

Model semivariograms are used in the kriging system of equations rather than
experimental semivariograms. Experimental semivariograms are not used because
they do not provide results for distances other than those derived from the sam-
ple data. The term model refers to a known. continuous semivariogram (31) and
(14:246). An experimental semivariogram like equation {13] is not used in equa-
tions [8] and [..] because the experimental semivariogram is computed for known
discrete distances. Instead, a known model semivariogram computed for continuous
distances is used. Since kriging estimates new values at possibly different distances
than those between the original sample points. a continuous function is the most
reasonable choice (14:246). Some of the better known continuous semivariogram

models include the linear. spherical, and exponential (see figure 3.4).

™

Figure 3.4. Example semivariograms for linear. spherical and exponentional models

Once a model is selected. parameters of the model must be estimated. Ac-

cording to Cressie (11:198). Zimmerman and Zimmerman claim that the “weighted

38

least squares approach usually performs well and never doss poorly™ at estimating

parameters for a model semivariogram from the original data points.

Two terms are used to describe the models. Since the data is assumed to
vary within some region, there usually exists some distance at which the data ceases
to vary and has some constant variance. This constant variance is a flat line on a
semivariogram known as the sill, ¢2. For models with a sill, the sill is the sample
variance (6:7). The distance at which this constant variance is reached is termed the
range a, or zone of influence. The range then determines the neighborhood of sample
values used in the kriging equations because it represents the spatial zone in which
sample values influence each other. Beyond this zone, the influence of a sample value

on a kriged value is negligible. For a further description of sill and range see (10).

The following discussion of semivariogram models is based on (14:247), (31).
and (13).

Linear Model. The following equation is used for this model:
Y(h)=ah +b
The parameters are the distance h and the slope of the line. This model does

not have a sill, but sometimes the function is modified to create an artificial sill as

follows:
wWhy=ah+bforh <a
(h)y=g?for h > a
where a is the range. Davis suggests this approximation is good for “distances
much less than the range™ (14:247).
Spherical Model. The model equation is :
CEL-1E) 10y if h<a
Wh)y=4 C+C if h>a
0 if h=0

The spherical model is most commonly used because it models most natural
data very well. The relationship modelled between data values is that spatiallyv closer
data values have a higher influence on each other than do those further apart - until
the range or limit of influence is reached. Once the range is reached. the values ccase
to have a significant affect on each other. The model parameters are the distance
(h). the range (a). the sill (C + Cq = 62). and the nugget e ffect (Cy).

3-19

The nugget effect measures micro-scale variations. It is the position on the
+(h) axis where the semivariogram intersects, possibly causing a discontinuity at the
origin if Co # 0 (35).

Ezponential Model. The model equation is :

1(h) = o2(1 ~ e7/)

The parameters are the distance (h), range (a) and sill (¢?). This model is
characterized by a semivariogram approaching the sill asymptotically. This indicates
the data values always influence each other regardless of distance apart; however,
values separated by distances beyond the range have much less influence on each

other than those values separated by distances less than the range.

3.6 Isofropy/Anisotropy

Matheron (35:1249) noted three “qualitative characteristics™ exhibited by re-
gionalized variables. The first is support. Support consists of the shape, orientation.
size. and spatial arrangement of the sample values. The second is that the sample
values within a support show some form of continuity. The third. termed anisotropy,
indicates the distance in the “zone of influence” (13:68) varies along different direc-
tions. Methods exist for treating different forms of anisotropy. but the discussion of

the forms is bevond the scope of this research. For further information on this topic
see (25} and (13).

3.7 Chapler Summary

This chapter has described some of the most basic forms of kriging. Structural
analysis and kriging are complex. robust processes. It is optimal because the estima-
tion variance is minimized. the estimation is unbiased. and the covariance approxi-

mation. the semivariogram. analvzes sampie points based on their inter-dependence.

There are many current 3D medical imaging applications in use today that can
use kriging to obtain more accurate estimates. In the next chapter. | will demonstrate
how kriging can be used to estimate intra-cell scalar values in cell interpolation

surface extraction and the volume pre-processing operation of slice interpolaticn.

3-20

IV. Cell Subdivision and Slice Interpolation Implementation

4.1 Introduction

limplemented two methods to explore estimation in 3D medical imaging. First,
I impleme ed a cell subdivision method to investigate intra-cell scalar value esti-
mation. | also implemented a method of estimating values between two medical
data slices for the purpose of investigating estimation techniques in the volume pre-

processing operation of slice interpolation.

This chapter begins by presenting an overview of cell subdivision and surface
formation. Cell subdivision is discussed to explain how intra-cell points are derived.
Once values are estimated at intra-cell points, the surface is formed. The process
of surface formation is briefly discussed in this chapter. Then, the two estimation
techniques, tricubic interpolation and kriging are discussed to show how they are
used to estimate values at the intra-cell points derived by cell subdivision. The
chapter ends by discussing my implementation of medical image slice interpolation.

Appendix C provided further implementation details of the cell subdivision method.

4.2 Overview of Cell Subdivision and 3D Surface Formation

Presented in this section are the cell subdivision and 3D surface formation
processing steps. Each step is addressed in turn. Before listing these steps, some
terminology that helps in understanding the following explanations is discussed.
Voxels are treated as point values, not volumes. 1 consider major cells the initial
computational cells before subdivision (see ngure 4.2). The cells created within a
major cell by cell subdivision. I ‘erm minor cells. Major cells have the original voxel
points and assc ~iated values as vertices. | consider minor cell vertices as niinor-
voxel points and values. Minor-voxel values are derived by intra-cell scalar value
estimation. Finally. I consider the arrays within a major subdivided cell as mini-
slices, since logically they represent input data slices. The reason for this will be

explained in the discussion of steps 1 and 2.

The primary steps in the cell subdivision and surface formation algorithm are :

1. Read data slices into memory.

4-1

2. March major cells between slices.

3. Subdivide major cells into minor cells.

4. Estimate minor-voxel values and normals.

5. Apply marching cubes surface extraction within major cells to

6. Render triangular mesh with a poiygonal based renderer. form surface.
Steps 1 and 2 .

These two steps are part of the marching cubes algorithm developed by Lorensen
and Cline (34)). TFour slices of data are processed at a time. The marching cubes
algorithm creates computational cells (cubes) between the two inner slices (see fig-
ure 4.1) and approximates the surface within each cell. My cell subdivision algorithm
works similarly, except, surface formation is approximated in minor cells, not major
cells?.

Steps 3 and 4

When a major cell is processed, it is subdivided based on subdivision factors in
each of the three component directions. For simplicity, assume component subdivi-
sion factors are equal. A subdivision factor of two will divide a major cell into efglllt
minor cells (see figure 4.2). The 3D minor-voxel points are obtained by calculat-
ing division points along lines between major cell vertices based on the subdivision
factors. A subdivision factor of two creates one division point along each line, a
subdivision factor of three creates two division points along each line. etc., again

assuming the same factor in all three directions.

The scalar values at these division points are estimated by one of the three es-
timation techniques - trilinear interpolation, tricubic interpolation, or kriging. Tri-
linear interpolation assumes the voxel values vary linearly within a cell in all three
directions. This method assumes only the eight major cell vertices contribute to the
estimation of intra-cell scalar values (minor-voxel values). Since trilincar interpola-
tion 1s a standard method, details are not given here, but are in appendix H Tricubic

interpolation is a parametric cubic polynomial interpolation method. This method

'During this effort, I implemented the marching cubes algorithn described by Lorensen and
Cline (34). Details of this implementation are in appendices A and B. While developing the cell
subdivision code I re-used as much of the marching cubes code as possible.

My implementation can also perform the marching cubes algorithm on major cells.

O\el i,j+1.k
voxel i+1,j4+1,k4+1

Figure 4.1. Computational cell (cube) marching between data slices

4-3

minor cell

Subdivision factor = 2 in all dimensions

@ Original voxels (major cell vertices)

O Minor voxels (minor cell vertices)

Figure 4.2. Subdivided Major Cell

A1

uses a much larger neighborhood of sample values to estimate minor-voxel values.
It uses the surrounding 64 voxel values, where the major cell is centered within the
next larger cube (see figure 4.3). Note, the 3D coordinates in the ﬁgure‘ correspond
to summation indices in the tricubic interpolation implementation discussed in the

next section.

a
WM

A

\

F\= -y = = - 1
]
'
'
'

A}
\
\
\
hY
Ay
Fd-
N
-\ - -
PN
) (N
' W
1
Ld-%wd--
AY \
)
I\ !
N t
T
] S
' N,
vO\F
Lo
N
N]
LN 1
T
N
Yy
A
t
1
1
]
]
'

(0.0.0) /

(-1,-1.-1)

- - -
AY
A
AY
\
- - -
1N
\
A Y
AY
<~ -
A}
N
A}

Y
>

Figure 4.3. Major cell centered within surrounding cube

Tricubic interpolation assumes values vary cubically within a major cell. i.e.,
they fit a 3D curved surface within the major cell. Trilincar interpolation and tricubic
interpolation are termed deterministic because the procedures do not account for
error. Kriging on the other hand estimates values based on the statistics of the
data and not only accounts for error, but minimizes it. It estimates values using

a weighted linear combination of nearby known sample values (voxel values). The
3 |

15

weights are determined by conditions that insure unbiased sampling and minimum
estimation error variance. The latter condition requires that co-variances between
sample values be computed. These co-variances are approximated by a technique
that computes the average difference squared (in distance) between data samples.
This causes sample values closer to the value being estimated to have more influence
in the estimation than sample values farther away. Therefore, kriging is really a
distance weighted estimation function. It does not assume linear,quadratic, or any
form of variation, although it can be tailored to do so. In fact, I tailor kriging to
behave like both a tricubic and a trilinear interpolator. Details of this tailoring and

tricubic interpolation are discussed in the next two major sections of this chapter.

The purposes of cell subdivision are to 1) resolve ambiguity in cells and 2)
provide a better surface approximation. Recall a cell is ambiguous if more than
one topology can be chosen to represent the surface within the cell. Cell subdivision
guarantees that major cells will be disambiguated only because they are being subdi-
vided. That is, once subdivided. major cells are no longer treated computationally,
hence they are disambiguated. The minor cells are now the computational units.
The problem with cell subdivision as a disambizuation method is that minor cells
may still be ambiguous. If minor cells are ambiguous, Wilhelins and Gelder (50)
apply the facial averaging technique discussed in chapter two to disambiguate these.
I do not do this here. because my goal is to investigate the use of kriging to estimate
intra-cell values. Besides disambiguating ambiguous major cells. cell subdivision also
provides a better surface approximation within each major cell. This is because the
surface is now being detected at a finer sampling - although many of the values are
not original samples, but rather estimated values. How well the extracted surface
corresponds to the actual surface depends mainly on the accuracy of the estimation
function employed. To better understand how subdivision can not only disambiguate

most. minor cells. but also form a smoother surface. see appendix D.
Step 5

There are two marching cubes implementations used in the cell subdivision
process. The first is the outermost loop. In thisloop. data slices are read into metnory
and major cells are formed. At this point. a vanilla marching cubes implementation

can be selected®. If the vanilla marching cubes implementation is not selected. cell

Wanilla mdicates no cell subdinvsion. disambiguation. or enhancements to the onginal algorithm

b6

subdivision is performed. The second marching cubes implementation occurs within
each nonempty major cell. In this case, mini-slices formed by the subdivision are
treated as if they are actual data slices. This minor marching cubes implementation
treats minor cells as “cabes.” Within each minor cell, triangle vertices and normals
are computed to represent the portion of the surface passing through each cell.

Details of triangle formation and normal computation are in appendices A.B and C.
Step 6

The triangular mesh is rendered using Phong reflectance and Phong shading.
Details of the renderer used are in Appendix F.

A more detailed discussion of cell subdivision is in appendix C.

4-3 Tricubic Interpolation

The tricubic interpolation estimation technique assumes that estimated data
within a major cell fits a cubic surface within the cell. In a two-dimensional sense,

this is like fitting points to a curved line between two known points (see figure 4.4)

Estimated values x
between known points P1 and P2

Figure 4.4. Example of fitting points to a curved line in 2D

The tricubic polynomial interpolation method implemented is the samne one
implemented by Wilhelmms and Gelder (50:15). The parametric cubic polynomial
interpolation method they and I use is very similar to the hermite form of a cubic
polynomial curve, with constraints being two endpoints and tangent vectors at the
endpoints (20). Two differences exist between the classical hermite form of a cubic

polynomial and the one used here. The classical form is used to generate points

on a surface. Here we are estimating values that lie on or near a surface in 3D.
not the points that generate the surface. Also the targent vector constraints are
determined differently, based on the volume 'ata. The following equation represents

the formulation of the values in one dimension:

Fu)=a’+b* +cu+d=U-Cx=U-My Gy =[v® v? v 1]My-Gu

where 0 < v € 1, My and Gy, are the Hermite basis matrix and geometry vector.

Normally, the tangent vector constraints are determined by differentiating the
U vector and solving at u = 0 and u = 1, the endpoints of the curve segment. [,
as Wilhelms and Gelder do, modify these constraints by assuming the derivative of
a value f, at a point i in one dimension is approximately the central difference f] =
2(fir1 = fic1). The blending functions for a univariate curve F(u) are determined
by solving a system of equations including the constraints F(0) = fo, F'(0) = f3.
F(1) = fi, and F'(1) = f{. The solution of the system results in the following

equation for an estimated value in one dimension :

F(u)= Y f.B,(x)

where B,(u) are the blending functions :

B_y(u) = 3(—v* + 2u* — u)

Bo(u) = %(3113 — 5u? 4 2)
Bi(u) = %(—3213 + 4u? + u)
Ba(u) = 3(u® — u?)

The indexing scheme (-1 to 2) is used to correspond to the position of a cell’s
eight vertices in relation to the surrounding voxels. The point (0.0.0) is the bottom

front left vertex of a major cell (see figure 4.3)*.

The tricubic function is determined by applyving the equation in all three com-

ponents and is given by

2 2 2
Flu.v,w)= Z Z Z JoouBi{u) B,(v) Bi(w)

k==1 j==1 1=~}

“Although not shown in the figure, the major cell centered in the larger surrounding cube 15
subdivided

F(u, v.w) estimates minor-voxel values at the intra-cell points derived by cell
subdivision. u,v and w range between 0 and 1. u is equal to the fraction of the
distance hetween the major cell vertices in the x direction. Similarly, v is the fraction
of the distance between the major cell vertices in the y direction, and w corresponds

in like manner in the z direction.

This function constrains the surface to the computational cell because the two
endpoint values in the formulation for each dimension are cell vertex valucs. The
term tri stems from the three parameters. For the bicubic case, Watt (49) describes
the surface formulation as a cartesian product of two curves. In the tricubic case,

the surface formulation is the cartestian product of three curves.

4.4 Kriging Estimation

This section discusses the kriging estimation technique used to estimate minor-
voxel values. First, an overview of the technique is presented. Following that. specific
implementation conditions are listed and discussed. Lastly, the kriging estimation

procedurc implemented in this research is presented.

The kriging code developed during this effort was written by Capt Chris Brod-
kin (3) and modified for use in intra-cell scalar value estimation. It is object-oriented
code written in C'++.

4.4.1 Overvicw of KNriging Technique Kriging estimates minor-voxel values
by a weighted lincar sum of nearby original voxel values. The conditions of unhi-
asedness and minimum estimation error variance yield a system of solvable equations
in the familar matrix equation form X' = A~!B. where the solution .\" matrix con-
tains the desired weights. However. before this matrix equation can be solved. the

model semivariogram in the A4 and B matrices must be determined.

The goal of this research is simply to demonstrate that kriging can be used to
estimate intra-cell scalar values and that it is flexible. To ensure that kriging can
estimate points similar to the other methods, I tailored it to behave like tricubic and
trilinear interpolations. To achieve this, structural analysis is not necessarv. How-
ever. structural analvsis is necessary if the goal is to calculate the best estimates. To
tailor kriging to hehave like tricubic and trilinear interpolations. some assumptions

were made :

Global drift does not exist.

Local drift may exist.

I'he model semivariogram is known.

The neighborhood size is known, but alterable.

The data is isotropic.

4.4.2 Global and Local Drift Drift is the phenomena that occurs when sample
means vary from point to point. A sample mean is derived by choosing some neigh-
borhood of values surrounding a known sample point and calculating a weighted
average. M ti.ese weighted averages (sample means) -liffer from point to point, then

drift exists. If they are the same, then the sample -.,eans are constant.

Drift can occur in two ways. It can occur within loc | regious (local drift)
and/or throughout the entire data set (globai drift). If global drift exists, it is
removed by calculating residuals from the sample means. A residuzl is calculated
by subracting the estimated drift from the sample value at a } nown point. Residual
data is considered to be nonstationary, i.e., there is no drifi. Since kriging only works
with nonstationary data, residuals are then kriged to estimate values. These values

are then added to the sample means to get the final estimates.

Drift can also occur just within the neighborhood of sample values being used
to determine the linear sum. This local drift can be accounted for in the universal

kriging system of equations.

Global drift is assumed not to exist in this implementation to simplify the
process. Local drift is incorporated into the universal svstem by the polynomial
form of the drift expression. Even if global drift exists, it should not have a large
effect if local drift is accounted for.

The three-dimensional local linear drift expression implemented for this effort

in terms of the geometric coordinates r,.y,.z, is
m(p,) = m(x,, 4, %) = do + dy 2, + day, + d3z,
and the three-dimensional local quadratic drift expression is
m(p,) = do + dva, + day, + d3z, + dy7? + dsy?

+d6-:,‘2 + (17-7'1:'/2' + dS-rt:t + (I.er:x

4.4.3 The Assumed Model Semivariogram The model semivariogram is a con-
tinuous function that takes the distance between two sample points as a parameter.
It is used in the kriging system of equations as an approximation to the co-variance
between sample values to give geometric meaning to the values instead of probabilis-
tic meaning as in classical statistics. The co-variance measures the inter-dependence
or correlation of sample values, whereas the semivariogram measures the spatial de-
pendence of sample values based on distance. Two types of semivariograms exist.
These are the experimental and the model. The experimental semivariogram is a
discrete function derived from the data set prior to kriging. It is computed as an
average difference squared between data points. The experimental semivariogram is
then compared to continuous, known model semivariograms to find the best match.
Model semivariograms are actually used in the kriging equations because distances

other than those found in the data sct might be used to estimate new points.

To tailor kriging to behave like tricubic interpolation, an experimental semi-
variogram was not computed and the model semivariogram was assumed to be a
cubic function. This assumed semivariogram model is also called a drift model, (31),
see figure 4.5,

This model indicates a polynomial drift exists in the data, which is certainly
the assumption made in the tricubic interpolation method discussed above. The

function used is simply
~(h) = abs(h®)

This model semivariogram coupled with the drift expressions above parallels

the tricubic method. The tricubic method is derived from paramet.ic cubic functions.

4-4-4 Neighborhood Size Recall from chapter three that neighborhood size is
the number of sample values in the kriging estimation equation. Neighborhood size
is usually determined during a structural analysis of the data (structural analyvsis
was discussed in chapter three). Instead of determining the neighborhood by a
structural analysis of the data, 1 assumed different sizes. First. I assumed the same
neighborhood size as that used in tricubic interpolation. 64. This neighborhood size
i~ the 56 surrounding points. including the cell’s eight poeints. for a total of 64 sample
values in the kriging svstem (see figure 4.3). The neighborhood sizes 8. 16. and 32
were also investigated for both cell subdivision intra-cell scalar value estimation and

slice interpolation. These sizes were chosen because they were easily implemented

111

)

Y

Figure 4.5. Drift model variogram

12

from the cell geometry. They were used to demonstrate the effect of kriging with
different neighborhood sizes.

4.4.5 Estimation Procedure The goal of kriging restated in terms of this par-
ticular problem is to estimate Z
Z(P) = Zwizx(pi)
=1
where the p; and Z;’s are the surrounding voxel points and values and p is the 3D

point where the value 7 is being estimated. n = 8, 16, 32 or 64 in this equation and

all the following ones for my implementation.

Both the ordinary and universal forms of kriging were implemented. Recall
the ordinary system is

Zu"]n’"] + N =Yy (2 = 1,...,77)

=1

n
Z"’J =1
=1

This system of equations is represented in the matrix form AX = B, where

the X column vector contains the kriging weights.

r A r - o -
MM M2 --- TG 1 wy Ty
T2 Y2 e T2] wy Yap
Tnl T2 - Tt 1 Uy “inp

1 1 I 0 n i

The solution to this matrix equation is X = A~'B. where ! is the inverse

matrix of A.

For the universal system. the equations change depending on the assumed local
drift, f!{p,). The svstem is

n k
Z"')""'J + Z’"fl(p') = Yy (it =1....n)
=1 =0

SuwS'p) =P =01,k
1=1

The following equations contain quadratic drift. Linear drift is obtained by
removing all the quadratic terms. The universal kriging system with local quadratic

drift implemented in this research is

n
Y W, r o e g+ 03z ANt F sy F 0t 4023 F UsT S Nl = o
J=1

(1=1,....n)
Ywi=1(1=0)
1=}

Z“’r T =1, (I=1)
=1

n
Y wy =y, (1=2)

=1

Y wz =2z, (I=3)

=1

Y w,r? =t (1=4)
=1

n
Suwgyl=y? (I=5)
=]

Zu-,.:? =z (I=06)

1=}

H
Z“'J'rl:‘/l = Tplp (l=)
=1

[

n
Zw,.r.z, = Iplp (I =3)
1=1

n
Z"".’ll:l = y'i:p (’ - 9)
=1

Ty, y,. and 2, are the components of the i'th 3D samiple point.

The following is the matrix form ot this svstem. A\ = 3.

TR TS e Loaromo oz o2} oyl 2 my mn oye [y |
Yoo r2 e Y 1 T2 Y2 za 3 Y3 2D Tayr aza yam w2

Tt Y2 e Yan 1 T Yu Zn 2L YR) Ta¥n TaZn Ynin | | Wa

1 1 1 00 0 0 0 0 0 O 0 0 Mo

T X2 z, 0 0 0 0 0 0 0 0 0 0 m

" Y2 y» 0 0 0 0 0 0 O 0 0 0 |
S @ 00 00 0 00 0 0 0 ||w]|
2l 2 000 0 0 0 0 v) 0 0 N4

2 g2 y2 00 0 0 9 00 0 0 0 s

2 22 22 00 00000 0 0 0 7o
Tiyy Tay2 ... Tpyn 0 0 O O O O O O 0 J N7

T2y T2y ez 0 0 0 0 0 0 O 0 0 0 g
PE Yem2 e Yaz 000 0 0 0 0 0 0 0 0 |||

The A matrix is inverted to solve for the X column vector of unknown weights
and Lagrange multipliers. Recall the semivariogram 4,,, is the same as W onn)s
where hp, is the distance from point m to point n. The #'s are the & + 1 La-
grange multipliers where k = 9 and (z,, yp, z,) is the point where the value is being

eslimated.

4.5 Slice Interpolation

This section describes how scalur values are estimated between medical slices
for the volume pre-processing operation of slice interpolation. To accomplish this
task 1 re-used as much of the cell subdivision code as possible. Computational cells
are used in the estimation process. The estimation is done only along one cell edge
because the purpose here is to interpolate only in the 'Z° dircction. Recall the *%’
direction is the direction that the data slices are stacked. Four different neighborhoed

sizes were used - 16, 32 and 64. The slice interpolation algorithm is :

1-15

71;)
Yop

Tnp

1. Read in four medical data slices.
March cell (cube) between the two inner data slices.

Estimate scalar values for new slice(s) along cell edges.

W

Create gray scale image from estimates.

Four slices are needed at a time because the tricubic interpolation requires a
neighborhood size of 64. Computational cells on the boundary of the data are treated
specially. Since they do not have access to the larger neighborhood of sample values,
I compute a linear interpolation along boundary cell edges. This should have no
effect on the final image because the boundaries of images typically do not contain

any significant data.

My implementation of linear interpolation is not presented because it is a
standard method. The important point about linear interpolation is that it assumes
only a linear variation. The tricubic interpolation and kriging estimation methods

used here are the same ones described in the previous sections.

The next chapter presents the results of impiementing the methods discussed
in this chapter and in the appendices. The appendices contain descriptions of the
methods used to accomplish the other tasks outlined in chapter oune. vet not men-

tioned in this chapter.

4-16

T et s ey

V. Results

This chapter presents the results obtained from implementing the estimation
methods discussed in the previous chapter. The results are divided into three major
areas:

e Artificial Volume - Cell interpolation surface extraction and intra-cell scalar

value estimation in an artificial volume.
o Medical Image Slice Interpolation.

e Medical Volume ~ Cell interpolation surface extraction and inti.-cell scalar

value estimation in a medical volume.

These results demonstrate that kriging subsumes the deterministic methods
investigated. 1 modify the kriging system by changing the neighborhood size and
local drift assumption. By doing this, I show that kriging can be tailored to behave
like the other deterministic methods, i.e. it is flexible, and in some cases produce
images that look better than the other methods’.

Medical image slice interpolation is discussed prior to medical volumes because

some analysis was done on a subset of the medical volume slices.

Explanation of pictures and tables

The labels in the images in the pictures presented in this chapter are file names
that were chosen to be descriptive. For example. f2tricubic3.rle indicates that the
image represents the {2 function, derived by cell subdivision with tricubic interpola-
tion at a subdivision factor of 3. rle indicates the Utah run length encoded format.
Similarly, f2krige3nodrift.rle indicates the {2 function derived by cell subdivision
with kriging estimation assuming no local drift at a subdivision factor of 3. Also,
f2krigenh32linear indicates the {2 function derived by cell subdivision with kriging
estimation assuming local linear drift at an assumed subdivision factor. I will leave
off the extension rle or rle.Z (.Z is compressed format) for brevity.

"When I discuss image accuracy or quality, this is my opinion about the visual appearance of
the images.

St et
SRS a2

The table headings are as follows. In the pictures derived by cell subdivision,
the number of triangles and non-emipty minor cells are listed. These are denoted as
column headers “# TRI” and “# NEM?” respectively. All otlier columns discussed
are applicable to all the tables. The first is “Images”. This header indicates one
particular image in a picture. The header “values compared with” indicates another
image compared with the image listed under the column “Images™. The header
“largest est value diff" presents the largest estimated value difference between the
two compared images. This entry provides knowledge of the extrene deviation of
sample values derived by two different estimations. As David states, “the most

natural way to compare two values ... is to consider their difference.”

[actually
take the absolute value for this column. David also states the average difference is
an important measurement as well to understand the dissimilarity between values
(13). This measurement is presented in the column under the heading “avg diff of

values”. The average difference of the values is derived by the formula
n

Zubs(tmayel —value, ~tmage2_value,)
1=1

— , where n is the number of values estimated,
imagel_value, is the i'th value estimated in the generation of the image under the
column “Image” and tmage2_value, is the i'th value estimated in the generation of
the image under the column “values compared with”. Finally, the last column in all
the tables indicates the average difterence percentage of the total scalar value range.
For example. the scalar value range for the f2 function in an artificial volume is 136.0.

Also, the scalar value range for the slice interpolation tests is 256. 0 through 255.

5.1 Artificial volume

The main purpose of this section is to show that using kriging to estimate
intra-cell scalar values resolves ambiguity in cells and that kriging is very flexible
compared to the other two interpolation methods. By flexibility I mean that I can
change parameters in the process that alter how kriging estimates. This cannot be
done with the other techniques. Both trilinear and tricubic assume the neighborhood
and local data variation. The advantage of kriging is that it can be tailored to behave
like either of the other two interpolation methods, or it can be tailored to analyze
any size neighborhood and assume other local data variations besides linear and
cubic. First presented are images comparing kriging to the other two interpolation

techniques. fixing kriging to behave like tricobic. Then, both the local drift and

L g

the neighborhood size are changed to show how flexible kriging is and demonstrate
how important these two factors are. Many other factors can be modified to make
kriging more robust and more accurate, but the purpose of this research is to just
demonstrate its usefulness and applicability.

An artificial volume is created by calculating scalar values at voxel points. The
artificial volumes represent continuous 3D iso-surfaces derived from mathematical
functions. The details of this »rocess are in an appendix. The mathematical function
used is a hyperboloid with known ambiguous cases. The function, which Wilhelms
and Gelder called F; (59), is

Foa.y.z) =4y -1 +2x -2 =-2x+z-3)*+1

5.1.1 Neighborhood size 64, subdivision factor = 4, local drift assumption
differs. Since the number of ways to compare images is quite large - taking into
account neighborhood size, drift, and subdivision factors — I began by assuming
a neighborhood size of 64 and a subdivision factor of four. Then I compared the
estimated values derived from universal kriging (with local and quadratic drift) to the
estimated values derived from ordinary kriging. The values were exactly the same in
all three cases. This indicates that at least for this data set and a neighborhood size
of 64, there is no local drift. I explored quadratic local drift in nearly all the cases
presented in this chapter, but found only minor differences between these images
and those assuming local linear drift. Therefore to reduce the number of images in
the study, I only present images derived by kriging that assume local linear drift or

no local drnt.

5.1.2 Neighborhood size 64. subdivision factors differ, no local drift assumed.
Next, I ran the program with the three different estimation methods at the sub-
division factors two, three, four and five; still maintaining the kriging neighborhood
size at 64 and assuming no local drift. The results can be seen in figures 5.1 - 5.7.
All the cell subdivision methods - trilinear and tricubic interpolation and kriging -
removed the ambiguous cells for all subdivision factors. In other words, after cell
subdivision and intra-cell scalar value estimation, no ambiguous cases were found.
The subdivision factor as well as the estimation function significantly alters how the
surface is represented. The higher the subdivision factor, the smoother the surface

representation. Also. tricubic interpolation and kriging tailored to behave like tricu-

bic interpolation buils estimate valies that produce smoutlier <srface representations

of the In petboloid,

Figure 5.1 Vamila marching cubes extiaction of by perboloid surface

Note the images ohtained by using tricubic interpolation and hriging for intra-
cell ~calar value estimation look almost identical. This is venhied by a comparison of
the estimated values between the two methods. For examples at <ubdivision factor
4o values estimated oy tricubic interpolation and kriging differ by an average of .0113
(ranee of scalar values is -19.0 10 87.01. See table 3.1 for a detailed comparison of the
estiniation techniques. TR mdicates triangles and NEM means Nonempty Minor

Cell-.

Several tesuits are presented in this table. By analyzisg this table and examin-
ing the images it is vbvious that the kriging assnmptions model tricubic interpolation
very closely. For subdivision factors 2.3, and 1 the number of triangles as well as the
number of nonempty minor cells are exactly the same for the tiicubic and kriging
estimation techmgies. This indicates that the estimated values are very similar. To
further show thic, T eompared vaines estimated as <hown in the table. noting the
lareest difference in two values and the averace difference of all the estimated values.

These tesults contirnr that the Rigme ascinptions made (b1 neieliborhood. no drift.

Table 5.1.

Comparison of values estimated by trilinear and tricubic interpolation

and kriging (with a 64 neighborhood. no jocal drift)

values | largest | avg | avg diff
| compared | est diff —_
Image TRI | NEM with value of 136
diff | values %
f2vanmc 44 -

2trilinear2 | 140 | 70

f2tricubic2 { 140 | 70 f2krige2 | 1363 | .0031 | .0023
f2krige2 | 140 | 70
f2trilincar3 | 332 | 166

f2tricubic3 | 348 | 171 | [2krige3 | 1211 | .006Y | .0050
2kriged | 348 | 174
f2trilineard | 560 | 280

f2tricubicd | 576 | 288 | f2kriged | 1331 | .0113 | .0083
f2kriged | 576 | 288
f2trilineard | 838 | 444

f2ricubich | 920 | 460 2kriged A316 ¢ 0160 | 0118
f2kriged | 912 | 456

-~
y
-

§
§

Figure 5.2. Cell subdivision.factor 2. with trilinear interpolation estimating minor-
voxel vaiues and marching cubes extraction of hyperboloid surface from
mint-siices

h* model semivariogram. and isotropic data) model tricubic interpolation extremely
well. However. as the next image shows. a neighboriood size of 64 i< not necessary
frr kriging to estimate values close to the supposed accurate values of tricubic in-
terpolation. Reducing the number of sample values directly affects execution time
because it reduces the size of the matrix being inverted in the kriging svstem of

equations.

3.1.3 Newhborhood size differs. Subdivision factor = 2. local dvift assump-
tion differs. The next set of images in this section demonstrates the flexibility of
kriging (figures 5.9 - 5.13). In these sets of images. the cubdivision factor is two,
chosen arbitrarilyv. I altered both the neighborhood size and the local drift. In all
the images except those with a neighborhood of 32. the images with no drift are
significantly different than those with local linear drift. It appears that with smaller

neighborhoods. assuming local drift prevents the inaccuracies seen by the holes.

The neighborhoods selected are as follows (see figure 5.81. A 32 neighborhood

starts with the original 64 values surronnding the computational cell and ignorex the

50

T s Vinidn e

I
-

Cell subdivision. factor 2. with tricubic interpolation estimating minor-
voxel values and marching cubes extraction of hyperboloid surface from
mini-slices

Figure

values in the 2 slices above and below the computational cell. A neighborhood of
16 in the "N ditection. denoted nhl6x in the figures. consists of the eight compu-
tativnal cell vertices and four o either side of the cell in the "N dlizection. 16 Y’
and 16 "Z" neighborhoods are derived in a similar fashion. These particular neigh-
borhouds were chosen because of their direct correspondence to the computational
cell and the indexing schere already used for tricubic interpolation and kriging in a

64 nvighburhmd.

lages depicting differences were created by the Utab RLE library ool rlecomp

with the Giff operator. This tool performs the logical set difference operation between

pixel values in the two images,

Table 5.2 depicts differences in estimated values for the last <ets of images.
Notice that kriging with a neighborhood of 32 sample values and no local drift
matches tricubic interpolation almost as closely as kriging with a neizhborhood of
64 sample values does. | compared local linear drift kriging images to tricubic and
linear beeanse local linear drift kriging prodiced better images. As soon as the

ktiging neighborhond size reduces to 16, exeept 1 the case of nhins. the kriging

- ?
-1

1ol } A Pastitt b,

Figure 5.4. Cell subdivision, factor 2, with kriging estimating minor-voxel values
and marching cubes extraction of hyperboloid surface from mini-slices.
Kriging uscs a neighborhood of 64 sample values and assumes no local
drift.

Table 5.2. . . i .)
Comparison of values estimated by different kriging forms for cell in-

terpolation surface extraction of a hyperboloid surface in an artificial

volume
values Jargest avg | avg diff
compared est diff
Image with value of | 136
diff | values %
f2krigenh32nodrift | f2» -~nh32linear .0310 | .0004 | .0003
f2krigenh32nodrift 12tricubic2 5066 | .0098 | .0072
f2krigenh16xnodrift | f2krigenhl6xlinear | .1922 | .0023 | .001%7
f2krigenh16xlinear f2tricubic2 31.7500 | 1.2602 | .9266
f2krigenh16xlinear Ptrilinear? 0646 | .0006 | .0004
2krigenh16ynodrift | f2krigenh16ylincar A617 | 0022 | .0016
2krigenh16ylinear [2tricubic2 1.0790 | 0210 | .0154
f2krigenh 1Gylinear Rtrilinear?. 20780 0418 | .0307
f2krigenhi6znodrift | f2krigenh1G6zlinear | 1922 .0023 | .0017
f2krigenh16zlinear 2tricubic2 31.7500 | 1.2602 | 9266
f2krigenh16zlinear f2trilinear2 0646 ! .0006 | .0004
f2krigenh8nodrift f2krigenhSlinear 9313 | 0138] .0100
f2krigenhSlinear P2tricubic2 L7500 | 2602 1 9266
2krigenh8linear f2trincar? 0616 1 .0006 | .0004

Fizure 5.5, Subdivision factor 3. Upper left. vanilla marching cubes. Upper right.
trilinear interpolation. Lower left. tricubic interpolation. Lower right.
kriging with 64 neighborhood. no drift

local linear images match much closer to trilinear interpolation. rather than tricubic,
For example. image P2krigenh 16xlinear compared to image Ftvilinear? produces the
sinailest average difference percentage vet (000474, for hrizing images compared to
the other two interpolation methods. This indicates that krigine with & avighbarhood
of 16 in directions "N or "Y', local iinear drift and the model semi-variogram h*
estimates minor voxel values almost exactly as trilinear interpolation, The results
derived from asing kriging in a neighborhood of 3 are siilar in quality 1o those
derived by neighborhoods 16 X and Y. This indicates that at least for this artificial
volume data set, the additional values in the 16 °X7 and 16 'Y neizhiborhoods add

virtually nothing of significance to the estimates,

Reeall that T was attempting to tailor kriging to model tricubic interpolation.

However, as the table and images indicate, withont changing any parameters except
g ging any |

neighborhood size, kriging also behaves like trilinear interpolation It appears that

kriging useed with this patticular dara. is more influenced by neighborhood size and

fueal drift assumptions rather than the semivariozram model. To test this further, |

*

exprriniented with semivariogram models of b and 2%, T obtained average differences

S-i0

Figure 5.6, Subdivision factor 4. Upper left. vaniila marching enbes. Upper right.
trilinear interpolation. Lower left. tricubic interpolation. Lower right.
kriging with 61 neigiiborhood. no rif:

of estitnated values less than .0005% . The Jdata was compared to data estimated by

the h* model. holding all other assumptions the <ame,

The most aceurate method is ditficult 1o determine because the estimated val-
ves are 5o close and because later images using <eanner generated medical data
indicate that tricubic and the corresponding kriging method with tricubic like as-
sumptions are not very aceurate. For artificial volumes, such as the one containing
this hyperbaoloid surface. the smoothest looking images are generated by the cell sub-

division teethod using tricubie interpolation or kriging at higher subdivision {actors.

The problem with considering only artifictal volumes is that they do not ad-
equately represent the world of medical image~. In paa.cular, there is no noise or
sharp contrasts in voxel values. The next section explores how estimation techniques

perform in medical image slice interpolation.

Figure 5.5, Subdivision factor 5. Upper left. vanilla marching cubes. Upper right,
trilinear interpolation. Lower left. tricubic interpolation. Lower right.
kriging with 64 neighborhood. no drift

5.2 Medical ymage siice inle rpoialion

Medical tmage <liee fnterpolation is a seenc iransformaiion®. In this section.
2D image data derived from MR ane CT <twdiex is transformed from v the slice
interpoiation. Slice interpolation creates logical slices between existing ones by esti-
maling scalar values in the "2 dimension. In this section. | demonstrate the use of
linear interpolation. tricubic interpolation. and kriging as the interpolation methods
usedd to estimate data values. Trilinear and linear are equivalent in this case because

Iinterpolate in ouly one dimiencion. 2. along a cell edge.

320 Dog heart, CT. The fiest study consists of 202 N 132 pixel CT slices
of a dog’s heart. see picture in figure 5.04. The goal is to rreate o new slice between
slices 11 and 42, The top four images in the picture are the original data slices,

The remaining linages are attetpts to estimate a logical data slice between the two
» - o

“Reeail that seene space s the data derived fronn neshieal imaging modalities i Herman and
Udupa's terimnology {sev chapler twei

-t
¥

——

[

TR

Computational cell being
processed

t i I
1 [}]
] 1)
' T (A i
- - -~ !
d J Cd '
1 t, 1, -’ .
| "_1 - _at _" - - i
» ’/ 1 ,/ 1 ,/ 1
LI LI 1A
nh32 - PR DU MR R :
32 sample L I e 1
values z z z

Computational cell being

processed
1
1 ¥ |
[l 1 i ' | g
[} t) N ,.r N
] 1]))
/"-—‘;"-"_ - t’___
-~ - 4 '
7’

. :
nhl6x - 16 sample !
values in 'X° nh16y - 16 sample
direction X values in 'Y’

' direction
]
$-1-

Z :
1

. .-
X - nhl6z - 16 samnple
X values in 2’
X # - | - o direction

e - Sample values
contributing to estimation

Figure 5.8. Kriging neighborhoods, nh32. nh16x, nh16y and nhl6z

Figure 5.9. Kriging estimation. subdivision factor 2. neighborhood 32. Upper left,
no drift. Upper right. local linear drift. Lower left. image difference
of upper right from upper left. Lower right. image difference of upper
right image from f2tricubic2.

—ha R

Figure 5.10.

o Sl DONap it atendnr® iy LUEE PR 2 LT AN

Nt estBaus e T niiby o eN

Kriging estimation. subdivision factor 2. neighborhood 16x. Upper
left. no drift. Upper right. local linear drift. Lower left. image differ-
ence of upper right from upper left. Lower right. image difference of
upper right image from 2trilinear2.

TR

LS,

Figure 5.11.

Al pitPatio 1 u

Kriging estimation. subdivision factor 2, neighborhood 16y. Upper
lett. no drift. Upper right. local linear drift. Lower left, image differ-
ence of upper right from upper left. Lower right. image difference of
upper right iimage from f2tricubic2.

516

Py sm o ARA PP et

)X

ni eI oty u

Figure 5.12.

LTy

Kriging estimation. subdivision factor 2. neighborhood 16z. Upper
left. no drift. Upper right. local linear drift. Lower left. image differ-
ence of upper right from upper left. Lower right. image difference of
upper right image from {2trilinear2.

PP 05

Figure 5.13. Kriging estimation. subdivision factor 2. neighborhood 3. Upper left,
no drift. Upper right. local linear drift. Lower left, image difference
of upper right from upper left. Lower right. image difference of upper
right image from f2trilinear2.

middle images in the top row, using linear and tricubic interpolations and kriging

(in various forms). Table 5.3 presents results pertaining to these images.

Notice in the picture the image generated by tricubic interpolation is inaccu-
rate. The imazges produced by kriging with neighborhood 64 are also inaccurate and
according to the comparison in the table. estimate values similar to tricubic interpo-
Istion. These inaccuracies are possibly caused by two reasons. First, the estimation
functions might be accounting for values that should not be influencing the esti-
mation. Second, the assumption of cubic variation might be invalid. Nothing can
be changed with the tricubic interpolation function to prevent these inaccuracies.
However. parameters in the kriging process can be modified to prevent them. These
parameters are neighborhood size. drift assumptions. and the semivariogram. In this

study. 1 only modify the drift assumptions and the neighborhood size.

Notice that except for kriging with neighborhood 16 'Z’, kriging with smaller
neighborhoods estimates values closer to trilinear than to tricubic, and gets the
closest match to trilinear with a neighborhood of 8, assuming local lincar drift.
Ordinary kriging with smaller neighborhood sizes of 16 and $ produces significant
crrors in the estimated values. However, universal kriging (local drift assumed)

corrects these errors.

5.2.2 DBaby head. MRI. The second 2D medical image study (see figuie 5.15
consists of 166 X 166 MR1 slices of a three month old baby's head. Interslice thickness
is 4 mm. The goal is to estimate a new slice between slices 31 and 32. The original
slices again are in the top row and the second row shows slices are derived by linear

and tricubic interpolation. All others are different forms of kriging.

Although all the estirsated images (except krigenhSnodrift) look almost iden-
O (=) g
tical. an examination of the estimated values reveals that estimations in this study

are similar to those in the dog heart study (see table 5.4).

5.3 Mcdical volume cell interpolation surface crlraction

The final series of images con st of a 3D smface extracted from 60 human
vaby head MRI data slices. The 2D slice dimensions are 128 pixels X 128 pixels
and the iso-value is 43. The surface methods [use are the vanilla marching cnbes
(fignre 5.16) and cell subdivision. T .ur the cell subdivision technique. | use a subdi-

vision factor of 2 in the "7 dimension and 1 in both the "N and Y. This has the

5-19

Table 5.3. Comparison of dog heart CT estimated values.

! values largest avg | avg diff

compared est diff —

Image with value of 256

| aiff values %

krigenh64.0drift | krigenh64linear .6229 0196 0077
krigenh6linear tricubic 41292 1365 0533
krigenh64linear linear 18.0780 | .6781 .2649
krigenh32nodrift | krigenh32linear 9815 0416 0163
krigenh32linear tricubic 12.1747 | .5519 21506
krigenh32linear linear 3.2616 1295 05006
krigenh16xnodrift | krigenhl6xlinear | 30.0089 | 1.3080 | .5109
krigenhl6xlinear tricubic 12,4780 | .5407 2112
krigenhlGxlinear linear 2.2749 0785 0307
krigenh16ynodrift | krigenh16vlinear | 70.8097 | .9918 3870
krigenh1Gyvlinear tricubic 12.7687 | .5527 2159
kiigenhlGvlinear linear 3.0524 1129 0441
krigenhl6znodrift | krigenhl6zlinear | 24 5295 | .4502 1759
krigenhlGzlinear tricubic 2.7525 125 0439
krigenhl6zlinear linear 17.1736 | .6742 2634
krigenhSnodrift krigenhSlinear | 203.1685 | 10.8014 | 4.2190
krigenhSlinear tricubic 14.4007 | .5639 2203
krigenh8linear lincar 2923 .0091 0036

Table 5.4. Comparision of babv head MRI estimated values

values largest av, |avg diff
compared est diff i
Image with value of 256
diff vajues %

krigenh64nodrift | krigenh64linear | 1.8551 0571 0223
krigenh64linear tricubic 6.7329 3772 1473
krigenh64linear linear 23.0072 | 1.4960 | .5844
krigenh32nodrift | krigenh32linear | 3.4845 .0932 .0364
krigenh32linear tricubic 17.1510 | 1.0481 | .4094
krigenh32linear linear 5.1335 2807 1097
krigenh16xnodrift | krigenh16xlinear | 96.5233 | 3.4776 | 1.3530
krigenh16xlinear tricubic 17.3192 | 1.0851 | .4239
krigenh {6xlinear linear 4.2738 .2252 0880
krigenh1Gynodrift | krigenh16yhnear | 70.1153 | 2.5202 | .9845
krigenhl6ylincar tricubic 174163 | 1.0853 | 4239
krigenh16yvlinear linear 5.2594 2249 0878
krigenh16znodrift | krigenhl6zlinear | 21.8722 | 1.0342 | .4040
krigenh16zlincar tricubic 4.1201 2519 0984
krigenh16zhinear linear 21.4664 | 1.4106 | .5510
krigenhSnodrift krigenh8linear | 227.1227 | 16.3677 | 6.3940
krigenh8linear tricubic 17.9036 | 1.1631 | .4543
krigenh8linear linear 13859 0282 0110

Fignie 508 Dog heart £7 medical inmage dice interpolation, Create new slice

between shices 11 and 120 Window titles depict type of estimation

petformed.

effect of performing the volume pre-processing operation of slice interpolation. The
estimation techniques empioyed are trilinear and tricubic mterpolations and krie-
ing. The Liigiug assumptions are focal limeat drift, a neghborhood of 8 and the
h* model semivariozram. s can be seen In the pictures theures 317, 5 18, and
5.19). the maccurate estimates of tricubic interpolation in the volume pre-processing
operation significantly affect the final reconstrneted swiface. Trilinear interpolation
and hiteing estunation technigues produce iimages without the obvions imaccnracies,
The images produced by vanilla marching enbes, trilinear intetpolation and kiiging
look very simiilar to each other. However. ditference images between then indicate
there are <ienitcant differences For example, fignre 5.20 <hows ihe pivel diffetences

between the images senetated by nsing tulinear interpolation and hiieing

4 Chapter summairy

~'
-

Fis this chapter 1 presented the resulis obtained by implementing the thiee es-
timatien tedhniques, trienbie interpolation, tilinear interpolation and hrizime. First

presecied were images depieting a hypearboloid surface artibcaily embedded inoa |

Fienre v in0 Baby bead MRT medica imaee <hice nterpolation. Creare new Slice

betwers <hees 32 and 30 Wando o tefes depiet tupe o estination

, ,
periogined,

, . C, e .
Fromre 3 0o Babe idvoso cabine 10 Vasithy VMarehnne Cebee

oeall
Jreallon

Fieure 5,10 Baby <kinaso-value 13 Cell Subwdivision, hnemng

o htthrug fedf e

Fronge 5200 Babn shinJhffetence inage between nmages produced by tiilinear in-

terpolation and kitoine

X by 4 *" by 4 Z volume. The ambiguous cell cases in the volume were removed in
all cases by cell subdivision, regardless of the estimation technique employed or the
subdivision factor. These images demonstrated that kriging is very flexible. That
is, modifying the neighborhood size and assumed local drift significantly alters the
way kriging estimates values. Larger neighborhood sizes of 64 and 32 cause kriging
to behave like tricubic interpolation. regardless of the assumed local drift. However.
at neighborhood sizes of 16 "X, 16 'Z’, and 8, kriging with local linear drift behaves
almost exactly as trilinear interpolation. The use of universal kriging was essential
at these lower neighborhood sizes for correcting inaccuracies produced from using
ordinary kriging. The best appearing images in the artificial volume occurred with

tricubic interpolation and kriging tailored to behave like tricubic interpe’ ‘ion.

Different results were obtained by estimating 21 medical data slices between
two existing ones. At neighborhoods of 16 "X’ 16 'Y’ and 8, kriging estimated more
like linear interpolation than tricubic interpolation. Again, the use of universal krig-
ing was critical for correcting gross inaccuracies produced by using ordinary kriging.
The most significant result in these studies is that tricubic and kriging tailored to
behave like tricubic, estimates values poorly. Little can be done to tricubic inter-
polation to fix these inaccurate estimations. It inherently assumes a cubic variation
and uses 64 sample values for an estimate. However, kriging can be modified to
overcome thesc inaccuracies. 1 did this by 1educing the neighborhood size. The best
image in the study was obtained with a neighborhood size of § and local incar drift.
This image may not represent the best estimated values however. The best estimates
can only be derived by doing a structural analyvsis of the data to determine if the
data is isotropic. to find a possibly better model semivariogram, and to determine
the optimal number of sample values. Furthermore, the optimal neighborhood size
may not be 8, 16. 32 or 64.

Finally, I presented a study of images derived from 60 MRI slices reconstructed
into a 3D surface representation. This study demonstrated that tricubic interpolation
inaccurately estimates intra-cell scalar values for the purpose of cell subdivision
surface extraction - at least for the data set I analyzed. Both trilinear and kriging.
modified to behave more like trilinear than tricubic interpolation. produced much

better appearing images.

Showing that kriging can estimate like standard deterministic methods is im-

portant. It shows that just guessing the kriging parameters produces results as well

0-26

as those already used in practice. This means that by using kriging, the estimation is
no worse than the standard deterministic methods. However, kriging theory states
that kriging will produce the best estimates if properly applied. Properly means
performing a structural analysis of the data to determine a model semivariogram

that models the spatial correlation of sample values.

Since kriging subsumes the other deterministic methods investigated, kriging
alone could be used if different interpolation methods were desired for one rendition.
This dynamic choice of an estimation technique would be most useful for interac-
tive applications. where different estimation techniques might be useful at different
resolutions. For example, consider the baby face skin rendition shown in this chap-
ter. Trilinear interpolation or kriging tailored to behave like trilinear both appear to
be good estimation techniques for this particular viewpoint and subdivision factor.
However, suppose a radiologist is interested in viewing just the nasal area. Trilin-
ear interpolation with this subdivision factor may not provide an accurate enough
estimation for the detail required for a close up examination of this region. The
subdivision factors could be adjusted as well as kriging parameters such as neigh-
borhood size. semivariogram and local drift assumptions. to provide more accurate

estimations for closer viewing.

VI. Recommendations and Conclusion

This chapter first discusses recommended research using the 3D imaging tech-
niques implemented. Fol'owing that, future kriging research applied to 3D imaging

is suggested. Finally, a brief conclusion to the thesis is presented.

6.1 3D Imaging Recommendations

The 3D imaging methods implemented in this work can be used in the {ol-
lowing ways to aid future research. First. since the marching cubes implementation
processes cells, it can be used as a foundation for anyv of the cell-bv-cell processing
techniques, e.g.. (46), (50). and (32). Although the implementation currently main-
tains only four slices in memory at once. it can be modified to maintain all or any

portion of the volume in memory simultaneously.

Another topic is different approaches to cell disambiguation. The simplistic
method of facial averaging in the soft objects method (52) can be modified by apply-
ing different estimation techniques to estimate the center point of ambiguous faces.
This was the focus of Wilhelm and Gelder’s work (50). The software implemented in
this research does not resolve ambiguous cells. Subdividing alone does not gnarantee
disambiguation like facial averaging does. The reason for this is after subdividing an
ambiguous major cell. minor cells can be ambiguous. To obtain a smoother looking
surface as well as resolving ambiguous cells. the best method would be to subdivide
and apply a method like facial averaging to completely disambiguate minor cells. 1
suggest that any future research begin by implementing the facial averaging tech-
nique applied to major and minor ambiguous cells. Following that. the gradient con-
sistency heuristics should be implemented for comparison. Finally. kriging should he
investigated as a facial center value estimation method. Since my tessellate routine
is shared between vanilla marching cubes and cell subdivision. estimating ambiguous
center face values and disambiguating can be applied easily to both major and minor

cells.

I a fast surface extractor is desired. several changes must be made to the
implementation. The main bottleneck in the system is the 1/Q overhead incurred
while writing and accessing geometry files on disk. Storing points and normals in a

memory list and then passing them straight to a renderer should drastically cut the

G

processing time. Also, utilizing a hardware renderer should decrease the processing

time even more.

The cell subdivision code could also be re-structured to operate in parallel.
Since only four data slices are ever analyzed at a time, the parallelization could be
partitioned by sets of data slices. Each set could be processed on a different processor
to gencrate a portion of the iso-surface mesh. Rendering could also be partitioned

among processors by the same logic.

6.2 Kriging Recommendations

The kriging estimation methods impleniented in this work can be modified and
enhanced to investigate further uses in 3D imaging. The results depicted and de-
scribed in this thesis indicate scalar value estimation needs to be investigated further.
Tricubic interpolation does not estimate values accurately in the medical data sets 1
analyzed. This study demonstrated that kriging is very flexible and can be modified
to behave like different estimation methods, including both tricubic interpolation and
trilinear interpolation. A research effort should be conducted to determine how to
make kriging find the best estimation as the theory indicates it should. This requires
a structural analysis of the data to determine the characteristics of the regionalized
variables - support, continuity, and anisotropy. Continuity of sample values exist
in certain portions of the human body such as organ and bone. What needs to be
determined is how to find these zones of influence. Finding the zone of influence
determines the kriging neighborhood and the type of model semivariogram to use.
In addition to the model semivariogram. I also made assumptions about the drift.
the neighborhood, and isotropy. In some cases. such as a neighborhood of 64. the
data might be anisotropic. If assumption of isotropy or the model semivariogram was
wrong. fixing them according to a structural analysis should make kriging produce

“optimal” estimates.

Before structural analyvsis can be done however. certain tools have to he built
or modified from existing ones. Several structural analysis tools have been built at
AFIT for use in 2D data sets. These would have to be modified for 3D use. The
tools include one that calculates the experimental variogram. It currently estimates
the semivariogram in only two directions (to check for anisotropy). This would have
to be modified to estimate semivariograms in other directions for 3D. A procedure

exists that determines parameters for a semivariogram model. There are only a few

G-2

models available in the tool. so model implementation is anuther area ~f research as

well as modifying the existing ones for use in volume data sets.

6.3 Conclusion

This research investigated diflerent methods for estimating scalar values within
computational cells and in the volume pre-processing operation of slice interpolation.
These methods include the deterministic linear. trilinear and tricubic interpolations
and the geostatistical estimation technique, kriging. Iso-surfaces were generated
by marching cubes and another cell interpolation method called cell subdivision.
The estimation techniques were used to estimate intra-cell scalar values in the cell
subdivision method. They were also used to estimate logicai data slices between
existing ones for the velume pre-processing operation of slice interpolation. This

research introduced kriging as an estimation technique for use in 3D imaging,

I demonstrated that kriging estimates values as accurately as deterministic
tricubic interpolation - shown to be very accurate in estimating intra-cell scalar
values in artificial volumes. [also showed that tricubic interpolation can perform
poorly in medical data sets and that kriging can be modified so these inaccuracies

do not occur.,

The erroneous results produced by tricubic and several of the kriging variations
could be caused by invalid assumptions about the neighborhood influencing the es-
timation and the variation between sample values. Neither of these factors can be
modified in tricubic interpolation: however. they can be in kriging. I only modified
the neighborhood size and local drift assumptions. These modifications demons: rave
that kriging produces better results than tricubic interpolation. The data variation.
which is modelled by both the semivariogram and the local drift, needs to be deter-
mined by a structural analysis of the data. My goal was to demonstrate that kriging
is capable of being modified to behave like other deterministic interpolation tech-
niques and to prevent inaccuracies. Since 1 did not do a structural analysis and just
assumed the data variation. the results show that kriging is very robust. Tt is robust
because even though 1 guessed several of the kriging parameters. I was able to make
kriging behave like three other standard deterministic functions and etter in some
cases. Following a structural analysis, kriging should provide the best estimation in

comparison to other known estimation methods.

6-13

The ability to modifv kriging to behave like any other deterministic method
is important. First it shows thau kriging can be modified to behave like standard
estimation techniques. so if they are desired. kriging does no worse. That is, krig-
ing subsumes the deterministic methods 1 investigated. Also, kriging provides the
capability to dynamically change the estimation technique. This capability could be
used interactively to adaptively refine the estimation for different resolutions of data

and/or for different viewpoints of the rendition.

Kriging is considered the optimal estimator and since accuracy is important in
3D medical imaging, exploring the use of kriging to estimate values is worthwhile. Its
use has mainly been to estimate values within environments such as mining. gas and
oil exploration and other geo-science disciplines. Further research is critical to prove
the usefulness of kriging in 3D medical imaging. This research is also applicable to

any 3D imaging methods that perform estimation.

G-

Appendix A. Vanilla Marching Cubes Data Flow Diagrams and

Program Description

A.1 Data Flow Diagrams
A.2 Program Description Language Staterents

A-1

weadel(1XU0)) saqny) Sutyorey efjiuep 1y aandi]

418VvL 35V0 962

//

. \Mmowcc"

S801110A O }

SH01S pPoIR0dIs)Uul

S3ganNs SpURBWWOD

an

L)
)
D

ONIHOHYIN |

VTTINVA
/

o

m@.@g\

ERIE
AH1INOHD

vivQd
a13i4

gv 1vOS ag

£y

dq a7 dog, saqn) Juiydrepy epjues 'TY 2y

__3718v1 3SvO gz

S80I} 16N 1D wm.__,\\.-\x\\\\\\\\\\\

ll...ll\l\..\s\.\\\\..» e it .l\.\c\\\...\.\\l\\.
T ——880IpUI
o — !

Oey) o(1-elED !
eul|
puswwoo

88.ied

01800| |8

s|ewhou
ue OJul -
S] L_MQ i - iep/ spueuuod
7. A 1008 681) %0 i]
5 H3sn |
WoBE Jstewdou 1epesy]
Sag Ou J pBo.
~ 31UI0 N/q.\
ssibugin , % ,
SO 500G .
SS0201d Agee_ V1V
. - - GV
AHLINOI9 - | HYI¥0S dg |

v-v

@ _s921s ssaooad , sagqn) Suiypaely efjiuey "¢y Sty

Nl Sy

378vL 3SVD %u,

= o|ge] \
/ slewiou g dnX0o0|
A 10100 pateod ey \UOHBISUBL SO01 A 10,751]
2 Siyiod duoul QQCQD ‘- iy
\/ \NQ_DC_
@q% > —
sesis I N
Usom18Q \«\\ U o

Yoiruj

1%
S|BW JOU
9 S1UI00
3909@ JUl
a

So

Sjew spu g sjuiod a

—_— ze/\

@@o"go> M

o0 | VivQd

d m_mE__oc 28 _w_ -
VIVA dN L QIBINIIES z< _<

1
!

G-V
A .s991[s usom}oq ouarwl | soqn)y Suiydaefy efjiue pry oangi g

'

-b.wc.“ ,,- SIS 319v1L 3SV0 962
w_my: Hel¥ A

\

m:__c_o:. /
pore i o \ SOOI I0A
/\

oc_oru,AJ

-

“
M %
_ A
*

G Q.. \// mﬁﬁm» —— m
S1ew 1ou ﬁ@v %
9 S)utod 2108 Yo
peIRj0dIBUI & 2 SO 4
106 9011 J8A 10 181] 18|N0O|BO- 940 X9pU! ¢9v /
h Eo: mmo_to> jO N 2580 .
- 18!) enbiun anbiun m,
sre\uJou SUIUIBIG
® SI0¢ felejodisyyr VT \\

XOPuU!

B

L9V
[ed
40} Xapui

81BINDIED qﬁ//

{ sSieuwiou
2 STAGG
NCING

o
m;z:h&:
o sufod

i

VIV dNL

Primary Data Structures :

*planel4] - Pointers to four arrays holding original points and scalar values.
Need four in memory to calculate normals using gradient operator.

*ixPlane[2] - Pointers to two arrays holding pre-interpolated "x” points for cells
between two slices.

*ivPlane[2] - Pointers to two arrays holding pre-interpolated v’ points for cells
between two slices.

*1zPlane - Pointer to an array holding the pre-interpolated 'z’ points for cells
between two slices.

“Gplane(2] - Pointers to two arrays holding calculated normals at cell vertices.

~gxPlane(2] - Pointers to two arravs holding pre-interpolated 'x* normals for
cells between two slices.

“gyPlane[2] - Pointers to two arrays holding pre-interpolated 'y’ normals for
cells between two slices.

*gzPlane - Pointer to an arrav holding pre-mterpolated ‘z” normals for cells
hetween two slices.

256 case table.
mterpolated points translation - able. Indexed by cell edge vertices.
interpolated norinals translation table. Indexed by cell edge vertices.

isovalue array.

A2

parse command line (“Top Level™ DEFD. newline Bubble 1)

while no more command line arguments supplied by user

switch (command) {
case : jsovalue flag {
read isovalue argument:
}
case @ shell flag {
read file name argument:
read isovalues from file. Enter isovalues into an

array of isovalues:

A6

case : window flag {

read range of isovalues:

set as first and second elements in array of isovalues;
case : boxdlag {

set box flag to true:
case : list of_geom files flag {

set list of genm files flag to true:
case : path_flag {

read path argument:

set path variable to argument, overriding default path:
case : data_file flag {

read from control file to get large data file information

such as image dimensions. interslice amount.input data path. and
number of slices.

[“else default is 1o read from an artificial volume data file:™/
} /™ switch */

} /* while 7/

41.22

-

read header info (“Top Level” DED. Bubble 2]

check data_file flag and open appropriate file:

retrieve X and v:

if data_file_flag indicates an artificial volume. retrieve z dimension:
else if large date files. retrieve number of slices from control file.

/™ Number of slices becomes the 7, dimension */

A.2.3
allocate memory storage ("Top Level” DFD, Bubble 3)

Allocate memory based on dimensions;

/* Example memory usage for arrays holding original and
intermediate slice data.

plane arrays consist of structures with 4 floats.

all other arrays besides the isovalues array has 3 floats per structure.
Assume 256X256 medical images as input.

4 plane arrays x image size x 4 floats = 4 x 256 x 256 x 16 = 4MB
12 normal and interpolated arrays x image size x 3 floats =

12 x 256 x 256 x 12 = 9 MB */

A.2.4
process slices (" Top Level” DFD, Bubble 4)

A.2.4.1
read slices ("process slices” DFD, Bubble §.1)

Initially read in 3 slices into plane|0].planc([1],plane(2]:

/* Done to process border case, marching between plane[0] and plane{l]. */

Then in main for loop, read fourth slice. march :

A.2.4.2
sel delta distances (“process slices™ DFD. Bubble 4.2)

/” done after reading in first three slices. before main for loop ™/

ANX = abs(planc|0]— > 2 — (plane{0] + 1)— > x):

AY = abs(planc|0}— > y — (planc[0] + rdimension)— > y):

AZ = abs(plane[0]— > z — plane[l]— > =

/* note. this assumes the delta distances will not change between slices

and within each slice, i.e.. assumes a regular data grid. */

A.2.4.3
calculate normals at cell vertices (“process slices™ DFD. Bubble 4.3)

Initially calculate for cells between plane|[0] and plane|[1]:
In main for loop calculate for cells between plane(l] and plane(2]:

In final case. calculate for cells between plane[2] and plane[3):

A.2.4.4
pre-interpolate points & normals ("process shees™ DFD, Bubble 4.4)

Initially calculate for cells between planef0] and plane[l]):

In main for loop calculate for cells between plane[l] and plane[2}:
In final case, calculate for cells between plane|2] and plane[3]:
Method : Use same comparison as in marching cubes for loop -
If a points’ scalar value is greater than the isovalue, it’s a 1-voxel;
if one voxel is classified as a 1-voxel and another adjacent

voxel of the cube is a 0-voxel, then interpolate along the

edge and store in the appropriate array (which array depends on edge):

A.2.4.5
update translation lookup table (“process slices™ DFD. Bubble }.5)

Prior to marching cubes (cells) between two data slices. re-establish
pointers in translation lookup tables;

/* These pointers must be re-established because the original data
shee pointers and the normal slice pointers are swapped after every
new slice is read in from the data file. The translation tables are
indexed by the cell edges and the entries contain pointers to the first
cell's edges. When the tables are nsed. an offset from the bepmning of
the arravs is added to the pointers to access the correct cell.

For example i lu[5][7] = iz Plane + xdimension + 1 establishes the

absolute cell address for the interpolated point of cell edge 5-7.

A28
march between slices ("process slices™ DFD. Bubble 4.6)

/* input are pointers to two arrays of consecutive slices (planes). */
/* main marching cubes loop */
for(zy = 0;iy < ydim; iy 4+ +)
Jor(ix = 0;ix < adim;ia + +) {
establish offset from plane pointers to lower left vertex of
current cell;
establish all other cell vertices from lower left vertex;
calculate index for cell ("march DFD”, Bubble 4.6.1):
determine unique case ("march DFD”, Bubble 4.6.2);

switch (unique index) {

for each of the 15 unique cases do : |
output stats ("march DFD”, Bubble 4.6.3); |
get list of vertices from pre-calculated |
table ("march DFD. Bubble 4.6.4) ' |
get interpolated points & normals ("march DFD”,
Bubble 4.6.5)
output points & normals ("march DFD”.
Bubble 4.6.0)

} /7 end switch */

} /* end for ix ~/

A.2.5.1
caleulale tndex for ccll ("mareh™ DFD. Bubble }.6.1)

test each cell vertex to see if it's scalar value is greater than the
isovalue(s);
If a vertex is so classified. boolean OR a flag with that vertex #:

Result of flag after all vertices are classified is the index into the

256 case table.

A.2.5.2
determine unique case ("march™ DFD. Bubble 4.6.2)

Access 256 case table with cell index. retrieve unique case #;

A.2.5.3
oulput stats ("march DFD”, Bubblc 4.6.3)

Tallv unique case #, ambiguous case #. # of triangles and # of points:

A.2.5.
get list of vertices from pre-calewlated table ("march” DFD, Bubble 4.6.4)

Access 256 case table with cell index to retrieve list of vertices;

Set a temporary pointer to vertex list array;

A.2.5.5
gel inlerpolated points & normals ("march”™ DFD, Bubble 4.6.5)

/¥ For each unique case. the cell edges for interpolation were identified

and appropriate triangulations were selected. For example. unique case

3 requires interpolations along edges 0-4. 0-2, 1-3, and 1-5.

Two possible triangulations can be chosen, but would not alter the image.
so the choice 15 arbitrary in this case. Now that the cell edges to
interpolate along are known. the translation lookup tables can be accessed
with the offset calculated above. */

Access translation lookup table to retrieve pre-interpolated points and

normals along cell edges.

A.2.5.6
oulpul points & normals ("march™ DFD. Bubble /.6.6)

Output points and normals to a temporary points file;

Output line numbers specifving points for triangles. Place in temporary
triangles file:

/™ temporary files used because AFIT geometry files requires all the

points be listed first. followed by the point line numbers for triangles.

A-11

4.2.6
write box ("Top Level” DFD, Bubble 5)

/™ only applicable to artificial volumes and only visible when viewing
triangle mesh */
If boxflag entered by user. write rectangles forming a

box surrounding triangle mesh to temporary files:

A.2.7
oulput gcometry file ("Top Level™ DFD. Bubble 6)

(‘atenate the two temporary files. with the appropriate header and

trailer information attached :

A.3 Data Dictionary For Data Flow Diagrams

Data Dictionary Symbology:
is composed of

+ and

() optional

{} iteration, {}+ indicates 1 or more. default. zero or more.
* * comment

256 CASE TABLE = indices + {list of vertices}+

+ the pre-calculated table of cell vertices for the 256 different
cell cases. Each of the 250 cases contains a mapping

to a unique index and a list of vertices corresponding

to the unique index. #

3D SCALAR FIELD DATA = # artifical volumes. medical image files.
or scientific volumme data. »

box = * lines drawn around dimensions of image generated from
artificial volume. +

commands = (isovalue flag) + {shellflag) + (window_flag) + (box_flag)
+ (list_of_geom files_flag) + (path_flag) + (data_file_flag)

* user must supply one of isovalue flag. shell flag or window flag
isovalue flag - argunment is a single isovalue.

A-12

shell flag - argument is a file name. File contains list of iso-values.
window_flag - argument is a range of isovalues. e.g., -w 30.0-40.0
box_flag indicates a box will be drawn around image - only used for
artificial volumes such as embedded math functions. *
list_of_geom files flag specifies that multiple geom files will

be generated. ™

path_flag - specifies path for output geometry files. Default is the
directory path of the source code. *

data_fileflag - specifies type of input file(s) - 3D SCALAR FIELD DATA.
Can be medical or artificial volumes. Artificial volume data is default
and requires re-directing stdin using j. For example

delta_distances = * The lengths of cell edges. *
GEOMETRY FILE = AFIT geometry file of points triangle specifications.

headerinfo = data_dimensions + number.of slices + (interslice.thickness) + (in-
tra_slice_thickness)

indices = maindndices + unique_indices * indices into pre-calculated 256 CASE
TABLE. %

interpolated points & normals = * points and normals interpolated along cell edges
from cell vertices to the isovalue(s) provided by the user. *

list of vertices = # A list of vertices is pre-calculated manually for each
case in the 256 CASE TABLE. and stored in the table. Each list contains
the eight cell vertices. ordered according o unique case ordering (following
the appropriate complementation and/or rotation(s)). *

points and normals = # points - The onginal points obtained from the 31
SCALAR FIELD DATA. normals - Normals approximated at cell vertices using
central difference gradient overators. #

slices = points + scalar_values

stats = tally_ambiguous_cases + tally main_cazes -+ tally unique_cases +
tallv_number_points + tally _number_triangles

triangles = points and normals

TLU = Translation Lookup Table
* Contains pointers to interpolated points and normals.
* see update translation table lookup PDL for more info.

F3

TMP DATA = tmp_points + tmpnormals + tmp_trianglespecs

Appendix B. Vamilla Marching Cubes

This appendix describes the implementation of the vanilla marching cubes al-
gorithm developed by Lorensen and Cline in 1987 (34). It is termed vain ia because
my implementation does not include any enhancements such as texture mapping,
geometric solid modelling. or disambiguation. The first part of this appendix in-
troduces the topic. Following the introduction. some background informatien about
decisions and about my implementation are discussed. Then. the main steps in the
implementation are listed. Next some background information on my implemen-
tation is discussed. Following this, use of the 256 element transformation table is
explained. After this. the cell edge interpolation method is presented. Then the
method to determine triangle normals is discussed. Then. modifications and en-
hancements made to the public domain marching cubes code is presented. Lastly.

comments on the format of the marching cubes output are discussed.

B.1 Iniroduction

The marching cubes algorithm (34) is a 3D imaging method that extracts a
surface of mterest from a 3D volume of data. The surface 1s represented as a 3D
triangular mesh and rendered by a standard polygonal based graphics renderer. The
algorithm processes cubes or computational cells. where a cell is composed of eight
voxels. four cach from two adjacent data slices. FLach cell is analvzed to determine

il the surface of interest intersects the cell. Triangles are generated within cells

B-1

that are found to contain a portion of the surlace. Surface detection within a cell
is performed by simple thresholding. If a cell vertex is greater than the threshold
value {iso-value). it is assigned a one (considered a 1-vertex). else it is assigned a
zero (0-vertex). Vertex classification in this manner yields 256 possibly different
cell classifcations. Lorensen and Cline reduced this to 15 unique cell cases. Tri-
angle vettices are determined by linearly interpolating the voxel 3D points to the
isovalue between 1- and 0-vertices. Normals are similarly calculated by interpolating

previously derived cell vertex normals.

B.2 Background

In this research, I imiplemented 2 version of the marching cubes algorithm
before deciding on a thesis topic. 1 then explored the use of kriging to somehow
improve the surface extraction. I read Wilhelms and Gelder’s (30) work on intra-cell
scalar valuc estimation. From there it was simple to sce how kriging could be used.
But, I still investigated other surface extractors to determine the history of marching
cubes and to see whether kriging could be applied in other areas. This led me into
the arvea of 3D medicai imaging, fiom where marching cubes as well as many other

3D imaging algorithms were derived.

As seen from chapter two. the two primary surface methods are cuberille hased
and cell interpolation. The cuberille-based approaches were developed by Herman.

Liu and Udupa in the late 1970°s and early 1980's. In contrast {o the cuberille-based

B-2

methods. the «ell interpolation metlods are more hueristically based. Two of the
cell interpolation algorithms are Lorensen and Clines” marching cubes (34) and (8)
and Wyvill and McPheeters soft object algorithms (52). The latter two methods
are called cell interpolation techniques because they interpolate polvgonal vertices
to the isosurface boundary along cell edges, where a cell is a paiallelepiped with
eight adjacent voxels as vertices. Cells are also known as computational cells. The
important distinction between voxel-based surface extractors such as cuberille based
models and cell-Lased surface extractors is the fo ‘Iner assume a constant scalar value
throughouv the voluine rlement (the voxel). wherea: the latter assume a varyving

scalar value throughout cells.

After reviewing the 3D imaging literature. I chose to continue exploring the
cell interpolation methods for the following reasons. First. I did not wish to develop
a specialized m. vu i which would linnt its use ot fiare research to potentialiv onl
one application. Cell interpolation methods have been widely used in both medi-
cal imaging and scientific visualizaticn. \dd cioally. the graph-theoretical metiods
used in the cuberille model are very complex to implement and often vield resyJts
that are jagged in appearance (because of the 21 surface display unit used - o cube
face) without special shading procedures used (1), In contrast. the cell interpola-

tion methods are much simpler to understand and implement and can vield very

high quality images withont special shading methods used. bevond the tiaditional

approaches such as Gourard or Phong(13). Most importantly, since estimation is a

critical part of 3d visualization, the ability to estimate varying scalar values within
a cell and visualize direct results of the estimation process provides the impetus to
investigate improved estimation methods. The work previously done by Wilhelms
and Gelder (50) provides a strong framework within which to visualize new estima-
tion methods. The work done here should have potential venefit to many other 3d
visualization methods. since processing cell-by-cell is common to other methods such

as direct volume rendering (46) and (51).

The main drawback of the cell interpolation approaches is the simplistic method
of segmenting the object of interest {rom the remainder of the volume. This method,
termed thresholding. makes a binary decision at each voxel - does the voxel con-
tribute to the fnal image or not? Volume methods do not make such a simple
decision, but rather, allow voxels to contribute percentages of different character-
istics (such as color. and density) to the final image (33) and (16). Again. the
emphasis of this research is not to compare volume and surface methods. but to

rompare estimation techmques applicable to both methods.

I began my work with a public domain version of a basic marching cubes
algorithm. This version only set up the precalenlated table and performed the in-
terpolation step. but did not do the most difficult task. that of computing normals
from gradient information. It basically did steps 2-5 in the list presented in the next
section. but as noted later. I re-wrote most of the code to make it mote understand-

able and modifiable. As stated in chapter 2. the marching cube algorithm “marches”

B

computational cells between two slices of data. See figure B.1 for a pictorial repre-
sentation of the marching. The slices are labelled according to the order of arrays I

maintain in the implementation.

B.3 The Man Steps in the Implementation

Lorenson and Cline (34) described the marching cubes algorithm in 1987. The
significance of their algorithm was that it used 3D information to construct interslice
polygons to represent the iso-surface and to approximate normals for shading. The
following is a list taken from the 1987 article, which denotes the steps performed in

the marching cubes algorithm:

1. Read four slices into memory.

2. Scan two slices and create a cube from four neighbors on ore slice and
four neighbors on the next slice.

3. Calculate an index for the cube by comparing the eight density values
at the cube vertices with the surface constant.

4. Using the index. look up the list of edges from a precalculated table.

5. Using the densities at each edge vertex. find the surface-edge intersec-
tion via linear mmterpolation.

6. Calculate a unit normal at each cube vertex using cential differences.
Interpolate the normal to cach triangle vertex.

7. Output the tnangle vertices and vertex normals,

The remainder of this section discusses how some of the above steps were -
plemented. 1 do not discuss the steps that are straightforward from an understanding

of the basic algorithm deseribed in chapter two of the thesis.

B

J L L LS

S S L S S

X

S

X\
\
xel i+1 |+l\l\+l

voxel i+1,j.k

\

voxel i,j+1.k

\

N

Z

0

Figure B.l. Computational cell (cube) marching ! etween

data

BB-6

First. I discuss the implementation of step 4 in the marching cubes algorithm.

B.4 Precalculated Table

Creating the pre-calculated table mentioned in step 4 is actually the first step
that must be done. This table contains 256 entries - one for each of the possible cell
vertex classifications. Each entryv also has associated with it a list of vertices that

map to a unique case number (that also accompanies each entrv).

To create the table. 1 first analyzed all the 256 possible cell vertex classification
cases to determine the 15 unique cases and mapped the remainders to the unique
cases (figures 2.6. 2.7, and 2.8 depict the unique cases). To simplify this process and
obtain accuracy. I reduced human error as much as possible. 1 used tinker tovs to
represent a cell. with labels attached to the corners and marked to indicate vertex
numbers. | also used a presentation graphics package to ountput 256 pictures of a
numbered cell with a numbered segmented rectangle below to hold the binary value
of the case (See figure B.2 (a)). 1 analyzed each case by marking the appropriate
numbered labels for the case. complementiug the vertices if necessary. and rotating
the cell 10 cotvespond to the classification of a unique case. Each entry in the 256
clement table contains the order of the cell vertices and the corresponding unique
case, The order of vertices corresponds ~) the order of those specified in figure 13.2

(a) (01 231567). The ordering is arbitrary but requires consistency.

8
1]
oy]
4.@---
0
(a)
g
C 17 0y 11 1) 1 b,
76 5 4 3 2 0

Case 94 (5E hex)

~1

6

Transform

(b)

Rotate

s

I
1
1
1
]

o

D

1

(c)

Unique case 23 (hex 19)

Vertex order 5 1 407362

Figure B.2. Example of cell mapping to a unique case

-1

2

3

An example of how the table is used will help in understanding its use. Assume
we have just marched to the next cell and case 94 (5E hex, 01011110 binary) is
encountered. The original orientation is seen in figure B.2 (a). In a case such
as this. Lorensen and Cline point out that “Complementary cases. where vertices
greater than the surface value are interchanged with those less than the value, are
equivalant” (34:165). Therefore, figure B.2 (a) is transformed to figure B.2 (b). which
when rotated, matches with the saine vertex classification as unique case number 25
(see figure B.2 (c)). The major table entry for case 94 contains 25 for the unique
case index and also contains the cell vertex ordering 514 0 7 3 6 2. Another table
called the translation lookup table is used to map case 25 inte triangles based upon
previously computed interpolation points along the cell edges, and uses the ordering
in the table in place of the normal ordering 0 1 2 3 4 5 6 7 (which is only used in

unique cases).

Step 5 1s another place where pre-processing before marching can occur to

speed up the algorithm.

B.5 Cel Edge Intcrpolation

Cell edge interpolation is the process that determines where the iso-surface
intersects a cell edge. The cell edge must have one voxel value gicater than the iso-

surface and the other less than the iso-surface for cell edge interpolation to occur

B-9

One area where marching cubes implementations can differ is when cell edge
interpolation occurs (step 5). My code interpolatesin a pre-marching step. That is,
every time a new scan plane (slice) of datais read in, it is immediately processed
to find the interpolation points along cell edges where the surface is estimated to
cross. This requires a total of seven arrays, each with the dimensions of a slice -
two for the original slice data, four for the x and y interpolation values for each of
the two planes forming the cells and one array for the z interpolation values. Two
x and y interpolation arrays correspond to each of the two slices of data that cells
will “march”™ between. Only one array is needed for interpolation points in the z
dimension, because of the geometry of the slices and the orientation chosen. This
can be seen in figure B.3. which depicts the correspondence between interpolated
points along cell edges and these arrays. The x,,’s represent points interpolated in
the x direction where. 7 corresponds to the i'th position in the array, Jj is the slice
number. either 1 or 2 (thus 2 x interpolation arrays). Notice the points only lie
along the cell edges in the x direction. The y,, points represent the same for the
v interpolation arravs. The z,'s represent interpolated points in the z direction. If
the iso-surface does not intersect a particular edge. that coriesponding entry in the
array will never be accessed.

The following is the interpolation formula used to find the intersection point
along a cell edge. This formula applies only along a single component (x.v, or 2)

since a cell’s edge lies onlv in one of the three coordinate directions.

slice 2

15
¥
1
]
42
]
: slice 1
I]
v ' A
. R . IL/F-
02 °* L,
1 /’ 1]
. 1] i .
02—, ; , computational
v ', ty Ce”s
----- [N 2 .
/, 4 4 ST —'\-5-1
, v A 1 ’ -
0 Yo J R
‘ z
’ ‘ 2 .
// ,/ I/ \ Y cell edge
/ 4 /
01 * 11 -~ 21
2
x.. denotes the i'th position in the
17 jub x interpolation array, where
j = 1or2andiranges from 0 to
(xdim * vdim) - 1
Yioo- i'th position in j'th ¥ interp array

Z i - i"th position in single z interp arrav

Figure B.3. Correspondence of interpolation arrays to computational cells maich-
ing between two slices

Given:
pl, p2 - the component points to interpolate between.
v1.v2 - the scalar value at points pl and p2 respectively.

iso - the target value interpolated to.

interppornt = ((iso —v2) * (pl — p2))/(v] — ©2) + p2

The translation lookup table is later used during marching to access interpola-
tion points in these arrays. The advantage of this pre-interpolation method is that
shared triangle vertices are guarantecd to be the same because only onc edge is ever
processed, which reduces computation time; whereas, during marching cach internal
edge is processed twice. However, the disadvantage is the memory required to main-
tain arrays that contain the interpolated points. Even more overhead is required for

this method to implement steps 1 and 6. which calculate the triangle vertex normals.

B.6 Normal Caleulations

My code produces the normals during the pre-interpolation step. The following
central difference gradient operator is used to estimate the outward direction of the

surface at a particular voxel (i.j.k) along the three coordinate axes (31:165) :

B-12

Golt,j. k) = (D(i + 1, j.k) — D(i = 1,4.k))/Aw
Gy(i,2.K) = (D(i,§ + LK) = Dli.y = 1,k))/Ay
G.(i,7.k) = (D(i,j, k +1) = D(d. j.k = 1))/ Az

D(i,j,k) is the density value at voxel i.j.k and Az. Ay. Az are the lengths of
the cell edges in the correspending component. Once the cell normals are estimated,
they are interpolated along cell edges to the iso-value using the same interpolation
formula used to find the triangie vertices. In the vanilla marching cubes algorithm [
handle boundary cases as special cases when determining the vertex normals. That
is. voxels along the border of the enclosing rectangular volume are assigned the

outward facing normal along the enclosing volume (see figure B.4).

B.7 Fires to Public Domain Code

The original code 1 started with was written to be fast (though it was prac-
ticallv unusable because it did not produce normals nor planar polvgons) without
regard to maintainability or nnderstandability. Therelore. I had to re-engineer a sig-
nificant. portion of it to obtain these software engineering goals. The miuin problem
the code had was that it did not maintain a standard logical order of the original
slices when reading them in from the data files. Only the interpolated planes were
swapped to maintain ordet. Planes in the code are the same as arrays corresponding
to slices. Planes are swapped to re-use the previously read slice for the next process-

ing loop of cells. Swapping planes is the same as swapping pointers. By swapping

B 13

l

Figure B. L

e

Pam
vl

tnc'osing volume

Beoundary case
Normral = (10,0 5.0 0)

Vanilla marching cubes example boundary cases in surface normal

estimatijon

B-11

all planes after each slice is processed. 1 cut the size of the translation table in half,
but it has to be re-initialized after each slice ;s processed. However. the code is much

easier to understand and modify.

B.8 AMarching Cubes Output

The triangles are output in the form of an AFIT geometry file, which expects
all the points to be listed first. followed by a list of polygons whose vertices are
indicated by referencing line numbers of the above mentioned points. The AFIT

geometry file is then used as input to a slightly modified version of AFIT's GPR.

The code for the vanilla marching cubes implementation was written originally
in 'C’, and consequently it was functionally oriented. It was later converted to C++

so it could interface with the C++. object oriented kriging code.

Appendix A contains data flow diagrams and program description language

statements for the vanilla marching cubes implementation.

b1

Appendix C. Cell Subdunsion Implementation

This appendix describes implementation details of the subdivision algorithm
in more detail than presented in chapter four of the thesis. First discussed is some
terminology to help understand the rest of the appendix. After that, the purpose
of cell subdivizion is presented. Then the cell subdivision implementation steps are

described.

C.1 Terminology

Before proceeding. I present some terminology that eases the following expla-
nations. I consider the initial computational clls in the main lov; as major cells (see
figure C.1). The newly created cells within a major cell. I term minor cells. Major
cells have the original voxels as vertices. so | consider minor cell vertices as minor-
voxels. Finally. T consider the arrays within a major sub-divided cell as mini-slices.

since logically they 1epresent input data slices.

(.2 Purposes of Ccll Subditision

The primary puiposes of cell sub-division are to disambignate ambignous cell
cases and to derive a better approximation of the ise-surface. An ambiguous cell
occurs whepever more than one topology can be chosen for the cell. Cell subdivision
disambiguates an ambiguous cell by subdividing it into minor cells.. Fyen though the

subdivided ambignous major cell is no longer ambignons (becanse it is no longer dealt

(O

O

Subdivision factor = 2 in all d*...ensions
@® Original voxels (major cell vertices)

O Minor voxels (minor cell vertices)

Figure C.1. Subdivided Major Cell

with). cell subdivision does not guarantee that minor cells will not be ambiguous.
Wilhelims and Gelder (50) handle an:biguous minor cells by choosing one topology
based on facial averages. discussed in chapter two. The cell subdivision method can
also be used to increase image fidelity. This is done by forming the surface within
minor cells versus the much larger major cells - that is. data resolution is increased
by forming minor cells. Increasing the data resolvuon to impiove image fidelity
is the same idea behind the dividing cubes aigorith (8). except point primitives
are output in the dividing cubes method instead of the tiiangles output in this cell

subdivision method!. Subdividing can also be used to increase resolution in only one

“The appendix entitled Disambignation and Enhanced Surface Representation by Cell Subdii-
sien presents at example that helps clarify why cell <ubdivicion ean unprove image quality

dimension. equivalent to creating cubic voxels in the cuberille data model approaches
by creating new logical slices between the original ones. This method is used in the

implementation of slice interpolation discussed in chapter four.

C.3 Implementation Steps

This section lists the cell subdivision steps | implemented and describes cach

in turn. The steps are :

1. Read data into memory.

o

March major cells between slices.
3. Subdivide major cells into minor cclls.

1. Estimate minor-voxel values.

3t

Apply marching cubes surface extraction within major cells to form surface.

Step 1 Read Shees

Step 1 is basically the same step as in the vanilla matching cubes {vme) im-
plementation desceribed in the previous appendis. Four slices are needed at a time
to caleulate the eradient. The central difference gradient operator reauires 61 voxel
values sirronnding a major cell for the caleulation (see figure 1.3)°. This step differs
from the vime implementation in the handling of border cases. The vine code deals

with horder cases (such as the first and last data slices and edges of data slices) by

TIhe process of gradient ealculation withm mmor cells i diseussed oo later seetion

approximating the surface normal at these major cell vertices with a method other
than the central difference gradient operator. This is because the 64 surrounding
voxel values do not exist in these cases. Instead of the gradient operator in these
cases, the normals are approximated by the vector normal to the surrounding par-

allelepiped shaped volume (see figure B.4.

Since two of the estimation techniques (tricubic interpolation and kriging) used
in the cell subdivision process need 64 surrounding values at all times, 1 handled the
border cases differently in the cell subdivision implementation. First. I alwayvs assume
there are 64 surrounding voxel values. To do this. 1 ignore the data on the edges
of the 2D data slices used as input. This is not a problem because in most medical
image data slices several rows and columns of edge values do not contribute to the
meaningful portion of the data. Because of this assumption, I insure the artificial
volumes | create are centered within the volume. with at least one array position in
the x and v dimensions as a buffer zone. Since | cannot ignore the first and last data
slices. I ereate two duminy data shices to replace them. The values for these dummy

slices are copied from the <lice they are imitating,.
Step 2 Mareh

Step 2is the same marching that occurs in the vime implementation. Compnta-
tional cells are maiched between two data shices (see figure 4.1). In cell subdivision.
these cells are not polygonized. but aie subdivided, This subdivision is described in

the next step.

i

Step 3 - Cell subdivision

The purpose of cell subdivision was described above - here the implementation

is discussed.

I process the subdivided major cell by employing another modified version of
my vmc implementation to “march™ within each subdivided major cell. Since | use
a vmc implementation, data slices are assumed to be read into memory; therefore.
I simulate reading data slices into memory. Since I never use more than four data
slices at a time.] use four arrays to hold the mini-slice values and points. In the
vme implerientation, data slices already have values and points associated with
them when read into arravs in memory. However. both values and points must be
calculated for mini-slice arravs. The points are calculated from subdivision factors
specified prior to exccution. Three subdivision factors along each of the three major
axes are set {e.g.. fx = 3. [y = 5. [z = 2 means subdivide the cell in the x direction
into three parts. in the v direction mto five parts.ete.). Figure C.1 depicts a major
cell subdivided into ¢ight minor cells where the subdivision factor is two in each
direction. A subdivision lactor of two in cach direction requites the calculation of
one minor-voxel point at the midpoint of cach major cell edge. one mimor-voxel point
in the center of each major cell face. and one minot-voxel point in the very center of
the major cell. Figure (.2 depicts a major cell subdivided into 5 parts in all three

directions. The calculation for dividing a major cell edge into 5 parts is

pl.r = major,, + (major g — majorag)[s

Pl = majory + 2% (mayory,; —majoryy)[5
Pl = majory + 3 % (majory, — majoryy)/H
pl.a = majorg + 4+ (majoryy — majory)[d

The v and z components are calculated in the same manner.

z
v
X
pd Z
// / /'/ / //
d Z - i i s
~ .
e e // // 7 //
7 7 /] A
s “
A
/ /
Ve 7
7/ ’
A4 1
V4 .
o 7
A 11
Va rd
A1 L
v
l‘/
rd
S 5
—rt N
A A N\ T~
/ / / \ N
majo l.x . X ‘A jor
Jot < p p2.x pi.x ma Jor <2
p3.x
Figmie (.2, Computing subdivision points. Subdivision factor = 5 in all three

directions.

Once a minor-voxel point is determined. a scalar value i< ascigned to the point.

Step 4. Estimate scalar values
}

In order for the modified vmc implementation to process mini-slices, scalar
values must be estimated at the minor cell vertices. 1 implemented three functions
to estimate values at minor cell vertices. These are trilinear interpolation, tricubic
interpolation and kriging. Trilinear intespolation is explained in a separate appendix.
Tricubic interpolation is explained in chapter four. Kriging theory is presented in
chapter three and the implementation details are in chapter four. Once the minor

cell vertices are estimated. the surface can be formed.
Step 5. Apply marching cubes surface extraction within major cells

I implemented two modified versions of the vmc implementation described in
the previous appendix to accomplish cell subdivision. The first vimc implementation
is used in the outermost loop to read the actual data slices into memory. There are
two primarv loops in the system. Within this outermost loop. major cells are formed.
The only tasks the first vinc implementation does is read data into memory and form
major cells. The surface is actually formed by the second vimc implementation. which
processes major cells.

The secona ne implementation treats major cells as sub-volumes. extracting
sub-surfaces from them. Thus the second primary loop “marches™ within major cells.
forming portions of the iso-surface. That is. for each major cell within a volume of 3D
data, the second vime implementation extracts a sub-suiface from cach sub-volume

{majer cell). The major task here is o insuie there is a continuous surface extracted

s

not only between minor cells but also between sub-volumes. A continuous surface
means the triangle vertices and normals are the same at shared locations. Iortu-
nately the vme implementation described in the previous appendix insures surface
continuity between minor cells by a pre-marching interpolation step. However. the

task of insuring surface continuity between sub-volumes is not as straightforward.

The challenge of dealing with inter sub-volume surface continuity determines
how minor ce'! vertex normals are approximated on the boundary of major cells.
Recall from the ymc algorithm that surface normals are approximated at cell vertices
by a central difference gradient operator. I use this operator to approximate normals
at all minor cell vertices completely contained within a major cell. However, the
minor cell vertices on the borders of major cells are handled specially to insure inter
sub-volume surface continuity. First. those minor cell vertices that are the same as
the major cell vertices are assigned the same normal value as the major cell vertices.
This is possible hecause pre-marching interpolation of both points and normals is
performed in the outermost loop. Then, prior to marching within a major cell. 1
calculate cell fac ~ normal averages and cell edge normal averages to use on the other
boundary cases. These normal averages shared between suo-volumes insures inter
surface sub-volume continuity.

After the points. values. and normals are estimated for the minor cell vertices.

I then interpolate points and normals in a pre-marching step (the same as in the vine

implementation deseribed in the previous chapter) to determine the surface-mino

cell intersections. Next.] “march™ minor cells between mini-slices and output trian-
gle vertices and normals to an Air Force Institute of Technology (AFIT) geometry
file. To render the surface. 1 call a modified version of the AFIT General Purpose
Renderer (GPR) to do Phong illumination and Phong shading. Another appendix

describes the modifications to the AFIT GPR.

Appendix D. Disambiguation and Enhanced Surface Representation

by Cell Subdunision

This appendix describes how cell subdivision can disambiguate ambiguous cells
and how it can enhance the surface representation. I'irst. some background informa-
tion is presented. then an example is presented that helps demonstrate the purpose

of this appendix.

D.1 Background

I, as well as Wilhelms and Gelder (50) demonstrate that subdividing cells
reduces ambiguity significantly. and depending on the estimation function used to
estimate intra-cell scalar values. can cause a smoother representation of the surface
generated by cell interpolation. Using a subdivision factor of 5 in cacli dimension.
I explore both trilinear and tricubic estimation functions in artificial volumes. The
trilinear function generates a better surface fit than the vanilla marching cubes. but
is still far from the desired surface. Tricubic estimation even performs better in these
artificial volumes. Tricubie estimation causes the surface extraction to generate a
closer representation of the actnal surface than the trilinear does. The authors cited
above claim the tricubicis better at estimating points within the cell because it uses a
larger neighborhood of points without assuming linearity. However. this assumption

may not be valid for data with sharp contrasts within a small neighbothood of voxels.

D-1

A larger neighborhood may in fact cause errors in data with sharp contrasts. Ikriging
estimation can also use a larger neighborhood of control points, The promising nature
of kriging is that it guarantces the “best”™ linear estimator and the neighborhood size

can be modified as well as a number of other parameters.

Subdividing ambiguous cells does not guarantee that ambiguous cells will be
removed. The minor cells created {rom the subdivision process may be ambiguous.
Willielms and Gelder (50) apply the facial averaging technique, described in chapter
two. to disambiguate minor cells. That is. if a face is ambiguou-. the average value
obtained by averaging the four face vertices is tested against the iso-value. If the
average is greater than the iso-value. the 1-vertices are connected. else the 0-vertices

are connected.

In all the artificial data sets | crcate. ambiguity is completely removed with-
out the need for disambiguating minor cells. However. this does not occur in the
medical data sets [tested. In the artificial data sets. the surface generated by cell
interpolation appears smoother the higher the subdivision factors and depending
on the estimation function. The next section explores how this smoother surface

representation can occur.

D.2 Frample

The polygonization in the marching cubes algorithim or any cell interpolation

algorithm is arbitrary. It is a guess at how the surface should pass through the

D2

AR

Figure D.1. Alternate polygonization for case 6

cell. For example. another triangulation of unique case 6 of figute 2.7 is depicted in

figure D.1.

Note that only the ambiguous cases of the unique case hgures in chapter two
are truly ambiguous in the sense that alternate polygonizations can be petformed
For example. the polygonization of unique case 5 (a non-ambiguous case) is fairly
obvious. even though it is remotely possible further subdivision and estimation counld

uncover a different topology!.

To understand Low cell subdivision and estimation can disambignate ambigu-
ous cells. consider a major ambiguous cell in which a possible erroneous topology is

generated (major cell refers to an un-snbdivided cell. a minor cell a subdivided cell).

Plopology r fers 1o the polvgonization of a eell that represents a portion of the surface topology

Without subdivision. erroneous topology is a gross error. which not only causes in-
accuracies in the final image, but can also create “holes™ as discussed in chapter two.
Sub-dividing this cell will reduce this one large erroneous topology into smaller cells
fo

where most will have non-ambiguous cells, depending on how well the estimation
function estimates the surface in the cell. Case 14 (see figure D.2j is a particularly

} 2
good cxample of a rare case, even if no ambiguity results. The reason wh_ it is rare

is because it represents a very complicated portion of the surface topology.

Suppose case 14 is subdivided by a factor of 2 in all three directions. The
chances of case 14 appearing within any of the minor cells is even rarer. This
15 50 because of the complex triangulation of case 14. Assume the triangulation
of figure 1.2 A depicts the surface correctly within that cell. Then subdividing
the cell could possibly generate the subdivided major cell depicted in figure 1.2
B. In this case the topology remained the same. and case 14 does not show up.
In fact. all nonempty minor cells are unique nonambiguous case T in this figure.
In any subdivision. the I-vertices of the major cell will remain 1-vertices in the
corresponding minor cells because their values do not change. However. new |-
vertices may be added on the minor cells. In this figure. the I-vertices are the
same. For simplicity, Twill discuss only one edge of the major cell where the surface

intersects. This edge is denoted by B figure 1.2

Figure D.2 (' depicts possibly different. minor cell topologies caused by the

subdivision. Note i figure D2 B that the surface interseets between minor voxels

-1

case 14

A4

surface

intersectjon
point

5.

<

surface

intersection
point

i
%

7
! \>7/ ! i a
1 ! il
] ! !
] i 1
' T 7T
vy
L /' [1b
L 4 /8
v L
. /
. ’
e A
B
surface
intersection
point
. l_4——a

b

S

Figure .2, Example of alternate surface representation caused by cell subdivision

a and b. Figure D.2 C however shows more complicated minor cell vertex classifi-
cations. where the surface intersects between minor voxels b and ¢. In figure 1).2
C, the upper right front cell is now unique case 3 instead of 1 and a new nonempty
minor cell exists - the lower right fiont cell. This cell is another umque case 1. This
does not imply that figure D.2 A is a wrong topology. it just means that in this case.

figure 1D.2 (" captures the surface intersection point on edge I more accurately.

Of course there are many other possible topologies within the minor cells. too
numerous to list here. The point of the simple example presented is to show that
subdivision can disambiguate and cause the cell interpolation to provide a closer
approximation of the actual surface. If minor cell vertex value estimation is accurate.
the new surface intersection points should be closer to the true surface houndary. thus
generating a triangular mesh that better approximates the actual surface of interest.
Suabdividing the cell even further should generate even closer surface intersection
points. Again. resolution of ambiguous minor cells is not guaranteed. but as stated
previously. the few ambiginous minor cells that may result can be dealt with by facial

averaging. gradient consistency hennsties. or similar methods.,

D6

Appendix E. Dwnary Image Format to Utah RLE Format Conversion

It is often very useful to look at just a single slice of data. especially if the data
is from CT or MRI scanning technologies. However. most of the data is in binary,
so it must be converted to an image format. 1 chose the Utah RLE format because
I can view an RLE image from any of the different types of workstations we have at
the Institute. My code assumes binary files as input. but can be easily modified to

read from ASCII files. The code is in the directory thesis/src/makerle

The majority of image files are stored as | byte per value. with values stored
in scanline order from bottom to top. Therefore the double for loops used to read

and write from/to these files increases fastest in x.

Some differences in file formats were discovered dming this effort. The Chapel
Hill data has 2 bytes per value. 1 this case. it is important to determine if the bytes
need swapping because of architecture differences (little endian/big endian). Also.
some MRTimage data derived from an urknown <ource was stored as sun raster files.
To determine if the image format is sun raster, try the sun call (on a Sun console) .

sercenload <image-file> or the Unix command file.

The Utah RLE 1oolkit has re »tines that do the same task (gravtorle and raw-
torle): however. the code 1d- loped allowed me to perform other operations on the

data. For example. I modified it to compute the histogram of the data. The major

benefit of the code is that it has the basic format for reading binary data, which is

necessary in other arcas, such as the actual rendering program.

Appendix F. Changes to the Air Force Institute of Technology's

General Purpose Renderer

AFIT's GPR is an object orienced rendering svstem written in C4++. It has
several hidden surface removal. reflection model. and shading model implementa-
tions. This plethora of options consequently makes the executable quite large. Since
memory is a scarce resource when dealing with volumes, I decided to minimize GPR's
memory usage. | did this by removing unnecessary portions such as code handling
texture mapping. vertex colored polygons, Bezier patches, scan line z-buffering, etc.
I retained the "Z" buffer and "A” buffer hidden surface removal implementations, all

the roflection models, and both flat and Phong shading.

Although this reduced the executable size by over a half. GPR still required
too much memory for a single geometry file output from my maiching cubes im-
plementation. T attempted to fix this problem by creating a list of geometry files.
since GPR is capable of reading multiple files. The code is supposed to fiee memory
alter processing cach geometry file: however, the deallocation did not appear to work
correct|v.

GPR allocates many arravs. It is possible the GNU C4+4 array deallocation
does not work properly. When array deallocation is attempted according to Schildt

(38:337). the g+ 4 warning message “array size expression {or delete ignored™ results

(c.g. delete [pcount] pnumverts). Schildt indicates the importance of this operation

(ignored by g++) :

One reason that vou need to specify the number of clements in the ar-

ray to the delete operator is so that the proper number of destructor

functions can be called (that is. one for each object in the array).
However, after 1 investigated memory allocation and deallocation by creating test
cases using the same data structures used by GPR. I discovered that the array size
had no affect on deallocation. The main factor appears to be the order and the
sizes of the memory blocks allocated. 1 found that if a smaller block of memory is
allocated first and then freed. a larger block cannot use the just freed space because
it is not Jarge enough (both malloc().free(). and new.delete appeared to operate the
same). Therefore. for the best use of Unix memory management. large blocks shonld

be allocated first.

This knowledge still did not solve the problem of GPR using too much memory.
because GPR allocates many blocks of varving size. based on the polyvgon count. the
vertex count and the number of vertices per polygon. To keep fiom altering GPR
significantly to order memory allocations correctly. 1 chose to implement a very

simple memory management scheme.
The average memory required for processing geometiy files output from march-
ing cubes is between three and five megabytes per file. If GPR successfully makes

this amount available in heap space after every file is processed. then no memory

problems result. Therefore. I decided to cicate my own heap by simply allocating
one block of memory large enough to handle the largest file in the list of files output
from marching cubes. This size varics based on the isovalue(s) selected and the input

data resolution: however. | fonnd the maximum needed never exceeds 10 megabytes.
The memory block is allocated once at the beginning of GPR in main(} by
memptr = (void ™) malloc{ MEMORY):
where MEMORY is the pre-defined size.

Since memptr is type casted as a void *. portions of this block can be cast to
any type. An offset into this memory block is maintained for assigning new memory.
Before each geometry file is processed. this offset is re-set 1o zero. Thus. no delete

or free operations are necessary and the same memory is re-used over and over.

Appendix G. Creating Artificial Volumes

This appendix discusses the methods that create an artificial volume. An ar-
tificial volume (term taken {r n Tiede (43)) in this work is one in which scalar
values are artificially e.atered at node points in a 3D array to represent some object
surface, versus a volume containing voxel values which are gencrated by a scanning
technology such as MRI or CT or by a scientific simulation. The primary artificial
volumes | created for this work contain surfaces depicting three-dimensional math-
ematical functions such as a sphere,an ellipsoid. or a paraboloid. In both methods
I implemented, the surface is always centered within the first octant (positive x,y.2)

by subracting the center point {k.k,l, from the points {x.v.z) in the math equation.
The initial method I developed is very straightforward, but does not allow
setting a surface threshold other thaun 0. I accomplished this by assigning to each
voxel the value returned by evaluating the math function at the voxel 3D point. For
example. a voxel value at mesh point (x.y.z) for a sphere is determined by :
vordValue(a.y.z) = valuc(r.y. 2y = (= ") +{y = k) +{z: =1 =1?
where 1 is the radius and (h.k.1) the center point.
Functions defining a surface return positive values on one side and negative
values on the other. where surface poinis are evaluated at zcro. Since marching
cubes interpolates triangle vertices to the scalar value between voxels, this method

generates a volume in the correct format for marching cubes to read. Thic is so

G-1

because a surface defined by a math function will rarely if ever intersect an artificial

volume voxel. Of course, the larger the volume, the better chances this will occur.

Lt C'ol Phil An.burn extended the method just discussed to allow any scalar
value to represent the surface. Since the value returned from a math function evalu-
ated at a mesh point denotes the distance from the surface in a positive or negative
direction. this distance is used to taper off a value from the scalar value chosen. Also,
to get the output in marching cubes formula. 1 modified the algorithm to taper off
towards the negative if the point is on the negative side of the surface and towards
the positive if the mesh point is on the positive side. The formula for this method
to determine the value at a mesh point is :

dist = fabs(value(a,y.z)):
if (raluc(e,y.z) > 0.0)) /* positive =/
vorelValuc(r.y.z) = (1 - Tl“\i;;)'l'?f) x SCALAR
(gt)+ (SCALAR + OUTSIDE)
else [T negative ¥/
voreValuc(r.y.z) = {1 - '\Tﬁ%l—sf) *# SCALAR
Hgesioy) * (SCALAR = OUTSIDE)
Fused AFIT s viewit program on the Silicon Graphics 3100 series workstations

to view the artificial volumes. 1 also included a command line option to draw a box

'

around the volume perimeter.

Appendix H. Trilinear Interpolation

This method assumes scalar values vary linearly along comnponent directions

between voxels (45:11-14)

4

It interpolates in each of the three dimensions, see fig-
u.e H.1, where [(O1) and f(ni) represents the scalar value at original point i and new
(or intermediate) point i, respectively. The goal is to estimate f(n6) given f{Q0) -

£(O7).

The method computes ratios of distances and scalar value differences succes-

[(n0)-(00) _ J(O1)-£(00)
d?

sively until the center value is determined. That is . o

f(n0) = £(1(01) - f{00) + f(00)

Theu. f(nl) is found by interpolating between f(02) and {(03) in the same
manner. {(n3) is found by interpolating between the intermediate values {(n1) and

f(n3). The final value [{n6) is determined by interpolating between f(nd) and f(nd).

There is one significant problem with this method that reduces accuracy of
estimates in a three-dimensional data set. Only the eight surrounding voxels are
analyzed ‘o estimate a new value at a particular point within the cell. when i fact
these eight samples may not provide sufficient information to infer the variability of
the data. More impoitantly however. the data may not vary lincarly along major

cell edges.

A problem of less significance is the direction in which to interpolate initially

is Just an arbitrary assumption (though only thiee choices exist). This is important

H-1

because f(nd) and f(nd) are based on the first set of intermediate interpolations
in this assumed direction (e.g.. the Y direction could be assumed initially - then
f(n0) would be determined by interpolating between points Ol and 05). This is a
potential cause of inaccuracy because for example, values may not vary the same

between voxels QU and O1 and between Q1 and O5.

Z
¥
f(O6) f(n3) f(O7)
f02) e
f(O5)
7
(\L Vs / ra
f(O0) f(m) o1y

Fignre .1, Trilinear interpolation

12

S

6.

10.

A%

13.

Bibliography

. Artzy, Ehud, et al. “The Theory, Design. Implementation and Evaluation of

a Three-Dimensional Surface Detection Algorithm.” Computer Graphics and
Image Processing. 15:1-24 (1981).

Artzy. Ehud, Gideon Frieder and Gabor T. Herman. “The Theory, Design,
Implementation and Evaluation of a Three-Dimensional Surface Detection Al-
gorithm,” Computer Graphics. 14(3):2-9 (July 1980).

Brodkin. Chris. The Application of Nriging for Controlled Ainimization of Largc
Data Sets. Draft MS thesis, School of Engineering. Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, December 1991.

. Chen, L.. et al. *Surface Shading in the Cuberille Environment,” I[EEE Com-

puter Graphics and Applications, 5(12):33-43 (December 1983).

. Christiansen, H. N. and T. W. Sederberg. “Conversion of Complex Contour Line

Definitions into Polygonal Element Mosaics.” Computer Graphics, 12(3):187-
192 (1978).

Clark. Isobel. Practical Geostatistics. London: Applied Science Publishers Ltd,
1979.

. Cline. H.E. et al. *3D Reconstruction of the Brain from Magnetic Resonance Im-

ages Using a Connectivity Algonithm.” Magnetic Resonance Imaging. 5(5):345-
352 (1987).

Cline, Harvey E.. William F. Lorensen et al. “Two Algorithms for the Three-
Dimensional Reconstruction of Tomograms.” Medical Physics. 15(3):320-327
(May/Junc 198%).

Cressie, Noel. “Kriging Nonstationary Data,” Journal of the American Stalis-
Lecal Association. 81(393):625-631 (September 1986).

Cressie. Noel. “Spatial Prediction and Ordinary Kriging.” Mathematical (eol-
ogy. 20(1):-405-421 (1938).

. Cressie. Noel. “Geostatistics.” The American Statistician. 43(4):197- 202

(November 1939).

Cressie, Noel. “The Origins of Kriging,” Mathcmatical Geology. 22(3):239 52
(1990).

David. Michael. Geostatistical Ore Reserve Estimahion. New York: Fisevier
Scientific Publishing Company. 1977.

. Davis. John C. Stalistics and Data Analysis m Geology (Second Fdition). New

York: John Wesley & Sons. 1936.

BIB-1

16.

17.

o
1S54

5. Delfiner, P. and J. P. Delhomme. “Optimum Interpolation by kriging.” Display

and Analysis of Spatial Data edited by John C. Davis and Michael J. McCullagh.
96-114, New York: John Wiley & Sons, 1975.

Drebin, Robert A.. et al. “Volume Rendering,” Computer Graphues, 22(4):65-
74 (August 1988).

Dubrule, Olivier. “Comparing Splines and Kriging,” Compulers & Geosciences.
10(2-3):327-38 (1984).

Durst. Martin J. “Letters: Additional Reference to Marching Cubes,” Com-
puter Graphics, 22(2):712-73 (April 1988).

. Farrell, Edward J. and Rosario A. Zappulla. “Three-Dimensional Data Visu-

alization and Biomedical Applications,” CRC Critical Reviews in Biomedical
Engineering, 16(4):323-363 (1989).

. Foley, James D., Andries van Dam Steven K. Feiner and John F. Hughes.

Computer Graphics: Principles and Practice (second Edition). Addison-Wesley
Publishing Company, 1990.

21. Fox. John. Limear Statistical Models and Related Methods With Applications to

Social Research. John Wiley & Sons, 1984.

2. Frieder, Gideon. et al. “Back-to-front Display of Voxel-Based Objects,” IEEE

Computer Graphics and Applications, 5(1):52-60 (January 1985).

. Fuchs, Henry, et al. “Optimal Surface Reconstruction from Planar Contours.”

Communications of the ACM, 20(10):693-702 (October 1977).

. Ganapathy. S. and T. G. Dennehy. “A New General Triangulation Method for

Planar Contowrs,” Computer Graphics. 16(3):69 71 (July 1982).

. Grant. Michael. The Application of Kriging . the Statistical Analysis of

Anthropometric Data Volume 1. MS thesis. AFIT/GOR/ENY/ENS/90M-
8. School ¢f Engineering. Air lorce Institute of Technology (AU). Wright-
Patterson AFB OH. May 1990 (AD-A220 613).

. Herman. Gabor T.. et al. “Computer Techniques for the Representation

of Three-dimensional Data on a Two-dimensional Display.” SPILE. 367:3 -11
(1982).

. Herman. Gabor T. A Survey of 3D Medical Imaging Technologies.” IELEL

Enginccring in Medeine and Biology. 9(4):15- 17 (December 1990).

Herman. Gabor T. and Jayaram K. Udupa. “Display of 3-D Digital In-
ages: C'omputational Foundations and Medical Applications.” IEFEE Computer
Graphics and Applications, 39-46 (August 1983).

29. Journel. Andre G. Fundamentals of Geostatistics in Five Lessons. Washington.

D. C.: American Geophysical Union. 1989,

BIB-2

30.

31

33.

34

10.

4.

45,

Keppel, E. “Approximating Complex Surfaces by Triangulation of Contour
Lines,” IBM Journal of Research and Development. 19(1):2-11 (January 1975).
Kerbs, Lynda. “GLEO-Statistics: The Variogram.” COGS Computcr Contribu-
tions, 12(2):54~-59 (August 1986).

2. Laur, David and Pat Hanrahan. “Hierarcnical Splatting: A Progressive Refine-

ment Algorithm for Volume Rendering.” Computcr Graphees. 25(4):285-288
(July 1991).

Levoy, Marc. “Volume Rendering and Display of Surfaces from Volume Data.”
IEEE Computer Graphics and Applications, 29-37 (May 1988).

Lorensen. William E. and Harvey E. Cline. “Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm.” Computer Graphics. 21(4):163-169
(July 1987).

-
«

5. Matheron, G. “Principles of Geostatistics.” Economic Geology. 58:1246-66

(1963).

McCormick, Bruce H.. et al. “Visualization in Scientific Computing,” Computer
Graphics. 21(6):1-7. A-1 to C-18 (November 1987).

. Mendenhall, William. et al. Mathemalical Statistics with Applications. PWS-

KENT Publishing Company. 1990.

. Schildt, Herbert. C++: the Complele Reference. MceGraw-Hill. 1991.

. Stytz. M. R, and O. Frieder. “Three-Dimensional Medical Imaging Modalities:

An Overview.” Critical Reviews in Biomcdical Enginecring. 18 Issuc 1:27-54
(27-54 1990).

Stytz. Mairtin R.and Ophir Frieder. “Computer Systems for Three-Dimensional
Diagnostic Imaging: \n Examumation of the State of the Art.” Crilica! Revicas
in Bromedecal Enginecring., 19(1):1-15 (1991).

. Styvtz, Martin Robert. Three-Dimensional Mcdical Image Analysis Using Local

Dynamic Algorithm Sclection On a Multiple-Instruction. Multiple-Data Archi-
tecture. PhD dissertation, PHD. Computer Science and Fngineering at the
University of Michigan. 1934

. Sunguroff. Alexander and Donald Gieenberg. *Computer Generated Images for

Medical Applications.™ Computer Graphies. [2(3):796 202 (1973).

. Tiede. Ul et al. “Investigation of Medical 31)-Rendering Algorithms.™ 1EEE

Computer Graphies and Apphcations. 32 62 (Mayv 1990).

Udupa. Jayaram K. “Interactive Segmentation and Boundary Surface For-
mation for 3-D Digital Images”™ Compuicr Graphies and Image Processing.
18(:3):213-235 (March 1932).

Udupa. Javaram K. and Gabor T. Herman. editors. 20 Tmaging in Mediene.
Boston: CRC Press. 1991,

BH3-3

46.

47.

<!
o

Upson. Craig and Michael Keeler. “V-BUFFLR: Visible Volume Rendering.”
Computer Graphies. 22(4):59-64 (August 1983).

Upson. Craig. ¢t al. “The Application Visualization System \ Computational
Environment for Scientific Visualization.” IEEE Computer Graphics and Appli-
cations. 30-41 (July 1989).

Watson. G. S. “Smoothing and Interpolation by Kriging and with Splines.”
Mathcmatical Geology. 16(6):601-15 (1984).

. Watt, Alan. Fundamentals of Thrce-Dimensional Computer Graphics.

Addison-Wesley Publishing Company, 1939.

. Wilhelins, Jane and Allen Van Gelder. Topological Considerations in Isosurface

Generation. Technical Report. University of California. Santa Cruz. CA. April
1990.

. Wilhelms. Jane and Allen Van Gelder. A Coherent Projection Approach for

Direct Volume Rendering,” Computer Graphics, 25(4):275-2384 (July 1991).

Wyvill. G, C. McPheeters and B. Wyvill. “Data Structures for Solt Objects.”
The Visual Computer. 2(4):227-234 (August 1986).

BIB 1

