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Abstract

Estimation has not received enough attention in 3D medical imaging. Estima-

tion is often done in 3D medical imaging to increase data resolution for enhanced

renditions. It is also used for correcting inaccurate surface formations in the well

known marching cubes algorithm. Accurate estimations are vital because clinical as-

sessment is often aided by examination of 3D medical images. This thesis 'introduces

the geo-statistical estimation technique called kriging to the field of 3D imaging.

Kriging theory claims to be the optimal estimator - better than the standard deter-

ministic methods commonly used.

This thesis explores four estimation techniques for use in 3D medical imaging.
The techniques are linear interpolation, trilinear interpolation, tricubic interpolation,

and kriging. The interpolation methods are standard estimation techniques used

in 3D imaging. The estimation techniques are used to estimate scalar values in

two primary areas. These are intra-cell scalar value estimation and the volume

pre-processing operation of slice interpolation. This research investigates intra-cell

scalar value estimation in a surface extraction method called cell subdivision. This

research also explores slice interpolation by estimating scalar values between existing

medical data slices. Slice interpolation is the operation of estimating logical slices

between existing ones, typically to increase data. resolution to obtain a finer mesh

representation of a surface.

Tricubic interpolation is shown to be most useful in artificially created volumes

of smooth functions. It, is also shown to produce poor results in medical volumes

and in slice interpolation. More importantly, this research demonstrates that kriging

subsumes the deterministic methods investigated and can estimate much better than

tricubic interpolation.

Xii,



Evaluation of Scalar Value Estimation Techniques For 3D Medical

Imaging

I. Introduction

A twelve-year-old boy suffers from severe congenital defects in the sacrum,

lumbar spine, and acetabula (hip). The surgeon assigned to this case reviews both

two-dimensional (2D) and three-dimensional (3D) medical images of the boys pelvic

region. The 3D image is generated by a computer graphics program with input from

a series of 2D Computed Tomography slices (scans) of the patient's pelvic region.

3D medical images provide views of internal organs, bones, tissues, muscles and

other body parts otherwise only seen after the human body has been invaded by

exploratory or therapeutic surgery. Because of the additional insight revealed by the

3D images, the surgeon decides not to perform surgery (45). In this case, 2D scans

alone do not provide enough information for the surgeon to make an accurate as-

sessment of the patient's condition. Analysis of craniofacial abnormalities, radiation

treatment planning for cancer patients. analysis of pelvic deformities , and cardio-

pulmonary analysis are only a few of the areas 3D medical images have assisted

medical clinicians make vital decisions in patient management (45).

Because of the need to visualize volume (3D) data sets for analysis, computer

scientists have developed many different techniques for portraying this data. Met h-

ods exist to depict this three-dimensional data in 3D; however, the emlphasis has

been to display the 3D data on a 2D screen (26) and (27). This research explores

a subset of the latter methods in the area of niedical imaging, with an emphasis on

estimation of scalar values.,

To understand the exact problem considered and the purpose of this thesis
-me background information must be presented first. Following the background,

the problem is discussed. This chapter ends by presenting the purpose of the thesis

followed by the research goals.
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1. Background

Three dimensional data visualization encompasses all methods that render im-
ages from volume data sets. Medical imaging and scientific visualization are two
broad application areas under 3D data visualization. The need for accurate rep-
resentations of the physical volume separates medical imaging and many scientific
visualization areas from other 3D computer graphics techniques. The latter tech-

niques mostly attempt "... to form realistic images from scene descriptions which
may, or may not, have a physical counterpart" (41:2). Accuracy in medical images
is important because many clinical applications rely on the faithful representation
of the portions of the human body scanned and reproduced three-dimensionally.

3D medical imaging is composed of three high level processes : "&.ta collection,
3D data display, and data analysis" (41:2). This work is concerned with 3D data
display - a computer graphics task. Data collection and data analysis are both

performed by end-user experts - radiologists and clinicians.

Data collection is defined by Stytz (41:2) as

... the radiologist's arena, and deals with issues concerning the statistical
significance of collected data. patient dosage, medical imaging modality
operation, development of new techn iiques/modal i ties for gathering data,
and 2D image reconstruction.

The main data, collection scanning technologies (or modalities) include Computed
Tomography (CT), Magnetic Resonance Imaging (MRI). Single Photon Emission

Computerized Tomography (SPECT). and Positron Emission Tomography (PET)
(41) and (39). The main purpose of each of these modalities is to sample data in

patient space and produce a series of 2D images corresponding to some aspect of
the patient such as soft and bony tissue in the case of CT andI MRI studies and
metabolic measurements in the case of PET and SPECT studies. CT and MRI
are used primarily for imaging anatomical structures. whereas SPECT and PET are
used mainly for biochemical imaging. For each modality. different properties of the
human body are imaged, but all produce a series of gray scale 2D images. Gray scale
means values range from 0 to 255 (8 bits per value). For the purposes of this thesis,

it is enough to say the values correspond to some material prol)erty" of the imaged
volume, such as density.

1-2



CT was the first modality, folloNN ing the ad-,t of X-ray technology, to provide

high quality 2D non-invasive images. The others tollowed soon thereafter to provide

images of equal (if not. better) quality. Since this research deals with 3D data display,

reference Stytz for aa overview of how each of these modalities are constructed and

how their operation influences image quality. (39).

These 2D images alone provide a certain level of non-invasive assistance, but

with these images the clinician must mentally build 3D objects of interest. This may
be very difficult, depending on the experience of the analyzer and the application

area. In one area of clinical study, according to Wojcik and Harris (45:197),

Mental integration of all of the images frequently obtained to evaluate
a complex skeletal problem (i.e., plain radiographs, polydirectional to-
mography, and MPCT [multiplanar CT]) is freqtcrdy difficult even for
experienced radiologists and is even more difficult for less experienced
radiologists or nonradiologists [such as surgeons].

A four year study that assessed 3D imaging from CT scans at. the Department of

Diagnostic Radiology, University of Manchester concluded that "3D imaging does

have a useful role to play in a number of specific clinical situation- when used in

conjunction with CT and other radiological imaging methods" (45:103-144).

The main challenge faced by 3D data display graphics reseairchers is how to
create clinically useful accurate 3D images quickly from the inmeise amount of in-

formation obtained from these imaging modalities. One modality can produce up to

35 mega-bytes of data for a single patient (41). This occurs becav, e a typical study
consists of 12 to 100 or more slices (scans) of images with resolutions up to 512 X 512.

Following the development of CT in the early 1970's. many software algorithms were

created to produce 3D images from CT data. The methods conceptually combine the

2D CT data into a volume of information from which significant. data is portrayed.
Most other 3D visualization methods (such as scientists and engineers studying com-

putation fluid dynamics, molecular modelling oi lhe eart h sciences (:36)) have their
roots in early medical imaging techniques (45:60). These methods generally fall into

two main categories - volume and surface methods.

Most 3D imaging researchers use the terms volume rendering and surface ren-

dering to classify rendering of volume (3D) data sets. Surface rendering methods

I-3



extract a surface or surface boundary from tie volume data set and represent it using

some data siructure. Volume rendering directly processes voxels (volume elements),

assuming that each voxel is either opaque or partially opaque. This classification

can be misleading in some cases. because it implies that surface rendering only ren-

ders surfaces and volume renderers only render volumes. Yet, surface renderers can

render volumes (multi-surfaces using opaque and transparent surfaces) as well as

just single surfaces. Also, volume renderers can display distinct surfaces much like

surface renderers by processing binary volumes (45). A binary volume is formed by

processing only those voxe. forming part of a surface of interest. Then only the

the selected voxels are rendered. It is termed binary because voxels are classified as

contributing to a structure of interest (assigned a 1) or not (assigned a 0).

I prefe," Farrell's terminology (19) of surface unit based and volume mnit based

approaches, that differentiates not by what the final image consists of, but rather by

the type of unit or "primitive image element" used in the visualization process. For

example, two-dimensional primitive image units, such as planar polygons or voxel
faces, are used in the surface unit based appr jaches, whereas volume elements (vox-

els) is one type of three-dimensional primitiv- image un., used in volume unit based

approaches (see chapter two for a more con plete discussion of these approaches).

Hereafter in this document. the terminology , urface method and volume method cor-

responds to surfa, e unit based and volume unit based approaches. respectively.

Surface and volume methods have their supporters in both the scientific and

medical communities. The choice of method depends on the application and often on

the personal preference of the researcher. scientist, eoigineer, radiologist. or clinician.
Many researchers (.e.g (47),(43), and (27)) have noted that a variety of approache,

used to render the same data set provide crucial clues to analyzing and unders".aiid-

ing the data, whereas only one approd. 1 might leave gaps in knowledge. In the case
of medical imaging. surface methods are good f-;, :i.wplaying surfaces with definite
boundaries. such a.s bony tissue in the human body. Likewise, volume approaches

are superior to surface approaches for depir ,ag fuzzy or amorphous volumes such

as diffused tumors and blood flow in arteries and veins (33), (16) and (45). Also,
surface methods allow for one of the most useful medical imaging applications -

interacgive manipulation of structures (45). One purpose of this task is surgery re-

hearsal. Surgery rehearsai is not very practical with images rendered via volume
methods because they typically are too slow for interaction. Surface methods allow

1-4



real-time manipulation because thy normally produce. geometric primitives such is

planar polygons. These geometric primitives ca. be used as input into fast hardware

or software based hidden surface removal and shading algorithms. However, if a new

surface is desired for rendering, the entire volume must be re-processed again. Vol-

ume methods require a ,igh computatir-, .' -,st for processing all the data elements

in the volume; however, the increase,'( ^", -,ay be less important than the need for

a diffused or fuzzy rendition of th.- . .a.

The third medical imaging proce:'-.- data analysis, involves obtaining "quan-

titative information about the structur . ,n tb:, scene" (45:57) Quantitative infor-

mation includes the average density of " Earea v ;thin the 3D image, the size of

certain anatomical structure. uct as bone.; and biaod vessels, or the volume of a

sub-region. Much of the desired analytic information can be acquired directly fror'l

the 2D slices. Measurements reqL.: -d from 3D images are volumes, 3D distances, 3D

angle measurements, and "other less commonly used measurements... [such as] cen-
ter of mass, moment of inertia, and surface (urvature." Surface methods as well as

certain volume methods (which allow the concept of a structure) provide the ability

to perform all the 3D data analysis operations (45:58).

Image accuracy is critical to the data znalysis process. Inaccu'acies in an image

can adversely affect these measurementc. possibly leading to erroneous assessments

by the chinician.

1.2 Problem

Scalar value estimation is very common in many 3D imaging algorithms; how-

ever, little has been done to investigate different scalar value estimation teclniques.

The level of inaccuracy has not. been deemed serious b'.cause cost. has been a

larger concern. As Herman and Liu noted in 1979, "... reduction in cost is essential;

computer time for the display will bave to be borne by the patient." Cost is certainly

still an issue (45:224). Higher order deterministic functions such as quadratic or cu-

bic polynomials and statistical based estimation methods are more computationally

expensive than simple linear interpolation. Yet. the results obtained from using them

can greatly improve image accuracy and fidelity - thus improing clinical assessment

and quantitative analysis. Since work itations are becoming more p.rl, this issue

of cost will become less of a problem; hence. a search for more accurate estimation

meto(s is necessary.
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Accuracy in medical imaging is very important to the medical community.

Wojcik and Hari; note, "the primary purpose of radiolcgists is to provide the most

accurate diagnostic information possible within the capabilities of available imaging

mrdalities" (45:196). This estimation problem inay cause serious 3D image errors in

two primary ares:

e The volume pre-processing operation of slice interpolation.

• Intra-cell scalar value estimation1.

.idupa and Herman s~ate, "the interpolation problem in our opinion, ias

received less attention than it deserves" (45:13). The interpol ion problem they are

referring to is the process of J,.tcrmining new slices between existing image slices to

form a cube shaped volume. Udupa and Herman discuss the primary methods of

interpolating new slices are nea,'est neighbor,linear interpolation of voxel values, and

trilinear interpolation. The nearest iieighbor approach produces the worst results of

the three because it does no estimation. This approach simply assigns new voxel

values to the iuerpolated slices to the nearest original voxel. Trilinear performs

somewhat better than linear, but the variation in both cases is still assumed to

be linear when in fact it may not be. Udupa and Herman investigated one other

method they created for use i 'amary volumes. This method is termed shape based

interpolation. Voxels ai-e mapped from the binary volume to a seconm: , orrespording

array that holds distances from each voxel to the boundary. If the voxel in ti,c boinary

volume was 1, the distance in the second corresponding array will be poitive, else

negative. Linear, trilinear, or some other interpolation scheme is used to derive new

d&tances in the second array. The newly interpolated distances are then mapped to a

ne"," binary volume consisting of new slices betwetia existing ones. Positive distances

are it:,Signed! a 1 in the binary volume, negative distances a 0. Hence. the boundary

of the structure of interest b)rtwee . i9 and 1 entries in the binary volume influences

the int.erpola'ion. The authors claim it. provides more accurate quantitative analysis

and in their opinion leads to a better surface representation in surface methods.

However, this method will not work in volume methods unless the volume melod

uses a binary volume.

I A cell is a logical cube with vertices formed by four voxels in one data slice and four voxels in
an adjacent slice.
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Many 3D rendering algorithms (primarily surface methods) require cubic shaped

voxels (28), (44), (22), and (45). Voxels are volume elements, the 3D analog of pix-

els. Cube shaped voxels are termed cuberilles. Other rendering algorithms, including
volume methods such as (33:34) , interpolate new slices to improve image quality.

For example, assume a study consists of a series of 100 256 pixel X 256 pixel CT

images. To make this volume cubic in shape, new slices are created in between exist-

ing ones until there are 256 total sli,, s. The extra 156 slices are usually determined
by linear interpolation of the sampled CT values between the original shces. The

problem with this method is the data may not vary linearly.

Intra-cell scalar values are estimated to improve imagP fidelity and correct pos-

sibly inaccurate surface renditions generatd.l by cell interpolation surface methods2 .
Wilhelms and Gelder (50) have shown that the commonly used trilinear interpolation

estimation method does not etimate values in artificially created volumes (versus

scanner generated) as accurately as - parametric cubic function. They demonstrated
that tricubic interpolation prod'ices better images than those produced by trilinear

interpolation.

The problems with linear, trilinear, and tricubic interpolations are that these
methods assume the variability of the data and assT a-. a neighborhood of sample
values that influence the estimation. However, variation is not necessarily linear or

cubic in nature and the number of saml)le values that .hould influence the estimation
can be different than the unchangeable number determined by these methods. As-
sumptions about the variation of the data and the ncghlbohood of sample values can

possibly produce erroneous results in the estimation process. Instead of assuming a

variation, a geo-statistical process exists that can aid in determining the variation of

the data for the purpose of estimating new values. In thib same process, the number

of sample values influencing the estimation can be modified to fit. the variability of

the data. This process is termed kriging.

1.3 Purpose

The purpose of this research is to investigate the application of several esti-
wation techniques to estimating scalar values within co-nputational cells and during

tWe volume pre-processing operation of slice interpolation.

2Cell interpolation surface methods are described in chapter two.
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To accomplish the purpose of this thesis, four estimation techniques were irn-

plemented. These are linear interpolation, trilinear interpolation, tricubic interpo-

lation, and kriging. This is the first time the geo-statistical estimation technique

called kriging has been applied in 3D medical imaging.

Kriging differs from the deterministic methods implemented3 because it is a

statistical method. That is, kriging accounts for error Not only is it a statistical

estimation multiple linear regression model, but it is a geo-statistical model as well.

A geo-statistic differs from a classical statistic by how the variables are treated in

the estimation process. A classical statistic views data as random. A geo-statistic

accounts for spatial inter-dependence of the variables used in the estimation. Kriging

has proven to be very successful in estimation applications in the geo-sciences. Since

medical data is spatially distributed and has regions in which sample values are highly

correlated (e.g., bone and tissue regions), this technique is applicable to medical data.

Kriging theory shows that kriging is the optimal estimator. It is optimal in a

statistical sense in that it minimizes estimation error variance and removes bias in

the estimation. This research demonstrates that this optimal estimator subsumes

the deterministic methods investigated and in some cases produces visually better

results.

1.4 Approach

The main goal of this research is to compare the results of different techniques

for estimating scalar values. Estimated values are used in two areas - within compu-

tational cells and for creating logical slices during slice interpolation. To accomplish

this goal, the following tasks were accomplished :

" A cell interpolation algorithm was implemented, including the capability of

subdividing cells for int.ra-cell scalar value estimation.

" Trilinear interpolation, tricubic interpolation. and kriging estimation functions

were implemented for comparison.

" Artificial volume data sets were built for comparing and contrasting methods.

3The deterministic methods are linear. trilinear. and tricubic interpolation. Determinism means
t-hey do not account for any variation such as systematic error in sampling.
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* A rendering system was developed by modifying an existing one (to support

software engineering goal of re-usability) to display images for comparison.

* 3D Images were generated by extracting surfaces from both artificial volumes

and actual medical data sets by using trilinear interpolation, tricubic interpo-

lation and kriging estimation techniques.

* 2D Images were generated by estimating scalar values between two medical

image slices using linear interpolation, tricubic interpolation, and kriging esti-

mation techniques.

* Values and images derived from the different estimation techniques were com-

pared.

1.5 Ovemiew

The remainder of this document consists of the following chapters. Chapter

two provides an introduction to 3D medical imaging methods: focusing mainly on

surface methods., Chapter three describes kriving theory. Chapter four provides

implementation details of the algorithms developed during this effort. Chapter five

contains the images resulting from the research and a discussion of these results.

Chapter six consists of a section recommending future research following this effort

an(l a section with concluding remarks. The appendices provide further implemen-

tation details for the interested reader.
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II. 3D Medical Imaging

This chapter discusses 3D medical imaging concepts, concentrating on the areas

most pertinent to this research. In particular, 3D data representation and 3D medical
imaging transformations are summarized, followed by a discussion of the major 3D

medical imaging methods - contour, surface and volume. Because they were used in
this research, surface methods are discussed in more detail than the other two areas.
More comprehensive backgrounds of 3D medical imaging concepts can be found in

(45), (19), and (41).

I chose to implement a cell interpolation surface method - based on the march-
ing cubes algorithm (34) (described later in this chapter) - because the subdivision

technique developed by Wilhelms and Gelder (50) provided me with an excellent

framework to explore kriging in the intra-cell estimation process.

Inaccuracies occur in the marching cubes algorithm because it can incorrectly

define the surface of interest in a volume. The algorithm assumes the original sam-

pled data is suff,:ient to represent the surface accurately, when in fact it may not
be. A correct rei. -lering of the surface never occurs because surfaces are continuous

and we are sampling from this continuous domain. The best alternative would be

to sample finer, but with current scanning technology limitations. costs, and pa-
tient health, this is not always possible. Because obtaining a finer sampling can be
difficult and costly, Lorensen and Cline (8) and Wilhelms and Gelder (50) obtain

more accurate renditions by subdividing portions of the volume and estimating new
scalar values within the subdivided volume areas, given a surrounding neighborhood

of original sampled values.

Wilhelms and Gelker (50) investigated two estimation methods -- trilinear and

tricubic interpolation. In this thesis effort. I explore a statistical estimation func-
tion derived by a process called kriging. hriging, according to Matheron. is the

probabilistic process of obtaining the best linear unbiased estimator of all unknown
variable' (25). If properly applied, kriging. in contrast to trilinear and trictibic. an-

alyzes the data prior to estimation to determine the actual variation of the data and

minimizes the estimation error variance. See chapter three for a detailed discussion

of kriging.
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2.1 3D Data Reprtsentation

To understand how medical images are produced, one must first become fa-mil-

iar with some of the basic concepts of 3D imaging from 3D data sets.

Most algorithms developed for rendering 3D data sets expect the data to be

regular shaped, or in a 3D lattice or grid format. A lattice or grid in this context

is best visualized as a framework of parallel planes in space, with data information

(such as material density) conceptually located at the intersection of the planes

or within the volume of space between planes. In many cases transformations are

applied to the discretized data to remove sampling noise, to alter the resolution of

the data. or to make an irregular data set regular (45:4-14).

3D medical data is regular because it is derived from conceptually stacking 2D

same resolution scans. e.g., from CT or MRI output. The third dimension i, then

realized as the stack or slice number (see figure 2.1). Regular shaped data is popular

Y

Figure 2.1. Pictorial represenltationl of a medical data voluin.-

because it call be vasily [napped directly into a 31) array. Once in the array. di
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is ordered for manipulation. One method of ordering is simply to view elemtnts

in the array as volume elements, or voxels. Voxels are conceptually the equal-sized

parallelepipeds created by the intersections of three sets of parallel planes, each set

orthogonal to the other two. The voxel and cuberille data models have been widely

used in imaging agorithms. The use of these data models is discussed in the section

titled 3D Medical Imaging Methods.

2.2 3D Medical Imaging Transformations

The 3D medical imaging transformations can be seen in figure figure 2.2,

adapted from (45). These are operations upon the data that transform it from

scanner output to a 3D graphics image projected onto a 2D screen. The medical

image data, input into scene space, are the 2D image slices output from scanners.

One scene transformation from scene space to scene space processes the input data

by filtering it to suppress noise or to determine tissue boundaries. Forming new

slices by estimating values between existing images is a common scene transforma-

tion (also called slice interpolation). Another scene transformation is a Volume Of

Interest (VOI) operation. A VOI operation pre-processes the scene data to include

only the data that contributes to a structure of interest. A structure of interest

might be a single organ or a. portion of a volume, like the left hemisphere of a brain

study. Structure extraction is the step in the 3D medical imaging pipeline that gen-

erates some structure, such as a polygon mesh, from scene space into object space.

A VOI operation only encloses the structure of interest in scene space whereas strut -

ture extraction generates a separate data representation of the structure of interest.:

Structures in object space are possibly transformed by geometr:- transformations

(rotations, translations, or scalings) into image space. Rendering (projective trans-

formations) transforms the image space structures into view space - the 2D computer

graphics screen. The final data transformation, analysis. acts on the 2D image to

provide parameters for analytic measurements, discussed as data analysis in chapter

one.

2.3 3D Medical Imaging Methods

3D medical imaging methods are typically divided into three main approaches:

contour, surface and volume. The techniques differ in the dimensionality of the

geometric data model used to create the image - ID contours (ID units) for the
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Figure 2.2. Pictorial Representation of 3D Medical Imaging Transformations
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contour approaches, 2D polygons (2D units) for the surface methods, and voxels and

computational cells (3D units) for the volume methods (See figure 2.3). Only those

3D Medical
Imaging Approaches

Contour Methods Surface Methods [Volume Methods I

(11) Units) (21) Units) Vo(31) Units)

Tiling ISurface
Tracking Cell Interpolation

Figure 2.3. Classification of 3D Medical Imaging Methods

medical imaging topics that most directly relate to my work are discussed in this

section. Rendering (projective transformations) is a major 3D imaging task, but is

not discussed at length here because this research emphasizes estimation of scalar

values in one form of "structure extraction" and the scene transformation opera-

tion of slice interpolation. (45) and (41) discuss the different 3D medical imaging

rendering processes.

All 3D medical imaging techniques assume scene space consists of a 3D array

of values (27). The 3D array is actually stacked slices of scanner generated data (see

figure 2.1) with inter- and intra-slice thicknesses. This format will remain following

an 3, scene transformations.

Two processes that must be accomplished to perform structure extraction are

segmentation and boundary detection. Segmentation partitions object space into

objects of interest (which may or may not be surfaces) and the remaining volume.

Boundary detection or surface tracking are techniques that locate surface boundaries

(e.g., organs or bone) during image segmentation (40). These processes are referred

to in the discussion of surface methods, but are mentioned here because they are

done in both volume and surface methods.
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The remainder of this section provides a very brief overview of the contour and
volume methods and discusses the surface methods in more detail. For a complete

discussion of these different approaches see (19) and (41).

2.3.1 Contour Methods The earliest approach to 3D visualization creates 1D
contours (1D units). contours represent the border of the object of interest. Herman
et al. (26) gives an excellent description of contours, along with a figure that clearly

depicts a common ID unit-based rendered surface. A contour corresponds to the
surface border of the object on one particular 2D slice of the data. A contour is

usually drawn as an approximated curve. When the contour lines for all the slices
are rendered, the appearance of a 3D object surface is created. Contour lines are
extracted manually, automatically, interactively, or by a combination of the three

methods.

The obvious disadvantage of contours is the poor representation of the surface,
because the only information depicted is in the plane of the slice and within the

plane, only the surface boundary of the object. However, 1D unit-based images
are generated and rotated rapidly. Due to the latter fact, they have found wide
acceptance and use in the medical imaging community.

2.3.2 Volume Methods These techniques are volume oriented because they
use 3D volume units as display primitives. Volume techniques differ from surface

and contour methods by the amount of data that must be stored and processed
during image computation. Additionally, volume methods typically preserve data
continuity between surface boundaries, whereas surface and contour methods do

not.

Surface rendering algorithms assume data consists of objects with thin surfaces
in a, volume of air (i.e., surfaces are easy to find, with little noise), whereas in reality

most objects have fuzzy (thick) borders and there is much more than just thin

air between surface boundaries. Volume methods preserve fuzzy borders and inter
surface material by avoiding simple classification schemes that assign binary values

to voxels indicating the voxel is in or out of the image to be rendered (33). The

phenomenon that a voxel may contain more than one scalar value is termed a partial

volume artifact. Volume methods allow percentages of different scalar values as
well as colorattenuated light and /or transparency to be assigned to a single voxel
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(16). Each voxel contributes to the final image based on these percentages, thus

reducing the effect of partial volume artifacts. The final color of a pixel becomes the

contribution of all voxel values lying along a ray's line of sight or along a projection

path. Colors are weighted by transparencies and attenuation. Since every voxel

contributes to the final image in this way, volume methods capture transitional areas

between surface boundaries that might otherwise be missed by surface methods.

2.3.3 Suiface Methods Surface methods attempt to reduce the volume of data

to surface boundaries by depicting these boundaries by common graphics primitives

such as polygons, patches, or points (2D units), Surface methods process a small

number of slices at a time, hence they had dominated imaging algorithms for many

years since computing power was not sufficient enough, until recently, to handle the

entire volume of data at once. These techniques consist of tiling, surface tracking

methods, and cell interpolation approaches.
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Tiling

Tiling (tessellation) methods take as input contoc.s created from any of the
contour approaches. The next step usually filters the contour data by smoothing or

re-sampling and then polyhedra such as triangles or quadrilaterals connect adjacent
contours. Smoothing is done to better approximate the curve nature of contours.

One heuristic-based method (42) uses B-splines to approximate a closer fitting con-
tour, so contour smoothing is unnecessary. The following paragraph descri" s some

of the tiling techniques developed in the past.

Tiling methods fall into two general classes, optimal based and heuristic based.
The optimal based solutions (23) and (30) apply graph theoretic methods to derive
what the authors consider the optimal triangulation between two adjacent planar
contours. The major disadvantage of the optimal tiling methods is the long search

time required to find the best triangulation. However, the process is entirely auto-

matic. Since speed is an issue in medical imaging, many other methods were devel-
oped based on hueristics to achieve a faster tessellation, adding interactive assistance

if needed for ambiguous cases (5),(42), and (24).

One major advantage of tiling is that it produces conventional graphics geo-
metric primitives that can be rendered by applying standard reflection and shading
techniques. In addition. as with contour methods, rapid viewpoint, changes are pos-
sible and the data size in the final imaged data set can be quite small compared to

the original volume of data.

Gross inaccuracies in an image can occur if contours are not well-formed with

respect to each other. For example, this can happen when more than one contour
is formed on a scan plane to represent a surface. The most well-known remedy

is interactive editing, although it. is time consuming and still error-prone. Even
without interactive editing, automatic edge tracking to find the contours can be
too slow for most applications. Speed of contour formation is proportional to the

number of structures in the data set. Another major disadvantage is that tiling
based on contours results in loss of essential information because contours do not

contain enough gradient data to represent. the actual surface.
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Surface Tracking

Surface tracking methods generate a surface as a set of cuberille faces. Recall

from chapter one that a cuberille is a dissection of 3D space into equal size cubes by

three orthogonal sets of equally spaced parallel planes. This is a natural t.:tension

of the 2D space dissection forming quadrilles, or "square-shaped pixels" (4:34). The

output primitives are planar polygons formed by connected cube faces approximating

a surface of interest.

The first step usually accomplished in surface tracking methods is to modify

the volume to form cubes. This is done by interpolating values in the components

needed (19:327)., For example, Artzy et al., (1:19), Artzy (2:6), Udupa (44:220-221)

linearly interpolated in one dimension so their input data would have an interslice

distance equal to the resolution of the original 2D slices. This works as long as the

resolution of the original 2D slices is square. If not, interpolation in two or three

dimensions might be necessary.

Prior to rendering the cube faces, two tasks must be accomplished. First, the
voxels must be segmented into those being in the object(s) of interest (1-voxels) or

out (0-voxels). This binary classification forms a 3D binary volume (45:49). Next,

the surface boundary(s) located between 1- and 0-voxels must be located and display

elements connected. The term surface tracking is derived from this process of locating

the surface boundary from a binary volume.

Artzy et, al. (1) developed a surface tracking algorithm that reduces the chal-

lenge of finding connected voxels representing the surface boundary to a graph traver-
sal challenge. Voxels are first segmented using binary classification. Next, boundary

detection is accomplished. Nodes of a directed graph, C, then correspond to voxel

faces separating the object under interest, from all else in the scene. The authors

prove that connected subgraphs of G correspond directly to surfaces of connected

components of the object. TO find the surface boundary, a subgraph of a digraph is

traversed.
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Cell Interpolation Approaches

Cell interpolation methods generaLe polygonal elements by analyzing compu-

tational cells. Recall from chapter one that a fom utational cell is a parallelepiped

such that four cell vertices are voxels in one slice and the other four are voxels in an

adjacent slice - see figure 2.4, The major difference !-etween these methods and the

cuberille methods is that the cell interpolation methods analyze how the data varies

between voxels to determine where the surface lies versus assuming only constant or

linear variation.

Z

F e . uicomputational

'Voxels formling cell vertices

Figure 2.4. C omputational Cell

There are currently four types of cell interpolation approaches. These algo-

rithms are the marching cubes method developed by Lorenson and Cline (34). the soft

objects method by Wvvll and McPheeters (52), the "gradient-consistency heuris-

tics" by Wilhelms and Gelder (50). and the cell subdivision techniques also described

by Wilhelns and Gelder (50).

Each method follows a two step process. First, the volume of data is segmented

by classifying each voxel as eil her I or 0 (or in the case of the soft objects method as
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hot or cold). A voxel is . f its scalar value is greater than an iso-value (threshold),

else it is assigned a 0. The second step is to determine if a cell has both 1 and 0

vertices and if so generate polygons within the cell to approximate the portion of the

iso-surface that passes through the cell. An iso-surface is formed by connecting all the

polygonal elements to form a 3D mesh, such that the surface inter,-cts approximately

the same (iso) scalar value or range throughout the sample data. Polygon vertices

(not to be confused with cell vertices) are determined by linearly interpolating 3D

coordinates between the 1- and 0-voxels of a cell. The coordinates are interpolated

to the iso-value. The four methods differ by how the polygons are formed within the

cells.

The term ambiguous cell must be defined before discussing the four cell in-

terpolation methods. A cell is termed ambiguous if more than one topology can be

chosen for it. A topology is the polygon formation within a cell. Durst (18) noticed

holes can result from the marching cubes algorithm described by Lorenson and Cline.

Holes can be caused by improperly forming polygons between two ambiguous cell

faces.

The term ambiguous cell was defined by Wilhelms and Gelder (50). An am-

biguous cell face is defined as "a cell face that contains a diagonally opposite pair

of positive vertices [1-voxels] and a diagonally opposite pair of negative vertices [0-
voxels]" (see figure 2.5, obtained from (50)). By looking at figures 2.6, 2.7, and

2.8. the reader can see that the a,,biguous cases are 3, 6, 9, 12, 13, and 14.
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Figure 2.5. Ambiguous face - intersection point connectio, choices

Marching Cubes

The marching cubes Li :rithm was developed to alleviate the necd of using

cubic voxels, i.e., 3D data " with reduced resolution in one di,,ension" (7:345).

Binary classification of cube vertices creates a total of 28 = 256 possible cell vertex

classifications. Py analY . the geometry of the different cases, the total number of

unique cases can be red:,ced to only 15 (see figures 2.6, 2.7, and 2.8). The other

241 cases are reduced to the 15 by symmetry and appropriate rotations. Wilhelms

and Gelder (50) call this approach the major case table looL-up iiiethod because a 256

element table must be pre-set to indicate the transformation of cases to the unique

15. The signs at. the cell's eight vertices are then used as an index into the major case

table. Once the appropriate classified cube case is determined, another pre-set table

ent, indicates the triangle formation. The triangle formation is somewhat arbitrary

since intersection points (points approximating where the iso-surface intersects a cell

edge) can be connected in many different ways for most of the 15 cases. Only certain

connections make sense with most of the cases. However. there are six cases that can
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cause serious inaccuracies if improperly connected (which is discussed in the next

section).
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1 Case I
Case 0

case 2

case 3 case 4

Figure 2.6. First 5 cases of 15 cube vertex classifications and triangulations
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case 6
case 5

case 7

case 8 case 9

Figure 2.7. 5 more cases of 15 cube vertex classifications and triangulations
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case 10 case I1I

case 12

case 13 ca-se 14

Figure 2.S. Final 5 cases of 15 cube vertex classifications and triangulationis
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case 6 case 6

Front facial average
Front facial average greater than threshold
less than threshold, so connect hot vertices
don't connect hot verices

Figure 2.9. Facial averaging example

Soft Objects

Wyvill and McPheeter's soft objects method is almost identical to the marching

cubes algorithm., The actual 3D scalar field is fabricated rather than obtained from

scanners, but the data representation is still a 3D regular data set. Key points are

specified to reduce the data set. Additional points are estimated as needed by a

cubic function that uses a radius of influence to determine the key points needed in

the estimation function. The most significant difference between this method and

marching cubes is that this method uses a dynamic. simple technique to polygonize

an ambiguous cell.

The soft oojects method forms polygon vertices on an ambiguous cell face by

analyzing the four cell face vertices. The method assumes the value at the center of

the face is approximated by averaging the four vertex values. Then, if the averaged

value is greater than the iso-value, the positive vertices are connected. For example,

see figure 2.9. L, his way, two cells sharing ambiguous faces are always consistently

polygonized - thus no holes result.
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This facial averaging method provides only a rough estimate of center face
values. A different form of estimation may be required to obtain a more accurate

center value estimate. Even if the estimate is not veLy accurate, Wilhelms and Gelder

claim the facial averaging method guarantees continuity, i.e., no holes appear in the

image. This assertion is based on their facial plane principle :

If the method of disambiguation for ambiguous faces employs only values
in the plane of the face, and is invariant under rotations and mirror
images, then the isosurface as defined by topological polygons will be
continuous.

They refer to the (possibly nonplanar) polygon generated within a cell as a topo-

logical polygon because it specifies "the topology of the isosurface within the cell."

This assertion makes intuitive sense because the same facial average is calculated for

shared cell faces. This results in shared vertices between cells for that face.
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Gradient Consistency Hueristics

The gradient consistency hueristics were developed by Wilhelms and Gelder to

compute a better estimate of the center face value, assuming that simple averaging

does not estimate the center value accurately enough (50). The authors use these

methods to handle ambiguous cases in the same manner as facial averaging. The

authors use the gradients at the four face corners to obtain the center estimate.

Gradients indicate how rapidly the iso-surface is changing at a particular point.

The magnitude of the gradient is used as an approximation to the normal in the

shading calculations, therefore it is already computed at each voxel. The two gradient

consistency hueristics developed by the authors are the "center-pointing gradient"

and "quadratic fit."

The center-pointing gradient is the gradient component of a cell vertex directed

towards the cell face center. This gradient is obtained as the dot product of the vertex

gradient with a unit vector in the direction from the vertex towards the -enter of the

face. T-No univariate quadratic functions are determined by the least squares error

method to estimate the center scalar value along both diagonals of the face. These

two estimates are then averaged to yield a final estimate. This estimate is then used

to determine the cell topology, as in the soft objects facial averaging method.

Two assumptions are made in this method. First. the center-pointing gradients

are assumed to approximate the deriivatives at each corner. Second, the quadratic

functions are assumed to exactly fit the two endpoints. The gradient assumption is

typically used for determining the normals for shading as well. The second assump-

tion is made in many estimation methods to insure the estimation process returns

the correct value at known points.

This method only analyzes the face corner sample values, similar to the soft,

objects method. It. should choose the topology better than the soft objects method

only if the tuderlying scalar field function is quadratic along both face diagonals.,

The quadratic fit method is similar to the center-pointing gradient method,

except here the center face value is estimated by a single bi-variate quadratic func-

tion. The least squares error fit uses all four face corner sample values to estimate

parameters of the function. This method chooses a more correct topology than the

center-poitaing gradient if the underlying scalar field function is quadratic across the

entire face.
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The gradient consistency heuristics make minor improvements to the soft ob-

jects method of resolving ambiguous cells. A disadvantage of the heuristics methods

is that they assume the scalar field function is locally quadratic. If wrong, this as-

sumption can generate inaccurate topologies within cells. The only way to knowv if

the topology is inaccurate is to know the local variation of the scalar value function.

However, obtaining this knowledge might be too computationally costly to be of any

benefit.
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Cell Subdivision Techniques

Cell subdivision techniques are implemented for two primary reasons. The first
is to increase image fidelity. The second is to resolve ambiguity of cells. Image fidelity
can be increased because the data resolution is increased. Cell subdivision is the same

method employed by Cline and Lorensen's (8) dividing cubes algorithm. In dividing
cubes, cubes (cells) are divided until the resolution of point primitives is reached.
In cell subdivision, instead of subdividing cells to create point primitives, cells are
subdivided to create sub-cells. These sub-cells are then treated as the previous
original cells were, i.e., the iso-surface is represented within them by triangles. These
sub-cells are much smaller than the original ones, hence data resolution has increased.

Because of this increased data resolution, the surface can be approximated closer to
the actual surface by the smaller triangles. However, the quality of the final image

depends on how the scalar values are estimated at the sub-cell vertices. Therefore,

the significant challenge with any subdivision technique is how to estimate values at

the sub-cell vertices.

According to Wilhelms and Gelder, another way to resolve ambiguity in cell
cases is to create sub-cells within original cells and polygonize the sub-cells as in the
soft objects method. New cell vertex scalar values are estimated by a re-sampling
fumiction. In \'Villhelms and Gelder's implementation, they subdivide each computa-
tional cell and apply an estimation function to determine new scalar values at. the

points derived from the subdivision. The two estimation functions they use a.re tri-
linear and tricubic. The major case table lookup method (marching cubes) is used
to process the sub-cells, and ambiguous cases are handled as in the facial averaging
technique. Tricubic is more coinputationally intensive than trilinear. but it produces
more accurate iages for their artificially created volumes than any of the other cell
interpolation methods. Image quality improves because the tricubic method consid-
es sampIle (lat a in a large neighborhood (the surrounding 6,4 voxel values) and does

not assume linear variation. On the other hand, trilinear only analyzes the eight cell
vertex values and assunes a linear variation along each of the three axes.
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Note that all nonempty1 cells must be subdivided to ensure continuity between
faces. If not, one large undivided nonempty cell face may share a face with several

sub-cell faces.

Besides just resolving ambiguous cases, cell subdivision is also a good method
to use if a smoother looking image is desired. However, depending on the subdivision
size, the resulting number of polygons may be very large. A typical set of from 50 to
100 brain MRI or CT slices can result in over 500,000 polygons for certain iso-values.

Subdividing by a factor of just two could increase this to over two million polygons.
In this case it might be more beneficial to use Cline and Lorense,'s Dividing Cubes

algorithm (8).

'Nonempty means that a cl.sification of the vertices derive- unique cell case 0 in figure 2.6.
That is. a nonemnpty cell is one such that the surface is determined to not pas.' through it
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Surface Methods Conclusion

Both the cuberille-based methods and the cell interpolation methods produce
images that appear to represent the surface of interest. However, the most important
issue is not appearance but rather the accuracy of the methods. An argument could

be made that the pre-processing step of creating cuberilles produces more accurate
results because of the increased resolution. However, new slices are normally created
by simple linear interpolation, whereas a higher order interpolation might be more
accurate. Also, once the cuberilles are formed, constant variation within cells is
assumed during surface formation.

Cell interpolation techniques using subdivision and estimation functions also
estimate new scalar values within the original computational cells and can easily
go beyond input pixel resolution by increasing the subdivision factor. In addition,
according to Upson and Keeler (46), the variability of the scalar values within cells

..is a more accurate representation of the real world and allows for smooth, con-

tinuous representations of even small datasets." Cell interpolation methods assume
variability within cells to create new sub-cells. They also assume scalar value varia-
tion within the new sub-cells (although this latter variation is always linear - recall
the process of finding surface intersection points along cell edges).

An advantage shared by the cuberille-based and the cell interpolation methods
is that tile create a display list of polygons. This display list can be saved for fast

re-display at different viewl)oints using traditional lighting and shading models.

A major disadvantage to the marching cubes cell interpolation algorithm is that.
holes can appear in the rendered surface (18). Yet, with disambiguation methods

employed, the ambiguous cases are corrected to a certain degree. Cell subdivision
methods can also improve image quality as well as the accuracy of surface represen-
tation. Both image quality and accuracy of surface representation depend directly
on the accuracy of the estination fiction.

2.4 Chlptf r Stulfiary

3D medical imaging topics relating to this thesis were presented. Specifically.
this chapter first discussed tie data representations used in 3D medical imaging.
Regular data grids are assumed by all 3D medical imaging methods because the

output from -nedical imaging modalities is regular. The two )rimary data models
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include voxels and cuberilles. Next, the common 3D medical imaging transforma-
tions were summarized. The remainder of the chapter described the 3D medical
imaging methods - contour, volume and surface. Surface methods were covered in
great detail because surface methods were iiplemented to accomplish the purpose
of this thesis. The first primary surface method discussed is surface tracking. Since
these techniques use the cuberille data model, surface tracking methods usually es-
timate new slices between existing slices to form cuberilles. Although a surface
tracking method was not implemented iii this research, the task of slice interpola-
tion was accomplished. Finilly, cell interpolation surface methods were discussed.
These include the marching cubes algorithm, the soft objects method, the gradient
consistency heuristics, and the cell subdivision techniques.

The focus of the next chapter is to explain how an estimation function can be
derived based on the statistics of the underlying scalar field data.
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III. Kriging Theory

Kriging is a geostatistical estimation method name6 after a South African min-

ing engineer, D. G. Krige. The theory was developed for the purpose of estimating

ore reserves in mining. However, kriging can be used to estimate samples in any situ-

ation where estimates depend on nearby known samples based on spatial or temporal

position. Kriging is significant because it is the optimal linear estimator.

This chapter presents first the background and purpose of kriging, followed

by the derivation of the ordinary point kriging equations. After these equations are

derived, different kriging categories and types are summarized. Lastly, an overview

of structural analysis and isotropy is presented. The order of topics was chosen to

present the most common form of kriging first, and then building on this foundation,

to introduce other kriging methods.

3.1 Background

Krige developed the basic theory, but ,. French engineer named Georges Math-

eron and his colleagues developed the rigorous mathematical theory of kriging (35:602)

and (9:625). Prior to kriging. estimation methods used in geo-statistics made several

simplifying and usually Invalid assumptions. The most erroneous assumption was

that variances between data samples is constant. This assumption made the other

estimation methods very error-prone. Krige pointed out that to get a more accurate

estimate, variances between the prospective blocks and the core samples must be

taken into account. Kriging is primarily used in situations where there is expected

to be some dependence between data measurements at different locations. Its use in

discovei ing deposits in various mining pursilts is well known and documented; see

(13:70-71).,

Kriging is a process that derives a geo-st.atistic. Geo-statistics differ from

classical statistics in the variables tied. Recall that a statistic is a function of random

variables. A geo-statistic is a func- ion of regionalized variables. Random variables

model chaotic processes. Regionalized variables model spatially dependent. natural

phenomena. According to Matheron (35). regionalized variables are characterized

by three qualities. The first is localization. Regionalized variables are localized

within a Support. A support is the volume of a sam)ple. consisting of geometric
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size, shape, and orientation. In the geo-sciences, an example support is a drill core.

The second quality of regionalized variables is that they may exhibit continuity

within the region of a support. Stadsticai continuity means the sample values do

not deviate significantly from each other. Thus, they are not random in nature,

but show some kind of order. The third characteristic of regionalized variables is

anisotropies, discussed later in this chapter.

Kriging is a modified form of a multiple linear regression model with parame-

ters estimated by a technique similar to the method of least squares (37) and (15).

Kriging uses weighting functions based on distance to coml)ute the desired data

value. The method operates on the assumption that data points closer to the target
should be weighted heavier in the estimation calculation than those further from the

new point. For example, in figure 3.1 points 1,2, and 7 would be expected to have

more influence on the estimate than points 5 and 6. This weighting strategy has

05
03 3

2 
0

0 t<( Estimate

Figure 3.1. Kriging Example

provet to be very accurate in the field of geo-statistics. Davis sums up the goal of

krigiug in t.he following sentences
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There are an infinity of other possible combinations of weights that could
be chosen, each of which will give a different estimate and a different
estimation error. There is. however, only one combination that will give
a minitnum estimation error. It is this unique combination of weights
that kriging attempts to find.

The goal of kriging is to estimate an unknown value at a particular place

within a known neighborhood of points using a linear combination of computed

weights and known sample values. Optimal weights are determined by solving a

system of linear equations produced by two conditions placed on the kriging linear

combination. These constraints make the value derived from kriging the best linear

unbiased estimator (B.L.U.E.) (13). The constraints are:

* unbiasedness by setting the expected estimation error to zero i.e., removing

any "systematic error"

" minimum estimation error variance.

These conditions insure optimality and insure that "no other linear combina-

tion of the observations can yield estimates that have a smaller scatter around their

true values" (14:385).

Why use a linear estimator versus a non-linear? According to Delfiner and

Delhoimme. "The major difficulty with non-linear estimators is that they involve

parameters or characteristics that cannot be inferred from the data" (15). Even if

the sampling function is locally non-linear, this is taken into account by the drift in

universal kriging. which is discussed later.

The basic purpose of kriging for this research is the same as that for the

estimation fia'ctions explored iw Williclms and Gelder (50) - given a flew point

within a neighborhood of known sample points and associated values, estimate a

value at the given point using a combination of known sample point values. The

kriging equation esl imates a value as a distance-weighted linear sum of known sample

points. The termn linear refers to just the linear suni. it does not indicate that the

data varies linearly. Kriging can nodel all forms of highet order data trends such

as quadratic and cubic. This capability is discussed in later sections. The next few

sections explore ho" kriging calculates data weights and show that the conditions

assune(l about the( data make kriging the optimal interpolator for data sets derived
from natiral phenomena.
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3.2 Krigzng and Least Squares

Kriging primarily differs from least squares in tie type of variables used in the

linear equation. Tile variables used in least squares are assumed to be independent

random variables, whereas those in kriging are regionalized variables. Recall from

a previous definition that regionalized variables model natural phenomena. These

types of variables assume the data is localized and exhibits continuity, whereas phe-

nomena modeled by random variables exhibit chaotic behavior. No simple methods

like least squares can be applied to such variables because no tractable deterministic

functions can be found that describe the complex variations in regionalized variables

(14). The next section discusses how the dependence of regionalized variables is

captured in the kriging linear regression model in tile simplest kriging case.

3.3 Derivation of the Ordinary, Point Kriging Equations

My discussion of kriging begins with ordinary point kriging because the other

forms are modifications of this method (ordinary and point are defined in the next

section). Tile discussion begins by stating the goal of kriging. followed by an explana-

tion of the constraints on the kriging equation that produce a system of equations.

The system of equations are solved to yield the weights 'in the kriging equation.

The equations presented below were obtained from a number of different sources.

primarily (12). (14). (17). (9). (15). (13). (48). (11). (31), and (6).

In the following equation the goal is to estimate Z. the unknown value at the

known position p in the neighborhood of known points p, and known values Z,(p,).

=

The Z,s are the regionalized variables with the parameter being an n-dinensional

point and the r,*s the weights. The weights are chosen to satisfy the following two

conditions that make 7. the B...

* E( - Z) = 121

o E(Z - Z)' minimumlir [31

where 7 is tihe value being estimated at p and Z is the actual value at point p. The

estimation error. 7, - Z, is a measure of the dissimilarity between the two variables

7 and Z. E(;7 - Z)2 is Ihe nean square error and h, is the expected value or mean.
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Using the following equality from the definition of the variance, V, (37:89),

E(Z - Z)2 = V(Z - Z) + [E(2- Z)12

[3] can be re-written as

( 11(2 - Z) minimum [4]

where a' is the estimation or error variance. This is important because it points out

that even though condition [3] states minimum mean square error, it is equivalent

to minimum estimation error variance.

Next. the system of kriging equations are derived from conditions 121 and [4].

This system is similar to the set of simultaneous linear equations (normal equations)

produced in linear regression that are formed by setting the partial derivatives of the

unknown parameters to zero (21). Before the equations can be derived, the above

two conditions are expanded and changed into more quantifiable constraints.

Modifying condition [2] above is straightforward

E(Z - Z) = 0

E(2) - E(Z) = 0

Then recalling [1], substitute into the above and get as an additional constraint

EjZwjZ(p,) - E(Z) = 0

>Zv,.,(pz) - n"(p) = 0

E = [.51

where nt() is the mean or first moment. Unbiasedness in the estimate is assured by

insuring that the weights sum to 1. (13"238)

The eslimalion error variance is ((6). (13). and (9))

- = v, ',(),. p) - K (p,) - E .,,K,(p,.p,)[ '

where K(m.n) is the covariance between point m and poiiit n and 1) is the n-

dimensional point where the estimate is computed. Jo,,rnel derives similar esti-

mation e,-ror variances (29), but this equation is considered the general unbiased

linear estlimator derivable by expanding the variance of the linear combination of

regionalized variables in equation [4].

The covarianee between the variables is modelled by a function called the seni-

variogram. In most cases the semivariogram is ntiknown and must be determined
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by a process called structural analysis. For the present. assume the semivarogram is

known and is represented as ((m, u) = mn. The semivariogram represents the av-

erage difference squared between the values at points m and n. The main parameter

used in semivariograms is the distance between points in and n. The semivari-

ogram models the dependency of data values based on how far apart they are from

each other. The spatial distribution of regionalized variables is accounted for in

the semivariogram. The semivariogram gives the correlation between san-ple values

a geometric meaning rather than a probabilistic meaning. Structural analysis and

the semivariogram are discussed in more detail in a later section. As a result of

substituting the semivariogram in place of the covariance. [6] becomes

C2
( */Z~2 ~ ip -ZLCWh 7

Now that condition [1] is more quantifiable in terms of [7]. it must be minimized

to satisfy the minimum estimation variance constraint. Since there is a constraint

[5], n unknowns and n + 1 equations would result from minimizing this system.

Therefore a Lagrangian Multiplier is added to equalize the system. Minimization

is done by taking the partial derivatives with respect to the weights an( the La-

grangian Multiplier tj and setting the resulting equations equal to zero. 1 his yields

the following complete ordinary point kriging system:
It

Ec,' + 7= I (ii= 1. 7.) (f8
J=i

The Methodology chapter will show these equations in expanded matrix form.

Tile systemn presented above is ordinary point krigiig. Due to 'he consi raints [21

aiidl [.1]. this system will determine optimial weights to subsitule back into eq)aatio

[1]. Z is the B.L.U.E. because of the optimal weights. i.e.. no better linear estimate

can be derived. This system is only one of several types of kriging possible. Other

types and their differences from this system are discussed next.

3.4 Krqiiny CalyilnOirs and 7htips

The kriging literature describes two broad categories of kriging and three tees

of kriging. Thr categories differ ba.sed on estimation region. The t-pes differ based
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on assumptions about the sample data. Either of the two categories can be used in

any kriging type.

3.4.1 Kriging Categories The two categories of kriging are roint and block.

Point kriging was discussed in the preceding section. It is employ, When the goal

is to estimate a value at one particular point.

Block kriging estimates a value for a region instead of at a single point. There

are two block kriging methods. The first uses point kriging repetitively to estimate

several values within the block and then averages the results to get one value. The

second method derives a new set oi equations using a modified covariance function

of the K() terms in equation [6]. The second method involves computing a double

integral that, evaluates the area of the block in question. The problem with the

second approach is finding an explicit analytic form for the integral; hence, the first

method is most often used for block kriging (1 )1.

3.4.2 Kriging Types There are three primary types of kriging discussed in

the literature - simple, ordinary and universal. These techniques differ in their

assumptions about the behavior of the expected values or means of the regionalized

variables E(Zj) (15). see figure 3.2.. Each of the three methods can be developed so

the final kriging system estimates points or blocks.

'Some authors conib)in poii and block kriging into one form in which the area integral reduces

to a point in the cast of pomt kriging (9:626)
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Krjging Means of Regionalized Means of Regionalized
lype Variables are Known Variables are Constant

Simple Yes Not applicable

Ordinary No Yes

Universal No No

Figure 3.2. Table of Kriging Types (All three can estimate points or blocks)

Simple Kriging

This type of kriging, as the name suggests, is the simplest form of kriging

- even simpler than the above ordinary kriging system. However, this nethod is
seldom employed. The method is termed "simple" because sample means at known

locations ,tre assumed to be known prior to kriging. The means are stated as

E(Zj) = mi,i = 1,...,n and E(2) = in

where mi is the mean of the i'th regionalized variable and m. is the mean of the

estimator regionalized variable.

This assumption modifies the kriging equations derived above because the un-

bias constraint changes. The ordinary equations derived above left out one variable
important to the simple kriging equations. This variable is called a shift parameter.
A (29). In ordinary kriging, A = 0. The shift parameter modifies the estimation as

n

Z=A + 117, Zi (p,

Now the unbias condition becomes

E(Z - Z) = E(Z) - E(Z) = E(YZuw,Z,,(p) + A) - nz

Journel (29) shows that this unbias constraint changes the estimation equation to

Z =n + Zwi(Z, - ?n')
i=1

This equation indicates that the unbiased estimator 2 is determined as a linear

combination of the residuals, (Z, - ni,).
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This assumption also simplifies the minimum error variance condition [4]. In

essence, this form of kriging reduces to classic linear regression (29) and (12). Simple

.:riging is seldom used because the means of the regionalized variables are usually

unknown.

Ordinary Kriging

Unlike simple kriging, ordinary kriging assumes the mean of each regionalized
variable is unknown. Also unlike simple kriging, ordinary kriging assumes each mean

is the same. A constant mean is more commonly referred to as a stationary mean

(9:626). The ordinary system of equations were derived above to estimate points.
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Universal Kriging or Kriging with a Trend

Universal kriging also assumes unknown regionalized variable means; however,

it differs from ordinary kriging because it assumes the unknown sample means are

possibly different, or non-stationary. Sample means are also referred to as first-

order moments. Stationarity assumptions for the second-order moments can also

impact the type of kriging used (see (9) and (11)), but will not be considered ,in

this effort. The term non-stationary also refers to drift or trend, indicating the

means of the regionalized variables differ from sample point to sample point within

a surrounding neighborhood of other sample points. There are two plrimary methods

of kriging in the presence of local drift - universal kriging and the method of intrinsic

random functions. According to Cressie (9), universal kriging, simply extended from

ordinary kriging, is most often used because the method of intrinsic random functions

is impractical to apply.

When using universal kriging, the first process becomes estimation of the re-

gionalized variable means at the sample points using a local neighborhood of known

sample values to determine if the means are constant from sample point to sample

point. If data has global (iegional) drift, there appears to be a definite pattern or drift

in the sample values over a larger area, usually much larger than the neighborhood

size used in the kriging system. If drift, is local, it occurs within the neighborhood.

Figure 3.3, adapted from (14) and (13). shows regional drift as a line placed through

the data poinls.

If global drift exists. the regionalized variables are now viewed as being com-

posed of two parts - the drift and the residual. The drift of a regionalized variable is

its expected value (mean) at a point p, within a certain neighborhood. This experi-

mental or computedi meat is called drift if it varies from point to point. The residual

is calculated by subracting the drift from the actual measurenieqIt. For example.

assume an experimental drift is calculated for every known point. call it ?n(Z(p,)).

Then the residuals are calculated as

Y(P,) = Z(p,) - ,,,(Z(,,)).

2David shows that the experiniital drift. can be calculated by estimating the drift coefficients as
a linear combination of the a\,ailable data. This is another multiple linear regression that tq pically
assumes simple unbiased estiiation derived from a least-square inethod (13) The drift equation
is shown in the ntxt. paragraph.
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Figure 3.3, Global and Local Drift
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There are three primary steps in estimating points or blocks in the presence of a

global drift. First, the drifts are estimated at each point and residuals are computed.

Then, the residuals are used as stationary regionalized variables in a simple, ordinary

or universal kriging system (depending on the local means). Lastly, the estimates

derived by kriging the residuals are added back to the drifts to get the final estimate.

If local drift exists, then universal kriging is used (13:267). The ordinary point

kriging equations developed in the last section must be modified in the presence of

local drifts to yield the system of universal kriging equations These modifications

are described below.

David (13) expresses the drift. at point p as

k

rm(p) = E(Z(p)) = Zdtf'(p) [9]
1=0

Equation [9] is normally represented as a finite order polynomial in universal kriging.

The f'(p)*s are k + 1 known functions, usually monomials, and the d,'s are the k + 1

unknown drift coefficients.

The kriging system of equations change in the presence of drift because the un-

bias constraint changes. In ordinary kriging the unbias constraint forces the weights

to sum to I because the mean ni(u) is constant, producing equation [5]. Now that

rn(p) is no longer constant but takes into account drift from equation [9]. the unbias

constraint results in

E(2 - Z) = 0

E(ZZ(pi)) - Zdif(p) = 0
a k

-wi.f'(p 2 )_ f=(p) ( = 0.1 ..... /,) [10]

Notice the drift coefficients di have dropped out of the constraint. Thus the

universal system is independent of the drift coefficients, but still insures unbiasedness.

Since this condition insures unbiasedness regardless of the unknown drift coefficients

di, the term universal is used to denote the system of equations that result.

This constraint (equation [10]) adds k+ 1 more equations to the minimum vari-

ance condition, thus k+1 additional Lagrange Multipliers (711) are needed (9).(15).and

(17). After the partial derivatives of the equations are taken with respect to the n

weights and the k + I Lagrangian Multipliers and set to zero. the resulting universal

kriging system is
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n k

EUr,, + Z-ii.f'(P,) = iv (i = 1,...,n) minimum estimation
3=l 1=0

variance [1

n

Elwf'(p,) = f'(p) (I = 0, 1, .. ,k) non-bias [12]
t=1

There are several unknowns in this system of equations that must be esti-

mated. The unknowns in the universal system are the order k of the polynomial

f.(p), the drift coefficients di, and the size of the neighborhood used to determine

the drift. These unknowns are determined during structural analysis. The drift co-

efficients dl can be found along with the weights in the kriging system (14:394) or

by a least-squares method (13:272). The order k is usually 1 or 2. If the means of

the regionalized variables are the same, k = 0 and equation [10] reduces to equation

[5], which is ordinary kriging. If the order is 1 this means the 0th order term or

the constant will be included as well as the first order terms. In two dimensions

this is the x and y terms. If k 'is 2, the 0th, 1st, and 2nd order terms are included

in the drift. The first order (k=l) polynomial associated with linear drift in the

neighborhood is : m(p) = do + d1 Xi + dX 2i

and the second order polynomial associated with quadratic drift is

?l(p) = do + dlX, + d2X 2, + daX1, + d4XiX2i + dsX 2 ,

where X1, and X 2, are the first and second coordinates of the i'th known 2D point.

in the neighborhood (14:394). As stated earlier in this chapter, any order drift can

be modelled by kriging - simply modify k in equation [12]. If a polynomial drift is

not observed during structural analysis, other types of drifts can be easily modelled

as any type of function of the geometric coordinates.

-3.5 Shuclural A wiiysis

Structural analysis is "the process of attempting to simultaneously find satis-

factory representations of the semnivariogram and drift expression." (14:245). This

process also determines the optimal neighborhood for the estimation. The neigh-

borhood is the sample values in the kriging linear sum that are all within a certain

distance of the estimated value. I term neighborhood size the nunber of sample

values in the kriging sum.

3 1)aVis (14) and David (13) present tie universal kriging equations in expanded matrix form.
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The semivariograrn, drift, and neighborhood all influence each other and char-

acterize the notion of localized continuity within a sample volume. The goal of

the process is to find a model semivariogram that models the spatial correlation of

sample values within a local zone of influence (neighborhood).

Structural analysis is usually performed prior to kriging. Prior to understand-
ing the process of structural analysis, the semivariogram must be defined.

Semivariogram Definition

The semivariogram is a graph and/or formula (14) that

... represents the spatial variability of data ... can be thought of as an
average difference squared between data a given distance apart in a given
direction... [and] provides a quantitative value for the range of influence
of a sample in any direction (31).

The semivariogram is used in the kriging system of equations as an approx-
imation to the co-variance between sample values. The co-variance measures the

inter-dependence or correlation of random variable occurrences, whereas the semi-

variograin measures the spat ial dependence of regionalized variable occurrences based

on the distance from each ot her.

There are two major types of semivariograms used in kriging - experimental

and model. The experimental semivariogram is used to estimate the variance of

differences in the sample data. The experimental semivariogram is an estimator of

the model senivariogram. Once aii experimental semivariogramn is computed. it is

compared to known model semivariograms to select the closest match. The reason

for using a model semivariogram is discussed in the section Models. The remainder

of this sect ion will describe how the experimental semivariogram is derived.

The semivariograni ^,,(h) is often improperly called the variogram. It is termed

the semivariogram beca'ise it is half the variogram 27 (h) The variogram is:

21(h) = c.'(1 ), + h) - Z(p,)) Vp,, .,, + h E N

where 21(h) is the variance between samples a distance of ii apart from each other

and N is lhe neighborhood of known sample points.
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The semivariogram can be represented by a formula or a graph. Graphs de-

pict the distance h on the abscissa and the semivariogram -y(h) on the ordinate.

The experimental or sample semivariogram (graph) is computed and ploted from

the known sample points and values and is compared against known model semi-

variograms to determine the best fit (closest match). After a fit is made, model

parameters are estimated. The semivariogram used in equations [81 and [11] is a

model function, not experimental.

Davis states that the following equation can be used for estimating the semi-

variogram (experimental) for multiples of Ii when h is the same between data points

(in other words the data is regular)

S (x -x + h - -(X "- X h

I C Y -X ,..h). [ 1 3 ]
The asterisk indicates this semivariogram is experimental or estimated from

the sample values. This expression takes into account drift in the inner second term

in the numerator,

Z(X,-X.+h) [141
11

Equations [131 and [141 are in (14).
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Process of Structural Analysis

The goal of structural analysis is to determine a model semivariogram. To find

this model semivariogram, an experimental semivariogram is first estimated from

the known data values and compared to known model semivariograms to find a close

match. However, before this is done, it must be determined if drift exists. The
drift expression and the experimental semivariogram change based on the size of the

neighborhood 4 . It would be best to estimate the semivariogram using the entire data

set. However, it is too costly and often does little good since a distance is usually

reached at which the affect of values on one another becomes neglible. Therefore.

a maximum distance for the neighborhood is assumed initially to determine drift

experimentally. This same distance is used in calculating the experimental semivar-

iogram.

In the case of ordinary kriging, no drift exists so the experimental semivari-

ogram calculated from the orginal sample values is sufficient to determine the spatial

correlation of the samples. If drift exists, the situation is more complex because the

semivariogram is not reliable statistically.

The model semivariogram must provide good statistical properties, like corre-

lation between sample points based on spatial relationships. However. estimating

the semivariogram of non-stationary regionalized variable., may not have these kind

of properties. According to Davis. stationary variables (regionalized variables with

stationary means) force equation 1141 to zero. which gives equation [131 a known

statistical property - "the difference between the variance and the spatial autoco-
variance for the same distance." Normalizing the variables. i.e.. mean zero and

variance 1, provides an even better statistical property - the sernivariogram becomes

the -mirror image of the autocorrelation function" (14:2-12).

The main p~roblem in the presence of global drift is that the experimental

semivariogram is not reliable statistically. Recall that drift can exist in two forms.

local and global. Local drift is accou-ted for in universal kriging. Therefore. the

main task of structural analysis in this case is to compute a reliable experimental

semivariogram in the case of global drift. Since stationary regionalized variables are

considered reliable and residuals are stationary. then the r-siduals can be used to

4The drift coefficients as well as the order of the drift polynomial may differ.

3I-l i



compute the experimental semivariogram. To find the residuals, which are the drifts

subtracted from the actual values, equation [91 must be solved.

The weights in equation [91 are determined in two possible ways. First, they

can be estimated by the Lagrange Multipliers in the universal kriging system or they

can be separately estimated by a regression technique like least-squares (13). If a

kriging system is used, a known semivariogram can be assumed at the start (a "first

approximation") to obtain estimates of the drift., If a least-squares approach is used,

a first- or second-order polynomial is fit to the sample data to obtain estimates of

the drift coefficients. In this case the di's in equation [9] are estimated as linear

combinations of the data

(17 = 5jjZ7,21

After estimates of Ihe drift are obtained, they are then removed from the actual

data to obtain residuals. The residuals are then used to estimate an experimental

semivariograrn. The experimental semivariogram is then compared to known models.

If a poor fit results, the "first approximation* semivariogram, the neighborhood size.

and/or even the order k of the polynomial drift equation [121 can be modified to

obtain a closer fit, This recursive process is known as structural analysis. There is

a strong -interrelation between neighborhood size, drift, and semivariogram for the

residluals" (1-).

Once a model fit is obtained, a kriging system is used with the model semi-

variogram to obtain estimates fron the residuals. To get the final kriged estimates.

the drift estimates are added to the estimates determined by kriging the residual

regionalized variables.

In summaiy. the first step in structural analysis is to determine if global drift

exists in the data set. This requires calculating a drift or sample mean for every

sample value in the data set. If it exists. global drift must be removed by calculating

resi(uals and then computing the experimental semivariogram from these residuals.

Once a model s%.nivariograim is chosen, values are estimated by kriging tlie residual

data set with this mnodel semivariogram. These kriged values are then added back

to the drifts calculated at the beginning of the analysis. Or. if global drift. does

not exist. the data itself is used to determine the experimental semivariogram. If

global drift exists or it does not. local drift can he assumed because if local drift does

not exist. the local drift coefficients will just be zero. Global drift is not so easily

accomnted for because it involves a much larger neighhorhood of sample values.
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Models

Model semivariograms are used in the kriging system of equations rather than

experimental semivariograms. Experimental semivariograms are not used because

they do not provide results for distances other than those derived from the sam-

ple data. The term model refers to a known. continuous semivariogram (31) and

(14:246). An experimental semivariogram like equation !131 is not used in equa-

tions [8] and [..,] because the experimental semivariogram is compt:ted for known

discrete distances. Instead, a known model semivariogram computed for continuous

distances is used. Since kriging estimates new values at possibly different distances

than those between the original sample points, a continuous function is the most

reasonable choice (14:246). Some of the better known continuous semivariogram

models include the linear, spherical, and exponential (see figure 3.4).

armcce!

- ~q -i/ -oq -, --. - -: -" o -e: - - - - -3!

son'er ical mode! lnl I:-0e

/

Figure 3.A. Example semivariograms for linear, spheriral and exponent ional models

Once a model is selected. parameters of the model must be estimated. AC-

cording to (ressie H 1:198). Zimmerman and Zimmerman claim that t le "weighted



least squares approach usually performs ;,ell and never does poorly" at estimating

parameters for a model semivariogram from the original data points.

Two terms are used to describe the models. Since the data is assumed to

vary within some region, there usually exists some distance at which the data ceases

to vary and has some constant variance. This constant variance is a flat line onl a

semivariogram known as the sill, o'. For models with a sill, the sill is the sample
variance (6:7). The distance at which this constant variance is reached is termed tile

range a, or zone of influence. The range then determines the neighborhood of sample

values used in the kriging equations because it represents the spatial zone in which

sample values influence each other. Beyond this zone, the influence of a sample value

on a kriged value is negligible. For a further description of sill and range see (10).

The following discussion of semivariogram models is based on (14:247), (31).

and (13).

Linear Model. The following equation is used for this model:

-y(h) = ah + b

The parameters are the distance h and the slope of the line. This model does

not have a sill, but sometimes the function is modified to create an artificial sill as

follows:

",(h) = ah + b for h < a
=a 2 for h >ei

IS

where a is the range. Davis suggests this approximation is good for "distances

much less than the range" (14:247).

.Spherical .lodrL The model equation is

Q L-!2h) +Co if h<a

,(h)= C + Cj, if h>a

0 if h=0

The spherical model is most commonly used because it models most natural

data very well. The relationship modelled between data values is that spat ially closer

data values have a higher influence on each other than do those fort her apart - until

the range or limit of influence is reached. Once the range is reached. the values cease

to have a significant affect on each other. The model parameters are the distance

(h). the range (a). t lie sill (C + Co = ey'). and the nugg!lI rff, ci ((',).
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The nugget effect measures micro-scale variations. It is the position on the

-1(h) axis where the semivariogram intersects, possibly causing a discontinuity at the

origin if Co # 0(35).

Exponential Model. The model equation is:

-y(h) = o -(l

The parameters are the distance (h), range (a) and sill (a2). This model is

characterized by a semivariogram approaching the sill asymptotically. This indicates

the data values always influence each other regardless of distance apart; however,

values sepamated by distances beyond the range have much less influence on each

other than those values separated by distances less than the range.

:3.6 Isotropy/Anisotropy

Matheron (35:1249) noted three 'qualitative characteristics" exhibited by re-

gionalized variables. The first is support. Support consists of the shape, orientation.

size. and spatial arrangement of the sample values. The second is that the sample

values within a support show some form of continuity. The third. termed anisotropy,

indicates the distance in the "zone of influence" (13:68) varies along different direc-

tions. Methods exist for treating different forms of anisotropy. but the discussion of

the forms is beyond the scope of this research. For furt her information on this topic

see (25) and (13).

3. 7 Chlptzr Summary

This chapter has described some of the most basic forms of kriging. Structural

analysis and kriging are complex. robust processes. It is optimal because the estima-

tion variance is minimized, the estimation is unbiased. and the covariance approxi-

mat ion, the semivariogram. analyzes sampie points based on t heir inter-dependence.

There are many current 3D medical imaging applicat ions in u.s today t hat can

use kriging to obtain more accurate estimates. In the next chapter. I will (lenonst rate

how kriging can )e used to estimate intra-cell scalar values in cell interpolation

surface extraction and the volume pre-processing operation of slice interpolatien.
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IV. Cell Subdivision and Slice Interpolation Implementation

4.1 Introduction

I implemented two methods to explore estimation in 3D medical imaging. First,

I implemc ed a cell subdivision method to investigate intra-cell scalar value esti-

mation. I also implemented a method of estimating values between two medical

data slices for the purpose of investigating estimation techniques in the volume pre-

processing operation of slice interpolation.

This chapter begins by presenting an overview of cell subdivision and surface

formation. Cell subdivision is discussed to explain how intra-cell points are derived.

Once values are estimated at, intra-cell points, the surface is formed. The process

of surface formation is briefly discussed in this chapter. Then, the two estimation

techniques, tricubic interpolation and kriging are discussed to show how they are

used to estimate values at the intra-cell points derived by cell subdivision. The

chapter ends by discussing my implementation of medical image slice interpolation.

Appendix C provided further implementation details of the cell subdivision method.

4.2 Overview of Cell Subdiri-'iovl and 3D Surface Formation

Presented in this section are the cell subdivision and 3D surface formation

processing steps. Each step is addressed in turn. Before listing these steps, some

terminology that helps in understanding the following explanations is discussed.

Voxels are treated as point values, not volumes. I consider major cells the initial

computational cells before subdivision (see figure 4.2). The cells created within a

major cell by cell subdivision. I 'crmi minor cells. Major cells have the original voxel

points and assc-iated values as vertices. I consider minor cell vertices as minor-

voxel points and values. Minor-voxel values are derived by intra-cell scalir value

estimation. Finally. I considei the arrays within a major subdiviled cell as mini-

slices, since logically they represent input data slices. The reason for this will be

explained in the discussion of st.eps 1 and 2.

The primary steps in the cell subdivision and surface formation algorithm are

1. Read data slices inlo nemory.,

4-1



2., March major cells between slices.

3. Subdivide major cells into minor cells.

4. Estimate minor-voxel values and normals.

5. Apply marching cubes surface extraction within major cells to

6. Render triangular mesh with a poiygonal based renderer. form surface.

Steps 1 and 2

These two steps are part of the marching cubes algorithm developed by Lorensen

and Cline (34)1. Four slices of data are processed at a time. The marching cubes

algorithm creates computational cells (cubes) between the two inner slices (see fig-

ure 4.1) and approximates the surface within each cell. My cell subdivision algorithm
works similarly, except, surface formation is approximated in minor cells, not major

cells2 .

Steps 3 and 4

When a major cell is processed, it is subdivided based on subdivision factors in

each of the three component directions. For simplicity, assume component subdivi-

sion factors are equal. A subdivision factor of two will divide a major cell into eight

minor cells (see figure 4.2). The 3D minor-voxel points are obtained by calculat-

ing division points along lines between major cell vertices based on the subdivision

factors. A subdivision factor of two creates one division point along each line, a

subdivision factor of three creates two division points along each line. etc., again

assuming the same factor in all three directions.

The scalar values at, these division points are estimated by one of the three es-

timation techniques - t rilinear interpolation, tricubic interpolation, or kriging. Tri-

linear interpolation assumes the voxel values vary linearly within a cell in all three

directions. This method assumes only the eight major cell vertices contribute to the

estimation of intra-cell scalar values (minor-voxel values). Since trilinear interpola-

tion 'is a standard method, details are not given here, but are in appendix H Tricul.uic

interpolation is a parametric cubic polynomial interpolation method. This method

'During this effort., I implemented the marching cube.5 algorithm described by Lorensen and
Cline (34). Details of this implementation are in appendices A and B. While developing the cell
subdivision code I re-used as ninch of the marching cubes code as possible.

2 IM% implementation can also perform the marching cubes algorithm on major cells.
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slice73

slice 2

slice 1

slice0

voxeli~j~kvoxel i+1Ij.k

Z voxel ij+l,k
voxel i+1,j+1,Kl+1

Figure 4.1. Computational cell (cube) marching between data slices
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minor cell

Subdivision factor =2 in all dimensions

0 Original voxels, (major cell vertices)

0 Minor voxels (minor cell vertices)

Figure 4.2. Subdivided Major Cell



uses a much larger neighborhood of sample values to estimate minor-voxel values.

It uses the surrounding 64 voxel values, where the major cell is centered within the

next larger cube (see figure 4.3). Note, the 3D coordinates in the figure correspond

to summation indices in the tricubic interpolation implementation discussed in the

next section.

Y (2,2'2')

zy

I L

Figure -1.3. Major cell centered wit hin surrounding cube

Tricubir interpolation assumes values vary cubically within a major cell. i.e..

they fit a 3D) curved surface within the major cell. Trilinear interpolation and tricubic

interpolation are termed deterministic because the procedures do not account for

error. Krigiing on the other hand estimates values based onl the statistics of thle

data, and not, only accounts for error, but minimizes it. It estimates values using

a weighted linear corrlbination of nearb~y known samle values (voxel values). Thle(
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weights are determined by conditions that insure unbiased sampling and minimum

estimation error variance. The latter condition requires that co-variances between

sample values be computed. These co-variances are approximated by a technique

that computes the average difference squared (in distance) between data samples.

This causes sample values closer to the value being estimated to have more influence

in the estimation than sample values farther away. Therefore, kriging is really a

distance weighted estimation function. It does not assume linear,quadratic, or any

form of variation, although it can be tailored to do so. In fact, I tailor kriging to

behave like both a tricubic and a trilinear interpolator. Details of this tailoring and

tricubic interpolation are discussed in the next two major sections of this chapter.

The purposes of cell subdivision are to 1) resolve ambiguity in cells and 2)

provide a better surface approximation., Recall a cell is ambiguous if more than

one topology can be chosen to represent the surface within the cell. Cell subdivision

guarantees that major cells will be disambiguated only because they are being subdi-

vided. That is, once subdivided, major cells are no longer treated computationally,

hence they are disambiguated. The minor cells are now the computational units,

The problem with cell subdivision as a disamnbiuation method is that minor cells

may still be ambiguous. If minor cells are ambiguous, Wilhelms and Gelder (50)

apply the facial averaging technique discussed in chapter two to disambiguate Jhese.

I do not (1o this here. because my goal is to investigate the use of kriging to estimate

intra-cell values. Besides disambiguating amlbiguous major cells, cell subdivision also

provides a better surface approximation within each major cell. This is because the

surface is now being detected at a finer sampling - although many of the values are

not original Qample.s, but rather estimated values. How well the extracted surface

corresponds to the actual surface depends mainly on the accuracy of the estimation

function employed. To better underst and how subdivision can not only disainbiguate

most, riinor cells. but also form a smoother surface, see appendix I).

There are two marching cubes implementations use(d in the cell subdivision

process. The first, is the outermost loop. In this loop. data slices are read into nenory

and major cells are formed. At this point., a vanilla marching cubes i mllelnentation

can be selected3. If the vanilla marching cc.bes im plententation is not .;elected. cell

aVanilla indicat es no cell suhd Ision. disambignalion, or enhancenients to the original algorithm
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subdivision is performed. The second marching cubes implementation occurs within

each nonempty major cell. In this case, mini-slices formed by the subdivision are
treated as if they are actual data slices. This minor marching cubes implementation

treats minor cells as "cdbes.' Within each minor cell, triangle vertices and normals

are computed to represent the portion of the surface passing through each cell.

Details of triangle formation and normal computation are in appendices AB and C.

Step 6

The triangular mesh is rendered using Phong reflectance and Phong shading.

Details of the renderer used are in Appendix F.

A more detailed discussion of cell subdivision is in appendix C.

4.3 Tricubic Interpolation

The tricubic interpolation estimation technique assumes that estimated data

within a major cell fits a cubic surface within the cell. In a two-dimensional sense,

this is like fitting points to a curved line between two known points (see figure 4.4)

x

Pl

Estimated values x
beitween known points P1 and P2

Figure 4.4. Example of fitting points to a curved line in 21)

The tricubic polynomial interpolation method implemented is tle satn"e one
iniplemented by Wilhelhs and Gelder (50:15). The parametric cubic polynomial

interpolation method they and I use is very similar to the hermite form of a cubic

polynomial curve, wit h constraints being Iwo endpoints and tangent vectors at the

endpoints (20). Two differences exist between the classical hermite form of a cubic

polyionial and the one used here. The classical form is used to generate point.'

.1-7



on a surface. Here we are estimating values that lie ol or near a surface in 3D.

not the points that generate the surface. Also the tangent vector constraints are

determined differently, based on the volume ,ata. The following equation represents

the formulation of the values in one dimension:

F(u) = au3 + bu 2 + cu + d = U. ,Cx = U. MH .GH = [u3 112 U IIMH - GH

where 0 < v < 1, MH and GH, are the Hermite basis matrix and geometry vector.

Normally, the tangent vector constraints are determined by differentiating the

U vector and solving at u = 0 and u = 1, the endpoints of the curve segment. 1,
as \Wilhelns and Gelder do, modify these constraints by assuming the derivative of

a value f, at a point i in one dimension is approximately the central difference fl =

l(f,+, - f;-I). The blending functions for a univariate curve F(u) are determined

by solving a system of equations including the constraints F(0) = fo, F'(0) = ] .
F(1) = fl, and F'(1) = .fl. The solution of the system results in the following

equation for an estimated value in one dimension
2

F(u) =EZfB,(u)
-1

where B,(v) are the blending functions

B = 1(- + 2 -,

Bo(u) =1 (3u 3 _ 5u2 + 2)

B() !(-3- + 4 +

B2 (u) = ( 113_ 2 )

The indexing scheme (-I to 2) is used to correspond to the position of a cell's

eight vertices in relation to the surrounding voxels. The point (0.0.0) is .lie bottom

front left. vertex of a major cell (see figure 4.3)'.

The tricubic function is determined by apl)lying the equation in all three corn-

ponents and is given by
2 '2 2

F(,,. , .k) = uj)(
k=-I.i=-i t=-)

'Although not shown in the figure, the major cell centered in the larger surrounding cube is

subdivided
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F(u, v. w) estimates minor-voxel values at the intra-cell points derived by cell

subdivision. u,v and w range between 0 and 1. u is equal to the fraction of tile

distance between the major cell vertices in the x direction. Similarly, v is the fraction

of the distance between the major cell vertices in the y direction, and i, corresponds

in like manner in the z direction.

This function constrains the surface to the computational cell because the two

endpoint values in the formulation for each dimension are cell vertex values. The

term tri stems from the three parameters. For the bicubic case, Watt (49) describes

the surface formulation as a cartesian product of two curves. In the tricubic case,

the surface formulation is the cartestian product. of three curves.

4.4 Krigitg Estination

This section discusses the kriging estimation technique used to estimate minor-

voxel values. First, an overview of the technique is presented. Following that, specific

implementation conditions are listed and discussed. Lastly, the kriging estimation

procedure implemented in this research is presented

The kriging code developed during this effort was written by Capt Chris Brod-

kin (3) and modified for use in intra-cell scalar value estimation. It. is object-oriented

code written in C++.

4.4.1 Overtchrw f Ariqing Techniquc Kriging estimates minor-voxel values

by a weighted linear sum of nearby original voxel values. The conditions of unbi-
aseduess and minimum estimation error variance yield a system of solvable equations

in the familar matrix equation form X = A-'B. where the solition N matrix con-

:ains the desired weights. However. before this matrix equation can be solved. the

model senivariogram in the A and B matrices must be determinedl.

The goal of this research is s~ifply to demonstrate that kriging can be used to

est imate ilit ra-cell scalar values and that it. is flexible. To ensure that krigi ug can
estimnate points similar to the other methods, I tailored it to behave like tricubic and(

trilinear interpolations. To achieve this, structural analysis is not necessary. Ilow-

ever. st ructural analysi:, is necessary if the goal is to calculate tle best est inmates. To

tailor kriging to behave like tricubic and trilinear interpolations, some assumnpt.ions

W'*e lV Made



* Global drift does not exist.

" Local drift may exist.

" the model semivariogram is known.

* The neighborhood size is known, but alterable.

" The data is isotropic.

4.4. 12 Global and Local Drift Drift is the phenomena that occurs when sample

means vary from point to point. A sample mean is derived by choosing some neigh-

borhood of values surrounding a known sample point and calculating a weighted

average. if these weighted averages (sample means) I;ffer from point to point, then

drift exists. If they are the same, then the sample .jeans are constant.

Drift can occur in two ways. It can occur within lo( I regions (local drift)

and/or throughout the entire data set (global drift). If global drift exists, it is

removed by calculating residuals from he .mle means. A residual is calculated

by subracting the estimated drift from the sample value at a I nown point. Residual

data is considered to be nonst.tionary, i.e., there is no drift. Since kriging only works

with nonstationary data, residuals are then kriged to estimate values. These values

are then added to the sample means to get the final estimates.

Drift can also occur just within the neighborhood of sample values being used

to determine the linear sum. This local drift can be accounted for in the universal

kriging system of equations.

Global drift. is assumed not to exist in this implementation to simplify the

process. Local drift is incorporated into the universal system by the polynomial

form of the drift. expression. Even if global drift exists, it should not have a large

effect if local drift is accounted for.

The three-dimensional local linear drift expression implemented for this effort

in terms of t he geometric coordinates T,. y,. :, is

in(p.) = in(x,,y.,Zi) = do + di x. + d2y, + (13:,

and the three-dimensional local quadratic drift expression is

m(p,) = do + dix, + d2y, + d3
Z , + d4X2, + d5y.2

+drz + d7.,?yi + ds.rtz, + dylz,
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4.4.3 The Assumed Model Semivariogramnz The model semivariogram is a con-

tinuous function that takes the distance between two sample points as a parameter.

It is used in the kriging system of equations as an approximation to the co-variance

between sample values to give geometric meaning to the values instead of probabilis-

tic meaning as in classical statistics. The co-variance measures the inter-dependence

or correlation of sample values, whereas the semivariogram measures the spatial de-

pendence of sample values based on distance. Two types of semivariograms exist.

These are the experimental and the model. The experimental sernivariogram is a

discrete function derived from the data set prior to kriging. It is computed as an

average difference squared between data points. The experimental semivariogram is

then compared to continuous, known model semivariograms to find the best match.

Model semivariograms are actually used in the kriging equations because distances

other than those found in the data set might be used to estimate new points.

To tailor kriging to behave like tricubic interpolation, an experimental semi-
variogram was not computed and the model semivariogram was assumed to be a

cubic function. This assumed semivariogram model is also called a drift model, (31),

see figure 4.5.,

This model indicates a polynomial drift exists in the data, which is certainly

the assumption made in the tricubic interpolation method discussed above. The

function used is simply

(h) = abs(h3)

This model semivariogram coupled with the drift expressions above parallels

the tricubic method. The tricubic method is derived from paramet:ic cubic functions.

4.4.4 Neighborhood Size Recall from chapter three that neighborhood size is

tlie number of sample values in the kriging estimation equation. Neighborhood size

is usually determined during a structural analysis of the data (structural analysis

was discussed in chapter thre). Instead of dletrmining the neighborhood by a

structural analysis of the data, I assumed different sizes. First. I assumed the same

neiglborhood size as that used in tricubic interpolation. 6.1. This neighborhood size

is the 56 surrounding points. including the cells eight points, for a total of 6 sample

values in the kriging system (see figure .1.3). The neighborhood sizes 8. 16. and 32

were also investigated for bot h cell sullivision int ra-cell scalar value estimation and

slice interpolation. These sizes were chosen bwcause Ihey were easily implemented
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Figure 4.5. Drift model variograln

Ii2 I



from the cell geometry. They were used to demonstrate the effect of kriging with

different neighborhood sizes.

4.4.5 Estimation Procedure The goal of kriging restated in terms of this par-

ticular problem is to estimate
71

2(p) = ZWiz(m)
i=l

where the pi and Zi's are the surrounding voxel points and values and p is the 3D

point where the value Z is being estimated. n = 8, 16, 32 or 64 in this equation and

all the following ones for my implementation.

Both the ordinary and universal forms of kriging were implemented. Recall

the ordinary system is
n

E--f' ,j + n = 7-P ( ,..,
3=1

n

This system of equations is represented in the matrix form AX =B, where

the X column vector contains the kriging weights.

-111 "112 -•-1 51VlWl

-'21 122 ... ̂ 1,2, 1 2 7)2p

1 1 . . 1 0 j1 i

The solution to this miatrix equation is X =A-'B. where - is the inverse

miat-rix of A.

For die universal system, the equations change depending on tihe assumed local

drift, fl(p,). The system Is

n k

3=1 1=0
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n
F , a]-,fPt(p )= P (p) (1= , ,. ,k)

The following equations contain quadratic drift. Linear drift is obtained by
removing all the quadratic terms. The universal kriging system with local quadratic
drift implemented in this research is

n

Z tW , + + +Il X, + , ,2Y + 1-3Zz +,T44 rZ + ,ISy, +?/.:I' + 117 -,Y + ,.1, Xz, + 119y :,
=

'11 0)( Vi = ,..,srl

=

',IWz, = p ( - 2)

= ( = 3)
(=1= 4)

(1 5

E___ It. 
,

Z'w,'z 2, = . (l1= 6)

t=|

,_ 

I

,.rz, =. 
, (1 = )

:, (I = 9)

',. !/,. and :, are the como)Oients of the i'th 31D sanipie poil.

The following is the matrix form ol this s'stel.. AN H.

I I



711 712 . 7. Yir 1 x] I Yl Z1 X1 y7 zi Xly xz y' z 1 , U 1  11P

2 2 2'Y21 _f22 ... 112n X 2 Y2 Z2 X2 Y2 Z'2 X2y2 X2 Z2 7/2 Z2  IV2  72p

7nl I n2 )Ynn 1 Xn Yn Zn Xn Y "n Xny2 2 XnZ,, YnZn Wnn

1 1 1 0 0 0 0 0 0 0 0 0 0 71o 1

XI x 2 .. x, 0 0 0 0 0 0 0 0 0 0 XP

7Y2... Yn 0 0 0 0 0 00 0 0 0 712 yp

z z2  ... z 0 0 0 0 0 0 0 0 0 0 713 Zp
2 .2 0 0 0 0 0 0 j) 0 0 7)4 T21I 2n

2 2 2 2Yl Y2 . Y 0 0 0 0 0 0 0 0 0 0 ?Is z
-.2 -.2 ..2 2AA A

x~yl x2 y2 ... x yn 0 0 0 0 0 0 0 0 0 q17 xpyp

XlZ1 X2 Z2 . .. XnZ n 0 0 0 0 0 0 0 0 0 0 18 xp -p

Yzl Y2Z 2 .. YnZn 0 0 0 0 0 0 0 0 0 0 19 YPz p

The A matrix is inverted to solve for the X column vector of unknown weights
and Lagrange multipliers. Recall the semivariogram 7,m is the same as

where hM,, is the distance from point m to point i. The 711's are the k + 1 La-
grange multipliers where k = 9 and (x,, y,, zp) is the point where the value is being
estimated.

4.,5 ..Slir. Ihtu'polation

This section descrilbes how scalar values are estimated between medical slices
for the volume pre-processing operrt;on of slice interpolation. To accomplish this
task I re-used as much of the cell subdivision code as possible. C'omlputational cells
are used it the estimation process. The estimation is dlone only along one cell edge
because dhe purpose here is to interpolate only in the 'Z' direction. Recall the '
direction is the direction tha, the data slices are stacked. Four different neighborhood
sizes were used - 16, 32 and 64. The slice inte polat.ioi algorithm is
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1. Read in four medical data slices.

2. March cell (cube) between the two inner data slices.,

3. Estimate scalar values for new slice(s) along cell edges.

4. Create gray scale image from estimates.

Four slices are needed at a time because the tricubic interpolation requires a

neighborhood size of 64. Computational cells on the boundary of the data are treated

specially. Since they do not have access to the larger neighborhood of sample values,

I compute a linear interpolation along boundary cell edges. This should have no

effect on the final image because the boundaries of images typ;cally do not contain

any significant data.

My implementation of linear interpolation is not presented because it is a

standard method. The important point about linear interpolation is that :t assumes

only a linear variation. The tricubic interpolation and kriging estimation methods

used here are the same ones described in the previous sections.

The next chapter presents the results of implementing the methods discussed

in this chapter and in the appendices. The appendices contain descriptions of the

methods used to accomplish the other tasks outlined in chapter one. yet not men-

tioned in this chapter.
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V. Results

This chapter presents the results obtained from implementing the estimation

methods discussed in the previous chapter. The results are divided into three major

areas:

" Artificial Volume - Cell interpolation surface extraction and intra-cell scalar
value estimation in an artificial volume.

* Medical Image Slice Interpolation.

" Medical Volume - Cell interpolation surface extraction and inti.:-cell scalar

value estimation in a medical volume.

These results demonstrate that kriging subsumes the deterministic methods

investigated. I modify the kriging systefn by changing the neighborhood size and

local drift assumption. By doing this, I show that kriging can be tailored to behave

like the other deterministic methods, i.e. it is flexible, and in some cases produce

images that look better than the other methods'.

Medical image slice interpolation is discussed prior to medical volumes because

some analysis was done on a subset of the medical volume slices.

Explanation of pictures and tables

The labels in the images in the pictures presented in this chapter are file names

that were chosen to be descriptive. For example. f2tricubic3.rle indicates that the

image represents the f2 function, derived by cell subdivision with tricubic interpola-

tion at a subdivision factor of 3. He indicates the Utah run length encoded format.

Similarly, f2krige3nodrift.rle indicates the f2 function derived by cell subdivision

with kriging estimation assuming no local drift, at. a subdivision factor of 3. Also,

f2krigenh321inear indicates the f2 function derived by cell subdixision with kriging

estimation assuming local linear drift at an assumed subdivision factor. I will leave

off the extension He or rle.Z ( .Z is compressed format) for brevity.

'When I discuss image accuracy or quality, this is m% opinion about the visual appearance of
the images.



The table headings are as follows. In the pictures derived by cell subdivision,

the number of triangles and non-empty minor cells are listed. These are denoted as

column headers "# TRI" and "# NEM" respectively. All other columns discussed

are applicable to all the tables. The first is "Images". This header indicates one

particular image in a picture. The header "values compared with" indicates another

image compared with the image listed under the column "Ilmages". The header

"largest est value diff" presents the largest, estimated value difference between the

two compared images. This entry provides knowledge of the extrene deviation of

sample values derived by two different estimations. As David states, "the most

natural way to compare two values ... is to consider their difference." I actually

take the absolute value for this column. David also states the a.verage difference is

an important measurement as well to understand the dissimilarity between values

(13). This measurement is presented in the column under the heading "avg diff of

values". The average difference of the values is derived by the formula
n

Zubsltmagei -value, -tmage2_vuue,)

n= Iwhere. n is the number of values estimated,

imagel-value, is the i'th value estimated in the generation of the image under the

column "hmage" and image2_valtf, is the i'th value estimated in the generation of

the image under the column "values compared with". Finally, the last column in all

the tables indicates the average difterence percentage of the total scalar value range.

For example. the scalar value range for the [2 function in an artificial volume is 136.0.

Also, the scalar value range for the slice interpolation tests is 256. 0 through 255.,

5.1 Artificial volume

The main purpose of this section is to show that using kriging to estimate

intra-cell scalar values resolves an)iguity in (ells and that kriging is very flexible

compared to the other two interpolation methods. By flexibility I mean that I can

change parameters in the process that, alter how kriging estimates. This cannot be

done with the other techniques. Both trilinear and tricubic assume the neighborhood

and local data variation. The advantage of kriging is that it can be tailored to behave

lik., either of the other two interpolation method&, or it can be tailored to analyze

any size neighborhood and assume other local data variations besides linear and

cubic. First presented are images comparing kriging to the other two interpolation

techniques. fixing kriging to behave like tricUbic. Then, both the local drift and
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the neighborhood size are changed to show how flexible kriging is and demonstrate

how important these two factors are. Many other factors can be modified to make

kriging more robust and more accurate, but the purpose of this research is to just

demonstrate its usefulness and applicability.

An artificial volume is created by calculating scalar values at voxel points. The

artificial volumes represent continuous 3D iso-surfaces derived from mathematical

functions. The details of this -rocess are in an appendix. The mathematical function

used is a hyperboloid with known ambiguous cases. The function, which Wilhelms

and Gelder called F2 (50), is

F2(x. y. z) = 4(y - 1)2 + 2(a' - z) 2 - 2(x + z - 3)2 + 1

5.1.1 Neighborhood size 64, subdivision factor = 4, local drift assumption

differs. Since the number of ways to compare images is quite large - taking into

account neighborhood size, drift, and subdivision factors - I began by assuming

a neighborhood size of 64 and a subdivision factor of four. Then I compared the

estimated values derived from universal kriging (with local and quadratic drift) to the

estimated values derived from ordinary kriging. The values were exactly the same in

all three cases. This indicates that at least for this data set and a neighborhood size

of 64, there is no local drift. I explored quadratic local drift in nearly all the cases

presented in this chapter, but found only minor differences between these images

and those assuming local linear drift. Therefore to reduce the number of images in

the study, i only present ;mages derived by kriging that assume local linear drift or

no local dri.

5.1.2 Neighborhood size 64. subdivision factors differ, no local drift assumed.

Next, I ran the program with the three different estimation methods at the sub-

division factors two, three, four and five; still maintaining the kriging neighborhood

size at 64 and assuming no local drift. The results can be seen in figures 5.1 - 5.7.

All the cell subdivision methods - trilinear and tricubic interpolation and kriging -

removed the ambiguous cells for all subdivision factors. In other words, after cell

subdivision and intra-cell scalar value estimation, no ambiguous cases were found.

The subdivision factor as well as the estimation function significantly alters how the

surface is represented. The higher the subdivision factor, the smoother the surface

representation. Also, tricubic interpolat ion and kriging tailored to behave like tricu-

5-3



l1.T Miterpoi) t 'Io u )";: v-1. 1ilahtValdE" L1hat iq~tc 'mui ll . ': ~-'I ill iotI '

Fiure ). \ndl~a mnarch)in, (Ube, etIt lct 01 iOt f I]\ ; rboloid :cIil face

Cp.11 4 alar i dne e'!t in1Z1 loll look~ aliiiust 1(101 iral. IThis i Is !( it a oIlilarisonl of

01 , t I I,! t cdf \-,I II, bet wc I I I lie( two) 1tletlleJd'. F, 'r* o\e IlI) p]', at 'Iii tI\ i:sion factor

-.val des et lilatc w.1 triclibi) In tterpolat ioll adl dffe'r b\~ ;III averageZ of .011:3
ramwi~ of stalm \ alw u Is -.19.0 ito 87.0. .Sov table, 5. fo let dli ced ( oruparison of the

('st imat loi (' li(IIII(i'. T1Hf IlIdjcatc." triang''le md~c NENI inc'ari Nuiiemptv Minor

ccV~ !lc'"111' arc, pnrecItc'( In tisl lalee. BY ai iai hii, tabile and exanunl-

tig i, illat-'s :t i" 'Icells that I he krigiuit! a.'silillt icon, mlodel t IcI-lim Interipolation

iost'l\. Fo.r .lcIilo fact-rs 2. ;111( 1. 1,liv Iiiie of tI iniles a., \vell a-i the

tiiiiu1bl, of Iloivflpc'u \ j)!:1 lllo CvIlk ;it'( exact l- 1'.I 1au1 for lilt tt ice and kriging

e." 111'I pmt. F'il. Indicate;, t hat theW c'ttimacd \al'r at'' * \e Sitmilar'. To
firtIl- l': lc, tilt-. I cmtparIel vaiities (''ctitnlated as5 'i)wtil ini Ow tabile. noting the

Iat~c, ciff:(iet'(1 III Vxc \alii and t'111t.c tffr'i. f.l Oit ('stIlrtiate(I Values.

ii ''~"i-11- ce'; t h e it'tr m;Ip . t11.icle v l iwj-iccvhod. tIC) ciift.



able Comparison of values estimated by trilinear and tricubic interpolation

and kriging (with a 64 neighborhood, no local drift)

values largest avg avg (liff
# # compared est dlift

Image TRI NEM with value of 136
diff" values 7

I -f2v-anmc 144
f2thrilnear2 140 70

f2tricubic2 140 70 f2krige2 .136:3 .0031 .002:3
f2krige2 140 70

f2trilinear3 332 166
f2tricubic3 :348 174 f2krige3 .1211 .0069 .0050

f2krige3 3-18 174
f2t rilinearl 560 2S0
f2t-ricubic4 576 288 f2krie4 .1331 .011:3 .0083

f2krige4 576 288
f2trilinear5 888 444
f2t ricublic5 920 460 f2krige5 .1316 .0160 .0118

f2krige5 912 4.56 _
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Figure 5.2. Cell subdivision.factor 2. with trilinear interpolation estimating minor-
voxel vaihes and nmarching cubes extraction of hyperboloid surface from
mm i-slices

h3 model senivariogram. and isotropic data) model tricubic interpolation extremely

well. However. as t li next inlage shows., a iteiglborhood size of 6-1 i- not necessarv

f-" krigMing to estit.dle values t..e to the M-pposed accurate value.- of tricubic in-

Lerpolation. Reducing the number Of samrple value- directly affects execution timle

because it reduces the size of the matrix being inverted in the krizing system of

equations.

5. 1.3 .\'tiyhhitlhnwI dir ,iifo,. Sbirts.oin faci = 2. lochl drift t..sumip-

lion dfJt er.. The next set of iniages in Lhis sect ion deinonstrites tlie flexibility of

kriging (figures 5.9 --.13)., In these .ets of irage. the subdlivisioin fa,-or is two.

chosen arbitrarily. I altered both the neiglhorhood size and the local drift. In all

tile imnages except -hose wili a neighborhood of 3"2. ihe itnages wt it) no drift are

significantly different than those witi local linear drift. It. appears dia. with smaller

neighborhoods. assuming local drift prevents the inaccuracies seen by the holes.

The neighborhoods selected are as folhws (see figure 5.S). A 32 neighborhood

starts withi the -oriinal 64 values stirromnditig the coniputatimonal cell and ignores the
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Figure .5.3. Cell subdivision. factor 2. with t rieubic interpolation estimating minor-
voxel valhte. and marchins cubes extraction of hyperbolol'i surface from
win i -s Iices

values in the 2 sli'es above and below the computational cell. A negilborhood of

16 in the "N" ,iheci iol,. denuoted nli l x in Lhe figures. coisist.s of the ,ight compu-

tat in. crll vorti ces anl for out pither side of the cell in the X ,li:,ection. 16 'Y'

and 16 Z neiglhlorhoods are d,.rived in a similar fashion. These particular neigh-

borh-)ows were chosen berauti of their direct correspondence to the :omputational

cell and Ihe indexing scherie already usefd for tricubic interpolation and kriging in a

64 twighborhooI.

uuage. delic'l aug difference,; wert created by the Utah R L libra-, .tool rlecomp

witi o hi,' of Ooperator. This tool performs Ihe' logical set differei'e Ol)e:'at toll between

pixel vales it) the two inmaiges.

Table .5.2 dlrict.- differences in rsihmatd values for the last -ets of images.

Notie that kriging with a neighiborhoorh of :2 sample valu.sc and ,I, local drift

matche. tric tbir interpolation almost as close.ly as krigitn with a ne-i.hborhood of

64 sample values does. I compared local linear drift kri-,ing images 1o IrilIbir and

linear , caus- local lina-ar drift kriging prodi-,,d 61etter iniage. \: soon as the

ktiginum neighborhool sie re-duci's to 1,. except in the ca.e o' nhliti . the kriging

1.if



Figure .5.4. Cell subdivision, factor 2, with krigiiig estimating minor-voxel values
and marching cubes extract ion of hyperboloid surface from mini-slices.
Kriging uses a ne'ighborhood of 64 ,arnple values and assumnes no local
drift.
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Table 5.2. Comparison of values estimated by different kriging forms for cell in-

terpolation surface extraction of a hyperboloid surface in anl artificial
volume

J values largest av-g avgf diff
I compared j est duff

Image With value of 136
______________V __________ diff values %

f2krigen h 32nod rift f2j, :?nh32inear .0310 .0004 .0003
f2krigen h32nod rift t2tricu bic2 .5066 .0098 .00 72

f2krigenhi 6x nod rift f2krjgenh16 xlinear .1922 .0023 .0017
f2krigenllxlinear f2tirictihic2 :31.7-500 1.2602 .9266
f2krigenh 1 6linear f2t rilinvaar2 .0646 .0006 .0004
fMkrigcnh I 6ynodrift f2krigenh I 6ylinear .161-7 .0022 .0016
f2krigenh 16N6liiiear f:2tricubic2 A .0790 I.0210 .01.51
f2k rigen 1i 163l i nar f2trnh near2) 2.0-,,,0 .0-118 0307

f2k rigenh I 6znod rift f2krigenhi I 6zli niear .1922 .0023 .0017
f2krigenh I Gzlinear f2tricubic2 :31.7-500 1.2602 .9266
f2krigenhl6zlinear f2trilinear2 .0646 ' 0006 .000.1
f2krigeiih8nod rift fMkrigenhli lnear .9313 .01 :38 .0100
f2krigenh~finear r2t.ricilmc2 .11.7-500 '.26i02 .9266
f2krigenh~liuear f2t.r'invar2 .0616 .0006k001

... ~ ~ ~ 5 .... 9-----



Fi~tntre ti udivision fartor :3. Cpper left. vanilla marching culpt-. I pper right.
triii~ln:r itirrpolation. 1Lowf-r left. rictibic Inlterpola~tion1. Lower right.
kriginla wih 64j nielibhorhoxxl. neo rift

1oai littar itruag, S 111,.Lmch nIticl cler' to t rilinetar ilterpwilt ion. 17k? her t hani tricthic.

h.rtx;~pl... inige f kI e'iiIhlbiinear 2ki omipar.'d to imuage f.trifine.ir2 prothice, flip

Sli, l iv dit av a iffertice pecinae vet i)O) for kri-61m. utii;,tes COMiParedl to

I fi' tr tw inteplbrxatio lilth,)ds. *rkindicates that krisinm %,.ift aighoroo
of Ii; in direct ions *V or *V. local iinear drift and the model I semi-variogran1 IrP

e!$t ilialteS tmlor VO:CI ViiaWS 11l111.t p~art.lv as trilincar lepiatm The resuilts

(leriveli fromn ui.mug krigirag in a neihborhio of S art- :uzilar itt qu~ality to t hme

derivedl by ,viei-gllibrhlt)0s f6 *N itud *V. Tillm, indicate that Lialt lrvist Ibr Otis artificial

Voijlimti lihit smI, Ole addlitfinal %aitets Il iltt l 1N and lb It, N iwixrlicmcds add

viri tadi not hing of signifcative to t he tnt niates.

H119rall I hat I was att Iemptiniv to tailor krliim, to modeel iti ti bic initerpolation.

Fiowever. a- ttilt-:.able and iftiages indicatc, withlotit chaigig any pair.'ttrs eXcept

neighbi~rl ize i. 'nrigilig, list) l).laves likv t rilitivar int erjplat 11)1 If appears that

krivin-g !:,.ec with It his pa~itIicilar dlat a is morr itifliwiicerd IPY rieiStibrhood size and

local1 drift asipStjtions ratllt'r t han the sei:kario-arain itiodel. *I' te-t tis frterw. I

1".~wr tletl~dwit l, seiiiva ritoggal II mdels of hi and iP-*, I phbta.itifd ;ivrraqr diffkrvilces



Figue- 5.6. Subldivision factor 41. Ufpper left. vanI~1a marching caaws. Upper right.
rilirar titepol I io cwer left. :r rithic interpoiat ion. Lower riHt.

krivitug vit h 6i-1 neighborhood. not ririf:

of esini -tell valu:es le~is thatn .00051_. The uiitta wms romparmd if) data estiinatrd bY
the h ni, 1~ . holding~ all Ot her ;ssu:mip:i it. he .Zame.

The 11tist atc:Irlitt Ithohd is tlitficnilt its blerertuanI h~i1 e estimated val-

Of's art, .4. rc,, and beealti' later imiates uimy e=atter genterated medi11cal data

indica e Ithat Lriczibic and t he correspodinitg kri'gi:g me? h-x vit it t riciihk like as-

stinptsonst are not very accurate. For artificial viinmes. such a., the one containing

this hvuerbteloirl -murffce. t lit-Nno hems lokisig iniadge, are genierated b i he cell sub-

di% itu 'it oil~ sini. Iricithir ittte. pniationt oi- krig:ng at higher ,ghisinfat tors.

The problem with considering~ only art :twtai volitmes IN t hat s hr do not ad-

"puauely rejirem-1ns Ihe wnrld of titraical l it pai . rular. I here i. tio- noise or

sharp cont rasts lin t e vatiur%. The next sert ifinl ~ores how es.t imaiion t echniques

performi in itividical ituaqr sliee i tterpolation.



Fiouare 5.7. Suibdivi~sioni fact:or i. Upjwr~ Vlet. vanilla marching che.Upper right.~
trilnear iztiterpiwatizn. L.ower let. tricithic inierliolaion. Lower right.
kriijn--t %vithi 641 n:wibhrlotul. no drifr

.,....f11fly 4lrdcI 1ant'.r 1uhlt tjiflailf

MIirlitctl inta~f. -5!we i III o~aionis g a scn tra::sfortnatir,. In thin !,ectiou.

2D iniagae cata derive,! fromi M\ ill am. CT :t titIit isI ransfiirni fr.nt ',y the slice

interpolation. SlihI interpolation create, logical slices letwtnexe:b Iv ones by esti.
mat in., srwalar values in the TZ dimension. In this- sectioni. I dem~on!,: rate1 lte use o

linear interpolationi. !rictic interpt$)ati;)n. and kr:ittng I.s Lit# interpo'alion methods
used ii es1; ;1ilat;. daAValues. Tritinear atnd linear are equivairtitt in thi% cawe because

I iterimiat l intl )IIoe rlitir~~iot. X. alzuu! a cell edge.

5. 2.1 Dnq hrnurt. CT. The fir-o~nv(Oii.~ of 2V.2 N 13Q, pixel CT slices

ofa dto&*, heart. we pirit tre in figure 5.i4. *1 h~e govl is to create.a new slice between
slires -111 anti -12. The top fonr iniage! in IIhe pirturc are the original data slices.

The remnaining isnawes are attettilu, to estiniale a logical data --live betwern lte two

'Rrraij t1j~s se-lr spare is 11w t~lt -. rt~ed fre,, wttu nal uvnx sm4lahtit in !letman and



Computational cell being

nhl32 -

val ues A

Computational cell being
p~rocessed

11116X - 16 samp~le
values i n X nm 1 6y - 16 samnple

directioni

zA

values inl X

0 Sample values
contributing to estimation

Figure 5.8. lKriging neighborhoods, nh32. nllk, nh,163 and nhlft



Figure .5.9. INriging estimation. subdivision factor 2. neighborhood .32. Upper left,
no drift. Upper right, local linear drift. Lower left. image difference
of upper right from upper left. Lower right, image dlifferenice of upper
igh-t iigefrom fbtxicibic2.



Figure .510 riging estirnation. ,ubdivision factor 2. neighborhood 16x. Upper
left. no drift. Uppe riht. local linear drift. Lower left. image differ-
ence of upper right fromn upper left. Lower right, imiage dlifference of
upp)Ier righit imiage from fMrilineai-2.



Figure .5.1 1. Nriging, estimation. subdivision factor 2. neighborhood 16y. Upper
left, no drift. Upper right, local linear drift. Lower left. image differ-
ence10 of upper right from uipper left . Lower right, Image difference of
upper right image from P2triciibic2.
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Figure .5.12. I'riging estimal ion. subdivision factor 2. neighborhood l6z. Upper
left. no drift. U'pper right, local linear drift. Lower left. image differ-
eiice of' upper righit from upper left. Lowei right. image difference of
tuppt-r right i luage from fMrilineair2.
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Figure .5.1:3. Krigin'g estimation, slibcldhso factor 2. neighborhood S. Fpper left,
no drift. Upper right. local linear drift. Lower left, image difference
of upper right f-rm uIper left. Lower right, image difference of upper
right 'image from f2trilIineai-2.



mlidldle images in thle top) row, using linear and tricubic interpolations andl kriging
(in various forms). Table 5.:3 presents results pertaining to these images.

Notice in the picture the imiage genierated by tricubic Interp~olationi is inaccu-
rate. The inia-ees produced by krirviii wit neighborhood 6-1 are also inaccurate and
according to the comparison in the table. estimate values similar to tricubic interpo-
I -tion. Thiese inaccuracies are possibly caused by twvo reasons. First, thle estimation
functions might he accounting for values that should not be inifluencing the esti-
mat ion. Second, the assumption of cubic variation might be invalid. Nothing canl
be changed with the trilcubic interpolation function to prevent these inaccuracies.
However. parameters In the kriging process canl be modified to p~revent them. These

paraineters are neighborhood size. dIrift assumptions. and the semivariogram. Ini this
study. I ol\ r*'odify the drift assum-ptions andl thle neighborhood size.

Notice that excep~t for kriging with neighborhood 16 'Z' , k hriging with smaller
neighborhoods estimates values closer to trilinear than to triculbic. and gets thle
closest match to trihinear wvith a neighborhood of S. assuiming local linear drift.
Ordinary kriging with smaller neighborhood sizes of 16 and S produces significant
errors iii the estimated values. However, universal krigingE (local drift assumed)

corrects these errors.

.5.2.2 Biubij liad. M1RI. The second 21D medical imagre st mldv (see fiagie~ -5.15
consists of 1 66 X 166i N1111 slices of' a I hree nioint 1h old babi's head. lnterslice thickness

is 41 inni. The goal is to estimate a n~ew slice between slices :31 and :12. Thie original
slices again are Ii I lie top row and( thle secondl row shows slice, are dlerived by' linear

and trictibic interp~olationi. All others are dlifferenlt forms of kriging.

Alt hon-gh all the est irniaed imiages (except krigenhinodrift ) look almost iden-
icaId. anl e.Nariiat ionl of (lhe estimiat ed values reveals that estiniat ions in t Iiis stuidy

are similar to those Ii the (log heart study (see table 5.4).

..3 1I( dical vo/umn( cel/ inkpl C7Oation $1ifa Cxa icion

Thle finial Series of imlages con .:st of it :31) sin face extracted from 60(iu)I:man

:)alv\ head INIM data slices. The 2D)slc dimiensions are( 128 p~ixels X 128 piNels

and thle ,iso-value ,is 413. Thel( surface met hodls I utse are the vanilla marching cubes

(fign're -5.1(i) and1( C( ]l subdivision. I .,i- lhe cellI subdivision i echnique. I use a sild(i-

Visiu :i fact or of 2 in ihe XZ (liiiiel~oi and I inl bothl Ihle XN anid VY. This has flhc



Table 5.3, Comparison of dog heart CT estimated values.

1 values largest avg avg diff
compared est diff ---

Image with value of 256
ciff values %

krigenh6. 1',,odrift krigenh64linear .6229 .0196 .0077
krigenh6-1linear tricubic 4 1242 .1365 .0533
krigenh64.inear linear 18.0780 .6781 .2649

krigenh32nodrift krigenh321inear .9815 .0416 .0163
krigenh321inear tricubic 12.1747 .5519 .2156
krigenh321inear linear 3.2616 .1295 .0506

krigenhl6xnodrift krigenhl6xlinear 30.0089 1.3080 .5109
krigenhl6xlinear tricubic 12.4780 .5407 ,2112
krigenhl(i linear linear 2.27,19 .0785 .0307

krigenhI6ynodrift krigenh16ylinear 70.8097 .9918 .3870
krigenhl6ylinear tricubic 12.7687 .5527 .2159
kaigenhl6ylinear linear 3.0524 .1129 .0441
krigenhltznodrift krigenhli6zlinear 24 5295 .4502 .1759
krigenhl(izlinear tricubic 2.7525 .1125 .0439
krigenhl6zlinear linear 17.1736 .6742 .2634
krigenhnSodrift krigenli8linear 203.168.5 10.8014 4.2190
krigenhSlinear tricubic 1-1.4007 .5639 .2203
krigenh8linear linear .292:3] .0091 .0036
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Table 5.4. Comparision of baby head MRI estimated values

values largest ax,, avg diff
compared est. diff -

linage with value of 256
diff values %

krigenh64nodrift krigenh641inear 1.8551 .0571 .0223
krigenh641inear tricubic 6.7329 .3772 .1473
krigenh641inear linear 23.0072 1.-960 .5844

krigenh32nodrift krigenh321inear 3.4845 .0932 .0364
krigenh321inear tricubic 17.1510 1.0481 .4094
krigenh321inear linear 5.1335 .2807 .1097

krigenhl6xnodrift krigenhl6xlinear 96.5233 3.4776 1.3580
krigenhl6xlinear tricubic 17.3192 1.0851 .4239
krigenh 16xlinear linear 4.27:38 .2252 .0880

krigenIhl6ynodrift k rigenhl6ylinear 70.1153 2.-"202 .9845
krigenhl 6ylinear tricubir 17.4163 1.085:3 .4239
krigenh 16ylinear linear 5.2594 .2249 .0878

krigenhl6znodrift. krigenhl6zlinear 21.8722 1.0342 .4040
krigenh I6zlinear tricubic 4.1201 .2519 .0984
krigenh 16zlnear linear 21.4664 1.4106 .5510
krigenlinodrift krigenh8linear 227.1227 16.3677 6.3940
krigenh8linear tricubic 17.9036 1.1631 .454:3
krigenh81inear linear .7859 .0282 .0110
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X by 4 by 4 Z volume. The ambiguous cell cases in the volume were removed in

all cases by cell subdivision, regardless of the estimation technique employed or the

subdivision factor. These images demonstrated that kriging is very flexible. That

is, modifying the neighborhood size and assumed local drift significantly alters the

waN kriging estimates values. Larger neighborhood sizes of 64 and 32 cause kriging

to behave like tricubic interpolation, regardless of the assumed local drift.. However.

at neighborhood sizes of 16 X', 16 'Z', and 8, kriging with local linear drift behaves

almost exactly as trilinear interpolation. The use of universal kriging was essential

at these lower neighborhood sizes for correcting inaccuracies produced friom using

ordinary kriging. The best appearing images in the artificial volume occurred with

tricubic interpolation and kriging tailored to behave like tricubic interpo1 'ion.

Different results were obtained by estimating 2D medical data slices between

two existing ones. At neighborhoods of 16 'X', 16 'Y' and 8, kriging estimated more

like linear interpolation than tricubic interpolation. Again, the use of universal krig-

ing was critical for correcting gross inaccuracies produced by using ordinary kriging.

The most significant result in these studies is that tricubic and kriging tailored to

behave like tricubic, estimates values poorly. Little can be done to tricubic inter-

polation to fix these inaccurate estimations. It inherently assumes a cubic variation

and uses 64 sample values for an estimate. However, kriging can be modified to

overcome these' inaccuracies. I did this by i educing the neighborhood size. The best

image in the study was obtained with a neighborhood size of 8 and local !mnear drift.

This image may not represent the best est imate(] values however. The best esltimate

can only be derived by doing a structural analysis of the data to determine if the

data is isotropic. to find a possibly better model semivariogram, and t.o determine

the optimal number of sample values., Furthermore, the optimal neighborhood size

may not be 8, 16. 32 or 64.

Finally, I presented a study of images derived from 60 MRI slices reconst ructed

into a 3D surface representation. This study demonstrated that tricubic interpolatioin

inaccurately estimates intra-cell scalar values for the purpose of cell subdivision
surface extraction - at least for the data set I analyzed. Both trilinear and kriging.

modified to behave more like trilinear than tricubic interpolation. produced much

better appearing images.

Showing that kriging can estimate like standard deterministic methods is it-

port ant. It shows that just guessing the kriging paraimeters produces results as well
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as those already used in practice. This means that by using kriging, the estimation is

no worse than the standard deterministic methods. However, kriging theory states

that kriging will produce the best estimates if properly applied. Properly means

performing a structural analysis of the data, to determine a model semivariogram

that models the spatial correlation of sample values.

Since kriging subsumes the other deterministic methods investigated, kriging

alone could be used if different interpolation methods were desired for one rendition.

This dynamic choice of an estimation technique would be most useful for interac-

tive applications. where different estimation techniques might be useful at different

resolutions. For example, consider the baby face skin rendition shown in this chap-

ter. Trilinear interpolation or kriging tailored to behave like trilinear both appear to

be good estimation techniques for this particular viewpoint and subdivision factor.

However, suppose a radiologist is interested in viewing just the nasal area. Trilin-

ear interpolation with this subdivision factor may not provide an accurate enough

estimation for the detail required for a close up examination of this region. The

subdivision factors could be adjusted as well as kriging parameters such as neigh-

borhood size. semivariogram and local drift assumptions. to provide more accurate

estimations for closer viewing.
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VI. Recommendations and Conclusion

This chapter first discusses recommended research using the 3D imaging tech-

niques implemented. Fo1':wing that, future kriging research applied to 3D imaging
is suggested. Finally, a brief conclusion to the thesis is presented.

6.1 3D Imaging Recomnendations

The 3D imaging methods implemented in this work can be used in the fol-

lowing ways to aid future research. First. since the marching cubes implementation

processes cells, it can be used as a foundation for any or the cell-by-cell processing

techniques, e.g.. (46), (50). and (32). Although the implementation currently main-

tains only four slices in memory at once, it can be modified to maintain all or any

portion of the volume in memory simultaneously.

Another topic is different approaches to cell disambiguation. The simplistic

method of facial averaging in the soft object. method (52) can be modified by apply-

ing different estimation techniques to estimate the center point of ambiguous faces.

This was the focus of Wilhehn and Gelder's work (50). The software implemented in
this research does not resolve ambiguous cells. Subdividing alone does not guarantee

disambiguation like facial averaging does. The reason for this is after subdividing an
ambiguous major cell. minor cells calI be anibignous. To obt ain a smoot her looking

surface as well as resolving ambiguous cell.,,. t lie best met hod would be to subdi\ ide

and apply a method like facial averaging to completely (lisanl)iguate minor cells. I
suggest that anY future research begin by implementing the facial averaging tech-

nique applied to majoi and minor a miguous cells. Following that. lhe gradient con-

,istencv heuristics should be impnlmented for comparison. Finally, kriging should be

invest igated as a facial center value esi imat ion method. Since Ilv tessellate rout ine

is shared bet ween vanilla marching cubes and cell subdivision. est iniat ing anl)iguous

center face values and disambiguat ing can be applied easily to bot Ii majol and minlor

cells.

If a fast surfac, extractor is desired. several changes must be iade to the

implementation. fhe main bottleneck in the system is the I/0 overhead incurred
while writing and accesing geomelry files on disk. Storing points and norrnials in a

memory list and Ithen passing them straight to a ren(lerer should drastically cu tile
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processing time. Also, utilizing a hardware renderer should decrease the processing

time even more.

The cell subdivision code could also be re-structured to operate in parallel.

Since only four data slices are ever anal'yzed at a time, the parallelization could be

partitioned by sets of data slices. Each set could be processed oil a different processor

to generate a portion of the iso-surface mesh. Rendering could also be partitioned

among processors by the same logic.

6.2 Krigitng Recommendations

The kriging estimation methods implemented in this work can be modified and

enhanced to investigate further uses in 3D imaging. The results depicted and de-

scribed in this thesis indicate scalar value estimation needs to be investigated further.

Tricubic interpolation does not estimate values accurately in the medical data sets I

analyzed. This study demonstrated that kriging is very flexible and can be modified

to behave like different estimation methods, including both tricubic interpolation and

trilinear interpolation. A research effort should be conducted to determine how to

make kriging find the best estimation as the theory indicates it should. This requires

a structural analysis of the data to determine the characteristics of the regionalized

variables - support, continuity, and anisotropy. Continuity of sample values exist

in certain portions of the human body such as organ and bone. \What. needs to be

determined is how to find these zones of influence. Finding the zone of influence

determines the kriging neighborhood and the type of model semivariogram to use.

In addition to the model semivariogram. I also made assumptions about the drift.

the neighborhood, and isotropy. In some cases. such as a neighborhood of 64. the

data might be anisotropic. If assumption of isot Vopy or the model semivariogram was

wrong. fixing them according to a struct ural analysis should make kriging produce
.,optimal" estimates.

Before structural analysis can be done however, certain tools have to be built

or tnodified from existing ones. Several structural analysis lools have been built at

AFIT for use ii 2D data sets. These would have to be modified for 3D use. The

tools include one that calculates the experimental variogram. It currently e stimates

the semivariogram in only two directions (to check for anisotropy). This would have

to be modified to estimate semivariograms in other directions for 3D. A procedure

exists that deterinites para'neters for a seinivariograin model. There are only a few
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models available in the tool. so model implementation is another area mf research as

well as modifying the existing ones for use in volume data sets.

6.3 Conclusion

This research investigated different methods for estimating scalar values within

computational cells and in the volume pre-processing operation of slice interpolat ion,

These methods include the deteiministic linear. trilinear and tricubic interpolations

and the geostatistical estimation technique, kriging. Iso-surfaces were generated

by marching cubes and another (ell interpolation method called cell subdivision.

The estimation techniques were used to estimate intra-cell scalar values in the cell

subdivision method. They were also used to estimate logical data slices between

existing ones for the volume pre-processing operation of slice interpolation. This

research introduced kriging as an estimation technique for use in 3D imaging.

I demonstrated that kriging estimates values as accurately as deterministic

tricubic interpolation - shown to be very accurate in estimating intra-cell scalar

values in artificial volumes. I also showed that tricubic interpolation can perform

poorly in medical data sets and that kriging can be modified so these inaccuracies

do not occur.,

The erroneous results produced by t.ricubic and several of the kriging variat ions

could be caused bv invalid assumptions about the neighborhood influencing the es-

tilnation and the variation between sample values. Neither of these factor, can be

modified in tricubic interpolation: however. they can be in kriging. I only modified

the neighborhood size and local drift assumptions. These modifications demons' ra',e

lhat kriging produces better results than tricubic interpolation. The data variat ion.

which ,is modelled by both the semivariogram and t lie local drift, needs to be deter-

inined )v a t ru( tural analysis of tle data. MY go al was to demonst rate that kriging

is capable of being modified to behave like other (leterministic interpolation tech-

niques and to prevent inaccuracies. Since I did not do a structural analys;: and( just

assumed the data variation, the results show that, kriging is very robust. It is robust

because even though I guessed several of the kriging parameters. I was able to make

kriging behave like three other standard deterministic functions and etter in some

cases. Following a structural analysis, kriging should provide the best, estimation in

comparison to olher known est.imation methods.

6-3



The abiiity to modify kriging to behave like any other deterministic method

is important. First it shows thaL kriging can be modified to behave like standard

estimation techniques. so if they are desired, kriging does no worse. That is, krig-

ing subsumies the deterministic methods I investigated. Also, kriging provides the

capability to dynamically change the estimation technique. This capability could be

used interactively to adapt ively refine the estimation for different resolutions of data

and/or for different viewpoints of the rendition.

Kriging is considered the optimal estimator and since accuracy is important in
3D medical imaging, exploring the use of kriging to estimate values is worthwhile. Its

use has mainl\ been to est imate values within environments such as mining, gas and

oil exploration and other geo-science disciplines. Further research is critical to prove

the usefulness of kriging in 3D medical imaging. This research is also applicable to

any 3D imaging methods that perform estimation.
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Appendix A. Vanilla Marching Oubes Data Flow Diagrams and

Program Description

A. 1 Data Flow Diagramis

A. 2 Progrom Descriplhon La nguage State, vi? (s
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Primarv Data Structures

* plane[4] - Pointers to four arrays holding original p)oints and scalar values.
Need four in inemoiv t~o calculate normials using gradient operator.

"* ixPlane[2] - Pointers to two arrays 1hold1ing pre-interpolatecl Y points for cells
lbetween two slices.

* iylIane[2) - Pointers to two arra\,,s holding lprt-interpolated 'y points for cells
b~etween two slices.

* *izPlane - Pointer to an array holding the Ipre-iflterpolated "z' points for cells
between two slices.

" >'Gplane[2] - Pointers to two arra\ s holding calculated normals at cell vertices.

" gxPlane21 - Pointers to two arrays holding lpre-interlatd 'x' normals for
cells between two sli'ces.

" 'gyPlane[21 - Pointers to two arrays holding pre-interpolatedl ) normals for
cells between two slices.

* . gZPl ane - Pointer to anl array holding pre-interpolated Y normals for cells
between two slices.

* 256 case table.

* interpolatedl points translat ion ible. Indlexed by cell edge vertice.

* interpolated normals t rainslation labde. Indexed by cell edge vertices.

*isovalue array.

pfir4 comn Clflfllim (*'7/) !.(rd DE-D. ntinc wiuc ubbic 1)

while no more Commacnd lite arrineIit -11 1 )j lilied by uiser

switch (Coil) Ia Ild){

case : sovalnilAg

reVad isovaljie argmiln(ut:

ca, : shelL-flag

reVad file nlaile aro unientl

readl isovalties fronm file. Einter isovalues Into all

array of isovaliies:
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case :widow-flag

read range of isovalues:

set as first. and secondl elemnets in arrayv of iso'-alues:

case : box-ilag{

set box flag to true:

I
case : Iist of..geom -iles -lag{

set list of geo-m files flag to I rute:

case : jpath-flag{

read path argumient.:

set path variable to argumett overriding default path:

case: data-file-fiag{

read from control file to get large dlat~a file information

such as imiage dimiensions. interslice amount.Input data, path. and
number of slices.

/'else default Is to read fromn au art ificial volume data file:-/

~ ~swit cli

}/* While

na d ht'qdt I- iynfo (" Tolp LI. re' OFD. Ihubbi, 2J

check (lata-filelflag andl open ap~propriat e file:

retrieve x andlv

if data-file-flag Iindicates. au art ifi'rial volumve, retrieve z (linensio0l1:

else if large (late file, retrieve ntiumbei of slices from coilt rol file.

N~ Number of slices becomues ihe Z. dimiofn)'



,4.2.3)
allocatf niemory slorage ("Top Level" DFD, Babble 3)

Allocate memory b~ased on dimensions;

/ * Example memory usage for arrays holding original and

iterm-ediate slice data.

p~lane arrays consist of structures with 4 floats.

all other arrays besides the isovalues array has 3 floats per structure.

Assume 256X256 medical images as input.

-1 plane arrays x image size x 4 floats = 4 x 256 x 256 x 16 0141B

12 normal and interpolated arrays x image size x ~3 floats=

12 x 256 x 256 x 12 = 9 MB *

)proceCs slices ("Top Level" DFD, Bubble 4)

A. .. 4. 1
nr'id slicts ("process slices" DFD, Bubble 4. 1)

Initially read in 3 slice-, into ])lane[0].plane([1 1,l)lanie(2]:

D~lone t~o process border case, marching betweeni llane!0I and lplaned11. *
Then in main for loop, readl fourth slice. march

A4.2.4.2
.q / dclla diqlaiiccs ('"process slicc<" DFD. Bubbh 4.2)

/(]one after reading i first, three slices. befoi e maini for loop7

__\ (Is(plafl([01- > -x - (pla.ic( [0 + I )- > xr):
-\) oli.(plan [0]- -> yI - (7plo2? [0] +x.dIi)?.%i0I)- > y):

AZ Eab(pl(~i7c[O]- > Z - planlfl->]- >

/note. this assumnes the delta distances will not chiange betweeni slices

and within each slice, i.e.. assumes a regular dlata grid.
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A .24.3
calculate normals at cell v'ertices ("proccss slices" DFD. Blubbl( 4.3)

Initially calculate for cells between plane[O] and plane[11.-

In main for loop calculate for cells between plane[1] and lplane[21:

InI final case. calculate for cells between plane[2] and plane[3]:I

A. 2.4.4
pr(-iflterpolalc points & normials ("procrss slices" DFD, Bubble 44

Initially calculate for cells between plane[OI anld lplane41I:

In main for loop calculate for cells between lplane[l] and lplaneI2]:

In final case, calculate for cells between plane[2] and plane[31:

Method :Use same comparison as in marching cubes for loop -

If a points' scalar value is greater than the isovalue, it~s a 1-voxel;

if one voxel is classified as a 1-voxel and another adjacent

voxel of the cube is a 0-voxel, then interpolate along the

edge and store in the appropriate array (which array depends onl edge);

A .20.4.5
uipdate translation lookutp table (-proc.-.s slices", DED. B7ubblf 4.5)

Prior to marching cubes (cells) bet ween two data slices. re-est ablishl

p~oinlters in tianslation lookup tables;-

/* These pointers must be re-establishied because the original dlata

slice lpoin~ters and the normal slice p~ointers are swappedl after every

new slike Is readl in from thle data file. Thel translation tables are

indexed bY thle cell edges and thle e'ntries cont ain p)o int rs to thle first

cell' dg.es. WVhen thle tables are uised, all offset froml the bt-4mbi i ii g of

the arraYS Is added to tilie pointersN to access thle correcto cvL

For examiple tl~v[5][7] =izPlaii + x-dimcn.5ion + I establishes tile

absolute cell addr-ess for the Interp~olated point ol'cell edge 5-7.



A.2.5
march between slicts ("process slices" DFD. Bvbble 4.6)

/* input are pointers to two arrays of consecutive slices (planes). *
/ * main marching cuibes loop ~

.for(?*? = 0; iy < y dim:;?y±+ +)

.for(ix = ;ix < xdim7;ixr + +){

establish offset from plane pointers to lowver left vertex of

current cell;

establish all other cell vertices from lower left vertex;

calculate index for cell ("march D171", Bubble 4.6.1):

determnii i](jue case (*'march DFD", Bubble 4.6.2);

switch (unique index) {
for each of the 15 uniquie cases do

otjtut stats ("mnarch DFD-", Bubble 4.6.3);

get list of vertices from pre-calculated

table ("march DFD. Buibble 4.6.4)

get interpolated points k normals ("march DFD".

13tbble 4.6.:5)

otatit point,, k normals ("march DFD".

Bubble 4.6.6)

} e~ nd Switch *

}/ endl for ix7

calcudli midr.r for r(1l ("Iinarch I)FD. Bitbblc- 4.6.1)

test each Cell Vertex to see if it's scalar valuec is greater than tile

isovalue(s)

If a vertex is so classified, lboolvan OR a flag withi that, vertex #

Resuilt of flag aftepr all vertices are cla sified is the index into the

2.56 case tab~le.
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A .2.5.2
deterimine unique case ("rn arch- DFD. Bubble 4.6.2)~

Access 256 case table with cell index, retrieve unique case #

A. 2.5. 3
output stats ("march DFD., Bubblc 4.6.3)

Tally unique case #, ambiguous case #. of triangles and # of p~oints:

. 2.5.4
get list of vertices from pref-calculated table ("march" DFD, Buibble 4.6.4)

Access 256 case table with cell index to retrieve list of vertices;

Set a temporary pointer t~o vertex list array;

A. 2.5.5
gel intlerpolated points 8) nor-mals ("march"' DFD, Bubble 4.6.5)

/* For each unique case. the cell edges for interpolation were identified

and app~ropriate tianiflationq were selected, For examnple. unique case

3 requires interp~olationls along edges 0-4. 0-2, 1-3, and 1-5.

Two possible triangulationis can be chosen, but would not alter the image.

so t he choice is arbit rar.\ in this, case. Now that the cell edges to

interp~olate along are knowni. t lie translation lookup tables can be accessed

wvith the offset calculated ab~ove. */

Access translation lookup table to retrieve pre-interpolated points arid

normals,11 along cell edges.

output points~ C vormals ("miarch- DFD. Bubble 4.6.6)

Out put points anl(l normals to a temporary points file;

Outplut line numiibers specifying points for triangles. Place in temporary

triangles file:

/temporary files used b~ecause AFIT geometry files requires all thle

points be listed first.. followed bY the point line numbers for triangles.



A.". 6
write box (-Top LevfsE DFD,. Bubble 5)

/ * only applicable to artificial volumies and only visiIble w~hen viewing

triangle mesh ~

If boxflag entered by user. write rectangles forming a.

box surrounding triangle miesh to temporary files:

A .2.7
output geometry fil (**Top Lce'ci DF[). Bubble 6)

Catenate the two temporary files, with the appropriate header and

trailer information attached:

A4.3 Data Dictionary Fo7- Data Flow Diagrams

Data Dictionary Symbology:
- is comnposed of

+ and
) optional

{ } iteration, f)J+ indicates 1 or more. default. zero or more.
* * comnment

2-56 CASE TAB3LE = indices + {list of verticeq}+
* the pre-calculated tab~le of cell verti(es for the 256 different
cell cases. Each of the 256 cases contains a mapping
to a unique indcex and a list, of' vert ices corresponduuo
to the uinique inde. *

3D S(CALA R FIELD) DATA =*art ifical volumues, medlical imiage fides.
or scientific Volumue d]at a.*

l)ox = fineb drawn around dimensions of' image generated from)
artificial v'olurne.*

commands = (isovalue-flag) + (shelL-flag) + (window-flag) + (box-flag)
+(list-ofgeonililes-flag) + (path-flag) + (data-file-fiag)
*user mu11st '3up)ply onle of' isovalue-flag. dimell-flag or window-flag

isoval ueilag - argu ueuut, is a single isoval u e.

A~l



shelliflag - argument. is a file name. File contains list of iso-valuies.
xviI)dow-flag - argument is a range of isovalues. e.g.. -w :30.0-40.0
lbox-flag indicates a box wvill be drawn around imiage - only used] for
artificial volumes such as embedded math functions.*
list-ofgeom..files-flag specifies that multiple geomn files wvill
lbe generated.
patl-fiag - specifies path for output geomietry files. Default is the
directory path of the source code.
data-ie-flag - specifies type of inpuit file(s) - 3D) SCALAR FIELD DATA.
Can be medical or artificial volumes. Artificial volume dlata, is default
and reqjuires re-directing stdin using i. For exampiille

(lelta..distances = * The lengths of cell edges. *

GEOMETRY FILE = AFIT geomnetry file of points triangle specifications.

header..info = data-imensions + number-ofslices + (inter-slice-thick-ness) + (in-
tra-slice-thickness)

indices = mainindices + tiniiue-indices, * indices into lpre-calculatedl 2.56 CASE
TABLE. *

interp~olated points k, norinals =*poini: and normals interpolated along cell edges
from- cell vertices to the isovaluie(s) providled by the uiser.*

list of vertices = * A list of' vertices is pi e-calilat ed manlually for each
case., in the 256i CASE TABILE. andl stored in the tab~le. Each list contains
the eight cell vertices, ordered according to uiniquie case ordering (following
he app~rop~riate conlplememtation and/or rotation(s)).*

points and normals = i poi nt,~ - [lie originmalI poi iii ' olfl Iedl froin the 3D)
SC ALAR FIELD DATA. normnals - Normnals ap~proximlated at Cell vert i es us"ing
(enit ral difference gradient otnerat ors.

slices =point,, + scalar-alm-s

slats =tally-anibigtioms-cases + t ally-inain-ca:4es -{- Ially-uniique-cases +

triangles = points andl normals



'fLU = Trainslation Lookup Table
* Contains pointers 1.o interpolated points and normals.
* see update translation table Jookup PDL for more info.*

TMP DATA =tip-points + tmpnlormnals + tmnp-rianglespecs

A\- II



Appendix B. Va'nilla Marching Cubes

This appendix describes the imlementation of the vanilla miarching cubes al-

gorithm developed by Lorensen and Cline in 1987 (34). It is termxed val.] !a because

my imp~lementation does not include any enhancemenits such a-5 texture' 7-apping

geometric ,olid modelling, or dlisambiguation. The first part of this appendix in-

troduces thle topic. Following thle introduction.,somne background inforMatinit ahunlt

decisions and about my implemientation are discussed. Then. the mnain step~s in the

implementation are listed. Next some background information on my iinnperenw-

tation is (discussed. Following this, use of the 256 element transformation table i.s

explained. After this, the cell edge Interpolation wethod is p~resented. Then the

method to determine triangle normals is discussed. Then. modificati)ons and en-

taincerneis niadle to thle public dlomain marching cubes codle Is present ed. Laslly.

(ow wlent s onl thle 1rmat of' the miarchinig cubes, on t~plt. are discussed.

1B. I1 Jlod(bChll

Ile Ilritail ri cuibe. algori tlrni (34 ) is ai 3D) inagilig nwi(t hod that exltract s at

Sutrface of i oterest hrorn a 31l) wolunle of (dat a. Th'le surface Is re[)resent ed a,; it :31)

t rianguIa r mnesh and rendered by a st andard polYgonal based gra phics reniderer. The

allgoii thiml lpocesse-, ci bes or cornpiu tat ional cells, w-here at c(ll is coinposedI of eighit

VON(+,. forur each froin two adljacent dalta SliceS. Each Cell IS aria I vid to (let ermit~e

If' (hle surflace ol, Interest Intersects thle Cell. Triangfles are' geneorated wit hut cells



that. are found to0 containl a portionl of thle Sui a1C'e. Surface detection vithll a cell

is performed by simple thresholding. If a cell vertex is greater than the thresholO

value (iso-valure), it is assignred a one (considered a I-vertex), else it is assigned a

zero (0-vertex). Vertex classification in this marner yields 256 possibly different

cell classifcations. Lorenlsen and Clinie reduced this to 1.5 unique cell cases. Tri-

angle vertices are determined by linearly interpolating the voxel 3D points to the

isovalue between 1- and 0-vertices. 'Normals an similarly calculated by interpolatingf

previously derivedl cell vertex normiaIs.

B. 2 Background

In this research, I impllemented version of the marching Cubes algor-ithm

before deciding on a thesis topic. I thenr explored thle u,,e of kriging to somlehow

inirov th suiac exr(tioi.Ii wadI \ilhelnis and Celder's (50) x\ ork oii mnt a-cell

Scala r value est lillat ionl. Froml there it wa.- :3iiflfle to see Ihow kriging. colid be' used.

But. I still investigated ot her surface extractors to determinie thle history of marcingi

cubes all(I to see whetlici kiignig (-oi11(1 be app1liedl in ot her ai as. This led ime in1o

he a rea of :31) med icai imiagi ng, It ouw where mlarch ing cub~es as w~l as i nanv other

31) imIaging a Igordit iis were derived.

As sen fi oi chapt ci two, the two prima iy surface met hods ar-e en ben I Ic based

anld cell i niterj)olat ion. Tlme' ttieri lle- based approa lies were developed I~ I leninam

Lill and Vd'upa in lte late 1970's and early 1980*s. In contrast to thle ctiberli le- based



methods. the -ell interpolation metiods, at-e inore li'ei'isticallY based. TIwo of thle

celi interpolation algorithms are Lorenscrn and Clines' marching cubes (34) and (8)

and Wyvill and McPheetcrs soft objec, algorithmns (.52). 'The latter two methods

are called cell interpolation techniqjues because they interpolate polygonal vertices

to the isosurface boundary along cell edges, \%here at cell is a paiallelepiped with

eight adjacent voxels as vertices. Cells are also known as computational cells. The

implort ant distinict ion bet weein voxel- based surfiace ext ractors such as cuberilI I based

miodels and cell-based surface extractors is the fo iner assume a cons5tant scalar value

throughout, the voluine lenevt (thle v-oxel). 'vherea, th? latter assumne a varying

scala r value throughout cells.

After reviewing the 3f) imiaging literature. I chose to continue eN1)!0riIn,1 the

cell interp~olat ion~ methlods for thle following reasons. First. I did not wvisht to develop

a specialized m, .. which would liit its it!,e o, f't .tre re;e'arch 10t potentially oiil

one a pplication. Cell interpolation Imd ho~is have beeni widely used in both mii-

cal iniagng and scientific visualizadviai. Add &l( ; all, the graph-t h"arecal inol2 ods

toed in thle cniheidle icnodlel are \ ery cuoiilx to ini)) lei and oftIeni yied inu.

that are jag'ged in alplparanne (Ibecaus~e of ithe 21) smrf ace display uitouedl -, uo

face) wit hout special shading pi-ocdre, IIcs 11C (1). 111 contrast. thle cell i nterlola-

ion methods(1 are much si mjlei lo uinder-st and an;d impjlemient an 1(- all yield very

high quia 1itv in ages wit hoitt special sha Iill ti ethlods nsvd . b~eyond(l he Ii adlit ioia I

app: (aclie such as (;oiiard or M~ono g 13). Nost iimiport atly. since est ima~t ion is, a
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critical part of 3d visualization, the ability to estimate %-,trying scalar' values within

cell and visualize direct results of the estimation process 1)rie th1metst

investigate Improved estimation methods. The wvork p~revioully done by Wilhelms

and Gelder (50) provides a strong framework within which to visualize new estima-

tion methods. The work done here should have p~otential benefit to many other 3d

visualization methods. since piocessing cell-lby-cell is common to other methods such

asdirect volumne rendering (46i) and (51 )

The main drawback of the cell interpolation a pp roa ches is the simplistic method

of segmenting the ob~ject of interest from the remainder of the volume. This method,

termed thresholding. makes a binary dlecision at each voxel - does the voxel con-

tribute to the final image or not? Volume methods do not make such a simple

(lecision, but rather, allow v-oxels to contribute percentages of different character-

inst ics (su1ch as color. andl density) to the fitnal imnage (33) and (16). Again. the

emplhasis of this research is not to compare volume and~ surface Intel hods. b)ut to

--onipare estimation techniques app~licale to both I methlods.

beganl mv work with a public d(' lmaini velnsion of a basic na rchiiig cubes

algorlihm. This version onlY set 11p t he pm c'calculat ed I alle and performed thle Inl-

terpolat ioun t p. but1 (lid not dlo t hie inlio.s dithi( 1ill task. 111,11 of conipunt M.i~ iorninals

fromt gradlient. information. It basically d id steps, 2-5 Ini 1 he l ist presente (lIn time nexNt

sect ion. but as noted lat em. I re-wrole m tost of the code to make it110 Cz unmdert andl-

able aind mnodifiab~le. As stated in dna pier 2. the imiaichi hg cube algori ihm -mnarches"



COMlRutational cells b~etween two slices of data. See figure 11.1 for a pictorial rep~re-

sentation of thle m~arching. The slices are labelled according to the order of arrays I

maintain in the implementation.

B.3 The Alain Sthp in the Implementation

Lorenson and Cline (.3-1) described the marching cubes algorithm in 1987. The

significance of their algorithm was that It used 3D information to construct Intcrslice

polygons to represent the iso-surface and to approximate normals for shading. The

following is a list tak-en from the 1987 article, which denotes the steps performed in

the marching cub~es algorithim:

1.- Read four slcsinto memory.

. Scati two slices and create a cube from four neighbors on one slice and
iou11 n('ighl iors o1n thle next slice.

:3. ( alcullate an index for t he clbe by, comparing t he eight density %-aluies
at the ctiile vertices with the surface constant.

41. V.11c the index, look up the list of edges fromn a precalculated table.

5. U~sinig the densities at each edge vertex. find the surface-edge intersec-
ionl via linlear inlt erpolatio01.

0. C alculate, a 111it normal at each cube~ vertex imsinmg cent Ial differences.
Interpolate Ihe normial to each t riangle vertex.

7. Otpt flie t rianigle vertices and ve(rtex mormals.

Thie reiuainlder of tIls sect ion dliscusses hlow Sonie of t he above Step)s were uuii-

1 lCImi('ed. I do not (lisciss the steps that are st raigut fot ward from an understanding

of ilie basic algorlit, dfm (esrilwd In chapter two of he t,-Ihesis-.
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slice 3

slice 2

slice1 -7/

slice 0

V~vxe i~jj+I xj ~ ~voxel i +I~+~
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First. I discuss the implementation of step -1 in the marching cubes algorithm.

B.4 Pfrcalculated Tabil

Creating the pre-calculted table mentioned in step 4 is actually the first step

that must be done. This table contains 256 entries - one for each of the possible cell

vertex classifications. Each entry also has associated with it a list of vertices that

map to a unique case number (that also accompanies each entry).

To create the table. I first analyzed all the 256 possible cell vertex classification

cases to determine the 15 unique cases and mapped the remainders to the unique

cases (figures 2.6. 2.7, and 2.8 depict the unique cases). To simplify this process and

obtain accuracy. I reduced human error as much as possible. I used tinker toys to

represent a cell. with labels attached to the corn-rs and marked to indicate 'ertex

numlbers. I also use(l a presentation graphics package to out put 256 pictures of a

numbered cell wit h1 a numbered segmented rectangle below to hold the lbinary value

of the case (See figure B.2 (a)). I analyzed each case by marking the appropriate

numl)ered labels for the case. coml)lement iMg t he vertices if necessary. and rotaing

le cell to colre,plond to the clas.sification of a unique case. l'ach entrv in the 256

elemenlt table contains the oider of the cell verlices and the corresponding unique

case, The order of verlices corresponds the order of those specified in figure !B.2

(a) (0 I 2 :3 -1 5 6 7). The ordering is arhitrarv but requires consistency.
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6 7 IF

2 Transform

0 (a) 1

1 1 0 1 1- 11 1 LRotate

7 65 43 21 02
Case 94 (5E hex)

Unliquie citse 25 (hex 19)

Vertex order 5 1 4 0 7 3 6 2

Figure 13.2. Examiple of cell mapping t~o a unique case



Aij example of how the table is used will help in understanding itb use. Assume

we have just narched to the next cell and case 94 (5E hex, 01011110 binary) is

encountered. The original orientation is seen in figure B.2 (a). In a case such

as this, Lorensen and Cline point out that "'Complementary cases. where vertices

greater than the surface value are interchanged with those less than the value, are

equivalant" (34:165). Therefore, figure B.2 (a) is transformed to figure B.2 (b). which

when rotated, matches with the same vertex classification as unique case number 25

(see figure B.2 (c)). The major table entry for case 94 contains 25 for the unique

case index and also contains the cell vertex ordering 5 1 4 0 7 3 6 2. Another table

called the translation lookup table is ubed to map case 25 intt, triangles base(] upon

previously ,.omputed interpolation points along the cell edges, and uses the ordering

in the table in place of the normal ordering 0 1 2 3 -1 5 6 7 (which is only used in

unique cases).

Step 5 is another place where )re-processing before marching can occur 1o

speed up the algorithm.

B.5 (0/1 Edge Inl(rpola ion

Cell edge interpolation is the process that determines where the iso-surface

intersects a cell edge. The cell edge must have one vowel valte gi('at er than the iso-

surface and the other less than the iso-surface for cell edge interpolation to occur
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One area where mnarching cubes i mplerentat ions call differ is whenl cell edge

interpolation occurs (step 5). My code interpolates in a pre-marching step. That. is,

every time a new scan plane (slice) of data Is read in, it is Immediately processed

to findl thle interpolation poinlts along cell edges where the surface is estimated to

cross. This requires a total of seven arrays, each with the dlimensions of a slice -

twNo for thle or''iial slice data, four for thle x and y interpolation values for each of

thle two p~lanes forming tile cells, and( one array for the z interp~olation values. Two

xand y Interpolation arrays correspond to each of the two slices of data that cells

will "march" between. Only one array is needed for interpIolationi points in the z

dimension, because of the geometrN of' tile slices anl the orientation chosen. Ths

c-anl e wen in figure B..3. which depicts thle correspondenrce between interpolated

p~oints along cell edges andl these array-s. The x27 represent points interpolated ,in

the \ dlirect ion where. i corresp)onds to the I th posit ioni in tile array, jis the slice

niumber. either I or 2 (thus 2 \ iliterpolatioil arrays). Not ice thle p~oints Only ie

along tlv' cell edges In the x direction. The, !1, points represent the same for the

y interpolat ion atiravys. Thie z,*s represent initerpolatedI poinlts ill tile z direction. If

tlie iso-surface does not intlersect a part icu lat edgIe. that coriesponii~g entry in the

array w~ill niever be accessed.

The following is the nt erpolatioll lo0ri1liul 1usd to fill t111he Intersection p)oint

along a cell edge. This formula applies oi] along a single component (xxy, or z)

sIince ai cell's edge lies only in one( of dth ire coordin ate directill~s.

H- if



uzcomnput ational

2" Y'cell edge

-101 21

x de(1101e(' tilie ill positionl ill tile
IJ - jdi x interpolation array, where

j = 1 or 2 and( i ranges from 0 to
(xdiml * Ydiml) -I

.tj Fll p)ositionI ill Jtlh % inlerp arra%

i - it 01 positol ~ll liSingle z iI1terj) ari'a%

Figure 13.3. ( orresl)0Inle of inierpolat ion arraYs to compul atioiial cells mat ch-
ino, bet ween~ Iwo slices



Given:

p1, p2 - the component points to interpolate lbetween.

vlIv2 - the scalar' value at points p1 and p2 respectively.

iso - the target value interpolatedI to.

i terppoinl/ = ((?iso - v2) * (p1 - p2)) /(vl1 - t,2) + p2

The translation lookup table is later used during marching to access interpola-

tion p)oints in these arrays. The advantage of this lpre-interpolation method is that

shared triangle vertices are guaranteed to be the same because only one edge i., ever

processed, which reduces computation time; wvhereas, during marching each internal

edge is processed twice. H~owever, the disadvantage is the memory required to mali-

lain arrays that contain the interp~olated points. Even more overhead is required fi

t his method to Iinplenment step~s 1 andl 6. which calculate Uhe triangle vertex normals.

B. 6 Nornial Calcuilation,,

My codle produces the normials during the pre-interpolat ion, step. TIe following

central difference gradivint operator is used t.o est itnate the out ward dIirection of' the

surface at a part ici lai voxel (I.j .k ) along filie three coordinate axes (3,1:165)
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Gj, k) =(D (i + 1, J. k) - D (i - L. j, k))/ A.x

G ij, k) =(D(i,j +~ 1. k) - D(i.j - 1. k))/ Ay

G (i,j. k) =(D(ilj k + 1) - D(i.j k - 1)/A

D(i,j,k) is the density, value at voxel ij.k and -Ax. .Ay. Az are the length!, of

the. cell edges in the corresponding component. Once the cell normals are estimated,

they are interpolated along cell edges to the iso-value using the same interpolation

formula used to find the triangle vertices. InI the vanilla marching cubes algorithm I

hancllc boundary cases as special cases when determ-ining the vertex nornials. That

is. voxels along the border of the enclosing rectangular volumre are assigned the

outward facinjg normal along the enclosing volume (see figure 1B.4).

B. 7 Fixres to Public Domain Codf

The original code I started with1 was writ ten to be fast ( t houghi it was Jprac-

I icallv unusable because it did not produce wirnals nor planair poly-ois) withlout

regard to iriaintainabilhtyo u i'nder-Standabilit v. Therefore. I had to re-enigineer a sig-

IIi -iauit, p~ortion of it, to obt ai nt l 'oftwaic eii gieeriiig" goals. The il problemi

1 he code had was that it (lid not linaint ai ii a t a ulardl logical order of lie origi iial

Slice., whli reading" t heml in from thle (la files. Only Ih luiterpolaw d planes were

Swapped to maintain orleI . Planles InI thle (code are (hle Salle as ai-ray correspond ig

to Slices. Planes are swapped to re-use the previously read slice for thle next process-

ilig loop of cells. Swa ppi iig lplawns is t he sMI1 Ie asSWapping poi it ers. BYswa ppliug
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Fnclosing volurie

Boundjary case
Normal (10,00.0 0)

Bcuflcary case
0,maOOQC. -',n)

__ZZ x

Figure B. I. Vanilla miarchinig cubes. ('ample boundary cases is urface normal
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all planes after each slice is processed. I cut the size of the translation table in half,

but it has to be re-Initialized after each slice ;s processed. However, the code is much

easier to understand and modify.

B.8 Alarching Cubes Output

The triangles are output in the form of an A FIT geometry file, which expects

all the points to be listed first. followed by a list of polygons whose vertices are

indicated by referencing line numbers of the above mentioned points. The AFIT

geometry file is then used as input to a slightly modified version of AFIT's GPR.

The code for the vanilla marching cubes implementation was written originally

inC' and consequently it was functionally oriented. It was later converted to C++

so it could interface with the C++. object oriented kriging code.

Appendix A contains data flow diagrains and program description language

st atements for the vanilla marching cubes imlpleeiental Ion.
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Appendix C. Cell Stbdi*vision Impienentahjon

This appendix dlescribes implementation (let-ails of the subdivision algorithm

inl more (let-ail than presented inl chapter four of the thesis. First discussed is som~e

terminology to help understand the rest of the appendhix. After that., the purpose

of cell subdivisioni is, presented. Then the cell subdivision Implementation steps are

dlescribedl.

0. 1 Terminology

Before proceeding. I present some terminology that eases the following expla-

nations. I consider the initial computational ct.!ls In the in~ain lou-- as major cells (see

figure C.1 ). The newly created cells wit hin a major cell. I term minor cells. Major

cells hax e the original voxels as vertices. so I con.lider minor cell vertices as ninlor-

IOxels. Finally. I consider the arravs within it a Io IU I)dvie cela i-slices.

since logic'ally t hey i epresent. iilillt (dat a slices.

Q. Pi rupos'.' nf ( 11 .Su bdi: I. it

The p~rimllar 1 1)111 (,r cell sub-d(i visionl ale 1o ()disali higilat e a mbiguious Cell

Ca~ses, Mid~ to dleriye at bett er alpprOxima1lioll of the ko,-. irface. An i aligiiols cell

obccuirs wheilever mlore than one top)ology can he Chowni fot he Cell. C'ell snhbdivisionl

(lisalihigiiates an) amilioI~s cell b\ S111)ivi6ding 'Iit( minlor celk. EBvn I hoiigh t he

.su bd i vided am ibigill Il ni or (ell is nlo hon~et a i igi ii 'u ( hwca use 11 Is 110 lot gvi detll
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minor cell

Subdivision factor =2 iii all d-.-enisions

* Original voxlpls (major cell vertices)

0 Minor voxels (inor cell vertices)

Figure CA, Subdivided Major Cell

with). cell subdivision does not, guarantee that minor cells will riot be ambigruouls.

\Vilhclmns and Gelder (-50) handle ambiguous minor cells by choosing one lopology

b~asedl onl facial averages. discussed in chaptei two. Th'e( cell subdivision metho 11(-Cin0*

also b~e used to increase image fidelity. This is done bvf uig the surface within

1ii inor. cells versus thle itch larger major cells - t ha t is. dila resolution is increased

by- foriiiing1 minlor cells. Increfasing Ilet data resolt-tion to imipiove iiage fide-lity

is the salme idea behlind the diViditig Cli) igol it lill (8). VVVI ('t )Oilit plinmiiives

are oitut 1 in thle dhividling cubes method insivadl ofl the t i angle-, out put in this cel

Su1bdi vision mnet hod' Subd)(ividing call also be u~sedl I o icre-ase resol lit loll Iln onily one(

Tea ppen dix ent it led 1)isamibigim Iion ll En11lince~d Si rfa ct Pt-Inrentlat b%11l) (",l Sili d~i -
sw lmj~emls an e'xamlpie Ilhal helps, rlarif% %%h\ cell iibdi islioii cant Iimlro, imag, (11ti1lhN



dimension. equivalent to creating cubic voxels in the cuberille dat a model approaches

by creating new logical slices between the original ones. rIhis method is uised Ill the

impllemenitation of slice interpolation discussed in chapter four.

C.3 ImPk nClItalion SIP

This section lists the cell subdivision steps I implemented and describes each

in turn. Tlhe step~s ar~e:

1. Read data into0 memory.

2. March major cells between slices.

:3. Subdivide major cells into minor cells.

*1. Est imate ininor-voxel values.

5~. A pplv\ marching cubes surface ext ract ion with l majol cells" to forml surlface.

.StJ) 1 Ri(Id .Slic

Step I is basically the same step as, inl thle vantillIa mat chimit cu be'. (vuic) unI-

l)ielivt(it al in described Ill tlie preVVIOUS al)l)tIldiN. Fou (Ali MV ateneded illa it lM

to ca Icilate t lie gradenmt . The central (lifFreiene grad icitl opet atot l i 61~ (; oNxl

vaile' sill rouinding"' a miaj"or cell for the calculat ion (sefit' .. This step) (lfers

f oil Ill(. X 111W imiplettetitat ion i H thle handillinrg of Ihorder caises. Thle vin, code d a Is

witl)hborder case, (Su~ch as, the first and last dat a slices andt' edges of data lc I

Its- pior#-s, of -,adieuu' ratciilarion wvithinl min1or relk, I, illose .n tlai.r set il~l

:



approximating the surface normal at these major cell vertice-s wilth a met hod ot her

thani the central difference gradient operator. This Is because the 64 surroulilng

voxel values do not exist in these cases. Instead of the gradient operator in these

cases, the normals are applroximnatedl by the vector normal to the surrounlding p~ar-

allelep~iped shaped volume (see figure B..

Since two of the estimation techniques (tricubic Interpolation and kriging) usedl

tin the coll sub~di vision process need 64 surrounding values at all times, I hlandledi the

border case.- differently in the cell subdivisioni impllemefltationi. First. I always assume

there are 64 surrounding v~oxel values. To (10 this. I Ignore the dlata onl tile edges

of the 2D data slices used as Input. This is not a problemn because ]in most medical

Image (lata slices several rows and columns of edge values (10 not contribute to the

meaningful portion of the data. Because of this assumption, I Insure the artificial

volumes I (reat e are cent ered vi thin tie volume, wvit h at least one a rrav posit ion inl

the x and y dimensions as a bunffer zone. Since I cannot ignore the first aiil last (lat a

slices. I create two dlmlv(at a slices t~o replace them. The valutes for these dunimvy

slices are( copied from thle , ire I hiey are iiiat ilig.

Step 2 Is tithe same miarchilng t hat occurs fint die vmr implement ation. ( omiit a-

tional cells ar", miaichied betweeti two data slices (see figuire .1.1 ). fin cell suil)(ivisiOii.

iliese cells are nlot polygoitized, bitt ale subd)(ivided. This subdivi.iori is dlescrib~ed it)

lie iVxt St('j).

C



Stfqp 3 - Cell subdivi.sion

The purpose of cell sUbdivision wa described ab~ove - here the implementation

is discussed.

I process the subdivided major cell by employing another modified version of

my 'inc implementation to "'march" withini each subdividedl major cell. Since I use

a vmic imp~lementation, data slices are assumfedl to be read into memory; therefore,

simulate reading data slices inlto mnemory. Sice I never use miore than four data

slices at a time. I use four arrays to hold the m-inii-slicevausndpit.Ith

x'mc impler;.entation, data slices already have values and points associated with

them when read into arrays in miemory. However, both values and points must be

calculated for inii-slice a rnavs. The points are calcullatedl from subdivision factors..

specified prior to execution. Three subdivision factors along each of the three major

axes are set (e N.f = 3. N~ = 5. f7 = 2 meanis subdivide the cell in) the x direction

into three parts. iii t he \v direct ion lino five parts.etc.). Figure (C.1 depicts a major

cell subdivided int1o eight min11or cells where the ,ulbdivision factor is two inl each

dlirection. A sudivisin ftactor of tw W(J in ach dIirect ion reqyIies thle ralculation of

01iC 111mor1-Ivo~ed polit at thle mindpolit of eachi mla j or cell edge. one nhinor01-vo~el jpoilit

inl I lie center of each imia ior cell fare. ai oI0 I il(,imioi- voxeA poinmt in) t he very center of

he major cellI. Figurie (C.2 depicts a hmajor cell subdivided ito 15 parts inl all tIlirev,

Ii rect ioiis. The ca Iculat ionl for di viding a major c'ell edge into -5 parts is

IPL. = laJor.i + (7Ij07 '.2 - fl1 j.01,rr/:-



1)2. = mao.I+ 2 * (1)c 1(jI' 2 -lll(1j
0 7 x )/

':3..:r = ma 'o7-, +r1  3 * (7nJ12( - 771(ljO. 1- )

p4I.x = majuri + .1 * (major 2 .X2 - maUjor', V/5

The y and z components ar~e calculated In thle same manner.

0

z

ma~ijol j)I x.~1ia jor X

'IIgmie (C.2. ( (omp)wtitig stibi)(lon 501poin~ts. Sul)(lI1 \i,1 factor =:5 in all the

(lirIect ions.

Once a mntor - oxel point 1is dc ferined. sralai va te i as,1-p ned to ite p.int.



.St(J 4. Estimate scalai' values

In order for the modified vmnc implementation to pr~ocess mini-slices, scalar

values must be estimated at the minor cell vertices. I implemented three functions

1.o estimate values at, minor cell vertices. These are trilinear interpolation, tricubic

inteepolation and kriging. Trilnear interpolation is explained in a separate appendi.

Tricubic interpolation is exp~lained in chapter four. Kriging theory is presented inl

chapter three and the inmplermentationi details are in chapter four. Once thle minlor

cell vertices are estimated. the surface canl be formed.

Step 5. Apply marching ciibes quiface (xtraction vwithin major cells

I implemented two modified versions of the vmc inmplementation described in

the previous appenix to acconlhish cell subdivision. The first vmic i mplementation

is usedl in the outermost. l00o) to read1 the actual data slices inito memnory. rhere are

two pri rnai v loops in the systemn. Nkit Iiin this out eimost loop, imajor cells are formed.

The only tasks thec first, \ inc imnplemenitationi does is read dlata into memnory arid foirmi

major cells. The surface is act uallv formied by the second ;nic impllemnentationi. which

p~rocesses 111a.j0r cells.

Thie secoiia uc iminplemient at ion t teats major cells a,, stil)-\xol iiiies. ext ract intg

sub1-surfaces from them Thius the secondl primary loop nia rches," within major cells,

Aii ng p)0rt ions of the iso-surface. Tliat is. for each majoi cell wi ii a voutme of 31 )

dat, the second vmic irnlplcnmet atioii ext ract s a suba-sui face fhoin each stinbvolumle

(major cell). The major task htis IS o ilislc I o li it a (oniti nots surface ext ract-ed



not only b~etween nitor cells but also between sul)-volumes. A continuous suirface

means the triangle vertices and normials are the same at shared locations. Fortu-

nately the vmc imp~lementation described in the previous appendix insures surface

continuity b~etweeni minor cells by a pre-niarching interpolation step. Hlowever. the

task of' insuring surface conitinuity betwveen sub-volumes is not as straightforward.

The challenge of dlealing with inter sub-volume surface continuity (leternhtines

how miinor ce'! vertex normials are approximated on the boundary of' major cells.

Recall fromi the %mc algortithm that surface normals are approximated at cell vertices

by a central differenlce gradient operator. I use this op~erator to approximate normals

at all minor cell vertices comp~letely contained within a major cell. However, the

inor cell vertices onl the borders of major cells are handled specially to insure inter

sub-volume surface continul-ity. First. those minor cell vertices that are the same as

the ma jor cell veirtices are assiglmed thle same normal value as the niajo C c ell i c'.

Tihis IS pos.sible because pie- iiiarching inteirpolat ion of both points and normials is1

perforined inI the outermnost loop. Then. prior to marching within a miajoi cell. I

calculate cell fa ( -norm a I averages and cell edge' normial averages to use oil tlie o1 hci

bou1 ndary cases. T[hese norlinal averages shared bet weenl su )- vol u ii es ilistiles ii ite('

su rface suili \'ol[IIII(, coiit iniiit*1 v.

After the points, val ties. and noria Is aile e!s i mat ed for- the in inioi cell \ elICC's.

l then inlter'l)olate pollit s anld niormals in a pre-niarch i g step ( the sai ne as in l ie vI](

III inplelleit (Ition decCri bed InII tlie previous cha p1 ei to deterniilie thle sur1face- ni nol



cell intersections, Next. I -mnarch" mninor cells between mini-slices and output tran-

gle vertices and normials to an Air Force Institute of TecThnology (AFITr) geometry-

file. To render the Surface. I call a mod~fiecl version of the ARIT General Purpose

Renderer (GPR) to do Pliong illumination and Phiong shading. Anot her applendlix

describes the modifications to the ARIT (;PR.

1 (C-9)



Appendix D. Disambiguation and Enhanced Suface Repesna 7io

by Cell Subdivision

This appendix describes how cell subd(i vision can dlisambigua te ambiguous cells

and how it can enhlance the surface representation. First. some b~ackground inforina-

tion is presented, then an examiple is lpresenitedl that helps demonstrate the p)urp~ose

of this appendix.

D.1I Background

1as well a-, \'NV.ilhelins and Geler (50) demonstrate that subdividing cells

redluce-, amb~iguity significantly. and depending on the estimnation function used to

estimate( i ntria-cell scalJar values. ( an cause a smoother represent at ion of thle surface

generated by cef llitci pola; ron. V sing a subhdi vision factor of 5 in itach (Iinicnsion.

I explore b)ot t Wii er and triculbic esi mat ion funict ions ini at tifici al volumes Thie

tri linear function generates a 1bettIer surface fit than the vaiilla mtarchinug cu bes. but

is still far Fromt thle desired surface. 'Iricuit i(i et imna tionl event perfortm't bett er in these

anti ficialI voltunes. 'Ii icublic estI i Ila Lion causes Ihle surface ext ract ion to getterrit a

Closet repi esent atiot of thle actnia surface I Itait he 1.Y i-fitear d(oes. IThe aut hors cited

above cl aimi the I ricu bic is, bett et at est'i ria Iinug )oints wit hini the' cell beca use it ises a

larger neighb~orhoo~d of points wit iout assutntg I inva ri t H owever.~ this assumttpt ion

jtta~r rot be \-ali(l foi chIt a \\it It slim rp conrnast s withIini a smnal Iiteiglibot hoodI of \o\C5.

I)- I



A larger n~eighborhood may in fact cause erro~rs in data with sharp) contrasts. lKriging

estimation canl also use a larger neighborhood of control points, Thle promising nature

of kriging is that it guarantees the -best' linear estimator and the neighborhood size

canl be modified as well as a number of other lparameters.

Subdividing amlbiguous cells does not guarantee that amb~liguouis cells will be

removed. The minor cells created from thle subdivision p~rocess may lbe ambiguous.

\Vilhelnms andc Gelder (50) apply the facial averaging techniqjue, describ~ed in chapter

two. to disambiguate minor cells. That Is. i1' a face is ambiguou-. the average valuie

obtained by av-eragingr the four face vertices is tested against the iso-value. If the

average is greater than the iso-value, the 1-vertices are connected. else the 0-vertices

are connectedc.

In all the artificial dat a sets I cr( ate. ambiguity is completely removed with-

out the need for (lisambliguati 1111g1 uiorCells. llowe~er. tis does not occur. in thle

Medical data sets I test-ed. In the mrtificial data set., the surface gCnerated by cell

initerpolat ion ap~pears smoother the higher the subdivision factors and depending

of) the e'st imat ion f[iiit ionl. "I'le next sect ion eXjplores how is Smnoot her sulrftace

rep~resenitat ion canl occur.

1). 2 bEww p/

The Jpolygoniza tion in thle miarchin g cub les algorit hin or all\- cell interlpolatuon

algorith1mm is a rbitra ry. It IS I gule"S at how thev Surface should pass)t~ t hroughi thme
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Figure D.1, Alternate p)olygonization for case 6

cell. For example. another triangulation of unique case 6 of' figute 2.7 is depicted in

figure D.1L

Note that only 1hW a nhbigUOUS CaSes of the uniiique case figures in cha pier two

wte 1 ru I andhig iu in the sense t hat ahIt iate fpol~gonizal itns (,ani be pei forned

For exatlel)1. fte' polyon1iZati on of unique case 5 (a non-ambiguous cabe) is fairl

ob)\iout". eveil iough if is reniotely possibIle furt her suit)livision aniid st i inat ion coti 1(

unicover a dlifferenlt top)ology'

11) uttdri aid how cell sli)diiioti and emtitaial cani (liatil~gtiate ani ~in-

otis cells. considier a major ambiguous cell in which a pibil( erroiteots topology is

gerieated (mntajr ~ (''i elr to an uninixivided t eli. a in inor- cell a sitbdcivided cell).

'Topolog r, fer- to0 the 1)olygoization of a cell t hat reprlmt sii a lsort lol of dic Sirface I op0o

I Y3



Without subdivision. erroneous top)ology is at gross error. which not oly~ (cfli'es ii-

accuracies In i the final Image, but canl also create *-holes" as discussed Ii hapter two.

Sub-clixiding this cell will reduce this one large erroneous topology into smaller. cells

where most wvill have iioiiamlbiguous cells, dlepending onl how well (t( e estinliatiOli

function estimates the surface in the cell. Case 14 (see figure D).2) Is a particularly.

goodl example of a rare case, even if no ambiguity results. The reason wh) it is rare

is becaLISe it repi esents aier compl)icated portion of' the Surl'ace topolog.1

Suppose case 14 is subdivided by a factor of 2 Ii all three diiections. The

chances Of case,( 14 app)earing within an\y of the minor cells is even rarer. This

is so because of the complex triangulation of case 14. Assume the tiangulation1

of figure D.2 A depicts thle surface correctly within that, cell. Trhen subdiivliing

the cell could possib~ly generate the subdivided major cell depicted Ii figure 1).2

13. Ini tlk case the topology remnained the satme. and caise 14 dloes not show upl.

In l*a(t. all iioiieiiipty tumior cells are unique ioiiaiiibigulous calse I inl this figure.

Ini any.\ su i)divisioii. the 1-vertices of' the major cell wvill reiiiain 1-vertices iii t he

corresp~onin~ig i ior cells because their values (do not change". I lowevelt(-\\.ex I -

\eii idces may be added oii Ilie iinor cells. Iii th is figure, h I 1-ver-tices, are thle

samlle. F'on sinll) licitvy. I wxiii discuiss otik. one edpe of I l( iuajoi Cell witere, Ilie siirfa c

iiiterseci s. lI.i edge is(diot ed b Y E figur iDI).2.

Figure D).2 C depicts possi blY different minor cell topologies caused bY lhe

suibdix-ision. Note in figure D).2 13 that the surfac itc enli scct bet ween minor VOxels
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a and 1). Figure D).2 C however shows Iilore complicated 1minor1 cell vertex classifi-

cations. where the surface intersects between mninor voxels 1) and c. InI figure D).2

C. thle upper right front cell is now unique case 3 instead of' I and a niew% nonemipty

mninor cell exists - thle lower rihtont cell. This cell is atot her' unique1 Case I. Thi1s1

does not imp~ly that figure ID.2 A is a wrong topology, it just means that in this case.

figure D.2 C cap~tures the sirlace intersection point on edge E more accurately.

Of course there are miany other possib~le top~ologies wvithin thle iini1 cells, too

numerous to list here. The point of the simp)le example presented is to shiow that

sliId~v'son (-an (lisamlbiguate and] cause the cell interpolat ion to provide a closer

applroximat ion of the actual surface. If m-inor cell vertex value estimation is accurate.

the new surface itersect ion points should be closer to the true surfa-ce boundary. thus,

generatin a triangular mnesh that better applroxiimates thle actual sur-face of nil (W-est.

S1 ubdividing t he celli even [fi rt bet sIholi d generat e evenl closet' su rface i itersect ionl

pint s. Againi. resoluition of atnibigitous inor cells Is not guiaranteedl. buttits stated

previouisly. t he few. ainbigitomis jinntor cells hlat may result1 canl be dealt wit It by fa( ial

aveagng g~iiettonsist efrv hieuIristis or sIIiilar I.et1 hods.

1 ) 6~



Appendix E. Bzrtary Image Format to Utah fiLE Format Convers'ri71

It is often very usefull to look at just. a single slice of data. especially if tile data

is from CT or MNRI scanning technologies. However. most of the data is inl binary,

so it must be converted to an imnage format. I chose the Utah RLE format hecause

Ican View anl RLFK, Image from any of time different types of workstations we have at

the Institute. Mv code a-ssumes binary files aN inplut. but canl be easily modified to

read from ASCII files. Tile code is in the directory tl.esis/src/nakerle

Thle majority of Image files are stored as I bytc per value. with values stored

inl scanimie order from bottom to top. 'Theref~ore the double for loops used to readl

andl write from/to thlese files increases fastest Mi X.

Somle differences ill file form11ats were discovered dI(iing t hiis effort. The C'hapel

l11ll data lias 2 bytes, per valite. II li, hiseS. it Is imiport ant to determine if the bytes

nleed swapp~ing because of architlecture dlifferenices (little endlian/big endlian). Also.

s"oIe MR]I inidge dat a derived frouii anl uikn)wii om-( r as st oredt as stil iaster file".

TO (letermlle If I he Iimge format is 'uuIIi ra't ei I iy I lhe s!In call (onl a Sunl Coiisole)

.%C ( Iflf/ I IIIia'1V-f1ilV> Orl- I niN COIiiiiiatIId ]ih.

Thc I t a ii HI., 1Koolkit has !- -I tines, that dit Ilie same task (gi'avtorle and raw-

ore): however. Ithe code I d- .-lopedl allowed Ii(- to Jperforil 01 her operations onl tlie

(data. For example. I miodified if to) omiplite the histogim oIf tilie (data. The miajor



benefit of the code is that it has the basic format for reading binary data, which is

necessary in other areas, such as the actual rendering piogram.

t'-



Appendix F. Changes to the Air Force Instte of Technoloqy

General Purpose Renderer

AlFIT's CPR is anl ob)ject orlei~ted renderings system written in C++. It has

several hidden surface removal. reflection model, and shading model i mplementa-

tions. This p~lethora of' options coii'ecjuentlv makes, the executable qjuite large. Since

mlemlory Is a slcrc reIsource whenl (lealing wvith volumes, I decided] t~o minimize GPR's

imemory- usage. I (lid this by removing unnecessary p~ort ions such as code handling

text ure mlapping, vertex colored polygons, Bezier patches, scanl line z-l)1ffering, etc.

I retained the X buffer and 'A' buffer hidden surface removal Imnplemlentat ions, all

the rilection niodels, and both flat and Phiong shadinig.

;\lthomgl this reduced the execut able size by over al half. C PR still required

too miuchi ililmorv for a single ge.olmet r\ file outpult froml mly minlungll cub~es im1-

lelien tat loll. I at Iemp? ed to fix this p~rolem~ by cineat i u a list of geoimet ry files.

sI( ; P l? is capa l le of reading mini It iple fi le". "Ihe code is sup~posedl to hev immemnlorv

a ft em proces,,Il, ugach geumuet ry file: hmowev-er. t he dea Ilocation (lid n ot a jpjeam to wolk

corrc I.I((l v.

C IPR allocates many arrays. It Is possible thle GIMN ('+ + a Ira)\ (lea io(at lOll

doe., not work properly. W\hen array deallocation is at? ('ipt (' according to Schildt

(38 :337). t lie g+ + warmring mess'agre "amray size vX Jpre~si;lt fom (deete igniored" results



(e.g. delete [pcouiit] J)IltiflveCts). Schilcit indicates the importa;,ce of' t his operat ion

(;giiored by g±+):

One reason that youn ieedl to specify the number of elements in thle ar-
ray'N to the delete operator is so that the proper number of' destructor
functions can lbe calledI (that is. one for each object in the array).

Hlowever, after I Inves~tigated memnory allocation an(l (leallocatioii by creating test

case., using thev same dlata st ructures usedI bY GPR. I discoveredI that the arra.\ size

had no affect onl leallocat ion. The main factor appears to be the order anl(l tilie

sizes of the memnory blocks allocated. I found that if a smaller block of imeinoi isl

allocated first and then freed. a larger block cannot use the just freedI space because

it is not large etioughi (both1 malloc( ) frce( ). and new.delet e appeared to operate the

samle). Th'lerefore. for thIe best use of U nix m'leniory1 i ia nageiniei it. large llock. shou l(I

be alIloca ted fi rst.

T]his kniowledge still did not solve ilhe p)roblem of GT l wH ui too 10 much nienlor\.

becaw u GTCPR alIlocates ma nx block, of' \ diryi n, size. based] onl lie polygon count ti he

vertex ('011111 aiIn ui1viimh11er of, yerti(e(' per polygon. To k~eep fiomn alt ci iiia( G'Pl{

sign ifica ikl to order mnillrv al loca tions (0 (c ~.I ch(Js(, to imiiplenment a \c rv

Simpille inemory iliatiiigenient schieme.

The aVerageV lMeMoi requirelld fori.oEsiiggoie yflsoi u froiii mnarch-

mug cilbs is bet \\vem thbree all( fike mnegabytes per file. If (IPl successfully miikes

fis aimnonntl ;i'~ail~il le in l he'li spare aft m c e file is lproc('se(l. I lien no umevnorY



pro)blem~s result. Thierefore. I dlecidedl to e-iat my own heap by simply allocatinig

one b~lock of inerory large enough to handle the largest file in thle list of files, out put

fromt marching cubes. This size varies based on the isovalute(s) selected anl(] the itit

dlata resolution: howevei . I found the niaxinimn needed never exceeds 10 megabytes.

The memory block is allocated once at the beginning of GIPR it)n ain( I~ by

nwirifpt i = (void ') malloc(MIOWY):

where MEMNORY Is the lpre-defined size.

Since memptr, is type) casted as a voidl '. portions of this block can be Cast to

an- t pe. An offset into t his memory block is miaintainedl for assigningy newI me]mor10.

B~efore each geometry file is jprocossed. this offset is re-set 10p zero. Thums. It0 (lelette

or free olperat ions are( nereh~aiX* anild te samev nivinorv is re-tised over aII(I over.



Appendix G. Creating A rtficiai Volumes

This appendix discusses the merithods that create an artificial volumle. Ani ar-

tificial volume (term taken fr ii Tiede (43)) in this wvork is one in which scalar

values are artificially e.,tered at node points in a 3D array to represent some object

surface, versus a volumie containing voxel values which are gencrated by a. scanning

technology such as NIP] or CT or by a scientific simulation. The primary artificial

volumes I created for thi.5 work contain surfaces depicting three-dimensional mnath-

emnatical functions such as a sphere,an ellipsoid. or a p~araboloidl. In both methods

I implemented, the surface is always centered within the first octant (positive x,.Z)

by subracting the center point (h.k, from the points 'x.-v.z) in the math equation.

The Initial method I clew loped is very straightforward, but does not allow

setting at surface threshold ot her Ihan 0. 1 accompJlishied this I)Y assigning to each

voxel the value returned by evaluating the mnath function at the voxel 3D point. For

examp~le, a voxel value at miesh point (x.y~z) for a sphere Is determined by:

VQC V~u(x 4 i)= =" II( )(.7- -h)' f (y -k) + 1-)' -r

where r Is the radi us anid (Ii .k .1) the center point,.

Funct ionis definling it Surlface retum'i posit k e values omn one side andl negativ.e

values o1] (lie other. wvhere stirface points are evaluated at, zero. Since nmarchming

cubes interp~olates triangle v-eilices to the sralar value bet ween voxels, this met hod

generates it volumiie In t he correct formnat for miarchinig cii bes to read . 'T i~- is so



l)Ccauso a Lifl'ace defined by a mlath functAin Will rare]\, if' ever Intersect ani art ificial

volume voxel. Of' course, the larger the volume, the b~etter chance,, this will O( cur.

Lt (ol Phil An.burn extended the inethod just dIiscussed to allow any scalar

value to represent the surface. Since the valuie returned from a math function evalu~-

ated at a niesh point denotes the distance from thle surface in a positive or negative

dlirectionl. this distance is used to taper off a value from the scalar value chosen. Also,

to get the out put in marching cubes formula. I modified the algorithm to taper off

towards the negative if the point is oin time negative side of the surf'ace and towards

thle p)ositive if tile mnesh point is Onl the p)osit ive side. The formula for this method

to (letormli n thle value at a mesh point is

di= fabs(val'ue~x, y. z)

if (c/ x,. )> 0.0)) /* positive ~

co~rdl (I/Ut(a. 1/.:) I I ,INDS 1) 1.,, T A

+(1~IT (SC'ALAIR?+ 01-VS I DE)

ekse /~Imegat i\e

'oxrcllu((.-. y. z) = I )*.-I LAJ

I I.USed A HiTs viewit program onl thle Siliconj Graphics :3100 series workstations

Ito view time art Ificial voluimmes. I also iliciided a conmmaund inIe Opt ionl t~o draw a b~o.\

arli~il t h11 \()lulme p~eriimeter.
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Appendix H., Trilinear Inteloaton

This met hod assumes scalar values vary linearly along complonenlt directionS

between \voxels (45:11-14). It Interpolates in each of the three dimensions, see fig-

u,-e 11.1, where 1'(01) and f(rii) represents the scalar value at original point i and new

(or intermediate) point i, respectively. The goal is to estimatec f(n6) given f(OO) -

f(07).

T he method complutes ratios of distances aind scalar' value dlifferences succes-

sivey util he ente vaue i deermied.Thatis PI-fOO) = f(O1)-flOO)

dll

The!I. f(n 1) IS found by Interpolating between f(02) andl f(O03) )in the same

manner. f(nD) Is foundi~ 1.\ interpolating between the Intermediate values f() I ) andI(

Q( i:3). The f inal value 1(116i) Is determilned bY i nterjolati g bet ween) f'(114 and f*( u).)

There is oneC SIgnificant jlrOlblein With thiS met hod that redCeIICs accuiracy of

est im~a tes Iii a t hree-dimuensionial dlata set. Only the eight surirouind~ing voxels are

aim k Zed 'o estimate a new va ime at a part icu Ia poinit wit i in the cell. wh en ii fact

IhemeI eit sam ples muay not provide suf ficient inzforniat.ioii to i nfe I lhe variahil it \ of'

he data. Nlore impoit ant ly however, thle lat'a may not1 vary lineairly along" major

cell edges.

A 1)101 dinI of' less signficance 'is the direct ion InI whlichi to in I ei'polat e in it ially

is .111 t a I a ri i)1 ia rY a ssuI 1l)t1 ion (I Ilotough oly tY I.II ee (1ilcc., ex I st). T I s is I IIIport alItI

Il-I



because f(O-) arid 1'(15) are based on the first set of intermediate interlpolatio)s

in this assumed directioni (e.g.. the Y direction could be assumed initialY - thenl

f(nO) Would be determined by interpolating between points 01 and 05). This is a

potential cause of inaccuracy because Jor example, values may not vary the samie

letween voxels 00 and 01 and between 01 and 0.5.

z

f( 02)

Fire 11.1. Triliiuear infer)oial iou

II2
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