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Abstract
The primary objectives of the first quarter of Phase Il TAMM were the following:

1. The design of a near infrared (NIR)-800 photodiode array spectrometer, two of which wouid
be used in clinical testing during 1992.

2. The development of advanced pattern recognition software for analyzing the data collected
with the spectrometer.

3. The establishment of an ongoing, internal test program with the BI-102 infrared analyzer.

The status of the major activities outlined above is summarized below and detailed in the body of the
report.

1. The primary task for the design of the NIR-800 during the first quarter of the project was the
selection of a photodiode array. Two types of arrays were evaluated: a germanium (Ge) array
and an indium-gallium-arsenide (InGaAs) array. The InGaAs array was tentatively selected.

Two systems that will include the array selected will be ready for clinical testing at the Medical
College ot Wisconsin (Milwaukee County Medical Compiex) and the Naval Medical Center
(Bethesda) by March 1, 1992.

2. The advanced pattern recognition analytical software called NETGEN was developed for the
system and is currently operational. This software shows a much improved performance over
the previous pattern recognition software in analyzing information from the original 100-patient
database.

3. An ongoing internal test program using the BI-102 infrared analyzer has been established.
The preclinical testing will continue for the next three months. Both a cross-sectional analysis
and serial tracking will be performed on a limited number of people.




Instrumentation

The central issue in the design of the TAMM instrumentation was the selection of the photodiode
array. Two candidates were evaluated: a Ge photodiode array and an InGaAs photodiode array.
Three criteria were used to evaluate the arrays:

1. cost
2. sensitivity
3. availability

Cost

Currently, the Ge array is less expensive. However, upcoming improvements to the
InGaAs array promise a reduction in cost such that by the end of 1992 the cost of the
InGaAs array will be equal to that of the Ge array.

Sensitivity

The InGaAs array is considerably more sensitive (by a factor of 10) than the Ge array.
Also, the InGaAs array does not require cooling.

Availabilit
The availability of the InGaAs array is slightly better than that of the Ge array.

Based on an evaluation of the three criteria detailed above, the InGaAs array was selected. This array
will be installed in the first two systems that will be built. The systems should be completed by
January 15, 1991, allowing for 1 1/2 months of in-house testing before the clinical trials in March
1992.

Genetic Neural Network Analytical Software

The major effort during the first three months of the project was in developing the analytical software
NETGEN. NETGEN is a set of analytical programs that combine the best features of neural networks
and genetic algorithms. A complete description of the NETGEN system is included in Appendix |.
The comments provided here will be of a general descriptive nature and will be related to test results
resulting from the evaluation of the original 100-patient database.

Artificial neural networks (ANNs) are a form of distributed parallel processing of information that
attempts to simulate the human brain. For application in TAMM, ANNs are an alternative to previous

pattern recognition methods used for predicting blood analyte concentrations from NIR spectra. The
advantages of using ANNs are as follows:

1. ANNSs allow for the complex, nonlinear functions that relate spectra to blood chemistry.
2. ANNs perform beyond the best linear test results to date.

A disadvantage of ANNs is that thoy arc !ocal optimizers. Tiiey do not necessarily nnd the “est tinal
solution.

Genetic algorithms use an optimizing technique that when combined with ANNs can improve their
performance in selecting the best solution. Genetic algorithms mimic natural genetics by providing
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for the survival of the fittest. These genetic algorithms use natural genetic methods of reproduction,
cross breeding and mutation to produce a population of chromosomes from which the fittest are
selected. Genetic algorithms are gfobal optimizers that, when combined with ANNs, lead to the
selection of the best solution. The pattern recognition software developed during the past three
months at Biotronics, NETGEN, is a combination of ANNs and genetic algorithms. NETGEN solves
for the best weights, selects the best learning set samples and selects the best wavelength variables
for test set prediction.

A summary of NETGEN, nearest neighbor (original method) and straight backpropagation neural
network test set variables and t-values are provided in Table 1. The neural network-genetic algorithm
program (NG) in all cases performed better than either the nearest neighbor (NN) or straight
backpropagation neural network (BP) programs in predicting resuits for calcium, potassium, sodium,
BUN and glucose. NETGEN produced the smaller error and the higher t-value for tracking
performance. Even better results are expected in the future as more features are added to the
NETGEN software.

Experimental Preclinical Testing

The original Bl-102 Infrared Analyzer is being used in experiments designed to provide preclinical
experience with optrode configuration and software. It was decided to gain additional clinical
experience by pursuing in-house testing before the new sys*em has been completely developed. The
BI-102 is currently set up in Biotronics' chemical laboratory. Biotronics personnel are being tested
for glucose using the BI-102. Boehringer Mannheim’s Accu-Check glucose meter results are being
used as a comparison for the outputs provided by the Bi-102.

The NIR spectra collected with the Bl-102 are being used for two types of analysis.

1. The results are being used for the serial tracking of patients. The goal of this type of analysis
is to determine whether the glucose levels of individuals can be successfully tracked through
normal fluctuations. In some cases, sugar diet injections will be given to cause fluctuations
in glucose levels.

2. A cross-sectional analysis of the results will also be performed using a smail database to
determine whether the system can predict glucose accurately.

Glucose was selected over other analytes for the preclinical testing because it is easy to measure with
currently available instrumentation. During experimentation, both transmissive (800 - 1100 nm) and
reflective (1200 - 1800 nm) runs will be conducted. Several anatomical sites will be tested. The site
originally selected was the arm. Locations over veins and arteries will also be evaluated. Testing will
be conducted with the Bl-102 until the new system is operational. Test resuits from the new system
can then be compared with results collected earlier to establish the validity of the new system.

Clinical Test Procedures

Considerable thought is being given to the clinical test procedures and data handling techniques.
The amount of data flow handling involved on the part of the operator, patient and data entry
technician are illustrated in Figure 1. A discussion of the details of clinical test protocol will fcllow
in lates reports. 1
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Biotronics Technologies, Inc.

ANALYTE SUMMARY

ANALYTE TRAINING TEST SET TRAINING SET
TYPE METHOD® % ERROR' t-VALUE % ERROR' l t-VALUE
CALCIUM NN 3.15 0.083 N/A 2.33
CALCIUM BP 2.85 0.43 3.25 1.83
CALCIUM NG 2.62 1.50 3.15 2.96
POTASSIUM NN 6.88 -0.14 N/A 2.46
POTASSIUM BP 5.28 1.56 8.22 2.93
POTASSIUM NG 5.21 2.24 8.37 5.15
SODIUM NN 1.23 2.0 N/A 2.44
SODIUM 8P 1.35 2.91 1.32 8.32
SODIUM NG 0.0 3.16 1.66 3.08
BUN NN N/A N/A N/A 4.02
BUN BP 25.7 2.15 32.67 5.9
BUN NG 23.81 3.65 30.65 4.46
GLUCOSE NG 30.83 3.62 43.98 3.04
GLUCOSE NG 9.36 17.2 37.9 5.2
GROUP 1

'All errars are listed in average percent error refative to the mean.
Abbreviated training methods: NN = nearest neighbor, BP = straight backpropagaticn, NG = neurogenetics.

TABLE 1.
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. INTRODUCTION

This repcrt describes the use and appiication of the neural netwcrk software system
called NETGEN cevelcged by Bictronics Technciogies, Inc. The purpese of this system is to
acely artificial neural network (ANN) technology to difficuit proclems in pattern recognition and
classification in which more conventicnal apereaches have failed to uncover the uncerlying
refationships between observaole variables and desired informaticn. The novelty of this package
is the integraticn cf t./o evelving techneicgies: backpropagation and genetic aigorithms, into a
hybrid learning system. The resulting system exhibits both an improved efficiency in precessing
time and a greater ability to recognize and predict patterns cn the tasis of a rastricted training
set.

Similar to other systems employing ANNs, one measure cf "relative fitness" incorpcrated
into this system is the average nrediction error of a network over a particular set of samples.
This measurement provides infermation concerning the closeness of the predictions to the actual
values on the average. However, frequently an equally important consideraticn is the ability of
the precictor to "track" the variable of interest cver a particular range of values. Ccnsaquently,
NETGEN also measures the tracking ability of 2ach netwcrk cver the provided sample sets by
the so-cailed t-value. Curing training, the average errcr and i-value are displayed ailcwing the
user to terminate the update process before overtraining occurs.

ll. BACKGROUND

The pattern recogniticn protlem is cne cf determining a mapging or a discriminant from
a set of input variables to a set of cutput or desired variables on the basis of otserved
input/output samples. A desirasle characteristic of such a transformaticn is the ability to
generalize so that accurate cutput estimates can te made on the basis of a novel set of input
variables. In applications, such as instrumentation, where the accuracy of output estimates is
critical, the requirements on a pattern recognition becomes demanding. When the underlying
relationship between the measurement and the output variable(s) are not apparent or when the
transformaticn is nonlinear the problem becomes extremely complicated. An emerging
technolcgy which shows considerable promise to the problem defined above is that of artificial
neural netwcrks (ANNs).

Inspired from explorations in the life sciences, ANNs exploit known preperties of biclogicat
neural networks to solve complex problems in which the human brain outperforms current
techneology. The resulting computaticnal tocl is characterized by a massively parailel structure
composed of relatively simple but nonlinear processing elements. As a resuit of this parallel
organization and inherent nonlinearity, ANNs posses the ability to model any noniinear mapping
to any degree cf accuracy with preperly selected parameters (e.g., weights) [S]. Therefore, it can
be concluded that ANNs are structurally capabie of solving the nonlinear mapping problem.
Hence, assuming a prcper learning algorithm, ANNs can be expected to perform functional
approximaticn and signal filtering oceraticns which are beyond the limits of optimal linear

technigues.

The methca of learning 2r selecting the parameters on the basis ¢f incut/cutput samele
measurements, however, is nct straignt crward, and currently limits the utilizaticn of this
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technolcgy. As a resuit, new methods must be developed which supply the ANN with the ability
to learn an apprceriate set of parameters before widespread application of this technology will
occur. The objective of this section, and the methods presented in this report is the development
of more efficient and effective learning system for a general ANN structure. While the ability of
a given ANN structure to mode! a transformation is necessary for successful application, the
ability cf the learning algerithm to improve towards an optimal parameter selection is equally

important.

The fcilowing sections introduce the type of ANN employed and the two learning
paracigms that have been integrate to form NETGEN. In addition, a brief background discussicn
is provided on the methods of performance measurement utilized in NETGEN and the data
transformation called pre-scaling which is necessary before applying NETGEN to a data set.

~ (w,} n,
/\

Figure 2- Typical four-layer feedforward artificial Figure 3 - Detail of a single layer of a
neural network denocted 2-9-3-1. feedforward artificial neural network with N
inputs and M outputs.

A. MULTI-LAYER FEEDFORWARD ANNS

One cf the most exciting discoveries in pattern recognition was that of the perceptron
which autonomcusly recognized and classified patterns using a network of processing elements
arrayed in a single layer [16]. However, this discovery was set back by the finding that a single
layer of perceptrons could only distinguish linearly separable patterns and was unable to model
nonlinear functions [11]. More sophisticated classifiers consisting of multiple layers of
perceptrons were proposed but until recently were not used because effective training algorithms
were not availabie [13]. As discussed above, given capable training methods, recent
investigations have shown that a four-layer (counting the input layer) perceptron can form
arbitrarily complex decision regions and can separate meshed classes. In fact, this type of
network can form regicns more complex than those foermed using mixture distributions and

nearest-neighbor classifiers {3].

The ANN structure employed by NETGEN is a generalization of the three-layer perceptron
termed a muitiple-iayer feedforward ANN. The netwerk consists of an input layer, a number of
hidden layers and an outrut layer each composed of a number of processing elements called
neurcns. In this regcrt the cenventicn fer naming a netwerk structure will be: N-H,-H,- . .. -H,-O
where N is the numter cf neurcns in the input layer, H, is the number .. neurcns in the jith hidden
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layer and O is the number cf neurons in the outgut layer. It is the conventicn in this report to
count the input layer in the total number of layers although its function is somewnhat different from
the other layers as discussed below.

The input layer is simply a fanout device which accepts an input vector of equal
dimension to itself and provides the subsequent layer access to it. The rest of the layers,
including the output layer, consist of a number of neurons and weight connections from the
previous layer’s neuronal outputs to its own inputs. Each weight connection has associated with
it an acjustable value which is muitiplied by the value present on its input and relayed to the
neuron upen which it resides. Each neuron performs two operations: the summation the input
vector elements scaled by the values of the weights connected to produce its activation level or
state and the transformation of its activation level via an activation function. An illustrative
depiction of a single layer is shown in Figure 3. Each output is calculated by propagating the
input vector through the network according to:

n' = w'!o'!
i E if 1 (1)

where
o\ - the jth component of the output vector of the /th layer
n, - the jth component of the state vector of the /th layer
f) - the activation function
w!, - the weight value from the jth neuron of the (/-1)th layer to the jth neuron of the /th

layer
For simplicity, this is written in vector notation as:
1 = WOI-|
(2)

! - f(nl)

Given an input vector, which will be denoted by x, the output vector is found by presenting x to
the input layer and propagating o' through each subsequent layer according to equation (2) to
produce 6" where L represents the number of layers. For future discussion this output will
represented by the vector y.

The activaticn function can be any linear or nonlinear function. However, for the
representation of nonlinear mappings and the classification of patterns which are not linearly
separable {() must be nonlinear. In fact, there is no advantage of using more than two layers if
f() is linear. Typical functicns include the signum and sigmoidal functions aithough in this report
the sigmoidal function is considered exciusively because netwerks employing them are capable
of forming internal representations that are more ccmplex than the simple binary ccdes produced
by the signum functicns and can ferm mcre comglicated decision regicns [12]. The sigmoeidal
activation functicn is given by
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a fitness level anc hen ncrmaiized to a vaiue equal to its fraction of the sum totai of all fitness
levels of the population. Zach memeber is then given a gie-shaped space on a roulette wheel,
the size of which is incicated oy its fraction of the total fitness as shown by exampie in Figure 4.
A random number is then generatecd for each selection representing a distinct place on the
roulettes wheel. Since each spaca on the roulette wheel has an equal chance of being selected
members that fill larger percentages of the wheel have a greater chance of being selected.

Example Roulette Wheel

% of Total Fitness Population Fitness Fraction of tit

Member 1 1.5 0.10
H Member 2 3.0 0.20

(20%)

Member 3 4.5 0.30
30% . .
(30%) (0% Y Member 4 2.25 0.15
Member 5 3.75 0.25
Tota‘ 1 5.0 1 .O

(25%)

(15%)
Figure 4 Example of a rculette wheel assignments based on a five member popuiation.

Crossover

Crossover is the actual combination of two chromosome in which two offspring are
formed from cifferent parts of the parents. The actual method of crossover explains its name and
is the most important ogeration of the GA. In one-point crossover a random chromosome
position is picked and the secticn fcllowing this position is exchanged between the two parents
forming different offspring. As an examgle consider the illustration presented in Box 2 in which
two parent chremesomes, each 7 bits long, are being combined through crossover after their
fourth bit to produce two fairly different offspring. The word fairly is used because, depending
upon the genetic enccding, some of the genes between the parents and offspring are similar and
each offspring contains alles which are identical to each of the parents.
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where o is the function output, n is the function input and T is the temperature ¢f the neuron
representing its excitability.

In addition, a threshold or offset may be specified with a layer which adds a single input,
set to cne, through an adjustable weight to each neuron in the layer. The threshold operates
only cn its respective layer and the weight it passes though is adjusted in the same manner as

all other network weights.

A principle problem encountered when using a feedforward artificial neural network is
selecting the number of Jayers and neurons in each hidden layer to be used. Clearly the number
of input and output neurons are specified by the mapping problem, however, the number of
hidden layers and the number of neurons in each layer must be determined. Automated
techniques are being developed which use the same genetic algorithm introduced later in this
report to determine an optimal structure [6], however, the most common method is trial and error.
By Koimogorov's Thecrem, a continuous mapping from n-space to m-space can be implemented
exactly by a three-layer ANN having n-fancut neurons in the first layer, (2n+1) neurons in the
hidden layer, and m neurons in the output layer [7]. Although this may not be the optimal
network, especially when genreralization from a small number of training samples is required, it
is a good starting point for a three-layer network.

If a four-layer network is utilized, a rule of thumb is to use three times as many neurons
in the first hidden layer as are in the second [9]. The number of neurons in the second layer is
dependent on the complexity of the problem and the amount of data available for training. Too
large of a hidden layer will cause the network to memorize the input/cutput pattern rather than
learning the discriminant. In addition, if a large number of neurons are selected with insufficient
training samples, the weights will not be reliably determined regardless of the training method.
Cn the other hand, if too few neurons are used, the network will be unable to represent the

desired transformation.

B. LEARNING BY BACKPROPAGATION

The utility of feedforward ANNSs as a discriminant or transformation in ultimately dependent
on the successful selection of its parameters. Given the ANN structure, that is the number of
layers, neurons per layer, and the activation function, the adjustable parameters of the network
consist of the weights or synapses of each layer and the temperature associated with the
activation function. Since T is multiplied by the state prior to calculating the layer output its
adjustment has the effect of scaling the weight vector residing on the individual neuron.
Therefore, the temperature will be assumed constant and all parameter acjustments will be

performed upcn the weights.

As previcusly mentioned, multiple layer ANNs pose a considerable training problem. The
main reason for this is that in a single layer network the effect of a weight adjustment is directly
measurable via the prediction error in the output vector. However, in muiti-layer networks the
effect cf given weight on the output cannot be directly seen and weight adjustment is not straight
forward since generally it is not known what the output of each hidden layer shculd be. That is,
there is no cirect methed of computing a prediction errcr which reflects the malacjusiment or
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misalignment of a particular weight.

A solution to this probiem was found independently by Wertos [14] and Rumelhart [13]
in what is now the most popular ANN training method called backpropagation. Backpropagation
is a training algorithm which seeks to minimize the mean square prediction error of the network
over an entire set of training samples Thus, the mean square error acts as the cost function and

is given by

E = 22 19 -0 | )

(L))
where £, refers to the jth element of the output error vector £, d|(i) is the fth desired output
variable of the ith sampile, y,(/) is the jth predicted output variable of the ith sample, and P is the
number of samples. The strategy followed by backpropagation is to adjust each weight in the
opposite direction of the gradient of the instantanecus prediction error with respect to itseif
according to

Aw! = ca = (5)

if Il

where « is a positive scaler known as the learning rate. The smaller the learning rate is the
closer the method comes to actually perferming a true descent along the gradient of the error
space defined by (4). This technique is well know as the method of gradient descent. The
probiem, as mentioned before, is the determination of the partial derivative of the prediction error

with a weight residing on a hidden layer.
The sclution to this problem revolutionized ANNs and is summarized by the following

Aw, = ado/” (6)
where, in the output layer
df
8 = (d-y) —(n) (7)
dn/'
i
and in any other layer
61 - df (n I)i 61-1 wl-' (8)
T v x u
dn, k=

The notation for the weight matrices and the activation and output variables in the above
equations is defined in the previous section. Notice that it is necessary that the derivative of the
activation function exist and is known which is another reason for using the sigmoidal activation

function.
In vector notation the general meaning of these equations can more clearly seen:
AW' = a8'o" ©)

Here J is a backpropagated error vector and 0"’ is the input to the layer. The error vector is
calculated by
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3 = (@1 Ly (10)
an'
in the output layer and by
6« Linyiw-ror (1)

an

in all other layers, where / is the identity matrix. As can be seen, each layers J is prcpagated
backwards to the prior layer before being scaled by the derivative of the activation function.
Hence, backpropagation refers to the methed of propagating the error backwards through the
network and then calculating the partial derivatives of the output error with respect to the

respective weights.

Since true gradient descent learning requires infinitesimal steps to be taken, the
procedure outlined above can take considerable time to adjust weights. One methcd that
increases the learning rate and at the same time reduces the likelihood of staying in a local
minima is a momentum term. The momentum is included in the update equation (6) as follows

Awj(k+1) = ad/o/" + nAw,/(n) (12)

where 7 is the momentum constant which is greater than or equal to zero and less than one but
i typically set in the neighborhood of 0.9.

The basic operaticn of the mementum term is to incorporate a portion of the last change
made to a weight into the next weight update. Specificaily, the change made to a particular
weight during the previous training cycle is muitiplied by the momentum factor and added to the
current weight change. Hence, whenever a change is made to a weight during a training
iteration, it will be made decreasingly over and over to the weight during subseqguent training
cycles. Several training cycles produce a collective momentum which will cause the weight to

change in the desired direction very quickly.

A very general algorithm, which is followed by NETGEN, for implementing learning by
backpropagaticn is summarized in Box 1. For more information concerning the details of this
algerithm the reader is refereed to 9 and 13 and the listing at the end of this report. From this
algorithm a training cycle is defined by steps 2-5 while a training iteration will be considered
steps 2-6.

As discussed previously, backpropagation is an approximation of the method of gradient
descent. As a result, training can take considerable processing time if c¢ is selected small to
ensure convergence or convergence may not occur at all if ¢ is selected to large. In addition,
while the inclusion of the nonlinearity provides the feedforward structure with the properties which
make it advantageous, it also causes multiple local minima in the error space which are
indistinguishatle by a gradient descent leaning algorithm. These two problems have mace the
consideration of other learning procedures necessary.

C. GENETIC ALGORITHMS

Genetic algerithms (GAs) attempt to scive a given optimization pretiem by applying the
general princigles of natural selecticn and the mechanics of natural genetics to a population of
possitle sciuticns. Survival of the fittest tactics and random recombination operaticns are

—_
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BACKPROPAGATION ALGORITHM
1. Initialize the weights of the artificial neural network
2. Propagate a training set sample through the ﬁetwork via (2)
3. Calculate the error between the desirecf'ontput and the acfual out;ﬁut
4. Backpropagate the error according to (7), (8) '
5. Adjust the weights of the netwark acco:»rdiﬁg”to (12) |

6. Repeat 2-5 for the entire sample-set -~ -

7. Repeat 2-6 until the specified error tolerance is satisfied

Box 1 Simple implementation of backpropagation algorithm.

applied to a population of possible solutions to produce a glebal search which is extremely
fascinating - and - extremely useful. In each training iteration, termed a generation, population
members which are the most optimal or the most fit are recombined to produce a new populaticn
of offspring. This section provides a brief intreduction to the basic principles and algortihms
involved. The reader is referred to [4] and [2] for more information on this togic.

Different calculus based methods of optimization, such as gracient descent discussed
above, seek local optimal by updating solutions basad on the directicn of the local gradient. The
problems with this type of search technique are: they seek the best local point rather than a
global point and they depend on the existence of derivatives. It is often the case that an
optimization problem will contain a multitude of local minima (especially nonlinear ANNs), or the
function derivative cannot be determined quantitatively, or the function is extremely noisy causing
the derivative function to bias the solution in the wrong direction. Genetic algorithms are different
in that:

1. They work on an enceding of the parameter set an can therefcre be applied to a wide

variety of problems

2. They search from a population of paints rather than a single random point causing
the search to be global

3. They do not use derivatives but simply require a fitness evaluation cf each population
member

4. They employ a protalistic search technique rather than deterministic which causes
porticns of the solution space to be considered which wouic ncrmally be bypassed
(in a sense they perform a creative search).

The general princigles discussed in the subseguent paragrachs ‘cilcw frem the werk of
Goldberg [4] and Davis [2]. Some discrepancy between the two authcrs does exist in the
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naming of the basic operations implemented ty a typical GA aithcugh both agree upcn the
nature of these cperations. Because much of Davis' work was used in NETGEN his naming
conventions will be used throughout this report.

ENCODING

The first notion of GA that must be understced is that of encoding. Very lcosely, one may
state that the structure of every living being is encoded within their chromosomes consisting of
a long string of genes. Each gene may be thought of as a parameter representing some
characteristic of the individual. Following this concept GAs operate on a pcpulaticn of
“chromosomes” composed of binary '1's and ‘0’s, called alles. which in some way represent the
parameters of the function being optimized. Groupings of alles may be thought of as genes
which directly or indirectly correspond to a particular parameter.

As an example one may consider the problem of minimizing some scaler function f(x),
where x takes on values between 1. The encoding process consists of determining how many
bits, m, to represent x with and then mapping the real number xe{(-1,+1) into an integer vaiue
between zero and (2°-1). Thus, the chromosome in this case consists of one gene of m bits.
In a similar manner any optimization problem can be coupled to a genetic algcrithm using an
encoding process which maps its parameters into integer values which are linked together to
form a single binary chromosome string.

EVALUATION

A second item that must be prepared befcre implementing a GA is a method to decode
the chromosomes and to evaluate the fitness of a particular solution called a population memter.
Naturally, a given member of the animal kingdom is evaluated through its interaction with the
environment which will determine its likelihood to survive and reproduce. The evaluation of a
given chremosome by the function being optimized is analogous to this. In the example given
above it simply means mapping each gene back into real space and then determining f(x). The
evaluation of a population member may be though of as calculating the cost of the member or,
more appropriately, the fitness of the member.

REPRODUCTION

The point at which evolution is actually thought to take place in during repraduction, when
the chromosomes of different population members combine. During this recombination process
random mutations may take place adding diversity to the population and additional
characteristics. There are three basic operations which genetic algorithms utilize which perform

the function of reproduction:

Selection

Given a population whose members have been evaluated, the selection process, aiso
called reproduction by Goldberg, matches "couples” from the population for reproduction.
Selection is performed randomly in @ manner such that members with higher fitness levels have
a grater chance of being selected and some members are selected more than ence while others
are not selected and therefore are removed from the populaticn. The methed of selection is
descrited as a roulette wheel technigque as follows. Each memkter of the pepulaticn is assigned
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ONE-POINT CROSSOVER

PARENTA: 0100001 |  CHILD1 6100101

PARENTB: 10061101 . . .~ CHLDZ 100t0Q1
CROSSOVER.

PONT

Box 2 Example of one-point crossover.

Two-point crossover, illustrated in Box 3, is similar to one-point except that two random
peints are selected instead of one and the information between the selected crossover points
are exchanged. The principle advantage of two-point crossover is that beneficial traits, which
may be encoded at the ends of a chromosome are not necessarily lost by slitting the
chromosome in haif.

TWO-POINT CROSSOVER

PARENTA: 0100001 |  CHILD1 01011041
PARENTB: 1001101 CHLD2 1000001
T T '

PT1 PT2

Box 3 Example of twe-point crossover.

Crossover is the heart of the GA causing an efficient and effective global search as
discussed below.

Mutation

Mutation occurs naturally when the genetic code of an individual is altered producing
traits that are uncharacteristic of the population. Essentially this introduces new genetic material
or new characteristics which can be considered for its suitability as a solution. While naturally
no mutation has ever been observed which is advantageous to the survival of the creature, in a
GA, introducing mutation adds a certain diversity to the population which lends itself to the global
search, avoiding a stagnating premature convergence and “creatively” pursuing alternate
solutions. The mutation operation is performed on a population member by randomly setting its
chromosome bits to ‘0’ or ‘1" at a rate of M_rate, where M_rate typically is cne in one-thousand
or 0.Q01.

Algorithm

The mcst simple GA is presented in Box 4 consisting primarily of the following
reprocuctive ogperations: selection, crossover, and mutation. While this technique seems
somewhat simgple and random, it has been theoretically shown to provide a highly efficient
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heuristic fcr infermaticn gathering in cemplex spaces [8)]. In addition, a number of experimental
studies have shown that the GA's of this type exhibit imgressive efficiency in practice.

To analyze the convergence properties of a GA Holland [8] developed the notion of a
schema which represents a subgroup of chromosomes frem the group of total possible
chromosome bit encodings. A group of chromosomes consists of ail those that match a
particular schemata in all the bit locations with ‘0’s and '1's but have either of the binary numbers
in the bit locations where the schemata has a don't care symboi ‘#. In the fundamental
theorem of GAs Goldberg proves that high performance schema will be selected an exponentially
increasing number of times in succeeding generations. While this is occurring, new schema are
constantly being introduced into the popuiation via the reproduction operations. As a result,
higher quality schemata are introduced proving the ability of a GA to improve.

'BASIC GENETIC ALGOFHTHM
1. Initialize the population of chromosomes.‘ |
2. Evaluate each population member for ﬁtness
3. Reprccduce to frem a new generation
a. Select parant couples
b. Crossover parents to produce an equal number of offspring
¢. Perform the mutation operator on the offspring
4. Evaluate each member of the new generation

S. Either stop the search or repeat 3-4

Box 4 Simpie genetic algorithm consisting of the operations selection, crossover, mutation, and
evaluation.

Improvements

There are many improvements and "ad hoc" features that make GAs more effective which
are in common use. Most of these, including the few summarized in this section can be found
in Davis’ text Handbock of Genetic Algorithms [2]. The first deals with the scaling of the fitness
of each member through windowing. Essentially windowing produces a window covering the
range of fitness levels of the population over the most current generations and assigns each
population member a fitness leve! based upon its position within the window. In this manner,
pogpulations whese fitness levels are grouped in high values, say between 39 and 100 can be
more easily distinguished and the gced members are assigned larger portions of the roulette
wheel. As a result, higher quality schema have a tendency to reproduce mare often.

In the ciscussicns above each generaticn repiaces succeeding generaticns completely.
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Because of this, the best incividual can be lost through crcssover or mutaticn. Eiitism is a
strategy which copies the best structure into each succeecing generation.

Ancther aiternative to the tradition algorithm is to replace only a pertion of the population,
given by a fracticn called the generation gap. with the new offsgring. A scmewhat similar
setting is the crossover rate which indicates the number of selected parents perform the
crossover operation on. The generation gap guarantees that a group of parents will survive,
usually constrained to be distinct or the best of the populaticn. The crossover rate allows the
selecticn operation to be performed on the entire generation and simply disables the crossover
operation on a portion of the selected parents. The principle reascn for each of settings is to
prevent premature convergence of the popufation, or, in other words, to maintain diversity.

D. A HYBRID LEARNING SYSTEM

Due to its ability to generalize and aveid local minimal points it seems natural to empioy
GAs to the training of ANNs. In fact, considering the large search space of possible weights for
a complicated ANNSs, it can be expected that GAs will perform better than methcds that start from
a single random point and search locally for the best configuration. By treating the training of
an ANN as an cptimizaticn prcblem, any ANN, whose performance is quantifiable, can be trained
using GAs (including ANNs other than feedforward networks).

At the same time, however, it may also be beneficial to utilize backprcpagation o develop
a training method which uses the best features of beth metheds to produce an algorithm which
is tetter than either one individually. The main reascn for this is that while genetics algorithms
perform glcbal searches extremely effectively and efficiently, their rancom selection prccess
cannot outperform the deterministic search of backpropagation on a purely Iccal probiem (i.e.,
a prcblem with tight constraints). Hence, the twe very different optimizaticn techniques can be
combined to produce a hybrid system which converges very quickly near a globai minima and
then "fine tunes" the answer using backpropagation.

This section describes a hybrid algorithm which follows in principle from the work of [15]
and [1] but was implemented via the neural network software developed by Biotronics
Technologies, Inc. and the GENESIS [5] genetic algorithm package. For more information
concerning the details of the genetic algorithm components discussed below the reader is
referred to the GENESIS manual. The documented source codes of the final NETGEN package
are provided at the end of this report. Then topics considered below are the encoding of the
neural network parameters into a binary chromosome and the population evaluation procedure.
Very general algorithms are included to give the reader the "big picture" of neurogentics.

ENCODING THE CHROMOSOMES

Enccding an ANN into a binary chromosome consists of associating each weight of the
ANN (and any other ANN parameter for that a matter) with a single, distinct gene of the
chromosome. For a given experiment, the gene length in bits, defining the resolution of each
weight, must be constant. However, the bit length of the genes may vary from experiment to
experiment depending on the required accuracy cf the weights for a given application. Since
each weight is a numter, represented in {loating pcint fermat, it must te converted to an integer
in the range of O to 2°-1 where 0 is the number bits in the weights gene recresentaticn. Defining
the integer, g,, as the gene value asscciated with weight w, the transicrmation frcm “weight
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sgpace” {0 "gene spaca”, kncown as packing, occurs accerding to

‘”’i - me (1 3)

g, = integer| (2° - 1) ?
Wmu - Wmm J
where w,_, and w,,, are the minimum and maximum ailowable values the ANN weights can
assume and b is the number of ailes or bits in the gene g,.

In actual implementation, all of the weights of the ANN are grouped into one long string
known as the floating point representaticn of the chromasome. In this representation the weignts
are in the same order as their associated binary genes which comprise the chromosomes, in
"packed representation”, upon which the genetic algorithm operates. The method of returning
a given set of weights selected by the genetic algorithm consists of "unpacking” the binary ccded
chromosome via (13) in the floating point string accessed by the ANN.

THE EVALUATION FUNCTION

The average prediction error of a given network over the entire training set is the most
basic performance measure of almost any ANN and is used to test the “fitness" of a given
chromosome. The details of this measure are discussed below. The method of evaluating a
population, then, consists of individually unpacking each population member into the floating
point chromoscme representation accessed by the network and evaluating the network over the
entire training set and returning to the GA the average prediction error.

A SIMPLE NEUROGENTIC ALGORITHMS

With the encoding and evaluation precedure defined atove, a simple genetic algorithm
is presented in Box 5. While the actual method of evaluation and perhaps encoding may change
from network to network, the actual genetic algorithm manipulating the binary chromosomes are
the same. In experiments using NETGEN it was cbserved that this algorithm quickly found a
group of weights close to a minimum point but then convergence proceeded quite slowly. To
increase the rate of convergence, backprepagation is added to the algorithm as discussed
below. -

ADDING BACKPROPAGATION

Although training each member of the network could be performed between almost any
step in Box 5, the most efficient point was determined to be in the evaluation procedure since
each population member is already being iteratively tested at this point. The algorithm actually
implemented is given in Box 6. The biggest difference in this algorithm compared to that of
Box 5 is that the evaluation procedure actually modifies the chromosomes prior to evaluating
them. This, however, will not effect the actual genetic operations since they do not use any past
history when manipulating the current generation.

The overhead added to the training system is a significant increase in processing time.
If, for example, each network is trained 5 iterations per generation and the population size is 500,
then each generaticn centains 2500 backpropagation training iterations. A somewhat different
strategy which is effective in many cases but dces not involve the sizeaktle increase in processing
time is to use the simple algorithm presented in Bex 5 to get close o a geed scluticn and then
apply backpropagaticn to the test set of weights (0 “fine-tune” the sclution.
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A NEUROGENETIC ALGORITIIM
1. Initialize the populaticn of ANNs in packed representati. n
2. Evaluate each ANN as discussad above for fitness

a. individually "unpack" each chromosome into the floating point weight
matrices of the network

b. determine the average prediction error over the entire population
3. Reprocuce to form a new generation

a. Select parent couples.—“—"

b. Crossover parents to produce an equal number of offspring

c. Perform the mutation operator on the offspring

4. Evaluate each member of the new generation as per step 2

5. Either stop the search or repeat 3-4

Box 5 Simple genetic algcrithm applied to an artificial neural netwsrk training problem consisting
cf the cperaticns selection, cressover, mutation, and evaluation.

SAMPLE SELECTION

As menticned in the section on encoding the network, any network parameter inay be
selected as a variatle to be enccdsd into a particular chromosome for optimization. One
particular variable that is of interest in pattern recognition is the set of training samples. Ifitis
expected that a certain percentage of the training set does not accurately represent the actual
input/output variable relationship then methods must be employed to select those samples for
training which will cause the network to generalize. The method suggested in this report is to
add a gene for each sample to be selected, at the end of each chromosome, which is encoded
as discussed above That is, each sample is numbered with a floating point number and each
binary gene is encoded analcgous to (13) except that the minimum value is one and the
maximum is the number of samples in the sample set. Evaluaticn and training, then, will occur
only on the samples encoded in each chromosome.

Implementation of the sample select procedure must include a utility to constrain the
selected sampies for a given chromoscme to be distinct. To accomplish this, prior to evaluation,
each one of the sample select genes is examined to verify that the populaticn member teing
evaluated has entirely distinct samzle selections. If a selecticn is fecund which is not distinct,
which occurs quite often fcllowing crossover, it is replace by a randem value between 1 and the
number of samples to te selected and then re-examined fcr distinctness. In acdcition, the sample
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HYBRID NEUROGENETIC ALGORITHM
1. Initialize the population of ANNs in packed representation
2. Evaluate each ANN as discussed above for fitness

a. individually "unpack® each chromosome into the floating point weight
matrices of the network

b. train the unpacked network for num _its iterations

c. re-pack the network weights into the binary chromosome

d. determine the a\./’eraé.;;:;;;;i;;.;;-;or‘;;/e;->t_h~e- entire population
3. Reproduce to fcrm a new generation

a. Select parent coupies

b. Crossover parents to produce an equal number of offsprir g

c. Ferfcrm the mutation operater on the offspring

4. Evaluate each member of the new generation as per step 2

S. Either stop the search or repeat 3-4

Box 6 Hybrid genetic algorithm including backpropagation prior to each evaluation.

selects are always truncated to an integer value and then increased to that integer value plus 0.5
prior to re-packing. The reason for this is that the resolution of the representation of a floating
point number within the genetic algerithm is limited by the number cf bits specified for each
gene. Thus, a number such as 5.0 might be modified to 4.98 by the genetic algorithm during
packing a:.d subsequently truncated to 4 rather than 5 when the sample is recalled.

INPUT VARIABLES SELECTION

When a large number of input variables are provided with each sample it is advantageous
to select a fracticn of the entire set for network efficiency and to enhance the ability of the
network to generalize (i.e., decrease the degrees of freedom to a size such that the parameters
can be reliably determined from the size of the training set). When the input/output reiationship
is linear this is most easily accomplished through correlation techniques. However, when the
relationship is ncnlinear tetter methcds must be develcped.

The methcd cf selecting input variabies procesed in this repcrt is to first encode a
number of genes (equal to the number of desired input variable selections) with an input variatle
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numeer at the end cf each chiromecsome in the population. The method of encoding is the same
as that of the sameple select prccadure outlined above. Then, cnly those inputs encoded on the
chromoscme of a particular population member are used to train and test the network. This
method has teen implemented in NETGEN and has been used with some success although it

has not undergcne rigorous testing.

The hinderance to this procedure is the fact that optimal weight selection is intimately
linked with the inputs asscciated with the network. Hence, selecting a different input element for
an existing set of weights will cause network performance to degrade. For this reason a strategy
for selecting inputs included in NETGEN is to encode only the inputs into chromosomes and use
the GA to select the input variables and nothing else. Evaluation then occurs by initializing an
entirely new network, and training the network via backpropagation for a number of iterations
which will allow convergence to begin. The returned network performance is the average
prediction error after network training. The procedure, therefore, optimizes the input selections
with the criteria of their ability to train the network. If a large population is used this technique
may be particularly effective since a number of chromosomes may be identical but will start from
different randem peints in the weight space. Since this technique is new, performance results
are lacking although pattern recognition experiments have successfully selected input variables
which, when later used with NETGEN to predict the output variable of interest outperform
conventional linear techniques.

E. PERFORMANCE MEASUREMENT

Two perfcrmance measure are implementad with NETGEN defined below as the average
prediction error and the t-value.

AVERAGE PREDICTION ERROR

The average prediction error of a network over an entire sample set is the most basic
performance measure of aimost any neural network or pattern recognition system. Given n
desirad or output vaiues denoted y, and n predicted values by the network denoted x, the

average pregicticn error is simply
1 ”
E==Y Ix-yl (14)

im1

t-Value

The t-value is so named because a T-test on the slope relationship between the predicted
and actual output values is performed. Calculation of the t-value is performed as follows: given
n desired or output values denoted y, and n predicted vaiues denoted x, first form a linear
regression model of x, versus y;:
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imt

b = siope =

Z (x/-)-()2 (15)

a = intercept = y - bx
Then the t-value is calculated through

b (16)

T = ——

SE(b)

where SE(D) is the standard error of the slope:

s?= LY (y-a-bx)

n=-2°3

The examinaticn of the t-value can provide more information concerning the convergence of a
network than the average error and is a better test of the network performance when output
variable tracking is critical.

F. PRESCALING

Within the neural netwerk employed by NETGEN, the output of each layer is restricted to
be between zero and one by a sigmoidal function. As a result, all input and output variables
should be mapped into the range zero to one or even more preferably 0.1 to 0.9. The suggested
method for scaling a variable y, over n samples is as follows

j, =01 0.9(_(.”;'."_"*'_)_)' (18)
Vs = Yo

where y,., and y,,, are the minimum and maximum expected or measure values y, will assume.
This method maps the range of y, into the range of the neural network further increasing the
chances that the network track the output variable rather than simply averaging.




