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I. BACKGROUND

The work detailed in this report !S part of an ongoing effort to develop medels
predicting the incidence of decornpression sickness (DCS) (1-5). Report I of the series
postulated DCS as being a randoni event subject to the laws of probability, in contrast to
the tradmonal vxew of DCS as o deterministic event. Semi-theoretxcal models
(describing the exchange of inert gas between blood and txssue) were introduced to
predict the probabrhty of decompression sickness [P(DCS)] for any given dive profile,

_ with the histories of depth and breathing gas composition considered the sole
independent variables. A “urther important inncvaticn of RepOrt I was the use of
cumulative risk integrals as determinants of total P(DCé) in the models. In other words,
P(DCS) was considered to increase over the course of the dive as risk accumulated
aooording to the model's "mies". These models were fitted to over 1700
well-documented air dives.

In Report II the most successful of the models from kemn I was used as a
- predictor of P(DCS) to generatel recommended air diving tables. In Report 111, this
same model was used to compare the P(DCS) of dives in the current U S. Navy, British

Royal Navy, and Canadian Forces air tables In Report IV, the data-ﬁttmg and analysis
were extended to "saturation" dxves, and it was demonstrated that the modelhng
approach outlined in Report I could satisfactorily predict the risks of dives ranging‘ from
less than a minute to more than a day in duration.. vAceordingly, recommended tables for -

'saturation dives were included with this report. Report V is an examination of an |
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alternative set of risk models, in which risk is viewed as something that depends oh a

single incident of excess dissolved gas at some instant during the dive. Thsse models

were found to be less adept than ours at fitting beterogeneous data sets such as those

~assembled for Report v.

In this report we compare r‘epéat and mﬁltilevel dives Qith single dives, asking
whether a single model can adequately describe the various sorts of dives. A repeat dive
is defined here as a series of two or more deseénts separated by an interval of less than
12 h cn the surface.- We define a multilevel dive as a series of two or more descents .
separated by an intezval of less than 12 h at 2 shallow depth. All of the data assembled
for this report consist of wet dives on oxygen/ﬁitrogen perfbrmed in U.S. Navy, Canadian

Forces, or British Royal Navy trials. Various nitrogen/oxygen breathing mixes were

“used, although most weze air dives and most of the remainder were on 0.7 atm oxygen,

the balance nitrogen (henceforth to be called simply "0.7"). Only data reported since

. ‘1978 were used, in accordance with our perception that possible DCS symptoms are

judged byspbstantiaily different standards now than .in the past. Therefore, we did not
use the data from :epo.rfs I or IV of this series because they all predated 1970. -

Since this study includes dives on several gas mike's, it became necessary to test tiue
validity of our cpnceptibn of how P(DCS) is affected by the composition of the breathing
gas mixture. This was done by comparing dives on differsnt Breathing gas mixes and
asking whether data collected using various gas mixes can be described by a single

predictive model.




The comparisons mentioned above were periormed L. g objective statistical tests

after each available data set, or combinaticn of data sets, had been described by fitting
the probabilistic models to it. The indicated results are that the models do not
discriminate between single and repeat dives or between dives on different
nitrogen/c.qﬁen breathing mixes, t' ¢ is, it does not szem necessary to use different
values of the fitted‘paramcters when moving from one category of dives to ahbther.
However, none of the models used in this report can adequately describe our only set of
multilevel dives while simultaneously providing an adequate description of any of the
other data szts. Therefore, we cannot say with confidence that the présent models are

suitable for brediming the outcomes of multilevel dives.




il. MATHEMATICAL MODELS

The models have been described in prevmus reports; only a short review will be
presented here. In the simplest conceivable model, every dive in a data set has the same
P(DCS), and the reasonable course is 1o set this value of P(DCS) equal to the observed
average P(DCS) for the daea set. We call this one-prrameter model the "mm model”
and use it as a nnmmum sumdard that any credifabie semi-theoretical mcdel must
out-perform.

Tte :a0dels of} real interest are those that include descriptions of gas exchange |
kinetics. In such A model, evaluation of the safety of a dive is aecofr;piished by relating
the entire dive preﬁle to the probability of DCS by a "risk function":

DCS = 10-exy(-f¢rdt) i)

Hererisa measure of instantaneous risk that is mtegrated over the course of a dxve and
post-dxve period. When more than one hypothetical "tissue” is assumed to exist, ws
obtam the total instantanéous r by summing the cor,znbunons from the individual tissues:

T T 4T | | A2l

vhere r; = instantancous risk due to tissue i. The form we give to 1. “r tissue i is as

follows:




f, % £y [ Pasy - Pany - Pow + kos(Po) 1/ Pamb, 1,50 - [3]

where P, = partial pressure of inert gases in tissue i (fsw);
P, = ambient hydrostatic pressure (fsw);
Py, = partial pressure of oxygen in breathing gas (fsw);
A, = gain factor for tissue i (min™); '
P,, = threshoid pressure difference (fsw);
kn; = a risk coefficient for Py, (dimensionless).
Thus, when two or more "tissues" are postulated, the models predict that the probability
that DCS will occur is the joint probability of DCS in all of <he tissues. The metabolic
gases CO, and H,0 are ignorzed i'n this calculation. Whenever the numerator on the |
'right side of [3] is less than zero,”ri is set equal to zero, so that the integrated risk cannot
diminish with time. In other words, risk can accumulate but it cannot be depleted. P,
is an al -olutely safe excess partial pressure of inert gas thar can be sustained indefinitely
| with no risk ;,f DCS. A non-zero value of kg, -ndicates that the risk of DCS depends on
the partial pressure of O, as well as the partial pressure of the inert gas:
ko, > 0 suggests that breathing a high Py, increases the risk of DCS independently of
the effect of the inert gas, and ko, < 0 suggests that a high Po; is beneficial from the
standpoint of DCS prew;ention, aside from the decreased partial p}essure of inert gas that
it implies. The risk model contains three adjustable parameters besides thoSe used in
' wmpuﬁﬁg Ptis: A,I ko2, and Py, Th;se last two parameters énleasily have values of |
zero and can be fixed at zero n order to simplify the 'Aﬁtting‘routi'ne. The paraxﬁeter A
would be zero only if there was no risk of DCS, regardless of the ive profile. P, in
equation [3] is calculatéd by assuming that gas exchange kinetics in the hypothetical

tissue are either mono-expcnentizl or bi-exponential. The various models consist of

N
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combinations of various numbers of "tissues” governed by one or the other of these

kinetic models. The following is a summary of the models; they are presented in
| .increasing order of complexity. - |
- The first and simplest model incorporating gas exchange is sumrnarized as follows:
Gas exchange model 1:
single moho-exponéntial tissue, having ﬁﬁe constant t;
1 parameter in gas exchange model: <;
13 other parameters: A, Py, (2), kog (7).
Thus, the risk mod'el contains a total of 2 to 4 parameters, depending upon whether Py,
and/or kg, are rsed. A logical extension of the single mono-exponential tissue Amodel is
a model including two such tissues in parallel:
Gas exchange mode] 2:
two mono-exponential tissues, having time constants t, and t,;
’2 parameters in gas exchange model: t,and t,; |
. 2-4 other pérameters: ALA,, P (D) koy (D).
In the double-exponcnﬁalvdescription of gas excﬁange in a single ti;sue, the single
_ e;cponéntiil is replaced by the sum of two exponentials. The first exponential is
multiplied by thé dimensionless no@dmd weigh:ing factor w; , and the second
e@onenﬁd is multiplied by (1-w,). This kinetic mbdel has 3 kinetic parameters rather
- than the.l of a single expgnentia_l. If only one spc;h nssue is posfulatéd, then the

following model results:
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Gas exchange mode] 3: |

one doble-exponential tissue, having time constants ¢, and t,;

w, is the weighting given to the first exponential, and (1-w,)

is fhe weighting on the second exponential;

3 parameters in gas exchange model: t, , t,, w;;

1-3 other parameters: A , P, (?), ko; ().

If we postulate three single-exponential tissues, then tlns model results:

Gas exchange model 4:

three mono-exponential tissues, haﬁng time constants t; , t,, and t3;

'3 parameters in gas exchénge model: t, , t,, and t5;

' 3-5 other parameters: A VA, Ay, Pu (D), kop ().
. Two double-expon :ntial tissues result in the following model: |

Gas exchange model 5:

two double-expoﬁential tissues A and B, having time constants t A1»Taz> TBrs
and T2

Wy, and wg, are the weighings given to the first exponentials in tissues A
and B; (1-w,,) and (l-wﬁ) aré the weigixings.on the second exponentials in
tissues A and B, |

6 parameters in gas exchange model: €5, , tA3, Way » Ty » t‘le » We1s |
24 other parameters: A ,, A g, Py, (?), ko (7). | |

The means of computing Ptis are detailed in Report I of this series (1). Note tﬁat

although reference has been made to recognizable physical processes in formulating




 these models, the models are not to be taken as literal representations of the truth and
the parameter values obtained by fitting them to data are not to be regarded as having

significance outside of their use with these models.




III. DATA SOURCES AND HANDLAG -

Summaries of the data used in this study are offered in Table 1. Somewhat more
detailed summaries will bc offeréd in a future report. The dives in data sets whose |
names begin with "DC" or DD" were performed at the Defense and Civil Institute of
Experimental Medicine under the direction of R.Y. Nishi (6-11). AII‘ data sets whose
names begin with "EDU" are based on dives at the Experimental Diving Unit in Tanama
City, Florida, and were collected under the direction of E.D. Thalmann (12-14). Data
set NMR8697 was collectcd.at the Naval Medical Resea:rch Institute under the direction
of P.K. Weathersby (15). All of the above data are from wet chamber, working dives.
Dry dives were excluded because of the possibility that immersion is one of the factors
tha\t controls the ris'k of DCS (16). In almost all cases, moderate physit;al work was done
at depth, not during decompréssion.

Automated recordings of the depth v= time profiles were available for all of the
dives. These were converted to the format suitable-for our analysis by use of a computer
algomhm that slmphﬁes each dcpth/Ume plot to a sequence of vp to 76 cornected line
segments. Thxs simplified profile was required to agree thh the original depth/time

| recordmg to within 1 ft in depth and 0.1 min in time; also, a portion of the ongmal
recording was consijered ehgible fo: representatic: as a single line segmer:t only if it
was linear to within ;0415%. Depth of water fn a suspendcd wet pot was taken 1o be.thtl-’.

| height of watex; above mid-chest level of a divc.rvof average height. ,Di\}'ers used the

Mark 15 or Mark 16 breathing apparatus during the 0.7 dives, so that the éo;r;position of
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the diver's breathing gas was regulated via the continuous-feedback control afforded by

this system, which typically is aséuméd to maintain the partial pressure of O, within

0.1 atm 6f the set point. The divers ‘breathed. O, by mask (9-11) qﬁring decompression
in the DCSAOW data set (thel ga;_compoSition was assumed to be 99.5% O, , 0.5% N,).
Gas changeovers "were encoded by representing the gas éomposition as a linear function
of time. During the changeovers between O, and air in the DCBAOW data, it was
assumed that the simultaneous washout of the breathing apparatus and the lungs
required a total of 1.3 min; all other gas changeovers in all other data sets were aséumed
to requite ‘1 min. ‘

A post-dive surface time of either 12 or 24 h was included with each div}c profile.
This number defines the upper integration .limit for computing the risk integrals defined
in Part IL. It represents the minimumn length of time spent on th? surface between dives,
based on the best information provided by the 'people who directed »the‘ dives. It is highly

probable that the dissue supefsaturation (and hence the risk function) decreases to zero

~ for all of these dives before 12 h has elapscd post-dive, even When'much‘longer-than- '

‘usual time constants are used in the models.. Questions about the data w °re resolved

through consultatxon with the mer in cha:ge of the dives. Each dive outcome was set to

‘zero for a definitely safe dive, 0.5 for marginal symptoms (slun itch or dxseoloranon, mlld_

pain of brief dhratiqn, and ﬁxodgmte fatigue), and 1.0 for any more severe syrhptoins
ascribed to DCS. When a dive outcome was sefibusly in doubt, the dive was excluded
altogether from the analysis. Cases of re‘compressio‘n without'"symptoms were deemed

cases of unknown outcome and were gxcluded. becaus: it was considered that symptoms

10




could have appeared if the dives had gone to completion. For those cases in which a

stricken diver was recompressed, his dive was encoded as though the intended schedule
had been completed. This convention was followed out of pecessity: as a coﬁsequence of
the use of cumulativevrisk'mtegfals, a dive that had been truncated for recompression
therapy would always be computed by any 6f our models as being safer than a compieted
dive on the same schedule. Thus, since the truncated dive is associated with a case of
DCS anq the completed dive genérally is not, the model would be forced to fit
dose-response data in which decreased dose abparently results in high. ~ response. We
have observed thit the fit of our models to data 1s markedly degraded by the inclusioﬁ of
dives which have been encoded as-truncated and have outcome eql.ial to 1. Although the
procedmje we have followed seems contrived, it is the most ratiopal we have yet devised.
Thefe are some instances of repeat dive trials in which a diver suffered DCS dﬁring .
the surface interval or before completing the first dive, and was thereforg recompressed
for treatment without descending for the second dive in the series. These we;'e encoded
as single dives and were put into data sets with the other single dives. This seems to us
the most logical way to treat these cases, but note that it biases the déta by making the’
single dive sets appear vmore hazardous while simultaneously rpaking the repeat dive Séts
W safer. Gur decision about how ;o organize the daga into sets rha'ngeslnothin‘g .
ther‘i we fit models to combined singlc aﬁd‘iepeat data; the data wcrve‘not'-changed, only

their arrangement into subsets was.

11




IV. DATA ANALYSIS

The evaluation of the data in Table 1 begins w1th their being fitted individually by
the models described in Part II using Iikelihood maximization (17). Simply put, an
iterative numerical algorithm [more specifically, a modified Marquardt nonlinear
least-squares n;igimization algorithm (18)] is emphyed to determine the set of parameter
vaiues that maximizes tﬁq probability of the obééfved family of outcom'es; Since, in
general, the global maximum will be surrounded by a host of lcsser maxima on the
likelihood surface, it is é.lways necessary to make multiple attempts at fitting, using a
variety of initial guesses of the parameter values, before one 'mn be reasonably assuréd |
of having achieved convérgence at the global maximum. Following the fitting of
individual data sets, various relevant combinations of those sets were also fitted by
likelihood maxixnimtio; The fits to these combinations were compared with the fits of
the original, smaller data sets, and tlns allowed us to apply one bf the statistical tests for
comparing single dives with repeat dives or air div)cs with 0.7 dives. The tcsi is as
 follows (17). | o |
© Let a data set be fitted using likelihood maximization by two models such that the
~ first model is a subset of the 'sectlmd,‘ that is, the seécnd. model consists of the first model
plus one or more additional adjustable paramefers. Then, if the second, more elaborate,‘
model is not intrinsically superior to the first model for this data set, then the test |

' statistic 2(LL , < LL ,) is distributed approximately as

12 |




12’ v ={n,-n) v (4]

where LL ;| = In(maximum likelihood) by the first model;
LL , = In(maximum likelihood) by the second model;
%2 = the chi-square function having v degrees of fresdom;
n, = number of parameters in the first model;
n, = number of parameters in the second model.

In words, if the two models are equivalent for this data set, then twice the difference
in tae log likelihoods is a random variablé approximately distributed as the chi square
probability density‘ function having a number of degrees of freedom equal to the
difference in the number of parameters. Thus, to compare the mddels we reject the null
ilypothesis that they are equivaleat if 2(LL , - LL ) is an imprébably large %2 variable
withv = (n, - n,) degrees of freedom. For example, if (n, - n,) - 3, then even if the
models are equivalent there is still a 0.05 probability that 2(LL , - LL ,) will be greater
than 5.99, because the area under the %2 curve to the right of 5.99 is equal to 0.05. The
above procedure is the "likelihood ratio” test. |

Now, if the two data sets are each fitted by a 3-parameter model and then their
combination is also fitted by the same model, we can consider the results as basis for
comparing a 3-parameter model w1th a 6-parameter model for the superset. If the 6-
pafameter model is not agmomuatcd to be signiﬁc.dntly’ éuperior’ to the 3-parameterl _
model, then we accept that ihe two subsets are from the same populﬁtion and call them
;cofxxbinablc”. The sense to thi;s is that if two data sets can be "combinéd", then one
model can dcsc;il;e all of the data about as well as it can describe the individual data
sets. This is a measure of t‘he similarity of the two data sets, or at least of how similar

they seem to the model.

13




- A second statistica: test for similarity between two data sets is accomplished by first

fitting a model to a data set to determine the optimal parameter values, aﬁd then using
~ the same model with thése parameter values to predict the P(DCS) of the dives in the
other data set.l The predicted average P(DCS) is then éompared with the observed
average P(DCS), which is simply equal to the raw incidence of DCS.

The uncertainty on ihe pfedicted P(DCS) is estimated using a propagation of error
that follows reference #19. Let the prédicted P(DCS) be represented by P; then P can

be written as a function of the adjustable parameters in the risk model used to calculate

P(DCS):
P =P(@®B,i=123.Np 5] -

where B, = an adjustable parameter;
Npg = total number of adjustable parameters in the risk model.

Then the variance on the estimate of P(DCS) for dive k is determined from the
covariance matrix as follows: | |

Nrma - e P, aP, '

. : k k
var(P) = ¥ X — — covB, covB (6]

i=1  j=1 9B, _aB, s 4 .
The average predicted P(DCS) for an entire data set snmply equals the sum of P for all
dxves dmdcd by the number of dives:
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where ‘ Pum = )> P,
‘ k=1

m

where Npy = number of dives in the data set. To compute the variance on P, we

write an expression analogous to equation [6): |

Nprue  Nerw P ap
var (P,,,) = ) ) —_—
i=1 j=1 8B, 4B,

cov B, cov B;

oP Norv oP,

sum E k
3B, ° k=1 &B,
_ - Nopw
Pom - )> "
9B, k=1 8B,

Then from equation [7] we have

var (P) = var (Pom) / Mo

o

[9a]

-~ [9b]

(10}

When converting var(P,,;) to a ooﬁﬁdence interval on P, , we assume P, to be

norhiélly distributed.
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" Tables 2-7 contain selected results; th_ése tables list the In(likelihoods) and optimal

V. DISCUSSION OF RESULTS

A C . { Combining Data Sets

Likelihood maximization was used to fit models to the original Cata sets summarized

in Table 1 and to various supersets formed by combining some of the original data sets;

parameter values obtained via the above procedure for certain key supersets.

Appendices 1-10 contain the same dzta-fitting information for all of the sets and
supersets to which like_lihood maximization was appiied. |
. The aim of this study is to det‘e'rmine whether a single model can, with satisfactory
accuracy, predict the decompression nsks of single, repeat, and multilevél dives on any
N,/O, breathing mixture. | An examination of the table entries allow#. one to draw
several coﬁclusibns central to this aim. However, the useful information can be extracted
only by comparing o.l',ntries between tableé as well as within each table.’ Thg authors well
recognize hov? tedious this is and will try to select the most significant results for .
mention ir. the main text. . | | | |
One note on the tabulated results: in Tables 2-10 and Appex.xdices 1-10, the symbol
"///[" indicates that the parameter values converge such that the model becomes
| équivalcnt to model 1, the single-ﬁsSue monoexponential mddel, wﬁch is our siniple’st
risk accumulation model'.‘ All-of the more complicated risk accumulation models reduce

to model 1 when certain of their parameters equal zero.
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‘because many of the data sets are so'small that there is no advantage to using more
complex models. Note (m Appendix 1) that the ongmal data s.ts EDU1180R
'EDU885M, DDREPWET and DCSAOW were not dealt with individually because they

.models. Strictly speaking, this makes it impossible to assess their combinability with

By - .
SR N e e e e

Table 2 lists the highest In(likelihood) values obtained for the largest data sets that

can be formed without mixing data from different "categories”. In other words, single
dive data are not mixed with repeat dive data, divas on different breathing mixes are not
mixed, etc. Data set EDU1180R, which contains our only multilevel dive data, has been

cmitted from Table 2 and from all subsequent tables because it is not "cgnibinable" with

~ other data sets according to the likelihood ratio test (see "Data Analysis” sertion). We

will elaborate on this point in Part B of this section. Table 3 lists the LL values
obtained for the largest possible groupings of single dive data, repeat dive data, air dives,
and 0.7 diveé, where data from different categories have been mixed. Table 3 also
contains LL values obtained for still larger groupings of dives from all categories.

Appendix 1 contains the ln(hkelxhood) values obtained for all data groupings in

" which data from different categories has not been rixed; Appendxx 2 lists the LL values

for combinations of data from different categories and Apperdix 3 is for groupings of
data from all catégories. “The results in Aprendix 1-3 were obtained specifically to assess !
the combinability of various groupings of data using the likelihood ratio test. Only the

felatively simple .models, having no more than 4 adjustable parameters, were applied

had too few cases of DCS (no more than 4) to be fitted meaningfully by any of the

other duta sets using the likelihood ratio test.
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One conclusior is possible immediately: given a dats set large enough to support the

use of models having multiple parameters, it is always true that at least ore of the
mo..ls based on integrated risk fits the data substantially' better than the null model. As
an illustration, note the entries in Table 2 for single air dives. For the nuﬂ model, §vhich-
has 1 adjustable parameter, the In(likeliho- 3) is -154.9. Model 1 (the 1
mono-exponential model) without a threshold overpressure is a 2-parameter model; the
maximum LL obtained with this model is -153.5. To evaluate tne improvement in fitl
aﬁcrded by model 1, we make use of the likeiikiood ratio test {equation [4]), which uses
the chi-square function with 1 degree of freedom. We find that we can be only 80%
confident in considering model 1 to be intrinsically supericr to thve null -model for t'hes‘e
data. Adding the threshold overpressure to mor.¢l 1, for a total of 3 adjustable |
parameters, fails to improve the fit at all. However, the 4-parameter 'r‘nodels are
considerably more effective: model 2 (the 2 mono-exponential model) improves on the
zull model by 9.6 LL units, and model 3 (with 1 bi-exponential) is 7.2 LL units "better” -
than the null model. Both results are significant Qt the p<0.005 level. |

Note that a difference in LL's means that two models differ in their predictions of -
thev likelihood of the observed family of dive ’outcomyves. Fof a difference of 9.6 LL units
this diﬁ'erén;:e in predicted likelihoods is a factor of exp(9.6) = 15,300. Since the null
. model assumes a uniform risk of DCS regardless of dive profile, the superior fit of our
more sophisticated models reflects their ability to discriminat_e among dives with regérd

to their riskiness.
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-For the data listed in Table 2, with the exception of the single air dives, noted

above, neither of the 4-parameter models provides an improvement of more than 1.6 LL
units (p<0.25) over ’the fit cf model 1. For the generally larger and more diverse data
sets in Table 3; we see that model 2 usualiy provides the best fit. For example, for 'the
most complex data s4t, containing 1878 single and repeat dives on various gas mixtures,
the fit of model 2 is 11.7 LL units betfer than any oth'cr model's. In fact. for the data
sets in Tables 2 and 3 we find that model 2 always provides the best fit for data sets -
having more than 500 dives, but never improves significantly or model 1 when n<500.
This illustrates that the amount of information one gets from a model depends on how
much information is contained in the data set to which it has been fit; a simple data set
cannot support an elaborate model. |

Tables'4-7 list thé optimal parameter values, with their Stahdafd errors, obtained for
the selectcd‘data groupings that appear in Tables 2 and 3. Tables 4 and $ list the .
optimal pafamet:r values obtained by fitting the 1 mono-exponential tissue models,
either \Ivith the'thréshold pfcssure difterence P,,, treated as an adjustable paraméte’r 3
'adjustable parameters) or v.vith ?,h, ﬁxed' at 7ero (2 adjustable parame‘tqrs). Tables 6 and )
7 contain the optimai parameter values obtained by ﬁttiné the 2 mono-exponential
tissues model and the 1 b.i-"exponentialv tissue modei, both with P, fixed eqpél to" o (4
adjustable parameters). | A

Appcndices 4-6 give the complé;e listing pt‘ the optimal parameter values obtaiv-ed
for the 2- and 3-parameter models. Appendices 7-9 hav_e the parameter values for the

4-parameter models. |
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lasting anywhere from 0.3 to almost 7 h, with an average duration intermediate between

An important observation is that the optimal time constant(s) for a given data set

depend on the time scale of the dives in that set. The air dives (EDUSSSA,

BDU885AR, DC4W, and DRREPWET) are good examples. In DC4W the dives are as

short as 0.5 h and never run as long as2h, from initial descent to surfacmg In
EDUBSSS5AR the shortest dives last almost 2 h, most run over 3 h and more than

one-sixth of them last about 8 h. EDU8_85A contains a very diverse collection of dives

those of the other two data sets. The significance is that the fitting algorithm cannot use

large time constants to much advantage \\;hen describing short dives, and likewise, small
tine constants will not be used in fitting long dives. (Thxs is equivalent to saying that
very "slow” tissues are unimportani in short dives and that "fast" tissues tend nof to affect
the outcome of long dives, if one a$umes each time constant to be truly associated with
a distinct tissue). Again, the parameter values must reflect the sort of information
contained in the data for which they were optimized. Not surprisingly, then, Appendiees
4 and 7 show that DCAW wasts the shortest time corstants and EDUBSSAR wants the

longest ones. Fcr example, for the single tissue mono-exponential model (model 1) ¢ =

46 min for bc:4w t = 281 min for EDUSBSAR, and ¢ = 173 min for EDUSRSA. In
yiew of the dxspanty in ﬁtted parameter values among the air data sets, it is not

surpnsmg also that they generally cannot be combined thh one another under models

: having just one or two adjustable time constants, regardless of whether we are comparing

single dive data sets with other s_ingle dive sets or singles with repeats. For example, by

applying thie likelihood ratio test to data in Appendices 1 and 2, we find that DC4W and |
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EDUBSSSA (both single air sets) are not combinable under any of the models, that data

sets EDUSSSA (single air) and EDU885AR (repeat air) are not combinable under either
model 2 or model 3, and that DC4W does not combine with EDU8S8SA + EDUS85AR
according to any of the models. More elaborate models, havirg 3 or more adjﬁstable
tixhe constants, probably could accommodate all of the air data sirrultaneously, but no
such models were applied ¢o the ‘air data exclusively.

There is no reason to conclude that there is any fundamental difference in the dives
from one air dive data set to the next, other thanlthcir duration. The optimal paraﬁleter
values are mathematical devices, not precise descriptors of definite underlying physical or
biological processes. | |

The most imﬁortant observation, found by comparing the entries in Tables 2 and 3,
is that the models do not discriminate between single and repeat di_ves or between div;s
on different N,/O, breathing mixtures. According to the likelihood ratio test, data sets
from different categories generally can be easily combinc&. For examplé, using model 2
(the 2 mono-exponential tissue model, 4 adjustable parame;ters), which appears to have
the widest ’applicability for the d_ata‘ in this study, we see that -édmbining da& sets from
two mtégories never resﬁlts in a decrease of more than 4.0 log likelikood (LL) units over
the sum of the LL's for the subsets. Mathematically, this statement can be written (LL ,°
-1L )< 40, using the same notation as in equgﬁ'on [4]. When combining single air
divés with repeat air dives we find that (LL , - LL ,) = 4.0 LL units, but the air dive
data do not appear to combine as well in general as do the other data, as was discussed

previously. For ‘combining single 0.7 dives with repeat 0.7 qiﬁes, (LL,-LL,) =05
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(keep in mind that the data set EDU1180R has been excluded from this combination).

For the combination of single dives on both air and 0.7 (LL , - LL ;) = 1.1, and for the
combination of all repeat dlves (again excluding EDUIISOR) (LL,-LL,) = 1.8. By

contrast, the likelihood ratio test (equation [4]) tells us that if two data sets from the

same population are described using a 4-parameter model, there is still a 0.05 probability
thét the highest LL that will be obtained for their combination will be less than the sum
of the LL's for the individual sets'by an amount 'of at least 4.74, i.e, (LL ,- LL ,) >
4.74. Therefore, the LL difference must be at least 4.74 before we would reject at the
0.05 level the null hypothesis that single and repeat dives, or air and 0.7 dives, are from
the same population. Acwrdingly, we accept that the likelihcod ratio test does nothing
to dissuade us from the null hypothesis that single and repeat dives on eitﬁer air or 0.7
atm N, are described equally well by the same models.

Table 9 summarizes sur comparison of dives from diﬁ'cfent categories by using the
'models as predxctors -ather than dmptors, as outlined i in the Data Analysis section. In

principle, a model that correctly relates P ) to dive profiles, having been fitted to

some data set "A”, shoald be able to accurat ly preQxct the outcomes of the dives in |
some other data set "B". 'me realization of this is partly confounded by the apparent

randomnas of dxve outcomes (in both data sets), by the dependence of optimal modcl

parameter values on the specific dive profiles contained in data set "A", and by the
imperfections of the models themselves. N rtheless, we might often gain insight into
how similar are the two data sets by conip ng tke predicted average P(DCS) for data

set "B” with the observed average P(DCS) ( hicix simply equals the number of recorded




DCS cases divided by the number of dives). We would hope to ficc subsiantial overlap

in the confidence intervals. The confidence intervals on the PREDICTED values of
average P(DCS) are given in Table 9; these are calculated by the error propagatjon
method shown in the "Data Analysis® scction.l

Unfortupatcly, there seems to be no satisfactory way to calculate a confidence
interval on the estimate of average P(DCS) g-ren by the OBSERVED average P(DCS).
‘Many of the dive profiles have only 2 replicates and some are unrcpliated, and binomial
theory cannot supply useful estimates of the uncertainty on an observed proportion when
the sample size is only 1 or 2. We can, however, set a very conscrvativé lower bound on
this uncertainty by assuming that all of the dives carry the same underlying P(bCS), as
though the date set is composed entirely of replicates of It.he same dive. This assumption
leads oae to calculate the least possible uneef:ainty in the estimate of P(DCS). The
confidence interval on the estimate of the underlying P(DCS) by the observed incidence
is easily computed usir:g the app;oxix;xation that‘the observed P(DCJ) is a
aormally-distributed random variable. | |

Note that in Table 9a, models fitted to single dive data are used to predict ‘the
outcomes of repeat dives and modcls'ﬁtied to air dive data are used to pl"edict the
outcomes of 0.7 dives, whereas in Table 9b the situation is reversed. Occasionally the
95% confidence infcr.val on th; predicted m}grage P(DCS) doés miss the observed
incidence, as for examplé when models fitted to the repeat 0.7 dives are used to prediég ,
the outcomes of repeat axrdxves (see Table 9b). There is a raw incidence of 72% DCS

in the Irepeatl air data, whereas the predicted incidences ranges from 2.7 to 3.8%




depending on the mod<l, with the confidence intervals extending no higher than 7.2%.

However, based on the observed incidence of DCS we estimate the conﬁdenpc interval
on thé underlying P(DCS) to span from 3.6% to 10.9%, and remcx'nber that this is a
gross underestimate of tke true width'of this interval. In summary, we recognize no
convincing cwdcnce that single dives are mcompatible with repeat dives or that air dives
| and 0.7 dives are mcompan'ble.
B. Multilevel Dives |

Another important observation is that the addition of EDU1180R to a data set
consistently degrades any model's ability to describe the data in that set. EDUlfSOR
cons‘ists of a set of meel profiles in which the diver ascezds to 10-30 fsw between
descents. Strictly spesking, one cannot assess the ebmbinabimy of EDU1180R with
othe- data sets without fittng the models to EDU1180R alone, which has not been done
because of the sparscness of this data set (2 DCS cases recorded out of 128 man-dxves)
However, if one applies the likelikood ratio test on the assumption that the
risk-accumulation models would fit EDU1180R just as well as the null model, then
EDU1180R is found to be not combinable with any other data. Also, the addition of
| EﬁUl’lSOI# to a data set consistently results in drastic shdrténing of the ﬁtted time
constants for the set. | | | |

Let us use some of the repeat dxve data as an ﬂlustranon. The null ﬁt to
EDU1180R ylelds a ln(hkehhood) of 1030. In Appendix 2 we see that the oombmatlon
of data sets EDU184 and EDUSSSAR can be fitted with model 2 so that LL = 77.84
(this makes them very easily combinable according to the likelihood ratio test). -When
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EDU1180R is added, the best fit of model 2 has LL = 9335. This much degradation of

the fit is significant at the p<0.04 level. In Appendix 8 we see that the optimized time
constants for [EDU184 + EDU8SSAR] are v, = 198 min and ¢, = 741 min, but after
EDU1180R is added to the set the optimal fit is obtained with ¢, = 0.43 min and ¢, = |
105 min. We get similar results when EDU118‘0R. is mixed with other data sets.

Table 8 summarizes efforts to predict P(DCS)‘for the EDU1180R dives using
parameter v;lua optimized for other data sets. Parameters are used that have been
optimized for nll 3f the single 0.7 dives (i.c., EDU1180S and EDUBSSM), all of the
repeat 0.7 dives (includes only EDU184), and the combination of all dives except

"EDU1180R. In no instance is the prediction a good one, with between 11 and 32 DCS

cases predicted as compared with 2 cases observed. The poor fit is also indicated by the
low LL values compared with the null model's LL, indicating that, for the parameter

values obtained by fitting other data, the observed dive outcomes are far from probable.

The explanation is that EDU1180R needs considerably shorter time constants than
do the other data sets (with the exception of DC4W) and that the application of
lqngcf-than-optimal time constants is unusually deleterious to the fit. Generally,
lcnéthcning the tixhe constants in one of ihe models has the partially offsetting effect# of
reducing the gas uptake (thereby reducing tpel total risk of thé dive) andl‘ fe’tarding the
offgassing (thereby increasing the total risk). This dichotomy acts iq moderate the effect
on the predicted P(DCS) of changes in the fitted time constants. For these dives,
however, it seems that the former.effect is overwhelmed by the latter, so that there is a

strong intolerance for longer time constants. Why is this? The dives in EDU1180R




contrast with our other data in that the divers remain underwater for 4-S h before

beginning decompression but then undergo a decompression of ouly 1-2 h duration.
Thus, the time spent underwater is unusually long compared with the decompression
time, so that even "slow” tissues have plent ; of time to accumulate inert gas but only
"fast” tissues can offgas effectively before surfacing. In our models, a time constant much
longer than about 60 min results in the prediction of a substantial tissue supérsaturgtion
rcmaxmng at the end of the di;/c, with éspepially severe risk accumulation commencing at
the 20- or 10-foot stop or upon surfacing (depending on the time cbnstant-). Figure 1
illuswrates this. It is a plot of one of the multilevel dives in which *~e ¢* ers descended
to 150 fsw and stayéd there for 29 nin, ascended to 30 fsw and stayed for 120 min, and
descended again to 150 fsw for 30 min. The depth, the partial pressure of N, in each of
the “tissues” ﬁostulated by model 2, and the accumulated P(DCS) are plotted as functions
of time. The partial pressures are vredicted by model 2 using the parameter valués
optimized for all 6{ the single- and repeat- dive data. It is seen that the tissue having the
33-min time constant (the "fast" tissue)' really does expel most of its dissolved N, during
the stay at 30 ft, and ’eoﬁsequently this tissue makes a relatively small cpntril;ution to the
P(DCS). By contrast, the tissue with the 715-min time constant actﬁally experiences a
small net gain of dissolved N, during the 30-fsw stop, and the final decompression is far
too rapxd t‘o allow a thorough washout of dissolv'ed‘ gas before surfacing. The re'sulting‘
overpressure persists for 6 h vexﬁus about 1 h of 'overpressure in the fast tissue. In
addition, the gain coefﬁcxent coupled with the longer time constant is five times greatcr

than the gam coefficient for the short time constant (see equatxon (3] for the definition
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'of the gain éoeﬁﬁcient). ‘The end result is that this dive profile is predicted to carry a

15.5% probability of DCS with the 715-min tissue accounting for the bulk of the risk.

Similar plots could be shown for the rest of the multilevel dives. Therefore, when
EDU1180R is mixed with other data sets and the combination is fitted by one of our
models, tﬁe use 6f long time constants results in a gross overestimation of P(DCS) for
tlie BDU1180R dives, and the use of short time constants results in a poor fit to the
rcmaining data. Of course, the optimized parameter values for_ a combination of data
sets never quite equal the optimal values fbr any one qf the subsets. However, the
subséts usually appear combinable nonetheless, using "compromise” parameter values
that -ilsuallylare within uncertainty bounds of the parameter estimates for the individual
subsets. The difference with EDU118OR' is the unusual sensitivity of the fit to time
constant va'ues, and this sensitivlzity is a consequence of the special characteristics of
these dives.

Whereas the fitted parameter values are nct taken to have any definite physical
significance, the only justifiable conclusion is that a fundamental difference exists
| betv?"een daté set EDU1180R and the others in this study with respect to their
‘dcscxjfpﬁon by these' particular models. IfIW§ consider the models .to be suitable for
modelling nbn‘-multilevel’ dxves, then it is necessary to &btibt whether they are adequate
~ for modelling mulﬁlcvel dives, on the ‘evider_xce available to us from this one dive seﬁcs. '
An 'e.va.lua‘tion that we made of fepeat dives may be of intérest to the reader. In this

exercise, we used the models as predictcrs of P(DCS) for various repeai dive profiles and
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varied the duration of the surface interval as an independent parameter, without

changing any of the other aspects of the dive profiles. We found that P(DCS) is partly
determined by two effects peculiar to repeat dive wmbmaﬁom. First, the descent for
the second dive eliminates the tissue supei'saturation persisting from the first dive;
thereby halting the accumulation of risk from the first dive and reducing P(DCS) for the
dive combination as a whole This is effectxvely a trunmnon of the first dive. Note that
this reduction in P(DCS) arises from our assumption of an accumulating risk, rather than
a risk resulting from some single instant of supersaturation occurring during the dive.
The second eifect peculiar to repeat dives is the addition of nsk to the second dive
because of the residual inert gas supersaiuration from the first dive. This effect
increases the risk of the dive combination.

According to our models, for the repeat dives in this study, the lowest P(DCS) is -
 achieved with a surface interval of infinite duration, ie. two single dives. This is
another way of saying that the second effect described above dominates the first.
Con;equently, according to our models repeat dives are inherenﬂy more dangerous than
, single dives and one should adjust the decompression time of the second dive to
| compensate As an example, Figure 2 shows the predicted P(DCS) of one of the

double-dives in data set EDU8BSAR as a function of surfaee interval time, accordmg to
model 2 with its parameter values opnmxzed for all of the repeat dxve data. The
_monotonic decrease with surface interval time of P(DCQ) is typical, although maxima

and minima are possible. Incidentally, the actual dive was carried out with an 86-minute -




surface interval; there was a 98-minute decompression fdllowing the first descent and 2

208-minute decompression after the second descent.

It certainly is possible to devise dive sequences that are exceptions to the rule, that
is, which are made safer by a reduction in the timés allowed between descents. One.
example consists of a hazardous dive followed by an extremely safe dive having an
extremely long decompression time - this is equivalent to recompression therapy.
Another example occurs wﬁen the second dive is a saturation‘dive, in which case the
residual dissolved inert gas from the first dive is irrelevant.

D. Suscific Orygen Effects |

One more test of our models. consists of attempting to improve the fit by allowing
the dimensionless parameter ki, (see equation [3]) to be an adjustable variable in the
curve-fitting routine. In all modelling discussed to thxs poiat, ko, has been fixed at zero.
If the fit can be improved significantly by allowing kg, to be non-zero, it would suggest
thatl risk accumulation depends on the partial pressure of O, in the breathing mix as well
+as on the. piarual pressures of any inert gases. Accordingly, the 3-mono-exponential tissuc;.
' model (madel 4) was fitted té all of the available data (except EDU1180R) wlth ko2
allowed to ﬂoaf. Table 10 and Appéndix 10 show. thg highest 1’n(likelihooﬁ) and. optimal

parameter values obtained,}}‘and these can be compared' with the results found for model , '

4 with ko; ffixed at zero. The optimal value of ko, is scarcely different from zero (0.34
with a standard error of 0.31) but the improvement in fit afforded by the extra parameter
is only 0.5 LL units, which is not significant. ‘We conclude that we liave no strong

 evidence to support the inclusion of Fy, in our risk fomul?ﬁons Model 4 was chosen
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for this test because it is superior to our other models at fitting all of the data

simultaneously.




- VI. MORE COMPLEX MODELS; CONCLUSIONS ‘

!

The summary of the discussion is that 1) our models have some substantial face L&

value as quantitative descriptors and predictors of DCS incidents, 2) we see no

vompelling reason not to combine data regardless of whether it consists of single dives or

- repeat dives and regardless of the composition of the N,/O, breathing mix, and 3) we

see no compelling evidence that any of the data sets other than EDU1180R comes from

a different population than the bulk of the data. All of these conclusions are based on

s

our use of models 1, 2, and 3. It remains for us to explore whether more complicated
functions can be used to advantage. Table 10 and Appendix 10 each show the highest
ln(likelihoqd), and thp optimized parameter values, obtained by fitting model 4 (the
3-mono-exponential tissus model) and model 5 (the 2 bi-exponential tissue model), each ;
with P,,,,=0‘and ko2 =0, to all of the available data (except EDU1180R). Model 4, with .
6 adjustable parameters altogclther, actually‘providcs a.somewhat better overall fit than

does the 8-15arameter model 5. The excessively high standard errors on the mddel 5 .

parameters result from strong cross-correlations batween parameters, suggesting that the o

data set may not be sufficiently large and diverse to support a model as elaborate as this.
The fit of model 4 is seen to be a statisﬁcallﬁ significant i£np'_rbvement over that of model
2 (tﬁe 2-mono-exponential model, ‘having 4 parameters), according to the likelihqod fatio
test. | | | |

| It would seem that the 3-mon6-exponential model with the parameter values listed

in Table 10 represents our best mathematical descﬁpt.idn of the available data. Its fit

N
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improves upon the null model's fit by 20 LL units, meaning that it predicts the observed

family of dive outcomes to be xp(20) = 4.7- 10® times more probable than the null
model does. The optimized time constants of 0.44 min, 129 zain, and 767 min reflect the
diversity of the available data. Ilt should not Y extrapolated recklessly to dives that are
appreciably different from the ones fn our database. That is, it should ﬁot be expected

to be a relizbie predictor of the risks of dives having time scales different from those in

- our database; as we have seen, the optimal time constants obtained for long dives do a

poor job of describing short dives, and vice-versa. Our database contains dives ranging
from 0.3 to 8 h, so saturation dives are not cncompassed. Obviously, it should not be '
extrapolated to multi-level dives, which were excluded from the data set for which the

parameter values in Table 10 were optimized.
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APPENDIX 1

Log Likelihoods for the 2-, 3-, and 4-Parameter Models:
Data Sets Not Combined Across Categories; ko, = 0

In the followin§ tables, *////" indicates that the model converges to a
solution equivalent to a two-parameter DLE6 solution.

' -In (likelihood)

DCS ceectacscacrecenceccdocceasmcsocanmcaceanaan

cases/dives null model 1 model 2 model 3
no P, w/P, |

single air dives: . b b .

EDUBSSA : 30/483 112.41 109.92 177/ 101.88 105.37

DC4W [8+4(0.5)]/244 41.738 40.595 /777 35.514 37.054

EDUSSSA |

+ DC4W [38+4(0.5)]/727 154,88 153.86 777/ 145.25 147.70

singio 0.7 dives: _ :

EDU1180S 1 10/120 34,6420 30.495 30.474  ////  30.456

EDUBSSM 4/81 15.932  ---- - ceee eeas

EDU1180S + EDUSSSM 147201  50.800 44.851  ////  44.821 /7))

single dives, other gas mixes: , ‘
NMR8697 [11+18(0.5)]/477 83.010 81.970 81.939 81.844 81.931
DCBAOW " [241(0.5)]/45 9.655 ceea ce-a ~ e .-

repeat/multilevel al{r dives:

EDU885AR ' © 117182 41.528  38.027  36.447 1/7/7 36.390

DRREPWET = 3/12 6.748  wese  eeen aemn eeen
~ EDU885AR + DRREPWET 147194 50.285 45.719 44.240 1777 44.115

ropoat/nulcilével 0.7 dives: ' .
EDU1180R : 2/128  10.302  ---- N ----

EDU184 117234 44,369 38.455 . 37.420 37.930 37.329
EDU1180R + EDU184 13/362  56.011 52.989 52.914  ////  S52.511
37




APPENDIX 2

Log Likelihoods for the 2;, 3-, and 4-Parameter Models:
inations of Data Sets From Different Categories

-1n (likelihood)

DCS = ~ceceeecceccecceccccecscccesceececceeacacna-

cases/dives

single, air + 0.7:

. EDU1180S + EDUSSSA
+ EDU83SM + DC4W .
[52+4(0.5)]/928

single, any gas mix:

EDU1180S + EDUBSSA

+ EDU885SM + DC4W

+ DCBAOW + NMR8697
[65+23(0.5)) /1450

repeat/multilevel, air + 0.7:

EDU184 + EDUBSS5AR 22/416
EDU184 + EDUS8SAR
+ DRREPWET . 25/428
EDU1180R + EDU184

: + EDUSSSAR . 24/544

air, single + repeat/multilevel:
EDU885A + EDUSSS5AR 41/665
EDUSSSA + EDUSSSAR
+ DCAW + DRREPWET' '

: T [5244(0.5))/921
EDUSSSA + EDU88SAR ,
+ DCAW (49+4(0.5)}/909

0.7, single + repeat/multilevel:.

EDU1180S + EDU1180R 12/248

EDU1180S + EDU184 217354

EDU1180S |

"+ EDUL18OR + EDU184  23/482
 EDU1180S +

EDU184 + EDU8BSBSM 25/433

EDU1180S + EDU1180R '
'+ EDU184 + ZDUBSSM  27/563

null

205.98

299.51

86.080

. 95.261

98.364

153.94

205.55 -

196.45

48.047
79.685
92.419

101,01

108.35

38

model 1
N0 Popy  W/Pun
204.17  ////
297.23  ////
78.298  75.109
86.869 83.544
93.459 92.988
148.63  ////
1 202.28 . ////
194.23 - ////
47.500 41.267
69.096 68.571
87.992  86.962
83.583  ////
104.89

/"

191.21

285.39

77.837

86.442

93.346

144.19

1964.95

© 185.98

46.656
68.619

s

83.216

/117

195.46

171/

75.923

83.523

/117

146.30
197.98

189.43

/717
68.287

/717

83.395

111/




APPENDIX 3

Log Likelihoods for the 2-, 3-, and 4-Parameter Models:
‘ Any Category of Dive

-1n (likelihood)

DCS = =ceeesccscescccccmcccscoscaccaccarcareacaan-" ,
cases/dives null model 1 model 2 model 3
. no P, w/P
any type of dive: i te
EDU8BSSA + '
EDUS85AR + EDU8SSM 45/746 169.98 165.00 //// 159.53 162.04
EDU1180S

+ EDU184 + EDUS8SSA

+ EDUB85AR + EDU83S5M

+ DC4W + NMR8697

+ DRREPWET

+ DCBAOW [90+23(0.5)]1/1878 394.87 . 383.79 //// 377.09 Y2774
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APPENDIX 4

Optimized Parameter Values for the 2- and 3-Parameter Models:
Data Sets Not Combined Across Cetegorier

model 1
(1 Tissue
Mono-exponential);
Pm-
single air dives:
EDU8SSA t = 173 (38)
A = 0.00221 (0.00044)
EDU885A + DCAW t = 89.6 (16.8)
A = 0.00220 (0.000353)
DC4W v = 46.1 (28.2)
A = 0.00209 (0.020072)

EDU885A + DCuW T = 92.4 (16.8)
, A = 0,00222 (0.00035)

single 0.7 dives: .
EDU1180S T = 490 (140)

A = 0.00489 (0.00274)
EDU88S5M | eeees
EDU1180S + EDUSSSM %t = 483 (88.6)

A = 0.00586 (0.00260)
single dives, other gas mixes:

NMR8697 | t = 77.9

(34.2) ‘
A = 0.00180 (0 000461.)

DC8AOW _ ' ceves

repeat/multilevel air dives:

' EDUSSSAR ¢ = 281 (88.5)
. A = 0.00406 (0.00249)
DRREPWET . ceeae
EDUSSSAR + DRREPWET ' t = 297 (83.1)
- , A = 0.00510 (0.00280)

model 1
(1 Tissue
Mono-exponential)

Py » O

171/
////
s

/717

t = 374 (516)
A = 0.00680 (0.0129)
Py = 2.08 (11.6)

.....

t = 72,9 (28.7)
A = 0.00269 (0.00414)
Py, = 3.03 (11.2)

c v = 136 (47.9)

A = 0.0816 (0.0978)
Py, = 9.96 (3.98)

t = 177 (68.7)
A = 0,0491.(0.0703)
Py, = 6.92 (4.35)




repeat/multilevel 0.7 dives:
EDU1180R
EDU184

EDU1180R + EDU184

> o

413 (90.0)
0.00364 (0.00194)

101 (87.0)
0.000875 (0.000256

4

t = 187 (66.5)
A = 0.0102 (0.0118)
Py, = 5.34 (3.37)

t = 104 (69.3) :
A = 0.00118 (0.00163)
Py, = 1.92 (6.96)




APPENDIX 5

Optimized Prcrametar Values for the 2- and 3-Parameter Models:
Combinations of Dives From Different Categories

single, air + 0.7:
EDU1180S + EDU885A

+ EDUSS5M + DC4W

single, any gas mix:

EDU1180S + EDU885A
+ EDU8BSSM + DC4W

"+ DCSAOW + NMR8697 -

repeat/uultilevei, air

EDU184 + EDUSBSAR

EDU184 + EDUSSSAR
'+ DRREPWET

EDU1180R + EDU184
+ EDUBSSAR

>a

>

>

>a

model 1
(1 Tissre
Mono-exponential);

Pm‘o

101 (15.1)
0.00223 (0.000307)

99.6 (13.9)
0.00214 (0.000255)

0.7:

282 (67.0)
0.00272 (0.00105)

288 (66.2)
0.00307 (0.00115)

93.9 (58.4)

air, single +.repeac/ﬁu1tilevelf

EDUSSSA
_+ FDUSBSAR -

EDUSSSA + DC4W
+ EDUBBSAR

EDUB8BSA + EDUBSSAR
+ DC4W + DRREPWET

- 186 (34.5)

= 0.00228 (0.000436)
= 103 (15.9) :
= 0.00202 (0 000293)
= 103 (15.8) .

= 0.00210 (0.000297)

42

0.00105 (0.000216) -

model 1
(1 Tissue
Mono-exponential)

Py * O

--------------------------------------------------

/717

/717

t = 162 (29.0)
A = 0.0184 (0.0149)
Py = 6.64 (2.03)

27.9)

8 (0.0165)
5 (1.90)
(31
79
4

31.8)
(0. 00321)
(4.62)




e

0.7, single + repeat/multilevel:
EDU1180S + EDU1180R

EDU1180S + EDU184

EDU1180S +

EDU1180R + EDU184

EDU1180S +
EDU184 + EDU88SM

EDU1180S + EDU1180R

+ EDU184 + EDU883M

- A

T = 126 (169)
= 0.00112 (£.000658)
T = 437 (65.2)
A = 0.00413 (0.00145)
t = 201 .(100)
A = 0.00119 (0.000283)

t = 454 (52.9)
A= 0.00486 (0.00153)

v = 231 (96.7) '
A = 0,00135 (0.000431)

a3

T = 73.7 (25.3)
A = 0.0575 (0.0799)

Py = 15.6 (1.60)

v = 232 (100)
A = 0,00700 (0.00488)

Py = 3.91 (3.22)

t = 172 (36.6)
A = 0.00740 /0.00497)
Pene = 5.09 (2.34)

/177

/717




APPENDIX &

Optimized Parameter Values for the 2- and 3-Parameter Models:
Any Category of Dive

model 1 model 1
(1 Tissue (1 Tissue
Mono-exponential); - Momno-exponential)
EDU885A +
EDU885AR + EDU8S8S5M T = 202 (31.7) 777/
A = 0.00239 (0.000446)
EDU1180S ,
+ EDU184 + EDU8S5A
+. EDU8BSSAR + EDUB85M t = 112 (12.7) /777
+ DC4W + NMR8B697 A = 0.00194 (0.000202)

+ DRREPWET + DC8AOW




-

APPENDIX 7

Optimized Parameter Values for the 4-Parameter Models:
Data Sets not Combined Aross Categories

single air dives:

EDU885A

DC4W

EDU8SS5A + DC4W

single 0.7 dives:

EDU1180S

EDU885M

EDU1180S + EDU88SM

NMR8697

Dc'sAow

model 2
(2 Tissue
Mono-exponential);
Pm-o
Ty = 22.5 (30)
T - 730 (199)
Ay = 0.00173 (0.0016)
Ay = 0,00940 (0.0075)
T, = 0.389 (0.149)
t, = 358 (182)
A, = 0.553 (0.85)
A; = 0.00970 (0.00014)
Ty = 27.3 (14.6)
T, = 749 (195)
A, = 0.00183 (0.00060)
A, = 0.00970 (0.00083)

/1//

<, = 2.51 (310)

t; = 493 (250)

A; = 0.00555 (1.07)
Az -

0.00587 (0.00321)

single dives, other gas mixes:

0.263 (0.955)
86.7 (54.1) -
0.205 (2.57)

L
-
(I I B B

.. -

repeat/multilevel air dives:

EDU885AR

DRREFPWET

/177

assew

45

0.00166 (0.00120)

model 3
(1 Tissue
Bi- exponential).

%y = 12.6 (41,1)

t; = 292 (44.6)

w; = 0.822 (0.569)
A= 0.0296 (0.0237)

1, = 1,56 (4.2)
t; = 160 (158)
w; = 0.991 (0.031)
A= 0.0576 (0.023)

t, = 14.5 (7.6)
t; = 290 (58)
w, = 0.89%

¢)
A= 0.00921 (0.00026)

© gy = 12,7 (221)

%3 = 375 (516)
w, = 0.886 (1.66)
A= 0.00826 (0.0287)

%, = 1.36 (31.2)

t3 = 74.7 (60.7)

w, = 0.963 (0.718)

A = 0.00390 (0.0119)

%, = 120 (68.3)
t; = 2140 (3520)
w, = 0.892 (0,203)
A’=0.209 (0.339)

LER XX

.~

RS Rk

LI

o
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EDUSSSAR + DRREPWET = - ////

repeat/multilevel 0.7 dives: _
EDU1180R s

EDU184 ¥y = 110 (634)
1, = 609 (282) |
A; = 0.000440 (0.00146)
A; = 0.00642 (0.00515)

EDU1180R + EDU184 17

T, = 141 (92.5)

23 = 2900 (7910)
v, = 0.925 (0.233)
A= 0.160 (0.264)

t, = 69.3 (54.3)
t; = 854 (334)

w, = 0,733 (0.112)
A = 0.0237 (0.0374)

T, = 121 (117)
t, = 8820 (2.65E5)
w; = 0.991 (0.282)

A = 0.00429 (0.00655)

EE . O




~

APPENDIX 8

Optimized Parameter Values for the 4-Parameter Mc.:ls:
Combinations of Data from Different Categories

single, air + 0.7:

EDU1180S + EDU885A
+ EDU88SM + DC4W

single, any gas mix:

EDU1180S + EDUSS8S5A
+ EDU8SSSM + DC4W
+ DC8BAOW + NMR8697

repeat/multilevel, air

EDU184 + EDU885AR

EDU184 + EDUBS5AR
+ DRREPWET

 EDU1180R + EDU184

+ EDUB85AR

alr, single + repeac/multilevel

EDU885A
+ EDU885AR

EDUB85A + EDUS8SAR
+ DC4W + DRREPWET

EDUBSSA + EDUSSSAR
+ DC4W ,

model 2
(2 Tissue
Mono-exponential);
Pu“ lad 0

t, = 27.1 (12.6)
T, = 711 (147) :
A, = 0.00183 (0.000583)
A; = 0.00872 (0.00539)
Tty = 25.6 (10.3)
t. = 729 (115)
4, = 0.00204 (0.000534)
4, = 0.00846 (0,004.62)
+ 0.7
T, = 198 (270)
T, = 741 (782)
Ay = 0.00143 (0.00248)
Ay = 0.00525 (0.0107)
T, = 0.304 (0.109)
T, = 322 (90.4)
"Ay = 2.58 (10.8)
A, = 0.00331 (0.00140)
Ty = 0.429 (1.01)
t, = 105 (84.7)
A, = 0.108 (1.23)
A; = 0.000992 (0.000274)
Ty - 55 3 (51.4)
T, = 740 (217) ,
A, = 0.00105 (0.000271)
A, = 0.00827 (0.00693)
t, = 39.6 (20.2)
T, = 732 (212)
Ay = 0.00148 (0.00314)
A; = 0.00807 (0.00677)
=, = 38.3 (19.8)
T2 = 734 (200)
A, = 0,00138 (0. ,000309)
A; = 0,00838 (0.00675)

47

model 3
(1 Tissue
Bi.exponential);

Pepe # O

--------------------------------------------------

3.35).
9.5)
(0.0461) .
0.00249)

~~

/117

t, = 148 (146)

t, = 2690 (11600)
w; = 0.932 (0.0224)
Al= 0.0347 .(C.0346)

ty = 0.755 (0.813)

" %3 = 183 (40.1)

w, = 0.995 (0.00570)
A - 0.0351 (0.0332)

1111

%, = 21.1 (49.2)

t; = 351 (89.5)

w, = 0.793 (0.410)

A = 0.00620 (0.00274)

T = 13.2 (7.28)

.ty = 249 (63.6)

w, = 0.864 (0.0749)
A = 0.00624 (0.00191)

'n - 12.5 {6.27)

- 258 (61 0)
v = 0.878 (0.0662)
= 0,00647 (C. 00195)



0.7, single + repeat/multilevel:

EDU1180S + EDU1180R
EDU1180S + EDU184

EDU1180S +

EDU1180R + EDU184M

EDU1180S +
EDU184 + EDUU8SS5M

EDU1180S + EDU1180R
+ EDU184 + EDU8S85M

////

= 102 (569)
584 (255)

= 0.00579 (0.00292)

/7//

26.8 (498)
505 (225)°
0.000200 (0.000425)
10.00568 (0.00261)

/777

0.000366 {0.00112)

/777

$, = 73.8 (43.4)
1, = 743 (321)

w, = 0.665 (0.172)
A = 0.0160 (0.0229)

Z

t, = 11.9 (94.6)
t; = 462 (170)

w; = 0.684 (2.79)

A = 0.00616 (0.00479)

/7//




APPENDIX 9

Optimized Parameter Values for the 4-Parameter Models:
Any Category of Dive

model 2 model 3
(2 Tissue . (1 Tissue
Mono-exponential); Bi-exponential);
Pw - 0 ) Pm » 0
EDU88SA + _ '
EDU885AR + EDU8SSM Ty = 29.0 (45.2) t; = 14.7 (39.8)
' T, = 623 (179) T2 = 355 (83.1)
A, = 0.00116 (0.000636) w; = 0.839 (0.480)
Ay = 0.00642 (0.00337) A = 0.00709 (0.00504)
EDU1180S . '
+ EDU184 + EDUSSSA T, = 33.4 (11.4) /7777
+ EDUSS85AR + EDUS8SM T, = 715 (108)
+ DC4W + NMR8697 A, = 0.00145 (0.000252)

+ DRREPWET + DC8AOW A; = 0.00781 (0.00375)

49 o




data set

EDU1180S
+ EDU184 + EDUSSS5A

g e e, 1 N R ey s

APPENDIX 10

Log Likelihoods and Optimized Parameter Values for the Models
with 6 or More Parameters: Any Category of Dive

394 .87

+ EDUBSSAR + EDU8SSSM
+ DC4W + NMRB697
+ DRREPWET + DC8AOW

paraneter values:

model

nod§1

4 (3-mono-exponential), ky; = 0

%, = 0.4642 (0.174)
%2 = 129 (68.9)

"ty = 767 (162)

Ay = 0.176 (0.206) '

A; = 0.00117 (0.000306)

Ay = 0.00735 (0.00522)

4 (3-mono-exponential), ky, = O

t, = 0.284 (0.189)

15 = 106 (91.7)

model

ty = 1180 (599)

A, = 0.241 (0.342)

A; = 0.000756 (0.000353)
Ay = 0,00473 (0.00421)
koz = 0.340 (0.308)

5 (2 Bl-exponential) .

%ty = 0.125 (6710)
T = 33.2 (16.0)
wa, = 0.256 (10100)

A, = 0.00146 (0.00120)

%1 = 517 (1960)

tas = 2570 (65200)
Wy, = 0.913 (3.5“‘)
A= 0.0110 (0.0113)

koz = O

50

-In(1likelihood)

‘model & model 4  model 5
ko = O kog *» O ko2 = O
373.91 373.41 376.93




TABLE 1,

Data Summary

0.7 = 0.7 atm oxygen, the balance nitrogen

Mean values of'quahtities, averaged over a data set, are indicated by parentheses

' total
DCS cases y bottom decompression
data set = = -cc-cccce-- gas depth time time
dives (fsw) (min) (min)
DC4W [8+4(0.5)]/244 air 50 - 265 2.9 - 100 3.3 - 99
: (154) (24) (28)
" EDU1180R 2/128 0.7 75 - 151 162 - 270 31 - 176
(123) (233) (102)
EDU1180S 10/120 0.7 75 - 150 38 - 126 46 - 176
‘ (125) (73) (93)
EDU184 11/234 0.7 40 - 150 20 - 212 2 - 187
(89) (42) (14)
EDU885A 30/483 air 50 - 190 - 14 - 244 1.7 - 290
(112) (78) (102)
EDUS8SAR 11/182 air 80 - 150 17 - .66 2 - 246
, (102) (N/A) (N/A)
EDU88S5M 4/81 0.7 100 - 150 33 - 66 35 - 222
, (133) (51) (76)
NMR8697 {11418(0.5)])/477 variable ' 25 - 130 30 --240 0.6 - 2.5
10-40% O, , (69) (112) (1.5)
‘ the rest N, ‘
DRREPWET 3712 air 59 - 177 20 - 40 4,6 - 90
(128) (28) (50)
DCBAOW (240.5)/45 air + O, decompression -
' 90 - 180 2.3 - 6G 27 - 106
(132) (42) (46)
total (92+23(0.5)1/2006




TABLE 2

log Likelihoods for the 2-, 3-, and 4-Parameter Models;

Data Sets Not Combined Across Categories; kg = 0

DCS
cases/dives

single air dives:

EDU8SSA : ' '

+ DCAW . {38+4(0.5)]/727
single 0.7 dives:

EDU1180S + EDU885M 14/201

single dives, other gas mixes:
NMR8697 ' {11+18(0.5) /477
DCBAOW [241(0.5) ) /45

repeat air dives:

EDU8B8SAR + DRREPWET = 14/194

repeat 0.7 dives:
EDU184 ' 1117234

-ln (likelihood)

null model 1
no Pu - '/ Pm
154.88 153.86
50.800 44,851
83.C10 ©.81.970
9.655 cem=
50.285 45.719
44 .369% 38.455
52

/717
/177

81.939

44.240

37.420

145.25
44.821

81.844

111

37.933

147.70

111/

81.931

44,115 -

37.329
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TABLE 3 ‘ i

Log Likelihoods for the 2-, 3-, and 4-Parameter Models;
Combinations of Data Sets From Different Categories

-1n (1likelihood)

DCs e R L L LT PR
cases/dives - mull model 1 model 2 model 3

sihgle, air + 0.7:
EDU1180S + EDU885A
+ EDU885M + DC4W : ‘
' [S2+4(0.5)]/928 205.98 204.17 //// 191.21 195.46
single, any gas mix:

EDU1180S + EDUS8SA

+ EDU8S5M + DC4W

+ DCBAOW + NMR8697 ‘

[65+23(0.5)]/1450  299.51 297.23 177/ 285.39 - ////

repeat, air + 0.7:

EDU184 + EDUBSSAR '
+ DRREPWET - 25/428 95.261 86.869 83.544 85.442 83.523

air, single +‘repent:

EDU885A + EDU885AR
+ DC4W + DRREPWET ' \
' [52+4(0.5)]/921 205.55 202.28 /777 194.95 + 197.98

0.7, single + repeat:

EDU1180S + L -
EDU184 + EDU8SSSM 25/435 101.01 83.583 //// 83.216 83.395

" any typo of dive:

EDU1180S

'+ EDU184 + EDUSBSA

+ EDUS8SAR + EDUBSSM

+ DC4W + NMR8697

+ DRREPWET ‘

+ DCBAOW [90+23(0.5)]1/1878  394.87 388.79 //// - 377.09 117/

53
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Cptimized Parameter Values for the 2-

TABLE 4

and 3-Paraneter Models:

Data Sets Not Combined Across Categories

single air dives:
EDU885A + DC4W

single 0.7 dives:
'EDU1180S + EDU8S85M

model 1
(1 Tissue
Mono- exponential),

Pm-o

92.4 (16.8)
= 0.00222 (0.00035)

> a

483

] (88.6)
0.00586 (0.00260)

A

single dives, other gas mixes:

NMR8697

DCSAGW
repeat air dives:

EDU88SAR + DRREPWET

repeat 0.7 dives:
EDU184

T =~ 77.9 (34.2)

A ~ 0.00180 (0.000461)

.....

T = 413 (90.0)
A ~ 0.00364 (0.0U194)

model 1
(1 Tissue
Mono-exponential)

Py *+ O

.............. bAewecessEcecrrcnsrersasnertaeseTsanmacae

/117

/117

t = 177 (68.7)
A = 0.0491 (0.0703)
Pype = 6.92 (4.35)

¥ = 114 (24.9)
A = 0.0102 (0.0118)
Pepe = 5.36 (3.37)




TABLE 5

Optimized Parameter Values for the 2- and 3-Parameter Models:
Combinations of Dives From Diffeérent Categories

model 1
(1 Tissue
' Mono-exponential);

Pm-o

R R A R R

single, air + 0.7:

EDU1180S + EDUSSSA
+ EDU8S5M + DC4W = 101 (15.1)

]
A = 0.00223 (0.000307)

single, any gas mix:

EDU1180S + EDU885A
+ EDU8SS5M + DC4W
+ DCB8AOW + NMRB697

99.6 (13.9)
0.00214 (0.000255)

>
'

repeat, air + 0.7:

EDU134 + EDU8S5AR
+ DRREPWET .

288 (66.2)
0.00307 (0. 00115)

> o
1

air, single + repeat:

EDUBASA + EDUBSSSAR
+ DC4W + DRREPWET

103 (15.8)
0.00210 (0.000297)

> a
[ ]

0.7, linglb 4+ repeat:

EDU1180S +
EDU184 + EDU8SSM

454 (52.9)
10.00486 (0.00153)

>a
]

" any e of dive:

EDU1180S

+ EDU184 + EDU8SSSA
+ EDU8S8SAR + EDU8SSM
+ DC4W + NMR8697

+ DRREPWET + DC8AOW

112 (12.7)
0.00194 (0. ooozoz)

>a
)

55

model 1
\1 Tissue
Mono-exponential)

Pge » 0

-------------------------

/7

"

t = 160 (27.9)
A = 0.0218 (0.0165)
Puc = 6.85 (1.90)

111/

/117

W72



TABLE 6

Optimized Parameter Values for the 4-Parameter Models:
Data Sets not Combined Across Categories

single air dives:
EDU885A + DCAW

single 0.7 dives:
EDU1180S + EDU88SM

modei 2
(1 Tissue
Mono-exponential);

model 3
- (1 Tissue
Mono-exponential)

Popr ¢ O

Secececcosesccnacsstamaresnstnoanesecsreanaaccnsennae

T
%2
A,
A

27.3 (14.6)
749 (195)

0.00970 (0.00083)

- 2.51 (310)

= 493 (250).

= 0.00555 (1.07)

= 0.00587 (0.00321)

single dives, other gas mixes:

. NMR8697

DCBAOW

repeat air dives:
EDU885AR + DRREPWET

reﬁoat 0.7 dives:
EDU184 .

'x

= 0.263 (0. 955)

t; = 86.7 (54.1)

A
A

= 0.205 (2.57)

= 0.00166 (0.00120)

111/

110 (634)

609. (282) '
0.000440 (0.00146)
0.00642 (0.00515)

56

0.00183 (0.00060) -

- 14.5 (7.6)
, = 290 (58)
w; = 0.894
A = 0.00921 (0.00026)

/777

t, = 1.36 (31.2)

t3 = 74,7 (60.7)

w, = 0.963 (0.718)

X 000390° (0.0119)

%, = 141 (92.5)

%5 = 2900 (7910)

w, = 0.925 (0.233)
A = 0.160 (0. 26&)

t, = 69, 3 (54.3) -

%, = 854 (334)
wy, = 0,733 (0.112)
A'= 0.0237 (0.0374)




TABLE 7

Optimized Parameter Values for the 4- Parameter Hodels
Combinations of Data from Different Categories

single, air + 0.7:

EDU1180S + EDUB85A
+ EDU885M + DC4W

single, any gas mix:

EDU1180S + EDU8S5A
+ EDU885M + DC4W
+ DCS8AOW + NMR8697

‘repeat, air + 0.7:

EDU184 + EDU885AR
+ DRREPWET

air, single'+ repeat:

EDU885A + EDU8SSAR
+ DC4W + DRREPWET

0.7, cingle + repeat:

EDU1180S +
EDU184 + EDU8SSM

any type of dive:

EDU1180S :

+ EDU184 + EDU8S8SA
+ EDU88SAR + EDU88SM
+ DC4W + NMR8697

+ DRREPWET + DCBAOW

model 2
(1 Tissue
Mono-exponential);

" model 3
(1 Tissue
Mcno-exponential)

Pope » 0

......................................................

27.1 (12 6)

711 (147)

0.00183 (0. 000583)
0.00872 (0.00539)

= 25.6 (10.3)

- 729 (115)

= 0.00204 (0.000534)
= 0.00846 (0.00462)

0.304 (0 109)
3 4)
2,58 (10 8)
0.00331 (0. 00140)

39.6 (20.2)

732 (212) ‘
0.00148 (0.00314)
0.00807 (0.00677)

4.8 (498)
505 (225)

- 0.000200 (0. oooazs)‘

0.00568 (0.00261)

33.4 (11.4)

715 (108)

0.00145 (0.000252)
0.00781 (0.00375)

57

= 13.0 (5.35)

= 312 {39.5)

= 0,900 (0.0461)
= 0.0102 (0.00247)

"800

/1//

ty = 0.755 (0.813)
t, = 183 (40.1)
“i = 0.935 (0.00570)

A= 0.0351 (0.0332)

5, = 13.2 (7.28)
2 = 249 (63.6)

w; = 0.864 (0.0749)
A'= 0.00624 (0.00191)

£, = 11.9 (94.6)

t3 = 462 (170)
vi = 0.684 (2.79)

A = 0.00616 (0.00479)

/717

*
.




Predictions of P(DCS) in Data Set EDU1180R Using Parameter

TABLE 8

Values Fitted to Other Data Sets; ky; = 0

data set to

which parameters,

are fitted

-----------------------------------------------------------------------------

all single 0.7
all repeat 0.7

all but EDU1180R

58

average P(DCS)

24.8%

////

- 17.9
20.4
23.5
20.3.

8.89




TABLE 9%a

Predictions of P(DCS) Ucing Parameter Values Fitted to t ther
Data Sets; kg = O

data set to data set for averape P(DCS)
which parameters modil which predictions sl ecccececccccencca.-
are fitted are made predicted actual
null all repeat air 50.285 7.22%
all single air % y 68)?88 972; (6.37-12.2)%
w/P '
2 o R 17 §/4f (5.76-12.9)
3 52.318 11.3 (6.89-15.8)
null all repeat 0.7 44,369 4,70%
except EDU1180R
all single 0.7 % > ' 38)93§ 3728 (2.43-8.14)%
v .
3"/ Pee | 3¢y 14 (0-100
3 //// /7//
null " all single 0.7 50. 800 6.97%
all single air % /p '53)596 3}82 (4.59-9.06)
w
2w » w&/{%3 ¢ 4.05-8.32)
3 . 48.703 §.58 (3.27-7.88)
null all repeat 0.7 44,369 “4.,70%
- except EDU1180R
all repeat air 1 44,299 - 10.6 (4.96-16.3)%
: 1w/Pepe 43.124 10.3 (0.79-19.9)
2 VLA [/ _
.3 45,254 10.8 (2.23-19.5)
null . all repeats ' 86,080 5.84%
‘ éxcept EDU1180R '
all singles % / ' 92}§3k 8)39 (6.66-10.6)%
w/P '
2 ™ o8/t - 8746 (6.76-12.0)
3 . 78 2
null  all 0.7 dives 10101 . 5.75%
. except EDU118GR :
all air dives % » : 937975 7791 (5.58-9.58)%
3"/ P of /446 {88 (5.14-8.74)
8.35 (6.16-10.5)

3 ' R 7751

59




TABLE 9

Predictions of P(DCS) Using Parameter Values Fitted to Other
Data Sets; Kg; = 0 -- continued

\

| Note: The 1n(likelihood) is undefined when the model predicts zero.

| , ‘risk for a dive in which & case of DCS was recorded, because in this

i situation the likelihood of the observed family of dive outcomes,
given that P(DCS) is governed by the model in question, is zero.

data set to data set for average F(DCS)
vhich parameters model which predictions sLL eecccecceccccccen..
are fitted are made : . predicted actual
null all single alr 154,88 5.50%
all repeat air undefined 7.23 (2.81-11. 7)t'
1w/Pepy undefined 11.1 (2.65-19.53)
; 2 111/ ////
N 3 undefined 9.90 (2.50-17.2)
null all single 0.7 50.800 6.97%
all repeat 0.7 1 45,504, 5.77 (2.40-9.13)%
except EDU1180R 1w/Peps . 50.046 8.18 (0.32-16.1)
2 45,949 5.94 (1.73-10.2)
3 undefined 4.31 (0-10.4)
; null all single air 154.88 5.508
/ ' all single 0.7 % e vm.};t/‘}ned 4./:;3'/(2.29-6.59)0 _
v,
2 151.42 5.27" (0-38.8)
3 //// Vs
null all repeat air 50.285 7.22%
all repeat 0.7 1 52.829 2.73 (1.15-4,29)%
except EDU1180R 1lw/Pey, 48,061 3.37 (0.66-6.12)
: 2 52.532 3 82 (0.46-7.18)
3 51.207 32 (1.18-5. 47) | %
/ null all singles 299.51 5.8y 8
all repeats 1 - undefined 6.61 (2.72-6.50)y  EA
except EDU1180R lw/Py, undefined 7.74 (3.15-12.3) - g
2 319.88 . 7.49 (0-22.7) X
3 undefined 7.36 (2.96-11.8) &
null all air dives 205.55 5.86% ¥
all 0.7 dives 1 " | undeiixied .,-3.89/(2.42-5.38)3
except ED R w : o
P 2 o 244 516 (0.61-7.74)
3 undefined 3.92 (2.38-5.48) &




TABLE 10

Log Likelihoods and Optimized Parameter Values for the Models
with 6 or More Parameters: Any Category of Dive

-in(likelihood)
. model & model 4 model 5
data set null ko, = O ko » O koz = O
EDU1180S 394,87 373.91- 373.41 376.93

+ EDU184 + EDU885A
+ EDU8SSAR + EDUSSSM
+ DC4W + NMR3697 .

+ DRREPWET + DC8AOW

parameter values:

model & (3-mono-exponential), kg = O

v, = 0.442 (0.174)

13 = 129 (68.9)

3 = 767 (162)

A; = 0.176 (0.206)

A, = 0.00117 (0.000306)
A = 0.00735 (0.00522)

model 4 (3-mono-exponential), kg * 0

- 0.284 (0.189)
- 106 (91.7)
ts = 1180 (599)
- 0.261 (0.342)
= 0.000756 (0.000353)
A = 0.00473 (0.00421)
koz = 0.339 (0.308)

model 5 (2 bi-exponential), ko = O

tA, = 0,125 (6710)

tA; = 33,2 (14:0)

wA; = 0,256 (10100)

A, '=0.00146 (0.00120)

%5, = 517 (1960)

tp; = 2570 (65200)
wg; = 0,213 (3.54)
Ay = 0.0110 (0.0113)

61







