AD-A243 655
AR

AFIT/GSO/ENS/91D-10

DTIC

IMPROVING STOCHASTIC COMMUNICATION
NETWORK PERFORMANCE : RELIABILITY
VS. THROUGHPUT

THESIS

Leonard John Jansen
Captain, USAF

AFIT/GSO/ENS/91D-10

Approved for public release; distribution unlimited

91-19036)
IR 91 1224

7 ELECTE ju,
s ~ Lo 5

057

i,

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

gathering and maintaining the data needed, and completing and review:ng the coliection of information Send comments re?
coliection of informauion, mcluding suggestions for reducing this burden o Washington Headquarters Services, Dijectorate

Public reporting burden for this collection of information 15 estimated 1o average 1 hour per resporse, including the time for reviewing INSIructions, searching existing data sources,

arding this burden estimate or any other aspect of this

or information Operations and Reports, 1215 jetierson
Dawis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Otice of Management and Budger, Paperwork Reduction Project (0704-0188), washington, DC 20503

4. TITLE AND SUBTITLE

IMPROVING STOCHASTIC COMMUNICATION NETWORK PERFOR-
MANCE : RELIABILITY VS. THROUGHPUT

1. AGENCY USE ONLY (Leave blank) |]2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1991 Master’s Thesis

5. FUNDING NUMBERS

6. AUTHOR(S)
Leonard J. Jansen, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GSO/ENS/91D-10

3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

a mathematical reliability expression did not exist. This was accomplishe

maximizing expected flow and reliabihity. This was accomplished through
frontier in a modified multicriteria optimization approach. Using the metho

> This research investigated the measurement and improvement of two performance parameters, expected flow
and reliability, for stochastic communication networks. There were three objectives of this research. The first
was to measure the reliability of large stochastic networks. This was accomplished through an investigation into
the current methodologies in the literature, with a subscquent selection and application of a factoring program
developed by Page and Perry. The second objective was to develop a reliability improvement model given that

d modeling a hueristic by Jan and

Gopal, into a linear improvement model. Finally, the third objective was to examine the trade-ofl between

generating bounds for the efficient
dologies formulated in this research.

the performance parameters of both expected flow and reliability can be measured and subsequent improvements
made providing insight into the operational capabalities of stochastic communication networks. -

&_

14. SUBJECT TERMS

Networks, Reliability, Stochastic Networks, Communication Networks

15. NUMBER OF PAGES
225

16. PRICE CODE

17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIF
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

ICATION | 20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std 23918
298-102

Y Tt SR RTINS e S e R s AN B T Dot R
Lt SRTT S LR e T

AFIT/GSO/ENS/91D-10

IMPROVING STOCHASTIC COMMUNICATION NETWORK
PERFORMANCE : RELIABILITY VS. THROUGHPUT

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University

In Partial Fulfillment of the

Requirements for the Degree of Aceeasion Tor ;Z ,
Master of Science (Space Operations) | IS ORiar

PTiY tib 0

w0 mved O
Justiliestton____
| 3 —— e,
Leonard John Jansen, B.S. _Li3trtbation/ !

‘ Ave. labliivy Msdes
aptain B T

C p , USAF ! AveLl und/or
‘Diat f $pseial

M

December, 1991

Approved for public release; distribution unlimited

Thesis Approval

Student: Captain Leonard Jansen

Section: GSO 91D

Thesis Title: IMPROVING STOCHASTIC COMMUNICATION NETWORK
PERFORMANCE : RELIABILITY VS. THROUGHPUT

Defense Date: November 21, 1991

COMMITTEE NAME/DEPARTMENT SIGNATURE

| cQ O
Advisor Dr. Yupo Chan (//I%

Reader Captain John Borsi/ENS M ,/{""’“’

sadd, e

Preface

This research investigated the performance measurement and improvement of
stochastic communications networks. The methodologies developed were the result
of six months of research into network reliability and expected throughput. I would
like to thank my thesis advisor, Dr. Yupo Chan, for his technical expertise and
guidance. I would also like to thank my reader, Caplain John Borsi, for his insights
and suggestions. TFinally, 1 want to thank my wife, Penni, for her support and

understanding during these last eighteen months.

Leonard John Jansen

Table of Contents

Page
Preface e it
Tableof Contents i i il
Listof Figures i i it i e e viii
List of Tables e ix
Abstract e e e e e e . x
L Introduction e e 1
11 Background 1
12 ResearchProblem....................... 2
1.3 Sub-objectives. e e e e 2
14 Assumptions. e e e e e e 3
1.5 Methodology, 3
IL Literature Review 4
2.1 Network Representation 4
2.2 Expected Maximum Flow 4
2.2.1 Lower Bound Formulation. 5
2.3 Capacity Improvements 6
2.4 Survivability Improvements 6

25 Reliability 7 ‘

2.5.1 Solved Network.. 9 |

!

2.5.2 Alternatives to Ccmplete Enumeration. 11 3

i

|
\
\
o

2.6 Multicriteria Decision Analysis e e
2.6.1 Feasible Region Reduction Methods.
2.6.2 Feasible Direction Method.
2.6.3 Criterion Weight Space Method.
2.6.4 Tradeoff Cutting Plane Method.
2.6.5 Lagrange Multiplier Methods.
2.6.6 Visual Interactive Methods.
2.6.7 Branch-and-Bound Method.

2.7

III. Methodology

3.1
3.2
3.3

3.4
3.5
3.6

IV. Reliability
4.1
4.2
4.3
..4
4.5
1.6

2.6.8 Relaxation Method
2.6.9 Other Methods

- .

..................

..................

Summary

Understanding the Problem

Formulating the Reliability Performance Model

Formulating the Reliability and Capacity Improvement Mod-

els e e e e e e e

Formulating the Multicriterna Model

Selecting Software

. o e e

..................

Analyzing Communication Networks

.................................

Introduction,

Disjoint Product Algorithms

Most Probable State Enumeration.

Factoring e e e

Evaluation

Reliability Improvement Model

v

17
17
18

18
19
19
19

Page

V. Multicriteria Optimization 29
51 MCOModel 29

511 MCO Analysis. < 1 |

5.1.2 Costing Analysis - &

513 MCOSummary.. 34

52 Moadifications L L L L oL 34

53 Relmax 35

54 Flomax 37

55 Summary, ... 38

VI. Integration. 40
61 Tools., 40

611 GNA. 40

6.1.2 Arity/Prolog Interpreter. e 40

6.1.3 Formula Version3.0. 41

614 GAMS. L. 41

6.1.5 TurboPascal. 41

6.1.6 Dirprog. e e e e e e e e 41

6.1.7 Modprog. 42

6.1.8 Capinv., 42

619 Relinv. 42

6.2 Files L 42

VII. Resultsand Analysis 45
7.1 NetworkA........... e e e e e 45

7.1.1 Original Performance Parameters. 45

7.1.2 Reliability Improvement. 48

7.1.3 Combined Capacity and Survivability Improvements. 49

72 NetworkkB. 54

7.2.1 Original Performance Parameters. 54

7.2.2 Reliability Improvements. 57

7.2.3 Capacity and Survivability Improvements. 57

73 NetwaakC. 60

74 Surnmary 64

VIII. Conclusions and Recommendations e e e 65
8.1 Reli Sility Measurement 65

8.2 Reliability improvement 65

8.3 Trade-off Analysis. 66

84 Recommendations. 67

85 Summary e 67

Appendix A. Converted Networks 69
Appendix B. Network AGAMS Files 74
B.1 Linear Heuristic Reliability Improvement Model 4

B.2 Linear Capacity Improvement Model 78

B.3 Nonlinear Combined Improvemnent Model 100

Appendix C. FormulaInput Files 104
Cl Network A. 104

C2 NetworkB., 108

C3 NetworkC, 113

Appendix D. Formula Version 3.0 User’s Manual 124
D.1 Required Equipment 124

.2 Runningthe FORMULA 124

D3 Input. e 125

Page

D4 BExample o 127

D5 Output. 130

D.6 LP/MIP-83 Commands. e e e e e e e 131

.7 GINO Commands. e e e e e 132

D.8 Helpful Comments e e . . 132

Appendix E. Formula Version 3.0 Source Code 133
Appendix F. Reliability Programs and Files e e e e e 161
F.1 Dirprog - Turbo Pascal Version 161

F.2 Dirprog - ANSI Pascal Versior. 172

F.3 Network Reliability Files 182

F31 Network AlnputFile. 182

F.3.2 Network AQutputFile. 184

F3.3 Network BInputFile. 186

F.34 Network BOutputFile............... 188

F.3.5 Network CInputFile. 190

F36 Network COutput File. 193

Appendix G. Pascal Programs e e e e e e 196
G Convert 196

G2 Capinv.......... e e e e e e ... 200

G3 Relinv e, .. 204

Appendix H. Graphical Network Analyzer (GNA) User’s Guide (for Sun
workstations) L L Lo, 208

vii

AFIT/GSO/ENS/91D-10

Abstract

This research investigated the measurement and improvement of two perfor-
mance parameters. expected flow and reliability. for stochastic communication net-
works. There were three objectives of this research. The first was to measure the
reliability of large stochastic networks. This was accomplisiied through an investiga-
tion into the current methodologies in the literature, with a subsequent selection and
application of a factoring program developed by Page and Perry (18). The second
objective was to develop a reliability improvement model g; 'n that a mathematical
reliability expression did not exist. This was accomplished modeling a hueristic by
Jain and Gopal (15). into a linear improvement model. Finally. the third objective
was to examine the trade-off between maximizing expected flow and reliability. This
was accomplished through generating bounds for the efficient frontier in a modified
multicriteria optimization approach. Using the methodologies formulated in this
research. the performance parameters of both expected flow and reliability can be
measured and subsequent improvements made providing ins:ight into the operational

capabalities of stochastic communrication networks.

As with the expected maximum flow caleulation, Yim's capacity improvement

model will be used. which was examined in the literature review.

3.4 Formulaling the Multicritcria Model

Given an objective function for each criteria, expected flow and reliability.
a multicriteria optimization model was needed to generate the trade-off region or
efficient frontier for the two criteria. Lacking a criterion finction for network relia-

bility. two modified approaches to examine the trade-off reqion were investigated in
Chapter V.

3.5 Selccting Software

Given the performance measure and improvement models. software was re-
quired to implement the models. Previous work by Yim and Gaught used several
different off-the-shelf commercial solver packages to include GINO and LP/MIP-83.
The General Algebraic Modeling Svstem, GAMS, was selected both for its ability
to solve linear and nonlinear models on the personal computer and its ease in con-
verting from one model to another. In addition to the GAMS solver, Yim's Formula
program was used for network path generation and which required a Prolog compiler.
Finally. integration procedures and input file generation programs were written in

Pascal.

3.6 Analyzing Communication Networks

The above methodologies were applied to one small exainple network and three
large realistic networks. The example network was used to demonstrate the appli-
cation of the models to stochastic networks while the large networks were analy zed
with respect to their initial performance and subsequent improved performance. Fi-
nally. the trade-off region was examined for the networks., The deseription of the

three large networks along with their respective analysis is presented in Chapter VI

14

List of Figures

Figure Page
1. ExampleNetwork, 9
2. ExampleNetwork 20
3. ExampleNetwork 32
4. Example Network Efficient Frontier. 33
5 RelmaxPlot i, 36
6. FlomaxResults. 38
7. FlowDiagram i, 44
8. Network A e e 48
9. Network A Combined Improvements 52
10. Network A Efficient Frontier 53
11. NetworkB e 54
12. Combined Improvements, 58
13. Network B Efficient Frontier. 60
14. NetworkC e e e e e e e e e e 61
15. Network A - Converted G e e e e e e 70
16. Network A-Converted 71
17. Network B-Converted 72
18. Network B-Converted 73
19. Sample Network e e e e e e ~. 128
20. RevisedNetwork 129

viii

Lzst of Tables

Table Page
1. Network Success States 12
2. RelmaxResults.............. 36
3. Description of Arcsin Network A o v o v v e e et 46
4. Description of Nodesin Network A 47
5. Dependent ArcsinNetwork A 49
6. Dependent Nodesin Network A 49
7. Network A - Node ImportanceIndex 50
8. Network A - Arc Importance Index e e e e e e 51
9. Network A Reliability Improvements 51
10. Description of ArcsinNetwork B 55
11. Description of Nodes in Network B b6
12. Arc (4-24) Survivability Improvements 57
13. Network B - Node Importance Index @ e e e 58
14. Network B - Arc ImportanceIndex P 1
15. Network B Combined Improvements 60
16. Description of Arcsin Network C 62
17. Description of Nodes in Network C e e e 63

AFIT/GSO/ENS/91D-10

Abstract

This research investigated the measurement and improvement of two perfor-
mance parameters, expected flow and reliability, for stochastic communication net-
works. There were three objectives of this research. The first was to measure the
reliability of large stochastic networks. This was accomplished through an investiga-
tion into the current methodologies in the literature, with a subsequent selection and
application of a factoring program developed by Page and Perry (18). The second
objective was to develop a reliability improvement model given that a mathematical
reliability expression did not exist. This was accomplished modeling a hueristic by
Jain and Gopal (15), into a linear improvement model. Finally, the third objective

was to examine the trade-off between maximizing expected flow and reliability. This

was accomplished through generating bounds for the efficient frontier in a modified
multicriteria optimization approach. Using the methodologies formulated in this
research. the performance parameters of both expected flow and reliability can be 3
measured and subsequent improvements made providing insight into the operational

capabalities of stochastic communication networks.

Improving Stochastic Communication Network Performance :

Reliability vs. Throughput

I. Introduction

The Department of Defense (DoD) is concerned with the survivability of com-
munications networks and the flow of information through the network during crisis
situations. (12:2) The improvement of the expected maximum flow or throughput,
and reliability of stochastic communications networks can be accomplished through
increasing channel capacities or survivabilities within the network. Calculating the
maximum expected flow for a large stochastic network is computationally infeasible,
but very efficient mathematical programs have been recently developed to calculate
the lower bound of the expected maximum flow, which has been demonstrated to be
an accurate estimator. In addition, recent algorithms have been developed to calcu-
late the reliability of large stochastic networks. Based on the above programs, the
network performance parameters of expected flow and reliability can be measured

and investment strategies modeled to improve stochastic network performance.

1.1 Background

A stochastic communications network can be represented by a graph consisting
of nodes representing transmitters, receivers, or relay stations, and arcs representing
communication chaunels (land lines, microwave or satellite links) which connect the
individual nodes. Under adverse conditions, some arcs or nodes may fail and thus
each has an associated probability of survival. This is the basis for the stochastic
communication network in contrast to a deterministic network where there are no

probabilitics of failure.

To calculate the exact maximum flow through the stochastic network requires
~numerating all possible states of the network. Assuming a network with n com-
ponents {arcs or nodes). each being either up (operational) or down (failed), the

total number of states is 2. Yim gives an example of a network consisting of 55

arcs which, given a typical personal computer, would require 114.25 years to enu-

merate all possible states. (23:2) While the exact value for expected maximum flow
is computationally infeasible to solve for, Yim developed a mathematical program-
ming model which accurately estimates the expected throughput of the network by

calculating a lower bound value. (23:33)

Expanding on his expected throughput model, Yim developed several invest-
ment models for improving expected throughput by increasing individual arc ca-
pacities within the network. (23:38,40) Subsequently, Gaught developed additional
nonlinear investment models for improving expected throughput by increasing the

survivabilities of individual arcs within the network.

The performance parameter of expected throughput measures how much infor-
mation a network can flow under adverse conditions given the probability of paths
left to connect the source and sink. The expected flow is thus a weighted average
of the flow times the probability of each state of the network. For some operations,
however, the amount of flow is less important than the probability that the source
and sink are connected. This cannot be derived from the expected flow value but

must be calculated through the performance parameter of source to sink reliability.

1.2 Rescarch Problem

It is the purpose of this investigation to develop methodologies to measure
and impiove the expected throughput and reliability of a stochastic communication
network under budgetary limitations. The methodologies should be responsive to
the decision maker’s inputs, and computional times required should be short enough

to facilitate what-if scenarios in an interactive mode.

1.3 Sub-objectives

There are three sub-objectives of this research.

1. The first sub-objective is to investigate methodologies to measure network

reliability for large stochastic networks.

[SV]

. The second sub-objective is to develop a model to improve the network relja-

bility of large stochastic networks.

3. The third sub-objective is to ¢xamine the trade-off between maximizing the
two network performance parameters, expected flow and reliability, given a
limited budget.

1.4 Assumptions

The following assumptions were made consistent with those used by Yim (23:3)
and Gaught (12:3) :

1. Component failures are independent.

Components (arcs or nodes) are cither up (operational) or down (failed).

o

The flow of information through an arc is restricted to one direction only.

Rerouting of the flow is not allowed (for the lower bound formulation).

oo W

Only a single commodity flows through the network.

1.5 Methodology

The first sub-objective will be met by investigating the current methodologies
used to measure or bound network reliability and then select the most appropriate
technique for this research. If possible. linear models will be selected over nonlinear
models to avoid the problems of local optima and increased computational complex-
ity associated with nonlinear models. In addition. the preferred methodology will
operate within the memory and speed limitations of an IBM compatible personal

computer.

The second sub-objective will be met by developing a model to improve the
reliability of stochastic networks. It should be compatible with the selected method-
ology used above to measure network reliability. In addition. a mathematical solver
package needs to be selected to implement the developed reliability improvement

model.

The third sub-objective will be met by developing a methodology using multi-
criteria optimization (M('O) to analvze the trade-off between the two criterion ob-
jectives of maximizing expected flow and reliability. This approach should produce
a trade-ofl region from which an optimum solution can be obtained by applying the

decision makers preference function pertaining to the two criteria.

II. Literature Review

This chapter reviews the literature applicable to single-comiodity flows through
a stochastic communications network , network reliability, and multi-criteria decision
analysis. The following sections will discuss network representation, expected max-
imum flow, capacity improvements, survivability improvements, network reliability

measutes, and multi-criteria decision analysis methods.

2.1 Network Representation

A stochastic communication network is a collection of nodes interconnected
hv directed arcs or paths. The nodes may represent ground stations, repeaters, or
satellites while the arcs represent communication links between the nodes. Each
arc and node has an associated capacity and survivability where the capacity is the
iaximum flow the arc can carry while the survivability is the probability that the arc
w1l be up or capable of carrying flow. In a communications network , flow represents

the amount of information transmitted in w its of bits per second (hips).

In addition to a graphical illustration, networks can be represented in matrix
form using either a node-are incidence matrix or an arc-path incidence matrix. In
the node-arc form, the matrix rows correspond to arcs while the columns correspond
to nodes. The matrix entries, ¢k, are one of the following: a 1. which implies that
arc I ends at node k; a -1, indicating ¢ starts at &; or a 0. meaning no connection
exists (12:6). The arc-path form again uses rows to represent arcs, but the columns
correspond to paths within the network. The matrix entries. «,,. are eithera 1 which

implies are 7 is on patl j. or 0 meaning arc ¢ is not on path j (23:7).

2.2 Erpecled Marimum Flow

To calculate the exact value of the exprected maximum flow requires complete
enumeration of all possible network states of which there are a total of 2". ‘This
problem is classified as NP-kard meaning that there currently exists no algorithm
that can calculate the expected maximum flow in polynomial time or in other words,
that the computations required grow exponentially with the number of components

within the stochastic netvwork.

In contrast to the exact value of the expected maximum flow, the lower bouna,
sometimes referred to as the maximum expected flow, can be efficiently calculated.
Yim (23), assuming independent arcs and no rerouting, developed a formulation to
calculate the maximum expected flow {lewer hound). This formulation uses an arc-
path incidence matrix representation 2 « .- .timizes the sum of the product of path

reliabilities and flows. A descrintion ~7 * i1 = (23) formulation follows.

2.2.1 Lower Bound Formulatic: ihe reliability R, of path A, within the

network can be computed by
R] - L <4, 2

Now let f, be the flow on path j. The sum of the expected flows on all tie

paths from source to sink is given by

Zgzl RJfJ

Letting a,; equal 1 if arc ¢ lies on path j, and 0 otherwise, the lower bound

formulation is as follows:

.5 A
Max Z}:] R]f]

s.t
Siaanf, Suifori=1.2..... n

f,=0

Yim uses the notation u, to represent the capacity of arc i (23:16-18).

To facilitate the maximum expected flow calculation. Yim (23) developed a
computer program, Formula, using the artificial intelligence language PROLOG,
to generate the network flow paths. An input file was then generated and input
into a mathematical programming package for solution. His results were validated
against exact solutions generated by Bailey who used simulation and response sutface
analysis on the same experimental networks (24:18-20). Yim states * Fven though
the lower bound estimate ignores re-routing, the states considered ave prominent
enough to adequately represent the expected throughput — apparentiy much more
accurate than the assumption of no link failure in the upper bound (no failures)
formulation.” (24:18)

2.3 Capacity Improvements

To improve the expected flow through a stochasiic netwark, either the arc
capacitics or survivabilities must be increased. In this section , Yim’s (23) investment
strategy model for increasing throughput by increasing arc caparity will be reviewed
while the next section will exarnine Gaught’s (12) investment suatcgy model using

increased arc survivabilities to increase network throughput.

Yim developed a linear programming model which maximizes the lower bound
of e :pected maximum flow given a fixed budget for increasing arc capacities. The
mo-.e! assumes no physical upper limit for arc capacity imi rovements and equal
costs for increasing arc capacities by one unit. The solut 2 obtained from the

model identifies which arcs znd by how much each should be increased.

The model is similar to that of the lower bound formulation, but with the

following modifications. An increased arc capacity term, d;, is included in the flow

capacity constraint, and a budget constiaint is introduced, where « is the cost of
increasing arc 7 by one unit and 3 is the total budget available. The model is as

follows:

Sy anf, <u, +4d,

Lag=1
n -
Ly aad, <3

Ry.u.di.f;.04.8 20 and a, =0,1

2.0 Survivability Improvemanis

Gaught (12) developed an investiment strategy model to increase the expected
maximum flow through the nevwork by increasing the survivabilities of the arcs. He
introduced three additional assumptions to those made in the lower bhound model;
I} all arc survivabilities had the potential to he increased to one. 2) ave survivabil-
ities will be increased in increments of one tenths. and 3) the costs to increase arc

survivabilities were equal and linear.

The objective function maximizes the sum of the expected flows over all paths

from source to sink and 1s

Max Y3, R, f, where R, =], P,
|

' ,

’ ()
|

|

Max¥7_, R, f,

In Gaught’s model, however, the path reliability R, is not a constant but a
product of the arc survivabilities, which are dependent on the increased survivability

factor X,. Thus the path reliabilities are nonlinear and are
RJ = H,(P; +.1- X:')

The constraints consist of a maximum arc survivability constraint, a flow ca-
pacity constraint, and a budget constraint. The first constraint ensures the arc
survivabilities (original P, plus increase .1 X;) are less than or equal to one. The
second constraint ensures the arc flow is less than or equal to the arc’s capacity u,.
Finally, the third constraint limits the sum of the costs to increase arc survivabilities,

a times X, to less than or equz! to *l.c total budget available, 8.

Gaught’s (12) nonlinear 1 :odei is as follows:

Max 3°9_, R, f, where R; = [,(P, +.1- X))
s.t.
P+1-X,<1 i=1.2....n
Z(J’=1 “uf; <
=1 QX S

“\-ivR-fJ-On-ﬂ > 0 and ay, = U,l

2.5 Reliability

Reliability is a useful measure to analvze the performance of networks. The
traditional approach nsed in evaluating network reliability considers some measure of
network connectivity. usually source to sink or interconnectivity between k specified
nodes. A second approach considers the ability of the network to transmit a required
flow from source to sink. Aggarwal (2:184-180; mtegrates network capacity with
reliability to define a network reliability performance index as the probability of

successfully transmitting a required flow from source to siek.

Aggarwal's approach (2:184-186) uses a normalized weighting scheme conpled

with the traditional s - 1 reliability methodology. The success states of the network

-

(considering path availability only) are identified and the associated state proba-
bilities are calculated. Aggarwal then multiplies the state probabilities by their
normalized weights based on the states maximum flow. The normalized weight is
defined as ratio of the state’s maximum flow to the original network’s maximum flow.
The weighted state probabilities are then summed to form the performauce index.

Aggarwal uses the following notation (2:184):

s,t source, terminal node

Prs(r reliability, unreliability of branch «

T set of all states

S. F set of all success, failure states

S, a member of set $

Ps, probability of system being in state 5,
C, capacity of the subnetwork in state S;
w, normalized weight for state S,

Cinaz capacity of the network with all branches up
Ry s - t reliability

Pl performance index

For a network where the arcs have only two states, up or down. and the nodes
are perfect, the set of all states T', consist of 2" diflerent states where n is the number
of arcs. From this total set, a subset S. needs to be determined corresponding to

those system states that have at least one complete path from s to (.
For each state S, (S, € 5). the following aie defined:
a, -arciisup
J; - arc i is down

The probability of state 5; is:

I)S, = naEn, Pi Hreﬂ, Uh

The traditional s 1 reliability is:

Rst = Z(s,es) Ps.
Aggarwal defines the normalized weight w; as:

C,
_ _C
W = Crer

Then the weighted reliability or performance index, PI is:

PI =3 (s,es)w.Ps,

Aggarwal’s performance index requires the enumeration of all network success
states. Due to the binary nature of the arc states, up or down, an efficient algorithm
based on boolean algebra variables (literals) has been developed by Brown to deter-

mine those success states of the network out of the set of tota) states. (8:121-124)

2.5.1 Solved Network. The network in Figure 1 was used for an example
application of Aggarwal’s reliability performance index using Brown's algorithm to

generate the network success states.

(surv.cap)

Figure 1. Example Network

9

P |

The example network consist of seven arcs and three s — { paths, A-B-C, A-
D-G, and E-F-G. Using Brown's algorithm (8:121-124), thirty-nine network success

states were determined from a possible 128 states and are listed in Table 1.

The probability of each success state was calculated and the s - { or connect-
edness reliability was obtained by summing the success state probabilities. For the
example network, the result was 0.8282. Another reliability measure would be a
maximum flow reliability index R;., where only those success states that have a flow
capacity equal to the maximum are considered. For the sample network, only one
state. where all arcs are operating. can provide the maximum fiow of nine units. The

maximum flow reliability index was calculated to be 0.2097.

Given the two above reliability indicators. there still existed a large gap of
network flow information between them. Aggarwal’s performance indicator filled in
this gap where:

Rj¢<P1<R5(

The P fo- the required flows Cp less than (., for the example network are

as follows where the definition of w, is modified as:

e WG <0

w; =
i otherwise
Flow Required Pl
T<OR<9 5308
< Cp<i 631
1< (p<h 7358

2<Cp < 1622

The expected maximum flow for the network can also be calculated by summing
the state probabilities times the capacity or maximum flow of that state. For the
above network, the expected maximum flow was 4.78. Yims lower bound for the

example network was 4.69.

Aggarwal’s reliability performance index provides valuable insight into the flow
capabilities of stochastic networks. The information though comes at a cost, that
of computational explosion due the exponential nature of the state space. While
Brown has provided an algorithm for determining the network success states, they
still number a large fraction of the total states and become very large for any re-
alistic network. The algorithm also requires enumeration of ali the source to sink
paths. Due to ar artificial intelligence based path cnumeration program written by
Yim (23). the path enumeration part can be gencrated. The second difficulty with
Aggarwal’s method is determining the flow capacity for all the success states. While
there are numerous efficient algorithms and commercial network packages to solve
for the maximum network capacity. again the calculations required for all the states

becomes computationally infeasible for large networks.

Aggarwal’s approach for examining the flow reliability of a stochastic network
has been demonstrated on a small sample network to establish a base from which
to improve upon. The network performance information gencrated is valuable. but
improvements in decreasing the computational explosion need to be investigated.
Yim has developed an efficient bounding model for the expected maximuam flow.
Coupling this with an efficient s - 1 reliability measure will give two pevformance
measures that although not as complete as Aggarwal’s measure. can give the decision

maker a basis for a better understanding of the network performance.

2.5.2 Alternatives to Comnplete Enumeration. Provan and Ball have shown

that virtually all network ieliability problems are NXP-bard (19). Complete cnumer-
ation of the success states can provide varving insights into the performance of a
network including 7 reliability. performance indexes. znd expeeted maximum
flow. Several methodologies exist however. based on certain key structures within
the network. to measure reliability based on other than states. Alternative method-
ologies based on states. paths. and ares will be evaluated in measuring the « f

reliability. See discussions in Chapter IV regarding probable states. disjoint paths,

and lactoring.

Table 1. Network Success States

State tzlement States State State Probability Expected
Number A B C D E F G Capacity Ps, Flow
1 0 0 0 0 1 1 1 5 .0008192 0040960
2 0 0 0 1 1 1 1 5 .0032768 .0163840
3 6 o 1 0 1 1 1 5 .0032768 .0163840
4 0O 0 1 1 1 1 1 5 0131072 .0655360
5 6O 1 0 0 1 1 1 5 0032768 .0163840
6 o 1 0o 1 1 1 1 5 .0131072 .0655360
T o ¢t 1 0 1 1 1 5 0131072 0655360
8 o 1 1 1 1 1 1 5 0524288 .2621440
9 1 0 0 0 1 1 1 5 .0032768 0163840
10 i 0 0 1 0 0 1 4 .0008192 .0032768
Il 1 0 0 1 0 1 1t 4 0032768 .0131072
12 1 0 0 1 1 0 1 4 0032768 0131072
13 1 0 0 t 1 1 1 7 .0131072 0917504
14 1 0 1t 0 1 1 1 5 0131072 .0655360
15 1 0 1t 1 0 0 1 4 0032768 0131072
16 1 01 1 0 1 1 4 0131072 .0524288
17 1 0 1 1 1 0 1 4 .0131072 .0524288
18 1 0 1 1 1 1 1 T 0524288 .3670016
19 1 1. 0 0 1 1 1 5 0131072 .0655360
20 1 1 0 1t 0 0 1 4 .0032768 0131072
21 1 1 0 t o0 1 1 4 0131072 .0524288
22 it 1 6 t 1 0 1 4 0131072 0524288
23 10 11t 11 n 0524288 3670016
24 1 1 1 0 0 0 0 2 .0008192 001638
25 1 1 1 0 0 0 1 2 0032768 0065536
26 1 1.1 0 0 1 ¢ 2 0032768 .0065536
27 1 11 0 o0 1 1 2 0131072 0262144
28 tr 1 1 0 1t 0 O 2 .0032768 .0065536
29 1 1 1 0 1 0 1 2 .0131072 026214+
30] 1 1 06 1 t 0 2 0131072 0262144
31 f1r 1 0 1 1 7 0524288 23670016
32 1 1+ 1 1 0 0 0 2 0032768 .0065536
33 1 1 1 1 0 0 1 5 0131072 0655360
34 1 1 1 1 0 1 0O 2 0131072 0262144
35 || i | I O S B b 0524288 .2621440
36 1+ 1 1 1 0 0 2 .0131072 0262144
37 1 1 131 1 1 0 1 5 .0524288 2621440
38 1 1 1 1 1 1 0 2 0524288 0262144
39 1 1 I | A T 9 20907152 1.83874368
Ry 8282112 1.780032

2.6 Multicriteria Decision Analysis

Many real-world decisions involve conflicting multiple objectives, attributes,
goals, and criteria which can not be effectively reduced into a single aggregate crite-
rion (25:xi1). Multi-criteria decision analysis (MCDA) combines the quantifiable as-
pects of mathematical optimization with the qualitative aspects of a decision makers
(DM) preferences to arrive at a best compromise solution for the multiple objective
optimization problem (MOP) (20:5-8).

Due to the conflicting nature of the objectives. several solutions, called efficient
solutions, are obtained. An efficient solution is one where an improvement in any
other objective would degrade one or more of the other objectives (11:1270). The
efficient frontier consist of all the efficient solutions. This set is also known as the
nondominated,noninferior.or pareto optimal solutions (21:98). The best compromise
solution is that efficient solution which maximizes the DM’s value or preference

function, assuming more of each objective is preferred to less (11:1270).

In addition to an optimization methodology, some scheme to obtain and formu-
late the preference function is required. MCDA methods can be classified into three
categorics based on the timing of obtaining the DM’s preference structure relative
to the optimization (11:1271):

I. prior to the optimization (priori)
2. after the optimization (posteriori)

3. during or in sequence with (progressive)

The first approach requires interviews with the DM prior to optimization to
formulate the preference function. The determination of the function may require
a prohibitive amount of time and effort accompanied by the DM’s difficulty in ex-

pressing the required information (11:1271°

The second approach generates all o1 most of the efficient solutions. presenting
them to the DM for a most preferred selection. There are three problems associated
with this approach: first, the material presented to the DM may be difficult to
understand: second. many real problems are too large to solve for most of the efficient
solutions: and third, the number of efficient solutions presented is too large for the
DM to analyze effectively (11:1273). These methods may, however. be useful in

generating efficient inputs for the third approach discussed helow (21:98).

13

In the third approach, the DM interacts with the optimization process provid-
ing preferences in an iterative manner. This approach is also known as an interactive
multiple objective optimization. In 1982, Zeleny stated “Some approaches, although
promising and potentially very useful, are not yet sufficiently developed and theoret-
ically grounded to warrant a serious review (for example, interactive programming
approaches).” (25:xii) In 1988, The CONDOR report stated “Interactive software
will require more realistic representation of decision maker preference that reflect
lack of surety and preference changes that arise as interaction proceeds.” (10:624)
In 1991, however, Shin and Ravindran suggest that the interactive methods are con-
sidered “promising™ and comparative studies indicate superiority over the other two
approaches (21:98).

Shin and Ravindran (21) divide the interactive methods into the following
categories: feasible region reduction methods; feasible direction methods; criterion
weight space methods; tradeoff cutting plane methods; Lagrange multiplier methods;
visual interactive methods; branch-and-bound methods: relaxation methods; and
other important methods. Each will be briefly reviewed referencing the Shin and

Ravindran Survey (21) which is the most current and extensive survey on the subject.

2.6.1 Feasiblc Region Reduction Methods. Fach iteration consist of a calcula-
tion phase, a decision phase, and a feasible region reduction phase. In the calculation
phase, an idcal solution is obtained from the nearest efficient solution with respect
to given weights, The DM's responses in the decision phase are used to create ad-
ditional constraints which reduce the feasible region. The iterations continue until

the DM feels the current solution is the best compromise solution (21:100).

2.6.2 [Feasible Direction Mcthod. This is an iterative method which starts
with a feasible solution and proceeds to a more preferred solution using a direction
and step-size. based on the DM's preferences. The pioneering method is the GDT
procedure by Geoffrion which is a modified Frank Wolfe method. Several extensions

have been developed to improve the direction finding step or the imbedded line search

(21:101,102).
2.6.3 Criterion Weight Space Mcthod. This method combines the objectives
into a single objective by using weighting. A set of tradeoffs associated with the

current singie weighted objective is presented to the DM whose responses are used

to create additional constraints on the weights and generate a new efficient solution.
The iterations end when the DM is satisfied with the current solution (21:102,10.).

2.6.4 Tradeoff Cutting Plane Method. This approach is a variation of the
fcasible direction method. Culting planes are used iteratively to reduce the feasi-
ble region eliminating the need for a line search. Several modifications have been

developed to reduce the DM’s burden in the interactive process (21:104).

2.6.5 Lagrange Multiplier Mcthods. These methods use the Lagrange multi-
pliers of the constraints, resulting from the maximization of one objective relative
to the bound set of objectives, to form tradeofl functions. Interactions with the DM
are then used to generate shadow prices of the bound objectives and thus define a

surrogate worth function (21:104,106).

2.6.6 Visual Interactive Methods. These methods use graphic-aided interac-
tive approaches as an extension of the GDF method. A graphic of a subset of the
efficient frontier is generated each iteration for interaction with the DM. This allows
the DM to control the efficient frontier through the interactive process. Shi states

that with advanced personal computers, this approach is becoming popular (21:106).

2.6.7 Branch-and-Bound Mcthod. 'This method divides the objective space
into subsets where cach subset is a branch and further branching can occur if it has
promise. An ideal solution is determined at cach branch and is used to form an upper
bound for that branch. Each solution is compared to the incumbent solution through
interaction with the DM. A branch is fathomed if dominated by the incumbent
solntion (21:107).

2.6.8 Relaxation Method. This method generates a master LP problem equiv-
alent io the original problem and is solved iteratively by relaxation of some con-
stramts. At cach iteration, bounds of the objective functions are presented to the
DA for interaction (21:107).

2.6.9 Othcr Methods. Other lesser used but important methods to consider

inclnde sequential methods, scalarizing function methods, fuzzy methods. and sta-
tistical methods {21:107.108).

The effectiveness of the methods depends on problem structure and the char-
acteristics of the methodology selected (21:108). The characteristics to consider are
interaction style, solution approach, applicability, and mathematical programming
required (21:109). In addition, the methods should be evaluated with respect to
the DM’s cognitive burden, ease of actual use, effectiveness in the decision-making

process, and the ability to handle DM inconsistencies (21:110).

Buchanan and Daellenbach (9) perforined a comparative evaluation of four
interactive methods in 1987. They concluded that, “DM’s seem to prefer solution
methods where they arc in control, and where they are allowed to backtrack and
change previous inconsistent decisions.” (9:358) In addition, they suggest that the

DM can reasonably demand the information presented be in a high quality graphics
form (9:358).

2.7 Summary

Methodologies exist to calculate the maximum expected flow (lower bound)
and reliability for stochastic communication networks. Separate investment strat-
egy models have been developed to improve the network flow by increasing either
arc capacities or survivabilities. In addition, the development of an artificial intelli-
gence program o enumctate the paths within the stochastic network decreases the
time and effort required for the above calculations. Finally, numerous interactive
multiple criteria decision analysis tools are available for application to the problemn

of analyzing trade-offs in improving the performance of stochastic communications

networks.

III. Methodology

An overall research plan was accomplished in order to fulfill the research ob-
jectives outlined in Chapter 1. The research plan consist of the following steps 1) un-
derstanding the problem, 2) formulating the reliability performance measure 3) for-
mulating the reliability improvement model, 4) formulating the multicriteria model,
5) selecting software to implement and integrate the models, and 6) analyze com-

munication networks.

3.1 Understanding the Problem

The performance of stochastic networks can be cvaluated using several param-
eters. This research concentrated on two specific performance parameters, source to
sink expected maximum flow and source to sink reliability. Both required method-
ologies to measure and improve each parameter, after which tradeoff methodolo-
gies were applied. For this research, the tradeoff was between improving network
expected maximum flow through increased arc capacities and survivabilities, and

increasing network reliability through increased arc survivabilities.

The calculation of the two performance parameters for large stochastic net-
works was not an easy task due to the expounential nature of the calculations. In
general. the calculation of the exact performance values is NP-llard meaning there
exists no known algorithim that can solve for the value in polvnomial time. Faced
with the NP nature of the problem. three general types of methodologies have heen
applied by researchers in calculating the performance parameters. The first is simu-
lation. which models the network and given a large number of samples will calculate
a statistically significant value that approximates the exact value. To get an accurate
approximation though requires a very large number of samples with a coriespond-
ingly large run time. The simulation approach was not considered for this research.
although previous simulation work done by Bailev (5) was used as reference for the
network analysis portion of this research. The second approach has been to bound
the exact value. thus caleulating an upper and lower bound for the exa-t performance
measure value. This approach reduces the number of states considered and thus may
be computionally feasible given the bounds are sufficiently tight to be useful as a per-

formance measure. The third approach is to increase the efficiency of nonpolynomial

i

algorithms to the point that the required run time and memory requirements are
sufficiently reduced so as to meet the time and memory constraints of the problem
to be solved. The last two of the above three methodologies will be examined with

respect to network expected maximum flow and 1eliability performance models.

3.2 Formulating the Reliability Performance Model

The calculation of the reliability performance measure can be accomplished
through four general techniques. The nirst using complete state enumeration becomes
computationally infeasible for even medium size networks but can provide valuable
insights when applied to small models. The other three techniques consist of the
most probable states. disjoint products, and factoring. Each will be investigated for

its applicability to the research problem and presented in Chapter IV.

The expected maximum flow performance measure will be calculated using
Yim’s lower bound formulation which calculates a sufficiently tight lower bound

using path enumeration as discussed in the literature review.

3.3 Formulating the Reliability and Capacity Improvement Models

Once the perforinance measure models were selected, methodologies to allow
investment for improving the measures needed to be developed. Gaught (12) had
developed an investment strategy which incrcased the lower bound of the expected
maximuin flow by increasing arc survivabilities. While this had a side effect of in-
creasing network reliability. it did not maximize network reliability. The most desired
improvement model would be one that maximized a reliability mathematical expres-
sion. Due to the reliability methodology selected, a mathematical expression was
not generated for use as a reliability improvement objective function. In addition, a
reliability expression for large networks would result in an exceedingly long nonlinear
expression requiring large amounts of memory to store and optimize, if at all pos-
sible. Thus a linear heuristic methodology by Jain and Gopal {15) was used which
did not require a reliability expression to maximize the network reliability. The
methodology orders the network ares with 1espect to their potential contribuition to
the overall network reliability. In addition to not requiring a reliability expression.
the methodology was lincar in natine. greatly reducing the computational complex-
ity and avoiding the local optimum problems associated with Gaught’s nonlinear

improvement. model. Jain and Gopal’s method will be deseribed in Chapter 1V,

Is

As with the expected maximum flow calculauion, Yim’s capacity improvement

model will be used, which was examined in the literature review.

3.4 Formuluting the Mullicriteria Model

Given an objective function for each criteria, expected flow and reliability,
a multicriteria optimization model was needed to generate the trade-off region or
efficient frontier for the two criteria. Lacking a criterion function for network relia-
bility, two modified approaches to examine the trade-off reqion were investigated in
Chapter V.

3.5 Selecting Software

Given the performance measure and improvement models, software was re-
quired to implement the models. Previous work by Yim and Gaught used several
different off-the-shelf commnierciat solver packages to include GINO and LP/MIT-83.
The General Algebraic Modeling System, GAMS, was selected both for its ability
to solve linear and nonlinear models on the personal computer and its ease in con-
veriing from one model to another. In addition to the GAMS solver, Yim's Formula
program was used for network path generation and which required a Prolog compiler.
Finally, integration procedures and input file generation programs were written in

Pascal.

3.6 Analyzing Communicalion Nelworks
yang

The above methodologies were applied to one small example network and three
large realistic networks. The example network was used to demonstrate the apphi-
cation of the models to stochastic networks while the large networks were analyvzed
with respect to their initial performance and subsequent improved performance. Fi-
nally. the trade-off region was examined for the networks. The description of the

three large networks along with their respective analysis is presented in Chapter VL

19

IV. Reliability

4.1 Introduction

Several techniques exist to measure the reliability of stochastic networks. The
three major techniques appearing in the literature were examined to determine which
was best suited for this research. The first technique examined was that of disjoint
products where the network paths are used to generate disjoint terms for which
the sum of all terms is the exact network reliability value. The second technique
involved the network’s most probable states where only those siates that contribute
the most to the network reliability are used, thus generating an upper and lower
bound to the exact reliability value. Finally. the recursive technique of factoring in
conjusiction with reduction techniques was examined in the calculation of the exact
reliability value. The three techniques were applied to Figure 2 for illustrative as

well as evaluative purposes.

(surv.cap)

Figure 2. Example Network

4.2 Disjoint Producl Algorithms |

Given the m success paths P, P,,---, P, are known, the system success can
be described as:

S=P1UP2U"‘UPm ;

If the paths are made disjoint (mutually exclusive), then the s - t reliability

can be described by:

Rst=Pi'(S)-——P‘I'(P;UPQU"'UPm)

Aggarwal (3:83-85) presents an algorithm that makes the success paths disjoint
thus allowing for the exact calculation of the s ~ { reliability. Abraham (1:58-61)
presents an improved algorithm that provides a reliability expression where all paths
are made disjoint. Abraham’s algorithin will be applied to the same examiple network
ased in Chapter I1. The paths «re first ordered by the number of arcs within the
paths. In this case all three paths have three arcs so the first to he considered
will be path A-B-C. Since it is the first path to be considered. it does not need to
be made disjoint with others. thus generates only one product term, poppe. The
second paii considered is E-I-G. Three product terms arce generated to make it
disjoint with the first pach. These are g, p prpg. paqupepspy- and papeqepepspy. Finally
the third path. A-D-G. was made disjoint with the previoes two. generating four
additional terms. pagydaqe Py- PaquPapeqspy s PalodePdqedty and papugepapeqrpg- The
total reliability expression is as tollows:

Ryt = papipe+qapepspy+ paqpe 1y Py PaPsqepe Py + PaoPdGePg + PaGoPape gy, +
PaPoqePdGc Py t PaPelePaPeq sy

The resulting reliability from the above eight term reliability expression was

8282, which agrees with the results obtained by complete ennmeration of the 39

2

success states in Chapter 1I. In his paper. Abraham presents the results of his al-
gorithm on a network consisting of 12 arcs and 24 paths. The resulting reliability
expression contains 71 terms compared to 4096 total states for the network. While
this algorithm generates the exact reliability value, it can also be used to calculate
a lower bound by utilizing those terms with the least number of complemented (¢.)
terms. For the example network used in this paper, the first four terms using only
one complemented arc will produce a lower bound reliability of .761856 which is
within 10 percent of the exact value. In Abrahams network, using those terms with
up to two complemented arcs results in 14 terms producing a lower bound of .8369

which is again within ten percent of the exact reliability value.

Given the same number of terms used. the closeness of the lower bound to the
exacl value will decrease with lower arc survivabilities. For the example network
used in this paper, if all arcs had a survivability of .6 rather than .8. the lower
bound would be .385344 compared to an exact value of .4738176. This results in a
lower bound within 20 percent compared to the previous ten percent result when arc

survivabilitics were .8.

Recent work by Locks (17) has made further efficiency improvements to the
disjoint product technique by using rapid inversions in place of search operations.
For Abrahams network of 21 paths, Locks generates 60 disjoint product terms com-
pared to Abraham’s 71. Exven furt) or improvements have been made by Heidtmann
(13) who. for the same network. generated only 11 disjoint product terms. While
Heidtmann’s algortithm is the most efficient. the number of disjoint product terms
still grows exponentially with the size of the network. Thus for large networks. a
reliability expression may contain thousands of terms with each term containing tens

of products. creating an extremely large nonlinear expression.

4.4 Most Probable State Enumeration

For large networks. caleulating the exact reliability value becomes computa-
tionally prohibitive. Rather than enumerating all states. Li and Sylvester (16:1105-
1110) consider only the m most probable states to compute lower and upper bounds
on network petformance measures. 1o include = 1 reliability. As shown in Chaptet
IL the probability of state k is given by the product of the are success probabilities.

pr. and the are failuie probability ¢, which is defined as 1 - p,.

[
t

Li and Sylvester rename the arcs with an R, term where R, = ¢,/p;. With the

above renaming. the state probabilities can be calculated by

Psk = H:lzl pi(qt/pt)T'(sk)

or

IJSk = (n:_;l Pz) (H;;l RZ}(Sk))

where

o 0 if arc 7 operates in state Sy
Ti(5k) =

1 otherwise

The most probable state, 5y is when all arcs are operational. and the next most
probable states are those with only one arc failure. Li and Sylvestor (16) developed
an algorithm called Order which by using R, wheve It} > Ry > --- > R,. orders the

m most probable states.

Li and Sylvester (16:1106,1107) also include a method to estimate the number
of states required to achieve a specified coverage of the state space where [, is defined
to be the probability associated with the states considering up to [, arc failures per

state:

n
f1.= Ty ‘ et

This equation assumnes that the p values and thus the resulting ¢ values are the

same for all are<. IF are survival probabilities are different. seleeting a p value equal

23

to the lowest arc survivability value will generaie a lower bound on the state space

covered.

Given the m most probable states, The lower and upper bounds for s—-t re-
liability can be calculated where Li and Sylvestor use a reliability or connectivity

performance measure C(Sy) where

1 if arc 7 the network is connected in Sy

0 if not

and thus

Cr(m) = Thzy P(SK)C(Sk)

Cu(m) =i P(SH)C(SE) + (1 = T, P(Sk)

In other words. the lower bound is the sum of all the connected e states and
the upper bound is one minus the sum of all the disconnected m states. The upper
and lower hound converge on the exact reliability value. When all possible states
arc considered. the upper and lower bounds equal the exact reliability value, For the
example network with are survivabilities equal to 8. the upper and lower bounds
were computed considering only states with up to two arc failures. The lower bound

is 7995392 and the upper bound is 931464.

For large networks (50 ares). considering the most probable states up to 3 arce
failures. 20,877 states will be used in the caleulations. With are survivabilities of W
the covered state probability is 24 percent. In other words. the uncertainty bhetween
the lower and upper bounds is 76 pereent. I are survivabilities are lowered 1o .8
and up to five arc failures are allowed per state. over 2 million states will be used
with a resulting uncertainty of 95 percent. This demonstrates the usefullness of this

approach is limited to networks with ave survivabilities greater than 9.

21

4.4 Factoring

The factoring theorem of reliability states that the reliability of a binoinial
system S can be decomposed with respect to the probability of the two possible

states (up or down) for a selected arc :

R(S) = p, R(S|i up) + ¢ R(S|r down)

The decomposed reliability expression can be applied recursively with reduic-
tion techniques applied within the recursions. Eventually the network is reduced to
a simple structure for which the reliability can be easily calculated. The compleaity
of factoring algorithms is dependent on the selection rules for which ares are to be
factored (22).

Page and Perry (18) have developed a recursive computer program. dirprog,
based on factoring in conjunction with reduction techniques that efficiently solves
the s - t reliability for large directed stochastic networks. Sec Appendix F for a

Pascal source code listing.

Network reduction techniques require only polvnomial time et by reducing the
size of the network. thereby reducing the state space. tend to reduce the exponential
growth of a factoring algorithm’s backtrack search structure (22:272). Page and

Perry summarize the network reduction techniques used as follows (18:558.55%):

1. Remove arcs directed into the source or out of the sink. They are irrelevant,

2. Remove dead-end and false-start nodes. A dead-end node is 2 node other than
the sink having no are directed outward from the rode. A false-start node is a

node other than the source having no are directed into the node.

3. I there is a single are ont of the source or inmto the sink. contiact the are
(making the adjacent node into the new source or sink). The reliability of
the original network is the reliability of the reduced network multiplied by the
survivability of the contracted arc. This is the orly reduction that generates a

multiplving factor

4. I there is a single are directed into or out of a node other than the source or

sink. then the anti-parallel are (if 1t exists] can be removed.

2

P e ~

5. Series arc reductions. Two arcs with a common node for a head and tail with

survivabilities p; and p; can be replaced by a single arc with survivability p;p,.

6. Parallel arc reduction. Two parallel arcs (arcs joining the same two nodes and
having the same orientation) with survivabilities p; nd p; can be replaced by
a single edge having the same orientation as the original edges and having a

survivability of p; + p2 = p1p2.

For the example network, dirprog was run with the following results. A net-
work reliability of .8282 was calculated. requiring 3 source/sink reductions, 4 chain
vertex reductions, and 1 factoring. The computation time required was less than .01

seconds.

4.5 FEvaluation

The disjoint product technique can be used to solve for the exact reliability
value but for large networks. is limited by the amount of memory available to store
the disjoint products. A lower bound approach can be used to limit the number
of disjoint products but the effectiveness of this approach is dependent on the arc
survivabilites with high arc survivabilities lending to increased cfficiency. Lower
arc survivabilities. as is seen in this research, would not benefit as much from this
bounding technique. In addition. a lower bound without an associated upper bound
leaves a window of nncertainty {rom the lower bound up to a reliability value of one

for where the exact reliability value lies.

The most probable state enumeration method can he used to calculate a lower
and upper bound for » 1 reliability. While Li and Svlvester have an cfficient
algorithm to order the most probable states. the effectiveness is again dependent
on the arc survivabilities. In addition to determining the most probable states. an
efficient means to separate those states into connected and non-connected states is
required for the reliability bounding calculations. It is also seen that the efficiency
for calculating the bounds decreases with lower arc survivabilities where as shown.
arc survivabilities helow .9 greatly increase the computations required to make this
method computationally leasible for large networks. Generally, these methods are
applicable when applied to reliability problems where the arc reliabilities are .9

or greater. For large network survivability problems where arc survivabilities are

26

often less than .9, such as in this research, the most probable state method is not

applicable.

The factoring technique in conjunction with reduction mecthods is very effective
in calculating the reliability of large directed networks encountered in this research.
The networks lend themselves to available reduction methods used by Page and
Perry and the recursive nature of their program enables large networks to be run on
personal computers up to a point where the MS DOS stack limit of 64K is reached.
For larger networks. a modified version of dirprog running under a VMS operating

system was written,

4.6 Reliability Improvement Model

The network reliability improvement model is based on a linear heuristic method
developed by Jain and Gopal (15). Their method calculates an important index. 11,
and thus a ranking for cach arc in the network. The arcs with the highest important
index are the most vital. contributing the most to the network reliability and thus
are assigned the highest reliability. The important index is based on the following

two observations by Jain and Gopal (15).

I. Low cardinality s - t paths contribute more to network reliability than high

cardinality paths and so arc more important.

2. The higher the frequency of occurrence of an arc in a particular cardinality

path set. the more important it is.

The importance index 71, is defined as:

T,
1, = ZT\TI“):’“("E

1

where the following notation applies

o [, = frequency of occurience of arc j in s 1 paths of cardinality ¢,

e NP, = number of s - t paths of cardinality C,

Jam and Gopal (15) outline the following four steps to determine the important
indices:

1. Generate all s -t paths.

2. Arrange all paths in groups in order of increasing cardinality. Count the num-
ber of paths (NFP;) in each cardinality (C,) group.

3. Find, for all j, the frequency of occurrence f;, of arc j in each group of paths.

4. Determire 11, for all j.

Using Formula to generate the paths through a depth first search process. the
important indices can be calculated using the above procedure. A linear mathemat-
ical model was then developed to improve the arc survivabilitics with the highest

index, subject to a maximum arc survivability of one and a finite improvement bud-
get.

The objective function maximizes the sum of the important indices over all arcs
X, given each arc has an initial survivability P,. The two tyvpe of constraints ensure
that each arc has a survivability upper bound of one and that the total amount spent
on arc survivability improvements. the suni of increasing arc survivabilities by .1, q,.

is less than or equal to the total budget available 7. The model is as follows:

Max S 11L(P, +.1- X)) |
5.1,

Py+.1-X, <1 j=1.2 0

L= 0y Xy <9

X;>0

A Pascal program was written to calculate the important indices for a stochas-

tic network (see Appendix Q).

]
R

V. Multicriteria Optimization

The traditional multicriteria optimization (MCQ) problem requires two or
more criteria or objectives (the Y space), both of which utilize a common set of
alternatives from the X space. For the problem of stochastic network performance
improvement, there were two criterion objectives examined in this research. The first
maximized the expected throughput or flow while the second maximized the network
reliability or connectedness. The alternative set X consisted of arc survivability im-
provements and arc capacity improvements. This chapter describes a MCO model
given both criterion functions . For large networks though. the network reliability
in this research was calculated using a recursive technique which, in turn, did not
result in a reliability objective function. Subsequently, two modified approaches were

developed to analyze the tradeoffs between the two criterion objectives.

5.1 MCO Model

The MCO model consists of two criterion functions, €'}y and C'F. The first
represents the lower bound for the network expected flow where the lower bound
is maximized by increasing both the path reliability, R, through arc survivability
improvements. X,. and the path flow. f; through arc capacity improvements. d,. The
first critetion function C'Fy. is equal to Gaught's.objective function for his nonlinear

models and is
Max 7., R, f, where R, =TL,(P. +.1-X,)
The second criterion function C'F,. also nonlinear. maximizes the network re-

liability. For the example network. Figure 3. the second criterion function is as

calculated in Chapter 1V using Aggarwal's disjoint path method and is

CFy = (Py+ X)) (Pa+ X2{{(Ps + X3)

(1 = (Pr+ X)) Ps + Xs)(Ps + Xe)(Pr + X7)

(P14 X1)(1 = (P4 X2))(Ps + Xs)(Ps + Xe)(Pr + X7)

(Py+ X1)(Pa+ Xa2)(1 — (P34 X3))(Ps + Xs)(Ps + Xe)(Pr + X7)
(P14 X1)(1 = (P24 Xo))Py + Xa)(1 = (Ps + X5))(Pr + X¥)

(Pr 4+ X0)(1 = (P2 + X)) Py + Xa){(Ps + X35)(1 = (Ps + Xe (P + X7)
(Py + X1 (Po+4 Xa)(1 = (P34 Xa))(Ps+ XNa)(1 = (Ps + Xs))(Pr + X7)
(Pr+ X1)(Pa+ Xo)(1 = (Ps + X3))(Pa + Na)(Ps + Xs5)(1 = (Fs + Ne))
(P7 4+ X7)

+ 4+ + + + + o+

There are three types of constraints i the model. They are:

1. Constraints to ensure arc survivabilities are < 1.
2. Flow capacity constraints for each path j.

3. A budget constraint limiting the amount spent on both arc capacity and sur-

vivability improvements to a total budget amount, 3.
The first type of constraints. one for each arc, were used to ensure arc reliabil-
ities had an upper bound of I. The constraints are

P+.1-X <1

The second type. flow capacity constraints, were formulated by letting a,, equal
1 if arc 7 lies on path j. and 0 otherwise. Using this definition, the constraints for

flow capacity. one for cach path. are

ZZ:I (l'.l-ll_l i i,y + (Ir

Where v, is the capacits of arc i, and d, is the amount of capacity improvement

to arc 1.

30

The third type; the budget constraint is

Z?:l(aczdi + CI’rt)(z) S /3

Where o, is the cost of increasing the capacity of arc ¢ by 1 unit, a,, is the
cost of increasing reliability of arc 7 by .1, and f is the total amount of the budget
available to be invested.

The above two-criterion objective problem (MCO) can be converted to a single
objective mathematical programming model by using one objective as an additional
model constraint and parametrically varying its value from its lower to upper bound.
For this MCO model, the reliability criterion objective was chosen for the additional
constraint. The lower bound for the reliability function is when there are no arc
survivability improvements or in other words, the original network reliability of .$282.
The upper bound is when the network reliability is equal to one. The term A will
represent the parametric value of the reliability function CF,. The nonlinear MCO

model for the example network is then

Max 3., R, f, where 7, = [[,(/’ +.1- X))
s.t.

CF,>A

P+.1-X,<1 r=1.20.... n

Tor oy, Su+d,
Z?:l((‘crdi + O,-,X,) < i/f

XiPlfoq00 802 0and g, =0.1

.01 MCO Analysis. The MCO model was applied to the example network.
Figure 3. using the GAMS solver. on a personal computer. The example network
consists of seven ares. six nodes and three paths from source (node 1) to sink (node

6). Are survivabilities were initially .S, with an associated capacity as illustrated

in Figure 3. The model was run with a capacity improvement cost a,, of 1 and a
survivability improvement cost o, of 1. The total budget available 3 was determined
to be 6. This 1s the minimum amount required to improve all arcs in a source to sink
path to one, thus providing for a network reliability of one. Given this minimum
budget, if a tradeoff exists, then the budget would not allow both the maximization

of expected flow and a network reliability of one to occur simultaneously.

{surv.cap)

Figure 3. Example Network

The initial computer 1nn of the model produced a reliability value of (975 and
an expected flow of 7.16. This shows that the lower bound constiaint of .3232 for
network reliability was not a binding constraint. In other words, are survivability
improvements benefitted hoth reliabilive and expected flow without a loss to either.
C'Fy was then parametrically hounded with reliability values of 985 and 1.0. Now
the reliability constraint. C'F,. is binding with a resnlting decrease in expected flow
for an increase in network reliability. The resulting efficient frontier is iHustrated
in Figure 1. The model generated those points that were nondominated. ereating
the efficient frontier. For reliabilities less than 975, the resulting reliability and
expected flow values were dominated by the point (975, 7 16). The model can be

forced to generate the dominated points by setting C'F) equal to. rather than greater

v
o

than, its parametric bounding level. This modified model was run for two dominated
reliability levels, .87 and .92, with the resulting expected flow values plotted in Figure
4,

8 T T T T
nitial ©
75 _ Dominated + i
' Frontier ==—
+
7L a
+
6.5 -
Expected |
Flow
5.5 | .
5 -
R <
45 -
4 1] 1 1
0.8 0.85 0.9 0.95 1 105
Reliability

Figure 4. Example Network Efficient Frontier

5.1.2 Costing Analysis The MCO example above was run using both a ca-
pacity and survivability improvement cost of 1.0. The result was the generation of
an cfficient frontier bounded by a lower reliability value of 975 and an npper reli-
ability value of 1.0. The effects of varving the cost improvement structure on the
efficient frontier was examined. When the cost of improving a unit of capacity was
increased to 2.0, the result was a shrinking of the efficient frontier to a single point
at a reliability value of 1.0 and an expected flow of 7.30. In effect, the total budget
was allocated 10 arc survivability improvements which maximised both reliability
and expected flow. On the other hand. when capacity improvement costs were de-
creased 1o 0.5, the efficient frontier was stretched between a lower reliability hound
of 9156 with an expected flow of 3.196 and the original upper reliability bound of

1.0. Thus, decreasing the cost of capacity improvements relative to survivability

33

improvements resulted in a stretching of the trade off region whereas increasing the
capacity improvement costs shrank the trade-off region to a point where there exists
no trade-off. Further investigation into the effects of varving costing structure on

the trade-ofl region is recommended in Chapter VIIIL

5.1.3 MCO Summary. The MCO model formulated, successfully generated
the cfficient frontier for a small example network. The results illustrated that both
reliability and expected flow can be improved with no loss to the other by increasing
arc survivabilities up to a specific reliability level, after which further increases in
reliability result in a tradeofl. By increasing reliability beyond that level, a decrease
in expected flow results. It should be noted that the model is highly nonlinear in hoth
the objective function ,C' Fy. and the reliability constraint. C' F,. For large networks, if
a reliability expression were obtainable, complications of optimizing highly nonlinear

objectives with nonlinear constraints should be expected to b.- encountered.

Generating the efficient frontier generates all the possible nondominated solu-
tions. One of these solutions will maximize a decision makers preference function.
This optimal solution can be determined through two techniques. The first would
be to compute a preference function based on surveys given to the decision maker
and then maximize this preference function with resperi to the eificient frontier so-
Intion set. The second technique would be to use an interactive approach where the
efficient frontier points are generated interactively with the decision maker. In this
technique. the decision maker’s preference function is implicit in his interactive ve-
sponses during the efficient frontier generation process with the process termination

ocenrring at the solution point which maximizes the decision makers preferences.

5.2 Modificalions

The above MCO model requires both model eriteria be expressed in math-
ematicai objective functions. The problem confrantad iy that for large stochastic
networks. the reliability in this research is calenlated nsing a recursive technigue
which does not result in a mathematical expression. Lacking this second eriterion

function. two methodologies. Relmax and Flomax. were developed to examine the

tradeofl between expected flow and reliability.

5.3 Relmax

The method Relmax used a two step solution process to examine reliability
versus expected flow. The first step maximized the network reliability using the lin-
ear heuristic reliability improvement model described in Chapter 1V, parametrically
increasing the amount of arc survivability improvemeats allowed. This was accom-
plished by limiting the available arc survivability improvement budget to a specified
portion of the total budget available. The remaining budget leftover and the result-
ing optimum arc survivabilities were then fed into Yim'’s expected flow improvement
mcdel. The network expected flow was then maximized constrained by the previ-
ously decided upon arc survivability improvements and the budget remaining alter
those improvements. For the example network, arcs one and seven have an impor-
tant index of 71.07 while the remaining arcs have an index of 37.04. Arc four’s index
value was increased by one to ensure investment in arc four before the others to pro-
vide an improved path (1-4-7). The budget allocated to survivability isnprovement
was increased by one unit each run with the remaining budget allocated to capacity

improvement. The resulting reliability and expected flow are listed in Table 2 and

Figure 5.

Table 2. Relmax Results

Survivability | Capacity | Network | Expected

Budget Budget | Reliability | Flow

0 0 8282 4.61

0 6 8282 6.40

1 5 8677 6.59

2 4 9072 6.72

3 3 9406 7.04

4 2 9741 7.28

5 1 9870 7.18
6 0 1.00 6.84

Figure 5. Relmax Plot

Expected |
Flow

..

1

0.8 0.85

0.9

095

Reliability

5.4 Flomax

The second method, Flomax, used Gaught’s nonlinear model described in
Chapter 1I to maximize the network expected flow using both arc capacity and
survivability improvements. The model was modified with an additional arc capac-
ity constraint. This constraint was incorporated into the model to ensure an arc’s
capacity was not improved by an unreasonable amount, as determined by the user.

The arc capacity constraint is thus

u, + dit < Crar

The resulting nonlinear model maximizing expected flow is

Max Y'_ R, T, where I, = [[(P + .1 X,)
s,

P+.1-X, <1 =120, n

u, +d, <C,,., r=1.2.....n

Z_I:.—.l ”Ll.[/ { u, + ‘ll
" londi +a, X)) < 3

L=l

X.P. a0, 3. N2 0and a, =0,1

By applving the above model to the example network. the maximun expected
flow obtainable within the budget was obtained. The associated reliability is cal-
culated using Dirprog. This point is where the tradeoff or efficient frontier begins
between expected flow and reliability and thus bounds the one side of the efficient
frontier. For the example network. this point was where reliability equaled 975 and
expected flow equaled 716, Forcing the reliability bevond (975 caused a subsequent
decrease in expected flow as shown with the MCO model. Lacking a reliability func-
tion. the reliability cannot be foiced 1o inerease with a subsequent maximization

of expected flow. However. given the minimum budget to provide a perfect path

or reliability equal to one, Yim’s lower bound model can be run to calculate the
cxpected flow for the condition when all the budget has been spent to provide a
network reliability of one. For the example network, a budget of 6 will be used up
in improving path (1-4-7) to a perfect reliability of one. The associated expected
flow is 6.84. The efficient frontier is thus bounded for the example network as shown
in Figure 6. In addition. an ideal was defined as the maximum obtainable values
for the two critera. The trade-off region was thus bounded by the box formed by
the lower and upper reliability bounds and the ideal. All other investment feasible

investment options were dominated by this region.

Figure 6. Flomax Results

T T Bl T
S+ -
Th & + -
‘T Efficient l’ror»lie/o)
6.5 I -
Expected
Flow b6 -
55 -
B -
1.5 -
1 1 1 1 L
0.8 0.85 09 0.95 1 1.05

Reliability

2.9 Summary

The ideal MCO approach requires mathematical expressions for both eriterion

functions. expected flow and rveliability. Given that for large stochastic networks.

AN

a reliability expression is not computationally feasible to obtain, the tradcofl he-
tween the two objectives were analyzed using two different methodologies. The first
method initially maximized the network reliability using the linear heuristic reliabil-
ity improvement model. then used the resulting arc survivabiiity improvements to
maximize the expected flow through capacity improvements with the remaining bud-
get. This was accomplished using Yim's linear expected flow improvement model.
The second nonlinear method maximized the expected flow by both arc survivability
and arc capacity improvements. The resulting network reliability was then calcu-
lated based on the arc survivability improvements made. This point was the lower
reliability bound for the efficient frontier. The upper reliability bound for the effi-
cient frontier was generateded by calculating the expected flow when the network
reliability equaled one. Model two thus bounds the efficient frontier and thereby

bounds the trade-off region for the network. Both techniques were applied to large.

realistic networks and analyzed in Chapter VII.

VI. Integration

This chapter contains the description of tools and programs v~ . ‘n integrating
the expected flow and reliability improvement models with Formu.. and Dirprog.
The following sections describe the tools, files, and programs used in the above

integration.

6.1 Tools

The followiug software packages were required for this rescarch: GNA, Ar-
ity/Prolog Version 5.0 Interpreter, Formula Version 3.0, GAMS Version 2.05/S, Turbo
Pascal Version 5.0, and Dirprog. In addition, an IBM compatible 3386-25 personal
computer, a Sun 386i workstation, and a DEC 8550 mainframe were used. A de-

scription of each tool follows.

6.1.1 GNA. Graphical Network Analyzer, is an interactive, graphical com-
puter program for the design. display, and analysis of network models (14:6). In
addition to GNA providing a method to graphically input and represent a network.
it also has the option to convert the network structure into an arc based input file
for Formula. The convert option splits all stochastic nodes into two perfect nodes
with 2 connccting arc representing the stochastic nodes survivability. Convert also
adds an artificial source and sink to the network as required by Formule. GNA was
used to graphically draw and convert networks analyzed for subscquent input into
Formula. Due to the large memory requirements of (GNA, it was run on the Sun 386

workstation.

6.1.2 Avdy/Prolog Inlcrpreter. The Arity/Prolog Version 5.0 Interpreter is
an enhanced Prolog artificial intelligence language interpreter produced by the Arity
Corporation of Concord. Massachusetts (4). Enhiancements include an integrated
editor, pull-down windows. and window creation capabilities. The interpreter runs
under the DOS environment and was used on a personal computer to edit and run

Formula Vorsion 2.0,

40

6.1.3 Formula Version 3.0. Version 3.0 is a modified version of Gaught's
Formula Version 2.0 (12:252-275) which was in turn based on Yim’s original For-
mula program (23:99-117). Formula is written in the Prolog artificial intelligence
programming language and requires the Arity/Prolog interpreter to run. Yim and
Gaught uscd Formula to find all network source to sink paths and then to formu-
late their models crezting appropriately formatted files for input into predetermined
commercial mathematical solver packages (GINO or LP/MIP-83).

Formula has been modified creating version 3.0 for two primary purposes in
relation to this work. The first is to create a file path.f which lists all network source
to sink paths. The second purpose is to create three additional files — prob.f, cap.f,
and net.top — which contain the arc survival probabilities, the arc capacities, and
the network topology described in arc parent-child relationships. The above files will
be created when option eight, Formulate Reliability Files, is selected when running
Formula Version 3.0. A user’s manual for Version 2.0 with appropriate additions for
Version 3.0 enhancements is contained in appendix D while a complete source code

listing of Formula Version 3.0 is contained in appendix E.

6.1.4 GAMS. General Algebraic Modeling System is a commercial software
package developed by the World Bank, that allows mathematical programining
models to be entered in concise algebraic statements. then solved using the lin-
ear (BDMLP), nonlinear (MINOS 5). or mixed integer (ZOOM) solvers included.
Using a high-level language. G:A31S allows for the compact representation of large
and complex models, simple and safe changes to model specifications. unambiguous
statements of algebraic refationships, and model descriptions that are independent
of solution algorithms (7:3). Version 2.05/S is the personal computer student version

running under the DOS environment.

6.1.5 Turbo Pascal. Version 5.0 of Turbo Pascal is a structured. high-level
Janguage used to write executable programs under the DOS environment. While
there is a high degree of compatibility with Versions 3.0 and 4.0, there are differences
which the reader can examine in (6:appendix A). 1t also should be noted that Turbo

Pascal is not compatible with ANS] Pascal.

6.1.6 Dirprog. The reliability determination program, Dirprog. is a ‘Turbo

Pascal based program written by Lavon Page and Jo Perry to solve for the exact

reliability of directed stochastic networks as described in (18). The input file name
is input by the user from the screen and an output file is generated. A source code
listing is in appendix F.

6.1.7 Modprog. This is a modified ANSI Pascal version of Dirprog compiled
on the DEC 8550 mainframe under the VMS operating environment. Modprog reads
from the input file infile.dat and the results are output to the file outfile.dat. The
format of the input and poutput files are the same as with Dirprog. Modprog allows
large networks that otherwise would exceed the 64k stack limit under MS DOS to

be run. A source code listing is includedin appendix F.

6.1.8 Capinv. The Turbo Pascal program Capinv is used to generate the
GAMS input file Capinv.gms for the capacity improvement model. It requests the
cost of improving one unit of arc capacity and the total budget available. A source

code listing is included in appendix G.

6.1.9 Relinv. This is another Turbo Pascal program used to generate the
GAMS input file Relhuer.gins for the linear heuristic reliability improvement model.
It request the user for the cost of improving an arc’s survivability by .1, and the

total budget available. A source code listing is included in appendix G.

6.2 Files

There are several different files used in this tescarch. A brief description of

cach follows:

o formin.ariis a file generated by (N4 which contains the network topology
along with all arc survivabilities. capacities and costing information. It is
formatted for input into Formula.

e path.fis a file generated by Formula Version 3.0 which contains all network

sonrce to sink paths in an arc based description.

e prob.fis a file generated by Form.la Version 3.0 which contains the network

are survival probabilities.

o cap.[is a file generated by Formula Version 3.0 which contains the network are

capacitics.

o net.top is a file generated by Formula Version 3.0 which contains the network

topology as represented by arc parent-child relationships.

o rclhuer.gms is a file generated by the program Relinv which contains the relia-

bility improvement model for input to GAMS.

o capinv.gms is a file generated by Capinv which contains the capacity improve-
nient model for input to GAMS.

The integration of the files and programs is illustrated in figure 7.

13

GNA

Formula

Cap.f

Path.f

i

Capinv

B ///'

Prob.f

Net.top

Relinv

GAMS

Convert

Dirprog

Figure 7. Flow Diagram

VII. Results and Analysis

Two networks, A and B. were analyzed with respect to the three objectives of
this work. First, the original network performance parameters of expected flow and
reliability were calculated. Second, a linear heuristic reliability model was applied to
examine the priority ranking for arc selection for survivability improvement and the
resulting network reliability achieved. Finally, two techniques to maximize expected
flow and reliability given a specified budget were applied to examine tradeoffs be-
tween the two. In addition, Network C was included to demonstrate the limitations

of the reliability measurement tool, Dirprog, under the MS DOS environment.

7.1 Network A

Network A is shown in Figure 8. It consists of 19 nodes and 27 arcs. Tables 3
and 4 show the capacity and survivability values of the arcs and nodes. In addition,
Tables 5 and 6 show the dependent arc and node pairs. The dependent pairs represent
a single medium where. if dependent, then both of the arcs/nodes in the pair will
fail if one fails. In addition. Network A has 63 potential paths between the added
artificial source and sink nodes. The procedure for adding an artificial source and sink
is described in the Formule Users Manual contained in Appendix D. The converted

Network A is illustrated in Appendix A.

7.1.1 Original Porformance Pavamclers. The two performance parameters.
lower bound for expected flow and network reliability. were calculated for Network
A. Using the GAMS solver and Yim's expected flow model. an expected flow of
167 and a deterministic max flow of 9600 (all arc survivabilities equal to one) were
obtained which agrees with previous values caleulated by Yim and Gaught using
the LP/MIP-83 solver. The reliability was calenlated with Page and Perry’s Dirprog
program. \ network reliability value of .1504 was obtained in .11 seconds using a
386 Dx personal computer. It required 44 reductions and 2 factorings. Network
A was readily reducible thus allowing an efficient calculation if its reliability. The
reliability valie of (1504 agrees with that obtained by Bailey's simulation program

Marflo (5).

Table 3. Description of Arcs in Network A

Start | Terminate | Reliability | Capacity
Node Node
1 12 1.0 1200
1 13 1.0 1200
1 14 1.0 1200
2 5 0.3 1200
2 14 0.6 1200
3 9 1.0 1200
3 11 1.0 1200
4 14 1.0 1200
5 10 0.6 1200
5 11 0.7 1200
6 14 0.6 4800
7 14 0.6 4800
8 14 0.3 4800
9 15 1.0 4800
10 15 0.6 4300
il 15 1.0 4800
12 15 0.7 4800
13 15 1.0 4800
14 17 0.3 4800
14 18 0.6 4300
14 19 0.6 1300
15 6 0.3 4300
15 7 0.6 4300
15 8 0.7 4800
17 16 0.7 4300
1§ 16 0.6 4800
19 16 0.3 4800

Table 4. Description of Nodes in Network A

Node | Reliability | Capacity
1 1.0 *
2 0.3 *
3 0.7 *
4 0.5 *
5 0.8 =
6 1.0 =
7 0.3 *
8 0.7 *
9 0.5 *

10 0.8 *
11 1.0 =
12 0.3 N
13 0.7 =
14 0.5 *
15 0.8 *
16 0.8 *
17 0.7 *
18 0.3 "
19 1.0 g

= implies capacity is infinite

Figure 8. Network A

7.1.2 Reliability Improvemeni. Given the initial network reliability value, the
linear heuristic reliability improvement model was applied. The importance index
for each node and arc are shown in Figures 7 and 8. The heuristic model invested
in arc survivability improvements for nodes 14 and 16 “nitially as their importance
index of 20.25 were the greatest. The next candidate was node 15 with an index of
7.90. followed by node 2 with 7.57. Next were several arcs with an index of 6.75. By
examining the location of the arcs, only one path between node 15 and 16 and again
between 11 and 16 needed improved. Since the model does not have a tie breaker,
it would improve them in numeric order. It is here that a user may interject a tie
breaker by adding an amount to the preferred arc o1 arcs. Tu this case. ares (11-19)
and (19-16) were increased to 6.85 This ensured after their investents, a perfect
path would exist with a resulting network reliability of 1.0. The arc improvements
with the associated network reliabilities arve listed in Table 9. 1t is noted that im-
provements in arcs or nodes located before node 14 had no affect on the network
veliability as there existed a perfect path from the source to node 14 through node

one. This is shown where investments in ares 2 and 15 did not increase the network

reliabiiity.

Table 5. Dependent Arcs in Network A

Dependent Pairs

Start | Terminate || Start | Terminate
Node Node Node Node

6 14 14 19

7 14 14 18

8 14 14 17

15 6 19 16

15 7 18 16

15 8 17 16

7.1.3 Combined Capacity and Survivability Improvements. Finally both net-
work performance parameters. expected flow and network reliability were improved
through investments in arc capacity and survivabilities. Method one, Relmax, as
described in Chapter V| was applied to maximize network reliability first, then max-

imize expected flow with the remaining budget.

Before applying the models, an improvement cost for both capacity and surviv-
ability needed to be decided upon. The costs were selected so as to equalize the effect
on improving the effective arc capacities given an equal investment. thus climinating
any cost advantage of one over the other. First, a capacity improvement cost of |
was selected. This resulted in a cost of 1200 to double the arc’s effective capacity
from 360 to 720 given a survivability of .3. To achieve the same increase in cffective
capacity through survivability improvements; an investment of .3 units of surviv-
ability was required Thus, an arc survivability cost was selected to be 400 which

resulted in a total cost of 1200. the same as the capacity investment. In addition. arc

Table 6. Dependent Nodes in Network A

Dependent. Pairs

Node Node
6 19
7 18
S 17
I 16]

1

Table 7. Network A - Node Importance Index

Node | Index
1 6.34
2 7.57
3 2.22
4 4.11
5 3.46
6 2.63
7 2.63
8 2.63
9 1.11
10 1.73
11 2.84
12 1.11
13 1.11
14 20.25
15 7.90
16 20.25
17 6.75
18 6.75
19 6.75

capacity improvements were limited so that the final arc capacities were less than or
equal to 4800 (the maximum arc capacity in the original network). Budgets of 5. 10.
and 15 thousand were then used for the subsequent model runs., Lach run varied the
amount dedicated to ca-h improvement (survivability or capacity) by a tenth where
the left side of the curve iepresented all the budget going for capacity improvements
and none for survivability, and the right side represented all the budget going to

survivability improvements and none to capacity.

Relmax results are plotted in Figure 9. Examining this plot. it can be seen that
a budget totally devoted to capacity increases does not increase network reliability
and the subsequent expected flow is less than that which can be achieved with a

combination of capacity and survivability improvements.

The second nonlinear model was applied with a budget of 8.000 which was
determined to be the minimum amonnt reguired 1o have a network reliability of
one. A program was written to examine all paths from source to sink and determine
which path was the least costly to improve to reach a network reliability of one.

For network A. this path consisted of nodes (1-14-19-16) with a cost of R000. The

Table 8. Network A - Arc Importance Index
Start | Terminate

Node Node Index
1 12 1.11

1 13 1.11

1 14 4.11
2 4 4.11
2 5 3.46
3 11 1.11
3 9 1.11
4 14 4.11
5 10 1.73
D 11 1.73
6 14 2.63
T 14 2.63
8 14 2.63
9 15 1.11
10 15 1.73
11 15 2.84
12 15 1.11
13 15 1.11
14 19 6.75
14 I8 6.75

; 14 17 6.75
15 6 2.63
15 7 2.63
I 8 2.63
17 16 675
17 i6 6.7H
18 I{H 6.75
19 I6 6.75

Table 9. Network A Reliability Improvements

Node | Arc | Inerease | Reliabiliny
I4 1Y 300
16 2 KT
15 2 476
2 2 376
19-16 T 6956
Ti-19 i .00

5000

L 1 i i i
Budget
4500 1 5000 < .
10000 —4—
15000 5
4000 | -
3500 |- .
3000 |- .
EXP 9500 |- .
Flow
2000 - .
1500 | i
1000 |- -
500 >
0 1 A] |)]
0 0.2 0.4 0.6 0.8 i 1.2

Reliability

Figure 9. Network A Combined Improvements

T T T T T
2400 - BUDGET o) o
8000 <
6800 +
2200 -
+ + ©
Exp
000 - -
Flow 2000
1800 ..
1600 —~
1 i + 4 1 1
0.5 0.6 0.7 0.8 0.9 I
Reliability

Figure 10. Network A Efficient Fronticr

maximum expected flow was then calculated using the improved path above. with
a result of 2170. Next. the nonlinear model was run to maximize the expected flow
throngh both arc survivability and capacity improvements. limited by a budget of
3000. The resnlting flow was 2415 with a celiability of .78, Thus. the efficient frontier

is bounded as shown in Figure 10,

For budgets less than that reguired to reach a network reliability of one. the
tradeofl point can still be calculated using the nonlinear model. The upper reliability
bound for the efficient frontier however is in itself. now a lower bound as there are
several different are survivability configurations that could be used to maximize the
reliability and expected flow. A lower bound for this value can be caleulated by using
the least cost path determined above and decreasing the are survivabilities to a point
that the budget will provide the remaining survivability incieases. This reliability
alue is then used to maximize the associated expected flow. For Network A. a

budget of 6300 produces a tradeofl point at ((38.3743) with a maximum reliability

obtained at (.77.2151) as shown in Figure 10.

= s e % AT

7.2 Network B

Network B is shown in figure 11. It consists of 26 nodes and 37 arcs. Tables 10
and 11 list the capacity and survivability values of the arc and nodes. The network

contains 187 paths from the artificially added source to sink.

Figure 11. Network B

7.2.1 Original Performance Parameters. As with network A. the two per-
formance parameters, lower bound for expected flow and network reliability, were
calculated. An expected flow of 344 and a deterministic flow of 3900 were obtained
which agreed with previous values calculated by Yim (23:82). 'The reliability was

computed using Dirprog. producing a result of .6011. The computation took 58 sec-

Table 10. Description of Arcs in Network B

Start | Terminate | Reliability | Capacity
Node Node
1 7 0.8 150
1 8 0.8 200
2 8 0.5 750
2 9 0.5 750
3 7 0.8 200
3 9 0.5 750
3 16 0.6 150
4 16 0.8 200
4 24 0.5 600
5 14 0.8 1200
6 16 0.5 1200
6 25 0.6 75
6 26 0.6 75
7 10 0.5 1200
8 10 0.7 1200
9 10 0.5 2400
10 11 0.5 1200
10 12 0.7 1200
10 13 0.7 1200
11 17 0.5 1200
11 18 0.5 75
11 19 0.5 1200
12 16 0.7 1200
12 20 0.5 1200
13 16 0.7 600
14 15 0.8 1200
) 16 0.8 1200
16 17 0.6 75
16 138 0.6 75
16 19 0.6 75
16 20 0.6 75
16 21 0.6 75
16 22 0.6 75
16 23 0.6 75
16 24 0.6 75
16 25 0.6 75
16 26 0.6 75

Table 11. Description of Nodes in Network B

Node | Reliability | Capacity
1 0.70 *
2 0.15 *
3 0.03 *
| 1.00 *
5 1.00 *
6 0.04 *
7 0.40 *
8 1.00 *
9 0.01 *
10 0.70 *
Il 0.11 *
12 1.00 x
13 0.06 *
14 0.09 ¥
15 0.18 *
16 0.07 g
17 1.00 -
18 1.00 *
19 1.00 4
20 1.00 *
21 1.00 ¥
22 1.00 B
23 1.00 ”
2 1.00 v
25 1.00 *
26 1.00 4

* implies capacity is infinite

g1

onds on a 386 Dx personal computer, with 7,422 reductions and 3,128 factorings

required.

7.2.2 Reliability Improvements. The linear heuristic model for reliability im-
provement was applied to Network B with the node and arc important indices listed
in Tables 13 and 14. It should be noted that nodes 4,5,8, and 12 were not included
as their survivability was already one, thus were not candidates for survivability im-
provement. Arc (4-24) had the highest important index of 111.11. An improvement
of this arc from .5 to 1.0 provides for a perfectly reliable path from source to sink
and thus a network reliability of 1.0. The linear heuristic model successfully selected
the arc that improves the network reliability for the least cost. If network reliability
improvement was desired through another path, then node 16 should be improved
as its index is 95.41. From figure 14, it is seen that a majority of the paths go
through node 16. A listing of reliability improvements of arc (4-24) by tenths with

the resulting network reliability is listed in Table 12.

Table 12. Arc (4-24) Survivability Improvements

Arc Arc Network

Improvement | Survivability | Reliability
0 %) .6011
. .0 6809
2 T 1607
3 .8 8404
o .9 9202
5 1.0 1.0

7.2.3 Capacity and Survivability Improvements. As in Network A. the meth-
ods. Relmax and Flomax. were applied to Network B. Relimax maximized reliability
with a portion of the total budget and the remaining budget was used to maximize
expected flow through capacity improvements. The results are listed in Table 15 and

shown in Figure 12,

Flomax was applied to Network B for a budget of 2000 which allows a network

reliability of one 1o be achieved and a budget of 1200 which allows for a maximum

Table 13. Network B - Node Importance Index

Node | Index
1 18.84
2 18.84
3 23.23
6 76.39
7 9.34
9 9.34
10 47.01
11 7.45
13 9.70
14 6.17
15 6.17
16 95.41]
1400 . . - ; :
1300 ~
1200 -
1100 |-]
Exp 8 -
Flow 1000
900 |- .
800 -
700 | —
600 1 1 1] i
0.5 0.6 0.7 0.8 09 1

Reliability

Figure 12. Combined Improvements

Table 14. Network B - Arc Importance Index

Start { Terminate

Node Node Index
1 7 4.67
1 8 14.17
2 S 14.17
2 9 4.67
3 7 4.67
3 9 4.67
3 16 13.89
4 16 40.00
| 24 111.11
5 14 6.17
6 16 13.89
6 25 31.25
6 26 31.25
7 10 9.34
8 10 28.33
9 10 9.34
10 11 7.45
10 12 29.85
10 13 9.70
11 17 2.48
11 18 248
11 19 2.48
12 16 11.79
12 20 18.09
13 16 9.70
1 15 6.17
15 16 6.17
16 17 9.54
16 N 9.54
16 19 9.54
16 20 9.54
16 21 9.54
16 22 9.54
106 23 9.5l
16 2 0.54
16 25 9.54
16 26 9.51

\l.
P
-

Table 15. Network B Combined Improvements

Survivability | Capacity | Network | Expected

Budget Budget | Reliability Flow

0 2000 6011 1261

400 1600 .6809 1363

800 1200 7607 1303
1200 800 .8404 1163
1600 400 9202 943
2000 0 1.0 643

network reliability of 84. Again the efficient frontier was bounded for each bud-
get between the maximum expected flow achievable and the maximum reliability

achieved. The results are shown in Figure 13.

T T T (T
1600 - BUDGET .
2000 <
1200 +]
1400 o o
1200 - -
EI\'])
Flow
1000 + -
+ +
R00 | .
[
600 | ~
1 § i + 1 1
0.5 0.6 0.7 0.8 (1o 1
Reliabiliy

Figure 13. Network B Efficient Frontier

7.0 Nelwork ('

Network (" was meluded to illustrate the limitations of the reliability program

Dirprog. Network O consists of 39 nodes and 51 ares with 198 paths. Dirprog is

N

i

()

(D

l
BBO®

é
1,

?G
(=
;@/%
7
BHEG

©
©
&
7
7
@é(@@

W\ W
G

Figure 14. Network ¢

limited to the size of the network evaluated by a 64K stack limit under MS-DOS.
Network (" would not 1un under the Turbo Pascal Version of Dirprog. Modifications
were made to convert the Turbo Pascal Version to an ANSI Pascal version and
was run on a DIC 8550 mainframe operating under the VMS environment. The
program was validated by running Networks A and B with the same results. A

reliability value of .6157 was obtained in around | minutes. The calculation reguired

102.092 reductions and 32,239 factorings.

Table 16. Description of Arcs in Network C

Arc Arc
Init | Term | Survival Init | Term | Survival
Node | Node | Prob | Capacity || Node | Node | Prob | Capacity

1 11 0.9 1200 13 25 0.7 2400
2 11 1.0 1200 13 26 0.9 1200
3 7 1.0 300 13 27 1.0 1200
4 11 0.6 1200 13 28 1.0 1200
b 8 0.3 1200 13 29 0.3 1200
6 9 0.6 1200 14 23 0.6 4800
T 10 1.0 300 14 24 0.3 4800
S 11 0.9 1200 14 25 0.6 2400
9 11 1.0 1200 14 26 0.7 1200
10 11 0.7 300 14 27 0.9 1200
11 12 0.9 9600 14 28 1.0 1200
11 23 0.6 ™ 14 29 1.0 1200
11 24 0.3 (G} 15 31 0.6 2400
H 38 0.6 1200 15 32 0.3 1200
i 39 0.7 1200 16 30 0.6 300
12 13 1.9 4300 16 3 0.7 2400
12 14 1.0 1300 16 32 0.9 1200
12 15 0.6 4300 16 33 1.0 300
12 16 0.3 1800 16 36 1.0 2400
12 17 0.6 4800 I7 30 0.6 1200
i2 I8 0.7 2400 17 33 0.3 300
12 19 0.9 1300 N 34 0.6 300
12 20 1.0 4800 I8 38 0.7 1200
12 2] 1.0 4800 19 39 0.9 1200
12 22 0.6 2400 20) 35 1.0 2400
13 23 0.3 1800 21 36 1.0 2400
13 24 0.6 4800 22 37 0.6 600

Table 17. Description of Nodes in Network C

Survival Survival
Node | Probability | Capacity || Node | Probability | Capacity
1 0.3 * 21 0.3 *
2 0.7 * 22 0.7 *
3 0.5 * 23 0.5 *
4 0.8 * 24 0.8 *
5 1.0 * 25 1.0 *
6 0.3 * 26 0.3 *
T 0.7 * 27 0.7 *
S 0.5 * 28 0.5 *
9 0.8 * 29 0.3 *
10 1.0 * 30 1.0 *
11 0.7 * 31 0.3 *
12 0.7 * 32 0.7 *
13 0.5) 33 0.5 *
11 0.8 * 34 0.8 ”
15 1.0 * 35 1.0 *
16 0.3 * 36 0.3 =
17 0.7 * 37 0.7 4
I8 0.5 * 38 0.5 *
19 0.5 y 39 0.5 *
20 1.0 * *

* implies capacity is infinite

7.4 Summary

The exact reliability values for the three networks, A, B, and C, were suc-
cessfully calculated with a computational time required on the order of seconds to
minutes. On the other hand, previous work done by Bailey using a simulation ap-
proach was only successful in computing a relaibility value for Network A. and even
then, required on the order of hours to compute. The factoring program has thus
significantly reduced the computational times required to calculate the reliability
of large stochastic networks and even more, provides a reliability measurement tool

where previous simulation methodologies failed.

Ol

VIII. Conclusions and Recommendations

This research had three objectives to accomplish:

1. Develop a methodology to measure the network performance parameter, relia-

bility, for large stochastic networks.
2. Develop a reliability improvement strategy.

3. Examine the trade-offs between the two criterion objectives, network expected

flow and network reliability.

The following sections will discuss the conclusions arrived upon for cach ob-

jective.

8.1 Reliability Mcasurement

Several techniques were examined in Chapter V for measuring the reliability of
stochastic networks. It was determined that a recursive technique using reductions
and factorings was the most appropriate. A program written by Page and Perry (18)
was used to measure the exact value for three large networks. Networks A and B.
demonstrated the efficiency of the program Dirprog to calculate the exact reliability
value in a length of time short enough (seconds to a few minutes) to facilitate interac-
tive uses. Dirprog used in conjunction with (+.¥A, Formula. and Convert provided a
system to graphically input a network. convert it into the appropriate input format.
and measure the exaco reliability value. This system readily lends itself to what-
if type scenarios. Network O required solving on the DEC 8550 mainframe. thus
demonstrating the network size limitations of Dirprog under the MS DOS operating

svstem.

&2 Relialality Improvement

Sinee the above reliabiity measurement procedure did not generate a math-
ematical expression for network reliability, a heuristic was used to determine the

ranking of arcs for survivability improvements. The foundations of the heuristic

are easily understood. thas lending eredibility when presented to a decision maker.

The heuristic was incorporated into a linear model using the GAMS solver. The
model was then applied to Networks A and B with promising results. It selected
the optimum improvement path for Network B, though for Network A selected some
arcs in where no improvement in network reliability was made. The heuristic seems
most appropriate for reliability improvements where only a small number of arcs
are improved, increasing the overall network reliability, but not providing a perfect
source to sink path and a network reliability of 1.0. The method has the advantages
of being computationally bounded by the number of arcs in the network. and not
the number of states. thus can be applied to very large networks. The importance
indices generated can also be examined and manipulated to incorporate a decision

makers requirements or preferences in arc selection for survivability improvements.

8.3 Tradc-off Analysis

While the preferred approach to trade-off analysis was a multicriteria optimiza-
tion technique, lacking a criterion objective function for large networks limited the
rescarcher to other methodologies. The first method of maximizing reliability with
a portion of the budget, then applying the remainder to capacity improvements is
useful in evalnating the proportion of the available budget 1o each given the desired
expected flow and reliability. The second nonlinear method bounds the efficient fron-
tier between the point representing the maximum expected flow obtainable and the
maxinnun reliability point obtainable within the vudget. This teclhnique is usefal
in determining the tradeoff region. In addition. the two bounding points locate the
maximum values of the two criteria attainable. and thus form the ideal point. If the
desired petformance parameters lie below this region then further tradeoff analysis
i~ not required and the optimmm are investments can be obtained by using the non-
linear model to maximize the expected flow using both survivability and capacity. If
the desired performance lies within the bounds of the efficient frontier, further anal-
vsis may be required to identify the efficient solutions bounded within the triangle
formed by the two bounding points and the ideal. The feasible solution space below
the bounded region though. is dominated by the efficient frontier and thus can be

climimated from further consideration. thus greatly decreasing the region of further

analyvsis,

8.4

Recommendations

The following recomrnendations are made in furthering the research of improv-

ing the performance of stochastic networks:

6.

Writing the program Dirprogin an artificial intelligence language such as PRO-
LOG, which has an inherent. built-in recursive structure should be investigated.
This may result in a reduction of the computational times required to calculate

the reliability of large networks .

The reliability improvement heuristic should be applied to even larger net-
works and its performance analyzed. In addition. tie breaker rules should be

implemented into the improvement model.

Further research in generating a usable mathematical expression for network
reliability s needed to enable the use of multicriteria optimization in generating
the efficient frontier. This then would allow the incorporation of the decision

makers preference function in selecting an optimum investment strategy.

Developing a single mathematical inodel integrating both bounding end points
in place of the seperate procedures used by Flomax will aide in resolving the

gap between itself and MCO.

Further research is needed into the improvement cost functions to include non-
linear cost functions and the affects of cost differences hetween the t vo types
of improvements. capacity or survivability. on the trade-off or efficient frontier

region,

While this research assumes independence between the are survivabilities. in-
vestigations into models that take into account dependent are survivabilities

mav better reflect real world conditions.

Summary

Measuring and improving the performance. both thronghput and reliability.

of large stochastic networks is desrable to ensure adequate capabilities are incorpo-

rated into communication nerwork - during times of crisis. The evervday reliance on

complex communication networks by DOD demands that the petformance of these

networks meet operational needs during adverse conditions. Using the methodologies

formulated in this rescarch. the performance parameters of both expected flow and

'™

reliaoility can be measured and subsequent improvements made providing insight

into the operational capabalities of stochastic communication networks.

Appendix A. Converted Networks

69

Figure 15. Network A - Converted

O

25 10 25
0

26
Sa

>
o
3

11 ! 15
g 11b 15

27 34

23

o))

31

70

Figure 16. Network A - Converted

24

Figure 17. Network B - Converted

Figure 18. Network B - Converted

-2

(&)
-1

B

Appendix B. Network A GAMS Files

B.1 Linear Heurislic Reliability Improvement Model

$OFFSYMXREF OFFSYMLIST

SETS
1 arcs /1 % 51/;

PARAMETERS

R(I) arc reliability index

/
1 6.3374
2 T.5754
3 2.2222
4 4.1152
5 3.4602
6 2.6349
7 2.6349
8 2.6349
9 1.1111
10 1.7301
11 2.8412
12 1.1111
13 1.1111
14 20.2503
15 7.9047
16 20.2503
17 6.7501
18 6.7501
19 6.7501
20 4.1152
21 7.5754
22 2.2222
23 6.3374
24 4.1152
25 4.1152
26 3.4602
27 1.1111
28 1.1111
29 1.1113
30 1.11i1
31 4.1i52
32 1.7301

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

b W

oou»uu,-»-ooooooomoooo»—-oooo-s\

~1

DO OO OO NN NN e

~N N
o

P(

.7301
L1111
1111
L1111
.7301
.8412
.6349
.6349
.6349
.6349
.6349
.6349
.7501
.7501
.7501
. 7501
.7501
.7501
.2503

I) arc probabilities

.00
.30
.70
.50
.80
.00
.30
.70
.50
.80
.00
.30
.70
.50
.80
.80
.70
.30
.00
.00
.00
.00
.00
.00
.60
.30

-1

-t

Y 5 T —
: R R R S

27 1.00
28 1.00
29 1.00
30 1.00
31 1.00
32 0.60
33 0.70
34 1.00
35 0.70
36 1.00
37 0.60
38 1.00
39 0.30
40 0.60
41 0.70
42 0.60
43 0.60
44 0.30
45 0.60
46 0.60
47 0.30
48 0.30
49 0.60
50 0.70
51 1.00
/;

SCALAR C cost of increasing arc rel by .1 / 400 /;
SCALAR B total budget available / 8000 /;

VARIABLES
X(I) .1 arc rel increase
Z objective for rel index ;

POSITIVE VARIABLE X;
EQUATIONS
MAXINDEX
REL(I)
BUDGET ;
MAXINDEX .. Z =E= SUM(I, R(I)*(P(I)+X(I))) ;
REL(I) .. P(I)+(.1#X(X)) =L= 1 ;
BUDGET .. SUM(I, C*X(I)) =L= B ;
MODEL RELHUER /ALL/ ;
OPTION LIMROW = 0

SOLVE RELHUER USING LP MAXIMIZING Z ;

at

e pA
P

DISPLAY X.L ;

B.2 Linear Capacity Improvement Model

$O0FFSYMXREF OFFSYMLIST
SETS
I arcs /1 * 531/
J paths /1 % 63/;

PARAMETERS

U(I) arc capacities

/

1 0
2 0
3 0
4 0
) 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 0
24 1200
26 1200
26 1200
27 1200
28 1200
29 1200
30 1200
31 1200
32 1200
33 1200

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

—
-0 O 0N WS WN

R B RN NN NN
wmslmm-nwuﬂoaa:;a;as

4800
4800
4800
4800
4800
4800
4800
4800
4800
4820
4800
4800
4800
4800
4800
4800
4800

/
P(I)

/

1.00
0.30
0.70
0.50
0.80
1.00
0.30
0.70
0.50
0.80
1.00
0.30
0.70
0.50
0.80
0.80
0.70
0.30
1.00
1.00
1.00
1.00
1.00
1.00
0.60
0.30
1.00
1.00
1.00

arc probabilities

7Y

30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51

.43
.44
.45
.46
.47
.48
.49
.50
.51
.52
.53
.54
.85
.56
.57
.58
.59

NN B R b bt s bd b b b b b bk A a kb b bR b b e e
. [

.00
.00
.60
.70
.00
.70
.00
.60
.00
.30
.60
.70
.60
.60
.30
.60
.60
.30
.30
.60
.70
.00

N OO0 0000000000 O R O KOO K -

A(I,J) arc-path matrix
/

L o O L - RS T T I N i R

2.10 4
2.11 1

2.12

2.13 1
2.14 1
2.15 1
2.16 &
2.17 1
2.18 1
2.19 1
2.20 1

2.211

2.22 1

2.23 1

2.24 1

3.25 1

3.26 1

3.27 1

3.28 1

3.29 1

3.30 1

3.31 1

3.321

3.331

3.34 1

3.35 1

3.36 1

3.37 1

3.38 1

3.39 1

3.40 1

3.41 1

3.42 1

oA vt T e e
—“ NN~
LB U 2 I e]

5.10 1
5.11 1

5.12 1
§.13 1

5.14 1

5.15 1
5.16 1
5.17 1

5.18 1
§.19 1

6.2¢ 1

5.21 1

5.22 1

.23 1

b.24 1

L B
N~ 0]
0 O o

6.16 1

6.17 1

6.18 1

6.25 1

6.26 1

6.27 1

6.34 1

6.35 1

6.36 1

6.43 1

6.44 1

6.45 1

6.52 1

6.53 1

6.54 1

7.10 1

7.11 1

7.12 1

7.19 1

7.20 1

7.21 1

7.28 1

7.29 1

7.30 1

7.37 1

7.38 1

7.39 1

7.46 1

7.47 1

7.48 1

7.55 1

7.56 1

7.57 1

8.13 1

8.14 1

8.15 1

8.22 1

8.23 1

8.24 1

8.31 1

8.32 1

8.33 1

8.40 1

S
x

SRR o, o7 T T e

W WO W OWW WIWT*IWWOMDOO WO Oow o
W
B

L S L o T S T

o O I = T = T e N S I
O e e b e =R OO0 0000000
NR R N R = e b ek R e e (O 0N
»wMHoomﬂmm»wwHoHMM

O O I S W e I N)
NN D N N B e e s
W B B B W W W W NN NN
NN WWNE OO OS]

- -
N =3
b [
(o] o
P T T O T o T T S T S I e e i

12.49

12.50
12.51
13.52
13.53
13.54
13.55
13.56
13.57
13.58
13.89
13.60
14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

14.10
14.11
14.12
14.13
14.14
14.15
14.16
14.17
14.18
14.19
14.20
14.21
14.22
14.23
14.24
14.25
14.26
14.27
14.28
14.29
14.30
14,31
14.32
14.33
14.34
14.35
14.36
14.37
14.38
14.39
14.40

[S N L

b bed bk ek bk ek b ek b bbb

[S T T T I e el e R i i B o

14.
14.
14.
14,
14.
14.
14.
14.
14.
14,
14.
14.
14.
14.
14.
14.
14,
14.
14.
14,
14.
14.
14,
15.
15.
15,
16.
18,
15.
15.
15.
15.
15.
15.
15.
156.
15.
15.
1€.
15.
15.
15.
15.
16.
15.
15.
15.
15.
15.
15.
15.

- e

[O T S O S S T s S T S e T S o N L S .

i
1
1
i
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1

~

&
1 4

15.
15,
15.
5.
15.
15.
15.
15,
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
185.
15.
15.
15,
15.
15.
15,
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16,
16.
16.
16.

M U N G GOy N1 0D oD oD s DD R D D DWW W
OO ~NO M WNR OOONOOM D WN=OOW~NONNM
L o N N T I I o N O O T e N it o T N

(<1}
o

O W ~NCU D W e
[S O SR = T B

[I I T N T T e O O o I I I
B WK O WO NNOOMD W= O
T S o I o O I e I i

16.2¢

[%}
n

16.
16.
16.
16.
16.
16.
ié.
16.
16.
16.
16.
16.
16.
16.
16.
i6.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.

[Y

S I S O T T T O e e e e e e T T N i o

Lo T T R I T

P e

T S O

O T ™ T T T T S O e

20.2
20.3
21.4
21.5
21.6
21.7
21.8
21.9
21.10
21.11
21.12
21.13
21.14
21.15
21.16
21.17
21.18
21.19
21.20
21.21
21.22
21.23
21.24
22.25
22.26
22.27
22.28
22.29
22.30
22.31
22.32
27 212
22.34
22.35
22.36
22.37
22.38
22.39
22.40
22.41
22.42
23.43
23.44
23.45
23.46
23.47
23.48
23.49
23.50
23.51
23.52

[T

a h b b b b b b fed b b b kb b bd A R kR kb s kb R B R R e R R R R R R e e e 2 e e e e e e

23.
23.
23.
23.
23.
23.
23.
23.

23.
23.
24.
24.
24,
25.
25.
25.
26.
26.
26.
26.
26.
26.
26.
26.
26.
26.
26.
26.
26.
26.
26.
26.
26.
26.
27.
27.
27.
27.
27.
27.
27.
27.
27.
28.
28.
28.
28.
28.
28.
28.

OO ;o ;n
W= O WO~ O;, W
O O T I S S e

WD O~ O ;P WA
[O O T N

B W W W WWWWWWANNRKNNNDNDNDNNR e e e e R
O WO NDOHE W = OWOOON® MNP WM = O WWWNDOM» WN O
[T SO N T T I I TR T S S N S I i i S

30

28,
28.
29.
29.
29.
29.
29.
29.
29.
29.
29.
30.
30.
30.
30.
30.
30.
30.
30.
30.
31.
31.
31.
32.
32.
32.
32.
32.
32.
32.
32.

A~ s
Pl .

33.
33.
33.
33.
33.
33.
33.
33.
33.
34.
34.
34.
34.
34.
34.
34.
34.
34.
35.

[S Y

O T O S T o T I R =

T T S S o S Vo S S S L

© ® ~
[SFORTOEN

n
(%
Pk b b ek b ed b b ek b ek ek b b b ek

N
N
T S o S O T I T O S T = T T e = =

02

i
‘
/

| 39.26
39.27
39.34
39.35
39.36
39.43
39.44
39.45
39.52
39.83

l 39.54
4C.10
40.11
40.12
40.19
40.20
40.21
40.28
40.29
40.30
40.37
40.38
40.39
40.46
40.47
40.48
40.55
40.56
40.57
41.13
41.14

o
1.18

41.22
41.23
41.24
41.31
41.32
41.33
41.40
41.41
41.42
41.49
41.50
41.51
41.58
41.59
41.60
42,
42.
42.
42.16 1

[™ I TN
O T T T T S T O T T S S T e e i)

W wm N
(SIS

93

42.
42,
42.
42.
42.

42
42

42

42
42

43

43

43
43

43

43

44

44

44
44

44,
44,
44.
44,

17
18
25
26
27

.34
.35
42.
42,

36
43

.44
42.

45

.52
.53
42,
43.
43.
43.
43.

54
10
11
12
19

.20
43.
43.

21
28

.29
43.
43.
43.

30
37
38

.39
.46
43.

47

.48
43.
43.

55
56

[

.57
44,
44 .
44,
44,

13
14
15
22

.23
44 .
44,
44,
44.
44.

24
31
32
33
40

.41
44 .

42

.49
.50

51
58
59
60

R N L T T T T O e I N O T e i i aadi o N o o R i i T

= 00 0o
- e

[}
o
[S e T S e I e

1
1
1
1
1
1
1
1
351
1
1
1
1
1
1
1
i
1

47.
47.
47.
47,
47,
47.
47,
47.
47,
47.
47.
48.
48.
48.
48.
48.
48,
48.
48.
48.
48.
48,
48.
48.
48,
48.
48,
48.
48.
48.
48.
48.
49.
49.
49.
49.
49.
49.
49.
49.
49.
49,
49,
49.
49.
49,
49.
49.
49.
49.
49.

[=Y

O e T i

- b
[T e I S

[%
O ™ S S W T o L T)

a6

49.
49.
50.
50.
50.
50.
60.°
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
51.
51.
51.
51.
51.
51,
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
.20
51.
51.
51.
51.

51

51,
51.
51.

W0 N O ;D WN -
S T L

= 2
- O

T S e
N N ; W

-
©
O T T T e

T O I T e e e N e

97

51.29
51.30
51.31
51.32
51.33
51.34
61.35
61.36
51.37
51.38
61.39
51.40
51.41
51.42
51.43
51.44
51.45
51.46
51.47
51.48
51.49
51.50
51.51
51.52
51.53
51.54
51.55
51.56
51.57
51.58
51.59
51.60
51.61
51.62
51.63

/;

O S S S S O el ST o S e S e e e

SCALAR C cost of increasing arc cap by 1/ 1 /;

PARAMETER R(J) path rel ;
R(3) = PROD(I $ A(L,J), P(1)) ;

VARIABLES
X(I) axc capacity increase
F(J) flow on path J
2 network lower bound maxflo ;

POSITIVE VARIABLES F,X ;

EQUATIONS

MAXFLO
PATHFLO(I)
MAXCAP(I)
BUDGET ;
MAXFLO .. Z =E= SUM(J, R(J)*F(J)) ;
PATHFLO(I)$(U(I) ne 0) ..SUM(J $ A(I,J), F(J)) =L= U(I)+X(X) ;
MAXCAP(I) .. X(I) =L= 2400 ;
BUDGET .. SUM(I, C#X(I)) =L= 8000 ;
MODEL CAPINV /ALL/ ;

OPTION LIMRO¥ = O

SOLVE CAPINV USING LP MAXIMIZING Z ;

DISPLAY X.L, F.L ;

B.3 Nonlinear Combined Improvement Model

$OFFSYMXREF OFFSYMLIST
SETS
I arcs /1 * 51/
J paths /1 * 63/;

PARAHETERS

U(I) arc capacities

/
1 0
2 0
3 0
4 0
5 0
] 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 0
24 1200
25 1200
26 1200
27 1200
28 1200
29 1200
30 1200

31

1200

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

4800
4800
4800
4800
4800
4800
4800
4800
4800
4800
4800
4800
4800
4800
4800
4800

/

P(I) arc probabilities

.00
.30
.70
.50
.80
.00
.30
.70
.50
.80
.00
.30
.70
.50
.80
.80
.70
.30
.00
.00
.00
.00
.00
.00
.60
.30
.00
.00
.00
.00

- O O b e OO0 OO D00 OO0 0 Rr O0O00O0 KN

ra)
F

-

.

[I O - Sy O

[S O S S S A ¥ T~y
v e e e e v s

AT,

/

.43
.44
.45

46

.47
.48
.49
.50
.51

[T

T S T T T T T T e T e o e S N T i e

arc~path matraix

()2

(data same as linear model)

51.60
51.61
51.62
51.63

/i

L S

SCALAR CC cost of increasing arc cap by 1 / 1 /;
SCALAR CR cost of increasing arc surv by .1 /400/;

VARIABLES
C(I) arc cap increase
X(I) arc surv increase
F{(J) flow on path J
Z network lower bound raxflo ;
POSITIVE VARIABLES C,F.X ;
EQUATIONS
MAXFLO
PATHFLO(I)
MAXCAP(I)
REL(I)
BUDGET ;
MAXFLO .. Z =E= SUM(J, PROD(I $ A(I,J), P(I)+(.1x2{1):)*F(J)) ;
PATHFLO(I)$(U(I) ne 0) ..SUM(J $ A(I,]1), F(J)) =L= U(I)+C(I) ;
REL(I) .. P(I)+(.1*X(I)) =L=1 ;
BUDGET .. SUM(I, CR*X(I) + CC*C(I)) =L= 8CO00 ;
MAXCAP(I) .. C(I) +U(I) =L= 4800 ;
MODEL AMAX /ALL/ ;
OPTION LIMROW = 0O
SOLVE AMAX 1USTNG NLP MAXIMIZING Z

DISPLAY X.L, C.L, F.L ;

103

Appendix C. Formula Input Files

C.1 Network A

arc(s,20).
arc(s,21).
arc(s,22).
arc(s,23).
arc(1,29).
arc(1,30).
arc(1,31).
arc(2,25).
arc(2,26).
arc(3,27).
arc(3,28).
arc(4,24).
arc(5,32).
arc(5,33).
arc(6,42).
arc(7,43).
arc(8,41).
arc(9,34).
arc(10,37).
arc(11,38).
arc(12,35).
arc(13,36).
arc(14,45).
arc(14,46).
arc(14,47).
arc(15,39).
arc(15,40).
arc(15,41).
arc(16,51).
arc(17,50).
arc(18,49).
arc(19,48).
arc(20,4).
arc(21,2).
arc(22,3).
arc(23,1).
arc(24,14).
arc(25,14).
arc(26,5).
arc(27,11).
arc(28,9).
arc(29,12).
arc(30,13).

arc(31,14).
arc(32,10).
arc(33,11).
arc(34,15).
arc(35,15).
arc(36,15).
arc(37,15).
arc(38,15).
arc(39,6).
arc(40,7).
arc(41,8).
arc(42,14).
arc(43,14).
arc(44,14).
arc(45,19).
arc(46,18).
arc(47,17).
arc(48,16).
arc(49,16).
arc(50,16).
arc(51,t).
prob(s,1).
prob(1,1).
prob(2,0.3).
prob(3,0.7).
prob(4,0.5).
prob(5,0.8).
prob(6,1).
prob(7,0 3).
prob(8,0.7).
prob(9,0.5).
prob(10,0.8).
prob(i1,1).
prob(12,0.3).
prob(13,0.7).
prob(14,0.5).
prob(15,0.8).
prob(16,0.8).
prob(17,0.7).
prob(18,0.3).
prob(19,1).
prob(20,1).
prob(21,1).
prob(22,1).
prob(23,1).
prob(24,1).
prob(25,0.6).
prob(26,0.3).
prob(27,1).
prob(28,1).
prob(29,1).

105

prob{30,1).
prob(31,1).
prob(32,0.6).
prob(33,0.7).
prob(34,1).
prob(35,0.7).
prob(36,1).
prob(37,0.6).
prob(38,1).
prob(39,0.3).
prob(40,0.6).
prob(41,0.7).
prob(42,0.6).
prob(43,0.6).
prob(44,0.3).
prob(45,0.6).
prob(46,0.6).
prob(47,0.3;.
prob(48,0.3).
prob(49,0.6).
prob(50,0.7).
prob(51,1).
prob(t,1).
cap(1,%).
cap(2,*).
cap(3,*).
cap(4,*).
cap(5,*).
cap(6,*).
cap(7,#*).
cap(8,*).
cap(9,x).
cap(10,%).
cap(11,*).
cap(12,%*).
cap(13,*).
cap(14,*).
cap(15,%).
cap(16,%).
cap(17,%).
cap(18,*).
cap(19,*).
cap(20,*).
cap(21,*).
cap(22,%).
cap(23,*).
cap(24,1200).
cap(25,1200).
cap(26,1200).
cap(27,1200).
cap(28,1200).

cap(29,1200).
cap(30,1200).
cap(31,1200) .
cap(32,1200).
cap(33,1200).
cap(34,4800).
cap(35,4800).
cap(36,4800).
cap(37,4800).
cap(38,4800).
cap(39,4800).
cap(40,4800) .
cap(41,4800).
cap(42,4800).
cap(43,4800).
cap(44,4800).
cap(45,4800).
cap(46,4800).
cap(47,4800).
cap(48.4800).
cap(49,4800) .
cap(50,4800) .

cap(51,%).

C.2 Network B

arc(s,50).
arc(s,51).
arc(s,52).
arc(s,53).
arc(s,54).
arc(s,55).
arc(56,t).
arc(57,t).
arc(58,t).
arc(59,t).
arc(60,t).
arc(61,t).
arc(62,t).
arc(63,t).
arc(64,t).
arc(65,t).
arc(50,38).
arc(51,39).
arc(52,40).
arc(53,8).
arc(53,9).
arc(54,10).
arc(55,41).
arc(1,42).
arc(5,42).
arc(2,15).
arc(3,15).
arc(4,43).
arc(6,43).
arc(14,44).
arc(15,44).
arc(16,44).
arc(17,45).
arc(18,23).
arc(18,24).
arc(19,435).
arc(10,47).
arc(26,48).
arc(7,49),
arc(8,49).
arc(11,49).
arc(23,49).
arc(25,49).
arc(27,49).
arc(20,56).
arc(28,56).
arc(21,57).

arc(29,57).
arc(22,58}.
arc(30,58).
arc(24,59).
arc(31,59).
arc(32,60).
arc(33,61).
arc(34,62).
arc(9,63).

arc(35,63).
arc(12,64).
arc(36,64).
arc(13,65).
arc(37,65).
arc(38,1).

arc(38,2).

arc(39,3).

arc(39,4).

arc(40,5).

arc(40,86).

arc(40,7).

arc(41,11).
arc(41,12).
arc(41,13).
arc(42,14).
arc(43,16).
arc(44,17).
arc(44,18).
arc(44,19).
arc(45,20).
arc(45,21).
arc(45,22).
arc(46,25).
arc(47,26).
arc(48,27).
arc(49,28).
arc(49,29).
arc(49,30).
arc(49,31).
arc(49,32).
arc(49,33).
arc(49,34).
arc(49,35).
arc(49,36).
arc(49,37).

prob(s,1.0).
prob(1,0.8).
prob(2,0.8).
prob(3,0.5).
prob(4,0.5).
prob(5,0.8).

prob(6,0.§;:
prob(7,0.8).
prob(8,0.s).
prob(9,0.

prob(10,0.
prob(11,0.
rob(12,0.
: .6).

prob(13,0

prob(14,0.
prob(ls,g.
prob(16,0.
prob(17,0.7).

prob(18,0

prob(19,0.
prob(20,g.
prob(21,0.
prob(22,g.
prob(23, e
1.

prob{24,0
prob(25,0

prob(26,0.
prob(27,0.
prob(28,0.
prob(29,0.
prob(30,0.
prob(31,g.
prob(32,0.
prob(33,g.
prob(34,°.
prob(35,0.
prob(36,0.
prob(37,0.
prob(38,0.
prob(39,0.
prob(40,0.
prob(41,0.

prob(42,0

prob(43,0.

prob(44,0

prob(45,0.
prob(46,0.
prob(47,0.
prob(48,0.
prob(49,0.
prob(SO,I:o)'
.0).

prob(51,1
prob(52,1

prob(53,i.
4,1.
prob(5 e

prob(55,1

prob(56,1.

8).
5).
6).

5).
7.
5).
5).

7).
5).
5).
5).
7).

8).
8).
6).
6).
6).
6).
6).
6).
6).
6).
6).
6).
7.

15).
03).
04).
.4).

c1).
T

11).
06).
09).
18).
07).

0).

0).
0).

0).

Lo

prob(57,1.0).
prob(68,1.0).
prob(59,1.0).
prob(60,1.0).
prob(61,1.0).
prob(62,1.0).
prob(63,1.0).
prob(64,1.0).
prob(65,1.0).

prob(t,1.0).
cap(1,150).
cap(2,200).
cap(3,750).
cap(4,750).
cap(5,200).
cap(6,750).
cap(7,150).
cap(8,200).
cap(9.600).

cap(10,1200) .
cap(11,1200).

cap(12,75).
cap(13,75).

cap(14,1200).
cap(15,1200).
cap(16,2400) .
cap(17,1200),
cap(18,1200).
cap(19,1200) .
cap(20,1200) .

cap(21,75).

cap(22,1200).
cap(23,1200).
cap(24,1200).

cap(25,600).

cap(26,1200).
cap(27,1200).

cap(28,75).
cap(29,75).
cap(30,75).
cap(31,75).
cap(32,75).
cap(33,75).
cap(34,75).
cap(35,75).
cap(36,75).
cap(37,75).
cap(38,*).

cap(39,*).

cap(40,%).

cap(41,%).

I

cap(42,*).
cap(43,%).
cap(44,*).
cap(45,%).
cap(46,*).
cap(47,*).
cap(48,%).
cap(49,*).
cap(50,%).
cap(51,%).
cap(52,*).
cap(53,%).
cap(54,%).
cap(55,%).
cap(56,%).
cap(57,*).
cap(58,%).
cap(59,%).
cap(60,#).
cap(61,%*).
cap(62,%).
cap(63,*).
cap(64,*).
cap(65,*).

C.3 Network C

cost(1,1).
cost(2,1).
cost(3,1).
cost(4,1).
cost(5,1).
cost(6,1).
cost(7,1).
cost(8,1).
cost(9,1).

cost(10,1).
cost(11,1).
cost(12,1).
cost(13,1).
cost(14,1).
cost(15,1).
cost(16,1).
cost(17,1).
cost(18,1).
cost(19,1).
cost(20,1).
cost(21,1).
cost(22,1).
cost(23,1).
cost(24,1).
cost(25,1).
cost(26,1).
cost(27,1).
cost(28,1).
cost(29,1).
cost(30,1).
cost(31,1).
cost(32,1).
cost(33,1).
cost(34,1).
cost(35,1).
cost(36,1).
cost(37,1).
cost(38,1).
cost(39,1).
cost(40,1).
cost(41,1).
cost(42,1).
cost(43,1).
cost(44,1).
cost(45,1).
cost(46,1).
cost(47,1).

113

cost(48,1).
cost(49,1).
cost(50,1).
cost(51,1).
cost(52,1).
cost(53,1).
cost(54,1).
rcost(1,1).
rcost(4,1).
rcost(5,1).
rcost(6,1).
rcost(8,1).

rcost(10,1).
rcost(11,1).
rcost(12,1) .
rcost(13,1).
rcost(14,1).
rcost(15,1).
rcost(18,1).
rcost(19,1).
rcost(20,1).
rcost(21,1).
rcost(22,1).
rcost(25,1).
rcost(26,1).
rcost(27,1).
rcost(28,1).
rcost(29,1).
rcost(32,1).
rcost(33,1).
rcost(34,1).
rcost(35,1).
rcost(36,1).
rcost(37,1).
rcost(40,1).
rcost(41,1).
rcost(42,1).
rcost(43,1).
rcost(44,1).
rcost(47,1).
rcost(48,1).
rcost(49,1).
rcost(50,1).
rcost(51,1).
rcost(54,1).

arc(s,87).
arc(s,88).
arc(s,89).
arc(s,90).
arc(s,91).
arc{s,92).

I}

arc(93,t).
arc(94,t).
arc(95,t).
arc(96,t).
arc(97,t).
arc(98,t).
arc(99,t).

arc(100,t).
arc(101,t).
arc(102,t).
arc(103,t).
arc(104,t).
arc(105,t).
arc(106,t).
arc(107,t).
arc(108,t).
arc(109,t).
arc(87,55).
arc(88,56).
arc(89,57).
arc(90,58).

arc(91,5).

arc(92,59).

arc(3,60).
arc(5,61).
arc(6,62).
arc(7,10).
arc(1,63).
arc(2,63).
arc(4,63).
arc(8,63).
arc(9,63).

arc(10,63).
arc(11,64).
arc(16,65).
arc(17,66).
arc(18,40).
arc(18,41).
arc(19,67).
arc(20,68).
arc(21,69).
arc(22,70).
arc(23,52).
arc(24,71).
arc(25,72).
arc(12,73).
arc(26,73).
arc(33,73).
arc(13,74).
arc(27,74).
arc(34,74).

arc(28,93).
arc(35,93).
arc(29,75).
arc(36,75).
arc(30,76).
arc(37,76).
arc(31,77).
arc(38,77).
arc(32,78).
arc(39,78).
arc(42,94).
arc(47,94).
arc(40,79).
arc(43,79).
arc(41,80).
arc(44,80).
arc{45,81).
arc(48,81).
arc{49,82).
arc(52,95).
arc(46,83).
arc(53,83).
arc(54,84).
arc(14,85).
arc(50,85).
arc(15,86).
arc(51,86).

arc(55,1).
arc(56,2).
arc(57,3).
arc(58,4).
arc(59,6).
arc(60,7).
arc(61,8).
arc(62,9).

arc(63,11).
arc(63,12).
arc(63,13).
arc(€3,14).
arc(63,15).
arc(64,16).
arc(64,17).
arc(64,18).
arc(64,19).
arc(64,20).
arc{64,21).
arc(64,22).
arc(64,23).
arc(64,24).
arc(64,25).
arc(65,26).

L6

arc(65,27).
arc(65,28).
arc(65,29),
arc(65,30).
arc(65,31).
arc(65,32).
arc(66,33).
arc(66,34) .
arc(66,35).
arc(66,36).
arc(66,37).
arc(66,38).
arc(66,39).
arc(67,42).
arc(67,43).
arc(67,44).
arc(67,45).
arc(67,46).
arc(68,47).
arc(68,48).
arc(68,49).
arc(6$,50).
arc(70,51).
arc(71,53).
arc(72,54).
arc(73,36).
airc(74,97).
arc(75,98).
arc(76,99).
arc(77,100).
arc(78,101).
arc(79,102).
arc(80,103).
arc(81,104).
arc(82,108).
arc(83,106).
arc(84,107).
arc(85,108).
arc(86,109).
prob(s,1).
prob(1,0.900).
prob(2,1.000).
proo(3,1.000).
prob(4,0.600).
prob(5,0.300).
prob(6,0.600).
prob(7,1.000) .
prob(8,0.900).
prob(9,1.000).
prob(10,0.700).
prob(11,0.900).

prob(12,0

prob(13,0.

prob(14,0
prob(15,0
prob(16,1
prob(17,1
prob(18,0
prob(19,0
prob(20,0
prob(21,0
prob(22,0
prob(23,1
prob(24,1
prob(25,0

prob(26,0.

prob(27,0
prob(28,0

prob(29,0.

prob(30,1
prob(31,1

prob(32,0.

prob(33,0
prob(34,0

prob(35,0.
prob(36,0.

prob(37,0
prob(38,1

prob(39,1.

prob(40,0

proo(41,0.
prob(42,0.
prob(43,0.
prob(44,0.

prob(45,1

prob(46,1.
prob(47,0.
prob(48,0.
prob(49,0.
prob(50,0.
prob(51,0.
prob(52,1.
prob(53,1.

prob(54,0
prob(s5,0
proh(56,0
prob{s7,0
prob(58,0
prob(59,0
prob(60,0
prob(61,0
prob(62,0

.600).
300) .
.600).
.700).
.000).
.000).
.600) .
.300).
.600).
.700).
.900).
.000).
.000).
.600).
300).
.600) .
.700).
900) .
.000).
.000).
300).
.600) .
.300) .
600) .
700) .
.900).
.000).
000) .
.600) .
300) .
600) .
700) .
900) .
.000).
000) .
600) .
300) .
600) .
700) .
900) .
000) .
000).
.600) .
.300).
.700) .
.500).
.800) .
.300) .
.700) .
.500).
.800) .

prob(63,0.
prob(64,0.
prob(65,0.
prob(66,0.
prob(67,0.
prob(68,0.
prob(69,0.
prob(70,0.
prob(71,0.
prob(72,0.
prob(73,0.
prob(74,0.
prob(75,0.
prob(76,0.
prob(77,0.
prob(78,0.
prob(79,0.
prob(80,0.
prob(81,0.
prob(82,0.
prob(83,0.
prob(84,0.
prob(ss,0.
prob(86,0.
prob(87,1.
prob(ss,1.
prob(89,1.
prob(90,1.
prob(91,1.
prob(92,1.
prob(93,1.
prob(94,1.
prob(95,1.
prob(96,1.
prob(97,1.
prob(98,1.
prob(99,1.
prob(100,1
prob(101,1
prob(102,1
prob(103,1
prob(104,1
prob(105,1
prob(106,1
prob(107,1
prob(108,1
prob(109,1
prob(t,1).
cap(1,1200
czp(2,1200
cap(3,300.

700).
700).
500) .
800).
300).
700) .
500).
800).
300).
700) .
500).
800) .
300) .
700) .
500).
800) .
300) .
700).
500) .
800) .
300).
700).
500).
800).
000) .
000) .
000) .
000) .
000).
000) .
000) .
000) .
000).
000) .
000).
000) .
000) .

.000).
.000) .
.000).
.000).
.000) .
.000).
.000).
.000) .
.000).
.000).

.000).
.000) .

000) .

cap(4,1200.000).
cap(5,1200.000).
cap(6,1200.000).
cap(7,300.000).

cap(8,1200.000).
cap(9,1200.000).
cap(10,300.000).

cap(11,9600.000).

cap(12,75.000).
cap(13,75.000) .

cap(14,1200.000).
cap(15,1200.000).
cap(16,4800.000) .
cap(17,4800.000).
cap(18,4800.000).
cap(19,4800.000).
cap(20,4800.000).
cap(21,2400.000) .
cap(22,4800.000).
cap(23,4800.000) .
cap(24,4800.000).
cap(25,2400.000).
cap(26,4800.000).
cap(27,4800.000) .
cap(28,2400.000).
cap(29,1200.000).
cap(30,1200.000).
cap(31,1200.000) .
cap(32,1200.000).
cap(33,4800.000).
cap(34,4800.000).
cap(35,2400.000) .
cap(36,1200.000).
cap(37,1200.000).
cap(38,1200.000).
cap(39,1200.000).
¢ap(40,2400.000) .
cap(41,1200.000).

cap(42,300.000).

cap(43,2400.000).
cap(44,1200.000).

cap(45,300.000) .

cap(46,2400.000) .
cap(47,1200.000) .

cap(48,300.000).
cap(49,300.000).

cap(50,1200.000).
cap(51,1200.000).
cap(52,2400.000) .
cap(53,2400.000) .

cap(54,60C.000).

cap(55,*).
cap(56,%).
cap(57,%).
cap(58,%).
cap(59,%) .
cap(60,*).
cap(61,%).
cap(62,%).
cap(63,%).
cap(64,*).
cap(65,*).
cap(66,*).
cap(67,

cap(68,*).
cap(69,*).
cap(70,%).
cap(71,%).
cap(72,%).
cap(73,¥).
cap(74,*).
cap(7E,#).
cap(76,*).
cap(77,%).
cap(78,*).
cap(79,*).
cap(80,*).
cap(81,#).
cap(82,%) .
cap(83,+).
cap(84,*).
cap(85,*).
cap(86,%).
cap(87,%).
cap(88,*).
cap(89,%).
cap(90,*).
cap(91,*).
cap(92,%).
cap(93,+).
cap(94,*).
cap(95,*).
cap(56,*) .
cap(97,»).
cap(98,*).
cap(99,r).

cap(100,s).
cap(101,+).
cap(102,+).
cap(103,+}.
cap(104,+).
cap(105,+).

cap(106,*).
cap(107,%).
cap(108,*).
cap(109,%).
invest(1,0).
invest(2,0).
invest(3,0).
invest(4,0).
invest(5,0).
invest(6,0) .
invest(7,0).
invest(8,0).
invest(9,0).

invest(10,0).
invest(11,0).
invest(12,0).
invest(13,0).
invest(14,0).
invest(15,0).
invest(16,0).
invest(17,0).
invest(18,0).
invest(19,0).
invest(20,0).
invest(21,0).
invest(22,0).
invest{23,0).
invest(24,0).
invest(25,0).
invest(26,0).
1nvest(27,0).
anvest(28,0).
invest(29,0).
invest(30,0).
invest(31,0).
invest(32,0).
invest(33,0).
invest(34,0).
invest(35,0).
invest(36,0).
1nvest(37,0).
invest(38,0).
invest(39,0).
invest(40,0).
invest(41,0).
invest(42,0).
invest(43,0).
invest(44,0).
invest(45,0).
invest(46,0).
invest{(47,0).

(S

(B

invest(48,0).
invest(49,0).
invest(50,0).
invest(51,0).
invest(52,0).
invest(53,0).
invest(54,0).
budget(10000) .
rbudget (10000) .

Appendix D. Formula Version 3.0 User’s Manual

Th's manual explains how to use Prolog program, FORMULA Version 3.0. It consists of the
Version 2.0 user’s manual written by Gaught (12:243-251), updated with version 3.0 enhancements.

This program consists of two files:
* FORMULAS.ARI - Contains the main computer program.

* WINDOWS3.ARI - Contains window dialog hoxes.

D.1 Required Equipment

Currently, FORMULA requires ARITY/PROLOG interpreter program to run. The in-
terpreter and FORMULA can be installed on an IBM-XT/AT compatible microcomputer. The
computer with at least 512 kilobytes of random access memory and 20 megabyte hard disk is

desired.

D.2 Running the FORMULA

Assuming both ARITY/PROLOG interpreter and FORMULA are installed on your com-
puter. start the interpreter by typing AP When - nrompt appears. consult your program by
typing ‘consult(“formulald.ari’). © After the program has been consulted correctly, type in ‘go.” to

start the program FORMULA. ‘I he prograin proceeds through the following steps:

1) First, it displays an introductory screen displaying what this programcan do. (Just hit

any key to go on.)

2) Next. it asks for the name of input data file which contains the description of network to

be analyzed (‘Type i the exact name of input file and hit return.)

3) After the input file name has been typed in. the program displays a menu window from

winch you can choose to generate the specific output (Select number 1, 2. 3. 4.5, 6. 7.8, or 9):
1 Find all paths and calculate path reliabilities.
2. Generate the Maximum Flow Formulation.
3. Generate the Lower Bound Formulation

4. Generate the Upper Bound Formulation

pii}

Generate the Investment Strategy Model |

121

[

. Generate the Investment Strategy Model 2.

-~

. Generate the Investment Strategy Model 3.

[o]

. Generate Reliability Files.
9. Exit.

4) It then asks where to send the output. If you just want to screen the output, choose 1;
otherwise, choose 2 to save the output in a file. The output filename is automatically generated
by the program. When the user requests the output to be sent to a file, the output of paths and
reliabilities s sent to ‘outputl lp’, maximum flow to ‘output2.lp’, lower bound to ‘output3.lp’. upper
bound to ‘outputd.lp’, investment strategy model 1 to ‘output5.lp’, investment strategy model 2 to
‘output6.lp’, and investment strategy model 3 to ‘output7.nlp’. The reliability files generated are

1) path.d, 2} prob.f, 3) cap.f, and 4) net.top. (Select 1 or 2.)

5) After the output has been generated, l..e program asks if you want to run the program
agamn. If you are interested in getting other output, type in ‘y’; otherwise type in ‘n’ which exits

the program. (Type in y or n.)

D.3 Input
In preparing the input data, you have to follow the fcllowing procedures:

1) If the network contains stochastic and/or capacitated nodes, convert the nodes to a dummy

arc jomned by two nodes The dummy arc represents the stochastic and/or capacitated node.

2) Introduce an artificial single source and single sink. The source and sink must be named

s and ¢, respectively. Connect all source nodes in the network to s, and all sink nodes to t.

3} Draw a revised network, and assign arc numbers. It has been found very helpful if you
oumber the dummuy ares representing the node with the same node number. Then number the
remaining arcs starting with one number higher than the number of nodes in the network Thus.

for example, if you have 20 nodes in the original network. number the remaming arcs starting with

21

1) Using a test editor (Arity /Prolog comes with its own editor), prepare the input data by
typmg in the description of revised network that is to be analyzed. The mput consists of eight
data sets: deseription of an arce relationship with respect to one another, the survival probability
of cach arc, the capacity of each are. the cost of unproving each arc by one unit of capacity, the

predetermined amount of capacity increase m cach component. total budget available for capacity

mvestment, the cost of improving the reliability of each arc by 0.1, and the total budget available

for reliability investment .. These input are described as facts in Prolog term as follows:

arc(Arcl,Arc2).

prob(A,Pb).

cap(A,Cp).

cost{A,Cs).

invest(4,Am).

budget (Bc) .

rcost(A,Rs).

rbudget(Br).

Description

Arcl is the parent of Arc2
(Arc1 precedes Arc2).

The survival probability of
arc A is Pb.

The capacity of arc 4 is Cp.
The unlimited (infinite) capacity
is denoted by ‘*’.

The cost of increasing one unit
of capacity in arc A is Cs.

The predetermined amount of
capacity increase for arc A is Am.

Total budget available for invest-
ment in capacity is Bc.

The cost of increasing one unit
of reliabality in arc A is Rs.

Total budget available for invest-
ment in reliabality is Br.

When defining arc relationships, you must define the relationship of s and ¢ with respect to

other arcs S0 arc(s,2) . defines that the are 2 is incidence to node s, that 1s. the are 2 leaves

the node s, In a likely manner, ‘arc(22,t)." defines that the are 22 armves at node t. Tn addition

to specifying the probability of each are, the probability of s and t must be defined as 1 Thus, in

the probahility description, make sure you include *prob(s, 1)’ and "prob(t,1)".

5} Depending on your need, some of the input data may be onutted. Refer to the table

below to see exactly which data set. are required to get the desired output. For example, if you are

only interested in finding paths and their reliabilities, all you need is arc relationships and survival

probabilities.

| For this output: |You must have the following data: |

Paths and Reliabilities	arc(X,Y).
	prob(X,Y).
Maximum Flow,	arc(X,Y).
Lower Bound, or	prob(X,Y). i
Upper Bound I cap(X,Y).	
Improvement Strategy 1	arc(X,Y).
	prob(X,Y).]
	cap(X,Y).
	cost(X,Y).
	budget(X,Y). I
}Improvement Strategy 2	arc(X,Y).
i	prob(X,Y).
	cap(X,Y).
	cost(X,Y).
	budget(X,Y).
]	invest(X,Y).]
Improvement Strategy 3	arc(X,Y).
	prob(X,Y).
]	cap(X,Y).
	recost(X,Y).
! | rbudget(X,Y). I

6) When using Avity /Prolog. it is customary to name the file with “ ar”extension So name
g } 3

your input file with ‘.ari’ extension.

D.J FErample

To illustrate how to piepare the mput data. consider a network shown in Pigure 18, This

network containg 4 nodes and 3 ares. It has multiple sources. | and 2, and a single smk. 1.

The cost of increasing one unit of capacity is as follows: node 3 = 10, arcy 3 = 20, arcy 4 =
30. and arcz 4 = 40. The predetermined amount of capacity increase is 5 units for all components.
and the total budget available for investient is §1000. The cost of increasing reliabiliy 0 1 is the

same as creasing capacity by 1, and the reliability budget is the same as the cavacity budget

The revised network is shown in Figure 19.

(1,%)
(.3,200)

(.5,100)
(4,300) ————————><E:>

(.2,100) (1,%

I¥

—_—
~—

{Reliability,Capacity)

* denotes infinite capacity

Figure 19. Sample Network

Since node 1 and 4 are not stochastic and not capacitated, they do not need to be represented
as arcs. A dummy arc representing a stochastic o1 capacitated node 1s assigned the same number
as 1its node number In numbering arcs. the number 1 and 4 are not used. since 1 and | are not
represented as arcs. The remainimg arcs are numbered starting with 5. Now. referring to the revised

network shown in Figure 19, the input data can be prepared as follows:

% Arc Relationship
arc(s,5).
arc(s,6).
arc(2,8).
arc(3,9).
arc(5,7).
arc(6,2).
arc(7,3).
arc(8,3).
arc(9,10).
arc(10,t).

% Survival Probabilitaies
prob(s,1)
prob(2,0.:}.

Figure 20. Revised Network

prob(3,0.2).
prob(5,1).
prob(6,1).
prob(7,0.3).
prob(8,0.4).
prob(9,0.5).
prob(10,1).
prob(t,1).

% Capacity
cap(3,100).
cap(5,#).
cap(6,*).
cap(7,200).
cap(8,300).
cap(8,400).
cap(10,x).

% Cost of Increasing One unit of Capacity
cost(3,10).
cost(7,20).
cost(8,30).
cost(3,40).

7 Predetermined Amount of Capacity Increase
invest(_,5).

% Capacity Budget Available
budget(1000).

% Cost of Increasing Reliability by 0.1
rcost(3,10).

129

rcost(7,20).
rcost(8,30).
rcost(9,40).

% Reliability Budget Available
rbudget (1000) .

% =--- end~-- %

Any line that starts with a % sign is a comment line, and it is ignored by the interpreter.
The underscore () in ‘invest(_,5)." denotes all components. Thus, ‘invest(.,5)." denotes the

predetermined amount of capacity increase for all components is 5 units.

0.5 Output

An example of outputl.lp, containing paths and path reliabilivies, are shown below:

FAok Aok kR dOoR R kg ok Rk koK Rk ok Ak F ok ko k ok kR kkokok ko okk kR ok kR kok
* Following is a list of all patns from "s” to "t'" *

* of the network descrited in the input C’ata file. %
LR T T P P T

Pathl: s 67 3 9 10 ¢
Reliability: 0.003

Path2: s 6 28 39 10 t
Reliability: 0.004

The rest of the ontpuls, containing mathematical prograinming models, are in the same
format as the input format of LP/MIP-33 Pach output consists of . Title, Objective Maximize.
and Coastraints weetion An example of ontput2.1p coutaining the maxinnin flow formulation, is

shown below:

..Tatle
Maximum Flow Formulation 2

Objectave Maximize

11+ £2

130

o o _

. .Constraints

Arc 3: f1 + £2 <= 100
Axc 7: f1 <= 200

Arc 8: £2 <= 300

Arc 9:; f1 + £2 <= 400

D.6 LP/MIP-83 Commands

All msdcs. except Investment Strategy Models 2 and 3, can be solved using either LP83 or
MIP83 The Investment Strategy Model 2 can only be solved by MIP83, because it requires integer

solutions. The following are some commands to run LP/MIP-83:

a) ¢ > Ip83 aoutput2

Find all solutions to the linear programming model stored in ‘output2.lp’ in ‘a” drive,
and display the solutions on the screen.

b)Y ¢ > Ip&3 aontput2 output a:list

Same as a) above. except send the solutions to the output file named *list.prn™. in "a’
drive. The extension. ‘.prn’ is automatically added.

c) e > Ip83 acontput2 output alist alternate 1

Sanie as b) above. except find only one solution.

d) ¢ :> nupl3 aontputs

Find all solutions 1o the mixed integer programming model stored in “ontput6 Ip®in
‘a’drive, and display the solutions on the sereen.

D.7 GINO Commands

Investment Strategy Model 3 must be solved using GINO. GINO can be run on many different

types of computer systems. The following example is for a computer running the MS-DOS operating

system:
¢> GINO (this command starts the GINO program)
‘retr outputt.nlp (this command loads the file created by Formula)
g0 (this command tells GINO to solve the model)
“quit (this command exits GINO)

The user should consult a GINO user’s manual for further details.

D.8 Helpful Comments

1) The program, FORMULA has been tested and successfully generated formulations for
the network containing 70 nodes, 112 arcs, and 2198 paths. Since the capacity of LP/MIP-83 is
approximately 1200 variables (paths), any problem bigger than the capacity of LP/MIP-83, must
be solved using other mathematical programming packages. such as MINOS or SAS. Of course

preparing an input file for these packages will be different from that of LP/MIP-83.

2) If you want to stop the execution (or if the computer is hung up). press ‘control’ and
‘break” <tmultancously. When *7-" appears, type ‘clear.windows.” and/or ‘exit_popup.”. It will get
you to the main window of Arity /Prolog. Before starting the program again. you must erase the

datafile by typing *‘Restore.” Otherwise, you will get erroneous output

3) Auy questions about the Arity/Prolog interpreter or general guestions about the Ar-

ity /Prolog,. refer to (1),

Appendix E. Formula Version 3.0 Source Code

/¥=======z=====sz=z=z===z====x === =====c=zzz=x=s=oszsz%f
/* */
/x FORMULA Version 3.0 */
/% */
/*=====z==zzossooooazozooonsos==coooazsoTooosszoSsssoosoos=oss=os */
/* */
/* This program does the following eight tasks: */
/* */
/* 1) Fands all paths in the network from source (s) to */
/* sink (t) and calculates all path reliabilities. x/
/* 2) Generates the formulation of the Maximum Flow through */
/% the network. */
/* 3) Generates the formulation of the Lower Bound of the */
/* Expected Maximum Flow. */
/* 4) Generates the formulation of the Upper Bound of the x/
/% Expected Maximum Flow. */
/* 5) Generates the formulation of the investment strategy */
/* model 1. */
/* 6) Generates the formulation of the investment strategy +*/
/* model 2. */
/* T) Generates the formulation of the investment strategy */
/* model 3. */
/* 8) Generates files used for network reliabity formulation */
/* */
/* The six mathematical programming models (2 to 7) are */
/* developed based on arc-path incidence matrix built from */
/* the description of the network in the input file. */
/* The network described in the ainput file must contain a x/
/* single source node, named ’s’, and sink node, named ’t!. %/
/* A1l capacitated or stochastic nodes must be represented */
/* as a dummy arc with two nodes. Refer to FORMULA user’s */
/% manual for details on how to prepare the input file. */
/* */
/% The formulations, 2 thru 6, generated from this program */

/* are in the same format as the input data file of LP/MIP 83 #/
/* mathematical programming package. The formulation 7 is in */
/* the same format as the input data file of GINO mathematical*/
/* programming package. Thus the ouputs 2 thru 6 can be used */
/* as an input to LP/MIP 83 and the output 7 can be used as */

/* an ainput to GINO for further analysis. */
/% */
e e e *x/
/* */
/* DATE: 1 October, 1991 */

133

/* FILENAME: FORMULA3.ARI */

/* */
/* This program was written in Prolog language using the */
/* Arity/Prolog Version 5.0. */
/% */
/*:::::::::::::::::::===*/

/* Start the program by typing ’go.’ */

go -
fileexrrors(_,off), % Turn off system file error message.
windows, % Call windows to display the
% introduction screen.
open_input_datafile, 7 Get the name of input file and
% consult it.
start_program.
gO.

start_program :-
get_selection_number(Selection),
% Ask user what need to be done.

(Selection = 9, % If ’9’is selected, exit.
clear_windows, !

; % Otherwise,
nl, % Where should output be sent ?

get_where_to_send_output{(Where),
execute_request(Selection,Where) % Execute the request.

).

execute_request(Selection,Where) :-
(Selection = 1,
search_paths(Where),!

Selection >= 2,
Selection =< 4,
performance_formulations{Selection,Where)

Selection >= §,
Selection =< 6,
lp_investment_formulations(Selection,Where)

Selection = 7,
nlp_ainvestment_formulation(Selection,Where)

rel_file_formulation(Selection,Where)

),
get_run_again_reply(Reply), % Run the program again ?
cls, % Clear screen.

(Where = 1, % If the output was sent to

true, ! % the screen, do nothing.
; % Otherwise,

exit_popup % delete popup window ’done’.
),

want_more(Reply).

want_more(Reply) :-

(Reply = 121, % Reply is 'y’ (ASCII 121),
removeallh(matrix), % delete hash table ’matrix’, and
start_program, ! % run program again.

clear_windowus, % Otherwise, exit.
nl

), L.

/*#*#tt##*tt*#t#*#*t##***tt*#t#*t*"***t**#‘t‘*#‘tt#‘t*tt#t**#/
/* ‘search_path’ initiates search to find all paths in the =/

/* network and calculates path reliabalities. */
/tt‘##t*t**t###t##t*##tt#‘t#*t#‘#*t*t*t*t#tttttt“###‘*‘*tt***/

search_paths(Where} :-
ctr_set(1,1), % Initialize counter one to 1
% to keep track of path number.
(¥here = 1, 7 When Where = 1, output is displayed
% on the monitor screen.

continue_find_paths

; % ’Executing’ message is displayed on
% the screen while the output 1s being
executing_message, 7 sent to the ’outputl.lp’ fale.

stdout(’outputl.1lp’,continue_find_paths),

exit_popup, % Delete popup window ’executing’.
done_r »ssage(1) 7 Display ’done’ message.

continue_find_paths :-
nl,

urice('tottt‘ttt.nt‘tttttttttotttnttac:t.tttttttttttttot-ott’)'
nl,
write(’* Following 1s a list of all paths from "s" to "t"
*5,
nl,
write{(’'s of the network described in the input data file.

*),

nl,

Write (! ®kkkrkrrskkior ik sk Rk fiok kK E Rk kR ok kR Rk Rk Kok dokok)) |

nl,nl,nl,
find_paths(s,t),
nl,nl,
write(’*
nl,nl,nl,nl.

find_paths(Start,Goal) :- e
%
%
depth_first([Start],Goal,Path),
find_reliability(Path,Rel),
ctr_inc(1,Pnbr), A
%
display_outputs(Path,Pnbr,Rel),
fail. %
%

find_paths(_,_).

depth_first(Path,Goal,Path) :-
satisfies(Path,Goal).
depth_first([X|Restl,Goal,Path) :-

arc(X,Y), %
not member(Y, [X|Rest]), %

depth_first([Y,X|Rest],Goal,Path).

satisfies([Goall_],Goal). %4
%

%

membex (X, [X{Tail]).
member (X, [HeadiTa1ll) :-
member (X,Tail).

A

%

find_reliabilaty([Arc|Rest],Rel) :-
find_reliability(Rest,RelRest),
prob(Arc,Pb),

find_reliability([],1) :~ !.

Rel 1s Pb * RelRest.

Find all paths usirg
depth-first
search method.

% Calculates the reliability
% of a path.

Get current path number and
increment counter one by 1.

Go on to find next path until
there isn’t any to be searched.

% Path is found 1f it
% satisfies
% Goal.

Get next arc.
Prevents cycles.
% Recursive call.

A path is found 1f the head of
a list describing Path matches
with Goal (t).

Reliability of an empty list is
1.

%
3

%

Calculate Rel recursively.
Get survival probability of
Arc.

display_outputs(Path,Pnbr,Rel) :~
print_path(Path,Pnbr), % Print path and
print_reliability(Rel). % reliability.

print_path(Path,Pnbr) :-
write(® Path ’),
write(Pnbr),
write(’: ’),
write_reverse(Path).

print_reliability(Rel) :-
nl,
write(’ Reliability: ’),
write(Rel), nl, nl.

write_reverse([]) :- !. % Prints path from ’s’ to ’t’.
write_reverse([ArciRest]) :-

write_reverse(Rest),

write(Arc), write(’ *).

JFFR Rk oKk AR R kR Kk R kKR Rk kK ok K ok kR Kok ok f
/* ‘performance_formulations’ generates the formulations of */
/* maximum flow, lower bound of expected maximum flow, */
/* and upper bound of expected maximum flow. */
[3R AR A AR R K K AR K Ak oK R R R KKK K KA KR A KRR ARk K

performance_formulations(Selection,Where) :-

{ Where = 1, % Display output on the screen.
find_formulations(Selection)

executing_message, % Display output sending
% message.
(Selection = 2,
stdout(’output2.lp’,find_formulations(Selection))

Selection = 3,
stdout (’output3.1lp’,find_formulations(Selection))
stdout(’output4.lp’,find_formulations(Selection))
),
exit_popup, % Delete popup window
% ’executing’.
done_message(Selection) % Display ’'done’ message.

137

find_formulations(Selection) :-
title(Selection),

objective(Selection),

constraints(Seiection),

nl,nl,

write(’* ------ end -=--=-- *1),

nl,nl,nl,nl.
/* x/
title(Selection) :~ % Print title of the

% formulation.

wrate(’ ,.Title’),
nl,nl,
(Selection = 2,

write(’ Maximum Flow Formulation’)
H

Selection = 3,

write(’ Lower Bound Formulation’)

write(’ Upper Bound Formulation’)

).
[R e e e e */
objective(Selection) :- % Get objective function
nl,nl,
write(’ ..0Objective Maximize’),
nl,nl,
ctr_set(1,1), % Counter one generates path number.
ctr_set(3,1), % Initialaze counter three to 1

% to keep track of how many terms

% are printed in a line in the objective

% function.
find_objective(s,t,Selection).

find_objectiva(Start,Goal,Selection) :-

depth_first([Start],Goal,Path),

find_reliability(Path,Rel),

ctr_inc(1,Pnbr), % Get current path number and
% increment the counter one by
% one.

print_objective(Pnbr,Rel,Selection),

make_arc_path_matrix(Path,Pnbr), ¥ .fake arc-path incidence

% matrix.
fail.
find_objective(_,_,.).

138

print_objective(Pnbr,Rel,Selection) :~
tab(1),
(Pnbr = 1

+

write(’+ ')

),
(ctr_inc(3,Value), % Get current variable number and
% increment the counter three by 1.
Value > 4,
Mod_Value is Value mod 4, Y% If the remainder of Value
Mod_Value = 1, % divided by 4 is 1, then skip
nl, % to next line.
write(’)
true
),
(Selection = 3, % If finding lower bound (Sel =
%3,
write(Rel) % print reliability.
true % Otherwise, do nothing.
))
write(’ £’), % Print path flow variable.
write(Pnbrj, !.
JL— ———- - ————- x/

make_arc_path_matrix([],_).
make_arc_path_matrix(Arc_List,Pnbr) :-), Seperate the elements,
% arcs, in the path and
% store each arc with
% associated path number
% to form arc-path
% incidence
get_arc(Arc_List,Arc,Rem_List), % matrix.
cap(Arc,Capacity),
(number(Capacity),
recordh(matrix,Arc,arc_path_matrix(Axrc,Pnbr))
true
),

make_arc_path_matrix(Rem_List,Pnbr), !.

get_arc([Head| [HIRest]] ,Head,Rem_List) :-

Head \= ’s’, % Ignore ’s’ and ’t’
Head \= ’t’,
(Rest = [],

Rem_Last = [J

Rem_List = [HI|Rest]
),

get_arc([Head|Rest] ,Arc,Rem_List) :-

get_arc(Rest ,Arc,Rem_List).

constraints(Selection) :-

nl, nl,
write(’ ..Constraints’),
asserta(init_string($$)),

find_all_arc_lists(Arc_List),
sort(Arc_List,Sor),

make_arc_array(Sor),
generate_constraints{Selection).

find_all_arc_lists(_.) :-

o~

[/
%
/
%

%
%
%

Get one arc at a time
that is ain the path.

Get constraints
function.

Initialize to empty
string.

Sort Arc_List 1n ascending
oxder.

Make sorted arc_list into
arc array.

Find all arcs that are in
the
arc-path incidence matrix.

retrieveh(matrix,_,arc_path_matrix(AN,_)),

int_text (AN, Arc_String),

{' concat([0000, Arc_String, $,$], New_Arc_String),

retract(init_string(Init)),

(string_search(New_Arc_Strang,Init,_), % Do not include

asserta(inait_string(Init))

% the
% duplicate arc
% string.

concat{New_Arc_String, Init, New_String), % Appenrd the

% new

asserta(init_string(New_String)) % string.

)
1],
fail.

find_all_arc_lists(Final) :-

retract(init_string(Main_String)),

string_length(Main_Straing, Length),

dec(Length,Pos),

substring(Main_String,0,Pos,New_String),
concat ([$[$, New_String, $]$], Output_String),

string_term(Output_String, Final), !.

I

% Change strang into

40

|
|
' % a list.

/* - e e */
make_arc_array([]). % Seperate the arc_list and
make_arc_array([Anbr|Rest]) :- % put it into an array format.

assertz(arc_array(Anbr)),
make_arc_array(Rest).

generate_constraints(Selection) i-
retract(arc_array(Anbr)),

[! cap(Anbr,Capacity),
generate_constraint_inequality(Anbr),
write(’ ’),
write(’<= '),
wrate(’ '),

(Selection = 4,
prob(Anbr,Pb),
Expected_Cap 1s Capacity * Pb,
write(Expected_Cap)
write(Capacity)
)
‘1,
fail.

generate_constraints(_).

generate_constraint_inequality(Anbr) :-

nl, nl,

wraite(’ Arc '),

write(Anbr),

write(’:),

ctr_set(10,0), % First tame flag; this 1s used to
% control when to print ’+’ 1n
% the constraint equation.

ctr_set(4,1), % Initialaze counter four to 1;
% this counter keeps track of
% how many terms are printed in
% the constraint equation.

output_paths_containing_Anbr(Anbr).

output_paths_containing_Anbr (Anbr) :-
removeh(matrix,Anbr,arc_path_matrix(Anbr,Pnbr)),
[(* (ctr_inc(10,Flag),
Flag = 0 % If first term, don’t print ’+’.

write(? + ?)

))
(ctr_inc(4,Value), % Get current term number and
% increment the counter four by 1
Value > 7,
Mod_Value is Value mod 7,
Mod_Value = 1,
nl, write(’ M)
true
),
write(’f’),
write(Pnbr)
11,
fail.

output_paths_containing_Anbr(_).

/***t*#*******/

/* ‘lp_investment_formulations’ generates formulations of */
/* 1nvestment strategy model 1 and 2 to improve the */
/* lower bound. */

/**#/

lp_investment_formulations(Selection,Where) :-
(Where = 1,
get_investment_model(Selection)

executing_message,
(Selection = 5,
stdout(’output5.1p’,get_investment_model(Selection))

stdout (’output6.1p’,get_investment_model{(Selection))
)’
ex1t_popup,
done_message(Selection)

get_1investment_model(Selection) :-
anvest_model_title(Selection),
invest_model_objective(Selection),
invest_model_constraints(Selection),
nl, nl,
write(’* —————- end ~---=~ *),
nl,nl,nl,nl.

invest_model_title(Selection) :-
wrate(’ ..Title’),
nl,nl,

(Selection = §,
write(’ Investment Strategy Model 17)
write(’ Investment Strategy Model 2’)
).

invest_model_objective(Selection) :-
nl, nl,
write(’ ..Objective Maximize’),
nl, nl,
ctr_set(1,1), % path number
ctr_set(3,1), % no. of terms in a line
find_invest_model_objective(s,t,Selection).

find_invest_model_objective(Start,Goal,_) :-
depth_first([Start],Goal,Path),
find_reliability(Path,Rel),
ctr_inc(1,Pnbr),
output_invest_model_objective_variables(Pnbr,Rel),
make_arc_path_matrix(Path,Pnbr),
fail.

find_invest_model_objective(_,_,Selection) :-
asserta(init_invest_string($$)),
get_investment_variables(Invest_Vars),
sort(Invest_Vars,Sorted_Vars),
make_cap_array(Sorted_Vars),

nl,
ctr_set(2,1),
ctr_set(10,0), % First time flag.

(Selection = §

write(’ [)
),
output_investment_variables(Selection),
(Selection = 5

write(’] *)

).
find_invest_model_objective(_,_,_).

make_cap_array([]).

make_cap_array([Anbr[Rest]) :-
assertz(cap_array{Anbr)),
make_cap_array(Rest).

output_invest_model_objective_variables(Pnbr,Rel) :-
write(’),
write(Rel),

write(’ 1),

write(Pnbr),

write(’ +’),

(ctr_inc(3,Value),
Mod_Value is Value mod 4,
Mod_Value = 0,
nl
true

VR

get_investment_variables(_) :-

cap(AN,Capacity),

[* (not number(Capacity)
int_text(AN, Arc_String),
concat ([0000, Arc_String, $,$], New_Arc_String),
retract(init_invest_string(Init)),
concat(New_Arc_String, Init, New_String),
asserta(init_invest_string(New_String))

1,
fail.

get_investment_variables(Final) :-
retract(1nit_invest_string(Main_String)),
string_length(Main_String, Length),
dec(Length,Pos),
substring(Main_String,0,Pos,New_Strang),
concat([$[$, New_String, $]$], Output_Strang),
string_term(Output_String, Final), .

output_investment_variables(Selection) :-

cap_array(Anbr),
[t (ctr_inc(10,Flag),
Flag = 0
write(’ +')
),
(ctr_inc(2,Value),
Value > 7,
Mod_Value is Value mod 7,
Mod_Value = 1,
nl

true

(Selection = 5,
write(’ 0 d’)
write(’ 0 g’)

)

i1,
write(Anbr),
fail.

output_investment_variables(_).

/* - */

invest_model_constraints(Selection) :-

nl, nl,

write(’ ..Constraints’),
asserta(init_string($$)),
find_all_arc_lists(Arc_List),
sort(Arc_List,Sor),
make_arc_array(Sor),
generate_arc_constraints(Selection),
ctr_set(10,0), % counter for budget term
nl, nl,

write(’ Budget: ’),
generate_budget_constraint(Selection).

generate_arc_constraints(Selection) :-
retract(arc_array(Anbr)),
[t cap(anbr,Capacaity),
generate_constraint_inequality(Anbr),
(Selection = 5,
write(’ - d’)

write(’ -),
invest (Aabr,Amount),
write(Amount},
write(’ g?)
),
write(Anbr),
wrate(’ '),
write(’<= 1),
write(’),
write(Capacity)
',

fail.

generate_arc_constraints(_).

generate_budget_consc¢-aint(Selection) :-
retract(cap_array(Anbr)),
[' cost{Anbr,Unit_cost),
(Selection = 5,
Cost is Unit_cost
invest (Anbr,Amount),
Cost is Unit_cost * Amount
)’
print_budget_terms(Anbr,Cost,Selection)
1],
fail.

generate_budget_constraint(_) :-
ctr_set(5,1),
budget(Budget),
write(’ '),
write(’ <=),
write(Budget).

print_budget_terms(Anbr,Cost,Selection) :-
(ctr_inc(10,Flag),
Flag = 0
write(? + *)
),
(ctr_inc{(5,Value),
Value > 5,
Mod_Value 1s Value mod 5,
Mod_Value = 1,
nl, wrate(’ ")

true

),

write(Cost),

(Selection = 5,
urite(’ d’)
write(’ g’)

),

write(Anbr).

AR R L L Ty T L P T Y 2y
/* ’'nlp_investment_formulation’ generates formulation of */

/* 1nvestment strategy model 3. */
/‘*#*##tt#t####*##l**‘**#’t##*****##*t**t#*tt#t*****“#t#tttt/

nlp_investment_formulation(Selection,Where) :-

(Where = 1,
begin_model_building
executing_message,
stdout (’output7.nlp’,begin_model_building),
exit_popup,
done_message(Selection)

begin_model_ ' ~1lding :-
nl, nl, nl,
write(’MODEL: ’), nl,
invest3_objective, nl,
invest3_constraints,
write(’LEAVE’),
nl,nl,nl.

/***/
/*-- DObjective function --*/

invest3_objective :-

write(’MAX= *),

ctr_set(1,1), 7 Counter one generates path number.

ctr_set(3,1), % Initialize counter three to 1
% to keep track of how many terms
% are printed in a line in the objective
% function.

find_invest3_objective(s,t),

write(’ ;’).

find_invest3_objective(Start,Goal) :-
depth_first([Start],Goal,Path),

ctr_inc(1,PathNmbr), % Get current path number
% and
% increment the counter one by
% one.

print_invest3_objectaive(PathNmbr),

make_arc_path_matrix(Path,PathNmbr), % Make arc-path incidence
% matrix,

fail.

find_invest3_objective{_,_).

print_invest3_objective(PathNmbr) :-
(PathNmbr = 1

wraite(’ + ?)

),

(ctr_inc(3,Value), % Get current variable number and
% increment the counter three by 1.

Value > 5,

Mod_Value is Value mod 5, % If the remainder of Value
Mod_value = i, % divided by 4 is 1, then skip
nl, % to next line.

write(’)

true

),

write("R’),

write(PathNmbr),

write(’ * F?), % Print path flow variable.
write(PathNmbr), .

/3o St o sk ok ko ok ok kA ok oo K ok ok o ok o ok Kok oK o R ok oK o ok ok ko ok ok
/* constraint functions */

invest3_constraints :- % Get comstraints
% function.
asserta(init_string($$)), % Initialize to empty
% string.
find_all_arc_lasts(Arc_List),
sort(Arc_List,Sor), %4 Sort Arc_List in ascending
% order.
make_arc_array{(Sor), % Make sorted arc_list into
% arc array.
ctr_set(1,1), % Counter 1 contains pathnumber.

generate_rj_descriptions,
generate_arc_prob_constraints,

ctr_set(9,0), 7. Flag counter to control line
% feed.

generate_path_flow_constraints,

ctr_set(10,0), % Flag counter to contrci + sign.

generate_rel_budget_constraints,

write(’END’), nl,

generate_x_nonnegativity,

ctr_set(1,1), % Path number counter
generate_f_nonnegativity.

generate_rj_descriptions :-

depth_first([s],t,Path),

[! ctr_inc(1,PathNmbr),
wrate(’R’),
write(PathNmbr),
wrate(’ = '),
sort(Path,SortedPath),
ctr_set(7,1), % Counter to control the number of terms.

write_rhs_of_equality(SortedPath),
write(’;’),
nl

1],

fail.

generate_rj_descriptions.
write_rhs_of_equality([]).

write_rhs_of_equality{[Arcl|Rest]) :~
(not number(Arc)
(ct>_inc(7,Value),
Value > 3,
Mod_VaLtue is Value mod 3,
Mod_Value = 1,
nk, write(’)
true
)
write(’(?),
prob(Arc,Probability),
write{Probability),
urite(’ + .1 = X?),
write(Arc),
write(’) ?),
(Rest == [s,t]

;rite(’* ")
)
),

write _rhs_of_equality(Rest).

generate_axc_prob_constraints :-
prob(ArcNmbr,Probability),
[* (not number(ArcNmbr)
H
write(Probability),
wrate(’ + .1 = X*),
write(ArcNmbr),
write(’ < 1 ;*),
nl
)
17,
fail.

generate_arc_prob_censtraints.

generate_path_flow_constraints :-
retract(arc_array(ArcNubr)),

{! cap(ArcNmbr,Capacity),
generate_path_flow_constraint_inequality(ArcNmbr),
write(’ ?),
write(’<),
wy 1 ;e(Capacaty),
write(’ ;?)

1,

fail.

generate_path_flow_constraints :- nl.

generate_path_flow_constraint_inequality(ArcNmbr) :-
(ctr_inc(9,Flag),

Flag = 0
nl
),
ctr_set(10,0), % First time flag; this 1s used to

% control when to print ’+’ in

% the constraint equation.
ctr_set(4,1), % Initialize counter four to 1%

% this counter keeps track of

% how many terms are printed in

% the constraint equation.
output_paths_containing_ArcNmbr(ArcNmbr).

output_paths_containing_ArcNmbr(ArcNmbr) :-
removeh(matrix,Arclimbr,arc_path_matrix(ArcNmbr,PathNmbr)),
[t (ctr_inc(10,Flag),
Flag = 0 % If first term, don’t print ’+’.
wrate(’ + ?)
),
(ctr_inc(4,Value), % Get current term number and
% increment the counter four by 1
Value > 9,
Mod_Value 1s Value mod 9,
Mod_Value = 1,
nl

true

),
urite('F’),
write(PathNmbr)
13,
fail.

output_paths_containing_ArcNmbr(_).

/+ - */

generate_rel_budget_constraints :- % probably can revise
% this: I dont think
% there

% is any need for using
% prob-array from
% get—invest3-variables
prob(ArcNmbr,),
[(not number(ArcNmbr)
rcost (ArcNmbr,Unit_cost),
print_rel_budget_terms (ArcNmor,Unit_cost)
)
'3,
fail.

generate_rel_budget_constraints :-
ctr_set(5,1),
rbudget(Budget),
write(’),
write(’ < 7),
write(Budget),
write(’ ;'),
nl.

print_rel_budget_terms(ArcNmbr,Cost) :-
(ctr_inc(10,Flag),
Flag = 0
write(’ + 7)
)’
(ctr_inc(5,Value),
Value > 5,
Mod_Value is Value mod §,
Mod_Value = 1,
nl
true
}'
write(Cost),
write(? * X’),
write(ArcNmbr).

generate_x_nonnegat vty -

151

prob(ArcNmbr,Probability),
[t (not number(ArcNmbr)
»
write(’SLB X’),
write(ArcNmbr),
write(’ 0),
nl
)
11,
fail.

generate_x_nonnegativity.

/% - i

generate_f_nonnegativity :-
depth_first([s],t,_),

[t ctr_inc(1,PathNmbr),
write(’SLB F?),
write(PathNmbr),
write(’ 0 7),
nl

!J:

fail.

generate_I_nonnegativity.

/90K oo oK o ok ook oK o K ok ok oK o o R oK o o K K ok K A ok ok o ok ok ok ke k
/% ’rel_file_formulation’ generates 4 files of inputs used #/
/* in formulating Reliability models. x/
/**#***4*******/

rel_file_formulation(Selection,Where) :-
(Where = 1,

file_building
executing _message,
stdout(’path.f’, file_building),
stdout(’prob.£’, get_arc_prob),
stdout(’cap.f’, get_arc_cap),
stdout(’net.top’,net_top),
ex1t_popup,
done_message(Selection)

file_building:-
get_arc_factors.

get_arc_factors :-

asserta(init_string($$)),
find_all_arc_lists(Arc_List),
sort(Arc_List,Sor),
make_arc_array(Sor),
ctr_set(1,1),

get_ord_paths.

L -- ---

get_ord_paths :-

depth_first([s],t,Path),

[t ctr_inc(1,PathNmbr),
wrate(PathNmbr),
wraite(? ?),
sort (Path,SortedPath),
write_rhs_of_path(SortedPath),
nl

],

fail.

get_ord_paths.
write_rhs_of_path([1).

write_rhs_of_path([Arc|Rest]) :-
(not number(Arc)

prob{Arc,Probability),

wrate(’ '),
write(Arc),
write(’?),

(Rest == [slt]

write(’’)
)
),

write_rhs_of_path(Rest).

get_arc_prob :-
prob(ArcNmbr,Probability),
[* (not number(ArcHmbr)

write(ArcNmbrx),
write(’ '),
write(Probability),

*/

nl
)
],
fail.

get_arc_prob.

/*

get_arc_cap :-
cap(ArcNmbr,Capacity),
[t (not number(Capacity)
write(ArcNmbr),
write(’ *),
write{Capacity),
nl
)
11,

fail,
get_arc_cap.

/% S

*/

get_arc_inv_cost :-
cost (ArcNmbr,Cost),
write(Cost),
nl,
fail.

get_arc_inv_cost.

__*/

S — —

net_top :-
arc(From,To),
[*(not number(From);not number(To)

write(From),
write(’),
write(To),
nl

)

!])

__*/

:~ reconsult(’windows3.ari’).

/**/

/* */
/* WINDOWS3.ARI */
/* */
/* This file contains windows to communicate with the user. */
/* */
A A KA AR A ORI KA A R ok oK oo KK K Ok ok ko ARk ok ko ok

e e e e e */
/* Introduction Screen */
[e e e e e e ——— */
windows :-

cls,

define_window(program_title,’’,(23,0),(23,79),(91,0)),
define_window(intro,’’,(90,0),(22,79),(26,0)),
current_window(_,program_title),

tmove(0,12),

write(’ FORMULA Version 3.0 AFIT October, 1991’),
current_window(_,intro),

define_intro_window.

define_intro_window :-

nl,nl,

tab(17),

Write (? #skkkistrkkakmok itk iRk for Rk Rk kR kRk %)) |

nl,tab(17),

write(’* FORMULA Ver 3.0),

nl,tab(17),

Write (& sskkkskmdobkkkkiok ok kkdobk ok kb ko k ko dokokk?) |

nl,nl,nl,

tab(11),

write(’This program finds all paths in the network irom ’),
nl,tab(11),

write(’source to sink and calculates all paths reliabilities.’),
nl,tab(11),

write(’It also generates six mathamatical programming ’),
nl,tab(11),

write(’models that will assist in analyzing the performance '),
nl,tab(11),

write(’of the network and in determining the investment ’),
nl,tab(11),

wiite('strategy to improve the performance of the network.’),
nl,tab(11),

write(’These models are developed based on the arc-path ’),
nl,tab(11),

write(’incidence matrix built from the description of the ’),
nl,tab(11),

write(’'network in the 'nput file. ’),

nl,tab(11),

write(’ Finally, it will generate the required files used '),

nl,tab(11),

write(’1n formulating network reliability analysis. ’),
nl,nl,tab(11),

write(’PLEASE make sure the input file contains correct’),
nl,tab(11),

write(’description of the network to be analyzed.'),
nl,nl,tab(23),

wrate(’Press any key to continue. ’),

geto(),

cls.
K e e e e e e e e e e e e */
/* Asks for the input file name. If the file name is not found, */
/* the program prints the error message; otherwise, consults */
/* the input file. *f
e e e e e e e e e *x/

open_input_datafile :-
create_popup(query1,(7,20), (14,60),(62,-62)),
write(’ Please type in your input file name.),
tmove(3,2),
write(’ > ?),
read_line(0,File),
(
consult_file(File),
ex1it_popup

display_filename_error,
exit_popup,
open_input_datafile

).

consult_file(File) :-
stdin(File,),
consult(Faile).

display_filename_error :-
create_popup(errori,(16,20),(21,60),(79,-79)),

write(’ Error: File not found. '),
put(7),

nl, nl,

write(’ Type in any key to continue or '),
nl,

write(’ press RETURN to exit. ’),
getO(Reply),

(Reply = 13,

exit_popup,
exit_popup,
clear_windows

exit_popup

).
e e e e e ————————————_———— */
/* Ask user what to do. */
/* */

get_selection_number(Selection) :-
create_popup(query2,(3,12),(19,68),(62,-62)),
tmove(1,16),
write(’How may I help you?’),
tmove(4,2),
write(’1. Find all paths and calculate path reliabilities.’),
tmove(5,2),
write(’2. Generate the Maximum Flow Formulation.’),
tmove(6,2),
write(’3. Generate the Lower Bound Formulation. ’),
tmove(7,2),
write(’4. Generate the Upper Bound Formulation. '),
tmove(8,2),
write(’5. Generate the Investment Strategy Model 1. '),
tmove(9,2),
write(’6. Generate the Investment Strategy Model 2. ’),
tmove(10,2),
write(’7. Generate the Investment Strategy Model 3.),
tmove(11,2),
write(’8. Generate Reliability Files. ?),
tmove(12,2),
write(’9. Exat’),
tmove(13,18),
write(’Type in number > ’),

getO(Choice), % The selection chosen is in ASCII code,

exit_popup, % that is one 1s represented as 49, two

Sel_Nbr is Choice - 48, % represented as 50, etc. Thus, 48 is

(Sel_Nbr >= 1, % substracted to make it back to regular
Sel_Nbr =< 9, % arabic number.

Selection = Sel_Nbr

put(7),
get_selection_number(Selection)
).
e e e e x/
/* Asks user where to display the output */
et Tt LT o Py Py Y Sy R */

get_where_to_send_output(Where) :-

create_popup(query3, (5,20), (16,60),(62,-62)),
tmove(1,8),
write(’Where do you want the’),
tmove(2,8),
write(’output displayed 7’),
tmove(4,11),
write(’1. Screen’),
tmove{6,11),
write(’2. File’),
tmove(8,8),
write(’Type in Number >),
getO(Choice),
exit_popup,
Sel _Nbr is Choice - 48,
(Sel_Nbr >= 1,

Sel_Nbr =< 2,

Where = Sel_Nbr

put(7),
get_vhere_to_send_output(Where)
).
/x */
/* Asks user to run the program again with same input file. */
[H e - - -—*/

get_run_again_reply(Reply):-
create_popup(query4,(20,0),(22,79),(62,-62)),
write(’ Do you want to run the program again (y or n) 7 ‘'),
getO(User_Reply),
exit_popup,
(
(User_Reply
User_Reply
))
Reply = Usexr_Reply

121; 1y
110 %n

put(7),
get_run_again_reply(Reply)
).
[e e e e =/
/* Prints ’executing’ message while output is sent to an output */
/* file. */
J T it e */

executlng _message :-
create_popup(’',(11,25),(14,50),(207,79)),
write(’ Executing ... '),

159

nl,
write(’ Please Wait.’).

/* Prints ’Done’ message after output is sent to an output file. */

/* -

done_message{Output_File) :-

create_popup(’’,(11,20),(14,57),(58,58)),
write(’ Done. ’),
nl,
write(’ Output was sent to "output’),
write{Output_File),
(Output_File = 7,

write(’.nlp".’)

write(’.1p".’)

/* Clears all windows before exiting(quiting) the program.

2 — - —————— e S

clear_windows :-
delete_window(program_title),
delete_window(antrce),
abolish(arc/2),
abolish(prob/2),
abolish(cap/2),
abolish(cost/2),
abolish(budget/1),
removeallh{matrix),
current_window(_,ma1n).

Appendix F. Reliability Programs and Files

F.1 Dirprog - Turbo Pascal Version

{This is an MS-DOS Turbo Pascal version of the program described in

the paper "Reliability of Directed Networks Using the Factoring
Theorem" in the Dec. 1989 issue of the IEEE Transactions on
Reliabality. The program was developed on a Macintosh II and

ported to MS-DOS. Because stack space is limited to 64k on MS-DOS
computers, you may run into problems with stack overflow on very large
networks. The program will, however, treat all the networks described
in the aforementioned paper. There are a number of sample network files
on this disk. Check them out first. The first line gives the source
and sink, and each additional line describes an edge (by giving the
vertices joined and the reliability). The program creates an output
file with the same name except that ".OUT" is appended. Since the
program uses this convention, use names for your input files that do
not have an extension as part of their name. This program has been
compiled and tested with Turbo Pascal 5.5. A compiled version of the
program is also included on this disk.}

{$M 65520,0,200000}
program DirNetworkerApp;
uses Crt, DOS;

{ Programmers: Lavon Page and Jo Perry

Input: A text file describing a directed graph with a source and
sink pair of vertices. All vertices are represented by integers in
the range of 1..maxv. All edges are represented by their endpoints
followed by their reliabilities. The first line of the file conrsists
of the source then sank. Each subsequent lirne in the file descrabes
an edge. A maximum of "maxe'" edges are allowed.

Output: A text file vhose name is the catenation of the name of

the input file with the string ’'Output’. The first line identifies
the input file and contains an execution time and date stamp. The
next lines echo the input. The results of execution of the algorithm
come last. Included are the reliability of the graph and execution
statistics: algorithm eiecution time, aumber of sangle edge to source
or sink reductions, rumber of reductions of a vertex with in-degree
and nut-degree 1, num-er of times factoring is performed.}

const

maxv = 50; {Maximum number of vertices in the graph}
maxe = 100; {Maximum number of edges}
type
degreeType = array [1..maxv] of integer; {List of vertex degrees}
graphSet = set of 1..maxv; {Set of vertices}
edge = record {Edge in a graph}
start, {Start vertex}
stop : 1..maxv; {Stop endvertex}
pr : real {Probability of the ecdge}
end; {edges}
graph = record {Describes a graph}
vert : graphSet; {Set of graph vertices}
source, {Scurce vertex}
sink : integer; {Sink vertex}
inDegree, {In degree of each vertex}
outDegree : degreeType; {Out degree of each vertex}
nb : array [1i..maxv] of graphSet; {edge (1,j) puts j in nb[il}
numEdges : integer; {Number of edges in the graph}
maxVertex : integer; {Largest numbered vertex in the graph}

e : array [1..maxe] of edge {Describes all edges in the graphl}
end; {Graph}

var
filename : string; {for name of input file}
outfile : text; {Output text file}
g : graph; {Network graph}
inOutiCt: longint; {# times an in- and out-degree 1 vertex 1s removed}
sourceSankCt : longant; {# times the source,sink incident to 1 edge}
factorCt: longint; {# times factoring is » ed}
timer : real; {Measures execution time}

functicn seconds: real;
var hour ,minute,second,sec100:vword;

begin

GetTame(hour ,minute,second,sec100);

seconds := 3600*hour + 60*minute + second + £ecl100/100
end;

procedure GetGraph (var g:graph);

{Initzalize the graph g from a text f:le. The first line of the f:le lists
the source and sink. Each subsequent line contains information about an
edge--its 1nitial endpoint, its terminal one, and 1ts probability. Thas
procedure does the initial parallel edge reduction on the graph.}

var
infile : text; {Input file containing directed graph}
X : sntager; {Edge or vertazx counter}
n : integer; {Number of edge currently being read}

vCount :@ 1nteger; {Number of graph vertices}

hour, minute, second, sec100: word;
year, month, day, cayofweek : word;

begin {GetGraph}

gotoxy(5,8);

write(’Enter name of file representing network -->');
readln(filename);

writeln;

assign(infile,filename);

reset(infile);

GetTime(hour, minute, second, seci00);

GetDate(year, month, day, dayofweek);
assign(outfile,concat(filename,’'.out’));
rewrite(outfile);

write(outfile, ’+** ’ _filename,’ #x* ’);
write(outfile,month,’/’ day,’/’,year mod 100,’ ’);
write(outfile,hour,’:’);

1f minute < 10 then write(outfile,’0’);
writeln(outfile,minute);

vCount := 0;

n :=0;

g-maxVertex := 0;

g-vert := [};

for k := 1 to maxv do
g.-nblk] := [1;

readln(infile,g.source,g.sink)};
writeln(outfile,’Source vertex = ’,g.source,’ Sink vertex = ’,g.sink);
writeln(outfile);
while not eof(anfile) do
begin {Read the endpoints and probability of each edge}

n:=n+1;
readln(infile, g.eln).start, g.elnl.stop, g.elnl.pr),
writeln(outfile,g.eln].start:3,’ ----',g.eln] .stop:+,’rel = ’':10,

g.elnl.pr:9:4);

for k :=1 ton - 1do
if (g.elk].start=g.eln].start) and (g.<[k].stop=g.eln].stcp) then
begin {Edges n and k are parallel. Combine them into edge k.}
g.elk].pr := g.e(k].pr+(1 - g.eln].pr) + g.eln).pr;
r:=n-1
end; {Edges n and k are parallel.}
1f g.el[n].start > g.maxVertex then
g.maxVertex := g.e[n].start;
1f g.eln).stop > g.maxVertex then
g.maxVertex := ¢.efnl.stop;
g.vert := g.vert + [g.e[r}.start, g.e[ni.stop];
g.nblg.eln].start] :- g.nrfg.elnl.start] + [g.elnl.stopl;
end; <{Read endpoints and p*.u.b1lity of each edge}
g.numEdges := n;
close(infile);
for k:=1 to g.maxVertex do

L1

163

if k in g.vert then

vCount := vCount + 1;
write(outfile,’Number of edges = ’,g.numEdges);
writeln(outfile,’ Number of vertices = ’,vCount);
writeln(’ The program is now determining the reliability of "',

filename,’".’);

writeln;
end; {GetGraph}

procedure FindDegree (var g:graph);
{Determine the degree of every vertex in the graph g.}
var

1 : integer; {Edge number}

begin {FindDegree}
for 1:= 1 to g.maxVertex do
begin
g.inDegree(i] := 0;
g.outDegreef1] := 0;
end;
for 1 := 1 to g.numEdges do
begin
g.outDegreeflg.e[1].start] := g.outDegreelg.eli].start] + 1;

g.inDegreelg.e{il .stopl := g.inDegreelg.el(a].stopl + 1
end

end; {FindDegree}

procedure Delete (var g:graph; n:integer);

{Deletes edge n from the graph g. Degrees and neighbors are changed.}
var

u,v : integer; <{Endpoints of the deleted edge}
3: integer; {Edge number}

begin {Delete}

u := g.eln].start;

v := g.elnl.stop;

g.nblul := g.nblul - [v];

g.inDegree{v] := g.inDegreelv] - 1;

g.outDegreel[u} := g.outDegreefu] -1;

for 3 := n to g.numEdges-1 do
g-el3] := g.elj + 11;

g.numEdges := g.numEdges - 1;

end; {Delete}

procedure CleanSink (var g : graph);

{Remove all edges in g that have the sink as starting vertex.}
var

3 @ integer; {Edge number}

161

begin {CleanSink}
for j := g.numEdges downto 1 do
if g.e[jl.start = g.sink then
Delete {(g,j);
end; {CleanSink}

procedure CleanSource (var g @ graph);
{Remove all edges in g that have the source as terminating vertex.}
var
j : integer; {Edge number}

begin {CleanSource}
for j := g.numEdges downto 1 do
if g.eljl.stop = g.source then
Delete (g,3);
end; {CleanSource}

procedure CleanUp (var g:graph);
{Eliminates all dead end and false start vertices in g.}

var
reduced : boolean;{Set false if a dead end or false start vertex found}
u : integer; {Graph vertex}
j : integer; {Graph edge}

begin {Cleaalp}
CleanSource(g);
CleanSink(g);
repeat
reduced := true;
for u:=1 to g.maxVertex do
if (u<>g.source) and (u<>g.sink) then
1f (g.inDegreefu] = 0) or {g.outDegree(ul = 0) then
1T (u in g.vert) then
begin {eliminate vertex u}
reduced := false;
for j:=g.numEdges downto 1 do
if (g.elj].start = u) or (g.el[3].stop = u) then
Delete(g,j);
g.vert ;= g.vert - [u]
end; {eliminate vertex u}
until reduced
end; {CleanUp}

procedure ForwardSimplify (var g:graph; var simplified:boolean);
{1f one exasts, eliminates a nonnecessary edge coming into a vertex and sets
simplified to true.}
var
v : integer; {Initial vertex for an edge}

165

w : integer; {Terminal vertex of edge out of v}
j : integer; {Edge number}

begin {ForwardSimplify}
for vi=1 to g.maxVertex do
if (g.outDegreelv] = 1) then
begin {Look for edge antiparallel to the edge out of v.}
for j:=1 to g.numedges do
if (g.eljl.start = v) then
w := g.e[jl.stop;
for j:= g.numEdges downto 1 do
if (g.elj]l.stop = v) and (g.e(j]l.start = w) then
begin {Delete the antiparallel edge.}
Delete(g,j};
simplified := true
end {Delete the antiparallel edge.}
end {Look for edge antiparallel to the edge out of v.}
end; {ForwardSimplify}

procedure BackSimplify (var g:graph; var simplified:boolean);
{If one exists, eliminates a nonnecessary edge coming out of a vertex and
sets simplified to true.}
var
v : integer; {Terminal vertex for an edge}
w : integer; {Initial vertex of edge out of v}
j : integer; {Edge number}

begin {BackSimplify};
for v:i=1 to g.maxVertex do
if g.inDegree[v] = 1 then
begin {Look for edge antiparallel to the edge into v.}
for j:=1 to g.numedges do
if (g.elj]l.stop = v) then
w := g.e[j].start;
for j:=g.numEdges downto 1 do
1f (g.el[j].start = v) and (g.e[3].stop = w) then
begin {Delete the antiparallel edge.}
Delete(g,3);
simplified := true
end {Delete the antiparallel edge.}
end {Look for edge antiparallel to the edge into v.}
end; {BackSamplify}

procedure SourceSinkRed (var g:graph; var found:boolean; var factor:real);
{If the sink of graph g has in-degree 1, then it 1s merged into 1its
neighbor and the resulting sink is cleaned of out-edges. If the souce has
out-degree 1, then the parallel result occurs. Factor is returned as the
appropriate multiplying factor for the graph.}
var

166

begi

j: integer; {Possible edge incident to source or sink}

intoSink : integer; {Edge into the sink}
outOfSource : integer; <{Edge out of the source}
0ldSink : integer; {Original sink vertex}
oldSource : 1integer; {Original source vertex}
n {SourceSinkRed}

found :- false;
if g.inDegree[g.sink] = 1 then

if (

end;

begin {Merge the sink into its adjacent vertex.}
found := true;
sourceSinkCt := sourceSinkCt + 1;
for j := 1 to g.numEdges do

if g.e[j].stop = g.sink then

intoSink := j;

factor := factor * g.e[intoSink].pr;
0ldSink := g.sink;
g.sink := g.el[intoSink].start;
Delete(g,intoSink);
g.vert := g.vert - [0ldSink];
CleanSink(g);
end; {Merge the sink into its adjacent vertex.}
g.outDegreelg.source] = 1) and (g.source <> g.sink) then
begin {Merge the source into its adjacent vertex.}
found := true;
sourceSinkCt := sourceSinkCt + 1;
for 3 := 1 to g.numEdges do

1f g.e[j]l.start = g.source then

outOfSource := j;
factor := g.efoutGfSource} pr * factor;
oldSource := g.source;
g.source := g.el[outDfSource].stop;
Delete(g,outOfSource);
g.vert := g.vert - [oldSource];

CleanSource(g);
end; {Merge the source into its adjacent vertex.}
{SourceSinkRed}

procedure InQutDegiRed (var g : graph; var found:boolean);

{G 1

s scanned to find a vertex with an-degree and out-degree

+

i. If such a

vertex 1s found, it it removed and the resulting graph 1s simplified.}

var

j : integer; {Graph edge}
u : integer; {Graph vertex (with possible in/out
inRel : real; {Reliability of edge into u}

outRel : real; <{Reliability of edge out of u}
doubleRel : real;{Reliability of both edges in sequence}
initV : integer; {Initial vertex of edge into u}
termV : ainteger; {Terminal vertex of edge out of u}

167

degree 1)}

begin {InOutDegiRed}
for u:=1 to g.maxVertex do
if (g.inDegreelu] = 1) and (g.owDegree(ul = 1) then
begin {Vertex u has in and out~degree 1. Eliminate it.}
inOutiCt := inOutiCt + 1;
found := true;
for j := g.numEdges downto 1 do
if g.e[j].stop = u then
begin {This is the edge into u.}
in1tV := g.e(jl.start;
inRel := g.e[j].pr;
Delete(g,j)
end; {This is the edge into u.}
for j:=g.numEdges downto 1 do
if g.el[j].start = u then
begin {This 1s the edge out of u.}
termV := g.e[j] stop;
outRel := g.e[j].pr;
Delete(g,j);
end; {This is the edge out of u.}
doubleRel := inRel * outRel;
g.vert := g.vert - [ul;
if termV <> initV then
if termV in g.nb[initV] then
begin {Redo reliability of edge from initV to termV.}
for j:=1 to g.numEdges do
if (g.eljl.start = initV) and (g.eljl.stop = termV) then
g-e[j).pr := g.eljl.pr * (1 ~ doubleRel) + doubleRel;
end {Redo reliability of edge from initV to termV.}
else
begin {Construct a new edge from initV to termV}
g.numEdges := g.numEdges + 1;
g-elg.numEdges) .start : = initV;
g.elg.numEdges] .stop := termV;
g-elg.numEdges] .pr := doubleRel;
g.nblinitV] := g.nblinitV] + [termv];
g.1nDegree(termV]} := g.1inDegree[termV] + 1;
g.outDegree(initV] := g.outDegreelanitV] + 1;
end; {Construct a new edge from initV to termV}
exit;
end; {Vertex u has in and out-degree 1. Eliminate 1t.}
end; {DegTwoRed}

procedure Contract (var g:graph; newSink:integex);
{Contracts the sink of graph g into the vertex newSink.}
var
v : integer; {Graph vertex}
j : integer; {Graph edge}
in3ink : integer; {Edge from v into the old sink}
inNewSink : integer;{Edge from v into the new sink}

16X

parallel : boolean; {True if an edge go from v to the newSink}

begin {Contract}
for v := 1 to g.maxVertex do
if (g.sink in g.nb(v]) then
begin {There is an edge from v to the sink. Change it.}
parallel := false;
for j:=1 to g.numEdges do
if (g.efjl.start = v) and (g.e[jl.stop = g.sink) then
inSink := j
else if (g.e[j].start = v) and (g.e(j].stop = newSink) then
begin {There is also an edge from v to the newSink.}
parallel := true;
inNewSink := j;
end; {There 1s also an edge from v to the newSink.}
if parallel then
begin {Eliminate edge (v,sink). Change reliability of (v,newSink)}
g.elinNewSink] .pr := g.e[inNewSink].pr * (1 - g.e[inSink].pr)
+ g.e[1nSink].pr;

Delete(g,inSink)
end {Eliminate edge inSink. Change reliability of inNewSink.}
else

begin {Change the edge inSink to have terminal vertex newSink.}

g.elinSink].stop := newSink;

g.inDegree[newSink] := g.inDegree[newSink] + 1;

g.inDegreelg.sink] := g.inDegreelg.sink] - 1;

end; {Change the edge inSInk to have terminal vertex newSink.}
g.nbfv] := (g.nblv] + [newSink]l) - [g.sink];

end;
g.vert := g.vert - [g.sink];
g.sink := newSink;
CleanSink(g);

end; {Contract}

function Connected (var g:graph) : boolean;
{Determine if the sink can be reached from the source (they’re connected).}
var

comp : GraphSet; {Vertices so far reachable from the source}

u : integer; {Possible vertex in comp}

oldSet : GraphSet; {Comp on the last pass through the graph}

changed : boolean; {True when a new vertex is added to comp}

begin {BFS}
comp := [g sourcel;
repeat

oldSet := comp;

changed := false;

for u:=1 to g.maxVertex do

1f u 1n comp then
comp := comp + g.nbful;

169

if comp <> oldSet then
changed := true
until not changed;

Connected := g.

end; {BFS}

sink in comp

procedure SinkEdge (var g:graph;var k:integer;var initVert:integer);
{Find an edge k into the sink. Inatial vertex is initVert.}

var

j : integer; {Edge number}

begin {SinkEdge}
for j:=1 to g.numEdges do
if (g.e[jl.stop = g.sink) then

begin

k = 3;
initVert
end

= g.e[jl.start

end; {SinkEdge}

function Prob (g:graph) : real;
{Returns the reliability of the graph g.}

var
reducible
p '@ real;

markedEdge :

probEdge :
initVert :
pl : real;

begin {Prob}

p := 1.0;

repeat
reducible :=
CleanUp(g);
if (g.source

begin

: boolean; {True if the graph was just reduced}

{Factor for the probability of the reduced graph}
integer; {Edge used for factoring}
real; {Probability of edge used for factoring}
integer; {Endpoint of factored edge}
{Probability of g with edge removed}

false;

<> g.sink) and (g.indegree{g.sink] > 0) and
(g.outdegree(g.source] > 0) then

SourceSinkRed(g,reducible,p);
if not reducible then

begin

{No source or sink reduction was possible}

BackSimplify{g,reducible);
ForwardSimplify(g,reducible);
InOutDegliRed(g,reducible);

end
end

unt1l not reducible;
if (g.source = g.sink) then

Prob := p

170

else if (g.indegreelg.sink] = 0) or (g.outDegree[g.source] = 0) then

Prob := 0
else
begin {Factor the graph -- no more reductions are possible}

SinkEdge(g,markedEdge,1nitVert);
probEdge := g.el[markedEdgel.pr;
Delete(g, markedEdge);
If not Connected(g) then

pl :=0
else

pl := Prob(g);
Contract(g,initVert);
factorCt:= factorCt + 1;
Prob :=p*((1 - probEdge) * pl + probEdge * Prob(g))
end {Factor}

end; {Prob}

begin {Main program}
ClrScr;

sourceSinkCt := 0;
inOutiCt := 0Q;
factorCt := 0;

getGraph(g);

timer := seconds;

FindDegree(g);

writeln(outfile, Prob(g) : O : 18, ’ = probability ’);

timer := seconds ~ timer;

writeln{outfile,’Time = 7, timer : O : 2,’ seconds’);

writeln(outfile, ’Number of source/sink reductions ’, sourceSinkCt);
wr seln(outfile, ’Number of chain vertex reductions ’, inCuticCt);

. xteln(outfile, 'Number of times factoring theorem is used ', factorCt);
writeln(outfile);

writeln(’ The program has finished executing. Output for the program is’);

writeln(’ now in a file on disk. It 1s a text file which you may view with’);
wrateln(’ the Turbo Pascal editor or any other editor.’);

writeln:

writeln(’ Press a key to exit this program.’);
repeat until keypressed;

close(outfile)

end {Main program}.

(7l

F.2 Dirprog - ANSI Pascal Ve rsion

{This is an ANSI Pascal version of the Turbo Pascal program Dirprog written
by Page and Perry }

program modprog (infile,outfale);

{ Programmers: Lavon Page and Jo Perry - Turbo Pascal version
Leonard Jansen - ANSI Pascal modifications

Infile.dat: A text file describing a directed graph with a source
and sink pair of vertices. All vertices are represented by integers
in the range of 1..maxv. All edges are represented by their
endpoints followed by their reliabilities. The first line of the
file consists of the source then sink. Each subsequent line in the
file describes an edge. A maximum of "maxe’ edges are allowed.

Outfile.dat: The first lines echo the input. The results of
execution of the algorithm come last. Included are the reliability
of the graph and execution statistics: number of single edge to
source or sink reductions, number of reductions of a vertex with
in-degree and out-degree 1, number of times factoring is performed.}

const
maxv = 150; {Maximum number of vertices in the graph}
maxe = 200; {Maximum number of edges}
type

degreeType = array l1..maxv] of integer; {List of vertex degrees}

graphSet = set of 1..maxv; {Set of vertices}

edge = record {Edge i1n a graph}
start, {Start vertex}
stop : 1..maxv; {Stop endvertex}
pr : reai {Probability of the edge}
end; {edges}

graph = record {Describes a graph}
vert : graphSet; {Set of grapb vertices}
source, {Source vertex}
sink :@ 1nteger; {Sink vertex}
inDegree, {In degree of each vertex}
outDegree : degreeType; {Out degree of each vertex}
nb : array [1..maxv] of graphSet; {edge (i,j) puts j in nbl1]}
numEdges : integer; {Number of edges in the graph}
maxVertex : 1integer; {Largest numbered vertex in the graph}

e : array [1..maxe] of edge <{Describes all edges in the praph}
end; {Graph}

var

pro

infile,outfile : text; {Input,Output text file}

g : graph; {Network graph}

inOutiCt: integer; {# times an in- and out-degree 1 vertex is removed}
sourceSinkCt : integer; {# times the source,sink incident to 1 edge}
factorCt: 1integer; {# times factoring is used}

timer : real; {Measures execution time}

cedure GetGraph (var g:graph);

{Initialize the graph g from a text file. The first line of the file lists
the source and sink., Each subsequent line contains information about an
edge~-its initial endpoint, its terminal one, and 1ts probability. This
procedure does the 1-.tial parallel edge reduction on the graph.}
var

k : integer; {Edge or vertex counter}
n : integer; {Number of edge currently being read}
vCount : integer; {Number of graph vertices}

begin {GetGraph}
reset(infile);

rewrite(outfile);

vCount := O;

n := 0;

g.maxVertex := 0;

g.vert := 0a;

for k := 1 to maxv do
g.nblkl := (J;

readln(infile,g.source,g.sink);
writeln(outfile,’Source vertex = ’,g.source,’ Sink vertex = ’,g.sink);
writeln(outfile);
while not eof(infile) do
begin {Read the endpoints and probability of each edge}

n:=n+1;
readln(anfile, g.eln].start, g.eln].stop, g.elnl.pr);
writeln(outfile,g.elnl.start:3,’ --~-’,g.e[n] .stop:4,’rel = ’:10,

g-elnl.pr:9:4);

for k := 1 ton - 1do
1f (g.elk].startzg.e[n].start) and (g.elkl.stop=g.e[n].stop) then
begin {Edges n and k are parallel. Combine them into edge k.}
g elk]l.pr := g.elk]).pr*(1 - g.elnl.pr) + g.e[n].pr;
n:=n-1
end; {Edges n and k are parallel.}
1f g.ein).start > g.maxVertex then
g-maxVertex := g.e[n].start;
if g.eln]l.-top > g.maxVertex then
g.maxVertex := g.e[n].stop;
g.vert := g.vert + [g.eln).start, g.eln).stopl;

173

g.nblg.eln].start] := g.nblg.eln].start] + [g.elnl.stopl;

end; {Read endpoints and probability of each edge}
g.numEdges := n;
close(infile);
for k:=1 to g.maxVertex do

if k in g.vert then

vCount := vCount + 1;

write(outfile, ’Number of edges = ’,g.numEdges);
writeln(outfile,’ Number of vertices = ’,vCount);
end; {GetGraph}

procedure FindDegree (var g:graph);
{Determine the degree of every vertex in the graph g.}
var
1 : integer; {Edge number}

begin {FindDegree}
for i:= 1 to g.maxVertex do
begin
g.inDegree(i] := 0;
g.outDegree[i] := 0;
end;
for i := 1 to g.numEdges do
begin
g.outDegree[g.e[il.start] := g.outDegree[g.e[i].start] + 1;
g.inDegreelg.e[i].stop] := g.inDegreelg.eli].stop] + 1
end
end; {FindDegree}

procedure Delete (var g:graph; n:integer);
{Deletes edge n from the graph g. Degrees and neighbors are changed.}
var
u,v : integer; 9{Endpoints of the deleted edge}
j: integer; {Edge number}

begin {Delete}

u := g.e[n].start;

v := g.e[n].stop;

g.nblu] := g.nblu) - [v];

g-inDegreelv] := g.inDegreelv] - 1;

g.outDegree[u] := g.outDegreelu] -1;

for j := n to g.numEdges-~1 do
g-el3) := g.elj + 1];

g.numEdges := g.numEdges - 1;

end; {Delete}

procedure CleanSink (var g : graph);
{Remove all edges in g that have the sink as starting vertex.}

var
J ¢ integer; {Edge number}

begin {CleanSink}
for j := g.numEdges downto 1 do
if g.e[jl.start = g.sink then
Delete (g,3);
end; {CleanSink}

procedure CleanSource {var g : graph);
{Remove all edges in g that have the source as terminating vertex.}
var
j : integer; {Edge number}

begin {CleanSource}
for j := g.numEdges downto 1 do
if g.e[j].stop = g.source then
Delete (g,J);
end; {CleanSource}

procedure CleanUp (var g:graph);
{Eliminates all dead end and false start vertices in g.}

var
reduced : boolean;{Set false if a dead end or false start vertex found}
u : integer; {Graph vertex}
j : integer; {Graph edgel}

begin {CleanUp}
CleanSource(g);
CleanSink(g);
repeat
reduced := true;
for u:=1 to g.maxVertex do
if (u<>g.source) and (u<>g.sink) then
1f (g.1nDegree[u] = 0) or (g.outDegree[ul = 0) then
if (u in g.veri) then
begin {eliminate vertex u}
reduced := false;
for j:=g.numEdges downto 1 do
if (g.el1].start = u) or (g.e[jl.stop = u) then
Delete(g,j);
g.vert := g.vert - [u]
end; {eliminate vertex u}
until reduced
end; {Cl:anUp}

procedure ForwardSimplify (var g:graph; var samplified:boolean};
{If one exists, eliminates a nonnecessary edge coming into a vertex and sets
simplified to true.}

var
v : integer; {Initial vertex for an edge}
w : integer; {Terminal vertex of edge out of v}
j : integer; {Edge number}

begin {ForwardSimplify}
for v:=1 to g.maxVertex do
if (g.outDegree[v] = 1) then
begin {Look for edge antiparallel to the edge out of v.}
for j:=1 to g.numedges do
if (g.e[j}.start = v) then
v := g.e[j]l.stop;
for j:= g.numEdges downto 1 do
if (g.eljl.stop = v) and (g.elj].start = w) then
begin {Delete the antiparallel edge.}
Delete(g,j);
simplified := true
end {Delete the antiparallel edge.}
end {Look for edge antiparallel to the edge out of v.}
end; {ForwardSimplify}

procedure BackSimplify (var g:graph; var simplified:boolean);
{If one exists, eliminates a nonnecessary edge coming out of a vertex and
sets simplified to true.}
var
v : integer; {Terminal vertex for an edge}
w : anteger; {Initial vertex of edge out of v}
j - anteger; {Edge number}

begin {BackSimplify};
for v:=1 to g.maxVertex do
1f g.inDegree{v] = 1 then
begin {Look for edge antiparallel to the edge into v.}
for j:=1 to g.numedges do
if (g.e[jl.stop = v} then
v := g.e[ji.stare;
for j:=g.numEdges downto 1 do
1f (g.elj).start = v) and (g.e[j].stop = w) then
begin {Delete the antiparallel edge.}
Delete(g,j);
simplified := true
end {Delete the antiparallel edge.}
end {Look for edge antiparallel to the edge into v.}
end; {BackSimpl:fy}

procedure ScurceSinkRed (var g:graph; var found:boolean; var factor:real);
{If the sink of graph g has in-degree 1, then 1t is merged into 1its
neighbor and the resulting sink is cleaned of out-edges. If the souce has
cut-degree 1, then the parallel result occurs. Factor is returned as the

176

appropriate multiplying factor for the graph.}

var
J: integer; {Possible edge incident to source or sink}
intoS.nk : integer; {Edg. -nto the sink}
oatGiSource : integer; {Edge cut of the source}
oldSink : integer; {Original sink vertex}
oldSource : integer; {Original source vertex}

begin {SourceSinkRed}
found := false;
if g.inDegree[g.sink] = 1 then
begin {Merge the sink into its adjacent vertex.}
found := true;
sourceSinkCt := sourceSinkCt + 1;
for j := 1 to g.numEdges do
if g.e[j]l.stop = g.sink then
intoSink := j;
factor := factor * g.e[intoSink].pr;
oldSink := g.sink;
g.sink := g.elintoSink].start;
Delete(g,intoSink);
g.vert := g.vert - [oldSink];
CleanSink(g);
end; {Merge the sink into 1ts adjacent vertex.}
1f (g.outDegree[g.sourcel = 1) and (g.source <> g.sink) then
begin {Merge the source into 1ts adjacent vertex.}
found := true;
sourceSinkCt := sourceSinkCt + 1;
for j := 1 to g.numEdges do
1f g.el[j]l.start = g.source then

outOfSource := j;
factor := g.e[outdfSourcel].pr * factor;
oldSource := g.source;

g.source := g.e{outOfSourcel.stop;

Delete(g,out0fSource);

g.vert := g.vert - [oldSourcel;

CleanSource(g);

end; {Merge the source into 1ts adjacent vertex.}
end; {SourceSinkRed}

procedure InOutDegiRed (var g : graph; var found:boolean);
{6 1s scanned to find a vertex with in-degree and out-degree 1. If such a
vertex 1s found, it 1t removed and the resulting graph 1s simplified.}

var
e,j : 1integer; {Graph edge}
u : 1nteger; {Graph vertex (with possible i1n/out degree 1)}
inRel : real; {Reliability of edge into u}

outRel : real; <{Reliability of edge out of u}
doubleRel : real;{Relrability of bcth edges in sequence}
initV : 1integer; {Initzal vertex of edge into u}

T termV : integer; {Terminal vertex of edge out of u}

begin {InOutDegiRed}
e:=0;
if e < 100 then
for u:=1 to g.maxVertex do
if (g.inDegreelul = 1) and (g.outDegreelu] = 1) then
- begin {Vertex u has in and out-degree 1. Eliminate it.}
inOutiCt := inOutiCt + 1; ;
found := true;
for j := g.numEdges downto 1 do
if g.e[jl.stop = u then
begin {This is the edge into u.}
initV := g.e[j}.start;
inRel := g.e[j].pr;
Delete(g,j)
end; {This is the edge into u.}
for j:=g.numEdges downto 1 do
P if g.e[j].start = u then
begin {This is the edge out of u.}
termV := g.e[j].stop;
outRel := g.el[j).pr;
Delete(g,j);
_ end; {This is the edge out of u.}
" doubleRel := inRel * outRel;
g.vert := g.vert - [ul;
if termV <> initV then
if termV in g.nb[initV] then
begin {Redo reliability of edge from initV to termV.}
for j:=1 to g.numEdges do
if (g.e[j).start = initV) and (g.e[jl.stop = termV) then
g-eljl.pr := g.e[jl.pr * (1 - doubleRel) + doubleRel;
end {Redo reliability of edge from initV to termV.}
- else
begin {Construct a new edge from initV to termV}
.numEdges := g.numEdges + 1;
.elg.numEdges] .start := initV;
.e[g.numEdges] .stop := termV;
.e[g.numEdges] .pr := doubleRel;
.nblinitV] := g.nblinitV] + [termV];
.inDegree{termV] := g.inDegree(termV] + 1;
.outDegree(initV] := g.outDegree[initV] + 1;
end; {Construct a new edge from initV to termV}
2:=600;
end; {Vertex u haz in and out-degree 1. Eliminate it.}
end; {DegTwoRed}

o 00 02 09 0% O OR

procedure Contract (var g:graph; newSink:integer);
{Contracts the sink of graph g into the vertex newSink.}
var .

7N

v : integer; {Graph vertex}

J : integer; {Graph edgel}

inSink : integer; {Edge from v into che old sink}

inNewSink : integer;{Edge from v into the new sink}

parallel : boolean; {True if an edge go from v to the newSink}

begin {Contract}
for v := 1 to g.maxVertex do
1f (g.sink in g.nb[v]) then
begin {There is an edge from v to the sink. Change it.}
parallel := false;
for j:=1 to g.numEdges do
1f (g.elj).start = v) and (g.e[j].stop = g.sink) then
inSink := j
else if (g.e[jl.start = v) and (g.e{jl.stop = newSink) then
begin {There is also an edge from v to the newSink.}
parallel := true;
inNewSink := j;
end; {There s also an edge frowm v to the newSink.}
if parallel then
begin {Eliminate edge (v,sink). Change reliability of (v,newSink)}
g.e[inNewSink] .pr := g.e[inNewSink].pr * (1 - g.elinSink].pr)
+ g.e[inSink].pr;
Delete(g,inSink)
end {Eliminate edge inSink. Change reliabilaty of inNewSink.}
else
begin {Change the edge inSank to have terminal vertex newSink.}
g.e[inSink].stop := newSink;
g.inDegree[newSink} := g.inDegreel[newSink] + 1;
g.1nDegreelg.sink] := g.inDegreslg.sink] - 1;
end; {Change the edge inSInk to have terminal vertex newSink.}
g.nblv] := (g.nblv] + [newSink]) - [g.sink];

end;
g.vert := g.vert - [g.sink];
g.sink := newSink;
CleanSink(g);

end; {Contract}

function Connected (var g:graph) : boolean;
{Determine if the sink can be reached from the source (they’re connected).}
var
comp : GraphSet; <{Vertices so far reachable from the source}
u : integer; {Possible vertex in comp}
oldSet : GraphSet; {Comp on the last pass through the graph}
changed : boolean; {True when a new vertex is added to comp}

begin {BFS}
comp := [g.sourcel;
repeat

oldSet := comp;

179

changed := false;
for u:=1 to g.maxVertex do
if u in comp then
comp := comp + g.nbl[u];
if comp <> oldSet then

changed := true
until not changed;
Connected := g.sink in comp
end; {BFS}

procedure SinkEdge (var g:graph;var k:integer;var initVert:integer);
{Find an edge k into the sink. Initial vertex is initVert.}
var
j : integer; {Edge number}

begin {SinkEdge}
for j:=1 to g.numEdges do
1f (g.e[jl.stop = g.sink) then
begin
k = j;
initVert := g.eljl.start
end
end; {SinkEdge}

function Prob (g:graph) : real;

{Returns the reliability of the graph g.}

var
reducible : boolean; {True if the graph was just reduced}
P - oreal; {Factor for the probability of the reduced graph}
markedEdge : integer; {Edge used tor factoring}
probEdge : real; <{Probability of edge used for factoring}
initVert : integer; {Endpoint of factored edge}
pl : real; {Probability of g with edge removed}

begin {Prob}
p = 1.0;
repeat
reducible := false;
CleanUp(g);
if (g.source <> g.sink) and (g.indegreelg.sink] > 0) and
(g.outdegreelg.source] > 0) then
begin
SourceSinkRed(g,reducible,p);
if not reducible then
begin {No source or sink reduction was possible}
BackSamplify(g,reducible),
ForwardSamplify(g,reducible);
InOutDeglRed(g,reducible);
end

end
until not reducible;
if (g.source = g.sink) then

Prob :=p

else if (g.indegreelg.sink] = 0) or (g.outDegreel[g.source] = 0) then
Prob := 0

else

begin {Factor the graph -- no more reductions are possible}

SinkEdge(g,markedEdge,initVert);
probEdge := g.e[markedEdge] .pr;
Delete(g, markedEdge);

If not Connected(g) then

pl =0
else

pl := Prob(g);
Contract(g,initVert);

factorCt:= factorCt + 1;
Prob :=p*((1 - probEdge) * p1 + probEdge * Prob(g))
end {Factor}

end; {Prob}

begin {Main program}
sourceSinkCt := 0;
inOutiCt := O;
factorCt := 0;

getGraph(g);

FindDegree(g);

writeln(outfile, Prob(g) : 0 : 18, ’ = probability ’);

writeln(outfile, 'Number of source/sink reductions ’, sourceSinkCt);
writeln(outfile, ’'Number of chain vertex reductions 7, inOutiCt);

writeln(outzile, 'Number of times factoring theorem is used
wraiteln(outfile);

close(outfile)

end {Main program}.

INI

?, factorCt);

F.3 Network Reliability Files
F.8.1 Network A Input File

~N W
D b N

9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38

(]
©w
~

w
©
w
OO DO WNNMPM WO 0N WO DN N WO

27
27

21
17
23
25
27
19
21
29
29
29
29
29
11
13
15
27
27
27
37

NN DO D

[T T
0 O O

- G WOW NN NN
B0 O O NO O

e w
» [¥s]
[y

O OO O O O O I O it O OO +t tb b b bt OO s d b= OO0 OO0 OO OO0 O R OC OO

28

28
28
38
36
34
32

35
33
31
31
31
40

» O O O OO
OO WWwoe

F.3.2 Network A Oulput File

% neta * 11/4/91 19:03
Source vertex = 39 Sink vertex = 40

1 ~=-= 2 rel = 1.0000
3 ~—- 4 rel = 0.3000
§ -~ 6 rel = 0.7000
7~-~—-—- 8 rel = 0.5000
9 -—~- 10 rel = 0.8000
i1 ===~ 12 rel = 1.0000
13 --——- 14 rel = 0.3000
1§ ---- 16 rel = 0.7000
17 ---- 18 rel = 0.5000
19 ---- 20 rel = 0.8000
21 ——== 22 rel = 1.0000
23 ---- 24 rel = 0.3000
25 ~—-- 26 rel = 0.7000
27 --—-- 28 rel = 0.5000
29 ---- 30 rel = 0.8000
31 -—- 32 rel = 0.8000
33 —-—-- 34 rel = 0.7000
25 ---- 36 rel = 0.3000
37 ——-- 38 rel = 1.0000
39 -——- 7 rel = 1.0000
39 ~~-~ 3 rel = 1.0000
39 --~- 8§ rel = 1.0000
39 ---- 1 rel = 1.0000
8 -—-~ 27 rel = 1.0000
4 --- 27 rel = 0.6000
4 ==~ 9 rel = 0.3000
6 -——- 21 rel = 1.0000
6 ~~-- 17 el = 1.0000
2 -—--- 23 rel = 1.0000
2 --== 25 rel = 1.0000
2 -——-- 27 rel = 1.0000
10 -—- 19 rel = 0.6000
10 ---- 21 rel = 0.7000
18 ~~-- 29 rel = 1.0000
24 ---- 29 rel = 0.7000
26 ---- 29 rel = 1.0n00
20 --—~- 29 rel = 0.6000
22 -—-- 29 rel = 1.0000
30 --—~ 11 rel = 0.3000
30 ---- 13 anl = 0.6000
30 -~~~ 15 rel = 0.7000
12 -——- 27 rel = 0.6000
14 ---- 27 rel = 0.6000
16 ~-~- 27 ‘el = 0.3000
28 ~--- 37 rel = 0.6000

Nt

28 ~--~ 35 rel = 0.6000
28 ---- 33 rel = 0.3C00
38 ---—- 31 rel = 0.3000
36 --——- 3' rel = 0.6000
34 ---- 31 rel = 0.7000
32 -—-— 430 rel = 1.0000

Bumber of edges = 51 Number of vertices = 40
0.15043267200 = probability

Time = 0.44 seconds

Number of source/sink reductions 7

Number of chain vertex reductions 37
Number of times factoring theorem is used 2

46
14
14
18
18
16
16
16

11
31
31
31
20
17
22
23
23
23
34
34
34
25
25
32
28
33
36
36
36
36
36
36
36
36
36
36

13
15
19
21
24
26
27

47
15
17
17
19
15
19
30
30
43
27
30
44
45
21
21
21
24
25
26
35
37
38
30
39
30
29
20
35
37
38
39
40
41
42
43
44
45
14
18
16
31
20
22
23
34
32
28

F.3.3 Network B Input File

DO 0O OO0 OO0 0000000000000 O0O0O0OO0O OO0 COC

OO O O0OO0OO0O0OO0OO0O0O0O0O0OO0O0O OO0 OO0

.80

.80

.50
.50
.80
.50
.60
.80

.50

.80
.50
.60
.60
.50

.70
.50

.50
.70
.70
.50
.50

.50
.70

.50

.70

.80
RO

.60
.60

.60

.60

.60

.60
.60
.60
.60

.60

.70
.15
.03
.04
.40
.01
.70
.11
.06
.09

29
30
46
46
46
46
46
46
35
37
38
39
40
41
42
43
44
45

33
36

W O Wb N

[o S N T T T T T T T Y - I =)

13
47
47
47
47
47
47
47
47
47
47

.18
.07
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

IRV

F.3.4 Neclwork B Output File

% netrel *xx 11/4/91 21:25
Source vertex = 46 Sink vertex = 47

14 -—-- 15 rel = 0.8000
14 ---- 17 rel = 0.8000
18 ———- 17 rel = 0.5000
18 ~-—-- 19 rel = 0.5000
16 -~—-- 15 rel = 0.8000
16 ---- 19 rel = 0.5000
16 ---- 30 rel = 0.6000
8 -———- 30 rel = 0.8000
8 ———-~ 43 rel = 0.5000
11 -=-- 27 rel = 0.8000
31 ---—- 30 rel = 0.5000
31 ---- 44 rel = 0.6000
31 ---- 45 rel = 0.6000
20 ---- 21 rel = 0.5000
17 ---- 21 rel = 0.7000
22 -~-— 21 rel = 0.5000
23 ---- 24 rel = 0.5000
23 -~—— 25 rel = 0.7000
23 ---- 26 rel = 0.7000
34 ---- 35 rel = 0.5000
34 ---——- 37 rel = 0.5000
34 ---- 38 rel = 0.5000
25 ---- 30 rel = 0.7000
25 ---- 39 rel = 0.5000
32 ---- 30 rel = 0.7000
28 -~-- 29 rel = 0.8000
33 ---- 30 rel = 0.8000
36 ---- 35 rel = 0.6000
36 ---- 37 el = 0.6000
36 ---- 38 rel = 0.6000
36 -~-- 39 rel = 0.6000
36 -~~- 40 rel = 0.6000
36 ---- 4% rel = 0.6000
36 ---- 42 xel = 0.6000
36 ---- 43 rel = 0.6000
36 ---—- 44 rel = 0.6000
36 -~--- 45 rel = 0.6000
2 ---- 14 rel = 0.7000
4 —~——— 18 rel = 0.1500
6 ~--- 16 rel = 0.0300
13 -~-~ 31 rel = 0.0400
1§ —--- 20 rel = 0.4000
19 ---- 22 rel = 0.0100
21 ---- 23 rel = 0.7000
24 ---- 34 rel = 0.1100

RN

26 -——-- 32 rel = 0.0600

27 --—- 28 rel = 0.0900
29 ---- 33 rel = 0.1800
30 -——- 36 rel = 0.0700
46 --—- 2 rel = 1.0000
46 --——- 4 rel = 1.0000
46 -—— 6 rel = 1.0000
46 -~--—~- 8 rel = 1.0000
46 ---- 11 rel = 1.0000
46 -—-- 1, rel = 1.0000
35 --—— 47 rel = 1.0000
37 --—- 47 rel = 1.0000
38 ——- 47 rel = 1.0000
39 ---- 47 rel = 1.0000
40 ~--- 47 rel = 1.0000
41 ---- 47 rel = 1.0000
42 ~--- 47 rel = 1.0000
43 ---- 47 rel = 1.0000
44 ---- 47 rel = 1.0000
45 --—~ 47 rel = 1.0000

Number of edges = 65 Number of vertices = 40
0.60116629875 = probability

Time = §8.00 seconds

Number of source/sink reductions 2838
Kumber of chain vertex reductions 4584
Number of times factoring theorem is used 3128

<9

78
20
22
13
23
10
16
18
24
25
19
26
26
26
26
26
28
28
28
28
28
28
28
28
28
28
40
40
40
40
40
40
40
41
41
41
41
41
41
41
31
31
48
48
48
48
48
50

79
21
21
14
21
15
17
19
21
21
21
27
39
42
60
62
29
30
31
32
33
34
35
36
37
38
39
42
43
44
45
46
47
39
42
43
44
45
46
47
51
52
49
51
52
83
56
49

F.3.5

.90
.00
.00
.60
.30
.60
.00
.90
.00
.70
.90
.60
.30
.60
.70
.00
.00
.60
.30
.60
.70
.90
.00
.00
.60
.30
.60
.70
.90
.00
.00
.30
.60
.30
.60
.70
.90
.00
.00
.60
.30
.60
.70
.90
.00
.00
.60

Network C' Input File

190

50
50
61
63
36
57
58

[« I SN

14
15
17
21
27
29
30
32
33
34
35
37
38
39
42
44
45
46
47
51
52
53
54
56
59
60
62
78
78
78
78
78
78
43
49
55
64
65
66

53
54
60
62
55
56
59
20
22
13
23
16
18
24
25
26
28
40
41
48
50
61
63
57
58
64
65
66
67
68
69
70
71
72
73
74
75
76
77

o
mﬂHHwHHHHHHHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOHHOOOO

o2

10
12
79
79
79
79
79
79

.30
.60
.70
.90
.00
.00
.60
.30
.70
.50
.80
.30
.70
.50
.80
.70
.70
.50
.80
.30
.70
.50
.80
.30
.70
.50
.80
.30
.70
.50
.80
.30
.70
.50
.80
.30
.70
.50
.80
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

191

67
68
69
70
71
72
73
74
75
76
77

79
79
79
79
79
79
79
79
79
79
79

P T T =

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

Source vertex

20
22
13
23
10
16
18
24
25
19
26
26
26
26
26
28
28
28
28
28
28
28
28
28
28
40
40
40
40
40
40
40
41
41
41
41
41
41
41
31
31
48
40
48
48
48

F.3.6

21
21
14
21
15
17
19
21
21
21
27
39
42
60
62
29
30
31
32
33
34
35
36
37
38
39
42
43
44
‘T

46
47
39
42
43
44
45
46
47
51
52
49
51
52
53
56

Nelwork

rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
tel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =
rel =

C Oulput File

-~
o«

o OO O OO = OO OO0 OO KB OODOO O KK OOO OO MM OOOOOC O+ O OO0 OO

Sink vertex

.9000
.0000

0000

.6000
.3000
.6000
.0000
.9000
.0000
.7000
.9000
.6000
.3000
.6000
.7000
.0000
.0000
.6000
.3000
.6000
.7000
.9000
.0000
.0000
.6000
.3000
.6000
.7000
.9000
.0000
.0000
.3000
.6000
.3000
.6000
.7000
.9000
.0000
.0000
.6000
. 3000
.6000
.7000
.9000
.0000
.0000

79

50
50
50
61
63
36
57
58

DN

12
14
15
17
21
27
29
30
32
33
34
35
37
38
39
42
44
45
46
a7
51
52
53
54
56
59
60
62
78
78
78
78
78
78
43
49
55
64
65

49
53
54
60
62
55
56
59
20
22
13
23
16
18
24
25
26
28
40
41
48
50
61
63
57
58
64
65
66
67
68
69
70
71
72
73
74
75
76
77

o 30"

10
12
79
79
79
79
79

rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel

rel =

rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel
rel

a bk b e e ek b b e OO OO0 OO0 O OO0 00000000 COO0OO0OO0O0OO0O0O0OO0O0O0O0Or K COOoOOoOo

.6000
.3000
.6000
.7000
.9000
.0000
.0000
.6000
.3000
.7000
.5000
.8000
.3000
.7000
.5000
.8000
.7000
.7000
.5000
.8000
.3000
.7000
.5000
.8000
.3000
.7000
.5000
.8000
.3000
.7000
.5000
.8000
.3000
L7000
.5000
.8000
.3000
.7000
.5000
.8000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

66
67
68
69
70
71
72
73
74
75
76
77

Number of
0.615699291229248047 = probability
Number of source/sink reductions

Number of chain vertex reductions

79
79
79
79
79
79
79
79
79
79
79
79
edges

rel
rel
rel
rel

rel -

rel
rel
rel
rel
rel
rel
rel

.0000
.0000
.0000
.00C0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
109

[O I O ' Y W G Gy WO W Y

31884

Number of times factoring theorem is used

195

70208

Number of vertices =

32239

Appendix G. Pascal Programs

G.1 Convert

Program Convert;
const
maxarc=125;

type
arcarray = array[1..maxarc] of integer;
nodearray = arrayl[i..maxarc,1..2] of integer;
probarray = arrayl[l..maxarc] of real;

var
p,c:arcarray;
prob:probarray;
pcarc,node:nodearray;
arclimit,head,tail,arc,nodectr,nbrain,fin,k; kc,a,b,i,j,m:integer;
~ource,sink:integer;
top,out,inp :text;

Procedure Inprob;
var i,j,k:1integer;

begin

reset(inp);

for 1:= 1 to maxarc do
prob[i]:=0;

while not eof(inp) do
readin(inp,k,probfkl);
arclimit:=k;
close(inp);

end;

Procedure RI;
var i,j:anteger;

begin
assign(top,’net.top’);
reset(top);
nodectxr:=1;

for 1:= 1 to maxar:c do
begin
pli]:=0;
c(1):=0;

196

for j:=1 to 2 do
begin
pcarc[i,j]:= 0;
node[1,j}:=0;
end;

i:=1;

while not eof(top) do
begin
readln(top,a,b);
pearcl1,1]:=a;
pcarcli,2]:=b;
1:=i+1;
end;

nbran:=i-1;

close(top);

end;

Procedure Create;
var i,j:integer;

Procedure Findp;
var 1:integer;
begxn
kp:=0;
for 1 := 1 to nbran do
if pearcf1,2] = arc then

begia
kp:=kp+1;
plkp] :=pcarcl(i,1];
end;
end;

Procedure Findc;
var i:integer;
begain
kec:=0;
for i:= 1 to nbran do
if pcarc(i,1} = arc then

begin
kc:=kc+1;
clkc]:=pcarcli,2];
end;
end;
begin
nodectr:=1;

for j:= 1 to nbrin do
begin

197

arc:=pcarcilj,1];
if u»rdelarc,1] = 0 then
begin;
head:=nodeccr;
Findp;
for m:=1 to kp do
for i:=1 io nbrin do
if pcarcii,1] = pm] then
begin
nodelpcarc[i,2],1].=head;
nodelpcarcli,1],2] :=head;

end;
todectr :=nodectr+i;
end;
1f nodefarc,2] = 0 then
begin;
tail:=ncdectr;
Findc;

for m:=1 to kc do
for i:= 1 to nbrin do

if pearc[1,2] = c[m] then

begin

nodefpecarc{i,1],2]:=ta1l;
node{pcarc[i,2],1]:=tail;

end;
nodectr:=nodectr+1;
end;
end;
nodectr:=0;

for i:= 1 to nbran do
for j:=1 to 2 do
if node{i, il > nodectr then

nodectr .= nodef,jl;
for i := 1 to nbrin do
1f (nodeli,1] > 0) and (nodeli,2]
begin
rodeli,2] := nodectr+2;
fin := 1;
end;

for = := 1 to fin do
if node(i,1] = O then
nodel[x,1] :< nodectr+i;
end;
(* Main Program *)

Begin
assign(out, 'netrel’);
assign(inp,’prob.f’);
rewrite(out);
Inprob;
RI;

= 0) then

10N

Create,
source:=nodectr+i;
sink:=nodectr+2;
wvriteln(out,source:2,’ ’,sink:2);
for m:= 1 to fin do
writeln(out,nodefm,1]:2,” ?,nodefm,2]:2,’ ’,problm]:3:2);
close(out);
end.

199

G.2 Capinv

Program Capanv;

const
maxpath = 200;
maxarc = 85;

type
network = array(l..maxpath,1..maxarc] of integer;
path = array[!..maxpath] of integer;
arc = arrayl1..maxarc] of real;

var
arcpath : network;
cap,prob : arc;
arclimit, pathlimit : integer;
bud,inv : real;
pfile, cfile,pathfile,gams :text;

Procedure Getprob; {Reads in arc probabilities into array prob{il}
var i,k:integer;

begin
reset(pfile);
arclimit:=0;
for i:=1 to maxarc do
begin
prob[2]:=0;
end;
vhile not eof(pfile) do
begin
readln(pfile,k,probl(kl);
arclimit:=arclimit+1;
end;
close(pfile);
end;

Procedure Getpaths; {Reads network paths into array arcpathf{i,jl}
var 1,j : integer;

begin {read paths into array arcpath}
reset(pathfile);
pathlimit:= -1;
for » := 1 to maxpath do
begin {initialize}
for j := 1 to maxarc do

arcpath(i,jl:=0;
end; {initialize}
while not eof(pathfile) do
begin {read path number}
read{pathfile,i);
pathlimit:=pathlimit+1;
while not eoln(pathfile) do
begin {read arcs(j) an path(i)}
read(pathfile,3);
arcpath(i,j] := 1;
end; {read arcs}
end; {read path number}
close(pathfile);
end; {read paths into array arcpath}

Procedure Getcap; {Reads 1n arc capacities into array capli]}
var 1,k:integer;

begin
reset(cfile);
for i:=1 to maxarc do
capli] :=0;
while not eof(cfile) do
begin
readln(cfile, k,cap[kl);
end;
close(cfile);
end;

Procedure Makegams;
var 1,j:integer;

begin

assign(gams,’capinv.gms’);

rewrite(gans);

uriteln(gams,'$0FFSYHXREF OFFSYMLIST’);
writeln(gams);

writeln(gams, ’SETS’);

writeln(gams,’ I arcs /1 * ?,arclimit,?/’);
writeln(gams,’ J paths /1 * ’,pathlimit,’/;’);
writeln(gams);

writeln{gams, ’PARAMETERS’);

writeln(gams);

writeln(gams,’ U(I) arc capacities’);
writeln(gams,’ /’);

for i:= 1 to arclimit do
writeln(gams,i:2,capli]:6);

writeln(gams,’ /');

writeln(gams);

writeln(gams,’ P(I) arc probabilities’);
wr-teln(gams,’ /');

for i:=1 to arclimit do
writeln(gams,i:2,prob{i]:5:2);
writeln(gams,’ /’);

vriteln(gams);
writeln(gams,’ A(I,J) arc-path matrix’);
writeln(gams,’ /’);
for j := 1 to arclimit do
begin
for i := 1 to pathlimit do
begin

if arcpath[1,3] > O then

writeln(gams,j:2,%.’,i:1,arcpathli,j1:2);

end
end;
writeln(gams,’ /;?);
vriteln(gams);

writeln{pams,’SCALAR C cost of incr arc cap by 1 / ’,inv:4,’ /;);
writeln(gaas, ’SCALAR B total budget available / 7,bud:8,’ /;’);
writeln{gams);
writeln(gams, 'PARAMETER R(J) path reliabilities ;’);
writeln(gams);
writeln(gams,’ R(J) = PROD(I $ A(I,J), P(I)) ;*);
writeln(gams);

writeln(gams, ’VARIABLES’);
writeln(gams,’ X(I) arc cap increase ’);
writeln(gams,’ F(J) flow on path J ’);

writeln(gams, z network lower bound maxflo ;’);
writeln(gams);

writeln(gams, 'POSITIVE VARIABLES F,X ;’);
writeln(gams);

writeln(gams, 'EQUATIONS’);

writeln(gams);

writeln(gams,’ MAXFLO’);

writeln(gams,’ PATHFLO(I)’);

writeln(gams,’ BUDGET ;’);

writeln(gams);

writeln(gams, ’MAXFLO .. Z =E= SUM(J, R(J)*F(J)) ;’);
write(gams, 'PATHFLO(I)$(U(I) ne 0) ..’);
write(gams,’SUM(J $ A(X,J), F(J)) =L= U(1)+X(1) ;’);
writeln(gams);

writeln(gams, ’BUDGET .. SUM(I, C*xX(I)) =sL=B ;’);
writeln(gams);

viiteln(gams, ’MODEL CAPINV /ALL/ ;’);
writeln(gams);

writeln{gams, ’OPTION LIMROW = 0');

writeln(gams);

writeln(gams, ’SOLVE CAPINV USING LP MAXIMIZING Z ;’);
writeln(gams);

writeln(gams, ’DISPLAY X.L,F.L ;?);

close(gams);

end;

(* Main Program *)

Begin

assign(pfile, ’prob.f’);
assign(pathfile,’path.f?);
assign(cfile,’cap.f’);

write(’Enter cost of increasing ° unit of capacity

read(inv);

writeln;

write(’Enter total budget ’);
read(bud);

Getprob;

Getpaths;

Getcap;

Makegams;

End.

203

OF

G.3 Relinv

Program Hueristic;

const
maxpath = 200;
maxarc = 85;

type
network = array[1..maxpath,1..maxarc] of integer;
path = array[1..maxpath] of integer;
arc = arrayli..maxarc] of real;

var
arcpath : network;
impind,prob : arc;
card, np : path;
arclimit, pathlimit : integer;
cap,inv : real;
pfile, pathfile,gams :text;

Procedure Getprob; {Reads in arc probabilities into array prob{ij}
var i,k:integer;

begin
reset(pfile);
arclimit:=0;
for 1:=1 to maxarc do

begin

prob{a]:=0;

end;

while not eof(pfile) do
begin

readln{pfile, k,problk]);
arclimit:=arclimit+i;
end;
close(pfile);
end;

Procedure Getpaths; {Reads network paths into array axcpath[i,jl}
var 1,j : integer;

begin {read paths into array arcpath}
reset(pathfile);
pathlimit:= -1;
for i := 1 to maxpath do
begin {initialize}
card[i] :=0;

for j := 1 to maxarc do
arcpath{i, j1:=0;
end; {initialize}
while not eof(pathfile) do
begin {read path number}
read(pathfile,i);
pathlimit:=pathlimit+1;
while not eoln(pathfile) do
begin {read arcs(3) in path(i)}
read(pathfile,j);
arcpath(i,j] := 1;
card[i] := card(i] + 1;
end; {read arcs}
end; {read path number}
close{pathfile};
end; {read paths into array arcpath}

Procedure Computenp ;
var i,k: integer;
begin
for k:= 1 to pathlimit do {initialize np}
nplk]:=0;
for k:= 1 to pathlimit do

for i:= 1 to pathlimit do

if card[k] = card[i] then

nplk]:= nplkl+1;

end;

Procedure Computeii ;
var i,j:integer; cardsq:path;

begin

for j:= 1 to arclimit do {initialize impind}
impaind{jJ:= 0;

for i:= 1 to pathlimit do {square card array}
cardsql1]:= card[i]*card[i];

for j:= 1 to arclimit do
for i:= 1 to pathlimit do

impind[jl:= impind[j] +
(arcpath(i,jl/(nplil *cardsq[i]))*1000;
end;

Procedure Makegams ;
var i:integer;

begin

assign(gams, 'relhuer.gms’);
rewrite(ganms);
writeln(gams,’$0FFSYMXREF OFFSYMLIST’);
writeln(gams);

writeln(gams,’SETS’);

writeln(gams,’ I arcs /1 * Y arclimit,'/;');
writeln(gams);

writeln(gams, 'PARAMETERS’);

writeln(gams);

writeln(gams,’ R(I) arc reliability index’);
writeln(gams,’ /?);

for i:= 1 to arclimit do
writeln(gams,i:2,impind[i]:8:4);

writeln(gams,’ /’);

writeln(gams);

writeln(gams,’ P(I) arc probabilities’);
writeln(gams,’ /');

for i:=1 to arclimit do
writeln(gams,i:2,prob[i]:5:2);

writeln(gams,’ /;’);

writeln(gams);

writeln(gams, ’SCALAR C cost of incr arc rel by .1 / ’,inv:4,’ /1)
writeln(gams, ’SCALAR B total budget available / ’,cap:8,’ /;’);
writeln(gams);

writeln(gams, 'VARIABLES’);

writeln(gams,’ X(I) arc rel increase ’);
writeln(gams,’ 2 objective for rel index ;’);
writeln(gams);

writeln(gams, ’POSITIVE VARIABLE X;’);
writeln(gams);

writeln(gams,’EQUATIONS’);

writeln(gams)};

writeln(gams,’ MAXINDEX’);

writeln(gams,’ REL(I)’);

writeln(gams,’ BUDGET ;’);

writeln(gams);

writeln(gams, ’MAXINDEX .. Z =E= SUM(I, R(I)*(PCI)+XCI))) ;)
writeln(gams, 'REL(I) .. P(I)+(.1*X(I)) =L= 1 ;’);
writeln(gams, *BUDGET .. SUM(I, C*X(I)) =L=B ;’);
writeln(gams);

wrateln(gams, ’MODEL RELHUER /ALL/ ;’);
writeln(gams);

writeln(gams,’OPTION LIMROW = 0');

writeln(gams);

writeln(gams, 'SOLVE RELHUER USING LP MAXIMIZING 2 ;’);
writeln(gams);

writeln(gams, ’DISPLAY X.L ;’);

close(gams);

end;

(* Main Program *)
Begin

assign(pfile,’prob.f’);
assign(pathfile, 'path.f’);

200

write(’Enter cost of increasing .1 units of
read(inv);

writeln;

write(’Enter total budget °’);
read(cap);

Getprobd;

Getpaths;

Computenp;

Computeii;

Makegams;

End.

207

survivability

'),

Appendix H. Graphical Network Analyzer (GNA) User’s Guide (for

Sun workstations)

by Andrew Jaffee Augnst 22, 1991

Contents

e Starting GNA

e Drawing normal nodes

e Drawing queuing nodes

e Drawing arcs

e Drawing routes between queuing nodes

» Undoing your last draw operation (queues, nodes, and routes)
¢ Saving the network you’ve drawn

e Navigating in GNA windows

o Analyzing the network with an operations research (OR) model
e FORMULA

e Displaying all paths through the network

¢ Displaying all bottlenecks (arcs/nodes) in the network

e Displaying capacity improvements

e Displaying reliability improvements

e Displaying overall network performance information

e QNA (Queuing Network Analyzer)

e Displaying all bottlenecks in the network

¢ Displaying customers in nodes

» Displaying other congestion/performance measures

o Displaying overall network performance information

e Navigating in GNA windows

e Starting GNA

Type <gna> at your UNIX system’s prompt. The network drawing screen and
menu will appear. Click left with the mouse to get started.

208

e Drawing normal nodes

With the mouse, click on <node>, then click on <place normal>. A win-
dow will appear in the lower left-hand corner of the screen. This is the input box.
The input box appears when you need to input data and disappears when you're
done. First, you will be prompted to enter the node’s reliability. Enter it and press
<return>. If ycu entered a percentage of less than 1.0, you will be prompted to
enter the cost of increasing one unit of reliability in the node. Type it and press
<return>. You will be prompted to enter the node’s capacity. Enter * if the node
has infinite capacity or some real number if less than infinite and press <return>.
If the capacity is finite, you will be prompted to enter the cost per unit increase of
capacity in the node. Enter it and press <return>. You will be prompted to enter
whether this node is continuous(c) or discrete(d). Enter ¢ or d and press <return:-.
If you pressed d, you will be asked to enter the node’s capacity increase. Enter it
and press <return>. Now place the cursor on the screen where you want to position
the node and click. The node will appear. To label the node, click <new>, then
<label>. Place the cursor where you want the label and click left.-To draw a new
node, click on <new>, then <place normal>, and repeat the steps described carlier.
When finished drawing nodes, click on <quit>. The main menu will reappear.

¢ Drawing queuing nodes

With the mouse, click on <node>, then click on <place queue>. The input
window will appear in the lower left-hand corner of the screen. First, lyou will be
prompted to enter the node’s service rate. Enter it and press <return>. Then you
will be prompted to enter the node’s service rate variability. Enter it and press
<return>. Then you will be prompted to enter the number of servers at the node.
Enter it and press <return>. Now place the cursor on the screen where you want
to position the node and click. The node will appear. To label the node, click
<new>, then <label>. Place the cursor where you want the label and click left.
'To draw a new node, click on <new>, then <place queue>, and repeat the steps
described earlier. When finished drawing nodes, click on <quit>. Then main menu
will reappear.

e Drawing arcs

Click on <arc> and then on <place>. The input window will appear. Enter
arc data as you did in Drawing normal nodes. Now move the cursor over the origin
node for this arc and double-click. Double-click on the terminal node for this arc and
the arc will appcar. To label the arc, click <new>, then <label>. Place the cursor
where you want the label and click left. To draw another arc, click on <new>, then
<place>, and repeat the steps described earlier. When finished drawing arcs, click
on <quit>. Then main menu will reappear.

¢ Drawing routes between queuing nodes

209

From the main mena, click on <path>. The input window will appear prompt-
ing you to enter the rouie’s arrival rate and variability parameter. Enter them.
Double-click on the first node in the path, then double-click on the second node,
double click and the third node, ... When you’ve double-clicked on the last node in
the path, click on <done> in the route dialog box. To draw a cycle, double click
twice on the same node. Then you can draw another path by clicking on <new>
and then <path> or exit by clicking on <quit>.Undoing your last draw operation
(queues and nodes)

e Undo

If you draw a node or arc badly, accidertally, or you change your mind, you
can fix it. From your menu, pick the <undo> command, and the last node or arc
drawn will be deleted from the network drawing area. The network data base will
also be corrected. Remember, this operation will only remove your most recently
drawn node or arc.

e Saving the network you’ve drawn

Click on <save>, the input window will appear prompting you to "ENTER
FILE NAME:”. Type the file name and hit <return>. The network will be saved
in the file you named in the current directory.

e Analyzing the network with an operations research (OR) model : FORMULA

You can analyze your network using the FORMULA model and the LP/MIP 83
and GINO linear/nonlinear/mixed-integer programming packages. From the main
menu, pick <new> then <model>. The model menu will appear. Pick <formula>
and then <convert>. The input window will appear. You will be prompted to
enter the budget for improving the capacity and the budget for improving the re-
liability of the network drawn on screen. Now open a DOS window and enter api
at the DOS prompt. The ARITY/PROLOG interpreter will appear. Type con-
sult("formula2.ari’). at the ?- prompt and hit <return>. Then type go. and hit
<return>. FORMULA will prompt you to enter your GNA data file name. Type
form_n.ari and hit <return>. Now you will see a menu giving you several choices as
to how to analyze your network. Pick 1 for Find all paths and calculate reliabilities.
You will be asked where you want output to go. Pick 2 for File. To see all paths
through the network graphically, see Displaying all paths through the network be-
low. FORMULA now asks you if you want continue execution, type y and the main
menu will reappear. Pick 3 for Generate the Lower Bound Formulation. You will be
asked where you want output to go. Pick 2 for File. Now open another DOS window
and enter the command bottle at the DOS prompt (this is a batch file containing
the command line 1p83 output3.lp marginanalysis yes > Ip83.out). This invohes the
program LP83 to find, among other things, all bottlenecks in your network. To see
all bottlenecks graphically, see Displaying all bottlenecks (arcs/nodes) in the net-
work below. FORMULA now asks you if you want continue execution, type y and
the main menu will reappear. Pick 5 for Generate Investment Strategy Model 1.

210

You will be asked where you want output to go. Pick 2 for File. In your other
DOS window enter the command capacity at the N OS prompt (this is a batch file
containing the command line 1p83 output5.lp margizanalysis yes > 1p83.out). This
invokes the LP83 program to find, among other thirgs, all arcs in the network that
need capacity improvement and the suggested caparity improvements. To see these
suggested improvements graphically, see Displaying rapacity improvements below.
FORMULA now asks you if you want continue executiun, type y and the main menu
will reappear. Pick 7 for Generate Investment Strategy Model 3. You will be asked
where you want output to go. Pick 2 for File. In your other DOS window enter the
command gino. A colon will appear. Type retr output?.ulp and hit <return>. Type
divert and hit <return>. You’ll be prompted for a file name. Type gino.out and hit
<return>. Type go and hit <return>. When the colon reappears, type quit and
hit <return>. These actions will solve the Model 3 formulation to find network ele-
ments that need reliability improvement along with suggested improvements. To sce
these suggested improvements graphically, see Displaying reliability improvements
below. You have several other options when running FORMULA. You can generate
the maximum flow and upper bound formulations. You can also generate three in-
vestment strategy modecls for improving network performance. These formulations
can be solved using the commercial packages LP/MIP 83 and GINO. Please consult
the FORMULA, LP/MIP 83, and GINO documentation to see how to use these
packages.

¢ Displaying all paths through the network

Now move the mouse back from the DOS window into the GNA window. Pick
<new> then <paths>. The first path through the network will appear. Its reliability
and flow will be shown in the paths dialog box. Click <next> to sec the next path
or <done> to quit. Pick <quit> to <return> to the main menu.

e Displaying all bottlenecks (arcs/nodes) in the network

Now move the mouse back back from the DOS window into the GNA window.
Pick <new> then <bottlenecks>. All bottlenecks will be displayed in the network.
Each node or arc that is a bottleneck will have the following symbol next to it.
Click on <done> in the bottlenecks dialog box to continue.Displaying capacity im-
provements. Now move the mouse back back from the DOS window into the GNA
window. Pick <new> then <capacity>. All nodes and arcs that nced capacity
mmprovement will be displayed in the following manner. The labels of the clements
being improved will reflect the new values. GNA displays network nodes and arcs in
sizes that correspond to their capacities. An improved element will have the newly
sized element displayed in green with the original element superimposed over it. For
exaraple, Click on <done> in the capacity improvements dialog box to continue.
Displaying reliability improvements. Now move the mouse back back from the DOS
window into the GNA window. Pick <new> then <reliability>. All nodes and arcs
that need reliability improvement will be displayed in the follewing manner. The

211

labels of the elements being i'nproved will reflect the new values. Elements will be
colored as follows: reliability (p) >= 0 and p <= 0.5 will be red, p >= 0.5 and p
< 1.0 will be orange, and p = 1.0 will be black. Click on <done> in the reliability
improvements dialog box to continue.

¢ QNA (Queuing Network Analyzer)

You can analyze a queuing network using QNA. After you’ve draw your queuing
network, with nodes and routes, pick <model> from the main menu. From the model
menu that appears, pick <qna>. The gna menu will appear. Go to another UNIX
window and enter the command gqna < qna.in > qna.out. QNA will execnte and
place output containing the analysis of your network into a file named ”qna.out”.

e Displaying all bottlenecks in the network

Now move the mouse back back from the UNIX window into the GNA window.
Pick <new> then <bottlenecks>. All bottlenecks wili be displayed in the network
as they were under FORMULA (above). Click on <done> in the bottlenecks dialog
box ic remove bottleneck symbols.

¢ Displaying customers in node queues

P.ck <new> then <queues> to display the customers in each node’s queue.
You will see dots lined up in each queue representing the number of customers
in the queue. Visually, queues will look like the following: Click on <done> in the
queues dialog box to remove queue symbols.Displaying other congestion/performance
measuresSimilarly, you can click on <times>>, <rates>, <visits>, and <traffic> to
see sojourn times ~t nodes, arrival and departure rates to and from nodes, expected
number of visits to nodes, and traffic intensities at nodes, respectively. When finished
viewing each, click on <done> in the respective dialog box.

e Displaying overall network performance information

Pick <new> then <performance>. A window will appear displaying textual
and symbolic representations of network throughout, flows in and out of the network,
expected total number of customers in the network, and expected total sojourn time
in the network. Click on <close> when done viewing this data.

e Navigating in GNA windows

You can change the vantage point frein which you see the graphics images on
screen. This can be done to back away from an image to see the whole thing, or
to zoom in to get a closer look. You can also rotate images around three axes. To
do these things, pick <camera> from the main menu. The menu options should be
self-explanatory.Exiting GNA: Click on <quit> from the main menu.

2o

10.

11.

12.

13.

Bibliography

. Abraham, J.A. “An Improvad Algorithm for Network Reliability,” IEEE Trans-

actions on Reliahility, Vol. R-23, No. 1: 58-61 (April 1979).

Aggarwal, K.K. “Integration of Reliability and Capacity in Performance Mea-
sure of a telecommunication Network,” IEEE Transactions on Reliability, Vol.
E-34, No. 2: 184-186 (June 1985).

Aggarwal, K.K. and K.B. Misra “A Fast Algorithm for Reliability Evaluation,”
IEEE Transactions on Reliability, Vol. R-24, NO. 1: 83-85 (April 1975).

. Arity Corporation, The Arity/Prolog Language Reference Manual. Concord,

Massachusetts, 1988.

. Bailey, T. G.Response Surface Analysis of Stochastic Network Performance. MS

thesis, AFIT/GOR/ENS /88D-01. School of Engineering, Air Force Institute of
Technology (AU), Wright Patterson AFB, OH, December 1988 (AFD-A202561).

. Borland International, The Turbo Pascal Version 5.0 User and Reference

Guides. Scotts Valley, California, 1989.

Brooke, A. and others. GAMS a User’s Guide. Redwood City, CA: The Scientific
Press, 1988.

. Brown, D. B. “A Computerized Algorithm for Determining the Reliability of

Redundant Configurations,” JEEE Transactions on Reliubility, Vol. R-20, No.
3: 121-124 (August 1971).

. Buchanan, J. T. and H. * *Daellenbach. A Comparitive Evaluation of Inter-

active Solution Methods ior Muliiple Objective Decision dodels,” [Zuropean
Journal of Operational Rescarch, Vol. 29, No. 3: 353-359 (June 1987).

Committee on the Nex! Decade in Operatior s Research. “Operations research:
The Nexi D.cade,” Operations Research, Vol. 36, No. /: 619-637 (July-August
1988).

Evans, G. W. “An Overview of Techniques for Solving Multichjective Mathe-
matical Programs,” Management Science, Vol. 30, No. 11: 1268-1282 (Novem-
ber 1984).

Gaught, W. L. Improving Reliability in a Stochastic Communication Network.
MS thesis, AFIT/GSO/ENS/90D- 10. School of Engineering, Air Force Institute
of Technology (AU), Wright Patterson AFB OH, December 1990.

Heidtmann, K. D. “Smaller Sums of Disjoint Products by Subproduct Inver-
sion,” IEEE Transactions on Reliability, Vol. 38, No. 3: 305-311 (August 1989).

213

14.

15.

16.

18.

19.

20.

22.

23.

24.

Jaffee, A. and Y. Chan The Graphical Network Analyzer: A Computer Graph-
ics Package for Stochastic and Deterministic Network Analysis in Operational
Sciences. Preliminary 1eport presented at the 4th International Conference on
Computer Graphics and Descriptive Geometry, Miami, Florida, 1990.

Jain, S.P. and K. Gopal, “A Hueristic Method of Link Reliability Assignment
for Maximal Reliability,” Microelectronics Reliability, Vol. 30, No. 4: 673-679
1990.

Li, V. O. K. and J. A. Sylvester “Performance Analysis of Networks with Un-
reliable Components,” IEEE Transactions on Communications, Vol, COM-32,
No. 10: 1105-1110 (October 1984).

. Locks, M. O. “A Minimizing Algorithm for Sum of Disjoint Products,” IEEE

Transactions on Relaibility Vol. R-36, No. J: 445-453 (October 1987).

Page, L. B. and J. E. Perry “Reliability of Directed Networks using the Fac-
toring Theorem,” IEEE Transactions on Reliability, Vol. 38, No. 5: 556-562
(December 1989).

Provan, S. J. and M. O. Ball “Computing Network Reliability in Time Polyno-
mial in the Number of Cuts,” Operations Research, Vol. 832, No. 3: (May-June
1984).

Seo, F. and M. Sakawa. Multiple Criteric Decision Analysis in Regional Plan-
ning. Dordrecht, Holland: D. Reidel Publishing Company, 1988.

. Shin, W. S. and A. Ravindran “Interactive Multiple Objective QOptimization:

Survey I — Continuous Case,” Computers and Operations Research,” Vol. 18,
No. 1: 97-114 (1991).

Wood, K. R. “Factoring Algorithms for Computing K-Terminal Network Reli-
ability,” IEEE Transactions on Reliability, Vol. R-35, No. 3 269-278 (August
1986).

Yim, E. Improving the Surcivability of a Stochastic Communication Network.
MS thesis, AFIT/GOR/ENS/88D-01. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH,December 1988 (AD-A202872).

Yim, E. and others. Ezact and Approzimate Improvement to the Throughput of
a Stochastic Network. Submitted to Joint Meeting of the Operations Research
Society and the Institute of Management Science, Vancouver, B. C. Canada,
May 1989.

. Zeleny, M. MCDM:Past Decade and Future Trends. Grenwich, Connecticut: JAI
Pres Inc, 1984.

