
AD-A243 655

AFIT/GSO/ENS/9D-10

DEC 27 1991

IMPROVING STOCHASTIC COMMUNICATION
NETWORK PERFORMANCE: RELIABILITY

VS. THROUGHPUT

THESIS

Leonard John Jansen
Captain, USAF

AFIT/GSO/ENS/91D-10

Approved for public release; distribution unlimited

91-19036 91 1224 057

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this coIlltOn of information is estimateo to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services. Di, ectorate for information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 991 Master's The, _s
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

IMPROVING STOCHASTIC COMMUNICATION NETWORK PERFOR-
MANCE: RELIABILITY VS. THROUGHPUT

6. AUTHOR(S)

Leonard 3. Jansen, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GSO/ENS/91D-1O

9. SPONSORING! MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTPIBUTION! AVAILABILI',Y STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This research investigated the measurement and improvement of two performance parameters, expected flow
and reliability, for stochastic communication networks. There were three objectives of this research. The first
was to measure the reliability of large stochastic networks. This was accomplished through an investigation into
the current methodologies in the literature, with a subsaquent selection and application of a factoring program
developed by Page and Perry. The second objective was to develop a reliability improsement model given that
a mathematical reliability expression did not exist. This was accomplished modeling a hueristic by Jain and
Gopal, into a linear improvement model. Finally, the third objective was to examine the trade-off between
maximizing expected flow and reliability. This was accomplished through generating bounds for the efficient
frontier in a modified multicriteria optimization approach. Using the methodologies formulated in this research.
the performance parameters of both expected flow and reliability can be measured and subsequent improvements
made providing insight. into the operational capabalities of stochastic communication networks. -

1. SUBJECT TERMS 15. NUMBER OF PAGES

Networks, Reliability, Stochastic Networks, Communication Networks 6 225
1.PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclh.ssified U L
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std 139.18
298.102

AFIT/GSO/ENS/91D-10

IMPROVING STOCHASTIC COMMUNICATION NETWORK

PERFORMANCE: RELIABILITY VS. THROUGHPUT

THESIS

Presented to the Faculty of the School of Engineering -,

of the Air Force Institute of Technology copy

Air University "N, 6Ten

In Partial Fulfillment of the

Requirements for the Degree of r,

Master of Science (Space Operations) ort (I

Leonard John Jansen, B.S. I. t tt ,

Captain, USAF ---.- c-vei

.Dist ~ doLD!AI Ipel]

December, 1991u iited

Approved for public release; distribution unlimited

Thesis Approval

Student: Captain Leonard Jansen

Section: GSO 91D

Thesis Title: IMPROVING STOCHASTIC COMMUNICATION NETWORK
PERFORMANCE: RELIABILITY VS. THROUGHPUT

Defense Date: November 21, 1991

COMMITTEE NAME/DEPARTMENT SIGNATURE

Advisor Dr. Yupo Chan _..._ _ _

Reader Captain John Borsi/ENS

Preface

This research investigated the performance measurement and improvement of

stochastic communications networks. The methodologies developed were the result

of six months of research into network reliability and expected throughput. I would

like to thank my thesis advisor, Dr. Yupo Chan, for his technical expertise and

guidance. I would also like to thank my reader, Captain John Bors i, for his insights

and suggestions. Finally, I want to thank my wife, Penni, for her support and

understanding during these last. eighteen months.

Leonard John Jansen

ii

Table of Contents

Page

Preface.....

Table of Contents....

List of Figures. viii

List of Tables.*. ix

Abstract. x

I. Introduction. 1

1.1 Background 1

1.2 Research Problem. 2

1.3 Sub-objectives 2

1.4 Assumptions. 3

L.b Methodology. 3

II. Literature Review. 4

2.1 Network Representation. 4

2.2 Expected Maximum Flow 4

2.2.1 Lower Bound. Formulation. 5

2.3 Capacity Improvements. 6

2.4 Survivability Improvements 6

2.5 Reliability. 7

2.5.1 Solved Network. 9

2.5.2 Alternatives to Complete Enumeration. 11

iii

Page

2.6 Multicriteria Decision Analysis 13

2.6.1 Feasible Region Reduction Methods........ 14

2.6.2 Feasible Direction Method 14

2.6.3 Criterion Weight Space Method 14

2.6.4 Tradeoff Cutting Plane Method 15

2.6.5 Lagrange Multiplier Methods 15

2.6.6 Visual Interactive Methods 15

2.6.7 Branch-and-Bound Method 15

2.6.8 Relaxation Method 15

2.6.9 Other Methods 15

2.7 Summary 16

III. Methodology 17

3.1 Understanding the Problem 17

3.2 Formulating the Reliability Performance Model 18

3.3 Formulating the Reliability and Capacity Improvement Mod-

els 18

3.4 J1rmulating the Multicriteria Model 19

3.5 Selecting Software 19

3.6 Analyzing Communication Networks 19

IV. Reliability 20

4.1 Introduction 20

4.2 Disjoint Product Algorithms 21

4.3 Most Probable State Enumeration 22

,..4 Factoring 25

4.5 Evaluation 26

1.6 Reliability Improvement Model 27

iv

P age

V. Multicriteria Optimization 29

5.1 MCO Model. 29

5.1.1 MCO Analysis 31

5.1.2 Costing Analysis.......................33

5.1.3 MCO Summary. 34

5.2 Modifications 34

5.3 Relmax..................................35

5.4 Flomax 37

5.5 Summary................................. 38

VI. Integration. 40

6.1 Tools.................................... 40

6.1.1 GNA. 40

6.1.2 Arity/Prolog Interpreter. 40

6.1.3 Formula Version 3.0 41

6.1.4 GAMS 41

6.1.5 Turbo Pascal. 41

5.1.6 Dirprog. 41

6.1.7 Modprog 42

6.1.8 Capinv.. 42

6.1.9 Relinv 42

6.2 Files 42

VII. Results and Analysis 45

7.1 Network A 45

7.1.1 Original Performance Parameters. 45

7.1.2 Reliability Improvement. 48

7.1.3 Combined Capacity and Survivability Improvements. 49

v

Page

7.2 Network B 54

7.2.1 Original Performance Parameters.........54

7.2.2 Reliability Improvements. 57

7.2.3 Capacity and Survivability Improvements......57

7.3 Netwoik C 60

7.4 Summary. 64

VIII. Conclusions and Recommendations 65

8.1 Reli)ility Measurement 65

8.2 Reliability Improvement 65

8.3 Trade-off Analysis 66

8.4 Recommendations 67

8.5 Summary. 67

Appendix A. Converted Networks. 69

Appendix B. Network A GAMS Files 74

B.1 Linear Heuristic Reliability Improvement Model. 74

B.2 Linear Capacity Improvement Model. 78

B.3 Nonlinear Combined Improvement Model. 100

Appendix C. Formula Input Files 104

C.1 Network A. 104

C-2 Network B. 108

C.3 Network C. 113

Appendix D. Formula Version 3.0 User's Manual. 124

D.1 Required Equipment 124

D-2 Running the FORMULA. 124

D.3 Input. 125

vi

Page

DA4 Example. 127

D.5 Output 130

D.6 LP/MIP-83 Commands 131

D. " GINO Commands 132

D.8 Helpful Comments 132

Appendix E. Formula Version 3.0 Source Code 133

Appendix F. Reliability Programs and Files 161

F-1 Dirprog - Turbo Pascal Version 161

F-2 Dirprog - ANSI Pascal Versior. 172

F.3 Network Reliability Files. 182

F.3.1 Network A Input File. 182

F.3.2 Network A Output File. 184

F.3.3 Network B Input File. 186

F.3.4 Network B Output File. 188

F.3.5 Network C Input File. 190

F.3.6 Network C Output File. 193

Appendix 0. Pascal Programs. 196

G.1 Convert. 196

G.2 Capinv.200

G.3 Relinv. 204

Appendix H. Graphical Network Analyzer (ONA) User's Guide (for Sun

workstations). 208

Bibliography 213

Vita 215

Vii

AIF , I / O.NS/.I I)-10

Abstract

This research investigated the nieasuren-ent and iMnprN'oveen!t of two perfor-

mance parameters. expected flow and reliability. for stochastic coniinitcation net-

works. There were three objectives of this research. The first was to measure the

reliabilit of large stochastic networks. This was acconiplished through an investiga-

tion into the current methodologies in tlh literature, with a subsequent selection and

application of a factoring program developed by Page and Perry (18). The second

objective was to develop a reliability improvement model 'n that a mathematical

reliability expression did not exist. This was accompished modeling a hueristic by

.ain and Copal (15). into a iinear improvement model. Finally. tle third objective

was to examine the trade-off between maximizing expected flow and reliability. This
was accomplished through generating bounds for the efficient frontier in a modified

multicriteria optimization approach. Using the methodologies formulated in this

research. the performance parameters of both expected flow and reliability can be

measulred and subsequent improvements made providing insight into the operational

capabalities of stochastic commur!,ication networks.

As wit I t he expected maxinun flow calculation, iii'cdaj)acity improvemneit

model will bei used. which was examined in the literatur, . review.

-1.4 i-orntzlaltny the luffhcii/cria Aodel

Gien an objective function for each criteria, expected flow and reliability.
a multicriteria optimization model was needed to generate the trade-off region or

efficient frontier for the two criteria. Lacking a criterion function for network relia-

bility. two modified approaches to examine the trade-off reqion were investigated in

Chapter V.

3.5 Seccling Software

Given the performance measure and improvement models. software was re-

quired to implement the models. Previous work by Yim and Gaught used several
different off-the-shelf commercial solver packages to include GINO and IP/MIP-83.

The General Algebraic Modeling System. GANMS, was selected both for its ability

to solve linear and nonlinear models on the personal computer and its ease in con-
verting from one model to another. In addition to the GAMS solver. Yim's Formula

program was umed for network path generation and which required a Prolog compiler.
Finally. integration p~rocedures and input file generation programns were written in

Pascal.

3.6 Anallzin! (.onam unteation :W two-Lks

The above methodologies were applied to one small example network and three

large realistic networks. The example network was u.s'd to demonstrate the appli-

cat ion of the 111odels to stochastic net works while the larae net works were anal? zed

wit i respect to their init ial pe'rformance and stabsequent iproved performance. Fi-

nally. the Irade-off region was examined for tie networks. The description of the

iree' large iet work. along wit h their respective analvsis i. Ip't,'ed in (hapter VI.

List of Figures

Figure Page

1. Example Network. 9

2. Example Network 20

3. Example Network 32

4. Example Network Efficient Frontier. 33

5. Relmax Plot 36

6. Flomax Results 38

7. Flow Diagram. 44

8. Network A. 48

9. Network A Combined Improvements 52

10. Network A Efficient Frontier 53

11. Network B. 54

12. Combined Improvements. 58

13. Network B Efficient Frontier 60

14. Network C. 61

15. Network A - Converted 70

16. Network A - Converted 71

17. Network B - Converted 72

18. Network B - Converted 73

19. Sample Network. 128

20. Revised Network 129

viii

List of Tables

Table Page
1. Network Success States 12

2. Relmax Results 36

3. Description of Arcs in Network A 46

4. Description of Nodes in Network A 47

5. Dependent Arcs in Network A 49

6. Dependent Nodes in Network A 49

7. Network A - Node Importance Index 50

8. Network A - Arc Importance Index 51

9. Network A Reliability Improvements 51

10. Description of Arcs in Network B 55

11. Description of Nodes in Network B 56

12. Arc (4-24) Survivability Improvements 57

13. Network B - Node Importance Index 58

14. Network B - Arc Importance Index 59

15. Network B Combined Improvements 60

16. Description of Arcs in Network C 62

17. Description of Nodes in Network C 63

ix

AFIT/GSO/ENS/91 D-10

Abstract

This research investigated the measurement and improvement of two perfor-
mance parameters, expected flow and reliability, for stochastic communication net-
works. There were three objectives of this research. The first was to measure the

reliability of large stochastic networks. This was accomplished through an investiga-

tion into the current methodologies in the literature, with a subsequent selection and

application of a factoring program developed by Page and Perry (18). The second
objective was to develop a reliability improvement model given that a mathematical

reliability expression did not exist. This was accomplished modeling a hueristic by

Jain and Gopal (15), into a linear improvement model. Finally, the third objective

was to examine the trade-off between maximizing expected flow and reliability. This
was accomplished through generating bounds for the efficient frontier in a modified

multicriteria optimization approach. Using the methodologies formulated in this
research. the performance parameters of both expected flow and reliability can be

measured and subsequent improvements made providing insight into the operational

capal)alities of stochastic communication networks.

N

Improving Stochastic Communication Network Performance

Reliability vs. Throughput

L Introduction

The Department of Defense (DoD) is concerned with the survivability of com-

munications networks and the flow of information through the network during crisis
situations. (12:2) The improvement of the expected maximum flow or throughput,
and reliability of stochastic communications networks can be accomplished through

increasing channel capacities or survivabilities within the network. Calculating the

maximum expected flow for a large stochastic network is computationally infeasible,
but very efficient mathematical programs have been recently developed to calculate
the lower bound of the expected maximum flow, which has been demonstrated to be

an accurate estimator. In addition, recent algorithms have been developed to calcu-
late the reliability of large stochastic networks. Based on the above programs, the

netw'ork performance parameters of expected flow and reliability can be measured

and invest ment strategies modeled to improve stochastic network performance.

1.1 Background

A stochastic commnunications network can be represented by a graph consisting

of nodes representing transmitters, receivers, or relay stations, and arcs representing

coimn1inicat lion chaimiels (land lines, microwave or satellite links) which connect the
individual nodes. Under adverse conditions, some arcs or nodes may fail and thus
each has an associated probability of survival. This is the basis for the stochastic

communication net\work in contrast to a deterministic' network where there are no

pro)aIbilities of failure.

To calculate Ihe exact maximum flow through the stochastic network requires
m)('rat iug all possible states of the network. Assuming a network with n corn-

ponenlts '(arcs or nodes). each being either up (operational) or down (failed), the

total nuniber of states is 2'. Yim gives an example of a network consisting of 55

arcs which, given a typical personal computer, would require 114.25 years to enu-

merate all possible states. (23:2) While the exact value for expected maximum flow

is computationally infeasible to solve for, Yim developed a mathematical program-

muing model which accurately estimates the expected throughput of the network by

calculating a, lower bound value. (23:33)

Expanding on his expected throughput model, Yim developed several invest-

inent models for improving expected throughput by increasing individual arc ca-
pacities within the network. (23:38,40) Subsequently, Gaught developed additional

nonlinear investment models for improving expected throughput by increasing the
survivabilities of individual arcs within the network.

The performance parameter of expected throughput measures how much infor-

mation a network can flow under adverse conditions given the probability of paths

left to connect the source and sink. The expected flow is thus a weighted average

of the flow times the probability of each state of the network. For some operations,

however, the amount of flow is less important than the probability that the source

and sink are connected. This cannot be derived from the expected flow value buL

must be calculated through the performance parameter of source to sink reliability.

1.2 Rc..scarch Problem

It is the purpose of this investigation to develop methodologies to measure

and implove the expected throughput and reliability of a stochastic communication

network under budgetary limitations. The metlhodologies should be responsive to

the decision maker's inputs, and computional times required should be short enough

to facilitate what-if scenarios in an interactive mode.

1.3 : .b-objeclii'cs

Flere are three sub-objectives of this research.

1. '[h first sub-objective is to investigate methodologies to measure network

reliability for large stochastic networks.

2. The second sub-objective is to develop a model to improve tlhe network relia-

bility of large stochastic networks.

3. The third sub-objective is to cxamine th,. trade-off between maximizing tile

two network performance parameters, expected flow and reliability, given a

limited budget.

1.4 Assumptions

The following assumptions were made consistent with those used by Yim (23:3)
and Gaught (12:3)

1. Component failures are independent.

2. Components (arcs or nodes) are either up (operational) or down (failed).

3. The flow of information through an arc is restricted to one direction only.,

4. Rerouting of the flow is not allowed (for the lower bound formulation).

5. Only a single commodity flows through the network.

1.5 Methodology

The first sub-objective will be met by investigating the current methodologies

used to measure or bound network reliability and then select the most appropriate

technique for this research. If possible. linear models will be selected over nonlinear
models to avoid the problems of local optima and increased compiltational complex-

ity associated with nonlinear model., In addition. the preferred methodology will
operate within the memory and speed limitations of an IBM compatible personal

computer.

The second sub-objective will be met by developing a model to improve the

reliability of stochastic network,. It .should be compatible wit h t he selected met hod-
ology used above to measure network reliability. In addition. a mat hematical solver

package needs to be selected to implement the develo)ed reliability improvement

model.,
The third sub-objective will be met, by developing a methodology using multi-

criteria optimization (M('O) to analyze the trade-off between the two criterion ob-

jectives of maximizing expected flow and reliability. This approach should produce
a trade-off region from which ati optimum solution can be obtained by applying the

decision makers preference fimclion pertaining to the two criteria.

11

I. Literature Review

This chapter reviews the literature applicable to single-commodity flows through

a stochastic communications network , network reliability, and inulti-criteria decision

analysis. The following sections will discuss network representation, expected max-

imumi flow, capacity improvements, survivability improvements, network reliability

meast es, and multi-criteria decision analysis methods..

12.1 Network Representation

A stochastic communication network is a collection of nodes interconnected

hY directed arcs or paths. The nodes may represent ground stations, repeaters, or

satellites while the arcs represent communication links between the nodes. Each

arc and node has an associated capacity and survivability where the capacity is the

maximum flow the arc can carry while the surivability is the probability that the arc

v,:1 be up or capable of carrying flow. In a communications network, flow represents

the amount of information transmitted in ut its of bits per second (hips).

In addition to a graphical illustration, networks can be represented in matrix

form iiusing either a node-arc incidence matrix or an atc-l)ath incidence matrix. In

tihe llode-arc form. the matrix rows correspond to arcs while the columns correspond

to nodes. The matrix entries, tk,, are one of the following: a 1. which im)lies that

arc i ends at node k; a -1, indicating i starts at. k; or a 0. meaning no connection

exists (12:6). The arc-path form again uses rows to represent arcs, but the columns

correspond to paths wthin the network. The matrix entries. a. are either a I which

iinplies arc i is oni patl, /. o' 0 meaning arc i is not on path j (2:3:7).

2.2 Lxpeclcd Aa.ri umn Fow

To calculate I he exact value of the ex,,-ted maximm flow requires com)lete

liiineration of all possib., network states of which there are a total of 2". This

plrobllem is classified as NP-hard meaning that there currenltly exists no algorithm

that can calculate the expected tnaxinium flow in polynomial lie ior in other words,

that the computal ions required grow exponent ially witlh the number of components

wit hini the stochastic net vork.

In contrast to the exact value of the expected maximum flow, the lower bound,

sometimes referred to as the maximum expectVd flow, can be efficiently calculated.
Yim (23), assuming independent arcs and no rerouting, developed a formulation to
calculate the maximum expected flow (lewer bound). This formulation uses an arc-
path incidence matrix representation a '.zimizes the sum of the product of path

reliabilities and flows. A description -i r (23) formulation follows.

2.2.1 Lower Bound Formulabo, t'he reliability R, of path A, within the
network can be computed by

Rj " -:A, P,

Now let, f) be the flow on path j. The sum of the expected flows on all ti e
paths from source to sink is given by

I Rjf)

Letting aj equal I if arc i lies on path j, and 0 otherwise, the lower bound
formulation is as follows:

Max ~ Rf

S.

a-".,j - iii for i = 1, 2. n

Yim uses the notation v, to represent the capacity of arc i (23:16-18).

To facilitate the maximum expected flow calculation. Yim (23) developed a
coinputer program, Form ala, using the artific;al intelligence language PI{OLO('.
to generate the network flow paths. An input file was then generated and input

into a mat hemnatical i)rogramIinimg package for solution. Ills results were validated
against exact solutions generated by Bailey who used similat ion and response surface

analysis on the same experinw!1tal networks (24:18-20). Yim states " Even though

the lower bound estimate, ignores re-rouling, the states considered are prominent
enough to adequately represent the ,'x)ected throughplt. appirent l imuch more

accurate than the assumnption of no link failure in the ullpper bound (no failures)

formulation" (24:18)

5

-~~~t w- S A~-~

2.3 Capacity improvements

To improve the expected flow through a stochasic network, either the arc

capacities or survivabilities must be increased. In this section , Yim's (23) investment

strategy model for increasing throughput by increasing arc capa, ity will be reviewed

while the next section will examine Gaught's (12) investment stiat.gy model using

increased arc survivabilities to increase network throughput.

Yim developed a linear prograrmming model which maximizes tl lower bound

of e:pected maximum flow given a fixed budget for increasing arc capacities. The

m-io,'e, assumea no physivti upper limit for arc capacity im, ,oveeitts and equal

costs for increasing arc capacities by one unit. The solut n obtained from the

model identifies which arcs Fid by how much each should be increased.

The model is similar to that of the lower bound formulation, but with the

following modifications. An increased arc capacity term, di, is included in the flow

capacity constraint, and a budget tonstiaint is introduced, where a is the cost of

increasing arc i by one unit and .3 is the total budget available. The model is as

follows:

Max Z =l R,.f, where R, = F1, P,
s.t

<_ 1 ,/3 u + d,

1:1 a.id. < 3

R. .difj. n,. 13 > 0 and a,j = 0, 1

2. . .Sitrviv'ability Improvenif nts

Caught (12) developed an investment strategy model to increase the expected

inaxintumr flow througli the flei work b," increasing the survivabilities of the arcs. He

introduced 1Oliee addilional assumlptious to those made in tile lower bound (nodel;

I) all arc survivabilities had the potential to be increased to one. 2) arc survivabil..

ities will be increased in increments of one tenths. and 3) the costs to increase- arc

si'rvivabilities were equal and linear.

The objective l'niction maximizes the sum of tihe ex)ected flows over all patli1

froin source to sink and is

6i

MaxE, 1 ~ Rj ,

In Caught's model, however, the path reliability R, is not a constant but a

product of the arc surv ivabilities, which are dependent on the increased survivability

factor X,. Thus the path reliabilities are nonlinear and are

R3, H-Fj(Pi + .1 -Xi)

The constraints consist of a maximum arc survivability constraint, a flow ca,-

pacity constraint, and a budget constraint. The first constraint ensures the arc

survivabilities (original P, plus increase .1 Xi) are less than or equal to one. The
second constraint ensures the arc flow is less than or eqjual to thle arc's capacity it,.

Finally, the third constraint Imnits the sumn of the costs to increase arc survivabilities,

a times X,, to less than or eq'ip! to "Le total budiget available, P,

Caught's (12) nonlinear i -odellis as follows:

Max T'= I Rf, where R,=H1,(P,±+.1 Xi)

S.

P,±+.J-X, <1 1. 2.

X~, ,. 3.o,. 0 a nd a,j .

2.5 R~eliability

Reliabilitv is a tis(ful measure to analYze thew performance of' net works. The

tradlitional app~roach 11se(! in evaluating net work reliability considler-ssomie measuire of

network connectivity. usuialk1 source to -sink or interconne t ivity bet ween k specified
nodes, A second approach considers the abilitY of the network to transmit. a required

flow from source to sink. Aggarwal (2l--si, tteirat-s network Capacity with

re(liability to define a network reliability performanc#c index as tile probab~ility of

successfully t ransmitt ing a requnired flow from source tu 5ir~k.

Aggarwal's a;)lproach (2:18,1-186) uses a normalized weighiting scheme ('oiplcel

w'it.m the tradlit iohdl q reliab~ilit y metihodology. "Ilime success states of t.he network

. . -. .", . . . , -- ,. . -, ' -. .

(considering path availability only) are identified and the associated state proba-

bilities are calculated. Aggarwal then multiplies the state probabilities by their

normalized weights based on the states maximum flow. The normalized weight is

defined as ratio of the state's maximum flow to the original network's maximum flow.

The weighted state probabilities are then summed to form the performace index.

Aggarwal uses the following notation (2:184):

s, t source, terminal node

Pr, q reliability, unreliability of branch x

71 set of all states

S. F set of all success, failure states

S, a member of set S

Ps, probability of system being in state S,

C, capacity of the subnetwork in state Si

IV, normalized weight for state S,

C,.UX capacity of the network with all branches up

Rt 1 5- t reliability

P1 performance Index

For a network where the arcs have only two states, up or down. and the nodes

are perfect, the set of all states T, consist of 2" different states where n is the number

of arcs. From this total set, a subset S. needs to be determined corresponding to

those system states that have at least. one complete path from s to ,.

For each state S, (S, E S), the following aie defined:

n, arc i is up

- arc i is downi

The prol)ability of state .i is:

N , = -I,E,,, Pi 1l,E,3, q,

1'he Iraditional .- I reliability is:

,8

Rst= (SES) Ps,

Aggarwal defines the normalized weight wi as:

zVt = C1

Then the weighted reliability or performance index, PI is:

PI = E(SES) wPs,

Aggarwal's performance index requires the enumeration of all network success

states. Due to the binary nature of the arc states, up or down, an efficient algorithm

based on boolean algebra variables (literals) has been developed by Brown to deter-

mine those success states of the network out of the set of total states. (8:121-124)

2.5.1 Solved Network. The network in Figure I was used for an example

application of Aggarwal's reliability performance index using Brown's algorithm to

generate the network success states.

.8.2

.8.5
(surv.cap)

Figure 1. Examr~ple Net work

B1

The example network consist of seven arcs and three s - t paths, A-B-C, A-

D-G, and E-F-G. Using Brown's algorithm (8:121-124), thirty-nine network success

states were determined from a possible 128 states and are listed in Table 1.

The probability of each success state was calculated and the 6 - t or connect-

edness reliability was obtained by summing the success state probabilities. For the

example network, the result was 0.8282. Another reliability measure would be a

maximum flow reliability index Rf,, where only those success states that have a flow

capacity equal to the maximum are considered. For the sample network, only one

state. where all arc., are operating. can provide the maximum flow of nine units. The
maximum flow reliability index was calculated to be 0.2097

Given the two above reliability indicators, there still existed a large gap of

network flow information between them. Aggarwal's performance indicator filled in

this gap where:

Rf, < PI < Rj

The PI fo the required flows ('R less than C,,,ox for the examl)le network are

as follows where the definition of W, is modified as:

("/C; if' C, < C,

1 ot herwise

low Required P1

7 < (Cu < S .5398

5 < ('I < 7 .63.11
•1 < C', < 5 .73-58

2 < (I <_ .i .7622

It)

The expected maximum flow for the network can also be calculated by suming

the state probabilities times the capacity or maximum flow of that state. For the

above network, the expected maximum flow was 4I.78. Yims lower bound for the

example network was 4.69.

Aggarwal's reliability performance index provides valual)le insight into the flow

capabilities of stochastic networks. The information though comes at a cost, that

of computational explosion due the exponential nature of the state space. While

Brown has provided an algorithm for determining the network success states, they

still number a large fraction of the total states and become very large for any re-
alistic network. The algorithm also requires enuneration of all the source to sink

paths. Due to av artificial intelligence based path enumeration program written by
Yini (23). the path enumeration part can be generated. The second difficulty with
Aggarwai's method is determining the flow capacity for all the success states. While
there are numerous efficient algorithms and commercial network packages to solve

for the maximum network capacity. again the calculations required for all the states
becomes comput ationally infeasible for large networks.

Aggarwal's approach for examining the flow reliability of a stochastic network

has been demonstrated on a small sample network to establish a base from which

to improve u5|pon1. The network performance information generated is valuable. but

iml)provement s in decreasing the conipulatioial explosion need to be inv-esligatrd.

Yim has developed an efficient bounding model for thbe expected maximmium flow.

('oupling I his with an efficit -s -- I reliability eivasuire will give two performance

measures Ihat all hough not as complete as Aggarwai's measure. can give lie decision
naker a basis for a better understanding of the network performa'nce.

2.5.:2 AIe rnalir(s to (oip'ht IF'numraIinn. Provan and Ball have shown

that virtualv all network teliability problems are N l1-bdrI (19). (Complete enumer-

ation of the success states n l)rovide varying insights into the performance of a

network inch(luing.' I reliabiliy. performance indexes. -m expected maximtini

flow. Several methodologies exist houever. ba.med on cerlain key struclires within

the nietwork. to imeasure reliability based on oi her than state. Alternative mel hiod-

ologies based onl states, patis. and arcs will be rvalualed iii riteasiring tile . I
reliability. See discussions in (hapter IV r,'gardim)rol)able states. di.joint paths.

anti factoring.

ii

Table 1. Network Success States

State Element States State State Probability Expected
Number A B C D E F G Capacity Ps, Flow
1 0 0 0 0 1 1 1 5 .0008192 .0040960
2 0 0 0 1 1 1 1 5 .0032768 .0163840
3 0 0 1 0 1 1 1 5 .0032768 .0163840
4 0 0 1 1 1 1 1 5 .0131072 .0655360
5 0 1 0 0 1 1 1 5 .0032768 .0163840
6 0 1 0 1 1 1 1 5 .0131072 .0655360
7 0 1 1 0 1 1 1 5 .0131072 .0655360
8 0 1 1 1 1 1 1 5 .0524288 .2621440
9 1 0 0 0 1 1 1 5 .0032768 .0163840
10 1 0 0 1 0 0 1 4 .0008192 .0032768
11 1 0 0 1 0 1 1 4 .0032768 .0131072
12 1 0 0 1 1 0 1 4 .0032768 .0131072
13 1 0 0 1 1 1 1 7 .0131072 .0917504
14 1 0 1 0 1 1 1 5 .0131072 .0655360
15 1 0 1 1 0 0 1 4 0032768 0131072
16 1 0 1 1 0 1 1 4 .0131072 .0524288
17 1 0 1 1 1 0 1 4 .0131072 .0524288
18 1 0 1 1 1 1 1 7 .0524288 .3670016
19 1 1 0 0 1 1 1 5 .0131072 .0655360
20 1 1 0 1 0 0 1 4 .0032768 .0131072
21 1 1 0 1 0 1 1 4 .0131072 .0524288
22 1 1 0 1 1 0 1 4 .0131072 .0524288
23 1 1 (1 1 1 1 1 7 0524288 .3670016
24 1 1 1 0 0 0 0 2 .0008192 0016381
25 1 1 1 0 0 0 1 2 .0032768 0065536
26 1 1 1 0 0 1 0 2 .0032768 .0065536
27 1 1 1 0 0 1 1 2 .0131072 .0262144
28 1 1 1 0 1 0 0 2 .0032768 .0065536
29 1 1 1 0 1 0 1 2 .0131072 .026214,1
30 1 1 1 0 1 I 0 2 .0131072 0262144
31 1 1 1 0 1 I I 7 .0524288 .3670016
32 1 1 1 1 0 0 0 2 0032768 .0065536
33 1 1 1 1 0 0 1 5 .0131072 .0655360
34 1 1 1 1 0 1 0 2 .0131072 .0262144
35 1 1 1 1 0 1 1 5 .0524288 .2621,140
36 1 1 1 1 1 0 0 2 .0131072 0262141
37 1 l 1 1 1 0 1 5 .0524288 .2621440
38 1 1 1 1 1 1 0 2 0524288 .0262144
39 1 1 1 I I 1 1 9 .2097152 1.8874368

.8282112 .1.7800)32

12

2.6 Mullicrileria Dccision Analysis

Many real-world decisions involve conflicting multiple objectives, attributes,

goals, and criteria which can not be effectively reduced into a single aggregate crite-

rion (25:xii). Multi-criteria decision analysis (MCDA) combines the quantifiable as-

pects of mathematical optimization with the qualitative aspects of a decision makers

(DM) preferences to arrive at a best compromise solution for the multiple objective

optimization problem (MOP) (20:5-8).

Due to the conflicting nature of the objectives, several solutions, called efficient

solutions., are obtained. An efficient solution is one where an improvement in any

other objective would degrade one or more of the other objectives (11:1270). The

efficient frontier consist of all the efficient, solutions.. This set. is also known as the

nondoiniinated,noninferior.or pareto optimal solutions (21:98). The best compromise

solution is that efficient solution which maximizes the)M's value or preference

function, assuming more of each objective is preferred to less (11:1270).

In addition to an optimization methodology, some scheme to obtain and formu-

late the preference function is required. MCDA methods can be classified into three

categories based on the timing of obtaining the DM's preference structure relative

to the optimization (11:1271):

1. prior to the optimization (priori)

2. after the optimizat ion (posteriori)

3. during or in sequence wit i (progressive)

The first al)plroach requires interviews with the DM 1)rior to optimization to

forn ulat e the preference fhit ction . The determination of the function inay require

a. prohil)itive amount of time and effort accompanied by the DM ',, difficult in ex-

pressing t lie required informnationi (11:1271'

The second al)roach gen(rates all 01 most of the cficient solutions. l)re.'ent ing

thein to lie DM for a most pre'erred select ion. There are Ihree problems associated

with this approach; first, the material pr'esented to the D)M may be difficult. to

umiderst and: second. inany teal problemn are too large to solve for most. oft he efficient

solutions: arid third. the ii mnlwr of efficienit solttion', presented is too large for the

DM t.o analyze effect ively (11:1273). These met.hods ma , however.)e u,,elul in

generatinig efficient inputs for I lie third apl)proach dl icdiissed below (21:98).

1 3

In the third approach, the DM interacts with the optimization process provid-

ing preferences in an iterative manner. This approach is also known as an interactive

multiple objective optimization. In 1982, Zeleny stated "Some approaches, although

promising and potentially very useful, are not yet sufficiently developed and theoret-

ically grounded to warrant a serious review (for example, interactive programming

approaches)." (25:xii) In 1988, The CONDOR report stated "Interactive software

will require more realistic representation of decision maker preference that reflect

lack of surety and preference changes that arise as interaction proceeds." (10:624)

Il 1991, however, Shin and Ravindran suggest, that the interactive methods are con-

sidered "promising* and comparative studies indicate superiority over the other two

approaches (21:98).

Shin and Ravindran (21) divide the interactive methods into the following

categories: feasible regioii reduction methods; feasible direction methods; criterion

weight space methods; tradeoff cutting plane methods; Lagrange multiplier methods;

visual interactive methods; branch-and-bound methods: relaxation methods; and

other important methods. Each will be briefly reviewed referencing the Shin and

Ravindran Survey (21) which is the most current and extensive survey on the subject.

2.6.1 Peasib c Region Reduction Mthods. Y3,ach iteration consist of a calcula-

tion phase, a decision phase, and a feasible region reduction phase. In tile calculation

plase, an fdutl solution is obtained from t.hl nearest efficient solution with respect

to given weights. The DM's responses in the decision phase are used to create ad-

ditional constraints which reduce the feasible region. The iterations continue until

the DM feels the current solution is the best compromise solution (21:100).

2.6.2 F asibh Diiection -fh thod. Thiis is all itle(tive emethod which starts

with a feasible solution anll(proceeds to a more preferred solution using a direction
and stiep-size. based on the I)M's prefernces. T1 IpiOneering Ilet.hlod is the GI)F

)rocedure by (eoffrion which is a modified Frank Wolfe met110(l. Several extlnsions

have been developed to improve lhe direction finding step or t he imbedded line search

(21:101,102),

2.6.3 (rifilon 1' ight Sparu Aft/hod. Thlis ntlhod combines the objectives

into a single objective by using weighliung. A set of tradeoffs associated withIi Ihe

cirreiit single weighted objective is plresenlted to the DI1N wihose resp~onses are used

II

to create additional constraints on the weights and generate a newv efficient solution.

The iterations end when the DM is satisfied with the current solution (21:102,1041).

2.6.4 radeoff Culling Plane Method. This approach is a variation of the

feasible direction method. Cutting planes are used iteratively to reduce the feasi-

ble region eliminating the need for a line search. Several modifications have been
developed to reduce the DMI's burden in the interactive process (21:104).

21.6.5 Lagrange Mlultiplier Mcthods. These methods use the Lagrange multi-

pliers of the constraints, resulting from the maximization of one olbjective relative
to the bound set of objectives, to formn tradeoff functions. Interactions with thle DMN
are then used t~o generate shadow prices of thle bound objectives and thus define a

s;urrogate worth function (21 :1044106).

2.6.6 Visual Interactive Methods. These methods use graphic-aided interac-

tive approaches as an extension of the C'DF method, A graphic of a subset of the

efficient frontier is generated each iteration for interaction with the DM. This allows
thie DIM to control the efficient frontier through the interactive process. Shi states

that with advanced p~ersonal computers, t his approach is becoming popular (21 :106).

2.6.7 Braiich-and-Bomid 11(thod. This mnethod (livides thle objective Space

into Subsets where-C each subset is a brlanch and furthei branlchling cati occur if it has
proillise. An ideal s olution is det ermnined at. each branch and is used to form an uipper

bound foi that branich. Each solution is compared to the incunmbenit soluttion through

inter~action withI the DMI. A branch is fat honiecl if dlominated by the incumbent

sohlion (21:107).

.2.6.8 IRclaxralion Mdfhod. Ti ehdgnrtsamse l ~o~eleuv

alezit (o thle origi nal prob~lem and is solved it erativelY byl rela xat ion of soine c-oil-

st-ra nts. At. each it eration, bou muds of thle OhJecti e funict ion s are presentcd to lhe
DIM for interactioni (21:107).

:2.6,9 O1/u M Aethods~. Other lesser iisedl lt illllort a lt Illethods to Conlsidler

iiichide se(Iueiial ilet'llods. scala rii, g liio mu n i et 110(15 fimz.. met hods. and] st a-
I isti1cal illetliods (21:107.108).

15

The effectiveness of the methods depends on problem structure and the char-
acteristics of the methodology selected (21:108). The characteristics to consider are

interaction style, solution approach, applicability, and mathematical programming
required (21:109). In addition, the methods should be evaluated with respect to
the DM's cognitive burden, ease of actual use, effectiveness in the decision-making

process, and the ability to handle DM inconsistencies (21:110).

Buchanan and Daellenbach (9) performed a comparative evaluation of four
interactive methods in 1987. They concluded that, "DM's seem to prefer solution
methods where they are in control, and where they are allowed to backtrack and
change previous inconsistent decisions." (9:358) In addition, they suggest that the

DM can reasonably demand the information presented be in a high quality graphics

form (9:358).

2.7 Sunmmary

Methodologies exist to calculate the maximum expected flow (lower bound)

and reliability for stochastic communication networks. Separate investment strat-
egy models have been developed to improve the network flow by increasing either

arc capacities or survivabilities. In addition, the development of an artificial intelli-
genmce program to enuieiate lie paths within the stochastic net work decreases the
tilmme and effort required for the above calculations. Finally, iincrous interactive
mult iple criteria decision analysis toolb are available for appli(al ion to the problem

of anal."zinmg trad-offs in i mproving the pert'ormnamce of stochastic commum icatiols

net works.

16

Il. Methodology

An overall research plan was accomplished in order to fulfill the research ob-
jectives outlined in Chapter 1. The research plan consist of the following steps 1) un-

dlerstanding the problem, 2) formulating the reliability p~erformanice measure 3) for-

mulating the reliability improvement model, 4) formulating the multicriteria model,
5) selecting software to implement and integrate the models, and 6) analyze com-

munication networks.

3.1 Understanding the Probk in

The performance of stochastic networks can lbe evaluated using several param-

eters. This research concentrated on two specific performance parameters, source to

sink expected maximum flow and source to sink reliability. Both required mnethod-

ologies to measure and improve each p~arameter, after which tradeoff methodolo-

gies were applied. For this research, the tradeoff was b~etween improving network

expectedl maximum flow through increased arc capacities arid survivabilitiles, and

increasing network reliability through increased arc survivabil i ties.

The calculation of the two p~erformnllce parameters for large stochastic net-

works was 1)o1 an easy task (h ie to t he exponient ial nat tire of t he calctilat ions.]In

gener11al. the calculation of the exact p~erformianice values is i"P -Iard meaning there

exists no knowvn algorithin tha t, can solve for the Value in) polyinoimial ti nie. Faced

with the NP nature of the pirobleim. three general types of methodologies have been

apl)hiedl 1)by researchers in calcuilating the performance p~aramewters. The first is siinu-

lat ion. which models the network and] given a large inmiber of samplles will calcuilat e

a st atisticall .N signuificant valuev that approximates the exact valuie. To get, ant accurate

applroximnat ion t houigh requires a very large niumber of samples with a con espond-

ii glY large rn n tin ie. '[le :ii niulatioti approach was not ('oinsidlered for t his resea rch.
alt hough prviu simulat ion work dlone 1) ' yaile 'y(5)wsis,]a deec o h

net work analysis port ion of this research. Th~le seconid applroach has been to b~oundl

tii'exact v'al tie. t hitsc(a Iculat inrg an tipper and lower botinml forih- ex performnance

mieasu re valu te. This approach reduces the numiber of states conisideredI aii(thuis iimay

be oin~iiioiall fesibe gventhe boin d.s are snffirieiitly lighit to b~e useful as a per'-

foriiiance inasiire. '[he I hird ap~proachl is to increase the elhicicicY of nionpolvnonlial

algorithms to the point that the required run timne and memory requirements are

sufficiently reduced so as to meet the time and memnory constraints of the problem

to be solved. The last two of the above three methodologies will be examined with

resj)ect to network expected maximum flow and ieliability performance models.

3.2 Formiulating the Reliability Peiformance Model

The calculation of the reliability performance measure can be accomplished

through four general techniques. The ilrst using complete state enumeration becomes

computationalIly infeasible for even medium size networks but canl provide valuable

insights when applied to small models. The other three techniques consist of the

most probable states. disjoint products, and factoring. Each will be investigated for

its applicab~ility to the research lproblemn and presented in Chapter IV.

The expected maximum flow performance measure wvill be calculated using

Yimn's lowver bound formulation which calculates a sufficiently tight lower bound

using path enumeration as discussed in the literature review.

3.3 Formulating the Reliability and Capacity Impr-ovement Models

Once the performance measure models were selected, methodologies to allow

investment for Improving te ie easures neceded to be developed. Caught. (12) had

developed an investillemit strategy which incr~eased the lower' bound of the exj)ectedl

maximnuml flow I)Y increasinig arc survi vabi lit is. While this had a side effect of' in-
creasing network reliability, it dlid not mnaxinmize network reliability. The most desired

improvemient, model wouldI be oil(that niaximized a reliability niathematical e.Nprcs-

sion. Due to the reliability met hodology select ed, a mnathenmatical expression was

not generated for use as a melaialiitY imiIl)i-oveiwnt Object ive funmction. InI addi t ionl, a

reliability expression for large inet works would result. in anl exceedingly long nonlinear

ex pressioll requiring large alnommits of ineriiory t~o store andl optimize, If at, all po0s-

si ble. Thus a linear hieurist ic inet hodology by Jiain anl Copal 1 15) wa.s wm~ed which

did not, require a reliabiilt e ~~l)reVSSion t~o mlaxim'liZe the net work reliability. The

muethiodiology ordler." Ih le twork arcs with le5)ect to their p)otecntial cont,6ih'it ionl to

the oveirall network rel iahi lit v. In add~lit iomn to nlot, requiini izg a reliablIi ty eXl-rssiolli

the mlethodology was linear. ill Imat inc. greatly reducing the comnputational Complex-

itY anid avoidlig thle local opt InIImunI l)rol)lellls associatedl w~it h (;aitght nonlinear

imlproveii inmodel. J1aini amid(Copal' I \ et hod wvil hIe described]I) Chap1 t er IV.

I,%

As with the expected maximum flow calculation, Yim's capacity improvement

model will be used, which was examined in the literature review.

3.4 fornulaing the Mullicriteria Model

Given an objective fumction for each criteria, expected flow and reliability,

a multicriteria optimization model was needed to generate the trade-off region or

efficient frontier for the two crittria. Lacking a criterion function for network relia-

bility, two modified approaches to examine the trade-off reqion were investigated in

Chapter V.

3.5 Selecting Softwar,"

Given the performance measure and improvement models, software was re-

quired to implement the models. Previous work by Yim and Caught used several

different off-the-shelf commnierciai solver packages to include GINO and LP/MIP-83.

The General Algebraic Modeling System, GAMS, was selected both for its ability

to solve linear and nonlinear models on the personal computer and its ease in con-
verting from one model to another. In addition to the GAMS solver, Yims Formula

program was used for network path generation and which required a Prolog compiler.

Finally, integralion procedures and input file generation programs were written in

Pascal.

3.6 Analyzing Comm iunicahtion Net works

The above methodologies were applied to one small example network and three

large realistic net works. The example network was used to demonstrate the appli-

calion of the models to stochastic networks while the large net works %ere analyzed

with respe t to their initial performance and subsequent improved pert'ormance. Fi-

nally. the t rade-off region was examnined for the networks. The description of t he

three large ietworks along wil) their respective analysis is present edl in ('hapter VII.

1 !

IV. Reliability

4.1 Iltroduction

Several techniques exist to measure the reliability of stochastic networks. The

three major techniques appearing in the literature were examined to deteimine which

was best suited for this research. The first technique examined was that of disjoint

products where the network paths are used to generate disjoint terms for which

the sum of all terms is the exact network reliability value. The second technique

involved the network's most probable states where only those states that contribute

the most to the network reliability are used, thus generating an tipper and lower

bound to the exact reliability value. Finally, the :ecursive technique of factoring in

conjunction with reduction techniques was examined in the calculation of the exact

reliability value. The three techniques were applied to Figure 2 for illustrative as

well as evaluative l)urposes.

.8,2

(siirv.cap)

Figure 2. E'xample Network

20

4.2 Disjoint Product Algorithms

Given the m success paths P1, P2," ', P,, are known, the system success can

be described as:

S = PI U P2 U...U P,,

If the paths are ame.de disjoint. (nutually exclusive), then the s - t reliability

can be described by:

R, = Pr(S) = Pr(P U P2 U U Pm)

Aggarwal (3:83-85) presents an algorithm that makes the success paths disjoint

thus allowing for the exact calculation of the .s - t reliability. Abraham (1:58-61)

presents an improved algorithm that provides a reliability expression where all paths

are made disjoint, Abraham's algorit him will be applied to the same example network

1ised in Chapter 11. The pal:, ,re first ordered by the number ,J arcs within the

paths. In this case all thr- palh.,s have three arcs so the first to be (onsidered

will be path A-B-C. Since it is the first path to be considered. it does not need to

be made disjoint with others. thus generates only one product term, p,,pbc. The

second path cjnsiderea is E-t'-(;. Three product terms are generated to make it

disjoint, with th(first p)h. These ar, , PqIPIpp,. a bd ,, qcPp.. Finally

the third path. A-])-(. was made disjoint with the pIre\ io's two. generating four

additional terms. p,,qtpiq, I)p. ,, qfpj. , pp,.qcpdq1,l and TPPdPeqfPq. The

total reliability expression is as tollows:

s = p.i,p + q~v,, l: +p,, qbJ p, 9P. + pP~qP, PY P, + JP,, qpj~ + p,,qbpIp P fI:1 ±

P,, Pbqd aq P9j + j,, PiqcPIP, qlIP:

The result Ing reliabilitv from t lie above eight term reliability expression was

.8282, which agrees with the results obtained b' romplete enumnieration of the 3!)

'21

success states in Chapter 1I. In his p)aper, Abraham presents the results of his al-

gorithim on a network consisting of 12 arcs and 24 paths. The resulting reliability

expression contains 71 terms comparedl to 4096 total states for the network. While

this algorithm generates the exact reliability value, It canl also lbe used to calculate

a lower bound by utilizing those terms with thle least niumber of coinplenwented (q,)

terms. For the example network used in this paper, thle first four terms using only

one complemented arc will lprodluce a lower b~ound reliability of .7618.56 which is

within 10 p~ercent of the exact value. fIn Abrahams network, using those terms with

tip to twvo com-plemiented arcs results in 14 terms producing a lower b~ound of .8369

which is again wvithin tenl percenit of thle exact reliability value.

Given thle same number of ternis used. the closeness of the lower bound to the
exact value will decrease with lower ai-c survivabilities. For the example network

used] in this paper, if all arcs had at survivability of .6 rather than .8. the lower
bound would be .385344 compared to anl exact value of .4738176. This results in a
lower bound within 20 percent compared to the previous tenl percent iesult when arc(

survivabilities were .8.

Recent work by Locks (17) has madhe further efficiency imiprovements to thle

(hisjoint p~rodulct technique by tisiig rapid inversions in p~lace of search op~erations.

For Abrahams nctwork of 241 pat Its, Locks gvenerates 60 dlisioint product termscon

paredl to Ahralianis 71. Fxeii furt .-r imuprovemnits have been made by lleidtimann~

(13) who. for the samei nletwork. genera ted only, .11 disjoint product I erms. Whle

lleidtimann'is a Igort it hin is lhe mi ost efficient . thle number of disjoint pro)du~ct terms

still grows exp~onentially withI t he size of the network. Thus for large net works. a

reliability exp! VeSsioti riiavl contain t hiousands of termis with each termn contaiinig tens

of p~rodulcts5. (Teat ilig, all ext remeily large nonl1 iniear e~xpression.

!j. .; 1Io.,I I'IoblJ((.51a1 Eniniiu id1ioi

orarg(' ilet\%orks. ca lcui a t ing lie exact reliabilityv valIute becomies coin 1)111a-

ionallv prohlibit i e. Rat her than enunieratiing all stat es. 1.i and Syvester (16:1105-

1110) cons.,ider only i lie i ijiost prob~able states t~o compu~ite lower and upper h~ound,(

oil net Work< pet foilaice ileastiles. to inc'lud~e I relialilt . AS Shown inl Chlaptet

II. thle 1)robabihit v of State k~I is given by the prodluct of (.te arc success probalities.

p.and thle arc(failtite jprobabililv q, which is defined ats I - I?,.

Li and Sylvester rename the arcs with an R, term where R,(t 1 q.pi. With the

above renaming. the state probabilities can be calculated by

pS flfl pj(q.1 p. 1 Sk)

]'.k ML P.~~) (Fr3 =1 Rfr(k)

where

{iSi 0 if arc z operates in state Sk4

1 otherwise

Thle most pr-obable state. .S% is when all arcs are operational. and the next most

p~robale mtes are those with only one(arc failure. Li and Sylvestor (16) developed

art algori: hin called Ordf r which bY using R,1 where R,~ >: 82 >R.I?. orders the

in most prob~able states.

Li andl Sylvester (16:1106,1107) also include a miet hod to estimate the number

of states requiredl to achieve a specified coverage of thfe state spare where fj, is dlefined

to be thle J)rol1)al)illitv associated wit h the states considering iil) to L, arc failures P~er

stat(-:

~k=0 Ik I-

T his equa tion assu rues that thl \-allties and~ thuis thew res t i ig q valutes, are t he

saile for all arcs-. If arc sur-vival prolbalilit ivs are different. Select ing" a 1) vailue equlal

2:3

to thle lowest arc survivability value will genera-,e a lower bound on the state space

covered.

Given the tit most probable states, The lower and upper bounds fbi s---t re-

liability can be calculated where Li and1 Sylvestor use a reliability or coniect ivit v

perform-ance measure C (SA) where

1 i arc i' the network is connected in Sk

0 fnot

and thus

Ch.(M) = iP(S-)C(Sk)

Q0.0) = E'k"= P(Sk)CSh) + (1 - EklI P(Sk,))

III ot her voilds. the lower bound is thle suml of all the conniected 711 states aind

the upper bl)uild is one Minus thle sum of all the disconnected tit states. 'I ie(uipper

and lower lboundl converge onl the exact relial)ilitv value. \\heii all possiIle s tates

are c~)nsidvreed. tit per~~l aiidl lower hounds equial the exact reliability vawliie For the

examplle niet work with arc survivabilit ies equal to .8. the(upper andl lower b~otunds

were comnputed('I (ollsideri lig only stae dl(Swith lip to IWVO ai[(raillires. Th'le lom-er l)ouiil

Is .7995392 and I the uipper bound is .934164.

Fbr l ngIet works (50 arcs). considering the most prol'able stiates upi to 31 arc

faihtin-,~ 20,S-1 sladte (%*II Wile usedl it, the calciulat joits. With arc t.it-\ i val liies of..

t he covered -A atev probalbilit v is 24 percent. In ot her words. thle tinvert aiwYt b~et weu

t.1w Im'er aid tipper bounds is 76 p~ercenit. If arc sulrvivalitivs are lowered to .8

and tiPI to five aric failures are-(allowed per state(, overi 2 nuilllioii state w ~ill be used

Withi a restili ing luicer alilut\ of!).5 percent.. This demonstrates the(uisefuiiness of tfhiis

a pproach is Ii ited to net works Witl Iit-(- stirvivalbilities greate liIhdn .9.

2 1

4.4 1actoringy

The factoring theorem of reliability states that the reliability of a binomnial

system S can be decomposed with respect to the prob~ability of the two possible

states (tip or dlown) for a selected arc

R?(S) = pR(S~IZ up) + qR(Sli down)

The decomposed reliabhility expression can be applied recuIirsi vely withI reducW-

tion techniques ap~plied within the recuirsions. E-ventually the network is reduced fo

a simple struct tire for which thle reliability can lbe easily calculated. Vihe complexity

of factoring algorithms is dependent on the selection rules for which arcs are to be

fact ored (22).

Page andl Perry (18) have dlevelopedl a recursive computer p~rogram. d11-prog.W

based on fact oring in conj unction withI red uct ion terchniques that efficient,'% solves

the .s - I relialbility for large directed stochastic networks. See Appendix F for at

Pascal -source code listing.

Network redluct ion tehiusrpur nyjolynomhial time,.t by reducig lte

size of the network. t hereby redlucitig' OW state Sp~ace. tetl~l to reduice t lIe exNentIIial

growth) of a factoring algorithm's liackt rack search st ruire (22:272). Paget and

Perry sitmutarizv t ie network red 11(1ion I echitiques; used as follows (:~.5)

1. Remove arcs directed into lte souirce or out of the sinik. '[isare Irrelevant,.

2. Remove (leadl-ei(i and false-st art nodes. A dead-emd nodle Is a node o her than

Ihe(sink haiving tio, arc drt 'lout wardI fromt I lie i'ocle. A false-st art tiode is a

tiode other than tli(-;om-cp having im arc directedl inito the node.

:3. If thiere Is, a sinigle arc out of tlie ,ourve or mtlo thle sink. comt act thev arc

(making lie adja~enit niode into the new%- sourice or sink)i. 'Hie re-liability- of

the original network Is lte it-liabilit *v of thle reducred net work imltiplied lvI lte

Sur-vivahilit v of t lie cont racted arc. TIhis is I t- only reduct ion t hat generate.. a

1111tip)lviti factor

-1. If thiere is at single arc direct ed into or out of at node oiter thtan the source or

sinik. then thev anti-paallId arc (if it exists) ran he rinoved.

5. Series arc reductions. Two arcs with a common node for a head and tail with
survivabilities p, and P2 can be replaced by a single arc with survivability PIP2*

6. Parallel arc reductioni. Two p~arallel arcs (arcs joining the same two nodes and

having the same orientation) with survivabilities p, nd P2 can be rep~laced by
a single edge having the same orientation as the original edges and having a
survivability of pi + P2 - 1PI1)2.

For the example network, (lirprog was run with the following results, A ilet-
wvork reliability of .8282 was calculated, requiring 3 source/sink redluctions., 4 chain
vertex reductions, and 1 factoring. The computation time required was less than .01

seconds.

4.5 Evaluation

The disjoint product, techiniqjue can lbe used to solve for the exact reliability
value but for large networks. is limited by the amiount of memory available to store

the disjoint products. A lower bound approach can be used to lim-it the number
of dlisjoint prodluct,, but the eff'ectiveness of this approach is dlependent. on the arc
survivalbilites with high arc survjkabilitivs lending to increasedl efficiency. Lower
arc survivabilities. as is seen inl t is research, wouild n-ot b~enefit as much from this

bounding technique. lIn addition, a lower bounld withbout anl associated uippet. bouind

leaves a window of inucert ainty from the lower bound uip to a ecliability value of one

for wvhere the exact reliability value lies.

T1he m~ost probable st ate ('lniineratIion meit hod (can b~e usedl to calculate a lower

and upper bouind for .~Irehia hiI tvy. While LI and Sylvester have anl efficient

algorithmn to order thle most p~robab~le states. thle (flect i \eitss is again dependent

oil the arc stirvivabi lit ies.]In addition to (leterin i iing the most, probabil st ates. anl

efficient mean,, to separate those slates ino con~nected and non-connected states is

required for the reliabilhityv bounlding" calcui at ions. It is also seen thiat the eZfficiencyv

for calculating the bounlds decreases with lower arc survi vabihi ties where as shown.

arc(sinrvivabilities below .9 great].*i Icrease thle coipilil tons reqjui red to make I Iiis

method0(colinputationally feasible foi large(niet works. Genei ally, these met hods ar;e

appllicab~le when aIpplied to r-eliability pioblems where thle arc reliabilities arc(.9

or great er. For large, net work su rvivabluity prob~lem., where arc survivabilities are

26

often less than .9, such as in this research, the most probable state method is not
applicable.

The factoring technique in conjunction with reduction methods is very effective

in calculating the reliability of large directed networks encountered in this research.

The networks lend themselves to available reduction methods used by Page and

Perry and the recursive nature of their program enables large networks to be run on

personal computers up to a point where the MS DOS stack limit of 64K is reached,

For larger networks, a modified version of dirproq running under a VMS operating

system was written,

4.6 Relia bilily Inprovemnit Modd

The network reliability improvement model is based on a linear heuristic method

developed by Jain and Copal (15). Their method ca!culates an important index, Mh,

and thus a ranking for each arc in the network. The arcs with the highest important

index are the most vital, contributing the most to the network reliability and thus

are assigned the highest reliability. The important, index is based on the following

two observations by Jain and Gopal (15).

1. Low cardinality s - patlhs contribute more to network reliability than high

ca dinalitv pat hs and so ar i more i'm1port ant.

2. The higher the 'requelny of occurrence of an arc in a particular cardinality

palh set. the miore imporlant it. is.

The iiportance index II, is defined as:

where the following nol at ion applies

* [/., =freq uency of occurldice of arc j in I paths of cardinality C,

27

9 NP, = number of s - t paths of cardinality C,

Jam and Gopal (15) outline the following four steps to determine the important

indices:

1. Generate all s - I paths.

2. Arrange all paths in groups in order of increasing cardinality. Count the num-

ber of paths (NPj) in each cardinality (C,) gioup.

3. Find, for all j, the frequency of occurrence f,., of arc j in each group of paths.

4. Determine II, for all j.

Using Formula to generate the paths through a depth first search process. the
important indices can be calculated using the above procedure. A linear mathemat-

ical model was then developed to improve the arc survivabilities with the highest

index, subject to a maximum arc survivability of one and a finite improvement bud-

get.

The objective function maximizes the sum of the important indices over all arcs

X3 given each arc has an initial survivability P. The two type of constraints ensure

that eacl arc has a survixal)ility upper bound of one and that the total amount spent

on arc survivability improvements. the sum of increasing arc surviVailit ie, ' by .1. 0.,

is less than or equal to the total budget available /3, The modcl is as follows:

Max E !11 (P, +.1 -Xj)

s.t.

I% +. I X < 1 j = 2.

X.j> 0

A Pascal program was writ ten to calculate the import ant iI1lice. for a stochas-

tic network (see AI)pndix (G).

28

V. Multicriterza Optimization

The traditional multicriteria optimization (MCO) problem requires two or
more criteria or objectives (the Y space), both of which utilize a common set of

alternatives from the X space. For the problem of stochastic network performance

improvement, there were two criterion objectives examined in this research. Tile first

maximized the expected throughput or flow while the second maximized the network

reliability or connectedness. The alternative set X consisted of arc survivability im-

provements and arc capacity improvements. This chapter describes a MCO model
given both criterion functions . For large networks though. the network reliability

in this research was calculated using a recursive technique which, in turn, did not

result in a reliability objective function. Subsequently, two modified approaches were

developed to analyze the tradeoffs between the two criterion objectives.

5.1 iVICO Model

The MCO model consists of two criterion functions. CF and CF2. The first

represents the lower bound for the network expected flow where the lower bound

is maxim ized by increasing both the path reliability, ?, through arc survivability

inl)rovenlents. ,., and the path flow../) through arc ca.)acity iniprovements. d,. The
first critel ion t'lJ(t ion CF'l. is ecjual to Gaughlt's, objective funct ion for his nonlinear

1fodels and is

Max F--= R/, where R, = -[(J, + .1 .X,)

Th second criterion function CF2 . also non llinear. n axi ize.S the network re-

liabilit y. For the example network. Figure 3. the second criterion function is as

calculated il, ('halpter IV using Aggarwal's disjoiit path method and is

29

CF2 = (P1 + X1)(P2 + X 2)(P3 + X3)

+ (1 - (P + Xl))(P 5 + X5)(P6 + X6)(P7 + X7)

+ (P + X,)(1 - (P2 + X2))(P + X 5)(P6 + X6)(P7 + X7)

+ (P + Xl)(P2 + X 2)(1 - (P3 - X3))(P.s + X 5)(P 6 + X 6)(P 7 + X 7)

+ (P + Xl)(1 - (P 2 + X 2))(P 4 + X 4)(1 - (P5 + X 5))(P 7 + X 7)

+ (P + X)(1 - (P + X))(P4 + X.)(P 5 + X 5)(1 - (P6 + X\ 6))(P 7 + X7)

+ (P + X 1)(P 2 + X-2)(1 - (P + X 3))(P 4 + X4)(1 - (P5 + X 5))(P 7 + X7)

+ (P 1 + X 1)(P 2 + X2)(I - (P + X 3))(P 4 + X 4)(P 5 + X 5)(! - (P6 + X 6))

(P7 + X7)

There are three types of constraints in the model. They are:

1. Constraints to ensure arc survivabilitics are < 1.

2. Flow capacity constraints for each path j.

3. A budget constraint limiting the amount spent on both arc capacity and sur-

vivability improvements to a tota.1 budget amount, 13.

The first type of constraints, one for each arc, were used to ensure arc reliabil-

ities had an tipper bound of I. The constraints are

J, + . < , 1

The sccond type. tlow cal)acity coiSt'ainits W'1'(' W oriultialed Iby hetting a e(qual

I if arc i lies on path j. and 0 ot herwise. I'sing this (efiitlioll. I he constraints for

flow capacity, one for each pal I. arc

- ") = I U, + (4

Where U, is the cajacili of arc i. and d(, is the at ioll ill of capacity il proven lcet

Io arc i.

30

The third type; the budget constraint is

Z3= 1(ac1di + a,,X,) < 13

Where a,, is the cost of increasing the capacity of arc iby 1 uinit, o, is the

cost of increasing reliability of arc i' by .17 and 0 is the total amount of the budget

available to be invested.

The above two-criterion objective problem (MCO) can be converted to a single
objective mathematical programming model by using one objective as an additional

riiodel constraint and parametrically varying ,its value from its lower to upper bound.

For this MCO model, the reliability criterion objective was chosen for the adlditional

constraint. The lower bound for the reliability function is when there are no arc

survivability i nprovements or in other wvords, the original net work reliability of .8289.
The upper bound is when the network reliability is equal to one. The term A will

represent the p~arametric value of the reliability function CT2 The nonlinear MCO
inodel for thl-e example network is then

Mlax F.. iJf where T I', + .1 . ,)

S.

CF2 > A

p, + .1 X,, < I i = 1. 2.

0~1 I,1 f3 : fit + (1,

~~(~ 1 ~+ Or.,) i

X\.i'. . (, j,"A > 0 and =0.1

5. 1. 1 AICO.-Inalysis. The NW in((odel was aIpplied to t he enmle:et work.
F.Iiure :3. 11sing t he (G'. :11 solver, on a personal conuimi te(r. The exam ple net work

consists of "eveni arcs. siNx nodes a ndl Iliree pathus ['oin sonircv (node 1) to siniik (node

).Arc smrvivaIbiliIties were init ially .8. with an associated capacity as illiist rated

31

in Figure 3. The model was run with a capacity improvement cost a,, of 1 and a

survivalbility im-provement cost a,, of 1. The total budget available j3 was determined

to be 6, This is the minimum amount required to improve all arcs inl a source to sink

path to one, thuts providing for a network reliability of one. Given this minimum
budget,, if a tradeoff exists, thlen the budget would not allow both the maximization

of exp~ected1 flow and a network reliability of one to occur simultaneously.

.8..8.2

.8..5

l'igtire 3. E*xample Net work

The inlitilal -oliut er I il of the inodvl lprodl ,cel at reliabilit v valiu' of .975 and

an veXlectedl flow of' 7. 16. T[his shows Ithat t ie(lower boundv const faint of .8282 for

niet Work relIiabilit v was, not a binding conlstri ilt . Ill ot her \%ords, arc sirlvivalilit a

iulprovemenvits benlefit ted hot h relialbililI a and expected flow wit hout a loss to either.
(2 was Owlin fparainetricallY botinded with reliaIbilit a values of' .985~ and(1.0. Now

the rel ia biIi ty const raint . CFI2. is binding witih a riesulting (le(rea-se nl veXpe(cted flow
for. ani increa.se Itn net work r-ehIia I) IlI tya. The restingIif, ef ik ient front icr is iIlutistI rated

nl Figu."Ire .1. The mlodel genlerated t hose poi nt." that were noiidoinli uat ed. creating

he efficieia, front ier. For1 reliabilities less t han .975. the resultinug reliabilitY and

e.\l)(ctev flow" vales wee(oininited bY thle point (..975. -7 16). Th'e(model ca;n be

forced to ge ;era te t h e (Iof t ed po InIts by set It i I I"C equIIal tIo. rat I Ier 111han greater

than, its parametric bounding level. This modified model was run for two dominated

reliability levels, .87 and .92, with the resulting expected flow values plotted in Figure

4.

8
Initial C

75 Dominated +
Frontier0

6.5

Expected6
Flow

5.5

5

0'
4.5

~1 I I

0's 0.85 0.9 0.95 1 1 0.5
Relia biltyI

Figure 41. Example Netw~ork ILffic-ieiit F'ront ier

53. 1.2 (Costing A1 ialysis 'The MCO exanple above was run using both a ca-

pacitv anid survivability improvement cost of 1.0. Th~e result. was the generation of

an efficient frontijer bounded by a lower reliabili t valuec of .975 andl an tipper reli-

ability valuie of* 1.0. 'ie effects of varyinrg the cost. imiprovenient struictunre on the

efficient front ier was examined. WVhen the cost of improving a 1unit of caparity was

icreased t~o 2.0. the result. was a shirinking of the~ efficient front icr to at single p~oint.

at a reliability value of 1.0 and an expected flow of 7.30. In effect, thie total budget

Was allocated to arc siirvivability ImIprovemientIs whichi nuaxiIIniXed bothI reliability'

and expected flowv. On the ot her hand. when capacity i.II)provenwent costls were de

creasedl to 0.5. thle efficicit frontier wats stretched bet wecti a lower reliabilitY bound11(

of .9156 with ;in exetdflow of 8.196 and thev original tipper reliabi litv boun rd of

I .0. T sdecreasing the(cost of capaci t inim lro\'elnint relaiive to su rvi vabilit v

331

improvements resulted in a stretching of the trade- off region whereas increasing the

capacity improvement costs shrank the trade-off region to a point where there exists

no trade-off. Furt her investigation ,into the effects of varying costing structure on

the trade-off region is recommended in Chapter VIII.

5.1.3 A1ICO Sunirnary. The MCO model formulated. successfully generatedl

the efficient frontier for a small example network. The results illustrated that bo0th

reliability arid expecctedl flow can be imp~roved with no loss to the other by increasing

arc survivabilities up to a sp)ecific reliability level, after which further increases in

reliability result inl a tradeoff. By increasing reliability beyond that level, a decrease

in exp~ectedl flow results. It should lbe noted that the model is highly nonlinear in both1

he objective function ,CF 1. and the reliability constraint. CF2. For large networks, if

a reliability expression were obtainable, comp~lications of optimizing highly nonlinear

olbjectives with nonlinear constraints should be expected to b.- -ncountered.

Generating the efficient frontier generates all the possilble niondoininated solu-

tions. One, of these solutions will maximize a decision makers p~reference functionl.

This optimal solution cm4n be determnine,' through two techiniques. Trhe first would

be to complute a p~refe~renice function ba.sed on surveys given to the decision maker

and thlen imaximnize this lpreference function with respet to the vericient frontier* SO-

hliion set. 'l'li(- sef0(1 technique wouild be to use- anl interactive approach where thei

ellicient Ironit er points are(genieratedl Interact ively withI thle (lCsioii miaker. III this

techiq (ue. thle decisionii aker's preference funcwtion Is Imnpjlici t inl his i ut eraci ive re(-

spouses iring thle efficient frontier generat ion p~roces~s with Iiv process ternat ion

occii u: Ing at t he solid loll point which nmaxiimizes the decision makers preferences.

5_.2 JtIloIifc(Idion/,

The ab1ove NIC ('0 nodel requires both Ii odel cri terja be ex)r'(,sed In Inatl-

einmat ical ob1)jectivye fun mctionis. Thme problemi ca't' It ' s t ha t for large St ochmast ic

net works. O w reliabi his ii Ii is :esearcli i, calIculat ed umsinug a recuirsivec techiqueii
wh ich dloes iiot resuNllt ill a mnat heniaiica I expresiom. L ackinmg I Ii is secomiil crit erioi

function. two mtlilodlologies. Relia.\ amid IFlomnaX. were(lV('o~~ to eNamine tilie

ratleofr betei eXIec nlow ;,,(if eliabilit v.

31

.5.3 ftc-/a.x

The method Relmax used a two step solution process to examine reliab~ility

versus exp~ected flow. The first step maximized the netwvork relialbility tin- th li-

ear heuristic reliab~ility imp~rovement model described in Chapter IV, p~aramletrically

increasing the amount of arc survivability improveinvats allowed. This was accorn-

plished lby limiJting the availab~le arc survivability improvement budget to -a specified

portion of the total budget available. The remaining b~udget leftover and the result-

ing optimum arc survi vablIi ties were then fed into Yi's expected flow improvement

model. The network exp~ected flow was then maximized constrained bY thle previ-

ously decidedl upon arc% sur-vivabilitN imp~rovemnents andl the budget remaining after

those improvenients. For the example netwvork, arcs one and seven have anl illupor-

ant indlex of 7-1.07 while thle remaining arcs have anl index of :37.0-1. Arc four's index

v-alue was increased by one to ensure invNestment in arc four before the others to pro-

vide anl im~proved path (1-4-7). [hel(budget allocated to survivability improvement

was inlcreasedl 1w one(unit each run with the remaining budget allocatedl to capacity

imIIprovemenvit. Thme result ing reliability and(expected flow are listed in '[able 2 and

Figure F).

Table 2. Relrnax Results

Survivability Capacity Network Expected
Budget Budget Reliability Flow

0 0 .8282 4.61
O 6 .8282 6.40
I . .8677 6.59
2) 4 .9072 6.79

:13 .9406i 7.04
4 2.9741 7.28

1 .9870 7.18
6 0 1.00 6.84

F.igure .5. Relmax Plot

7. .5

0.8 .85 0.9 095 1 .0

36 'i I i

5.4 lornax

T1he second m-ethod. Flornax, used Gauight's nonlinear model described in

Chapter 11 to maximize the network expeccted flow using both arc capacity and

survivab~ility imp~rovements. Tlhe model was modified with an additional arc capac-

itv coustraint. This constraint was incorporated into the model to ensure an arc's

capacity was not improved b%- anl unreasonable amiount, its determined by the utser.

The arc capacity constraint is thus

it, + (h - IIO

Thle resulting nonlinear model maximizing expected flow is

.Max > f3 Where R.~ = H,(P + .1 X')

PI + .1 I A, < 1 1.2... n

u+ d < Cj~j 1. 2.,..i

N,.!I.. > 0 and a,.1 := 0. 1

By applying thef(abo(ve miodel to I Ie ('exampJle net work, t he maxinfitiii exlpectedl

flow obt ainaitble with1i;l thev bdget was obt1ainedl. The associated relialbilitY is cal-

clilate l using T~rrq lhis polit is where.(t he I ra'leofl' or- efficient front icr becgins

bet weeni expected flow anid reliablI v and t h u, bounds(1 the one(side of the efficient

front ier. For the e'xamle(network. t his point w~as whecre reliability equaled .975 and

eNJect(Iflow equlaled -. 16i. Forcing Ithe relialbilitY beYond .975 causedl a subsequlent

decrease]i exp~ect ed flow ats showni withI the M(C m(iodel. Lackintg a reliability func-

tion. lie reliabilitY (annlot lcbe c,1ell to increase with at :subsequent nllaxinw/zat ion

of expected flow. I lowever.. givenlO I hea i lni mn mu budget to p~rovide a pvrfect pat h

or reliability equal to one, Yim's lower bound model can be run to calculate the

expected flow for the condition when all the budget has been spent to provide a

network reliability of one. For the example network, a budget of 6 will be used up

in improving path (1-4-7) to a perfect reliability of one. The associated expected

flow is 6.84. The efficient frontier is thus bounded for the example network as shown

in Figure 6. In addition, an ideal was defined as the maximum obtainable values

for the two critera. The trade-off region was thus bounded by the box formed by

the lower and Ul)l)er reliability bounds and the ideal. All other investment feasible

invest ment options were dominated by this region.

Figure 6. Flomax Results

7.5 +

7 Efficient Frontie.

6.5
EXpecled

5.5

• I . I

0., 0.85 0 9 0.95 I 1.05
Reliahility

Su5.''mmary

'1 lie ideal .i(CO al))roacl re(jlires uim t h11li i ica! ('xjilrS'.iOiiS for 1ot h1 crilTrion

fictiouis. expecid flow and relia)ility. (iven 1that for largv stochastic uletworks.

a rhtiiyexp~ression is not comiputationally feasible to obtain, the tradeoff be-

tween the two object ivcs were analyzed using two dlifferent methodologies. 'The first

met hod initially mnaxiized the network reliability using thie linear hieuristic(relialbil-

'ity implrovemlent model, then used the resulting tl.(sturvivalbiiity im11provemenits to

maximize t he exp~ected flow through capacity improvements wit li t lhe remaining b~ud-

get. TIhis was., accompjlished using Yun's linear expctedl flowv improvement model.

The secondl nonlinear methlod maximized t le expected flow by both arc sti-vivalbilitV

anid itrc calpacity im provemnei its. T[le resulting network reliaibility was,, then calcti-

litted b~asedl on the arc survivability iiirovemllelts maide. This p)oint \%as lie lower

r'eliab~ility b~ouind for dhe efficient frotier. The upper reliability bound for the effi-

cient frontier wvas generateded byv calculatiing the expected flow when the net work

reliability equaled one. Model two thus b~oundls thle efficient front ier and thereby

b)ound~s the trade-oil region for thle network. BothI techmiyqies were ipp)lied! to large.

realistic net works and analyzedl iii Chapter VII,

This chapter contains the description of tools and program-s v- 1 integrating

the expected flow and reliability improvement models with Formzu.a and Dirprog.

The following sections describe the tools, files, arid programs used in thle above

integration.

6.1 To oIs

The followving softwvare packages were requirecd for this research: ONA, A?--

?Ily/P rolog Ve rs ion 5. 0 I nter pre t er, F o7rn itla Vers ion 3. 0, GAMAS Vers io n 2. 0.5/ S, Titrbo

Pascal Version 5.0, and Dirprog. In addition, an IBM compatible 386-25 personal

Computer, a Sun 386i wvorkstation, and a DEC 8550 mainframn-e were used. A de-

scription of each tool follows.

6. 1.1 GNA. Graphical Network Analyzer, is an inter'active, grapical com-

puter prograin for the dlesign, display, and analysis of network models (14:6),: Ini

addition to GATA providing a method to graphically input and represent a network.

it also hia. the op)t ion to convert the network structure into an arc based input. file

for Formnula. The convert opt ion splits all stocha~tic node" into two lperl*Vct nodes

with a connect ing arc rejpre~vitiimg the stochiastic niodes survivabilityv. Convert also

adds, an artificial source and] sink to the network as required bY Form uh,. ONA was

used to grap)hically draw and convert networks analyzed for subsequent input, into

Form etla. Due to the large nmen-orx requirements of (JA , it w~as run on the Sun 386i

workst atIion.

6. 1.2 .4 'il/rolog luterprflhr. lThe A rily/Proog \'em sion 55.0 Interpreter is

an enhmanmced P'rolog artificial intelligence language interp~reter produced bY t he Arit v

(Corporationi of' Concou d. M~assachusetts (4). Jnlmanceinents include an Integrated

editor., pull-d ownl wi ndow"~ anmd window creatiomn (apalbili ties. lThe inmterpret em runs

under the DOS emiviromnnment andl was used on a. lpersoiial cotnlput en to edit andl rumi

Fomui111 Vl \Pmsiomi :1.0.

6.1.3 Formula Version 3.0. Version 3.0 is a inodified version of Caught's
Formula Version 2.0 (12:252-275) which was in turn based on Yiin's original For-
mnula program (23:99-117). Formula is wvritten in the Prolog artificial initelligence

programiming language and requires the Aritl/Prolog interpreter to run. Yimi an(l

Gaught used For-mula to find all network source to sink paths and then to foriu-
late their models creating approlpriately formatted files for inlput into p~redletermnlied

comnmercial] mathematical solver packages (GINO or LP/MIP-83).

Formulia has been modified creating version 3.0 for two primary purposes in
relation to this work., The first is to create a file pafh.f which lists all network source
to sink paths. The second purpose is to create three additional files - probjf, rapjf,
and 'nel.lop - which contain the arc survival p~robabilities, the arc capacities. and
the network top~ology dlescribedl in arc 1)areflt-child relationships. The above files will
be created when option eight, Formulate Reliability Files, is selected when running

Formula Version 3.0. A user's manual for Version 2.0 with approp~riate addlitions for
Version 3.0 enhancements is contained in appendix D while a complllete source code

listing of Formula Version 3.0 is contained in appendix E.

6.1.14 GAM'S. General Algebraic Modeling System is a commercial software
package developed by the World B~ank, that. allows ma thematical programin ng

models to be entered in concso algelbrai(sitatemnents. thenm solved using t h liii-
ear (BD)M Ll), nonli neam (MIINOS 5), or 11i xed inlteger (ZOOMN) solveCrS md ided.

IUsing a high-level language. G.AlS allows for thle compact represenlat ioni of large
an(] complex models, simple and safe changes to model specifications, tinanibigiotus

statements of algebraic relationships, and model descriptions that are indlepen dent
of'solutilon algorithmns (7:3). Version 2.0-5/S is the(p~ersonal compluter stutdlent, versemi1

running under t lie DOS enivironmnt.

6.1.5 Tuvrbo Pa.scal. Version 5.0 of' Tur-bo Pas4cal is a structuiredl. Igh- level
language used t~o write executable programnis undelr the 1)08 envi roniimenit. \Vi1Iv

there is a high degree of'conipat ibi lit v withl Versionis 3.0 and 4.0, there are differences
whichi the reader can examiine in (6:appendi ' A). It also should be noted that, 7lu rbo
Pascal is imot corn pat i ble with A NSI Pascal1.

6.1.6 lirproqy. 'lie rel iabIi lily (leteruminat ion programn, Dirproq(. is a 'hirbo

P~ascal based prog a in written by L avom Page an 1(Jo P~erry to solve for thie vxact

reliability of directed stochastic networks as described in (18). The input file name

is input by the user from the screen and an output file is generated. A source code

listing is in appendix F.

6.1.7 Modprog. This is a modified ANSI Pascal version of Dirprog compi!ed

on the DEC 8550 mainframe under the VMS operating environment. Modprog reads

from the input file infile.dat and the results are output to the file outfile.dat. The

format of the input and poutput files are the same as with Dirprog. Modprog allows

large networks that otherwise would exceed the 64k stack limit under MS DOS to

be run. A source code listing is includedin appendix F.

6.1.8 Capinv. The Turbo Pascal program Capinv is used to generate the

GAMS input file Capinv.gms for the capacity improvement model. It requests the

cost of improving one unit of arc capacity and the total budget available. A source

code listing is included in appendix G.

6.1.9 Rclinv. This is another Turbo Pascal program used to generate the

GAMS input file Rellmer.gins for the linear heuristic reliability improvement model.

It request the user for the cost of improving an arc's survivability by .1, and the

total budget available. A source code listing is included in appendix G.

6.2 Fil.s

There are several different files used in this research. A brief description of

each follows:

" foriniie.ari is a file geinerated by (X.t which contains the network topology

along with1 all arc stirvivalbilitles. capacities and costing information. It is

formatted for iptit into Formula.

" palh.f is a file generated)y Formula \erVsiot 3.0 which contains all network

soinrce to sink paths in aii arc)ased descrilption.

" prob.f is a file generated I Form,,la Versiot :3.0 which contains the network

arc s,1r'iVal probabilities.

" cap..lis a file genlerated by Formnoda Version 3.0 which contains the net work arc

ca Iacilties.

12

" nct.top is a file generated by Formula Version 3.0 which contains the network

topology as represented by arc parent-child relationships.

" relhuer .gms is a file generated by the program Rclinv which contains the relia-

bility improvement model for input to GAMS.

" capinv.gins is a file generated by Capinv which contains the capacity improve-

nient model for input to GAMS.

The integration of the files and programs is illustrated in figure 7.

I 3

G NAA

Formula

Cap ~ igur 7t.f Prow Diagram

F-11

VII. Results and A nalysts

Two networks, A and 13, were analyzed with resp~ect to the three olbjectives of
this wvork. First, the original netwvork performance parameters of expected flow and

reliability were calculated. Second, a linear heuristic reliability model was applied to

examine the priority ranking for arc selection for survivability improvement and the

resulting network reliability achieved, Finally, twvo techniques to miaximize exlpected

flowv and reliability given a specified budget were applied to examine tradeoffs be-
tween the two. In addition, Network C was included to demonstrate the limitations

of the reliability measurement tool, Dirprog, under the MIS DOS environment.

7.1 Network A

Network A is shown in Figure S. It consists of 19 nodes and 27 arcs. Trables 3

and 4 show the capacity and survivability values of the arcs and nodes. InI addition,

Tables .5 and 6 showv the dependent arc and node pairs. The dlependent pairs represent.

a single miedium where. If dependent, t hen bo0th of the arcs/nodes in the pair will

fail if one fails. In addition, Network A hias 653 p~otenitial paths between the added

artificial source and sink nodes. The procedure for adding an artificial source and] sink

is descri bedl in the [%riu uh, (sers MNanuial contained in A ppendix 1). Trhe converted

Network A is Illustrated in Appendix A.

7.1.1 Orlyiinal I''i'forinance l'i'an)'Ifr.,. Trhe two performance parameters.
lower bound for expected flow andl net work relialbilit ,v. were calculated for Network

A. I 'si ng thle GIAMNS solver and Yii' epect ed flow Mnodel . an explected flow of

167 and a (leterillnist ic mna\ flow of 9(iO((all aic stlrvivalbilit ies equal to one-) wvere

obt ainiedl which agrees wit Ii previous valueh calculated bY Yii and Gautght using

thme LP/MI J)-53 solver. [rhe reliabi lit v was calcuilated withI Page and Perir s IDirprog

prog ramn. A net work reliabilt value of .1504 was obtained in . I I seconds 1isinrg a

:386 IDx perisonial compu11temr. It reqi iied 441 redtiuctions andl 2 fact onrigs. Net work

A was read ilv reducrible t hus alIlowinig an efficient calculation if Its relia bili tY. The

relia bilit ,v value of .1501 agrees withl that obtained bY lai levs si rut i at ion programi

Table 3. Description of Arcs in Network A

Start Terminate Reliability Capacity
Node Node

1 12 1.0 1200
1 13 1.0 1200
1 14 1.0 1200
2 5 0.3 1200
2 14 0.6 1200
3 9 1.0 1200
3 11 1.0 1200
4 14 1.0 1200
5 10 0.6 1200
5 11 0.7 1200
6 14 0.6 4800
7 14 0.6 4800
8 14 0.3 4800
9 15 1.0 4800
10 15 0.6 4800
11 15 1.0 4800
12 15 0.7 4800
13 15 1.0 4800
14 17 0.3 4800
14 18 0.6 ,1800

14 19 0.6 -1800
15 6 0.3 4800
15 7 0.6 4800
15 8 0.7 .1800
17 16 0.7 4800
is 16 0.6 4800
19 16 0.3 4800

1 6

Table 4. Description of Nodes in Network A

Node Reliability Cap)acity
1 1.0*
2 0.3*
3 0.7
4 0.5*
5 0.8
6 1.0
7 0.3*
8 0.7
9 0.5
10 0.8*
11 1.0
12 0.3
1:3 0.7
14l 0.5
15 0.8
16 0.8
17 0.7
18 O:

19 1.0
imlpies C~apacity~ is ifinfiteC

Fi4eS ewr

7.1. Ilibliy inro~cu. ivn h iitalnewrkreiailt vlu,6h
liea euiti elailt ipovmntmoe wsaple~.Th mprane1n0

fo eahn 5cadacacsoni iue n .Tehuitcmdlivse

it .1.2il iliij ty em nnumec ord er. Ith iniia hwokrelthaaailerim y nter e, atie

lar(9 heuisti WQPrealt iove enuedate l ivsment, moe a ple.Teiprac inexc

wit eai t a ncitd networ a re lialilit Figes 7 listed S.i Tale he.ritis node eted a m

ill rcte surinalt Imrnovemns ctdfor node an 6I l ial o afcto thi tIetporkc

ineaoilit0.as5 %ere Ixised gratert. aThnx roniate s e node 1 wtIirh a l IdNof

i. wouis ismphovn here i ne ori e r. I is heea a 11(r miIiit nrae lie~ t net work

reialii bya dn l m u tt h rfre t.-o rs i hs(is, tc 9

an (9-6)wee nceaedto6.5 h~ cisre ate tei Ivetmnt, prfc

Table 5. Dependent Arcs in Network A

Dependent~ Pairs
Start Terminate Start. Terminate
Node Node Node Node

6 14 14 19
7 14 14 18
8 14 14 17

15 6 19 16
15 7 18 16
15 8 17 16

7.1.2 Combined Capacity and Survitvabiliy Impi-ovements. Finally both net-

work performance parameters. cxpected flow and network reliability were improved

through investnments in arc capacity and survi vabi li ties. Method one, Rehnax, as

described in Chapter V, was applied to maximize netwvork reliability first, then max-

imize expected flow with the remaining budget.

Before applying the models, an, improvement cost, for 1)oth capacity arid su~rviv-

ability needed to be dlecidled upon. The costs were selected so as to equalize the effect

onl improving t he effective arc cap~acities given an equal investment, thus eliminat ing

all\, cost advantage ol oile over thle ot her. First,, a capacity imIiprovement cost of I

wsselected. T[his resulted in a cost. of 1200 to double the arc's effective capacity

from :360 to 720 given a survivab~ility of .3. To achieve the same increase in effectIVe
capacity through survivability imnprovemnents. anivsmn f 3uso uviv-

ability was required Thus, an arc survivability cost was selected to lbe 4100 which

resulted in a total (ost of' 1200. the same as the capacit v investmiient. In addit ion. arc

'Fable 6. l)ependent Nodes in Net work A

Decpen dent. Paiir,LNode Node-
6 19

7 18
8 17

15 1~

Table 7. Network A - Node Importance Index

Node idex
6.34

2 7.57
3 2.22
4 4.11
5 3.46
6 2.63
7 2.63
S 2.63
9 1.11
10 1.73
11 2.84
12 1.11
13 1.11
14 20.25
15 71.90
16 20.25
17 6.75
18 6.7-5
19 (3.75

cap~acity itnprovements were limited so that the final arc cap~acities were less than or

equal t~o 41800 (tile ntaxiarun arc capacity in thle original network). Budgets of -5. 10.

and 15 t housand~ were I hent used for the subseyuent model runs,. Each run varied the

amiount. dedicated to cal-h imjprovceiet (survivability or cap~acity) byv a tenth) where

the left. sideC of the curve rt-t-eseinted all thle l)u](lget going for capacity improvemnents

and none for survivability, and thle right side' relpresented all the budget going to

survi va biItIy I In prioveflin s and none to capac*it .

Reliax results are plot ted in I-1iure!9. Exalmning this plot, it c.an be seenl I hat

a b~udget totally devoted to capacity increases does not. increase net work rehiabilit v

and~ the subsequent eXpect.edl flow is less thiat that which canl be achieved wvithI a

comibiniat.ion of ca pacitv antd survi va bilit v imiplroveme'nts.

T[he secondl nonlinear mnodel was applied with a lbtIdgvt of 8.000 which was

(leterittinedl t.o be the iiiif ainoittit reyjllred lto ha'.e a net work relialit v1 of

one(. A program was written to examine all pltIts fromt source t~o sink andl (leterne(

which p~ath wvas tilie least cost ly to imtprove to reach a net work relia bilityv of one(.

[For net work A. this path conisisted of nlodes, (I-14- 19- 16) wyithI a cost of 8000. Th'le

50

Table 8. Network A - Arc Importance Index

Start Terminate
Node Node Index

1 12 1.11
1 13 1.11
I 111 4.11
2 14 4.11
2 5 3.46
3 11 1.11
3 9 1.11
4 14 4.11
5 10 1.73

5 11 1.73
6 14 2.63
7 111 2.63
8 14 2.63
9 15 1.11

10 15 1.73
11 15 2.84
12 15 1.11
13 15 1.11
14 19 6.75

14 18 6.75
111 17 6.75
15 6 2.63
15 7 2.63
15 8 2.63
17 16 6 75
17 16 6.75
18 16 6.75
19 16 6.75

Table 9. Network A Ielialhilit.. Ihl)ro\vienls

IG 2 .3 76

-\oI__lll2;5 -!: 1 " I n-,,-)'. 2 Ihla dl .376:7;3 1

22 .371;

10-1"1 7 1.0)

-.5000~~~ -~~: ;~

Budget

41500 -5000 -

10000 4-
15000 Q

4000

3500

3000

Exp 2500
Flow

2000

1.50

1000

300

0 1

0 0.2 0.-1 0.6 0.8 1 1.2
Reliability

Figurie 9. Network A Combined Imiprovemnts

I I i Ii

2.100 BUDGET
8000 0
6800 +

2200
+ +

Exp 2000
Flow

1800

1600
, I I +

0.5 0.6 0.7 0.8 0.9 1
Reliability

Figure 10. Network A Efficient FrontiCr

maxinmim expected flow was then calculated using the imlroved plath above, with

a result of 2170. Next. the nonlinear model was run to maximize the expected flow

thromgh both arc stirvivability and capacity improvements. litinted by a budget of

8000. The reslting flow was 2115 with a 'eliability of.7;. Thus. the efliciant frontier

is bounded as shown in Figure 10.

For blidgets less than that required to reach a network relialility of one, the

I ra(i'of[l)Oit! can st ill b,' calculated ,lsilg tI te nonlinear model. The upper relial)ilityv

bolid for I he efficient frotier however is in itself. now a lower)o||mi as there are

several different arc survivability configurations that coll be ltised to maximize he

reliability and expected flow. A lower bound for this value can be calculated 6y using

the least cost pat h determined above and decreasing the arc s,|rvivabilitics to a point

that the hi dget will provide the remaining survi val,ilitv incease-. This reliability

value is leni used to maximize the associated expected flow. For Net work A. a

bIdget of (8)() pro(duces a tradcoff point at (.58.37-13) with a maximum reliability

obtained at (.77.2151) as shown in ip,,re i0.

53

72 N~etwor.k B

Network B is shown in figure 11. It consists of 26 nodes and :37 arcs. Tables 10

anuJ 11 list the capacity and survivability values of the arc and nodes. The network

contains 187 paths from the artificially added source to sink.

Figu7 11. ewr

7.2. Orginl 1 rf~n a ac 1~,'aele~. s wt IinetorkA. he wo e19

2oiaiC) am'(,lWI 8)U~~ fo0 1x2cefowal etmkrl eal-tw
calulae~l Ar epeced lowol 14 an a etemiistc fow f :90) wre btane

wh 3 9gee 13it 21~(u auscluae yYrn(38) Ih eiblt ~

1otpm 1 uigImpo.pouc garulof.0 1 22 ompm tinto 8sc

S23

Table 10. Description of Arcs in Network B

Start Terminate Reliability Capacity
Node Node

1 7 0.8 150
1 8 0.8 200
2 8 0.5 750
2 9 0.5 750
3 7 0.8 200
3 9 0.5 750
3 16 0.6 150
4 16 0.8 200
4 24 0.5 600
5 14 0.8 1200
6 16 0.5 1200
6 25 0.6 75
6 26 0.6 75
7 10 0.5 1200
8 10 0.7 1200
9 10 0.5 2400
10 11 0.5 1200
10 12 0.7 1200
10 13 0.7 1200
11 17 0.5 1200
11 18 0.5 75
11 19 0.5 1200
12 16 0.7 1200
12 20 0.5 1200
13 16 O.7 600
14 15 0.8 1200
15 16 0.8 1200
16 17 0.6 75
16 18 0.6 75
16 I 0.6 75
16 20 0.6 75
16 21 0.6 75
16 22 0.6 75
16 23 0.6 75
16 2,1 0.6 75
16 25 0.6 75
16 26 0.6 7 5

Table 11. Description of Nodes in Network B

Node Reliability Capacity
1 0.70 *
2 0.15 *

3 0.03 *

4 1.00 *

.5 1.00
6 0.04 *

7 0.40
8 1.00 *

9 0.01 *
10 0.70
11 0.11 *

12 1.00
13 0.06 *

14 0.09
1.5 0.18 *
16 0.07
17 1.00
is 1.00
19 1.00
20 1.00
21 1.00
2"2 1.00
23 1.00
2-1 1.00
25 1.00
26 1.00
implies capacit. is infinitc

'Sf;

onds oil a 386 Dx personal computer, with 7,422 reductions and 3,128 factorings

required.

7.2.2 Reliabdity Improvements. The linear heuristic model for reliability im-

provement was applied to Network B with the node and arc important indices listed

in Tables 13 and 14. It should be noted that nodes 4,5,8, and 12 were not included

as their survivability was already one, thus were not candidates for survivability im-

provement. Arc (4-24) had the highest important index of 111.11. An improvement

of this arc from .5 to 1.0 provides for a perfectly reliable path from source to sink

and thus a network reliability of 1.0. The linear heuristic model successfully selected

the arc that improves the network reliability for the least cost. If network reliability

improvement was desired through another path, then node 16 should be improved

as its index is 95.41. From figure 14, it is seen that a majority of the paths go

through node 16. A listing of reliability improvements of arc (4-24) by tenths with

the resulting network reliability is listed in Table 12.

Table 12. Arc (4-24) Survivability Improvements

Arc Arc Network
linpl oveielit Survivability Reliability

0 .5 .6011
.1 .6 .6809
.2 .7 .7607
.3 .8 .8404

1 .9 .9202
.5 1.0 1.0

7.2.3 Capacry and .Suirirabilily Iml)Oi'(flI. As in Network A. the inetlh-

ods. lRelmax and Floinax. were al)l)liedI to Network B. lelnax maximized reliability"

with a portion of the total budget and the reinainng)udget, was used to maximize

expected flow through capacity ilnprovements. The results are liste(d in Table 15 and

showil in '"igire " 2.

Floinax was applied to Network B for a buidgel of 2000 which allows a nel \\ork

relial)ilitv of one to be achieved and a bidget of 1200 which allows for ;, maximum

57

TFable 13. Network B - Node Importance Index

Node Index
1 18S.8 4
2 18.84
3 23.23
6 76.39
7 9.:34
9 9.34
10 47.01
11 7.45
13 9.70
14 6.17
15 6.17
16 95.41

1300

1200

1100

xp1000
Flow

900

800

700

600,
0.5 0.6 0.7 0.8 09

Reliability

I-re 12. C ombineid I inpjrov('ineit s

58

Table 14. Network B - Arc Importance Index

Start Terminate
Node Node Index

1 7 4.67
1 8 14.17
2 8 14.17
2 9 4.67
3 7 4.67
3 9 4.67
3 16 13.89
4 16 40.00
4 24 111.11

5 14 6.17
6 16 13.89
6 25 31.25
6 26 31.25
7 10 9.34
8 10 28.33
9 10 9.34
10 11 7.45
10 12 29.85
10 13 .70
11 17 2.48
11 18 2.48
1 1 19 2.48
12 16 11.76
12 20 18.09
13 16 9.70
H, 15 6.17
15 16 6.17
16 17 9.51

16 I8 9.5,1
16 19 9.51
16 20 9.54
16 21 9.51
16 22 9.5,1
16 23 9.51
16 2.1 9.5,1
16 25 9.51
16 26 9.51

59

Table 15. Network B Combined Improvements

Survivability Capacity Network Expected
Budget Budget Reliability Flow

0 2000 6011 1261
400 1600 .6809 1363
800 1200 .7607 1303
1200 800 .8404 1163
1600 400 .9202 943
2000 0 1.0 643

network reliability of 84. Again the efficient frontier was bounded for each bud-

get between the maximum expected flow achievable and the maximum reliability
achieved, The results are shown in Figure 13.

I

1600 3 U DG ET

2000 0
1400 - 1200 +

1200
EX;,

1000
+ ±

600

0.5 0.6 0.7 0.8 (1
Reliahilhiv

iPigure 1:1. Network B Efficient Iroiti,"r

7.3 .~r lwork "

Nt work (wa, included to ill ust'ate the limitations of the rel la,ililY l)rograil

1)1rpro,. ,Ntwork (coiisits of :3.9 njodes and 51 arcs with 19!8 patli. I)1'progq is

(60

1iur 113ewokC

liili('dtothesie f thenetor ealute bya iil\ tak liit iflIe MS 127
N e.~ork(oud rotti unerth TuboI~sca Vrson f ~iprn. odfict1o4

2~ 28

'Fable 16. Description of Arcs in Network C

Arc Arc
hit Term Survival Init Term Survival
Node Node Prob Capacity Node Node Prob Capacity

1 11 0.9 1200 13 25 0.7 2400
2 11 1.0 1200 13 26 0.9 1200
3 7 1.0 300 13 27 1.0 1200
4 11 0.6 1200 13 28 1.0 1200
5 8 0.3 1200 13 29 0.3 1200
6 9 0.6 1200 14 23 0.6 4800
7 10 1.0 300 14 24 0.3 4800
8 11 0.9 1200 14 25 0.6 2400
9 11 1.0 1200 14 26 0.7 1200
10 11 0.7 300 14 27 0.9 1200
11 12 0.9 9600 14 28 1.0 1200
11 23 0.6 75 11 29 1.0 1200
11 24 0.3 7.5 15 31 0.6 2,100
11 38 0.6 1200 15 32 0.3 1200
11 39 0.7 1200 16 30 0.6 300
12 13 1.0 -1800 16 31 0.7 2.400
12 14 1.0 -1800 16 32 0.9 1200
12 15 0.6 4800 16 33 1.0 300
12 16 0.3 4 800 16 36 1.0 2,100
12 17 0.6 .1800 17 30 0.6 1200
12 18 0.7 2,100 17 33 0.3 300
12 19 0.9 1800 17 3,1 0.6 300
12 20 1.0 ,1800 18 38 0.7 1200
12 21 1.0 -1800 19 39 0.9 1200
12 22 0.6 2-100 20 35 1.0 2400
13 23 0.3 1800 21 36 1.0 2.100
13 24 0.6 -1800 22 37 0.6 600

(2

Table 17. Description of Nodes in Network C

Survival Survival
Node Probability Capacity Node Probability Capacity

1 0.3 * 21 0.3 *

2 0.7 * 22 0.7 *

3 0.5 * 23 0.5 *

4 0.8 * 24 0.8 *

5 1.0 * 2.) 1.0
6 0.3 * 26 0.3 *

7 0.7 27 0.7 *

8 0.5 * 28 0.5
9 0.8 * 29 0.8 *

10 1.0 30 1.0
11 0.7 * 31 0.3
12 0.7 * 32 0.7
13 0.5 33 0.5
1.1 0.8 * 3.1 0.8
15 1.0 * 35 1.0 *

16 0.3 36 0.3
17 0.7 :37 0.7
18 0.5 * 38 0.5
19 0.5 39 0.5 *

20 1.0 *

" implies capacity is infinite

63

7.4 Suim ary

The exact reliability values for the three networks, A, B, and C, were suc-

cessfully calculated with a computational time required on the order of seconds to

minutes. On the other hand, previous work done by Bailey using a simulation ap-

proach was only successful in computing a relaibility value for Network A. and even

then, required on the order of hours to compute. The factoring program has thus

significantly reduced the computational times required to calculate the reliability

of large stochastic nietworks and even more, provides a reliabilty measurement tool

where previotis simulation methodologies failed.

01

VIII. Conclusions and Recommendations

This research had three objectives to accomplish:

1. Develop a methodology to measure the network performance parameter, relia-

bility, for large stochastic networks.

2. Develop a reliability improvement strategy.

3. Examine the trade-offs between the two criterion objectives, network expected

flow and network reliability.

The following sections will dliscuss the conclusions ar-rived upon for each ob-

jective.

8.1 Reliability Mlasurenc'nt

Several techniques were examined in Chapter V for measuring the reliability of

stochiastic networks. It was determined that a recursive technique using reductions

and factorings was fte most appropriate. A program written by Page and Perry (18)

was liseI to nwasu re thle exact valute for tillr(-(large networks. Net works A' and 13.

(lemonst rated fihe efficiency of the program IDi:'proqto calculate the exact reliabilityv

value In a lengt Iiof t i rue hort enough (seconds to a few minmutes) to facilitate interac-

tive uses. IDirprog used in conjunction wit It GNVA, Fo7rmula. andl C'onvert provided a

system to graphically Input a net work. convert it into the approp~riate input formiat.

and nieasmre thle exact reliabilitY vaihie. T[his systemn readilNv lend.,; itself to what.-

if typ~e sceniarios. N ('Iwork C r-qlired solving. on) thle DEC 8-550 mlainframne. thuts

demlonstrat ing t 114, net work size limitations of Diirprog under the NIS DOS operatingo

system.

Sinve fte ab~ove reliablilty mleasmiremient p~roceduire (lid not generate a muath-

('fat ical exp~ressioni for net work reliabihit . a hetirist ic was used to det errmine the

ranking of arcs for s~irvivalbility iliptlroveliews . 'Ilhe foundations of fte Ileiirist ic

are eas1.ily iin1flistlo)I. hitsr lending credibility whlen presented to a decision maker.

The heuristic was incorporated into a linear model using the G1AAIS solver. Thle

model was then applied to Networks A and B with promising results. It selected

the op~timnum in-lprovenient path for Network 13. though for Network A selectedl some

arcs in where no improvement~ in network reliab~ility was made. T'he heuristic s(efliS

most ap~propriate for reliability improvements where only a sinall number of arcs

are inmprovedi, i'ncreasing the overall network reliability, but, not p)roviding a perfect

source to sink pathi and a network reliability of 1.0. Thle method has the advantages

of being computa-tionally bounded by the number of arcs in the network, and not

the number of states, thus can be applied to very large networks. 'I'he imlportance

indices generated can also lbe examined and manipulated to incorporate a derision

makers reqiui remnents or preferences in arc selection for survi vabili ty improvemients.

8.3 7radc-off .4nalysis

While thle preferred applroach to trade-off analysis was a inulticriteria opltimiza-

tion technique, lacking a criterion objective function for large networks limited the

researcher to other methodologies. '[le first miethod of mnaximnizing reliab~ility withI

aplortion of the budget., then applying the remainder to capacity implroveinents is

useful in evaluating the prop~ortion of the available budget to each given thle desired

expected flow and reliability. Thw second nioninear miethod bounds tI lie efficient frosv-

t er between t It(pwjoint rep~resenting I It(in aximnuni exp)ected flow obttiiiale aiid t lhe

inaxii:: reliabilitY point ob~tainiable wit hin the Lh:~get . '[his techniquie is iisef-il

in) deternming the tradeoft region. In add~ition. 1 he two bouinding points locate the(

Miax:imi value" of the two criteria attainable, and t tins forni Olhe ideal point. If the

desi red pi)tforitiantce pa ra met ers lie b~elow thIiis region then, furtiiher tradieor anta lyvss

is. 1101 requilred and~ Ithe op)t ii1111ni arc Invest nients, canl be obt ain('(by using I lie niowl

linlear miodel to mnaximize t he expect ed flow uisig 1)0t I strvivalkilitvy and capacit.y. If'

het(desired perf~rm:a ce lies wit lii ii1tlhe bounds of thet(efficient front ter. f::rt hier anal-

ysis uilay be requiiredl to idlentify th ef (ficient soliit ions bounded Withlini lhe trianlgle

formied b)% lhe tw~o bounding points and the ideal. Thefeibe sollitil I) Space below

the b0: inler region thlough . is dom:intat ed bY Ihli efli cieint fronltier a :id hIms can be

eli in inatevd front fi in- her conlsiderat ion. t hits great IV decreasing. t be refgion of' fi : rt he:

anitaIys is.

8.4 Recommendations

Th le following recommendations are made in furthering the research of improv-

ing tile performance of stochastic networks:

1. Writing the program, Dir-proy in an artificial Intelligence language such as P~RO-

LOG, which has an inherent. built-in recursive structutre should be investigated.

This may result in a reduction of the computational times requiredl to calculate

the reliability of large networks

2. The reliability improvement hieuristic shiould lbe ap~plied to even larger net-

works and its l)erforniance analyzedl. In addition. tie breaker rules should be

implemented into the imp~rovemenit modlel.

3. Further research in generating a uisable mathematical expression for network

reliability is needed to enab~le the use of mult icriteria optimization in generating

the efficient frontier. Tfhis then would allow thle incorporation of thle decision

mnakers preference function in selecting anl optimum investment strategy.

4. Decveloping a single mat hematical model integrating bothI bounding end points

in place of the seIperate p~rocedulres used by Flomax will aideC in resolving the

gap between itself and MCO.

35. Furthier research I- needed into the inlpr-ovemncilt roAt fund cions to includle non1-

linear cost funmct ions and hle(affects of cost differences bet ween Ille I Vo tvpe".

of imuprovemenits. capacity or. simrvmv-abilit v. on the trade-off or efficient frontier

region,

6. While this research assumnes inlpendlence bet ween the arc -mrvivabilit i'-s. in-

\ est igat ions into modlels that take into0 accoiim dependvilt arc Sirvivalbilit ies

max, better reflect, real world condI(Iil"11.

M\eastiring andl improving the(performnimce. both lihrompghpzt wild reliabilit\~

of large stocliast ic net works is d., -rable to emm~mmrf adeqimat caliallilties are- incorpo-

rated'(inlto coniiiinicat ion nietwork .dubrimig t imies oif crisis. Tlme everyday reliance ('ii

.oilll)le'\: ('0l111 uimicat ioul net work, l I)., DOD demanmd, I liat lie pemi fornine of I hese

net works miet operat ional needs (luiring adverse comi'it ionls. I *Sing thle met hlodologies,

formulm a ted ill t Ihis resear-ch. Ihe perfor'ummanmce lid ramet ers of ho i i exjpected flow andl

reliability can be measured and subsequent improvements made providing insight

into the operational capabalities of stochastic communication networks.

(i5

Appendix A. Converted Networks

69

Figure 15. Network A - Converted

4 24 24
4 4 b

25 2032

20 2 0 100)

Figure 16. Network A - Converted

24

25 61

3'ob70 7

39 42 4574

Figure 17. Network B - Converted

383

720

Figure 18. Network B - Converted

17

20
28

~s56
21

22 ig57

2 3

120

25 3

Appendix B. Network A GAMS Files

B. 1 Linear Heuristic Reliability Imnprovemnent Model

$0FFSYMXREF OFFSYMLIST

SETS
I arcs /A * 51/;

PARAMETERS

R(I arc reliability index

1 6.3374
2 7.5754

3 2.2222
4 4.1152
5 3.4602
6 2.6349

7 2.6349

8 2.6349
9 1.1111

10 1.7301
11 2.8412

12 1.1111

13 1.1111
14 20.2503
15 7.9047

16 20.2503
17 6.7501
18 6.7501

19 6.7501
20 4.1152

21 7.5754
22 2.2222

23 6.3374

24 4.1152
25 4.1152

26 3.4602
27 1.1111

28 1.1111

29 1.1111t
30 1.1111

31 4.1i52

32 1.7301

7,1

33 1.7301
34 1. 1111

35 1.1111

36 1.1111

37 1.7301

38 2.8412

39 2.6349

40 2.6349

41 2.6349

42 2.6346

43 2.6349

44 2.6349

45 6.7501
46 6.7501

47 6.7501
48 6.7501

49 6.7501

50 6.7501

51 20.2503
/

P(I) arc probabilities
/

1 1.00
2 0.30
3 0.70

4 0.50

5 0.80
1.00

7 0.30

8 0.70
9 0.50

10 0.80

11 1.00

12 0.30

13 0.70

14 0.50
15 0.80
16 0.80

17 0.70
18 0.30
19 1.00

20 1.00

21 1.00

22 1.00
23 1.00
24 1.00
25 0.60
26 0.30

27 1.00

28 1.00

29 1.00
30 1.00
31 1.00
32 0.60
33 0.70
34 1.00
35 0.70
36 1.00
37 0.60

38 1.00
39 0.30
40 0.60
41 0.70
42 0.60
43 0.60
44 0.30
45 0.60

46 0.60

47 0.30
48 0.30

49 0.60
5o 0.70
51 1.00

/;

SCALAR C cost of increasing arc rel by .1 / 400 1;
SCALAR B total budget available / 8000 /;

VARIABLES

X(I) .1 arc rel increase
Z objective for rel index

POSITIVE VARIABLE X;

EQUATIONS

MAXINDEX

REL(I)

BUDGET

MAXINDEX ,. Z =E= SUM(I, R(I)*(P(I)+X(I)))

REL(I) .. P(I)+(.I*X(I)) =L= I
BUDGET .. SUM(I, C*X(I)) =L= B

MODEL RELHUER /ALL/

OPTION LIMROW = 0

SOLVE RELHUER USING LP MAXIMIZING Z

76

DISPLAY X.L

77

B. 2 Linear Capacity Improvement Model

SOFFSYMXREF OFFSYMLIST

SETS
I arcs /I*51/
J paths /1 *63/;

PARAMETERS

UCI) arc capacities

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 0
24 1200
25 1200
26 1200

27 1200

28 1200
29 1200

30 1200

31 1200

32 1200
33 1200

34 4800

35 4800

36 4800
37 4800

38 4800

39 4800

40 4800

41 4800

42 4800
43 4VI0

44 4800

45 4800

46 4800
47 4800

48 4800
49 4800

50 4800

51 0

P(I) arc probabilities
/

1 1.00

2 0.30

3 0.70

4 0.50
5 0.80
6 1.00

7 0.30

8 0.70

9 0.50
10 0.80

11 1.00

12 0.30

13 0.70
14 0.50

15 0.80
16 0.80

17 0.70

18 0.30

19 1.00
20 1.00

21 1.00

22 1.00

23 1.00

24 1.00
25 0.60

26 0.30

27 1.00

28 1.00

29 1.00

79

30 1.00
31 1.00
32 0.60
33 0.70
34 1.00
35 0.70
36 1.00
37 0.60
38 1.00

39 0.30
40 0.60
41 0.70
42 0.60
43 0.60
44 0.30
45 0.60
46 0.60
47 0.30
48 0.30

49 0.60
50 0.70
51 1.00

/

A(I,J) arc-path matrix

/
1.43 1
1.44 1
1.45 1
1.46 1
1.47 1
1.48 1
1.49 1
1.50 1
1.51 1
1.52 1
1.53 1
1.54 1
1.55 1
1.56 1

1.57 1
1.58 1
1.59 1
1.60 1
1.61 1
1.62 1

1.63 1
2.4 1

2.5 1

2.6 1

2.7 1

- mr

2.8 1
2.9 1
2.10 1
2.11 1
2.12 1
2.13 1
2.14 1
2.15 1
2.16 1
2.17 1
2.18 1
2.19 1
2.20 1
2.21 1
2.22 1
2.23 1
2.24 1
3.25 1
3.26 1
3.27 1
3.28 1
3.29 1
3.30 1
3.31 1
3.32 1
3.33 1
3.34 1
3.35 1
3.36 1
3.37 1
3.38 1
3.39 1
3.40 1
3.41 1
3.42 1
4.1 1
4.2 1
4.3 1
S.71
5.8 1
5.9 1
5.10 1
5.11 1
5.12 1
5.13 1
5.14 1
5.15 1
5.16 1
5.17 1
5.13 1
5.19 1

. ~~~I m m

5.20 1
5.21 1
5.22 1
5.23 1
5.24 1
6.7 1
6.8 1
6.9 1
6.16 1
6.17 1
6.18 1
6.25 1
6.26 1
6.27 1
6.34 1
6.35 1
6.36 1
6.43 1
6.44 1
6.45 1
6.52 1
6.53 1
6.54 1
7.10 1
7.11 1
7.12 1
7.19 1
7.20 1
7.21 1
7.28 1
7.29 1
7.30 1
7.37 1
7.38 1
7.39 1
7.46 1
7.47 1
7.48 1
7.55 1
7.56 1
7.57 1
8.13 1
8.14 1
8.15 1
8.22 1
8.23 1
8.24 1
8.31 1
8.32 1
8.33 1
8.40 1

82

8.41 1
8.42 1
8.49 1
8.50 1
8.51 1
8.58 1
8.59 1
8.60 1
9.34 1
9.35 1
9.36 1
9.37 1
9.38 1
9.39 1
9.40 1
9.41 1
9.42 1

1C.7 1
10.8 1
10.9 1
10.10 1
10.11 1
10.12 1
10.13 1
10.14 1
10.15 1
11.16 1
11.17 1
11.18 1
11.19 1
11.20 1
11.21 1
11.22 1
11.23 1
11.24 1
11.25 1
11.26 1
11.27 1
11.28 1
11.29 1
11.30 1
11.31 1
11.32 1
11.33 1
12.43 1
12.44 1
12.45 1
12.46 1
12.47 1
12.48 1
12.49 1

12.50 1
12.51 1
13.52 1
13.53 1

13.54 1
13.55 1

13.56 1
13.57 1
13.58 1
13.59 1
13.60 1
14.1 1
14.2 1
14.3 1
14.4 1
14.5 1
14.6 1
14.7 1
14.8 1
14.9 1
14.10 1
14.11 1
14.12 1
14.13 1
14.14 1
14.15 1
14.16 1
14.17 1
14.18 1
14.19 1
14.20 1
14.21 1

14.22 1
14.23 1
14.24 1
14.25 1
14.26 1
14.27 1
14.28 1
14.29 1

14.30 1
14.31 1
14.32 1
14.33 1
14.34 1
14.35 1
14.36 1
14.37 1
14.38 1
14.39 1
14.40 1

84I

14.41 1
14.42 1
14.43 1
14.44 1
14.45 1
14.46 1
14.47 1
14.48 1
14.49 1
14.50 1
14.51 1
14.52 1
14.53 1
14.54 1
14.55 1
14.56 1
14.57 1
14.58 1
14.59 1
14.60 1
14.61 1
14.62 1
14.63 1
15.7 1
15.8 1
15.9 1
15.10 1
15.11 1
15.12 1
15.13 1
15.14 1
15.15 1
15.16 1
15.17 1
15.18 1
15.19 1
15.20 1
15.21 1
1C.22 1
15.23 1
15.24 1
15.25 1
15.26 1
15.27 1
15.28 1
15.29 1
15.30 1
15.31 1
15.32 1
15.33 1
15.34 1

S85

15.35 1
15.36 1
15.37 1
15.38 1
15.39 1
15.40 1
15.41 1
15.42 1
15.43 1
15.44 1
15.45 1
15.46 1
15.47 1
15.48 1
15.49 1
15.50 1
15.51 1
15.52 1
15.53 1
15.54 1
15.55 1
15.56 1
15.57 1
15.58 1
15.59 1
15.60 1
16.1 1
16.2 1
16.3 1
16.4 1
16.5 1
16.6 1
16.7 1
16.8 1
16.9 1
16.10 1
16.11 1
16.12 1
16.13 1
16.14 1
16.15 1
16.16 1
16.17 1
16.18 1
16.19 1
16.20 1
16.21 1
16.22 1
16.23 1
16.24 1
16.25 1

16.26 1
16.27 1
16.28 1
16.29 1
16.30 1
16.31 1
16.32 1
16.33 1
16.34 1
16.35 1
16.36 1
16.37 1
16.38 1
16.39 1
16.40 1
16.41 1
16.42 1
16.43 1
16.44 1
16.45 1
16.46 1
16.47 1
16.48 1
16.49 1
16.50 1
16.51 1
16.52 1
16.53 1
16.54 1
16.55 1
16.56 1
16.57 1
16.58 1
16.59 1
16.60 1
16.61 1
16.62 1
16.63 1
17.3 1
17.6 1
17.9 1
17.12 1
17.15 1
17.18 1
17.21 1
17.24 1
17.27 1
17.30 1
17.33 1
17.36 1
17.39 1

17.42 1
17.45 1
17.48 1
17.51 1
17.54 1
17.57 1
17.60 1
17.63 1
18.2 1
18.5 1
18.8 1
18.11 1
18.14 1
18.17 1
18.20 1
18.23 1
18.26 1
18.29 1
18.32 1
18.35 i
18.38 1
18.41 1
18.44 1
18.47 1
18.50 1
18.53 1
18.56 1
18.59 1
18.62 1
19.!i 1
19.4 1
ii7.1

19.10 1
19.13 1
19.16 1
19.19 1
19.22 1
19.25 1
19.28 1
19.31 1
19.34 1
19.37 1
19.40 1
19.43 1
19.46 1
19.49 1
19.52 1
19.55 1
19.58 1
19.61 1
20. 1 1

20.2 1
20.3 1
21.4 1
21.5 1
21.6 1
21.7 1
21.8 1
21.9 1
21.10 1
21.11 1
21.12 1
21.13 1
21.14 1
21.15 1
21.16 1
21.17 1
21.18 1
21.19 1
21.20 1
21.21 1

21.22 1
21.23 1
21.24 1
22.25 1
22.26 1
22.27 1
22.28 1
22.29 1
22.30 1
22.31 1
22.32 1
2? q 1

22.34 1
22.35 1
22.36 1
22.37 1
22.38 1
22.39 1
22.40 1
22.41 1
22.42 1
23.43 1
23.44 1
23.45 1
23.46 1
23.47 1
23.48 1
23.49 1
23.50 1
23.51 1

23.52 1

23.53 1
23.54 1
23.55 1
23.56 1
23.57 1
23.58 1
23.59 1
23.60 1
23.61 1

23.62 1
23.63 1
24.1 1
24.2 1
24.3 1
25.4 1
25.5 1
25.6 1
26.7 1
26.8 1
26.9 1
26.10 1
26.11 1
26.12 1
26.13 1
26.14 1
26.15 1
26.16 1
26.17 1
26.18 1
26.19 1
26.20 1

26.21 1
26.22 1
26.23 1
26.24 1
27.25 1
27.26 1
27.27 1
27.28 1
27.29 1
27.30 1
27.31 1

27.32 1
27.33 1
28.34 1
28.35 1
28.36 1
28.37 1
28.38 1
28.39 1
28.40 1

)

28.41 1
28.42 1
29.43 1
29.44 1
29.45 1
29.46 1
29.47 1
29.48 1
29.49 1
29.50 1
29.51 1
30.52 1
30.53 1
30.54 1
30.55 1
30.56 1
30.57 1
30.58 1
30.59 1
30.60 1
31.61 1
31.62 1
31.63 1
32.7 1
32.8 1
32.9 1
32.10 1
32.11 1
32.12 1
32.13 1
32.14 1
312.1"3 i

33.16 1
33.17 1
33.18 1
33.19 1
33.20 1
33.21 1
33.22 1
33.23 1
33.24 1
34.34 1
34.35 1
34.36 1
34.37 1
34.28 1
34.39 1
34.40 1
34.41 1
34.42 1
35.43 1

91

35.44 1
35.45 1
35.46 1
35.47 1
35.48 1
35.49 1
35.50 1
35.51 1
36.52 1
36.53 1
36.54 1
36.55 1
36.56 1
36.57 1
36.58 1
36.59 1
36.60 1
37.7 1
37.8 1
37.9 1
37.10 1
37.11 1
37.12 1
37.13 1
37.14 1
37.15 1
38.16 1
38.17 1
38.18 1
38.19 1
38.20 1
38.21 1

38.22 1
38.23 1
38.24 1
38.25 1
38.26 1
38.27 1
38.28 1
38.29 1
38.30 1
38.31 1
38.32 1
38.33 1
39.7 1
39.8 1
39.9 1
39.16 1
39.17 1
39.18 1

39.25 1

92.

39.26 1
39.27 1
39.34 1
39.35 1
39.36 1
39.43 1
39.44 1
39.45 1
39.52 1
39.53 1
39.54 1
40.10 1
40.11 1
40.12 1
40.19 1
40.20 1
40.21 1
40.28 1
40.29 1
40.30 1
40.37 1
40.38 1
40.39 1
40.46 1
40.47 1
40.48 1
40.55S 1
40.56 1
40.57 1
41.13 1
41.14 1
4 11-1
41.22 1
41.23 1
41.24 1
41.31 1
41.32 1
41.33 1
41.40 1
41.41 1
41.42 1
41.49 1
41.50 1
41.51 1
41.58 1
41.59 1
41.60 1
42.7 1
42.8 1
42.9 1
42.16 1

42.17 1
42.18 1
42.25 1
42.26 1
42.27 1
42.34 1

42.35 1
42.36 1
42.43 1
42.44 1
42.45 1
42.52 1
42.53 1
42.54 1
43.10 1
43.11 1
43.12 1
43.19 1
43.20 1
43.21 1
43.28 1
43.29 1
43.30 1
43.37 1
43.38 1
43.39 1
43.46 1
43.47 1
43.48 1

43.55 1
43.56 1
43.57 1
44.13 1
44.14 1
44.15 1
44.22 1
44.23 1
44.24 1
44.31 1
44.32 1
44.33 1
44.40 1
44.41 1

44.42 1
44.49 1
44.50 1
44.51 1
44.58 1
44.59 1
44.60 1
45.1 1

!)1

45.4 1
45.7 1
45.10 1
45.13 1
45.16 1
45.19 1
45.22 1
45.25 1
45.28 1
45.31 1
45.34 1
45.37 1
45.40 1
45.43 1
45.46 1
45.49 1
45.52 1
45.55 1
45.58 1
45.61 1

46.2 1
46.5 1
46.8 1
46.11 1
46.14 1
46.17 1
46.20 1
46.23 1
46.26 1
46.29 1
46.32 1
46.35 1
46.38 1
46.41 1
46.44 1
46.47 1
46.50 1
46.53 1
46.56 1
46.59 1
46.62 1
47.3 1
47.6 1
47.9 1
47.12 1
47.15 1
47.18 1
47.21 1
47.24 1
47.27 1
47.30 1

95

47.33 1
47.36 1
47.39 1
47.42 1
47.45 1
47.48 1
47.51 1
47.54 1
47.57 1
47.60 1
47.63 1
48.1 1
48.4 1
48.7 1
48.10 1
48.13 1
48.16 1
48.19 1
48.22 1
48.25 1
48.28 1
48.31 1
48.34 1
48.37 1
48.40 1
48.43 1
48.46 1
48.49 1
48.52 1
48.55 1
48.58 1
48.61 1
49.2 1
49.5 1
49.8 1
49.8 1
49.14 1
49.17 1
49.20 1
49.23 1
49.26 1
49.29 1
49.32 1
49.35 1
49.38 1
49.41 1
49.44 1
49.47 1
49.50 1
49.53 1
49.56 1

96

49.59 1
49.62 1
50.3 1
50.6 1
50.9 1
50.12 1
50.!5 1
50.18 1
50.21 1
50.24 1
50.27 1
50.30 1
50.33 1
50.36 1
50.39 1
50.42 1
50.45 1
50.48 1
50.51 1

50.54 1
50.57 1

50.60 1

50.63 1
51.1 1
51.2 1
51.3 1
51.4 1
51.5 1
51.6 1
51.7 1
51.8 1
51.9 1
51.10 1
51.11 1
51.12 1
51.13 1
51.14 1
51.15 1
51.16 1
51.17 1
51.18 1
51.19 1
51.20 1
51.21 1
51.22 1
51.23 1
51.24 1

1.25 1
51.26 1

51.27 1
51.28 1

97

51.29 1

51.30 1

51.31 1
51.32 1

51.33 1

51.34 1
51.35 1

51.36 1
51.37 1

51.38 1

51.39 1

51.40 1

51.41 1

51.42 1
51.43 1
51.44 1

51.45 1
51.46 1

51.47 1

51.48 1
51.49 1

51.50 1
51.51 1

51.52 1

51.53 1
51.54 1
51.55 1
51.56 1

51.57 1

51.58 1
51.59 1
51.60 1

51.61 1

51.62 1
51.63 1

/;

SCALAR C cost of increasing arc cap by I 1 /;

PARAMETER R(J) path rel ;

R(J) = PROD(I $ A(I,J), P(I))

VARIABLES

X(I) arc capacity increase
F(J) flow on path J

Z network lower bound maxflo

POSITIVE VARIABLES F,X

EQUATIONS

MAXFLO

PATHFLO(I)

MAXCAP(I)

BUDGET;

MAXFLO .. Z =E= SUM(3, R(J)*F(J))

PATHFLO(I)$(U(I) ne 0) .SUM(J $ A(I,J), ECJ)) =L= U(I)+X(I)

MAXCAP(I) .. X(I) =L= 2400;

BUDGET .. SUM(I, C*X(I)) =L= 8000

MODEL CAPINV /ALL/

OPTION LIHROW = 0

SOLVE CAPINV USING LP MAXIMIZING Z

DISPLAY X.L, F.L

B.3 Nonlinear Combined Improvement Model

$OFFSYMXREF OFFSYMLIST

SETS
I arcs /1 * 51/
J paths /1 * 63/;

PARAHETERS

U(I) arc capacities

/
1 0
2 0
3 0
4 0
5 0
5 0
7 0
8 0
9 0
10 0

11 0

12 0
13 0
14 0

15 0

16 0

17 0
18 0
19 0
20 0
21 0
22 0

23 0
24 1200
25 1200
26 1200

27 1200
28 1200

29 1200
30 1200

31 120
32 1200
33 1200

34 4800

I00

35 4800
36 4800

37 4800

38 4800
39 4800

40 4800

41 4800

42 4800

43 4800

44 4800
45 4800

46 4800

47 4800

48 4800

49 4800
50 4800

51 0
/

P(I) arc probabilities
/

1 1.00

2 0.30

3 0.70
4 0.50
5 0.80
6 1.00

7 0.30
8 0.70

9 0.50
10 0.80

11 1.00
12 0.30

13 0.70

14 0.50

15 0.80

16 0.80
17 0.70

18 0.30

19 1.00
20 1.00

21 1.00
22 1.00

23 1.00

24 1.00

25 0.60

26 0.30

27 1.00
28 2.00

29 1.00

30 1.00

)

31 1.00
32 0. u0
33 0.70
34 1.00

35 0.70
36 1.00

37 0.60
38 1.00

39 0.30
40 0.60
41 0.70
42 0.60
43 60
44 ".10

45 0.60

46 0.60

47 0.30

48 0.30
49 0.60
50 0.70
51 1.00

/

A(I,J) arc-path matrix

/
1.43 1
1.44 1
1.45 1

1 46 1
1.47 1

1.48 1
1.49 1

1.50 1
1.51 1

1.52 1
I.F3 1

54 1
t , 5 1
.56 1

1.67 1
1.58

1.591

1.60 1

1.61 1
1.62 1

1.63 1

2.4 1

I02

(data same as linear model)

51.60 1

51.61 1

51.62 1

51.63 1

SCLRCI ot ficesn accpb

SCALAR CC cost of increasing arc capv by 1 /410;

VARIABLES

C(I) arc cap increase

X(I) arc surv increase

FCJ) flow on path J

Z network lower bound raxflo

POSITIVE VARIABLES CF,X

EQUATIONS

MAXFLO

PATHFLO(I)

MAXCAPCI)

REL CI

BUDGET

HAXFLO .. Z =E SUMO(, PRODCI $ A(I,J), PCI)+C.1*.(W))*I'(3))

PATHFLOCI)$(U(I) ne 0) ..SUMCJ $ A(I,J), F~i)) =L= U(I)+C(I)

RELCI) . PCI)+C.l*XCI)) =L= 1

BUDGET .. SUNCI, CR*X(I) + CC*C(I)) =L 8000

MAXCAP(I) . . C(I) +UCI) =L 4800

MODEL AMAX /ALL/

OPTION LIMROW =0

SOLVE AMAX 1USTNG NLP MAXIMIZING Z

DISPLAY X.L, C.L, F.L P

Appendix C. Formula Input Files

C. 1 Network .4

arc (s , 20).
arc(s ,21).
arc (s, 22).
arc (s , 23),
arc(1 .29).
arc (I ,30).
arc(1,31).
arc(2,25).
arc (2 ,26).
arc(3,27).
arc (3 ,28).
arc(4,24).
arc(5,32).
arc (S , 33).
arcC6,42).
arc(7,43).
arc (8 .4).
arcC9,34).
arc(10,37).
arc(1i ,38).
arc(12,35),
arc(13,36).
arc(14,45).
arc(14,46).
arc(14,47).
arc(16,39).
arc(15,40).
arc(15,41).
arc(16,SI).
arc(17,50).
arc(18,49).
arc(19,48).
arc (20,4).
arc(21 .2).
arc (22 ,3).
arc(23, 1).
arc(24, 14).
arc(25, 14).
arc (26 ,).
arc(27, 11),
arc (28 ,9).
arc(29, 12).
arc(30,13).

I0 (1

arc (31, 14).

arc(32,10).

arc (33 ,11).

arc (34 ,15).

arc (35 ,15).
arc (36 ,15).

arc (37 ,15).

arc (38 ,15).

arc(39,6).
arc(40,7).
arc(41 ,8).
arc (42 ,14).

arc (43 ,14).

arc (44 ,14).
arc (45 ,19).
arc (46 ,18).

arc (47 ,17).

arc (48 ,16).

arc (49 ,16).

arc (50 ,16).

arc(51 ,t).
prob(s, 1).
prob(1 41).
prob(2,0.3).

prob(3,0.7).

prob(4,0.5).
prob(5,0.8).

prob(6,1).

prob(7,0 3).

prob(8,O.7).

prob(9,O.5).
prob(lO,0.8).
prob(11,1).

prob(12,0.3).
prob(13,O.7).

prob(14 .0.5),

prob(15 ,0. 8).
prob(16,O.8).

prob(17 ,0. 7).

prob(18,0.3).

prob(19,1).

prob(20, 1).
prob(21 .1).

prob(22, 1).

prob(23, 1).

prob(24,1).

prob(25,0.6).
prob(26,0.3).

prob(27, 1).

prob(28, 1).

prob(29, 1).

1 05

probC30,I).
probC3l,1).

prob(32,O.6).

prob(33,O.7).

prob(34,1).
prob(35,O.7).

prob(36,1).
prob(37,0.6).

probC38,1).
prob(39,0.3).

probC40,O.6).
prob(41 ,0.7).

probC42,0.6).

prob(43,0.6).
prob(44,O.3).

prob(45,0.6).

prob(46,O.6).

prob(47,0.3',

probC48,O.3).

prob(49,0.6).
prob(50,0.7).

prob(51, 1).
prob(t,1).

cap(1,*).

cap(2,*).

cap(3,*).
cap(4,*).
cap(S,*).

cap(6,*).

cap(7,*).

cap(8,*).
cap(9,'v).

cap(1o,*).

cap(11,*).

cap(12,*).

cap(13,*).
cap(14,*).

cap(15,*).
cap(16,*).

cap(17,*).

cap(18,*).

cap(l9,*).
cap(20,*).

capC2l ,*).

cap(22,*).

capC23,*).

cap(24,1200).
cap(25,1200).

cap(26, 1200).

cap(27,1200).
cap (28 ,1200).

106(

capC29. 1200).

capC30,1200).

capC3l .1200),

cap(32,1200).

cap(33, 1200).

cap(34,4800).

capC3S,4800).

cap(36,4800).

cap(37,4800).

capC38,4800).
capC39 ,4800).

capC4O,4800),

cap (41,4800).

capC42,4800).

cap(43,4800).
cap(44 .4800).

cap(45,4800).

cap (46,4800).

cap (47 ,4800).

capC48.4800).
cap(49,4800).

cap(50,4800).

cap(51 ,s)

S107

0.2 Network B

arc(s,5O).
arc(s,51).
arc Cs ,52).

arc(s,53).
arc(s,54).
arc(s ,55).
arc(56,t).
arc(57,t) .
arc(.58,t).
arc (S9,t).
arc (60,t).
arc(61,t).
arc(62,t).
arc(63,t).
arc(64,t).
arc(65,t).
arc(50,38).
arc(61 ,39),
arc(52,40).
arc(53,8).
arc (53 ,9).
arc(54,1O).
arc (55,41).
arc(1,42).
arc (5 ,42).
arc(2, 15).
arc (3, 15).
arc (4,43).
arc (6 ,43).
arc(14,44).
arc(15,44).
arc(i6,44).
arc(17,45).
arc(18,23).
arc(18,24).
arc(19,43).
arc(1O,47).
arc (26 ,48).
arc(7,49).
arc (8 ,49).
arc(11 ,49).
arc(23,49).
arc(25 .49).
arc(27,49).
arc (20 ,56).

arc (28 ,56).

arc(21 .57).

108

arc(29,57).
arc(22,58..
arc (30,.58).
arcC24,59).
arc (31, 59).
arc (32,60),
arc (33 ,61).
arc (34 ,62).
arc (9 ,63).
arc(35,63).
arc(12,64).
arc(C36 ,64).
arc(13,66).
arc(37,65).
arc(38,1).
arc(38,2).
arc(39,3).
arc(39,4).
arc(40,5).
arc(40,6).
arc(40,7).
arc(41 ,11).
arc (41, 12).
arc(41,13).
arc (42 ,14).
arc (43 ,16).
arc(44, 17).
arc(44, 18).
arc(44, 19).
arc(45,20).
arc (45 ,21).
arc (45 ,22).
arc (46 ,25).
arc(47,26).
arc (48 ,27).
arc(49,28).
arc(49,29).
arc(49,30).
arc(C49 ,31).
arc(49,32).
arc(49.33).
arc (49 ,34).
arc (49 ,35).
arc(49,36).
arc (49 ,37).
prob(s,1.0).
prob(1,0.8).
prob(2,0.8).
prob (3 ,0 .5)
prob(4,0.5).
prob(5,0.8).

1 09

probC6,O.5).

prob(7,O.6).

prob(8,O.8).
prob(9,0.5).

prob(10,0.8),

prob(11,O.5).

prob(12,O.6).

prob(13,O.6).

prob(14,O.5).

prob(15,0.7).
prob(16,O.5).

prob(17,O.5).

prob(18,0.7).
prob(19,O.7).

prob(20,O.5).

probC2l .0.5).

probC22,0.5).

probC23,O.7).

prob(24,0.5).
prob(25,O.7).

prob(26,0.8).

prob (27 .0 .8).

prob(28,O.6).
prob(29,O.6).

prob(30,0.6).

probC31,O.6).
prob(32,0.6).
prob(33,0.6).

prob(34,O.6).

prob(35,0.6).

prob (36.0. 6).
prob(37,0.6).

prob(38,0.7).

prob(39,O.15).
prob(40,O.03).

prob(41 ,O.04).

prob(42,O.4).
prob(43,0.01).

prob(44,O.7).
prob(45,0. 11).

prob(46,0.06).

prob(47,0.09).
prob(48,O. 18).

probC49,0.07).
prob(50,I .0).

prob(51 .1.0).

prob(62,1 .0).
prob (53 ,1. 0).

probC54,I .0).

probC 55,1. 0).

prob(66,1.0).

110 I

prob(57,1.0).

prob(68. 1.0).

probC 59 ,1. 0)

probC60, 1.0).
probC61,1.O).

prob(62,1.0).
prob(63,1.0).

prob(64, 1.0).

prob (65 ,1. 0)
prob~t,1.0).

cap(l ,150).

cap (2 ,200).

cap(3,750).

cap(4,750).

cap(5,200).
cap(6,750).

cap(7,150).

cap(8,200).

cap(9.600).

cap C10 ,1200).
cap(11, 1200).

cap(12,75).

cap(C13 ,75).

cap(14,1200).

cap(15,1200).
cap(16,2400).

cap(l7,1200).

cap(i8,1200).
cap(C19 ,1200).

cap(20,1200).

cap(21 ,75).

cap(22,1200).
cap(23,1200).

cap (24 ,1200).

cap(25 p600).

cap(26,1200).

cap(27,1200).
cap(28,75).

cap(29,75).

cap(30,75).

cap(31 ,75).

cap(3',76).

cap(33,76).
cap,'34,75),

cap(35,75).

cap(36,75).

cap(37 ,75).

cap(38,*).

cap(39,*).

cap(40,*).

cap(41 ,*).

cap(42,*).
cap (43, *) .
cap(44,*).
cap (45,*)
cap (46,*)
capC47,*).
capC48,*).
capC49,*).
capC(SO,)
cap(51,*)
cap (52,*)
cap (53,*)
cap (54,*)
cap(55,*).
cap(56, *).
capC57,*).
capCSB,*).
cap (59. *) .
cap(6O,*).
cap(61,*).
cap (62,*)
cap (63,*)
cap (64,*)
cap (65,*)

112

C.3 Network C

cost 1 .
cost (2 , 1) I

cost (3 , 1).
cost (4,i1).
cost (5 , 1)
cost (6 , 1).
cost (7 , 1).
cost (8 , 1)
cast (9 , 1).
cost(1O,1).

cost(11 .1).

cost(12,1).
cost(C13, 1).

cost(C14, 1).

cost(15, 9.
cost(16, 1).
cost(C17, 1).

cost(18, 1).
cost(19, i).

cost (20, 1).
cost(21, i).
cost(22. 1).

cost(23, 1).
cost(24, 1).

cost(25, 1).
cost (26, 1).
cost(27, 1).
cost(28, 1).

cost (29, 1).

cost(30, 1).

cost(31, 1).
cost(32,i),

cost(33, 1).
cost(C34, 1).

cost (35, 1).

cost(36, 1).
cost(37, 1).

cost(38, 1).
cost(39, 1>

cost(40, i).

cost(41, 1).
cost(42, 1).

cost (43 .1).

cost(44, 1).
cost(45,1).

cost(46, 1).
cost (47, 1).

11I3

cost C48,I).

cost (49, 1).

cost C50 ,1).
cost (51, 1).

cost (52, 1).

cost (53 ,).

cost (54 ,).

rcost(1, 1).

rcost(4,I).
rcost(5,1).
rcost(6,1).

rcost(8,1).
rcost(10,1).

rcost(11, 1).
rcost(12,1).

rcost(13.1).

rcost(14, 1).
rcost(16,1).

rcost(18, 1).

rcost(19, 1).
rcostC20, 1).
rcost(21, 1),

rcost(22, 1).

rcostC25, 1).

rcost(26,1).
rcost(27, 1).
rcost(28,1).

rcost(29, 1).

rcost(32, 1).
rcost(33, 1).

rcostC34, 1).
rcost(35, 1).

rcost(36, 1).
rcost(37,1).

rcost(40, 1).
rcost(41, 1).

rcost(42, 1),
rcost(43,I).

rcost (44,1).

rcost(47,1)..

rcost(48, 1).

rcost(49, 1).
rcost(50, 1).
rcost(5 , 1).

rcost(54, 1).
arc(s,87).

arc(s,88).
arc(s,89).

arc Cs ,90).
arc(s,91).

arc(. ,92).

arc(93,t).
arc(94,t).
arc(95,t).
arc(96,t).
arc(97,t).
arc(98,t).
arc(99,t).
arc(100,t).

arc(1O1,t).

arc(i02,t).
arc(103,t).

arc(104,t).
arc(1O5,t).

arc(106,t).

arc(107,t).

arc(108,t).

arc(109,t).

arc(87,55).

arc(88,56).

arc(89,57).
arc(90,58).

arc(91 ,S).
arc(92,59).

arc(3,60).
arc(5,61).
arc(6,62).
arc (7 , 10).
arc(1,63).
arc(2,63).
arc (4 ,63).
arc(8,63).
arc(9,63).
arc(10,63).

arc(11 ,64).

arc(16,65).

arc(17,66).
arc(18,40).

arc(18,41).

arc(19,67).

arc (20 ,68).

arc(21 .69).

arc(22,70).
arc (23 ,52).

arc(24,71).
arc(25,72).

arc(12,73).

arc(26,73).

arc(33,73).
arc(13,74).

arc(27,74).

arc(34,74).

arc(28,93).
arc(35,93).
arc (29 ,75).
arc(36,75).
arc(30,76).
arc (37,76).
arc(31,77).
axc(38,77).
arc(32,78).
arc(39,78).
arc(42,94).
arc(47,94).
arc(40,79).
arc(43,79).
arc(41 ,80).
arc(44,8O).
arc(45,8 1).
arc (48 ,81).
arc(49,82).
arc(52,95).
arc(46,83).
arc(53,83).
arc(54,84).
arc(14,85).
arc(6O,85).
arc(15,86).
arc(51 ,86).
arc(55, 1).
arc(56,2).
arc (57,3).
arc(58,4).
arc (59 ,6).
arc(60,7).
arc (6 1,8).
arc(62.9).
arc (63 , i).
arc (63 ,12).
arc (63,13).
arc (63 ,14).
arc(63,15) -
arc (64 ,16).
arc(64,17).
arc (64 ,18).
arc(64, 19)..
arc(64,20).
arc(64,21).
arc(64,22).
arc(64,23).
arc(64,24).
arc (64 ,25).
arc(65,26).

arc (65 ,27).

arc(65,28).
arc (65 ,29).

arc (65 ,30).
arc (65 ,31).

arc (65 ,32).

arc(66,33).

ar'c (66 ,34).
arc(66,35).

arc (66 ,36).
arc (66 ,37).

arc (66 ,38).

arc (66 ,39).

arc (67 ,42).

arc (67 ,43).

arc(67,44).
arc (67 ,45).

arc(67,46).
arc (68 ,47).
arc (68 ,48).

arc (68 ,49).

arc(69,50).

arc (70 ,51).

arc(71 ,53).

arc (72 ,54).

arc(73,96).
aw-c(74,97).

arc (75 ,98).

arc (76 ,99).

arc(77, 100).

arc(78, 101).
arc(79, 102).

arc(80, 103).

arc (81, 104).
arc (82 ,105).

arc (83 ,106).
arc (84 ,107).
arc (8 , 108).
arc (86,109).

prob(s,1).

prob(1 ,0.900).
prob(2,1.000).
pro'o(3,1 .000).

prob(4,0.600).

prob(S,0.300).

prob(6,0.600).

prob(7, 1.000):
prob(8,0.900).

prob(9, 1.000).
prob(10,. 700).

prob(11 ,0.900).

117

prob(12 ,0 .600).

prob(13,O.300),

prob(l4,0.600).

prob(15,0.700).
prob(16 ,1.000).

prob(17,1 .000).

prob(18 ,0 .600),
prob(19,0.300).

prob(20,0.600).

prob(21,0.700).
prob(22,0.900).

probC23,1 .000).

probC24, 1.000).

prob(25,0.600).

probC26,0.300).
prob(27,0.600).

prob(28,0.700).

probC29,0.900).

prob(30,1.000).

probC31,1 .000).
prob(32,0.300).

prob(33,0.600).

prob(34,0.300),

probC35,0.600).

prob(36,0.700).

prob(37,0.900).
probC38,1 .000).
prob(39,1 .000).

prob(40,0.600).
prob(41,0.300).

prob(42,0.600).
prob(43,0.700).

prob(44,0.900).
prob(45,1 .000).

prob(46,1.000).

probC47,0.600).

prob(48,0.300).
probC49,0.600).

prob(50,O.700).

prob(51 .0.900).
prob(52,1 .000).

prob(53,1 .000).
prob(54,0.600).

prob(55,0.300).

proh(56,0.700).

prob(57,0.500).

prob(58,0.800).
prob(59,0.300).

prob(60,0.700).

prob(61,0.500).

probC62,0.800).

prob(63,O.700).

probC64,O.700).
prob(65,O.500).

prob(66,O.800).
probC67,O.300).

probC68,O.700).
prob(69,O.500).

prob(7'0,0.800).

prob(71 ,O.300).

prob(72,0.700),

prob(73,O.500).
prob(74,O.800),

prob(75,0.300).

prob(76,0.700).
prob(77.O.500).
prob(78,0.800).

prob(79,0.300).

prob(80,O.700).

prob(81,O.500).

probC82,O.800).
prob(83,O.300).

probC84,0.700).

prob(85,0.500).
prob(86,0.800).

prob (87 ,1. 000).

prob (88 ,1. 000).
prob(89,1.000).

probC90, 1.000).

probC9l ,1.000).

prob(92, 1.000).

probC93,1.000).
prob(94,1.000).

prob(95, 1.000).

prob(96,1.000).
prob (97,.1. 000).

probC98, 1.000).

probC99,1.000).
prab(100,1 .000).

prob(101. 1. 000).

prob(102,1. 000).

prob(103,1 .000).

prob(104 ,1. 000).

prob(106,1 .000).

prob(1O6,1 .000).

prob(107,1 .000).

prob(108 ,1. 000).

prob(109 ,1. 000).

prob(t,1).
cap(1,1200.000).

czp(2,1200.000).

cap(3,300.000).

capC4,1200.000).

cap (5 ,1200 .000).

cap(6,1200.000).

cap(7,300.000).

cap (8 ,1200 .000).
capC9, 1200.000).

capC 10 .300 .000).

cap C11 ,9600 .000).
cap(12,75.000).

capC 13 ,75 .000),
capC 14 ,1200 .000).

capC 15,*1200. 000).

cap(16 ,4800. 000),

cap(17,4800.000).

cap(18,4800.000).
cap(19 ,4800 .000).

cap(20,4800.000).

cap(C21, 2400 .000).

capC22,480O.000).
capC23,4800.000).

capC24,4800.000).
cap(25,2400.000).

capC26,4800.000).
capC27,4800.000).

capC28,2400.000).

cap(29 ,1200 .000).
cap(30,1200.000).
cap(C31, 1200 .000).

cap(32,1200.000).

capC33,4800.000).
cap (34 ,4800 .000).

capC3S,2400.000).
capC 36 ,1200 .000).
capC 37 ,1200 .000).

capC38,1200.000).

cap(39 ,1200. 000).

cap(40,2400.000).
capC41,1200.000).

cap (42 ,300 .000).

capC43,2400.000).
capC44, 1200.000).

capC45,300.000).
capC46,2400.000).
cap(47,1200.000).

capC48,300.000).

cap (49 ,300 .000).

cap(50 ,1200 .000).
cap(51 ,1200.000).

cap(52,*2400 .000).

capCS3,2400.000).

capCS4,60C.000).

1 20

cap(55.*).
cap(56,.*) .
cap(.57,*).
capCS8 .*) .
cap (69,*) ,
cap(60,*).
cap(61 ,*).

cap (62,*)
capC(63,*)
cap (64,*)
cap (65,*)
cap (66,*)
cap(67,-
cap(68,*).
cap (69, *).
capC7O,*) -

cap(71 ,*).

cap(72,*).
cap (73,*) .
cap(74,*).
cap(759,*) -

cap(76,*).
cap(77,*).
cap(78,*).
capC79.*).
cap(80, *).-
cap(81,*).
cap (82, *) ,
capC83,*).
cap(84 ,*).

capC8S,*).-
cap(86,*).
cap(87,*).
cap(88,*).
capC89,*)
capC(90,*
capC9 ,*).
capC92,*).
cap(93,*).
cap (94, *)
cap(95,*).
capCS6. *),
capC97,*).
cap(98, *),
cap(99,*).
cap(100,*).
cap(101 .*).
cap(102.*).
cap(103.*..
cap(104,*).
cap(105,').,

cap(106,*).
cap(1O7,*).
cap(108,*).
cap(109,*).
invest(1,0).
invest(2,0).
investC3,0).
invest (4,0).
invest (5,0).
invest (6,0).,
invest(7,0).
invest(8,O).
invest(9,0).
invest(i0,0).
invest(ll,0),
invest(12,0).
invest(13,0).
invest(14,0).
invest(15,0).
invest(16,0),
invest(17,0).
invest(18,0).
invest(19,0).
invest(20,0).
invest (21,0)..
invest(22,0).
invest (23,0),
invest(24,0).
invest(25,0).
invest (26, 0).
invest(27,0).
invest(28,0).
invest (29, 0).
invest(30,0).
invest(31,0).
invest (32,0).
invest (33,0).
invest(34,0).
investC35,0).
invest(36,0).
invest(37,0).
invest(38,0).
invest(39,0).
invest (40, 0).
invest(41 ,0).
invest(42,0).
invest(43,0).
invest(44,0).
invest(4S,0).
invest(46,0>.
invest(47,0).

1 22

invest(48,O).
investC49,0).
invest (50,0).
invest(51,0).
invest(52,O).
invest (53, 0).
invest (54, 0).
budget(1OOOO).
rbudget(10000).

12:3

Appendix D. Formula Version 3.0 User's Manual

'rii;s manual explains how to use Prolog p~rogrami, FORMULA Version 3.0. It consists of the

Version 2.0 user's manual written by Gaught (12:243-251), updated with version 3.0 enhancements.

This program consists of two filies:

*FORMULA3.ARI - Contains the main computer program.

*WINDOWS3.ARI - Contains window dialog boxes.

D. 1 Required Equipmnent

Currently, FOR MU LA requires A RITY, PRO LOG interpreter program to run. The in-

terpreter and(FORMULA canl be installed on an 113MI-XT/AT compatible mnicrocomlputer. The

computer with at, least 512 kilobytes of randlom access memory and 20 megabyte hard disk is

desired.

D.2 Rvuibq the FORMULA

Assuming both ARITY/PROLOG interpreter aind FORIMULA are installed on your comn-

pu ti start Owli interpreter h% ty ping '-A ll '. W\hen "?p- promptJ appears. consult your program by

t\ ping 'o'ut(frnl.ai).A fter thev program~ has been coinsuIt ed con ectly, type in 'go.' to

start the program FORM ULA. 'I he prograiti proceed, thlrough thie following steps:

I) First, it displays an introdluctor% creenm displayinug what. t is- progranican (1o. (Jutst hit

aiiy key to go oii.)

2) Next, it. asks foi tilie name of input dat a file which cont ain, the des niption of network to

he analyzed (Type in the exact name oh inlpit file and hIlt return.)

3) After the inplut file name lia., beenl typed ill. t he pr'ograui diSpla\ s a mnci window from

wich youi cii choose to generate I lie ,.pecific out put (Select nuniber I. 2. 3. 41. 5, 6. 7.8, or 0):

! Find all paths and calculate path reliabilities.

2. Generate the Maxiimunm Flow Formummlat ion.

3. (ici eratie the L ower I omnnI lForimui Ia ionl

41. (,veierate the~ Upp~er Hound Foriiiulat ion

5Generate, the lim-e'. iiit S i ateg\ Model I

121

6. Generate the Investment Strategy Model 2.

7. Generate the Investment Strategy Model 3.

8. Generate Reliability Files.

9. Exit.

4l) It theni asks where t~o sendl the output. If you just want to screen the output, choose 1;

otherwise, choose 2 to sate the output in a file. The output filename is automnatically generated

by the program. When the user requests the output to be sent to a file, the output of paths and

relialbilities is sent, to 'out putl Ilp', maxiimum) flow to 'output.2.lp', lower bound to output3.lp'. uipper

bound to 'output4.1lp', investment strategy model 1 to 'output5.lp', investment strategy model 2 to

loutput,6.lp)', and investment. strategy model 3 to 'output7milp'. The reliability files generated are

1) lpatli.f, 2) prob.f, 3) cap.f, and 4) nettop. (Select 1 or 2.)

5) After the output has beeii generated, '..e program asks if you want to run the program

again. If you are interested in getting other output, type in 'y'; otherwise type in 'n' which exits

the program. (Type in y or in.)

D.3 mInu

fin preparing the input data, ou have to follow the fcblowing procedures:

1) If the network contains stochastic and/or capacitated nodes, con'~ert the nodes to a duniniN

arc jointed h\ two nodes The (In t arc represents the stochastic and/or capact tat ed nodle.

2) Initroduce an art ificial single source and] single sink. The source and sink mnust be named

s andl 1, restpecti r-ely. Connect all source nodles in the network to s, andl all sink nodes to 1.

3) Di~aw a revisedl network, and assign arc ntumbers. It, has been found very helpful if you

tnumber the dututim arc> represent ing thle niode \\ithi the same ntode nunmber. T[len numbtler the

retiitng arcs st art ing withI one numn ber hiigher thIian the i nmber of niode,, in t(lie network Thtus.

for exampjle, if Non have 20 nodes1 iit) Ihe original net work. ntumber t(lie remaining arcs starting Witlti

21

Il) U.Nitig a textI. edlitor (A ti /Prolog c'rnes with it., own oditor), prepare the inpu tduata by

typing in the descriptiotn of revisedl network that is to bie analyzed. The input consists of eight

dlata sets: description of' an aic relatitonshlip withI respect to one aniot her, the stir' ial probabilit%

of each arc, the capacityv of each airc. the cost, of' itiprovittg each arc by one, unit of capacity, the

p~rIeeterinedufi aiioiint of capm it\ increase in each comtponient . total budget available for capacity\

investmient, the cost of imiproving the reliability of each arc by 0.1, and the total budget available

for reliability investmnent: These input are described as facts in Prolog termn as follows:

Input Description

arc(Arcl,Arc2). Arci is the parent of Arc2
CArdl precedes Arc2).

prob(A,Pb). The survival probability of
arc A is Pb.

cap(ACp). The capacity of arc A is Cp.
The unlimited (infinite) capacity
is denoted by '*'.

cost(A,Cs). The cost of increasing one unit
of capacity in arc A is Cs.

invest(A,Am). The predetermined amount of
capacity increase for arc A is Am.

budget(Bc). Total budget available for invest-
ment in capacity is Bc.

rcost(A,Rs). The cost of increasing one unit
of reliability in arc A is Rs.

rbudget(Br). Total budget available for invest-
ment in reliability is Br.

When definiung arc relat ioiiship,,, you inust9 dJefinie thle relationship of s and 1withI respect to

other arcs So 'arc Cs ,2) . delinleN that thle arc 2 is i neidetice to node s, t hat is.. thle arc 2 leaves

file nodle s. Ini a likely in anner, 'arc (22, t) . ' dlefines t hat t he arc 22 a rrv'(es at liode t. Ini addit ion

to specifying the probability of each arc, the prolbalility of s and t nist be defined as I Thu., in

h l rob~abili ty description. mnake sure yoil i ncluide 'prob(s , iYand 'prob(t, 1)'.

5) lDepending onl your neved. soin of the in put (la ama he olnield. Refer to thle I able

below t o see exact ly which dal a set. are required to get the dvsii ed output. For exaiile, if youj are

oiik interested iii finding taiats and(their reliabilitics, all Noll need is, arc ivlatioiislips aind suirxia

probaluIities.

126

I For this output.' You must have the following data: I

IPaths and Reliabilities I arc(X,Y).
I I prob(X,Y).

IMaximum Flow, I arc(X,Y),
M~ower Bound, or I probCX,Y).I
lllpper Bound I capCX,Y).I

llmprovement Strategy 1 1 arc(X,Y).
Iprob(X,Y).
IcapCX,Y).
ICost(XY).
Ibudget(X,Y),

llmprovement Strategy 2 1 arc(X,Y).
Iprob(X,Y).
Icap(X,Y).
ICostCXY).
Ibudget(X,Y).
Iinvest(X,Y).

llmprovement Strategy 3 1 arc(X,Y).
Iprob(X,Y).
Icap(XY).I
Ircost(X,Y),
Irbudget(X,Y).

6) Wkheni usinig A rit / Prolog. it is ('list omiary to inme tilie file with an ext eiision SC) namie

your inipt, file with '.ai' extensioni.

To illustrate hlow ICo piepare tile iill)lt data. considler a iietwvork slmowii inl Figure 18. 'l'iks

nietwork containis 41 nodes and(3 arcs. It Ilas itiultiple sources. I and 2. anid a sigle sniik. I

'Ihel(cost of increasinig 0oe unit of capacity is aIS followvs: niode :1 = 10, arc, 20. arc- :j

30. anid arc:. 4 = 10. The lpredlet~eried aioinit. of capaicity increase is 5 ints for all cosuponenots.

and the total budget axailable for invest mntw is $1000. Thel(cost of inlcrea1sinig relialbii,v 0 1 is (hle

same as inicrea.iMig capacity by 1, anl the rvliabilit bujdget is tile Ramm s the caoaClt% budg~let

'I'l(revised iiet work is showni inl Figure 19.

127

1 (.3,200)

(.5,4'l00)
(.4,300) 3O(.2,100) 0(1*)

(Reiliabiiity,Capacity)

*d(enotes infinite capacity

Figure 19. Sami~pie Network

Since node I and 4 are not stochastic and not capacitated, they do not need to he representedI

as arcs. A duimmiy arc representing a stochastic oi capacitated niode is assigned Ithe samte iiiier

as its nodle nundw1br In ntiinh1ering arcs, the inmber I and 'I are not nsed, since I and I are not

represenltedl as arcs. ie remtaining arcs arm numbuueredl start ing with 5. Nlow, refi-rrintg to tHie re%~ ised

network shown in Figure 19. thie Input data can he prepared a.- follows:

% Arc Relationship
arc(s,S).
arc Cs ,6).
arc(2,8).
arc(3 ,9).
arc(5,7).
arc(6,2).
arc(7,3).
arc (8 ,3).

arc (9.1.0).
arc(lO,t).

%. Survival Probabilities
prob Cs, 1)
prob(2,O.!..,

128

Figure 20. Revisedl Network

prob(3,0.2) -

prob(s,1).

prob (6,1).

prob(7,0.3).

probC8,0.4).
prob(9,0.5).
prob(10.1).

prob(t,1).

% Capacity
capC3,100).
cap(5,s).

capC6,*).
cap(7,200).
cap(8,300).

capC9,400).

cap(10,*).

%, Cost of Increasing One unit of Capacity
cost (3 ,10).

cost (7 ,20).
cost (8 ,30).

%. Predetermined Amount of Capacity Increase

investC-,S).

%I Capacity Budget Available

budget(1000).

7Cost of Increasing Reliability by 0.1
rcost(3, 10).

129)

rcost(7,20).

rcost(8,30).

rcost(9,40).

.Reliability Budget Available
rbudget(1000).

% --- end--- .

Any line that starts with a % sign is a comment line, and it is ignored by the interpreter.

The underscore (-) in 'invest(_,S) - denotes all cowponents. Thus, 'invest(_,5)." denotes the

predeternlined amount of capacity increase for all components is 5 units.

1.5 Output

An example of outputl.lp, containing paths and path reliabilities, are shown below:

*********************** ** * **** ** ***** *****

* Following is a list of all patns from "s" to "t" *
* of the network described in the input .ita file. *

Pathl: s 5 7 3 9 10 t

Reliability: 0.003

Path2: s 6 2 8 3 9 10 t

Reliability: 0.004

----- end ----- *

The re.t of the outputs. containing matlhenmatical progcatntning models, are in the same

format a., tlie input format of ,.'/MI1P-S3 ,a(h OUtl)Ult consists of . 'Tlle. Object u e Maxiinize.

and (Co istraints.:,ection An ,v aniple of oulput2.] p containing the unaxinmun flow formulation. is
shown Iwlow:

..Title

Maximum Flow Formulation 2

. Objective Maximize

i1 + f2

I:30

-Constraints

Arc 3: fl + f2 <= 100

Arc 7: fl <= 200

Arc 8: f2 <= 300

Arc 9:, fl + f2 <= 400

*---------end ------ *

D. 6 LP/IMIP-83 Commands

All mot.6 except Investmenit Strategy Models 2 and 3, canl be solved using either LP83 or

Al1P83 The Inivestment Strategy Model 2 canl only be solved by M1P83, because it requires integer

solutions. Tlie following are some commands to run 1,P/MNIP-83:

a) c :> lp83 a:out.put.2

Finid all solutionjs to thle liear programming model stored inl 'output2.lp)' in 'a' drive,
and display thle solut ions onl t lie screen.

1)) r > 11)83 a :oiit put 2 output a:list

saic as a1) ahbo~e. exrelpt send the solutions to the outpt file niamed litipn 'a'
dIrive. Tlhe extenisioni. '.prn' is automat ically added.

r) c > 11)8 3 a out put 2 out put a:list alt ernate I

Same, as 1)) abhove. except finld 0onl onle soilutionl.

Finld all solu1tions. to th li ixed iteger prograiinniig mnodel stored iniii'i put(11Ip' in)
a' (lri% e-. anid display thle solti ons onl thle srreen.

13 1

D. 7 GINO Commands

Investment Strategy Model 3 must be solved using GINO. GINO can be run on many different

types of computer systemns. The following example is for a computer running the MS-DOS operating

systemn:

c -> GINO (this commiand starts the GINO program)

'retr output7.nlp (this command loads the file created by Formula)

:go (this command tells GINO t~o solve the mnodel)

-quit (this command exits GINO)

The uiser should consult a GINO user's manual for further details.

D.8 ldrpfiil Conmenis

1) The program, FORMULA has been tested and successfully generated] formulations for

the network containing 70 nodes, 112 arcs, and 2198 paths. Sijnce thie capacit% of LP/Mh P-83 is

app~roximnately 1200 variables (paths), alt" p~rob~lem bigger thtan the capacity of 1,P/MIIP-83, nitist

he soked using other mathematical programming Ipackagc~s. such a~s MINOS or SAS. Of course

preparing an Input file for these packages will he different from that of LP/MIP-83.

2) If %on want to stop thie execution (or if the comtputer is hung tip). pre.ss 'cont rol' and

'break' .hiuult aneousl% . When "*-' appears, type 'clear-wiiitows.' and/or 'exit-popiip.'. It will get

%oii to the nmin window of Arity /Prolog. Before starling thle programn ;gain, %oui must erase the

dat afile by typinig Rest oie.' Otherwise, youi will get erroneouis outpt

3) Any quest ions abouit the Anit /Prolog interp~reter or general quest ions about the Ar-

ity/P'rolog. refer to (41).

Appendix E. Formula Version 3.0 Source Code

/* */

/* FORMULA Version 3.0 */
/* *

/* *

/* This program does the following eight tasks: */
1* ,/

/* 1) Finds all paths in the network from source (s) to */
/* sink (t) and calculates all path reliabilities. */
/* 2) Generates the formulation of the Maximum Flow through */
/* the network. */
/* 3) Generates the formulation of the Lower Bound of the */
/* Expected Maximum Flow. */
/* 4) Generates the formulation of the Upper Bound of the *1
/* Expected Maximum Flow. */
/* 5) Generates the formulation of the investment strategy */
/* model 1. */
/* 6) Generates the formulation of the investment strategy */
/* model 2.
/* 7) Generates the formulation of the investment strategy *1
/* model 3.
/* 8) Generates files used for network reliabity formulation */
/* *1

/* The six mathematical programming models (2 to 7) are */
/* developed based on arc-path incidence matrix built from */
/* the description of the network in the input file. */
/* The network described in the input file must contain a */
/* single source node, named 's', and sink node, named 't' */
/* All capacitated or stochastic nodes must be represented */
/* as a dummy arc with two nodes. Refer to FORMULA user's */
/* manual for details on how to prepare the input file. */

/* *1

/* The formulations, 2 thru 6, generated from this program */
/* are in the same format as the input data file of LP/MIP 83 */
/* mathematical programming package. The formulation 7 is in */
/* the same format as the input data file of GINO mathematical*/

/* programming package. Thus the ouputs 2 thru 6 can be used */
/* as an input to LP/MIP 83 and the output 7 can be used as */
/* an input to GINO for further analysis.
/* */

/*--
/* *1

/* DATE: 1 October, 1991 */

I 33:

/* FILENAME: FORMULA3.ARI */
/* */

1* This program was written in Prolog language using the */
/* Arity/Prolog Version 5.0. */

/* */

/* Start the program by typing 'go.' */

go :-
fileerrors(_,off), % Turn off system file error message.
windows, % Call windows to display the

% introduction screen.

openinputdatafile, % Get the name of input file and
% consult it.

start-program.

go.

start-program
get.selection.number(Selection),

% Ask user what need to be done.
(Selection = 9, % If '9'is selected, exit.

clear-windows,!

7. Otherwise,
nl, % Where should output be sent
getwhere-to-sendoutput(Where),

execute-request(SelectionWhere) % Execute the request.

execute-request(Selection,Where)

(Selection = 1,
search-paths(Where),!

Selection >= 2,

Selection =< 4,
performanceformulations(Selection,Where)

Selection >= 5,
Selection =< 6,

lpinvestment-formulations(Selection,Where)

Selection = 7,

nlpinvestment-formulation(Selection,Where)

rel-file-formulation(Selection,Where)

get-run-again-reply(Reply), . Run the program again ?
cls, % Clear screen.
(Where = 1, % If the output was sent to

13 :1

true, %I. the screen, do nothing,

7. Otherwise,
exit-popup % delete popup window 'done'.

want). ore(Reply).

wantjmore(Reply) :-
(Reply = 121, % Reply is 'y' (ASCII 121),
removeallh(matrix), % delete hash table 'matrix', and
startprogram,! 7 run program again.

clear-windows, . Otherwise, exit.
nl

), .

/* 'search-path' initiates search to find all paths in the */

/* network and calculates path reliabilities. */

search-paths(Where) -

ctr-set(1,1), % Initialize counter one to I

% to keep track of path number.
C Where %1, . When Where = 1, output is displayed

% on the monitor screen.
continue-find-paths

7. 'Executing' message is displayed on
% the screen while the output is being

executing-message, % sent to the 'outputl.lp' file.

stdout('outputl.lp',continue-find-paths),

exit-popup, % Delete popup window 'executing'.

doner.zssage(1) % Display 'done' message.

continuefind-paths -

nl,

nl,
write('* Following is a list of all paths from "s" to "t"

nl,
write('* of the netwoik described in the input data file.

nl,

nl,nl,nl,

find-paths(s,t),
nl,nl,

write('* ------ end ------
nl,nl,nl,nl.
n/* n*/n. i

/*---

findpaths(Start,Goal) :- % Find all paths usivg
. depth-first

% search method.
depthfirst([Start],Goal,Path),
find-reliability(Path,Rel), % Calculates the reliability

% of a path.

ctr-inc(,Pnbr), % Get current path number and

% increment counter one by 1.
display.outputs(Path,Pnbr,Rel),
fail. % Go on to find next path until

% there isn'r any to be searched.

find-paths(_,_).

depth.first(Path,Goal,Path) :- % Path is found if it
% satisfies

satisfies(Path,Goal). % Goal.

depth-first([XRest],Goal,Path)

arc(X,Y), % Get next arc.
not member(Y,[XlRest]), % Prevents cycles.

depth-first([Y,XiRest],Goal,Path). % Recursive call.

satisfies([Goal]_],Goal). . A path is found if the head of
a list describing Path matches

% with Goal t).

member(X,[XITail]).

member(X,[EHeadITaill)
member(X,Tail).

find-reliability(I],1) :- %. % Reliability of an empty list is
% 1.

find-reliability([ArclRest],Rel) :-

find-reliability(Rest,RelRest), % Calculate Rel recursively.

prob(Arc,Pb), ' Get survival probability of

% Arc.
Rel is Pb * RelRest,

I:36

/ * -- - - - - - - - - - - - - - - - - - - -- - - - - - - - - -

displayoutputs (Path,Pnbr,Rel) :-

print-path(PathPnbr), % Print path and
print-reliability(Rel). % reliability.

print.path(Path,Pnbr) :-
write(' Path '),
write(Pnbr),
write(': '),
write-reverse(Path).,

print-reliability(Rel)
nl,

write(' Reliability: '),
write(Rel), nl, nl.

write-reverse(I]) : % Prints path from 's' to 't'.
wrlte-reverse([Arc I Rest]) :-

write-reverse(Rest),
write(Arc), write(' ').

/********* ***

/* 'performance-formulations' generates the formulations of *1

/* maximum flow, lower bound of expected maximum flow, */
/* and upper bound of expected maximum flow. */
/ ** * *4'****** ** * *** * ***** * *** ** **** * *** * *** *****'* *** ** *** * *4'*/

performance-formulations(Selection,Where) :-

(Where %, % Display output on the screen.
find-formulati.ns(Selection)

executing-message, % Display output sending
% message.

(Selection = 2,
stdout('output2.lp',find-formulations(Selection))

Selection = 3,
stdout('output3.lp',find-formulations(Selection))

stdout('output4.lp',find-formulations(Selection))

exit-popup, % Delete popup window
' 'executing'.

done-message(Selection) % Display 'done' message.

137

find-formulations(Selection)-
title(Select ion),
objective(Selection),
constraints(Se.Lection),
nl,nl,
write('* -------end ------ *)
nl,nl,nl,nl.

/* -- *

title(Selection) :-% Print title of the
%I formulation.

write(' _.Title'),
nl,nl,
CSelection =2,
write(' Maximum Flow Formulation')

Selection =3,
write(' Lower Bound Formulation')

write(' Upper Bound Formulation')

/* -- *

objectiveCSelection) % Get objective function
ni ,nl,
write(' . .Objective Maximize'),
nl ,nl,
ctr-set(l,l), %. Counter one generates path number.
ctr-set(3,1), % Initialize counter three to 1

%A to keep track of how many terms
%are printed in a line in the objective
%. function.

find-.objective(s ,t,Selection).

find..objectiv3(Start,Goal,Selection)
depth-first([StartJ ,Goal,Path),
find-.reliability(Path,Rel),
ctrjinc(1,Pnbr), % Get current path number and

% increment the counter one by
%. one.

print-.objective(PnbrRel ,Selection),
make-.arc-path-.matrix(Path.Pnbr), %. :take arc-path incidence

%A matrix.
fail.

find-objective,_. .

j:38

print-objective(Pnbr,Rel,Selection)

tab(l),

(Pnbr = 1

write('+ ')

Cctr-inc(3,Value), e Get current variable number and

% increment the counter three by 1.
Value > 4,
Mod-Value is Value mod 4, % If the remainder of Value
Mod-Value = 1, % divided by 4 is 1, then skip
nl, % to next line.

write(' ')

true

C Selection 3, % If finding lower bound (Sel =

% 3),
write(Rel) % print reliability.

true % Otherwise, do nothing.

write(' f'), % Print path flow variable.
write(Pnbr), I.

1* --

make-arc-pathmatrix([],_).
make-arc-path-matrix(Arc_List,Pnbr) :- % Seperate the elements,

% arcs, in the path and
% store each arc with
% associated path number
% to form arc-path
% incidence

getarc(ArcListArcRem_List), % matrix.
cap(Arc,Capacity),

(number(Capacity),
recordh(matrix,Arc,arc-path-matrix(Arc,Pnbr))

true

make-arc.path-matrix(RemList,Pnbr), I.

get-arc([HeadI[HIRest]] ,Head,RemList)
Head \= 's', % Ignore 's' and 't'
Head \= 't',

(Rest = 0,
Rem-List = E)

Rem-List = [HiRest)

get-arc([HeadlRestJ ,Arc,Rem.List)
get~arc(Rest.Arc.RemList). %. Get one arc at a time

%I that is in the path.

/*---*

constraints(Selection) %7 Get constraints
%. function.

ni, nl,
write(' . .Constraints'),
asserta(init-string($$)), %. Initialize to empty

%. string.
find-.all.arc.lists(Arc..List),
sort(Arc_.List,Sor), %. Sort Arc-List in ascending

%. order.
make-arc..array(Sor), %. Make sorted arc-.list into

%. arc array.
generate-constraints (Selection).

find-.all..arc-.listsC.) %7 Find all arcs that are in
%. the
7% arc-path incidence matrix.

retrieveh(matrix,-,arc..path-matrix(AN,..))I
int..text(AN, Arc-.String),
P' concat(E$OOOO$, Arc_.String, $,$], New..ArcString),

retract(init-.string(Init)),
Cstring-searchNew-Arc-.String,Init,-.), %. Do not include

%. the
asserta~init~string(Init)) %. duplicate arc

%. string.

concat(NewArc_.String, Init, hew-String), % Append the
%. new

asserta(init..string(New-String)) %. string.

fail.

find-all-arc-lists(Final)-
retract(init..string(Main-String)),
string-length(Main-String, Length),
dec(Length,Pos),
substring(Main-.String,O,Pos,New-.String),
concat([$[$, New-.String, 1J, Output-String),
string-term(utput-.String, Final), % Change string into

a list.

* ---

makearc-array([)). .Seperate the arc-list and
make.arc-array([AnbrlRest]) :- % put it into an array format.

assertz(arc-array(Anbr)),

makearc-array(Rest).

* - --*

generate-constraints(Selection) -

retract(arcarray(Anbr)),
! cap(AnbrCapacity),
generate-constraint-inequality(Anbr),
write(' '),
write('<= '),
write(' '),
C Selection = 4,
prob(Anbr,Pb),
Expected-Cap is Capacity * Pb,
write(Expected_Cap)

write(Capacity)
)

c],
fail.

generate-constraints(_).

generate-constraint-inequality(Anbr) -

nl, nl,
write(' Arc '),
write(Anbr),

write(':),
ctr-set(1O,O), % First time flag; this is used to

% control when to print '+' in

% the constraint equation.
ctrset(4,1), % Initialize counter four to 1;

% this counter keeps track of

% how many terms are printed in
% the constraint equation.

output-paths-containingAnbr(Anbr).

output-paths-containingAnbr(Anbr) :-

removeh(matrix,Anbr,arcpathmatrx(Anbr,Pnbr)),

[' (ctr.inc(1O,Flag),
Flag = 0 % If first term, don't print '+'

III

write(' + 3

(ctr-inc(4,Value), 7% Get current term number and
%. increment the counter four by 1

Value > 7,
Mod-Value is Value mod 7

Hod-Value =1,

ni, write('

true

writeC 'f'),

write(Pnbr)

fail.

output-paths.containingAnbr(-j.

1* 'lp-.investment.formulations' generates formulations of *
1* investment strategy model 1 and 2 to improve the

/* lower bound. *

lp.investment-jormulations(Selection ,Where)-

CWhere = 1,

get-investment.jodel (Select ion)

executing-.message,

CSelection =S
stdout('outputS.lp' ,get-investment-nodel(Selection))

stdout('output6.lp' ,get-investment-model(Selection))

exit-popup,
done..message (Selection)

get-investment-jnodel(Selection)

invest jnodel-.t itle (Select ion),

invest-model-objective(Selection),
invest-inodel-constraints(Selection),

nl, nl,

write(,* ------- end ------ *)

nl ,nl ,nl ,nl.

invest-modeltitle(Selection)

write(' . .Title'),

nl ,ni,

1 12

CSelection =5,
write(' Investment Strategy Model 1')

write(' Investment Strategy Model 2')

invest.model-obj ect ive (Selection)-
ni, nl,
write(' -Objective Maximize'),
ni, nl,
ctr..set(1,1), %I path number
ctr..set(3,1), %. no. of terms in a line
find-invest-model-objective(s ,t,Selection).

find..invest..model..objectiveCStart ,Goal,j -

depth-first(EStart) ,Goal,Path),
find..reliability(Path,Rel),
ctr..inc(1 ,Pnbr),
output-nvest-model-objective-.variables(Pnbr ,Rel),
make.arc-.path..matrix (Path, Pnbr),
fall.

find-invest-model-objective(.,-,Selection)-
assertaC init..invest-string($$)),
get-investment-variables(Invest.Vars),
sort(InvestVars ,Sorted..Vars),
make..cap-array(Sorted.Vars),
ni,
ctr-set(2,1),
ctr-.set(1O,O), % First time flag.
(Selection 5

write(,

output..investment-.variables (Select ion),
Selection 5

write(, '

find-invest-model.objectiveC. ,.,-.

inake..cap..array(C)).
make-.cap-.array(C AnbrlIRest])-

assertz(cap. array (Anbr)),
make-.cap-.array (Rest).

output-.invest-model-objective-.variables(Pnbr,R.'
write(, '),

write (Rel),

1,13

write(' f'),

writ e(Pnbr),
write(' +'),

(ctr-inc(3,Value),
Mod-Value is Value mod 4,

Mod-.Value = 0,
n1

true

get-nvestment-.variables L)-
cap(AN,Capacity),

[I(not number(Capacity)

int~text(AN, Arc-String),
concatC [0000, Arc-.String, $JNew-.Arc-.String),
retract(init-invest-string(Init)),

concat(New-Arc-String, Init, New-.String),
asserta(init-invest string(NewString))

fail.

get-nvestment.yariables (Final)-
retract Cinit-invest-string(Main.$tring)),
string-lengthCMain-String, Length),

dec(Length,Pos),

substring(Main-.String,O, Pos,NewString),
concatC EE, New-String, 1], Output._String),
string-term(Output-String, Final),

output-investment-variables(Select ion)-

cap~array(Anbr),

E!Cctr-inc(10,Flag),
Flag = 0

write(' +1)

Cctr-lnc(2,Value),
Value > 7,

Mod-VYalue is Value mod 7,

ModValue = ,
ni

true

CSelection =5,
write(' 0 d')

write(' 0g'

write(Anbr),
fail.

output-.investment-variables(-i.

1* --- *

invest..model-constraints(Selection)-

ni, nl,
write(' . .Constraints'),
asserta(init.string($$)),
find-.all-arc..lists(Arc-.List),
sort(ArcList ,Sor),
make-arc..array(Sor),
generate-arc~constraints(Selection),
ctr-.set(1O,0), %. counter for budget term
nl, nl,
write(' Budget:')
generate.budget-.constraint (Selection).

generate-.arc~constraints(Selection) -

retract (arc-array(CAnbr)),
EcapCAnbr,Capacity),
generate-constraint..inequalityCAnbr),

CSelection =5,
write(' - d')

write(, -

invest(anbr ,Amount),
writeCAmount),
write(, g')

write(Anbr),
write(, '),

write(' '),

write(Capacity)

fail.

gerierate-arc..constraintsC-..

115b

generate-budget-.consc-:aint(Selection)
retract Ccap-array CAnbr)),
[cost(Anbr,Unit-cost),

(Selection =5,
Cost is Unit-cost

invest (Aubr ,Amount),
Cost is Unit-cost * Amount

print..budget-terms(Anbr,Cost ,Selection)

fail.

generate-.budget-constraintC-)-
ctr-setC5, 1),
budgetCBudget),
write(' 1),
write(' <= 0
write(CBudget).

print-.budget.terms (Anbr ,Cost ,Selection)-
Cctr..jnc(iO,Flag),
Flag = 0

write(' + '

Cctr-inc(S,Value),
Value > 5,
Mod-VYalue is Value mod 5,
ModValue =1,
nl, write('

true

write (Cost),
(Selection =5,
urite(' d')

write(' g')

write(Anbr).

1* 'nlp.investment-formulation' generates formulation of *
/* investment strategy model 3.

nlp-investment-formulation(Selection ,Where)

CWhere 1

begin.model-building

executing-message,
stdout C output7 .nip' ,begin.model-building),
exit-popup,

done-message (Selection)

begin-nodel- 'ilding
ni, ni, nl,
write('HODEL: 1), ni,

invest3-.obj ective, nl,
invest3. constraints,

write('LEAVE'),
ni ,nl ,nl.

/*-Objective function -*

invest3-.objective-

write('MAX= '),

ctr-.set(1.1), %. Counter one generates path number.
ctr-set(3,1), % Initialize counter three to 1

%. to keep track of how many terms

%I are printed in a line in the objective
"I function.

find-invest3.objective(s,t),

write(',')

find-invest3-.objectiveCStart ,Goal)-

depth-first(EStart) ,Goal,Path),
ctr-.inc(1.PathNmbr), %. Get current path number

%. and
% increment the counter one by
%one.

print-invest3-objective(PathNmbr),
make-.arc-path-.matrixPath,PathNmbr), % Make arc-path incidence

7matrix.
fail.

I ind-invest3.objectiveC. -.

/* --

print-.invest3-objective(PathNmbr)

(Path~mbr 1

write(, +-

1 17

(ctr-inc(3,Value), % Get current variable number and
% increment the counter three by 1.

Value > 5,
Mod-Value is Value mod 5, % If the remainder of Value
Mod-Value = 1, % divided by 4 is 1, then skip
nl, % to next line.
write('

true

write('R'),
write(PathNmbr),
write(' * F'), % Print path flow variable.
write(PathNmbr), !.

/* constraint functions */

invest3constraints % Get constraints
% function.

asserta(init-string($$)), % Initialize to empty
% string.

find-allarc-lists(ArcList),
sort(ArcList,Sor), % Sort Arc-List in ascending

% order.
make-arc.array(Sor), % Make sorted arc-list into

% arc array.
ctr-set(l,l), % Counter 1 contains pathnumber.
generate-rj-descriptions,
generate-arc-prob.constraints,
ctr-set(9,O), % Flag counter to control line

% feed.
generate-path-flow-constraints,
ctr-set(1O,O), % Flag counter to control + sign.
generate.rel-budget-constraints,
write('END'), nl,
generate-x-nonnegativity,
ctr-set(l,1), . Path number counter
generatejf.nonnegativity.

/* ---*

generate-rj-descriptions ,-
depth-first([s],t,Path),

ctr_inc(1,PathNmbr),
write('R'),
write(PathNmbr),
wrlte(' = 1),

sort(PathSortedPath),
ctr-set(7,1), Counter to control the number of terms.

I IS

write..rhs-of-equalityCSortedPath),
write(';'),
ni

fail.

generate-.rj .Aescript ions.

write-rhs-of-equality([)).

write-rhs-of-.equality([ArcIRestJ)
Cnot number(Arc)

Cct---inc(7,Value),
Value > 3,
Mod-Vaiue is Value mod 3,
Mod_.Value =1,
ni, write('

true

write(,(1),
probCArc ,Probability),
write(Probability),
write(' + .1 * X)
write(Arc),
write(,) 1),
CRest [= s,t]

write('* ')

write-rhs-of-.equalityCRest).

/*---

generate-.arc..prob-.constraints-
probCArcm.ir,Probability),
P Cnot numberCArcNmbr)

writeCProbability),
writeC + .1 * X9).
write(Arclmbr),
write(' 1 I')
nJ.

fail.

generate..arc-prob-.ccnstraints.

1 * --- - - - - - - - - - - - - - -- - - - - - - - - - - - - -

generate-pathflow-constraints :-

retract(arc.array(ArcNitbr)),
E! cap(ArcNmbr,Capacity),

generate-pathflowconstraint-inequality(ArcNmbr),

write(' '),
write('< '),
wy4Le(Capacity),

write(' ;')
Q],

fall.

generate-path-flow.constraints :- nl.

generate-path-flowconstraint-inequality(ArcNmbr) -

(ctr.inc(9,Flag),

Flag = 0

nl

ctrset(1O,O), 7 First time flag; this is used to

% control when to print '+' in
7. the constraint equation.

ctrset(4,1), % Initialize counter four to 1;

. this counter keeps track of

% how many terms are printed in
% the constraint equation.

output.paths-containingArcNmbr(ArcNmbr).

output-pathscontainingArcNmbr(ArcNmbr) -

removeh(matrix,ArcNmbr,arc-path-matrix(ArcNmbr,PathNmbr)),

! (ctr-inc(10,Flag),
Flag = 0 % If first term, don't print ' '

write(' +

(ctr-inc(4,Value), % Get current term number and
% increment the counter four by 1

Value > 9,

Mod-Value is Value mod 9,

Mod-Value = 1,
nl

true

write('F'),
write(PathNmbr)

fail.

output-paths-containing.ArcNmbrL-).

/ 4 --- - - - - - - - - - - - - - -- - - - - - - - - - - - - -

generate-rel-.budget-constraints :- % probably can revise
%. this: I dont think

% there
% is any need for using

% prob-array from
7get-invest3-variables

prob(ArcNmbr,-j,

E! not number(ArcNmbr)

rcost (ArcNmbr ,Unit-cost),

print-.rel-budget-.terms (ArcNr.or ,Unit-.cost)

fail.

generate-.rel.budget-constraints:-

ctr-set(5, 1),

rbudget(Budget),
write('')
write(' < 0
write (Budget),
write(' ;)

ni.

print-rel.budget-terns (ArcNmbr ,Cost):-

Cctr-inc(1O,Flag),
Flag =0

write(, +

Cctr..inc(S,Value),
Value > S,
Mod-Value is Value mod S,

ModValue = ,

nl

true

write(CCost)
write(' * X)

write(ArcNmbr).

/* --- 1

generate-x-nonnegat.vity:-

151n

prob(ArcNmbr ,Probability),
P' not number(ArcNmbr)

write('SLB XI),
write CArcNmbr),
write(' 0')
n1

fail.

generate-x-.nonnegativity.

/* -- *

generate-f-.nonnegativity-
depth.firstC Es),t,_.),
P! ctr-.inc(1 ,PathNmbr),

write('SLB F'),
write(PathNmbr),
write(' 0')
ni

fail.

generate-f.nonnegat ivity.

1* 'rel-file-formulation' generates 4 files of inputs used *
/* in formulating Reliability models. *

rel-file-formulation(Selection ,Where)-
(Where =1,
file-.building

executing-.message,
stdout('path.f', file-.building),
stdout('prob.f', get..arc..prob),
stdoutC'cap.f', get-arc-cap),
stdout('net.top' ,net-.top),
exit-popup,
done~jnessage (SelectiLon)

file-building: -
get-arc-factors.

/*--*

get-arc-factors-

asserta~init-.string($$)),
fiud-all-arc-lists (Arc-List),
sort (Arc-List ,Sor),
make..arc..array (Sor),
ctr..set(l,l),
get...ord.paths.

/---*

get-ord-paths
depth-firstC Es),t ,Path),
P ctrjinc(l,PathNmbr),

write(PathNmbr),
write(, '),
sort (Path, SortedPath),
writerhs-of-path CSortedPath),
ni

fail.

get-ord-paths.

write-rhs-of-path(C).

write-rhs-of-path([Arclaest))
Cnot number(Arc)

prob(Arc ,Probability),
write(, '),
write(Arc),
write(,,),
(Rest == s,t)

write("')

write-rhs-of..path(Rest).

/* -- *

get-arc-.prob :
prob(ArcNmbr ,Probability),

P (not nuinber(ArcNrnbr)

write(ArcNmbr),
write(' 1),

write(CProbability),

153

ni
)

],
fail.

get-arc-prob.

/* --- - - - - - - - - -- - - - - - - - - -- - - - - - - --

get-arc-cap :-

cap(ArcNmbr,Capacity),

! (not number(Capacity)

write(ArcNmbr),

write(' '),
write(Capacity),

nl
)

fail.

get-arc-cap.

/* --1

get-arc-inv-cost :-
cost(ArcNmbr,Cost),

write(Cost),

nl,
fail.

get-arc_nv-cost.

/* -- /

net-top :-
arc(From,To),
['C not number(From);not number(To)

write(From),

write(' '),
write(To),
nl
)
),

fail.

net-top.

151

reconsult('vindows3.ari').

/*--------------------- end ---------------------------- *

I -)5

l* *l

/* WINDOWS3.ARI */
1"**

/* This file contains windows to communicate with the user. */
/* */

/* Introduction Screen .1
* --------------------------------------

windows

cls,
define-window(program-title,'',(23,0),(23,79),(91,0)),
define-window(intro,'',(O,O),(22,79),(26,0)),

current-window(_,progrwartitle),
tmove(0,12),

write(' FORMULA Version 3.0 AFIT October, 1991'),
currentwindow(_,intro),

define-intro-window.

defineintro-window -

nl,nl,
tab(17),
write('***************************************'),

nl,tab(17),

write('* F 0 R M U L A V e r 3.0 *'),
nl,tab(17),

nl,nl,nl,

tab(11),
write('This program finds all paths in the network irom
nl,tab(11),

write('source to sink and calculates all paths reliabilities.'),

nl,tab(11),
write('It also generates six mathamatical programming),

nl,tab(11),
write('models that will assist in analyzing the performance '),
nl,tab(1l),
write('of the network and in determining the investment '),
nl,tab(11),
wlite('strategy to improve the performance of the network.'),

nl,tab(11),
write('These models are developed based on the arc-path '),
nl,tab(ll),

write('incidence matrix built from the description of the '),
nl,tab(I1),

write('network in the input file. '),

nl,tab(11),
write(' Finally, it will generate tne required files used '),

nl,tab(I1),
write('in formulating network reliability analysis.')

nl,nl,tab(ll),

write('IPLEASE make sure the input f ile cont ains correct')
nl,tabC 11),

write('description of the network to be analyzed.'),
nl,nl,tab(23),

write('Press any key to continue.')

geto(-i,

cls.

/* --- *
1* Asks f or the input f ile name. If the f ile name is not f ound, *
1* the program prints the error message; otherwise, consults *

/* the input file. *

open-nput-.datafile :-

create-.popup(queryl,(7,20),(14,60),(62,-62)),
write(' Please type in your input file name.

tmove(3,2),

write(' > '),

read...Jine(O,Flle),

consult-file(File),
exit-popup

display..filename-error,

exit-popup.

open-input-dataf ile

consult-file(File)
stdin(File,-.),

consult(File).

display-filename-error
create-popup~errorl ,(16,20) ,(21,60), (79,-79)),

write(, Error: File not found.)

put(7),
ni, ni,
write(' Type in any key to continue or

nl,

write(, press RETURN to exit.)
getOCReply),
CReply =13,
exit-popup,

exit-popup,

clear-windows

exit-popup

/ * ...- -

/* Ask user what to do. */
/* ,--

get-selection-number(Selection) :-
createpopup(query2,(3,12),(19,68),(62,-62)),

tmove(1,16),
write('How may I help you?'),
tmove(4,2),
write('1. Find all paths and calculate path reliabilities.'),

tmove(5,2),
write('2. Generate the Maximum Flow Formulation.'),

tmove(6,2),
write('3. Generate the Lower Bound Formulation. '),

tmove(7,2),
write('4. Generate the Upper Bound Formulation. '),
tmove(8,2),
write('S. Generate the Investment Strategy Model 1. '),
tmove(9,2),

write('6. Generate the Investment Strategy Model 2. '),
tmove(10,2),
write('7. Generate the Investment Strategy Model 3. '),
tmove(11,2),
write('8. Generate Reliability Files. '),
tmove(12,2),

write('9. Exit'),

tmove(13,18),

write('Type in number > '),
getO(Choice), % The selection chosen is in ASCII code,
exit-popup, % that is one is represented as 49, two
SelNbr is Choice - 48, .represented as 50, etc. Thus, 48 is
C SelNbr >= 1, % substracted to make it back to regular
SelNbr =< 9, % arabic number.
Selection = Sel.Nbr

put(7),
get-selection-number(Selection)

/* Asks user where to display the output. */
/* --- 1

get-where-to..send-output(Where)

create-popup(query3,(5,20),(16,60),(62,-62)),
tmove(1,8),

write('Where do you want the'),
tmove(2,8),

write('output displayed ?'),

tmove(4,11),

write('1. Screen'),

tmove(6,11),
write('2. File'),
tmove(8,8),

write('Type in Number > '),

getO(Choice),

exitpopup,

SelNbr is Choice - 48,

(SelNbr >= 1,
SelNbr =< 2,

Where = SelNbr

put(7),
get-where-to-send-output(Where)

/* -- *
/* Asks user to run the program again with same input file. */
/* '---

get-run-again-reply(Reply):-
create-popup(query4,(20,0),(22,79),(62,-62)),

write(' Do you want to run the program- again (y or n) ? '),

geto(UserReply),
exit-popup,
(

(UserReply = 121; . y
User-Reply = 110 % n

Reply = User-Reply

put(7),

get-run-again_reply(Reply)

/* ---1
/* Prints 'executing' message while output is sent to an output */
/* file. */
/* -- *

executing-message :-

create-popup(",(11,25),(14,50),(207,79)),

write(' Executing ...

1 5')

nl,
write(' Please Wait.').

I *- -

/* Prints 'Done' message after output is sent to an output file. */
I *- *

donemessage(OutputFile) :-

create-popup('',(ii,20),(14,57),(58,58)),
write(' Done. '),
nl,
write(' Output was sent to "output'),

write(OutputFile),
(Output-File = 7,
write('.nlp".')

write('.lp".')

/--*

/* Clears all windows before exiting(quiting) the program.

clear-windows :-
delete-window(programtitle),
delete-window(intro),
abolish(arc/2),

abolish(prob/2),

abolish(cap/2),
abolish(cost/2),
abolish(budget/1),

removeallh(matrix),

current-window(-,main).

/* -------------- end ---------------------------- *

I(00

Appendix F. Reliability Programs and Files

F.I Dirprog - Turbo Pascal Version

{This is an MS-DOS Turbo Pascal version of the program described in
the paper "Reliability of Directed Networks Using the Factoring
Theorem" in the Dec. 1989 issue of the IEEE Transactions on
Reliability. The program was developed on a Macintosh II and

ported to MS-DOS. Because stack space is limited to 64k on MS-DOS
computers, you may run into problems with stack overflow on very large
networks. The program will, however, treat all the networks described
in the aforementioned paper. There are a number of sample network files
on this disk. Check them out first. The first line gives the source
and sink, and each additional line describes an edge (by giving the
vertices joined and the reliability). The program creates an output
file with the same name except that ".OUT" is appended. Since the
program uses this convention, use names for your input files that do
not have an extension as part of their name, This program has been
compiled and tested with Turbo Pascal 5.5. A compiled version of the

program is also included on this disk.}

{$M 65520,0,200000}
program DirNetworkerApp;

uses Crt, DOS;

{ Programmers: Lavon Page and Jo Perry

Input: A text file describing a directed graph with a source and
sink pair of vertices. All vertices are represented by integers in
the range of 1..maxv. All edges are represented by their endpoints
followed by their reliabilities. The first line of the file consists
of the source then sink, Each subsequent line in the file describes
an edge. A maximum of "maxe" edges are allowed.

Output: A text file whose name is the catenation of the name of
the input file with the string 'Output'. The first line identifies
the input file and contains an execution time a!td date stamp. The
next lines echo the input. The results of execution of the algorithm
come last. Included are the reliabil3ty of the graph and execution
statistics: algorithm e:.ecution time, number of single edge to source
or sink reductions, rumber of reductions of a vertex with in-degree
and out-degree 1, numlber of times factoring is performed.}

I 01

const
maxv = 50; (Maximum number of vertices in the graph)

maxe = 100; (Maximum number of edges)

type
degreeType array [1..maxv] of integer; (List of vertex degrees)

graphSet = set of l..maxv; (Set of vertices)

edge = record (Edge in a graph)
start, (Start vertex)
stop : 1..maxv; (Stop endvertex}
pr , real (Probability of the edge)

end; (edges}

graph = record (Describes a graph)
vert : graphSet; {Set of graph vertices}

source, {Source vertex)
sink : integer; (Sink vertex)

inDegree, (In degree of each vertex)
outDegree : degreeType; (Out degree of each vertex)
nb : array [1..maxv] of graphSet; {edge (ij) puts j in nb[iJ}

numEdges integer; (Number of edges in the graph)
maxVertex integer; (Largest numbered vertex in the graph)
e : array [1.-maxe] of edge (Describes all edges in the graph)
end; {Graph)

var

filename : string; (for name of input file)
outfile : text; (Output text file)

g : graph; {Network graph)

inOutICt: longint; (# times an in- and out-degree I vertex is removed)
sourceSinkCt : longint; {# times the source,sink incident to I edge)
factorCt: longint; f# times factoring is " ed}
timer : real; fMeasures execution time}

function seconds: real;
var hour.minute,second,seclOO:word;

begin
GetTime(hourminute,second,seclO0);

seconds := 3600*hour + 60*minute + second + sec00/100
end;

procedure GetGraph (var g:graph);
(Initialize the graph g from a text file. The first line of the file lists
the source and sink. Each subsequent line contains information about an
edge--its initial endpoint, its terminal one, and its probability. This

procedure does the initial parallel edge reduction on the graph.)
var

infile : text; (Input file containing directed graph)
k : mntager; (Edge or vertex counter)
n : integer; (Number of edge currently being read}

vCount : Integer; {Number of graph vertices)

hour, minute, second, seclOO: word;

year, month, day, Cayofweek :word;

begin {GetGraph}

gotoxy(5,8);
urite('Enter name of file representing network ->)

readln(filenane);

writein;
assign(infile,filename);

reset(infile);
GetTime(hour, minute, second, seclOO);

GetDate(year, month, day, dayofweek);

assign~outfile,concat(filename, '.out'));

rewrite(outfile);
write~outfile,'*** ',filename,' *

write(outfile,month,'/',day,'/',year mod 100,')

write(outfile,hour,':');

if minute < 10 then write(outfile,'0');
writein~outfile ,minute);
vCount :.0;

n:=0

g.maxVertex := 0;

g.vert :=0;
for k := 1 to maxy do

g.nb[k) :=0;
readln(infile,g.source,g.sink);

writeln~outfile,'Source vertex = ,g.source,' Sink vertex ='.g.sink);

writeln~outfile);

while not eof(infile) do

begin {Read the endpoints and probability of each edge)

n :=n + 1;

readin~infile, g.e~n).start, g.e~n].stop, g.e~n].pr),

writeln(outfi~e,g.e~n).start:3,' ----',g.etn).stop:.±,'rel ' :10.

g.e(n) .pr:9:4);

for k := 1 to n - 1 do

if (g.e(k) .startg.e~n2 .start) and (g.e[k] .stopg.e~n .stop) then

begin {Edges n and k are parallel. Combine them into e-Ige k.)

g.erk] .pr :g.e~k) .pr*(l - g.e[n3 .pr) + g.efl.pr;

r : n -1

end; {Edges n and k are parallel.}
if g.e~n.start > g.maxVertex then

g.maxVertex := g.e(n].start;
if g.etnJ.stop > g.maxVertex then

g.maxVertex := a.ern~tp

g.vert := g.vert + (g.e[Y2.start, g.e~n].stop);
g.nb(g.etnJ.start] :r g.ntrg.e(nj.start1 + (g.e~n].stop];

end; {Read endpoints and p--*.i1lity of each edge}

g.numEdges:=n
close(infile);
for k:=l to ganaxVertex do

if k in g.vert then

vCount :=vCount + 1;

write(outfile,'Number of edges = ,g.numEdges);

writein~outfile,' Number of vertices = ',vCount);
writeln(' The program is now deteimining the reliability of",

filename,'.2);

writ em;

end; fGetGraph}

procedure FindDegree (var g:graph);

{Determine the degree of every vertex in the graph g.)

var

i:integer; {Edge number}

begin {FindDegree}

for i:= I to g.maxVertex do

begin

g.inDegree~i] 0;

g.outDegree[i] 0;
end;

for i 1= to g.numEdges do

begin

g.outDegreeg.eiil .start) : g.outDegree~g.e~i] .start] + 1;
g. rnDegree~g.e~iJ.stop] : g~inDegree~g.eti).stop) + 1
end

end; {FindDegreel

procedure Delete (var g:graph; n:integer);

{Deletes edge n from the graph g. Degrees and neighbors are changed.}
var

u,v :integer; {Endpoints of the deleted edge}

3: integer; {Edge number)

begin {Delete}

u g.e~nJ.start;
v g.e[n3.stop;

g.nblu3 : g.nb~u] - [v];
g.inDegree~vi g.inDegree~v] 1
g.outDegree[u] g.outDegreeLui -1;

for 3j: n to g.numEdges-I do
g.e[33 g.e~j + 11;

g.numEdges g.numEdges - 1;

end; {Delete}

procedure CleanSink (var g :graph);
{Remove all edges in g that have the sink as starting vertex.}

var
j:integer; {Edge nuxnberl

I G I

begin {CleanSink}
for j :=g.numEdges downto 1 do

if g.e~j].start =g.sink then
Delete (g~j);

end; {CleanSink}

procedure CleanSource (var g fgraph);

{Remove all edges in g that have the source as terminating vertex.}
var

j :integer; {Edge number}

begin {CleanSourcel

f or j :=g.numEdges downto 1 do
if g.e~j).stop = g.source then

Delete (g,j);
end; {CleanSource}

procedure CleanUp (var g:graph);
{Eiminates all dead end and false start vertices in g.1
var

reduced :boolean;{Set false if a dead end or false start vertex found}
u integer; {Graph vertex}

j integer; {Graph edge}

begin {Cleail
CleanSource Cg);
CleanSink(g);

repeat
reduced :=true;
for u:=1 to g.maxVertex do

if (u<>g.source) and (u<>g.sink) then
if (g.inDegree~u) 0) or (g.outDegree~u) 0) then

if (u in g.vert) then

begin {eliminate vertex u}
reduced :=false;
for j:=g.numEdges downto I do

if (g.e~j].start = u) or (g.e[3J.stop =u) then
Delete(g,j);

g.vert -=g.vert - [u]

end; {eliminate vertex u}
until reduced

end; tCleanUp}

procedure ForwardSimplify (var g:graph; var simplified:boolean);
{If one exists, eliminates a nonnecessary edge coming into a vertex and sets
simplified to true.1
var

v :integer; {Initial vertex for an edge)

w integer; {Terminal vertex of edge out of v}
j integer; {Edge number}

begin {ForwardSimplify}
for v:=1 to g.maxVertex do

if (g.outDegree[v] = 1) then
begin (Look for edge antiparallel to the edge out of v.}
for j:=1 to g.numedges do

if (g.e[jl.start = v) then

w := g.e[j].stop;
for j:= g.numEdges downto 1 do

if (g.e[j].stop = v) and (g.e[j].start = w) then
begin {Delete the antiparallel edge.}

Delete(gj);
simplified := true
end (Delete the antiparallel edge.}

end (Look for edge antiparallel to the edge out of v.}

end; {ForwardSimplify}

procedure BackSimplify (var g:graph; var simplified:boolean);
(If one exists, eliminates a nonnecessary edge coming out of a vertex and
sets simplified to true.}
var

v integer; (Terminal vertex for an edge}
w integer; {Initial vertex of edge out of v
j integer; (Edge number}

begin {BackSimplify};

for v=1 to g.maxVertex do

if g.inDegree[v] = 1 then
begin (Look for edge antiparallel to the edge into vJ

for j:=1 to g.numedges do

if (g.e[j].stop = v) then
w := g.e[j].start;

for j:=g.numEdges downto 1 do

if (g.e[j].start = v) and (g.e[jl.stop = w) then
begin (Delete the antiparallel edge.}

Delete(g,j);

simplified := true
end (Delete the antiparallel edge.}

end (Look for edge antiparallel to the edge into v.1
end; (BackSimplify}

procedure SourceSinkRed (var g:graph; var found:boolean; var factor:real);
(If the sink of graph g has in-degree 1, then it is merged into its
neighbor and the resulting sink is cleaned of out-edges. If the souce has
out-degree 1, then the parallel result occurs. Factor is returned as the
appropriate multiplying factor for the graph.}

var

166

j: integer; (Possible edge incident to source or sink)
intoSink :integer; (Edge into the sink}
outOfSource :integer; iEdge out of the source}
oldSink :integer; {Original sink vertex}
oldSource finteger; (Original source vertex}

begin {SourceSinkRed}
found :-false;

if g.inDegree~g.sink] = 1 then
begin (Mrge the sink into its adjacent vertex.}
found :=true;

sourceSinkCt :=sourceSinkCt + 1;
for j 1= to g.numEdges do

if g.e~j).stop = g.sink then

intoSink j
factor factor *g.e~intoSinkJ.pr;

oldSink g.sink;
g.sink g.e[intoSinkj.start;
Delete~g,intoSink);
g.vert :=g.vert - £oldSink];
CleanS ink(g);
end; (Merge the sink into its adjacent vertex.}

if (g.outDegree[g.source3 1) and (g.source <> g.sink) then
begin (Merge the source into its adjacent vertex.}
found :=true;

sourceSinkCt :=sourceSinkCt + 1;
for j 1= to g.numEdges do

if g.e~j].start g.source then
outOfSource j

factor :=g.eroutOfSourceli pr * factor;
oldSource g.source;'
g.source g.e~outOfSourcej .stop;
Del et (g ,outOf Source);
g.vert :=g.vert - [oldSourcP];
CleanSource(g);
end; (Merge the source into its adjacent vertex.}

end; {SourceSinkRed}

procedure InOutDeglRed (var g :graph; var found:boolean);
{G is scanned to find a vertex with in-degree and out-degree 1. If such a
vertex is found, it it removed and the resulting graph is simplified.}
var

j integer; (Graph edge}
u integer; (Graph vertex (with possible in/out degree 1))
inRel real; (Reliability of edge into u}
outRel real; i(Reliability of edge out of u}
doubleRel :real;{Reliability of both edges in sequence}
initV integer; (Initial vertex of edge into u}
termV integer; {Terminal vertex of edge out of u}

167i

begin {InOutDeglRed}

for u:=1 to g.maxVertex do
if Cg.inDegree~u3 1) and (g.outDegree~ul 1) then

begin (Vertex u has in and out-degree 1. Eliminate it.}
inOutICt :=inOutICt + 1;
found true;

for j g.numEdges downto 1 do

if g.e~j) .stop = u then
begin {Tis is the edge into u.1
initV g.e~j3.start;

inRel g.e~jlpr;
Delete(g,j)

end; {This is the edge into u.1

for j:=g.numEdges downto 1 do

if g.e~jl~start =u then
begin {This is the edge out of u.1

termV g.e[jJ stop;

outftel g.e~j).pr;
Delete(g,j);
end; {This is the edge out of u.1

doubleRel :=inRel * outRel;
g.vert :=g.vert - [u];

if termV <> initV then

if termV in g.nb[initVj then
begin {Redo reliability of edge from initV to termV.}

for j:=1 to g.numEdges do
if (g.e[j).st.rt =initV) and Cg.e~j).stop = termV) then

g-e[j3.pr :=g.e~j].pr * (1 - doubleftel) + doubleRel;
end {Redo reliability of edge from initV to termV.}

else

begin {Construct a new edge from initV to termVj
g.numEdges :=g.numEdges + 1;

g.e~g.numEdgesj.start :tinitV;
g.e~g.numEdges].stop :=terraV;
geg.numEdgesl.pr :=doubleRel;
g.nbfinltV] : g.nb~initV) + CtermV];
g..inDegree~termV] g.inDegree~termV] + 1;
g.outDegree~initl] g.outDegreelinitVJ + 1;
end; {Construct a new edge from initV to termV}

exit;
end; {Vertex u has in and out-degree 1. Eliminate it.}

end; {DegTwoRed}

procedure Contract (var g:graph; newSink:integer);
(Contracts the sink of graph g into the vertex newSink.}

var
v integer; {Graph vertex)

j integer; (Graph edge}

inSink :integer; {Edge from v into the old sinkI
inNewSink :integer;{Edge from v into the new sinzk)

108~~

parallel :boolean; (True if an edge go from v to the newSink}

begin (Contract}

for v :=1 to g.maxVertex do
if (g.sink in g.nb~v)) then

begin {Tere is an edge from v to the sink. Change it.}
parallel :=false;

for j:=1 to g.numEdges do
if (g.e[jl start = v) and (g.e~j).stop =g.sink) then

inSink :=j
else if (g.e~jJ.start =v) and (g.e[j).stop =newSink) then

begin (There is also an edge from v to the newSink.}

parallel true;

inNewSink j
end; {There is also an edge from v to the newSink.1

if parallel then
begin (Eliminate edge (v,sink). Change reliability of (v,newSink)}
g.erinNewSinkj.pr :=g.e~inNewSinklpr * (1 - g.e[insink].pr)

+ g.e[inSinkj.pr;
Delete(g, inSink)
end (Eliminate edge inSink. Change reliability of inNewSink.}

else
begin fChange the edge inSink to have terminal vertex newSink.}

g.e~inSinkj.stop :=newSink;

g.inDegree~newSink] g.inDegree[newSinkj + 1;
g.inDegree~g.sink] g.inDegree~g.sink) - 1;
end; (Change the edge inSlnk to have terminal vertex newSink.}

g.nb~v) : (g.nb~v] + [newSink]) - [g.sink];

end;
g.vert g.vert - g.sink];
g.sink newSink;
CleanS ink(g);

end; {Contract}

function Connected (var g:graph) :boolean;
(Determine if the sink can be reached from the source (they're connected).)
var

comp :GraphSet; (Vertices so far reachable from the source}
u :integer; (Possible vertex in comp}
oldSet GraphSet; (Comp on the last pass through the graph}
changed boolean; (True when a new vertex is added to comp}

begin {BFS}

comp :E g source);

repeat

oldSet comp;
changed false;
for u:=1 to g.maxVertex do

if u in comp then
comp :=comp + g.nb(ul;

if comp <> oldSet then

changed := true

until not changed;
Connected := g.sink in comp

end; (BFS}

procedure SinkEdge (var g:graph;var k:integer;var initVert:integer);
{Find an edge k into the sink. Initial vertex is initVert.}

var
j : integer; {Edge number}

begin {SinkEdge}

for j:=1 to g.numEdges do

if (g.e[jl.stop = g.sink) then
begin
k := j;

initVert := g.e[j].start
end

end; fSinkEdge}

function Prob (g:graph) : real;

(Returns the reliability of the graph g.}

var

reducible boolean; {True if the graph was just reduced}
p : real; (Factor for the probability of the reduced graph}

markedEdge integer; (Edge used for factoring}

probEdge real; (Probability of edge used for factoring}

initVert integer; (Endpoint of factored edge}

pl : real; (Probability of g with edge removed}

begin (Prob}

p := 1.0;

repeat

reducible := false;

CleanUp(g);
if (g.source <> g.sink) and (g.indegree~g.sink) > 0) and

(g.outdegree[g.source] > 0) then
begin
SourceSinkRed(greduciblep);

if not reducible then
begin {No source or sink reduction was possible}

BackSimplify(greducible);
ForwardSimplify(g,reducible);

InOutDeglRed(g,reducible);

end
end

until not reducible;

if (g.source = g.sink) then

Prob := p

170

else if (g.indegree~g.sink) 0) or (g.outDegree~g.sourcel 0) then

Prob :=0

else

begin {Factor the graph -- no more reductions are possible}

SinkEdge~g ,markedEdge ,initVert);
probEdge :=g.e~markedEdge).pr;

Delete(g, markedEdge);

If not Connected(g) then

p1 0

else

p1 Prob(g);

Contract(g, initVert);
factorCt:= factorCt + 1;

Prob :=p*((I - probEdge) *p1 + probEdge *Prob~g))
end {Factor}

end; {Prob}

begin {Hain program}

ClrScr;
sourceSinkCt :=0;

inOutiCt 0;
factorCt 0;
getGraph(g);
timer :=seconds;

FindDegree Cg);
writein~outfile, Prob~g) 0 18, ' probability ');

timer :=seconds - timer;
writeln(outfile,'Time =', timer :0 2,' seconds');

writein~outfile, 'Numbe.r of source/sink reductions ',sourceSinkCt);

w,' teln(outfile,'Number of chain vertex reductions ',inOutICt);

-iteln(outfile,'Nuniber of times factoring theorem is used ', factorCt);

writein~outfile);
writeln(' The program has finished executing. Output for the program is');

writeln(' now in a file on disk. It is a text file which you may view with');

writeluC' the Turbo Pasca. editor or any other editor.');
writ eln:

writeln(' Press a key to exit this program.');

repeat until keypressed;
close(outfile)

end {Main progral}.

F.2 Dirprog - ANSI Pascal riau

{This is an ANSI Pascal version of the Turbo Pascal program Dirprog written
by Page and Perry }

program modprog (infile,outfile);

{ Programmers: Lavon Page and Jo Perry - Turbo Pascal version

Leonard Jansen - ANSI Pascal modifications

Infile.dat: A text file describing a directed graph with a source
and sink pair of vertices. All vertices are represented by integers

in the range of l..maxv. All edges are represented by their

endpoints followed by their reliabilities. The first line of the
file consists of the source then sink. Each subsequent line in the

file describes an edge. A maximum of "maxe" edges are allowed.

Outfile.dat: The first lines echo the input. The results of
execution of the algorithm come last. Included are the reliability

of the graph and execution statistics: number of single edge to
source or sink reductions, number of reductions of a vertex with

in-degree and out-degree 1, number of times factoring is performed.}

const
maxv = 150; (Maximum number of vertices in the graph}

maxe = 200; (Maximum number of edges}

type

degreeType = array [I..maxv] of integer; {List of vertex degrees}

graphSet = set of 1..maxv; {Set of vertices}
edge = record (Edge in a graph}

start, (Start vertex}
stop : 1..maxv; (Stop endvertex}

pr : real (Probability of the edgel

end; {edges}
graph = record {Dtscribes a graph}

vert : graphSet; (Set of grapb vertices}

source, (Source vertex}

sink : integer; (Sink vertex}
inDegree, (In degree of each vertex}

outDegree : degreeType; (Out degree of each vertex}

nb : array [1..maxv] of graphSet; (edge (ij) puts 3 in nb[i]}

numEdges : integer; (Number of edges in the graph}

maxVertex : integer; (Largest numbered vertex in the graph}

e : array [I..maxe] of edge (Describes all edges in the Zraph}

end; {Graphl

1-12

var

infile,outfile : text; {Input,Output text fulel

g : graph; (Network graphl

inOutiCt: integer; {#times an in- and out-degree 1 vertex is removedl

sourceSinkCt : integer; f# times the source,sink incident to 1 edgel

factorCt: integer; (1* times factoring is usedl

timer :real; (Measures execution timel

procedure GetGraph (var g:graph);

(Initialize the graph g from a text file. The first line of the file lists

the source and sink, Each subsequent line contains information about an

edge--its initial endpoint, its terminal one, and its probability. This

procedure does the i .rial parallel edge reduction on the graph.}

var
k integer; (Edge or vertex counterl

n integer; (Number of edge currently being readl

vCount :integer; (Number of graph verticesl

begin (GetGraph}

reset(infile);

rewrite(outfile);
vCount := 0;

n := 0;

g.maxVertex := 0;
g.vert := M1

for k := 1 to maxv do

g.nb[kJ := 0;
readln(infile,g.source,g.sink);
writeln(outfile,,'Source vertex ',g.source,' Sink vertex ',g.sink);

writeln(outfile);

while not eof(infile) do

begin (Read the endpoints and probability of each edge}

n n + 1;

readln(infile, g.e(nJ.start, g.e~nJ.stop, g.e~n).pr);

writeln(outfile,g.e[n).start:3 -- ---- ',g.e~n].stop:4,'rel ' :10,

g.e[n) .pr:9:4);

for k :=1 to n - 1 do

if (g.e[k] .start.:g.e[n) .start) and (g.e~k3.stopg.e~n).stop) then
begin (Edges n and k are parallel. Combine them into edge k.}

g e~k) .pr g.e~k) .pr*(1 - g.e~n) .pr) + g.e[n] .pr;

n :=n -1

end; (Edges n and k are parallel.)
if g.e~n.start > g.maxVertex then

g.maxVertex := g.e~n.start;

if g.e~n). top > g.maxVertex then
g.maxVertex := g~e(n).stop;

g.vert := g.vert 4 [g.e[nJ.start, g.e[n).stopl];

17.1

g.nb~g.elnl~startJ : g.nb[g.e[nJ.start) + [g.e[n)..stop);
end; {Read endpoints and probability of each edge}

g.numEdges := ;

close~infile);

for k:=l to g.maxVertex do

if k in g.vert then

vCount :=vCount, + 1;
write(outfile,'Number of edges =',g.numEdges);

writeln~outfile,' Number of vertices =',vCount);
end; {GetGraph}

procedure FindDegree (var g:graph);
{Determine the degree of every vertex in the graph g.}

var
i :integer; {Edge number}

begin {FindDegree}

for i:= I to g.maxVertex do

begin
g.inDegree~i] 0;
g.outDegree~iJ 0;

end;

for i :=1 to g.nuinEdges do

begin
g.outDegree~g. e~i] startj : g.outDegreerg.eri) .start) + 1;

g. inDegree (g. e Ci).stop] g. inDegree (g. e[i] .stop] + 1

end

end; {FindDegree}

procedure Delete (var g:graph; n:integer);

{Deletes edge n from the graph g. Degrees and neighbors are changed.}

var

u,v :integer; {Endpoints of the deleted edge}

j: integer; {Edge numberl

begin {Delete}

ui g.e~n].start;

v g.e~n).stop;

g.nb(u] :=g.nb~uJ - [v);

g-inDegree~v) g.inDegreerv) 1

g.outDegree~u] g.outDegree~u) -1;

for j :=n to g.numEdges-1 do
g.e~jl g.e[j + 13;

g.numEdges g.numEdges - 1;
end; {Delete}

procedure CleanSink (var g :graph);

{Remove all edges in g that have the sink as starting vertex.}

17 1

vrj integer; {Edge nurnber}

begin fCleanSink}
for j g.numEdges downto 1 do

if g.e~j].start =g.sink then

Delete (g~j);

end; {CleanSink}

procedure CleanSource (var g .,graph);

{Reiuove all edges in g that have the source as terminating vertex.}

var
j :integer; {Edge number}

begin {CleanSource}
for j :=g.numEdges downto 1 do

if g.e~j).stop =g.source then

Delete (g,j);

end; {CleanSource}

procedure CleanUp (var g~graph);

{Eliminates all dead end and false start vertices in g.1

var
reduced 1:boolean;{Set false if a dead end or false start vertex found!

u integer; {Graph vertexl
j integer; {Graph edgel

begin {CleanUp)

CleanSource(g);

CleanSink(g);
repeat

reduced :=true;
for u:=1 to g.maxVertex do

if Cu<>g.source) and (u>g.sink) then
if (g.inDegree~uj 0) or (g.outDegree~uJ 0) then

if Cu in g.vert) then
begin {eljminate vertex u}

reduced :=false;
f or j:=g.numEdges dounto 1 do

if (g.eE3).start =u) or (g.e~jl.stop =u) then

Delete(g,j);
g.vert :=g.vert - [u]
end; {eliminate vertex u}

until reduced

end; {Cl ~anUpl

procedure ForwardSimplify (var g:graph; var simplified:boolean);

(If one exists, eliminates a nonnecessary edge coming into a vertex and sets

simplified to true.}

1 7

var
v integer; (Initial vertex for an edge}

w integer; (Terminal vertex of edge out of v}

j integer; (Edge number}

begin {ForwardSimplify}

for v:=1 to g.maxVertex do

if (g.outDegree[v] = 1) then
begin {Look for edge antiparallel to the edge out of v.}

for j:=1 to g.numedges do

if (g.e[jl.start = v) then

w := g.e[j].stop;

for j:= g.numEdges downto 1 do

if (g.erj].stop = v) and (g.e[j],start = w) then
begin (Delete the antiparallel edge.}

Delete(g,j);

simplified := true
end (Delete the antiparallel edge.}

end (Look for edge antiparallel to the edge out of v.}
end; (ForwardSimplify}

procedure BackSimplify (var g:graph; var simplified:boolean);

{If one exists, eliminates a nonnecessary edge coming out of a vertex and
sets simplified to true.}
.ar

v integer; (Terminal vertex for an edge}

w integer; {Initial vertex of edge out of v}
j integer; (Edge number)

begin {BackSimplify};

for v:=1 to g.maxVertex do

if g.inDegree[v] = 1 then
begin (Look for edge antiparallel to the edge into v.}

for j:=1 to g.numedges do

if (g.e[j].stop = v) then

w := g.e[j].start;
for j:=g.numEdgez downto 1 do

if (g.e[j].start = v) and (g.e[jl.stop = w) then
begin (Delete the antiparallel edge.}

Delete(g,j);
simplified := true
end Delete the antiparallel edge.)

end (Look for (ige antiparallel to the edge into v.}

end; {BackSimplify}

procedure SourceSinkRed (var g:graph; var found:boolean; var factor:real);

{If the sink of graph g has in-degree 1, then it is merged into its
neighbor and the resulting sink is cleaned of out-edges. If the souce has

out-degree 1, then the parallel result occurs. Factor is returned an the

176

appropriate multiplying factor for the graph.}
var

j: integer; {Poss'ble edge incident to source or sink)

intoS-.nk :integer; {Edgt. -.nto the sink}
oat~fSource :integer; {Edge cut of the source}

oldSink :integer; {Original sink vertex}

oldSource :integer; {Original source vertex)

begin {SourceSinkRed}

found :=false;

if g.inDegree~g.sink] =1 then
begin {Merge the sink into its adjacent vertex.)

found :=true;
sourceSinkCt :=sourceSinkCt + 1;

for j 1= to g.numEdges do

if g.eQj).stop = g.sink then
intoSink j

factor factor *g.e~intoSink).pr;
oldSink g.sink;
g.sink g.e[intoSink].start;

Delete (g, intoSink);
g.vert :=g.vert - ColdSiaik];

CleanS ink(g);
end; {Merge the sink into its adjacent vertex.)

if Cg.outDegree~g.source3 1) and (g.source <> g.sink) then

begin {Merge the source into its adjacent vertex.1
found :=true;

sourceSinkCt :=sourceSinkCt + 1;

for j :=I to g.numEdges do

if g.e~j).start =g.source then
outOfSource 3

factor :=g.e[out~fSource).pr * factor;

oldSource g.source;
g.source g.e'LoutOfSource) .stop;

Delete(g,outOfSource);

g.vert :=g.vert - [oldSourcel;

CleanSource(g);
end; {Herge the source into its adjacent vertex.)

end; {SourceSinkRedl

procedure InOutDeg!Red (var g :graph; var found:boolean);

{G is scanned to find a vertex with in-degree and out-degree 1. If such a
vertex is found, it it removed and the resulting graph is simplified.)

var
ej:integer; (Graph edge)

u :integer; {Graph vertex (with possible in/out degree 0!)

inRel real; {Reliability of edge into u}

outRel real; {Reliability of edge out of u}
doubleRel :real;{Reliability of bcth edges in sequence)

initV :integer; {Initial vertex of edge into ul

termV :integer; {Terminal vertex of edge out of u}

begin (InOutDeglRed}

if e < 100 then
for u:='1 to g.maxVertex do

if (g.inDegree~u] =1) and (g.outDegree[u] = 1) then
begin (Vertex u has in and out-degree 1. Eliminate it.}
inOutiCt :=infutICt + 1;
found true;
for j g.numEdges downto 1 do

if g.e[jJ.stop = u then
begin (Tis is the edge into u.1

initV g.e[j].start;
inRel g.e~j].pr;
Delete(g,j)
end; (This is the edge into u.1

for j:=g.numEdges downto 1 do
if g.e[j].start = u then

begin (Tis is the edge out of u.1
termV g.e~jJ.stop;

outRel g.e[jlpr;
Delete(g,j);
end; (This is the edge out of u.1

doubleRel :=inRel * outRel;
g.vert :=g.vert - [u];
if termV <> initV then

if termV in g.nbtinitV] then
begin (Redo reliability of edge from initV to termV.}

for j:=1 to g.numEdges do

if (g.e[j].start = initV) and (g.e[j].stop = termV) then
g.e[j].pr :=g.e[j].pr * (1 - doubleRel) + doubleRel;

end (Redo reliability of edge from initV to termV.}
else

begin (Construct a new edge from initV to termVI
g.nurnEdges :=g.numEdges + 1;
g.e[g.numEdges].start initV;
g.e[g.numEdges].stop termV;
g.e[g.numEdges).pr :=double'tel;
g.nb[initVj : g.nb~initV] + [terrnV);

g.inDegree[termV] g.inDegree~termV) + 1;
g.outDegreerinitV] g.outDegree~initV) + 1;
end; {Construct a new edge from initV to termV}

end; (Vertex u has in and out-degree 1. Eliminate it.}
end; {DegTwoRed)

procedure Contract (var g:graph; newSink:integer);
(Contracts the sink of graph g into the vertex newSink.}
var

178

v integer; {Graph vertex}
j integer; {Graph edge)
inSink :integer; {Edge from v intoc~ he old sink}
inNewSink integer;{Edge from v into the new sink)
parallel boolean; {True if an edge go from v to the newSink}

begin {Contract}

for v :=1 to g.maxVertex do

if (g.sink in g.nb~v]) then
begin MTere is an edge from v to the sink. Change it.}

parallel :=false;
for j:=1 to g.numEdges do

if (g.e[J].start = v) and (g.e~j].stop =g.sink) then
inSink :zj

else if (g. eI(j] .start = v) and (g.e [j] .stop =newSink) then
begin MTere is also an edge from v to the newSink.}
parallel true;
inNewSink j

end; {There is also an edge fromf v to the newSink.}
if parallel then

begin (Eliminate edge (v,sink). Change reliability of Cv,newSink)j
g. e inNewSink .pr g. e inNewSink] .pr * 0I - g. e inSink .pr)

+ g.e~inSi.nk].pr;,
Delete~g, inSink)

end fEliminate edge inSink. Change reliability of inNewSink.1
else

begin {Change the edge inSink to have terminal vertex newSink.}
g.e~inSink).stop :=newSink;

g.inDegree[newSink] g.inDegree[newSi.nkj + 1;
g.inDegree~g.sink) g.inDegree[g.sink] - 1;
end; {Change the edge inSlnk to have terminal vertex newSink.1

g.nb[v] (g.nb~vJ + EnewSink]) - [g.sinkl;
end;

g.vert g.vert - g.sink);

g.sink newSink;
CleanSink(g);

end; {Contract}

function Connected (var g:graph) :boolean,
{Determine if the sink can be reached from the source (they're connected).)
var

comp :GraphSet; {Vertices so far reachable from the source)
u :integer; {Possible vertex in compj
oldSet GraphSet; {Comp on the last pass through the graph)
changed boolean; {True when a new vertex is added to comp}

begin {BFS}

comp := g.sourceJ;

repeat

oldSet :=comp;

179)

changed :=false;
for u:=1 to g.maxVertex do

if u in comp then
comp :=comp + g.nb[uJ;

if camp <> aldSet then
changed :=true

until not changed;
Connected :=g.sink in camp
end; {BFS}

procedure SinkEdge (var g:graph;var k:integer;var initVert:integer);
{Find an edge k into the sink. Initial vertex is initVert.}
var

j :integer; {Edge number}

begin {SinkEdge}
for j:=1 to g.numEdges do

if (g.e~j] .stop =g.sink) then
begin
k:=j
initVert :=g.e~jJ.start
end

end; {SinkEdge}

function Prob (g:graph) :real;
{Retarns the reliability of the graph g.}
var

reducible :boolean; {True if the graph was just reduced}
P { r.; Factor f or the probability of the reduced graph}
markedEdge :integer; {Edge used tor factozingl
probEdge real; {Probability of edge used f or factoringl
initVert integer; {Endpoint of factored edge}
p1 real; {Probability of g with edge removed}

begin {Prob}
P : 1.0;
repeat

reducible :=false;
CleanUp(g);
if (g.source <> g.sink) and (g.indegreerg.sink) > 0) and

(g.outdegree[g.source) > 0) then
begin
SaurceSinkfted(g,reducible .p);
it not reducible then

begin {No source or sink reduction was possible}
BackSimplify(g,reducible),
ForwardSimplify(g ,reducible);
InOutDegIRed~g~reducible);
end

1 80

end
until not reducible;

if Cg.source =g.sink) then
Prob :=p

else if (g.indegree[g.sink] 0) or Cg.outDegree~g.sourcel = 0) then
Prob :=0

else
begin {Factor the graph -- no more reductions are possible}

SinkEdge(g ,markedEdge ,initVert);
probEdge :=g.e[markedEdgelpr;

Delete(g, markedEdge);
If not Connected(g) then

p1 0

else

p1 Prob(g);
Contract(g, initVert);

factorCt:= factorCt + 1;
Prob :=p*((1 - probEdge) *p1 + probEdge *Prob(g))
end {Factor}

end; {Prob}

begin {Main programl
sourceSinkCt :=0;

inOutiCt 0;
factorCt 0;
getGraph~g);

FindDegree(g);
writein~outfile, Prob(g) :0 :18, probability 1);
writeln~outfile,'Number of source/sink reductions ',sourceSinkCt);

writeln~outfile,'Number of chain vertex reductions ',inOutiCt);

wztiteln(out-.i-e, 'Number of times factoring theorem is used 1, factorCt);
writ eln(outf ile);
close~outfile)

end {Main progran}.

181

F.3 Network Reliability Files

F.3.1 Network A Input File

39 40
1 2 1.0
3 4 0.3
5 6 0.7
7 8 0.5
9 10 0.8
11 12 1.0
13 14 0.3
15 16 0.7
17 18 0.6
19 20 0.8
21 22 1.0
23 24 0.3
25 26 0.7
27 28 0.5
29 30 0.8
31 32 0.8
33 34 0.7
35 36 0.3
37 38 1.0
39 7 1.0
39 3 1.0
39 5 1.0
39 1 1.0
8 27 1.0
4 27 0.6
4 9 0.3
6 21 1.0
6 17 1.0
2 23 1.0
2 25 1.0
2 27 1.0
10 19 0.6
10 21 0.7
18 29 1.0
24 29 0.7
26 29 1.0
20 29 0.6
22 29 1.0
30 11 0.3
30 13 0.6
30 15 0.7
12 27 0.6
14 27 0.6
16 27 0.3
28 37 0.6

I 82

28 35 0.6
28 33 0.3
38 31 0.3
36 31 0.6
34 31 0.7
32 40 1.0

P.3.2 Net work A Output File

*** neta *** 11/4/91 19:03

Source vertex 39 Sink vertex = 40

1 ---- 2 rel = 1.0000
3 ---- 4 re1 = 0.3000

5 ---- 6 rel = 0.7000
7 ---- 8 rel = 0.5000

9 10 rel = 0.8000

11 12 rel = 1.0000

13 ---- 14 rel = 0.3000

15 ---- 16 rel = 0.7000

17 ---- 18 rel = 0.5000
19 ---- 20 rel = 0.8000

21 ---- 22 rel = 1.0000

23 ---- 24 rel = 0.3000

25 ---- 26 rel = 0.7000

27 ---- 28 rel = 0.5000
29 ---- 30 rel = 0.8000
31 ---- 32 rel = 0.8000
33 ---- 34 rel = 0.7000
35 ---- 36 rel = 0.3000
37 ---- 38 rel = 1.0000
39 ---- 7 rel = 1.0000
39 3 rel = 1.0000
39 ---- 5 rel = 1.0000

39 ---- 1 rel = 1.0000

8 ---- 27 rel = 1.0000
7- 7 rl= 0.6000

4 ---- 9 rel = 0.3000

6---- 21 rel= 1.0000
6---- 17 rel = 1.0000
2 ---- 23 rel = i.0000
2 ---- 25 rel = 1.0000
2 ---- 27 rel 1.0000
10 19 rel 0.6000
10 -...- 21 rel 0.7000
18 ---- 29 rel 1.0000
24 ---- 29 rel 0.7000
26 ---- 29 rel = 1.0000
20 ---- 29 rel = 0.6000

22 ---- 29 rel = 1.0000

30 ---- 11 rel = 0.3000

30 ---- 13 .,!1 = 0.6000

30 ---- 15 rel = 0.7000

12 ---- 27 rel = 0.6000

14 ---- 27 rel 0.6000
16 ---- 27 -el 0.3000

28 ---- 37 rel 0.6000

181

28 35 rel = 0.6000
28---- 33 rel = 0.3000

38 31 rel = 0.3000
36 ---- 3t rel = 0.6000
34 ---- 31 rel = 0.7000

32 40 rel = 1.0000
Number of edges = 51 Number of vertices 40
0.15043267200 = probability

Time = 0.44 seconds
Number of source/sink reductions 7

Number of chain vertex reductions 37
Number of times factoring theorem is used 2

1 S5

F.3.3 Network B Input Fzle

46 47
14 15 0.80
14 17 0.80
18 17 0.50
18 19 0.50
16 1s 0.80
16 19 0.50
16 30 0.60
8 30 0.80
8 43 0.50

11 27 0.80
31 30 0.50
31 44 0.60
31 45 0.60
20 21 0.50
17 21 0.70
22 21 0.50
23 24 0.50
23 25 0.70

23 26 0.70
34 35 0.50
34 37 0.50
34 38 O.SO
25 30 0.70

25 39 0.50
32 30 0.70
28 29 0.80
11 30 0.80

36 35 0.60

36 37 0.60

36 38 0.60
36 39 0.60
36 40 0.60
36 41 0.60
36 42 0.60
36 43 0.60
36 44 0.60
36 45 0.60

2 14 0.70
4 18 0.15
6 16 0.03

13 31 0.04
15 20 0.40
19 22 0.01
21 23 0.70
24 34 0.11
26 32 0.06
27 28 0.09

I1.6

29 33 0.18
30 36 0.07
46 2 1.00
46 4 1.00
46 6 1.00
46 8 1.00
46 11 1.00
46 13 1.00
35 47 1.00
37 47 1.00
38 47 1.00
39 47 1.00
40 47 1.00
41 47 1.00
42 47 1.00
43 47 1.00
44 47 1.00
45 47 1.00

IN

F.3.4 N~h'ork B Output Fikt

*** netrel *** 11/4/91 21:25

Source vertex = 46 Sink vertex 47

14 ---- 15 rel = 0.8000

14 17 rel = 0.8000

18 17 rel = 0.5000

18 ---- 19 rel = 0.5000

16---- 15 rel = 0.8000

16 ---- 19 rel = 0.5000

16 ---- 30 rel = 0.6000

8 ---- 30 rel = 0.8000

8 ---- 43 rel = 0.5000

11 ---- 27 rel = 0.8000

31 ---- 30 rel = 0.5000

31 ---- 44 rel = 0.6000

31 --- 45 rel = 0.6000

20 ---- 21 rel = 0.5000

17 ---- 21 rel = 0.7000

22 ---- 21 rel = 0.5000

23 ---- 24 re = 0.5000

23 ---- 25 rel = 0.7000

23 26 rel = 0.7000

34 35 rel = 0.5000

34 37 rel = 0.5000
34 38 rel = 0.5000

25 ---- 30 rel = 0.7000

25 ---- 39 rel = 0.5000

j2 ---- 30 rel = 0.7000

28 29 rel = 0.8000

33 30 rel = 0.8000

36 ---- 35 rel = 0.6000

36 ---- 37 rel = 0.6000

36 ---- 38 rel = 0.6000

36 ---- 39 rel = 0.6000

36 ---- 40 rel = 0.6000

36 41 rel = 0.6000

36 42 rel = 0.6000

36 ---- 43 rel = 0.6000

36 ---- 44 rel = 0.6000

36 ---- 45 rel = 0.6000

2 14 rel = 0.7000

4---- 18 rel = 0.1500

6 ---- 16 rel = 0.0300

13 ---- 31 rel = 0.0400

15 ---- 20 rel 0.4000

19 ---- 22 rel 0.0100

21 ---- 23 rel 0.7000

24 ---- 34 rel 0.1100

26 ---- 32 rel = 0.0600

27 ---- 28 re1 = 0.0900
29 ---- 33 rel = 0.1800

30 ---- 36 rel = 0.0700
46 ---- 2 rel = 1.0000

46 ---- 4 rel = 1.0000
46 ---- 6 rel = 1.0000

46 ---- 8 rel = 1.0000

46 11 rel = 1.0000

46 ... 1 r tel = 1.0000
35 ---- 47 rel = 1.0000
37 47 rel = 1.0000

38 ---- 47 rel = 1.0000

39 ---- 47 rel = 1.0000

40 ---- 47 rel = 1.0000

41 ---- 47 rel = 1.0000
42 ---- 47 rel = 1.0000

43 ---- 47 rel = 1.0000

44 ---- 47 rel = 1.0000

45 ---- 47 re1 = 1.0000

Number of edges = 65 Number of vertices = 40

0.60116629875 = probability
Time = 58.00 seconds
Number of source/sink reductions 2838

Number of chain vertex reductions 4584

Number of times factoring theorem is used 3128

F.3.5 Network C Iput File

78 79
20 21 0.90
22 21 1.00
13 14 1.00
23 21 0.60
10 15 0.30
16 17 0.60
18 19 1.00
24 21 0.90
25 21 1.00
19 21 0.70
26 27 0.90
26 39 0.60
26 42 0.30

26 60 0.60
26 62 0.70

28 29 1.00
28 30 1.00
28 31 0.60
28 32 0.30
28 33 0.60

28 34 0.70
28 35 0.90

28 36 1.00
28 37 1.00
28 38 0.60
40 39 0.30
40 42 0.60
40 43 0.70
40 44 0.90

40 45 1.00
40 46 1.00
40 47 0.30

41 39 0.60
41 42 0.30
41 43 0.60
41 44 0.70
41 45 0.90
41 46 1.00
41 47 1.00
31 51 0.60
31 52 0.30
48 49 0.60
48 51 0.70
48 52 0.90
48 53 1.00
48 56 1.00
50 49 0.60

190

50 53 0.30
50 54 0.60
61 60 0.70
63 62 0.90
36 55 1.00
57 56 1.00
58 59 0.60

2 20 0.30
4 22 0.70
6 13 0.50
8 23 0.80

12 16 0.30
14 18 0.70
15 24 0.50
17 25 0.80
21 26 0.70
27 28 0.70
29 40 0.50
30 41 0.80
32 48 0.30

33 50 0.70

34 61 0.50
35 63 0.80

37 57 0.30
38 58 0.70

39 64 0.50
42 65 0.80

44 66 0.30

45 67 0.70
46 68 0.50

47 69 0.80
51 70 0.30
52 71 0.70
53 72 0.50

54 73 0.80

56 74 0.30

59 75 0.70

60 76 0.50

62 77 0.80

78 2 1.00
78 4 1.00
78 6 1.00
78 8 1.00
78 10 1.00
78 12 1.00
43 79 1.00
49 79 1.00
55 79 1.00
64 79 1.00
65 79 1.00
66 79 1.00

I 9 I

67 79 1.00
68 79 1.00
69 79 1.00
70 79 1.00
71 79 1.00
72 79 1.00
73 79 1.00
74 79 1.00
7S 79 1.00
76 79 1.00
77 79 1.00

1 92

F.3.6 Network (C Ottpul File

Source vertex = 78 Sink vertex = 79

20 ---- 21 rel = 0.9000
22 ---- 21 rel = 1.0000
13 ---- 14 rel = 1.0000
23 ---- 21 rel = 0.6000

10 ---- 15 rel = 0.3000
16 ---- 17 rel = 0.6000

18 ---- 19 rel = 1.0000

24 ---- 21 rel = 0.9000
25----- 21 rel = 1.0000
19 ---- 21 rel = 0.7000

26 ---- 27 rel = 0.9000
26 ---- 39 rel = 0.6000
26 ---- 42 rel = 0.3000
26 ---- 60 rel = 0.6000

26 ---- 62 rel = 0.7000
28 29 rel = 1.0000

28 ---- 30 rel = 1.0000
28 ---- 31 rel = 0.6000
28 ---- 32 rel = 0.3000
28 ---- 33 rel = 0.6000

28 ---- 34 rel = 0.7000
28 ---- 35 rel = 0.9000

28 ---- 36 rel = 1.0000
28 ---- 37 rel = 1.0000
28 ---- 38 rel = 0.6000

40 ---- 39 rel = 0.3000

40 ---- 42 rel = 0,6000

40 ---- 43 rel = 0.7000
40 ---- 44 rel = 0.9000
40 ---- 45 rel = 1.0000
40 ---- 46 rel = 1.0000
40 ---- 47 rel = 0.3000

41 ---- 39 rel = 0.6000

41 ---- 42 rel 0.3000

41 ---- 43 tel 0.6000
41 ---- 44 rel= 0.7000
41 ---- 45 rel 0.9000

41 ---- 46 rel = 1.0000
41 47 rel 1.0000

31 ---- 51 rel 0.6000
31---- 52 rel 0.3000
48 ---- 49 rel 0.6000

4 ---- 51 rel 0.7000
48 ---- 52 rel 0.9000
48 ---- 53 rel= 1.0000
48 ---- 56 rel 1.0000

193

50 ---- 49 rel = 0.6000

50 ---- 53 rel = 0.3000

50 ---- 54 rel = 0.6000

61 ---- 60 rel = 0.7000
63 ---- 62 rel = 0.9000

36 ---- 55 rel = 1.0000

57 ---- 56 rel = 1.0000
58 ---- 59 rel = 0.6000

2 ---- 20 rel = 0.3000
4 ---- 22 rel = 0.7000

6 ---- 13 rel = 0.5000

8 ---- 23 rel = 0.8000

12 ---- 16 rel = 0.3000

14 ---- 18 rel = 0.7000

15 ---- 24 rel = 0.5000

17 ---- 25 rel = 0.8000

21 ---- 26 rel = 0.7000

27 ---- 28 rel = 0.7000

29 ---- 40 rel = 0.5000

30 ---- 41 rel = 0.8000

32 ---- 48 rel = 0.3000

33---- 50 rel = 0.7000
34 ---- 61 rel = 0.5000

35 ---- 63 rel = 0.8000

37 ---- 57 rel = 0.3000

38---- 58 rel = 0.7000
39 ---- 64 rel = 0.5000

42---- 65 rel = 0.8000

44 ---- 66 rel = 0.3000

45---- 67 rel = 0.7000

46 ---- 68 rel = 0.5000

47---- 69 rel = 0.8000
51 ---- 70 rel = 0.3000

52 ---- 71 rel = 0.7000

53 ---- 72 rel = 0.5000

54 ---- 73 rel = 0.8000

56 ---- 74 rel = 0.3000

59 ---- 75 rel = 0.7000

60 ---- 76 rel = 0.5000

62 ---- 77 rel = 0.8000

78 ---- 2 rel = 1.0000
78 ---- 4 rel = 1.0000

78 ---- 6 rel = 1.0000
78 ---- 8 rel = 1.0000
78 ---- 10 rel = 1.0000

78 ---- 12 rel = 1.0000

43 ---- 79 rel = 1.0000

49 ---- 79 rel = 1.0000

55 ---- 79 rel = 1.0000

64 ---- 79 rel = 1.0000

65 ---- 79 rel = 1.0000

66 ---- 79 rel. = 1.0000
67 79 rel = 1.0000

68 ---- 79 rel = 1.0000
69 79 rel = 1.00C0
70 ---- 79 rel. 1.0000

71 79 rel 1.0000

72 79 rel = 1.0000
73 ---- 79 rel 1.0000

74 ---- 79 rel 1.0000
75---- 79 rel 1.0000
76 ---- 79 rel= 1.0000

77 ---- 79 rel = 1.0000
Number of edges = 109 Number of vertices = 73
0.615699291229248047 = probability

Number of source/sink reductions 31884
Number of chain vertex reductions 70208
Number of times factoring theorem is used 32239

19)5

Appendix G. Pascal Programs

Program Convert;
const

maxarc=125;

type
arcarray array~i. .maxarc) of integer;
nodearray array~l. .maxorcl. .2) of integer;
probarray array~l. .maxarc) of real;

var

p,c:arcarray;
prob:probarray;
pcarc ,node: nodearray;
arclimit~head,tail,arc,nodectr,nbra.n,f'in,k: kc~a,b,i,j ,m: integer;
..,urce ,sink: integer;
top,out,inp :text;

Procedure Inprob;
var i~j,k:integer;

begin
reset(inp);
for 1:= 1 to maxarc do

while not eof(inp) do
readln(inp,k,prob~k]);
arclimit:k
close(inp);
end;

Procedure RI;
var i~j:3nteger;

begin
assign~top, 'net.top');
reset (top);
nodectr:=1;

for i:= 1 to maxar.: do
begin

c[a) :=O;

for j:= 1 to 2 do

begin

pcarc~i,j]:= 0;

node i,j] :=0;
end;

end;

while not eof (top) do

begin

readln(top,a,b);

pcarc[L,1J :ma;

pcarc[i,2J :=b;

end;
abrin:=i-l;

close (top);
end;

Procedure Crc-ate;

var i,j:integer;

Procedure Findp;

var i:integer;
begin
kp:0O;

for i :=1 to nbrin do
if pcarc[i,2) arc then

begiAi
kp:=kp+l;

p~kp :=pcarc~i,i];
end;

end;

Procedure Findc;

var i:integer;
begin

kc:z=O;

for i:= 1 to nbrin do

if pcarc(i,13 = arc then

begin
kc:=kc+l;
cDkc):=Pcarc~i,21;

end;

end;

begin

nodectr:1I;
for j:= I to nbrin do

begin

arc:=pcarc Ej .1:;
if r,)de~arc,l] 0 then

begin;

head: =nodectr;
Findp;
for m:=1 to kp do

for i:=l o nbrin do
if pcarci,1)= p~m] thvii

begin

node Epcarc [i,23 1] .=head;
node~pcarc[i,1].2] :=head;

end;

-todectr :=nodectr+ 1;

end;
if node Earc,21 = 0 then

begin;

tail:=nodectr;
Findc;

for m:=l to kc do

for i:= I to nbrin do

Ipcarc[i,2] c~rn) then
begin

node~pcarc~i,1) .2 :=tail;
nodefpcarc~i,2) 1) :=tail;

end;

nodectr :=nodectr+l;
end;

end;

nodectr :=
"or i:= 1 to nbrin do

for 3:=l to 2 do

if nodeli, ii > nodeccr then
nodectr .=node~i~j];

for i := 1 to nbrin do

,f (node~i,l) > 0) and (node~i,2) 0) then~
begin
node~i,2) := nodectr-2;
fin :=x

end;
for :- 1 to fin do

if nodefi,1J = 0 then

node~i,l] :-- nodectr+1;
end;
(* Main Prograr *

Beg in
assign(out, 'retrel');

assign(inp, 'prob.f');

rewrite(out);
Inprob;

RI;

Create,

source: =nodectr+l;
sink: =nodectr+2;

writeln(out,source:2, 2 ,sink:2);

for m:= 1 to fin do
writeln(out,node(m,11:2,' ',noderm,2J:2,' ',probllml:3:2);

close~out)-,

end.

G.2 Capii~v

Program Capinv;

const

inaxpath =200;
maxarc =85;

type

network = array i. .maxpath,i. .maxarc] of integer;
path =array[1. .maxpath] of integer;
arc arrayl. .saxarc) of real;

var

arcpath network;

cap,prob arc;

arclinit, pathJlimit :integer;
bud,inv :real;

pfile, cf ile~pathfile,gams :text;

Procedure Getprob; {Reads in arc probabilities into array prob[i)}
var i,k:integer;

begin

reset(pfile);
arclimit:;
for i:=l to maxarc do
begin

probE-3 :=O

end;

while not eof(pfile) do
begin
readln(pfile,k.prob~k));

arclimit:=arclimit+i;

end;

close(pfile);

end;

Procedure Getpaths; {Reads network paths into array arcpath~i,jJ}
var i,j :integer;

begin {read paths into array arcpath}
reset(pathfile);

pathlimit:= -1;
for 1 = to niaxpath do

begin finitialize}

for I to inaxarc do

arcpath~i,j) :0;

end; {initialize}
while not eof(pathfile) do

begin {read path number}

read(pathfile, i);

pathliinit :pathlimit+1;

while not eoln(pathfile) do
begin {read arcs(j) in path(i)}

read(pathfile ,j
arcpath~i,j] : 1;
end; {read arcs}

end; {read path nuniber}

close(pathfile);
end; {reaid paths into array arcpath}

Procedure Getcap; {Reads in arc capacities into array cap~i)}
var i,k:integer;

begin

reset(cfile);
for i:= to inaxarc do
cap~il :=O;
while not eof(cfile) do

begin
readln(cfile,k,cap~k]);

end;
close(cfile);

end;

Procedure Makegans;
var i,j:integer;

begin

assign(gans, 'capinv.gms');

rewrite (gains);
writeln(gans, 'SOFFSYHXREF OFFSYMLIST');
writeln(gams);

writeln(gans, 'SETS');
writeln(gams,' I arcs 1I * ',arcliniit,'/');
writeln(gams,' J paths 11 * ',pathlimit,'/;');
writeln(gans);

writeln(gams, 'PARAMETERS');
writeln(gams);

writeln(gams,' UMI arc capacities));
writeln(gams.' /');
for i:= 1 to arclimit do

writeln(gams~i:2,cap[i) :6);

writeln(gamsl /1)

writeln(gans);
writeln(gans,' PCI) arc probabilities');
wr-teln(gams,' /');

201

for i:=1 to arclinit do
writeln(gams,i:2,prob[i) :5:2);

writeln(gams,' /');
writeln(gans);
writeln~gais,' A(I,J) arc-path matrix');

uriteln(gans,' /I'

for j := 1 to arclimit do

begin
for i 1= to pathlimit do

begin

if arcpath[i,j] > 0 then
writeln(gams,j:2,'.',i:l,arcpath[i,jJ:2);

end

end;

writeln(gams,' I;)
writeln~gams);

writeln(gams,'SCALAR C cost of incr arc cap by 1 / ,inv:4,' ;)
writeln~gp.ns,'SCALAR B total budget available / ',bud:8,' ;)

writeln(gams);

writeln~gams,'PARAMETER R(3 path reliabilities ;)
writeln(gams);

writeln(gams,' R(J) =PROD(I $ A(I,J), P(I)) ;1)

writeln(gams);

writeln~gams, 'VARIABLES');
writeln~gams,' X(I) arc cap increase ');
writeln(gams,' FCJ) flow on path J3 ');
writeln~gams, Z network lower bound mnaxflo ;');

writeln~gams);
writelngais, 'POSITIVE VARIABLES F,X ;1);
writelngans);

writeln(gams, 'EQUATIONS');
writeln(gams);
writelngans,' MAXFLO');

writelngans,' PATHFLOCI)');
writelngans,' BUDGET ;');

writeln(gais);

writeln(gazns,'NAXFLO .. Z =E= SUMO3, R(J)*F(J)) ;');
write~gams,'PATHFLO(I)$CU(I) ne 0) .. ;

write~gams,'SJHCJ $ ACI,J), FCJ)) =L= UCI)+XCI) ;');
writeln(gams);
writeln(gams,'BUDGET .. SUNCI, C*XCI)) =L= B ;');

writeln(gaus);
;:iiteln(gams,'MODEL CAPINV /ALL/ ;');

writeln~gains);
writeln~gams,'OPTION LINROW =0');

writeln(gans);

writeln~gains,'SOLVE CAPINV USING LP MAXIMIZING Z ;');
writelngais);

writeln(gams, 'DISPLAY X.L,F.L ;');

close(gams);

end;

202

(Main Program *

Begin
assign~pfile, 'prob.f');
assign~pathfile, 'path.!')'
assign~cfile, 'cap.!');
write('Enter cost of increasing unit of capacity')
read(inv);
writ el;
write('Enter total budget ');

read(bud);
Getprob;
Getpaths;
Getcap;
Makegans;
End.

21rt

G.3 Iklinv

Program Hueristic;

const
maxpath =200;
maxarc 85;

type
network =array El. .maxpath,l. .maxarc) of integer;
path =array El. .naxpathJ of integer;
arc array El. .naxarc) of real;

var
arcpath :network;
impind,prob :arc;
card, np :path;
arclimit, pathlimit :integer;
cap,inv :real;
pfile, pathfile,gams :text;

Procedure Getprob; {Reads in arc probabilities into array prob~iJ}
var i,k: integer;

begin
reset (pf ile);
arclimit:=0;
for i:=l to inaxarc do
begin
prob~i) :0;
end;
while not eof(pfile' do

begin
readln(pfile,k,prob~k]);
arclimit:=arclirnit+l;
end;

close (pf ile);
end;

Procedure Ge~paths; (Reads network paths into array arcpath~i.j)}
var ij:integer;

begin {read paths into array arcpath}
reset(pathfile);
pathlimit:= -1;
for i := to maxpath do

begin {initializel
card Eu :0;

201

for j 1 to maxarc do
arcpath~i,j :0O;

end' {initializel
while not eof(pathfile) do

begin {read path number}
read(pathfile,i);

while not eoln(pathfile) do
begin {read arcs~j) in path~i)}
read(pathfile ,j
arcpath~i,j] : 1;
card[iJ : card~ij + 1;
end; {read arcs}

end; {read path nuniber}
closek'pathfile);

end; {road paths into array arcpath}

Procedure Computenp
var ilk: integer;
begin
for k:= 1 to pathlimit do finitialize np}
np[k] :0;
for k:= 1 to pathlimit do

for i:= 1 to pathlimit do
if card Ek] =card Ei] then

np~kj:= np[kJ+1;

end;

Procedure Coniputeii

var i,J:integer; cardsq:path;

begin
for j:= I to arclimit do (initialize impind}

impind(j]:= 0;
for i:= 1 to pathliiit do {square card arrayl

cardsqi]: card[i]*card [i];
for j:= 1 to arclimit do

for i:= 1 to pathimit do
impind[j]:= impind~jj +

(arcpath~l,j2/(npli3*cardsqi))*1000;
end;

Procedure Makegans
var i:integer;

begin
assign(gams, 'relhuer.gms');
rewrite(gams);
writeln(gams, '$OFFSYMXREF OFFSYMLIST');
writeln(gams);

205

vritelngans, 'SETS');
writelngans,' I arcs /1 * 'arclimit,'/;');
writein (gains);
writelngans, 'PARAMETERS');
writelngans);
writeln~gams,' RCI) arc reliability index');
writelngans,' '
for i:= 1 to arclimit do
writeln~gans,i:2,inipind~i] :8:4);
writelngans,' P);
writelin (gains);
writeln~gans,' PCI) arc probabilities');
writelngans,' /1);
for i:=1 to arclimit do
writeln~ganis,i:2,prob[iJ :5:2);
writeln(gans,' I')
writelngans);
writeln~ganis,'SCALAR C cost of incr arc rel by .1 / ,inv:4,' ;)
writeln~gains,'SCALAR B total budget available / ,cap:8,' ;)
writelin (gains);
writelngans, 'VARIABL.ES');
writeln~gans,' X(I) arc rel increase ');
writelngans,' Z objective f or rel index ;');

writeln(gans);
writaln~gams,'POSITIVE VARIABLE X;');
writ ein (gains);
writelngans, 'EQUATIONS');
writeln (gains);
writeln (gains,' MAXINDEX');
writelngams, ' RELCI);
writeln~gans,' BUDGET ;');
writeln~gwns);
writeln~gains,'MAXINDEX .. Z =E= SUM(I, RCI)*CPCI)+XCI))) ;)

writeln~gains.'RELCI) PCI)+C.1*XCI)) =L= 18)

wrateln~gaxns,'BUDGET SUNCI, C*X(I)) =L= B ;)
writelngais);
wrateln~galns,'MODEL RELHUER fALL! ;');
writelngams);
writeln~gains,'OPTION LIMROW =0');
writelngans);
writeln~ganis,'SOLVE RELNUER USING LP MAXIMIZING Z ;)

writeln (gains);
writeln~gains,'DISPLAY XL ;');
close (gains);
end;

(Main Program *

Begin
assign~pfile, 'prob.f');
assign~pathfile, 'path.f');

206

write(C'Enter cost of increasing .1 units of survivability)
read(inv);
writ el;
write(QEnter total budget 1);
read Ccap);
Getprob;
Getpaths;
Computenp;
Computeii;
Makegams;
End.

207

Appendix H. Graphical Network Analyzer (GNA) User's Guide (for

Sun workstations)

by Andrew Jaffee August 22, 1991

Contents

e Starting GNA

* Drawing normal nodes

* Drawing queuing nodes

e Drawing arcs

e Drawing routes between queuing nodes

* Undoing your last draw operation (queues, nodes, and routes)

9 Saving the network you've drawn

* Navigating in GNA windows

* Analyzing the network with an operations research (OR) model

* FORMULA

* Displaying all paths through the network

* Displaying all bottlenecks (arcs/nodes) in the network

* Displaying capacity improvements

* Displaying reliability improvements

* Displaying overall network performance information

* QNA (Queuing Network Analyzer)

9 Displaying all bottlenecks in the network

* Displaying customers in nodes

* Displaying other congestion/performance measures

* Displaying overall network performance information

* Navigating in GNA windows

* Starting GNA

Type <gna> at your UNIX system's prompt. The network drawing screen and
menu will appear. Click left with the mouse to get started.

208

* Drawing normal nodes

With the mouse, click on <node>, then click on <place normal>. A win-
dow will appear in the lower left-hand corner of the screen. This is the input box.
The input box appears when you need to input data and disappears when you're
done. First, you will be prompted to enter the node's reliability. Enter it and press
<return>. If ycu entered a percentage of less than 1.0, you will be prompted to
enter the cost of increasing one unit of reliability in the node. Type it and press
<return>. You will be prompted to enter the node's capacity. Enter * if the node
has infinite capacity or some real number if less than infinite and press <return>.
If the capacity is finite, you will be prompted to enter the cost per unit increase of
capacity in the node. Enter it and press <return>. You will be prompted to enter
whether this node is continuous(c) or discrete(d). Enter c or d and press <return>.
If you pressed d, you will be asked to enter the node's capacity increase. Enter it
and press <return>. Now place the cursor on the screen where you want to position
the node and click. The node will appear. To label the node, click <new>, then
<label>. Place the cursor where you want the label and click left.-To draw a new
node, click on <new>, then <place normal>, and repeat the steps described earlier.
When finished drawing nodes, click on <quit>., The main menu will reappear.

* Drawing queuing nodes

With the mouse, click on <node>, then click on <place queue>. The input
window will appear in the lower left-hand corner of the screen. First, you will be
prompted to enter the node's service rate. Enter it and press <return>:. Then you
will be prompted to enter the node's service rate variability. Enter it. and press
<return>. Then you will be prompted to enter the number of servers at the node.
Enter it and press <return>. Now place the cursor on the screen where you want
to position the node and click. The node will appear. To label the node, click
<new>, then <label>. Place the cursor where you want the label and click left.
To draw a new node, click on <new>, then <place queue>, and repeat the steps
described earlier. When finished drawing nodes, click on <quit>. Then main menu
will reappear.

* Drawing arcs

Click on <arc> and then on <place>. The input window will appear. Enter
arc data as you did in Drawing normal nodes. Now move the cursor over the origin
node for this arc and double-click. Double-click on the terminal node for this arc and
the arc will appear. To label the arc, click <new>, then <label>. Place the cursor
where you want the label and click left. To draw another arc, click on <new>, then
<place>, and repeat the steps described earlier. When finished drawing arcs, click
on <quit>. Then main menu will reappear.

D Irawing routes between queuing nodes

209

From the main mena, click on <path>. The input window will appear prompt-
ing you to enter the route's arrival rate and variability parameter. Enter them.
Double-click on the first node in the path, then double-click on the second node,
double click and the third node, ... When you've double-clicked on the last node in
the path, click on <done> in the route dialog box. To draw a cycle, double click
twice on the same node, Then you can draw another path by clicking on <new>
and then <path> or exit by clicking on <quit>.Undoing your last draw operation
(queues and nodes)

* Undo

If you draw a node or arc badly, accidentally, or you change your mind, you
can fix it. From your menu, pick the <undo> command, and the last node or arc
drawn will be deleted from the network drawing area. The network data base will
also be corrected. Remember, this operation will only remove your most recently
drawn node or arc.

* Saving the network you've drawn

Click on <save>, the input window will appear prompting you to "ENTER
FILE NAME:". Type the file name and hit <return>. The network will be saved
in the file you named in the current directory.

• Analyzing the network with an operations research (OR) model : FORMULA

You can analyze your network using the FORMULA model and the LP/MIP 83
and GINO linear/nonlinear/mixed-integer programming packages. From the main
menu, pick <new> then <model>. The model menu will appear. Pick <formula>
and then <convert>. The input window will appear. You will be prompted to
enter the budget for improving the capacity and the budget for improving the re-
liability of the network drawn on screen. Now open a DOS window and enter api
at the DOS prompt. The ARITY/PROLOG interpreter will appear. Type con-
sult('formula2.ari'). at the ?- prompt and hit <return>. Then type go. and hit
<return>. FORMULA will prompt you to enter your GNA data file name. Type
forrn.in.ari and hit <return>. Now you will see a menu giving you several choices as
to how to analyze your network. Pick 1 for Find all paths and calculate reliabilities.
You will be asked where you want output to go. Pick 2 for File. To see all paths
through the network graphically, see Displaying all paths through the network be-
low. FORMULA now asks you if you want continue execution, type y and the main
menu will reappear. Pick 3 for Generate the Lower Bound Formulation. You will be
asked where you want output to go. Pick 2 for File. Now open another DOS window
and enter the command bottle at the DOS prompt (this is a batch file containing
the command line lp83 output3.lp marginanalysis yes > Jp83.out). This invokes the
program LP83 to find, among other things, all bottlenecks in your network. To see
all bottlenecks graphically, see Displaying all bottlenecks (arcs/nodes) in the net-
work below. FORMULA now asks you if you want continue execution, type y and
the main menu will reappear. Pick 5 for Generate Investment Strategy Model I.

210

You will be asked where you want output to go. Pick 2 for File. In your other
DOS window enter the command capacity at the DOS prompt (this is a batch file
containing the command line lp83 output5.lp urargii:analysis yes > lp83.out). This
invokes the LP83 program to find, among other thir.s, all arcs in the network that
need capacity improvement and the suggested capacity improvements. To see these
suggested improvements graphically, see Displaying -apacity improvements below.
FORMULA now asks you if you want continue executin, type y and the main menu
will reappear. Pick 7 for Generate Investment Strategy Model 3. You will be asked
where you want output to go. Pick 2 for File. In your other DOS window enter the
command gino. A colon will appear. Type retr output7.iilp and hit <return>. Type
divert and hit <return>., You'll be prompted for a file name. Type gino.out and hit
<return>. Type go and hit <return>. When the colon reappears, type quit and
hit <return>. These actions will solve the Model 3 formulation to find network ele-
ments that need reliabi!;ty improvement along with suggested improvements. To see
these suggested improvenients graphically, see Displaying reliability improvements
below. You have several other options when running FORMULA. You can generate
the maximum flow and upper bound formulations. You can also generate three in-
vestment strategy models for improving network performance. These formulations
can be solved using the commercial packages LP/MIP 83 and GINO. Please consult
the FORMULA, LP/MIP 83, and GINO documentatiop to see how to use these
packages.

* Displaying all paths through the network

Now move the mouse back from the DOS window into the GNA window. Pick
<new> then <paths>. The first path through the network will appear. Its reliability
and flow will be shown in the paths dialog box. Click <next> to sec the next path
or <done> to quit., Pick <quit> to <return> to the main menu.

* Displaying all bottlenecks (arcs/nodes) in the network

Now move the mouse back back from the DOS window into the., GNA window.
Pick <new> then <bottlenecks>. All bottlenecks will be displayed in the network.
Each node or arc that is a bottleneck will have the following symbol next to it.
Click on <done> in the bottlenecks dialog box to continue.Displaying capacity im-
provements. Now move the mouse back back from the DOS window into the GNA
'vindow. Pick <new> then <capacity>. All nodes and arcs that need capacity
improvement will be displayed in the following manner. The labels of the elements
being improved will reflect the new values. GNA displays network nodes and aics in
sizes that correspond to their capacities. An improved element will have the newly
sized clement displayed in green with the original element superimposed over it. For
example, Click on <done> in the capacity improvements dialog box to continue.
Displaying reliability improvements. Now move the mouse back back from the DOS
window into the GNA window. Pick <new> then <reliability>. All nodes and arcs
that need reliability improvement will be displayed in the following manner. The

211

labels of the elements being inproved will reflect the new values. Elements will be
colored as follows: reliability (p) >= 0 and p <= 0.5 will be red, p >= 0.5 and p
< 1.0 will be orange, and p = 1.0 will be black. Click on <done> in the reliability
improvements dialog box to continue.

QNA (Queuing Network Analyzer)

You can analyze a queuing network using QNA. After you've draw your queuing
network, with nodes and routes, pick <model> from the main menu. From the model
menu that appears, pick <qna>. The qna menu will appear. Go to another UNIX
window and enter the command qna < qna.in > qna.out. QNA will execate and
place output containing the analysis of your network into a file named "qna.out".

* Displaying all bottlenecks in the network

Now move the mouse back back from the UNIX window into the GNA window.
Pick <new> then <bottlenecks>. All bottlenecks will be displayed in the network
as they were under FORMULA (above). Click on <done> in the bottlenecks dialog
box to remove bottleneck symbols.

a Displaying customers in node queues

I:ck <new> then <queues> to display the customers in each node's queue.
You will see dots lined up in each queue representing the number of customers
in the queue. Visually, queues will look like the tollowing: Click on <done> in the
queues dialog box to remove queue symbols.Displaying other congestion/performance
measuresSimilarly, you can click on <times>, <rates>, <visits>, and <traffic> to
see sojourn times .t nodes, arrival and departure rates to and from nodes, expected
number of visits to nodes, and traffic intensities at nodes, respectively. When finished
viewing each, click on <done> in fhe respective dialog box.

* Displaying overall network performance information

Pick <new> then <performance>. A window will appear displaying textual
and symbolic representations of network throughout, flows in and out of the network,
expected total number of customers in the network, and expected total sojourn time
in the network. Click on <close> when done viewing this data.

s Navigating in GNA windows

You can change the vantage point frmin which you see the graphics images on
screen. This can be done to back away from an image to see the whole thing, or
to zoom in to get a closer look. You can also rotate images around three axes. To
do these things, pick <camera> from the main menu. The menu options should be
self-explanatory.Exiting GNA: Click on <quit> from the main menu.

212

Bibliography

1. Abraham, J.A. "An Jmprov'4d Algorithm for Network Reliability,"IEEE Trans-
actions on Reliability, Vol. R-28, No. 1: 58-61 (April 1979).

2. Aggarwal, K.K. --Integration of Reliability and Capacity in Performance Mea-
sure of a telecommunication Network," IEEE Transactions on Reliability, Vol.
R-34, No. 2: 184-186 (June 1985).

3. Aggarwal, K.K. and K.B. Misra "A Fast Algorithm for Reliability Evaluation,"
IEEE Transactions on Reliability, Vol. R-24, NO. 1: 83-85 (April 1975).

4. Arity Corporation, The Arity/Prolog Language Reference Manual. Concord,
Massachusetts, 1988.

5. Bailey, T. G.Response Surface Analysis of Stochastic Network Performance. MS
thesis, AFIT/GOR/ENS/88D-01. School of Engineering, Air Force Institute of
Technology (AU), Wright Patterson AFB, OH, December 1988 (AFD-A202561).

6. Borland International, The Turbo Pascal Version 5.0 User and Reference
Guides. Scotts Valley, California, 1989.

7. Brooke, A. and others. GAMS a User's Guide. Redwood City, C ,': The Scientific
Press, 1988.

8. Brown, D. B. "A Computerized Algorithm for Determning the Reliability of
Redundant Configurations," IEEE Transactions on Reliability, Vol. !?-20, No.
9:121-124 (August 1971).

9. Buchanan, J. T. and I. .', "Daellenbach. A Comparitive Evaluatio, of Inter-
active Solution Methoc ior Multiple Objective Decision Models," .i%,ropean
Journal of Operational Research, Vol. 29, No. 3. 353-359 (June 1987).

10. Committee on the N,- . Decade in Operatior s Research. "Operations research:
The NexL D-cade," Operations Research, Vol. 36, No. 4: 619-637 (July-August
1988).

11. Evans, G. W. "An Overview of Techniques for Solving Mult~objectivc Mathe-
matical Programs," Management Science, Vol. 30, No. 11: 1268-1282 (Novem-
ber 1984).

12. Gaught, W. L. Improving Reliability in a Stochastic Communication Network.
MS thesis, AFIT/GSO/ENS/90D- 10. School of Engineering, Air Force Institute
of Technology (AU), Wright Patterson AFB 011, December 1990.

13. Heidtmann, K. D. "Smaller Sums of Disjoint Products by Subproduct Inver-
sion,"IEEE Transactions on Reliability, Vol. 38, No. 3 305-311 (August 1989).

213

14. JaTee, A. and Y., Chan The Graphical Network Analyzer: A Computer Graph-
ics Package for Stochastic and Deterministic Network Analysis in Operational
Sciences. Preliminary ieport presented at the 4th International Conference on
Computer Graphics and Descriptive Geometry, Miami, Florida, 1990.

15. Jain, S.P. and K. Gopal, "A Hueristic Method of Link Reliability Assignment
for Maximal Reliability," Microelectronics Reliability, Vol. 30, No. 4: 673-679
1990.

16. Li, V. 0. K. and J. A. Sylvester "Performance Analysis of Networks with Un-
reliable Components," IEEE Transactions on Communications, Vol. COM-32,
No. 10: 1105-1110 (October 1984).

17.. Locks, M., 0. "A Minimizing Algorithm for Sum of Disjoint Products,"IEEE
Transactions on Relaibility Vol. R-36, No. 4: 445-453 (October 1987).

18. Page, L. B. and J. E. Perry "Reliability of Directed Networks using the Fac-
toring Theorem," IEEE Transactions on Reliability, Vol. 38, No. 5: 556-562
(December 1989).,

19. Provan, S. J. and M. 0. Ball "Computing Network Reliability in Time Polyno-
mial in the Number of Cuts," Operations Rcsearch, Vol. 32, No. 3: (May-June
1984).

20. Seo, F. and M. Sakawa. Multiple Criteria Decision Analysis in Regional Plan-
ning. Dordrecht, Holland: D. Reidel Publishing Company, 1988.

21. Shin, W. S. and A. Ravindran "Interawtive Multiple Objective Optimization:
Survey I - Continuous Case," Computers and Operations Research," Vol. 18,
No. 1: 97-114 (1991).

22. Wood, K. R. "Factoring Algorithms for Computing K-Terminal Network Reli-
ability," IEEE Transactions on Reliability, Vol. R-35, No. 3: 269-278 (August
1986).

23. Yim, E. Improving the Surcivability of a Stochastic Communication Network.
MS thesis, AFIT/GOR/ENS/88D-01. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH,December 1988 (AD-A202872).

24. Yim, E. and others. Exact and Approximate Improvement to the Throughput of
a Stochastic Network. Submitted to Joint Meeting of the Operations Research
Society and the Institute of Management Science, Vancouver, 13. C. Canada,
May 1989.

25. Zcleny, M. MCDM:Past Decade and Future Trends. Grenwich, Connecticut: JAI
Pres Inc, 1984.

214

