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Abstract

This research involved the design and VHDL implementation of a content-
addressable memory to exploit structural locality. The concept of structural locality is
that memory locations are referenced in the same order as they were previously refer-
enced. Therefore, if memory locations that exhibit structural locality can be made avail-
able to the CPU through a fast data store, an increase in speed of the computer system can
be realized.

A content-addressable memory (CAM) cache was used to supply data to an on-
chip cache that acts as this fast data store. The CAM is described in this study and is a
member of a two-cache memory hierarchy. Its purpose is to store memory references in
the order they were used by the CPU and prefetch these locations to a smaller on-chip
cache for fast processing. The CAM emulates an LRU stack by using a FIFO circular
buffer algorithm to store the memory references. When the CPU references a location
that is stored in the CAM, the CAM prefetclies memory locations in a FIFO manner, thus
allowing the on-chip cache to capture structural locality into its memory.

A fully-associative content-addressable memory was used in this study. This type
of memory allows its contents to be searched in parallel. When a search is successful, the
contents of the memory location are read and a top-of-stack pointer is incremented to read
successive memory locations from the CAM array. A bottom-up design approach was
used to build this cache. Basic digital logic circuits were implemented in VHDL and
were the building blocks for the model. Using these basic components, the major compo-
nents that make up the controiler were made. The controller, which controls the
prefetching of structural locality, was then integrated onto the chip model containing a

fully-associative CAM array.




A CACHE DESIGN TO EXPLOIT STRUCTURAL LOCALITY

1. Introduction

Overview

A computer’s main memory is very important in the support of the operating sys-
tems and the users. The technologies of the 1950s and 1960s made it very expensive to
have an adequate amount of this main memory. Conversely, secondary storage is rela-
tively inexpensive and has a much greater capacity than main memory. Unfortunately,
secondary storage has a much slower access speed. As a result, the idea of a memory hi-
erarchy was introduced. Initially, the hierarchy consisted of main memory and secondary
storage. Main memory was used to store the instructions and data of an executing pro-
gram, while secondary storage held programs and data that were not immediately needed.
Since main memory was more expensive, it was generally smaller than secondarv stor-
age. (4:188)

Cache memory was introduced in the 1960s and formed additional levels o." the
memory hierarchy. Cache memory is very fast storage designed to increase the speea of
running programs. The ideal memory system would be one that holds infinitely large
files, has an infinitesimal access time, and is free! Unfortunately, this is not possible, but
cache memory is the next best thing. Using the concept of locality (explained below),
caches simulate a larger memory by storing data that are frequently used by the central
processing unit (CPU). Although a zero effective access time is not technologically pos-

sible, caches are much faster than main memory and secondary memory. Also, since
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caches are composed of faster, and thus more expensive memory, only relatively small
caches are economical.

A side effect of memory hierarchies, to which caches add another level, is data
shuttling. Shuttling occurs when data are transferred from one level of hierarchy to an-
other. This decreases the efficiency of the CPU (4:188). If shuttling can be decreased
and access time to memory can be significantly reduced, the CPU could be much more
productive. Cache memories are used exclusively to reduce access time. This thesis will
focus on caching between the CPU and main memory.

Although caches are small, the memory hit-ratio on these caches can be extremely
high due to the concept of locality. The most widely recognized aspects of locality are
spatial and temporal. Spatial locality implies that if a memory location is referenced,
then it is likely that the memory locations nearby in the virtual memory address space will
also be referenced. Temporal locality means that if a memory location is referenced, then
it is likely to be referenced again in the near future. Exploiting locality results in an in-
crease in efficiency of the CPU and faster turnaround of executing programs.

In addition to the well known spatial and temporal aspects of locality, Hobart has
identified a third aspect, which he has called structural locality (9). This type of locality
is defined as the tendency of an executing program to reference memory locations in the
same order in which they were previously referenced. Thus, if memory references were
placed on a stack in the order in which they were referenced, a reference to a particular
memory location in the stack increases the probability of subsequent accesses to memory
locations immediately above it in this stack.

A software model using VHDL (Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language) of a content-addressable memory (CAM) with an inte-

grated structural locality cache (SLC) controller will allow further investigation into




structural locality with much greater flexibility than with a hardware prototype. The
VHDL model can be changed to test a desired behavior, whereas an actual realization in
hardware is much more difficult to alter. Although CAMs have previously been de-

signed, this researcher has not found one that has been modeled using VHDL.

Problem Statement

The problem addressed in this thesis is the design of a prefetching memory system
to exploit the aspects and benefits of structural locality. The goal of this thesis effort was
to design a main system cache that supports structural locality prefetching to a smaller

on-chip cache.

ScopelLimitations

This thesis includes developing a behavioral and structural description of an SLC
controller integrated into a CAM cache. Therefore, the structure of a CAM cache with an
integrated SLC controller was modeled using VHDL. The gate level was the lowest level
modeled.

The implementation and fabrication of the cache were beyond the scope of this
thesis. However, this thesis should enable fabrication of an actual CAM chip with an

integrated SLC controller by a follow-on thesis.

Approach

The product of this thesis was a design of an SLC controller integrated with a
fully-associative cache. The controller controls the prefetching of the cache contents
immediately above the currently referenced CAM location and the writing of data into the
CAM array.

A bottom-up approach for modeling the CAM cache was used. With the CAM as
described by DeCegama (3:82-88), a gate-level structural description of a CAM cell was




modeled. The cell was tested to determine if its features were acceptable. After verifying
that the cell performed as expected, copies of the cell were integrated to form the CAM
array. The CAM array was then tested to verify its expected behavior.

After the VHDL model of the CAM array was complete, design of the SLC con-
troller began. Again, a bottom-up approach was used. First, the functions of the con-
troller were defined. Next, the structure of the controller was determined in the form of a
schematic diagram. Finally, the structures of this controller were integrated with the
CAM array.

To test and verify the CAM and controller as described by VHDL, the external
hardware, with which the cache will interface, was modeled. The external hardware in-
cludes the CPU main memory. The CPU was modeled using actual virtual memory ad-
dress traces. For a virtual memory reference resulting in a main cache miss, an appropri-
ate delay simulated the fetching of the cache line from main memory. After testing all
pieces of hardware individually, they were connected to form a closed system. This sys-

tem was then used to test and verify the expected behavior of the CAM chip model.

Thesis Contents

Chapter 2 contains an overview of computer memory systems. Associative mem-
ories, in particular, are discussed. The various types of content addressable memories are
presented. They include bit-slice, byte-slice, word-slice, and fully-associative memories.
Several implementations of these types are shown and the advantages and disadvantages
of CAMs are discussed. Most of the CAM cells in the literature are described at the tran-
sistor level; therefore, many transistor level designs are presented.

Chapter 3 describes the VHDL implementation of the main CAM cache (MCC)
for the proposed memory subsystem. The design of the cache is described in detail. The
methodology used to design the MCC is discussed as well as the building of the MCC




model in a hierarchical manner in VHDL. Since the cache was designed from the bottom
up, the functionality of each component making up the cache is explained.

Chapter 4 discusses the testing and performance characteristics of the main CAM
cache. It describes the overall behavior of the MCC as well as an analysis of the timing
constraints during each activity the MCC performs. Suggestions on possible improve-
ments to the MCC are proposed and areas where potential space savings can be made
during fabrication are discussed. Other issues to consider during the hardware
implementation of the chip are reviewed.

Finally, Chapter 5 summarizes this thesis effort with conclusions and recommen-

dations for further study.




I1. Background

Introduction

A major goal for computer architects is to increase the speed of executing pro-
grams. “One such technique is the use of memory hierarchies - in particular the cache
store concept. This approach to computer memory speedup has been well proven in the
large processor situations” and “is also applicable to smaller machines where the eco-
nomic constraints are more severe” (1:75). As computer technology has grown in com-
plexity, so have computer applications. As these applications become more complex, the
need for speed becomes increasingly important. To increase speed and “in order to
minimize bus traffic, cache memory is often placed between the processor and the shared
bus” (17:218).

Since caches are expensive and small, many studies have tried to determine an
optimal size for a cache to get the highest hit ratio possible. “These studies suggest that
the single most important factor for improving the cache hit ratio is the size of the cache
memory” (17:219). Quinones suggests that a variable-size cache can allow many
cost/performance goals to be reached (17:219). Ackland (1:76) points out that the opti-
mal cache size depends on the processor architecture and the software environment that is
being used. Ackland also found through simulation results that “effective speed up can
be gained from buffers ranging in size from 256 words to 1024 words” (1:76).

Content-addressable memories are used as caches and have been investigated
since 1956 (15:453). A CAM'’s purpose is to locate data by its contents rather than by its
address, thereby increasing the speed at which memory is accessed. Memory access to
data is accomplished differently in CAMs than with conventional random access memo-

ries (RAMs). Data access in RAMs is done by decoding the address and then fetching the




data. In contrast, data in CAMs are located by their content. Minker (15:453) states that
“the retrieval of any one item in such a store would be accomplished by performing a

”

content search on all registers in parallel with but a single operation.” Not only is a
search performed based on contents, but magnitude relationships such as less than, be-
tween limits, next higher/lower, similarity, proximity, not equal, or minimum/maximum
value can also be accomplished (2:52). Addressing by content eliminates the need for
such operations as scanning, sequential searching, and counting.

CAM s help to overcome what is known as the “von Neumann bottleneck.” This
bottleneck is caused by the communications between the CPU and the memory. “To re-
duce the traffic on this data path, and thereby increase system performance, one may add
limited processing capabilities to the memory side of thc bottleneck” (8:537). Content-
addressable memories contain these limited processing capabilities, thereby reducing the
von Neumann bottleneck effect. “Associative processors go a step further, eliminating

the bottleneck entirely by performing both data storage and processing functions in a

single unit.” (8:537)

Target Architecture

Hobart (9) proposed the SLC memory subsystem shown in Figure 1. Two CAMs
are used in this three-level memory hierarchy. The first CAM, the main CAM, interfaces
between main memory and the on-chip cache. The second CAM is the on-chip cache that
interfaces between the main CAM and the CPU. This author has not found this type of
architecture implemented with CAMs.

The purpose of the two-CAM system is to take advantage of structural locality
(explained in Chapter 1). The main CAM emulates the top portion of a least recently

used (LRU) stack thereby mapping the temporal locality of the virtual memory references
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Figure 1. Proposed Memory Subsystem Design (9:98)

into spatial locality within the main CAM. Structural locality is then exploited by spa-
tially prefetching from the main CAM into the on-chip cache. (9:97)
Hobart chose the main CAM to be fully associative because “if the simulated

LRU stack can be realized in a cache with full associativity, then any position in the stack




can be referenced in constant time, and the references immediately above the stack posi-
tion accessed can be prefetched into a smaller faster on-chip cache...” (9:96). The on-
chip cache, or the SLC, requires that the main cache be fully associative to locate any
memory location on the stack. This enables prefetching to the SLC based on structural
locality. The main CAM cache is written to with a circular buffer replacement algorithm.
Therefore, when this cache prefetches to the SLC, the data references received by the

SLC will be in the order in which the main CAM cache received them. (9:97).

The Importance of Content-Addressable Memory

The importance of storing and retrieving data in parallel has been known for about
30 years (2:51). CAMs have been implemented in silicon as far back as 1966, but it
hasn’t been until recently, with advancements in VLSI technology, that any useful
amount of CAM has been feasible (20:1003). Content-addressable memory, or associa-
tive memory, allows for this parallel access of data. CAMs can perform read, write, and
search operations in parallel, thus substantially increasing the speed of data access.

A search operation is performed when a search pattern is sent to each cell of the
CAM array. Each cell performs a comparison with this data and a match or mismatch is
then signaled on the tag lines. In order to detect a match or mismatch on selected cells, it
is necessary to temporarily “disconnect” cells from the tag line. This is known as
“masking” off particular cells to search only selected cells. Those cells that are masked
off do not affect the outcome of a search. (10:166)

A write operation writes data to cells of the CAM array. A unique feature of a
CAM is that it is possible to write to all CAM words simultaneously. It is also possible to
select any bit-column to perform a write operation. In doing so, only the selected cells

are written to while the rest are masked off and unaltered. (10:166)




A read operation retrieves the contents of cells in a CAM array. Again, a certain
bit-column can be masked so a read will not be performed in the cells of that column but
only in the selected cells. (10:166)

The unique approach of memory access in CAMs can be used to increase effi-
ciency in many application areas. Some examples are databases, pattern recognition,
data correlation, speech recognition, spelling checking, language translation, neural net-

works, and data retrieval.

Disadvantages and Advantages of CAMs

Disadvantages. Hanlon (6:519) points out that there are surprisingly few disad-
vantages found in the literature on content-addressable and associative memory systems.
Chisvin (2:54) states that there are a number of obstacles to overcome before commer-
cially successful associativ 2 memories are available. These obstacles are:

« functional and design complexity of the associative subsystem,

« relatively high cost for reasonable storage capacity,

* poor storage density compared to conventional memory,

* slow access time due to available methods of implementation, and

» a lack of software to properly use the associative power of the new memory sys-

tems.

Advantages. Although these disadvantages exist, advantages to CAMs abound.
When searching a content-addressable memory for data, the time to access the data is in-
dependent of the size of the CAM; all searching is done is parallel. Sorting is unneces-
sary because the data can easily be found by its content. Using conventional memory, the
time to perform a search and sort grows at a rate of O(nlogn), where n is the number of

items on the list. If only the maximum value is needed, the time to find it would increase
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at least as fast as the size of the list. With content-addressable memories, the time to find
the maximum value would be the same despite the length of the list. (2:54)

Another advantage is the “minimization or total elimination of many of the bur-
densome bookkeeping operations connected with the use of conventionally organized
memories”. CAMs would make this bookkeeping a much easier task on programmers. It
could even reduce the operating time of functions that use slower I/O devices. (6:510)

A paper written by P. M. Davies and described by Hanlon (6:518) states that pro-
cessing time for many operations can be reduced “because

a) it is not necessary to store data in sorted order;

b) lookups can be made on the basis of different keys at different times over the
same data;

¢) records need to be stored only once;

d) addresses are not needed to store records.”

Organization of list structures is accomplished very quickly with a CAM system.
On the other hand, RAMs use more execution time in forming the lists, searching the list,
retrieving data from a large list, deleting a list, and transferring a list to another storage
medium. These functions, which require more RAM access time, are performed by
CAM s in constant time. (6:518)

The repetitive structure of a CAM array makes for ease of fabrication and testing.
This is also true for RAM. The CAM cell can be laid out in an organized fashion; there-
fore, the interconnections are short and easily implemented in integrated circuit technol-
ogy. (6:518)

CAMs can also be viewed as fault tolerant. If a cell fails, that cell can be masked
off, never to be used again. Of course, fault tolerance is dependent on the application of

the CAM. If the system can be fault tolerant, the maintenance task is decreased. (6:518)
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The Organization of CAMs

CAM s have the basic organization depicted in Figure 2. Minor variations do exist
but the general concept of the interfaces remains the same. The biggest difference lies
merely in terminology. The layout of a CAM array is shown in Figure 3 and relates di-
rectly to Figure 2 The definitions below contain various terms (in parentheses) used to

describe each component (the list of terms is not complete).

Data In

1y

Bit Select
Logic

$

Word | Associative Tag
Select :>' Memory :> Register
Logic Array &

Data Out R'l;;%y

Figure 2. Organization of CAMs (3:85)

Data In (Argument Register, Data Input Register). These registers contain the
data to be read or searched for as well as the data that will be written into the array.
Figure 3 displays this as the Data Input Register. (3:84)

Bit Select Logic (Mask, Mask Register). This register is used to specify the bits

of a word to be written to and searched for. A ‘1’ in the bit select stream means that the
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Figure 3. Associative Memory Array (3:83)

bit will be written to during a write operation. For a search operation, a ‘1’ in the bit
select stream means that a match is needed for that bit, while a ‘0’ indicates a match is not
needed (i.e., the bit is masked off). (3:84)

Word Select Logic (Decoder, Address Decoder). This register indicates which
words are to be used in a read or write operation. (3:84)

Associative Memory Array (Memory Cells, CAM Array, Memory Array). This is
the memory portion of the organization that contains CAM cells laid out in a 2-dimen-

sional array, as shown in Figure 3.
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Tag Register (Response Store). This register indicates that a selected word has
matched the portions of the data input specified by the bit select register. (3:84)

DRata Qut (Output, Data Output, Data Output Registers). This register stores the
data of the selected word from a read operation. The Data Output Register of Figure 3
contains the data that is output from the array as well as a “valid” field. The R; field is
the data while the Pj contains the valid bits. These are discussed in more detail in Chapter
3. (3:86)

Tag Reply. This contains a reply to the control unit that one or more set tags are

in the tag register. (3:85)

CAM Data Word Arrangement

A common CAM data word arrangement is shown in Figure 4. The Tags field
shows the type of data stored at that location (i.e., data or code) and whether the location
is empty or used. The Label field is used in the comparison operation. Finally, the Data
field is the storage area for the information to be retrieved or modified. Sometimes the

Label and Data fields are treated as one if the Label field is part of the Data. (2:52)

Tags Label Data

Figure 4. CAM Data Word Arrangement (2:53)

The data word arrangement is flexible. The data word could be segmented in any
way with any of the segments used for interrogation. Or it may not be segmented at all,
in which case any choice of bits can be selected for an interrogation (this is the most gen-
eral form of a CAM). (6:509)

Rowe (18:15) points out that various data-word sizes have been used by different

people and organizations for diverse reasons. They range from 30 to 140 bits in length.
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A 30-bit wide data-word does seem a bit strange but one reason cited for it was that it

matched the CPU’s word length.

Types of Architectures

Four different types of architectures exist for associative memories: bit-serial,
byte-serial, word-serial, and distributed logic. The tradeoffs among these types of mem-
ories consist of the storage media, the communications between the cells, the type of re-
trieval logic, and the nature and size of external logic (such as registers and I/O ports).
(2:58)

Bit-serial associative memories search the data a bit at a time, in parallel, in each
word of the associative array. The search time, therefore, depends on the word width and
is independent of the number of words, or word depth, of the array. After one bit-slice is
searched, the next bit position in each word is inspected, and so on, until the entire field is
searched. Likewise, byte-serial and word-serial associative memories search the data a
byte and word at a time, respectively, in parallel for the depth of the memory.

Distributed-logic memories avoid the serial aspects of the bit-, byte-, and word-
serial memories by placing the search, read, and write logic into each cell. This allows all
memory cells to be accessed simultaneously in parallel. Since the logic is in each cell of
the memory, the cell cycle time is longer in the distributed logic array than in the bit-se-
rial architectures. (2:59)

Design considerations must be taken into account when deciding upon which ar-
chitecture to choose. The bit-and byte-serial architectures work best on data and arith-
metic computations. Distributed logic arrays work best on equality comparisons and
multiprocessor control. Cost is another factor. The amount of logic in the distributed

memory cell causes this type of memory to be physically larger and more expensive than

15




the bit- or byte-serial memories. The lack of cell logic in the bit- or byte-serial architec-

tures allows these memories to be denser than the distributed logic arrays. (2:59)

Current CAM Cell Designs

Several CAM cell designs are available in the literature. The hardware implemen-

tation of these designs uses one of the following three options:

1) Static. Data are stored using two cross-coupled inverters acting as a flip-flop.
The data remains in the cell as long as power is supplied. When power is
taken away, the contents of the cell are lost.

2) Self-refreshing or pseudo-static. Data are stored by making use of the capaci-
tance on the transistor gates. Over time, the charge will decay, but by assert-
ing a control signal the charge can be restored. The consequence of this op-
eration is increased power consumption.

3) Dynamic. Data are stored in much the same way as in RAM memory and re-
quires external control logic to sense and refresh the data signals. The logic
needed and the requirement to regularly refresh these cells results in a time

penalty that may significantly slow down its operations. (10:167)

Gate Level CAM Designs. DeCegama (3:87) proposed the gate level design
shown in Figure 5. A CAM chip can be modeled by collecting these cells into a 2-dimen-
sional array, as shown in Figure 3.

Another CAM cell design is given by Hayes (7:452), and is shown in Figure 6.
This design uses a D-type flip-flop for storing the data. Its match circuitry is composed
of an exclusive-NOR gate. Other circuitry is present for the reading and writing func-

tions.
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Transistor Level CAM Designs. The CAM cells described above were designed at
the gate level. Several more cells can be found in the literature that are designed at the
transistor level. One such design is the AFIT CAM designed by Shinn (19:13), shown in
Figure 7. This is a general purpose CAM that can search the cell contents on the basis of

equality, between limits, greater than, less than, etc.

Bitline Bitline b; MASK MASK

Wordline

Figure 7. Gate Level Design of CAM by Shinn (19:50)

Another transistor level design is shown in Figure 8. This CAM cell was devel-
oped for large-bit-capacity CAM LSI to realize a partial-WRITE operation. *“The asso-
ciative-memory cell circuit is composed of seven/nine n-MOS transistors and two high-
resistive poly-Si load devices.” (16:1014)

Figure 9 shows a five-transistor dynamic CAM cell. This cell can store three
states: ZERO, ONE, and the DON’T CARE state. “A cell in the DON’T CARE state is unable

to discharge the match line.” (20:1006)
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A slightly different design than the one in Figure 9 is shown in Figure 10. This
content-addressable parallel processor (CAPP) uses only 5 transistors. It has three states,
with the DON’T CARE state “being useful in logical inferencing and pattern-matching

applications.” (8:537)
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Figure 10. Transistor Level Design of CAM by Herrmann (8:538)

A 12-transistor CAM cell is shown in Figure 11. This is an addressable CAM that
functions as a normal CAM even though its data store is RAM-based. It is made up of
three sections: 1) a six-transistor static RAM, 2) four-transistor XOR, and 3) a two tran-
sistor parallel write pull-up disable gate (DISABLE). “It was designed primarily for ad-
dress translation in a high-speed packet switching network.” (13:257, 258)

Weste (21:351) briefly describes a transistor-level CAM cell designed by J. C. L.

Hou. This cell nine-transistor cell is shown in Figure 12.
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Finally, Jones (10) presents four different transistor-level CAM designs. Jones
discusses the design constraints, trade-offs, and implementation issues involved in
deciding which design to choose for a VLSI CMOS high-speed CAM architecture. The
designs are shown in Figures 13 through 16. (10)

Dy Dx
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Figure 13. CAM A Transistor Level Design by Jones (10:167)
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Figure 14. CAM B Transistor Level Design by Jones (10:168)
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Figure 13 shows the simplest design considered by Jones. The cell is “pseudo-
static in that when the RW line is driven high, the cell acts as a static nMOS flip-flop”
(10:168). This cell needs to be refreshed frequently so data will not be lost. (10)

Figure 14 is very similar to Figure 13 but the data are stored in two cross-coupled
CMOS inverters. This design does not require refreshing. (10)

Figure 15 is an enhancement of Figure 14. This design “avoids the need to rely on
the positive feedback between the cross-coupled inverters to maintain the data contents of
the CAM cell...” (10:168). This design reduces power consumption on the ‘write X’ op-
eration. (10)

Figure 16 is different from Figures 13 - 15 in that it has ‘capacitive’ loading on
the data lines. “The design relies on the positive feedback between the two cross-coupled
inverters to complete the write operation” (10:168). In contrast to Figure 15, both drive
transistors are switched off during a ‘write X’ operation, which reduces power consump-
tion. (10)

Jones chose CAM A based on power consumption and chip area. Jones found
“the ‘search’ and ‘read’ operations, being based on a precharge/discharge mechanism,
consume relatively little power. It is during the ‘write’ operations that the designs exhibit
different, and often quite large, power consumption figures” (10:169,170). Table 1 shows
that CAMs B to D (the CMOS designs) have a much higher power consumption during
the ‘write 0 and ‘write 1’ operations than CAM A. Conversely, CAMs C and D consume
very little power during a ‘write X’ operation compared to CAM A, with CAM B con-
suming the most.

An interesting result occurs when these CAMs are introduced into their working
environment. Table 2 reveals that CAM A has the highest power consumption. “This is

caused by the predominance of ‘write X’ operations, and the need to refresh the memory
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Table 1
CAMs A through D Power Consumption in Isolation (10:169)

CAMarea Write 0/1 Write X
(um? ww) ww)

CAMA 1944 51.0 99.8
CAMB 2980 149.0 120.6

CAMC 4160 165.4 <1
CAMD 5240 173.8 <1
Table 2

CAM s A through D Average Power Consumption in Working Environment (10:170)

Name  Power (UuW)

CAMA 64.7
CAMB 53.6
CAMC 106
CAMD 11.2

at regular intervals” (10:170). Relative to CAM A, CAMs C and D consume little power
since the ‘write 0’ and ‘write 1’ operations are performed infrequently. Figure 17 shows
the chip power dissipation of each CAM design. (10:170, 171)

The other consideration in the selection ot CAM A was the chip area used by each
design. Figure 18 shows the chip area needed for each CAM. Notice that the more so-
phisticated CAMs (C and D) require the largest die size. The smallest area required by
the four CAM designs came from CAM A, which was a major factor in its selection.

(10:171)

Summary
The goal of content-addressable memories is to access data in parallel based on
content rather than by address. The memory subsystem of Figure 1 will use CAMs to in-

crease the speed of memory accesses over that of conventional hierarchies. A brief
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Figure 17. CAMs A through D Power Dissipation (10:171)

CAM CAM CAM CAM
A B C D

Figure 18. Chip Area Needed for CAMs A through D (10:171)
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overview of the organization of CAM chips was presented. Several different CAM im-

plementations were shown, none of which has been previously used in a two-level cache

memory architecture.




IIl. The Design of the Main CAM Cache that Exploits Structural Locality

Overview

This chapter covers the design of the main CAM cache (MCC). The MCC per-
forms two basic functions: read and write. Upon activating the MCC to perform these
functions, a search operation is performed on the address that is made available to the
MCC. After the search is complete, one of four distinct states exists: Read Hit, Read
Miss, Write Hit, and Write Miss.

The Read Hit state is the most important state the MCC can be in. It is in this
state that the prefetching of structural locality of memory references is performed. The
state is entered when the CPU requests that the MCC perform a read on the requested
address. If the address is stored on the MCC, a read hit (i.e., the search operation found
the address) occurs. This triggers the prefetching of data in a first-in-first-out (FIFO)
manner.

The Read Miss state is also entered during a read cycle. First, a search is per-
formed on the CAM array. If the search is unsuccessful, the Read Miss state is entered.
Since the address was not found (i.e., “missed”), the FIFO replacement algorithm is used
to write the data into the cache. These data come from main memory over the data bus.
Thus, temporal locality is captured by the MCC.

The Write Hit state is entered during a write cycle. Again, the first operation per-
formed by the MC(_ is the search operation. If the address used in the search was found,
then that location in memory will be replaced by the new data.

The Write Miss was the easiest state to deal with. If the search operation pro-
duced no matches, the MCC does nothing but wait until the next operation is requested of

it.
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The remainder of this chapter describes the VHDL implementation of the MCC.
Since a bottom-up approach was used to design the cache, it is appropriate to describe the
MCC in a bottom-up fashion. First, the method used to design the MCC is briefly de-
scribed. Then, a brief look at the basic components that make up the MCC are discussed.
Next, the heart of the cache, the CAM cell, and the inner workings of the CAM array are
described in detail. The brains of the MCC, the controller, is then explained. Finally, the

MCC is viewed as a whole and its functionality is presented.

Design Methodology

The first step taken in this thesis effort was to choose a logic design of a CAM
cell. The CAM cell designed by DeCegama (3:87) was used. After implementing the
CAM cell in VHDL, the CAM array was built using the VHDL generate function.

Once the CAM array was tested thoroughly, the controller was designed. The
four states described above were used to logically decide upon the components, gates, and
signals that must be used in order for the MCC to function properly. A schematic
diagram was drawn of the entire cache and it was broken into two major sections. The
first was the CAM array and its associated logic and the second was the controller. The
controller was further broken out into its major components so it could be built in a
hierarchical manner. This allowed for the separate sections to be tested before being
integrated into the controller portion of the MCC.

The next step taken was the building, in VHDL, of all the basic components
needed in the MCC. These were the building blocks for the major components that make
up the controller. Once these basic components were built, the major components of the
controller section were created from them. The controller was then put together from
these sections and the final step was the integration of the controller onto the MCC with

the CAM array and its logic.
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Basic Components

This section contains the basic components that make up the major

components of

the controller. The VHDL code for each of the basic components is in Appendix B.

They are organized in alphabetical order.

BINARY_COUNTER: This synchronous binary counter is a slightly modified

version of the binary counter in Mano (12:278). It is the only reason the MCC requires a

dual-phased clock. The version shown in Figure 19 uses JK-type flip-flops with RESET

(these JK-type flip-flops are described later in this section). It is also of generic size. The

size, Bits_In_Counter, is defined in chip_pkg.vhd (see Appendix E).

Count_Enable

| St e itttk ittty 1

i Output(Bits_in_Counter-1) Output(1) Output(0)

: A A :

; [ e ? :

' RESET Q RESET Q RESET Q '

: CPnot oo CPnot CPnot T_' CPnot
E I oee s o : CpP

E 7‘< — oo -.*‘C- s )| 5

E JK_in(Bits_in_Counter-1) JK_in(1) ;

Figure 19. Schematic Diagram of BINARY_COUNTER (12:278)

CHANGE_DETECTOR (14): The purpose of this circuit is to detect a change

from ‘0’ to ‘1’ and from ‘1’ to ‘0’ in any input signal. The circuitry is very simple and is

shown in Figure 20. Refer to Figure 21 during the following explanation of how it works.

Suppose a ‘0’ is on both inputs of the XOR gate. This causes the output to be ‘0’ (0 XOR

0=0). Now,ifa ‘I’ is input into the change detector, a ‘1’ is on one of the XOR inputs.
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Figure 20. Schematic Diagram of CHANGE_DETECTOR (14)

Output J Iﬂ—BUF_Delay

XOR Input 2 3 :
XOR Input 1 2 |<-x0R_De1ay>§ :
Input 1 €— BUF_Delay —

Figure 21. Timing Diagram for CHANGE_DETECTOR Operation

The other XOR input is still a ‘0’ for as long as it takes for the signal to go through the
buffer (BUF_Delay in the figure). This causes the XOR outputtobe a ‘1’ (1 XOR 0 = 1).
After the buffer delay, the second XOR input gets ‘1’ and the XOR output becomes a ‘0’
again (1 XOR 1 =0). The circuit works the same way with a signal transition from ‘1’ to
‘0.

EDGE_TRIGGERED_DFF: This is a D-type positive-edge triggered flip-flop
taken from Mano (12:214) and slightly modified. The logic diagram is shown in Figure
22. The only change was the addition of a RESET port to allow the flip-flop to be asyn-

chronously reset to ‘0’.
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Figure 22. Schematic Diagram of EDGE_TRIGGERED_DFF (12:214)

MS_JKFF: This is a clocked master-slave JK-type flip-flop taken from Mano
(12:213) and slightly modified. The schematic diagram of this component is shown in
Figure 23. A RESET port was added to allow it to be asynchronously reset to ‘0’. In
addition, the CP port was modified to allow a dual-phased clock to be used and, as a re-
sult, a NAND gate was deleted from Mano’s design.

PREFETCH_COUNTER: This component is very similar to the word-time signal
generator found in Mano (12:285) and is shown in Figure 24. It uses the
BINARY_COUNTER of Figure 19 to count upward from zero to Prefetch_Block_Size-1
(as defined in chip_pkg.vhd of Appendix E). When the circuit is “started”, the output
signal of the RS-type flip-flop, Counting, produces a ‘1’ and the binary counter begins to
count. The XNOR gates are used to compare the outputs of the binary counter and

Prefetch_Register. When they are equal, the output of each XNOR gate becomes ‘1’ and
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Figure 23. Schematic Diagram of MS_JKFF (12:213)

the RS-type flip-flop is reset to zero. Counting then becomes ‘0’ and its complement is
able to clear the binary counter to set up for the next prefetch cycle.

RS_FLIPFLOP: This is an RS-type flip-flop found in Mano (12:206). The logic
diagram is shown in Figure 25.

SHIFT_REGISTER: This component is a circular shift register with parallel load.
The design came from Mano (12:267) and was implemented with some modifications.
This register is a unidirectional shift register, whereas Mano’s is bidirectional. Therefore,
2x1 multiplexers were used as opposed to Mano’s 4x1 multiplexers. Also,
SHIFT_REGISTER is of generic size whose depth is defined in the chip_pkg.vhd of
Appendix E. SHIFT_REGISTER is shown in Figure 26.

TOS_SHIFTER: This shift register is very similar to that of Mano’s shift register
(12:264). It uses the EDGE_TRIGGERED_DFF with RESET and is shown in Figure 27.
It is cleared upon initialization of the MCC with Master_Reset and loads the bottom flip-
flop with a ‘1’. The Master_Reset signal is connected to the CLEAR port of
TOS_SHIFTER. When it goes high, all flip-flops are reset except for the bottom one. An
OR gate is connected to the D input of this flip-flop and the OR inputs are the topmost
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Qnot

Figure 25. Schematic Diagram of RS_FLIPFLOP (12:206)

flip-flop’s output and the CLEAR port. Therefore, the circular shift can be accomplished
with the top flip-flop’s output, and the CLEAR port can load the bottom flip-flop with a
‘1’ when Master_Reset is ‘1’. The CLEAR port is also ORed with CP and input into the
CP port of the bottom edge-triggered D-type flip-flop. Thus, upon initialization, the bot-

tom flip-flop clocks in a ‘1°, which can then be shifted in a circular manner.

The CAM Cell

The fully-associative CAM cell was selected over the bit-slice, byte-slice, and
word-slice associative memories for the implementation of the structural locality cache
memory subsystem. Its advantages far outweighed its disadvantages for the purpose of
this research. Speed during memory accesses is the most important issue (outweighing
the fact that more logic is needed to form each cell) and the fully associative array is fast.
Each cell of the CAM array performs its comparison simultaneously, thus increasing the
speed of the entire memory subsystem.

The CAM cell proposed by DeCegama (shown in Figure 5) was used in the im-
plementation. It is a fully associative CAM cell with all the features necessary to be inte-
grated onto a cache used to prefetch memory references. This design was chosen for this

thesis not because of its robust functionality but simply because it was familiar to the
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Figure 26. Schematic Diagram of SHIFT_REGISTER (12:267)
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Figure 27. Schematic Diagram of TOS_SHIFTER (12:264)

author. The structural description of the cell was directly implemented into VHDL using
ZYCAD™’s (22) gate components. The naming of the gates and signals is shown in

Figure 28. The VHDL code for the CAM cell is shown in Appendix A.
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Figure 28. Naming convention for CAM cell gates and signals

The CAM cell performs three functions: search, read, and write. The RS-type
flip-flop, consisting of gates AND1, AND2, NOR3, and NOR4, is used to store the con-
tents (C) of the cell. Table 3 shows the inputs to the CAM cell to perform the desired op-

eration.

Table 3
CAM Cell Inputs for Desired Operation

Bit Select (B) Word Select (W)

search 1 0
read 0 1
write 1 1
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During a search, the datum to be searched for (D) is placed on the Data In line, as
shown in Figure 28. Simultaneously, the Bit Select line (B) is set to ‘1’ and the Word
Select line (W) is set to ‘0’. Since B = ‘1°, both Read Ousputs, RX and RY, produce a ‘0’
from gates NOR7 and NORG, respectively. If D and C are equal, then a ‘1’ will go into
the NOR1 and NOR2 gates producing a ‘0’ as their outputs. Since these outputs go into
gate NORS and W = ‘0’, then Match Line (M) becomes a ‘1°. Conversely, if D and C are
not equal, either gate NOR1 or NOR2 will produce a ‘1’ as its output, forcing the output
of NORS (M) to go to ‘0’. Logically, M is derived as follows:

M=[D+B'+C) +(D'+B'+C) + W]
butB=1(orB'=0)and W=0, so

=[(C'+D) +(C+D)YT
= [CD' + CD]'
=(C'+D)XC+D’)

M =CD+CD.

During a read operation, W is set to a ‘1’ and B is set to a ‘0’. Note that D does
not affect the result of the read. The output M goes to ‘0’ from gate NORS since W is a
‘1’. The content of the cell is output through NOR6 onto RY and its complement is out-

put through gate NOR7 onto RX. Logically, RY and RX are described as follows:

RY=B+C+W")
=B'CW

butB=0(orB'=1)and W=1, so

RY =C
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RX =B+C+W)
=B'CW
or RX =C.
During a write operation, both B and W are set to ‘1’. Since Wisa ‘1’, M be-

comes a ‘0’, and since B is a ‘1’, RX and RY become ‘0’. The cell content C will be-

come D as proven below:

C=[(DBW + C) + (D'BW)]'

now since B and W are both ‘1°,

C=[(D+O)+D7
=[CD'+ D7
=T

C =D.

After the cell was completely tested, an array of cells was organized to form the

CAM array.

The CAM Array

VHDL has a useful function called generate. Using this feature, an m by n array
of CAM cells was generated. This allows the decision about the size of the array to be
delayed to a later time when details about the fabrication technology and chip size are
considered. In the VHDL description of chip_pkg.vhd (Appendix E), m is the length of
the word (Word_length in the code) and » is the depth (Deprh in the code) of the array
(see Figure 29).
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Figure 29. Dimensions of the CAM Array

The organization of the CAM array is shown in Figure 30. It functions as follows.
The Address_Buffers and Data_Buffers accept incoming data from the MCC’s
Address_In and Data_In ports, respectively. These buffers in turn provide the buffered
data to the Data_In_Bus. The buffers act to amplify the data before going into the CAM
array. The Bit_Select_Bus and the Word_Select_Bus get data from the controller. This
arrangement allows selected bits of a word to be compared during a search operation, and
multiple words to be written to and read during the write and read operations.

The resolution functions, Wired_Or and Wired_And, are used to resolve signals
along selected buses inside the CAM cache. The VHDL code for these resolution func-
tions came from Lipsett (11:103-105) and can be found in chip_pkg_body.vhd of
Appendix E. The implementation into hardware is technology dependent. The VHDL
description would be modified to match the specific hardware technology used to realize
the design.

When a certain bit is to be compared during a search, a ‘1’ is placed on the
Bit_Select_Bus to select that bit in all words of the array. If a match is successful, an M
output of ‘1’ from each matched cell is placed on the Resolved_Signal_Tag line. If a

match is unsuccessful, a ‘0’ is placed on the line. This line is a wired-AND that resolves
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Figure 30. Organization of the CAM Array

the match lines from each cell. If a match is found on all selected bits of a word, then the

Resolved_Signal_Tag becomes a ‘1°. If any of the selected bits do not match the cell
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contents, then Resolved_Signal_Tag becomes a ‘0’, meaning the word did not match the
data input.

To write to a particular word of the array, a ‘1’ is placed on that word’s
Word_Select_Bus line. Also, ‘1’s are placed on the Bit_Select_Bus to write to the de-
sired bits of the word.

During a read operation, a single word or multiple words can be read. If a single
word is to be read (as will always be the case in the MCC), a ‘1’ is placed on its
Word_Select_Bus and all Bit_Select_Bus lines are set to ‘0’. The word is transported
over the Resolved_Signal_Data_Out lines to the Data_Out_Buffers and its complement is
transported over the Resolved_Signal_Data_Check line. This line is important during a
multiple read because if two or more words are selected to be read, they may not have the
same data. The Resolved_Signal_Data_Out performs the wired-OR function for each bit
of the word being read. The complement of each bit is resolved on the
Resolved_Signal_Data_Check line, which also performs the wired-OR function. The
Resolved_Signal_Data_Out and the Resolved_Signal_Data_Check are compared, using
exclusive-OR gates, to determine their validity. If the signals are different, then the
Resolved_Signal_Data_Out is valid; if the signals are the same, they are invalid. This

may more easily be seen in Table 4 below.

Table 4
Truth Table for Validity of Data

RX RY P=RXxorRY
0 O 0 N/A
0 1 1 valid
1 0 1 valid
1 1 0 invalid
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For example, suppose a multiple read were performed on the following two 4-bit

words (the left-most bit is the most significant bit, bit 3).

1010

0010
The Resolved_Signal_Data_Out of bit 3 would be a ‘I” (1 + 0 = 1).
Resolved_Signal_Data_Check would alsobe a ‘1’ (1' + 0'=0 + 1 = 1). Exclusive-ORing
the two results produces a ‘0’ (1 XOR 1 = 0), i.e., not valid. On the other hand,
Resolved_Signal_Data_Out of bit 2 would be a ‘0 (0 + 0 = 0) and
Resolved_Signal_Data_Check would be a ‘1’ (0' + 0' =1 + 1 = 1). Exclusive-ORing
these two produces a ‘1’ (0 XOR 1 = 1), i.e., valid.

Designing the Controller

Before getting into the details of how the MCC as a whole works, an overview of
the MCC controller in an hierarchical fashion is in order. This will allow the reader to
learn the terminology used and the figures can then be referenced during the discussion of
the operation of the MCC.

Figure 31 shows the highest hierarchical level of the MCC. Appendix D contains
the VHDL code describing the interconnects for Figure 31. The cache can logically be
viewed as having two parts; 1) the CAM array and its corresponding logic and 2) the
controller.

The controller controls the performance of the MCC by communicating with the
CAM array. The controller accepts inputs from the array and the MCC’s ports and pro-
duces outputs to be used by the array. The controller ports are shown in Figure 31. A
brief description of each port is presented in Table 5. The ports are in alphabetical order

and are identified as either input or output ports.
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Table 5

Description of Controller Ports

Port

Description

| Bit_Select Output | directly connected to Bit_Select_Bus
P Input receives the system clock pulse I
Pnot Input complement of CP |
Data_Avall_MEM [Input used to signify when the data are available from"

main memory when a read miss occurs

Data_In Input receives the address from the Address_In port

Data_Out Input receives the Data _Out vector f

Data_Out_Available | Output | signifies that data are present on output port

during Read Hit state

| Master_Reset Input receives MCC’s Master_Reset signal that resets

‘ the entire chip model

{ Read Input signifies that data are requested of the MCC by

1 the CPU

{ Read_Miss Output | signifies that data are not stored on the cache “
_ during read function _

| Resolved_Signal_Tag| Input receives Resolved_Signal_Tag vector of CAM

array signifying which word of CAM array was

1 matched during search operation

i Resolved_Tags Input receives the Resolved_Tags bit signifying the

‘ data searched for are present in the CAM array
f Select_Word Output | outputs data to Word_Select_Bus
| Write Input signifies when the CPU desires to write data
into the MCC
Wrnite_Hit Output | signifies that data are stored on the MCC Il
during a write function

 Wrnite_Miss Output | signifies that data are not stored on the MCC
| during a write function

The interconnections between the components that make up the controller are
shown in Figure 32. The VHDL code for each of the major components that make up the
controller is presented in Appendix C. The purpose of each of these components will

now be specified. They are listed in alphabetical order.
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Figure 32. The Controller Components and Interconnections
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FUNCTION_CHANGE_DETECTOR: This component determines if the Read or
Write ports of the MCC have changed. Figure 33 shows the schematic diagram of the
component and Appendix C contains its VHDL code.

CHANGE_DETECTOR

|

In Out

Rd_out E

CHANGE_DETECTOR

w
; ; —
o
=]
=
[¢]
=4
Q
'5
Q
F=53
o
o

Write———-31 In Out

poe=s

Figure 33. Schematic Diagram of FUNCTION_CHANGE_DETECTOR

The input ports are Read and Write, and the output port is called
Function_Change. When Read or Write transitions from ‘0’ to ‘1’ or vice versa, the
change detectors detect the change and output a ‘1’ onto the Rd_out or Wt_out signals.
These signals are ORed together to produce Function_Change. As a result, if either Read
or Write transitions, Function_Change will become a ‘1°. This is shown in the truth table,
Table 6. Function_Change remains a ‘1’ for the time called Change_Detector_Delay.
This time is a constant and is defined in chip_pkg.vhd in Appendix E.

OPERATION_STATUS: This component indicates the state the MCC is in. It
takes in the incoming signals and from them can determine the state the MCC is in,
whether it be the Read Hit, Read Miss, Write Hit, or Write Miss state. The Read Hit state
is coded in a less obvious way than the other states. The Data_QOut_Available port is

asserted high when the data on each read operation in a prefetch cycle is present on the
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Table 6

Truth Table for the FUNCTION_CHANGE_DETECTOR Component

MCC’s Data_Out port when a read hit occurs.

Read Write Output

0 0 0
0 1 1
1 0 1
i 1 N/A

The logic diagram of the

OPERATION_STATUS is shown in Figure 34. The VHDL code describing this circuit

is in Appendix C.

Prefetching
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Figure 34. Schematic Diagram of the OPERATION_STATUS Component
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The output ports are defined as follows.

* Data_Out_Available: The Data port takes in the Data_QOut data of the MCC.
Each bit of the Data_Out is connected to a change detector that determines if the bit has
changed. The resulting vector is Data_Change. This vector is resolved, using the wired-
OR, into one bit, Data_Out_Change. This bit signifies if any of the Data_Out bits have
changed. It is ANDed with the signal Prefetching. The AND result is
Data_Out_Available, which signifies when the output data of the MCC are available on
the MCC’s ports. In other words, data are available when new data are available on the
MCC’s output ports and the MCC is in the prefetching cycle .

* Read_Miss: The Read Miss state is denoted by the AND result of three signals:
Read, Resolved_TagsNot, and Search_Complete. Therefore, a read miss occurs when a
read is requested, a match was not found (i.e., Resolved_Tags = ‘0’), and the search for
the data is complete.

» Write_Miss: The Write Miss state is denoted by the AND result of the
Search_Complete, Resolved_TagsNot, and Write signals. Therefore, a write miss occurs
when the search for the data is complete, a match was not found, and a write function was
requested.

* Write_Hit: The Write Hit state is denoted by the AND result of the Write,
Search_Complete, and Resolved_Tags signals. In other words, a write hit occurs when
the write function is requested, the search is complete, and a match was found.

PREFETCH_STATUS: This component produces a ‘1’ on its output port,
Counting, only when a read hit has occurred. It remains a ‘1’ for the number of clock cy-
cles required to read the Prefetch_Block_Size (defined in chip_pkg.vhd in Appendix E)
from the CAM array. Figure 35 shows the PREFETCH_STATUS component and
Appendix C contains its VHDL code.
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Figure 35. Schematic Diagram of the PREFETCH_STATUS Component

The component PREFETCH_COUNTER counts to the number of clock cycles
equal to the Prefetch_Block_Size. While counting, it produces a ‘1’, which is put onto
Counting port. It starts this counting cycle after a search is complete, the data are found,
and a read is requested of the cache. The systems clock (CP) then clocks the counter
inside PREFETCH_COUNTER. When Prefetch_Block_Size is reached, Counting
becomes a ‘0’ and the prefetch cycle is complete.

SEARCH_STATUS: This component provides enough delay to accomplish a
search and produces a ‘1’ on its output port, Search_Comoplete, until it is reset to ‘0’. The
schematic diagram is shown in Figure 36 and its VHDL code is in Appendix C.

This is how SEARCH_STATUS works. The input into the D-type flip-flop is the
signal Search_Done. Search_Done is defined as:

Search_Done = (Resolved_Signal_Address_Change)(Read + Write).

Thus, when the address portion of the Data_In_Bus changes and a Read or a Write is re-
quested of the MCC, a ‘1’ is clocked into the D-type flip-flop. Notice that Search_Done
clocks itself into the D-type flip-flop.
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Figure 36. Schematic Diagram of the SEARCH_STATUS Component

The D-type flip-flop is reset with the OR result of three signals: AND_out,
Reset_DFF, and Counting. AND_out is defined as:

AND_out = (Function_Change)(Read + Write)'.

This causes the D-type flip-flop to be reset only when the Read or Write signal transitions
from a ‘1’ to a ‘0’. Thus, the D-type flip-flop is reset at the end of a Read or Write re-
quest.

The second way the D-type flip-flop can be reset is with the Reset_DFF port.
This port is connected to the MCC’s Master_Reset port. Therefore, when Master_Reset

is high, the D-type flip-flop is reset to ‘0’.
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The third way to reset the D-type flip-flop is with the Counting signal. When
Counting is ‘1°, the MCC is in the prefetch cycle. If the prefetch cycle ends and
Search_Complete is still a ‘1°, the prefetch cycle will start again. To avoid this situation,
the D-type flip-flop is reset to ‘0’ upon activation of the prefetch cycle.

SELECT_WORD_SELECT: This component is used to select the register of the
WORD_SELECT component that will be connected to the Word_Select_Bus. It outputs
a ‘0’ or ‘1’, which is ported to the multiplexers that select the data to be put onto the
Word_Select_Bus (see WORD_SELECT below). The schematic diagram is shown in
Figure 37 and the VHDL code is in Appendix C.
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Figure 37. Schematic Diagram of the SELECT_WORD_SELECT Component

When the output of this component, WSR_Select, is ‘0’, the SHIFT_REGISTER
outputs of WORD_SELECT are connected through the multiplexers to the
Word_Select_Bus. SHIFT_REGISTER shifts upward on the prefetch cycle during a read
hit to prefetch the desired block of data. It is also used to write to a particular word of the
CAM array on a write hit.

When WSR_Select is a ‘1°, the TOS_SHIFTER's output is connected through the
multiplexers of WORD_SELECT to the Word_Select_Bus. This register is used to keep

track of where the top of the stack is so data can be written into the MCC in the order

53




they are used by the CPU. Therefore, on a read miss, the data are written into the CAM
array using TOS_Shifter output.

Thus, we have seen that the SELECT_WORD_SELECT selects which register’s
outputs will go onto the Word_Select_Bus. The SELECT_WORD_SELECT’s output,
WSR_Select, is connected to the multiplexers of the WORD_SELECT component. A D-
type flip-flop stores the value used as the WSR_Select. The only time WSR_Select is a
‘1’ is when a read miss has occurred and data from main memory will be written into the
CAM array. This occurs when Read, the complement of Resolved_Tags, and
Search_Complete are high. The one thing still missing is a signal from the main memory
telling the MCC that data are available on the data buses. This signal is
Data_Avail_MEM. When this signal is asserted high, the D input of the D-type flip-flop
gets a ‘1’ from the output of the ANDI gate, which is also used as the clock input.
Therefore, when a read is requested, a read miss occurs, the search is complete, and the
data are available from main memory, the WSR_Select output becomes a ‘1°.

WSR_Select is a ‘0’ at all other times. As the MCC is initialized, the
Master_Reset port is asserted high. This signal is connected to the RESET port of the D-
type flip-flop and is therefore reset to ‘0’. Also, the Function_Change port is connected
to the output of FUNCTION_CHANGE_DETECTOR. Therefore, when this port is
asserted high, the D-type flip-flop is reset to ‘0’.

WORD_SELECT: This component is the most complex of the controller compo-
nents. Its purpose is 1) to output data onto the Word_Select_Bus and 2) provide data to
the Bit_Select_Bus. The schematic diagram is shown in Figure 38 and its VHDL code is
located in Appendix C.
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One thing to notice about the operation of this MCC is that in order to write to the
TOS in the Read Miss state, the TOS position must be held from the previous write op-
eration. Also, in the Read Hit state, a pointer is shifted upward to prefetch the data in the
order in which they were written in order to capture structural locality. These two states
are in direct conflict for the CAM pointer. The problem is solved by placing not one shift
register on the MCC but two. One is used to keep track of the TOS position for writing
into the cache during the Read Miss state. The other is used to locate the data during a
Read Hit and to shift upward to prefetch the contents of the CAM array. 2x1 multiplexers
are used to select which shift register’s output is used as the word select input for the
CAM array.

The TOS_SHIFTER is used to store the top-of-stack position for the write opera-
tion during the Read Miss state. The SHIFT_REGISTER is used to update data during
the Write Hit state and also to shift upward during the prefetch cycle in the Read Hit
state. The outputs of these two shift registers are connected to a series of multiplexers,
with the In0 ports of each multiplexer connected to the bits of the SHIFT_REGISTER
output and the Inl ports connected to the bits of the TOS_SHIFTER output. The Sel
ports of the multiplexers are connected to the WSR_Select port, which determines the
shift register that will be connected to the Word_Select_Bus. WSR_Select is connected
to the output of the SELECT_WORD_SELECT component.

The operation of WORD_SELECT is fairly straightforward when TOS_SHIFTER
is selected. This register is only selected during the Read Miss state. It is during this
state that the CAM array does not contain the data asked for by the CPU. When this
occurs, main memory will provide the CPU with the required data and the MCC will
intercept these data and write them into the CAM array. The Clear_TOS port of the

TOS_SHIFTER clears the register and initializes one of the flip-flops to ‘1’ to act as the
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first entry of the top-of-stack. It is cleared and initialized only with the MCC’s
Master_Reset. After initialization, the register is shifted on the clock puise. The inputs
into CP and CPnot come from the component WORD_SELECT_CLOCK described later.
The operation of WORD_SELECT is much more complicated in the Write Hit
and Read Hit states when the SHIFT_REGISTER is selected. This register has a port
called Sel0 that determines whether it will load incoming data or shift upward. During
both Write Hit and Read Hit states the register will load data. During the Read Hit state,
the register first loads the data then enters the prefetch cycle when it is shifted upward to
read the desired prefetch block size. It is critical at the end of the prefetch cycle that the
Bit_Select port not change to ‘1’ until after SHIFT_REGISTER is cleared and
Select_Word becomes all zeros. If it does change to ‘1°, an inadvertent write will occur.
To avoid this, the Select_Word port’s data are resolved, using wired-OR, into a single bit.
When this bit changes to a ‘0’ (i.e., Word_Select_Bus is all zeros) and SR_Select is
stored as a ‘0’ (i.e., Counting is a ‘0’ and no prefetching is occurring) in D-type flip-flop
DFF1, SR_Select (currently ‘0’) is clocked into DFF2. The output of DFF2 is NORed
with the output of DFF1 (SR_Select) and the result is ported to the Bit_Select_Bus. The
result in this case is ‘1’ since ‘0’ NOR 0’ is ‘1°. Therefore, since Select_Word is con-
nected to the Word_Select_Bus (currently all zeros), the write operation is disabled.
SHIFT_REGISTER is cleared only when the prefetch cycle is not occurring, i.e.,
when SR_Select = ‘0’ is stored in DFF1. The Clear2 port is connected to the signal
Function_Change. So, as long as Counting is ‘0’ (i.e., the Qnot output of DFF1 is ‘1°),
the AND4 output is a ‘1’ after either the Read or Write ports change. The output of
ANDM4 is connected through OR3 into the Clear port of SHIFT_REGISTER, thus clearing
the register. SHIFT_REGISTER is also cleared promptly after the prefetch cycle. When
SR_Select changes to a ‘0’, it is clocked into DFF1. The output of DFF1 will then
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change causing the CD2 output to go to ‘1’ for a period of time. Qnot of DFF1 is ANDed
with the output of CD2, and this signal is connected through OR3 to the clear port of
SHIFT_REGISTER.

We saw above how Bit_Select becomes a ‘1’ after the Read Hit state is com-
pleted. Now let’s discuss how it becomes a ‘0’ during that state. When the output of
PREFETCH_STATUS, Counting, becomes a ‘1’, we want Bit_Select to become a ‘0’ to
allow for the read operation. As discussed above, Counting is connected to the SR_Select
port of WORD_SELECT. When Counting changes to ‘1°, it is clocked into DFF1 and the
output of DFF1 is connected to NOR2. Thus, NOR2 produces a ‘0’ and is output onto the
Bit_Select port, which in turn forces the Bit_Select_Bus to become ‘0’s.

Let’s summarize this complicated circuit. The reader may refer to the VHDL
code of THE_CONTROLLER in Appendix D for the port connections of
WORD_SELECT. The circuit is initialized when Master_Reset is asserted high. The
Clear port of TOS_SHIFTER is connected to Master_Reset through Clear_TOS port.
Therefore, when Master_Reset goes high, TOS_SHIFTER is cleared and one flip-flop is
set to ‘1’ to act as the TOS pointer. At the same time, SHIFT_REGISTER is cleared to
all zeros. Clearing this register is a bit more complex than initializing TOS_SHIFTER.
The first thing that must be done is to reset DFF1. This is accomplished with
Master_Reset. After resetting, Qnot of DFF1 is ‘1’ and is ANDed with OR1 output. One
of the inputs to OR1 is Master_Reset so the AND result is ‘1°. This signal is then con-
nected to OR3 and the OR3 output is connected to the Clear port of SHIFT_REGISTER.
Thus, SHIFT_REGISTER is cleared. The other way SHIFT_REGISTER is cleared is
when the signal, Function_Change, is asserted high when the prefetch cycle is not occur-
ring. The signal, Function_Change, is connected to the Clear2 port of WORD_SELECT.
If it is ‘1°, then the output of OR1 is ‘1’. This signal is ANDed with the Qnot output of
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DFF1. Qnotisa ‘1’ as long as the MCC is not in the prefetch cycle. Therefore, the AND
result is a ‘1°, which goes through OR3 to clear SHIFT_REGISTER.

If a read miss occurs, the MCC will write the data into the CAM array when it is
available from main memory. In this case, the WSR_Select port becomes a ‘1’ selecting
the TOS_SHIFTER and shifting it upward using the CP and CPnot inputs. The
Bit_Select port is already a ‘1’ from initialization or from the previous state change.
Thus, the CAM array is set up for a write and the write is accomplished.

If a write hit occurs, the Resolved_Signal_Tag showing the word that was found
is loaded into SHIFT_REGISTER. WSR_Select is a ‘0’, which selects the
SHIFT_REGISTER data and outputs the data onto the Word_Select_Bus. Thus, the
CAM array is again setup for a write operation.

If a read hit occurs, SR_Select becomes a ‘1’ and is stored into DFF1. The Q out-
put of DFF1 then selects the shift operation of the SHIFT_REGISTER and on each clock
pulse it is shifted upward until the prefetch block size is reached. Q is also input into
NOR2 whose output becomes a ‘0’, which goes onto the Bit_Select_Bus. Thus, data are
read in a FIFO manner from the CAM array on each clock pulse.

WORD_SELECT_CLOCK. The purpose of this component is to act as the clock
inputs for the registers in the WORD_SELECT component. The schematic diagram is
shown in Figure 39 and its VHDL code is in Appendix C.

This component has three output ports. One of these outputs,
Word_Sel_Reg_Clock, is connected to the SHIFT_REGISTER of the WORD_SELECT
component. It clocks this register during the prefetch cycle to load incoming data into the
register. The other two output ports, TOS_Clock and TOS_ClockNot, are connected to

the TOS_SHIFTER of WORD_SELECT. These two signals are the clock inputs of
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Figure 39. Schematic Diagram of the WORD_SELECT_CLOCK Component

TOS_SHIFTER to shift the register prior to the write operation during the Read Miss
state. ‘
The output Word_Sel_Reg_Clock is determined by the following boolean equa-

tion:
Word_Sel_Reg_Clock = (Search_Complete)(Resolved_Tags)(Write) + (CP)(Counting).

This means that when a search is complete, a match was found in the CAM array, and a
write function was requested, or when the systems clock pulses during a prefetch cycle
(i.e., Counting = ‘1’), Word_Sel_Reg_Clock is asserted.

The output TOS_Clock needs to have a rising and falling edge to act as the clock
input for the TOS_SHIFTER. Therefore, a change detector was placed on the compo-
nent. When the signal Read_Miss changes from ‘0’ to ‘1’ or vice versa, the change

detector outputs a ‘1’ for a short period of time. Read_Miss is determined as follows:

Read_Miss = (Read)(Search_Complete)(RTnot).




Thus, when a read is requested, the search is complete, and the search was unsuccessful,
Read_Miss becomes a ‘1°. This signal is ANDed with the output of the change detector
to pulse TOS_Clock. Therefore, TOS_Clock pulses only when Read_Miss transitions to
‘1’. TOS_ClockNot is the complement of TOS_Clock. The buffer, BUF1, is needed to

ensure TOS_Clock and TOS_ClockNot transition at the same time.

Pusting it All Together

With the four states of the MCC in mind, the logic and control lines were drawn
schematically to represent the operations the MCC was to perform. Therefore, a struc-
tural gate level design was integrated onto the chip model to control the CAM array.
Table 7 shows the necessary inputs into the CAM array to accomplish each operation for
the various states. All of the components that make up the MCC were discussed in some
detail above. Refer to those sections for further clarification of the signal and component

names.

Table 7
CAM Array Inputs for the Main CAM Cache States

Bit_Select_Bus Word_Select_Bus

Read
Search 1 0
Hit
Read 0 Resolved_Signal_Tag
Miss
Write 1 TOS_Output
Write
Search 1 0
Hit
Write 1 Resolved_Signal_Tag
Miss N/A N/A
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As stated before, each function begins with the search operation. This operation
requires that the Bit_Select_Bus be asserted high and the Word_Select_Bus be asserted
low. If, during a read, the search is successful, the MCC goes into the Read Hit state and
the read operation is performed. A read requires the Bit_Select_Bus to be asserted low
and the word being read must have a ‘1’ asserted on its Word_Select_Bus lines.
Alternatively, if the search is unsuccessful, the Read Miss state is entered. This state re-
quires a write operation in which the Bit_Select_Bus must be asserted high and the
Word_Select_Bus gets the data from the TOS_SHIFTER of the WORD_SELECT com-
ponent. The TOS_SHIFTER holds the next stack position for a write.

If the search is successful during a write function, then the Write Hit state is en-
tered and a write operation is performed. During a write operation, the Bit_Select_Bus
must be asserted high. The Word_Select_Bus receives the Resolved_Signal_Tag data
indicating the word that was found. If the search were unsuccessful, the Write Miss state
is entered and no further action is required.

The operation of the entire MCC will now be discussed. Since the Read and
Write functions require a search, the search will first be explained. The remainder of this

section describes the functionality of the MCC in each of the four states.

The Search. According to Table 7, the Bit_Select_Bus must be asserted high and
the Word_Select_Bus must be asserted low to accomplish the search. The
Bit_Select_Bus gets its data directly from the Bit_Select port of the controller. This port
is ‘1’ as long as the MCC is not prefetching in the Read Hit state. The Word_Select_Bus
gets its data indirectly from the SHIFT_REGISTER (see Figure 38). This register uses
the D-type flip-flop with Reset. As long as the MCC is not in the prefetch mode, a
change either in the Read or Write port will cause the SHIFT_REGISTER to reset. When
the Read or Write ports change, the FUNCTION_CHANGE_DETECTOR detects the
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transition and clears the register to all zeros. Note that after each function is complete
(cither the read or write function), the SHIFT_REGISTER is reset. Thus, when new data
are to be operated on during a read or write function, Word_Selector will have been reset
to zeros and will be ready for another search operation. Also note that
SHIFT_REGISTER is reset upon the initialization of the MCC by the Master_Reset
signal.

As mentioned above, the Word_Select_Bus gets its data indirectly from
SHIFT_REGISTER during a search operation; 2 x 1 multiplexers are located between the
two (see Figure 38). The output data of SHIFT_REGISTER are fed into the In0 ports of
the 2x1 multiplexers. Consequently, the multiplexers must have a ‘0’ value at the Sel
ports before the data are output onto the Word_Select_Bus. This is done by the
SELECT_WORD_SELECT component shown in Figure 37 which monitors the change
in the Read port of the MCC. When the Read signal transitions from ‘1’ to ‘0’,
FUNCTION_CHANGE_DETECTOR outputs a ‘1’ onto signal Function_Change, which
is connected to thc Reset port of an edge-triggered D-type flip-flop in
SELECT_WORD_SELECT. This resets the flip-flop to ‘0’. Its output, WSR_Select, is
connected to the Sel ports of the multiplexers in WORD_SELECT, thereby selecting the
data from SHIFT_REGISTER. Upon initialization, the Master_Reset signal also resets
this D-type flip-flop. Consequently, the MCC is set up for a search operation after

initialization.

The Read Hit. To do a read, the Read port of the MCC must indicate that a read
function is requested and the address to read must be available. If the search operation, as
explained above, is successful, then the MCC enters the Read Hit state and begins its
prefetching cycle. Only one bit of the Resolved_Signal_Tag vector will be ‘1’ on a

search hit. This is because an address will never appear more than once in the CAM ar-
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ray since during a write function, a search is performed first, and if successful, the new
data are written over the old.

The Resolved_Signal_Tag lines are connected to the In_Vector port of
SHIFT_REGISTER through the Tags_In port of WORD_SELECT (see Figures 32 and
38). These data are stored into the SHIFT_REGISTER by clocking them in with the CP
(the MCC’s clock port) ANDed with the Counting signal (see the
WORD_SELECT_CLOCK component in Figure 39). They are ANDed to ensure the
SHIFT_REGISTER is clocked only when the MCC is prefetching. The
SHIFT_REGISTER’s outputs are selected by the multiplexers and the data are output into
the CAM array.

After SHIFT_REGISTER is loaded, the Sel0 port of SHIFT_REGISTER is
changed to a ‘1’. This is accomplished with the Counting signal. When it changes to a
‘1, it clocks itself into DFF1, shown in Figure 38. This signal is connected to the Sel0
port of SHIFT_REGISTER. A ‘1’ on this port switches its functionality from loading to
shifting. Since its Clockin port is connected to the CP port of the MCC and ANDed with
the Counting signal, the register will shift upward the number of times defined in the
prefetch block size, allowing data from the CAM array to be read from the MCC in the
order in which they were written.

Another requirement for the read operation is that the Bit_Select_Bus be all ‘0’s.
This is done by using the output of DFF1 of WORD_SELECT (Figure 38). When it
changes to a ‘1’, it clocks itself into DFF2. The output of DFF2 is then NORed with the
output of DFF1, which is essentially the Counting signal with a delay. The Counting sig-
nal comes from the PREFETCH_COUNTER that is stimulated by the Resolved_Tags,
Read, and Search_Complete (a timing signal signifying the completion of a search) sig-

nals ANDed together. The result of the AND signifies a read hit has occurred. The




PREFETCH_COUNTER produces a ‘1’ and asserts the signal Counting high as long as
the binary counter inside the PREFETCH_COUNTER does not equal the predefined
prefetch block size. The binary counter counts up by one on each clock pulse. The
counter’s output is compared with the prefetch block size. When they are equal, the
PREFETCH_COUNTER produces a ‘0’ on the Counting signal, meaning the prefetch
cycle is complete.

While Counting is ‘1°, the MCC’s clock is able to clock the SHIFT_REGISTER.
On each clock pulse, the register is shifted up by one and the contents of that CAM word
are read. Thus, the predefined number of words is prefetched, each word being read on

the clock pulse.

The Read Miss. If a miss occurs on a read, then the address and its corresponding
data need to be written into the CAM. The CAM is written to in a FIFO manner.
Therefore, the TOS_SHIFTER will be used to select the word to be written. The only
purpose of this shift register is to keep track of the top of the stack. In the MCC, this reg-
ister is shifted just before the write to the CAM. This is done by merely clocking the
register. The clock input is the AND result of the Read, Search_Complete, and
Resolved_Tags' signals (see Figure 39). Those signals ANDed together signify a read
miss. Since a complete clock cycle (‘0’ to ‘1°, then ‘1’ to ‘0’) is needed to shift the
TOS_SHIFTER, a CHANGE_DETECTOR was used to detect the transition of the AND
result. The CHANGE_DETECTOR produces a ‘1’ for a short period of time then returns
to ‘0’, therefore completing its own clock cycle.

The Sel port of the multiplexers in the WORD_SELECT component (Figure 38)
is determined by the SELECT_WORD_SELECT component. The AND resulit of the
Read, Search_Complete, Resolved_Tags', and Data_Avail_MEM signals is connected to
the input of the D-type flip-flop of the SELECT_WORD_SELECT and (after going
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through an OR gate) is also connected to the flip-flop’s clock port. Thus, the AND result
clocks itself into the D-type flip-flop. The output of the flip-flop is connected to the Sel
port of the multiplexers, thus selecting the TOS_SHIFTER. The Bit_Select_Bus is al-
ready set to ‘1’s, so the write occurs as soon as the data are present on the Address_In and
Data_In ports.

After this read function is complete, the Read signal is asserted low and the
FUNCTION_CHANGE_DETECTOR detects this change and outputs a ‘1°’. This ‘1’
then goes through the Clear2 port of WORD_SELECT and resets the
SHIFT_REGISTER. This sets the MCC up for the next search operation. Now, let’s take

a look at the write function.

The Write Hit. The write function, as mentioned before, also starts with the search
operation. In this case, the Write signal is asserted high and the address and data are
available on the Address_In and Data_In ports, respectively.

The search is performed and, if successful, the Write Hit state is entered. In this
state, the word that matched the input address will have its data replaced by the new data.
The word is selected by the Resolved_Signal_Tag vector (this vector signifies which
word is matched) being loaded into the SHIFT_REGISTER of WORD_SELECT. The
Resolved_Signal_Tag vector is connected to the In_Vector port of this register (see
Figure 38). The AND result of the Write, Search_Complete, and Resolved_Tags signals
is used to clock the inputs into the SHIFT_REGISTER (see the
WORD_SELECT_CLOCK in Figure 39). This AND result signifies a search hit on a
write function. The output of SHIFT_REGISTER is input into the CAM array on the
Word_Select_Bus through the multiplexers. Since the Bit_Select_Bus is already set up to
do a write (i.e., the Bit_Select_Bus lines are all ‘1’s), the write operation is performed on

the selected word and the old data are replaced with the new.




The Write Miss. If, on a write function, the search is unsuccessful, the Write Miss
state is entered. In this state, the MCC simply asserts the Write_Miss port high for a short
period of time and then waits until called upon again.

Summary

This chapter detailed the design of the MCC from its functionality through the fi-
nal integration of the CAM array and the controller. The VHDL model of the chip was
designed and built from the bottom up. The CAM cell design was taken from DeCegama
(3:87) and implemented in VHDL. The CAM cell was then used to build the CAM array,
and the logic associated with the CAM array was integrated onto the chip model. Basic
components such as flip-flops and shift registers were needed in order to put the rest of
the model together. Once these basic components were built and tested, larger compo-
nents were assembled. These larger components were pieced together to form the con-
troller and the controller was integrated onto the chip model. A VHDL description of the

main CAM cache used to exploit structural locality was the final product.
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IV. Testing and Analysis

Overview

In Chapter 3, the inner workings of the MCC were discussed in detail. Let’s now
take an overview at the MCC and analyze its behavior. This chapter contains a look at
the behavior of the MCC and the testing of the chip model to verify its functionality. The
context of how the MCC fits into a memory subsystem will be discussed. The per-
formance of the MCC as to the timing of the operations in each of the four states is de-
scribed. A detailed analysis is then presented including critical-path calculations as well
as a critical view on how to improve the MCC’s performance and space utilization.
Finally, some issues that need to be considered during the fabrication of the chip conclude

the chapter.

Behavior of the MCC

As described in Chapter 3, the MCC takes on one of four distinct states: the Read
Hit, Read Miss, Write Hit, and Write Miss states. Depending on the function requested
(read or write) and the data available, the MCC will enter one of these states. This is
shown in the VHDL behavioral description of the MCC located in Appendix D. Figure

40 shows a diagram of the states and how the states are entered.

Figure 40. Sate Diagram of Main CAM Cache
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Figure 41 shows the flowchart of how the chip model works. Regardless of
whether a read or a write function is requested of the MCC, a search is performed first.
After the search is performed, one of the four states shown in Figure 40 will be entered.

When the CPU requests a read and provides the address, either the Read Hit or
Read Miss state will be entered. If the address is found in the CAM array, the Read Hit
state is entered. This is the only state that works synchronously. When a read hit occurs,
the MCC begins to prefetch memory locations in the order in which they were written
into the cache. On each clock pulse, the SHIFT_REGISTER is shifted upward resulting
in the next array position in the CAM to be read. As each new address and associated
data become available on the MCC’s output ports, a signal called Data_QOut_Available is
asserted high, signifying that the data are available.

If the address is not present in the CAM array, the MCC asserts high the
Read_Miss port signifying that a read miss has occurred. The MCC then goes into a wait
state until main memory has placed the requested data on the data bus. The MCC must
be notified, through the Data_Avail_MEM port, that the data are available on the bus
from main memory. The data are then written onto the TOS of the CAM array.

When the CPU requests a write, the address and data are also provided. If the ad-
dress is present in the CAM array, the Write Hit state is entered. During this state, the
Write_Hit port is asserted high and its current data are replaced with the new data. If the
address in not stored in the MCC, the Write Miss state is entered and the MCC simply as-
serts its Write_Miss port signifying that a write miss occurred and waits for the next

function.

Testing
Each component of the VHDL model was thoroughly tested to ensure that its

functionality corresponded to the expected behavior. Throughout the initial testing of
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each component and the MCC itself, the word length was set at 6 bits, composed of 3 bits
for the address and 3 bits for the data. The CAM depth was also initialized at 3. This
was sufficiently large enough to ensure the model was working correctly, but small
enough to allow the simulations to run very fast.

Appendix F contains the code used to exercise the MCC model as well as a simu-
lation run including inputs and outputs. The appendix has the file used to stimulate the
MCQG, the test bench, and the configuration file. The simulation run contains a simulation
of each of the four states. This data is part of the data used to analyze the performance
and find the critical paths through the MCC.

A small memory system is shown in Figure 42 and the VHDL code is in
Appendix G. This system consists of the MCC connected to a CPU and main memory
(MEM) by buses and control lines. The only purpose of tae CPU model is to produce ad-
dresses and request the memories to read or write the address. The sole purpose of MEM
is to produce data corresponding to the address from the CPU and to produce data during
the Read Miss state of the MCC. This system was built around the MCC to test the MCC
only. Itis not how an actual memory system works. The word length used in these tests
was 64 bits; 32 for the address portion and 32 for the data portion. The CAM depth was
set at 10 words during one test and 15 during another.

Figure 42 shows how the simple memory system is configured. The CPU gener-
ates an address and a memory request every 100 ns. If the request is a write, MEM auto-
matically produces data onto the data bus (Data_Sig in the figure and in the code). This
makes it appear to the MCC that the CPU produced both the address and the data.

Let’s look at how the system works. When the CPU issues a read request, it also
places an address on the address bus (Address_Sig). The MCC then searches for the ad-

dress and if a hit occurs, the Read Hit state is entered and the prefetch cycle is
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Figure 42. Simple Memory System Used to Test MCC

accomplished. During the prefetch cycle, the MCC’s Valid_Out port is asserted high
notifying the CPU that no more requests should be generated. This essentially blocks the
CPU. If the address is not in the MCC, then the Read Miss state is entered. The
Read_Miss port goes high signaling the MEM that it needs to supply data to the data bus.
After MEM_Delay, the MEM supplies the data and asserts the Data_Avail signal. The
MCQC then takes the data off the bus and writes it into the CAM array.

When the CPU requests a write, the signal Write_Sig notifies the MEM to supply
data to the data port. The MCC then searches its CAM array for the address. If found,
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the Write Hit state is entered and the write is performed. Otherwise, the Write Miss state

is entered and the system waits for the next memory request.

Context

The primary purpose of the MCC is to prefetch memory references in the order
the CPU previously used them so structural locality can be captured by the SLC chip.
Figure 43 shows the context of the MCC in the memory hierarchy and the data flow be-

U

tween the CPU, the SLC, the MCC, and main memory.

MCC Main Memory

cru K] sLC K::

Figure 43. Context of the MCC in the Memory Hierarchy

During a read cycle, the CPU will send a signal signifying that a read is requested,
as well as the address of the data to be read. The SLC will accept these data and search
its memory for the address. If the address is stored in the SLC, then it, the fastest

memory of the hierarchy, will provide the requested data to the CPU. This is the ideal
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case and the one that this memory hierarchy is designed for. Since the SLC has captured
structural locality, the chances are high that the next reference used by the CPU will also
be stored in the SLC.

The MCC also accepts the address from the CPU and does a search in its memory.
If the data are found, the prefetch cycle begins and the data are read out of the CAM array
in & FIFO manner, one data element per clock cycle. The SLC then stores the data into its
memory. One thing to consider is the possibility of a read hit on both the SLC and the
MCC. If this occurs, the SLC will be reading data from its memory and providing it to
the CPU. Concurrently, the MCC will be in its prefetch mode supplying the SLC with a
block of memory references. More research will need to be done to determine what to do
if this situation occurs.

One possible solution is simply to ignore the prefetched memory references. This
goes along with the assumption that if the SLC contains one reference, then the following
references are already contained as structural locality in the SLC. But that will not al-
ways be the case. If these references are ignored, then the MCC may be prefetching
while another CPU request is generated. If this happens, the MCC may miss a chance to
prefetch useful data to the SLC. It may also miss the opportunity to write data to the
TOS, thus potentially destroying structural locality. Data may also need to be written into
the MCC’s CAM array during the prefetch cycle, thus creating cache incoherency in the
memory hierarchy. For these reasons, this scheme is not a feasible solution.

Another alternative would be to block the CPU so no other operation can take
place on the data buses, except between the MCC and SLC where the prefetching is oc-
curring. If this is done, the CPU will be idle for the number of clock cycles needed to
prefetch the entire block of data to the SLC.
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The most feasible way to handle this potential problem is to shut down the MCC’s
prefetch cycle. This can be done by a signal sent from the SLC to the MCC signifying
that the SLC contains the data needed by the CPU. This signal can be ORed with the
Master_Reset signal in the MCC to selectively initialize desired components. One com-
ponent that must not be initialized in this case is the TOS_SHIFTER in the
WORD_SELECT component of THE_ CONTROLLER. This register needs to retain the
TOS pointer so memory references can be written into the CAM array in the same order
that the CPU uses them. Also, it is important that the contents of the CAM array not be
altered.

If the SLC and the MCC do not contain the necessary data, the CPU gets the data
from main memory. In this case, the SLC and the MCC wait for main memory to provide
the data to the data bus. Main memory will send a signal signifying when the data are
available. After receiving this signal, the SLC and the MCC take the data from the data
bus and write them into their respective CAM arrays.

The memory subsystem, as dictated by the current design of the MCC, uses write-
through to ensure cache coherency. Therefore, all levels of the memory hierarchy are
updated on a write-request from the CPU. The SLC will first search its contents for the
address to write to. If the address is present, then the data are written into the SLC’s
memory. Otherwise, the SLC remains idle. The MCC operates the same as the SLC in

this case. The main memory performs the conventional write operation.

Performance

This section describes the overall timing for the MCC. The time needed to initial-
ize the MCC and the timing for each of the four states is described. The fastest clock
speed allowable for the MCC is 34 ns (29.4 Mhz). This is dictated by the Read Hit state

when the MCC uses the clock to prefetch data from the CAM array. Specific time-delays
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in the VHDL code were used in the simulation of the MCC and the justification for their
use will be explained. The critical paths through the MCC are presented in the next sec-

tion entitled Analysis.

Time for Initializing. Figure 44 shows the timing diagram for initializing the
MCC. The signal Master_Reset is used to reset the entire chip model. This signal can be
‘1’ for as little as 38 ns and still initialize the entire MCC. After initialization is

complete, Master_Reset must return to ‘0’ before the MCC can perform any operations.

Write_Miss
Write_Hit
Read_Miss a—i
Data_Out_Available2 ‘_:_ T ]
Master_Reset 1}« :r 38 ns >
4.\3 ns
o 10 20 30 40
Time Scale (ns)

Figure 44. MCC Initialization Timing Diagram

Timing for the Read Hit. Figure 45 shows the timing of the MCC during an entire
read hit cycle. Figure 46 is a closer look revealing more detail. Notice that the Data_Out
signal transitions at regular intervals. This is due to the synchronous behavior of the
MCC during this state. The SHIFT_REGISTER in the WORD_SELECT component of
THE_CONTROLLER is shifted upward on the clock pulse, thus allowing the CAM array

to perform the read operation.
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Figure 45. Read Hit Timing Diagram
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Figure 46. Read Hit Timing Diagram - A Closer View

The data to perform the search for the read function should be on the Address_In
ports no longer than 2 ns before the Read port is asserted high. Otherwise, the MCC will

not enter the prefetching cycle. This restriction can be relaxed by adding an
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Address_Enable port to the MCC. This port would replace the functionality of the
CHANGE_DETECTORs in the SEARCH_STATUS component of the CONTROLLER,
allowing the address to be on the bus at any time before or after the Read port is asserted
high. It takes 57 ns after the Address_In ports are asserted with the address for the first
output to be placed on the Data_Out ports. Subsequent data are output onto the Data_Out
ports at intervals equal to the clock period. It takes 28 ns after each clock pulse for the
data to be placed on the Data_Out ports.

The Read port needs to be high for only 26 ns. After that, the CPU is free to re-
quest another operation, although the MCC will not respond because it is prefetching
data. This is demonstrated by Figures 45 and 46. From 150 to 200 ns, the Read port is
high, simulating a read request by the CPU. The MCC does not respond to this new re-
quest because it is in the prefetching cycle.

The Valid_Out signal is asserted high 3 ns after the first data word is available on
the Data_Out ports. For each read, the Data_Available signal goes high 7 ns after the
data element is available, then transitions to low 5 ns later. After the last valid data ele-
ment is prefetched and the Data_Available signal goes low, another read is performed on
the CAM array and the next word of the array is placed on the Data_Out ports. This time
the signal Data_Available does not go high. Therefore, the data should not be read as
valid.

At the end of the prefetch cycle, the Data_Out ports become all ‘O’s and 3 ns later
the Valid_Out signal goes low. This signifies that any data on the Data_QOut ports is not
valid.

The total time required for the Read Hit state depends upon when the clock pulse
enters the MCC. The CP signal is ANDed with the Counting signal, which in turn clocks
the SHIFT_REGISTER. Thus, the time required for this state can vary by as much as
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one-half of a clock cycle. Using a clock speed of 34 ns, the range of time would be 917

ns to 934 ns while prefetching 25 memory references.

Timing for the Read Miss. The timing diagram for the signals involved in a Read
Miss state is shown in Figure 47. After the Read_Miss signal is asserted high, the MCC
must wait for the Data_Avail_MEM signal from main memory to be asserted high before
writing the data into the CAM array.

Read_Miss 4 19 ns >

-

Data_Avail_MEM‘j

Data_In 3 X—-— 31 ns ——%
i 5ns° 3 |

Read 54- 8 ns-»
Address_In 1 U

pelald
W
=
w

o

0 10 20 30 40 50
Time Scale (ns)

Figure 47. Read Miss Timing Diagram

The Read_Miss port of the MCC is asserted high 19 ns after the Read port goes
high, indicating that the requested data are not stored on the MCC. So that the CPU is
slowed as little as possible, the MCC allows the CPU to take the Read signal low as soon
as 8 ns after the Data_Avail_MEM port goes high. The Read_Miss port will go low 3 ns
after the Read port goes low.

When main memory asserts the Data_Avail_MEM port high along with supplying

the data onto the data bus, the MCC performs the write function and adds these data to
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the TOS of the CAM array. The Data_Avail_MEM port can go high 18 ns after the read
is requested. Even though the Read_Miss port is asserted high 19 ns after the read is re-
quested, the MCC is set up to do the write into the CAM array after only 18 ns. This, of
course, is not realistic since the memory would be slower than the MCC. The point is,
the MCC is set up to do a write into the CAM array with plenty of time to spare.
Data_Avail_MEM must be high for at least 8 ns to allow the write to occur. It should not
be high any longer than it takes the CPU to request another operation of the MCC. The
data should be available for 31 ns after Data_Avail_MEM goes high.

A 5 ns time period must exist after a Read Miss state and the next requested op-

eration. Therefore, the Read Miss state takes a total of 54 ns to complete.

Timing for the Write Hit. Figure 48 displays the timing diagram for the signals
involved during the Write Hit state. Here, the CPU supplies the address and data to be
written into memory and asserts the Write port high. It takes 31 ns for the Write port
transition to reset the SHIFT_REGISTER in the WORD_SELECT component of
THE_CONTROLLER. Therefore, this state requires that the CPU take the Write port
low at least 28 ns before the address and data are taken off the data buses. The 3 ns dif-
ference is accounted for by the AND gates inside each CAM cell that the data must pass
through. If the SHIFT_REGISTER is not reset before the address and data are changed,
invalid address and data will be written into the CAM array. The Write port can go low
as little as 20 ns after transitioning to high.

When a write hit occurs on the MCC, it takes 19 ns for the Write_Hit port to
change to ‘1’. Only 3 ns after the Write port is asserted low will the Write_Hit port tran-
sition back to ‘0’. The Write Miss state requires 48 ns before the next operation can take

place.
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Figure 48. Write Hit Timing Diagram

Timing for the Write Miss. The timing for the participating signals of the Write
Miss state is shown in Figure 49. The CPU supplies the same type of data as in the Write
Hit state above; namely the address, the data, and the Write signal. The Write port must
be high and the address and data must be available for at least 20 ns after the write is re-
quested. When the search does not find the address in the CAM array, the Write_Miss
port is asserted high after 19 ns. When the Write port is changed back to ‘0’, it takes only
3 ns for the Write_Miss port to return to ‘0’. The MCC then needs 24 ns after the Write
port goes low to reset itself before another operation can begin. The Write Miss state re-
quires 44 ns to complete.

For both the Write Hit and the Write Miss states, the entire computer system must
wait for main memory to write the data into main memory before any other operation can

occur. This is a drawback of using a write-through policy with no buffering.
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Figure 49. Write Miss Timing Diagram

Timing Justification. The time delays used by the MCC are shown in Table 8.
They are defined in chip_pkg.vhd (see Appendix E) and were used as generics through-
out the entire model. These generic time delays were supplied by Mehalic (14) who says
they are figures derived through SPICE simulations and the actual testing of hardware at

the Air Force Institute of Technology.

Table 8
Generic Time Delays Used in the MCC

Circuit Time Delay (ns)

AND Gate
Buffer

D-type flip-flop
Inverter
Multiplexer
NAND Gate
NOR Gate

OR Gate
XNOR Gate
XOR Gate

AR ELWNN-O~W
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69

These delay values were used for the rise and fall inertial delays for each compo-
nent. This will not necessarily be the case for a SPICE model nor for the actual hardware
implementation of this circuit. For all of the components, the rise inertial delay will
probably be different than its fall inertial delay. The actual delays will also more than
likely have decimal values. Due to these considerations, the timing of the fabricated chip

will be different than the simulation.

Analysis

We now know the time it takes for each of the states to complete its cycle. Let’s
now investigate why it takes each state the amount of time it does. The critical paths
through the chip model determine this time and can be useful for anyone desiring to speed

up the MCC.

Read Hit Analysis. The Read Hit is the longest state simply because it prefetches
a block of data when activated. The state can be broken into three separate phases. The
first phase is the one in which the MCC is setting up for the prefetch cycle. The second
phase is the prefetch cycle when the data words are being read on each clock cycle. The
third and final phase is when the PREFETCH_COUNTER has completed its counting to
the pre-specified prefetch block size and when the MCC is resetting itself for the next op-
eration.

Figure 50 shows the signals of the critical path during the first phase of a Read Hit
cycle. This phase, during any read hit, takes 57 ns finish. It is in this phase that the first

data word is read from the CAM array.
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Figure 50. Critical Path Timing Diagram for Read Hit in First Phase

The times used in Figure 50 are defined as follows.

tsc: This is the time it takes the Search_Complete signal to go high after
the Address is available to the MCC. The path for this time is through the
SEARCH_STATUS component of THE_CONTROLLER.

tc: This is the time it takes the PREFETCH_STATUS component to out-
put a ‘1’ onto the Counting_Signal after the Search_Complete signal goes
high.

tws: This is the time it takes the WORD_SELECT component to load the
SHIFT_REGISTER and output the correct data onto the Word_Select_Bus

so a read can be accomplished. Counting_Signal triggers this action.

tp: This is the time it takes after the Word_Select_Bus gets its data until

the output data from the CAM array is on the MCC’s Data_Out ports.
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The values of these times are given in Table 9. The total time, therefore, for the

first phase of the Read Hit is given by

tRH1 =tsc+ic+tws+1p

which calculates to 57 ns.

Table 9
Signal Times for the First Phase of the Read Hit State

Time (ns)
tsc 16
tc 16
tws 16
tp 9

The second phase of the Read Hit state consists of the data being read on each
clock pulse. Figure 51 shows the critical path through the MCC during this phase. The
figure shows only one of the many data words being read. The data are put onto the

Data_Out ports at each clock interval.

®
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Figure 51. Critical Path Timing Diagram for Read Hit in Second Phase
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The times used in Figure 51 are defined as follows.

tcp: This is the time it takes for the clock pulse to traverse the
WORD_SELECT_CLOCK component to be input into the
WORD_SELECT component.

tws: This is the time it takes for the Word_Select vector to put its data
onto the Word_Select_Bus after the Word_Selector_CP signal is input into
the WORD_SELECT component.

tp: This is the time it takes for the data to be put onto the Data_Out ports
of the MCC after the Word_Select_Bus has received the data specifying

the word to perform the read on.

thew: This is the time it takes, after the data are on the Data_Out ports, for

the clock to go high again to initiate another data word to be read.

The values of these times are given in Table 10. The total time, therefore, for the

second phase of the Read Hit is given by

tRH2 = tcp + tws + D + tpew

which calculates to 34 ns.

Table 10
Signal Times for the Second Phase of the Read Hit State

Time (ns)
tcp 7
tws 12
tp 9
tnew 6
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In the third and final phase of the Read Hit state, the MCC outputs all zeros on the
Data_Out ports and produces a ‘0’ on the Valid_Out port. This signifies that the Read Hit
state is finished and any data on the Data_Out ports should not be considered valid.

Figure 52 shows the critical path of this phase.

Counting_Signal T~ EL i g
, N : —
Word_Select E X% E é
2 o
Data_Out E X § %‘0?
Valid_Out ﬁh

§< tws +—tD—>§4t-;;:—

Figure 52. Critical Path Timing Diagram for Read Hit in Third Phase

The times used in Figure 52 are defined as follows.

tws: This is the time it takes for the WORD_SELECT component to use
the Counting_Signal to reset the SHIFT_REGISTER and output all zeros

onto the Word_Select_Bus.

tp: This is the time it takes for the CAM array to output non-valid data

and for this data to be put onto the Data_Out ports of the MCC.

ty: This is the time it takes the MCC to output a ‘0’ on the Valid_Out port

after Data_Out becomes all zeros at the end of this state.

87




The values of these times are given in Table 11. The total time, therefore, for the
third phase of the Read Hit is given by

IRH3=tws +tp + ty

which calculates to 44 ns.

Table 11
Signal Times for the Third Phase of the Read Hit State

Time (ns)
tws 32
tp 9
tv 3

An entire Read Hit cycle can be as short as 917 ns and as long as 934 ns. During
the first phase of this state, the first clock pulse occurs, so in order to calculate the total
time of the state we need to multiply try2 by 24 (assuming a prefetch block size of 25).
The total time, therefore, for the Read Hit state, assuming the clock pulses at the same

time the Counting_Signal goes high, is given by

tTOT = tRH1 + 24tRH2 + tRH3.

This equation calculates the total time for a Read Hit cycle to be 917 ns. But suppose the
clock does not pulse at the same time Counting_Signal goes high. In this case, half a
clock cycle could pass before Word_Selector_CP is effected. Therefore, 17 ns (assuming

a clock speed of 34 ns) must be added to tror, making the prefetch cycle last 934 ns.

Read Miss Analysis. The Read Miss state takes a total of 54 ns to complete before

any other operation can be performed on the MCC. This is the minimum time required
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for this state. Figure 53 shows the signals that make up the critical path for this state.
The port Data_Avail_MEM is dependent on the speed of main memory. Figure 53 shows
the earliest time Data_Avail MEM can go high. The MCC will wait as long as necessary

for this signal and for the data from main memory before writing into the CAM array.
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Figure 53. Critical Path Timing Diagram for Read Miss

The signal WSR_Sel is the signal that is input into the multiplexers of the
WORD_SELECT component and selects which shift register’s outputs will be put onto
the Word_Select_Bus. Word_Select is the array of signals that are output from the multi-
plexers and directly connected to the Word_Select_Bus. The other signals have been dis-

cussed earlier. The times used in Figure 53 are described as follows:
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tsc: This is the time it takes the Search_Complete signal to go high after
the address is available to the MCC. The path for this time is through the
SEARCH_STATUS component of THE_CONTROLLER.

tpam: This is the time between the Search_Complete signal going high

and the earliest time the Data_Avail_MEM can be applied.

twsr1: This is the time it takes the WSR_Sel signal to go high after the
Data_Avail_MEM signal goes high. The path for this time is through the
SELECT_WORD_SELECT component.

tsw: This is the time it takes for the signals to pass through the multiplex-

ers of the WORD_SELECT component of THE_CONTROLLER.

twsro: This is the time between the Word_Select signals changing and the
WSR_Sel signal being reset to ‘0’. WSR_Sel is reset by the Read signal
going through the FUNCTION_CHANGE_DETECTOR.

tsiab: This is the time it takes the CAM cells to stabilize after all opera-

tions are completed in the Read Miss state.

The values of these times are shown in Table 12. The total time, therefore, for the Read

Miss to complete is given by

tRM = tsC + tpaM + twsR1 + 2tsw + tWSRo tStab

which calculates to 54 ns.




Table 12
Signal Times for the Read Miss State

Time (ns)
tsc 16
tDAM 2
twsR1 16
tsw 2
tWSRO 11
tStab 5

Write Hit Analysis. The Write Hit state requires 47 ns to complete. Figure 54
shows the critical paths during this state. Again, this is a minimum time. The Write sig-
nal supplied by the CPU is the deciding factor as to how long the MCC remains in this
state once it is entered. Figure 54 shows the earliest time allowed for the Write signal to
be taken low. It can stay high for as long as needed provided the correct address and data
are applied to the MCC.

The signal Word_Selector_CP is the input signal to the clock port of the
SHIFT_REGISTER. The other signals in the figure have previously been discussed. The
times used in Figure 54 are described as follows:

tsc: This is the time it takes the Search_Complete signal to go high after

the Address is available to the MCC. The path for this time is through the

SEARCH_STATUS component of THE_CONTROLLER.

tcp: This is the time it takes for the Word_Selector_CP to go high after the
search is complete (i.e., Search_Complete = ‘1°). The path for this time is

through the WORD_SELECT_CLOCK of THE_CONTROLLER.

tws: This is the time it takes for the Word_Select signal vector to put the

correct data onto the Word_Select_Bus for the write operation to occur.
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Figure 54. Critical Path Timing Diagram for Write Hit

Word_Selector_CP is the signal that clocks the Resolved_Signal_Tag vec-
tor into the SHIFT_REGISTER. The path for this signal is through the
WORD_SELECT component of THE_CONTROLLER.

tec: This is the time it takes after the Word_Select vector puts the data
onto the Word_Select_Bus for the write, and before the vector is reset to
all zeros. Function_Change is triggered by the change in the Write signal.

Function_Change then resets the SHIFT_REGISTER.

The values for these times are given in Table 13. The total time needed for the Write Hit

state is given by

twH = tsc + tcp + tws + tFC

which calculates to 47 ns. One nanosecond later the next request can be honored.
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Table 13
Signal Times for the Write Hit State

Time (ns)
tsc 16
tcp 7
tws 12
teC 12

Write Miss Analysis. The Write Miss state takes a total of 44 ns to complete. No
further action is required of the MCC in this state but it still needs time to perform the
search and reset itself for the next operation. Figure 55 shows the critical path through
this state. The total time is dependent upon when the CPU takes the Write port low.
Shown in Figure 55 is the soonest time the Write port is able to go low without the MCC

producing undesired results.

Address_In

[

Search_Complete

Function_Change

Write E J

CY PR X TR N W W

Figure 55. Critical Path Timing Diagram for Write Miss
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The times used in Figure 55 are described as follows:

tsc: This is the time it takes the Search_Complete signal to go high after
the Address is available to the MCC. The path for this time is through the
SEARCH_STATUS component of THE_CONTROLLER.

tw: This is the time between when the Search_Complete signal goes high

and the Write port is able to go low.

twrc: This is the time it takes the FUNCTION_CHANGE_DETECTOR

to output the signal Function_Change after Write goes low.

trs: This is the time it takes the Function_Change signal to reset the D-

type flip-flop in the SEARCH_STATUS component.

The values for these times are given in Table 14. The total time needed for the Write

Miss state is given by
twM = tsc + tw + twrc + tgs
which calculates to 44 ns. At that time the next operation can be performed by the MCC.

Table 14
Signal Times for the Write Hit State

Time (ns)
tsc 16
tw 4
twWFC 8
trs 16
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Possible Improvements. One possible improvement for the overall speedup of the
memory subsystem is to use a buffered write-through policy. This will allow the CPU to
continue its operations without having to wait on main memory to finish a write. This
can be accomplished by adding buffer registers to the MCC. Therefore, when the CPU
requests a write operation, the MCC will write the data into the buffers. The CPU can
then continue working while the MCC waits for the data bus. When the data bus is free,
the MCC places the data onto the bus and main memory writes these data into its storage.

A disadvantage to using this policy is the addition of complexity to the MCC. By
adding write-through buffers, more control logic will be needed on the chip. This will not
only add to the complexity of the chip but it will possibly decrease its storage capacity.
The trade-off is speed versus space. If the buffers are used, the CPU can continue its
operations without having to wait on main memory. On the other hand, will the decrease
in memory storage in the MCC be enough to reduce the amount of structural locality the
MCC can hold? Probably not, and since the purpose of this research is to speed up a
computer as much as possible, a buffered write-through policy would be advantageous.

The CHANGE_DETECTOR component was used liberally throughout the design
to detect a change in a desired signal. The output of the CHANGE_DETECTOR would
go high for a short period of time then go low. This period of time was somewhat
arbitrarily chosen to be 5 ns. The output needed to be ‘1’ for a short enough period of
time not to slow the MCC down too much, yet be longer than the inertial delays of the
gates it entered. This period could be shortened to 4 ns since the longest inertial delay of
any gate it enters is 4 ns, Table 15 shows the time savings in each of the four states and
the component in which the savings could be realized. It is worth noting that the
OPERATION_STATUS also contains a CHANGE_DETECTOR but the change would

only affect the Data_Out_Available port and not the overall speed of the MCC.
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Table 15
CHANGE_DETECTOR Time Savings (ns)

Read Hit Read Miss Write Hit Write Miss

SEARCH_STATUS 1 1 1 1
WORD_SELECT 3
FUNCTION_CHANGE_DETECTOR 1 1 1 1
WORD_SELECT_CLOCK 1

Total Time Savings 5 3 2 2

The main goal of the SEARCH_STATUS component of the CONTROLLER was
to allow the CAM array plenty of time to do the initial search before any further opera-
tions were performed. By adding an Address_Enable port to the MCC, much of the logic
contained in this component can be eliminated. Figure 56 shows a recommended design
for the SEARCH_STATUS. The total time savings by implementing this new design is 3
ns during each state of the MCC. Currently, the SEARCH_STATUS component takes 16
ns to complete its operations. In the new design, 13 ns is all the time required: 5 ns
through the CHANGE_DETECTOR and 8 ns to accomplish a write into the D-type flip-
flop.

The design of the MCC did not consider prefetching data above the current TOS
pointer. An obvious way to see the problem this presents is during the initial operations
of the MCC in the memory system. If a Read Hit state is entered before the CAM is
filled with data, it is possible that bad data above the TOS pointer could be prefetched. If
the CAM array is filled with data, a similar situation can occur. Since the TOS pointer is
pointing at the top of the stack, any prefetches beyond the pointer retrieve data from the
bottom of the stack, thus potentially destroying the prefetch of structural locality. This
problem can be fixed by comparing the output of the SHIFT_REGISTER (containing the
prefetch pointer) with the output of the TOS_SHIFTER (containing the TOS pointer).

When the outputs are the same, the prefetch cycle should be shut down.
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Space Savings. Time was a major factor during the designing and building of the
MCC in VHDL that prevented the consideration of space savings on the final hardware
chip. In this section, the major areas recommended for redesign are discussed. The re-
sulting decrease in the number of transistors will allow the hardware product to be much
smaller than it would be if the current design is used.

The CAM cell of Figure 28 is a primary component to consider for redesign. The
cell, as it stands, would require 60 transistors to implement. This assumes implementa-
tion in CMOS technology without redesign and the number of transistors for each gate
shown in Table 16. In contrast, some of the cells described in Chapter 2 of this thesis re-
quire only 5 transistors. This is 8.33% the size of the cell in Figure 28. If a 128 x 64
array of these CAM cells were built into the MCC, a savings of 450,560 transistors would

be realized.

97




Table 16

Transistor Requirements for Gates of Figure 28

Inputs Gate Transistors

3 AND 8

Inverter 2
2 NOR 4
3 NOR 6

The CAM cell used in this thesis has two output signals: RX and RY. RX is the
complement of the cell content and RY is the actual value of the cell content. These two
signals corbined are exclusively-ORed to produce the validity bit. This bit is used dur-
ing the read operation to determine if the data are valid when a multiple read occurs.
Since the MCC writes data into the CAM array only when a read miss or a write hit
occurs, the situation with multiple words containing the same address will never happen.
Therefore, this port, the Valid_Out port, can be eliminated from the MCC. Consequently,
a CAM cell with only one output signal is all that is needed.

Another possible place to save chip area is to replace the CAM cells used to store
the data portion of the memory word with DRAM. The data portion of the word is never
searched during the operation of the MCC. It is merely a storage device to read from and
write to. Therefore, a CAM cell with search capabilities is superfluous in this application.
A DRAM can store these data with better space efficiency and still be able to access the
data quickly. DRAMs consist of only 1 transistor. Therefore, a DRAM is 1.67% the size
of the CAM cell used in this thesis and 20% the size of a 5-transistor CAM cell.

Space can also be conserved by redesigning the PREFETCH_COUNTER compo-
nent (Figure 24). This component uses a binary counter (Figure 19) to count upwards
while comparing the result with a predefined value (the prefetch block size). While the

values are not equal, the component outputs a ‘1’ from the RS-type flip-flop onto the
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Counting port. When the output of the binary counter equals the prefetch block size, the
RS-type flip-flop is reset and the Counting port becomes ‘0’. If the binary counter were
replaced with a count-down counter, the register holding the prefetch block size could be
removed and the XNOR gates could be eliminated. The ANDI1 gate could then be re-
placed by a NOR gate, so when the count-down counter reached all ‘0’s, the NOR gate
would output a ‘1’ and reset the RS-type flip-flop. These changes would reduce the com-
plexity of the circuit and possibly increase its speed.

The new design of SEARCH_STATUS shown in Figure 56 has eliminated much
of the required logic in that component. It allows the following gates to be deleted from
the current design: two AND gates, two OR gates, and one NOR gate. In addition, only
one change detector is needed, which eliminates the need for Address_length-1 XOR
gates and buffers.

Two AND gates from THE_CONTROLLER can be eliminated. AND2 of the
OPERATION_STATUS component has the same inputs as AND1 of the
WORD_SELECT_CLOCK component. Also, AND4 of the OPERATION_STATUS
component has the same inputs as AND2 of the WORD_SELECT_CLOCK.
Therefore,in each of the two cases, one of the gates can be deleted provided the output of
the remaining gate is used to satisfy the requirement of the one deleted. In an hierarchical

design such as the design in this thesis, it is not surprising to find this type of duplication.

Hardware Implementation Issues

Some hardware issues could not be considered in this research since only the de-
signing and VHDL implementation of the chip were performed. This section will provide
a few areas to investigate before fabrication.

Since the address and data fields are of generic size on the MCC, the total number

of pins on the chip is unknown at the writing of this thesis. Aside from the Data_In and




Address_In ports, only 12 other pins are needed. Therefore, a chip made with the data
and address being 32 bits wide each, for example, would require 140 pins on the chip
(i.e., (32 + 32) x 2 + 12 = 140). These are typical word lengths but if pin-out does present
an obstacle, a solution exists to circumvent the problem. A bidirectional buffer to hold
the incoming address and data and output the out-going data could be used. This would
add to the complexity of the chip but would decrease significantly the number of pins re-
quired and would allow for much larger address and data fields.

The number of cells in the CAM array is also not determined in this research. The
number of CAM cells a signal can drive before losing its value is finite. Therefore, some
form of signal enhancement must be used to allow a signal to propagate to all cells of the
CAM array with enough power for each cell to perform the desired operation. The use of
buffers is the usual means of performing this task. The location of these buffers must be
determined by finding how many cells a signal can drive before losing too much of its
value.

During the initialization phase of the MCC, the Master_Reset signal was used to
fill the entire CAM array with zeros. This was necessary to avoid operations on Xs
(unknowns) that are present in the CAM array upon startup. The problem with this ap-
proach is that there is likely an address in main memory made up of all zeros. So, if the
CPU requests an operation on that address before the CAM array is filled with valid data,
bad data could possibly be sent to the CPU from the MCC. As mentioned previously, a
search is the first operation to be performed when the MCC is activated. A search on an
X produces Xs on the tag lines, which is not acceptable in the completion of the state
operations. A cell that can effectively use an X and output a ‘0’ on the tag line during a
search would be ideal. Another solution would be to resolve Xs to ‘0’s on a resolved line.

Before implementing this chip in hardware, this issue must be resolved.
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Noise was a concern with the AT&T WE-32201 Integrated Memory Management
Unit/Data Cache (IMDC). This chip is used to translate virtual addresses to physical ad-
dresses. A large noise spike can occur during a normal translation when many cells in the
CAM discharge at once. The designers of this chip used very wide power and ground
buses and multiple Vg tub ties to keep the noise under 400mV. Therefore, noise should
be considered during the implementation phase of the CAM chip described in this thesis.
(5:595)

Summary

This chapter provided an in-depth analysis of the MCC. The complete functional-
ity of the MCC was presented as well as the context of the MCC in a memory hierarchy.
The performance of the chip model was carefully analyzed and it was determined that the
Read Hit state took the longest to complete for an obvious reason: this is the state in
which the prefetching of memory references occurs. The Read Hit state takes 57 ns +
(Prefetch_Block_Size-1)(Clock_Period) + 44 ns to complete. During the testing of the
MCQC, the Prefetch_Block_Size was set at 25 and the Clock_Period to 34 ns, making the
total time to complete the prefetch cycle 917 ns to 934 ns. The remainder of the states,
the Read Miss, the Write Hit, and the Write Miss, take 54 ns, 48 ns, and 44 ns, respec-
tively, to complete. The critical paths through these states were determined so the slow-
est components could be scrutinized for possible speedup. Some suggestions to increase
the speed of the MCC were presented as well as potential areas for saving space on the
chip. Finally, some hardware considerations were presented for further investigation be-

fore the chip is actually fabricated.
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V. Conclusions and Recommendations

Introduction

The focus of this thesis has been a proof-of-concept on modeling a cache chip that
stores memory references in the order they were used, and prefetching these locations in a
FIFO manner so structural locality can be captured by a faster on-chip cache. A content-
addressable memory was designed with this in mind. All of the functionalities of the
main CAM cache (MCC) were accomplished and a working structural-level VHDL
design of the chip was completed.

This thesis is the first iteration of research into the hardware realization of a mem-
ory hierarchy that exploits structural locality of memory references. The effort has shown
that a main CAM cache that exploits structural locality is a feasible design. The product
of this thesis was a VHDL design, starting at the gate level, of a CAM cache that
prefetches memory locations in the order they were used by the CPU so an on-chip cache

can capture structural locality and provide it to the CPU for fast processing.

Conclusions

The MCC was designed with a bottom-up approach. The functionality of the
MCC was first determined; then the logic to implement the functionality was developed.
The first operation the MCC performs when activated for any purpose is the search op-
eration. After the search is complete, the MCC enters one of four states: Read Hit, Read
Miss, Write Hit, or Write Miss. If the functionality of the MCC were any more compli-
cated than this, then a bottom-up approach would not have been a good one and it may
not have been possible to complete the design in one thesis cycle. The approach taken
was more intuitive to this researcher. Even if a top-down approach were used, the time it

would have taken to incrementally break down a top-level behavioral description into a
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structural model would have come close to the time it took to accomplish the bottom-up
design.

The functionality concepts of the MCC, i.e., the behavior of the MCC during each
of the four states, were successfully implemented in the VHDL model of the MCC.
During the Read Hit state, the MCC successfully prefetches the specified prefetch block
size of addresses and data allowing another chip, the SLC chip, to write the data into its
memory. Thus, structural locality is captured by the SLC. The MCC also writes data into

its CAM array in the Read Miss state and writes over old data in the Write Hit state.

Recommendations

The MCC was designed and modeled using the VHDL hardware description lan-
guage. Before the chip is actually fabricated and placed into a computer memory system,
a few areas require further research.

In order for the memory subsystem to be complete, the SLC must be designed.
The design will be very similar to that of the MCC. The SLC would have three active
states: the Read Hit, Read Miss, and Write Hit states. During the Read Hit state, the SLC
would read the requested data from its memory and provide it on its output ports. In the
Read Miss state, the SLC would wait on main memory for the data and then write the
data into its CAM array using a least-recently-used algorithm The Write Hit state would
act similar to, if not exactly like, that of the MCC. The Write Miss state would be an idle
state just as it is in the MCC.

The fabrication of the MCC and the SLC would be the next logical step in build-
ing this memory subsystem. The size of the chip now becomes a factor. A CAM cell
with as few transistors as possible and with the least power dissipation is recommended.

Jones (10) presents some excellent arguments as to the selection of a CAM cell with these
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two issues in mind. Once the cell is selected and designed, the size of the CAM array can
be determined. From there, the MCC and the SLC can be fabricated.

Once the fabrication of the chips is complete, the computer system utilizing this
memory subsystem can be bread-boarded and tested. The communications between the
components on the bread-board will be similar to the concept shown in Figure 43, If a
specially manufactured CPU with on-chip cache having the capability to communicate
with the MCC could be produced, the need for the SLC residing off chip could be elimi-
nated. This would allow for quicker on-chip responses xather than the off-chip communi-

cation delays.

Summary

The purpose of this type of research is to make computers run faster than ever. By
exploiting structural locality, this goal can be reached. This thesis effort produced a de-
sign of a CAM cache that stores memory references in the order they were used by the
CPU. The cache then provides these data, in a predetermined block size, to a faster cache
(this cache captures the structural locality), which in turn provides the data to the CPU.

The CPU can then access these data quickly.
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Appendix A: The VHDL Code of the CAM Cell

This appendix contains the VHDL code of the CAM cell. It is the heart of the
main CAM cache (MCC) chip. The entity is presented first, then the structure begins on a

separate page.

CAM _cell Entity

--Date: 3 May 1991

-- Version: 1.0

-- Filename: cam_cell_entity.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the entity of the CAM cell.

-- Associated files: cam_cell_structure.vhd : This file contains the gate level
-~ design of the CAM cell.

-- chip_pkg.vhd : This file is where the size of

-- the CAM array is defined. Other
-- declarations are also contained

-- in this file.

-- chip_pkg_body.vhd : This file contains the sub-

- routines Wired_And and Wired_Or
-- used by the chip.

-- cam_chip_entity.vhd : This file contains the entity

-~ description of the CAM chip.

-- cam_chip_structure.vhd : This file contains the structure

-- of the CAM chip. Itis formed by
-- generating copies of the CAM

-- cell.

-- chip_stimulus.vhd : This file exercises the chip and

-- provides inputs to test the chip.
-- chip_test_bench.vhd : This file contains the test bench

-- for the CAM chip.

-- chip_config.vhd : This file contains the

-- configuration of the system.
-- clock.vhd : You guess!

-- History:

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
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entity CAM_cell is

port(
D :in MVL7;
B :in MVL7,
W :in MVL7;
M :outMVL7;
RY: out MVL7;
RX: out MVL7);

end CAM_cell;

-- data line into cell

-- bit select line

-- word select line

-- match line

-- data output (W and C)

-- data output (W and Cnot)

-- RY and RX determine the validity of the bit
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CAM _cell Structure

--Date: 3 April 1991

-- Version: 2.0

-- Filename: cam_cell_structure.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the architecture structure of the CAM cell.
-- Associated files: cam_cell_entity.vhd : This file contains the entity

-- description of the CAM cell.

-- chip_pkg.vhd : This file is where the size of

- the CAM array is defined. Other
-- declarations are also contained

- in this file.

-- chip_pkg_body.vhd : This file contains the sub-

-- routines Wired_And and Wired_Or
-- used by the chip.

-- cam_chip_entity.vhd : This file contains the entity

-- description of the CAM chip.

-- cam_chip_structure.vhd : This file contains the structure

- of the CAM chip. It is formed by
-- generating copies of the CAM

-- cell.

-- chip_stimulus.vhd : This file exercises the chip and

-- provides inputs to test the chip.
-- chip_test_bench.vhd : This file contains the test bench

-- for the CAM chip.

-- chip_config.vhd : This file contains the

-- configuration of the system.
- clock.vhd : You guess!

-- History: Version 1.0 - used my own gates which were described behaviorally.
- Version 2.0 (3 April 1991) - switched to ZYCAD components.

-- Author: Curtis M. Winstead

library ZYCAD;

use ZYCAD.types.all;

use ZYCAD.components.all;
use WORK.Chip_pkg.all;

architecture Structure of CAM_cell is

-- The following are internal signals of the cell
signal Tl: MVL7,
signal T2: MVL7;
signalC: MVL7;
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signal Cnot: MVLY7;
signal Al: MVLY7;
signal A2: MVL7,;
signal Dnot: MVLT7;
signal Wnot: MVL7,
signal Bnot: MVLY7,

-- These components make up the CAM cell

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7; -- one input
output: out MVL7); -- one output
end component;
component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);-- N inputs
output: out MVL7); -- one output
end component;
component NORGATE -- ZYCAD component
generic (N: Positive; -- N input NOR gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);-- N inputs
output: out MVL7); -- one output
end component;
begin
-- component instantiation
INV1: INVGATE
generic map (Inverter_Delay, Inverter_Delay)
-- rise inertial delay,
-- fall inertal delay
input =>D,
output => Dnot);
INV2: INVGATE
generic niap (Inverter_Delay, Inverter_Delay)
-- rise inertial delay,
-- fall inertal delay
port map(
input =>B,

output => Bnot);
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INV3: INVGATE
generic map (Inverter_Delay, Inverter_Delay)
-- rise inertial delay,
-- fall inertal delay
port map(
input =>W,
output => Wnot);

AND1: ANDGATE

generic map (3, -- 3 inputs,
And_Delay, -- rise inertial delay,
And_Delay) -- fall inertal delay

port map(
input(1) =>D,
input(2) =>B,
input(3) => W,
output =>Al);

AND2: ANDGATE

generic map (3, -- 3 inputs,
And_Delay, -- rise inertial delay,
And_Delay) -- fall inertal delay

port map(
input(1) => Dnot,
input(2) =>B,
input(3) =>W,
output =>A2),

NOR1: NORGATE

generic map (3, -- 3 inputs,
NOR_Delay, -- rise inertial delay,
NOR_Delay) -- fall inertal delay

port map(
input(1) => D,
input(2) => Bnot,
input(3) => Cnot,
output =>TI);

NOR2: NORGATE

generic map (3, -- 3 inputs,
NOR_Delay, -- rise inertial delay,
NOR _Delay) -- fall inertal delay

port map(
input(1) => Dnot,
input(2) => Bnot,
input(3) =>C,
output =>T2);
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NOR3: NORGATE
generic map (2,
NOR_Delay,
NOR_Delay)

input(1) => Al,
input(2) =>C,
output => Cnot);

NOR4: NORGATE
generic map (2,
NOR _Delay,
NOR _Delay)
input(1) => Cnot,
input(2) => A2,
output =>C);

NORS: NORGATE
generic map (3,
NOR _Delay,
NOR _Delay)
map(

input(1) =>T1,
input(2) =>W,
input(3) => T2,
output =>M);

NOR6: NORGATE

generic map (3,
NOR _Delay,
NOR_Delay)

port map(
input(1) => B,
input(2) => Cnot,
input(3) => Wnot,
output =>RY);

NOR7: NORGATE

generic map (3,
NOR _Delay,
NOR_Delay)

port map(
input(1) => B,
input(2) =>C,
input(3) => Wnot,
output => RX);

end Structure;

-- 2 inputs,
-- rise inertial delay,
-- fall inertal delay

-- 2 inputs,
-- rise inertial delay,
-- fall inertal delay

-- 3 inputs,
-- rise inertial delay,
-- fall inertal delay

-- 3 inputs,
-- rise inertial delay,
-- fall inertal delay

-- 3 inputs,
-- rise inertial delay,
-- fall inertal delay
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Appendix B: The VHDL Code for the Basic Components of the Main CAM Cache

This appendix contains the basic components that make up the MCC. They are
listed in alphabetical order and begin on separate pages.

BINARY COUNTER

--Date: 25 July 91

-- Version: 1.0

-- Filename: binary_counter.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the entity and structure of an 8-bit

-- binary counter. This structure was taken from Mano p 278.
-- The outputs are valid on the clock pulse. Intermediate

-- values may not be valid due to timing inside the JK FFs.

-- Associated files:

-- chip_pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History:

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK .chip_pkg.all;

entity BINARY_COUNTER is
port (Count_Enable :in MVL7,
Cp

:in MVL7;
CPnot :in MVL7,
CLEAR :in MVL7,
Output : inout MVL7_Vector(Bits_in_Counter-1 downto 0));

end BINARY_COUNTER;

architecture structure of BINARY_COUNTER is
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-- This component is a master-slave JK flip flop.

component MS_JKFF

port( J :in MVL7; -- J input
K :in MVL7,; -- Kinput
RESET: in MVL7; --resets FF to '(f
CP :inMVL7, -- clock
CPnot :in MVL7, -- clock complement
Q : inout MVLY7; -- output
Qnot : inout MVL7), -- output complement
end component;
-- This component is the AND gate.
component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL.: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- Ninputs
output: out MVL7); -- one output
end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7; -- input
output: out MVL7); -- output
end component;

signal JK_in: MVL7_Vector(Bits_in_Counter-1 downto 1);
signal TEMP : MVLY7; -- output of JK FF for troubleshooting

begin

-- The following code generates JK flip flops for the desired number of
-- bits in the binary counter.

JK1:
for I in Bits_in_Counter-1 downto 0 generate
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-- This JK FF holds the least significant bit and the inputs
-- to this FF come from the Count_Enable line.

JK2:
if I = 0 generate
JKFF0: MS_JKFF
port map(J => Count_Enable,

K => Count_Enable,
RESET => CLEAR,
Cp =>CP,
CPnot => CPnot,
Q => Output(0),
Qnot  => Open);

end generate;

-- These JK FFs are the rest of the FFs that make up the
-- counter.

JK3:
if I /= 0 generate
JK_not0: MS_JKFF
port map(J => JK_in(]),
K

=> JK_in(I),
RESET => CLEAR,
CP =>CP,

CPnot => CPnot,
Q => Qutput(l),
Qnot  =>Open);

end generate;

end generate;

-- This instantiation is for troubleshooting only. Itis a copy of one of
-- the JK FFs above. DO NOT IMPLEMENT IN HARDWARE!!!

JKFF: MS_JKFF
port map(J => Count_Enable,
K => Count_Enable,
RESET => CLEAR,

CpP => CP,
CPnot => CPnot,
Q =>TEMP,

Qnot  => Open);
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-- The following code generates the AND gates in the counter.

Al:
for J in Bits_in_Counter-1 downto 1 generate

-- This AND gate is the first AND gate. The input Count_
-- Enable is unique to this gate.

A2:
if J = 1 generate

ANDI1: ANDGATE

generic map(2, -- 2 inputs
AND_Delay, -- rise inertial delay
AND_Delay) -- fall inertial delay
port map(

input(1) => Output(J-1),
input(2) => Count_Enable,
output =>JK_in(1));

end generate;

-- These are generated for the rest of the AND gates.

A3:
if J /= 1 generate
ANDs: ANDGATE

generic map(2, -- 2 inputs
AND_Delay, -- rise inertial delay
AND_Delay) -- fall inertial delay
port map(

input(1) => Output(J-1),
input(2) => JK_in(J-1),
output =>JK_in(J));
end generate;
end generate;

end structure;
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CHANGE_DETECTOR

--Date: 12 July 91

-- Version: 1.0

-- Filename: change_detector.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the entity entity and structure of the
-- change detector. The component will detect a change in any
-- signal that is input into it. The output will be a'1' for
-- the time it takes the signal to go through the buffer.

-- Associated files:

-- History:

- Author: Curtis M. Winstead

library ZYCAD;

use ZYCAD.types.all;

use ZYCAD.components.all;
use WORK.chip_pkg.all;

entity CHANGE_DETECTOR is
generic (Delay: Time);
port (Input:in MVL7,;
Output: out MVL7);
end CHANGE_DETECTOR;

architecture structure of CHANGE_DETECTOR is
signal BUF_Qut : MVL7 :='0';

component BUFGATE
generic (tLH: Time; -- rise inertial delay
tHL.: Time); -- fall inertial delay
port(input: in MVL7; -- one input
output: out MVL7 :='0"); -- one output
end component;
component XORGATE -- ZYCAD component
generic (N: Positive; -- N input XOR gate
tLH: Time; -- rise inertial delay
tHL.: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- Ninputs
output: out MVL7); -- one output
end component;
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begin
BUF1: BUFGATE
generic map(Change_Detector_Delay, Change_Detector_Delay)
port map (input => Input,
output => BUF_Out);

XOR1: XORGATE
generic map(2, XOR_Delay, XOR_Delay)
portmap (input(1) => BUF_Out,
input(2) => Input,
output => Output);

end structure;
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EDGE _TRIGGERED_DFF

--Date: 20 August 1991

-- Version: 1.2

-- Filename: edge_triggeredDFF.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the entity and structure of an edge-

-~ triggered D FF.

-- Associated files:

-- chip_pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History: Version 1.0 (30 July 91)

-- Version 1.1 (19 August 1991) - Changed output ports from inout
-- to out and added internal signals to compensate.

-- Version 1.2 (20 August 1991) - added additional port CPnot to
-- aid in resetting the DFF.

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK .chip_pkg.all;

entity EDGE_TRIGGERED_DFF is
port( D :in MVL7;

RESET: in MVL7;
CP :inMVL7;
CPnot :in MVL7;
Q : out MVL7;
Qnot :out MVLY);

end EDGE_TRIGGERED_DFF;

architecture structure of EDGE_TRIGGERED_DFF is

-- This component is the NAND gate.
component NANDGATE -- ZYCAD component
generic (N: Positive; -- N input NAND gate
tLH: Time; -- rise inertial delay
tHL.: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- N inputs
output: out MVL7); -- one output
end component;
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-- This component is the Inverter gate.

component INVGATE
generic (tLH: Time;
tHL.: Time);
port(input: in MVL7;
output: out MVL7);

end component;

signal R :MVLY7;
signal Rnot : MVL7;
signal S : MVL7;
signal Snot :MVL7,;
signal RESETnot : MVLY7;
signal QQ : MVL7,
signal QQnot : MVLY7;
signal NA1 : MVLT7,

INV1: INVGATE

-- ZYCAD component
-- rise inertial delay

-- fall inertial delay

-- N inputs

-- one output

generic map(Inverter_Delay, Inverter_Delay)

port map(RESET,
RESETnot);

NANDI1: NANDGATE
generic map(2,
NAND_Delay,
NAND_Delay)
port map(
input(1) => 8§,
input(2) => Rnot,
output => Snot);

NAND2: NANDGATE
generic map(3,
NAND_Delay,
NAND_Delay)
port map(
input(l) => Snot,
input(2) => CP,
input(3) => RESETnot,
output =>8S);
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NAND3: NANDGATE
generic map(3,
NAND_Delay,
NAND_Delay)
port map(
input(1) => S,
input(2) => NAl,
input(3) => Rnot,
output =>R);

NAND4: NANDGATE
generic map(3,
NAND_Delay,
NAND_Delay)
port map(
input(1) =>R,
input(2) => D,
input(3) => RESETnot,
output => Rnot);

NANDS: NANDGATE
generic map(2,
NAND_Delay,
NAND_Delay)
port map(
input(1) =>§,
input(2) => QQnot,
output =>QQ);

NANDG6: NANDGATE
generic map(2,
NAND_Delay,
NAND_Delay)
port map(
input(1) => QQ,
input(2) =>R,
output => QQnot);

NAND7: NANDGATE
generic map(2, .
NAND_Delay,
NAND_Delay)
port map(
input(1) => CPnot,
input(2) => RESETnot,
output =>NAl);
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-- fall inertial delay
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Q <=QQ
Qnot <= QQnot;

end structure;

-- connect output port to output signal
-- connect output port to output signal
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JK_FLIPFLOP

--Date: 24 July 91
-- Version: 1.0

-- Filename: JK_flipflop.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the JK FF.

-- Associated files:

-- chip_pkg.vhd : This file contains constants, variables, etc. needed

-- for this file.

-- History:

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK .chip_pkg.all;

entity JK_FLIPFLOP is
port( J :in MVL7;

K :in MVL7;
RESET: in MVL7,
cp :in MVL7;
Q : inout MVL7;
Qnot :inout MVL7);

end JK_FLIPFLOP;

architecture structure of JK_FLIPFLOP is

-- This component is the AND gate.
component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- N inputs
output: out MVL7); -- one output

end component;
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-- This component is the NOR gate.

component NORGATE -- ZYCAD component
generic (N: Positive; -- N input NOR gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- N inputs
output: out MVL7); -- one output
end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7; -- N inputs
output: out MVL7), -- one output
end component;
signal Jout : MVL7,;
signal Kout : MVLYT;

signal RESETnot : MVL7;

INV1: INVGATE
generic map(Inverter_Delay, Inverter_Delay)

port map(RESET,
RESETnot); -- used to reset FF
ANDI1: ANDGATE
generic map(3, -- 3 inputs
AND_Delay, -- rise inertial delay
AND_Delay) -- fall inertial delay
port map(

input(1) =>Q,
input(2) =>K,
input(3) => CP,
output => Kout);

AND2: ANDGATE

generic map(4, -- 4 inputs
AND_Delay, -- rise inertial delay
AND_Delay) -- fall inertial delay
port map(

input(1) => Qnot,
input(2) =>J,

input(3) => CP,
input(4) => RESETnot,
output => Jout);
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NOR1: NORGATE
generic map(3,
NOR_Delay,
NOR_Delay)
port map(
input(1) => Kout,
input(2) => Qnot,
input(3) => RESET,
output =>Q);

NOR2: NORGATE
generic map(2,
NOR _Delay,
NOR_Delay)
port map(
input(1) => Jout,
input(2) => Q,
output => Qnot);

end structure;
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MS_JKFF

--Date: 30 July 91

-- Version: 1.0

-- Filename: ms_jkff.vhd

-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the master-

-- slave JK FF.

-- Associated files:

-- chip_pkg.vhd : This file contains constants, variables, etc. needed

- for this file.

-- History:

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK .chip_pkg.all;

entity MS_JKFF is
port( J :in MVL7;

K :in MVL7;
RESET: in MVL7;
Cp :in MVL7;
CPnot :in MVLT7,
Q : inout MVL7;
Qnot :inout MVL7);

end MS_JKFF;

architecture structure of MS_JKFF is

-- This component is the NAND gate.

component NANDGATE
generic (N: Positive;
tLH: Time;
tHL: Time);
port(input: in MVL7_VECTOR (1 to N);
output: out MVLT7);
end component;
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-- rise inertial delay
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-- This component is the Inverter gate.

begin

component INVGATE
generic (tLH: Time;
tHL.: Time);
port(input: in MVL7;
output: out MVL7);

end component;

signal Jout : MVLY;
signal Kout : MVL7;
signal Y : MVLY7;
signal Ynot : MVL7;
signal Yout : MVLTY;
signal Ynotout :MVL7;

signal RESETnot : MVL7;

INV1: INVGATE

-- ZYCAD component
-- rise inertial delay

-- fall inertial delay

-- N inputs

-- one output

generic map(Inverter_Delay, -- rise inertial delay

Inverter_Delay)

port map(
input => RESET,
output => RESETnot);

NAND1: NANDGATE
generic map(4,
NAND_Delay,
NAND_Delay)
port map(
input(1) => Qnot,
input(2) =>J,
input(3) => CP,
input(4) => RESETnot,
output => Jout);

NAND2: NANDGATE
generic map(3,
NAND_Delay,
NAND_Delay)
map(

input(1) =>Q,

input(2) => K,

input(3) => CP,

output => Kout);
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NAND3: NANDGATE
generic map(2,
NAND_Delay,
NAND_Delay)
port map(
input(1) => Jout,
input(2) => Ynot,
output =>Y),

NAND4: NANDGATE
generic map(3,
NAND_Delay,
NAND_Delay)
port map(
input(1) =>Y,
input(2) => Kout,

input(3) => RESETnot,

output => Ynot);

NANDS: NANDGATE
generic map(2,
NAND_Delay,
NAND_Delay)
port map(
input(1) =>Y,
input(2) => CPnot,
output => Yout);

NAND6: NANDGATE
generic map(2,
NAND_Delay,
NAND_Delay)
port map(
input(1) => Ynot,
input(2) => CPnot,
output => Ynotout);

NAND7: NANDGATE
generic map(2,
NAND_Delay,
NAND_Delay)
port map(
input(1) => Yout,
input(2) => Qnot,
output =>Q);
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NANDS8: NANDGATE
generic map(2,
NAND_Delay,
NAND_Delay)
port map(
input(1) => Ynotout,
input(2) =>Q,
output => Qnot);

end structure;
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PREFETCH_COUNTER

--Date: § September 1991

-- Version: 1.11

-- Filename: prefetch_counter.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the entity and structure of the prefetch

-- counter. The binary counter counts upward and is compared
-- using XNOR gates, for equivalence, against the output of the
-- register that holds the number of lines to prefetch. When

-- they are equal, the port "Counting" becomes a ‘0. This

-- component allows a line of memory to be prefetched on every
-- clock cycle.

-- Associated files:

-- chip_pkg.vhd : This file contains constants, variables, etc. needed

-- for this file.

-- History: Version 1.0 (26 July 1991)

-- Version 1.1 (16 August 1991) - changed inout mode of Counting
-- port to out and added signal Countingout to feed back into

-- the component.

- Version 1.11 (5 September 1991) - changed prefetch block to

-- subtract 2 instead of 1 from Prefetch_Block_Size. This is

-- because the first read on a prefetch is not counted in the

-- prefetch cycle.

-- Author: Curtis M. Winstead

library ZYCAD;

use ZYCAD.types.all;

use WORK .chip_pkg.all;

use ZYCAD.BV_ARITHMETIC.all;

entity PREFETCH_COUNTER is
port( Start :in MVLT;
Cp :in MVL7;
CPnot :in MVL7;
Reset :in MVLY7;
Counting : out MVL7);
end PREFETCH_COUNTER;

architecture structure of PREFETCH_COUNTER is
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-- This component is the binary counter.

component BINARY_COUNTER
portéPCount_Enable: in MVL7,;

--'1' to allow count

:in MVL7; -- clock
CPnot :in MVL7; -- clock complement
CLEAR :in MVLT7, --cleas to all '0's
Output : inout MVL7_Vector(  -- binary count by 1
Bits_in_Counter-1 downto 0));
end component;

-- This component is a D Flip-Flop register with reset.

component DFFREG -- ZYCAD component
generic (N: Positive; -- N input register
tLH: Time; -- rise inertial delay
tHL.: Time); -- fall inertial delay
port (Data :in MVL7_Vector; --datain
clock :in MVL7; -- clock port
Reset :in MVLT7, -- reset port
Output: out MVL7_Vector); -- data out
end component;
-- This component is the AND gate.
component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL.: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- Ninputs
output: out MVL7); -- one output
end component;
-- This component is the OR gate.
component ORGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- N inputs
output: out MVL7); -- one output

end component;
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-- This component is the inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL.: Time); -- fall inertial delay
port (input: in MVL7; -- N inputs
output: out MVL7); -- one output
end component;

-- This component is the exclusive NOR gate.

component NXORGATE -- ZYCAD component
generic (N: Positive; -- N input XNOR gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- N inputs
output: out MVL7); -- one output
end component;
-- This component is the RS FF.
component RS_FLIPFLOP
port( R :inMVL7; -- R input
S :inMVL7; -- S input
CP :inMVLT7, -- clock
: inout MVL7; -- output
Qnot: inout MVL7); -- output complement
end component;

signal Prefetch_Block: MVL7_Vector(Bits_in_Counter-1 downto 0);
-- this vector holds the integer converted to MVL7_Vector
-- that describes the number of prefetches to perform

signal The_Count : MVL7_Vector(Bits_in_Counter-1 downto 0);
-- this signal is the output of the counter

signal Prefetch_Size : MVL7_Vector(Bits_in_Counter-1 downto 0);
-- this is the output of the register that holds prefetch size

signal XNOR_Out : MVL7_Vector(Bits_in_Counter-1 downto 0);
-- output of NXOR gates

signal STOP : MVL7; -- input to R of RS FF

signal RSclockin : MVL7; -- clock input to RS FF

signal Clear_Counter : MVL7; -- cIr input to binary counter

signal Countingnot : MVLY7;
signal Countingout : MVL7,
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begin
-- component instantiation

Counter: BINARY_COUNTER
port map(Count_Enable => Countingout,
Cp

=>CP,
CPnot => CPnot,
CLEAR => Clear_Counter,
Output => The_Count);
Prefetch_Register: DFFREG -- holds prefetch block size
generic map(Bits_in_Counter,
DFF_Delay,
DFF_Delay)
portmap (Data => Prefetch_Block,
clock =>CP,

Reset => Reset,
Output => Prefetch_Size);

-- The following code generates the required number of XNOR gates to perform
-- the equivalence operation between counter and Prefetch_Register.

X1:
for I in Bits_in_Counter-1 downto O generate
Equivalent: NXORGATE

generic map(2, -- 2 inputs
XNOR_Delay, -- rise inertial delay
XNOR_Delay) -- fall inertial delay

port map (input(1) => Prefetch_Size(I),
input(2) => The_Count(l),
output =>XNOR_Out(l));
end generate;

ANDI1: ANDGATE

generic map(Bits_in_Counter, -- # inputs
AND_Delay, -- rise inertial delay
AND_Delay) -- fall inertial delay

port map(input => XNOR_Out,
output => Stop);

OR1: ORGATE
generic map(3, -- 3 inputs
OR_Delay, -- rise inertial delay
OR_Delay) -- fall inertial delay

port map(input(1) => Start,
input(2) => Countingout,
input(3) => Reset,
output => RSclockin);
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OR2: ORGATE

generic map(2, -- 2 inputs
OR_Delay, -- rise inertial delay
OR_Delay) -- fall inertial delay

port map(input(1) => Reset,
input(2) => Countingnot,
output => Clear_Counter);

INV1: INVGATE
generic map(Inverter_Delay, -- rise inertial delay
Inverter_Delay) -- fall inertial delay
port map (input => Countingout,
output => Countingnot);

RSFF: RS_flipflop
port map(R => Stop,
S =>START,
CP => RSclockin,
Q => Countingout,
Qnot => OPEN);

-- This converts an integer to bit_vector then bit_vector to MVL7_Vector.
-- The '-1' accounts for the count starting at zero instead of one.

Prefetch_Block <= BVtoMVL7V(ItoBV (Prefetch_Block_Size-1))
(Bits_in_Counter-1 downto 0);
Counting <= Countingout; -- connects signal to output port

end structure;
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RS_FLIPFLOP

--Date: 23 July 91

-- Version: 1.0

-- Filename: RS_flipflop.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the RS FF.

-- Associated files:

-- chip_pkg.vhd : This file contains constants, variables, etc. needed

- for this file.

-- History:

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK .chip_pkg.all;

entity RS_FLIPFLOP is
port( R :in MVL7;
S :inMVLT;
CP :in MVL7;
Q :inout MVL7:='0'
Qnot: inout MVL7 :="'1");
end RS_FLIPFLOP;

architecture structure of RS_FLIPFLOP is

-- This component is the AND gate.
component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- Ninputs
output: out MVL7); -- one output

end component;
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-- This component is the NOR gate.

component NORGATE
generic (N: Positive;
tLH: Time;
tHL: Time);

port(input: in MVL7_VECTOR (1 to N);

output: out MVL7);
end component;

signal Rout: MVL7;
signal Sout: MVL7,;

ANDI1: ANDGATE
generic map(2,
AND_Delay,
AND_Delay)
port map(
input(1) =>R,
input(2) => CP,
output => Rout);

AND2: ANDGATE
generic map(2,
AND_Delay,
AND_Delay)
port map(
input(1) => S,
input(2) => CP,
output => Sout);

NOR1: NORGATE
generic map(2,
NOR_Delay,
NOR_Delay)
port map(
input(1) => Rout,
input(2) => Qnot,
output =>Q);

NOR2: NORGATE
generic map(2,
NOR _Delay,
NOR_Delay)
port map(
input(1) => Sout,
input(2) =>Q,
output => Qnot);

end structure;
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SHIFT_REGISTER

--Date: 4 September 1991

-- Version: 1.1

-- Filename: shift_register.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

Description: This file contains the entity and structure of a shift

-- register. This register is generic, i.e. you can make it any size you
-- want. The shift register uses a D flip-flop and a 2x1 MUX. Itisa
-- circular shift register run by a clock.

-- Associated files:

-- chip_pkg.vhd : This file contains constants,

-~ variables, etc. needed for this file.

-- History: Version 1.0 (S July 1991)

-- Version 1.1 (4 September 1991) - changed the Sel0 to shift on a
-- '1'and load on a ‘0.

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK .chip_pkg.all;

-- The entity of the shift register.
entity SHIFT_REGISTER is
generic(Size: Positive); -- make it any size you want
port (In_Vector : in MVL7_Vector; -- input vector
Sel0 : in MVL7, --'1"is a load, '0' shift
Clockin : in MVLT; -- clock port
Clear : in MVL7, -- clear the registers
SR_Output: inout MVL7_Vector); -- ouput vector, is of mode in

-- to feed back into MUX
-- allowing for circular shift
end SHIFT_REGISTER;

-- Architecture of shift register.

architecture structure of SHIFT_REGISTER is
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signal MUX_Out : MVL7_Vector(Size-1 downto 0);

-- This component is used to determine if the shift register is doing a shift
-- or a parallel load. If Sel is a '0' then a shift is performed. If Sel is
-- a'l' then a parallel load is performed.

component MUX2x1 -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port (In0 : in MVL7;, --datainputO
Inl :inMVL7;, --datainputl
Sel : inMVL7; --selectinput (0 =>1In0)
Output: out MVL7?); -- output
end component;

-- This component is a D Flip-Flop register with reset.

component DFFREG -- ZYCAD component
generic (N : Positive; -- N input register
tLH: Time; -- rise inertial delay
tHL.: Time); -- fall inertial delay
port (Data :in MVL7_Vector; -- input vector
clock :in MVL7; -- clock port
Reset :in MVLY7; -- reset
Output: out MVL7_Vector); -- output vector
end component;

begin

-- The following code generates a set of MUXSs of size Size. Size can be set
-- to any value.

M1l
for I in Size-1 downto 0 generate

-- This conditional generate creates all MUXs of the desired
-- size except for the Oth MUX. The reason is that the

-- Oth MUX needs to be fed the output of the Size-1 D flip-
-- flop register (SR_Output).

M2:
if I /= 0 generate
MUX_1toSize_minus_1: MUX2x1
generic map (MUX_Delay, MUX _Delay)
port map (In0 => In_Vector(l),
Inl => SR_Output(I-1),
Sel => Sel0,
Output => MUX_Out(l));

end generate;
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-- This was kept inside the generate function for associative
-- purposes. It is the Oth MUX and its InQ is connected to
-- the Size-1 output of the D flip-flop register (SR_Output).

Ma3:
if I =0 generate
MUX_0: MUX2x1
generic map (MUX_Delay, MUX_Delay)
port map (In0 => In_Vector(l),
Inl  =>SR_Output(Size-1),
Sel =>Sel0,
Output => MUX_Out(l));

end generate;

end generate;

-- This register holds the values of the shift register.

Reg: DFFREG

generic map(
Size,
DFF_Delay,
DFF_Delay)

port map(
Data => MUX_Out,
clock => Clockin,
Reset => Clear,
Output => SR_Output);

end structure;
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TOS_SHIFTER

--Date: 20 Aug 1991

-- Version: 1.2

-- Filename: TOS_shifter.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the entity and structure of a shift

-- register. This register is generic, i.e. you can make it any size you
-- want. The shift register uses edge triggered D flip-flops. Itis a

-- circular shift register run by a clock. One unique feature which may
-- be a problem is that it takes 2 ns to stabilize; an inadvertent write
-- is possible. Itis used to hold the top of stack pointer for the

-- word select register used to write into the CAM.

-- Associated files:

-- chip_pkg.vhd : This file contains constants,

-- variables, etc. needed for this file.

-- History: Version 1.0 (1 Aug 91)

-- Version 1.1 (5 Aug 91) - modified component to clear outputs and
-- load first D FF with a 'l' on initial clear.

- Version 1.2 (20 Aug 91) - modified to handle additional CPnot

-- port of edge_triggered_DFF used to help reset the FF.

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK .chip_pkg.all;

-- The entity of the shift register.
entity TOS_SHIFTER is

generic(Size: Positive); -- make it any size you want
port (CLEAR :in MVL7; -- clears FFs
CP :inMVLT, -- clock
CPnot : in MVL7; -- clock complement
Output: inout MVL7_Vector); -- ouput vector, is of mode in
-- to feed back into MUX

-- allowing for circular shift
end TOS_SHIFTER;
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-- Architecture of TOS shift register.

architecture structure of TOS_SHIFTER is

-- Internal signals of TOS shift register.
signal Din0 :MVL7,
signal CPin0 : MVL7;
signal Tied_Low: MVL7 :='0’;

-- This component is the edge triggered DFF.

component EDGE_TRIGGERED_DFF
(D) :in MVL7;
RESET :in MVL7;
CpP :in MVLY;
CPnot :in MVL7;

Q : inout MVL7;
Qnot :inout MVL7);
end component;
-- This component is the OR gate.
component ORGATE -- ZYCAD component
generic (N: Positive; -- N input OR gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- N inputs
output: out MVL7); -- one output
end component;

begin

-- The following code generates the desired number of edge triggered D FFs
-- in the TOS pointer.

D1:
for I in Size-1 downto O generate
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-- The following code isolates the very first, or bottom, of
-- the stack and allows it to be loaded with a '1' to start
-- the pointer.

D2:
if I = 0 generate
DFF0: EDGE_TRIGGERED_DFF
port map(D => Din0,

RESET => Tied_Low,
CP => CPin0,
CPnot => CPnot,
Q => Output(0),
Qnot =>OPEN);

end generate;

-- The remaining code is the rest of the edge triggered D FFs.
-- They hold the stack pointer after receiving it from the
-- previous FF.

D3:
if I/=0 generate
DFFnot0: EDGE_TRIGGERED_DFF
port map(D => Output(I-1),

RESET => CLEAR,
Ccp =>CP,
CPnot => CPnot,
Q => Output(l),

Qnot => OPEN);

end generate;

end generate;

-- This OR gate loads the bottom of the stack with either the CLEAR
-~ signal or the value of the top of the stack (D FF).

OR1: ORGATE
generic map(2, -- 2 inputs
OR_Delay, -- rise inertial delay
OR_Delay) -- fall inertial delay

port map(input(1) => CLEAR,
input(2) => Output(Size-1),
output => Din0);
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-- This OR gate feeds the clock input of the bottom of the stack.
-~ On the initial CLEAR, a'l' is loaded; the rest of the time the

-- clock pulse clocks the D FF.
OR2: ORGATE
generic map(2, -- 2 inputs
OR_Delay, -- rise inertial delay
OR_Delay) -- fall inertial delay
port map(input(1) => CLEAR,
input(2) => CP,

output => CPin0);

end structure;
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Appendix C: The VHDL Code for the Major Components

This appendix contains the major components that make up the controller section
of the MCC. They are listed in alphabetical order and begin on separate pages.

FUNCTION_CHANGE _DETECTOR

--Date: 12 September 1991

-- Version: 1.01

-- Filename: function_change_detector.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the entity and structure of the

-- function_change_detector component. Its purpose is to
-- detect the beginning of a read or write cycle.

-- Associated files:
-- chip_pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History: Version 1.0 (22 August 1991)
-- Version 1.01 (12 September 1991) - changed the name from clear_
-- word_select_register to FUNCTION_CHANGE_DETECTOR.

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK .chip_pkg.all;

entity FUNCTION_CHANGE_DETECTOR is
port( Read :in MVL7;
Write :in MVLY;
Function_Change: out MVL7);
end FUNCTION_CHANGE_DETECTOR;

architecture structure of FUNCTION_CHANGE_DETECTOR is

signal Rd_out: MVLT7;
signal Wt_out: MVL7;
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-- This component is the OR gate.

component ORGATE
generic (N: Positive;
tLH: Time;
tHL: Time);
port(input: in MVL7_VECTOR (1 to N);
output: out MVL7);
end component;

-- ZYCAD component
-- N input OR gate

-- rise inertial delay

-- fall inertial delay

-- N inputs

-- one output

-- This component is the change detector.

component CHANGE_DETECTOR
generic(Delay: Time);
port(Input : in MVL7,;
Output: out MVL7);
end component;

begin
-- component instantiation

Read_cd: CHANGE_DETECTOR
generic map(Change_Detector_Delay)
port map(Input => Read,
Output => Rd_out);

Write_cd: CHANGE_DETECTOR
generic map(Change_Detector_Delay)
port map(Input => Write,
Output => Wt_out);

O1: ORGATE

generic map(2, -- 2 inputs
OR_Delay, -- rise inertial delay
OR_Delay) -- fall inertial delay

port map(input(1) => Rd_out,
input(2) => Wt_out,
output => Function_Change);

end structure;
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OPERATION STATUS

--Date: 4 September 1991
-- Version: 1.1

-- Filename: operation_status.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

Description: This file contains the entity and structure of the

operation_status component of the CAM chip controller.
Its purpose is to output the status of the chip: 1) data
available, 2) read miss, 3) write hit, and 4) write miss.

-- Associated files:

chip_pkg.vhd : This file contains constants, variables, etc.

needed for this file.

-- History: Version 1.0 (13 August 1991)

Version 1.1 (4 September 1991) - added port Counting.

-- Author: Curtis M. Winstead

library ZYCAD;

use ZYCAD.types.all;

use WORK .chip_pkg.all;

entity OPERATION_STATUS is

port(

Data :in MVL7_Vector;
Prefetching :in MVLT;
Read :in MVL7;
Write :in MVLYT;
Resolved_Tags :in MVL7;
Search_Complete :in MVL7;
Counting :in MVL7,;
Data_Out_Available :out MVL7; --read hit
Read_Miss :out MVL7; -- read miss
Write_Miss :out MVL7; -- write miss
Write_Hit :out MVL7); -- write hit

end OPERATION_STATUS;

architecture structure of OPERATION_STATUS is

signal Resolved_TagsNot : MVL7;
signal Data_Change : Vector_Word_length;
signal Data_Out_Change : Wired_Or_Type;
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-- This component detects a change in the signal.

component CHANGE_DETECTOR
generic(Delay: Time);
port(Input : in MVL7,
Output: out MVL7);

end component;
-- This component is the AND gate.
component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7), -- one output
end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7; -- N inputs
output: out MVL7); -- one output
end component;
begin
-- component instantiations

-- The following code generates the change detectors to detect if a
-- change has occurred on the input lines.
CD:
for I in Word_length-1 downto O generate
change_detectors: CHANGE_DETECTOR
generic map(Change_Detector_Delay)
port map(Input => Data(l),
Output => Data_Change(I));

-- This code resolves, by Wired_Or, the signals of Data_Change into
-- one signal.

Data_Out_Change <= Data_Change(]);

end generate;
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INV1: INVGATE
generic map(Inverter_Delay, Inverter_Delay)
port map(input => Resolved_Tags,
output => Resolved_TagsNot);

AND1: ANDGATE
generic map(2, AND_Delay, AND_Delay)
port map(input(1) => Data_Out_Change,
input(2) => Prefetching,
output =>Data_Out_Available);

AND2: ANDGATE
generic map(3, AND_Delay, AND_Delay)
port map(input(1) => Read,
input(2) => Resolved_TagsNot,
input(3) => Search_Complete,
output => Read_Miss);

AND3: ANDGATE
generic map(3, AND_Delay, AND_Delay)
port map(input(1) => Resolved_TagsNot,
input(2) => Search_Complete,
input(3) => Write,
output => Write_Miss);

AND4: ANDGATE
generic map(3, AND_Delay, AND_Delay)
port map(input(1) => Write,
input(2) => Resolved_Tags,
input(3) => Search_Complete,
output => Write_Hit);

end structure;
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PREFETCH_STATUS

--Date: 16 August 1991

-- Version: 1.0

-- Filename: prefetch_status.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the entity and structure of the PREFETCH_
- STATUS component. Its purpose is to output a '1' when the
-- prefetch counter is counting the number of clock pulses

-- equal to the number of lines to prefetch from the CAM.

-- Associated files:

-- chip_pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History:

-- Author: Curtis M. Winstead

library ZYCAD;

use ZYCAD.types.all;

use WORK .chip_pkg.all;

use ZYCAD.BV_ARITHMETIC.all;

entity PREFETCH_STATUS is

port( CP :in MVL7,
CPnot :in MVL7;
Read :in MVL7;
Resolved_Tags :in MVL7;
Search_Complete  :in MVL7;
Reset :in MVL7; -- must be asserted at least 19 ns
Counting : out MVL7?);

end PREFETCH_STATUS;
architecture structure of PREFETCH_STATUS is
signal Start: MVL7,

-- This component is the AND gate.
component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- N inputs
output: out MVL7); -- one output
end component;
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-- This ent is the PREFETCH_COUNTER that when started produces an
-- output of '1' until the clock pulses prefetch_size times.

component PREFETCH_COUNTER
port( Start :in MVL7,
Ccp :in MVL7;
CPnot :inMVL7;
Reset :in MVL7;
Counting: out MVL7);
end component;

begin
-- component instantiation

Count: PREFETCH_COUNTER
port map(Start  => Start,
Cp =>CP,
CPnot => CPnot,
Reset => Reset,
Counting => Counting);

Al: ANDGATE
generic map(3, -- 3 inputs
AND_Delay, -- rise inertial delay
AND_Delay) -- fall inertial delay

port map(input(1) => Read,
input(2) => Resolved_Tags,
input(3) => Search_Complete,
output => Start);

end structure;
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SEARCH_STATUS

--Date: S September 1991

-- Version: 1.3

-- Filename: search_status.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the entity and structure of the

-- SEARCH_STATUS component of the CAM chip controller. Its
-- purpose is to determine when the search cycle is complete.

-- Associated files:

-- chip_pkg.vhd : This file contains constants, variables, etc.

-- needed for this file.

-- History: Version 1.0 (14 August 1991)

-- Version 1.1 (29 August 1991) - deleted the Search_Delay component.
-- Version 1.2 (3 September 1991) - added a DFF to hold the state

-- that the search has been completed.

-- Version 1.3 (5§ September 1991) - added the port Counting to clear

-- the DFF flip-flop when the chip is prefetching. This prevents

-- the prefetch counter from resetting and starting over again.

-- Author: Curtis M. Winstead
library ZYCAD;

use ZYCAD.types.all;

use WORK .chip_pkg.all;

entity SEARCH_STATUS is

port(
Data :in MVL7_Vector;
Read :in MVL7;
Write :in MVL7;
Function_Change : in MVL7;
Reset_DFF :in MVL7;
Counting :in MVL7;

Search_Complete : out MVL7),
end SEARCH_STATUS;

architecture structure of SEARCH_STATUS is
signal Address_Change : Vector_Address_length;

signal Or_Outl : MVLT7;
signal Or_Out2 : MVL7;
signal Or_Out2not : MVL7;
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signal Search_Done : MVL7;
signal NOR_Out : MVLT7,
signal AND_Out : MVL7,
signal Res_DFF : MVLT7;

signal Resolved_Signal_Address_Change: Wired_Or_Type;

-- This component detects a change in the signal.

component CHANGE_DETECTOR
generic(Delay: Time);
port(Input : in MVL7;
Output: out MVL7),
end component;

-- This component is the edge triggered DFF.

component EDGE_TRIGGERED_DFF

port( D :in MVLY;
RESET: in MVLY7;
Cp :in MVL7;
CPnot :in MVL7;
Q : out MVL7;
Qnot :out MVL7);
end component;

-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7), -- one output
end component;
-- This component is the OR gate.
component ORGATE -- ZYCAD component
generic (N: Positive; -- Ninput OR gate
tLH: Time; -- rise inertial delay
tHL.: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7), -- one output

end component;
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-- This component is the NOR gate.

component NORGATE -- ZYCAD component
generic (N: Positive; -- N input NOR gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output
end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL: Time), -- fall inertial delay
port( input: in MVL7; -- input
output: out MVL7); -- output
end component;
begin
-- component instantiations

-- The following code generates the change detectors to detect if a
-- change has occurred on the input lines.

CD:
for I in Word_length-1 downto Data_length generate
search_stat_change_detector: CHANGE_CETECTOR
generic map(Change_Detector_Delay)
port map(Input => Data(]),
Output => Address_Change(I));

-- This code resolves, by Wired_Or, the signals of Address_Change
-- into one signal.

Resolved_Signal_Address_Change <= Address_Change(I);
end generate;

DFF: EDGE_TRIGGERED_DFF
port map(D => Search_Done,
RESET => Res_DFF,
CpP => Or_Out2,
CPnot => Or_Out2not,
Q => Search_Complete,
Qnot => OPEN);
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OR1: ORGATE
generic map(2, OR_Delay, OR_Delay)
port map(input(1) => Read,
input(2) => Write,
output =>Or_Outl);

OR2: ORGATE
generic map(2, OR_Delay, OR_Delay)
port map(input(1) => Search_Done,
input(2) => AND_Out,
output =>Or_Out2);

OR3: ORGATE
generic map(3, OR_Delay, OR_Delay)
port map(input(1) => Reset_DFF,
input(2) => AND_Out,
input(3) => Counting,
output => Res_DFF);

NOR1: NORGATE
generic map(2, NOR_Delay, NOR_Delay)
port map(input(1) => Read,
input(2) => Write,
output => NOR_Out);

ANDI1: ANDGATE
generic map(2, AND_Delay, AND_Delay)
port map(input(1) => Resolved_Signal_Address_Change,
input(2) => Or_Outl,
output => Search_Done);

AND2: ANDGATE
generic map(2, AND_Delay, AND_Delay)
port map(input(1) => NOR_Out,
input(2) => Function_Change,
output => AND_Out);
INV1: INVGATE
generic map(Inverter_Delay, Inverter_Delay)
port map(input => Or_Out2,
output => Or_Out2not);

end structure;
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SELECT WORD_SELECT

--Date: 12 September 1991

-- Version: 1.1

-- Filename: select_word_select.vhd

-- System: ZYCAD, VI.SI net

-- Language: VHDL

-- Description: This file contains the entity and structure of the SELECT _
- WORD_SELECT component. Its purpose is to select the
-- correct word select register. The output is fed into the

-- mux that selects the correct one.

-- Associated files:

-- chip_pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History: Version 1.0 (22 August 1991)

-- Version 1.1 (30 August 1991) - added port Data_Avail_MEM to
-- determine if data are available from Main Memory on a Read
-- Miss.

-- Version 1.11 (12 September 1991) - changed port name from

-- Address_Change to Function_Change.

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK .chip_pkg.all;

entity SELECT_WORD_SELECT is
port( Read :in MVL7,;
Resolved_Tags :in MVL7,
Search_Complete  :in MVL7;
Function_Change  :in MVL7;

Master_Reset :in MVL7;
Data_Avail MEM :in MVL7;
WSR_Select :out MVL7);

end SELECT_WORD_SELECT;
architecture structure of SELECT_WORD_SELECT is

signal RT_not: MVLY7,
signal D_in :MVLY,
signal RST :MVL7;
signal Or_out : MVL7;
signal OrNot : MVL7;
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-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N); -- Ninputs
output: out MVL7); -- one output
end component;
-- This component is the OR gate.
component ORGATE -- ZYCAD component
generic (N: Positive; -- Ninput OR gate
tLH: Time; -- rise inertial delay
tHL: Time);, -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- N inputs
output: out MVL7); -- one output
end component;
-- This component is the Inverter gate.
component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port (input: in MVL7; -- input
output: out MVL7); -- output
end component;

-- This is the edge_triggered_DFF component.

component EDGE_TRIGGERED_DFF
port(tD  :in MVLY7;
RESET: in MVL7;
CP :inMVL7;
CPnot :in MVL7;
Q :out MVL7;
Qnot : out MVL7);
end component;

begin

-- component instantiation
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INV1: INVGATE
generic map(Inverter_Delay, Inverter_Delay)
port map(input => Resolved_Tags,
output => RT_not);

INV2: INVGATE
generic map(Inverter_Delay, Inverter_Delay)
port map(input => Or_out,
output => OrNot);

AND1: ANDGATE

generic map(4, -- 4 inputs
AND_Delay, -- rise inertial delay
AND_Delay) -- fall inertial delay

port map(input(1) => Read,
input(2) => RT _not,
input(3) => Search_Complete,
input(4) => Data_Avail_MEM,
output =>D_in);

OR1: ORGATE
generic map(2, -- 2 inputs
OR_Delay, -- rise inertial delay
OR_Delay) -- fall inertial delay

port map(input(1) => Function_Change,
input(2) => Master_Reset,
output =>RST);

OR2: ORGATE
generic map(2, -- 2 inputs
OR_Delay, -- rise inertial delay
OR_Delay) -- fall inertial delay

port map(input(1) =>D_in,
input(2) => RST,
output => Or_out);

DFF: EDGE_TRIGGERED_DFF
port map(D =>D_in,
RESET => RST,
Cp => Or_out,
CPnot => OrNot,
Q => WSR_Select,
Qnot => OPEN);

end structure;
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WORD_SELECT

--Date: 11 September 1991

-- Version: 2.0

-- Filename: word_select.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the entity and structure of the

-- WORD_SELECT component of the CAM chip. It

- contains the shift registers that act as the word select

-- inputs to the CAM array.

-- Associated files:

-- chip_pkg.vhd : This file contains constants, variables, etc.

-- needed for this file.

-- History: Version 1.0 (12 August 1991)

- Version 1.1 (20 August 1991) - added port TOS_CPnot to

-- correspond to addition of port to edge-triggered DFF.

-- Version 1.2 (29 August 1991) - added an OR gate to clear the

-- DFF register of the Word_Selector with its output. Its

-- inputs are the Master_Reset and the Function_Change signal.
-- Had to change ports as a result.

- Version 1.3 (4 September 1991) - added a DFF to hold the Sel0
-- line high during a read hit so the Word_Selector will shift

-- on the prefetch. Also added a CHANGE_DETECTOR to clock the
-- signal in.

-- Version 1.4 (5 September 1991) - added AND gate to feed the Clear
-- port of the Word_Selector. Now it can only be cleared wher
-- not prefetching.

-- Version 1.5 (10 September 1991) - added a NOR gate to output to
-- tBhe new Bit_Select port used to connect into the Bit_Select_
-- us.

-- Version 2.0 (11 September 1991) - This was a major change due
-- to adding the component controller to the cam_chip. Timing
-- was off and as a consequence data was being written into the
-- CAM array when it shouldn't have.

-: Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip_pkg.all;
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entity WORD_SELECT is

port(
Clear_TOS :in MVLT;
TOS_CP :in MVL7;
TOS_CPnot :in MVL7;
Word_Selector CP :in MVL7;
WSR_Select :in MVL7;
Tags_In : in MVL7_Vector;
Clearl :in MVL7;
Clear2 :in MVL7;
SR_Select :in MVL7;
Shifting :out MVL7;
Bit_Select :out MVL7;
Select_Word : out MVL7_Vector);

end WORD_SELECT;

architecture structure of WORD_SELECT is
signal TOS_Output : Vector_Depth;

signal SR_Output : Vector_Depth;
signal Orl_out : MVL7;
signal OR3_out : MVLT;
signal OR4_out : MVLT7;
signal OR4_outnot : MVLY7;
signal AND1_out : MVLY7;
signal AND2_out : MVL7;
signal AND3_out : MVLT7,
signal AND4_out : MVL7,
signal NOR1_out : MVL7,
signal CD2_out : MVL7;
signal CD3_out : MVL7;
signal CD4_out : MVLT7;
signal DFF2_out : MVL7;
signal Word_Sel CP : MVL7;
signal Selector : MVL7;
signal D_CP : MVL7;
signal D_CPnot : MVLT7;

signal Selector_not : MVLT7;
signal Select_Word_Signal : Vector _Depth;
signal Resolved_Select_Word: Wired_Or_Type;

-- This is the shift register that shifts up only. It is used to keep track
-- of the TOS for writing into the chip.

component TOS_SHIFTER
generic(Size: Positive);

port(
CLEAR :in MVL7;
Cp :in MVL7;
CPnot :in MVLT7;
Output: inout MVL7_Vector);
end component;
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-- This component is a shift register with load capabilities. It is used to

-- store the location of a word on a search hit.

component SHIFT_REGISTER
generic(Size: Positive);

port(
In_Vector :in MVL7_Vector;
Sel0 :in MVL7;
Clockin :in MVL7;
Clear :in MVL7;

SR_Output: inout MVL7_Vector);

end component;

-- This is the ZYCAD component 2x1 MUX.

component MUX2x1
generic(tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(
In0 : in MVL7;
Inl : in MVL7;
Sel : in MVL7;
Output: out MVL7);
end component;
-- This component is the OR gate.
component ORGATE -- ZYCAD component
generic (N: Positive; -- N input OR gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output
end component;
-- This component is the NOR gate.
component NORGATE -- ZYCAD component
generic (N: Positive; -- N input NOR gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;
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-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output
end component;
-- This component is the Inverter gate.
component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7; -- input
output: out MVL7); -- output
end component;

-- This component is the CHANGE_DETECTOR.

component CHANGE_DETECTOR
generic(Delay : Time);
port (Input:in MVL7,
Output: out MVL7);
end component;

-- This component is the edge triggered DFF.

component EDGE_TRIGGERED_DFF
port( D :in MVLT;
RESET: in MVL7;
CP :inMVLT,
CPnot: in MVL7;
Q :out MVL7;
Qnot :out MVL7);
end component;

begin
-- component instantiations

TOS_pointer: TOS_SHIFTER
generic map(Depth)
port map(CLEAR => Clear_TOS,
=> TOS_CP,
CPnot => TOS_CPnot,
Output  =>TOS_Output);
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Word_Selector: SHIFT_REGISTER
generic map(Depth)
port map(In_Vector => Tags_In,
Sel0 => Selector,
Clockin => Word_Sel_CP,
Clear => OR3_out,
SR_Output => SR_Output);

-- The following code generates the MUXs used to select which of the
-- word select registers (TOS_pointer or Word_Selector) to use.

M1:
for I in Depth-1 downto 0 generate
MUXs: MUX2x1
generic map(MUX_Delay, MUX_Delay)
port map(In0 => SR_Output(I),
In1  =>TOS_Output(l),
Sel =>WSR_Select,
Output => Select_Word_Signal(I));

Resolved_Select_Word <= Select_Word_Signal(I);

end generate;

OR1: ORGATE
generic map(2, -- 2 inputs
OR_Delay, -- rise inertial delay
OR_Delay) -- fall inertial delay

port map(input(1) => Clearl,
input(2) => Clear2,
output =>Orl_out);

OR2: ORGATE
generic map(2, -- 2 inputs
OR_Delay, -- rise inertial delay
OR_Delay) -- fall inertial delay

port map(input(1) => Word_Selector_CP,
input(2) => D_CP,
output => Word_Sel_CP);

OR3: ORGATE
generic map(2, -- 2 inputs
OR_Delay, -- rise inertial delay
OR_Delay) -- fall inertial delay

port map(input(1) => AND1_out,
input(2) => AND4_out,
output => Or3_out);
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OR4: ORGATE
generic map(2,
OR_Delay,
OR_Dclay)
port map(input(1) => AND2_out,
input(2) => AND3_out,
output => OR4_out);

ANDI1: ANDGATE
generic map(2,
AND_Delay,
AND_Delay)
port map(input(1) => CD2_out,
input(2) => Selector_not,
output => ANDI1_out);

AND2: ANDGATE
generic map(2,
AND_Delay,
AND_Delay)
port map(input(1) => CD3_out,
input(2) => NOR1_out,
output => AND2_out);

AND3: ANDGATE
generic map(2,
AND_Delay,
AND_Delay)
port map(input(1) => CD2_out,
input(2) => Selector,
output => AND3_out);

AND4: ANDGATE
generic map(2,
AND_Delay,
AND_Delay)
port map(input(1) => OR1_out,
input(2) => Selector_not,
output => AND4_out);

DFF1: edge_triggered_DFF
port map(D => SR_Select,
RESET => Clearl,
CP =>D_CP,
CPnot =>D_CPnot,
Q => Selector,
Qnot => Selector_Not);
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DFF2: edge_triggered_DFF
port map(D => Selector,
RESET => Clearl,
CP => OR4_out,
CPnot => OR4_outnot,
Q => DFF2_out,
Qnot =>OPEN);

CD1: CHANGE_DETECTOR
generic map(Change_Detector_Delay)
port map(Input => SR_Select,
Output =>D_CP);

CD2: CHANGE_DETECTOR
generic map(Change_Detector_Delay)
port map(Input => Selector,
Output => CD2_out);

CD3: CHANGE_DETECTOR
generic map(Change_Detector_Delay)
port map(Input =>NOR1_out,
Output => CD3_out);

INV1: INVGATE
generic map(Inverter_Delay, Inverter_Delay)
port map(input =>D_CP,
oatput => D_CPnot);

INV2: INVGATE
generic map(Inverter_Delay, Inverter_Delay)
port map(input => OR4_out,
output => OR4_outnot);

NOR1: NORGATE

generic map(2, -- 2 inputs
NOR _Delay, -- rise inertial delay
NOR_Delay) -- fall inertial delay

port map(input(1) => Resolved_Select_Word,
input(2) => Selector,
output =>NORI1_out);
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NOR2: NORGATE
generic map(2,
NOR_Delay,
NOR_Delay)
port map(input(1) => DFF2_out,
input(2) => Selector,
output => Bit_Select);

Select_Word <= Select_Word_Signal;
Shifting <= Selector;

end structure;
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WORD_SELECT CLOCK

--Date: 10 September 1991
-- Version: 1.5

-- Filename: word_select_clock.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the

WORD_SELECT_CLOCK component of the CAM chip.
The outputs are fed into the word select registers and act
as the clock inputs to those registers.

-- Associated files:
-- chip_pkg.vhd : This file contains constants, variables, etc.

needed for this file.

-- History: Version 1.1 (21 August 1991)
-- Version 1.2 (29 August 1991) - took off the CP input into ANDI1.
-- Version 1.3 (5 September 1991) - added a buffer to the TOS_Clock

port so it will transition at the same time as TOS_ClockNot.

-- Version 1.4 (5 September 1991) - The TOS_Clock and TOS_ClockNot

ports go into the TOS_shifter. The values are valid after

the falling edge of the clock and the way I had it there was

no falling edge. To fix that, I put in CHANGE_DETECTORs to
give arising and falling edge. I wanted this to occur only

when a Read was high so I ANDed this signal with the results
of the change_detectors. Also, Master_Reset port was used to
clock in the Master_Reset signal but the DFFs I'm using don't
need a clock to reset.

-- Version 1.5 (10 September 1991) - deleted the Read input into

AND3 gate. As long as Counting is ‘1’ then a Read has been
requested.

-- Author: Curtis M. Winstead

library ZYCAD;

use ZYCAD.types.all;

use WORK .chip_pkg.all;

entity WORD_SELECT_CLOCK is

port( Read :in MVL7;

Write :in MVL7;
Search_Complete :in MVL7;
Resolved_Tags :in MVL7;
Cp :in MVL7,
Counting :in MVL7;
TOS_Clock : out MVL7;
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TOS_ClockNot :out MVL7;
Word_Sel_Reg_Clock: out MVL7);
end WORD_SELECT_CLOCK;

architecture structure of WORD_SELECT_CLOCK is

-- This component is the AND gate.
component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output
end component;

-- This component is the OR gate.

component ORGATE -- ZYCAD component
generic (N: Positive; -- N input OR gate
tLH: Time; -- rise inertial delay
tHL: Time), -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port (input: in MVL7; -- input
output: out MVL7); -- output

end component;

-- This component is the Buffer gate.

component BUFGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port (input: in MVL7; -- input
output: out MVL7); -- output

end component;
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-- This component is the CHANGE_DETECTOR.

component CHANGE_DETECTOR
generic(Delay: Time);
port (Input:in MVL7;
Output: out MVL7);
end component;

signal RT _not :MVL7,;
signal Read_Miss :MVL7;
signal Write_out : MVLT7,
signal Read_out : MVL7;
signal CD1_out :MVL7;
signal AND4_out :MVL7;

begin
-- component instantiations
INV1: INVGATE
generic map(Inverter_Delay, -- rise inertial delay
Inverter_Delay) -- fall inertial delay

port map(input => Resolved_Tags,
output => RT_not);

INV2: INVGATE
generic map(Inverter_Delay, -- rise inertial delay
Inverter_Delay) -- fall inertial delay

port map(input => AND4_out,
output => TOS_ClockNot);

BUF1: BUFGATE
generic map(BUF_Delay, -- rise inertial delay
BUF_Delay) -- fall inertial delay
port map(input => AND4_out,
output => TOS_Clock);

AND1: ANDGATE

generic map(3, -- 3 inputs
AND_Delay, -- rise inertial delay
AND_Delay) -- fall inertial delay

port map(input(1) => Read,
input(2) => Search_Complete,
input(3) => RT_not,
output => Read_Miss);
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AND2: ANDGATE

generic map(3,
AND_Delay,
AND_Delay)

port map(input(1) => Write,
input(2) => Search_Complete,
input(3) => Resolved_Tags,
output => Write_out);

AND3: ANDGATE
generic map(2,
AND_Delay,
AND_Delay)
port map(input(1) => Counting,
input(2) => CP,
output => Read_out);

AND4: ANDGATE
generic map(2,
AND_Delay,
AND_Delay)
port map(input(1) => Read_Miss,
input(2) => CD1_out,
output => AND4_out);

OR1: ORGATE
generic map(2,
OR_Delay,
OR_Delay)
port map(input(1) => Write_out,
input(2) => Read_out,
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output => Word_Sel_Reg_Clock);

CD1: CHANGE_DETECTOR
generic map(Change_Detector_Delay)
port map(Input => Read_Miss,
Output => CD1_out);

end structure;
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Appendix D: The VHDL Code for the CAM_chip and THE_CONTROLLER

This appendix contains the VHDL code of the CAM chip and the controller. The
CAM chip is the highest hierarchical level of this thesis. The controller is a component
on the chip and represents all control logic needed to exercise the CAM array. The entity
of the CAM chip is first presented followed by the CAM chip’s structural description.
Finally, the VHDL of the controller is given.

CAM _Chip Entity

--Date: 9 September 1991

-- Version: 2.0

-- Filename: cam_chip_entity.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the entity of the CAM chip.

-- Associated files: chip_pkg.vhd : This file is where the size of

-- the CAM array is defined. Other

-- declarations are also contained

-- in this file.

- chip_pkg_body.vhd : This file contains the sub-

-- routines Wired_And and Wired_Or
-- used by the chip.

-- cam_chip_structure.vhd: This file contains the structure

-- of the CAM chip. Itis formed by
-- generating copies of the CAM

-~ cell.

-- History: Version 1.0 (3 May 1991)

-- Version 1.1 (12 June 9191) - replaced M, RX, and RY with the actual
-- outputs of the entire chip T, R, and P.

-- Version 1.2 (25 June 1991) - changed name of outputs to correspond
-- with cam_chip_structure wire connections.

- Version 1.3 (3 July 1991) - added port Load to allow clock into

-- chip as input into registers.

- Version 1.4 (15 July 1991) - changed ports to correspond to

- changing input register to Address and Data register.

- Version 1.5 (8 August 1991) - added ports for Valid_Out bit and

-- Resolved_Tags. These are preliminary changes to get ready to
-- go in and change what I have to what I really need.

-- Version 1.6 (28 August 1991) - deleted the bit select registers

-- and I will use only the MUXs. The MUXs will feed into the
-- Bit_Select_Bus.
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-- Version 1.7 (30 August 1991) - deleted the MUXSs and replaced them
-- with inverters since that is all they were acting as. Also

-- deleted registers to hold the Address_In, Data_In, and

-- Data_Out data and replaced them with buffers.

-- Version 2.0 (9 September 1991) - This version contains the

-- controller. As a consequence of adding the controller, a few

-- ports were added and some deleted.

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK .chip_pkg.all;

entity CAM_chip is
port(

Data_In : in Vector_Data_length;

-- data input from data bus
Address_In : in Vector_Address_length;

-- address input from

-- address bus
Read :in MVLT;

-- read request port
Write :in MVL7;

-- write request port
Data_Avail MEM :in MVL7;

-- signifies that data is

-- available from main memory
Master_Reset :in MVLT7;

-- used to put chip in

-- initial state
Ccp :in MVL7;
CPnot :in MVL7;

-- the chips clock
Data_Out : out Vector_Word_length;

-- data output to data bus
Valid_Out :out MVL7;

-- resolved signal (Wired_OR)

-- to determine validity of

-- output data
Data_Out_Available :out MVL7;

-- signifies that data are

-- available on output

-- ports on a read hit
Read_Miss :out MVL7;

-- signifies a read miss
Write_Miss :out MVL7;

-- signifies a write miss
Write_Hit :out MVL7),

-- signifies a write hit

end entity;
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CAM_Chip Structure

-- Date: 9 September 1991

-- Version: 2.0

-- Filename: cam_chip_structure.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the generated architecture of a

- CAM cache chip.

-- Associated files: chip_pkg.vhd : This file is where the size of

-- the CAM array is defined. Other
-- declarations are also contained

- in this file.

-- chip_pkg _body.vhd : This file contains the sub-

-- routines Wired_And and Wired_Or
-- used by the chip.

-- cam_chip_entity.vhd : This file contains the entity

-- description of the CAM chip.

-- History: Version 1.0 (6 May 1991)

- Version 1.1 (12 June 1991)

- Version 1.2 (25 June 1991) - created lines (Buses) to connect

-- all inputs and outputs of each cell.

- Version 1.3 (3 July 1991) - added register to store my Data_In,
-- Bit_Select, Data_Out, and Valid_Out values.

-- Version 1.4 (15 July 1991) - changed Data_In register to two

-- registers to hold Address and Data.

-- Version 1.5 (8 August 1991) - added ports for valid_out bit and
-- Resolved_Tags. These are preliminary changes to get ready to
-- go in and change what I have to what I really need.

-- Version 1.6 (28 August 1991) - deleted the bit select registers

-- and I will use only the MUXs. The MUXs will feed into the
-- Bit_Select_Bus.

-- Version 1.7 (30 August 1991) - deleted the MUX's and replaced them
-- with inverters since that is all they were acting as. Also

-- deleted registers to hold the Address_In, Data_In, and

- Data_Out data and replaced them with buffers.

-- Version 2.0 (9 September 1991) - This version contains the

- controller. As a consequence of adding the controller, a few
-- ports were added and some deleted.

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.Chip_pkg.all;
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architecture structure of CAM_chip is

-- The following signals are buses that connect each cell of the CAM array.

-- The MSBs are for the address, the LSBs are for the data

signal Data_In_Bus : Vector_Word_length :=
(Word_length-1 downto 0 =>'0");

signal Bit_Select_Bus : Vector_Word_length :=
(Word_length-1 downto 0 =>'0');

signal Word_Select_Bus : Vector_Depth := (Depth-1 downto 0 =>'0');

-- This signal is the output vector of the XORs that evaluate the validity
-- of the outgoing data.

signal Valid_Out_Signal: Vector_Data_length;

-- This signal is the converted Resolved_Signal_Tag from Wired_Or_Vector to
-- MVL7_Vector.

signal Tag_Vector: Vector_Depth;

-- The following signals are resolved signals. The subtypes are defined in
-- chip_pkg.vhd. The functions are defined in chip_pkg body.vhd.

signal Resolved_Signal_Data_Out : Wired_Or_Vector(
Word_length-1 downto 0);
signal Resolved_Signal_Data_Check: Wired_Or_Vector(
Data_length-1 downto 0);
signal Resolved_Signal_Tag : Wired_And_Vector(Depth-1 downto 0);
signal Resolved_Tags : Wired_Or_Type;
signal Resolved_Signal_Valid_Out : Wired_And_Type;

-- This signal holds the data out signals that are converted from Wired_Or
-- type to MVL7 vector before going into the Data_Out_Buffers.

signal Data_Out_Vector: Vector_Word_length;

-- This signal contains the data from the Data_QOut_Buffers. It connects to
-- the Data_Out ports of the chip and the controller.

signal Data_Out_Signal_Vector: Vector_Word_length;
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-- This signal connects the controllers Select_Word port to the OR gates that

-- feed the Word_Select_Bus.

signal Word_Select: Vector_Depth;

-- This signal is connected to the output port of the controller. Itis

-- connected to the Bit_Select_Bus.

signal Bit_Select_Signal: MVL7;

-- This is the basic component of the CAM chip. These cells will be put into

-- an array to form the CAM chip array.

component CAM_cell

port(
D: in MVL7; -- data line
B: in MVL7; -- bit select line
W: in MVL7; -- word select line
M: out MVL7; -- match line
RY: out MVL7; -- data output (W and C)
RX: out MVLY); -- data output (W and Cnot)
end component;

-- This component is the exclusive-or gate.

component XORGATE -- ZYCAD component
generic (N: Positive; -- N input XOR gate
tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1 to N);  -- Ninputs
output: out MVL7); -- one output
end component;
-- This component is the OR gate.
component ORGATE -- ZYCAD component
generic (N: Positive; -- N input OR gate
tLH: Time; -- rise inertial delay
tHL.: Time); -- fall inertial delay
port(input: in MVL7_VECTOR (1t0 N);  -- N inputs
output: out MVL7); -- one output

end component;
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-- This component is the buffer gate.

component BUFGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay
port(input: in MVL7; -- input
output: out MVL7); -- output
end component;

-- This component is the controller. The file is called ‘the_controller'.
component THE_CONTROLLER

port( Read :in MVL7,
Write :in MVL7;
Resolved_Tags :in MVL7;
Cp :in MVLT7;
CPnot :in MVL7;
Data_Avail MEM :in MVL7;
Master_Reset :in MVLT;
Data_Out : in Vector_Word_length;
Data_In : in Vector_Address_length;

Resolved_Signal_Tag: in Vector_Depth;
Data_Out_Available :out MVL7;

Read_Miss : out MVL7;

Write_Miss :out MVL7;

Write_Hit :out MVL7;

Bit_Select :out MVL7;

Select_Word : out Vector_Depth);
end component;

begin

-- The following code automatically generates the CAM array for the address.
-- Word_length, Data_length, and Depth are defined in chip_pkg.vhd. The
-- left-most bit is the most significant bit while the right-most is the

-- least significant bit.

Al:
for I in Word_length-1 downto Data_length generate -- Address length
D1:
for J in Depth-1 downto O generate
Address_Array: CAM_cell

port map(
D =>Data_In_Bus(l),
B =>Bit_Select_Bus(l),
W => Word_Select_Bus(J),
M => Resolved_Signal_Tag(J),
RY => Resolved_Signal_Data_Out(I),
RX => OPEN);
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-- This signal is a single bit that signifies whether a match
-- on any word has occurred.

Resolved_Tags <= Resolved_Signal_Tag(J);

end generate;

-- These buffers buffer the incoming address.

Address_Buffers: BUFGATE
generic map(BUF_Delay, BUF_Delay)
port map(input => Address_In(l),
output => Data_In_Bus(l));

end generate;

-- The following code automatically generates the CAM array for the data.
-- Data_length, and Depth are defined in chip_pkg.vhd. The

-- left-most bit is the most significant bit while the right-most is the

-- least significant bit (zero).

A2:
for K in Data_length-1 downto 0 generate
D1:

for L in Depth-1 downto O generate
Data_Armray: CAM_cell

port map(

D =>Data_In_Bus(K),

B => Bit_Select_Bus(K),

W => Word_Select_Bus(L),

M =>OPEN,

RY => Resolved_Signal_Data_Out(K),

RX => Resolved_Signal_Data_Check(K));
end generate;

-- This code generates an array of xor gates that evaluates the
-- Valid_Out for each bit of the data. It xor's the Data_Out
-- and the Data_Check bit. Valid_Out is '1' if the bit is valid.

XOR_Armay: XORGATE

generic map (2, -- 2 inputs,
XOR _Delay, -- rise inertial delay,
XOR _Delay) -- fall inertal delay
port map(

input(1) => Resolved_Signal_Data_Out(K),
input(2) => Resolved_Signal_Data_Check(K),
output => Valid_uut_Signal(K));
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-- The port Resolved_Sigal_Valid_Out is determined by Wire-ORing the
-- Valid_Out_Signal.

Resolved_Signal_Valid_Out <= Valid_Out_Signal(K);

-- These buffers buffer the incoming data.

Data_Buffers: BUFGATE
generic map(BUF_Delay, BUF_Delay)
port map(input => Data_In(K),
output => Data_In_Bus(K));

end generate;

-- This line converts the Wired_And signal to MVL7 to output onto
-- the Valid_Out port. (added 21 Oct 91)

Valid_Out <= Wired_And_To_MVL7(Resolved_Signal_Valid_Out);

-- The following code generates OR gates that select all cells upon resetting
-- the chip. This eneables all cells to be intialized to '0' when Master_
-- Reset goes high.

Ol
for M in Depth-1 downto 0 generate
ORs: ORGATE
generic map (2, -- 2 inputs,
OR_Delay, -- rise inertial delay,
OR_Delay) -- fall inertal delay
port map(

input(1) => Master_Reset,

input(2) => Word_Select(M),

output => Word_Select_Bus(M));
encd generate;

-- The following code instantiates a particular cell of the array. It allows
-- you to 'cd’ into the cell for troubleshooting. It is a copy of a cell

-- generated with the code above. This cell is a data cell.

-- THIS CELL SHOULD NOT BE IMPLEMENTED IN HARDWARE!
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Cell_00: CAM_cell

port map(
D =>Data_In_Bus(0), -- across
B => Bit_Select_Bus(0), -- across
W => Word_Select_Bus(0), -- down
M => Resolved_Signal_Tag(0), --down
RY => Resolved_Signal_Data_Out(0), -- across

RX => Resolved_Signal_Data_Check(0)); -- across

-- The following code instantiates a particular cell of the array. It allows
-- you to 'cd’ into the cell for troubleshooting. It is a copy of a cell

-- generated with the code above. This cell is an address cell.

-- THIS CELL SHOULD NOT BE IMPLEMENTED IN HARDWARE!

Cell_Address: CAM_cell

port map(
D =>Data_In_Bus(Word_length-1), -- across
B => Bit_Select_Bus(Word_length-1), -- across
W => Word_Select_Bus(Depth-2), -- down
M => Resolved_Signal_Tag(Depth-2), -- down
RY => Resolved_Signal_Data_Out(Word_length-1),-- across
RX => OPEN); -- aCross

-- This code generates the buffers that buffer the output data.

B1:
for N in Word_length-1 downto 0 generate
Data_Out_Buffers: BUFGATE
generic map(BUF_Delay, BUF_Delay)
port map(input => Data_Qut_Vector(N),
output => Data_Qut_Signal_Vector(N));

end generate;

-- This line converts the Resolved_Signal_Data_Out and Resolved_Signal_Tag
-- signals into an MVL7 vector.

Data_Out_Vector <= Wired_Or_To_MVL7_Vector(Resolved_Signal_Data_Out);
Tag_Vector <= Wired_And_To_MVL7_Vector(Resolved_Signal_Tag);

-- The following assigns the Data_QOut port of the chip with the Data_Out_
-- Signal_Vector that comes out of the Data_Out_Buffers.

Data_OQOut <= Data_Out_Signal_Vector;

176




-- This connects the controller to the rest of the chip.
Controller: THE_CONTROLLER

port map(
Read => Read,
Write => Write,
Resolved_Tags => Resolved_Tags,
CpP =>CP,
CPnot => CPnot,
Data_Avail_ MEM => Data_Avail_MEM,
Master_Reset => Master_Reset,
Data_Out => Data_Out_Signal_Vector,
Data_In => Data_In_Bus

(Word_length-1 downto Data_length),
Resolved_Signal_Tag => Tag Vector,
Data_Out_Available =>Data_Out_Available,

Read_Miss => Read_Miss,
Write_Miss => Write_Miss,
Write_Hit => Write_Hit,
Bit_Select => Bit_Select_Signal,
Select_Word => Word_Select);

-- This process simply connects the Bit_Select_Signal from the controller to
-- each line fo the Bit_Select_Bus.

P1:
process(Bit_Select_Signal)
begin
for O in Word_length-1 downto 0 loop
Bit_Select_Bus(O) <= Bit_Select_Signal;
end loop;
end process;

end structure;
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CAM Chip Behavior

-- Date: 21 October 1991

-- Version: 1.0

-- Filename: cam_chip_behavior.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the architecture behavior of the

-- CAM cache chip.

-- Associated files: chip_pkg.vhd : This file is where the size of

-~ the CAM array is defined. Other
-- declarations are also contained

-- in this file.

= chip_pkg body.vhd : This file contains the sub-

-- routines Wired_And and Wired_Or

- used by the chip.

-- cam_chip_entity.vhd : This file contains the entity
-- description of the CAM chip.
-- History:

-- Author: Curtis M. Winstead

library ZYCAD,

use ZYCAD.types.all;

use WORK.Chip_pkg.all;

architecture behavior of cam_chip is

-- The following are declared types for the behavioral description.
-- MEM_TYPE is for the CAM array State is the state types.

type MEM_TYPE is array(Depth downto 1) of Vector_Word_length;
type State is (Start_State, Read_Hit_State, Read_Miss_State,
Write_Hit_State, Write_Miss_State);

-- The following are constant time declarations.

constant Search_Delay : Time := 16 ns;
constant State_Output_Delay : Time :=3 ns;
constant MEM_Delay : Time := 10 ns;
constant Write_Delay : Time := 4 ns;
constant Write_Miss_Delay : Time := 25 ns;
constant Data_Out_Avail_Init_Delay : Time := 12 ns;
constant Data_Out_Init_Delay : Time := 16 ns;
constant Valid_Out_Init_Delay : Time := 19 ns;
constant Function_Change_Delay : Time := 3 ns;
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-- This signal is used when all zeros are needed for a word.

signal All_Zeros : Vector_Word_length :=
(Word_length-1 downto 0 =>'0');

-- This signal holds the state in which the chip is in.

signal State_Register: State := Start_State;

-- This signal holds the position of the word found in the CAM.

signal Tag : Natural := 0;

-- This signal signifies if a search hit has occurred.

signal Search_Hit: MVL7 :='0';

-- The following signals are used to multiplex the correct value.
-- The MUX code is at the end of the behavioral description.

signal cam_array, cam_arrayl, cam_array$, car:_arrayRH,
cam_arrayRM, cam_arrayWH: MEM_TYPE;
signal State_RegisterS, State_RegisterRH, State_RegisterRM,
State_RegisterWH, State_RegisterWM: State;
signal Data_Out_Availablel, Data_Out_AvailableRH,
Data_Out_AvailableTEMP: MVL7,
signal Read_Missl, Read_MissRM, Read_MissTEMP: MVL7,
signal Write_Hitl, Write_HitWH, Write_HitTEMP: MVL7;
signal Write_Missl, Write_MissWM, Write_MissTEMP: MVL7;
signal Data_Outl, Data_OutRH, Data_OutTEMP: MVL7_Vector
(Word_length-1 downto 0);
signal Valid_Outl, Valid_OutRH, Valid_OuwtTEMP: MVL7,

begin

-- Initialize: This block is used to initialize the chip.

Init: block(Master_Reset='1' and not Master_Reset'Stable)

begin
Data_Out_Availablel <="(0'" after Data_Out_Avail_Init_Delay;
Read_Missl <="0' after State_Output_Delay;
Write_Hitl <="(' after State_Output_Delay;
Write_Missl <=0’ after State_Output_Delay;
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Data_Outl <= All_Zeros after Data_Out_Init_Delay;
Valid_Outl <="0' after Valid_Out_Init_Delay;

-- This process clears the CAM array.

process(guard)
begin
for I in Depth downto 1 loop
cam_arrayl(I) <= All_Zeros;
end loop;
end process;

end block Init;

-- Search state: In this state the address is searched for and the state
-- register is assigned a value.

Search_process: process
begin
wait on Read, Write;
if Read ='1' or Write ='1' then

-- This loop searches the CAM array and marks the

-- found word with Tag.

Search_loop:
for J in Depth downto 1 loop

if (cam_array(J)

(Word_length-1 downto Data_length)
= Address_In) then

Tag <=1J;
exit;
else Tag <=0;
end if;

end loop;

wait for Search_Delay;
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-- This 'if' statement sets the state register to
-- the proper state value.

if Read ='1' and Tag /= 0 then
State_RegisterS <= Read_Hit_State;

elsif Read ='1' and Tag = O then
State_RegisterS <= Read_Miss_State;

elsif Write ='1' and Tag /= 0 then
State_RegisterS <= Write_Hit_State ;

else
State_RegisterS <= Write_Miss_State;
end if;
end if;

end process Search_process;

-- Read Hit state.

RH: process
variable Kcount: Natural; -- this variable is used for
-- for troubleshooting.
begin

wait on State_Register until State_Register = Read_Hit_State;

-- This is the prefetch loop.

for K in Tag-1 to Prefetch_Block_Size+Tag-2 loop

Kcount :=K;

-- This is the first word being read from the CAM.

if K = Tag-1 then
wait for 40 ns;
Data_OutRH <= cam_array((K mod Depth) + 1);
wait for AND_Delay;
Valid_OutRH <="1%;
wait for OR_Delay;
Data_Out_AvailableRH <='1";
wait for Change_Detector_Delay;
Data_QOut_AvailableRH <="'0’;
wait for 2 ns;

end if;
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-- These are the remaining words being read from CAM.

if K /= Tag-1 then

wait for Clock_Period - AND_Delay -
OR_Delay - Change_Detector_Delay;

Data_OutRH <= cam_array((K mod Depth) + 1);
wait for AND_Delay + OR_Delay;
Data_Out_AvailableRH <="1";
wait for Change_Detector_Delay;
Data_Out_AvailableRH <= "'0";

end if;

end loop;

-- This signifies the end of the prefetch cycle.

wait for 13 ns - AND_Delay -
OR_Delay - Change_Detector_Delay;
Data_OutRH <= All_Zeros;
wait for 3 ns;
Valid_OutRH <="0';

State_RegisterRH <= Start_State; -- reset state register

end process RH;

-- Read Miss state. In this state the CAM waits for data from main memory
-- before writing it into the CAM.

RM: process
variable TOS_pointer : Positive := 1;
begin

wait on State_Register until State_Register = Read_Miss_State;

-- This assignment copies the CAM array into the local process.

cam_arrayRM <= cam_array;

wait for State_Output_Delay;
Read_MissRM <="1';
TOS_pointer := (TOS_pointer mod Depth) + 1;

wait for MEM_Delay;

cam_arrayRM(TOS_pointer)(Word_length-1 downto Data_length)
<= Address_In; -- write address

cam_arrayRM(TOS _pointer)(Data_length-1 downto 0)
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<=Data_In; -- write data

Read_MissRM <= '0";
State_RegisterRM <= Start_State; -- reset state register

end process RM;

-- Write Hit state. Data are written over the old data.

WH: process
begin

wait on State_Register until State_Register = Write_Hit_State:

-- This assignment copies the CAM array into the local process.

cam_arrayWH <= cam_array;

wait for State_Output_Delay;
Write_HitWH <="1";

wait for Write_Delay;
cam_arrayWH(Tag)(Word_length-1 downto Data_length)

<= Address_In; -- write address
cam_arrayWH(Tag)(Data_length-1 downto 0)
<= Data_In; -- write data

Write_HitWH <="'0;
State_RegisterWH <= Start_State; -- reset state register

end process WH;

-- Write Miss state.

WM: process
begin

wait on State_Register until State_Register = Write_Miss_State;
wait for State_Output_Delay + 1 ns;
Write_MissWM <="1";
wait for Function_Change_Delay;
Write_MissWM <="0';

wait for Write_Miss_Delay;
State_RegisterWM <= Start_State; -- reset state register

end process WM;
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-- The following code are multiplexed values. The TEMP signals are
-- necessary to avoid having more than one source for the signals.

cam_array <= cam_arrayl when not cam_arrayI'quiet else
cam_arrayS when not cam_arrayS'quiet else
cam_arrayRH when not cam_arrayRH'quiet else
cam_arrayRM when not cam_arrayRM'quiet else
cam_arrayWH when not cam_arrayWH'quiet else
cam_array;

State_Register <= State_RegisterS when not State_RegisterS'quiet else
State_RegisterRH when not State_RegisterRH'quiet else
State_RegisterRM when not State_RegisterRM'quiet else
State_RegisterWH when not State_RegisterWH'quiet else
State_Register;

Data_Out_AvailableTEMP <= Data_Out_AvailableRH when
not Data_Out_AvailableRH'quiet else
Data_Out_Availablel when
not Data_Out_Availablel'quiet else
Data_Out_AvailableTEMP;
Data_Out_Available <= Data_Out_AvailableTEMP;

Read_MissTEMP <= Read_MissRM when not Read_MissRM'quiet else
Read_MissI when not Read_MissI'quiet else
Read_MissTEMP;

Read_Miss <= Read_MissTEMP;

Write_HitTEMP <= Write_HitWH when not Write_HitWH'quiet else
Write_Hitl when not Write_HitI'quiet else
Write_HitTEMP;

Write_Hit <= Write_HitTEMP;

Write_MissTEMP <= Write_MissWM when not Write_MissWM'quiet else
Write_Missl when not Write_MissI'quiet else
Write_MissTEMP,

Write_Miss <= Write_MissTEMP;

Data_ OutTEMP <= Data_OutRH when not Data_OutRH'quict else
Data_Outl when not Data_OutI'quiet else
Data_OutTEMP;

Data_Out <= Data_ OutTEMP;

Valid_OutTEMP <= Valid_OutRH when not Valid_OutRH'quiet else
Valid_Outl when not Valid_OutI'quiet else

Valid_OutTEMP;
Valid_Out <= Valid_OutTEMP;

end behavior;
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THE_CONTROLLER

--Date: 12 September 1991
-- Version: 1.2

-- Filename: the_controller.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the

-- Associated files:

for this file.

chip controller. It provides the inputs to the CAM array.

chip_pkg.vhd : This file contains constants, variables, etc. needed

-- History: Version 1.0 (30 August 1991)

-

added.

-- Author: Curtis M. Winstead

Version 1.1 (10 September 1991) - added a port to word_select
component (Bit_Select) so port on controller also had to be

Version 1.2 (12 September 1991) - deleted port Counting since
Bit_Select does essentially the same thing.

library ZYCAD;
use ZYCAD.types.all;
use WORK .chip_pkg.all;
entity THE_CONTROLLER is
port( Read
Write
Resolved_Tags
Cp
CPnot

Data_Avail_ MEM
Master_Reset
Data_Out
Data_In
Resolved_Signal_Tag :
Data_Out_Available
Read_Miss
Write_Miss
Write_Hit
Bit_Select
Select_Word

end THE_CONTROLLER;

:in MVL7;

:in MVL7;

:in MVL7;

:in MVL7,;

:in MVL7;

:in MVL7,

:in MVL7;

: in Vector_Word_length;

: in Vector_Address_length;

in Vector_Depth;

:out MVL7;
:out MVL7;
:out MVL7;
:out MVL7;
:out MVL7;
: out Vector_Depth);

architecture structure of THE_ CONTROLLER is
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component FUNCTION_CHANGE_DETECTOR

port( Read :in MVLT;
Write :in MVL7;
Function_Change: out MVL7);
end component;
component OPERATION_STATUS
port(
Data :in Vector_Word_length;
Prefetching :in MVL7;
Read :in MVLY7;
Write :in MVL7;
Resolved_Tags :in MVLT;

Search_Complete :in MVL7;
Data_Out_Available :out MVL7; --read hit

Read_Miss :out MVL7; --read miss
Write_Miss :out MVL7; -- write miss
Write_Hit :out MVL7?); -- write hit

end component;

component PREFETCH_STATUS

port( CP :in MVL7;

CPnot :in MVL7;
Read :in MVL7;

Resolved_Tags :in MVLT7;
Search_Complete: in MVL7;

Reset :in MVL7;
Counting :out MVL7);
end component;
component SEARCH_STATUS
port(
Data :in Vector_Address_length;
Read :in MVL7;
Write :in MVL7;
Function_Change : in MVL7;
Reset_DFF :in MVL7;
Counting :in MVL7;
Search_Complete : out MVL7);
end component;
component SELECT_WORD_SELECT
port( Read :in MVL7;

Resolved_Tags :in MVL7;

Search_Complete : in MVL7;

Function_Change : in MVL7;

Master_Reset :in MVL7;

Data_Avail_MEM: in MVL7;

WSR_Select :out MYL7);
end component;
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component WORD_SELECT

port(

Clear_TOS :in MVL7;
TOS_CP :in MVL7;
TOS_CPnot :in MVL7;
Word_Selector_ CP in MVL7;
WSR_Select :in MVL7;
Tags_In :in Vector_Depth;
Clearl :in MVL7;
Clear2 :in MVL7;
SR_Select :in MVL7;
Shifting :out MVL7;
Bit_Select :out MVL7;
Select_Word : out Vector_Depth);

end component;

component WORD_SELECT_CLOCK

port( Read :in MVLY;
Write :in MVLTY;
Search_Complete :in MVLTY;
Resolved_Tags :in MVL7;
CP :in MVL7,
Counting :in MVLY7;
TOS_Clock : out MVL7;
TOS_ClockNot :out MVL7;
Word_Sel_Reg_Clock: out MVL7),

end component;

signal Function_Change :MVL7;.

signal WSR_Sel :MVL7,
signal Search_Complete :MVL7;
signal Counting_Signal :MVL7;
signal TOS_CP : MVL7;
signal TOS_CPnot : MVLY7;
signal Word_Selector CP  : MVL7,;
signal Shifting_Signal : MVL7,

begin

Detect_Function_Change: FUNCTION_CHANGE_DETECTOR
port map(Read => Read,
Write => Write,
Function_Change => Function_Change);
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Op_Stat: OPERATION_STATUS

port map(
Data => Data_Out,
Prefetching => Shifting_Signal,
Read => Read,
Write => Write,
Resolved_Tags => Resolved_Tags,

Search_Complete = => Search_Complete,
Data_Out_Available => Data_Out_Available,

Read_Miss => Read_Miss,
Write_Miss => Write_Miss,
Write_Hit => Write_Hit);

Prefetch: PREFETCH_STATUS

port map(
Cp => CP,
CPnot => CPnot,
Read => Read,

Resolved_Tags => Resolved_Tags,
Search_Complete => Search_Complete,
Reset => Master_Reset,
Counting => Counting_Signal);

Search_Stat: SEARCH_STATUS

port map(
Data => Data_In,
Read => Read,
Write => Write,
Function_Change => Function_Change,
Reset_DFF => Master_Reset,
Counting => Counting_Signal,

Search_Complete => Search_Complete);

Sel_Word_Sel: SELECT_WORD_SELECT

port map(
Read => Read,
Resolved_Tags => Resolved_Tags,
Search_Complete = => Search_Complete,
Function_Change  => Function_Change,
Master_Reset => Master_Reset,
Data_Avail MEM  => Data_Avail_MEM,
WSR_Select => WSR_Sel);
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Word_Sel: WORD_SELECT

port map(
Clear_TOS
TOS_CP
TOS_CPnot
Word_Selector_CP
WSR_Select
Tags_In
Clearl
Clear2
SR_Select
Shifting
Bit_Select
Select_Word

=> Master_Reset,
=>TOS_CP,

=> TOS_CPnot,

=> Word_Selector_CP,
=> WSR_Sel,

=> Resolved_Signal_Tag,
=> Master_Reset,

=> Function_Change,
=> Counting_Signal,
=> Shifting_Signal,

=> Bit_Select,

=> Select_Word);

Word_Sel_CLock: WORD_SELECT_CLOCK

end structure;

port map(
Read
Write
Search_Complete
Resolved_Tags
Cp
Counting
TOS_Clock
TOS_ClockNot

=> Read,

=> Write,

=> Search_Complete,
=> Resolved_Tags,
=>CP,

=> Counting_Signal,
=>TOS_CP,
=>TOS_CPnot,

Word_Sel_Reg_Clock => Word_Selector_CP);
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Appendix E: Chip_pkg and dual_phase clock

This appendix contains the chip_pkg.vhd, chip_pkg_body.vhd, and
dual_phase_clock.vhd files. The file chip_pkg.vhd contains declarations for constants,
types, and functions. The file chip_pkg_body.vhd contains the wired-OR, wired-AND,

and conversion functions.

Chip_pkg

--Date: 9 September 1991

-- Version: 1.5

-- Filename: chip_pkg.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the package of the CAM chip. This is the
-- file used to define the size of the CAM array. This file

-- also contains other declarations.

-- Associated files: cam_cell_entity.vhd : This file contains the entity

-- description of the CAM cell.

-- cam_cell_structure.vhd : This file contains the gate level
- design of the CAM cell.

-- chip_pkg_body.vhd : This file contains the sub-

-- routines Wired_And and Wired_Or
-- used by the chip.

-- cam_chip_entity.vhd : This file contains the entity

- description of the CAM chip.

-- cam_chip_structure.vhd: This file contains the structure
-~ of the CAM chip. It is formed by
-- generating copies of the CAM
- cell.

- chip_stimulus.vhd : This file exercises the chip and
-- provides inputs to test the chip.
= chip_test_bench.vhd  : This file contains the test bench

- for the CAM chip.

-- chip_config.vhd : This file contains the

- configuration of the system.
-- clock.vhd : You guess!

-- Hnstory Version 1.0 (6 May 1991)
Version 1.1 (12 June 1991) - added Vector_Word_length and
-- Vector_Depth.
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Version 1.2 (13 June 1991) - added function declarations for
Wired_Or and Wired_And as well as the various types used to
support them.

Version 1.3 (3 July 1991) - added funtion declaratation for
Wired_Or_To_MVL7_Vector.

Version 1.4 (15 July 1991) - changed Word_length to include
Data_length + Address_length.

Version 1.5 (9 September 1991) - added function declaration for
Wired_And_To_MVL7_Vector.

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;

package Chip_pkg is

-- The following constants are used to set the size of the CAM array.

-- Set Address_length to the desired length of the address in the CAM array.
-- Set Data_length to the desired length of the data in the CAM array.

-- Word_length is the sum of the address and data length.

-- Set Depth to the desired depth of the CAM array.

constant Address_length: Positive := 3;
constant Data_length : Positive :=3;
constant Word_length : Positive := Address_length + Data_length;

constant Depth : Positive := 3;

-- This is the number of bits in the pretech counter. Set this number to
-- determine how large the prefetch block size can be. For example, an '§’
-- will allow the counter to prefetch 256 lines.

constant Bits_in_Counter: Positive := 5;

-- This is the integer value for the prefetch block size. Set this number

-- to the desired number of lines to prefetch on a Read Hit. This number
-- is relates directly to Bits_in_Counter above. This number must be less
-- than or equal to 2**(Bits _in_Counter)-1.

constant Prefetch_Block_Size: Positive := 25;

-- This is the clock period used in the chip and all other related components.

constant Clock_Period: Time := 30 ns;
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-- The following types define the various inputs and outputs of the CAM
-- chip.

subtype Vector_Word_length is MVL7_Vector(
Word_length-1 downto 0);

subtype Vector_Address_length is MVL7_Vector(
Word_length-1 downto Data_length); -- MSBs

subtype Vector_Data_length is MVL7_Vector(
Data_length-1 downto 0); -- LSBs

subtype Vector_Depth is MVL7_Vector(
Depth-1 downto 0);

-- This is an unconstrained array that supports the resolution functions below.

type Unconstrained_Vector is array(
Integer range<>) of MVL7;

-- Below are the declarations for the resolution functions Wired_Or and
-- Wired_And. The functions can be found in chip_pkg body.vhd.

function Wired_Or (Input: Unconstrained_Vector) return MVL7;
function Wired_And (Input: Unconstrained_Vector) return MVL7,;

-- The following types are arrays that hold the resolved signals.
-- They are unconstrained arrays that are constrained when instantiated for
-- a particular purpose.

subtype Wired_Or_Type is Wired_Or MVL7;
type Wired_Or_Vector is array (Integer range <>) of Wired_Or_Type;

subtype Wired_And_Type is Wired_And MVL7;
type Wired_And_Vector is array (Integer range <>) of Wired_And_Type;

-- The following are the declarations of the conversion functions.

function Wired_Or_To_MVL7_Vector (Input: Wired_Or_Vector)
return Vector_Word_length;

function Wired_And_To_MVL7_Vector (Input: Wired_And_Vector)

return Vector_Depth;
function Wired_And_To_MVL7 (Input: Wired_And_Type) return MVL7,
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-- The following are gate delays used by the generic statements.

constant Inverter_Delay : Time := 1 ns;
constant BUF_Delay : Time := 1 ns;
constant And_Delay : Time := 3 ns;
constant OR_Delay : Time := 4 ns;
constant NAND_Delay : Time := 2 ns;
constant NOR_Delay : Time := 3 ns;
constant XOR_Delay : Time := 4 ns;
constant XNOR _Delay : Time := 4 ns;
constant DFF_Delay : Time := 6 ns;
constant MUX_Delay : Time := 2 ns;

-- This constant is the amount of time the CHANGE_DETECTOR
-- will produce a'l' after the signal changes. Set this constant equal
-- to the time the signal should be high upon a signal change.

constant Change_Detector_Delay: Time := 5 ns;

end Chip_pkg;
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Chip_pkg_body

—
-
——
-

Date: 9 September 1991
Version: 1.4

Filename: chip_pkg_body.vhd
System: ZYCAD, VLSI net
Language: VHDL

Description: This file contains the package body that holds the
subroutines that can be accessed by any file. It currently
contains the Wired_And function to resolve the match bits
from each cell of the CAM array and the Wired_Or function
to resolve the output data and the validation data from

each cell.
Associated files: cam_cell_entity.vhd  : This file contains the entity

description of the CAM cell.

cam_cell_structure.vhd : This file contains the gate level
design of the CAM cell.

chip_pkg.vhd : This file is where the size of
the CAM array is defined. Other
declarations are also contained
in this file.

cam_chip_entity.vhd  : This file contains the entity
description of the CAM chip.

cam_chip_structure.vhd : This file contains the structure
of the CAM chip. Itis formed by
generating copies of the CAM
cell.

chip_stimulus.vhd : This file exercises the chip and
provides inputs to test the chip.

chip_test_bench.vhd : This file contains the test bench

for the CAM chip.
chip_config.vhd : This file contains the

configuration of the system.
clock.vhd : You guess!

History: Version 1.2 (27 June 1991) - This is the first version.
Version 1.3 (3 July 1991) - added the function
Wired_Or_To_MVL7_Vector.
Version 1.4 (9 September 1991) - added the function
Wired_And_To_MVL7_Vector.

Author: Curtis M. Winstead

package body Chip_pkg is
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-- The following functions are resolution functions. The signals coming into
-- these functions are resolved as follows: for the Wired_OR function, the

-- output is a '1' if one or more signals being resolved is a'1'. For the

-- Wired_And function, the output is a '0' if one or more signals being

-- resolved is a '0'. The Wired_Or code comes almost directly from the book
-- "VHDL: Hardware Description and Design" by Lipsett et al. and can be
found on pp 104-105.

function Wired_Or (Input: Unconstrained_Vector) return MVL7 is
variable Result: MVL7 :='0";
begin
for I in Input'Range loop
if Input(I) ='1' then
Result :="'1";
exit;
elsif Input(I) ='X' then
Result :='X";
else --Input(I) ='0' or any other MVL7 value
null;
end if;
end loop;
return Result;
end Wired_Or;

function Wired_And (Input: Unconstrained_Vector) return MVL7 is
variable Result: MVL7 :="'1";
begin
for I in Input'Range loop
if Input(I) ='0' then
Result :='0";
exit;
elsif Input(I) ='X" then
Result :='X";
else --Input(I) ='1' or any other MVL7 value
null;
end if;
end loop;
return Result;
end Wired_And;

195




-- The following function converts Wired_Or_Vector to MVL7_Vector type.

function Wired_Or_To_MVL7_Vector (Input: Wired_Or_Vector)
return Vector_Word_length is
variable Temp: Vector_Word_length;

for I in Word_length-1 downto 0 loop
Temp(l) := Input(l);
end loop;
return Temp;
end Wired_Or_To_MVL7_Vector,

begin

-- The following function converts Wired_And_Vector to MVL7_Vector type.

function Wired_And_To_MVL7_Vector (Input: Wired_And_Vector)
return Vector_Depth is
variable Temp: Vector_Depth;
begin
for I in Depth-1 downto O loop
Temp(I) := Input(I);
end loop;
return Temp;
end Wired_And_To_MVL7_Vector;

-- The following function converts Wired_And to MVL7 type.

function Wired_And_To_MVL7 (Input: Wired_And_Type) return MVLY7 is
variable Temp: MVL7;

begin
Temp := Input;
return Temp;

end Wired_And_To_MVLY7;

end Chip_pkg;
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dual_phase_clock

-- FILENAME: dual_phase_clock.vhd
-- DESCRIPTION: Entity description and architecture body of a
-- dual-phase clock generator (modified for ZYCAD).

-- APPLICABLE FILES: None

-- DESIGNER: Gordon M. Kranz
- Mark Mehalic

-- DEVELOPER: USAF

-- VERSION: 1.1

-- DATE: 14 May 91

library ZYCAD;
use ZYCAD.TYPES.all;
use ZYCAD.COMPONENTS.all;
entity dual_phase_clock is
generic (period : TIME);
port (PQl :inout MVL7:='1%
PQ2 :inout MVL7 :='0';
RUN : in BOOLEAN := FALSE);
end dual_phase_clock;

architecture behavioral of dual_phase_clock is
begin
g;ogess(RUN, PQ1)

gin
if RUN and PQ1 ='0' then
PQ1 <= transport '1' after period/2;
PQ2 <= transport '0' after period/2;
else if RUN and PQ1 ="1" then
PQ1 <= transport '0' after period/2;
PQ?2 <= transport '1' after period/2;
end if;
end if;
end process;
end behavioral;
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Appendix F: Test Code Used to Test the MCC

This appendix contains the VHDL code used to test the MCC. The files contained
in this appendix are the stimulus file used to input data into the MCC, the test bench,
composed of the MCC and the stimulus, the configuration file for the test bench, and a
test run of the MCC using these files. The times in the test run correspond directly to the

stimulus file.

The Chip Stimulus

--Date: 9 September 1991

-- Version: 2.0

-- Filename: chip_stimulus.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the stimulus to test the CAM chip.

-- Associated files: chip_pkg.vhd : This file is where the size of

-- the CAM array is defined. Other
-- declarations are also contained

-- in this file.

-- chip_pkg_body.vhd : This file contains the sub-

-- routines Wired_And and Wired_Or
-~ used by the chip.

-- cam_chip_entity.vhd : This file contains the entity

- description of the CAM chip.

-- cam_chip_structure.vhd : This file contains the structure

-- of the CAM chip. It is formed by
-- generating copies of the CAM

-~ cell.

-- chip_test_bench.vhd : This file contains the test bench
-~ for the CAM chip.

-- chip_config.vhd : This file contains the

-- configuration of the system.

-- clock.vhd : You guess!

-- History: Version 1.0 (10 June 1991)

- Version 1.1 (12 June 1991) - changed M, RX, and RY to the actual
- chip output ports T (match tag), R (data output), and

-- P (validation bit of data output).

-- Version 1.2 (25 June 1991) - changed inputs and outputs to vectors
-- (as opposed to matrices) to correspond to the actual inputs
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-- and outputs of the chip. This change corresponds to Version
-- 1.2 of cam_chip_entity and _structure.

-- Version 1.3 (3 July 1991) - modified times to correspond to the

-- change that the clock made.

-- Version 1.4 (16 July 1991) - changed data register to two separate
-- registers, one for the address and the other for data.

-- Version 1.5 (8 August 1991) - added ports for valid_out bit and

-- Resolved_Tags. These are preliminary changes to get ready to
-- go in and change what I have to what I really need.

-- Version 1.6 (28 August 1991) - deleted the bit select registers

-- and I will use only the MUXs. The MUXs will feed into the
-- Bit_Select_Bus.

- Version 1.7 (30 August 1991) - In cam_chip_structure, deleted the
-- MUXSs and replaced them with inverters since that is all they
-- were acting as. Also deleted registers to hold the Address_In,
-- Data_In, and Data_Out data and replaced them with buffers.
-- Thus, some of the timing of the stimulus had to be adjusted.

-- Version 2.0 (9 September 1991) - This version contains the

-- controller. As a consequence of adding the controller, a few
-- ports were added and some deleted.

-- Author: Curtis M. Winstead
library ZYCAD;

use ZYCAD.types.all;
use WORK.Chip_pkg.all;

entity chip_stimulus is

port(
Data_In : out Vector_Data_length;
Address_In : out Vector_Address_length;
Read :out MVL7;
Write :out MVL7;
Data_Avail_MEM :out MVL7;
Data_Out : out Vector_Word_length;
Valid_Out :out MVL7;
Data_Out_Available :out MVL7;
Read_Miss :out MVL7;
Write_Miss :out MVL7;
Write_Hit : out MVL7);

end chip_stimulus;

architecture behavior of chip_stimulus is

-- This signal (Dummy) is a dummy signal to be used in
-- the sensitivity list for the process P1 below.

signal Dummy: MVL7;
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-- The signal assignments below send data to the data buses in the chip which

-- send the inputs to each cell of the CAM array

-- The loops are used to send the data to the input ports more efficiently
than assigning the values one at a time.

1000 ns:
2000 ns:
3000 ns:
4000 ns:
5000 ns:
6000 ns:
7000 ns:
8000 ns:

write '0' to each cell

read contents of each cell
search each cell for a'0’
search each cell fora'l’
write a '1' to each cell
read contents of each cell
search each cell for a ‘0’
search each cell for a'l'

P1;

process(Dummy)

begin

-- The following data was used to test the chip using an address length of 3,

-- adata length of 3, and a depth of 3.

-- In order to test a chip of a different size, the following data must be

-- modified.
-- Initialize the chip
Data_In <= transport "LLL";
Address_In <= transport "LLL";
Read <= transport '0';
Write <= transport '0';
Data_Avail_ MEM <= transport '0';
Data_Out <= transport "XXXXXX";
Valid_Out <= transport 'X";
Data_Out_Available <= transport '0' after 12 ns;
Read_Miss <= transport '0' after 3 ns;
Write_Miss <= transport '0' after 3 ns;
Write_Hit <= transport '0' after 3 ns;
Data_Out <= transport "000000" after 16 ns;
Valid_Out <= transport '0' after 19 ns;
-- Read Miss
Address_In <= transport "001" after 39 ns;
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Read
Read_Miss

Data_Avail_MEM
Data_In

Read

Read_Miss
Data_Avail MEM
Data_In
Address_In

-- Another Read Miss

Address_In
Read
Read_Miss

Data_Avail MEM
Data_In

Read

Read_Miss
Data_Avail_MEM
Data_In
Address_In

-- Another Read Miss

Address_In
Read
Read_Miss

Data_Avail_MEM
Data_In

Read

Read_Miss
Data_Avail_MEM
Data_In
Address_In

-- Read Hit
Address_In
Read

<= transport 'l after 39 ns;
<= transport '1' after 58 ns;

<= transport '1' after 57 ns;
<= transport "001" after 57 ns;

<= transport '0' after 65 ns;

<= transport '0' after 68 ns;

<= transport '0' after 65 ns;

<= transport "LLL" after 88 ns;

<= transport "LLL" after 88 ns;
-- address can't change until Sel_
-- Word_Sel is reset to '0'

<= transport "010" after 1052 ns;
<= transport '1' after 1052 ns;
<= transport '1' after 1070 ns;

<= transport '1' after 1070 ns;
<= transport "010" after 1070 ns;

<= transport '0' after 1078 ns;

<= transport '0' after 1081 ns;

<= transport '0' after 1078 ns;

<= transport "LLL" after 1101 ns;

<= transport "LLL" after 1101 ns;
-- address can't change until Sel_
-- Word_Sel is reset to '0'

<= transport "011" after 1104 ns;
<= transport '1" after 1104 ns;
<= transport '1' after 1123 ns;

<= transport '1' after 1122 ns;
<= transport "011" after 1122 ns;

<= transport '0' after 1130 ns;

<= transport '0' after 1133 ns;

<= transport '0" after 1130 ns;

<= transport "LLL" after 1153 ns;

<= transport "LLL" after 1153 ns;
-- address can't change until Sel_
-- Word_Sel is reset to '0'

<= transport "001" after 1158 ns;
<= transport 'l’ after 1160 ns;
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Valid_out <= transport '1' after 1219 ns;

Read <= transport '0' after 1186 ns;

-- just to test to make sure this won't mess anything up
Read <= transport '1’ after 1300 ns;
Read <= transport '0’ after 1350 ns;
Data_Out <= transport "000000" after 2081 ns;
Valid_out <= transport '0’ after 2084 ns;

-- Another Read Hit

Address_In <= transport "010" after 2067 ns;
Read <= transport '1' after 2067 ns;
Valid_out <= transport '1' after 2127 ns;
Read <= transport '0' after 2094 ns;
Data_Out <= transport "000000" after 2999 ns;
Valid_out <= transport '0' after 3002 ns;

-- Write Miss

Data_In <= transport "000" after 3007 ns;
Address_In <= transport "111" after 3007 ns;
Write <= ‘ransport '1' after 3007 ns;
Write_Miss <= transport '1' after 3027 ns;
Data_In <= transport "LLL" after 3027 ns;
Address_In <= transport "LLL" after 3027 ns;
Write <= transport ‘0’ after 3027 ns;
Write_Miss <= transport '0' after 3030 ns;

-- Write Hit

Data_In <= transport "111" after 3051 ns;
Address_In <= transport "010" after 3051 ns;
Write <= transport 'l after 3051 ns;
Write_Hit <= transport '1' after 3070 ns;

-- Word_Select_Bus changes to select the word after 39 ns.

-- Write must go to '0' to clear the Word_Selector before the

-- *_In data changes. Otherwise an unwanted write will occur.

-- 31 ns after Write goes to '0', Word_Select_Bus changes to zeros.
-- Write can go low after being high for 20 ns.

Write <= transport '0’ after 3071 ns;
Data_In <= transport "LLL" after 3098 ns;
Address_In <= transport "LLL" after 3098 ns;
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Write_Hit <= transport '0' after 3074 ns;

-- Read Miss

Address_In <= transport "100" after 3099 ns;
Read <= transport '1' after 3099 ns;
Read_Miss <= transport '1' after 3118 ns;
Data_Avail_MEM <= transport 'l' after 3118 ns;
Data_In <= transport "100" after 3118 ns;
Read <= transport '0' after 3126 ns;
Read_Miss <= transport '0' after 3129 ns;
Data_Avail_MEM <= transport '0' after 3126 ns;
Data_In <= transport "LLL" after 3149 ns;
Address_In <= transport "LLL" after 3149 ns;

-- address can't change until Sel _
-- Word_Sel output (WSR_Select)is
--reset to 0.

-- Another Read Hit
Address_In <= transport "100" after 3154 ns;
Read <= transport '’ after 3154 ns;
Valid_out <= transport '1' after 3213 ns;
Read <= transport '0' after 3180 ns;
Data_Out <= transport "000000" after 4087 ns;
Valid_out <= transport '0' after 4090 ns;

end process;

end behavior;
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The Test Bench

--Date: 9 September 1991

-- Version: 2.0

-- Filename: chip_test_bench.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Associated files: chip_pkg.vhd

-- chip_pkg_body.vhd

-- cam_chip_entity.vhd :

-- Description: This file is the test bench to test the CAM chip.
: This file is where the size of

the CAM array is defined. Other
declarations are also contained
in this file.

: This file contains the sub-

routines Wired_And and Wired_Or
used by the chip.

This file contains the entity
description of the CAM chip.

- cam_chip_structure.vhd : This file contains the structure

-- chip_stimulus.vhd
-- chip_config.vhd
-- clock.vhd

-- History: Version 1.0 (10 June 1991)

of the CAM chip. It is formed by
generating copies of the CAM
cell.

: This file exercises the chip and

provides inputs to test the chip.

: This file contains the

configuration of the system.

: You guess!

-- Version 1.1 (12 June 1991) - changed M, RX, and RY to the actual
-- chip output ports T (match tag), R (data output), and

- P (validation bit of data output).

-- Version 1.2 (25 June 1991) - changed input and output types to

-- correspond to Version 1.2 of cam_chip_entity and _structure.
-- The input and output registers are now those ports described
- by test_chip below. Changed T to Tag, R to Data_Out, and

-- P to Valid_Out.

-- Version 1.3 (3 July 1991) - added Load port on test chip to allow

-- for a clock input.

-- Version 1.4 (16 July 1991) - changed ports to correspond to

-- Version 1.4 of cam_chip_entity and _structure.

- Version 1.5 (8 August 1991) - added ports for valid_out bit and

-- Resolved_Tags. These are preliminary changes to get ready to
= go in and change what I have to what I really need.

-- Version 1.6 (28 August 1991) - deleted the bit select registers

-- and I will use only the MUXs. The MUXs will feed into the

- Bit_Select_Bus.
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Version 1.7 (30 August 1991) - deleted the MUXSs and replaced them
with inverters since that is all they were acting as. Also
deleted registers to hold the Address_In, Data_In, and
Data_Out data and replaced them with buffers.

Version 2.0 (9 September 1991) - This version contains the
controller. As a consequence of adding the controller, a few
ports were added and some deleted.

-- Author: Curtis M. Winstead

library ZYCAD;

use ZYCAD.

types.all;

use WORK.Chip_pkg.all;

entity ¢

hip_test_bench is

end chip_test_bench;

architecture structure of chip_test_bench is

-- These are the internal signals of the test bench

signal Data_in

signal Address_in

signal Read_in

signal Write_in

signal Data_Avail_MEM_in
signal Master_Reset

signal Data_out

signal Data_stimulus_out

signal Valid_out

signal Valid_stimulus_out
signal Data_Avail_out

signal Data_Avail_stimulus_out
signal Read_Miss_out

signal Read_Miss_stimulus_out
signal Write_Miss_out

signal Write_Miss_stimulus_out
signal Write_Hit_out

signal Write_Hit_stimulus_out

signal CLK
signal CLKnot
signal RUN
signal stop_sim

-- This is the chip under the test

component test_chip
port(
Data_In
Address_In
Read
Write

: Vector_Data_length;
: Vector_Address_length;
: MVL7;

: MVLT7;

: MVL7;

: MVLY7;

: Vector_Word_length;
: Vector_Word_length;
: MVLY7;

: MVLT7;

: MVLT7,

: MVL7;

: MVLT7;

: MVLT;

: MVL7,;

: MVLT,;

: MVL7;

: MVLY7;

: MVL7;
:MVL7;
: boolean := FALSE;
: boolean := FALSE;

:in Vector_Data_length;
:in Vector_Address_length;
:in MVL7;

:in MVLT7;
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-- This is used to compare for correct output

Data_Avail MEM

Master_Reset
cp

CPnot
Data_Out
Valid_Out

Data_Out_Available

Read_Miss

Write_Miss

Write_Hit
end component;

component stimulus
port(
Data_In
Address_In
Read
Write

Data_Avail_ MEM

Data_OQOut
Valid_Out

Data_Out_Available

Read_Miss
Write_Miss
Write_Hit

:in MVL7;

:in MVL7;

:in MVL7;

:in MVL7;

: out Vector_Word_length;
:out MVL7;

:out MVL7;

:out MVL7;

:out MVL7;

: out MVL7);

: out Vector_Data_length;
: out Vector_Address_length;
:out MVLY7;

:out MVLY7,

:out MVL7;

: out Vector_Word_length;
: out MVLY7;

: out MVL7;

:out MVLY7;

: out MVLY7;

: out MVL7);

end component;

component dual_phase_clock
generic (period : TIME := 34 ns);
port (PQl :inout MVL7:='l';
PQ2 :inout MVL7 :='0";
RUN :in BOOLEAN :=FALSE);

end component;
begin
Chip: test_chip
port map(

Data_In => Data_in,
Address_In => Address_in,
Read => Read_in,
Write => Write_in,
Data_Avail_MEM => Data_Avail_MEM_in,
Master_Reset => Master_Reset,
Cp => CLK,
CPnot => CLKnot,
Data_Out => Data_out,
Valid_Out => Valid_out,

Data_Out_Available => Data_Avail_out,
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Read_Miss => Read_Miss_out,
Write_Miss => Write_Miss_out,
Write_Hit => Write_Hit_out);

Generator: stimulus

port map(
Data_In => Data_in,
Address_In => Address_in,
Read => Read_in,
Write => Write_in,
Data_Avail_ MEM => Data_Avail_MEM _in,
Data_Out => Data_stimulus_out,
Valid_Out => Valid_stimulus_out,
Data_Out_Available => Data_Avail_stimulus_out,
Read_Miss => Read_Miss_stimulus_out,
Write_Miss => Write_Miss_stimulus_out,
Write_Hit => Write_Hit_stimulus_out);

CLOCK_IN: dual_phase_clock
port map(CLK,
CLKnot,
RUN);

Master_Reset <=1, -- puts chip into initial state
'0’ after 38 ns;

RUN <= TRUE;

-- The following process checks for correct output.

ERROR_TEST: process(Valid_out, Read_Miss_out,
Write_Miss_out, Write_Hit_out)
begin

assert (Valid_out = Valid_stimulus_out and
Read_Miss_out = Read_Miss_stimulus_out and
Write_Miss_out = Write_Miss_stimulus_out and
Write_Hit_out = Write_Hit_stimulus_out)
report "FAILED TEST"
severity warning;
end process ERROR_TEST;

-- Stops simulation after 30000 ns
stop_sim <= TRUE after 30000 ns;
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-- This process stops the simulation when stop_sim is true.

STOP_CONTROL.: process
begin
wait until stop_sim = TRUE;
assert false report "Simulation Done."
severity failure;
end process STOP_CONTROL;

end structure;
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The Configuration File

--Date: 28 March 1991
-- Version: 1.0

-- Filename: chip_config.vhd
-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This is the configuration specification file for the CAM
-- chip test bench.

-- Associated files: chip_pkg.vhd : This file is where the size of

-- the CAM array is defined. Other
-- declarations are also contained

-- in this file.

-- chip_pkg_body.vhd : This file contains the sub-

-- routines Wired_And and Wired_Or
- used by the chip.

-- cam_chip_entity.vhd : This file contains the entity

-- description of the CAM chip.

-- cam_chip_structure.vhd: This file contains the structure
-- of the CAM chip. Itis formed by
-- gelrierating copies of the CAM

- cell.

-- chip_stimulus.vhd : This file exercises the chip and

-- provides inputs to test the chip.

-- chip_test_bench.vhd : This file contains the test bench
-- for the CAM chip.

-- clock.vhd : You guess!

-- History:

-- Author: Curtis M. Winstead

use work.all;
configuration chip_config of chip_test_bench is
for structure

for Chip: test_chip use entity work. CAM_chip(structure);
end for;

for Generator: stimulus use entity work.chip_stimulus(behavior);
end for;

end for;

end chip_config;
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Test Run

#O0NS
M: ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "XXXXXX")
M1: ACTIVE /CHIP_TEST_BENCH/DATA_STIMULUS_OUT (value =
"XXXXXX")

M16: ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_MEM_IN (value ="0’)
M1S: ACTIVE /CHIP_TEST_BENCH/WRITE_IN (value = '0")
M14: ACTIVE /CHIP_TEST_BENCH/READ_IN (value ="'0’)
M13: ACTIVE /CHIP_TEST_BENCH/ADDRESS_IN (value = "LLL")
M12: ACTIVE /CHIP_TEST_BENCH/DATA_IN (value = "LLL")
M2: ACTIVE /CHIP_TEST_BENCH/RES_SIG_VALID_OUT (value = 'X")
ISVI3: ACTIVE /CHIP_TEST_BENCH/RSV_STIMULUS_OUT (value = 'X")
3N
M10: ACTIVE /CHIP_TEST_BENCH/WRITE_HIT_OUT (value ='0')
M8: ACTIVE /CHIP_TEST_BENCH/WRITE_MISS_OUT (value = '0")
M6: ACTIVE /CHIP_TEST_BENCH/READ_MISS_OUT (value ="0')
M11: ACTIVE /CHIP_TEST_BENCH/WRITE_HIT_STIMULUS_OUT (value =
'Ol)
M9: ACTIVE /CHIP_TEST_BENCH/WRITE_MISS_STIMULUS_OUT (value =
'0')
M7: ACTIVE /CHIP_TEST_BENCH/READ_MISS_STIMULUS_OUT (value =
'Ol)
12 NS
M4: ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0')
MS: ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_STIMULUS_OUT (value =
|0v)

16 NS
Mil: ACTIVE /CHIP_TEST_BENCH/DATA_STIMULUS_OUT (value =
"000000")
M: ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "000000")
19 NS
M3: ACTIVE /CHIP_TEST_BENCH/RSV_STIMULUS_OUT (value ='0")
M2: ACTIVE /CHIP_TEST_BENCH/RES_SIG_VALID_OUT (value ='0")

1070 NS
Mé6: ACTIVE /CHIP_TEST_BENCH/READ_MISS_OUT (value ='1")
M12: ACTIVE /CHIP_TEST_BENCH/DATA_IN (value = "010")
M16: ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_MEM_IN (value ='1")
M7: ACTIVE /CHIP_TEST_BENCH/READ_MISS_STIMULUS_OUT (value =
'l')
1078 NS
M16: ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_MEM_IN (value ='0")
M14: ACTIVE /CHIP_TEST_BENCH/READ_IN (value ='0’)
1081 NS
Mé6: ACTIVE /CHIP_TEST_BENCH/READ_MISS_OUT (value ='0’)
M7: ACTIVE /CHIP_TEST_BENCH/READ_MISS_STIMULUS_OUT (value =
vov)
1101 NS
M13: ACTIVE /CHIP_TEST_BENCH/ADDRESS_IN (value = "LLL")
M12: ACTIVE /CHIP_TEST_BENCH/DATA_IN (value = "LLL")
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1104 NS
Mi14: ACTIVE /CHIP_TEST_BENCH/READ_IN (value ='1")
215113; ACTIVE /CHIP_TEST_BENCH/ADDRESS_IN (value ="011")
1122 N
M12: ACTIVE /CHIP_TEST_BENCH/DATA_IN (value = "011")
M16: ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_MEM_IN (value ='1")
1123 NS
M6: ACTIVE /CHIP_TEST_BENCH/READ_MISS_OUT (value ='1")
M7: ACTIVE /CHIP_TEST_BENCH/READ_MISS_STIMULUS_OUT (value =
ll')
1130 NS
M16: ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_MEM_IN (value ='0")
M14: ACTIVE /CHIP_TEST_BENCH/READ_IN (value ='0")
1133 NS
M6: ACTIVE /CHIP_TEST_BENCH/READ_MISS_OUT (value ='0")
M7: ACTIVE /CHIP_TEST_BENCH/READ_MISS_STIMULUS_OUT (value =
'0')
1153 NS
M13: ACTIVE /CHIP_TEST_BENCH/ADDRESS_IN (value = "LLL")
M12. ACTIVE /CHIP_TEST_BENCH/DATA_IN (value = "LLL")
1158 NS
M13: ACTIVE /CHIP_TEST_BENCH/ADDRESS_IN (value = "001")
1160 NS
M14: ACTIVE /CHIP_TEST_BENCH/READ_IN (value ='1")
1186 NS
M14: ACTIVE /CHIP_TEST_BENCH/READ_IN (value ='0")
1216 NS
M: ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "001001")
1219 NS
M3: ACTIVE /CHIP_TEST_BENCH/RSV_STIMULUS_OUT (value ='1")
M2: ACTIVE /CHIP_TEST_BENCH/RES_SIG_VALID_OUT (value ='1")

12213\42]:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
‘22&5';8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
12521\2 > ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "010010")
1252431? ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
126‘1:412:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value = '0")
128652 > ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "011011")
12913\411:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
‘29&‘2'? ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value = '0")
:z(z)lgl }124: ACTIVE /CHIP_TEST_BENCH/READ_IN (value ='1")

M: ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "001001")
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1321412:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
133%412:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
1358[{1? ACTIVE /CHIP_TEST_BENCH/READ_IN (value ="0’)

13541\28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "010010")
136&11‘;]:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
136&12:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
13881\28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "011011")
13915\411:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
140(1\)/1118 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
14221\28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "001001")
1421241::8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
143‘11111:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
14561\28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "010010")
14613:412:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
14618\/112:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
14901\}[?8 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "011011")
1497MI;‘:S ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
15012\41‘;‘:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
15241\28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "001001")
1531141::8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
15316\412:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
ISSSNES ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "010010")
15615\41;1:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
157&11:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
15921\28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "011011")
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159:41::8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ="'1)
1601‘:41;]8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0’)
1626l‘s'I;:IS ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "001001")
1631241::8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
16318\412:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
1660th ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "010010")
1661(4128 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
167%412:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
16941\28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "011011")
17011\41::8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ="'1")
17016&41::8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
17281\28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "001001")
17315\451:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
174(1\)/11:? ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
17621\28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "010010")
176241:? ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
l77§dlj:s ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
17961\28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "011011")
18013541;[:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
180185/3:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
1830&28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "001001")
1831412:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
18412\41::8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
18641\::, > ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "010010")
18711\41;‘:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ="'1")
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187?/11128 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
1898NI(W:S ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "011011")
19015\4128 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
191&12:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0')
19321\::18 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "001001")
19319\412:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
194‘1:412:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0')
1966&2 > ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "010010")
1971%/[12:5 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
197%45{:8 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value = '0')
ZOOONIES ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "011011")
200‘;4128 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
20112\/112:8 ACTIVE /CHIP_TEST_BENCH/DATA _AVAIL_OUT (value = '0’)
2034&28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "001001")
20411\4128 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='1")
204?4128 ACTIVE /CHIP_TEST_BENCH/DATA_AVAIL_OUT (value ='0")
20651\28 ACTIVE /CHIP_TEST_BENCH/DATA_OUT (value = "010010")
206?3[518 ACTIVE /CHIP_TEST_BENCH/READ_IN (value ='1")

M13: ACTIVE /CHIP_TEST_BENCH/ADDRESS_IN (value = "010")
3081 NS" Mi1: ACTIVE /CHIP_TEST_BENCH/DATA_STIMULUS_OUT (value =
0001(\)20 ZACI'IV E /CHIP_TEST_BENCH/DATA_OUT (value = "000000")
208:4?:8 ACTIVE /CHIP_TEST_BENCH/RSV_STIMULUS_OUT (value ="0’)

M2: ACTIVE /CHIP_TEST_BENCH/RES_SIG_VALID_OUT (value ='0")

3007 NS
M15: ACTIVE /CHIP_TEST_BENCH/WRITE_IN (value ='1')
M13: ACTIVE /CHIP_TEST_BENCH/ADDRESS_IN (value ="111")
M12; ACTIVE /CHIP_TEST_BENCH/DATA_IN (value = "000")
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3027 NS
MS8: ACTIVE /CHIP_TEST_BENCH/WRITE_MISS_OUT (value ='1")
M15: ACTIVE /CHIP_TEST_BENCH/WRITE_IN (value = '0)
M13: ACTIVE /CHIP_TEST_BENCH/ADDRESS_IN (value = "LLL")
MI12: ACTIVE /CHIP_TEST_BENCH/DATA_IN (value = "LLL")
M9: ACTIVE /CHIP_TEST_BENCH/WRITE_MISS_STIMULUS_OUT (value =

M8: ACTIVE /CHIP_TEST_BENCH/WRITE_MISS_OUT (value = '0")
M9: ACTIVE /CHIP_TEST_BENCH/WRITE_MISS_STIMULUS_OUT (value =

M15: ACTIVE /CHIP_TEST_BENCH/WRITE_IN (value ='1")
M13: ACTIVE /CHIP_TEST_BENCH/ADDRESS_IN (value = "010")
3 MIZS: ACTIVE /CHIP_TEST_BENCH/DATA_IN (value ="111")
054 N
307848: ACTIVE /CHIP_TEST_BENCH/WRITE_MISS_OUT (value ="0")
NS
M10: ACTIVE /CHIP_TEST_BENCH/WRITE_HIT_OUT (value ='1")
M11: ACTIVE /CHIP_TEST_BENCH/WRITE_HIT_STIMULUS_OUT (value =
|1|)
3071 NS
M15: ACTIVE /CHIP_TEST_BENCH/WRITE_IN (value ='0")
3074 NS
M10: ACTIVE /CHIP_TEST_BENCH/WRITE_HIT_OUT (value = '0")
M11: ACTIVE /CHIP_TEST_BENCH/WRITE_HIT_STIMULUS_OUT (value =
von)
3098 NS
M12: ACTIVE /CHIP_TEST_BENCH/DATA_IN (value = "LLL")

30000 NS
Assertion FAILURE at 30000 NS in design unit STRUCTURE from process
/CHIP_TEST_BENCH/STOP_CONTROL:

"Simulation Done."
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Appendix G: The VHDL Code of Simple Memory System

This appendix contains the VHDL code of the simple memory system used to
thoroughly test the MCC. It contains the code for a simple behavioral description of the
CPU, the main memory, and the structural description of the memory system consisting
of the CPU, main memory, and the MCC. The package containing the MEM_Delay

constant and a function to convert hexadecimal values to MVL7 vectors is also included.

The CPU

-- Date: 28 October 1991

-- Version: 1.0

-- Filename: cpu.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains a simple behavioral model of a CPU. Its
-- main purpose is to generate addresses to the bus with a

-- read or write request.
-- Associated files: chip_pkg.vhd : This file contains declarations
-- for constants, types, functions,
- etc.
- mem_sys_pkg.vhd : This file contains declarations

-- for constants, types, functions,
-- etc. specific to the memory

-- system.

-- mem_sys_pkg_body.vhd : This file contains the function
-- to convert hex numbers into

-- MVL7_Vector.

-- History:

-- Author: Curtis M. Winstead

library ZYCAD;

use ZYCAD.types.all;

use WORK.Chip_pkg.all;

use WORK.mem_sys_pkg.all;
use STD.TEXTIO.all;
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-- This is the entity declaration of the CPU.

entity CPU is
port( Read_port : inout MVL7 :='0';
Write_port : inout MVL7 :='0';
MCC_Prefetching  :in MVL7 :="0';
Address : out Vector_Address_length :=
(Word_length-1 downto Data_length => 'L"));
end CPU;

-- This is the architecture description of the CPU.

architecture CPU of CPU is

begin

-- This process generates a Read and Write request on every other
-- 100 ns time block.

RW:

process

begin

wait for 100 ns;
RWLoop: loop

Read_port <="1";
wait for 30 ns;
Read_port <="0';
wait for 70 ns;

-- This line blocks the CPU during prefetching
-- cycle.

if MCC_Prefetching ='1' then
wait on MCC_Prefetching until
MCC_Prefetching ='0';
wait for 10 ns;

end if;
Write_port <="1";
wait for 20 ns;
Write_port <="'0';
wait for 80 ns;

end loop RWLoop;

end process RW;
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-- This process reads the address from the file "cpu.dat” and
-- converts the hex number into an MVL7_Vector to be supplied to
-~ the bus.

Read_Address:

process(Read_port, Write_port)
file Input_file: TEXT is in "cpu.dat”;
variable Addr: String(8 downto 1);
variable L1: Line;

if (Read_port ='1' and not Read_port'Stable) or
(Write_port ='1' and not Write_port'Stable) then
assert not Endfile(Input_file) report -- if end of
"No more addresses." -- file then
severity failure; -- simulation
-- quits

begin

Readline (Input_file, L1);

Read(L1, Addr);

Address <= transport HEX_To_MVL7V(Addr);
end if}

-- Puts 'L's on Address port after CPU stops its request.

if (Read_port = ‘0’ and not Read_port'Stable) or
(Write_port ='0' and not Write_port'Stable) then
for J in Word_length-1 downto Data_length loop
Address(J) <= 'L’ after 30 ns;
end loop;
end if;

end process;

end CPU;

-- The following is the configuration file for the CPU. I put it here
-- 50 as not to clutter up the directory. It was used to test the CPU
-- only, before being put into the memory system.

use work.all;
configuration cpu_config of CPU is

for CPU
end for;

end cpu_config;
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Main Memory

-- Date: 28 October 1991
-- Version: 1.0

-- Filename: mem.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains a simple behavioral model of a memory. Its

main purpose is to generate data to the bus when the CPU
requests a write or when a read miss occurs on the MCC. |
realize this is not the true function of memory, but in order

to simplify the testing of the CAM chip, it generates the
address on a write request. The MCC doesn't know any better
and that's what is being tested anyway.

= Assocxated files: chip_pkg.vhd : This file contains declarations

-- History:

-—

for constants, types, functions,
etc.

mem_sys_pkg.vhd : This file contains declarations
for constants, types, functions,
etc. specific to the memory
system.

mem_sys_pkg_body.vhd : This file contains the function
to convert hex numbers into
MVL7_Vector.

-- Author: Curtis M. Winstead

library ZYCAD;

use ZYCAD.

types.all;

use WORK.mem_sys_pkg.all;
use WORK.Chip_pkg.all;
use STD.TEXTIO.all;

-- This is the entity declaration of the MEM(ory).

entity MEM is

port( CPU_Write :in MVLY7;

end MEM;

MCC_Miss :in MVL7;

Data : out Vector_Data_length :=
(Data_length-1 downto 0 =>'L");

Data_Avail :out MVL7 :='0);
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-- This is the architecture description of the MEM(ory).

architecture MEM of MEM is

begin

-- This process reads data from the "mem.dat" file, converts it from
-- hex to MVL7_Vector, and supplies it to the data port.
-- It reads data when the CPU requests a write and when the MCC

-- has a read miss.

Read_Data:
process

file Input_file:

TEXT is in "mem.dat";

variable Dat: String(8 downto 1);
variable L1: Line;

begin

wait on CPU_Write, MCC_Miss;

if CPU_Write ='1l' or MCC_Miss = '1" then
if (CPU_Write ='1' and not CPU_Write'Stable) or

end if:

(MCC_Miss ='1' and not MCC_M iss'Stable) then
assert not Endfile(Input_file) report

"No more data." -- if end of file then
severity failure; -- simuluation quits

if MCC_Miss ='1" then
wait for MEM_Delay;
end if;

Readline (Input_file, L1);
Read(L1, Dat);
Data <= transport HEX_To_MVL7V (Dat);

-- This if statement synchronizes the address and
-- data going to 'L's after a write request.

if CPU_Write ='1' then

else

end if;

wait for 50 ns;

wait for 41 ns;
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-- Puts 'L's on data port at the same time the

-- the address gets all L's.
for J in Data_length-1 downto Q loop
Data(J) <="L";
end loop;
end if;
end process;

-- This block is used to assert the Data_Avail_MEM port of the MCC
-- when a read miss occurs.

Data_Avail MEM:
block(MCC_Miss ="'1' and not MCC_Miss'Stable)
begin
process
begin
wait on guard;
Data_Avail <="'1";
wait for 8 ns;
Data_Avail <="0";
end process;
end block Data_Avail_MEM;

end MEM;
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The Memory System

-- Date: 28 October 1991

-- Version: 1.0

-- Filename: mem_system.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the structure of the memory system. It
-- contains the CPU, MEM, and the MCC. The CPU supplies the
-- function requests, MEM supplies the data, and the MCC is

- therefore exercised.
-- Associated files: chip_pkg.vhd

-- cpu.vhd

-- mem.vhd

-- History:

-- Author: Curtis M. Winstead

: This file contains declarations for

constants, types, functions, etc.

: This file contains a simple behavioral

description of a CPU. Its main function
is to supply addresses and functions
requests.

: This file contains a simple behavioral

description of main memory. Its main
funtions is to supply data to the system.

library ZYCAD;
use ZYCAD.types.all;
use WORK.Chip_pkg.all;

-- This is the entity description of the memory system.

entity mem_system is
port( Master_Reset
CP

CPnot
Data_Out
Valid_Out
Data_Out_Available
Write_Miss
Write_Hit
Read_Miss

end mem_system;

:in MVL7 :="'0';

:in MVL7 :="1";

:in MVL7 :='0";

: out Vector_Word_length;
:out MVL7;

:out MVL7;

:out MVL7;

:out MVL7;

: inout MVL7);

-- This is the structural description of the memory system.

architecture structure of mem_system is
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-- Internal signals used

signal Write_Sig :MVL7;

signal Read_Sig :MVLT;

signal Address_Sig : Vector_Address_length;

signal Data_Sig : Vector_Data_length;

signal Data_Avail :MVL7,

signal Miss : MVLY7;

signal Valid_Out_Sig : MVL7;

-- Components used

component CPU

port( Read_port : inout MVLY7,

Write_port : inout MVL7;
MCC_Prefetching  :in MVL7;
Address : out Vector_Address_length);

end component;

component MEM

port( CPU_Write :in MVLT;

MCC_Miss :in MVL7;
Data : out Vector_Data_length;
Data_Avail :out MVL7);

end component;

component cam_chip

port( Data_In : in Vector_Data_length;
Address_In : in Vector_Address_length;
Read :in MVL7;
Write :in MVL7;
Data_Avail MEM :in MVL7;
Master_Reset :in MVL7;
Cp : :in MVL7;
CPnot :in MVL7;
Data_Out : out Vector_Word_length;
Valid_Out :out MVL7;
Data_Out_Available :out MVL7;
Read_Miss :out MVL7;
Write_Miss :out MVL7;
Write_Hit :out MVL7?);
end component;
begin
Address_Generator: CPU
port map(Read_port => Read_Sig,
Write => Write_Sig,
MCC_Prefetching  => Valid_Out_Sig,
Address => Address_Sig);
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Data_Generator: MEM
port map(CPU_Write => Write_Sig,
MCC_Miss => Miss,

Data => Data_Sig,
Data_Avail => Data_Avail);
MCC: cam_chip

port map(Data_In => Data_Sig,
Address_In => Address_Sig,
Read => Read_Sig,
Write => Write_Sig,
Data_Avail MEM =>Data_Avail,
Master_Reset => Master_Reset,
Ccp =>CP,
CPnot => CPnot,
Data_Out => Data_Out,
Valid_Out => Valid_Out_Sig,
Data_Out_Available => Data_QOut_Available,
Read_Miss => Read_Miss,
Write_Miss => Write_Miss,
Write_Hit => Write_Hit);

-- Signal assignments for output ports of the system
Miss <= Read_Miss;
Valid_Out <= Valid_Out_Sig;

end structure;
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The Memory System Package Declaration

-- Date: 24 October 1991

-- Version: 1.0

-- Filename: mem_sys_pkg.vhd

-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the function declaration of the function
-- that converts hex values to MVL7_Vector and constants.
-- Associated files: cpu.vhd : This file contains a simple behavioral
-- description of a CPU. Its main function
-- is to supply addresses and functions

-- requests.

-- mem.vhd : This file contains a simple behavioral
-- description of main memory. Its main
-- function is to supply data to the system.
-- History:

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;

package mem_sys_pkg is

-- This is the funtion declaration.

function HEX_To_MVL7YV (Input: String) return MVL7_Vector;

-- This constant is the time it takes main memory to respond to
-- aread.

constant MEM_Delay: Time := 20 ns;
end mem_sys_pkg;
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The Memory System Package Body

-- Date: 24 October 1991

-- Version: 1.0

-- Filename: mem_sys_pkg body.vhd
-- System: ZYCAD, VLSI net

-- Language: VHDL

-- Description: This file contains the function that converts hex values

-- to MVL7_Vector.

-- Associated files: mem_sys_pkg.vhd : This file contains the funtion

-- declaration for this file.

-- cpu.vhd : This file contains a simple

-- behavioral description of a CPU.

-- Its main function is to supply

-- addresses and functions requests.
-- mem.vhd : This file contains a simple

-- behavioral description of main

-- memory. Its main function is to
-- supply data to the system.

-- History:

-- Author: Curtis M. Winstead

package body mem_sys_pkg is

-- This function converts hex values to MVL7_Vector.

function HEX_To_MVLT7V (Input: String) return MVL7_Vector is
variable Address_Vector: MVL7_Vector(31 downto 0)
= (31 downto 0 =>"'0");
variable char: Character;
begin
for Iin 8 downto 1 loop
char := Input(I);
case char is

when '0’' => Address_Vector(4*I-1 downto 4*1-4)

when '1' => Address_Vector(4*I-1 downto 4%1-4)

= "0001";

when '2' => Address_Vector(4*I-1 downto 4*1-4)

= "0010";

when '3' => Address_Vector(4*I-1 downto 4*1-4)

="0011";

when '4' => Address_Vector(4*I-1 downto 4*I-4)

= "Olm";
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when 'S’ => Address_Vcctor(4*I;l do“'{nto 4*1-4)
when '6' => Address_Vector(i:I;? }i?)zx;no 4%1-4)
when '7' => Address_Vector(‘tz:I;? iitgz;to 4*]-4)
when '8' => Addrcss_Vector(‘t.:i:'? }1&5&0 4*1-4)
when '9' => Address_Vector(liz"-—‘I:'ll(c)i(c)y(\)xilto 4*1-4)
when 'A' => Addrcss_Vector(‘:;IJIIOc(l);\;nto 4*[-4)
when 'B' => Address_Vector(fii-—"-‘I;llOdlgw;nto 4*1-4)
when 'C => Addmss_Vector(;I':}odlc}\;mo 4*1-4)
when D' => Address_Vector(‘:;I"-lllgg\;nto 4*1-4)
when 'E' => Address_Vector(‘i:I'-'} lé.(}vx;nto 4¥1-4)
when 'F => Address_Vector(i:-I'-' % 1dlo(zx'f;nto 4*]-4)
when others => null; =

end case;

end loop;

return Address_Vector;

end HEX_To_MVL7V;

end mem_sys_pkg;
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