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Abstract

This research involved the design and VHDL implementation of a content-

addressable memory to exploit structural locality. The concept of structural locality is

that memory locations are referenced in the same order as they were previously refer-

enced. Therefore, if memory locations that exhibit structural locality can be made avail-

able to the CPU through a fast data store, an increase in speed of the computer system can

be realized.

A content-addressable memory (CAM) cache was used to supply data to an on-

chip cache that acts as this fast data store. The CAM is described in this study and is a

member of a two-cache memory hierarchy. Its purpose is to store memory references in

the order they were used by the CPU and prefetch these locations to a smaller on-chip

cache for fast processing. The CAM emulates an LRU stack by using a FIFO circular

buffer algorithm to store the memory references. When the CPU references a location

that is stored in the CAM, the CAM prefetches memory locations in a FIFO manner, thus

allowing the on-chip cache to capture structural locality into its memory.

A fully-associative content-addressable memory was used in this study. This type

of memory allows its contents to be searched in parallel. When a search is successful, the

contents of the memory location are read and a top-of-stack pointer is incremented to read

successive memory locations from the CAM array. A bottom-up design approach was

used to build this cache. Basic digital logic circuits were implemented in VHDL and

were the building blocks for the model. Using these basic components, the major compo-

nents that make up the controller were made. The controller, which controls the

prefetching of structural locality, was then integrated onto the chip model containing a

fully-as3ociative CAM array.
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A CACHE DESIGN TO EXPLOIT STRUCTURAL LOCALITY

I. Introduction

Overview

A computer's main memory is very important in the support of the operating sys-

tems and the users. The technologies of the 1950s and 1960s made it very expensive to

have an adequate amount of this main memory. Conversely, secondary storage is rela-

tively inexpensive and has a much greater capacity than main memory. Unfortunately,

secondary storage has a much slower access speed. As a result, the idea of a memory hi-

erarchy was introduced. Initially, the hierarchy consisted of main memory and secondary

storage. Main memory was used to store the instructions and data of an executing pro-

gram, while secondary storage held programs and data that were not immediately needed.

Since main memory was more expensive, it was generally smaller than secondary stor-

age. (4:188)

Cache memory was introduced in the 1960s and formed additional levels o,' he

memory hierarchy. Cache memory is very fast storage designed to increase the speec of

running programs. The ideal memory system would be one that holds infinitely large

files, has an infinitesimal access time, and is free! Unfortunately, this is not possible, but

cache memory is the next best thing. Using the concept of locality (explained below),

caches simulate a larger memory by storing data that are frequently used by the central

processing unit (CPU). Although a zero effective access time is not technologically pos-

sible, caches are much faster than main memory and secondary memory. Also, since



caches are composed of faster, and thus more expensive memory, only relatively small

caches are economical.

A side effect of memory hierarchies, to which caches add another level, is data

shuttling. Shuttling occurs when data are transferred from one level of hierarchy to an-

other. This decreases the efficiency of the CPU (4:188). If shuttling can be decreased

and access time to memory can be significantly reduced, the CPU could be much more

productive. Cache memories are used exclusively to reduce access time. This thesis will

focus on caching between the CPU and main memory.

Although caches are small, the memory hit-ratio on these caches can be extremely

high due to the concept of locality. The most widely recognized aspects of locality are

spatial and temporal. Spatial locality implies that if a memory location is referenced,

then it is likely that the memory locations nearby in the virtual memory address space will

also be referenced. Temporal locality means that if a memory location is referenced, then

it is likely to be referenced again in the near future. Exploiting locality results in an in-

crease in efficiency of the CPU and faster turnaround of executing programs.

In addition to the well known spatial and temporal aspects of locality, Hobart has

identified a third aspect, which he has called structural locality (9). This type of locality

is defined as the tendency of an executing program to reference memory locations in the

same order in which they were previously referenced. Thus, if memory references were

placed on a stack in the order in which they were referenced, a reference to a particular

memory location in the stack increases the probability of subsequent accesses to memory

locations immediately above it in this stack.

A software model using VHDL (Very High Speed Integrated Circuit (VHSIC)

Hardware Description Language) of a content-addressable memory (CAM) with an inte-

grated structural locality cache (SLC) controller will allow further investigation into

2



structural locality with much greater flexibility than with a hardware prototype. The

VHDL model can be changed to test a desired behavior, whereas an actual realization in

hardware is much more difficult to alter. Although CAMs have previously been de-

signed, this researcher has not found one that has been modeled using VHDL.

Problem Statement

The problem addressed in this thesis is the design of a prefetching memory system

to exploit the aspects and benefits of structural locality. The goal of this thesis effort was

to design a main system cache that supports structural locality prefetching to a smaller

on-chip cache.

Scope/Limitations

This thesis includes developing a behavioral and structural description of an SLC

controller integrated into a CAM cache. Therefore, the structure of a CAM cache with an

integrated SLC controller was modeled using VHDL. The gate level was the lowest level

modeled.

The implementation and fabrication of the cache were beyond the scope of this

thesis. However, this thesis should enable fabrication of an actual CAM chip with an

integrated SLC controller by a follow-on thesis.

Approach

The product of this thesis was a design of an SLC controller integrated with a

fully-associative cache. The controller controls the prefetching of the cache contents

immediately above the currently referenced CAM location and the writing of data into the

CAM array.

A bottom-up approach for modeling the CAM cache was used. With the CAM as

described by DeCegama (3:82-88), a gate-level structural description of a CAM cell was

3



modeled. The cell was tested to determine if its features were acceptable. After verifying

that the cell performed as expected, copies of the cell were integrated to form the CAM

array. The CAM array was then tested to verify its expected behavior.

After the VHDL model of the CAM array was complete, design of the SLC con-

troller began. Again, a bottom-up approach was used. First, the functions of the con-

troller were defined. Next, the structure of the controller was determined in the form of a

schematic diagram. Finally, the structures of this controller were integrated with the

CAM array.

To test and verify the CAM and controller as described by VHDL, the external

hardware, with which the cache will interface, was modeled. The external hardware in-

cludes the CPU main memory. The CPU was modeled using actual virtual memory ad-

dress traces. For a virtual memory reference resulting in a main cache miss, an appropri-

ate delay simulated the fetching of the cache line from main memory. After testing all

pieces of hardware individually, they were connected to form a closed system. This sys-

tem was then used to test and verify the expected behavior of the CAM chip model.

Thesis Contents

Chapter 2 contains an overview of computer memory systems. Associative mem-

ories, in particular, are discussed. The various types of content addressable memories are

presented. They include bit-slice, byte-slice, word-slice, and fully-associative memories.

Several implementations of these types are shown and the advantages and disadvantages

of CAMs are discussed. Most of the CAM cells in the literature are described at the tran-

sistor level; therefore, many transistor level designs are presented.

Chapter 3 describes the VHDL implementation of the main CAM cache (MCC)

for the proposed memory subsystem. The design of the cache is described in detail. The

methodology used to design the MCC is discussed as well as the building of the MCC

4



model in a hierarchical manner in VHDL. Since the cache was designed from the bottom

up, the functionality of each component making up the cache is explained.

Chapter 4 discusses the testing and performance characteristics of the main CAM

cache. It describes the overall behavior of the MCC as well as an analysis of the timing

constraints during each activity the MCC performs. Suggestions on possible improve-

ments to the MCC are proposed and areas where potential space savings can be made

during fabrication are discussed. Other issues to consider during the hardware

implementation of the chip are reviewed.

Finally, Chapter 5 summarizes this thesis effort with conclusions and recommen-

dations for further study.
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II. Background

Introduction

A major goal for computer architects is to increase the speed of executing pro-

grams. "One such technique is the use of memory hierarchies - in particular the cache

store concept. This approach to computer memory speedup has been well proven in the

large processor situations" and "is also applicable to smaller machines where the eco-

nomic constraints are more severe" (1:75). As computer technology has grown in com-

plexity, so have computer applications. As these applications become more complex, the

need for speed becomes increasingly important. To increase speed and "in order to

minimize bus traffic, cache memory is often placed between the processor and the shared

bus" (17:218).

Since caches are expensive and small, many studies have tried to determine an

optimal size for a cache to get the highest hit ratio possible. "These studies suggest that

the single most important factor for improving the cache hit ratio is the size of the cache

memory" (17:219). Quinones suggests that a variable-size cache can allow many

cost/performance goals to be reached (17:219). Ackland (1:76) points out that the opti-

mal cache size depends on the processor architecture and the software environment that is

being used. Ackland also found through simulation results that "effective speed up can

be gained from buffers ranging in size from 256 words to 1024 words" (1:76).

Content-addressable memories are used as caches and have been investigated

since 1956 (15:453). A CAM's purpose is to locate data by its contents rather than by its

address, thereby increasing the speed at which memory is accessed. Memory access to

data is accomplished differently in CAMs than with conventional random access memo-

ries (RAMs). Data access in RAMs is done by decoding the address and then fetching the

6



data. In contrast, data in CAMs are located by their content. Minker (15:453) states that

"the retrieval of any one item in such a store would be accomplished by performing a

content search on all registers in parallel with but a single operation." Not only is a

search performed based on contents, but magnitude relationships such as less than, be-

tween limits, next higher/lower, similarity, proximity, not equal, or minimum/maximum

value can also be accomplished (2:52). Addressing by content eliminates the need for

such operations as scanning, sequential searching, and counting.

CAMs help to overcome what is known as the "von Neumann bottleneck." This

bottleneck is caused by the communications between the CPU and the memory. "To re-

duce the traffic on this data path, and thereby increase system performance, one may add

limited processing capabilities to the memory side of tht bottleneck" (8:537). Content-

addressable memories contain these limited processing capabilities, thereby reducing the

von Neumann bottleneck effect. "Associative processors go a step further, eliminating

the bottleneck entirely by performing both data storage and processing functions in a

single unit." (8:537)

Target Architecture

Hobart (9) proposed the SLC memory subsystem shown in Figure 1. Two CAMs

are used in this three-level memory hierarchy. The first CAM, the main CAM, interfaces

between main memory and the on-chip cache. The second CAM is the on-chip cache that

interfaces between the main CAM and the CPU. This author has not found this type of

architecture implemented with CAMs.

The purpose of the two-CAM system is to take advantage of structural locality

(explained in Chapter 1). The main CAM emulates the top portion of a least recently

used (LRU) stack thereby mapping the temporal locality of the virtual memory references

7
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Figure 1. Proposed Memory Subsystem Design (9:98)

into spatial locality within the main CAM. Structural locality is then exploited by spa-

tially prefetching from the main CAM into the on-chip cache. (9:97)

Hobart chose the main CAM to be fully associative because "if the simulated

LRU stack can be realized in a cache with full associativity, then any position in the stack

8



can be referenced in constant time, and the references immediately above the stack posi-

tion accessed can be prefetched into a smaller faster on-chip cache..." (9:96). The on-

chip cache, or the SLC, requires that the main cache be fully associative to locate any

memory location on the stack. This enables prefetching to the SLC based on structural

locality. The main CAM cache is written to with a circular buffer replacement algorithm.

Therefore, when this cache prefetches to the SLC, the data references received by the

SLC will be in the order in which the main CAM cache received them. (9:97).

The Importance of Content-Addressable Memory

The importance of storing and retrieving data in parallel has been known for about

30 years (2:51). CAMs have been implemented in silicon as far back as 1966, but it

hasn't been until recently, with advancements in VLSI technology, that any useful

amount of CAM has been feasible (20:1003). Content-addressable memory, or associa-

tive memory, allows for this parallel access of data. CAMs can perform read, write, and

search operations in parallel, thus substantially increasing the speed of data access.

A search operation is performed when a search pattern is sent to each cell of the

CAM array. Each cell performs a comparison with this data and a match or mismatch is

then signaled on the tag lines. In order to detect a match or mismatch on selected cells, it

is necessary to temporarily "disconnect" cells from the tag line. This is known as

"masking" off particular cells to search only selected cells. Those cells that are masked

off do not affect the outcome of a search. (10:166)

A write operation writes data to cells of the CAM array. A unique feature of a

CAM is that it is possible to write to all CAM words simultaneously. It is also possible to

select any bit-column to perform a write operation. In doing so, only the selected cells

are written to while the rest are masked off and unaltered. (10:166)

9



A read operation retrieves the contents of cells in a CAM array. Again, a certain

bit-column can be masked so a read will not be performed in the cells of that column but

only in the selected cells. (10:166)

The unique approach of memory access in CAMs can be used to increase effi-

ciency in many application areas. Some examples are databases, pattern recognition,

data correlation, speech recognition, spelling checking, language translation, neural net-

works, and data retrieval.

Disadvantages and Advantages of CAMs

Disadvantages. Hanlon (6:519) points out that there are surprisingly few disad-

vantages found in the literature on content-addressable and associative memory systems.

Chisvin (2:54) states that there are a number of obstacles to overcome before commer-

cially successful associatix - memories are available. These obstacles are:

* functional and design complexity of the associative subsystem,

" relatively high cost for reasonable storage capacity,

" poor storage density compared to conventional memory,

* slow access time due to available methods of implementation, and

" a lack of software to properly use the associative power of the new memory sys-

tems.

Advantages. Although these disadvantages exist, advantages to CAMs abound.

When searching a content-addressable memory for data, the time to access the data is in-

dependent of the size of the CAM; all searching is done is parallel. Sorting is unneces-

sary because the data can easily be found by its content. Using conventional memory, the

time to perform a search and sort grows at a rate of O(nlogn), where n is the number of

items on the list. If only the maximum value is needed, the time to find it would increase
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at least as fast as the size of the list. With content-addressable memories, the time to find

the maximum value would be the same despite the length of the list. (2:54)

Another advantage is the "minimization or total elimination of many of the bur-

densome bookkeeping operations connected with the use of conventionally organized

memories". CAMs would make this bookkeeping a much easier task on programmers. It

could even reduce the operating time of functions that use slower I/O devices. (6:5 10)

A paper written by P. M. Davies and described by Hanlon (6:518) states that pro-

cessing time for many operations can be reduced "because

a) it is not necessary to store data in sorted order;

b) lookups can be made on the basis of different keys at different times over the

same data;

c) records need to be stored only once;

d) addresses are not needed to store records."

Organization of list structures is accomplished very quickly with a CAM system.

On the other hand, RAMs use more execution time in forming the lists, searching the list,

retrieving data from a large list, deleting a list, and transferring a list to another storage

medium. These functions, which require more RAM access time, are performed by

CAMs in constant time. (6:518)

The repetitive structure of a CAM array makes for ease of fabrication and testing.

This is also true for RAM. The CAM cell can be laid out in an organized fashion; there-

fore, the interconnections are short and easily implemented in integrated circuit technol-

ogy. (6:518)

CAMs can also be viewed as fault tolerant. If a cell fails, that cell can be masked

off, never to be used again. Of course, fault tolerance is dependent on the application of

the CAM. If the system can be fault tolerant, the maintenance task is decreased. (6:518)
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The Organization of CAMs

CAMs have the basic organization depicted in Figure 2. Minor variations do exist

but the general concept of the interfaces remains the same. The biggest difference lies

merely in terminology. The layout of a CAM array is shown in Figure 3 and relates di-

rectly to Figure 2 The definitions below contain various terms (in parentheses) used to

describe each component (the list of terms is not complete).

Data In

Bit Select 1
Logic

Word Associative Tag
Select Memory Register
Logic Array

Data Out 1Tag
I _ _ _ _ jReply

Figure 2. Organization of CAMs (3:85)

Data In (Argument Register, Data Input Register). These registers contain the

data to be read or searched for as well as the data that will be written into the array.

Figure 3 displays this as the Data Input Register. (3:84)

Bit Select Lo~c (Mask, Mask Register). This register is used to specify the bits

of a word to be written to and searched for. A '1' in the bit select stream means that the
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SDData Input Register

Bj Bit Select
Logic

Associative -

Memory Cell
Arrayi-

Tag
"i -Register

Cell

Word
SelectLogic L. ---------------------------

Rjy Rix

r - j7 Data Output
[/Pi Register

Figure 3. Associative Memory Array (3:83)

bit will be written to during a write operation. For a search operation, a '1' in the bit

select stream means that a match is needed for that bit, while a '0' indicates a match is not

needed (i.e., the bit is masked off). (3:84)

Word Select Logic (Decoder, Address Decoder). This register indicates which

words are to be used in a read or write operation. (3:84)

Associative Memory Array (Memory Cells, CAM Array, Memory Array). This is

the memory portion of the organization that contains CAM cells laid out in a 2-dimen-

sional array, as shown in Figure 3.
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Tag Registr (Response Store). This register indicates that a selected word has

matched the portions of the data input specified by the bit select register. (3:84)

Data Out (Output, Data Output, Data Output Registers). This register stores the

data of the selected word from a read operation. The Data Output Register of Figure 3

contains the data that is output from the array as well as a "valid" field. The Rj field is

the data while the Pj contains the valid bits. These are discussed in more detail in Chapter

3. (3:86)

Tag Reply. This contains a reply to the control unit that one or more set tags are

in the tag register. (3:85)

CAM Data Word Arrangement

A common CAM data word arrangement is shown in Figure 4. The Tags field

shows the type of data stored at that location (i.e., data or code) and whether the location

is empty or used. The Label field is used in the comparison operation. Finally, the Data

field is the storage area for the information to be retrieved or modified. Sometimes the

Label and Data fields are treated as one if the Label field is part of the Data. (2:52)

Tags I Label I Data

Figure 4. CAM Data Word Arrangement (2:53)

The data word arrangement is flexible. The data word could be segmented in any

way with any of the segments used for interrogation. Or it may not be segmented at all,

in which case any choice of bits can be selected for an interrogation (this is the most gen-

eral form of a CAM). (6:509)

Rowe (18:15) points out that various data-word sizes have been used by different

people and organizations for diverse reasons. They range from 30 to 140 bits in length.
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A 30-bit wide data-word does seem a bit strange but one reason cited for it was that it

matched the CPU's word length.

Types of Architectures

Four different types of architectures exist for associative memories: bit-serial,

byte-serial, word-serial, and distributed logic. The tradeoffs among these types of mem-

ories consist of the storage media, the communications between the cells, the type of re-

trieval logic, and the nature and size of external logic (such as registers and I/O ports).

(2:58)

Bit-serial associative memories search the data a bit at a time, in parallel, in each

word of the associative array. The search time, therefore, depends on the word width and

is independent of the number of words, or word depth, of the array. After one bit-slice is

searched, the next bit position in each word is inspected, and so on, until the entire field is

searched. Likewise, byte-serial and word-serial associative memories search the data a

byte and word at a time, respectively, in parallel for the depth of the memory.

Distributed-logic memories avoid the serial aspects of the bit-, byte-, and word-

serial memories by placing the search, read, and write logic into each cell. This allows all

memory cells to be accessed simultaneously in parallel. Since the logic is in each cell of

the memory, the cell cycle time is longer in the distributed logic array than in the bit-se-

rial architectures. (2:59)

Design considerations must be taken into account when deciding upon which ar-

chitecture to choose. The bit-and byte-serial architectures work best on data and arith-

metic computations. Distributed logic arrays work best on equality comparisons and

multiprocessor control. Cost is another factor. The amount of logic in the distributed

memory cell causes this type of memory to be physically larger and more expensive than
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the bit- or byte-serial memories. The lack of cell logic in the bit- or byte-serial architec-

tures allows these memories to be denser than the distributed logic arrays. (2:59)

Current CAM Cell Designs

Several CAM cell designs are available in the literature. The hardware implemen-

tation of these designs uses one of the following three options:

1) Static. Data are stored using two cross-coupled inverters acting as a flip-flop.

The data remains in the cell as long as power is supplied. When power is

taken away, the contents of the cell are lost.

2) Self-refreshing or pseudo-static. Data are stored by making use of the capaci-

tance on the transistor gates. Over time, the charge will decay, but by assert-

ing a control signal the charge can be restored. The consequence of this op-

eration is increased power consumption.

3) Dynamic. Data are stored in much the same way as in RAM memory and re-

quires external control logic to sense and refresh the data signals. The logic

needed and the requirement to regularly refresh these cells results in a time

penalty that may significantly slow down its operations. (10:167)

Gate Level CAM Designs. DeCegamna (3:87) proposed the gate level design

shown in Figure 5. A CAM chip can be modeled by collecting these cells into a 2-dimen-

sional array, as shown in Figure 3.

Another CAM cell design is given by Hayes (7:452), and is shown in Figure 6.

This design uses a D-type flip-flop for storing the data. Its match circuitry is composed

of an exclusive-NOR gate. Other circuitry is present for the reading and writing func-

tions.
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Data In Bit Select

Match

Line

Read
Output

Read

Word 
a_______________ _______

Select

Figure 5. Gate Level Design of CAM by DeCegama (3:87)

Write
enable WE

Input-
data DMacM

Output
CLOCK 0data Q

Mask MK-

Select S

Figure 6. Gate Level Design of CAM by Hayes (7:452)
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Transistor Level CAM Designs. The CAM cells described above were designed at

the gate level. Several more cells can be found in the literature that are designed at the

transistor level. One such design is the AFIT CAM designed by Shinn (19:13), shown in

Figure 7. This is a general purpose CAM that can search the cell contents on the basis of

equality, between limits, greater than, less than, etc.

Bitline MUM NRr MASK

Wordline

b i n 

- F

Figure 7. Gate Level Design of CAM by Shinn (19:50)

Another transistor level design is shown in Figure 8. This CAM cell was devel-

oped for large-bit-capacity CAM LSI to realize a partial-WRITE operation. "The asso-

ciative-memory cell circuit is composed of seven/nine n-MOS transistors and two high-

resistive poly-Si load devices." (16:1014)

Figure 9 shows a five-transistor dynamic CAM cell. This cell can store three

states: ZERO, ONE, and the DON'T CARE state. "A cell in the DON'T CARE state is unable

to discharge the match line." (20:1006)
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Figure 8. Transistor Level Design of CAM by Ogura (16:1014)

Datao Data,

Enable

Match

MD Line

SWrite
SLine

bit 0 bit 1

Figure 9. Transistor Level Design of CAM by Wade (20:1006)

19



A slightly different design than the one in Figure 9 is shown in Figure 10. This

content-addressable parallel processor (CAPP) uses only 5 transistors. It has three states,

with the DON'T CARE state "being useful in logical inferencing and pattern-matching

applications." (8:537)

Mso Ms

-4 W1, I II Mww1 WW

BO B1 WT

Figure 10. Transistor Level Design of CAM by Herrmann (8:538)

A 12-transistor CAM cell is shown in Figure 11. This is an addressable CAM that

functions as a normal CAM even though its data store is RAM-based. It is made up of

three sections: 1) a six-transistor static RAM, 2) four-transistor XOR, and 3) a two tran-

sistor parallel write pull-up disable gate (DISABLE). "It was designed primarily for ad-

dress translation in a high-speed packet switching network." (13:257, 258)

Weste (21:351) briefly describes a transistor-level CAM cell designed by J. C. L.

Hou. This cell nine-transistor cell is shown in Figure 12.
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7A- - WP (Write Parallel)
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N Word Line

- Match Line

Figure 11. Transistor Level Design of CAM by McAuley (13:258)

BIT VDBIT

WORD ][. WORD

I-- - •MATrCH

Figure 12. Transistor Level Design by Weste (21:351)

21



Finally, Jones (10) presents four different transistor-level CAM designs. Jones

discusses the design constraints, trade-offs, and implementation issues involved in

deciding which design to choose for a VLSI CMOS high-speed CAM architecture. The

designs are shown in Figures 13 through 16. (10)

Dy Dx

RW

MO Ml

a

Figure 13. CAM A Transistor Level Design by Jones (10:167)

Dy RW Dx

MO~ Ml

a

Figure 14. CAM B Transistor Level Design by Jones (10:168)
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VDD

MO_ J L -mi

a

Figure 15. CAM C Transistor Level Design by Jones (10:169)

Dy RW R Dx

VDD

hZ 
,

MO-r = I 1 MI

a

Figure 16. CAM D Transistor Level Design by Jones (10:169)
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Figure 13 shows the simplest design considered by Jones. The cell is "pseudo-

static in that when the RW line is driven high, the cell acts as a static nMOS flip-flop"

(10:168). This cell needs to be refreshed frequently so data will not be lost. (10)

Figure 14 is very similar to Figure 13 but the data are stored in two cross-coupled

CMOS inverters. This design does not require refreshing. (10)

Figure 15 is an enhancement of Figure 14. This design "avoids the need to rely on

the positive feedback between the cross-coupled inverters to maintain the data contents of

the CAM cell..." (10:168). This design reduces power consumption on the 'write X' op-

eration. (10)

Figure 16 is different from Figures 13 - 15 in that it has 'capacitive' loading on

the data lines. "The design relies on the positive feedback between the two cross-coupled

inverters to complete the write operation" (10:168). In contrast to Figure 15, both drive

transistors are switched off during a 'write X' operation, which reduces power consump-

tion. (10)

Jones chose CAM A based on power consumption and chip area. Jones found

"the 'search' and 'read' operations, being based on a precharge/discharge mechanism,

consume relatively little power. It is during the 'write' operations that the designs exhibit

different, and often quite large, power consumption figures" (10:169,170). Table I shows

that CAMs B to D (the CMOS designs) have a much higher power consumption during

the 'write 0 and 'write 1' operations than CAM A. Conversely, CAMs C and D consume

very little power during a 'write X' operation compared to CAM A, with CAM B con-

suming the most.

An interesting result occurs when these CAMs are introduced into their working

environment. Table 2 reveals that CAM A has the highest power consumption. "This is

caused by the predominance of 'write X' operations, and the need to refresh the memory
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Table 1

CAMs A through D Power Consumption in Isolation (10:169)

CAM area Write 0/1 Write X
Onnm) WW

CAMA 1944 51.0 99.8
CAM B 2980 149.0 120.6
CAM C 4160 165.4 <1
CAMD 5240 173.8 <1

Table 2

CAMs A through D Average Power Consumption in Working Environment (10:170)

Name Power (WW)

CAMA 64.7
CAM B 53.6
CAM C 10.6
CAMD 11.2

at regular intervals" (10:170). Relative to CAM A, CAMs C and D consume little power

since the 'write 0' and 'write 1' operations are performed infrequently. Figure 17 shows

the chip power dissipation of each CAM design. (10:170, 171)

The other consideration in the selection ot CAM A was the chip area used by each

design. Figure 18 shows the chip area needed for each CAM. Notice that the more so-

phisticated CAMs (C and D) require the largest die size. The smallest area required by

the four CAM designs came from CAM A, which was a major factor in its selection.

(10:171)

Summary

The goal of content-addressable memories is to access data in parallel based on

content rather than by address. The memory subsystem of Figure 1 will use CAMs to in-

crease the speed of memory accesses over that of conventional hierarchies. A brief
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Figure 17. CAMs A through D Power Dissipation (10:17 1)
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Figure 18. Chip Area Needed for CAMs A through D (10:171)
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overview of the organization of CAM chips was presented. Several different CAM im-

plementations were shown, none of which has been previously used in a two-level cache

memory architecture.
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IN. The Design of the Main CAM Cache that Exploits Structural Locality

Overview

This chapter covers the design of the main CAM cache (MCC). The MCC per-

forms two basic functions: read and write. Upon activating the MCC to perform these

functions, a search operation is performed on the address that is made available to the

MCC. After the search is complete, one of four distinct states exists: Read Hit, Read

Miss, Write Hit, and Write Miss.

The Read Hit state is the most important state the MCC can be in. It is in this

state that the prefetching of structural locality of memory references is performed. The

state is entered when the CPU requests that the MCC perform a read on the requested

address. If the address is stored on the MCC, a read hit (i.e., the search operation found

the address) occurs. This triggers the prefetching of data in a first-in-first-out (FIFO)

manner.

The Read Miss state is also entered during a read cycle. First, a search is per-

formed on the CAM array. If the search is unsuccessful, the Read Miss state is entered.

Since the address was not found (i.e., "missed"), the FIFO replacement algorithm is used

to write the data into the cache. These data come from main memory over the data bus.

Thus, temporal locality is captured by the MCC.

The Write Hit state is entered during a write cycle. Again, the first operation per-

formed by the MCC is the search operation. If the address used in the search was found,

then that location in memory will be replaced by the new data.

The Write Miss was the easiest state to deal with. If the search operation pro-

duced no matches, the MCC does nothing but wait until the next operation is requested of

it.
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The remainder of this chapter describes the VHDL implementation of the MCC.

Since a bottom-up approach was used to design the cache, it is appropriate to describe the

MCC in a bottom-up fashion. First, the method used to design the MCC is briefly de-

scribed. Then, a brief look at the basic components that make up the MCC are discussed.

Next, the heart of the cache, the CAM cell, and the inner workings of the CAM array are

described in detail. The brains of the MCC, the controller, is then explained. Finally, the

MCC is viewed as a whole and its functionality is presented.

Design Methodology

The first step taken in this thesis effort was to choose a logic design of a CAM

cell. The CAM cell designed by DeCegama (3:87) was used. After implementing the

CAM cell in VHDL, the CAM array was built using the VHDL generate function.

Once the CAM array was tested thoroughly, the controller was designed. The

four states described above were used to logically decide upon the components, gates, and

signals that must be used in order for the MCC to function properly. A schematic

diagram was drawn of the entire cache and it was broken into two major sections. The

first was the CAM array and its associated logic and the second was the controller. The

controller was further broken out into its major components so it could be built in a

hierarchical manner. This allowed for the separate sections to be tested before being

integrated into the controller portion of the MCC.

The next step taken was the building, in VHDL, of all the basic components

needed in the MCC. These were the building blocks for the major components that make

up the controller. Once these basic components were built, the major components of the

controller section were created from them. The controller was then put together from

these sections and the final step was the integration of the controller onto the MCC with

the CAM array and its logic.
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Basic Components

This section contains the basic components that make up the major components of

the controller. The VHDL code for each of the basic components is in Appendix B.

They are organized in alphabetical order.

BINARY_COUNTER: This synchronous binary counter is a slightly modified

version of the binary counter in Mano (12:278). It is the only reason the MCC requires a

dual-phased clock. The version shown in Figure 19 uses JK-type flip-flops with RESET

(these JK-type flip-flops are described later in this section). It is also of generic size. The

size, Bits.InCounter, is defined in chip-pkg.vhd (see Appendix E).

Output(BitsinCounter-1) Output(I) OutPUt(O)

I - :- CLEAR

RESET Q RESET Q RESET QConott
CPnot CPnot CPnot CPnot

A JKJ K A J

JK_in(Bits,_in_Counter- 1) - "() " - lCutEal

Figure 19. Schematic Diagram of BINARYCOUNTER (12:278)

CHANGE _DETECTOR (14): The purpose of this circuit is to detect a change

from '0' to 'I1' and from 'l1' to '0' in any input signal. The circuitry is very simple and is

shown in Figure 20. Refer to Figure 21 during the following explanation of how it works.

Suppose a '0' is on both inputs of the XOR gate. This causes the output to be '0' (0 XOR

0 = 0). Now, if a 'l' is input into the change detector, a '1' is on one of the XOR inputs.
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Input

Bufi

Figure 20. Schematic Diagram of CHANGEDETECTOR (14)

Output ___________4 BUFJDelay_

XOR Input 2

XOR Input 1 XORjDelayl
* I

FT

Input 1 BUFJDelay--

Figure 21. Timing Diagram for CHANGE_DETECTOR Operation

The other XOR input is still a '0' for as long as it takes for the signal to go through the

buffer (BUFDelay in the figure). This causes the XOR output to be a '1' (1 XOR 0 = 1).

After the buffer delay, the second XOR input gets '1' and the XOR output becomes a '0'

again (1 XOR 1 = 0). The circuit works the same way with a signal transition from '1' to

'0'.

EDGE_TRIGGEREDDFF: This is a D-type positive-edge triggered flip-flop

taken from Mano (12:214) and slightly modified. The logic diagram is shown in Figure

22. The only change was the addition of a RESET port to allow the flip-flop to be asyn-

chronously reset to '0'.
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Figure 22. Schematic Diagram of EDGETRIGGEREDDFF (12:214)

MS_JKFF: This is a clocked master-slave JK-type flip-flop taken from Mano

(12:213) and slightly modified. The schematic diagram of this component is shown in

Figure 23. A RESET port was added to allow it to be asynchronously reset to '0'. In

addition, the CP port was modified to allow a dual-phased clock to be used and, as a re-

sult, a NAND gate was deleted from Mano's design.

PREFETCH_COUNTER: This component is very similar to the word-time signal

generator found in Mano (12:285) and is shown in Figure 24. It uses the

BINARYCOUNTER of Figure 19 to count upward from zero to PrefetchBlockSize-1

(as defined in chip-pkg.vhd of Appendix E). When the circuit is "started", the output

signal of the RS-type flip-flop, Counting, produces a '1' and the binary counter begins to

count. The XNOR gates are used to compare the outputs of the binary counter and

PrefetchRegister. When they are equal, the output of each XNOR gate becomes '1' and
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Figure 23. Schematic Diagram of MS_JKFF (12:213)

the RS-type flip-flop is reset to zero. Counting then becomes '0' and its complement is

able to clear the binary counter to set up for the next prefetch cycle.

RSFLIPFLOP: This is an RS-type flip-flop found in Mano (12:206). The logic

diagram is shown in Figure 25.

SHFT_REGISTER: This component is a circular shift register with parallel load.

The design came from Mano (12:267) and was implemented with some modifications.

This register is a unidirectional shift register, whereas Mano's is bidirectional. Therefore,

2x1 multiplexers were used as opposed to Mano's 4x1 multiplexers. Also,

SHIFTREGISTER is of generic size whose depth is defined in the chip-pkg.vhd of

Appendix E. SHIFT_REGISTER is shown in Figure 26.

TOSSHIFTER: This shift register is very similar to that of Mano's shift register

(12:264). It uses the EDGETRIGGEREDDFF with RESET and is shown in Figure 27.

It is cleared upon initialization of the MCC with MasterReset and loads the bottom flip-

flop with a '1'. The Master_Reset signal is connected to the CLEAR port of

TOS_SHIFrER. When it goes high, all flip-flops are reset except for the bottom one. An

OR gate is connected to the D input of this flip-flop and the OR inputs are the topmost
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Figure 25. Schematic Diagram of RSFLIPFLOP (12:206)

flip-flop's output and the CLEAR port. Therefore, the circular shift can be accomplished

with the top flip-flop's output, and the CLEAR port can load the bottom flip-flop with a

'1' when Master_Reset is '1'. The CLEAR port is also ORed with CP and input into the

CP port of the bottom edge-triggered D-type flip-flop. Thus, upon initialization, the bot-

tom flip-flop clocks in a '1', which can then be shifted in a circular manner.

The CAM Cell

The fully-associative CAM cell was selected over the bit-slice, byte-slice, and

word-slice associative memories for the implementation of the structural locality cache

memory subsystem. Its advantages far outweighed its disadvantages for the purpose of

this research. Speed during memory accesses is the most important issue (outweighing

the fact that more logic is needed to form each cell) and the fully associative array is fast.

Each cell of the CAM array performs its comparison simultaneously, thus increasing the

speed of the entire memory subsystem.

The CAM cell proposed by DeCegama (shown in Figure 5) was used in the im-

plementation. It is a fully associative CAM cell with all the features necessary to be inte-

grated onto a cache used to prefetch memory references. This design was chosen for this

thesis not because of its robust functionality but simply because it was familiar to the
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Figure 26. Schematic Diagram of SHIFT_REGISTER (12:267)
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Figure 27. Schematic Diagram of TOSSHIFTER (12:264)

author. The structural description of the cell was directly implemented into VI-DL using

ZYCADTMIs (22) gate components. The naming of the gates and signals is shown in

Figure 28. Ile VHDL code for the CAM cell is shown in Appendix A.
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Figure 28. Naming convention for CAM cell gates and signals

The CAM cell performs three functions: search, read, and write. The RS-type

flip-flop, consisting of gates ANDI, AND2, NOR3, and NOR4, is used to store the con-

tents (C) of the cell. Table 3 shows the inputs to the CAM cell to perform the desired op-

eration.

Table 3

CAM Cell Inputs for Desired Operation

Bit Select (B) Word Select (W)

search 1 0
read 0 1
write 1 1
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During a search, the datum to be searched for (D) is placed on the Data In line, as

shown in Figure 28. Simultaneously, the Bit Select line (B) is set to '1' and the Word

Select line (W) is set to '0'. Since B = '1', both Read Outputs, RX and RY, produce a '0'

from gates NOR7 and NOR6, respectively. If D and C are equal, then a '1' will go into

the NORI and NOR2 gates producing a '0' as their outputs. Since these outputs go into

gate NOR5 and W = '0', then Match Line (M) becomes a '1'. Conversely, if D and C are

not equal, either gate NORI or NOR2 will produce a '1' as its output, forcing the output

of NOR5 (M) to go to '0'. Logically, M is derived as follows:

M = [(D + B' + C)' + (D' + B' + C)' + W]'

but B = 1 (or B' = 0) and W = 0, so

= [(C' + D)' + (C + D')']'

= [CD' + CD]'

= (C' + D)(C + D')

M =CD + C'D'.

During a read operation, W is set to a 'I' and B is set to a '0'. Note that D does

not affect the result of the read. The output M goes to '0' from gate NOR5 since W is a

'I'. The content of the cell is output through NOR6 onto RY and its complement is out-

put through gate NOR7 onto RX. Logically, RY and RX are described as follows:

RY = (B + C +W')'

= B'CW

butB =0(orB'= 1) andW= 1, so

RY =C
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and

RX = (B +C+W)'

= B'CW

or RX =C'.

During a write operation, both B and W are set to '1'. Since W is a '1', M be-

comes a '0', and since B is a 'I', RX and RY become '0'. The cell content C will be-

come D as proven below:

C = [(DBW + C)' + (DBW)]'

now since B and W are both '1',

C = [(D + C)' + D']'

= [C'D' + D']'

= [D'I'

C =D.

After the cell was completely tested, an array of cells was organized to form the

CAM array.

The CAM Array

VHDL has a useful function called generate. Using this feature, an m by n array

of CAM cells was generated. This allows the decision about the size of the array to be

delayed to a later time when details about the fabrication technology and chip size are

considered. In the VHDL description of chip pkg.vhd (Appendix E), m is the length of

the word (Word-length in the code) and n is the depth (Depth in the code) of the array

(see Figure 29).
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Figure 29. Dimensions of the CAM Array

The organization of the CAM array is shown in Figure 30. It functions as follows.

The AddressBuffers and DataBuffers accept incoming data from the MCC's

Address_In and DataIn ports, respectively. These buffers in turn provide the buffered

data to the DataInBus. The buffers act to amplify the data before going into the CAM

array. The Bit_Select_Bus and the Word_Select_Bus get data from the controller. This

arrangement allows selected bits of a word to be compared during a search operation, and

multiple words to be written to and read during the write and read operations.

The resolution functions, WiredOr and WiredAnd, are used to resolve signals

along selected buses inside the CAM cache. The VHDL code for these resolution func-

tions came from Lipsett (11:103-105) and can be found in chip-pkgbody.vhd of

Appendix E. The implementation into hardware is technology dependent. The VHDL

description would be modified to match the specific hardware technology used to realize

the design.

When a certain bit is to be compared during a search, a '1' is placed on the

BitSelectBus to select that bit in all words of the array. If a match is successful, an M

output of '1' from each matched cell is placed on the ResolvedSignalTag line. If a

match is unsuccessful, a '0' is placed on the line. This line is a wired-AD that resolves

41



AddressBuffers and DataBuffersuj

5 W
Resolved-Tags

ResolvedS igj CTgg(1)

w 0

WordSel(ct. Busl)

0 0

____Resolved-S ig T 1g(O) W C

M M

JB RY B RY

* * * RXRX

w w 1c

WordSeldct Bus(1) 1

~~DataOut

ResolvedeSignaleValidaOut

Figure 30. Organization of the CAM Array

the match lines from each cell. If a match is found on anl selected bits of a word, then the

ResolvedSignalTag becomes a '1'. If any of the selected bits do not match the cell
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contents, then ResolvedSignal_Tag becomes a '0', meaning the word did not match the

data input.

To write to a particular word of the array, a '1' is placed on that word's

WordSelectBus line. Also, 'l's are placed on the BitSelectBus to write to the de-

sired bits of the word.

During a read operation, a single word or multiple words can be read. If a single

word is to be read (as will always be the case in the MCC), a '1' is placed on its

Word_SelectBus and all Bit_Select_Bus lines are set to '0'. The word is transported

over the ResolvedSignal_DataOut lines to the DataOutLBuffers and its complement is

transported over the ResolvedSignalData_Check line. This line is important during a

multiple read because if two or more words are selected to be read, they may not have the

same data. The ResolvedSignal_DataOut performs the wired-OR function for each bit

of the word being read. The complement of each bit is resolved on the

ResolvedSignalDataCheck line, which also performs the wired-OR function. The

Resolved-SignalDataOut and the ResolvedSignalDataCheck are compared, using

exclusive-OR gates, to determine their validity. If the signals are different, then the

ResolvedSignalData_Out is valid; if the signals are the same, they are invalid. This

may more easily be seen in Table 4 below.

Table 4

Truth Table for Validity of Data

RX RY P=RXxorRY

0 0 0 N/A
0 1 1 valid
1 0 1 valid
1 1 0 invalid
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For example, suppose a multiple read were performed on the following two 4-bit

words (the left-most bit is the most significant bit, bit 3).

1010

0010

The Resolved_SignalDataOut of bit 3 would be a '1' (1 + 0 = 1).

Resolve-SignaLDataCheck would also be a 'I' (V + 0' = 0 + 1 = 1). Exclusive-ORing

the two results produces a '0' (1 XOR 1 = 0), i.e., not valid. On the other hand,

ResolvedSignalData_Out of bit 2 would be a '0' (0 + 0 = 0) and

Resolved_Signal_Data_Check would be a '1' (0' + 0 = 1 + 1 = 1). Exclusive-ORing

these two produces a '1' (0 XOR 1 = 1), i.e., valid.

Designing the Controller

Before getting into the details of how the MCC as a whole works, an overview of

the MCC controller in an hierarchical fashion is in order. This will allow the reader to

learn the terminology used and the figures can then be referenced during the discussion of

the operation of the MCC.

Figure 31 shows the highest hierarchical level of the MCC. Appendix D contains

the VHDL code describing the interconnects for Figure 31. The cache can logically be

viewed as having two parts; 1) the CAM array and its corresponding logic and 2) the

controller.

The controller controls the performance of the MCC by communicating with the

CAM array. The controller accepts inputs from the array and the MCC's ports and pro-

duces outputs to be used by the array. The controller ports are shown in Figure 31. A

brief description of each port is presented in Table 5. The ports are in alphabetical order

and are identified as either input or output ports.
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Table 5

Description of Controller Ports

Port Type Description

BitSelect Output directly connected to BitSelect Bus
CP Input receives the system clock pulse
CPnot Input complement of CP
DataAvail_MEM Input used to signify when the data are available from

main memory when a read miss occurs
Data-In Input receives the address from the AddressIn port
DataOut Input receives the Data -Out vector
DataOut_Available Output signifies that data are present on output port

during Read Hit state
MasterReset Input receives MCC's MasterReset signal that resets

the entire chip model
Read Input signifies that data are requested of the MCC by

the CPU
Read_Miss Output signifies that data are not stored on the cache

during read function
ResolvedSignalTag Input receives ResolvedSignalTag vector of CAM

array signifying which word of CAM array was
matched during search operation

Resolved_Tags Input receives the ResolvedTags bit signifying the
data searched for are present in the CAM array

Select Word Output outputs data to Word Select Bus
Write Input signifies when the CPU desires to write data

into the MCC
WriteHit Output signifies that data are stored on the MCC

during a write function
Write_Miss Output signifies that data are not stored on the MCC

Sduring a write function

The interconnections between the components that make up the controller are

shown in Figure 32. The VHDL code for each of the major components that make up the

controller is presented in Appendix C. The purpose of each of these components will

now be specified. They are listed in alphabetical order.
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Figure 32. The Controller Components and Interconnections
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FUNCTIONCHANGE_DETECTOR: This component determines if the Read or

Write ports of the MCC have changed. Figure 33 shows the schematic diagram of the

component and Appendix C contains its VHDL code.

CHANGEDETECTOR
Rea- -oIn Out Rou

Function_Change
, CHANGE-DETECTOR I

Writo'-" In Out W---

S-------------------------ft -----------------------------

Figure 33. Schematic Diagram of FUNCTION_CHANGEDETECTOR

The input ports are Read and Write, and the output port is called

Function_Change. When Read or Write transitions from '0' to '1' or vice versa, the

change detectors detect the change and output a '1' onto the Rdout or Wt_out signals.

These signals are ORed together to produce Function-Change. As a result, if either Read

or Write transitions, Function_Change will become a '1'. This is shown in the truth table,

Table 6. FunctionChange remains a '1' for the time called ChangeDetectorDelay.

This time is a constant and is defined in chippkg.vhd in Appendix E.

OPERATIONSTATUS: This component indicates the state the MCC is in. It

takes in the incoming signals and from them can determine the state the MCC is in,

whether it be the Read Hit, Read Miss, Write Hit, or Write Miss state. The Read Hit state

is coded in a less obvious way than the other states. The DataOutAvailable port is

asserted high when the data on each read operation in a prefetch cycle is present on the
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Table 6

Truth Table for the FUNCTIONCHANGEDETECTOR Component

Read Write Output

0 0 0
0 1 1
1 0 1
1 1 N/A

MCC's DataOut port when a read hit occurs. The logic diagram of the

OPERATION_STATUS is shown in Figure 34. The VHDL code describing this circuit

is in Appendix C.

-----------------------------------

CHANGEDbETECTOR

Data In Out DataChange

,' change-detectors

,sv Data_OutChange
a I

Prefetching • DataOut-Available

R aa

CHAGEDETCT AND2

ResolvedTag R olvedTags '. Read Miss
,INVI

SearchComplete ,A

Write_____,__Write_Miss

Writerte-Hi

.... ....... ,,

Figure 34. Schematic Diagram of the OPERATIONSTATUS Component
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The output ports are defined as follows.

* Data_Out_Available: The Data port takes in the Data_Out data of the MCC.

Each bit of the DataOut is connected to a change detector that determines if the bit has

changed. The resulting vector is DataChange. This vector is resolved, using the wired-

OR, into one bit, DataOutChange. This bit signifies ff any of the DataOut bits have

changed. It is ANDed with the signal Prefetching. The AND result is

Data_Out_Available, which signifies when the output data of the MCC are available on

the MCC's ports. In other words, data are available when new data are available on the

MCC's output ports and the MCC is in the prefetching cycle.

o ReadMiss: The Read Miss state is denoted by the AND result of three signals:

Read, Resolved.TagsNot, and Search_Complete. Therefore, a read miss occurs when a

read is requested, a match was not found (i.e., Resolved_Tags = '0'), and the search for

the data is complete.

- WriteMiss: The Write Miss state is denoted by the AND result of the

SearchComplete, Resolved_TagsNot, and Write signals. Therefore, a write miss occurs

when the search for the data is complete, a match was not found, and a write function was

requested.

* Write_Hit: The Write Hit state is denoted by the AND result of the Write,

SearchComplete, arid Resolved-Tags signals. In other words, a write hit occurs when

the write function is requested, the search is complete, and a match was found.

PREFETCHSTATUS: This component produces a '1' on its output port,

Counting, only when a read hit has occurred. It remains a '1' for the number of clock cy-

cles required to read the PrefetchBlock_Size (defined in chippkg.vhd in Appendix E)

from the CAM array. Figure 35 shows the PREFETCHSTATUS component and

Appendix C contains its VHDL code.
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Figure 35. Schematic Diagram of the PREFETCHSTATUS Component

The component PREFETCHCOUNTER counts to the number of clock cycles

equal to the PrefetchBlock_Size. While counting, it produces a '1', which is put onto

Counting port. It starts this counting cycle after a search is complete, the data are found,

and a read is requested of the cache. The systems clock (CP) then clocks the counter

inside PREFETCH_COUNTER. When Prefetch_Block_Size is reached, Counting

becomes a '0' and the prefetch cycle is complete.

SEARCHSTATUS: This component provides enough delay to accomplish a

search and produces a '1' on its output port, SearchComplete, until it is reset to '0'. The

schematic diagram is shown in Figure 36 and its VHDL code is in Appendix C.

This is how SEARCH_STATUS works. The input into the D-type flip-flop is the

signal SearchDone. SearchDone is defined as:

SearchDone = (ResolvedSignalAddressChange)(Read + Write).

Thus, when the address portion of the Data_InBus changes and a Read or a Write is re-

quested of the MCC, a '1' is clocked into the D-type flip-flop. Notice that SearchDone

clocks itself into the D-type flip-flop.
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Figure 36. Schematic Diagram of the SEARCHSTATUS Component

The D-type flip-flop is reset with the OR result of three signals: ANDout,

ResetLDFF, and Counting. ANDout is defined as:

ANDout = (FunctionChange)(Read + Write)'.

This causes the D-type flip-flop to be reset only when the Read or Write signal transitions

from a '1' to a '0'. Thus, the D-type flip-flop is reset at the end of a Read or Write re-

quest.

The second way the D-type flip-flop can be reset is with the Reset_DFF port.

This port is connected to the MCC's Master-Reset port. Therefore, when MasterReset

is high, the D-type flip-flop is reset to '0'.
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The third way to reset the D-type flip-flop is with the Counting signal. When

Counting is '1', the MCC is in the prefetch cycle. If the prefetch cycle ends and

SearchComplete is still a '1', the prefetch cycle will start again. To avoid this situation,

the D-type flip-flop is reset to '0' upon activation of the prefetch cycle.

SELECT_WORD_SELECT: This component is used to select the register of the

WORD_SELECT component that will be connected to the WordSelectBus. It outputs

a '0' or '1', which is ported to the multiplexers that select the data to be put onto the

WordSelectBus (see WORDSELECT below). The schematic diagram is shown in

Figure 37 and the VHDL code is in Appendix C.

Read .
DataAvailMEM, ANDi DFF

ResolvedTags D Q ,.WSRSelect

SearchComplete ot

, OR1 Qnot

Function_.ChangRSE
Master _Reset R"ST

Figure 37. Schematic Diagram of the SELECTWORD_SELECT Component

When the output of this component, WSR.Select, is '0', the SHIFTREGISTER

outputs of WORDSELECT are connected through the multiplexers to the

WordSelect_Bus. SHIFTREGISTER shifts upward on the prefetch cycle during a read

hit to prefetch the desired block of data. It is also used to write to a particular word of the

CAM array on a write hit.

When WSRSelect is a '1', the TOS_SHIFTER's output is connected through the

multiplexers of WORDSELECT to the WordSelectBus. This register is used to keep

track of where the top of the stack is so data can be written into the MCC in the order
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they are used by the CPU. Therefore, on a read miss, the data are written into the CAM

array using TOSShifter output.

Thus, we have seen that the SELECTWORDSELECT selects which register's

outputs will go onto the WordSelectBus. The SELECT_WORDSELECT's output,

WSR.Select, is connected to the multiplexers of the WORDSELECT component. A D-

type flip-flop stores the value used as the WSRSelect. The only time WSRSelect is a

'1' is when a read miss has occurred and data from main memory will be written into the

CAM array. This occurs when Read, the complement of Resolved_Tags, and

SearchComplete are high. The one thing still missing is a signal from the main memory

telling the MCC that data are available on the data buses. This signal is

Data_AvailMEM. When this signal is asserted high, the D input of the D-type flip-flop

gets a 'I' from the output of the ANDI gate, which is also used as the clock input.

Therefore, when a read is requested, a read miss occurs, the search is complete, and the

data are available from main memory, the WSRSelect output becomes a '1'.

WSRSelect is a '0' at all other times. As the MCC is initialized, the

MasterReset port is asserted high. This signal is connected to the RESET port of the D-

type flip-flop and is therefore reset to '0'. Also, the FunctionChange port is connected

to the output of FUNCTION_CHANGEDETECTOR. Therefore, when this port is

asserted high, the D-type flip-flop is reset to '0'.

WORDSELECT: This component is the most complex of the controller compo-

nents. Its purpose is 1) to output data onto the WordSelectBus and 2) provide data to

the BitSelectBus. The schematic diagram is shown in Figure 38 and its VHDL code is

located in Appendix C.
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One thing to notice about the operation of this MCC is that in order to write to the

TOS in the Read Miss state, the TOS position must be held from the previous write op-

eration. Also, in the Read Hit state, a pointer is shifted upward to prefetch the data in the

order in which they were written in order to capture structural locality. These two states

are in direct conflict for the CAM pointer. The problem is solved by placing not one shift

register on the MCC but two. One is used to keep track of the TOS position for writing

into the cache during the Read Miss state. The other is used to locate the data during a

Read Hit and to shift upward to prefetch the contents of the CAM array. 2x 1 multiplexers

are used to select which shift register's output is used as the word select input for the

CAM array.

The TOSSHIFTER is used to store the top-of-stack position for the write opera-

tion during the Read Miss state. The SHIFT_REGISTER is used to update data during

the Write Hit state and also to shift upward during the prefetch cycle in the Read Hit

state. The outputs of these two shift registers are connected to a series of multiplexers,

with the InO ports of each multiplexer connected to the bits of the SHIFT_REGISTER

output and the InI ports connected to the bits of the TOSSHIFTER output. The Sel

ports of the multiplexers are connected to the WSR.Select port, which determines the

shift register that will be connected to the WordSelectBus. WSRSelect is connected

to the output of the SELECTWORDSELECT component.

The operation of WORDSELECT is fairly straightforward when TOSSHIFTER

is selected. This register is only selected during the Read Miss state. It is during this

state that the CAM array does not contain the data asked for by the CPU. When this

occurs, main memory will provide the CPU with the required data and the MCC will

intercept these data and write them into the CAM array. The ClearTOS port of the

TOSSHLFFER clears the register and initializes one of the flip-flops to '1' to act as the
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first entry of the top-of-stack. It is cleared and initialized only with the MCC's

Master_Reset. After initialization, the register is shifted on the clock pulse. The inputs

into CP and CPnot come from the component WORD_SELECT_CLOCK described later.

The operation of WORD_SELECT is much more complicated in the Write Hit

and Read Hit states when the SHIFT_REGISTER is selected. This register has a port

called SelO that determines whether it will load incoming data or shift upward. During

both Write Hit and Read Hit states the register will load data. During the Read Hit state,

the register first loads the data then enters the prefetch cycle when it is shifted upward to

read the desired prefetch block size. It is critical at the end of the prefetch cycle that the

BitSelect port not change to '1' until after SHIFTREGISTER is cleared and

Select_Word becomes all zeros. If it does change to '1', an inadvertent write will occur.

To avoid this, the Select-Word port's data are resolved, using wired-OR, into a single bit.

When this bit changes to a '0' (i.e., WordSelect_Bus is all zeros) and SRSelect is

stored as a '0' (i.e., Counting is a '0' and no prefetching is occurring) in D-type flip-flop

DFF1, SR.Select (currently '0') is clocked into DFF2. The output of DFF2 is NORed

with the output of DFF1 (SRSelect) and the result is ported to the BitSelectBus. The

result in this case is '1' since '0' NOR '0' is '1'. Therefore, since SelectWord is con-

nected to the WordSelecLBus (currently all zeros), the write operation is disabled.

SHIFT_REGISTER is cleared only when the prefetch cycle is not occurring, i.e.,

when SRSelect = '0' is stored in DFF1. The Clear2 port is connected to the signal

FunctionChange. So, as long as Counting is '0' (i.e., the Qnot output of DFFI is '1'),

the AND4 output is a '1' after either the Read or Write ports change. The output of

AND4 is connected through OR3 into the Clear port of SHIFTREGISTER, thus clearing

the register. SHIFTREGISTER is also cleared promptly after the prefetch cycle. When

SR_Select changes to a '0', it is clocked into DFF1. The output of DFF1 will then
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change causing the CD2 output to go to '1' for a period of time. Qnot of DFF1 is ANDed

with the output of CD2, and this signal is connected through OR3 to the clear port of

SHIFT_REGISTER.

We saw above how BitSelect becomes a '1' after the Read Hit state is com-

pleted. Now let's discuss how it becomes a '0' during that state. When the output of

PREFETCHSTATUS, Counting, becomes a '1', we want BiLSelect to become a '0' to

allow for the read operation. As discussed above, Counting is connected to the SRSelect

port of WORDSELECT. When Counting changes to '1', it is clocked into DFF1 and the

output of DFFl is connected to NOR2. Thus, NOR2 produces a '0' and is output onto the

BitSelect port, which in turn forces the Bit_Select_Bus to become '0's.

Let's summarize this complicated circuit. The reader may refer to the VHDL

code of THECONTROLLER in Appendix D for the port connections of

WORDSELECT. The circuit is initialized when Master_Reset is asserted high. The

Clear port of TOSSHIFTER is connected to MasterReset through Clear_TOS port.

Therefore, when MasterReset goes high, TOS-SHIFTER is cleared and one flip-flop is

set to '1' to act as the TOS pointer. At the same time, SHIFT_REGISTER is cleared to

all zeros. Clearing this register is a bit more complex than initializing TOSSHIFTER.

The first thing that must be done is to reset DFFl. This is accomplished with

MasterReset. After resetting, Qnot of DFF1 is '1' and is ANDed with ORI output. One

of the inputs to ORI is MasterReset so the AND result is '1'. This signal is then con-

nected to OR3 and the OR3 output is connected to the Clear port of SHIFTREGISTER.

Thus, SHIFTREGISTER is cleared. The other way SHIFTREGISTER is cleared is

when the signal, Function-Change, is asserted high when the prefetch cycle is not occur-

ring. The signal, Function-Change, is connected to the Clear2 port of WORDSELECT.

If it is 'I', then the output of ORI is '1'. This signal is ANDed with the Qnot output of
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DFFl. Qnot is a'1' as long as the MCC is not in the prefetch cycle. Therefore, the AND

result is a '1', which goes through OR3 to clear SHIFTREGISTER.

If a read miss occurs, the MCC will write the data into the CAM array when it is

available from main memory. In this case, the WSRSelect port becomes a '1' selecting

the TOSSHIFTER and shifting it upward using the CP and CPnot inputs. The

BitSelect port is already a '1' from initialization or from the previous state change.

Thus, the CAM array is set up for a write and the write is accomplished.

If a write hit occurs, the ResolvedSignalTag showing the word that was found

is loaded into SHIFTREGISTER. WSRSelect is a '0', which selects the

SHIFTREGISTER data and outputs the data onto the Word_SelectBus. Thus, the

CAM array is again setup for a write operation.

If a read hit occurs, SRSelect becomes a '1' and is stored into DFF1. The Q out-

put of DFF1 then selects the shift operation of the SHIFT_REGISTER and on each clock

pulse it is shifted upward until the prefetch block size is reached. Q is also input into

NOR2 whose output becomes a '0', which goes onto the BitSelectBus. Thus, data are

read in a FIFO manner from the CAM array on each clock pulse.

WORDSELECTCLOCK. The purpose of this component is to act as the clock

inputs for the registers in the WORDSELECT component. The schematic diagram is

shown in Figure 39 and its VHDL code is in Appendix C.

This component has three output ports. One of these outputs,

WordSel_Reg_.Clock, is connected to the SHIFTREGISTER of the WORDSELECT

component. It clocks this register during the prefetch cycle to load incoming data into the

register. The other two output ports, TOS-Clock and TOSClockNot, are connected to

the TOSSHIFIER of WORDSELECT. These two signals are the clock inputs of
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Figure 39. Schematic Diagram of the WORDSELECTCLOCK Component

TOSSHIFTER to shift the register prior to the write operation during the Read Miss

state.

The output Word_Sel_RegClock is determined by the following boolean equa-

tion:

WordSelRegClock = (SearchComplete)(ResolvedTags)(Write) + (CP)(Counting).

This means that when a search is complete, a match was found in the CAM array, and a

write function was requested, or when the systems clock pulses during a prefetch cycle

(i.e., Counting = '1'), Word_Sel_RegClock is asserted.

The output TOSClock needs to have a rising and falling edge to act as the clock

input for the TOS_SHIFrER. Therefore, a change detector was placed on the compo-

nent. When the signal Read_Miss changes from '0' to '1' or vice versa, the change

detector outputs a '1' for a short period of time. Read_Miss is determined as follows:

ReadMiss = (Read)(SearchComplete)(RTnot).
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Thus, when a read is requested, the search is complete, and the search was unsuccessful,

Read_Miss becomes a '1'. This signal is ANDed with the output of the change detector

to pulse TOS-Clock. Therefore, TOSClock pulses only when ReadMiss transitions to

' l'. TOSClockNot is the complement of TOSClock. The buffer, BUFI, is needed to

ensure TOSClock and TOSClockNot transition at the same time.

Putting it All Together

With the four states of the MCC in mind, the logic and control lines were drawn

schematically to represent the operations the MCC was to perform. Therefore, a struc-

tural gate level design was integrated onto the chip model to control the CAM array.

Table 7 shows the necessary inputs into the CAM array to accomplish each operation for

the various states. All of the components that make up the MCC were discussed in some

detail above. Refer to those sections for further clarification of the signal and component

names.

Table 7

CAM Array Inputs for the Main CAM Cache States

BitSelectBus Word_SelectBus

Read
Search 1 0

Hit
Read 0 Resolved_SignalTag

Miss
Write 1 TOS-Output

Write
Search 1 0

Hit
Write 1 ResolvedSignal_Tag

Miss N/A N/A
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As stated before, each function begins with the search operation. This operation

requires that the Bit_SelectBus be asserted high and the WordSelect_Bus be asserted

low. If, during a read, the search is successful, the MCC goes into the Read Hit state and

the read operation is performed. A read requires the BitSelectBus to be asserted low

and the word being read must have a '1' asserted on its WordSelectBus lines.

Alternatively, if the search is unsuccessful, the Read Miss state is entered. This state re-

quires a write operation in which the Bit_SelectBus must be asserted high and the

WordSelectLBus gets the data from the TOS-SHIFTER of the WORDSELECT com-

ponent. The TOS_SHIFTER holds the next stack position for a write.

If the search is successful during a write function, then the Write Hit state is en-

tered and a write operation is performed. During a write operation, the Bit_SelectBus

must be asserted high. The WordSelectBus receives the ResolvedSignalTag data

indicating the word that was found. If the search were unsuccessful, the Write Miss state

is entered and no further action is required.

The operation of the entire MCC will now be discussed. Since the Read and

Write functions require a search, the search will first be explained. The remainder of this

section describes the functionality of the MCC in each of the four states.

The Search. According to Table 7, the BitSelect_Bus must be asserted high and

the Word_Select_Bus must be asserted low to accomplish the search. The

BitSelect_Bus gets its data directly from the BitSelect port of the controller. This port

is '1' as long as the MCC is not prefetching in the Read Hit state. The WordSelectBus

gets its data indirectly from the SHIFT_REGISTER (see Figure 38). This register uses

the D-type flip-flop with Reset. As long as the MCC is not in the prefetch mode, a

change either in the Read or Write port will cause the SHIFT_REGISTER to reset. When

the Read or Write ports change, the FUNCTIONCHANGE_DETECTOR detects the
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transition and clears the register to all zeros. Note that after each function is complete

(either the read or write function), the SHIFT_REGISTER is reset. Thus, when new data

are to be operated on during a read or write function, WordSelector will have been reset

to zeros and will be ready for another search operation. Also note that

SHIFT_REGISTER is reset upon the initialization of the MCC by the MasterReset

signal

As mentioned above, the Word_Select_Bus gets its data indirectly from

SHIFT_REGISTER during a search operation; 2 x 1 multiplexers are located between the

two (see Figure 38). The output data of SHIFT_REGISTER are fed into the InO ports of

the 2x1 multiplexers. Consequently, the multiplexers must have a '0' value at the Sel

ports before the data are output onto the WordSelectBus. This is done by the

SELECT_WORD_SELECT component shown in Figure 37 which monitors the change

in the Read port of the MCC. When the Read signal transitions from '1' to '0',

FUNCTION_CHANGE_DETECTOR outputs a '1' onto signal FunctionChange, which

is connected to the Reset port of an edge-triggered D-type flip-flop in

SELECT_WORD_SELECT. This resets the flip-flop to '0'. Its output, WSRSelect, is

connected to the Sel ports of the multiplexers in WORDSELECT, thereby selecting the

data from SHIFT_REGISTER. Upon initialization, the MasterReset signal also resets

this D-type flip-flop. Consequently, the MCC is set up for a search operation after

initialization.

The Read lit. To do a read, the Read port of the MCC must indicate that a read

function is requested and the address to read must be available. If the search operation, as

explained above, is successful, then the MCC enters the Read Hit state and begins its

prefetching cycle. Only one bit of the ResolvedSignalTag vector will be '1' on a

search hit. This is because an address will never appear more than once in the CAM ar-
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ray since during a write function, a search is performed first, and if successful, the new

data are written over the old.

The ResolvedSignalTag lines are connected to the InVector port of

SHIFT_REGISTER through the TagsIn port of WORD_SELECT (see Figures 32 and

38). These data are stored into the SHIFTREGISTER by clocking them in with the CP

(the MCC's clock port) ANDed with the Counting signal (see the

WORDSELECT_CLOCK component in Figure 39). They are ANDed to ensure the

SHIFTREGISTER is clocked only when the MCC is prefetching. The

SHIFTREGISTER's outputs are selected by the multiplexers and the data are output into

the CAM array.

After SHIFT_REGISTER is loaded, the SelO port of SHIFTREGISTER is

changed to a '1'. This is accomplished with the Counting signal. When it changes to a

'1', it clocks itself into DFF1, shown in Figure 38. This signal is connected to the SelO

port of SHIFT_REGISTER. A '1' on this port switches its functionality from loading to

shifting. Since its Clockin port is connected to the CP port of the MCC and ANDed with

the Counting signal, the register will shift upward the number of times defined in the

prefetch block size, allowing data from the CAM array to be read from the MCC in the

order in which they were written.

Another requirement for the read operation is that the Bit_SelectBus be all 'O's.

This is done by using the output of DFF1 of WORD_SELECT (Figure 38). When it

changes to a '1', it clocks itself into DFF2. The output of DFF2 is then NORed with the

output of DFFI, which is essentially the Counting signal with a delay. The Counting sig-

nal comes from the PREFETCHCOUNTER that is stimulated by the Resolved_Tags,

Read, and SearchComplete (a timing signal signifying the completion of a search) sig-

nals ANDed together. The result of the AND signifies a read hit has occurred. The
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PREFETCHCOUNTER produces a '1' and asserts the signal Counting high as long as

the binary counter inside the PREFETCHCOUNTER does not equal the predefined

prefetch block size. The binary counter counts up by one on each clock pulse. The

counter's output is compared with the prefetch block size. When they are equal, the

PREFETCHCOUNTER produces a '0' on the Counting signal, meaning the prefetch

cycle is complete.

While Counting is '1', the MCC's clock is able to clock the SHIFT_REGISTER.

On each clock pulse, the register is shifted up by one and the contents of that CAM word

are read. Thus, the predefined number of words is prefetched, each word being read on

the clock pulse.

The Read Miss. If a miss occurs on a read, then the address and its corresponding

data need to be written into the CAM. The CAM is written to in a FIFO manner.

Therefore, the TOSSHIFTER will be used to select the word to be written. The only

purpose of this shift register is to keep track of the top of the stack. In the MCC, this reg-

ister is shifted just before the write to the CAM. This is done by merely clocking the

register. The clock input is the AND result of the Read, SearchComplete, and

ResolvedTags' signals (see Figure 39). Those signals ANDed together signify a read

miss. Since a complete clock cycle ('0' to '1', then '1' to '0') is needed to shift the

TOSSHIFTER, a CHANGEDETECTOR was used to detect the transition of the AND

result. The CHANGE_DETECTOR produces a '1' for a short period of time then returns

to '0', therefore completing its own clock cycle.

The Sel port of the multiplexers in the WORDSELECT component (Figure 38)

is determined by the SELECTWORDSELECT component. The AND result of the

Read, Search-Complete, Resolved_Tags', and DataAvailMEM signals is connected to

the input of the D-type flip-flop of the SELECTWORD_SELECT and (after going
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through an OR gate) is also connected to the flip-flop's clock port. Thus, the AND result

clocks itself into the D-type flip-flop. The output of the flip-flop is connected to the Sel

port of the multiplexers, thus selecting the TOS_SHIFTER. The Bit_Select_Bus is al-

ready set to 'l's, so the write occurs as soon as the data are present on the AddressIn and

Data-In ports.

After this read function is complete, the Read signal is asserted low and the

FUNCTION_CHANGE_DETECTOR detects this change and outputs a '1'. This '1'

then goes through the Clear2 port of WORDSELECT and resets the

SHIFTREGISTER. This sets the MCC up for the next search operation. Now, let's take

a look at the write function.

The Write Hit. The write function, as mentioned before, also starts with the search

operation. In this case, the Write signal is asserted high and the address and data are

available on the AddressIn and DataIn ports, respectively.

The search is performed and, if successful, the Write Hit state is entered. In this

state, the word that matched the input address will have its data replaced by the new data.

The word is selected by the ResolvedSignalTag vector (this vector signifies which

word is matched) being loaded into the SHIFTREGISTER of WORDSELECT. The

ResolvedSignalTag vector is connected to the InVector port of this register (see

Figure 38). The AND result of the Write, Search_Complete, and Resolved_Tags signals

is used to clock the inputs into the SHIFTREGISTER (see the

WORDSELECTCLOCK in Figure 39). This AND result signifies a search hit on a

write function. The output of SHIFT_REGISTER is input into the CAM array on the

WordSelectBus through the multiplexers. Since the Bit_SelectBus is already set up to

do a write (i.e., the BitSelect_Bus lines are all 'I's), the write operation is performed on

the selected word and the old data are replaced with the new.
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The Write Miss. If, on a write function, the search is unsuccessful, the Write Miss

state is entered. In this state, the MCC simply asserts the WriteMiss port high for a short

period of time and then waits until called upon again.

Sunmary

This chapter detailed the design of the MCC from its functionality through the fi-

nal integration of the CAM array and the controller. The VHDL model of the chip was

designed and built from the bottom up. The CAM cell design was taken from DeCegama

(3:87) and implemented in VHDL. The CAM cell was then used to build the CAM array,

and the logic associated with the CAM array was integrated onto the chip model. Basic

components such as flip-flops and shift registers were needed in order to put the rest of

the model together. Once these basic components were built and tested, larger compo-

nents were assembled. These larger components were pieced together to form the con-

troller and the controller was integrated onto the chip model. A VHDL description of the

main CAM cache used to exploit structural locality was the final product.
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IV. Testing and Analysis

Overview

In Chapter 3, the inner workings of the MCC were discussed in detail. Let's now

take an overview at the MCC and analyze its behavior. This chapter contains a look at

the behavior of the MCC and the testing of the chip model to verify its functionality. The

context of how the MCC fits into a memory subsystem will be discussed. The per-

formance of the MCC as to the timing of the operations in each of the four states is de-

scribed. A detailed analysis is then presented including critical-path calculations as well

as a critical view on how to improve the MCC's performance and space utilization.

Finally, some issues that need to be considered during the fabrication of the chip conclude

the chapter.

Behavior of the MCC

As described in Chapter 3, the MCC takes on one of four distinct states: the Read

Hit, Read Miss, Write Hit, and Write Miss states. Depending on the function requested

(read or write) and the data available, the MCC will enter one of these states. This is

shown in the VHDL behavioral description of the MCC located in Appendix D. Figure

40 shows a diagram of the states and how the states are entered.

Read Hit Read Miss Write Hit Write Miss

Figure 40. Sate Diagram of Main CAM Cache
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Figure 41 shows the flowchart of how the chip model works. Regardless of

whether a read or a write function is requested of the MCC, a search is performed first.

After the search is performed, one of the four states shown in Figure 40 will be entered.

When the CPU requests a read and provides the address, either the Read Hit or

Read Miss state will be entered. If the address is found in the CAM array, the Read Hit

state is entered. This is the only state that works synchronously. When a read hit occurs,

the MCC begins to prefetch memory locations in the order in which they were written

into the cache. On each clock pulse, the SHIF REGISTER is shifted upward resulting

in the next array position in the CAM to be read. As each new address and associated

data become available on the MCC's output ports, a signal called DataOutAvailable is

asserted high, signifying that the data are available.

If the address is not present in the CAM array, the MCC asserts high the

ReadMiss port signifying that a read miss has occurred. The MCC then goes into a wait

state until main memory has placed the requested data on the data bus. The MCC must

be notified, through the DataAvail_MEM port, that the data are available on the bus

from main memory. The data are then written onto the TOS of the CAM array.

When the CPU requests a write, the address and data are also provided. If the ad-

dress is present in the CAM array, the Write Hit state is entered. During this state, the

Write-Hit port is asserted high and its current data are replaced with the new data. If the

address in not stored in the MCC, the Write Miss state is entered and the MCC simply as-

serts its WriteMiss port signifying that a write miss occurred and waits for the next

function.

Testing

Each component of the VHDL model was thoroughly tested to ensure that its

functionality corresponded to the expected behavior. Throughout the initial testing of
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each component and the MCC itself, the word length was set at 6 bits, composed of 3 bits

for the address and 3 bits for the data. The CAM depth was also initialized at 3. This

was sufficiently large enough to ensure the model was working correctly, but small

enough to allow the simulations to run very fast.

Appendix F contains the code used to exercise the MCC model as well as a simu-

lation run including inputs and outputs. The appendix has the file used to stimulate the

MCC, the test bench, and the configuration file. The simulation run contains a simulation

of each of the four states. This data is part of the data used to analyze the performance

and find the critical paths through the MCC.

A small memory system is shown in Figure 42 and the VHDL code is in

Appendix G. This system consists of the MCC connected to a CPU and main memory

(MEM) by buses and control lines. The only purpose of the CPU model is to produce ad-

dresses and request the memories to read or write the address. The sole purpose of MEM

is to produce data corresponding to the address from the CPU and to produce data during

the Read Miss state of the MCC. This system was built around the MCC to test the MCC

only. It is not how an actual memory system works. The word length used in these tests

was 64 bits; 32 for the address portion and 32 for the data portion. The CAM depth was

set at 10 words during one test and 15 during another.

Figure 42 shows how the simple memory system is configured. The CPU gener-

ates an address and a memory request every 100 ns. If the request is a write, MEM auto-

matically produces data onto the data bus (DataSig in the figure and in the code). This

makes it appear to the MCC that the CPU produced both the address and the data.

Let's look at how the system works. When the CPU issues a read request, it also

places an address on the address bus (Address-Sig). The MCC then searches for the ad-

dress and if a hit occurs, the Read Hit state is entered and the prefetch cycle is
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Figure 42. Simple Memory System Used to Test MCC

accomplished. During the prefetch cycle, the MCC's ValidOut port is asserted high

notifying the CPU that no more requests should be generated. This essentially blocks the

CPU. If the address is not in the MCC, then the Read Miss state is entered. The

Read-Miss port goes high signaling the MEM that it needs to supply data to the data bus.

After MEMDelay, the MEM supplies the data and asserts the DataAvail signal. The

MCC then takes the data off the bus and writes it into the CAM array.

When the CPU requests a write, the signal Write-Sig notifies the MEM to supply

data to the data port. The MCC then searches its CAM array for the address. If found,
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the Write Hit state is entered and the write is performed. Otherwise, the Write Miss state

is entered and the system waits for the next memory request.

Context

The primary purpose of the MCC is to prefetch memory references in the order

the CPU previously used them so structural locality can be captured by the SLC chip.

Figure 43 shows the context of the MCC in the memory hierarchy and the data flow be-

tween the CPU, the SLC, the MCC, and main memory.

MCC Main Memory
CPU SLC

Figure 43. Context of the MCC in the Memory Hierarchy

During a read cycle, the CPU will send a signal signifying that a read is requested,

as well as the address of the data to be read. The SLC will accept these data and search

its memory for the address. If the address is stored in the SLC, then it, the fastest

memory of the hierarchy, will provide the requested data to the CPU. This is the ideal
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case and the one that this memory hierarchy is designed for. Since the SLC has captured

structural locality, the chances are high that the next reference used by the CPU will also

be stored in the SLC.

The MCC also accepts the address from the CPU and does a search in its memory.

If the data are found, the prefetch cycle begins and the data are read out of the CAM array

in a FIFO manner, one data element per clock cycle. The SLC then stores the data into its

memory. One thing to consider is the possibility of a read hit on both the SLC and the

MCC. If this occurs, the SLC will be reading data from its memory and providing it to

the CPU. Concurrently, the MCC will be in its prefetch mode supplying the SLC with a

block of memory references. More research will need to be done to determine what to do

if this situation occurs.

One possible solution is simply to ignore the prefetched memory references. This

goes along with the assumption that if the SLC contains one reference, then the following

references are already contained as structural locality in the SLC. But that will not al-

ways be the case. If these references are ignored, then the MCC may be prefetching

while another CPU request is generated. If this happens, the MCC may miss a chance to

prefetch useful data to the SLC. It may also miss the opportunity to write data to the

TOS, thus potentially destroying structural locality. Data may also need to be written into

the MCC's CAM array during the prefetch cycle, thus creating cache incoherency in the

memory hierarchy. For these reasons, this scheme is not a feasible solution.

Another alternative would be to block the CPU so no other operation can take

place on the data buses, except between the MCC and SLC where the prefetching is oc-

curring. If this is done, the CPU will be idle for the number of clock cycles needed to

prefetch the entire block of data to the SLC.
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The most feasible way to handle this potential problem is to shut down the MCC's

prefetch cycle. This can be done by a signal sent from the SLC to the MCC signifying

that the SLC contains the data needed by the CPU. This signal can be ORed with the

Master_Reset signal in the MCC to selectively initialize desired components. One com-

ponent that must not be initialized in this case is the TOSSHIFTER in the

WORDSELECT component of THE_CONTROLLER. This register needs to retain the

TOS pointer so memory references can be written into the CAM array in the same order

that the CPU uses them. Also, it is important that the contents of the CAM array not be

altered.

If the SLC and the MCC do not contain the necessary data, the CPU gets the data

from main memory. In this case, the SLC and the MCC wait for main memory to provide

the data to the data bus. Main memory will send a signal signifying when the data are

available. After receiving this signal, the SLC and the MCC take the data from the data

bus and write them into their respective CAM arrays.

The memory subsystem, as dictated by the current design of the MCC, uses write-

through to ensure cache coherency. Therefore, all levels of the memory hierarchy are

updated on a write-request from the CPU. The SLC will first search its contents for the

address to write to. If the address is present, then the data are written into the SLC's

memory. Otherwise, the SLC remains idle. The MCC operates the same as the SLC in

this case. The main memory performs the conventional write operation.

Performance

This section describes the overall timing for the MCC. The time needed to initial-

ize the MCC and the timing for each of the four states is described. The fastest clock

speed allowable for the MCC is 34 ns (29.4 Mhz). This is dictated by the Read Hit state

when the MCC uses the clock to prefetch data from the CAM array. Specific time-delays

75



in the VHDL code were used in the simulation of the MCC and the justification for their

use will be explained. The critical paths through the MCC are presented in the next sec-

tion entitled Analysis.

Time for Initializing. Figure 44 shows the timing diagram for initializing the

MCC. The signal MasterReset is used to reset the entire chip model. This signal can be

'1' for as little as 38 ns and still initialize the entire MCC. After initialization is

complete, Master_Reset must return to '0' before the MCC can perform any operations.

WriteMiss

WriteHit

Read_Miss

DataOut_Available

MasterReset 1-4 38 ns

3ns

0 '0 3'0o d
Time Scale (ns)

Figure 44. MCC Initialization Timing Diagram

Timing for the Read Hit. Figure 45 shows the timing of the MCC during an entire

read hit cycle. Figure 46 is a closer look revealing more detail. Notice that the DataOut

signal transitions at regular intervals. This is due to the synchronous behavior of the

MCC during this state. The SHIFTREGISTER in the WORDSELECT component of

THE_CONTROLLER is shifted upward on the clock pulse, thus allowing the CAM array

to perform the read operation.

76



CP

Data_Out

ValidOut

Read

AddressIn

1200 1400 16d00 1800 200
Time_Scale (ns)

Figure 45. Read Hit Timing Diagram

CP

DataOut 57

Valid-Out

Address_In I

50 10 150 200
Time_Scale (ns)

Figure 46. Read Hit Timing Diagram - A Closer View

The data to perform the search for the read function should be on the AddressIn

ports no longer than 2 ns before the Read port is asserted high. Otherwise, the MCC will

not enter the prefetching cycle. This restriction can be relaxed by adding an
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Address_Enable port to the MCC. This port would replace the functionality of the

CHANGE_DETECTORs in the SEARCHSTATUS component of the CONTROLLER,

allowing the address to be on the bus at any time before or after the Read port is asserted

high. It takes 57 ns after the Addressjn ports are asserted with the address for the first

output to be placed on the DataOut ports. Subsequent data are output onto the DataOut

ports at intervals equal to the clock period. It takes 28 ns after each clock pulse for the

data to be placed on the DataOut ports.

The Read port needs to be high for only 26 ns. After that, the CPU is free to re-

quest another operation, although the MCC will not respond because it is prefetching

data. This is demonstrated by Figures 45 and 46. From 150 to 200 ns, the Read port is

high, simulating a read request by the CPU. The MCC does not respond to this new re-

quest because it is in the prefetching cycle.

The Valid_Out signal is asserted high 3 ns after the first data word is available on

the Data_Out ports. For each read, the DataAvailable signal goes high 7 ns after the

data element is available, then transitions to low 5 ns later. After the last valid data ele-

ment is prefetched and the DataAvailable signal goes low, another read is performed on

the CAM array and the next word of the array is placed on the DataOut ports. This time

the signal DataAvailable does not go high. Therefore, the data should not be read as

valid.

At the end of the prefetch cycle, the DataOut ports become all 'O's and 3 ns later

the ValidOut signal goes low. This signifies that any data on the DataOut ports is not

valid.

The total time required for the Read Hit state depends upon when the clock pulse

enters the MCC. The CP signal is ANDed with the Counting signal, which in turn clocks

the SHIFT_: ,EGISTER. Thus, the time required for this state can vary by as much as
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one-half of a clock cycle. Using a clock speed of 34 ns, the range of time would be 917

ns to 934 ns while prefetching 25 memory references.

Timing for the Read Miss. The timing diagram for the signals involved in a Read

Miss state is shown in Figure 47. After the ReadMiss signal is asserted high, the MCC

must wait for the DataAvail_MEM signal from main memory to be asserted high before

writing the data into the CAM array.

ReadMiss 19 ns

I IslI III
D ata A vailL M E M : .... ..........

DataIn 3 " 31ns

3 ns 5Sns
Read 8 ns

Addressin 1

10 20 30 40 50
Time Scale (ns)

Figure 47. Read Miss Timing Diagram

The Read_Miss port of the MCC is asserted high 19 ns after the Read port goes

high, indicating that the requested data are not stored on the MCC. So that the CPU is

slowed as little as possible, the MCC allows the CPU to take the Read signal low as soon

as 8 ns after the DataAvailMEM port goes high. The ReadMiss port will go low 3 ns

after the Read port goes low.

When main memory asserts the DataAvailMEM port high along with supplying

the data onto the data bus, the MCC performs the write function and adds these data to
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the TOS of the CAM array. The DataAvailMEM port can go high 18 ns after the read

is requested. Even though the Read-Miss port is asserted high 19 ns after the read is re-

quested, the MCC is set up to do the write into the CAM array after only 18 ns. This, of

course, is not realistic since the memory would be slower than the MCC. The point is,

the MCC is set up to do a write into the CAM array with plenty of time to spare.

Data_AvailMEM must be high for at least 8 ns to allow the write to occur. It should not

be high any longer than it takes the CPU to request another operation of the MCC. The

data should be available for 31 ns after DataAvail_MEM goes high.

A 5 ns time period must exist after a Read Miss state and the next requested op-

eration. Therefore, the Read Miss state takes a total of 54 ns to complete.

Timing for the Write Hit. Figure 48 displays the timing diagram for the signals

involved during the Write Hit state. Here, the CPU supplies the address and data to be

written into memory and asserts the Write port high. It takes 31 ns for the Write port

transition to reset the SHIFT_REGISTER in the WORDSELECT component of

THECONTROLLER. Therefore, this state requires that the CPU take the Write port

low at least 28 ns before the address and data are taken off the data buses. The 3 ns dif-

ference is accounted for by the AND gates inside each CAM cell that the data must pass

through. If the SHIFT_REGISTER is not reset before the address and data are changed,

invalid address and data will be written into the CAM array. The Write port can go low

as little as 20 ns after transitioning to high.

When a write hit occurs on the MCC, it takes 19 ns for the Write-Hit port to

change to '1'. Only 3 ns after the Write port is asserted low will the Write-Hit port tran-

sition back to '0'. The Write Miss state requires 48 ns before the next operation can take

place.
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Figure 48. Write Hit Timing Diagram

Timing for the Write Miss. The timing for the participating signals of the Write

Miss state is shown in Figure 49. The CPU supplies the same type of data as in the Write

Hit state above; namely the address, the data, and the Write signal. The Write port must

be high and the address and data must be available for at least 20 ns after the write is re-

quested. When the search does not find the address in the CAM array, the WriteMiss

port is asserted high after 19 ns. When the Write port is changed back to '0', it takes only

3 ns for the WriteMiss port to return to '0'. The MCC then needs 24 ns after the Write

port goes low to reset itself before another operation can begin. The Write Miss state re-

quires 44 ns to complete.

For both the Write Hit and the Write Miss states, the entire computer system must

wait for main memory to write the data into main memory before any other operation can

occur. This is a drawback of using a write-through policy with no buffering.
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Figure 49. Write Miss Timing Diagram

Timing Justification. The time delays used by the MCC are shown in Table 8.

They are defined in chip pkg.vhd (see Appendix E) and were used as generics through-

out the entire model. These generic time delays were supplied by Mehalic (14) who says

they are figures derived through SPICE simulations and the actual testing of hardware at

the Air Force Institute of Technology.

Table 8

Generic Time Delays Used in the MCC

Circuit Time Delay (ns)

AND Gate 3
Buffer 1
D-type flip-flop 6
Inverter 1
Multiplexer 2
NAND Gate 2
NOR Gate 3
OR Gate 4
XNOR Gate 4
XOR Gate 4
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These delay values were used for the rise and fall inertial delays for each compo-

nent. This will not necessarily be the case for a SPICE model nor for the actual hardware

implementation of this circuit. For all of the components, the rise inertial delay will

probably be different than its fall inertial delay. The actual delays will also more than

likely have decimal values. Due to these considerations, the timing of the fabricated chip

will be different than the simulation.

Analysis

We now know the time it takes for each of the states to complete its cycle. Let's

now investigate why it takes each state the amount of time it does. The critical paths

through the chip model determine this time and can be useful for anyone desiring to speed

up the MCC.

Read Hit Analysis. The Read Hit is the longest state simply because it prefetches

a block of data when activated. The state can be broken into three separate phases. The

first phase is the one in which the MCC is setting up for the prefetch cycle. The second

phase is the prefetch cycle when the data words are being read on each clock cycle. The

third and final phase is when the PREFETCHCOUNTER has completed its counting to

the pre-specified prefetch block size and when the MCC is resetting itself for the next op-

eration.

Figure 50 shows the signals of the critical path during the first phase of a Read Hit

cycle. This phase, during any read hit, takes 57 ns finish. It is in this phase that the first

data word is read from the CAM array.
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Figure 50. Critical Path Timing Diagram for Read Hit in First Phase

The times used in Figure 50 are defined as follows.

tsc: This is the time it takes the SearchComplete signal to go high after

the Address is available to the MCC. The path for this time is through the

SEARCHSTATUS component of THECONTROLLER.

tc: This is the time it takes the PREFETCH_STATUS component to out-

put a '1' onto the Counting-Signal after the SearchComplete signal goes

high.

tws: This is the time it takes the WORD_SELECT component to load the

SHIFTREGISTER and output the correct data onto the WordSelectBus

so a read can be accomplished. Counting-Signal triggers this action.

tD: This is the time it takes after the WordSelect_Bus gets its data until

the output data from the CAM array is on the MCC's DataOut ports.

84



The values of these times are given in Table 9. The total time, therefore, for the

first phase of the Read Hit is given by

tRHI = tSC + tC + tWS + tD

which calculates to 57 ns.

Table 9

Signal Times for the First Phase of the Read Hit State

Time (ns)

tsc 16
tc 16
tws 16
tD 9

The second phase of the Read Hit state consists of the data being read on each

clock pulse. Figure 51 shows the critical path through the MCC during this phase. The

figure shows only one of the many data words being read. The data are put onto the

DataOut ports at each clock interval.

I I

CP

WordSelectorCP

I I

WordSelect!

Data Out

Figure 51. Critical Path Timing Diagram for Read Hit in Second Phase
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The times used in Figure 51 are defined as follows.

tcp: This is the time it takes for the clock pulse to traverse the

WORDSELECTCLOCK component to be input into the

WORDSELECT component.

tws: This is the time it takes for the WordSelect vector to put its data

onto the WordSelectBus after the WordSelector_CP signal is input into

the WORD_SELECT component.

tD: This is the time it takes for the data to be put onto the Data-Out ports

of the MCC after the WordSelectBus has received the data specifying

the word to perform the read on.

tn.,: This is the time it takes, after the data are on the DataOut ports, for

the clock to go high again to initiate another data word to be read.

The values of these times are given in Table 10. The total time, therefore, for the

second phase of the Read Hit is given by

tRH2 = tCP + tWS + tD + tnew

which calculates to 34 ns.

Table 10

Signal Times for the Second Phase of the Read Hit State

Time (ns)

tcp 7
tws 12
tD 9
tnew 6
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In the third and final phase of the Read Hit state, the MCC outputs all zeros on the

Data.Out ports and produces a '0' on the Valid_Out port. This signifies that the Read Hit

state is finished and any data on the Data.Out ports should not be considered valid.

Figure 52 shows the critical path of this phase.

CountingSignal
a I

WordSelect

DataOut

ValidOut ,
a a

al tws I0d tD)
: tv,

Figure 52. Critical Path Timing Diagram for Read Hit in Third Phase

The times used in Figure 52 are defined as follows.

tws: This is the time it takes for the WORDSELECT component to use

the Counting-Signal to reset the SHIFTREGISTER and output all zeros

onto the WordSelectBus.

tD: This is the time it takes for the CAM array to output non-valid data

and for this data to be put onto the DataOut ports of the MCC.

tv: This is the time it takes the MCC to output a '0' on the ValidOut port

after Data_Out becomes all zeros at the end of this state.
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The values of these times are given in Table 11. The total time, therefore, for the

third phase of the Read Hit is given by

tRH3 = tWS + tD + tV

which calculates to 44 ns.

Table 11

Signal Times for the Third Phase of the Read Hit State

Time (ns)

tws 32
tD 9
tv 3

An entire Read Hit cycle can be as short as 917 ns and as long as 934 ns. During

the first phase of this state, the first clock pulse occurs, so in order to calculate the total

time of the state we need to multiply tRH2 by 24 (assuming a prefetch block size of 25).

The total time, therefore, for the Read Hit state, assuming the clock pulses at the same

time the Counting-Signal goes high, is given by

tTr = tRHI + 2 4 tRH2 + tRH3.

This equation calculates the total time for a Read Hit cycle to be 917 ns. But suppose the

clock does not pulse at the same time Counting-Signal goes high. In this case, half a

clock cycle could pass before WordSelectorCP is effected. Therefore, 17 ns (assuming

a clock speed of 34 ns) must be added to trT, making the prefetch cycle last 934 ns.

Read Miss Analysis. The Read Miss state takes a total of 54 ns to complete before

any other operation can be performed on the MCC. This is the minimum time required
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for this state. Figure 53 shows the signals that make up the critical path for this state.

The port DataAvailMEM is dependent on the speed of main memory. Figure 53 shows

the earliest time DataAvailMEM can go high. The MCC will wait as long as necessary

for this signal and for the data from main memory before writing into the CAM array.

III

AddressIn

SearchComplete

0 I

DataAvailMEM
* I

WSRSel

Word_Select

II
Read,,,

,---_O'-t- t wSR0 fT ,
tDAM  tsw tsw t Stab

Figure 53. Critical Path Timing Diagram for Read Miss

The signal WSR_Sel is the signal that is input into the multiplexers of the

WORDSELECT component and selects which shift register's outputs will be put onto

the Word_Select_Bus. Word_Select is the array of signals that are output from the multi-

plexers and directly connected to the WordSelectBus. The other signals have been dis-

cussed earlier. The times used in Figure 53 are described as follows:
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tsc: This is the time it takes the SearchComplete signal to go high after

the address is available to the MCC. The path for this time is through the

SEARCHSTATUS component of THECONTROLLER.

tDAM: This is the time between the Search-Complete signal going high

and the earliest time the DataAvailMEM can be applied.

twsRI: This is the time it takes the WSRSel signal to go high after the

DataAvailMEM signal goes high. The path for this time is through the

SELECTWORDSELECT component.

tsw: This is the time it takes for the signals to pass through the multiplex-

ers of the WORDSELECT component of THECONTROLLER.

tWSR0: This is the time between the WordSelect signals changing and the

WSR-Sel signal being reset to '0'. WSR_Sel is reset by the Read signal

going through the FUNCTIONCHANGEDETECTOR.

tStb: This is the time it takes the CAM cells to stabilize after all opera-

tions are completed in the Read Miss state.

The values of these times are shown in Table 12. The total time, therefore, for the Read

Miss to complete is given by

tRM = tSC + tDAM + tWSRI + 2tsw + tWSRO tStab

which calculates to 54 ns.
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Table 12

Signal Times for the Read Miss State

Time (ns)

tsc 16
tDAM 2
tWSR1 16
tsw 2
tWSRO 11
tSUb 5

Write Hit Analysis. The Write Hit state requires 47 ns to complete. Figure 54

shows the critical paths during this state. Again, this is a minimum time. The Write sig-

nal supplied by the CPU is the deciding factor as to how long the MCC remains in this

state once it is entered. Figure 54 shows the earliest time allowed for the Write signal to

be taken low. It can stay high for as long as needed provided the correct address and data

are applied to the MCC.

The signal Word_Selector_CP is the input signal to the clock port of the

SHIFTREGISTER. The other signals in the figure have previously been discussed. The

times used in Figure 54 are described as follows:

tsc: This is the time it takes the SearchComplete signal to go high after

the Address is available to the MCC. The path for this time is through the

SEARCHSTATUS component of THECONTROLLER.

tcp: This is the time it takes for the WordSelectorCP to go high after the

search is complete (i.e., SearchComplete = '1'). The path for this time is

through the WORD_SELECT_CLOCK of THECONTROLLER.

tws: This is the time it takes for the Word_Select signal vector to put the

correct data onto the WordSelectBus for the write operation to occur.
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Figure 54. Critical Path Timing Diagram for Write Hit

WordSelectorCP is the signal that clocks the ResolvedSignalTag vec-

tor into the SHIFTREGISTER. The path for this signal is through the

WORD_SELECT component of THECONTROLLER.

tFC: This is the time it takes after the WordSelect vector puts the data

onto the WordSelect_Bus for the write, and before the vector is reset to

all zeros. Function_Change is triggered by the change in the Write signal.

FunctionChange then resets the SHIFT_REGISTER.

The values for these times are given in Table 13. The total time needed for the Write Hit

state is given by

tWH = tSC + tCp + tWS + tFC

which calculates to 47 ns. One nanosecond later the next request can be honored.
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Table 13

Signal Times for the Write Hit State

Time (ns)

tsc 16
tcp 7
tws 12
tF;C 12

Write Miss Analysis. The Write Miss state takes a total of 44 ns to complete. No

further action is required of the MCC in this state but it still needs time to perform the

search and reset itself for the next operation. Figure 55 shows the critical path through

this state. The total time is dependent upon when the CPU takes the Write port low.

Shown in Figure 55 is the soonest time the Write port is able to go low without the MCC

producing undesired results.

AddressIn

SearchComplete

Function-..Change

Write

Figure 55. Critical Path Timing Diagram for Write Miss
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The times used in Figure 55 are described as follows:

tsc: This is the time it takes the SearchComplete signal to go high after

the Address is available to the MCC. The path for this time is through the

SEARCH-STATUS component of THECONTROLLER.

tw: This is the time between when the Search-Complete signal goes high

and the Write port is able to go low.

twFc: This is the time it takes the FUNCTIONCHANGEDETECTOR

to output the signal FunctionChange after Write goes low.

tFS: This is the time it takes the FunctionChange signal to reset the D-

type flip-flop in the SEARCHSTATUS component.

The values for these times are given in Table 14. The total time needed for the Write

Miss state is given by

tWM = tSC + tW + tWFC + tFS

which calculates to 44 ns. At that time the next operation can be performed by the MCC.

Table 14

Signal Times for the Write Hit State

Time (ns)

tsc 16
tw 4
tWFC 8
tFS 16
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Possible Improvements. One possible improvement for the overall speedup of the

memory subsystem is to use a buffered write-through policy. This will allow the CPU to

continue its operations without having to wait on main memory to finish a write. This

can be accomplished by adding buffer registers to the MCC. Therefore, when the CPU

requests a write operation, the MCC will write the data into the buffers. The CPU can

then continue working while the MCC waits for the data bus. When the data bus is free,

the MCC places the data onto the bus and main memory writes these data into its storage.

A disadvantage to using this policy is the addition of complexity to the MCC. By

adding write-through buffers, more control logic will be needed on the chip. This will not

only add to the complexity of the chip but it will possibly decrease its storage capacity.

The trade-off is speed versus space. If the buffers are used, the CPU can continue its

operations without having to wait on main memory. On the other hand, will the decrease

in memory storage in the MCC be enough to reduce the amount of structural locality the

MCC can hold? Probably not, and since the purpose of this research is to speed up a

computer as much as possible, a buffered write-through policy would be advantageous.

The CHANGEDETECTOR component was used liberally throughout the design

to detect a change in a desired signal. The output of the CHANGE-DETECTOR would

go high for a short period of time then go low. This period of time was somewhat

arbitrarily chosen to be 5 ns. The output needed to be '1' for a short enough period of

time not to slow the MCC down too much, yet be longer than the inertial delays of the

gates it entered. This period could be shortened to 4 ns since the longest inertial delay of

any gate it enters is 4 ns. Table 15 shows the time savings in each of the four states and

the component in which the savings could be realized. It is worth noting that the

OPERATIONSTATUS also contains a CHANGEDETECTOR but the change would

only affect the DataOutAvailable port and not the overall speed of the MCC.
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Table 15

CHANGEDETECTOR Time Savings (ns)

Read Hit Read Miss Write Hit Write Miss

SEARCHSTATUS 1 1 1 1
WORD_SELECT 3
FUNCTIONCHANGEDETECTOR 1 1 1 1
WORDSELECT_CLOCK 1

Total Time Savings 5 3 2 2

The main goal of the SEARCHSTATUS component of the CONTROLLER was

to allow the CAM array plenty of time to do the initial search before any further opera-

tions were performed. By adding an AddressEnable port to the MCC, much of the logic

contained in this component can be eliminated. Figure 56 shows a recommended design

for the SEARCH_STATUS. The total time savings by implementing this new design is 3

ns during each state of the MCC. Currently, the SEARCHSTATUS component takes 16

ns to complete its operations. In the new design, 13 ns is all the time required: 5 ns

through the CHANGEDETECTOR and 8 ns to accomplish a write into the D-type flip-

flop.

The design of the MCC did not consider prefetching data above the current TOS

pointer. An obvious way to see the problem this presents is during the initial operations

of the MCC in the memory system. If a Read Hit state is entered before the CAM is

filled with data, it is possible that bad data above the TOS pointer could be prefetched. If

the CAM array is filled with data, a similar situation can occur. Since the TOS pointer is

pointing at the top of the stack, any prefetches beyond the pointer retrieve data from the

bottom of the stack, thus potentially destroying the prefetch of structural locality. This

problem can be fixed by comparing the output of the SHIFTREGISTER (containing the

prefetch pointer) with the output of the TOSSHIFTER (containing the TOS pointer).

When the outputs are the same, the prefetch cycle should be shut down.
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Figure 56. New Design of the SEARCH_STATUS Component

Space Savings. Time was a major factor during the designing and building of the

MCC in VHDL that prevented the consideration of space savings on the final hardware

chip. In this section, the major areas recommended for redesign are discussed. The re-

sulting decrease in the number of transistors will allow the hardware product to be much

smaller than it would be if the current design is used.

The CAM cell of Figure 28 is a primary component to consider for redesign. The

cell, as it stands, would require 60 transistors to implement. This assumes implementa-

tion in CMOS technology without redesign and the number of transistors for each gate

shown in Table 16. In contrast, some of the cells described in Chapter 2 of this thesis re-

quire only 5 transistors. This is 8.33% the size of the cell in Figure 28. If a 128 x 64

array of these CAM cells were built into the MCC, a savings of 450,560 transistors would

be realized.
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Table 16

Transistor Requirements for Gates of Figure 28

Inputs Gate Transistors

3 AND 8
Inverter 2

2 NOR 4
3 NOR 6

The CAM cell used in this thesis has two output signals: RX and RY. RX is the

complement of the cell content and RY is the actual value of the cell content. These two

signals cornbined are exclusively-ORed to produce the validity bit. This bit is used dur-

ing the read operation to determine if the data are valid when a multiple read occurs.

Since the MCC writes data into the CAM array only when a read miss or a write hit

occurs, the situation with multiple words containing the same address will never happen.

Therefore, this port, the Valid_Out port, can be eliminated from the MCC. Consequently,

a CAM cell with only one output signal is all that is needed.

Another possible place to save chip area is to replace the CAM cells used to store

the data portion of the memory word with DRAM. The data portion of the word is never

searched during the operation of the MCC. It is merely a storage device to read from and

write to. Therefore, a CAM cell with search capabilities is superfluous in this application.

A DRAM can store these data with better space efficiency and still be able to access the

data quickly. DRAMs consist of only 1 transistor. Therefore, a DRAM is 1.67% the size

of the CAM cell used in this thesis and 20% the size of a 5-transistor CAM cell.

Space can also be conserved by redesigning the PREFETCHCOUNTER compo-

nent (Figure 24). This component uses a binary counter (Figure 19) to count upwards

while comparing the result with a predefined value (the prefetch block size). While the

values are not equal, the component outputs a '1' from the RS-type flip-flop onto the
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Counting port. When the output of the binary counter equals the prefetch block size, the

RS-type flip-flop is reset and the Counting port becomes '0'. If the binary counter were

replaced with a count-down counter, the register holding the prefetch block size could be

removed and the XNOR gates could be eliminated. The ANDI gate could then be re-

placed by a NOR gate, so when the count-down counter reached all '0's, the NOR gate

would output a '1' and reset the RS-type flip-flop. These changes would reduce the com-

plexity of the circuit and possibly increase its speed.

The new design of SEARCHSTATUS shown in Figure 56 has eliminated much

of the required logic in that component. It allows the following gates to be deleted from

the current design: two AND gates, two OR gates, and one NOR gate. In addition, only

one change detector is needed, which eliminates the need for Addressjlength- 1 XOR

gates and buffers.

Two AND gates from THE_CONTROLLER can be eliminated. AND2 of the

OPERATION-STATUS component has the same inputs as AND1 of the

WORDSELECTCLOCK component. Also, AND4 of the OPERATIONSTATUS

component has the same inputs as AND2 of the WORDSELECTCLOCK.

Therefore,in each of the two cases, one of the gates can be deleted provided the output of

the remaining gate is used to satisfy the requirement of the one deleted. In an hierarchical

design such as the design in this thesis, it is not surprising to find this type of duplication.

Hardware Implementation Issues

Some hardware issues could not be considered in this research since only the de-

signing and VHDL implementation of the chip were performed. This section will provide

a few areas to investigate before fabrication.

Since the address and data fields are of generic size on the MCC, the total number

of pins on the chip is unknown at the writing of this thesis. Aside from the DataIn and
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Address_In ports, only 12 other pins are needed. Therefore, a chip made with the data

and address being 32 bits wide each, for example, would require 140 pins on the chip

(i.e., (32 + 32) x 2 + 12 = 140). These are typical word lengths but if pin-out does present

an obstacle, a solution exists to circumvent the problem. A bidirectional buffer to hold

the incoming address and data and output the out-going data could be used. This would

add to the complexity of the chip but would decrease significantly the number of pins re-

quired and would allow for much larger address and data fields.

The number of cells in the CAM array is also not determined in this research. The

number of CAM cells a signal can drive before losing its value is finite. Therefore, some

form of signal enhancement must be used to allow a signal to propagate to all cells of the

CAM array with enough power for each cell to perform the desired operation. The use of

buffers is the usual means of performing this task. The location of these buffers must be

determined by finding how many cells a signal can drive before losing too much of its

value.

During the initialization phase of the MCC, the MasterReset signal was used to

fill the entire CAM array with zeros. This was necessary to avoid operations on Xs

(unknowns) that are present in the CAM array upon startup. The problem with this ap-

proach is that there is likely an address in main memory made up of all zeros. So, if the

CPU requests an operation on that address before the CAM array is filled with valid data,

bad data could possibly be sent to the CPU from the MCC. As mentioned previously, a

search is the first operation to be performed when the MCC is activated. A search on an

X produces Xs on the tag lines, which is not acceptable in the completion of the state

operations. A cell that can effectively use an X and output a '0' on the tag line during a

search would be ideal. Another solution would be to resolve Xs to 'O's on a resolved line.

Before implementing this chip in hardware, this issue must be resolved.
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Noise was a concern with the AT&T WE-32201 Integrated Memory Management

Unit/Data Cache (IMDC). This chip is used to translate virtual addresses to physical ad-

dresses. A large noise spike can occur during a normal translation when many cells in the

CAM discharge at once. The designers of this chip used very wide power and ground

buses and multiple Vss tub ties to keep the noise under 400mV. Therefore, noise should

be considered during the implementation phase of the CAM chip described in this thesis.

(5:595)

Summary

This chapter provided an in-depth analysis of the MCC. The complete functional-

ity of the MCC was presented as well as the context of the MCC in a memory hierarchy.

The performance of the chip model was carefully analyzed and it was determined that the

Read Hit state took the longest to complete for an obvious reason: this is the state in

which the prefetching of memory references occurs. The Real Hit state takes 57 ns +

(PrefetchBlockSize-1)(ClockPeriod) + 44 ns to complete. During the testing of the

MCC, the Prefetch_BlockSize was set at 25 and the ClockPeriod to 34 ns, making the

total time to complete the prefetch cycle 917 ns to 934 ns. The remainder of the states,

the Read Miss, the Write Hit, and the Write Miss, take 54 ns, 48 ns, and 44 ns, respec-

tively, to complete. The critical paths through these states were determined so the slow-

est components could be scrutinized for possible speedup. Some suggestions to increase

the speed of the MCC were presented as well as potential areas for saving space on the

chip. Finally, some hardware considerations were presented for further investigation be-

fore the chip is actually fabricated.
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V. Conclusions and Recommendations

Introduction

The focus of this thesis has been a proof-of-concept on modeling a cache chip that

stores memory references in the order they were used, and prefetching these locations in a

FIFO manner so structural locality can be captured by a faster on-chip cache. A content-

addressable memory was designed with this in mind. All of the functionalities of the

main CAM cache (MCC) were accomplished and a working structural-level VHDL

design of the chip was completed.

This thesis is the first iteration of research into the hardware realization of a mem-

ory hierarchy that exploits structural locality of memory references. The effort has shown

that a main CAM cache that exploits structural locality is a feasible design. The product

of this thesis was a VHDL design, starting at the gate level, of a CAM cache that

prefetches memory locations in the order they were used by the CPU so an on-chip cache

can capture structural locality and provide it to the CPU for fast processing.

Conclusions

The MCC was designed with a bottom-up approach. The functionality of the

MCC was first determined; then the logic to implement the functionality was developed.

The first operation the MCC performs when activated for any purpose is the search op-

eration. After the search is complete, the MCC enters one of four states: Read Hit, Read

Miss, Write Hit, or Write Miss. If the functionality of the MCC were any more compli-

cated than this, then a bottom-up approach would not have been a good one and it may

not have been possible to complete the design in one thesis cycle. The approach taken

was more intuitive to this researcher. Even if a top-down approach were used, the time it

would have taken to incrementally break down a top-level behavioral description into a
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structural model would have come close to the time it took to accomplish the bottom-up

design.

The functionality concepts of the MCC, i.e., the behavior of the MCC during each

of the four states, were successfully implemented in the VHDL model of the MCC.

During the Read Hit state, the MCC successfully prefetches the specified prefetch block

size of addresses and data allowing another chip, the SLC chip, to write the data into its

memory. Thus, structural locality is captured by the SLC. The MCC also writes data into

its CAM array in the Read Miss state and writes over old data in the Write Hit state.

Recommendations

The MCC was designed and modeled using the VHDL hardware description lan-

guage. Before the chip is actually fabricated and placed into a computer memory system,

a few areas require further research.

In order for the memory subsystem to be complete, the SLC must be designed.

The design will be very similar to that of the MCC. The SLC would have three active

states: the Read Hit, Read Miss, and Write Hit states. During the Read Hit state, the SLC

would read the requested data from its memory and provide it on its output ports. In the

Read Miss state, the SLC would wait on main memory for the data and then write the

data into its CAM array using a least-recendy-used algorithm The Write Hit state would

act similar to, if not exactly like, that of the MCC. The Write Miss state would be an idle

state just as it is in the MCC.

The fabrication of the MCC and the SLC would be the next logical step in build-

ing this memory subsystem. The size of the chip now becomes a factor. A CAM cell

with as few transistors as possible and with the least power dissipation is recommended.

Jones (10) presents some excellent arguments as to the selection of a CAM cell with these
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two issues in mind. Once the cell is selected and designed, the size of the CAM array can

be determined. From there, the MCC and the SLC can be fabricated.

Once the fabrication of the chips is complete, the computer system utilizing this

memory subsystem can be bread-boarded and tested. The communications between the

components on the bread-board will be similar to the concept shown in Figure 43. If a

specially manufactured CPU with on-chip cache having the capability to communicate

with the MCC could be produced, the need for the SLC residing off chip could be elimi-

nated. This would allow for quicker on-chip responses father than the off-chip communi-

cation delays.

Summary

The purpose of this type of research is to make computers run faster than ever. By

exploiting structural locality, this goal can be reached. This thesis effort produced a de-

sign of a CAM cache that stores memory references in the order they were used by the

CPU. The cache then provides these data, in a predetermined block size, to a faster cache

(this cache captures the structural locality), which in turn provides the data to the CPU.

The CPU can then access these data quickly.
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Appendix A: The VHDL Code of the CAM Cell

This appendix contains the VHDL code of the CAM cell. It is the heart of the

main CAM cache (MCC) chip. The entity is presented first, then the structure begins on a

separate page.

CAM_cell Entity

-- Date: 3 May 1991
-- Version: 1.0

-- Filename: camcell-entity.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity of the CAM cell.
-- Associated files: camcellstructure.vhd : This file contains the gate level

design of the CAM cell.
-- chip pkg.vhd : This file is where the size of

the CAM array is defined. Other
declarations are also contained
in this file.

-- chip-pkgjbody.vhd : This file contains the sub-
routines WiredAnd and WiredOr
used by the chip.

-- cam-chip-entity.vhd : This file contains the entity
description of the CAM chip.

-- can_chip-structure.vhd : This file contains the structure
of the CAM chip. It is formed by
generating copies of the CAM
cell.

-- chipstimulus.vhd : This file exercises the chip and
provides inputs to test the chip.

-- chiptestbench.vhd : This file contains the test bench
for the CAM chip.

-- chip-config.vhd : This file contains the
configuration of the system.

-- clock.vhd : You guess!
-- History:

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
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entity CAM-.cell is
port(

D :in MVL7; -- data line into cell
B :in MVL7; -- bit select line
W :in MVL7; -. word select line
M :out MVL7; -- match line
RY: out MVL7; -- data output (W and C)
RX: out MVL7); -- data output (W and Cnot)

-RY and RX determine the validity of the bit
end CAM_cell;
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CAM cell Structure

-- Date: 3 April 1991
-- Version: 2.0

-- Filename: camcell_structure.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the architecture structure of the CAM cell.
-- Associated files: camcell_entity.vhd : This file contains the entity

description of the CAM cell.
-- chip pkg.vhd : This file is where the size of

the CAM array is defined. Other
declarations are also contained
in this file.

-- chip-pkg-body.vhd : This file contains the sub-
routines Wired_And and WiredOr
used by the chip.

-- camschip-entity.vhd : This file contains the entity
description of the CAM chip.

-- cam_chipstructure.vhd : This file contains the structure
of the CAM chip. It is formed by
generating copies of the CAM
cell.

-- chip_stimulus.vhd : This file exercises the chip and
provides inputs to test the chip.

-- chiptest_bench.vhd : This file contains the test bench
for the CAM chip.

-- chip-config.vhd : This file contains the
configuration of the system.

-- clock.vhd : You guess!

-- History: Version 1.0 - used my own gates which were described behaviorally.
-- Version 2.0 (3 April 1991) - switched to ZYCAD components.

-- Author Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use ZYCAD.components.all;
use WORK.Chip pkg.all;

architecture Structure of CAMcell is

-- The following are internal signals of the cell
signal TI: MVL7;
signal 12: MVL7;
signal C: MVL7;
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signal Cnot: MVL7;
signal AI: MVL7;
signal A2: MVL7;
signal Dnot: MVL7;
signal Wnot: MVL7;
signal Bnot: MVL7;

-- These components make up the CAM cell

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

tilL: Time); -- fall inertial delay
port(input: in MVL7; -- one input

output: out MVL7); -- one output
end component;

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tHiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N);-- N inputs
output: out MVL7); -- one output

end component;

component NORGATE -- ZYCAD component
generic (N: Positive; -- N input NOR gate

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N);-- N inputs
output: out MVL7); -- one output

end component;

begin

-- component instantiation
INV I: INVGATE

generic map (InverterDelay, InverterDelay)
-- rise inertial delay,
-- fall inertal delay

port map(
input => D,
output => Dnot);

INV2: INVGATE
generic niap (InverterDelay, Inverter-Delay)

-- rise inertial delay,
-- fall inertal delay

port map(
input => B,
output => Bnot);
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INV3: INVGATE
generic map (InverterDelay, Inverter_.Delay)

-- rise inertial delay,
-- fall inertal delay

port map(
input => W,
output => Wnot);

AND 1: ANDGATE
generic map (3, -- 3 inputs,

And_Delay, -- rise inertial delay,
AndDelay) -- fall inertal delay

port map(
input(l) => D,
input(2) => B,
input(3) => W,
output =>Al);

AND2: ANDGATE
generic map (3, -- 3 inputs,

And_Delay, -- rise inertial delay,
And_Delay) -- fall inertal delay

port map(
input(l) => Dnot,
input(2) => B,
input(3) => W,
output => A2);

NORI: NORGATE
generic map (3, -- 3 inputs,

NORDelay, -- rise inertial delay,
NORDelay) -- fall inertal delay

port map(
input(l) => D,
input(2) => Bnot,
input(3) => Cnot,
output => TI);

NOR2: NORGATE
generic map (3, -- 3 inputs,

NORDelay, -- rise inertial delay,
NORDelay) -- fall inertal delay

port map(
input(l) => Dnot,
input(2) => Bnot,
input(3) => C,
output => T2);
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NOR3: NORGATE
generic map (2, -- 2 inputs,

NORDelay, -- rise inertial delay,
NORDelay) -- fall inertal delay

input(1) => Al,
input(2) => C,
output => Cnot);

NOR4: NORGATE
generic map (2, -- 2 inputs,

NORDelay, -- rise inertial delay,
NORDelay) -- fall inertal delay

port map(
input(1) => Cnot,
input(2) => A2,
output => C);

NOR5: NORGATE
generic map (3, -- 3 inputs,

NORDelay, -- rise inertial delay,
NORDelay) -- fall inertal delay

port map(
input(1) => TI,
input(2) => W,
input(3) => '12,
output => M);

NOR&: NORGATE
generic map (3, -- 3 inputs,

NORDelay, -- rise inertial delay,
NORDelay) -- fall inertal delay

port map(
input(l) => B,
input(2) => Cnot,
input(3) => Wnot,
output => RY);

NOR7: NORGATE
generic map (3, -- 3 inputs,

NORDelay, -- rise inertial delay,
NORDelay) -- fall inertal delay

port mnap(
input(l) => B,
input(2) => C,
input(3) => Wnot,
output => RX);

end Structure;
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Appendix B: The VHDL Code for the Basic Components of the Main CAM Cache

This appendix contains the basic components that make up the MCC. They are

listed in alphabetical order and begin on separate pages.

BINARY COUWTER

-- Date: 25 July 91
-- Version: 1.0

-- Filename: binary-ounter.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of an 8-bit
-- binary counter. This structure was taken from Mano p 278.
-- The outputs are valid on the clock pulse. Intermediate
-- values may not be valid due to timing inside the JK FFs.

-- Associated files:
-- chip-pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History:

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip pkg.all;

entity BINARY_COUNTER is
port (CountEnable : in MVL7;

CP : in MVL7;
CPnot : in MVL7;
CLEAR : in MVL7;
Output : inout MVL7_Vector(Bitsin_Counter- 1 downto 0));

end BINARYCOUNTER;

architecture structure of BINARYCOUNTER is
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-- This component is a master-slave X flip flop.

component MSJKFF
port( J :in MVL7; -- J input

K :in MVL7; -- K input
RESET: in MVL7; -- resets FF to '0'
CP : in MVL7; -- clock
CPnot : in MVL7; -- clock complement
Q : inout MVL7; -- output
Qnot : inout MVL7); -- output complement

end component;

-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

tIL: Time); -- fall inertial delay
port(input: in MVL7; -- input

output: out MVL7); -- output
end component;

signal JK_in: MVL7_Vector(Bitsin_Counter-I downto 1);
signal TEMP : MVL7; -- output of K FF for troubleshooting

begin

-- The following code generates JK flip flops for the desired number of
-- bits in the binary counter.

JKl:
for I in Bits_in_Counter- 1 downto 0 generate
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-This 1K FF holds the least significant bit and the inputs
-to this FF come from the CountEnable line.

JK2:
if I = 0 generate

JKFFO: MSJKFF
port map(J => CountEnable,

K => Count_Enable,
RESET => CLEAR,
CP => CP,
CPnot => CPnot,
Q => Output(0),
Qnot => Open);

end generate;

-These 1K FFs are the rest of the FFs that make up the
-- counter.

1K3:
if 1/= 0 generate

1K_notO: MS_JKFF
port map(J => 1Kjin(I,

K => JKin(I),
RESET => CLEAR,
CP => CP,
CPnot => CPnot,
Q => Output(I),
Qnot => Open);

end generate;

end generate;

-This instantiation is for troubleshooting only. It is a copy of one of
-the 1K FFs above. DO NOT IMPLEMENT IN HARDWARE!!!

JKFF: MSJKIFF
port map(J => CountEnable,

K => Count_Enable,
RESET => CLEAR,
CP => CP,
CPnot => CPnot,
Q => TEMP,
Qnot => Open);
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-- The following code generates the AND gates in the counter.

Al:
for J in BitsinCounter-I downto 1 generate

-- This AND gate is the first AND gate. The input Count_
-- Enable is unique to this gate.

A2:
if J = 1 generate

AND1: ANDGATE
generic map(2, -- 2 inputs

AND-Delay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(
input(1) => Output(J- 1),
input(2) => CountEnable,
output => JKjn(l));

end generate;

-- These are generated for the rest of the AND gates.

A3:
if J/= 1 generate

ANDs: ANDGATE
generic map(2, -- 2 inputs

ANDDelay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(
input(l) => Output(J- 1),
input(2) => JKjin(J- 1),
output => JKin(J));

end generate;

end generate;

end structure;
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CHANGE DETECTOR

-- Date: 12 July 91
-- Version: 1.0

-- Filename: change-detector.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity entity and structure of the
-- change detector. The component will detect a change in any
-- signal that is input into it. The output will be a '' for
-- the time it takes the signal to go through the buffer.
-- Associated files:
-- History:

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use ZYCAD.components.all;
use WORK.chippkg.all;

entity CHANGE_DETECTOR is
generic (Delay: Time);
port (Input: in MVL7;

Output: out MVL7);
end CHANGE_DETECTOR;

architecture structure of CHANGE_DETECTOR is

signal BUFOut: MVL7 := '0';

component BUFGATE
generic (tLH: Time; -- rise inertial delay

tHlL: Time); -- fall inertial delay
port(input: in MVL7; -- one input

output: out MVL7 := '0'); -- one output
end component;

component XORGATE -- ZYCAD component
generic (N: Positive; -- N input XOR gate

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;
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begin

BURF: BUFGATE
generic map(Change...DetectorDelay, Change-Detector Delay)
port map (input => Input,

output => BUFOut);

XORI: XORGATE
generic map(2, XOR...Delay, XQR_Delay)
port map (input(1) => BJF-Out,

input(2) => Input,
output => Output);

end structure;
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EDGETRIGGEREDDFF

--Date: 20 August 1991
-- Version: 1.2

-- Filename: edgetriggeed_DFF.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of an edge-
-- triggered D FF.

t_ Associated files:
-- chip-pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History: Version 1.0 (30 July 91)
-- Version 1.1 (19 August 1991) - Changed output ports from inout
-- to out and added internal signals to compensate.
-- Version 1.2 (20 August 1991) - added additional port CPnot to
-- aid in resetting the DFF.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chippkg.all;

entity EDGE_TRIGGEREDDFF is
port( D : in MVLT7;

RESET: in MVL7;
CP : in MVL7;
CPnot : in MVL7;
Q : out MVL7;
Qnot : out MVL7);

end EDGE_TRIGGEREDDFF;

architecture structure of EDGE_TRIGGEREDDFF is

-- This component is the NAND gate.

component NANDGATE -- ZYCAD component
generic (N: Positive; -- N input NAND gate

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); t- one output

end component;
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-- This component is the Inverter gate.

component INVOATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

tHL: Time); -- fall inertial delay
port(input: in MVL7; -- N inputs

output: out MVL7); -- one output
end component;

signal R : MVL7;
signal Rnot :MVL7;
signal S : MVL7;
signal Snot :MVL7;
signal RESETnot : MIVL7;
signal QQ :MVL7;
signal QQnot :MVL7;
signal NAI : MVL7;

begin

INVI: INYGATE
generic map(Inverter..Delay, Inverter._Delay)
port map(RESET,

RESETnot); -- used to reset F

NANDI1: NANDGATE
generic map(2, -2 inputs

NANDDelay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port map(
input(l) => S,
input(2) => Rnot,
output => Snot);

NAND2: NANDGATE
generic map(3, -- 3 inputs

NANDDelay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port map(
input(l) => Snot,
input(2) => CP,
input(3) => RESETnot,
output => S);
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NAND3: NANDGATE
generic map(3, -- 3 inputs

NAND_Delay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port map(
input(l) => S,
input(2) => NA 1,
input(3) => Rnot,
output => R);

NAND4: NANDGATE
generic map(3, -- 3 inputs

NANDDelay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port map(
input(l) => R,
input(2) => D,
input(3) => RESETnot,
output => Rnot);

NAND5: NANDGATE
generic map(2, -- 2 inputs

NAND_.Delay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port map(
input(l) => S,
input(2) => QQnot,
output => QQ);

NAND6: NANDGATE
generic map(2, -- 2 inputs

NANDDelay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port map(
input(l) => QQ,
input(2) => R,
output => QQnot);

NAND7: NANDGATE
generic map(2, -- 2 inputs

NANDDelay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port map(
input(l) => CPnot,
input(2) => RESETnot,
output => NA);
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Q <= QQ; -- connect output port to output signal
Qnot <= QQnot;- connect output port to output signal

end structure;
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JKFLJPFWOP

-Date: 24 July 91
-Version: 1.0

-Filename: JK-flipflop.vhd
-System: ZYCAD, VLSI net
-Language: VHDL

-Description: This file contains the entity and structure of the JK FF.

-- Associated files:
-- chip..pkg.vhd : This file contains constants, variables, etc. needed

-- for this file.

-- History:

-Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip pkg.all;

entity JK.YLIPFLOP is
port( J :in MVL7;

K :inMVL7;
RESET: in MVL7;
CP : in MVL7;
Q : inout MVL7;
Qnot : inout MVL7);

end 1KFLIPELOP;

architecture structure of JKFLIPFLOP is

-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

121



-- This component is the NOR gate.

component NORGATE -- ZYCA1) component
generic (N: Positive; -- N input NOR gate

tLH: Time; -- rise inertial delay
tHiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

tHiL: Time); -- fall inertial delay
port(input: in MVL7; -- N inputs

output: out MVL7); -- one output
end component;

signal Jout : MVL7;
signal Kout : MVL7;
signal RESETnot: MVL7;

begin
INV I: INVGATE

generic map(lnverter.Delay, Inverterj_Delay)
port map(RESET,

RESETnot); -- used to reset FF

ANDI: ANDGATE
generic map(3, -- 3 inputs

AND Delay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(
input(l) => Q,
input(2) => K,
input(3) => CP,
output => Kout);

AND2: ANDGATE
generic map(4, -- 4 inputs

ANDDelay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(
input(l) => Qnot,
input(2) => J,
input(3) => CP,
input(4) => RESETnot,
output => Jout);
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NORI: NORGATE
generic map(3, -- 3 inputs

NORDelay, -- rise inertial delay
NORDelay) -- fall inertial delayport map(

input(l) => Kout,
input(2) => Qnot,
input(3) => RESET,
output => Q);

NOR2: NORGATE
generic map(2, -- 2 inputs

NORDelay, -- rise inertial delay
NORDelay) -- fall inertial delay

port map(
input(1) => Jout,
input(2) => Q,
output => Qnot);

end structure;

123



MS JKFF

-- Date: 30 July 91
-- Version: 1.0

-- Filename: ms.jkff.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the master-
-- slave JK FF.

-- Associated files:
-- chip-pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History:

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip-pkg.all;

entity MSJKFF is
port( J :in MVL7;

K :in MVL7;
RESET: in MVL7;
CP : in MVL7;
CPnot : in MVL7;
Q : inout MVL7;
Qnot : inout MVL7);

end MSJKFF;

architecture structure of MS_JKFF is

-- This component is the NAND gate.
.. ---- ----.------------......--.--...........................................

component NANDGATE -- ZYCAD component
generic (N: Positive; -- N input NAND gate

tLH: Time; -- rise inertial delay
tiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;
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-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

tHL: Time); -- fall inertial delay
port(input: in MVL7; -- N inputs

output: out MVL7); -- one output
end component;

signal Jout : MVL7;
signal Kout : MVL7;
signal Y : MVL7;
signal Ynot : MVL7;
signal Yout : MVL7;
signal Ynotout : MVL7;
signal RESETnot : MVL7;

begin

INV 1: INVGATE
generic map(Jnverter_Delay, -- rise inertial delay

Inverter_-Delay) -- fall inertial delay
port map(

input => RESET,
output => RESETnot);

NANDI: NANDGATE
generic map(4, -- 4 inputs

NAND_Delay, -- rise inertial delay
NAND_Delay) -- fall inertial delay

port map(
input(l) => Qnot,
input(2) => J,
input(3) => CP,
input(4) => RESETnot,
output => Jout);

NAND2: NANDGATE
generic map(3, -- 3 inputs

NANDDelay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port map(
input(l) => Q,
input(2) => K,
input(3) => CP,
output => Kout);
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NANDI: NANDGATE
generic map(2, -2 inputs

NANDDelay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port mnap(
input(l) => Jout,
input(2) => Ynot,
output => Y);

NAND4: NANDGATE
generic map(3, -- 3 inputs

NANDDelay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port map(
mnput(1) => Y,
input(2) => Kout,
input(3) => RESETnot,
output => Ynot);

NAND5: NANDGATE
generic map(2, -- 2 inputs

NAND _Delay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port mnp(
input(1) => Y,
input(2) => CPnot,
output => Yout);

NAND6: NANDGATE
generic map(2, -2 inputs

NAN&LDelay, -- rise inertial delay
NAND...Delay) -- fall inertial delay

port map(
input(1) => Ynot,
input(2) => CPnot,
output => Ynotout);

NAND7: NANDGATE
generic mnap(2, -- 2 inputs

NAND-Delay, -- rise inertial delay
NAND...Delay) -- fall inertial delay

port map(
input(1) => Yout,
input(2) => Qnot,
output => Q);
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NAND8: NANDGATE
generic map(2, -2 inputs

NAND_-Delay, -- rise inertial delay
NANDDelay) -- fall inertial delay

port miap(
input(l) =>') Ynotout,
input(2) => Q,
output => Qnot);

end structure;
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PREFETCHCOUNTER

-- Date: 5 September 1991
-- Version: 1.11

-- Filename: prefetch-counter.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the prefetch
-- counter. The binary counter counts upward and is compared
-- using XNOR gates, for equivalence, against the output of the
-- register that holds the number of lines to prefetch. When
-- they are equal, the port "Counting" becomes a '0'. This
-- component allows a line of memory to be prefetched on every
-- clock cycle.

-- Associated files:
-- chippkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History: Version 1.0 (26 July 1991)
-- Version 1.1 (16 August 1991) - changed inout mode of Counting
-- port to out and added signal Countingout to feed back into
-- the component.
-- Version 1.11 (5 September 1991) - changed prefetch block to
-- subtract 2 instead of 1 from PrefetchBlockSize. This is
-- because the first read on a prefetch is not counted in the
-- prefetch cycle.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chippkg.all;
use ZYCAD.BV_ARlTHMETIC.all;

entity PREFETCHCOUNTER is
port( Start : in MVL7;

CP :in MVL7;
CPnot : in MVL7;
Reset : in MVL7;
Counting : out MVL7);

end PREFETCHCOUNTER;

architecture structure of PREFETCHCOUNTER is
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-- This component is the binary counter.

component BINARYCOUNTER
port(CountEnable: in MVL7; -- T to allow count

CP : in MVL7; -- clock
CPnot : in MVL7; -- clock complement
CLEAR : in MVL7; -- cleas to all'O's
Output : inout MVL7_Vector( -- binary count by 1

BitsinCounter-1 downto 0));
end component;

-- This component is a D Flip-Flop register with reset.

component DFFREG -- ZYCAD component
generic (N: Positive; -- N input register

tLH: Time; -- rise inertial delay
tHiL: Time); -- fall inertial delay

port (Data in MVL7_Vector, -- data in
clock in MVL7; -- clock port
Reset :in MVL7; -- reset port
Output: out MVL7_Vector); -- data out

end component;

-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tHiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the OR gate.

component ORGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tHiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;
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-- This component is the inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

tiL: Time); -- fall inertial delay
port (input: in MVL7; -- N inputs

output: out MVL7); -- one output
end component;

-- This component is the exclusive NOR gate.

component NXORGATE -- ZYCAD component
generic (N: Positive; -- N input XNOR gate

tLH: Time; -- rise inertial delay
ti-L: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the RS FF.

component RS_FLIPFLOP
port( R :in MVL7; -- R input

S :in MVL7; -- S input
CP : in MVL7; -- clock
Q : inout MVL7; -- output
Qnot: inout MVL7); -- output complement

end component;

signal PrefetchBlock: MVL7_Vector(Bitsjin_Counter-i downto 0);
-- this vector holds the integer converted to MVL7_Vector
-- that describes the number of prefetches to perform

signal TheCount : MVL7_Vector(BitsjnCounter-1 downto 0);
-- this signal is the output of the counter

signal PrefetchSize : MVL7_Vector(Bits_in_Counter- 1 downto 0);
-- this is the output of the register that holds prefetch size

signal XNOROut : MVL7_Vector(Bits_in_Counter-I downto 0);
-- output of NXOR gates

signal STOP : MVL7; -- input to R of RS FF
signal RSclockin : MVL7; -- clock input to RS FF
signal ClearCounter: MVL7; -- clr input to binary counter
signal Countingnot : MVL7;
signal Countingout : MVL7;
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begin

-component instantiation

Counter: BINARY _COUNTER
port map(CountLEnable => Countingout,

Cp => CP,
CPnot => CPnot,
CLEAR => Clear_-Counter,
Output => TheCount);

Prefetch-.Register. DFFREG -- holds prefetch block size
generic map(Bits...n-Counter,

DFF _Delay,
DFF_-Delay)

port map (Data => Prefetcfr..Block,
clock => CP,
Reset => Reset,
Output => Prefetch-Size);

-The following code generates the required number of XNOR gates to perform
-the equivalence operation between counter and Prefetch_Register.

Xl:
for I in Bits-inCounter- I downto 0 generate

Equivalent: NXORGATE
generic map(2, -- 2 inputs

XNORDelay, -- rise inertial delay
XNORDelay) -- fall inertial delay

port map (input(l) => PrefetchSize(I),
input(2) => The_Count(I),
output => XNOR&Out(I));

end generate;

AND 1: ANDGATE
generic map(Bits-in-Counter, -- # inputs

ANDDelay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(input => XNOROut,
output => Stop);

ORI: ORGATE
generic map(3, -- 3 inputs

ORDelay, -- rise inertial delay
ORDelay) -- fall inertial delay

port map(input(l) => Start,
input(2) => Countingout,
input(3) => Reset,
output => RSclockin);
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0R2: ORGATE
generic map(2, -- 2 inputs

ORDelay, -- rise inertial delay
OR_.Delay) -- fall inertial delay

port map(input(1) => Reset,
input(2) => Countingnot,
output => Clear..Counter);

INVl: INVGATE
generic mnap(InverterjDelay, -- rise inertial delay

lnverterj..Delay) -- fall inertial delay
port map (input => Countingout,

output => Countingnot);

RSFF: RS- flipflop
port map(R => Stop,

S => START,
CP => RSclockin,
Q => Countingout,
Qnot => OPEN);

-This converts an integer to bit_vector then bit_vector to MVL7_Vector.
-- The '-1V accounts for the count starting at zero instead of one.

Prefetch_Block <-- BVtoMVL7V(ItoBV(PrefetchBlock_Size-i))
(Bits_in_Counter- I downto 0);

Counting <= Countingout; -- connects signal to output port

end structure;
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RS FLUPFLOP

-- Date: 23 July 91
-- Version: 1.0

-- Filename: RSlipflop.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the RS FF.

-- Associated files:
-- chip..pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History:

-- Author: Curtis M. Winstead
-----.---- .......................... .........................................

library ZYCAD;
use ZYCAD.types.all;
use WORK.chippkg.all;

entity RSFLIPFLOP is
port( R :inMVL7;

S :in MVL7;
CP :in MVL7;
Q : inout MVL7 := '0';
Qnot: inout MVL7 := '1');

end RSFLIPFLOP;

architecture structure of RS_FLIPFLOP is

-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tHiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (I to N); -- N inputs
output: out MVL7); -- one output

end component;
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-- This component is the NOR gate.

component NORGATE -- ZYCAD component
generic (N: Positive; -- N input NOR gate

tLH: Time; -- rise inertial delay
tiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

signal Rout: MVL7;
signal Sout: MVL7;

begin
ANDI: ANDGATE

generic map(2, -- 2 inputs
ANDDelay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(
input(l) => R,
input(2) => CP,
output => Rout);

AND2: ANDGATE
generic map(2, -- 2 inputs

ANDDelay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(
input(l) => S,
input(2) => CP,
output => Sout);

NOR 1: NORGATE
generic map(2, -- 2 inputs

NORDelay, -- rise inertial delay
NORDelay) -- fall inertial delay

port map(
input(l) => Rout,
input(2) => Qnot,
output => Q);

NOR2: NORGATE
generic map(2, -- 2 inputs

NOR_Delay, -- rise inertial delay
NORDelay) -- fall inertial delay

port map(
input(l) => Sout,
input(2) => Q,
output => Qnot);

end structure;
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SHIFT REGISTER

-- Date: 4 September 1991
-- Version: 1.1

-- Filename: shift_register.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of a shift
-- register. This register is generic, i.e. you can make it any size you
-- want. The shift register uses a D flip-flop and a 2xI MUX. It is a
-- circular shift register run by a clock.

-- Associated files:
-- chip-pkg.vhd : This file contains constants,
-- variables, etc. needed for this file.

-- History: Version 1.0 (5 July 1991)
-- Version 1.1 (4 September 1991) - changed the SelO to shift on a
-- 'r and load on a'0'.

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chippkg.all;

-- The entity of the shift register.

entity SHIFT_REGISTER is
generic(Size: Positive); -- make it any size you want
port (InYector : in MVL7_Vector;, -- input vector

SelO : in MVL7; -- 'I' is a load, '0' shift
Clockin : in MVL7; -- clock port
Clear : in MVL7; -- clear the registers
SROutput: inout MVL7_Vector); -- ouput vector, is of mode in

-- to feed back into MUX
-- allowing for circular shift

end SHIFT_REGISTER;

-- Architecture of shift register.

architecture structure of SHIFT_REGISTER is
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signal MUXOut : MVL7_Vector(Size-1 downto 0);

-- This component is used to determine if the shift register is doing a shift
-- or a parallel load. If Se1 is a '0' then a shift is performed. If Sel is
-- a T then a parallel load is performed.

component MUX2xl -- ZYCAD component
generic (tiH: Time; -- rise inertial delay

tHiL: Time); -- fall inertial delay
port (InO : in MVL7; -- data input 0

Inl : in MVL7; -- data input I
Sel : in MVL7; -- select input (0 => InO)
Output: out MVL7); -- output

end component;

-- This component is a D Flip-Flop register with reset.

component DFFREG -- ZYCAD component
generic (N : Positive; -- N input register

tLH: Time; -- rise inertial delay
tiL: Time); -- fall inertial delay

port (Data in MVL7_Vector, -- input vector
clock : in MVL7; -- clock port
Reset : in MVL7; -- reset
Output: out MVL7_Vector); -- output vector

end component;

begin

-- The following code generates a set of MUXs of size Size. Size can be set
-- to any value.

MI:
for I in Size- 1 downto 0 generate

-- This conditional generate creates all MUXs of the desired
-- size except for the 0th MUX. The reason is that the
-- 0th MUX needs to be fed the output of the Size- I D flip-
-- flop register (SROutput).

M2:
if I1= 0 generate

MUX-itoSizeminus_1: MUX2xl
generic map (MUXDelay, MUXDelay)
port map (InO => InVector(I),

Inl => SR_.Output(I-1),
Sel => SelO,
Output => MUXOut(l));

end generate;
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-This wds kept inside the generate function for associative
-purposes. It is the 0th MUX and its InO is connected to
-the Size- I output of the D flip-flop register (SR.Output).

M3:
if I = 0 generate

MUX_0: MUX2x1
generic map (MUXDelay, MUXJ Delay)
port map (InO => InVector(I),

InI => SROutput(Size-1),
Sel => SelO,
Output => MUXOut(I));

end generate;

end generate;

-- This register holds the values of the shift register.

Reg: DFFREG
generic map(

Size,
DF_Delay,
DF_Delay)

port map(
Data => MUXOut,
clock => Clockin,
Reset => Clear,
Output => SR-Output);

end structure;
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TOSSHIFTER

--Date: 20 Aug 1991
-- Version: 1.2

-- Filename: TOSshifter.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of a shift
-- register. This register is generic, i.e. you can make it any size you
-- want. The shift register uses edge triggered D flip-flops. It is a
-- circular shift register run by a clock. One unique feature which may
-- be a problem is that it takes 2 ns to stabilize; an inadvertent write
-- is possible. It is used to hold the top of stack pointer for the
-- word select register used to write into the CAM.

-- Associated files:
-- chip.pkg.vhd : This file contains constants,
-- variables, etc. needed for this file.

-- History: Version 1.0 (1 Aug 91)
-- Version 1.1 (5 Aug 91) - modified component to clear outputs and
-- load first D FF with a '1' on initial clear.
-- Version 1.2 (20 Aug 91) - modified to handle additional CPnot
-- port of edge-triggered_DFF used to help reset the FF.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip pkg.all;

-- The entity of the shift register.

entity TOSSHIFIrER is
generic(Size: Positive); -- make it any size you want
port (CLEAR: in MVL7; -- clears FFs

CP : in MVL7; -- clock
CPnot: in MVL7; -- clock complement
Output: inout MVL7_Vector); -- ouput vector, is of mode in

-- to feed back into MUX
-- allowing for circular shift

end TOSSHIFTER;
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-- Architecture of TOS shift register.

architecture structure of TOS_SHIFTER is

-- Internal signals of TOS shift register.
signal DinO MVL7;
signal CPinO MVL7;
signal Tied_Low: MVL7 :='0';

-- This component is the edge triggered DFF.

component EDGE_TRIGGERED_DFF
port(D : in MVL7;

RESET: in MVL7;
CP : in MVL7;
CPnot : in MVL7;
Q : inout MVL7;
Qnot : inout MVL7);

end component;

-- This component is the OR gate.

component ORGATE -- ZYCAD component
generic (N: Positive; -- N input OR gate

tLH: Time; -- rise inertial delay
tHiL: Time); o- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

begin

-- The following code generates the desired number of edge triggered D FFs
-- in the TOS pointer.

DI:
for I in Size-1 downto 0 generate
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-- The following code isolates the very first, or bottom, of
-- the stack and allows it to be loaded with a '1' to start
-- the pointer.

D2:
if I = 0 generate

DFFO: EDGETRIGGEREDDFF
port map(D => Dn0,

RESET => Tied-Low,
CP => CPinO,
CPnot => CPnot,
Q => Output(0),
Qnot => OPEN);

end generate;

-- The remaining code is the rest of the edge triggered D FFs.
-- They hold the stack pointer after receiving it from the
-- previous FF.

D3:
if 1/= 0 generate

DFFnotO: EDGE_TRIGGEREDDFF
port map(D => Output(l- 1),

RESET => CLEAR,
CP => CP,
CPnot => CPnot,
Q => Output(I),
Qnot => OPEN);

end generate;

end generate;

-- This OR gate loads the bottom of the stack with either the CLEAR
-- signal or the value of the top of the stack (D FF).

OR1: ORGATE
generic map(2, -- 2 inputs

ORDelay, -- rise inertial delay
ORDelay) -- fall inertial delay

port map(input(l) => CLEAR,
input(2) => Output(Size-1),
output => Din0);
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-ThisORgate feeds the clock input of die bottom of the stack.
-- Ondie initalCLEAR, alis loaded; the rest of the time the
-clock pulse clocks the D FF.

0R2: ORGATE
generic inap(2, -2 inputs

OR.Delay, -- rise inertial delay
OR-Delay) -- fall inertial delay

port niap(input(l) => CLEAR,
input(2) => CP,
output => CPinO);

end structure;
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Appendix C: The VHDL Code for the Major Components

This appendix contains the major components that make up the controller section

of the MCC. They are listed in alphabetical order and begin on separate pages.

FUNCTION CHANGEDETECTOR

-- Date: 12 September 1991
-- Version: 1.01

-- Filename: functionchangedetector.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the
-- function.change-detector component. Its purpose is to
-- detect the beginning of a read or write cycle.

-- Associated files:
-- chip.pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History: Version 1.0 (22 August 1991)
-- Version 1.01 (12 September 1991) - changed the name from clear_
-- wordselect..register to FUNCTION_CHANGE_DETECTOR.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.al;
use WORK.chippkg.all;

entity FUNCTIONCHANGEDETECTOR is
port( Read : in MVL7;

Write : in MVL7;
Function-Change: out MVL7);

end FUNCTIONCHANGE_DETECTOR;

architecture structure of FUNCTIONCHANGEDETECTOR is

signal Rdout: MVL7;
signal Wtout: MVL7;
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-- This component is the OR gate.

component ORGATE -- ZYCAD component
generic (N: Positive; -- N input OR gate

tLH: Time; -- rise inertial delay
tilL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the change detector.

component CHANGE_DETECTOR
generic(Delay: Time);
port(Input: in MVL7;

Output: out MVL7);
end component;

begin

-- component instantiation

Readcd: CHANGE_DETECTOR
generic map(Change_.Detector_.Delay)
port map(Input => Read,

Output => Rdout);

Writecd: CHANGEDETECTOR
generic map(ChangeDetectorDelay)
port map(Input => Write,

Output => Wt.out);

01: ORGATE
generic map(2, -- 2 inputs

ORDelay, -- rise inertial delay
ORDelay) -- fall inertial delay

port map(input(l) => Rdout,
input(2) => Wt_out,
output => Function-Change);

end structure;
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OPERATION STATUS

-- Date: 4 September 1991
-- Version: 1.1

-- Filename: operation.status.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the
-- operationstatus component of the CAM chip controller.
-- Its purpose is to output the status of the chip: 1) data
-- available, 2) read miss, 3) write hit, and 4) write miss.

-- Associated files:
-- chip.pkg.vhd : This file contains constants, variables, etc.
-- needed for this file.

-- History: Version 1.0 (13 August 1991)
-- Version 1.1 (4 September 1991) - added port Counting.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip.pkg.all;

entity OPERATION_STATUS is
port(

Data : in MVL7_Vector;
Prefetching : in MVL7;
Read : in MVL7;
Write : in MVL7;
Resolved-Tags : in MVL7;
SearchComplete : in MVL7;
Counting : in MVL7;
Data_Out_Available : out MVL7; -- read hit
Read_Miss : out MVL7; -- read miss
Write_Miss : out MVL7; -- write miss
WriteHit : out MVL7); -- write hit

end OPERATION_STATUS;

architecture structure of OPERATIONSTATUS is

signal ResolvedTagsNot : MVL7;
signal DataChange : Vector_Word_length;
signal DataOuChange : WiredOrType;
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-- This component detects a change in the signal.

component CHANGE_DETECTOR
generic(Delay: Tune);
port(Input: in MVL7;

Output: out MVL7);
end component;

-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

tiL: Time); -- fall inertial delay
port(input: in MVL7; -- N inputs

output: out MVL7); -- one output
end component;

begin
-- component instantiations

-- The following code generates the change detectors to detect if a
-- change has occurred on the input lines.

CD:
for I in Wordlength-1 downto 0 generate

change_detectors: CHANGE_DETECTOR
generic map(ChangeDetectorDelay)
port map(Input => Data(I),

Output => DataChange(I));

-- This code resolves, by Wired-Or, the signals of Data-Change into

-- one signal.

DataOutChange <= Data.Change();

end generate;
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DIN~: INVGATE
generic map(Inverter..Delay, Inverter_-Delay)
port inap(input => Resolved-Tags,

output => ResolvedTagsNot);

AND 1: ANDGATE
generic map(2, AND..Delay, ANDDelay)
port map(input(1) => Data_OutChange,

input(2) => Prefetching,
output => DataOutAvailable);

AND2: ANDGATE
generic map(3. AND...Delay, ANDDelay)
port niap(input(l) => Read,

input(2) => Resolved-TagsNot,
input(3) => Search-..Complete,
output => ReadMiss);

AND3: ANDGATE
generic map(3, AND -Delay, ANDDelay)
port map(input(1) => Resolve&_TagsNot,

input(2) => Search...Complete,
input(3) => Write,
output => WriteMiss);

AND4: ANDGATE
generic map(3, ANDL.Deiay, AND-Delay)
port map(input(l) => Write,

input(2) => Resolved-Tags,
input(3) => Search-Complete,
output => Write_Hit);

end structure;
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PREFETCHSTATUS

-- Date: 16 August 1991
-- Version: 1.0

-- Filename: prefetchstatus.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the PREFETCH_
-- STATUS component. Its purpose is to output a '' when the
-- prefetch counter is counting the number of clock pulses
-- equal to the number of lines to prefetch from the CAM.

-- Associated files:
-- chip-pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.
-- History:
-- Author:. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip..pkg.all;
use ZYCAD.BVAR1THMETIC.all;

entity PREFETCH_STATUS is
port( CP : in MVL7;

CPnot : in MVL7;
Read : in MVL7;
Resolved-Tags : in MVL7;
Search_Complete : in MVL7;
Reset : in MVL7; -- must be asserted at least 19 ns
Counting : out MVL7);

end PREFETCH_STATUS;

architecture structure of PREFETCHSTATUS is

signal Start: MVL7;

.... .. ...... ...... ... _.-- .............. -- ........... ---- ..--- ............

-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;
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-- This component is the PREFETCH_COUNTER that when started produces an
output of until the clock pulses prefetch-size times.

component PREFETCH_COUNTER
port( Start : in MVL7;

CP : in MVL7;
CPnot : in MVL7;
Reset : in MVL7;
Counting: out MVL7);

end component;

begin

-- component instantiation

Count: PREFETCH_COUNTER
port map(Start => Start,

CP => CP,
CPnot => CPnot,
Reset => Reset,
Counting => Counting);

Al: ANDGATE
generic map(3, -- 3 inputs

ANDDelay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(input(I) => Read,
input(2) => ResolvedTags,
input(3) => Search-Complete,
output => Start);

end structure;
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SEARCH STATUS

-- Date: 5 September 1991
-- Version: 1.3

-- Filename: search_status.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the
SEARCHSTATUS component of the CAM chip controller. Its

-- purpose is to determine when the search cycle is complete.

-- Associated files:
-- chip.pkg.vhd : This file contains constants, variables, etc.
-- needed for this file.

-- History: Version 1.0 (14 August 1991)
-- Version 1.1 (29 August 1991) - deleted the SearchDelay component.
-- Version 1.2 (3 September 1991) - added a DFF to hold the state
-- that the search has been completed.
-- Version 1.3 (5 September 1991) - added the port Counting to clear
-- the DFF flip-flop when the chip is prefetching. This prevents
-- the prefetch counter from resetting and starting over again.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip.pkg.all;

entity SEARCHSTATUS is
port(

Data : in MVL7_Vector,
Read : in MVL7;
Write : in MVL7;
FunctionChange: in MVL7;
Reset_DFF : in MVL7;
Counting : in MVL7;
SearchComplete : out MVL7);

end SEARCH_STATUS;

architecture structure of SEARCHSTATUS is

signal AddressChange : Vector_Address_length;
signal OrOuti MVL7;
signal OrOut2 : MVL7;
signal OrOut2not : MVL7;
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signal SearchDone : MVL7;
signal NOROut : MVL7;
signal ANDOut : MVL7;
signal ResDFF MVL7;

signal ResolvedSignalAddressChange: WiredOrType;

-- This component detects a change in the signal.

component CHANGEDETECTOR
generic(Delay: Time);
port(Input: in MVL7;

Output: out MVL7);
end component;

-- This component is the edge triggered DFF.

component EDGETRIGGEREDDFF
port( D : in MVL7;

RESET: in MVL7;
CP : in MVL7;
CPnot : in MVL7;
Q : out MVL7;
Qnot : out MVL7);

end component;

-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the OR gate.

component ORGATE -- ZYCAD component
generic (N: Positive; -- N input OR gate

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

150



-- This component is the NOR gaze.

component NORGATE -- ZYCAD component
generic (N: Positive; -- N input NOR gate

tLH: Time; -- rise inertial delay
UHL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); - N inputs
output: out MVL7); -- one output

end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

d-HL: Time); -- fall inertial delay
port( input: in MVL7; -- input

output: out MVL7); - output
end component;

begin
__ component instantiations

Il Te following code generates the change detectors to detect if a
-change has occurred on the input lines.

CD:
for I in Word_length- I downto Datajlength generate

search-stat-change-detector: CHANGEDETECTOR
generic map(Change-Detector...elay)
port map(Input => Data(I),

Output => Address_-Change(I));

Ib Tis code resolves, by WiredOr, the signals of Address_.Change
-into one signal.

Resolved..Signal.AddressChange <= Address..Change(I);

end generate;

DFF: EDGE_TRIGGEREDDFF
port map(D => Search_-Done,

RESET => Res_DFF,
CP => OrOut2,
CPnot => OrOutanot,
Q => SearchComplete,
Qnot => OPEN);
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ORI: ORGATE
generic inap(2, OR-..Delay, OR-..Delay)
port map(input(1) => Read,

input(2) => Write,
output => OrOQuti);

0R2: ORGATE
generic map(2, OR.Delay, OR-Delay)
port niap(input(1) => Search-..Done,

input(2) => ANDOut,
output => OrOuQ2);

0R3: ORGATE
generic map(3, OR.Delay, OR-.Delay)
port map(mnput(1) => ResetDFF,

input(2) => ANDOut,
input(3) => Counting,
output => Res_-DEF);

NORI: NORGATE
generic map(2, NORDelay, NOR-Delay)
port map(input(1) => Read,

input(2) => Write,
output => NOROut);

AND I: ANDGATE
generic map(2, ANDDelay, ANDLDelay)
port map(input(1) => Resolved -Signal.Address-Change,

input(2) => Or _Outi,
output => Search-..Done);

AND2: ANDGATE
generic map(2, AND-Delay, AND-Delay)
port map(input(1) => NOROut,

input(2) => Function-..Change,
output => ANDOut);

INV I: INYGATE
generic map(InverterjDelay, Inverter-Delay)
port map(input => Or_-Out2,

output => Or_Out2not);

end structure;
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SELECT WORDSELECT

-- Date: 12 September 1991
-- Version: 1.1

-- Filename: selectwordselect.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the SELECT-
-- WORDSELECT component. Its purpose is to select the
-- correct word select register. The output is fed into the
-- mux that selects the correct one.

-- Associated files:
-- chip.pkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History: Version 1.0 (22 August 1991)
-- Version 1.1 (30 August 1991) - added port DataAvailMEM to
-- determine if data are available from Main Memory on a Read
-- Miss.
-- Version 1.11 (12 September 1991) - changed port name from
-- AddressChange to FunctionChange.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip pkg.all;

entity SELECT_WORDSELECT is
port( Read : in MVL7;

Resolved-Tags : in MVL7;
SearchComplete : in MVL7;
FunctionChange : in MVL7;
MasterReset : in MVL7;
DataAvail_MEM : in MVL7;
WSRSelect : out MVL7);

end SELECT_WORD_SELECT;

architecture structure of SELECT_WORDSELECT is

signal RTnot: MVL7;
signal Din : MVL7;
signal RST : MVL7;
signal Orout: MVL7;
signal OrNot : MVL7;
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-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the OR gate.

component ORGATE -- ZYCAD component
generic (N: Positive; -- N input OR gate

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

tiL: Time); -- fall inertial delay
port (input: in MVL7; -- input

output: out MVL7); -- output
end component;

-- This is the edge-triggere._DFF component.

component EDGE_TRIGGEREDDFF
port(D : in MVL7;

RESET: in MVL7;
CP : in MVL7;
CPnot : in MVL7;
Q : out MVL7;
Qnot : out MVL7);

end component;

begin

-- component instantiation
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INWI: INVGATE
generic map(Inverter-Delay, Inverterj..Delay)
port map(input => ResolvdTags,

output => RTILnot);

INV2: INVGATE
generic map(Invertet..Delay, Inverter...Delay)
port map(input => Oro-ut,

output => OrNot);

AND 1: ANDGATE
generic map(4, -4 inputs

AND-..Delay, -- rise inertial delay
AND-Delay) -- fall inertial delay

port map(input(1) => Read,
input(2) => RT_not,
input(3) => Search-Complete,
input(4) => Data_AvailMEM,
output => D-in);

ORI: ORGATE
generic inap(2, -2 inputs

ORDelay, -- rise inertial delay
ORDelay) -- fall inertial delay

port rnap(input(1) => Function-Change,
input(2) => Master-..Reset,
output => RST);

0R2: ORGATE
generic map(2, -- 2 inputs

ORDelay, -- rise inertial delay
OR..Delay) -- fall inertial delay

port map(input(1) => D in,
input(2) => RST,
output => Or _out);

DFF: EDGE_TRIGGEREDDF
port map(D => D in,

RESET => RST,
CP => Or out,
CPnot => OrNot,
Q => WSR_Select,
Qnot => OPEN);

end structure;
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WORDSELECT

-- Date: lI September 1991
-- Version: 2.0

-- Filename: word_select.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the
-- WORDSELECT component of the CAM chip. It
-- contains the shift registers that act as the word select
-- inputs to the CAM array.

-- Associated files:
-- chip-pkg.vhd : This file contains constants, variables, etc.
-- needed for this file.

--History: Version 1.0 (12 August 1991)
-- Version 1.1 (20 August 1991) - added port TOSCPnot to
-- correspond to addition of port to edge-triggered DFF.
-- Version 1.2 (29 August 1991) - added an OR gate to clear the
-- DFF register of the WordSelector with its output. Its
-- inputs are the Master_Reset and the FunctionChange signal.
-- Had to change ports as a result.
e. Version 1.3 (4 September 1991) - added a DFF to hold the Sel0
-- line high during a read hit so the WordSelector will shift
-- on the prefetch. Also added a CHANGE_DETECTOR to clock the
-- signal in.
-- Version 1.4 (5 September 1991) - added AND gate to feed the Clear
-- port of the WordSelector. Now it can only be cleared when
-- not prefetching.
-- Version 1.5 (10 September 1991) - added a NOR gate to output to
-- the new BitSelect port used to connect into the BitSelect_
-- Bus.
-- Versinn 2.0 (11 September 1991) - This was a major change due
-- to adding the component controller to the cam_chip. Timing
-- was off and as a consequence data was being written into the
-- CAM array when it shouldn't have.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip.pkg.all;
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entity WORDSELECTr is
port(

ClearTOS : in MVL7;
TOSCP : inMVL7;
TOSCPnot :in MVL7;
WordSelectorCP in MVL7;
WSRSelect :in MVL7;
Tagsjn :in MVL7_Vector,
Cleanl in MVL7;
Clear2 : in MVL7;
SRSelect :in MVL7;
Shifting :out MVL7;
BitSelect : out MVL7;
SelectWord :out MVL7_Vector);

end WORDSELECT;

architecture structure of WORD_SELECT is
signal TOSOutput : Vector_-Depth;
signal SR..Output :Vector _Depth;
signal On _out :MVL7;
signal 0R3_out :MVL7;
signal 0R4_out :MVL7;
signal 0R4_outnot :MVL7;
signal AND I-out :MVL7;
signal AND2_-out : MVL7;
signal AND3_out :MVL7;
signal AND4_out : MVL7;
signal NORI_out : MVL7;
signal CD2_out : MVL7;
signal CD3_out :MVL7;
signal CD4_out :MVL7;
signal DFF2_-out :MVL7;
signal WordSelCP :MVL7;
signal Selector :MVL7;
signalD_-CP : MVL7;
signal DCPnot :MVL7;
signal Selector- not :MVL7;
signal SelectWord-Signal: Vector Depth;
signal Resolved_Select_Word: Wired_Or_Type;

-This is the shift register that shifts up only. It is used to keep track
-- of the TOS for writing into the chip.

component TOSSHIFTER
generic(Size: Positive);

CLEAR: in MVL7;
CP : in MVL7;
CPnot : in MVL7;
Output: inout MVL7_Vector);

end component;
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------. H-- --- ---- ---------------------.......... ------------------------.... .....

-- This component is a shift register with load capabilities. It is used to
-- store the location of a word on a search hit.

component SHIFT_REGISTER
generic(Size: Positive);
port(

In_Vector : in MVL73_ector,
Selo : in MVL7;
Clockin : in MVL7;
Clear : in MVL7;
SROutput: inout MVL7_Vector);

end component;

-- This is the ZYCAD component 2xI MUX.

component MUX2xl
generic(tLH: Time; -- rise inertial delay

tHL: Time); -- fall inertial delay
port(

InO : in MVL7;
Inl :in MVL7;
Sel : in MVL7;
Output: out MVL7);

end component;

-- This component is the OR gate.

component ORGATE -- ZYCAD component
generic (N: Positive; -- N input OR gate

tLH: Time; -- rise inertial delay
tiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the NOR gate.

component NORGATE -- ZYCAD component
generic (N: Positive; -- N input NOR gate

tLH: Time; -- rise inertial delay
tiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); one output

end component;
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-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tHL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

tilL: Time); -- fall inertial delay
port(input: in MVL7; -- input

output: out MVL7); -- output
end component;

-- This component is the CHANGEDETECTOR.

component CHANGE_DETECTOR
generic(Delay : Time);
port (Input : in MVL7;

Output: out MVL7);
end component;

-- This component is the edge triggered DFF.

component EDGE_TRIGGEREDDFF
port( D : in MVL7;

RESET: in MVL7;
CP : in MVL7;
CPnot: in MVL7;
Q : out MVL7;
Qnot : out MVL7);

end component;

begin
-- component instantiations

TOS.pointer. TOS_SHIFTER
generic map(Depth)
port map(CLEAR => Clear_TOS,

CP => TOS_CP,
CPnot => TOS_CPnot,
Output => TOSOutput);
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WordSelector: SHIFTREGISTER
generic map(Depth)
port mapIn-Vector => Tagsjn,

SelO => Selector,
Clocin => WorL.SeLCP,
Clear => 0R3_out,
SRSOutput => SR_-Output);

Il Te following code generates the MUXs used to select which of the
-- word select registers (TOS-pointer or Word_Selector) to use.

Ml:
for I in Depth- I downto 0 generate

MUXs: MUX2xl
generic map(MUXJDelay, MUXJDelay)
port map(InO => SR.Output(I),

l => TOS...Output(I),
Sel => WSRSelect,
Output => Select_WordSignal(I));

ResolvedSelectWord <= SelectWordLSignal(I);

end generate;

ORI: ORGATE
generic map(2, -2 inputs

ORDelay, -- rise inertial delay
ORDelay) -- fall inertial delay

port map(input(1) => Clearl,
input(2) => Clear2,
output => Orl-out);

0R2: ORGATE
generic map(2, -2 inputs

ORDelay, -- rise inertial delay
ORDelay) -- fall inertial delay

port map(input(1) => WordSelector P,
input(2) => D-.CP,
output => Word_SelCP);

0R3: ORGATE
generic map(2, -2 inputs

ORDelay, -- rise inertial delay
OR_Delay) -- fall inertial delay

port niap(input(l) => AND I-out,
input(2) => AND4_out,
output => 0r3_out);
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0R4: ORGATE
generic niap(2, -- 2 inputs

ORDelay, - rise inertial delay
OR-Delay) -- fall inertial delay

port map(input(1) => AND2_.out,
input(2) => AND3_.out,
output => 0R4_out);

ANDI: ANDGATE
generic map(2, -2 inputs

ANDDelay, -- rise inertial delay
AND jelay) -- fall inertial delay

port map(input(1) => CD2_-out,
input(2) => Selecto-not,
output => AND I-out);

AND2: ANDGATE
generic map(2, -2 inputs

ANDDelay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port inap(input(l) => CD3_out,
input(2) => NOR Lout,
output => AND2_out);

AND3: ANDGATE
generic niap(2, -- 2 inputs

ANDDelay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(input(l) => CD2_-out,
input(2) => Selector,
output => AND3.-out);

ANN4: ANDGATE
generic inap(2, -2 inputs

ANDDelay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(input(l) => ORil_out,
input(2) =: Selectornot,
output => AND4..out);

DFF1I: edge-triggered&DFF
port niap(D => SRSelect,

RESET => Clearl,
CP => D-CP,
CPnot => DCPnot,
Q => Selector,
Qnot => Selector-Not);
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DFF2: edge-riggere&d-FF
port map(D => Selector,

RESET => Clearl,
CP => 0R4,..out,
M~ot => 0R4_-outnot,

Q => DFF2_out,
Qnot => OPEN);

CDl: CHANGEDEThCTOR
generic map(ChangejDetector-Delay)
port map(lnput => SRSelect,

output => ID..CP);

0)2: CHANGEDETECTOR
generic map(Change..Detectr...Delay)
port map(lnput => Selector,

Output => CD2_out);

CD3: CHANGEDETECTOR
generic map(Change-Detector-Delay)
port mapfInput => NORI-out,

Output => C3_-out);

INVI: INYGATE
generic map(Inverer..Delay, Inverter_-Delay)
port map(iput => D-CP,

output => DCPnot);

INV2: INVGATE
generic map(Inverter-Delay, Inverter_-Delay)
port map(input => 0R4_out,

output => 0R4_outnot);

NOR 1: NORGATE
generic niap(2, -2 inputs

NORIDelay, -- rise inertial delay
NOR_]Delay) -- fall inertial delay

port niap(input(l) => Resolved_SelectWord,
input(2) => Selector,
output => NOR I-out);
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NOR2: NORGATE
generic map2, -- 2 inputs

NORDelay, - rise inertial delay
NOR-Delay) -- fall inertial delay

port niap(input(1) => DFF2_out,
input(2) => Selector,

Selectoutput 
=> BitSelect);

SeetWord <-- Select_ Word.Signal;
Shifting <= Selector,

end structure;
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WORDSELECT CLOCK

-- Date: 10 September 1991
-- Version: 1.5

-- Filename: word_select_clock.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the
-- WORDSELECT_CLOCK component of the CAM chip.
-- The outputs are fed into the word select registers and act
-- as the clock inputs to those registers.

-- Associated files:
-- chip.pkg.vhd : This file contains constants, variables, etc.
-- needed for this file.

-- History: Version 1.1 (21 August 1991)
-- Version 1.2 (29 August 1991) - took off the CP input into ANDi.
-- Version 1.3 (5 September 1991) - added a buffer to the TOSClock
-- port so it will transition at the same time as TOSClockNot.
-- Version 1.4 (5 September 1991) - The TOS_Clock and TOSClockNot
-- ports go into the TOSshifter. The values are valid after
-- the falling edge of the clock and the way I had it there was
-- no falling edge. To fix that, I put in CHANGE_DETECTORs to
-- give a rising and falling edge. I wanted this to occur only
-- when a Read was high so I ANDed this signal with the results
-- of the changedetectors. Also, Master-Reset port was used to
-- clock in the Master_Reset signal but the DFFs Im using don't
-- need a clock to reset.
-- Version 1.5 (10 September 1991) - deleted the Read input into
-- AND3 gate. As long as Counting is ' then a Read has been
-- requested.

-- Author- Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip.pkg.all;

entity WORD_SELECT_CLOCK is
port( Read : in MVL7;

Write : in MVL7;
SearchComplete : in MVL7;
ResolvedTags : in MVL7;
CP : in MVL7;
Counting : in MVL7;
TOSClock : out MVL7;
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TOSClockNot : out MVL7;
WordSelRegClock: out MVL7);

end WORDSELECTCLOCK;

architecture structure of WORD_SELECT_CLOCK is

-- This component is the AND gate.

component ANDGATE -- ZYCAD component
generic (N: Positive; -- N input AND gate

tLH: Time; -- rise inertial delay
tilL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the OR gate.

component ORGATE -- ZYCAD component
generic (N: Positive; -- N input OR gate

tLH: Time; -- rise inertial delay
tiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the Inverter gate.

component INVGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

tiL: Time); -- fall inertial delay
port (input: in MVL7; -- input

output: out MVL7); -- output
end component;

-- This component is the Buffer gate.

component BUFGATE -- ZYCAD component
geneii, (tLH: Time; -- rise inertial delay

tilL: Time); -- fall inertial delay
port (input: in MVL7; -- input

output: out MVL7); -- output
end component;

165



-- This component is the CHANGE_DETECTOR.

component CHANGE _DETECT OR
generic(Delay: Time);
port (Input: in MVL7;

Output: out MVL7);
end component;

signal RT-not :MVL7;
signal Read_-Miss : MVL7;
signal Write-out : MVL7;
signal Read-out : MVL7;
signal CDl_out : MVL7;
signal AND4_-out :MVL7;

bein_ component instantiations

INY 1: INVGATE
generic map(Inverter.-Delay, -- rise inertial delay

Inverter--.Delay) -- fall inertial delay
port map(input => Resolve&tTags,

output => RT-not);

INV2: INYGATE
generic map(Inverte...Delay, -- rise inertial delay

Inverter..Delay) -- fall inertial delay
port map(input => AND4_out,

output => TOSClockNot);

BUFi: BUFGATE
generic map(BUF...Delay, -- rise inertial delay

BUF_-Delay) -- fall inertial delay
port map(input => AND4_out,

output => TOSClock);

AND I: ANDGATE
generic map(3, -- 3 inputs

AND_-Delay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(input(l) => Read,
input(2) => SearchL-Comnplete,
input(3) => RT -not,
output => ReadMiss);
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AND2: ANDGATE
generic map(3, -3 inputs

ANDDelay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(input(l) => Write,
input(2) => Search...Complete,
input(3) => Resolved-Tags,
output => Write-out);

AND3: ANDGATE
generic map(2, -2 inputs

ANDDelay, ri se inertial delay
ANDDelay) -- fall inertial delay

port map(input(1) => Counting,
input(2) => CP,
output => Readout);

AND4: ANDGATE
generic map(2, -- 2 inputs

ANDDelay, -- rise inertial delay
ANDDelay) -- fall inertial delay

port map(input(l) => ReadMiss,
input(2) => CD 1_out,
output => AND4Lout);

ORI: ORGATE
generic map(2, -- 2 inputs

ORDelay, -- rise inertial delay
ORDelay) -- fall inertial delay

port map(input(l) => Write-out,
input(2) => Read-out,
output => WordSel-Reg-Clock);

CD I: CHANGEDETECTOR
generic mnap(Change-Detector..Delay)
port map(Input => ReadMiss,

Output => CD1_out);

end structure;
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Appendix D: The VHDL Code for the CAMchip and THECONTROLLER

This appendix contains the VHDL code of the CAM chip and the controller. The

CAM chip is the highest hierarchical level of this thesis. The controller is a component

on the chip and represents all control logic needed to exercise the CAM array. The entity

of the CAM chip is first presented followed by the CAM chip's structural description.

Finally, the VHDL of the controller is given.

CAM-Chip Entity

-- Date: 9 September 1991
-- Version: 2.0
-- Filename: camchipentity.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL
-- Description: This file contains the entity of the CAM chip.
-- Associated files: chip.pkg.vhd : This file is where the size of

the CAM array is defined. Other
declarations are also contained
in this file.

-- chip-pkgbody.vhd : This file contains the sub-
routines WiredAnd and WiredOr
used by the chip.

-- cam_chip-structure.vhd: This file contains the structure
of the CAM chip. It is formed by
generating copies of the CAM
cell.

-- History: Version 1.0 (3 May 1991)
-- Version 1.1 (12 June 9191) - replaced M, RX, and RY with the actual
-- outputs of the entire chip T, R, and P.
-- Version 1.2 (25 June 1991) - changed name of outputs to correspond
-- with camschip-structure wire connections.
-- Version 1.3 (3 July 1991) - added port Load to allow clock into
-- chip as input into registers.
-- Version 1.4 (15 July 1991) - changed ports to correspond to
-- changing input register to Address and Data register.
-- Version 1.5 (8 August 1991) - added ports for ValidOut bit and
-- ResolvedTags. These are preliminary changes to get ready to
-- go in and change what I have to what I really need.
-- Version 1.6 (28 August 1991) - deleted the bit select registers
-- and I will use only the MUXs. The MUXs will feed into the
-- Bit_SelectBus.
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-- Version 1.7 (30 August 1991) - deleted the MUXs and replaced them
-- with inverters since that is all they were acting as. Also
-- deleted registers to hold the Address_In, Data_In, and
-- Data_Out data and replaced them with buffers.
-- Version 2.0 (9 September 1991) - This version contains the
-- controller. As a consequence of adding the controller, a few
-- ports were added and some deleted.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chip pkg.all;

entity CAM-chip is
port(

DataIn : in VectorDatajength;
-- data input from data bus

AddressIn : in VectorAddressjength;
-- address input from
-- address bus

Read : in MVL7;
-- read request port

Write : in MVL7;
-- write request port

Data_AvailMEM in MVL7;
-- signifies that data is
-- available from main memory

Master_Reset : in MVL7;
-- used to put chip in
-- initial state

CP : in MVL7;
CPnot : in MVL7;

-- the chips clock
DataOut : out VectorWordlength;

-- data output to data bus
ValidOut : out MVL7;

-- resolved signal (Wired-OR)
-- to determine validity of
-- output data

Data_Out_Available : out MVL7;
-- signifies that data are
-- available on output
-- ports on a read hit

Read_Miss : out MVL7;
-- signifies a read miss

Write_Miss : out MVL7;
-- signifies a write miss

Write_Hit : out MVL7);
-- signifies a write hit

end entity;
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CAMChip Structure

-- Date: 9 September 1991
-- Version: 2.0

-- Filename: camchipstructure.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the generated architecture of a
-- CAM cache chip.
-- Associated files: chip-pkg.vhd : This file is where the size of

the CAM array is defined. Other
declarations are also contained
in this file.

-- chip-pkgbody.vhd : This file contains the sub-
routines WiredAnd and WiredOr
used by the chip.

-- cai_chipentity.vhd : This file contains the entity
description of the CAM chip.

-- History: Version 1.0 (6 May 1991)
-- Version 1.1 (12 June 1991)
-- Version 1.2 (25 June 1991) - created lines (Buses) to connect
-- all inputs and outputs of each cell.
-- Version 1.3 (3 July 1991) - added register to store my DataIn,
-- BitSelect, DataOut, and ValidOut values.
-- Version 1.4 (15 July 1991) - changed DataIn register to two
-- registers to hold Address and Data.
-- Version 1.5 (8 August 1991) - added ports for valid_out bit and
-- Resolved-Tags. These are preliminary changes to get ready to

go in and change what I have to what I really need.
-- Version 1.6 (28 August 1991) - deleted the bit select registers
-- and I will use only the MUXs. The MUXs will feed into the
-- BiLSelectBus.
-- Version 1.7 (30 August 1991) - deleted the MUXs and replaced them
-- with inverters since that is all they were acting as. Also
-- deleted registers to hold the AddressIn, DataIn, and
-- DataOut data and replaced them with buffers.
-- Version 2.0 (9 September 1991) - This version contains the
-- controller. As a consequence of adding the controller, a few
-- ports were added and some deleted.

-- Author Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.Chip-pkg.all;
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architecture structure of CAMchip is

-- The following signals are buses that connect each cell of the CAM array.

-- The MSBs are for the address, the LSBs are for the data
signal DataInBus : VectorWordlength :=

(Wordjength- I downto 0 => '0');
signal Bit_Select_Bus : VectorWord-length :=

(Wordilength-1 downto 0 => '0');

signal WordSelectBus : VectorDepth := (Depth-I downto 0 => '0');

-- This signal is the output vector of the XORs that evaluate the validity
-- of the outgoing data.

signal Valid_Out_Signal: VectorDatajength;

-- This signal is the converted ResolvedSignalTag from WiredOr_Vector to
-- MVL7_Vector.

signal Tag_Vector: Vector-Depth;

-- The following signals are resolved signals. The subtypes are defined in
-- chip.pkg.vhd. The functions are defined in chip-pkgjbody.vhd.

signal Resolved-Signal-DataOut : WiredOrVector(
Word-length-1 downto 0);

signal ResolvedSignaljDataCheck: WiredOrVector(
Data-length- 1 downto 0);

signal ResolvedSignalTag : WiredAndVector(Depth-1 downto 0);
signal Resolved-Tags : Wired_OrType;
signal Resolved-Signal-ValidOut : Wired-And-Type;

-- This signal holds the data out signals that are converted from WiredOr
-- type to MVL7 vector before going into the DataOutBuffers.

signal Data_OutVector: VectorWord_length;

-- This signal contains the data from the DataOut_Buffers. It connects to
-- the DataOut ports of the chip and the controller.

signal DataOutSignalVector: VectorWordjength;
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-- This signal connects the controllers SelecLWord port to the OR gates that
-- feed the WordSelectBus.

signal WordSelect: Vector_Depth;

-- This signal is connected to the output port of the controller. It is
-- connected to the BitSelectBus.

signal BitLSelecLSignal: MVL7;

-- This is the basic component of the CAM chip. These cells will be put into
-- an array to form the CAM chip array.
........------.--. . .-- .......................... - ... .. - ....... o ...... • ........

component CAM_cell
port(

D: in MVL7; -- data line
B: in MVL7; -- bit select line
W: in MVL7; -- word select line
M: out MVL7; -- match line
RY: out MVL7; -- data output (W and C)
RX: out MVL7); -- data output (W and Cnot)

end component;

-- This component is the exclusive-or gate.

component XORGATE -- ZYCAD component
generic (N: Positive; -- N input XOR gate

tLH: Time; -- rise inertial delay
tilL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;

-- This component is the OR gate.

component ORGATE -- ZYCAD component
generic (N: Positive; -- N input OR gate

tLH: Time; -- rise inertial delay
tHiL: Time); -- fall inertial delay

port(input: in MVL7_VECTOR (1 to N); -- N inputs
output: out MVL7); -- one output

end component;
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-- This component is the buffer gate.

component BUFGATE -- ZYCAD component
generic (tLH: Time; -- rise inertial delay

tiL: Time); -- fall inertial delay
port(input: in MVL7; -- input

output: out MVL7); -- output
end component;

-- This component is the controller. The file is called 'thecontroller'.

component THE_CONTROLLER
port( Read : in MVL7;

Write : in MVL7;
ResolvedTags : in MVL7;
CP : in MVL7;
CPnot : in MVL7;
Data-AvailMEM : in MVL7;
MasterReset : in MVL7;
Data-Out : in Vector_Word_length;
Data_In : in Vector_Addressjength;
Resolved_SignalTag: in Vector_Depth;
DataOutAvailable : out MVL7;
ReadMiss : out MVL7;
WriteMiss : out MVL7;
WriteHit : out MVL7;
BitSelect : out MVL7;
SelectWord : out VectorDepth);

end component;

begin

-- The following code automatically generates the CAM array for the address.
-- Word_length, Data-length, and Depth are defined in chip-pkg.vhd. The
-- left-most bit is the most significant bit while the right-most is the
-- least significant bit.

Al:
for I in Wordlength- I downto Datalength generate -- Address length

DI:
for J in Depth- I downto 0 generate

AddressArray: CAM_cell
port map(

D => DataInBus(),
B => Bit_Select_Bus(I),
W => Word_SelectBus(J),
M => ResolvedSignalTag(J),
RY => ResolvedSignalDataOut(I),
RX => OPEN);
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-- This signal is a single bit that signifies whether a match

-- on any word has occurred.

ResolvedTags <= ResolvedSignalTag(J);

end generate;

-- These buffers buffer the incoming address.

AddressBuffers: BUFGATE
generic map(BUFDelay, BUFJDelay)
port map(input => Address_In(I),

output => Data_In_Bus());

end generate;

-- The following code automatically generates the CAM array for the data.
-- Datajength, and Depth are defined in chippkg.vhd. The
-- left-most bit is the most significant bit while the right-most is the
-- least significant bit (zero).

A2:
for K in Datalength-I downto 0 generate

DI:
for L in Depth- I downto 0 generate

DataArray: CAMcell
port map(

D => DatainBus(K),
B => BitSelectBus(K),
W => WordSelectBus(L),
M => OPEN,
RY => ResolvedSignalDataOut(K),
RX => Resolved_SignalDataCheck(K));

end generate;

-- This code generates an array of xor gates that evaluates the
-- ValidOut for each bit of the data. It xor's the DataOut
-- and the Data_Check bit. ValidOut is 'I' if the bit is valid.

XORArray: XORGATE
generic map (2, -- 2 inputs,

XORDelay, -- rise inertial delay,
XOR Delay) -- fall inertal delay

port map(
input(l) => ResolvedSignalData.Out(K),
input(2) => Re'olved_SignalDataCheck(K),
output => Valid_Out_Signal(K));
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-- The port ResolvedSigal_ValidOut is determined by Wire-ORing the
-- ValidOut_Signal.

ResolvedSignal_Valid_Out <= ValidOuLSignal(K);

-- These buffers buffer the incoming data.

DataBuffers: BUFGATE
generic map(BUFDelay, BUFJDelay)
port map(input => DataIn(K),

output => DataInBus(K));

end generate;

-- This line converts the WiredAnd signal to MVL7 to output onto
-- the ValidOut port. (added 21 Oct 91)

ValidOut <= WiredAnd_ToMVL(ResolvedSignalValidOut);

.........------- -- o- ....................------ ..........-- ...................

-- The following code generates OR gates that select all cells upon resetting
-- the chip. This eneables all cells to be intialized to '0' when Master_
.. Reset goes high.

01:
for M in Depth-I downto 0 generate

ORs: ORGATE
generic map (2, --2 inputs,

OR-Delay, -- rise inertial delay,
ORDelay) -- fall inertal delay

port map(
input(l) => MasterReset,
input(2) => Word_Select(M),
output => WordSelect_Bus(M));

end generate;

..... ---- - ---- - -----......---------.-.. ...........-----------.................

-- The following code instantiates a particular cell of the array. It allows
- you to 'cd' into the cell for troubleshooting. It is a copy of a cell
-- generated with the code above. This cell is a data cell.
-- THIS CELL SHOULD NOT BE IMPLEMENTED IN HARDWARE!
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Cel_00: CAM-cell
port map(

D => DataInBus(O), -- across
B => BitSelectBus(0), -- across
W => WordSelect_Bus(0), -- down
M => ResolvedSignalfTag(0), -- down
RY => ResolvedSignalData_Out(0), -- across
RX => ResolvedSignalData_Check(O)); -- across

-- The following code instantiates a particular cell of the array. It allows
-- you to 'cd' into the cell for troubleshooting. It is a copy of a cell
-- generated with the code above. This cell is an address cell.
-- THIS CELL SHOULD NOT BE IMPLEMENTED IN HARDWARE!

CellAddress: CAMcell
port map(

D => DataInBus(Wordlength-l), -- across
B => Bit_Select_Bus(Wordlength-1), -- across
W => WordSelectBus(Depth-2), -- down
M => ResolvedSignal-Tag(Depth-2), -- down
RY => ResolvedSignalDataOut(Wordjlength-1),-- across
RX => OPEN); -- across

-- This code generates the buffers that buffer the output data.

Bl:
for N in Word-length-l downto 0 generate

DataOutBuffers: BUFGATE
generic map(BUFDelay, BUFDelay)
port map(input => Data_Out_Vector(N),

output => DataOutSignal-Vector(N));
end generate;

-- This line converts the ResolvedSignalDataOut and Resolved-SignalTag
-- signals into an MVL7 vector.

Data_OutVector <= WiredOrToMVL7_Vector(ResolvedSignalDataOut);
Tag-Vector <= WiredAnd_ToMVL7_Vector(ResolvedSignaljTag);

-The following assigns the Data.Out port of the chip with the DataOut
-- Signal-Vector that comes out of the DataOut_Buffers.

DataOut <= DataOutSignal.Vector;
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-- This connects the controller to the rest of the chip.

Controller: THE_CONTROLLER
port map(

Read => Read,
Write => Write,
Resolved_Tags => Resolved-Tags,
CP => CP,
CPnot => CPnot,
DataAvailMEM => Data_AvailMEM,
MasterReset => Master_Reset,
DataOut => DataOut_SignalVector,
DataIn => DataIn_Bus

(Wordjlength-1 downto Data-length),
ResolvedSignalTag => Tag-Vector,
DataOutAvailable => DataOut_Available,
ReadMiss => Read-Miss,
WriteMiss => WriteMiss,
Write_Hit => WriteHit,
BitSelect => Bit_SelectSignal,
SelectWord => Word-Select);

-- This process simply connects the BitSelect.Signal from the controller to
-- each line fo the Bit_Select_Bus.

PI:
process(BitSelectSignal)

begin
for 0 in Wordlength-I downto 0 loop

BitSelectBus(O) <= BitSelectSignal;
end loop;

end process;

end structure;
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CAM Chip Behavior

-- Date: 21 October 1991
-- Version: 1.0

-- Filename: camchip-behavior.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the architecture behavior of the
-- CAM cache chip.
-- Associated files: chip pkg.vhd : This file is where the size of

the CAM array is defined. Other
declarations are also contained
in this file.

-- chip.pkg-body.vhd : This file contains the sub-
routines WiredAnd and WiredOr
used by the chip.

-- cam_chip-..entity.vhd : This file contains the entity
description of the CAM chip.

-- History:
-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.Chip-pkg.all;

architecture behavior of cam-chip is

-- The following are declared types for the behavioral description.
-- MEM_TYPE is for the CAM array State is the state types.

type MEMTYPE is array(Depth downto 1) of VectorWord-length;
type State is (Start-State, Read_HitState, ReadMissState,

Write_HitState, WriteMissState);

-- The following are constant time declarations.

constant SearchDelay : Time := 16 ns;
constant StateOutput_Delay : Time := 3 ns;
constant MEMDelay : Time := 10 ns;
constant WriteDelay : Time:= 4 ns;
constant Write_Miss_Delay : Time := 25 ns;
constant Data_Out_Avail_Init_Delay : Time:= 12 ns;
constant Data_Out_Init_Delay : Time := 16 ns;
constant Valid_Outlnit_Delay : Time := 19 ns;
constant FunctionChangeDelay : Time := 3 ns;
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-- This signal is used when all zeros are needed for a word.

signal AllZeros : Vector_Wordlength :=
(Wordlength-1 downto 0 => '0');

-- This signal holds the state in which the chip is in.

signal StateRegister: State := StartState;

-- This signal holds the position of the word found in the CAM.

signal Tag: Natural := 0;

-- This signal signifies if a search hit has occurred.

signal SearchHit: MVL7 := '0';

-- The following signals are used to multiplex the correct -alue.
-- The MUX code is at the end of the behavioral description.

signal cam_array, cam-arrayl, camarrayS, c.urarrayRH,
camnarrayRM, cam_arrayWH: MEMTYPE;

signal StateRegisterS, State .RegisterRH, State-RegisterRM,
StateRegisterWH, State-RegisterWM: State;

signal DataOutAvailableI, DataOutAvailableRH,
DataOutAvailableTEMP: MVL7;

signal ReadMissl, ReadMissRM, ReadMissTEMP: MVL7;
signal Write_Hit!, Write_HitWH, WriteHitTEMP: MVL7;
signal WriteMiss!, WriteMissWM, WriteMissTEMP: MVL7;
signal Data_OutI, DataOutRH, DataOutTEMP: MVL7 Vector

(Word_length- I downto 0);
signal Valid_Out!, ValidOutRH, ValidOutTEMP: MVL7;

begin

-- Initialize: This block is used to initialize the chip.

Init: block(MasterReset='I' and not Master_Reset'S table)
begin

Data_OutAvailable! <= '0' after Data_Out_Avail_lnitDelay;
ReadMissl <= '0' after StateOutputDelay;
WriteHit! <= '0' after StateOutputDelay;
WriteMissI <= '0' after StateOutputDelay;
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DataOutl <= All_Zeros after DataOutLInitDelay;
ValidOutl <= '0' after ValidOutIniLDelay;

-- This process clears the CAM array.

process(guard)
begin

for I in Depth downto 1 loop
cam-arrayI(I) <= All_Zeros;

end loop;

end process;

end block Init;

-- Search state: In this state the address is searched for and the state
-- register is assigned a value.

Search-process: process
begin

wait on Read, Write;
if Read = '1' or Write = '1' then

-- This loop searches the CAM array and marks the
-- found word with Tag.

Searchloop:
for J in Depth downto 1 loop

if (camarray(J)
(Word-length-1 downto Datajlength)

= AddressIn) then
Tag <= J;
exit;

else Tag <= 0;
end if;

end loop;

wait for SearchDelay;
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-- This 'if statement sets the state register to
-- the proper state value.

if Read = '1' and Tag/- 0 then
StateRegisterS <= ReadHitState;

elsif Read = '1' and Tag = 0 then
StateRegisterS <= ReadMissState;

elsif Write ='1' and Tag /= 0 then
StateRegisterS <= Write_Hit_State;

else
StateRegisterS <= WriteMissState;

end if;

end if;

end process Search-process;

-- Read Hit state.

RH: process
variable Kcount: Natural; -- this variable is used for

-- for troubleshooting.
begin

wait on StateRegister until StateRegister = ReadHitState;

-- This is the prefetch loop.

for K in Tag-I to PrefetchBlockSize+Tag-2 loop

Kcount := K;

-- This is the first word being read from the CAM.

if K = Tag- 1 then
wait for 40 ns;
DataOutRH <= cam-array((K mod Depth) + 1);
wait for AND-Delay;
ValidOutRH <= '1';
wait for ORDelay;
Data_Out_AvailableRH <= '1';
wait for ChangeDetectorDelay;
DataOutAvailableRH <= '0';
wait for 2 ns;

end if;
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-- These are the remaining words being read from CAM.

if K /= Tag- I then
wait for Clock_Period - ANDDelay -

ORDelay - ChangeDetectorDelay;
DataOutRH <= camarray((K mod Depth) + 1);
wait for AND-Delay + ORDelay;
Data_OutAvailableRH <= 'l';
wait for ChangeDetector Delay;
DataOut_AvailableRH <= '0';

end if;

end loop;

-- This signifies the end of the prefetch cycle.

wait for 13 ns - ANDDelay -
ORDelay - Change-DetectorDelay;

DataOutRH <= All-Zeros;
wait for 3 ns;
Valid_OutRH <= '0';

StateRegisterRH <= StartState; -- reset state register

end process RH;

-- Read Miss state. In this state the CAM waits for data from main memory
-- before writing it into the CAM.

RM: process
variable TOS-pointer : Positive:= 1;

begin

wait on StateRegister until StateRegister = ReadMissState;

-- This assignment copies the CAM array into the local process.

camarrayRM <= cam_array;

wait for StateOutputDelay;
Read_MissRM <= '1';
TOS-pointer:- (TOS-pointer mod Depth) + 1;

wait for MEMDelay;
camarrayRM(TOS-pointer)(Wordjlength- 1 downto Data-length)

<= AddressIn; -- write address
cam_arrayRM(TOS-pointer)(Datajlength- 1 downto 0)
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<= Data_In; -- write data

ReadMissRM <= '0';
StateRegisterRM <= Start-State; -- reset state register

end process RM;

-- Write Hit state. Data are written over the old data.

WH: process
begin

wait on StateRegister until StateRegister = WriteHit_State:

-- This assignment copies the CAM array into the local process.

camarrayWH <= cam_array;

wait for State_OutpuLDelay;
Write_HitWH <='1';

wait for Write_Delay;
cam_arrayWH(Tag)(Word-length- 1 downto Datajength)

<= AddressIn; -- write address
cam_arrayWH(Tag)(Datajlength- 1 downto 0)

<= Data_In; -- write data

WriteHitWH <= '0';

StateRegisterWH <= Start-State; -- reset state register

end process WH;

............................................................................

-- Write Miss state.
.... ........ --- . .-- ..---------- ...........................................

WM: process
begin

wait on StateRegister until StateRegister = WriteMissState;
wait for State_OutpuLDelay + 1 ns;
WriteMissWM <='1';
wait for FunctionChangeDelay;
WriteMissWM <= '0';

wait for Write_MissDelay;
StateRegisterWM <= Start-State; -- reset state register

end process WM;
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-- The following code are multiplexed values. The TEMP signals are
-- necessary to avoid having more than one source for the signals.

cam-array <= camarrayI when not camarrayrquiet else
cam_arrayS when not camarrayS'quiet else
cam_arrayRH when not camarrayRH'quiet else
cam_arrayRM when not canarrayRM'quiet else
camarrayWH when not cam arrayWH'quiet else
camarray;

State_-Register <= StateRegisterS when not StateRegisterS'quiet else
StateRegisterRH when not StateRegisterRH'quiet else
StateRegisterRM when not StateRegisterRM'quiet else
StateRegisterWH when not StateRegisterWH'quiet else

State_Register;

Data_Out_AvailableTEMP <= Data_OutAvailableRH when
not DataOutAvailableRH'quiet else

DataOut_Availablel when
not DataOutAvailablel'quiet else

DataOutAvailableTEMP;
DataOutAvailable <= DataOut_AvailableTEMP;

Read_MissTEMP <= Read_MissRM when not ReadMissRMquiet else
ReadMissl when not Read_Missl'quiet else
Read_MissTEMP;

Read_Miss <= Read_MissTEMP;

WriteHitTEMP <= Write_HitWH when not WriteHitWH'quiet else
Write_HitI when not WriteHitI'quiet else
Write_HitTEMP;

WriteHit <= WriteHitTEMP;

Write_MissTEMP <= Write_MissWM when not WriteMissWM'quiet else
Write_Missl when not WriteMiss'quiet else
Write_MissTEMP;

Write_Miss <= Write_MissTEMP;

DataOutTEMP <= DataOutRH when not Data_OutRH'quiet else
DataOutI when not Data_OutI'quiet else
Data_OutTEMP;

Data_Out <= DataOutTEMP;

ValidOutTEMP <= ValidOutRH when not Valid_OutRH'quiet else
ValidOutI when not ValidOutI'quiet else
ValidOutTEMP;

ValidOut <= ValidOutTEMP;

end behavior,
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THECONTROLLER

-- Date: 12 September 1991
-- Version: 1.2

-- Filename: thecontroller.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the entity and structure of the
-- chip controller. It provides the inputs to the CAM array.

-- Associated files:
-- chippkg.vhd : This file contains constants, variables, etc. needed
-- for this file.

-- History: Version 1.0 (30 August 1991)
-- Version 1.1 (10 September 1991) - added a port to wordselect
-- component (BitSelect) so port on controller also had to be
-- added.
-- Version 1.2 (12 September 1991) - deleted port Counting since
-- BitSelect does essentially the same thing.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.chippkg.all;

entity THECONTROLLER is
port( Read : in MVL7;

Write : in MVL7;
ResolvedTags : in MVL7;
CP : in MVL7;
CPnot : in MVL7;
DataAvailMEM : in MVL7;
MasterReset : in MVL7;
Data_Out : in Vector._Wordjength;
DataIn : in VectorAddresslength;
ResolvedSignalTag : in VectorDepth;
DataOutAvailable : out MVL7;
Read_Miss : out MVL7;
Write_Miss : out MVL7;
WriteHit : out MVL7;
BitSelect : out MVL7;
Select_Word : out Vector_Depth);

end THE_CONTROLLER;

architecture structure of THECONTROLLER is
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component FUNCTIONCHANGE_DETECTOR
port( Read : in MVL7;

Write : in MVL7;
Function_Change: out MVL7);

end component;

component OPERATIONSTATUSport(
Data : in Vector_Wordjlength;
Prefetching : in MVL7;
Read : in MVL7;
Write : in MVL7;
ResolvecTags : in MVL7;
SearchComplete : in MVL7;
Data_Out_Available : out MVL7; -- read hit
Read_Miss : out MVL7; -- read miss
Write_Miss : out MVL7; -- write miss
WriteHit : out MVL7); -- write hit

end component;

component PREFETCHSTATUS
port( CP : in MVL7;

CPnot : in MVL7;
Read : in MVL7;
Resolved_Tags : in MVL7;
Search_Complete: in MVL7;
Reset : in MVL7;
Counting : out MVL7);

end component;

component SEARCH_STATUSport( Data : in VectorAddresslength;
Read : in MVL7;
Write : in MVL7;
FunctionChange : in MVL7;
Reset_DFF : in MVL7;
Counting : in MVL7;
SearchComplete: out MVL7);

end component;

component SELECTWORD_SELECT
port( Read : in MVL7;

Resolved-Tags : in MVL7;
Search_Complete : in MVL7;
FunctionChange : in MVL7;
Master_Reset : in MVL7;
DataAvail_MEM: in MVL7;
WSRSelect : out MVL7);

end component;
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component WORDSELECT
port(

Clear_-TOS :in MVL7;
TOSCP : in MVL7;
TOSCPnot :in MVL7;
WordSelector__CP: in MVL7;
WSRSelect :in MVL7;
Tagsjn :in Vector-Depth;
Cleanl in MVL7;
Clear2 :in MVL7;
SRSelect :in MVL7;
Shifting :out MVL7;
Bit_Select :out MVL7;
SelectWord :out Vector.Depth);

end component;

component WORD _SELECT_CLOCK
port( Read :in MVL7;

Write :in MVL7;
SearchComplete :in MVL7;
ResolvedTags :in MVL7;
CP : in MVL7;
Counting :in MVL7;
TOSClock :out MVL7;
TOSClockNot :out MVL7;
WordSel-Reg-Clock: out MVL7);

end component;

signal Function-Change :MVL7;
signal WSRSel :MVL7;
signal SearchComplete :MVL7;
signal Counting-Signal :MVL7;
signal TOSCP :MVL7;
signal TOSCPnot :MVL7;
signal WordSelectorCP :MVL7;
signal Shifting-Signal :MVL7;

begin

DetectFunctionChange: FUNCTION_ CHANGEDETECTOR
port map(Read => Read,

Write => Write,
Function-Change => Function~hange);
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Op-Stat: OPERATIONSTATUS
port map(

Data => DataLOut,
Prefetching => Shifting-..Signal,
Read => Read,
Write => Write,
ResolvedTags => Resolved_Tags,
SearchComplete => Search_Complete,
DataL_Out_Available => DataOutAvailable,
ReadMiss => Read.Miss,
WriteMiss => Write Miss,
WriteHit => WritejHit);

Prefetch: PREFETCH_STATUS
port map(

CP = P
CPnot => CPnot,
Read => Read,
Resolved-ags => Resolved-Tags,
Search_Complete => SearchComplete,
Reset => MasterReset,
Counting => Counting-Signal);

SearchStat: SEARCHSTATUS
port map(

Data => DataIn,
Read => Read,
Write => Write,
Function -Change => FunctionChange,
ResetDFF => MasterReset,
Counting => Counting-Signal,
SearchComplete => Search_-Complete);

Sel_WordSel: SELECTWORDSELECT
port map(

Read => Read,
Resolved-ags => Resolved_Tags,
SearchComplete => Search_Complete,
Function-Change => FunctionChange,
Master_Reset => Master _Reset,
DataAvailMEM => DataAvailMEM,
WSRSelect => WSR.SeI);

188



Word_Sel: WORD_SELECT
port map(

Clear_-TOS => Master_-Reset,
TOSCP => TOS...CP,
TOSCPnot => T)SCPnot,
WordSelectorCP => Word_Selector..CP,
WSRSelect => WSR..Sel,
Tagsjn => ResolvedLSignal-Tag,
Clear 1 => MasterReset,
Clear2 => FunctionChange,
SRSelect => Counting-Signal,
Shifting => Shifting-..Signal,
BitSelect => Bit-..Select,
SelectWord => Select_Word);

WordSelCLock: WORDSELECTCLOCK
port map(

Read => Read,
Write => Write,
SearchComplete => Search_Complete,
ResolvedTags => Resolved_Tags,
CP => CP,
Counting => Counting-Signal,
TOSClock => TOS_.CP,
TOSClockNot => TOS_CPnot,
WordSel-Reg Clock => WordSelector-CP);

end structure;
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Appendix E: Chip_pkg and dualphase_clock

This appendix contains the chip-pkg.vhd, chip-pkg-body.vhd, and

dual-phase_clock.vhd files. The file chip.pkg.vhd contains declarations for constants,

types, and functions. The file chippkgbody.vhd contains the wired-OR, wired-AND,

and conversion functions.

Chip.pkg

-- Date: 9 September 1991
-- Version: 1.5

-- Filename: chip.pkg.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the package of the CAM chip. This is the
-- file used to define the size of the CAM array. This file
-- also contains other declarations.
-- Associated files: camcellentity.vhd : This file contains the entity

description of the CAM cell.
-- cam_cellstructure.vhd : This file contains the gate level

design of the CAM cell.
-- chip.pkg-body.vhd : This file contains the sub-

routines Wired_And and WiredOr
used by the chip.

-- camchip-entity.vhd : This file contains the entity
description of the CAM chip.

-- cam_chipstructure.vhd: This file contains the structure
of the CAM chip. It is formed by
generating copies of the CAM
cell.

-- chip-stimulus.vhd : This file exercises the chip and
provides inputs to test the chip.

-- chip-test-bench.vhd : This file contains the test bench
for the CAM chip.

-- chipconfig.vhd : This file contains the
configuration of the system.

- - clock.vhd : You guess!

-- History: Version 1.0 (6 May 1991)
-- Version 1.1 (12 June 1991) - added VectorWordlength and
-- Vector_Depth.
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-- Version 1.2 (13 June 1991) - added function declarations for
-- WiredOr and WiredAnd as well as the various types used to
-- support them.
-- Version 1.3 (3 July 1991) - added funtion declaratation for
- - WiredOr_ToMVL7_Vector.
-- Version 1.4 (15 July 1991) - changed Word_length to include
-- Datalength + Addresslength.
-- Version 1.5 (9 September 1991) - added function declaration for
-- WiredAndToMVL7_Vector.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;

package Chippkg is

-- The following constants are used to set the size of the CAM array.
-- Set Addressjlength to the desired length of the address in the CAM array.
-- Set Data_length to the desired length of the data in the CAM array.
-- Wordlength is the sum of the address and data length.
-- Set Depth to the desired depth of the CAM array.

constant Addressjength: Positive:= 3;
constant Data-length : Positive 3;
constant Word-length : Positive := Addressjlength + Data-length;

constant Depth Positive 3;

-- This is the number of bits in the pretech counter. Set this number to
-- determine how large the prefetch block size can be. For example, an '8'
-- will allow the counter to prefetch 256 lines.

constant Bits inCounter: Positive := 5;

-- This is the integer value for the prefetch block size. Set this number
-- to the desired number of lines to prefetch on a Read Hit. This number
-- is relates directly to BitsinCounter above. This number must be less
-- than or equal to 2**(Bits inCounter)-1.

constant PrefetchBlockSize: Positive := 25;

-- This is the clock period used in the chip and all other related components.

constant ClockPeriod: Time := 30 ns;
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-- The following types define the various inputs and outputs of the CAM
-- chip.

subtype VectorWord_length is MVL7TVector(
Wordlength-I downto 0);

subtype VectorAddressiength is MVL7_Vector(
Wordlength-1 downto Datalength); -- MSBs

subtype VectorData_length is MVL7.Vector(
Datalength-1 downto 0); -- LSBs

subtype VectorDepth is MVL7_Vector(
Depth- I downto 0);

-- This is an unconstrained array that supports the resolution functions below.

type UnconstrainedVector is array(
Integer range<>) of MVL7;

-- Below are the declarations for the resolution functions WiredOr and
-- Wired_And. The functions can be found in chip-pkgbody.vhd.

function Wired-Or (Input: UnconstrainedVector) return MVL7;
function WiredAnd (Input: Unconstrained_Vector) return MVL7;

-- The following types are arrays that hold the resolved signals.
-- They are unconstrained arrays that are constrained when instantiated for
-- a particular purpose.

subtype WiredOrType is WiredOr MVL7;
type WiredOrVector is array (Integer range <>) of WiredOrType;

subtype Wired-AndType is Wired-And MVL7;
type WiredAnd Vector is array (Integer range <>) of WiredAndType;

-- The following are the declarations of the conversion functions.

function WiredOr_ToMVL7_Vector (Input: WiredOrVector)
return VectorWordlength;

function WiredAndToMVL7_Vector (Input: WiredAndVector)
return Vector_Depth;

function WiredAndTo MVL7 (Input: WiredAndType) return MVL7;
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-- The following are gate delays used by the generic statements.

constant Inverter_Delay : Time:= 1 ns;
constant BUF_Delay : Time:= 1 ns;
constant And_Delay : Time:= 3 ns;
constant OR_Delay : Time:= 4 ns;
constant NANDDelay : Time:= 2 ns;
constant NOR_Delay : Time:= 3 ns;
constant XORDelay : Time:= 4 ns;
constant XNORDelay : Time:= 4 ns;
constant DFF_Delay : Time:= 6 ns;
constant MUX..Delay : Time:= 2 ns;

-- This constant is the amount of time the CHANGEDETECTOR
-- will produce a '1' after the signal changes. Set this constant equal
-- to the time the signal should be high upon a signal change.

constant ChangeDetectorDelay: Time:= 5 ns;

end Chip-pkg;
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Chippkg body

-- Date: 9 September 1991
-- Version: 1.4

-- Filename: chip-pkgjbody.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the package body that holds the
-- subroutines that can be accessed by any file. It currently
-o contains the WiredAnd function to resolve the match bits
-- from each cell of the CAM array and the WiredOr function
-- to resolve the output data and the validation data from
-- each cell.
-- Associated files: camcellentity.vhd : This file contains the entity

description of the CAM cell.
-- cam_cellstructure.vhd : This file contains the gate level

design of the CAM cell.
-- chip pkg.vhd This file is where the size of

the CAM array is defined. Other
declarations are also contained
in this file.

-- camchip-entity.vhd : This file contains the entity
description of the CAM chip.

-- camchip-structure.vhd: This file contains the structure
of the CAM chip. It is formed by
generating copies of the CAM
cell.

-- chipstimulus.vhd : This file exercises the chip and
provides inputs to test the chip.

-- chip_test_bench.vhd : This file contains the test bench
for the CAM chip.

-- chip-config.vhd : This file contains the
configuration of the system.

-- clock.vhd : You guess!

-- History: Version 1.2 (27 June 1991) - This is the first version.
-- Version 1.3 (3 July 1991) - added the function
-- WiredOr_To_MVL7_Vector.
-- Version 1.4 (9 September 1991) - added the function
-- WiredAndToMVL7_Vector.

.o Author. Curtis M. Winstead

package body Chippkg is
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-- The following functions are resolution functions. The signals coming into
-- these functions are resolved as follows: for the Wired_OR function, the
-- output is a '' if one or more signals being resolved is a ''. For the
- Wired_And function, the output is a '0' if one or more signals being
-- resolved is a '0'. The WiredOr code comes almost directly from the book
-- "VHDL: Hardware Description and Design" by Lipsett et al. and can be
-- found on pp 104-105.

function Wired-Or (Input: Unconstrained_Vector) return MVL7 is
variable Result: MVL7 := '0';

begin
for I in Input'Range loop

if Input(I) = '1' then
Result := '1';
exit;

elsif Input(I) = 'X' then
Result :=X;

else --Input(I) = '0' or any other MVL7 value
null;

end if;
end loop;
return Result;

end Wired-Or,

function WiredAnd (Input: UnconstrainedVector) return MVL7 is
variable Result: MVL7 :='1';

begin
for I in Input'Range loop

if Input() = '0' then
Result := '0';
exit;

elsif Input(I) = 'X' then
Result :=X;

else --Input(I) = '1' or any other MVL7 value
null;

end if;
end loop;
return Result;

end WiredAnd;

195



-- The following function converts WiredOr_Vector to MVL7_Vector type.

function WiredOrToMVL7_Vector (Input: WiredOrVector)
return Vector_ Wordlength is

variable Temp: VectorWordiength;
begin

for I in Word_length-I downto 0 loop
Temp(I) := Input(I);

end loop;
return Temp;

end WiredOr_To_MVL7_Vector;

-- The following function converts Wired_AndVector to MVL7_Vector type.

function WiredAndToMVL7_Vector (Input: WiredAndVector)
return VectorDepth is

variable Temp: VectorDepth;
begin

for I in Depth-I downto 0 loop
Temp() := Input(I);

end loop;
return Temp;

end Wired_And_To_MVL7_Vector,

-- The following function converts Wired_And to MVL7 type.

function Wired_And_To_MVL7 (Input: Wired_And_Type) return MVL7 is
variable Temp: MVL7;

begin
Temp := Input;
return Temp;

end WiredAnd_ToMVL7;

end Chip.pkg;
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dualfphaseclock

-- FELENAME: dualphase-clock.vhd

-- DESCRIPTION: Entity description and architecture body of a
-- dual-phase clock generator (modified for ZYCAD).

-- APPLICABLE FILES: None

-- DESIGNER: Gordon M. Kranz
-- Mark Mehalic

-- DEVELOPER: USAF

-- VERSION: 1.1

-- DATE: 14 May 91

library ZYCAD;
use ZYCAD.TYPES.all;
use ZYCAD.COMPONENTS.all;

entity duaLphase_clock is
generic (period : TIME);
port (PQ1 :inout MVL7 := 'I';

PQ2 : inout MVL7 := '0';
RUN : in BOOLEAN := FALSE);

end dualphase_clock;

architecture behavioral of dualphasesclock is

begin
process(RUN, PQ 1)
begin
if RUN and PQ1 = '0' then

PQ1 <= transport '1' after period/2;
PQ2 <= transport '0' after period/2;

else if RUN and PQ1 =' then
PQ1 <= transport '0' after period/2;
PQ2 <= transport T after period/2;

end if;
end if;

end process;
end behavioral;
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Appendix F: Test Code Used to Test the MCC

This appendix contains the VHDL code used to test the MCC. The files contained

in this appendix are the stimulus file used to input data into the MCC, the test bench,

composed of the MCC and the stimulus, the configuration file for the test bench, and a

test run of the MCC using these files. The times in the test run correspond directly to the

stimulus file.

The Chip Stimulus

..... ------------ ... ..... ---- .............................................-

-- Date: 9 September 1991
-- Version: 2.0

-- Filename: chipstimulus.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the stimulus to test the CAM chip.
-- Associated files: chip-pkg.vhd : This file is where the size of

the CAM array is defined. Other
declarations are also contained
in this file.

-- chip-pkg-body.vhd : This file contains the sub-
routines WiredAnd and WiredOr
used by the chip.

-- cam-chipsentity.vhd : This file contains the entity
description of the CAM chip.

-- camschip-structure.vhd : This file contains the structure
of the CAM chip. It is formed by
generating copies of the CAM
cell.

-- chiptest_bench.vhd : This file contains the test bench
for the CAM chip.

-- chipsconfig.vhd : This file contains the
configuration of the system.

.o clock.vhd : You guess!
-- History: Version 1.0 (10 June 1991)
-- Version 1.1 (12 June 1991) - changed M, RX, and RY to the actual
-- chip output ports T (match tag), R (data output), and
-- P (validation bit of data output).
-- Version 1.2 (25 June 1991) - changed inputs and outputs to vectors
-- (as opposed to matrices) to correspond to the actual inputs
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-- and outputs of the chip. This change corresponds to Version
-- 1.2 of cam-chip-entity and -structure.
-- Version 1.3 (3 July 1991) - modified times to correspond to the
-- change that the clock made.
-- Version 1.4 (16 July 1991) - changed data register to two separate
-- registers, one for the address and the other for data.
-- Version 1.5 (8 August 1991) - added ports for validout bit and
-- Resolved-Tags. These are preliminary changes to get ready to
-- go in and change what I have to what I really need.
-- Version 1.6 (28 August 1991) - deleted the bit select registers
-- and I will use only the MUXs. The MUXs will feed into the
-- BitSelectBus.
-- Version 1.7 (30 August 1991) - In cam_chipstructure, deleted the
-- MUXs and replaced them with inverters since that is all they
-- were acting as. Also deleted registers to hold the Address_In,
-- DataIn, and DataOut data and replaced them with buffers.
-- Thus, some of the timing of the stimulus had to be adjusted.
-- Version 2.0 (9 September 1991) - This version contains the
-- controller. As a consequence of adding the controller, a few
-- ports were added and some deleted.

-- Author: Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.Chip-pkg.all;

entity chip-stimulus is
port(

DataIn : out Vector_Datajlength;
AddressIn : out Vector_Address-length;
Read : out MVL7;
Write : out MVL7;
Data_AvailMEM : out MVL7;
DataOut : out VectorWord-length;
ValidOut : out MVL7;
Data_OutAvailable : out MVL7;
Read_Miss : out MVL7;
Write_Miss : out MVL7;
WriteHit : out MVL7);

end chipstimulus;

architecture behavior of chip-stimulus is

-- This signal (Dummy) is a dummy signal to be used in
-- the sensitivity list for the process P1 below.

signal Dummy: MVL7;
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-- The signal assignments below send data to the data buses in the chip which
-- send the inputs to each cell of the CAM array
-- The loops are used to send the data to the input ports more efficiently
- than assigning the values one at a time.

-- 1000 ns: write '0' to each cell
-- 2000 ns: read contents of each cell
-- 3000 ns: search each cell for a'0'
-- 4000 ns: search each cell for a'1'
-- S000ns: write a T to each cell
-- 6000 ns: read contents of each cell
-- 7000 ns: search each cell for a '0'
-- 8000 ns: search each cell for a'T

begin

PI:
process(Dummy)

begin

-- The following data was used to test the chip using an address length of 3,
-- a data length of 3, and a depth of 3.
-- In order to test a chip of a different size, the following data must be
-- modified.

-- Initialize the chip
DataIn <= transport "LLL";
Address_In <= transport "LLL";
Read <= transport '0';
Write <= transport '0';
DataAvailMEM <= transport '0';
DataOut <= transport "XXXXXX";
ValidOut <= transport 'X';
Data_Out_Available <= transport '0' after 12 ns;
Read_Miss <= transport '0' after 3 ns;
Write_Miss <= transport '0' after 3 ns;
WriteHit <= transport '0' after 3 ns;

DataOut <= transport "000000" after 16 ns;
ValidOut <= transport '0' after 19 ns;

-- Read Miss
AddressIn <= transport "001" after 39 ns;
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Read <= transport '1' after 39 ns;
ReadMiss <= transport '1' after 58 ns;

DataAvailMEM <= transport '1' after 57 ns;
DataIn <= transport "001" after 57 ns;

Read <= transport '0' after 65 ns;
ReadMiss <= transport '0' after 68 ns;
DataAvailMEM <= transport '0' after 65 ns;
DataIn <= transport "LLL" after 88 ns;
Address_In <= transport "LLL" after 88 ns;

-- address can't change until Sel_
-- WordSel is reset to'0'

-- Another Read Miss
AddressIn <= transport "010" after 1052 ns;
Read <= transport '1' after 1052 ns;
ReadMiss <= transport'l' after 1070 ns;

DataAvailMEM <= transport T after 1070 ns;
DataIn <= transport "010" after 1070 ns;

Read <= transport '0' after 1078 ns;
ReadMiss <= transport '0' after 1081 ns;
Data_AvailMEM <= transport '0' after 1078 ns;
DataIn <= transport "LL" after 1101 ns;
AddressIn <= transport "LL" after 1101 ns;

-- address can't change until Sel_
-- WordSel is reset to '0'

-- Another Read Miss
Address_In <= transport "011" after 1104 ns;
Read <= transport T after 1104 ns;
ReadMiss <= transport '1' after 1123 ns;

DataAvailMEM <= transport '1' after 1122 ns;
DataIn <= transport "011" after 1122 ns;

Read <= transport '0' after 1130 ns;
ReadMiss <= transport '0' after 1133 ns;
DataAvailMEM <= transport '0' after 1130 ns;
DataIn <= transport "LLL" after 1153 ns;
AddressIn <= transport "ILL" after 1153 ns;

-- address can't change until Sel_
-- WordSel is reset to '0'

-- Read Hit
Address_In <= transport "001" after 1158 ns;
Read <= transport '1' after 1160 ns;
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Validout <= transport T after 1219 ns;

Read <= transport '0' after 1186 ns;
-- just to test to make sure this won't mess anything up
Read <= transport '1' after 1300 ns;
Read <= transport '0' after 1350 ns;

DataOut <= transport "000000" after 2081 ns;
Valid_out <= transport '0' after 2084 ns;

-- Another Read Hit
AddressIn <= transport "010" after 2067 ns;
Read <= transport '' after 2067 ns;
Validout <= transport'l' after 2127 ns;

Read <= transport '0' after 2094 ns;

DataOut <= transport "000000" after 2999 ns;
Valid_out <= transport '0' after 3002 ns;

-- Write Miss
Data_In <= transport "000" after 3007 ns;
AddressIn <= transport "111" after 3007 ns;
Write <= ransport '1' after 3007 ns;

Write_Miss <= transport '1' after 3027 ns;

DataIn <= transport "LLL" after 3027 ns;
AddressIn <= transport "LLL" after 3027 ns;
Write <= transport '0' after 3027 ns;

Write_Miss <= transport '0' after 3030 ns;

-- Write Hit
Data_In <= transport "111" after 3051 ns;
Address_In <= transport "010" after 3051 ns;
Write <= transport '1' after 3051 ns;

WriteHit <= transport '1 after 3070 ns;
-- WordSelectBus changes to select the word after 39 ns.
-- Write must go to '0' to clear the Word_Selector before the
-- *-In data changes. Otherwise an unwanted write will occur.
-- 31 ns after Write goes to '0', Word_SelectBus changes to zeros.
-- Write can go low after being high for 20 ns.
Write <= transport '0' after 3071 ns;
DataIn <= transport "LLL" after 3098 ns;
AddressIn <= transport "LLL" after 3098 ns;
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Write_Hit <= transport '0' after 3074 ns;

-- Read Miss
Address_In <= transport "100" after 3099 ns;
Read <= transport '1' after 3099 ns;
Read_Miss <= transport' Tafter 3118 ns;

DataAvaiLMEM <= transport' 1' after 3118 ns;
DataIn <= transport "100" after 3118 ns;

Read <= transport '0' after 3126 ns;
Read_Miss <= transport '0' after 3129 ns;
Data_AvailMEM <= transport '0' after 3126 ns;
DataIn <= transport "LLL" after 3149 ns;
Address_In <= transport "LLL" after 3149 ns;

-- address can't change until Sel_
-- Word_Sel output (WSRSelect)is
-- reset to '0'.

-- Another Read Hit
Address_In <= transport "100" after 3154 ns;
Read <= transport '' after 3154 ns;
Validout <= transport T after 3213 ns;

Read <= transport '0' after 3180 ns;

DataOut <= transport "000000" after 4087 ns;
Validout <= transport '0' after 4090 ns;

end process;

end behavior,
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The Test Bench

-- Date: 9 September 1991
-- Version: 2.0

-- Filename: chip_.test_bench.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file is the test bench to test the CAM chip.
-- Associated files: chippkg.vhd This file is where the size of

the CAM array is defined. Other
declarations are also contained
in this file.

-- chip-pkgbody.vhd : This file contains the sub-
routines WiredAnd and WiredOr
used by the chip.

-- cam-chip-entity.vhd : This file contains the entity
description of the CAM chip.

-- camchipstructure.vhd : This file contains the structure
of the CAM chip. It is formed by
generating copies of the CAM
cell.

-- chipstimulus.vhd : This file exercises the chip and
provides inputs to test the chip.

-- chipconfig.vhd : This file contains the
configuration of the system.

clock.vhd : You guess!

-- History: Version 1.0 (10 June 1991)
-- Version 1.1 (12 June 1991) - changed M, RX, and RY to the actual
-- chip output ports T (match tag), R (data output), and
-- P (validation bit of data output).
-- Version 1.2 (25 June 1991) - changed input and output types to
-- correspond to Version 1.2 of camchip-.entity and _structure.
-- The input and output registers are now those ports described
-- by test-chip below. Changed T to Tag, R to DataOut, and
-- P to ValidOut.
-- Version 1.3 (3 July 1991) - added Load port on test chip to allow
-- for a clock input.
-- Version 1.4 (16 July 1991) - changed ports to correspond to
-- Version 1.4 of cam-chip-entity and -structure.
-- Version 1.5 (8 August 1991) - added ports for valid_out bit and
-- Resolved-Tags. These are preliminary changes to get ready to
-- go in and change what I have to what I really need.
-- Version 1.6 (28 August 1991) - deleted the bit select registers
-- and I will use only the MUXs. The MUXs will feed into the
-- BitSelectBus.
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-- Version 1.7 (30 August 1991) - deleted the MUXs and replaced them
-- with inverters since that is all they were acting as. Also
-- deleted registers to hold the AddressIn, DataIn, and
-- DataOut data and replaced them with buffers.
-- Version 2.0 (9 September 1991) - This version contains the
-- controller. As a consequence of adding the controller, a few
-- ports were added and some deleted.

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.Chip pkg.all;

entity chip-testbench is
end chip_tesLbench;

architecture structure of chip_test_bench is

-- These are the internal signals of the test bench
signal Datain VectorDatalength;
signal Addressin VectorAddressilength;
signal Readin MVL7;
signal Writein MVL7;
signal Data_AvailMEMin MVL7;
signal Master_Reset MVL7;
signal Data_out Vector_Word_length;
signal Datastimulus_out VectorWord_length;
signal Validout MVL7;
signal Valid_stimulus_out MVL7;
signal Data_Avail_out MVL7;
signal DataAvail_stimulusout MVL7;
signal Read_Miss_out MVL7;
signal Read_Miss_stimulus_out MVL7;
signal Write_Miss_out MVL7;
signal Write_Miss_stimulus_out MVL7;
signal Write_Hit_out MVL7;
signal Write_Hit_stimulusout MVL7;

signal CLK MVL7;
signal CLKnot MVL7;
signal RUN boolean:= FALSE;
signal stop-sim boolean := FALSE;

-- This is the chip under the test
component test_chip

port(
Data_In in Vector_Datajength;
AddressIn in Vector_Addressjlength;
Read in MVL7;
Write in MVL7;
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DataAvailMEM : in MVL7;
MasterReset : in MVL7;
CP : in MVL7;
CPnot : in MVL7;
DataOut : out VectorWordlength;
ValidOut : out MVL7;
Data_OutAvailable : out MVL7;
Read_Miss : out MVL7;
WriteMiss : out MVL7;
WriteHit : out MVL7);

end component;

-- This is used to compare for correct output
component stimulus

port(
Data_In : out VectorDatajlength;
AddressIn : out Vector_Addressjlength;
Read : out MVL7;
Write : out MVL7;
DataAvailMEM : out MVL7;
DataOut : out VectorWord-length;
ValidOut : out MVL7;
DataOutAvailable : out MVL7;
ReadMiss : out MVL7;
WriteMiss : out MVL7;
WriteHit : out MVL7);

end component;

component dual-phase.clock
generic (period: TIME := 34 ns);
port (PQ1 :inout MVL7 :='1';

PQ2 : inout MVL7 .= 0,
RUN: in BOOLEAN:= FALSE);

end component;

begin
Chip: test_chip

port map(
DataIn => Data_in,
AddressIn => Address in,
Read => Readin,
Write => Write-in,
Data_AvailMEM => Data_AvailMEM_in,
MasterReset => MasterReset,
CP => CLK,
CPnot => CLKnot,
DataOut => Dataout,
Valid_Out => Valid-out,
DataOutAvailable => DataAvailout,
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Read_Miss => ReadMissout,
WriteMiss => Write_Miss_out,
WriteHit => WriteHitout);

Generator: stimulus
port map(

Data_In => Data_in,
Address_In => Addressjn,
Read => Readin,
Write => Writein,
DataAvailMEM => DataAvail_MEM-in,
DataOut => Datastimulus-out,
ValidOut => Validstimulus_out,
DataOut_Available => DataAvailstimulusout,
Read_Miss => Read_Missstimulusout,
Write_Miss => Write_Missstimulusout,
Write_Hit => Write_Hit_stimulusout);

CLOCK_IN: dual-phaseclock
port map(CLK,

CLKnot,
RUN);

MasterReset <= '1', -- puts chip into initial state
'0' after 38 ns;

RUN <= TRUE;

-- The following process checks for correct output.

ERRORTEST: process(Validout, ReadMissout,
Write_Missout, WriteHitout)begin

assert (Valid_out = Validstimulus._out and
ReadMiss-out = Read Miss-stimulus-out and
WriteMissout = WriteMissstimulusout and
Write_-itout = Write_Hit_stimulus_out)

report "FAILED TEST"
severity warning;

end process ERRORTEST;

-- Stops simulation after 30000 ns
stopsim <= TRUE after 30000 ns;
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-- This process stops the simulation when stop-sim is true.

STOPCONTROL: process
begin
wait until stop-sim = TRUE;
assert false report "Simulation Done."

severity failure;
end process STOPCONTROL;

end structure;
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The Configurat'on File

-- Date: 28 March 1991
-- Version: 1.0

-- Filename: chipsconfig.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This is the configuration specification file for the CAM
-- chip test bench.
-- Associated files: chip-pkg.vhd : This file is where the size of

the CAM array is defined. Other
declarations are also contained
in this file.

-- chip.pkgbody.vhd : This file contains the sub-
routines WiredAnd and WiredOr
used by the chip.

-- cam-chip-entity.vhd : This file contains the entity
description of the CAM chip.

-- cam_chipstructure.vhd: This file contains the structure
of the CAM chip. It is formed by
generating copies of the CAM
cell.

-- chipstimulus.vhd : This file exercises the chip and
provides inputs to test the chip.

-- chip_testbench.vhd : This file contains the test bench
for the CAM chip.

-- clock.vhd : You guess!
-- History:
-- Author. Curtis M. Winstead

use work.all;

configuration chiponfig of chipjtest-bench is

for structure

for Chip: test-chip use entity work.CAM_chip(structure);
end fo,

for Generator: stimulus use entity work.chip-stimulus(behavior);
end for,

end for,

end chip.config;
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Test Run

#0NS
M: ACTIVE /CHIPTESTBENCH/DATAOUT (value = "XXXXXX")

MI: ACTIVE /CHIPTESTBENCH/DATASTIMULUSOUT (value"XXXXXX")

M16: ACTIVE /CHIP_TEST_BENCH/DATAAVAILMEMIN (value = '0')
M15: ACTIVE /CHIPTESTBENCH/WRITEN (value = '0')
M14: ACTIVE /CHIPTESTBENCH/READIN (value = '0')
M13: ACTIVE/CHIP_TESTBENCH/ADDRESSJN (value = "LLL")
M12: ACTIVE/CHIP_TEST_BENCH/DATAIN (value = "LLL")
M2: ACTIVE /CHIP_TESTBENCH/RESSIG_VALIDOUT (value = 'X')
M3: ACTIVE /CHIP_TESTBENCH/RSVSTIMULUSOUT (value = 'X')

3 NS
MO: ACTIVE /CHIP_TESTBENCH/WRITE_HlT_OUT (value = '0')
M8: ACTIVE /CHIPTESTBENCH/WRITE_MISSOUT (value = '0')
M6: ACTIVE /CHIPTESTBENCH/READMISSOUT (value = '0')
M 11: ACTIVE /CHIPTEST_BENCH/WRITEHITSTIMULUSOUT (value =

'0')
M9: ACTIVE /CHIP_TEST_BENCH/WRITEMISSSTIMULUS_OUT (value =

'0')
M7: ACTIVE /CHIP-TEST_BENCH/READMISSSTIMULUS_OUT (value

12 NS
M4: ACTIVE /CHIP_TEST_BENCH/DATAAVAIL_OUT (value = '0')
M5: ACTIVE /CHIPTEST_BENCH/DATAAVAILSTIMULUSOUT (value =

'0')

16 NS
M: ACTIVE /CHIPTESTBENCH/DATASTIMULUSOUT (value ="0O0000")

M: ACTIVE /CHIP_TESTBENCH/DATAOUT (value = "000000")
19 NS

M3: ACTIVE /CHIPTESTBENCH/RSVSTIMULUSOUT (value = '0')
M2: ACTIVE /CHIPTESTBENCH/RESSIGVALIDOUT (value = '0')

1070 NS
M6: ACTIVE/CHIP_TESTBENCH/READMISS_OUT (value = '1')

M12: ACTIVE /CHIPTEST_BENCH/DATAIN (value = "010")
M16: ACTIVE/CHIP_TESTBENCH/DATA_AVAILMEMIN (value = '1')

M7: ACTIVE /CHIPTESTBENCH/READMISSSTIMULUSOUT (value =
'1')

1078 NS
M16: ACTIVE /CHIPTESTBENCH/DATAAVAILMEMIN (value = '0')
M14: ACTIVE /CHIPTEST_BENCH/READIN (value = '0')

1081 NS
M6: ACTIVE /CHIPTESTBENCH/READMISSOUT (value = '0')

M7: ACTIVE /CHIPTEST_BENCH/READ_MISSSTIMULUSOUT (value =
'0')
1101 NS

M13: ACTIVE/CHIP_TEST_BENCH/ADDRESS_IN (value = "LLL")
M12: ACTIVE /CHIPTESTBENCH/DATAIN (value = "LLL")
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1104 NS
M14: ACTVE /CHIPT EST_-BENCH/READJN (value ='1')
M13: ACTIVE /CHIPTEST_-BENCH/ADDRESS-JN (value = "011I")

1122 NS
M12: ACTIVE /CHIPTESTBENCH/DATAJIN (value = "011"
M16: ACTIVE /CHIP_TEST_BENCH/DATAAVAILMEMJIN (value = '1')

1123 NS
M6: ACTIVE /CHIP _TEST _BENCH/READvIISS_OUT (value = '1')

M7: ACTIVE /CHIP...TEST_-BENCH/READMISS_STIMULUS_OUT (value
1it)
1130 NS

M16: ACTIVE /CHIP_TEST_BENCH/DATAAVAIL _MEMJN (value = '0')
M14: ACTIVE /CHIPTESTBENCH/READIN (value = '0')

1133 NS
M6: ACTIVE /CHIPTEST_-BENCHI/READ-vIISSOUT (value = '0')

M7: ACTIVE /CHIP -TEST_-BENCH/READMISSSTIMULUSOUT (value=
'0')
1153 NS

M13: ACTIVE /CHIP_-TESTBENCH/ADDRESSJN (value = "LLL")
M12. ACTIVE /CHIP_-TESTBENCH/DATAJIN (value = "LLL")

1158 NS
M13: ACTIVE /CHIP_TEST_BENCH/ADDRESSjN (value = "001)

1160 NS
M14: ACTIVE /CHIP!_TEST_BENCH/READJN (value = '1')

1186 NS
M14: ACTIVE /CHIP_TEST_BENCH/READJN (value = '0')

1216 NS
M: ACTIVE /CHIPEST-BENCH/DATAOUT (value = "001001")

1219 NS
M3: ACTIVE /CHIP_-TEST_-BENCH/RSV.STIMULUSOUT (value = '1')
M2: ACTIVE /CHIP_-TESTBENC/RES-SIGVALIDOUT (value = '1')

1223 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA&AVAILOUT (value = '1')

1228 NS
M4: ACTIVE /CHIP _TEST _BENCH/DATA AVAILOUT (value = '0')

1252 NS
M: ACTIVE /CHIP_-TEST-BENCH/DATAOUT (value = "010010")

1259 NS
M4: ACTIVE /CHIP_-TEST_-BENCWDATA&AVAIL_-OUT (value = '1')

1264 NS
M4: ACTIVE /CHIP_-TESTBENCH/DATA&AVAIL._OUT (value = '0')

1286 NS
M: ACTIE /CHIP_-TESL-BENCH/DATAOUT (value = "01 1011"

1293 NS
M4: ACTIVE /CHIP_TEST_BENCHIDATA&AVAILOUT (value = '1')

1298 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATAAVAIL.._OUT (value = '0')

1300 NS
M14: ACTIVE /CHIP_-TESTBENCH/READJN (value = 'I')

1320 NS
M: ACTIVE /CHIPTEST-BENCHDATAOQUT (value = "001001"

211



1327 NS
M4: ACTIVE /CHIPTEST_-BENCH/DATA.AVAILOUT (value =T'1)

1332 NS
M4: ACTIVE /CHIPTESTBENCHIDATA...AVAILOUT (value = '0')

1350 NS
M14: ACTIVE /CHIPTEST_BENCH/READJN (value = '0')

1354 NS
M: ACTIVE /CHIP_-TESTBENCH/DATA&OUT (value = "010010")

1361 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA-AVAIL_ OUT (value =T'1)

1366 NS
M4: ACTIVE /CHIPTEST_-BENCH/DATA..AVAIL_OUT (value ='0Y)

1388 NS
M: ACTIVE /CHIP _TEST_BENCWDLATAOUT (value = "011011"

1395 NS
M4: ACTIVE /CHIP_TEST _BENCH/DATA&AVAIL_-OUT (value =T'1)

1400 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA&AVAI_-OUT (value = '0')

1422 NS
M: ACTIVE /CHIP _TESTBENCH/DATAOUT (value = "001001")

1429 NS
M4: ACTIVE /CHIP_TEST_BENCHIDATA&AVAIL_,OUT (value =T'1)

1434 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA&AVAL_.OUT (value = '0')

1456 NS
M: ACTIVE /CHIPTESTBENCH/DATA&OUT (value = "010010")

1463 NS
M4: ACTIVE /CHIP_TEST_BENCH/DATA&AVAIILOUT (value =T'1)

1468 NS
M4: ACTIVE /CHIPTEST_-BENCH/DATA&AVAIL_.OUT (value = '0')

1490 NS
M: ACTIVE /CFHPTESTBENCWDATA.OUT (value = "01 1011"

1497 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA&AVAILOUT (value =T'1)

1502 NS
M4: ACTIVE /CHIP _TEST_BENCH/DATA&AVAIL._OUT (value = '0')

1524 NS
M: ACTIVE /CHIPTESTBENCW/DATAOQUT (value = "001001"

1531 NS
M4: ACTIVE /CHIP _TEST _BENCHI/DATA&AVAIL_OUT (value =T'1)

1536 NS
M4: ACTIVE /CHIP _TEST_BENCH/DATA&AVAIILOUT (value = '0')

1558 NS
M: ACTIVE /CHIPTESTBENCW/DATAOUT (value = "010010")

1565 NS
M4: ACTIVE /CHIPTEST_-BENCHI/DATA&AVAIL_.,OUT (value =T'1)

1570 NS
M4: ACTIVE /CHIPTEST_-BENCH/DATA-AVAIL_ OUT (value = '0')

1592 NS
M: ACTIVE /CHIPTESTBENCH/DATAOUT (value = "011011"
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1599 NS
M4: ACTIVE /CHPTEST_-BENCH/DATA-AVAIL_-OUT (value l '')

1604 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA AVAIL_ OUT (value = '0')

1626 NS
M: ACTIVE /CHIP_TES TBENCH/DATA.OUT (value = "00 1001"

1633 NS
M4: ACTIVE /CHIPTEST_-BENCH/DATA-AVAIL_-OUT (value =T'1)

1638 NS
M4: ACTIVE /CHIP_TEST _BENCH/DATA.J4VAIL_-OUT (value =,'0'

1660 NS
M: ACTIVE /CHIP_:TESTBENCWVDATA-OUT (value = "010010")

1667 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA-AVAIL_-OUT (value =T'1)

1672 NS
M4: ACTIVE /CHIPTEST_-BENCH/DATA-AVAIL_-OUT (value = '0')

1694 NS
M: ACTIVE /CHIP_-TES TBENCH/DATA&OUT (value = "011011"

1701 NS
M4: ACTIVE /CHIP _TEST_BENCH/DATA&AVAIL_-OUT (value =T'1)

1706 NS
M4: ACTIVE /CHIPTEST_-BENCH/DATA&AVAIL_-OUT (value ='0')

1728 NS
M: ACTIVE /CHIPTESTBENCWDtATA-OUT (value = "001001"

1735 NS
M4: ACTIVE /CHIP _TEST _BENCHIDATA.AVAILOUT (value =T'1)

1740 NS
M4: ACTIVE /CHIP_-TESTI3ENCH/DATA&AVAIL_.OUT (value ='0')

1762 NS
M: ACTIVE /CHIPTESTBENCWVDATA-OUT (value = "010010")

1769 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA&AVAIL_-OUT (value =T'1)

1774 NS
M4: ACTIVE /CHIPTEST_-BENCH/DATA-AVAIL_-OUT (value = '0')

1796 NS
M: ACTIVE /CHIPTESTBENCW/DATA-OUT (value = "011011"

1803 NS
M4: ACTIVE /CHIPTEST_-BENCWVDATA&AVAIL_,OUT (value =T'1)

1808 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA&AVAIL_,OUT (value = '0')

1830 NS
M: ACTIVE /CHIPTESTBENCWDATA-OUT (value = "001001"

1837 NS
M4: ACTIVE /CHIP_-TESTBENCH/DATA.AVAIL,_OUT (value =T'1)

1842 NS
M4: ACTIVE /CHIPTEST_-BENCH/DATAJ\VAIL _OUT (value = '0')

1864 NS
M: ACTIVE /CHIPTESTBENCH/DATk..OUT (value = "010010")

1871 NS
M4: ACTIVE /CHIP_-TESTBENCHIDAT&-AVAILA_OUT (value =T'1)
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1876 NS
M4: ACTIVE /CHIPTESTBENCH/DATA...AVAILOUT (value ='0')

1898 NS
M: ACTIVE /CHIP_TEST-.BENCH/DATAOUT (value = "011011")

1905 NS
M4: ACTIVE /CHIPTEST_-BENCH/VDATA..AVAILOUT (value =T'1)

1910 NS
M4: ACTIVE /CHIPTEST_-BENCH/DATA&AVAIL_-OUT (value = '0')

1932 NS
M: ACTIVE /CHIP _TEST-BENCH/DATAOUT (value = "001001"

1939 NS
M4: ACTIVE /CHRIP_TESTBENCH/DATA.AVAILOUT (value =T'1)

1944 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA&AVAILOUT (value = '0')

1966 NS
M: ACTIVE /CHIPTEST-.BENCH/DATAOUT (value = "010010")

1973 NS
M4: ACTIVE /CHIP _TESTBENCH/DATA&AVALL.,_OUT (value =T'1)

1978 NS
M4: ACTIVE /CHIPTEST_-BENCHIDATA-AVAIL.._OUT (value ='0')

2000 NS
M: ACTIVE /CHIPTESL-BENCH/DATAOUT (value = "011011")

2007 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA-AVAIL_ OUT (value =T'1)

2012 NS
M4: ACTIVE /CHIPTEST_-BENCH/DATA.AVAILOUT (value = '0')

2034 NS
M: ACTIVE /CHIPTEST-BENCH/DATAOUT (value = "001001"

2041 NS
M4: ACTIVE /CHIP_-TEST_-BENCH/DATA&AVAILOUT (value =T'1)

2046 NS
M4: ACTIVE /CHW_!TEST_-BENCH/DATA&AVAIL_,.OUT (value = '0')

2065 NS
M: ACTIVE /CHW_-TEST-BENCIF/DATAOUT (value = "010010")

2067 NS
M14: ACTIVE /CHIPTESTBENCH/READJN (value =T'1)
M13: ACTIVE /CHIPTESTBENCH/ADDRESS-JN (value = "010")

2081 NS
Ml: ACTIVE /CHIP-TESTBENCH/DATASTIMULUSOUT (value=

"q()000")
M: ACTIVE /CHIPTESTBENCH/DATAOUT (value = "000000")

2084 NS
M3: ACTIVE /CHIP_-TESTBENCWiRSVSTIMULUS-OUT (value = '0')
M2: ACTIVE /CHIP_-TESTBENCHIRES-SIGVALID _OUT (value = '0')

3007 NS
MI5: ACTIVE /CHIP_-TEST_-BENCH/WR1TEJN (value =T'1)
M13: ACTIVE /CHIPTESTBENCH/ADDRESS-JN (value = " 111"
M12: ACTIVE /CHIPTESTBENCH/DATA-JN (value = "000")
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3027 NS
M8: ACTIVE /CHIP_TESTBENCH/WRITEMISSOUT (value = '')

M15: ACTIVE /CHIPTESTBENCH/WRITEIN (value = '0')
M13: ACTIVE /CHIPTESTBENCH/ADDRESSIN (value = "LLL")
M12: ACTIVE /CHIPTESTBENCH/DATAIN (value = "LLL")

M9: ACTIVE /CHIPTESTBENCH/WRITE_MISSSTIMULUS_OUT (value ='1')
3030 NS

M8: ACTIVE /CHIP_TEST_BENCH/WRITE_MISS_OUT (value = '0')
M9: ACTIVE /CHIPTESTBENCH/WRITE_MISSSTIMULUSOUT (value ='0')

3051 NS
M15: ACTIVE/CHIPTESTBENCH/WRITEIN (value = '')
M13: ACTIVE/CHIPTESTBENCH/ADDRESSJN (value = "010")
M12: ACTIVE/CHIPTESTBENCH/DATAIN (value = "111")

3054 NS
M8: ACTIVE /CHIPTESTBENCH/WRITEMISSOUT (value = '0')

3070 NS
MlO: ACTIVE /CHIPTESTBENCH/WRITE_HIT_OUT (value = '')
M 11: ACTIVE /CHIPTESTBENCH/WRITE_HITSTIMULUSOUT (value =

'1')
3071 NS

M15: ACTIVE /CHIPTESTBENCH/WRITEIN (value = '0')
3074 NS

M1O: ACTIVE /CHIPTESTBENCH/WRITE_HIT_OUT (value = '0')
M 11: ACTIVE /CHIPTESTBENCH/WRITE_HITSTIMULUSOUT (value ='0')

3098 NS
M12: ACTIVE /CHIP_TESTBENCH/DATAIN (value = "LLL")

30000 NS
Assertion FAILURE at 30000 NS in design unit STRUCTURE from process
/CHIPTESTBENCH/STOPCONTROL:

"Simulation Done."
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Appendix G: The VHDL Code of Simple Memory System

This appendix contains the VHDL code of the simple memory system used to

thoroughly test the MCC. It contains the code for a simple behavioral description of the

CPU, the main memory, and the structural description of the memory system consisting

of the CPU, main memory, and the MCC. The package containing the MEMDelay

constant and a function to convert hexadecimal values to MVL7 vectors is also included.

The CPU

-- Date: 28 October 1991
-- Version: 1.0

-- Filename: cpu.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains a simple behavioral model of a CPU. Its
-- main purpose is to generate addresses to the bus with a
-- read or write request.
-- Associated files: chippkg.vhd : This file contains declarations

for constants, types, functions,
etc.

-- memnsys-pkg.vhd : This file contains declarations
for constants, types, functions,
etc. specific to the memory
system.

-- mem-sys pkgjbody.vhd : This file contains the function
to convert hex numbers into
MVL7_Vector.

-- History:

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.Chip-pkg.all;
use WORK.mem-sys-pkg.all;
use STD.TEXTIO.all;
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-- This is the entity declaration of the CPU.

entity CPU is
port( Read-port : inout MVL7 :'0';

Writeport : inout MVL7 :'0';
MCCPrefetching : in MVL7 := '0';
Address : out Vector_Addresslength

(Word-length-I downto Datalength => 'L'));
end CPU;

-- This is the architecture description of the CPU.

architecture CPU of CPU is
begin

-- This process generates a Read and Write request on every other
-- 100 ns time block.

RW:
process
begin

wait for 100 ns;
RWLoop: loop

Read-port <= '1';
wait for 30 ns;
Read_port <= '0';
wait for 70 ns;

-- This line blocks the CPU during prefetching
-- cycle.

if MCCPrefetching ='1' then
wait on MCCPrefetching until

MCCPrefetching = '0';
wait for 10 ns;

end if;
Writeport <= '1';
wait for 20 ns;
Write__port <= '0';
wait for 80 ns;

end loop RWLoop;

end process RW;
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-- This process reads the address from the file "cpu.dat" and
-- converts the hex number into an MVL7_Vector to be supplied to
-- the bus.

Read-Address:
process(Readport, Write-port)

file Inputfile: TEXT is in "cpu.dat";
variable Addr. String(8 downto 1);
variable LI: Line;

begin
if (Read-port = 'T and not Read-port'Stable) or

(Write-port = '1' and not Writepor'Stable) then
assert not Endfile(Inputfile) report - if end of

"No more addresses." -- file then
severity failure; -- simulation

-- quits
Readline (InpuLfile, Li);
Read(L1, Addr);
Address <= transport HEXToMVL7V(Addr);

end if;

-- Puts 's on Address port after CPU stops its request.

if (Read-port = ' and not Read_portStable) or
(Writeport = '0' and not Writepor'Stable) then
for J in Wordlength- 1 downto Datalength loop

Address(J) <= 'L' after 30 ns;
end loop;

end if;

end process;

end CPU;

-- The following is the configuration file for the CPU. I put it here
-- so as not to clutter up the directory. It was used to test the CPU
-- only, before being put into the memory system.

use work.all;
configuration cpusconfig of CPU is

for CPU
end for,

end cpu_config;
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Main Memory

-- Date: 28 October 1991
-- Version: 1.0

-- Filename: mem.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains a simple behavioral model of a memory. Its
-- main purpose is to generate data to the bus when the CPU
-- requests a write or when a read miss occurs on the MCC. I
-- realize this is not the true function of memory, but in order
-- to simplify the testing of the CAM chip, it generates the
-- address on a write request. The MCC doesn't know any better
-- and that's what is being tested anyway.
-- Associated files: chippkg.vhd : This file contains declarations

for constants, types, functions,
etc.

-- memsys-pkg.vhd : This file contains declarations
for constants, types, functions,
etc. specific to the memory
system.

-- mem-sys pkgbody.vhd : This file contains the function
to convert hex numbers into
MVL7_Vector.

-- History:

-- Author- Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.mem-sys-pkg.ail;
use WORK.Chip-pkg.all;
use STD.TEXTIO.all;

-- This is the entity declaration of the MEM(ory).

entity MEM is
port( CPU_Write : in MVL7;

MCC_Miss : in MVL7;
Data : out Vector_Datalength

(Data~length- 1 downto 0 => 'L');
DataAvail : out MVL7 := '0');

end MEM;
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-- This is the architecture description of the MEM(ory).

architecture MEM of MEM is
begin

-- This process reads data from the "mem.dat" file, converts it from
-- hex to MVL7Vector, and supplies it to the data port.
-- It reads data when the CPU requests a write and when the MCC
-- has a read miss.

ReadData:
process

file Inputfile: TEXT is in "mem.dat";
variable Dat: String(8 downto 1);
variable Li: Line;

begin

wait on CPU_Write, MCC_Miss;

if CPUWrite '1'or MCCMiss ='1'then
if (CPUWrite =1' and not CPUWrite'Stable) or

(MCC_Miss ='1' and not MCCMiss'Stable) then
assert not Endfile(InpuLfile) report

"No more data." -- if end of file then
severity failure; -- simuluation quits

if MCC_Miss =1' then
wait for MEMDelay;

end if;
Readline (InpuLfile, Li);
Read(LI, Dat);
Data <= transport HEXToMVL7V(Dat);

end if;

-- This if statement synchronizes the address and
-- data going to 'L's after a write request.

if CPUWrite =1' then
wait for 50 ns;

else
wait for 41 ns;

end if;
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-- Puts 'L's on data port at the same time the
-- the address gets all 's.
.. ----- ----------------------- ------ ---------.

for J in Data-length-1 downto 0 loop
Data(J) <- I;

end loop;

end if;

end process;

-- This block is used to assert the DataAvailMEM port of the MCC
-- when a read miss occurs.

DataAvail_MEM:
block(MCCMiss = '1' and not MCC_Miss'Stable)
begin

process
begin

wait on guard;
DataAvail <= '1';
wait for 8 ns;
Data_Avail <='0';

end process;
end block DataAvail_MEM;

end MEM;
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The Memory System

-- Date: 28 October 1991
-- Version: 1.0

-- Filename: memsystem.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the structure of the memory system. It
-- contains the CPU, MEM, and the MCC. The CPU supplies the

function requests, MEM supplies the data, and the MCC is
-- therefore exercised.
-- Associated files: chip pkg.vhd : This file contains declarations for

constants, types, functions, etc.
-- cpu.vhd : This file contains a simple behavioral

description of a CPU. Its main function
is to supply addresses and functions
requests.

-- mem.vhd : This file contains a simple behavioral
description of main memory. Its main
funtions is to supply data to the system.

-- History:

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;
use WORK.Chip-pkg.all;

-- This is the entity description of the memory system.

entity mem.system is
port( MasterReset : in MVL7 := '0';

CP : in MVL7 :=T;
CPnot : in MVL7 := '0';
DataOut : out VectorWord-length;
ValidOut : out MVL7;
DataOut_Available : out MVL7;
Write_Miss : out MVL7;
WriteHit : out MVL7;
ReadMiss : inout MVL7);

end mem system;

-- This is the structural description of the memory system.

architecture structure of memsystem is
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-- Internal signals used
signal WriteSig :MVL7;
signal ReadLSig : MVL7;
signal Address_..ig :VectorAddress.Iength;
signal Data-Sig :VectorData-length;
signal DataAvail :MVL7;
signal Miss :MVL7;
signal ValidOuLSig :MVL7;

-- Components used

component CPU
port( Readport : inout MVL7;

Writeport :inout MVL7;
MCC_Prefetching :in MVL7;
Address :out VectorAddressj-ength);

end component;

component MEM
port( CPU_Write :in MVL7;

MCCMiss :in MVL7;
Data :out Vector...Datajlength;
DataAvail :out MVL7);

end component;

component cam....hip
port( DataIn :in VectorData~length;

Addressin :in VectorAddressJength;
Read : in MVL7;
Write : in MVL7;
Data_AvailMEM :in MVL7;
MasterReset :in MVL7;
CP : in MVL7;
CPnot :in MVL7;
DataOut :out VectorWord jength;
ValidOut :out MVL7;
Data_Out_Available :out MVL7;
ReadMiss :out MVL7;
WriteMiss : out MVL7;
WriteHlit :out MVL7);

end component;

begin

AddressGenerator: CPU
port map(Read-port => Read-Sig,

Write..port => Write-Sig,
MCC_Prefetching => ValidOutSig,
Address => Address-..Sig);
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DataGenerator. MEM
port map(CPU-Write => Write-Sig,

MCCMiss => Miss,
Data => Data..Sig,
DataAvail => Data.Avail);

MCC: cam-chip
port map(Datajln => DataSig,

AddressIn => Address.Sig,
Read => ReadLSig,
Write => Write-Sig,
DataAvailMEM => Data.Avail,
MasterReset => Master..Reset,
CP => cp,
CPnot => CPnot,
DataOut => Data_.Out,
ValidOut => ValidOut__Sig,
DataOut_-Available => Data_OutAvailable,
ReadMiss => Read-Miss,
WriteMISS => WriteLMiss,
WriteHit => Write..Yit);

-Signal assignments for output ports of the system
Miss <= Read.Miss;
ValidOut <= ValidOut-Sig;

end structure;
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The Memory System Package Declaration

-- Date: 24 October 1991
-- Version: 1.0

-- Filename: memsys pkg.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the function declaration of the function
-- that converts hex values to MVL7_Vector and constants.
-- Associated files: cpu.vhd : This file contains a simple behavioral

description of a CPU. Its main function
is to supply addresses and functions
requests.

-- mnem.vhd : This file contains a simple behavioral
description of main memory. Its main
function is to supply data to the system.

-- History:

-- Author. Curtis M. Winstead

library ZYCAD;
use ZYCAD.types.all;

package mem.sys,_pkg is

-- This is the funtion declaration.

function HEX_To__MVL7V (Input: String) return MVL7_Vector,

-- This constant is the time it takes main memory to respond to

-- aread.

constant MEMDelay: Time:= 20 ns;

end mem.sys-pkg;
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The Memory System Package Body

-- Date: 24 October 1991
-- Version: 1.0

-- Filename: mem-sys-pkgjbody.vhd
-- System: ZYCAD, VLSI net
-- Language: VHDL

-- Description: This file contains the function that converts hex values
-- to MVL7_Vector.
-- Associated files: memsyspkg.vhd : This file contains the funtion

declaration for this file.
-- cpu.vhd : This file contains a simple

behavioral description of a CPU.
Its main function is to supply
addresses and functions requests.

-- mem.vhd : This file contains a simple
behavioral description of main
memory. Its main function is to
supply data to the system.

-- History:

-- Author Curtis M. Winstead

package body memsys..pkg is

-- This function converts hex values to MVL7_Vector.

function HEXTo_MVL7V (Input: String) return MVL7_Vector is
variable Address_Vector: MVL7_Vector(31 downto 0)

:= (31 downto 0 => '0');
variable char: Character,

begin
for I in 8 downto I loop

char := Input(I);
case char is

when '0Y => AddressVector(4*I-1 downto 4*I-4)
:- "0000";

when '' => Address_Vector(4*I- downto 4*I-4)
:= "0001";

when '2' => AddressVector(4*I-I downto 4*I-4)
:= "0010";

when '3' => Address_Vector(4*I- 1 downto 4*I-4):= fowl I"it;
when '4' => AddressVector(4*I-1I downto 4"I-4)

"0100";
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when '5' => Address_-Vector(4*1 I downto 4*1-.4)
:"0101";

when '6' => Addressj-Vector(4*- I downto 4*I-4)
:"0110";

when '7' => Address.-.Vector(4*I-1 downto 4*I-4)
:=. "0111";

when '8' => Address..Vector(4*I- I downto 4*I-4)
:= "1000";

when '9' => Address..Vector(4*I- 1 downto 4*1-4)
"=11001"f;

when 'A' => Address-ector(4*-1 downto 4*1.4)
:"1010";

when 'B' => Address-Vector(4*I- I downto 4*I-4)
:= " 1011";

when 'C => Address..ector(4*-1 downto 4*1-4)
:"1100";

when 'D' => AddressLrector(4*- I downto 4*1.4)
:= "1101";

when 'E' => AddressVector(4*I-1 downto 4*I-4)
:= "I110";

when 'F => Address,..Vector(4*I-1 downto 4*1-4)

when others => null;
end case;

end loop;

return Address_-Vector,

end HEX_To._MVL7V;

end mem..sys,..pkg;
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